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Preface

This text is the first in its field to use Ada 95 throughout as the language of instruction.
It is intended for use in a second or third course at the undergraduate level; it is also
suitable for self-study. I assume a basic knowledge of Ada—equivalent to the first eight
chapters of Feldman/Koffman, Ada 95: Problem Solving and Program Design, Second
Edition, © Addison-Wesley 1996. I also present a summary of the Ada type system in
Chapter 1, and a synopsis of other features, oriented to readers with Pascal experience,
in Appendix I. Because many readers may have experience with Ada 83 but not with
Ada 95, I point out new features wherever appropriate.

BASIC PRINCIPLES

As the title indicates, this book is about software construction and data structures. It
presents most of the classical data structures, together with many algorithms, in a
framework based on software construction using the encapsulation principle. Attention
is paid to “object thinking” through heavy emphasis on the state and behavior of
objects, on the use of private types to achieve encapsulation and tight control over oper-
ations, and on the use of generic templates to achieve flexibility and reusability.

Performance prediction (“big O” notation) is introduced early in Chapter 3 and per-
vades the remaining chapters; the notion of trade-offs—for example, time versus space
and speed versus abstraction—is emphasized throughout. The presentation of “big O”
is correct but rather informal, avoiding heavy mathematical notation that might intimi-
date some readers.

Inheritance and dynamic dispatching are introduced in the middle of the book.
However, these important techniques are kept under rather tight control, because
overuse of inheritance is now seen by industry as potentially creating large and unman-
ageable hierarchies of classes. Indeed, the growing popularity of the Standard Template
Library in the C++ community indicates that generic templates are at least as important
as inheritance structures in building understandable and maintainable software. I have
tried for balance, with a preference for generics but with due regard for the role of
inheritance.

Packages and application programs—about 200 in all—are presented in complete
and compilable form; I have an aversion to program fragments. However, for teaching
purposes, which are described below, not all programs are fully functional:

» Sometimes only a package interface is given, so that the student can write the
implementation as an exercise.

-« Sometimes the implementation is provided, but some or all of the operations are

“stubbed out” so as to be compilable but nonfunctional. The intention is to direct

the student to fill in the code for the stubs.

In developing the packages and application programs, I have chosen a well-

v



vi Preface

balanced mixture of examples from the computer science, data management, and math-
ematical software domains.

GENERAL ORGANIZATION

Each chapter introduces some data structures concepts, a few ADTs, and one or
more applications thereof, all in the context of an integrated approach to Ada 95.

The first chapter is a general introduction to abstraction, with a brief survey of the
Ada type system and the way it is described in the Ada standard. Also presented are a
few basic Ada 95 topics, describing the changes to the names of standard packages, gen-
eralized declaration order, and removal of the write-only restriction on OUT parameters.

The second chapter introduces five simple but very useful ADTs:

* Rational numbers

*  Currency (dollars and cents)

* Calendar dates

* Simple video-screen control using ANSI escape sequences
» Simple window management

These ADTs are then used in later chapters.

Chapter 3 discusses recursion and “big O,” with emphasis on informal estimation
of the performance of an algorithm. “Big O comparison is done using a keyed-table
example, with the table implemented first as an unordered array and then as an ordered
one. This example lays the groundwork for the recurring generic keyed table introduced
in Chapter 5 and reimplemented in later chapters as appropriate data structures (linked
lists, binary search trees, hash tables) are brought into play.

A discussion of the relationship between performance prediction and performance
measurement is given in Section 3.6, along with a package for measuring elapsed CPU
time and some suggestions for implementing it on time-shared computers. Ada’s stan-
dard time services provide only time of day, which is fine for personal computers but
useless for measuring CPU time on a shared system. Therefore one must resort to using
operating-system services. The example in this section suggests how to do this and
some code is given in an appendix for implementing it under UNIX.

Chapter 4 introduces multidimensional and unconstrained arrays, with examples
from vectors and matrices, as well a general discussion of storage mappings for multi-
dimensional arrays.

Chapter 5 introduces generics, including a generic sort and a generic binary search,
and generic ADTs for bit-mapped sets, vectors, and keyed tables.

Chapter 6 introduces variant records, with examples taken from personnel records,
geometric shapes, variable-length strings, and metric (dimensioned) quantities. Also
introduced here are Ada 95 tagged types, with a revision of the personnel example to
show type extension as a much more dynamic kind of variant record.

Chapter 7 introduces queues and stacks, with different implementations—all as
generic ADTS, of course. Stacks are used to implement several simple expression-to-
RPN translators; queues are applied in a discrete simulation of a supermarket.
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Chapters 8 and 9 present dynamic linear linked structures. Chapter 8 introduces the
basics. Chapter 9 presents some interesting generic applications—including a reimple-
mentation of the keyed table—as well as introducing Ada 95 unbounded strings, gen-
eral access types and heterogeneous lists.

Chapter 10 introduces directed graphs, with an application to state graphs.

Chapter 11 presents the basics of binary trees, using expression trees and binary
search trees as the main examples. The chapter concludes with an extended example of
a cross-referencer, including an example of Ada 95 subprogram pointers to implement
finite state machines and other table-driven programming.

Chapter 12 presents some “advanced” examples of trees: threaded binary trees,
heaps, AVL trees, and general (nonbinary) trees. The heap is presented as a data struc-
ture in its own right, with operations provided in a generic package. An example is
given of using this heap package to implement priority queues; the same generic heap
package is reused in Chapter 14 to implement heap sort.

Chapter 13 gives a brief introduction to hash tables; Chapter 14 presents a collec-
tion of sorting algorithms, classified by their “big Os.”

Finally, Chapter 15 gives a brief introduction to concurrent programming. Ada task
types and protected types are presented through a series of small examples, followed by
two major applications: a bank simulation and the famous Dining Philosophers.

PROGRAM LIBRARY

The packages and programs in this book make up an integrated and coherent pro-
gram library. The book can be used most effectively by making actual use of the pro-
gram files, completing the intentionally incomplete ones, building on or modifying
them, and so on. To facilitate this approach, students and teachers should have easy
access to the roughly 200 program files in electronic form so that no time is wasted in
keying them in. To this end, the programs are archived on various Ada-related Internet
servers and CD-ROMs.

From Addison-Wesley, via ftp in the directory:

ftp://ftp.aw.com/cseng/authors/feldman/cs2-ada

From the World Wide Web, which will also include any future support and
announcements:

http://www.aw.com/cseng/authors/feldman/cs2-ada
From the author’s ftp site at The George Washington University:
ftp://£ftp.gwu.edu/pub/ada/courses

At all sites, three compressed archives are provided:

* c¢s2code. zip (DOS/Windows)
e cs2code.tar.Z (UNIX)
* cs2code. sit.hgx (Macintosh)
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CHAPTER 1

Abstraction and the Ada
Type System

1.1 Your Ada Starting Points
1.2 Some Ada 95 Changes
1.3 The Life Cycle of Software Development
1.4 The Goals of Software Engineering
1.5 Using Abstraction to Manage Complexity
1.6 A Quick Tour of the Ada Type System
1.7 A Set of Numeric Types for This Book
1.8 Abstract Data Types (ADTs)
1.9 Object-Oriented Programming
1.10 A Predefined ADT: The Ada.Calendar Package
1.11  Application: Time Around the World
1.12 A Predefined ADT: Strings in Ada

This is a book about algorithms and data structures, using an approach very much ori-
ented toward the important concepts of abstraction and abstract data types (ADTs).

The dictionary defines abstraction as the act or process of separating the inherent
qualities or properties of a thing from the actual physical object to which they belong.
Abstraction in programming is the process of separating the essential properties of a
thing from the actual details of the way it is implemented or stored.

In computing, an abstract data type is a program unit whose specification provides
a type and a set of operations on that type. In Ada, ADTs are implemented using pack-
ages and private types. In this chapter, you will see how Ada’s standard package
Ada.Calendar should be viewed as an ADT, and you will use a number of its oper-
ations for the first time in an application program. The Ada predefined type String is
also treated as an ADT in this chapter.
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In the next chapter, you will learn how to write ADTs and how to design a test plan
to demonstrate that an ADT works as it should.

1.1  YOUR ADA STARTING POINTS

This book does not teach the rudiments of Ada from the beginning. Here are some of
the things you should know about Ada before attempting the material in this book:

® The basics—the form of a program, the declaration of constants and variables, the
way to use the standard Text_IO library for input and output
¢ Control structures—assignment, IF, CASE, FOR and WHILE loop statements

¢ Data structures—the predefined types Integer, Float, Character, and
Boolean, and the way to define subtypes of these; simple record and one-dimen-
sional array types

. System structures—procedufes, functions, exception handling, and a bit about packages
You should also know how to edit, compile, link, and execute a program using a

validated Ada compiler on a computer that is available to you.
These are the major Ada topics you will study in this book:

® Multidimensional and unconstrained array types

® Variant records

® Access types and dynamic storage allocation

¢ Generic units

* Tagged types and other object-oriented features

* Concurrent programming structures

Ada 95

This book uses Ada 95 as its “official” programming language. Ada 95 is the revised
version of Ada whose standard became official when it was adopted by the
International Standards Organization (ISO) in February 1995 and by the American
National Standards Institute (ANSI) in April 1995. The original Ada is widely referred
to as Ada 83, to distinguish it from the revised version, and we will do the same wher-
ever a distinction is necessary.

Ada95isanearly 100% “upward compatible” revision of Ada 83, so if you leamed Ada
83 before reading this book, all your knowledge is still useful. Almost every Ada 83 pro-
gram you have seen or written can be compiled and run correctly with an Ada 95 compiler.
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Ada 95 corrects a few troublesome features of Ada 83 and introduces some inter-
esting extensions. In this book, we will point these changes out, as appropriate, either
in the text or in footnotes. Section 1.2 introduces a few Ada 95 features you should
know about from the beginning.

1.2 SOME ADA 95 CHANGES

In this section, we describe some changes to the basic structure of an Ada program.
These changes concern names of standard packages, declaration order, and QUT
parameters.

Names of Standard Packages

Ada 95 has many more standard packages than Ada 83, including standard packages for
powerful string operations, elementary mathematical functions such as square root and
cosine, and random number generators. These packages are not required in Ada 83;
they are often provided as compiler-dependent packages. Ada 95 also provides a fea-
ture called hierarchical packages, which allows a package to be declared a “child” of a
parent package.

We will see some examples of the new packages, and will introduce our own child
packages, in later chapters. For now, you should note that Ada 95 compilers supply a
package called Ada, under which most of the standard packages are grouped as chil-
dren. Thus, Calendar is now officially called Ada.Calendar, Text_IO is now
called Ada . Text_IO, and so on. In order that existing Ada 83 programs be compati-
ble with Ada 95, the Ada 83 package names can still be used and are treated as renam-
ings of, (or “nicknames” for) the new official names. In this book, we use the new
names consistently.

There are two new standard packages that you will find immediately useful.
These provide for input/output operations on values of the predefined Integer and
Float types; they are called, respectively, Ada.Integer_Text_IO and
Ada.Float_Text_TI0. All the familiar Get and Put procedures are available,
including the formatting parameters Width (Integer), Fore, Aft, and Exp
{Float). As usual, a program using these packages must be preceded by the appro-
priate context clause (WITH clause)—for example,

WITH Ada.Integer_Text_IO;

The examples in this book use the new packages wherever appropriate.

Declaration Order

Ada 83 allows a fairly flexible order of declarations of types, variables, constants, and
subprograms within a given subprogram’s declarative section. Generally, these can be
intermixed as long as nothing is referenced before it has been declared. However, stu-
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dents of Ada 83 are often unpleasantly surprised to discover that subprogram bodies
must come at the end of the declarations. In the most frequently arising case, attempt-
ing to declare a variable or a constant after the declaration of a procedure or function
body results in a compilation error message something like “illegal declaration of
basic declarative item.”

This seemingly strange rule was imposed in Ada 83 in an attempt to improve the
readability of programs by ensuring that variable and constant declarations, which are
short, were not “buried” between long subprogram bodies. The rule caused more incon-
venience than it eliminated, so it has been eliminated in Ada 95. Declarations of any
kind can be freely intermixed as long as the sensible rule is followed that nothing can
be referenced before it has been declared.

OUT Parameters

Procedures in Ada can take parameters of IN, OUT, and IN OUT modes. Within the
procedure body, an IN parameter may not appear on the left side of an assignment; it is
treated as a constant within the procedure body, and therefore may not be changed
there. In Ada 83, an OUT parameter may not appear on the right side of an assignment;
the resulting compilation error message is something like “illegal reading of an OUT
parameter.”

As a result of this rule, an OUT parameter cannot be computed in stages, in state-
ments of the form

OutParam := OutParam + 1;

or otherwise used in the procedure. The standard solution is to use a temporary variable
for the computation and copy its value into the OUT parameter just before the procedure
returns to its caller. This is an annoying requirement; the rule is eliminated in Ada 95.
OUT parameters can be used freely within the procedure. Program 1.1 illustrates the
changes just described. If you have an Ada 95 compiler and the program source file
available, you should compile, link, and execute it to test your familiarity with the com-
piler and observe the program’s behavior.

PROGRAM 1.1 lllustrating Some Ada 95 Changes

WITH Ada.Text_IO0;
WITH Ada.Integer_Text_IO;
PROCEDURE Ada95_Changes IS

--| This program shows four small changes in Ada 95:

--| (1) new names for standard packages (e.g., Ada.Text_IO)

--| (2) new standard packages for numeric input/output

--] (3) variables can legally be declared after procedure bodies
--| (4) OUT parameters can be legally used within the procedure

--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: October 1995
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PROCEDURE ShowOutParameter (Result: OUT Integer) IS

BEGIN
Result := 2;
Result := Result + 1; -~ Result on the right is illegal in Ada 83!

END ShowOutParameter;

Y: Integer; -- declaring Y after a procedure body
-- is illegal in Ada 83!

BEGIN -- Ada%5_Changes

ShowOutParameter (Result => Y);
Ada.Text_IO.Put(Item => "Y's value is now");
Ada.Integer_Text_IO.Put(Item => Y, Width => 1);
Ada.Text_IO0.New_Line;

END Ada95_Changes;

1.3 THE LIFE CYCLE OF SOFTWARE
DEVELOPMENT

Developing software in classes is somewhat different from doing it in the real world.
In a class, you are generally given the problem specification by an instructor.
Sometimes the problem specification is ambiguous or incomplete, so interaction
between the instructor and the students is necessary for the students to determine the
details.

In the real world, the initial specification for a software product (a large program
system) may also be incomplete. The specification is clarified through extensive inter-
action between the prospective users of the software and its designers. Through this
interaction, the software designers determine precisely what the users want the pro-
posed software to do and the users determine what to expect from the software product.
Although it may seem like common sense to proceed in this manner, very often a sup-
posedly final version of a software product does not perform as expected. The reason is
usually a communication gap between those responsible for the product’s design and its
eventual users; generally, when the software fails to meet expectations, both parties are
at fault.

One cause of the communication gap is that software users are often not familiar
enough with computers and their capabilities to know whether their requests are rea-
sonable or how to specify what they want. Software designers, on the other hand, often
assume that they are the best judges of what the user really wants; they are quick to
interpret a user’s incomplete or unclear specification as a “blank check,” allowing them
to do what they think best. To avoid this communication gap and produce software that
performs correctly and efficiently, truly meeting the needs of its user community, we
must recognize that software is not just coded, but developed and maintained in a sys-
tematic fashion. Classically, the process of developing software is called the software
life cycle, which consists of these phases:

1. Requirements specification. State the problem and gain a clear understanding of
what is required for its solution. This sounds easy, but it can be the most critical
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part of problem solving. A good problem solver must be able to recognize and
define the problem precisely. If the problem is not totally defined, you must
study it carefully, eliminating the unimportant aspects and focusing on the root
problem. The solution may require an interactive program, to be operated by a
human user, or a set of types and subprograms to be used not by an end user but
by another developer, or both. It is, in any case, very important to understand
just who the “customer” is.

2. Analysis. Identify problem inputs, desired outputs, and any additional require-
ments for or constraints on the solution. Identify the information that is supplied
as problem data and the results that should be computed and displayed. Also
identify how input is to be obtained. Will an interactive user interface be used?
What about external disk files? Finally, determine the required form, and the
units, in which the results should be displayed (for example, as a table with spe-
cific column headings).

3. Design. Historically, most software has been developed as a set of functions.
First the functions were identified, and then the data upon which the functions
acted. A more modern view is that software is best when it is a faithful model of
some aspect of the real world. In this view, the world is best seen as a collection
of things, or objects, that carry out actions or have actions performed upon
them. The objects are the data types and variables necessary for the system to
produce the desired outputs from the desired inputs.

Having identified the objects (the “nouns” of the system) identify the oper-
ations (the *verbs”) to be performed on each kind of object. Generally, each
type and its operations are grouped into a module, or package; the interface, or
“contract,” between the module and its human users or its “client” programs is
specified. A program often consists of a relatively small main procedure that
makes use of a number of modules; to an increasing degree, these modules are
already available in software libraries. It is important at this stage to identify
those parts of the system that do not have to be written because someone else
has already written them.

Once the basic module structure is determined, develop the individual algo-
rithms for the various operations and the main algorithm to solve the overall
problem.

The modern technique of beginning a design from the system’s objects, rather
than from its functions or operations, is commonly called object-oriented design.

It is very important to document your design in written form. This can take
any of a number of forms, including structure charts, high-level pseudocode,
block diagrams, and so on. Your instructor will generally specify his or her pre-
ferred form of documentation; you will find it much easier to develop it before
you start programming, or at least while programming, instead of rushing it
through just before the project is due. At that point, it will be too late for you to
get the benefit of understanding your own design by carefully writing it down.

4. Developing a Test Plan. It is important to specify, in as much detail as possible,
just how the correctness of the various module operations, and of the overall
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program, will be tested. In college programming, you often design, code, debug,
and test your programs yourself, or perhaps with a colleague or two. It is tempt-
ing to test the programs using just a few arbitrarily chosen test data. Once you
believe that the program is correct, you simply hand it in to the instructor and go
on to other work. Because you are the programmer and also do the testing and
are responsible for correcting any bugs, the testing process often is not as com-
plete as it should be.

Unfortunately, even for simple programs, this is insufficient. A single test
case, or a set of arbitrarily or randomly chosen ones, is usually not enough. You
must consider special cases, endpoints of the data ranges, responses of the pro-
gram to “bad” input, and so on. It is more effective to write your test plan before
you actually code the program, so that you can specify tests based on the desired
inputs and outputs. In this way, you will avoid being biased by an intimate
knowledge of your own code.

In the “real world,” testing is a rigorous process that is usually performed by
a group other than the programmers; the users of the software product are often
involved in the testing phase. It is important to identify bugs early, because the
software that controls a rocket or processes payroll checks must be absolutely
free of errors before its first use.

On the other hand, a maxim in computing, attributed to Dr. Edsger
Dijkstra in the early 1970s, states that “testing shows only the presence of
bugs, not the absence of bugs.” Complex programs require complex and rig-
orous testing to find as many bugs as possible, but unfortunately it is impossi-
ble to test every possible state of a complex program. Therefore, it is
important to develop a testing strategy that is as effective as possible, but also
to have a well-managed process for correcting any errors that arise after the
formal testing phase is over.

We could have included developing the test plan as a part of the design
stage; we chose instead to present it as a separate phase of the life cycle, to
emphasize the great importance of developing a testing strategy before the pro-
gram is coded.

Implementation or coding. Implement the various modules, and the overall pro-
gram, in a specific programming language. Test modules as they are developed;
it is neither necessary nor desirable to implement the entire system before
beginning to test its parts.

Testing. Carry out your test plan systematically. If you need to correct errors, be
sure to rerun all your tests, so that you are sure that fixing one error did not
introduce another. Rerunning a series of tests after correcting an error is gener-
ally called regression testing.

Operation (sometimes called production).

Maintenance. A software product usually must continue to perform effectively
over a long period, sometimes in a changing environment. This requirement
may necessitate periodic updating of the program. If the purpose of the update
is to correct newly discovered errors, the update process is usually called
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maintenance; if the purpose is to incorporate changes—for example, revised
tax laws or new features desired by the users—the update process is called
enhancement.

The software life cycle is iterative. During the design phase, problems may arise
that make it necessary to modify the requirements specification. Any such changes
require the approval of the users. Similarly, during coding it may become necessary to
reconsider decisions made in the design phase. Again, any changes must be approved
both by the system designers and by the users.

Estimates vary as to the percentage of life-cycle time spent in each phase. For
example, a typical system may require a year to proceed through the first three phases,
3 months of testing, then 4 years of operation and maintenance. Because the lifetime of
a software product often far exceeds its initial development time, you can see why it is
important to design and document software in such a way that it can be easily under-
stood and maintained by a variety of users.

In this section, we have described a systematic approach to the development of
software. The “sizes”—number of pages of documentation, the number of person-
hours expended, and so on—of the various steps of the life cycle should be propor-
tional to the scale of the problem: relatively small for simple problems and relatively
large for complex problems. It is important to learn that the same steps are always
present.

1.4 THE GOALS OF SOFTWARE ENGINEERING

The disciplined, systematic development of software, following well-defined methods
such as the one we have described here, is often called software engineering, to stress
its similarity to the systematic methods used in traditional engineering. However, one
need not be an actual engineer or even an engineering student to develop good soft-
ware, and “software engineering” is therefore less exclusive than it sounds. To
emphasize that excellent software is often developed by many kinds of people,
whether or not they are engineers, we use the terms software development and soft-
ware developer in this book.

Whether we describe ourselves as software engineers or as software developers, it
is important to recognize that our main goal is to develop effective and useful software.
In this book, we study modern software development methods that are intended to pro-
duce software that has these six important properties:

1. Correctness. The software meets its specifications; that is, for each set of cor-
rect inputs, it produces correct output. Our emphasis on developing a test plan
helps to ensure correctness.

2. Predictability. The software behaves in a predictable, understandable manner
even when it is presented with incorrect inputs. This is a very important prop-
erty: To the extent that software possesses it, it does not fail, produce “garbage”
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output, or “crash.” Predictability is sometimes known as robustness. We
achieve predictability by developing robust exception handling, and by design-
ing test cases that present “bad” inputs to show that our exception handling is
working as it should. Software that is correct and predictable is usually
described as reliable.

Understandability. Software is developed, used, and maintained by humans,
and therefore must be designed so that humans can understand it. At the coding
level, this means that a proper coding style must be used and proper comments
provided. Furthermore, the overall structure of a system should be clear. It
should be possible to isolate the various objects and their operations easily, and
to see without difficulty how the program objects and operations are related to
the objects and operations in the domain of the problem. Understandability is
fostered by careful object-oriented design and by careful documentation of the
design and implementation.

Modifiability. From our discussion of the software life cycle, we know that soft-
ware is rarely put into use once for all time. In practice, errors must be identified
and repaired, even if they become apparent long after the software has been
released, and software often must be enhanced to accommodate changing user
requirements. We must therefore try to design software not just for today, but
for tomorrow. Changes should “scale up” properly: a small change in the
requirements should require only a small change in the design and implementa-
tion. The simplest example of design for modifiability is the use of subtypes
with range constraints, and named constants, instead of “magic numbers” scat-
tered throughout the code. We will introduce many techniques for improving
the modifiability of programs.

Reusability. A software module is reusable if it can immediately, or at least eas-
ily, be adapted for use in a larger system other than the one for which it was
originally designed. Not all good software is reusable; some is developed for,
and very specifically tailored to, a single application. However, it is possible to
develop large libraries of reusable software components, built with no specific
application in mind but instead providing very general capabilities for a large
range of applications. The availability of such libraries makes each application
smaller and simpler, because many of its parts have already been designed,
coded, and tested. Much of this book focuses on producing just such compo-
nents, in the form of Ada generic packages.

Efficiency. A software product is efficient if it makes optimal use of the com-
puter resources—time, memory, I/O devices—available to it. History has
shown us that excessive or premature concentration on efficiency can cause a
program to be very difficult to debug or modify. It is said that “it is easier to
make a correct program fast than a fast program correct.” In this book, we
emphasize algorithm performance prediction—analysis of the space and time
requirements of an algorithm as a function of the number of data points—
because the most important aspect of developing an efficient program is choos-
ing an algorithm with good time and space performance.
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1.5 USING ABSTRACTION TO MANAGE
COMPLEXITY

Beginning programmers often find it difficult to get started on a problem. They are often
reluctant to start writing the code for a program until they have worked out the solution for
every detail. Of course, preplanning and concern for detail are commendable, but these
normally positive work habits can be overdone to the extent that they block the problem-
solving process. To make problem solving flow as smoothly as possible, use the strategy
of “divide and conquer” to decompose a problem into more manageable subproblems.

As mentioned in the introduction to this chapter, abstraction is a very important
concept in this book. Although we are cancerned mainly with abstraction as a technique
for solving problems on a computer, you should understand that you are aided by
abstraction every time you use a system of any complexity without having to consider
the inner structure or workings of that system. Here are a few examples:

* You use the controls on a microwave oven to heat a meal without thinking about

- how the microwave process actually works. In fact, the high-frequency waves cause
the molecules in the food to move about rapidly, generating heat, but you need not
know this to cook your food.

* You set the wall control on your central heating system, to keep your home at a given
temperature, without thinking about how a thermostat works. In fact, typically, a spi-
ral strip, consisting of two different metals bonded together, expands and contracts
with the temperature in the room, making or breaking an electrical contact that
switches your furnace on or off. Ignorance of this fact does not hinder you from set-
ting the temperature.

* You monitor the speed of your car by watching the speedometer; you need not know
that a typical speedometer works by counting the number of wheel revolutions per
minute to compute your speed in miles (or kilometers) per hour.

* You press buttons on your telephone, or spin an old-fashioned phone dial, and are con-
nected to a friend, without thinking about either how the telephone system actually
makes the connection between your phone and your friend’s, or how your voice is
transformed into an electrical signal that travels through the wires or through the air.

What do these examples have in common? In each case, you are using a system that
has an interface—buttons, dials, gauges, and so forth—that is designed to be relatively
simple to use. The user does not need any knowledge of the internal structure of the sys-
tem—its implementation in order to use the system effectively. Developing interfaces
and implementations is one of the key themes of this book.

Abstraction Versus Implementation

With these real-life examples in mind, let’s proceed to take a look at some examples of
abstraction from the world of programming.
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Integer and Floating-Point Representations

Your ability to use things called integers and real numbers in programming depends on
abstraction, since, in reality, nothing exists in the computer but sequences of bits, oper-
ated on by instructions that “understand” the connection between that which you per-
ceive as an integer—written in your source program as a base-10 number—and that
group of 8 or 16 or 32 bits in the computer’s memory.

Usually, integer arithmetic is carried out by hardware instructions. To understand
the kind of software-level abstraction we will be performing in this book, consider
arithmetic on real numbers. In many computers, no real or floating-point instructions
are available in the hardware instruction set. Sometimes—as in the case of the “math
coprocessor” chips used in some models of the Apple Macintosh and IBM-PC fami-
lies—the hardware instructions are an option the purchaser may choose not to buy.

When you declare two Float variables X and Y, and then write, say, an assign-
ment statement X := X*Y + 3.0;, the compiler not only allocates memory loca-
tions to be used to store the variables X and Y, but may also have to generate calls to
subroutines to do the addition and multiplication operations. The point is that through
the use of the abstraction variable name and the abstraction real number, both provided
in any reasonable high-level language, you are relieved of worrying about the details of
the internal storage or actual instructions used to implement the calculation you specify
when you write an assignment. Abstraction is the way we arrive at a situation called
information hiding, in which details of a data representation or a procedure are hidden
from those who have no need (or desire) to see them.

We shall frequently contrast abstraction and implementation. The abstraction is
essentially that which is made visible to the user (in this case, the high-level-language
(HLL) programmer); the implementation comprises all the “messy details” that have
been hidden away. In this example, we have used an abstraction we might call
RealNumbers, including the operations of addition, multiplication, and assignment or
storage of reals. There is also an operation of creation, which we used by declaring X and
Y to be of the type Float. The implementation of a real number as an area of memory
divided into mantissa and exponent parts, and the operations as subroutines to be called
by your machine-language program, have been taken care of by the compiler designer.

Figure 1.1 shows this relationship for what an HLL programmer sees as an integer
quantity. The exact bit pattern used by the hardware is generally of little or no concern
to the programmer, although in this case the internal value occupies 16 bits, but the pro-
grammer generally does not have to know even this.

Figure 1.2 shows an example of the same value, this time when declared as float-
ing-point by the programmer and stored in 32-bit form in an Intel 80486-based com-
puter. The two values appear to the programmer to be nearly the same, but they have
clearly different internal representations.

Two-Dimensional Arrays

Perhaps you have used two-dimensional arrays at some time during your programming
experience. You may be aware that the computer’s memory is not two-dimensional, but
is addressed simply as a sequence of bytes or words. It is clear, then, that there must be
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x: Integer

735; ~-~-stores value

X
see || seee

x|00000010[11011111]

{a) Abstraction of integer assignment {b) Sixteen-bit location (two bytes)
as seen by the programmer with binary equivalent of 735
stored

Figure 1.1 Abstraction and Implementation of Integer Assignment

something located between your high-level-language program and that linear memory,
that can interpret a statement like A (3, 4) :=B(4,7) +1. 0; correctly. As in the pre-
vious example, this “something” is the compiler; abstraction has been used to give you
expressive power that is not present in the machine itself.

The abstraction you have used might be called RectangularArrays, including the
operations of retrieval (the subscripted reference B(4, 7) to the right of a : = sign),
storage (the reference A (3, 4) to the left of a : = sign), and creation (the declaration
of the arrays and their sizes at the beginning of your program). The compiler designer
has seen to the implementation of the rectangular arrays as areas of linear memory, and
of the assignment and retrieval operations as formulas, generated into your machine-
language program, that express the correspondence.

If you declared your array to hold elements of type Float, then, without thinking
about it in so many words, you’ve also used the abstraction Real Numbers, since the
values stored in the rectangular array are reals. An important aspect of the power of
abstraction is the ability to “nest” abstractions many levels deep.

Figure 1.3 shows the abstraction and one common implementation of a 3 X 4 array
of floats.

X: 735.0;

(a) Abstraction of float assignment

%0100 0100{0011 0111]1100 0000[0000 0000]

(b} 32-bit location on Intel-80486 {4 bytes) with
binary float equivalent of 735.0

Figure 1.2 Abstraction and Implementation of Float Assignment
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W: Array (1..3,1..4) of float 0.0
. -1.0
{a} Ada declaration

4.1

5.2

1.8

2.2

0.0

1 2 3 4 3.1

1| 0.0 -1.0 4.1 5.2 -S-1

2| 1.8 2.2 0.0 -3.1 1.2

. . . . 2.3

3] -5.1 1.2 2.3 0.7 0.7
{b) Programmer’s view of filled-in array (¢} Filled-in array as

stored by compiler

Figure 1.3 Abstraction and Implementation of Two-Dimensional Array

Storage of Information on Magnetic Tape

Magnetic tapes are used in large computer centers to store very large files very eco-
nomically; they are also used in the personal computer world to back up disk files. Let
us assume that useful information on tape is recorded at a density of 1600 characters
per running inch of tape (the density is usually much higher). A gap of about %inch is
left between groups of useful characters, to allow the tape motors space to accelerate
and decelerate before and after reading. Thus a file of, say, personnel records, of 200
characters each, would waste much more tape than it uses if each record were stored
on its own section of tape, since a record would occupy only %inch of tape followed
by a2 inch gap.

This is one reason why records are blocked on tape or disk files. A number of
actual records are grouped together on one section of tape between gaps. If the block-
ing factor were, for example, 10, then a block would occupy l%inch of tape, with the
same 3 inch gap.

However, tape is inexpensive, so economical use of storage is a secondary reason
for blocking. A more important reason is that a fair amount of overhead is associated
with each tape read or write operation: The time it takes to set up the operation and to
start and stop the tape-drive motor is significant by comparison with the time it takes to
transfer the information on the tape to and from main storage. Thus time and motor
wear and tear are saved if more information can be read or written in a single operation
once the drive motor is up to speed.

Let us suppose that you write a program in a high-level language to process this
file. Your program is written to process one record at a time, yet actually a number of
records—a block—are being read from your tape file in one I/O operation. You need
not be worried about this “mismatch”; in fact, the operating system or compiler design-
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ers have applied abstraction to hide these “messy details” from you, and your program
ends up processing exactly the record it requires. The abstraction LogicalRecord is
implemented as a block of records written as one physical tape record; you use the oper-
ations of reading and writing records, which are implemented so that even though your
program executes many “write” operations, an actual write to tape is executed only
when a block of records has been assembled in an area of main storage, usually called
a buffer.

In the terminology of operating systems, we refer to logical as opposed to physical
records, files, devices, and so on. The terms logical and physical bear a close corre-
spondence to the terms abstraction and implementation. The tape example is illustrated
in Figure 1.4.

Sequential Files on Disk

Perhaps you have written a program that uses a series of Ada Get operations, or the
equivalent in another language, to read information from a sequential disk file. Your
program treated the disk file as though it were one continuous sequence of records, one
after the other, terminated by a file marker.
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(a) Magnetic tape with 1600-character/inch storage density, showing
storage of unblocked 200-character records. Each input operation
reads one physical record and thus one logical record
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(a) Magnetic tape with same density and record size, but with
10-record blocking factor. Each input operation reads one
physical record but 10 logical records

Figure 1.4 Abstraction and Implementation of Magnetic Tape File
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However, in a modern disk system, the file itself is actually stored quite differently.
The operating system’s disk-management services are programmed so as to minimize
the time it takes to get a given amount of information from the disk, and it happens that
this optimization is done by organizing the file into blocks that are scattered all over the
disk. Yet, when you write a Get call, you assume that the next value to be read is adja-
cent to the preceding one. You are not at all concerned about the physical structure of
the disk file, which is complicated and full of messy detail.

Procedural Abstraction and Incremental Development

Procedural abstraction is an approach that maintains that procedure development
should separate the concern of what is to be achieved by a procedure from the details of
how it is to be achieved. In other words, you can specify what you expect a procedure
to do, then use that procedure in the design of a problem solution before you know how
to implement the procedure.

It is also advisable to develop and test your program incrementally—that is, a bit at
a time. There are two strategies for doing this in a systematic way: top-down and bot-
tom-up.

In top-down development, having worked out a preliminary design and refinement
of your program into procedures, you code at least a substantial part of the main pro-
gram (which is often little more than a series of procedure calls), then test the overall
program flow using miniature, limited-function versions of your procedures, called
stubs. You then implement the full procedures one at a time, testing them as you go.
This is called top-down programming because you fill in detail, then test, starting with
the main program and moving downward into lower and lower levels of procedures.

In bottom-up development, you start again from your preliminary design, but this
time you write the procedures one at a time and test each one using a very simple main,
or “test driver,” program whose only function is to help you test and debug the proce-
dure. This is called bottom-up programming because you start with the lower-level pro-
cedures and work your way back up to the main program. Generally, programmers
perform a combination of top-down and bottom-up development.

Data Abstraction and Software Components

The above discussion is centered on the idea of developing one program, one time, to
solve one problem. Refinement is used to break the problem down into smaller pieces
and to develop procedures that will aid in solving it.

The experience of the last two decades has shown us that we should also focus on
developing reusable software components, analogous to the hardware components in
our computers, that are so generally useful that they can simply be “plugged in” to aid
in the solution of many problems, not just one. The Calendar and Input/Output pack-
ages supplied with Ada compilers are examples of reusable components. Indeed, one of
the most important themes of this book is a systematic presentation of the development
of a kind of software component, abstract data types (ADTs). Abstract data types are
produced using data abstraction.
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Data abstraction is a powerful programming tool that takes procedural abstraction
a step further. It is the conceptual approach of combining a set of values with a set of
operations on those values. Furthermore, data abstraction assumes that we can use such
data types without knowing the details of their representation in the underlying com-
puter system. Just as procedural abstraction enables us to focus on what a procedure
does without worrying about how it does it, data abstraction enables us to consider the
data objects needed, and the operations that must be performed on those objects, with-
out thinking about unnecessary details. An ADT is an abstract description of the values
and operations of a type—that is, a description that does not make reference to the
implementation of the type.

Each chapter of this book presents one or more ADT components and one or more
application programs that illustrate how the components are used.

1.6 A QUICK TOUR OF THE ADA TYPE SYSTEM

Before we proceed with our study of ADTs, we must consider just what a type is.
Further, because building good ADTs will require detailed knowledge of the way Ada’s
type system works, we need to review the general structure of that type system.

Types and Strong Typing

The most important principle for you to remember about types in general, and Ada
types in particular, is this:

A type always consists of a set of values and a set of operations that are appro-
priately applied to those values.

For example, an integer type, in any programming language for digital computers,
consists of a finite set of integer values together with a set of operations, such as addi-
tion, subtraction, multiplication, division, and comparison. It is meaningless to think of
a type only as a set of values; the operations are an inherent part of the type.

Many programming languages, including Ada, employ a related concept called
strong typing or static typing. Strong typing means that

* Every object (variable) in the language has a unique type that does not change dur-
ing the life of that object.

* Each object’s type is defined (by a declaration) at compilation time so that the com-
piler can determine whether that object is being used correctly—that is, whether all
operations on it are appropriate.

Strong typing is a relative term; it is possible for one language to be more strongly
typed than another, and no useful language has perfectly strong typing. Later in the
book we will see some desirable “loopholes” in Ada’s strong type system.
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To understand the idea of appropriate operations, consider kinds of operations that
might be inappropriate. For example, adding together the values of two character vari-
ables is not appropriate; characters—alphabetical letters, for example—are not numer-
ical quantities for which arithmetic operations make sense. Similarly, attempting to
multiply two external files is inappropriate. Because each variable has a unique type
that is known to the compiler, the compiler can check the appropriateness of all opera-
tions applied to a variable, generally flagging an inappropriate operation with a “type
clash” or “type inconsistency” diagnostic message.

On the other hand, not all errors can be caught at compilation time; some cannot be
detected until the program is running and computes a new value or reads data from the
outside. Strong typing facilitates execution-time error detection: Because the compiler
knows the set of values and the appropriate operations for each variable, it can generate
executable instructions that will, for example, check to make sure that a value to be
stored in a given variable is in range for that variable’s type.

Suppose the data requirements for a program specify that a certain integer variable
must acquire only positive values. If the variable has been declared positive, the com-
piler can ensure that no nonpositive value can be stored in it, raising an exception
(Constraint_Error in Ada) if this requirement is violated during execution.
Assigning a negative value to a positive variable is another inappropriate operation.

In summary, many computer scientists and user organizations believe that using
languages with strong typing leads to more reliable programs, because

* More errors can be located at compilation time.

¢ Even those errors that cannot be detected at compilation time can usually be reported
more reliably and gracefully at execution time.

Types in Ada

Types are essentially divided into scalar (sometimes called simple) types and compos-
ite (sometimes called structured) types. A scalar type is one for which each value has
a single component. In other words, a scalar value cannot be decomposed directly by a
program. In contrast, a composite type—a record or array type—consists of compo-
nents: Records have fields; arrays have elements.

Ada’s type system provides three very useful operations that are automatically
applicable to all types, both scalar and composite, with the exception of LIMITED
PRIVATE types, which we will introduce in Chapter 5. These three operations are:

® Assignment or copying—the familiar ":=" operation,
® Equality test —the familiar =" operation
® Inequality test—the familiar "/=" operation

The assignment operation allows one value of a type to be copied into a variable of
the same type; the entire value—even if it is a large composite—is copied. The equal-
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ity test and the inequality test cause one value of a type to be compared with another
value of the same type. As in assignment, the values, no matter how large, are compared
in their entirety; they are equal if and only if all the bits of one agree with the corre-
sponding bits of the other.

Scalar Types

Ada’s scalar types comprise

* Integer types

* Floating-point types
¢ Fixed-point types

* Enumeration types

® Access (or pointer) types

The first three categories are collectively called numeric types. We will examine
these, and enumeration types, in this section, deferring the last category until Chapter
8. Notice that in the list above, all the types are given in the plural. This is because an
important aspect of Ada is the ability to create user-defined scalar types. Although you
may be accustomed to defining your own enumeration types, you might find the idea of
defining your own integer-valued or floating point-valued types to be unusual; many
students do. Indeed, most languages do not provide this ability. As we shall see in
Section 1.7, the presence of this ability in Ada makes it easier to develop portable pro-
grams—programs that can be compiled using any Ada compiler and executed on any
kind of computer.

Predefined Numeric Types

An integer type is declared in the following form:
TYPE SomelIntegerType IS RANGE MinimumValue..MaximumValue;

Every integer type consists of a finite and ordered set of integer values. Because
the set is finite, and because its integer values are ordered, it has a minimum and a
maximum value. These values can be accessed using the attribute functions
SomeIntegerType'First and SomeIntegerType'Last.

A floating-point type is declared as follows:

TYPE SomeFloatType IS
DIGITS NumberOfDigits RANGE MinimumValue..MaximumValue;

A floating-point type consists of a finite and ordered set of numerical values.
Because the set is finite, and because its values are ordered, it has a minimum and max-
imum value. As in the case of integer types, given a type SomeF1loatType, these two
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values can be accessed using the attribute functions SomeFloatType'First and
SomeFloatType' Last. Floating-point types are just an approximate way to repre-
sent the real numbers. Because a floating-point value in a computer must occupy a
finite amount of memory (say, 32 bits), most values are inexact and are represented
only to a certain precision, or number of significant figures. For example, the value%
cannot be represented exactly. We can write it as 0.333, but of course this is not exactly
%. The number of significant decimal digits in a floating-point type SomeFloatType
can be accessed as SomeFloatType'Digits.

Figures 1.5 and 1.6 show how the Ada 95 Reference Manual describes the prede-
fined integer and floating-point types. These descriptions are part of Ada’s package
Standard, in which the predefined types and operations are all given. This is not a
true package, in the sense that it must be WITH-ed; rather, it is automatically available
to every Ada program unit. The full package Standard is presented as Appendix C.

In the figures, note that the operations are all specified, but that in the type declara-
tions, the details—the ranges, and the number of digits in the type Float—are given
as “implementation-defined.” This is very important: It tells us that the language stan-
dard does not predefine the minimum and maximum values of the predefined types, nor

-- This is the section of the package Standard that describes
-- the predefined type Integer and its operations.
-- Excerpted and reformatted from the 35 Reference Manual, Annex A.

TYPE Integer IS RANGE implementation_defined;

-- "Implementation_Defined" means that the Standard does
-- not specify the range of values, instead leaving this
-- up to the compiler writer, who usually bases it on the
-- word size and arithmetic system of the hardware.

-- The predefined operators for this type are as follows:

FUNCTION "=" (Left, Right : Integer) RETURN Boolean;
FUNCTION "/=" (Left, Right : Integer) RETURN Boolean;
FUNCTION °<* (Left, Right : Integer) RETURN Boolean;
FUNCTION "<=" ({Left, Right : Integer) RETURN Boolean:
FUNCTION "> {Left, Right : Integer) RETURN Boolean;

FUNCTION ">=" (Left, Right : Integer) RETURN Boolean;

FUNCTION "+" (Right : Integer) RETURN Integer;
FUNCTION "-" (Right : Integer) RETURN Integer;
FUNCTION "ABS" (Right : Integer) RETURN Integer;

FUNCTION *+* (Left, Right : Integer) RETURN Integer;
FUNCTION "-" (Left, Right : Integer) RETURN Integer;
FUNCTION "** {Left, Right : Integer) RETURN Integer;
FUNCTION */*" {Left, Right : Integer) RETURN Integer;

FUNCTION “REM" (Left, Right Integer) RETURN Integer;
FUNCTION "MOD" (Left, Right : Integer) RETURN Integer;

FUNCTION "**" (Left : Integer; Right : Integer) RETURN Integer;

-- Predefined subtypes:

SUBTYPE Natural IS Integer RANGE 0 .. Integer'Last;
SUBTYPE Positive IS Integer RANGE 1 .. Integer'Last;

Figure 1.5 Section of Package Standard Describing Integer
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-- Section of package Standard that defines the type Float and its
-- operatiomns.
-- Excerpted and reformatted from the Ada 95 Reference Manual, Annex A.

TYPE Float IS DIGITS Implementation_Defined;

-- Neither the range of values nor the precision {(number of
-- significant digits) is specified; this is up to the compiler
-- writer.

-- The predefined operators for this type are as follows:

FUNCTION "=" (Left, Right : Float) RETURN Boolean;
FUNCTION "/=" (Left, Right : Float) RETURN Boolean;
FUNCTION "<"* (Left, Right : Float) RETURN Boolean;
FUNCTION "<=" (Left, Right : Float) RETURN Boolean;
FUNCTION ">" (Left, Right : Float) RETURN Boolean;
FUNCTION ">=" (Left, Right : Float) RETURN Boolean;

FUNCTION *+" (Right : Float) RETURN Float;
FUNCTION "-" (Right : Float) RETURN Float;
FUNCTION "ABS" (Right : Float) RETURN Float;

FUNCTION "+" (Left, Right Float) RETURN Float;
FUNCTION "-" (Left, Right Float) RETURN Float;
FUNCTION "** (Left, Right : Float) RETURN Float;
FUNCTION */* (Left, Right : Float) RETURN Float;

.
.

FUNCTION ***" (Left : Float; Right : Integer) RETURN Float;

Figure 1.6 Section of Package Standard Describing Float

the number of significant digits in Float. We will return to this point shortly; it is
important enough to merit its own section. For now, note only that the familiar arith-
metic and comparison operators are given as function specifications. We will frequently
use this form for describing operators.

We shall ignore fixed-point types, which are used only rarely. The only exception is
the predefined fixed-point type Duration, which measures elapsed time. We shall use
this type occasionally.

Predefined Enumeration Types

An enumeration type is one whose finite set of values is listed, or enumerated, in the
type declaration, in the form

TYPE SomeEnumerationType IS (value_1, value_2, ..., value_n);

Because the values are finite and ordered, SomeEnumerationType'First
and SomeEnumerationType'Last are appropriate for enumeration types, as are
the comparison operations "<", *“<=", *>" and "<=". Naturally, assignment,
equality, and inequality are also available for enumeration types, but arithmetic opera-
tions are not.

Package Standard provides two predefined enumeration types, Boolean
and Character, shown in Figures 1.7 and 1.8. Boolean has predefined logical
operators.
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-- The declaration of type Character is based on the standard ISO
-- 8859-1 character set.

-- There are no character literals corresponding to the positions
-- for control characters.

-- They are indicated in italics in this definition.

TYPE Character IS

(nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, 1f, vt, ££f, cr, so, si,
dle, dcl, dc2, dc3, dcd, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
[ |' |!|' |u', '#1' iSl, I%II 1&1’ lI"
', Y, the, '+, bt -, ety A
-Ov' lll’ n2|, n3|' '4'1 151' 06" |7|'
'8, 9, vev, e, <, =1, >, v,
|@|’ R |Al' 'B', 'C', 'D', 'E', 'F', 'Gl'
IHI' III, IJ" 'KI, IL" IMI' 'NI’ lOl'
IPl' OQI' |Rl' ISI’ lTIl IUI, IV|‘ 'Wl'
‘Xl' IY" lzll I[!‘ I\I' ']I, |AC' I~I‘
l‘l, lan' lb.' lcn' idl, IeI' 'f', |gvl
'h': lin' ljt, 'k., lll' 'm', vn', IOI'
o', q', e, ‘s, e, e, v, W',
%, .y-, 'z, e, 'll' |}-’ T, del,

reserved_128, reserved_129, bph, nbh,
reserved_132, nel, ssa, esa,

hts, htj, vts, pld, plu, ri, ss2, ss3,
decs, pul, pu2, sts, cch, mw, spa, epa,

sos, reserved_l53, sci, csi,
st, osc, pm, apc,

R N

-- The predefined operators for the type Character are the same as
-- for any enumeration type.

Figure 1.7 Section of Package Standard Describing Character

Attributes of Scalar Types

An important aspect of Ada’s type system is the notion of attributes. These are charac-
teristics of a type or variable that can be used by a program. Scalar types all have these
three attributes:

® First, which gives the first or lowest value in the type
® Last, which gives the last or highest value
¢ Range, which gives the range of the type

In addition, discrete scalar types—that is, integer and enumeration types—have
these important attributes:
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TYPE Boolean IS (False, True);
-- The predefined relational operators for this type are as follows:

FUNCTION "=" (Left, Right : Boolean) RETURN Boolean;
FUNCTION */=" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "<" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "<=" (Left, Right : Boolean) RETURN Boolean;
FUNCTION “>* (Left, Right : Boolean) RETURN Boolean;
FUNCTION ">=" (Left, Right : Boolean) RETURN Boolean;

-- The predefined logical operators and the predefined logical
-- negation operator are as follows:

FUNCTION "AND" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "OR" (Left, Right : Boolean) RETURN Boolean;
FUNCTION *"XOR" (Left, Right : Boolean) RETURN Boolean;

FUNCTION *“NOT" (Right : Boolean) RETURN Boolean;

Figure 1.8 Section of Package standard Describing Boolean

® Pos, which, given a value in a type, gives its position in the type
*® Val, which, given a position in a type, gives the value in that position
*® Pred, which, given a value in a type, gives the value that precedes it in the type

® Succ, which, given a value in a type, gives the value that follows

As an example, consider the enumeration type Days:

TYPE Days 1S
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

and the variables

Today, Tomorrow: Days:
Now assuming the assignment:
Today := Friday;

we have

Days'First is Monday

Days'Last is Sunday
Days'Pos(Monday) is 0
Days‘'Val(0) is Monday

Days'Pos (Sunday) is 6
Days‘Val(6) is Sunday

Days'Pred (Wednesday) is Tuesday
Days'Pred(Today) is Thursday
Days'Succ (Tuesday) is Wednesday
Days'Succ{Today) is Saturday
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Because integer and enumeration types are not cyclical (that is, they do not “wrap
around”), the queries Days'Pred (Monday) and Days'Succ (Sunday) are
undefined and would cause an execution-time exception—namely the raising of
Constraint_Error—if attempted. Similarly, if Today had the value Sunday,
then Days 'Succ (Today) would cause an exception. Whether the assignment
statement

Tomorrow := Day'Succ(Today);

would cause an exception depends on the value of Today; it cannot cause a compila-
tion error because the value of Today is usually unknown at compilation time. We
chose an enumeration type for the example, but the same attributes would work in the
same way if we had used an integer type instead.

Subtypes

A subtype of a given type defines a subset of the base type’s set of values. The opera-
tions of the base type are passed on to the subtype; sometimes we say that the subtype
inherits the operations of the base type. It is important to realize that a subtype does not
create an entire new type. Because a subtype merely selects a subset of the base type’s
values, any value in the subtype will necessarily also be in the base type. Consider the
subtype

SUBTYPE Small IS Integer RANGE -10..10;

and assume that I is of type Integer and S is of type Small. The two assignment
statements

I:
s

S;
I;

noa

are both legal at compilation time. However, the first statement requires no check to be
done at execution time, because any value that S could hold will also be in range for I.
The second statement requires a check to be made at execution time; the compiler will
generate the checking instructions as part of the object program.

Why is the check necessary? Suppose the value of I is to be read in from the ter-
minal; it is therefore not known at compilation time. Suppose the user enters 20 in
response to a prompt for a value for I. This value is quite legal for I, but is out of
range for S, so Constraint_Error should be raised for the attempted assignment.
The subset relationship also shows the need for the check: Any value in the subset
will be in range for the full set, but a value in the full set does not necessarily belong
in the subset.

We say that the variables I and S are compatible; each variable’s value can be
copied into the other, provided only that it is in the proper range of the other
variable.

Subtypes are very useful in programming; they allow the programmer to “fine-
tune” the ranges of variables, according to the data requirements of the program.
Because the ranges are specified explicitly, the compiler can ensure that assignments
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are always appropriate, at compilation time if possible, or with execution-time checks
if necessary. We will use subtypes frequently in this book.

Assignment Compatibility

An expression involving floating-point operands can be assigned to a variable only of
type Float (or a subtype thereof). An expression involving integer operands can be
assigned to a variable only of type Integer (or a subtype thereof). An attempt to
assign a value of the wrong type to a variable will result in a compilation error; an
attempt to assign an out-of-range value to a variable (e.g., a negative expression result
to a Positive variable) will cause Constraint_Error to be raised.

Conversions Among Numeric Types

Ada does not usually allow the mixing of types in an expression. However, it does pro-
vide a means for performing explicit conversion of a value of one type into a value of
another. Specifically, Ada allows explicit conversion among integer, fixed-point, and
float values. This is done using a function-call syntax, in which the name of the new
type is used as the function. The result of this “function call” is of the new type, unless
the result is out of range, in which case Constraint_Error is raised as usual.

An integer value always has an exact equivalent in floating-point form, but a
floating-point value does not always have an exact integer equivalent. Ada therefore
rounds such a conversion to the nearest integer value. Suppose we have the following
declarations:

SUBTYPE NonNegFloat IS Float RANGE 0.0..Float'Last;

Float;
NonNegFloat;
Integer;
Positive;
Natural;

HmoHZmT

Here are some conversions that can be done:

F := Float(I); -- always possible

N := Float(P); -~ always possible

I := Integer(F); -- always possible; result is rounded

I := Integer (N); -- always possible, result is rounded

N := NonNegFloat(I); -- raises Constraint_Error if I is negative
T := Natural(F); -- raises Constraint_Error if F is negative
I := Integer(5.49); -- result is 5§

I := Integer(5.51); -- result is 6

I := Integer(5.5); -- result is 6, depending on compiler

Conversion between two subtypes of Integer or two subtypes of Float is
always possible and will succeed if and only if the result is in range. If I happens to be
-57, for example,

T := Natural(I);

will cause Constraint_Error to be raised.
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Record Types

A record type is declared in the following way:
TYPE SomeRecordType IS RECORD

Fieldl : Typel;
Field2 : Type2;

Fieldn : Typen;
END RECORD;

Each field is given with its type. An object or variable of type SomeRecordType
is declared as usual:

FirstRecord: SomeRecordType;

In addition to the always-available assignment, the equality test, and the inequality
test, record types permit the operations of field storage and field retrieval, both using
“dot” notation to select the desired field. If FirstRecord and SecondRecord are
both of type SomeRecordType, we can write

FirstRecord.Fieldl := SecondRecord.Fieldl;
Also available for records is aggregate assignment, for example:

FirstRecord :=
(Fieldl => Valuel, Field2 => Value2, ..., Fieldn => Valuen);

It is also legal to omit the field names and write

FirstRecord :=
(valuel, value2, ..., Valuen);

as long as all the Values are supplied, in the proper order.
Finally, parameters to subprograms, and function return type, are allowed to be
record types.

Array Types

An array type is declared in the following form:
TYPE SomeArrayType IS ARRAY SubscriptType OF ElementType:;

The subscript can be of integer or enumeration type. For example,

TYPE HoursWorked IS ARRAY{(Days) OF NonNegFloat;
TYPE Vector IS ARRAY(Small) OF Integer;
TYPE List IS ARRAY(1..5) OF Character;

are all permissible. In general, good programming style encourages the use of a sub-
script type that is a named type or subtype (as in the first two cases), rather than an
explicit range (as in the last case).
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Array element storage and retrieval is analogous to record field storage and
retrieval. Syntactically, parentheses are used. Suppose Arrayl and Array?2 are of
type SomeArrayType and S1 and S2 are of type SubscriptType:

Arrayl (S1l) := Array2(S2);

copies an element of Array?2 into the given element of Arrayl.
Of course, array assignment, equality test, and inequality test are available, and
arrays can be passed as parameters to subprograms and returned as function results.

Aggregate Array Assignment
As in the case of records, an entire array can be filled with values using three methods:

¢ Assignment to each element with an individual assignment statement, either ran-
domly or sequentially

¢ Copying one entire array to another with an array assignment statement, as discussed
just above

® Storing values in an entire array using an aggregate, similar to that used in records

It is the third method that concerns us now. Given an array A of type Vector, the
21 Integer values could, if they were all known in advance, be stored in A with a sin-
gle statement such as

A := (1, 27, 35, -4, 15, .. .);

where the ellipsis must be replaced completely with the other 16 values. This is surely
tedious, but it is better than writing 21 separate assignment statements. As in the case
of records, named association can also be used:

A= (=10 => 1, -9 => 27, .. .);

where the remaining 19 values also need to be supplied. Although in record aggregates
we prefer named association, in array aggregates it can be cumbersome, because an
array can have a large number of elements. In using array aggregates, we will generally
use positional association unless there is a good reason not to do so.

A common and useful application of array aggregates is to initialize most or all ele-
ments of an array with the same value. Suppose that our array A were to be “cleared” so
that all values were 0. This could be done in a loop:

FOR I IN Small LOOP
A(I) := 0;
END LOOP;

or with a single aggregate assignment:

A := (-10..10 => 0);
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or, better,
A := (Small => 0);

The aggregate assignment is certainly more concise, expresses the will of the program-
mer clearly, and also may possibly execute faster. Suppose now that A were to be ini-
tialized such that its first 5 elements were as above, but the other 16 were to be 0. The
assignment

A := (1, 27, 35, -4, 15, OTHERS => 0);

does the trick. The OTHERS clause instructs the compiler to store Os in all those ele-
ments not expressly listed in the aggregate. If, say, only the first, third, and fifth ele-
ments were nonzero, named association could be used:

A := (1 =>1, 3 => 27, 5 => 35, OTHERS => 0);
Finally, the assignment
A := (OTHERS => 0);

fills the entire array with Os even more concisely: Because no other elements were
explicitly filled, the OTHERS applies to all elements. If A were a large array, for exam-
ple, if the range of Small were —100. .100 instead of —10. .10, the OTHERS notation
would be very convenient indeed!

In using an aggregate, it is important to remember that all elements of the array
must be initialized by the aggregate; otherwise a compilation error results. OTHERS ini-
tializes all elements not otherwise given.

Multidimensional Arrays

Arrays need not be limited to a single dimension. We will discuss multidimensional
arrays in depth in Chapter 4; for now, let us be content with a type declaration,

TYPE FunnyTable IS ARRAY (Days, Small) OF Integer;

a variable declaration,

TodaysTable: FunnyTable;

an element assignment

TodaysTable (Sunday, <~5) := 13;

and an aggregate assignment

TodaysTable := (OTHERS => (OTHERS => 2));

which stores the value 2 in each of the 147 (7 x 21) elements of the array.

Strings

The only predefined composite type in Ada is the string, which we will consider in
some depth in Section 1.12.
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Type Composition

Types give the programmer much power and flexibility for creating complex data
structures. In Ada, a record field or array element can be of any type, including another
composite type. This lets the programmer compose, or nest, structures in other struc-
tures to create ever larger ones. It is quite common to see arrays of records, arrays of
arrays, records with arrays as fields, records with records as fields, and so on.

Derived Types

It is possible in Ada to derive a type from another type. Derivation creates a new type,
not just a subset relationship. Values of derived types cannot be directly combined or
assigned to variables of other derived types. Consider

TYPE Small IS NEW Integer RANGE -100..100;
TYPE Little IS NEW Integer RANGE -100..100;

Each of these types has its own set of values and inherits the operations of Integer.
However, objects of one type are incompatible not only with objects of the other type,
but also with Integer. That the types share the same range of values is coincidental.
If I is of type Integer, LisoftypeLittle, and S is of type Small, then all of
these assignments are illegal and will give rise to compilation errors:

tfunnnhHH
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You might well ask why the types should be incompatible even though they seem
to have the same set of values. The answer is that sometimes we wish to separate one
group of variables from another and allow the compiler to help us refrain from acci-
dentally mixing them together, because they represent, say, different physical quanti-
ties that should not be intermixed.

In fact, Ada does allow us to intermix values of different derived types, but only if
we do it intentionally, through explicit conversion. Thus Little(S), Small (L),
Integer (S), and so on, are legal conversions.

We will not use derived types much in this book—we prefer to use subtypes, as dis-
cussed above, and new types, as discussed below—but you should know that derived
types exist; they appear in other books and in *real” programs you might encounter.

New Types

If you have ever written a type declaration for an enumeration, record, or array type in
Ada, you have created a new rype. For example, consider the two enumeration types

TYPE USFlagColors IS (Red, White, Blue);
TYPE FrenchFlagColors IS (Red, White, Blue);
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These are distinct types, even though they seem to have the same structure and the same
set of values. A value of type USFlagColors cannot be assigned to a variable of type
FrenchFlagColors. The variable and the value are incompatible. Similar incom-
patibilities exist between record or array types that appear to have the same structure
but have different type names.

Interestingly, Ada allows us to create new numeric types, of the integer, float, or
fixed variety. This is the subject of Section 1.6.

Private Types

An Ada package specification can provide a type declaration labeled PRIVATE, in the
following form:

TYPE T IS PRIVATE;

The actual type declaration appears at the end of the specification, in a special section
called the PRIVATE section. Whether the actual structure of the type is scalar or com-
posite, the set of predefined operations available to a client of the package is limited to
the always-present assignment, equality test, and inequality test. This means that even
if the type happens to be an integer type, no arithmetic is predefined, and if the type
happens to be a record type, no field selection is available to client programs. Private
types allow their authors complete control over the set of operations. This book uses
private types frequently, beginning in Chapter 2.

1.7 A SET OF NUMERIC TYPES FOR THIS BOOK

In the preceding section, we mentioned that it is possible to create new numeric types
in Ada, but we did not go into detail as to why we would wish to do so. In fact, from
time to time in this book we will indeed create our own numeric types.

Why would we bother to create our own types? After all, Ada provides some pre-
defined numeric types that would seem capable of serving us well. The answer is that
new numeric types aid us in developing portable programs—that is, programs that will
compile correctly using any Ada compiler and will execute correctly on any computer
for which a compiler exists.

Let’s look again at the predefined numeric types. The Ada 95 Reference Manual
predefines Integer and Float, but does not specify what their ranges are to be!
Each compiler writer is free to set a range for each predefined type used by that
compiler. Some compilers use the range -32767. .32767 for Integer, because
that is the range that can be accommodated in a 16-bit memory location. Some
computers provide an extra negative value in the hardware; in those computers
compilers might use the range —32768. .32767. Other compilers use the range
—214748348. .2147483647 for Integer, because that range can be accommodated
in a 32-bit location.
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Now suppose we defined a subtype
SUBTYPE MyBigInteger IS Integer RANGE -100_000..100_000;

This definition would compile correctly using any compiler that used the 32-bit integer
range. Making MyBigInteger a subtype of Integer is dangerous, though: We
could use MyBigInteger values freely in many programs, then switch to a different
compiler and be unpleasantly surprised to discover that these values will not compile or
work if the new compiler happens to use the 16-bit range for Integer.

Most computers have either 16-bit or 32-bit words, but some have words of unusual
size, such as 24 or 60 bits. Because Ada does not specify precisions and ranges for the
predefined types, this variety of word sizes can be accommodated, but this causes a
problem for us: How do we ever specify numerical values that we are sure will work
with all compilers on all computers? Our solution is one that is commonly used in
industry for Ada projects: We define our own numeric types. Changing the declaration
above to

TYPE MyBigInteger IS RANGE -100_000..100_000;

does the trick: The RM obliges every compiler to store values of this type using some
hardware storage method supported by the computer for which it is generating code. In
the unusual case where the hardware simply cannot accommodate a given range—
because it is absurdly large, for example—the compiler will just issue an error message.
In practice, this rarely happens, because reasonable integer ranges can almost always be
accommodated.

In this book we shall take advantage of the fact that in practical compilers the range
of predefined Integer is at least ~32767. .32767. We can therefore safely and
portably use subtypes of the predefined Integer type wherever the subtype range
will lie within —32767. .32767. To handle a larger range—for example, the 100,000 sit-
uation mentioned above—we will resort to declaring a new integer type to accommo-
date just the range we need.

For this book’s purposes, we can use predefined Float with confidence, because
practical compilers give a precision of at least six decimal digits and six significant fig-
ures are the most we will need here.

This handling of numeric types is a workable compromise between the naive
extreme of using only the predefined types—which, as we have seen, can lead to porta-
bility problems—and the “industrial-strength” extreme of never using the predefined
types, which, in our view, leads to unnecessary complexity in our programs.

1.8 ABSTRACT DATA TYPES (ADTs)

An abstract data type, or ADT, is just what its name suggests: an abstract des-
cription of a data type—that is, a description of the values of the type, and the
operations on those values, in an abstract manner independent of any particular
implementation.

For example, we could specify the type Integer as follows:
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® Values—all integers in the range MinInteger through MaxInteger, inclusive

® Arithmetic Operations—addition, subtraction, multiplication, division, and
remainder

® Comparison Operations— <, <=, =, /=,>, and >=

Mathematically, there is no reason to limit the set of integers to a finite range; we
do so only because in this book we are interested in solving problems on digital com-
puters, and, generally, in digital computers the set of integers is a finite set. Note that no
reference is made to the way in which integers are implemented—for example, that
they are stored in the computer in 32-bit binary form. This implementation detail is not
relevant to the ADT specification.

A program that uses an ADT is called a client program. A client program should be
designed before it is coded, written as an abstract algorithm that manipulates objects of
the type and uses the type’s operations abstractly. Later, when the abstract algorithm is
transformed into statements in a programming language, these manipulations can be
written without the programmer’s knowing the details of the internal representation of
the data type or the implementation of its operators. In this way, we separate the use of
the data and the operators (by the client program) from the representation of the type
and the implementation of the operators (by the abstract data type).

Using ADTs provides several advantages. It allows us to implement the client pro-
gram and the abstract data type independently of each other. If we decide to change the
implementation of an operator (function or procedure) in the abstract data type, we can
do so without affecting the client program. Finally, because the internal representation
of a data type is hidden from its client program, we can even change the internal repre-
sentation at a later time without modifying the client.

An ADT is an important kind of reusable software component. ADTs are written to
be usable by a variety of client programs. An ADT generally has no knowledge of the
client programs that will use it; the client programs need have no knowledge of the
internal details of the ADT. Ideally, as we have pointed out, ADTs are thought of as
analogous to the various integrated electronic components used in modern computers
and other devices: One needs to understand only the interface to an ADT to “plug it
into” a program, as electronic components are plugged into a circuit board.

ADT: and their use by abstract client programs could be studied theoretically, with-
out ever writing a concrete program. We could, for example, introduce all our ADTs in
the structured English form shown above and write all our client algorithms in
pseudocode. However, in order to use ADTs in actual programs solving actual prob-
lems, we must have a concrete notation in which to specify and implement ADTs. Ada
packages happen to be a very convenient concrete form for this work. The specification
of the predefined Ada types, extracted from PACKAGE Standard and shown in
Figures 1.5 through 1.8, is a good approximation to the ADT form we desire: In each of
those figures, the type is named and its values described, and a list of operations is
given.

To emphasize that ADTs are independent of specific programming languages, we
will sometimes introduce them in the structured-English form. Often, however, we will
find it convenient to skip the structured English and use Ada notation directly, using



32 Abstraction and the Ada Type System

comments to fill in descriptive material that the Ada syntax cannot express. We will
construct the specification of an ADT—the abstract part—using an Ada package spec-
ification, and the implementation of the ADT using a package body.

ADTs facilitate programming in the large because they reside in ever larger
libraries of program resources. The availability of large libraries of general resources
makes the client programs much simpler, because their writers do not have to “reinvent
the wheel.” The modem software industry is devoting much time and effort to the
development of component libraries; your study of ADTs will give you a taste of the
way this development is done.

The Structure of an ADT

Abstract data types are a general concept in programming, independent of any particu-
lar programming language. An ADT consists of the specification of one or more data
types and a set of operations applicable to the type or types. Generally, the type is a
composite type, often a record of some kind. The operations can be grouped into sev-
era] classes:

® Constructor. A constructor creates, or constructs, an object of the type by putting its
component parts together into a unified whole.

® Selector. A selector selects a particular component of an object.

® Inquiry. An inquiry operation asks whether an object has a particular property—for
example, whether it is empty. .

® Input/output. As usual, an input/output operation is the communication link between
the value of an object and the world outside the program, usually a human operator
at the terminal or a disk file or printer.

Ada Features for ADTs

Ada provides many capabilities to help us develop ADTs. Here is a summary of the
main data abstraction features we use in this book.

* Ada provides subtypes, derived types, and new types. This has been discussed above.

* Ada provides record field initialization. This allows us to define a record type in
such a way that each field in each variable of that type is initialized to a predeter-
mined value.

* Ada provides packages. As we will see throughout this book, a package is an ideal
way of grouping together resources—types, functions, procedures, important con-
stants, and so on—and making them available to client programs. A package speci-
fication acts as a “contract” between the writer of the package and the writer of the
client program. Furthermore, the compiler checks to make sure that the contract is
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followed: Everything promised in the specification must be delivered in the package
body, and client programs must use the package resources correctly, for example, by
calling procedures only with the correct parameters.

* Ada provides private types. The private-type capability enables us to write a pack-
age that provides a new type to client programs, in such a way that the client program
cannot accidentally misuse values of the type by referencing information that is most
properly kept private—that is, restricted for the internal use of the package body
only.

® Ada provides operator overloading. This allows us to write new arithmetic and
comparison operators for new types and to use them just as we use the predefined
operators.

® Ada provides user-defined exceptions. This enables the writer of a package to
provide exceptions to client programs, in order to signal to a client when it has
done something inappropriate with the package. The writer of the client program
can write exception handlers for user-defined exceptions that work exactly the
same way as the handlers we write for the predefined exceptions, such as
Constraint_Error.

® Ada provides artributes such as First and Last. Attributes make it possible to
write subprograms that manipulate data structures without knowing all their
details. This is especially useful in the case of arrays, in which a subprogram that
manipulates an array parameter can be written without knowing the array bounds:
It need only inquire about the array bounds by asking for the First and Last
attributes.

* Finally, Ada provides generic definition. Generic definition allows us to write sub-
programs and packages that are so general that they do not even have to know all
the details of the types they manipulate; these types can be passed to the generic
unit as parameters when the generic unit is instantiated. We have seen generic
instantiation so far only with respect to the Text_IO libraries. Chapter 5 will
introduce more information about generics and show you how to write generic
units of your own.

1.9 OBJECT-ORIENTED PROGRAMMING

The term object seems to appear everywhere in current computer technology. Reading
the literature, from textbooks to scholarly journals to trade magazines, one gets the
impression that an “object-oriented” this-or-that seems to be the only acceptable kind
of this-or-that. The pervasiveness of this terminology makes it essential that we try to
put it in perspective.

To a certain extent, the term object-oriented is a marketing or advertising term: If
one’s product is object-oriented, it is likely to sell better than if it is not. However, we
cannot dismiss the term as simply salesmanship. Object-oriented does have some tech-
nical meaning, even if its importance is sometimes exaggerated by advertising.
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Object-oriented design (OOD) was mentioned in Section 1.3 as the development of
software starting with consideration of its nouns or objects, rather than with its verbs or
functions. This is a design methodology, and an object-oriented design can be imple-
mented, as can all software designs, using any number of different coding techniques
and languages. This book uses OOD as its general approach, although we purposely
keep the approach somewhat informal.

Object-oriented programming (OOP) is a programming methodology, used for
implementing object-oriented designs using a number of language features. These
are:

® Encapsulation, provided very well by Ada’s packages and especially by private
types and introduced here starting in Chapter 2.

® Genericity, provided by Ada’s generics capability and introduced in Chapter 5.

® Inheritance, through which a new type takes on some or all of the properties of an
existing one. This is provided by Ada’s derived types and is extended considerably
in tagged types, which are introduced in Chapter 6.

¢ Polymorphism, partially supported by Ada’s procedure and function name overload-
ing, and extended significantly through the concept of dynamic dispatching, which
is introduced in Chapter 9.

An object-oriented language (OOL) is one that possesses these features.
In current OOP terminology, an object has two important characteristics:

1. It has state—that is, it has a value that may change over time, and

2. it has behavior—that is, it has a set of operations that act on it, and these opera-
tions are the only ones that can change its state (value).

In working with this book, you will be using OOP concepts from the start. You are
familiar with Ada variables; object is in many ways just a more modern name for vari-
able. As you know, each variable has a type—either a predefined type or a program-
mer-defined one—and can take on values only from that type’s set of values. An Ada
variable, therefore, has state.

Each type also has a set of operations associated with it. The predefined types, such
as Integer or Ada.Calendar.Time, all have predefined operations, and only
the given operations are valid for values of the given type. Throughout the book, we
emphasize Ada compilers’ concern for the validity of operations; they give compilation
errors where possible and compile runtime checks into your program where necessary.
An Ada variable therefore has behavior.

Further, you will be using Ada packages throughout, starting with the input/output
packages and other predefined packages such as Ada.Calendar and
Ada.Numerics. If you’ve studied Ada previously, you’ve used other packages and
have perhaps even written one or two yourself. Having reached this point, you are quite
accustomed to encapsulation.
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Section 1.8 explored the idea of writing new types and sets of operations and imple-
menting these in ADT packages. Most of the ADTs in this book define new types as
private record types; private types allow us to control precisely which predefined and
programmer-defined operations are valid.

Finally, you will be writing your own generics beginning with Chapter 5 and study-
ing inheritance and polymorphism beginning with Chapter 6. By then, you will have
been introduced to most of what you need to do OOP.

Some writers use the term object-based programming to describe programming
that uses “only” encapsulation and genericity but not inheritance and polymorphism.
These writers believe that inheritance and polymorphism are of paramount importance,
and that any program that doesn’t take advantage of these two concepts is simply not
object-oriented. By this definition, Ada 83 is an object-based language and Ada 95 is an
object-oriented one.

We think this distinction is somewhat artificial; encapsulation and genericity are
just as important as inheritance and polymorphism in developing good object-oriented
designs. By the time you approach the end of this text, you will have been introduced
to all these concepts in what we hope is a balanced way, and you’ll be equipped to judge
them for yourself.

1.10 A PREDEFINED ADT: THE ADA .CALENDAR
PACKAGE '

Before you learn to write ADTs, it is helpful to study an existing one in detail. Ada pro-
vides a predefined package Ada . Calendar, which serves as an excellent example of
a well-thought-out ADT. Ada.Calendar is always provided with an Ada compiler
(indeed, it must be provided) and our own ADTs will often be written in the style of
Ada.Calendar. Systematic study of Ada.Ca