

ADVANCED

PROGRAMMING

R A Y D U N C A N

ADVANCED

PROGRAMMING

The

Microsoft®

guide for

Assembly

Language

andC

programmers

®

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1986, 1988 by Ray Duncan
Published 1986. Second edition 1988.
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Duncan, Ray, 1952-
Advanced MS-DOS programming.
Rev. ed. of: Advanced MS-DOS. ©1986.
Includes index.
1. MS-DOS (Computer operating system) 2. Assembler language
(Computer program language) 3. C (Computer program language)
I. Duncan, Ray, 1952- Advanced MS-DOS. II. Title.
QA76.76.063D858 1988 005.4'46 88-1251
ISBN 1-55615-157-8
Printed and bound in the United States of America.

123456789 FGFG 321098

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Penguin Books Ltd., Harmondworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairu Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IB~ PC/ AT': and PS/2® are registered trademarks of International Business Machines Corporation. CodeVievP,
Microsof~ MS-DOS~ and XENIX® are registered trademarks and InPort™ is a trademark of Microsoft Corporation.

Technical Editor: Mike Halvorson Production Editor: Mary Ann Jones

Contents

Road Map to Figures and Tables ix
Acknowledgments xi
Introduction xiii

Section I Programming for MS-DOS 1
Chapter1 Genealogy of MS-DOS 3
Chapter2 MS-DOS in Operation 11

Chapter3 Structure of MS-DOS Application Programs 21
Chapt•4 MS-DOS Programming Tools 43
Chapt•S Keyboard and Mouse Input 65
Chapt•& Video Display 85
Chapt•7 Printer and Serial Port 105
Chapter& File Management 127
Chapter9 Volumes and Directories 165
Chapter10 Disk Internals 177
Chapter11 Memory Management 195
Chapter12 The EXEC Function 217
Chapter13 Interrupt Handlers 243
Chapter14 Installable Device Drivers 259
Chapter15 Filters 297
Chapter16 Compatibility and Portability 313
Section II MS-DOS Functions Reference 333
Section Ill IBM ROM BIOS and Mouse Functions 493

Reference

Section IV Lotus/Intel/Microsoft EMS Functions Reference 613

Index 647

Road Map to Figures and Tables

MS-DOS versions and release dates
MS-DOS memory map
Structure of program segment prefix (PSP)
Structure of .EXE load module
Register conditions at program entry
Segments, groups, and classes
Macro Assembler switches
C Compiler switches
Linker switches
MAKE switches
ANSI escape sequences
Video attributes
Structure of normal file control block (FCB)
Structure of extended file control block
MS-DOS error codes
Structure of boot sector
Structure of directory entry
Structure of fixed-disk master block
LIM EMS error codes
Intel 80x86 internal interrupts (faults)
Intel 80x86, MS-DOS, and ROM BIOS interrupts
Device-driver attribute word
Device-driver command codes
Structure of BIOS parameter block (BPB)
Media descriptor byte

8
20
23
32
36
40
47
49
53
61
92
97,98

129
131
145
180
184
192
207,208
246
248
264
267
269
270

ix

Acknowledgments

My renewed thanks to the outstanding editors and production staff at
Microsoft Press, who make beautiful books happen, and to the talented
Microsoft developers, who create great programs to write books about.
Special thanks to Mike Halvorson, Jeff Hinsch, Mary Ann Jones, Claudette
Moore, Dori Shattuck, and Mark Zbikowski; if this book has anything
unique to offer, these people deserve most of the credit.

xi

Introduction

Advanced MS-DOS Programming is written for the experienced C or
assembly-language programmer. It provides all the information you need
to write robust, high-performance applications under the MS-DOS operat­
ing system. Because I believe that working, well-documented programs
are unbeatable learning tools, I have included detailed programming
examples throughout-including complete utility programs that you can
adapt to your own needs.

This book is both a tutorial and a reference and is divided into four
sections, so that you can find information more easily. Section I discusses
MS-DOS capabilities and services by functional group in the context of
common programming issues, such as user input, control of the display,
memory management, and file handling. Special classes of programs,
such as interrupt handlers, device drivers, and filters, have their own
chapters.

Section II provides a complete reference guide to MS-DOS function calls,
organized so that you can see the calling sequence, results, and version
dependencies of each function at a glance. I have also included notes,
where relevant, about quirks and special uses of functions as well as
cross-references to related functions. An assembly-language example is
included for each entry in Section II.

Sections III and IV are references to IBM ROM BIOS, Microsoft Mouse
driver, and Lotus/ Intel/Microsoft Expanded Memory Specification func­
tions. The entries in these two sections have the same form as in Section
II, except that individual programming examples have been omitted.

The programs in this book were written with the marvelous Brief editor
from Solution Systems and assembled or compiled with Microsoft Macro
Assembler version 5.1 and Microsoft C Compiler version 5.1. They have
been tested under MS-DOS versions 2.1, 3.1, 3.3, and 4.0 on an 8088-based
IBM PC, an 80286-based IBM PC/ AT, and an 80386-based IBM PS/ 2 Model
80. As far as I am aware, they do not contain any software or hardware de­
pendencies that will prevent them from running properly on any IBM PC­
compatible machine running MS-DOS version 2.0 or later.

xiii

Changes from the First Edition

xiv

Readers who are familiar with the first edition will find many changes in
the second edition, but the general structure of the book remains the
same. Most of the material comparing MS-DOS to CP /M and UNIX/ XENIX
has been removed; although these comparisons were helpful a few years
ago, MS-DOS has become its own universe and deserves to be considered
on its own terms.

The previously monolithic chapter on character devices has been broken
into three more manageable chapters focusing on the keyboard and
mouse, the display, and the serial port and printer. Hardware-dependent
video techniques have been de-emphasized; although this topic is more
important than ever, it has grown so complex that it requires a book of its
own. A new chapter discusses compatibility and portability of MS-DOS
applications and also contains a brief introduction to Microsoft OS/ 2, the
new multitasking, protected-mode operating system.

A road map to vital figures and tables has been added, following the Table
of Contents, to help you quickly locate the layouts of the program segment
prefix, file control block, and the like.

The reference sections at the back of the book have been extensively up­
dated and enlarged and are now complete through MS-DOS version 4.0,
the IBM PS/ 2 Model 80 ROM BIOS and the VGA video adapter, the
Microsoft Mouse driver version 6.0, and the Lotus/ Intel/Microsoft Ex­
panded Memory Specification version 4.0.

In the two years since Advanced MS-DOS Programming was first
published, hundreds of readers have been kind enough to send me their
comments, and I have tried to incorporate many of their suggestions in
this new edition. As before, please feel free to contact me via MCI Mail
(user name LMI), CompuServe (user ID 72406,1577), or BIX (user name
rduncan).

Ray Duncan

Los Angeles, California
September 1988

SPECIAL OFFER

Companion Disk to
ADVANCED MS-DOS PROGRAMMING,

2nd edition

Microsoft Press has created a Companion Disk to ADVANCED MS­
DOS PROGRAMMING, 2nd edition, available in either 5.25-inch or
3.5-inch format. This disk contains all of the source files and execut­
able files from the book and is an essential resource for anyone who
wants to forgo the drudgery of typing code (and the time required to
find and correct those inevitable typing errors).

The Companion Disk to ADVANCED MS-DOS PROGRAMMING is
available only from Microsoft Press. To order, use the special reply
card bound in the back of the book. If the card has already been used,
send $19.95, plus sales tax if applicable (CA residents 5% plus local op­
tion tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 4.225%, NY 4% plus lo­
cal option tax, WA State 7.8%) and $2.50 per disk for domestic postage
and handling, $6.00 per disk for foreign orders to: Microsoft Press,
Attn: Companion Disk Offer, 21919 20th Ave S.E., Box 3011, Bothell,
WA 98041-3011. Please specify 5.25-inch or 3.5-inch format. Payment
must be in U.S. funds. You may pay by check or money order (payable
to Microsoft Press) or by American Express, VISA, or MasterCard;
please include both your credit card number and the expiration date.
All orders are shipped 2nd day air upon receipt of order to Microsoft.

If you have questions or comments about this disk, please contact Ray
Duncan via MCI Mail (user name LMI), CompuServe (user ID
72406,1577), or BIX (user name rduncan).

If this disk proves defective, please send the defective disk along with
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717.

Chapter1

Genealogy of MS-DOS

In only seven years, MS-DOS has evolved from a simple program loader
into a sophisticated, stable operating system for personal computers that
are based on the Intel 8086 family of microprocessors (Figure 1-1). MS­
DOS supports networking, graphical user interfaces, and storage devices
of every description; it serves as the platform for thousands of application
programs; and it has over 10. million licensed users-dwarfing the com­
bined user bases of all of its competitors.

The progenitor of MS-DOS was an operating system called 86-DOS, which
was written by Tim Paterson for Seattle Computer Products in mid-1980.
At that time, Digital Research's CP /M-80 was the operating system most
commonly used on microcomputers based on the. Intel 8080 and Zilog
Z-80 microprocessors, and a wide range of application software (word
processors, database managers, and so forth) was available for use with
CP/M-80.

To ease the process of porting 8-bit CP/M-80 applications into the new 16-
bit environment, 86-DOS was originally designed to mimic CP/M-80 in
both available functions and style of operation. Consequently, the struc­
tures of 86-DOS's file control blocks, program segment prefixes, and exe­
cutable files were nearly identical to those of CP/M-80. Existing CP/M-80
programs could be converted mechanically (by processing their source­
code files through a special translator program) and, after conversion,
would run under 86-DOS either immediately or with very little hand
editing.

Because 86-DOS was marketed as a proprietary operating system for
Seattle Computer Products' line of S-100 bus, 8086-based microcomputers,
it made very little impact on the microcomputer world in general. Other
vendors of 8086-based microcomputers were understandably reluctant to
adopt a competitor's operating system and continued to wait impatiently
for the release of Digital Research's CP/M-86.

In October 1980, IBM approached the major microcomputer-software
houses in search of an operating system for the new line of personal com­
puters it was designing. Microsoft had no operating system of its own to
offer (other than a stand-alone version of Microsoft BASIC) but paid a fee
to Seattle Computer Products for the right to sell Paterson's 86-DOS. (At
that time, Seattle Computer Products received a license to use and sell
Microsoft's languages and all 8086 versions of Microsoft's operating sys­
tem.) In July 1981, Microsoft purchased all rights to 86-DOS, made sub­
stantial alterations to it, and renamed it MS-DOS. When the first IBM PC
was released in the fall of 1981, IBM offered MS-DOS (referred to as PC­
DOS 1.0) as its primary operating system.

4 Programmingfor MS-DOS

IBM also selected Digital Research's CP/M-86 and Softech's P-system as
alternative operating systems for the PC. However, they were both very
slow to appear at IBM PC dealers and suffered the additional disadvan­
tages of higher prices and lack of available programming languages. IBM
threw its considerable weight behind PC-DOS by releasing all the IBM­
logo PC application software and development tools to run under it. Con­
sequently, most third-party software developers targeted their products
for PC-DOS from the start, and CP/M-86 and P-system never became sig­
nifi.cant factors in the IBM PC-compatible market.

In spite of some superficial similarities to its ancestor CP/M-80, MS-DOS
version 1.0 contained a number of improvements over CP/M-80, including
the following:

■ An improved disk-directory structure that included information about
a file's attributes (such as whether it was a system or a hidden file), its
exact size in bytes, and the date that the file was created or last
modified

■ A superior disk-space allocation and management method, allowing
extremely fast sequential or random record access and program
loading

■ An expanded set of operating-system services, including hardware­
independent function calls to set or read the date and time, a filename
parser, multiple-block record 1/0, and variable record sizes

■ An AUTOEXEC.BAT batch file to perform a user-defined series of
commands when the system was started or reset

IBM was the only major computer manufacturer (sometimes referred to as
OEM, for original equipment manufacturer) to ship MS-DOS version 1.0
(as PC-DOS 1.0) with its products. MS-DOS version 1.25 (equivalent to IBM
PC-DOS 1.1) was released inJune 1982 to fix a number of bugs and also to
support double-sided disks and improved hardware independence in the
DOS kernel. This version was shipped by several vendors besides IBM, in­
cluding Texas Instruments, COMPAQ, and Columbia, who all entered the
personal computer market early. Due to rapid decreases in the prices of
RAM and fixed disks, MS-DOS version 1 is no longer in common use.

MS-DOS version 2.0 (equivalent to PC-DOS 2.0) was first released in March
1983. It was, in retrospect, a new operating system (though great care was
taken to maintain compatibility with MS-DOS version 1). It contained
many significant innovations and enhanced features, including those
listed on the following page.

Genealogy of MS-DOS 5

11 Support for both larger-capacity floppy disks and hard disks

11 Many UNIX/XENIX-like features, including a hierarchical file struc-
ture, file handles, 1/0 redirection, pipes, and filters

111 Background printing (print spooling)

■ Volume labels, plus additional file attributes

111 Installable device drivers

11 A user-customizable system-configuration file that controlled the load­
ing of additional device drivers, the number of system disk buffers, and
so forth

Iii Maintenance of environment blocks that could be used to pass infor­
mation between programs

111 An optional ANSI display driver that allowed programs to position the
cursor and control display characteristics in a hardware-independent
manner

111 Support for the dynamic allocation, modification, and release of
memory by application programs

11 Support for customized user command interpreters (shells)

111 System tables to assist application software in modifying its currency,
time, and date formats (known as international support)

MS-DOS version 2.11 was subsequently released to improve international
support (table-driven currency symbols, date formats, decimal-point sym­
bols, currency separators, and so forth), to add support for 16-bit Kanji
characters throughout, and to fix a few minor bugs. Version 2.11 rapidly
became the base version shipped for 8086/8088-based personal com­
puters by every major OEM, including Hewlett-Packard, Wang, Digital
Equipment Corporation, Texas Instruments, COMPAQ, and Tandy.

MS-DOS version 2.25, released in October 1985, was distributed in the Far
East but was never shipped by OEMs in the United States and Europe. In
this version, the international support for Japanese and Korean character
sets was extended even further, additional bugs were repaired, and many
of the system utilities were made compatible with MS-DOS version 3.0.

MS-DOS version 3.0 was introduced by IBM in August 1984 with the
release of the 80286-based PC/ AT machines. It represented another major
rewrite of the entire operating system and included the important new
features listed on the following page.

6 Programming/or MS-DOS

11 Direct control of the print spooler by application software

Iii Further expansion of international support for currency formats

■ Extended error reporting, including a code that suggests a recovery
strategy to the application program

■ Support for file and record locking and sharing

11 Support for larger fixed disks

MS-DOS version 3.1, which was released in November 1984, added sup­
port for the sharing of files and printers across a network. Beginning with
version 3.1, a new operating-system module called the redirector inter­
cepts an application program's requests for 1/0 and filters out the requests
that are directed to network devices, passing these requests to another
machine for processing.

Since version 3.1, the changes to MS-DOS have been evolutionary rather
than revolutionary. Version 3.2, which appeared in 1986, generalized the
definition of device drivers so that new media types (such as 3.5-inch
floppy disks) could be supported more easily. Version 3.3 was released in
1987, concurrently with the new IBM line of PS/2 personal computers, and
drastically expanded MS-DOS's multilanguage support for keyboard map­
pings, printer character sets, and display fonts. Version 4.0, delivered in
1988, was enhanced with a visual shell as well as support for very large file
systems.

While MS-DOS has been evolving, Microsoft has also put intense efforts
into the areas of user interfaces and multitasking operating systems.
Microsoft Windows, first shipped in 1985, provides a multitasking, graphi­
cal user "desktop" for MS-DOS systems. Windows has won widespread
support among developers of complex graphics applications such as
desktop publishing and computer-aided design because it allows their
programs to take full advantage of whatever output devices are available
without introducing any hardware dependence.

Microsoft Operating System/2 (MS OS/2), released in 1987, represents a
new standard for application developers: a protected-mode, multitasking,
virtual-memory system specifically designed for applications requiring
high-performance graphics, networking, and interprocess communica­
tions. Although MS OS/2 is a new product and is not a derivative of
MS-DOS, its user interface and file system are compatible with MS-DOS
and Microsoft Windows, and it offers the ability to run one real-mode (MS­
DOS) application alongside MS OS/2 protected-mode applications. This
compatibility allows users to move between the MS-DOS and OS/2 envi­
ronments with a minimum of difficulty.

Genealogy of MS-DOS 7

MS-DOS 1.0
PC-DOS 1.0

MS-DOS 1.25
PC-DOS 1.1

MS-DOS 2.0
PC-DOS 2.0

MS-DOS 2.11

MS-DOS 3.0
PC-DOS 3.0

MS-DOS 3.1
PC-DOS 3.1

MS-DOS3.2
PC-DOS 3.2

MS-DOS 3.3
PC-DOS3.3

MS-DOS4.0
PC-DOS4.0

1981: First operating system on IBM PC

Double-sided disk support and bug fixes added:
widely distributed by OEMs other than IBM

1983: Introduced with IBM PC/XT;
support for UNIX/XENIX-like hierarchical
file structure and hard disks added

2.0 with inter­
national support

2.01 with bug fixes

1984: Introduced
with PC/AT;
support for 1.2
MB floppy disk,
larger hard disk added

1984: Support
for Microsoft
Networks added

1986: Support
for 3.5-inch
disks added

1987: Introduced
with IBM PS/2;
generalized code-
page (font) support

1988: Support for
logical volumes
larger than 32 MB;
visual shell

PC-DOS 2.1

MS-DOS 2.25

Windows
1.0

,;/4:\.,J:.x,£;,...,❖:

Windows
2.0

Introduced with PCjr;
2.0 with bug fixes

1985: Far East OEMs;
support for extended
character sets

1985: Graphical
user interface
for MS-DOS

1987: Compatibility
with OS/2
Presentation Manager

Figure 1-1. The evolution of MS-DOS.

8 Programming/or MS-DOS

What does the future hold for MS-DOS? Only the long-range planning
teams at Microsoft and IBM know for sure. But it seems safe to assume that
MS-DOS, with its relatively small memory requirements, adaptability to
diverse hardware configurations, and enormous base of users, will remain
important to programmers and software publishers for years to come.

Genealogy of MS-DOS 9

Chapter2

MS-DOS in Operation

It is unlikely that you will ever be called upon to configure the MS-DOS
software for a new model of computer. Still, an acquaintance with the
general structure of MS-DOS can often be very helpful in understanding
the behavior of the system as a whole. In this chapter, we will discuss how
MS-DOS is organized and how it is loaded into memory when the com­
puter is turned on.

The Structure of MS-DOS
MS-DOS is partitioned into several layers that serve to isolate the kernel
logic of the operating system, and the user's perception of the system,
from the hardware it is running on. These layers are

■ The BIOS (Basic Input/ Output System)

■ The DOS kernel

■ The command processor (shell)

We'll discuss the functions of each of these layers separately.

The BIOS Module
The BIOS is specific to the individual computer system and is provided by
the manufacturer of the system. It contains the default resident hardware­
dependent drivers for the following devices:

■ Console display and keyboard (CON)

■ Line printer (PRN)

■ Auxiliary device (AUX)

■ Date and time (CLOCK$)

■ Boot disk device (block device)

The MS-DOS kernel communicates with these device drivers through I/O
request packets; the drivers then translate these requests into the proper
commands for the various hardware controllers. In many MS-DOS sys­
tems, including the IBM PC, the most primitive parts of the hardware
drivers are located in read-only memory (ROM) so that they can be used
by stand-alone applications, diagnostics, and the system startup program.

The terms resident and installable are used to distinguish between the
drivers built into the BIOS and the drivers installed during system initial­
ization by DEVICE commands in the CONFIG.SYS file. (Installable drivers
will be discussed in more detail later in this chapter and in Chapter 14.)

12 Programming/or MS-DOS

The BIOS is read into random-access memory (RAM) during system ini­
tialization as part of a file named IO.SYS. (In PC-DOS, the file is called
IBMBIO.COM.) This file is marked with the special attributes hidden and
system.

The DOS Kernel
The DOS kernel implements MS-DOS as it is seen by application pro­
grams. The kernel is a proprietary program supplied by Microsoft Corpo­
ration and provides a collection of hardware-independent services called
system functions. These functions include the following:

■ File and record management

■ Memory management

■ Character-device input/ output

■ Spawning of other programs

■ Access to the real-time clock

Programs can access system functions by loading registers with function­
specific parameters and then transferring to the operating system by
means of a software interrupt.

The DOS kernel is read into memory during system initialization from the
MSDOS.SYS file on the boot disk. (The file is called IBMDOS.COM in PC­
DOS.) This file is marked with the attributes hidden and system.

The Command Processor
The command processor, or shell, is the user's interface to the operating
system. It is responsible for parsing and carrying out user commands, in­
cluding the loading and execution of other programs from a disk or other
mass-storage device.

The default shell that is provided with MS-DOS is found in a file called
COMMAND.COM. Although COMMAND.COM prompts and responses
constitute the ordinary user's complete perception of MS-DOS, it is im­
portant to realize that COMMAND.COM is not the operating system, but
simply a special class of program running under the control of MS-DOS.

COMMAND.COM can be replaced with a shell of the programmer's own
design by simply adding a SHELL directive to the system-configuration
file (CONFIG.SYS) on the system startup disk. The product COMMAND­
PLUS from ESP Systems is an example of such an alternative shell.

MS-DOS in Operation 13

More about COMMAND.COM
The default MS-DOS shell, COMMAND.COM, is divided into three parts:

1111 A resident portion

lil An initialization section

111 A transient module

The resident portion is loaded in lower memory, above the DOS kernel
and its buffers and tables. It contains the routines to process Ctrl-C and
Ctrl-Break, critical errors, and the termination (final exit) of other tran­
sient programs. This part of COMMAND.COM issues error messages and
is responsible for the familiar prompt

Abort, Retry. Ignore?

The resident portion also contains the code required to reload the tran­
sient portion of COMMAND.COM when necessary.

The initialization section of COMMAND.COM is loaded above the resi­
dent portion when the system is started. It processes the AUTOEXEC.BAT
batch file (the user's list of commands to execute at system startup), if one
is present, and is then discarded.

The transient portion of COMMAND.COM is loaded at the high end of
memory, and its memory can also be used for other purposes by applica­
tion programs. The transient module issues the user prompt, reads the
commands from the keyboard or batch file, and causes them to be exe­
cuted. When an application program terminates, the resident portion of
COMMAND.COM does a checksum of the transient module to determine
whether it has been destroyed and fetches a fresh copy from the disk if
necessary.

The user commands that are accepted by COMMAND.COM fall into three
categories:

oo Internal commands

111 External commands

11 Batch files

Internal commands, sometimes called intrinsic commands, are those
carried out by code embedded in COMMAND.COM itself. Commands in
this category include COPY, REN(AME), DIR(ECTORY), and DEL(ETE).
The routines for the internal commands are included in the transient part
of COMMAND.COM.

14 Programming/or MS-DOS

External commands, sometimes called extrinsic commands or transient
programs, are the names of programs stored in disk files. Before these
programs can be executed, they must be loaded from the disk into the
transient program area (TPA) of memory. (See "How MS-DOS Is Loaded"
in this chapter.) Familiar examples of external commands are CHKDSK,
BACKUP, and RESTORE. As soon as an external command has completed
its work, it is discarded from memory; hence, it must be reloaded from
disk each time it is invoked.

Batch files are text files that contain lists of other intrinsic, extrinsic, or
batch commands. These files are processed by a special interpreter that is
built into the transient portion of COMMAND.COM. The interpreter reads
the batch file one line at a time and carries out each of the specified
operations in order.

In order to interpret a user's command, COMMAND.COM first looks to
see if the user typed the name of a built-in (intrinsic) command that it can
carry out directly. If not, it searches for an external command (executable
program file) or batch file by the same name. The search is carried out

· first in the current directory of the current disk drive and then in each of
the directories specified in the most recent PATH command. In each
directory inspected, COMMAND.COM first tries to find a file with the ex­
tension .COM, then .EXE, and finally .BAT. If the search fails for all three
file types in all of the possible locations, COMMAND.COM displays the
familiar message

Bad command or file name

If a .COM file or a .EXE file is found, COMMAND.COM uses the MS-DOS
EXEC function to load and execute it. The EXEC function builds a special
data structure called a program segment prefix (PSP) above the resident
portion of COMMAND.COM in the transient program area. The PSP con­
tains various linkages and pointers needed by the application program.
Next, the EXEC function loads the program itself, just above the PSP, and
performs any relocation that may be necessary. Finally, it sets up the
registers appropriately and transfers control to the entry point for the pro­
gram. (Both the PSP and the EXEC function will be discussed in more
detail in Chapters 3 and 12.) When the transient program has finished its
job, it calls a special MS-DOS termination function that releases the tran­
sient program's memory and returns control to the program that caused
the transient program to be loaded (COMMAND.COM, in this case).

A transient program has nearly complete control of the system's resources
while it is executing. The only other tasks that are accomplished are those

MS-DOS in Operation 15

performed by interrupt handlers (such as the keyboard input driver and
the real-time clock) and operations that the transient program requests
from the operating system. MS-DOS does not support sharing of the
central processor among several tasks executing concurrently, nor can it
wrest control away from a program when it crashes or executes for too
long. Such capabilities are the province of MS OS/2, which is a protected­
mode system with preemptive multitasking (time-slicing).

How MS-DOS Is Loaded
When the system is started or reset, program execution begins at address
0FFFF0H. This is a feature of the 8086/ 8088 family of microprocessors
and has nothing to do with MS-DOS. Systems based on these processors
are designed so that address 0FFFF0H lies within an area of ROM and con­
tains a jump machine instruction to transfer control to system test code
and the ROM bootstrap routine (Figure 2-1).

The ROM bootstrap routine reads the disk bootstrap routine from the first
sector of the system startup disk (the boot sector) into memory at some
arbitrary address and then transfers control to it (Figure 2-2). (The boot
sector also contains a table of information about the disk format.)

The disk bootstrap routine checks to see if the disk contains a copy of MS­
DOS. It does this by reading the first sector of the root directory and
determining whether the first two files are IO.SYS and MSDOS.SYS (or
IBMBIO.COM and IBMDOS.COM), in that order. If these files are not pres­
ent, the user is prompted to change disks and strike any key to try again.

00400H
OOOOOH

;:,,,-,·'

ROM bootstrap routine

Interrupt vectors

◄ Top of RAM

J
Figure 2-1. A typical 8086/8088-based computer system immediately after system
startup or reset. Execution begins at location 0FFFF0H, which contains a jump in­
struction that directs program control to the ROM bootstrap routine.

16 Programming/or MS-DOS

ROM bootstrap routine

Disk bootstrap routine

00400H it-----------------------1
OOOOOH i!;mrn.m!ill!ilmrnmrnmrnm!!il!Elrnnrnternrru:npmtmvmecmtornrrns!!il!Ernmrnmrnmilll!ilmrn.mr

◄ TopofRAM

◄ Arbitrary load location

Figure 2-2. The ROM bootstrap routine loads the disk bootstrap routine into memory
from the first sector of the system startup disk and then transfers control to it.

If the two system files are found, the disk bootstrap reads them into
memory and transfers control to the initial entry point of IO.SYS (Figure
2-3). (In some implementations, the disk bootstrap reads only IO.SYS into
memory, and IO.SYS in turn loads the MSDOS.SYS file.)

The IO.SYS file that is loaded from the disk actually consists of two sepa­
rate modules. The first is the BIOS, which contains the linked set of resi­
dent device drivers for the console, auxiliary port, printer, block, and
clock devices, plus some hardware-specific initialization code that is run
only at system startup. The second module, SYSINIT, is supplied by
Microsoft and linked into the IO.SYS file, along with the BIOS, by the
computer manufacturer.

SYSINIT is called by the manufacturer's BIOS initialization code. It deter­
mines the amount of contiguous memory present in the system and then
relocates itself to high memory. Then it moves the DOS kernel,
MSDOS.SYS, from its original load location to its final memory location,
overlaying the original SYSINIT code and any other expendable initializa­
tion code that was contained in the IO.SYS file (Figure 2-4).

Next, SYSINIT calls the initialization code in MSDOS.SYS. The DOS
kernel initializes its internal tables and work areas, sets up the interrupt
vectors 20H through 2FH, and traces through the linked list of resident de­
vice drivers, calling the initialization function for each. (See Chapter 14.)

MS-DOS in Operation 17

ROM bootstrap routine

Disk bootstrap routine

~~ --~ -

DOS kernel (from MSDOS.SYS)

SYSINIT (from IO.SYS)

BIOS (from IO.SYS)

00400H -----------------------1
OOOOOH limmi!iiii!El1iiim'llia!!iilmi!!iilmiilEimnmtemrrunpmtmvemctmomrs;m;mmml!Elllliail!imili!!iilmillii!mr

◄ TopofRAM

◄ In temporary location

Figure 2-3. The disk bootstrap reads the file IO.SYS into memory. This file contains
the MS-DOS BIOS (resident device drivers) and the SYS/NIT module. Either the disk
bootstrap or the BIOS (depending upon the manufacturer's implementation) then
reads the DOS kernel into memory from the MSDOS.SYS file.

These driver functions determine the equipment status, perform any nec­
essary hardware initialization, and set up the vectors for any external
hardware interrupts the drivers will service.

As part of the initialization sequence, the DOS kernel examines the disk­
parameter blocks returned by the resident block-device drivers, deter­
mines the largest sector size that will be used in the system, builds some
drive-parameter blocks, and allocates a disk sector buffer. Control then
returns to SYSINIT.

When the DOS kernel has been initialized and all resident device drivers
are available, SYSINIT can call on the normal MS-DOS file services to
open the CONFIG.SYS file. This optional file can contain a variety of com­
mands that enable the user to customize the MS-DOS environment. For

18 Programming/or MS-DOS

00400H
OOOOOH

ROM bootstrap routine

111-------S-Y-S-INI_T_m_od_u_l_e ______ ---1 ◄ Top of RAM

~-
~ -

Installable drivers
File control blocks
Disk buffer cache

DOS kernel

◄ In final location

BIOS

Interrupt vectors

Figure 2-4. SYS/NIT moves itself to high memory and relocates the DOS kerne~
MSDOS.SYS, doumward to its final address. The MS-DOS disk buffer cache and file
control block areas are allocated, and then the installable device drivers specified in
the CONFIG.SYS file are loaded and linked into the system.

instance, the user can specify additional hardware device drivers, the
number of disk buffers, the maximum number of files that can be open at
one time, and the filename of the command processor (shell).

If it is found, the entire CONFIG.SYS file is loaded into memory for pro­
cessing. All lowercase characters are converted to uppercase, and the file
is interpreted one line at a time to process the commands. Memory is allo­
cated for the disk buffer cache and the internal file control blocks used by
the handle file and record system functions. (See Chapter 8.) Any device
drivers indicated in the CONFIG.SYS file are sequentially loaded into
memory, initialized by calls to their init modules, and linked into the
device-driver list. The init function of each driver tells SYSINIT how
much memory to reserve for that driver.

After all installable device drivers have been loaded, SYSINIT closes all
file handles and reopens the console (CON), printer (PRN), and auxiliary

MS-DOS in Operation 19

(AUX) devices as the standard input, standard output, standard error, stan­
dard list, and standard auxiliary devices. This allows a user-installed
character-device driver to override the BIOS's resident drivers for the
standard devices.

Finally, SYSINIT calls the MS-DOS EXEC function to load the command
interpreter, or shell. (The default shell is COMMAND.COM, but another
shell can be substituted by means of the CONFIG.SYS file.) Once the shell
is loaded, it displays a prompt and waits for the user to enter a command.
MS-DOS is now ready for business, and the SYSINIT module is discarded
(Figure 2-5).

00400H
OOOOOH

f'IFP'"

ROM bootstrap routine

Transient part of COMMAND.COM

~
Transient program area

Resident part of COMMAND.COM

Installable drivers
File control blocks
Disk buffer cache

DOS kernel

BIOS

Interrupt vectors

◄ TopofRAM

-

Figure 2-5. The final result of the MS-DOS startup process for a typical system. The
resident portion of COMMAND.COM lies in low memory, above the DOS kernel. The
transient portion containing the batch-file interpreter and intrinsic commands is
placed in high memory, where it can be overlaid by extrinsic commands and appli­
cation programs running in the transient program area.

20 Programming/or MS-DOS

Chapter3

Structure of MS-DOS
Application Programs

Programs that run under MS-DOS come in two basic flavors: .COM pro­
grams, which have a maximum size of approximately 64 KB, and .EXE
programs, which can be as large as available memory. In Intel 8086
parlance, .COM programs fit the tiny model, in which all segment regis­
ters contain the same value; that is, the code and data are mixed together.
In contrast, .EXE programs fit the small, medium, or large model, in which
the segment registers contain different values; that is, the code, data, and
stack reside in separate segments .. EXE programs can have multiple code
and data segments, which are respectively addressed by long calls and by
manipulation of the data segment (DS) register.

A .COM-type program resides on the disk as an absolute memory image,
in a file with the extension .COM. The file does not have a header or any
other internal identifying information. A .EXE program, on the other
hand, resides on the disk in a special type of file with a unique header, a
relocation map, a checksum, and other information that is (or can be)
used by MS-DOS.

Both .COM and .EXE programs are brought into memory for execution by
the same mechanism: the EXEC function, which constitutes the MS-DOS
loader. EXEC can be called with the filename of a program ~o be loaded by
COMMAND.COM (the normal MS-DOS command interpreter), by other
shells or user interfaces, or by another program that was previously loaded
by EXEC. If there is sufficient free memory in the transient program area,
EXEC allocates a block of memory to hold the new program, builds the
program segment prefix (PSP) at its base, and then reads the program into
memory immediately above the PSP. Finally, EXEC sets up the segment
registers and the stack and transfers control to the program.

When it is invoked, EXEC can be given the addresses of additional infor­
mation, such as a command tail, file control blocks, and an environment
block; if supplied, this information will be passed on to the new program.
(The exact procedure for using the EXEC function in your own programs
is discussed, with examples, in Chapter 12.)

.COM and .EXE programs are often referred to as transient programs. A
transient program "owns" the memory block it has been allocated and has
nearly total control of the system's resources while it is executing. When
the program terminates, either because it is aborted by the operating sys­
tem or because it has completed its work and systematically performed a
final exit back to MS-DOS, the memory block is then freed (hence the
term transient) and can be used by the next program in line to be loaded.

22 Programming/or MS-DOS

The Program Segment Prefix
A thorough understanding of the program segment prefix is vital to suc­
cessful programming under MS-DOS. It is a reserved area, 256 bytes long,
that is set up by MS-DOS at the base of the memory block allocated to a
transient program. The PSP contains some linkages to MS-DOS that can be
used by the transient program, some information MS-DOS saves for its
own purposes, and some information MS-DOS passes to the transient
program - to be used or not, as the program requires (Figure 3-1).

Offset
OOOOH

0002H

0004H
0005H

OOOAH

OOOEH

0012H

0016H

002CH

002EH

005CH

006CH

0080H

OOFFH

Int 20H

Segment, end of allocation block

Reserved

Long call to MS-DOS function dispatcher

Previous contents of termination handler interrupt vector (Int 22H)

Previous contents of Ctrl-C interrupt vector (Int 23H)

Previous contents of critical-error handler interrupt vector (Int 24H)

Reserved

Segment address of environment block

Reserved

Default file control block #l

Default file control block #2
(overlaid if FCB #l opened)

~ -- --~-----
Command tail and default disk transfer area (buffer)

Figure 3-1. The structure of the program segment prefix.

Structure of MS-DOS Application Programs 23

In the first versions of MS-DOS, the PSP was designed to be compatible
with a control area that was built beneath transient programs under Digi­
tal Research's venerable CP/M operating system, so that programs could
be ported to MS-DOS without extensive logical changes. Although MS­
DOS has evolved considerably since those early days, the structure of the
PSP is still recognizably similar to its CP /M equivalent. For example, offset
0000H in the PSP contains a linkage to the MS-DOS process-termination
handler, which cleans up after the program has finished its job and per­
forms a final exit. Similarly, offset 000SH in the PSP contains a linkage to
the MS-DOS function dispatcher, which performs disk operations, con­
sole input/output, and other such services at the request of the transient
program. Thus, calls to PSP:0000 and PSP:0005 have the same effect as
CALL 0000 and CALL 0005 under CP/M. (These linkages are not the
"approved" means of obtaining these services, however.)

The word at offset 0002H in the PSP contains the segment address of the
top of the transient program's allocated memory block. The program can
use this value to determine whether it should request more memory to do
its job or whether it has extra memory that it can release for use by other
processes.

Offsets 000AH through 0015H in the PSP contain the previous contents of
the interrupt vectors for the termination, Ctrl-C, and critical-error han­
dlers. If the transient program alters these vectors for its own purposes,
MS-DOS restores the original values saved in the PSP when the program
terminates.

The word at PSP offset 002CH holds the segment address of the environ­
ment block, which contains a series of ASCIIZ strings (sequences of ASCII
characters terminated by a null, or zero, byte). The environment block is
inherited from the program that called the EXEC function to load the cur­
rently executing program. It contains such information as the current
search path used by COMMAND.COM to find executable programs, the
location on the disk of COMMAND.COM itself, and the format of the user
prompt used by COMMAND.COM.

The command tail-the remainder of the command line that invoked the
transient program, after the program's name-is copied into the PSP
starting at offset 0081H. The length of the command tail, not including the
return character at its end, is placed in the byte at offset 0080H. Redi­
rection or piping parameters and their associated filenames do not appear
in the portion of the command line (the command tail) that is passed to
the transient program, because redirection is transparent to applications.

24 Programming/or MS-DOS

To provide compatibility with CP/ M, MS-DOS parses the first two parame­
ters in the command tail into two default file control blocks (FCBs) at
PSP:00SCH and PSP:006CH, under the assumption that they may be file­
names. However, if the parameters are filenames that include a path speci­
fication, only the drive code will be valid in these default FCBs, because
FCB-type file- and record-access functions do not support hierarchical file
structures. Although the default FCBs were an aid in earlier years, when
compatibility with CP/ M was more of a concern, they are essentially use­
less in modern MS-DOS application programs that must provide full path
support. (File control blocks are discussed in detail in Chapter 8 and
hierarchical file structures are discussed in Chapter 9.)

The 128-byte area from 0080H through 00FFH in the PSP also serves as
the default disk transfer area (DTA), which is set by MS-DOS before pass­
ing control to the transient program. If the program does not explicitly
change the DTA, any file read or write operations requested with the FCB
group of function calls automatically use this area as a data buffer. This is
rarely useful and is another facet of MS-DOS's handling of the PSP that is
present only for compatibility with CP/M.

D WARNING Programs must not alter any part of the PSP below
offset 005CH.

Introduction to .COM Programs
Programs of the .COM persuasion are stored in disk files that hold an ab­
solute image of the machine instructions to be executed. Because the files
contain no relocation information, they are more compact, and are loaded
for execution slightly faster, than equivalent .EXE files . Note that MS-DOS
does not attempt to ascertain whether a .COM file actually contains exe­
cutable code (there is no signature or checksum, as in the case of a .EXE
file); it simply brings any file with the .COM extension into memory and
jumps to it.

Because .COM programs are loaded immediately above the program seg­
ment prefix and do not have a header that can specify another entry point,
they must always have an origin of 0100H, which is the length of the PSP.
Location 0100H must contain an executable instruction. The maximum
length of a .COM program is 65,536 bytes, minus the length of the PSP
(256 bytes) and a mandatory word of stack (2 bytes).

When control is transferred to the .COM program from MS-DOS, all of the
segment registers point to the PSP (Figure 3-2). The stack pointer (SP)

Structure of MS-DOS Application Programs 25

SS:SP

Stack grows downward from top of segment

CS:OlOOH

CS:OOOOH
DS:OOOOH
ES:OOOOH
SS:OOOOH

!

t
Program code and data

Program segment prefix

Figure 3-2. A memory image of a typical .COM-type program after loading. The
contents of the .COM file are brought into memory just above the program segment
prefix. Program, code, and data are mixed together in the same segment, and all seg­
ment registers contain the same value.

register contains 0FFFEH if memory allows; otherwise, it is set as high as
possible in memory minus 2 bytes. (MS-DOS pushes a zero word on the
stack before entry.)

Although the size of an executable .COM file can't exceed 64 KB, the cur­
rent versions of MS-DOS allocate all of the transient program area to .COM
programs when they are loaded. Because many such programs date from
the early days of MS-DOS and are not necessarily "well-behaved" in their
approach to memory management, the operating system simply makes
the worst-case assumption and gives .COM programs everything that is
available. If a .COM program wants to use the EXEC function to invoke
another process, it must first shrink down its memory allocation to the
minimum memory it needs in order to continue, taking care to protect its
stack. (This is discussed in more detail in Chapter 12.)

When a .COM program finishes executing, it can return control to MS­
DOS by several means. The preferred method is Int 21H Function 4CH,
which allows the program to pass a return code back to the program,
shell, or batch file that invoked it. However, if the program is running

26 Programming/or MS-DOS

under MS-DOS version 1, it must exit by means of Int 20H, Int 21H Func­
tion 0, or a NEAR RETURN. (Because a word of zero was pushed onto the
stack at entry, a NEAR RETURN causes a transfer to PSP:0000, which con­
tains an Int 20H instruction.)

A .COM-type application can be linked together from many separate ob­
ject modules. All of the modules must use the same code-segment name
and class name, and the module with the entry point at offset 0100H
within the segment must be linked first. In addition, all of the procedures
within a .COM program should have the NEAR attribute, because all exe­
cutable code resides in one segment.

When linking a .COM program, the linker will display the message

Warning : no stack segment

This message can be ignored. The linker output is a .EXE file , which must
be converted into a .COM file with the MS-DOS EXE2RJN utility before
execution. You can then delete the .EXE file. (An example of this process
is provided in Chapter 4.)

An Example .COM Program
The HELLO.COM program listed in Figure 3-3 demonstrates the structure
of a simple assembly-language program that is destined to become a
.COM file . (You may find it helpful to compare this listing with the
HELLO.EXE program later in this chapter.) Because this program is so
short and simple, a relatively high proportion of the source code is ac­
tually assembler directives that do not result in any executable code.

The NAME statement simply provides a module name for use during the
linkage process. This aids understanding of the map that the linker pro­
duces. In MASM versions 5.0 and later, the module name is always the
same as the filename, and the NAME statement is ignored.

The PAGE command, when used with two operands, as in line 2, defines
the length and width of the page. These default respectively to 66 lines
and 80 characters. If you use the PAGE command without any operands, a
formfeed is sent to the printer and a heading is printed. In larger pro­
grams, use the PAGE command liberally to place each of your subroutines
on separate pages for easy reading.

The TITLE command, in line 3, specifies the text string (limited to 60
characters) that is to be printed at the upper left corner of each page. The
TITLE command is optional and cannot be used more than once in each
assembly-language source file.

Structure of MS-DOS Application Programs 27

1:

2:
3:
4:
5:

6:
7:

8:
9:

10:

name
page
title

HELLO.COM:

hello
55,132
HELLO.COM--print hello on terminal

demonstrates various components
of a functional .COM -type assembly­
language program, and an MS-DOS
function ca 11 .

11: Ray Duncan, May 1988
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:

stdin
stdout
stderr

er
lf

22: _TEXT
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36 :

37:
38:
39 :
40:
41:
42:
43:
44:
45:
46:
47:

print

print

msg

msg_len

equ 0
equ 1
equ 2

equ Odh
equ Oah

standard input handle
standard output handle
standard error handle

ASCII carriage return
ASCII l inefeed

segment word public 'CODE'

org

assume

proc

mov
mov
mov
mov
int

mov
int

endp

db
db

equ

100h .COM files always have
an origin of 100h

cs: _TEXT,ds: _TEXT,es: _TEXT,ss: _TEXT

near entry point from MS-DOS

ah,40h function 40h - write
bx,stdout handle for standard output
cx,msg_len length of message
dx,offset msg address of me s.sage
21h transfer to MS-DOS

ax,4c00h exit, return code - 0
21h transfer to MS-DOS

er, l f ; message to display
'He 11 o World!' ,er, lf

$-msg ; length of message

Figure 3-3. The HELLO.COM program listing.

28 Programming/or MS-DOS

(continued)

Figure 3-3. continued

48:
49: _TEXT ends
50:
51: end print ; defines entry point

Dropping down past a few comments and EQU statements, we come to a
declaration of a code segment that begins in line 22 with a SEGMENT
command and ends in line 49 with an ENDS command. The label in the
leftmost field of line 22 gives the code segment the name _ TEXT. The
operand fields at the right end of the line give the segment the attributes
WORD, PUBLIC, and 'CODE'. (You might find it helpful to read the
Microsoft Macro Assembler manual for detailed explanations of each pos­
sible segment attribute.)

Because this program is going to be converted into a .COM file, all of its
executable code and data areas must lie within one code segment. The
program must also have its origin at offset 0100H (immediately above the
program segment prefix), which is taken care of by the ORG statement
in line 24.

Following the ORG instruction, we encounter an ASSUME statement on
line 27. The concept of ASSUME often baffles new assembly-language
programmers. In a way, ASSUME doesn't "do" anything; it simply tells the
assembler which segment registers you are going to use to point to the
various segments of your program, so that the assembler can provide seg­
ment overrides when they are necessary. It's important to notice that the
ASSUME statement doesn't take care of loading the segment registers with
the proper values; it merely notifies the assembler of your intent to do that
within the program. (Remember that, in the case of a .COM program, MS­
DOS initializes all the segment registers before entry to point to the PSP.)

Within the code segment, we come to another type of block declaration
that begins with the PROC command on line 29 and closes with ENDP on
line 40. These two instructions declare the beginning and end of a pro­
cedure, a block of executable code that performs a single distinct func­
tion. The label in the leftmost field of the PROC statement (in this case,
print) gives the procedure a name. The operand field gives it an attribute.
If the procedure carries the NEAR attribute, only other code in the same
segment can call it, whereas if it carries the FAR attribute, code located
anywhere in the CPU's memory-addressing space can call it. In .COM
programs, all procedures carry the NEAR attribute.

Structure of MS-DOS Application Programs 29

For the purposes of this example program, I have kept the print pro- /
cedure ridiculously simple. It calls MS-DOS Int 21H Function 40H to send
the message Hello World! to the video screen, and calls Int 21H Function
4CH to terminate the program.

The END statement in line 51 tells the assembler that it has reached the
end of the source file and also specifies the entry point for the program. If
the entry point is not a label located at offset 0100H, the .EXE file resulting
from the assembly and linkage of this source program cannot be con­
verted into a .COM file.

Introduction to .EXE Programs
We have just discussed a program that was written in such a way that it
could be assembled into a .COM file. Such a program is simple in struc­
ture, so a programmer who needs to put together this kind of quick utility
can concentrate on the program logic and do a minimum amount of wor­
rying about control of the assembler. However, .COM-type programs have
some definite disadvantages, and so most serious assembly-language
efforts for MS-DOS are written to be converted into .EXE files.

Although .COM programs are effectively restricted to a total size of 64 KB
for machine code, data, and stack combined, .EXE programs can be prac­
tically unlimited in size (up to the limit of the computer's available
memory) .. EXE programs also place the code, data, and stack in separate
parts of the file . Although the normal MS-DOS program loader does not
take advantage of this feature of .EXE files, the ability to load different
parts of large programs into several separate memory fragments, as well
as the opportunity to designate a "pure" code portion of your program
that can be shared by several tasks, is very significant in multitasking envi­
ronments such as Microsoft Windows.

The MS-DOS loader always brings a .EXE program into memory immedi­
ately above the program segment prefix, although the order of the code,
data, and stack segments may vary (Figure 3-4). The .EXE file has a
header, or block of control information, with a characteristic format
(Figures 3-5 and 3-6). The size of this header varies according to the num­
ber of program instructions that need to be relocated at load time, but it is
always a multiple of 512 bytes.

Before MS-DOS transfers control to the program, the initial values of the
code segment (CS) register and instruction pointer (IP) register are calcu­
lated from the entry-point information in the .EXE file header and the
program's load address. This information derives from an END statement

30 Programming/or MS-DOS

SS:SP

SS:OOOOH

CS:OOOOH

DS:OOOOH
ES:OOOOH

.

Stack segment: stack grows
downward from top of segment

~

Data segment

Program code

Program segment prefix

Figure 3-4. A memory image of a typical .EXE-type program immediately after
loading. The contents of the .EXE file are relocated and brought into memory above
the program segment prefix. Code, data, and stack reside in separate segments and
need not be in the order shown here. The entry point can be anywhere in the code seg­
ment and ts specified by the END statement in the main module of the program. When
the program receives contra~ the DS (data segment) and ES (extra segment) registers
point to the program segment prefix; the program usually saves thts value and then
resets the DS and ES registers to point to its data area.

in the source code for one of the program's modules. The data segment
(OS) and extra segment (ES) registers are made to point to the PSP so that
the program can access the environment-block pointer, command tail,
and other useful information contained there.

The initial contents of the stack segment (SS) and stack pointer (SP) regis­
ters come from the header. This information derives from the declaration
of a segment with the attribute STACK somewhere in the program's
source code. The memory space allocated for the stack may be initialized
or uninitialized, depending on the stack-segment definition; many pro­
grammers like to initialize the stack memory with a recognizable data pat­
tern so that they can inspect memory dumps and determine how much
stack space is actually used by the program.

When a .EXE program finishes processing, it should return control to MS­
DOS through Int 21H Function 4CH. Other methods are available, but they
offer no advantages and are considerably less convenient (because they
usually require the CS register to point to the PSP).

Structure of MS-DOS Application Programs 31

Byte offset
OOOOH
0001H
0002H
0004H
0006H
0008H
OOOAH
OOOCH
OOOEH
0010H
0012H
0014H
0016H
0018H
OOlAH
OOlBH

First part of .EXE file signature (4DH)
Second part of .EXE file signature (SAH)

Length of file MOD 512
Size of file in 512-byte pages, including header

Number of relocation-table items
Size of header in paragraphs (16-byte units)

Minimum number of paragraphs needed above program
Maximum number of paragraphs desired above program

Segment displacement of stack module
Contents of SP register at entry

Word checksum
Contents of IP register at entry

Segment displacement of code module
Offset of first relocation item in file

Overlay number (0 for resident part of program) .
Variable reserved space

Relocation table

Variable reserved space

Program and data segments

Stack segment

Figure 3-5. The format of a .EXE load module.

The input to the linker for a .EXE-type program can be many separate ob­
ject modules. Each module can use a unique code-segment name, and the
procedures can carry either the NEAR or the FAR attribute, depending on
naming conventions and the size of the executable code. The program­
mer must take care that the modules linked together contain only one seg­
ment with the STACK attribute and only one entry point defined with an
END assembler directive. The output from the linker is a file with a .EXE
extension. This file can be executed immediately.

32 Programming/or MS-DOS

C>DUMP HELLO.EXE
0 1 2 3 4 5 6 7 8 9 A 8 C D E F

0000 40 5A 28 00 02 00 01 00 20 00 09 00 FF FF 03 00 MZ(..
0010 80 00 20 05 00 00 00 00 lE 00 00 00 01 00 01 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0200 BB 01 00 BE 08 B4 40 BB 01 00 B9 10 00 90 BA 08 @ •••••••••

0210 00 CD 21 BB 00 4C CD 21 OD QA 48 65 6C 6C 6F 20 . . ! .. L. ! .. Hello
0220 57 6F 72 6C 64 21 OD OA World! ..

Figure 3-6. A hex dump of the HELLO. EXE program, demonstrating the contents of
a simple .EXE load module. Note the following interesting values: the .EXE signature
in bytes 0000H and 000JH, the number of relocation-table items in bytes 0006H and
0007H, the minimum extra memory allocation (MIN_ALLOC) in bytes 000AH and
000BH, the maximum extra memory allocation (MAX_ALLOC) in bytes 000CH
and 000DH, and the initial IP (instruction pointer) register value in bytes 0014H and
0015H. See also Figure 3-5.

An Example .EXE Program
The HELLO.EXE program in Figure 3-7 demonstrates the fundamental
structure of an assembly-language program that is destined to become a
.EXE file. At minimum, it should have a module name, a code segment, a
stack segment, and a primary procedure that receives control of the com­
puter from MS-DOS after the program is loaded. The HELLO.EXE pro­
gram also contains a data segment to provide a more complete example.

The NAME, TITLE, and PAGE directives were covered in the HELLO.COM
example program and are used in the same manner here, so we'll move to
the first new item of interest. After a few comments and EQU statements,
we come to a declaration of a code segment that begins on line 21 with a
SEGMENT command and ends on line 41 with an ENDS command. As in
the HELLO.COM example program, the label in the leftmost field of the
line gives the code segment the name _ TEXT. The operand fields at the
right end of the line give the attributes WORD, PUBLIC, and 'CODE'.

Following the code-segment instruction, we find an ASSUME statement on
line 23. Notice that, unlike the equivalent statement in the HELLO.COM
program, the ASSUME statement in this program specifies several differ­
ent segment names. Again, remember that this statement has no direct
effect on the contents of the segment registers but affects only the opera­
tion of the assembler itself.

Structure of MS-DOS Application Programs 33

1:

2:
3:
4:
5:

6:
7:

8:
9:

name
page
title

HELLO.EXE:

hello
55,132
HELLO.EXE--print Hello on terminal

demonstrates various components
of a functional .EXE-type assembly­
language program, use of segments,
and an MS-DOS function call.

10: Ray Duncan, May 1988
11:

12:
13: stdin equ
14: stdout equ
15: stderr equ
16:
17: er
18: lf

19:
20:

equ
equ

0

1

2

Odh
Oah

21: _TEXT segment word public 'CODE'
22:

standard input handle
standard output handle
standard error handle

ASCII carriage return
ASCII linefeed

23:
24:

assume cs: _TEXT,ds: _DATA,ss:STACK

25: print proc
26:
27:

28 :
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:

mov
mov

mov
mov
mov
mov
int

mov
int

39: print endp
40:
41: _TEXT ends
42:
43:

far

ax, _DATA
ds,ax

ah,40h
bx,stdout
cx,msg_len
dx,offset msg
21h

ax,4c00h
21h

44: _DATA segment word public 'DATA'
45:

entry point from MS-DOS

make our data segment
addressable ...

function 40h - write
standard output handle
length of message
address of message
transfer to MS-DOS

exit, return code - 0
transfer to MS-DOS

46: msg
47:

db
db

er, lf ; message to display
'Hello World!' ,er, lf

48:

Figure 3-7. The HELLO.EXE program listing.

34 Programming/or MS-DOS

(continued)

Figure 3-7. continued

49: msg_len equ
50:

$-msg length of message

51: _DATA ends
52:
53:
54: STACK segment para stack 'STACK'
55:
56:
57:

db 128 dup (?)

58: STACK ends
59:
60: end print ; defines entry point

Within the code segment, the main print procedure is declared by the
PROC command on line 25 and closed with ENDP on line 39. Because the
procedure resides in a .EXE file, we have given it the FAR attribute as an
example, but the attribute is really irrelevant because the program is so
small and the procedure is not called by anything else in the same
program.

The print procedure first initializes the DS register, as indicated in the
earlier ASSUME statement, loading it with a value that causes it to point to
the base of the data area. (MS-DOS automatically sets up the CS and SS
registers.) Next, the procedure uses MS-DOS Int 21H Function 40H to dis­
play the message Hello World.I on the screen, just as in the HELLO.COM
program. Finally, the procedure exits back to MS-DOS with an Int 21H
Function 4CH on lines 36 and 37, passing a return code of zero (which by
convention means a success).

Lines 44 through 51 declare a data segment named _ DATA, which con­
tains the variables and constants the program will use. If the various mod­
ules of a program contain multiple data segments with the same name, the
linker will collect them and place them in the same physical memory
segment.

Lines 54 through 58 establish a stack segment; PUSH and POP instructions
will access this area of scratch memory. Before MS-DOS transfers control
to a .EXE program, it sets up the SS and SP registers according to the
declared size and location of the stack segment. Be sure to allow enough
room for the maximum stack depth that can occur at runtime, plus a safe

Structure of MS-DOS Application Programs 35

number of extra words for registers pushed onto the stack during an MS­
DOS service call. If the stack overflows, it may damage your other code
and data segments and cause your program to behave strangely or even to
crash altogether!

The END statement on line 60 winds up our brief HELLO.EXE program,
telling the assembler that it has reached the end of the source file and pro­
viding the label of the program's point of entry from MS-DOS.

The differences between .COM and .EXE programs are summarized in
Figure 3-8.

.COM program .EXE program
Maximum size 65,536 bytes minus 256 bytes No limit

for PSP and 2 bytes for stack
Entry point PSP:0lOOH Defined by END statement
AL at entry OOH if default FCB #l has valid Same

drive, OFFH if invalid drive
AH at entry OOH if default FCB #2 has valid Same

drive, OFFH if invalid drive
CS at entry PSP Segment containing module

with entry point
IP at entry 0100H Offset of entry point within

its segment
DSatentry PSP PSP
ES at entry PSP PSP
SS at entry PSP Segment with STACK

attribute
SP at entry OFFFEH or top word in avail- Size of segment defined with

able memory, whichever is STACK attribute
lower

Stack at entry Zero word Initialized or uninitialized
Stll.cksize 65,536 bytes minus 256 bytes Defined in segment with

for PSP and size of execut- STACK attribute
able code and data

Subroutine calls Usually NEAR NEARorFAR
Exit method Int 21H Function 4CH Int 21H Function 4CH

preferred, NEAR RET if preferred
MS-DOS version 1

Size of file Exact size of program Size of program plus header
(multiple of 512 bytes)

Figure 3-8. Summary of the differences between .COM and .EXE programs, includ­
ing their entry conditions.

36 Programming/or MS-DOS

More About Assembly-Language Programs
Now that we've looked at working examples of .COM and .EXE assembly­
language programs, let's backtrack and discuss their elements a little more
formally. The following discussion is based on the Microsoft Macro As­
sembler, hereafter referred to as MASM. If you are familiar with MASM
and are an experienced assembly-language programmer, you may want to
skip this section.

MASM programs can be thought of as having three structural levels:

■ The module level

■ The segment level

■ The procedure level

Modules are simply chunks of source code that can be independently
maintained and assembled. Segments are physical groupings of like items
(machine code or data) within a program and a corresponding segrega­
tion of dissimilar items. Procedures are functional subdivisions of an exe­
cutable program-routines that carry out a particular task.

Program Modules
Under MS-DOS, the module-level structure consists of files containing the
source code for individual routines. Each source file is translated by the as­
sembler into a relocatable object module. An object module can reside
alone in an individual file or with many other object modules in an object­
module library of frequently used or related routines. The Microsoft Ob­
ject Linker (LINK) combines object-module files, often with additional
object modules extracted from libraries, into an executable program file.

Using modules and object-module libraries reduces the .size of your appli­
cation source files (and vastly increases your productivity), because these
files need not contain the source code for routines they have in common
with other programs. This technique also allows you to maintain the rou­
tines more easily, because you need to alter only one copy of their source
code stored in one place, instead of many copies stored in different appli­
cations. When you improve (or fix) one of these routines, you can simply
reassemble it, put its object module back into the library, relink all of the
programs that use the routine, and voild: instant upgrade.

Structure of MS-DOS Application Programs 37

Program Segments
The term segments refers to two discrete programming concepts: physical
segments and logical segments.

Physical segments are 64 KB blocks of memory. The Intel 8086/8088 and
80286 microprocessors have four segment registers, which are essentially
used as pointers to these blocks. (The 80386 has six segment registers,
which are a superset of those found on the 8086/8088 and 80286.) Each
segment register can point to the bottom of a different 64 KB area of
memory. Thus, a program can address any location in memory by appro­
priate manipulation of the segment registers, but the maximum amount of
memory that it can address simultaneously is 256 KB.

As we discussed earlier in the chapter, .COM programs assume that all
four segment registers always point to the same place-the bottom of the
program. Thus, they are limited to a maximum size of 64 KB .. EXE pro­
grams, on the other hand, can address many different physical segments
and can reset the segment registers to point to each segment as it is
needed. Consequently, the only practical limit on the size of a .EXE pro­
gram is the amount of available memory. The example programs through­
out the remainder of this book focus on .EXE programs.

Logical segments are the program components. A minimum of three logi­
cal segments must be declared in any .EXE program: a code segment, a
data segment, and a stack segment. Programs with more than 64 KB of
code or data have more than one code or data segment. The routines or
data that are used most frequently are put into the primary code and data
segments for speed, and routines or data that are used less frequently are
put into secondary code and data segments.

Segments are declared with the SEGMENT and ENDS directives in the
following form:

name SEGMENT attributes

name ENDS

The attributes of a segment include its align type (BYTE, WORD, or
PARA), combine type (PUBLIC, PRIVATE, COMMON, or STACK), and
class type. The segment attributes are used by the linker when it is com­
bining logical segments to create the physical segments of an executable

38 Programming/or MS-DOS

program. Most of the time, you can get by just fine using a small selection
of attributes in a rather stereotypical way. However, if you want to use the
full range of attributes, you might want to read the detailed explanation in
the MASM manual.

Programs are classified into one memory model or another based on the
number of their code and data segments. The most commonly used
memory model for assembly-language programs is the small model,
which has one code and one data segment, but you can also use the
medium, compact, and large models (Figure 3-9). (Two additional models
exist with which we will not be concerning ourselves further: the tiny
model, which consists of intermixed code and data in a single segment­
for example, a .COM file under MS-DOS; and the huge model, which is
supported by the Microsoft C Optimizing Compiler and which allows use
of data structures larger than 64 KB.)

Model Code segments Data segments

Small One One
Medium Multiple One
Compact One Multiple
Large Multiple Multiple

Figure 3-9. Memory models commonly used in assembly-language and C programs.

For each memory model, Microsoft has established certain segment and
class names that are used by all its high-level-language compilers (Figure
3-10). Because segment names are arbitrary, you may as well adopt the
Microsoft conventions. Their use will make it easier for you to integrate
your assembly-language routines into programs written in languages such
as C, or to use routines from high-level-language libraries in your
assembly-language programs.

Another important Microsoft high-level-language convention is to use the
GROUP directive to name the near data segment (the segment the pro­
gram expects to address with offsets from the DS register) and the stack
segment as members of DGROUP (the automatic data group), a special
name recognized by the linker and also by the program loaders in
Microsoft Windows and Microsoft OS/2. The GROUP directive causes log­
ical segments with different names to be combined into a single physical
segment so that they can be addressed using the same segment base ad­
dress. In C programs, DGROUP also contains the local heap, which is
used by the C runtime library for dynamic allocation of small amounts
of memory.

Structure of MS-DOS Application Programs 39

Memory Align Combine Class
model Segment name type type type Group

Small _TEXT WORD PUBLIC CODE
_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Medium module_ TEXT WORD PUBLIC CODE

_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Compact _TEXT WORD PUBLIC CODE

data PARA PRIVATE FAR_DATA

_DATA WORD PUBLIC DATA DGROUP
STACK PARA STACK STACK DGROUP

Large module_ TEXT WORD PUBLIC CODE

data PARA PRIVATE FAR_DATA

_DATA WORD PUBUC DATA DGROUP
STACK PARA STACK STACK DGROUP

Figure 3-10. Segments, groups, and classes for the standard memory models as used
with assembly-language programs. The Microsoft C Optimizing Compiler and other
high-level-language compilers use a superset of these segments and classes.

For pure assembly-language programs that will run under MS-DOS, you
can ignore DGROUP. However, if you plan to integrate assembly-language
routines and programs written in high-level languages, you'll want to fol-
low the Microsoft DGROUP convention. For example, if you are planning
to link routines from a C library into an assembly-language program, you
should include the line

DGROUP group _DATA.STACK

near the beginning of the program.

The final Microsoft convention of interest in creating .EXE programs is
segment order. The high-level compilers assume that code segments al­
ways come first, followed by far data segments, followed by the near data

40 Programming/or MS-DOS

segment, with the stack and heap last. This order won't concern you much
until you begin integrating assembly-language code with routines from
high-level-language libraries, but it is easiest to learn to use the conven­
tion right from the start.

Program Procedures
The procedure level of program structure is partly real and partly concep­
tual. Procedures are basically just a fancy guise for subroutines.

Procedures within a program are declared with the PROC and ENDP
directives in the following form:

name PROC attribute

RET

name ENDP

The attribute carried by a PROC declaration, which is either NEAR or FAR,
tells the assembler what type of call you expect to use to enter the pro­
cedure-that is, whether the procedure will be called from other routines
in the same segment or from routines in other segments. When the assem­
bler encounters a RET instruction within the procedure, it uses the
attribute information to generate the correct opcode for either a near
(intra-segment) or far (inter-segment) return.

Each program should have a main procedure that receives control from
MS-DOS. You specify the entry point for the program by including the
name of the main procedure in the END statement in one of the pro­
gram's source files. The main procedure's attribute (NEAR or FAR) is
really not too important, because the program returns control to MS-DOS
with a function call rather than a RET instruction. However, by conven­
tion, most programmers assign the main procedure the FAR attribute
anyway.

You should break the remainder of the program into procedures in an or­
derly way, with each procedure performing a well-defined single func­
tion, returning its results to its caller, and avoiding actions that have global
effects within the program. Ideally procedures invoke each other only by
CALL instructions, have only one entry point and one exit point, and al­
ways exit by means of a RET instruction, never by jumping to some other
location within the program.

Structure of MS-DOS Application Programs 41

For ease of understanding and maintenance, a procedure should not ex­
ceed one page (about 6o lines); if it is longer than a page, it is probably too
complex and you should delegate some of its function to one or more sub­
sidiary procedures. You should preface the source code for each pro­
cedure with a detailed comment that states the procedure's calling
sequence, results returned, registers affected, and any data items accessed
or modified. The effort invested in making your procedures compact,
clean, flexible, and well-documented will be repaid many times over
when you reuse the procedures in other programs.

42 Programming/or MS-DOS

Chapter4

MS-DOS Programming Tools

Preparing a new program to run under MS-DOS is an iterative process
with four basic steps:

■ Use of a text editor to create or modify an ASCII source-code file

■ Use of an assembler or high-level-language compiler (such as the
Microsoft Macro Assembler or the Microsoft C Optimizing Compiler) to
translate the source file into relocatable object code

■ Use of a linker to transform the relocatable object code into an execut-
able MS-DOS load module

■ Use of a debugger to methodically test and debug the program

Additional utilities the MS-DOS software developer may find necessary or
helpful include the following:

■ LIB, which creates and maintains object-module libraries

■ CREF, which generates a cross-reference listing

■ EXE2BIN, which converts .EXE files to .COM files

■ MAKE, which compares dates of files and carries out operations based
on the result of the comparison

This chapter gives an operational overview of the Microsoft program­
ming tools for MS-DOS, including the assembler, the C compiler, the
linker, and the librarian. In general, the information provided here also
applies to the IBM programming tools for MS-DOS, which are really the
Microsoft products with minor variations and different version numbers.
Even if your preferred programming language is not C or assembly lan­
guage, you will need at least a passing familiarity with these tools because
all of the examples in the IBM and Microsoft DOS reference manuals are
written in one of these languages.

The survey in this chapter, together with the example programs and refer­
ence section elsewhere in the book, should provide the experienced pro­
grammer with sufficient information to immediately begin writing useful
programs. Readers who do not have a background in C, assembly lan­
guage, or the Intel 80x86 microprocessor architecture should refer to the
tutorial and reference works listed at the end of this chapter.

44 Programming/or MS-DOS

File Types
The MS-DOS programming tools can create and process many different
file types. The following extensions are used by convention for these files:

Extension

.ASM

.c

.COM

.CRF

.DEF

.EXE

.H

.INC

.LIB

.LST

.MAP

.OBJ

.REF

File type

Assembly-language source file
C source file
MS-DOS executable load module that does not require relocation at

runtime
Cross-reference information file produced by the assembler for

processing by CREF.EXE
Module-definition file describing a program's segment behavior

(MS OS/ 2 and Microsoft Windows programs only; not relevant
to normal MS-DOS applications)

MS-DOS executable load module that requires relocation at
runtime

C header file containing C source code for constants, macros, and
functions; merged into another C program with the #include
directive

Include file for assembly-language programs, typically containing
macros and/ or equates for systemwide values such as error
codes

Object-module library file made up of one or more .OBJ files;
indexed and manipulated by LIB.EXE

Program listing, produced by the assembler, that includes memory
locations, machine code, the original program text, and error
messages

Listing of symbols and their locations within a load module;
produced by the linker

Relocatable-object-code file produced by an assembler or compiler
Cross-reference listing produced by CREF.EXE from the

information in a .CRF file

The Microsoft Macro Assembler
The Microsoft Macro Assembler (MASM) is distributed as the file
MASM.EXE. When beginning a program translation, MASM needs the fol­
lowing information:

■ The name of the file containing the source program

■ The filename for the object program to be created

■ The destination of the program listing

■ The filename for the information that is later processed by the cross­
reference utility (CREF.EXE)

MS-DOS Programming Tools 45

You can invoke MASM in two ways. If you enter the name of the assembler
alone, it prompts you for the names of each of the various input and output
files. The assembler supplies reasonable defaults for all the responses ex­
cept the source filename, as shown in the following example:

C>MASM <Enter>

Microsoft (RJ Macro Assembler Version 5.10
Copyright CC) Microsoft Corp 1981, 1988. All rights reserved.

Source filename [.ASMJ: HELLO <Enter>
Object filename [HELLO.OBJ]: <Enter>
Source listing [NUL.LSTJ: <Enter>
Cross-reference [NUL.CRFJ: <Enter>

49006 Bytes symbol space free

C>

0 Warning Errors
0 Severe Errors

You can use a logical device name (such as PRN or COMl) at any of the
MASM prompts to send that output of the assembler to a character device
rather than a file. Note that the default for the listing and cross-reference
files is the NUL device-that is, no file is created. If you end any response
with a semicolon, MASM assumes that the remaining responses are all to
be the default.

A more efficient way to use MASM is to supply all parameters in the com­
mand line, as follows:

MASM [options] source,[object),[listing],[crossre.fl

For example, the following command lines are equivalent to the preceding
interactive session:

C>MASM HELLO,,NUL,NUL <Enter>

or

C>MASM HELLO; <Enter>

These commands use the file HELLO.ASM as the source, generate the
object-code file HELLO.OBJ, and send the listing and cross-reference files
to the bit bucket.

46 Programming/or MS-DOS

MASM accepts several optional switches in the command line, to control
code generation and output files. Figure 4-1 lists the switches accepted by
MASM version 5.1. As shown in the following example, you can put fre­
quently used options in a MASM environment variable, where they will be
found automatically by the assembler:

C>SET MASM=/T /Zi <Enter>

The switches in the environment variable will be overridden by any that
you enter in the command line.

In other versions of the Microsoft Macro Assembler, additional or fewer
switches may be available. For exact instructions, see the manual for the
version of MASM that you are using.

Switch

IA
!Bn
IC
ID
!Dsymbol

/Ipath
/L
/LA
/ML

/MX

/MU
IN

IP
IS
IT

/V
!Wn
IX
/Z
/Zd
/Zi

Meaning

Arrange segments in alphabetic order.
Set size of source-file buffer (in KB).
Force creation of a cross-reference (.CRF) file.
Produce listing on both passes (to find phase errors).
Define symbol as a null text string (symbol can be referenced by

conditional assembly directives in file).
Assemble for 80x87 numeric coprocessor emulator using IEEE real-

number format.
Set search path for include files.
Force creation of a program-listing file.
Force listing of all generated code.
Preserve case sensitivity in all names (uppercase names distinct from

their lowercase equivalents).
Preserve lowercase in external names only (names defined with PUBLIC

or EXTRN directives).
Convert all lowercase names to uppercase.
Suppress generation of tables of macros, structures, records, segments,

groups, and symbols at the end of the listing.
Check for impure code in 80286/80386 protected mode.
Arrange segments in order of occurrence (default).
"Terse" mode; suppress all messages unless errors are encountered

during the assembly.
"Verbose" mode; report number of lines and symbols at end of assembly.
Set error display (warning) level; n=0-2.
Force listing of false conditionals.
Display source lines containing errors on the screen.
Include line-number information in .OBJ file.
Include line-number and symbol information in .OBJ file.

Figure 4-1. Microsoft Macro Assembler version 5.1 switches.

MS-DOS Programming Tools 47

MASM allows you to override the default extensions on any file - a feature
that can be rather dangerous. For example, if in the preceding example
you had responded to the Object.filename prompt with HELLO.ASM, the
assembler would have accepted the entry without comment and destroyed
your source file. This is not too likely to happen in the interactive com­
mand mode, but you must be very careful with file extensions when
MASM is used in a batch file.

The Microsoft C Optimizing Compiler
The Microsoft C Optimizing Compiler consists of three executable files­
Cl.EXE, C2.EXE, and C3.EXE- that implement the C preprocessor, lan­
guage translator, code generator, and code optimizer. An additional con­
trol program, CL.EXE, executes the three compiler files in order, passing
each the necessary information about filenames and compilation options.

Before using the C compiler and the linker, you need to set up four envi­
ronment variables:

Variabl.e Action

PATH=path Specifies the location of the three executable C compiler files (Cl ,
C2, and C3) if they are not in the current directory; used by
CL.EXE.

INCLUDE=path Specifies the location of #include files (default extension .H) that
are not found in the current directory.

LIB=path Specifies the location(s) for object-code libraries that are not found
in the current directory.

TMP=path Specifies the location for temporary working files created by the C
compiler and linker.

CL.EXE does not support an interactive mode or response files. You al­
ways invoke it with a command line of the following form:

CL [options] file [file ...]

You may list any number of files - if a file has a .C extension, it will be
compiled into a relocatable-object-module (.OBJ) file. Ordinarily, if the
compiler encounters no errors, it automatically passes all resulting .OBJ
files and any additional .OBJ files specified in the command line to the
linker, along with the names of the appropriate runtime libraries.

The C compiler has many optional switches controlling its memory
models, output files, code generation, and code optimization. These are
summarized in Figure 4-2. The C compiler's arcane switch syntax is
derived largely from UNIX/XENIX, so don't expect it to make any sense.

48 Programmingfor MS-DOS

Switch

/Ax

le
IC
ID< name>[=text]
IE
/EP
/F<n>
/Fa [filename]
/Fe [filename]
/Fe [filename]
!Fl [filename]
/Fm [filename]
/Fo [filename]
/FPx

/Fs !filename]
/Gx

/H<n>
/!<path>
/J
/link [options]
!Ox

Meaning

Select memory model:
C = compact model
H = huge model
L = large model
M = medium model
S = small model (default)

Compile only; do not invoke linker.
Do not strip comments.
Define macro.
Send preprocessor output to standard output.
Send preprocessor output to standard output without line numbers.
Set stack size (in hexadecimal bytes).
Generate assembly listing.
Generate mixed source/object listing.
Force executable filename.
Generate object listing.
Generate map file.
Force object-module filename.
Select floating-point control:

a = calls with alternate math library
c = calls with emulator library
c87 = calls with 8087 library
i = in-line with emulator (default)
i87 = in-line with 8087

Generate source listing.
Select code generation:

0 = 8086 instructions (default)
1 = 186 instructions
2 = 286 instructions
c = Pascal style function calls
s = no stack checking
t[n] = data size threshold

Specify external name length.
Specify additional #include path.
Specify default char type as unsigned.
Pass switches and library names to linker.
Select optimization:

a = ignore aliasing
d = disable optimizations
i = enable intrinsic functions
1 = enable loop optimizations
n = disable "unsafe" optimizations
p = enable precision optimizations
r = disable in-line return
s = optimize for space

Figure 4-2. Microsoft C Optimizing Compiler version 5.1 switches. (continued)

MS-DOS Programming Tools 49

Figure 4-2. continued

Switch

!Ox
(continued)

IP
!Sx

/Tc<file>
/ u
/U<name>
N<string>
/W<n>
IX
!Zx

Meaning

t = optimize for speed (default)
w = ignore aliasing except across function calls
x = enable maximum optimization (equivalent to / Oailt / Gs)

Send preprocessor output to file .
Select source-listing control:

!<columns> = set line width
p<lines> = set page length
s<string> = set subtitle string
t<string> = set title string

Compile file without .C extension.
Rembve all predefined macros.
Remove specified predefined macro.
Set version string.
Set warning level (0-3).
Ignore "standard places" for include files.
Select miscellaneous compilation control:

a = disable extensions
c = make Pascal functions case-insensitive
d = include line-number information
e = enable extensions (default)
g = generate declarations
i = include symbolic debugging information
I = remove default library info
p<n> = pack structures on n-byte boundary
s = check syntax only

The Microsoft Object Linker
The object module produced by MASM from a source file is in a form that
contains relocation information and may also contain unresolved refer­
ences to external locations or subroutines. It is written in a common for­
mat that is also produced by the various high-level compilers (such as
FORTRAN and C) that run under MS-DOS. The computer cannot execute
object modules without further processing.

The Microsoft Object Linker (LINK), distributed as the file LINK.EXE, ac­
cepts one or more of these object modules, resolves external references,
includes any necessary routines from designated libraries, performs any
necessary offset relocations, and writes a file that can be loaded and exe­
cuted by MS-DOS. The output of LINK is always in .EXE load-module for­
mat. (See Chapter 3.)

SO Programming/or MS-DOS

As with MASM, you can give LINK its parameters interactively or by enter­
ing all the required information in a single command line. If you enter the
name of the linker alone, the following type of dialog ensues:

C>LINK <Enter>

Microsoft (R) Overlay Linker Version 3.61
Copyright (C) Microsoft Corp 1983-1987. All rights reserved .

Object Modules [.OBJ]: HELLO <Enter>
Run File [HELLO . EXE]: <Enter>
List File [NUL.MAP]: HELLO <Enter>
Libraries [.LIB]: <Enter>

C>

If you are using LINK version 4.0 or later, the linker also asks for the name
of a module-definition (.DEF) file . Simply press the Enter key in response
to such a prompt. Module-definition fi les are used when building
Microsoft Windows or MS OS/ 2 "new .EXE" executable files but are not
relevant in normal MS-DOS applications.

The input file for this example was HELLO.OBJ; the output files were
HELLO.EXE (the executable program) and HELLO.MAP (the load map
produced by the linker after all references and addresses were resolved).
Figure 4-3 shows the load map.

Sta rt Stop Length Name Class
OOOOOH 00017H 00018H _TEXT CODE
00018H 00027H 00010H _DATA DATA
00030H OOOAFH 00080H STACK STACK
OOOBOH OOOBBH OOOOCH $$TYPES DEBTYP
OOOCOH OOOD6H 00017H $$SYMBOLS DEBSYM

Address Publics by Name

Address Publics by Value

Program entry point at 0000:0000

Figure 4-3. Map produced by the Microsoft Object Linker (LINK) during the genera­
tion of the HELLO.EXE program from Chapter 3. The program contains one CODE,
one DATA, and one STACK segment. The first instruction to be executed lies in the
first byte of the CODE segment. The $$TYPES and $$SYMBOLS segments contain in­
formation for the Code View debugger and are not part of the program; these segments
are ignored by the normal MS-DOS loader.

MS-DOS Programming Tools 51

You can obtain the same result more quickly by entering all parameters in
the command line, in the following form:

LINK options object.file, [exe.file], [map.file], [libraries]

Thus, the command-line equivalent to the preceding interactive session is

C>LINK HELLO,HELLO,HELLO,, <Enter>

or

C>LINK HELLO,,HELLO; <Enter>

If you enter a semicolon as the last character in the command line, LINK
assumes the default values for all further parameters.

A third method of commanding LINK is with a response file. A response
file contains lines of text that correspond to the responses you would give
the linker interactively. You specify the name of the response file in the
command line with a leading @ character, as follows:

LINK @.filename

You can also enter the name of a response file at any prompt. If the response
file is not complete, LINK will prompt you for the missing information.

When entering linker commands, you can specify multiple object files
with the + operator or with spaces, as in the following example:

C>LINK HELLO+VMODE+DOSINT,MYPROG,,GRAPHICS; <Enter>

This command would link the files HELLO.OBJ, VMODE.OBJ, and
DOSINT OBJ, searching the library file GRAPHICS.LIB to resolve any ref­
erences to symbols not defined in the specified object files, and would
produce a file named MYPROG. EXE. LINK uses the current drive and
directory when they are not explicitly included in a filename; it will not
automatically use the same drive and directory you specified for a pre­
vious file in the same command line.

By using the + operator or space characters in the libraries field, you can
specify up to 32 library files to be searched. Each high-level-language
compiler provides default libraries that are searched automatically during
the linkage process if the linker can find them (unless they are explicitly
excluded with the /NOD switch). LINK looks for libraries first in the cur­
rent directory of the default disk drive, then along any paths that were

52 Programming/or MS-DOS

provided in the command line, and finally along the path(s) specified by
the LIB variable if it is present in the environment.

LINK accepts several optional switches as part of the command line or at
the end of any interactive prompt. Figure 4-4 lists these switches. The
number of switches available and their actions vary among different ver­
sions of LINK. See your Microsoft Object Linker instruction manual for
detailed information about your particular version.

Switch Fullform Meaning

/A:n /ALIGNMENT:n

/B /BATCH

/CO /CODEVIEW

/CP /CPARMAXALLOC

/DO /DOSSEG

IDS /DSALLOCATE

IE /EXEPACK

IF /FARCALLTRANSLATION

/HE /HELP
/HI /HIGH
/I /INFORMATION

Set segment sector alignment factor. N must be
a power of 2 (default= 512). Not related to
logical-segment alignment (BYTE, WORD,
PARA, PAGE, and so forth). Relevant to
segmented executable files (Microsoft
Windows and MS OS/2) only.

Suppress linker prompt if a library cannot be
found in the current directory or in the
locations specified by the LIB environment
variable.

Include symbolic debugging information in the
.EXE file for use by CodeView.

Set the field in the .EXE file header controlling
the amount of memory allocated to the
program in addition to the memory required
for the program's code, stack, and initialized
data.

Use standard Microsoft segment naming and
ordering conventions.

Load data at high end of the data segment.
Relevant to real-mode programs only.

Pack executable file by removing sequences of
repeated bytes and optimizing relocation
table.

Optimize far calls to labels within the same
physical segment for speed by replacing
them with near calls and NOPs.

Display information about available options.
Load program as high in memory as possible.
Display information about progress of linking,

including pass numbers and the names of
object files being linked.

(continued)

Figure 4-4. Switches accepted by the Microsoft Object Linker (LINK) version 5.0.
Earlier versions use a subset of these switches. Note that any abbreviation for a switch
is acceptable as long as it is sufficient to specify the switch uniquely.

MS-DOS Programming Tools 53

Figure 4-4. continued

Switch Fullform

/INC /INCREMENTAL

/LI /LINENUMBERS

/M[:n] /MAP[:n]

/NOD /NODEFAULTLIBRARYSEARCH

/NOE /NOEXTENDEDDICTSEARCH

!NOF /NOFARCALLTRANSLATION

!NOG /NOGROUPASSOCIATION

/NOi /NOIGNORECASE
/NON /NONULLSDOSSEG

/NOP /NOPACKCODE

/O:n /OVERLAYINTERRUPT:n

/PAC[:n] /PACKCODE[:n]

/PADC:n /PADCODE:n

\.,
54 Programming/or MS-DOS

Meaning

Force production of .SYM and .ILK files for
subsequent use by ILINK (incremental
linker). May not be used with /EXEPACK.
Relevant to segmented executable files
(Microsoft Windows and MS OS/2) only.

Write address of the first instruction that
corresponds to each source-code line to the
map file. Has no effect if the compiler does
not include line-number information in the
object module. Force creation of a map file.

Force creation of a .MAP file listing all public
symbols, sorted by name and by location.
The optional value n is the maximum
number of symbols that can be sorted
(default = 2048); when n is supplied, the
alphabetically sorted list is omitted.

Skip search of any default compiler libraries
specified in the .OBJ file.

Ignore extended library dictionary (if it is
present). The extended dictionary ordinarily
provides the linker with information about
inter-module dependencies, to speed up
linking.

Disable optimization of far calls to labels
within the same segment.

Ignore group associations when assigning
addresses to data and code items.

Do not ignore case in names during linking.
Arrange segments as for /DOSSEG but do not

insert 16 null bytes at start of_ TEXT
segment.

Do not pack contiguous logical code segments
into a single physical segment.

Use interrupt number n with the overlay
manager supplied with some Microsoft
high-level languages.

Pack contiguous logical code segments into a
single physical code segment. The optional
value n is the maximum size for each
packed physical code segment (default =
65,536 bytes). Segments in different groups
are not packed.

Add n filler bytes to end of each code module
so that a larger module can be inserted later
with ILINK. Relevant to segmented execut­
able files (Windows and MS OS/2) only.

(continued)

Figure 4-4. continued

Switch Fullform Meaning

/ PADD:n / PADDATA:n Add n filler bytes to end of each data module
so that a larger module can be inserted later
with !LINK. Relevant to segmented execut­
able files (Microsoft Windows and MS OS/ 2)
only.

/ PAU / PAUSE Pause during linking, allowing a change of
d isks before .EXE file is written.

/ SE:n

/ST:n

/W

/ SEGMENTS:n

I STACK:n

/WARNFIXUP

Set maximum number of segments in linked
program (default= 128).

Set stack size of program in bytes; ignore stack
segment size declarations within object
modules and definition file.

Display warning messages for offsets relative
to a segment base that is not the same as
the group base. Relevant to segmented
executable files (Microsoft Windows and
MS OS/2) only.

The EXE2BIN Utility
The EXE2BIN utility (EXE2BIN.EXE) transforms a .EXE file created by
LINK into an executable .COM file, if the program meets the following
prerequisites:

■ It cannot contain more than one declared segment and cannot
define a stack.

■ It must be less than 64 KB in length.

■ It must have an origin at 0100H.

■ The first location in the file must be specified as the entry point
in the source code's END directive.

Although .COM files are somewhat more compact than .EXE files, you
should avoid using them. Programs that use separate segments for code,
data, and stack are much easier to port to protected-mode environments
such as MS OS/ 2; in addition, .COM files do not support the symbolic
debugging information used by Code View.

Another use for the EXE2BIN utility is to convert an installable device
driver-after it is assembled and linked into a .EXE file-into a memory­
image .BIN or .SYS file with an origin of zero. This conversion is required
in MS-DOS version 2, which cannot load device drivers as .EXE files. The
process of writing an installable device driver is discussed in more detail
in Chapter 14.

MS-DOS Programming Tools 55

Unlike most of the other programming utilities, EXE2BIN does not have
an interactive mode. It always takes its source and destination filenames,
separated by spaces, from the MS-DOS command line, as follows :

EXE2BIN source.file [destination.file]

If you do not supply the source-file extension, it defaults to .EXE; the
destination-file extension defaults to .BIN. If you do not specify a name
for the destination file, EXE2BIN gives it the same name as the source file,
with a .BIN extension.

For example, to convert the file HELLO.EXE into HELLO.COM, you would
use the following command line:

C>EXE2BIN HELLO.EXE HELLO.COM <Enter>

The EXE2BIN program also has other capabilities, such as pure binary
conversion with segment fixup for creating program images to be placed
in ROM; but because these features are rarely used during MS-DOS appli­
cation development, they will not be discussed here.

The CREF Utility
The CREF cross-reference utility CREF.EXE processes a .CRF file pro­
duced by MASM, creating an ASCII text file with the default extension
.REF. The file contains a cross-reference listing of all symbols declared in
the program and the line numbers in which they are referenced. (See
Figure 4-5.) Such a listing is very useful when debugging large assembly­
language programs with many interdependent procedures and variables.

CREF may be supplied with its parameters interactively or in a single com­
mand line. If you enter the utility name alone, CREF prompts you for the
input and output filenames, as shown in the following example:

C>CREF <Enter>

Microsoft (R) Cross-Reference Utility Version 5.10
Copyright (C) Microsoft Corp 1981-1985, 1987. All rights reserved.

Cross-reference [.CRF]: HELLO <Enter>
Listing [HELLO.REF]:

15 Symbols

C>

56 Programming/or MS-DOS

Microsoft Cross-Reference Version 5.10
HELLO.EXE --- print Hello on terminal

Thu May 26 11:09:34 1988

Symbol Cross-Reference (#definition,+ modification)Cref-1

@CPU ..
@VERSION

Iii
Iii

CODE
CR .

DATA

LF .

21
17#

44

18#

46 47

46 47

MSG.
MSG_LEN.

33
32

46#
49#

PRINT. 25# 39 60

STACK. 23 54/I 54 58
STDERR 15#
STD IN. 13#
STDOUT 14# 31

_DATA. 23 27 44// 51
TEXT. 21# 23 41

15 Symbols

Figure 4-5. Cross-reference listing HELLO.REF produced by the CREF utility from
the file HELLO.CRF, for the HELLO.EXE program example from Chapter 3 . The sym­
bols declared in the program are listed on the left in alphabetic order. To the right of
each symbol is a list of all the lines where that symbol is referenced. The number with
a # sign after it denotes the line where the symbol is declared. Numbers followed by a
+ sign indicate that the symbol is modified at the specified line. The line numbers
given in the cross-reference listing correspond to the line numbers generated by the
assembler in the program-listing (.LST) file, not to any physical line count in the origi­
nal source file.

The parameters may also be entered in the command line in the fol'iowing
form:

CREF CRF _file , listing_file

For example, the command-line equivalent to the preceding interactive
session is:

C>CREF HELLO.HELLO <Enter>

MS-DOS Programming Tools 57

If CREF cannot find the specified .CRF file, it displays an error message.
Otherwise, it leaves the cross-reference listing in the specified file on the
disk. You can send the file to the printer with the COPY command, in the
following form:

COPY listing_.fi/e PRN:

You can also send the cross-reference listing directly to a character device ·
as it is generated by responding to the Listing prompt with the name of
the device.

The Microsoft library Manager
Although the object modules that are produced by MASM or by high­
level-language compilers can be linked directly into executable load mod­
ules, they can also be collected into special files called object-module
libraries. The modules in a library are indexed by name and by the public
symbols they contain, so that they can be extracted by the linker to satisfy
external references in a program.

The Microsoft Library Manager (LIB) is distributed as the file LIB.EXE. LIB
creates and maintains program libraries, adding, updating, and deleting
object files as necessary. LIB can also check a library file for internal con­
sistency or print a table of its contents (Figure 4-6).

LIB follows the command conventions of most other Microsoft program­
ming tools. You must supply it with the name of a library file to work on,
one or more operations to perform, the name of a listing file or device,
and (optionally) the name of the output library. If you do not specify a
name for the output library, LIB gives it the same name as the input library
and changes the extension of the input library to .BAK.

The LIB operations are simply the names of object files, with a prefix
character that specifies the action to be taken:

Pre.fix

+

Meaning

Delete an object module from the library.
Extract a module and place it in a separate .OBJ file.
Add an object module or the entire contents of another library

to the library.

You can combine command prefixes. For example, -+ replaces a module,
and •- extracts a module into a new file and then deletes it from the
library.

58 Programming/or MS-DOS

_abort abort _abs abs
access access _asctime asctime
atof atof atoi atoi

_atol atol _bdos bdos
brk brk brkctl brkctl
bsearch bsearch calloc calloc

_cgets cgets chdir dir

-

chmod chmod chsize chsize

exit Offset: OOOOOO1OH Code and data size: 44H
exit -

filbuf Offset: OOOOO16OH Code and data size: BBH
filbuf

file Offset: OOOOO3OOH Code and data size: CAH
iob i ob2 lastiob

Figure 4-6. Extract from the table-of-contents listing produced by the Microsoft
Library Manager (LIB) for the Microsoft C library SLIBC.LIB. The first part of the list­
ing is an alphabetic list of all public names declared in all of the modules in the
library. Each name is associated with the object module to which it belongs. The sec­
ond part of the listing is an alphabetic list of the object-module names in the library,
each followed by its offset within the library file and the actual size of the module in
bytes. The entry for each module is followed by a summary of the public names that
are declared within it.

When you invoke LIB with its name alone, it requests the other informa­
tion it needs interactively, as shown in the following example:

C>LIB <Enter>

Microsoft (Rl Library Manager Version 3.OB
Copyright CC) Microsoft Corp 19B3-19B7. All rights reserved.

Library name: SLIBC <Enter >
Operations: +VIDEO <Enter >
Li st file: SLIB C.LST <E nter >
Output library: SLIBC2 <Enter>

C>

MS-DOS Programming Tools 59

In this example, LIB added the object module VIDEO.OBJ to the library
SLIBC.LIB, wrote a library table of contents into the file SLJBC.LST, and
named the resulting new library SLIBC2.LIB.

The Library Manager can also be run with a command line of the follow­
ing form:

LIB library [commands],[list],[newlibrary]

For example, the following command line is equivalent to the preceding
interactive session:

C>LIB SLIBC +VIDEO,SLIBC . LST,SLIBC2; <Enter>

As with the other Microsoft utilities, a semicolon at the end of the com­
mand line causes LIB to use the default responses for any parameters that
are omitted.

Like LINK, LIB can also accept its commands from a response file. The
contents of the file are lines of text that correspond exactly to the
responses you would give LIB interactively. You specify the name of the
response file in the command line with a leading @ character, as follows:

LIB @filename

LIB has only three switches: / I (/IGNORECASE), IN (/NOIGNORECASE),
and ! PAGESIZE:number. The / IGNORECASE switch is the default. The
/ NOIGNORECASE switch causes LIB to regard as distinct any symbols
that differ only in the case of their component letters. You should place the
/ PAGESIZE switch, which defines the size of a unit of allocation space for
a given library, immediately after the library filename. The library page
size is in bytes and must be a power of 2 between 16 and 32,768 (16, 32, 64,
and so forth); the default is 16 bytes. Because the index to a library is al­
ways a fixed number of pages, setting a larger page size allows you to store
more object modules in that library; on the other hand, it will result in
more wasted space within the file.

The MAKE Utility
The MAKE utility (MAKE.EXE) compares dates of files and carries out
commands based on the result of that comparison. Because of this single,
rather basic capability, MAKE can be used to maintain complex programs
built from many modules. The dates of source, object, and executable files
are simply compared in a logical sequence; the assembler, compiler,
linker, and other programming tools are invoked as appropriate.

60 Programming/or MS-DOS

The MAKE utility processes a plain ASCII text file called, as you might ex­
pect, a make file. You start the utility with a command-line entry in the
following form:

MAKE make.file [options)

By convention, a make file has the same name as the executable file that is
being maintained, but without an extension. The available MAKE
switches are listed in Figure 4-7.

A simple make file contains one or more dependency statements sepa­
rated by blank lines. Each dependency statement can be followed by a list
of MS-DOS commands, in the following form:

target.file : source.file ...

command

command

If the date and time of any source file are later than those of the target file,
the accompanying list of commands is carried out. You may use comment
lines, which begin with a # character, freely in a make file. MAKE can also
process inference rules and macro definitions. For further details on these
advanced capabilities, see the Microsoft or IBM documentation.

Switch Meaning

/D Display last modification date of each file as it is processed.
/I Ignore exit (return) codes returned by commands and programs

executed as a result of dependency statements.
/N Display commands that would be executed as a result of

dependency statements but do not execute those commands.
IS Do not display commands as they are executed.
IX <.filename> Direct error messages from MAKE, or any program that MAKE

runs, to the specified file. If.filename is a hyphen(-), direct
error messages to the standard output.

Figure 4-7. Switches for the MAKE utility.

MS-DOS Programming Tools 61

A Complete Example
Let's put together everything we've learned about using the MS-DOS pro­
gramming tools so far. Figure 4-8 shows a sketch of the overall process of
building an executable program.

Assume that we have the source code for the HELLO.EXE program from
Chapter 3 in the file HELLO.ASM. To assemble the source program into
the relocatable object module HELLO.OBJ with symbolic debugging infor­
mation included, also producing a program listing in the file HELLO. LST
and a cross-reference data file HELLO.CRF, we would enter

C>MASM IC IL IZi IT HELLO; <Enter>

To convert the cross-reference raw-data file HELLO.CRF into a cross­
reference listing in the file HELLO.REF, we would enter

C>CREF HELLO.HELLO <Enter>

MASM C or other
source-code Hllsource-

file code file

MASM Compil er

i
Relocatable

object-module -
file (.OBJ)

LIB

Object-module LINK Executable
libraries ·~ program
(.LIB) (.EXE)

· ·,,JiilliiAA~~,:C:,.wmi:t

EXE2BI N

'
HLL Executable

runtime program
libraries (.COM)

Figure 4-8. Creation of an MS-DOS application program,from source code to exe­
cutable file.

62 Programming/or MS-DOS

To convert the relocatable object file HELLO.OBJ into the executable file
HELLO.EXE, creating a load map in the file HELLO.MAP and appending
symbolic debugging information to the executable file, we would enter

C>LINK /MAP /COOEVIEW HELLO; <Enter>

We could also automate the entire process just described by creating a
make file named HELLO (with no extension) and including the following
instructions:

hello.obj : hello.asm
masm IC IL /Zi /T hello;
cref hello.hello

hello.exe : hello.obj
li nk /MAP /CODEVIEW hello;

Then, when we have made some change to HELLO.ASM and want to
rebuild the executable HELLO.EXE file, we need only enter

C>MAKE HELLO <Enter>

Programming Resources and References
The literature on IBM PC-compatible personal computers, the Intel 80x86
microprocessor family, and assembly-language and C programming is
vast. The list below contains a selection of those books that I have found
to be useful and reliable. The list should not be construed as an endorse­
ment by Microsoft Corporation.

MASM Tutorials
Assembly Language Primer for the_JBM PC and XT, by Robert Lafore. New
American Library, New York, NY, 1984. ISBN 0-452-25711-5.

8086/8088/80286 Assembly Language, by Leo Scanlon. Brady Books,
Simon and Schuster, New York, NY, 1988. ISBN 0-13-246919-7.

CTutorials
Microsoft C Programming for the IBM, by Robert Lafore. Howard K. Sams
& Co. , Indianapolis, IN, 1987. ISBN 0-672-22515-8.

Proficient C, by Augie Hansen. Microsoft Press, Redmond, WA, 1987. ISBN
1-55615-007-5.

MS-DOS Programming Tools 63

Intel 80x86 Microprocessor References
iAPX 88 Book. Intel Corporation, Literature Department SV3-3, 3065
Bowers Ave., Santa Clara, CA 95051. Order no. 210200.

iAPX 286 Programmer's Reference Manual. Intel Corporation, Literature
Department SV3-3, 3065 Bowers Ave., Santa Clara, CA 95051. Order no.
210498.

iAPX 386 Programmer's Reference Manual. Intel Corporation, Literature
Department SV3-3, 3065 Bowers Ave. , Santa Clara, CA 95051. Order no.
230985.

PC, PC/ AT, and PS/2 Architecture
The IBM Personal Computer from the Inside Out (Revised Edition), by
Murray Sargent and Richard L. Shoemaker. Addison-Wesley Publishing
Company, Reading, MA, 1986. ISBN 0-201-06918-0.

Programmer's Guide to PC & PS/2 Video Systems, by Richard Wilton.
Microsoft Press, Redmond, WA, 1987. ISBN 1-55615-103-9.

Personal Computer Technical Reference. IBM Corporation, IBM Technical
Directory, P. 0 . Box 2009, Racine, WI 53404. Part no. 6322507.

Personal Computer AT Technical Reference. IBM Corporation, IBM
Technical Directory, P. 0. Box 2009, Racine, WI 53404. Part no. 6280070.

Options and Adapters Technical Reference. IBM Corporation, IBM
Technical Directory, P. 0 . Box 2009, Racine, WI 53404. Part no. 6322509.

Personal System/2 Model 30 Technical Reference. IBM Corporation, IBM
Technical Directory, P. 0. Box 2009, Racine, WI 53404. Part no. 68X2201.

Personal System/2 Model 50/60 Technical Reference. IBM Corporation,
IBM Technical Directory, P. 0. Box 2009, Racine, WI 53404. Part no.
68X2224.

Personal System/2 Model 80 Technical Reference. IBM Corporation, IBM
Technical Directory, P. 0. Box 2009, Racine, WI 53404. Part no. 68X2256.

64 Programming / or MS-DOS

Chapters

Keyboard and Mouse Input

The fundamental means of user input under MS-DOS is the keyboard.
This follows naturally from the MS-DOS command-line interface, whose
lineage can be traced directly to minicomputer operating systems with
Teletype consoles. During the first few years of MS-DOS's existence, when
8088/8086-based machines were the norm, nearly every popular applica­
tion program used key-driven menus and text-mode displays.

However, as high-resolution graphics adapters (and 80286/80386-based
machines with enough power to drive them) have become less expensive,
programs that support windows and a graphical user interface have
steadily grown more popular. Such programs typically rely on a pointing
device such as a mouse, stylus, joystick, or light pen to let the user navi­
gate in a "point-and-shoot" manner, reducing keyboard entry to a
minimum. As a result, support for pointing devices has become an impor­
tant consideration for all software developers.

Keyboard Input Methods
Applications running under MS-DOS on IBM PC-compatible machines
can use several methods to obtain keyboard input:

• MS-DOS handle-oriented functions

• MS-DOS traditional character functions

• IBM ROM BIOS keyboard-driver functions

These methods offer different degrees of flexibility, portability, and hard­
ware independence.

The handle, or stream-oriented, functions are philosophically derived
from UNIX/ XENIX and were first introduced in MS-DOS version 2.0. A
program uses these functions by supplying a handle, or token, for the
desired device, plus the address and length of a buffer.

When a program begins executing, MS-DOS supplies it with predefined
handles for certain commonly used character devices, including the
keyboard:

Handle Device name Openedto

0 Standard input (stdin) CON
1 Standard output (stdout) CON
2 Standard error (stderr) CON
3 Standard auxiliary (stdaux) AUX
4 Standard printer (stdprn) PRN

66 Programming/or MS-DOS

These handles can be used for read and write operations without further
preliminaries. A program can also obtain a handle for a character device
by explicitly opening the device for input or output using its logical name
(as though it were a file). The handle functions support J/0 redirection,
allowing a program to take its input from another device or file instead of
the keyboard, for example. Redirection is discussed in detail in Chapter 15.

The traditional character-input functions are a superset of the character
I/ O functions that were present in CP/M. Originally included in MS-DOS
simply to facilitate the porting of existing applications from CP /M, they
are still widely used. In MS-DOS versions 2.0 and later, most of the tradi­
tional functions also support I/O redirection (although not as well as the
handle functions do).

Use of the IBM ROM BIOS keyboard functions presupposes that the pro­
gram is running on an IBM PC-compatible machine. The ROM BIOS key­
board driver operates at a much more primitive level than the MS-DOS
functions and allows a program to circumvent I/O redirection or MS­
DOS's special handling of certain control characters. Programs that use
the ROM BIOS keyboard driver are inherently less portable than those that
use the MS-DOS functions and may interfere with the proper operation of
other programs; many of the popular terminate-and-stay-resident (TSR)
utilities fall into this category.

Keyboard Input with Handles
The principal MS-DOS function for keyboard input using handles is Int
21H Function 3FH (Read File or Device). The parameters for this function
are a handle, the segment and offset of a buffer, and the length of the
buffer. (For a more detailed explanation of this function, see Section II of
this book, "MS-DOS Functions Reference.")

As an example, let's use the predefined standard input handle (0) and Int
21H Function 3FH to read a line from the keyboard:

buffer db 80 dup (?) ; keyboard input buffer

mov ah,3fh function 3fh - read file or device
mov bx,O handle for standard input
mov ex.BO maximum bytes to read
mov dx,seg buffer DS:DX - buffer address
mov ds,dx
mov dx,offset buffer

(continued)

Keyboard and Mouse Input 67

(continued)

int 21h
jc error

transfer to MS-DOS
jump if error detected

When control returns from Int 21H Function 3FH, the carry flag is clear if
the function was successful, and AX contains the number of characters
read. If there was an error, the carry flag is set and AX contains an error
code; however, this should never occur when reading the keyboard.

The standard input is redirectable, so the code just shown is not a
foolproof way of obtaining input from the keyboard. Depending upon
whether a redirection parameter was included in the command line by
the user, program input might be coming from the keyboard, a file ,
another character device, or even the bit bucket (NUL device). To bypass
redirection and be absolutely certain where your input is coming from,
you can ignore the predefined standard input handle and open the con­
sole as though it were a file, using the handle obtained from that open
operation to perform your keyboard input, as in the following example:

buffer db
fname db
handle dw

mov
mov
mov
mov
mov
int
j c
mov

mov
mov

80 dup (?)

'CON' ,0
0

ah,3dh
al ,0
dx,seg fname
ds,dx
dx,offset
21h
error
handle.ax

ah,3fh
bx.handle

fname

keyboard input buffer
keyboard device name
keyboard device handle

function 3dh - open
mode - read
DS:DX - device name

transfer to MS-DOS
jump if open failed
save handle for CON

function 3fh - read file or device
BX - handle for CON

mov ex.BO ma xi mum bytes to read
mov dx,offset buffer ; DS:DX - buffer address

68 Programming/or MS-DOS

(continued)

(continued)

int
jc

21h

error
transfer to MS-DOS
jump if error detected

When a programmer uses Int 21H Function 3FH to read from the key­
board, the exact result depends on whether MS-DOS regards the handle to
be in ASCII mode or binary mode (sometimes known as cooked mode and
raw mode). ASCII mode is the default, although binary mode can be
selected with Int 21H Function 44H (IOCTL) when necessary.

In ASCII mode, MS-DOS initially places characters obtained from the key­
board in a 128-byte internal buffer, and the user can edit the input with the
Backspace key and the special function keys. MS-DOS automatically
echoes the characters to the standard output, expanding tab characters to
spaces (although they are left as the ASCII code 09H in the buffer). The
Ctrl-C, Ctrl-S, and Ctrl-P key combinations receive special handling, and
the Enter key is translated to a carriage return-linefeed pair. When the user
presses Enter or Ctrl-Z, MS-DOS copies the requested number of charac­
ters (or the actual number of characters entered, if less than the number
requested) out of the internal buffer into the calling program's buffer.

In binary mode, MS-DOS never echoes input characters. It passes the Ctrl­
C, Ctrl-S, Ctrl-P, and Ctrl-Z key combinations and the Enter key through to
the application unchanged, and Int 21H Function 3FH does not return
control to the application until the exact number of characters requested
has been received.

Ctrl-C checking is discussed in more detail at the end of this chapter. For
now, simply note that the application programmer can substitute a custom
handler for the default MS-DOS Ctrl-C handler and thereby avoid having
the application program lose control of the machine when the user enters
a Ctrl-C or Ctrl-Break.

Keyboard Input with Traditional Calls
The MS-DOS traditional keyboard functions offer a variety of character
and line-oriented services with or without echo and Ctrl-C detection.
These functions are summarized on the following page.

Keyboard and Mouse Input 69

Int 21H Function Action Ctrl-C checking
0lH Keyboard input with echo Yes
06H Direct console 1/0 No
07H Keyboard input without echo No
08H Keyboard input without echo Yes
0AH Buffered keyboard input Yes
0BH Input-status check Yes
OCH Input-buffer reset and input Varies

In MS-DOS versions 2.0 and later, redirection of the standard input affects
all these functions. In other words, they act as though they were special
cases of an Int 21H Function 3FH call using the predefined standard input
handle(O).

The character-input functions (OlH, 06H, 07H, and 08H) all return a char­
acter in the AL register. For example, the following sequence waits until a
key is pressed and then returns it in AL:

mov
int

ah,1
21h

: function Olf• read ke.vboltrdt,
·· •.: transfer to MS·DOS

The character-input functions differ in whether the input is echoed to the
screen and whether they are sensitive to Ctrl-C interrupts. Although MS­
DOS provides no pure keyboard-status function that is immune to Ctrl-C,
a program can read keyboard status (somewhat circuitously) without in­
terference by using Int 21H Function 06H. Extended keys, such as the IBM
PC keyboard's special function keys, require two calls to a character-input
function.

As an alternative to single-character input, a program can use buffered­
line input (Int 21H Function OAH) to obtain an entire line from the key­
board in one operation. MS-DOS builds up buffered lines in an internal
buffer and does not pass them to the calling program until the user
presses the Enter key. While the line is being entered, all the usual editing
keys are active and are handled by the MS-DOS keyboard driver. You use
Int 21H Function OAH as follows:

buff db
db

81
0

db 81 dup (0)

·: maximum ler(g:tij: of fnput,
: actual lemith'Hrom ·MS•D.OS:b

70 Programmtngfor MS-DOS

(continued)

(continued)

mov ah,Oah function Oah = read buffered line
mov dx,seg buff DS:DX - buffer address
mov ds,dx
mov dx,offset buff
int 21h ; transfer to MS-DOS

Int 21H Function OAH differs from Int 21H Function 3FH in several impor­
tant ways. First, the maximum length is passed in the first byte of the
buffer, rather than in the CX register. Second, the actual length is returned
in the second byte of the structure, rather than in the AX register. Finally,
when the user has entered one less than the specified maximum number
of characters, MS-DOS ignores all subsequent characters and sounds a
warning beep until the Enter key is pressed.

For detailed information about each of the traditional keyboard-input
functions, see Section II of this book, "MS-DOS Functions Reference."

Keyboard Input with ROM BIOS Functions
Programmers writing applications for IBM PC compatibles can bypass the
MS-DOS keyboard functions and choose from two hardware-dependent
techniques for keyboard input.

The first method is to call the ROM BIOS keyboard driver using Int 16H.
For example, the following sequence reads a single character from the
keyboard input buffer and returns it in the AL register:

mov
int

ah,O
16h

function O=read keyboard
transfer to ROM BIDS

Int 16H Function OOH also returns the keyboard scan code in the AH
register, allowing the program to detect key codes that are not ordinarily
returned by MS-DOS. Other Int 16H services return the keyboard status
(that is, whether a character is waiting) or the keyboard shift state (from
the ROM BIOS data area 0000:0417H). For a more detailed explanation of
ROM BIOS keyboard functions, see Section III of this book, "IBM ROM
BIOS and Mouse Functions Reference."

Keyboard and Mouse Input 71

You should consider carefully before building ROM BIOS dependence into
an application. Although this technique allows you to bypass any I/O redi­
rection that may be in effect, ways exist to do this without introducing de­
pendence on the ROM BIOS. And there are real disadvantages to calling
the ROM BIOS keyboard driver:

■ It always bypasses I/O redirection, which sometimes may not be
desirable.

■ It is dependent on IBM PC compatibility and does not work correctly,
unchanged, on some older machines such as the Hewlett-Packard
Touchscreen or the Wang Professional Computer.

■ It may introduce complicated interactions with TSR utilities.

The other and more hardware-dependent method of keyboard input on
an IBM PC is to write a new handler for ROM BIOS Int 09H and service the
keyboard controller's interrupts directly. This involves translation of scan
codes to ASCII characters and maintenance of the type-ahead buffer. In
ordinary PC applications, there is no reason to take over keyboard I/O at
this level; therefore, I will not discuss this method further here. If you are
curious about the techniques that would be required, the best reference is
the listing for the ROM BIOS Int 09H handler in the IBM PC or PC/ AT
technical reference manual.

Ctrl-C and Ctrl-Break Handlers
In the discussion of keyboard input with the MS-DOS handle and tradi­
tional functions, I made some passing references to the fact that Ctrl-C en­
tries can interfere with the expected behavior of those functions. Let's
look at this subject in more detail now.

During most character I/ O operations, MS-DOS checks for a Ctrl-C (ASCII
code 03H) waiting at the keyboard and executes an Int 23H if one is
detected. If the system break flag is on, MS-DOS also checks for a Ctrl-C
entry during certain other operations (such as file reads and writes). Ordi­
narily, the Int 23H vector points to a routine that simply terminates the
currently active process and returns control to the parent process­
usually the MS-DOS command interpreter.

In other words, if your program is executing and you enter a Ctrl-C, acci­
dentally or intentionally, MS-DOS simply aborts the program. Any files the
program has opened using file control blocks will not be closed properly,
any interrupt vectors it has altered may not be restored correctly, and if it

72 Programming/or MS-DOS

is performing any direct I/O operations (for example, if it contains an in­
terrupt driver for the serial port), all kinds of unexpected events may
occur.

Although you can use a number of partially effective methods to defeat
Ctrl-C checking, such as performing keyboard input with Int 21H Func­
tions 06H and 07H, placing all character devices into binary mode, or
turning off the system break flag with Int 21H Function 33H, none of these
is completely foolproof. The simplest and most elegant way to defeat Ctrl­
C checking is simply to substitute your own Int 23H handler, which can
take some action appropriate to your program. When the program termi­
nates, MS-DOS automatically restores the previous contents of the Int 23H
vector from information saved in the program segment prefix. The follow­
ing example shows how to install your own Ctrl-C handler (which in this
case does nothing at all):

handler:

push ds

mov ax,2523h

save data segmen t
set int 23h vector ...
function 25h - set interrupt
int 23h = vector for
Ctrl-C handler

mov dx,seg handler ; DS:DX - handler address
mov ds,dx
mov dx,offset handler
int 21h transfer to MS-DOS

pop ds

iret

restore data segment

a Ctrl-C handler
that does nothing

The first part of the code (which alters the contents of the Int 23H vector)
would be executed in the initialization part of the application. The han­
dler receives control whenever MS-DOS detects a Ctrl-C at the keyboard.
(Because this handler consists only of an interrupt return, the Ctrl-C will
remain in the keyboard input stream and will be passed to the application
when it requests a character from the keyboard, appearing on the screen
as AC.)

When an Int 23H handler is called, MS-DOS is in a stable state. Thus, the
handler can call any MS-DOS function. It can also reset the segment regis­
ters and the stack pointer and transfer control to some other point in the
application without ever returning control to MS-DOS with an IRET.

Keyboard and Mouse Input 73

On IBM PC compatibles, an additional interrupt handler must be taken
into consideration. Whenever the ROM BIOS keyboard driver detects the
key combination Ctrl-Break, it calls a handler whose address is stored in
the vector for Int lBH. The default ROM BIOS Int lBH handler does
nothing. MS-DOS alters the Int lBH vector to point to its own handler,
which sets a flag and returns; the net effect is to remap the Ctrl-Break into
a Ctrl-C that is forced ahead of any other characters waiting in the key­
board buffer.

Taking over the Int lBH vector in an application is somewhat tricky but
extremely useful. Because the keyboard is interrupt driven, a press of Ctrl­
Break lets the application regain control under almost any circum­
stance-often, even if the program has crashed or is in an endless loop.

You cannot, in general, use the same handler for Int lBH that you use for
Int 23H. The Int lBH handler is more limited in what it can do, because it
has been called as a result of a hardware interrupt and MS-DOS may have
been executing a critical section of code at the time the interrupt was ser­
viced. Thus, all registers except CS:IP are in an unknown state; they may
have to be l?lived and then modified before your interrupt handler can exe­
cute. Simtlarly, the depth of the stack in use when the Int lBH handler is
called is.,.tmknown, and if the handler is to perform stack-intensive opera­
tions, it may have to save the stack segment and the stack pointer and
switc;:h to a new stack that is known to have sufficient depth.

In normal application programs, you should probably avoid retaining con­
trol in an Int lBH handler, rather than performing an IRET. Because of
subtle differences among non-IBM ROM BIOSes, it is difficult to predict
the state of the keyboard controller and the 8259 Programmable Interrupt
Controller (PIC) when the Int lBH handler begins executing. Also, MS­
DOS itself may not be in a stable state at the point of interrupt, a situation
that can manifest itself in unexpected critical errors during subsequent 1/0
operations. Finally, MS-DOS versions 3.2 and later allocate a stack from an
internal pool for use by the Int 09H handler. If the Int lBH handler never
returns, the Int 09H handler never returns either, and repeated entries of
Ctrl-Break will eventually exhaust the stack pool, halting the system.

Because Int lBH is a ROM BIOS interrupt and not an MS-DOS interrupt,
MS-DOS does not restore the previous contents of the Int lBH vector
when a program exits. If your program modifies this vector, it must save
the original value and restore it before terminating. Otherwise, the vector
will be left pointing to some random area in the next program that runs,
and the next time the user presses Ctrl-Break a system crash is the best
you can hope for.

74 Programming/or MS-DOS

Ctrl-C and Ctrl-Break Handlers and High-Level Languages
Capturing the Ctrl-C and Ctrl-Break interrupts is straightforward when
you are programming in assembly language. The process is only slightly
more difficult with high-level languages, as long as you have enough infor­
mation about the language's calling conventions that you can link in a
small assembly-language routine as part of the program.

The BREAK.ASM listing in Figure 5-1 contains source code for a Ctrl­
Break handler that can be linked with small-model Microsoft C programs
running on an IBM PC compatible. The short C program in Figure 5-2
demonstrates use of the handler. (This code should be readily portable to
other C compilers.)

page 55,132
title Ctrl-C & Ctrl -Break Handlers
name break

Ctrl-C and Ctrl-Break handler for Microsoft C
programs running on IBM PC compatibles

by Ray Duncan

Assemble with: C>MASM /Mx BREAK;

This module allows C programs to retain control
when the user enters a Ctrl-Break or Ctrl-C.
It uses Microsoft C parameter -passi ng conve nt i ons
and assumes the C small memory model.

The procedure _capture is called to install
a new handler for the Ctrl -C and Ctr l- Break
interrupts (lbh and 23h). _capture is passed
the address of a static variable, which will be
set to true by the handler whenever a Ctrl-C
or Ctrl-Break is detected . The C syntax is:

static int flag;
capture(&flag);

The procedure _release is called by the C program
to restore the original Ctrl-Break and Ctrl-C
handler. The C syntax is:

Figure 5-1. BREAK.ASM: A Ctrl-C and Ori-Break interrupt handler that can be
linked with Microsoft C programs.

(continued)

Keyboard and Mouse Input 75

Figure 5-1. continued

rel ease();

The procedure ctrlbrk is the actual interrupt
handler. It receives control when a software
int lbh is executed by the ROM BIOS or int 23h
is executed by MS-DOS. It simply sets the C
program's variable to true (1) and returns.

args equ 4 stack offset of arguments,
C small memory model

er
lf

TEXT -

equ Odh
equ Oah

segment word public

assume cs: TEXT -

public _capture

'CODE'

ASCII carriage return
ASCII linefeed

_capture proc near take over Ctrl-Break
and Ctrl-C interrupt vectors

push bp set up stack frame
mov bp.sp

push ds sa ve registers
push di
push si

; save address of
; calling program's "flag"

mov ax.word ptr [bp+args]
mov word ptr cs:flag,ax
mov word ptr cs : f l ag+2 ,ds

save address of original
mov ax,3523h int 23h hand l er
int 21h
mov word ptr cs : int23,bx
mov word ptr cs:int23+2 , es
mov ax,35lbh ; save address of original
int 21h ; int lbh handler
mov word ptr cs:intlb,bx
mov word ptr cs:intlb+2,es

76 Programming/or MS-DOS

(continued)

Figure 5-1. continued

push cs ; set DS:DX - address
pop ds ; of new handler
mov dx,offset TEXT:ctrl brk

mov ax,D2523h ; set int 23h vector
int 21h

mov ax,025lbh set int lbh vector
int 21h

pop si restore registers
pop di
pop ds

pop bp discard stack frame
ret and return to caller

_capture endp

public release
release proc near restore original Ctrl -C

and Ctrl-Break handlers

push bp save registers
push ds
push di
push si

lds dx ,cs :intlb get address of previous
int lbh handler

mov ax , 25lbh set int lbh vector
int 21h

lds dx,cs: int23 get address of previous
int 23h handler

mov ax,2523h set int 23h vector
int 21h

pop si restore registers
pop di and return to caller
pop ds
pop bp
ret

(continued)

Keyboard and Mouse Input 77

Figure 5-1. continued

_release endp

ctrlbrk proc far

push bx
pus h ds

l ds bx,cs:flag

Ctrl-C and Ctrl-Break
interrupt handler

save registers

get address of C program's
"flag variable"

and set the flag "true"
mov word ptr ds:[bx],l

pop ds ; restore registers
pop bx

i ret return from handler

ctrlbrk endp

flag dd 0 far pointer to caller's
Ctrl-Break or Ctrl-C flag

int23 dd 0 address of original
Ctrl-C handler

intlb dd 0 address of original
Ctrl-Break handler

- TEXT ends

end

TRY BREAK. C

Demo of BREAK.ASM Ctrl·Break and Ctrl-C
interrupt handler, by Ray Duncan

To create the executable file TRYBREAK.EXE, enter:

(continued)

Figure 5-2. TRYBREAK.C: A simple Microsoft C program that demonstrates use of the
interrupt handler BREAK.ASMfrom Figure 5-1.

78 Programming/or MS-DOS

Figure 5-2. continued

MASM /Mx BREAK;
CL TRYBREAK.C BREAK.OBJ

#include <stdio.h>

main(int argc, char *argv[])

int hit - O;
int c - 0;
static int flag - O;

f* flag for key press

f* character from keyboard
I• true if Ctrl-Break

or Ctrl-C detected

puts("\n•** TRYBREAK.C running *••\n");
puts("Press Ctrl-C or Ctrl-Break to test handler ,");
puts("Press the Esc key to exit TRYBREAK.\n");

capture(&flag); /• install new Ctrl-C and
Ctrl-Break handler and

•I
•I

* f

pass address of flag •/

puts("TRYBREAK has captured interrupt vectors.\n");

while(l)
{

hit - kbhit(); /• check for key press
I• (MS-DOS sees Ctrl-C

when keyboard polled)

/• if flag is true, an if(flag ! - 0)
{ /• interrupt has occurred

puts("\nControl-Break detected . \n");
flag - 0; / • reset interrupt flag

if(hit ! - 0) I• if any key waiting
{

c - getch(); I• read key, exit if Esc
if(Cc & Ox7f) -- Oxlb) break;
putch(c); /• otherwise display it

•I

release(); /• restore original Ctrl-C
and Ctrl-Break handlers • /

puts("\n\nTRYBREAK has released interrupt vectors.");

Keyboard and Mouse Input 79

In the example handler, the procedure named capture is called with the
address of an integer variable within the C program. It saves the address of
the variable, points the Int lBH and Int 23H vectors to its own interrupt
handler, and then returns.

When MS-DOS detects a Ctrl-C or Ctrl-Break, the interrupt handler sets
the integer variable within the C program to true (1) and returns. The C
program can then poll this variable at its leisure. Of course, to detect more
than one Ctrl-C, the program must reset the variable to zero again.

The procedure named release simply restores the Int lBH and Int 23H
vectors to their original values, thereby disabling the interrupt handler.
Although it is not strictly necessary for release to do anything about Int
23H, this action does give the C program the option of restoring the
default handler for Int 23H without terminating.

Pointing Devices
Device drivers for pointing devices are supplied by the hardware manu­
facturer and are loaded with a DEVICE statement in the CONFIG.SYS file.
Although the hardware characteristics of the available pointing devices
differ greatly, nearly all of their drivers present the same software inter­
face to application programs: the Int 33H protocol used by the Microsoft
Mouse driver. Version 6 of the Microsoft Mouse driver (which was current
as this was written) offers the following functions:

Function

OOH
OlH
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH

Meaning

Reset mouse and get status.
Show mouse pointer.
Hide mouse pointer.
Get button status and pointer position.
Set pointer position.
Get button-press information.
Get button-release information.
Set horizontal limits for pointer.
Set vertical limits for pointer.
Set graphics pointer type.
Set text pointer type.
Read mouse-motion counters.
Install interrupt handler for mouse events.
Turn on light pen emulation.
Turn off light pen emulation.
Set mickeys to pixel ratio.
Set pointer exclusion area.

80 Programming/or MS-DOS

(continued)

(continued)

Function

13H
14H
15H
16H
17H
18H
19H
lAH
lBH
lCH
lDH
lEH
lFH
20H
21H
22H
23H
24H

Meaning

Set double-speed threshold.
Swap mouse-event interrupt routines.
Get buffer size for mouse-driver state.
Save mouse-driver state.
Restore mouse-driver state.
Install alternate handler for mouse events.
Get address of alternate handler.
Set mouse sensitivity.
Get mouse sensitivity.
Set mouse interrupt rate.
Select display page for pointer.
Get display page for pointer.
Disable mouse driver.
Enable mouse driver.
Reset mouse driver.
Set language for mouse-driver messages.
Get language number.
Get driver version, mouse type, and IRQ number.

Although this list of mouse functions may appear intimidating, the aver­
age application will only need a few of them.

A program first calls Int 33H Function OOH to initialize the mouse driver
for the current display mode and to check its status. At this point, the
mouse is "alive" and the application can obtain its state and position; how­
ever, the pointer does not become visible until the process calls Int 33H
Function OlH.

The program can then call Int 33H Functions O3H, O5H, and O6H to moni­
tor the mouse position and the status of the mouse buttons. Alternatively,
the program can register an interrupt handler for mouse events, using Int
33H Function OCH. This latter technique eliminates the need to poll the
mouse driver; the driver will notify the program by calling the interrupt
handler whenever the mouse is moved or a button is pressed or released.

When the application is finished with the mouse, it can call Int 33H Func­
tion O2H to hide the mouse pointer. If the program has registered an inter­
rupt handler for mouse events, it should disable further calls to the handler
by resetting the mouse driver again with Int 33H Function OOH.

For a complete description of the mouse-driver functions, see Section III
of this book, "IBM ROM BIOS and Mouse Functions Reference." Figure 5-3
shows a small demonstration program that polls the mouse continually, to
display its position and status.

Keyboard and Mouse Input 81

Simple Demo of Int 33H Mouse Driver
CC) 1988 Ray Duncan

Compile with: CL MOUDEMO.C

#include <stdio.h>
#include <dos.h>

union REGS regs;

void cls(void);
void gotoxy(int, int);

main(int argc, char • argv[])

int x,y,buttons;

regs.x.ax - O;
int86(0x33, ®s, ®s);

/* function prototypes

/* some scratch variables
/* for the mouse state

f* reset mouse driver
/* and check status

if(regs.x.ax - 0) I• exit if no mouse */
{ printf("\nMouse not available\n");

exit(l);

els(); /• clear the screen */

gotoxy(45,0); /* and show help info */
puts("Press Both Mouse Buttons To Exit");

regs.x.ax - l ·
int86(0x33, ®s, ®s);

do
regs.x.ax - 3;
int86(0x33, ®s, ®s);
buttons - regs.x.bx & 3;
x - regs.x.cx;
y - regs.x.dx;

/• display mouse cursor

/ * get mouse posit i on
I • and button status

(continued)

Figure 5-3. MOUDEMO.C: A simple Microsoft C program that polls the mouse and
continually displays the coordinates of the mouse pointer in the upper left corner of
the screen. The program uses the ROM BIOS video driver, which is discussed in Chap-
ter 6, to clear the screen and position the text cursor.

82 Programming/or MS-DOS

Figure 5-3. continued

gotoxy(O,OJ; / • display mouse position • /
printf("X - %3d Y - %3d", x , y);

whi l e(button s !- 3) :

regs . x.a x - 2:
i nt86 (Ox33 . ®s, ®s);

cl s();
gotoxy(O,OJ;
puts("Have a Mice Day!");

Clear the screen
*I
void cls(void)

regs. x.a x - OxO6OO;
regs . h.bh - 7;
regs. x.cx - O;
regs.h.dh - 24;
regs.h.dl - 79:
int86 (OxlO, ®s, ®s) ;

Po s ition cur sor to (x ,y)

*/
voi d gotoxy(i nt x, i nt y)
{

regs.h .dl - x:
regs.h.dh - y;

regs . h.bh - O;
regs.h.ah - 2;
in t 86(OxlO , ®s, ®s);

/ • exit if both buttons down • I

/ • hide mouse cursor • /

/ * display mes sage and exit • /

/ • ROM BIOS video driver
/ * int 1Oh function O6h
/ • initializes a window

/ • ROM BIOS video driver
/ • int 1Oh function O2h
/ • positions the cursor

Keyboard and Mouse Input 83

Chapter&

Video Display

The visual presentation of an application program is one of its most im­
portant elements. Users frequently base their conclusions about a pro­
gram's performance and "polish" on the speed and attractiveness of its
displays. Therefore, a feel for the computer system's display facilities and
capabilities at all levels, from MS-DOS down to the bare hardware, is
important to you as a programmer.

Video Display Adapters
The video display adapters found in IBM PC- compatible computers have
a hybrid interface to the central processor. The overall display characteris­
tics, such as vertical and horizontal resolution, background color, and
palette, are controlled by values written to I/0 ports whose addresses are
hardwired on the adapter, whereas the appearance of each individual
character or graphics pixel on the display is controlled by a specific loca­
tion within an area of memory called the regen buffer or refresh buffer.
Both the CPU and the video controller access this memory; the software
updates the display by simply writing character codes or bit patterns di­
rectly into the regen buffer. (This is called memory-mapped 1/ 0 .)

The following adapters are in common use as this book is being written:

■ Monochrome/Printer Display Adapter (MDA). Introduced with the
original IBM PC in 1981, this adapter supports 80-by-25 text display on
a green (monochrome) screen and has no graphics capabilities at all.

■ Color/Graphics Adapter (CGA). Also introduced by IBM in 1981, this
adapter supports 40-by-25 and 80-by-25 text modes and 320-by-200,
4-color or 640-by-200, 2-color graphics (all-points-addressable, or APA)
modes on composite or digital RGB monitors.

■ Enhanced Graphics Adapter (EGA). Introduced by IBM in 1985 and
upwardly compatible from the CGA, this adapter adds support for 640-
by-350, 16-color graphics modes on digital RGB monitors. It also sup­
ports an MDA-compatible text mode.

■ Multi-Color Graphics Array (MCGA). Introduced by IBM in 1987 with
the Personal System/ 2 (PS/2) models 25 and 30, this adapter is partially
compatible with the CGA and EGA and supports 640-by-480, 2-color or
320-by-200, 256-color graphics on analog RGB monitors.

■ Video Graphics Array (VGA). Introduced by IBM in 1987 with the PS/ 2
models 50, 60, and 80, this adapter is upwardly. compatible from the
EGA and supports 640-by-480, 16-color or 320-by-200, 256-color
graphics on analog RGB monitors. It also supports an MDA-compatible
text mode.

86 Programming/or MS-DOS

■ Hercules Graphics Card, Graphics CardPlus, and InColor Cards. These
are upwardly compatible from the MDA for text display but offer
graphics capabilities that are incompatible with all of the IBM adapters.

The locations of the regen buffers for the various IBM PC-compatible
adapters are shown in Figure 6-1.

FEOOOH

F4000H

COOOOH

BCOOOH

B8000H

BlOOOH

BOOOOH

AOOOOH

varies

00400H
OOOOOH

ROM BIOS

System ROM, Stand-alone BASIC, etc.

,
Reseived for BIOS extensions

(hard-disk controller, etc.)

Reseived

16 KB regen buffer for CGA, EGA, MCGA, and VGA
in text modes and 200-line graphics modes

Reseived

4 KB Monochrome Adapter regen buffer

Regen buffer area for EGA, MCGA, and VGA
in 350-line or 480-line graphics modes

Transient part of COMMAND.COM

Transient program area

MS-DOS and its buffers,
tables, and device drivers

Interrupt vectors

Figure 6-L Memory diagram of an IBM PC-compatible personal computer, showing
the locations of the regen buffers for various adapters.

Video Display 87

Support Considerations
MS-DOS offers several functions to transfer text to. the display. Version 1
supported only Teletype-like output capabilities; version 2 added an op­
tional ANSI console driver to allow the programmer to clear the screen,
position the cursor, and select colors and attributes with standard escape
sequences embedded in the output. Programs that use only the MS-DOS
functions will operate properly on any computer system that runs MS­
DOS, regardless of the level of IBM hardware compatibility.

On IBM PC-compatible machines, the ROM BIOS contains a video driver
that programs can invoke directly, bypassing MS-DOS. The ROM BIOS
functions allow a program to write text or individual pixels to the screen
or to select display modes, video pages, palette, and foreground and back­
ground colors. These functions are relatively efficient (compared with the
MS-DOS functions, at least), although the graphics support is primitive.

Unfortunately, the display functions of both MS-DOS and the ROM BIOS
were designed around the model of a cursor-addressable terminal and
therefore do not fully exploit the capabilities of the memory-mapped,
high-bandwidth display adapters used on IBM PC- compatible machines.
As a result, nearly every popular interactive application with full-screen
displays or graphics capability ignores both MS-DOS and the ROM BIOS
and writes directly to the video controller's registers and regen buffer.

Programs that control the hardware directly are sometimes called "ill­
behaved," because they are performing operations that are normally
reserved for operating-system device drivers. These programs are a
severe management problem in multitasking real-mode environments
such as DesqView and Microsoft Windows, and they are the main reason
why such environments are not used more widely. It could be argued,
however, that the blame for such problematic behavior lies not with the
application programs but with the failure of MS-DOS and the ROM
BIOS-even six years after the first appearance of the IBM PC-to pro­
vide display functions of adequate range and power.

MS-DOS Display Functions
Under MS-DOS versions 2.0 and later, the preferred method for sending
text to the display is to use handle-based Int 21H Function 40H (Write File
or Device). When an application program receives control, MS-DOS has
already assigned it handles for the standard output (1) and standard error
(2) devices, and these handles can be used immediately. For example, the
sequence at the top of the following page writes the message hello to the
display using the standard output handle.

88 Programming/or MS-DOS

msg db 'hello'
$-msg

message to display
length of message msg_len equ

fname

mov ah,40h function 40h - write file or device
mov bx,l BX - standard output handle
mov cx,msg_len ex - message length
mov dx,seg msg OS:DX - address of message
mov ds,dx
mov dx,offset msg
int 21h transfer to MS-DOS
jc error ; jump if error detected

If there is no error, the function returns the carry flag cleared and the
number of characters actually transferred in register AX. Unless a Ctrl-Z
is embedded in the text or the standard output is redirected to a disk file
and the disk is full, this number should equal the number of characters
requested.

As in the case of keyboard input, the user's ability to specify command­
line redirection parameters that are invisible to the application means that
if you use the predefined standard output handle, you can't always be sure
where your output is going. However, to ensure that your output actually
goes to the display, you can use the predefined standard error handle,
which is always opened to the CON (logical console) device and is not
redirectable.

As an alternative to the standard output and standard error handles, you
can bypass any output redirection and open a separate channel to CON,
using the handle obtained from that open operation for character output.
For example, the following code opens the console display for output and
then writes the string hello to it:

db 'CON' ,0 name of CON device
handle dw 0 handle for CON device
msg db 'hello' message to display
msg_len equ $-msg length of message

(continued)

Video Display 89

(continued)

mov ax,3dO2h

mov dx,seg fname
mov ds,dx
mov dx,offset fname
int 21h
jc error
mov handle.ax

mov ah,4Oh
mov cx,msg_len
mov dx,seg msg
mov ds,dx
mov dx,offset msg
mov bx.handle
int 21h
jc error

AH - function 3dh - open
AL - mode - read/write
DS:DX - device name

transfer to MS-DDS
jump if open failed
save handle for CON

function 4Oh - write
CX - message length
DS:DX - address of message

BX - CON device handle
transfer to MS-DOS
jump if error detected

As with the keyboard input functions, MS-DOS also supports traditional
display functions that are upwardly compatible from the corresponding
CP/M output calls:

• Int 21H Function 02H sends the character in the DL register to the stan­
dard output device. It is sensitive to Ctrl-C interrupts, and it handles
carriage returns, linefeeds, bell codes, and backspaces appropriately.

• Int 21H Function 06H transfers the character in the DL register to the
standard output device, but it is not sensitive to Ctrl-C interrupts. You
must take care when using this function, because it can also be used
for input and for status requests.

• Int 21H Function 09H sends a string to the standard output device. The
string is terminated by the $ character.

With MS-DOS version 2 or later, these three traditional functions are con­
verted internally to handle-based writes to the standard output and thus
are susceptible to output redirection.

The sequence at the top of the following page sounds a warning beep by
sending an ASCII bell code (07H) to the display driver using the tradi­
tional character-output call Int 21H Function 02H.

90 Programming/or MS-DOS

msg

mov
mov
int

dl. 7

ah,2
21h

O7h - ASCII bell code
function O2h - display character
transfer to MS-DOS

The following sequence uses the traditional string-output call Int 21H
Function 09H to display a string:

db

mov
mov
mov
mov
int

'hel 10$'

dx,seg msg ; DS:DX - message address
ds,dx
dx,offset msg
ah,9 function O9h - write string

; transfer to MS-DOS 21h

Note that MS-DOS detects the $ character as a terminator and does not
display it on the screen.

Screen Control with MS-DOS Functions
With version 2.0 or later, if MS-DOS loads the optional device driver
ANSI.SYS in response to a DEVICE directive in the CONFIG.SYS file, pro­
grams can clear the screen, control the cursor position, and select fore­
ground and background colors by embedding escape sequences in the
text output. Escape sequences are so called because they begin with an
escape character (lBH), which alerts the driver to intercept and interpret
the subsequent characters in the sequence. When the ANSI driver is not
loaded, MS-DOS simply passes the escape sequence to the display like any
other text, usually resulting in a chaotic screen.

The escape sequences that can be used with the ANSI driver for screen
control are a subset of those defined in the ANSI 3.64-1979 Standard.
These standard sequences are summarized in Figure 6-2. Note that case is

Video Display 91

significant for the last character in an escape sequence and that numbers
must always be represented as ASCII digit strings, not as their binary
values. (A separate set of escape sequences supported by ANSI.SYS, but
not compatible with the ANSI standard, may be used for reprogramming
and remapping the keyboard.)

Escape
sequence
Esc[2J
Esc[K
Esc[row;colH

Esc[nA
Esc[nB
Esc[nC
Esc[nD
Esc[s
Esc[u
Esc[6n

Esc[nm

Meaning
Clear screen; place cursor in upper left corner (home position).
Clear from cursor to end ofline.
Position cursor. (Row is they coordinate in the range 1-25 and col

is the x coordinate in the range 1-80 for80-by-25 text display
modes.) Escape sequences terminated with the letter f instead
of H have the same effect.

Move cursor up n rows.
Move cursor down n rows.
Move cursor right n columns.
Move cursor left n columns.
Save current cursor position.
Restore cursor to saved position.
Return current cursor position on the standard input handle in the

format Esc[row;colR.
Select character attributes:
0 = no special attributes
1 = high intensity
2 = low intensity
3 = italic
4 = underline
5 = blink
6 = rapid blink
7 = reverse video
8 = concealed text (no display)
30 = foreground black
31 = foreground red
32 = foreground green
33 = foreground yellow
34 = foreground blue
35 = foreground magenta

(continued)

Figure 6-2. The ANSI escape sequences supported~ the MS-DOS ANSJ.sYS driver.
Programs running under MS-DOS 2.0 or later may use these functions, if ANSI.SYS is
loaded, to control the appearance of the display in a hardware-independent manner.
The symbol Esc indicates an ASCII escape code-a character with the value JBH.
Note that cursor positions in ANSI escape sequences are one-based, unlike the cursor
coordinates used~ the IBM ROM BIOS, which are zero-based. Numbers embedded in
an escape sequence must always be represented as a string of ASCII digits, not as their
binary values.

92 Programming/or MS-DOS

Figure 6-2. continued

Escape
sequence

Esc[=nh

Escl=7h
Esc[= 71

Meaning

36 = foreground cyan
37 = foreground white
40 = background black
41 = background red
42 = background green
43 = background yellow
44 = background blue
45 = background magenta
46 = background cyan
47 = background white
Select display mode:
0 = 40-by-25, 16-color text (color burst off)
1 = 40-by-25, 16-color text
2 = 80-by-25, 16-color text (color burst off)
3 = 80-by-25, 16-color text
4 = 320-by-200, 4-color graphics
5 = 320-by-200, 4-color graphics (color burst off)
6 = 620-by-200, 2-color graphics
14 = 640-by-200, 16-color graphics (EGA and VGA, MS-DOS 4.0)
15 = 640-by-350, 2-color graphics (EGA and VGA, MS-DOS 4.0)
16 = 640-by-350, 16-color graphics (EGA and VGA, MS-DOS 4.0)
17 = 640-by-480, 2-color graphics (MCGA and VGA, MS-DOS 4.0)
18 = 640-by-480, 16-color graphics (VGA, MS-DOS 4.0)
19 = 320-by-200, 256-color graphics (MCGA and VGA, MS-DOS 4.0)
Escape sequences terminated with l instead of h have the same

effect.
Enable line wrap.
Disable line wrap.

Binary Output Mode
Under MS-DOS version 2 or later, you can substantially increase display
speeds for well-behaved application programs without sacrificing hard­
ware independence by selecting binary (raw) mode for the standard out­
put. In binary mode, MS-DOS does not check between each character it
transfers to the output device for a Ctrl-C waiting at the keyboard, nor
does it filter the output string for certain characters such as Ctrl-Z.

Bit 5 in the device information word associated with a device handle con­
trols binary mode. Programs access the device information word by using
Subfunctions OOH and Olli of the MS-DOS IOCTL function (1/0 Control,
Int 21H Function 44H). For example, the sequence on the following page
places the standard output handle into binary mode.

Video Display 93

mov
mov
int

mov
or

mov
int

bx,1
ax,4400h
21h

dh,0
dl ,20h

ax,4401h
21h

get device information ...
standard output handle
function 44h subfunction OOh
transfer to MS-DOS

set upper byte of DX - 0
set binary mode bit in DL

write device information . . .
(BX still has handle)
function 44h subfunction Olh
transfer to MS-DOS

Note that if a program changes the mode of any of the standard handles, it
should restore those handles to ASCII (cooked) mode before it exits.
Otherwise, subsequent application programs may behave in unexpected
ways. For more detailed information on the IOCTL function, see Section II
of this book, "MS-DOS Functions Reference."

The ROM BIOS Display Functions
You can somewhat improve the display performance of programs that are
intended for use only on IBM PC-compatible machines by using the ROM
BIOS video driver instead of the MS-DOS output functions. Accessed by
means of Int lOH, the ROM BIOS driver supports the following functions
for all of the currently available IBM display adapters:

Function

Display mode control
OOH
OFH

Cursor control
OlH
02H
03H

Writing to the display
09H
OAH
OEH

94 Programming/or MS-DOS

Action

Set display mode.
Get display mode.

Set cursor size.
Set cursor position.
Get cursor position and size.

Write character and attribute at cursor.
Write character-only at cursor.
Write character in teletype mode.

(continued)

(continued)

Function

Readingfrom the display
08H

Graphics support
OCH
ODH

Scroll or clear display
o6H
07H

Miscellaneous
04H
05H
OBH

Action

Read character and attribute at cursor.

Write pixel.
Read pixel.

Scroll up or initialize window.
Scroll down or initialize window.

Read light pen.
Select display page.
Select palette/set border color.

Additional ROM BIOS functions are available on the EGA, MCGA, VGA,
and PCjr to support the enhanced features of these adapters, such as pro­
grammable palettes and character sets (fonts). Some of the functions are
valid only in certain display modes.

Each display mode is characterized by the number of colors it can display,
its vertical resolution, its horizontal resolution, and whether it supports
text or graphics memory mapping. The ROM BIOS identifies it with a
unique number. Section III of this book, "IBM ROM BIOS and Mouse
Functions Reference," documents all of the ROM BIOS Int l0H functions
and display modes.

As you can see from the preceding list, the ROM BIOS offers several desir­
able capabilities that are not available from MS-DOS, including initializa­
tion or scrolling of selected screen windows, modification of the cursor
shape, and reading back the character being displayed at an arbitrary
screen location. These functions can be used to isolate your program from
the hardware on any IBM PC-compatible adapter. However, the ROM
BIOS functions do not suffice for the needs of a high-performance, in­
teractive, full-screen program such as a word processor. They do not sup­
port the rapid display of character strings at an arbitrary screen position,
and they do not implement graphics operations at the level normally re­
quired by applications (for example, bit-block transfers and rapid drawing
of lines, circles, and filled polygons). And, of course, they are of no use
whatsoever in non-IBM display modes such as the monochrome graphics
mode of the Hercules Graphics Card.

Video Display 95

msg

Let's look at a simple example of a call to the ROM BIOS video driver. The
following sequence writes the string hello to the screen:

db 'hello'
msg_len equ S-msg

next:

mov s1,seg msg DS:SI - message address
mov ds,si ,
mov si ,offset msg
mov cx,msg_len ex - message length
cld
l odsb get AL - next character
push s1 save message pointer
mov ah,Oeh int 1Oh function Oeh - write

character in teletype mode
mov bh,O assume video page O
mov bl ,color (use in graphics modes only)
int 10h transfer to ROM BIOS
pop Si restore message pointer
loop next loop until message done

(Note that the SI and DI registers are not necessarily preserved across a
call to a ROM BIOS video function.)

Memory-mapped Display Techniques
Display performance is best when an application program takes over
complete control of the video adapter and the refresh buffer. Because the
display is memory-mapped, the speed at which characters can be put on
the screen is limited only by the CPU's ability to copy bytes from one loca­
tion in memory to another. The trade-off for this performance is that such
programs are highly sensitive to hardware compatibility and do not al­
ways function properly on "clones" or even on new models of IBM video
adapters.

Text Mode
Direct programming of the IBM PC-compatible video adapters in their
text display modes (sometimes also called alphanumeric display modes) is
straightforward. The character set is the same for all, and the cursor home

96 Programming/or MS-DOS

position-(x,y) = (0,0)-is defined to be the upper left corner of the
screen (Figure 6-3). The MDA uses 4 KB of memory starting at segment
BOOOH as a regen buffer, and the various adapters with both text and
graphics capabilities (CGA, EGA, MCGA, and VGA) use 16 KB of memory
starting at segment B800H. (See Figure 6-1.) In the latt!:!r case, the 16 KB is
divided into "pages" that can be independently updated and displayed.

(O,o) ~---------... (79,0)

(0,24) (79,24)

Figure 6-3. Cursor addressing/or 80-by-25 text display modes (IBM ROM BIOS
modes 2, 3, and 7).

Each character-display position is allotted 2 bytes in the regen buffer. The
first byte (even address) contains the ASCII code of the character, which is
translated by a special hardware character generator into a dot-matrix pat­
tern for the screen. The second byte (odd address) is the attribute byte.
Several bit fields in this byte control such features as blinking, intensity
(highlighting), and reverse video, depending on the adapter type and dis­
play mode (Figures 6-4 and 6-5). Figure 6-6 shows a hex and ASCII dump
of part of the video map for the MDA.

7 6 5 4 3 2 1 0

B Background I Foreground

B = Blink
I = Intensity

Display Background Foreground

No display (black) 000 000
No display (white) • 111 111
Underline 000 001
Normal video 000 111
Reverse video 111 000

-VGA only

Figure 6-4. Attribute byte for 80-by-25 monochrome text display mode on the MDA,
Hercules cards, EGA, and VGA (IBM ROM BIOS mode 7).

Video Display 97

7 6 5 4 3 2 1 0

B Background Foreground

B = Blink or background intensity (default = blink)
I = Foreground intensity or character select (default = intensity)

Value Color

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White
8 Gray
9 Light blue

10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 Intense white

Figure 6-5. Attribute byte for the 40-by-25 and 80-by-25 text display modes on the
CGA, EGA, MCGA, and VGA (IBM ROM BIOS modes 0-3). The table of color values
assumes default palette programming and that the B or I bit controls intensity.

B000:0000 3e 07 73 07 65 07 6c 07 65 07 63 07 74 07 20 07
B000:0010 74 07 65 07 6d 07 70 07 20 07 20 07 20 07 20 07
B000:0020 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0030 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0040 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0050 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0060 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0070 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:00B0 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
B000:0090 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07

Figure 6-6. Example dump of the first 160 bytes of the MDA 's regen buffer. These
bytes correspond to the first visible line on the screen. Note that ASCII character codes
are stored in even bytes and their: respective character attributes in odd bytes; all. the
characters in this example line have the attribute normal video.

98 Programming/or MS-DOS

You can calculate the memory offset of any character on the display as the
line number (y coordinate) times 80 characters per line times 2 bytes per
character, plus the column number (x coordinate) times 2 bytes per char­
acter, plus (for the text/ graphics adapters) the page number times the size
of the page (4 KB per page in 80-by-25 modes; 2 KB per page in 40-by-25
modes). In short, the formula for the offset of the character-attribute pair
for a given screen position (x,y) in 80-by-25 text modes is

offset= ((y • 50H + x) • 2) + (page • 1000H)

In 40-by-25 text modes, the formula is

offset= ((y • 50H + x) • 2) + (page • 0800H)

Of course, the segment register being used to address the video buffer
must be set appropriately, depending on the type of display adapter.

As a simple example, assume that the character to be displayed is in the
AL register, the desired attribute byte for the character is in the AH regis­
ter, the x coordinate (column) is in the BX register, and the y coordinate
(row) is in the ex register. The following code stores the character and at­
tribute byte into the MDA's video refresh buffer at the proper location:

push ax save char and attribute
mov ax.160
mul ex DX:AX - Y * 160
shl bx.1 mult i ply X by 2
add bx.ax BX - (Y•160) + (X*2)
mov ax,ObOOOh ES - segment of monochrome
mov es.ax adapter refresh buffer
pop ax restore char and attribute
mov es:[bx],ax write them to vjdeo buffer

More frequently, we wish to move entire strings into the refresh buffer,
starting at a given coordinate. In the next example, assume that the DS:SI
registers point to the source string, the ES:DI registers point to the starting
position in the video buffer (calculated as shown in the previous ex­
ample), the AH register contains the attribute byte to be assigned to every
character in the string, and the ex register contains the length of the
string. The following code moves the entire string into the refresh buffer:

xfer: l odsb
stosw
loop xfer

fetch next character
store char+ attribute
until all chars moved

Video Display 99

Of course, the video drivers written for actual application programs must
take into account many additional factors, such as checking for special
control codes Oinefeeds, carriage returns, tabs), line wrap, and scrolling.

Programs that write characters directly to the CGA regen buffer in text
modes must deal with an additional complicating factor-they must ex­
amine the video controller's status port and access the refresh buffer only
during the horizontal retrace or vertical retrace intervals. (A retrace inter­
val is the period when the electron beam that illuminates the screen
phosphors is being repositioned to the start of a new scan line.) Other­
wise, the contention for memory between the CPU and the video con­
troller is manifest as unsightly "snow" on the display. (If you are writing
programs for any of the other IBM PC-compatible video adapters, such as
the MDA, EGA, MCGA, or VGA, you can ignore the retrace intervals; snow
is not a problem with these video controllers.)

A program can detect the occurrence of a retrace interval by monitoring
certain bits in the video controller's status register. For example, assume
that the offset for the desired character position has been calculated as in
the preceding example and placed in the BX register, the segment for the
CGA's refresh buffer is in the ES register, and an ASCII character code to
be displayed is in the CL register. The following code waits for the begin­
ning of a new horizontal retrace interval and then writes the character into
the buffer:

mov

cli

waitl: in
and
jnz

wait2: in
and
jz

mov

sti

dx,03dah

al ,dx
al, 1

waitl

al ,dx
al , 1

wait2

es:[bx],cl

100 Programming/or MS-DOS

DX - video controller's
status port address
disable interrupts

if retrace is already
in progress, wait for
it to end . ..
read status port
check if retrace bit on
yes, wait

wait for new retrace
interval to start ...
read status port
retrace bit on yet?
jump if not yet on

write character to
the regen buffer
enable interrupts again

The first wait loop "synchronizes" the code to the beginning of a horizon­
tal retrace interval. If only the second wait loop were used (that is, if a
character were written when a retrace interval was already in progress),
the write would occasionally begin so close to the end of a horizontal
retrace "window" that it would partially miss the retrace, resulting in scat­
tered snow at the left edge of the display. Notice that the code also dis­
ables interrupts during accesses to the video buffer, so that service of a
hardware interrupt won't disrupt the synchronization process.

Because of the retrace-interval constraints just outlined, the rate at which
you can update the CGA in text modes is severely limited when the updat­
ing is done one character at a time. You can obtain better results by
calculating all the relevant addresses and setting up the appropriate regis­
ters, disabling the video controller by writing to register 3D8H, moving the
entire string to the buffer with a REP MOVSW operation, and then
reenabling the video controller. If the string is of reasonable length, the
user won't even notice a flicker in the display. Of course, this procedure
introduces additional hardware dependence into your code because it
requires much greater knowledge of the 6845 controller. Luckily, snow is
not a problem in CGA graphics modes.

Graphics Mode
Graphics-mode memory-mapped programming for IBM PC-compatible
adapters is considerably more complicated than text-mode programming.
Each bit or group of bits in the regen buffer corresponds to an addressable
point, or pixe~ on the screen. The mapping of bits to pixels differs for
each of the available graphics modes, with their differences in resolution
and number of supported colors. The newer adapters (EGA, MCGA, and
VGA) also use the concept of bit planes, where bits of a pixel are segre­
gated into multiple banks of memory mapped at the same address; you
must manipulate these bit planes by a combination of memory-mapped
1/0 and port addressing.

IBM-video-systems graphics programming is a subject large enough for a
book of its own, but we can use the 640-by-200, 2-color graphics display
mode of the CGA (which is also supported by all subsequent IBM text/
graphics adapters) to illustrate a few of the techniques involved. This
mode is simple to deal with because each pixel is represented by a single
bit. The pixels are assigned (x,y) coordinates in the range (O,o) through
(639,199), where x is the horizontal displacement, y is the vertical
displacement, and the home position (O,o) is the upper left corner of the
display. (See Figure 6-7.)

Video Display 101

(0,0) --------~ (639,0)

(0,199) (639,199)

Figure 6-7. Point addressing/or 640-by-200, 2-color graphics modes on the CGA,
EGA, MCGA, and VGA (IBM ROM BIOS mode 6).

Each successive group of 80 bytes (640 bits) represents one horizontal
scan line. Within each byte, the bits map one-for-one onto pixels, with the
most significant bit corresponding to the leftmost displayed pixel of a set
of eight pixels and the least significant bit corresponding to the rightmost
displayed pixel of the set. The memory map is set up so that all the even y
coordinates are scanned as a set and all the odd y coordinates are scanned
as a set; this mapping is referred to as the memory interlace.

To find the regen buffer offset for a particular (x,y) coordinate, you would
use the following formula:

offset= ((y AND 1) • 2000H) + (y/ 2 • 50H) + (x/ 8)

The assembly-language implementation of this formula is as follows:

assume AX - Y, BX - X
shr bx,1 divide X by B
shr bx,1
shr bx,1
push ax save copy of Y
shr ax,1 find (Y/2) * 50h
mov cx,50h with product in DX:AX
mul ex
add bx.ax add product to X/8
pop ax add (Y AND 1) * 2000h
and ax,1
jz 1 a bell
add bx,2000h

now BX - offset into
video buffer

After calculating the correct byte address, you can use the following for­
mula to calculate the bit position for a given pixel coordinate:

bit = 7 - (x MOD 8)

102 Programming/or MS-DOS

table

where bit 7 is the most significant bit and bit O is the least significant bit. It
is easiest to build an 8-byte table, or array of bit masks, and use the opera­
tion X AND 7 to extract the appropriate entry from the table:

(XAND7) Bit mask (XAND7) Bit mask

0 80H 4 08H
1 40H 5 04H
2 20H 6 02H

3 lOH 7 OlH

The assembly-language implementation of this second calculation is as
follows:

db BOh
db 40h
db 20h
db 10h
db 08h
db 04h
db 02h
db Olh

and bx,7
mov al ,[bx+table]

X AND 7 - offset 0
X AND 7 - offset 1
X AND 7 - offset 2
X AND 7 - offset 3
X AND 7 - offset 4
X AND 7 - offset 5
X AND 7 - offset 6
X AND 7 - offset 7

assume BX - X coordinate
isolate 0-7 offset

now AL - mask from table

The program can then use the mask, together with the byte offset pre­
viously calculated, to set or clear the appropriate bit in the video con­
troller's regen buffer.

Video Display 103

Chapter7

Printer and Serial Port

MS-DOS supports printers, plotters, modems, and other hard-copy output
or communication devices with device drivers for parallel ports and serial
ports. Parallel ports are so named because they transfer a byte-8 bits­
in parallel to the destination device over eight separate physical paths
(plus additional status and handshaking signals). The serial port, on the
other hand, communicates with the CPU with bytes but sends data to or
receives data from its destination device serially-a bit at a time-over a
single physical connection.

Parallel ports are typically used for high-speed output devices, such as
line printers, over relatively short distances (less than 50 feet). They are
rarely used for devices that require two-way communication with the
computer. Serial ports are used for lower-speed devices, such as modems
and terminals, that require two-way communication (although some
printers also have serial interfaces). A serial port can drive its device reli­
ably over much greater distances (up to 1000 feet) over as few as three
wires-transmit, receive, and ground.

The most commonly used type of serial interface follows a standard called
RS-232. This standard specifies a 25-wire interface with certain electrical
characteristics, the use of various handshaking signals, and a standard
DB-25 connector. Other serial-interface standards exist-for example, the
RS-422, which is capable of considerably higher speeds than the RS-232-
but these are rarely used in personal computers (except for the Apple
Macintosh) at this time.

MS-DOS has built-in device drivers for three parallel adapters, and for two
serial adapters on the PC or PC/ AT and three serial adapters on the PS/2.
The logical names for these devices are LPTI, LPT2, LPT3, COMl, COM2,
and COM3. The standard printer (PRN) and standard auxiliary (AUX)
devices are normally aliased to LPTl and COMl, but you can redirect PRN
to one of the serial ports with the MS-DOS MODE command.

As with keyboard and video display 1/0, you can manage printer and
serial-port 1/0 at several levels that offer different degrees of flexibility
and hardware independence:

■ MS-DOS handle-oriented functions

■ MS-DOS traditional character functions

■ IBM ROM BIOS driver functions

In the case of the serial port, direct control of the hardware by application
programs is also common. I will discuss each of these 1/0 methods
briefly, with examples, in the following pages.

106 Programming/or MS-DOS

Printer Output
The preferred method of printer output is to use the handle write function
Ont 21H Function 40H) with the predefined standard printer handle (4).
For example, you could write the string hello to the printer as follows:

msg db
msg_len equ

mov
mov
mov
mov
mov
mov
int
jc

'he llo ' message for printer
$-msg length of message

ah,40h function 40h - write file or device
bx,4 BX - standard printer handle
cx,msg_len CX - length of string
dx,seg msg DS : DX - string address
ds,dx
dx,offset msg
21h transfer to MS-DOS
error : jump if error

If there is no error, the function returns the carry flag cleared and the
number of characters actually transferred to the list device in register AX.
Under normal circumstances, this number should always be the same as
the length requested and the carry flag indicating an error should never be
set. However, the output will terminate early if your data contains an end­
of-file mark (Ctrl-Z).

You can write independently to several list devices (for example, LPTl,
LPT2) by issuing a specific open request (Int 21H Function 3DH) for each
device and using the handles returned to access the printers individually
with Int 21H Function 40H. You have already seen this general approach
in Chapters 5 and 6.

An alternative method of printer output is to use the traditional Int 21H
Function 05H, which transfers the character in the DL register to the
printer. (This function is sensitive to Ctrl-C interrupts.) For example, the
assembly-language code sequence at the top of the following page would
write the the string hello to the line printer.

Printer and Serial Port 107

msg db 'hel 1 o '
$-msg

message for printer
length of message msg_len equ

next:

mov bx,seg msg DS:BX - string address
mov ds,bx
mov bx. offset msg
mov cx,msg_len ex - string length

mov dl, [bx] get next character
mov ah,5 function O5h - printer output
int 21h transfer to MS-DOS
inc bx bump string pointer
1 oop next loop until string done

Programs that run on IBM PC-compatible machines can obtain improved
printer throughput by bypassing MS-DOS and calling the ROM BIOS
printer driver directly by means of Int 17H. Section III of this book, "IBM
ROM BIOS and Mouse Functions Reference," documents the Int 17H func­
tions in detail. Use of the ROM BIOS functions also allows your program
to test whether the printer is off line or out of paper, a capability that
MS-DOS does not offer.

For example, the following sequence of instructions calls the ROM BIOS
printer driver to send the string hello to the line printer:

msg db 'hello'
$-msg

message for printer
length of message msg_len equ

mov bx.seg msg DS:BX - string address
mov ds,bx
mov bx.offset msg
mov cx,msg_l en ex - string length
mov dx,O DX - printer number

next: mov al,[bx] AL - character to print
mov ah,O function OOh - printer output
int 17h transfer to ROM BIOS
i nc bx bump string pointer

(continued)

108 Programming/or MS-DOS

(continued)

1 oop next 1 oop until string done

Note that the printer numbers used by the ROM BIOS are zero-based,
whereas the printer numbers in MS-DOS logical-device names are one­
based. For example, ROM BIOS printer O corresponds to LPTl.

Finally, the most hardware-dependent technique of printer output is to ac­
cess the printer controller directly. Considering the functionality already
provided in MS-DOS and the IBM ROM BIOS, as well as the speeds of the
devices involved, I cannot see any justification for using direct hardware
control in this case. The disadvantage of introducing such extreme hard­
ware dependence for such a low-speed device would far outweigh any
small performance gains that might be obtained.

The Serial Port
MS-DOS support for serial ports (often referred to as the auxiliary device
in MS-DOS manuals) is weak compared with its keyboard, video-display,
and printer support. This is one area where the application programmer is
justified in making programs hardware dependent to extract adequate
performance.

Programs that restrict themselves to MS-DOS functions to ensure por­
tability can use the handle read and write functions (Int 21H Functions
3FH and 40H), with the predefined standard auxiliary handle (3) to access
the serial port. For example, the following code writes the string hello to
the serial port that is currently defined as the AUX device:

msg db
msg_len equ

mov
mov
mov
mov
mov

'hello'
$-msg

ah,40h
bx,3
cx,msg_len
dx,seg msg
ds,dx

message for serial port
length of message

function 40h - write file or device
BX - standard aux handle
ex - string length
DS:QX - string address

(continued)

Printer and Serial Port 109

(continued)

mov dx,offset msg
int 21h transfer to MS-DDS
jc error : jump if error

The standard auxiliary handle gives access to only the first serial port
(COMl). If you want to read or write COM2 and COM3 using the handle
calls, you must issue an open request (Int 21H Function 3DH) for the
desired serial port and use the handle returned by that function with Int
21H Functions 3FH and 40H.

Some versions of MS-DOS have a bug in character-device handling that
manifests itself as follows: If you issue a read request with Int 21H Func­
tion 3FH for the exact number of characters that are waiting in the driver's
buffer, the length returned in the AX register is the number of characters
transferred minus one. You can circumvent this problem by always re­
questing more characters than you expect to receive or by placing the
device handle into binary mode using Int 21H Function 44H.

MS-DOS also supports two traditional functions for serial-port I/0. Int 21H
Function 03H inputs a character from COMl and returns it in the AL regis­
ter; Int 21H Function 04H transmits the character in the DL register to
COMl. Like the other traditional calls, these two are direct descendants of
the CP/M auxiliary-device functions.

For example, the following code sends the string hello to COMl using the
traditional Int 21H Function 04H:

msg db
msg_len equ

mov
mov
mov
mov

'hello'
S-msg

bx,seg msg
ds,bx

;

bx.offset msg
cx,msg_len :

110 Programming for MS-DOS

message for serial port
length of message

DS : BX - string address

CX - length of string

(continued)

(continued)

next: mov
mov
int
inc
loop

dl, [bx]
ah,4
21h
bx
next

get next character
function 04h - aux output
transfer to MS-DOS
bump pointer to string
loop until string done

MS-DOS translates the traditional auxiliary-device functions into calls on
the same device driver used by the handle calls. Therefore, it is generally
preferable to use the handle functions in the first place, because they
allow very long strings to be read or written in one operation, they give
access to serial ports other than COMl, and they are symmetrical with the
handle video-display, keyboard, printer, and file I/0 methods described
elsewhere in this book.

Although the handle or traditional serial-port functions allow you to write
programs that are portable to any machine running MS-DOS, they have a
number of disadvantages:

■ The built-in MS-DOS serial-port driver is slow and is not interrupt
driven.

■ MS-DOS serial-port I/0 is not buffered.

■ Determining the status of the auxiliary device requires a separate call
to the IOCTL function Ont 21H Function 44H)-if you request input
and no characters are ready, your program will simply hang.

■ MS-DOS offers no standardized function to configure the serial port
from within a program.

For programs that are going to run on the IBM PC or compatibles, a more
flexible technique for serial-port I/0 is to call the IBM ROM BIOS serial­
port driver by means of Int 14H. You can use this driver to initialize the
serial port to a desired configuration and baud rate, examine the status of
the controller, and read or write characters. Section III of this book, "IBM
ROM BIOS and Mouse Functions Reference," documents the functions
available from the ROM BIOS serial-port driver.

Printer and Serial Port 111

For example, the following sequence sends the character X to the first
serial port (COMl):

mov ah,1 function Olh - send character
mov al,' X' AL - character to transmit
mov dx,O DX - serial-port number
int 14h transfer to ROM BIOS
and ah,BOh did transmit fail?
jnz error jump if transmit error

As with the ROM BIOS printer driver, the serial-port numbers used by the
ROM BIOS are zero-based, whereas the serial-port numbers in MS-DOS
logical-device names are one-based. In this example, serial port O corre­
sponds to COMl.

Unfortunately, like the MS-DOS auxiliary-device driver, the ROM BIOS
serial-port driver is not interrupt driven. Although it will support higher
transfer speeds than the MS-DOS functions, at rates greater than 2400
baud it may still lose characters. Consequently, most programmers writing
high-performance applications that use a serial port (such as telecom­
munications programs) take complete control of the serial-port controller
and provide their own interrupt driver. The built-in functions provided by
MS-DOS, and by the ROM BIOS in the case of the IBM PC, are simply not
adequate.

Writing such programs requires a good understanding of the hardware. In
the case of the IBM PC, the chips to study are the INS8250 Asynchronous
Communications Controller and the Intel 8259A Programmable Interrupt
Controller. The IBM technical reference documentation for these chips is
a bit disorganized, but most of the necessary information is there if you
look for it.

112 Programming/or MS-DOS

The TALK Program
The simple terminal-emulator program TALK.ASM (Figure 7-1) is an ex­
ample of a useful program that performs screen, keyboard, and serial-port
1/0. This program recapitulates all of the topics discussed in Chapters 5
through 7. TALK uses the IBM PC's ROM BIOS video driver to put charac­
ters on the screen, to clear the display, and to position the cursor; it uses
the MS-DOS character-input calls to read the keyboard; and it contains its
own interrupt driver for the serial-port controller.

name talk
page 55,132
.lfcond ; List false conditionals too
title TALK--Simple terminal emulator

TALK.ASM--Simple IBM PC terminal emulator

Copyright (cl 1988 Ray Duncan

To assemble and link this program into TALK.EXE:

stdin
stdout
stderr

er
lf
bsp

C>MASM TALK;
C>LINK TALK;

equ 0
equ 1

equ 2

equ Odh
equ Oah
equ 08h

standard input handle
standard output handle
standard error handle

ASCII carriage return
ASCII linefeed
ASCII backspace

escape equ lbh ASCII escape code

dattr equ 07h display attribute to use
while in emulation mode

bufsiz equ 4096 size of serial-port buffer

echo equ 0 0 - full-duplex, ·l - half-duplex

(continued)

Figure 7-1. TALK.ASM: A simple terminal-emulator program/or IBM PC-compatible
computers. This program demonstrates use of the MS-DOS and ROM BIOS video and
keyboard functions and direct control of the serial-communications adapter.

Printer and Serial Port 113

Figure 7-1. continued

true equ -1
false equ 0

coml equ true
com2 equ not coml

pic_mask equ 21h
pic_eoi equ 20h

if coml
com_data equ 03f8h
com_ier equ 03f9h
com_mcr equ 03fch
com_sts equ 03fdh
com_int equ Och
int_mask equ 10h

endif

if com2
com_data equ 02f8h
com_ier equ 02f9h
com_mcr equ 02fch
com_sts equ 02fdh
com_int equ Obh
int_mask equ 08h

end if

_TEXT segment word public 'CODE'

use COMl if nonzero
use COM2 if nonzero

8259 interrupt mask port
8259 EOI port

port assignments for COMl

COMl interrupt number
IRQ4 mask for 8259

port assignments for COM2

COM2 interrupt number
IRQ3 mask for 8259

assume cs: _TEXT,ds: _DATA,es: _DATA,ss:STACK

talk proc far

mov ax, _DATA
mov ds,ax
mov es.ax

mov ah, 15
int 10h
dee ah
mov columns.ah

cmp al. 7
je talk2

114 Programming/or MS-DOS

entry point from MS-DOS

make data segment ad dressable

initia lize display for
terminal emulator mode ...

get display width and
current display mode
save display width for use
by the screen-clear routine

enforce text display mode
mode 7 ok, proceed

(continued)

Figure 7-1. continued

cmp al ,3
jbe talk2

mov dx,offset msgl
mov cx,msgl_len
jmp talk6

talk2: mov bh,dattr
call els

call asc_enb

mov dx.offset msg2
mov cx,msg2_len
mov bx , stdout
mov ah,40h
int 21h

talk3: call pc_stat
jz talk4

call pc_in

cmp al ,0
jne talk32

call pc_in

jmp talk5

talk32:
if echo
push ax
call pc_out
pop ax
end if

call com_out

talk4: call com_stat
jz talk3

call com_ in

cmp al ,20h
jae talk45

modes 0-3 ok. proceed

print error message and exit

clear screen and home cursor

capture serial-port interrupt
vector and enable interrupts

display message
'terminal emulator running'
BX - standard output handle
function 40h - write file or device
transfer to MS-DOS

keyboard character waiting?
nothing waiting, jump

read keyboard character

is it a function key?
not function key, jump

function key, discard 2nd
character of sequence
t hen terminate progra m

keyboard character received

if half-duplex, echo
character to PC display

write char to serial port

serial-port character waiting?
nothing waiting, jump

read serial-port character

is it control code?
jump if not

(continued)

Printer and Serial Port 115

Figure 7-1. continued

call ctrl code

jmp talk3

talk45:
call pc_out

jmp talk4

talk5:

mov bh,07h
call els

mov dx,offset msg3
mov cx,msg3_len

talk6: push dx
push ex

call asc_dsb

pop ex
pop dx

mov bx,stdout
mov ah,40h
int 21h

mov ax,4c00h
int 21h

talk endp

com_stat proc near

push ax
mov ax,asc_in
cmp ax,asc_out
pop ax
ret

116 Programming for MS-DOS

control code, process it

check keyboard again

noncontrol char received.
write it to PC display

see if any more waiting

function key detected,
prepare to terminate . ..

clear screen and home cursor

display farewell message

save message address
and message length

disable serial-port interrupts
and release interrupt vector

restore message length
and address

handle for standard output
function 40h - write device
transfer to MS-DOS

terminate program with
return code - O

check asynch status: returns
Z - false if character ready
Z - true if nothing waiting

compare ring buffer pointers

return to caller

(continued)

Figure 7-1. continued

com_stat endp

com_in proc

com_inl:

push

mov
cmp
je

mov

inc

near

bx

bx , asc_out
bx,asc_in
com_inl

al ,[bx+asc_buf]

bx
cmp bx,bufsiz

com_in2:

jne
xor

mov
pop
ret

com_in endp

com_out proc

push
push
mov

com_outl:
in
and
jz

pop
mov
out
pop
ret

com_out endp

com_in2
bx.bx

asc_out,bx
bx

near

dx
ax
dx,com_sts

al.dx
al ,20h
com_outl

ax
dx,com_data
dx,al
dx

get character from serial­
port buffer; returns
new character in AL

save register BX

if no char waiting, wait
until one is received

jump, nothing waiting

character is ready,
extract it from buffer

update buffer pointer

reset pointer if wrapped

store updated pointer
restore register BX
and return to caller

write character in AL
to serial port

save register DX
save character to send
DX - status port address

check if transmit buffer
is empty (TBE bit - set)

no, must wait

get character to send
DX - data port address
transmit the character
restore register DX
and return to caller

(continued)

Printer and Serial Port 117

Figure 7-1. continued

pc_stat proc

mov
or

near

al,in_flag
al, al

jnz pc_s tatl

mov
mov

ah,6
dl. Offh

int 21 h

jz

mov
mov

pc_statl:
ret

pc_stat endp

pc_in proc

mov
or
jnz

call
jmp

pc_inl: mov
mov
ret

pc_in endp

pc_out proc

mov

pc_statl

in_char,al
i n_fl ag, Offh

near

al,in_flag
al , al
pc_i nl

pc_stat
pc_i n

in_flag,O
al, in_char

near

ah,Oeh

118 Programming/or MS-DOS

read keyboard status; returns
Z - false if character ready
Z - true if nothing waiting
register DX destroyed

if character already
waiting, return status

otherwise call MS-DOS to
determine keyboard status

jump if no key ready

got key. save it for
"pc_in" routine

return to caller with
Z flag set appropriately

read keyboard character .
return it in AL
DX may be destroyed

key already waiting?

yes. return it to caller

try to read a character

clear char-waiting flag
and return AL= character

write character in AL
to the PC's display

ROM BIOS function Oeh -
"teletype output"

(continued)

Figure 7-1. continued

push
xor
int
pop
ret

pc_out endp

el s proc

mov
mov
mov

mov

int
call
ret

cl s endp

cl reol proc

call
mov

mov

mov

int
ret

cl reol endp

bx
bx.bx
10h
bx

near

dl , columns
dh,24
cx ,O

ax,600h

10h
home

near

get xy
cx,dx

dl ,columns

ax,600h

10h

save register BX
assume page 0
transfer to ROM BIOS
restore register BX
and return to cal l er

clear display using
char attribute in BH
registers AX, ex ,
and DX destroyed

set DL,DH - X,Y of
lower right corner
set CL.CH - X,Y of
upper left corner
ROM BIOS function 06h -
"scro l l or initialize
window"
transfer to ROM BIOS
set cursor at (0,0)
and return to caller

clear from cursor to end
of line using attribute
in BH, registers AX, CX,
and DX destroyed

get current cursor position
current position - "upper
left corner" of wi ndow;
"lower right corner" Xis
max columns, Y is same
as upper left corner
ROM BIOS funct i on 06h -
"scroll or initialize
window"
transfer to ROM BIOS
return to caller

(continued)

Printer and Serial Port 119

Figure 7-1. continued

home proc

mov
call
ret

near

dx,O
gotoxy

home endp

•gotoxy proc near

push bx
push ax

mov
mov

int

pop
pop
ret

bh,0
ah,2

ax
bx

gotoxy endp

getxy proc near

push ax
push bx
push ex

mov

mov
int

pop

ah,3

bh,O
10h

ex
pop bx
pop ax

put cursor at home position

set (X,Y) - (0,0)
position the cursor
return to caller

position the cursor
ca ll with DL - X, DH - Y

save registers

assume page 0
ROM BIOS function 02h -
set cursor position
transfer to ROM BIOS

restore registers

and return to caller

get cursor position,
returns DL - X, DH - Y

save registers

ROM BIOS function 03h -
get cursor position
assume page 0
transfer to ROM BIOS

restore registers

ret and return to caller

getxy endp

120 Programming/or MS-DOS

(continued)

Figure 7-1. continued

ctrl code - proc near

cmp al, er
je ctrl 8

cmp al, lf

je ctrl8

cmp al ,bsp
je ctrlB

cmp al ,26
jne ctrl7

mov bh,dattr
call els

jmp ctrl 9

ctrl7:
cmp al.escape
jne ctrl9

call esc_seq
jmp ctrl9

ctrl8: call pc_out

ctrl 9: ret

ctrl - code endp

esc_s eq proc near

call com_ in
cmp al ,84
jne esc_seql

mov bh,dattr
call cl reol
jmp esc_seq2

process control code
call with AL - char

if carriage return
just send it

if linefeed
just send it

if backspace
just send it

is it els control code?
no, jump

els control code , clear
screen and home cursor

is it Escape character?
no, throw it away

yes, emulate CRT terminal

send CR, LF, or backspace
to the display

return to caller

decode Televideo 950 escape
sequence for screen control

get next character
is it clear to end of line?
no, jump

yes, clear to end of line

then exit

(continued)

Printer and Serial Port 121

Figure7-1. continued

esc_seql:
cmp al . 61
jne esc_seq2

call com in -

sub al, 33
mov dh,al

call com_in
sub al ,33
mov dl ,al
call gotoxy

esc_seq2:
ret

esc_seq endp

asc_enb proc near

is it cursor positioning?
no jump

yes, get Y parameter
and remove offset

get X parameter
and remove offset

position the cursor

return to caller

capture serial-port interrupt
vector and enable interrupt

save address of previous
interrupt handler . . .

mov ax , 3500h+com_int ; function 35h - get vector

122

int 21h ; transfer to MS·DOS
mov word ptr oldvec+2,es
mov word ptr oldvec,bx

push
mov
mov
mov
mov
int
pop

mov
mov

ds
ax.cs
ds,ax
dx,offset asc_int
ax,2500h+com_int ;
21h
ds

dx,com_mcr
al ,Obh

out dx,al

mov
mov
out

dx,com_ier
al , 1
dx,al

Programming for MS-DOS

now i nsta 11 our handler ...
save our data segment
set DS:DX - address
of our interrupt handler

function 25h - set vector
transfer to MS-DOS
restore data segment

set modem-control register
DTR and OUT2 bits

set interrupt-enable
register on serial­
port cont roll er

(continued)

Figure 7-1. continued

in
and
out

ret

asc enb endp

asc_dsb proc

in
or
out

push
lds

mov
int
pop

ret

asc_dsb endp

asc int proc

sti

push
push
push
push

mov
mov

cl i

mov
in

a 1, pi c_mask
al ,not i nt_mask
pic_mask,al

near

al ,pic_mask
al, i nt_mask
pic_mask,al

ds
dx,oldvec

ax,25OOh+com_int
21h
ds

far

ax
bx
dx
ds

ax, _ OATA
ds,ax

dx,com_data
a 1. dx

;

read current 8259 mask
set mask for COM port
write new 8259 mask

back to caller

disable interrupt and
release interrupt vector

read current 8259 mask
reset mask for COM port
write new 8259 mask

save our data segment
load address of
previous interrupt handler
function 25 h - set vector

transfer to MS-OOS
restore data segment

back to caller

interrupt service routine
for seri a 1 port

turn interrupts back on

save registers

make our data segment
addressable

clear inte rrupts for
pointer manipulation

OX - data port address
read this character

(continued)

Printer and Serial Port 123

Figure 7-1. continued

mov bx,asc_in
mov [asc_buf+bx],al
inc bx
cmp bx,bufsiz
jne asc intl
xor bx.bx

asc_intl:
mov asc_in,bx

sti

mov al, 20h
out pic_eoi ,al

pop ds
pop dx
pop bx
pop ax

i ret

asc_int endp

_TEXT ends

DATA segment word public 'DATA'

in_char db 0
in_flag db 0

columns db 0

msgl db cr, lf

get buffer pointer
store this character
bump pointer
time for wrap?
no, jump
yes, reset pointer

store updated pointer

turn interrupts back on

send EO I to 8259

restore all registers

return from interrupt

PC keyboard input char
<>O if char waiting

highest numbered column in
current display mode (39 or 79)

db 'Display must be text mode.•
db er, lf

msgl_len equ $-msgl

msg2 db
db

'Terminal emulator running ... •
er, lf

msg2_len equ $-msg2

msg3 db 'Exit from terminal emulator.'
db er, lf

msg3_len equ $-msg3

124 Programming/or MS-DOS

(continued)

Figure 7-1. continued

oldvec dd

asc_in dw
asc_out dw

asc_buf db

DATA ends

0

0

0

bufsiz dup (?)

orig i nal contents of serial­
port interrupt vector

inp ut pointer to ring buffer
output pointer t o ring buffer

communications buffer

STACK segment para stack 'STACK'

db 128 dup (?)

STACK ends

end talk ; defines entry po i nt

The TALK program illustrates the methods that an application should use
to take over and service interrupts from the serial port without running
afoul of MS-DOS conventions.

The program begins with some equates and conditional assembly state­
ments that configure the program for half- or full-duplex and for the
desired serial port (COMl or COM2). At entry from MS-DOS, the main rou­
tine of the program- the procedure named talk-checks the status of
the serial port, initializes the display, and calls the asc_ enb routine to take
over the serial-port interrupt vector and enable interrupts. The talk pro­
cedure then enters a loop that reads the keyboard and sends the charac­
ters out the serial port and then reads the serial port and puts the
characters on the display-in other words, it causes the PC to emulate a
simple CRT terminal.

The TALK program intercepts and handles control codes (carriage return,
linefeed, and so forth) appropriately. It detects escape sequences and
handles them as a subset of the Televideo 950 terminal capabilities. (You
can easily modify the program to emulate any other cursor-addressable
terminal.) When one of the PC's special function keys is pressed, the
program disables serial-port interrupts, releases the serial-port interrupt
vector, and exits back to MS-DOS.

There are several TALK program procedures that are worth your attention
because they can easily be incorporated into other programs. These are
listed in the table on the following page.

Printer and Serial Port 125

Procedure

asc_enb

asc_dsb

asc_int

com_stat

com_in

com_out
els
clreol

home
gotoxy
getxy
pc_out
pc_stat
pc_in

Action

Takes over the serial-port interrupt vector and enables interrupts
by writing to the modem-control register of the INS8250 and
the interrupt-mask register of the 8259A.

Restores the original state of the serial-port interrupt vector and
disables interrupts by writing to the interrupt-mask register of
the8259A.

Services serial-port interrupts, placing received characters into a
ring buffer.

Tests whether characters from the serial port are waiting in the
ring buffer.

Removes characters from the interrupt handler's ring buffer and
increments the buffer pointers appropriately.

Sends one character to the serial port.
Calls the ROM BIOS video driver to clear the screen.
Calls the ROM BIOS video driver to clear from the current cursor

position to the end of the line.
Places the cursor in the upper left corner of the screen.
Positions the cursor at the desired position on the display.
Obtains the current cursor position.
Sends one character to the PC's display.
Gets status for the PC's keyboard.
Returns a character from the PC's keyboard.

126 Programming/or MS-DOS

Chapters

File Management

The dual heritage of MS-DOS-CP/M and UNIX/XENIX-is perhaps
most clearly demonstrated in its file-management services. In general,
MS-DOS provides at least two distinct operating-system calls for each ma­
jor file or record operation. This chapter breaks this overlapping battery
of functions into two groups and explains the usage, advantages, and
disadvantages of each.

I will ref er to the set of file and record functions that are compatible with
CP/M as FCBfunctions. These functions rely on a data structure called a
file control block (hence, FCB) to maintain certain bookkeeping informa­
tion about open files. This structure resides in the application program's
memory space. The FCB functions allow the programmer to create, open,
close, and delete files and to read or write records of any size at any record
position within such files. These functions do not support the hierarchical
(treelike) file structure that was first introduced in MS-DOS version 2.0, so
they can be used only to access files in the current subdirectory for a given
disk drive.

I will ref er to the set of file and record functions that provide compatibility
with UNIX/XENIX as the handle Junctions. These functions allow the
programmer to open or create files by passing MS-DOS a null-terminated
string that describes the file's location in the hierarchical file structure (the
drive and path), the file's name, and its extension. If the open or create
operation is successful, MS-DOS returns a 16-bit token, or handle, that is
saved by the application program and used to specify the file in subse­
quent operations.

When you use the handle functions, the operating system maintains the
data structures that contain bookkeeping information about the file inside
its own memory space, and these structures are not accessible to the ap­
plication program. The handle functions fully support the hierarchical file
structure, allowing the programmer to create, open, close, and delete files
in any subdirectory on any disk drive and to read or write records of any
size at any byte offset within such files.

Although we are discussing the FCB functions first in this chapter for
historical reasons, new MS-DOS applications should always be written
using the more powerful handle functions. Use of the FCB functions in
new programs should be avoided, unless compatibility with MS-DOS
version 1.0 is needed.

128 Programming/or MS-DOS

Using the FCB Functions
Understanding the structure of the file control block is the key to success
with the FCB family of file and record functions. An FCB is a 37-byte data
structure allocated within the application program's memory space; it is
divided into many fields (Figure 8-1). Typically, the program initializes an
FCB with a drive code, a filename, and an extension (conveniently accom­
plished with the parse-filename service, Int 21H Function 29H) and then
passes the address of the FCB to MS-DOS to open or create the file. If the
file is successfully opened or created, MS-DOS fills in certain fields of the
FCB with information from the fi le's entry in the disk directory. This infor­
mation includes the file's exact size in bytes and the date and time the file
was created or last updated. MS-DOS also places certain other information
within a reserved area of the FCB; however, this area is used by the
operating system for its own purposes and varies among different versions
of MS-DOS. Application programs should never modify the reserved area.

For compatibility with CP/ M, MS-DOS automatically sets the record-size
field of the FCB to 128 bytes. If the program does not want to use this
default record size, it must place the desired size (in bytes) into the record­
size field after the open or create operation. Subsequently, when the pro­
gram needs to read or write records from the file, it must pass the address
of the FCB to MS-DOS; MS-DOS, in turn, keeps the FCB updated with in­
formation about the current position of the file pointer and the size of the

Byte offset
OOH
OlH

09H

OCH
OEH
lOH

14H
16H
18H

20H
21H

(.
I
I:
L
l
ts I

I· ;,
t
j

i,
f .

[
[

~
;

Drive identification

Filename (8 characters)

Extension (3 characters)

Current-block number
Record size

File size (4 bytes)

Date created/ updated
Time created/ updated

Reserved

Current-record number

Relative-record number (4 bytes)
=i:-.-3:~~~~~:f -$! > M -- -;.; w-:r'··· ="'

Note 1

Note 2

Note 2

Note9
Note 10

Notes 3, 6

Note7
Note8

Note9

Note 5

Figure 8-1. Normal file control block. Total length is 37 bytes (25H bytes). See notes
on pages 133-34

File Management 129

file. Data is always read to or written from the current disk transfer area
(DTA), whose address is set with Int 21H Function lAH. If the application
program wants to perform random record access, it must set the record
number into the FCB before issuing each function call; when sequential
record access is being used, MS-DOS maintains the FCB and no special in­
tervention is needed from the application.

In general, MS-DOS functions that use FCBs accept the full address of the
FCB in the DS:DX register and pass back a return code in the AL register
(Figure 8-2). For file-management calls (open, close, create, and delete),
this return code is zero if the function was successful and 0FFH (255) if
the function failed. For the FCB-type record read and write functions, the
success code returned in the AL register is again zero, but there are sev­
eral failure codes. Under MS-DOS version 3.0 or later, more detailed error
reporting can be obtained by calling Int 21H Function 59H (Get Extended
Error Information) after a failed FCB function call.

When a program is loaded under MS-DOS, the operating system sets up
two FCBs in the program segment prefix, at offsets 005CH and 0o6CH.
These are often referred to as the default FCBs, and they are included to
provide upward compatibility from CP/M. MS-DOS parses the first two
parameters in the command line that invokes the program (excluding any
redirection directives) into the default FCBs, under the assumption that
they may be file specifications. The application must determine whether
they really are filenames or not. In addition, because the default FCBs
overlap and are not in a particularly convenient location (especially for
.EXE programs), they usually must be copied elsewhere in order to be
used safely. (See Chapter 3.)

Figure 8-2. A typical FCB file operation. This sequence of code attempts to open the
file whose name was previously parsed into the FCB named my _fcb.

130 Programming/or MS-DOS

Note that the structures of FCBs under CP/M and MS-DOS are not identi­
cal. However, the differences lie chiefly in the reserved areas of the FCBs
(which should not be manipulated by application programs in any case),
so well-behaved CP/M applications should be relatively easy to port into
MS-DOS. It seems, however, that few such applications exist. Many of the
tricks that were played by clever CP/M programmers to increase perfor­
mance or circumvent the limitations of that operating system can cause
severe problems under MS-DOS, particularly in networking environ­
ments. At any rate, much better performance can be achieved by thor­
oughly rewriting the CP /M applications to take advantage of the superior
capabilities of MS-DOS.

You can use a special FCB variant called an extended file control block to
create or access files with special attributes (such as hidden or read-only
files), volume labels, and subdirectories. An extended FCB has a 7-byte
header followed by the 37-byte structure of a normal FCB (Figure 8-3).
The first byte contains 0FFH, which could never be a legal drive code and
thus indicates to MS-DOS that an extended FCB is being used. The next 5
bytes are reserved and are unused in current versions of MS-DOS. The

Byte offset
OOH
OlH

06H
07H
08H

lOH

13H
15H
17H

lBH
lDH
lFH

27H
28H

OFFH

Reserved (5 bytes, must be zero)

Attribute byte

Drive identification

Filename (8 characters)

Extension (3 characters)

Current-block number
Record size

File size (4 bytes)

Date created/updated
Time created/updated

Reserved

Current-record number

Relative-record number (4 bytes)

Note 11

Note 12

Note 1

Note 2

Note2

Note9
Note 10

Notes 3, 6
Note7
Note8

Note9

Note 5

Figure 8-3. Extended file control block. Total length is 44 bytes (2CH bytes). See notes
on pages 133 -34.

File Management 131

seventh byte contains the attribute of the special file type that is being ac­
cessed. (Attribute bytes are discussed in more detail in Chapter 9.) Any
MS-DOS function that uses a normal PCB can also use an extended PCB.

The PCB file- and record-management functions may be gathered into the
following broad classifications:

Function Action

Common FCB file operations
OFH Open file.
lOH Close file.
16H Create file.
Common FCB record operations
14H Perform sequential read.
15H Perform sequential write.
21H Perform random read.
22H
27H
28H

Perform random write.
Perform random block read.
Perform random block write.

Other vital FCB operations
lAH Set disk transfer address.
29H Parse filename.

Less commonly used FCB file operations
13H Delete file.
17H Rename file.

Less commonly used FCB record operations
23H Obtain file size.
24H Set relative-record number.

Several of these functions have special properties. For example, Int 21H
Functions 27H (Random Block Read) and 28H (Random Block Write)
allow reading and writing of multiple records of any size and also update
the random-record field automatically (unlike Int 21H Functions 21H and
22H). Int 21H Function 28H can truncate a file to any desired size, and Int
21H Function 17H used with an extended PCB can alter a volume label or
rename a subdirectory.

Section II of this book, "MS-DOS Functions Reference," gives detailed
specifications for each of the PCB file and record functions, along with
assembly-language examples. It is also instructive to compare the preced­
ing groups with the corresponding groups of handle-type functions listed
on pages 140-41.

132 Programming/or MS-DOS

Notes for Figures 8-1 and 8-3

1. The drive identification is a binary number: 00=default drive, 01 =drive
A:, 02=drive B:, and so on. If the application program supplies the drive
code as zero (default drive), MS-DOS fills in the code for the actual cur­
rent disk drive after a successful open or create call.

2. File and extension names must be left justified and padded with blanks.

3. The file size, date, time, and reserved fields should not be modified by
applications.

4. All word fields are stored with the least significant byte at the lower
address.

5. The relative-record field is treated as 4 bytes if the record size is less than
64 bytes; otherwise, only the first 3 bytes of this field are used.

6. The file-size field is in the same format as in the directory, with the less
significant word at the lower address.

7. The date field is mapped as in the directory. Viewed as a 16-bit word
(as it would appear in a register), the field is broken down as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 0

Bits

00H-04H
05H-08H
09H-0FH

Year

Contents

Day Cl-31)
Month Cl-12)

Month

Year, relative to 1980

Day

8. The time field is mapped as in the directory. Viewed as a 16-bit word
(as it would appear in a register), the field is broken down as follows:

FE n'c BA 9 8 7 6 5 4 3 2 1 0

Bits

00H-04H
0SH-0AH
0BH-0FH

Hours Minutes
M.

Contents

2-second increments (0-29)
Minutes (0-59)
Hours (0-23)

2-second
increments

(continued)

File Management 133

Notes for Figures 8-1 and 8-3. continued

9. The current-block and current-record numbers are used together on
sequential reads and writes. This simulates the behavior of CP/M.

10. The Int 21H open (OFH) and create (16H) functions set the record-size
field to 128 bytes, to provide compatibility with CP /M. If you use anoth­
er record size, you must fill it in after the open or create operation.

11. An OFFH (255) in the first byte of the structure signifies that it is an ex­
tended file control block. You can use extended FCBs with any of the
functions that accept an ordinary FCB. (See also note 12.)

12. The attribute byte in an extended FCB allows access to files with the
special characteristics hidden, system, or read-only. You can also use
extended FCBs to read volume labels and the contents of special sub­
directory files.

FCB File-Access Skeleton
The following is a typical program sequence to access a file using the FCB,
or traditional, functions (Figure 8-4):

l. Zero out the prospective FCB.

2. Obtain the filename from the user, from the default FCBs, or from the
command tail in the PSP.

3. If the filename was not obtained from one of the default FCBs, parse
the filename into the new FCB using Int 21H Function 29H.

4. Open the file (Int 21H Function 0FH) or, if writing new data only,
create the file or truncate any existing file of the same name to zero
length (Int 21H Function 16H).

5. Set the record-size field in the FCB, unless you are using the default
record size. Recall that it is important to do this after a successful open
or creat~bperation. (See Figure 8-5.)

6. Set the relative-record field in the FCB if you are performing random
record I/ O.

7. Set the disk transfer area address using Int 21H Function lAH, unless
the buffer address has not been changed since the last call to this func­
tion. If the application never performs a set OTA, the OTA address
defaults to offset 0080H in the PSP.

8. Request the needed read- or write-record operation (Int 21H Function
14H- Sequential Read, 15H-Sequential Write, 21H-Random Read, 22H­
Random Write, 27H-Random Block Read, 28H- Random Block Write).

(continued)

134 Programming/or MS-DOS

recsize equ 1024 file record size

mov ah,29h parse input filename
mov al. 1 skip leading blanks
mov si ,offset fnamel address of filename
mov di ,offset fcbl address of FCB

int 21h
or al , a 1 jump if name
jnz name_err was bad

mov ah,29h parse output filename
mov a 1 , 1 skip leading blanks
mov si ,offset fname2 address of filename
mov di ,offset fcb2 address of FCB

int 21h
or a 1 , al jump if name
jnz name_err was bad

mov ah,Ofh open input file
mov dx,offset fcbl
int 21h
or a 1 , al open successful?
jnz no_file no, jump

mov ah,16h create and open
mov dx,offset fcb2 output file
int 21h
or a 1 • al create successful?
jnz disk_full no, jump

; set record sizes
mov word ptr fcbl+Oeh,recsize
mov word ptr fcb2+0eh,recsize

(continued)

Figure 8-4. Skeleton of an assembly-language program that performs file and record
J/O using the FCB family of functions.

File Management 135

Figure 8-4.

next:

fil e_end:

continued

mov ah,lah
mov dx,offset buffer
i nt 21h

mov ah,14h
mov dx , offset fcbl
int 21h
cmp a 1 . 01
je file_end
cmp al. 03
je file_end
or a 1 • a 1
jnz bad read

mov ah,15h
mov dx,offset fcb2
int 21h
or a 1 • a 1

jnz bad_write

j mp next

mov ah,l0h
mov dx,offset fcbl
int 21h

mov ah,l0h
mov dx, offset fcb2
int 21h

mov
int

ax, 4c00h
21h

136 Programming/ or MS-DOS

set disk transfer
address for reads
and writes

process next record

sequential read from
input file

check for end of file
jump if end of file

jump if end of file
other read fault?
jump if bad read

sequential write to
output file

write successful?
jump if write failed

process next record

reached end of input

close input file

close output file

exit with return
code of zero

(continued)

Figure 8-4. continued

fnamel db 'OLDFILE.DAT" ,0
fname2 db 'NEWFILE.DAT' ,0
fcbl db 37 dup (OJ
fcb2 db 37 dup (OJ
buffer db recsize dup (?)

Byte offset FCB before open

OOH
OlH
02H
03H
04H
05H
06H
07H
08H

09H
OAH
OBH
OCH
OOH
OEH
OFH
lOH
llH
12H
13H
14H
15H
16H
17H
18H
19H
lAH
lBH
lCH
lDH
lEH
lFH

20H
21H
22H
23H
24H

00
4D
59
46
49
4C
45
20
20

44
41
54
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

name of input file
name of output file
FCB for input file
FCB for output file
buffer for file 1/0

FCB contents FCB after open

Drive 03
4D
59
46

Filename 49
4C
45
20
20

44
Extension 41

54

Current block 00
00

Record size 80
00
80

File size 3D
00
00

File date 43
OB

File time
Al
52
03
02
42

Reserved 73
00
01
35
OF

Current record 00
00

Relative-record number 00
00
00

Figure 8-5. A typical file control block before and after a successful open call
(Int 21H Function OFH).

File Management 137

9. If the program is not finished processing the file, go to step 6; other­
wise, close the file (Int 21H Function lOH). If the file was used for
reading only, you can skip the close operation under early versions of
MS-DOS. However, this shortcut can cause problems under MS-DOS
versions 3.0 and later, especially when the files are being accessed
across a network.

Points to Remember
Here is a summary of the pros and cons of using the FCB-related file and
record functions in your programs.

Advantages:

■ Under MS-DOS versions 1 and 2, the number of files that can be open
concurrently when using FCBs is unlimited. (This is not true under MS­
DOS versions 3.0 and later, especially if networking software is
running.)

■ File-access methods using FCBs are familiar to programmers with a
CP/ M background, and well-behaved CP/M applications require little
change in logical flow to run under MS-DOS.

■ MS-DOS supplies the size, time, and date for a file to its FCB after the
file is opened. The calling program can inspect this information.

Disadvantages:

■ FCBs take up room in the application program's memory space.

■ FCBs offer no support for the hierarchical file structure (no access to
files outside the current directory).

■ FCBs provide no support for file locking/ sharing or record locking in
networking environments.

■ In addition to the read or write call itself, file reads or writes using
FCBs require manipulation of the FCB to set record size and r~cord
number, plus a previous call to a separate MS-DOS function to set the
DTA address.

■ Random record I/0 using FCBs for a file containing variable-length
records is very clumsy and inconvenient.

■ You must use extended FCBs, which are incompatible with CP/ M any­
way, to access or create files with special attributes such as hidden,
read-only, or system.

138 Programming/or MS-DOS

■ The FCB file functions have poor error reporting. This situation has
been improved somewhat in MS-DOS version 3 because a program can
call the added Int 21H Function 59H (Get Extended Error Information)
after a failed FCB function to obtain additional information.

■ Microsoft discourages use of FCBs. FCBs will make your program more
difficult to port to MS OS/2 later because MS OS/2 does not support
FCBs in protected mode at all.

Using the Handle Functions
The handle file- and record-management functions access files in a
fashion similar to that used under the UNIX/XENIX operating system.
Files are designated by an ASCIIZ string (an ASCII character string termi­
nated by a null, or zero, byte) that can contain a drive designator, path,
filename, and extension. For example, the file specification

C:\SYSTEM\COMMAND.COM

would appear in memory as the following sequence of bytes:

43 3A 5C 53 59 53 54 45 40 5C 43 4F 40 40 41 4E 44 2E 43 4F 40 00

When a program wishes to open or create a file, it passes the address of
the ASCIIZ string specifying the file to MS-DOS in the DS:DX registers
(Figure 8-6). If the operation is successful, MS-DOS returns a 16-bit handle
to the program in the AX register. The program must save this handle for
further reference.

filename
handle

mov
mov
mov
mov
mov
int
jc
mov

db

dw

ah.3dh function 3dh - open
al. 2 mode 2 - read/write
dx.seg filename address of ASCIIZ
ds.dx file specification
dx.offset filename
21h request open from DOS
error jump if open failed
handle.ax save file handle

"C:\MYDIR\MYFILE.OAT' .O filename
0 file handle

Figure 8-6. A typical handle file operation. This sequence of code attempts to open
the file designated in the ASCIIZ string whose address is passed to MS-DOS in the
DS.DX registers.

File Management 139

When the program requests subsequent operations on the file, it usually
places the handle in the BX register before the call to MS-DOS. All the
handle functions return with the CPU's carry flag cleared if the operation
was successful, or set if the operation failed; in the latter case, the AX
register contains a code describing the failure.

MS-DOS restricts the number of handles that can be active at any one
time-that is, the number of files and devices that can be open concur­
rently when using the handle family of functions-in two different ways:

■ The maximum number of concurrently open files in the system, for all
active processes combined, is specified by the entry

FILES=nn

in the CONFIG.SYS file. This entry determines the number of entries
to be allocated in the system file table; under MS-DOS version 3, the
default value is 8 and the maximum is 255. After MS-DOS is booted
and running, you cannot expand this table to increase the total number
of files that can be open. You must use an editor to modify the CON­
FIG.SYS file and then restart the system.

■ The maximum number of concurrently open files for a single process
is 20, assuming that sufficient entries are also available in the system
file table. When a program is loaded, MS-DOS preassigns 5 of its po­
tential 20 handles to the standard devices. Each time the process issues
an open or create call, MS-DOS assigns a handle from the process's pri­
vate allocation of 20, until all the handles are used up or the system file
table is full. In MS-DOS versions 3.3 and later, you can expand the per­
process limit of 20 handles with a cal\ to Int 21H Function 67H (Set
Handle Count).

The handle file- and record-management calls may be gathered into the
following broad classifications for study:

Function Action

Common handle file operations
3CH Create file (requires ASCIIZ string).
3DH Open file (requires ASCIIZ string).
3EH Close file.

Common handle record operations
42H Set file pointer (also used to find file size).
3FH Read file.
40H Write file.

(continued)

140 Programming/or MS-DOS

continued

Function Action

Less commonly used handle operations
41H Delete fi le.
43H Get or modify file attributes.
44H IOCTL (I/ 0 Control).
45H Duplicate handle.
46H Redirect handle.
56H Rename file.

Get or set file date and time.
Create temporary file (versions 3.0 and later).

57H
SAH
SBH
SCH
67H
68H
6CH

Create file (fails if file already exists; versions 3.0 and later).
Lock or unlock file region (versions 3.0 and later).
Set handle count (versions 3.3 and later).
Commit file (versions 3.3 and later).
Extended open file (version 4).

Compare the groups of handle-type functions in the preceding table with
the groups of FCB functions outlined earlier, noting the degree of func­
tional overlap. Section II of this book, "MS-DOS Functions Reference,"
gives detailed specifications for each of the handle functions, along with
assembly-language examples.

Handle File-Access Skeleton
The following is a typical program sequence to access a file using the
handle family of functions (Figure 8-7):

1. Get the filename from the user by means of the buffered input service
(Int 21H Function 0AH) or from the command tail supplied by MS­
DOS in the PSP.

2. Put a zero at the end of the file specification in order to create an
ASCIIZ string.

3. Open the file using Int 21H Function 3DH and mode 2 (read/write
access), or create the file using Int 21H Function 3CH. (Be sure to set
the CX register to zero, so that you don't accidentally make a file with
special attributes.) Save the handle that is returned.

4. Set the file pointer using Int 21H Function 42H. You may set the file­
pointer position relative to one of three different locations: the start of
the file , the current pointer position, or the end of the file. If you are
performing sequential record I/O, you can usually skip this step
because MS-DOS will maintain the file pointer for you automatically.

File Management 141

5. Read from the file Ont 21H Function 3FH) or write to the file (Int 21H
Function 40H). Both of these functions require that the BX register
contain the file's handle, the CX register contain the length of the
record, and the DS:DX registers point to the data being transferred.
Both return the actual number of bytes transferred in the AX register.

In a read operation, if the number of bytes read is less than the number
requested, the end of the file has been reached. In a write operation, if
the number of bytes written is less than the number requested, the disk
containing the file is full. Neither of these conditions is returned as an
error code; that is, the carry flag is not set.

6. If the program is not finished processing the file, go to step 4; other­
wise, close the file (Int 21H Function 3EH). Any normal exit from the
program will also close all active handles.

recsize equ 1024 file record size

next:

mov ah,3dh
mov al ,0
mov dx,offset
int 21h
jc no_file
mov handlel,ax

mov ah,3ch
mov cx,0
mov dx,offset
int 21h
jc disk_full
mov handle2,ax

fnamel

fname2

open input file
mode - read only
name of input file

jump if no file
save token for file

create output file
attribute - normal
name of output file

jump if create fails
save token for file

process next record

(continued)

Figure 8-7. Skeleton of an assembly-language program that performs sequential
processing on an input file and writes the results to an output file using the handle file
and record functions. This code assumes that the DS and ES registers have already
been set to point to the segment containing the buffers and filenames.

142 Programming/or MS-DOS

Figure 8-7.

file_end:

fnamel
fname2
handlel
handle2
buffer

continued

mov ah,3fh
mov bx,handlel
mov cx,recsize
mov dx,offset buffer
int 21h
jc bad_read
or ax.ax
jz file_end

mov ah,40h
mov bx,handle2
mov cx,recsize
mov dx,offset buffer
int 21h
jc bad_write
cmp ax,recsize
jne disk full

jmp next

mov ah ,3eh
mov bx, handlel
int 21h

mov ah,3eh
mov bx,handle2
int 21h

mov
int

db
db
dw
dw
db

ax.4c00h
21h

'OLOFI LE .DAT' ,0
'NEWFILE . DAT' ,0
0
0
recsize dup (?)

sequential read from
input file

jump if read error
check bytes transferred
jump if end of file

sequential write to
output file

jump if write error
whole record written?
jump if disk is full

process next record

reached end of input

close input file

close output file

exit with return
code of zero

name of input file
name of output file
token for input file
token for output file
buffer for file I/0

File Management 143

Points to Remember
Here is a summary of the pros and cons of using the handle file and record
operations in your program. Compare this list with the one given earlier
in the chapter for the FCB family of functions.

Advantages:

■ The handle calls provide direct support for I/0 redirection and pipes
with the standard input and output devices in a manner functionally
similar to that used by UNIX/XENIX.

■ The handle functions provide direct support for directories (the
hierarchical file structure) and special file attributes.

■ The handle calls support file sharing/locking and record locking in
networking environments.

■ Using the handle functions, the programmer can open channels to
character devices and treat them as files .

■ The handle calls make the use of random record access extremely
easy. The current file pointer can be moved to any byte offset relative
to the start of the file, the end of the file, or the current pointer posi­
tion. Records of any length, up to an entire segment (65,535 bytes), can
be read to any memory address in one operation.

■ The handle functions have relatively good error reporting in MS-DOS
version 2, and error reporting has been enhanced even further in MS­
DOS versions 3.0 and later.

■ Microsoft strongly encourages use of the handle family of functions in
order to provide upward compatibility with MS OS/ 2.

Disadvantages:

■ There is a limit per program of 20 concurrently open files and devices
using handles in MS-DOS versions 2.0 through 3.2.

■ Minor gaps still exist in the implementation of the handle functions.
For example, you must still use extended FCBs to change volume
labels and to access the contents of the special files that implement
directories.

144 Programming for MS-DOS

MS-DOS Error Codes
When one of the handle file functions fails with the carry flag set, or when
a program calls Int 21H Function 59H (Get Extended Error Information)
following a failed FCB function or other system service, one of the fol­
lowing error codes may be returned:

Value Meaning

MS-DOS version 2 error codes
0lH Function number invalid
02H File not found
03H Path not found
04H Too many open files
05H Access denied
06H Handle invalid
07H
08H
09H
0AH (10)
0BH(ll)
0CH(12)
0DH(13)
0EH(14)
0FH (15)
lOH (16)
llH 07)
12H(18)

Memory control blocks destroyed
Insufficient memory
Memory block address invalid
Environment invalid
Format invalid
Access code invalid
Data invalid
Unknown unit
Disk drive invalid
Attempted to remove current directory
Not same device
No more files

Mappings to critical-error codes
13H (19) Write-protected disk
14H (20) Unknown unit
15H (21) Drive not ready
16H (22) Unknown command
17H (23) Data error (CRC)
18H (24) Bad request -structure length
19H (25) Seek error
lAH (26) Unknown media type
lBH (27) Sector not found
lCH (28) Printer out of paper
lDH (29) Write fault
lEH (30) Read fault
lFH (31) General failure

MS-DOS version 3 and later extended error codes
20H (32) Sharing violation
21H (33) File-lock violation
22H (34) Disk change invalid

(continued)

File Management 145

continued

Value Meaning

MS-DOS version 3 and later extended error codes, continued
23H (35) FCB unavailable
24H (36) Sharing buffer exceeded
25H-31H (37-49) Reserved
32H (50) Unsupported network request
33H (51) Remote machine not listening
34H (52) Duplicate name on network
35H (53) Network name not found
36H (54) Network busy
37H (55) Device no longer exists on network
38H (56) NetBIOS command limit exceeded
39H (57) Error in network adapter hardware
3AH (58) Incorrect response from network
3BH (59) Unexpected network error
3CH (60) Remote adapter incompatible
3DH (61) Print queue full
3EH (62) Not enough room for print file
3FH (63) Print file was deleted
40H (64) Network name deleted
41H (65) Network access denied
42H (66) Incorrect network device type
43H (67) Network name not found
44H (68) Network name limit exceeded
45H (69) NetBIOS session limit exceeded
46H (70) Temporary pause
47H (71) Network request not accepted
48H (72) Print or disk redirection paused
49H-4FH (73-79) Reserved
50H (80) File already exists
51H (81) Reserved
52H (82) Cannot make directory
53H (83) Fail on Int 24H (critical error)
54H (84) Too many redirections
55H (85) Duplicate redirection
56H (86) Invalid password
57H (87) Invalid parameter
58H (88) Net write fault

Under MS-DOS versions 3.0 and later, you can also use Int 21H Function
59H to obtain other information about the error, such as the error locus
and the recommended recovery action.

146 Programming/or MS-DOS

Critical-Error Handlers
In Chapter 5, we discussed how an application program can take over the
Ctrl-C handler vector (Int 23H) and replace the MS-DOS default handler, to
avoid losing control of the computer when the user enters a Ctrl-C or Ctrl­
Break at the keyboard. Similarly, MS-DOS provides a critical-error-handler
vector (Int 24H) that defines the routine to be called when unrecoverable
hardware faults occur. The default MS-DOS critical-error handler is the
routine that displays a message describing the error type and the cue

Abort, Retry, Ignore?

This message appears after such actions as the following:

■ Attempting to open a file on a disk drive that doesn't contain a floppy
disk or whose door isn't closed

11 Trying to read a disk sector that contains a CRC error

11 Trying to print when the printer is off line

The unpleasant thing about MS-DOS's default critical-error handler is, of
course, that if the user enters an A for Abort, the application that is cur­
rently executing is terminated abruptly and never has a chance to clean
up and make a graceful exit. Intermediate files may be left on the disk,
files that have been extended using FCBs are not properly closed so that
the directory is updated, interrupt vectors may be left pointing into the
transient program area, and so forth.

To write a truly bombproof MS-DOS application, you must take over the
critical-error-handler vector and point it to your own routine, so that your
program intercepts all catastrophic hardware errors and handles them ap­
propriately. You can use MS-DOS Int 21H Function 25H to alter the Int 24H
vector in a well-behaved manner. When your application exits, MS-DOS
will automatically restore the previous contents of the Int 24H vector from
information saved in the program segment prefix.

MS-DOS calls the critical-error handler for two general classes of errors­
disk-related and non-disk-related-and passes different information to
the handler in the registers for each of these classes.

For disk-related errors, MS-DOS sets the registers as shown on the follow­
ing page. (Bits 3-5 of the AH register are relevant only in MS-DOS
versions 3.1 and later.)

FileManagement 147

Register

AH

AL
DI

BP:SI

Bit(s)

7
6
5

4

3

1-2

0

0-7
0-7
8-15

Significance

0, to signify disk error
Reserved
0 = ignore response not allowed
1 = ignore response allowed
0 = retry response not allowed
1 = retry response allowed
0 = fail response not allowed
1 = fail response allowed
Area where disk error occurred

00 = MS-DOS area
01 = file allocation table
10 = root directory
11 = files area

0 = read operation
1 = write operation
Drive code (0 = A, 1 = B, and so forth)
Driver error code
Not used
Segment:offset of device-driver header

For non-disk-related errors, the interrupt was generated either as the
result of a character-device error or because a corrupted memory image
of the file allocation table was detected. In this case, MS-DOS sets the
registers as follows:

Register

AH
DI

BP:SI

Bit(s)

7
0-7
8-15

Significance

1, to signify a non-disk error
Driver error code
Not used
Segment:offset of device-driver header

To determine whether the critical error was caused by a character device,
use the address in the BP:SI registers to examine the device attribute word
at offset 0004H in the presumed device-driver header. If bit 15 is set, then
the error was indeed caused by a character device, and the program can
inspect the name field of the driver's header to determine the device.

At entry to a critical-error handler, MS-DOS has already disabled interrupts
and set up the stack as shown in Figure 8-8. A critical-error handler cannot
use any MS-DOS services except Int 21H Functions OlH through OCH (Tra­
ditional Character 1/0), Int 21H Function 30H (Get MS-DOS Version), and
Int 21H Function 59H (Get Extended Error Information). These functions
use a special stack so that the context of the original function (which gen­
erated the critical error) will not be lost.

148 Programming/or MS-DOS

Flags

cs

IP

ES

DS

BP

DI

SI

DX

ex
BX

AX

Flags

cs

IP

1
-

-

}

Flags and CS:IP pushed
on stack by original
Int 21H call

SS:SP on entry to
Int 21H handler

Registers at point of
original Int 21H call

Return address for
Int 24H handler

SS:SP on entry to
Int 24H handler

Figure 8-8. The stack at entry to a critical-error handler.

The critical-error handler should return to MS-DOS by executing dn IRET,
passing one of the following action codes in the AL register:

Code

0

1
2

3

Meaning

Ignore the error (MS-DOS acts as though the original function call had
succeeded).

Retry the operation.
Terminate the process that encountered the error.
Fail the function (an error code is returned to the requesting process).

Versions 3.1 and later only.

The critical-error handler should preserve all other registers and must not
modify the device-driver header pointed to by BP:SI. A skeleton example
of a critical-error handler is shown in Figure 8-9.

File Management 149

prompt db
db

; prompt message used by
; critical-error handler

cr, lf, 'Critical Error Occurred:
'Abort, Retry, Ignore, Fail?$'

keys db ' aArRiifF' possible user response keys
(both cases of each allowed) keys_len equ $-keys

codes db 2,2,1,1,0,0,3,3 codes returned to MS-DOS kernel
for corres ponding response keys

This code is executed during program's initialization
to install the new critical-error handler.

push ds save our data segment

mov dx,seg int24 DS:DX - handler address
mov ds,dx
mov dx,offset int24
mov ax,2524h function 25h - set vector
int 21h transfer to MS-DOS

pop ds restore data segment

This is the replacement critical-error handler. It
prompts the user for Abort, Retry, Ignore, or Fail, and
returns the appropriate code to the MS-DOS kernel.

int24 proc far entered from MS-DOS kernel

push bx save registers
push ex
push dx
push si
push di
push bp
push ds
push es

Figure 8-9.A skeleton example of a replacement critical-error handler.

150 Programming/or MS-DOS

(continued)

Figure 8-9. continued

int24a: mov ax, seg prompt display prompt for user

int24

mov ds,ax
mov es.ax
mov dx,offset prompt
mov ah,9
int 21h

mov ah,1
int 21h

mov di ,offset keys
mov cx,keys_len
cld
repne scasb
jnz int24a

using function 9 (print string
terminated by$ character)

get user's response
function 1 - read one character

look up code for response key

prompt again if bad response

set AL - action code for MS-DOS
according to key that was entered:
O - ignore, 1 - retry, 2 - abort,
3 - fail

mov al, [di+keys_len -1]

pop es ; restore registers
pop ds
pop bp
pop di
pop si
pop dx
pop ex
pop bx
iret exit critical-error handler

endp

Example Programs: DUMP.ASM andDUMP.C
The programs DUMPASM (Figure 8-10) and DUMPC (Figure 8-11) are
parallel examples of the use of the handle file and record functions. The
assembly-language version, in particular, illustrates features of a well­
behaved MS-DOS utility:

■ The program checks the version of MS-DOS to ensure that all the func­
tions it is going to use are really available.

File Management 151

er
lf

tab

■ The program parses the drive, path, and filename from the command
tail in the program segment prefix.

■ The program uses buffered I/O for speed.

■ The program sends error messages to the standard error device.

■ The program sends normal program output to the standard output
device, so that the dump output appears by default on the system con­
sole but can be redirected to other character devices (such as the line
printer) or to a file.

The same features are incorporated into the C version of the program, but
some of them are taken care of behind the scenes by the C runtime
library.

name dump
page 55,132
title DUMP--di sp lay file contents

DUMP--Display contents of file in hex and ASCII

Build: C>MASM DUMP;
C>LINK DUMP;

Usage: C>DUMP unit:\path\filename.exe [>device]

Copyright (C) 1988 Ray Duncan

equ Odh ASCII carriage return
equ Oah ASCII line feed
equ 09h ASCII tab code

blank equ 20h ASCII space code

cmd equ 80h buffer for command tail

blksize equ 16 input file record size

stdin equ 0 standard input handle
stdout equ 1 standard output handle
stderr equ 2 standard error handle

Figure 8-10. The assembly-language version: DUMP.ASM. (continued)

152 Programming/or MS-DOS

Figure 8-10. continued

_TEXT segment word public 'CODE'

assume cs: _TEXT,ds: _OATA,es: _OATA,ss:STACK

dump

dumpl:

dump2:

proc

push
xor
push

mov
mov

mov
int
cmp
jae

mov
mov
int
ret

mov
call
cmp
je

mov
mov
jmp

mov

call

mov
mov

far

ds
ax.ax
ax

ax. _OATA
ds,ax

ax,3000h
21h
al, 2
dumpl

dx,offset msg3
ah,9
21h

bx.offset cmd
argc
ax,2
dump2

dx,offset msg2
cx,msg2_len
dump9

ax,1

argv

di ,offset fname
ex.ax

entry point from MS-DOS

save OS:0000 for final
return to MS-DOS, in case
function 4ch can't be used

make our data segment
addressable via OS register

check MS -DOS version
function 30h - get version
transfer to MS-DOS
major version 2 or later?
yes, proceed

if MS-DOS l.x, display
error message and exit
OS:DX - message address
function 9 - print string
transfer to MS-DOS
then exit the old way

check if filename present
ES:BX - command tail
count command arguments
are there 2 arguments?
yes, proceed

missing filename, display
error message and exit
DS:DX - message address
CX - message length
go display it

get address 'of fi 1 ename
AX - argument number
ES:BX still - command tail
returns ES:BX - address,
and AX - length

copy filename to buffer
ex - length

(continued)

File Management 153

Figure 8-10. continued

dump3: mov
mov
inc
inc
loop
mov

mov
mov

mov

mov
int
jnc

mov
mov
jmp

dump4 : mov

dump5:
mov
mov
mov
mov
int

mov
cmp
jne

cmp
jne

mov
mov
jmp

al,es:[bx]
[di].al
bx
di
dump3
byte ptr [di]. 0

ax,ds
es.ax

ax,3d00h

dx,offset fname
21h
dump4

dx,offset msgl
cx,msgl_len
dump9

fhandle,ax

bx,fhandle
cx,blksize
dx,offset fbuff
ah,3fh
21h

flen,ax
ax,0
dump6

word ptr fptr,O
dumpB

dx,offset msg4
cx,msg4_len
dump9

154 Programming/or MS-DOS

copy one byte

bump string pointers

loop until string done
add terminal null byte

make our data segment
addressable by ES too
now open the file
function 3dh - open file
mode O - read only
DS:DX - filename
transfer to MS-DOS
jump, open successful

open failed, display
error message and exit
DS:DX - message address
ex - message length
go display it

save file handle

read block of file data
BX - file handle
ex - record length
DS:DX - buffer
function 3fh - read
transfer to MS-DOS

save actual length
end of file reached?
no. proceed

was this the first read?
no. exit normally

display empty file
message and exit
DS:DX - message address
ex - length
go display it

(continued)

Figure 8-10. continued

dump6:

test
jnz

mov
mov
mov
mov
int

dump7: call

dumpB:

dump9:

mov
mov
mov
mov
int
jmp

mov
mov
int

mov

int

mov
mov
int

mov

int

dump endp

fptr,O7fh
dump7

dx,offset hdg
cx,hdg_len
bx,stdout
ah,4Oh
21h

conv

dx , offset fout
cx, fout_len
bx, stdout
ah , 4Oh
21h
dumps

bx,fhandle
ah,3eh
21h

ax,4cOOh

21h

bx , stderr
ah , 4Oh
21h

ax, 4cO1h

21h

display heading at
each 12B-byte boundary
time for a heading?
no , proceed

display a heading
DS:DX - heading address
ex - heading length
BX - standard output
function 4Oh - write
transfer to MS-DOS

convert binary record
to formatted ASCII

display formatted output
DX:DX - output address
ex - output length
BX - standard output
function 4Oh - write
transfer to MS -DOS
go get another record

close input f i le
BX - file handle
function 3eh - close
transfer to MS-DOS

function 4ch - terminate,
return code - O
transfer to MS-DOS

display message on
standard error device
DS:DX - message address
CX - message length
standard error handle
function 4Oh - write
transfer to MS-DOS

function 4ch - terminate,
return code - 1
transfer to MS-DOS

(continued)

Ftle Management 155

Figure 8-10. continued

conv proc

mov
mov
mov

near

di. offset fout
cx,fout_len-2
al ,blank

rep stosb

mov
mov

di ,offset tout
ax,fptr

ca 11 w2a

mov bx,O

convl: mov al ,[fbuff+bx]

convert block of data
from input file

clear output format
area to blanks

convert file offset
to ASCII for output

init buffer pointer

fetch byte from buffer
mov di ,offset foutb point to output area

conv2:

format ASCII part ...
store as default

mov byte ptr [di+bx], •. •

cmp
jb

cmp
ja

mov

mov
add

al.blank
conv2

al. 7eh
conv2

[di+bx],al

di ,offset fouta
di ,bx

add di,bx
add
call

inc
cmp
jne

di ,bx
b2a

bx
bx, fl en
convl

in range 20h-7eh?
jump, not alphanumeric

in range 20h-7eh?
jump, not alphanumeric

store ASCII character

format hex part ...
point to output area
base addr + (offset *3)

convert byte to hex

advance through record
entire record converted?
no, get another byte

update file pointer
add word ptr fptr,blksize

ret

conv endp

156 Programming/ or MS-DOS

(continued)

Figure 8-10. continued

w2a proc

push
mov
call

pop
call
ret

w2a endp

b2a proc

sub
mov
div
call
stosb
mov
call
stosb
ret

b2a endp

a sci i proc

add
cmp
jle
add

ascii2: ret

a sci i endp

argc proc

near

ax
a 1, ah
b2a

ax
b2a

near

ah.ah
cl, 16
cl
a sci i

al , ah
ascii

near

al,' 0'
al,' 9'
ascii2
al.'A'-'9'-1

near

convert word to hex ASCII
call with AX - value

DI - addr for string
returns AX, DI, CX destroyed

save copy of value

convert upper byte

get back copy
convert lower byte

convert byte to hex ASCII
call with AL - binary value

DI - addr for string
returns AX, DI, ex modified

clear upper byte

divide byte by 16
quotient becomes the first
ASCII character

remainder becomes the
second ASCII character

convert value 0-0fh in AL
into "hex ASCII" character

offset to range 0-9
isit>9?
no, jump
offset to range A-F,

return AL - ASCII char

count command-line arguments
call with ES:BX - command line
returns AX - argument count

(continued)

File Management 157

Figure 8-10. continued

push
push
mov

argcl: mov

argc2: inc
cmp
je
cmp
je
cmp
je

jcxz

inc
not
jmp

a rgc3: pop

bx
ex
ax , 1

ex. -1

save original BX and CX
for 1 ater
force count>- 1

set flag - outside argument

bx point to next character
byte ptr es:[bx].cr
argc3 : exit if carriage return
byte ptr es:[bx],blank
argcl : outside argument if ASCII blank
byte ptr es:[bx],tab
argcl

argc2

ax
ex
argc2

ex

outside argument if ASCII tab

otherwise not blank or tab.
jump if already inside argument

else found argument. count it
set flag - inside argument
and look at next character

restore original BX and CX
pop bx
ret return AX - argument count

a rgc endp

argv proc near

push ex
push di

or
jz

xor

argvl : mov

ax.ax
argvB

ah.ah

ex. -1

158 Programming/or MS-DOS

get address & length of
command line argument
call with ES:BX - command line

AX - argument#
returns ES:BX - address

AX - length

save original CX and DI

is it argument O?
yes. jump to get program name

initialize argument counter

set flag - outside argument

(continued)

Figure 8-10. continued

argv2: inc
cmp
je
cmp
je
cmp
je

jcxz

inc
cmp
je
not
jmp

argv4:

mov

argv5: inc
cmp
je
cmp
je
cmp
jne

argv6: xchg
sub
jmp

argv7: xor
jmp

argv8:
mov
int
cmp
jb
mov
xor
xor
mov
cld

bx
byte ptr
argv7
byte ptr
argvl
byte ptr
argvl

argv2

ah
ah, al
argv4
ex
argv2

ax.bx

bx
byte
argv6

ptr

byte ptr
argv6
byte ptr
argv5

bx, ax
ax.bx
argvx

ax.ax
argvx

ax.3000h
21h
al ,3

; point to next character
es:[bx].cr

; exit if carriage return
es: [bx] ,blank

; outside argument if ASCII blank
es: [bx]. tab

outside argument if ASCII tab

if not blank or tab ...
jump if already inside argument

else count arguments found
is this the one we're looking for?
yes, go find its length
no, set flag - inside argument
and look at next character

found desired argument, now
determine its length ...
save param starting address

point to next character
es: [bx]. er

; found end if carriage return
es:[bx].blank

; found end if ASCII blank
es:[bx],tab

found end if ASCII tab

set ES:BX - argument address
and AX - arg~ment length
return to cal ler

set AX - 0, argument not found
return to caller

special handling for argv - 0
check if DOS 3.0 or later
(force AL - O in case DOS 1)

argv7
es,es:[2ch]
di ,di

DOS 1 or 2, return null param
get environment segment from PSP

find the program name by
al, al
ex, -1

first skipping over all the
environment variables ...

(continued)

File Management 159

Figure 8-10. continued

argv9: repne scasb
scasb

argvx:

jne
add

argv9
di. 2

mov bx.di
mov ex, -1
repne scasb
not ex
dee ex
mov ax.ex

pop di
pop ex

scan for double null (can't use
SeASW since might be odd addr)
loop if it was a single null
skip count word in environment
save program name address
now f i nd its length ...
scan for another null byte
convert ex to length

return length in AX

common exit point
restore original ex and DI

ret return to caller

argv endp

_TEXT ends

DATA segment word public 'DATA'

fname db

fhandle dw

fl en dw

fptr dw

fbuff db

fout db
db

fouta db
db

foutb db
fout_len equ

hdg db
db
db
db

hdg_len equ

64 dup (0) buffer for input filespec

0 token from PeDOS for input file

0 actual length read

0 relative address in file

blksize dup (?) data from input file

'nnnn' formatted output area
blank.blank
16 dup ('nn' ,blank)
blank
16 dup (blank),cr,lf
$-fout

er, lf
7 dup
·o 1
'8 9
$-hdg

(blank)
2 3 4
A 8 e

heading for each 128 bytes
of formatted output

5 6 7
DE F',cr,lf

160 Programming/or MS-DOS

(continued)

Figure 8-10. continued

msgl db
db
db

msgl_len equ

msg2 db
db
db

msg2_len equ

msg3 db
db
db

msg4 db
db
db

msg4_len equ

_DATA ends

er, lf
'dump: file not found'
er, lf
$-msgl

er, l f
'dump: missing file name'
er, lf
$-msg2

er, lf
'dump: wrong MS-DOS version'
er, l f, '$'

er, lf
'dump: empty file'
er, l f
$-msg4

STACK segment para stack 'STACK'

db 64 dup (?)

STACK ends

end dump

DUMP. C

Compile:

Usage:

Displays the binary contents of a file in
hex and ASCII on the standard output device.

C>CL DUMP.C

C>DUMP unit:path\filename.ext

Copyright (Cl 1988 Ray Duncan

#include <stdio.h>
/finclude <io.h>
#include <fcntl. h>

Figure 8-11. The C version: DUMP. C. (continued)

File Management 161

Figure 8-11. continued

#define REC_S IZE 16 /• input file record size

main(int argc, char • argv[])

I •

int fd;
int status - 0;

long fileptr - 0L;
char filebuf[REC_SIZE];

I•
I•
I•
I•

input file handle •I
status from file read •I
current file byte offset •I
data from file • I

if(argc !- 2) I• abort if missing filename • /
{ fprintf(stderr,"\ndump: wrong number of parameters\n");

exit(l);

I• open file in binary mode,
abort if open fails • /

if((fd - open(argv[l],0_RD0NLY I 0_BINARY) I -11
{ fprintf(stderr, "\ndump: can't find file %s \n", argv[l]);

exit(l);

I • read and dump records
until end of file • /

while((status - read(fd,filebuf,REC_SIZE) I ! - 0)
dump_rec(filebuf, fileptr, status);
fileptr +- REC_SIZE;

close(fdl;
exit(0I;

I• close input file
/ • return success code

Di sp lay record (16 bytes) in hex and ASCII on standard output

dump_ rec(char •f ilebuf, long fileptr, int length)

int i; /• index to current record •I

if(fileptr % 128 -- 01 / • display heading if needed • I
printf("\n\n 0 2 3 4 5 6 7 8 9 A B C D E F");

printf("\n%041X ",fileptr); /• display file offset

/• display hex equivalent of
each byte from file • /

162 Programming/or MS-DOS

(continued)

Figure 8-11. continued

for(i - O; i < length; i++)
printf(" %02X", (unsigned char) filebuf[i]);

if(length !- 16) I• spaces if partial record •I
for (i-0; i((16-length); i++) printf(" ");

/• display ASCII equivalent of
each byte from file •/

printf(" ");
for(i - O; i < length; i++)

if(filebuf[i] < 32 I I filebuf[i] > 126) putchar('. ');
else putchar(filebuf[i]);

The assembly-language version of the DUMP program contains a number
of subroutines that you may find useful in your own programming efforts.
These include the following:

Subroutine

argc
argv

w2a
b2a
ascii

Action

Returns the number of command-line arguments.
Returns the address and length of a particular command-line

argument.
Converts a binary word (16 bits) into hex ASCII for output.
Converts a binary byte (8 bits) into hex ASCII for output.
Converts 4 bits into a single hex ASCII character.

It is interesting to compare these two equivalent programs. The C pro­
gram contains only 77 li"nes, whereas the assembly-language program has
436 lines. Clearly, the C source code is less complex and easier to main­
tain. On the other hand, if size and efficiency are important, the
DUMPEXE file generated by the C compiler is 8563 bytes, whereas the
assembly-language DUMPEXE file is only 1294 bytes and runs twice as
fast as the C program.

File Management 163

Chapter9

Volumes and Directories

Each file in an MS-DOS system is uniquely identified by its name and its
location. The location, in turn, has two components: the logical drive that
contains the file and the directory on that drive where the filename can
be found.

Logical drives are specified by a single letter followed by a colon (for ex­
ample, A:). The number of logical drives in a system is not necessarily the
same as the number of physical drives; for example, it is common for large
fixed-disk drives to be divided into two or more logical drives. The key
aspect of a logical drive is that it contains a self-sufficient file system; that
is, it contains one or more directories, zero or more complete files, and all
the information needed to locate the files and directories and to determine
which disk space is free and which is already in use.

Directories are simply lists or catalogs. Each entry in a directory consists of
the name, size, starting location, attributes, and last modification date and
time of a file or another directory that the disk contains. The detailed in­
formation about the location of every block of data assigned to a file or
directory is in a separate control area on the disk called the file allocation
table (FAT). (See Chapter 10 for a detailed discussion of the internal format
of directories and the FAT.)

Every disk potentially has two distinct kinds of directories: the root direc­
tory and all other directories. The root directory is always present and has
a maximum number of entries, determined when the disk is formatted;
this number cannot be changed. The subdirectories of the root directory,
which may or may not be present on a given disk, can be nested to any
level and can grow to any size (Figure 9-1). This is the hierarchical, or
tree, directory structure referred to in earlier chapters. Every directory has
a name, except for the root directory, which is designated by a single
backslash(\) character.

MS-DOS keeps track of a "current drive" for the system and uses this drive
when a file specification does not include an explicit drive code. Similarly,
MS-DOS maintains a "current directory" for each logical drive. You can
select any particular directory on a drive by naming in order-either from
the root directory or relative to the current directory-the directories that
lead to its location in the tree structure. Such a list of directories, separated
by backslash delimiters, is called a path. When a complete path from the
root directory is prefixed by a logical drive code and followed by a file­
name and extension, the resulting string is a fully qualified filename and
unambiguously specifies a file.

166 Programming/or MS-DOS

File A b Directory

Directory File D

Drive
identifier

Root directory
(volume label)

FileB

Figure 9-1. An MS-DOS file-system structure.

Drive and Directory Control

f Directory
I=: -

File E File F

You can examine, select, create, and delete disk directories interactively
with the DIR, CHOIR (CD), MKDIR (MD), and RMDIR (RD) commands.
You can select a new current drive by entering the letter of the desired
drive, followed by a colon. MS-DOS provides the following Int 21H func­
tions to give application programs similar control over drives and
directories:

Function

OEH
19H
39H
3AH
3BH
47H

Action

Select current drive.
Get current drive.
Create directory.
Remove directory.
Select current directory.
Get current directory.

Volumes and Directories 167

The two functions that deal with disk drives accept or return a binary
drive code-0 represents drive A, 1 represents drive B, and so on. This
differs from most other MS-DOS functions, which use O to indicate the
current drive, 1 for drive A, and so on.

The first three directory functions in the preceding list require an ASCIIZ
string that describes the path to the desired directory. As with the handle­
based file open and create functions, the address of the ASCIIZ string is
passed in the DS:DX registers. On return, the carry flag is clear if the func­
tion succeeds or set if the function failed, with an error code in the AX
register. The directory functions can fail for a variety of reasons, but the
most common cause of an error is that some element of the indicated path
does not exist.

The last function in the preceding list, Int 21H Function 47H, allows you to
obtain an ASCIIZ path for the current directory on the specified or default
drive. MS-DOS supplies the path string without the drive identifier or a
leading backslash. Int 21H Function 47H is most commonly used with Int
21H Function 19H to build fully qualified filenames. Such filenames are
desirable because they remain valid if the user changes the current drive
or directory.

Section II of this book, "MS-DOS Functions Reference," gives detailed in­
formation on the drive and directory control functions.

Searching Directories
When you request an open operation on a file, you are implicitly perform­
ing a search of a directory. MS-DOS examines each entry of the directory
to find a match for the filename you have given as an argument; if the file
is found, MS-DOS copies certain information from the directory into a
data structure that it can use to control subsequent read or write opera­
tions to the file. Thus, if you wish to test for the existence of a specific file,
you need only perform an open operation and observe whether it is suc­
cessful. (If it is, you should, of course, perform a subsequent close opera­
tion to avoid needless expenditure of handles.)

Sometimes you may need to perform more elaborate searches of a disk
directory. Perhaps you wish to find all the files with a certain extension, a
file with a particular attribute, or the names of the subdirectories of a cer­
tain directory. Although the locations of a disk's directories and the
specifics of the entries that are found in them are of necessity hardware
dependent (for example, interpretation of the field describing the starting
location of a file depends upon the physical disk format), MS-DOS does
provide functions that will allow examination of a disk directory in a
hardware-independent fashion.

168 Programming/or MS-DOS

In order to search a disk directory successfully, you must understand two
types of MS-DOS search services. The first type is the "search for first"
function, which accepts a file specification-possibly including wildcard
characters-and looks for the first matching file in the directory of in­
terest. If it finds a match, the function fills a buffer owned by the request­
ing program with information about the file; if it does not find a match, it
returns an error flag.

A program can call the second type of search service, called "search for
next," only after a successful "search for first." If the file specification that
was originally passed to "search for first" included wildcard characters
and at least one matching file was present, the program can call "search
for next" as many times as necessary to find all additional matching files.
Like "search for first," "search for next" returns information about the
matched files in a buffer designated by the requesting program. When it
can find no more matching files, "search for next" returns an error flag.

As with nearly every other operation, MS-DOS provides two parallel sets
of directory-searching services:

Action

Search for first
Search for next

FCB.function

11H
12H

Handle.function

4EH
4FH

The FCB directory functions allow searches to match a filename and ex­
tension, both possibly containing wildcard characters, within the current
directory for the specified or current drive. The handle directory func­
tions, on the other hand, :!llow a program to perform searches within any
directory on any drive, regardless of the current directory.

Searches that use normal FCBs find only normal files. Searches that use
extended FCBs, or the handle-type functions, can be qualified with file at­
tributes. The attribute bits relevant to searches are as follows:

Bit

0
1
2

3
4
5

Sign,iflcance

Read-only file
Hidden file
System file
Volume label
Directory
Archive needed (set when file modified)

Volumes and Directories 169

start:

The remaining bits of a search function's attribute parameter should be
zero. When any of the preceding attribute bits are set, the search function
returns all normal files plus any files with the specified attributes, except
in the case of the volume-label attribute bit, which receives special treat­
ment as described later in this chapter. Note that by setting bit 4 you can
include directories in a search, exactly as though they were files .

Both the FCB and handle directory-searching functions require that the
disk transfer area address be set (with Int 21H Function lAH), before the
call to "search for first, " to point to a working buffer for use by MS-DOS.
The DTA address should not be changed between calls to "search for first"
and "search for next. " When it finds a matching file, MS-DOS places the
information about the file in the buffer and then inspects the buffer on the
next "search for next" call, to determine where to resume the search. The
format of the data returned in the buffer is different for the FCB and
handle functions, so read the detailed descriptions in Section II of this
book, "MS-DOS Functions Reference," before attempting to interpret the
buffer contents.

Figures 9-2 and 9-3 provide equivalent examples of searches.for all files in
a given directory that have the .ASM extension, one example using the
FCB directory functions Ont 21H Functions llH and 12H) and the other
using the handle functions (Int 21H Functions 4EH and 4FH). (Both pro­
grams use the handle write function with the standard output handle to
display the matched filenames, to avoid introducing tangential differences
in the listings.)

mov dx,seg buff
mov ds,dx
mov dx,offset buff
mov ah,lah
int 21h

set OTA address for buffer
used by search functions
DS:DX - buffer address

function lah - search for first
transfer to MS-DDS

(continued)

Figure 9-2. Example of an FCB-type directory search using Int 21H Functions llH
and 12H. This routine displays the names of al/files in the current directory that have
the . ASM extension.

170 Programming/or MS-DOS

Figure 9-2. (continued)

search for first match ...
mov dx,offset fcb DS:DX - FCB address
mov ah,llh function llh - search for first
int 21h transfer to MS-DOS
or a 1 . al any matches at all?
jnz exit no , quit

disp: go to a new line ...
mov dx, offset crlf DS:DX - CR-LF string
mov cx,2 ex - string length
mov bx,1 BX - standard output handle
mov ah,40h function 40h - write
int 21h transfer to MS-DOS

display matching file
mov dx,offset buff+l ; DS:DX - filename
mov ex, 11 ex - length
mov bx,1 BX - standard output handle
mov ah,40h function 40h - write
int 21h transfer to MS-DOS

search for next match ...
mov dx,offset fcb DS:DX - FCB address
mov ah,12h function 12h - search for next
int 21h transfer to MS-DOS
or al, al any more matches?
jz disp yes. go show filename

exit : final exit point
mov ax,4c00h function 4ch - terminate,

return code - 0
int 21h transfer to MS-DOS

crl f db Odh,Oah ASCII carriage return-
linefeed string

fcb db 0 drive - current
db B dup ('?') filename - wildcard
db 'ASM' ext ension - ASM
db 25 dup (0) remainder of FCB - zero

buff db 64 dup (0) receives search results

Volumes and Directories 171

start:

di sp:

mov dx,seg buff
mov ds,dx
mov
mov
int

mov
mov
mov
int
jc

mov
mov
mov
mov
int

mov

dx,offset buff
ah,lah
21h

dx,offset fname
cx,O
ah,4eh
21h
exit

dx,offset crlf
cx.2
bx,l
ah,40h
21h

ex.a

mov si ,offset buff+30

set DTA address for buffer
used by search functions
DS :D X = buffer address

function lah - search for first
transfer to MS-DOS

search for first match ...
DS:DX - wildcard filename
ex - normal file attribute
function 4eh - search for first
transfer to MS-DOS
quit if no matches at all

go to a new line ...
DS : DX - eR-LF string
ex= string length
BX= standard output handle
function 40h - write
transfer to MS-DOS
find length of filename ...
ex wi 11 be char count
DS:SI - start of name

di spl: l odsb
or al . al

disp2
ex
di spl

get next character
is it null character?
yes, found end of string
else count characters
and get another

disp2:

172

jz

inc
jmp

mov
mov
mov
int

dx,offset
bx,l
ah,40h
21h

buff+30

display matching file ...
ex already contains length
DS:DX - filename

BX= standard output handle
function 40h - write
transfer to MS-DOS

(continued)

Figure 9-3. Example of a handle-type directory search using Int 21H Functions 4EH
and 4FH. This routine also displays the names of all files in the current directory that
have a . ASM extension.

Programming/or MS-DOS

Figure 9-3. (continued)

find next matching file ...
mov ah,4fh function 4fh - search for next
int 21h transfer to MS-DOS
jnc disp jump if another match found

exit: fina l exit point
mov ax,4c00h function 4ch - terminate,

return code - 0
int 21h transfer to MS-DOS

crlf db Odh,Oah ASCII carriage return-
linefeed string

fname db '*. ASM', 0 ASCIIZ filename to
be matched

buff db 64 dup (0) receives search results

Moving Files
The rename file function that was added in MS-DOS version 2.0, Int 21H
Function 56H, has the little-advertised capability to move a file from one
directory to another. The function has two ASCIIZ parameters: the "old"
and "new" names for the file. If the old and new paths differ, MS-DOS
moves the file; if the filename or extension components differ, MS-DOS re­
names the file. MS-DOS can carry out both of these actions in the same
function call.

Of course, the old and new directories must be on the same clrive, because
the file 's actual data is not moved at all; only the information that describes
the file is removed from one directory and placed in another directory.
Function 56H fails if the two ASCIIZ strings include different logical-drive
codes, if the file is read-only, or if a file with the same name and location
as the "new" filename already exists.

The FCB-based rename file service, Int 21H Function 17H, works only on
the current directory and cannot be used to move files.

Volumes and Directories 173

Volume Labels
Support for volume labels was first added to MS-DOS in version 2.0. A vol­
ume label is an optional name of from 1 to 11 characters that the user
assigns to a disk during a FORMAT operation. You can display a volume
label with the DIR, TREE, CHKDSK, or VOL command. Beginning with
MS-DOS version 3.0, you can use the LABEL command to add, display, or
alter the label after formatting. In MS-DOS version 4, the FORMAT pro­
gram also assigns a semi-random 32-bit binary ID to each disk it formats;
you can display this value, but you cannot change it.

The distinction between volumes and drives is important. A volume label
is associated with a specific storage medium. A drive identifier (such as A)
is associated with a physical device that a storage medium can be mounted
on. In the case of fixed-disk drives, the medium associated with a drive
identifier does not change (hence the name). In the case of floppy disks or
other removable media, the disk accessed with a given drive identifier
might have any volume label or none at all.

Hence, volume labels do not take the place of the logical-drive identifier
and cannot be used as part of a pathname to identify a file. In fact, in MS­
DOS version 2, the system does not use volume labels internally at all. In
MS-DOS versions 3.0 and later, a disk driver can use volume labels to
detect whether the user has replaced a disk while a file is open; this use is
optional, however, and is not implemented in all systems.

MS-DOS volume labels are implemented as a special type of entry in a
disk's root directory. The entry contains a time-and-date stamp and has
an attribute value of 8 (i.e., bit 3 set). Except for the attribute, a volume
label is identical to the directory entry for a file that was created but never
had any data written into it, and you can manipulate volume labels with
Int 21H functions much as you manipulate files. However, a volume label
receives special handling at several levels:

■ When you create a volume label after a disk is formatted, MS-DOS al­
ways places it in the root directory, regardless of the current directory.

• A disk can contain only one volume label; attempts to create additional
volume labels (even with different names) will fail.

• MS-DOS always carries out searches for volume labels in the root direc­
tory, regardless of the current directory, and does not also return all
normal files.

In MS-DOS version 2, support for volume labels is not completely inte­
grated into the handle file functions, and you must use extended FCBs

174 Programming/or MS-DOS

buff

xfcb

instead to manipulate volume labels. For example, the code in Figure 9-4
searches for the volume label in the root directory of the current drive.
You can also change volume labels with extended FCBs and the rename
file function (Int 21H Function 17H), but you should not attempt to remove
an existing volume label with Int 21H Function 13H under MS-DOS ver­
sion 2, because this operation can damage the disk's FAT in an unpredict­
able manner.

In MS-DOS versions 3.0 and later, you can create a volume label in the ex­
pected manner, using Int 21H Function 3CH and an attribute of 8, and you
can use the handle-type "search for first" function (4EH) to obtain an ex­
isting volume label for a logical drive (Figure 9-5). However, you still must
use extended FCBs to change a volume label.

db 64 dup (?)

db Offh
db 5 dup (0)

db 8

db 0

db 11 dup ('?')

db 25 dup (0)

mov dx,seg buff
mov ds,dx
mov
mov
int

mov
mov
int
cmp
je

dx,offset buff
ah,lah
21h

dx,offset xfcb
ah,llh
21h
al ,Offh
no_label

receives search results

flag si gni fyi ng extended FCB
reserved
volume attribute byte
drive code (0 - current)
wildcard filename and extension
remainder of FCB (not used)

set DTA address for buffer
used by search functions
DS:DX - buffer address

function lah - set DTA
transfer to MS-DDS

now search for label ...
DS:DX - extended FCB

function llh - search for first
transfer to MS-DOS
search successfu l?
jump if no volume label

Figure 9-4. A volume-label search under MS-DOS version 2, using an extended file
control block. If the search is successful, the volume label is returned in buff, format­
ted in the filename and extension fields of an extended FCB.

Volumes and Directories 175

buff db 64 dup (?) receives search results

wilded db wildcard ASCIIZ filename

set DTA address for buffer
used by search functions

mov dx ,seg buff DS:DX - buffer address
mov ds,dx
mov dx,offset buff
mov ah,lah function lah - set DTA
int 21h transfer to MS-DOS

now search for label ...
DS:DX - ASCIIZ string

mov dx,offset wilded
mov cx,8 ex - volume attribute
mov ah,4eh function 4eh - search for first
int 21h transfer to MS-DOS
jc no_label jump if no volume label

Figure 9-5. A volume-label search under MS-DOS version 3, using the handle-type
file functions. If the search is successful (carry flag returned clear), the volume name
is placed at location buff+ lEH in the form of an ASCIIZ string.

176 Programming for MS-DOS

Chapter10

Disk Internals

MS-DOS disks are organized according to a rather rigid scheme that is
easily understood and therefore easily manipulated. Although you will
probably never need to access the special control areas of a disk directly,
an understanding of their internal structure leads to a better understand­
ing of the behavior and performance of MS-DOS as a whole.

From the application programmer's viewpoint, MS-DOS presents disk
devices as logical volumes that are associated with a drive code (A, B, C,
and so on) and that have a volume name (optional), a root directory, and
from zero to many additional directories and files. MS-DOS shields the
programmer from the physical characteristics of the medium by providing
a battery of disk services through Int 21H. Using these services, the pro­
grammer can create, open, read, write, close, and delete files in a uniform
way, regardless of the disk drive's size, speed, number of read/write
heads, number of tracks, and so forth.

Requests from an application program for file operations actually go
through two levels of translation before resulting in the physical transfer
of data between the disk device and random-access memory:

1. Beneath the surface, MS-DOS views each logical volume, whether it is
an entire physical unit such as a floppy disk or only a part of a fixed
disk, as a continuous sequence of logical sectors, starting at sector 0. (A
logical disk volume can also be implemented on other types of storage.
For example, RAM disks map a disk structure onto an area of random­
access memory.) MS-DOS translates an application program's Int 21H
file-management requests into requests for transfers oflogical sectors,
using the information found in the volume's directories and allocation
tables. (For those rare situations where it is appropriate, programs can
also access logical sectors directly with Int 25H and Int 26H.)

2. MS-DOS then passes the requests for logical sectors to the disk device's
driver, which maps them onto actual physical addresses (head, track,
and sector). Disk drivers are extremely hardware dependent and are
always written in assembly language for maximum speed. In most ver­
sions of MS-DOS, a driver for IBM-compatible floppy- and fixed-disk
drives is built into the MS-DOS BIOS module (IO.SYS) and is always
loaded during system initialization; you can install additional drivers
for non-IBM-compatible disk devices by including the appropriate
DEVICE directives in the CONFIG .SYS file.

Each MS-DOS logical volume is divided into several fixed-size control
areas and a files area (Figure 10-1). The size of each control area depends
on several factors-the size of the volume and the version of FORMAT
used to initialize the volume, for example-but all of the information

178 Programming/or MS-DOS

'

Boot sector
Reserved area

File allocation table #l

Possible additional copies of FAT

Root directory

Files area

'

,,
.v. ~ --·

Figure 10-1. Map of a typical MS-DOS logical volume. The boot sector (logical sector
O) contains the OEM identification, BIOS parameter block (BPB), and disk bootstrap.
The remaining sectors are divided among an optional reserved area, one or more
copies of the file allocation table, the root directory, and the files area.

needed to interpret the structure of a particular logical volume can be
found on the volume itself in the boot sector.

The Boot Sector
Logical sector 0, known as the boot sector, contains all of the critical infor­
mation regarding the disk medium's characteristics (Figure 10-2). The first
byte in the sector is always an 80x86 jump instruction-either a normal
intrasegment]MP (opcode 0E9H) followed by a 16-bit displacement or a
"short"]MP (opcode 0EBH) followed by an 8-bit displacement and then
by an NOP (opcode 90H). If neither of these two]MP opcodes is present,
the disk has not been formatted or was not formatted for use with MS­
DOS. (Of course, the presence of the]MP opcode does not in itself ensure
that the disk has an MS-DOS format.)
Following the initial JMP instruction is an 8-byte field that is reserved by
Microsoft for OEM identification. The disk-formatting program, which is
specialized for each brand of computer, disk controller, and medium, fills
in this area with the name of the computer manufacturer and the manu­
facturer's internal MS-DOS version number.

Disk Internals 179

OOH

03H

OBH

ODH

OEH

lOH

llH

13H

15H

16H

18H

lAH

lCH

20H

24H

25H

26H

27H

2BH

36H

3EH

E9 XX XX or EB XX 90

OEM name and version
(8 bytes)

Bytes per sector (2 bytes)

Sectors per allocation unit (1 byte)

Reserved sectors, starting at O (2 bytes)

Number of FATs (1 byte)

Number of root-directory entries (2 bytes)

Total sectors in logical volume (2 bytes)

Media descriptor byte

Number of sectors per FAT (2 bytes)

Sectors per track (2 bytes)

Number of heads (2 bytes)

Number of hidden sectors (4 bytes)

Total sectors in logical volume
(MS-DOS 4.0 and volume size >32 MB)

Physical drive number

Reserved

Extended boot signature record (29H)

32-bit binary volume ID

Volume label (11 bytes)

Reserved (8 bytes)

Bootstrap

l
B
p
B

J MS-DOS
version 2.0

]
MS-DOS
version 3.0

]
MS-DOS
version4.0

Additional
MS-DOS4.0
information

Figure 10-2. Map of the boot sector of an MS-DOS disk. Note the]MP at offset 0, the
OEM identification field, the MS-DOS version 2 compatible BIOS parameter block
(bytes 0BH-17H), the three additional WORD fields for MS-DOS version 3, the double­
word number-of-sectors field and 32-bit binary volume ID for MS-DOS version 4.0,
and the bootstrap code.

180 Programming/or MS-DOS

The third major component of the boot sector is the BIOS parameter block
(BPB) in bytes 0BH through 17H. (Additional fields are present in MS-DOS
versions 3.0 and later.) This data structure describes the physical disk
characteristics and allows the device driver to calculate the proper physi­
cal disk address for a given logical-sector number; it also contains informa­
tion that is used by MS-DOS and various system utilities to calculate the
address and size of each of the disk control areas (file allocation tables and
root directory).

The final element of the boot sector is the disk bootstrap routine. The disk
bootstrap is usually read into memory by the ROM bootstrap, which is ex­
ecuted automatically when the computer is turned on. The ROM
bootstrap is usually just smart enough to home the head of the disk drive
(move it to track 0), read the first physical sector into RAM at a predeter­
mined location, and jump to it. The disk bootstrap is more sophisticated. It
calculates the physical disk address of the beginning of the files area,
reads the files containing the operating system into memory, and transfers
control to the BIOS module at location 0070:0000H. (See Chapter 2.)

Figures 10-3 and 10-4 show a partial hex dump and disassembly of a PC­
DOS 3.3 floppy-disk boot sector.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 EB 34 90 49 42 4D 20 20 33 2E 33 00 02 02 01 00 .4. IBM 3.3
0010 02 70 00 DO 02 FD 02 00 09 00 02 00 00 00 00 00 .p
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12
0030 00 00 00 00 01 00 FA 33 CO BE DO BC 00 7C 16 07 3 I . .

OlCO OD OA 44 69 73 6B 20 42 6F 6F 74 20 66 61 69 6C . . Disk Boot fail
OlDO 75 72 65 OD OA 00 49 42 4D 42 49 4F 20 20 43 4F ure ... IBMBIO CO
OlEO 4D 49 42 4D 44 4F 53 20 20 43 4F 4D 00 00 00 00 MIBMDOS COM
OlFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U.

Figure 10-3. Partial hex dump of the boot sector (track 0, head 0, sector 1) of a PC­
DOS version 3 .3 floppy disk. This sector contains the OEM identification, a copy of the
BIOS parameter block describing the medium, and the bootstrap routine that reads
the BIOS into memory and transfers control to it. See also Figures 10-2 and 10-4.

Disk Internals 181

jmp $+54 jump to bootstrap
nop

db 'IBM 3.3' OEM identification

BIOS pa rameter block
dw 512 bytes per sector
db 2 sectors per cluster
dw 1 reserved sectors
db 2 number of FATs
dw 112 root directory entries
dw 720 total sectors
db Ofdh med ia des cr iptor byte
dw 2 sectors per FAT

dw 9 sectors per track
dw 2 number of heads
dd 0 hidden sectors

Figure 10-4. Partial disassembly of the boot sector shown in Figure 10-3.

The Reserved Area
The boot sector is actually part of a reserved area that can span from one
to several sectors. The reserved-sectors word in the BPB, at offset OEH in
the boot sector, describes the size of this area. Remember that the number
in the BPB field includes the boot sector itself, so if the value is 1 (as it is on
IBM PC floppy disks), the length of the reserved area is actually O sectors.

The File Allocation Table
When a file is created or extended, MS-DOS assigns it groups of disk sec­
tors from the files area in powers of 2. These are known as allocation
units or clusters. The number of sectors per cluster for a given medium is
defined in the BPB and can be found at offset ODH in the disk's boot sec­
tor. Below are some example cluster sizes:

Disk type

5.25" 180 KB floppy disk
5.25" 360 KB floppy disk
PC/ AT fixed disk
PC/XT fixed disk

182 Programming/or MS-DOS

Powerof2

0
1
2

3

Sectors/cluster

1
2
4
8

The file allocation table (FAT) is divided into fields that correspond di­
rectly to the assignable clusters on the disk. These fields are 12 bits in MS­
DOS versions 1 and 2 and may be either 12 bits or 16 bits in versions 3.0
and later, depending on the size of the medium (12 bits if the disk contains
fewer than 4087 clusters, 16 bits otherwise).

The first two fields in the FAT are always reserved. On IBM-compatible
media, the first 8 bits of the first reserved FAT entry contain a copy of the
media descriptor byte, which is also found in the BPB in the boot sector.
The second, third, and (if applicable) fourth bytes, which constitute the
remainder of the first two reserved FAT fields, always contain 0FFH. The
currently defined IBM-format media descriptor bytes are as follows:

Descriptor

0F0H
0F8H
0F9H

0FCH
0FDH

0FEH

0FFH

Medium

3.5" floppy disk, 2-sided, 18-sector
Fixed disk
5.25" floppy disk, 2-sided, 15-sector
3.5" floppy disk, 2-sided, 9-sector
5.25" floppy disk, 1-sided, 9-sector
5.25" floppy disk, 2-sided, 9-sector
8" floppy disk, 1-sided, single-density
5.25" floppy disk, 1-sided, 8-sector
8" floppy disk, 1-sided, single-density
8" floppy disk, 2-sided, double-density
5.25" floppy disk, 2-sided, 8-sector

MS-DOS version
where first
supported

3.3
2.0
3.0
3.2
2.0
2.0

1.0

1.1

The remainder of the FAT entries describe the use of their corresponding
disk clusters. The contents of the FAT fields are interpreted as follows:

Value

(0)000H
(F)FF0-(F)FF6H
(F)FF7H
(F)FF8-(F)FFFH
(X)XXX

Meaning

Cluster available
Reserved cluster
Bad cluster, if not part of chain
Last cluster of file
Next cluster in file

Each file 's entry in a directory contains the number of the first cluster as­
signed to that file, which is used as an entry point into the FAT. From the
entry point on, each FAT slot contains the cluster number of the next
cluster in the file, until a last-cluster mark is encountered.

At the computer manufacturer's option, MS-DOS can maintain two or
more identical copies of the FAT on each volume. MS-DOS updates all

Disk Internals 183

copies simultaneously whenever files are extended or the directory is
modified. If access to a sector in a FAT fails due to a read error, MS-DOS
tries the other copies until a successful disk read is obtained or all copies
are exhausted. Thus, if one copy of the FAT becomes unreadable due to
wear or a software accident, the other copies may still make it possible to
salvage the files on the disk. As part of its procedure for checking the in­
tegrity of a disk, the CHKDSK program compares the multiple copies
(usually two) of the FAT to make sure they are all readable and consistent.

The Root Directory
Following the file allocation tables is an area known in MS-DOS versions
2.0 and later as the root directory. (Under MS-DOS version 1, it was the
only directory on the disk.) The root directory contains 32-byte entries
that describe files, other directories, and the optional volume label (Figure
10-5). An entry beginning with the byte value ESH is available for reuse; it
represents a file or directory that has been erased. An entry beginning
with a null (zero) byte is the logical end-of-directory; that entry and all
subsequent entries have never been used.

OOH

OBH

OBH

OCH

16H

18H

lAH

lCH

20H

r
l

k

i
i\

i

I
~i

'

I
I'
t

.,

L---~--

Filename

Extension

File attribute

Reserved

Time created or last updated

Date created or last updated

Starting cluster

File size, 4 bytes
iffi:/'~!i M-:w

Note 1

Note 2

Note 3

Note 4

Note 5

Figure 10-5. Format of a single entry in a disk directory. Total length is 32 bytes
(20H bytes).

184 Programming/or MS-DOS

Notes for Figure 10-5

1. The first byte of the filename field of a directory entry may contain the
following special information:

Value

OOH

05H
ZEH

E5H

Meaning

Directory entry has never been used; end of occupied
portion of directory.

First character of filename is actually E5H.
Entry is an alias for the current or parent directory. If

the next byte is also ZEH, the cluster field contains the
cluster number of the parent directory (zero if the
parent directory is the root directory).

File has been erased.

2. The attribute byte of the directory entry is mapped as follows:

Bit Meaning

0 Read-only; attempts to open file for write or to delete file

1
2

3
4
5
6
7

will fail.
Hidden file ; excluded from normal searches.
System file ; excluded from normal searches.
Volume label; can exist only in root directory.
Directory; excluded from normal searches.
Archive bit; set whenever file is modified.
Reserved.
Reserved.

3. The time field is encoded as follows:

Bits

00H-04H

05H-0AH
0BH-0FH

Contents

Binary number of 2-second increments (0-29,
corresponding to 0-58 seconds)

Binary number of minutes (0-59)
Binary number of hours (0-23)

4. The date field is encoded as follows:

Bits

00H-04H
05H-08H
09H-0FH

Contents

Day of month 0-31)
Month (1-12)
Year (relative to 1980)

5. The file-size field is interpreted as a 4-byte integer, with the low-order 2
bytes of the number stored first.

Disk Internals 185

The root directory has a number of special properties. Its size and posi­
tion are fixed and are determined by the FORMAT program when a disk is
initialized. This information can be obtained from the boot sector's BPB. If
the disk is bootable, the first two entries in the root directory always
describe the files containing the MS-DOS BIOS and the MS-DOS kernel.
The disk bootstrap routine uses these entries to bring the operating sys­
tem into memory and start it up.

Figure 10-6 shows a partial hex dump of the first sector of the root direc­
tory on a bootable PC-DOS 3.3 floppy disk.

Filename Extension Attribute Reserved File size (in bytes)

0000 ,: ,: ,: }.; ~ ,: ,J ,! ,: L_,:~ o~o cow
0010 00 00 00 00 00 00 00 60 72 OE 02 00 54 56 00 00 'r ... TV . .
0020 49 42 4D 44 4F 53 20 20 43 4F 4D 27 00 00 00 00 IBMDOS COM'
0030 00 0 00 00 00 00 00 60 71 OE 18 00 CF 75 00 00 'q u .•

0040 43 4 4D 4D 41 4E 44 20 43 4F 4D 20 00 00 00 00 COMMAND COM
0050
0060
0070
0080
0090

E 36 0 DB 62 00 00 'q.6 .. b ..
B 20 0 20 B 00 00 00 00 BOOTDISK (....
0 21 0 00 0 00 00 00
0 00 0 00 0 00 0 00 00
0 00 0 00 0 00 00 00 00

.. !

End of occupied Reserved Date Attribute byte for
volume label entry portion of directory Time Starting cluster

Figure 10-6. Partial hex dump of the first sector of the root directory for a PC-DOS
3 .3 disk containing the three system files and a volume label.

The Files Area
The remainder of the volume after the root directory is known as the files
area. MS-DOS views the sectors in this area as a pool of clusters, each
containing one or more logical sectors, depending on the disk format.
Each cluster has a corresponding entry in the FAT that describes its cur­
rent use: available, reserved, assigned to a file, or unusable (because of
defects in the medium). Because the first two fields of the FAT are
reserved, the first cluster in the files area is assigned the number 2.

186 Programming/or MS-DOS

When a file is extended under versions 1 and 2, MS-DOS searches the FAT
from the beginning until it finds a free cluster (designated by a zero FAT
field); it then changes that FAT field to a last-cluster mark and updates the
previous last cluster of the file's chain to point to the new last cluster.
Under versions 3.0 and later, however, MS-DOS searches the FAT from the
most recently allocated cluster; this reduces file fragmentation and im­
proves overall access times.

Directories other than the root directory are simply a special type of file.
Their storage is allocated from the files area, and their contents are 32-
byte entries-in the same format as those used in the root directory­
that describe files or other directories. Directory entries that describe
other directories contain an attribute byte with bit 4 set, zero in the file­
length field, and the date and time that the directory was created (Figure
10-7). The first cluster field points, of course, to the first cluster in the files
area that belongs to the directory. (The directory's other clusters can be
found only by tracing through the FAT.)

All directories except the root directory contain two special directory en­
tries with the names . and •.. MS-DOS puts these entries in place when it
creates a directory, and they cannot be deleted. The . entry is an alias for
the current directory; its cluster field points to the cluster in which it is

Subdirectory name Attribute byte indicating a subdirectory entry Reserved

0080
0090 00 00 00 00 00 00 87 9A 98 0A 2A 00 00 00 00 00 · · · · ···· · ·*·

Rese/ 0,te subd~cro')' e<ested ~ File ,;,e md;e,ted "mo bytes

Time subdirectory created Starting cluster of subdirectory file

Figure 10-7. Extract from the root directory of an MS-DOS disk, showing the entry
for a subdirectory named MYDIR . Bit 4 in the attribute byte is set, the cluster field
points to the first cluster of the subdirectory file, the date and time stamps are valid,
but the file length is zero.

Disk Internals 187

found. The .. entry is an alias for the directory's parent (the directory
immediately above it in the tree structure); its cluster field points to the
first cluster of the parent directory. If the parent is the root directory, the
cluster field of the .. entry contains zero (Figure 10-8).

Alias for current directory Attribute bytes indicating a subdirectory

0123~56789A8C
0000 2E 20 20 20 20 20 20 20 20 20 20 10 0 0
0010 ·*·
0020 2E 2E 20 20 20 20 20 20 20 20 20 10 0 00 00 00
0030 00 00 00 00 00 0 87 9A 98 OA 00 00 00 00 00 00
0040 40 59 46 49 4C 20 20 44 41 54 20 00 00 00 00 MYFILE DAT
0050 00 00 00 00 00 0 98 9A 98 OA 28 00 15 00 00 00
0060 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 OD 00 00 00 00 00 DO 00 00

Alias for parent directory

........ . . +

Figure 10-8. Hex dump of the first block of the directory MYDIR. Note the. and ..
entries. This directory contains exactly one file, MYFILE.DAT.

Interpreting the File Allocation Table
Now that we understand how the disk is structured, let's see how we can
use this knowledge to find a FAT position from a cluster number.

If the FAT has 12-bit entries, use the following procedure:

1. Use the directory entry to find the starting cluster of the file in
question.

2. Multiply the cluster number by 1.5.

3. Use the integral part of the product as the offset into the FAT and move
the word at that offset into a register. Remember that a FAT position
can span a physical disk-sector boundary.

4. If the product is a whole number, AND the register with 0FFFH.

5. Otherwise, "logical shift" the register right 4 bits.

6. If the result is a value from 0FF8H through 0FFFH, the file has no
more clusters. Otherwise, the result is the number of the next cluster
in the file.

188 Programming/or MS-DOS

On disks with at least 4087 clusters formatted under MS-DOS version 3.0
or later, the FAT entries use 16 bits, and the extraction of a cluster number
from the table is much simpler:

1. Use the directory entry to find the starting cluster of the file in
question.

2. Multiply the cluster number by 2.

3. Use the product as the offset into the FAT and move the word at that
offset into a register.

4. If the result is a value from 0FFF8H through 0FFFFH, the file has no
more clusters. Otherwise, the result is the number of the next cluster in
the file.

To convert cluster numbers to logical sectors, subtract 2, multiply the
result by the number of sectors per cluster, and add the logical-sector
number of the beginning of the data area (this can be calculated from the
information in the BPB).

As an example, let's work out the disk location of the file IBMBIO.COM,
which is the first entry in the directory shown in Figure 10-6. First, we
need some information from the BPB, which is in the boot sector of the
medium. (See Figures 10-3 and 10-4.) The BPB tells us that there are

■ 512 bytes per sector

■ 2 sectors per cluster

■ 2 sectors per FAT

■ 2 FATs

■ 112 entries in the root directory

From the BPB information, we can calculate the starting logical-sector
number of each of the disk's control areas and the files area by construct­
ing a table, as follows:

Area

Boot sector
2 FATs • 2 sectors/FAT
112 directory entries

•32 bytes/entry
/ 512 bytes/sector

Total sectors occupied by
bootstrap, FATs, and root
directory

Length (sectors)

1
4
7

12

Sector numbers

OOH
O1H-04H
O5H_:OBH

Disk Internals 189

Therefore, the first sector of the files area is 12 (OCH).

The word at offset 0lAH in the directory entry for IBMBIO.COM gives us
the starting cluster number for that file: cluster 2. To find the logical-sector
number of the first block in the file, we can follow the procedure given
earlier:

1. Cluster number - 2 = 2 - 2 = 0.

2. Multiply by sectors per cluster = 0 • 2 = 0.

3. Add logical-sector number of start of the files area = 0 + OCH = OCH.

So the calculated sector number of the beginning of the file IBMBIO.COM
is OCH, which is exactly what we expect knowing that the FORMAT pro­
gram always places the system files in contiguous sectors at the beginning
of the data area.

Now let's trace IBMBIO.COM's chain through the file allocation table
(Figures 10-9 and 10-10). This will be a little tedious, but a detailed under­
standing of the process is crucial. In an actual program, we would first
read the boot sector using Int 25H, then calculate the address of the FAT
from the contents of the BPB, and finally read the FAT into memory, again
using Int 25H.

From IBMBIO.COM's directory entry, we already know that the first clus­
ter in the file is cluster 2. To examine that cluster's entry in the FAT, we
multiply the cluster number by 1.5, which gives 0003H as the FAT offset,
and fetch the word at that offset (which contains 4003H). Because the
product of the cluster and 1.5 is a whole number, we AND the word from
the FAT with 0FFFH, yielding the number 3, which is the number of the
second cluster assigned to the file .

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 FD FF FF 03 40 00 05 60 00 07 80 00 09 AO 00 OB @ •• ' •••••• ••

0010 CO 00 OD EO 00 OF 00 01 11 20 01 13 40 01 15 60@ • • '

0020 01 17 FO FF 19 AO 01 1B CO 01 lD EO 01 lF 00 02
0030 21 20 02 23 40 02 25 60 02 27 80 02 29 AO 02 28 ! . /I@. %' .' . .) .. +

Figure 10-9. Hex dump of the first block of the file allocation table (track 0, head 0,
sector 2) for the PC-DOS 33 disk whose root directory is shown in Figure 10-6. Notice
that the first byte of the FAT contains the media descriptor byte for a 5.25-inch,
2-sided, 9-sector floppy disk.

190 Programming/or MS-DOS

getfat proc near extracts the FAT field
for a given cluster
call AX - cluster fl

DS:BX - addr of FAT
returns AX - FAT field
other registers unchanged

push bx save affected registers
push ex
mov ex.ax
shl ax,1 cluster* 2
add ax.ex cluster * 3
test ax , l
pushf save remainder in Z flag
shr ax,l cluster * 1.5
add bx.ax
mov ax, [bx]
popf was cluster* 1.5 whole number?
jnz getfatl no, jump
and ax,Offfh yes, isolate bottom 12 bits
jmp getfat2

getfatl: mov cx,4 shift word right 4 bits
shr ax.ex

getfat2: pop ex restore registers and exit
pop bx
ret

getfat endp

Figure 10-10. Assembly-language procedure to access the file allocation table
(assumes 12-bit FAT fields). Given a cluster number, the procedure returns the con­
tents of that cluster's FAT entry in the AX register. This simple example ignores the fact
that FAT entries can span sector boundaries.

To examine cluster 3's entry in the FAT, we multiply 3 by 1.5, which gives
4.5, and fetch the word at offset 0004H (which contains 0040H). Because
the product of 3 and 1.5 is not a whole number, we shift the word right
4 bits, yielding the number 4, which is the number of the third cluster
assigned to IBMBIO.COM.

In this manner, we can follow the chain through the FAT until we come to
a cluster (number 23, in this case) whose FAT entry contains the value
0FFFH, which is an end-of-file marker in FATs with 12-bit entries.

We have now established that the file IBMBIO.COM contains clusters 2
through 23 (02H-17H), from which we can calculate that logical sectors
OCH through 38H are assigned to the file . Of course, the last cluster may

Disk Internals 191

be only partially filled with actual data; the portion of the last cluster used
is the remainder of the file's size in bytes (found in the directory entry)
divided by the bytes per cluster.

Fixed-Disk Partitions
Fixed disks have another layer of organization beyond the logical volume
structure already discussed: partitions. The FDISK utility divides a fixed
disk into one or more partitions consisting of an integral number of
cylinders. Each partition can contain an independent file system and, for
that matter, its own copy of an operating system.

The first physical sector on a fixed disk (track 0, head 0, sector 1) contains
the master boot record, which is laid out as follows:

Bytes

000-lBDH
1BE-1CDH
lCE-lDDH
lDE-lEDH
lEE-lFDH
lFE-lFFH

Contents

Reserved
Partition #l descriptor
Partition #2 descriptor
Partition #3 descriptor
Partition #4 descriptor
Signature word (AA55H)

The partition descriptors in the master boot record define the size, loca­
tion, and type of each partition, as follows:

Byte(s)

OOH
OlH
02H-03H
04H

05H
06H-07H
08H-0BH
0CH-0FH

Contents

Active flag (0 = not bootable, 80H = bootable)
Starting head
Starting cylinder/ sector 6 2Jf ➔ 9:!cfw- 6~ -") C 'IL
Partition type
OOH not used
0lH FAT file system, 12-bit FAT entries
04H FAT file system, 16-bit FAT entries
05H extended partition
06H "huge partition" (MS-DOS versions 4.0 and later)
Ending head
Ending cylinder/ sector
Starting sector for partition, relative to beginning of disk
Partition length in sectors

The active flag, which indicates that the partition is bootable, can be set
on only one partition at a time.

192 Programming/or MS-DOS

0000

MS-DOS treats partition types 1, 4, and 6 as normal logical volumes and
assigns them their own drive identifiers during the system boot process.
Partition type 5 can contain multiple logical volumes and has a special
extended boot record that describes each volume. The FORMAT utility
initializes MS-DOS fixed-disk partitions, creating the file system within
the partition (boot record, file allocation table, root directory, and files
area) and optionally placing a bootable copy of the operating system in
the file system.

Figure 10-11 contains a partial hex dump of a master block from a fixed
disk formatted under PC-DOS version 3.3. This dump illustrates the parti­
tion descriptors for a normal partition with a 16-bit FAT and an extended
partition.

Type byte for partition 1 Active (bootable) partition flag

0180 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 0 00 00 00 00
OlAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 00
01B0 00
OlCO 01 02 1
0100 C D1 FD 54 00 01 00 02 53 00 00 00
OlEO O 00 00 00 00 00 00 00 00 00 00 00 00

O!FO 00 00 00 00 00 00 00 00 00 00 00 00 00 OOr
Type byte for partition 2 Signature word First partition entry

Second partition entry
Third partition entry
Fourth partition entry

Figure 10-11. A partial hex dump of a master block from a fixed disk formatted
under PC-DOS version 3.3. This disk contains two partitions. The first partition has a
16-bit FAT and is marked "active" to indicate that it contains a bootable copy of PC­
DOS The second partition is an "extended" partition. The third and fourth partition
entries are not used in this example.

Disk Internals 193

Chapter11

Memory Management

Current versions of MS-DOS can manage as much as 1 megabyte of con­
tiguous random-access memory. On IBM PCs and compatibles, the
memory occupied by MS-DOS and other programs starts at address 0000H
and may reach as high as address 09FFFFH; this 640 KB area of RAM is
sometimes referred to as conventional memory. Memory above this ad­
dress is reserved for ROM hardware drivers, video refresh buffers, and the
like. Computers that are not IBM compatible may use other memory
layouts.

The RAM area under the control of MS-DOS is divided into two major
sections:

■ The operating-system area

■ The transient-program area

The operating-system area starts at address 0000H-that is, it occupies
the lowest portion of RAM. It holds the interrupt vector table, the operat­
ing system proper and its tables and buffers, any additional installable
drivers specified in the CONFIG.SYS file, and the resident part of the
COMMAND.COM command interpreter. The amount of memory oc­
cupied by the operating-system area varies with the version of MS-DOS
used, the number of disk buffers, the size of installed device drivers, and
so forth.

The transient-program area (TPA), sometimes called the memory arena,
is the remainder of memory above the operating-system area. The
memory arena is dynamically allocated in blocks called arena entries.
Each arena entry has a special control structure called an arena header,
and all of the arena headers are chained together. Three MS-DOS Int 21H
functions allow programs to allocate, resize, and release blocks of
memory from the TPA:

Function Actwn

48H Allocate memory block.
49H Release memory block.
4AH Resize memory block.

MS-DOS itself uses these functions when loading a program from disk at
the request of COMMAND.COM or another program. The EXEC function,
which is the MS-DOS program loader, calls Int 21H Function 48H to allo­
cate a memory block for the loaded program's environment and another
for the program itself and its program segment prefix. It then reads the
program from the disk into the assigned memory area. When the program
terminates, MS-DOS calls Int 21H Function 49H to release all memory
owned by the program.

196 Programming/or MS-DOS

Transient programs can also employ the MS-DOS memory-management
functions to dynamically manage the memory available in the TPA. Proper
use of these functions is one of the most important criteria of whether a
program is well behaved under MS-DOS. Well-behaved programs are
most likely to be portable to future versions of the operating system and
least likely to cause interference with other processes under multitasking
user interfaces such as Microsoft Windows.

Using the Memory-Allocation Functions
The memory-allocation functions have two common uses:

■ To shrink a program's initial memory allocation so that there is enough
room to load and execute another program under its control.

■ To dynamically allocate additional memory required by the program
and to release the same memory when it is no longer needed.

Shrinking the Initial Memory Allocation
Although many MS-DOS application programs simply assume they own
all memory, this assumption is a relic of MS-DOS version 1 (and CP /M),
which could support only one active process at a time. Well-behaved MS­
DOS programs take pains to modify only memory that they actually own
and to release any memory that they don't need.

Unfortunately, under current versions of MS-DOS, the amount of memory
that a program will own is not easily predicted in advance. It turns out that
the amount of memory allocated to a program when it is first loaded de­
pends upon two factors:

■ The type of file the program is loaded from

■ The amount of memory available in the TPA

MS-DOS always allocates all of the largest available memory block in the
TPA to programs loaded from .COM (memory-image) files. Because .COM
programs contain no file header that can pass segment and memory-use
information to MS-DOS, MS-DOS simply assumes the worst case and gives
such a program everything. MS-DOS will load the program as long as
there is an available memory block as large as the size of the file plus 256
bytes for the PSP and 2 bytes for the stack. The .COM program, when it
receives control, must determine whether enough memory is available to
carry out its functions.

Memory Management 197

main

MS-DOS uses more complicated rules to allocate memory to programs
loaded from .EXE files. First, of course, a memory block large enough to
hold the declared code, data, and stack segments must be available in the
TPA. In addition, the linker sets two fields in a .EXE file's header to inform
MS-DOS about the program's memory requirements. The first field,
MIN _ALLOC, defines the minimum number of paragraphs required by
the program, in addition to those for the code, data, and stack segments.
The second, MAX_ALLOC, defines the maximum number of paragraphs
of additional memory the program would use if they were available.

When loading a .EXE file, MS-DOS first attempts to allocate the number of
paragraphs in MAX_ALLOC plus the number of paragraphs required by
the program itself. If that much memory is not available, MS-DOS assigns
all of the largest available block to the program, provided that this is at
least the amount specified by MIN _ALLOC plus the size of the program
image. If that condition is not satisfied, the program cannot be executed.

After a .COM or .EXE program is loaded and running, it can use Int 21H
Function 4AH (Resize Memory Block) to release all the memory it does
not immediately need. This is conveniently done right after the program
receives control from MS-DOS, by calling the resize function with the seg­
ment of the program's PSP in the ES register and the number of para­
graphs that the program requires to run in the BX register (Figure 11-1).

org 100h

proc near

mov sp,offset stk.

mov ah,4ah

entry point from MS-DOS
DS, ES - PSP address

COM program must move
stack. to safe area

release extra memory ...
function 4Ah -
resize memory block.

(continued)

Figure 11-1. An example of a .COM program releasing excess memory after it
receives control from MS-DOS. Int 21H Function 4AH is called with ES pointing to the
program '.5 PSP and BX containing the number of paragraphs that the program needs
to execute. In this case, the new size for the program's memory block is calculated as
the program image size plus the size of the PSP (256 bytes), rounded up to the next
paragraph .. EXE programs use similar code.

198 Programming/or MS-DOS

Figure 11-1. continued

; BX - paragraphs to keep
mov bx,(offset stk - offset main+ lOFH) / 16
int 21h transfer to MS-DOS

jc error ; jump if resize failed

main endp

stk
dw
equ

end

64 dup (?) ,

$

main

new stack area
new base of stack

defines entry point

Dynamic Allocation of Additional Memory
When a well-behaved program needs additional memory space-for an
I/ O buffer or an array of intermediate results, for example-it can call Int
21H Function 48H (Allocate Memory Block) with the desired number of
paragraphs, If a sufficiently large block of unallocated memory is avail­
able, MS-DOS returns the segment address of the base of the assigned area
and clears the carry flag (0), indicating that the function was successful,

If no unallocated block of sufficient size is available, MS-DOS sets the
carry flag (1), returns an error code in the AX register, and returns the size
(in paragraphs) of the largest block available in the BX register (Figure
11-2), In this case, no memory has yet been allocated. The program can
use the value returned in the BX register to determine whether it can con­
tinue in a "degraded" fashion, with less memory. If it can, it must call Int
21H Function 48H again to allocate the smaller memory block

When the MS-DOS memory manager is searching the chain of arena
headers to satisfy a memory-allocation request, it can use one of the fol­
lowing strategies:

■ First fit: Use the arena entry at the lowest address that is large enough
to satisfy the request.

■ Best fit: Use the smallest arena entry that will satisfy the request,
regardless of its location,

■ Last fit : Use the arena entry at the highest address that is large enough
to satisfy the request.

Memory Management 199

mov ah,48h function 48h - allocate mem block
mov bx,0800h 800h paragraphs - 32 KB
int 21h transfer to MS-DOS
jc error jump if allocation failed
mov buff_seg,ax save segment of allocated block

mov es,buff_seg ES:DI - address of block
xor di , di
mov cx,08000h store 32,768 bytes
mov al ,Offh fi 11 buffer with -ls
cld
rep stosb now perform fast fill

mov cx,08000h length to write, bytes
mov bx.handle handle for prev opened fi 1 e
push ds save our data segment
mov ds,buff_s eg let OS:DX - buffer address
mov dx,O
mov ah,40h function 40h - write
int 21h transfer to MS-DOS
pop ds restore our data segment
jc error jump if write failed

mov es,buff_s eg ES - seg of prev allocated block
mov ah,49h function 49h - release mem block
int 21h transfer to MS-DOS
jc error jump if release failed

error:

handle dw 0 file handle
buff_seg dw 0 segment of allocated block

Figure 11-2. Example of dynamic memory allocation. The program requests a 32 KB
memory block from MS-DOS, fills it with-ls, writes it to disk, and then releases it.

200 Programming for MS-DOS

If the arena entry selected is larger than the size requested, MS-DOS di­
vides it into two parts: one block of the size requested, which is assigned
to the program that called Int 21H Function 48H, and an unowned block
containing the remaining memory.

The default MS-DOS allocation strategy is first fit. However, under MS­
DOS versions 3.0 and later, an application program can change the strat­
egy with Int 21H Function 58H.

When a program is through with an allocated memory block, it should use
Int 21H Function 49H to release the block. If it does not, MS-DOS will
automatically release all memory allocations for the program when it
terminates.

Arena Headers
Microsoft has not officially documented the internal structure of arena
headers for the outside world at present. This is probably to deter pro­
grammers from trying to manipulate their memory allocations directly in­
stead of through the MS-DOS functions provided for that purpose.

Arena headers have identical structures in MS-DOS versions 2 and 3. They
are 16 bytes (one paragraph) and are located immediately before the
memory area that they control (Figure 11-3). An arena header contains the
following information:

■ A byte signifying whether the header is a member or the last entry in
the entire chain of such headers

■ A word indicating whether the area it controls is available or whether it
already belongs to a program (if the latter, the word points to the pro­
gram's PSP)

■ A word indicating the size (in paragraphs) of the controlled memory
area (arena entry)

MS-DOS inspects the chain of arena headers whenever the program re­
quests a memory-block allocation, modification, or release function, or
when a program is EXEC'd or terminated. If any of the blocks appear to
be corrupted or if the chain is broken, MS-DOS displays the dreaded
message

Memory allocation error

and halts the system.

Memory Management 201

In the example illustrated in Figure 11-3, COMMAND.COM originally
loaded PROGRAMJ.COM into the TPA and, because it was a .COM file,
COMMAND.COM allocated it all of the TPA, controlled by arena header
#l. PROGRAM1.COM then used Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation to the amount it actually needed to
run and loaded and executed PROGRAM2.EXE with the EXEC function
Ont 21H Function 4BH). The EXEC function obtained a suitable amount of
memory, controlled by arena header #2, and loaded PROGRAM2.EXE
into it. PROGRAM2.EXE, in turn, needed some additional memory to
store some intermediate results, so it called Int 21H Function 48H (Allo­
cate Memory Block) to obtain the area controlled by arena header #3. The
highest arena header (#4) controls all of the remaining TPA that has not
been allocated to any program.

Unowned RAM controlled by header #4

Arena header #4

Memory area controlled by header #3; additional
storage dynamically allocated by PROGRAM2.EXE

Arena header #3

Memory area controlled by header #2,
containing PROGRAM2.EXE

Arena header #2

Memory area controlled by header #l,
containing PROGRAMl.COM

Arena header #l

◄ TopofRAM
controlled by MS-DOS

◄ Bottom of transient-
program area

Figure 11-3. An example diagram of MS-DOS arena headers and the transient­
program area. The environment blocks and their associated headers have been
omitted from this figure to increase its clarity.

202 Programming/or MS-DOS

Lotus/Intel/Microsoft Expanded Memory
When the IBM Personal Computer and MS-DOS were first released, the
640 KB limit that IBM placed on the amount of RAM that could be directly
managed by MS-DOS seemed almost unimaginably huge. But as MS-DOS
has grown in both size and capabilities and the popular applications have
become more powerful, that 640 KB has begun to seem a bit crowded.
Although personal computers based on the 80286 and 80386 have the po­
tential to manage up to 16 megabytes of RAM under operating systems
such as MS OS/2 and XENIX, this is little comfort to the millions of users
of 8086/8088-based computers and MS-DOS.

At the spring COMDEX in 1985, Lotus Development Corporation and Intel
Corporation jointly announced the Expanded Memory Specification 3.0
(EMS), which was designed to head off rapid obsolescence of the older
PCs because of limited memory. Shortly afterward, Microsoft announced
that it would support the EMS and would enhance Microsoft Windows to
use the memory made available by EMS hardware and software. EMS ver­
sions 3.2 and 4.0, released in fall 1985 and summer 1987, expanded support
for multitasking operating systems.

The LIM EMS (as it is usually known) has been an enormous success. EMS
memory boards are available from scores of manufacturers, and "EMS­
aware" software- especially spreadsheets, disk caches, and terminate­
and-stay-resident utilities-has become the rule rather than the
exception.

What Is Expanded Memory?
The Lotus/ Intel/Microsoft Expanded Memory Specification is a functional
definition of a bank-switched memory-expansion subsystem. It consists
of hardware expansion modules and a resident driver program specific to
those modules. In EMS versions 3.0 and 3.2, the expanded memory is
made available to application software as 16 KB pages mapped into a con­
tiguous 64 KB area called the page frame , somewhere above the main
memory area used by MS-DOS/ PC-DOS (0-640 KB). The exact location of
the page frame is user configurable, so it need not conflict with other
hardware options. In EMS version 4.0, the pages may be mapped
anywhere in memory and can have sizes other than 16 KB.

The EMS provides a uniform means for applications to access as much as 8
megabytes of memory (32 megabytes in EMS 4.0). The supporting soft­
ware, which is called the Expanded Memory Manager (EMM), provides a
hardware-independent interface between application software and the
expanded memory board(s). The EMM is supplied in the form of an

Memory Management 203

installable device driver that you link into the MS-DOS/PC-DOS system
by adding a line to the CONFIG.SYS file on the system boot disk.

Internally, the Expanded Memory Manager consists of two major por­
tions, which may be referred to as the driver and the manager. The
driver portion mimics some of the actions of a genuine installable device
driver, in that it includes initialization and output status functions and a
valid device header. The second, and major, portion of the EMM is the
true interface between application software and the expanded-memory
hardware. Several classes of services are provided:

■ Verification of functionality of hardware and software modules

■ Allocation of expanded-memory pages

■ Mapping of logical pages into the physical page frame

■ Deallocation of expanded-memory pages

■ Support for multitasking operating systems

Application programs communicate with the EMM directly, by means of
software Int 67H. MS-DOS versions 3.3 and earlier take no part in (and in
fact are completely oblivious to) any expanded-memory manipulations
that may occur. MS-DOS version 4.0 and Microsoft Windows, on the other
hand, are "EMS-aware" and can use the EMS memory when it is available.

Expanded memory should not be confused with extended memory. Ex­
tended memory is the term used by IBM to refer to the memory at physical
addresses above 1 megabyte that can be accessed by an 80286 or 80386
CPU in protected mode. Current versions of MS-DOS run the 80286 and
80386 in real mode (8086-emulation mode), and extended memory is
therefore not directly accessible.

Checking for Expanded Memory
An application program can use either of two methods to test for the exis­
tence of the Expanded Memory Manager:

■ Issue an open request (Int 21H Function 3DH) using the guaranteed
device name of the EMM driver: EMMXXXXO. If the open function
succeeds, either the driver is present or a file with the same name coin­
cidentally exists on the default disk drive. To rule out the latter, the
application can use IOCTL (Int 21H Function 44H) subfunctions OOH
and 07H to ensure that EMM is present. In either case, the application
should then use Int 21H Function 3EH to close the handle that was ob­
tained from the open function, so that the handle can be reused for
another file or device.

204 Programming/or MS-DOS

■ Use the address that is found in the Int 67H vector to inspect the device
header of the presumed EMM. Interrupt handlers and device drivers
must use this method. If the EMM is present, the name field at off set
0AH of the device header contains the string EMMXXXXO. This ap­
proach is nearly foolproof and avoids the relatively high overhead of
an MS-DOS open function. However, it is somewhat less well behaved
because it involves inspection of memory that does not belong to the
application.

These two methods of testing for the existence of the Expanded Memory
Manager are illustrated in Figures 11-4 and 11-5.

mov dx,seg emm_name
mov ds,dx
mov dx,offset emm_name
mov ax,3d00h

int 21h
jc error

mov bx, ax
mov ax,4400h

int 21h
jc error
and dx,80h
jz error

mov ax,4407h

int 21h
jc error
or al . a 1
jz error

attempt to "open" EMM ...
DS:DX - address of name
of Expanded Memory Manager

function 3dh, mode - OOh
- open, read only
transfer to MS-DOS
jump if open failed

open succeeded, be sure
it was not a file ...
BX - handle from open
function 44h subfunction OOh
- IOCTL get device information
transfer to MS-DOS
jump if IOCTL call failed
bit 7 - 1 if character device
jump if it was a fil~

EMM is present, be sure
it is available ...
(BX still contains handle)
function 44h subfunction 07h
- IOCTL get output status
transfer to MS -DOS
jump if IOCTL call failed
test device status
if AL - 0 EMM is not avail

Figure 11-4. Testing for the Expanded Memory Manager by means of the MS-DOS
open and IOCTL functions.

(continued)

Memory Management 205

Figure 11-4. continued

mov ah,3eh
int 21h
jc error

emm_name db 'EMMXXXXO' ,0

emm_ int equ 67h

mov al ,emm_int
mov ah,35h
int 21h

mov di, 10

mov si, seg emm_
mov ds, s i

name

now close handle ...
(BX still contains handle)
function 3eh - close
transfer to MS-DOS
jump if close failed

guaranteed device name for
Expanded Memory Manager

Expanded Memory Manager
software interrupt

first fetch contents of
EMM interrupt vector ...
AL - EMM int number
function 35h - get vector
transfer to MS-DOS
now ES:BX - handler address

assume ES:0000 points
to base of the EMM ...
ES:DI - address of name
field in device header
DS:SI - EMM driver name

mov si, offset emm_name
mov cx,B length of name field
cld
repz cmpsb compare names . . .
jnz error jump if driver absent

emm_name db 'EMMXXXXO' guaranteed device name for
Expanded Memory Manager

206

Figure 11-5. Testing/or the Expanded Memory Manager lYy inspection of the name
field in the driver's device header.

Programming/or MS-DOS

Using Expanded Memory
After establishing that the memory-manager software is present, the ap­
plication program communicates with it directly by means of the "user in­
terrupt" 67H, bypassing MS-DOS/ PC-DOS. The calling sequence for the
EMM is as follows:

mov ah.function

int 67h

AH determines service type
l oad other registers with
values specific to the
requested service

In general, AH contains the EMM function number, AL holds the subfunc­
tion number (if any), BX holds a number of pages (if applicable), and DX
contains an EMM handle. Registers DS:SI and ES:DI are used to pass the
addresses of arrays or buffers. Section IV of this book, "Lotus/Intel/
Microsoft EMS Functions Reference," details each of the expanded
memory functions.

Upon return from an EMM function, the AH register contains zero if the
function was successful; otherwise, it contains an error code with the most
significant bit set (Figures 11-6 and 11-7). Other values are typically
returned in the AL and BX registers or in a user-specified buffer.

Errorcode

OOH
80H

81H
82H
83H
84H
85H
86H
87H

88H

Meaning

Function successful.
Internal error in Expanded Memory Manager software (could be

caused by corrupted memory image of driver).
Malfunction in expanded-memory hardware.
Memory manager busy.
Invalid handle.
Function requested by application not defined.
No more handles available.
Error in save or restore of mapping context.
Allocation request specified more logical pages than physically

available in system; no pages allocated.
Allocation request specified more logical pages than currently

available in system (request does not exceed physical pages
that exist, but some are already allocated to other handles);
no pages allocated.

(continued)

Figure 11-6. Expanded Memory Manager error codes common to EMS versions 3.0,
3.2, and 4.0. After a call toEMM, the AH register contains zero if the function was
successful or an error code in the range B0H through BFH if the function failed.

Memory Management 207

Figure 11-6. continued

Errorcode

89H
BAH

8BH

SCH
BDH

8EH

BFH

Errorcode

90H
91H
92H

93H

94H

95H
96H
97H

98H
99H
9AH

9BH

9CH

9DH

Meaning

Zero pages; cannot be allocated.
Logical page requested to be mapped located outside range of

logical pages assigned to handle.
Illegal physical page number in mapping request (not in range

0-3).
Page-mapping hardware-state save area full.
Save of mapping context failed; save area already contains context

associated with requested handle.
Restore of mapping context failed; save area does not contain

context for requested handle.
Subfunction parameter not defined.

Meaning

Attribute type not defined.
Feature not supported.
Source and destination memory regions have same handle and

overlap; requested move was performed, but part of source
region was overwritten.

Specified length for source or destination memory region is longer
than actual allocated length.

Conventional-memory region and expanded-memory region
overlap.

Specified offset is outside logical page.
Region length exceeds 1 MB.
Source and destination memory regions have same handle and

overlap; exchange cannot be performed.
Memory source and destination types undefined.
This error code currently unused.
Alternate map or DMA register sets supported, but the alternate

register set specified is not supported.
Alternate map or DMA register sets supported, but all alternate

register sets currently allocated.
Alternate map or DMA register sets not supported, and specified

alternate register set not zero.
Alternate map or DMA register sets supported, but alternate

register set specified is either not defined or not allocated.

(continued)

Figure 11-7. Expanded Memory Manager error codes unique to EMS version 4.0.
Most of these errors are related to the EMS functions for use by operating systems and
would not normally be encountered by application programs.

208 Programming/or MS-DOS

Figure 11-7, continued

Errorcode

9EH
9FH

AOH
AlH
A2H

A3H

A4H

Meaning

Dedicated OMA channels not supported.
Dedicated OMA channels supported, but specified OMA

channel not supported.
No handle found for specified name.
Handle with this name already exists.
Memory address wrap; sum of the source or destination

region base address and length exceeds 1 MB.
Invalid pointer passed to function, or contents of source array

corrupted.
Access to function denied by operating system.

An application program that uses expanded memory should regard that
memory as a system resource, like a file or a device, and employ only the
documented EMM services to allocate, access, and release expanded­
memory pages. Such a program can use the following general strategy:

1. Establish the presence of the Expanded Memory Manager by one of
the two methods demonstrated in Figures 11-4 and 11-5.

2. After the driver is known to be present, check its operational status
with EMS Function 40H.

3. Check the version number of EMM with EMS Function 46H, to ensure
that all services the application will request are available.

4. Obtain the segment of the page frame used by EMM with EMS Func­
tion 41H.

5. Allocate the desired number of expanded-memory pages with EMS
Function 43H. If the allocation is successful, EMM returns a handle that
the application can use to refer to the expanded-memory pages that it
owns. This step is exactly analogous to opening a file and using the
handle obtained from the open function for read/write operations on
the file.

6. If the requested number of pages are not available, the application can
query EMM for the actual number of pages available (EMS Function
42H) and determine whether it can continue.

7. After the application has successfully allocated the needed number of
expanded-memory pages, it uses EMS Function 44H to map logical
pages in and out of the physical page frame in order to store and
retrieve data in expanded memory.

Memory Management 209

8. When the program finishes using its expanded-memory pages, it must
release them by calling EMS Function 45H. Otherwise, the pages will
be lost to use by other programs until the system is restarted.

Figure 11-8 shows a skeleton program that illustrates this general approach.

An interrupt handler or device driver that uses EMS follows the same gen­
eral procedure outlined in steps 1 through 8, with a few minor variations.
It may need to acquire an EMS handle and allocate pages before the
operating system is fully functional; in particular, you cannot assume that
the MS-DOS Open File or Device, IOCTL, and Get Interrupt Vector func­
tions are available. Thus, such a handler or driver must use a modified ver­
sion of the "get interrupt vector" technique (Figure 11-5) to test for the
existence of EMM, fetching the contents of the Int 67H vector directly.

A device driver or interrupt handler typically owns its expanded-memory
pages permanently (until the system is restarted) and never deallocates
them. Such a program must also take care to save and restore EMM's page­
mapping context (EMS Functions 47H and 48H) whenever it accesses
expanded memory, so that use of EMS by a foreground program will not
be disturbed.

The EMM relies on the good behavior of application software to avoid the
corruption of expanded memory. If several applications that use expand­
ed memory are running under a multitasking manager such as Microsoft
Windows and one or more of them does not abide strictly by EMM con­
ventions, the data of some or all of the applications may be destroyed.

mov ah,40h test EMM status
int 67h
or ah.ah
jnz error jump if bad status from EMM

mov ah,46h check EMM version
int 67h
or ah.ah
jnz error jump if couldn't get version

cmp al,030h make sure at least ver 3.0
jb error jump if wrong EMM version

(continued)

Figure 11-8. A program illustrating the general strategy for using expanded memory.

210 Programming for MS-DOS

Figure 11-8. continued

mov ah,41h
int 67h
or ah.ah
jnz error
mov page_frame,bx

mov ah,42h
int 67h
or ah.ah
jnz error
mov total_pages,dx
mov avail_pages,bx
or bx,bx
jz error

mov ah,43h
mov bx,needed_pages
int 67h
or ah.ah
jnz error

mov emm_handle,dx

mov bx,log_page
mov al ,phys_page
mov dx ,emm_handle
mov ah,44h

int 67h
or ah.ah
jnz error

mov dx,emm_handle
mov ah,45h
int 67h
or ah.ah
jnz error

get page frame segment

jump if failed to get frame
save segment of page frame

get number of available pages

jump if get pages error
save total EMM pages
save available EMM pages

abort if no pages available

try to allocate EMM pages

if allocation is successful

jump if allocation failed

save handle for allocated pages

now we are ready for other
processing using EMM pages

map in EMS memory page . . .
BX<- EMS logical page number
AL<- EMS physical page (0-3)
EMM handle for our pages
function 44h - map EMS page

jump if mapping error

program ready to terminate,
give up allocated EMM pages ...
handle for our pages
EMS function 45h - release pages

jump if release failed

Memory Management 211

Extended Memory
Extended memory is RAM storage at addresses above 1 megabyte
(l00000H) that can be accessed by an 80286 or 80386 processor running in
protected mode. IBM PC/ AT- and PS/2-compatible machines can
(theoretically) have as much as 15 MB of extended memory installed, in
addition to the usual 1 MB of conventional memory.

Protected-mode operating systems such as Microsoft XENIX or MS OS/2
can use extended memory for execution of programs. MS-DOS, on the
other hand, runs in real mode on an 80286 or 80386,·and programs run­
ning under its control cannot ordinarily execute from extended memory
or even address that memory for storage of data. However, the ROM BIOS
contains two routines that allow real-mode programs restricted access to
extended memory:

ROM BIOSfa:nction

Int 15H Function 87H
Int 15H Function 88H

Action

Move extended-memory block.
Get extended-memory size.

These routines can be used by electronic disks (RAMdisks) and by other
programs that want to use extended memory for fast storage and retrieval
of information that would otherwise have to be written to a slower physi­
cal disk drive. Section III of this book, "IBM ROM BIOS and Mouse Func­
tions Reference," documents both of these functions.

You should use these ROM BIOS routines with caution. Data stored in ex­
tended memory is, of course, volatile; it is lost if the machine is turned off.
The transfer of data to or from extended memory involves a switch from
real mode to protected mode and back, which is a relatively slow process
on 80286-based machines; in some cases it is only marginally faster than
actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended-memory functions are not compatible with the
MS-DOS compatibility mode of MS OS/2.

Finally, a major deficit in these ROM BIOS functions is that they do not
make any attempt to arbitrate between two or more programs or drivers
that are using extended memory for temporary storage. For example, if an
application program and an installed RAMdisk driver attempt to put data
in the same area of extended memory, no error will be returned to either
program, but the data of one or both may be destroyed.

Figure 11-9 shows an example of the code necessary to transfer data to and
from extended memory.

212 Programming/or MS-DOS

bmdt db

buffl db
buff2 db

mov
mov
mov
mov

30h dup (0)

80h dup ('?')

80h dup (0)

dx, 10h
ax,0
bx,seg buffl
ds,bx

mov bx.offs et buffl
mov
mov
mov
mov
call

cx,BDh
si ,seg bmdt
es,si
si ,offset bmdt
putb 1 k

block move descriptor table

source buffer
de s tination buffer

copy 'buffl' to extended­
memory address 100000h
DX:AX - destination
extended-memory address
DS:BX - source conventional­
memory address

ex - bytes to move
ES:Sl - block move
descriptor table

request transfer

fill buff2 from extended­
memory address 100000h

mov dx,l0h DX:AX - source extended-
mov ax,0 memory address
mov bx ,seg buff2 DS:BX - destinati on
mov ds,bx conventional-memory address
mov bx.offset buff2
mov cx,80h ex - bytes to move
mov s i ,seg bmdt ES:SI - block move
mov es,si de scriptor table
mov s i ,offset bmdt
call getbl k request transfer

(continued)

Figure 11-9. Moving blocks of data between conventional memory and extended
memory, using the ROM BiOS extended-memory fu nctions. For additional informa-
tion on the f ormat of the block move descriptor table, see the entry for Int 15H
Function 87H in Section III of this book, ''IBM ROM BIOS and Mouse Functions Refer-
ence. " Note that you must specify the extended-memory address as a 32-bit linear
address rather than as a segment and offset.

Memory Management 213

Figure 11-9. continued

getblk proc near

mov es:[si+lOh],cx
mov es:[si+lBh],cx

transfer block from extended
memory to real memory
call with
DX:AX - source linear 32-bit

extended-memory address
DS:BX - segment and offset

destination address
ex
ES:SI

- length in bytes
- block move descriptor

table
returns
AH - D if transfer DK

store length into descriptors

: store access rights bytes
mov byte ptr es:[si+l5h],93h
mov byte ptr es:[si+ldh],93h

mov es:[si+l2h],ax ; source extended-memory address
mov es:[si+l4h],dl

convert destination segment
and offset to linear address

mov ax,ds segment • 16
mov dx,16
mul dx
add ax.bx + offset -> linear address
adc dx,O

mov es:[si+lah].ax store destination address
mov es : [si+lch],dl

shr cx,1 convert length to words
mov ah,87h int 15h function 87h - block move
int 15h transfer to ROM BIOS

ret back to ca 11 er

getblk endp

214 Programming/or MS-DOS

(continued)

Figure 11-9. continued

putblk proc near

mov es:[si+lOh],cx
mov es : [si+l8h],cx

transfer block from real
memory to extended memory
call with
DX:AX - dest linear 32-bit

extended-memory address
DS:BX - segment and offset

source address
CX - length in bytes
ES:SI - block move descriptor

table
returns
AH - O if transfer OK

store length into descriptors

; store access rights bytes
mov byte ptr es:[si+l5h],93h
mov byte ptr es:[si+ldh],93h

mov
mov

mov
mov
mul
add
adc
mov

es : [si+lah].ax
es:[si+lch],dl

ax,ds
dx,16
dx
ax.bx
dx,O
es:[si+l2h].ax

mov es:[si+l4h],dl

shr
mov
int

ret

putblk endp

cx,l
ah,87h
15h

store destination extended­
memory address

convert source segment and
offset to linear address
segment* 16

+ offset -~ linear address

store source address

convert length to words
int 15h function 87h - block move
transfer to ROH BIOS

back to caller

Memory Management 215

Chapter12

The EXEC Fwiction

The MS-DOS EXEC function (Int 21H Function 4BH) allows a program
(called the parent) to load any other program (called the child) from a
storage device, execute it, and then regain control when the child pro­
gram is finished.

A parent program can pass information to the child in a command line, in
default file control blocks, and by means of a set of strings called the envi­
ronment block (discussed later in this chapter). All files or devices that the
parent opened using the handle file-management functions are duplicated
in the newly created child task; that is, the child inherits all the active
handles of the parent task. Any file operations on those handles by the
child, such as seeks or file 1/0, also affect the file pointers associated with
the parent's handles.

MS-DOS suspends execution of the parent program until the child pro­
gram terminates. When the child program finishes its work, it can pass an
exit code back to the parent, indicating whether it encountered any errors.
It can also, in turn, load other programs, and so on through many levels of
control, until the system runs out of memory.

The MS-DOS command interpreter, COMMAND.COM, uses the EXEC
function to run its external commands and other application programs.
Many popular commercial programs, such as database managers and
word processors, use EXEC to run other programs (spelling checkers, for
example) or to load a second copy of COMMAND.COM, thereby allowing
the user to list directories or copy and rename files without closing all
the application files and stopping the main work in progress. EXEC can
also be used to load program overlay segments, although this use is
uncommon.

Making Memory Available
In order for a parent program to use the EXEC function to load a child
program, sufficient unallocated memory must be available in the transient
program area.

When the parent itself was loaded, MS-DOS allocated it a variable amount
of memory, depending upon its original file type-.COM or .EXE-and
any other information that was available to the loader. (See Chapter 11 for
further details.) Because the operating system has no foolproof way of
predicting how much memory any given program will require, it gener­
ally allocates far more memory to a program than is really necessary.

218 Programming/or MS-DOS

Therefore, a prospective parent program's first action should be to use Int
21H Function 4AH (Resize Memory Block) to release any excess memory
allocation of its own to MS-DOS. In this case, the program should call Int
21H Function 4AH with the ES register pointing to the program segment
prefix of the program releasing memory and the BX register containing
the number of paragraphs of memory to retain for that program. (See
Figure 11-1 for an example.)

□ WARNING A .COM program must move its stack to a safe area if
it is reducing its memory allocation to less than 64 KB.

Requesting the EXEC Function
To load and execute a child program, the parent must execute an Int 21H
with the registers set up as follows:

AH=4BH

AL = OOH (subfunction to load child program)

DS:DX = segment:offset of pathname for child program

ES:BX = segment:offset of parameter block

The parameter block, in turn, contains addresses of other information
needed by the EXEC function.

The Program Name
The name of the program to be run, which the calling program provides
to the EXEC function, must be an unambiguous file specification (no wild­
card characters) and must include an explicit .COM or .EXE extension. If
the path and disk drive are not supplied in the program name, MS-DOS
uses the current directory and default disk drive. (The sequential search
for .COM, .EXE, and .BAT files in all the locations listed in the PATH
variable is not a function of EXEC, but rather of the internal logic of
COMMAND.COM.)

You cannot EXEC a batch file directly; instead, you must EXEC a copy of
COMMAND.COM and pass the name of the batch file in the command
tail, along with the IC switch.

The EXEC Function 219

The Parameter Block
The parameter block contains the addresses of four data objects:

■ The environment block

■ The command tail

■ Two default file control blocks

The space reserved in the parameter block for the address of the environ­
ment block is only 2 bytes and holds a segment address. The remaining
three addresses are all double-word addresses; that is, they are 4 bytes,
with the offset in the first 2 bytes and the segment address in the last
2 bytes.

The Environment Block
Each program that the EXEC function loads inherits a data structure
called an environment block from its parent. The pointer to the segment
of the block is at offset 002CH in the PSP. The environment block holds
certain information used by the system's command interpreter (usually
COMMAND.COM) and may also hold information to be used by transient
programs. It has no effect on the operation of the operating system
proper.

If the environment-block pointer in the EXEC parameter block contains
zero, the child program acquires a copy of the parent program's environ­
ment block. Alternatively, the parent program can provide a segment
pointer to a different or expanded environment. The maximum size of the
environment block is 32 KB, so very large chunks of information can be
passed between programs by this mechanism.

The environment block for any given program is static, implying that if
more than one generation of child programs is resident in RAM, each one
will have a distinct and separate copy of the environment block. Further­
more, the environment block for a program that terminates and stays resi­
dent is not updated by subsequent PATH and SET commands.

You will find more details about the environment block later in this
chapter.

The Command Tail
MS-DOS copies the command tail into the child program's PSP at offset
0080H, as described in Chapter 3. The information takes the form of a
count byte, followed by a string of ASCII characters, terminated by a car­
riage return; the carriage return is not included in the count.

220 Programming/or MS-DOS

The command tail can include filenames, switches, or other parameters.
From the child program's point of view, the command tail should provide
the same information that would be present if the program had been run
by a direct user command at the MS-DOS prompt. EXEC ignores any I/0-
redirection parameters placed in the command tail; the parent program
must provide for redirection of the standard devices before the EXEC
call is made.

The Default File Control Blocks
MS-DOS copies the two default file control blocks pointed to by the EXEC
parameter block into the child program's PSP at offsets 00SCH and 006CH.
To emulate the function of COMMAND.COM from the child program's
point of view, the parent program should use Int 21H Function 29H
(the system parse-filename service) to parse the first two parameters of
the command tail into the default file control blocks before invoking the
EXEC function.

File control blocks are not much use under MS-DOS versions 2 and 3,
because they do not support the hierarchical file structure, but some ap­
plication programs do inspect them as a quick way to get at the first two
switches or other parameters in the command tail. Chapter 8 discusses file
control blocks in more detail.

Returning from the EXEC Function
In MS-DOS version 2, the EXEC function destroys the contents of all regis­
ters except the code segment (CS) and instruction pointer (IP). Therefore,
before making the EXEC call, the parent program must push the contents
of any other registers that are important onto the stack and then save the
stack segment (SS) and stack pointer (SP) registers in variables. Upon
return from a successful EXEC call (that is, the child program has finished
executing), the parent program should reload SS and SP from the variables
where they were saved and then pop the other saved registers off the
stack. In MS-DOS versions 3.0 and later, the stack and other registers are
preserved across the EXEC call in the usual fashion.

Finally, the parent can use Int 21H Function 4DH to obtain the termination
type and return code of the child program.

The EXEC function will fail under the following conditions:

■ Not enough unallocated memory is available to load and execute the
requested program file.

■ The requested program can't be found on the disk.

The EXEC Function 221

■ The transient portion of COMMAND.COM in highest RAM (which
contains the actual loader) has been destroyed and not enough free
memory is available to reload it (PC-DOS version 2 only).

Figure 12-1 summarizes the calling convention for function 4BH. Figure
12-2 shows a skeleton of a typical EXEC call. This particular example uses
the EXEC function to load and run the MS-DOS utility CHKDSK.COM.
The SHELL.ASM program listing later in this chapter (Figure 12-5) pre­
sents a more complete example that includes the use of Int 21H Function
4AH to free unneeded memory.

Called with:

AH
AL

ES:BX
DS:DX

Returns:

= 4BH
• function type

00 - load and execute program
03 • load overlay

= segment:offset of parameter block
• segment:offset of program specification

If call succeeded
Carry flag clear. In MS-DOS version 2, all registers except for CS:IP may be destroyed.
In MS-DOS versions 3.0 and later, registers are preserved in the usual fashion.

If call failed
Carry flag set and AX= error code.

Parameter block format:

If AL - 0 (load and execute program)
Bytes 0- 1 = segment pointer, environment block
Bytes 2- 3 = offset of command-line tail
Bytes 4- 5 • segment of command-line tail
Bytes 6-7 = offset of first file control block to be copied into

Bytes8-9
Bytes 10- 11

Bytes 12-13

If AL = 3 (load overlay)
Bytes 0-1
Bytes 2- 3

newPSP+ SCH
= segment of first file control block
= offset of second file control block to be copied

into new PSP + 6CH
= segment of second file control block

segment address where file will be loaded
= relocation factor to apply to loaded image

Figure 12-1. Calling convention for the EXEC Junction (Int 21H Function 4BH).

222 Programming for MS-DOS

er egu Odh ASCII carriage return

mov stkseg,ss save stack pointer
mov stkptr,sp

mov dx,offset pname DS:DX - program name
mov bx.offset pars ES:BX - param block
mov ax,4b00h function 4bh, subfunction OOh
int 21h transfer to MS-DOS

mov ax,_DATA make our data segment
mov ds,ax ; addressable again
mov es.ax

cl i (for bug in some 8088s)
mov ss,stkseg restore stack pointer
mov sp,stkptr
sti (for bug in some 8088s)

jc error jump if EXEC failed

stkseg dw 0 original ss contents
stkptr dw 0 original SP contents

pname db '\CHKDSK.COM' ,0 pathname of child program

pars dw envir environment segment
dd cmdline command line for child
dd fcbl file control block Ill
dd fcb2 file control block /f2

cmdline db 4,. • . •',er command line for child

fcbl db 0 file control block //1
db 11 dup (.?.)

db 25 dup (0)

(continued)

Figure 12-2. A brief example of the use of the MS-DOS EXEC call, with all necessary
variables and command blocks. Note the protection of the registers for MS-DOS ver­
sion 2 and the masking of interrupts during loading ofSS:SP to circumvent a bug in
some early 8088 CPUs.

The EXEC Function 223

Figure 12-2. continued

fcb2

envir

db 0 file control block #2
db 11 dup (' ')

db 25 dup (0)

segment para 'ENVI R' environment segment

db 'PATH- ' ,0 empty search path
location of COMMAND.COM

db 'COMSPEC-A:\COMMAND.COM' ,0
db O ; end of environment

envir ends

More About the Environment Block
The environment block is always paragraph aligned (starts at an address
that is a multiple of 16 bytes) and contains a series of ASCIIZ strings. Each
of the strings takes the following form:

NAME=PARAMETER

An additional zero byte (Figure 12-3) indicates the end of the entire set of
strings. Under MS-DOS version 3, the block of environment strings and the
extra zero byte are followed by a word count and the complete drive,
path, filename, and extension used by EXEC to load the program.

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 43 4F 4D 53 50 45 43 3D 43 3A SC 43 4F 4D 4D 41 COMSPEC-C:\COMMA
0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 NDcom.PROMPT-Sp
0D20 24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d Sthhh
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT
0040 48 3D 43 3A SC 53 59 53 54 45 4D 3B 43 3A 5C 41 H-C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C:\WS;C:\ETHE
0060 52 4E 45 54 3B 43 3A SC 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 SC 31; C:\FORTH\
0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 20 PC31\FORTH.COM.

Figure 12-3. Dump of a typical environment block under MS-DOS version 3. This
particular example contains the default COMSPEC parameter and two relatively
complex PATH and PROMPT control strings that were set up by entries in the user's
A UTOEXEC file. Note the path and file specification of the executing program follow­
ing the double zeros at offset 0073H that denote the end of the environment block.

224 Programming/or MS-DOS

Under normal conditions, the environment block inherited by a program
will contain at least three strings:

COMSPEC=variable

PATH=variable

PROMPT=variable

MS-DOS places these three strings into the environment block at system
initialization, during the interpretation of SHELL, PATH, and PROMPT
directives in the CONFIG.SYS and AUTOEXEC.BAT files. The strings tell
the MS-DOS command interpreter, COMMAND.COM, the location of its
executable file (to enable it to reload the transient portion), where to
search for executable external commands or program files, and the format
of the user prompt.

You can add other strings to the environment block, either interactively or
in batch files, with the SET command. Transient programs can use these
strings for informational purposes. For example, the Microsoft C Compiler
looks in the environment block for INCLUDE, LIB, and TMP strings to tell
it where to find its #include files and library files and where to build its
temporary working files.

Example Programs: SHELL.C and SHELL.ASM
As a practical example of use of the MS-DOS EXEC function, I have
included a small command interpreter called SHELL, with equivalent
Microsoft C (Figure 12-4) and Microsoft Macro Assembler (Figure 12-5)
source code. The source code for the assembly-language version is con­
siderably more complex than the code for the C version, but the names
and functionality of the various procedures are quite parallel.

SHELL.C Simple extendab le command interpreter
for MS-DOS versions 2.0 and later

Copyright 1988 Ray Duncan

Compile: C>Cl, SHELL . C

Usage: C>SHELL

(continued)

Figure 12-4. SHELL.C: A table-driven command interpreter written in Microsoft C.

The EXEC Function 225

Figure 12-4. continued

#include <stdio.h>
#include <process.h>
#include <stdlib.h>
#include <signal.h>

/• macro to return number of
elements in a structure •/

#define dim(x) (sizeof(x) / sizeof(x[O]))

unsigned intrinsic(char •l;
void extrinsic(char •l;
void get_cmd(char •l;
void get_comspec(char •l;
void break_handler(void);
void cls_cmd(void);
void dos_cmdCvoid);
void exit_cmd(void);

/• function prototypes

struct cmd_table I• intrinsic commands table•/
char •cmd_name;
int <•cmd_fxn)();

commands[] -

"CLS", cls_cmd,
"DOS", dos_cmd,
"EXIT", exit_cmd, };

static char com_spec[64];

main(int argc, char •argv[])
{

char inp_buf[BO];

get_comspec(com_spec);

/ • COMMAND.COM filespec

/• keyboard input buffer

/• get COMMAND . COM filespec • /

I • register new handler
for Ctrl-C interrupts •I

if(signal(SIGINT, break_handler) - (int(•)()) -1)

{

fp uts("Can't capture Control-C Interrupt", stderr);
ex1tC1);

whileCl) /• main interpreter loop

226 Programming/or MS-DOS

(continued)

Figure 12-4. continued

get_cmd(inp_buf): I• get a command
if (! intrinsic(inp_buf) I• if it's intrinsic,

run its subroutine
extrinsic(inp_buf): I• else pass to COMMAND.COM

Try to match user's command with intrinsic command
table. If a match is found, run the associated routine
and return true: else return false.

unsigned intrinsic(char •input_string)
{

int i, j: I• some scratch variables

• I

• I
•I

/• scan off leading blanks •/
whileC•input_string - '\x20') input_string++:

/• search command table •/
for(i-0; i < dim(commands): i++)
{

j - strcmp(commands[i].cmd_name, input_string);

if(j - 0)

(

I• if match, run routine

C•commands[i] . cmd_fxn)():
return(!): /• and return true

return(O); /• no match, return false

Process an extrinsic command by passing it
to an EXEC'd copy of COMMAND.COM.

void extrinsic(char •input_string)
(

int status:

(continued)

The EXEC Function 227

Figure 12-4. continued

status - system(input_string); / • call EXEC function

if(status) / • if failed, display
error message • I

fputs("\nEXEC of COMMAND . COM failed\n", stderr);

Issue prompt, get user's command from standard input,
fold it to uppercase .

void get_cmd(char • buffer)

printfl"\nsh: ") ;
gets(buffer);
strupr(buffer);

/ • display prompt
I • get keyboard entry
/ • fold to uppercase

Get the full path and file specification for COMMAND.COM
from the COMSPEC variable in the environment.

void get_comspec(char • buffer)

228

strcpy(buffer, getenv("COMSPEC"));

if(buffer[O] - NULL)
{

fputs("\nNo COMSPEC in environment\n", stderr);
exit(l);

This Ctrl · C handler keeps SHELL from losing control.
It just reissues the prompt and returns.

Programming / or MS-DOS

(continued)

Figure 12-4. continued

void break_handler(void)

signal(SIGINT, break_handler);
printf("\nsh: ");

/* reset handler
/* display prompt

These are the subroutines for the intrinsic comma nds.

void cls_cmd(void)

printf("\033[2J");

void dos_cmd(void)

int status;

/* CLS command

/* ANSI escape sequence*/

I* to clear screen *'
I* DOS command

/* run COMMAND.COM *I
status - spawnlp(P_WAIT, com_spec. com_spec, NULL);

if (status)
fputs("\nEXEC of COMMAND.COM failed\n",stderr);

void exit_cmd(void) / * EXIT command

exit(O); I* terminate SHELL

name shell
page 55,132
title SHELL.ASM--simple MS-DOS shell

SHELL.ASM Simple extendable command interpreter
for MS-DOS versions 2.0 and later

Copyright 1988 by Ray Duncan

Figure 12-5. SHELL.ASM: A simple table-driven command interpreter written in
Microsoft Macro Assembler.

(continued)

The EXEC Function 229

Figure 12-S. continued

Build: C>HASH SHELL:
C>LINK SHELL:

Usage: C>SHELL:

stdin equ 0
stdout equ 1
stderr equ 2

er equ Odh
lf equ Oah
blank equ 20h
escape equ Olbh

_TEXT segment word public 'CODE'

assume cs: _TEXT,ds: _DATA.ss:STACK

shell proc far

mov ax, _DATA
mov ds,ax

mov ax,es:[002ch]
mov env_seg,ax

mov bx,lOOh
mov ah,4ah

int 21h
jnc shel 11

mov dx,offset msgl
mov cx.msgl_length
jmp shel14

shel 11: call get_comspec
jnc shell 2

mov dx.offset msg3
mov cx,msg3_length
jmp shell 4

230 Programming/or MS-DOS

standard input handle
standard output handle
standard error handle

ASCII carriage return
ASCII l i nefeed
ASCII blank code
ASCII escape code

at entry OS - ES - PSP

make our data segment
addressable

get environment segment
from PSP and save it

release unneeded memory .. .
ES already - PSP segment
BX - paragraphs needed
function 4ah - resize block
transfer to HS-DOS
jump if resize OK

resize failed, display
error message and exit

get COMMAND . COM filespec
jump if it was f ound

COMSPEC not found in
env i ronmen t , display error
message and exit

(continued)

Figure 12-5. continued

shell 2: mov dx,offset shell 3
mov ax,cs
mov ds,ax
mov ax,2523h
int 21h

mov ax, _DATA
mov ds,ax
mov es.ax

shell 3:

call get_cmd

call intrinsic
jnc shell3

call extrinsic
jmp shell 3

shell 4:

mov bx,stderr
mov ah,40h
int 21h

mov ax,4c0lh

int 21h

shell endp

intrinsic proc near

mov

intrl: cmp
je

si ,offset commands

byte ptr [si].0
intr7

set Ctrl-C vector (int 23h)
for this program's handler
DS:DX - handler address
function 25h - set vector
transfer to MS·DOS

make our data segment
addressable again

main interpreter loop

get a command from user

check if intrinsic function
yes, it was processed

no, pass it to COMMAND.COM
then get another command

come here if error detected
DS:DX - message address
ex - message length
BX - standard error handle
function 40h - write
transfer to MS·DOS

function 4ch - terminate
return code - 1
transfer to MS·DOS

decode user entry against
the table "COMMANDS"

with

if match, run the routine,
and return carry - false
if no match, carry - true
return carry - true

DS:Sl - command table

end of table7
jump, end of table found

(continued)

The EXEC Function 231

Figure 12-5. continued

mov di ,offset inp_buf

intr2: cmp byte ptr [di],blank
jne intr3

inc di
jmp intr2

intr3: mov

or
jz

cmp
jnz

inc

al , [s i J

al, a 1

intr4

al , [di J
i ntr6

si
inc di
jmp intr3

intr4: cmp
je
cmp
jne

intr5 : call

clc
ret

intr6: lodsb
or
jnz

add
jmp

intr7: stc
ret

intrinsic endp

byte ptr [di],cr
intr5
byte ptr [di],blank
i ntr6

word ptr [si+l]

al , al
i ntr6

s i, 2

i ntrl

232 Programming/or MS-DOS

no, let DI - addr of user input

scan off any leading blanks

found blank, go past it

next character from table

end of string?
jump, entire string matched

compare to input character
jump, found mismatch

advance string pointers

be sure user's entry
is the same length . ..
next character in entry
must be blank or return

run the command routine

return carry flag - false
as success flag

look for end of this
command string (null byte)
not end yet, loop

skip over routine address
try to match next command

command not matched, exit
with carry - true

(continued)

Figure 12-5. continued

extrinsic proc near

mov a 1. er
mov cx,cmd_ta il _length
mov di ,offset cmd_tail+l
cld
repnz scasb

mov ax.di
sub ax.offset cmd tail+2
mov cmd_tail. al

process extrinsic command
by passing it to
COMMAND.COM with a
"IC" command tail

find length of command
by scan ning for carriage
return

calculate command-tail
length without carriage
return, and store it

set command-tail address
mov word ptr par_cmd,offset cmd_tail
call
ret

extrinsic endp

get_cmd proc

mov
mov
mov
mov
int

mov
mov
mov
mov
int

mov
mov

exec

near

dx,offset prompt
cx,promp t_ length
bx,stdout
ah,40h
21h

dx,offset inp_buf
cx,inp_buf_length
bx,stdin
ah,3fh
21h

si ,offset inp_buf
cx,inp_buf_length

; and run COMMAND.COM

prompt user, get command

display the shell prompt
DS:DX - me ssage address
CX - message length
BX - standard output handle
function 40h - write
transfer to MS -DOS

get entry from user
OS:DX = input buffer
CX = max length to read
BX = standard input handle
function 3fh - read
transfer to MS-DOS

fold lowercase characters
in entry to uppercase

(continued)

The EXEC Function 233

Figure 12-5. continued

gcmdl: cmp byte ptr [si]. 0 a'
jb gcmd2
cmp byte ptr [si].'z'
ja gcmd2
sub byte ptr [si]. 'a'·'A'

gcmd2: inc si
loop gcmdl
ret

get_cmd endp

get_comspec proc near

mov si ,offset com_var
call get_env
jc gcsp2

mov si,offset com_spec

gcspl: mov al ,es:[di]
mov [si].al
inc si
inc di
or al , al
jnz gcspl

gcsp2: ret

get_comspec endp

get_env proc near

234 Programming/or MS-DOS

check if 'a-z'
j ump, not in range
check if 'a-z'
jump, not in range
convert to uppercase

advance through entry

back to call er

get location of COMMAND.COM
fr om environment "COMSPEC-"
returns carry - false
if COMSPEC found
returns carry - true
if no COMSPEC

OS:SI - string to match . . .
search environment block
jump if COMSPEC not found

ES : OI points past"-"
OS:SI - local buffer

copy COMSPEC variable
to local buffer

null char? (turns off carry)
no, get next character

back to caller

search environment
call OS : SI - "NAME-"
uses contents of "ENV SEG"
returns carry - false and ES:OI
pointing to parameter if found,
returns carry - true if no match

(continued)

Figure 12-5. continued

mov es,env_seg
xor di ,di

genvl: mov bx,si
cmp byte ptr es:[di].O
jne genv2

stc
ret

genv2: mov al,[bx]
or al ,al
jz genv3

cmp al ,es:[di]
jne genv4

inc bx
inc di
jmp genv2

genv3:
ret

genv4: xor al. al
mov ex, -1
cld
repnz scasb
jmp genvl

get_env endp

exec proc near

mov stkseg,ss
mov stkptr.sp

mov dx.offset com_spec
mov bx.offset par_blk
mov ax,4bOOh

get environment segment
initialize env offset

initialize pointer to name
end of environment?
jump, end not found

no match. return carry set

get character from name
end of name? (turns off carry)
yes, name matched

compare to environment
jump if match failed

advance environment
and name pointers

match found, carry - clear,
ES:DI - variable

scan forward in environment
for zero byte

go compare next string

call HS-DOS EXEC function
to run COMMAND.COM

save stack pointer

now run COMMAND.COM
DS:DX - filename
ES:BX - parameter block
function 4bh - EXEC
subfunction O -
load and execute

(continued)

The EXEC Function 235

Figure 12-5. continued

int 21h transfer to MS-DDS

mov ax, _DATA make data segment
mov ds.ax addressable again
mov es.ax

cli (for bug in some 8O88s)
mov ss,stkseg restore stack pointer
mov sp,stkptr
sti (for bug in some 8O88s)

jnc execl jump if no errors

display error message
mov dx,offset msg2 DS:DX - message address
mov cx,msg2_length CX - message length
mov bx,stderr BX - standard error handle
mov ah,4Oh function 4Oh - write
int 21h transfer to MS-DOS

execl: ret back to call er

exec endp

els cmd proc near intrinsic CLS command

mov dx,offset cls_str send the ANSI escape
mov cx,cls_str_length sequence to clear
mov bx,stdout the screen
mov ah, 4Oh
int 21h
ret

els _cmd endp

dos_cmd proc near intrinsic DOS command

set null command tail
mov word ptr par_cmd,offset nultail
call exec ; and run COMMAND.COM
ret

dos_cmd endp

(continued)

236 Programming/or MS-DOS

Figure 12-5. continued

exit_cmd proc near

mov ax,4c00h
int 21h

exit_cmd endp

TEXT ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

DATA segment word public 'DATA'

commands equ $

db 'CLS' ,0
dw els cmd -

db 'DOS' ,0
dw dos_cmd

db 'EXIT' ,0
dw exit_cmd

db 0

com_var db 'COMSPEC=' ,0

com_spec db 80 dup (0)

nul tail db O,cr

cmd tail db 0,' IC '

intrinsic EXIT command

call MS-DOS terminate
function with
return code of zero

declare stack segment

"intrinsic" commands table
each entry is ASCIIZ string
followed by the offset
of the procedure to be
executed for that command

end of table

environment variable

COMMAND.COM filespec
from environment COMSPEC=

null command tail for
invoking COMMAND.COM
as another shell

command tail for invoking
COMMAND.COM as a transient

(continued)

The EXEC Function 237

Figure 12-5. continued

inp_buf db 80 dup CO)

inp_buf_l ength equ $-inp_buf
cmd_tail_length equ $-cmd_tail-1

prompt db cr.lf, 'sh: •
prompt_length equ $-prompt

env_seg dw 0

msgl db er, lf

command line from standard input

SHELL's user prompt

segment of environment block

db 'Unable to release memory . •
db er, l f

msgl_length equ $-msgl

msg2 db er, lf

db 'EXEC of COMMANO . COM failed. '
db er, lf

msg2_length equ $-msg2

msg3 db er, lf
db ' No COMSPEC variable in environment.'
db er, lf

msg3_length equ $-msg3

cls_str db escape.• [2J • ANSI escape sequence
cls_str_length equ $-cls_str to clear the screen

EXEC parameter block
par _bl k dw 0 environment segment
par_cmd dd cmd tail command line

dd fcbl file cont ro 1 block /fl
dd fcb2 file control block 112

fcbl db 0 file control block /fl
db 11 dup (' ')

db 25 dup (0)

fcb2 db 0 file control block 112
db 11 dup (' ')

db 25 dup (0)

stkseg dw 0 original ss contents
stkptr dw 0 original SP contents

_DATA ends

end shell

238 Programming/or MS-DOS

The SHELL program is table driven and can easily be extended to provide
a powerful customized user interface for almost any application. When
SHELL takes control of the system, it displays the prompt

sh:

and waits for input from the user. After the user types a line terminated
by a carriage return, SHELL tries to match the first token in the line against
its table of internal (intrinsic) commands. If it finds a match, it calls the
appropriate subroutine. If it does not find a match, it calls the MS-DOS
EXEC function and passes the user's input to COMMAND.COM with the
IC switch, essentially using COMMAND.COM as a transient command
processor under its own control.

As supplied in these listings, SHELL "knows" exactly three internal
commands:

Command

CLS

DOS
EXIT

Action

Uses the ANSI standard control sequence to clear the display
screen and home the cursor.

Runs a copy of COMMAND.COM.
Exits SHELL, returning control of the system to the next lower

command interpreter.

You can quickly add new intrinsic commands to either the C version or the
assembly-language version of SHELL. Simply code a procedure with the
appropriate action and insert the name of that procedure, along with the
text string that defines the command, into the table COMMANDS. In
addition, you can easily prevent SHELL from passing certain "dangerous"
commands (such as MKDIR or ERASE) to COMMAND.COM simply by
putting the names of the commands to be screened out into the intrinsic
command table with the address of a subroutine that prints an error
message.

To summarize, the basic flow of both versions of the SHELL program is
as follows:

1. The program calls MS-DOS Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation, so that the maximum possible
space will be available for COMMAND.COM if it is run as an overlay.
(This is explicit in the assembly-language version only. To keep the ex­
ample code simple, the number of paragraphs to be reserved is coded
as a generous literal value, rather than being figured out at runtime
from the size and location of the various program segments.)

The EXEC Function 239

2. The program searches the environment for the COMSPEC variable,
which defines the location of an executable copy of COMMAND.COM.
If it can't find the COMSPEC variable, it prints an error message and
exits.

3. The program puts the address of its own handler in the Ctrl-C vector
(Int 23H) so that it won't lose control if the user enters a Ctrl-C or
a Ctrl-Break.

4. The program issues a prompt to the standard output device.

5. The program reads a buffered line from the standard input device to
get the user's command.

6. The program matches the first blank-delimited token in the line
against its table of intrinsic commands. If it finds a match, it executes
the associated procedure.

7. If the program does not find a match in the table of intrinsic com­
mands, it synthesizes a command-line tail by appending the user's
input to the IC switch and then EXECs a copy of COMMAND.COM,
passing the address of the synthesized command tail in the EXEC
parameter block.

8. The program repeats steps 4 through 7 until the user enters the com­
mand EXIT, which is one of the intrinsic commands, and which causes
SHELL to terminate execution.

In its present form, SHELL allows COMMAND.COM to inherit a full copy
of the current environment. However, in some applications it may be
helpful, or safer, to pass a modified copy of the environment block so that
the secondary copy of COMMAND.COM will not have access to certain
information.

Using EXEC to Load Overlays
Loading overlays with the EXEC function is much less complex than using
EXEC to run another program. The overlay can be constructed as either a
memory image (.COM) or relocatable (.EXE) file and need not be the same
type as the program that loads it. The main program, called the root seg­
ment, must carry out the following steps to load and execute an overlay:

1. Make a memory block available to receive the overlay. The program
that calls EXEC must own the memory block for the overlay.

240 Programmingfor MS-DOS

2. Set up the overlay parameter block to be passed to the EXEC function.
This block contains the segment address of the block that will receive
the overlay, plus a segment relocation value to be applied to the con­
tents of the overlay file (if it is a .EXE file). These are normally the
same value.

3. Call the MS-DOS EXEC function to load the overlay by issuing an Int
21H with the registers set up as follows:

AH=4BH

AL = 03H (EXEC subfunction to load overlay)

DS:DX = segment:offset of overlay file pathname

ES:BX = segment:offset of overlay parameter block

Upon return from the EXEC function, the carry flag is clear if the over­
lay was found and loaded. The carry flag is set if the file could not be
found or if some other error occurred.

4. Execute the code within the overlay by transferring to it with a far call.
The overlay should be designed so that either the entry point or a
pointer to the entry point is at the beginning of the module after it is
loaded. This technique allows you to maintain the root and overlay
modules separately, because the root module does not contain any
"magical" knowledge of addresses within the overlay segment.

To prevent users from inadvertently running an overlay directly from the
command line, you should assign overlay files an extension other than
.COM or .EXE. It is most convenient to relate overlays to their root seg­
ment by assigning them the same filename but a different extension, such
as .OVL or .OVl, .OV2, and so on.

Figure 12-6 shows the use of EXEC to load and execute an overlay.

mov
mov

bx, 1000h
ah,48h

allocate memory for overlay
get 64 KB (4096 paragraphs)
function 48h - allocate block

Figure 12-6. A code skeleton for loading and executing an overlay with the EXEC
function. The overlay file may be in either. COM or . EXE format .

(continued)

The EXEC Function 241

Figure 12-6. continued

oname

pars

entry

stkseg
stkptr

int
jc

mov
mov

21h
error

pars.ax
pars+2,ax

transfer to MS-DOS
jump if allocation failed

set load address for overlay
set relocation segment for overlay

set segment of entry point
mov word ptr entry+2,ax

mov
mov

mov

stkseg,ss
stkptr,sp

ax,ds
mov es.ax

; save root's stack pointer

set ES - DS

mov dx,offset oname DS:DX - overlay pathname
mov
mov
int

mov
mov

bx.offset pars
ax,4b03h
21h

ax. _DATA
ds,ax

mov es ,ax

ES:BX - parameter block
function 4bh, subfunction 03h
transfer to MS-DOS

make our data segment
addressable again

cli (for bug in some early 8088s)
mov
mov
sti

jc

push
call
pop

db

dw
dw

dd

dw
dw

ss,stkseg
sp,stkptr

error

ds
dword ptr entry
ds

'OVERLAY.OVL',O

0
0

0

0
0

restore stack pointer

(for bug in some early 8088s)

jump if EXEC failed

otherwise EXEC succeeded ...
save our data segment
now call the overlay
restore our data segment

pathname of overlay file

load address (segment) for file
relocation (segment) for file

entry point for overlay

save ss register
save SP register

242 Programming/or MS-DOS

Chapter13

Interrupt Handlers

Interrupts are signals that cause the computer's central processing unit to
suspend what it is doing and transfer to a program called an interrupt han­
dler. Special hardware mechanisms that are designed for maximum speed
force the transfer. The interrupt handler determines the cause of the inter­
rupt, takes the appropriate action, and then returns control to the original
process that was suspended.

Interrupts are typically caused by events external to the central processor
that require immediate attention, such as the following:

■ Completion of an 1/0 operation

■ Detection of a hardware failure

■ "Catastrophes" (power failures, for example)

In order to service interrupts more efficiently, most modem processors
support multiple interrupt types, or levels. Each type usually has a
reserved location in memory, called an interrupt vector, that specifies
where the interrupt-handler program for that interrupt type is located.
This design speeds processing of an interrupt because the computer can
transfer control directly to the appropriate routine; it does not need a
central routine that wastes precious machine cycles determining the
cause of the interrupt. The concept of interrupt types also allows inter­
rupts to be prioritized, so that if several interrupts occur simultaneously,
the most important one can be processed first.

CPUs that support interrupts must also have the capability to block inter­
rupts while they are executing critical sections of code. Sometimes the
CPU can block interrupt levels selectively, but more frequently the effect is
global. While an interrupt is being serviced, the CPU masks all other inter­
rupts of the same or lower priority until the active handler has completed
its execution; similarly, it can preempt the execution of a handler if a dif­
ferent interrupt with higher priority requires service. Some CPUs can even
draw a distinction between selectively masking interrupts (they are
recognized, but their processing is deferred) and simply disabling them
(the interrupt is thrown away).

The creation of interrupt handlers has traditionally been considered one
of the most arcane of programming tasks, suitable only for the elite cadre
of system hackers. In reality, writing an interrupt handler is, in itself,
straightforward. Although the exact procedure must, of course, be cus­
tomized for the characteristics of the particular CPU and operating sys­
tem, the guidelines on the following page are applicable to almost any
computer system.

244 Programming/or MS-DOS

A program preparing to handle interrupts must do the following:

1. Disable interrupts, if they were previously enabled, to prevent them
from occurring while interrupt vectors are being modified.

2. Initialize the vector for the interrupt of interest to point to the pro­
gram's interrupt handler.

3. Ensure that, if interrupts were previously disabled, all other vectors
point to some valid handler routine.

4. Enable interrupts again.

The interrupt handler itself must follow a simple but rigid sequence of
steps:

1. Save the system context (registers, flags, and anything else that the
handler will modify and that wasn't saved automatically by the CPU).

2. Block any interrupts that might cause interference if they were allowed
to occur during this handler's processing. (This is often done automati­

. cally by the computer hardware.)

3. Enable any interrupts that should still be allowed to occur during this
handler's processing.

4. Determine the cause of the interrupt.

5. Take the appropriate action for the interrupt: receive and store data
from the serial port, set a flag to indicate the completion of a disk­
sector transfer, and so forth.

6. Restore the system context.

7. Reenable any interrupt levels that were blocked during this handler's
execution.

8. Resume execution of the interrupted process.

As in writing any other program, the key to success in writing an interrupt
handler is to program defensively and cover all the bases. The main
reason interrupt handlers have acquired such a mystical reputation is that
they are so difficult to debug when they contain obscure errors. Because
interrupts can occur asynchronously-that is, because they can be caused
by external events without regard to the state of the currently executing
process-bugs in interrupt handlers can cause the system as a whole to
behave quite unpredictably.

Interrupt Handlers 245

Interrupts and the Intel 80x86 Family
The Intel 80x86 family of microprocessors supports 256 levels of priori­
tized interrupts, which can be triggered by three types of events:

■ Internal hardware interrupts

■ External hardware interrupts

■ Software interrupts

Internal Hardware Interrupts
Internal hardware interrupts, sometimes called faults, are generated by
certain events encountered during program execution, such as an attempt
to divide by zero. The assignment of such events to certain interrupt num­
bers is wired into the processor and is not modifiable (Figure 13-1).

Interrupt Vector Interrupt
level address trigger 8086/88 80286 80386

OOH OOH-03H Divide-by-zero X X X

OlH 04H-07H Single step X X X

02H 08H-OBH Nonmaskable
interrupt (NMI) X X X

03H OCH-OFH Breakpoint X X X

04H 10H-13H Overflow X X X

OSH 14H-17H BOUND exceeded X X

06H 18H-1BH Invalid opcode X X

07H lCH-lFH Processor extension
not available X X

08H 20H-23H Double fault X X

09H 24H-27H Segment overrun X X

OAH 28H-2BH Invalid task-state
segment X X

OBH 2CH-2FH Segment not present X X

OCH 30H-33H Stack segment
overrun X X

ODH 34H-37H General protection
fault X X

OEH 38H-3BH Page fault X

OFH 3CH-3FH Reserved
lOH 40H-43H Numeric coprocessor

error X X

llH-lFH 44H-7FH Reserved

Figure 13-1. Internal interrupts (faults) on the Intel 8086/88, 80286, and 80386
microprocessors.

246 Programming/or MS-DOS

External Hardware Interrupts
External hardware interrupts are triggered by peripheral device con­
trollers or by coprocessors such as the 8087 / 80287. These can be tied to ei­
ther the CPU's nonmaskable-interrupt (NMI) pin or its maskable-interrupt
(INTR) pin. The NMI line is usually reserved for interrupts caused by such
catastrophic events as a memory parity error or a power failure.

Instead of being wired directly to the CPU, the interrupts from external
devices can be channeled through a device called the Intel 8259A Pro­
grammable Interrupt Controller (PIC). The CPU controls the PIC through
a set of I/0 ports, and the PIC, in turn, signals the CPU through the INTR
pin. The PIC allows the interrupts from specific devices to be enabled and
disabled, and their priorities to be adjusted, under program control.

A single PIC can handle only eight levels of interrupts. However, PICs can
be cascaded together in a treelike structure to handle as many levels as
desired. For example, 80286- and 80386-based machines with a PC/AT­
compatible architecture use two PICs wired together to obtain 16 indi­
vidually configurable levels of interrupts.

INTR interrupts can be globally enabled and disabled with the CPU's STI
and CLI instructions. As you would expect, these instructions have no
effect on interrupts received on the CPU's NMI pin.

The manufacturer of the computer system and/ or the manufacturer of the
peripheral device assigns external devices to specific 8259A PIC interrupt
levels. These assignments are realized as physical electrical connections
and cannot be modified by software.

Software Interrupts
Any program can trigger software interrupts synchronously simply by
executing an INT instruction. MS-DOS uses Interrupts 20H through 3FH
to communicate with its modules and with application programs. (For
instance, the MS-DOS function dispatcher is reached by executing an Int
21H.) The IBM PC ROM BIOS and application software use other inter­
rupts, with either higher or lower numbers, for various purposes (Figure
13-2). These assignments are simply conventions and are not wired into
the hardware in any way.

Interrupt Handlers 247

Interrupt Usage Machine

OOH Divide-by-zero PC,AT,PS/2
0lH Single step PC,AT,PS/2
02H NMI PC,AT,PS/2
03H Breakpoint PC,AT,PS/2
04H Overflow PC,AT,PS/2
05H ROM BIOS PrintScreen PC,AT,PS/2

BOUND exceeded AT,PS/2
06H Reserved PC

Invalid opcode AT,PS/2
07H Reserved PC

80287 /80387 not present AT,PS/2
08H IRQ0 timer tick PC,AT,PS/2

Double fault AT, PS/2
09H IRQl keyboard PC,AT,PS/2

80287 /80387 segment overrun AT,PS/2
0AH IRQ2 reserved PC

IRQ2 cascade from slave 8259A PIC AT,PS/2
Invalid task-state segment (TSS) AT,PS/2

0BH IRQ3 serial communications (COM2) PC,AT,PS/2
Segment not present AT,PS/2

OCH IRQ4 serial communications (COMl) PC,AT,PS/2
Stack segment overflow AT, PS/2

0DH IRQ5 fixed disk PC
IRQ5 parallel printer (LPT2) AT
Reserved PS/2
General protection fault AT,PS/2

0EH IRQ6 floppy disk PC,AT,PS/2
Page fault AT,PS/2

0FH IRQ7 parallel printer (LPTl) PC,AT,PS/2
lOH ROM BIOS video driver PC,AT,PS/2

Numeric coprocessor fault AT,PS/2
UH ROM BIOS equipment check PC,AT,PS/2
12H ROM BIOS conventional-memory size PC,AT,PS/2
13H ROM BIOS disk driver PC,AT,PS/2
14H ROM BIOS communications driver PC,AT,PS/2
15H ROM BIOS cassette driver PC

ROM BIOS VO system extensions AT,PS/2
16H ROM BIOS keyboard driver PC,AT,PS/2
17H ROM BIOS printer driver PC,AT,PS/2
18H ROM BASIC PC,AT,PS/2
19H ROM BIOS bootstrap PC,AT,PS/2

(continued)

Figure 13-2. Interrupts with special significance on the IBM PC, PC/AT, and PS/2
and compatible computers. Note that the IBM ROM BIOS uses several interrupts in the
range OOH-lFH, even though they were reserved by Intel for CPU faults. IRQ numbers
refer to Intel 8259A PIC priority levels.

248 Programming/or MS-DOS

Figure 13-2. continued

Interrupt Usage Machine

lAH ROM BIOS time of day AT,PS/2
lBH ROM BIOS Ctrl-Break PC,AT,PS/2
lCH ROM BIOS timer tick PC,AT,PS/2
lDH ROM BIOS video parameter table PC,AT,PS/2
lEH ROM BIOS floppy-disk parameters PC,AT,PS/2
lFH ROM BIOS font (characters 80H-FFH) PC,AT,PS/2
20H MS-DOS terminate process
21H MS-DOS function dispatcher
22H MS-DOS terminate address
23H MS-DOS Ctrl-C handler address
24H MS-DOS critical-error handler address
25H MS-DOS absolute disk read
26H MS-DOS absolute disk write
27H MS-DOS terminate and stay resident
28H MS-DOS idle interrupt
29H MS-DOS reserved
2AH MS-DOS network redirector
2BH-2EH MS-DOS reserved
2FH MS-DOS multiplex interrupt
30H-3FH MS-DOS reserved
40H ROM BIOS floppy-disk driver (if fixed disk installed) PC,AT,PS/2
41H ROM BIOS fixed-disk parameters PC

ROM BIOS fixed-disk parameters (drive 0) AT,PS/2
42H ROM BIOS default video driver (ifEGA installed) PC,AT,PS/2
43H EGA, MCGA, VGA character table PC,AT,PS/2
44H ROM BIOS font (characters 00H-7FH) PCjr
46H ROM BIOS fixed-disk parameters (drive 1) AT,PS/2
4AH ROM BIOS alarm handler AT,PS/2
5AH Cluster adapter PC,AT
5BH Used by cluster program PC,AT
60H-66H User interrupts PC,AT,PS/2
67H LIM EMS driver PC,AT,PS/2
68H-6FH Unassigned
70H IRQ8 CMOS real-time clock AT,PS/2
71H IRQ9 software diverted to IRQ2 AT,PS/2
72H IRQlO reserved AT,PS/2
73H IRQll reserved AT,PS/2
74H IRQ12 reserved AT

IRQ12 mouse PS/2
75H IRQ13 numeric coprocessor AT,PS/2
76H IRQ14 fixed-disk controller AT,PS/2
77H IRQ15 reserved AT,PS/2
78H-7FH Unassigned
80H-F0H BASIC PC,AT,PS/2
FlH-FFH Not used PC,AT,PS/2

Interrupt Handlers 249

The Interrupt-Vector Table
The bottom 1024 bytes of system memory are called the interrupt-vector
table. Each 4-byte position in the table corresponds to an interrupt type (0
through 0FFH) and contains the segment and offset of the interrupt han­
dler for that level. Interrupts 0 through lFH (the lowest levels) are used for
internal hardware interrupts; MS-DOS uses Interrupts 20H through 3FH;
all the other interrupts are available for use by either external hardware
devices or system drivers and application software.

When an 8259A PIC or other device interrupts the CPU by means of the
INTR pin, it must also place the interrupt type as an 8-bit number (0
through 0FFH) on the system bus, where the CPU can find it. The CPU
then multiplies this number by 4 to find the memory address of the inter­
rupt vector to be used.

Servicing an Interrupt
When the CPU senses an interrupt, it pushes the program status word
(which defines the various CPU flags), the code segment (CS) register, and
the instruction pointer (IP) onto the machine stack and disables the inter­
rupt system. It then uses the 8-bit number that was jammed onto the sys­
tem bus by the interrupting device to fetch the address of the handler from
the vector table and resumes execution at that address.

Usually the handler immediately reenables the interrupt system (to allow
higher-priority interrupts to occur), saves any registers it is going to use,
and then processes the interrupt as quickly as possible. Some external
devices also require a special acknowledgment signal so that they will
know the interrupt has been recognized.

If the interrupt was funneled through an 8259A PIC, the handler must send
a special code called end of interrupt (EOI) to the PIC through its control
port to tell it when interrupt processing is completed. (The EOI has no
effect on the CPU itself.) Finally, the handler executes the special IRET
(INTERRUPT RETURN) instruction that restores the original state of the
CPU flags, the CS register, and the instruction pointer (Figure 13-3).

Whether an interrupt was triggered by an external device or forced by
software execution of an INT instruction, there is no discernible differ­
ence in the system state at the time the interrupt handler receives control.
This fact is convenient when you are writing and testing external interrupt
handlers because you can debug them to a large extent simply by invoking
them with software drivers.

250 Programming/or MS-DOS

pic_ctl equ 20h

sti
push ax
push bx
push ex
push dx
push si
push di
push bp
push ds
push es

mov ax.cs
mov ds,ax

mov al ,20h
mov dx,pic_ctl
out dx,al

pop es
pop ds
pop bp
pop di
pop si
pop dx
pop ex
pop bx
pop ax
i ret

control port for 8259A
interrupt controller

turn interrupts back on,
save registers

make local data addressable

do some stuff appropriate
for this interrupt here

send EOI to 8259A PIC

restore registers

resume previous processing

Figure 13-3. Typical handler for hardware interrupts on the 80x86 family of micro­
processors. In real life, the interrupt handler would need to save and restore only the
registers that it actually modified. Also, if the handler made extensive use of the ma­
chine stack, it would need to save and restore the SS and SP registers of the interrupted
process and use its own local stack.

Interrupt Handlers 251

Interrupt Handlers and MS-DOS
The introduction of an interrupt handler into your program brings with it
considerable hardware dependence. It goes without saying (but I am say­
ing it again here anyway) that you should avoid such hardware depen­
dence in MS-DOS applications whenever possible, to ensure that your
programs will be portable to any machine running current versions of
MS-DOS and that they will run properly under future versions of the
operating system.

Valid reasons do exist, however, for writing your own interrupt handler for
use under MS-DOS:

■ To supersede the MS-DOS default handler for an internal hardware in­
terrupt (such as divide-by-zero, BOUND exceeded, and so forth).

■ To supersede the MS-DOS default handler for a defined system excep­
tion, such as the critical-error handler or Ctrl-C handler.

■ To chain your own interrupt handler onto the default system handler
for a hardware device, so that both the system's actions and your own
will occur on an interrupt. (A typical example of this is the "clock-tick"
interrupt.)

■ To service interrupts not supported by the default MS-DOS device
drivers (such as the serial communications port, which can be used at
much higher speeds with interrupts than with polling).

■ To provide a path of communication between a program that termi-
nates and stays resident and other application software.

MS-DOS provides the following facilities to enable you to install well­
behaved interrupt handlers in a manner that does not interfere with
operating-system functions or other interrupt handlers:

Function

Int 21H Function 25H
Int 21H Function 35H
Int 21H Function 31H

Action

Set interrupt vector.
Get interrupt vector.
Terminate and stay resident.

These functions allow you to examine or modify the contents of the sys­
tem interrupt-vector table and to reserve memory for the use of a handler
without running afoul of other processes in the system or causing memory
use conflicts. Section II of this book, "MS-DOS Functions Reference,"
describes each of these functions in detail, with programming examples.

252 Programming/or MS-DOS

Handlers for external hardware interrupts under MS-DOS must operate
under some fairly severe restrictions:

■ Because the current versions of MS-DOS are not reentrant, a hardware
interrupt handler should never call the MS-DOS functions during the
actual interrupt processing.

■ The handler must reenable interrupts as soon as it gets control, to
avoid crippling other devices or destroying the accuracy of the system
clock.

■ A program should access the 8259A PIC with great care. The program
should not access the PIC unless that program is known to be the only
process in the system concerned with that particular interrupt level.
And it is vital that the handler issue an end-of-interrupt code to the
8259A PIC before performing the IRET; otherwise, the processing of
further interrupts for that priority level or lower priority levels will be
blocked.

Restrictions on handlers that replace the MS-DOS default handlers for in­
ternal hardware interrupts or system exceptions (such as Ctrl-C or critical
errors) are not quite so stringent, but you must still program the handlers
with extreme care to avoid destroying system tables or leaving the operat­
ing system in an unstable state.

The following are a few rules to keep in mind when you are writing an
interrupt driver:

■ Use Int 21H Function 25H (Set Interrupt Vector) to modify the interrupt
vector; do not write directly to the interrupt-vector table.

■ If your program is not the only process in the system that uses this in­
terrupt level, chain back to the previous handler after performing your
own processing on an interrupt.

■ If your program is not going to stay resident, fetch and save the current
contents of the interrupt vector before modifying it and then restore
the original contents when your program exits.

■ If your program is going to stay resident, use one of the terminate-and­
stay-resident functions (preferably Int 21H Function 31H) to reserve
the proper amount of memory for your handler.

■ If you are going to process hardware interrupts, keep the time that in­
terrupts are disabled and the total length of the service routine to an
absolute minimum. Remember that even after interrupts are reenabled
with an STI instruction, interrupts of the same or lower priority remain
blocked if the interrupt was received through the 8259A PIC.

Interrupt Handlers 253

ZERODIV, an Example Interrupt Handler
The listing ZERODIV.ASM (Figure 13-4) illustrates some of the principles
and guidelines on the previous pages. It is an interrupt handler for the
divide-by-zero internal interrupt (type 0). ZERODIV is loaded as a .COM
file (usually by a command in the system's AUTOEXEC file) but makes it­
self permanently resident in memory as long as the system is running.

The ZERODIV program has two major portions: the initialization portion
and the interrupt handler.

The initialization procedure (called init in the program listing) is exe­
cuted only once, when the ZERODIV program is executed from the MS­
DOS level. The init procedure takes over the type O interrupt vector,
prints a sign-on message, then performs a terminate-and-stay-resident
exit to MS-DOS. This special exit reserves the memory occupied by the
ZERODIV program, so that it is not overwritten by subsequent application
programs.

The interrupt handler (called zdiv in the program listing) receives control
when a divide-by-zero interrupt occurs. The handler preserves all regis­
ters and then prints a message to the user asking whether to continue or to
abort the program. We can use the MS-DOS console 1/0 functions within
this particular interrupt handler because we can safely presume that the
application was in control when the interrupt occurred; thus, there should
be no chance of accidentally making overlapping calls upon the operat­
ing system.

If the user enters a C to continue, the handler simply restores all the regis­
ters and performs an IRET (INTERRUPT RETURN) to return control to
the application. (Of course, the results of the divide operation will be use­
less.) If the user enters Q to quit, the handler exits to MS-DOS. Int 21H
Function 4CH is particularly convenient in this case because it allows the
program to pass a return code and at the same time is the only termina­
tion function that does not rely on the contents of any of the segment
registers.

For an example of an interrupt handler for external (communications port)
interrupts, see the TALK terminal-emulator program in Chapter 7. You
may also want to look again at the discussions of Ctrl-C and critical-error
exception handlers in Chapters S and 8.

254 Programming/or MS-DOS

er
lf

name
page
title

zdivide
55,132
ZERODIV--Divide-by-zero handler

ZERODIV.ASM--Terminate-and-stay-resident handler
for divide-by-zero interrupts

Copyright 1988 Ray Duncan

8uil d:

Usage:

equ
equ

C>MASM ZERODIV:
C>LINK ZERODIV:
C>EXE2BIN ZERODIV.EXE ZERODIV.COM
C>DEL ZERODIV.EXE

C>ZERODIV

Odh ASCII carriage
Oah ASCII linefeed

return

beep equ 07h ASCII bell code
backsp equ 08h ASCII backspace code

_TEXT

init

segment

org

assume

proc

mov
mov

int

mov
mov
int

word public 'CODE'

!OOH

cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT

near

dx,offset zdiv
ax,2500h

21h

dx.offset msgl
ah,9
21h

entry point at load time

capture vector for
interrupt zero ...
DS:DX - handler address
function 25h - set vector
interrupt type - 0
transfer to MS-DOS

print sign-on message
DS:DX - message address
function 09h - display string
transfer to MS-DOS

DX - paragraphs to reserve

Figure 13-4. A simple example of an interrrupt handler for use within the MS-DOS
environment. ZERO DIV makes itself permanently resident in memory and handles
the CPU's internal divide-by-zero interrupt.

(continued)

Interrupt Handlers 255

Figure 13-4. continued

mov dx,((offset pgm_len+l5)/16)+10h
mov ax,3100h function 31h - terminate and

stay resident
int 21h

init endp

zdiv proc far

sti

push ax
push bx
push ex
push dx
push si
push di
push bp
push ds
push es

mov
mov

mov
mov
int

ax.cs
ds,ax

dx,offset msg2
ah,9
21h

zdivl: mov ah,1
21h

256

int

or

cmp
je

cmp
je

al ,20h

al.· c •
zdiv3

al,' q'

zdiv2

Programming /or MS-DOS

transfer to MS-DOS

this is the divide-by­
zero interrupt handler

enable interrupts

save registers

make data addressable

display message
"Continue or Quit?"
DS:DX - message address
function 09h - display string
transfer to MS-DOS

function Olh - read keyboard
transfer to MS-DOS

fold char to lowercase

1 s it C or Q?
jump, it• s a C

jump. it· s a a

i 11 ega 1 entry, send beep
and erase the character

(continued)

Figure 13-4. continued

zdiv2:

zdiv3:

mov
mov
int

jmp

mov
int

mov
mov
int

xor
push

dx,offset msg3
ah,9
21h

zdivl

ax,4cffh
21h

dx,offset msg4
ah,9
21h

ax.ax
ax

DS:DX - message address
function 09h - display string
transfer to MS-DOS

try again

user chose "Quit"
terminate current program
with return code - 255

user chose "Continue"
send CR-LF pair
DS:DX - message address
function 09h - print string
transfer to MS-DOS

what CPU type is this?
to find out, we'll put
zero in the CPU flags

popf and see what happens
pushf
pop ax
and
cmp
je

mov

lds

mov
and

cmp
jne

ax,OfOOOh
ax,OfOOOh
zdiv5

bp,sp

bx,[bp+18]

bl, [bx+l)
bx,Oc7h

bl ,6
zdiv4

add word ptr [bp+l8],4
jmp zdiv5

8086/8088 forces
bits 12-15 true
jump if 8086/8088

otherwise we must adjust
return addres s to bypass
the divide instruction ...
make stack addressable

get address of the
faulting instruction

get addressing byte
isolate mod & r/m fields

mod 0, r/m 6 - direct
not direct, jump

(continued)

Interrupt Handlers 257

Figure 13-4. continued

zdiv4: mov cl ,6
bx.cl

otherwise isolate mod
field and get instruction
size from table

shr
mov bl ,cs: [bx+ita b]
add [bp+l8].bx

zdi vs: pop es restore registers
pop ds
pop bp
pop di
pop si
pop dx
pop ex
pop bx
pop ax
iret return from interrupt

zdiv endp

msgl db
db
db

er, lf ; load-time sign-on message
'Divide by Zero Interrupt •
'Handler installed.'

db cr,lf,'$'

msg2

msg3

msg4

itab

db
db
db
db

db
db

db

db
db
db
db

pgm_len equ

_TEXT ends

cr,lf,lf ; interrupt-time message
'Divide by Zero detected: •
cr,lf, 'Continue or Quit (C/0) ?
• $.

beep ; used if bad entry
backsp, • • ,backsp, '$'

er, l f , • $ •

2

3

4

2

$-init

carriage return-linefeed

instruction size table
mod - D
mod - 1
mod - 2
mod - 3

program length

end init

258 Programming/or MS-DOS

Chapter14

Installable Device Drivers

Device drivers are the modules of an operating system that control the
hardware. They isolate the operating-system kernel from the specific
characteristics and idiosyncrasies of the peripheral devices interfaced to
the central processor. Thus, the driver's relationship to the kernel is analo­
gous to the operating system's relationship to application programs.

The installable device drivers that were introduced in MS-DOS version 2
give the user great flexibility. They allow the user to customize and con­
figure the computer for a wide range of peripheral devices, with a
minimum of troublesome interactions and without having to "patch" the
operating system. Even the most inexperienced user can install a new
device into a system by plugging in a card, copying a driver file to the boot
disk, and editing the system configuration file.

For those inclined to do their own programming, the MS-DOS installable
device drivers are interfaced to the hardware-independent kernel through
a simple and clearly defined scheme of function codes and data struc­
tures. Given adequate information about the hardware, any competent
assembly-language programmer can expect to successfully interface even
the most bizarre device to MS-DOS without altering the operating sys­
tem in the slightest and without acquiring any special or proprietary
knowledge about its innards.

In retrospect, installable device drivers have proven to be one of the key
usability features of MS-DOS. I feel that they have been largely responsible
for the rapid proliferation and competitive pricing of high-speed mass­
storage devices for MS-DOS machines, and for the growing confidence of
the average user toward "tampering with" (upgrading) his or her machine.

MS-DOS Device-Driver Types
Drivers written for MS-DOS fall into two distinct classes:

■ Block-device drivers

■ Character-device drivers

A driver's class determines what functions it must support, how it is
viewed by MS-DOS, and how it makes the associated physical device ap­
pear to behave when an application program makes a request for I/ O.

260 Programming/or MS-DOS

Character-Device Drivers
Character-device drivers control peripheral devices that perform input
and output one character (or byte) at a time, such as a terminal or printer.
A single character-device driver ordinarily supports a single hardware
unit. Each character device has a one-to-eight-character logical name, and
an application program can use this name to open the device for input or
output, as though it were a file. The logical name is strictly a means of
identification for MS-DOS and has no physical equivalent on the device.

MS-DOS's built-in character-device drivers for the console, serial port,
and printer are unique in that an application program can access them in
three different ways:

■ It can open them by name (CON, AUX, PRN, etc.) for input and output,
like any other character device.

■ It can use the special-purpose MS-DOS function calls (Int 21H Func­
tions 01-0CH).

■ It can use the default handles (standard input, standard output, stan­
dard error, standard auxiliary, and standard printer), which do not
need to be opened to be used.

The number of additional character-device drivers that can be installed is
limited only by available memory and by the requirement that each driver
have a unique logical name. If more than one driver uses the same logical
name, the last driver to be loaded will supersede any others and will
receive all 1/0 requests addressed to that logical name. This fact can occa­
sionally be turned to advantage; for example, it allows the user to replace
the system's default CON driver, which does not support cursor position­
ing or character attributes, with the more powerful ANSI.SYS driver.

ASCII vs Binary Mode
MS-DOS regards a handle associated with a character device to be in ei­
ther ASCII (cooked) mode or binary (raw) mode. The mode affects MS­
DOS's buffering of data for read and write requests. The driver itself is not
aware of the mode, and the mode does not affect its operation. An appli­
cation can select the mode of a handle with the IOCTL function (Int 21H
Function 44H).

During ASCII-mode input, MS-DOS requests characters one at a time from
the driver and places them into its own internal buffer, echoing each to the
screen (if the input device is the keyboard) and checking each character

Installable Device Drivers 261

for a Ctrl-C (03H). When the number of characters requested by the appli­
cation program has been received, when a Ctrl-Z is detected, or when the
Enter key is pressed (in the case of the keyboard), MS-DOS terminates the
input and copies the data from its internal buffer into the requesting pro­
gram's buffer. Similarly, during ASCII-mode output, MS-DOS passes the
characters to the device driver one at a time and checks for a Ctrl-C pend­
ing at the keyboard between each character. When a Ctrl-C is detected,
MS-DOS aborts the input or output operation and transfers to the routine
whose address is stored in the Int 23H vector.

In binary mode, MS-DOS reads or writes the exact number of bytes re­
quested by the application program, without regard to any control charac­
ters such as Enter or Ctrl-C. MS-DOS passes the entire request through to
the driver in a single operation, instead of breaking it into single-character
reads or writes, and transfers the characters directly to or from the re­
questing program's buffer.

Block-Device drivers
Block-device drivers usually control random-access mass-storage devices
such as floppy-disk drives and fixed disks, although they can also be used
to control non-random-access devices such as magnetic-tape drives.
Block devices transfer data in chunks, rather than one byte at a time. The
size of the blocks may be either fixed (disk drives) or variable (tape
drives).

A block driver can support more than one hardware unit, map a single
physical unit onto two or more logical units, or both. Block devices do not
have file-like logical names, as character devices do. Instead, MS-DOS
assigns drive designators to the block-device units or logical drives in an
alphabetic sequence: A, B, and so forth . Each logical drive contains a file
system: boot block, file allocation table, root directory, and so forth . (See
Chapter 10.)

A block-device driver's position in the chain of all drivers determines the
first letter assigned to that driver. The number of logical drive units that
the driver supports determines the total number of letters assigned to it.

Block-device drivers always read or write exactly the number of sectors
requested (barring hardware or addressing errors) and never filter or
otherwise manipulate the contents of the blocks being transferred.

262 Programming/or MS-DOS

Structure of an MS-DOS Device Driver
A device driver consists of three major parts (Figure 14-1):

■ A device header

■ A strategy (strat) routine

■ An interrupt (intr) routine

We'll discuss each of these in more detail as we work through this chapter.

Initialization
Media check

Build BPB
IOCTI read and write

Status
Read

Write, write/ verify
Interrupt routine Output until busy

Flush buffers
Device open
Device close

Check whether removable
GenericIOCTI

Get/ Set logical device

Strategy routine

Device-driver header

Figure 14-1. General structure of an MS-DOS installable device driver.

The Device Header
The device header (Figure 14-2) lies at the beginning of the driver. It con­
tains a link to the next driver in the chain, a set of attribute flags for the
device (Figure 14-3), offsets to the executable strategy and interrupt rou­
tines for the device, and the logical-device name (if it is a character device
such as PRN or COMl) or the number of logical units (if it is a block
device).

Installable Device Drivers 263

Byte offset

OOH

02H

04H

06H

08H

OAH

Link to next driver, offset

Link to next driver, segment

Device attribute word

Strategy entry point, offset

Interrupt entry point, offset

Logical name (8 bytes) if character device

Number of units (1 byte) if block device,
followed by 7 bytes of reserved space

Figure 14-2. Device-driver header. The offsets to the strat and intr routines are off­
sets from the same segment used to point to the device header.

Bit

15
14
13

12
11
7-10
6

5
4
3
2
1

0

Significance

1 if character device, 0 if block device
1 if IOCTL read and write supported
for block devices:
1 if BIOS parameter block in boot sector should be used to determine media

characteristics, 0 if media ID byte should be used
for character devices:
1 if output until busy supported
Reserved (should be 0)
1 if open/close/removable media supported (MS-DOS 3.0 and later)
Reserved (should be 0)
1 if generic IOCTL and get/set logical drive supported (MS-DOS 3.2 and

later)
Reserved (should be 0)
1 if CON driver and Int 29H fast-output function supported
1 if current CLOCK$ device
1 if current NUL device
for block devices:
1 if driver supports 32-bit sector addressing (MS-DOS 4.0)
for character devices:
1 if standard output device (stdout)
1 if current standard input device (stdin)

Figure 14-3. Device attribute word in device header. In block-device drivers, only
bits 6, 11, and 13-15 (and bit 1 in MS-DOS version 4.0) have significance; the
remainder should always be zero.

264 Programming/or MS-DOS

The Strategy Routine
MS-DOS calls the strategy routine (strat) for the device when the driver is
first loaded and installed, and again whenever an application program
issues an I/ 0 request for the device. MS-DOS passes the strategy routine a
double-word pointer to a data structure called a request header. This
structure contains information about the type of operation to be per­
formed. In current versions of MS-DOS, the strategy routine never actually
performs any 1/0 operation but simply saves the pointer to the request
header. The strat routine must not make any Int 21H function calls.

The first 13 bytes of the request header are the same for all device-driver
functions and are therefore referred to as the static portion of the header.
The number and contents of the subsequent bytes vary according to the
type of function being requested (Figure 14-4). Both MS-DOS and the
driver read and write information in the request header.

The request header's most important component is a command code, or
function number, passed in its third byte to select a driver subfunction
such as read, write, or status. Other information passed to the driver in the
header includes unit numbers, transfer addresses, and sector or byte
counts.

MS-DOS request header structure definition

Request struc request header template structure

Rlength db ? 0 length of request header
Unit db ? 1 unit number for this request
Command db ? 2 request header's command code
Status dw ? 3 driver's return status word
Reserve db 8 dup (?) 5 reserved area
Media db ? 13 media descriptor byte
Address dd ? 14 memory address for transfer
Count dw ? 18 byte/sector count value
Sector dw ? 20 starting sector value

Request ends end of request header template

Figure 14-4. Format of request header. Only the first 13 bytes are common to all
driver Junctions; the number and definition of the subsequent bytes vary, depending
upon the Junction type. The structure shown here is the one used by the read and
write subfunctions of the driver.

Installable Device Drivers 265

The Interrupt Routine
The last and most complex part of a device driver is the interrupt routine
(intr), which MS-DOS calls immediately after it calls the strategy routine.
The interrupt routine implements the device driver proper; it performs (or
calls other resident routines to perform) the actual input or output opera­
tions, based on the information passed in the request header. The strat
routine may not make any Int 21H function calls, except for a restricted set
during driver initialization.

When an I/ O function is completed, the interrupt routine uses the status
field in the request header to inform the DOS kernel about the outcome of
the requested I/O operation. It can use other fields in the request header
to pass back such useful information as counts of the actual sectors or
bytes transferred.

The interrupt routine usually consists of the following elements:

■ A collection of subroutines to implement the various function types
that may be requested by MS-DOS (sometimes called the command­
code routines)

■ A centralized entry point that saves all affected registers, extracts the
desired function code from the request header, and branches to the
appropriate command-code routine (typically accomplished with a
jump table)

■ A centralized exit point that stores status and error codes into the re­
quest header (Figures 14-5 and 14-6) and restores the previous contents
of the affected registers

The command-code routines that implement the various functions sup­
ported by an installable device driver are discussed in detail in the follow­
ing pages.

Bit(s) Significance

15 Error
12-14 Reserved
9 Busy
8 Done
0-7 Error code if bit 15 = 1

Figure 14-5. Values/or the return status word of the request header.

266 Programming/or MS-DOS

Code Meaning

0 Write-protect violation
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error (CRC)
5 Bad request-structure length
6 Seek error
7 Unknown medium
8 Sector not found
9 Printer out of paper
0AH Write fault
0BH Read fault
OCH General failure
0D- 0EH Reserved
0FH Invalid disk change (MS-DOS versions 3.0 and later)

Figure 14-6. Driver error codes returned in bits O through 7 of the return status
word of the request header.

Although its name suggests otherwise, the interrupt routine is never en­
tered asynchronously (on an I/O completion interrupt, for example).
Thus, the division of function between strategy and interrupt routines is
completely artificial in the current versions of MS-DOS.

The Command-Code Routines
A total of 20 command codes are defined for MS-DOS device drivers. The
command codes (which are not consecutive), the names of the associated
driver-interrupt routines, and the MS-DOS versions in which they are first
supported are as follows:

Command Character Block MS-DOS
code Function driver driver version

0 Init (Initialization) X X 2.0
1 Media Check X 2.0
2 Build BPB X 2.0
3 IOCTL Read X X 2.0
4 Read X X 2.0
5 Nondestructive Read X 2.0
6 Input Status X 2.0
7 Flush Input Buffers X 2.0
8 Write X X 2.0

(continued)

Installable Device Drivers 267

(continued)

Command Character Brock MS-DOS
code Function driver driver version

9 Write with Verify X 2.0
10 Output Status X 2.0
11 Flush Output Buffers X 2.0
12 IOCTL Write X X 2.0
13 Device Open X X 3.0
14 Device Close X X 3.0
15 Removable Media X 3.0
16 Output Until Busy X 3.0
19 Generic IOCTL X X 3.2
23 Get Logical Device X 3.2
24 Set Logical Device X 3.2

As you can see from the preceding table, a driver's interrupt section must
support functions O through 12 under all versions of MS-DOS. Drivers
tailored for MS-DOS 3.0 and 3.1 can optionally support an additional four
functions, and MS-DOS drivers for versions 3.2 and later can support three
more (for a total of 20). MS-DOS inspects the bits in the attribute word of
the device-driver header to determine which of the optional functions a
driver supports, if any.

Some of the functions are relevant only for character-device drivers and
some only for block-device drivers; a few have meaning to both types. In
any case, both driver types should have an executable routine present for
each function, even if it does nothing except set the done flag in the status
word of the request header.

In the command-code descriptions that follow, RH refers to the request
header whose address was passed to the strategy routine in ES:BX, BYTE
is an 8-bit parameter, WORD is a 16-bit parameter, and DWORD is a far
pointer (a 16-bit offset followed by a 16-bit segment).

Function OOH (0): Driver Initialization
MS-DOS requests the driver's initialization function (init) only once,
when the driver is first loaded. This function performs any necessary
device hardware initialization, setup of interrupt vectors, and so forth. The
initialization routine must return the address of the position where free
memory begins after the driver code (the break address), so that MS-DOS
knows where it can build certain control structures and then load the next
installable driver. If this is a block-device driver, init must also return the
number of units and the address of a BPB pointer array.

268 Programming/or MS-DOS

MS-DOS uses the number of units returned by a block driver in the
request header to assign drive identifiers. For example, if the current maxi­
mum drive is D and the driver being initialized supports four units, MS­
DOS will assign it the drive letters E, F, G, and H. Although the device­
driver header also has a field for number of units, MS-DOS does not
inspect it.

The BPB pointer array is an array of word offsets to BIOS parameter
blocks (Figure 14-7). Each unit defined by the driver must have one entry
in the array, although the entries can all point to the same BPB to conserve
inemory. During the operating-system boot sequence, MS-DOS scans all
the BPBs defined by all the units in all the block-device drivers to deter­
mine the largest sector size that exists on any device in the system and
uses this information to set its cache buffer size.

The operating-system services that the initialization code can invoke at
load time are very limited-only Int 21H Functions OlH through OCH and
30H. These are just adequate to check the MS-DOS version number and
display a driver-identification or error message.

Many programmers position the initialization code at the end of the driver
and return that address as the location of the first free memory, so that MS­
DOS will reclaim the memory occupied by the initialization routine after
the routine is finished with its work. If the initialization routine finds that
the device is missing or defective and wants to abort the installation of the
driver completely so that it does not occupy any memory, it should return

Byte(s)

00-0lH
02H
03H-04H
05H
06H-07H
08H-09H
0AH
0BH-OCH
0DH-0EH
0FH-lOH
11H-12H
13H-14H
15H-18H
19H-1EH

Contents

Bytes per sector
Sectors per allocation unit (power of 2)
Number of reserved sectors (starting at sector 0)
Number of file allocation tables
Maximum number of root-directory entries
Total number of sectors in medium
Media descriptor byte
Number of sectors occupied by a single FAT
Sectors per track (versions 3.0 and later)
Number of heads (versions 3.0 and later)
Number of hidden sectors (versions 3.0 and later)
High-order word of number of hidden sectors (version 4.0)
If bytes 8--9 are zero, total number of sectors in medium (version 4.0)
Reserved, should be zero (version 4.0)

Figure 14-7. Structure of a BIOS parameter block (BPB). Every formatted disk
contains a copy of its BPB in the boot sector. (See Chapter 10.)

Installable Device Drivers 269

number of units as zero and set the free memory address to CS:0000H. (A
character-device driver that wants to abort its installation should clear bit
15 of the attribute word in the driver header and then set the units field
and free memory address as though it were a block-device driver.)

The initialization function is called with

RH+2
RH + 18

RH+22

It returns:

RH+3
RH+ 13
RH+ 14
RH + 18

BYTE
DWORD

BYTE

Command code = 0
Pointer to character after equal sign on CONFIG.SYS line

that loaded driver (this information is read-only)
Drive number for first unit of this block driver (0 = A, 1 = B,

and so forth) (MS-DOS version 3 only)

WORD Status
BYTE Number of units (block devices only)
DWORD Address of first free memory above driver (break address)
DWORD BPB pointer array (block devices only)

Function Olli (1): Media Check
The media-check function applies only to block devices, and in character­
device drivers it should do nothing except set the done flag. This function
is called when a drive-access call other than a simple file read or write is
pending. MS-DOS passes to the function the media descriptor byte for the
disk that it assumes is in the drive (Figure 14-8). If feasible, the media­
check routine returns a code indicating whether the disk has been
changed since the last transfer. If the media-check routine can assert that
the disk has not been changed, MS-DOS can bypass rereading the FAT
before a directory access, which improves overall performance.

Code

OFOH
OF8H
OF9H
OF9H
OFCH
OFDH
OFEH
OFFH

Meaning

3.5", 2-sided, 18-sector
fixed disk
3.5", 2-sided, 9-sector
5.25", 2-sided, 15-sector
5.25", I-sided, 9-sector
5.25", 2-sided, 9-sector
5.25", I-sided, 8-sector
5.25", 2-sided, 8-sector

Figure 14-8. Current valid MS-DOS codes for the media descriptor byte of the request
header, assuming bit 13 in the attribute word of the driver header is zero.

270 Programming for MS-DOS

MS-DOS responds to the results of the media-check function in the fol­
lowing ways:

■ If the disk has not been changed, MS-DOS proceeds with the disk
access.

■ If the disk has been changed, MS-DOS invalidates all buffers associated
with this unit, including buffers containing data waiting to be written
(this data is simply lost), performs a BUILD BPB call, and then reads
the disk's FAT and directory.

■ If the disk-change status is unknown, the action taken by MS-DOS de­
pends upon the state of its internal buffers. If data that needs to be
written out is present in the buffers, MS-DOS assumes no disk change
has occurred and writes the data (taking the risk that, if the disk really
was changed, the file structure on the new disk may be damaged). If
the buffers are empty or have all been previously flushed to the disk,
MS-DOS assumes that the disk was changed, and then proceeds as
described above for the disk-changed return code.

If bit 11 of the device-header attribute word is set (that is, the driver sup­
ports the optional open/close/removable-media functions), the host sys­
tem is MS-DOS version 3.0 or later, and the function returns the disk­
changed code (-1), the function must also return the segment and offset
of the ASCIIZ volume label for the previous disk in the drive. (If the driver
does not have the volume label, it can return a pointer to the ASCIIZ string
NO NAME.) If MS-DOS determines that the disk was changed with un­
written data still present in its buffers, it issues a critical-error OFH (invalid
disk change). Application programs can trap this critical error and prompt
the user to replace the original disk.

The media-check function is called with

RH+ 1
RH+2
RH+ 13

It returns

RH+3
RH+ 14

RH+ 15

BYTE
BYTE
BYTE

WORD
BYTE

Unit code
Command code = 1
Media descriptor byte

Status
Media-change code:
-1 if disk changed
0 if don't know whether disk changed
1 if disk not changed

DWORD Pointer to previous volume label, if device attribute bit
11 = 1 and disk has been changed (MS-DOS versions 3.0
and later)

Installable Device Drivers 271

Function 02H (2): Build BIOS Parameter Block (BPB)
The build BPB function applies only to block devices, and in character­
device drivers should do nothing except set the done flag. The kernel uses
this function to get a pointer to the valid BPB (see Figure 14-7) for the cur­
rent disk and calls it when the disk-changed code is returned by the
media-check routine or the don't-know code is returned and there are no
dirty b~ffers (buffers with changed data that have not yet been written to
disk). Thus, a call to this function indicates that the disk has been legally
changed.

The build BPB function receives a pointer to a one-sector buffer in the re­
quest header. If bit 13 in the driver header's attribute word is zero, the
buffer contains the first sector of the FAT (which includes the media iden­
tification byte) and should not be altered by the driver. If bit 13 is set, the
driver can use the buffer as scratch space.

The build BPB function is called with

RH+ 1 BYTE Unit code
RH+ 2 BYTE Command code = 2
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Buffer address

It returns

RH+3 WORD Status
RH+ 18 DWORD Pointer to new BPB

Under MS-DOS versions 3.0 and later, if bit 11 of the header's device at­
tribute word is set, this routine should also read the volume label off the
disk and save it.

Function 03H (3): 1/0-Control Read
The IOCTL read function allows the device driver to pass information di­
rectly to the application program. This function is called only if bit 14 is
set in the device attribute word. MS-DOS performs no error check on
IOCTL I/ O calls.

The IOCTL read function is called with

RH+ 1 BYTE Unit code (block devices)
RH+2 BYTE Command code = 3
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Byte/ sector count
RH+20 WORD Starting sector number (block devices)

272 Programming/or MS-DOS

It returns

RH+3
RH+ 18

WORD
WORD

Status
Actual bytes or sectors transferred

Function 04H (4): Read
The read function transfers data from the device into the specified
memory buffer. If an error is encountered during the read, the function
must set the error status and, in addition, report the number of bytes or
sectors successfully transferred; it is not sufficient to simply report an
error.

The read function is called with

RH+l BYTE Unit code (block devices)
RH+2 BYTE Command code = 4
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Byte/ sector count
RH+20 WORD Starting sector number (block devices)

For block-device read operations in MS-DOS version 4, if the logical unit is
larger than 32 MB and bit 1 of the driver's attribute word is set, the follow­
ing request structure is used instead:

RH+ 1 BYTE Unit code
RH+2 BYTE Command code = 4
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Sector count
RH+20 WORD Contains -1 to signal use of 32-bit sector number
RH+26 DWORD 32-bit starting sector number

The read function returns

RH+3
RH+ 18
RH+22

WORD Status
WORD Actual bytes or sectors transferred
DWORD Pointer to volume label if error OFH is returned (MS-DOS

versions 3.0 and later)

Under MS-DOS versions 3.0 and later, this routine can use the count of
open files maintained by the open and close functions (ODH and OEH)
and the media descriptor byte to determine whether the disk has been il­
legally changed.

Installable Device Drivers 273

Function 05H (5): Nondestructive Read
The nondestructive read function applies only to character devices, and in
block devices it should do nothing except set the done flag. It returns the
next character that would be obtained with a read function (command
code 4), without removing that character from the driver's internal buffer.
MS-DOS uses this function to check the console driver for pending Con­
trol-C characters during other operations.

The nondestructive read function is called with

RH+ 2

It returns

RH+ 3

RH+ 13

BYTE

WORD

BYTE

Command code = 5

Status
If busy bit = 0, at least one character is waiting
If busy bit= 1, no characters are waiting
Character (if busy bit = 0)

Function 06H (6): Input Status
The input-status function applies only to character devices, and in block­
device drivers it should do nothing except set the done flag. This function
returns the current input status for the device, allowing MS-DOS to test
whether characters are waiting in a type-ahead buffer. If the character
device does not have a type-ahead buffer, the input-status routine should
always return the busy bit equal to zero, so that MS-DOS will not wait
forever to call the read (04H) or nondestructive read (OSH) function.

The input-status function is called with

RH+2

It returns

RH+3

BYTE

WORD

Command code = 6

Status:
If busy bit = 1, read request goes to physical device.
If busy bit = 0, characters already in device buffer and read

request returns quickly.

Function 07H (7): Flush Input Buffers
The flush-input-buffers function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function causes any data waiting in the input buffer to be discarded.

274 Programming/or MS-DOS

The flush-input-buffers function is called with

RH+ 2

It returns

RH+ 3

BYTE

WORD

Command code = 7

Status

Function 08H (8): Write
The write function transfers data from the specified memory buffer to the
device. If an error is encountered during the write, the write function must
set the error status and, in addition, report the number of bytes or sectors
successfully transferred; it is not sufficient to simply report an error.

The write function is called with

RH+ 1 BYTE Unit code (block devices)
RH+ 2 BYTE Command code = 8
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Byte/ sector count
RH+ 20 WORD Starting sector number (block devices)

For block-device write operations in MS-DOS version 4, if the logical unit
is larger than 32 MB and bit 1 of the driver's attribute word is set, the fol­
lowing request structure is used instead:

RH+ 1 BYTE Unit code
RH+2 BYTE Command code = 8
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Sector count
RH+ 20 WORD Contains -1 to signal use of 32-bit sector number
RH+ 26 DWORD 32-bit starting sector number

The write function returns

RH+3
RH+ 18
RH+ 22

WORD
WORD
DWORD

Status
Actual bytes or sectors transferred
Pointer to volume label if error OFH returned (MS-DOS

versions 3.0 and later)

Under MS-DOS versions 3.0 and later, this routine can use the reference
count of open files maintained by the open and close functions (ODH and
OEH) and the media descriptor byte to determine whether the disk has
been illegally changed.

Installable Device Drivers 275

Function 09H (9): Write with Verify
The write-with-verify function transfers data from the specified memory
buffer to the device. If feasible, it should perform a read-after-write
verification of the data to confirm that the data was written correctly.
Otherwise, Function 09H is exactly like Function 08H.

Function 0AH (10): Output Status
The output-status function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function returns the current output status for the device.

The output-status function is called with

RH+ 2

It returns

RH+ 3

BYTE

WORD

Command code= 10 (OAH)

Status:
If busy bit= 1, write request waits for completion of current

request.
If busy bit= 0, device idle and write request starts

immediately.

Function 0BH (11): Flush Output Buffers
The flush-output-buffers function applies only to character devices, and in
block-device drivers it should do nothing except set the done flag. This
function empties the output buffer, if any, and discards any pending out­
put requests.

The flush-output-buffers function is called with

RH+ 2

It returns

RH+ 3

BYTE

WORD

Command code = 11 (OBH)

Status

Function OCH (12): 1/O-Control Write
The IOCTL write function allows an application program to pass control
information directly to the driver. This function is called only if bit 14 is set
in the device attribute word. MS-DOS performs no error check on IOCTL
I/0 calls.

276 Programming/or MS-DOS

The IOCTL write function is called with

RH+ 1 BYTE Unit code (block devices)
RH+2 BYTE Command code = 12 (OCH)
RH+ 13 BYTE Media descriptor byte
RH+ 14 DWORD Transfer address
RH+ 18 WORD Byte/ sector count
RH+ 20 WORD Starting sector number (block devices)

It returns

RH+3
RH+ 18

WORD
WORD

Status
Actual bytes or sectors transferred

Function 0DH (13): Device Open
The device-open function is supported only under MS-DOS versions 3.0
and later and is called only if bit 11 is set in the device attribute word of the
device header.

On block devices, the device-open function can be used to manage local
buffering and to increment a reference count of the number of open files
on the device. This capability must be used with care, however, because
programs that access files through FCBs frequently fail to close them, thus
invalidating the open-files count. One way to protect against this possibi­
lity is to reset the open-files count to zero, without flushing the buffers,
whenever the answer to a media-change call is yes and a subsequent build
BPB call is made to the driver.

On character devices, the device-open function can be used to send a
device-initialization string (which can be set into the driver by an applica­
tion program by means of an IOCTL write function) or to deny simulta­
neous access to a character device by more than one process. Note that the
predefined handles for the CON, AUX, and PRN devices are always open.

The device-open function is called with

RH+ 1
RH+ 2

It returns

RH+ 3

BYTE
BYTE

WORD

Unit code (block devices)
Command code = 13 (0DH)

Status

Function 0EH (14): Device Close
The device-close function is supported only under MS-DOS versions 3.0
and later and is called only if bit 11 is set in the device attribute word of the
device header.

Installable Device Drivers 277

On block devices, this function can be used to manage local buffering and
to decrement a reference count of the number of open files on the device;
when the count reaches zero, all files have been closed and the driver
should flush buffers because the user may change disks.

On character devices, the device-close function can be used to send a
device-dependent post-I/O string such as a formfeed. (This string can be
set into the driver by an application program by means of an IOCTL write
function.) Note that the predefined handles for the CON, PRN, and AUX
devices are never closed.

The device-close function is called with

RH+ 1
RH+ 2

It returns

RH+3

BYTE
BYTE

WORD

Unit code (block devices)
Command code= 14 (OEH)

Status

Function 0FH (15): Removable Media
The removable-media function is supported only under MS-DOS versions
3.0 and later and only on block devices; in character-device drivers it
should do nothing except set the done flag. This function is called only if
bit 11 is set in the device attribute word in the device header.

The removable-media function is called with

RH+ 1
RH+2

It returns

RH+3

BYTE
BYTE

WORD

Unit code
Command code= 15 (OFH)

Status:
If busy bit= 1, medium nonremovable
If busy bit = 0, medium removable

Function l0H (16): Output Until Busy
The output-until-busy function is supported only under MS-DOS versions
3.0 and later, and only on character devices; in block-device drivers it
should do nothing except set the done flag. This function transfers data
from the specified memory buffer to a device, continuing to transfer bytes
until the device is busy. It is called only if bit 13 of the device attribute
word is set in the device header.

278 Programming/or MS-DOS

This function is an optimization included specifically for the use of print
spoolers. It is not an error for this function to return a number of bytes
transferred that is less than the number of bytes requested.

The output-until-busy function is called with

RH + 2 BYTE Command code = 16 (lOH)
RH + 14 DWORD Transfer address
RH + 18 WORD Byte count

It returns

RH+3 WORD Status
RH+l8 WORD Actual bytes transferred

Function 13H (19) Generic IOCTL
The generic IOCTL function is supported only under MS-DOS versions 3.2
and later and is called only if bit 6 is set in the device attribute word of the
device header. This function corresponds to the MS-DOS generic IOCTL
service supplied to application programs by Int 21H Function 44H Sub­
functions OCH and OOH.

The generic IOCTL function is passed a category (major) code, a function
(minor) code, the contents of the SI and DI registers at the point of the
IOCTL call, and the segment and offset of a data buffer. This buffer in turn
contains other information whose format depends on the major and
minor IOCTL codes passed in the request header. The driver must inter­
pret the major and minor codes in the request header and the contents of
the additional buffer to determine which operation it will carry out, then
set the done flag in the request-header status word, and return any other
applicable information in the request header or the data buffer.

Services that the generic IOCTL function may invoke, if the driver sup­
ports them, include configuration of the driver for nonstandard disk for­
mats, reading and writing entire disk tracks of data, and formatting and
verifying tracks. The generic IOCTL function has been designed to be
open-ended, so that it can be used to easily extend the device-driver
definition under future versions of MS-DOS.

The generic IOCTL function is called with

RH+l BYTE Unit number (block devices)
RH+2 BYTE Command code = 19 (13H)
RH+13 BYTE Category (major) code
RH+ 14 BYTE Function (minor) code
RH+ 15 WORD SI register contents
RH+ 17 WORD DI register contents
RH+ 19 DWORD Address of generic IOCTL data packet

Installable Device Drivers 279

It returns

RH+ 3 WORD Status

Function 17H (23): Get Logical Device
The get-logical-device function is supported only under MS-DOS versions
3.2 and later and only on block devices; in character-device drivers it
should do nothing except set the done bit in the status word. This function
is called only if bit 6 is set in the device attribute word of the device
header. It corresponds to the get-logical-device-map service supplied to
application programs through Int 21H Function 44H Subfunction 0EH.

The get-logical-device function returns a code for the last drive letter used
to reference the device; if only one drive letter is assigned to the device,
the returned unit code should be zero. Thus, this function can be used to
determine whether more than one drive letter is assigned to the same
physical device.

The get-logical-device function is called with

RH+ 1
RH+ 2

It returns

RH+ 1
RH+ 3

BYTE
BYTE

BYTE
WORD

Unit code
Command code = 23 (17H)

Last unit referenced, or zero
Status

Function 18H (24): Set Logical Device
The set-logical-device function is supported only under MS-DOS versions
3.2 and later and only on block devices; in character-device drivers it
should do nothing except set the done bit in the status word. This function
is called only if bit 6 is set in the device attribute word of the device
header. It corresponds to the set-logical-device-map service supplied to
application programs by MS-DOS through Int 21H Function 44H Subfunc­
tion 0FH.

The set-logical-device function informs the driver of the next logical­
drive identifier that will be used to reference the physical device. The unit
code passed by the MS-DOS kernel in this case is zero-based relative to
the number of logical drives supported by this particular driver. For ex­
ample, if the driver supports two floppy-disk units (A and B), only one
physical floppy-disk drive exists in the system, and the set-logical-device
function is called with a unit number of 1, the driver is being informed that
the next read or write request from the kernel will be directed to drive B.

280 Programming/or MS-DOS

The set-logical-device function is called with

RH+ 1
RH+ 2

It returns

RH+ 3

BYTE
BYTE

WORD

Unit code
Command code = 24 (18H)

Status

The Processing of a Typical 1/0 Request
An application program requests an I/O operation from MS-DOS by load­
ing registers with the appropriate values and executing an Int 21H. This
results in the following sequence of actions:

1. MS-DOS inspects its internal tables and determines which device
driver should receive the I/ O request.

2. MS-DOS creates a request-header data packet in a reserved area of
memory. (Disk I/ O requests are transformed from file and record infor­
mation into logical-sector requests by MS-DOS's interpretation of the
disk directory and FAT.)

3. MS-DOS calls the device driver's strat entry point, passing the address
of the request header in the ES:BX registers.

4. The device driver saves the address of the request header in a local
variable and performs a FAR RETURN.

5. MS-DOS calls the device driver's intr entry point.

6. The interrupt routine saves all registers, retrieves the address of the
request header that was saved by the strategy routine, extracts the
function code, and branches to the appropriate command-code sub­
routine to perform the function.

7. If a data transfer on a block device was requested, the driver's read or
write subroutine translates the logical-sector number into a head, track,
and physical-sector address for the requested unit and then performs
the I/O operation. Because a multiple-sector transfer can be requested
in a single request header, a single request by MS-DOS to the driver can
result in multiple read or write commands to the disk controller.

8. When the requested function is complete, the interrupt routine sets
the status word and any other required information into the request
header, restores all registers to their state at entry, and performs a FAR
RETURN.

Installable Device Drivers 281

9. MS-DOS translates the driver's return status into the appropriate return
code and carry-flag status for the MS-DOS Int 21H function that was
requested and returns control to the application program.

Note that a single request by an application program can result in MS-DOS
passing many request headers to the driver. For example, attempting to
open a fi le in a subdirectory on a previously unaccessed disk drive might
require the following actions:

■ Reading the disk's boot sector to get the BPB

■ Reading from one to many sectors of the root directory to find the en­
try for the subdirectory and obtain its starting-cluster number

■ Reading from one to many sectors of both the FAT and the subdirectory
itself to find the entry for the desired file

The CLOCK Driver: A Special Case
MS-DOS uses the CLOCK device for marking file control blocks and direc­
tory entries with the date and time, as well as for providing the date and
time services to application programs. This device has a unique type of
interaction with MS-DOS-a 6-byte sequence is read from or written to
the driver that obtains or sets the current date and time. The sequence has
the following format:

0 1 2 3 4 5
Days Days Minutes Hours Seconds/ Seconds

low byte high byte 100

The value passed for days is a 16-bit integer representing the number of
days elapsed since January 1, 1980.

The clock driver can have any logical-device name because MS-DOS uses
the CLOCK bit in the device attribute word of the driver's device header to
identify the device, rather than its name. On IBM PC systems, the clock
device has the logical-device name CLOCK$.

Writing and Insta11ing a Device Driver
Now that we have discussed the structure and capabilities of installable
device drivers for the MS-DOS environment, we can discuss the mechani­
cal steps of assembling and linking them.

282 Programming/or MS-DOS

Assembly
Device drivers for MS-DOS always have an origin of zero but are other­
wise assembled, linked, and converted into an executable module as
though they were .COM files. (Although MS-DOS is also capable of loading
installable drivers in the .EXE file format, this introduces unnecessary
complexity into writing and debugging drivers and offers no significant
advantages. In addition, it is not possible to use .EXE-format drivers with
some IBM versions of MS-DOS because the .EXE loader is located in
COMMAND.COM, which is not present when the installable device
drivers are being loaded.) The driver should not have a declared stack
segment and must, in general, follow the other restrictions outlined in
Chapter 3 for memory-image (.COM) programs. A driver can be loaded
anywhere, so beware that you do not make any assumptions in your code
about the driver's location in physical memory. Figure 14-9 presents a
skeleton example that you can follow as you read the next few pages.

name driver
page 55,132
title DRIVER.ASM Device-Driver Skeleton

DRIVER.ASM MS-DOS device-driver skeleton

The driver command-code routines are stubs only and have
no effect but to return a nonerror "done" status.

Copyright 1988 Ray Duncan

_TEXT segment word public 'CODE'

assume cs: _TEXT,ds: _TEXT,es:NOTHING

org 0

MaxCmd equ 24 maximum allowed command code:
12 for MS-DOS 2
16 for MS-DOS 3.0-3.1
24 for MS-DOS 3.2-3.3

Figure 14-9. DRIVER.ASM: A functional skeleton from which you can implement
your own working device driver.

(continued)

Installable Device Drivers 283

Figure 14-9. continued

er equ
l f equ
eom equ

Header:
dd
dw
dw
dw
db

RHPtr dd

Dispatch :

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

Odh
Oah
'$'

-1

Oc840h
Strat
Intr
'SKELETON '

!nit

MediaChk
BuildBPB
Ioctl Rd
Read
NdRead
InpStat
InpFlush
Write
WriteVfy
OutStat
OutFlush
Ioctl Wt
DevOpen
DevClose
RemMedia
OutBusy
Error
Error
Gen IOCTL
Error
Error
Error
GetLogDev
SetlogDev

284 Programming/or MS-DOS

ASCII carriage return
ASCII linefeed
end -of-message signal

device-driver header
link to next device driver
device attribute word
"strategy" routine entry point
"interrupt" routine entry point
logical-device name

pointer to request header, passed
by MS-DOS kernel to strategy routine

interrupt-routine command-code
dispatch table:
0 - initialize driver
1 - media check
2 - build BPB
3 - IOCTL read
4 - read
5 - nondestructive read
6 - input status
7 - flush input buffers
8 - write
9 - write with verify
10 - output status
11 - flush output buffers
12 - IOCTL write
13 - device open
14 - device close

(MS-DOS 3.0+)
(MS-DOS 3.0+)

15 - removable media (MS-DOS 3.0+)
16 - output until busy (MS-DOS 3.0+)
17 - not used
18 - not used
19 - generic IOCTL
20 - not used
21 - not used
22 - not used

(MS-DOS 3.2+)

23 - get logical device (MS-DOS 3.2+)
24 - set logical device (MS-DOS 3.2+)

(continued)

Figure 14-9. continued

Strat proc far device-driver strategy routine,
called by MS-DOS kernel with
ES:BX - address of request header

save pointer to request header
mov word ptr cs:[RHPtr].bx
mov word ptr cs:[RHPtr+2],es

ret ; back to MS-DOS kerne l

Strat endp

Intr

Intrl:

proc far

push ax
push bx
push ex
push dx
push ds
push es
push di
push si
push bp

push cs
pop ds

1 es di. [RHPtr]

mov bl ,es:[di+2]
xor bh,bh
cmp bx ,MaxCmd
jle Intrl
call Error
jmp Intr2

shl bx ,1 ;

;

device-driver interrupt routine ,
called by MS-DOS kernel immediately
after call to strategy routine

save general registers

make local data addressable
by setting OS - CS

let ES:01 - request header

get BX - command code

make sure it's legal
jump, function code is ok
set error bit, "unknown command"

form index to dispatch table

code

and branch to command-code routine
call word ptr [bx+Dispatch]

les di, [RHPtr] ; ES:01 - addr of request header

(continued)

Installable Device Drivers 285

Figure 14-9. continued

Intr2: or ax,OlOOh
mov es:[di+3],ax

pop bp
pop si
pop di
pop es
pop ds
pop dx
pop ex
pop bx
pop ax
ret

merge 'done' bit into status and
store status into request header

restore general registers

back to MS-DOS kernel

Command-code routines are called by the interrupt routine
via the dispatch table with ES:DI pointing to the request
header. Each routine should return AX - 0 if function was
completed successfully or AX - (8000h + error code) if
function failed.

MediaChk proc near function 1 - media check

xor ax.a x
ret

MediaChk endp

BuildBPB proc near function 2 - build BPB

xor ax.ax
ret

BuildBPB endp

Ioctl Rd proc near function 3 - IOCTL read

xor ax.ax
ret

Ioctl Rd endp

286 Programmingfor MS-DOS

(continued)

Figure 14-9. continued

Read proc near function 4 - read (input)

xor ax.ax
ret

Read endp

NdRead proc near function 5 - nondestructive read

xor ax.ax
ret

NdRead endp

InpStat proc near function 6 - input status

xor ax, ax
ret

InpStat endp

InpFlush proc near function 7 - flush input buffers

xor ax.ax
ret

InpFlush endp

Write proc near function 8 - write (output)

xor ax.ax
ret

Write endp

WriteVfy proc near function 9 - write with verify

xor ax.ax
ret

(continued)

Installable Device Drivers 287

Figure 14-9. continued

WriteVfy endp

OutStat proc near function 10 - output status

xor ax.ax
ret

OutStat endp

OutFlush proc near function 11 - flush output buffers

xor ax.ax
ret

OutFlush endp

Ioctl Wt proc near function 12 - IOCTL write

xor ax.ax
ret

Ioctl Wt endp

DevOpen proc near function 13 - device open

xor ax, ax
ret

DevOpen endp

DevClose proc near function 14 - device close

xor ax.ax
ret

DevClose endp

(continued)

288 Programming/or MS-DOS

Figure 14-9. continued

RemMedia proc near function 15 - removable media

xor ax.ax
ret

RemMedia endp

OutBusy proc near function 16 - output until busy

xor ax.ax
ret

OutBusy endp

Gen IOCTL p roe near function 19 - generic IOCTL

xor ax.ax
ret

Gen IOCTL endp

GetLogDev proc near function 23 - get logical device

xor ax.ax
ret

GetlogDev endp

SetLogDev proc near function 24 - set logical device

xor ax.ax
ret

SetLogDev endp

Error proc near bad command code in request header

mov ax,8003h error bit+ "unknown command" code
ret

(continued)

Installable Device Drivers 289

Figure 14-9. continued

Error endp

!nit proc near

push es
push di

mov ax.cs
mov bx.offset Identl
call hexasc

mov ah,9
mov dx,offset !dent
int 21h

pop di
pop es

function O - initialize driver

save address of request header

convert load address to ASCII

display driver sign-on message

restore request-header address

; set address of free memory
; above driver (break address)

mov word ptr es:[di+l4],offset !nit
mov word ptr es:[di+16],cs

xor
ret

!nit endp

hexasc proc

push

ax.ax

near

ex
push dx

mov dx,4

290 Programming/or MS-DOS

return status

converts word to hex ASCII
call with AX - value,
DS:BX - address for string
ret urns AX, BX destroyed

save registers

initialize character counter

(continued)

Figure 14-9. continued

hexascl:
mov
rol
mov
and
add
cmp
jbe
add

cx,4
ax, cl
ex, ax
cx,Ofh
ex.' O'
ex,• 9'

hexasc2
cx,'A'-'9'-1

isolate next four bits

convert to ASCII
is it 0-9?
yes, jump
add fudge factor for A-F

hexasc2: store this character
mov
inc

dee
jnz

pop

[bx],cl
bx

dx
hexascl

dx
pop ex

bump string pointer

count characters converted
loop. not four yet

restore registers

ret back to ca 11 er

hexasc endp

!dent db cr,lf,lf
db 'Advanced MS-DOS Example Device Driver'
db er , l f
db 'Device driver header at:

Identl db 'XXXX:0000'
db c r. 1 f. lf. eom

Intr endp

_TEXT ends

end

The driver's device header must be located at the beginning of the file
(offset 0000H). Both words in the link field in the header should be set to
- 1. The attribute word must be set up correctly for the device type and
other options. The offsets to the strategy and interrupt routines must be
relative to the same segment base as the device header itself. If the driver
is for a character device, the name field should be filled in properly with
the device's logical name. The logical name can be any legal 8-character
filename, padded with spaces and without a colon. Beware of accidentally

Installable Device Drivers 291

duplicating the names of existing character devices, unless you are inten­
tionally superseding a resident driver.

MS-DOS calls the strategy and interrupt routines for the device by means
of an intersegment call (CALL FAR) when the driver is first loaded and in­
stalled and again whenever an application program issues an I/O request
for the device. MS-DOS uses the ES:BX registers to pass the strat routine a
double-word pointer to the request header; this address should be saved
internally in the driver so that it is available for use during the subsequent
call to the intr routine.

The command-code routines for function codes O through 12 (OCH) must
be present in every installable device driver, regardless of device type.
Functions 13 (OOH) and above are optional for drivers used with MS-DOS
versions 3.0 and later and can be handled in one of the following ways:

Iii Don't implement them, and leave the associated bits in the device
header cleared. The resulting driver will work in either version 2 or
version 3 but does not take full advantage of the augmented func­
tionality of version 3.

Iii Implement them, and test the MS-DOS version during the initialization
sequence, setting bits 6 and 11 of the device header appropriately.
Write all command-code routines so that they test this bit and adjust to
accommodate the host version of MS-DOS. Such a driver requires more
work and testing but will take full advantage of both the version 2 and
the version 3 environments.

Iii Implement them, and assume that all the version 3 facilities are avail­
able. With this approach, the resulting driver may not work properly
under version 2.

Remember that device drivers must preserve the integrity of MS-DOS. The
driver must preserve all registers, including flags (especially the direction
flag and interrupt enable bits), and if the driver makes heavy use of the
stack, it should switch to an internal stack of adequate depth (the MS-DOS
stack has room for only 40 to 50 bytes when a driver is called).

If you install a new CON driver, be sure to set the bits for standard input
and standard output in the device attribute word in the device header.

You'll recall that one file can contain multiple drivers. In this case, the
device-header link field of each driver should point to the segment offset
of the next, all using the same segment base, and the link field for the last
driver in the file should be set to -1,-1. The initialization routines for all
the drivers in the file should return the same break address.

292 Programming/or MS-DOS

Linking
Use the standard MS-DOS linker to transform the .OBJ file that is output
from the assembler into a relocatable .EXE module. Then, use the
EXE2BIN utility (see Chapter 4) to convert the .EXE file into a memory­
image program. The extension on the final driver file can be anything, but
.BIN and .SYS are most commonly used in MS-DOS systems, and it is
therefore wise to follow one of these conventions.

Installation
After the driver is assembled, linked, and converted to a .BIN or .SYS file,
copy it to the root directory of a bootable disk. If it is a character-device
driver, do not use the same name for the file as you used for the logical
device listed in the driver's header, or you will not be able to delete, copy,
or rename the file after the driver is loaded.

Use your favorite text editor to add the line

DEVlCE~[D:][PATH]FILENAME.EXT

to the CONFIG.SYS file on the bootable disk. (In this line, D: is an op­
tional drive designator and FILENAME.EXT is the name of the file con­
taining your new device driver. You can include a path specification in the
entry if you prefer not to put the driver file in your root directory.) Now re­
start your computer system to load the modified CONFIG.SYS file .

During the MS-DOS boot sequence, the SYSINIT module (which is part of
IO.SYS) reads and processes the CONFIG.SYS file. It loads the driver into
memory and inspects the device header. If the driver is a character-device
driver, SYSINIT links it into the device chain ahead of the other character
devices; if it is a block-device driver, SYSINIT places it behind all pre­
viously linked block devices and the resident block devices (Figures 14-10,
14-11, and 14-12). It accomplishes the linkage by updating the link field in
the device header to point to the segment and offset of the next driver in
the chain. The link field of the last driver in the chain contains -1,-1.

Next, SYSINIT calls the strat routine with a request header that contains a
command code of zero, and then it calls the intr routine. The driver exe­
cutes its initialization routine and returns the break address, telling MS­
DOS how much memory to reserve for this driver. Now MS-DOS can pro­
ceed to the next entry in the CONFIG.SYS file.

You cannot supersede a built-in block-device driver-you can only add
supplemental block devices. However, you can override the default system
driver for a character device (such as CON) with an installed driver by

Installable Device Drivers 293

giving it the same logical-device name in the device header. When pro­
cessing a character 1/0 request, MS-DOS always scans the list of installed
drivers before it scans the list of default devices and takes the first match.

NUL

l
CON

l
AUX

l
PRN

l
CLOCK

l
Any other resident block

or character devices

Figure 14-10. MS-DOS device-driver chain before any installable device drivers
have been loaded.

NUL

l
Installable character­

device drivers

l
CON

l
AUX

l
PRN

l
CLOCK

l
Any other resident block

or character devices

l
Installable block­

device drivers

Figure 14-11. MS-DOS device-driver chain after installable device drivers have been
loaded.

294 Programming for MS-DOS

Strategy Interrupt
Address Attribute routine routine Type Units Name

00E3:0111 8004 0FD5 OFE0 C NUL
0070:0148 8013 008E 0099 C CON
0070:0lDD 8000 008E 009F C AUX
0070:028E 8000 008E 00AE C PRN
0070:0300 8008 008E 00C3 C CLOCK
0070:03CC 0000 008E 00C9 B 02
0070:0lEF 8000 008E 009F C COMl
0070:02A0 8000 008E 00AE C LPTl
0070:06F0 8000 008E 00B4 C LPT2
0070:0702 8000 008E 00BA C LPT3
0070:0714 8000 008E 00A5 C COM2
End of
device chain

Figure 14-12. Example listing of device chain under MS-DOS version 2.1, "plain
vanilla " IBM PC with no fixed disks or user device drivers. (C=character device,
B=block device)

Debugging a Device Driver
The most important thing to remember when testing new device drivers is
to maintain adequate backups and a viable fallback position. Don't modify
the CONFIG.SYS file and install the new driver on your fixed disk before it
is proven! Be prudent-create a bootable floppy disk and put the modi­
fied CONFIG.SYS file and the new driver on that for debugging. When
everything is working properly, copy the finished product to its perma­
nent storage medium.

The easiest way to test a new device driver is to write a simple assembly­
language front -end routine that sets up a simulated request packet and
then performs FAR CALLs to the strat and intr entry points, exactly as
MS-DOS would. You can then link the driver and the front end together
into a .COM or .EXE file that can be run under the control of Code View or
another debugger. This arrangement makes it easy to trace each of the
command-code routines individually, to observe the results of the I/O,
and to examine the status codes returned in the request header.

Tracing the installed driver when it is linked into the MS-DOS system in
the normal manner is more difficult. Breakpoints must be chosen
carefully, to yield the maximum possible information per debugging run.
Because current versions of MS-DOS maintain only one request header in­
ternally, the request header that was being used by the driver you are trac­
ing will be overwritten as soon as your debugger makes an output request

Installable Device Drivers 295

to display information. You will find it helpful to add a routine to your ini­
tialization subroutine that displays the driver's load address on the console
when you boot MS-DOS; you can then use this address to inspect the
device-driver header and set breakpoints within the body of the driver.

Debugging a device driver can also be somewhat sticky when interrupt
handling is involved, especially if the device uses the same interrupt­
request priority level (IRQ level) as other peripherals in the system.
Cautious, conservative programming is needed to avoid unexpected and
unreproducible interactions with other device drivers and interrupt han­
dlers. If possible, prove out the basic logic of the driver using polled VO,
rather than interrupt-driven 1/0, and introduce interrupt handling only
when you know the rest of the driver's logic to be solid.

Typical device-driver errors or problems that can cause system crashes or
strange system behavior include the following:

1!11 Failure to set the linkage address of the last driver in a file to -1

111 Overflow of the MS-DOS stack by driver-initialization code, corrupting
the memory image of MS-DOS (can lead to unpredictable behavior dur­
ing boot; remedy is to use a local stack)

Iii Incorrect break-address reporting by the initialization routine (can
lead to a system crash if the next driver loaded overwrites vital parts of
the driver)

Iii Improper BPBs supplied by the build BPB routine, or incorrect BPB
pointer array supplied by the initialization routine (can lead to many
confusing problems, ranging from out-of-memory errors to system
boot failure)

Ill Incorrect reporting of the number of bytes or sectors successfully
transferred at the time an 1/0 error occurs (can manifest itself as a sys­
tem crash after you enter R to the Abort, Retry, Ignore? prompt)

Although the interface between the DOS kernel and the device driver is
fairly simple, it is also quite strict. The command-code routines must per­
form exactly as they are defined, or the system will behave erratically.
Even a very subtle discrepancy in the action of a command-code routine
can have unexpectedly large global effects.

296 Programming/or MS-DOS

Chapter15

Filters

A filter is, essentially, a program that operates on a stream of characters.
The source and destination of the character stream can be files, another
program, or almost any character device. The transformation applied by
the filter to the character stream can range from an operation as simple as
character substitution to one as elaborate as generating splines from sets
of coordinates.

The standard MS-DOS package includes three simple filters: SORT, which
alphabetically sorts text on a line-by-line basis; FIND, which searches a
text stream to match a specified string; and MORE, which displays text
one screenful at a time.

System Support for Filters
The operation of a filter program relies on two MS-DOS features that first
appeared in version 2.0: standard devices and redirectable 1/0.

The standard devices are represented by five handles that are originally
established by COMMAND.COM. Each process inherits these handles
from its immediate parent. Thus, the standard device handles are already
open when a process acquires control of the system, and it can use them
with Interrupt 21H Functions 3FH and 40H for read and write operations
without further preliminaries. The default assignments of the standard
device handles are as follows:

Handle Name Default device

0 stdin (standard input) CON
1 stdout (standard output) CON
2 stderr (standard error) CON
3 stdaux (standard auxiliary) AUX
4 stdprn (standard printer) PRN

The CON device is assigned by default to the system's keyboard and video
display. AUX and PRN are respectively associated by default with COMl
(the first physical serial port) and LPTl (the first parallel printer port). You
can use the MODE command to redirect LPTl to one of the serial ports;
the MODE command will also redirect PRN.

When executing a program by entering its name at the COMMAND.COM
prompt, you can redirect the standard input, the standard output, or both
from their default device (CON) to another file, a character device, or a
process. You do this by including one of the special characters<, >, >>,

and : iT1 the command line, in the form shown on the following page.

298 Programming/or MS-DOS

Symbol

<file

< device

> file
» file

> device
pl: p2

Effect

Takes standard input from the specified.file instead of the
keyboard.

Takes standard input from the named device instead of the
keyboard.

Sends standard output to the specified.file instead of the display.
Appends standard output to the current contents of the specified

file instead of sending it to the display.
Sends standard output to the named device instead of the display.
Routes standard output of program pl to become the standard

input of program p2. (Output of pl is said to be piped to p2.)

For example, the command

C>SORT <MYFILE.TXT >PRN <Enter>

causes the SORT filter to read its input from the file MYFILE. TXT, sort the
lines alphabetically, and write the resulting text to the character device
PRN (the logical name for the system's list device).

The redirection requested by the<, >,>>,and: characters takes place at
the level of COMMAND.COM and is invisible to the program it affects.
Any other process can achieve a similar effect by redirecting the standard
input and standard output with Int 21H Function 46H before calling the
EXEC function (Int 21H Function 4BH) to run a child process.

Note that if a program circumvents MS-DOS to perform its input and out­
put, either by calling ROM BIOS functions or by manipulating the key­
board or video controller directly, redirection commands placed in the
program's command line do not have the expected effect.

How Filters Work
By convention, a filter program reads its text from the standard input
device and writes the results of its operations to the standard output
device. When it reaches the end of the input stream, the filter simply
terminates. As a result, filters are both flexible and simple.

Filter programs are flexible because they do not know, and do not care
about, the source of the data they process or the destination of their out­
put. Thus, any character device that has a logical name within the system
(CON, AUX, COMl, COM2, PRN, LPTl, LPT2, LPT3, and so on), any file on
any block device (local or network) known to the system, or any other
program can supply a filter's input or accept its output. If necessary, you

Filters 299

can concatenate several functionally simple filters with pipes to perform
very complex operations.

Although flexible, filters are also simple because they rely on their parent
processes to supply standard input and standard output handles that have
already been appropriately redirected. The parent must open or create
any necessary files, check the validity of logical character-device names,
and load and execute the preceding or following process in a pipe. The
filter concerns itself only with the transformation it applies to the data.

Building a Filter
Creating a new filter for MS-DOS is a straightforward process. In its
simplest form, a filter need only use the handle-oriented read (Interrupt
21H Function 3FH) and write (Interrupt 21H Function 40H) functions to
get characters or lines from standard input and send them to standard out­
put, performing any desired alterations on the text stream on a character­
by-character or line-by-line basis.

Figures 15-1 and 15-2 contain prototype character-oriented filters in both
assembly language and C. In these examples, the translate routine, which
is called for each character transferred from the standard input to the stan­
dard output, does nothing at all. As a result, both filters function rather
like a very slow COPY command. You can quickly turn these primitive fil­
ters into useful programs by substituting your own translate routine.

If you try out these programs, you'll notice that the C prototype filter runs
much faster than its MASM equivalent. This is because the C runtime li­
brary is performing hidden blocking and deblocking of the input and out­
put stream, whereas the MASM filter is doing exactly what it appears to be
doing: making two calls to MS-DOS for each character processed. You can
easily restore the MASM filter's expected speed advantage by adapting it
to read and write lines instead of single characters.

300 Programming/or MS-DOS

name proto
page 55,132
title PROTO . ASM--prototype filter

PROTO.ASM: prototype character-oriented filter

Copyright 1988 Ray Duncan

stdin equ 0 sta ndard input handle
stdout equ standard output handle
stderr equ 2 standard error handle

er equ Odh ASCII carriage ret urn
lf equ Oah ASCII linefeed

_TEXT segment word public 'CODE'

assume cs: _TEXT ,ds: _DATA,ss:STACK

main

mainl:

proc

mov
mov

mov
mov
mov
mov
int
jc

cmp
jne

call

mov
mov
mov
mov
int
jc

far

ax ,_DATA
ds,ax

dx,offset char
cx,l
bx,stdin
ah,3fh
21h
main3

ax,l
main2

translate

dx,offset char
cx,l
bx.stdout
ah,40h
21h
main3

entry point from MS-DOS

set OS= our data segment

read char from stdin ...
DS:DX - buffer address
ex - length to read
BX - standard input handle
function 3fh - read
transfer to MS-DOS
if error, terminate

any character read?
if end of file, terminate

translate character

write char to stdout ...
DS:DX - buffer address
CX = length to write
BX - sta ndard output handle
function 40h - write
transfer to MS-DOS
if error, terminate

Figure 15-1. PROTO.ASM, the source code for a prototype character-oriented
MASMfilter.

(continued)

Filters 301

Figure 15-1. continued

main2:

main3:

cmp
jne

jmp

mov

int

mov

int

main endp

ax,1
main3

mainl

ax,4c00h

21h

ax,4c01h

21h

was character written?
if disk full, terminate

get another character

end of file reached
function 4ch - terminate
return code - 0
transfer to MS - DOS

error or disk full
function 4ch - terminate
return code - 1
transfer to MS-DOS

Perform any necessary translation on character
from standard input stored in variable 'char'.
This example simply leaves character unchanged.

translate proc near

ret does nothing

translate endp

TEXT - ends

- DATA segment word public 'DATA'

char db 0 ; storage for input character

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main defines program entry point

302 Programmingfor MS-DOS

PROTO.C: prototype character-oriented filter

Copyright 1988 Ray Duncan

#include <stdio.h>

main(int argc, char •argv[])

char ch;

while((ch-getchar()l !- EDF) I• read a character
{

ch - translate(ch); I• translate it if necessary

putchar(chl; I• write the character

exit(O); I• terminate at end of

Perform any necessary translation on character
from input file. This example simply returns
the same character.

int translate(char ch)

return (ch);

file

•I

•I

•I

•I

Figure 15-2. PROTO.C, the source code for a prototype character-oriented C filter.

The CLEAN Filter
As a more practical example of MS-DOS filters, let's look at a simple but
very useful filter called CLEAN. Figures 15-3 and 15-4 show the assembly­
language and C source code for this filter. CLEAN processes a text stream
by stripping the high bit from all characters, expanding tabs to spaces, and
throwing away all control codes except carriage returns, linefeeds, and
forrnfeeds. Consequently, CLEAN can transform almost any kind of word­
processed document file into a plain ASCII text file.

Filters 303

name clean
page 55.132
title CLEAN--Text-file filter

CLEAN.ASM Filter to turn document files into
norma 1 text files.

Copyright 1988 Ray Duncan

Bui 1 d: C>MASM CLEAN;
C>LINK CLEAN;

Usage: C>CLEAN <infi le >o utfile

All text characters are passed through with high
bit str ipped off. Formfeeds, carriage returns ,
and linefeeds are passed through. Tabs are expanded
to spaces . All other control codes are discarded.

tab equ 09h ASCII tab code
1f equ Oah ASCII linefeed
ff equ Och ASCII formfeed
er equ Odh ASCII carriage return
blank equ 020h ASCII space code
eof equ Olah Ctrl-Z end-of-file

tabsiz equ 8 width of tab stop

bufsiz equ 128 size of input and
output buffers

stdin equ 0000 standard input handle
stdout equ 0001 standard output handle
stderr equ 0002 standard error handle

_TEXT segment word public 'CODE'

assume cs: _TEXT,ds: _DATA,es: _DATA,ss:STACK

clean

304

proc far entry point from MS-DOS

push ds save DS:0000 for final
xor ax.ax return to MS-DOS, in case
push ax function 4ch can't be used

(continued)

Figure 15-3. CLEAN.ASM, the source code for the MASM version of the CLEAN filter.

Programming/or MS-DOS

Figure 15-3. continued

mov ax._DATA
mov ds,ax
mov es . ax

mov
int
cmp
jae

mov
mov
int
ret

cleanl: call

clean2: call
jc

and

cmp
jae

cmp
je

cmp
je

cmp
je

cmp
je

cmp
jne

clean3: mov
jmp

clean4: inc

ah,30h
21h
al . 2
cleanl

dx,offset msgl
ah.9
21h

i nit

getc
clean9

al ,07fh

al ,blank
clean4

al ,eof
cleanB

al. tab
clean6

a 1 • er
clean3

al, 1f

clean3

al . ff
clean2

column . a
cleans

column

ma ke data segment addressable

check version of MS-DOS

MS-DOS 2.0 or later?
jump if version OK

MS-DOS 1, display error
message and exi t ...
DS:DX - message address
function 9 - display string
transfer to MS-DOS
then exit the old way

initialize input buffer

get character from input
exit if end of stream

strip off high bit

is it a control char?
no, write it

is it end of file?
yes, write EOF and exit

is it a tab?
yes, expand it to spaces

i s it a carriage return?
yes. go proces s it

is it a linefeed?
yes . go process it

is it a formfeed?
no, discard it

i f CR. LF, or FF,
reset column to zero

if non-control character.
increment column counter

(continued)

Filters 305

Figure 15-3. continued

cle.an5: call
jnc

mov
mov
mov
mov
int

mov

int

clean6: mov
cwd
mov
idiv
sub

add

clean7: push

mov
call

pop
loop

jmp

cleanB: ca 11

cl ean9: call
mov

int

clean endp

getc proc

putc
clean2

dx,offset msg2
cx,msg2_len
bx,stderr
ah,40h
21h

ax,4c0lh

21h

ax.column

cx,tabsiz
ex
cx,dx

column.ex

ex

al ,blank
putc

ex
clean7

clean2

putc

flush
ax,4c00h

21h

near

306 Programming/or MS-DOS

write char to stdout
if disk not full.
get another character

write failed ...
DS:DX - error message
CX - message length
BX - standard error handle
function 40h - write
transfer to MS-DOS

function 4ch - terminate
return code - 1
transfer to MS-DOS

tab code detected
tabsiz - (column MOD tabsiz)
is number of spaces needed
to move to next tab stop

also update column counter

save spaces counter

write an ASCII space

restore spaces counter
loop until tab stop

get another character

write EOF mark

write last output buffer
function 4ch - terminate
return code - 0
transfer to MS-DOS

get character from stdin
returns carry - 1 if
end of input, else
AL - char, carry - 0

(continued)

Figure 15-3. continued

getcl:

getc2:

getc

putc

mov
cmp
jne

mov
mov
mov
mov
int
jc

or
jz

mov
xor

mov
inc

mov
clc
ret

stc
ret

endp

proc

mov
mov

inc
cmp
jne

mov
mov
mov

bx. i ptr
bx. il en
getcl

bx,stdin
cx,bufsiz
dx,offset
ah,3fh
21h
getc2

ax.ax
getc2

ilen,ax
bx,bx

ibuff

al , [ibuff+bx]
bx

i ptr,bx

near

bx,optr
[obuff+bx],al

bx
bx,bufsiz
putcl

bx,stdout
cx,bufsiz
dx,offset obuff

get input buffer pointer
end of buffer reached?
not yet, jump

more data is needed ...
BX - standard input handle
ex - length to read
DS:DX - buffer address
function 3fh - read
transfer to MS-DOS
jump if read failed

was anything read?
jump if end of input

save length of data
reset buffer pointer

get character from buffer
bump buffer pointer

save updated pointer
return character in AL
and carry - 0 (clear)

end of input stream
return carry - 1 (set)

send character to stdout,
returns carry - 1 if
error, else carry - 0

store character into
output buffer

bump buffer pointer
buffer full?
no, jump

BX - standard output handle
ex - length to write
DS:DX - buffer address

(continued)

Filters 307

Figure 15-3. continued

putcl:

putc2:

putc

i nit

mov
int
jc

cmp
j ne

xor

mov
clc
ret

stc
ret

endp

proc

mov
mov
mov
mov
int
jc
mov

initl: ret

init endp

flush proc

mov
jcxz
mov
mov
mov
int

fl ushl: ret

flush endp

_TEXT ends

ah.40h
21h
putc2

ax.ex
putc2

bx.bx

optr.bx

near

bx,stdin
cx ,bufsiz
dx,offset ibuff
ah,3fh
21h
initl
i l en. ax

near

cx,optr
fl ushl
dx,offset obuff
bx,stdout
ah,40h
21h

308 Programming/or MS-DOS

function 40h - write
transfer to MS-DOS
jump if write failed

was write complete?
jump if disk full

reset buffer pointer

save buffer pointer
write successful.
return carry - 0 (clear)

write failed or disk full,
return carry - 1 (set)

initialize input buffer

BX - standard input handle
ex - length to read
DS:DX - buffer address
function 3fh - read
transfer to MS-DOS
jump if read failed
save actual bytes read

flush output buffer

ex= bytes to write
exit if buffer empty
DS:DX = buffer address
BX= standard output handle
function 40h - write
transfer to MS-DOS

(continued)

Figure 15-3. continued

DATA segment word public 'DATA'

ibuff db bufsiz dup (0) input buffer
obuff db bufsiz dup (0) output buffer

iptr dw 0 i buff pointer
i 1 en dw 0 bytes in ibuff
optr dw 0 obuff pointer

column dw 0 current co lumn counter

msgl db er, lf
db 'clean: need MS-DOS version 2 or greater.'
db er. 1 f, '$'

msg2 db er, lf
db 'clean: disk is full.'

db er, l f
msg2_len equ $-msg2

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end clean

CLEAN.C Filter to turn document files into
normal text files.

Copyright 1988 Ray Duncan

Compile: C>CL CLEAN.C

Usage: C>CLEAN <infile >outfi le

Figure 15-4. CLEAN. C, the source code for the C version of the CLEAN filter.

(continued)

Filters 309

Figure 15-4. continued

All text characters are passed through with high bit stripped
off. Formfeeds, carriage returns. and linefeeds are passed
through. Tabs are expanded to spaces. All other control codes
are discarded.

*'
#include <stdio.h>

/fdefi ne TAB_WIDTH 8
/fdefi ne TAB '\x09'
#define LF '\xOA'
#define FF '\ xOC'
/fdefi ne CR '\ xOD'
/fdefi ne BLANK '\x20'
#define EOFMK ' \xlA'

main(int argc, char • argv[])

char c;
int col - O;

while((c - getchar()) ! -

(

c &- Ox07F;

switch(c)

case LF:
case CR:

col - 0;

case FF:
wchar(c);
brea k;

EOF)

/ • width of a tab stop • /
I * ASCII tab character *'
/ * ASCII linefeed * /

/ • ASCII formfeed • /
/ * ASCII carriage return • /
/ • ASCII space code *'
I • Ctrl-Z end of file • /

/ • character from stdin
/ • column counter

I• read input character

I• strip high bit

I• decode character

I• if linefeed or

'* carriage return,
I• reset column count

I• if formfeed, carriage
I• return, or linefeed,
I • pass character through

ca se TAB: /• if tab , expand to spaces • /

310

do wchar(BLANK);
while((++col % TAB_WIDTH) ! - 0);
break;

default:
if(c >- BLANK)

Programming/or MS-DOS

/• discard other control
/ • characters, pass text

(continued)

Figure 15-4. continued

wchar(cl;
col++;

break;

wchar(EOFMK);
exit(O);

I* characters through */

/* bump column counter

I* write end-of-file mark */

Write a character to the standard output. If
write fails, display error message and terminate.

wchar(char cl

if((putchar(c) - EOF) && (c !- EOFMK))
(

fputs("clean: disk full",stderrl;
exit(l);

When using the CLEAN filter, you must specify the source and destination
files with redirection parameters in the command line; otherwise, CLEAN
will simply read the keyboard and write to the display. For example, to
filter the document file MYFILE.DOC and leave the result in the file
MYFILE. TXT, you would enter the following command:

C>CLEAN <MYFILE.DOC >MY FILE.TXT <Enter>

(Note that the original file, MYFILE.DOC, is unchanged.)

One valuable application of this filter is to rescue assembly-language
source files. If you accidentally edit such a source file in document mode,
the resulting file may cause the assembler to generate spurious or confus­
ing error messages. CLEAN lets you turn the source file back into some­
thing the assembler can cope with, without losing the time you spent to
edit it.

Another handy application for CLEAN is to list a word-processed docu­
ment in raw form on the printer, using a command such as

C>CLEAN <MYFILE.DDC >PRN <E nter >

Filters 311

Contrasting the C and assembly-language versions of this filter provides
some interesting statistics. The C version contains 79 lines and compiles to
a 5889-byte .EXE file, whereas the assembly-language version contains
265 lines and builds an 1107-byte .EXE file. The size and execution-speed
advantages of implementing such tools in assembly language is obvious,
even compared with such an excellent compiler as the Microsoft C
Optimizing Compiler. However, you must balance performance consid­
erations against the time and expense required for programming, par­
ticularly when a program will not be used very often.

312 Programming/or MS-DOS

Chapter16

Compatibility and Portability

At the beginning of this book, we surveyed the history of MS-DOS and
saw that new versions come along nearly every year, loosely coupled to
the introduction of new models of personal computers. We then focused
on each of the mainstream issues of MS-DOS applications programming:
the user interface; mass storage; memory management; control of "child"
processes; and special classes of programs, such as filters, interrupt han­
dlers, and device drivers.

It's now time to close the circle and consider two global concerns of MS­
DOS programming: compatibility and portability. For your programs to
remain useful in a constantly evolving software and hardware environ­
ment, you must design them so that they perform reliably on any reason­
able machine configuration and exploit available system resources; in
addition, you should be able to upgrade them easily for new versions of
MS-DOS, for new machines, and, for that matter, for completely new envi­
ronments such as MS OS/2.

Degrees of Compatibility
If we look at how existing MS-DOS applications use the operating system
and hardware, we find that we can assign them to one of four categories:

■ MS-DOS-compatible applications

■ ROM BIOS-compatible applications

■ Hardware-compatible applications

■ "Ill-behaved" applications

MS-DOS-compatible applications use only the documented MS-DOS
function calls and do not call the ROM BIOS or access the hardware di­
rectly. They use ANSI escape sequences for screen control, and their input
and output is redirectable. An MS-DOS-compatible application will run
on any machine that supports MS-DOS, regardless of the machine config­
uration. Because of the relatively poor performance of MS-DOS's built-in
display and serial port drivers, few popular programs other than com­
pilers, assemblers, and linkers fall into this category.

ROM BIOS-compatible applications use the documented MS-DOS and
ROM BIOS function calls but do not access the hardware directly. As re­
cently as three years ago, this strategy might have significantly limited a
program's potential market. Today, the availability of high-quality IBM­
compatible ROM BIOSes from companies such as Phoenix has ensured
the dominance of the IBM ROM BIOS standard; virtually no machines are

314 Programming/or MS-DOS

being sold in which a program cannot rely as much on the ROM BIOS in­
terface as it might on the MS-DOS interface. However, as we noted in
Chapters 6 and 7, the ROM BIOS display and serial drivers are still not ade­
quate to the needs of high-performance interactive applications, so the
popular programs that fall into this category are few.

Hardware-compatible applications generally use MS-DOS functions for
mass storage, memory management, and the like, and use a mix of MS­
DOS and ROM BIOS function calls and direct hardware access for their
user interfaces. The amount of hardware dependence in such programs
varies widely. For example, some programs only write characters and at­
tributes into the video controller's regen buffer and use the ROM BIOS to
switch modes and position the cursor; others bypass the ROM BIOS video
driver altogether and take complete control of the video adapter. As this
book is written, the vast majority of the popular MS-DOS "productivity"
applications (word processors, databases, telecommunications programs,
and so on) can be placed somewhere in this category.

"Ill-behaved" applications are those that rely on undocumented MS-DOS
function calls or data structures, interception of MS-DOS or ROM BIOS in­
terrupts, or direct access to mass storage devices (bypassing the MS-DOS
file system). These programs tend to be extremely sensitive to their envi­
ronment and typically must be "adjusted" in order to work with each new
MS-DOS version or PC model. Virtually all popular terminate-and-stay­
resident (TSR) utilities, network programs, and disk repair/ optimization
packages are in this category.

Writing Well-Behaved MS-DOS Applications
Your choice of MS-DOS functions, ROM BIOS functions, or direct hard­
ware access to solve a particular problem must always be balanced against
performance needs; and, of course, the user is the final judge of a pro­
gram's usefulness and reliability. Nevertheless, you can follow some basic
guidelines, outlined below, to create well-behaved applications that are
likely to run properly under future versions of MS-DOS and under multi­
tasking program managers that run on top of MS-DOS, such as Microsoft
Windows.

Program structure
Design your programs as .EXE files with separate code, data, and stack
segments; shun the use of .COM files. Use the Microsoft conventions for
segment names and attributes discussed in Chapter 3. Inspect the environ­
ment block at runtime to locate your program's overlays or data files; don't
"hard-wire" a directory location into the program.

Compatibility and Portability 315

Check host capabilities

Obtain the MS-DOS version number with Int 21H Function 30H during
your program's initialization and be sure that all of the functions your
program requires are actually available. If you find that the host MS-DOS
version is inadequate, be careful about which functions you call to display
an error message and to terminate.

Use the enhanced capabilities of MS-DOS versions 3 and 4 when your
program is running under those versions. For example, you can specify a
sharing mode when opening a file with Int 21H Function 3DH, you can
create temporary or unique files with Int 21H Functions 5AH and 5BH, and
you can obtain extended error information (including a recommended
recovery strategy) with Int 21H Function 59H. Section II of this book con­
tains version-dependency information for each MS-DOS function.

Input and output
Use the handle file functions exclusively and extend full path support
throughout your application (being sure to allow for the maximum pos­
sible path length during user input of filenames). Use buffered I/0 when­
ever possible. The device drivers in MS-DOS versions 2.0 and later can
handle strings as long as 64 KB, and performance will be improved if you
write fewer, larger records as opposed to many short ones.

Avoid the use of FCBs, the Int 25H or Int 26H functions, or the ROM BIOS
disk driver. If you must use FCBs, close them when you are done with
them and don't move them around while they are open. Avoid reopening
FCBs that are already open or reclosing FCBs that have already been
closed-these seemingly harmless practices can cause problems when
network software is running .

. Memory management

During your program's initialization, release any memory that is not
needed by the program. (This is especially important for .COM pro­
grams.) If your program requires extra memory for buffers or tables, allo­
cate that memory dynamically when it is needed and release it as soon as
it is no longer required. Use expanded memory, when it is available, to
minimize your program's demands on conventional memory.

As a general rule, don't touch any memory that is not owned by your pro­
gram. To set or inspect interrupt vectors, use Int 21H Functions 25H and
35H rather than editing the interrupt vector table directly. If you alter the
contents of interrupt vectors, save their original values and restore them
before the program exits.

316 Programming/or MS-DOS

Process management
To isolate your program from dependencies on PSP structure and reloca­
tion information, use the EXEC function (Int 21H Function 4BH) when
loading overlays or other programs. Terminate your program with Int 21H
Function 4CH, passing a zero return code if the program executes suc­
cessfully and a nonzero code if an error is encountered. Your program's
parent can then test this return code with Int 21H Function 4DH or, in a
batch file, with the IF ERRORLEVEL statement.

Exception handling
Install Ctrl-C Ont 23H) and critical-error Ont 24H) handlers so that your
program cannot be terminated unexpectedly by the user's entry of Ctrl-C
or Ctrl-Break or by a hardware I/O failure. This is particularly important if
your program uses expanded memory or installs its own interrupt
handlers.

ROM BIOS and Hardware-Compatible Applications
When you feel the need to introduce ROM BIOS or hardware dependence
for performance reasons, keep it isolated to small, well-documented pro­
cedures that can be easily modified when the hardware changes. Use
macros and equates to hide hardware characteristics and to avoid spread­
ing "magic numbers" throughout your program.

Check host capabilities
If you use ROM BIOS functions in your program, you must check the ma­
chine model at runtime to be sure that the functions your program needs
are actually available. There is a machine ID byte at F000:FFFEH whose
value is interpreted as follows:

FSH PS/2 Models 70 and 80
F9H PC Convertible
FAH PS/ 2 Model 30
FBH PC/ XT Clater models)
FCH PC/ AT, PC / XT-286, PS/ 2 Models 50 and 60
FDH PCjr
FEH PC/XT (early models)
FFH PC "Classic"

In some cases, submodels can be identified; see Int 15H Function C0H on
page 573. Section III of this book contains version-dependency informa­
tion for each ROM BIOS function.

When writing your own direct video drivers, you must determine the type
and capabilities of the video adapter by a combination of Int lOH calls,

Compatibility and Portability 317

reading ports, and inspection of the ROM BIOS data area at 0040:0000H
and the memory reserved for the EGA or VGA ROM BIOS, among other
things. The techniques required are beyond the scope of this book but are
well explained in Programmer's Guide to PC and PS/2 Video Systems
(Microsoft Press, 1987).

Avoid unstable hardware
Some areas of IBM personal computer architecture have remained
remarkably stable from the original IBM PC, based on a 4.77 MHz 8088, to
today's PS/ 2 Model 80, based on a 20 MHz 80386. IBM's track record for
upward compatibility in its video and serial communications controllers
has been excellent; in many cases, the same hardware-dependent code
that was written for the original IBM PC runs perfectly well on an IBM
PS/ 2 Model 80. Other areas of relative hardware stability are:

■ Sound control via port 61H

■ The 8253 timer chip's channels O and 2 (ports 40H, 42H, and 43H)

■ The game adapter at port 201H

■ Control of the interrupt system via the 8259 PI C's mask register at
port 21H

However, direct sound generation and manipulation of the 8253 timer or
8259 PIC are quite likely to cause problems if your program is run under a
multitasking program manager such as Microsoft Windows or DesqView.

Keyboard mapping, the keyboard controller, and the floppy and fixed disk
controllers are areas of relative hardware instability. Programs that by­
pass MS-DOS for keyboard or disk access are much less likely to function
properly across the different PC models and are also prone to interfere
with each other and with well-behaved applications.

0S/2 Compatibility
MS-DOS is upwardly compatible in several respects with OS/ 2, Microsoft's
multitasking protected-mode virtual memory operating system for 80286
and 80386 computers. The OS/ 2 graphical user interface (the Presentation
Manager) is nearly identical to Microsoft Windows 2.0. OS/ 2 versions 1.0
and 1.1 use exactly the same disk formats as MS-DOS so that files may
easily be moved between MS-DOS and OS/ 2 systems. Most important,
OS/ 2 includes a module called the "DOS Compatibility Environment" or
"3.x Box," which can run one MS-DOS application at a time alongside
protected-mode OS/ 2 applications.

318 Programming/or MS-DOS

The 3.x Box traps Int 21H function calls and remaps them into OS/2 func­
tion calls, emulating an MS-DOS 3.3 environment with the file-sharing
module (SHARE.EXE) loaded but returning a major version number of 10
instead of 3 for Int 21H Function 30H. The 3.x Box also supports most
ROM BIOS calls, either by emulating their function or by interlocking the
device and then calling the original ROM BIOS routine. In addition, the
3.x Box maintains the ROM BIOS data area, provides timer ticks to appli­
cations via Int lCH, and supports certain undocumented MS-DOS services
and data structures so that most TSR utilities can function properly.
Nevertheless, the 3.x Box's emulation of MS-DOS is not perfect, and you
must be aware of certain constraints on MS-DOS applications running
underOS/2.

The most significant restriction on an MS-DOS application is that it does
not receive any CPU cycles when it is in the background. That is, when a
protected-mode application has been "selected," so that the user can in­
teract with it, the MS-DOS application is frozen. If the MS-DOS application
has captured any interrupt vectors (such as the serial port or timer tick),
these interrupts will not be serviced until the application is again selected
and in the foreground. OS/2 must freeze MS-DOS applications when they
are in the background because they execute in real mode and are thus not
subject to hardware memory protection; nothing else ensures that they
will not interfere with a protected-mode process that has control of the
screen and keyboard.

Use of FCBs is restricted in the 3.x Box, as it is under MS-DOS 3 or 4 with
SHARE.EXE loaded. A file cannot be opened with an FCB if any other
process is using it. The number of FCBs that can be simultaneously
opened is limited to 16 or to the number specified in a CONFIG.SYS
FCBS= directive. Even when the handle file functions are used, these
functions may fail unexpectedly due to the activity of other processes (for
example, if a protected-mode process has already opened the file with
"deny all" sharing mode); most MS-DOS applications are not written with
file sharing in mind, and they do not handle such errors gracefully.

Direct writes to a fixed disk using Int 26H or Int 13H are not allowed. This
prevents the file system from being corrupted, because protected-mode
applications running concurrently with the MS-DOS application may also
be writing to the same disk. Imagine the mess if a typical MS-DOS unerase
utility were to alter the root directory and FAT at the same time that a
protected-mode database program was updating its file and indexes!

Compatibility and Portability 319

MS-DOS applications that attempt to reprogram the 8259 to move the in­
terrupt vector table or that modify interrupt vectors already belonging to
an OS/ 2 device driver are terminated by the operating system. MS-DOS
applications can change the 8259's interrupt-mask register, disable and
reenable interrupts at their discretion, and read or write any I/O port. The
obvious corollary is that an MS-DOS program running in the 3.x Box can
crash the entire OS/ 2 system at any time; this is the price for allowing real­
mode applications to run at all.

Porting MS-DOS Applications to OS/2
The application program interface (API) provided by OS/ 2 to protected­
mode programs is quite different from the familiar Int 21H interface of MS­
DOS and the OS/ 2 3.x Box. However, the OS/ 2 API is functionally a
proper superset of MS-DOS. This makes it easy to convert well-behaved
MS-DOS applications to run in OS/2 protected mode, whe'nce they can be
enhanced to take advantage of OS/ 2's virtual memory, multitasking, and
interprocess communication capabilities.

To give you a feeling for both the nature of the OS/ 2 API and the practices
that should be avoided in MS-DOS programming if portability to OS/ 2 is
desired, I will outline my own strategy for converting existing MS-DOS
assembly-language programs to OS/ 2. For the purposes of discussion, I
have divided the conversion process into five steps and have assigned
each an easily remembered buzzword:

1. Segmentation

2. Rationalization

3. Encapsulation

4. Conversion

5. Optimization

The first three stages can (and should) be performed and tested in the MS­
DOS environment; only the last two require OS/ 2 and the protected-mode
programming tools. As you read on, you may notice that an MS-DOS pro­
gram that follows the compatibility guidelines presented earlier in this
chapter requires relatively little work to make it run in protected mode.
This is the natural benefit of working with the operating system instead of
against it.

320 Programming/or MS-DOS

Segmentation
Most of the 80286's protected-mode capabilities revolve around a change
in the way memory is addressed. In real mode, the 80286 essentially emu­
lates an 8088/86 processor, and the value in a segment register corre­
sponds directly to a physical memory address. MS-DOS runs on the 80286
in real mode.

When an 80286 is running in protected mode, as it does under OS/ 2, an
additional level of indirection is added to memory addressing.1 A segment
register holds a selector, which is an index to a table of descriptors. A de­
scriptor defines the physical address and length of a memory segment, its
characteristics (executable, read-only data, or read/write data) and access
rights, and whether the segment is currently resident in RAM or has been
swapped out to disk. Each time a program loads a segment register or ac­
cesses memory, the 80286 hardware checks the associated descriptor and
the program's privilege level, generating a fault if the selector or memory
operation is not valid. The fault acts like a hardware interrupt, allowing
the operating system to regain control and take the appropriate action.

This scheme of memory addressing in protected mode has two immediate
consequences for application programs. The first is that application pro­
grams can no longer perform arithmetic on the contents of segment regis­
ters (because selectors are magic numbers and have no direct relationship
to physical memory addresses) or use segment registers for storage of tem­
porary values. A program must not load a segment register with anything
but a legitimate selector provided by the OS/ 2 loader or resulting from an
OS/ 2 memory allocation function call. The second consequence is that a
program must strictly segregate machine code ("text") from data, placing
them in separate segments with distinct selectors (because a selector that
is executable is not writable, and vice versa).

Accordingly, the first step in converting a program for OS/ 2 is to turn it
into a .EXE-type program that uses the Microsoft segment, class, and
group conventions described in Chapter 3. At minimum, the program
must have one code segment and one data segment, and should declare a
group-with the special name DGROUP-that contains the "near" data
segment, stack, and local heap (if any). At the same time, you should
remove or rewrite any code that performs direct manipulation of segment
values.

1 Although the 80386 has additional modes and addressing capabilities, current versions of
OS/2 use the 80386 as though it were an 80286.

Compatibility and Portability 321

After restructuring and segmentation, reassemble and link your program
and check to be sure it still works as expected under MS-DOS. Changing
or adding segmentation often uncovers hidden addressing assumptions in
the code, so it is best to track these problems down before making other
substantive changes to the program.

Rationalization
Once you've successfully segmented your program so that it can be linked
and executed as a .EXE file under MS-DOS, the next step is to rationalize
your code. By rationalization I mean converting your program into a com­
pletely well-behaved MS-DOS application.

First, you must ruthlessly eliminate any elements that manipulate the
peripheral device adapters directly, alter interrupt priorities, edit the sys­
tem interrupt-vector table, or depend on CPU speed or characteristics
(such as timing loops). In protected mode, control of the interrupt system
is completely reserved to the operating system and its device drivers, VO
ports may be read or written by an application only under very specific
conditions, and timing loops burn up CPU cycles that can be used by
other processes.

As I mentioned earlier in this chapter, display routines constitute the most
· common area of hardware dependence in an MS-DOS application. Direct

manipulation_ of the video adapter and its regen buffer poses obvious
difficulties in a multitasking, protected-memory environment such as
OS/2. For porting purposes, you must convert all routines that write text to
the display, modify character attributes, or affect cursor shape or position
into Int 21H Function 40H calls using ANSI escape sequences or into ROM
BIOS Int lOH calls. Similarly, you must convert all hardware-dependent
keyboard operations to Int 21H Function 3FH or ROM BIOS Int 16H calls.

Once all hardware dependence has been expunged from your program,
your next priority is to make it well-behaved in its use of system memory.
Under MS-DOS an application is typically handed all remaining memory
in the system to do with as it will; under OS/2 the converse is true: A pro­
cess is initially allocated only enough memory to hold its code, declared
data storage, and stack. You can make the MS-DOS loader behave like
the OS/2 loader by linking your application with the /CPARMAXALLOC
switch. Alternatively, your program can give up all extra memory during
its initialization with Int 21H Function 4AH, as recommended earlier in
this chapter.

After your program completes its initialization sequence, it should
dynamically obtain and release any additional memory it may require for

322 Programming for MS-DOS

buffers and tables with MS-DOS Int 21H Functions 48H and 49H. To en­
sure compatibility with protected mode, limit the size of any single allo­
cated block to 65,536 bytes or less, even though MS-DOS allows larger
blocks to be allocated.

Finally, you must turn your attention to file and device handling. Replace
any calls to FCB file functions with their handle-based equivalents,
because OS/2 does not support FCBs in protected mode at all. Check
pathnames for validity within the application; although MS-DOS and the
3.x Box silently truncate a name or extension, OS/2 refuses to open or
create a file in protected mode if the name or extension is too long and
returns an error instead. Replace any use of the predefined handles for the
standard auxiliary and standard list devices with explicit opens of
COMl, PRN, LPTI, and so on, using the resulting handle for read and write
operations. OS/2 does not supply processes with standard handles for the
serial communications port or printer.

Encapsulation
When you reach this point, with a well-behaved, segmented MS-DOS ap­
plication in hand, the worst of a port to OS/2 is behind you. You are now
ready to prepare your program for true conversion to protected-mode
operation ·by encapsulating, in individual subroutines, every part of the
program that is specific to the host operating system. The objective here is
to localize the program's "knowledge" of the environment into small pro­
cedures that can be subsequently modified without affecting the re­
mainder of the program.

As an example of encapsulation, consider a typical call by an MS-DOS ap­
plication to write a string to the standard output device (Figure 16-1). In
order to facilitate conversion to OS/2, you would replace every instance of
such a write to a file or device with a call to a small subroutine that "hides"
the mechanics of the actual operating-system function call, as illustrated
in Figure 16-2.

Another candidate for encapsulation, which does not necessarily involve
an operating-system function call, is the application's code to gain access
to command-line parameters, environment-block variables, and the name
of the file it was loaded from. Under MS-DOS, this information is divided
between the program segment prefix (PSP) and the environment block, as
we saw in Chapters 3 and 12; under OS/2, there is no such thing as a PSP,
and the program filename and command-line information are appended
to the environment block.

Compatibility and Portabiltty 323

stdin equ 0 standard input handle
stdout equ 1 standard output handle
stderr equ 2 standard error handle

msg db 'This is a sample message'
msg_len equ $-msg

stdin

mov dx,seg msg ; DS:DX - message address
mov ds,dx
mov dx,offset DGROUP:msg
mov cx,msg_len ex - message length
mov bx,stdo ut BX - handle
mov ah,40h AH - function 40h write
int 21h transfer to MS-DOS
jc error jump if error
cmp ax,msg_len all characters written?
jne diskfull no. device is full

Figure 16-1. Typical in-line code for an MS-DOS Junction call. This particular se­
quence writes a string to the standard output device. Since the standard output might
be redirected to a file without the programs knowledge, it must also check that all of
the requested characters were actually written; if the returned length is less than the
requested length, this usually indicates that the standard output has been redirected to
a disk file and that the disk is full.

equ 0 standard input handle
stdout equ 1 standard output handle
stderr equ 2 standard error handle

msg db 'This is a sample message'
msg_len equ $-msg

(continued)

Figure 16-2. Code from Figure 16-1 after "encapsulation." The portion of the code
that is operating-system dependent has been isolated inside a subroutine that is called
from other points within the application.

324 Programming/or MS-DOS

Figure 16-2. continued

write

write

mov dx.seg msg ; DS:DX - message address
mov ds,dx
mov dx,offset DGROUP:msg
mov cx.msg_len ex - message length
mov bx,stdout BX - handle
call write perform the write
jc error jump if error
cmp ax,msg_len all characters written?
jne diskfull no. device is full

proc near write to file or device
Call with:
BX - handle
CX - length of data
DS:DX - address of data
returns:
if successful. carry clear
and AX - bytes written
if error, carry set
and AX - error code

mov ah,40h function 40h - write
int 21h transfer to MS-DOS
ret return status in CY and AX

endp

When you have completed the encapsulation of system services and ac­
cess to the PSP and environment, subject your program once more to
thorough testing under MS-DOS. This is your last chance, while you are
still working in a familiar milieu and have access to your favorite debug­
ging tools, to detect any subtle errors you may have introduced during the
three conversion steps discussed thus far.

Compatibility and Portability 325

stdin

Conversion
Next, you must rewrite each system-dependent procedure you created
during the encapsulation stage to conform to the OS/ 2 protected-mode
APL In contrast to MS-DOS functions, which are actuated through soft­
ware interrupts and pass parameters in registers, OS/ 2 API functions are
requested through a far call to a named entry point. Parameters are passed
on the stack, along with the addresses of variables within the calling pro ­
gram's data segment that will receive any results returned by the function.
The status of an operation is returned in register AX-zero if the function
succeeded, an error code otherwise. All other registers are preserved.

Although it is not my intention here to provide a detailed introduction to
OS/ 2 programming, Figure 16-3 illustrates the final form of our previous
example, after conversion for OS/ 2. Note especially the addition of the
extrn statement, the wlen variable, and the simulation of the MS-DOS
function status. This code may not be elegant, but it serves the purpose of
limiting the necessary changes to a very small portion of the source file .
Some OS/ 2 functions (such as DosOpen) require parameters that have no
counterpart under MS-DOS; you can usually select reasonable values for
these extra parameters that will make their existence temporarily invisible
to the remainder of the application.

equ 0 standard input handle
stdout equ standard output handle
stderr equ 2 standard error handle

extrn DosWrite:far

msg db 'This is a sample message'
msg_len equ $-msg

wlen dw ? receives actual number
of bytes written

(continued)

Figure 16-3. Code from Figure 16-2 after "conversion. " The MS-DOS function call
has been replaced with the equivalent OS/2 function call. Since the knowledge of the
operating system has been hidden inside the subroutine by the previous encapsulation
step, the surrounding programs requests for write operations should run unchanged.
Note that the OS/2 function had to be declared as an external name with the far" at-
tribute, and that a variable named wlen was added to the data segment of the
application to receive the actual number of bytes written.

326 Programming/or MS-DOS

Figure 16-3. continued

mov dx,seg msg ; DS:DX = message address
mov ds,dx
mov dx,offset DGROUP:msg
mov cx,msg_len ex - message length
mov bx,stdout BX - handle
call write perform the write
jc error jump if error
cmp ax,msg_len all characters written?
jne di skfull no, device is full

write proc near write to file or device
call with:
BX - handle
ex - 1 ength of data
DS:DX - address of data
returns:
if successful, carry cl ear
and AX - bytes written
if error, carry set
and AX = error code

push bx handle
push ds address of data
push dx
push ex length of data
push ds receives 1 ength written
mov ax.offset DGROUP:wlen
push ax
call DosWrite transfer to OS/2
or ax.ax did write succeed?
jnz write! jump, write failed
mov ax,wlen no error, OR cleared CY
ret and AX bytes written

write!: stc write error, return CY set
ret and AX= error number

write endp

Compatibility and Portability 327

Figures 16-4, 16-5, and 16-6 list the OS/2 services that are equivalent to
selected MS-DOS and ROM BIOS Int 21H, Int lOH, and Int 16H calls. MS­
DOS functions related to FCBs and PSPs are not included in these tables
because OS/2 does not support either of these structures. The MS-DOS
terminate-and-stay-resident functions are also omitted. Because OS/2 is a
true multitasking system, a process doesn't need to terminate in order to
stay resident while another process is running.

MS-IXJS Description OS/2function

Int21H
Function
0 Terminate process DosExit
1 Character input with echo KbdCharln
2 Character output VioWrtTTY
3 Auxiliary input DosRead
4 Auxiliary output DosWrite
5 Printer output DosWrite
6 Direct console VO KbdCharin,

VioWrtTTY
7 Unfiltered input without echo KbdCharin
8 Character input without echo KbdCharin
9 Display string VioWrtTTY
0AH(l0) Buffered keyboard input KbdStringin
0BH (11) Check input status KbdPeek
0CH(12) Reset buffer and input KbdFlushBuffer,

KbdCharin
0DH(13) Disk reset DosButReset
0EH(14) Select disk DosSelectDisk
19H (25) Get C]Jrrent disk DosQCurDisk
lBH (27) Get default drive data DosQFSinfo
lCH (28) Get drive data DosQFSinfo
2AH (42) Get date DosGetDateTime
2BH (43) Set date DosSetDateTime
2CH (44) Get time DosGetDateTime
2DH(45) Set time DosSetDateTime
2EH(46) Set verify flag DosSetVerify
30H(48) Get MS-DOS version DosGetVersion
36H (54) Get drive allocation DosQFSinfo

information

(continued)

Figure 16-4. Table of selected MS-DOS Junction calls and their OS/2 counterparts.
Note that OS/2 Junctions are typically more powerful and flexible than the corre­
sponding MS-DOS Junctions, and that this is not a complete list of OS/2 services.

328 Programming/or MS-DOS

Figure 16-4. continued

MS-IXJS Description OS/2.{unction

38H (56) Get or set country DosGetCtrylnfo
information

39H (57) Create directory DosMkdir
3AH(58) Delete directory DosRmdir
3BH (59) Set current directory DosChdir
3CH(60) Create file DosOpen
3DH(61) Open file DosOpen
3EH (62) Close file DosClose
3FH (63) Read file or device DosRead
40H (64) Write file or device DosWrite
41H (65) Delete file DosDelete
42H (66) Set file pointer DosChgFilePtr
43H (67) Get or set file attributes DosQFileMode,

DosSetFileMode
44H (68) I/O control (IOCTL) DosDevIOCtl
45H (69J Duplicate handle DosDupHandle
46H(70) Redirect handle DosDupHandle
47H (71) Get current directory DosQCurDir
48H (72) Allocate memory block DosAllocSeg
49H (73) Release memory block DosFreeSeg
4AH(74) Resize memory block DosReA!locSeg
4BH (75) Execute program DosExecPgm
4CH(76) Terminate process with DosExit

return code
4DH(77) Get return code DosCWait
4EH(78) Find first file DosFindFirst
4FH (79) Find next file DosFindNext
54H (84) Get verify flag DosQVerify
56H(86) Rename file DosMove
57H(87) Get or set file date and time DosQFilelnfo,

DosSetFilelnfo
59H (89) Get extended error DosErrClass

information
SBH (91) Create new file DosOpen
SCH (92) Lock or unlock file region DosFileLocks
65H (101) Get extended country DosGetCtrylnfo

information
66H (102) Get or set code page DosGetCp,

DosSetCp
67H (103) Set handle count DosSetMaxFH
68H (104) Commit file DosBufReset
6CH(108) Extended open file DosOpen

Compatibility and Portability 329

ROMBIOS Description OS/2.fu:nction

Int JOH
Function
0 Select display mode VioSetMode
1 Set cursor type VioSetCurType
2 Set cursor position VioSetCurPos
3 Get cursor position VioGetCurPos
6 Initialize or scroll window up VioScrollUp
7 Initialize or scroll window down VioScrollDn
8 Read character and attribute VioReadCellStr
9 Write character and attribute VioWrtNCell
OAH (10) Write character VioWrtNChar
OEH(14) Write character in teletype mode VioWrtTTY
OFH(lS) Get display mode VioGetMode
10H(16) Set palette, border color, etc. VioSetState
13H (19) Write string in teletype mode VioWrtTTY

Figure 16-5. Table of ROM BIOS Int JOH video-display driver functions used by MS­
DOS applications and their OS/2 equivalents. This is not a complete list of OS/2 video
services.

ROM BIOS

Int 16H
Function
0
1
2

Description

Read keyboard character
Get keyboard status
Get keyboard flags

0S/2function

KbdCharin
KbdPeek
KbdGetStatus

Figure 16-6. Table of ROM BIOS Int 16H keyboard driver functions used by MS-DOS
applications and their OS/2 equivalents. This is not a complete list of OS/2 keyboard
services.

Optimization
Once your program is running in protected mode, it is time to unravel
some of the changes made for purposes of conversion and to introduce
various optimizations. Three obvious categories should be considered:

1. Modifying the program's user-interface code for the more powerful
OS/2 keyboard and display API functions.

2. Incorporating 80286-specific machine instructions where appropriate.

3. Revamping the application to exploit the OS/2 facilities that are unique
to protected mode. (Of course, the application benefits from OS/2's
virtual memory capabilities automatically; it can allocate memory until
physical memory and disk swapping space are exhausted.)

330 Programming/or MS-DOS

Modifying subroutines that encapsulate user input and output to take ad­
vantage of the additional functionality available under OS/2 is straight­
forward, and the resulting performance improvements can be quite dra­
matic. For example, the OS/2 video driver offers a variety of services that
are far superior to the screen support in MS-DOS and the ROM BIOS, in­
cluding high-speed display of strings and attributes at any screen position,
"reading back" selected areas of the display into a buffer, and scrolling in
all four directions.

The 80286-specific machine instructions can be very helpful in reducing
code size and increasing execution speed. The most useful instructions
are the shifts and rotates by an immediate count other than one, the three­
operand multiply where one of the operands is an immediate (literal)
value, and the push immediate value instruction (particularly handy for
setting up OS/2 function calls). For example, in Figure 16-3, the sequence

mov ax, offset DGROUP: wl en

push ax

could be replaced by the single instruction

push offset DGROUP:wl en

Restructuring an application to take full advantage of OS/2's protected­
mode capabilities requires close study of both the application and the
OS/2 API, but such study can pay off with sizable benefits in performance,
ease of maintenance, and code sharing. Often, for instance, different parts
of an application are concerned with 1/0 devices of vastly different
speeds, such as the keyboard, disk, and video display. It both simplifies
and enhances the application to separate these elements into
subprocesses (called threads in OS/2) that execute asynchronously, com­
municate through shared data structures, and synchronize with each
other, when necessary, using semaphores.

As another example, when several applications are closely related and
contain many identical or highly similar procedures, OS/2 allows you to
centralize those procedures in a dynamic link library. Routines in a
dynamic link library are bound to a program at its load time (rather than
by LINK, as in the case of traditional runtime libraries) and are shared by
all the processes that need them. This reduces the size of each application
.EXE file and allows more efficient use of memory. Best of all, dynamic
link libraries drastically simplify code maintenance; the routines in the li­
braries can be debugged or improved at any time, and the applications
that use them will automatically benefit the next time they are executed.

Compatibility and Portability 331

Notes to the Reader
This section documents the services that the MS-DOS kernel provides to
application programs via software interrupts 20H-2FH. Each MS-DOS
function is described in the same format:

■ A heading containing the function 's name, software interrupt and
function number, and an icon indicating the MS-DOS version in which
the function was first supported. You can assume that the function is
available in all subsequent MS-DOS versions unless explicitly noted
otherwise.

■ A synopsis of the actions performed by the function and the circum­
stances under which it would be used.

■ A summary of the function's arguments.

■ The results and / or error indicators returned by the function. A com­
prehensive list of error codes can be found in the entry for Int 21H
Function 59H.

■ Notes describing special uses or dependencies of the function.

■ A skeleton example of the function 's use, written in assembly language.

Version icons used in the synopsis, arguments, results, or Notes sections
refer to specific minor or major versions, unless they include a + sign to in­
dicate a version and all subsequent versions.

For purposes of clarity, the examples may include instructions that would
not be necessary if the code were inserted into a working program. For
example, most of the examples explicitly set the segment registers when
passing the address of a filename or buffer to MS-DOS; in real applica­
tions, the segment registers are usually initialized once at entry to the pro­
gram and left alone thereafter.

334 Section II

Int 21H Function Summary by Number

Hex Dec Function name Vers F/H1

OOH 0 Terminate Process 1.0+
0lH 1 Character Input with Echo 1.0+
02H 2 Character Output 1.0+
03H 3 Auxiliary Input 1.0+
04H 4 Auxiliary Output 1.0+
05H 5 Printer Output 1.0+
06H 6 Direct Console I/ O 1.0+
07H 7 Unfiltered Character Input Without Echo 1.0+
08H 8 Character Input Without Echo 1.0+
09H 9 Display String 1.0+
0AH 10 Buffered Keyboard Input 1.0+
0BH 11 Check Input Status 1.0+
OCH 12 Flush Input Buffer and Then Input 1.0+
0DH 13 Disk Reset 1.0+
0EH 14 Select Disk 1.0+
0FH 15 Open File 1.0+ F
lOH 16 Close File 1.0+ F
llH 17 Find First File 1.0+ F
12H 18 Find Next File 1.0+ F
13H 19 Delete File 1.0+ F
14H 20 Sequential Read 1.0+ F
15H 21 Sequential Write 1.0+ F
16H 22 Create File 1.0+ F
17H 23 Rename File 1.0+ F
18H 24 Reserved
19H 25 Get Current Disk 1.0+
lAH 26 Set DTA Address 1.0+
lBH 27 Get Default Drive Data 1.0+
lCH 28 Get Drive Data 2.0+
lDH 29 Reserved
lEH 30 Reserved
lFH 31 Reserved
20H 32 Reserved
21H 33 Random Read 1.0+ F
22H 34 Random Write 1.0+ F
23H 35 Get File Size 1.0+ F
24H 36 Set Relat ive Record Number 1.0+ F
25H 37 Set Interrupt Vector 1.0+
26H 38 Create New PSP 1.0+
27H 39 Random Block Read 1.0+ F
28H 40 Random Block Write 1.0+ F
29H 41 Parse Filename 1.0+

1 Specifies whether file functions are FCB- or handle- related.
(continued)

MS-DOS Functions Reference 335

Int 21H Function Summary by Number continued

Hex Dec Function name Vers FIH
2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+
2EH 46 Set Verify Flag 1.0+
2FH 47 Get DTA Address 2.0+
30H 48 Get MS-DOS Version Number 2.0+
31H 49 Terminate and Stay Resident 2.0+
32H 50 Reserved
33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
34H 52 Reserved
35H 53 Get Interrupt Vector 2.0+
36H 54 Get Drive Allocation Information 2.0+
37H 55 Reserved
38H 56 Get or Set Country Information 2.0+
39H 57 Create Directory 2.0+
3AH 58 Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
3FH 63 Read File or Device 2.0+ H
40H 64 Write File or Device 2.0+ H
41H 65 Delete File 2.0+ H
42H 66 Set File Pointer 2.0+ H
43H 67 Get or Set File Attributes 2.0+
44H 68 IOCTL (I/0 Control) 2.0+
45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
47H 71 Get Current Directory 2.0+
48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H
50H 80 Reserved
51H 81 Reserved
52H 82 Reserved
53H 83 Reserved

(continued)

336 Section II

Int 21H Function Summary by Number continued

Hex Dec Function name Vers F/H
54H 84 Get Verify Flag 2.0+
55H 85 Reserved
56H 86 Rename File 2.0+
57H 87 Get or Set File Date and Time 2.0+ H
58H 88 Get or Set Allocation Strategy 3.0+
59H 89 Get Extended Error Information 3.0+
5AH 90 Create Temporary File 3.0+ H
5BH 91 Create New File 3.0+ H
5CH 92 Lock or Unlock File Region 3.0+ H
5DH 93 Reserved
5EH 94 Get Machine Name, Get or Set Printer Setup 3.1+
5FH 95 Device Redirection 3.1+
60H 96 Reserved
61H 97 Reserved
62H 98 Get PSP Address 3.0+
63H 99 Get DBCS Lead Byte Table 2.25only
64H 100 Reserved
65H 101 Get Extended Country Information 3.3+
66H 102 Get or Set Code Page 3.3+
67H 103 Set Handle Count 3.3+
68H 104 Commit File 3.3+ H
69H 105 Reserved
6AH 106 Reserved
6BH 107 Reserved
6CH 108 Extended Open File 4.0+ H

Int 21H Function Summary by Category

Hex Dec Function name Vers FIH
Character I/O
OlH 1 Character Input with Echo 1.0+
02H 2 Character Output 1.0+
03H 3 Auxiliary Input 1.0+
04H 4 Auxiliary Output 1.0+
05H 5 Printer Output 1.0+
06H 6 Direct Console VO 1.0+
07H 7 Unfiltered Character Input Without Echo 1.0+
08H 8 Character Input Without Echo 1.0+

(continued)

MS-DOS Functions Reference 337

Int 21H Fun«:tion Summary by category continued

Hex Dec Function na.me Vers F/H

09H 9 Display String 1.0+
0AH 10 Buffered Keyboard Input 1.0+
0BH 11 Check Input Status 1.0+
OCH 12 Flush Input Buffer and Then Input 1.0+

File Operations
0FH 15 Open File 1.0+ F
lOH 16 Close File 1.0+ F
llH 17 Find First File 1.0+ F
12H 18 Find Next File 1.0+ F
13H 19 Delete File 1.0+ F
16H 22 Create File 1.0+ F
17H 23 Rename File 1.0+ F
23H 35 Get File Size 1.0+ F
29H 41 Parse Filename 1.0+ F
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
41H 65 Delete File 2.0+ H
43H 67 Get or Set File Attributes 2.0+
45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H
56H 86 Rename File 2.0+
57H 87 Get or Set File Date and Time 2.0+ H
5AH 90 Create Temporary File 3.0+ H
5BH 91 Create New File 3.0+ H
67H 103 Set Handle Count 3.3+
68H 104 Commit File 3.3+ H
6CH 108 Extended Open File 4.0+ H

Record Operations
14H 20 Sequential Read 1.0+ F
15H 21 Sequential Write 1.0+ F
lAH 26 Set DTA Address 1.0+
21H 33 Random Read 1.0+ F
22H 34 Random Write 1.0+ F
24H 36 Set Relative Record Number 1.0+ F
27H 39 Random Block Read 1.0+ F
28H 40 Random Block Write 1.0+ F
2FH 47 Get DTA Address 2.0+
3FH 63 Read File or Device 2.0+ H

(continued)

338 Section II

Int 21.IJ Function Summary by category continued

Hex Dec Function name Vers F/H

40H 64 Write File or Device 2.0+ H
42H 66 Set File Pointer 2.0+ H
SCH 92 Lock or Unlock File Region 3.0+ H

Directory Operations
39H 57 Create Directory 2.0+
3AH 58 Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
47H 71 Get Current Directory 2.0+

Disk Management
ODH 13 Disk Reset 1.0+
OEH 14 Select Disk 1.0+
19H 25 Get Current Disk 1.0+
lBH 27 Get Default Drive Data 1.0+
lCH 28 Get Drive Data 2.0+
2EH 46 Set Verify Flag 1.0+
36H 54 Get Drive Allocation Information 2.0+
54H 84 Get Verify Flag 2.0+

Process Management
OOH 0 Terminate Process 1.0+
26H 38 Create New PSP 1.0+
31H 49 Terminate and Stay Resident 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
62H 98 Get PSP Address 3.0+

Memory Management
48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
SSH 88 Get or Set Allocation Strategy 3.0+

Network Functions
SEH 94 Get Machine Name, Get or Set Printer Setup 3.1+
SFH 95 Device Redirection 3.1+

Time and Date
2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+

(continued)

MS-DOS Functions Reference 339

Int 21H Function Summary by Category continued

Hex Dec Function name Vers F/H

Miscellaneous System Functions
25H 37 Set Interrupt Vector 1.0+
30H 48 Get MS-DOS Version Number 2.0+
33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
35H 53 Get Interrupt Vector 2.0+
38H 56 Get or Set Country Information 2.0+
44H 68 IOCTL (1/0 Control) 2.0+
59H 89 Get Extended Error Information 3.0+
63H 99 Get Lead Byte Table 2.25only
65H 101 Get Extended Country Information 3.3+
66H 102 Get or Set Code Page 3,3+

Reserved Functions
18H 24 Reserved
lDH 29 Reserved
lEH 30 Reserved
lFH 31 Reserved
20H 32 Reserved
32H so Reserved
34H 52 Reserved
37H 55 Reserved
S0H 80 Reserved
51H 81 Reserved
52H 82 Reserved
53H 83 Reserved
SSH 85 Reserved
SDH 93 Reserved
60H 96 Reserved
61H 97 Reserved
64H 100 Reserved
69H 105 Reserved
6AH 106 Reserved
6BH 107 Reserved

340 Section II

Int20H (1.0]
Terminate process

Terminates the current process. This is one of several methods that a program can use to perform a final
exit. MS-DOS then takes the following actions:

■ All memory belonging to the process is released.

■ File buffers are flushed and any open handles for files or devices owned by the
process are closed.

■ The termination handler vector (Int 22H) is restored from PSP:000AH.

■ The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

■ [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

■ Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Call with:

Returns:

Notes:

Example:

cs = segment address of program segment prefix

Nothing

■ Any files that have been written to using FCBs should be closed before performing
this exit call; otherwise, data may be lost.

■ Other methods of performing a final exit are:

- Int 21H Function OOH
- Int 21H Function 31H
- Int 21H Function 4CH
- Int 27H

■ (2.0+] Int 21H Functions 31H and 4CH are the preferred methods for termination,
since they allow a return code to be passed to the parent process.

■ (3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Terminate the current program, returning control to the program's parent.

int 20h transfer to MS-00S

MS-DOS Functions Reference 341

Int 21H [1.0)
Function OOH
Terminate process

Terminates the current process. This is one of several methods that a program can use to perform a final
exit. MS-DOS then takes the following actions:

■ All memory belonging to the process is released.

■ File buffers are flushed and any open handles for files or devices owned by the
process are closed.

■ The termination handler vector (Int 22H) is restored from PSP:000AH.

■ The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

■ (2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

■ Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Call with:

Returns:

Notes:

Example:

= OOH AH
cs = segment address of program segment prefix

Nothing

■ Any files that have been written to using FCBs should be closed before performing
this exit call; otherwise, data may be lost.

■ Other methods of performing a final exit are:

- Int20H
- Int 21H Function 31H
- Int 21H Function 4CH
- Int27H

■ [2.0+] Int 21H Functions 31H and 4CH are the preferred methods for termination,
since they allow a return code to be passed to the parent process.

■ (3 .0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Terminate the current program, returning control to the program's parent.

mov
int

ah,O
21h

function number
transfer to MS-DOS

342 Section II

Int 2m
Function om

[1.0]

Character input with echo

[1] Inputs a character from the keyboard, then echoes it to the display. If no character is ready, waits until
one is available.

(2.0+] Reads a character from the standard input device and echoes it to the standard output device. If no
character is ready, waits until one is available. Input can be redirected. (If input has been redirected,
there is no way to detect EOF.)

Call with:

Returns:

Notes:

Example:

AH =OlH

AL = 8--bit input data

■ If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H
is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed.

■ To read extended ASCII codes (such as the special function keys Fl to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

■ See also Int 21H Functions 06H, 07H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

■ (2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (OOOOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Read one character from the keyboard into register AL, echo it to the display, and store it
in the variable char.

char db

mov
int
mov

0

ah,l
21h
char.al

: input character

function number
transfer to MS-DOS
save character

MS-DOS Functions Reference 343

Int21H [1.0]
Function 02H
Character output

[1] Outputs a character to the currently active video display.

[2.0+] Outputs a character to the standard output device. Output can be redirected. (If output is redi­
rected, there is no way to detect disk full.)

Call with:

Returns:

Notes:

Example:

AH =02H
DL = 8-bit data for output

Nothing

■ If a Ctrl-C is detected at the keyboard after the requested character is output, an
Int 23H is executed.

■ If the standard output has not been redirected, a backspace code (08H) causes the
cursor to move left one position. If output has been redirected, the backspace code
does not receive any special treatment.

■ (2.0+] You can also send strings to the display by performing a. write (Int 21H Func­
tion 40H) using the predefined handle for the standard output (0001H), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Send the character "•" to the standard output device.

mov
mov
int

ah,2
dl, '*'

21h

function number
character to output
transfer to MS-DOS

Int21H
Function 03H
Auxiliary input

[1.0]

[1] Reads a character from the first serial port.

[2.0+] Reads a character from the standard auxiliary device. The default is the first serial port (COM!).

Call with: AH =03H

344 Section II

Returns:

Notes:

Example:

AL = 8-bit input data

■ In most MS-DOS systems, the serial device is unbuffered and is not interrupt-driven.
If the auxiliary device sends data faster than your program can process it, characters
maybe lost.

■ At startup on the IBM PC, PC-DOS initializes the first serial port to 2400 baud, no
parity, 1 stop bit, and 8 data bits. Other implementations of MS-DOS may initialize
the serial device differently.

■ There is no way for a user program to read the status of the auxiliary device or to
detect 1/0 errors (such as lost characters) through this function call. On the IBM PC,
more precise control can be obtained by calling ROM BIOS Int 14H or by driving the
communications controller directly.

■ If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

■ (2.0+] You can also input from the auxiliary device by requesting a read (Int 21H
Function 3FH) using the predefined handle for the standard auxiliary device
(0003H) or using a handle obtained by opening the logical device AUX.

Read a character from the standard auxiliary input and store it in the variable char.

char db

mov
int
mov

0

ah.3
21h
char.al

: input character

function number
transfer to MS-DOS
save character

Int21H
Function 04H
Auxiliary output

(1.0]

(1] Outputs a character to the first serial port.

(2.0+] Outputs a character to the standard auxiliary device. The default is the first serial port (COMl).

Call with: AH =04H
DL = 8-bit data for output

Returns: Nothing

MS-DOS Functions Reference 345

Notes:

Example:

■ If the output device is busy, this function waits until the device is ready to accept a
character.

■ There is no way to poll the status of the auxiliary device using this function. On the
IBM PC, more precise control can be obtained by calling ROM BIOS Int 14H or by
driving the communications controller directly.

■ If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

■ [2.0+] You can also send strings to the auxiliary device by performing a write (Int
21H Function 40H) using the predefined handle for the standard auxiliary device
(0003H) or using a handle obtained by opening the logical device AUX.

Output a "•" character to the auxiliary device.

mov
mov
int

ah,4
dl, • * •
21h

; function number
; character to output
; transfer to MS-DOS

1nt2m
Function 05H
Printer output

(1.0]

[1] Sends a character to the first list device (PRN or LPTl).

[2.0+] Sends a character to the standard list device. The default device is the printer on the first parallel
port (LPTI), unless explicitly redirected by the user with the MODE command.

Call with:

Returns:

Notes:

AH
DL

Nothing

=05H
= 8-bit data for output

■ If the printer is busy, this function waits until the printer is ready to accept the
character.

■ There is no standardized way to poll the status of the printer under MS-DOS.

■ If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

■ [2.0+] You can also send strings to the printer by performing a write (Int 21H
Function 40H) using the predefined handle for the standard printer device (0004H)
or using a handle obtained by opening the logical device PRN or LPTl.

346 Section II

Example:

Int21H

Output the character "•" to the list device.

mov
mov
int

ah,5
dl, '*'
21h

function number
character to output
transfer to MS-DOS

[1.0]
Function 06H
Direct console 1/0

Used by programs that need to read and write all possible characters and control codes without any inter­
ference from the operating system.

[1) Reads a character from the keyboard or writes a character to the display.

[2.0+] Reads a character from the standard input device or writes a character to the standard output
device. 1/0 may be redirected. (If 1/0 has been redirected, there is no way to detect EOF or disk full.)

Call with:

Returns:

Notes:

AH =06H
DL = function requested

OOH-FEH if output request
OFFH if input request

If called with DL = OOH-OFEH
Nothing

If called with DL = FFH and a character is ready
Zero flag = clear
AL = 8-bit input data
If called with DL = FFH and no character is ready
Zero flag = set

■ No special action is taken upon entry of a Ctrl-C when this service is used.

■ To read extended ASCII codes (such as the special function keys Fl to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

■ See also Int 21H Functions 0lH, 07H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing, and Functions 02H and 09H,
which may be used to write characters to the standard output.

MS-DOS Functions Reference 347

■ [2.0+] You can also read the keyboard by issuing a read Ont 21H Function 3FH) using
the predefined handle for the standard input (00OOH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

■ [2.0+] You can also send characters to the display by issuing a write (Int 21H Func­
tion 40H) using the predefined handle for the standard output (0001H), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Examples: Send the character "•" to the standard output device.

mov
mov
int

ah,6
dl. I* I

21h

function number
character to output
transfer to MS-DDS

Read a character from the standard input device and save it in the variable char. If no
character is ready, wait until one is available.

char

wait:

lnt21H
Function 07H

db

mov
mov
int
jz

mov

0 ; input character

ah,6 function number
dl , Offh parameter for read
21h transfer to MS-DOS
wait wait until char ready
char.al save the character

Unfiltered character input without echo

[1.0]

[1] Reads a character from the keyboard without echoing it to the display. If no character is ready, waits
until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi­
rected, there is no way to detect EOF.)

348 Section II

Call with:

Returns:

Notes:

Example:

AH =07H

AL = 8-bit input data

■ No special action is taken upon entry of a Ctrl-C when this function is used. If Ctrl-C
checking is required, use Int 21H Function 08H instead.

■ To read extended ASCII codes (such as the special function keys Fl to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

■ See also Int 21H Functions 0lH, 06H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

■ [2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (000OH), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Read a character from the standard input without echoing it to the display, and store it in
the variable char.

char db

mov
int
mov

0

ah,7
21h
char.al

: input character

function number
transfer to MS-DOS
save character

Int 21H
Function OSH

[1.0]

Character input without echo

[1] Reads a character from the keyboard without echoing it to the display. If no character is ready, waits
until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi­
rected, there is no way to detect EOF.)

Call with: AH =08H

Returns: AL = 8-bit input data

MS-DOS Functions Reference 349

Notes:

Example:

■ If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H
is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed. To avoid possible interruption by a Ctrl-C,
use Int 21H Function 07H instead.

■ To read extended ASCII codes (such as the special function keys Fl to FlO) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

■ See also Int 21H Functions 0lH, 06H, and 07H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

■ (2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (0000H), if input has not been redi­
rected, or a handle obtained by opening the logical device CON.

Read a character from the standard input without echoing it to the display, allowing pos­
sible detection of Ctrl-C, and store the character in the variable char.

char db

mov
int
mov

0

ah,8
21h
char.al

function number
transfer to MS-DOS
save character

Int21H
Function 09H
Display string

(1.0]

[1] Sends a string of characters to the display.

(2.0+] Sends a string of characters to the standard output device. Output may be redirected. (If output has
been redirected, there is no way to detect disk full.)

Call with:

Returns:

AH
DS:DX

Nothing

350 Section II

=09H
= segment:offset of string

Notes:

Example:

Int21H

■ The string must be terminated with the character $ (24H), which is not transmitted.
Any other ASCII codes, including control codes, can be embedded in the string.

■ See Int 21H Functions 02H and 06H for single-character output to the video display
or standard output device.

■ If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

■ [2.0+] You can also send strings to the display by performing a write (Int 21H Func­
tion 40H) using the predefined handle for the standard output (0001H), if it has not
been redirected, or a handle obtained by opening the logical device CON.

Send the string Hello World, followed by a carriage return and line feed, to the standard
output device.

er
lf

msg

equ
equ

db

mov
mov
mov
mov
int

Odh
Oah

'Hello World' ,cr,lf, '$'

ah,9 function number
dx,seg msg address of string
ds,dx
dx,offset msg
21h transfer to MS-DOS

[1.0]
Function 0AH (10)
Buffered keyboard input

[1] Reads a line from the keyboard and places it in a user-designated buffer. The characters are echoed to
the display.

[2.0+] Reads a string of bytes from the standard input device, up to and including an ASCII carriage return
(0DH), and places them in a user-designated buffer. The characters are echoed to the standard output
device. Input may be redirected. (If input has been redirected, there is no way to detect EOF.)

Call with:

Returns:

AH
DS:DX

=0AH
= segment:offset of buffer

Nothing (data placed in buffer)

MS-DOS Functions Reference 351

Notes:

Example:

■ The buffer used by this function has the following format:

Byte Omtents
0 maximum number of characters to read, set by program
1 number of characters actually read (excluding carriage return), set

by MS-DOS
2+ string read from keyboard or standard input, terminated by a carriage

return (0DH)

■ If the buffer fills to one fewer than the maximum number of characters it can hold,
subsequent input is ignored and the bell is sounded until a carriage return is
detected.

■ This input function is buffered with type-ahead capability, and all of the standard
keyboard editing commands are active.

■ If the standard input is not redirected, and a Ctrl-C is detected at the console, an
Int 23H is executed. If the standard input is redirected, a Ctrl-C is detected at the
console, and BREAK is ON, an Int 23H is executed.

■ See Int 21H Functions 0lH, 06H, 07H, and 08H for single-character input from the
keyboard or standard input device.

■ (2.0+] You can also read strings from the keyboard by performing a read (Int 21H
Function 3FH) using the predefined handle for the standard input (0000H), if it has
not been redirected, or a handle obtained by opening the logical device CON.

Read a string that is a maximum of 80 characters long from the standard input device,
placing it in the buffer named buff.

buff db
db
db

mov
mov
mov
mov
int

81
0

81 dup (OJ

ah,Oah
dx,seg buff
ds,dx
dx,offset buff
21h

maximum length of input
actual length of input
actual input placed here

function number
input buffer address

transfer to MS-DOS

352 Section II

Int 21H [1.0]
Function OBH (11)
Check input status

[l] Checks whether a character is available from the keyboard.

[2.0+] Checks whether a character is available from the standard input device. Input can be redirected.

Call with:

Returns:

Notes:

AH =0BH

AL = OOH if no character is. available
FFH if at least one character is available

■ (1] If a Ctrl-C is detected, an Int 23H is executed.

■ (2.0+] If the standard input is not redirected, and a Ctrl-C is detected at the console,
an Int 23H is executed. If the standard input is redirected, a Ctrl-C is detected at the
console, and BREAK is ON, an Int 23H is executed.

■ If a character is waiting, this function will continue to return a true flag until the
character is consumed with a call to Int 21H Function 0lH, 06H, 07H, 08H, 0AH,
or 3FH.

■ This function is equivalent to IOCTL Int 21H Function 44H Subfunction 06H.

Example: Test whether a character is available from the standard input.

mov ah,Obh function number
int 21h tr ansfer to MS-00S
or al, al character waiting?
jnz ready jump if char ready

Int 21H [1.0]
Function OCH (12)
Flush input buffer and then input

[l] Clears the type-ahead buffer and then invokes one of the keyboard input functions.

(2.0+] Clears the standard input buffer and then invokes one of the character input functions. Input can
be redirected.

MS-DOS Functions Reference 353

Call with:

Returns:

Notes:

Example:

Int21H

=OCH AH
AL = number of input function to be invoked after resetting buffer (must be

OlH, 06H, 07H, 08H, or OAH)

(if AL= OAH)
DS:DX = segment:offset pf input buffer

(if called with AL = OlH, 06H, 07H, or 08H)
AL = 8-bit input data

(if called with AL = OAH)
Nothing (data placed in buffer)

■ The function exists to allow a program to defeat MS-DOS's type-ahead feature. It
discards any characters that are waiting in MS-DOS's internal type-ahead buffer,
forcing the specified input function to wait for a character (usually a keyboard entry)
that is truly entered after the program's request.

■ The presence or absence of Ctrl-C checking during execution of this function
depends on the function number placed in register AL.

■ A function number in AL other than OlH, 06H, 07H, 08H, or OAH simply flushes the
input buffer and returns control to the calling program.

Clear the type-ahead buffer, then wait for a character to be entered, echoing it and then
returning it in AL. Store the character in the variable char.

char db

mov
mov
int
mov

0

ah.Och
al, 1
21h
char.al

function number
subfunction = input char
transfer to MS-DOS
save character

(1.0]
Function ODH (13)
Disk reset

Flushes all file buffers. All data that has been logically written by user programs, but has been temporarily
buffered within MS-DOS, is physically written to the disk.

Call with: AH =ODH

354 Section II

Returns:

Notes:

Example:

Int 21H

Nothing

■ This function does not update the disk directory for any files that are still open. If
your program fails to properly close all files before the disk is removed, and files
have changed size, the data forced out to the disk by this function may still be inac­
cessible because the directory entries will not be correct.

■ [3.3+] Int 21H Function 68H (Commit File) should be used in preference to this func­
tion, since it also updates the disk directory.

Flush all MS-DOS internal disk buffers.

mov
int

ah,Odh
21h

function number
transfer to MS-DOS

[1.0)
Function OEH (14)
Select disk

Selects the specified drive to be the current, or default, disk drive and returns the total number of logical
drives in the system.

Call with:

Returns:

Notes:

AH
DL

AL

=0EH
= drive code (0 = A, 1 = B, etc.)

= number of logical drives in system

■ [l] 16 drive designators (0 through 0FH) are available.

■ [2] 63 drive designators (0 through 3FH) are available.

■ [3.0+] 26 drive designators (0 through 19H) are available.

■ To preserve upward compatibility, new applications should limit themselves to the
drive letters A-Z (0 = A, 1 = B, etc.).

■ Logical drives means the total number of block devices: floppy disks, simulated disk
drives (RAMdisks), and hard-disk drives. A single physical hard-disk drive is fre­
quently partitioned into two or more logical drives.

■ [l] [2] In single-drive IBM PC-compatible systems, the value 2 is returned in AL,
because PC-DOS supports two logical drives (A: and B:) on the single physical

MS-DOS Functions Reference 355

Example:

Int 2m

floppy-disk drive. The actual number of physical drives in the system can be· deter­
mined with ROM BIOS Int UH.

■ (3.0+] The value returned in AL is either 5 or the drive code corresponding to the
LASIDRIVE entry (if any) in CONFIG.SYS, whichever is greater.

Make drive B the current (default) disk drive. Save the total number of logical drives in
the system in the variable drives.

drives db O

mov ah,Oeh function number
mov dl ,1 drive 1 - B
int 21h transfer to MS-DOS
mov drives.al save total drives

[1.0]
Function OFH (15)
Open file

Opens a file and makes it available for subsequent read/write operations.

Call with:

Returns:

AH
DS:DX

= OFH
= segment:offset of file control block

If function successful (file found)
AL =OOH

and FCB filled in by MS-DOS as follows:
drive.field(offsetOOH) = 1.fordriveA, 2/ordriveB, etc.
current block field (offset OCH) = OOH
record size.field (offset OEH) = 0080H
{2.0+] size.field (offset JOH) = .fi/esizefrom directory
{2.0+] date.field (offset 14H) = date stamp from directory
{2.0+] time.field (offset 16H) = time stamp from directory

If function unsuccessful (file not found)
AL =OFFH

Notes: ■ If your program is going to use a record size other than 128 bytes, it should set the

356 Section II

record-size field at FCB offset OEH after the file is successfully opened and before
any other disk operation.

Example:

Int21H

■ If random access is to be performed, the calling program must also set the FCB
relative-record field (offset 21H) after successfully opening the file.

■ For format of directory time and date, see Int 21H Function 57H.

■ [2.0+) Int 21H Function 3DH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

■ [3.0+) If the program is running on a network, the file is opened for read/write
access in compatibility sharing mode.

Attempt to open the file named QUACK.DAT on the default disk drive.

myfcb db O drive = default
db 'QUACK filename, 8 characters
db
db

mov
mov
mov
mov
int
or
jnz

'DAT'

25 dup (OJ

ah,Ofh
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
a 1 , a 1

error

extension, 3 characters
remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump if open failed

[1.0]
Function lOH (16)
Close file

Closes a file, flushes all MS-DOS internal disk buffers associated with the file to disk, and updates the disk
directory if the file has been modified or extended.

Call with:

Returns:

= lOH AH
DS:DX = segment:offset of file control block

If function successful (directory update successful)
AL =OOH

If function unsuccessful (file not found in directory)
AL = FFH

MS-DOS Functions Reference 357

Notes:

Example:

Int21H

■ [1] [2] MS-DOS ver~ions 1 and 2 do not reliably detect a floppy-disk change, and an
error can occur if the uset changes disks while a file is still open on that drive. In the
worst case, the directory and file allocation table of the newly inserted disk can be
damaged or destroyed.

■ [2.0+] Int 21H Function 3EH should be used in preference to this function.

Close the file that was previously opened using the file control block named myfcb.

myfcb db O drive = default
db 'QUACK filename, 8 characters
db
db

mov
mov
mov
mov
int
or
jnz

'DAT'
25 dup CD)

ah,lOh
dx, seg myfcb
ds,dx
dx,offset myfcb
21h
a 1 , a 1
error

extension, 3 characters
remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump if close failed

[1.0]
Function llH (17)
Find first file

Searches the current directory on the designated drive for a matching filename.

Call with:

Returns:

AH
DS:DX

= llH
= segment:offset of file control block

If function successful (matching filename found)
AL =OOH

and buffer at current disk transfer area (DTA) address filled in as an unopened normal
FCB or extended FCB, depending on which type of FCB was input to function

If function unsuccessful (no matching filename found)
AL = FFH

358 Section II

Notes:

Example:

■ Use Int 21H Function lAH to set the DTA to point to a buffer of adequate size before
calling this function.

■ The wildcard character ? is allowed in the filename in all versions of MS-DOS. In ver­
sions 3.0 and later, the wildcard character • may also be used in a filename. If? or •
is used, this function returns the first matching filename.

■ An extended FCB must be used to search for files that have the system, hidden, read­
only, directory, or volume-label attributes.

■ If an extended FCB is used, its attribute byte determines the type of search that will
be performed. If the attribute byte contains OOH, only ordinary files are found. If the
volume-label attribute bit is set, only volume labels will be returned (if any are pres­
ent). If any other attribute or combination of attributes is set (such as hidden, system,
or read-only), those files and all ordinary files will be matched.

■ [2.0+] Int 21H Function 4EH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Search for the first file with the extension .COM in the current directory.

buff db

myfcb db
db
db
db

mov
mov
mov
mov
int

mov
mov
mov
mov
int
or
jnz

37 dup CO}

0
'??111??1'

'COM'
25 dup CO}

ah,lah
dx,seg buff
ds,dx
dx,offset buff
21h

ah,llh
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
a 1 , a 1
error

receives search result

drive= default
wildcard filename
extension= COM
remainder of FCB

set DTA address
function number
buffer address

transfer to MS-DOS

search for first match
function number
address of FCB

transfer to MS-DOS
check status
jump if no match

MS-DOS Functions Reference 359

lnt21H [1.0]
Function 12H (18)
Find next file

Given that a previous call to Int 21H Function llH has been successful, returns the next matching file­
name (if any).

Call with:

Returns:

Notes:

Example:

AH
DS:DX

= 12H
= segment:offset of file control block

If function successful (matching filename found)
AL =OOH

and buffer at current disk transfer area (DTA) address set up as an unopened normal
FCB or extended FCB, depending on which type of FCB was originally input to Int 21H
Function llH

If function unsuccessful (no more matching filenames found)
AL = FFH

■ This fll'nction assumes that the FCB used as input has been properly initialized by a
previous call to Int 21H Function 1 lH (and possible subsequent calls to Int 21H
Function 12H) and that the filename or extension being searched for contained at
least one wildcard character.

■ As with Int 21H Function llH, it is important to use Int 21H Function lAH to set the
DTA to a buffer of adequate size before calling this function.

■ (2.0+] Int 21H Functions 4EH and 4FH, which allow full access to the hierarchical
directory structure, should be used in preference to this function.

Assuming a previous successful call to function llH, search for the next file with the
extension .COM in the current directory. If the DTA has not been changed since the
previous search, another call to Function lAH is not necessary.

buff db 37 dup CO) receives search result

my_fcb db 0 drive= default
db '????????' wildcard filename
db 'COM' extension= COM
db 25 dup CO) remainder of FCB

360 Section II

set DTA address
mov ah,lah function number
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
int 21h transfer to MS-DOS

search for next match
mov ah,12h function number
mov dx,seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al , al check status
jnz error jump if no match

Int21H [1.0]
Function 13H (19)
Delete file

Deletes all matching files from the current directory on the default or specified disk drive.

Call with:

Returns:

Notes:

= 13H AH
DS:DX = segment:offset of file control block

If function successful (file or files deleted)
AL = OOH

If function unsuccessful (no matching files were found, or at least one matching file
was read-only)
AL = FFH

■ The wildcard character ? is allowed in the filename; if? is present and there is more
than one matching filename, all matching files will be deleted.

■ [2.0+] Int 21H Function 41H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

■ [3.0+] If the program is running on a network, the user must have Create rights to
the directory containing the file to be deleted.

MS-DOS Functions Reference 361

Example:

Int 21H

Delete the file MYFILE.DAT from the current disk drive and directory.

myfcb db O drive = default
db
db
db

mov
mov
mov
mov
int
or
jnz

'MYFILE '
'DAT'
25 dup (0)

ah,13h
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
al ,al
error

filename, 8 chars
extension, 3 chars
remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump, delete failed

[1.0]
Functiop 14H (20)
Sequential read

Reads the next sequential block of data from a file, then increments the file pointer appropriately.

Call with:

Returns:

Notes:

AH
DS:DX

AL

= 14H
= segment:offset of previously opened file control block

=OOH
OlH
O2H
O3H

if read successful
if end of file
if segment wrap
if partial record read at end of file

■ The record is read into memory at the current disk transfer area (DTA) address,
specified by the most recent call to Int 21H Function lAH. If the size of the record
and the location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of O2H.

■ The number of bytes of data to be read is spedfied by the record-size field (offset
OEH) of the file control block (FCB).

■ The file location of the data that will be read is specified by the combination of the
current block field (offset OCH) and current record field (offset 2OH) of the file con­
trol block (FCB). These fields are also automatically incremented by this function.

362 Section II

Example:

Int21H

■ If a partial record is read at the end of file, it is padded to the requested record length
with zeros.

■ [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Read 1024 bytes of data from the file specified by the previously opened file control
block myfcb.

myfcb db
db
db
db

mov
mov
mov
mov

mov
int
or
jnz

0

'QUACK
'DAT'
25 dup (0)

ah,14h
dx,seg myfcb
ds,dx
dx,offset myfcb

drive= default
filename, 8 chars
extension, 3 chars
remainder of FCB

function number
address of FCB

; set record size
word ptr myfcb+OeH,1024
21h transfer to MS-DOS
al ,al check status
error jump if read failed

[1.0]
Function 15H (21)
Sequential write

Writes the next sequential block of data into a file, then increments the file pointer appropriately.

Call with:

Returns:

Notes:

AH
DS:DX

AL

= 15H
= segment:offset of previously opened file control block

=OOH
OlH

if write successful
if disk is full

02H if segment wrap

■ The record is written (logically, not necessarily physically) to the disk from memory
at the current disk transfer area (DTA) address, specified by the most recent call to
Int 21H Function lAH. If the size of the record and the location of the buffer are such

MS-DOS Functions Reference 363

Example:

Int21H

that a segment overflow or wraparound would occur, the function fails with a return
codeof02H.

■ The number of bytes of data to be written is specified by the record-size field (offset
0EH) of the file control block (PCB).

■ The file location of the data that will be written is specified by the combination of
the current block field (offset OCH) and current record field (offset 20H) of the file
control block (PCB). These fields are also automatically incremented by this
function.

■ (3.0+) Jfthe program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Write 1024 bytes of data to the file specified by the previously opened file control block
myfcb.

myfcb db
db
db
db

mov
mov
mov
mov

mov
int
or
jnz

0

'QUACK
'DAT'
25 dup (0)

ah,15h
dx,seg myfcb
ds,dx
dx,offset myfcb

drive= default
filename, 8 chars
extension. 3 chars
remainder of FCB

function number
address of FCB

; set record size
word ptr myfcb+Oeh,1024
21h transfer to MS-DOS
al • al check status
error jump if write failed

[1.0]
Function 16H (22)
Create file

Creates a new directory entry in the current directory or truncates any existing file with the same name to
zero length. Opens the file for subsequent read/write operations.

Call with: AH
DS:DX

364 Section II

= 16H
= segment:offset of unopened file control block

Returns:

Notes:

Example:

If function successful (file was created or truncated)
AL = OOH

and FCB filled in by MS-DOS as follows:
drive.field(offsetOOH) = lfordriveA, 2fordriveB, etc.
current block.field (offset OCH) = OOH
record size.field (offset 0EH) = OOB0H
[2.0+} size.field (offset JOH) = file size from directory
[2.0+} date.field (offset 14H) = date stamp from directory
[2.0+} time field (offset 16H) = time stamp from directory

If function unsuccessful (directory full)
AL =FFH

■ Since an existing file with the specified name is truncated to zero length (i.e., all data
in that file is irretrievably lost), this function must be used with caution.

■ If this function is called with an extended file control block (FCB), the new file may
be assigned a special attribute, such as hidden or system, during its creation by set­
ting the appropriate bit in the extended FCB's attribute byte.

■ Since this function also opens the file, a subsequent call to Int 21H Function OFH is
not required.

■ For format of directory time and date, see Int 21H Function 57H.

■ [2.0+] Int 21H Functions 3CH, SAH, SBH, and 6CH, which provide full access to the
hierarchical directory structure, should be used in preference to this function.

■ [3.0+] If the program is running on a network, the user must have Create rights to
the directory that will contain the new file.

Create a file in the current directory using the name in the file control block myfcb.

myfcb db
db
db
db

mov
mov
mov
mov
int
or
jnz

0

'QUACK
'DAT'

25 dup CO)

ah,16h
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
al ,al
error

drive= default
filename, 8 chars
extension, 3 chars
remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump if create failed

MS-DOS Functions Reference 365

lnt21H [1.0]
Function 17H (23)
Rename file

Alters the name of all matching files in the current directory on the disk in the specified drive.

Call with:

Returns:

Notes:

Example:

= 17H AH
DS:DX = segment:offset of "special" file control block

If function successful (one or more files renamed)
AL = OOH

If function unsuccessful (no matching files, or new filename matched an existing file)
AL = FFH

■ The special file control block has a drive code, filename, and extension in the usual
position (bytes 0 through 0BH) and a second filename starting 6 bytes after the first
(offset llH).

■ The ? wildcard character can be used in the first filename. Every file matching the
first file specification will be renamed to match the second file specification.

■ If the second file specification contains any ? wildcard characters, the corresponding
letters in the first filename are left unchanged.

■ The function terminates if the new name to be assigned to a file matches that of an
existing file.

■ [2.0+] An extended FCB can be used with this function to rename a directory.

■ [2.0+] Int 21H Function 56H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Rename the file OLDNAME.DAT to NEWNAME.DAT.

myfcb db 0 drive= default
db '0LDNAME ' old file name, 8 chars
db 'DAT' old extension, 3 chars
db 6 dup (0) reserved area
db 'NEWNAME ' new file name, 8 cha rs
db 'DAT' new extension, 3 chars
db 14 dup (0) reserved area

366 Section II

mov
mov
mov
mov
int
or
jnz

Int 21H
Function 18H (24)
Reserved

lnt21H
Function 19H (25)
Get current disk

ah,17h function number
dx,seg myfcb address of FCB
ds,dx
dx,offset myfcb
21h transfer to MS-DOS
al ,al check. status
error jump if rename failed

Returns the drive code of the current, or default, disk drive.

Call with: AH = 19H

Returns: AL = drive code (0 = A, 1 = B, etc.)

Notes: ■ To set the default drive, use Int 21H Function OEH.

[1.0]

■ Some other Int 21H functions use drive codes beginning at 1 (that is, 1 = A, 2 = B,
etc.) and reserve drive code zero for the default drive.

Example: Get the current disk drive and save the code in the variable cdrive.

cdrive db

mov
int
mov

0

ah,19h
21h
cdrive,al

: current drive code

function number
transfer to MS-DOS
save drive code

MS-DOS Functions Reference 367

Int 21H [1.0]
Function lAH (26)
Set DTA address

Specifies the address of the disk transfer area (DTA) to be used for subsequent PCB-related function calls.

Call with:

Returns:

Notes:

Example:

Int 21H

AH
DS:DX

Nothing

=lAH
= segment:offset of disk transfer area

■ If this function is never called by the program, the DTA defaults to a 128-byte buffer
at offset 0080H in the program segment prefix.

■ In general, it is the programmer's responsibility to ensure that the buffer area speci­
fied is large enough for any disk operation that will use it. The only exception to this
is -that MS-DOS will detect and abort disk transfers that would cause a segment wrap.

■ Int 21H Function 2FH can be used to determine the current disk transfer address.

■ The only handle-type operations that rely on the DTA address are the directory
search functions, Int 21H Functions 4EH and 4FH.

Set the current disk transfer area address to the buffer labeled buff

buff db 128 dup (?)

mov ah,lah function number
mov dx,seg buff address of disk
mov ds,dx transfer area
mov dx,offset buff
int 21h transfer to MS-DOS

[1.0]
Function lBH (27)
Get default drive data

Obtains selected information about the default disk drive and a pointer to the media identification byte
from its file allocation table.

368 Section II

Call with:

Returns:

Notes:

Example:

AH = lBH

If function successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
CX = size of physical sector (bytes)
DX = number of clusters for default drive

If function unsuccessful (invalid drive or critical error)
AL = FFH

■ The media ID byte has the following meanings:

OFOH 3.5-inch double-sided, 18 sectors
or "other"

OF8H
OF9H

OFCH
OFDH
OFEH
OFFH

fixed disk
5.25-inch double-sided, 15 sectors
or 3.5-inch double-sided, 9 sectors
5.25-inch single-sided, 9 sectors
5.25-inch double-sided, 9 sectors
5.25-inch single-sided, 8 sectors
5.25-inch double-sided, 8 sectors

■ To obtain information about disks other than the one in the default drive, use
Int 21H Function lCH or 36H.

■ [1] The address returned in DS:BX points to a copy of the first sector of the actual
FAT, with the media ID byte in the first byte.

■ [2.0+] The address returned in DS:BX points only to a copy of the media ID byte
from the disk's FAT; the memory above that address cannot be assumed to contain
the FAT or any other useful information. If direct access to the FAT is required, use
Int 25H to read it into memory.

Determine whether the current disk drive is fixed or removable.

mov ah,lbh function number
int 21h transfer to MS-DOS

check media ID byte
cmp byte ptr [bx]. Of8h
je fixed jump if fixed disk
jmp floppy ; else assume floppy

MS-DOS Functions Reference 369

Int 21H [2.0]
Function lCH (28)
Get drive data

Obtains allocation information about the specified disk drive and a pointer to the media identification
byte from its file allocation table.

Call with:

Returns:

Notes:

AH
DL

= lCH
= drive code (0 = default, 1 = A, etc.)

If function successful
AL = sectors per cluster
DS:BX = segment:offset of media ID byte
CX = size of physical sector (bytes)
DX = number of clusters for default or specified drive

If function unsuccessful (invalid drive or critical error)
AL = FFH

■ The media ID byte has the following meanings:

0F0H 3.5-inch double-sided, 18 sectors
or "other"

0F8H
0F9H

0FCH
0FDH
0FEH
0FFH

fixed disk
5.25-inch double-sided, 15 sectors
or 3.5-inch double-sided, 9 sectors
5.25-inch single-sided, 9 sectors
5.25-inch double-sided, 9 sectors
5.25-inch single-sided, 8 sectors
5.25-inch double-sided, 8 sectors

■ In general, this call is identical to Int 21H Function lBH, except for the ability to
designate a specific disk drive. See also Int 21H Function 36H, which returns similar
information.

■ [1] The address returned in DS:BX points to a copy of the first sector of the actual
FAT, with the media ID byte in the first byte.

■ [2.0+] The address returned in DS:BX points only to a copy of the media ID byte
from the disk's FAT; the memory above that address cannot be assumed to contain
the FAT or any other useful information. If direct access to the FAT is required, use
Int 25H to read it into memory.

370 Section II

Example: Determine whether disk drive C is fixed or removable.

Int 21H

mov
mov
int

cmp
je
jmp

Function lDH (29)
Reserved

Int 21H
Function lEH (30)
Reserved

Int 21H
Function lFH (31)
Reserved

Int 21H
Function 20H (32)
Reserved

ah,lch
dl ,3
21 h

; function number
drive code 3 - C
transfer to MS-DOS

check media ID byte
byte ptr ds: [bx] , Of8h
fixed
floppy

jump if fixed dis k
; else assume floppy

MS-DOS Functions Reference 371

Int21H [1.0]
Function 21H (33)
Random read

Reads a selected record from a file into memory.

Call with:

Returns:

Notes:

Example:

AH
DS:DX

AL

= 21H
= segment:offset of previously opened file control block

=OOH
OlH

if read successful
if end of file

02H if segment wrap, read canceled
03H if partial record read at end of file

■ The record is read into memory at the current disk transfer area address, specified by
the most recent call to Int 21H Function lAH. It is the programmer's responsibility to
ensure that this area is large enough for any record that will be transferred. If the size
and location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of 02H.

■ The file location of the data to be read is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset 0EH) of the FCB.
The default record size is 128 bytes.

■ The current block field (offset OCH) and current record field (offset 20H) are up­
dated to agree with the relative-record field as a side effect of the function.

■ The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to read
successive records. Compare with Int 21H Function 27H, which can read multiple
records with one function call and automatically increments the relative-record field.

■ If a partial record is read at end of file, it is padded to the requested record length
with zeros.

■ 13.0+ l If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Open the file MYFILE.DAT, set the record length to 1024 bytes, then read record number
4 from the file into the buffer named buff

myfcb db 0 drive = default

buff

db
db
db

db

'MYFILE '
'DAT'
25 dup CO>

1024 dup (?)

filename, 8 chars
extension, 3 chars
remainder of FCS

receives read data

372 Section II

Int21H

mov
mov
mov
mov
int
or
jnz

mov
mov
int

ah,Ofh
dx. seg myfcb
ds,dx
dx,offset myfcb
21h
al ,al
error

ah,lah
dx,offset buff
21h

open the file
function number
address of FCB

transfer to MS-DOS
check open status
jump if no file

set OTA address
function number
read buffer address
transfer to MS-DOS

set record size
mov word ptr myfcb+Oeh,1O24

: set record number
mov word ptr myfcb+21h,4
mov word ptr myfcb+23h,O

mov
mov
int
or
jnz

ah,21h
dx,offset myfcb
21h
al ,al
error

read the record
function number
address of FCB
transfer to MS-DOS
check status
jump if read failed

Function 22H (34)
Random write

Writes data from memory into a selected record in a file.

Call with:

Returns:

AH
DS:DX

AL

=22H
= segment:offset of previously opened file control block

=OOH
OlH

if write successful
if disk full

02H if segment wrap, write canceled

[1.0]

MS-DOS Functions Reference 373

Notes:

Example:

■ The record is written (logically, not necessarily physically) to the file from memory at
the current disk transfer address, specified by the most recent call to Int 21H Func­
tion lAH. If the size and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of 02H.

11 The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset 0EH) of the FCB.
The default record size is 128 bytes.

■ The current block field (offset OCH) and current record field (offset 20H) are up­
dated to agree with the relative-record field as a side effect of the function.

■ The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to write
successive records. Compare with Int 21H Function 28H, which can write multiple
records with one function call and automatically increments the relative-record field.

■ If a record is written beyond the current end of file, the space between the old end
of file and the new record is allocated but not initialized.

■ [3.0+ l If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Open the file MYFILE.DAT, set the record length to 1024 bytes, write record number 4
into the file from the buffer named bu.ff, then close the file.

myfcb db 0 drive= default
db 'MYFILE . filename, 8 chars
db 'DAT' extension, 3 chars
db 25 dup (0) remainder of FCB

buff db 1024 dup (?) buffer for write

open the file
mov ah,Ofh function number
mov dx,seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al • a 1 check status
jnz error jump if no file

set DTA address
mov dx,offset buff buffer address
mov ah,lah function number
int 21h transfer to MS-DOS

set record size
mov word ptr myfcb+Oeh,1024

374 Sectionl/

: set record number
mov word ptr myfcb+2lh,4
mov word ptr myfcb+23h,O

write the record
mov ah,22h function number
mov dx,offset myfcb address of FCB
int 21h transfer to MS-OOS
or al • al check status
jnz error jump if write failed

close the file
mov ah,lOh function number
mov dx,offset myfcb address of FCB
int 21h transfer to MS-DOS
or al ,al check status
jnz error jump if close failed

lnt21H (1.0]
Function 23H (35)
Get file size

Searches for a matching file in the current directory; if one is found, updates the FCB with the file's size in
terms of number of records.

Call with:

Returns:

Notes:

=23H AH
DS:DX = segment:offset of unopened file control block

If function successful (matching file found)
AL =OOH

and FCB relative-record field (offset 21H) set to the number of records in the file,
rounded up if necessary to the next complete record

If function unsuccessful (no matching file found)
AL =FFH

■ An appropriate value must be placed in the FCB record-size field (offset OEH) before
calling this function. There is no default record size for this function. Compare with
the PCB-related open and create functions (Int 21H Functions OFH and 16H), which
initialize the FCB for a default record size of 128 bytes.

■ The record-size field can be set to 1 to find the size of the file in bytes.

■ Because record numbers are zero based, this function can be used to position the
FCB's file pointer to the end of file.

MS-DOS Functions Reference 375

Example:

Int 21H

Determine the size in bytes of the file MYFILE.DAT and leave the result in registers
DX:AX.

myfcb db 0 drive - default
db 'MYFILE filename, 8 cha rs
db 'DAT' extension, 3 chars
db 25 dup (0) remainder of FCB

mov ah,23h function number
mov dx,seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb

; record size - 1 byte
mov word ptr myfcb+Oeh,l
int 21h transfer to MS -DOS
or al, al check status
jnz error jump if no file

get file size in bytes
mov ax.word ptr myfcb+2lh
mov dx,word ptr myfcb+23h

[1.0]
Function 24H (36)
Set relative record number

Sets the relative-record-number field of a file control block (FCB) to correspond to the current file
position as recorded in the opened FCB.

Call with:

Returns:

AH
DS:DX

= 24H
= segment:offset of previously opened file control block

AL is destroyed (other registers not affected)

FCB relative-record field (offset 21H) updated

Notes: ■ This function is used when switching from sequential to random 1/0 within a file.

376 Section II

The contents of the relative-record field (offset 21H) are derived from the record size
(offset OEH), current block (offset OCH), and current record (offset 20H) fields of the
file control block.

Example:

Int21H

■ All four bytes of the FCB relative-record field (offset 21H) should be initialized to
zero before calling this function.

After a series of sequential record transfers have been performed using the file control
block myfcb, obtain the current relative-record position in the file and leave the record
number in DX. ·

myfcb db
db
db
db

mov
mov

0

'MYFILE '

'DAT'
25 dup CO)

dx,seg myfcb
ds,dx

drive= default
filename, 8 chars
extension, 3 chars
remainder of FCB

make FCB addressable

; initialize relative
: record field to zero

mov word ptr myfcb+2lh,O
mov word ptr myfcb+23h,O

mov
mov
int

mov

ah,24h
dx,offset myfcb
21h

now set record number
function number
address of FCB
transfer to MS-DOS

load record number in DX
dx,word ptr myfcb+2lh

(1.0]
Function 25H (37)
Set interrupt vector

Initializes a CPU interrupt vector to point to an interrupt handling routine.

Call with:

Returns:

AH
AL
DS:DX

Nothing

=25H
= interrupt number
= segment:offset of interrupt handling routine

MS-DOS Functions Reference 377

Notes:

Example:

Int 21H

■ This function should be used in preference to direct editing of the interrupt-vector
table by well-behaved applications.

■ Before an interrupt vector is modified, its original value should be obtained with
Int 21H Function 35H and saved, so that it can be restored using this function before
program termination.

Install a new interrupt handler, named zdiv, for "divide by zero" CPU exceptions.

mov ah,25h
mov al ,0
mov dx,seg zdiv
mov ds,dx
mov dx,offset zdiv
int 21h

zdiv:
iret

function number
interrupt number
address of handler

transfer to MS-DOS

int OOh handler
(does nothing)

[1.0]
Function 26H (38)
Create new PSP

Copies the program segment prefix (PSP) of the currently executing program to a specified segment
address in free memory, then updates the new PSP to make it usable by another program.

Call with:

Returns:

Notes:

AH
DX

Nothing

= 26H
= segment of new program segment prefix

■ After the executing program's PSP is copied into the new segment, the memory size
information in the new PSP is updated appropriately and the current contents of the
termination (Int 22H), Ctrl-C handler (Int 23H), and critical-error handler (Int 24H)
vectors are saved starting at offset 0AH.

■ This function does not load another program or in itself cause one to be executed.

■ [2.0+] Int 21H Function 4BH (EXEC), which can be used to load and execute pro­
grams or overlays in either .COM or .EXE format, should be used in preference to
this function.

378 Section II

Example: Create a new program segment prefix 64 KB above the currently executing program.
This example assumes that the running program was loaded as a .COM file so that the

· CS register points to its PSP throughout its execution. If the running program was loaded
as a .EXE file, the address of the PSP must be obtained with Int 21H Function 62H (under
MS-DOS 3.0 or later) or by saving the original contents of the DS or ES registers at entry.

mov ah,26h function number
mov dx,cs PSP segment of

this program
add dx,lOOOh add 64 KB as

paragraph address
int 21h transfer to MS-DOS

Int 21H [1.0)
Function 27H (39)
Random block read

Reads one or more sequential records from a file into memory, starting at a designated file location.

Call with:

Returns:

Notes:

AH
ex
DS:DX

AL

= 27H
= number of records to read
= segment:offset of previously opened file control block

=OOH
OlH

if all requested records read
if end of file

02H if segment wrap
03H if partial record read at end of file

CX = actual number of records read

■ The records are read into memory at the current disk transfer area address, specified
by the most recent call to Int 21H Function lAH. It is the programmer's respon­
sibility to ensure that this area is large enough for the group of records that will be
transferred. If the size and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of 02H.

■ The file location of the data to be read is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset 0EH) of the FCB.
The default record size is 128 bytes.

MS-DOS Functions Reference 379

Example:

■ After the disk transfer is performed, the current block (offset OCH), current record
(offset 20H), and relative-record (offset 21H) fields of the FCB are updated to point
to the next record in the file.

■ If a partial record is read at the end of file, the remainder of the record is padded
with zeros.

■ Compare with Int 21H Function 21H, which transfers only one record per function
call and does not update the FCB relative-record field.

■ [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Read four 1024-byte records starting at record number 8 into the buffer named buff,
using the file control block myfcb.

myfcb db O drive - default

buff

db
db
db

db

mov
mov
mov
mov
int

'MYFILE '
'DAT'
25 dup CD)

4096 dup (?)

ah,lah
dx,seg buff
ds,dx
dx,offset buff
21h

filename, 8 chars
extension, 3 chars
remainder of FCB

buffer for data

set DTA address
function number
address of buffer

transfer to MS-DOS

set relative-record number
mov word ptr myfcb+2lh,8
mov word ptr myfcb+23h,O

: set record size
mov word ptr myfcb+Oeh,1024

mov
mov
mov
int
or
jnz

ah,27h
cx,4
dx,offset myfcb
21h
al ,al
error

read the records
function number
number of records
address of FCB
transfer to MS-DOS
check status
jump if read error

380 Section II

Int 21H [1.0]
Function 28H (40)
Random block write

Writes one or more sequential records from memory to a file, starting at a designated file location.

Call with:

Returns:

Notes:

Example:

AH
ex
DS:DX

AL

=28H
= number of records to write
= segment:offset of previously opened file control block

=OOH
OlH

if all requested records written
if disk full

02H if segment wrap
ex = actual number of records written

■ The records are written (logically, not necessarily physically) to disk from memory at
the current disk transfer area address, specified by the most recent call to Int 21H
Function lAH. If the size and location of the buffer are such that a segment overflow
or wraparound would occur, the function fails with a return code of 02H.

■ The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset 0EH) of the FCB.
The default record size is 128 bytes.

■ After the disk transfer is performed, the current block (offset OCH), current record
(offset 20H), and relative-record (offset 21H) fields of the FCB are updated to point
to the next record in the file.

■ If this function is called with ex= 0, no data is written to the disk but the file is ex­
tended or truncated to the length specified by combination of the record-size (offset
0EH) and the relative-record (offset 21H) fields of the FCB.

■ Compare with Int 21H Function 22H, which transfers only one record per function
call and does not update the FCB relative-record field.

■ [3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Write four 1024-byte records, starting at record number 8, to disk from the buffer named
buff, using the file control block myfcb.

myfcb db 0 drive = default
db 'MYFILE filename, 8 chars
db 'DAT' extension, 3 chars
db 25 dup CO) remainder of FCB

(continued)

MS-DOS Functions Reference 381

buff db 4096 dup (?) buffer for data

set OTA address
mov ah,lah function number
mov dx,seg buff address of buffer
mov ds,dx
mov dx,offset buff
int 21h transfer to MS-DOS

set relative-record number
mov word ptr myfcb+2lh,8
mov word ptr myfcb+23h,O

: set record size
mov word ptr myfcb+Oeh,1024

write the records
mov ah,28h function number
mov cx,4 number of records
mov dx,offset myfcb address of FCB
int 21h transfer to MS-DOS
or a 1 • a 1 check status
jnz error jump if write error

Int21H [1.0]
Function 29H (41)
Parse filename

Parses a text string into the various fields of a file control block (FCB).

Call with: AH = 29H
AL = flags to control parsing

382 Section II

Bit 3 = 1 if extension field in FCB will be modified only if an
extension is specified in the string being parsed.

= 0 if extension field in FCB will be modified regardless; if no
extension is present in the parsed string, FCB extension is
set to ASCII blanks.

Bit 2 = 1 if filename field in FCB will be modified only if a filename is
specified in the string being parsed.

= 0 if filename field in FCB will be modified regardless; if no
filename is present in the parsed string, FCB filename is set
to ASCII blanks.

Returns:

Notes:

Example:

Bit1 =1

=O

BitO =1
=O

if drive ID byte in PCB will be modified only if a drive was
specified in the string being parsed.
if the drive ID byte in PCB will be modified regardless; if no
drive specifier is present in the parsed string, PCB drive­
code .field is set to O (default).
if leading separators will be scanned off (ignored).
if leading separators will not be scanned off.

DS:SI = segment:offset of string
ES:DI = segment:offset of file control block

AL

DS:SI
ES:DI

= OOH if no wildcard characters encountered
OlH if parsed string contained wildcard characters
FFH if drive specifier invalid

= segment:offset of first character after parsed filename
= segment:offset of formatted unopened file control block

■ This function regards the following as separator characters:

[1] : . ; , = + tab space / " []
[2.0+] : . ; , =+tab space

■ This function regards all control characters and the following as terminator
characters:

: .;,=+tabspace<>I /"[]

■ If no valid filename is present in the string to be parsed, upon return ES:DI + 1
points to an ASCII blank.

■ If the • wildcard character occurs in a filename or extension, it and all remaining
characters in the corresponding field in the FCB are set to?.

■ This function (and file control blocks in general) cannot be used with file specifica­
tions that include a path.

Parse the stringfaame into the file control block myfcb.

fname db 'D:QUACK.DAT',O filename to be parsed

myfcb db 37 dup CO) becomes file control block

mov ah,29h function number
mov al ,Olh skip leading separators
mov si,seg fname address of filename
mov ds,si
mov s1,offset fname
mov di,seg myfcb address of FCB

(continued)

MS-DOS Functions Reference 383

mov es,di
mov di.offset myfcb
int 21h transfer to MS-DOS
cmp al,Offh check status
je error jump, drive invalid

Int21H [1.0]
Function 2AH (42)
Get date

Obtains the system day of the month, day of the week, month, and year.

Call with:

Returns:

Notes:

Example:

AH

ex
DH
DL

=2AH

= year (1980 through 2099)
= month (1 through 12)
= day (1 through 31)

Under MS-DOS versions 1.1 and later
AL = day of the week (O = Sunday, 1 = Monday, etc.)

■ This function's register format is the same as that required for Int 21H Function 2BH
(Set Date).

■ This function can be used together with Int 21H Function 2BH to find the day of the
week for an arbitrary date. The current date is first obtained with Function 2AH and
saved. The date of interest is then set with Function 2BH, and the day of the week
for that date is obtained with a subsequent call to Function 2AH. Finally, the current
date is restored with an additional call to Function 2BH, using the values obtained
with the original Function 2AH call.

Obtain the current date and save its components in the variables year, day, and month.

year dw O
month db O
day db 0

384 Section II

mov ah,2ah function number
int 21h transfer to MS-DDS
mov year.ex save year {word)
mov month,dh save month {byte)
mov day,dl save day (byte)

Int21H [1.0]
Function 2BH (43)
Set date

Initializes the system clock driver to a specific date. The system time is not affected.

Call with:

Returns:

Note:

Example:

AH
ex
DH
DL

AL

=2BH
= year (1980 through 2099)
= month (1 through 12)
= day (1 through 31)

=OOH
FFH

if date set successfully
if date not valid (ignored)

■ This function's register format is the same as that required for Int 21H Function 2AH
(Get Date).

Set the system date according to the contents of the variables year, day, and month.

year dw 0
month db O
day db 0

mov ah,2bh function number
mov ex.year get year (word)
mov dh,month get month (byte)
mov dl,day get day (byte)
int 21h transfer to MS-DOS
or a 1 , a 1 check status
jnz error jump if date invalid

MS-DOS Functions Reference 385

Int21H [1.0]
Function 2CH (44)
Get time

Obtains the time of day from the system real-time clock driver, converted to hours, minutes, seconds, and
hundredths of seconds.

Call with:

Returns:

Notes:

Example:

AH =2CH

= hours (0 through 23)
= minutes (0 through 59)
= seconds (0 through 59)

CH
CL
DH
DL = hundredths of seconds (0 through 99)

■ This function's register format is the same as that required for Int 21H Function 2DH
(Set Time).

■ On most IBM PC-compatible systems, the real-time clock does not have a resolution
of single hundredths of seconds. On such machines, the values returned by this
function in register DL are discontinuous.

Obtain the current time and save its two major components in the variables hours and
minutes.

hours db 0
minutes db 0

mov ah,2ch function number
int 21h transfer to MS-DOS
mov hours.ch save hours (byte)
mov minutes.cl save minutes (byte)

Int 21H [1.0]
Function 2DH (45)
Set time

Initializes the system real-time clock to a specified hour, minute, second, and hundredth of second. The
system date is not affected.

386 Section II

Call with:

Returns:

Note:

Example:

AH =2DH
CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of seconds (0 through 99)

AL = OOH
FFH

if time set successfully
if time not valid (ignored)

■ This function's register format is the same as that required for Int 21H Function 2CH
(Get Time).

Set the system time according to the contents of the variables hours and minutes. Force
the current seconds and hundredths of seconds to zero.

hours db 0
minutes db 0

mov ah,2dh function number
mov ch.hours get hours (byte)
mov cl ,min.utes get minutes (byte)
mov dx,O force seconds and

hundredths to zero
int 21h transfer to MS-DOS
or a 1 . a 1 check status
jnz error jump if ti me invalid

Int 21H [1.0)
Function 2EH (46)
Set verify flag

Turns off or turns on the operating-system flag for automatic read-after-write verification of data.

Call with:

Returns:

AH
AL

DL

Nothing

= ZEH
= OOH if turning off verify flag

OlH if turning on verify flag
= OOH (MS-DOS versions 1 and 2)

MS-DOS Functions Reference 387

Notes:

Example:

lnt21H

■ Because read-after-write verification slows disk operations, the default setting of the
verify flag is OFF.

■ If a particular disk unit's device driver does not support read-after-write verification,
this function has no effect.

■ The current state of the verify flag can be determined using Int 21H Function 54H.

■ The state of the verify flag is also controlled by the MS-DOS commands VERIFY
OFF and VERIFY ON.

Save the current state of the system verify flag in the variable vjlag, then force all subse­
quent disk writes to be verified.

vfl ag db 0 ; previous verify flag

get verify flag
mov ah,54h function number
int 21h transfer to MS-DOS
mov vflag,al save current flag state

set verify flag
mov ah,2eh function number
mov a 1 , 1 AL= 1 for verify on
mov dl ,0 DL must be zero
int 21h transfer to MS-DOS

[2.0]
Function 2FH (47)
Get OTA address

Obtains the current address of the disk transfer area (DTA) for FCB file read/write operations.

Call with: AH = 2FH

Returns: ES:BX = segment:offset of disk transfer area

Note: ■ The disk transfer area address is set with Int 21H Function lAH. The default DTA is
a 128-byte buffer at offset 80H in the program segment prefix.

388 Section II

Example: Obtain the current disk transfer area address and save it in the variable olddta.

olddta dd ? : save disk transfer address

mov ah,2fh function number
int 21h transfer to MS-DOS

save it as DWORD pointer
mov word ptr olddta,bx
mov word ptr olddta+2,es

Int21H [2.0]
Function 30H (48)
Get MS-DOS version number

Returns the version number of the host MS-DOS operating system. This function is used by application
programs to determine the capabilities of their environment.

Call with:

Returns:

Notes:

AH
AL

=30H
=OOH

If running under MS-DOS version 1
AL =OOH

If running under MS-DOS versions 2.0 or later
AL = major version number (MS-DOS 3.10 = 3, etc.)
AH = minor version number (MS-DOS 3.10 = 0AH, etc.)
BH = Original Equipment Manufacturer's (OEM's) serial number (OEM-

BL:CX

dependent-usually OOH for IBM's PC-DOS, 0FFH or other values
for MS-DOS)

= 24-bit user serial number (optional, OEM-dependent)

■ Because this function was not defined under MS-DOS version 1, it should always be
called with AL = OOH. In an MS-DOS version 1 environment, AL will be returned
unchanged.

■ Care must be taken not to exit in an unacceptable fashion if an MS-DOS version 1 en­
vironment is detected. For example, Int 21H Function 4CH (Terminate Process with
Return Code), Int 21H Function 40H (Write to File or Device), and the standard error
handle are not available in MS-DOS version 1. In such cases a program should dis­
play an error message using Int 21H Function 09H and then terminate with Int 20H
or Int 21H Function OOH.

MS-DOS Functions Reference 389

Example: Get the MS-DOS version number, terminating the current process with an error message
if not running under MS-DOS version 2.0 or later.

er equ Odh ASCII carriage return
l f equ Oah : ASCII line feed

msg

1 abell:

er, lf db
db 'Wrong MS-DOS version'
db er, lf, '$'

mov ax,3000h function number
int 21h transfer to MS-DOS
cmp al, 2 version 2 or 1 ater?
jae l abell yes, jump

display error message
mov ah,09 function number
mov dx,offset msg message address
int 21h transfer to MS-DOS

terminate process
mov ah,O function number
int 21h transfer to MS-DOS

Int 21H [2.0]
Function 31H (49)
Terminate and stay resident

Terminates execution of the currently executing program, passing a return code to the parent process,
but reserves part or all of the program's memory so that it will not be overlaid by the next transient pro­
gram to be loaded. MS-DOS then takes the following actions:

■ File buffers are flushed and any open handles for files or devices owned by the
process are closed.

■ The termination handler vector (Int 22H) is restored from PSP:OOOAH.

■ The Ctrl-C handler vector (Int 23H) is restored from PSP:0OOEH.

■ [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

■ Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran­
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

390 Section II

Call with:

Returns:

Notes:

Example:

AH =31H
AL = return code
DX = amount of memory to reserve (in paragraphs)

Nothing

I
■ This function call is typically used to allow user-written utilities, drivers, or interrupt

handlers to be loaded as ordinary .COM or .EXE programs and then remain resident.
Subsequent entrance to the code is via a hardware or software interrupt.

■ This function attempts to set the initial memory allocation block to the length in
paragraphs specified in register DX. If other memory blocks have been requested
by the application using Int 21H Function 48H, they will not be released by this
function.

■ Other methods of performing a final exit are:

- Int20H
- Int 21H Function OOH
- Int 21H Function 4CH
- Int27H

■ The return code may be retrieved by a parent process with Int 21H Function 4DH
(Get Return Code). It can also be tested in a batch file with an IF ERRORLEVEL
statement. By convention, a return code of zero indicates successful execution, and a
nonzero return code indicates an error.

■ This function should not be called by .EXE programs that are loaded at the high end
of the transient program area (that is, linked with the /HIGH switch) because
doing so reserves the memory that is normally used by the transient part of
COMMAND.COM. If COMMAND.COM cannot be reloaded, the system will fail.

■ [2.0+] This function should be used in preference to Int 27H because it supports
return codes, allows larger amounts of memory to be reserved, and does not require
CS to contain the segment of the program segment prefix.

■ [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Exit with a return code of 1 but stay resident, reserving 16 KB of memory starting at the
program segment prefix of the process.

mov
mov
mov
int

ah,31h
al, 1
dx,0400h
21h

function number
return code for parent
paragraphs to reserve
transfer to MS-DOS

MS-DOS Functions Reference 391

Int21H
Function 32H (50)
Reserved

Int21H [2.0]
Function 33H (51)
Get or set break flag, get boot drive

Obtains or changes the status of the operating system's break flag, which influences Ctrl-C checking
during function calls. Also returns the system boot drive in version 4.0.

Call with:

Returns:

Notes:

If getting break flag
AH = 33H
AL =OOH

If setting break flag
AH = 33H
AL = 0lH
DL = OOH

0lH

[4) If getting boot drive
AH = 33H
AL = 0SH

if turning break flag OFF
if turning break flag ON

If called with AL = OOH or OlH
DL = OOH break flag is OFF

OlH break flag is ON

[41 If called with AL = OSH
DL = boot drive (1 = A, 2 = B, etc.)

■ When the system break flag is on, the keyboard is examined for a Ctrl-C entry
whenever any operating-system input or output is requested; if Ctrl-C is detected,
control is transferred to the Ctrl-C handler (Int 23H). When the break flag is off,
MS-DOS only checks for a Ctrl-C entry when executing the traditional character
1/0 functions (Int 21H Functions OlH through OCH).

■ The break flag is not part of the local environment of the currently executing pro­
gram; it affects all programs. An application that alters the flag should first save the
flag's original status, then restore the flag before terminating.

392 Section JI

Example:

Int 21H

Save the current state of the system break flag in the variable br/ef/ag, then turn the
break flag off to disable Ctrl-C checking during most MS-DOS function calls.

brkflag db O : save break flag

get current break flag
mov ah,33h function number
mov al ,0 AL= Oto get flag
int 21h transfer to MS-DOS
mov brkfl ag, dl save current flag

now set break flag
mov ah,33h function number
mov al , 1 AL= 1 to set flag
mov dl ,0 set break flag OFF
int 21h transfer to MS-DOS

Function 34H (52)
Reserved

Int 21H [2.0]
Function 35H (53)
Get interrupt vector

Obtains the address of the current interrupt-handler routine for the specified machine interrupt.

Call with:

Returns:

Note:

AH =35H
AL = interrupt number

ES:BX = segment:offset of interrupt handler

■ Together with Int 21H Function 25H (Set Interrupt Vector), this function is used by
well-behaved application programs to modify or inspect the machine interrupt
vector table.

MS-DOS Functions Reference 393

Example:

Int 21H

Obtain the address of the current interrupt handler for hardware interrupt level O (divide
by zero) and save it in the variable oldintO.

oldintO dd ? ; previous handler address

mov ah,35h function number
mov al ,0 interrupt level
int 21h transfer to MS-DOS

save old handler address
mov word ptr oldintO,bx
mov word ptr oldint0+2,es

[2.0]
Function 36H (54)
Get drive allocation information

Obtains selected information about a disk drive, from which the drive's capacity and remaining free
space can be calculated.

Call with:

Returns:

Notes:

Example:

AH =36H
DL = drive code (0 = default, 1 = A, etc.)

If function successful
AX = sectors per cluster
BX = number of available clusters
CX = bytes per sector
DX = clusters per drive
If function unsuccessful (drive invalid)
AX =FFFFH

■ This function regards "lost" clusters as being in use and does not report them as part
of the number of available clusters, even though they are not assigned to a file.

■ Similar information is returned by Int 21H Functions lBH and lCH.

Calculate the capacity of disk drive C in bytes, leaving the result in the variable drvsize.
(This code assumes that the product of sectors/cluster • bytes/sector will not overflow
16 bits.)

394 Section II

drvsize dd

mov
mov
int

mul

mul

mov

mov

Int21H
Function 37H (55)
Reserved

lnt21H
Function 38H (56)

? drive C size in bytes

ah,36h function number
dl,3 drive C - 3
21h transfer to MS-DOS

ex sectors/cluster
* bytes/sector

dx * total clusters
result now in OX:AX

store low word
word ptr drvsize,ax

: store high word
word ptr drvsize+2,dx

Get or set country information

[2] Obtains internationalization information for the current country.

[2.0]

[3.0+] Obtains internationalization information for the current or specified country or sets the current
country code.

Call with: If getting country information (MS-DOS version 2)
AH =38H
AL = 0 to get "current" country information
DS:DX = segment:offset of buffer for returned information

If getting country information (MS-DOS versions 3.0 and later)
AH =38H
AL =O

1-FEH
FFH

to get "current" country information
to get information for countries with code < 255
to get information for countries with code >= 255

MS-DOS Functions Reference 395

Returns:

BX = country code, if AL = FFH
DS:DX = segment:offset of buffer for returned information

If setting current country code (MS-DOS versions 3.0 and later)
AH =38H
AL = 1-FEH country code for countries with code< 255

FFH for countries with code >= 255
BX = country code, if AL = 0FFH
DX =FFFFH

If function successful
Carry flag = clear
and, if getting internationalization information
BX = country code
DS:DX = segment:offset of buffer holding internationalization information
and buffer filled in as follows:

(for PC-DOS 2.0 and 2.1)
Byte(s) Contents
00H-0lH date format

02H-03H
04H-05H
06H-07H

0=USA mdy
l=Europe dmy
2 =Japan ymd
ASCIIZ currency symbol
ASCIIZ thousands separator
ASCIIZ decimal separator

08H-1FH reserved

(for MS-DOS versions 2.0 and later, PC-DOS versions 3.0 and later)
Byte(s) Contents
00H-0lH date format

02H-06H
07H-08H
09H-0AH
0BH-0CH
0DH-0EH
0FH

l0H
llH

0=USA mdy
l=Europe dmy
2 = Japan ymd
ASCIIZ currency symbol string
ASCIIZ thousands separator character
ASCIIZ decimal separator character
ASCIIZ date separator character
ASCIIZ time separator character
currency format
bit 0 =0 if currency symbol precedes value

bit 1

bit2

= 1 if currency symbol follows value
=0 if no space between value and currency symbol
= 1 if one space between value and currency symbol
=0 if currency symbol and decimal are separate
= 1 if currency symbol replaces decimal separator

number of digits after decimal in currency
time format
bit0 =0 if 12-hour clock

= 1 if 24-hour clock

396 Section II

Notes:

12H-15H case-map call address
16H-17H ASCIIZ data-list separator
18H-21H reserved

If function unsuccessful
Carry flag = set
AX = error code

■ The default country code is determined by the COUNTRY= directive in
CONFIG.SYS or by the KEYBxx keyboard driver file if one is loaded. Otherwise,
the default country code is OEM-dependent.

■ The previous contents of register CX may be destroyed by the Get Country Informa­
tion subfunction.

■ The case-map call address is the segment:offset of a FAR procedure that performs
country-specific mapping on character values from 80H through 0FFH. The pro­
cedure must be called with the character to be mapped in register AL. If an alternate
value exists for that character, it is returned in AL; otherwise, AL is unchanged. In
general, lowercase characters are mapped to their uppercase equivalents, and ac­
cented or otherwise modified vowels are mapped to their plain vowel equivalents.

■ (3.0+] The value in register DX is used by MS-DOS to select between the Set Country
anq Get Country Information subfunctions.

■ [3.3+] Int 21H Function 65H (Get Extended Country Information) returns a superset
of the information supplied by this function.

Examples: Obtain internationalization information for the current country in the buffer ctrybuf

ctrybuf db 34 dup CO)

mov ah,38h function number
mov al.O get current country
mov. dx,seg ctrybuf address of buffer
mov ds,dx for country information
mov dx,offset ctrybuf
int 21h transfer to MS-00S
jc error ; jump if function failed

If the program is running under PC-DOS 3.3 and the current country code is 49 (West
Germany), ctrybuf is filled in with the following information:

dw OOOlh date format
db 'DM' ,0,0,0 ASCIIZ currency symbol
db •. • ,0 ASCIIZ thousands separator

(continued)

MS-DOS Functions Reference 397

db ,0 ASCIIZ decimal separator
db . . .• 0 ASCIIZ date separator
db .o ASCIIZ ti me separator
db 02h currency format
db 02h digits after decima l
db Olh time format
dd 026ah:176c h case-map cal l address
db '·. ,0 ASCI IZ data- l ist separa t or
db 10 dup (OJ reserved

Int 21H
Function 39H (57)
Create directory

Creates a directory using the specified drive and path.

Call with:

Returns:

Note:

AH
DS:DX

= 39H
= segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The function fails if:

any element of the pathname does not exist.
a directory with the same name at the end of the same path already exists.
the parent directory for the new directory is the root directory and is full.

[2.0]

[3.0+] the program is running on a network and the user running the program has
insufficient access rights.

Example: Create a directory named MYSUB in the root directory on drive C.

dname db

mov
mov
mov

'C:\MYSUB' ,0

ah,39h
dx,seg dname
ds,dx

mov dx,offset dname

398 Section II

function number
address of pathname

Int 21H

int
jc

21h
error

transfer to MS-DOS
jump if create failed

Function 3AH (58)
Delete directory

Removes a directory using the specified drive and path.

Call with:

Returns:

Note:

AH
DS:DX

=3AH
= segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The function fails if:

- any element of the pathname does not exist.
- the specified directory is also the current directory.
- the specified directory contains any files.

[2.0]

- [3.0+] the program is running on a network and the user running the program has
insufficient access rights.

Example: Remove the directory named MYSUB in the root directory on drive C.

dname db 'C:\MYSUB' ,0

mov ah,3ah function number
mov dx,seg dname address of pathname
mov ds,dx
mov dx,offset dname
int 21h transfer to MS-DOS
jc error jump if delete failed

MS-DOS Functions Reference 399

Int 21H
Function 3BH (59)
Set current directory

Sets the current, or default, directory using the specified drive and path.

Call with:

Returns:

Notes:

AH
DS:DX

=3BH
= segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The function fails if any element of the pathname does not exist.

(2.0]

■ Int 21H Function 47H can be used to obtain the name of the current directory before
using Int 21H Function 3BH to select another, so that the original directory can be
restored later.

Example: Change the current directory for drive C to the directory \MYSUB.

dname db 'C:\MYSUB' ,0

mov ah,3bh function number
mov dx,seg dname address of pathname
mov ds,dx
mov dx,offset dname
int 21h transfer to MS-DOS
jc error jump if bad path

400 Section II

Int21H [2.0]
Function 3CH (60)
Create file

Given an ASCIIZ pathname, creates a new file in the designated or default directory on the designated or
default disk drive. If the specified file already exists, it is truncated to zero length. In either case, the file is
opened and a handle is returned that can be used by the program for subsequent access to the file.

Call with:

Returns:

Notes:

=3CH AH
ex = file attribute (bits may be combined)

Blt(s) Signfficaru:e(ifset)
0 read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

DS:DX = segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear
AX =handle

If function failed
Carry flag = set
AX = error code

■ The function fails if:
- any element of the pathname does not exist.
- the file is being created in the root directory and the root directory is full.
- a file with the same name and the read-only attribute already exists in the speci-

fied directory.
- [3.0+] the program is running on a network and the user running the program has

insufficient access rights.

■ A file is usually given a normal (0) attribute when it is created. The file's attribute
can subsequently be modified with Int 21H Function 43H.

■ [3.0+] A volume label can be created using an attribute of 0008H, if one does not
already exist. When files are created, bit 3 of the attribute parameter should always
be clear (0).

■ [3.0+] See the entries for Int 21H Functions 5AH and 5BH, which may also be used to
create files.

■ [4.0+] Int 21H Function 6cH combines the services of Functions 3CH, 3DH,
and5BH.

MS-DOS Functions Reference 401

Example: Create and open, or truncate to zero length and open, the file C:\MYDIR\MYFILE.DAT,
and save the handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT',O

fhandle dw ?

mov ah,3ch function number
xor ex.ex normal attribute
mov dx,seg fname address of pathname
mov ds,dx
mov dx,offset fname
int 21h transfer to MS-DOS
jc error jump if create failed
mov fhandle,ax save file handle

Int 21H [2.0]
Function 3DH (61)
Open file

Given an ASCIIZ pathname, opens the specified file in the designated or default directory on the desig­
nated or default disk drive. A handle is returned which can be used by the program for subsequent access
to the file.

Call with: AH =3DH
AL = access mode

DS:DX

402 Section II

Bit(s) Signtjicance
0-2 access mode

000 = read access
001 = write access
010 = read/write access

3 reserved (0)
4-6 sharing mode (MS-DOS versions 3.0 and later)

000 = compatibility mode
001 = deny all
010 = deny write
011 = deny read
100 = deny none

7 inheritance flag (MS-DOS versions 3.0 and later)
O = child process inherits handle
1 = child does not inherit handle

= segment:offset of ASCIIZ pathname

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = handle

If function unsuccessful
Carry flag = set
AX = error code

■ Any normal, system, or hidden file with a matching name will be opened by this
function. If the file is read-only, the success of the operation also depends on the
access code in bits 0-2 of register AL. After opening the file, the file read/write

. pointer is set to offset zero (the first byte of the file).

■ The function fails if:

- any element of the pathname does not exist.
- the file is opened with an access mode of read/write and the file has the read-

only attribute.
- (3.0+] SHARE.EXE is loaded and the file has already been opened by one or more

other processes in a sharing mode that is incompatible with the current program's
request.

■ The file's date and time stamp can be accessed after a successful open call with
Int 21H Function 57H.

■ The file's attributes (hidden, system, read-only, or archive) can be obtained with
Int 21H Function 43H.

■ When a file handle is inherited by a child process or is duplicated with Int 21H
Function 45H or 46H, all sharing and access restrictions are also inherited.

■ [2] Only bits 0-2 of register AL are significant; the remaining bits should be zero for
upward compatibility.

■ 13.0+] Bits 4-7 of register AL control access to the file by other programs. (Bits 4-6
have no effect unless SHARE.EXE is loaded.)

■ (3.0+] A file-sharing error causes a critical-error exception (Int 24H) with an error
code of 02H. Int 21H Function 59H can be used to obtain information about the
sharing violation.

■ (4.0+] Int 21H Function 6CH combines the services of Functions 3CH, 3DH,
and5BH.

Open the file C:\MYDIR\MYFILE.DAT for both reading and writing, and save the
handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT' ,0

fhandle dw ?

(continued)

MS-DOS Functions Reference 403

mov ah,3dh function number
mov al ,2 mode - read/write
mov dx,seg fname address of pathname
mov ds,dx
mov dx,offset fname
int 21h transfer to MS-DOS
jc error jump if open failed
mov fhandle,ax save file handle

Int 21H [2.0]
Function 3EH (62)
Close file

Given a handle that was obtained by a previous successful open or create operation, flushes all internal
buffers associated with the file to disk, closes the file, and releases the handle for reuse. If the file was
modified, the time and date stamp and file size are updated in the file's directory entry.

Call with:

Returns:

Note:

Example:

AH
BX

= 3EH
= handle

If function successful
Carry flag = clear

If funct ion unsuccessful
Carry flag = set
AX = error code

■ If you accidentally call this function with a zero handle, the standard input device is
closed, and the keyboard appears to go dead. Make sure you always call the close
function with a valid, nonzero handle.

Close the file whose handle is saved in the variablejhandle.

fhandle dw 0

mov
mov
int
jc

ah,3eh
bx,fhandle
21h
error

function number
file handle
transfer to MS-DOS
jump if close failed

404 Section II

Int21H [2.0]
Function 3FH (63)
Read file or device

Given a valid file handle from a previous open or create operation, a buffer address, and a length in bytes,
transfers data at the current file-pointer position from the fi le into the buffer and then updates the file
pointer position.

Call with:

Returns:

Notes:

Example:

AH
BX
ex
DS:DX

= 3FH
= handle
= number of bytes to read
= segment:offset of buffer

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

■ If reading from a character device (such as the standard input) in cooked mode, at
most one line of input will be read (i.e., up to a carriage return character or the
specified length, whichever comes first).

■ If the carry flag is returned clear but AX = 0, then the file pointer was already at end
of file when the program requested the read.

■ If the carry flag is returned clear but AX < CX, then a partial record was read at end
of file or there is an error.

■ [3.0+] If the program is running on a network, the user must have Read access rights
to the directory and file.

Using the file handle from a previous open or create operation, read 1024 bytes at the
current file pointer into the buffer named bu.ff.

buff db 1024 dup (?) buffer for read

fhandle dw contains file handle

(continued)

MS-DOS Functions Reference 405

mov ah,3fh function number
mov dx. seg buff buffer address
mov ds,dx
mov dx,offset buff
mov bx,fhandle file handle
mov cx,1024 length to read
int 21h transfer to MS-DOS
jc error jump, read failed

cmp ax.ex check length of read
jl done jump. end of file

Int 21H [2.0]
Function 40H (64)
Write file or device

Given a valid file handle from a previous open or create operation, a buffer address, and a length in bytes,
transfers data from the buffer into the file and then updates the file pointer position.

Call with:

Returns:

Notes:

AH
BX
ex
DS:DX

=40H
= handle
= number of bytes to write
= segment:offset of buffer

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

■ If the carry flag is returned clear but AX < ex, then a partial record was written or
there is an error. This can be caused by a Ctrl-Z (lAH) embedded in the data if the
destination is a character device in cooked mode or by a disk full condition if the
destination is a file.

■ If the function is called with ex = 0, the file is truncated or extended to the current
file pointer position.

■ [3.0+] If the program is running on a network, the user must have Write access rights
to the directory and file.

406 Section II

Example:

Int 21H

Using the handle from a previous open or create operation, write 1024 bytes to disk at
the current file pointer from the buffer named bu.ff

buff db 1024 dup (?) buffer for write

fhandle dw contains file handle

mov ah,40h function number
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
mov bx,fhandle file handle
mov cx,1024 length to write
int 21h transfer to MS-DOS
jc error jump, write failed
cmp ax, 1024 entire record written?
jne error no, jump

[2.0)
Function 41H (65)
Delete file

Deletes a file from the specified or default disk and directory.

Call with:

Returns:

Notes:

= 41H AH
DS:DX = segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ This function deletes a file by replacing the first character of its filename in the
directory with the character e (ESH) and marking the file 's clusters as "free" in the
disk's file allocation table. The actual data stored in those clusters is not overwritten.

■ Only one file at a time may be deleted with this function. Unlike the PCB-related
Delete File function (Int 21H Function 13H), the • and? wildcard characters are not
allowed in the file specification.

MS-DOS Functions Reference 407

■ The function fa ils if:

- any element of the pathname does not exist.
- the designated file exists but has the read-only attribute. (Int 21H Function 43H

can be used to examine and modify a file 's attribute before attempting to
delete it.)

- (3.0+] the program is running on a network, and the user running the program
has insufficient access rights.

Example: Delete the file named MYFILE.DAT from the directory \MYDIR on drive C.

fname db 'C: \ MYDIR \ MYFILE . DAT' ,D

mov ah,41h function number
mov dx,seg fname filename address
mov ds,dx
mov dx,off set fname
int 21h t ra nsfer to MS-DDS
jc error jump if delete failed

Int 21H
Function 42H (66)
Set file pointer

Sets the file location pointer relative to the start of file, end of file, or current file position.

Call with:

Returns:

AH = 42H
AL = method code

OOH absolute offset from start of file
OlH signed offset from current file pointer
02H signed offset from end of file

BX = handle
CX = most significant half of offset
DX = least significant half of offset

If function successful
Carry flag = clear
DX = most significant half of resulting file pointer
AX = least significant half of resulting fi le pointer

If function unsuccessful
Carry flag = set
AX = error code

408 Section II

[2.0]

Notes: ■ This function uses a method code and a double-precision (32-bit) value to set the file
pointer. The next record read or written in the file will begin at the new file pointer
location. No matter what method is used in the call to this function, the file pointer
returned in DX:AX is always the resulting absolute byte offset from the start of file.

■ Method 02H may be used to find the size of the file by calling Int 21H Function 42H
with an offset of O and examining the pointer location that is returned.

■ Using methods OlH or 02H, it is possible to set the file pointer to a location that is
before the start of file. If this is done, no error is returned by this function, but an
error will be encountered upon a subsequent attempt to read or write the file.

Examples: Using the file handle from a previous open or create operation, set the current file
pointer position to 1024 bytes after the start of file.

fhandle dw ?

mov ah,42h function number
mov al, 0 method= absolute
mov bx,fhandle file handle
mov ex.a upper half of offset
mov dx, 1024 lower half of offset
int 21h transfer to MS-DOS
jc error jump, function failed

The following subroutine accepts a record number, record size, and handle and sets the
file pointer appropriately.

call this routine with BX= handle
AX= record number
ex= record size

returns all registers unchanged

setptr proc near
push ax save record number
push ex save record size
push dx save whatever's in DX
mul ex size * record number
mov ex.ax upper part to ex
xchg cx,dx lower part to DX
mov ax,4200h function number & method
int 21h transfer to MS-DOS
pop dx restore previous DX
pop ex restore record size
pop ax restore record number
ret back to call er

setptr endp

MS-DOS Functions Reference 409

Int 21H [2.0]
Function 43H (67)
Get or set file attributes

Obtains or alters the attributes of a file (read-only, hidden, system, or archive) or directory.

Call with:

Returns:

Notes:

AH = 43H
AL = OOH to get attributes

0lH to set attributes
ex = file attribute, if AL = 0lH (bits can be combined)

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3-4 reserved (0)
5 archive
6-15 reserved (0)

DS:DX = segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear
CX = file attribute

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 directory
5 archive
6-15 reserved (0)

If function unsuccessful
Carry flag = set
AX = error code

■ Bits 3 and 4 of register CX must always be clear (0) when this function is called; in
other words, you cannot change an existing file into a directory or volume label.
However, you can assign the "hidden" attribute to an existing directory with this
function.

■ [3.0+] If the program is running on a network, the user must have Create access
rights to the directory containing the file whose attribute is to be modified.

410 Section II

Example:

Int 21H

Change the attribute of the file D:\MYDIR\MYFILE.DAT to read-only, so that it cannot
be accidentally modified or deleted by other application programs.

rdonly equ Olh ; file attributes
hidden equ 02h
system equ 04h
volume equ 08h
subdir equ 10h
archive equ 20h

fname db 'D:\MYDIR\MYFILE.DAT' ,0

mov ah,43h function number
mov a 1 , Olh subfunction - modify
mov cx,rdonly read-only attribute
mov dx,seg fname filename address
mov ds,dx
mov dx,offset fname
int 21h transfer to MS-DOS
jc error jump if modify failed

[2.0]
Function 44H (68)
IOCTL (1/0 control)

Provides a direct path of communication between an application program and a device driver. Allows a
program to obtain hardware-dependent information and to request operations that are not supported by
other MS-DOS function calls.

The IOCTL subfunctions and the MS-DOS versions in which they first became available are:

Sub function

OOH
OlH
02H
03H
04H
05H
06H

Name
Get Device Information
Set Device Information
Receive Control Data from Character Device Driver
Send Control Data to Character Device Driver
Receive Control Data from Block Device Driver
Send Control Data to Block Device Driver
Check Input Status

MS-DOS version

2.0
2.0
2.0
2.0
2.0
2.0
2.0

(continued)

MS-DOS Functions Reference 411

continued

Sub function

07H
08H
09H
0AH (10)
0BH (11)
OCH (12)

OOH (13)

0EH (14)
0FH (15)

Name

Check Output Status
Check If Block Device Is Removable
Check If Block Device ls Remote
Check If Handle Is Remote
Change Sharing Retry Count
Generic I/O Control for Character Devices
CL = 45H: Set Iteration Count
CL = 4AH: Select Code Page
CL = 4CH: Start Code Page Preparation
CL = 4OH: End Code Page Preparation
CL = 5FH: Set Display Information
CL= 65H: Get Iteration Count
CL = 6AH: Query Selected Code Page
CL = 6BH: Query Prepare List
CL = 7FH: Get Display Information
Generic I/O Control for Block Devices
CL= 40H: Set Device Parameters
CL= 41H: Write Track
CL = 42H: Format and Verify Track
CL = 47H: Set Access Flag
CL = 60H: Get Device Parameters
CL = 61H: Read Track
CL = 62H: Verify Track
CL = 67H: Get Access Flag
Get Logical Drive Map
Set Logical Drive Map

MS-DOS version

2.0
3.0
3.1
3.1
3.1

3.2
3.3
3.3
3.3
4.0
3.2
3.3
3.3
4.0

3.2
3.2
3.2
4.0
3.2
3.2
3.2
4.0
3.2
3.2

Only IOCTL Subfunctions OOH, 06H, and 07H may be used for handles associated with files. Subfunctions
00H-08H are not supported on network devices.

Int 21H
Function 44H (68) Subfunction OOH
IOCTL: get device information

Returns a device information word for the file or device associated with the specified handle.

Call with: AH = 44H
AL = OOH
BX = handle

412 Section II

[2.0]

Returns:

Notes:

Example:

If function successful
Carry flag = clear
DX = device information word

For a file:
Bit(s) Significance
0-5 drive number (0 = A, 1 = B, etc.)
6 0 if file has been written

1 if file has not been written
7 0, indicating a file
8-15 reserved

For a device:
Bit(s) Significance
O 1 if standard input
1 1 if standard output
2 1 if NUL device
3 1 if clock device
4 reserved
5 0 if handle in ASCII mode

1 if handle in binary mode
6 0 if end of file on input
7 1, indicating a device
8-13 reserved
14 0 if IOCTL subfunctions 02H and 03H not supported

1 if IOCTL subfunctions 02H and 03H supported
15 reserved

If function unsuccessful
Carry flag = set
AX = error code

■ Bits 8-15 of DX correspond to the upper 8 bits of the device-driver attribute word.

■ Bit 5 of the device information word for a handle associated with a character device
signifies whether MS-DOS considers that handle to be in binary ("raw") mode or
ASCII {"cooked") mode. In ASCII mode, MS-DOS filters the character stream and
may take special action when the characters Ctrl-C, Ctrl-S, Ctrl-P, Ctrl-Z, and car­
riage return are detected. In binary mode, all characters are treated as data, and the
exact number of characters requested is always read or written.

See Int 21H Function 44H Subfunction 0lH.

MS-DOS Functions Reference 413

Int 21H [2.0]
Function 44H (68) Subfunction OlH
IOCTL: set device information

Sets certain flags for a handle associated with a character device. This subfunction may not be used for a
handle that is associated with a file.

Call with:

Returns:

Notes:

Example:

AH
AL

= 44H
= OlH

BX = handle
DX = device information word

Bit(s) Significance
0 1 if standard input
1 1 if standard output
2 1 if NUL device
3 1 if clock device
4 reserved (0)
5 0 to select ASCII mode

1 to select binary mode
6 reserved (0)
7 1, indicating a device
8-15 reserved (0)

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ If register DH does not contain OOH, control returns to the program with the carry
flag set and error code 0001H (invalid function) in register AX.

■ Bit 5 of the information word for a handle associated with a character device sig­
nifies whether MS-DOS considers that handle to be in binary ("raw") or ASCII
("cooked") mode. See Notes for Int 21H Function 44H Subfunction OOH.

Place the standard output handle into binary ("raw") mode. This speeds up output by
disabling checking for Ctrl-C, Ctrl-S, and Ctrl-P between each character.

414 Section II

get device information
mov ax,4400h function & subfunction
mov bx , l standard output handle
int 21h transfer to MS-DOS

mov dh,O force DH - 0
or dl, 20h set bi nary mode bit

set device information
mov ax,440lh function & subfunction
int 21h transfer to MS-DOS

Int 21H [2.0]
Function 44H (68) Subfunction 02H
IOCTL: read control data from character device driver

Reads control data from a character-device driver. The length and contents of the data are specific to
each device driver and do not follow any standard format. This function does not necessarily result in any
input from the physical device.

Call with:

Returns:

Notes:

AH
AL
BX
ex
DS:DX

=44H
=02H
= handle
= number of bytes to read
= segment:offset of buffer

If function successful
Carry flag = clear
AX = bytes read

and buffer contains control data from driver

If function unsuccessful
Carry flag = set
AX = error code

■ If supported by the driver, this subfunction can be used to obtain hardware­
dependent status and availability information that is not supported by other
MS-DOS function calls.

MS-DOS Functions Reference 415

Example:

Int 21H

■ Character-device drivers are not required to support IOCTL Subfunction O2H. A pro­
gram can test bit 14 of the device information word returned by IOCTL Subfunction
OOH to determine whether the driver supports this subfunction. If Subfunction O2H

is requested and the driver does not have the ability to process control data, control
returns to the program with the carry flag set and error code OOO1H (invalid func­
tion) in register AX.

Read a control string from the standard list driver into the buffer buff

stdprn equ 4 standard list handle
bufl en equ 64 length of buffer

ct 11 en dw ? length of cont ro 1 string
buff db bufl en dup (OJ receives control string

mov ax,4402h function & subfunction
mov bx,stdprn standard li st handle
mov ex, bufl en buffer length
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
int 21h transfer to MS-00S
jc error jump if read fai l ed
mov ctllen,ax save control string length

[2.0]
Function 44H (68) Subfunction 03H
IOCTL: write control data to character-device driver

Transfers control data from an application to a character-device driver. The length and contents of the
data are specific to each device driver and do not follow any standard format. This function does not
necessarily result in any output to the physical device.

Call with: AH
AL
BX
ex
DS:DX

416 Section II

= 44H
=O3H
= handle
= number of bytes to write
= segment:offset of data

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

■ If supported by the driver, this subfunction can be used to request hardware­
dependent operations (such as setting baud rate for a serial port) that are not sup­
ported by other MS-DOS function calls.

■ Character-device drivers are not required to support IOCTL Subfunction O3H. A pro­
gram can test bit 14 of the device information word returned by IOCTL Subfunction
OOH to determine whether the driver supports this subfunction. If Subfunction O3H
is requested and the driver does not have the ability to process control data, control
returns to the program with the carry flag set and error code OOO1H (invalid func­
tion) in register AX.

Write a control string from the buffer buff to the standard list device driver. The length
of the string is assumed to be in the variable ctllen.

stdprn equ
bufl en equ

ctllen dw
buff db

mov
mov
mov
mov
mov
mov
int
jc

4

64

?

buflen dup (?)

ax,4403h
bx,stdprn
dx,seg buff
ds,dx
dx,offset buff
ex, ctll en
21h
error

standard list handle
length of buffer

length of control data
contains control data

function & subfunction
standard list handle
buffer address

length of control data
transfer to MS-DOS
jump if write failed

MS-DOS Functions Reference 417

Int 21H [2.0]
Function 44H (68) Subfunction 04H
IOCTL: read control data from block-device driver

Transfers control data from a block-device driver directly into an application program's buffer. The length
and contents of the data are specific to each device driver and do not follow any standard format. This
func tion does not necessarily result in any input from the physical device.

Call with:

Returns:

Notes:

Example:

AH
AL

= 44H
= 04H

BL
ex
DS:DX

= drive code (0 = default, 1 = A, 2 = B, etc.)
= number of bytes to read
= segment:offset of buffer

If function successful
Carry flag = clear
AX = bytes transferred

and buffer contains control data from device driver

If funct ion unsuccessful
Carry flag = set
AX = error code

■ When supported by the driver, this subfunction can be used to obtain hardware­
dependent status and availabili ty information that is not provided by other MS-DOS
funct ion calls.

■ Block-device drivers are not required to support IOCTL Subfunction 04H. If this
subfunction is requested and the driver does not have the ability to process control
data, control returns to the program with the carry flag set and error code 0001H
(invalid function) in register AX.

Read a control string from the block-device driver for drive C into the buffer buff

bufl en equ 64

ctllen dw ?

buff db bufl en dup (0)

mov ax,4404h
mov bl ,3
mov cx,buflen
mov dx,seg buff

length of buffer

length of co ntrol str ing
re ceives con trol s tring

functi on & s ubfunction
drive C - 3
buffer 1 ength
buffer address

418 Section I/

mov ds,dx
mov dx,offset buff
int 21h transfer to MS-DOS
jc error jump if read failed
mov ctllen,ax save control string length

Int 21H [2.0]
Function 44H (68) Subfunction 05H
IOCTL: write control data to block-device driver

Transfers control data from an application program directly to a block-device driver. The length and con­
tents of the control data are specific to each device driver and do not follow any standard format. This
function does not necessarily result in any output to the physical device.

Call with:

Returns:

Notes:

Example:

AH
AL
BL
ex
DS:DX

=44H
=05H
= drive code (0 = default, 1 = A, 2 = B, etc.)
= number of bytes to write
= segment:offset of data

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code

■ When supported by the driver, this subfunction can be used to request hardware­
dependent operations (such as tape rewind or disk eject) that are not provided by
other MS-DOS function calls.

■ Block-device drivers are not required to support IOCTL Subfunction 05H. If this
subfunction is requested and the driver does not have the ability to process control
data, control returns to the program with the carry flag set and error code 0001H
(invalid function) in register AX.

Write a control string from the buffer buff to the block-device driver for drive C. The
length of the string is assumed to be in the variable ctllen.

bufl en equ 64 length of buffer

ctllen dw length of control data

(continued)

MS-DOS Functions Reference 419

buff db buflen dup (?) contains control data

mov ax,4405h function & subfunction
mov bl ,3 drive C - 3
mov dx,seg buff buffer address
mov ds,dx
mov dx,offset buff
mov cx,ctllen length of control data
int 21h transfer to MS-00S
jc error jump if write fa iled

Int 21H
Function 44H (68) Subfunction 06H
IOCTL: check input status

Returns a code indicating whether the device or file associated with a handle is ready for input.

Call with:

Returns:

AH
AL
BX

= 44H
=06H
= handle

If function successful
Carry flag = clear

and, for a device:
AL = OOH

FFH

or, for a file:
AL = OOH

FFH

If function unsuccessful
Carry flag = set
AX = error code

if device not ready
if device ready

if file pointer at EOF
if file pointer not at EOF

[2.0]

Note: ■ This function can be used to check the status of character devices, such as the serial
port, that do not have their own "traditional" MS-DOS status calls.

420 Section II

Example: Check whether a character is ready from the standard auxiliary device (usually COMI).

stdaux equ 3 ; standard auxiliary handle

mov ax,4406h function & subfunction
mov bx,stdaux standard auxiliary handle
int 21h transfer to MS-00S
jc error jump if function failed
or a 1 , a 1 test status flag
jnz ready jump if character ready

Int 21H (2.0]
Function 44H (68) Subfunction 0711
IOCTL: check output status

Returns a code indicating whether the device associated with a handle is ready for output.

Call with:

Returns:

Note:

AH
AL

=44H
=07H

BX = handle

If function successful
Carry flag = clear

and, for a device:
AL = OOH

FFH

or, for a file:
AL = FFH

If function unsuccessful
Carry flag = set
AX = error code

if device not ready
if device ready

■ When used with a handle for a file, this function always returns a ready status, even
if the disk is full or no disk is in the drive.

MS-DOS Functions Reference 421

Example:

Int 21H

Check whether the standard auxiliary device (usually COMl) can accept a character
for output.

stdaux equ 3 ; standard auxiliary handle

mov ax,4407h function & subfunction
mov bx,s tdaux standard auxiliary handle
int 21h transfer to MS-DOS
jc error jump if function failed
or al , al test s tatus flag
jnz ready jump if not busy

[3.0]
Function 44H (68) Subfunction 08H
IOCTL: check if block device is removable

Checks whether the specified block device contains a removable storage medium, such as a floppy disk.

Call with:

Returns:

Notes:

= 44H
= 08H

AH
AL
BL = drive number (0 = default, 1 = A, 2 = B, etc.) /

If function successful
Carry flag = clear
AL = OOH if medium is removable

OlH if medium is not removable

If function unsuccessful
Carry flag = set
AX = error code

■ If a file is not found as expected on a particular drive, a program can use this sub­
function to determine whether the user should be prompted to insert another disk.

■ This subfunction may not be used for a network drive.

■ Block drivers are not required to support Subfunction 08H. If this subfunction is
requested and the block device cannot supply the information, control returns to
the program with the carry fl ag set and error code 0001H (invalid function) in
register AX.

422 Section II

Example: Check whether drive C is removable.

mov ax,4408h function & subfunction
mov bl, 3 drive 3 - C
int 21 h transfer to MS-DOS
jc error jump if function failed
and al, 1 test type of medium
jnz fixed jump if not removable

Int 21H [3.1]
Function 44H (68) Subfunction 09H
IOCTL: check if block device is remote

Checks whether the specified block device is local (attached to the computer running the program) or
remote (redirected to a network server).

Call with:

Returns:

Note:

AH =44H
AL = 09H
BL = drive number (0 = default, 1 = A, 2 = B, etc.)

If function successful
Carry flag = clear
DX = device attribute word

bit 12 = 0 if drive is local
1 if drive is remote

If function unsuccessful
Carry flag = set
AX = error code

■ Use of this subfunction should be avoided. Application programs should not distin­
guish between files on local and remote devices.

MS-DOS Functions Reference 423

Example:

Int 21H

Check whether drive D is mounted on the machine running the program or is a network
drive.

mov ax,4409h function & subfunction
mov bl ,4 drive 4 - D
int 21h transfer to MS-DOS
jc error jump if function failed
and dx,lOOOh test local/remote bit
jnz remote jump if network drive

[3.1]
Function 44H (68) Subfunction OAH (10)
IOCTL: check if handle is remote

Checks whether the specified handle refers to a file or device that is local (located on the PC that is
running the program) or remote (located on a network server).

Call with:

Returns:

AH =44H
AL = OAH
BX = handle

If function successful
Carry flag = clear
DX = attribute word for file or device

bit 15 = 0 if local

If function unsuccessful
Carry flag = set
AX = error code

1 if remote

Notes: ■ Application programs should not ordinarily attempt to distinguish between files on
local and remote devices.

■ If the network has not been started, control returns to the calling program with the
carry flag set and error code 0001H (invalid function) in register AX

424 Section II

Example:

Int 21H

Check if the handle saved in the variable jhandle is associated with a fi le or device on
the machine running the program or on a network server.

fhandle dw ; device handle

mov ax,440ah function & subfunction
mov bx,fhandle fi l e/device hand l e
int 21h transfer to MS-DOS
jc error jump if funct i on failed
and dx,8000h test l oca l /remote bit
jnz remote jump if network handle

(3.1)
Function 44H (68) Subfunction OBH (11)
IOCTL: change sharing retry count

Sets the number of times MS-DOS retries a disk operation after a failure caused by a file-sharing violation
before it returns an error to the requesting process. This subfunction is not available unless the file­
sharing module (SHARE.EXE) is loaded.

Call with:

Returns:

Notes:

AH = 44H
AL = OBH
CX = delays per retry (default = 1)
DX = number of retries (default = 3)

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The length of a delay is a machine-dependent value determined by the CPU type
and clock speed. Each delay consists of the following instruction sequence:

xor ex.ex
1 oop $

which executes 65,536 times before fal ling out of the loop.

■ The sharing retry count affects the behavior of the system as a whole and is not a
local parameter for the process. If a program changes the sharing retry count, it
should restore the default values before terminating.

MS-DOS Functions Reference 425

Example: Change the number of automatic retries for a file-sharing violation to five.

mov ax,440bh function & subfunction
mov cx,1 delays per retry
mov dx,5 number of retr i es
int 21h transfer to MS-DOS
jc error jump if function failed

Int 21H [3.2]
Function 44H (68) Subfunction OCH (12)
IOCTL: generic 1/0 control for character devices

Provides a general-purpose mechanism for communication between application programs and character­
device drivers.

Call with:

Returns:

AH
AL
BX
CH

CL

DS:DX

= 44H
= OCH
= handle
= category (major) code:

OOH= unknown
0JH = COMJ, COM2, COM3, or COM4 (33)
03H = CON (keyboard and display) (33)
05H = LPTJ, LPT2, or LPT3 (3.2)

= function (minor) code:
45H = Set Iteration Count (3.2)
4AH = Select Code Page (33)
4CH = Start Code Page Preparation (33)
4DH = End Code Page Preparation (33)
5FH = Set Display Information (4.0)
65H = Get Iteration Count (3.2)
6AH = Query Selected Code Page (33)
6BH = Query Prepare List (33)
7FH = Get Display Information (4.0)

= segment:offset of parameter block

If function successful
Carry flag = clear

and, if called with CL = 65H, 6AH, 6BH, or 7FH
DS:DX = segment:offset of parameter block

426 Section II

Notes:

If function unsuccessful
Carry flag = set
AX = error code

■ If the minor code is 45H (Set Iteration Count) or 65H (Get Iteration Count), the
parameter block is simply a 2-byte buffer containing or receiving the iteration count
for the printer. This call is valid only for printer drivers that support Output Until
Busy, and determines the number of times the device driver will wait for the device
to signal ready before returning from the output call.

■ The parameter block for minor code 4DH (End Code Page Preparation) has the
following format:

dw
dw

2
0

length of following data
(reserved)

■ For MS-DOS version 3.3, the parameter block for minor codes 4AH (Select Code
Page) and 6AH (Query Code Page) has the following format:

dw
dw

2

?

length of following data
: code page ID

For MS-DOS version 4.0, minor codes 4AH and 6AH also set or get the double-byte
character set (DBCS) lead byte table, and the following format is used:

dw
dw
db

db
db

(n+2)•2+1
?

start.end

start.end
0,0

length of following data
code page ID
0BCS lead byte range 1

DBCS lead byte range n

■ The parameter block for minor code 4CH (Start Code Page Preparation) has the
following format:

dw

dw

dw

dw
dw

dw

0

n

?

font type
bit 0 = 0 downloaded

= 1 cartridge
bits 1-15 - reserved (0)
length of remainder of

parameter block
number of code pages in

the following list
code page 1
code page 2

: code page n

■ The parameter block for minor code 6BH (Query Prepare List) has the following
format, assuming n hardware code pages and m prepared code pages (n <= 12,
m <= 12):

MS-DOS Functions Reference 427

dw
dw
dw
dw

dw
dw
dw
dw

dw

n

?

?

?

m
?

?

length of following data
number of hardware code pages
hardware code page 1
hardware code page 2

hardware code page n
number of prepared code pages
prepared code page
prepared code page 2

; prepared code page m

■ After a minor code 4CH (Start Code Page Preparation) call, the data defining the
code page font is written to the driver using one or more calls to the IOCTL Write
Control Data subfunction (Interrupt 21H, Function 44H, Subfunction 03H). The for­
mat of the data is device- and driver-specific. After the font data has been written to
the driver, a minor code 4DH (End Code Page Preparation) call must be issued. If no
data is written to the driver between the minor code 4CH and 4DH calls, the driver
interprets the newly prepared code pages as hardware code pages.

■ A special variation of the minor code 4CH (Start Code Page Preparation) call, called
"Refresh," is required to actually load the peripheral device with the prepared code
pages. The refresh operation is obtained by requesting minor code 4CH with each
code page position in the parameter block set to -1, followed by an immediate call
for minor code 4DH (End Code Page Preparation).

■ [4.0+] For minor codes SFH (Set Display Information) and 7FH (Get Display Informa­
tion), the parameter block is formatt~d as follows:

db 0 l evel (0 in MS-DOS 4.0)
db 0 reserved (must be 0)
dw 14 length of following data
dw ? control flags

bit 0 = 0 intensity
- 1 blink

bits 1-15 = reserved (0)

db ? mode type (1 = text, 2 = APA)
db 0 reserved (must be 0)
dw ? col ors

0 - monochrome compatible

1 - 2 colors
2 - 4 colors
4 - 16 colors
8 - 256 colors

dw ? pixel columns
dw ? pixel rows
dw ? character columns
dw ? character rows

428 Section II

Example:

Int 21H

Get the current code page for the standard list device.

stdprn equ 4

pa rs dw 2

dw

mov ax,440ch
mov bx,stdprn
mov ch,5
mov cl. 6ah
mov dx,seg pars
mov ds,dx
mov dx,offset pars
int 21h
jc error

standard list handle

length of data
receives code page

function & subfunction
standard list handle
LPTx category
query code page
parameter block address

transfer to MS-DOS
jump if function failed

Function 44H Subfunction OOH (13)
IOCTL: generic 1/0 control for block devices

[3.2]

Provides a general-purpose mechanism for communication between application programs and block­
device drivers. Allows a program to inspect or change device parameters for a logical drive and to read,
write, format, and verify disk tracks in a hardware-independent manner.

Call with: AH = 44H
AL =ODH
BL = drive code (0 = default, 1 = A, 2 = B, etc.)
CH = category (major) code:

08H = disk drive
CL = function (minor) code:

DS:DX

40H = Set Device Parameters
41H= Write Track
42H = Format and Verify Track
47H = Set Access Flag (4.0)
60H = Get Device Parameters
61H = Read Track
62H = Verify Track
67H = Get Access Flag (4.0)

= segment:offset of parameter block

MS-DOS Functions Reference 429

Returns:

Notes:

If function successful
Carry flag = clear

and, if called with CL = 60H or 61H
DS:DX = segment:offset of parameter block

If function unsuccessful
Carry flag = set
AX = error code

■ The minor code 40H (Set Device Parameters) function must be used before an at­
tempt to write, read, format, or verify a track on a logical drive. In general, the
following sequence applies to any of these operations:

- Get the current parameters (minor code 60H). Examine and save them.
- Set the new parameters (minor code 40H).
- Perform the task.
- Retrieve the original parameters and restore them with minor code 40H.

■ For minor codes 40H (Set Device Parameters) and 60H (Get Device Parameters), the
parameter block is formatted as follows:

Special-functions.field: offset OOH, length= 1 byte
Bit(s) Value Meaning
0 0 device BPB field contains a new default BPB

1

2

3-7

1
0
1
0

1

0

use current BPB
use all fields in parameter block
use track layout field only
sectors in track may be different sizes (should always be
awided)
sectors in track are all same size; sector numbers range
from 1 to the total number of sectors in the track (should
always be used)
reserved

Device type field: offset OlH, length 1 byte
Value Meaning
0 320/ 360 KB, 5.25-inch disk
1 1.2 MB, 5.25-inch disk
2 720 KB, 3.5-inch disk
3 single-density, 8-inch disk
4 double-density, 8-inch disk
5 fixed disk
6 tape drive
7 other type of block device

Device attributes field: offset O2H, length 1 word
Bit(s) Value Meaning
0 0 removable storage medium

1 nonremovable storage medium
1 0 door lock not supported

1 door lock supported
2-15 0 reserved

430 Section II

Number of cylinders .field: offset 04H, length 1 word
Maximum number of cylinders supported on the block device

Media type .field: offset 06H, length ,1 byte

Value
0
1

Meaning
1.2 MB, 5.25-inch disk
320/360 KB, 5.25-inch disk

Device BPS.field: offset 07H, length 31 bytes
For format of the device BPB, see separate Note below.
If bit O = 0 in special-functions field, this field contains the new default BPB for the
device.
If bit O = 1 in special-functions field, the BPB in this field is returned by the device
driver in response to subsequent Build BPB requests.

Track layout .field: offset 26H, variable-length table
Length Meaning
Word number of sectors in track
Word number of first sector in track
Word size of first sector in track

Word number of last sector in track
Word size of last sector in track

■ The device BPB field is a 31-byte data structure that describes the current disk and
its control areas. The field is formatted as follows:
Byte(s) Meaning
OOH-OlH bytes per sector
02H sectors per cluster (allocation unit)
03-04H reserved sectors, beginning at sector 0
05H number of file allocation tables (FATs)
06H-07H maximum number of root-directory entries
08H-09H number of sectors
OAH media descriptor
OBH-OCH sectors per FAT
ODH-OEH sectors per track
OFH-lOH numberofheads
11H-14H number of hidden sectors
15H-18H large number of sectors (if bytes 08H-09H=O)
19H-1EH reserved

■ When minor code 40H (Set Device Parameters) is used, the number of cylinders
should not be altered, or some or all of the volume may become inaccessible.

■ For minor codes 41H (Write Track) and 61H (Read Track), the parameter block is
formatted as follows:
Byte(s) Meaning
OOH special-functions field (must be 0)
01H-02H head
03H-04H cylinder
05H-06H starting sector
07H-08H sectors to transfer
09H-OCH transfer buffer address

MS-DOS Functions Reference 431

Example:

■ For minor codes 42H (Format and Verify Track) and 62H (Verify Track), the parame­
ter block is formatted as follows:
Byte(s) Meaning
OOH special-functions field

Blt(s) Significance
0 0 = Format/Verify track

1 = Format status call (MS-DOS 4.0 only)
1-7 reserved (0)

01H-02H head
03H-04H cylinder
In MS-DOS 4.0, this function may be called with bit 0 of the special-functions field
set after a minor code 40H call (Set Device Parameters) to determine whether the
driver supports the specified number of tracks and sectors per track. A status is
returned in the special-functions field which is interpreted as follows:
Value Meaning
0 specified number of tracks and sectors per track supported
1 this function not supported by the ROM BIOS
2 specified number of tracks and sectors per track not supported
3 no disk in drive

■ For minor codes 47H (Set Access Flag) and 67H (Get Access Flag), the parameter
block is formatted as follows:
~e Meaning
OOH special-functions field (must be 0)
OlH disk access flag
When the disk access flag is zero, access to the medium is blocked by the driver. The
flag is set to zero when the driver detects an unformatted medium or a medium with
an invalid boot record. When the access flag is nonzero, read/write operations to the
medium are allowed by the driver. A formatting program must clear the disk access
flag with minor code 47H before it requests minor code 42H (Format and Verify
Track).

Get the device parameter block for disk drive C.

dbpb db 128 dup (0) ; device parameter block

mov ax,440dh function & subfunction
mov bl ,3 drive C = 3
mov ch,8 disk category
mov cl ,60h get device parameters
mov dx,seg dbpb buffer address
mov ds,dx
mov dx,offset dbpb
int 21h transfer to MS-DOS
jc error jump if function failed

432 Section II

Int21H [3.2]
Function 44H (68) Subfunction OEH (14)
IOCTL: get logical drive map

Returns the logical drive code that was most recently used to access the specified block device.

Call with:

Returns:

Note:

Example:

AH
AL

=44H
= OEH

BL = drive code (O = default, 1 = A, 2 = B, etc.)

If function successful
Carry flag = clear
AL = mapping code

OOH if only one logical drive code assigned to the block device
OlH-lAH logical drive code (1 = A, 2 = B, etc.) mapped to the block

device

If function unsuccessful
Carry flag = set
AX = error code

■ If a drive has not been assigned a logical mapping with Function 44H Subfunction
OFH, the logical and physical drive codes are the same.

Check whether drive A has more than one logical drive code.

mov ax,440eh function & subfunction
mov bl , 1 drive 1 - A
int 21h transfer to MS-DOS
jc error jump if function failed
or al , al test drive code
jz label 1 jump, no drive aliases

MS-DOS Functions Reference 433

Int 21H [3.2]
Function 44H (68) Subfunction OFH (15)
IOCTL: set logical drive map

Sets the next logical drive code that will be used to reference a block device.

Call with:

Returns:

Note:

Exrunple:

AH = 44H
AL = OFH
BL = drive code (0 = default, 1 = A, 2 = B, etc.)

If function successful
Carry flag = clear
AL = mapping code

OOH if only one logical drive code assigned to the block device
OlH-lAH logical drive code (1 = A, 2 = B, etc.) mapped to the block

device

If function unsuccessful
Carry flag = set
AX = error code

■ When a physical block device is aliased to more than one logical drive code, this
function can be used to inform the driver which drive code will next be used to
access the device.

Notify the floppy-disk driver that the next access will be for logical drive B.

mov ax,440fh function & su bfunction
mov bl ,2 drive 2 = B
int 21h transfer to MS-DOS
jc error jump if function fa iled

434 Section II

lnt21H [2.0]
Function 45H (69)
Duplicate handle

Given a handle for a currently open device or file, returns a new handle that refers to the same device or
file at the same position.

Call with:

Returns:

Notes:

Example:

AH
BX

=45H
= handle to be duplicated

If function successful
Carry flag = clear
AX = new handle

If function unsuccessful
Carry flag = set
AX = error code

■ A seek, read, or write operation that moves the file pointer for one of the two
handles also moves the file pointer associated with the other.

■ This function can be used to efficiently update the directory for a file that has
changed in length, without incurring the overhead of closing and then reopening the
file. The handle for the file is simply duplicated with this function and the duplicate
is closed, leaving the original handle open for further read/ write operations.

■ [3.31 See also Int 21H Function 68H (Commit File).

Duplicate the handle stored in the variable jhandle, then close the duplicate. This
ensures that all buffered data is physically written to disk and that the directory entry for
the corresponding file is updated, but leaves the original handle open for subsequent file
operations.

fhandle dw 0 ; f il e handle

get duplicate handle
mov ah,45h function number
mov bx,fhandle original file handle
int 21h transfer to MS-DOS
jc error jump if dup failed

now close dup'd handle
mov bx.ax put handle into BX
mov ah,3eh function number
int 21h transfer to MS-DOS

(continued)

MS-DOS Functions Reference 435

jc error jump if close failed

Int21H [2.0]
Function 46H (70)
Redirect handle

Given two handles, makes the second handle refer to the same device or file at the same location as the
first handle. The second handle is then said to be redirected.

Call with:

Returns:

Notes:

Example:

=46H AH
BX
ex

= handle for file or device
= handle to be redirected

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ If the handle passed in ex already refers to an open file, that file is closed first.

■ A seek, read, or write operation that moves the file pointer for one of the two
handles also moves the file pointer associated with the other.

■ This function is commonly used to redirect the standard input and output handles to
another file or device before a child process is executed with Int 21H Function 4BH.

Redirect the standard output to the list device, so that all output directed to the console
will appear on the printer instead. Later, restore the original meaning of the standard
output handle.

stdio equ 0

stdout equ 1
stderr equ 2

stdaux equ 3

stdprn equ 4

dhandle dw 0 duplicate handle

436 Section II

mov ah,45h
mov bx,stdout
int 21h
jc error
mov dhandle,ax

mov ah,46h
mov bx,stdprn
mov cx,stdout
int 21h
jc error

mov ah,46h
mov bx,dhandle
mov cx,stdout
int 21h
jc error

mov ah,3eh
mov bx,dhandle
int 21h
jc error

Int 21H
Function 47H (71)
Get current directory

get dup of stdout
function number
standard output handle
transfer to MS-DOS
jump if dup failed
save dup'd handle

redirect standard output
to standard list device
function number
standard list handle
standard output handle
transfer to MS-DOS
jump if redirect fail ed

restore standard output
to original meaning
function number
saved duplicate handle
standa rd output handle
transfer to MS-DOS
jump if redirect failed
close duplicate handle
because no longer needed
function number
saved duplicate handle
transfer to MS -DOS
jump if close failed

[2.0]

Obtains an ASCIIZ string that describes the path from the root to the current directory, and the name of
that directory.

Call with: AH
DL
DS:SI

= 47H
= drive code (0 = default, 1 = A, etc.)
= segment:offset of 64-byte buffe r

MS-DOS Functions Reference 437

Returns: If function successful
Carry flag = clear

and buffer is filled in with full pathname from root of current directory.

If function unsuccessful
Carry flag = set
AX = error code

Notes: ■ The returned path name does not include the drive identifier or a leading backslash
(\). It is terminated with a null (OOH) byte. Consequently, if the current directory is
the root directory, the first byte in the buffer will contain OOH.

■ The function fails if the drive code is invalid.

■ The current directory may be set with Int 21H Function 3BH.

Example: Get the name of the current directory for drive C into the buffer named dbuff.

dbuff db 64 dup (0) ; receives path string

mov ah,47h function number
mov dl, 03 drive C = 3
mov s i , seg dbuff buffer address
mov ds,si
mov si, offset dbuff
int 21h transfer to MS-DOS
jc error jump if error

Int 21H
Function 48H (72)
Allocate memory block

Allocates a block of memory and returns a pointer to the beginning of the allocated area.

Call with:

Returns:

AH
BX

= 48H
= number of paragraphs of memory needed

If function successful
Carry flag = clear
AX = base segment address of allocated block

438 Section II

[2.0]

Notes:

Example:

Int21H

If function unsuccessful
Carry flag = set
AX = error code
BX = size of largest available block (paragraphs)

■ If the function succeeds, the base address of the newly allocated block is AX:0000.

• The default allocation strategy used by MS-DOS is "first fit"; that is, the memory
block at the lowest address that is large enough to satisfy the request is allocated.
The allocation strategy can be altered with Int 21H Function 58H.

• When a .COM program is loaded, it ordinarily already "owns" all of the memory
in the transient program area, leaving none foe dynamic allocation. The amount
of memory initially allocated to a .EXE program at load time depends on the
MINALLOC and MAXALLOC fields in the .EXE file header. See Int 21H Function
4AH.

Request a 64 KB block of memory for use as a buffer.

bufseg dw ; segment base of new block

mov ah,48h function number
mov bx,lOOOh block size (paragraphs)
int 21h transfer to MS-DOS
jc error jump if allocation failed
mov bufseg,ax save segment of new block

[2.0]
Function 49H (73)
Release memory block

Releases a memory block and makes it available for use by other programs.

Call with:

Returns:

AH
ES

= 49H
= segment of block to be released

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 439

Notes:

Example:

Int 21H

■ This function assumes that the memory block being released was previously ob­
tained by a successful call to Int 21H Function 48H.

■ The function will fail or can cause unpredictable system errors if:

- the program releases a memory block that does not belong to it.
- the segment address passed in register ES is not a valid base address for an exist-

ing memory block.

Release the memory block that was previously allocated in the example for Int 21H Func­
tion 48H (page 438).

bufseg dw

mov
mov
int
jc

ah,49h
es,bufseg
21h
error

; segment base of block

function number
base segment of block
transfer to MS-DOS
jump if release failed

[2.0]
Function 4AH (74)
Resize memory block

Dynamically shrinks or extends a memory block, according to the needs of an application program.

Call with:

Returns:

Notes:

AH
BX
ES

=4AH
= desired new block size in paragraphs
= segment of block to be modified

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code
BX = maximum block size available (paragraphs)

■ This function modifies the size of a memory block that was previously allocated with
a call to Int 21H Function 48H.

■ If the program is requesting an increase in the size of an allocated block, and this
function fails , the maximum possible size for the specified block is returned in regis­
ter BX. The program can use this value to determine whether it should terminate, or
continue in a degraded fashion with less memory.

440 Section II

Example:

Int 21H

■ A program that uses EXEC (Int 21H Function 4BH) to load and execute a child pro­
gram must call this function first to make memory available for the child, passing the
address of its PSP in register ES and the amount of memory needed for its own code,
data, and stacks in register BX.

Resize the memory block that was allocated in the example for Int 21H Function 48H
(page 438), shrinking it to 32 KB.

bufseg dw ; segment base of block

mov ah,4ah funct ion number
mov bx,0800h new size (paragraphs)
mov es,bufseg segment base of block
int 21h transfer to MS-00S
jc error jump. resize failed

[2.0]
Function 4BH (75)
Execute program (EXEC)

Allows an application program to run another program, regaining control when it is finished. Can also be
used to load overlays, although this use is uncommon.

Call with:

Returns:

AH
AL

=4BH
= subfunction

OOH = Load and Execute Program
03H = Load Overlay

= segment:offset of parameter block ES:BX
DS:DX = segment:offset of ASCIIZ program pathname

If function successful
Carry flag = clear

[2] all registers except for CS:IP may be destroyed
[3.0+] registers are preserved in the usual fashion

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 441

Notes:

Example:

■ The parameter block format for Subfunction OOH (Load and Execute Program) is
as follows:
~es Contents
00H-OlH segment pointer to environment block
02H-03H offset of command line tail
04H-05H segment of command line tail
06H-07H offset of first FCB to be copied into new PSP + SCH
08H-09H segment of first FCB
0AH-0BH offset of second FCB to be copied into new PSP + 6CH
0CH-0DH segment of second FCB

■ The parameter block format for Subfunction 03H (Load Overlay) is as follows:
Bytes Contents
OOH-0lH segment address where overlay is to be loaded
02H-03H relocation factor to apply to loaded image

■ The environment block must be paragraph-aligned. It consists of a sequence of
ASCIIZ strings in the form:

db 'COMSPEC-A: \COMMAND. COM' , 0

The entire set of strings is terminated by an extra null (OOH) byte.

■ The command tail format consists of a count byte, followed by an ASCII string, ter­
minated by a carriage return (which is not included in the count). The first character
in the string should be an ASCII space (20H) for compatibility with the command tail
passed to programs by COMMAND.COM. For example:

db 6,' •.DAT',Odh

■ Before a program uses Int 21H Function 4BH to run another program, it must release
all memory it is not actually using with a call to Int 21H Function 4AH, passing the
segment address of its own PSP and the number of paragraphs to retain.

■ Ordinarily, all active handles of the parent program are inherited by the child pro­
gram, although the parent can prevent this in MS-DOS 3.0 and later by setting the
inheritance bit when the file or device is opened. Any redirection of the standard in­
put and/or output in the parent process also affects the child process.

■ The environment block can be used to pass information to the child process. If the
environment block pointer in the parameter block is zero, the child program inherits
an exact copy of the parent's environment. In any case, the segment address of the
child's environment is found at offset 002CH in the child's PSP.

■ After return from the EXEC function call, the termination type and return code of
the child program may be obtained with Int 21H Function 4DH.

See Chapter 12.

442 Section II

Int 21H [2.0]
Function 4CH (76)
Terminate process with return code

Terminates the current process, passing a return code to the parent process. This is one of several
methods that a program can use to perform a final exit. MS-DOS then takes the following actions:

■ All memory belonging to the process is released.

■ File buffers are flushed and any open handles for files or devices owned by the
process are closed.

■ The termination handler vector (Inc 22H) is restored from PSP:000AH.

■ The Ctrl-C handler vector (Inc 23H) is restored from PSP:000EH.

■ [2 .0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

■ Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion and the transient
portion is reloaded if necessary. If a batch file is in progress, the next line of the fil e is fetched and inter­
preted; otherwise, a prompt is issued for the next user command.

Call with:

Returns:

Notes:

AH =4CH
AL = return code

Nothing

■ [2.0+] This is the preferred method of termination for application programs because
it allows a return code to be passed to the parent program and does not rely on the
contents of any segment register. Other methods of performing a final exit are:

- Int 20H
- Int 21H Function OOH
- Int 21H Function 31H
- Int 27H

■ Any files that have been opened using FCBs and modified by the program should be
closed before program termination; otherwise, data may be lost.

■ The return code can be retrieved by the parent process with Int 21H Function 4DH
(Get Return Code). It can also be tested in a batch file with an IF ERRORLEVEL
statement. By convention, a return code of zero indicates successful execution, and a
non-zero return code indicates an error.

■ [3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

MS-DOS Functions Reference 443

Example:

Int 21H

Terminate the current process, passing a return code of 1 to the parent process.

mov
mov
int

ah,4ch
al . Olh
21h

function number
return code
transfer to MS-DOS

[2.0]
Function 4DH (77)
Get return code

Used by a parent process, after the successful execution of an EXEC call (Int 21H Function 4BH), to
obtain the return code and termination type of a child process.

Call with:

Returns:

Notes:

Example:

AH

AH

AL

=4DH

= exit type
OOH if normal termination by Int 2OH, Int 21H Function OOH, or
Int 21H Function 4CH
O1H if termination by user's entry of Ctr/DC
O2H if termination by critical-error handler
O3H if termination by Int 21H Function 31H or Int 27H

= return code passed by child process (0 if child terminated by Int 20H,
Int 21H Function OOH, or Int 27H)

■ This function will yield the return code of a child process only once. A subsequent
call without an intervening EXEC Ont 21H Function 4BH) will not necessarily return
any valid information.

■ This function does not set the carry flag to indicate an error. If no previous child
process has been executed, the values returned in AL and AH are undefined.

Get the return code and termination kind of child process that was previously executed
with Int 21H Function 4BH (EXEC).

retcode dw

mov
in t
mov

ah,4dh
21h
retcode,ax

; return code, termination type

function number
transfer to MS-DOS
save child process info

444 Section II

Int21H [2.0]
Function 4EH (78)
Find first file

Given a file specification in the form of an ASCIIZ string, searches the default or specified directory on
the default or specified drive for the first matching file.

Call with:

Returns:

Notes:

= 4EH AH
ex = search attribute (bits may be combined)

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 directory
5 archive
6-15 reserved (0)

DS:DX = segment:offset of ASCIIZ pathname

If function successful (matching file found)
Carry flag = clear

and search results returned in current disk transfer area as follows:
Byte(s) Description
00H-14H reserved (0)
15H
16H-17H

attribute of matched file or directory
file time
bits 00H-04H = 2-second increments (0-29)
bits 05H-OAH = minutes (0-59)

18H-19H
bits 0BH-OFH = hours (0-23)
file date
bits 00H-04H = day (1--31)
bits 05H- 08H = month (1-12)

lAH-lDH
bits 09H-0FH = year (relative to 1980)
file size

1EH-2AH ASCIIZ filename and extension

If function unsuccessful (no matching files)
Carry flag = set
AX = error code

■ This function assumes that the DTA has been previously set by the program with Int
21H Function lAH to point to a buffer of adequate size.

■ The • and , wildcard characters are allowed in the filename. If wildcard characters
are present, this function returns only the first matching filename.

MS-DOS Functions Reference 445

Example:

Int 21H

■ If the attribute is 0, only ordinary files are found. If the volume label attribute bit is
set, only volume labels will be returned (if any are present). Any other attribute or
combination of attributes (hidden, system, and directory) results in those files and
all normal files being matched.

Find the first .COM file in the directory \MYDIR on drive C.

fname db 'C:\MYDIR *.COM' ,0

dbuff db 43 dup (0) ; re cei ve s search results

set OTA address
mov ah,lah function number
mov dx,seg dbuff result buffer address
mov ds,dx
mov dx,offset dbuff
int 21h tran sfer to MS -DOS

search for first match
mov ah,4eh function number
mov cx,0 no rma 1 attribute
mov dx,seg fname address of filename
mov ds , dx
mov dx,offset fname
int 21h transfer to MS - DOS
jc error jump if no matc h

[2.0]
Function 4FH (79)
Find next file

Assuming a previous successful call to Int 21H Function 4EH, finds the next file in the default or specified
directory on the default or specified drive that matches the original file specification.

Call with:

Returns:

AH = 4FH

Assumes DTA points to working buffer used by previous successful Int 21H Function
4EH or 4FH.

If function successful (matching file found)
Carry flag = clear

and search results returned in current disk transfer area as described for Int 21H
Function 4EH

446 Section II

Notes:

Example:

Int 21H

If function unsuccessful (no more matching files)
Carry flag = set
AX = error code

■ Use of this call assumes that the original file specification passed to Int 21H Function
4EH contained one or more • or ? wildcard characters.

■ When this function is called, the current disk transfer area (DTA) must contain infor­
mation from a previous successful call to Int 21H Function 4EH or 4FH.

Continuing the search operation in the example for Int 21H Function 4EH, find the next
.COM file (if any) in the directory \MYDIR on drive C.

fname db

dbuff db

mov
int
jc

' C: \MY DIR\• . CDM' ,0

43 dup CO)

ah,4fh
21 h
error

; receives search results

search for next match
fu nct ion number
transfer to MS-DOS
jump if no more files

Function 50H (80)
Reserved

Int 21H
Function 51H (81)
Reserved

Int 21H
Function 52H (82)
Reserved

MS-DOS Functions Reference 447

Int 21H
Function 53H (83)
Reserved

Int 21H
Function 54H (84)
Get verify flag

Obtains the current value of the system verify (read-after-write) flag.

Call with: AH

Returns: AL

= 54H

= current verify flag value
OOH if verify off
0 lH if verify on

[2.0]

Notes: ■ Because read-after-write verification slows disk operations, the default state of the
system verify flag is OFF.

■ The state of the system verify flag can be changed through a call to Int 21H Function
2EH or by the MS-DOS commands VERIFY ON and VERIFY OFF.

Example: Obtain the state of the system verify flag.

muv

int
cmp
je

Int 21H
Function 55H (85)
Reserved

448 Section II

ah,54h fun ction number
21h transfer to MS-DOS
al , Olh check verify state
la bell jump if verify on

else assume verify off

lnt21H [2.0]
Function 56H (86)
Rename file

Renames a file and/ or moves its directory entry to a different directory on the same disk. In MS-DOS
version 3.0 and later, this function can also be used to rename directories.

Call with:

Returns:

Notes:

Example:

AH
DS:DX
ES:DI

= 56H
= segment:offset of current ASCIIZ pathname
= segment:offset of new ASCIIZ pathname

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The function fails if:

any element of the pathname does not exist.
a file with the new pathname already exists.
the current pathname specification contains a different disk drive than does the
new pathname.
the file is being moved to the root directory, and the root directory is full.
[3.0+] the program is running on a network and the user has insufficient access
rights to either the existing file or the new directory.

■ The • and ? wildcard characters are not allowed in either the current or new
pathname specifications.

Change the name of the file MYFILE.DAT in the directory \MYDIR on drive C to
MYTEXT.DAT. At the same time, move the file to the directory \SYSTEM on the
same drive.

oldname db 'C:\MYDIR\MYF!LE.DAT' ,0

newname db 'C:\SYSTEM\MYTEXT.DAT' ,0

mov ah,56h function number
mov dx.seg oldname old filename address
mov ds,dx
mov dx,offset oldname
mov di ,seg newname new filename address
mov es.di
mov di ,offset newname

(continued)

MS-DOS Functions Reference 449

Int 21H

int
jc

21h

error
transfer to MS-DOS
jump if rename failed

[2.0]
Function 5711 (87)
Get or set file date and time

Obtains or modifies the date and time stamp in a file's directory entry.

Call with:

Returns:

Notes:

If getting date and time
AH = 57H
AL = OOH
BX = handle

If setting date and time
AH = 57H
AL = OlH
BX = handle
ex = time

bits 00H-04H = 2-second increments (0 -29)
bits 05H-OAH = minutes (0-59)
bits 0BH-OFH = hours (0-23)

DX = date
bits 00H- 04H = day (1-31)
bits 05H-08H = month (1-12)
bits 09H-0FH = year (relative to 1980)

If function successful
Carry flag = clear

and, if called with AL = OOH
ex = time
DX = date

If function unsuccessful
Carry flag = set
AX = error code

■ The file must have been previously opened or created via a successful call to Int 21H
Function 3CH, 3DH, 5AH, 5BH, or 6CH.

■ If the 16-bit date for a file is set to zero, that fi le's date and time are not displayed on
directory listings.

■ A date and time set with this function will prevail, even if the file is modified after­
wards before the handle is closed.

450 Section II

Example: Get the date that the file MYFILE.DAT was created or last modified, and then decom­
pose the packed date into its constituent parts in the variables month, day, and year.

fname db 'MYFILE.DAT' ,D

month dw 0
day dw O

year dw 0

mov
mov
mov
mov
mov
int
jc

mov
mov
mov
int
jc

mov
and

ah,3dh
al ,0
dx,seg fname
ds,dx
dx,offset fname
21h
error

bx,ax
ah,57h
al,O
21h
error

day,dx
day,Olfh

mov cl,5
shr dx,cl
mov
and

month,dx
month,Ofh

mov cl ,4

shr
and
add
mov

mov
int
jc

dx,cl
dx,D3fh
dx,1980
year ,dx

ah,3eh
21h
error

first open the file
function number
read-only mode
filename address

transfer to MS-DOS
jump if open failed

get file date/time
copy handle to BX
function number
0 - get subfunction
transfer to MS-DOS
jump if function failed

decompose date
isolate day

isolate month

isolate year
relative to 1980
correct to real year
save year

now close file,
handle still in BX
function number
transfer to MS-DOS
jump if close failed

MS-DOS Functions Reference 451

Int 21H [3.0]
Function 58H (88)
Get or set allocation strategy

Obtains or changes the code indicating the current MS-DOS strategy for allocating memory blocks.

Call with:

Returns:

Notes:

Example:

If getting strategy code
AH = 58H
AL = OOH

If setting strategy code
AH = 58H
AL = OlH
BX = desired strategy code

OOH = first fit
OlH = best.fit
02H = last fit

If function successful
Carry flag = clear

and, if called with AL = OOH
AX = current strategy code

If function unsuccessful
Carry flag = set
AX = error code

■ The memory allocation strategies are :

- First fit: MS-DOS searches the available memory blocks from low addresses to
high addresses, assigning the first one large enough to satisfy the block allocation
request.

- Best fit : MS-DOS searches all available memory blocks and assigns the smallest
available block that wil l satisfy the request, regardless of its position.

- Last fit: MS-DOS searches the available memory blocks from high addresses to
low addresses, assigning the highest one large enough to satisfy the block alloca­
tion request.

■ The default MS-DOS memory allocation strategy is First Fit (code 0).

Save the code indicating the current memory allocation strategy in the variable strat,
then change the system's memory allocation strategy to "best fit. "

strat dw 0 ; previous strategy code

452 Section II

get current strategy
mov ah,58h function number
mov al ,0 0 - get strategy
int 21h transfer to MS-00S
jc error jump if function failed
mov strat,ax sa ve strategy code

now set new s t rategy
mov ah , 58h funct i on numb er
mov al . 1 1 - set strategy
mov bx,l 1 - best fit
int 21h transfer to MS-00S
jc error jump if function failed

Int 21H [3.0]
Function 59H (89)
Get extended error information

Obtains detailed error information after a previous unsuccessful Int 21H function call, including the
recommended remedial action.

Call with:

Returns:

AH
BX

AX

= 59H
=OOH

= extended error code
0lH function number invalid
02H file not found
03H path not found
04H too many open files
05H access denied
06H handle invalid
07H
08H
09H
0AH(J0)
0BH(ll)
0CH(12)
0DH(13)
0EH(14)
0FH(15)
10H(16)
11H(17)

memory control blocks destroyed
insufficient memory
memory block address invalid
environment Invalid
forma t invalid
access code invalid
data invalid
unknown unit
disk drive invalid
attempted to remove current directory
not same device

MS-DOS Functions Reference 453

454 Section II

12H(18)
13H(19)
14H(20)
15H(21)
16H(22)
17H(23)
18H(24)
19H(25)
1AH(26)
1BH(27)
1CH(28)
1DH(29)
1EH(30)
1FH(31)
20H(32)
21H(33)
22H(34)
23H(35)
24H(36)
25H-31H
32H(50)
33H(51)
34H(52)
35H(53)
36H(54)
37H(55)
38H(56)
39H(57)
3AH(58)
3BH(59)
3CH(60)
3DH(61)
3EH(62)
3FH(63)
40H(64)
41H(65)
42H(66)
43H(67)
44H(68)
45H(69)
46H(70)
47H(71)
48H(72)
49H-4FH
50H(80)
51H(81)
52H(82)
53H(83)

no more files
disk write-protected
unknown unit
drive not ready
unknown command
data error (CRC)
bad request structure length
seek error
unknown media type
sector not found
printer out of paper
write fault
readfault
general failure
sharing violation
lock violation
disk change invalid
FCB unavailable
sharing buffer exceeded
reserved
unsupported network request
remote machine not listening
duplicate name on network
network name not found
network busy
device no longer exists on network
netBIOS command limit exceeded
error in network adapter hardware
incorrect response from network
unexpected network error
remote adapter incompatible
print queue full
not enough space for print file
print file canceled
network name deleted
network access denied
incorrect network device type
network name not found
network name limit exceeded
netBIOS session limit exceeded
file sharing temporarily paused
network request not accepted
print or disk redirection paused
reserved
file already exists
reserved
cannot make directory
fail on Int 24H (critical error)

54H(84)
55H(85)
56H(86)
57H(87)
58H(88)
59H(89)
5AH(90)

too many redirections
duplicate redirection
invalid password
invalid parameter
network device fault
function not supported by network
required system component not installed

BH = error class

BL

CH

01H
02H

03H
04H
05H
06H

07H
08H
09H
0AH(10)
0BH(11)

0CH(12)
0DH(13)

if out of resource (such as storage or handles)
if not error, but temporary situation (such as locked region
in file) that can be expected to end
if authorization problem
if internal error in system software
if hardware failure
if system software failure not the fault of the active process
(such as missing con.figuration files)
if application program error
if file or item not found
if file or item of invalid type or format
if file or item locked
if wrong disk in drive, bad spot on disk, or storage medium
problem
if item already exists
unknown error

= recommended action
01H retry reasonable number of times, then prompt user to

02H

03H

04H

05H
06H
07H

= error locus
01H
02H
03H
04H

select abort or ignore
retry reasonable number of times with delay between
retries, then prompt user to select abort or ignore
get corrected information from user·(typically caused by
incorrect .filename or drive specification)
abort application with cleanup (i.e., terminate the
program in as orderly a manner as possible: releasing
locks, closing.files, etc.)
perform immediate exit without cleanup
ignore error
retry after user intervention to remove cause of error

unknown
block device (disk or disk emulator)
network
serial device

05H memory
and, for MS-DOS 3.0 and later,

ES:DI = ASCIIZ volume label of disk to insert, if AX = 0022H (invalid
disk change)

MS-DOS Functions Reference 455

Notes:

Example:

■ This function may be called after any other Int 21H function call that returned an er­
ror status, in order to obtain more detailed information about the error type and the
recommended action. If the previous Int 21H function call had no error, 0000H is
returned in register AX. This function may also be called during the execution of a
critical-error (Int 24H) handler.

■ The contents of registers CL, DX, SI, DI, BP, DS, and ES are destroyed by this
function.

■ Note that extended error codes 13H-1FH (19-31) and 34 (22H) correspond exactly
to the error codes 0-0CH (0-12) and 0FH (15) returned by Int 24H.

■ You should not code your programs to recognize only specific error numbers if you
wish to ensure upward compatibility, because new error codes are added in each
version of MS-DOS.

Attempt to open the file named NOSUCH.DAT using a file control block; if the open
request fails, get the extended error code.

myfcb db

labell:

db
db
db

mov
mov
mov
mov
int
or
jz

mov
xor
int
or
jz

cmp
jle
jmp

0

'NOSUCH
'DAT'
25 dup (OJ

ah,Ofh
dx,seg myfcb
ds,dx
dx,offset myfcb
21h
al • a 1
success

ah,59h
bx.bx
21h
ax.ax
success

bl ,2
1 a bell
error

drive= default
filename, 8 chars
extension, 3 chars
remainder of FCB

open the file
function number
address of FCB

transfer to MS-DOS
check open status
jump if opened OK

open failed, get
extended error info
function number
BX must= O
transfer to MS-DOS
double check for error
jump if no error

should we retry?
yes, jump
no, give up

456 Section II

Int 21H [3.0]
Function SAH (90)
Create temporary file

Creates a file with a unique name, in the current or specified directory on the default or specified disk
drive, and returns a handle that can be used by the program for subsequent access to the fi le. The name
generated for the file is also returned in a buffer specified by the program.

Call with:

Returns:

Notes:

AH
ex

DS:DX

=5AH
= attribute (bits may be combined)

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3-4 reserved (0)
5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ path

If function successful
Carry flag = clear
AX = handle
DS:DX = segment:offset of complete ASCIIZ pathname

If function unsuccessful
Carry flag = set
AX = error code

■ The ASCIIZ path supplied to this function should be fo llowed by at least 13 addi­
tional bytes of buffer space. MS-DOS adds a backslash(\) to the supplied path, if
necessary, then appends a null-terminated fi lename that is a function of the current
time.

■ Files created with this function are not automatically deleted when the calling pro­
gram terminates.

• The function fails if

- any element of the pathname does not exist.
- the file is being created in the root directory, and the root directory is full.

• See also Int 21H Functions 3CH, 5BH, and 6CH, which provide additional facilities
for creating files.

■ (3.0+] If the program is running on a network, the file is created and opened for
read/write access in compatibility sharing mode.

MS-DOS Functions Reference 457

Example:

Int 21H

Create a temporary file with a unique name and normal attribute in directory \ TEMP of
drive C. Note that you must allow room for MS-DOS to append the generated filename to
the supplied path. The complete file specification should be used to delete the tempo­
rary file before your program terminates.

fname db
db

fhandle dw

mov
mov
mov
mov
mov
int
jc
mov

'C:\TEMP\'
13 dup (0)

ah,5ah
ex.a
dx,seg fname
ds,dx
dx,offset fhame
21h
error
fhandle,ax

pathname for temp file
receives filename

file hand l e

function number
normal attribute
address of pat hname

transfer to MS-DOS
jump i f create fai l ed
save file handle

[3.0]
Function SBH (91)
Create new file

Given an ASCIIZ pathname, creates a file in the designated or default directory on the designated or
default drive, and returns a handle that can be used by the program for subsequent access to the fi le. If a
file with the same name already exists, the function fa ils.

Call with: AH
ex

DS:DX

458 Section II

= 5BH
= attribute (bits may be combined)

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 reserved (O)

5 archive
6-15 reserved (0)

= segment:offset of ASCIIZ pathname

Returns:

Notes:

Example:

If function successful
Carry flag = clear
AX = handle

If function unsuccessful
Carry flag = set
AX = error code

■ The function fails if:

any element of the specified path does not exist.
a file with the identical pathname (i.e., the same filename and extension in the
same location in the directory structure) already exists.

- the file is being created in the root directory, and the root directory is full.
(3.0+] the program is running on a network, and the user has insufficient access
rights to the directory that will contain the file.

■ The file is usually given a normal attribute (0) when it is created, and is opened for
both read and write operations. The attribute can subsequently be modified with Int
21H Function 43H.

■ See also Int 21H Functions 3CH, 5AH, and 6CH, which provide alternative ways of
creating files.

■ This function may be used to implement semaphores in a network or multitasking
environment. If the function succeeds, the program has acquired the semaphore. To
release the semaphore, the program simply deletes the file.

Create and open a file named MYFILE.DAT in the directory \MYDIR on drive C;
MS-DOS returns an error if a file with the same name already exists in that location.

fname db 'C:\MYDIR\MYFILE.DAT' ,0

fhandle dw ? : file handle

mov ah,Sbh function number
xor ex.ex normal attribute
mov dx,seg fname filename address
mov ds,dx
mov dx,offset fname
int 21h transfer to MS-DOS
jc error jump if create failed
mov fhandle,ax save file handle

MS-DOS Functions Reference 459

Int 21H [3.0]
Function SCH (92)
Lock or unlock file region

Locks or unlocks the specified region of a file. This function is not available unless the file-sharing
module (SHARE.EXE) is loaded.

Call with:

Returns:

Notes:

AH = SCH
AL = OOH if locking region

OlH if unlocking region
BX = handle
ex = high part of region offset
DX = low part of region offset
SI = high part of region length
DI = low part of region length

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ This function is useful for file and record synchronization in a multitasking environ­
ment or network. Access to the fi le as a whole is control led by the attribute and file­
sharing parameters passed in open or create calls and by the file's attributes, which
are stored in its directory entry.

■ The beginning location in the file to be locked or unlocked is supplied as a positive
double precision integer, which is a byte offset into the file . The length of the region
to be locked or unlocked is similarly supplied as a positive double precision integer.

■ For every call to lock a region of a file, there must be a subsequent unlock call with
exactly the same fi le offset and length.

■ Locking beyond the current end of file is not an error.

■ Duplicate handles created with Int 21H Function 45H, or handles redirected to the
file with Int 21H Function 46H, are allowed access to locked regions within the same
process.

■ Programs that are loaded with the EXEC call (Int 21H Function 4BH) inperit the
handles of their parent but not any active locks.

■ If a process terminates without releasing active locks on a fi le, the result is un­
defined. Therefore, programs using this function should install their own Int 23H
and Int 24H handlers so that they cannot be terminated unexpectedly.

460 Section II

Example:

Int 21H

Assume that a fi le was previously opened and that its handle was saved in the variable
jhandle. Lock a 4096 byte region of the file, starting at 32,768 bytes from the beginning
of the file , so that it cannot be accessed by other programs.

fhandle dw ; file handle

mov ah.Sch function number
mov al, 0 subfunction O - lock
mov bx,fhandle file handle
mov cx,O upper part of offset
mov dx,32768 1 ower part of offset
mov si ,0 upper part of length
mov di , 4096 1 ower part of length
int 21h transfer to MS-DOS
jc error jump if loc k failed

Function 5DH (93)
Reserved

Int 21H
Function 5EH (94) Subfunction OOH
Get machlne name

[3.1]

Returns the address of an ASCIIZ (null-terminated) string identifying the local computer. This function
call is only available when Microsoft Networks is running.

Call with:

Returns:

AH = 5EH
=OOH AL

DS:DX = segment:offset of buffer to receive string

If function successful
Carry flag = clear
CH = OOH if name not defined

<> OOH if name defined
CL
DX:DX

= netBIOS name number (if CH<> 0)

= segment:offset of identifier (if CH <> 0)

MS-DOS Functions Reference 461

Notes:

Example:

Int 21H

If function unsuccessful
Carry flag = set
AX = error code

■ The computer identifier is a 15-byte string, padded with spaces and terminated with
a null (OOH) byte.

• The effect of this call is unpredictable if the file-sharing support module is not
loaded.

Get the machine name of the local computer into the buffer named mname.

mname db 16 dup (?)

mov ax,5e00h function & subfunction
mov dx,seg mname address of buffer
mov ds,dx
mov dx,offset mname
int 21h transfer to MS -DOS
jc error jump i f function failed

or ch.ch make sure name exi s ts
jz error jump if no name defined

[3.1]
Function SEH (94) Subfunction 02H
Set printer setup string

Specifies a string to be sent in front of all files directed to a particular network printer, allowing users at
different network nodes to specify individualized operating modes on the same printer. This function call
is only available when Microsoft Networks is running.

Call with:

Returns:

AH = SEH
AL = 02H

BX = redirection list index
CX = length of setup string
DS:SI = segment:offset of setup string

If function successful
Carry flag = clear

462 Section II

Notes:

Example:

Int 21H

If function unsuccessful
Carry flag = set
AX = error code

■ The redirection list index passed in register BX is obtained with Function SFH Sub­
function 02H (Get Redirection List Entry).

■ See also Function SEH Subfunction 03H, which may be used to obtain the existing
setup string for a particular network printer.

Initialize the setup string for the printer designated by redirection list index 2 so that the
device is put into boldface mode before printing a file requested by this network node.

setup db Olbh,045h ; selects boldface mode

mov ax,5e02h function & subfunction
mov bx,2 redirection li st index 2
mov cx ,2 length of setup string
mov s i, seg setup address of setup string
mov ds, si
mov s i ,offset setup
int 21 h transfer to MS-DOS
jc error jump if function failed

[3.1]
Function 5EH (94) Subfunction 03H
Get printer setup string

Obtains the printer setup string for a particular network printer. This funct ion call is only available when
Microsoft Networks is running.

Call with:

Returns:

= SEH
= 03H
= redirection list index

AH
AL
BX
ES:DI = segment:offset of buffer to receive setup string

If function successful
Carry flag = clear
CX = length of printer setup string
ES:DI = address of buffer holding setup string

MS-DOS Functions Reference 463

Notes:

Example:

Int 21H

If function unsuccessful
Carry flag = set
AX = error code

■ The redirection list index passed in register BX is obtained with Function 5FH Sub­
function 02H (Get Redirection List Entry).

■ See also Int 21H Function 5EH Subfunction 02H, which is used to specify a setup
string for a network printer.

Get the setup string for this network node associated with the printer designated by re­
direction list index 2.

setup db 64 dup (?) ; receives setup strin g

mov ax,5e03h function & subfunction
mov bx,2 redirection li st index 2
mov di, seg setup address of buffer
mov es.di
mov di. offset setup
int 21h transfer to MS-DOS
jc error jump if function failed

[3.1]
Function 5FH (95) Subfunction 02H
Get redirection list entry

Allows inspection of the system redirection list, which associates local logical names with network files,
directories, or printers. This function call is only available when Microsoft Networks is running and the
file-sharing module (SHARE.EXE) has been loaded.

Call with:

Returns:

AH
AL
BX
DS:SI
ES:DI

= 5FH
= 02H
= redirection list index
= segment:offset of 16-byte buffer to receive local device name
= segment:offset of 128-byte buffer to receive network name

If function successful
Carry flag = clear
BH = device status flag

bit O = 0 if device valid
= 1 if not valid

464 Section II

Note:

Example:

BL = device type
03H if printer
04H if drive

= stored parameter value
= destroyed
= destroyed

ex
DX
BP
DS:SI
ES:DI

= segment:offset of ASCIIZ local device name
= segment:offset of ASCIIZ network name

If function unsuccessful
Carry flag = set
AX = error code

■ The parameter returned in ex is a value that was previously passed to MS-DOS in
register ex with Int 21H Function SFH Subfunction 03H (Redirect Device). It repre­
sents data that is private to the applications which store and retrieve it and has no
meaning to MS-DOS.

Get the local and network names for the device specified by the first redirection
list entry.

local db 16 dup (?) receives local device name

network db 128 dup (?) receives network name

mov ax,5f02h function & subfunction
mov bx,O redirection list entry 0
mov si ,seg 1 ocal local name buffer addr
mov ds,si
mov si ,offset 1 ocal
mov di,seg network : network name buffer addr
mov es ,di
mov di.offset network
int 21h transfer to MS-DOS
jc error jump if call failed

or bh,bh check device status
jnz error jump if device not valid

MS-DOS Functions Reference 465

Int 21H [3.1]
Function 5FH (95) Subfunction 03H
Redirect device

Establishes redirection across the network by associating a local device name with a network name. This
function call is only available when Microsoft Networks is running and the file-sharing module
(SHARE.EXE) has been loaded.

Call with:

Returns:

Notes:

Example:

AH
AL
BL

= 5FH
= 03H
= device type

03H if printer
04H if drive

ex
DS:SI
ES:DI

= parameter to save for caller
= segment:offset of ASCIIZ local device name
= segment:offset of ASCIIZ network name, followed by ASCIIZ password

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The local name can be a drive designator (a letter followed by a colon, such as "D:"),
a printer name, or a null string. Printer names must be one of the following: PRN,
LPTl, LPT2, or LPT3. If a null string followed by a password is used, MS-DOS at­
tempts to grant access to the network directory with the specified password.

■ The parameter passed in CX can be retrieved by later calls to Int 21H Function SFH
Subfunction 02H. It represents data that is private to the applications which store
and retrieve it and has no meaning to MS-DOS.

Redirect the local drive E to the directory \ FORTH on the server named LMI, using the
password FRED.

locname db

netname db
db

'E:' ,0

'\\LMI\FORTH' ,0

'FRED' ,0

; local drive

466 Section II

mov ax,5f03h function & subfunction
mov bl ,4 code 4 - disk drive
mov s i , seg l ocna me address of local name
mov ds,si
mov si ,offset locname
mov di ,seg netname address of network name
mov es.di
mov di, offset netname
int 21h transfer to MS-DOS
jc error jump if redirect failed

Int 21H [3.1]
Function 5FH (95) Subfunction 04H
Cancel device redirection

Cancels a previous redirection request by removing the association of a local device name with a network
name. This funct ion call is only available when Microsoft Networks is running and the file-sharing
module (SHARE.EXE) has been loaded.

Call with:

Returns:

Note:

Example:

AH
AL
DS:SI

= SFH
= 04H
= segment:offset of ASCIIZ local device name

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ The supplied name can be a drive designator (a letter followed by a colon, such as
"D:"), a printer name, or a string starting with two backslashes(\\). Printer names
must be one of the following: PRN, LPTl, LPT2, or LPT3. If the string with two
backslashes is used, the connection between the local machine and the network
directory is terminated.

Cancel the redirection of local drive E to the network server.

locname db 'E: ',0

(continued)

MS-DOS Functions Reference 467

mov ax,5f04h function & subfunction
mov si ,seg locname address of local name
mov ds,si
mov si ,offset locname
int 21h transfer to MS-DOS
jc error jump if cancel failed

Int 21H
Function 60H (96)
Reserved

Int 21H
Function 61H (97)
Reserved

Int 21H [3.0]
Function 62H (98)
Get PSP address

Obtains the segment (paragraph) address of the program segment prefix (PSP) for the currently execut­
ing program.

Call with:

Returns:

Notes:

AH = 62H

BX = segment address of program segment prefix

■ Before a program receives control from MS-DOS, its program segment prefix is set
up to contain certain vital information, such as:

- the segment address of the program's environment block
- the command line originally entered by the user
- the original contents of the terminate, Ctrl-C, and critical-error handler vectors
- the top address of avai lable RAM

■ The segment address of the PSP is normally passed to the program in registers DS
and ES when it initially receives control from MS-DOS. This function allows a pro­
gram to conveniently recover the PSP address at any point during its execution,
without having to save it at program entry.

468 Section II

Example:

Int 21H

Get the segment base of the program segment prefix, then copy the command tail from
the PSP into the local buffer named buff

ctail equ

buff db

mov
int

mov
mov
mov
mov
mov
mov
inc

OBOH

80 dup (?)

ah,62H
21h

ds,bx
si,offset ctail
di , seg buff
es.di
di ,offset buff
cl , [s i]

cl
xor ch.ch
cld
rep movsb

PSP offset, command tail

copy of command tail

get PSP address
function number
transfer to MS-DOS

copy command tail
PSP segment to OS
offset of command tail
local buffer address

length of command tail
include count byte

copy to local buffer

[2.25 only]
Function 63H (99)
Get DBCS lead byte table

Obtains the address of the system table of legal lead byte ranges for double-byte character sets (DBCS), or
sets or obtains the interim console flag . Int 21H Function 63H is available only in MS-DOS version 2.25; it
is not supported in MS-DOS versions 3.0 and later.

Call with: AH = 63H
AL = subfunction

If AL= OlH
DL

OOH if getting address of DBCS lead byte table
01 H if setting or clearing interim console flag
02H if obtaining value of interim console flag

= OOH
OlH

if clearing interim console flag
if setting interim console flag

MS-DOS Functions Reference 469

Returns:

Notes:

Int 21H

If function successful
Carry flag = clear

and, if called with AL = OOH
DS:SI = segment:offset of DBCS lead byte table

or, if called with AL = 02H
DL = value of interim console flag

If function unsuccessful
Carry flag = set
AX = error code

■ The DBCS lead byte table consists of a variable number of two byte entries, termi­
nated by two null (OOH) bytes. Each pair defines the beginning and ending value for
a range of lead bytes. The value of a legal lead byte is always in the range 80-0FFH.

■ Entries in the lead byte table must be in ascending order. If no legal lead bytes are
defined in a given system, the table consists only of the two null bytes.

■ If the interim console flag is set, Int 21H Functions 07H (Unfiltered Character Input),
08H (Character Input without Echo), and 0BH (Keyboard Status) will support interim
characters.

■ Unlike most other MS-DOS services, this function call does not necessarily preserve
any registers except SS:SP.

■ (4.0) The address of the DBCS lead byte table can also be obtained with Int 21H
Function 65H.

Function 64H (100)
Reserved

Int 21H
Function 65H (101)
Get extended country information

Obtains information about the specified country and/ or code page.

Call with: AH = 65H
AL = subfunction

470 Section II

OlH = Get General Internationalization Information
02H = Get Pointer to Uppercase Table
04H = Get Pointer to Filename Uppercase Table
06H = Get Pointer to Collating Table
07H = Get Pointer to Double-Byte Character Set (DBCS) Vector
(MS-DOS versions 4.0 and later)

[3.3]

Returns:

Notes:

BX = code page of interest (-1 = active CON device)
CX = length of buffer to receive information (must be >= 5)
DX = country ID (-1 = default)
ES:DI = address of buffer to receive information

If function successful
Carry flag = clear

and requested data placed in calling program's buffer

If function unsuccessful

Carry flag = set
AX = error code

■ The information returned by this function is a superset of the information returned
by Int 21H Function 38H.

■ This function may fail if either the country code or the code page number is invalid,
or if the code page does not match the country code.

■ The function fails if the specified buffer length is less than five bytes. If the buffer to
receive the information is at least five bytes long but is too short for the requested
information, the data is truncated and no error is returned.

■ The format of the data returned by Subfunction 0lH is:
Byte(s) Contents
OOH information ID code (1)
01H-02H length of following buffer
03H-04H country ID
05H-06H code page number
07H-08H date format

O=USA mdy
1 =Europe dmy
2=Japan ymd

09H-0DH ASCIIZ currency symbol
0EH-0FH ASCIIZ thousands separator
lOH-llH
12H-13H
14H-15H
16H

ASCIIZ decimal separator
ASCIIZ date separator
ASCIIZ time separator
currency format flags
bit O =O if currency symbol precedes value

17H
18H

19H-1CH
lDH-lEH
1FH-28H

= 1 if currency symbol follows value
bit 1

bit2

=O if no space between value and currency symbol
= 1 if one space between value and currency symbol
=O if currency symbol and decimal are separate
= 1 if currency symbol replaces decimal separator

number of digits after decimal in currency
time format
bitO =O if 12-hour clock

= 1 if 24-hour clock
case-map routine call address
ASCIIZ data list separator
reserved

MS-DOS Functions Reference 471

■ The format of the data returned by Subfunctions 02H, 04H, 06H, and 07H is:
Byte(s) Contents
OOH information ID code (2, 4, or 6)
0lH-0SH double-word pointer to table

■ The uppercase and filename uppercase tables are a maximum of 130 bytes long. The
first two bytes contain the size of the table; the following bytes contain the upper­
case equivalents, if any, for character codes 80H-FFH. The main use of these tables
is to map accented or otherwise modified vowels to their plain vowel equivalents.
Text translated with the help of this table can be sent to devices that do not support
the IBM graphics character set, or used to create filenames that do not require a spe­
cial keyboard configuration for entry.

■ The collating table is a maximum of 258 bytes long. The first two bytes contain the
table length, and the subsequent bytes contain the values to be used for the corre­
sponding character codes (0-FFH) during a sort operation. This table maps
uppercase and lowercase ASCII characters to the same collating codes so that sorts
will be case-insensitive, and it maps accented vowels to their plain vowel
equivalents.

■ [4.0+] Subfunction 07H returns a pointer to a variable length table of that defines
ranges for double-byte character set (DBCS) lead bytes. The table is terminated by a
pair of zero bytes, unless it must be truncated to fit in the buffer, and has the follow­
ing format:

dw 1 ength
db startl,endl
db start2,end2

db 0,0

For example:

dw 4
db 81h ,9fh
db OeOh,Ofch
db 0,0

■ In some cases a truncated translation table may be presented to the program by
MS-DOS. Applications should always check the length at the beginning of the table,
to make sure it contains a translation code for the particular character of interest.

Examples: Obtain the extended country information associated with the default country and code
page 437.

buffer db

472 Section/I

mov
mov

41 dup CO)

ax,6501h
bx,437

; receives country info

function & subfunction
code page

mov cx,41 buffer length
mov dx, -1 default country
mov di,seg buffer buffer address
mov es.di
mov di,offset buffer
int 21h transfer to MS-DOS
jc error jump if function failed

In this case, MS-DOS filled the following extended country information into the buffer:

buffer db 1 info ID code
dw 38 length of following buffer
dw 1 country ID (USA)
dw 437 code page number
dw 0 date format
db '$' ,0,0,0,0 currency symbol
db '.' ,0 thousands separator
db '.' ,0 decimal separator
db ' - ',0 date separator
db I: t ,0 time separator
db 0 currency format flags
db 2 digits in currency
db 0 time format
dd 026ah:176ch case map entry point
db . , • ,0 data list separator
db 10 dup (0) reserved

Obtain the pointer to the uppercase table associated with the default country and code
page 437.

buffer db 5 dup (0) : receives pointer info

mov ax,6502h function number
mov bx,437 code page
mov cx,5 length of buffer
mov dx, -1 default country
mov di ,seg buffer buffer address
mov es.di
mov di.offset buffer
int 21h transfer to MS-DOS
jc error jump if function failed

MS-DOS Functions Reference 473

In this case, MS-DOS filled the following values into the buffer:

buffer db 2 info ID code

dw 0204h offset of uppercase table
dw 1140h segment of uppercase table

and the table at 1140:0204H contains the following data:

0 1 2 3 4 5 6 7 8 9 A B C D E F
1140: 0200 80 00 80 9A 45 41 BE 41 BF 80 45 45
1140:0210 45 49 49 49 BE BF 90 92 92 4F 99 4F 55 55 59 99
1140: 0220 9A 9B 9C 90 9E 9F 41 49 4F 55 AS AS A6 A7 AB A9
1140: 0230 AA AB AC AD AE AF BO Bl B2 B3 B4 BS B6 B7 BS B9
1140 : 0240 BA BB BC BO BE BF CO Cl C2 C3 C4 cs C6 C7 CB C9
1140 : 0250 CA CB cc CD CE CF DO 01 02 03 04 05 06 07 08 09
1140: 0260 DA DB DC DD DE OF EO El E2 E3 E4 ES E6 E7 E8 E9
1140: 0270 EA E8 EC ED EE EF FO Fl F2 F3 F4 F5 F6 F7 F8 F9
1140: 0280 FA FB FC FD FE FF

Int 21H
Function 66H (102)
Get or set code page

Obtains or selects the current code page.

Call with:

Returns:

AH =66H
AL = subfunction

01/-1 = Get Code Page
02/-1 = Select Code Page

BX = code page to select, if AL = 02H

If function successful
Carry flag = clear

and, if called with AL = OlH
BX = active code page
DX = default code page

If function unsuccessful
Carry flag = set
AX = error code

0123456789ABCDEF
.... EA.A . . EE

Ell! O.OUUY .
. AIOU
................
.......
................
................
.

[3.3]

Note: ■ When the Select Code Page subfunction is used, MS-DOS gets the new code page

474 Section II

from the COUNTRY.SYS file. The device must be previously prepared for code page
switching with the appropriate DEVICE= directive in the CONFIG.SYS file and
NLSFUNC and MODE CP PREPARE commands (placed in the AUTOEXEC.BAT file,
usually).

Example:

Int21H

Force the active code page to be the same as the system's default code page, that is,
restore the code page that was active when the system was first booted.

get current and
default code page

mov ax,66O1h function number
int 21h transfer to MS-DOS
jc error jump if function failed

set code page
mov bx,dx active= default
mov ax,66O2h function number
int 21h transfer to MS-DOS
jc error jump if function failed

[3.3]
Function 6711 (103)
Set handle count

Sets the maximum number of files and devices that may be opened simultaneously using handles by the
current process.

Call with:

Returns:

Notes:

AH
BX

=6m
= number of desired handles

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

■ This function call controls the size of the table that relates handle numbers for
the current process to MS-DOS's internal, global table for all of the open files and
devices in the system. The default table is located in the reserved area of the
process's PSP and is large enough for 20 handles.

■ The function fails if the requested number of handles is greater than 20 and there
is not sufficient free memory in the system to allocate a new block to hold the
enlarged table.

MS-DOS Functions Reference 475

Example:

Int 21H

■ If the number of handles requested is larger than the available entries in the
system's global table for file and device handles (controlled by the FILES entry in
CONFIG.SYS), no error is returned. However, a subsequent attempt to open a file or
device, or create a new file, will fail if all the entries in the system's global file table
are in use, even if the requesting process has not used up all its own handles.

Set the maximum handle count for the current process to thirty, so that the process can
have as many as 30 files or devices opened simultaneously. (Five of the handles are
already assigned to the standard devices when the process starts up.) Note that a
FILES=30 (or greater value) entry in the CONFIG.SYS file would also be required for the
process to successfully open 30 fi les or devices.

mov
mov
int
jc

ah,67h
bx,30
21h
error

function number
maximum number of handles
transfer to MS-DOS
jump if function fai l ed

[3.3]
Function 68H (104)
Commit file

Forces all data in MS-DOS's internal buffers associated with a specified handle to be physically written to
the device. If the handle refers to a file , and the file has been modified, the time and date stamp and file
size in the file 's directory entry are updated.

Call with:

Returns:

AH = 68H
BX = handle

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Notes: ■ The effect of this function is equivalent to closing and reopening a file, or to

4 76 Section II

duplicating a handle for the file with Int 21H Function 45H and then closing the
duplicate. However, this function has the advantage that it will not fa il due to lack of
handles, and the application does not risk losing control of the file in multitasking or
network environments.

■ If this function is requested for a handle associated with a character device, a success
flag is returned, but there is no other effect.

Example: Assume that the file MYFILE.DAT has been previously opened and that the handle for
that file is stored in the variable jhandle. Call the Commit File function to ensure that
any data in MS-DOS's internal buffers associated with the handle is written out to disk
and that the directory and file allocation table are up to date.

Int 21H

fname db
fhandle dw

mov
mov
int
jc

'MYFILE.DAT' ,0
?

ah,68h
bx,fhandle
21h
error

Function 69H (105)
Reserved

Int 21H
Function 6AH (106)
Reserved

Int 21H
Function 6BH (107)
Reserved

ASCIIZ filename
; file handle

function number
file handle
transfer to MS-DOS
jump if commit failed

MS-DOS Functions Reference 477

Int 21H
Function 6CH (108)
Extended open file

[4.0]

Given an ASCIIZ pathname, opens, creates or replaces a file in the designated or default directory on the
designated or default disk drive. Returns a handle that can be used by the program for subsequent access
to the file.

Call with: AH = 6CH
AL = OOH
BX = open mode

Bit(s) Significance
0-2 access type

000 = read-only
001 = write-only
010 = read/write

3 reserved (0)
4-6 sharing mode

000 = compatibility
001 = deny read/write (deny all)
010 = deny write
011 = deny read
100 = deny none

7 inheritance
0 = child process inherits handle
1 = child does not inherit handle

8-12 reserved (0)
13 critical error handling

0 = execute Int 24H
1 = return error to process

14 write-through
0 = writes may be buffered and deferred
1 = physical write at request time

15 reserved (0)
CX = file attribute (bits may be combined; ignored if open)

Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

478 Section II

Returns:

Notes:

Example:

DX = open flag
Bits Significance
0-3 action if file exists

(X)()() = fail
0001 = open.file
0010 = replace.file

4-7 action if file doesn't exist
(X)()() =fail
0001 = create .file

8-15 reserved (0)
DS:SI = segment:offset of ASCIIZ pathname

If function successful
Carry flag = clear
AX = handle
ex = action taken

1 = .file existed and was opened
2 = .file did not exist and was created
3 = .file existed and was replaced

If function failed
Carry flag = set
AX = error code

■ The function fails if:

- any element of the pathname does not exist.
- the file is being created in the root directory and the root directory is full.
- the file is being created and a file with the same name and the read-only attribute

already exists in the specified directory.
- the program is running on a network and the user running the program has in­

sufficient access rights.

■ A file is usually given a normal (O) attribute when it is created. The file's attribute
can subsequently be modified with Int 21H Function 43H.

■ This function combines the capabilities of Int 21H Functions 3CH, 3DH, and SBH. It
was added to MS-DOS for compatibility with the DosOpen function of OS/2.

Create the file MYFILE.DAT, if it does not already exist, in directory \MYDIR on drive C,
and save the handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT' ,0

fhandl e dw ?

(continued)

MS-DOS Functions Reference 479

Int 22H

mov
mov

xor
mov

mov
mov

ax,6c00h
bx,4042h

ex.ex
dx,OOlOh

si,segfname
ds, s i

mov si ,offset fname
int
jc
mov

21h

error
fhandle,ax

Terminate handler address

function number
read/write, deny none,
write-through mode
normal attribute
create if doesn't exist,
fail if exists
address of pathname

transfer to MS-00S
jump if open failed
save file handle

[1.0]

The machine interrupt vector for Int 22H (memory locations 0000:0088H through 0000:00SBH) contains
the address of the routine that receives control when the currently executing program terminates via Int
20H, Int 27H, or Int 21H Functions OOH, 31H, or 4CH. The address in this vector is also copied into offsets
OAH through OOH of the program segment prefix (PSP) when a program is loaded but before it begins
executing, and is restored from the PSP (in case it was modified by the application) as part of MS-DOS's
termination handling.

This interrupt should never be issued directly.

Int 23H [1.0]
Ctrl-C handler address

The machine interrupt vector for Int 23H (memory locations 0000:00SCH though 0000:00SFH) contains
the address of the routine which receives control when a Ctrl-C is detected during any character 1/0
function and, if the Break flag is ON, during most other MS-DOS function calls. The address in this vector
is also copied into locations OEH through llH of the program segment prefix (PSP) when a program is
loaded but before it begins executing, and is restored from the PSP (in case it was modified by the appli­
cation) as part of MS-DOS's termination handling.

This interrupt should never be issued directly.

Notes: ■ The initialization code for an application can use Int 21H Function 25H to reset the

480 Section II

Interrupt 23H vector to point to its own routine for Ctrl-C handling. In this way, the
program can avoid being terminated unexpectedly as the result of the user's entry of
a Ctrl-C or Ctrl-Break.

■ When a Ctrl-C is detected and the program's Int 23H handler receives control, all
registers are set to their values at the point of the original function call. The handler
can then do any of the following:

- Set a local flag for later inspection by the application, or take any other appropri­
ate action, and perform an IRET. All registers must be preserved. The MS-DOS
function in progress will be restarted from scratch and will proceed to cor1ple­
tion, control finally returning to the application in the normal manner.

- Take appropriate action and then perform a RET FAR to give control back to MS­
DOS. The state of the carry flag is used by MS-DOS to determine what action to
take. If the carry flag is set, the application will be terminated; if the carry flag is
clear, the application will continue in the normal manner.

- Retain control by transferring to an error-handling routine within the application
and then resume execution or take other appropriate action, never performing a
RET FAR or IRET to end the interrupt-handling sequence. This option will cause
no harm to the system.

■ Any MS-DOS funct ion call may be used within the body of an Int 23H handler.

Example: See Chapter 5.

W2fil ~m
Critical-error handler address

The machine interrupt vector for Int 24H (memory locations 0000:0090H through 0000:0093H) contains
the address of the routine that receives control when a critical error (usually a hardware error) is
detected. This address is also copied into locations 12H through 15H of the program segment prefix (PSP)
when a program is loaded but before it begins executing, and is restored from the PSP (in case it was
modified by the application) as part of MS-DOS's termination handling.

This interrupt should never be issued directly.

Notes: ■ On entry to the critical-error interrupt handler, bit 7 of register AH is clear (0) if the
error was a disk I/0 error; otherwise, it is set (1). BP:SI contains the address of a
device-driver header from which additional information can be obtained. Interrupts
are disabled. The registers will be set up for a retry operation, and an error code will
be in the lower half of the DI register, with the upper half undefined.
The lower byte of DI contains:
OOH write-protect error
0lH unknown unit
02H drive not ready
03H unknown command
04H data error (CRC)
05H bad request structure length
06H seek error
07H unknown media type
08H sector not found

MS-DOS Functions Reference 481

09H printer out of paper
0AH write faul t
0BH read fau lt
OCH general failure
0DH reserved
0EI-1 reserved
0FH invalid disk change (MS-DOS version 3 only)

Note that these are the same error codes returned by the device driver in the request
header. Also, upon entry, the stack is set up as shown in Figure 8-8, page 149.

■ When a disk 1/0 error occurs, MS-DOS automatically retries the operation before
issuing a critical-error Int 24H. The number of retries varies in different versions of
MS-DOS, but is typically in the range three to five.

■ Int 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and DX registers. Only Int
21H Functions 0lH-0CH and 59H can be used by an Int 24H handler; other function
cal ls w ill destroy the MS-DOS stack and its ability to retry or ignore an error.

■ When the Int 24H handler issues an IRET, it should return an action code in AL that
wi ll be interpreted by DOS as follows:
0 ignore the error
1 retry the operation
2 terminate the program
3 [3.0+) fail the function call in progress

■ If the Int 24!-l handler returns control directly to the application program rather than
to MS-DOS, it must restore the program's registers, removing all but the last three
words from the stack, and issue an IRET. Control returns to the instruction immedi­
ately following the function call that caused the error. Th is option leaves MS-DOS
in an unstable state until a call to an Int 21H function higher than Function OCH
is made.

Example: See Chapter 8.

~2ili ~00
Absolute disk read

Provides a direct linkage to the MS-DOS BIOS module to read data from a logical disk sector into memory.

Call with: For access to partitions<= 32 MB
AL = drive number (0 = A, 1 = B, etc)
ex
DX
DS:BX

= number of sectors to read
= starting sector number
= segment:offset of buffer

For access to partitions> 32 MB (MS-DOS 4.0 and later)
AL = drive number (0 = A, 1 = B, etc)
ex = -1
DS:BX = segment:offset of parameter block (see Notes)

482 Section 11

Returns:

Notes:

Example:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

■ All registers except the segment registers may be destroyed.

■ When this function returns, the CPU flags originally pushed on the stack by the INT
25H instruction are still on the stack. The stack must be cleared by a POPF or ADD
SP,2 to prevent uncontrolled stack growth and to make accessible any other values
that were pushed on the stack before the call to INT 25H.

■ Logical sector numbers are obtained by numbering each disk sector sequentially
from cylinder 0, head 0, sector 1, and continuing until the last sector on the disk is
counted. The head number is incremented before the track number. Logically adja­
cent sectors may not be physically adjacent, due to interleaving that occurs at the
device-adapter level for some disk types.

■ The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of DI when an Int 24H is issued. The upper byte
(AH) contains:
0lH if bad command
02H if bad address mark
04H if requested sector not found
08H if direct memory access (DMA) failure
lOH if data error (bad CRC)
20H if controller failed
40H if seek operation failed
80H if attachment failed to respond

■ 14.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:
Bytes Description
00H-03H 32-bit sector number
04H-05H number of sectors to read
06H-07H offset of buffer
08H-09H segment of buffer

Read logical sector 1 of drive A into the memory area named buff (On most MS-DOS
floppy disks, this sector contains the beginning of the file allocation table.)

buff db 512 dup (?) : receives data from disk

(continued)

MS-DOS Functions Reference 483

mov al ,0 drive A
mov cx,l number of sectors
mov dx,l beginning sector number
mov bx,seg buff buffer address
mov ds,bx
mov bx.offset buff
int 25h request disk read
jc error jump if read failed
add sp , 2 clear stack

Int 26H [1.0]
Absolute disk write

Provides a direct linkage to the MS-DOS BIOS module to write data from memory to a logical disk sector.

Call with:

Returns:

Notes:

For access to partitions <= 32 MB
AL = drive number (0 = A, 1 = B, etc)
CX = number of sectors to write
DX
DS:BX

= starting sector number
= segment:offset of buffer

For access to partitions > 32 MB (MS-DOS 4.0 and later)
AL = drive number (0 = A, 1 = B, etc)
ex =-1
DS:BX = segment:offset of parameter block (see Notes)

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code (see Notes)

■ All registers except the segment registers may be destroyed .

■ When this function returns, the CPU flags originally pushed onto the stack by the
INT 26H instruction are still on the stack. The stack must be cleared by a POFF or
ADD SP,2 to prevent uncontrolled stack growth and to make accessible any other
values that were pushed on the stack before the call to INT 26H.

■ Logical sector numbers are obtained by numbering each disk sector sequentially
from cylinder 0, head 0, sector 1, and continuing until the last sector on the disk is
counted. The head number is incremented before the track number. Logically adja­
cent sectors may not be physically adjacent, due to interleaving that occurs at the
device-adapter level for some disk types.

484 Section II

Example:

■ The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of DI when an Int 24H is issued. The upper byte
(AH) contains:
0lH if bad command
02H if bad address mark
03H if write-protect fault
04H if requested sector not found
08H if direct memory access CDMA) failure
lOH if data error (bad CRC)
20H if controller failed
40H if seek operation failed
80H if attachment failed to respond

■ [4.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:
Bytes Description
00H-03H 32-bit sector number
04H-05H number of sectors to read
06H-07H offset of buffer
08H-09H segment of buffer

Write the contents of the memory area named bu.ff into logical sector 3 of drive C.
Warning: Verbatim use of the following code could damage the file system on your
fixed disk. There is, unfortunately, no way to provide a really safe example of this
function.

buff db 512 dup (?) ; contains data for write

mov al. 2 drive C
mov cx,l number of sectors
mov dx,3 beginning sector number
mov bx,seg buff buffer address
mov ds,bx
mov bx.offset buff
int 26h request disk write
jc error jump if write failed
add sp,2 clear stack

MS-DOS Functions Reference 485

Int 27H [1.0]
Terminate and stay resident

Terminates execution of the currently executing program, but reserves part or all of its memory so that it
will not be overlaid by the next transient program to be loaded. MS-DOS then takes the following actions:

■ Fi le buffers are flushed and any open handles for files or devices owned by the
process are closed.

■ The termination handler vector Ont 22H) is restored from PSP:OOOAH.

■ The Ctrl-C handler vector (Int 23H) is restored from PSP:OOOEH.

■ [2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.

■ Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion and the transient
portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and inter­
preted; otherwise a prompt is issued for the next user command.

Call with:

Returns:

Notes:

DX

cs

Nothing

= offset of the last byte plus one (relative to the program segment prefix)
of program to be protected

= segment of program segment prefix

■ This function call is typically used to allow user-written utilities, drivers, or interrupt
handlers to be loaded as ordinary .COM or .EXE programs, then remain resident.
Subsequent entrance to the code is via a hardware or software interrupt.

■ This function attempts to set the initial memory allocation block to the length in
bytes specified in register DX. If other memory blocks have been requested by the
application via Int 21H Function 48H, they will not be released by this function.

■ Other methods of performing a final exit are:

- Int 20H
- Int 21H Funct ion OOH
- Int 21H Function 31H
- Int 21H Function 4CH

■ This function should not be cal led by .EXE programs that are loaded at the high end
of the transient program area (i.e., linked with the / HIGH switch), because doing so
reserves the memory normally used by the transient part of COMMAND.COM. If
COMMAND.COM cannot be reloaded, the system will fail.

■ This function does not work correctly when DX contains values in the range
OFFFIH-OFFFFH. In this case, MS-DOS discards the high bit of the value in DX,
resulting in the reservation of 32 KB less memory than was requested by the
program.

■ [2.0+] Int 21H Function 31H should be used in preference to this function, because it
supports return codes, allows larger amounts of memory to be reserved , and does
not require CS to contain the segment of the program segment prefix.

486 Section I I

• [3.0+) If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Example: Terminate and stay resident, reserving enough memory to contain the entire program.

Int 28H
Reserved

Int 29H
Reserved

Int2AH
Reserved

Int 2BH
Reserved

Int 2CH
Reserved

pend

mov
int

equ

end

dx,offset pend
27h

DX - bytes to reserve
terminate, stay resident

offset, end of program

MS-DOS Functions Reference 487

Int2DH
Reserved

Int 2EH
Reserved

Int 2FH
Multiplex interrupt

(3.0]

Provides a general-purpose avenue of communication with another process or with MS-DOS extensions,
such as the print spooler, ASSIGN, SHARE, and APPEND. The multiplex number in register AH specifies
the process or extension being communicated with. The range 00H-BFH is reserved for MS-DOS; appli­
cations may use the range C0H-FFH.

Int 2FH
Function Olli
Print spooler

(3.0]

Submits a fi le to the print spooler, removes a fi le from the print spooler's queue of pending fi les, or ob­
tains the status of the printer. The print spooler, which is contained in the fi le PRINT.COM, was first
added to MS-DOS in version 2.0, but the application program interface to the spooler was not docu­
mented unti l MS-DOS version 3.

Call with: AH = OlH
AL = subfunction

DS:DX

488 Section II

OOH= Get Installed State
OJH = Submit File to be Printed
O2H = Remove File from Print Queue
O3H = Cancel All Files in Queue
O4H = Hold Print jobs for Status Read
O5H = Release Hold

= segment:offset of packet (Subfunction 0lH)
segment:offset of ASCIIZ pathname (Subfunction 02H)

Returns:

Notes:

If function successful
Carry flag = clear

and, if called with AL = OOH
AL = print spooler state

OOH if not installed, ok to install
OlH if not installed, not ok to install
FFH if installed

or, if called with AL = O4H
DX = error count
DS:SI = segment:offset of print queue file list

If function unsuccessful
Carry flag = set
AX = error code

■ The packet passed to Subfunction OlH consists of five bytes. The first byte contains
the level, which should be OOH for current versions of MS-DOS. The following four
bytes contain the segment:offset of an ASCIIZ pathname, which may not include
wildcard characters. If the specified file exists, it is added to the print queue .

■ The • and ? wildcard characters may be included in a pathname passed to Subfunc­
tion O2H, making it possible to delete multiple files from the print queue with one
call.

■ The address returned by Subfunction O4H points to a list of 64-byte entries, each
containing an ASCIIZ pathname. The first pathname in the list is the file currently
being printed. The last entry in the list is a null string (a single OOH byte).

Int 2FH
Function 02H
ASSIGN

[3.2]

Returns a code indicating whether the resident portion of the ASSIGN utility has been loaded.

Call with:

Returns:

AH = O2H
AL = subfunction

OOH = Get Installed State

If function successful
Carry flag = clear
AL = ASSIGN installed status

OOH if not installed, ok to install
OlH if not installed, not ok to install
FFH if installed

If function unsuccessful
Carry flag = set
AX = error code

MS-DOS Functions Reference 489

Int 2m
Function lOH (16)
SHARE

Returns a code indicating whether the SHARE.EXE file-sharing module has been loaded.

Call with:

Returns:

Int 2m

AH = lOH
AL = subfunction

OOH= Get Installed State

If function successful
Carry flag = clear
AL = SHARE installed status

OOH if not installed, ok to install
OJH if not installed, not ok to install
FFH if installed

If function unsuccessful
Carry flag = set
AX = error code

Function B711 (183)
APPEND

[3.2]

[3.3]

Allows an application to test whether APPEND has been installed. If APPEND is resident, returns the
APPEND version, state, and the path used to search for data files.

Call with: AH = B7H
AL = subfunction

OOH = Get Installed State
02H = Get Append Version (4.0)
04H = Get Append Path Pointer (4.0)
06H = Get Append Function State (4.0)
07H = Set Append Function State (4.0)
1 lH = Set Return Found Name State (4 .0, see Note)

BX = APPEND state (if AL = 07H)
Bit(s) Significance (if set)
0 APPEND enabled
1-12 Reserved (0)
13 / PATH switch act ive
14 /E switch active
15 IX switch active

490 Section II

Returns:

Note:

If function successful
Carry flag = clear

and, if called with AL = OOH
AL = APPEND installed status

OOH if not installed, ok to install
OlH if not installed, not ok to install
FFH if installed

or, if called with AL = 02H (MS-DOS 4.0)
AX = FFFFH if MS-DOS 4.0 APPEND

or, if called with AL = 04H (MS-DOS 4.0)
ES:DI = segment:offset of active APPEND path

or, if called with AL = 06H (MS-DOS 4.0)
BX = APPEND state (see above)

If function unsuccessful
Carry flag = set
AX = error code

■ If the Return Found Name State is set with Subfunction 1 lH, the fully qualified file­
name is returned to the next application to call Int 21H Function 3DH, 43H, or 6CH.
The name is placed at the same address as the ASCIIZ parameter string for the Int
21H function, so the application must be sure to provide a buffer of adequate size.
The Return Found Name State is reset after APPEND processes one Int 21H
function call.

MS-DOS Functions Reference 491

Notes to the Reader
In the headers for ROM BIOS video driver (Int lOH) function calls, the
following icons are used:

[MDA]
[CGA]
[PCjr]
[EGA]
[MCGA]
[VGA]

Monochrome Display Adapter
Color/ Graphics Adapter
PCjr system board video controller
Enhanced Graphics Adapter
Multi-Color Graphics Array (PS/ 2 Models 25 & 30)
Video Graphics Array (PS/ 2 Models 50 and above)

In the remainder of this section, the following icons are used:

[PC]
[A11

[PS/ 2]

Original IBM PC, PC/XT, and PCjr, unless otherwise noted.
PC/ AT and PC/XT-286, unless otherwise noted.
All PS/ 2 models (including Models 25 and 30), unless other­

wise noted.

ROM BIOS functions that are unique to the PC Convertible have been
omitted.

Some functions are supported only in very late revisions of a particular
machine's ROM BIOS (such as Int lAH Functions OOH and OlH on the
PC/ XT). In general, such functions are not given an icon for that machine
since a program could not safely assume that they were available based on
the machine ID byte(s).

Summary of ROM BIOS and Mouse Function Calls

Int Function

lOH
lOH OOH
lOH OlH
lOH 02H
lOH 03H
lOH 04H
lOH 05H
lOH 06H
lOH 07H
lOH 08H
lOH 09H
lOH OAH (10)
lOH OBH (11)

494 Section Ill

Subfunction Name

Video Driver
Set Video Mode
Set Cursor Type
Set Cursor Position
Get Cursor Position
Get Light Pen Position
Set Display Page
Initialize or Scroll Window Up
Initialize or Scroll Window Down
Read Character and Attribute at Cursor
Write Character and Attribute at Cursor
Write Character at Cursor
Set Palette, Background, or Border

(continued)

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Sub.function Name

lOH 0CH(12) Write Graphics Pixel
lOH 0DH(13) Read Graphics Pixel
lOH 0EH(14) Write Character in Teletype Mode
lOH 0FH(15) Get Video Mode
lOH lOH (16) OOH Set Palette Register
lOH lOH (16) 0lH Set Border Color
lOH lOH (16) 02H Set Palette and Border
l0H lOH (16) 03H Toggle Blink/Intensity Bit
l0H l0H (16) 07H Get Palette Register
lOH lOH (16) 08H Get Border Color
lOH lOH (16) 09H Get Palette and Border
lOH lOH (16) lOH (16) Set Color kegister
l0H l0H (16) 12H (18) Set Block of Color Registers
lOH lOH (16) 13H (19) Set Color Page State
lOH 10H(16) 15H (21) Get Color Register
lOH 10H(16) 17H (23) Get Block of Color Registers
lOH lOH (16) 1AH(26) Get Color Page State
l0H 10H(16) lBH (27) Set Gray-Scale Values
l0H llH (17) OOH Load User Font
lOH llH (17) 0lH Load ROM 8-by-14 Font
lOH llH (17) 02H Load ROM 8-by-8 Font
lOH llH (17) 03H Set Block Specifier
lOH llH (17) 04H Load ROM 8-by-16 Font
lOH llH (17) lOH (16) Load User Font, Reprogram Controller
lOH llH (17) llH (17) Load ROM 8-by-14 Font, Reprogram

Controller
lOH llH (17) 12H (18) Load ROM 8-by-8 Font, Reprogram

Controller
lOH llH (17) 14H (20) Load ROM 8-by-16 Font, Reprogram

Controller
lOH llH (17) 20H (32) Set Int lFH Pointer
lOH llH (17) 21H (33) Set Int 43H for User's Font
lOH 11H(17) 22H (34) Set Int 43H for ROM 8-by-14 Font
lOH llH (17) 23H (35) Set Int 43H for ROM 8-by-8 Font
lOH llH (17) 24H (36) Set Int 43H for Rom 8-by-16 Font
lOH llH (17) 30H (48) Get Font Information
l0H 12H(18) lOH (16) Get Configuration Information
l0H 12H (18) 20H (32) Select Alternate PrintScreen
lOH 12H (18) 30H (48) Set Scan Lines
lOH 12H (18) 31H (49) Enable/Disable Palette Loading
lOH 12H (18) 32H (50) Enable/Disable Video
lOH 12H (18) 33H (51) Enable/Disable Gray-Scale Summing
lOH 12H (18) 34H (52) Enable/Disable Cursor Emulation

(continued)

IBM ROM BIOS and Mouse Functions Reference 495

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Sub.function Name

lOH 12H(18) 35H (53) Switch Active Display
lOH 12H(18) 36H(54) Enable/Disable Screen Refresh
lOH 13H (19) Write String in Teletype Mode
lOH 1AH(26) Get or Set Display Combination Code
lOH 1BH(27) Get Functionality/State Information
lOH lCH (28) Save or Restore Video State

llH Get Equipment Configuration

12H Get Conventional Memory Size

13H Disk Driver
13H OOH Reset Disk System
13H OlH Get Disk System Status
13H 02H Read Sector
13H 03H Write Sector
13H 04H Verify Sector
13H 05H Format Track
13H 06H Format Bad Track
13H 07H Format Drive
13H 08H Get Drive Parameters
13H 09H Initialize Fixed Disk Characteristics
13H OAH(lO) Read Sector Long
13H OBH (11) Write Sector Long
13H OCH(12) Seek
13H ODH(13) Reset Fixed Disk System
13H OEH(14) Read Sector Buffer
13H OFH (15) Write Sector Buffer
13H lOH (16) Get Drive Status
13H llH (17) Recalibrate Drive
13H 12H(18) Controller RAM Diagnostic
13H 13H (19) Controller Drive Diagnostic
13H 14H (20) Controller Internal Diagnostic
13H 15H (21) Get Disk Type
13H 16H (22) Get Disk Change Status
13H 1mc23) Set Disk Type
13H 18H (24) Set Media Type for Format
13H 19H (25) Park Heads
13H 1AH(26) Format ESDI Drive

14H Serial Communications Port Driver
14H OOH Initialize Communications Port
14H OlH Write Character to Communications Port

(continued)

496 Section III

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subjunction Name

14H 02H Read Character from Communications
Port

14H 03H Get Communications Port Status
14H 04H Extended Initialize Communications

Port
14H 05H Extended Communications Port Control

15H 1/0 Subsystem Extensions
15H OOH Turn On Cassette Motor
15H OlH Tum Off Cassette Motor
15H 02H Read Cassette
15H 03H Write Cassette
15H OFH(15) Format ESDI Drive Periodic Interrupt
15H 21H(33) OOH Read POST Error Log
15H 21H(33) OlH Write POST Error Log
15H 4FH(79) Keyboard Intercept
15H 80H(128) Device Open
15H 81H(129) Device Close
15H 82H(130) Process Termination
15H 83H(131) Event Wait
15H 84H(132) Read Joystick
15H 85H(133) SysReqKey
15H 86H(134) Delay
15H 87H(135) Move Extended Memory Block
15H 88H(136) Get Extended Memory Size
15H 89H(137) Enter Protected Mode
15H 90H(144) Device Wait
15H 91H(145) Device Post
15H COH(192) Get System Environment
15H C1H(193) Get Address of Extended BIOS Data

Area
15H C2H(194) OOH Enable/Disable Pointing Device
15H C2H(194) OlH Reset Pointing Device
15H C2H(194) 02H Set Sample Rate
15H C2H(194) 03H Set Resolution
15H C2H(194) 04H Get Pointing Device Type
15H C2H(194) 05H Initialize Pointing Device Interface
15H C2H(194) 06H Set Scaling or Get Status
15H C2H(194) 07H Set Pointing Device Handler Address
15H C3H(195) Set Watchdog Time-Out
15H C4H(196) Programmable Option Select

(continued)

IBM ROM BIOS and Mouse Functions Reference 497

SUmmary of ROM mos and Mouse Function Calls continued

Int Function Sub.function Name

16H Keyboard Driver
16H OOH Read Character from Keyboard
16H OlH Get Keyboard Status
16H 02H Get Keyboard Flags
16H 03H Set Repeat Rate
16H 04H Set Keyclick
16H 05H Push Character and Scan Code
16H 10H(16) Read Character from Enhanced

Keyboard
16H llH (17) Get Enhanced Keyboard Status
16H 12H (18) Get Enhanced Keyboard Flags

17H Parallel Port Printer Driver
17H OOH Write Character to Printer
17H OlH Initialize Printer Port
17H 02H Get Printer Status

18H ROM BASIC

19H Reboot System

lAH Real-time (CMOS) Clock Driver
lAH OOH Get Tick Count
lAH OlH Set Tick Count
lAH 02H GetTime
lAH 03H Set Time
lAH 04H Get Date
lAH 05H Set Date
lAH 06H Set Alarm
lAH 07H Reset Alarm
lAH OAH(lO) Get Day Count
lAH OBH(ll) Set Day Count
lAH 80H(128) Set Sound Source

33H Microsoft Mouse Driver
33H OOH Reset Mouse and Get Status
33H OlH Show Mouse Pointer
33H 02H Hide Mouse Pointer
33H 03H Get Mouse Position and Button Status
33H 04H Set Mouse Pointer Position
33H 05H Get Button Press Information
33H 06H Get Button Release Information
33H 07H Set Horizontal Limits for Pointer
33H 08H Set Vertical Limits for Pointer
33H 09H Set Graphics Pointer Shape

(continued)

498 Section/II

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Sub.function Name

33H 0AH(l0) Set Text Pointer Type
33H 0BH(ll) Read Mouse Motion Counters
33H 0CH(12) Set User-defined Mouse Event Handler
33H 0DH(13) Turn On Light Pen Emulation
33H 0EH(14) Turn Off Light Pen Emulation
33H 0FH(15) Set Mickeys to Pixels Ratio
33H 10H(16) Set Mouse Pointer Exclusion Area
33H 13H(19) Set Double Speed Threshold
33H 14H(20) Swap User-defined Mouse Event

Handlers
33H 15H (21) Get Mouse Save State Buffer Size
33H 16H (22) Save Mouse Driver State
33H 17H (23) Restore Mouse Driver State
33H 18H (24) Set Alternate Mouse Event Handler
33H 19H (25) Get Address of Alternate Mouse Event

Handler
33H 1AH(26) Set Mouse Sensitivity
33H 1BH(27) Get Mouse Sensitivity
33H 1CH(28) Set Mouse Interrupt Rate
33H 1DH(29) Select Pointer Page
33H 1EH(30) Get Pointer Page
33H lFH (31) Disable Mouse Driver
33H 20H(32) Enable Mouse Driver
33H 21H(33) Reset Mouse Driver
33H 22H(34) Set Language for Mouse Driver Messages
33H 23H C35) Get Language Number
33H 24H(36) Get Mouse Information

IBM ROM BIOS and Mouse Functions Reference 499

IntlOH
Function OOH
Set video mode

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the current video display mode. Also selects the active video controller, if more than one video
controller is present.

Call with:

Returns:

Notes:

AH
AL

Nothing

= OOH
= video mode (see Notes)

■ The video modes applicable to the various IBM machine models and video adapters
are as fol lows:

Text/
Mode Resohltion Colors graphics MDA CGA PCjr EGA MCGA VGA

OOH 40-by-25 16 text
color burst off

OlH 40-by-25 16 text
02H 80-by-25 16 text

color burst off

03H 80-by-25 16 text
04H 320-by-200 4 graphics
05H 320-by-200 4 graphics

colo r burst off
06H 640-by-200 2 graphics
07H 80-by-25 2' text
08H 160-by-200 16 g raphics
09H 320-by-200 16 graphics
OAH 640-by-200 4 graphics
OBH reserved
OCH reserved
ODH 320-by-200 16 g raphics
OEH 640-by-200 16 g raphics
OFH 640-by-350 22 graphics
lOH 640-by-350 4 graphics , 3

lOH 640-by-350 16 graphics ..
llH 640-by-480 2 graphics
12H 640-by-480 16 g raphics
13H 320-by-200 256 graphics

1 Monochrome monitor only.
2 Monochrome monito r only.
3 EGA w ith 64 KB of RAM.
4 EGA with 128 KB or more of RAM .

■ The presence or absence of color burst is only significant when a composite monitor
is being used. For RGB monitors, there is no functional difference between modes
OOH and OlH or modes O2H and O3H. On the CGA, two palettes are available in
mode O4H and one in mode OSH.

500 Section III

■ On the PC/ AT, PCjr, and PS/ 2, if bit 7 of AL is set, the display buffer is not cleared
when a new mode is selected. On the PC or PC/XT, this capability is available only
when an EGA or VGA (which have their own ROM BIOS) is installed.

IntlOH
Function OlH
Set cursor type

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the starting and ending lines for the blinking hardware cursor in text display modes.

Call with:

Returns:

Notes:

AH = 01H
CH bits 0- 4 = starting line for cursor
CL bits 0- 4 = ending line for cursor

Nothing

■ In text display modes, the video hardware causes the cursor to blink, and the blink
cannot be disabled. In graphics modes, the hardware cursor is not available.

■ The default values set by the ROM BIOS are:
Display Start End
monochrome mode 07H 11 12
text modes 00H-03H 6 7

■ On the EGA, MCGA, and VGA in text modes 00H-03H, the ROM BIOS accepts cur­
sor start and end values as though the character cell were 8 by 8 and remaps the
values as appropriate for the true character cell dimensions. This mapping is called
cursor emulation.

■ You can turn off the cursor in several ways. On the MDA, CGA, and VGA, setting
register CH = 20H causes the cursor to disappear. Techniques that involve setting
illegal starting and ending lines for the current display mode are unreliable. An
alternative is to position the cursor to a nondisplayable address, such as (x,y)=(0,25).

IntlOH
Function 02H

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Set cursor position

Positions the cursor on the display, using text coordinates.

Call with: AH
BH
DH
DL

= 02H
= page
= row (y coordinate)
= column (x coordinate)

IBM ROM BIOS and Mouse Functions Reference 501

Returns:

Notes:

Nothing

■ A separate cursor is maintained for each display page, and each can be set indepen­
dently with this function regardless of the currently active page. The number of
available display pages depends on the video adapter and current display mode. See
Int lOH Function 05H.

■ Text coordinates (x,y)=(O,O) are the upper left corner of the screen.

■ The maximum value for each text coordinate depends on the video adapter and
current display mode, as follows:
Mode Maximum x Maximum y
OOH 39 24
OOH ~ ~

02H 79 24
03H 79 24
04H 39 24
05H 39 24
06H 79 24
07H 79 24
08H 19 24
09H 39 24
OAH 79 24
OBH reserved
OCH reserved
OOH
OEH
OFH
lOH
llH
12H
13H

39
79
79
79
79
79
39

24
24
24
24
29
29
24

IntlOH
Function 03H

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Get cursor position

Obtains the current position of the cursor on the display, in text coordinates.

Call with: AH = 03H
BH = page

Returns: CH = starting line for cursor
CL = ending line for cursor
DH = row (y coordinate)
DL = column (x coordinate)

502 Section Ill

Note: ■ A separate cursor is maintained for each display page, and each can be inspected in-
dependently with this function regardless of the currently active page. The number
of available display pages depends on the video adapter and current display mode.
See Int lOH Function OSH.

Int lOH [CGA] [PCjr] [EGA]
Function 04H
Get light pen position

Obtains the current status and position of the light pen.

Call with:

Returns:

Notes:

AH

AH

BX
CH
ex
DH
DL

= 04H

= OOH if light pen not down/not triggered
OlH if light pen down/triggered

= pixel column (graphics x coordinate)
= pixel row (graphics y coordinate, modes 04H-06H)
= pixel row (graphics y coordinate, modes ODH-13H)
= character row (text y coordinate)
= character column (text x coordinate)

■ The range of text and graphics coordinates returned by this function depends on the
current display mode.

■ On the CGA, the graphics coordinates returned by this function are not continuous.
They coordinate is always a multiple of two; the x coordinate is either a multiple of
four (for 320-by-200 graphics modes) or a multiple of eight (for 640-by-200 graphics
modes).

■ Careful selection of background and foreground colors is necessary to obtain maxi­
mum sensitivity from the light pen across the full screen wid th.

lntlOH
Function 05H
Set display page

[CGA] [PCjr] [EGA] [MCGA] [VGA]

Selects the active display page for the video display.

· IBM ROM BIOS and Mouse Functions Reference 503

Call with:

Returns:

Notes:

For CGA, EGA, MCGA, VGA
AH =0SH
AL =page

0-7
0-!3
0-7
0-7
0-7
0-!3
0-1
0-1

for modes OOH and 01H (CGA, EGA, MCGA, VGA)
for modes 02H and 03H (CGA)
for modes 02H and 03H (EGA, MCGA, VGA)
for mode 07H (EGA, VGA)
for mode ODH (EGA, VGA)
for mode OEH (EGA, VGA)
for mode OFH (EGA, VGA)
for mode JOH (EGA, VGA)

For PCjr only
AH =0SH
AL = subfunction

80H = read CRT/CPU page registers
81H = set CPU page register
82H = set CRT page register
83H = set both CPU and CRT page registers

BH = CRT page (Subfunctions 82H and 83H)
BL = CPU page (Subfunctions 81H and 83H)

If CGA, EGA, MCGA, or VGA adapter
Nothing

If PCjr and if function called with AL= 80H-83H
BH = CRT page register
BL = CPU page register

■ Video mode and adapter combinations not listed above support one display page
(for example, a Monochrome Adapter in mode 7).

■ Switching between pages does not affect their contents. In addition, text can be
written to any video page with Int l0H Functions 02H, 09H, and 0AH, regardless of
the page currently being displayed.

■ On the PCjr, the CPU page determines the part of the physical memory region
0OO00H-lFFFFH that will be hardware mapped onto 16 KB of memory beginning
at segment B800H. The CRT page determines the starting address of the physical
memory used by the video controller to refresh the display. Smooth animation
effects can be achieved by manipulation of these registers. Programs that write
directly to the B800H segment can reach only the first 16 KB of the video refresh
buffer. Programs requiring direct access to the entire 32 KB buffer in modes 09H and
0AH can obtain the current CRT page from the ROM BIOS variable PAGDAT at
0040:00BAH.

504 Section Ill

lntlOH
Function 06H

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Initialize or scroll window up

Initializes a specified window of the display to ASCII blank characters with a given attribute or scrolls up
the contents of a window by a specified number of lines.

Call with:

Returns:

Notes:

AH = 06H
AL = number of lines to scroll (if zero, entire window is blanked)
BH = attribute to be used for blanked area
CH = y coordinate, upper left corner of window
CL = x coordinate, upper left corner of window
DH = y coordinate, lower right corner of window
DL = x coordinate, lower right corner of window

Nothing

■ In video modes that support multiple pages, this function affects only the page
currently being displayed.

■ If AL contains a value other than OOH, the area within the specified window is
scrolled up by the requested number of lines. Text that is scrolled beyond the top of
the window is lost. The new lines that appear at the bottom of the window are filled
with ASCII blanks carrying the attribute specified by register BH.

■ To scroll down the contents of a window, see Int lOH Function O7H.

lntlOH
Function07H

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Initialize or scroll window down

Initializes a specified window of the display to ASCII blank characters with a given attribute, or scrolls
down the contents of a window by a specified number of lines.

Call with: AH
AL
BH
CH
CL
DH
DL

Returns: Nothing

= 07H
= number of lines to scroll (if zero, enti re window is blanked)
= attribute to be used for blanked area
= y coordinate, upper left corner of window
= x coordinate, upper left corner of window
= y coordinate, lower right corner of window
= x coordinate, lower right corner of window

I BM ROM BIOS and Mouse Functions Reference 505

Notes: ■ In video modes that support multiple pages, this function affects only the page
currently being displayed.

■ If AL contains a value other than OOH, the area within the specified window is
scrolled down by the requested number of lines. Text that is scrolled beyond the
bottom of the window is lost. The new lines that appear at the top of the window
are filled with ASCII blanks carrying the attribute specified by register BH.

■ To scroll up the contents of a window, see Int lOH Function 06H.

lntlOH
Function 08H

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Read character and attribute at cursor

Obtains the ASCII character and its attribute at the current cursor position for the specified display page.

Call with: AH = 08H
BH = page

Returns: AH = attribute
AL = character

Note: ■ In video modes that support multiple pages, characters and their attributes may be
read from any page, regardless of the page currently being displayed.

Int lOH [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 09H
Write character and attribute at cursor

Writes an ASCII character and its attribute to the display at the current cursor position.

Call with: AH
AL
BH
BL
ex

Returns: Noth ing

506 Section III

=09H
= character
= page
= attribute (text modes) or color (graphics modes)
= count of characters to write (replication factor)

Notes:

IntlOH

■ In graphics modes, the replication factor in CX produces a valid result only for the
current row. If more characters are written than there are remaining columns in the
current row, the result is unpredictable.

■ All values of AL result in some sort of display; control characters, including bell,
backspace, carriage return, and line feed, are not recognized as special characters
and do not affect the cursor position.

■ After a character is written, the cursor must be moved explicitly with Int lOH Func­
tion 02H to the next position.

■ To write a character without changing the attribute at the current cursor position,
use Int lOH Function 0AH.

■ If this function is used to write characters in graphics mode and bit 7 of BL is set (1),

the character will be exclusive-OR'd (XOR) with the current display contents. This
feature can be used to write characters and then "erase" them.

■ For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for character
codes 80H-FFH are obtained from a table whose address is stored in the vector for
Int lFH. On the PCjr, the address of the table for character codes 00H-7FH is stored
in the vector for Int 44H. Alternative character sets may be installed by loading them
into memory and updating this vector.

■ For the EGA, MCGA, and VGA in graphics modes, the aJdress of the character defini­
tion table is stored in the vector for Int 43H. See Int lOH Function llH.

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OAH (10)
Write character at cursor

Writes an ASCII character to the display at the current cursor position. The character receives the
attribute of the previous character displayed at the same position.

Call with:

Returns:

Notes:

AH =0AH
AL = character
BH = page
BL = color (graphics modes, PCjr only)
CX = count of characters to write (replication factor)

Nothing

■ In graphics modes, the replication factor in CX produces a valid result only for the
current row. If more characters are written than there are remaining columns in the
current row, the result is unpredictable.

■ All values of AL result in some sort of display; control characters, including bell,
backspace, carriage return, and line feed, are not recognized as special characters
and do not affect the cursor position.

IBM ROM BIOS and Mouse Functions Reference 507

lntlOH

■ After a character is written, the cursor must be moved explicitly with Int lOH Func­
tion 02H to the next position.

■ To write a character and attribute at the current cursor position, use Int lOH Func­
tion 09H.

■ If this function is used to write characters in graphics mode and bit 7 of BL is set (1),
the character will be exclusive-OR'd (XOR) with the current display contents. This
feature can be used to write characters and then "erase" them.

■ For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for character
codes 80H-FFH are obtained from a table whose address is stored in the vector for
Int lFH. On the PCjr, the address of the table for character codes OOH-7FH is stored
in the vector for Int 44H. Alternative character sets may be installed by loading them
into memory and updating this vector.

■ For the EGA, MCGA, and VGA in graphics modes, the address of the character defini­
tion table is stored in the vector for Int 43H. See Int lOH Function llH.

[CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OBH (11)
Set palette, background, or border

Selects a palette, background, or border color.

Call with:

Returns:

Notes:

To set the background color and border color for graphics modes or the border color for
text modes
AH
BH

=OBH
= OOH

BL = color

To select the palette (320-by-200 4-color graphics modes)
AH = OBH
BH = OlH
BL = palette (see Notes)

Nothing

■ In text modes, this function selects only the border color. The background color
of each individual character is control led by the upper 4 bits of that character's
attribute byte.

■ On the CGA and EGA, this function is valid for palette selection only in 320-by-200
4-color graphics modes.

508 Section Ill

IntlOH

■ In 320-by-200 4-color graphics modes, if register BH = OlH, the following palettes
may be selected:
Palette Pixel value Color
0 0 same as background

1

1
2

3
0

green
red
brown or yellow
same as background

1 cyan
2 magenta
3 white

■ On the CGA in 640-by-200 2-color graphics mode, the background color selected
with this function actually controls the display color for nonzero pixels; zero pixels
are always displayed as black.

■ On the PCjr in 640-by-200 2-color graphics mode, if BH = OOH and bit O of register BL
is cleared, pixel value 1 is displayed as white; if bit O is set, pixel value 1 is displayed
as black.

■ See also Int lOH Function lOH, which is used for palette programming on the PCjr,
EGA, MCGA, and VGA.

[CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OCH (12)
Write graphics pixel

Draws a point on the display at the specified graphics coordinates.

Call with:

Returns:

Notes:

AH = OCH
AL = pixel value
BH = page
CX = column (graphics x coordinate)
DX = row (graphics y coordinate)

Nothing

■ The range of valid pixel values and (x,y) coordinates depends on the current
video mode.

■ If bit 7 of AL is set, the new pixel value will be exclusive-OR'd (XOR) with the
current contents of the pixel.

■ Register BH is ignored for display modes that support only one page.

IBM ROM BIOS and Mouse Functions Reference 509

lntlOH [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function ODH (13)
Read graphics pixel

Obtains the current value of the pixel on the display at the specified graphics coordinates.

Call with:

Returns:

Notes:

IntlOH

AH =0DH
BH = page
CX = column (graphics x coordinate)
DX = row (graphics y coordinate)

AL = pixel value

■ The range of valid (x,y) coordinates and possible pixel values depends on the
current video mode.

■ Register BH is ignored for display modes that support only one page.

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OEH (14)
Write character in teletype mode

Writes an ASCII character to the display at the current cursor position, using the specified color (if in
graphics modes), and then increments the cursor position appropriately.

Call with:

Returns:

Notes:

AH = 0EH
AL = character
BH = page
BL = foreground color (graphics modes)

Nothing

■ The special ASCII codes for bell (07H), backspace (08H), carriage return (0DH), and
line feed (0AH) are recognized, and the appropriate action is taken. All other char­
acters are written to the display (even if they are control characters), and the cursor
is moved to the next position.

■ In video modes that support multiple pages, characters can be written to any page,
regardless of the page currently being displayed.

■ Line wrapping and scrolling are provided. If the cursor is at the end of a line, it is
moved to the beginning of the next line. If the cursor reaches the end of the last line
on the screen, the screen is scrolled up by one line and the cursor is placed at the

510 Section Ill

IntlOH

beginning of a new blank line. The attribute for the entire new line is taken from the
last character that was written on the preceding line.

■ The default MS-DOS console driver (CON) uses this function to write text to the
screen. You cannot use this function to specify the attribute of a character. One
method of writing a character to the screen with a specific attribute is to first write
an ASCII blank (20H) with the desired attribute at the current cursor location using
Int IOH Function 09H and then write the actual character with Int lOH Function
0EH. This technique, although somewhat clumsy, does not require the program to
explicitly handle line wrapping and scrolling.

■ See also Int lOH Function 13H.

[MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function OFH (15)
Get video mode

Obtains the current display mode of the active video controller.

Call with:

Returns:

Note:

AH

AH
AL
BH

= OFH

= number of character columns on screen
= display mode (see Int lOH Function OOH)
= active display page

■ This function can be called to obtain the screen width before clearing the screen
with Int IOH Functions 06H or 07H.

Int lOH [PCjr] [EGA] [MCGA] [VGA]
Function lOH (16) Subfunction OOH
Set palette register

Sets the correspondence of a palette register to a displayable color.

Call with: On the PCjr, EGA, or VGA
AH = IOH
AL = OOH
BH = color value
BL = palette register (00-0FH)

On theMCGA
AH = lOH
AL = OOH
BX = 0712H

IBM ROM BIOS and Mouse Functions Reference 511

Returns: Nothing

Note: ■ On the MCGA, this function can only be called with BX= 0712H and selects a color
register set with eight consistent colors.

Int lOH [PCjr] [EGA] [VGA]
Function lOH (16) Subfunction OlH
Set border color

Controls the color of the screen border (overscan).

Call with: AH = l0H
AL = OlH
BH = color value

Returns: Nothing

Int lOH [PCjr] [EGA] [VGA]
Function lOH (16) Subfunction 02H
Set palette and border

Sets all palette registers and the border color (overscan) in one operation.

Call with: AH = l0H

Returns:

Notes:

AL = 02H
ES:DX = segment:offset of color list

Nothing

■ The color list is 17 bytes long. The first 16 bytes are the color values to be loaded into
palette registers 0-15, and the last byte is stored in the border color register.

■ In 16-color graphics modes, the following default palette is set up:
Pixel value Col.or
0lH blue
02H green
03H cyan
04H red
05H magenta
06H brown

512 Section Ill

Pi,xelvalue Color
07H white
08H gray
09H light blue
OAH light green
OBH light cyan
OCH light red
OOH light magenta
OEH yellow
OFH intense white

Int lOH [PCjr] [EGA] [MCGA] [VGA]
Function lOH (16) Subfunction 03H
Toggle blink/intensity bit

Determines whether the most significant bit of a character attribute will select blinking or intensified
display.

Call with: AH
AL
BL

Returns: Nothing

= lOH
= 03H
= blink/ intensity toggle

0 = enable intensity
1 = enable blinking

Int lOH [VGA]
Function lOH (16) Subfunction 07H
Get palette register

Returns the color associated with the specified palette register.

Call with: AH = lOH
AL =07H
BL = palette register

Returns: BH = color

IBM ROM BIOS and Mouse Functions Reference 513

IntlOH
Function lOH (16) Subfunction 08H
Get border color

Returns the current border color (overscan).

Call with: AH = lOH

AL = 08H

Returns: BH = color

lntlOH
Function lOH (16) Subfunction 09H
Get palette and border

[VGA]

[VGA]

Gets the contents of all palette registers and the border color (overscan) in one operation.

Call with: AH

AL

ES:DX

Returns: ES:DX

= lOH

= 09H
= segment:offset of 17-byte buffer

= segment:offset of buffer

and buffer contains palette values in bytes 00H-0FH and border color in byte l0H.

lntlOH
Function lOH (16) Subfunction lOH (16)
Set color register

Programs an individual color register with a red-green-blue (RGB) combination.

Call with: AH = l0H

AL = lOH
BX = color register
CH = green value
CL = blue value
DH = red value

514 Section Ill

[MCGA] [VGA]

Returns: Nothing

Note: ■ If gray-scale summing is enabled, the weighted gray-scale value is calculated as
described under Int lOH Function lOH Subfunction lBH and is stored into all three
components of the color register. See also Int lOH Function 12H Subfunction 33H.

Int lOH [MCGA] [VGA]
Function lOH (16) Subfunction 12H (18)
Set block of color registers

Programs a group of consecutive color registers in one operation.

Call with:

Returns:

Notes:

IntlOH

AH
AL
BX
ex
ES:DX

Nothing

= lOH
= 12H
= first color register
= number of color registers
= segment:offset of color table

■ The table consists of a series of 3-byte entries, one entry per color register to be pro­
grammed. The bytes of an individual entry specify the red, green, and blue values
(in that order) for the associated color register.

■ If gray-scale summing is enabled, the weighted gray-scale value for each register is
calculated as described under Int lOH Function lOH Subfunction lBH and is stored
into all three components of the color register. See also Int lOH Function 12H Sub­
function 33H.

[VGA]
Function lOH (16) Subfunction 13H (19)
Set color page state

Selects the paging mode for the color registers, or selects an individual page of color registers.

Call with: To select the paging mode
AH = lOH
AL = 13H
BH = paging mode

OOH for 4 pages of 64 registers
OlH for 16 pages of 16 registers

BL = OOH

IBM ROM BIOS and Mouse Functions Reference 515

To select a color register page
AH = lOH

AL = 13H

BH = page
BL = OlH

Returns: Nothing

Note: ■ This function is not valid in mode 13H (320-by-200 256-color graphics).

Int lOH [MCGA] [VGA]
Function lOH (16) Subfunction 15H (21)
Get color register

Returns the contents of a color register as its red, green, and blue components.

Call with:

Returns:

IntlOH

AH

AL

BX

CH
CL
DH

= lOH

= 15H

= color register

= green value
= blue value
= red value

Function lOH (16) Subfunction 17H (23)
Get block of color registers

[MCGA] [VGA]

Allows the red, green, and blue components associated with each of a set of color registers to be read in
one operation.

Call with: AH = lOH

Returns:

AL
BX
ex
ES:DX

ES:DX

= 17H
= first color register
= number of color registers
= segment:offset of buffer to receive color list

= segment:offset of buffer

and buffer contains color list

516 Section ff/

Note: ■ The color list returned in the caller's buffer consists .of a series of 3-byte entries cor-
responding to the color registers. Each 3-byte entry contains the register's red, green,
and blue components in that order.

Int lOH [VGA]
Function lOH (16) Subfunction 1AH (26)
Get color page state

Returns the color register paging mode and current color page.

Call with:

Returns:

AH = lOH
AL = lAH

BH
BL

= color page
= paging mode

OOH if 4 pages of 64 registers
01H if 16 pages of 16 registers

Note: ■ See Int lOH Function lOH Subfunction 13H, which allows selection of the paging
mode or current color page.

Int lOH [MCGA] [VGA]
Function lOH (16) Subfunction lBH (27)
Set gray-scale values

Transforms the red, green, and blue values of one or more color registers into the gray-scale equivalents.

Call with:

Returns:

Note:

AH = lOH
AL = lBH
BX = first color register
CX = number of color registers

Nothing

■ For each color register, the weighted sum of its red, green, and blue values is calcu­
lated (30% red + 590/4 green + 11 % blue) and written back into all three components
of the color register. The original red, green, and blue values are lost.

IBM ROM BIOS and Mouse Functions Reference 517

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunctions OOH and lOH (16)
Load user font

Loads the user's font (character definition) table into the specified block of character generator RAM.

Call with:

Returns:

Notes:

AH = llH
AL = OOH or lOH (see Notes)
BH = points (bytes per character)
BL = block
CX = number of characters defined by table
DX = first character code in table
ES:BP = segment:offset of font table

Nothing

■ This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int lOH Function 1 lH Sub­
functions 20H- 24H.

■ If AL= lOH, page O must be act ive. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points - 1), cursor start (points - 2), cursor end (points -
1), vertical display end ((rows• points) - 1), and underline location (points- 1,

mode 7 only).

If Subfunction lOH is called at any time other than immediately after a mode set, the
results are unpredictable.

■ On the MCGA, a Subfunction OOH call should be fo llowed by a Subfunction 03H call
so that the ROM BIOS will load the font into the character generator's internal font
pages.

■ Subfunction lOH is reserved on the MCGA. If it is called, Subfunction OOH is
executed.

Int lOH [EGA] [VGA]
Function llH (17) Subfunctions OlH and llH (17)
Load ROM 8-by-14 font

Loads the ROM BIOS default 8-by-14 font table into the specified block of character generator RAM.

Call with: AH = llH
AL = OlH or 11 H (see Notes)
BL = block

518 Section/II

Returns:

Notes:

Nothing

■ This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int lOH Function llH Sub­
functions 20H-24H.

■ If AL = 1 lH, page O must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points - 1), cursor start (points- 2), cursor end (points -

1), vertical display end ((rows• points) - 1), and underline location (points - 1,
mode 7 only).

If Subfunction 1 lH is called at any time other than immediately after a mode set, the
results are unpredictable.

■ Subfunctions OlH and llH are reserved on the MCGA. If either is called, Subfunction
04H is executed.

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunctions 02H and 12H (18)
Load ROM 8-by-8 font

Loads the ROM BIOS default 8-by-8 font table into the specified block of character generator RAM.

Call with:

Returns:

Notes:

AH =llH
AL = 02H or 12H (see Notes)
BL = block

Nothing

■ This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int lOH Function 1 lH Sub­
functions 20H-24H.

■ If AL = 12H, page O must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated . The controller is reprogrammed with
the maximum scan line (points - 1), cursor start (points- 2), cursor end (points -
1), vertical display end ((rows• points) - 1), and underline location (points- 1,
mode 7 only).

If Subfunction 12H is called at any time other than immediately after a mode set, the
results are unpredictable.

■ On the MCGA, a Subfunction 02H call should be fo llowed by a Subfunction 03H call,
so that the ROM BIOS will load the font into the character generator's internal font
pages.

■ Subfunction 12H is reserved on the MCGA. If it is called, Subfunction 02H is
executed.

IBM ROM BIOS and Mouse Functions Reference 519

IntlOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 03H
Set block specifier

Determines the character blocks selected by bit 3 of character attribute bytes in alphanumeric (text)
display modes.

Call with:

Returns:

Notes:

AH
AL

= llH
= 03H

BL = character generator block select code (see Notes)

Nothing

■ On the EGA and MCGA, the bits of BL are used as follows:
Bits Significance
0-1 character block selected by attribute bytes with bit 3 = 0
2-3 character block selected by attribute bytes with bit 3 = 1
4-7 not used (should be 0)

■ On the VGA, the bits of BL are used as follows:
Bits Significance
0,1,4 character block selected by attribute bytes with bit 3 = 0
2,3,5 character block selected by attribute bytes with bit 3 = 1
6-7 not used (should be 0)

■ When using a 256-character set, both fields of BL should select the same character
block. In such cases, character attribute bit 3 controls the foreground intensity.
When using 512-character sets, the fields of BL designate the blocks holding each
half of the character set, and bit 3 of the character attribute selects the upper or
lower half of the character set.

■ When using a 512-character set, a call to Int lOH Function lOH Subfunction OOH
with BX = 0712H is recommended to set the color planes to eight consistent colors.

Int lOH [MCGA] [VGA]
Function llH (17) Subfunctions 04H and 14H (20)
Load ROM 8-by-16 font

Loads the ROM BIOS default 8-by-16 font table into the specified block of character generator RAM.

Call with: AH =llH
AL = 04H or 14H (see Notes)
BL = block

520 Section III

Returns:

Notes:

Nothing

■ This function provides font selection in text (alphanumeric) display modes. For font
selection in graphics (all-points-addressable) modes, see Int lOH Function llH Sub­
functions 20H-24H.

■ If AL = 14H, page 0 must be active. The points (bytes per character), rows, and
length of the refresh buffer are recalculated. The controller is reprogrammed with
the maximum scan line (points - 1), cursor start (points - 2), cursor end (points -
1), vertical display end (rows• points - 1 for 350- and 400-line modes, or rows
•points •2 - 1 for 200-line modes), and underline location (points - 1, mode 7
only).

If Subfunction 14H is called at any time other than immediately after a mode set, the
results are unpredictable.

■ On the MCGA, a Subfunction 04H call should be followed by a Subfunction 03H call
so that the ROM BIOS will load the font into the character generator's internal font
pages.

■ Subfunction 14H is reserved on the MCGA. If it is called, Subfunction 04H is
executed.

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 20H (32)
Set Int 1FH font pointer

Sets the Int lFH pointer to the user's font table. This table is used for character codes 80H-FFH in
graphics modes 04H-06H.

Call with:

Returns:

Note:

AH
AL
ES:BP

Nothing

= llH
= 20H
= segment:offset of font table

■ This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int l0H Function 1 lH
Subfunctions 00H-14H.

■ If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

IBM ROM BIOS and Mouse Functions Reference 521

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 21H (33)
Set Int 43H for user's font

Sets the vector for Int 43H to point to the user's font table and updates the video ROM BIOS data area. The
video controller is not reprogrammed.

Call with:

Returns:

Notes:

AH = llH
AL = 21H
BL = character rows specifier

OOH if user specified (see register DL)
OlH = 14 (OEH) rows
O2H = 25 (19H) rows
O3H = 43 (2BH) rows

CX = points (bytes per character)
DL = character rows per screen (if BL = OOH)
ES:BP = segment:offset of user font table

Nothing

■ This function provides font selection in graphics (al l-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int lOH Function llH
Subfunctions OOH-14H.

■ If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 22H (34)
Set Int 43H for ROM 8-by-14 font

Sets the vector for Int 43H to point to the ROM BIOS default 8-by-14 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

Call with: AH = llH
AL = 22H
BL = character rows specifier

OOH if user specified (see register DL)
OlH = 14 (OEH) rows
O2H = 25 (19H) rows
O3H = 43 (2BH) rows

DL = character rows per screen (if BL = OOH)

522 Section III

Returns:

Notes:

Nothing

■ This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int lOH Function llH
Subfunctions OOH-14H.

■ If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

■ When this subfunction is called on the MCGA, Subfunction 24H is substituted.

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 23H (35)
Set Int 43H for ROM 8-by-8 font

Sets the vector for Int 43H to point to the ROM BIOS default 8-by-8 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

Call with:

Returns:

Notes:

IntlOH

AH
AL

= llH
= 23H

BL = character rows specifier
OOH if user specified (see register DL)
OIH = 14 (OEH) rows
02H = 25 (19H) rows
03H = 43 (2BH) rows

DL = character rows per screen (if BL = OOH)

Nothing

■ This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int lOH Function 1 lH
Subfunctions OOH-14H.

■ If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable .

[MCGA] [VGA]
Function llH (17) Subfunction 24H (36)
Set Int 43H for ROM 8-by-16 font

Sets the vector for Int 43H to point to the ROM BIOS default 8-by-16 font and updates the video ROM BIOS
data area. The video controller is not reprogrammed.

IBM ROM BIOS and Mouse Functions Reference 523

Call with:

Returns:

Note:

AH
AL

BL

= llH
= 24H
= row specifier

OOH
OJH
O2H
O3H

if user specified (see register DL)
= 14 (OEH) rows
= 25 (19H) rows
= 43 (2BH) rows

DL = character rows per screen (if BL = OOH)

Nothing

■ This function provides font selection in graphics (all-points-addressable) display
modes. For font selection in text (alphanumeric) modes, see Int lOH Function llH
Subfunctions OOH-14H.

■ If this subfunction is called at any time other than immediately after a mode set, the
results are unpredictable.

Int lOH [EGA] [MCGA] [VGA]
Function llH (17) Subfunction 30H (48)
Get font information

Returns a pointer to the character definition table for a font and the points (bytes per character) and rows
for that font.

Call with:

Returns:

AH
AL

BH

ex
DL
ES:BP

524 Section Ill

= llH
= 30H
= font code

OOH
OlH
O2H
O3H
O4H
O5H
O6H
O7H

= current Int JFH contents
= current Int 43H contents
= ROM 8-by-14/ont (EGA, VGA only)
= ROM 8-by-8/ont (characters OOH-7FH)
= ROM 8-by-8/ont (characters BOH-FFH)
= ROM alternate 9-by-14/ont (EGA, VGA only)
= ROM 8-by-16/ont (MCGA, VGA only)
= ROM alternate 9-by-16/ont (VGA only)

= points (bytes per character)
= rows (character rows on screen - 1)
= segment:offset of font table

IntlOH [EGA] [VGA]
Function 12H (18) Subfunction lOH (16)
Get configuration information

Obtains configuration information for the active video subsystem.

Call with:

Returns:

Notes:

AH

BL
= 12H
= lOH

BH = display type
0 if color display
1 if monochrome display

BL = memory installed on EGA board
OOH if64KB
OJH if 128KB
O2H if192KB
O3H if256KB

CH = feature bits (see Notes)
CL = switch setting (see Notes)

■ The feature bits are set from Input Status register O in response to an output on the
specified Feature Control register bits:
Feature Feature control Input status
bit(s) output bit bit
0 0 5
1 0 6
2

3
4-7

1
1
not used

5
6

■ The bits in the switch settings byte indicate the state of the EGA's configuration DIP
switch (1 = off, 0 = on).
Bit(s) Significance
0 configuration switch 1
1 configuration switch 2
2 configuration switch 3
3 configuration switch 4
4-7 not used

IBM ROM BIOS and Mouse Functions Reference 525

lntlOH
Function 12H (18) Subfunction 20H (32)
Select alternate printscreen

[EGA] [VGA]

Selects an alternate print-screen routine for the EGA and VGA that works properly if the screen length is
not 25 lines. The ROM BIOS default print-screen routine always prints 25 lines.

Call with: AH = 12H
BL = 20H

Returns: Nothing

Int lOH [VGA]
Function 12H (18) Subfunction 30H (48)
Set scan lines

Selects the number of scan lines for alphanumeric modes. The selected value takes effect the next time Int
lOH Function OOH is called to select the display mode.

Call with: AH = 12H

Returns:

lntlOH

AL = scan line code
OOH = 200 scan lines
OJH = 350 scan lines
02H = 400 scan lines

BL = 30H

If the VGA is active
AL = 12H

If the VGA is not active
AL = OOH

Function 12H (18) Subfunction 31H (49)
Enable/ disable default palette loading

[MCGA] [VGA]

Enables or disables loading of a default palette when a video display mode is selected.

526 Section III

Call with: AH = 12H
AL = OOH to enable default palette loading

OlH to disable default palette loading
BL = 31H

Returns: If function supported
AL = 12H

Int lOH [MCGA] [VGA]
Function 12H (18) Subfunction 32H (50)
Enable/ disable video

Enables or disables CPU access to the video adapter's I/O ports and video refresh buffer.

Call with: AH
AL

= 12H
= OOH to enable access

OlH to disable access
BL = 32H

Returns: If function supported
AL = 12H

Int lOH [MCGA] [VGA]
Function 12H (18) Subfunction 33H (51)
Enable/ disable gray-scale summing

Enables or disables gray-scale summing for the currently active display.

Call with:

Returns:

Note:

AH = 12H
AL = OOH to enable gray-scale summing

OlH to disable gray-scale summing
BL = 33H

If function supported
AL = 12H

■ When enabled, gray~scale summing occurs during display mode selection, palette
programming, and color register loading.

IBM ROM BIOS and Mouse Functions Reference 527

IntlOH
Function 12H (18) Subfunction 34H (52)
Enable/ disable cursor emulation

[VGA]

Enables or disables cursor emulation for the currently active display. When cursor emulation is enabled,
the ROM BIOS automatically remaps Int lOH Function OlH cursor starting and ending lines for the current
character cell dimensions.

Call with: AH
AL

= 12H
= OOH to enable cursor emulation

OlH to disable cursor emulation
BL = 34H

Returns: If function supported
AL = 12H

Int lOH [MCGA] [VGA]
Function 12H (18) Subfunction 35H (53)
Switch active display

Allows selection of one of two video adapters in the system when memory usage or port addresses
conflict between the two adapters.

Call with:

Returns:

AH
AL

BL
ES:DX

= 12H
= switching function

OOH to disable initial video adapter
OJH to enable system board video adapter
O2H to disable active video adapter
O3H to enable inactive video adapter

= 35H
= segment:offset of 128-byte buffer (if AL = OOH, 02H, or 03H)

If function supported
AL = 12H

and, if called with AL = OOH or 02H
Video adapter state information saved in caller's buffer

or, if called with AL = 03H
Video adapter state restored from information in caller's buffer

528 Section III

Notes:

IntlOH

■ This subfunction cannot be used unless both video adapters have a disable capa­
bility (Int lOH Function 12H Subfunction 32H).

■ If there is no conflict between the system board video and the adapter board video
in memory or port usage, both video controllers can be active simultaneously and
this subfunction is not required.

[VGA]
Function 12H (18) Subfunction 36H (54)
Enable/ disable screen refresh

Enables or disables the video refresh for the currently active display.

Call with: AH = 12H
AL = OOH to enable refresh

OlH to disable refresh
BL = 36H

Returns: If function supported
AL = 12H

Int lOH [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 13H (19)
Write string in teletype mode

Transfers a string to the video buffer for the currently active display, starting at the specified position.

Call with: AH = 13H
AL = write mode

0 attribute in BL;
string contains character codes only; and cursor position is not
updated after write

1 attribute in BL;
string contains character codes only; and cursor position is
updated after write

2 string contains alternating character codes and attribute bytes;
and cursor position is not updated after write

3 string contains alternating character codes and attribute bytes;
and cursor position is updated after write

IBM ROM BIOS and Mouse Functions Reference 529

Returns:

Notes:

lntlOH

BH
BL
ex
DH
DL
ES:BP

Nothing

= page
= attribute, if AL = OOH or OlH
= length of character string
= y coordinate (row)
= x coordinate (column)
= segment:offset of string

■ This function is not avai lable on the original IBM PC or PC/XT unless an EGA video
adapter (which contains its own ROM BIOS) is installed.

■ This function may be thought of as an extension to Int lOH Function OEH. The con­
trol characters bell (07H), backspace (08H), line feed (OAH), and carriage return
(ODH) are recognized and handled appropriately.

[PS/2]
Function 1AH (26)
Get or set display combination code

Returns a code describing the installed display adapter(s) or updates the ROM BIOS's variable describing
the installed adapter(s).

Callw:ith:

Returns:

AH =lAH
AL = subfunction

OOH = get display combination code
OlH = set display combination code

BH = inactive display code (if AL = OlH)
BL = active display code (if AL = OlH)

If function supported
AL = lAH

and, if called with AL = OOH
BH = inactive display code
BL = active display code

Note: ■ The display codes are interpreted as follows:
Code(s) Video subsystem type
OOH no display
OlH MDA with 5151 monitor
02H CGA with 5153 or 5154 monitor
03H reserved
04H EGA with 5153 or 5154 monitor

530 Section III

IntlOH

Code(s)
05H
06H
07H
08H
09H
0AH
0BH
OCH
0DH-FEH
FFH

Video subsystem type
EGA with 5151 monitor
PGA with 5175 monitor
VGA with analog monochrome monitor
VGA with analog color monitor
reserved
MCGA with digital color monitor
MCGA with analog monochrome monitor
MCGA with analog color monitor
reserved
unknown

[PS/2]
Function 1BH (27)
Get functionality/ state information

Obtains information about the current display mode as well as a pointer to a table describing the charac­
teristics and capabilities of the video adapter and monitor.

Call with:

Returns:

Notes:

= lBH AH
BX
ES:DI

= implementation type (always OOH)
= segment:offset of 64-byte buffer

If function supported
AL = lBH

and information placed in caller's buffer (see Notes)

■ The caller's buffer is filled in with information that depends on the current video
display mode:
Byte(s) Contents
00H-03H pointer to functionality information (see next Note)
04H current video mode
05H-06H number of character columns
07H-08H length of video refresh buffer (bytes)
09H-0AH starting address in buffer of upper left corner of display
0BH-lAH cursor position for video pages 0-7 as eight 2-byte entries; first byte of

each pair is y coordinate, second byte is x coordinate
lBH cursor starting line
lCH cursor ending line
lDH active display page
lEH-lFH adapter base port address (3BXH monochrome, 3DXH color)
20H current setting of register 3B8H or 3D8H

IBM ROM BIOS and Mouse Functions Reference 531

Byte(s)
21H
22H
23H-24H
25H
26H
27H-28H
29H
2AH

2BH
2CH
2DH

2EH-30H
31H

Contents
current setting of register 3B9H or 3D9H
number of character rows
character height in scan lines
active display code (see Int lOH Function lAH)
inactive display code (see Int lOH Function lAH)
number of displayable colors (0 for monochrome)
number of display pages
number of scan lines
OOH = 200 scan lines
01H = 350 scan lines
02H = 400 scan lines
03H = 480 scan lines
04H-FFH = reserved
primary character block (see Int lOH Function 1 lH Subfunction 03H)
secondary character block
miscellaneous state information
Bit(s) Significance
0 = 1 if all modes on all displays active (always 0 on MCGA)
1 = 1 if gray-scale summing active
2 = 1 if monochrome display attached
3 = 1 if mode set default palette loading disabled
4 = 1 if cursor emulation active (always 0 on MCGA)
5 = state of 1/B toggle (0 = intensity, 1 = blink)
6-7 = reserved
reserved
video memory available
OOH =64KB
01H = 128KB
02H = 192KB
03H =256KB

32H save pointer state information
Bit(s) Significance
0 = 1 if 512-character set active
1 = 1 if dynamic save area active
2 = 1 if alpha font override active
3 = 1 if graphics font override active
4 = 1 if palette override active
5 = 1 if display combination code (DCC) extension active
6-7 = reserved

33H-3FH reserved

532 Section III

■ Bytes 0-3 of the caller's buffer contain a DWORD pointer (offset in lower word,
segment in upper word) to the following information about the display adapter
and monitor:
Byte(s) Contents
OOH video modes supported

Bit Significance
0 = 1 if mode OOH supported
1 = 1 if mode 0lH supported
2 = 1 if mode 02H supported
3 = 1 if mode 03H supported
4 = 1 if mode 04H supported
5 = 1 if mode 0SH supported
6 = 1 if mode 06H supported
7 = 1 if mode 07H supported

0lH video modes supported
Bit Significance
0 = 1 if mode 08H supported
1 = 1 if mode 09H supported
2 = 1 if mode 0AH supported
3 = 1 if mode 0BH supported
4 = 1 if mode OCH supported
5 = 1 if mode 0DH supported
6 = 1 if mode 0EH supported
7 = 1 if mode 0FH supported

02H video modes supported

03H-06H
07H

08H
09H
0AH

Bit(s) Significance
0 = 1 if mode lOH supported
1 = 1 if mode llH supported
2 = 1 if mode 12H supported
3 = 1 if mode 13H supported
4-7 = reserved
reserved
scan lines available in text modes
Bit(s) Significance
0 = 1 if 200 scan lines
1 = 1 if 350 scan lines
2 = 1 if 400 scan lines
3-7 = reserved
character blocks available in text modes (see Int lOH Function 1 lH)
maximum number of active character blocks in text modes
miscellaneous BIOS capabilities
Bit Significance
0 = 1 if all modes active on all displays (always 0 for MCGA)
1 = 1 if gray-scale summing available
2 = 1 if character font loading available
3 = 1 if mode set default palette loading available
4 = 1 if cursor emulation available
5 = 1 if EGA (64-color) palette available
6 = 1 if color register loading available
7 = 1 if color register paging mode select available

IBM ROM BIOS and Mouse Functions Reference 533

Byte(s)
OBH

Contents
miscellaneous BIOS capabilities
Bit(s) Significance
0 = 1 if light pen available
1 = 1 if save/ restore video state available (always O on

MCGA)
2 = 1 if background intensity/ blinking control available
3 = 1 if get/ set display combination code available
4- 7 = reserved

OCH-ODH reserved
OEH save area capabilities

Bit(s) Significance
0 = 1 if supports 512-character sets
1 = 1 if dynamic save area available
2 = 1 if alpha font override available
3 = 1 if graphics font override available
4 = 1 if palette override available
5 = 1 if display combination code extension available
6- 7 = reserved

OFH reserved

Int lOH [PS/2]
Function lCH (28)
Save or restore video state

Saves or restores the digital-to-analog converter (DAC) state and color registers, ROM BIOS video driver
data area, or video hardware state.

Call with: AH = lCH
AL = subfunction

OOH to get state buffer size
OJH to save state
O2H to restore state

CX = requested states
Bit(s) Significance (if set)
0 save/ restore video hardware state
1 save/ restore video BIOS data area
2 save/ restore video DAC state and color registers
3-15 reserved

ES:BX = segment:offset of buffer

Returns: If function supported
AL =lCH

534 Section Ill

Notes:

Int llH

and, if called with AL = OOH
BX = buffer block count (64 bytes per block)

or, if cal led with AL = OlH
State information placed in caller's buffer

or, if called with AL = 02H
Requested state restored according to contents of caller's buffer

■ Subfunction OOH is used to determine the size of buffer that will be necessary to
contain the specified state information. The caller must supply the buffer.

■ The current video state is altered during a save state operation (AL = 0lH). If the
requesting program needs to continue in the same video state, it can follow the save
state request with an immediate call to restore the video state.

■ This function is supported on the VGA only.

[PC] [AT] [PS/2]
Get equipment configuration

Obtains the equipment list code word from the ROM BIOS.

Call with: Nothing

Returns: AX = equipment list code word
Bit(s) Significance
0 = 1 if floppy disk drive(s) installed
1 = 1 if math coprocessor installed
2 = 1 if pointing device installed (PS/ 2)
2-3 system board ram size (PC, see Note)

00 = 16 KB
01 = 32 KB
10 = 48 KB
11 = 64KB

4-5 initial video mode
00 reserved
01 40-by-25 color text
10 80-by-25 color text
11 80-by-25 monochrome

6-7 number of floppy disk drives (if bit 0 = 1)
00 = 1
01 = 2
10 = 3
11 = 4

8 reserved
9-11 number of RS-232 ports installed
12 = 1 if game adapter installed

IBM ROM BIOS and Mouse Functions Reference 535

Bit(s)
13

14-15

Significance
= 1 if internal modem installed (PC and XT only)
= 1 if serial printer attached (PCjr)

number of printers installed

Note: ■ Bits 2-3 of the returned value are used only in the ROM BIOS for the original
IBM PC with the 64 KB system board and on the PCjr.

Int 12H [PC] [AT] [PS/2]
Get conventional memory size

Returns the amount of conventional memory available for use by MS-DOS and application programs.

Call with:

Returns:

Notes:

Int13H

Nothing

AX = memory size (in KB)

■ On some early PC models, the amount of memory returned by this function is con­
trolled by the settings of the dip switches on the system board and may not reflect
all the memory that is physically present.

■ On the PC/ AT, the value returned is the amount of functional memory found during
the power-on self-test, regardless of the memory size configuration information
stored in CMOS RAM.

■ The value returned does not reflect any extended memory (above the 1 MB bound­
ary) that may be installed on 80286 or 80386 machines such as the PC/ AT or PS/ 2
(Models 50 and above).

[PC] [AT] [PS/2]
Function OOH
Reset disk system

Resets the disk controller, recalibrates its attached drives (the read/write arm is moved to cylinder 0), and
prepares for disk I/0.

Call with: AH = OOH
DL = drive

536 Section II I

OOH-7FH floppy disk
BOH-FFH fixed disk

Returns: If function successful
Carry flag = clear
AH = OOH

If funct ion unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

Notes: ■ This function should be called after a fa iled floppy disk Read, Write, Verify, or For-
mat request before retrying the operation.

■ If called with DL >= 80H (i.e., selecting a fixed disk drive), the floppy disk controller
and then the fixed disk controller are reset. See also Int 13H Function ODH, which
allows the fixed disk control ler to be reset without affecting the floppy disk
controller.

Int 13H [PC] [AT] [PS/2]
Function OlH
Get disk system status

Returns the status of the most recent disk operation.

Call with:

Returns:

AH = OlH
DL = drive

AH

OOH- 7FH floppy disk
BOH-FFH fixed disk

= OOH
AL = status of previous disk operation

OOH no error
OlH invalid command
02H address mark not found
03H disk write-protected (F)
04H sector not found
05H reset failed (H)
06H floppy disk removed (F)
07H bad parameter table (H)
0BH DMA overrun (F)
09H DMA crossed 64 KB boundary
OAH bad sector flag (H)
0BH bad track.flag (H)
OCH media type not found (F)
ODH invalid number of sectors on format (H)
OEH control data address mark detected (H)
0FH DMA arbitration level out of range (H)

IBM ROM BIOS and Mouse Functions Reference 537

JOH uncorrectable CRC1 or ECC2 data error
1 JH ECC corrected data error (H)

20H controller failed
40H seek/ailed
BOH disk timed-out (failed to respond)
AAH drive not ready (H)
BBH undefined error (H)
CCH write fault (HJ
EOH status register error (HJ
FFH sense operation failed (H)

H = fixed disk only, F = floppy disk only

1 Cyclic Redundancy Check code
2 Error Checking and Correcting code

Note: ■ On fixed disks, error code 1 lH (ECC data error) indicates that a recoverable error
was detected during a preceding Read Sector (Int 13H Function 02H) function.

Int 13H [PC] [AT] [PS/2]
Function 02H
Read sector

Reads one or more sectors from disk into memory.

Call with:

Returns:

AH = 02H
AL = number of sectors
CH = cylinder
CL = sector
DH = head
DL = drive

OOH-7FH floppy disk
BOH-FFH fixed disk

ES:BX = segment:offset of buffer

If function successful
Carry flag = clear
AH = OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 0lH)

538 Section III

Notes: ■ On fixed disks, the upper 2 bits of the 10-bit cylinder number are placed in the up­
per 2 bits of register CL.

■ On fixed disks, error code 1 lH indicates that a read error occurred that was cor­
rected by the ECC algorithm; in this event, register AL contains the burst length. The
data returned is probably good, although there is a small chance that the data was
not corrected properly. If a multi-sector transfer was requested, the operation was
terminated after the sector containing the read error.

■ On floppy disk drives, an error may result from the drive motor being off at the time
of the request. The ROM BIOS does not automatically wait for the drive to come up
to speed before attempting the read operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that the error results from some other cause.

Int13H
Function 03H
Write sector

[PC] [AT] [PS/2]

Writes one or more sectors from memory to disk.

Call with:

Returns:

Notes:

AH = 03H
AL = number of sectors
CH = cylinder
CL = sector
DH = head
DL = drive

00H- 7FH floppy disk
80H-FFH fixed disk

ES:BX = segment:offset of buffer

If function successful
Carry flag = clear
AH = OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ On fixed disks, the upper 2 bits of the 10-bit cylinder number are placed in the up­
per 2 bits of register CL.

■ On floppy disk drives, an error may result from the drive motor being off at the time
of the request. The ROM BIOS does not automatically wait for the drive to come up

IBM ROM BIOS and Mouse Functions Reference 539

to speed before attempting the write operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that the error results from some other cause.

Int13H
Function 04H
Verify sector

[PC] [AT] [PS/2]

Verifies the address fields of one or more sectors. No data is transferred to or from memory by this
operation.

Call with:

Returns:

Notes:

AH
AL
CH
CL
DH
DL

= 04H
= number of sectors
= cylinder
= sector
= head
= drive

OOH-7FH floppy disk
BOH-FFH fixed disk

ES:BX = segment:offset of buffer (see Notes)

If function successful
Carry flag = clear
AH = OOH
AL = number of sectors verified

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ On PCs, PC/XTs, and PC/ ATs with ROM BIOS dated earlier than 11/ 15/85, ES:BX
should point to a valid buffer.

■ On fixed disks, the upper 2 bits of the 10-bit cylinder number are placed in the up­
per 2 bits of register CL.

• This function can be used to test whether a readable media is in a floppy disk drive.
An error may result from the drive motor being off at the time of the request,
because the ROM BIOS does not automatically wait for the drive to come up to
speed before attempting the verify operation. The requesting program should reset
the floppy disk system (Int 13H Function OOH) and retry the operation three times
before assuming that a readable floppy disk is not present.

540 Section Ill

Int13H
Function 05H
Format track

[PC] [AT] [PS/2]

Initializes disk sector and track address fields on the specified track.

Call with:

Returns:

Notes:

AH
AL

CH
DH
DL

= 05H
= interleave (PC/ XT fixed disks)
= cylinder
= head
= drive

OOH-7FH floppy disk
80H-FFH fixed disk

ES:BX = segment:offset of address field list (except PC/XT fixed disk, see Note)

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ On floppy disks, the address field list consists of a series of 4-byte entries, one entry
per sector, in the following format:
Byte Contents
0 cylinder
1 head
2 sector
3 sector-size code

OOH if 128 bytes per sector
OlH if 256 bytes per sector
02H if 512 bytes per sector (standard)
03H if 1024 bytes per sector

• On floppy disks, the number of sectors per track is taken from the BIOS floppy disk
parameter table whose address is stored in the vector for Int lEH.

• When this function is used for floppy disks on the PC/ AT or PS/2, it should be pre­
ceded by a call to Int 13H Function 17H to select the type of medium to be
formatted.

■ On fixed disks, the upper 2 bits of the 10-bit cylinder number are placed in the up­
per 2 bits of register CL.

IBM ROM BIOS and Mouse Functions Reference 541

Int13H

■ On PC / XT-286, PC / AT, and PS/ 2 fixed disks, ES:BX points to a 512-byte buffer con­
taining byte pairs for each physical disk sector, as follows:

Byte Contents
0 OOH for good sector

80H for bad sector
1 sector number

For example, to format a track with 17 sectors and an interleave of two, ES:BX would
point to the following 34-byte array at the beginning of a 512-byte buffer:

db
db
db

00h,Olh ,00 h,Oah,00h,0 2h,00h,Obh,00h,03h , 00h,O ch
00h,04h,00h,Odh,00h,05h,00h,Oeh,00h,06h,00h,Ofh
00h,07h,00h,10h,00h,08h,00h,llh,00h ,0 9h

[PC]
Function 06H
Format bad track

Initializes a track, writing disk address fields and data sectors and setting bad sector flags .

Call with:

Returns:

Notes:

AH = 06H
AL = interleave
CH = cylinder
DH = head
DL = drive

BOH-FFH

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set

fixed disk

AH = status (see Int 13H Function OlH)

• This function is defined for PC/XT fixed disk drives only.

• For additional information, see Notes for Int 13H Function OSH.

542 Section III

Int13H
Function07H
Format drive

[PC]

Formats the entire drive, writing disk address fields and data sectors, starting at the specified cylinder.

Call with:

Returns:

Notes:

AH =O7H
AL = interleave
CH = cylinder
DL = drive

80H--FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is defined for PC/ XT fixed disk drives only.

■ For additional information, see Notes for Int 13H Function O5H.

Int13H
Function 08H
Get drive parameters

Returns various parameters for the specified drive.

Call with:

Returns:

AH = O8H
DL = drive

00H-7FH floppy disk
80H--FFH fixed disk

If funct ion successful
Carry flag = clear
BL = drive type (PC / AT and PS/ 2 floppy disks)

0lH if 360 KB, 40 track, 5.25"
02H if 1.2 MB, 80 track, 5.25"
03H if 720 KB, 80 track, 35''
04H if 1.44 MB, 80 track, 3.5"

[PC] [AT] [PS/2]

IBM ROM BIOS and Mouse Functions Reference 543

Notes:

CH
CL

DH
DL
ES:DI

= low 8 bits of maximum cylinder number
= bits 6-7 high-order 2 bits of maximum cylinder number

bits 0-5 maximum sector number
= maximum head number
= number of drives
= segment:offset of d isk drive parameter table

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function 0lH)

■ On the PC and PC/XT, this function is supported on fixed disks only.

■ The value returned in register DL reflects the true number of physical drives at­
tached to the adapter for the requested drive.

lnt13H
Function 09H

[PC] [AT] [PS/2]

Initialize fixed disk characteristics

Initializes the fixed disk controller for subsequent 1/ 0 operations, using the values found in the ROM
BIOS disk parameter block(s).

Call with:

Returns:

AH
DL

= 09H
= drive

BOH-FFH fixed disk

and, on the PC/ XT
Vector for Int 41H must point to disk parameter block

or, on the PC / AT and PS/ 2
Vector for Int 41H must point to disk parameter block for drive 0
Vector for Int 46H must point to disk parameter block for drive 1

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

544 Section III

Notes:

Int13H

• This function is supported on fixed disks only.

• For PC and PC/XT fixed disks, the parameter block format is as follows:
Byte(s) Contents
00H- 0lH maximum number of cylinders
02H maximum number of heads
03H- 04H starting reduced write current cylinder
05H-06H starting write precompensation cylinder
07H maximum ECC burst length
08H drive options

Bit(s) Significance (if set)
0-2 drive option
3-5 reserved (0)
6 disable ECC retries
7 disable disk-access retries

09H standard time-out value
0AH time-out value for format drive
0BH time-out value for check drive
0CH-0FH reserved

• For PC/ AT and PS/ 2 fixed disks, the parameter block format is as follows:
Byte(s) Contents
00H-0lH maximum number of cylinders
02H maximum number of heads
03H- 04H reserved
05H-06H starting write precompensation cylinder
07H maximum ECC burst length
08H drive options

Bit(s) Significance (if set)
0-2 not used
3 more than 8 heads
4 not used
5 manufacturer's defect map present at maximum

09H-0BH
0CH-0DH
0EH
0FH

cylinder+ 1
6-7 nonzero (10, 01 , or 11) if retries disabled
reserved
landing zone cylinder
sectors per track
reserved

[PC] [AT] [PS/2]
Function OAH (10)
Read sector long

Reads a sector or sectors from disk into memory, along with a 4-byte ECC code for each sector.

IBM ROM BIOS and Mouse Functions Reference 545

Call with:

Returns:

Notes:

Int13H

AH
AL
CH
CL
DH
DL

ES:BX

=OAH
= number of sectors
= cylinder
= sector (see Notes)
= head
= drive

BOH--FFH fixed disk
= segment:offset of buffer

If function successful
Carry flag = clear
AH = OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is supported on fixed disks only.

■ The upper 2 bits of the 10-bit cylinder number are placed in the upper 2 bits of
register CL.

■ Unlike the normal Read Sector function (Int 13H Function O2H), ECC errors are not
automatically corrected. Multisector transfers are terminated after any sector with a
read error.

[PC] [AT] [PS/2]
Function OBH (11)
Write sector long

Writes a sector or sectors from memory to disk. Each sector's worth of data must be followed by its 4-byte
ECC code.

Call with: AH
AL
CH
CL
DH
DL

ES:BX

546 Section III

= OBH
= number of sectors
= cylinder
= sector (see Notes)
= head
= drive

BOH--FFH fixed disk
= segment:offset of buffer

Returns:

Notes:

Int13H

If function successful
Carry flag = clear
AH = OOH
AL = number of sectors transferred

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is supported on fixed disks only.

• The upper 2 bits of the 1O-bit cylinder number are placed in the upper 2 bits of
register CL.

[PC] [AT] [PS/2]
Function OCH (12)
Seek

Positions the disk read/write heads to the specified cylinder, but does not transfer any data.

Call with:

Returns:

Notes:

= OCH AH
CH
CL
DH
DL

= lower 8 bits of cylinder
= upper 2 bits of cylinder in bits 6-7
= head
= drive

80H-FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is supported on fixed disks only.

• The upper 2 bits of the 10-bit cylinder number are placed in the upper 2 bits of
register CL.

• The Read Sector, Read Sector Long, Write Sector, and Write Sector Long functions
include an implied seek operation and need not be preceded by an explicit call to
this function .

IBM ROM BIOS and Mouse Functions Reference 547

Int13H
Function OOH (13)
Reset fixed disk system

[PC] [AT] [PS/2]

Resets the fixed disk controller, recalibrates attached drives (moves the read/write arm to cylinder 0), and
prepares for subsequent disk I/0.

Call with:

Returns:

AH
DL

=ODH
= drive

BOH--FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

Note: ■ This function is supported on fixed disks only. It differs from Int 13H Function OOH
in that the floppy disk controller is not reset.

lnt13H
Function 0EH (14)
Read sector buffer

[PC]

Transfers the contents of the fixed disk adapter's internal sector buffer to system memory. No data is read
from the physical disk drive.

Call with:

Returns:

AH
ES:BX

= OEH
= segment:offset of buffer

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

Note: ■ This function is supported by the PC/XT's fixed disk adapter only. It is not defined
for fixed disk adapters on the PC/ AT or PS/2.

548 Section Ill

Int13H [PC]
Function OFH (15)
Write sector buffer

Transfers data from system memory to the fixed disk adapter's internal sector buffer. No data is written to
the physical disk drive.

Call with:

Returns:

Notes:

lnt13H

AH
ES:BX

= OFH
= segment:offset of buffer

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is supported by the PC/XT's fixed disk adapter only. It is not defined
for fixed disk adapters on the PC/ AT or PS/ 2.

■ This function should be called to initialize the contents of the sector buffer before
formatt ing the drive with Int 13H Function O5H.

[PC] [AT] [PS/2]
Function lOH (16)
Get drive status

Tests whether the specified fixed disk drive is operational and returns the drive's status.

Call with:

Returns:

Note:

AH
DL

= lOH
= drive

80H-FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is supported on fixed disks only.

IBM ROM BIOS and Mouse Functions Reference 549

Int 13H
Function llH (17)
Recalibrate drive

[PC] [AT] [PS/2] .

Causes the fixed disk adapter to recalibrate itself for the specified drive, positioning the read/write arm to
cylinder 0, and returns the drive's status.

Call with:

Returns:

Note:

Int13H

AH
DL

= llH
= drive

80H--FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is supported on fixed disks only.

Function 12H (18)
Controller RAM diagnostic

[PC]

Causes the fixed disk adapter to carry out a built-in diagnostic test on its internal sector buffer, indicating
whether the test was passed by the returned status.

Call with:

Returns:

AH = 12H

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

Note: ■ This function is supported on PC/XT fixed disks only.

550 Section Ill

Int13H
Function 13H (19)
Controller drive diagnostic

[PC]

Causes the fixed disk adapter to run internal diagnostic tests of the attached drive, indicating whether the
test was passed by the returned status.

Call with:

Returns:

Note:

Int 13H

AH = 13H

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is supported on PC / XT fixed disks only.

Function 14H (20)
Controller internal diagnostic

[PC] [AT] [PS/ 2)

Causes the fixed disk adapter to carry out a built-in diagnostic self-test, indicating whether the test was
passed by the returned status.

Call with:

Returns:

Note:

AH = 14H

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

• This function is supported on fixed disks only.

IBM ROM BIOS and Mouse Functions Reference 551

Int13H
Function 15H (21)
Get disk type

[AT] [PS/2)

Returns a code indicating the type of floppy or fixed disk referenced by the specified drive code.

Call with:

Returns:

AH
DL

= 15H
= drive

OOH-7FH floppy disk
BOH-FFH fixed disk

If function successful
Carry flag = clear
AH = drive type code

OOH if no drive present
OlH if floppy disk drive without change-line support
02H if floppy disk drive with change-line support
03H if fixed disk

and, if fixed disk (AH = 03H)
CX:DX = number of 512-byEe sectors

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

Note: ■ This function is not supported on the PC or PC / XT.

lnt13H [AT] [PS/2)
Function 16H (22)
Get disk change status

Returns the status of the change line, indicating whether the disk in the drive may have been replaced
since the last disk access.

Call with: AH
DL

552 Section III

= 16H
= drive

OOH-7FH floppy disk

Returns:

Notes:

Intl3H

If change line inactive (disk has not been changed)
Carry flag = clear
AH = OOH

If change line active (disk may have been changed)
Carry flag = set
AH = 06H

■ If this function returns with the carry flag set, the disk has not necessarily been
changed; the change line can be activated by simply unlocking and locking the disk
drive door without removing the floppy disk.

■ This function is not supported for floppy disks on the PC or PC / XT.

[AT] [PS/2]
Function 17H (23)
Set disk type

Selects a floppy disk type for the specified drive.

Call with:

Returns:

Notes:

AH = 17H
AL = floppy disk type code

OOH not used
0lH 320/360 KB floppy disk in 360 KB drive
02H 320/360 KB floppy disk in 1.2 MB drive
03H 1.2 MB floppy disk in 1.2 MB drive
04H 720 KB floppy disk in 720 KB drive

SL = drive
00H-7FH floppy disk

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is not supported for floppy disks on the PC or PC / XT.

■ If the change line is ac tive for the specified drive, it is reset. The ROM BIOS then sets
the data rate for the specified drive and media type.

I BM ROM BIOS and Mouse Functions Reference 553

Int13H
Function 18H (24)
Set media type for format

Selects media characteristics for the specified drive.

Call with:

Returns:

Notes:

AH
CH
CL

DL

= 18H
= number of cylinders
= sectors per track
= drive

00H-7FH floppy disk

If function successful
Carry flag = clear
AH = OOH
ES:DI = segment:offset of disk parameter table for media type

If funct ion unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ A floppy disk must be present in the drive.

[AT] [PS/2]

■ This function should be called prior to formatt ing a disk with Int 13H Function O5H
so that the ROM BIOS can set the correct data rate for the media .

■ If the change line is active for the specified drive, it is reset.

Int 13H
Function 19H (25)
Park heads

[PS/2]

Moves the read/ write arm to a track that is not used for data storage, so that data will not be damaged
when the drive is turned off.

Call with:

Returns:

AH
DL

= 19H
= drive

80H-FFH fixed disk

If function successful
Carry flag = clear
AH = OOH

554 Section III

Note:

Int13H

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This function is defined for PS/ 2 fixed disks only.

[PS/2)
Function 1AH (26)
Format ESDI drive

Initializes disk sector and track address fields on a drive attached to the ESDI Fixed Disk Drive Adapter/ A.

Call with:

Returns:

Notes:

AH
AL

CL

DL

ES:BX

= lAH
= relative block address (RBA) defect table count

0 if no REA table
>0 if REA table used

= format modifier bits
Bit(s) Significance (if set)
0 ignore primary defect map
1 ignore secondary defect map
2 update secondary defect map (see Notes)
3 perform extended surface analysis
4 generate periodic interrupt (see Notes)
5-7 reserved (must be 0)

= drive
B0H--FFH fixed disk

= segment:offset of RBA table

If funct ion successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 13H Function OlH)

■ This operation is sometimes called a "low level format" and prepares the d isk for
physical read/ write operations at the sector level. The drive must be subsequently
partitioned with the FDISK command and then given a "high level format" with the
FORMAT command to install a file system.

IBM ROM BIOS and Mouse Functions Reference 555

■ If bit 4 of register CL is set, Int 15H is called with AH = OFH and AL = phase code
after each cylinder is formatted or analyzed. The phase code is defined as:

0 = reserved
1 = surface analysis
2 = formatting

See also Int 15H Function OFH.

■ If bit 2 of register CL is set, the drive's secondary defect map is updated to reflect er­
rors found during surface analysis. If both bit 2 and bit 1 are set, the secondary defect
map is replaced.

■ For an extended surface analysis, the disk should first be formatted by calling this
function with bit 3 cleared, then analyzed by calling this function with bit 3 set.

Int14H
Function OOH

[PC] [AT] [PS/2]

Initialize communications port

Initializes a serial communications port to a desired baud rate, parity, word length, and number of
stop bits.

Call with:

Returns:

AH = OOH
AL = initialization parameter (see Notes)
DX = communications port number (O = CO Ml, 1 = COM2, etc.)

AH = port, status
Bit
0
1
2

3
4
5
6
7

Significance (if set)
receive data ready
overrun error detected
parity error detected
framing error detected
break detected
transmit holding register empty
transmit shift register empty
timed-out

AL = modem status
Bit Significance (if set)
0 change in clear-to-send status
1 change in data-set-ready status
2 trailing edge ring indicator
3 change in receive line signal detect
4 clear-to-send
5 data-set-ready
6 ring indicator
7 receive line signal detect

556 Section III

Notes: ■ The initialization parameter byte is defined as follows:

765 43 2 10
Baud rate
000 = 110
001 = 150
010 = 300
011 = 600
100 = 1200
101 = 2400
110 = 4800
111 = 9600

Parity
XO= none
01 = odd
11 = even

Stop bits
0 = 1 bit
1 = 2 bits

Word length
10 = 7 bits
11 = 8 bits

■ To initialize the serial port for data rates greater than 9600 baud on PS/ 2 machines,
see Int 14H Functions 04H and 0SH.

Int14H
Function OlH

[PC] [AT] [PS/2]

Write character to communications port

Writes a character to the specified serial communications port, returning the current status of the port.

Call with:

Returns:

AH = 0lH
AL = character
DX = communications port number (0 = CO Ml, 1 = COM2, etc.)

If function successful
AH bit 7 = 0
AH bits 0-6 = port status

Bit
0
1
2

3
4

Significance (if set)
receive data ready
overrun error detected
parity error detected
framing error detected
break detected

5 transmit holding register empty
6 transmit shift register empty

AL = character (unchanged)

If function unsuccessful (timed-out)
AH bit 7 = 1
AL = character (unchanged)

IBM ROM BIOS and Mouse Functions Reference 557

Int14H
Function 02H

[PC] [AT] [PS/2]

Read character from communications port

Reads a character from the specified serial communications port, also returning the port's status.

Call with:

Returns:

AH
DX

=02H
= communications port number (0 = COMl, 1 = COM2, etc.)

If function successful
AH bit7 = 0
AH bits 0-6 = status

Bit Significance (if set)
1 overrun error detected
2 parity error detected
3 framing error detected
4 break detected

AL = character

If function unsuccessful (timed-out)
AH bit 7 = 1

lnt14H
Function 03H

[PC] [AT] [PS/2]

Get communications port status

Returns the status of the specified serial communications port.

Call with:

Returns:

AH
DX

AH
AL

lnt14H
Function 04H

= 03H
= communications port number (0 = COMl, 1 = COM2, etc.)

= port status (see Int 14H Function OOH)
= modem status (see Int 14H Function OOH)

Extended initialize communications port

[PS/2]

Initializes a serial communications port to a desired baud rate, parity, word length, and number of stop
bits. Provides a superset of Int 14H Function OOH capabilities for PS/ 2 machines.

558 Section Ill

Call with: AH = 04H
AL = break flag

OOH no break
01H break

BH = parity
OOH none
01H odd
02H even
03H stick parity odd
04H stick parity even

BL = stop bits
OOH 1 stop bit
01H 2 stop bits if word length = 6--8 bits
01H 1.5 stop bits if word length = 5 bits

CH = word length
OOH 5 bits
01H 6 bits
02H 7 bits
03H 8 bits

CL = baud rate
OOH 110baud
01H 150baud
02H 300baud
03H 600baud
04H 1200baud
05H 2400baud
06H 4800baud
07H 9600 baud
08H 19,200 baud

DX = communications port number (0 = CO Ml, 1 = COM2, etc.)

Returns: AH
AL

lnt14H
Function 05H

= port status (see Int 14H Function OOH)
= modem status (see Int 14H Function OOH)

Extended communications port control

Reads or sets the modem control register (MCR) for the specified serial communications port.

Call with: AH = 05H
AL = subfunction

OOH to read modem control register
01H to write modem control register

[PS/2]

IBM ROM BIOS and Mouse Functions Reference 559

BL = modem control register contents (if AL= OlH)
Bit(s) Significance
0 data-terminal ready
1 request-to-send
2 Outl
3 Out2
4 loop (for testing)
5-7 reserved

DX = communications port number (O = COMl, 1 = COM2, etc.)

Returns: If called with AL = OOH
BL = modem control register contents (see above)

If called with AL = OlH
AH = port status (see Int 14H Function OOH)
AL = modem status (see Int 14H Function OOH)

Int 15H [PC]
Function OOH
Turn on cassette motor

Turns on the motor of the cassette tape drive.

Call with:

Returns:

AH = OOH

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status

86H if cassette not present

Note: ■ This function is available only on the PC and the PCjr. It is not supported on the
PC / XT and all subsequent models.

IntlSH [PC]
Function OlH
Turn off cassette motor

Turns off the motor of the cassette tape drive.

560 Section III

Call with:

Returns:

AH = OlH

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status

86H if cassette not present

Note: ■ This function is available only on the PC and the PCjr. It is not supported on the
PC/ XT and all subsequent models.

Int15H [PC]
Function 02H
Read cassette

Reads one or more 256-byte blocks of data from the cassette tape drive to memory.

Call with:

Returns:

Note:

= 02H AH
ex
ES:BX

= number of bytes to read
= segment:offset of buffer

If function successful
Carry flag = clear
DX = number of bytes actually read
ES:BX = segment:offset + 1 of last byte read

If function unsuccessful
Carry flag = set
AH = status

OlH
02H
04H
80H
86H

ifCRCerror
if bit signals scrambled
if no data found
if invalid command
if cassette not present

■ This function is available only on the PC and on the PCjr. It is not supported on the
PC/ XT and all subsequent models.

IBM ROM BIOS and Mouse Functions Reference 561

lnt15H
Function 03H
Write cassette

Writes one or more 256-byte blocks of data from memory to the cassette tape drive.

Call with:

Returns:

AH
ex
ES:BX

= 03H
= number of bytes to write
= segment:offset of buffer

If function successful
Carry flag = clear
ex = OOH
ES:BX = segment:offset + 1 of last byte written

If funct ion unsuccessful
Carry flag = set
AH = status

80H if invalid command
86H if cassette not present

[PC]

Note: ■ This function is available only on the PC and on the PCjr. It is not supported on the
PC / XT and all subsequent models.

Int 15H [PS/2]
Function OFH (15)
Format ESDI drive periodic interrupt

Invoked by the ROM BIOS on the ESDI Fixed Disk Drive Adapter/ A during a format or surface analysis
operation after each cylinder is completed.

Call with:

Returns:

AH
AL

= OFH
= phase code

0 = reserved
1 = surf ace analysis
2 = formatting

If formatting or analysis should continue
Carry flag = clear

If formatt ing or analysis should be terminated
Carry flag = set

562 Section Ill

Notes: ■ This function call can be captured by a program so that it will be notified as each
cylinder is formatted or analyzed. The program can count interrupts for each phase
to determine the current cylinder number.

■ The default ROM BIOS handler for this function returns with the carry flag set.

Int 15H [PS/2]
Function 21H (33) Subfunction OOH
Read POST error log

Returns error information that was accumulated during the most recent power-on self-test (POST).

Call with:

Returns:

AH
AL

= 21H
= OOH

If function successful
Carry flag = clear
AH = OOH
BX = number of POST error codes stored
ES:DI = segment:offset of POST error log

If function unsuccessful
Carry flag = set
AH = status

BOH = invalid command
86H = Junction not supported

Notes: ■ The error log consists of single-word entries. The first byte of an entry is the device
error code, and the second is the device identifier.

■ This function is not available on the PS/ 2 Models 25 and 30.

Int 15H [PS/2]
Function 21H (33) Subfunction OlH
Write POST error log

Adds an entry to the power-on self-test (POST) error log.

Call with: AH
AL

= 21H
= OlH

BH = device identifier
BL = device error code

IBM ROM BIOS and Mouse Functions Reference 563

Returns:

Note:

Int15H

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

OlH
BOH
86H

= error list f ult
= invalid command
= Junction not supported

■ This funct ion is not available on the PS/ 2 Models 25 and 30.

Function 4FH (79)
Keyboard intercept

Invoked for each keystroke by the ROM BIOS's Int 09H keyboard interrupt handler.

Call with:

Returns:

AH = 4FH
AL = scan code

If scan code consumed
Carry flag = clear

If scan code not consumed
Carry flag = set
AL = unchanged or new scan code

[PS/2]

Notes: ■ An operating system or a resident ut ility can capture this function to filter the raw
keyboard data stream. The new handler can substitute a new scan code, return the
same scan code, or return the carry flag clear causing the keystroke to be discarded.
The default ROM BIOS routine simply returns the scan code unchanged.

■ A program can call Int 15H Function C0H to determine whether the host machine's
ROM BIOS supports this keyboard intercept.

Int15H
Function 80H (128)
Device open

Acquires ownership of a logical device for a process.

564 Section III

[AT] [PS/2]

Call with:

Returns:

Note:

Int15H

AH = 8OH

BX = device ID
CX = process ID

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

■ This function call, along with Int 15H Functions 81H and 82H, defines a simple pro­
tocol that can be used to arbitrate usage of devices by multiple processes. A multi­
tasking program manager would be expected to capture Int 15H and provide the
appropriate service. The default BIOS routine for this function simply returns with
the carry flag clear and AH = OOH.

[AT] [PS/2]
Function 81H (129)
Device close

Releases ownership of a logical device for a process.

Call with:

Returns:

Note:

AH
BX
ex

= 81H
= device ID
= process ID

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

■ A multitasking program manager would be expected to capture Int 15H and provide
the appropriate service. The default BIOS routine for this function simply returns
with the carry flag clear and AH= OOH. See also Int 15H Functions 8OH and 82H.

IBM ROM BIOS and Mouse Functions Reference 565

Int15H
Function 82H (130)
Process termination

Releases ownership of all logical devices for a process that is about to terminate.

Call with:

Returns:

AH
BX

=82H
= process ID

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

[AT] [PS/2]

Note: ■ A multitasking program manager would be expected to capture Int 15H and provide
the appropriate service. The default BIOS routine for this function simply returns
with the carry flag clear and AH = OOH. See also Int 15H Functions 8OH and 81H.

Int 15H [AT] [PS/2]
Function 83H (131)
Event wait

Requests setting of a semaphore after a specified interval or cancels a previous request.

Call with:

Returns:

If requesting event wait
AH = 83H
AL = OOH
CX:DX
ES:BX

= microseconds
= segment:offset of semaphore byte

If canceling event wait
AH = 83H
AL = OlH

If called with AL= OOH, and function successful
Carry flag = clear

If called with AL= OOH, and function unsuccessful (Event Wait already active)
Carry flag = set

If called with AL = OlH
Nothing

566 Section III

Notes:

lnt15H

■ The function call returns immediately. If the function is successful, bit 7 of the sema­
phore byte is set when the specified interval has elapsed. The calling program is
responsible for clearing the semaphore before requesting this function.

■ The actual duration of an event wait is always an integral multiple of 976 microsec­
onds. The CMOS date/ clock chip interrupts are used to implement this function.

■ Use of this function allows programmed, hardware-independent delays at a finer
resolution than can be obtained through use of the MS-DOS Get Time function Ont
21H Function 2CH, which returns time in hundredths of a second).

■ See also Int 15H Function 86H, which suspends the calling program for the specified
interval in milliseconds.

■ This function is not supported on the PS/ 2 Models 25 and 30.

[AT] [PS/2]
Function 84H (132)
Read joystick

Returns the joystick switch settings and potentiometer values.

Call with:

Returns:

Notes:

AH
DX

= 84H
= subfunction

OOH to read switch settings
OlH to read resistive inputs

If function successful
Carry flag = clear

and, if called with DX = OOH
AL = switch settings (bits 4-7)

or, if called with DX = OlH
AX = A(x) value
BX = A(y) value
CX = B(x) value
DX = B(y) value

If function unsuccessful
Carry flag = set

■ An error condition is returned if DX does not contain a valid subfunction number.

■ If no game adapter is installed, AL is returned as OOH for Subfunction OOH (i.e.,
all switches open); AX, BX, CX, and DX are returned containing OOH for Subfunc­
tion 0lH.

■ Using a 250 KOhm joystick, the potentiometer values usually lie within the
range 0-416 (0000-0lA0H).

IBM ROM BIOS and Mouse Functions Reference 567

Int15H [AT] [PS/2]
Function 85H (133)
SysReqkey

Invoked by the ROM BIOS keyboard driver when the SysReq key is detected.

Call with:

Returns:

Note:

Int15H

AH = 85H
AL = key status

OOH if key make (depression)
OlH if key break (release)

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

■ The ROM BIOS handler for this function call is a dummy routine that always returns
a success status unless called with an invalid subfunction number in AL. A multitask­
ing program manager would be expected to capture Int 15H so that it can be
notified when the user strikes the SysReq key.

[AT] [PS/2]
Function 86H (134)
Delay

Suspends the calling program for a specified interval in microseconds.

Call with:

Returns:

Notes:

AH
CX:DX

=86H
= microseconds to wait

If function successful (wait was performed)
Carry flag = clear

If function unsuccessful (wait was not performed)
Carry flag = set

■ The actual duration of the wait is always an integral multiple of 976 microseconds.

■ Use of this function allows programmed, hardware-independent delays at a finer
resolution than can be obtained through use of the MS-DOS Get Time function
(Int 21H Function 2CH, which returns time in hundredths of a second).

568 Section I JI

IntlSH

■ See also Int 15H Function 83H, which triggers a semaphore after a specified interval
but does not suspend the calling program.

[AT] [PS/2]
Function 87H (135)
Move extended memory block

Transfers data between conventional memory and extended memory.

Call with:

Returns:

Notes:

AH
ex
ES:SI

=87H
= number of words to move
= segment:offset of Global Descriptor Table (see Notes)

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

OlH if RAM parity error
02H if exception interrupt error
03H if gate address line 20 Jailed

■ Conventional memory lies at addresses below the 640 KB boundary, and is used for
the execution of MS-DOS and its application programs. Extended memory lies at ad­
dresses above 1 MB, and can only be accessed by an 80286 or 80386 CPU running in
protected mode. As much as 15 MB of extended memory can be installed in an IBM
PC/ AT or compatible.

■ The Global Descriptor Table (GDT) used by this function must be set up as follows:
Byte(s) Contents
00H-0FH reserved (should be 0)
lOH-llH
12H-14H
15H
16H-17H
18H-19H
lAH-lCH
lDH
1EH-2FH

segment length in bytes (2•CX- 1 or greater)
24-bit source address
access rights byte (always 93H)
reserved (should be 0)
segment length in bytes C2•CX - 1 or greater)
24-bit destination address
access rights byte (always 93H)
reserved (should be 0)

The table is composed of six 8-byte descriptors to be used by the CPU in protected
mode. The four descriptors in offsets 00H-0FH and 20H-2FH are filled in by the
ROM BIOS before the CPU mode switch.

IBM ROM BIOS and Mouse Functions Reference 569

Int15H

■ The addresses used in the descriptor table are linear (physical) 24-bit addresses in
the range 000000H-FFFFFFH-not segments and offsets-with the least significant
byte at the lowest address and the most significant byte at the highest address.

■ The block move is performed with interrupts disabled; thus, use of this function may
interfere with the operation of communications programs, network drivers, or other
software that relies on prompt servicing of hardware interrupts.

■ Programs and drivers that access extended memory with this function cannot be
executed in the Compatibility Environment of OS/ 2.

■ This function is not supported on the PS/ 2 Models 25 and 30.

[AT] [PS/2]
Function 88H (136)
Get extended memory size

Returns the amount of extended memory installed in the system.

Call with:

Returns:

Notes:

Int 15H

AH = 88H

AX = amount of extended memory (in KB)

■ Extended memory is memory at addresses above 1 MB, which can only be accessed
by an 80286 or 80386 CPU running in protected mode. Because MS-DOS is a real­
mode operating system, extended memory can be used for storage of volatile data
but cannot be used for execution of programs.

■ Programs and drivers that use this function cannot be executed in the Compatibility
Environment of OS/ 2.

■ This function is not supported on the PS/ 2 Models 25 and 30.

[AT] [PS/2]
Function 89H (137)
Enter protected mode

Switches the CPU from real mode into protected mode.

Call with: AH
BH

BL

ES:SI

570 Section III

= 89H
= interrupt number for IRQ0, written to ICW2 of 8259 PIC #l (must be

evenly divisible by 8, determines IRQ0-IRQ7)
= interrupt number for IRQ8, written to ICW2 of 8259 PIC #2 (must be

evenly divisible by 8, determines IRQ&---IRQ15)
= segment:offset of Global Descriptor Table (GDT)

Returns:

Notes:

Int15H

If function successful (CPU is in protected mode)
Carry flag = clear
AH = OOH
CS = user-defined selector
DS = user-defined selector
ES = user-defined selector
SS = user-defined selector

If function unsuccessful (CPU is in real mode)
Carry flag = set
AH = FFH

■ The Global Descriptor Table must contain eight descriptors set up as follows:
Offset Descriptor usage
OOH dummy descriptor (initialized to 0)
08H Global Descriptor Table (GDT)
lOH Interrupt Descriptor Table (IDT)
18H user's data segment (DS)
20H user's extra segment (ES)
28H user's stack segment (SS)
30H user's code segment (CS)
38H BIOS code segment

The user must initialize the first seven descriptors; the eighth is filled in by the ROM
BIOS to provide addressability for its own execution. The calling program may modi­
fy and use the eighth descriptor for any purpose after return from this function call.

■ This function is not supported on the PS/ 2 Models 25 and 30.

[AT] [PS/2]
Function 90H (144)
Device wait

Invoked by the ROM BIOS fixed disk, floppy d isk, printer, network, and keyboard drivers prior to per­
forming a programmed wait for I/0 completion.

Call with: AH
AL

ES:BX

= 90H
= device type

00H-7FH serially reusable devices
B0H-BFH reentrant devices
C0H-FFH wait-only calls, no corresponding Post function

= segment:offset of request block for device types 80H- FFH

IBM ROM BIOS and Mouse Functions Reference 571

Returns:

Notes:

Int15H

If no wait (driver must perform its own time-out)
Carry flag = clear
AH = OOH

If wait was performed
Carry flag = set

■ Predefined device types are:
OOH disk (may time-out)
OlH floppy disk (may time-out)
02H keyboard (no time-out)
03H pointing device (PS/2, may time-out)
80H network (no time-out)
FCH fixed disk reset (PS/2, may time-out)
FDH floppy disk drive motor start (may time-out)
FEH printer (may time-out)

■ For network adapters, ES:BX points to a network control block (NCB).

■ A multitasking program manager would be expected to capture Int 15H Function
90H so that it can dispatch other tasks while I/0 is in progress. The default BIOS
routine for this function simply returns with the carry flag clear and AH = OOH.

[AT] [PS/2]
Function 91H (145)
Device post

Invoked by the ROM BIOS fixed disk, floppy disk, network, and keyboard drivers to signal that I/0 is
complete and/ or the device is ready.

Call with:

Returns:

AH
AL

ES:BX

AH

= 91H
= device type

OOH-7FH serially reusable devices
BOH-BFH reentrant devices

= segment:offset of request block for device types 80H-BFH

= OOH

Notes: ■ Predefined device types that may use Device Post are :
OOH disk (may time-out)
OlH floppy disk (may time-out)
02H keyboard (no time-out)
03H pointing device (PS/ 2, may time-out)
80H network (no time-out)

572 Section III

Int15H

■ The ROM BIOS printer routine does not invoke this function because printer output
is not interrupt driven.

■ A multitasking program manager would be expected to capture Int 15H Function
91H so that it can be notified when I/0 is completed and awaken the requesting
task. The default BIOS routine for this function simply returns with the carry flag
clear and AH = OOH.

[AT] [PS/2]
Function COH (192)
Get system environment

Returns a pointer to a table containing various information about the system configuration.

Call with: AH = COH

Returns: ES:BX = segment:offset of configuration table (see Notes)

Notes: ■ The format of the system configuration table is as follows:
Byte(s) Contents
OOH- OlH length of table in bytes
02H system model (see following Note)
03H system submode! (see following Note)
04H BIOS revision level
OSH configuration flags

Bit Significance (if set)
0 reserved
1 Micro Channel implemented
2 extended BIOS data area allocated
3 Wait for External Event is available
4 keyboard intercept Ont lSH Function 4FH) available
5 real-time clock available
6 slave 8259 present (cascaded IRQ2)
7 OMA channel 3 used

06H-09H reserved

■ The system model and type bytes are assigned as follows:
Machine Model byte Submode/ byte
PC FFH
PC / XT FEH
PC / XT FBH OOH orOlH
PCjr FDH
PC / AT FCH OOH orOlH
PC / XT-286 FCH 02H
PC Convertible F9H

IBM ROM BIOS and Mouse Functions Reference 573

Machine Model byte Submode! byte
PS/ 2 Model 30 FAH OOH
PS/ 2 Model 50 FCH 04H
PS/ 2 Model 60 FCH 05H
PS/ 2 Model 70 F8H 04H or09H
PS/ 2 Model 80 F8H OOH orOlH

Int15H [PS/2]
Function ClH (193)
Get address of extended BIOS data area

Returns the segment address of the base of the extended BIOS data area.

Call with:

Returns:

Notes:

Int15H

AH = ClH

If function successful
Carry flag = clear
ES = segment of extended BIOS data area

If function unsuccessful
Carry flag = set

■ The extended BIOS data area is allocated at the high end of conventional memory
during the POST (Power-On-Self-Test) sequence. The word at 0040:0013H (memory
size) is updated to reflect the reduced amount of memory available for MS-DOS and
application programs. The first byte in the extended BIOS data area is initialized to
its length in KB.

■ A program can determine whether the extended BIOS data area exists with Int 15H
Function C0H.

[PS/2]
Function C2H (194) Subfunction OOH
Enable/ disable pointing device

Enables or disables the system's mouse or other pointing device.

Call with: AH = C2H
AL = OOH
BH = enable/ disable flag

OOH = disable
01H = enable

574 Section III

Returns:

lnt15H

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status

OJH
02H
03H
04H
05H

if invalid function call
if invalid input
if interface error
if resend
if no far call installed

[PS/2]
Function C2H (194) Subfunction OlH
Reset pointing device

Resets the system's mouse or other pointing device, setting the sample rate, resolution, and other charac­
teristics to their default values.

Call with:

Returns:

Notes:

AH
AL

= C2H
= OlH

If function successful
Carry flag = clear
AH = OOH
BH = device ID

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

■ After a reset operation, the state of the pointing device is as follows:

- disabled;
- sample rate at 100 reports per second;
- resolution at 4 counts per millimeter;
- and scaling at 1 to 1.

The data package size is unchanged by this function.

■ The application can use the other Int 15H Function C2H subfunctions to initialize
the pointing device to other sample rates, resolution, and scaling, and then enable
the device with Int 15H Function C2H Subfunction OOH.

■ See also Int 15H Function C2H Subfunction 05H, which incidentally resets the point­
ing device in a similar manner.

IBM ROM BIOS and Mouse Functions Reference 575

IntlSH
Function C2H (194) Subfunction 02H
Set sample rate

Sets the sampling rate of the system's mouse or other pointing device.

Call with:

Returns:

AH = C2H
AL = 02H
BH = sample rate value

OOH = 10 reports per second
01H = 20 reports per second
02H = 40 reports per second
03H = 60 reports per second
04H = 80 reports per second
05H = 100 reports per second
06H = 200 reports per second

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

[PS/2]

Note: ■ The default sample rate is 100 reports per second after a reset operation (Int 15H
Function C2H Subfunction OlH).

IntlSH
Function C2H (194) Subfunction 03H
Set resolution

_Sets the resolution of the system's mouse or other pointing device.

Call with: AH
AL

=C2H
= 03H

BH = resolution value
OOH = 1 count per millimeter
01H _ = 2 counts per millimeter
02H = 4 counts per millimeter
03H = 8 counts per millimeter

576 Section III

[PS/2]

Returns: If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

Note: ■ The default resolution is 4 counts per millimeter after a reset operation (Int 15H
Function C2H Subfunction OlH).

Int15H
Function C2H (194) Subfunction 04H
Get pointing device type

Returns the identification code for the system's mouse or other pointing device.

Call with:

Returns:

Int15H

AH
AL

= C2H
=O4H

If function successful
Carry flag = clear
AH = OOH
BH = device ID

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

Function C2H (194) Subfunction 05H
Initialize pointing device interface

[PS/2]

[PS/2]

Sets the data package size for the system's mouse or other pointing device, and initializes the resolution,
sampling rate, and scaling to their default values.

Call with: AH
AL

=C2H
=OSH

BH = data package size in bytes (1-8)

IBM ROM BIOS and Mouse Functions Reference 577

Returns:

Note:

Int 15H

If function successful
Carry flag = clear
AH = OOH

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

■ After this operation, the state of the pointing device is as follows:

- disabled;
- sample rate at 100 reports per second;
- resolution at 4 counts per millimeter;
- and scaling at 1 to 1.

Function C2H (194) Subfunction 06H
Set scaling or get status

[PS/2]

Returns the current status of the system's mouse or other pointing device or sets the device's scaling
factor.

Call with:

Returns:

AH
AL

= C2H
= 06H

BH = extended command
OOH = return device status
OlH = set scaling at 1:1
O2H = set scaling at 2: 1

If function successful
Carry flag = clear
AH = OOH

and, if called with BH = OOH
BL = status byte

Bit
0
1
2

3
4

5

6

7

Significance
= 1 if right button pressed
= reserved
= 1 if left button pressed
= reserved
= 0 if 1:1 scaling

1 if 2: 1 scaling
= 0 if device disabled

1 if device enabled
= 0 if stream mode

1 if remote mode
= reserved

578 Section Ill

CL = resolution
OOH = 1 count per millimeter
OlH = 2 counts per millimeter
02H = 4 counts per millimeter
03H = 8 counts per millimeter

DL = sample rate
OAH = 10 reports per second
14H = 20 reports per second
28H = 40 reports per second
3CH = 60 reports per second
50H = 80 reports per second
64H = 100 reports per second
CBH = 200 reports per second

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

Int 15H [PS/2]
Function C2H (194) Subfunction 0711
Set pointing device handler address

Notifies the ROM BIOS pointing device driver of the address for a routine to be called each time pointing
device data is available.

Call with:

Returns:

Notes:

= C2H
= 07H

AH
AL
ES:BX = segment:offset of user routine

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AH = status (see Int 15H Function C2H Subfunction OOH)

■ The user's handler for pointing device data is entered via a far call with four parame­
ters on the stack:
SS:SP+OAH status
SS:SP+08H x coordinate
SS:SP+06H y coordinate
SS:SP+04H z coordinate (always O)

The handler must exit via a far return without removing the parameters from
the stack.

IBM ROM BIOS and Mouse Functions Reference 579

■ The status parameter passed to the user's handler is interpreted as follows:
Bit(s) Significance (if set)
0 left button pressed
1 right button pressed
2-3 reserved
4 sign of x data is negative
5 sign of y data is negative
6 x data has overflowed
7 y data has overflowed
8-15 reserved

Int 15H
Function C3H (195)
Set watchdog time-out

Enables or disables a watchdog timer.

Call with:

Returns:

Notes:

lnt15H

AH
AL

BX

= C3H
= subfunction

OOH to disable watchdog time-out
O1H to enable watchdog time-out

= watchdog timer counter (if AL = OlH)

If function successful
Carry flag = clear

If funct ion unsuccessful
Carry flag = set

■ The watchdog timer generates an NMI interrupt.

■ This function is not available on the PS/2 Models 25 and 30.

Function C4H (196)
Programmable option select

[PS/2]

[PS/2]

Returns the base Programmable Option Select register address, enables a slot for setup, or enables an
adapter.

580 Section Ill

Call with:

Returns:

Notes:

AH =C4H
AL = subfunction

OOH to return base POS adapter register address
OJH to enable slot
02H to enable adapter

BL = slot number (if AL = OlH)

If function successful
Carry flag = clear

and, if called with AL = OOH
DX = base POS adapter register address

If function unsuccessful
Carry flag = set

• This function is available only on machines using the Micro Channel Architecture
(MCA) bus.

■ After a slot is enabled with Subfunction OlH, specific information can be obtained
for the adapter in that slot by performing port input operations:
Port
10OH
1O1H
102H

103H
1O4H
105H

106H
1O7H

Function
MCA ID (low byte)
MCA ID (high byte)
Option Select Byte 1
bit O = 1 if enabled, = 0 if disabled
Option Select Byte 2
Option Select Byte 3
Option Select Byte 4
bits 6-7 = channel check indicators
Subaddress Extension (low byte)
Subaddress Extension (high byte)

lnt16H
Function OOH

[PC] [AT] [PS/2]

Read character from keyboard

Reads a character from the keyboard, also returning the keyboard scan code.

Call with:

Returns:

AH

AH
AL

= OOH

= keyboard scan code
= ASCII character

IBM ROM BIOS and Mouse Functions Reference 581

Int16H
Function Olli
Get keyboard status

[PC] [AT] [PS/2]

Determines whether a character is ready for input, returning a flag and also the character itself, if one
is waiting.

Call with: AH = OlH

Returns: If key waiting to be input
Zero flag = clear
AH = keyboard scan code
AL = character

If no key waiting
Zero flag = set

Note: ■ The character returned by this function when the zero flag is clear is not removed
from the type-ahead buffer. The same character and scan code will be returned by
the next call to Int 16H Function OOH.

Int 16H [PC] [AT] [PS/2]
Function 02H
Get keyboard flags

Returns the ROM BIOS flags byte that describes the state of the various keyboard toggles and shift keys.

Call with: AH = 02H

Returns: AL = flags
Bit Significance (if set)
0 right Shift key is down
1 left Shift key is down
2 Ctr! key is down
3 Alt key is down
4 Scroll Lock on
5 Num Lock on
6 Caps Lock on
7 Insert on

Note: ■ The keyboard flags byte is stored in the ROM BIOS data area at 0000:0417H.

582 Section Ill

Int16H
Function 03H
Set repeat rate

[PC] [AT] [PS/2]

Sets the ROM BIOS key repeat ("typematic") rate and delay.

Call with:

Returns:

Notes:

On the PC/ AT and PS/ 2
AH = 03H
AL = 05H
BH = repeat delay (see Notes)
BL = repeat rate (see Notes)

On the PCjr
AH = 03H
AL = subfunction

OOH to restore def a ult rate and delay
OJH to increase initial delay
02H to decrease repeat rate by one-half
03H to increase delay and decrease repeat rate by one-half
04H to turn off keyboard repeat

Nothing

■ Subfunctions 00H-04H are available on the PCjr but are not supported by the PC or
PC / XT ROM BIOS. Subfunction 05H is available on PC/ ATs with ROM BIOS's dated
11/ 15/85 and later, and on the PS/2 .

■ On the PC/ AT and PS/ 2, the value in BH controls the amount of delay before the first
repeat key is generated. The delay is always a multiple of 250 mill iseconds:
Value Delay (msec.)
OOH 250
0lH 500
02H 750
03H 1000

■ On the PC/ AT and PS/ 2, the value for the repeat rate in characters per second can be
chosen from the following table:
Value Repeat rate (characters per second)
OOH 30.0
0lH 26.7
02H 24.0
03H 21.8
04H 20.0
05H 18.5
06H 17.1
07H 16.0
08H 15.0

IBM ROM BIOS and Mouse Functions Reference 583

Value
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH
llH
12H
13H
14H
15H
16H
17H
18H
19H
lAH
lBH
lCH
lDH
lEH
lFH

Int16H
Function 04H
Set keyclick

Repeat rate (characters per second)
13.3
12.0
10.9
10.0

9.2
8.6
8.0
7.5
6.7
6.0
5.5
5.0
4.6
4.3
4.0
3.7
3.3
3.0
2.7
2.5
2.3
2.1
2.0

Turns the keyboard click on or off.

Call with: AH = 04H
AL = subfunction

OOH to turn off keyboard click
OlH to turn on keyboard click

Returns: Nothing

Note: ■ This function is supported by the PCjr BIOS only.

584 Section Ill

[PC]

Int16H
Function OSH
Push character and scan code

Places a character and scan code in the keyboard type-ahead buffer.

Call with:

Returns:

AH = OSH
CH = scan code
CL = character

If function successful
Carry flag = clear
AL = OOH

If function unsuccessful (type-ahead buffer is full)
Carry flag = set
AL = OlH

[AT] [PS/2]

Note: ■ This function can be used by keyboard enhancers and other utilities to interpolate
keys into the data stream seen by application programs.

Int 16H [AT] [PS/2]
Function lOH (16)
Read character from enhanced keyboard

Reads a character and scan code from the keyboard type-ahead buffer.

Call with:

Returns:

Note:

AH

AH
AL

= lOH

= keyboard scan code
= ASCII character

■ Use this function for the enhanced keyboard instead of Int 16H Function OOH. It
allows applications to obtain the scan codes for the additional Fll , F12, and cursor
control keys.

IBM ROM BIOS and Mouse Functions Reference 585

Int16H [AT] [PS/2]
Function llH (17)
Get enhanced keyboard status

Determines whether a character is ready for input, returning a flag and also the character itself, if one
is waiting.

Call with:

Returns:

Notes:

Int16H

AH = llH

If key waiting to be input
Zero flag = clear
AH = keyboard scan code
AL = character

If no key waiting
Zero flag = set

■ Use this function for the enhanced keyboard instead of Int 16H Function OOH. It
allows applications to test for the additional Fll, F12, and cursor control keys.

■ The character returned by this function when the zero flag is clear is not removed
from the type-ahead buffer. The same character and scan code will be returned by
the next call to Int 16H Function lOH.

[AT] [PS/2]
Function 12H (18)
Get enhanced keyboard flags

Obtains the status of various enhanced keyboard special keys and keyboard driver states.

Call with: AH

Returns: AX

586 Section Ill

= 12H

= flags
Bit
0
1
2
3
4
5
6
7
8

Significance (if set)
right Shift key is down
left Shift key is down
either Ctr! key is down
either Alt key is down
Scroll Lock toggle is on
Num Lock toggle is on
Caps Lock toggle is on
Insert toggle is on
left Ctr! key is down

Bit Significance (if set)
9 left Alt key is down

10 right Ctr! key is down
11 right Alt key is down
12 Scroll key is down
13 Num Lock key is down
14 Caps Lock key is down
15 SysReq key is down

Note: ■ Use this function for the enhanced keyboard instead of Int 16H Function 02H.

Int 17H [PC] [AT] [PS/2]
Function OOH
Write character to printer

Sends a character to the specified parallel printer interface port and returns the current status of the port.

Call with: AH = OOH
AL = character
DX = printer number CO = LPTl , 1 = LPT2, 2 = LPT3)

Returns: AH

Int17H

= status
Bit
0
1
2
3
4
5
6
7

Function Olli
Initialize printer port

Significance (if set)
printer timed-out
unused
unused
I/0 error
printer selected
out of paper
printer acknowledge
printer not busy

Initializes the specified parallel printer interface port and returns its status.

Call with: AH
DX

= OlH
= printer number CO = LPTl , 1 = LPT2, 2 = LPT3)

[PC] [AT] [PS/2]

IBM ROM BIOS and Mouse Functions Reference 587

Returns: AH = status (see Int 17H Function OOH)

lnt17H
Function 02H
Get printer status

Returns the current status of the specified parallel printer interface port.

Call with:

Returns:

AH
DX

AH

Int18H
ROM BASIC

= 02H
= printer number (0 = LPTl, 1 = LPT2, 2 = LPT3)

= status (see Int 17H Function OOH)

Transfers control to ROM BASIC.

Call with: Nothing

Returns: Nothing

[PC] [AT] [PS/2]

[PC] [AT] [PS/2]

Note: ■ This function is invoked when the system is turned on or restarted if attempts to
read a boot sector from the fixed disk or floppy disk drives are unsuccessful.

Int 19H [PC] [AT] [PS/2]
Reboot system

Reboots the operating system from the floppy disk or fixed disk drive.

Call with:

Returns:

Notes:

Nothing

Nothing

■ The bootstrap routine reads Sector 1, Track 0 into memory at location 0000:7C00H
and transfers control to the same address. If attempts to read a boot sector from the
floppy disk or fixed disk are unsuccessful, control is transferred to ROM BASIC by
execut ion of an Int 18H.

588 Section III

■ If location 0000:0472H does not contain the value 1234H, a memory test will be per­
formed before reading the boot sector.

IntlAH
Function OOH
Get tick count

[AT] [PS/2]

Returns the contents of the clock tick counter.

Call with:

Returns:

Notes:

AH

AL

CX:DX

= OOH

= rolled-over flag
OOH if midnight not passed since last read
<>OOH if midnight was passed since last read

= tick count (high 16 bits in CX)

■ This function is supported by the PC / XT and PCjr ROM BIOS, but is not present in
the ROM BIOS for the original PC.

■ The returned value is the cumulative number of clock ticks since midnight. There
are 18.2 clock ticks per second. When the counter reaches 1,573,040, it is cleared to
zero, and the rolled-over flag is set.

■ The rolled-over flag is cleared by this function call, so the flag will only be returned
nonzero once per day.

■ Int lAH Function OlH can be used to set the clock tick counter to an arbitrary
32-bit value.

IntlAH
FunctionOlH
Set tick count

[AT] [PS/2]

Stores a 32-bit value in the clock tick counter.

Call with:

Returns:

AH
CX:DX

Nothing

= OlH
= tick count (high 16 bits in CX)

IBM ROM BIOS and Mouse Functions Reference 589

Notes: ■ This function is supported by the PC / XT and PCjr ROM BIOS, but is not present in
the ROM BIOS for the original PC.

■ Int lAH Function OOH is used to read the value of the clock tick counter.

■ The rolled-over flag is cleared by this function call.

lntlAH
Function 02H
Get time

Reads the current time from the CMOS time/ date chip.

Call with:

Returns:

AH

CH
CL

= 02H

= hours in binary coded decimal (BCD)
= minutes in BCD

DH = seconds in BCD
DL = daylight-saving-time code

OOH if standard time
OJH if daylight saving time

and, if clock running
Carry flag = clear

or, if clock stopped
Carry flag = set

lntlAH
Function 03H
Set time

Sets the time in the CMOS time/date chip.

Call with: AH = 03H
CH = hours in binary coded decimal (BCD)
CL = minutes in BCD
DH = seconds in BCD
DL = daylight-saving-time code

OOH if standard time
OJH if daylight saving time

Returns: Nothing

590 Section III

[AT] [PS/2]

[AT] [PS/2]

IntlAH
Function 04H
Get date

Reads the current date from the CMOS time/ date chip.

Call with:

Returns:

AH

CH
CL
DH
DL

= 04H

= century (19 or 20) in binary coded decimal (BCD)
= year in BCD
= month in BCD
= day in BCD

and, if clock running
Carry flag = clear

or, if clock stopped
Carry flag = set

IntlAH
Function 05H
Set date

Sets the date in the CMOS time/ date chip.•

Call with: AH
CH
CL
DH
DL

Returns: Nothing

IntlAH
Function 06H
Set alarm

= 05H
= century (19 or 20) in binary coded decimal (BCD)
= year in BCD
= month in BCD
= day in BCD

Sets an alarm in the CMOS date/ time chip.

[AT] [PS/2]

[AT] [PS/2]

[AT] [PS/2]

IBM ROM BIOS and Mouse Functions Reference 591

Call with:

Returns:

AH
CH
CL
DH

= 06H
= hours in binary coded decimal (BCD)
= minutes in BCD
= seconds in BCD

If function successful
Carry flag = clear

If function unsuccessful (alarm already set, or clock stopped)
Carry flag = set

Notes: ■ A side effect of this funct ion is that the clock chip's interrupt level (IRQ8) is enabled.

■ Only one alarm may be active at any given time. The alarm occurs every 24 hours at
the specified time until it is reset with Int lAH Function 07H.

■ The program using this function must place the address of its interrupt handler for
the alarm in the vector for Int 4AH.

lntlAH
Function07H
Reset alarm

Cancels any pending alarm request on the CMOS date/ time chip.

Call with: AH = 07H

Returns: Nothing

[AT] [PS/2)

Note: ■ This function does not disable the clock chip's interrupt level (IRQ8).

Int 1AH [PS/2)
Function OAH (10)
Get day count

Returns the contents of the system's day counter.

Call with:

Returns:

AH = 0AH

If function successful
Carry flag = clear
CX = count of days since January 1, 1980

If function unsuccessful
Carry flag = set

592 Section III

IntlAH
Function OBH (11)
Set day count

Stores an arbitrary value in the system's day counter.

Call with:

Returns:

lntlAH

AH = OBH
CX = count of days since January 1, 1980

If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set

Function 80H (128)
Set sound source

Sets up the source for tones that wil l appear on the PCjr's "Audio Out" or RF modulator.

Call with: AH = 80H
AL = sound source

OOH if 8253 programmable timer, channel 2
OJH if cassette input
02H if "Audio In" line on 1/0 channel
03H if sound generator chip

Returns: Nothing

Note: ■ This function is supported on the PCjr only.

Int33H
Microsoft Mouse driver

[PS/2]

[PC]

The Microsoft Mouse driver makes its functions available to application programs via Int 33H. These
functions have become a de facto standard for pointer device drivers of al I varieties. Unlike the other
function calls described in this section, the Microsoft Mouse driver is not part of the ROM BIOS but is
loaded by a DEVICE= directive in the CONFIG.SYS file. All mouse-function information applies to the
Microsoft Mouse driver version 6. Earlier versions of the driver may not support all of these functions.

IBM ROM BIOS and Mouse Functions Reference 593

lnt33H
Function OOH
Reset mouse and get status

Initializes the mouse driver and returns the driver status. If the mouse pointer was previously visible, it is
removed from the screen, and any previously installed user handlers for mouse events are disabled.

Call with:

Returns:

Note:

AX = OOOOH

If mouse support is available
AX = FFFFH
BX = number of mouse buttons

If mouse support is not available
AX = OOOOH

■ After a call to this function, the mouse driver is initialized to the following state:

- Mouse pointer at screen center (see Int 33H Functions 03H and 04H)
- Display page for mouse pointer set to zero (see Int 33H Functions lDH and lEH)
- Mouse pointer hidden (see Int 33H Functions OlH, 02H, and lOH)
- Mouse pointer set to default arrow shape in graphics modes, or reverse block in

text modes (see Int 33H Functions 09H and OAH)
- User mouse event handler disabled (see Int 33H Functions OCH and 14H)
- Light pen emulation enabled (see Int 33H Functions ODH and OEH)
- Horizontal mickeys to pixels ratio at 8 to 8, vertical ratio at 16 to 8 (see Int 33H

Function OFH)
- Double speed threshold set to 64 mickeys/ second (see Int 33H Function 19H)
- Minimum and maximum horizontal and vertical pointer position limits set to in-

clude the entire screen in the current display mode (see Int 33H Functions 07H
and 08H)

lnt33H
Function OlH
Show mouse pointer

Displays the mouse pointer, and cancels any mouse pointer exclusion area previously defined with Int
33H Function lOH.

Call with: AX = 0001H

Returns: Nothing

594 Section Ill

Note: ■ A counter is maintained which is decremented by calls to Int 33H Function 02H
(Hide Mouse Pointer) and incremented (if nonzero) by this function. When the
counter is zero or becomes zero, the mouse pointer is displayed. When the mouse
driver is reset with Int 33H Function OOH, the counter is forced to -1 .

Int33H
Function 02H
Hide mouse pointer

Removes the mouse pointer from the display. The driver continues to track the mouse position.

Call with:

Returns:

Note:

AX = 0002H

Nothing

■ A counter is maintained which is decremented by calls to this function and incre­
mented (if nonzero) by Int 33H Function OlH (Show Mouse Pointer). When the
counter is zero, the mouse pointer is displayed. When the mouse driver is reset with
Int 33H Function OOH, the counter is forced to -1.

Int33H
Function 03H
Get mouse position and button status

Returns the current mouse button status and pointer position.

Call with:

Returns:

Note:

AX = 0003H

BX = mouse button status
Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

CX = horizontal (X) coordinate
DX = vertical (Y) coordinate

■ Coordinates are returned in pixels regardless of the current display mode. Position
(x,y) = (0,0) is the upper left corner of the screen.

IBM ROM BIOS and Mouse Functions Reference 595

Int33H
Function 04H
Set mouse pointer position

Sets the position of the mouse pointer. The pointer is displayed at the new position unless it has been
hidden with Int 33H Function 02H, or the new position lies within an exclusion area defined with Int 33H
Function lOH.

Call with:

Returns:

Notes:

AX
ex

= 0004H
= horizontal (X) coordinate

DX = vertical (Y) coordinate

Nothing

■ Coordinates are specified in pixels regardless of the current display mode. Position
(x,y) = (O,Q) is the upper left corner of the screen.

■ The position is adjusted if necessary to lie within the horizontal and vertical limits
specified with a previous call to Int 33H Functions 07H and 08H.

Int33H
Function OSH
Get button press information

Returns the current status of all mouse buttons, and the number of presses and position of the last press
for a specified mouse button since the last call to this function for that button. The press counter for the
button is reset to zero.

Call with:

Returns:

AX

BX

AX

= OOOSH
= button identifier

0 = left button
1 = right button
2 = center button

= button status
Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

BX = button press counter
CX = horizontal (X) coordinate of last button press
DX = vertical (Y) coordinate of last button press

596 Section III

Int33H
Function 06H
Get button release information

Returns the current status of all mouse buttons, and the number of releases and position of the last release
for a specified mouse button since the last call to this function for that button. The release counter for the
button is reset to zero.

Call with: AX = 0006H
BX = button identifier

0 = left button
1 = right button
2 = center button

Returns: AX = button status
Bit(s) Signfjlcance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

BX = button release counter
ex = horizontal (X) coordinate of last button release
DX = vertical (Y) coordinate of last button release

Int33H
Function07H
Set horizontal limits for pointer

Limits the mouse pointer display area by assigning minimum and maximum horizontal (X) coordinates
for the mouse pointer.

Call with:

Returns:

Notes:

AX =0007H
ex = minimum horizontal (X) coordinate
DX = maximum horizontal (X) coordinate

Nothing

■ If the minimum value is greater than the maximum value, the two values are
swapped.

■ The mouse pointer will be moved if necessary so that it lies within the specified
horizontal coordinates.

IBM ROM BIOS and Mouse Functions Reference 597

■ See also Int 33H Function lOH, which defines an exclusion area for the mouse
pointer.

Int33H
Function 08H
Set vertical limits for pointer

Limits the mouse pointer display area by assigning minimum and maximum vertical (Y) coordinates for
the mouse pointer.

Call with:

Returns:

Notes:

AX
ex

= 0008H
= minimum vertical (Y) coordinate

DX = maximum vertical (Y) coordinate

Nothing

■ If the minimum value is greater than the maximum value, the two values are
swapped.

■ The mouse pointer will be moved if necessary so that it lies within the specified
vertical coordinates.

■ See also Int 33H Function lOH, which defines an exclusion area for the mouse
pointer.

lnt33H
Function 09H
Set graphics pointer shape

Defines the shape, color, and hot spot of the mouse pointer in graphics modes.

Call with:

Returns:

Notes:

AX

BX
ex
ES:DX

Nothing

= 0009H
= hot spot offset from left
= hot spot offset from top
= segment:offset of pointer image buffer

■ The pointer image buffer is 64 bytes long. The first 32 bytes contain a bit mask
which is ANDed with the screen image, and the second 32 bytes contain a bit mask
which is XORed with the screen image.

■ The hot spot is relative to the upper left corner of the pointer image, and each pixel
offset must be in the range -16 through 16. In display modes 4 and 5, the horizontal
offset must be an even number.

598 Section III

lnt33H
Function OAH (10)
Set text pointer type

Defines the shape and attributes of the mouse pointer in text modes.

Call with:

Returns:

Notes:

lnt33H

AX = 000AH
BX = pointer type

0 = software cursor
1 = hardware cursor

ex = AND mask value (if BX = 0) or
starting line for cursor (if BX = 1)

DX = XOR mask value (if BX = 0) or
ending line for cursor (if BX = 1)

Nothing

■ If the software text cursor is selected (BX = 0), the masks in ex and DX are mapped
as follows :
Bit(s)
0-7
8-10
11
12-14
15

Significance
character code
foreground color
intensity
background color
blink

For example, the following values would yield a software mouse cursor that inverts
the foreground and background colors:
AX = 000AH
BX = 0000H
ex = 77FFH
DX = 7700H

■ When the hardware text cursor is selected (BX = 1), the values in ex and DX are the
starting and ending scan lines for the blinking cursor generated by the video adapter.
The maximum scan line which may be used depends on the type of adapter and the
current display mode.

Function OBH (11)
Read mouse motion counters

Returns the net mouse displacement since the last call to this function. The returned value is in mickeys;
a positive number indicates travel to the right or downwards, a negative number indicates travel to the left
or upwards. One mickey represents approximately ½oo of an inch of mouse movement.

IBM ROM BIOS and Mouse Functions Reference 599

Call with:

Returns:

Int33H

AX

ex
DX

= 000BH

= horizontal (X) mickey count
= vert ical (Y) mickey count

Function OCH (12)
Set user-defined mouse event handler

Sets the address and event mask for an application program's mouse event handler. The handler is called
by the mouse driver whenever the specified mouse events occur.

Call with:

Returns:

Notes:

AX
ex

ES:DX

Nothing

= 000eH
= event mask

Bit(s) Significance (if set)
0 mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 center button pressed
6 center button released
7-15 reserved (0)

= segment:offset of handler

■ The user-defined event handler is entered from the mouse driver by a far call with
registers set up as follows:
AX mouse event flags (see event mask)
BX button state

Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-1 5 reserved (0)

ex horizontal (X) pointer coordinate
DX vertical (Y) pointer coordinate
SI last raw vertical mickey count
DI last raw horizontal mickey count
DS mouse driver data segment

■ If an event does not generate a call to the user-defined handler because its bit is not
set in the event mask, it is still reported in the event flags during calls to the handler
for events which are enabled.

600 Section Ill

Int33H

■ Calls to the handler are disabled with Int 33H Function OOH or by calling this func­
tion with an event mask of zero.

■ See also Int 33H Functions 14H and 18H.

Function OOH (13)
Turn on light pen emulation

Enables light pen emulation by the mouse driver for IBM BASIC. A "pen down" condition is created by
pressing the left and right mouse buttons simultaneously.

Call with: AX = OOODH

Returns: Nothing

Int33H
Function 0EH (14)
Turn off light pen emulation

Disables light pen emulation by the mouse driver for IBM BASIC.

Call with: AX = OOOEH

Returns: Nothing

lnt33H
Function 0FH (15)
Set mickeys to pixels ratio

Sets the number of mickeys per 8 pixels for horizontal and vertical mouse motion. One mickey represents
approximately ½oo of an inch of mouse travel.

Call with: AX = OOOFH
CX = horizontal mickeys Cl-32,767, default= 8)
DX = vertical mickeys (1- 32,767, default= 16)

Returns: Nothing

IBM ROM BIOS and Mouse Functions Reference 601

lnt33H
Function lOH (16)
Set mouse pointer exclusion area

Defines an exclusion area for the mouse pointer. When the mouse pointer lies within the specified area, it
is not displayed.

Call with:

Returns:

Note:

Int 33H

AX
ex
DX
SI
DI

Nothing

= OO10H
= upper left X coordinate
= upper left Y coordinate
= lower right X coordinate
= lower right Y coordinate

■ The exclusion area is replaced by another call to this function or cancelled by Int
33H Functions OOH or OlH.

Function 13H (19)
Set double speed threshold

Sets the threshold speed for doubling pointer motion on the screen. The default threshold speed is 64
mickeys/ second.

Call with:

Returns:

Note:

AX
DX

Nothing

= OO13H
= threshold speed in mickeys/ second

■ Doubling of pointer motion can be effectively disabled by setting the threshold to a
very large value (such as 10,000).

602 Section III

Int33H
Function 14H (20)
Swap user-defined mouse event handlers

Sets the address and event mask for an application program's mouse event handler and returns the ad­
dress and event mask for the previous handler. The newly installed handler is called by the mouse driver
whenever the specified mouse events occur.

Call with:

Returns:

Notes:

Int33H

AX = 0014H
ex = event mask

Bit(s) Significance (if set)
0 mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 center button pressed
6 center button released
7-15 reserved (0)

ES:DX = segment:offset of event handler

ex = previous event mask
ES:DX = segment:offset of previous handler

■ The Notes for Int 33H Function OCH describe the information passed to the user­
defined event handler. See also Int 33H Function 18H.

■ Calls to the event handler are disabled with Int 33H Function OOH or by setting an
event mask of zero.

Function 15H (21)
Get mouse save state buffer size

Gets the size of the buffer required to store the current state of the mouse driver.

Call with: AX = 0015H

Returns: BX = buffer size (bytes)

Note: ■ See also Int 33H Functions 16H and 17H.

IBM ROM BIOS and Mouse Functions Reference 603

Int 33H
Function 16H (22)
Save mouse driver state

Saves the mouse driver state in a user buffer. The minimum size for the buffer must be determined by a
previous call to Int 33H Function lSH.

Call with:

Returns:

Note:

Int33H

AX
ES:DX

Nothing

= 0016H
= segment:offset of buffer

■ Call this function before executing a child program with Int 21H Function 4BH
(EXEC), in case the child also uses the mouse. After the EXEC call, restore the pre­
vious mouse driver state with Int 33H Function 17H.

Function 17H (23)
Restore mouse driver state

Restores the mouse driver state from a user buffer.

Call with:

Returns:

Note:

Int33H

AX
ES:DX

Nothing

= 0017H
= segment:offset of buffer

■ The mouse driver state must have been previously saved into the same buffer with
Int 33H Function 16H. The format of the data in the buffer is undocumented and
subject to change.

Function 18H (24)
Set alternate mouse event handler

Sets the address and event mask for a an application program mouse event handler. As many as three
handlers with distinct event masks can be registered with this function. When an event occurs that
matches one of the masks, the corresponding handler is called by the mouse driver.

604 Section III

call with:

Returns:

Notes:

AX
ex

ES:DX

=0018H
= event mask

Bit(s) Significance (if set)
0 mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5 Shift key pressed during button press or release
6 Ctrl key pressed during button press or release
7 Alt key pressed during button press or release
8-15 reserved (0)

= segment:offset of handler

If function successful
AX =0018H
If function unsuccessful
AX =FFFFH

■ When this function is called, at least one of the bits 5, 6, and 7 must be set in
register ex.

■ The user-defined event handler is entered from the mouse driver by a far call with
registers set up as follows:
AX mouse event flags (see event mask)
BX button state

Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)

CX horizontal (X) pointer coordinate
DX vertical (Y) pointer coordinate
SI last raw vertical mickey count
DI last raw horizontal mickey count
DS mouse driver data segment

■ If an event does not generate a call to the user-defined handler because its bit is not
set in the event mask, it can still be reported in the event flags during calls to the
handler for events that are enabled.

■ Calls to the handler are disabled with Int 33H Function OOH.
■ See also Int 33H Functions OCH and 14H.

IBM ROM BIOS and Mouse Functions Reference 605

Int 33H
Function 19H (25)
Get address of alternate mouse event handler

Returns the address for the mouse event handler matching the specified event mask.

Call with:

Returns:

Note:

lnt33H

AX
ex

= 0019H
= event mask (see Int 33H Function 18H)

If function successful
ex = event mask
ES:DX = segment:offset of alternate event handler

If function unsuccessful (no handler installed or event mask does not match any
installed handler)
ex = 0000H

■ Int 33H Function 18H allows as many as three event handlers with distinct event
masks to be installed. This function can be called to search for a handler that
matches a specific event, so that it can be replaced or disabled.

Function 1AH (26)
Set mouse sensitivity

Sets the number of mickeys per 8 pixels for horizontal and vertical mouse motion and the threshold speed
for doubling pointer motion on the screen. One mickey represents approximately ½oo of an inch of
mouse travel.

Call with:

Returns:

Note:

AX = 00lAH
BX = horizontal mickeys 0-32,767, default= 8)
ex = vertical mickeys (1- 32,767, default= 16)
DX = double speed threshold in mickeys/ second (default= 64)

Nothing

■ See also Int 33H Functions 0FH and 13H, which allow the mickeys to pixels ratio
and threshold speed to be set separately, and Int 33H Function lBH, which returns
the current sensitivity values.

606 Section III

Int33H
Function lBH (27)
Get mouse sensitivity

Returns the current mickeys to pixels ratios for vertical and horizontal screen movement and the
threshold speed for doubling of pointer motion.

Call with:

Returns:

Note:

lnt33H

AX

BX
ex
DX

= 00lBH

= horizontal mickeys (1- 32,767, default= 8)
= vertical mickeys (1-32,767, default= 16)
= double speed threshold in mickeys/ second (default = 64)

■ See also Int 33H Functions 0FH, 13H, and lAH.

Function lCH (28)
Set mouse interrupt rate

Sets the rate at which the mouse driver polls the status of the mouse. Faster rates provide better resolu­
tion in graphics mode but may degrade the performance of application programs.

Call with:

Returns:

Notes:

AX
BX

Nothing

= 00lCH
= interrupt rate flags

Bit(s) Significance
0 no interrupts allowed
1 30 interrupts/ second
2 50 interrupts/ second
3 100 interrupts/ second
4 200 interrupts/ second
5-15 reserved (0)

■ This function is applicable for the InPort Mouse only.

■ If more than one bit is set in register BX, the lowest order bit prevails.

IBM ROM BIOS and Mouse Functions Reference 607

lnt33H
Function IDH (29)
Select pointer page

Selects the display page for the mouse pointer.

Call with: AX = 00lDH

Returns:

Note:

lnt33H

BX = page

Nothing

■ The valid page numbers depend on the current display mode. See Int lOH
Function 0SH.

Function lEH (30)
Get pointer page

Returns the current display page for the mouse pointer.

Call with: AX = 00lEH

Returns: BX = page

Int 33H
Function lFH (31)
Disable mouse driver

Disables the mouse driver and returns the address of the previous Int 33H handler.

Call with: AX = 00lFH

Returns: If function successful
AX = 00lFH
ES:BX = segment:offset of previous Int 33H handler

If function unsuccessful
AX = FFFFH

608 Section III

Notes:

Int33H

■ When this function is called, the mouse driver releases any interrupt vectors it has
captured other than Int 33H (which may include Int lOH, Int 71H, and/or Int 74H).
The application program can complete the process of logically removing the mouse
driver by restoring the original contents of the Int 33H vector with Int 21H Function
25H, using the address returned by this function in ES:BX.

• See also Int 33H Function 20H.

Function 20H (32)
Enable mouse driver

Enables the mouse driver and the servicing of mouse interrupts.

Call with: AX = 0020H

Returns: Nothing

Note: ■ See also Int 33H Function lFH.

Int33H
Function 21H (33)
Reset mouse driver

Resets the mouse driver and returns driver status. If the mouse pointer was previously visible, it is
removed from the screen, and any previously installed user handlers for mouse events are disabled.

Call with:

Returns:

Note:

AX = 0021H

If mouse support is available
AX =FFFFH
BX = number of mouse buttons

If mouse support is not available
AX =0021H

■ This function differs from Int 33H Function OOH in that there is no initialization of
the mouse hardware.

IBM ROM BIOS and Mouse Functions Reference 609

lnt33H
Function 22H (34)
Set language for mouse driver messages

Selects the language that will be used by the mouse driver for prompts and error messages.

Call with:

Returns:

Note:

Int33H

AX = 0022H
BX = language number

0 = English
1 = French
2 =Dutch
3 = German
4 = Swedish
5 = Finnish
6 = Spanish
7 = Portuguese
8 = Italian

Nothing

■ This function is only available in international versions of the Microsoft Mouse
driver.

Function 23H (35)
Get language number

Returns the number of the language that is used by the mouse driver for prompts and error messages.

Call with:

Returns:

Note:

AX = 0023H

BX = language number (see Int 33H Function 22H)

■ This function is only available in international versions of the Microsoft Mouse
driver.

61 0 Section I II

Int33H
Function 24H (36)
Get mouse information

Returns the mouse driver version number, mouse type, and the IRQ number of the interrupt used by the
mouse adapter.

Call with:

Returns:

AX

BH
BL
CH

=0024H

= major version number (6 for version 6.10, etc.)
= minor version number (OAH for version 6.10, etc.)
= mouse type

1 = bus mouse
2 = serial mouse
3 = InPort mouse
4 = PS/2 mouse
5 =HPmouse

CL = IRQ number
0 =PS/2
2, 3, 4, 5, or 7 = IRQ number

IBM ROM BIOS and Mouse Functions Reference 611

Notes to the Reader
The Lotus/ Intel/Microsoft Expanded Memory Specification (EMS) defines
a hardware/software subsystem, compatible with 80x86-based microcom­
puters running MS-DOS, that allows applications to access as much as 32
MB of bank-switched random-access memory. The software component,
called the Expanded Memory Manager (EMM), is installed during system
initialization by a DEVICE= directive in the CONFIG.SYS file in the root
directory on the boot disk.

After ensuring that the EMM is present (see Chapter 11), an application
program communicates directly with the EMM using software interrupt
67H. A particular EMM function is selected by the value in register AH and
a success or error status is returned in register AH (error codes are listed
on pages 207-209). Other parameters and results are passed or returned
in registers or buffers.

An icon in each function heading indicates the EMS version in which that
function was first supported. You can assume that the function is available
in all subsequent EMS versions unless explicitly noted otherwise.

Version icons used in the synopsis, parameters, results, or Notes section
refer to specific minor or major EMS versions, unless they include a + sign
to indicate a version and al I subsequent versions.

The material in this section has been verified against the Expanded
Memory Specification version 4.0, dated October 1987, Intel part number
300275-005. This document can be obtained from Intel Corporation, 5200
N.E. Elam Young Parkway, Hillsboro, OR 97124.

Summary of EMM Functions

Function

40H (64)
41H (65)
42H (66)
43H (67)
44H (68)
45H (69)
46H (70)
47H (71)
48H (72)

49H (73)
4AH (74)
4BH (75)

614 Section IV

Sub function Description

Get Status
Get Page Frame Address
Get Number of Pages
Allocate Handle and Pages
Map Expanded Memory Page
Release Handle and Expanded Memory
Get Version
Save Page Map
Restore Page Map
Reserved
Reserved
Get Handle Count

(continued)

Summary of EMM Functions continued

Function Subfunctlon Description

4CH(76) Get Handle Pages
4DH(77) Get Pages for All Handles
4EH(78) OOH Save Page Map
4EH(78) OlH Restore Page Map
4EH(78) 02H Save and Restore Page Map
4EH(78) 03H Get Size of Page Map Information
4FH(79) OOH Save Partial Page Map
4FH(79) OlH Restore Partial Page Map
4FH(79) 02H Get Size of Partial Page Map Information
50H(80) OOH Map Multiple Pages by Number
50H(80) OlH Map Multiple Pages by Address
51H(81) Reallocate Pages for Handle
52H(82) OOH Get Handle Attribute
52H(82) OlH Set Handle Attribute
52H(82) 02H Get Attribute Capability
53H(83) OOH Get Handle Name
53H(83) OlH Set Handle Name
54H(84) OOH Get All Handle Names
54H(84) OlH Search for Handle Name
54H(84) 02H Get Total Handles
55H(85) OOH Map Pages by Number and Jump
55H(85) OlH Map Pages by Address andJump
56H(86) OOH Map Pages by Number and Call
56H(86) OlH Map Pages by Address and Call
56H(86) 02H Get Space for Map Page and Call
57H(87) OOH Move Memory Region
57H(87) OlH Exchange Memory Regions
58H(88) OOH Get Addresses of Mappable Pages
58H(88) OlH Get Number of Mappable Pages
59H(89) OOH Get Hardware Configuration
59H(89) OlH Get Number of Raw Pages
5AH(90) OOH Allocate Handle and Standard Pages
5AH(90) OlH Allocate Handle and Raw Pages
5BH(91) OOH Get Alternate Map Registers
5BH(91) OlH Set Alternate Map Registers
5BH(91) 02H Get Size of Alternate Map Register Save Area
5BH(91) 03H Allocate Alternate Map Register Set
5BH(91) 04H Deallocate Alternate Map Register Set
5BH(91) OSH Allocate OMA Register Set
5BH(91) 06H Enable DMA on Alternate Map Register Set
5BH(91) 07H Disable OMA on Alternate Map Register Set
5BH(91) 08H Deallocate OMA Register Set
5CH(92) Prepare Expanded Memory Manager for

Warm Boot
5DH(93) OOH Enable EMM Operating-System Functions
5DH(93) OlH Disable EMM Operating-System Functions
5DH(93) 02H Release Access Key

Lotus/Intel/Microsoft EMS Functions Reference 615

Int67H [EMS 3.0]
Function 40H (64)
Get status

Returns a status code indicating whether the expanded memory software and hardware are present and
functional.

Call with:

Returns:

Note:

Int67H

AH =40H

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ This call should be used only after an application has established that the Expanded
Memory Manager is in fact present, using one of the techniques described in
Chapter 11 .

[EMS 3.0]
Function 4111 (65)
Get page frame address

Returns the segment address of the page frame used by the Expanded Memory Manager.

Call with:

Returns:

Notes:

AH = 41H

If function successful
AH = OOH
BX = segment base of page frame

If function unsuccessful
AH = error code

■ The page frame is divided into four 16 KB pages, which are used to map logical ex­
panded memory pages into the physical memory space of the CPU.

■ The application need not have already acquired an EMM handle to use this function.

■ [EMS 4.0] Mapping of expanded memory pages is not necessarily limited to the 64
KB page frame. See also Int 67H Function 58H Subfunction OOH.

616 Section IV

Int67H
Function 42H (66)
Get number of pages

[EMS 3.0]

Obtains the total number of logical expanded memory pages present in the system and the number of
pages that are not already allocated.

Call with: AH = 42H

Returns: If function successful
AH = OOH
BX = unallocated pages
DX = total pages

If function unsuccessful
AH = error code

Notes: ■ The application need not have already acquired an EMM handle to use this function.

■ [EMS 4.0] See also Int 67H Function 59H Subfunction OlH.

Int67H [EMS 3.0]
Function 43H (67)
Allocate handle and pages

Obtains an EMM handle and allocates logical pages of expanded memory to be controlled by that handle.

Call with:

Returns:

= 43H AH
BX = number of pages to allocate (must be nonzero)

If function successful
AH = OOH
DX = EMM handle

If function unsuccessful
AH = error code

Lotus/ Intel/Microsoft EMS Functions Reference 617

Notes:

Int67H

■ This is the equivalent of a file open function for the expanded memory manager.
The handle that is returned is analogous to a file handle and owns a certain number
of expanded memory pages. The handle must be used with every subsequent re­
quest to map memory and must be released by a close operation before the
application terminates.

■ This function may fail because there are no handles left to allocate or because there
is an insufficient number of expanded memory pages to satisfy the request. In the
latter case, Int 67H Function 42H can be used to determine the actual number of
pages available.

■ [EMS 4.0] Int 67H Function 51H can be called to change the number of pages allo-
cated to an EMM handle. ·

■ [EMS 4.0] The pages allocated by this function are always 16 KB for compatibility
with earlier versions of EMS. See also Int 67H Function SAH Subfunctions OOH and
OlH.

■ [EMS 4.0] Handle OOOOH is always available for use by the operating system, and a
prior call to this function is not required. The operating system must call Int 67H
Function 51H to assign the desired number of pages to its reserved handle.

[EMS 3.0]
Function 44H (68)
Map expanded memory page

Maps one of the logical pages of expanded memory assigned to a handle onto a physical memory page
that can be accessed by the CPU.

Call with: AH = 44H
AL = physical page
BX = logical page
DX = EMM handle

Returns: If function successful
AH = OOH

If function unsuccessful
AH = error code

Notes: ■ The logical page number is in the range (0 . . . n-1), where n is the number of pages
allocated or reallocated to the handle by a previous call to Int 67H Function 43H,
51H, or SAH. Logical pages allocated by Int 67H Function 43H or Function SAH Sub­
function OOH are always 16 KB long; logical pages allocated by Int 67H Function
SAH Subfunction OlH are referred to as raw pages and are not necessarily 16 KB.

■ [EMS 3] The physical page is in the range 0-3 and lies within the EMM page frame,
whose base address is obtained from Int 67H Function 41H.

618 Section I V

Int67H

■ [EMS 4.0] A list of the available physical pages and their addresses may be obtained
from Int 67H Function 58H Subfunction OOH.

■ [EMS 4.0] If this function is called with BX = - 1, the specified physical page is un­
mapped (made inaccessible for reading or writing).

[EMS 3.0]
Function 45H (69)
Release handle and expanded memory

Deallocates the expanded memory pages assigned to a handle and then releases the handle.

Call with:

Returns:

Notes:

Int67H

AH
DX

=45H
= EMM handle

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ If this function is not called before a program terminates, the EMS pages it owned
remain unavailable until the system is restarted. Programs that use EMS should in­
stall their own Ctrl-C handlers and critical-error handlers (Ints 23H and 24H) so that
they cannot be terminated unexpectedly.

■ [EMS 4.0] When a handle is released, its name is set to all ASCII nulls.

[EMS 3.0]
Function 46H (70)
Get version

Returns the EMS version supported by the expanded memory manager.

Call with: AH = 46H

Returns: If function successful
AH = OOH
AL = version number

If funct ion unsuccessful
AH = error code

Lotus/ Intel/Microsoft EMS Functions Reference 619

Notes:

Int67H

■ The version number is returned in binary code decimal (BCD) format, with the in­
teger portion in the upper 4 bits of AL and the fractional portion in the lower 4 bits.
For example, under an EMM that supports EMS version 3.2, AL is returned as the
value 32H.

■ Applications should always check the EMM version number to ensure that all of the
EMM functions they require are available.

[EMS 3.0]
Function 47H (71)
Save page map

Saves the contents of the page-mapping registers on the expanded memory hardware, associating those
contents with a particular EMM handle.

Call with:

Returns:

Notes:

Int67H

AH
DX

= 47H
= EMM handle

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ This function is used by interrupt handlers or device drivers that must access ex­
panded memory. The EMM handle supplied to this function is the handle that was
assigned to the handler or driver during its own initialization sequence, not to the
program that was interrupted.

■ The mapping context is restored by a subsequent call to Int 67H Function 48H.

■ [EMS 4.0] This function saves only the mapping state for the 64 KB page frame
defined in EMS 3. Programs that are written to take advantage of the additional
capabilities of EMS 4.0 should use Int 67H Function 4EH or 4FH in preference to
this function.

[EMS 3.0]
Function 48H (72)
Restore page map

Restores the contents of the page-mapping registers on the expanded memory hardware to the values
associated with the specified handle by a previous call to Int 67H Function 47H.

620 Section IV

Call with:

Returns:

Notes:

Int67H

AH = 48H
DX = EMM handle

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ This function is used by interrupt handlers or device drivers that must access ex­
panded memory. The EMM handle supplied to this function is the handle that was
assigned to the handler or driver during its own initialization sequence, not to the
program that was interrupted.

■ [EMS 4.0] This function restores only the mapping state for the 64 KB page frame
defined in EMS 3. Programs that are written to take advantage of the additional
capabilities of EMS 4.0 should use Int 67H Function 4EH or 4FH in preference to
this function.

[EMS 3.0]
Function 49H (73)
Reserved

This function was defined in EMS version 3.0 but is not documented for later EMS versions, so it should be
avoided in application programs.

Int67H
Function 4AH (74)
Reserved

[EMS 3.0]

This function was defined in EMS version 3.0 but is not documented for later EMS versions, so it should be
avoided in application programs.

Int67H
Function 4BH (75)
Get handle count

[EMS 3.0]

Returns the number of active expanded memory handles.

Lotus/ Intel/Microsoft EMS Functions Reference 621

Call with:

Returns:

Notes:

Int67H

AH = 4BH

If function successful
AH = OOH
BX = number of active EMM handles

If function unsuccessful
AH = error code

■ If the returned number of EMM handles is zero, the expanded memory manager is
idle, and none of the expanded memory is in use.

■ The value returned by this function is not necessarily the same as the number of
programs using expanded memory because one program may own multiple EMM
handles.

■ The number of active EMM handles never exceeds 255.

[EMS 3.0]
Function 4CH (76)
Get handle pages

Returns the number of expanded memory pages allocated to a specific EMM handle.

Call with:

Returns:

AH
DX

= 4CH
= EMM handle

If function successful
AH = OOH
BX = number of EMM pages

If function unsuccessful
AH = error code

Notes: ■ [EMS 3] The total number of pages allocated to a handle never exceeds 512. A handle
never has zero pages allocated to it.

■ [EMS 4.0] The total number of pages allocated to a handle never exceeds 2048. A
handle may have zero pages of expanded memory.

622 Section IV

Int67H [EMS 3.0]
Function 4DH (77)
Get pages for all handles

Returns an array that contains all the active handles and the number of expanded memory pages associ­
ated with each handle.

Call with:

Returns:

Notes:

Int67H

AH =4DH
ES:DI = segment:offset of buffer (see Notes)

If function successful
AH = OOH
BX = number of active EMM handles

and buffer filled in as described in Notes

If function unsuccessful
AH = error code

■ The buffer is filled in with a series of DWORD (32-bit) entries, one per active EMM
handle. The first word of an entry contains the handle, and the second word contains
the number of pages allocated to that handle.

■ The maximum number of active handles is 256 (including the operating system
handle 0), so a buffer size of 1024 bytes is adequate in all cases.

[EMS 3.2]
Function 4EH (78) Subfunction OOH
Save page map

Saves the current page-mapping state of the expanded memory hardware in the specified buffer.

Call with:

Returns:

AH = 4EH
AL = OOH
ES:DI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

and buffer filled in with mapping information (see Notes)

If function unsuccessfu l
AH = error code

Lotus/ Intel/ Microsoft EMS Functions Reference 623

Notes:

Int67H

■ The buffer receives the information necessary to restore the state of the mapping
registers using Int 67H Function 4EH Subfunction OlH. The format of the informa­
tion may vary.

■ The size of the buffer required by this function can be determined with Int 67H
Function 4EH Subfunction O3H.

■ Unlike Int 67H Function 47H, this function does not require a handle.

[EMS 3.2]
Function 4EH (78) Subfunction OlH
Restore page map

Restores the page-mapping state of the expanded memory hardware using the information in the speci­
fied buffer.

Call with: AH = 4EH
AL = OlH
DS:SI = segment:offset of buffer (see Notes)

Returns: If function successful
AH = OOH

If function unsuccessful
AH = error code

Notes: ■ The buffer contains information necessary to restore the state of the mapping regis-
ters from a previous call to Int 67H Function 4EH Subfunction OOH or O2H. The
format of the information may vary.

■ Unlike Int 67H Function 48H, this function does not require a handle.

Int 67H [EMS 3.2]
Function 4EH (78) Subfunction 02H
Save and restore page map

Saves the current page-mapping state of the expanded memory hardware in a buffer and then sets the
mapping state using the information in another buffer.

Call with: AH =4EH
AL = O2H
DS:SI = segment:offset of buffer containing mapping information (see Notes)
ES:DI = segment:offset of buffer to receive mapping information (see Notes)

624 Section IV

Returns:

Notes:

Int67H

If function successful
AH = OOH

and buffer pointed to by ES:DI filled in with mapping information (see Notes)

If function unsuccessful
AH = error code

■ The buffer addressed by DS:SI contains information necessary to restore the state of
the mapping registers from a previous call to Int 67H Function 4EH Subfunction OOH
or O2H. The format of the information may vary.

■ The sizes of the buffers required by this function can be determined with Int 67H
Function 4EH Subfunction O3H.

■ Unlike Int 67H Functions 47H and 48H, this function does not require a handle.

[EMS 3.2]
Function 4EH (78) Subfunction 03H
Get size of page map information

Returns the size of the buffer that is required to receive page-mapping information using Int 67H Func­
tion 4EH Subfunctions OOH and O2H.

Call with:

Returns:

Int67H

AH
AL

= 4EH
= O3H

If function successful
AH = OOH
AL = size of buffer (bytes)

If function unsuccessful
AH = error code

[EMS 4.0]
Function 4FH (79) Subfunction OOH
Save partial page map

Saves the state of a subset of the expanded memory page-mapping registers in the specified buffer.

Call with: AH
AL

= 4FH
= OOH

DS:SI = segment:offset of map list (see Notes)
ES:DI = segment:offset of buffer to receive mapping state (see Notes)

Lotus/ Intel/Microsoft EMS Functions Reference 625

Returns: If function successful
AH = OOH

and buffer filled in with mapping information (see Notes)

If function unsuccessful
AH = error code

Notes: ■ The map list contains the number of mappable segments in the first word, followed
by the segment addresses of the mappable memory regions (one segment per word).

■ To determine the size of the buffer required for the mapping state, use Int 67H Func­
tion 4FH Subfunction O2H.

Int67H
Function 4FH (79) Subfunction Olli
Restore partial page map

Restores the state of a subset of the expanded memory page-mapping registers.

Call with: AH = 4FH
AL = OlH
DS:SI = segment:offset of buffer (see Note)

Returns: If function successful
AH = OOH

If function unsuccessful
AH = error code

[EMS 4.0]

Note: ■ The buffer contains mapping information and must have been prepared by a pre-
vious call to Int 67H Function 4FH Subfunction OOH.

Int 67H [EMS 4.0]
Function 4FH (79) Subfunction 02H
Get size of partial page map information

Returns the size of the buffer which will be required to receive partial page-mapping information using
Int 67H Function 4FH Subfunction OOH.

Call with: AH
AL

= 4FH
= O2H

BX = number of pages

626 Section IV

Returns: If function successful
AH = OOH
AL = size of array (bytes)

If function unsuccessful
AH = error code

Int67H [EMS 4.0]
Function 50H (80) Subfunction OOH
Map multiple pages by number

Maps one or more of the logical expanded memory pages assigned to a handle onto physical memory
pages that can be accessed by the CPU. Physical pages are referenced by their numbers.

Call with: AH = 50H
AL = OOH
CX = number of pages to map
DX = EMM handle
DS:SI = segment:offset of buffer (see Note)

Returns: If function successful
AH =OOH

If function unsuccessful
AH = error code

Note: ■ The buffer contains a series of DWORD (32-bit) entries that control the pages to be
mapped. The first word of each entry contains the logical expanded memory page
number, and the second word contains the physical page number to which it should
be mapped. If the logical page is - 1, the physical page is unmapped (made inacces­
sible for reading or writing).

Int 67H [EMS 4.0]
Function 50H (80) Subfunction OlH
Map multiple pages by address

Maps one or more of the logical expanded memory pages assigned to a handle onto physical memory
pages that can be accessed by the CPU. Physical pages are referenced by their segment addresses.

Lotus/ Intel/Microsoft EMS Functions Reference 627

Call with:

Returns:

AH
AL

= 5OH
= OlH

CX = number of pages to map
DX = EMM handle
DS:SI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

If function unsuccessful
AH = error code

Notes: ■ The buffer contains a series of DWORD (32-bit) entries that control the pages to be
mapped. The first word of each entry contains the logical page number, and the sec­
ond word contains the physical page segment address to which it should be mapped.
If the logical page is - 1, the physical page is unmapped (made inaccessible for read­
ing or writing).

■ The mappable segment addresses may be obtained by calling Int 67H Function 58H
Subfunction OOH.

Int 67H [EMS 4.0]
Function 51H (81)
Reallocate pages for handle

Modifies the number of expanded memory pages allocated to an EMM handle.

Call with: AH = 51H
BX = new number of pages
DX = EMM handle

Returns: If function successful
AH = OOH
BX = logical pages owned by EMM handle

If funct ion unsuccessful
AH = error code

Note: ■ If the requested number of pages is zero, the handle is still active, and pages can be

628 Section IV

reallocated to the handle at a later time; also, the handle must still be released with
Int 67H Function 45H before the application terminates.

Int67H
Function 52H (82) Subfunction OOH
Get handle attribute

[EMS 4.0]

Returns the attribute (volatile or nonvolatile) associated with the specified handle. A nonvolatile memory
handle and the contents of the expanded memory pages that are allocated to it are maintained across a
warm boot operation (system restart using Ctrl-Alt-Del).

Call with:

Returns:

Int67H

AH
AL

= 52H
= OOH

DX = EMM handle

If function successful
AH = OOH
AL = attribute

0 = volatile
1 = nonvolatile

If function unsuccessful
AH = error code

[EMS 4.0]
Function 52H (82) Subfunction OlH
Set handle attribute

Sets the attribute (volatile or nonvolatile) associated with the specified handle. A nonvolatile memory
handle and the contents of the expanded memory pages that are allocated to it are maintained across a
warm boot operation (system restart using Ctrl-Alt-Del).

Call with:

Returns:

Note:

AH = 52H
AL = OlH
BL = attribute

0 = volatile
1 = nonvolatile

DX = EMM handle

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ If the expanded memory hardware cannot support nonvolatile pages, this function
returns an error.

Lotus/ Intel/Microsoft EMS Functions Reference 629

Int67H
Function 52H (82) Subfunction 02H
Get attribute capability

[EMS 4.0]

Returns a code indicating whether the Expanded Memory Manager and hardware can support the non­
volatile attribute for EMM handles.

Call with:

Returns:

Int67H

AH
AL

= 52H
= O2H

If function successful
AH = OOH
AL = attribute capability

0 = only volatile handles supported
1 = volatile and nonvolatile handles supported

If function unsuccessful
AH = error code

Function 53H (83) Subfunction OOH
Get handle name

Returns the 8-character name assigned to a handle.

Call with:

Returns:

AH = 53H
AL = OOH
DX = EMM handle
ES:DI = segment:offset of 8-byte buffer

If function successful
AH = OOH

and name for handle in specified buffer

If function unsuccessful
AH = error code

[EMS 4.0]

Note: ■ A handle's name is initialized to 8 zero bytes when it is allocated or deallocated.

630 Section IV

Another name may be assigned to an active handle with Int 67H Function 53H
Subfunction OlH. The bytes in a handle name need not be ASCII characters.

Int67H [EMS 4.0]
Function 53H (83) Subfunction 01H
Set handle name

Assigns a name to an EMM handle.

Call with:

Returns:

Notes:

Int67H

AH
AL

= 53H
=OlH

DX = EMM handle
DS:SI = segment:offset of 8 -byte name

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The bytes in a handle name need not be ASCII characters, but the sequence of 8
zero bytes is reserved for no name (the default after a handle is allocated or deallo­
cated). A handle name should be padded with zero bytes, if necessary, to a length of
8 bytes.

■ A handle may be renamed at any time.

■ All handle names are initialized to 8 zero bytes when the system is turned on. The
name of a nonvolatile handle is preserved across a warm boot. (See Int 67H Func­
tion 52H Subfunctions OOH and O2H.)

[EMS 4.0]
Function 54H (84) Subfunction OOH
Get all handle names

Returns the names for all active handles.

Call with:

Returns:

AH
AL

= 54H
= OOH

ES:DI = segment:offset of buffer (see Notes)

If function successful
AH = OOH
AL = number of active handles

and buffer filled in with handle-name information (see Notes)

If function unsuccessful
AH = error code

Lotus/ Intel/Microsoft EMS Functions Reference 631

Notes:

Int67H

■ The function fills the buffer with a series of 10-byte entries. The first 2 bytes of each
entry contain an EMM handle, and the next 8 bytes contain the name associated with
the handle. Handles that have never been assigned a name have 8 bytes of O as a
name.

■ Because there is a maximum of 255 active handles, the buffer need not be longer
than 2550 bytes.

[EMS 4.0]
Function 54H (84) Subfunction 0lH
Search for handle name

Returns the EMM handle associated with the specified name.

Call with: AH = 54H
AL = OlH
DS:Sl = segment:offset of 8-byte handle name

Returns: If function successful
AH = OOH
DX = EMM handle

If function unsuccessful
AH = error code

Int67H
Function 54H (84) Subfunction 02H
Get total handles

[EMS 4.0]

Returns the total number of handles that are supported by the Expanded Memory Manager, including the
operating-system handle (0).

Call with:

Returns:

AH
AL

= 54H
= 02H

If function successful
AH = OOH
BX = number of handles

If function unsuccessful
AH = error code

632 Section IV

Int67H [EMS 4.0]
Function 55H (85) Subfunctions OOH and OlH
Map pages and jump

Alters the expanded memory mapping context and transfers control to the specified address.

Call with:

Returns:

Notes:

Int67H

AH = 55H
AL = subfunction

0 = map using physical page numbers
1 = map using physical page segments

DX = EMM handle
DS:SI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The buffer contains map-and-jump entries in the following format:
Offset Length Description
OOH 4 far pointer to jump target
04H 1 number of pages to map before jump
05H 4 far pointer to map list (see below)

The map list in turn consists of DWORD (32-bit) entries, one per page. The first word
of each entry contains the logical page number, and the second word contains the
physical page number or segment (depending on the value in register AL) to which it
should be mapped.

■ A request to map zero pages and jump is not considered an error; the effect is a
simple far jump.

[EMS 4.0]
Function 56H (86) Subfunctions OOH and OlH
Map pages and call

Alters the expanded memory mapping context and performs a far call to the specified address. When the
destination routine executes a far return, the EMM again alters the page-mapping context as instructed
and then returns control to the original caller.

Lotus/ Intel/Microsoft EMS Functions Reference 633

Call with:

Returns:

Notes:

Int67H

AH = 56H
AL = subfunction

0 = map using physical page numbers
1 = map using physical page segments

DX = EMM handle
DS:SI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The format of the buffer containing map and call information is:
Offset Length Description
OOH 4 far pointer to call target
04H 1 number of pages to map before call
OSH 4 far pointer to list of pages to map before call (see below)
09H 1 number of pages to map before return
OAH 4 far pointer to list of pages to map before return (see below)
OEH 8 reserved (0)

Both map lists have the same format and consist of a series of double-word entries,
one per page. The first word of each entry contains the logical page number, and the
second word contains the physical page number or segment (depending on the value
in register AL) to which it should be mapped.

■ A request to map zero pages and call is not an error; the effect is a simple far call.

■ This function uses extra stack space to save information about the mapping context;
the amount of stack space required can be determined by calling Int 67H Function
56H Subfunction 02H.

[EMS 4.0]
Function 56H (86) Subfunction 02H
Get stack space for map page and call

Returns the number of bytes of stack space required by Int 67H Function 56H Subfunction OOH or OlH.

Call with:

Returns:

AH
AL

= 56H
= 02H

If function successful
AH = OOH
BX = stack space required (bytes)

If function unsuccessful
AH = error code

634 Section JV

Int67H [EMS 4.0]
Function 57H (87) Subfunction OOH
Move memory region

Copies a memory region from any location in conventional or expanded memory to any other location
without disturbing the current expanded memory mapping context.

Call with:

Returns:

Notes:

Int67H

AH = 57H
AL = OOH
DS:SI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The format of the buffer controlling the move operation is:
Offset Length Description
OOH 4 region length in bytes
04H 1 source memory type (0 = conventional, 1 = expanded)
05H 2 source memory handle
07H 2 source memory offset
09H 2 source memory segment or physical page number
OBH 1 destination memory type (0 = conventional, 1 = expanded)
OCH 2 destination memory handle
OEH 2 destination memory offset
lOH 2 destination memory segment or physical page number

■ A length of zero bytes is not an error. The maximum length of a move is 1 MB. If the
length exceeds a single expanded memory page, consecutive expanded memory
pages (as many as are required) supply or receive the data.

■ If the source and destination addresses overlap, the move will be performed in such
a way that the destination receives an intact copy of the original data, and a nonzero
status is returned.

[EMS 4.0]
Function 57H (87) Subfunction OlH
Exchange memory regions

Exchanges any two memory regions in conventional or expanded memory without disturbing the current
expanded memory mapping context.

Lotus/ Intel/ Microsoft EMS Functions Reference 635

Call with:

Returns:

Notes:

Int67H

AH
AL

= 57H
= OlH

DS:SI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The format of the buffer controlling the exchange operation is the same as for lnt
67H Function 57H Subfunction OOH.

■ An exchange of zero bytes is not an error. The maximum length of an exchange is 1
MB. If the length exceeds a single expanded memory page, consecutive expanded
memory pages (as many as are required) supply or receive the data .

■ If the source and destination addresses overlap, the exchange is not performed and
an error is returned.

[EMS 4.0]
Function 58H (88) Subfunction OOH
Get addresses of mappable pages

Returns the segment base address and physical page number for each mappable page in the system.

Call with:

Returns:

AH
AL
ES:DI

= 58H
= OOH
= segment:offset of buffer (see Notes)

If function successful
AH = OOH
CX = number of entries in mappable physical page array

and page number/ address information in buffer (see Notes)

If function unsuccessful
AH = error code

Notes: ■ Upon return from the function, the buffer contains a series of double-word entries,
one per mappable page. The first word of an entry contains the page's segment base
address, and the second contai ns its physical page number. The entries are sorted in
order of ascending segment addresses.

■ The size of the buffer required can be calculated with the information returned by
Int 67H Function 58H Subfunction OlH.

636 Section IV

Int67H [EMS 4.0)
Function 58H (88) Subfunction OlH
Get number of mappable pages

Returns the number of mappable physical pages.

Call with: AH = 58H
AL = OlH

Returns: If function successful
AH = OOH
CX = number of mappable physical pages

If function unsuccessful
AH = error code

Note: ■ The information returned by this function can be used to calculate the size of the
buffer that will be needed by Int 67H Function 58H Subfunction OOH.

Int 67H [EMS 4.0)
Function 59H (89) Subfunction OOH
Get hardware configuration

Returns information about the configuration of the expanded memory hardware.

Call with:

Returns:

Notes:

AH = 59H
AL = OOH
ES:DI = segment:offset of buffer (see Notes)

If function successful
AH = OOH

and hardware configuration information in buffer.

If function unsuccessful
AH = error code

■ Upon return from the function, the buffer has been filled in with hardware configu­
ration information in the following format:
Offset Length Description
OOH 2 size of raw expanded memory pages (in paragraphs)
O2H 2 number of alternate register sets
O4H 2 size of mapping-context save area (in bytes)

Lotus/ Intel/Microsoft EMS Functions Reference 637

Int67H

Offset
06H

08H

Length
2

2

Description
number of register sets that can be assigned to DMA
channels
DMA operation type (O = DMA may be used with alternate
register sets; 1 = only one DMA register set available)

■ The size returned for the mapping-context save area is the same as the size returned
by Int 67H Function 4EH Subfunction 03H.

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

[EMS 4.0]
Function 59H (89) Subfunction 01H
Get number of raw pages

Obtains the total number of raw expanded memory pages present in the system and the number of raw
pages that are not already allocated. Raw memory pages may have a size other than 16 KB.

Call with:

Returns:

AH
AL

= 59H
= om

If function successful
AH = OOH
BX = unallocated raw pages
DX = total raw pages

If function unsuccessful
AH = error code

Note: ■ If the Expanded Memory Manager supports only pages of standard size, the values
returned by this function are the same as those returned by Int 67H Function 42H.

Int 67H [EMS 4.0]
Function SAH (90) Subfunction OOH
Allocate handle and standard pages

Allocates an EMM handle and associates standard (16 KB) expanded memory pages with that handle.

Call with: AH =SAH
AL = OOH
BX = number of standard pages to allocate

638 Section IV

Returns: If function successful
AH = OOH
DX = EMM handle

If function unsuccessful
AH = error code

Note: ■ Unlike Int 67H Function 43H, allocating zero pages with this function is not an error.

Int 67H [EMS 4.0]
Function 5AH (90) Subfunction OlH
Allocate handle and raw pages

Allocates a raw EMM handle and associates raw expanded memory pages with that handle.

Call with: AH = 5AH
AL = OlH
BX = number of raw pages to allocate

Returns: If function successful
AH = OOH
DX = handle for raw EMM pages

If function unsuccessful
AH = error code

Notes: ■ Raw memory pages may have a size other than 16 KB.

■ Allocation of zero pages is not an error.

Int67H
Function 5BH (91) Subfunction OOH
Get alternate map registers

[EMS 4.0]

Returns the number of the active alternate register set or, if no alternate set is active, saves the state of the
mapping registers into a buffer and returns its address.

Call with: AH
AL

= 5BH
= OOH

Lotus/ Intel/ Microsoft EMS Functions Reference 639

Returns:

Notes:

Int67H

If function successful and alternate map register set active
AH = OOH
BL = current active alternate map register set

If function successful and alternate map register set not active
AH = OOH

= OOH BL
ES:DI = segment:offset of alternate map register save area (if BL = 0)

If function unsuccessful
AH = error code

■ The address of the save area must have been specified in a previous call to Int 67H
Function 5BH Subfunction OlH, and the save area must have been initialized by a
previous call to Int 67H Function 4EH Subfunction OOH. If there was no previous call
to Int 67H Function SBH Subfunction OlH, the address returned is zero, and the
registers are not saved.

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

[EMS 4.0]
Function 5BH (91) Subfunction OlH
Set alternate map registers

Selects an alternate map register set or (if alternate sets are not supported) restores the mapping context
from the specified buffer.

Call with:

Returns:

Notes:

AH
AL
BL
ES:DI

= SBH
= OlH
= alternate register set number or OOH
= segment:offset of map register context restore area (if BL = 0)

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ The buffer address specified in this call is returned by subsequent calls to Int 67H
Function 5BH Subfunction OOH with BL = OOH.

■ The save area must have been initialized by a previous call to Int 67H Function 4EH
Subfunction OOH.

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

640 Section IV

Int67H [EMS 4.0]
Function 5BH (91) Subfunction 02H
Get size of alternate map register save area

Returns the amount of storage needed by Int 67H Function 5BH Subfunctions OOH and OlH.

Call with: AH = 5BH
AL = O2H

Returns: If function successful
AH = OOH
DX = size of buffer (bytes)

If function unsuccessful
AH = error code

Note: ■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 03H
Allocate alternate map register set

Allocates an alternate map register set for use with Int 67H Function 5BH Subfunctions OOH and OlH. The
contents of the currently active map registers are copied into the newly allocated alternate map registers
in order to provide an initial context when they are selected.

Call with:

Returns:

Note:

AH
AL

=5BH
= O3H

If function successful
AH = OOH
BL = alternate map register set number or zero, if no alternate

sets are available

If function unsuccessful
AH = error code

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Lotus/ Intel/Microsoft EMS Functions Reference 641

Int67H
Function 5BH (91) Subfunction 04H
Deallocate alternate map register set

[EMS 4.0]

Releases an alternate map register set that was previously allocated with Int 67H Function SBH Subfunc­
tion 03H.

Call with:

Returns:

AH
AL
BL

= SBH
= 04H
= alternate register set number

If function successful
AH =OOH

If function unsuccessful
AH = error code

Notes: ■ The current alternate map register set cannot be deallocated.

■ This funct ion is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 05H
Allocate OMA register set

Allocates a OMA register set.

Call with:

Returns:

AH
AL

= SBH
= 0SH

If function successful
AH = OOH
BL = OMA register set number (0 = none available)

If function unsuccessful
AH = error code

Note: ■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

642 Section IV

Int67H [EMS 4.0]
Function 5BH (91) Subfunction 06H
Enable DMA on alternate map register set

Associates a DMA channel with an alternate map register set.

Call with:

Returns:

Notes:

Int67H

AH
AL
BL
DL

= 5BH
= 06H
= alternate map register set
= DMA channel number

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ If a DMA channel is not assigned to a specific register set, DMA for that channel will
be mapped through the current register set.

■ If zero is specified as the alternate map register set, no special action is taken on
DMA accesses for the specified DMA channel.

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

[EMS 4.0]
Function SBH (91) Subfunction 07H
Disable DMA on alternate map register set

Disables DMA accesses for all DMA channels associated with a specific alternate map register set.

Call with:

Returns:

AH
AL

= 5BH
= 07H

BL = alternate register set number

If function successful
AH = OOH

If function unsuccessful
AH = error code

Lotus/Intel/Microsoft EMS Functions Reference 643

Note: ■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 08H
Deallocate DMA register set

Deallocates a DMA register set that was previously allocated with Int 67H Function 5BH Subfunction O5H.

Call with:

Returns:

AH
AL

=5BH
= O8H

BL = DMA register set number

If function successful
AH = OOH

If function unsuccessful
AH = error code

Note: ■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

Int 67H [EMS 4.0]
Function 5CH (92)
Prepare Expanded Memory Manager for warm boot

Prepares the expanded memory hardware for an impending warm boot. This function affects the current
mapping context, the alternate register set in use, and any other expanded memory hardware dependen­
cies that would ordinarily be initialized at system boot time.

Call with: AH = SCH

Returns: If function successful
AH = OOH

If function unsuccessful
AH = error code

644 Section IV

Note: ■ If an application maps expanded memory at addresses below 640 KB, the applica-
tion must trap all possible conditions that might lead to a warm boot, so that this
function can be called first.

Int 67H [EMS 4.0]
Function 5DH (93) Subfunction OOH
Enable EMM operating-system functions

Enables the operating-system-specific EMM functions Ont 67H Functions 59H, SBH, and SDH) for calls
by any program or device driver. (This is the default condition.)

Call with:

Returns:

AH
AL
BX:CX

=SDH
= OOH
= access key (if not first call to function)

If function successful
AH = OOH
BX:CX = access key (if first call to function)

If function unsuccessful
AH = error code

Notes: ■ An access key is returned in registers BX and CX on the first call to Int 67H Function
SDH Subfunction OOH or 0lH. The access key is required for all subsequent calls to
either function.

■ This function is intended for use by operating systems only.

Int 67H [EMS 4.0]
Function 5DH (93) Subfunction OlH
Disable EMM operating-system functions

Disables the operating-system-specific EMM functions (Int 67H Functions 59H, SBH, and SDH) for calls
by application programs and device drivers, reserving the use of these functions for the operating
system.

Call with: AH
AL
BX:CX

=SDH
= OlH
= access key (if not first call to function)

Lotus/ Intel/Microsoft EMS Functions Reference 645

Returns: If function successful
AH = OOH
BX:CX = access key (if first call to function)

If function unsuccessful
AH = error code

Notes: ■ An access key is returned in registers BX and CX on the first call to Int 67H Function
5DH Subfunction OOH or OlH. The access key is required for all subsequent calls to
either function.

■ This function is intended for use by operating systems only.

Int 67H [EMS 4.0]
Function 5DH (93) Subfunction 02H
Release access key

Releases the access key obtained by a previous call to Int 67H Function 5DH Subfunction OOH or OlH.

Call with:

Returns:

Notes:

AH
AL
BX:CX

=5DH
= O2H
= access key

If function successful
AH = OOH

If function unsuccessful
AH = error code

■ With respect to the operating-system-specific expanded memory functions, the
EMM is returned to the state it had when the system was initialized. A new access
key is returned by the next call to Int 67H Function 5DH Subfunction OOH or OlH.

■ This function is intended for use by operating systems only and can be disabled by
the operating system at any time.

646 Section IV

Index
References to tables and illustrations are in italics.

Special Characters
: 298-99
. 187
.. 187-88
; 60
< 298-99
> 298-99
» 298-99
@60
86-DOS operating system 4

A
Absolute disk read 482-84
Absolute disk write 484- 85
adapters, video display 86-87
alarm

reset 592
set591- 92

align type 38
Allocate alternate map register set (EMS)

641
Allocate DMA register set (EMS) 642
Allocate handle and pages (EMS) 617-18
Allocate handle and raw pages (EMS) 639
Allocate handle and standard pages

(EMS) 638- 39
Allocate memory block 438-39
ANSI.SYS device driver, screen control 91

escape sequences used with 92-93
APPEND 490- 91
application program interface (API) 320
application programs. See MS-DOS

application programs, porting to
OS/2; MS-DOS application
programs, structure of; MS-DOS
application programs, writ ing
compatible

arena entries 196
arena headers 196, 201

diagram example 202
ASCII es.::ape code 92-93
ASCII mode 69

character-device drivers in 261-62
ASCII text files 56
ASCIIZ strings 24, 139, 168

.ASM files 45 . See also assembly-language
programs

assembly-language programs 37-42
to access file allocation table 191
BREAK.ASM 75 - 78
CLEAN.ASM 304- 9
DRIVER.ASM 283- 91
DUMP.ASM 152-61
HELLO.COM example 27- 30, 33- 36
program modules 37
program procedures 41-42
program segments 38-41
PROTO.ASM 301-2
SHELL.ASM program 229-38
TALK.ASM 113-26
ZERODIV.ASM 254, 255-58

ASSIGN 489
ASSUME statement 29, 33
attribute byte

color text display 98
monochrome text display 97

attribute word, device 264
Auxiliary device (AUX) 12, 106, 298. See

also serial port
Auxiliary input 344-45
Auxiliary output 345-46

B
background, set508- 9
BACKUP command 15
.BAT (batch) files 15
Batch files 15
binary mode 69

character-device drivers in 261-62
output 93-94

BIOS module 12-13, 17
get address of extended 574

BIOS parameter block (BPB) 181, 189
build 272
structure 269

bit planes 101
blink/intensiry bit, toggle 513
block-device drivers 260, 262

check for remoteness 423-24
check removabiliry of 422-23
generic I/0 control of 429- 32

Index 647

block-device drivers, continued
read control data from 418-19
write control data to 419-20

Boot disk device (block device) 12
boot drive, get 392-93
boot sector, disk 179-82

map of 180
partial disassembly of 182
partial hex dump 181

bootstrap routine 16, 17
border

get color 514
get palene and 514
set 508-9
set color 512

BREAK.ASM program 75-78
break flag, get or set 392-93
Buffered keyboard input 351-52
Build BIOS Parameter Block (function

02H) 272

C
CALL instructions 41
Cancel device redirection 467-68
cassette motor

read 561
turn off 560-61
turn on 560
write 562

.C files 45. See also C language
Change sharing retry count 425-26
character blocks, set specifier 520
character-device drivers 260, 261-62

ASCII vs binary mode 261-62
generic 1/0 control 426-29
read control data from 415-16
write control data to 416-17

character input/output. See also keyboard
input; mouse, input; pointing
device, input; printer output; serial
port

Int 21H 44H IOCTL (I/O control)
411-43

Int 21H functions, summary 337-38
(table)

processing typical I/O request 281-82
Character input with echo 343
Character input without echo 349-50
Character output 344
CHDIR (CD) command 167
Check if block device is remote 423-24
Check if block device is removable

422-23

648 Index

Check if handle is remote 424-25
Check input status 353, 420-21
Check output status 421-22
child programs 218
CHKDSK command 15, 174, 222
Clanguage

CLEAN.C 309-11
compiler (see C Optimizing Compiler)
DUMP.C program 151, 161-63
linking Ctrl-C and Ctrl-Break handlers

to programs in 75-80
MOUDEMO.C 82-83
polling mouse and displaying mouse

coordinates 82-83
PROTO.C303
SHELL.C 225-29
TRYBREAK 78-79
tutorials 63

class type 38
CLEAN filter 303-11

assembly source code 304-9
C source code 309-11

clock, set tick count 589-90
CLOCK driver 282
Close file 357-58, 404-5
code page, get or set 474-75
code segment 38
code segment (CS) register 30
Color/Graphics Adapter (CGA) 86,

98,102
color page state

get 517
set 515-16

color register(s)
get 516
get block of 516-17
set 514-15
set block of 515

COMl, COM2, COM3 devices 106,
110-12, 298

combine type 38
command code routines, device-driver

267-81
function OOH, Driver initialization

268-69
function OlH, Media Check 270-71
function 02H, Build BIOS Parameter

Block (BPB) 272
function 03H, I/O-Control Read

272-73
function 04H, Read 273
function 05H, Nondestructive Read 274
function 06H, Input Status 274

command code routines, continued
function 07H, Flush Input Buffers

274-75
function 08H, Write 275
function 09H, Write with Verify 276
function 0AH, Output Status 276
function 0BH, Flush Output Buffers

276
function OCH, 1/O-Control Write

276-77
function 0DH, Device Open 277
function 0EH, Device Close 277-78
function 0FH, Removable Media 278
function lOH, Output Until Busy

278-79
function 13H, Generic IOCTL 279-80
function 17H, Get Logical Device 280
function 18H, Set Logical Device

280-81
names of, and MS-DOS version support

267-68 (table)
COMMAND.COM file 14-16

load20
replacing 13
use of EXEC function 218

COMMAND.COM PLUS 13
command processor (shell) 13. See also

COMMAND.COM file
commands, types of, accepted by

COMMAND.COM 14-15
command tail 24, 220-21
Commit file 476-77
compatibility and portability 313-31

degrees of compatibility 314-18
MS-DOS applications 315-17
ROM BIOS and hardware­

compatible applications 317-18
OS/2 compatibility 318-31

.COM program file(s) 15, 22, 25-30, 45
assembly-language program

transformed into 27-30
vs .EXE files 22, 36 (table)
memory allocation for 197-98
memory image of a typical 26

CONFIG.SYS file 12
installing device driver 293
opening 18-19

configuration
get equipment 535-36
get information 525
get system environment 573-74

console, direct input/output 347-48. See
also video display

Console display and keyboard (CON) 12,
298-99

control data
read, from block-device driver 418-19
read, from character-device driver

415-16
write, to block-device driver 419-20
write, to character-device driver

416-17
Controller drive diagnostic 551
Controller internal diagnostic 551
Controller RAM diagnostic 550
cooked mode 69
C Optimizing Compiler 44, 48-50

environmental variables 48
version 5.1 switches 49-50

COPY command 14, 58
Country information

get extended 470-74
get or set 395-98

CP /M operating system 4, 5
FCB compatibility with 129, 130-31
program segment prefix compatibility

with 24, 25
Create directory 398-99
Create file 364-65, 401-2
Create new file 458-59
Create new PSP 378-79
Create temporary file 457-58
CREF utility 44, 56-58

cross-reference listing for HELLO.REF
57

.CRF files 45, 56
Critical-error handler address 481-82
critical-error handlers 24, 145, 147-51

address 481-82
skeleton program example 150-51
stack at entry to 148, 149

cross-reference listing. See CREF utility
Ctrl-Break and Ctrl-C handlers 72-80

compatibility issues 317
Ctrl-C handler address 480-81
high-level languages and 75-80

cursor
addressing 97
enable/disable emulation 528
get position 502-3
read character and attribute at 506
set position 501-2
set type 501
write character and attribute at 506-7
write character at 507-8

Index 649

D
data segment 38
data segment (DS) register 31, 35
Date and time device (CLOCK$) 12
day count

get592-93
set 593

Deallocate alternate map register set
(EMS)642

Deallocate DMA register set (EMS) 644
.DEF files 45
Delay 568-69
DEL(ETE) command 14
Delete directory 399
Delete file 361-62, 407-8
dependency statements 61
descriptors, memory segment 321
device

cancel redirection 467-68
close 565
get device information 412-13
open564-65
post572-73
read file or 405-6
redirect 466-67
set device information 414-15
wait571
write file or 406-7

Device Close (command code function
0EH) 277-78

Device close (MS-DOS function) 565
DEVICE commands 12
device drivers, installable 12-13, 259-96

CLOCK driver 282
command-code routines 267-81
debugging 295-96
chain before/after driver installation

294
chain listing 295
device attribute word 264
error codes 267
MS-DOS type 260-63
processing of typical input/ output

requests 281-82
structure of MS-DOS 263-67

device header 263-64
interrupt routine 266-67
strategy routine 265

writing and installing 282-95
assembly 283-92
installation 293-95
linking 293

650 Index

device drivers, resident 12-13
Device Open (command-code function

0DH)277
Device open (MS-DOS function) 564-65
Device post 572-73
Device wait 571-72
Digital Research 4
DIR command 14, 167, 174
Direct console 1/0 347-48
directory 166, 167-73

create 398-99
delete 399
format of a single entry in a disk

184,185
functions controlling 167-68
get current 437-38
hierarchical (tree) structure 166, 167
moving files 173
root184-86
searching 168-73
set current 400

directory operations, Int 21H functions
summary339

Disable DMA on alternate map register
set (EMS) 643-44

Disable EMM operating system functions
(EMS) 645-46

Disable mouse driver 608-9
disk(s) 177-94. See also drive, logical;

ESDI Fixed Disk Drive Adapter
absolute read 482-84
absolute write 484-85
boot sector 179-82
controller drive diagnostic 551
controller internal diagnostic 551
controller RAM diagnostic 550
file allocation table 182-84

interpreting the 188-92
files area 186-88
fixed-disk partitions 192-94
format543
format bad track 542
format track 541-42
get change status 552-53
get current 367
get default drive data 368-69
get drive allocation information

394-95
get drive·data 370
get drive parameters 543-44
get drive status 549
get type 552
initialize fixed disk characteristics

544-45

disk(s), continued
map of typical logical volume 179
park heads 554-55
read sector 538-39
read sector buffer 548
read sector long 545-46
recalibrate 550
reserved area 182
reset 354-55
reset fixed disk system 548
root directory 184-86, 187
seek 547
select 355-56
set media type 554
set type 553
set verify flag 387-88
verify sector 540
write sector 539-40
write sector buffer 549
write sector long 546-47

disk bootstrap routine 16
memory location of 17

disk management, Int 21H functions
summary339

disk-related errors 147, 148 (table)
Disk reset 354-55
disk system

get status 537-38
reset 536-37

disk transfer area (DTA) 25, 130
get388-89
set 368

display page, set 503-4
Display string 350-51
DOS kernel 12, 18

memory location of 19
double-byte character sets (DBCS), get

lead byte table 469-70
drive, logical 166, 167-73. See also disk(s)

getmap433
setmap434
vsvolume 174

driver. See device drivers, installable;
device drivers, resident

DRIVER.ASM program 283-91
Driver Initialization (function OOH)

268-69
DUMP.ASM program 151, 152-61

subroutines 163
DUMP.C program 151, 161-63
Duplicate handle 435
dynamic link library 331
dynamic memory allocation 199, 200, 201

E
echo

character input with 343
character input without 349-50
unfiltered character input without

348-49
EMS. See Expanded Memory

Specification (EMS)
Enable/disable cursor emulation 528
Enable/disable default palette loading

526-27
Enable/disable gray-scale summing 527
Enable/disable pointing device 574-75
Enable/disable screen refresh 529
Enable/disable video 527
Enable DMA on alternate map register

set (EMS) 643
Enable EMM operating system functions

(EMS) 645
Enable mouse driver 609
encapsulation of subruutines 323,

324-25
end of interrupt (EOI) 250
ENDP command 35, 41
ENDS command 29, 38
END statement 30-31, 36, 41
Enhanced Graphics Adapter (EGA) 86,

97, 98,102
Enter protected mode 570-71
environment block 24, 220, 224-25

dump of a typical 224
three strings contained in 225

EQU statement 33
error codes, device driver 267
error codes, MS-DOS 145-51

critical 145, 147-51
expanded memory 207-9

error information, get/set 453-56
escape sequences, ANSI 92-93
ESDI Fixed Disk Drive Adapter

format drive 555
format periodic interrupt 562-63

Event wait 566-67
Exchange memory regions (EMS) 635-36
EXE2BIN utility 44, 55-56
EXEC function 15, 217-42. See also Int

21H Function 4BH
calling convention 222
compatibility in MS-DOS applications

317
environment block 220, 224-25

Index 651

EXEC function, continued
example programs SHELL.C and

SHELL.ASM 225-40
basic flow of both 239-40
internal commands in 239

example use of 223-24
loading overlays with 240, 241-42
making memory available for 218-19
reference 441-42
requesting 219-21
returning from 221-24

.EXE (executable) program file(s) 15, 22,
30-36, 45

assembly language program
transformed into 33-36

vs .COM files 22, 36 (table)
converting, to . COM files (see EXE2BIN

utility)
header30
load module contents 33
load module format 32
memory allocation for 198
memory image of 31
use for compatible MS-DOS

applications 315
Expanded Memory Manager (EMM)

203-4
checking for 204, 205-6
enable/disable system functions

645-46
error codes 207-9

Expanded Memory Specification (EMS)
201-11

checking for expanded memory 204-6
expanded memory defined 203-4
functions reference (see Section IV)

summary 614-15
use of expanded memory 207-11

skeleton program illustrating 210-11
Extended communications port control

559-60
extended file control block 131

volume-label search using 175
Extended initialize communications port

558-59
extended memory 204, 212-15

moving blocks of data between
conventional memory and 213-15

Extended open file 478-80
external (extrinsic) commands 15
external hardware interrupts 247
extra segment (ES) register 31

652 Index

F
FAR attribute 35

vsNEAR29
faults (internal hardware interrupts) 246,

321
file(s)

area, in disks 186-88
close 357-58, 404
commit 476-77
create 364-65, 401-2
create new 458-59
create temporary 457-58
delete 361-62, 407-8
extended open 478-80
find first 358-59, 445-46
find next 360-61, 446-47
get file size 375-76
get/set date and time 450-51
lock/unlock file region 460-61
logical drive 166
moving123
name and location 166
open 356-57, 402-4
read405-6
rename 366, 449-50
types 45
write 406-7

file-access skeleton program
using FCB functions 134, 135-37
using handle functions 141, 142-43

file allocation table (FAT) 166, 182-84
assembly program to access 191
contents 183
interpreting 188-92
media descriptor bytes 183

file attributes, get or set 410-11
file control blocks (FCBs) 25, 128

default 130, 221
directory searching with 169, 170-71
extended 131, 133-34, 175
file management with FCB functions

129-39
advantages/disadvantages 138-39
file-access skeleton program 134-38
functions listed 132
vs handle functions 128

normal 129, 133-34
before/after open call (Int 21H

Function OFH) 137
restricted use 316, 319
typical operation of 130

file management 127-63
example programs DUMP.ASM and

DUMP.C 151-63
FCB functions 128, 129-39
handle functions 128, 139-44
MS-DOS error codes 145-51

filename
fully qualified 166
parse 382-83
requesting EXEC function 219

file operations, Int 21H functions
summary338

file pointer, set 408-9
file system 166

structure 167
filters 297-311

building 300-303
CLEAN filter 303-11
operation of 299-300
prototype 301-:3
system support for 298-99

Find first file 358-59, 445-46
Find next file 360-61, 446-47
fixed-disk partitions 192-94
font functions 518-24
Format bad track 542
Format drive 543
Format ESDI drive 555-56
Format ESDI drive periodic interrupt

562-63
Format track 541-42
Flush input buffer and then input 353-54
Flush Input Buffers (function 07H)

274-75
Flush Output Buffers (function 0BH) 276

G
Generic 1/0 control for block devices

429-32
Generic 1/0 control for character devices

426-29
Generic IOCTL (function 13H) 279-80
Get addresses of mappable pages

(EMS)636
Get address of alternate mouse event

handler606
Get address of extended BIOS data

area 574
Get all handle names (EMS) 631
Get alternate map registers (EMS)

639-40
Get attribute capability (EMS) 630

Get block of color registers 516-17
Get border color 514
Get button press information 596
Get button release information 597
Get color page state 517
Get color register 516
Get communications port status 558
Get configuration information 525
Get conventional memory size 536
Get current directory 437-38
Get current disk 367
Get cursor position 502-3
Get date 384-85, 591
Get day count 592
Get DBCS lead byte table 469-70
Get default drive data 368-69
Get device information 412-13
Get disk change status 552-53
Get disk system status 537-38
Get disk type 552
Get drive allocation information 394-95
Get drive data 370-71
Get drive parameters 543-44
Get drive status 549
Get DTA address 388-89
Get enhanced keyboard flags 586-87
Get equipment configuration 535-36
Get extended country information

470-74
Get extended error information 453-56
Get extended memory size 570
Get file size 375-76
Get font information 524
Get functionality/state information

531-34
Get handle attribute (EMS) 629
Get handle count (EMS) 621-22
Get handle name (EMS) 630
Get handle pages (EMS) 622
Get hardware configuration (EMS)

637-38
Get interrupt vector 393-94
Get keyboard flags 582
Get keyboard status 582
Get language number 610
Get light pen position 503
Get Logical Device (command-code

function) 280
Get logical drive map 433
Get machine name 461-62
Get mouse information 611
Get mouse position and button status 595
Get mouse save state buffer size 603

Index 653

Get mouse sensitivity 607
Get MS-DOS version number 389-90
Get number of mappable pages (EMS)

637
Get number of pages (EMS) 617
Get number of raw pages (EMS) 638
Get or set allocation strategy 452-53
Get or set break flag, get boot drive

392-93
Get or set code page 474-75
Get or set country information 395-98
Get or set display combination code

530-31
Get or set file attributes 410-11
Get or set file date and time 450-51
Get page frame address (EMS) 616
Get pages for all handles (EMS) 623
Get palette and border 514
Get palette register 513
Get pointer page 608
Get pointing device type 577
Get printer setup string 463-64
Get printer status 588
Get PSP address 468-69
Get redirection list entry 464-65
Get return code 444-45
Get size of alternate map register save

area (EMS) 641
Get size of page map information (EMS)

625
Get size of partial page map information

(EMS) 626-27
Get stack space for map page and call

(EMS)634
Get status (EMS) 616
Get system environment 573-74
Get tick count 589
Get time 386,590
Get total handles (EMS) 632
Get verify flag 448
Get version (EMS) 619
Get video mode 511
Graphics CardPlus 87
graphics mode memory-mapped

programming 101-3
gray-scale

enable/disable summing 527
get values 517

GROUP directive 39

654 Index

H
handle functions

check if handle is remote 424-25
directory searching 169-70, 172-73
DUMP.ASM program 151, 152--62
DUMP.C program 151, 161--63
duplicate handle 435
file/record management with 139-44

advantages/ disadvantages 144
vs FCB functions 128
file access skeleton program 141-43
functions listed 140-41
typical operation 139

keyboard input 62, 67-69
redirect handle 436-37
set handle count 475-76
use for compatible MS-DOS

applications 316
volume-label search using 176

hardware-compatible applications
314-15, 317-18

header
device 263, 264, 269
.EXE program files 30

Hercules Graphics Card 87, 97, 98
HELLO.COM program 27, 28-29, 30

hex dump of 33
map produced by Object Linker during

generation of 51
HELLO.EXE program 33, 34-35, 36
HELLO.REF program, cross-reference

listing 57
.H files45
Hide mouse pointer 595

I
IBMBIO.COM file 16

disk location 189-92
IBM Corporation, role in MS-DOS

development 4-5
IBMDOS.COM file 13, 16
IBMPC64 .

PC/AT64
PS/264
regen buffers in memory for various

adapters 87
"ill-behaved" applications 315
.INC files 45
In-Color Card 87
Initialize communications port 556-57
Initialize fixed disk characteristics

544-45

Initialize or scroll window down 505-6
Initialize or scroll window up 505
Initialize pointing device interface

577-78
Initialize printer port 587-88
input. See character input/ output;

keyboard input; mouse, input;
pointing device, input; serial port

input buffer, flush 353-54
Input/Output (I/O)-Control Read

(function 03H) 272-73
Input/Output (VO)-Control Write

(function OCH) 276-77
input/output (I/O) redirection 67, 298-99
input status, check 353, 420
Input Status (command-code function

06H) 274
INS8250 Asynchronous Communications

Controller 112
installable device drivers 12-13
Int l0H, ROM BIOS video driver

Function OOH, Set video mode 94, 500
Function 0lH, Set cursor type 94, 501
Function 02H, Set cursor position

94, 501
Function 03H, Get cursor position

94,502
Function 04H, Get light pen position

95,503
Function 05H, Set display page 95, 503
Function 06H, Initialize or scroll

window up 95, 505
Function 07H, Initialize or scroll

window down 95, 505
Function 08H, Read character and

attribute at cursor 95, 506
Function 09H, Write character and

attribute at cursor 94, 506
Function 0AH, Write character at

cursor 94, 507
Function 0BH, Set palette,

background, or border 95, 508
Function OCH, Write graphics pixel

95,509
Function 0DH, Read graphics pixel

95,510
Function 0EH, Write character in

teletype mode 94,510
Function 0FH, Get video mode 94, 511
Function lOH palette functions

Subfunction OOH, Set palette register
511

Subfunction 0lH, Set border color
512

Int l0H, Function l0H, continued
Subfunction 02H, Set palette and

border 512-13
Subfunction 03H, Toggle blink/

intensity bit 513
Subfunction 07H, Get palette

register 513
Subfunction 08H, Get border color

514
Subfunction 09H, Get palette and

border514
Subfunction l0H, Set color register

514
Subfunction 12H, Set block of color

registers 515
Subfunction 13H, Set color page state

515-16
Subfunction 15H, Get color register

516
Subfunction 17H, Get block of color

registers 516
Subfunction lAH, Get color page

state 517
Subfunction lBH, Set gray-scale

values 517
Function llH, font functions

Subfunctions OOH and l0H, Load
user font 518

Subfunctions 0lH and llH, Load
ROM 8-by-14 font 518

Subfunctions 02H and 12H, Load
ROM 8-by-8 font 519

Subfunction 03H, Set block specifier
520

Subfunctions 04H and 14H, Load
ROM 8-by-16 font 520

Subfunction 20H, Set Int lFH font
pointer 521

Subfunction 21H, Set Int 43H for
user's font 522

Subfunction 22H, Set Int 43H for
ROM 8-by-14 font 522

Subfunction 23H, Set Int 43H for
ROM 8-by-8 font 523

Subfunction 24H, Set Int 43H for
ROM 8-by-16 font 523

Subfunction 30H, Get font
information 524

Function 12H
Subfunction l0H, Get configuration

information 525
Subfunction 20H, Select alternate

printscreen 526
Subfunction 30H, Set scan lines 526

Index 655

Int lOH, Function 12H, continued
Subfunction 31H, Enable/disable default

palette loading 526-27
Subfunction 32H, Enable/disable video

527
Subfunction 33H, Enable/disable gray­

scale summing 527
Subfunction 34H, Enable/disable cursor

emulation 528
Subfunction 35H, Switch active display

528
Subfunction 36H, Enable/disable screen

refresh 529
Function 13H, Write string in teletype

mode529
Function lAH, Get or set display

combination code 530
Function lBH, Get functionality/state

information 531
Function lCH, Save or restore video

state 534
Int UH, Get equipment configuration 535
Int 12H, Get conventional memory size

536
Int 13H, ROM BIOS disk driver 319

Function OOH, Reset disk system 536
Function OlH, Get disk system status

537
Function 02H, Read sector 538
Function 03H, Write sector 539
Function 04H, Verify sector 540
Function 05H, Format track 541
Function 06H, Format bad track 542
Function 07H, Format drive 543
Function 08H, Get drive parameters

543
Function 09H, Initialize fixed disk

characteristics 544
Function 0AH, Read sector long 545
Function 0BH, Write sector long 546
Function OCH, Seek 547
Function 0DH, Reset fixed disk system

548
Function 0EH, Read sector buffer 548
Function 0FH, Write sector buffer 549
Function l0H, Get drive status 549
Function llH, Recalibrate drive 550
Function 12H, Controller RAM

diagnostic 550
Function 13H, Controller drive

diagnostic 551
Function 14H, Controller internal

diagnostic 551
Function 15H, Get disk type 552

656 Index

Int 13H, continued
Function 16H, Get disk change status

552
Function 17H, Set disk type 553
Function 18H, Set media type for

format 554
Function 19H, Park heads 554
Function lAH, Format ESDI drive 555

Int 14H, ROM BIOS Serial
communications port driver 111

Function OOH, Initialize
communications port 556

Function OlH, Write character to
communications port 557

Function 02H, Read character from
communications port 558

Function 03H, Get communications
port status 558

Function 04H, Extended initialize
communications port 558

Function 05H, Extended
communications port control 559

Int 15H, ROM BIOS 1/0 Subsystem
Extensions

Function OOH, Turn on cassette motor
560

Function OlH, Turn off cassette motor
560

Function 02H, Read cassette 561
Function 03H, Write cassette 562
Function 0FH, Format ESDI drive

periodic interrupt 562
Function 21H

Subfunction OOH, Read POST error
log 563

Subfunction OlH, Write POST error
log563

Function 4FH, Keyboard intercept 564
Function 80H, Device open, 564
Function 81H, Device close 565
Function 82H, Process termination 566
Function 83H, Event wait 566
Function 84H, Read joystick 567
Function 85H, SysReq key 568
Function 86H, Delay 568
Function 87H, Move extended memory

block569
Function 88H, Get extended memory

size 570
Function 89H, Enter protected mode

570
Function 90H, Device wait 571
Function 91H, Device post 572

Int 15H, continued
Function C0H, Get system

environment 317, 573
Function ClH, Get address of extended

BIOS data area 574
Function C2H

Subfunction OOH, Enable/disable
pointing device 574

Subfunction 0lH, Reset pointing
device 575

Subfunction 02H, Set sample rate
576

Subfunction 03H, Set resolution 576
Subfunction 04H, Get pointing

device type 577
Subfunction 05H, Initialize pointing

device interface 577
Subfunction 06H, Set scaling or get

status 578
Subfunction 07H, Set pointing

device handler address 579
Function C3H, Set watchdog time-out

580
Function C4H, Programmable option

select 580
Int 16H, ROM BIOS keyboard driver 322

Function OOH, Read character from
keyboard 581

Function OlH, Get keyboard status 582
Function 02H, Get keyboard flags 582
Function 03H, Set repeat rate 583
Function 04H, Set keyclick 584
Function 05H, Push character and scan

code585
Function l0H, Read character from

enhanced keyboard 585
Function llH, Get enhanced keyboard

status 586
Function 12H, Get enhanced keyboard

flags 586
Int 17H, ROM BIOS Parallel port printer

driver 108-19
Function OOH, Write character to

printer 587
Function OlH, Initialize printer port

587
Function 02H, Get printer status 588

Int 18H, ROM BASIC 588
Int 19H, ROM BIOS Reboot system 588
Int lAH, Real-time (CMOS) Clock Driver

Function OOH, Get tick count 589
Function OlH, Set tick count 589
Function 02H, Get time 590
Function 03H, Set time 590

Int lAH, continued
Function 04H, Get date 591
Function 05H, Set date 591
Function 06H, Set alarm 591
Function 07H, Reset alarm 592
Function 0AH, Get day count 592
Function 0BH, Set day count 593
Function 80H, Set sound source 593

Int 20H, Terminate process 341
Int 21H, MS-DOS system functions

function execution in a typical 1/0
request 281-82

function summary by category 337-40
(table)

function summary by number 335-37
(table)

Function OOH, Terminate process 342
Function 0lH, Character input with

echo 70, 148, 343
Function 02H, Character output 90, 344
Function 03H, Auxiliary input 110,

344-45
Function 04H, Auxiliary output 110,

345-46
Function 05H, Printer output 107,

346-47
Function 06H, Direct console 1/0 70,

73, 90, 347-48
Function 07H, Unfiltered character

input without echo 70, 73, 348-49
Function 08H, Character input without

echo 70, 349-50
Function 09H, Display string 90,

350-51
Function 0AH, Buffered keyboard

input 70-71, 351-52
Function 0BH, Check input status 70,

353
Function OCH, Flush input buffer and

theninput70,353-54
Function 0DH, Disk reset 354-55
Function 0EH, Select disk 167, 355-56
Function 0FH, Open file 132, 13 7,

356-57
Function lOH, Close file 132, 357-58
Function llH, Find first file 358-59
Function 12H, Find next file 360-61
Function 13H, Delete file 132, 361-62
Function 14H, Sequential read 132,

362-63
Function 15H, Sequential write 132,

363-64
Function 16H, Create file 132, 364-65

Index 657

Int 21H, continued
Function 17H, Rename file 132, 173,

366-67
Function 18H, Reserved 367
Function 19H, Get current disk 167,

168,367
Function lAH, Set DTA address 130,

132,368
Function lBH, Get default drive data

368-69
Function lCH, Get drive data 370
Function lDH, Reserved 371
Function lEH, Reserved 371
Function lFH, Reserved 371
Function 20H, Reserved 371
Function 21H, Random read 132,

372-73
Function 22H, Random write 132,

373-75
Function 23H, Get file size 132, 375-76
Function 24H, Set relative record

number 132, 376
Function 25H, Set interrupt vector 147,

252,253,316,377-78
Function 26H, Create new PSP 378-79
Function 27H, Random block read 132,

379-80
Function 28H, Random block write

132, 381-82
Function 29H, Parse filename 129, 132,

382
Function 2AH, Get date 384-85
Function 2BH, Set date 385
Function 2CH, Get time 386
Function 2DH, Set time 386-87
Function 2EH, Set verify flag 387-88
Function 2FH, Get DTA address

388-89
Function 30H, Get MS-DOS version

number148,319,389
Function 31H, Terminate and stay

resident 252, 253, 390-91
Function 32H, Reserved 392
Function 33H, Get or set break flag, get

boot drive 392-93
Function 34H, Reserved 393
Function 35H, Get interrupt vector 252,

316, 393-94
Function 36H, Get drive allocation

information 394-95
Function 37H, Reserved 395
Function 38H, Get or set country

information 395-98
Function 39H, Create directory 167,

398-99

658 Index

Int 21H, continued
Function 3AH, Delete directory 167, 399
Function 3BH, Set current directory 167,

400
Function 3CH, Create file 140, 401-2
Function 3DH, Open file 107, 110, 140,

204, 402-4
Function 3EH, Close file 140, 204, 404
Function 3FH, Read file or device 67, 69,

71, 109, 110, 141, 298, 300, 322, 405-
6

Function 40H, Write file or device 35, 88,
107,109,110,141,298,300,322,
406-7

Function 41H, Delete file 141, 407-8
Function 42H, Set file pointer 141,

408-9
Function 43H, Get or set file attributes

141, 410-11
Function 44H, IOCTL (I/O control) 69,

93-94, 111, 204, 205, 411-34
Subfunction OOH, IOCTL: get device

information 412-13
Subfunction Olli, IOCTL: set device

information 414-15
Subfunction 02H, IOCTL: read

control data from character device
driver 415-16

Subfunction 03H, IOCTL: write
control data to character device
driver 416-17

Subfunction 04H, IOCTL: read
control data from block device
driver 418-19

Subfunction 05H, IOCTL: write
control data to block device driver
419-20

Subfunction 06H, IOCTL: check
input status 420-21

Subfunction 07H, IOCTL: check
output status 421-22

Subfunction 08H, IOCTL: check if
block device is removable 422-23

Subfunction 09H, IOCTL: check if
block device is remote 423-24

Subfunction 0AH, IOCTL: check if
handle is remote 424-25

Subfunction 0BH, IOCTL: change
sharing retry count 425-26

Subfunction OCH, IOCTL: generic
I/O control for character devices
426-29

Int 21H, Function 44H, continued
Subfunction 0DH, IOCTL: generic

1/0 control for block devices
429-32

Subfunction 0EH, IOCTL: get logical
drive map 433

Subfunction 0FH, IOCTL: set logical
drive map 434

Function 45H, Duplicate handle 141,
435

Function 46H, Redirect handle 141, 299,
436-37

Function 47H, Get current directory
167, 168, 437-38

Function 48H, Allocate memory block
196,202,323,438-39

Function 49H, Release memory block
196, 323, 439-40

Function 4AH, Resize memory block
196,198,202,219,239,322,440-41

Function 4BH, Execute program
(EXEC) 202, 299, 441-42 (see also
EXEC function)

Function 4CH, Terminate process with
return code 26, 31, 35, 317, 443-44

Function 4DH, Get return code 221,
444-45

Function 4EH, Find first file 445-46
Function 4FH, Find next file 446-47
Function S0H, Reserved 447
Function SlH, Reserved 447
Function 52H, Reserved 447
Function 53H, Reserved 448
Function 54H, Get verify flag 448
Function SSH, Reserved 448
Function 56H, Rename file 141, 173,

449-50
Function 57H, Get or set file date and

time 141, 450-51
Function 58H, Get or set allocation

strategy 452-53
Function 59H, Get extended error

information 130, 145, 148, 453-56
Function SAH, Create temporary file

141, 457-58
Function SBH, Create new file 141,

458-59
Function SCH, Lock or unlock file

region 141, 460-61
Function SDH, Reserved 461
Function SEH, Machine name and

printer setup
Subfunction OOH, Get machine

name461-62

Int 21H, Function SEH, continued
Subfunction 02H, Set printer setup

string 462-63
Subfunction 03H, Get printer setup

string 463-64
Function SFH, Device redirection

Subfunction 02H, Get redirection list
entry 464-65

Subfunction 03H, Redirect device
466-67

Subfunction 04H, Cancel device
redirection 467-68

Function 60H, Reserved 468
Function 61H, Reserved 468
Function 62H, Get PSP address 468-69
Function 63H, Get DBCS lead byte

table 469-70
Function 64H, Reserved 470
Function 65H, Get extended country

information 470-74
Function 66H, Get or set code page

474-75
Function 67H, Set handle count 141,

475-76
Function 68H, Commit file 141, 476-77
Function 69H, Reserved 477
Function 6AH, Reserved 477
Function 6BH, Reserved 477
Function 6CH, Extended open file 141,

478-80
Int 22H, Terminate handler address 480
Int 23H, Ctrl-C handler address 317,

480-81
Int 24H, Critical-error handler address

147, 317, 481-82
Int 25H, Absolute disk read 482-84
Int 26H, Absolute disk write 319, 484-85
Int 27H, Terminate and stay resident

486-87
Int 28H, Reserved 487
Int 29H, Reserved 487
Int 2AH, Reserved 487
Int 2BH, Reserved 487
Int 2CH, Reserved 487
Int 2DH, Reserved 488
Int ZEH, Reserved 488
Int 2FH, Multiplex interrupt 488

Function 0lH, Print spooler 488-89
Function 02H, ASSIGN 489
Function l0H, SHARE 490
Function B7H, APPEND 490-91

Int 33H, Microsoft Mouse driver 593
Function OOH, Reset mouse and get

status 80, 594

Index 659

Int 33H, continued
Function OlH, Show mouse pointer 80,

594
Function 02H, Hide mouse pointer 80,

595
Function 03H, Get mouse position and

button status 80, 595
Function 04H, Set mouse pointer

position 80, 596
Function 05H, Get button press

information 80, 596
Function 06H, Get button release

information 80, 597
Function 07H, Set horizontal limits for

pointer 80, 597
Function 08H, Set vertical limits for

pointer 80, 598
Function 09H, Set graphics pointer

shape 80,598
Function OAH, Set text pointer type 80,

599
Function OBH, Read mouse motion

counters 80, 599
Function OCH, Set user-defined mouse

event handler 80, 600
Function ODH, Turn on light pen

emulation 80, 601
Function OEH, Turn off light pen

emulation 80, 601
Function OFH, Set mickeys to pixels

ratio 80, 601
Function lOH, Set mouse pointer

exclusion area 80, 602
Function 13H, Set double speed

threshold 81, 602
Function 14H, Swap user-defined

mouse event handlers 81, 603
Function 15H, Get mouse save state

buffer size 81, 603
Function 16H, Save mouse driver state

81,604
Function 17H, Restore mouse driver

state 81, 604
Function 18H, Set alternate mouse

event handler 81, 604
Function 19H, Get address of alternate

mouse event handler 81, 606
Function lAH, Set mouse sensitivity 81,

606
Function lBH, Get mouse sensitivity

81,607
Function lCH, Set mouse interrupt rate

81,607

660 Index

Int 33H, continued
Function lDH, Select pointer page 81,

608
Function lEH, Get pointer page 81, 608
Function lFH, Disable mouse driver 81,

608
Function 20H, Enable mouse driver 81,

609
Function 21H, Reset mouse driver 81,

609
Function 22H, Set language for mouse

driver messages 81, 610
Function 23H, Get language number

81,610
Function 24H, Get mouse information

81,611
Int 67H, Expanded Memory Manager

functions 204, 205, 207
Function 40H, Get status 616
Function 41H, Get page frame address

616
Function 42H, Get number of pages

617
Function 43H, Allocate handle and

pages 617
Function 44H, Map expanded memory

page618
Function 45H, Release handle and

expanded memory 619
Function 46H, Get version 619
Function 47H, Save page map 620
Function 48H, Restore page map 620
Function 49H, Reserved 621
Function 4AH, Reserved 621
Function 4BH, Get handle count 621
Function 4CH, Get handle pages 622
Function 4DH, Get pages for all

handles 623
Function 4EH

Subfunction OOH, Save page map
623

Subfunction OlH, Restore page map
624

Subfunction 02H, Save and restore
pagemap624

Subfunction 03H, Get size of page
map information 625

Function 4FH
Subfunction OOH, Save partial page

map625
Subfunction OlH, Restore partial

pagemap626
Subfunction 02H, Get size of partial

page map information 626

Int 67H, continued
Function S0H

Subfunction OOH, Map multiple
pages by number 627

Subfunction OIH, Map multiple
pages by address 627

Function 51H, Reallocate pages for
handle 628

Function 52H
Subfunction OOH, Get handle

attribute 629
Subfunction 0lH, Set handle

attribute 629
Subfunction 02H, Get attribute

capability 630
Function 53H

Subfunction OOH, Get handle name
630

Subfunction OIH, Set handle name
631

Function 54H
Subfunction OOH, Get all handle

names631
Subfunction 0lH, Search for handle

name632
Subfunction 02H, Get total handles

632
Function SSH

Subfunctions OOH and 0lH, Map
pages and jump 633

Function 56H
Subfunctions OOH and 0lH, Map

pages and call 633
Subfunction 02H, Get stack space for

map page and call 634
Function 57H

Subfunction OOH, Move memory
region635

Subfunction OIH, Exchange memory
regions635

Function SSH
Subfunction OOH, Get addresses of

mappable pages 636
Subfunction OIH, Get number of

mappable pages 637
Function 59H

Subfunction OOH, Get hardware
configuration 637

Subfunction OIH, Get number of raw
pages638

Function SAH
Subfunction OOH, Allocate handle

and standard pages 638
Subfunction OlH, Allocate handle

and raw pages 639

Int 67H, continued
Function SBH

Subfunction OOH, Get alternate map
registers 639

Subfunction 0lH, Set alternate map
registers 640

Subfunction 02H, Get size of
alternate map register save area
641

Subfunction 03H, Allocate alternate
map register set 641

Subfunction 04H, Deallocate
alternate map register set 642

Subfunction 0SH, Allocate DMA
register set

Subfunction 06H, Enable DMA on
alternate map register set 643

Subfunction 07H, Disable DMA on
alternate map register set 643

Subfunction 08H, Deallocate DMA
register set 644

Function SCH, Prepare expanded
memory manager for warm boot
644

Function SDH
Subfunction OOH, Enable EMM

operating system functions 645
Subfunction OIH, Disable EMM

operating system functions 645
Subfunction 02H, Release access key

646
Intel 80x86 microprocessor family 4, 8,

38,64,203
interrupts and 246-51

Intel 8259A Programmable Interrupt
Controller 112, 320

internal hardware interrupts 246
internal (intrinsic) commands 14
interrupt(s) 13, 244-45. See also Int l0H

through Int 67H
external hardware 247
internal hardware 246
servicing 250-51
software 247-49
types 244

interrupt handlers 16
example (ZERODIV.ASM) 254-58
MS-DOS and 252-53
servicing 250, 251
tasks 245
typical 251

interrupt (intr) routine, device-driver
266-67, 293. See also command
code routines

Index 661

interrupt vector 17, 244
get 393- 94
set 377- 78

interrupt vector table 250
IOCTL (l/0 control). See Int 21H,

Function 44H
IO.SYS file 16, 17

memory location of 18

J
Japanese character set 6
joystick, read 567

K
kernel. See DOS kernel
keyboard

get enhanced flags 586-87
get enhanced status 586
get flags 582
get status 582
input with/ without echo 70
intercept 564
key repeat rate and delay 583-84
push character and scan code in buffer

585
read character from 581
read character from enhanced 585
set keyclick 584

keyboardinput65-72
buffered 351- 52
Ctrl-C and Ctrl-Break handlers 72-80,

317
with handles 66, 67-69
read character from keyboard 581
with ROM BIOS functions 71-72
with traditional calls 69- 71

Keyboard input with echo 70
Keyboard input without echo 70
Keyboard intercept 564
Korean character set 6

L
.LIB files 44, 45 , 58. See also Library

Manager (LIB)
Library Manager (LIB) 44, 58-60

operations prefix characters 58
table-of-contents listing for SLIBC.LIB

59
light pen

get position 503
turn off emulation 601
turn on emulation 601

662 Index

line printer (PRN) 12, 106, 298
LINK. See Object Linker (LINK)
Load ROM 8-by-8 font 519
Load ROM 8-by-14 font 518-19
Load ROM 8-by-16 font 520-21
Load user font 518
Lock or unlock file region 460-61
Lotus/ Intel/Microsoft Expanded Memory

(LIM EMS). See Expanded Memory
Specification (EMS)

LPTl, LPT2, LPT3 devices 106, 298
.LST files 45

M
machine name, get 461-62
Macro Assembler (MASM) 44, 45-47

command line mode 46
interactive mode 46
levels

modules 37
procedures 41- 42
segments 38- 41

tutorials 63
version 5.1 switches 47

make files 61
MAKE utility 60- 61

switches for 61
Map expanded memory page (EMS) 618
.MAP files 45
Map multiple pages by address (EMS)

627- 28
Map multiple pages by number (EMS)

627
Map pages and call (EMS) 633-34
MASM. See Macro Assembler (MASM)
master boot record 192
Media Check (function OlH) 270-71
memory

allocation
dynamic, of additional 199-201
shrinking 197-99

conventional 196
moving blocks of data between

extended memory and 213-15
expanded (see Expanded Memory

Specification (EMS))
image of .COM file 26
image of .EXE file 31
location of disk bootstrap program in

17
location of IO.SYS in 18
location of ROM bootstrap routine in

16

memory, continued
location of SYSINIT, DOS kernel,

MSDOS.SYS in 19
making available, for EXEC function

218-19
map after startup 20
RAM196

memory areas, 196. See also arena entries;
arena headers; transient program
area (TPA)

memory block
allocate 438-39
get/set allocation strategy 452-53
move extended 569-60
release 439-40
resize 440-41

memory interlace 203
memory management 195-215

arena headers 201-2
expanded memory 203-11

using 207-11
extended memory 212-15
Int 21H functions summary 339
MS-DOS applications compatibility

and316
using memory-allocation functions

197-202
memory-mapped input/output 86,

96-103
graphics mode 101-3
text mode 96-101

memory models 39
segments, groups, classes for 40

memory segment 321-22
memory size

get conventional 536
get extended 570

mickeys, set to pixel ratio 601
Microsoft Mouse driver 593-611
miscellaneous system functions, Int 21H

functions summary 340
MKDIR (MD) command 167
Monochrome/Printer Display Adapter

(MDA) 86, 97, 98
example dump, regen buffer 98

MOUDEMO.C program 82-83
mouse. See also pointing device

disable driver 608-9
driver 593
enable driver 609
get address of alternate event handler

606
get button press information 596
get button release information 597

mouse, continued
get information 611
get language number 610
get mouse save state buffer size 603-4
get position and button status 595
get sensitivity 607
hide pointer 595
input80-83
read motion counters 599-600
reset and get status 594
reset driver 609
save driver state 604
set alternate event handler 604-5
set double speed threshold 602
set graphics pointer shape 598
set interrupt rate 607
set language for driver messages 610
set pointer exclusion area 602
set pointer horizontal limits 597-98
set pointer page 608
set pointer position 596
set pointer vertical limits 598
set sensitivity 606
set text pointer type 599
set user-defined event handler

600-601
show pointer 594-95
summary of function calls 494-99
swap user-defined event handlers 603

Move extended memory block 569-70
Move memory region (EMS) 635
MS-DOS. See also Operating System/2

(OS/2)
genealogy 3-9
interrupt handlers and 252-53
loading 16-20
programming tools (see programming

tools)
structure 12-16

MS-DOS application programs, porting to
OS/2 318-31

conversion 326-30
encapsulation 323, 324-25
MS-DOS function calls and OS/2

counterparts 328-29
optimization 330-31
rationalization 322-23
ROM BIOS functions and OS/2

equivalents used in MS-DOS
applications 330

segmentation 321-22
MS-DOS application programs, structure

of21-42

Index 663

MS-DOS application programs, continued
assembly-language programs 27-30,

37-42
.COM programs introduced 25-30
creation of 62-63
.EXE programs introduced 30-36
program procedures 41-42
program segment prefix 23-25

MS-DOS application programs, writing
compatible 314, 315 - 17

check host capabilities 316
exception handling 317
input and output 316
memory management 316
process management 317
program structure 315

MS-DOS error codes 145-51
MS-DOS functions 334

conversion of, to OS/2 function calls
326-27

display functions 88-94
binary output mode 93-94
screen control 91-93

EXEC (see EXEC function)
file control block (FCB) 129-39
handle 139-44
memory management/allocation 196,

197-202
OS/ 2 equivalents to 328-29
printer output 107-9
reference (see Section If)
serial port 109-12
typical in-line code for call to 324

MSDOS.SYS file 13, 16
memory location of 19

MS-DOS versions
1.0 4-5, 138
1.25 5
2.00 5-6, 174

error codes 145
volume-label search under 175

2.11, 2.25 6
3.0 6-7, 138, 174

error codes 145-46
volume-label search under 176

3.1, 3.2, 3.3, 4.0 7
get number 389-90
support for select command code

routines by 267-68 (table)
Multi-Color Graphics Array (MCGA) 86,

102
Multiplex interrupt 488

664 Index

N
NAME statement 27, 33
NEAR attribute 27

vs FAR 29
NEAR RETURN 27
network functions, Int 21H functions

summary 339
Nondestructive Read (function 05H) 274
non-disk-related errors 147, 148 (table)

0
Object Linker (LINK) 37, 44, 50-55

map produced by, of HELLO.EXE
program 51

switches accepted by 53-55
object modules 37

libraries (see Library Manager (LIB))
linking .COM files from 27, 37. See also

Object Linker (LINK)
.OBJ files 45
Open file 356-57, 402-4
Operating System/ 2 (OS/ 2) 7

code optimization 330-31
compatibility issues 318-20
function calls equivalent to MS-DOS

function calls 328-29
function calls equivalent to ROM BIOS

function calls 330
porting MS-DOS applications to OS/ 2

320-31
ORG instruction 29
output. See character input/output;

printer output; serial port
output status, check 421-22
Output Status (command-code function

0AH) 276
Output Until Busy (function lOH) 278-79
overlays, loading with EXEC 240, 241-42

p
PAGE command 27, 33
page frame 203
palette

enable/ disable default 526-27
get border and 514
get register 513
set 508-9
set border and 512-13
set register 511-12

parallel ports 106

parameter block, requesting EXEC
function 220- 21

parent programs 218
Park heads 554-55
Parse filename 382- 84
partitions, fixed-disk 192-94
Paterson, Tim 4
path 166
PC-DOS

version 1.0 4
version 1.1 5
version 2.0 5-6
version 3.0 193- 94

piping parameters 24
pixel 101

formula to calculate bit position for
102-3

read graphics 510
set mickeys to pixel ratio 601- 2
write graphics 509

pointing device
enable/disable 574-75
get device type 577
get scaling or get status 578-79
initialize interface 577-78
input 80-83
reset 575
set handler address 579-80
set resolution 576-77
set sample rate 576

POP instruction 35
portability. See compatibility and

portability
POST (power-on self-test)

read error log 563
write error log 563-64

Prepare expanded memory manager for
warm boot (EMS) 644- 45

Presentation Manager, OS/2 318
printer 106, 107-9. See also line printer

(PRN); standard printer (stdprn)
get setup strings 463-64
get status 588
initialize port 587
write character to 587

printer output 106, 107-9, 346- 47. See
alsoTALK.ASM program

printer setup string
get 463-64
set 462-63

printscreen, select alternate 526
Print spooler 488- 89
PRN device 12, 106, 298-99

PROC command 29, 35, 41
procedure, declaring beginning/ end of

29
process management

for compatibility in MS-DOS
applications 317

Int 21H functions summary 339
terminate process 566

Process termination 566
Programmable Interrupt Controller (PIC)

247
Programmable option select 580- 81
programming tools 43- 64

C Optimizing compiler 48-50
CREF utility 56-58
example using 62-63
EXE2BIN utility 55-56
file types 45
Library Manager 58- 60
MAKE utility 60-61
MASM 45 - 47 (see also Macro

Assembler (MASM))
Object Linker 50-55 (see also Object

Linker (LINK))
resources and references 63- 64

program modules, assembly-language 37
program procedures 41- 42
program segment prefix (PSP) 15, 23-25

create new 378-79
get address 468-69
structure of 23

program segments, assembly-language
38- 41

protected mode, enter 570-71
PROTO.ASM program 301-2
PROTO.C program 303
P-system operating system 5
Push character and scan code 585
PUSH instruction 35

R
Random block read 379- 80
Random block write 381- 82
Random read 372-73
Random write 373-75
rationalizing code 322-23
raw mode69
Read (function 04H) 273
Read cassette 561
Read character and attribute at cursor 506
Read character from communications

port 558

Index 665

Read character from enhanced keyboard
585

Read character from keyboard 581
Read control data from block-device

driver 418-19
Read control data from character device

driver 415-16
Read file or device 405-6
Read graphics pixel 510
Read joystick 567
Read mouse motion counters 599-600
Read POST error log 563
Read sector 538-39
Read sector buffer 548
Read sector long 545-46
Reallocate pages for handle (EMS) 628
Reboot system 588-89
Recalibrate drive 550
record(s)

set relative number 376-77
using FCB functions 129-39
using handle functions 139-44

record operations, Int 21H functions
summary 338-39

Redirect device 466-67
Redirect handle 436-37
redirection, input/output 24, 67, 298-99

cancel467-68
redirection list entry, get 464-65
.REF files 45, 56
refresh buffer 86
regen buffer 86

example dump of MDA adapter 98
formula to determine offset 102
memory diagram showing location of

87
Release access key (EMS) 646
Release handle and expanded memory

(EMS)619
Release memory block 439-40
Removable Media (function OFH) 278
REN(AME) command 14
Rename file 366-67, 449-50
request header format 265

command codes for (see command
code routines, device-driver)

reserved area, disk 182
reserved functions

EMS621
Int 21H functions summary 340

Reset alarm 592
Reset disk system 536-37
Reset fixed disk system 548
Reset mouse and get status 594

666 Index

Reset mouse driver 609
Reset pointing device 575
resident device drivers 12
Resize memory block 440-41
RESTORE command 15
Restore mouse driver state 604
Restore page map (EMS) 620-21, 624
Restore partial page map (EMS) 626
RET instruction 41
retrace interval 100
return code

get444
terminate process with 443-44

RMDIR (RD) command 167
ROM 8-by-8 font

load 519
set Int 43H for 523

ROM 8-by-14 font
load518-19
set Int 43H for 522-23

ROM 8-by-16 font
load520-21
set Int 43H for 523-24

ROM BASIC 588
ROM BIOS

display functions 94-96, 330
interrupts of special importance to 247,

248-49
keyboard functions 67

input with 71-72
ROM BIOS compatibility 314-16, 317-18

avoid unstable hardware 318
check host capabilities 317-18
functions of, and OS/2 equivalents 330

ROM BIOS function calls. See also
Section/II

summary 494-99
ROM bootstrap routine 16
root directory 166, 184-86, 187

partial hex dump 186
RS-232 serial-interface standard 106
RS-422 serial-interface standard 106

s
Save and restore page map (EMS) 624-25
Save mouse driver state 604
Save or restore video state 534-35
Save page map (EMS) 620, 623
Save partial page map (EMS) 625-26
scan lines, set 526
screen control with MS-DOS functions

91-93
screen refresh, enable/disable 529

Search for handle name (EMS) 632
Seattle Computer Products 4
Seek547
SEGMENT command 29, 33, 38
segment register 321
Select alternate printscreen 526
Select disk 355-56
selector 321
Select pointer page 608
Sequential read 362-63
Sequential write 363-64
serial port 106, 109-12. See also

TALK.ASM program
extended initialize port 558-59
extended port control 559-60
get status 558
initialize 556-57
read character from 558
write character to 557

Set alarm 591-92
Set alternate map registers (EMS) 640
Set alternate mouse event handler 604-5
Set block of color registers 515
Set block specifier 520
Set border color 512
Set color page state 515-16
Set color register 514-15
Set current directory 400
Set cursor position 501-2
Set cursor type 501
Set date 385, 591
Set day count 593
Set device information 414-15
Set disk type 553
Set display page 503-4
Set double speed threshold 602
Set DTA address 368
Set file pointer 408-9
Set graphics pointer shape 598
Set gray-scale values 517
Set handle attribute (EMS) 629
Set handle count 475-76
Set handle name (EMS) 631
Set horizontal limits for pointer 597-98
Set Int lFH font pointer 521
Set Int 43H for ROM 8-by-8 font 523
Set Int 43H for ROM 8-by-14 font 522-23
Set Int 43H for ROM 8-by-16 font 523-24
Set Int 43H for user's font 522
Set interrupt vector 377-78
Set keyclick 584
Set language for mouse driver messages

610
Set Logical Device (function 18H) 280-81

Set logical drive map 434
Set media type for format 554
Set mickeys to pixels ratio 601
Set mouse interrupt rate 607
Set mouse pointer exclusion area 602
Set mouse pointer position 596
Set mouse sensitivity 606
Set palette and border 512-13
Set palette, background, or border 508-9
Set palette register 511-12
Set pointing device handler address

579-80
Set printer setup string 462-63
Set relative record number 376-77
Set repeat rate 583-84
Set resolution 576-77
Set sample rate 576
Set scaling or get status 578-79
Set scan lines 526
Set sound source 593
Set text pointer type 599
Set tick count 589-90
Set time 386-87, 590
Set user-defined mouse event handler

600-601
Set verify flag 387-88
Set vertical limits for pointer 598
Set video mode 500-501
Set watchdog time-out 580
SHARE490
shell. See COMMAND.COM file;

command processor (shell)
SHELL.ASM program 229-:38
SHELL.C program 225-29
Show mouse pointer 594-95
SLIBC.LIB, table-of-contents listing for

59
Softech company 5
software interrupts, 247-49
sound source, set 593
STACK attribute 31
stack pointer (SP) register 25-26, 31, 35
stack segment 38
stack segment (SS) register 31, 35
standard auxiliary device (stdaux) 20,

323
default device 298
handle 66

standard error device (stderr) 20
default device 298
handle 66

standard input device (stdin) 20
default device 298
handle 66, 67

Index 667

standard list device 20, 323
standard output device (stdout) 20

default device 298
handle 66

standard printer (stdprn)
default device 298
handle 66

strategy (strat) routine, device-driver
265,293

string(s)
display 350-51

Swap user-defined mouse event handlers
603

Switch active display 528-29
switches

C Optimizing compiler 49-50
Library Manager 60
Macro Assembler 4 7
Make utility 61
Object Linker 53-55

SYSINIT module 17, 18, 20
installing device drivers 293
memory location of 19

SysReq key 568
system file table 140-41

T
TALK.ASM program 113-26
teletype mode

write character in 510-11
write string in 529-30

terminal-emulator program. See
TALK.ASM program

Terminate and stay resident 390-91,
486- 87

Terminate handler address 480
Terminate process 341, 342
Terminate process with return code

443-44
text-mode memory-mapped

programming 96- 101
threads 331
time and date

day count 592, 593
get date 384- 85, 591
get time 386, 590
set date 385, 591
set time 386-87, 590

TITLE command 27, 33
Toggle blink/ intensity bit 513
transient program 15, 22. See also .COM

program file(s); .EXE (executable)
program file(s)

668 Index

transient program area (TPA) 15, 196. See
also arena entries; arena headers

TREE command 174
TRYBREAK.C program 78-79
Turn off cassette motor 560-61
Turn on cassette motor 560
Turn off light pen emulation 601
Turn on light pen emulation 601

u
Unfiltered character input without echo

348-49
UNIX/ XENIX operating system 66, 128,

139
user font

load 518
set Int lFH pointer 521
set Int 43H for 522

V
verify flag, get 448
Verify sector 540
video display 85-103

adapters 86- 87
enable/disable 527
get functionality/ state information

531-34
get or set combination code 530-31
memory-mapped techniques 96-103

graphics mode 101-3
text mode 96-101

MS-DOS display functions 88-94
binary output mode 93- 94
screen control with 91- 93

ROM BIOS display functions 94-96
save or restore video state 534-35
support considerations 88
switch active display 528-29

Video Graphics Array (VGA) 86, 97, 98,
102

video mode
get 511
set 500-501

VOL command 174
volume labels 174-76

search, using extended file control
block 175

w
watchdog time-out, set 580
window

initialize or scroll down 505-6
initialize or scroll up 505

Windows 7, 318
Write (function 08H) 275
Write cassette 562
Write character and attribute at cursor

506-7
Write character at cursor 507-8
Write character in teletype mode 510-11
Write character to communications port

557
Wri te character to printer 587

Write control data to block-device driver
419- 20

Write control data to character-device
driver 416-17

Write File or Device 406-7
Write graphics pixel 509
Write POST error log 563-64
Write screen in teletype mode 529-30
Write sector 539
Write sector buffer 549
Write sector long 546-47
Write wi th Verify (function 09H) 276

z
ZERODIV.ASM program 254, 255-58
Zilog Z-80 microprocessor 4

Index 669

Ray Duncan received a B.A. in chemistry at the University of California,
Riverside, and an M.D. at the University of California, Los Angeles; he spe­
cialized in pediatrics and neonatology at the Cedars-Sinai Medical Center
in Los Angeles. Duncan has been involved with microcomputers since
the Altair days and has written many articles for personal computer
magazines, including Dr. Dobb's Journal, Programmer's Journal, and
BYTE; he is currently a contributing editor to PC Magazine. In addition,
Duncan is the founder of Laboratory Microsystems Incorporated, a soft­
ware house specializing in FORTH interpreters and compilers. Duncan
was the general editor of THE MS-DOS ENCYCLOPEDIA.

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Cover design adapted by Becky Geisler-Johnson from original design by
Ted Mader and Associates.

Interior text design by Darcie S. Furlan

Principal typography by Lisa G. Iversen and Jean Trenary

Text composition by Microsoft Press in Garamond with display in Gara­
mond Bold, using the Magna composition system and the Linotronic 300
laser imagesetter.

:,::lt:d~ ► a:
~ 0 0 ~ -· O..><,_.::)n a - .. .,
o :Szn~
::lOt:Iioo
p.. '.:::J ~ ~
~ vJ s:: ""C
~ ;2:' a .,
...... :::r' ~ ("I)

~ >; Cll
<; (/) Cll .,, .,,

'-< -

\0
00
0
--.J
vJ

I
\0
--.J ---.J

~
Cl'.l

ti
,g
r

"1'.J
0

~
G)
m
:E
;= ,-
(ll
m
~
i5
(ll

-<
)>
0
0
::D
m
en
en
m
m

,,
1ii (JJ
ci C
~ (/)
en-z

m
~ (/)
~ (/)
-;

5 :D
~ m
ex, '""CJ

(ll~
m

~~
~)>
~r

C zz
~ ,,mo
-1_::>'()°U
mz::..mo
0 -I)>(/)(/)

~~~~~ 
~ 0:0G) 
m -<m 
(I) 

Programmer's 
Quick References 

At last! Now you can have instant access to 

key programming information. Whether 
you're an assembly-language or C program­
mer, you' ll find these books exceptionally use­
ful. The guides include overviews of each ser­
vice along with a list of the parameters or 
arguments the service requires, the results it 
returns, version 
dependencies, and 
va luable program­
ming notes and 
warnings. A II at 
your fingertips! 

" -

IBM® ROM BIOS 
Ray Duncan 

All the core information on each 
of the ROM BIOS services. 

$5.95 [Book Code 86-96478] 

MS-DOS FUNCTIONS 
Ray Duncan 

Covers DOS th rough version 3.3. 
$5.95 [Book Code 86-96411) 

ESSENTIAL OS/2 FUNCTIONS 
Ray Duncan 

Great for anyone involved in OS/2 
application programming! Here is the 
most accurate, up-to-date information 
on the OS/2 1.0 Kernel functions ca lls 

within the appl ications 
program interface (AP!). 

$9.95 [Book Code 86-96866) 



Solid Technical Information. Expert Advice. 

ADVANCED MS-DOS® PROGRAMMING, 2nd ed. 
Ray Duncan 

The preeminent source of MS-DOS information for assembly-language and C pro­
grammers-now completely updated with new data and programming advice cover­
ing: ROM BIOS for the IBM PC, PC/AT, PS/2, and related peripheral s; MS-DOS 
through version 4; version 4 of the LIM EMS; and OS/2 compatibility considerations. 
Duncan addresses key topics, including character devices, mass storage, memory allo­
cation and management , and process management. In addition, there is a healthy asso rt­
ment of updated assembly-language and C listings that range from code fragments to 
complete utilities. And the reference section, detailing each MS-DOS function and in­
terrupt , is virtually a book within a book. 
$24.95 [Book Code 86-96668] 

THE MS-DOS® ENCYCLOPEDIA 
The ultimate reference for insight, data, and advice to make your MS-DOS programs 
reliable, robust, and efficient. 1600 pages packed with version-specific data. Annota­

tions of more than 100 system function calls, 90 user commands, and a host of key pro­
gramming utilities. Hundreds of hands-on examples, thousands of lines of code, and 
handy indexes. Plus articles on debugging, writ ing filters, installable device drivers, 

TSRs, Windows, memory management, the future of MS-DOS, and much more. 
Researched and written by a team of MS-DOS experts-many involved in the 

creation and development of MS-DOS. Covers MS-DOS through version 3.2, with a 
special section on version 3.3. 

$134.95 [Book Code 86-96U2] 

MICROSOFT® QUICKC® PROGRAMMING 
The Waite Group 

Your springboard to the core of Microsoft QuickC. This book is loaded with practical 
in fo rmation and advice on every element of Qu ickC, along with hundreds of specially 
constructed listings. Included are the tools to help you master QuickC's built-in librar­
ies; manage file input and output; work with strings, arrays, pointers, structures, and 
unions; use the graphics modes; develop and link large C programs; and debug your 
source code. 
$19.95 [Book Code 86-96114] 

MICROSOFT® QUICKBASIC, 2nd ed. 
Douglas Hergert 

"No ma lier what your level of programming experience, you' II f ind this 
book irreplaceable when you start to program in QuickBASIC. " 

Online Today 

Th is new edition of MICROSOFT QU ICKBAS IC- completely updated fo r version 4 
- is a great introduction to all the development tools, featu res, and user-interface 

enhancements in Microsoft Quick BASIC. And there's more-six specially designed, 
full -length programs incl uding a database manager, an in formation-gathering and data­

analysis program, and a chart program that reenfo rce solid structured programming 
techniques. 

$19.95 [Book Code 86-96387] 

Available wherever books and software are soul. Or order directly from Microsoft Press. 



ISBN 1-55615-157-8 

I 
9 781556 151576 

52495 


