

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1986, 1988 by Ray Duncan

Published 1986. Second edition 1988.

All rights reserved. No part of the contents of this book may

be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Duncan, Ray, 1952-

Advanced MS-DOS programming.

Rev. ed. of: Advanced MS-DOS. ©1986.

Includes index.

1. MS-DOS (Computer operating system) 2. Assembler language
(Computer program language) 3. C (Computer program language)
I. Duncan, Ray, 1952- Advanced MS-DOS. I1. Title.
QA76.76.063D858 1988 005.4'46 88-1251

ISBN 1-55615-157-8

Printed and bound in the United States of America.

123456789 FGFG 321098

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Penguin Books Ltd., Harmondworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairu Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM® PC/AT® and PS/2® are registered trademarks of International Business Machines Corporation. CodeView®
Microsoft® MS-DOS® and XENIX® are registered trademarks and InPort™ is a trademark of Microsoft Corporation.

Technical Editor: Mike Halvorson Production Editor: Mary Ann Jones

Sectionl
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Sectionll

Section il

SectionlV

Contents

Road Map to Figures and Tables
Acknowledgments
Introduction

Programming for MS-DOS
Genealogy of MS-DOS
MS-DOS in Operation
Structure of MS-DOS Application Programs
MS-DOS Programming Tools
Keyboard and Mouse Input
Video Display

Printer and Serial Port

File Management

Volumes and Directories

Disk Internals

Memory Management

The EXEC Function

Interrupt Handlers

Installable Device Drivers
Filters

Compatibility and Portability
MS-DOS Functions Reference

IBM ROM BIOS and Mouse Functions
Reference

Lotus/Intel/Microsoft EMS Functions Reference

Index

ix
X1
xiii

11

21

43

65

85
105
127
165
177
195
217
243
259
297
313
333
493

613
647

Acknowledgments

My renewed thanks to the outstanding editors and production staff at
Microsoft Press, who make beautiful books happen, and to the talented
Microsoft developers, who create great programs to write books about.
Special thanks to Mike Halvorson, Jeff Hinsch, Mary Ann Jones, Claudette
Moore, Dori Shattuck, and Mark Zbikowski; if this book has anything
unique to offer, these people deserve most of the credit.

xi

SPECIAL OFFER

Companion Disk to
ADVANCED MS-DOS PROGRAMMING,
2nd edition

Microsoft Press has created a Companion Disk to ADVANCED MS-
DOS PROGRAMMING, 2nd edition, available in either 5.25-inch or
3.5-inch format. This disk contains all of the source files and execut-
able files from the book and is an essential resource for anyone who
wants to forgo the drudgery of typing code (and the time required to
find and correct those inevitable typing errors).

The Companion Disk to ADVANCED MS-DOS PROGRAMMING is

available only from Microsoft Press. To order, use the special reply
card bound in the back of the book. If the card has already been used,
send $19.95, plus sales tax if applicable (CA residents 5% plus local op-
tion tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 4.225%, NY 4% plus lo-
cal option tax, WA State 7.8%) and $2.50 per disk for domestic postage
and handling, $6.00 per disk for foreign orders to: Microsoft Press,
Attn: Companion Disk Offer, 21919 20th Ave S.E., Box 3011, Bothell,
WA 98041-3011. Please specify 5.25-inch or 3.5-inch format. Payment
must be in U.S. funds. You may pay by check or money order (payable
to Microsoft Press) or by American Express, VISA, or MasterCard;
please include both your credit card number and the expiration date.
All orders are shipped 2nd day air upon receipt of order to Microsoft.

If you have questions or comments about this disk, please contact Ray
Duncan via MCI Mail (user name LMI), CompuServe (user ID
72406,1577), or BIX (user name rduncan).

If this disk proves defective, please send the defective disk along with
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717.

In only seven years, MS-DOS has evolved from a simple program loader
into a sophisticated, stable operating system for personal computers that
are based on the Intel 8086 family of microprocessors (Figure 1-1). MS-
DOS supports networking, graphical user interfaces, and storage devices
of every description; it serves as the platform for thousands of application
programs; and it has over 10 million licensed users—dwarfing the com-
bined user bases of all of its competitors.

The progenitor of MS-DOS was an operating system called 86-DOS, which
was written by Tim Paterson for Seattle Computer Products in mid-1980.
At that time, Digital Research’s CP/M-80 was the operating system most
commonly used on microcomputers based on the Intel 8080 and Zilog
Z-80 microprocessors, and a wide range of application software (word
processors, database managers, and so forth) was available for use with
CP/M-80.

To ease the process of porting 8-bit CP/M-80 applications into the new 16-
bit environment, 86-DOS was originally designed to mimic CP/M-80 in
both available functions and style of operation. Consequently, the struc-
tures of 86-DOS’s file control blocks, program segment prefixes, and exe-
cutable files were nearly identical to those of CP/M-80. Existing CP/M-80
programs could be converted mechanically (by processing their source-
code files through a special translator program) and, after conversion,
would run under 86-DOS either immediately or with very little hand
editing.

Because 86-DOS was marketed as a proprietary operating system for
Seattle Computer Products’ line of S-100 bus, 8086-based microcomputers,
it made very little impact on the microcomputer world in general. Other
vendors of 8086-based microcomputers were understandably reluctant to
adopt a competitor’s operating system and continued to wait impatiently
for the release of Digital Research’s CP/M-86.

In October 1980, IBM approached the major microcomputer-software
houses in search of an operating system for the new line of personal com-
puters it was designing. Microsoft had no operating system of its own to
offer (other than a stand-alone version of Microsoft BASIC) but paid a fee
to Seattle Computer Products for the right to sell Paterson’s 86-DOS. (At
that time, Seattle Computer Products received a license to use and sell
Microsoft’s languages and all 8086 versions of Microsoft’s operating sys-
tem.) In July 1981, Microsoft purchased all rights to 86-DOS, made sub-
stantial alterations to it, and renamed it MS-DOS. When the first IBM PC
was released in the fall of 1981, IBM offered MS-DOS (referred to as PC-
DOS 1.0) as its primary operating system.

Programming for MS-DOS

IBM also selected Digital Research’s CP/M-86 and Softech’s P-system as
alternative operating systems for the PC. However, they were both very
slow to appear at IBM PC dealers and suffered the additional disadvan-
tages of higher prices and lack of available programming languages. IBM
threw its considerable weight behind PC-DOS by releasing all the IBM-
logo PC application software and development tools to run under it. Con-
sequently, most third-party software developers targeted their products
for PC-DOS from the start, and CP/M-86 and P-system never became sig-
nificant factors in the IBM PC—compatible market.

In spite of some superficial similarities to its ancestor CP/M-80, MS-DOS
version 1.0 contained a number of improvements over CP/M-80, including
the following:

® An improved disk-directory structure that included information about
a file’s attributes (such as whether it was a system or a hidden file), its
exact size in bytes, and the date that the file was created or last
modified

® A superior disk-space allocation and management method, allowing
extremely fast sequential or random record access and program
loading

m An expanded set of operating-system services, including hardware-
independent function calls to set or read the date and time, a filename
parser, multiple-block record I/0O, and variable record sizes

» An AUTOEXEC.BAT batch file to perform a user-defined series of
commands when the system was started or reset

IBM was the only major computer manufacturer (sometimes referred to as
OEM, for original equipment manufacturer) to ship MS-DOS version 1.0
(as PC-DOS 1.0) with its products. MS-DOS version 1.25 (equivalent to IBM
PC-DOS 1.1) was released in June 1982 to fix a number of bugs and also to
support double-sided disks and improved hardware independence in the
DOS kernel. This version was shipped by several vendors besides IBM, in-
cluding Texas Instruments, COMPAQ, and Columbia, who all entered the
personal computer market early. Due to rapid decreases in the prices of
RAM and fixed disks, MS-DOS version 1 is no longer in common use.

MS-DOS version 2.0 (equivalent to PC-DOS 2.0) was first released in March
1983. It was, in retrospect, a new operating system (though great care was
taken to maintain compatibility with MS-DOS version D. It contained
many significant innovations and enhanced features, including those
listed on the following page.

Genealogy of MS-DOS

s Support for both larger-capacity floppy disks and hard disks

a Many UNIX/XENIX-like features, including a hierarchical file struc-
ture, file handles, I/O redirection, pipes, and filters

@ Background printing (print spooling)
s Volume labels, plus additional file attributes
Installable device drivers '

® A user-customizable system-configuration file that controlled the load-
ing of additional device drivers, the number of system disk buffers, and
so forth

Maintenance of environment blocks that could be used to pass infor-
mation between programs

An optional ANSI display driver that allowed programs to position the
cursor and control display characteristics in a hardware-independent
manner

Support for the dynamic allocation, modification, and release of
memory by application programs

Support for customized user command interpreters (shells)

System tables to assist application software in modifying its currency,
time, and date formats (known as international support)

MS-DOS version 2.11 was subsequently released to improve international
support (table-driven currency symbols, date formats, decimal-point sym-
bols, currency separators, and so forth), to add support for 16-bit Kanji
characters throughout, and to fix a few minor bugs. Version 2.11 rapidly
became the base version shipped for 8086/8088-based personal com-
puters by every major OEM, including Hewlett-Packard, Wang, Digital
Equipment Corporation, Texas Instruments, COMPAQ, and Tandy.

MS-DOS version 2.25, released in October 1985, was distributed in the Far
East but was never shipped by OEMs in the United States and Europe. In
this version, the international support for Japanese and Korean character
sets was extended even further, additional bugs were repaired, and many
of the system utilities were made compatible with MS-DOS version 3.0.

MS-DOS version 3.0 was introduced by IBM in August 1984 with the
release of the 80286-based PC/AT machines. It represented another major
rewrite of the entire operating system and included the important new
features listed on the following page.

Programming for MS-DOS

Direct control of the print spooler by application software
Further expansion of international support for currency formats

® Extended error reporting, including a code that suggests a recovery
strategy to the application program

® Support for file and record locking and sharing
® Support for larger fixed disks

MS-DOS version 3.1, which was released in November 1984, added sup-
port for the sharing of files and printers across a network. Beginning with
version 3.1, a new operating-system module called the redirector inter-
cepts an application program’s requests for I/O and filters out the requests
that are directed to network devices, passing these requests to another
machine for processing.

Since version 3.1, the changes to MS-DOS have been evolutionary rather
than revolutionary. Version 3.2, which appeared in 1986, generalized the
definition of device drivers so that new media types (such as 3.5-inch
floppy disks) could be supported more easily. Version 3.3 was released in
1987, concurrently with the new IBM line of PS/2 personal computers, and
drastically expanded MS-DOS’s multilanguage support for keyboard map-
pings, printer character sets, and display fonts. Version 4.0, delivered in
1988, was enhanced with a visual shell as well as support for very large file
systems.

While MS-DOS has been evolving, Microsoft has also put intense efforts
into the areas of user interfaces and multitasking operating systems.
Microsoft Windows, first shipped in 1985, provides a multitasking, graphi-
cal user “desktop” for MS-DOS systems. Windows has won widespread
support among developers of complex graphics applications such as
desktop publishing and computer-aided design because it allows their
programs to take full advantage of whatever output devices are available
without introducing any hardware dependence.

Microsoft Operating System/2 (MS OS/2), released in 1987, represents a
new standard for application developers: a protected-mode, multitasking,
virtual-memory system specifically designed for applications requiring
high-performance graphics, networking, and interprocess communica-
tions. Although MS OS/2 is a new product and is not a derivative of
MS-DOS, its user interface and file system are compatible with MS-DOS
and Microsoft Windows, and it offers the ability to run one real-mode (MS-
DOS) application alongside MS OS/2 protected-mode applications. This
compatibility allows users to move between the MS-DOS and OS/2 envi-
ronments with a minimum of difficulty.

Genealogy of MS-DOS

MS-DOS 1.0
| PC-DOS1.0

BES

MS-DOS 1.25
PC-DOS 1.1

S

MS-DOS 2.0
PC-DOS 2.0

PR

e

1981: First operating system on IBM PC

Double-sided disk support and bug fixes added:
widely distributed by OEMs other than IBM

1983: Introduced with IBM PC/XT;
support for UNIX/XENIX-like hierarchical
file structure and hard disks added

MS-DOS 2.11

2.0 with inter- #
: fv o
national support

21 Introduced with PCjr;
- 2.0 with bug fixes

MS-DOS 3.0
PC-DOS 3.0

MS-DOS 3.1
PC-DOS 3.1

MS-DOS 3.2
PC-DOS 3.2

MS-DOS 3.3
PC-DOS 3.3

MS-DOS 4.0
PC-DOS 4.0

2.01 with bug fixes
1984: Introduced l 1985: Far East OEMs;
with PC/AT; support for extended

MS-DOS 2.25

support for 1.2
MB floppy disk,
larger hard disk added

character sets

1984: Support
for Microsoft

Networks added 1985: Graphical

user interface
for MS-DOS

| Windows
: 1.0

1986: Support : i
for 3.5-inch

disks added

1987: Introduced
with IBM PS/2;
generalized code-
page (font) support

. 1987: Compatibili
Windows | i oem Y
2.0 Presentation Manager
1988: Support for ;
logical volumes
larger than 32 MB;

visual shell

Figure 1-1. The evolution of MS-DOS.

Programming for MS-DOS

What does the future hold for MS-DOS? Only the long-range planning
teams at Microsoft and IBM know for sure. But it seems safe to assume that
MS-DOS, with its relatively small memory requirements, adaptability to
diverse hardware configurations, and enormous base of users, will remain
important to programmers and software publishers for years to come.

Genealogy of MS-DOS 9

14

More about COMMAND.COM
The default MS-DOS shell, COMMAND.COM, is divided into three parts:

A resident portion
An initialization section
s A transient module

The resident portion is loaded in lower memory, above the DOS kernel
and its buffers and tables. It contains the routines to process Ctrl-C and
Ctrl-Break, critical errors, and the termination (final exit) of other tran-
sient programs. This part of COMMAND.COM issues error messages and
is respornsible for the familiar prompt

Abort, Retry, Ignore?

The resident portion also contains the code required to reload the tran-
sient portion of COMMAND.COM when necessary.

The initialization section of COMMAND.COM is loaded above the resi-
dent portion when the system is started. It processes the AUTOEXEC.BAT
batch file (the user’s list of commands to execute at system startup), if one
is present, and is then discarded.

The transient portion of COMMAND.COM is loaded at the high end of
memory, and its memory can also be used for other purposes by applica-
tion programs. The transient module issues the user prompt, reads the
commands from the keyboard or batch file, and causes them to be exe-
cuted. When an application program terminates, the resident portion of
COMMAND.COM does a checksum of the transient module to determine
whether it has been destroyed and fetches a fresh copy from the disk if
necessary.

The user commands that are accepted by COMMAND.COM fall into three
categories:

Internal commands
s External commands
a Batch files

Internal commands, sometimes called intrinsic commands, are those
carried out by code embedded in COMMAND.COM itself. Commands in
this category include COPY, REN(AME), DIR(ECTORY), and DEL(ETE).
The routines for the internal commands are included in the transient part
of COMMAND.COM.

Programming for MS-DOS

External commands, sometimes called extrinsic commands or transient
programs, are the names of programs stored in disk files. Before these
programs can be executed, they must be loaded from the disk into the
transient program area (TPA) of memory. (See “How MS-DOS Is Loaded”
in this chapter.) Familiar examples of external commands are CHKDSK,
BACKUP, and RESTORE. As soon as an external command has completed
its work, it is discarded from memory; hence, it must be reloaded from
disk each time it is invoked.

Batch files are text files that contain lists of other intrinsic, extrinsic, or
batch commands. These files are processed by a special interpreter that is
built into the transient portion of COMMAND.COM. The interpreter reads
the batch file one line at a time and carries out each of the specified
operations in order.

In order to interpret a user’s command, COMMAND.COM first looks to
see if the user typed the name of a built-in (intrinsic) command that it can
carry out directly. If not, it searches for an external command (executable
program file) or batch file by the same name. The search is carried out

first in the current directory of the current disk drive and then in each of
the directories specified in the most recent PATH command. In each
directory inspected, COMMAND.COM first tries to find a file with the ex-
tension .COM, then .EXE, and finally .BAT. If the search fails for all three
file types in all of the possible locations, COMMAND.COM displays the
familiar message

Bad command or file name

If a .COM file or a .EXE file is found, COMMAND.COM uses the MS-DOS
EXEC function to load and execute it. The EXEC function builds a special
data structure called a program segment prefix (PSP) above the resident
portion of COMMAND.COM in the transient program area. The PSP con-
tains various linkages and pointers needed by the application program.
Next, the EXEC function loads the program itself, just above the PSP, and
performs any relocation that may be necessary. Finally, it sets up the
registers appropriately and transfers control to the entry point for the pro-
gram. (Both the PSP and the EXEC function will be discussed in more
detail in Chapters 3 and 12.) When the transient program has finished its
job, it calls a special MS-DOS termination function that releases the tran-
sient program’s memory and returns control to the program that caused
the transient program to be loaded (COMMAND.COM, in this case).

A transient program has nearly complete control of the system’s resources
while it is executing. The only other tasks that are accomplished are those

MS-DOS in Operation

15

ROM bootstrap routine

< Top of RAM

Disk bootstrap routine

Interrupt vectors

Figure 2-2. The ROM bootstrap routine loads the disk bootstrap routine into memory
from the first sector of the system startup disk and then transfers control to it.

If the two system files are found, the disk bootstrap reads them into
memory and transfers control to the initial entry point of I0.SYS (Figure
2-3). (In some implementations, the disk bootstrap reads only I0.SYS into
memory, and I0.SYS in turn loads the MSDOS.SYS file.)

The I0.SYS file that is loaded from the disk actually consists of two sepa-
rate modules. The first is the BIOS, which contains the linked set of resi-
dent device drivers for the console, auxiliary port, printer, block, and
clock devices, plus some hardware-specific initialization code that is run
only at system startup. The second module, SYSINIT, is supplied by
Microsoft and linked into the IO.SYS file, along with the BIOS, by the
computer manufacturer.

SYSINIT is called by the manufacturer’s BIOS initialization code. It deter-
mines the amount of contiguous memory present in the system and then
relocates itself to high memory. Then it moves the DOS kernel,
MSDOS.SYS, from its original load location to its final memory location,
overlaying the original SYSINIT code and any other expendable initializa-
tion code that was contained in the IO.SYS file (Figure 2-4).

Next, SYSINIT calls the initialization code in MSDOS.SYS. The DOS
kernel initializes its internal tables and work areas, sets up the interrupt
vectors 20H through 2FH, and traces through the linked list of resident de-
vice drivers, calling the initialization function for each. (See Chapter 14.)

MS-DOS in Operation

< Arbitrary load location

17

18

ROM bootstrap routine

4 Top of RAM

Disk bootstrap routine

DOS kernel (from MSDQOS.SYS)

SYSINIT (from 10.SYS)

BIOS (from IO.SYS)

00400H
00000H

Interrupt vectors

Figure 2-3. The disk bootstrap reads the file I0.SYS into memory. This file contains
the MS-DOS BIOS (resident device drivers) and the SYSINIT module. Either the disk
bootstrap or the BIOS (depending upon the manufacturer’s implementation) then
reads the DOS kernel into memory from the MSDOS.SYS file.

These driver functions determine the equipment status, perform any nec-
essary hardware initialization, and set up the vectors for any external
hardware interrupts the drivers will service.

As part of the initialization sequence, the DOS kernel examines the disk-
parameter blocks returned by the resident block-device drivers, deter-
mines the largest sector size that will be used in the system, builds some
drive-parameter blocks, and allocates a disk sector buffer. Control then
returns to SYSINIT.

When the DOS kernel has been initialized and all resident device drivers
are available, SYSINIT can call on the normal MS-DOS file services to
open the CONFIG.SYS file. This optional file can contain a variety of com-
mands that enable the user to customize the MS-DOS environment. For

Programming for MS-DOS

< In temporary location

ROM bootstrap routine

4 T f RAM
SYSINIT module opo

Installable drivers

File control blocks
Disk buffer cache
DOS kernel
<« In final location
BIOS
00400H &
00000H Interrupt vectors

Figure 2-4, SYSINIT mouves itself to high memory and relocates the DOS kernel,
MSDOS.SYS, downward to its final address. The MS-DOS disk buffer cache and file
control block areas are allocated, and then the installable device drivers specified in
the CONFIG.SYS file are loaded and linked into the system.

instance, the user can specify additional hardware device drivers, the
number of disk buffers, the maximum number of files that can be open at
one time, and the filename of the command processor (shell).

If it is found, the entire CONFIG.SYS file is loaded into memory for pro-
cessing. All lowercase characters are converted to uppercase, and the file
is interpreted one line at a time to process the commands. Memory is allo-
cated for the disk buffer cache and the internal file control blocks used by
the handle file and record system functions. (See Chapter 8.) Any device
drivers indicated in the CONFIG.SYS file are sequentially loaded into
memory, initialized by calls to their init modules, and linked into the
device-driver list. The init function of each driver tells SYSINIT how
much memory to reserve for that driver.

After all installable device drivers have been loaded, SYSINIT closes all
file handles and reopens the console (CON), printer (PRN), and auxiliary

MS-DOS in Operation

19

(AUX) devices as the standard input, standard output, standard error, stan-
dard list, and standard auxiliary devices. This allows a user-installed
character-device driver to override the BIOS’s resident drivers for the
standard devices.

Finally, SYSINIT calls the MS-DOS EXEC function to load the command
interpreter, or shell. (The default shell is COMMAND.COM, but another
shell can be substituted by means of the CONFIG.SYS file.) Once the shell
is loaded, it displays a prompt and waits for the user to enter a command.
MS-DOS is now ready for business, and the SYSINIT module is discarded
(Figure 2-5).

ROM bootstrap routine

<« Top of RAM

Transient part of COMMAND.COM

Transient program area

Resident part of COMMAND.COM

Installable drivers

File control blocks
Disk buffer cache

DOS kernel

BIOS

00400H |
00000H |

Interrupt vectors

T

Figure 2-5. The final result of the MS-DOS startup process for a typical system. The
resident portion of COMMAND.COM lies in low memory, above the DOS kernel. The
transient portion containing the batch-file interpreter and intrinsic commands is
Dplaced in high memory, where it can be overlaid by extrinsic commands and appli-
cation programs running in the transient program area.

Programming for MS-DOS

Programs that run under MS-DOS come in two basic flavors: .COM pro-
grams, which have a maximum size of approximately 64 KB, and .EXE
programs, which can be as large as available memory. In Intel 8086
parlance, .COM programs fit the tiny model, in which all segment regis-
ters contain the same value; that is, the code and data are mixed together.
In contrast, .EXE programs fit the small, medium, or large model, in which
the segment registers contain different values; that is, the code, data, and
stack reside in separate segments. .EXE programs can have multiple code
and data segments, which are respectively addressed by long calls and by
manipulation of the data segment (DS) register.

A .COM-type program resides on the disk as an absolute memory image,
in a file with the extension .COM. The file does not have a header or any
other internal identifying information. A .EXE program, on the other
hand, resides on the disk in a special type of file with a unique header, a
relocation map, a checksum, and other information that is (or can be)
used by MS-DOS.

Both .COM and .EXE programs are brought into memory for execution by
the same mechanism: the EXEC function, which constitutes the MS-DOS
loader. EXEC can be called with the filename of a program to be loaded by
COMMAND.COM (the normal MS-DOS command interpreter), by other
shells or user interfaces, or by another program that was previously loaded
by EXEC. If there is sufficient free memory in the transient program area,
EXEC allocates a block of memory to hold the new program, builds the
program segment prefix (PSP) at its base, and then reads the program into
memory immediately above the PSP. Finally, EXEC sets up the segment
registers and the stack and transfers control to the program.

When it is invoked, EXEC can be given the addresses of additional infor-
mation, such as a command tail, file control blocks, and an environment
block; if supplied, this information will be passed on to the new program.
(The exact procedure for using the EXEC function in your own programs
is discussed, with examples, in Chapter 12.)

.COM and .EXE programs are often referred to as transient programs. A
transient program “owns” the memory block it has been allocated and has
nearly total control of the system’s resources while it is executing. When
the program terminates, either because it is aborted by the operating sys-
tem or because it has completed its work and systematically performed a
final exit back to MS-DOS, the memory block is then freed (hence the
term transient) and can be used by the next program in line to be loaded.

Programming for MS-DOS

In the first versions of MS-DOS, the PSP was designed to be compatible
with a control area that was built beneath transient programs under Digi-
tal Research’s venerable CP/M operating system, so that programs could
be ported to MS-DOS without extensive logical changes. Although MS-
. DOS has evolved considerably since those early days, the structure of the
PSP is still recognizably similar to its CP/M equivalent. For example, offset
0000H in the PSP contains a linkage to the MS-DOS process-termination
handler, which cleans up after the program has finished its job and per-
forms a final exit. Similarly, offset 0005H in the PSP contains a linkage to
the MS-DOS function dispatcher, which performs disk operations, con-
sole input/output, and other such services at the request of the transient
program. Thus, calls to PSP-0000 and PSP:0005 have the same effect as
CALL 0000 and CALL 0005 under CP/M. (These linkages are not the
“approved” means of obtaining these services, however.)

The word at offset 0002H in the PSP contains the segment address of the
top of the transient program’s allocated memory block. The program can
use this value to determine whether it should request more memory to do
its job or whether it has extra memory that it can release for use by other
processes.

Offsets 000AH through 0015H in the PSP contain the previous contents of
the interrupt vectors for the termination, Ctrl-C, and critical-error han-
dlers. If the transient program alters these vectors for its own purposes,
MS-DOS restores the original values saved in the PSP when the program
terminates.

The word at PSP offset 002CH holds the segment address of the environ-
ment block, which contains a series of ASCIIZ strings (sequences of ASCII
characters terminated by a null, or zero, byte). The environment block is
inherited from the program that called the EXEC function to load the cur-
rently executing program. It contains such information as the current
search path used by COMMAND.COM to find executable programs, the
location on the disk of COMMAND.COM itself, and the format of the user
prompt used by COMMAND.COM.

The command tail—the remainder of the command line that invoked the
transient program, after the program’s name—is copied into the PSP
starting at offset 0081H. The length of the command tail, not including the
return character at its end, is placed in the byte at offset 0080H. Redi-
rection or piping parameters and their associated filenames do not appear
in the portion of the command line (the command tail) that is passed to
the transient program, because redirection is transparent to applications.

Programming for MS-DOS

Stack grows downward from top of segment

Program code and data

CS:0100H

Program segment prefix

CS:0000H
DS:0000H
ES:0000H
$S:0000H

Figure 3-2. A memory image of a typical .COM-type program after loading. The
contents of the .COM file are brought into memory just above the program segment
prefix. Program, code, and data are mixed together in the same segment, and all seg-
ment registers contain the same value.

register contains OFFFEH if memory allows; otherwise, it is set as high as
possible in memory minus 2 bytes. (MS-DOS pushes a zero word on the
stack before entry.)

Although the size of an executable .COM file can’t exceed 64 KB, the cur-
rent versions of MS-DOS allocate all of the transient program area to .COM
programs when they are loaded. Because many such programs date from
the early days of MS-DOS and are not necessarily “well-behaved” in their
approach to memory management, the operating system simply makes
the worst-case assumption and gives .COM programs everything that is
available. If a .COM program wants to use the EXEC function to invoke
another process, it must first shrink down its memory allocation to the
minimum memory it needs in order to continue, taking care to protect its
stack. (This is discussed in more detail in Chapter 12.)

When a .COM program finishes executing, it can return control to MS-
DOS by several means. The preferred method is Int 21H Function 4CH,
which allows the program to pass a return code back to the program,
shell, or batch file that invoked it. However, if the program is running

Programming for MS-DOS

SS:SP

Stack segment: stack grows
downward from top of segment

$S:0000H s 4

Data segment

Program code

CS:0000H

Program segment prefix

DS:0000H
ES:0000H

Figure 3-4. A memory image of a typical .EXE-type program immediately after
loading. The contents of the EXE file are relocated and brought into memory above
the program segment prefix. Code, data, and stack reside in separate segments and
need not be in the order shown here. The entry point can be anywhere in the code seg-
ment and is specified by the END statement in the main module of the program. When
the program receives control, the DS (data segment) and ES (extra segment) registers
point to the program segment prefix; the program usually saves this value and then
resets the DS and ES registers to point to its data area.

in the source code for one of the program’s modules. The data segment
(DS) and extra segment (ES) registers are made to point to the PSP so that
the program can access the environment-block pointer, command tail,
and other useful information contained there.

The initial contents of the stack segment (SS) and stack pointer (SP) regis-
ters come from the header. This information derives from the declaration
of a segment with the attribute STACK somewhere in the program’s
source code. The memory space allocated for the stack may be initialized
or uninitialized, depending on the stack-segment definition; many pro-
grammers like to initialize the stack memory with a recognizable data pat-
tern so that they can inspect memory dumps and determine how much
stack space is actually used by the program.

When a .EXE program finishes processing, it should return control to MS-
DOS through Int 21H Function 4CH. Other methods are available, but they
offer no advantages and are considerably less convenient (because they
usually require the CS register to point to the PSP).

Structure of MS-DOS Application Programs

31

32

Byte offset

gggg: First part of .EXE file signature (4DH)
0002H Second part of .EXE file signature (SAH)
aH Length of file MOD 512
gggGH Size of file in 512-byte pages, including header
0008H Number of relocation-table items
000AH Size of header in paragraphs (16-byte units)
000CH Minimum number of paragraphs needed above program
Maximum number of paragraphs desired above program

000EH p

Segment displacement of stack module
0010H .
0012H Contents of SP register at entry
00L4H Word checksum

Contents of IP register at entry

0016H ;

Segment displacement of code module
0018H - — paar>

Offset of first relocation item in file

001AH -
0018H Overlay number (0 for resident part of program)

Variable reserved space

Relocation table

Variable reserved space

Program and data segments

Stack segment

Figure 3-5. The format of a .EXE load module.

The input to the linker for a .EXE-type program can be many separate ob-
ject modules. Each module can use a unique code-segment name, and the
procedures can carry either the NEAR or the FAR attribute, depending on
naming conventions and the size of the executable code. The program-
mer must take care that the modules linked together contain only one seg-
ment with the STACK attribute and only one entry point defined with an
END assembler directive. The output from the linker is a file with a .EXE
extension. This file can be executed immediately.

Programming for MS-DOS

36

number of extra words for registers pushed onto the stack during an MS-
DOS service call. If the stack overflows, it may damage your other code
and data segments and cause your program to behave strangely or even to
crash altogether!

The END statement on line 60 winds up our brief HELLO.EXE program,
telling the assembler that it has reached the end of the source file and pro-
viding the label of the program’s point of entry from MS-DOS.

The differences between .COM and .EXE programs are summarized in
Figure 3-8.

.COM program .EXE program
Maximum size 65,536 bytes minus 256 bytes No limit
for PSP and 2 bytes for stack
Entry point PSP:0100H Defined by END statement
AL atentry OOH if default FCB #1 has valid =~ Same
drive, OFFH if invalid drive
AH atentry OO0H if default FCB #2 has valid ~ Same
drive, OFFH if invalid drive
CS at entry PSP Segment containing module
with entry point
IP at entry 0100H Offset of entry point within
its segment
DS at entry PSP PSP
ES atentry PSP PSP
SS at entry PSP Segment with STACK
attribute
SP at entry OFFFEH or top word in avail- Size of segment defined with
able memory, whichever is STACK attribute
lower
Stack at entry Zero word Initialized or uninitialized
Stack size 65,536 bytes minus 256 bytes Defined in segment with
for PSP and size of execut- STACK attribute
able code and data
Subroutine calls Usually NEAR NEAR or FAR
Exit method Int 21H Function 4CH Int 21H Function 4CH
preferred, NEAR RET if preferred
MS-DOS version 1
Size of file Exact size of program Size of program plus header
(multiple of 512 bytes)

Figure 3-8. Summary of the differences between .COM and .EXE programs, includ-
ing their entry conditions.

Programming for MS-DOS

program. Most of the time, you can get by just fine using a small selection
of attributes in a rather stereotypical way. However, if you want to use the
full range of attributes, you might want to read the detailed explanation in
the MASM manual.

Programs are classified into one memory model or another based on the
number of their code and data segments. The most commonly used
memory model for assembly-language programs is the small model,
which has one code and one data segment, but you can also use the
medium, compact, and large models (Figure 3-9). (Two additional models
exist with which we will not be concerning ourselves further: the tiny
model, which consists of intermixed code and data in a single segment—
for example, a .COM file under MS-DOS; and the huge model, which is
supported by the Microsoft C Optimizing Compiler and which allows use
of data structures larger than 64 KB.)

Model Code segments Data segments
Small One ~ One

Medium Multiple One

Compact One Multiple

Large Multiple Multiple

Figure 3-9. Memory models commonly used in assembly-language and C programs.

For each memory model, Microsoft has established certain segment and
class names that are used by all its high-level-language compilers (Figure
3-10). Because segment names are arbitrary, you may as well adopt the
Microsoft conventions. Their use will make it easier for you to integrate
your assembly-language routines into programs written in languages such
as C, or to use routines from high-level-language libraries in your
assembly-language programs.

Another important Microsoft high-level-language convention is to use the
GROUP directive to name the near data segment (the segment the pro-
gram expects to address with offsets from the DS register) and the stack
segment as members of DGROUP (the automatic data group), a special
name recognized by the linker and also by the program loaders in
Microsoft Windows and Microsoft OS/2. The GROUP directive causes log-
ical segments with different names to be combined into a single physical
segment so that they can be addressed using the same segment base ad-
dress. In C programs, DGROUP also contains the local heap, which is

- used by the C runtime library for dynamic allocation of small amounts
of memory.

Structure of MS-DOS Application Programs

39

Memory Align Combine Class
model Segment name type type type Group

Small _TEXT WORD PUBLIC CODE

_DATA WORD PUBLIC DATA DGROUP

STACK PARA STACK STACK DGROUP
Medium module_TEXT WORD PUBLIC CODE

_DATA WORD PUBLIC DATA DGROUP

STACK PARA STACK STACK DGROUP
Compact _TEXT WORD PUBLIC CODE

data PARA PRIVATE FAR_DATA

_DATA WORD PUBLIC DATA DGROUP

STACK PARA STACK STACK DGROUP
Large module _TEXT WORD PUBLIC CODE

data PARA PRIVATE FAR_DATA

_DATA WORD PUBLIC DATA DGROUP

STACK PARA STACK STACK DGROUP

Figure 3-10. Segments, groups, and classes for the standard memory models as used
with assembly-language programs. The Microsoft C Optimizing Compiler and other
high-level-language compilers use a superset of these segments and classes.

For pure assembly-language programs that will run under MS-DOS, you
can ignore DGROUP. However, if you plan to integrate assembly-language
routines and programs written in high-level languages, you'll want to fol-
low the Microsoft DGROUP convention. For example, if you are planning
to link routines from a C library into an assembly-language program, you
should include the line

DGROUP group _DATA,STACK

near the beginning of the program.

The final Microsoft convention of interest in creating .EXE programs is
segment order. The high-level compilers assume that code segments al-
ways come first, followed by far data segments, followed by the near data

Programming for MS-DOS

For ease of understanding and maintenance, a procedure should not ex-
ceed one page (about 60 lines); if it is longer than a page, it is probably too
complex and you should delegate some of its function to one or more sub-
sidiary procedures. You should preface the source code for each pro-
cedure with a detailed comment that states the procedure’s calling
sequence, results returned, registers affected, and any data items accessed
or modified. The effort invested in making your procedures compact,
clean, flexible, and well-documented will be repaid many times over
when you reuse the procedures in other programs.

42 Programming for MS-DOS

44

Preparing a new program to run under MS-DOS is an iterative process
with four basic steps:

s Use of a text editor to create or modify an ASCII source-code file

a Use of an assembler or high-level-language compiler (such as the
Microsoft Macro Assembler or the Microsoft C Optimizing Compiler) to
translate the source file into relocatable object code

s Use of a linker to transform the relocatable object code into an execut-
able MS-DOS load module

® Use of a debugger to methodically test and debug the program

Additional utilities the MS-DOS software developer may find necessary or
helpful include the following:

® LIB, which creates and maintains object-module libraries
® CREF, which generates a cross-reference listing
s EXE2BIN, which converts .EXE files to .COM files

® MAKE, which compares dates of files and carries out operations based
on the result of the comparison

This chapter gives an operational overview of the Microsoft program-
ming tools for MS-DOS, including the assembler, the C compiler, the
linker, and the librarian. In general, the information provided here also
applies to the IBM programming tools for MS-DOS, which are really the
Microsoft products with minor variations and different version numbers.
Even if your preferred programming language is not C or assembly lan-
guage, you will need at least a passing familiarity with these tools because
all of the examples in the IBM and Microsoft DOS reference manuals are
written in one of these languages.

The survey in this chapter, together with the example programs and refer-
ence section elsewhere in the book, should provide the experienced pro-
grammer with sufficient information to immediately begin writing useful
programs. Readers who do not have a background in C, assembly lan-
guage, or the Intel 80x86 microprocessor architecture should refer to the
tutorial and reference works listed at the end of this chapter.

Programming for MS-DOS

You can invoke MASM in two ways. If you enter the name of the assembler
alone, it prompts you for the names of each of the various input and output
files. The assembler supplies reasonable defaults for all the responses ex-
cept the source filename, as shown in the following example:

C>MASM <Enter>

Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. A11 rights reserved.

Source filename [.ASM]: HELLO <Enter>
Object filename [HELLO.0BJ]: <Enter>
Source listing [NUL.LST]: <Enter>
Cross-reference [NUL.CRF]: <Enter>

49006 Bytes symbol space free

0 Warning Errors
0 Severe Errors

c>

You can use a logical device name (such as PRN or COM1) at any of the
MASM prompts to send that output of the assembler to a character device
rather than a file. Note that the default for the listing and cross-reference
files is the NUL device—that is, no file is created. If you end any response
with a semicolon, MASM assumes that the remaining responses are all to
be the default.

A more efficient way to use MASM is to supply all parameters in the com-
mand line, as follows:

MASM [options] source,lobject) listing],[crossref]

For example, the following command lines are equivalent to the preceding
interactive session:

C>MASM HELLO, ,NUL,NUL <Enter>
or
C>MASM HELLO; <Enter>

These commands use the file HELLO.ASM as the source, generate the
object-code file HELLO.OBJ, and send the listing and cross-reference files
to the bit bucket.

Programming for MS-DOS

MASM accepts several optional switches in the command line, to control
code generation and output files. Figure 4-1 lists the switches accepted by
MASM version 5.1. As shown in the following example, you can put fre-
quently used options in a MASM environment variable, where they will be
found automatically by the assembler:

C>SET MASM=/T /Zi <Enter>
The switches in the environment variable will be overridden by any that

you enter in the command line.

In other versions of the Microsoft Macro Assembler, additional or fewer
switches may be available. For exact instructions, see the manual for the
version of MASM that you are using.

Switch Meaning

/A Arrange segments in alphabetic order.

/Bn Set size of source-file buffer (in KB).

/C Force creation of a cross-reference (.CRF) file.

/D Produce listing on both passes (to find phase errors).

/Dsymbol Define symbol as a null text string (symbol can be referenced by
conditional assembly directives in file).

/E Assemble for 80x87 numeric coprocessor emulator using IEEE real-
number format.

/path Set search path for include files.

/L Force creation of a program-listing file.

/LA Force listing of all generated code.

/ML Preserve case sensitivity in all names (uppercase names distinct from
their lowercase equivalents).

/MX Preserve lowercase in external names only (names defined with PUBLIC
or EXTRN directives).

/MU Convert all lowercase names to uppercase.

/N Suppress generation of tables of macros, structures, records, segments,
groups, and symbols at the end of the listing.

/P Check for impure code in 80286/80386 protected mode.

/S Arrange segments in order of occurrence (default).

/T “Terse” mode; suppress all messages unless errors are encountered
during the assembly.

/v “Verbose” mode; report number of lines and symbols at end of assembly.

/Wn Set error display (warning) level; n=0-2.

/X Force listing of false conditionals.

/Z Display source lines containing errors on the screen.

/Zd Include line-number information in .OB] file.

/Zi Include line-number and symbol information in .OB]J file.

Figure 4-1. Microsoft Macro Assembler version 5.1 switches.

MS-DOS Programming Tools

47

Switch

Meaning

/Ax

/c
/C

/D<name>[=text]

/E

/EP

/F<n>

/Fa [filename)
/Fc [filename]
/Fe [filename]
/Fl filename)
/Fm [filenamel)
/Fo [filename)
/FPx

/Fs |filename)
/Gx

/H<n>
/1<path>

/]

/link [options]
/Ox

Select memory model:
C = compact model
H = huge model
L = large model
M = medium model
S = small model (default)
Compile only; do not invoke linker.
Do not strip comments.
Define macro.
Send preprocessor output to standard output.
Send preprocessor output to standard output without line numbers.
Set stack size (in hexadecimal bytes).
Generate assembly listing.
Generate mixed source/object listing.
Force executable filename.
Generate object listing.
Generate map file.
Force object-module filename.
Select floating-point control:
a = calls with alternate math library
¢ = calls with emulator library
87 = calls with 8087 library
i = in-line with emulator (default)
i87 = in-line with 8087
Generate source listing.
Select code generation:
0 = 8086 instructions (default)
1 = 186 instructions
2 = 286 instructions
¢ = Pascal style function calls
s = no stack checking
t[n] = data size threshold
Specify external name length.
Specify additional #include path.
Specify default char type as unsigned.
Pass switches and library names to linker.
Select optimization:
* a=ignore aliasing
d = disable optimizations
i = enable intrinsic functions
1 = enable loop optimizations
n = disable “unsafe” optimizations
p = enable precision optimizations
r = disable in-line return
s = optimize for space

Figure 4-2. Microsoft C Optimizing Compiler version 5.1 switches.

(continued)

MS-DOS Programming Tools

419

52

You can obtain the same result more quickly by entering all parameters in
the command line, in the following form:

LINK options objectfile, lexefile], imapfile), [libraries)

Thus, the command-line equivalent to the preceding interactive session is
C>LINK HELLO,HELLO,HELLO,, <Enter>

or

C>LINK HELLO, ,HELLO; <Enter>

If you enter a semicolon as the last character in the command line, LINK
assumes the default values for all further parameters.

A third method of commanding LINK is with a response file. A response
file contains lines of text that correspond to the responses you would give
the linker interactively. You specify the name of the response file in the
command line with a leading @ character, as follows:

LINK @filename

You can also enter the name of a response file at any prompt. If the response
file is not complete, LINK will prompt you for the missing information.

When entering linker commands, you can specify multiple object files
with the + operator or with spaces, as in the following example:

C>LINK HELLO+VMODE+DOSINT,MYPROG, ,GRAPHICS; <Enter>

This command would link the files HELLO.OBJ, VMODE.OBJ, and
DOSINT.OB]J, searching the library file GRAPHICS.LIB to resolve any ref-
erences to symbols not defined in the specified object files, and would
produce a file named MYPROG.EXE. LINK uses the current drive and
directory when they are not explicitly included in a filename; it will not
automatically use the same drive and directory you specified for a pre-
vious file in the same command line.

By using the + operator or space characters in the libraries field, you can
specify up to 32 library files to be searched. Each high-level-language
compiler provides default libraries that are searched automatically during
the linkage process if the linker can find them (unless they are explicitly
excluded with the /NOD switch). LINK looks for libraries first in the cur-
rent directory of the default disk drive, then along any paths that were

Programming for MS-DOS

provided in the command line, and finally along the path(s) specified by
the LIB variable if it is present in the environment.

LINK accepts several optional switches as part of the command line or at
the end of any interactive prompt. Figure 4-4 lists these switches. The
number of switches available and their actions vary among different ver-
sions of LINK. See your Microsoft Object Linker instruction manual for
detailed information about your particular version.

Switch

Full form

Meaning

/A:m

/B

/CO

/CP

/DO

/DS

/E

/F

/HE
/HI

/ALIGNMENT:n

/BATCH

/CODEVIEW

/CPARMAXALLOC

/DOSSEG
/DSALLOCATE

/EXEPACK

/FARCALLTRANSLATION

/HELP
/HIGH
/INFORMATION

Set segment sector alignment factor. N must be
a power of 2 (default = 512). Not related to
logical-segment alignment (BYTE, WORD,
PARA, PAGE, and so forth). Relevant to
segmented executable files (Microsoft
Windows and MS OS/2) only.

Suppress linker prompt if a library cannot be
found in the current directory or in the
locations specified by the LIB environment
variable.

Include symbolic debugging information in the
.EXE file for use by CodeView.

Set the field in the .EXE file header controlling
the amount of memory allocated to the
program in addition to the memory required
for the program’s code, stack, and initialized
data.

Use standard Microsoft segment naming and
ordering conventions.

Load data at high end of the data segment.
Relevant to real-mode programs only.

Pack executable file by removing sequences of
repeated bytes and optimizing relocation
table. .

Optimize far calls to labels within the same
physical segment for speed by replacing
them with near calls and NOPs.

Display information about available options.

Load program as high in memory as possible.

Display information about progress of linking,
including pass numbers and the names of
object files being linked.

(continued)

Figure 4-4. Switches accepted by the Microsoft Object Linker (LINK) version 5.0.
Earlier versions use a subset of these switches. Note that any abbreviation for a switch
is acceptable as long as it is sufficient to specify the switch uniquely.

MS-DOS Programming Tools

53

Figure 4-4. continued

Switch Full form

Meaning

/INC /INCREMENTAL

/LI /LINENUMBERS

/Ml:n] /MAP[:n]

/NOD /NODEFAULTLIBRARYSEARCH

/NOE /NOEXTENDEDDICTSEARCH

/NOF /NOFARCALLTRANSLATION
/NOG /NOGROUPASSOCIATION

/NOI /NOIGNORECASE
/NON /NONULLSDOSSEG

/NOP /NOPACKCODE

/O:n /OVERLAYINTERRUPT:#

/PACl:n] /PACKCODE[:7]

/PADC:n /PADCODE:n

Force production of .SYM and .ILK files for
subsequent use by ILINK (incremental
linker). May not be used with /EXEPACK.
Relevant to segmented executable files
(Microsoft Windows and MS OS/2) only.

Write address of the first instruction that
corresponds to each source-code line to the
map file. Has no effect if the compiler does
not include line-number information in the
object module. Force creation of a map file.

Force creation of a .MAP file listing all public
symbols, sorted by name and by location.
The optional value 7 is the maximum
number of symbols that can be sorted
(default = 2048); when # is supplied, the
alphabetically sorted list is omitted.

Skip search of any default compiler libraries
specified in the .OBJ file.

Ignore extended library dictionary (f it is
present). The extended dictionary ordinarily
provides the linker with information about
inter-module dependencies, to speed up
linking.

Disable optimization of far calls to labels
within the same segment.

Ignore group associations when assigning

addresses to data and code items.

Do not ignore case in names during linking.

Arrange segments as for /DOSSEG but do not
insert 16 null bytes at start of _TEXT
segment.

Do not pack contiguous logical code segments
into a single physical segment.

Use interrupt number 7 with the overlay
manager supplied with some Microsoft
high-level languages.

Pack contiguous logical code segments into a
single physical code segment. The optional
value # is the maximum size for each
packed physical code segment (default =
65,536 bytes). Segments in different groups
are not packed.

Add n filler bytes to end of each code module
so that a larger module can be inserted later
with ILINK. Relevant to segmented execut-
able files (Windows and MS OS/2) only.

54 Programming for MS-DOS

(continued)

The MAKE utility processes a plain ASCII text file called, as you might ex-
pect, a make file. You start the utility with a command-line entry in the
following form:

MAKE makefile [options)

By convention, a make file has the same name as the executable file that is
being maintained, but without an extension. The available MAKE
switches are listed in Figure 4-7.

A simple make file contains one or more dependency statements sepa-
rated by blank lines. Each dependency statement can be followed by a list
of MS-DOS commands, in the following form:

targetfile : sourcefile ...

command

command

If the date and time of any source file are later than those of the target file,
the accompanying list of commands is carried out. You may use comment
lines, which begin with a # character, freely in a make file. MAKE can also
process inference rules and macro definitions. For further details on these
advanced capabilities, see the Microsoft or IBM documentation. '

Switch Meaning

/D Display last modification date of each file as it is processed.

/1 Ignore exit (return) codes returned by commands and programs
executed as a result of dependency statements.

/N Display commands that would be executed as a result of
dependency statements but do not execute those commands.

/S Do not display commands as they are executed.

/X <filename> Direct error messages from MAKE, or any program that MAKE
runs, to the specified file. If filename is a hyphen (-), direct
error messages to the standard output.

Figure 4-7. Switches for the MAKE utility.

MS-DOS Programming Tools

61

A Complete Example

Let’s put together everything we’ve learned about using the MS-DOS pro-
gramming tools so far. Figure 4-8 shows a sketch of the overall process of
building an executable program.

Assume that we have the source code for the HELLO.EXE program from
Chapter 3 in the file HELLO.ASM. To assemble the source program into
the relocatable object module HELLO.OBJ with symbolic debugging infor-
mation included, also producing a program listing in the file HELLO.LST
and a cross-reference data file HELLO.CRF, we would enter

C>MASM /C /L /Zi /T HELLO; <Enter>

To convert the cross-reference raw-data file HELLO.CRF into a cross-
reference listing in the file HELLO.REF, we would enter

C>CREF HELLO,HELLO <Enter>

MASM
source-code
file

C or other

HLL source-
code file

MASM . Compiler

Relocatable
object-module
file COB))

LIB

Object-module LINK Executable
libraries program
(.LIB))

HLL Executable
runtime 0 program
libraries o

Figure 4-8. Creation of an MS-DOS application program, from source code to exe-
cutable file.

62 Programming for MS-DOS

Int 21H Function Action Ctrl-C checking

01H Keyboard input with echo Yes
06H Direct console I/O No
07H Keyboard input without echo No
08H Keyboard input without echo Yes
0AH Buffered keyboard input Yes
0BH Input-status check Yes
OCH Input-buffer reset and input Varies

In MS-DOS versions 2.0 and later, redirection of the standard input affects
all these functions. In other words, they act as though they were special
cases of an Int 21H Function 3FH call using the predefined standard input
handle (0).

The character-input functions (01H, 06H, 07H, and 08H) all return a char-
acter in the AL register. For example, the following sequence waits until a
key is pressed and then returns it in AL:

mov ah,1 ; function Olh = read keyboard
int 21h i3 transfer to MS-DOS

The character-input functions differ in whether the input is echoed to the
screen and whether they are sensitive to Ctrl-C interrupts. Although MS-
DOS provides no pure keyboard-status function that is immune to Ctrl-C,
a program can read keyboard status (somewhat circuitously) without in-
terference by using Int 21H Function 06H. Extended keys, such as the IBM
PC keyboard’s special function keys, require two calls to a character-input
function.

As an alternative to single-character input, a program can use buffered-
line input (Int 21H Function 0AH) to obtain an entire line from the key-
board in one operation. MS-DOS builds up buffered lines in an internal
buffer and does not pass them to the calling program until the user
presses the Enter key. While the line is being entered, all the usual editing
keys are active and are handled by the MS-DOS keyboard driver. You use
Int 21H Function 0AH as follows:

buff db 81 © 3 maximum length of ""bu{ ; B
db 0 .- : actual length (from MS-DO
db 81 dup (0) ; receives Keyboard inmput =

(continued)

70 Programming for MS-DOS

74

On IBM PC compatibles, an additional interrupt handler must be taken
into consideration. Whenever the ROM BIOS keyboard driver detects the
key combination Ctrl-Break, it calls a handler whose address is stored in
the vector for Int 1BH. The default ROM BIOS Int 1BH handler does
nothing. MS-DOS alters the Int 1BH vector to point to its own handler,
which sets a flag and returns; the net effect is to remap the Ctrl-Break into
a Ctrl-C that is forced ahead of any other characters waiting in the key-
board buffer.

Taking over the Int 1BH vector in an application is somewhat tricky but
extremely useful. Because the keyboard is interrupt driven, a press of Ctrl-
Break lets the application regain control under almost any circum-
stance—often, even if the program has crashed or is in an endless loop.

You cannot, in general, use the same handler for Int 1BH that you use for
Int 23H. The Int 1BH handler is more limited in what it can do, because it
has been called as a result of a hardware interrupt and MS-DOS may have
been executing a critical section of code at the time the interrupt was ser-
viced. Thus, all registers except CS:IP are in an unknown state; they may
have to be sdved and then modified before your interrupt handler can exe-
cute. Similarly, the depth of the stack in use when the Int 1BH handler is
called is-unknown, and if the handler is to perform stack-intensive opera-
tions, it may have to save the stack segment and the stack pointer and
switch to a new stack that is known to have sufficient depth.

In normal application programs, you should probably avoid retaining con-
trol in an Int 1BH handler, rather than performing an IRET. Because of
subtle differences among non-IBM ROM BIOSes, it is difficult to predict
the state of the keyboard controller and the 8259 Programmable Interrupt
Controller (PIC) when the Int 1BH handler begins executing. Also, MS-
DOS itself may not be in a stable state at the point of interrupt, a situation
that can manifest itself in unexpected critical errors during subsequent I/O
operations. Finally, MS-DOS versions 3.2 and later allocate a stack from an
internal pool for use by the Int 09H handler. If the Int 1BH handler never
returns, the Int 09H handler never returns either, and repeated entries of
Ctrl-Break will eventually exhaust the stack pool, halting the system.

Because Int 1BH is a ROM BIOS interrupt and not an MS-DOS interrupt,
MS-DOS does not restore the previous contents of the Int 1BH vector
when a program exits. If your program modifies this vector, it must save
the original value and restore it before terminating. Otherwise, the vector
will be left pointing to some random area in the next program that runs,
and the next time the user presses Ctrl-Break a system crash is the best
you can hope for.

Programming for MS-DOS

(continued)

Function Meaning

13H Set double-speed threshold.

14H Swap mouse-event interrupt routines.
15H Get buffer size for mouse-driver state.
16H Save mouse-driver state.

17H Restore mouse-driver state.

18H Install alternate handler for mouse events.
19H Get address of alternate handler.

1AH Set mouse sensitivity.

1BH Get mouse sensitivity.

1CH Set mouse interrupt rate.

1DH Select display page for pointer.

1EH Get display page for pointer.

1FH Disable mouse driver.

20H Enable mouse driver.

21H Reset mouse driver.

22H Set language for mouse-driver messages.
23H Get language number.

24H Get driver version, mouse type, and IRQ number.

Although this list of mouse functions may appear intimidating, the aver-
age application will only need a few of them.

A program first calls Int 33H Function O0H to initialize the mouse driver
for the current display mode and to check its status. At this point, the
mouse is “alive” and the application can obtain its state and position; how-
ever, the pointer does not become visible until the process calls Int 33H
Function 01H.

The program can then call Int 33H Functions 03H, 05H, and 06H to moni-
tor the mouse position and the status of the mouse buttons. Alternatively,
the program can register an interrupt handler for mouse events, using Int
33H Function OCH. This latter technique eliminates the need to poll the
mouse driver; the driver will notify the program by calling the interrupt
handler whenever the mouse is moved or a button is pressed or released.

When the application is finished with the mouse, it can call Int 33H Func-
tion 02H to hide the mouse pointer. If the program has registered an inter-
rupt handler for mouse events, it should disable further calls to the handler
by resetting the mouse driver again with Int 33H Function 00H.

For a complete description of the mouse-driver functions, see Section III
of this book, “IBM ROM BIOS and Mouse Functions Reference.” Figure 5-3
shows a small demonstration program that polls the mouse continually, to
display its position and status.

Keyboard and Mouse Input

81

® Hercules Graphics Card, Graphics CardPlus, and InColor Cards. These
are upwardly compatible from the MDA for text display but offer
graphics capabilities that are incompatible with all of the IBM adapters.

The locations of the regen buffers for the various IBM PC-compatible
adapters are shown in Figure 6-1.

FEOOOH |

F4000H

CO000H

BCOOOH

B80OOH

B10OOH
BOOOOH

A000OH

varies

00400H
00000H

ROM BIOS

System ROM, Stand-alone BASIC, etc.

Reserved for BIOS extensions
(hard-disk controller, etc.)

Reserved

16 KB regen buffer for CGA, EGA, MCGA, and VGA
in text modes and 200-line graphics modes

Reserved

4 KB Monochrome Adapter regen buffer

Regen buffer area for EGA, MCGA, and VGA
in 350-line or 480-line graphics modes

Transient part of COMMAND.COM

Transient program area

MS-DOS and its buffers,
tables, and device drivers

Interrupt vectors

Figure 6-1. Memory diagram of an IBM PC—compatible personal computer, showing
the locations of the regen buffers for various adapters.

Video Display

87

significant for the last character in an escape sequence and that numbers
must always be represented as ASCII digit strings, not as their binary
values. (A separate set of escape sequences supported by ANSL.SYS, but
not compatible with the ANSI standard, may be used for reprogramming
and remapping the keyboard.)

Escape

sequence Meaning

Escl2) Clear screen; place cursor in upper left corner (home position).
EsclK Clear from cursor to end of line.

Esclrow;colH Position cursor. (Row is the y coordinate in the range 1-25 and col
is the x coordinate in the range 1-80 for 80-by-25 text display
modes.) Escape sequences terminated with the letter finstead

of H have the same effect.

EsclnA Move cursor up 7 rows.

EscnB Move cursor down 7 rows.

Esc[nC Move cursor right 7 columns.

Esc[nD Move cursor left z columns.

Escls Save current cursor position.

Esclu Restore cursor to saved position.

Escl6n Return cutrent cursor position on the standard input handle in the
format Esc[row;colR.

Esclnm Select character attributes:

0 = no special attributes
1 = high intensity

2 = low intensity

3 = jtalic

4 = underline

5 = blink

6 = rapid blink

7 = reverse video

8 = concealed text (no display)
30 = foreground black

31 = foreground red

32 = foreground green
33 = foreground yellow
34 = foreground blue

35 = foreground magenta

(continued)

Figure 6-2. The ANSI escape sequences supported by the MS-DOS ANSLSYS driver.
Programs running under MS-DOS 2.0 or later may use these functions, if ANSLSYS is
loaded, to control the appearance of the display in a hardware-independent manner.
The symbol Esc indicates an ASCII escape code — a character with the value 1BH.
Note that cursor positions in ANSI escape sequences are one-based, unlike the cursor
coordinates used by the IBM ROM BIOS, which are zero-based. Numbers embedded in
an escape sequence must always be represented as a string of ASCII digits, not as their
binary values.

Programming for MS-DOS

Figure 6-2. continued

Escape
sequence Meaning

36 = foreground cyan
37 = foreground white
40 = background black
41 = background red
42 = background green
43 = background yellow
44 = background blue
45 = background magenta
46 = background cyan
47 = background white
Escl=nh Select display mode:
0 = 40-by-25, 16-color text (color burst off)
1 = 40-by-25, 16-color text
2 = 80-by-25, 16-color text (color burst off)
3 = 80-by-25, 16-color text
4 = 320-by-200, 4-color graphics
5 = 320-by-200, 4-color graphics (color burst off)
6 = 620-by-200, 2-color graphics
14 = 640-by-200, 16-color graphics (EGA and VGA, MS-DOS 4.0)
15 = 640-by-350, 2-color graphics (EGA and VGA, MS-DOS 4.0)
16 = 640-by-350, 16-color graphics (EGA and VGA, MS-DOS 4.0)
17 = 640-by-480, 2-color graphics (MCGA and VGA, MS-DOS 4.0)
18 = 640-by-480, 16-color graphics (VGA, MS-DOS 4.0)
19 = 320-by-200, 256-color graphics (MCGA and VGA, MS-DOS 4.0)
Escape sequences terminated with / instead of 4 have the same

effect.
Esc[=7h Enable line wrap.
Esc[=71 Disable line wrap.
Binary Output Mode

Under MS-DOS version 2 or later, you can substantially increase display
speeds for well-behaved application programs without sacrificing hard-
ware independence by selecting binary (raw) mode for the standard out-
put. In binary mode, MS-DOS does not check between each character it
transfers to the output device for a Ctrl-C waiting at the keyboard, nor
does it filter the output string for certain characters such as Ctrl-Z.

Bit 5 in the device information word associated with a device handle con-
trols binary mode. Programs access the device information word by using
Subfunctions 00H and 01H of the MS-DOS IOCTL function (I/O Control,
Int 21H Function 44H). For example, the sequence on the following page
places the standard output handle into binary mode.

Video Display

(continued)

Function Action

Reading from the display

08H Read character and attribute at cursor.
Graphics support

OCH Write pixel.

ODH Read pixel.

Scroll or clear display

06H Scroll up or initialize window.
07H Scroll down or initialize window.
Miscellaneous

04H Read light pen.

0S5H Select display page.

OBH Select palette/set border color.

Additional ROM BIOS functions are available on the EGA, MCGA, VGA,
and PCjr to support the enhanced features of these adapters, such as pro-
grammable palettes and character sets (fonts). Some of the functions are
valid only in certain display modes.

Each display mode is characterized by the number of colors it can display,
its vertical resolution, its horizontal resolution, and whether it supports
text or graphics memory mapping. The ROM BIOS identifies it with a
unique number. Section III of this book, “IBM ROM BIOS and Mouse
Functions Reference,” documents all of the ROM BIOS Int 10H functions
and display modes.

As you can see from the preceding list, the ROM BIOS offers several desir-
able capabilities that are not available from MS-DOS, including initializa-
tion or scrolling of selected screen windows, modification of the cursor
shape, and reading back the character being displayed at an arbitrary
screen location. These functions can be used to isolate your program from
the hardware on any IBM PC-compatible adapter. However, the ROM
BIOS functions do not suffice for the needs of a high-performance, in-
teractive, full-screen program such as a word processor. They do not sup-
port the rapid display of character strings at an arbitrary screen position,
and they do not implement graphics operations at the level normally re-
quired by applications (for example, bit-block transfers and rapid drawing
of lines, circles, and filled polygons). And, of course, they are of no use
whatsoever in non-IBM display modes such as the monochrome graphics
mode of the Hercules Graphics Card.

Video Display

position—(x,y) = (0,0)—is defined to be the upper left corner of the
screen (Figure 6-3). The MDA uses 4 KB of memory starting at segment
BOOOH as a regen buffer, and the various adapters with both text and
graphics capabilities (CGA, EGA, MCGA, and VGA) use 16 KB of memory
starting at segment BSOOH. (See Figure 6-1.) In the latter case, the 16 KB is
divided into “pages” that can be independently updated and displayed.

0,0 79,0

0,29 (79,29

Figure 6-3. Cursor addressing for 80-by-25 text display modes (IBM ROM BIOS
modes 2, 3, and 7). -

Each character-display position is allotted 2 bytes in the regen buffer. The
first byte (even address) contains the ASCII code of the character, which is
translated by a special hardware character generator into a dot-matrix pat-
tern for the screen. The second byte (odd address) is the attribute byte.
Several bit fields in this byte control such features as blinking, intensity
(highlighting), and reverse video, depending on the adapter type and dis-
play mode (Figures 6-4 and 6-5). Figure 6-6 shows a hex and ASCII dump
of part of the video map for the MDA.

7 6 5 4 3 2 1 0

B Background I Foreground

B = Blink

I = Intensity
Display Background Foreground
No display (black) 000 000
No display (white) » 111 111
Underline 000 001
Normal video 000 111
Reverse video 11 000
*VGA only

Figure 6-4. Attribute byte for 80-by-25 monochrome text display mode on the MDA,
Hercules cards, EGA, and VGA (IBM ROM BIOS mode 7).

Video Display

97

The first wait loop “synchronizes” the code to the beginning of a horizon-
tal retrace interval. If only the second wait loop were used (that is, if a
character were written when a retrace interval was already in progress),
the write would occasionally begin so close to the end of a horizontal
retrace “window” that it would partially miss the retrace, resulting in scat-
tered snow at the left edge of the display. Notice that the code also dis-
ables interrupts during accesses to the video buffer, so that service of a
hardware interrupt won'’t disrupt the synchronization process.

Because of the retrace-interval constraints just outlined, the rate at which
you can update the CGA in text modes is severely limited when the updat-
ing is done one character at a time. You can obtain better results by
calculating all the relevant addresses and setting up the appropriate regis-
ters, disabling the video controller by writing to register 3D8H, moving the
entire string to the buffer with a REP MOVSW operation, and then
reenabling the video controller. If the string is of reasonable length, the
user won't even notice a flicker in the display. Of course, this procedure
introduces additional hardware dependence into your code because it
requires much greater knowledge of the 6845 controller. Luckily, snow is
not a problem in CGA graphics modes.

Graphics Mode

Graphics-mode memory-mapped programming for IBM PC—compatible
adapters is considerably more complicated than text-mode programming.
Each bit or group of bits in the regen buffer corresponds to an addressable
point, or pixel, on the screen. The mapping of bits to pixels differs for
each of the available graphics modes, with their differences in resolution
and number of supported colors. The newer adapters (EGA, MCGA, and
VGA) also use the concept of bit planes, where bits of a pixel are segre-
gated into multiple banks of memory mapped at the same address; you
must manipulate these bit planes by a combination of memory-mapped
1/0 and port addressing.

IBM-video-systems graphics programming is a subject large enough for a
book of its own, but we can use the 640-by-200, 2-color graphics display
mode of the CGA (which is also supported by all subsequent IBM text/
graphics adapters) to illustrate a few of the techniques involved. This
mode is simple to deal with because each pixel is represented by a single
bit. The pixels are assigned (x,y) coordinates in the range (0,0) through
(639,199), where x is the horizontal displacement, y is the vertical
displacement, and the home position (0,0) is the upper left corner of the
display. (See Figure 6-7.)

Video Display 101

106

MS-DOS supports printers, plotters, modems, and other hard-copy output
or communication devices with device drivers for parallel ports and serial
ports. Parallel ports are so named because they transfer a byte—8 bits—
in parallel to the destination device over eight separate physical paths
(plus additional status and handshaking signals). The serial port, on the
other hand, communicates with the CPU with bytes but sends data to or
receives data from its destination device serially—a bit at a time—over a
single physical connection.

Parallel ports are typically used for high-speed output devices, such as
line printers, over relatively short distances (less than 50 feet). They are
rarely used for devices that require two-way communication with the
computer. Serial ports are used for lower-speed devices, such as modems
and terminals, that require two-way communication (although some
printers also have serial interfaces). A serial port can drive its device reli-
ably over much greater distances (up to 1000 feet) over as few as three
wires—transmit, receive, and ground.

The most commonly used type of serial interface follows a standard called
RS-232. This standard specifies a 25-wire interface with certain electrical
characteristics, the use of various handshaking signals, and a standard
DB-25 connector. Other serial-interface standards exist—for example, the
RS-422, which is capable of considerably higher speeds than the RS-232—
but these are rarely used in personal computers (except for the Apple
Macintosh) at this time. ‘

MS-DOS has built-in device drivers for three parallel adapters, and for two
serial adapters on the PC or PC/AT and three serial adapters on the PS/2.
The logical names for these devices are LPT1, LPT2, LPT3, COM1, COM2,
and COM3. The standard printer (PRN) and standard auxiliary (AUX)
devices are normally aliased to LPT1 and COM], but you can redirect PRN
to one of the serial ports with the MS-DOS MODE command.

As with keyboard and video display I/O, you can manage printer and
serial-port I/O at several levels that offer different degrees of flexibility
and hardware independence:

m MS-DOS handle-oriented functions
a MS-DOS traditional character functions
a IBM ROM BIOS driver functions

In the case of the serial port, direct control of the hardware by application
programs is also common. I will discuss each of these I/O methods
briefly, with examples, in the following pages.

Programming for MS-DOS

126

Procedure

Action

asc_enb

asc_dsb

asc_int
com_stat
com_in

com_out
cls
clreol

home
gotoxy
getxy
pc_out
pe_stat
pe_in

Takes over the serial-port interrupt vector and enables interrupts
by writing to the modem-control register of the INS8250 and
the interrupt-mask register of the 8259A.

Restores the original state of the serial-port interrupt vector and
disables interrupts by writing to the interrupt-mask register of
the 8259A.

Services serial-port interrupts, placing received characters into a
ring buffer.

Tests whether characters from the serial port are waiting in the
ring buffer.

Removes characters from the interrupt handler’s ring buffer and
increments the buffer pointers appropriately.

Sends one character to the serial port.

Calls the ROM BIOS video driver to clear the screen.

Calls the ROM BIOS video driver to clear from the current cursor
position to the end of the line.

Places the cursor in the upper left corner of the screen.

Positions the cursor at the desired position on the display.

Obtains the current cursor position.

Sends one character to the PC'’s display.

Gets status for the PC’s keyboard.

Returns a character from the PC’s keyboard.

Programming for MS-DOS

128

The dual heritage of MS-DOS—CP/M and UNIX/XENIX—is perhaps
most clearly demonstrated in its file-management services. In general,
MS-DOS provides at least two distinct operating-system calls for each ma-
jor file or record operation. This chapter breaks this overlapping battery
of functions into two groups and explains the usage, advantages, and
disadvantages of each.

I will refer to the set of file and record functions that are compatible with
CP/M as FCB functions. These functions rely on a data structure called a
file control block (hence, FCB) to maintain certain bookkeeping informa-
tion about open files. This structure resides in the application program’s
memory space. The FCB functions allow the programmer to create, open,
close, and delete files and to read or write records of any size at any record
position within such files. These functions do not support the hierarchical
(treelike) file structure that was first introduced in MS-DOS version 2.0, so

they can be used only to access files in the current subdirectory for a given
disk drive.

I will refer to the set of file and record functions that provide compatibility
with UNIX/XENIX as the handle functions. These functions allow the
programmer to open or create files by passing MS-DOS a null-terminated
string that describes the file’s location in the hierarchical file structure (the
drive and path), the file’s name, and its extension. If the open or create
operation is successful, MS-DOS returns a 16-bit token, or handle, that is
saved by the application program and used to specify the file in subse-
quent operations.

When you use the handle functions, the operating system maintains the
data structures that contain bookkeeping information about the file inside
its own memory space, and these structures are not accessible to the ap-
plication program. The handle functions fully support the hierarchical file
structure, allowing the programmer to create, open, close, and delete files
in any subdirectory on any disk drive and to read or write records of any
size at any byte offset within such files.

Although we are discussing the FCB functions first in this chapter for
historical reasons, new MS-DOS applications should always be written
using the more powerful handle functions. Use of the FCB functions in
new programs should be avoided, unless compatibility with MS-DOS
version 1.0 is needed.

Programming for MS-DOS

130

file. Data is always read to or written from the current disk transfer area
(DTA), whose address is set with Int 21H Function 1AH. If the application
program wants to perform random record access, it must set the record
number into the FCB before issuing each function call; when sequential
record access is being used, MS-DOS maintains the FCB and no special in-
tervention is needed from the application.

In general, MS-DOS functions that use FCBs accept the full address of the
FCB in the DS:DX register and pass back a return code in the AL register
(Figure 8-2). For file-management calls (open, close, create, and delete),
this return code is zero if the function was successful and OFFH (255) if
the function failed. For the FCB-type record read and write functions, the
success code returned in the AL register is again zero, but there are sev-
eral failure codes. Under MS-DOS version 3.0 or later, more detailed error
reporting can be obtained by calling Int 21H Function 59H (Get Extended
Error Information) after a failed FCB function call.

When a program is loaded under MS-DOS, the operating system sets up
two FCBs in the program segment prefix, at offsets 005CH and 006CH.
These are often referred to as the default FCBs, and they are included to
provide upward compatibility from CP/M. MS-DOS parses the first two
parameters in the command line that invokes the program (excluding any
redirection directives) into the default FCBs, under the assumption that
they may be file specifications. The application must determine whether
they really are filenames or not. In addition, because the default FCBs
overlap and are not in a particularly convenient location (especially for
.EXE programs), they usually must be copied elsewhere in order to be
used safely. (See Chapter 3.)

s previously =
i ”lT’Iy_ffcb»"' i

x,of fset my_fcb
it 2t

coralial
jnz error

ion 0Ofh = open

s open successful?
ump.to error routine

Figure 8-2. A typical FCB file operation. This sequence of code attempts to open the
Sfile whose name was previously parsed into the FCB named my_fcb.

Programming for MS-DOS

Note that the structures of FCBs under CP/M and MS-DOS are not identi-
cal. However, the differences lie chiefly in the reserved areas of the FCBs
(which should not be manipulated by application programs in any case),
so well-behaved CP/M applications should be relatively easy to port into
MS-DOS. It seems, however, that few such applications exist. Many of the
tricks that were played by clever CP/M programmers to increase perfor-
mance or circumvent the limitations of that operating system can cause
severe problems under MS-DOS, particularly in networking environ-
ments. At any rate, much better performance can be achieved by thor-
oughly rewriting the CP/M applications to take advantage of the superior
capabilities of MS-DOS.

You can use a special FCB variant called an extended file control block to
create or access files with special attributes (such as hidden or read-only
files), volume labels, and subdirectories. An extended FCB has a 7-byte
header followed by the 37-byte structure of a normal FCB (Figure 8-3).
The first byte contains OFFH, which could never be a legal drive code and
thus indicates to MS-DOS that an extended FCB is being used. The next 5
bytes are reserved and are unused in current versions of MS-DOS. The

Byte offset
00K OFFH Note 11
01H
Reserved (5 bytes, must be zero)
gg: Attribute byte Note 12
Drive identification Note 1
08H
Filename (8 characters) Note 2
10H
13K Extension (3 characters) Note 2
15H Current-block number Note 9
17H Record size Note 10
1BH File size (4 bytes) Notes 3, 6
1DH Date created/updated Note 7
1FH Time created/updated Note 8
Reserved
27H '
Current-record number Note 9
Relative-record number (4 bytes) Note 5

T T R

Figure 8-3. Extended file control block. Total length is 44 bytes (2CH bytes). See notes
on pages 133 -34.

File Management

131

132

seventh byte contains the attribute of the special file type that is being ac-
cessed. (Attribute bytes are discussed in more detail in Chapter 9.) Any
MS-DOS function that uses a normal FCB can also use an extended FCB.

The FCB file- and record-management functions may be gathered into the
following broad classifications:

Function Action

Common FCB file operations

OFH Open file.

10H Close file.

16H Create file.

Common FCB record operations

14H Perform sequential read.
15H Perform sequential write.
21H Perform random read.

22H Perform random write.

27H Perform random block read.
28H Perform random block write.

Other vital FCB operations
1AH Set disk transfer address.
29H Parse filename.

Less commonly used FCB file operations

13H Delete file.

17H Rename file.

Less commonly used FCB record operations
23H Obtain file size.

24H Set relative-record number.

Several of these functions have special properties. For example, Int 21H
Functions 27H (Random Block Read) and 28H (Random Block Write)
allow reading and writing of multiple records of any size and also update
the random-record field automatically (unlike Int 21H Functions 21H and
22H). Int 21H Function 28H can truncate a file to any desired size, and Int
21H Function 17H used with an extended FCB can alter a volume label or
rename a subdirectory.

Section II of this book, “MS-DOS Functions Reference,” gives detailed
specifications for each of the FCB file and record functions, along with
assembly-language examples. It is also instructive to compare the preced-
ing groups with the corresponding groups of handle-type functions listed
on pages 140—41.

Programming for MS-DOS

When the program requests subsequent operations on the file, it usually
places the handle in the BX register before the call to MS-DOS. All the
handle functions return with the CPU’s carry flag cleared if the operation
was successful, or set if the operation failed; in the latter case, the AX
register contains a code describing the failure.

MS-DOS restricts the number of handles that can be active at any one
time—that is, the number of files and devices that can be open concur-
rently when using the handle family of functions—in two different ways:

s The maximum number of concurrently open files in the system, for all
active processes combined, is specified by the entry

FILES=nn

in the CONFIG.SYS file. This entry determines the number of entries
to be allocated in the system file table; under MS-DOS version 3, the
default value is 8 and the maximum is 255. After MS-DOS is booted
and running, you cannot expand this table to increase the total number
of files that can be open. You must use an editor to modify the CON-
FIG.SYS file and then restart the system.

s The maximum number of concurrently open files for a single process
is 20, assuming that sufficient entries are also available in the system
file table. When a program is loaded, MS-DOS preassigns 5 of its po-
tential 20 handles to the standard devices. Each time the process issues
an open or create call, MS-DOS assigns a handle from the process’s pri-
vate allocation of 20, until all the handles are used up or the system file
table is full. In MS-DOS versions 3.3 and later, you can expand the per-
process limit of 20 handles with a call to Int 21H Function 67H (Set
Handle Count).

The handle file- and record-management calls may be gathered into the
following broad classifications for study:

Function Action

Common handle file operations

3CH Create file (requires ASCIIZ string).

3DH Open file (requires ASCIIZ string).

3EH Close file.

Common handle record operations

42H Set file pointer (also used to find file size).
3FH Read file.

40H Write file.

(continued)

Programming for MS-DOS

MS-DOS Error Codes

When one of the handle file functions fails with the carry flag set, or when
a program calls Int 21H Function 59H (Get Extended Error Information)
following a failed FCB function or other system service, one of the fol-
lowing error codes may be returned:

Value Meaning

MS-DOS version 2 error codes

01H Function number invalid

02H File not found

03H Path not found

04H Too many open files

05H Access denied

06H Handle invalid

07H Memory control blocks destroyed
08H Insufficient memory

09H Memory block address invalid
0AH (10) Environment invalid

OBH (11) Format invalid

O0CH (12) Access code invalid

ODH (13) Data invalid

OEH (14) Unknown unit

OFH (15) Disk drive invalid

10H (16) Attempted to remove current directory
11HQ17) Not same device

12H (18) No more files

Mappings to critical-error codes

13H (19) Write-protected disk

14H (20) Unknown unit

15H (21) Drive not ready

16H (22) Unknown command

17H (23) Data error (CRC)

18H (24) Bad request-structure length
19H (25) Seek error

1AH (26) Unknown media type

1BH (27) Sector not found

1CH (28) Printer out of paper

1DH (29) Write fault

1EH (30) Read fault

1FH (31) General failure

MS-DOS version 3 and later extended error codes
20H (32) Sharing violation

21H (33) File-lock violation

22H (34) Disk change invalid

(continued)

File Management

145

146

continued

Value Meaning

MS-DOS version 3 and later extended error codes, continued
23H(35) FCB unavailable

24H (36) Sharing buffer exceeded

25H-31H (3749) Reserved

32H (50) Unsupported network request
33H (51) Remote machine not listening

34H (52) Duplicate name on network

35H (53) Network name not found

36H (54) Network busy

37H (55) Device no longer exists on network
38H (56) NetBIOS command limit exceeded
39H (57) Error in network adapter hardware
3AH (58) Incorrect response from network
3BH (59) Unexpected network error

3CH (60) Remote adapter incompatible

3DH (61) Print queue full

3EH (62) Not enough room for print file

3FH (63) Print file was deleted

40H (64) Network name deleted

41H (65) Network access denied

42H (66) Incorrect network device type
43H (67) Network name not found

44H (68) Network name limit exceeded
45H (69) NetBIOS session limit exceeded
46H (70) Temporary pause

47H (71 Network request not accepted

48H (72) Print or disk redirection paused
49H—4FH (73-79) Reserved

50H (80) File already exists

51H (81) Reserved

52H (82) Cannot make directory

53H (83) Fail on Int 24H (critical error)

54H (84) Too many redirections

55H (85) Duplicate redirection

56H (86) Invalid password

57H (87) Invalid parameter

58H (88) Net write fault

Under MS-DOS versions 3.0 and later, you can also use Int 21H Function
S9H to obtain other information about the error, such as the error locus
and the recommended recovery action.

Programming for MS-DOS

Critical-Error Handlers

In Chapter 5, we discussed how an application program can take over the
Ctrl-C handler vector (Int 23H) and replace the MS-DOS default handler, to
avoid losing control of the computer when the user enters a Ctrl-C or Ctrl-
Break at the keyboard. Similarly, MS-DOS provides a critical-error-handler
vector (Int 24H) that defines the routine to be called when unrecoverable
hardware faults occur. The default MS-DOS critical-error handler is the
routine that displays a message describing the error type and the cue

Abort, Retry, Ignore?

This message appears after such actions as the following:

= Attempting to open a file on a disk drive that doesn’t contain a floppy
disk or whose door isn’t closed

® Trying to read a disk sector that contains a CRC error
® Trying to print when the printer is off line

The unpleasant thing about MS-DOS’s default critical-error handler is, of
course, that if the user enters an A for Abort, the application that is cur-
rently executing is terminated abruptly and never has a chance to clean
up and make a graceful exit. Intermediate files may be left on the disk,
files that have been extended using FCBs are not properly closed so that
the directory is updated, interrupt vectors may be left pointing into the
transient program area, and so forth.

To write a truly bombproof MS-DOS application, you must take over the
critical-error-handler vector and point it to your own routine, so that your
program intercepts all catastrophic hardware errors and handles them ap-
propriately. You can use MS-DOS Int 21H Function 25H to alter the Int 24H
vector in a well-behaved manner. When your application exits, MS-DOS
will automatically restore the previous contents of the Int 24H vector from
information saved in the program segment prefix.

MS-DOS calls the critical-error handler for two general classes of errors—
disk-related and non-disk-related—and passes different information to
the handler in the registers for each of these classes.

For disk-related errors, MS-DOS sets the registers as shown on the follow-
ing page. (Bits 3—5 of the AH register are relevant only in MS-DOS
versions 3.1 and later.)

File Management 147

148

Register Bit(s) Significance

AH 7 0, to signify disk error

6 Reserved

5 0 = ignore response not allowed
1 = ignore response allowed

4 0 = retry response not allowed
1 = retry response allowed

3 0 = fail response not allowed
1 = fail response allowed

1-2 Area where disk error occurred

00 = MS-DOS area

01 = file allocation table
10 = root directory

11 = files area

0 0 = read operation
1 = write operation
AL 0-7 Drive code (0 = A, 1 = B, and so forth)
DI 0-7 Driver error code
8-15 Not used
BP:SI Segment:offset of device-driver header

For non-disk-related errors, the interrupt was generated either as the
result of a character-device error or because a corrupted memory image
of the file allocation table was detected. In this case, MS-DOS sets the
registers as follows:

Register Bit(s) Significance
AH 7 1, to signify a non-disk error
DI 0-7 Driver error code
8-15 Not used
BP:SI Segment:offset of device-driver header

To determine whether the critical error was caused by a character device,
use the address in the BP:SI registers to examine the device attribute word
at offset 0004H in the presumed device-driver header. If bit 15 is set, then
the error was indeed caused by a character device, and the program can
inspect the name field of the driver’s header to determine the device.

At entry to a critical-error handler, MS-DOS has already disabled interrupts
and set up the stack as shown in Figure 8-8. A critical-error handler cannot
use any MS-DOS services except Int 21H Functions 01H through OCH (Tra-
ditional Character I/0), Int 21H Function 30H (Get MS-DOS Version), and
Int 21H Function 59H (Get Extended Error Information). These functions
use a special stack so that the context of the original function (which gen-
erated the critical error) will not be lost.

Programming for MS-DOS

4 Flags
E Flags and CS:IP pushed
. CS — on stack by original
o Int 21H call
| 1P
— <« SS:SP on entry to

i ES Int 21H handler
| Ds
E BP

DI Registers at point of

- [original Int 21H call
| DX
|
o
. BX
. AX
§ Flags o
? Return address for
cS [Int 24H handler

_ FP - SS:SP on entry to

- Int 24H handler

Figure 8-8. The stack at entry to a critical-error handler.

The critical-error handler should return to MS-DOS by executing an IRET,
passing one of the following action codes in the AL register:

Code Meaning

0 Ignore the error (MS-DOS acts as though the original function call had
succeeded).

1 Retry the operation.

2 Terminate the process that encountered the error.

3 Fail the function (an error code is returned to the requesting process).

Versions 3.1 and later only.

The critical-error handler should preserve all other registers and must not
modify the device-driver header pointed to by BP:SI. A skeleton example
of a critical-error handler is shown in Figure 8-9.

File Management

149

166

Each file in an MS-DOS system is uniquely identified by its name and its
location. The location, in turn, has two components: the logical drive that
contains the file and the directory on that drive where the filename can
be found.

Logical drives are specified by a single letter followed by a colon (for ex-
ample, A:). The number of logical drives in a system is not necessarily the
same as the number of physical drives; for example, it is common for large
fixed-disk drives to be divided into two or more logical drives. The key
aspect of a logical drive is that it contains a self-sufficient file system; that
is, it contains one or more directories, zero or more complete files, and all
the information needed to locate the files and directories and to determine
which disk space is free and which is already in use.

Directories are simply lists or catalogs. Each entry in a directory consists of
the name, size, starting location, attributes, and last modification date and
time of a file or another directory that the disk contains. The detailed in-
formation about the location of every block of data assigned to a file or
directory is in a separate control area on the disk called the file allocation
table (FAT). (See Chapter 10 for a detailed discussion of the internal format
of directories and the FAT.)

Every disk potentially has two distinct kinds of directories: the root direc-
tory and all other directories. The root directory is always present and has
a maximum number of entries, determined when the disk is formatted;
this number cannot be changed. The subdirectories of the root directory,
which may or may not be present on a given disk, can be nested to any
level and can grow to any size (Figure 9-1). This is the hierarchical, or
tree, directory structure referred to in earlier chapters. Every directory has
a name, except for the root directory, which is designated by a single
backslash (\) character.

MS-DOS keeps track of a “current drive” for the system and uses this drive
when a file specification does not include an explicit drive code. Similarly,
MS-DOS maintains a “current directory” for each logical drive. You can
select any particular directory on a drive by naming in order—either from
the root directory or relative to the current directory—the directories that
lead to its location in the tree structure. Such a list of directories, separated
by backslash delimiters, is called a path. When a complete path from the
root directory is prefixed by a logical drive code and followed by a file-
name and extension, the resulting string is a fully qualified filename and
unambiguously specifies a file.

Programming for MS-DOS

In order to search a disk directory successfully, you must understand two
types of MS-DOS search services. The first type is the “search for first”
function, which accepts a file specification—possibly including wildcard
characters—and looks for the first matching file in the directory of in-
terest. If it finds a match, the function fills a buffer owned by the request-
ing program with information about the file; if it does not find a match, it
returns an error flag.

A program can call the second type of search service, called “search for
next,” only after a successful “search for first.” If the file specification that
was originally passed to “search for first” included wildcard characters
and at least one matching file was present, the program can call “search
for next” as many times as necessary to find all additional matching files.

Like “search for first,” “search for next” returns information about the °

matched files in a buffer designated by the requesting program. When it
can find no more matching files, “search for next” returns an error flag.

As with nearly every other operation, MS-DOS provides two parallel sets
of directory-searching services:

Action FCB function Handle function
Search for first 11H 4EH
Search for next 12H 4FH

The FCB directory functions allow searches to match a filename and ex-
tension, both possibly containing wildcard characters, within the current
directory for the specified or current drive. The handle directory func-
tions, on the other hand, cllow a program to perform searches within any
directory on any drive, regardless of the current directory.

Searches that use normal FCBs find only normal files. Searches that use
extended FCBs, or the handle-type functions, can be qualified with file at-
tributes. The attribute bits relevant to searches are as follows:

Bit Significance

Read-only file

Hidden file

System file

Volume label

Directory

Archive needed (set when file modified)

VDN = O

Volumes and Directories

169

Volume Labels

Support for volume labels was first added to MS-DOS in version 2.0. A vol-
ume label is an optional name of from 1 to 11 characters that the user
assigns to a disk during a FORMAT operation. You can display a volume
label with the DIR, TREE, CHKDSK, or VOL command. Beginning with
MS-DOS version 3.0, you can use the LABEL command to add, display, or
alter the label after formatting. In MS-DOS version 4, the FORMAT pro-
gram also assigns a semi-random 32-bit binary ID to each disk it formats;
you can display this value, but you cannot change it.

The distinction between volumes and drives is important. A volume label
is associated with a specific storage medium. A drive identifier (such as A)
is associated with a physical device that a storage medium can be mounted
on. In the case of fixed-disk drives, the medium associated with a drive
identifier does not change (hence the name). In the case of floppy disks or
other removable media, the disk accessed with a given drive identifier
might have any volume label or none at all.

Hence, volume labels do not take the place of the logical-drive identifier
and cannot be used as part of a pathname to identify a file. In fact, in MS-
DOS version 2, the system does not use volume labels internally at all. In
MS-DOS versions 3.0 and later, a disk driver can use volume labels to
detect whether the user has replaced a disk while a file is open; this use is
optional, however, and is not implemented in all systems.

MS-DOS volume labels are implemented as a special type of entry in a
disk’s root directory. The entry contains a time-and-date stamp and has
an attribute value of 8 (i.e., bit 3 set). Except for the attribute, a volume
label is identical to the directory entry for a file that was created but never
had any data written into it, and you can manipulate volume labels with
Int 21H functions much as you manipulate files. However, a volume label
receives special handling at several levels:

® When you create a volume label after a disk is formatted, MS-DOS al-
ways places it in the root directory, regardless of the current directory.

® A disk can contain only one volume label; attempts to create additional
volume labels (even with different names) will fail.

® MS-DOS always carries out searches for volume labels in the root direc-
tory, regardless of the current directory, and does not also return all
normal files.

In MS-DOS version 2, support for volume labels is not completely inte-
grated into the handle file functions, and you must use extended FCBs

174 Programming for MS-DOS

178

MS-DOS disks are organized according to a rather rigid scheme that is
easily understood and therefore easily manipulated. Although you will
probably never need to access the special control areas of a disk directly,
an understanding of their internal structure leads to a better understand-
ing of the behavior and performance of MS-DOS as a whole.

From the application programmer’s viewpoint, MS-DOS presents disk
devices as logical volumes that are associated with a drive code (A, B, C,
and so on) and that have a volume name (optional), a root directory, and
from zero to many additional directories and files. MS-DOS shields the
programmer from the physical characteristics of the medium by providing
a battery of disk services through Int 21H. Using these services, the pro-
grammer can create, open, read, write, close, and delete files in a uniform
way, regardless of the disk drive’s size, speed, number of read/write
heads, number of tracks, and so forth.

Requests from an application program for file operations actually go
through two levels of translation before resulting in the physical transfer
of data between the disk device and random-access memory:

1. Beneath the surface, MS-DOS views each logical volume, whether it is
an entire physical unit such as a floppy disk or only a part of a fixed
disk, as a continuous sequence of logical sectors, starting at sector 0. (A
logical disk volume can also be implemented on other types of storage.
For example, RAM disks map a disk structure onto an area of random-
access memory.) MS-DOS translates an application program’s Int 21H
file-management requests into requests for transfers of logical sectors,
using the information found in the volume’s directories and allocation
tables. (For those rare situations where it is appropriate, programs can
also access logical sectors directly with Int 25H and Int 26H.)

2. MS-DOS then passes the requests for logical sectors to the disk device’s
driver, which maps them onto actual physical addresses (head, track,
and sector). Disk drivers are extremely hardware dependent and are
always written in assembly language for maximum speed. In most ver-
sions of MS-DOS, a driver for IBM-compatible floppy- and fixed-disk
drives is built into the MS-DOS BIOS module (IO.SYS) and is always
loaded during system initialization; you can install additional drivers
for non-IBM-compatible disk devices by including the appropriate
DEVICE directives in the CONFIG.SYS file.

Each MS-DOS logical volume is divided into several fixed-size control
areas and a files area (Figure 10-1). The size of each control area depends
on several factors—the size of the volume and the version of FORMAT
used to initialize the volume, for example—but all of the information

Programming for MS-DOS

00H
03H |

0BH
ODH
OEH
10H
11H
13H

15H
16H

18H

1AH
1CH |

20H

240 ||

25H
26H
27H

2BH

36H
3EH

E9 XX XX or EB XX 90

OEM name and version
(8 bytes)

sozzspn

Bytes per sector (2 bytes)

e

Sectors per allocation unit (1 byte)

2

S pv

Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

Number of root-directory entries (2 bytes)

o Bs-Nev]

Total sectors in logical volume (2 bytes)

Media descriptor byte

Number of sectors per FAT (2 bytes)

Sectors per track (2 bytes)

Number of heads (2 bytes)

Number of hidden sectors (4 bytes)

Total sectors in logical volume
(MS-DOS 4.0 and volume size >32 MB)

Physical drive number

Reserved

Extended boot signature record (29H)

32-bit binary volume ID

Volume label (11 bytes)

S

Reserved (8 bytes)

s

Bootstrap

O e

MS-DOS
version 2.0

MS-DOS
version 3.0

MS-DOS
version 4.0

Additional
MS-DOS 4.0
information

Figure 10-2. Map of the boot sector of an MS-DOS disk. Note the JMP at offset O, the

OEM identification field, the MS-DOS version 2 compatible BIOS parameter block

(bytes OBH—17H), the three additional WORD fields for MS-DOS version 3, the double-
word number-of-sectors field and 32-bit binary volume ID for MS-DOS version 4.0,
and the bootstrap code.

Programming for MS-DOS

On disks with at least 4087 clusters formatted under MS-DOS version 3.0
or later, the FAT entries use 16 bits, and the extraction of a cluster number
from the table is much simpler:

1. Use the directory entry to find the starting cluster of the file in
question.

2. Multiply the cluster number by 2.

3. Use the product as the offset into the FAT and move the word at that
offset into a register.

4. If the result is a value from OFFF8H through OFFFFH, the file has no
more clusters. Otherwise, the result is the number of the next cluster in
the file.

To convert cluster numbers to logical sectors, subtract 2, multiply - the
result by the number of sectors per cluster, and add the logical-sector
number of the beginning of the data area (this can be calculated from the
information in the BPB).

As an example, let’s work out the disk location of the file IBMBIO.COM,
which is the first entry in the directory shown in Figure 10-6. First, we
need some information from the BPB, which is in the boot sector of the
medium. (See Figures 10-3 and 10-4.) The BPB tells us that there are

m 512 bytes per sector

m 2 sectors per cluster

a2 sectors per FAT

w 2FATs

= 112 entries in the root directory

From the BPB information, we can calculate the starting logical-sector
number of each of the disk’s control areas and the files area by construct-
ing a table, as follows:

Area Length (sectors) Sector numbers
Boot sector 1 0OH
2 FATSs + 2 sectors/FAT 4 01H-04H
112 directory entries 7 05H-0BH
*32 bytes/entry
/ 512 bytes/sector
Total sectors occupied by 12
bootstrap, FATs, and root
directory

Disk Internals

189

196

Current versions of MS-DOS can manage as much as 1 megabyte of con-
tiguous random-access memory. On IBM PCs and compatibles, the
memory occupied by MS-DOS and other programs starts at address 0000H
and may reach as high as address 09FFFFH; this 640 KB area of RAM is
sometimes referred to as conventional memory. Memory above this ad-
dress is reserved for ROM hardware drivers, video refresh buffers, and the
like. Computers that are not IBM compatible may use other memory
layouts.

The RAM area under the control of MS-DOS is divided into two major
sections:

® The operating-system area
® The transient-program area

The operating-system area starts at address 0000H—that is, it occupies
the lowest portion of RAM. It holds the interrupt vector table, the operat-

- ing system proper and its tables and buffers, any additional installable

drivers specified in the CONFIG.SYS file, and the resident part of the
COMMAND.COM command interpreter. The amount of memory oc-
cupied by the operating-system area varies with the version of MS-DOS
used, the number of disk buffers, the size of installed device drivers, and
so forth.

The transient-program area (TPA), sometimes called the memory arena,
is the remainder of memory above the operating-system area. The
memory arena is dynamically allocated in blocks called arena entries.
Each arena entry has a special control structure called an arena header,
and all of the arena headers are chained together. Three MS-DOS Int 21H
functions allow programs to allocate, resize, and release blocks of
memory from the TPA:

Function Action

48H Allocate memory block.
49H Release memory block.
4AH Resize memory block.

MS-DOS itself uses these functions when loading a program from disk at
the request of COMMAND.COM or another program. The EXEC function,
which is the MS-DOS program loader, calls Int 21H Function 48H to allo-
cate a memory block for the loaded program’s environment and another
for the program itself and its program segment prefix. It then reads the
program from the disk into the assigned memory area. When the program
terminates, MS-DOS calls Int 21H Function 49H to release all memory
owned by the program.

Programming for MS-DOS

Transient programs can also employ the MS-DOS memory-management
functions to dynamically manage the memory available in the TPA. Proper
use of these functions is one of the most important criteria of whether a
program is well behaved under MS-DOS. Well-behaved programs are
most likely to be portable to future versions of the operating system and
least likely to cause interference with other processes under multitasking
user interfaces such as Microsoft Windows.

Using the Memory-Allocation Functions
The memory-allocation functions have two common uses:

m To shrink a program’s initial memory allocation so that there is enough
room to load and execute another program under its control.

m To dynamically allocate additional memory required by the program
and to release the same memory when it is no longer needed.

Shrinking the Initial Memory Allocation

Although many MS-DOS application programs simply assume they own
all memory, this assumption is a relic of MS-DOS version 1 (and CP/M),
which could support only one active process at a time. Well-behaved MS-
DOS programs take pains to modify only memory that they actually own
and to release any memory that they don’t need.

Unfortunately, under current versions of MS-DOS, the amount of memory
that a program will own is not easily predicted in advance. It turns out that
the amount of memory allocated to a program when it is first loaded de-
pends upon two factors:

m The type of file the program is loaded from
= The amount of memory available in the TPA

MS-DOS always allocates all of the largest available memory block in the
TPA to programs loaded from .COM (memory-image) files. Because .COM
programs contain no file header that can pass segment and memory-use
information to MS-DOS, MS-DOS simply assumes the worst case and gives
such a program everything. MS-DOS will load the program as long as
there is an available memory block as large as the size of the file plus 256
bytes for the PSP and 2 bytes for the stack. The .COM program, when it
receives control, must determine whether enough memory is available to
carry out its functions.

Memory Management 197

In the example illustrated in Figure 11-3, COMMAND.COM originally
loaded PROGRAMI1.COM into the TPA and, because it was a .COM file,
COMMAND.COM allocated it all of the TPA, controlled by arena header
#1. PROGRAMI1.COM then used Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation to the amount it actually needed to
run and loaded and executed PROGRAMZ2.EXE with the EXEC function
(Int 21H Function 4BH). The EXEC function obtained a suitable amount of
memory, controlled by arena header #2, and loaded PROGRAMZ2.EXE
into it. PROGRAMZ2.EXE, in turn, needed some additional memory to
store some intermediate results, so it called Int 21H Function 48H (Allo-
cate Memory Block) to obtain the area controlled by arena header #3. The
highest arena header (#4) controls all of the remaining TPA that has not
been allocated to any program.

< Top of RAM
controlled by MS-DOS

Unowned RAM controlled by header #4

Arena header #4

Memory area controlled by header #3; additional
storage dynamically allocated by PROGRAM2.EXE

Arena header #3

Memory area controlled by header #2,
containing PROGRAM2.EXE

Arena header #2

Memory area controlled by header #1,
containing PROGRAM1.COM

4 Bottom of transient-
program area

Figure 11-3. An example diagram of MS-DOS arena headers and the transient-

program area. The environment blocks and their associated headers have been
omitted from this figure to increase its clarity.

Programming for MS-DOS

installable device driver that you link into the MS-DOS/PC-DOS system
by adding a line to the CONFIG.SYS file on the system boot disk.

Internally, the Expanded Memory Manager consists of two major por-
tions, which may be referred to as the driver and the manager. The
driver portion mimics some of the actions of a genuine installable device
driver, in that it includes initialization and output status functions and a
valid device header. The second, and major, portion of the EMM is the
true interface between application software and the expanded-memory
hardware. Several classes of services are provided:

® Verification of functionality of hardware and software modules
® Allocation of expanded-memory pages

= Mapping of logical pages into the physical page frame

Deallocation of expanded-memory pages
® Support for multitasking operating systems

Application programs communicate with the EMM directly, by means of
software Int 67H. MS-DOS versions 3.3 and earlier take no part in (and in
fact are completely oblivious to) any expanded-memory manipulations
that may occur. MS-DOS version 4.0 and Microsoft Windows, on the other
hand, are “EMS-aware” and can use the EMS memory when it is available.

Expanded memory should not be confused with extended memory. Ex-
tended memory is the term used by IBM to refer to the memory at physical
addresses above 1 megabyte that can be accessed by an 80286 or 80386
CPU in protected mode. Current versions of MS-DOS run the 80286 and
80386 in real mode (8086-emulation mode), and extended memory is
therefore not directly accessible.

Checking for Expanded Memory

204

An application program can use either of two methods to test for the exis-
tence of the Expanded Memory Manager:

® Jssue an open request (Int 21H Function 3DH) using the guaranteed
device name of the EMM driver: EMMXXXXO. If the open function
succeeds, either the driver is present or a file with the same name coin-
cidentally exists on the default disk drive. To rule out the latter, the
application can use IOCTL (Int 21H Function 44H) subfunctions 00H
and 07H to ensure that EMM is present. In either case, the application
should then use Int 21H Function 3EH to close the handle that was ob-
tained from the open function, so that the handle can be reused for
another file or device.

Programming for MS-DOS

Figure 11-6. continued

Error code Meaning

89H Zero pages; cannot be allocated.

8AH Logical page requested to be mapped located outside range of
logical pages assigned to handle.

8BH Illegal physical page number in mapping request (not in range
0-3).

8CH Page-mapping hardware-state save area full.

8DH Save of mapping context fajled; save area already contains context
associated with requested handle.

8EH Restore of mapping context failed; save area does not contain
context for requested handle.

8FH Subfunction parameter not defined.

Error code Meaning

90H Attribute type not defined.

91H Feature not supported.

92H Source and destination memory regions have same handle and
overlap; requested move was performed, but part of source
region was overwritten.

93H Specified length for source or destination memory region is longer
than actual allocated length.

94H Conventional-memory region and expanded-memory region
overlap.

95H Specified offset is outside logical page.

96H Region length exceeds 1 MB.

97H Source and destination memory regions have same handle and
overlap; exchange cannot be performed.

98H Memory source and destination types undefined.

99H This error code currently unused.

9AH Alternate map or DMA register sets supported, but the alternate
register set specified is not supported.

9BH Alternate map or DMA register sets supported, but all alternate
register sets currently allocated.

9CH Alternate map or DMA register sets not supported, and specified
alternate register set not zero.

9DH Alternate map or DMA register sets supported, but alternate

register set specified is either not defined or not allocated.

(continued)

Figure 11-7. Expanded Memory Manager error codes unique to EMS version 4.0.
Most of these errors are related to the EMS functions for use by operating systems and
would not normally be encountered by application programs.

Programming for MS-DOS

Figure 11-7. continued

Error code Meaning

9EH Dedicated DMA channels not supported.

9FH Dedicated DMA channels supported, but specified DMA
channel not supported.

AQH No handle found for specified name.

AlH Handle with this name already exists.

A2H Memory address wrap; sum of the source or destination
region base address and length exceeds 1 MB.

A3H Invalid pointer passed to function, or contents of source array
corrupted.

A4H Access to function denied by operating system.

An application program that uses expanded memory should regard that
memory as a system resource, like a file or a device, and employ only the
documented EMM services to allocate, access, and release expanded-
memory pages. Such a program can use the following general strategy:

1. Establish the presence of the Expanded Memory Manager by one of
the two methods demonstrated in Figures 11-4 and 11-5.

2. After the driver is known to be present, check its operational status
with EMS Function 40H.

3. Check the version number of EMM with EMS Function 46H, to ensure
that all services the application will request are available.

4. Obtain the segment of the page frame used by EMM with EMS Func-
tion 41H.

5. Allocate the desired number of expanded-memory pages with EMS
Function 43H. If the allocation is successful, EMM returns a handle that
the application can use to refer to the expanded-memory pages that it
owns. This step is exactly analogous to opening a file and using the

handle obtained from the open function for read/write operations on
 the file.

6. If the requested number of pages are not available, the application can
query EMM for the actual number of pages available (EMS Function
42H) and determine whether it can continue.

7. After the application has successfully allocated the needed number of
expanded-memory pages, it uses EMS Function 44H to map logical
pages in and out of the physical page frame in order to store and
retrieve data in expanded memory.

Memory Management

Extended Memory

212

Extended memory is RAM storage at addresses above 1 megabyte
(100000H) that can be accessed by an 80286 or 80386 processor running in
protected mode. IBM PC/AT- and PS/2-compatible machines can
(theoretically) have as much as 15 MB of extended memory installed, in
addition to the usual 1 MB of conventional memory.

Protected-mode operating systems such as Microsoft XENIX or MS OS/2
can use extended memory for execution of programs. MS-DOS, on the
other hand, runs in real mode on an 80286 or 80386, and programs run-
ning under its control cannot ordinarily execute from extended memory
or even address that memory for storage of data. However, the ROM BIOS
contains two routines that allow real-mode programs restricted access to
extended memory:

ROM BIOS function Action
Int 15H Function 87H Move extended-memory block.
Int 15H Function 88H Get extended-memory size.

These routines can be used by electronic disks (RAMdisks) and by other
programs that want to use extended memory for fast storage and retrieval
of information that would otherwise have to be written to a slower physi-
cal disk drive. Section III of this book, “IBM ROM BIOS and Mouse Func-
tions Reference,” documents both of these functions.

You should use these ROM BIOS routines with caution. Data stored in ex-
tended memory is, of course, volatile; it is lost if the machine is turned off.
The transfer of data to or from extended memory involves a switch from
real mode to protected mode and back, which is a relatively slow process
on 80286-based machines; in some cases it is only marginally faster than
actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended-memory functions are not compatible with the
MS-DOS compatibility mode of MS OS/2.

Finally, a major deficit in these ROM BIOS functions is that they do not
make any attempt to arbitrate between two or more programs or drivers
that are using extended memory for temporary storage. For example, if an
application program and an installed RAMdisk driver attempt to put data
in the same area of extended memory, no error will be returned to either
program, but the data of one or both may be destroyed.

Figure 11-9 shows an example of the code necessary to transfer data to and
from extended memory.

Programming for MS-DOS

The SHELL program is table driven and can easily be extended to provide
a powerful customized user interface for almost any application. When
SHELL takes control of the system, it displays the prompt

sh:

and waits for input from the user. After the user types a line terminated
by a carriage return, SHELL tries to match the first token in the line against
its table of internal (intrinsic) commands. If it finds a match, it calls the
appropriate subroutine. If it does not find a match, it calls the MS-DOS
EXEC function and passes the user’s input to COMMAND.COM with the
/C switch, essentially using COMMAND.COM as a transient command
processor under its own control.

As supplied in these listings, SHELL “knows” exactly three internal
commands:

Command Action

CLS Uses the ANSI standard control sequence to clear the display
screen and home the cursor.

DOS Runs a copy of COMMAND.COM.

EXIT Exits SHELL, returning control of the system to the next lower
command interpreter.

You can quickly add new intrinsic commands to either the C version or the
assembly-language version of SHELL. Simply code a procedure with the
appropriate action and insert the name of that procedure, along with the
text string that defines the command, into the table COMMANDS. In
addition, you can easily prevent SHELL from passing certain “dangerous”
commands (such as MKDIR or ERASE) to COMMAND.COM simply by
putting the names of the commands to be screened out into the intrinsic
command table with the address of a subroutine that prints an error
message. ‘

To summarize, the basic flow of both versions of the SHELL program is
as follows:

1. The program calls MS-DOS Int 21H Function 4AH (Resize Memory
Block) to shrink its memory allocation, so that the maximum possible
space will be available for COMMAND.COM if it is run as an overlay.
(This is explicit in the assembly-language version only. To keep the ex-
ample code simple, the number of paragraphs to be reserved is coded
as a generous literal value, rather than being figured out at runtime
from the size and location of the various program segments.)

The EXEC Function

Interrupts are signals that cause the computer’s central processing unit to
suspend what it is doing and transfer to a program called an interrupt han-
dler. Special hardware mechanisms that are designed for maximum speed
force the transfer. The interrupt handler determines the cause of the inter-
rupt, takes the appropriate action, and then returns control to the original
process that was suspended.

Interrupts are typically caused by events external to the central processor
that require immediate attention, such as the following:

= Completion of an I/O operation
® Detection of a hardware failure
® ‘“Catastrophes” (power fajlures, for example)

In order to service interrupts more efficiently, most modern processors
support multiple interrupt types, or levels. Each type usually has a
reserved location in memory, called an interrupt vector, that specifies
where the interrupt-handler program for that interrupt type is located.
This design speeds processing of an interrupt because the computer can
transfer control directly to the appropriate routine; it does not need a
central routine that wastes precious machine cycles determining the
cause of the interrupt. The concept of interrupt types also allows inter-
rupts to be prioritized, so that if several interrupts occur simultaneously,
the most important one can be processed first.

CPUs that support interrupts must also have the capability to block inter-
rupts while they are executing critical sections of code. Sometimes the
CPU can block interrupt levels selectively, but more frequently the effect is
global. While an interrupt is being serviced, the CPU masks all other inter-
rupts of the same or lower priority until the active handler has completed
its execution; similarly, it can preempt the execution of a handler if a dif-
ferent interrupt with higher priority requires service. Some CPUs can even
draw a distinction between selectively masking interrupts (they are
recognized, but their processing is deferred) and simply disabling them
(the interrupt is thrown away).

The creation of interrupt handlers has traditionally been considered one
of the most arcane of programming tasks, suitable only for the elite cadre
of system hackers. In reality, writing an interrupt handler is, in itself,
straightforward. Although the exact procedure must, of course, be cus-
tomized for the characteristics of the particular CPU and operating sys-
tem, the guidelines on the following page are applicable to almost any
computer system.

Programming for MS-DOS

A program preparing to handle interrupts must do the following:

1. Disable interrupts, if they were previously enabled, to prevent them
from occurring while interrupt vectors are being modified.

2. Initialize the vector for the interrupt of interest to point to the pro-
gram’s interrupt handler.

3. Ensure that, if interrupts were previously disabled, all other vectors
point to some valid handler routine.

4. Enable interrupts again.

The interrupt handler itself must follow a simple but rigid sequence of
steps:

1. Save the system context (registers, flags, and anything else that the
handler will modify and that wasn’t saved automatically by the CPU).

2. Block any interrupts that might cause interference if they were allowed
to occur during this handler’s processing. (This is often done automati-
. cally by the computer hardware.)

3. Enable any interrupts that should still be allowed to occur during this
handler’s processing.

4. Determine the cause of the interrupt.

5. Take the appropriate actjon for the interrupt: receive and store data
from the serial port, set a flag to indicate the completion of a disk-
sector transfer, and so forth.

6. Restore the system context.

7. Reenable any interrupt levels that were blocked during this handler’s
execution.

8. Resume execution of the interrupted process.

As in writing any other program, the key to success in writing an interrupt
handler is to program defensively and cover all the bases. The main
reason interrupt handlers have acquired such a mystical reputation is that
they are so difficult to debug when they contain obscure errors. Because
interrupts can occur asynchronously—that is, because they can be caused
by external events without regard to the state of the currently executing
process—bugs in interrupt handlers can cause the system as a whole to
behave quite unpredictably.

Interrupt Handlers

Interrupt Usage Machine

00H Divide-by-zero PC, AT, PS/2
01H Single step PC, AT, PS/2
02H NMI PC, AT, PS/2
03H Breakpoint PC, AT, PS/2
04H Overflow PC, AT, PS/2
05H ROM BIOS PrintScreen PC, AT, PS/2
BOUND exceeded AT, PS/2
06H Reserved PC
Invalid opcode AT, PS/2
07H Reserved PC
80287/80387 not present AT, PS/2
08H IRQO timer tick PC, AT, PS/2
Double fault AT, PS/2
09H IRQ1 keyboard PC, AT, PS/2
80287/80387 segment overrun AT, PS/2
0AH TIRQ2 reserved PC
IRQ2 cascade from slave 8259A PIC AT, PS/2
Invalid task-state segment (TSS) AT, PS/2
0BH IRQ3 serial communications (COM2) PC, AT, PS/2
Segment not present AT, PS/2
OCH IRQ4 serial communications (COM1) PC, AT, PS/2
Stack segment overflow AT, PS/2
ODH IRQS fixed disk PC
IRQ5 parallel printer (LPT2) AT
Reserved : PS/2
General protection fault AT, PS/2
OEH IRQ6 floppy disk PC, AT, PS/2
Page fault AT, PS/2
OFH IRQ7 parallel printer (LPT1) PC, AT, PS/2
10H ROM BIOS video driver PC, AT, PS/2
Numeric coprocessor fault AT, PS/2
11H ROM BIOS equipment check PC, AT, PS/2
12H ROM BIOS conventional-memory size PC, AT, PS/2
13H ROM BIOS disk driver PC, AT, PS/2
14H ROM BIOS communications driver PC, AT, PS/2
15H ROM BIOS cassette driver PC
ROM BIOS I/O system extensions AT, PS/2
16H ROM BIOS keyboard driver PC, AT, PS/2
17H ROM BIOS printer driver PC, AT, PS/2
18H ROM BASIC PC, AT, PS/2
19H ROM BIOS bootstrap PC, AT, PS/2
(continued)

Figure 13-2. Interrupts with special significance on the IBM PC, PC/AT, and PS/2
and compatible computers. Note that the IBM ROM BIOS uses several interrupis in the
range OOH—IFH, even though they were reserved by Intel for CPU faults. IRQ numbers
refer to Intel 8259A PIC priority levels.

Programming for MS-DOS

Figure 13-2. continued

Interrupt Usage Machine
1AH ROM BIOS time of day AT, PS/2
1BH ROM BIOS Ctrl-Break PC, AT, PS/2
1CH ROM BIOS timer tick PC, AT, PS/2
1DH ROM BIOS video parameter table PC, AT, PS/2
1EH ROM BIOS floppy-disk parameters PC, AT, PS/2
1FH ROM BIOS font (characters SOH-FFH) PC, AT, PS/2
20H MS-DOS terminate process
21H MS-DOS function dispatcher
22H MS-DOS terminate address
23H MS-DOS Ctirl-C handler address
24H MS-DOS critical-error handler address
25H MS-DOS absolute disk read
26H MS-DOS absolute disk write
27H MS-DOS terminate and stay resident
28H MS-DOS idle interrupt
29H MS-DOS reserved
2AH MS-DOS network redirector
2BH-2EH MS-DOS reserved
2FH MS-DOS multiplex interrupt
30H-3FH MS-DOS reserved
40H ROM BIOS floppy-disk driver (if fixed disk installed) PC, AT, PS/2
41H ROM BIOS fixed-disk parameters PC

ROM BIOS fixed-disk parameters (drive 0) AT, PS/2
42H ROM BIOS default video driver (if EGA installed) PC, AT, PS/2
43H EGA, MCGA, VGA character table PC, AT, PS/2
44H ROM BIOS font (characters 00H-7FH) PCjr
46H ROM BIOS fixed-disk parameters (drive 1) AT, PS/2
4AH ROM BIOS alarm handler AT, PS/2
SAH Cluster adapter PC, AT
SBH Used by cluster program PC, AT
60H-66H User interrupts PC, AT, PS/2
67H LIM EMS driver PC, AT, PS/2
68H-6FH Unassigned
70H IRQ8 CMOS real-time clock AT, PS/2
71H IRQ9 software diverted to IRQ2 AT, PS/2
72H IRQ10 reserved AT, PS/2
73H IRQ11 reserved AT, PS/2
74H IRQ12 reserved AT

IRQ12 mouse PS/2
75H IRQ13 numeric coprocessor AT, PS/2
76H IRQ14 fixed-disk controller AT, PS/2
77H IRQ15 reserved AT, PS/2
78H-7FH Unassigned
80H-FOH BASIC PC, AT, PS/2
FIH-FFH Not used PC, AT, PS/2

Interrupt Handlers

249

Interrupt Handlers and MS-DOS

The introduction of an interrupt handler into your program brings with it
considerable hardware dependence. It goes without saying (but I am say-
ing it again here anyway) that you should avoid such hardware depen-
dence in MS-DOS applications whenever possible, to ensure that your
programs will be portable to any machine running current versions of
MS-DOS and that they will run properly under future versions of the
operating system.

Valid reasons do exist, however, for writing your own interrupt handler for
use under MS-DOS:

» To supersede the MS-DOS default handler for an internal hardware in-
terrupt (such as divide-by-zero, BOUND exceeded, and so forth).

m To supersede the MS-DOS default handler for a defined system excep-
tion, such as the critical-error handler or Ctrl-C handler.

m To chain your own interrupt handler onto the default system handler
for a hardware device, so that both the system’s actions and your own
will occur on an interrupt. (A typical example of this is the “clock-tick”
interrupt.)

s To service interrupts not supported by the default MS-DOS device
drivers (such as the serial communications port, which can be used at
much higher speeds with interrupts than with polling).

m To provide a path of communication between a program that termi-
nates and stays resident and other application software.

MS-DOS provides the following facilities to enable you to install well-
behaved interrupt handlers in a manner that does not interfere with
operating-system functions or other interrupt handlers:

Function Action

Int 21H Function 25H Set interrupt vector.

Int 21H Function 35H Get interrupt vector.

Int 21H Function 31H Terminate and stay resident.

These functions allow you to examine or modify the contents of the sys-
tem interrupt-vector table and to reserve memory for the use of a handler
without running afoul of other processes in the system or causing memory
use conflicts. Section II of this book, “MS-DOS Functions Reference,”
describes each of these functions in detail, with programming examples.

Programming for MS-DOS

ZERODIYV, an Example Interrupt Handler

The listing ZERODIV.ASM (Figure 13-4) illustrates some of the principles
and guidelines on the previous pages. It is an interrupt handler for the
divide-by-zero internal interrupt (type 0). ZERODIV is loaded as a .COM
file (usually by a command in the system’s AUTOEXEC file) but makes it-
self permanently resident in memory as long as the system is running.

The ZERODIV program has two major portions: the initialization portion
and the interrupt handler.

The initialization procedure (called init in the program listing) is exe-
cuted only once, when the ZERODI'V program is executed from the MS-
DOS level. The init procedure takes over the type 0 interrupt vector,
prints a sign-on message, then performs a terminate-and-stay-resident
exit to MS-DOS. This special exit reserves the memory occupied by the
ZERODIV program, so that it is not overwritten by subsequent application
programs.

The interrupt handler (called zdiv in the program listing) receives control
when a divide-by-zero interrupt occurs. The handler preserves all regis-
ters and then prints a message to the user asking whether to continue or to
abort the program. We can use the MS-DOS console I/0O functions within
this particular interrupt handler because we can safely presume that the
application was in control when the interrupt occurred; thus, there should
be no chance of accidentally making overlapping calls upon the operat-
ing system.

If the user enters a C to continue, the handler simply restores all the regis-
ters and performs an IRET (INTERRUPT RETURN) to return control to
the application. (Of course, the results of the divide operation will be use-
less.) If the user enters Q to quit, the handler exits to MS-DOS. Int 21H
Function 4CH is particularly convenient in this case because it allows the
program to pass a return code and at the same time is the only termina-
tion function that does not rely on the contents of any of the segment
registers.

For an example of an interrupt handler for external (communications port)
interrupts, see the TALK terminal-emulator program in Chapter 7. You
may also want to look again at the discussions of Ctrl-C and critical-error
exception handlers in Chapters 5 and 8.

254 Programming for MS-DOS

Character-Device Drivers

Character-device drivers control peripheral devices that perform input
and output one character (or byte) at a time, such as a terminal or printer.
A single character-device driver ordinarily supports a single hardware
unit. Each character device has a one-to-eight-character logical name, and
an application program can use this name to open the device for input or
output, as though it were a file. The logical name is strictly a means of
identification for MS-DOS and has no physical equivalent on the device.

MS-DOS’s built-in character-device drivers for the console, serial port,
and printer are unique in that an application program can access them in
three different ways:

= It can open them by name (CON, AUX, PRN, etc.) for input and output,
like any other character device.

s It can use the special-purpose MS-DOS function calls (Int 21H Func-
tions 01-0CH).

m It can use the default handles (standard input, standard output, stan-
dard error, standard auxiliary, and standard printer), which do not
need to be opened to be used.

The number of additional character-device drivers that can be installed is
limited only by available memory and by the requirement that each driver
have a unique logical name. If more than one driver uses the same logical
name, the last driver to be loaded will supersede any others and will
receive all I/O requests addressed to that logical name. This fact can occa-
sionally be turned to advantage; for example, it allows the user to replace
the system’s default CON driver, which does not support cursor position-
ing or character attributes, with the more powerful ANSLSYS driver.

ASCIlvs Binary Mode

MS-DOS regards a handle associated with a character device to be in ei-
ther ASCII (cooked) mode or binary (raw) mode. The mode affects MS-
DOS’s buffering of data for read and write requests. The driver itself is not
aware of the mode, and the mode does not affect its operation. An appli-
cation can select the mode of a handle with the IOCTL function (Int 21H
Function 44H).

During ASCII-mode input, MS-DOS requests characters one at a time from
the driver and places them into its own internal buffer, echoing each to the
screen (if the input device is the keyboard) and checking each character

Installable Device Drivers

Byte offset

00H
02H
04H
06H
08H
0AH

Link to next driver, offset

Link to next driver, segment

Device attribute word

Strategy entry point, offset

Interrupt entry point, offset

Logical name (8 bytes) if character device

Number of units (1 byte) if block device,
followed by 7 bytes of reserved space

Figure 14-2. Device-driver header. The offSets to the strat and intr routines are off-
sets from the same segment used to point to the device header.

Bit Significance
15 1 if character device, 0 if block device
14 1 if IOCTL read and write supported
13 Jor block devices:
1 if BIOS parameter block in boot sector should be used to determine media
characteristics, 0 if media ID byte should be used
Jfor character devices:
1 if output until busy supported
12 Reserved (should be 0)
11 1 if open/close/removable media supported (MS-DOS 3.0 and later)
7-10 Reserved (should be 0)
6 1 if generic IOCTL and get/set logical drive supported (MS-DOS 3.2 and
later)
5 Reserved (should be 0)
4 1 if CON driver and Int 29H fast-output function supported
3 1 if current CLOCK$ device
2 1 if current NUL device
1 Jor block devices:
1 if driver supports 32-bit sector addressing (MS-DOS 4.0)
Jfor character devices:
1 if standard output device (stdout)
0 1 if current standard input device (stdin)

Figure 14-3. Device attribute word in device header. In block-device drivers, only
bits 6, 11, and 13-15 (and bit 1 in MS-DOS version 4.0) have significance; the
remainder should always be zero.

Programming for MS-DOS

MS-DOS uses the number of units returned by a block driver in the
request header to assign drive identifiers. For example, if the current maxi-
mum drive is D and the driver being initialized supports four units, MS-
DOS will assign it the drive letters E, F, G, and H. Although the device-
driver header also has a field for number of units, MS-DOS does not
inspect it.

The BPB pointer array is an array of word offsets to BIOS parameter
blocks (Figure 14-7). Each unit defined by the driver must have one entry
in the array, although the entries can all point to the same BPB to conserve
memory. During the operating-system boot sequence, MS-DOS scans all
the BPBs defined by all the units in all the block-device drivers to deter-
mine the largest sector size that exists on any device in the system and
uses this information to set its cache buffer size.

The operating-system services that the initialization code can invoke at
load time are very limited—only Int 21H Functions 01H through 0CH and
30H. These are just adequate to check the MS-DOS version number and
display a driver-identification or error message.

Many programmers position the initialization code at the end of the driver
and return that address as the location of the first free memory, so that MS-
DOS will reclaim the memory occupied by the initialization routine after
the routine is finished with its work. If the initialization routine finds that
the device is missing or defective and wants to abort the installation of the
driver completely so that it does not occupy any memory, it should return

Byte(s) Contents
00-01H Bytes per sector

02H Sectors per allocation unit (power of 2)
03H-04H Number of reserved sectors (starting at sector 0)
05H Number of file allocation tables

06H-07H Maximum number of root-directory entries

08H-09H Total number of sectors in medium

O0AH Media descriptor byte

O0BH-0CH Number of sectors occupied by a single FAT

ODH-OEH Sectors per track (versions 3.0 and later)

OFH-10H Number of heads (versions 3.0 and later)

11H-12H Number of hidden sectors (versions 3.0 and later)

13H-14H High-order word of number of hidden sectors (version 4.0)
15H-18H If bytes 8-9 are zero, total number of sectors in medium (version 4.0)
19H-1EH Reserved, should be zero (version 4.0)

Figure 14-7. Structure of a BIOS parameter block (BPB). Every formatted disk
contains a copy of its BPB in the boot sector. (See Chapter 10.)

Installable Device Drivers

MS-DOS responds to the results of the media-check function in the fol-
lowing ways:

= If the disk has not been changed, MS-DOS proceeds with the disk
access.

m If the disk has been changed, MS-DOS invalidates all buffers associated
with this unit, including buffers containing data waiting to be written
(this data is simply lost), performs a BUILD BPB call, and then reads
the disk’s FAT and directory.

» If the disk-change status is unknown, the action taken by MS-DOS de-
pends upon the state of its internal buffers. If data that needs to be
written out is present in the buffers, MS-DOS assumes no disk change
has occurred and writes the data (taking the risk that, if the disk really
was changed, the file structure on the new disk may be damaged). If
the buffers are empty or have all been previously flushed to the disk,
MS-DOS assumes that the disk was changed, and then proceeds as
described above for the disk-changed return code.

If bit 11 of the device-header attribute word is set (that is, the driver sup-
ports the optional open/close/removable-media functions), the host sys-
tem is MS-DOS version 3.0 or later, and the function returns the disk-
changed code (1), the function must also return the segment and offset
of the ASCIIZ volume label for the previous disk in the drive. (If the driver
does not have the volume label, it can return a pointer to the ASCIIZ string
NO NAME.) 1f MS-DOS determines that the disk was changed with un-
written data still present in its buffers, it issues a critical-error OFH (invalid
disk change). Application programs can trap this critical error and prompt
the user to replace the original disk.

The media-check function is called with

RH+1 BYTE Unit code
RH + 2 BYTE Command code = 1
RH + 13 BYTE Media descriptor byte

It returns

RH+3 WORD Status
RH + 14 BYTE Media-change code:
-1 if disk changed
0 if don’t know whether disk changed
1 if disk not changed
RH + 15 DWORD Pointer to previous volume label, if device attribute bit
11 = 1 and disk has been changed (MS-DOS versions 3.0
and later)

Installable Device Drivers

271

It returns

RH+3 WORD Status
RH + 18 WORD Actual bytes or sectors transferred

Function 04H (4): Read

The read function transfers data from the device into the specified
memory buffer. If an error is encountered during the read, the function
must set the error status and, in addition, report the number of bytes or
sectors successfully transferred; it is not sufficient to simply report an
€rTor.

The read function is called with

RH+1 BYTE Unit code (block devices)
RH + 2 BYTE Command code = 4
RH +13 BYTE Media descriptor byte

RH + 14 DWORD Transfer address
RH + 18 WORD Byte/sector count
RH + 20 WORD Starting sector number (block devices)

For block-device read operations in MS-DOS version 4, if the logical unit is
larger than 32 MB and bit 1 of the driver’s attribute word is set, the follow-
ing request structure is used instead:

RH +1 BYTE Unit code
RH +2 BYTE Command code = 4
RH+13 BYTE Media descriptor byte

RH + 14 DWORD Transfer address

RH + 18 WORD Sector count

RH + 20 WORD Contains —1 to signal use of 32-bit sector number
RH+26 DWORD 32-bit starting sector number

The read function returns

RH+3 WORD Status)

RH + 18 WORD Actual bytes or sectors transferred

RH + 22 DWORD Pointer to volume label if error OFH is returned (MS-DOS
versions 3.0 and later)

Under MS-DOS versions 3.0 and later, this routine can use the count of
open files maintained by the open and close functions (ODH and 0EH)
and the media descriptor byte to determine whether the disk has been il-
legally changed.

Installable Device Drivers 273

This function is an optimization included specifically for the use of print
spoolers. It is not an error for this function to return a number of bytes
transferred that is less than the number of bytes requested.

The output-until-busy function is called with

RH + 2 BYTE Command code = 16 (10H)
RH + 14 DWORD Transfer address
RH + 18 WORD Byte count

It returns

RH+3 WORD Status
RH + 18 WORD Actual bytes transferred

Function 13H (19) Generic IOCTL

The generic IOCTL function is supported only under MS-DOS versions 3.2
and later and is called only if bit 6 is set in the device attribute word of the
device header. This function corresponds to the MS-DOS generic IOCTL
service supplied to application programs by Int 21H Function 44H Sub-
functions 0CH and 0DH.

The generic IOCTL function is passed a category (major) code, a function
(minor) code, the contents of the SI and DI registers at the point of the
IOCTL call, and the segment and offset of a data buffer. This buffer in turn
contains other information whose format depends on the major and
minor IOCTL codes passed in the request header. The driver must inter-
pret the major and minor codes in the request header and the contents of
the additional buffer to determine which operation it will carry out, then
set the done flag in the request-header status word, and return any other
applicable information in the request header or the data buffer.

Services that the generic IOCTL function may invoke, if the driver sup-
ports them, include configuration of the driver for nonstandard disk for-
mats, reading and writing entire disk tracks of data, and formatting and
verifying tracks. The generic IOCTL function has been designed to be
open-ended, so that it can be used to easily extend the device-driver
definition under future versions of MS-DOS.

The generic IOCTL function is called with

RH+1 BYTE Unit number (block devices)
RH + 2 BYTE Command code = 19 (13H)
RH +13 BYTE Category (major) code

RH + 14 BYTE Function (minor) code

RH+ 15 WORD SI register contents
RH + 17 WORD DI register contents
RH + 19 DWORD Address of generic IOCTL data packet

Installable Device Drivers 279

292

duplicating the names of existing character devices, unless you are inten-
tionally superseding a resident driver.

MS-DOS calls the strategy and interrupt routines for the device by means
of an intersegment call (CALL FAR) when the driver is first loaded and in-
stalled and again whenever an application program issues an I/O request
for the device. MS-DOS uses the ES:BX registers to pass the strat routine a
double-word pointer to the request header; this address should be saved
internally in the driver so that it is available for use during the subsequent
call to the #ntr routine.

The command-code routines for function codes 0 through 12 (OCH) must
be present in every installable device driver, regardless of device type.
Functions 13 (ODH) and above are optional for drivers used with MS-DOS
versions 3.0 and later and can be handled in one of the following ways:

Don’t implement them, and leave the associated bits in the device
header cleared. The resulting driver will work in either version 2 or
version 3 but does not take full advantage of the augmented func-
tionality of version 3.

8 Implement them, and test the MS-DOS version during the initialization
sequence, setting bits 6 and 11 of the device header appropriately.
Write all command-code routines so that they test this bit and adjust to
accommodate the host version of MS-DOS. Such a driver requires more
work and testing but will take full advantage of both the version 2 and
the version 3 environments.

Implement them, and assume that all the version 3 facilities are avail-
able. With this approach, the resulting driver may not work properly
under version 2.

Remember that device drivers must preserve the integrity of MS-DOS. The
driver must preserve all registers, including flags (especially the direction
flag and interrupt enable bits), and if the driver makes heavy use of the
stack, it should switch to an internal stack of adequate depth (the MS-DOS
stack has room for only 40 to 50 bytes when a driver is called).

If you install a new CON driver, be sure to set the bits for standard input
and standard output in the device attribute word in the device header.

You'll recall that one file can contain multiple drivers. In this case, the
device-header link field of each driver should point to the segment offset
of the next, all using the same segment base, and the link field for the last
driver in the file should be set to —1,-1. The initialization routines for all
the drivers in the file should return the same break address.

Programming for MS-DOS

giving it the same logical-device name in the device header. When pro-
cessing a character I/O request, MS-DOS always scans the list of installed
drivers before it scans the list of default devices and takes the first match.

NUL

}

CON

AUX

I

- PRN

}

CLOCK

Any other resident block
or character devices

Figure 14-10. MS-DOS device-driver chain before any installable device drivers
have been loaded.

NUL

Installable character-
device drivers

}

CON

AUX

I

PRN

}

CLOCK

Any other resident block
or character devices

I

Installable block-
device drivers

Figure 14-11. MS-DOS device-driver chain after installable device drivers have been
loaded.

Programming for MS-DOS

to display information. You will find it helpful to add a routine to your ini-
tialization subroutine that displays the driver’s load address on the console
when you boot MS-DOS; you can then use this address to inspect the
device-driver header and set breakpoints within the body of the driver.

Debugging a device driver can also be somewhat sticky when interrupt
handling is involved, especially if the device uses the same interrupt-
request priority level (IRQ level) as other peripherals in the system.
Cautious, conservative programming is needed to avoid unexpected and
unreproducible interactions with other device drivers and interrupt han-
dlers. If possible, prove out the basic logic of the driver using polled 1/O,
rather than interrupt-driven I/O, and introduce interrupt handling only
when you know the rest of the driver’s logic to be solid.

Typical device-driver errors or problems that can cause system crashes or
strange system behavior include the following:

Failure to set the linkage address of the last driver in a file to —1

®8 Overflow of the MS-DOS stack by driver-initialization code, corrupting
the memory image of MS-DOS (can lead to unpredictable behavior dur-
ing boot; remedy is to use a local stack)

Incorrect break-address reporting by the initialization routine (can
lead to a system crash if the next driver loaded overwrites vital parts of
the driver)

Improper BPBs supplied by the build BPB routine, or incorrect BPB
pointer array supplied by the initialization routine (can lead to many
confusing problems, ranging from out-of-memory errors to system
boot failure)

Incorrect reporting of the number of bytes or sectors successfully
transferred at the time an I/O error occurs (can manifest itself as a sys-
tem crash after you enter R to the Abort, Retry, Ignore? prompt)

Although the interface between the DOS kernel and the device driver is
fairly simple, it is also quite strict. The command-code routines must per-
form exactly as they are defined, or the system will behave erratically.
Even a very subtle discrepancy in the action of a command-code routine
can have unexpectedly large global effects.

Programming for MS-DOS

312

Contrasting the C and assembly-language versions of this filter provides
some interesting statistics. The C version contains 79 lines and compiles to
a 5889-byte .EXE file, whereas the assembly-language version contains
2065 lines and builds an 1107-byte .EXE file. The size and execution-speed
advantages of implementing such tools in assembly language is obvious,
even compared with such an excellent compiler as the Microsoft C
Optimizing Compiler. However, you must balance performance consid-
erations against the time and expense required for programming, par-
ticularly when a program will not be used very often.

Programming for MS-DOS

The 3.x Box traps Int 21H function calls and remaps them into OS/2 func-
tion calls, emulating an MS-DOS 3.3 environment with the file-sharing
module (SHARE.EXE) loaded but returning a major version number of 10
instead of 3 for Int 21H Function 30H. The 3.x Box also supports most
ROM BIOS calls, either by emulating their function or by interlocking the
device and then calling the original ROM BIOS routine. In addition, the
3.x Box maintains the ROM BIOS data area, provides timer ticks to appli-
cations via Int 1CH, and supports certain undocumented MS-DOS services
and data structures so that most TSR utilities can function properly.
Nevertheless, the 3.x Box’s emulation of MS-DOS is not perfect, and you
must be aware of certain constraints on MS-DOS applications running
under OS/2.

The most significant restriction on an MS-DOS application is that it does
not receive any CPU cycles when it is in the background. That is, when a
protected-mode application has been “selected,” so that the user can in-
teract with it, the MS-DOS application is frozen. If the MS-DOS application
has captured any interrupt vectors (such as the serial port or timer tick),
these interrupts will not be serviced until the application is again selected
and in the foreground. OS/2 must freeze MS-DOS applications when they
are in the background because they execute in real mode and are thus not
subject to hardware memory protection; nothing else ensures that they
will not interfere with a protected-mode process that has control of the
screen and keyboard.

Use of FCBs is restricted in the 3.x Box, as it is under MS-DOS 3 or 4 with
SHARE.EXE loaded. A file cannot be opened with an FCB if any other
process is using it. The number of FCBs that can be simultaneously
opened is limited to 16 or to the number specified in a CONFIG.SYS
FCBS= directive. Even when the handle file functions are used, these
functions may fail unexpectedly due to the activity of other processes (for
example, if a protected-mode process has already opened the file with
“deny all” sharing mode); most MS-DOS applications are not written with
file sharing in mind, and they do not handle such errors gracefully.

Direct writes to a fixed disk using Int 26H or Int 13H are not allowed. This
prevents the file system from being corrupted, because protected-mode
applications running concurrently with the MS-DOS application may also
be writing to the same disk. Imagine the mess if a typical MS-DOS unerase
utility were to alter the root directory and FAT at the same time that a
protected-mode database program was updating its file and indexes!

Compatibility and Portability

319

322

After restructuring and segmentation, reassemble and link your program
and check to be sure it still works as expected under MS-DOS. Changing
or adding segmentation often uncovers hidden addressing assumptions in
the code, so it is best to track these problems down before making other
substantive changes to the program.

Rationalization

Once you've successfully segmented your program so that it can be linked
and executed as a .EXE file under MS-DOS, the next step is to rationalize
your code. By rationalization I mean converting your program into a com-
pletely well-behaved MS-DOS application.

* First, you must ruthlessly eliminate any elements that manipulate the

peripheral device adapters directly, alter interrupt priorities, edit the sys-
tem interrupt-vector table, or depend on CPU speed or characteristics
(such as timing loops). In protected mode, control of the interrupt system
is completely reserved to the operating system and its device drivers, I/O
ports may be read or written by an application only under very specific
conditions, and timing loops burn up CPU cycles that can be used by
other processes.

As I mentioned earlier in this chapter, display routines constitute the most

' common area of hardware dependence in an MS-DOS application. Direct

manipulation of the video adapter and its regen buffer poses obvious
difficulties in a multitasking, protected-memory environment such as
OS/2. For porting purposes, you must convert all routines that write text to
the display, modify character attributes, or affect cursor shape or position
into Int 21H Function 40H calls using ANSI escape sequences or into ROM
BIOS Int 10H calls. Similarly, you must convert all hardware-dependent
keyboard operations to Int 21H Function 3FH or ROM BIOS Int 16H calls.

Once all hardware dependence has been expunged from your program,
your next priority is to make it well-behaved in its use of system memory.
Under MS-DOS an application is typically handed all remaining memory
in the system to do with as it will; under OS/2 the converse is true: A pro-
cess is initially allocated only enough memory to hold its code, declared
data storage, and stack. You can make the MS-DOS loader behave like
the OS/2 loader by linking your application with the /CPARMAXALLOC
switch. Alternatively, your program can give up all extra memory during
its initialization with Int 21H Function 4AH, as recommended earlier in
this chapter.

After your program completes its initialization sequence, it should
dynamically obtain and release any additional memory it may require for

Programming for MS-DOS

buffers and tables with MS-DOS Int 21H Functions 48H and 49H. To en-
sure compatibility with protected mode, limit the size of any single allo-
cated block to 65,536 bytes or less, even though MS-DOS allows larger
blocks to be allocated.

Finally, you must turn your attention to file and device handling. Replace
any calls to FCB file functions with their handle-based equivalents,
because OS/2 does not support FCBs in protected mode at all. Check
pathnames for validity within the application; although MS-DOS and the
3.x Box silently truncate a name or extension, OS/2 refuses to open or
create a file in protected mode if the name or extension is too long and
returns an error instead. Replace any use of the predefined handles for the
standard auxiliary and standard list devices with explicit opens of
COML, PRN, LPT1, and so on, using the resulting handle for read and write
operations. OS/2 does not supply processes with standard handles for the
serial communications port or printer.

Encapsulation

When you reach this point, with a well-behaved, segmented MS-DOS ap-
plication in hand, the worst of a port to OS/2 is behind you. You are now
ready to prepare your program for true conversion to protected-mode
operation by encapsulating, in individual subroutines, every part of the
program that is specific to the host operating system. The objective here is
to localize the program’s “knowledge” of the environment into small pro-
cedures that can be subsequently modified without affecting the re-
mainder of the program.

As an example of encapsulation, consider a typical call by an MS-DOS ap-
plication to write a string to the standard output device (Figure 16-1). In
order to facilitate conversion to OS/2, you would replace every instance of
such a write to a file or device with a call to a small subroutine that “hides”
the mechanics of the actual operating-system function call, as illustrated
in Figure 16-2.

Another candidate for encapsulation, which does not necessarily involve
an operating-system function call, is the application’s code to gain access
to command-line parameters, environment-block variables, and the name
of the file it was loaded from. Under MS-DOS, this information is divided
between the program segment prefix (PSP) and the environment block, as
we saw in Chapters 3 and 12; under OS/2, there is no such thing as a PSP,
and the program filename and command-line information are appended
to the environment block.

Compatibility and Portability

323

328

Figures 16-4, 16-5, and 16-6 list the OS/2 services that are equivalent to
selected MS-DOS and ROM BIOS Int 21H, Int 10H, and Int 16H calls. MS-
DOS functions related to FCBs and PSPs are not included in these tables
because OS/2 does not support either of these structures. The MS-DOS
terminate-and-stay-resident functions are also omitted. Because OS/2 is a
true multitasking system, a process doesn’t need to terminate in order to
stay resident while another process is running.

MS-DOS Description OS/2 function

Int 21H

Function

0 Terminate process DosExit

1 Character input with echo KbdCharln

2 Character output VioWrtTTY

3 Auxiliary input DosRead

4 Auxiliary output DosWrite

5 Printer output DosWrite

6 Direct console I/O KbdCharln,
VioWrtTTY

7 Unfiltered input without echo KbdCharln

8 Character input without echo KbdCharln

9 Display string VioWrtTTY

0AH (10) Buffered keyboard input KbdStringin

OBH (11 Check input status KbdPeek

OCH (12) Reset buffer and input KbdFlushBuffer,
KbdCharln

ODH (13) Disk reset DosBufReset

OEH (149 Select disk DosSelectDisk

19H (25) Get current disk DosQCurDisk

1BH (27) Get default drive data DosQFSInfo

1CH (28) Get drive data DosQFSInfo

2AH (42) Get date DosGetDateTime

2BH (43) Set date DosSetDateTime

2CH (44) Get time DosGetDateTime

2DH (45) Set time DosSetDateTime

2EH (46) Set verify flag DosSetVerify

30H (48) Get MS-DOS version DosGetVersion

36H (54) Get drive allocation DosQFSInfo

information

(continued)

Figure 16-4. Table of selected MS-DOS function calls and their OS/2 counterparts.
Note that OS/2 functions are typically more powerful and flexible than the corre-
sponding MS-DOS functions, and that this is not a complete list of OS/2 services.

Programming for MS-DOS

Figure 16-4. continued

MS-DOS Description 0S/2 function
38H (56) Get or set country DosGetCtrylnfo
information
39H (57) Create directory DosMkdir
3AH (58) Delete directory DosRmdir
3BH (59 Set current directory DosChdir
3CH (60) Create file DosOpen
3DH (61) Open file DosOpen
3EH (62) Close file DosClose
3FH (63) Read file or device DosRead
40H (64) Write file or device DosWrite
41H (65) " Delete file DosDelete
42H (66) Set file pointer DosChgFilePtr
43H (67) Get or set file attributes DosQFileMode,
DosSetFileMode
44H (68) 1/0 control (IOCTL) DosDevIOCtl
45H (69) Duplicate handle DosDupHandle
46H (70) Redirect handle DosDupHandle
47H (71) Get current directory DosQCurDir
48H (72) Allocate memory block DosAllocSeg
49H (73) Release memory block DosFreeSeg
4AH (79 Resize memory block DosReAllocSeg
4BH (75) Execute program DosExecPgm
4CH (76) Terminate process with DosExit
return code
4DH (77) Get return code DosCWait
4EH (78) Find first file DosFindFirst
4FH (79) Find next file DosFindNext
54H (84) Get verify flag DosQVerify
S6H (86) Rename file DosMove
S7H (87) Get or set file date and time ~ DosQFilelnfo,
DosSetFileInfo
59H (89) Get extended error DosErrClass
information
5BH (91) Create new file DosOpen
5CH (92) Lock or unlock file region DosFileLocks
65H (10D Get extended country DosGetCtryInfo
information
G6H (102) Get or set code page DosGetCp,
DosSetCp
67H (103) Set handle count DosSetMaxFH
68H (104 Commit file DosBufReset
6CH (108) Extended open file DosOpen

Compatibility and Portability

329

330

ROM BIOS Description 0S/2 function
Int 10H

Function

0 Select display mode VioSetMode

1 Set cursor type VioSetCurType
2 Set cursor position VioSetCurPos
3 Get cursor position VioGetCurPos
6 Initialize or scroll window up VioScrollUp

7 Initialize or scroll window down VioScrollDn

8 Read character and attribute VioReadCellStr
9 Write character and attribute VioWrtNCell
0AH (10) Write character VioWrtNChar
OEH (14) Write character in teletype mode VioWrtTTY
OFH (15) Get display mode VioGetMode
10H (16) Set palette, border color, etc. VioSetState
13H (19) Write string in teletype mode VioWrtTTY

Figure 16-5. Table of ROM BIOS Int 10H video-display driver functions used by MS-
DOS applications and their OS/2 equivalents. This is not a complete list of 0S/2 video

services.

ROM BIOS Description 0S8/2 function
Int 16H

Function

0 Read keyboard character KbdCharln

1 Get keyboard status KbdPeek

2 Get keyboard flags KbdGetStatus

Figure 16-6. Table of ROM BIOS Int 16H keyboard driver functions used by MS-DOS
applications and their OS/2 equivalents. This is not a complete list of OS/2 keyboard

services.

Optimization

Once your program is running in protected mode, it is time to unravel
some of the changes made for purposes of conversion and to introduce
various optimizations. Three obvious categories should be considered:

1. Modifying the program’s user-interface code for the more powerful
0S/2 keyboard and display API functions.

2. Incorporating 80286-specific machine instructions where appropriate.

3. Revamping the application to exploit the OS/2 facilities that are unique
to protected mode. (Of course, the application benefits from OS/2’s
virtual memory capabilities automatically; it can allocate memory until
physical memory and disk swapping space are exhausted.)

Programming for MS-DOS

Modifying subroutines that encapsulate user input and output to take ad-
vantage of the additional functionality available under OS/2 is straight-
forward, and the resulting performance improvements can be quite dra-
matic. For example, the OS/2 video driver offers a variety of services that
are far superior to the screen support in MS-DOS and the ROM BIOS, in-
cluding high-speed display of strings and attributes at any screen position,
“reading back” selected areas of the display into a buffer, and scrolling in
all four directions.

The 80286-specific machine instructions can be very helpful in reducing
code size and increasing execution speed. The most useful instructions
are the shifts and rotates by an immediate count other than one, the three-
operand multiply where one of the operands is an immediate (literal)
value, and the push immediate value instruction (particularly handy for
setting up OS/2 function calls). For example, in Figure 16-3, the sequence

mov ax,offset DGROUP:wlen
push ax

could be replaced by the single instruction
push offset DGROUP:wlen

Restructuring an application to take full advantage of OS/2’s protected-
mode capabilities requires close study of both the application and the
OS/2 API, but such study can pay off with sizable benefits in performance,
ease of maintenance, and code sharing. Often, for instance, different parts
of an application are concerned with I/O devices of vastly different
speeds, such as the keyboard, disk, and video display. It both simplifies
and enhances the application to separate these elements into
subprocesses (called threads in OS/2) that execute asynchronously, com-
municate through shared data structures, and synchronize with each
other, when necessary, using semaphores.

As another example, when several applications are closely related and
contain many identical or highly similar procedures, OS/2 allows you to
centralize those procedures in a dynamic link library. Routines in a
dynamic link library are bound to a program at its load time (rather than
by LINK, as in the case of traditional runtime libraries) and are shared by
all the processes that need them. This reduces the size of each application
.EXE file and allows more efficient use of memory. Best of all, dynamic
link libraries drastically simplify code maintenance; the routines in the li-
braries can be debugged or improved at any time, and the applications
that use them will automatically benefit the next time they are executed.

Compatibility and Portability

331

336

Int 21H Function Summary by Number continued

Hex Dec Function name Vers F/H
2AH 42 Get Date 1.0+
2BH 43 Set Date 1.0+
2CH 44 Get Time 1.0+
2DH 45 Set Time 1.0+
2EH 46 Set Verify Flag 1.0+
2FH 47 Get DTA Address 2.0+
30H 48 Get MS-DOS Version Number 2.0+
31H 49 Terminate and Stay Resident 2.0+
32H 50 Reserved
33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
34H 52 Reserved
35H 53 Get Interrupt Vector 2.0+
36H 54 Get Drive Allocation Information 2.0+
37H 55 Reserved
38H 56 Get or Set Country Information 2.0+
39H 57 Create Directory 2.0+
3AH 58 . Delete Directory 2.0+
3BH 59 Set Current Directory 2.0+
3CH 60 Create File 2.0+ H
3DH 61 Open File 2.0+ H
3EH 62 Close File 2.0+ H
3FH 63 Read File or Device 2.0+ H
40H 64 Write File or Device 2.0+ H
41H 65 Delete File 2.0+ H
42H 66 Set File Pointer 2.0+ H
43H 67 Get or Set File Attributes 2.0+
44H 68 IOCTL (I/O Control) 2.0+
45H 69 Duplicate Handle 2.0+
46H 70 Redirect Handle 2.0+
47H 71 Get Current Directory 2.0+
48H 72 Allocate Memory Block 2.0+
49H 73 Release Memory Block 2.0+
4AH 74 Resize Memory Block 2.0+
4BH 75 Execute Program (EXEC) 2.0+
4CH 76 Terminate Process with Return Code 2.0+
4DH 77 Get Return Code 2.0+
4EH 78 Find First File 2.0+ H
4FH 79 Find Next File 2.0+ H
50H 80 Reserved
51H 81 Reserved
52H 82 Reserved
53H 83 Reserved
(continued)

Section I

Int 21H Function Summary by Number continued

Hex Dec Function name Vers F/H

54H 84 Get Verify Flag 2.0+

55H 85 Reserved

56H 86 Rename File 2.0+

57H 87 Get or Set File Date and Time 2.0+ H

S58H 88 Get or Set Allocation Strategy 3.0+

59H 89 Get Extended Error Information 3.0+

5AH 90 Create Temporary File 3.0+ H

SBH 91 Create New File 3.0+ H

5CH 92 Lock or Unlock File Region 30+ H

5DH 93 Reserved

5EH 94 Get Machine Name, Get or Set Printer Setup 3.1+

SFH 5] Device Redirection 3.1+

60H 96 Reserved

61H 97 Reserved

62H 98 Get PSP Address 3.0+

63H 99 Get DBCS Lead Byte Table 2.25 only

64H 100 Reserved

65H 101 Get Extended Country Information 3.3+

66H 102 Get or Set Code Page 3.3+

67H 103 Set Handle Count 3.3+

68H 104 Commit File 3.3+ H

69H 105 Reserved

6AH 106 Reserved

6BH 107 Reserved

6CH 108 Extended Open File 4.0+ H
Int 21H Function Summary by Category

Hex Dec Function name Vers F/H

Character I/0O

0iH 1 Character Input with Echo 1.0+

02H 2 Character Output 1.0+

03H 3 Auxiliary Input 1.0+

04H 4 Auxiliary Output 1.0+

05H 5 Printer Output 1.0+

06H 6 Direct Console I/O 1.0+

07H 7 Unfiltered Character Input Without Echo 1.0+

08H 8 Character Input Without Echo 1.0+

(continued)

MS-DOS Functions Reference

337

338

Int 21H Function Summary by Category continued

Hex Dec Function name Vers F/H

09H 9 Display String 1.0+

0AH 10 Buffered Keyboard Input 1.0+

0BH 1 Check Input Status 1.0+

OCH 12 Flush Input Buffer and Then Input 1.0+

File Operations

OFH 15 Open File 1.0+ F

10H 16 Close File 1.0+ F

11H 17 Find First File 1.0+ F

12H 18 Find Next File 1.0+ F

13H 19 Delete File 1.0+ F

16H 22 Create File 1.0+ F

17H 23 Rename File 1.0+ F

23H 35 Get File Size 1.0+ F

29H 41 Parse Filename 1.0+ F

3CH 60 Create File 2.0+ H

3DH 61 Open File 2.0+ H

3EH 62 Close File 2.0+ H

41H 65 Delete File 2.0+ H

43H 67 Get or Set File Attributes 2.0+

45H 69 Duplicate Handle 2.0+

46H 70 Redirect Handle 2.0+

4EH 78 Find First File 2.0+ H

4FH 79 Find Next File 2.0+ H

56H 86 Rename File 2.0+

57H 87 Get or Set File Date and Time 2.0+ H

S5AH 90 Create Temporary File 3.0+ H

SBH 91 Create New File 3.0+ H

67H 103 Set Handle Count 3.3+

68H 104 Commit File 3.3+ H

6CH 108 Extended Open File 4.0+ H

Record Operations

14H 20 Sequential Read 1.0+ F

15H 21 Sequential Write 1.0+ F

1AH 26 Set DTA Address 1.0+

21H 33 Random Read 1.0+ F

22H 34 Random Write 1.0+ F

24H 36 Set Relative Record Number 1.0+ F

27H 39 Random Block Read 1.0+ F

28H 40 Random Block Write 1.0+ F

2FH 47 Get DTA Address 2.0+

3FH 63 Read File or Device 2.0+ H
(continued)

Section I

Int 21H Function Summary by Category continued

Hex Dec Function name Vers F/H

40H 64 Write File or Device 2.0+ H

42H 66 Set File Pointer 2.0+ H

5CH 92 Lock or Unlock File Region 3.0+ H

Directory Operations

3%9H 57 Create Directory 2.0+

3AH 58 Delete Directory 2.0+

3BH 59 Set Current Directory 2.0+

47H 71 Get Current Directory 2.0+

Disk Management

ODH 13 Disk Reset 1.0+

OEH 14 Select Disk 1.0+

19H 25 Get Current Disk 1.0+

1BH 27 Get Default Drive Data 1.0+

1CH 28 Get Drive Data 2.0+

2EH 46 Set Verify Flag 1.0+

36H 54 Get Drive Allocation Information 2.0+

54H 84 Get Verify Flag 2.0+

Process Management

00H 0 Terminate Process 1.0+

26H 38 Create New PSP 1.0+

31H 49 Terminate and Stay Resident 2.0+

4BH 75 Execute Program (EXEC) 2.0+

4CH 76 Terminate Process with Return Code 2.0+

4DH 77 Get Return Code 2.0+

62H 98 Get PSP Address 3.0+

Memory Management

48H 72 Allocate Memory Block 2.0+

49H 73 Release Memory Block 2.0+

4AH 74 Resize Memory Block 2.0+

58H 88 Get or Set Allocation Strategy 3.0+

Network Functions

5EH 94 Get Machine Name, Get or Set Printer Setup 3.1+

5FH 92 Device Redirection 3.1+

Time and Date

2AH 42 Get Date 1.0+

2BH 43 Set Date 1.0+

2CH 44 Get Time 1.0+

2DH 45 Set Time 1.0+
(continued)

MS-DOS Functions Reference

339

Int 21H Function Summary by Category continued

Hex Dec Function name Vers F/H
Miscellaneous System Functions

25H 37 Set Interrupt Vector 1.0+
30H 48 Get MS-DOS Version Number 2.0+
33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
35H 53 Get Interrupt Vector 2.0+
38H 56 Get or Set Country Information 2.0+
44H 68 IOCTL (1/O Control) 2.0+
59H 89 Get Extended Error Information 3.0+
63H 9 Get Lead Byte Table 2.25 only
65H 101 Get Extended Country Information 3.3+
66H 102 Get or Set Code Page 3.3+
Reserved Functions

18H 24 Reserved

1DH 29 Reserved

1EH 30 Reserved

1FH 31 Reserved

20H 32 Reserved

32H 50 Reserved

34H 52 Reserved

37H 55 Reserved

50H 80 Reserved

51H 81 Reserved

52H 82 Reserved

53H 83 Reserved

55H 85 Reserved

5DH 93 Reserved

60H 96 Reserved

61H 97 Reserved

64H 100 Reserved

69H 105 Reserved

6AH 106 Reserved

6BH 107 Reserved

340 Sectionll

Int 20H

[1.0]

Terminate process

Terminates the current process. This is one of several methods that a program can use to perform a final
exit. MS-DOS then takes the following actions:

All memory belonging to the process is released.

File buffers are flushed and any open handles for files or devices owned by the
process are closed.

The termination handler vector (Int 22H) is restored from PSP:000AH.

The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

[2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.
Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran-
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

Callwith: cs

= segment address of program segment prefix

Returns: Nothing

Notes:]

Any files that have been written to using FCBs should be closed before performing
this exit call; otherwise, data may be lost.

Other methods of performing a final exit are:

Int 21H Function 00H

Int 21H Function 31H

Int 21H Function 4CH

— Int 27H

[2.0+] Int 21H Functions 31H and 4CH are the preferred methods for termination,
since they allow a return code to be passed to the parent process.

[3.0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Example: Terminate the current program, returning control to the program’s parent.

int 20h ; transfer to MS-DOS

MS-DOS Functions Reference 341

Int 21H [1.0]
Function 01H
Character input with echo

[1] Inputs a character from the keyboard, then echoes it to the display. If no character is ready, waits until
one is available.

[2.0+] Reads a character from the standard input device and echoes it to the standard output device. If no
character is ready, waits until one is available. Input can be redirected. (If input has been redirected,
there is no way to detect EOF.)

Callwith: AH = 01H
Returns: AL = 8-bit input data
Notes: ® If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H

is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed.

® To read extended ASCII codes (such as the special function keys F1 to F10) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value O0H to signal the presence of an extended code.

® See also Int 21H Functions 06H, 07H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

B [2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (0000H), if input has not been redi-
rected, or a handle obtained by opening the logical device CON.

Example: Read one character from the keyboard into register AL, echo it to the display, and store it
in the variable char.

char db 0 ; input character
mov ah,1 ; function number
int 21h ; transfer to MS-DOS
mov char,al ; save character

MS-DOS Functions Reference 343

7

Int 21H [1.0]
Function 02H
Character output

[1] Outputs a character to the currently active video display.

[2.0+] Outputs a character to the standard output device. Output can be redirected. (If output is redi-
rected, there is no way to detect disk full.)

Callwith: AH = 02H
DL = 8-bit data for output

Returns: Nothing

Notes: m If a Ctrl-C is detected at the keyboard after the requested character is output, an
Int 23H is executed.

= If the standard output has not been redirected, a backspace code (08H) causes the
cursor to move left one position. If output has been redirected, the backspace code
does not receive any special treatment.

® [2.0+] You can also send strings to the display by performing a write (Int 21H Func-
tion 40H) using the predefined handle for the standard output (0001H), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Example: Send the character “+” to the standard output device.

mov ah,2 ; function number
mov d1, '+’ ; character to output
int 21h ; transfer to MS-DOS

Int 21H [1.0]
Function 03H .
Auxiliary input

[1] Reads a character from the first serial port.

[2.0+] Reads a character from the standard auxiliary device. The default is the first serial port (COML).

Callwith: AH = 03H

344 Section I

Returns

=

= 8-bit input data

Notes: L]

In most MS-DOS systems, the serial device is unbuffered and is not interrupt-driven.
If the auxiliary device sends data faster than your program can process it, characters
may be lost.

At startup on the IBM PC, PC-DOS initializes the first serial port to 2400 baud, no
parity, 1 stop bit, and 8 data bits. Other implementations of MS-DOS may initialize
the serial device differently.

There is no way for a user program to read the status of the auxiliary device or to
detect 1/0 errors (such as lost characters) through this function call. On the IBM PC,
more precise control can be obtained by calling ROM BIOS Int 14H or by driving the
communications controller directly.

If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

B [2.0+] You can also input from the auxiliary device by requesting a read (Int 21H

Function 3FH) using the predefined handle for the standard auxiliary device
(0003H) or using a handle obtained by opening the logical device AUX.

Example: Read a character from the standard auxiliary input and store it in the variable char.

char db 0 ; input character
mov ah,3 ; function number
int 21h ; transfer to MS-DOS

mov char,al ; save character

Int 21H

[1.0]

Function 04H
Auxiliary output

[1] Outputs a character to the first serial port.

[2.0+] Outputs a character to the standard auxiliary device. The default is the first serial port (COMLD).

Call with: AH = 04H

DL

= 8-bit data for output

Returns: Nothing

MS-DOS Functions Reference 345

Notes: m If the output device is busy, this function waits until the device is ready to accept a
character.

® There is no way to poll the status of the auxiliary device using this function. On the
IBM PC, more precise control can be obtained by calling ROM BIOS Int 14H or by
driving the communications controller directly.

m If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

m [2.0+] You can also send strings to the auxiliary device by performing a write (Int
21H Function 40H) using the predefined handle for the standard auxiliary device
(0003H) or using a handle obtained by opening the logical device AUX.

Example: Outputa “+” character to the auxiliary device.

mov ah,4 ; function number
mov dl, "' ; character to output
int 21h ; transfer to MS-DOS

Int 21H [1.0]
Function 05H ’
Printer output

[1] Sends a character to the first list device (PRN or LPT1).

[2.0+] Sends a character to the standard list device. The default device is the printer on the first parallel
port (LPT), unless explicitly redirected by the user with the MODE command.

Callwith: AH =05H
DL = 8-bit data for output

Returns: Nothing

Notes: m If the printer is busy, this function waits until the printer is ready to accept the
character.

m There is no standardized way to poll the status of the printer under MS-DOS.
m Ifa Ctrl-C is detected at the keyboard, an Int 23H is executed.

m [2.0+] You can also send strings to the printer by performing a write (Int 21H
Function 40H) using the predefined handle for the standard printer device (0004H)
or using a handle obtained by opening the logical device PRN or LPT1.

346 Sectionll

Example:

Output the character “s” to the list device.

mov ah,5 ; function number

mov dl, =" ; character to output

int 21h ; transfer to MS-DOS
Int 21H [1.0]
Function 06H
Direct console I/O

Used by programs that need to read and write all possible characters and control codes without any inter-
ference from the operating system.

[1] Reads a character from the keyboard or writes a character to the display.

[2.0+] Reads a character from the standard input device or writes a character to the standard output
device. I/0 may be redirected. (If I/O has been redirected, there is no way to detect EOF or disk full.)

Callwith: AH = 06H
DL = function requested
00H-FEH if output request
OFFH if input request
Returns: If called with DL = 00H-OFEH
Nothing
If called with DL = FFH and a character is ready
Zero flag =clear
AL = 8-bit input data
If called with DL = FFH and no character is ready
Zeroflag =set
Notes: ® No special action is taken upon entry of a Ctrl-C when this service is used.

® To read extended ASCII codes (such as the special function keys F1 to F10) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value O0H to signal the presence of an extended code.

m See also Int 21H Functions 01H, 07H, and 08H, which provide character input with
various combinations of echo and/or Ctrl-C sensing, and Functions 02H and 09H,
which may be used to write characters to the standard output.

MS-DOS Functions Reference 347

¥ [2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (0000H), if input has not been redi-
rected, or a handle obtained by opening the logical device CON.

® [2.0+] You can also send characters to the display by issuing a write (Int 21H Func-
tion 40H) using the predefined handle for the standard output (0001H), if output has
not been redirected, or a handle obtained by opening the logical device CON.

Examples: Send the character “+” to the standard output device.

mov
mov
int

ah,6
d1, '’
21h

B

function number

; character to output

transfer to MS-DOS

Read a character from the standard input device and save it in the variable char. If no
character is ready, wait until one is available.

char db 0 ; input character
wait: mov ah,6 ; function number
mov d1,0ffh ; parameter for read
int 21h ; transfer to MS-DOS
jz wait ; wait until char ready
mov char,al ; save the character
Int 21H [1.0]
*
Function 07H

Unfiltered character input without echo

(1] Reads a character from the keyboard without echoing it to the display. If no character is ready, waits

until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi-
rected, there is no way to detect EOF.)

348 Sectionll

Callwith: AH =07H
Returns: AL = 8-bit input data
Notes: ¥ No special action is taken upon entry of a Ctrl-C when this function is used. If Ctrl-C

checking is required, use Int 21H Function 08H instead.

B To read extended ASCII codes (such as the special function keys F1 to F10) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OOH to signal the presence of an extended code.

® See also Int 21H Functions 01H, 06H, and 08H, which provide charactér input with
various combinations of echo and/or Ctrl-C sensing.

B [2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (00C0H), if input has not been redi-
rected, or a handle obtained by opening the logical device CON.

Example: Read a character from the standard input without echoing it to the display, and store it in
the variable char.

char db

mov
int
mov

0

ah,7
21h
char,al

; input character

; function number
; transfer to MS-DOS
; save character

Int 21H
Function 08H

Character input without echo

[1.0]

[1] Reads a character from the keyboard without echoing it to the display. If no character is ready, waits

until one is available.

[2.0+] Reads a character from the standard input device without echoing it to the standard output device.
If no character is ready, waits until one is available. Input may be redirected. (If input has been redi-
rected, there is no way to detect EOF.)

Call with: AH = 08H
Returns: AL = 8-bit input data

MS-DOS Functions Reference 349

Notes:

If the standard input is not redirected, and the character read is a Ctrl-C, an Int 23H
is executed. If the standard input is redirected, a Ctrl-C is detected at the console,
and BREAK is ON, an Int 23H is executed. To avoid possible interruption by a Ctrl-C,
use Int 21H Function 07H instead.

To read extended ASCII codes (such as the special function keys F1 to F10) on the
IBM PC and compatibles, you must call this function twice. The first call returns the
value OCH to signal the presence of an extended code.

See also Int 21H Functions 01H, 06H, and 07H, which provide character input with
various combinations of echo and/or Ctrl-C sensing.

[2.0+] You can also read the keyboard by issuing a read (Int 21H Function 3FH) using
the predefined handle for the standard input (G000H), if input has not been redi-
rected, or a handle obtained by opening the logical device CON.

Example:

Read a character from the standard input without echoing it to the display, allowing pos-

sible detection of Ctrl-C, and store the character in the variable char.

char db 0
mov ah,8 ; function number
int 21h ; transfer to MS-DOS
mov char,al ; save character

Int 21H
Function 09H
Display string

[1.0]

[1] Sends a string of characters to the display.

[2.0+] Sends a string of characters to the standard output device. Output may be redirected. (If output has
been redirected, there is no way to detect disk full.)

Call with: AH = 09H

DS:DX = segment:offset of string
Returns: Nothing
350 Sectionll

Notes: ® The string must be terminated with the character § (24H), which is not transmitted.
Any other ASCII codes, including control codes, can be embedded in the string.

m See Int 21H Functions 02H and 06H for single-character output to the video display
or standard output device.

® If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

m [2.0+] You can also send strings to the display by performing a write (Int 21H Func-
tion 40H) using the predefined handle for the standard output (0001H), if it has not
been redirected, or a handle obtained by opening the logical device CON.

Example: Send the string Hello World, followed by a carriage return and line feed, to the standard

output device.

cr equ 0dh

1f equ Oah

msg db 'Hello World',cr,1f,'$"’
mov ah,9 ; function number
mov dx,seg msg ; address of string
mov ds,dx
mov dx,offset msg
int 21h ; transfer to MS-DOS

Int 21H [1.0]
Function 0AH (10)
Buffered keyboard input

[1] Reads a line from the keyboard and places it in a user-designated buffer. The characters are echoed to
the display.

[2.0+] Reads a string of bytes from the standard input device, up to and including an ASCII carriage return
(ODH), and places them in a user-designated buffer. The characters are echoed to the standard output
device. Input may be redirected. (If input has been redirected, there is no way to detect EOF.)

Callwith: AH = 0AH
DS:DX = segment:offset of buffer

Returns: Nothing (data placed in buffer)

MS-DOS Functions Reference 351

Notes: ® The buffer used by this function has the following format:
Byte Contents

0 maximum number of characters to read, set by program

1 number of characters actually read (excluding carriage return), set
by MS-DOS

2+ string read from keyboard or standard input, terminated by a carriage
return (ODH)

& If the buffer fills to one fewer than the maximum number of characters it can hold,
subsequent input is ignored and the bell is sounded until a carriage return is
detected. .

B This input function is buffered with type-ahead capability, and all of the standard
keyboard editing commands are active.

® If the standard input is not redirected, and a Ctrl-C is detected at the console, an
Int 23H is executed. If the standard input is redirected, a Ctrl-C is detected at the
console, and BREAK is ON, an Int 23H is executed.

® See Int 21H Functions 01H, 06H, 07H, and 08H for single-character input from the
keyboard or standard input device.

B [2,0+] You can also read strings from the keyboard by performing a read (Int 21H
Function 3FH) using the predefined handle for the standard input (0000H), if it has
not been redirected, or a handle obtained by opening the logical device CON.

Example: Read a string that is 2 maximum of 80 characters long from the standard input device,
placing it in the buffer named bu/ff.

buff db 81 ; maximum length of input
db 0 ; actual length of input
db 81 dup (0) ; actual input placed here
mov ah,0ah ; function number
mov dx,seg buff ; input buffer address
mov ds,dx
mov dx,offset buff
int 21h ; transfer to MS-DOS

352 Sectionll

Call with:

AH =(0CH

AL = number of input function to be invoked after resetting buffer (must be
01H, 06H, 07H, 08H, or 0AH)

(f AL = 0AH)

DS:DX = segment:offset of input buffer

Returns:

@if called with AL = 01H, 06H, 07H, or 08H)
AL = 8-bit input data

(if called with AL = 0AH)

Nothing (data placed in buffer)

Notes:

m The function exists to allow a program to defeat MS-DOS’s type-ahead feature. It

discards any characters that are waiting in MS-DOS’s internal type-ahead buffer,
forcing the specified input function to wait for a character (usually a keyboard entry)
that is truly entered after the program’s request.

® The presence or absence of Ctrl-C checking during execution of this function

depends on the function number placed in register AL.

® A function number in AL other than 01H, 06H, 07H, 08H, or OAH simply flushes the

input buffer and returns control to the calling program.

Example:

Clear the type-ahead buffer, then wait for a character to be entered, echoing it and then
returning it in AL. Store the character in the variable char.

char db 0

mov ah,0ch ; function number

mov al,1 ; subfunction = input char
int 21h ; transfer to MS-DOS

mov char,al ; save character

Int 21H

[1.0]

Function ODH (13)
Disk reset

Flushes all file buffers. All data that has been logically written by user programs, but has been temporarily
buffered within MS-DOS, is physically written to the disk.

Call with:

AH = 0DH

354 Sectionll

floppy-disk drive. The actual number of phy51cal drives in the system can be deter-
mined with ROM BIOS Int 11H.

® [3.0+] The value returned in AL is either 5 or the drive code corresponding to the
LASTDRIVE entry (if any) in CONFIG.SYS, whichever is greater.

Example: Make drive B the current (default) disk drive. Save the total number of logical drives in
the system in the variable drives.
drives db 0
mov ah,0eh ; function number
mov d1,1 ; drive 1 = B
int 21h ; transfer to MS-DOS
mov drives,al ; save total drives
Int 21H [1.0]

Function OFH (15)
Open file

Opens a file and makes it available for subsequent read/write operations.

Call with: AH = OFH
DS:DX = segment:offset of file control block
Returns: If function successful (file found)
AL = 00H
and FCB filled in by MS-DOS as follows:
drive field (offset O0OH) = 1 for drive A, 2 for drive B, etc.
current block field (offset OCH) = O0H
record size field (offset OEH) = 0080H
[2.0+] size field (offset 10H) = file size from directory
[2.0+] date field (offset 14H) = date stamp from directory
[2.0+] time field (offset 16H) = time stamp from directory
If function unsuccessful (file not found)
AL = OFFH
Notes: ® If your program is going to use a record size other than 128 bytes, it should set the

record-size field at FCB offset OEH after the file is successfully opened and before
any other disk operation.

356 SectionlIl

B If random access is to be performed, the calling program must also set the FCB
relative-record field (offset 21H) after successfully opening the file.

B For format of directory time and date, see Int 21H Function 57H.
® [2.0+] Int 21H Function 3DH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

B [3,0+] If the program is running on a network, the file is opened for read/write
access in compatibility sharing mode.

Example: Attempt to open the file named QUACK.DAT on the default disk drive.

myfcb db
db
db
db

mov
mov
mov
mov
int
or

jnz

0

'QUACK
"DAT"

25 dup (0)

ah,0fh

dx,seg myfcb
ds,dx

dx,offset myfcb
21h

al,al

error

; drive = default

filename, 8 characters

; extension, 3 characters
; remainder of FCB

function number

; address of FCB

transfer to MS-DOS
check status
jump if open failed

Int 21H

Function 10H (16)

Close file

[1.0]

Closes a file, flushes all MS-DOS internal disk buffers associated with the file to disk, and updates the disk
directory if the file has been modified or extended.

Call with: AH
DS:DX

=10H
= segment:offset of file control block

Returns: If function successful (directory update successful)

AL

= 00H

If function unsuccessful (file not found in directory)

AL

=FFH

MS-DOS Functions Reference 357

Notes: a [1] [2] MS-DOS versions 1 and 2 do not reliably detect a floppy-disk change, and an
. error can occur if the user changes disks while a file is still open on that drive. In the

worst case, the directory and file allocation table of the newly inserted disk can be
damaged or destroyed.

m [2.0+] Int 21H Function 3EH should be used in preference to this function.

Example: Close the file that was previously opened using the file control block named myfcb.

myfcb db
db
db
db

mov
mov
mov
mov
int
or

jnz

0

'QUACK *
'DAT’

25 dup (0)

ah,10h

dx,seg myfcb
ds,dx

dx,offset myfch
21h

al,al

error

drive = default

; filename, 8 characters

extension, 3 characters
remainder of FCB

function number

; address of FCB

transfer to MS-DOS
check status
Jump if close failed

Int 21H
Function 11H (17)
Find first file

[1.0]

Searches the current directory on the designated drive for a matching filename.

Callwith: AH = 11H
DS:DX = segment:offset of file control block
Returns: If function successful (matching filename found)
AL = (00H

and buffer at current disk transfer area (DTA) address filled in as an unopened normal
FCB or extended FCB, depending on which type of FCB was input to function

If function unsuccessful (no matching filename found)
AL =FFH

358 Sectionll

Notes:

m Use Int 21H Function 1AH to set the DTA to point to a buffer of adequate size before
calling this function.

® The wildcard character ? is allowed in the filename in all versions of MS-DOS. In ver-
sions 3.0 and later, the wildcard character + may also be used in a filename. If ? or =
is used, this function returns the first matching filename.

® An extended FCB must be used to search for files that have the system, hidden, read-
only, directory, or volume-label attributes.

® If an extended FCB is used, its attribute byte determines the type of search that will
be performed. If the attribute byte contains 00H, only ordinary files are found. If the
volume-label attribute bit is set, only volume labels will be returned (if any are pres-
ent). If any other attribute or combination of attributes is set (such as hidden, system,
or read-only), those files and all ordinary files will be matched.

= [2.0+] Int 21H Function 4EH, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Example:

Search for the first file with the extension .COM in the current directory.

buff db 37 dup (0) ; receives search result
myfcb db 0 ; drive = default

db '22222227° ; wildcard filename

db 'COM’ ; extension = COM

db 25 dup (0) ; remainder of FCB

; set DTA address

mov ah,lah ; function number
mov dx,seg buff ; buffer address
mov ds,dx

mov dx,offset buff

int 21h ; transfer to MS-DOS

; search for first match

mov ah,11h ; function number
mov dx,seg myfch ; address of FCB
mov ds,dx

mov dx,offset myfcb

int 21h ; transfer to MS-DOS
or al,al ; check status

jnz error ; jump if no match

MS-DOS Functions Reference 359

Int 21H [1.0]
Function 12H (18)
Find next file

Given that a previous call to Int 21H Function 11H has been successful, returns the next matching file-
name (f any).

Call with: AH =12H
DS:DX = segment:offset of file control block

Returns: If function successful (matching filename found)
AL = 00H
and buffer at current disk transfer area (DTA) address set up as an unopened normal

FCB or extended FCB, depending on which type of FCB was originally input to Int 21H
Function 11H

If function unsuccessful (no more matching filenames found)
AL = FFH

Notes: ® This function assumes that the FCB used as input has been properly initialized by a
previous call to Int 21H Function 11H (and possible subsequent calls to Int 21H
Function 12H) and that the filename or extension being searched for contained at
least one wildcard character.
8 As with Int 21H Function 11H, it is important to use Int 21H Function 1AH to set the
DTA to a buffer of adequate size before calling this function.

| [2.0+] Int 21H Functions 4EH and 4FH, which allow full access to the hierarchical
directory structure, should be used in preference to this function.

Example: Assuming a previous successful call to function 11H, search for the next file with the
extension .COM in the current directory. If the DTA has not been changed since the
previous search, another call to Function 1AH is not necessary.

buff db 37 dup (0) ; receives search result
my_fcb db 0 ; drive = default

db 22722727 ; wildcard filename

db ‘COM"* ; extension = COM

db 25 dup (0) ; remainder of FCB

360 Sectionll

; set DTA address

mov ah,lah ; function number
mov dx,seg buff ; buffer address
mov ds,dx

mov dx,offset buff

int 21h ; transfer to MS-DOS

; search for next match

mov ah,12h ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx

mov dx,offset myfcb

int 21h ; transfer to MS-DOS
or al,al ; check status

jnz error ; Jump if no match

Int 21H [1.0]
Function 13H (19)
Delete file

Deletes all matching files from the current directory on the default or specified disk drive.

Call with: AH =13H
DS:DX = segment:offset of file control block

Returns: If function successful (file or files deleted)
AL = 00H
If function unsuccessful (no matching files were found, or at least one matching file
was read-only)
AL =FFH

Notes

m The wildcard character ? is allowed in the filename; if ? is present and there is more
than one matching filename, all matching files will be deleted.

m [2.0+] Int 21H Function 41H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

m [3.0+] If the program is running on a network, the user must have Create rights to
the directory containing the file to be deleted.

MS-DOS Functions Reference 361

Example: Delete the file MYFILE.DAT from the current disk drive and directory.

myfcb db
db
db
db

mov
mov
mov
mov
int
or

jnz

0

'"MYFILE °* H

'DAT'

25 dup (0) H

ah,13h
dx, seg
ds,dx

myfcb H

dx,offset myfcb

21h
al,al
error

drive = default
filename, 8 chars

; extension, 3 chars

remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump, delete failed

Int 21H

Function 14H (20)

Sequential read

[1.0]

Reads the next sequential block of data from a file, then increments the file pointer appropriately.

Call with: AH
DS:DX

= 14H

= segment:offset of previously opened file control block

Returns: AL = 00H if read successful
01H if end of file
02H if segment wrap
03H if partial record read at end of file
Notes: ® The record is read into memory at the current disk transfer area (DTA) address,

specified by the most recent call to Int 21H Function 1AH. If the size of the record
and the location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of 02H.

® The number of bytes of data to be read is specified by the record-size field (offset
OEH) of the file control block (FCB).

® The file location of the data that will be read is specified by the combination of the
current block field (offset 0CH) and current record field (offset 20H) of the file con-
trol block (FCB). These fields are also automatically incremented by this function.

362 Sectionll

B f a partial record is read at the end of file, it is padded to the requested record length

with zeros.

® [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Example:

myfcb db
db
db
db

mov
mov
mov
mov

mov
int
or

jnz

Read 1024 bytes of data from the file specified by the previously opened file control
block myfch.

0 ; drive = default
'QUACK ° ; filename, 8 chars
'DAT' ; extension, 3 chars
25 dup (0) ; remainder of FCB
ah,14h ; function number
dx,seg myfcb ; address of FCB
ds,dx

dx,offset myfcb
; set record size
word ptr myfcb+0eH,1024

21h ; transfer to MS-DOS
al,al ; check status
error ; Jump if read failed

Int 21H

Function 15H (21)
Sequential write

[1.0]

Writes the next sequential block of data into a file, then increments the file pointer appropriately.

Call with: AH
DS:DX

= 15H
= segment:offset of previously opened file control block

Returns: AL

= 00H

if write successful
01H if disk is full
02H if segment wrap

Notes:

B The record is written (logically, not necessarily physically) to the disk from memory

at the current disk transfer area (DTA) address, specified by the most recent call to
Int 21H Function 1AH. If the size of the record and the location of the buffer are such

MS-DOS Functions Reference 363

that a segment overflow or wraparound would occur, the function fails with a return

code of 02H.

® The number of bytes of data to be written is specified by the record-size field (offset
OEH) of the file control block (FCB).

® The file location of the data that will be written is specified by the combination of
the current block field (offset 0CH) and current record field (offset 20H) of the file
control block (FCB). These fields are also automatically incremented by this

function.

® [3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Example: Write 1024 bytes of data to the file specified by the previously opened file control block
myfch.
myfcb db 0 ' ; drive = default
db 'QUACK ° ; filename, 8 chars
db 'DAT’ ; extension, 3 chars
db 25 dup (0) ; remainder of FCB
mov ah,15h ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb
; set record size
mov word ptr myfcb+0eh,1024
int 21h ; transfer to MS-DOS
or al,al ; check status
Jjnz error ; jump if write failed
Int 21H [1.0]
*
Function 16H (22)
Create file

Creates a new directory entry in the current directory or truncates any existing file with the same name to
zero length. Opens the file for subsequent read/write operations.

Callwith: AH
DS:DX

364 sectionlIl

= 16H
= segment:offset of unopened file control block

Returns:

If function successful (file was created or truncated)

AL = 00H

and FCB filled in by MS-DOS as follows:

drive field (offset OOH) = 1 for drive A, 2 for drive B, elc.
current block field (offset OCH) = 00H

record size field (offset OEH) = 0080H

[2.0+] size field (offset 10H) = file size from directory
[2.0+] date field (offset 14H) = date stamp from directory
[2.0+] time field (offset 16H) = time stamp from directory
If function unsuccessful (directory full)

AL =FFH

Notes:

® Since an existing file with the specified name is truncated to zero length (i.e., all data
in that file is irretrievably lost), this function must be used with caution.

m If this function is called with an extended file control block (FCB), the new file may
be assigned a special attribute, such as hidden or system, during its creation by set-
ting the appropriate bit in the extended FCB'’s attribute byte.

m Since this function also opens the file, a subsequent call to Int 21H Function OFH is
not required.

m For format of directory time and date, see Int 21H Function 57H.

[2.0+] Int 21H Functions 3CH, 5AH, 5BH, and 6CH, which provide full access to the
hierarchical directory structure, should be used in preference to this function.

® [3.0+] If the program is running on a network, the user must have Create rights to
the directory that will contain the new file.

Example:

Create a file in the current directory using the name in the file control block myfcb.

myfcb db 0 ; drive = default
db 'QUACK ° ; filename, 8 chars
db 'DAT' ; extension, 3 chars
db 25 dup (0) ; remainder of FCB
mov ah,16h ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h ; transfer to MS-DOS
or al,al ; check status
Jjnz error ; jump if create failed

MS-DOS Functions Reference 365

Int 21H [1.0]
Function 17H (23)
Rename file

Alters the name of all matching files in the current directory on the disk in the specified drive.

Call with: AH =17H
DS:DX = segment:offset of “special” file control block

Returns: If function successful (one or more files renamed)
AL = 00H

If function unsuccessful (no matching files, or new filename matched an existing file)
AL =FFH

Notes: B The special file control block has a drive code, filename, and extension in the usual
position (bytes 0 through 0BH) and a second filename starting 6 bytes after the first
(offset 11H).

® The ? wildcard character can be used in the first filename. Every file matching the
first file specification will be renamed to match the second file specification.

® [f the second file specification contains any ? wildcard characters, the corresponding
letters in the first filename are left unchanged.

® The function terminates if the new name to be assigned to a file matches that of an
existing file.

® [2.0+] An extended FCB can be used with this function to rename a directory.

® [2.0+] Int 21H Function 56H, which allows full access to the hierarchical directory
structure, should be used in preference to this function.

Example: Rename the file OLDNAME.DAT to NEWNAME.DAT.

myfcb db 0 ; drive = default
db 'OLDNAME * ; old file name, 8 chars
db 'DAT’ ; old extension, 3 chars
db 6 dup (0) ; reserved area
db 'NEWNAME * ; new file name, 8 chars
db 'DAT’ ; new extension, 3 chars
db 14 dup (0) ; reserved area

366 Section Il

mov ah,17h ; function number

mov dx,seg myfcb ; address of FCB

mov ds,dx

mov dx,offset myfcb

int 21h ; transfer to MS-DOS

or al,al ; check status

jnz error ; Jump if rename failed

Int 21H
Function 18H (24)
Reserved

Int 21H [1.0]
Function 19H (25)
Get current disk

Returns the drive code of the current, or default, disk drive.

Callwith: AH = 19H
Returns: AL = drive code (0 = A, 1 = B, etc.)
Notes: ® To set the default drive, use Int 21H Function OEH.

® Some other Int 21H functions use drive codes beginning at 1 (thatis, 1= A, 2=B,
etc.) and reserve drive code zero for the default drive.

Example: Get the current disk drive and save the code in the variable cdrive.

cdrive db 0 ; current drive code
mov ah,19h ; function number
int 21h ; transfer to MS-DOS
mov cdrive,al ; save drive code

MS-DOS Functions Reference ~ 367

Call with:

AH

=1BH

Returns:

If function successful

AL
DS:BX

= sectors per cluster
= segment:offset of media ID byte

9.4 = size of physical sector (bytes)
DX = number of clusters for default drive

If function unsuccessful (invalid drive or critical error)
AL = FFH

Notes:

® The media ID byte has the following meanings:

OFOH 3.5-inch double-sided, 18 sectors
or “other”
OF8H fixed disk
OF9H 5.25-inch double-sided, 15 sectors
or 3.5-inch double-sided, 9 sectors
OFCH 5.25-inch single-sided, 9 sectors
OFDH 5.25-inch double-sided, 9 sectors
OFEH - 5.25-inch single-sided, 8 sectors
OFFH 5.25-inch double-sided, 8 sectors
B To obtain information about disks other than the one in the default drive, use
Int 21H Function 1CH or 36H.
® (1] The address returned in DS:BX points to a copy of the first sector of the actual
FAT, with the media ID byte in the first byte.
® [2.0+4] The address returned in DS:BX points only to a copy of the media ID byte
from the disk’s FAT; the memory above that address cannot be assumed to contain
the FAT or any other useful information. If direct access to the FAT is required, use
Int 25H to read it into memory.

Example:

Determine whether the current disk drive is fixed or removable.

mov ah,1bh ; function number
int 21h ; transfer to MS-DOS

; check media ID byte
cmp byte ptr [bx],0f8h
je fixed s Jump if fixed disk
Jjmp floppy ; else assume floppy

MS-DOS Functions Reference 369

Int 21H
Function 21H (33)
Random read

[1.0]

Reads a selected record from a file into memory.

Call with:

DS

AH =21H
:DX = segment:offset of previously opened file control block

Returns: AL

= 00H if read successful
01H if end of file
02H if segment wrap, read canceled
03H if partial record read at end of file

Notes:

The record is read into memory at the current disk transfer area address, specified by
the most recent call to Int 21H Function 1AH. It is the programmer’s responsibility to
ensure that this area is large enough for any record that will be transferred. If the size
and location of the buffer are such that a segment overflow or wraparound would
occur, the function fails with a return code of 02H.

The file location of the data to be read is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

The current block field (offset 0CH) and current record field (offset 20H) are up-
dated to agree with the relative-record field as a side effect of the function.

The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to read
successive records. Compare with Int 21H Function 27H, which can read multiple
records with one function call and automatically increments the relative-record field.
If a partial record is read at end of file, it is padded to the requested record length
with zeros.

{3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Example:

372

Open the file MYFILE.DAT, set the record length to 1024 bytes, then read record number

4 from the file into the buffer named buff.
myfcb db 0 ; drive = default

db 'MYFILE ° ; filename, 8 chars
db 'DAT' ; extension, 3 chars
db 25 dup (0) ; remainder of FCB

buff db 1024 dup (?) ; receives read data

Section IT

mov
mov
mov
mov
int
or

Jjnz

mov
mov
int

mov

mov
mov

mov
mov
int
or

Jjnz

ah,0fh

dx,seg myfch
ds,dx

dx,offset myfcb
21h

al,al

error

ah,lah
dx,offset buff
21h

open the file
function number
address of FCB

transfer to MS-DOS
check open status
jump if no file

set DTA address
function number
read buffer address
transfer to MS-DOS

set record size

word ptr myfcb+0eh,1024

set record number

word ptr myfcb+21lh,4
word ptr myfcb+23h,0

ah,21h
dx,offset myfch
21h

al,al

error

read the record
function number
address of FCB
transfer to MS-DOS
check status

Jump if read failed

Int 21H

Function 22H (34)

Random write

[1.0]

Writes data from memory into a selected record in a file.

Call with: AH
DS:DX

=22H

= segment:offset of previously opened file control block

Returns: AL

= 00H if write successful

01H if disk full

02H if segment wrap, write canceled

MS-DOS Functions Reference

373

Notes:

The record is written (logically, not necessarily physically) to the file from memory at
the current disk transfer address, specified by the most recent call to Int 21H Func-
tion 1AH. If the size and location of the buffer are such that a segment overflow or
wraparound would occur, the function fails with a return code of 02H.

The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

The current block field (offset 0CH) and current record field (offset 20H) are up-
dated to agree with the relative-record field as a side effect of the function.

The relative-record field of the FCB is not incremented by this function; it is the
responsibility of the application to update the FCB appropriately if it wishes to write
successive records. Compare with Int 21H Function 28H, which can write multiple
records with one function call and automatically increments the relative-record field.
If a record is written beyond the current end of file, the space between the old end
of file and the new record is allocated but not initialized.

[3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Example:

Open the file MYFILE.DAT, set the record length to 1024 bytes, write record number 4

into the file from the buffer named buff, then close the file.

myfcb db 0 ; drive = default
db 'MYFILE ° ; filename, 8 chars
db 'DAT" ; extension, 3 chars
db 25 dup (0) ; remainder of FCB
buff db 1024 dup (?) ; buffer for write
; open the file
mov ah,0fh ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h ; transfer to MS-DOS
or al,al ; check status
jnz error ; jump if no file
; set DTA address
mov dx,offset buff ; buffer address
mov ah,lah ; function number
int 21h ; transfer to MS-DOS
; set record size
mov word ptr myfcb+0eh,1024

374 Section Il

; set record number
mov word ptr myfcb+21h,4
mov word ptr myfcb+23h,0

write the record

mov ah,22h ; function number

mov dx,offset myfcb ; address of FCB

int 21h ; transfer to MS-DOS
or al,al ; check status

Jjnz error ; Jjump if write failed

; close the file

mov ah,10h ; function number

mov dx,offset myfcb ; address of FCB

int 21h ; transfer to MS-DOS
or al,al ; check status

Jjnz error s jump if close failed

Int 21H

[1.0]

Function 23H (35)
Get file size

Searches for a matching file in the current directory; if one is found, updates the FCB with the file’s size in
terms of number of records.

Call with:

AH =23H
DS:DX = segment:offset of unopened file control block

Returns:

If function successful (matching file found)

AL = (00H

and FCB relative-record field (offset 21H) set to the number of records in the file,
rounded up if necessary to the next complete record

If function unsuccessful (no matching file found)
AL =FFH

Notes:

An appropriate value must be placed in the FCB record-size field (offset OEH) before
calling this function. There is no default record size for this function. Compare with
the FCB-related open and create functions (Int 21H Functions OFH and 16H), which
initialize the FCB for a default record size of 128 bytes.

m The record-size field can be set to 1 to find the size of the file in bytes.

® Because record numbers are zero based, this function can be used to position the
FCB'’s file pointer to the end of file.

MS-DOS Functions Reference 375

® All four bytes of the FCB relative-record field (offset 21H) should be initialized to
zero before calling this function.

Example: After a series of sequential record transfers have been performed using the file control
block myfch, obtain the current relative-record position in the file and leave the record

number in DX.

myfcb db 0 ; drive = default
db 'MYFILE ° ; filename, 8 chars
db 'DAT® ; extension, 3 chars
db 25 dup (0) ; remainder of FCB
mov dx,seg myfcb ; make FCB addressable
mov ds,dx

; initialize relative
; record field to zero
mov word ptr myfcb+21h,0
mov word ptr myfcb+23h,0

; now set record number

mov ah,24h ; function number
mov dx,offset myfcb ; address of FCB
int 21h ; transfer to MS-DOS

; load record number in DX
mov dx,word ptr myfcb+21lh

Int 21H [1.0]
Function 25H (37)
Set interrupt vector

Initializes a CPU interrupt vector to point to an interrupt handling routine.

Callwith: AH =25H
AL = interrupt number
DS:DX = segment:offset of interrupt handling routine

Returns: Nothing

MS-DOS Functions Reference 377

m After the disk transfer is performed, the current block (offset 0CH), current record
(offset 20H), and relative-record (offset 21H) fields of the FCB are updated to point
to the next record in the file.

m If a partial record is read at the end of file, the remainder of the record is padded
with zeros.

® Compare with Int 21H Function 21H, which transfers only one record per function
call and does not update the FCB relative-record field.

® [3.0+] If the program is running on a network, the user must have Read access rights
to the directory containing the file to be read.

Example: Read four 1024-byte records starting at record number 8 into the buffer named buff;
using the file control block myfcb.

myfcb db 0 ; drive = default
db MYFILE ° ; filename, 8 chars
db ‘DAT' ; extension, 3 chars
db 25 dup (0) ; remainder of FCB

buff db 4096 dup (?) ; buffer for data

; set DTA address

mov ah,lah ; function number
mov dx,seg buff ; address of buffer
mov ds,dx

mov dx,offset buff

int 21h ; transfer to MS-DOS

; set relative-record number
mov word ptr myfcb+21h,8
mov word ptr myfcb+23h,0

; set record size
mov word ptr myfcb+0eh,1024

; read the records

mov ah,27h ; function number
mov cx,4 ; number of records
mov dx,offset myfcb ; address of FCB
int 21h ; transfer to MS-DOS
or al,al ; check status

Jjnz error ; jump if read error

380 Section Il

Int 21H [1.0]
Function 28H (40)
Random block write

Writes one or more sequential records from memory to a file, starting at a designated file location.

Call with: AH =28H
X = number of records to write
DS:DX = segment:offset of previously opened file control block
Returns: AL = 00H if all requested records written
01H if disk full
02H if segment wrap
X = actual number of records written
Notes: B The records are written (logically, not necessarily physically) to disk from memory at

the current disk transfer area address, specified by the most recent call to Int 21H
Function 1AH. If the size and location of the buffer are such that a segment overflow
or wraparound would occur, the function fails with a return code of 02H.

® The file location of the data to be written is determined by the combination of the
relative-record field (offset 21H) and the record-size field (offset OEH) of the FCB.
The default record size is 128 bytes.

® After the disk transfer is performed, the current block (offset 0CH), current record
(offset 20H), and relative-record (offset 21H) fields of the FCB are updated to point
to the next record in the file.

® If this function is called with CX = 0, no data is written to the disk but the file is ex-
tended or truncated to the length specified by combination of the record-size (offset
OEH) and the relative-record (offset 21H) fields of the FCB.

® Compare with Int 21H Function 22H, which transfers only one record per function
call and does not update the FCB relative-record field.

B [3.0+] If the program is running on a network, the user must have Write access rights
to the directory containing the file to be written.

Example: Write four 1024-byte records, starting at record number 8, to disk from the buffer named
buff;, using the file control block myfcb.

myfcb db 0 ; drive = default
db 'MYFILE ° ; filename, 8 chars
db 'DAT" ; extension, 3 chars
db 25 dup (0) ; remainder of FCB

(continued)

MS-DOS Functions Reference 381

buff db 4096 dup (?) ; buffer for data
; set DTA address
mov ah,lah ; function number
mov, dx,seg buff ; address of buffer
mov ds,dx
mov dx,offset buff
int 21h ; transfer to MS-DOS
; set relative-record number
mov word ptr myfcb+21h,8
mov word ptr myfcb+23h,0
; set record size
mov word ptr myfcb+0eh,1024
; write the records
mov ah,28h ; function number
mov cx,4 ; number of records
mov dx,offset myfcb ; address of FCB
int 21h ; transfer to MS-DOS
or al,al ; check status
Jjnz error ; jump if write error
Int 21H [1.0]
Function 29H (41)
Parse filename

Parses a text string into the various fields of a file control block (FCB).

Call with: AH
AL

382 SectionIl

=29H
Bit3 =1
=0
Bit2 =1
=0

= flags to control parsing

if extension field in FCB will be modified only if an
extension is specified in the string being parsed.

if extension field in FCB will be modified regardless; if no
extension is present in the parsed string, FCB extension is
set to ASCII blanks.

if filename field in FCB will be modified only if a filename is
specified in the string being parsed.

if filename field in FCB will be modified regardless; if no
Silename is present in the parsed string, FCB filename is set
to ASCII blanks.

Bit1 =1 ifdriveID byte in FCB will be modified only if a drive was
specified in the string being parsed.
=0 ifthe drive ID byte in FCB will be modified regardless; if no
drive specifier is present in the parsed string, FCB drive-
code field is set to O (default).
BitO =1 ifleading separators will be scanned off (ignored).
=0 fifleading separators will not be scanned off.
DS:SI = segment:offset of string
ES:DI = segment:offset of file control block

Returns:

AL = O0H if no wildcard characters encountered

01H if parsed string contained wildcard characters

FFH if drive specifier invalid
DS:SI = segment:offset of first character after parsed filename
ES:DI = segment:offset of formatted unopened file control block

Notes:

® This function regards the following as separator characters:
(1] :.;,=+tabspace/"[]
[2.04] :.;,=+tabspace

B This function regards all control characters and the following as terminator
characters:

.3, =+tabspace<>| /"[]

® If no valid filename is present in the string to be parsed, upon return ES:DI + 1
points to an ASCII blank.

® [f the » wildcard character occurs in a filename or extension, it and all remaining
characters in the corresponding field in the FCB are set to ?.

B This function (and file control blocks in general) cannot be used with file specifica-
tions that include a path.

Example:

Parse the string frname into the file control block myfch.

fname db 'D:QUACK.DAT',0 ; filename to be parsed
myfcb db 37 dup (0) ; becomes file control block
mov ah,29h ; function number
mov al,01h ; skip leading separators
mov si,seg fname ; address of filename
mov ds,si
mov si,offset fname
mov di,seg myfcb ; address of FCB

(continued)

MS-DOS Functions Reference ~ 383

mov es,di
mov di,offset myfcb

int 21h ; transfer to MS-DOS

cmp al,0ffh ; check status

je error ; jump, drive invalid
Int 21H [1.0]
Function 2AH (42)
Get date

Obutains the system day of the month, day of the week, month, and year.

Callwith: AH =2AH
Returns: X = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)
Under MS-DOS versions 1.1 and later
AL = day of the week (0 = Sunday, 1 = Monday, etc.)
Notes: ® This function’s register format is the same as that required for Int 21H Function 2BH
(Set Date).

® This function can be used together with Int 21H Function 2BH to find the day of the
week for an arbitrary date. The current date is first obtained with Function 2AH and
saved. The date of interest is then set with Function 2BH, and the day of the week
for that date is obtained with a subsequent call to Function 2AH. Finally, the current
date is restored with an additional call to Function 2BH, using the values obtained

with the original Function 2AH call.

Example: Obtain the current date and save its components in the variables year, day, and month.

year dw 0
month db 0
day db 0

384 Sectionll

mov ah,2ah

; function number

; transfer to MS-DOS
; save year (word)

; save month (byte)
; save day (byte)

int 21h
mov year,cx
mov month,dh
mov day,d1
Int 21H
Function 2BH (43)

Set date

[1.0]

Initializes the system clock driver to a specific date. The system time is not affected.

Call with: AH =2BH
cX = year (1980 through 2099)
DH = month (1 through 12)
DL = day (1 through 31)
Returns: AL = 00H if date set successfully

FFH if date not valid (ignored)

Note: m This function’s register format is the same as that required for Int 21H Function 2AH

(Get Date).

Example: Set the system date according to the contents of the variables year, day, and month.

year dw 0

month db 0

day db 0
mov ah,2bh
mov cx,year
mov dh,month
mov d1,day
int 21h
or al,al
jnz error

; function number

; get year (word)

; get month (byte)

; get day (byte)

; transfer to MS-DOS

; check status

3 Jump if date invalid

MS-DOS Functions Reference 385

Int 21H [1.0]
Function 2CH (44)
Get time

Obtains the time of day from the system reai-time clock driver, converted to hours, minutes, seconds, and
hundredths of seconds.

Call with: AH =2CH
Returns: CH = hours (0 through 23)
CL = minutes (0 through 59)
DH = seconds (0 through 59)
DL = hundredths of seconds (0 through 99)
Notes: ® This function’s register format is the same as that required for Int 21H Function 2DH
(Set Time).

® On most IBM PC—compatible systems, the real-time clock does not have a resolution
of single hundredths of seconds. On such machines, the values returned by this
function in register DL are discontinuous.

Example: Obtain the current time and save its two major components in the variables hours and

minutes.

hours db 0

minutes db 0
mov ah,2ch ; function number
int 21h ; transfer to MS-DOS
mov hours,ch ; save hours (byte)
mov minutes,cl ; save minutes (byte)

Int 21H [1.0]
Function 2DH (45)
Set time

Initializes the system real-time clock to a specified hour, minute, second, and hundredth of second. The
system date is not affected.

386 Sectionll

Notes: ® Because read-after-write verification slows disk operations, the default setting of the
verify flag is OFF.

® If a particular disk unit’s device driver does not support read-after-write verification,
this function has no effect.
The current state of the verify flag can be determined using Int 21H Function 54H.

® The state of the verify flag is also controlled by the MS-DOS commands VERIFY
OFF and VERIFY ON.

Example: Save the current state of the system verify flag in the variable yflag, then force all subse-
quent disk writes to be verified.

vflag db 0 ; previous verify flag

" get verify flag
function number

.e

mov ah,54h

int 21h ; transfer to MS-DOS

mov vflag,al ; save current flag state
; set verify flag

mov ah,2eh ; function number

mov al,l1 s AL = 1 for verify on

mov d1,0 ; DL must be zero

int 21h ; transfer to MS-DOS

Int 21H [2.0]
Function 2FH (47)
Get DTA address

Obtains the current address of the disk transfer area (DTA) for FCB file read/write operations.

Call with: AH = 2FH

Returns: ES:BX = segment:offset of disk transfer area
Note: 8 The disk transfer area address is set with Int 21H Function 1AH. The default DTA is

a 128-byte buffer at offset 80H in the program segment prefix.

388 Sectionll

Example: Obtain the current disk transfer area address and save it in the variable olddta.

olddta dd ? ; save disk transfer address
mov ah,2fh ; function number
int 21h ; transfer to MS-DOS
; save it as DWORD pointer

mov word ptr olddta,bx

mov word ptr olddta+2,es
Int 21H [2.0]
Function 30H (48)
Get MS-DOS version number

Returns the version number of the host MS-DOS operating system. This function is used by application
programs to determine the capabilities of their environment.

Callwith: AH
AL

=30H
=00H

Returns: If running under MS-DOS version 1

AL

= 00H

If running under MS-DOS versions 2.0 or later

AL = major version number (MS-DOS 3.10 = 3, etc.)
AH = minor version number (MS-DOS 3.10 = 0AH, etc.)
BH = Original Equipment Manufacturer’s (OEM’s) serial number (OEM-
dependent—usually 00H for IBM’s PC-DOS, OFFH or other values
for MS-DOS)
BL:CX = 24-bit user serial number (optional, OEM-dependent)
Notes: ®m Because this function was not defined under MS-DOS version 1, it should always be
called with AL = 00H. In an MS-DOS version 1 environment, AL will be returned
unchanged.

m Care must be taken not to exit in an unacceptable fashion if an MS-DOS version 1 en-
vironment is detected. For example, Int 21H Function 4CH (Terminate Process with
Return Code), Int 21H Function 40H (Write to File or Device), and the standard error
handle are not available in MS-DOS version 1. In such cases a program should dis-
play an error message using Int 21H Function 09H and then terminate with Int 20H
or Int 21H Function 00H.

MS-DOS Functions Reference 389

Example: Get the MS-DOS version number, terminating the current process with an error message
if not running under MS-DOS version 2.0 or later.

cr equ 0dh ; ASCII carriage return
1f equ Oah ; ASCII line feed
msg db cr,1f
db 'Wrong MS-DOS version’
db cr,1f,'s’
mov ax,3000h ; function number
int 21h ; transfer to MS-DOS
cmp al,2 ; version 2 or later?
jae Tabell ; yes, jump
; display error message
mov ah,09 ; function number
mov dx,offset msg ; message address
int 21h ; transfer to MS-DOS
; terminate process
mov ah,0 ; function number
int 21h ; transfer to MS-DOS
Tabell: .

Int 21H

[2.0]

Function 31H (49)
Terminate and stay resident

Terminates execution of the currently executing program, passing a return code to the parent process,
but reserves part or all of the program’s memory so that it will not be overlaid by the next transient pro-
gram to be loaded. MS-DOS then takes the following actions:

File buffers are flushed and any open handles for files or devices owned by the
process are closed.

The termination handler vector (Int 22H) is restored from PSP:000AH.

The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

[2.0+] The critical-error handler vector (Int 24H) is restored from PSP:0012H.
Control is transferred to the termination handler.

If the program is returning to COMMAND.COM, control transfers to the resident portion, and the tran-
sient portion is reloaded if necessary. If a batch file is in progress, the next line of the file is fetched and
interpreted; otherwise, a prompt is issued for the next user command.

390 Section I

Call with:

AH = 31H
AL = return code
DX = amount of memory to reserve (in paragraphs)

Returns:

Nothing

Notes:

T

® This function call is typically used to allow user-written utilities, drivers, or interrupt
handlers to be loaded as ordinary .COM or .EXE programs and then remain resident.
Subsequent entrance to the code is via a hardware or software interrupt.

® This function attempts to set the initial memory allocation block to the length in
paragraphs specified in register DX. If other memory blocks have been requested
by the application using Int 21H Function 48H, they will not be released by this
function.

® Other methods of performing a final exit are:

— Int 20H
— Int 21H Function 60H
— Int 21H Function 4CH
— Int 27H

= The return code may be retrieved by a parent process with Int 21H Function 4DH
(Get Return Code). It can also be tested in a batch file with an IF ERRORLEVEL
statement. By convention, a return code of zero indicates successful execution, and a
nonzero return code indicates an error.

® This function should not be called by .EXE programs that are loaded at the high end
of the transient program area (that is, linked with the /HIGH switch) because
doing so reserves the memory that is normally used by the transient part of
COMMAND.COM. If COMMAND.COM cannot be reloaded, the system will fail.

m [2.0+] This function should be used in preference to Int 27H because it supports
return codes, allows larger amounts of memory to be reserved, and does not require
CS to contain the segment of the program segment prefix.

® [3,0+] If the program is running on a network, it should remove all locks it has
placed on file regions before terminating.

Example:

Exit with a return code of 1 but stay resident, reserving 16 KB of memory starting at the
program segment prefix of the process.

mov ah,31h ; function number

mov al,1l ; return code for parent
mov dx,0400h ; paragraphs to reserve
int 21h ; transfer to MS-DOS

MS-DOS Functions Reference 391

Int 21H
Function 32H (50)
Reserved

Int 21H [2.0]
Function 33H (51)
Get or set break flag, get boot drive

Obtains or changes the status of the operating system’s break flag, which influences Ctrl-C checking
during function calls. Also returns the system boot drive in version 4.0.

Call with: If getting break flag

AH =33H

AL = 00H

If setting break flag

AH = 33H

AL =01H

DL = 00H if turning break flag OFF
01H if turning break flag ON

[4] If getting boot drive

AH = 33H

AL =05H

Returns: If called with AL = 00H or 01H
DL = 00H break flag is OFF
01H break flag is ON
[4] If called with AL = 05H
DL = boot drive (1 = A, 2 = B, etc.)

Notes: B When the system break flag is on, the keyboard is examined for a Ctrl-C entry
whenever any operating-system input or output is requested,; if Ctrl-C is detected,
control is transferred to the Ctrl-C handler (Int 23H). When the break flag is off,
MS-DOS only checks for a Ctrl-C entry when executing the traditional character
I/0 functions (Int 21H Functions 01H through 0CH).

B The break flag is not part of the local environment of the currently executing pro-
gram, it affects all programs. An application that alters the flag should first save the
flag’s original status, then restore the flag before terminating.

392 Sectionll

Example: A Save the current state of the system break flag in the variable brkflag, then turn the
break flag off to disable Ctrl-C checking during most MS-DOS function calls.

brkflag db 0 ; save break flag
; get current break flag
mov ah,33h ; function number
mov al,0 ; AL = 0 to get flag
int 21h ; transfer to MS-DOS
mov brkflag,dl ; save current flag
; now set break flag
mov ah,33h ; function number
mov al,1l ; AL =1 to set flag
mov d1,0 ; set break flag OFF
int 21h ; transfer to MS-DOS
Int 21H
Function 34H (52)
Reserved
Int 21H [2.0]
Function 35H (53)
Get interrupt vector
Obtains the address of the current interrupt-handler routine for the specified machine interrupt.
Callwith: AH = 35H
AL = interrupt number
Returns: ES:BX = segment:offset of interrupt handler
Note: m Together with Int 21H Function 25H (Set Interrupt Vector), this function is used by

well-behaved application programs to modify or inspect the machine interrupt

vector table.

MS-DOS Functions Reference 393

Example:

Obtain the address of the current interrupt handler for hardware interrupt level 0 (divide
by zero) and save it in the variable oldinz0.

oldint0 dd ? ; previous handler address
mov ah,35h ; function number
mov al,o0 ; interrupt level
int 21h ; transfer to MS-DOS

; save old handler address
mov word ptr oldint0,bx
mov word ptr oldint0+2,es

Int 21H

[2.0]

Function 36H (54)
Get drive allocation information

Obtains selected information about a disk drive, from which the drive’s capacity and remaining free
space can be calculated.

Call with: AH = 36H
DL = drive code (0 = default, 1 = A, etc.)
Returns: If function successful
AX = sectors per cluster
BX = number of available clusters
(0:¢ = bytes per sector
DX = clusters per drive
If function unsuccessful (drive invalid)
AX = FFFFH
Notes: ® This function regards “lost” clusters as being in use and does not report them as part
of the number of available clusters, even though they are not assigned to a file.
® Similar information is returned by Int 21H Functions 1BH and 1CH.
Example: Calculate the capacity of disk drive C in bytes, leaving the result in the variable drusize.

(This code assumes that the product of sectors/cluster * bytes/sector will not overflow
16 bits.)

394 Ssectionll

drvsize dd ? ; drive C size in bytes

mov ah,36h ; function number
mov d1,3 ; drive C = 3
int 21h ; transfer to MS-DOS
mul cX ; sectors/cluster

; * bytes/sector
mul dx ; * total clusters

; result now in DX:AX

; store low word

mov word ptr drvsize,ax
; store high word
mov word ptr drvsize+2,dx

Int 21H
Function 37H (55)
Reserved

Int 21H [2.0]
Function 38H (56)
Get or set country information

[2] Obtains internationalization information for the current country.

[3.0+] Obtains internationalization information for the current or specified country or sets the current
country code.

Callwith: If getting country information (MS-DOS version 2)

AH = 38H

AL =0 to get “current” country information

DS:DX = segment:offset of buffer for returned information

If getting country information (MS-DOS versions 3.0 and later)

AH = 38H

AL =0 to get “current” country information
1-FEH to get information for countries with code < 255
FFH to get information for countries with code >= 255

MS-DOS Functions Reference 395

BX = country code, if AL = FFH

DS:DX = segment:offset of buffer for returned information

If setting current country code (MS-DOS versions 3.0 and later)

AH =38H

AL =1-FEH country code for countries with code < 255
FFH for countries with code >= 255

BX = country code, if AL = OFFH

DX = FFFFH

Returns: If function successful

396

Carry flag = clear

and, if getting internationalization information

BX = country code

DS:DX = segment:offset of buffer holding internationalization information
and buffer filled in as follows: '

(for PC-DOS 2.0 and 2.1)
Byte(s) Contents
00H-01H date format
0=USA mdy
1=Europe dmy
2=Japan ymd
02H-03H ASCIIZ currency symbol
04H-05H ASCIIZ thousands separator
06H-07H ASCIIZ decimal separator
08H-1FH reserved

(for MS-DOS versions 2.0 and later, PC-DOS versions 3.0 and later)
Byte(s) Contents
00H-01H date format

0=USA mdy

1=Europe dmy

2=Japan ymd
02H-06H ASCIIZ currency symbol string
07H-08H ASCIIZ thousands separator character
09H-0AH ASCIIZ decimal separator character
OBH-OCH ASCIIZ date separator character
ODH-0EH ASCIIZ time separator character

OFH currency format
bito =0 if currency symbol precedes value
=1 if currency symbol follows value
bit 1 =0 if no space between value and currency symbol
=1 if one space between value and currency symbol
bit2 =0 if currency symbol and decimal are separate
=1 if currency symbol replaces decimal separator
10H number of digits after decimal in currency
11H time format
bit0 =0 if 12-hour clock
=1 if 24-hour clock

Section I

12H-15H case-map call address
16H-17H ASCIIZ data-list separator
18H-21H reserved

If function unsuccessful

Carry flag =set

AX = error code

Notes:

® The default country code is determined by the COUNTRY= directive in
CONFIG.SYS or by the KEYBxx keyboard driver file if one is loaded. Otherwise,
the default country code is OEM-dependent.

® The previous contents of register CX may be destroyed by the Get Country Informa-
tion subfunction.

® The case-map call address is the segment:offset of a FAR procedure that performs
country-specific mapping on character values from 80H through OFFH. The pro-
cedure must be called with the character to be mapped in register AL. If an alternate
value exists for that character, it is returned in AL; otherwise, AL is unchanged. In
general, lowercase characters are mapped to their uppercase equivalents, and ac-
cented or otherwise modified vowels are mapped to their plain vowel equivalents.

® [3.0+] The value in register DX is used by MS-DOS to select between the Set Country
and Get Country Information subfunctions.

m [3.3+] Int 21H Function 65H (Get Extended Country Information) returns a superset
of the information supplied by this function.

Examples:

Obtain internationalization information for the current country in the buffer ctrybuf.

ctrybuf db 34 dup (0)
mov ah,38h ; function number
mov al,o0 ; get current country
mov. dx,seg ctrybuf ; address of buffer
mov ds,dx ; for country information
mov dx,offset ctrybuf
int 21h ; transfer to MS-DOS
Jje error ; jump if function failed

If the program is running under PC-DOS 3.3 and the current country code is 49 (West
Germany), cirybuf is filled in with the following information:

dw 0001h ; date format
db ‘DM*,0,0,0 : ASCIIZ currency symbol
db RN /] ; ASCIIZ thousands separator

(continued)

MS-DOS Functions Reference ~ 397

int 21h ; transfer to MS-DOS

Je error ; jump if create failed
Int 21H [2.0]
Function 3AH (58)

Delete directory

Removes a directory using the specified drive and path.

Callwith: AH = 3AH
DS:DX = segment:offset of ASCIIZ pathname

Returns: If function successful
Carry flag = clear

If function unsuccessful

Carry flag = set
AX = error code
Note: m The function fails if:

— any element of the pathname does not exist.

— the specified directory is also the current directory.

— the specified directory contains any files. :

— [3.0+] the program is running on a network and the user running the program has
insufficient access rights.

Example: Remove the directory named MYSUB in the root directory on drive C.

dname db *C:\MYSUB"',0
mov ah,3ah ; function number
mov dx,seg dname ; address of pathname
mov ds,dx
mov dx,offset dname
int 21h ; transfer to MS-DOS
je error ; jump if delete failed

MS-DOS Functions Reference ~ 399

Int 21H - [2.0]
Function 3BH (59)
Set current directory

Sets the current, or default, directory using the specified drive and path.

Call with: AH =3BH
DS:DX = segment:offset of ASCIIZ pathname
Returns: If function successful

Carry flag = clear

If function unsuccessful
Carry flag = set

AX = error code

Notes: ® The function fails if any element of the pathname does not exist.
® Int 21H Function 47H can be used to obtain the name of the current directory before
using Int 21H Function 3BH to select another, so that the original directory can be
restored later.

Example: Change the current directory for drive C to the directory \MYSUB.

dname db 'C:\MYSUB',0
mov ah,3bh ; function number
mov dx,seg dname ; address of pathname
mov ds,dx
mov dx,offset dname
int 21h ; transfer to MS-DOS
Je error ; jump if bad path

400 Ssection Il

Int 21H

[2.0]

Function 3CH (60)

Create file

Given an ASCIIZ pathname, creates a new file in the designated or default directory on the designated or
default disk drive. If the specified file already exists, it is truncated to zero length. In either case, the file is
opened and a handle is returned that can be used by the program for subsequent access to the file.

Call with: AH =3CH

CX = file attribute (bits may be combined)
Bit(s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 reserved (0)
5 archive
6-15 reserved (0)

DS:DX = segment:offset of ASCIIZ pathname

Returns: If function successful
Carry flag = clear

AX

= handle

If function failed
Carry flag = set

AX

= error code

Notes: ® The function fails if:

any element of the pathname does not exist.

the file is being created in the root directory and the root directory is full.

a file with the same name and the read-only attribute already exists in the speci-
fied directory.

[3.0+] the program is running on a network and the user running the program has
insufficient access rights.

® A file is usually given a normal (0) attribute when it is created. The file’s attribute
can subsequently be modified with Int 21H Function 43H.

& [3.0+] A volume label can be created using an attribute of 0008H, if one does not
already exist. When files are created, bit 3 of the attribute parameter should always
be clear (0).

= [3.0+] See the entries for Int 21H Functions 5AH and 5BH, which may also be used to
create files.

B [4.0+] Int 21H Function 6CH combines the services of Functions 3CH, 3DH,
and 5BH.

MS-DOS Functions Reference 401

Example: Create and open, or truncate to zero length and open, the file C:\MYDIR\MYFILE.DAT,
and save the handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT',0
fhandle dw ?
mov ah,3ch ; function number
xor CX,CX ; normal attribute
mov dx,seg fname ; address of pathname
mov ds,dx
mov dx,offset fname
int 21h ; transfer to MS-DOS
Jc error s jump if create failed
mov fhandle,ax ; save file handle
Int 21H [2.0]
o
Function 3DH (61)

Open file

Given an ASCIIZ pathname, opens the specified file in the designated or default directory on the desig-
nated or default disk drive. A handle is returned which can be used by the program for subsequent access
to the file.

Callwith: AH =3DH
AL = access mode
Bit(s) Significance
0-2 access mode

000 = read access
001 = write access
010 = read/write access

3 reserved (0)

4-6 sharing mode (MS-DOS versions 3.0 and later)
000 = compatibility mode
001 = deny all
010 = deny write
011 = deny read
100 = deny none

7 inheritance flag (MS-DOS versions 3.0 and later)
0 = child process inherits handle
1 = child does not inherit handle

DS:DX = segment:offset of ASCIIZ pathname

402 Section Il

Returns:

If function successful
Carry flag = clear

AX = handle

If function unsuccessful
Carry flag =set

AX = error code

Notes:

Any normal, system, or hidden file with a matching name will be opened by this
function. If the file is read-only, the success of the operation also depends on the
access code in bits 02 of register AL. After opening the file, the file read/write

.pointer is set to offset zero (the first byte of the file).

The function fails if:

— any element of the pathname does not exist.

— the file is opened with an access mode of read/write and the file has the read-
only attribute.

— [3.0+] SHARE.EXE is loaded and the file has already been opened by one or more
other processes in a sharing mode that is incompatible with the current program’s
request.

The file’s date and time stamp can be accessed after a successful open call with

Int 21H Function 57H.

The file’s attributes (hidden, system, read-only, or archive) can be obtained with

Int 21H Function 43H.

When a file handle is inherited by a child process or is duplicated with Int 21H

Function 45H or 46H, all sharing and access restrictions are also inherited.

[2] Only bits 0-2 of register AL are significant; the remaining bits should be zero for

upward compatibility.

[3.0+] Bits 4-7 of register AL control access to the file by other programs. (Bits 4—6

have no effect unless SHARE.EXE is loaded.)

[3.0+] A file-sharing error causes a critical-error exception (Int 24H) with an error

code of 02H. Int 21H Function 59H can be used to obtain information about the

sharing violation.

[4.0+] Int 21H Function 6CH combines the services of Functions 3CH, 3DH,

and 5BH.

Example:

Open the file C:\MYDIR\MYFILE.DAT for both reading and writing, and save the
handle for subsequent access to the file.

fname db 'C:\MYDIR\MYFILE.DAT',0

fhandle dw ?

(continued)

MS-DOS Functions Reference 403

Notes:

= This function uses a method code and a double-precision (32-bit) value to set the file
pointer. The next record read or written in the file will begin at the new file pointer
location. No matter what method is used in the call to this function, the file pointer
returned in DX:AX is always the resulting absolute byte offset from the start of file.

® Method 02H may be used to find the size of the file by calling Int 21H Function 42H
with an offset of 0 and examining the pointer location that is returned.

® Using methods 01H or 02H, it is possible to set the file pointer to a location that is
before the start of file. If this is done, no error is returned by this function, but an
error will be encountered upon a subsequent attempt to read or write the file.

Examples:

Using the file handle from a previous open or create operation, set the current file
pointer position to 1024 bytes after the start of file.

fhandle dw ?
mov ah,42h ; function number
mov al,o0 ; method = absolute
mov bx,fhandle ; file handle
mov cx,0 ; upper half of offset
mov dx,1024 ; Tower half of offset
int 21h ; transfer to MS-DOS
Jjc error ; Jjump, function failed

The following subroutine accepts a record number, record size, and handle and sets the
file pointer appropriately.

; call this routine with BX = handle

H AX = record number
H CX = record size

; returns all registers unchanged

setptr proc near
push ax ; save record number
push [; save record size
push dx ; save whatever's in DX
mul cX ; size * record number
mov cX,ax ; upper part to CX
xchg cx,dx ; Tower part to DX
mov ax,4200h ; function number & method
int 21h ; transfer to MS-DOS
pop dx ; restore previous DX
pop cx ; restore record size
pop ax ; restore record number
ret ; back to caller

setptr endp

MS-DOS Functions Reference 409

Returns:

If function successful

Carry flag = clear
DX = device information word
For a file:
Bit(s) Significance
0-5 drive number (0 = A, 1 = B, etc.)
6 0 if file has been written
1 if file has not been written
7 0, indicating a file
8-15 reserved
For a device:
Bit(s) Significance
0 1 if standard input
1 1 if standard output
2 1 if NUL device
3 1 if clock device
4 reserved
5 0 if handle in ASCII mode
1 if handle in binary mode
6 0 if end of file on input
7 1, indicating a device
8-13 reserved
14 0 if IOCTL subfunctions 02H and 03H not supported
1 if IOCTL subfunctions 02H and 03H supported
15 reserved
If function unsuccessful
Carry flag =set
AX = error code
Notes: m Bits 8-15 of DX correspond to the upper 8 bits of the device-driver attribute word.
Bit 5 of the device information word for a handle associated with a character device
signifies whether MS-DOS considers that handle to be in binary (“raw”) mode or
ASCII (“cooked”) mode. In ASCII mode, MS-DOS filters the character stream and
may take special action when the characters Ctrl-C, Ctrl-S, Ctrl-P, Ctrl-Z, and car-
riage return are detected. In binary mode, all characters are treated as data, and the
exact number of characters requested is always read or written.
Example: See Int 21H Function 44H Subfunction 01H.

MS-DOS Functions Reference

413

Returns:

If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful

Carry flag = set

AX = error code

Notes:

® If supported by the driver, this subfunction can be used to request hardware-
dependent operations (such as setting baud rate for a serial port) that are not sup-
ported by other MS-DOS function calls.

® Character-device drivers are not required to support IOCTL Subfunction 03H. A pro-
gram can test bit 14 of the device information word returned by IOCTL Subfunction
00H to determine whether the driver supports this subfunction. If Subfunction 03H
is requested and the driver does not have the ability to process control data, control
returns to the program with the carry flag set and error code 0001H (invalid func-
tion) in register AX.

Example:

Write a control string from the buffer buff to the standard list device driver. The length
of the string is assumed to be in the variable ctllen.

stdprn equ
buflen equ

ctllen dw
buff db

mov
mov
mov
mov
mov
mov
int
jc

4
64

?
buflen dup (?)

ax,4403h
bx,stdprn
dx,seg buff
ds,dx
dx,offset buff
cx,ctllen

21h

error

.

; standard 1ist handle

Tength of buffer

length of control data
contains control data

function & subfunction
standard 1ist handle
buffer address

lTength of control data
transfer to MS-DOS
jump if write failed

MS-DOS Functions Reference 417

If function unsuccessful
Carry flag =set
AX = error code

Notes: ® If the minor code is 45H (Set Iteration Count) or 65H (Get Iteration Count), the
parameter block is simply a 2-byte buffer containing or receiving the iteration count
for the printer. This call is valid only for printer drivers that support Output Until
Busy, and determines the number of times the device driver will wait for the device
to signal ready before returning from the output call.

® The parameter block for minor code 4DH (End Code Page Preparation) has the
following format:

dw 2 ; length of following data
dw 0 ; (reserved)
B For MS-DOS version 3.3, the parameter block for minor codes 4AH (Select Code
Page) and 6AH (Query Code Page) has the following format:
dw 2 ; lTength of following data
dw ? ; code page ID

For MS-DOS version 4.0, minor codes 4AH and 6AH also set or get the double-byte
character set (DBCS) lead byte table, and the following format is used:

dw (n+2)*2+1 ; length of following data
dw ? ; code page ID

db start,end ; DBCS lead byte range 1
db start,end ; DBCS lead byte range n
db 0,0

® The parameter block for minor code 4CH (Start Code Page Preparation) has the
following format:

dw 0 ; font type
; bit 0 = 0 downloaded
H = 1 cartridge
; bits 1-15 = reserved (0)

dw (n+l)=2 ; length of remainder of
H parameter block
dw n ; number of code pages in
the following list
dw ? ; code page 1
dw ? ; code page 2
dw ? ; code page n

B The parameter block for minor code 6BH (Query Prepare List) has the following
format, assuming » hardware code pages and m prepared code pages (n <= 12,
m <= 12):

MS-DOS Functions Reference ~ 427

Number of cylinders field: offset 04H, length 1 word
Maximum number of cylinders supported on the block device

Medlia type field: offset OGH, length .1 byte
Value Meaning

0 1.2 MB, 5.25-inch disk

1 320/360 KB, 5.25-inch disk

Device BPB field: offset 07H, length 31 bytes

For format of the device BPB, see separate Note below.

If bit 0 = 0 in special-functions field, this field contains the new default BPB for the
device.

If bit 0 = 1 in special-functions field, the BPB in this field is returned by the device
driver in response to subsequent Build BPB requests.

Track layout field: offset 26H, variable-length table
Length Meaning

Word number of sectors in track
Word number of first sector in track
Word size of first sector in track
Word number of last sector in track
Word size of last sector in track

The device BPB field is a 31-byte data structure that describes the current disk and
its control areas. The field is formatted as follows:

Byte(s) Meaning

O00H-01H bytes per sector

02H sectors per cluster (allocation unit)
03-04H reserved sectors, beginning at sector 0
05H number of file allocation tables (FATs)

06H-07H maximum number of root-directory entries

08H-09H number of sectors

0AH media descriptor

0BH-OCH sectors per FAT

ODH-O0EH sectors per track

OFH-10H number of heads

11H-14H number of hidden sectors

15H-18H large number of sectors (if bytes 08H-09H=0)

19H-1EH reserved

When minor code 40H (Set Device Parameters) is used, the number of cylinders
should not be altered, or some or all of the volume may become inaccessible.
For minor codes 41H (Write Track) and 61H (Read Track), the parameter block is
formatted as follows:

Byte(s) Meaning

0O0H special-functions field (must be 0)

01H-02H head

03H-04H cylinder

05H-06H starting sector

07H-08H sectors to transfer

09H-O0CH transfer buffer address

MS-DOS Functions Reference 431

® For minor codes 42H (Format and Verify Track) and 62H (Verify Track), the parame-
ter block is formatted as follows:

Byte(s) Meaning

O00H special-functions field
Bit(s) Significance
0 0 = Format/Verify track
1 = Format status call (MS-DOS 4.0 only)
1-7 reserved (0)

01H-02H head

03H-04H cylinder

In MS-DOS 4.0, this function may be called with bit 0 of the special-functions field
set after a minor code 40H call (Set Device Parameters) to determine whether the
driver supports the specified number of tracks and sectors per track. A status is
returned in the special-functions field which is interpreted as follows:

Value Meaning

0 specified number of tracks and sectors per track supported

1 this function not supported by the ROM BIOS

2 specified number of tracks and sectors per track not supported
3 no disk in drive

® For minor codes 47H (Set Access Flag) and 67H (Get Access Flag), the parameter
block is formatted as follows:

Byte Meaning
00H special-functions field (must be 0)
01H disk access flag

When the disk access flag is zero, access to the medium is blocked by the driver. The
flag is set to zero when the driver detects an unformatted medium or a medium with
an invalid boot record. When the access flag is nonzero, read/write operations to the
medium are allowed by the driver. A formatting program must clear the disk access
flag with minor code 47H before it requests minor code 42H (Format and Verify
Track).

Example: Get the device parameter block for disk drive C.

dbpb db 128 dup (0) ; device parameter block
mov ax,440dh ; function & subfunction
mov b1,3 ; drive C =3
mov ch,8 + disk category
mov c1,60h ; get device parameters
mov dx,seg dbpb ; buffer address
mov ds,dx .
mov dx,offset dbpb
int 21h ; transfer to MS-DOS
jc error ; jump if function failed

432 Section II

jc error s Jump if close failed

Int 21H

[2.0]

Function 46H (70)
Redirect handle

Given two handles, makes the second handle refer to the same device or file at the same location as the
first handle. The second handle is then said to be redirected.

Call with:

AH = 46H
BX = handle for file or device
CX = handle to be redirected

Returns:

If function successful
Carry flag = clear

If function unsuccessful
Carry flag =set

AX = error code

Notes:

® If the handle passed in CX already refers to an open file, that file is closed first.

B A seek, read, or write operation that moves the file pointer for one of the two
handles also moves the file pointer associated with the other.

B This function is commonly used to redirect the standard input and output handles to
another file or device before a child process is executed with Int 21H Function 4BH.

Example:

Redirect the standard output to the list device, so that all output directed to the console
will appear on the printer instead. Later, restore the original meaning of the standard
output handle.

stdin equ
stdout equ
stderr equ
stdaux equ
stdprn equ

BwWw N = O

dhandle dw

o

; duplicate handle

436 Sectionll

Notes:

The parameter block format for Subfunction 00H (Load and Execute Program) is
as follows:

Bytes Contents

00H-01H segment pointer to environment block

02H-03H offset of command line tail

04H-05H segment of command line tail

06H-07H offset of first FCB to be copied into new PSP + 5CH

08H-09H segment of first FCB

0AH-0BH offset of second FCB to be copied into new PSP + 6CH

OCH-ODH segment of second FCB

The parameter block format for Subfunction 03H (Load Overlay) is as follows:
Bytes Contents

00H-01H segment address where overlay is to be loaded

02H-03H relocation factor to apply to loaded image

The environment block must be paragraph-aligned. It consists of a sequence of
ASCIIZ strings in the form:

db 'COMSPEC=A:\COMMAND.COM"',0

The entire set of strings is terminated by an extra null (00H) byte.

The command tail format consists of a count byte, followed by an ASCII string, ter-
minated by a carriage return (which is not included in the count). The first character
in the string should be an ASCII space (20H) for compatibility with the command tail
passed to programs by COMMAND.COM. For example:

db 6,' *.DAT',0dh

Before a program uses Int 21H Function 4BH to run another program, it must release
all memory it is not actually using with a call to Int 21H Function 4AH, passing the
segment address of its own PSP and the number of paragraphs to retain.

Ordinarily, all active handles of the parent program are inherited by the child pro-
gram, although the parent can prevent this in MS-DOS 3.0 and later by setting the
inheritance bit when the file or device is opened. Any redirection of the standard in-
put and/or output in the parent process also affects the child process.

The environment block can be used to pass information to the child process. If the
environment block pointer in the parameter block is zero, the child program inherits
an exact copy of the parent’s environment. In any case, the segment address of the
child’s environment is found at offset 002CH in the child’s PSP.

After return from the EXEC function call, the termination type and return code of
the child program may be obtained with Int 21H Function 4DH.

Example:

442

Section IT

See Chapter 12.

Example: Get the date that the file MYFILE.DAT was created or last modified, and then decom-
pose the packed date into its constituent parts in the variables month, day, and year.

fname db 'MYFILE.DAT',0
month dw 0
day dw 0
year dw 0
; first open the file
mov ah,3dh ; function number
mov al,o0 ; read-only mode
mov dx,seg fname ; filename address
mov ds,dx
mov dx,offset fname
int 21h ;- transfer to MS-DOS
Jc error ; Jump if open failed
; get file date/time
mov bx,ax ; copy handle to BX
mov ah,57h ; function number
mov al,0 ; 0 = get subfunction
int 21h ; transfer to MS-DOS
jc error ; jump if function failed
mov day,dx ; decompose date
and day,01fh ; isolate day
mov cl,5
shr dx,cl
mov month, dx ; isolate month
and month,0fh
mov cl,4
shr dx,cl ; isolate year
and dx,03fh ; relative to 1980
add dx, 1980 ; correct to real year
mov year,dx ; save year
; now close file,
; handle still in BX
mov ah,3eh ; function number
int 21h ; transfer to MS-DOS
jc error ; jump if close failed

MS-DOS Functions Reference 451

454

Section IT

12H (18)
13H (19)
14H (20)
15H (21)
16H (22)
17H (23)
18H (24)
19H (25)
14H (26)
1BH (27)
ICH (28
1DH (29)
1EH (30)
1FH (3D
20H (32)
21H (33)
22H (34)
23H (35)
24H (36)
25H-31H
32H (50)
33H (51
34H (52)
35H (53)
36H (54)
37H (55)
38H (56)
39H (57)
34H (58
3BH (59)
3CH (60)
3DH (61)
3EH (62)
3FH (63)
40H (64)
41H (65)
42H (66)
43H (67)
44H (68)
45H (69)
46H (70)
47H (71
48H (72)
49H—4FH
50H (80)
51H (81)
52H (82)
53H (83)

no more files

disk write-protected

unknown unit

drive not ready

unknown command

data error (CRC)

bad request structure length
seek error

unknown media type

sector not found

Dprinter out of paper

write fault

read fault

general failure

sharing violation

lock violation

disk change invalid

FCB unavailable

sharing buffer exceeded
reserved

unsupported network request
remote machine not listening
duplicate name on network
network name not found
network busy

device no longer exists on network
netBIOS command limit exceeded
error in network adapter hardware
incorrect response from network
unexpected network error
remote adapter incompatible
print queue full

not enough space for print file
print file canceled

network name deleted

network access denied
incorrect network device type
network name not found
network name limit exceeded
netBIOS session limit exceeded
file sharing temporarily paused
network request not accepted
print or disk redirection paused
reserved
file alreadly exists

reserved

cannot make directory
Jfail on Int 24H (critical error)

BH

BL

CH

54H (84)
55H (85)
56H (86)
57H (87)
58H (88)
59H (89)
5AH (90)

= error class
O1H
02H

03H
04H
O5H
OGH

O7H
08H
O09H
0AH (10)
OBH (11)

OCH (12)
ODH (13)

too many redirections

duplicate redirection

invalid password

invalid parameter

network device fault
JSunction not supported by network
required system component not installed

if out of resource (such as storage or handles)

if not error, but temporary situation (such as locked region
in file) that can be expected to end

if authorization problem

if internal error in system software

if hardware failure

if system software failure not the fault of the active process
(such as missing configuration files)

if application program error

if file or item not found

if file or item of invalid type or format

if file or item locked

if wrong disk in drive, bad spot on disk, or storage medium
problem

if item already exists

unknown error

= recommended action

Ol1H

02H

03H

04H

O5H
O0GH
07H

= error locus
O1H
02H
03H
04H
O05H

retry reasonable number of times, then prompt user to
select abort or ignore

retry reasonable number of times with delay between
retries, then prompt user to select abort or ignore

get corrected information from user'(typically caused by
incorrect filename or drive specification)

abort application with cleanup (i.e., terminate the
program in as orderly a manner as possible: releasing
locks, closing files, etc.)

perform immediate exit without cleanup

ignore error

retry after user intervention to remove cause of error

unknown

block device (disk or disk emulator)
network

serial device

memory

and, for MS-DOS 3.0 and later,
= ASCIIZ volume label of disk to insert, if AX = 0022H (invalid

ES:DI

disk change)

MS-DOS Functions Reference 4595

Notes: m This function may be called after any other Int 21H function call that returned an er-
ror status, in order to obtain more detailed information about the error type and the
recommended action. If the previous Int 21H function call had no error, 0000H is
returned in register AX. This function may also be called during the execution of a
critical-error (Int 24H) handler.

m The contents of registers CL, DX, SI, DI, BP, DS, and ES are destroyed by this
function.

= Note that extended error codes 13H~1FH (19-31) and 34 (22H) correspond exactly
to the error codes 0—0CH (0-12) and OFH (15) returned by Int 24H.

® You should not code your programs to recognize only specific error numbers if you

wish to ensure upward compatibility, because new error codes are added in each
version of MS-DOS.

Example: Attempt to open the file named NOSUCH.DAT using a file control block; if the open
request fails, get the extended error code.

myfcb db 0 ; drive = default
db *NOSUCH °* ; filename, 8 chars
db 'DAT' ; extension, 3 chars
db 25 dup (0) ; remainder of FCB
Tabell: ; open the file
mov ah,0fh ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h ; transfer to MS-DOS

or al,al ; check open status
jz success s Jjump if opened 0K

; open failed, get

; extended error info
mov ah,5%h ; function number
xor bx,bx ; BX must = 0
int 21h s transfer to MS-DOS
or ax,ax ; double check for error
jz success ; jump if no error
cmp b1,2 ; should we retry?
jle Tabell 3 yes, jump
Jmp error : no, give up

456 Ssectionll

Returns:

If function successful
Carry flag = clear

AX = handle

If function unsuccessful
Carry flag = set

AX = error code

Notes:

® The function fails if:

— any element of the specified path does not exist.

— afile with the identical pathname (i.e., the same filename and extension in the
same location in the directory structure) already exists.

— the file is being created in the root directory, and the root directory is full.

— [3.0+] the program is running on a network, and the user has insufficient access
rights to the directory that will contain the file.

B The file is usually given a normal attribute (0) when it is created, and is opened for
both read and write operations. The attribute can subsequently be modified with Int
21H Function 43H.

B See also Int 21H Functions 3CH, 5AH, and 6CH, which provide alternative ways of
creating files.

® This function may be used to implement semaphores in a network or multitasking
environment. If the function succeeds, the program has acquired the semaphore. To
release the semaphore, the program simply deletes the file.

Example:

Create and open a file named MYFILE.DAT in the directory \MYDIR on drive C;
MS-DOS returns an error if a file with the same name already exists in that location.

fname db *C:\MYDIR\MYFILE.DAT',0
fhandle dw ? ; file handle
mov ah,5bh ; function number
xor CX,CX ; normal attribute
mov dx,seg fname ; filename address
mov ds,dx
mov dx,offset fname
int 21h ; transfer to MS-DOS
Jjc error ; jump if create failed
mov fhandle,ax ; save file handle

MS-DOS Functions Reference ~ 459

BL = device type
03H if printer
04H if drive

X = stored parameter value

DX = destroyed

BP = destroyed

DS:SI = segment:offset of ASCIIZ local device name
ES:DI = segment:offset of ASCIIZ network name

If function unsuccessful
Carry flag = set
AX = error code

Note: m The parameter returned in CX is a value that was previously passed to MS-DOS in
register CX with Int 21H Function 5FH Subfunction 03H (Redirect Device). It repre-
sents data that is private to the applications which store and retrieve it and has no
meaning to MS-DOS.

Example: Get the local and network names for the device specified by the first redirection

list entry.
local db 16 dup (?) ; receives local device name
network db 128 dup (?) ; receives network name
mov ax,5f02h ; function & subfunction
mov bx,0 ; redirection list entry 0
mov si,seg local ; local name buffer addr
mov ds,si
mov si,offset local
mov di,seg network ; network name buffer addr
mov es,di
mov di,offset network
int 21h ; transfer to MS-DOS
jc error ; jump if call failed
or bh,bh ; check device status
jnz error ; Jjump if device not valid

MS-DOS Functions Reference ~ 465

BX = code page of interest (-1 = active CON device)

X = length of buffer to receive information (must be >= 5)
DX = country ID (-1 = default)
ES:DI = address of buffer to receive information
Returns: If function successful
Carry flag = clear
and requested data placed in calling program’s buffer
If function unsuccessful
Carry flag = set
AX = error code
Notes: m The information returned by this function is a superset of the information returned

by Int 21H Function 38H.

= This function may fail if either the country code or the code page number is invalid,

or if the code page does not match the country code.

m The function fails if the specified buffer length is less than five bytes. If the buffer to

receive the information is at least five bytes long but is too short for the requested
information, the data is truncated and no error is returned.

m The format of the data returned by Subfunction 01H is:

Byte(s) Contents
00H information ID code (1)
01H-02H length of following buffer
03H-04H country ID
05H-06H code page number
07H-08H date format
0=USA mdy
1=Europe dmy
2=Japan ymd
09H-O0DH ASCIIZ currency symbol
OEH—OFH ASCIIZ thousands separator
10H-11H ASCIIZ decimal separator
12H-13H ASCIIZ date separator
14H-15H ASCIIZ time separator

16H currency format flags
bit 0 =0 if currency symbol precedes value
=1 if currency symbol follows value
bit 1 =0 if no space between value and currency symbol
=1 if one space between value and currency symbol
bit 2 =0 if currency symbol and decimal are separate
=1 if currency symbol replaces decimal separator
17H number of digits after decimal in currency
18H time format
bit 0 =0 if 12-hour clock

=1 if 24-hour clock
19H-1CH case-map routine call address
1DH-1EH ASCIIZ data list separator
1FH-28H reserved

MS-DOS Functions Reference 471

m The format of the data returned by Subfunctions 02H, 04H, 06H, and 07H is:
Byte(s) Contents
00H information ID code (2, 4, or 6)
01H-05H double-word pointer to table

m The uppercase and filename uppercase tables are a maximum of 130 bytes long. The
first two bytes contain the size of the table; the following bytes contain the upper-
case equivalents, if any, for character codes 80H-FFH. The main use of these tables
is to map accented or otherwise modified vowels to their plain vowel equivalents.
Text translated with the help of this table can be sent to devices that do not support
the IBM graphics character set, or used to create filenames that do not require a spe-
cial keyboard configuration for entry.

m The collating table is a maximum of 258 bytes long. The first two bytes contain the
table length, and the subsequent bytes contain the values to be used for the corre-
sponding character codes (0—FFH) during a sort operation. This table maps
uppercase and lowercase ASCII characters to the same collating codes so that sorts
will be case-insensitive, and it maps accented vowels to their plain vowel
equivalents.

m [4.0+] Subfunction 07H returns a pointer to a variable length table of that defines
ranges for double-byte character set (DBCS) lead bytes. The table is terminated by a
pair of zero bytes, unless it must be truncated to fit in the buffer, and has the follow-

ing format:
dw Tength
db startl,endl
db start2,end2
db 0,0

For example:
dw 4
db 81h,9fh
db 0eOh,0fch
db 0,0

@ Insome cases a truncated translation table may be presented to the program by
MS-DOS. Applications should always check the length at the beginning of the table,
to make sure it contains a translation code for the particular character of interest.

Examples: Obtain the extended country information associated with the default country and code

page 437.

buffer db 41 dup (0) ; receives country info
mov ax,6501h ; function & subfunction
mov bx,437 ; code page

472 Sectionll

mov
mov
mov
mov
mov
int
Jjc

cx,41 ; buffer length

dx,-1 ; default country

di,seg buffer ; buffer address

es,di

di,offset buffer

21h ; transfer to MS-DOS
error ; jump if function failed

In this case, MS-DOS filled the following extended country information into the buffer:

buffer

db
dw
dw
dw
dw
db
db
db
db
db
db
db
db
dd
db
db

1 ; info ID code

38 ; length of following buffer
1 ; country ID (USA)

437 ; code page number

0 ; date format
'$',0,0,0,0 ; currency symbol

',',0 ; thousands separator
'L, ; decimal separator
'-',0 ; date separator

‘.0 ; time separator

0 ; currency format flags
2 ; digits in currency

0 ; time format
026ah:176¢h ; case map entry point
',',0 ; data 1ist separator
10 dup (0) ; reserved

Obtain the pointer to the uppercase table associated with the default country and code
page 437.

buffer

db

mov
mov
mov
mov
mov
mov
mov
int
Jjc

5 dup (0) ; receives pointer info
ax,6502h ; function number

bx,437 ; code page

cx,5 ; length of buffer

dx, -1 ; default country

di,seg buffer ; buffer address

es,di

di,offset buffer

21h ; transfer to MS-DOS
error ; jump if function failed

MS-DOS Functions Reference 473

Example: Force the active code page to be the same as the system’s default code page, that is,
restore the code page that was active when the system was first booted.

get current and
default code page

mov ax,6601h ; function number
int 21h ; transfer to MS-DOS
jc error ; jump if function failed

; set code page

mov bx,dx ; active = default

mov ax,6602h ; function number

int 21h ; transfer to MS-DOS

Jjc error ; jump if function failed

Int 21H [3.3]
Function 67H (103)
Set handle count

Sets the maximum number of files and devices that may be opened simultaneously using handles by the
current process.

Callwith: AH =67H
BX = number of desired handles
Returns: If function successful

Carry flag = clear

If function unsuccessful
Carry flag =set

AX = error code

Notes: ® This function call controls the size of the table that relates handle numbers for
the current process to MS-DOS’s internal, global table for all of the open files and
devices in the system. The default table is located in the reserved area of the
process’s PSP and is large enough for 20 handles.

® The function fails if the requested number of handles is greater than 20 and there
is not sufficient free memory in the system to allocate a new block to hold the
enlarged table.

MS-DOS Functions Reference ~ 4715

DX = open flag
Bits Significance
0-3 action if file exists
0000 = fail
0001 = open file
0010 = replace file
4-7 action if file doesn’t exist
0000 = fail
0001 = create file
8-15 reserved (0)
DS:SI = segment:offset of ASCIIZ pathname

Returns:

If function successful

Carry flag = clear

AX = handle

cX = action taken
1 = file existed and was opened
2 = file did not exist and was created
3 = file existed and was replaced

If function failed

Carry flag =set

AX = error code

Notes:

B The function fails if:

— any element of the pathname does not exist.

— the file is being created in the root directory and the root directory is full.

— the file is being created and a file with the same name and the read-only attribute
already exists in the specified directory.

— the program is running on a network and the user running the program has in-
sufficient access rights.

® A file is usually given a normal (0) attribute when it is created. The file’s attribute
can subsequently be modified with Int 21H Function 43H.

® This function combines the capabilities of Int 21H Functions 3CH, 3DH, and 5BH. It
was added to MS-DOS for compatibility with the DosOpen function of OS/2.

Example:

Create the file MYFILE.DAT, if it does not already exist, in directory \MYDIR on drive C,
and save the handle for subsequent access to the file.

fname db *C:\MYDIR\MYFILE.DAT',0

fhandle dw ?

(continued)

MS-DOS Functions Reference 479

Returns:

If function successful

Carry flag = clear

If function unsuccessful

Carry flag = set

AX = error code (see Notes)

Notes:

B All registers except the segment registers may be destroyed.
® When this function returns, the CPU flags originally pushed on the stack by the INT

25H instruction are still on the stack. The stack must be cleared by a POPF or ADD
SP,2 to prevent uncontrolled stack growth and to make accessible any other values
that were pushed on the stack before the call to INT 25H.

Logical sector numbers are obtained by numbering each disk sector sequentially
from cylinder 0, head 0, sector 1, and continuing until the last sector on the disk is
counted. The head number is incremented before the track number. Logically adja-

cent sectors may not be physically adjacent, due to interleaving that occurs at the

device-adapter level for some disk types.

The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of DI when an Int 24H is issued. The upper byte
(AH) contains:

01H if bad command

02H if bad address mark

04H if requested sector not found

08H if direct memory access (DMA) failure

10H if data error (bad CRC)

20H if controller failed

40H if seek operation failed

80H if attachment failed to respond

[4.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:

Bytes Description

00H-03H 32-bit sector number

04H-05H number of sectors to read

06H-07H offset of buffer

08H-09H segment of buffer

Example:

Read logical sector 1 of drive A into the memory area named buff. (On most MS-DOS
floppy disks, this sector contains the beginning of the file allocation table.)

buff db 512 dup (?) ; receives data from disk

(continued)

MS-DOS Functions Reference 483

B The error code is interpreted as follows: The lower byte (AL) is the same error code
that is returned in the lower byte of DI when an Int 24H is issued. The upper byte

(AH) contains:

01H if bad command

02H if bad address mark

03H if write-protect fault

04H if requested sector not found

08H if direct memory access (DMA) failure
10H if data error (bad CRC)

20H if controller failed

40H if seek operation failed

80H if attachment failed to respond

® [4.0+] When accessing partitions larger than 32 MB under MS-DOS version 4, this
function uses a parameter block with the following format:

Bytes

00H-03H
04H-05H
06H-07H
08H—-09H

Description

32-bit sector number
number of sectors to read
offset of buffer

segment of buffer

Example:

Write the contents of the memory area named buff into logical sector 3 of drive C.
Warning: Verbatim use of the following code could damage the file system on your
fixed disk. There is, unfortunately, no way to provide a really safe example of this

function.

buff db

mov
mov
mov
mov
mov
mov
int
Jje

add

512 dup (?) ; contains data for write
al,2 ; drive C

cx,1 ; number of sectors

dx,3 ; beginning sector number
bx,seg buff ; buffer address

ds,bx

bx,offset buff

26h ; request disk write
error ; jump if write failed
sp.2 ;s clear stack

MS-DOS Functions Reference 485

Returns:

If function successful
Carry flag = clear

and, if called with AL = 00H

AL = APPEND installed status
O0OH if not installed, ok to install
O1H if not installed, not ok to install

FFH if installed
or, if called with AL = 02H (MS-DOS 4.0)
AX = FFFFH if MS-DOS 4.0 APPEND
or, if called with AL = 04H (MS-DOS 4.0)
ES:DI = segment:offset of active APPEND path
or, if called with AL = 06H (MS-DOS 4.0)
BX = APPEND state (see above)
If function unsuccessful
Carry flag = set
AX = error code

Note:

m If the Return Found Name State is set with Subfunction 11H, the fully qualified file-
name is returned to the next application to call Int 21H Function 3DH, 43H, or 6CH.
The name is placed at the same address as the ASCIIZ parameter string for the Int
21H function, so the application must be sure to provide a buffer of adequate size.

The Return Found Name State is reset after APPEND processes one Int 21H

function call.

MS-DOS Functions Reference

491

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subfunction Name

10H 0CH(12 Write Graphics Pixel

10H ODH (13) Read Graphics Pixel

10H OEH (19 Write Character in Teletype Mode

10H OFH (15) Get Video Mode

10H 10H (16) 00H Set Palette Register

10H 10H (16) 01H Set Border Color

10H 10H (16) 02H Set Palette and Border

10H 10H (16 03H Toggle Blink/Intensity Bit

10H 10H (16) 07H Get Palette Register

10H 10H (16) 08H Get Border Color

10H 10H (16) 09H Get Palette and Border

10H 10H (16) 10H (16) Set Color Kegister

10H 10H (16) 12H (18) Set Block of Color Registers

10H 10H (16) 13H (19 Set Color Page State

10H 10H (16) 15H 2D Get Color Register

10H 10H (16) 17H (23) Get Block of Color Registers

10H 10H (16) 1AH (26) Get Color Page State

10H 10H (16) 1BH (27) Set Gray-Scale Values

10H 11H QA7) 00H Load User Font

10H 11H A7) 01H Load ROM 8-by-14 Font

10H 11H QD 02H Load ROM 8-by-8 Font

10H 11HQ7 03H Set Block Specifier

10H 11HA7D 04H Load ROM 8-by-16 Font

10H 11IH QA7 10H (16) Load User Font, Reprogram Controller

10H 11HQ7) 11H (A7) Load ROM 8-by-14 Font, Reprogram
Controller

10H 11HQ7) 12H (18) Load ROM 8-by-8 Font, Reprogram
Controller

10H 11H A7) 14H (20) Load ROM 8-by-16 Font, Reprogram
Controller

10H 11H(17) 20H (32) Set Int 1FH Pointer

10H 11HA?D 21H (33) Set Int 43H for User’s Font

10H 11H(A7) 22H (349) Set Int 43H for ROM 8-by-14 Font

10H 11HA7) 23H (33) Set Int 43H for ROM 8-by-8 Font

10H 11H A7) 24H (36) Set Int 43H for Rom 8-by-16 Font

10H 11H (7)) 30H (48) Get Font Information

10H 12H (18) 10H (16) Get Configuration Information

10H 12H (18) 20H (32) Select Alternate PrintScreen

10H 12H (18) 30H (48) Set Scan Lines

10H 12H (18) 31H (49) Enable/Disable Palette Loading

10H 12H (18) 32H (50) Enable/Disable Video

10H 12H (18) 33H (51D Enable/Disable Gray-Scale Summing

10H 12H (18) 34H (52) Enable/Disable Cursor Emulation

(continued)

IBM ROM BIOS and Mouse Functions Reference

495

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subfunction Name

10H 12H(Q8) 35H(53) Switch Active Display

10H 12H (18) 36H (54) Enable/Disable Screen Refresh

10H 13H (19 Write String in Teletype Mode

10H 1AH (26) Get or Set Display Combination Code
10H 1BH (27) Get Functionality/State Information
10H 1CH (28) Save or Restore Video State

11H Get Equipment Configuration

12H Get Conventional Memory Size
13H Disk Driver

13H O00H Reset Disk System

13H 01H Get Disk System Status

13H 02H Read Sector

13H 03H Write Sector

13H 04H Verify Sector

13H 0SH Format Track

13H 06H Format Bad Track

13H 07H Format Drive

13H 08H Get Drive Parameters

13H 0%9H Initialize Fixed Disk Characteristics
13H 0AH (10) Read Sector Long

13H OBH (11) Write Sector Long

13H 0CH (12) Seek

13H ODH (13) Reset Fixed Disk System

13H OEH (14) Read Sector Buffer

13H OFH (15) Write Sector Buffer

13H 10H (16) Get Drive Status

13H 11HQ7) Recalibrate Drive

13H 12H (18) Controller RAM Diagnostic

13H 13H (19) Controller Drive Diagnostic

13H 14H (20) Controller Internal Diagnostic

13H 15H (21) Get Disk Type

13H 16H (22) Get Disk Change Status

13H 17H (23) Set Disk Type

13H 18H (24) Set Media Type for Format

13H 19H (25) Park Heads

13H 1AH (26) Format ESDI Drive

14H Serial Communications Port Driver
14H COH Initialize Communications Port
14H 01H Write Character to Communications Port

(continued)

Section 111

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subfunction Name

14H 02H Read Character from Communications
Port

14H 03H Get Communications Port Status

14H 04H Extended Initialize Communications
Port

14H 05H Extended Communications Port Control

15H 1/0 Subsystem Extensions

15H 00H Turn On Cassette Motor

15H 01H Turn Off Cassette Motor

15H 02H Read Cassette

15H 03H Write Cassette

15H OFH (15) Format ESDI Drive Periodic Interrupt

15H 21H(33) 00OH Read POST Error Log

15H 21H(33) 01H Write POST Error Log

1SH 4FH (79) Keyboard Intercept

15H 80H (128) Device Open

15H 81H (129) Device Close

15H 82H (130) Process Termination

15H 83H (13D Event Wait

15H 84H (132) Read Joystick

15H 85H (133) SysReq Key

15SH 86H (134) Delay

15H 87H (135) Move Extended Memory Block

15H 88H (136) Get Extended Memory Size

15H 89H (137) Enter Protected Mode

15H 90H (144) Device Wait

15H 91H (145) Device Post

15H COH (192) Get System Environment

15H C1H (193) Get Address of Extended BIOS Data
Area

15H C2H (199 00H Enable/Disable Pointing Device

15H C2H (199 01H Reset Pointing Device

15H C2H (199 02H Set Sample Rate

15H C2H (194) 03H Set Resolution

15H C2H (194) 04H Get Pointing Device Type

15H C2H (199 05H Initialize Pointing Device Interface

15H C2H (194 06H Set Scaling or Get Status

15H C2H (199 07H Set Pointing Device Handler Address

15H C3H (195) Set Watchdog Time-Out

15H . C4H(196) Programmable Option Select

(continued)

IBM ROM BIOS and Mouse Functions Reference

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subfunction Name

16H Keyboard Driver

16H 00H Read Character from Keyboard

16H 01H Get Keyboard Status

16H 02H Get Keyboard Flags

16H 03H Set Repeat Rate

16H 04H Set Keyclick

16H 05H Push Character and Scan Code

16H 10H (16) Read Character from Enhanced
Keyboard

16H 11H A7) Get Enhanced Keyboard Status

16H 12H (18) Get Enhanced Keyboard Flags

17H Parallel Port Printer Driver

17H 00H Write Character to Printer

17H 01H Initialize Printer Port

17H 02H Get Printer Status

18H ROM BASIC

19H Reboot System

1AH Real-time (CMOS) Clock Driver

1AH 00H Get Tick Count

1AH 01H Set Tick Count

1AH 02H Get Time

1AH 03H Set Time

1AH 04H Get Date

1AH 05H Set Date

1AH 0GH Set Alarm

1AH 07H Reset Alarm

1AH 0AH10) Get Day Count

1AH O0BHQD Set Day Count

1AH 80H (128) Set Sound Source

33H Microsoft Mouse Driver

33H 00H Reset Mouse and Get Status

33H 01H Show Mouse Pointer

33H 02H Hide Mouse Pointer

33H 03H Get Mouse Position and Button Status

33H 04H Set Mouse Pointer Position

33H 05H Get Button Press Information

33H O06H Get Button Release Information

33H 07H Set Horizontal Limits for Pointer

33H 08H Set Vertical Limits for Pointer

33H 09H Set Graphics Pointer Shape

(continued)

Section 111

Summary of ROM BIOS and Mouse Function Calls continued

Int Function Subfunction Name

33H 0AH (10) Set Text Pointer Type

33H OBH (1D Read Mouse Motion Counters

33H 0CH(12) Set User-defined Mouse Event Handler

33H ODH (13) Turn On Light Pen Emulation

33H OEH (19 Turn Off Light Pen Emulation

33H OFH (15) Set Mickeys to Pixels Ratio

33H 10H (16) Set Mouse Pointer Exclusion Area

33H 13H (19) Set Double Speed Threshold

33H 14H (20) Swap User-defined Mouse Event
Handlers

33H 15H (21) Get Mouse Save State Buffer Size

33H 16H (22) Save Mouse Driver State

33H 17H (23) Restore Mouse Driver State

33H 18H (24) Set Alternate Mouse Event Handler

33H 19H (25) Get Address of Alternate Mouse Event
Handler

33H 1AH (26) Set Mouse Sensitivity

33H 1BH 27) Get Mouse Sensitivity

33H 1CH (28) Set Mouse Interrupt Rate

33H 1DH (29) Select Pointer Page

33H 1EH (30) Get Pointer Page

33H 1FH (31) Disable Mouse Driver

33H 20H (32) Enable Mouse Driver

33H 21H (33) Reset Mouse Driver

33H 22H (34) Set Language for Mouse Driver Messages

33H 23H (35) Get Language Number

33H 24H (36) Get Mouse Information

IBM ROM BIOS and Mouse Functions Reference

499

Call with: For CGA, EGA, MCGA, VGA
AH = 05H
AL = page
0-7 for modes O0H and O1H (CGA, EGA, MCGA, VGA)
03 Jor modes O2H and O3H (CGA)
0-7 for modes 02H and 03H (EGA, MCGA, VGA)
0-7 Sfor mode O7H (EGA, VGA)
0-7 Jfor mode ODH (EGA, VGA)
03 Jfor mode OEH (EGA, VGA)
0-1 for mode OFH (EGA, VGA)
0-1 Jfor mode 10H (EGA, VGA)
For PCjr only
AH = 05H
AL = subfunction
80H = read CRT/CPU page registers
81H = set CPU page register
82H = set CRT page register
83H = set both CPU and CRT page registers
BH = CRT page (Subfunctions 82H and 83H)
BL = CPU page (Subfunctions 81H and 83H)
Returns: If CGA, EGA, MCGA, or VGA adapter
Nothing
If PCjr and if function called with AL= 80H-83H
BH = CRT page register
BL = CPU page register
Notes: m Video mode and adapter combinations not listed above support one display page

(for example, a Monochrome Adapter in mode 7).

Switching between pages does not affect their contents. In addition, text can be
written to any video page with Int 10H Functions 02H, 09H, and OAH, regardless of
the page currently being displayed.

On the PCjr, the CPU page determines the part of the physical memory region
00000H-1FFFFH that will be hardware mapped onto 16 KB of memory beginning
at segment B8OOH. The CRT page determines the starting address of the physical
memory used by the video controller to refresh the display. Smooth animation
effects can be achieved by manipulation of these registers. Programs that write
directly to the BS8OOH segment can reach only the first 16 KB of the video refresh
buffer. Programs requiring direct access to the entire 32 KB buffer in modes 09H and
0AH can obtain the current CRT page from the ROM BIOS variable PAGDAT at
0040:008AH.

504 Sectionlll

Byte(s)
21H

22H
23H-24H
25H

26H
27H-28H
20H

2AH

2BH
2CH
2DH

2EH-30H
31H

32H

33H-3FH

8532 Section Il

Contents

current setting of register 3B9H or 3D9H

number of character rows

character height in scan lines

active display code (see Int 10H Function 1AH)
inactive display code (see Int 10H Function 1AH)
number of displayable colors (0 for monochrome)
number of display pages

number of scan lines

OOH = 200 scan lines
01H = 350 scan lines
02H = 400 scan lines
03H = 480 scan lines
O4H-FFH = reserved

primary character block (see Int 10H Function 11H Subfunction 03H)
secondary character block
miscellaneous state information

Bit(s) Significance

0 = 1 if all modes on all displays active (always 0 on MCGA)
1 = 1if gray-scale summing active

2 =1 if monochrome display attached

3 =1 if mode set default palette loading disabled

4 = 1if cursor emulation active (always 0 on MCGA)
5 = state of I/B toggle (0 = intensity, 1 = blink)

6-7 = reserved

reserved

video memory available

OOH =64 KB

Ol1H =128 KB

02H =192KB

03H =256 KB

save pointer state information

Bit(s) Significance

0 = 1if 512-character set active

1 = 1 if dynamic save area active

2 = 1 if alpha font override active

3 = 1 if graphics font override active

4 = 1 if palette override active

5 = 1 if display combination code (DCC) extension active
6-7 = reserved

reserved

m Bytes 0-3 of the caller’s buffer contain a DWORD pointer (offset in lower word,
segment in upper word) to the following information about the display adapter

and monitor:

Byte(s)
00H

01H

02H

03H-06H
07H

08H
09H
0AH

Contents

video modes supported

Bit

NV AR W N = O

Significance

=1 if mode 00H supported
= 1 if mode 01H supported
=1 if mode 02H supported
= 1 if mode 03H supported
= 1 if mode 04H supported
= 1 if mode 05H supported
= 1 if mode O6H supported
=1 if mode 07H supported

video modes supported

Bit

~NOAWVMAD N = O

Significance

=1 if mode 08H supported
= 1 if mode 09H supported
= 1 if mode OAH supported
=1 if mode OBH supported
=1 if mode OCH supported
=1 if mode ODH supported
= 1 if mode OEH supported
= 1 if mode OFH supported

video modes supported

Bit(s)

0
1
2
3
4-7

reserved

Significance

= 1 if mode 10H supported
=1 if mode 11H supported
=1 if mode 12H supported
=1 if mode 13H supported
= reserved

scan lines available in text modes

Bit(s)

0
1
2
3-7

Significance

=1 if 200 scan lines
=1 if 350 scan lines
=1 if 400 scan lines
= reserved

character blocks available in text modes (see Int 10H Function 11H)

maximum number of active character blocks in text modes

miscellaneous BIOS capabilities

Bit

NGOV AR WN = O

Significance

= 1 if all modes active on all displays (always 0 for MCGA)

= 1 if gray-scale summing available
= 1 if character font loading available

=1 if mode set default palette loading available

= 1 if cursor emulation available
= 1 if EGA (64-color) palette available
= 1 if color register loading available

= 1 if color register paging mode select available

IBM ROM BIOS and Mouse Functions Reference

533

Int 33H
Function 06H
Get button release information

Returns the current status of all mouse buttons, and the number of releases and position of the last release
for a specified mouse button since the last call to this function for that button. The release counter for the
button is reset to zero.

Call with: AX = 0006H
BX = button identifier
0 = left button
1 = right button
2 = center button
Returns: AX = button status
Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)
BX = button release counter
CX = horizontal (X) coordinate of last button release
DX = vertical (Y) coordinate of last button release

Int 33H
Function 07H
Set horizontal limits for pointer

Limits the mouse pointer display area by assigning minimum and maximum horizontal (X) coordinates
for the mouse pointer.

Call with: AX = 0007H
CcX = minimum horizontal (X) coordinate
DX = maximum horizontal (X) coordinate

Returns: Nothing

Notes: m If the minimum value is greater than the maximum value, the two values are
swapped.

m The mouse pointer will be moved if necessary so that it lies within the specified
horizontal coordinates.

1IBM ROM BIOS and Mouse Functions Reference ~ 597

Callwith: AX = 0018H
CX = event mask
Significance (if set)
mouse movement
left button pressed
left button released
right button pressed
right button released
Shift key pressed during button press or release
Ctrl key pressed during button press or release
Alt key pressed during button press or release
-15 reserved (0)
gment:offset of handler

%
&

%M\IQU\AU’NHO

ES:DX

Returns: If function successful
AX = 0018H
If function unsuccessful
AX = FFFFH

Notes: B When this function is called, at least one of the bits 5, 6, and 7 must be set in
register CX.
® The user-defined event handler is entered from the mouse driver by a far call with
registers set up as follows:

AX mouse event flags (see event mask)
BX button state
Bit(s) Significance (if set)
0 left button is down
1 right button is down
2 center button is down
3-15 reserved (0)
CcX horizontal (X) pointer coordinate
DX vertical (Y) pointer coordinate
SI last raw vertical mickey count
DI last raw horizontal mickey count
DS mouse driver data segment

B If an event does not generate a call to the user-defined handler because its bit is not
set in the event mask, it can still be reported in the event flags during calls to the
handler for events that are enabled.

® (Calls to the handler are disabled with Int 33H Function 00H.
B See also Int 33H Functions O0CH and 14H.

IBM ROM BIOS and Mouse Functions Reference ~ 605

Notes: B When this function is called, the mouse driver releases any interrupt vectors it has
captured other than Int 33H (which may include Int 10H, Int 71H, and/or Int 74H).
The application program can complete the process of logically removing the mouse
driver by restoring the original contents of the Int 33H vector with Int 21H Function
25H, using the address returned by this function in ES:BX.

8 See also Int 33H Function 20H.

Int 33H
Function 20H (32)
Enable mouse driver

Enables the mouse driver and the servicing of mouse interrupts.

Call with: AX = 0020H

Returns: Nothing

Note: B See also Int 33H Function 1FH.

Int 33H
Function 21H (33)
Reset mouse driver

Resets the mouse driver and returns driver status. If the mouse pointer was previously visible, it is
removed from the screen, and any previously installed user handlers for mouse events are disabled.

Call with: AX = 0021H
Returns: If mouse support is available
AX = FFFFH
BX = number of mouse buttons
If mouse support is not available
AX = 0021H
Note: % This function differs from Int 33H Function 00H in that there is no initialization of

the mouse hardware.

IBM ROM BIOS and Mouse Functions Reference =~ 609

Int 33H
Function 24H (36)
Get mouse information

Returns the mouse driver version number, mouse type, and-the IRQ number of the interrupt used by the
mouse adapter.

Call with: AX = 0024H
Returns: BH = major version number (6 for version 6.10, etc.)
BL = minor version number (OAH for version 6.10, etc.)
CH = mouse type
1 = bus mouse
2 = serial mouse
3 = InPort mouse
4 = PS/2 mouse
5 = HP mouse
CL = IRQ number
0 =PS2

2 3,4 5 0r7 =IRQnumber

IBM ROM BIOS and Mouse Functions Reference 611

Summary of EMM Functions continued

Function Subfunction Description

4CH (76) Get Handle Pages

4DH (77) Get Pages for All Handles

4EH (78) 00H Save Page Map

4EH (78) 01H Restore Page Map

4EH (78) 02H Save and Restore Page Map

4EH (78) 03H Get Size of Page Map Information

4FH (79) O00H Save Partial Page Map

4FH (79) 01H Restore Partial Page Map

4FH (79) 02H Get Size of Partial Page Map Information

50H (80) 00H Map Multiple Pages by Number

SO0H (80) 01H Map Multiple Pages by Address

51H (81) Reallocate Pages for Handle

52H (82) 00H Get Handle Attribute

52H (82) 01H Set Handle Attribute

52H (82) 02H Get Attribute Capability

53H (83) O00H Get Handle Name

53H (83) 01H Set Handle Name

54H (84) 00H Get All Handle Names

54H (84 01H Search for Handle Name

54H (84) 02H Get Total Handles

55H (85) 00H Map Pages by Number and jump

55H (85) 01H Map Pages by Address and Jump

56H (86) 00H Map Pages by Number and Call

56H (86) 01H Map Pages by Address and Call

56H (86) 02H Get Space for Map Page and Call

57H (87) 00H Move Memory Region

57H (87) 01H Exchange Memory Regions

58H (88) 00H Get Addresses of Mappable Pages

58H (88) 01H Get Number of Mappable Pages

59H (89) 00H Get Hardware Configuration

59H (89) 01H Get Number of Raw Pages

5AH (90) 00H Allocate Handle and Standard Pages

5AH (90) 01H Allocate Handle and Raw Pages

5BH (91) 00H Get Alternate Map Registers

SBH (91) O1H Set Alternate Map Registers

5BH (91) 02H Get Size of Alternate Map Register Save Area

5BH (91) 03H Allocate Alternate Map Register Set

5BH (91) 04H Deallocate Alternate Map Register Set

SBH (91) 05H Allocate DMA Register Set

SBH (91) 06H Enable DMA on Alternate Map Register Set

5BH (91) 07H Disable DMA on Alternate Map Register Set

5BH (91) 08H Deallocate DMA Register Set

SCH (92) Prepare Expanded Memory Manager for
Warm Boot

SDH (93) 00H Enable EMM Operating-System Functions

5DH (93) 01H Disable EMM Operating-System Functions

5DH (93) 02H Release Access Key

Lotus/Intel/Microsoft EMS Functions Reference

615

block-device drivers, continued
read control data from 418-19
write control data to 419-20
Boot disk device (block device) 12
boot drive, get 392-93
boot sector, disk 179-82
map of 180
partial disassembly of 182
partial hex dump 181
bootstrap routine 16, 17
border
get color 514
get palette and 514
set 508-9
set color 512
BREAK.ASM program 75-78
break flag, get or set 392-93
Buffered keyboard input 351-52
Build BIOS Parameter Block (function
02H) 272

C

CALL instructions 41
Cancel device redirection 467—68
cassette motor
read 561
turn off 560-61
turn on 560
write 562
.Cfiles 45. See also C language
Change sharing retry count 425-26
character blocks, set specifier 520
character-device drivers 260, 261-62
ASCII vs binary mode 261-62
generic I/O control 426-29
read control data from 415-16
write control data to 41617
character input/output. See also keyboard
input; mouse, input; pointing
device, input; printer output; serial
port
Int 21H 44H IOCTL (I/O control)
411~43
Int 21H functions, summary 337-38
(table)
processing typical I/O request 281-82
Character input with echo 343
Character input without echo 349-50
Character output 344
CHDIR (CD) command 167
Check if block device is remote 42324
Check if block device is removable
422-23

648 Index

Check if handle is remote 424-25
Check input status 353, 420-21
Check output status 42122
child programs 218
CHKDSK command 15, 174, 222
C language
CLEAN.C 309-11
compiler (see C Optimizing Compiler)
DUMP.C program 151, 161-63
linking Ctrl-C and Ctrl-Break handlers
to programs in 75-80
MOUDEMO.C 82-83
polling mouse and displaying mouse
coordinates 82—83
PROTO.C 303
SHELL.C 225-29
TRYBREAK 78-79
tutorials 63
class type 38
CLEAN filter 303-11
assembly source code 304-9
C source code 309-11
clock, set tick count 589-90
CLOCK driver 282
Close file 357-58, 4045
code page, get or set 47475
code segment 38
code segment (CS) register 30
Color/Graphics Adapter (CGA) 86,
98, 102
color page state
get 517
set 515-16
color register(s)
get 516
get block of 516-17
set 514-15
set block of 515
COM]1, COM2, COM3 devices 106,
110-12, 298
combinetype 38
command code routines, device-driver
267-81
function 00H, Driver initialization
268-69
function 01H, Media Check 270-71
function 02H, Build BIOS Parameter
Block (BPB) 272
function 03H, I/O-Control Read
272-73
function 04H, Read 273
function 05H, Nondestructive Read 274
function 06H, Input Status 274

command code routines, continued
function 07H, Flush Input Buffers
274-75
function 08H, Write 275
function 09H, Write with Verify 276
function 0AH, Output Status 276
function OBH, Flush Output Buffers
276
function OCH, I/O-Control Write
276-77
function ODH, Device Open 277
function OEH, Device Close 277-78
function OFH, Removable Media 278
function 10H, Output Until Busy
278-79
function 13H, Generic IOCTL 279-80
function 17H, Get Logical Device 280
function 18H, Set Logical Device
280-81
names of, and MS-DOS version support
267-68 (table)
COMMAND.COM file 14-16
load 20
replacing 13
use of EXEC function 218
COMMAND.COM PLUS 13
command processor (shell) 13. See also
COMMAND.COM file
commands, types of, accepted by
COMMAND.COM 14-15
command tail 24, 220-21
Commit file 47677
compatibility and portability 31331
degrees of compatibility 31418
MS-DOS applications 315-17
ROM BIOS and hardware-
compatible applications 317-18
0S/2 compatibility 318—-31
.COM program file(s) 15, 22, 25-30, 45
assembly-language program
transformed into 27-30
vs .EXE files 22, 36 (table)
memory allocation for 197-98
memory image of a typical 26
CONFIG.SYS file 12
installing device driver 293
opening 18-19
configuration
get equipment 535-36
get information 525
get system environment 573-74
console, direct input/output 347-48. See
also video display

Console display and keyboard (CON) 12,
298-99
control data
read, from block-device driver 418-19
read, from character-device driver
415-16
write, to block-device driver 419-20
write, to character-device driver
41617
Controller drive diagnostic 551
Controller internal diagnostic 551
Controller RAM diagnostic 550
cooked mode 69
C Optimizing Compiler 44, 48—50
environmental variables 48
version 5.1 switches 49-50
COPY command 14, 58
Country information
get extended 470-74
get or set 395-98
CP/M operating system 4, 5
FCB compatibility with 129, 130—31
program segment prefix compatibility
with 24, 25
Create directory 398—99
Create file 364—65, 401-2
Create new file 458—59
Create new PSP 378-79
Create temporary file 457-58
CREF utility 44, 56-58
cross-reference listing for HELLO.REF
57
.CRF files 45, 56
Critical-error handler address 481-82
critical-error handlers 24, 145, 147-51
address 481-82
skeleton program example 150—51
stack at entry to 148, 149
cross-reference listing. See CREF utility
Ctrl-Break and Ctrl-C handlers 72-80
compatibility issues 317
Ctrl-C handler address 480-81
high-level languages and 75-80
cursor
addressing 97
enable/disable emulation 528
get position 502-3
read character and attribute at 506
set position 501-2
set type 501
write character and attribute at 5067
write character at 507-8

Index

D

data segment 38
data segment (DS) register 31, 35
Date and time device (CLOCK$) 12
day count
get 592-93
set 593
Deallocate alternate map register set
(EMS) 642
Deallocate DMA register set (EMS) 644
.DEF files 45
Delay 568—69
DEL(ETE) command 14
Delete directory 399
Delete file 361-62, 407-8
dependency statements 61
descriptors, memory segment 321
device
cancel redirection 467—68
close 565
get device information 412-13
open 564-65
post 572-73
read file or 405-6
redirect 466—67
set device information 41415
wait 571
write file or 4067
Device Close (command code function
OEH) 277-78
Device close (MS-DOS function) 565
DEVICE commands 12
device drivers, installable 12-13, 259-96
CLOCK driver 282
command-code routines 267-81
debugging 295-96
chain before/after driver installation
294
chain listing 295
device attribute word 264
error codes 267
MS-DOS type 260-63
processing of typical input/output
requests 281-82
structure of MS-DOS 263-67
device header 263-64
interrupt routine 266—67
strategy routine 265
writing and installing 282-95
assembly 283-92
installation 293-95
linking 293

650 Index

device drivers, resident 12-13
Device Open (command-code function
ODH) 277
Device open (MS-DOS function) 564—65
Device post 572-73
Device wait 571-72
Digital Research 4
DIR command 14, 167, 174
Direct console I/O 34748
directory 166, 167-73
create 398-99
delete 399
format of a single entry in a disk
184,185
functions controlling 167-68
get current 437-38
hierarchical (tree) structure 166, 167
moving files 173
root 184-86
searching 168-73
set current 400
directory operations, Int 21H functions
summary 339
Disable DMA on alternate map register
set (EMS) 643—44
Disable EMM operating system functions
(EMS) 645-46
Disable mouse driver 608-9
disk(s) 177-94. See also drive, logical;
ESDI Fixed Disk Drive Adapter
absolute read 482-84
absolute write 484—-85
boot sector 179-82
controller drive diagnostic 551
controller internal diagnostic 551
controller RAM diagnostic 550
file allocation table 182-84
interpreting the 188-92
files area 186-88
fixed-disk partitions 192-94
format 543
format bad track 542
format track 541-42
get change status 55253
get current 367
get default drive data 368—-69
get drive allocation information
394-95
get drive-data 370
get drive parameters 543—44
get drive status 549
get type 552
initialize fixed disk characteristics
544-45

disk(s), continued
map of typical logical volume 179
park heads 55455
read sector 538-39
read sector buffer 548
read sector long 545-46
recalibrate 550
reserved area 182
reset 354-55
reset fixed disk system 548
root directory 18486, 187
seek 547
select 355-56
set media type 554
set type 553
set verify flag 387-88
verify sector 540
write sector 539-40
write sector buffer 549
write sector long 546—47
disk bootstrap routine 16
memory location of 17
disk management, Int 21H functions
summary 339
disk-related errors 147, 148 (table)
Disk reset 354-55
disk system
get status 537-38
reset 536-37
disk transfer area (DTA) 25, 130
get 388-89
set 368
display page, set 503—4
Display string 350-51
DOS kernel 12, 18
memory location of 19
double-byte character sets (DBCS), get
lead byte table 469-70
drive, logical 166, 167-73. See also disk(s)
get map 433
set map 434
vsvolume 174
driver. See device drivers, installable;
device drivers, resident
DRIVER.ASM program 283-91
Driver Initialization (function 00H)
268-69
DUMP.ASM program 151, 152—61
subroutines 163
DUMP.C program 151, 161-63
Duplicate handle 435
dynamic link library 331
dynamic memory allocation 199, 200, 201

E

echo
character input with 343
character input without 349-50
unfiltered character input without
348-49
EMS. See Expanded Memory
Specification (EMS)
Enable/disable cursor emulation 528
Enable/disable default palette loading
526-27
Enable/disable gray-scale summing 527
Enable/disable pointing device 574-75
Enable/disable screen refresh 529
Enable/disable video 527
Enable DMA on alternate map register
set (EMS) 643
Enable EMM operating system functions
(EMS) 645
Enable mouse driver 609
encapsulation of subroutines 323,
324-25
end of interrupt (EOID) 250
ENDP command 35, 41
ENDS command 29, 38
END statement 30-31, 36, 41
Enhanced Graphics Adapter (EGA) 86,
97, 98, 102
Enter protected mode 570-71
environment block 24, 220, 224-25
dump of a typical 224
three strings contained in 225
EQU statement 33
error codes, device driver 267
error codes, MS-DOS 145-51
critical 145, 147-51
expanded memory 207-9
error information, get/set 453-56
escape sequences, ANSI 92-93
ESDI Fixed Disk Drive Adapter
format drive 555
format periodic interrupt 562—63
Event wait 566—-67
Exchange memory regions (EMS) 635-36
EXE2BIN utility 44, 55-56
EXEC function 15, 217-42. See also Int
21H Function 4BH
calling convention 222
compatibility in MS-DOS applications
317
environment block 220, 224-25

Index

651

EXEC function, continued
example programs SHELL.C and
SHELL.ASM 225-40
basic flow of both 239-40
internal commands in 239
example use of 223-24
loading overlays with 240, 241—42
making memory available for 218-19
reference 441-42
requesting 219-21
returning from 221-24
.EXE (executable) program file(s) 15, 22,
30-36, 45
assembly language program
transformed into 33-36
vs .COM files 22, 36 (table)
converting, to .COM files (see EXE2BIN
utility)
header 30
load module contents 33
load module format 32
memory allocation for 198
memory image of 37
use for compatible MS-DOS
applications 315
Expanded Memory Manager (EMM)
203-4
checking for 204, 205—6
enable/disable system functions
645-46
error codes 207-9
Expanded Memory Specification (EMS)
201-11
checking for expanded memory 204—6
expanded memory defined 203—4
functions reference (see Section IV)
summary 614-15
use of expanded memory 207-11
skeleton program illustrating 21011
Extended communications port control
559-60
extended file control block 131
volume-label search using 175
Extended initialize communications port
558-59
extended memory 204, 212-15
moving blocks of data between
conventional memory and 213-15
Extended open file 478-80
external (extrinsic) commands 15
external hardware interrupts 247
extra segment (ES) register 31

652 Index

F

FAR attribute 35

vsNEAR 29

faults (internal hardware interrupts) 246,

321

file(s)

area, in disks 186—-88
close 357-58, 404
commit 476-77

create 36465, 401-2
create new 458-59
create temporary 457-58
delete 361-62, 407-8
extended open 478-80
find first 358-59, 445—46
find next 360-61, 44647
get file size 375-76
get/set date and time 450-51
lock/unlock file region 460—61
logical drive 166

moving 123

name and location 166
open 356-57, 402—-4

read 4056

rename 366, 449-50
types 45

write 406-7

file-access skeleton program

using FCB functions 134, 135-37
using handle functions 141, 142—43

file allocation table (FAT) 166, 182—-84

assembly program to access 191
contents 183

interpreting 188-92

media descriptor bytes 183

file attributes, get or set 410-11
file control blocks (FCBs) 25, 128

default 130, 221
directory searching with 169, 170—71
extended 131,133-34, 175
file management with FCB functions
129-39
advantages/disadvantages 138-39
file-access skeleton program 134-38
functions listed 132
vs handle functions 128
normal 129, 133-34
before/after open call (Int 21H
Function OFH) 137
restricted use 316, 319
typical operation of 130

file management 127-63
example programs DUMP.ASM and
DUMP.C 151-63
FCB functions 128, 129-39
handle functions 128, 139-44
MS-DOS error codes 145-51
filename
fully qualified 166
parse 382-83
requesting EXEC function 219
file operations, Int 21H functions
summary 338
file pointer, set 408-9
file system 166
structure 167
filters 297311
building 300-303
CLEAN filter 303-11
operation of 299-300
prototype 301-3
system support for 298-99
Find first file 35859, 445—-46
Find next file 360~-61, 44647
fixed-disk partitions 192-94
font functions 518—24
Format bad track 542
Format drive 543
Format ESDI drive 555-56
Format ESDI drive periodic interrupt
562-63
Format track 541-42
Flush input buffer and then input 353-54
Flush Input Buffers (function 07H)
274-75
Flush Output Buffers (function 0BH) 276

G

Generic I/O control for block devices
429-32

Generic I/O control for character devices
426-29

Generic IOCTL (function 13H) 279-80

Get addresses of mappable pages
(EMS) 636

Get address of alternate mouse event
handler 606

Get address of extended BIOS data
area 574

Get all handle names (EMS) 631

Get alternate map registers (EMS)
639-40

Get attribute capability (EMS) 630

Get block of color registers 51617

Get border color 514

Get button press information 596

Get button release information 597

Get color page state 517

Get color register 516

Get communications port status 558

Get configuration information 525

Get conventional memory size 536

Get current directory 437-38

Get current disk 367

Get cursor position 502—3

Get date 384-85, 591

Get day count 592

Get DBCS lead byte table 46970

Get default drive data 368—69

Get device information 412-13

Get disk change status 552-53

Get disk system status 537-38

Get disk type 552

Get drive allocation information 394-95

Get drive data 370-71

Get drive parameters 543—44

Get drive status 549

Get DTA address 388—-89

Get enhanced keyboard flags 586-87

Get equipment configuration 535-36

Get extended country information
470-74

Get extended error information 453-56

Get extended memory size 570

Get file size 375-76

Get font information 524

Get functionality/state information
531-34

Get handle attribute (EMS) 629

Get handle count (EMS) 621-22

Get handle name (EMS) 630

Get handle pages (EMS) 622

Get hardware configuration (EMS)
637-38

Get interrupt vector 393-94

Get keyboard flags 582

Get keyboard status 582

Get language number 610

Get light pen position 503

Get Logical Device (command-code
function) 280

Get logical drive map 433

Get machine name 461-62

Get mouse information 611

Get mouse position and button status 595

Get mouse save state buffer size 603

Index

653

Get mouse sensitivity 607
Get MS-DOS version number 389-90
Get nuénber of mappable pages (EMS)
37
Get number of pages (EMS) 617
Get number of raw pages (EMS) 638
Get or set allocation strategy 452-53
Get or set break flag, get boot drive
392-93
Get or set code page 47475
Get or set country information 395-98
Get or set display combination code
530-31
Get or set file attributes 410-11
Get or set file date and time 450-51
Get page frame address (EMS) 616
Get pages for all handles (EMS) 623
Get palette and border 514
Get palette register 513
Get pointer page 608
Get pointing device type 577
Get printer setup string 46364
Get printer status 588
Get PSP address 468—69
Get redirection list entry 464—65
Get return code 44445
Get size of alternate map register save
area (EMS) 641
Get size of page map information (EMS)
625
Get size of partial page map information
(EMS) 626-27
Get stack space for map page and call
(EMS) 634
Get status (EMS) 616
Get system environment 573~74
Get tick count 589
Get time 3806, 590
Get total handles (EMS) 632
Get verify flag 448
Get version (EMS) 619
Get video mode 511
Graphics CardPlus 87
graphics mode memory-mapped
programming 101-3
gray-scale
enable/disable summing 527
get values 517
GROUP directive 39

654 Index

H

handle functions
check if handle is remote 424-25
directory searching 16970, 172—73
DUMP.ASM program 151, 152-62
DUMP.C program 151, 161-63
duplicate handle 435
file/record management with 139—-44
advantages/disadvantages 144
vs FCB functions 128
file access skeleton program 141-43
functions listed 140—41
typical operation 139
keyboard input 62, 67-69
redirect handle 43637
set handle count 475-76
use for compatible MS-DOS
applications 316
volume-label search using 176
hardware-compatible applications
314-15, 317-18
header
device 263, 264, 269
.EXE program files 30
Hercules Graphics Card 87, 97, 98
HELLO.COM program 27, 28-29, 30
hex dump of 33
map produced by Object Linker during
generation of 51
HELLO.EXE program 33, 34-35, 36
HELLO.REF program, cross-reference
listing 57
H files 45
Hide mouse pointer 595

I

IBMBIO.COM file 16
disk location 189-92
IBM Corporation, role in MS-DOS
development 4-5
IBMDOS.COM file 13, 16
IBM PC 64 '
PC/AT 64
PS/2 64
regen buffers in memory for various
adapters 87
“ill-behaved” applications 315
INC files 45
In-Color Card 87
Initialize communications port 55657
Initialize fixed disk characteristics
544—45

Initialize or scroll window down 505-6
Initialize or scroll window up 505
Initialize pointing device interface
577-78
Initialize printer port 587-88
input. See character input/output;
keyboard input; mouse, input;
pointing device, input; serial port
input buffer, flush 35354
Input/Output (I/0O)-Control Read
(function 03H) 272-73
Input/Output (I/0)-Control Write
(function OCH) 276-77
input/output (I/0) redirection 67, 298-99
input status, check 353, 420
Input Status (command-code function
OGH) 274
INS8250 Asynchronous Communications
Controller 112
installable device drivers 12-13
Int 10H, ROM BIOS video driver
Function 00H, Set video mode 94, 500
Function 01H, Set cursor type 94, 501
Function 02H, Set cursor position
94, 501
Function 03H, Get cursor position
94, 502
Function 04H, Get light pen position
95, 503
Function 05H, Set display page 95, 503
Function 06H, Initialize or scroll
window up 95, 505
Function 07H, Initialize or scroll
window down 95, 505
Function 08H, Read character and
attribute at cursor 95, 506
Function 09H, Write character and
attribute at cursor 94, 506
Function OAH, Write character at
cursor 94, 507
Function OBH, Set palette,
background, or border 95, 508
Function 0CH, Write graphics pixel
95, 509
Function ODH, Read graphics pixel
95, 510
Function OEH, Write character in
teletype mode 94, 510
Function OFH, Get video mode 94, 511
Function 10H palette functions
Subfunction 00H, Set palette register
511
Subfunction 01H, Set border color
512

Int 10H, Function 10H, continued

Subfunction 02H, Set palette and
border 512-13

Subfunction 03H, Toggle blink/
intensity bit 513

Subfunction 07H, Get palette
register 513

Subfunction 08H, Get border color
514

Subfunction 09H, Get palette and
border 514

Subfunction 10H, Set color register
514

Subfunction 12H, Set block of color
registers 515

Subfunction 13H, Set color page state
515-16

Subfunction 15H, Get color register
516

Subfunction 17H, Get block of color
registers 516

Subfunction 1AH, Get color page
state 517

Subfunction 1BH, Set gray-scale
values 517

Function 11H, font functions

Subfunctions 00H and 10H, Load
user font 518

Subfunctions 01H and 11H, Load
ROM 8-by-14 font 518

Subfunctions 02H and 12H, Load
ROM 8-by-8 font 519

Subfunction 03H, Set block specifier
520

Subfunctions 04H and 14H, Load
ROM 8-by-16 font 520

Subfunction 20H, Set Int 1FH font
pointer 521

Subfunction 21H, Set Int 43H for
user’s font 522

Subfunction 22H, Set Int 43H for
ROM 8-by-14 font 522

Subfunction 23H, Set Int 43H for
ROM 8-by-8 font 523

Subfunction 24H, Set Int 43H for
ROM 8-by-16 font 523

Subfunction 30H, Get font
information 524

Function 12H

Subfunction 10H, Get configuration
information 525

Subfunction 20H, Select alternate
printscreen 526

Subfunction 30H, Set scan lines 526

Index

Int 10H, Function 12H, continued
Subfunction 31H, Enable/disable default
palette loading 52627
Subfunction 32H, Enable/disable video
527
Subfunction 33H, Enable/disable gray-
scale summing 527
Subfunction 34H, Enable/disable cursor
emulation 528
Subfunction 35H, Switch active display
528
Subfunction 36H, Enable/disable screen
refresh 529
Function 13H, Write string in teletype
mode 529
Function 1AH, Get or set display
combination code 530
Function 1BH, Get functionality/state
information 531
Function 1CH, Save or restore video
state 534
Int 11H, Get equipment configuration 535
Int 12H, Get conventional memory size
536
Int 13H, ROM BIOS disk driver 319
Function 00H, Reset disk system 536
Function 01H, Get disk system status
537
Function 02H, Read sector 538
Function 03H, Write sector 539
Function 04H, Verify sector 540
Function 05H, Format track 541
Function 06H, Format bad track 542
Function 07H, Format drive 543
Function 08H, Get drive parameters
543
Function 09H, Initialize fixed disk
characteristics 544
Function 0AH, Read sector long 545
Function OBH, Write sector long 546
Function OCH, Seek 547
Function ODH, Reset fixed disk system
548
Function OEH, Read sector buffer 548
Function OFH, Write sector buffer 549
Function 10H, Get drive status 549
Function 11H, Recalibrate drive 550
Function 12H, Controller RAM
diagnostic 550
Function 13H, Controller drive
diagnostic 551
Function 14H, Controller internal
diagnostic 551
Function 15H, Get disk type 552

656 Index

Int 13H, continued

Function 16H, Get disk change status
552

Function 17H, Set disk type 553

Function 18H, Set media type for
format 554

Function 19H, Park heads 554

Function 1AH, Format ESDI drive 555

Int 14H, ROM BIOS Serial

communications port driver 111
Function O0H, Initialize
communications port 556
Function 01H, Write character to
communications port 557
Function 02H, Read character from
communications port 558
Function 03H, Get communications
port status 558
Function 04H, Extended initialize
communications port 558
Function 05H, Extended
communications port control 559

Int 15H, ROM BIOS I/O Subsystem

Extensions
Function 00H, Turn on cassette motor
560
Function 01H, Turn off cassette motor
560
Function 02H, Read cassette 561
Function 03H, Write cassette 562
Function OFH, Format ESDI drive
periodic interrupt 562
Function 21H
Subfunction 00H, Read POST error
log 563
Subfunction 01H, Write POST error
log 563
Function 4FH, Keyboard intercept 564
Function 80H, Device open 564
Function 81H, Device close 565
Function 82H, Process termination 566
Function 83H, Event wait 566
Function 84H, Read joystick 567
Function 85H, SysReq key 568
Function 86H, Delay 568
Function 87H, Move extended memory
block 569
Function 88H, Get extended memory
size 570
Function 89H, Enter protected mode
570
Function 90H, Device wait 571
Function 91H, Device post 572

Int 15H, continued
Function COH, Get system
environment 317, 573
Function C1H, Get address of extended
BIOS data area 574
Function C2H
Subfunction 00H, Enable/disable
pointing device 574
Subfunction 01H, Reset pointing
device 575
Subfunction 02H, Set sample rate
576
Subfunction 03H, Set resolution 576
Subfunction 04H, Get pointing
device type 577
Subfunction 05H, Initialize pointing
device interface 577
Subfunction 06H, Set scaling or get
status 578
Subfunction 07H, Set pointing
device handler address 579
Function C3H, Set watchdog time-out
580
Function C4H, Programmable option
select 580
Int 16H, ROM BIOS keyboard driver 322
Function 00H, Read character from
keyboard 581
Function 01H, Get keyboard status 582
Function 02H, Get keyboard flags 582
Function 03H, Set repeat rate 583
Function 04H, Set keyclick 584
Function O5H, Push character and scan
code 585
Function 10H, Read character from
enhanced keyboard 585
Function 11H, Get enhanced keyboard
status 586
Function 12H, Get enhanced keyboard
flags 586
Int 17H, ROM BIOS Parallel port printer
driver 108-19
Function 00H, Write character to
printer 587
Function 01H, Initialize printer port
587
Function 02H, Get printer status 588
Int 18H, ROM BASIC 588
Int 19H, ROM BIOS Reboot system 588
Int 1AH, Real-time (CMOS) Clock Driver
Function 00H, Get tick count 589
Function 01H, Set tick count 589
Function 02H, Get time 590
Function 03H, Set time 590

Int 1AH, continued

Function 04H, Get date 591
Function 05H, Set date 591
Function 06H, Set alarm 591
Function 07H, Reset alarm 592
Function 0AH, Get day count 592
Function 0BH, Set day count 593
Function 80H, Set sound source 593

Int 20H, Terminate process 341
Int 21H, MS-DOS system functions

function execution in a typical I/O
request 281-82

function summary by category 337-40
(table)

function summary by number 335-37
(table)

Function 00H, Terminate process 342

Function 01H, Character input with
echo 70, 148, 343

Function 02H, Character output 90, 344

Function 03H, Auxiliary input 110,
344-45

Function 04H, Auxiliary output 110,
345—46

Function O5H, Printer output 107,
346-47

Function 06H, Direct console 1/0 70,
73, 90, 34748

Function 07H, Unfiltered character
input without echo 70, 73, 348-49

Function 08H, Character input without
echo 70, 349-50

Function 09H, Display string 90,
350-51

Function 0AH, Buffered keyboard
input 70-71, 351-52

Function 0BH, Check input status 70,
353

Function OCH, Flush input buffer and
then input 70, 353-54

Function ODH, Disk reset 354—55

Function OEH, Select disk 167, 355-56

Function OFH, Open file 132, 137,
356-57

Function 10H, Close file 132, 357-58

Function 11H, Find first file 358-59

Function 12H, Find next file 360-61

Function 13H, Delete file 132, 361-62

Function 14H, Sequential read 132,
362-63

Function 15H, Sequential write 132,
363-64

Function 16H, Create file 132, 364-65

Index

Int 21H, continued

Function 17H, Rename file 132, 173,
366-67

Function 18H, Reserved 367

Function 19H, Get current disk 167,
168, 367

Function 1AH, Set DTA address 130,
132, 368

Function 1BH, Get default drive data
368-69

Function 1CH, Get drive data 370

Function 1DH, Reserved 371

Function 1EH, Reserved 371

Function 1FH, Reserved 371

Function 20H, Reserved 371

Function 21H, Random read 132,
372-73

Function 22H, Random write 132,
373-75

Function 23H, Get file size 132, 375-76

Function 24H, Set relative record
number 132, 376

Function 25H, Set interrupt vector 147,
252, 253, 316, 377-78

Function 26H, Create new PSP 378-79

Function 27H, Random block read 132,
379-80

Function 28H, Random block write
132, 381-82

Function 29H, Parse filename 129, 132,
382

Function 2AH, Get date 384—-85

Function 2BH, Set date 385

Function 2CH, Get time 386

Function 2DH, Set time 38687

Function 2EH, Set verify flag 38788

Function 2FH, Get DTA address
388-89

Function 30H, Get MS-DOS version
number 148, 319, 389

Function 31H, Terminate and stay
resident 252, 253, 390-91

Function 32H, Reserved 392

Function 33H, Get or set break flag, get
boot drive 392-93

Function 34H, Reserved 393

Function 35H, Get interrupt vector 252,
316, 393-94

Function 36H, Get drive allocation
information 394-95

Function 37H, Reserved 395

Function 38H, Get or set country
information 395-98

Function 39H, Create directory 167,
398-99

658 Index

Int 21H, continued
Function 3AH, Delete directory 167, 399
Function 3BH, Set current directory 167,
400
Function 3CH, Create file 140, 401-2
Function 3DH, Open file 107, 110, 140,
204, 402—4
Function 3EH, Close file 140, 204, 404
Function 3FH, Read file or device 67, 69,
71, 109, 110, 141, 298, 300, 322, 405—
6
Function 40H, Write file or device 35, 88,
107, 109, 110, 141, 298, 300, 322,
406-7
Function 41H, Delete file 141, 4078
Function 42H, Set file pointer 141,
408-9
Function 43H, Get or set file attributes
141, 410-11
Function 44H, IOCTL (I/0 control) 69,
93-94, 111, 204, 205, 411-34
Subfunction 00H, IOCTL: get device
information 412—13
Subfunction 01H, IOCTL: set device
information 414-15
Subfunction 02H, IOCTL: read
control data from character device
driver 415-16
Subfunction 03H, IOCTL: write
control data to character device
driver 416-17
Subfunction 04H, IOCTL: read
control data from block device
driver 418-19
Subfunction 05H, IOCTL: write
control data to block device driver
419-20
Subfunction 06H, IOCTL: check
input status 42021
Subfunction 07H, IOCTL: check
output status 421-22
Subfunction 08H, IOCTL: check if
block device is removable 422-23
Subfunction 09H, IOCTL: check if
block device is remote 42324
Subfunction 0AH, IOCTL: check if
handle is remote 42425
Subfunction 0BH, IOCTL: change
sharing retry count 425-26
Subfunction 0CH, IOCTL: generic
1/0 control for character devices
426-29

Int 21H, Function 44H, continued
Subfunction ODH, IOCTL: generic
1/0 control for block devices
429--32
Subfunction OEH, IOCTL: get logical
drive map 433
Subfunction OFH, IOCTL: set logical
drive map 434
Function 45H, Duplicate handle 141,
435
Function 46H, Redirect handle 141, 299,
436-37
Function 47H, Get current directory
167, 168, 437-38
Function 48H, Allocate memory block
196, 202, 323, 438-39
Function 49H, Release memory block
196, 323, 439-40
Function 4AH, Resize memory block
196, 198, 202, 219, 239, 322, 44041
Function 4BH, Execute program
(EXEC) 202, 299, 441-42 (see also
EXEC function)
Function 4CH, Terminate process with
return code 26, 31, 35, 317, 443—-44
Function 4DH, Get return code 221,
444—45
Function 4EH, Find first file 445-46
Function 4FH, Find next file 446-47
Function 50H, Reserved 447
Function 51H, Reserved 447
Function 52H, Reserved 447
Function 53H, Reserved 448
Function 54H, Get verify flag 448
Function 55H, Reserved 448
Function 56H, Rename file 141, 173,
449-50
Function 57H, Get or set file date and
time 141, 450-51
Function 58H, Get or set allocation
strategy 452-53
Function 59H, Get extended error
information 130, 145, 148, 453-56
Function 5AH, Create temporary file
141, 457-58
Function 5BH, Create new file 141,
458-59
Function 5CH, Lock or unlock file
region 141, 46061
Function 5DH, Reserved 461
Function 5EH, Machine name and
printer setup
Subfunction 00H, Get machine
name 461-62

Int 21H, Function SEH, continued
Subfunction 02H, Set printer setup
string 46263
Subfunction 03H, Get printer setup
string 463—64
Function S5FH, Device redirection
Subfunction 02H, Get redirection list
entry 464—65
Subfunction 03H, Redirect device
466-67
Subfunction 04H, Cancel device
redirection 46768
Function 60H, Reserved 468
Function 61H, Reserved 468
Function 62H, Get PSP address 468—69
Function 63H, Get DBCS lead byte
table 46970
Function 64H, Reserved 470
Function 65H, Get extended country
information 470-74
Function 66H, Get or set code page
474-75
Function 67H, Set handle count 141,
475-76
Function 68H, Commit file 141, 47677
Function 69H, Reserved 477
Function 6AH, Reserved 477
Function 6BH, Reserved 477
Function 6CH, Extended open file 141,
478-80
Int 22H, Terminate handler address 480
Int 23H, Ctrl-C handler address 317,
480-81
Int 24H, Critical-error handler address
147, 317, 481-82
Int 25H, Absolute disk read 482—-84
Int 26H, Absolute disk write 319, 48485
Int 27H, Terminate and stay resident
486-87
Int 28H, Reserved 487
Int 29H, Reserved 487
Int 2AH, Reserved 487
Int 2BH, Reserved 487
Int 2CH, Reserved 487
Int 2DH, Reserved 488
Int 2EH, Reserved 488
Int 2FH, Multiplex interrupt 488
Function 01H, Print spooler 488—89
Function 02H, ASSIGN 489
Function 10H, SHARE 490
Function B7H, APPEND 490-91
Int 33H, Microsoft Mouse driver 593
Function 00H, Reset mouse and get
status 80, 594

Index 659

Int 33H, continued

Function 01H, Show mouse pointer 80,
594

Function 02H, Hide mouse pointer 80,
595

Function 03H, Get mouse position and
button status 80, 595

Function 04H, Set mouse pointer
position 80, 596

Function 05H, Get button press
information 80, 596

Function 06H, Get button release
information 80, 597

Function 07H, Set horizontal limits for
pointer 80, 597

Function 08H, Set vertical limits for
pointer 80, 598

Function 09H, Set graphics pointer
shape 80, 598

Function OAH, Set text pointer type 80,
599

Function 0BH, Read mouse motion
counters 80, 599

Function OCH, Set user-defined mouse
event handler 80, 600

Function ODH, Turn on light pen
emulation 80, 601

Function OEH, Turn off light pen
emulation 80, 601

Function OFH, Set mickeys to pixels
ratio 80, 601

Function 10H, Set mouse pointer
exclusion area 80, 602

Function 13H, Set double speed
threshold 81, 602

Function 14H, Swap user-defined
mouse event handlers 81, 603

Function 15H, Get mouse save state
buffer size 81, 603

Function 16H, Save mouse driver state
81, 604

Function 17H, Restore mouse driver
state 81, 604

Function 18H, Set alternate mouse
event handler 81, 604

Function 19H, Get address of alternate
mouse event handler 81, 606

Function 1AH, Set mouse sensitivity 81,
606

Function 1BH, Get mouse sensitivity
81, 607

Function 1CH, Set mouse interrupt rate
81, 607

660 Index

Int 33H, continued

Function 1DH, Select pointer page 81,
608

Function 1EH, Get pointer page 81, 608

Function 1FH, Disable mouse driver 81,
608

Function 20H, Enable mouse driver 81,
609

Function 21H, Reset mouse driver 81,
609

Function 22H, Set language for mouse
driver messages 81, 610

Function 23H, Get language number
81, 610

Function 24H, Get mouse information
81, 611

Int 67H, Expanded Memory Manager

functions 204, 205, 207
Function 40H, Get status 616
Function 41H, Get page frame address
616
Function 42H, Get number of pages
617
Function 43H, Allocate handle and
pages 617
Function 44H, Map expanded memory
page 618
Function 45H, Release handle and
expanded memory 619
Function 46H, Get version 619
Function 47H, Save page map 620
Function 48H, Restore page map 620
Function 49H, Reserved 621
Function 4AH, Reserved 621
Function 4BH, Get handle count 621
Function 4CH, Get handle pages 622
Function 4DH, Get pages for all
handles 623
Function 4EH
Subfunction 00H, Save page map
623
Subfunction 01H, Restore page map
624
Subfunction 02H, Save and restore
page map 624
Subfunction 03H, Get size of page
map information 625
Function 4FH
Subfunction 00H, Save partial page
map 625
Subfunction 01H, Restore partial
page map 626
Subfunction 02H, Get size of partial
page map information 626

Int 67H, continued
Function 50H
Subfunction 00H, Map multiple
pages by number 627
Subfunction 01H, Map multiple
pages by address 627
Function 51H, Reallocate pages for
handle 628
Function 52H
Subfunction 00H, Get handle
attribute 629
Subfunction 01H, Set handle
attribute 629
Subfunction 02H, Get attribute
capability 630
Function 53H
Subfunction 00H, Get handle name
630
Subfunction 01H, Set handle name
631
Function 54H
Subfunction 00H, Get all handle
names 631
Subfunction 01H, Search for handle
name 632
Subfunction 02H, Get total handles
632
Function 55H
Subfunctions 00H and 01H, Map
pages and jump 633
Function 56H
Subfunctions 00H and 01H, Map
pages and call 633
Subfunction 02H, Get stack space for
map page and call 634
Function 57H
Subfunction 00H, Move memory
region 635
Subfunction 01H, Exchange memory
regions 635
Function 58H
Subfunction 00H, Get addresses of
mappable pages 636
Subfunction 01H, Get number of
mappable pages 637
Function 59H
Subfunction 00H, Get hardware
configuration 637
Subfunction 01H, Get number of raw
pages 638
Function 5SAH
Subfunction 00H, Allocate handle
and standard pages 638
Subfunction 01H, Allocate handle
and raw pages 639

Int 67H, continued
Function 5SBH
Subfunction 00H, Get alternate map
registers 639
Subfunction O1H, Set alternate map
registers 640
Subfunction 02H, Get size of
alternate map register save area
641
Subfunction 03H, Allocate alternate
map register set 641
Subfunction 04H, Deallocate
alternate map register set 642
Subfunction 05H, Allocate DMA
register set
Subfunction 06H, Enable DMA on
alternate map register set 643
Subfunction 07H, Disable DMA on
alternate map register set 643
Subfunction 08H, Deallocate DMA
register set 644
Function 5CH, Prepare expanded
memory manager for warm boot

Function SDH
Subfunction 00H, Enable EMM
operating system functions 645
Subfunction 01H, Disable EMM
operating system functions 645
Subfunction 02H, Release access key
646
Intel 80x86 microprocessor family 4, 8,
38, 64, 203
interrupts and 246-51
Intel 8259A Programmable Interrupt
Controller 112, 320
internal hardware interrupts 246
internal (intrinsic) commands 14
interrupt(s) 13, 244—45. See also Int 10H
through Int 67H
external hardware 247
internal hardware 246
servicing 250-51
software 247-49
types 244
interrupt handlers 16
example (ZERODIV.ASM) 25458
MS-DOS and 252-53
servicing 250, 251
tasks 245
typical 251
interrupt (intr) routine, device-driver
266—67, 293. See also command
code routines

Index

memory, continued
location of SYSINIT, DOS kernel,
MSDOS.SYS in 19
making available, for EXEC function
218-19
map after startup 20
RAM 196
memory areas, 196. See also arena entries
arena headers; transient program
area (TPA)
memory block
allocate 438-39
get/set allocation strategy 452-53
move extended 569—60
release 439—40
resize 440—41
memory interlace 203
memory management 195-215
arena headers 201-2
expanded memory 203-11
using 207-11
extended memory 212-15
Int 21H functions summary 339
MS-DOS applications compatibility
and 316
using memory-allocation functions
197-202
memory-mapped input/output 86,
96-103
graphics mode 101-3
text mode 96-101
memory models 39
segments, groups, classes for 40
memory segment 321-22
memory size
get conventional 536
get extended 570
mickeys, set to pixel ratio 601
Microsoft Mouse driver 593611
miscellaneous system functions, Int 21H
functions summary 340
MKDIR (MD) command 167
Monochrome/Printer Display Adapter
(MDA) 86, 97, 98
example dump, regen buffer 98
MOUDEMO.C program 82—83
mouse. See also pointing device
disable driver 608-9
driver 593
enable driver 609
get address of alternate event handler
606
get button press information 596
get button release information 597

mouse, continued
get information 611
get language number 610
get mouse save state buffer size 603—4
get position and button status 595
get sensitivity 607
hide pointer 595
input 80-83
read motion counters 599-600
reset and get status 594
reset driver 609
save driver state 604
set alternate event handler 6045
set double speed threshold 602
set graphics pointer shape 598
set interrupt rate 607
set language for driver messages 610
set pointer exclusion area 602
set pointer horizontal limits 597-98
set pointer page 608
set pointer position 596
set pointer vertical limits 598
set sensitivity 606
set text pointer type 599
set user-defined event handler
600-601
show pointer 594-95
summary of function calls 494-99
swap user-defined event handlers 603
Move extended memory block 569-70
Move memory region (EMS) 635
MS-DOS. See also Operating System/2
(0s/2)
genealogy 3-9
interrupt handlers and 252-53
loading 16-20
programming tools (see programming
tools)
structure 12-16
MS-DOS application programs, porting to
05/2 318-31
conversion 326-30
encapsulation 323, 324-25
MS-DOS function calls and OS/2
counterparts 328-29
optimization 330-31
rationalization 322-23
ROM BIOS functions and OS/2
equivalents used in MS-DOS
applications 330
segmentation 32122
MS-DOS application programs, structure
of 21-42

Index

Read character from enhanced keyboard
585
Read character from keyboard 581
Read control data from block-device
driver 418-19
Read control data from character device
driver 415-16
Read file or device 405-6
Read graphics pixel 510
Read joystick 567
Read mouse motion counters 599—600
Read POST error log 563
Read sector 53839
Read sector buffer 548
Read sector long 545—46
Reallocate pages for handle (EMS) 628
Reboot system 588-89
Recalibrate drive 550
record(s)
set relative number 376-77
using FCB functions 129-39
using handle functions 139-44
record operations, Int 21H functions
summary 338-39
Redirect device 466—67
Redirect handle 436-37
redirection, input/output 24, 67, 20899
cancel 467-68
redirection list entry, get 464—65
.REF files 45, 56
refresh buffer 86
regen buffer 86
example dump of MDA adapter 98
formula to determine offset 102
memory diagram showing location of
87
Release access key (EMS) 646
Release handle and expanded memory
(EMS) 619
Release memory block 439-40
Removable Media (function OFH) 278
REN(AME) command 14
Rename file 366-67, 449-50
request header format 265
command codes for (see command
code routines, device-driver)
reserved area, disk 182
reserved functions
EMS 621
Int 21H functions summary 340
Reset alarm 592
Reset disk system 536-37
Reset fixed disk system 548
Reset mouse and get status 594

666 Index

Reset mouse driver 609
Reset pointing device 575
resident device drivers 12
Resize memory block 440—41
RESTORE command 15
Restore mouse driver state 604
Restore page map (EMS) 620-21, 624
Restore partial page map (EMS) 626
RET instruction 41
retrace interval 100
return code
get 444
terminate process with 443—44
RMDIR (RD) command 167
ROM 8-by-8 font
load 519
set Int 43H for 523
ROM 8-by-14 font
load 518-19
set Int 43H for 522-23
ROM 8-by-16 font
load 520-21
set Int 43H for 52324
ROM BASIC 588
ROM BIOS
display functions 94-96, 330
interrupts of special importance to 247,
248—49
keyboard functions 67
input with 71-72
ROM BIOS compatibility 31416, 317-18
avoid unstable hardware 318
check host capabilities 317-18
functions of, and OS/2 equivalents 330
ROM BIOS function calls. See also
Section 111
summary 494-99
ROM bootstrap routine 16
root directory 166, 18486, 187
partial hex dump 186
RS-232 serial-interface standard 106
RS-422 serial-interface standard 106

S

Save and restore page map (EMS) 624-25

Save mouse driver state 604

Save or restore video state 534—35

Save page map (EMS) 620, 623

Save partial page map (EMS) 625-26

scan lines, set 526

screen control with MS-DOS functions
91-93

screen refresh, enable/disable 529

Search for handle name (EMS) 632
Seattle Computer Products 4
Seek 547
SEGMENT command 29, 33, 38
segment register 321
Select alternate printscreen 526
Select disk 355-56
selector 321
Select pointer page 608
Sequential read 362-63
Sequential write 363—-64
serial port 106, 109-12. See also
TALK.ASM program
extended initialize port 55859
extended port control 559-60
get status 558
initialize 55657
read character from 558
write character to 557
Set alarm 591-92
Set alternate map registers (EMS) 640
Set alternate mouse event handler 604-5
Set block of color registers 515
Set block specifier 520
Set border color 512
Set color page state 515-16
Set color register 514-15
Set current directory 400
Set cursor position 501-2
Set cursor type 501
Set date 385, 591
Set day count 593
Set device information 414-15
Set disk type 553
Set display page 503—4
Set double speed threshold 602
Set DTA address 368
Set file pointer 4089
Set graphics pointer shape 598
Set gray-scale values 517
Set handle attribute (EMS) 629
Set handle count 475-76
Set handle name (EMS) 631
Set horizontal limits for pointer 597-98
Set Int 1FH font pointer 521
Set Int 43H for ROM 8-by-8 font 523
Set Int 43H for ROM 8-by-14 font 522-23
Set Int 43H for ROM 8-by-16 font 523-24
Set Int 43H for user’s font 522
Set interrupt vector 377-78
Set keyclick 584
Set language for mouse driver messages
610
Set Logical Device (function 18H) 280-81

Set logical drive map 434
Set media type for format 554
Set mickeys to pixels ratio 601
Set mouse interrupt rate 607
Set mouse pointer exclusion area 602
Set mouse pointer position 596
Set mouse sensitivity 606
Set palette and border 512-13
Set palette, background, or border 508-9
Set palette register 511-12
Set pointing device handler address
579-80
Set printer setup string 46263
Set relative record number 376-77
Set repeat rate 583—-84
Set resolution 57677
Set sample rate 576
Set scaling or get status 578-79
Set scan lines 526
Set sound source 593
Set text pointer type 599
Set tick count 589-90
Set time 386-87, 590
Set user-defined mouse event handler
600-601
Set verify flag 38788
Set vertical limits for pointer 598
Set video mode 500-501
Set watchdog time-out 580
SHARE 490
shell. See COMMAND.COM file;
command processor (shell)
SHELL.ASM program 229-38
SHELL.C program 225-29
Show mouse pointer 594-95
SLIBC.LIB, table-of-contents listing for
59
Softech company 5
software interrupts, 247—49
sound source, set 593
STACK attribute 31
stack pointer (SP) register 2526, 31, 35
stack segment 38
stack segment (SS) register 31, 35
standard auxiliary device (stdausx) 20,
323
default device 298
handle 66
standard error device (stders) 20
default device 298
handle 66
standard input device (stdin) 20
default device 298
handle 66, 67

Index

667

Ray Duncan received a B.A. in chemistry at the University of California,
Riverside, and an M.D. at the University of California, Los Angeles; he spe-
cialized in pediatrics and neonatology at the Cedars-Sinai Medical Center
in Los Angeles. Duncan has been involved with microcomputers since
the Altair days and has written many articles for personal computer
magazines, including Dr. Dobb’s Journal, Programmer’s Journal, and
BYTE; he is currently a contributing editor to PC Magazine. In addition,
Duncan is the founder of Laboratory Microsystems Incorporated, a soft-
ware house specializing in FORTH interpreters and compilers. Duncan
was the general editor of THE MS-DOS ENCYCLOPEDIA.

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Cover design adapted by Becky Geisler-Johnson from original design by
Ted Mader and Associates.

Interior text design by Darcie S. Furlan
Principal typography by Lisa G. Iversen and Jean Trenary
Text composition by Microsoft Press in Garamond with display in Gara-

mond Bold, using the Magna composition system and the Linotronic 300
laser imagesetter.

