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PREFACE

This textbook is intended for the introductory course in problem solving and program
design using Ada 95. It assumes no prior knowledge of computers or programming, and
for most of its material, high school algebra is sufficient mathematical background. The
first two editions of this book have been used with success in a large number of intro
ductory courses.

While the book is generally oriented to the first-term student of programming, there
is more material here than is usually covered in a first course. Chapters 11 through 17
focus on abstract data types, generics, recursion, dynamic data structures, inheritance-
oriented programming, and concurrency. They can be used selectively in a fairly
advanced first course or as part of a second-level course. The book covers the Ada 95
language thoroughly enough to serve as a useful introduction for professionals.

The Ada 95 language standard was adopted early in 1995 by the International Stan
dards Organization and the American National Standards Institute. Ada is a foundation
language in a growing number of institutions (about 150 at this writing). Ada is also a
language of choice in many important industry sectors, especially commercial aviation
and air traffic control, high-speed and metropolitan rail transportation, scientific and
conununications satellites, and manufacturing control. The consensus among teachers
of Ada is that its pedagogical virtues are very similar to its industrial ones.

Problem Solving and Program Design

The primary focus of this book is problem solving with Ada 95, not a study of the Ada
95 programming language per se. We achieve this focus by selecting features of the lan
guage that lend themselves to good program design. We also emphasize abstraction and
use the time-tested six-step approach to software development; problem specification,
analysis, design, test planning, implementation, and testing. Each of the 35 case studies
throughout the book follows this software development method.

New in the Third Edition

This edition includes a number of new end-of-chapter projects. Also, a new Chapter 2
uses an Ada 95 "spider" package—similar to the turtle graphics of Logo—to introduce
the basics of algorithms and the fundamental sequential, loop, and test control struc
tures, all in a platform-independent animated framework. Chapter 2 is independent of
the others and thus provides flexibility to an instructor who sees real benefit in intro
ducing all the major control structures together as early as possible. Instructors who
were satisfied with the presentation order in the first two editions can simply skip from
Chapter I to Chapter 3 without loss of continuity.

This edition also contains alphabetical indexes of syntax displays, case studies, and
program style guides and a new Appendix A, High-Resolution Color Graphics. This
appendix provides a platform-independent package for simple two-dimensional graph
ics and examples including a high-resolution color spider package.

Ill
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General Organization of the Book

The order of presentation is designed to do justice both to modem programming con
cepts and to the power of Ada. Each chapter beyond Chapters 1 and 2 presents a bal
anced mixture of a number of important language and computing issues. These are
organized in a number of categories; most chapter section headings give the main cate
gory of the section as well as the specific topic, to orient teacher and student alike to the
flow of material in a given category from chapter to chapter. The categories are:

• Problem Solving: Here is where language-independent concepts of program de
sign, algorithm development, and so forth, are introduced.

• Control Structures: Each of these sections introduces the program-level control
stmctures of Ada: decisions, loops, assignments, and so on.

• Data Structures: In each of these sections appears a discussion of data types and
their uses, in the usual order of scalar types followed by structured or composite
(record and array) types.

• System Structures: Each of these sections introduces a concept that is useful in
what is often called "programming in the large." These concepts help the student,
right from the start, to realize that real-world programs really consist of many
smaller pieces built up in systematic fashion. Included under System Structures are
such things as functions and procedures, packages, and exception handling and
propagation.

• Tricks of the Trade: These are the universal techniques that all programmers must
learn in order to survive productively: debugging techniques, program tracing,
documentation techniques, and the like.
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Pedagogical Features

In this book we employ several proven pedagogical features;

• Complete, compilable programs: From the beginning, students see fiill, com
pilable, executable programs. These are captioned "Program x.y" to identify them
clearly as compilable programs and not fragments, which are embedded in the text
or numbered as figures. Each listing of a main program is immediately followed by
a sample execution, to give the student an idea of the expected results.

A particular advantage of Ada as a teaching language is that the strong standard
ensures that program behavior will be nearly independent of the particular compil
er or computer being used. The programs in this book have been fully tested and
can be compiled and executed using any validated Ada 95 compiler.

• Case Studies: A case study is a program that is developed from specifications, step
by step, from a statement of the problem to a complete working program. The soft
ware development method is taught, reinforced, and applied. We focus much at
tention on program testing and the development of test plans.

Of the 35 case studies, some—especially in the early chapters—are presented in
their entirety, while others are intentionally left incomplete so that their completion
can be assigned as class projects.

• Syntax displays: A syntax display is a brief description, with words and examples,
of the syntax and interpretation of a newly introduced structure. These are set apart
typographically for ease of use, and they codify the language structures as they are
first presented.

• Programming style displays: These are brief discussions, again set apart typo
graphically, offering advice to the student about how to write good programs.
Many of these are of course universal and language-independent; many are also
Ada-specific.

• End ofsection exercises: Following most sections there are two kinds of exercises,
self-check and programming.

• End of chapter exercises: Each chapter review contains a set of quick-check exer
cises with answers, review questions, and programming projects.

• Error discussions and chapter review: Each chapter ends with a section that dis
cusses common programming errors and a review section that includes a table of
Ada constructs introduced in that chapter.

Program Design Issues

Concepts of object-oriented programming (OOP) are introduced throughout the book
as appropriate. While it is true that type extension and dynamic polymorphism are gen
erally seen as necessary to "fiill" OOP, it is essential for the student to understand that
these are not sufficient. Ada's strong support for packages, generics, exceptions, private
types, and subprogram overloading—like their equivalents in other languages—play
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important roles as well. The idea that an object—even a scalar object—has state (value)
and behavior (appropriate operations) is introduced beginning in Chapter 3, and "object
thinking" is pervasive in the book. Type extension per se is an advanced topic that can
not be understood without a good grounding in the other topics, so it is deferred until
Chapter 16.

We present stepwise refinement of an algorithm right from the start but make only
rare use of top-down implementation through procedure stubs and the like. It is crucial
to foster habits of design for reusability very early, and this argues for early emphasis
of packages and the reusable functions and procedures they provide.

Functions are presented very early; They are used in Chapter 4 and written in
Chapter 5. Procedure calls are introduced in Chapters 2 and 3 to support the spider
package and Ada's input/output operations; procedures are written starting in Chapter
7. Functions are more intuitive than procedures, and, in Ada, cannot have in out ("vari
able") parameters. Since functions in Ada are not restricted in their result type—arrays
and records as well as scalars can be returned-this early exposure to functions will
pay off later in encouraging students to use functional notation where possible. Intro
ducing functions early allows us to introduce the writing of packages early (again in
Chapter 5).

Enumeration types are introduced very early (Chapters 2 and 4). Enumerations are
a useful structure for representing a set of values without regard to their internal repre
sentation. Students of other languages have a hard time seeing the utility of enumera
tions because they are so hard to read and display. In Ada, the input/output library
provides a generic package for reading and displaying enumeration values. Further
more, enumerations serve as a useful vehicle for motivating generic instantiation (for
Enuineration_io) and attributes (pos, val, succ, Pred) very early in the game.

Records and arrays are presented together in Chapter 9, with records first. Other
books have introduced arrays of scalars early, with arrays of records as an "advanced"
topic. We prefer to teach that arrays of records are as natural as arrays of integers.

Design of abstract data types (ADTs) is introduced systematically beginning in
Chapter 11. Ada.calendar is seen as an ADT, and the discussion continues with ADTs
for calendar dates, monetary quantities, employee records, and multiple spiders.
Unconstrained array types are treated along with genetics in Chapter 12; multidimen
sional arrays and variant records are introduced in Chapter 13. Chapter 14 presents an
introduction to recursion. Dynamic data structures, in the form of one-way linked lists,
as well as subunits and limited private types, are introduced in Chapter 15, with
applications to stacks and queues. Tagged records are introduced in Chapter 16; these
are seen to be supportive of the type extension (inheritance) that is now seen as essen
tial to full object-oriented programming.

Finally, Chapter 17 introduces the important concept of concurrent programming,
introducing Ada's task types and protected types as language-provided constructs for
concurrency.

Precoriditions and postconditions for subprograms are introduced at the start. We
encourage the development of programs from their documentation; in case studies, the
steps of the algorithm are written before the program is developed and become com
ments as the program is refined.

We encourage appropriate use of comments but do not get carried away with them;
the programs and the book would be far too long if we used industrial-strength com
ment conventions.
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Ada Issues

Ada 95 is a rich and powerful language. It is important to introduce the language to
beginners, step by step, without overwhelming them. Here is a list of a number of Ada
capabilities and how we have handled them:

Numeric Types: Subtypes are introduced early in the book, as a way of specifying
ranges of values that are sensible in the application. Where values shouldn't be
negative, we always use a positive subtype, for example, and often use a subtype
with range constraints where it makes sense not to allow the full range of integer.

We have avoided the use of new and derived numeric types because the compati
bility issues that arise from their use create more problems than they solve for be
ginners. It is range checking that is important to them, not the esoterica of type
compatibility.

Furthermore, using new or derived numeric types for simple beginning-level nu
merical problems gives completely counterintuitive results: Attempting to use
types for distance, rate, and time, for example, to compute the old

Distance ;= Rate * Time;

formula leads to type-compatibility grief that no novice should have to endure.

Packages and related issues: Using packages is introduced in Chapter 2 with the
spider system and in Chapter 3 with the use of the various sublibraries of
Ada.Text_io. In Chapter 4, students learn how to use some of the capabilities of
Ada.Calendar, which has a richness that is not often explored even by advanced
Ada texts. Ada.calendar is a recurring theme in this book, and is discussed in the
absract data type material of Chapter 11, since Time and the various Time and Du
ration operations from Ada.calendar serve as a particularly nice predefined ex
ample of a private ADT. Also, students understand times and dates intuitively;
there is nothing esoteric about them. The year range of Ada. calendar (1901-2099)
provides an opportunity to discuss the Year 2000 problem.

Also in Chapter 4, use of a simple screen-control package is introduced. Students
will need to compile this before they use it, since it is provided with the book and
is not part of most compiler distributions. Thus they will learn how to compile a
package and understand specifications very early on, even if they don't yet under
stand the details of the package body, which are discussed at some length in Chap
ter 8. Screen is used in a number of examples in the book, especially for menu
handling, plotting, and the spider examples.

By Chapter 5, students are writing simple packages; by Chapter 6 they are learning
about overloaded function and procedure names. Private types and operator over
loading appear in Chapter 11.

The USE clause: This is introduced in Chapter 8. Ada industry practice generally
avoids the use clause for a number of good reasons. We avoid it here, in general,
because qualifying all references to package resources helps the student to really
understand which resources are provided by which libraries.
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USE and its Ada 95 variant use type can be useful in taking advantage of the over
loading of infix operators; this is discussed in Chapter 11. use is a better solution
for novices than the industry-favored device of renaming declarations.

Generic predefined libraries: For numeric input/output, we use the Ada 95
Ada.Text_io.integer_Text_io and Ada.Text_io.Float_Text_io. Using these
new "preinstantiations" obviates the need for the student to instantiate numeric m-
put/output packages. The new "preinstantiations" are introduced in Chapter 3 and
are used consistently throughout. In Chapter 4 the student learns to instantiate
Ada.Text_io.Enumeration_io for the desired enumeration type. The student in
stantiates Ada.Numerics.Discrete_Random beginning in Chapter 8.

Generics in general: Some simple generic units appear starting in Chapter 12.
Writing generics is really an advanced topic that should wait until CS2, when the
student is better equipped to handle the underlying abstraction principles.

Exceptions: Discussion of Ada's predefined exceptions occurs in Chapter 3, where
compilation and run-time errors in general are introduced. Robust exception han
dling cannot be taken up until after the control structures have been presented, and
so program level exception handling is first discussed in Chapter 6. Robust input
loops are presented in Chapter 7, along with a package providing robust input op
erations. User-defined exceptions are introduce in Chapter 11, as a natural aspect
of abstract data types.

Lexical style: We have continued the practice of the earlier editions in using upper
case reserved words. We believe that beginners in programming should learn the
structure templates through heavy reinforcement, and the uppercase reserved
words make the structure templates stand out. Ada is not a case-sensitive language,
and although reserved words are printed in the standard in lowercase, an uppercase
convention is perfectly allowable and is, in our experience, pedagogically effec
tive. It is emphasized in the text that teachers and students can, and should, develop
their own coding styles and that consistency of style is more important than follow
ing any specific rule.

Only one statement appears per line. We believe that this makes for more modifi
able code and is a good habit for students to develop. Similarly, each variable and
constant is declared in a separate declaration on its own line.

Procedure parameters: Named association is used exclusively in the early chapters
and almost exclusively thereafter. This is not only good Ada but also good peda
gogy because—as our experience shows—the student has a much easier time un
derstanding the formal/actual binding if the two always appear together.

Initialization expressions: Initialization expressions are introduced in Chapter 8,
along with record types, and the reader is advised to use initializations to ensure
that record fields are always well defined. With some reluctance we have decided
not to introduce initialization expressions for variables. It is true that a declaration
with a static initialization such as

X; Float := 57.0;

contributes to program readability. However, an initialization such as
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X: Float := 3.0 + Sqrt(Y);

is permitted but should not be used, because an exception that is raised if Y is neg
ative will propagate unexpectedly. Instead of artificially limiting initializations to
static expressions, we have simply chosen not to use them at all.

Private and limited private types: Private types are covered in depth in Chapter 11,
in the discussion of abstract data types. Specifically, a number of examples are giv
en of situations in which giving a client access to the details of a type would allow
the client inadvertently to violate the integrity of the abstraction. The exported
types in this chapter all provide for default initialization so that assignment and
equality test are always meaningful operations.

In later chapters attention is paid to those situations—especially in the use of dy
namic data structures—in which assignment and equality test can indeed be used
misleadingly, for example, to copy just the headers of lists. The potential for abuse
of these operations provides useful justification for limited private types, for ob
jects of which assignment and equality test are prohibited.

Submits and Ada stubs: The list-handling packages of Chapter 15 serve as a way
to introduce this concept, which is confusing if brought in too early. Besides being
an interesting Ada technique for doing top-down testing, the use of subunits serves
as a convenient way to present the operations of the packages as individual pro
gram displays and files.

Tasks and protected types: Ada is unique among major programming languages in
providing support for parallelism and concurrency within the language. Parallel
ism is now seen as a "recurring paradigm" in computing, and we think it important
to introduce students to it as early as possible in their education. The material in
Chapter 17 serves this purpose; we have made it independent of Chapters 12-16 so
that a teacher desiring to introduce concurrency in a CSl-level course can do so
after Chapter 11.

Instructor's Manual and Other Online Resources

Information regarding this text is available from the Addison-Wesley World Wide Web
site at ht1:p://www.awl.com/cseng/titles/0-201-36123-X.

The Instructor's Manual is available electronically. The public part, containing
chapter and section summaries and objectives, new terms, notes, and suggestions, as
well as program libraries and errata, is at httptZ/ww,seas.gwu.edu/facuity/mfeid-
man/csibook. The private part, containing solutions to exercises and projects, is avail
able to instructors only from Addison-Wesley. Contact your sales representative for
access information.

It is intended that teachers make the full set of about 200 programs and packages
available to their students so that they need not waste time keying them in. Of course
the programs are available on the included CD-ROM; we hope that teachers will make
them available centrally for courses using central systems for projects. The programs
are also available from the above-named WWW sites.
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Afterword

This book's earlier editions incorporated a great deal of new material that is intended to
introduce the beginning programmer to the power of Ada while building on the suc
cessful pedagogy of the earlier Koffman works. The earlier editions' success among
teachers of Ada—in a number of cases, even serving as critical "ammunition" in mov
ing introductory courses to Ada—confirms the soundness of the approach.

The present edition builds on the success of the first two, serving as an important
aid to teachers ready to introduce students to Ada 95.
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Chapter Review

In this chapter we introduce computers and computer programming. We begin with a
brief history of computers and a description of the major components of a computer,
including memory, central processor, input devices, and output devices. We also dis
cuss how information is represented in a computer and how it is manipulated.

You are about to begin the study of programming using one of the richest and most
interesting programming languages available today: the Ada language. This chapter
begins a discussion of the main topics of this book: problem solving, programming, and
Ada. We first discuss problem solving with a computer. Then languages for computer
programming are described. We describe the process for creating a program and the
roles performed by special programs that are part of a computer system. These pro
grams include the operating system, compiler, editor, and loader. Finally, we take you
through a first exercise in compiling a program and examining error listings.
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1.1 Electronic Computers Then and Now

It is difficult to live in today's world without having some contact with computers.
Computers are used to provide instructional material in schools, to print transcripts, to
send out bills, to reserve airline and concert tickets, to play games, and to help authors
write books. Several kinds of computers cooperate in dispensing cash from an auto
matic teller machine; "embedded" or "hidden" computers help to control the ignitions,
fuel systems, and transmissions of modem automobiles; at the supermarket, a computer
device reads the bar codes on the packages you buy, to total your purchase and help
manage the store's inventory. Even a microwave oven has a special-purpose computer
built into it.

However, it wasn't always this way. Computers as we know them did not exist at all
before the late 1930s, and as recently as the early 1970s, they were fairly mysterious
devices that only a small percentage of our population knew much about. Computer
know-how tumed around when advances in solid-state electronics led to cuts in the size

and cost of electronic computers. Today, a personal computer (see Fig. 1.1) costs under
$1000 and fits easily on a desk or in a briefcase. A computer that fits in the palm of
one's hand costs offiy a few hundred dollars. These computers have computational
power comparable to those of 15 years ago, which cost more than $100,000 and filled a
9-foot by 12-foot room. This price reduction is even more remarkable when we con
sider the effects of inflation over the last decade. It is said that if the development of
automobiles had progressed at the same rate as that of computers, a luxurious car
would cost only a few dollars and would be as fast as the Space Shuttle.

If we take the literal definition of computer as being a device for counting or com
puting, the abacus might be considered the first computer. However, the first electronic
digital computers were designed in the late 1930s and 1940s.

An early large-scale, general-purpose electronic digital computer, called the
ENIAC, was built in 1946 at the University of Pennsylvania with funding supplied by
the U.S. Army. The ENIAC was used for computing ballistics tables, for weather pre
diction, and for atomic energy calculations. The ENIAC weighed 30 tons, occupied a
space 30 by 50 feet, and could perform 5 multiplications per second (see Fig. 1.2).

A computer is basically a device for performing very simple computations and
decisions, such as determining the alphabetical ordering of two words or summing two
numbers, at incredible speeds (millions of these simple operations per second) and with
great accuracy. To accomplish anything useful, a computer must be programmed, or
given a sequence of explicit instructions (the program) indicating which simple opera
tions to carry out, in which order, and how many times.

To program the ENIAC, hundreds of wires and thousands of switches had to be
connected in a certain way. In 1946, Dr. John von Neumann of Princeton University
proposed the concept of a stored program computer in which the instructions of a pro
gram would be stored in computer memory rather than be set by wires and switches.
Because the contents of computer memory could be changed easily, it was much less
difficult to reprogram this computer to perform different tasks than it was to reprogram
the ENIAC. Von Neumann's design is the basis of the digital computer as we know it
today.
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Rgure 1.1 (a) Macintosh Powerbook C3 (photo courtesy of Apple Computer, inc;
Photographer: John Creenleigh)
(b) Palm III™ Connected Organizer (Palm Computing, Inc, a 3Com Company)
(c) IBM PC 300CL Desktop Computer (photo courtesy of IBM)
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Figure 12. The ENIAC Computer (photo courtesy of Unisys Corporation)

A Brief Histojy of Computers

Table 1.1 lists some of the important milestones along the path from the abacus to mod
em-day electronic computers. We often use the term first generation to refer to elec
tronic computers that used vacuum tubes (1939-1958). The second generation began in
1958 with the changeover to transistors. The third generation began in 1964 with the
introduction of integrated circuits. The/ourt/i generation began in 1975 with the advent
of large-scale integration. Since then, change has come so rapidly that we don't even
count generations anymore. However, the late 1970s saw the beginning of the continu
ing "personal computer revolution" with computers that individuals and families could
afford being sold at retail in computer stores.
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Table 1.1 Milestones in the Development of Computers and Programming
Languages

Date Event

2000 B.c The abacus is first used for computations.

1642 A.D Blaise Pascal, in France, creates a mechanical adding machine for tax
computations. It is unreliable.

1670 In Germany, Gottfried von Leibniz creates a more reliable adding
machine, which adds, subtracts, multiplies, divides, and calculates
square roots.

1842 Charles Babbage, in England, designs an Analytical Engine to per
form general calculations automatically. Ada Byron, daughter of the
poet Lord Byron and known later as Lady Lovelace, assists him in
programming this machine.

1890 Herman Hollerith designs a system to record and tabulate data for the
decennial U.S. census. The information is stored as holes on cards,
which are interpreted by machines with electrical sensors. Hollerith
starts a company that will eventually become IBM.

1939 Alan Tunng and a team at Bletchley, England, begin developing a
series of code-breaking computers culminating in the all-vacuum-tube
Colossus.

1939 John Atanasoff at Iowa State University, with graduate student Clif
ford Berry, designs and builds an early digital computer. His project is
funded by a grant for $650. Atanasoff is now generally credited with
building the first electronic digital computer. However, he never filed
for a patent for his invention.

1941 Konrad Zuse, in Berlin, develops Z3, possibly the first operational
program-controlled calculating machine, based on electromechanical
relays.

1943 Howard Aiken, at Harvard, develops the Mark I, essentially an elec
tromechanical realization of Babbage's Analytical Engine.

1946 J. Presper Eckert and John Mauchly design, build, and patent the Elec
tronic Numerical Integrator and Calculator (ENIAC) at the University
of Pennsylvania. It uses 18,000 vacuum tubes and costs $500,000 to
build.

1946 John von Neumann, at Princeton, proposes that a program be stored in
a computer in the same form that data are stored. His proposal, called
"von Neumann architecture," is still the basis of most modem comput
ers.

1951 Eckert and Mauchly build the first general-purpose commercial com
puter, the UNIVAC.

1957 John Backus and his team at IBM complete the first FORTRAN com
piler. This is a milestone in the development of programming lan
guages.
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Date Event

1958 The first computer to use the transistor as a switching device, the IBM
7090, is introduced.

1958 Seymour Cray builds the first fully transistorized computer, the CDC
1604, for Control Data Corporation.

1959 Aided by the computer pioneer Grace Hopper of UNIVAC, the
CODASYL Committee publishes the specification for COBOL. This
is the first effort to standardize a programming language; it is followed
by the development of the first procedures to validate a compiler.

1964 The first computer using integrated circuits, the IBM 360, is
announced.

1965 The CTSS (Compatible Time-Sharing System) is introduced at MIT.
It allows several users simultaneously to use, or share, a single com
puter.

1970 A first version of UNIX is running on the DEC PDP-7.

1971 The Pascal programming language is introduced by Niklaus Wirth of
the Technic^ University of Zurich.

1972 Dennis Ritchie of Bell Laboratories develops the language C.

1973 Part of the UNIX operating system is developed in C.

1973 A court declares the ENIAC patent to be invalid, because ENIAC was
derived from Atanasoff's invention. After 34 years, Atanasoff is rec
ognized as having invented the first electronic digital computer.

1975 The first microcomputer, the Altair, is introduced.

1975 The first supercomputer, the Cray-1, is announced.

1975 The U.S. Department of Defense (DoD) High-Order Language Work
ing Group (HOLWG) is created to find a solution to the DoD's "soft
ware crisis." The group's efforts culminate in the adoption of Ada.

1976 Digital Equipment Corporation introduces its popular minicomputer,
the VAX 11/780.

1977 Steve Wozniak and Steve Jobs begin producing Apple computers in a
garage.

1977 Radio Shack announces the TRS-80, one of the first fully packaged
microcomputers to be sold in retail stores, in time for the Christmas
season.

1978 Dan Bricklin and Bob Frankston develop the first electronic spread
sheet, called VisiCalc, for the Apple computer.

1979 After a competition lasting several years, the preliminary specification
of Ada is published by the U.S. government. Ada's design team at
CII-Honeywell-Bull is headed by Jean Ichbiah and includes about a
dozen American and European language experts.

1979-82 Bjame Stroustrup of Bell Laboratories introduces "C with Classes."
1981 IBM introduces the IBM Personal Computer. The business world now

acknowledges that microcomputers are "real."
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Date Event

1982 Sun Microsystems introduces its first workstation, the Sun 100.

1983 The Ada language standard is adopted by the government and by the
American National Standards Institute (ANSI).

1983-85 C with Classes is redesigned and reimplemented as C-H-.

1984 Apple introduces the Macintosh, the first widely available computer
wiA a "graphical user interface" using icons, windows, and a mouse
device.

1984 The Internet contains approximately 1,000 host computers.
1987 The Internet contains approximately 10,000 host computers.
1987 Ada is adopted as an intemational standard by the International Stan

dards Organization (ISO).

1988 The Ada 9X project is begun, to consider extensions to the Ada lan
guage. Christine Anderson oversees the project for the U.S. govern
ment; the design team is headed by Tucker Taft of Intermetrics.

1989 The Internet contains approximately 100,000 host computers.

1990 Over 500 different Ada compilers have been validated. Compil
ers—all handling the same Ada language—are readily available for all
categories of computers from laptops to supercomputers.

1992 The Intemet contains approximately 1,000,000 host computers.
1992 The United States, Canada, and dozens of other countries around the

world are redesigning their air traffic control systems using
state-of-the-art computers running software written mostly in Ada.

1994 GNAT, the GNU Ada 95 Compilation System, is released as the first
compiler to implement the evolving Ada 9X design. GNAT is distrib
uted free to many thousands of users over the Intemet and on
CD-ROMs.

1995 The Intemet, originally a university and defense research network
started in the 1970s by the U.S. govemment, has hundreds of thou
sands of computers and millions of govemment, academic, commer
cial, and individual users and becomes a subject of widespread
discussion in the public press. The World Wide Web, nonexistent in
1990, experiences explosive growth and popularity

1995 The Boeing 777, the most computer-dependent airliner to date, makes
its first commercial flights. Its several million lines of software are
written mostly in Ada.

1995 Ada 9X becomes Ada 95 when ISO and ANSI adopt the extended lan
guage as a U.S. and intemational standard. The first validated Ada 95
compilers appear.

1996 The Intemet contains approximately 10,000,000 host computers.
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Date Event

1996 The Java Virtual Machine (JVM)—an "interpreter" program that runs
applets, or small application programs distributed via the Inter
net—appears in World Wide Web browser programs for desktop per
sonal computers. One of the programming languages used to produce
applets is dso called Java.

1996 Intermetrics AppletMagic, the first Ada 95 compiler that produces
JVM applets, enters distribution.

1997 One of the authors of this book (Feldman) flies between Washington
and Paris on a Boeing 777. It is a very nice airplane.

1997 GNAT is fully validated for the Ada 95 core language and all annexes.

1998 The "Year 2000 Problem"—an unknown but very large number of
older computers and programs must be heavily modified so that they
can distinguish between the year 1900 and the year 2000—is dis
cussed nearly every day in newspapers and radio and TV news pro
grams. It is still unknown just what the cost of solution—estimated at
many billions of dollars—will be or just how many people will be
affected when 2000 arrives.

1998 GNAT for the Java Virtual Machine enters distribution.

1998 The cost of a typical personal computer is just over $ 1,000.

1998 The Internet contains an estimated 30,000,000 host computers.

Categories of Computers

Modem-day computers are classified according to their size and performance. The
three major categories of computers are mainframes, minicomputer, and microcomput
ers. These categories are useful but rough; As technology continues to improve, the cat
egories increasingly blur into one another.

Businesses, research laboratories, and university computing centers often use larger
computers called minicomputers and mainframes. These are most noticeable in that
they can be used simultaneously by many individuals, all working on separate prob
lems. Supercomputers, the most powerful mainframes, can perform in seconds compu
tations that might take hours or days on a smaller computer or years with a hand
calculator.

You are probably most familiar with desktop computers such as the Apple Macin
tosh or the "IBM-compatible" models from many manufacturers. The latter are called
"IBM-compatible" because they were originally imitators, or "clones" of the IBM Per
sonal Computer. Currently, they are often called "Wintel" computers—they run
Microsoft Windows software and are based on a hardware design by Intel.

When these computers first appeared in the early 1980s, they were called micro
computers or personal computers because they were usually used by one person at a
time and were small enough to fit on or next to a desk. They were also "micro" because
they did not have much computing power compared to the physically larger ones. The
most powerful microcomputers, called workstations, are commonly used by engineers
to produce engineering drawings and to assist in the design and development of new
products. The smallest general-purpose microcomputers are often called laptops or
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notebooks because they can fit into a briefcase and are often used on one's lap in an air
plane. Finally, at this writing, palmtop computers—hand-held, pocket-sized devices
originally designed for maintaining one's telephone list and appointment calendar but
increasingly running general-purpose software—are selling for just a few hundred dol
lars and are becoming extremely popular.

Often, the term embedded computer is used to refer to a computer that is built into
a larger system and not operated directly by a human user. Embedded computers are
found in automobiles, automatic teller machines, cash registers, and so on.

This book was written by using an Apple Macintosh microcomputer; the programs
were tested on a Macintosh, an IBM-compatible personal computer running Microsoft
Windows 95. and a Sun workstation.

1.2 Hardware Components of a Computer

Despite significant variations in cost, size, and capabilities, digital computers have been
remarkably similar throughout their 50-year history. They all consist of hardware, the
physical equipment, and software, the programs that are loaded into the hardware to
perform computational tasks.

Most computers consist of the following hardware components:

• main memory

• secondary memory, which includes storage devices such as hard disks, floppy
disks, CD-ROMs, and writable CDs

• the central processing unit

• input devices, such as scanners, keyboards, and mice

• output devices, such as monitors and printers

Figure 1.3 shows how these components interact, with arrows showing the direc
tion of information flow.

All information that is to be processed by a computer must first be entered into the
computer memory via an input device. The information in memory is manipulated by
the central processing unit (CPU), and the results of this manipulation are stored in
memory. Information in memory can be displayed through an output device. A second
ary storage device is often used for storing large quantities of information in a semiper
manent form.

Alain Memory

Main memory—often called random-access memory, or RAM—\s used for storing
information and programs. All types of information—numbers, names, lists, and even
pictures—can be represented and stored in main memory.
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Figure 1.3 Hardware Components of a Computer

Imagine the memory of a computer as an ordered sequence of storage locations
called memory cells. To be able to store and retrieve (access) information, there must be
some way to identify the individual memory cells. To accomplish this, each memory
cell has associated with it a unique address, which indicates its relative position in
memory. Figure 1.4 shows a computer memory consisting of 1000 memory cells with
addresses 0 through 999. Today's personal computers often have several million indi
vidual cells. Main memory—RAM—is conventionally measured in megabytes, where
one megabyte is approximately one million cells.

The information stored in a memory cell is called the contents of a memory cell.
Every memory cell always contains some information, although we may have no idea
what that information is. Whenever new information is placed in a memory cell, any
information that is already there is destroyed and can no longer be retrieved. In Fig. 1.4
the contents of memory cell 3 is the number -26, and the contents of memory cell 4 is
the letter H.
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Although not shown in the figure, a memory cell can also contain a program
instmction. The ability to store programs as well as data in the same physical memory
is called the stored program concept, first developed by John von Neumann. A pro
gram's instructions must be loaded into main memory before that program can be exe
cuted. The great benefit of a stored program computer is that its operation can be
changed by simply loading a different program into memory.

A memory cell as shown in Fig. 1.4 is actually a grouping of smaller units called
bytes. A byte is the amount of storage required to store a single character. The number
of bytes in a memory cell depends on the kind of information stored in that cell and var
ies from computer to computer. A byte is an aggregate of an even smaller unit of stor
age called a bit; a bit is a binary digit (0 or 1). In most computers, there are eight bits to
a byte.

Each value stored in memory is represented by a particular pattern of Os and Is. To
store a value, the computer sets each bit of a selected memory cell to 0 or 1, thereby
destroying what was previously in that bit. Each value is represented by a particular
pattem of Os and Is. To retrieve a value from a memory cell, the computer copies the
pattern of Os and Is stored in that cell to another area where the bit pattem can be pro
cessed. The copy operation does not destroy the bit pattem that is currently in the mem
ory cell. The process described above is the same regardless of the kind of
information—character, number, or program instruction—stored in a memory cell.
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Secondaiy Memory

Most computers have a limited amount of main memory. Consequently, secondary
memory provides additional storage capability on most computer systems. For exam
ple, a disk drive, which stores data on a disk, is a common secondary storage device for
today's computers.

There are two kinds of disks; hard disks and floppy disks (sometimes called dis
kettes)', a computer may have one or more drives of each kind. A hard disk cannot nor
mally be removed from its drive, so the storage area on a hard disk is often shared by all
users of a computer. On the other hand, each computer user may have his or her own
floppy disks that can be inserted in a disk drive as needed. Hard disks can store much
more data than floppy disks and operate much more quickly, but they are also much
more expensive. Floppy disks are called "floppy" because the actual recording surface
is a flexible piece of magnetically coated plastic.

The currently popular 3.5-inch-diameter floppy disks are encased in a hard plastic
outer shell to protect them from damage. The older 5.25-inch-diameter disks, which are
rapidly disappearing from the scene, were encased in a (usually) black sealed envelope
of heavy paper or flexible plastic. One inexperienced user once called the university's
computer support organization to report that files were repeatedly disappearing from
the floppy disk. On arriving at the user's office, the support technician immediately
noticed that the user was keeping the disk from getting lost by sticking it to a metal file
cabinet with magnets. Of course, the magnets erased the data on the disk. This user was
not unintelligent, merely inexperienced, and had never been told not to use magnets
near a floppy disk!

Many types of information can be stored on disk, for example, a term paper, a com
puter program, payroll data from a business, or data from earthquake seismic readings
taken by a research center. Each of these collections of information is called zflle. You
must give a file a unique name when you first store it on a disk so that you can retrieve
the file at a later date.

Comparison of Main and Secondaiy Memory

Main memory is much faster and more expensive than secondary memory. For exam
ple, a typical 3.5-inch floppy disk holds approximately one megabyte (1 million bytes)
of data and costs less than a dollar. Currently, main memory comes in modules of up to
64 megabytes and costs several dollars per megabyte. At this writing, a personal com
puter hard disk can store several gigabytes (a gigabyte is a billion bytes) and costs a
dollar or less per megabyte.

An increasingly popular form of memory is called CD-ROM (compact disk
read-only memory). CD-ROMs are plastic disks similar to audio CDs. CD-ROMs are
very inexpensive; a CD-ROM containing hundreds of megabytes of programs or other
information may cost as little as a few dollars. The disadvantage of CD-ROMs is that
your computer cannot store new information on them. This is why they are called
"read-only."

New forms of secondary memory appear with increasing frequency. A Zip hard
ware unit costs about $100 and uses floppy disks with 100-megabyte capacity. Also, for
a few hundred dollars you can purchase a writable compact disk unit, capable of stor
ing, as well as reading, information on a CD.
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The CPU normally transfers data between secondary memory and main memory; it
manipulates the data in main memory only. Data in main memory are volatile: They
disappear when you reset or switch off the computer. Data in secondary memory are
nonvolatile: They do not disappear when the computer is switched off and are magneti
cally "erased" only by a program operating under an explicit command from the user.
You can remove a floppy disk from the computer and set it aside for later use; the data
will remain on the disk until explicitly erased.

Central Processing Unit

The CPU has two roles; coordinating all computer operations, and performing arith
metic and logical operations on data. The CPU follows the instructions contained in a
program which has been loaded into memory. These instructions specify which opera
tions should be carried out and in what order; the control unit then transmits coordinat
ing control signals to the computer components. For example, if the instruction requires
reading a data item, the CPU sends the necessary control signals to the input device.

To process a program stored in memory, the CPU retrieves each instruction in
sequence (fetches the instruction), interprets (decodes) the instruction to determine
what should be done, and then retrieves any data necessary to carry out that instruction.
Next, the CPU performs the actual manipulation of the data it retrieves from memory
(executes the instruction). Finally, the CPU can store the results of these manipulations
back in memory for later use.

The CPU can perform such arithmetic operations as addition, subtraction, multipli
cation, and division. It can also compare the contents of two memory cells, for exam
ple, to determine which is the larger value or to determine whether the two values are
equal. On the basis of the result of the comparison, the CPU can make a simple deci
sion about which instruction to execute next. The ability to make simple decisions is
the basis of a computer's real power.

A typical modem CPU can perform each operation in much less than one millionth
of a second.

Input and Output Devices

We use input/output (I/O) devices to communicate with the computer. Specifically, they
allow us to enter data for a computation into memory and to observe the results of the
computation.

You will be using a keyboard (see Fig. 1.5) as an input device and a monitor or dis
play screen as an output device. When you press a key on the keyboard, a binary-coded
version of that character is sent to main memory and is also displayed (echoed) on the
monitor at the position of the cursor, a moving place marker. A computer keyboard
resembles a typewriter keyboard except that it has some extra keys for performing spe
cial functions. On the keyboard shown in Fig. 1.5, the row of keys at the top (labeled F1
through F12) are function keys. The function performed by each of these keys depends
on the program that is executing.

Another common input device is a mouse. This is a device you hold in your hand,
moving it around a pad on your desk. Several different mechanisms are used for mice.
In one common one, as you move the mouse, a rubber ball attached to its bottom
rotates, causing small rollers inside the mouse to send a signal to the computer. The
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Figure 1.5 A Computer Keyboard

computer then moves the mouse cursor (normally a small box or arrow) around the
screen to follow your hand motion. You select an operation by moving the mouse cur
sor to a particular word or picture, then pressing (clicking) a button on the mouse.

Humorous stories abound regarding new users' inexperience with using a mouse.
In one case, a user picked up the mouse, pointed it at the computer screen, and clicked
the button. This user, reasoning from experience with TV remote-control devices, was
quite surprised when the computer did not respond. Another story tells of a user who
placed the mouse on the floor, then stepped on the button without moving the mouse.
This user was evidently thinking of the mouse as being similar to the foot pedal that
comes with a sewing machine. These stories, funny as they are, are worth remembering
as further examples of the observation that "inexperience does not equate to stupidity."

A trackball is a variant of a mouse that is commonly installed on laptop computers.
The rotating ball is fixed in place on the keyboard; you roll it with your fingertip. An
even newer mouse variant is the trackpad, a touch-sensitive pad built into the lower
edge of the keyboard; you move the cursor by simply moving your fingertip across the
pad.

A monitor is similar to a television screen. It provides a temporary display of the
information that appears on the screen. If you want paper, or hard-copy, output, you
must send your computational results to an output device called a printer.

Computer Networks

Often, several individual computers are interconnected as a computer network. The net
work usually comprises a number of personal computers or workstations, one or more
central servers, each with a very large hard disk, and perhaps a high-quality central
print server. Many computer laboratories arrange their computers in a network.

You have probably heard of the Internet. This is a huge network of networks, inter
connecting most university computers all over the world and many business, govern
ment, and individually owned computers as well. The Internet provides many very
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large file servers, as well as electronic bulletin boards and mail services. The Internet is
a fascinating, ever-changing collection of resources, and if you have access to it, you
will enjoy sending messages to friends in far-away places, looking up source material
in libraries, and bringing interesting programs and other files into the computer you are
using.

A risk in using the Intemet is that you will become "hooked" on it, spending so
much time "net surfing" that you neglect other work. Be careful! Also keep in mind that
the Intemet is the only medium in which anyone can be a publisher. Since there is no
reliable way to sort out good information from useless information or outright lies, you
must leam how to evaluate what you read on the Intemet. Don't be misled into thinking
that because it's on the Web, it must be true!

Discussion

By the time you read this book, new computers, new kinds of secondary memory, and
new input/output devices will have emerged on the market, and prices will have
dropped enough to make our price indications obsolete. It might seem that the changes
are too frequent for mere humans to follow, but in fact, the basic hardware stmcture of
a computer remains: A computer consists of main and secondary memory, a CPU, and
input/output devices. If you keep this in mind, you will able to keep the amazing tech
nological changes in perspective.

EXERCISES FOR SECTION 1.2

Self-Check

1. What are the contents of memory cells 0 and 999 in Fig. 1.4? What memory
cells contain the letter X and the fraction 0.005?

2. Explain the purpose of the memory, CPU, and disk drive and disk. What input
and output devices will be used with your computer?

1.3 Computer Software

Like computer hardware, software is changing rapidly, and categorizations are increas
ingly blurry. On the other hand, it is usually workable to divide software into operating
systems, application programs, and software development tools.
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Operating Systems

Some of you will be using a time-shared computer. In this environment many users are
connected by terminals to one large, central computer, and all users share the central
facilities.

Many of you will be using a personal computer. A personal computer is a smaller,
desktop computer that is used by one individual at a time. Personal computers are often
connected together in a computer network. Regardless of what computer you are using,
it will be necessary to interact with a supervisory program that is within the computer
called the operating system (OS). In time-shared computers, it is the responsibility of
the operating system to allocate the central resources among many users. Some tasks of
the operating system are:

• validating the user's identification and password;

• making application programs and software development tools available to users;

• allocating memory and processor time;

• providing input and output facilities;

• retrieving needed files; and

• saving new files.

The operating system on a personal computer performs these tasks as well; the only
difference is that often there is no user validation. In a computer network, managing the
communication among the various computers and devices is an operating system
responsibility.

Some of today's commonly used operating systems are:

• Macintosh OS, developed by Apple Computer and currently available only on Ap
ple's own Macintosh computers;

• Windows 95, Windows 98, and Windows NT, developed by Microsoft and in
stalled on computers from many companies using CPUs based on an Intel design;

• MS-DOS, an older Microsoft design whose use is declining in favor of the Win
dows variants; and

• UNIX, developed in the 1970s by Bell Laboratories and the University of Califor
nia at Berkeley and currently available in many variants, including Sun's Solaris,
Tenon's MachTen, Hewlett-Packard's HP/UX, IBM's AIX, Silicon Graphics'
IRIX, and several freely distributed ones such as FreeBSD, BSD386, and Linux.

Application Programs

An application program is simply one we use directly to do some work on a computer.
Word processors, spreadsheet programs, electronic-mail handlers. World Wide Web
browsers, music composition programs, and computer games are all examples of appli
cations. So are programs for power plant control, automatic teller machines, grocery
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checkout, and automobile fuel management and antilock braking. These programs have
an amazing variety of purposes, but they all use services provided by an operating sys
tem, and they were all developed by using a special category of applications called soft
ware development tools.

Software Development Tools

A software development tool is an application program whose purpose is to aid a soft
ware developer in producing other programs. You will probably use the following soft
ware development tools in connection with this book;

• the editor or interactive development environment to enter or modify a program;

• the compiler to translate your program into hardware instructions;

• the binder/linker to link your program together with other modules to form an ex
ecutable whole; and

• the debugger to help you find errors that arise from the execution of your program.

Discussion

When mainframes were the only computers in existence, the operating system and soft
ware tools were generally supplied by the builder of the hardware. This was called bun
dling. At that time, therefore, most people viewed software tools as a part of the OS.
More recently, however, the software industry has grown independenUy of the hard
ware industry, and there is active competition in the production of programs of all
kinds. Since the software on a given computer now generally comes from a variety of
sources—pieinstalled when you buy the computer, purchased separately, installed from
a CD collection, or downloaded from the Internet—it is obvious that software develop
ment tools are just a special kind of application.

Having completed our general introduction to computer history, hardware, and
software, we can move on to the specific focus of this book, namely, software develop
ment and the problem-solving process that is so essential to effective software.

EXERCISE FOR SECTION 1.3

Self-Check

1. Explain the different categories of software and give examples of each.
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1.4 Problem Solving and Programming

Computer problem-solving ability is a combination of art and science, the transforma
tion of a description—in English or another human language—of a problem into a form
that permits a mechanical solution and the implementation of that solution on a com
puter. A relatively straightforward example of this process is transforming a word prob
lem into a set of algebraic equations that can then solved for one or more unknowns.

Most problems are not so easily solved. The problem-solving process is more diffi
cult because problem descriptions are often incomplete, imprecise, or ambiguous. The
successful problem solver needs to learn the following skills:

1. Ask the right questions to clarify the problem and obtain any information that
is missing from the problem statement (this process is called problem specifi
cation).

2. Analyze the problem, attempting to extract its essential features and identify
what is provided (the problem inputs) and what is required (the problem out
puts).

3. Determine whether there are any constraints or simplifying assumptions that
can be applied to facilitate the problem solution. We often cannot solve the
most general case of a problem but must make some realistic assumptions that
limit or constrain the problem so that it can be solved.

4. Apply knowledge of the problem environment and the formulas or equations
that characterize it, to develop a series of steps whose successful completion
will lead to the problem solution, evenmally implementing or coding these
steps in a form that can be submitted to a computer.

5. Once the solution is obtained, verify its accuracy by developing and carrying
out a plan for testing it.

1.5 The Software Development Method

Students in many subject areas receive instruction in specific problem-solving methods.
For example, business students are encouraged to follow a systems approach to prob
lem solving; engineering and science students are encouraged to follow the engineering
and scientific method. Although these problem-solving methods are associated with
very different fields of study, their essential ingredients are quite similar. We will
describe one such method below.

This book is concerned with a particular kind of problem solving, namely, develop
ing solutions that use computers to get results. We mentioned earlier that a computer
cannot think; therefore, to get it to do any useful work, we must provide a computer
with a program that is a list of instructions. Programming a computer is a lot more
involved than simply writing a list of instructions. Problem solving is an important
component of programming. Before we can write a program to solve a particul^ prob
lem, we must consider carefully all aspects of the problem and then organize its solu
tion.
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A software developer is someone who is involved with the design and implementa
tion of reliable software systems. This title emphasizes the fact that programmers, like
engineers, are concerned with developing practical, reliable solutions to problems.
However, the product that a software developer produces is a software system rather
than a physical system.

To highlight the analogy with engineering, some people refer to this method as soft
ware engineering and to software developers as software engineers. To emphasize the
fact that one need not be an actual engineer or even an engineering student to develop
good software, we instead use the terms software development and software developer
in this book.

Steps in the Software Development Method

Software can be complicated, so software development requires the developer to use a
methodical working style. Details of different methods vary somewhat, but these meth
ods have in common that they are systematic, step-by-step approaches. The software
development method that is used in this book is typical of the methods used in industry.
Here are the major steps:

1. Problem specification'. State the problem and gain a clear understanding of
what is required for its solution. This sounds easy, but it can be the most criti
cal part of problem solving. A good problem solver must be able to recognize
and define the problem precisely. If the problem is not totally defined, you
must study the problem carefully, eliminating the aspects that are unimportant
and zeroing in on the root problem.

2. Analysis: Identify problem inputs, desired outputs, and any additional require
ments of or constraints on the solution. Identify what information is supplied
as problem data and what results should be computed and displayed. Also, de
termine the required form and units in which the results should be displayed
(for example, as a table with specific column headings).

3. Design: Develop a list of steps (called an algorithm) to solve the problem and
verify that the algorithm solves the problem as intended. Writing the algorithm
is often the most difficult part of the problem-solving process. Once you have
the algorithm, you should verify that it is correct before proceeding further.

4. Test plan: Develop a strategy for proving to yourself and to others that your al
gorithm will get the proper results. It is highly advisable to write a plan for
testing the program you will write, even before you have written it. Which test
cases will you choose? What are the special cases that must be tested? Pretend
you are a potential purchaser of the program and ask, "Which tests would I re
quire to be convinced that this program behaves as advertised?"

5. Implementation or coding: Implement the algorithm as a program. This re
quires knowledge of a particular programming language. Each algorithm step
must be converted into a statement in that programming language.

6. Testing: Run the completed program, testing it with the test cases specified in
the test plan.
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If the first three steps in the list above are not done properly, you will either solve
the wrong problem or produce an awkward, inefficient solution. To perfonn these steps
successfully, it is most important that you read the problem statement carefully before
attempting to solve it. You may need to read each problem statement two or three times.
The first time, you should get a general idea of what is being asked. The second time,
you should try to answer the questions;

• What information should the solution provide?

• What data do I have to work with?

The answer to the first question will tell you the desired results, or the problem outputs.
The answer to the second question will tell you the data provided, or the problem
inputs. It may be helpful to underline the phrases in the problem statement that identify
the inputs and outputs.

As was indicated above, the design phase is often the most difficult part of the
problem-solving process. When you write an algorithm, you should first list the major
steps of the problem that need to be solved (called subproblems). Don't try to list each
and every step imaginable; instead, concentrate on the overall strategy. Once you have
the list of subproblems, you can attack each one individually, adding detail or refining
the algorithm. The process of solving a problem by breaking it up into its smaller sub-
problems, called divide and conquer, is a basic strategy for all kinds of problem solving
activities.

If you do not develop a proper test plan, you risk just running the program with
casually chosen inputs, thereby missing important test cases which, should they arise
after the program is completed and delivered, may cause the program to fail unexpect
edly. A program's behavior must be, to the greatest extent possMc, predictable, even if
the user m^es errors in operating it.

The principle of predictable performance requires that a test plan should include
cases of "bad" as well as "good" input. An especially tragic, and true, story of unpre
dictable software is a certain radiation machine that, in treating several cancer patients,
responded to some unexpected operator keystrokes by giving the patients lethally high
radiation dosages, killing them instead of treating their cancer.

The software development method can be used with any actual programming lan
guage; indeed, only the implementation phase really requires detail^ knowledge of a
language or a particular computer. Even the testing phase is, in industry, often carried
out by individuals who do not know programming but specialize in developing good
tests of programs.

In this book you will see numerous examples of the software development method,
with each step spelled out in some detail. To get us started, here is an example of the
method applied to a real-life problem. This illustrates that while our method is espe
cially useful in developing software, the systematic, step-by-step approach is certainly
not limited to software development.
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CASE

STUDY CHANGING A FLAT TIRE

Problem Specification
You are driving a car with two friends and suddenly get a flat tire. Fortunately, there is a
spare tire and jack in the trunk.

Analysis
After pulling over to the side of the road, you might decide to subdivide the problem of
changing a tire into the subproblems below.

Design
Here are the main steps in the algorithm to change a tire.

Algorithm
1. Loosen the lug nuts on the flat tire; don't remove them yet.

2. Get the jack and jack up the car.

3. Remove the lug nuts from the flat tire and remove the tire.

4. Get the spare tire, place it on the wheel, and tighten the lug nuts.

5. Lower the car.

6. Secure the jack and flat tire in the trunk.

Because these steps are relatively independent, you might decide to assign sub-
problem 1 to friend A, subproblem 2 to friend B, subproblem 3 to yourself, and so on.
If friend B has used a jack before, the whole process should proceed smoothly; how
ever, if fnend B does not know how to use a jack, you need to refine step 2 further.

Step 2 Refinement

2.1. Get the jack from the trunk.

2.2. Place the jack under the car near the flat tire.

2.3. Insert the jack handle in the jack.

2.4. Place a block of wood under the car to keep it from rolling.

25. Jack up the car until there is enough room for the spare tire.

Step 2.4 requires a bit of decision making on your friend's part. Because the actual
placeinent of the block of wood depends on whether the car is facing uphill or down
hill, friend B needs to refine step 2.4.

Step 2.4 Refinement

2.4.1 If the car is facing uphill, then place the block of wood in back of a tire that is not
flat; if the car is facing downhill, then place the block of wood in front of a tire
that is not flat. This is actually a conditional action! One of two alternative ac
tions is executed, depending on a certain condition.
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Finally, step 2.5 involves a repetitive action: moving the jack handle until there is
sufficient room to put on the spare tire. Often, people stop when the car is high enough
to remove the flat tire, forgetting that an inflated tire requires more room. It may take a
few attempts to complete step 2.5.

Step 2.5 Refinement

25.1. Move the jack handle repeatedly until the car is high enough off the ground that
the spare tire can be put on the wheel.

Refined Algorithm
Here is the refined algorithm thus far. You can continue refining it until you are satisfied
that every detail has been properly specified.

1. Loosen the lug nuts on the flat tire; don't remove them yet.

2. Get the jack and jack up the car.

2.1. Get the jack from the trunk.

22. Place the jack under the car near the flat tire.

2.3. Insert the jack handle in the jack.

2.4. Place a block of wood under the car to keep it from rolling.

2.4.1. If the car is facing uphill, then place the block of wood in back of a
tire that is not flat; if the car is facing downhill, then place the block
of wood in front of a tire that is not flat.

2.5. Jack up the car until there is enough room for the spare tire.

2.5.1. Move the jack handle repeatedly until the car is high enough off the
ground that the spare tire can be put on the wheel.

3. Loosen the lug nuts from the flat tire and remove the tire.

4. Get the spare tire, place it on the wheel, and tighten the lug nuts.

5. Lower the car.

6. Secure the jack and flat tire in the trunk.

The algorithm for changing a flat tire has three categories of action: sequential exe
cution, conditional execution, and repetition. Sequential execution simply means to
cany out steps 2.1 through 2.5 in the sequence listed. Step 2.4.1 illustrates conditional
execution in that placement of the block of wood depends on the angle of inclination of
the car. Step 1.5.1 illustrates repetition.

In general, the order of steps in an algorithm is very important. For example, the car
cannot be lowered before it has been raised. Sometimes, there are several sequences for
the steps in an algorithm, any one of which will produce a proper result, but in any case
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the steps cannot be written in a careless, arbitrary order. To succeed in software devel
opment, you must be willing to focus on solving problems in a careful, step-by-step
fashion.

1.6 Programming Languages

Writing a computer program requires knowing a system of instructions for the com
puter. There are many such systems; these have come to be called programming lan
guages. Like human languages (often called natural languages by computer people),
programming languages have vocabularies—sets of acceptable words and gram
mars—and rules for combining words into larger units analogous to sentences and
paragraphs.

There is an important distinction between programming languages and namral lan
guages. Because a person can think, he or she can understand or "make sense" of
another person's communication, even if the second person's grammar or usage is poor.
Because a computer cannot think, it is far less tolerant of a programmer's poor gram
mar or usage and will usually stop and refuse to proceed until the errors are corrected.
This is not as difficult as it may seem: Although natural languages grew over many cen
turies and are filled with irregularities and strange constructions, programming lan
guages were designed by humans expressly to be consistent and regular and are
therefore easier to leam and use than natural languages.

There are many different programming languages, which fall into three broad cate
gories: machine, assembly, and high-level languages.

Machine Languages

Machine language is the native tongue of a computer. Each machine-language instruc
tion is a binary sequence (string of Os and Is) that specifies an operation and the mem
ory cells involved in the operation. Three instructions in a machine language might be:

0010 0000 0000 0100

0100 0000 0000 0101

0011 0000 0000 0110

Obviously, what is easiest for a computer to understand is most difficult for a person to
understand and vice versa. Each type of central processor has its own system of
machine instructions. The Motorola Power PC, the Intel Pentium, and the Sun SPARC
are examples of different CPU types whose machine-language programs are not inter
changeable.

Assembly languages

Assembly language allows us to use descriptive names to reference data and instruc
tion; however, each operation is typically a very small and specific one. The machine
language above might have been written as
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LOAD Cost

ADD Profit

STORE Price

in an assembly language. Generally, each assembly-language instruction represents one
machine-language instruction for a specific type of computer. A program called an
assembler is used to translate assembly language to machine language.

High-level Languages

High-level languages (also called high-order languages, mostly by the U.S. govern
ment) are most often used by programmers (program writers). High-level languages are
much easier to use than machine and assembly languages. A high-level language pro
gram is more portable. This means that it can be made to execute with little or no mod
ification on many different types of computers.

Some common high-level languages are BASIC, FORTRAN, COBOL, Pascal, C,
C-H-, Java, and Ada. Each of these languages was designed with a specific purpose in
mind. FORTRAN is an acronym for FORmula TRANslation, and its principal users
have been engineers and scientists. BASIC (Beginners All-purpose Symbolic Instruc
tional Code) was designed in the 1960s to be learned and used easily by students.
COBOL (COmmon Business Oriented Language) is used primarily for business
data-processing operations. Pascal (named for Blaise Pascal) was designed in the early
1970s as a language for teaching programming. C (whose developers designed B first)
combines the power of an assembly language with the ease of use and portability of a
high-level language. C-H- is an extension of C that supports object-oriented program
ming. Java is an object-oriented language that combines many of the aspects of C++
and Ada.

One of the most important features of high-level languages is that they allow us to
write program statements that resemble human language or everyday mathematics. We
can reference data that are stored in memory using descriptive names (e.g.. Name,
Rate) rather than numeric memory cell addresses. We can also describe operations
that we would like performed using familiar symbols. For example, in several
high-level languages the statement

Price = Cost + Profit

means add cost to profit and store the result in price.
Because a computer can execute only programs that are in its machine language, a

high-level language program must be converted or translated into machine language
before it can be executed. A program called a compiler carries out the translation;
sometimes, the compiler produces assembly language, which is then further translated
by the assembler. The original high-level language program is called the source pro
gram; the resulting machine-language program is called the object program. Section
1.8 describes the steps required to process a high-level language program.

Armed with a general introduction to progimming languages, we begin our study
of one specific programming language: Ada 95.
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EXERCISE FOR SECTION 1.6

Self-Check

1. What do you think the following high-level language statements mean?

X := A + B + C

X  := Y / Z

D := C - a + A

1.7 About Ada

The name Ada honors Augusta Ada Byron (1815-1852), Countess of Lovelace, the
daughter of the English poet Lord Byron. Ada assisted the computer pioneer Charles
Babbage in "programming" his early machines; she is therefore sometimes credited
with having been the first programmer. In learning Ada you will be learning a computer
language that can be used equally well for teaching introductory programming con
cepts and for developing large practical computer systems. Programs in Ada are rela
tively easy to read, understand, and maintain (keep in good working order).

The richness of Ada is such that you are learning a language that can serve you very
well throughout your career, no matter how large or complex the programs you wiU
need to write. This book introduces you to a large and usefol part of the language; you
will undoubtedly learn the more advanced features as your experience and interest
grows. The standard nature of Ada ensures that you will be able to use everything you
learn in this book about Ada, regardless of the computer or Ada compiler you use.

Ada was developed in the late 1970s and early 1980s at the direction of the U.S.
Department of Defense (DoD). Although it seems hard to believe, in the mid-seventies
several hundred languages were in use in defense-oriented computer systems. DoD
determined that the use of a modem and strongly standardized programming language
might result in more reliable and portable software at lower cost to the taxpayer and
therefore organized a competition for the best design of a new language for its needs.

The result of this competition was a language, designed by the French engineer
Jeiui Ichbiah and his international team of language experts, that is rich in capabilities
for building software systems for general as well as defense purposes.

Ada's Capabilities

The capabilities of high-level languages like Ada can be organized in a way similar to
the way sections are titled in chapters of this book:

• Control structures are, as we discussed above, those stmctures that allow the pro
grammer to instract the computer precisely which operations to carry out in which
order. In this book you will study all the important control stmctures of Ada.
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• Data structures provide ways to organize data—numbers, letters, sequences of let
ters, records, and other groupings—so that they can be processed by the control
structures of the program. Most of the data structures—ica/ar types, records, and
arrays—of Ada are presented in this book.

• System structures provide ways to organize control structures and data structures
into units of appropriate size so that systems of programs can be built reliably and
without great difficulty. Procedures and functions allow grouping of data and con
trol statements into small, cohesive units; packages allow procedures, functions,
and other resources, such as data type declarations, to be organized into larger units
or modules so that they can be put in libraries for you and others to use in many
applications. We consider exception handling to be a system structure because ex
ception handling provides a standard way to control the flow of error information
from one part of a system to another.

The facilities of Ada also include tasking—a powerful capability for building con
current programs (programs containing segments that execute, or appear to execute,
simultaneously)—and representation specifications—•wYnch explicitly associate
high-level constructs with the lowest levels of the computer hardware. Tasking is intro
duced briefly in Chapter 17; representation specifications do not appear in this book.
You will learn about both subjects as you continue your education in this interesting
language.

The Ada Standard

A standard is a document describing a common way to do or build something. Engi
neering standards developed early in the twentieth century covered the sizes and shapes
of mechanical fasteners such as nuts and bolts. The ability to attach a nut from one
manufacturer to a bolt from another was an important advance in the Industrial Revolu
tion; the automobile industry owes much of the success of mass production to stan
dards. Standards play a role in your own life, too. For example, because of standards,
you can buy a replacement for a bumed-out light bulb without worrying whether or not
it will screw into the socket in your study lamp.

In the computer industry, standards have governed the formulation and dimensions
of physical media such as punched cards and magnetic tape; as computer software has
grown and matured since the 1940s, so has the industry's attention to standards for pro
gramming languages. A language standard describes the structure of valid and invalid
programs in the language and therefore serves as a defining document for users and
compiler writers alike.

Some language standards are voluntary and represent a "lowest common denomi
nator" subset of the language facilities. The "subset" nature of these standards makes it
difficult to move a program fiom one compiler to another, even if both theoretically
accept the same language. The Ada standard is an exception to this rule: DoD, in the
interest of encouraging programs to be written in a truly common language, irrespec
tive of computer or compiler supplier, took measures accordingly.

The reference manual for Ada (usually abbreviated RM) was adopted by the Amer
ican National Standard Institute (ANSI) in January 1983, and by the Intemational Stan
dards Organization (ISO) in 1987. By 1991, more than 400 different Ada compilers had
been validated, which means that they successfully passed a series of several thousand
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small test programs (known as the Ada Compiler Validation Capability, or ACVC)
designed to evaluate their conformance to the standard. This unusually high degree of
conformance to a language standard means that Ada programs are usually quite easy to
port, or move to a different compiler on the same computer or to a different computer.
To an extent unprecedented in the history of computers, Ada compilers all accept the
same language.

From Ada 9X to Ada 95

In 1988 the process was begun to determine whether the Ada standard should be
revised to extend the language and, if so, to design the necessary extensions. This
project was called "Ada 9X": the 9X designation meant that it was intended to be com
pleted sometime in the 1990s. This time the design team was headed by the American
Tucker Taft, a language expert at Intermetrics.

The Ada 9X standard was completed at the end of 1994, and the revised standard,
now called Ada 95, was adopted in 1995 by ISO (February) and ANSI (April). Six or
seven years may seem a long time to revise a language standard, but in fact, every other
major language revision has taken even longer. Designing a language is complex and
highly specialized, and convincing a large number of organizations to approve the
design and vote favorably on a national or international standard is time-consuming and
requires much skill in the art of human persuasion.

The Ada 95 extensions are very interesting and useful, and many of the new fea
tures will be covered in this book. These include, among others, many changes and
additions to the standard libraries as well as language constructs for object-oriented
programming. In fact, Ada 95 is the first internationally standardized object-oriented
programming language.

This book introduces Ada 95 throughout. In the text we refer simply to Ada in most
cases, using the terms Ada 83 and Ada 95 for those few situations in which we deem it
important to distinguish between the earlier standard and the current one.

Ada's Use around the World

At this writing, Ada is being actively used by the defense software industry whose
needs inspired Ada's creation. More directly relevant to you in your everyday lives, Ada
is used in

• the control software of nearly every new commercial aircraft model, including the
Boeing 777, the Airbus 340, and many regional airliners;

• nearly every country's air traffic control system;

• high-speed railroads, including the French TGV and the French/British Channel
Tunnel system;

• urban rail systems, including those of Paris, London, Caracas, Cairo, Calcutta, and
Hong Kong;

• electronic fiinds transfer and other banking applications;
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• a number of communications and navigational satellites and ground-based equip
ment, including the Global Positioning System (GPS) navigational terminals now
becoming popular in rental and private automobiles; and

• steel mills, industrial robotics, medical electronics, and telecommunications.

These software applications share a common attribute: They are less visible than
those running on your desktop computer, but they are of vital importance in the smooth,
safe operation of our transportation, communication, and business systems. Many of
these are called safety-critical software systems: They must function properly because
lives and property are at stake.

As it happens, the same language attributes that make Ada a language of choice in
these important systems also make it a desirable language for education. Whether or
not you actually write defense or safety-critical software in your career, your knowl
edge of Ada will serve you well, providing a solid foundation for further knowledge of
other languages and many application areas.

1.8 Processing a High-level Language Program

Before it can be processed, a high-level language program must be entered at the termi
nal, then translated, and finally loaded into memory for execution. As was discussed in
Section 1.3, a number of sojiware development too/j—programs that help us develop
other programs—assist in this task. These are described next, and the process is sum
marized in Fig. 1.6.

The mechanics of entering a program as a source file and translating and executing
it differ somewhat from system to system, although the general process is the same. In
this section we describe this general process.

Each computer has its own special control language for communicating with its
operating system. In many common systems, such as the Apple Macintosh, Microsoft
Windows, or X-windows, the line-oriented command language is replaced by a graphi
cal user interface (GUI), in which you select operations from menus, using a mouse to
do the selection. Although space does not allow us to provide all the details here, we
will discuss the general process. Your instructor will provide the specific commands for
your system.

Logging On or Booting Up

Before you can use a time-shared or networked computer, you must log on, that is,
identify yourself to the operating system, which may check to determine Aat you have
a valid account on the system. To use a personal computer, you must switch it on, then
wait for a brief period while it starts, or boots up. The startup process begins with a
very small program that loads the operating system. Because one small program loads
the next, the process is called booting up. from the expression "picking yourself up by
your bootstraps."
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Creating a Program or Data File

In most cases you will use a software tool called an editor to enter or modify your Ada
program. After accessing the editor, you can start to enter a new Ada program, or mod
ify an existing one. Once your program is complete, you must save the program as a
permanent file on disk. Follow these steps to create and save a program file:

1. access the editor program;

2. indicate that you are creating a new file and specify its name, or specify the
name of the existing program to be modified;

3. enter each line of your program, or make the necessary changes; and

4. save your program as a permanent file in secondary memory.

Compiling Your Program

Once you have created your program and you are satisfied that each line is entered cor
rectly, you can attempt to compile it. Some Ada compilers require that before you can
use die compiler for the first time, you must set up a project or library. The command to
do this depends on the specific compiler, and it is not repeated each time you log on or
boot up. The Ada system will create some files or directories on your file system; they
are for use by the compiler and linker, and you should not disturb them!

If your program will not compile because it contains errors, the compiler produces
a list of errors for your information. You must reedit the program to eliminate die errors
before going further. Follow these steps to conect and reexecute a program file:

1. reaccess the editor program;

2. get your program file;

3. correct those statements that contained errors;

4. save your edited program file; and

5. compile the saved program file.

When the source program is error-free, the compiler saves its machine-language
translation as an object file.

Binding and Linking

Your next step is to call the binder program (sometimes called linker) to combine your
object program with additional object files needed for your program to execute. These
may be system files, such as input/output modules, or other application modules (pack
ages, in Ada terms) that you or others have written. Generally, the binder needs only to
be told the name of your main program; it then proceeds to save the final result as a
load file, or executable program, on disk.
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Executing a Program

Once a program has been linked into an executable hie, you can execute it repeatedly.
Depending on your operating system, you either just type the name of the program, or
select it from a menu of programs. Doing this actually invokes an operating system
module called the loader, which copies the program from secondary storage to RAM
and then the CPU executes the program.

In executing a program, the CPU examines each program instruction in memory
and sends out the command signals required to carry out the instruction. Although the
instructions are normally executed in sequence, as we will see later, it is possible to
have the control unit skip over some instructions or execute some instructions more
than once.

During execution, data can be entered into memory and manipulated in some spec
ified way. Special program instructions are used for requesting the user to enter input
data, then reading the data into memory. After some manipulation of the input data,
instructions are used for displaying or printing result values—program output—from
memory.

Figure 1.7 shows the effect of executing a payroll program stored in memory. The
first step of the program requires entering data into memory that describe the employee.
In the second step, the employee data are manipulated by the central processor and the
results of computations are stored in memory. In the final step, the computational
results may be displayed as payroll reports or employee payroll checks.

EXERCISES FOR SECTION 1.8

Self-Check

1. What is the role of a compiler?

2. What is the difference between the source file and the object file? Which do
you create and which does the compiler create? Which one is processed by the
linker? What does the loader do?

1.9 A Step-by-Step Compilation Exercise

Now that you have read about the steps in creating, compiling, and executing a program
file, you probably want to try one. After getting the detailed instructions for using your
computer, operating system, and Ada compiler, try the program given in Program 1.1.
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Figure 1.7 Flow of Information during Program Execution

Program 1.1 A First Ada Program

WITH Ada.Textile;
PROCEDURE Hello IS

A very simple program; it just displays a greeting.
Author: Michael Feldman, The George Washington University
Last Modified: June 1998

BEGIN ~ Hello

Ada.Text_IO.Put(Item => "Hello there. ");
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
Ada.Text_IO.New_Line;

END Hello;

Do not be concemed at this point about what each of the statements in this program
means; just enter it exactly as given (or copy it from a program distribution supplied
with this book) and take it from there. Compile it, bind (link) it, and execute it. When
the program is executed, the following line should appear on your display screen:

Hello there. We hope you enjoy studying Adal
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listing Files

Compilers usually provide an option to create a listing file at the time of compilation.
The listing file serves two important purposes:

1. It displays your source text, usually with line numbers, and identifies any er
rors the compiler may have found in your program;

2. It serves as an "official" record of the compilation, marked with the name of
the compiler and the date and time of compilation. If you are taking a course,
you may be required to submit listing files for your programming exercises or
projects.

Find out how to request a listing file from your compiler, then recompile Program
1.1 and examine the listing by displaying or printing it. For example. Figure 1.8 shows
a listing file from the author's compilation with GNAT.

Figure 1.8 Listing from an Error-Free Program Compilation

GNAT 3.10p (970814).
Copyright 1992-1997 Free Software Foundation, Inc.

Compiling: hello.adb (source file time stamp: 1998-06-28 19:24:19)

1. WITH Ada.Text_IO;
2. PROCEDURE Hello IS

4. —

5. —

6. —

A very simple program; it just displays a greeting.
Author: Michael Feldman, The George Washington University
Last Modified: June 1998

8. BEGIN ~ Hello

9.

10. Ada.Text_IO.Put(Item => "Hello there. ");
11. Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
12. Ada.Text 10.New Line;
13.

14. END Hello;

14 lines: No errors

Examining the Program

Let us briefly go through the listing file in Fig. 1.8 to get a quick idea of the structure of
this program.

Line 1 informs the compiler that this program will be making use of a package
called Ada.Text^io. A statement like this almost always precedes the rest of an Ada
program file. A fuller explanation of packages will appear in the next few chapters; for
now you should know that input and output are done in Ada by means of standard pack
ages. Ada.Text__io is the most used standard package.
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Line 2 informs the compiler that this program is to be called Hello (in Ada a pro
gram is called a procedure). Lines 3 through 7 are comments, or remarks for the
human reader of the program. Comments are not processed by the compiler. The start
of a comment is indicated by —, that is, by two hyphens; the comment always includes
all remaining text on that line. Note, for example, that line 8 has a comment following
the initial begin.

Lines 9 and 13 are left blank just to make the program easier to read. The section of
the program between begin (line 8) and end (line 14), called the body, or executable
statements section, contains a list of actions the program is to perform. Each statement
or action ends with a semicolon. In this program there are three statements, all calling
for output actions. The statements in lines 10 and II,

Ada.Text_IO.Put(Item => "Hello there. ");
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");

display the strings enclosed in quotes on the screen. The statement in line 12,

Ada. Text__IO. New_Line;

terminates the line displayed on the screen by advancing the cursor (a blinking place
marker) to the first position of the next line. All these statements are prefixed by
Ada.Text 10 as our way of indicating to the compiler (and to the reader of this pro
gram) that the operations in question are meant to be the ones provided by the
Ada.Text_io package. More about this later.

1.10 Tricks of the Trade: Common Programming Errors

One of the first things you will discover in writing programs is that a program often
does not compile or run correctly the first time that it is submitted. When you are learn
ing to develop programs, you will probably make mistakes in your programs. Learning
a programming language is a lot like learning another human language: There are rules
of grammar, spelling and usage that you must learn. You will get better at it as your
experience grows, but even very experienced developers make programming errors,
and you should not be discouraged by the ones you make when you are starting out.

Programming errors are so common that they have their own special
name— and the process of correcting them is called debugging a program. To
alert you to potential problems, a section on common errors appears near the end of
many chapters of this book.

There are three basic categories of errors:

• Compilation errors are detected and displayed by the compiler as it attempts to
translate your program. Compilation errors are mistakes in following the lan
guage's rules of syntax (grammar) or semantics (meaning). If a statement has a
compilation error, it cannot be translated and your program cannot be executed.
When a compilation error is detected, an error message appears in your listing file
indicating that you have made a mistake and what the cause of the error might be.
As you gain some experience, you will become more proficient at understanding
error messages.
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• Run-time errors are detected during execution of a program. A run-time error,
called an exception in Ada, occurs as a result of directing the computer to perform
an illegal or inappropriate operation, such as dividing a number by 0 or attempting
to store in a variable a number that is outside the acceptable range for that variable.
When an exception is raised—that is, when an error occurs—the computer stops
executing your program and a diagnostic message is displayed that sometimes in
dicates the line of your program where the exception was raised. One of the inter
esting features of Ada is that it provides a way for programmers to predict the
occurrence of exceptions and to handle them when they arise. In this manner a pro
grammer can prevent the computer from halting the program. We will return later
to the matter of handling exceptions in programs.

• Logic or algorithm errors result from developing an incorrect algorithm to solve a
problem or translating a correct algorithm into a program incorrectly. These are er
rors in problem solving rather than programming. Such errors cannot be detected
automatically—because the program compiles successfully and mns without ter
minating on an error message—but gets an incorrect or unexpected answer. The
computer did exactly what you told it, which was not necessarily what you meant
for it to do! Detecting and correcting logic errors can be done only by careful and
thorough testing.

In this section we will limit our discussion to compilation errors; we will take up
the other categories later.

Syntax Errors

Program 1.2 shows a program similar to Hello but containing three syntax errors that
we have intentionally put in the file. A syntax error is a mistake in the use of the lan
guage's syntax, or rules of grammar.

Program 1.2 A Program with Syntax Errors

WITH Ada.Text_IO;
PROCEDURE Hello_Syntax IS

A very simple program; it just displays a greeting.
Author: Michael Feldman, The George Washington University
Last Modified: June 1998

BEGIN — Hello_Syntax

Ada. Text__l0. Put (Item => "Hello there. ");
Ada.Text__IO.Put(Item => "We hope you enjoy studying Adal";
Ada.Text_lO.New_Line

EMD Hello_Syntax;

Figure 1.9 shows the relevant part of the listing file generated by GNAT.
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Figure 1.9 Listing from a Program with Syntax Errors

1. WITH Ada.Text ID;

2. PROCEDURE HelTo_Syntax IS
3.

4. —I A very simple program; it just displays a greeting.
5. —i Author: Michael Feldman, The George Washington University
6. —1 Last Modified: June 1998
7.

8. BEGIN ~ Hello_Syntax
9.

10. Ada.Text_lO.Put(Item => "Hello there. ");
11. Ada.Text lO.Put(Item => "We hope you enjoy studying Ada!";

I
»> missing ") "

12. Ada.Text 10.Hew Line

"  I
»> missing ";"

13.

14. EMD Hello_Syntax;

I
»> incorrect spelling of keyword "END"

The actual format of the listing and error messages produced by your compiler may
differ from Fig. 1.9. In this GNAT listing, whenever an error is detected, the compiler
inserts a line starting with »>. A vertical line (|) points to the position in the preced
ing line where the error was detected. This is usually, but not always, where the error
occurred. The error is explained on the next line.

In attempting to compile this program, the compiler discovered that:

• in line 11, a left parenthesis is not matched by a corresponding right parenthesis;

• in line 12, a semicolon is missing at the end of the statement on that line;

• in line 14, end is misspelled as emd.

The nature of these errors highlights an essential difference between human com
munication in languages like English and programming in languages like Ada. In
human communication a speaker or writer sometimes makes grammatical errors, but
the listener or reader can usually understand the content anyway. In programming lan
guages the rules of grammar are much simpler than those of human languages, but they
must be observed exactly.

A compiler is designed to discover syntax errors and does so mechanically and
slavishly, without emotion. The compiler is just a program, and can process only what
you submit to it. It has no idea what you meant to write, and so while it is quite good at
discovering errors, it often guesses imperfectly at the desired correction. In this exam
ple we were lucky and the messages were obvious.

One of the purposes of this book is to teach you the syntax of Ada little by little.
You'll see a lot of correct examples and read syntax displays that state the rules. You'll
find that—as with the human languages you know—as your experience with program
ming grows, you'll know more and more syntax and make fewer and fewer errors.
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Semantic Errors

In Program 1.3 we have properly followed the syntax rules—rules of punctuation, key
word spelling, and "word order"—but have intentionally coded two semantic errors, or
errors in meaning. A semantic error is an inconsistency in the use of values, variables,
packages, and so on.

Program 1.3 A Program with Semantic Errors

WITH Ada.Text_IO;
PROCEDURE Hello_^Semantic IS

— I A very simple program; it just displays a greeting.
— I Author: Michael Feldman, The George Washington University
— I Last Modified: June 1998

BEGIN — Hello_Semantic

Ada.Text_IO.Put(Item => 12345);
Ada.Text__IO.Put(Item => "We hope you enjoy studying Adal");
Ada.Txt_IO.New_Line;

END Hello_Semantic;

Figure 1.10 shows the listing, with the errors indicated by the compiler.

Figure 1.10 Listing from a Program with Semantic Errors

1. WITH Ada.Text_IO;
2. PROCEDURE Hello Semantic IS

4. —

5. —

6. —

A very simple program; it just displays a greeting.
Author: Michael Feldman, The George Washington University
Last Modified: June 1998

8. BEGIN — Hello_Semantic
9.

10. Ada.Text IO.Put(Item => 12345);

"  I
>» invalid parameter list in call
»> possible missing instantiation of Text_IO.Integer_IO

11. Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
12. Ada.Txt 10.New Line;

I  "
»> missing with for "Ada.Txt_l0"

13.

14. END Hello__Semantic;

Here the compiler discovered that:

• in line 10, we inadvertently provided an invalid parameter—a numerical one in
stead of the expected character string—to a procedure call;
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• in line 12, we neglected to supply a with statement for the package Ada.Txt_io.
In this case, the compiler detected the error but guessed the wrong cause—We sim
ply misspelled Ada.Text^io as Ada.Txt_io.

This last case shows how in programming, sometimes you make a certain error but
the compiler interprets it as something entirely different. Remember, the compiler is
only a computer program and is not as good a detective as you are! This can be frustrat
ing at the start, but your skill at detective work will grow with experience.

Generally, the compiler will discover syntax errors, then stop the compilation and
produce a listing file so that you can correct those. When you recompile, the compiler
may then discover semantic errors it missed while it was checking the syntax.

Propagation Errors

Because the compiler cannot always determine the exact cause of an error, one syntax
or semantic error sometimes leads to the generation of a number of error messages.
(These "extra" errors are often called propagation errors.) It can be intimidating to
look at a listing file containing dozens of error messages, but often all the messages
really stem from just a couple of errors. For this reason, it is often a good idea to con
centrate first on correcting the first one or two errors in a program and then to recom
pile, rather than to attempt to fix all the errors at once.

A Last Bit ofAdvice

This section's purpose has been to introduce you to the nature of compilation errors and
the kinds of messages you can expect from your compiler. The Ada standard requires
compilers to be "fussy"—to detect as many errors as possible before a program is exe
cuted. This "fussiness" may irritate you at first, but in fact, Ada programmers appreci
ate that once their programs are accepted by the compiler, they are very likely to
execute properly. This helps them to develop software that works.

Finzdly, you must keep in mind that an operating system, compiler, or other com
puter program is just a computer program. It is very good at its mechanical job, but it
has no real intelligence, and no emotions at all. Unlike a parent, teacher, or colleague, it
will never get angry at you, but will continue slavishly to point out your mistakes in fol
lowing Its rules. We cannot emphasize too strongly that programming errors come fix)m
lack of experience—or lack of sleep—and not from "stupidity" or lack of ability.

CHAPTER REVIEW

This chapter described the basic components of a computer: main and secondary mem
ory, the central processor or CPU, and the input and output devices. Remember these
important facts about computers:

1. A memory cell is never empty, but its initial contents may be meaningless to
your program.
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2. The current contents of a memory cell are destroyed whenever new informa
tion is placed in that cell.

3. A program must be copied into the memory of the computer before it can be
executed.

4. Data cannot be manipulated by the computer before they are first read into
memory.

5. A computer cannot think for itself; you must use a programming language to
instruct it in a precise and unambiguous manner to perform a task,

6. Programming a computer can be fun—if you are patient, organized, and care
ful.

Quick-Check Exercises

1. The translates a language program into

2. After a program is executed, all program results are automatically displayed.
True or false?

3. Specify the correct order for these four operations: execution, linking, transla
tion, loading.

4. A high-level language program is saved on disk as a file or a
file.

5. The finds syntax errors in the file.

6. A machine-language program is saved on disk as an file.

7. The is used to create and save the source file.

8. The creates the load file.

9. The program is used to place the file into mem
ory.

Answers to Quick-Check Exercises

1. Compiler, high-level, machine language

2. False

3. Translation, linking, loading, execution

4. Source, program

5. Compiler, source

6. Object
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1. Editor

8. Linker

9. Loader, load

Review Questions

1. A computer can think. True or false?

2. List the three categories of programmming languages.

3. Give three advantages of programming in a high-level language such as Ada.

4. What processes are needed to transform an high-level language program to a
machine-language program ready for execution?

5. List the five phases in the software development method. Which phases re
quire actual use of a computer?

Programming Projects

1. This three-part project will help you to become familar with the development
tools that are available to you.

a. Find out how to use the software development tools on your computer. Com
pile, bind, and execute Program 1.1, and compile Programs 1.2 and 1.3 to see
just how your compiler reports errors to you. Is there a listing file? A special
window in the editor?

b. Now use your editor to correct the errors in Programs 1.2 and 1.3. Recompile,
bind, and execute these programs.

c. Finally, use your editor to introduce some deliberate errors into Program 1.1.
Don't be concerned that you don't know Ada yet; just try changing some of
the statements. Compile your modified program and observe the messages.
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Introducing Algorithnis:
Adventures of the Spider

2.1 Introducing the Spider

2.2 Straight-Line Algorithms

2.3 Algorithms with Single Loops

2.4 Algorithms with Nested Loops

2.5 Algorithms with Conditional Execution

2.6 Putting It All Together: The Drunken Spider

Chapter Review

The purpose of this chapter is to introduce you to algorithms through programming a
simple picture-drawing creature called the spider. This chapter is the first of several
installments in a "continuing saga " an example that begins here and recurs in some
sections of later chapters. We introduce an imaginary spider that steps around an imag
inary room drawn on the screen. The spider recognizes a number of commands, which
we can issue by writing, compiling, and executing spider programs.

We use the spider to introduce a number of algorithmic concepts, including control
structures and parameters. We'll return to these much more formally and completely
beginning in Chapter 3; the goal here is to just give you a quick introduction, to get you
started writing some "fun" programs while you continue to read the more thorough
chapters that follow.

This chapter and the other spider sections in the book are optional in the sense that
no other parts of the book depend upon them. However, because they introduce pro
grams that are very simple and clear and give you obvious feedback on the screen, we
think you will find them useful in understanding algorithms and a number of Ada pro
gram constructs. We urge you to compile and run these examples on a computer,
observe their behavior, and experiment with them by making changes as you see fit.

2.1 Introducing the Spider

This section introduces an imaginary spider that steps around an imaginary room drawn
on the screen. The spider recognizes a number of commands, which we can issue by
writing, compiling, and executing spider programs.

41
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The spider is simulated by an Ada package within which is the set of commands
that the spider recognizes and obeys. The package is a very important construct in Ada;
it provides a way of encapsulating, or grouping, a set of related operations. Most Ada
programs consist of a main procedure and a number of packages. We'll be using many
packages in this book; some are standard Ada packages, and others are specific to the
book. The spider package is one of the latter.

An Ada package is divided in two parts: the interface or specification, which gives
a "table of contents" for the set of resources it provides, and the implementation or
body, which contains the actual program segments for the various operations. Eveiy-
thing you need to know to use an Ada package is generally contained in the interface:
There are specifications for the various resources and (in a well-written package) com
ments indicating how these are to be used.

The standard Ada packages are "built in," that is, provided with the compiler and
ready to use. Generally, the interface and implementation for a nonstandard package
like Spider are provided in the form of two Ada source files; we assume that you have
access to this book's packages on the computer you are using.

The Spider specification is shown as ftogram 2.1 and explained in this chapter. We
will study the body of the spider package in detail in Chapter 8. In this chapter, we just
show and explain 14 programs that use some of the commands in the spider package;
you don't need to understand yet just how the package works. By the time you've com
pleted Chapter 8, you will be able to understand the spider package's internal mecha
nisms.

Before you can use the spider package, you must compile (but not link) both the
specification and the body. If you have a collection of this book's programs available on
disk or CD-ROM, now is a good time to find and compile the two files. File names are
not part of the Ada standard, but some compilers require certain naming conventions.
The Spider specification and body files will probably be called spider.ads and spi
der, adb, respectively (ads = Ada specification; adb = Ada body), but the file names
may vary. You will also need to compile the package screen, whose file names are
(most likely) screen.ads and screen.adb.

Program 2.1 The Spider Package

PACKAGE Spider IS

This package provides procedures to emulate "Spider"
commands. The spider can move around
the screen drawing simple patterns.
Author; John Dalbey, Cal Poly San Luis Obispo, 1992
Adapted by M. B. Feldman, The George Washington tJniversity
Last Modified: December 1998

These are the spider's simple parameterless methods

PROCEDURE Start;

— Pre: None

Post: Spider's room appears on the screen
with spider in the center.

PROCEDURE Quit;

— Pre: None

— Post: End the drawing
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PROCEDURE step;
— Pre: None

— Post: Spider takes one step forward in the direction it is facing.
— Raises: Hit_the_WaH if spider tries to step into a wall.

PROCEDURE TurnRight;
— Pre: None

— Post: Spider turns 90 degrees to the right.

— now some types, and methods that use the types

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);
SUBTYPE Steps IS Integer RANGE 1..20;

PROCEDURE Face (WhichWay: IN Directions);
-- Pre; WhichWay has been assigned a value
— Post: Spider turns to face the given direction.

FUNCTION IsFacing RETURN Directions;
— Pre: None

— Post: Returns the direction the spider is facing.

FUNCTION RandomDirection RETURN Directions;
— Pre: None

— Post: Returns a random direction

PROCEDURE ChangeColor (NewColor: IN Colors);
— Pre: NewColor has been assigned a value
— Post: Spider leaves its tracks in the new color

FUNCTION IsPainting RETURN Colors;
— Pre: None

— Post: Returns the color in which the spider is painting

FUNCTION RandomColor RETURN Colors;
— Pre: None

— Post: Returns a random color

FUNCTION Atwall RETURN Boolean;
— Pre: None

— Post: Returns True if the spider is standing next to a wall

FUNCTION RandomStep RETURN Steps;
— Pre: None

— Post: Returns a random number in the range 1..20

Hit_The_Wall: EXCEPTION;

TYPE Switch IS (On, Off);

PROCEDURE Debug (Setting: IN Switch);
— Pre: None

— Post: Turns on or off single stepping through the program.

FUNCTION Debugging RETURN- Switch;
— Pre: None

— Post: Returns on or Off depending on Debug setting

END Spider;
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2.2 Straight-Line Algorithms

In this section we use the spider to introduce you to straight-line algorithms. A
straight-line algorithm is one that is just a straight sequence of instructions, with no
decisions or "forks in the road" and no backtracking to an earlier point in the algorithm.
The algorithm just moves in one direction.

Let's look at a very simple spider program, Program 22. As you can see, it just
calls the spider's start and stop commands. The sample run shows that calling spi
der, start draws a "room" on the screen, placing the spider icon (an asterisk) in the
center. The spider starts out facing north (up the screen). Calling spider .Quit just ends
the program.

Program 22 The Simplest Spider Program

WITH Spider;
PROCEDintE Startup IS

Very simple Spider program; just starts and stops
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Startup

Spider.Start;
Spider.Quit;

END Stfurtup;

Sample Run of Program 22

In Program 2.3 the spider takes five steps forward. You can see this from the five
commands, each reading spider.step. The sample run shows the spider in a location
five rows north (upward) from the starting point.
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Program 2.3 The Spider Walks a Line

WITH Spider;

PROCEDURE Walk Line IS

Walk line with spider
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Walk_Line

Spider.Start;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.Step;
Spider.Step;

Spider.Quit;

END Walk_Line;

Sample Run of Program 2.3

I  ̂ I

In Program 2.4 the spider walks around a square box, taking three steps forward,
then turning right, then taking more steps, turning right again, and so on. Since it ends
up back where it started from, there's nothing to show in the sample run. If you run the
program, though, you'll observe the spider walking around the square.
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Program 2.4 The Spider Walks around a Box

WITH Spider;
PROCEDURE Walk Box IS

— I Walk 4x4 box with spider
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

BEGIN — Walk_Box

Spider.Start;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Quit;

END walk Box;

Spider Commands nith Parameters

So far, we've used four spider commands: start, Quit, step, and TurnRight. In Pro
gram 2.5 we introduce two more commands: Face and changecoior. Here are two lines
selected from the specification in Program 2.1:

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);

These lines introduce enumeration types, which we'll cover in more depth in Chap
ter 4. For now, just understand that each of these types provides a list of values: Direc
tions gives the four compass points, and colors gives five possibilities: red, green,
blue, white, and no color at all. We come now to two procedures defined in the specifi
cation:

PROCEDURE Face (WhichWay: IN Directions);
Pre: WhichWay has been assigned a value

-- Post: Spider turns to face the given direction.
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PROCEDURE ChangeColor (NewColor: IN Colors);
—' Pre: NewColor has been assigned a value
— Post: Spider leaves its tracks in the new color

The first. Face, must be called by including a parameter selected from one of the
directions, for example.

Spider.Face(WhichWay => Spider.West);

which will cause the spider to turn (without moving) to face in a westerly direction
(leftward on the screen). The second procedure, changecoior, must be called with a
parameter selected from one of the color values, for example.

Spider.ChangeColor(NewColor => Spider.Red);

which will cause the spider to leave a red mark on the screen each time it takes a step.
As with all the packages provided by this book, each operation is accompanied by a

pair of comments. TTiese, like all comments, are ignored by the compiler but are impor
tant parts of the documentation that a human reader needs. The first comment describes
the preconditions for using the operation. Preconditions are the expectations or
assumptions the operation makes about the way it is called. In this case the precondi
tion warns us that the operations must be called with well-defined direction and color
values. The second comment gives the postconditions, that is, the results after the oper
ation has completed its work.

The combination of preconditions and postconditions serve as a kind of contract
between the writer of an operation and its user; if the user promises to meet the precon
ditions, the writer promises that the operation will deliver the postconditions.

Now let's use these two operations. In Program 2.5 the spider walks around the
same kind of square as in Program 2.4, but this time it "draws" each side in a different
"color." We've put "color" in quotation marks because the spider package does not
require a color monitor to operate properly. As you can see from the sample run, the
spider uses the letters r, g, b, and k to simulate the actual colors red, green, blue, and
black. Also, a dot simulates the no-color ("invisible") case; it does not show up on the
screen because a new dot is displayed over the one in the room grid. You've probably
guessed by now that the spider starts up leaving its tracks in the "none" color, that is,
leaving no tracks.

Now is a good time to mention the small status box in the upper-left comer of the
screen, which displays the spider's current direction and color.

Program 2.5 The Spider Draws a Box

WITH Spider;
PROCEDURE Draw_Box IS

—>1 Draw 4x4 box with spider, changing colors as we go
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

BEGIN — Draw__Box

Spider.Start;
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Spider.Face(WhichWay => Spider.West);

Spider
Spider
Spider
Spider
Spider

Spider
Spider
Spider
Spider
Spider

Spider
Spider
Spider
Spider
Spider

Spider
Spider
Spider
Spider
Spider

Spider.

,

.

ChangeColor(NewColor »> Spider.Green);
Step;

. Step;

,Step;
.TurnRight;

.ChangeColor(NewColor »> Spider.Black);

.Step;

.Step;

.Step;

.TurnRight;

.ChangeColor(NewColor "O Spider.Red);

.Step;

.Step;

.Step;

.TurnRight;

.ChangeColor(NewColor »> Spider.Blue);

.Step;

.Step;

.Step;

.TurnRight;

Quit;

END Draw Box;

Sample Run of Program 2.5

1 < I
I  B I

• I

R R R B

K . . B

K . . B

K G G *



2J Algorithms with Single Loops 49

EXERCISES FOR SECTION 2.2

1. Write a spider program that requests the spider to draw two of your initials on
the screen. For example,

X  X xxxxx xxxxx X

XX XX X X X
XXX XXX XXX or xxx x

X  X X X x x x

X  X X xxxxx xxxxx

2.3 Algorithms with Single Loops

Program 2.5 contains four sequences of almost identical statements. Leaving aside
color changes for a moment. Program 2.5 contains sequences of the form

Spider.step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

This sequence appears four times in this straight-line program.
Algorithms quite frequently involve repetitive sequences of steps. Indeed, we could

write the basic box-drawing algorithm as a repetition:

Algorithm for drawing a box:
1. Repeat steps 1.1 and 1.2 four times.

1.1 Take three steps forward.

1.2 Turn right.

In programming, a repetition is generally called a loop. We can translate this algo
rithm into a program that uses an Ada control structure called the for construct. Pro
gram 2.6 contains just such a structure. The phrases

FOR Side IN 1..4 LOOP

and

END LOOP;

instruct the spider to repeat, four times, whichever statement or sequence of statements
appears between them. These two phrases are said to bracket the intervening state
ments; the intervening statements themselves are called the loop body. The for con
struct in this case starts a counter, called Side here, with the value 1, and carries out the
loop body for each value of the counter from 1 to 4 inclusive (that is what i.. 4 means).
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Program 2.6 The Spider Draws a Box Using a Loop Control Structure

WITH spider;
PROCEDURE Draw__Box_with_^l_Loop IS

— I Draw 4x4 box with spider - use loop
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

BEGIN — Draw_Box_with_l_Loop

Spider.Start;
Spider.ChangeColor(NewColor »> Spider.Red);

FOR Side IN 1..4 LOOP

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

END LOOP;

Spider.Quit;

END Draw__Box_with_l_Loop;

Sample Run of Program 2.6

I  ̂ I
I  R I

R R R R

R . . R

* R R R
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Random Directions and Colors

The box drawn by the spider in Program 2.6 is exactly the same every time the program
is run: always in the same location, always red. Let's make the program more interest
ing by causing the spider to start walking in a randomly selected direction, and to
change the color of each side by a random color selection. We can get random colors
and directions from these two spider operations;

FUNCTION RandomDirection RETURN Directions;
— Pre; None

— Post: Returns a random direction

FUNCTION RandomColor RETURN Colors;
— Pre: None

— Post: Returns a random color

These have obvious meanings, made more so by the postconditions. Program 2.7
makes use of these operations to draw a box that will look different each time the pro
gram is one. The sample run shows just one execution; try running the program a num
ber of times to observe its behavior.

Program 2.7 Drawing a Box Using Random Colors and Starting Direction

PROCEDURE Draw__Box_with__l_Loop_2 IS

Draw 4x4 box with spider - use loop
Colors and starting direction are selected randomly
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Draw_Box_with_l_Loop_2

Spider.Start;
Spider.Face(WhichWay »> Spider.RandomDirection);

FOR Side IN 1..4 LOOP

Spider.ChangeColor(NewColor »> Spider.RandomColor);
Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

END LOOP;

Spider.Quit;

END Draw_Box_with_l_Loop_2;
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Sample Run of Program 2.7

* G G K

R . . K

R R R R

EXERCISES FOR SECTIOIM 2.3

1. Write and test a program that instructs the spider to draw a pattern in the shape
of a highway "yield" sign, that is,

RRRRRRR

R  R

R R

R

Hints: Start the spider facing west, draw the top line, and so on. Also note that
you can get the spider to draw a "blank" by changing its color to None.

2.4 Algorithms with Nested Loops

Programs 2.6 and 2.7 both contain a sequence of statements

Spider.step;
Spider.Step;
Spider.Step;
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which is, itself, a repetition. Let's take this into account by rewriting the box-drawing
algorithm, adding the color change as we go:

Algorithm for drawing a box:
1. Repeat steps 1.1 through 1.3 four times.

1.1 Choose a color.

1.2 Repeat step 12.1 three times.

1.2.1 Take one step forward.

1.3 Turn right.

This algorithm is saying that each of the four times we reach step 1.2, we execute
step 12.1 three times. The real power in algorithms is that we can combine straight-line
sequences with repetitions (and conditional executions, as we shall see shortly) in
almost unlimited ways.

How can we represent this new algorithm in a program? We can combine control
structures, to reflect the algorithm steps. In this case we can include an entire for con
struct inside another one. To put it another way, a statement in a loop body can be
another entire loop construct. This is called nesting control structures. Program 2.8
shows this: The inner loop construct

FOR Count IN 1..5 LOOP

Spider.Step;
END LOOP;

is nested inside the outer one; for variety we changed the number of steps to 5. We use
indentation in the program to highlight the nesting, as we use indentation in algorithms
and other outlining methods. The indentation is not required by the compiler, but it cer
tainly makes a difference in the clarity of the program! The behavior of this program is
very similar to that of Program 2.7, so we have omitted the sample run. Try running it
yourself several times to observe the randomness again.

Program 2.8 The Spider Draws a Box Using Nested Loop Control Structures

WITH Spider;
PROCEDURE Draw_Box_with_2_Loops IS

— I Draw 4x4 box with spider - use nested loops
— I Author: M. B. Feldmau/ The George Washington University
— I Last Modified: July 1998

BEGIN — Draw_Box_^with_2_Loops

Spider.start;
Spider.Face(WhichWay => Spider.RandomDirection);

FOR Side IN 1..4 LOOP

Spider.ChangeColor{NewColor => Spider.RandomColor);
FOR Count IN 1..5 LOOP

Spider.Step;
END LOOP;

Spider.TurnRight;
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END LOOP;

Spider.Quit;

END Draw__Box_with_2^Loops;

Spiral Patterns

So far, our loop constructs have used literals to represent the bounds (starting and end
ing values) of the counters. This is not required; loop bounds can vary. To see this, con
sider the loop structure of Program 2.9:

FOR Line IN 1..10 LOOP

Spider.ChangeColor(NewColor »> Spider.RandomColor);

— inner loop takes its bound from outer count
FOR Count IN l..Line LOOP

Spider.Step;
END LOOP;

Spider.TurnRight;
END LOOP;

As the comment indicates, the inner loop takes its high bound from the current
value of the outer loop's counter. When the first line is being drawn (Line is 1), the
inner loop counter ranges from 1 to 1, so the spider takes one step. When the second
line is drawn (Line is 2), the spider takes two steps, and so on until the spider takes ten
steps to draw the tenth line, liiis results in the spiral pattern shown in the sample run;
make sure you understand how this happens.

Program 2.9 The Spider Draws a Spiral Pattern

WITH Spider;
PROCEDURE Spiral IS

Draw spiral pattern with spider - use nested loops
Author; M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Spiral

Spider.Start;
Spider.Face(WhichWay => Spider.RandomDirection);

~ draw ten lines, starting in a random direction
FOR Line IN 1..10 LOOP
Spider.ChangeColor(NewColor »> Spider.RandomColor);

inner loop takes its bound from outer count
FOR Count IN l..Line LOOP

Spider.Step;
END LOOP;

Spider.TurnRight;
END LOOP;
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Spider.Quit;
END Spiral;

Sample Run of Program 2.9

RRRRRRRRR

K  R
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EXERCrSES FOR SECTION 2.4

1. Write and test a program that instructs the spider to draw a pattern in the shape
of a solid triangle, that is.

B

BB

BBB

BBBB

BBBBB

BBBBBB

2. Write a spider program to draw a checkerboard pattern, that is.

G G G G

G G G G

G G G G

G G G G
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2.5 Algorithms with Conditional Execution

Another important algorithmic structure is conditional execution. To introduce the need
for this, consider Program 2.10, which commands the spider to take 12 steps forward.
As you can see from the sample run, this program terminates with the raising of an
exception, in this case spider.Hit_the_wali.

Program 2.10 The Spider Crashes into a Wall

WITH Spider;
PROCEDURE Spider_Crash IS

This program demonstrates an Ada 95 runtime error.
Spider tries to take 12 steps from center of room;
it hits the wall and an exception is raised.

Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Spider_Crash

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Red);

FOR Count IN 1..12 LOOP

Spider.Step;
END LOOP;

Spider.Quit;

END Spider_Crash;

Because the spider started out in the middle of its room, it could not take more than
ten steps forward in the same direction; its crashing into the wall is simulated in the spi
der package by this exception. The traceback—whose form, like that of a listing file,
depends on the compiler—shows the line number in Spider_crash in which the excep
tion was raised, in this case line 16, or the spider.step statement. The traceback also
shows where the exception originated, back in the spider package body, but we are not
studying that body yet.

The exception is Ada's mechanism for signaling an error condition in a program. A
raised exception can be handled by the subprogram in which it raised, or by the one
that called Aat subprogram, or, eventually, by the main program. The Ada standard pre
scribes that when an exception is raised in some called subprogram and is not handled
there, it is propagated (passed back to) to the calling subprogram. If no subprogram
handles the exception, it eventually comes back to the main program. If it is not han
dled in the mam program either, the main program terminates, with or without a com
piler-dependent traceback.



Sample Run of Program 2.10

2 J Algorithms with Conditional Execution 57

R
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R

R

raised SPIDER.HIT_THE_WALL
Traceback Information"

Program Name File Name Line

spider.step spider.adb 264
spider_crash spider_crash.adb 16

Using Conditional Execution to Prevent Run-Time Exceptions

We will take up exception handling in detail in Chapter 7. Meanwhile, it is important to
consider how to prevent the exception from being raised. In this case the spider pro
gram can check to see whether the spider will step into a wall, using a conditional exe
cution. The spider package provides a condition-testing, or Boolean operation

FUNCTION Atwall RETURN Boolean;
— Pre: None

— Post: Returns True if the spider is standing next to a wall

which will be true if, and only if, the spider will hit the wall on its next step.
Now in Program 2.11 the lines

IF Spider.AtWall THEN
EXIT;

END IF;
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test the condition spider .Atwail. If the condition is true, the exit statement causes the
program to exit the repetition early, continuing execution just below end loop. The
effect of this in the current program is that the spider walks up to, but not into, the wall.
You can see from the sample run that this program terminates normally, with no excep
tion.

Program 2.11 The Spider Goes to the Wall and Stops

WITH Spider;
PROCEDURE Go_tO_Wall IS

Spider steps up to the first wall it meets, then stops
Author; M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Go__to_Wall

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

FOR Count IN 1..12 LOOP

IF Spider.AtWall THEN
EXIT;

END IF;

Spider.Step;
END LOOP;

Spider.Quit;

END Go to Wall;

The General loop Structure

In Program 2.11 the spider tries to count to 12 but never gets there because it reaches
the wall and stops. In fact, it is unnecessary to count at all. We can use a general loop
construct for this, as Program 2.12 shows.

Program 2.12 The Spider Goes to the Wall, Using a General Loop Structure

WITH Spider;
PROCEDURE Go_to_Wall_2 IS

I  Spider steps up to the first wall it meets, then stops
— I This version uses a general loop instead of a counting loop

I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

BEGIN — Go_to_Wall_2

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

LOOP
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IF Spider.AtWall THEN
EXIT;

END IF;

Spider.Step;
END LOOP;

Spider.Quit;

END Go_to_WaH_2;

A general loop structure looks like a for structure without a for phrase. In the
statements

LOOP

if spider.AtWall THEN
EXIT;

END IF;

Spider.Step;
END LOOP;

each time the program reaches the end of the loop body—in this case, after it has exe
cuted Spider. Step—it returns to the top of the loop body and executes the body again.
Since the first statement of the loop b^y is our condition-testing construct, the pro
gram has the desired effect: it keeps looping until the spider reaches the wall, then
stops.

General loops like this must be used with care. What if the condition never
becomes true? (This will not happen in this program, of course, but might happen in
some other program.) The program will keep looping indefinitely. Programs (especially
embedded ones) are sometimes written to loop indefinitely, and we will see one shortly,
but a program that unintentionally loops without stopping is a program with a bug in it!

Program 2.13 builds on the previous one by commanding the spider to take a walk
around the edges of its room. The first section of the program repeats the general loop
of Program 2.12; the second section consists of a four-repetition counting loop, inside
of which is nested another general loop as above.

Program 2.13 The Spider Tours Its Room

WITH Spider;
PROCEDURE Tour_Room IS

— I Spider takes a tour around the edges of its room.
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

BEGIN — Tour_Room

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

-- first get to a wall
LOOP

IF Spider.AtWall THEN
EXIT;

END IF;
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Spider.step;
END LOOP;

— now turn and tour the four walls

FOR Wall IN 1..4 LOOP

Spider.TurnRight;

— walk the length of this wall
LOOP

IF Spider.AtWall THEN
EXIT;

END IF;

Spider.Step;
END LOOP;

END LOOP;

Spider.Quit;

END Tour Room;

Sample Run of Program 2.13
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Using EXIT WHEN instead of If for Conditional Loop Execution
Program 2.14 is very similar to Program 2.13, with identical screen behavior (and,
therefore, no sample run).
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Program 2.14 The Spider Tours Its Room, Using EXIT WHEN

WITH Spider;
PROCEDURE Tour Room 2 IS

Spider takes a tour around the edges of its room.
This version uses EXIT WHEN instead of IF.
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Tour_Room_2

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

— first get to a wall
LOOP

EXIT WHEN Spider.Atwall;
Spider.Step;

END LOOP;

— now turn and tour the four walls

FOR Wall IN 1..4 LOOP

Spider.TurnRight;

— walk the length of this wall
LOOP

EXIT WHEN Spider.AtWall;
Spider.Step;

END LOOP;
END LOOP;

Spider.Quit;

END Tour_Room__2;

The difference is that the two conditional statements

IF Spider.AtWall THEN
EXIT;

END IF;

are replaced with a more concise Ada equivalent,

EXIT WHEN Spider.AtWall;

which gives the indefinite loop construct

LOOP

EXIT WHEN Spider.AtWall;
Spider.Step;

END LOOP;
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EXERCISE FOR SECTION 2.5

1. Modify Program 2.14 so that the spider covers the four walls completely but
does not visit any parts of the walls a second time. Hint: Count the number of
steps the spider takes while touring the first wall and the number of steps in
touring the third (parallel) wall.

2.6 Putting It All Together: The Drunken Spider

Finally, we develop a spider program that puts together everything we've learned here.
Imagine that the spider discovers a large glass of beer in its room and drinks enough
beer to become inebriated (a fancy word for "drunk"). The spider tries to tour its room
but is too drunk to do this properly. Instead, the spider tries to take a random number of
steps. If it does so without reaching a wall, it turns right, selects another random num
ber, and resumes walking. If the spider reaches a wall, it turns around and walks in the
opposite direction, completing its count in the new direction. You can probably under
stand this program, Program 2.15, without further explanation.

Program 2.15 The Drunken Spider

WITH Spider;
PROCEDURE Drunken_Spider IS

Spider tries to tour its room but has drunk too much, so
takes a random number of steps and may hit the wall. If the
spider hits the wall, it turns around and keeps going.
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

BEGIN — Drunken_Spider

Spider.Start;

LOOP — keep going forever

Spider.Face(WhichWay => Spider.RandomDirection);
Spider.ChangeColor(NewColor => Spider.RandomColor);

— Spider will count steps correctly
— but might change direction
FOR Count IN 1..Spider.RandomStep LOOP

IF Spider.AtWall THEN
Spider.TurnRight;
Spider.TurnRight;

END IF;

Spider.Step;
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END LOOP;

Spider.TurnRight;

END LOOP;

END Drunken^Spider;

Sample Run of Program 2.15
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The main loop in this program is a general loop without a count or exit condition
to terminate it. It is therefore a program that will loop indefinitely. This is similar to the
program in an automatic teller machine or similar embedded program, which termi
nates only when the equipment itself is shut off. In our case, we need not shut off the
computer. Rather, in most computers, pressing the control and c keys simultaneously
(usually referred to as ctri-c) will terminate your currently executing program. In the
sample run of Drunken_spider, we pressed ctri-c to stop the program; most terminals
will display this on the screen as 'c, and you can see this here at the end of the bottom
row of Bs.

CHAPTER REVIEW

The goal of this chapter has been to get you started with developing algorithms and
implementing them as programs using control structures. We introduced straight-line
algorithms, as well as those with single and nested repetitive loops and with conditional
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execution. The spicier has served as an easy-to-undersland mechanism for introducing
these structures; the patterns drawn by the spider gave you obvious feedback on the
behavior of the spider programs.

Each structure and technique that we discuss here is covered in full detail, with
many more applications, in the chapters to come: straight-line programming in Chap
ters 3 and 4, conditional execution in Chapter 5, counting loops in Chapter 6, general
loops and exception handling in Chapter 7.

In this chapter—and most of the book—all the programs are in standard, plat
form-independent Ada, assuming only that your computer has a simple monochrome
screen with 24 rows and 80 columns. In case you are wondering how to do high-resolu
tion or color graphics with Ada, Appendix A shows how to do just this and even pro
vides a high-resolution color spider package. High-resolution color graphics is always
dependent upon a particular "platform" (computer plus operating system) and the kind
of monitor you have.



CHAPTER 3

Introduction to Straight-Line
Programs

3.1 The General Structure of Ada Programs

3.2 System Structures: Numerical Input and Output

3.3 Data Structures: Declaring Constant and Variable Objects

3.4 System Structures: General Form of an Ada Program

3.5 Problem Solving: Software Development Illustrated

3.6 Control Structures: Assignment Statements

3.7 Control Structures: Input/Output Statements

3.8 Data Structures: Introduction to Data Types and Expressions

3.9 Tricks of the Trade: Common Programming Errors

Chapter Review

Programming is a problem-solving activity. If you are a good problem solver, you have
the potential to become a good programmer. One goal of this book is to help you
improve your problem-solving ability. It is beneficial to approach each programming
problem in a systematic and consistent way. In this chapter we show you how to apply
the software development method that we introduced in Chapter 1.

A straight-line program is one in which the execution flows in a straight line from
the beginning to the end. There is no repetition of statements already executed; there is
no opportunity for the program to take alternative paths depending on conditions in its
data. This chapter and the next one focus on developing straight-line programs; Chapter
5 introduces alternative paths and Chapter 6 introduces repetition.

Historically, straight-line programs have been called sequential programs. More
recently, "sequential program" has been used in contrast to "parallel program" or "con
current program." The two meanings of "sequential" can be confusing. For clarity,
therefore, we use "straight-line program" here.

65
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3.1 The General Structure of Ada Programs

Let us start our systematic study of programming by building on the simple Ada pro
gram introduced as Program 1.1.

■ Example 3.1

Program 3.1 is similar to Program 1.1 but with the important difference that instead of
just displaying a greeting, this program asks the user (the person running the program)
to enter his or her initials, then greets the user with these initials. In general we will not
show the programs with numbered lines, but we do so here for extra clarity.

Program 3.1 Displaying Initials

1. WITH Ada.Text_IO;
2. PROCEDURE HelIo_Initials IS
3.

4. —I Requests, then displays, user's first and last initials.
5. —i Author: Michael Feldman, The George Washington University
6. —I Last Modified: June 1998
7.

8.

9. Initiall : Character; — objects that hold initials
10. Initial2 : Character;

11.

12. BEGIN — Hello_Initials
13.

14. — Prompt for (request user to enter) user's initials
15. Ada.Text_IO.Put(Item => "Enter your two initials> ");
16. Ada.Text_IO.Get(Item => Initiall);
17. Ada.Text 10.Get(Item => Initial2);
18.

19. — Display user's initials, with a greeting
20. Ada.Text_IO.Put(Item => "Hello ");
21. Ada.Text_IO.Put(Item => Initiall);
22. Ada.Text~IO.Put(Item => Initial2);
23. Ada.Text_IO.Put(Item => ". Enjoy studying Ada!");
2 4. Ada.Text 10.New_Line;
25.

26. END Hello_Initials;

Sample Run

Enter your two initials> MF
Hello MF. Enjoy studying Ada!

Lines 9 and 10 identify the names of two variable objects (mitiali and
initiai2)—memory cells that will be used to store the initials. A comment is used at
the end of line 9 to indicate the purpose of these variable objects. The section of the
program between the reserved word is (line 2) and the reserved word begin Oine 12)
is called the declarative section, or sometimes just the declarations. Generally, this sec
tion describes objects (such as our two variable objects here) and types (more on this
later) to the compiler.
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As in Program 1.1 and all the other programs in this book, the first few lines of this
program—in this case, lines 3 through 7—constitute a banner comment identifying the
author, date, and purpose of the program. Comments also appear in lines 14 and 19;
each comment serves as a brief description of the following program section. Com
ments are ignored by the compiler but make up an important part of the program docu
mentation.

The statements in lines 15 through 17 are all calls to input/output procedures. As
before, each statement containing Ada.Text_io.Put causes some information to be
displayed on the video screen during program execution. The statement

Ada.Text_lO.Put(Itera => "Enter your two initials> ");

asks the program user to enter two letters. The statements

Ada.Text_lO.Get(Item => Initiall);
Ada.Text_lO.Get(Item => Initial2);

cause the program to wait until two letters are entered on the keyboard by the program
user. These letters are "read" (stored) into the two memory cells listed, one letter per
cell. The last output line of the program is displayed by the Ada.Text_io.Put state
ments in lines 20 through 24. These statements display the string "Hello ", the two let
ters just read, and finally the longer greeting message. The symbol => is known as
"arrow," and it is proper to pronounce a phrase like item => mitiaii as "Item arrow
Initiall" ■

■ Example 3.2

Program 3.2 is similar to Program 3.1 except that it reads a person's name instead of
just that person's initials. The declaration of FirstName describes a variable object that
is able to hold a sequence of exactly ten characters (letters, digits, etc.). That is why the
prompt lines request an entry of exactly that many letters.

Program 3.2 Displaying the User's Name

WITH Ada.Texl:_I0;
PROCEDURE Hello_Name IS

Requests, then displays, user's name
Author: Michael Feldman, The George Washington University
Last Modified: June 1998

FirstName: String(1..10); — object to hold user's name

BEGIN -- Hello_Name

— Prompt for (request user to enter) user's name
Ada.Text_IO.Put
(Item => "Enter your first name, exactly 10 letters.");

Ada.Text_IO.New_Line;
Ada.Text_IO.Put
(Item => "Add spaces at the end if it's shorter.> ");

Ada.Text_IO.Get(Item => FirstName);
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— Display the entered name, with a greeting
Ada.Text_lO.Put(Item => "Hello ")?
Ada.Text_IO.Put(Item => FirstName);
Ada.Text_IO.Put(Item => ". Enjoy studying Ada!");
Ada. Text__IO. New_Line;

END Hello_Narae;

Sample Run

Enter your first name, exactly 10 letters.
Add spaces at the end if it's shorter.> Michael
Hello Michael . Enjoy studying Ada!

Note that in the prompting section of this program, two of the statements are spread
over two lines. It is perfectly acceptable, and often desirable, to break up a statement in
this fashion, especidly if it serves to fit the statements more esthetically onto displayed
or printed lines. We can split an Ada statement anywhere except in the middle of a word
or in the middle of a quoted string. Also, if a comment is split over two or more lines,
each line must begin with ■

Reserued Words and Identifiers

All of the lines in the preceding programs satisfy the syntax rules for the Ada language.
The programs contain several different elements: reserved words (keywords), pre
defined identifiers, special symbols, and names for memory cells. Let's look at the first
three categories. The reserved words all appear in this book in uppercase; they have
special meanings in Ada and cannot be used for other purposes. The reserved words in
Programs 1.1,3.1, and 3.2 are (in order of appearance)

WITH PROCEDURE IS BEGIN END

The predefined identifiers also have special meanings, but they can be used by the
programmer for other purposes (however, we don't recommend this practice). The pre
defined identifiers in Programs 1.1,3.1, and 3.2 are (in order of appearance)

Ada.Text_lO Put New__Line Character Get String

There are also some symbols (e.g., =, *, >=) that have special meanings in Ada.
Appendix B contains a complete list of reserved words and special symbols; Appendix
C summarizes the predefined identifiers.

What is the difference between reserved words and predefined identifiers? You can
not use a reserved word as the name of a memory cell, but in certain cases you can use
a predefined identifier. Exactly how Ada would treat such a "reused" predefined identi
fier depends on just which identifier is involved. In any case the result would be very
confusing to the reader of the program. Therefore we strongly recommend that you
treat predefined identifiers as though they were reserved words and refrain from reusing
them.

The other identifiers that appear in the three sample programs are described in more
detail in the next sections.
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PROGRAM

STYLE
Use of Uppercase and Lowercase

Throughout the text, issues of good programming style are discussed in displays
like this one. Programming style displays provide guidelines for improving the
appearance and the readability of your programs.

Most programs are examined, studied, and used by someone other than the
original author. A program that follows consistent style conventions is easier to
read and understand than one that is sloppy or inconsistent. These conventions
have no effect whatsoever on the computer; they just make it much easier for
humans to understand programs.

In this text, reserved words always appear in uppercase. This is because the
reserved words determine the structure and organization of the program. Writing
them in uppercase, combined with a consistent indentation style, makes the struc
ture and organization of the program immediately visible to Ae human eye.

Identifiers are in mixed uppercase and lowercase. The first letter of each iden
tifier is capitalized. If an identifier consists of two or more words (such as
New_Line), each word is usually capitalized, and the words are sometimes sepa
rated by an underscore character.

The compiler does not differentiate between uppercase and lowercase in
reading your program. You could write the reserved word begin as begin and the
predefined identifier character as character or even chArAcTeR. The compiler
doesn't care, but we do, as humans striving for clarity and consistency. The com
piler does, however, treat the underscore as a character, so Two_words is different
from TwoWords.

Your instructor may prefer a different convention; if so, it is prudent to follow
it. In the end, what matters most is using a well-thought-out and consistent pro
gramming style.

Programs and Packages

Ada is a language that is designed for writing real-world programs that can be very
large, sometimes numbering hundreds of thousands of statements. Because a single
program file of that length would be completely unmanageable for humans and com
puters alike, Ada is built around the idea of libraries and packages. Using these, sets of
commonly used operations can be tested once and then put in a library for others to use.
Ada comes with many standard, predefined packages; one that you will use very often
is Ada,Text_io. All the predefined Ada libraries begin with the form Ada. Later in the
book you will leam how to use other predefined packages and to write packages of your
own. For now, keep in mind that almost every Ada program is preceded by at least one
WITH clause (formally called a context clause) of the form

WITH Package_Name;

WITH clauses inform the compiler to which packages it must refer in order to understand
the operations you are using. Preceding a program by the context clause

WITH Ada.Text_IO;
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informs the compiler that the program will be using this package to read input data
from the keyboard and display output data on the monitor. Omitting the context clause
would cause one or more compilation errors.

3.2 System Structures: Numerical Input and Output

So far, our program examples have used only character and string quantities. Comput
ers are commonly used to work with numbers, so it is time for a numerical example or
two. Computer programs use two general kinds of numerical values: integer values,
such as 0,2, and -1048, which are "whole numbers" with no fractional part, and float
ing-point values, such as 0.0,3.14159 and -185.7, which are numbers with fractional
parts. Ada requires us, generally, to keep integer numbers and floating-point numbers
separate and not to mix them in the same calculation.

In Ada, reading numerical values from the keyboard or a file, and writing or dis
playing these, are done by using two important components of the standard Ada librar
ies, called Acia.integer_Text_io and Ada.Fioat_Text_io. You now know of three
input/output packages. If your program reads or displays ordinary characters and
strings or uses Ada.Text_io.New_Line, precede your program with a context clause:

WITH Ada.Text_IO;

If your program reads and displays integer quantities, precede it by

WITH Ada.Integer_Text_IO;

If your program reads and displays floating-point quantities, precede it by

WITH Ada.Float_Text_IO;

It is permissible to have two, or even all three, context clauses, if necessary.

■ Example 3.5

Program 3.3 converts inches to centimeters.

Program 3.3 Converting Inches to Centimeters

WITH Ada.Text_I0;
WITH Ada.Float_Text_IO;
PROCEDURE Inch_tO_CM IS

— I Converts inches to centimeters
— 1 Author; Michael B. Feldman, The George Washington University
— I Last Modified: June 1998

CMPerlnch : CONSTANT Float := 2.54;

Inches ; Float;

Centimeters : Float;
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BEGIN — Inch to CM

— Prompt user for value in inches
Ada.Text_lO.Put (Item => "Enter a length in inches> ");
Ada.Float_Text_IO.Get (Item => Inches);

— Compute equivalent value in centimeters
Centimeters ;= CMPerlnch * Inches;

~ Display result
Ada.Text_IO.Put (Item =■> "That equals ");
Ada.Float_Text_IO.Put (Item => Centimeters);
Ada.Text_lO.Put (Item => " centimeters");
Ada.Text_lO.New_Line;

END Inch_to_CM;

Sample Run

Enter a length in inches> 30.5
That equals 7.74700E+01 centimeters

The number of inches to be converted is read into the variable object inches by the
statement

Ada.Float_Text_IO.Get (Item => Inches);

The Get statement looks similar to the one in the earlier examples. There are many
different Get statements in the input/output libraries; they have in common the fact that
each is able to accept keyboard input and store it in a single data element. As before, we
write the prefix Ada.Float_Text_io to indicate that we are interested in the Get sup
plied by the floating-point input/output package.

The statement

Centimeters := CMPerlnch * Inches;

computes the equivalent length in centimeters by multiplying the length in inches by
the floating-point constant 2.54 (the number of centimeters per inch); the product is
stored in memory cell centimeters. The symbol := is called the assignment symbol.

The statement

Ada.Float_Text_lO.Put (Item => Centimeters);

displays the value of centimeters as the floating-point number 7.74700E+01 in scien
tific notation. The value printed is equivalent to 7.747 x 10, or 77.47, as will be
explained later.

Suppose the user enters a negative number of inches at the keyboard (say, -1.45).
The program will compute a negative number of centimeters. Whether this is appropri
ate or not depends on the use we are making of the program. Throughout this book we
will be introducing better and better ways of ensuring that user input is appropriate
before proceeding to a calculation that may not make sense. At this stage we can only
identify the problem; we do not yet have the tools to solve it. ■
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■ Example 3.4

Program 3.4 computes the distance of an automobile trip by asking the user to enter the
estimated trip time in hours and the average speed in miles per hour.

Program 3.4 finding Distance Traveled

WITH Ada.Text_lO;
WITH Ada.Integer_Text_IO;
PROCEDURE Distance IS

— I Finds distance traveled, given travel time and average speed
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: June 1998

HowLong : Natural;
HowFast : Natural;

HowFar : Natural;

BEGIN — Distance

— prompt user for hours and average speed
Ada.Text_IO.Put
{Item => "How many hours will you be driving (integer) ? ");

Ada.Integer_Text__IO.Get (Item => HowLong);
Ada.Text_IO.Put
(Item=>"At what average speed (miles per hour, integer) ? ");

Ada.lnteger_Text_IO.Get (Item => HowFast);

— compute distance driven
HowFar := HowFast * HowLong;

— display results
Ada.Text_IO.Put (Item => "You will travel about ");
Ada.Integer_Text_IO.Put (Item => HowFar);
Ada.Text_lO.Put (Item => " miles");
Ada.Text_IO.New_Line;

END Distance;

Sample Run

How many hours will you be driving (integer) ? 3
At what average speed (miles per hour, integer) ? 55
You will travel about 165 miles

The numbers are nonnegative integer values (type Natural, which includes zero).
Nonnegative integers are still integers, so we can make use of the integer input/output
package Ada. integer_Text_io, calling the Get and Put operations there.

In Programs 3.3 and 3.4 there are two context clauses (with clauses) preceding the
program. Why do we need both? Because we are displaying prompts to request user
input as well as titles to make the output meaning^l, we need to use the charac
ter-string part of Ada.Text_io to do this, in addition to the appropriate numerical
input/output package. Ada requires us to supply context clauses for all packages we are
using.
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In testing this program, we entered positive numbers for the trip time and speed.
You might find it interesting to execute the program yourself and enter a negative num
ber. An exception will be raised. This will be discussed in Section 3.11. ■

3.3 Data Structures: Declaring Constant and Variable Objects

Every program begins with one or more context clauses, followed by a program head
ing such as

PROCEDURE Distance IS

We tell the Ada compiler the names of memory cells used in a program through
object (constant and variable) declarations. The programs seen so far contained decla
rations for constants and variables. The constant declaration

CMPerlnchi CONSTANT Float := 3.54;

in Program 3.3 specifies that the identifier CMPerinch will be used as the name of the
constant value 2.54. Identifiers that are declared in a constant declaration are called

constants. Data values that will not change (for example, the number of centimeters per
inch is always 2.54) should be associated with an identifier that is a constant. Any Ada
statement (other than the declaration) that attempts to change the value of a constant
will give rise to a compilation error. A good reason for using constants in a program is
that accidental attempts to change constant values will be caught by the compiler.

The variable object declarations

Initial1: Character;
Initial2: Character;

in Program 3.1 give the names of two identifiers that will be used to reference data
items that are individual characters as denoted by the predefined identifier character.
The variable declarations

Inches : Float;
Centimeters: Float;

in Program 3.3 give the names of two identifiers that will be used to reference data
items that are floating-point values (for example, 30.0 and 563.57) as denoted by the
predefined identifier Float. The variable declarations in Program 3.4

HowLong: Natural;
HowFast: Natural;

HowFar : Natural;

give the names of three identifers whose values will be nonnegative integers, using
Ada's predefined integer type Natural. We wish these numbers to be nonnegative
because negative time and negative speed do not make good physical sense. We will
come back frequently to the question of defining sensible ranges of values for our vari
ables.
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An identifier given in a variable declaration statement to the left of the : (colon)
symbol is called a variable object, or usually just variable. Variables are used in a pro
gram for storing input data items and computational results. The identifier appearing to
the right of the : symbol (for example, integer, Float, character, string) tells the
Ada compiler the data type (for example, an integer value, a floating-point value, a sin
gle character, or a sequence of characters) of the data that will be stoi^ in the variable.
Data types will be considered in more detail in Section 3.9.

You have quite a bit of freedom in selecting the identifiers, or names of variables
and constants, that you use in a program. Some valid and invalid identifiers are the fol
lowing:

Valid identifiers: initiali, initiall, inches, centimeters, CM_Per_inch,
hello

Invalid identifiers: iletter, constant, begin, Two*Four, joe's,
CM Per Inch

The syntax rules for identifiers are as follows:

1. An identifier must always begin with a letter; iletter is invalid.

2. An identifier must consist only of letters, digits, and underscores.

3. You cannot use two or more underscore characters in succession; the first
character cannot be an underscore, cm ^Per inch is invalid (two underscores
in succession).

4. You cannot use an Ada reserved word as an identifier; begin is invalid.

Note again that both uppercase and lowercase may be used, but remember the style
recommendations from Section 3.1. The syntactic rules do not place a limit on the
length of an identifier, except that an identifier may not be split over more than one line.
Ada requires a declaration for every identifier you create and use in your program (no
declaration is required or desirable for predefined identifiers). Identifiers that you create
and use are called user-defined identifiers.

The names of variables, constants, procedures, packages, package instances, and so
on are all identifiers; therefore all follow the syntactic rules just given.

The reserved words and identifiers used tous far are summarized here under their
appropriate categories:

Program names: Hello Hello_initials Hello_Name
Inch__To_CM Distance

Predefined packages: Ada. Text_io Ada. Text_io. integer_io
Ada.Text_IO.Float_IO

Operations in predefined packages: Put New_Line Get

Variable objects: Initiall Initial2 FirstName Inches Cen
timeters HowLong HowFast HowFar

Constant objects: CMPer i nc h

Predefined types: character string integer Float
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In this section we introduced the context clause, program heading, constant decla
ration, and variable declaration. The syntactic form of each of these Ada language con
structs is summarized in the following syntax displays. Each display describes the
syntactic form of a construct and provides an example.

SYNTAX

DISPLAY
Context Clause

Form:

WITH list of package names ;

Example:

WITH Ada.Text_I0;
WITH Ada.lnteger__Text_lOj

Interpretation:

A context clause informs the compiler that the named package(s) is (are) being
used by this program. The compiler will check all references to resources (e.g.,
procedures) provided by the package(s), making certain that the program is using
them correctly.

Note:

Context clauses can appear only at the very beginning of a source hie. Generally,
we will give only one package name per context clause: this makes it easier to
add or delete context clauses.

SYNTAX

DISPLAY
Program Heading

Form:

PROCEDURE program name IS

Example:

PROCEDURE Distance IS

Interpretation:

A program heading is used to signal the start of a program.

SYNTAX

DISPLAY
Comment

Form:

— comment
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Example:

— This is a cwnment

Interpretation:

A double hyphen indicates the start of a comment; the comment ends at the end
of the line. Comments are listed with the program but are otherwise ignored by
the Ada compiler. Note that if yOu write a program staiemQut following a com
ment on the same line, it will be treated by the compiler as part of the comment
and therefore it will be ignored!

SYNTAX

DISPLAY
Constant Object Declaration

Form:

Somej:onstaiit ; CONSTANT type «= raiue;

Example:

Pi : CONSTANT Float :«= 3.14159;

Interpretation:

The specified value is associated with the identifier Some_constant. The value of
Somejconstant cannot be changed by any subsequent program statements.

SYNTAX

DISPLAY
Variable Object Declaration

Form:

variable list i type ;

Example:

Initiall, Initial2i Character;

Interpretation:

A memory cell is allocated for each variable (an identifier) in the variable list.
The type of data (character in this case) to be stored in each variable is specified
between the colon and the semicolon. Commas are used to separate the identifiers
in the variable list.

To make it easier to add and delete variable declarations, we generally will
write each declaration on its own line and give only one variable per declaration.
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PROGRAM

STYLE
Choosing Identifier Names

It is very important to pick meaningful names for identifiers; they will be easier
to understand when used in a program. For example, the identifier salary would
be a good name for a variable used to store a person's salary; the identifiers s and
Bagel would be bad choices.

There is no restriction on the length of an identifier. However, it is difficult to
form meaningful names using fewer than three letters. On the other hand, typing
errors become more likely when identifiers are too long. A reasonable rule of
thumb is to use names that are between three and ten characters in length.

If you mistype an identifier, the compiler will usually detect this as a syntax
error and display an undefined identifier message during program translation.
Sometimes, mistyped identifiers resemble other identifiers, so avoid picking
names that are similar to each other.

Make sure that you do not choose two names that are identical except for
their use of case; the compiler will not be able to distinguish between them.

Some Ada experts advocate using underscores to break up multiword identi
fiers, writing CM_Per_inch, for example, instead of our CMPerinch. In this book
we generally use underscores in program names (it's easier for some operating
systems) but avoid them in variable and constant names (it makes the names a bit
shorter). Of course, consistency is important, and also, if your instructor prefers
underscores in your variable names, use them!

PROGRAM

STYLE
Form of Declarations and Context Clauses

From the syntax displays, you can see that Ada permits several package names to
appear in a single context clause and several variable names to appear in a decla
ration. Declarations are often changed during the development of a program as
variables are added and removed.

It is therefore much easier to develop a program (and to read it as well) if
each variable and constant is declared in a separate declaration on its own line.
All programs in this book follow this style convention, and we recommend that
you follow it too.

The same recommendation applies to context clauses: Because any number
of context clauses can precede a program, we recommend that each context
clause name only a single package and appear on its own line.
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PROGRAM

STYLE
Banner Comments

Each program in this book contains a banner comment, sometimes called a block
comment or header comment, giving a brief description of the program, with
author and date information. An example is

Finds distance traveled,
given travel time and average speed
Author: M. B. Feldman, The George Washington University
Last Modified: June 1998

Like all comments, banner comments are ignored by the compiler and are
inserted purely for documentation purposes. The use of banner comments is
strongly recommended in programs in any programming language, even though
neither Ada nor any other language requires them.

EXERCISES FOR SECTION 3.5

Self-Check

1. Should the value of n: (3.14159) be stored in a constant or a variable? Why?

2. Which of these are valid Ada identifiers?

MyProgram prog2 prog#2 2NDone procedure "HaxScores"

3. Indicate which of the following identifiers are Ada reserved words, predefined
identifiers, identifiers, and invalid identifiers.

END Put BILL PROCEDURE SUE'S

Rate OPERATE START BEGIN CONSTANT

xyzi23 123XyZ This_Is_A_Long_One Y=Z

3.4 System Structures: General Form of an Ada Program

To summarize what we have learned so far, the programs shown earlier all have the
general form described in Figure 3.1:

• Each program begins with one or more context clauses followed by a program
heading.

• The last line of each program begins with the reserved word end.
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• The program heading is followed by declarations, if any, which may appear in any
order.

• The reserved word begin signals the start of the sequence of executable statements
part of the program. The sequence of executable statements consists of the program
statements that are translated into machine language and executed. The program
statements that we have seen so far consist of those that perform computations and
input/output operations. These are described in the next section.

• The last line in a program has the form

END pname;

where pname is the name of the program.

• Each declaration and statement in an Ada program ends with a semicolon.

• An Ada statement can extend over more than one line; such a statement cannot be
split in the middle of an identifier, a reserved word, a number, or a string. Also, we
can write more than one statement on a line, although we will not do so in this book
and do not recommend it. Each line of a comment must be preceded by ~.

Figure 3.1 General Form of an Ada Program

WITH package1;
WITH package2;

WITH packageN;
PROCEDURE pname IS

declarations (variables, constants, etc.)

BEGIN

program statement;

program statement;

END pname

One of the main functions of a computer is to perform arithmetic computations and
display the results of computations. Such operations are specified by the sequence of
executable statements that appear in the program body following the reserved word
BEGIN. Each statement is translated by the Ada compiler into one or more instructions
in machine language, which are copied to the object file and later executed. Declara
tions, on the other hand, describe to the compiler the meaning and purpose of each
user-defined identifier. They result in the allocation of some memory space to hold the
data values.
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PROGRAM

STYLE
Use of Blank Space

The consistent and careful use of blank spaces can significantly enhance the style
of a program. A blank space is required between words in a program line (e.g.,
between procedure and Distance in Program 3.4).

Because extra blanks between words and symbols are ignored by the com
piler, you may insert them as desired to improve the style and appearance of a
program.

Always leave a blank space after a comma and before and after operators
such as *, and =. Indent by two or more spaces all lines except for the first
and last lines of the program and the line begin.

Finally, use blank lines between sections of the program.

All of these measures are taken for the sole purpose of improving the style
and hence the clarity of the program. They have no effect whatever on the mean
ing of the program as far as the computer is concerned; however, they make it
easier for people to read and understand the program.

Be careful not to insert blank spaces where they do not belong. For example,
there cannot be a space between the characters : and - that make up the assign
ment symbol: =. Also, you cannot put a blank in the middle of an identifier.

3.5 Problem Solving: Software Development Illustrated

In this textbook we will provide solutions to a number of case studies of programming
problems. We obtain the solutions by following the software development method out
lined in Section 1.5. Let's go through a case study, step by step.

CASE

STUDY CONVERTING UNITS OF MEASUREMENT

Problem Specification
You work in a store in the United States that imports fabric. Most of the fabric you
receive is measured in square meters; however, the store's customers want to know the
equivalent amount in square yards. You need to write a program that performs this con
version.

Analysis
The first step in understanding this problem is to determine what you are being asked to
do. It should be clear that you must convert from one system of measurement to
another, but are you supposed to convert from square meters to square yards or vice
versa? The problem states that you receive fabric measured in square meters, so the
problem input is fabric size in square meters. Your customers want to know the equiva
lent amount in square yards, which must be your problem output.

To solve this problem, with or without a computer, we need to know the relation
ship between square meters and square yards. By examining a metric table, we find that
1 square meter equals 1.196 square yards.
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We summarize the data requirements and relevant formulas below. As shown
below, we will use the name squareMeters to identify the memory cell that will con
tain the problem input and the name squareYards to identify the memory cell that will
contain the program result, or the problem output.

Data Requirements and Formulas

Problem Inputs:
SquareMeters — the fabric dimensions in square meters

Problem Outputs:
SquareYards — the fabric dimensions in square yards

Formulas or Relations:

I square meter equals 1.196 square yards

Design
Next, we try to formulate the algorithm that we must follow to solve the problem. We
begin by listing the three major steps, or subproblems, of the algorithm.

Initial Algorithm
1. Read the fabric size in square meters.

2. Convert the fabric size to square yards.

3. Display the fabric size in square yards.

In using the term read, we mean: "Find out the value of this quantity from the user
of the program"; because this quantity will change from run to run, we need to ask the
user for its value each time. Generally, this is done by instructing the computer to ask
the user to enter the value on the computer keyboard; sometimes it is done by reading it
from an external disk file (secondary storage). Similarly, in using the term display, we
usually mean "instruct the computer to show the value on the computer monitor."

Next, we decide whether any steps of the algorithm need further refinement or
whether they are perfectly clear as stated. Step 1 (reading data) and step 3 (displaying a
value) are basic steps and require no further refinement. Step 2 is fairly straightforward,
but it might help to add some detail. The refinement of step 2 follows.

Step 2 Refinement

2.1 Multiply the fabric size in square meters by 1.196; the result is the fabric size in
square yards.

The complete algorithm with refinements is shown below. The algorithm resembles
an outline for a paper. The refinement of step 2, numbered as step 2.1, is indented under
step 2. We list the complete algonthm with refinements below to show you how it all
fits together.

Algorithm with Refinements
1. Read the fabric size in square meters.

2. Convert the fabric size to square yards.



82 Introduction to Straight-Line Programs

2.1 Multiply the fabric size in square meters by 1.196; the result is the fabric
size in square yards.

3. Display the fabric size in square yards.

Test Plan
We need to test three cases: a normal case of a positive floating-point value, a zero
value, and a negative value. In the last case the program will compute a negative num
ber of square yards. Since this doesn't make physical sense, we will need a way of
ensuring that it does not happen. Section 3.9 will offer some first solutions to this.

Implementation
To implement the solution, we must write the algorithm as an Ada program that is
acceptable to the compiler. Ada's syntax or grammatical rules require that we first list
the problem data requirements—that is, what memory cell names we are using and
what kind of data will be stored in each memory cell. Next, we convert each algorithm
step into one or more Ada statements. If an algorithm step has been refined, we convert
its refinements into Ada statements. You will be able to do this yourself as you learn
more about Ada.

Program 3.5 shows the program along with a sample execution (the last two lines
of the figure). We show the test run for a normal positive value; we leave it to you to run
the program for the other test cases.

Program 3.5 Converting Square Meters to Square Yards

WITH Ada.Text 10;
WITH Ada.Float_Text_IO;
PROCEDURE Metric_Conversion IS

— I Converts square meters to square yards
— 1 Author: Michael B. Peldman, The George Washington University
— I Last Modified: June 1998

MetersToYards : CONSTANT Float := 1.196; — conversion constant

SquareMeters : Float; — input - metric size
SquareYards : Float; — output - US size

BEGIN — Metric_Conversion

— Read the fabric size in square meters
Ada.Text_IO.Put (Item => "Enter the fabric size in square meters > ");
Ada.Float_Text_IO.Get(Item => SquareMeters);

— Convert the fabric size to square yards
SquareYards MetersToYards * SquareMeters;

— Display the fabric size in square yards
Ada.Text_IO.Put(Item => "The fabric size in square yards is ");
Ada.Float_Text_IO.Put(Item => SquareYards);
Ada.Text_IO.New_Line;

END Metric Conversion;
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Sample Run

Enter the fabric size in square meters > 45.00
The fabric size in square yards is 5.38200E-I-01

The program consists, as before, of two parts; the declaration part and the program
body. The declaration part is based on the data requirements identified in the problem
analysis and tells the compiler what memory cells are needed in the program. Memory
cells are needed for storing the variables squareMeters and squareYards and for stor
ing the conversion constant MetersToYards (whose value is 1.196).

The program body begins, as always, with the line

BEGIN

and contains the Ada statements that are translated into machine language and later
executed. In the program body we find the statements that express the algorithm steps
as Ada statements. The statement

Ada.Float_Text_I0.Get (Item => SquareMeters);

reads the data value typed by the program user (in this case, 45.00) into the memory
cell named SquareMeters. The statement

SquareYards MetersToYards * SquareMeters;

computes the equivalent fabric size in square yards by multiplying the size in square
meters by 1.196; the product is stored in memory cell SquareYards.

Finally, the Put statements display a message string, the value of SquareYards, and
a second message string. The instruction displays the value of SquareYards- as a real
number in Ada scientific notation (5.38200E+01). The value printed is equivalent to
5.382 X 10^, or 53.82, as will be explained later.

Testing
The sample run shows the result for a positive input. As was discussed in the test plan
section, you should run the program for zero and negative input values.

3.6 Control Structures; Assignment Statements

The assignment statement is used in Ada to perform computations. The assignment
statement

SquareYards :» MetersToYards * SquareMeters;

in Program 3.5 assigns a value to the variable SquareYards, in this case the result of the
multiplication of the constant MetersToYards by the variable SquareMeters. Valid
mformation must be stored in both MetersToYards and SquareMeters before the
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SYNTAX

DISPLAY

MetersToYards SquareMeter

53.8

45.001.196

SguareYards

Figure 3.2 Effect of SquareYards ! = MetersToYards * SquareYards;

assignment statement is executed. As shown in Fig. 3.2, only the value of SquareYards
is affected by the assignment statement; MetersToYards and squareMeters retain their
original values.

The symbol := is the assignment symbol in Ada and should be pronounced
"becomes" or "takes the value of rather than "equals." The : and = must be adjacent
characters with no intervening space. The general form of the assignment statement is
shown in the next display.

Assignment Statement (Arithmetic)

Form:

result !=

Example:

expressaon ;

X ;= Y + Z + 2.0?

Interpretation:

The variable specified by result is assigned the value of expression. The previous
value of result is destroyed. The expression can be a single variable or a single
constant, or it can involve variables, constants, and arithmetic operators, some of
which are listed in Table 3.1. The variable specified by result must be of the same
data type as the expression.

Table 3.1 Some Arithmetic Operators

Operator Meaning

addition

subtraction
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Table 3.1 Some Arithmetic Operators

Operator Meaning

*

I

multiplication

division

exponentiation

It is permissible to write assignment statements of the form

Sum := Sum + Item;

where the variable sum is used on both sides of the assignment operator. This is obvi
ously not an algebraic equation, but it illustrates something that is often done in pro
gramming. This statement instructs the computer to add the current value of the
variable sum to the value of item; the result is saved temporarily and then stored back
into Sum. The previous value of sum is destroyed in the process as illustrated in Fig.
3.3; however, the value of item is unchanged.

Assignment statements can also be written with an expression part that consists of a
single variable or value. The statement

NewX := X;

instructs the computer to copy the value of x into Newx. The statement

NewX := -X;

instructs the computer to get the value of x, negate this value, and store the result in
NewX (e.g., If X is 3.5, Newx is -3.5; if X is -17.4, Newx is 17.4). Neither of the assign
ment statements above changes the value of x.

Sum Item

100

110

Sum

Figure 3.3 Effect of sum := sum + item;
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EXERCISES FOR SECTION 3.6

Self-Check

SYNTAX

DISPLAY

1. Which of the following are valid Ada assignment statements? Why?

X = Y;

A := B - C;

P + Q := R;

G  Gf

H ;= 3 + 4;

H := 3 + K;

T := S * T;

3.7 Control Structures: Input/Output Statements

Information cannot be manipulated by a computer unless it is first stored in main mem
ory. There are three ways to place a data value in memory: Associate it with a constant,
assign it to a variable, or read it into a variable from the terminal or a file. The first two
approaches can be followed only when the value to be stored will be the same every
time the program is run. If we wish to be able to store different information each time,
it must be read in as the program is executing (an input operation).

As it executes, a program performs computations and assigns new values to vari
ables. The results of a program's execution can be displayed to the program user by an
output operation.

Input/output operations in Ada are performed by procedures that are included in a
set of library pacMges supplied with each Ada compiler. We will use procedures from
Ada.Text 10, Ada. integer__Text__io, and Ada.Float_Text_io; later we will use Other
parts of the input/output libraries. The specific procedure us^ to read or display a value
is determined by the type of that value. For the time being, we will manipulate values of
four different t>pes: character, string, floating-point number, and integer. As you write
each program, you should be aware of the input/output operations that need to be per
formed and give the required context clauses. Input/output operations in Ada are done
using procedure calls, so we now present a syntax display that shows the form of a call.

Procedure Call Statement (Simple)

Form:

pname (J 1st of parameters)}
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Example:

Ada.Text_IO.Put(Item => "Hello.");
Ada.Text_IO.New_Line;

Interpretation:

The list of parameters is enclosed in parentheses; each actual parameter value is
iweceded by the name of that formal parameter.

Note:

In the case of input/output operations, the most important parameter—the value
to be output or the variable receiving the input—is always called item. There is
no special Ada rule that requires this; it is just the name chosen by the designers
of Ada.Text_IO.

As the second example shows, it is possible for a procedure to require no
parameters at all. The number, order, and type of parameters are, of course, deter
mined by the writer of the procedure, not by its user.

Performing Input Operations

A procedure call statement is used to call an input/output procedure. In Program 3.3,
the procedure call statement

Ada.Float_Text_lO.Get (Item => Inches);

reads a floating-point value (a number with a decimal point) into the variable inches.
This statement causes the number entered at the keyboard to be stored in the variable
Inches, as illustrated in Fig. 3.4. After typing a number, the program user should press
the ENTER key or the space bar.

Now recall that in Program 3.1, a user's initials were read. Because each person
using the program probably will have different initials, the statements

Ada.Text_IO.Get (Item => Initiall);
Ada.Text_IO.Get (Item => Initial2);

are used to read in two letters. These statements cause the next two characters entered

at the terminal to be stored in the variables mitiali and initiai2 (type character),
one character per variable. Figure 3.5 shows the effect of these statements when the let
ters EK are entered.

Number Entered 30.5

Inches

30.5

Figure 3.4 Effect of Ada. Float_Text_lO. Get (Item=>Inches);
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Letters entered ek

Initiall

Initial2

Figure 3.5 Effect of Input of Character Values

It may be necessary to press the enter key after typing in the data characters. Some
systems will read in these characters as they are typed; most will not begin to read them
until after the enter key is pressed.

The procedure Ada.integer_Text_io.Get is used to read an integer (a number
without a decimal point). This number may or may not be preceded by a sign. The vari
able into which this number is stored must be of type integer.

The number of characters read by an input operation depends on the type of the
variable into which the data are placed. Only one character is read for a variable of type
Character. In the case of integer and floating-point values, the computer skips over any
leading blanks and then continues to read characters until a character that cannot be
part of a number is reached (e.g., a blank or a letter) or the enter key is pressed.

How does a program user know when to enter the input data and what data to
enter? Your program should print a prompting message (as explained later in this sec
tion and as the examples have shown) to inform the program user what data to enter and
when. The cursor indicates the current position on the video screen. As each character
is entered, the cursor advances to the next screen position.

Input Tokens

It is interesting to note that the four input characters in Program 3.3 make up a single
data value, the number 30.5, which is stored in the variable inches (type Float). In
Program 3.1, each input character represents a separate data value and is stored in a dif
ferent variable. And in Program 3.2, where a user's name is read, the sequence of
exactly ten characters represents a single value. A sequence of one or more characters
representing a single input value is commonly called a token. The input sequence 30.5
is a floating-point token, the sequence Jane smith is a string token, and the initials js
represent two single-character tokens

SYNTAX

DISPLAY
Get Procedure (Character)

Form:

Ada.Text 10.Get (Item => variable );
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Example:

Ada.Text_IO.Get (item => Initiall);

Interpretation:
The next character pressed on the keyboard is read into variable (type charac
ter). A blank counts as a character; an enter does not.

SYNTAX

DISPLAY
Get Procedure (String)

Form:

Ada.Text_IO.Get (Item => variable );

Example:

Ada.Text_IO.Get (Item => First_Name);

Interpretation:

Variable must be a variable of type string (low.. high). where I < low ̂  high.
Exactly high - low + 1 characters are read from the keyboard. An enter does not
count as a character; the computer will wait until exactly the right number of
keys, excluding enters, are pressed.

SYNTAX

DISPLAY
Get Procedure (Integer)

Form:

Ada.Integer_Text_lO.Get (Item =»> variable );

Example:

Ada.Integer_Text_IO.Get (Item => How_Long);

Interpretation:
The next string of numeric characters entered at the keyboard is read. The
numeric string is converted into an integer value and stored in variable (type
Integer). Any leading blank characters or enters are ignored. The first nonblank
character may be a sign (+ or -) or a digit. The data string is terminated when a
nonnumeric character is entered or the space bar or enter key is pressed.

SYNTAX

DISPLAY
Get Procedure (Floating Point)

Form:

Ada.Float_Text_IO.Get (Item => variable );
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Example:

Ada.Float_Text_IO.Get (Item => Inches);

Interpretation:

The next string of numeric and other characters entered at the keyboard is read.
The characters in this string are converted into a floating-point value and stored in
variable (type Float). Any leading blank characters or enters are ignored.

The first nonblank character may be a sign (+ or -) or a digit; die remaining
characters must be an integer token (if the value is a whole number) or a single
decimal point surrounded by num^c characters. Scientific notation (e.g.,
123.45E-»-02) is also permitted.

The data string is terminated when a character is entered that cannot be part
of one of the above tokens, or the space bar or enter key is pressed.

Performing Output Operations

To see the results of a program execution, we must have some way of displaying the
values of selected variables. In Program 3.3 the statements

Ada.Text_IO.Put (Item => "That equals ");
Ada.Float_Text_IO.Put (Item => Centimeters);
Ada.Text_IO.Put (Item => " centimeters.");
Ada.Text~IO.New_Line;

display the output line

That equals 7.74700E+01 centimeters.

The procedure Ada.Text_io.Put is called twice, first to display the string "That
equals" and next to display the string " centimeters.". A string must be enclosed in
double quotes. When the Ada.Text_io.Put statement is executed, the characters
enclosed in the quotes are printed, but the quotes are not.

The procedure Ada.Fioat_Text_io.Put displays the value of variable centime
ters (type Float) between two strings. The number displayed is 77.47 expressed in
scientific notation. In normal scientific notation, 7.747 x 10 means multiply 7.747 by
10, or move the decimal point right one digit. Because superscripts cannot be entered or
displayed at the terminal, the capital letter E is used in computers to indicate scientific
notation.

Formatting Character and String Output Values

In Program 3.1 the statements

Ada.Text_IO.Put (Item => Initiall);
Ada.Text_IO.Put (Item => Initial2);

display the characters stored in the two variables initiali and initial2 (type char
acter). Each statement causes a single character to be displayed at the current cursor
position.
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If the variable given to Ada.Text_io.put is of type string (low. - high) as in Pro
gram 3.2,

Ada.Text_IO.Put (Item => First_Name)j

exactly high - low + 1 characters are displayed.
The procedure Ada. integer_Text_io.Put is used to display integer values. When

ever an output operation is performed, the characters to be displayed appear at the cur
rent cursor position.

The procedure Ada. Text_io. New_Line is used to segment our program output into
lines. Each time Ada. Text_io. New_Line is executed, the cursor is advanced to the first
position of the next line on the screen.

SYNTAX

DISPLAY
Put Procedure (Character)

Form:

Ada.Text_IO.Put (Item => variable );

Example:

Ada.Text_IO.Put (Iten => initiall);

Interpretadon:

The value of variable (type character) is displayed on the screen, and the cursor
is advanced to the next position.

SYNTAX

DISPLAY
Put Procedure (String)

Form:

Ada*Text_IO.Put (item -> variable );

Example:

Ada.Text_lO.Put (Item »> Pirst_Naine)?

hiferpretatioD:
Variable must be a variable of tyj« string (low.. high), where 1 _ low _ high.
Exactly high - low + 1 characters are displayed on the screen, and the cursor is
advanced to die first position aftta* the end of die string.

SYNTAX

DISPLAY
New.Line Procedure

Form:

Ada.Text_IO.New_Line (Seeing »> positive number );
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Example:

Ada.Text_IO.New_Line (Spacing => 3 )j

Interpret^on:

If Spacing is 1, die cursor is moved to the first position of the next tine of the dis
play. If Spacing is greater than 1, this action is performed spacing times. If
Spacing is omitted, 1 is used as the default.

PROGRAM

STYLE
Using Prompting Messages to Request Data from the User

The statements

Ada.Text_I0.Put (Item => "Enter your two initials >");

and

Ada.Text_IO.Put (Item => "Enter a length in inches >");

are both used to display prompts or prompting messages in Programs 3.1 and 3.3,
respectively.

A prompting message is a string that is displayed just before an input opera
tion is performed. Its purpose is to request that the program user enter data; it
may also describe the format of the data expected. It is very important to precede
each input operation with a prompting message; otherwise, the program user may
have no idea that the program is waiting for data entry or what data to enter.

Formatting Numerical Output Values

Program output is usually designed to be read by humans from a screen display or a
printed report. It is therefore important that the output he formatted or organized in a
way that makes it most easily understood. For example, the decimal value 77.47 is
much more obvious to most people than the scientific-notation form of the same value,
7.74700E+01. Also, displays and reports should be organized in nice neat colunms so
that the information in them is easily digested by the human reader.

Programming languages facilitate production of useful reports by providing ways
of precisely controlling both the form and the width of output values, especially numer
ical ones. In the case of Ada, the integer and floating-point Put procedures provide
additional parameters for output formatting. These are values that are supplied in the
procedure call statement.

Integer Output Values

The procedure Ada.integer_Text_io.put is used to display integer values. Whenever
an output operation is performed, the characters to be displayed appear at the current
cursor position.

The integer Put procedure allows one additional parameter called width, which
indicates the number of print positions to be used for the output value. The statement

Ada.lnteger_Text_IO.Put (Item °> HowPar, Width =>4);
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will right-justify the displayed value of HowFar to four positions. This means that if
HowFar is 327, when the value is displayed, it will be preceded by one blank. If HowFar
is 19, it will be preceded by two blanks; if HowFar is 1024, it will be preceded by no
blanks at all.

Now suppose that HowFar is 12000, which would be a very long trip! In that case
the field in the display, would be extended to five positions so that no important infor
mation would be lost.

In Program 3.4 the output statement supplied no value for width at all. Ada permits
the omission of procedure parameters, but only if the author of the procedure has sup
plied a default value, which will be used instead. The integer put comes with a default
value for width, but this value can vary from compiler to compiler. This is why in the
remaining programs in this book, a value for width will usually be supplied in the pro
cedure call. We recommend that you follow this practice as well because it makes your
programs more portable (independent of a particular compiler).

Put Procedure (Integer)

Form:

Ada. Integer__Text_IO. Put

(Item => variable, Width => field width);

Example:

Ada.Integer__Text_IO.Put (Item => How_Long, Width => 5);

Interpretation:

The value of variable (type integer) is displayed, using the next width positions
on the screen. If the value (including sign) occupies less than width positions, it
will be preceded by the appropriate number of blanks.

If the value occupies more than width positions, the actual number of posi
tions is used. If width is omitted, a compiler-dependent width is used by default.

Table 3.2 shows some examples of formatted integer values.

Table 3.2 Formatted Integer Values

Value width Displayed Output

234 4 □234

234 5 □□234

234 6 □□□234

-234 4 -234

-234 6 □□-234

234 Len □□□234 (if Len is 6)

234 1 234

234 0 234
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Floating-Point Output Values

The procedure Ada.Pioat__Text_io.Put is used to display floating-point values.
Whenever an output operation is performed, the characters to be displayed appear at the
current cursor position. This procedure provides for three formatting parameters:

• Fore, which indicates the number of positions before the decimal point,

• Aft, which indicates the number of positions after the decimal point, and

• Exp, which indicates the number of positions desired following the e. If Exp is 0,
no exponent will appear at all; this produces a decimal value, rather than a scien-
tiftc-notation one.

Look again at Program 3.3, If we change the output statement from

Ada. Float_Text_I0. Put {Itein»>CentiiQeter8);

to

Ada. Float_Text_IO. Put (lteni=>Centimeter8, Fore=>5, Aft'=>2, Exp=>0);

this will produce the value 77.47 preceded by three blanks, instead of 7.74700E+01.
Table 33 shows some examples of formatted floating-point values.

Table 3.3 Formatted Floating-Point Values

Value Fore Aft Exp Displayed Value

3.14159 2 2 0 □3.14

3.14159 1 2 0 3.14

3.14159 3 1 0 □□3.1

3.14159 1 3 0 3.142

3.14159 2 5 0 □3.14159

3.14159 1 3 2 3.142E+00

0.1234 1 2 0 0.12

-0.006 1 2 0

1

o

o

-0.006 1 2 2 -6.00E-3

-0.006 1 5 0 -0.00600

-0.006 4 3 0 □□-0.006

It is very important to realize that these are just different ways offormatting ouq>ut
values, that is, controlling the visible form of these values on the screen. Nothing in
these output statements alters the actual value stored in memory.
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Put Procedure (Floating Point)

Form:

Ada. Float_Text__IO. Put
(Item => variable , Fore => width before point ,
Aft => width after point , Exp => width of exponent );

Example:

Ada. Float^Text__lO. Put
(Item => Inches, Fore => 5, Aft => 2, Exp =>0);

Interpretadon:

The value of variable is displayed on the screen. Fore gives the desired number
of positions in the integer part (to the left of the decimal point); Aft gives the
exact number of positions in the fractional part (to the right of the decimal point);
Exp gives the exact number of positions in the exponent (after the e).

If the integer part of the value, including sign, occupies fewer than Fore posi
tions. blanks are added on the left. If Exp is 0. no exponent is displayed.

EXERCISES FOR SEaiON 3.7

Self-Check

1. Correct the syntax errors in the program below and rewrite it so that it follows
our style conventions. What does each statement of your corrected program
do? What is printed?

PROCEDURE SMALL;

X: Float;

Y; Foat;

x: Float;
BEGIN;

15.0 = Y;
Z =-Y + 3.5;

Y + z = x;

Put(x, Y, 2)

end small;

2. Provide the statements needed to display the line below. Display the value of X
using ten characters in the space provided.

The value of X is pounds.
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3.8 Data Structures: Introduction to Data Types and
Expressions

First, let's clarify exactly what is meant by a data type in a programming language. A
data type is a set of values and a set of operations on those values. The data type of the
object stored in a particular memory cell determines how the bit pattern in that cell is
interpreted. For example, the same bit pattern can represent a type integer object, a
type Character object, a type Float object, or even a program instruction. A pre
defined data type is a data type that is predefined in the programming language (for
example, integer. Float, and character). Besides the standard data types, program
mers can define their own data types in Ada. Indeed, defining our own types will be an
important part of our study, to be started in Chapter 4.

It is important to understand that in Ada, every variable or constant object has a
type, that is, every object has a known set of values we can assign it, and a set of opera
tions that we can validly perform on it. In the terminology of object-oriented program
ming, every object has a set of states (values) and a set of methods (operations). Taken
together, the methods characterize the object's behavior.

Character Data Type

Our first predefined type is character. We have already seen (Program 3.1) that char
acter variables can be used to store any single-character value. A character value
mentioned in a program—a literal—must be enclosed in single quotes (for example,

■ A ■); however, quotes are not used when character data are entered as tokens. When the
Ada.Text_io.Get procedure is used to read character data into a character variable,
the next character entered at the terminal is stored in that variable. The blank character
is entered by pressing the space bar; it is written in a program as the literal ' ' .

■ Example 3.5
Program 3.6 first reads and echos three characters entered at the keyboard. Next, it
prints them in reverse order enclosed in asterisks. Each character is stored in a variable
object of type character; the character value • * • is associated with the constant object
Border. The lines

Ada.Text_IO.Put (Itera=>Third)?
Ada. Text_IO. Put {Itera='>Second);
Ada.Text_IO.Put (Itera=>First);

display the three characters in reverse order. As shown in the program output, each
character value is printed in a single print position. ■

Program 5.6 Reversing Three Letters

WITH Ada.Text_IO;
PROCEDURE Reverse Letters IS
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— I Reverses the order of three input letters
— I Author: Michael B. Feldman, The George Washington University
—I Last Modified: June 1998

Border : CONSTANT Character := '*';
First, Second, Third ; Character; — input - three characters

BEGIN — Reverse_Letters

— Prompt for three characters
Ada.Text_IO.Put(Item => "Enter 3 characters> ");
Ada.Text_IO.Get(Item => First);
Ada.Text_IO.Get(Item => Second);
Ada.Text_IO.Get(Item => Third);
Ada.Textile.New_Line;

— Display these characters in reverse order
Ada.Text_IO.Put(Item => Border);
Ada.Text_IO.Put(Item => Third);
Ada.Text_IO.Put(Item => Second);
Ada.Text_IO.Put(Item => First);
Ada.Text_IO.Put(Item => Border);
Ada. Text__IO. New_Line;

END Reverse_Letters;

Sample Run

Enter 3 characters> FBI

*IBF*

Several operations are defined for character values; the most obvious one is assign
ment. An assignment statement can be used to store a literal value into a character con
stant or variable or to copy the value of one character variable into another. Comparison
operations on character values will be introduced in Chapter 5.

Float Data Type

The standard data types in Ada represent familiar objects. For example, the data type
Float is that subset of real numbers (in the mathematical sense) that can be represented
on the computer. Every Float value in Ada is a real number; however, not all real num
bers can be represented in Ada or in any programming language. Some real numbers
are too large or too small or cannot be represented precisely owing to the finite size of a
memory cell (more on this in Chapter 7). The normal arithmetic operations for real
numbers (+, -, *, /) and the assignment operation (;=) can be performed on Float
objects in Ada. The metric conversion problem discussed in Section 3.5 is an example
of the use of objects of type Float.
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Integer Data Type

The other predefined data types that represent numbers are integer. Natural, and Pos
itive. Integer values in Ada correspond to the mathematical integers (e.g., -77, 0,
999, +999). However, because of the finite size of a memory cell, not all integers can be
represented in Ada, and every Ada compiler has predefined positive and negative limits
on type integer values. These limits are not specified in the standard and are most
commonly either -32768 and +32767. (16-bit arithmetic) or -2147483648 and
+2147483647 (32-bit arithmetic). Natural values correspond to the nonnegative inte
gers (including 0); Positive values correspond to the positive integers (excluding 0).

Actually, the types Natural and Positive are subtypes of integer: Every positive
integer is also an integer. We will introduce a discussion of subtypes in Chapter 4 and
revisit the subject frequently.

The basic distinction between type Float and the three integer data types is that a
number with a decimal point and fractional part can be stored in a Float object, but
only whole numbers can be stored in type integer. Natural, and Positive objects. We
often use these to represent a count of items because a count must always be a nonneg
ative whole number.

What are the operations on integer values? The operations +, -, and * have obvious
meanings of sum, difference, and product, respectively. What about division? Dividing
one integer by another always gives an integer result, which is the "whole number," or
quotient, part of the division. Thus 3/2 gives a result of i, 14/4 gives a result of 3, and
2/3 gives a result of o. The fractional part, or remainder, is lost in the division opera
tion.

Because the remainder is lost in an integer division, Ada provides an operation rem
that can be applied to two integers, rem gives the remainder in the division operation, as
you would compute it in a "long division." Here are some examples:

3 REM 2 is 1 (dividing 3 by 2 gives a quotient of 1 and a remainder of 1).
14 REM 4 is 2 (dividing 14 by 4 gives a quotient of 3 and a remainder of 2).
2 REM 3 is 2 (dividing 2 by 3 gives a quotient of 0 and a remainder of 2).
One last operator merits discussion here: The operator ** is used to represent expo

nentiation, or raising a value to a given power. Given a variable x whose current vdue
is 3,

X ** 2 is 9 (multiply 3 by 3).
X ** 3 is 27 (multiply 3 by 3 by 3).
X ** 4 is 81 (multiply 3 by 3 by 3 by 3).

and so on.

Exponentiation is also defined to raise a floating-point value to a given power. The
power must be an integer, however. If y is a floating-point variable with value 1.2, then

Y ** 2 is 1.44 (multiply 1.2 by 1.2).
Y ** 3 is 1.728 (multiply 1.2 by 1.2 times 1.2).
Y * * 1.5 is not allowed, and will result in a compilation error.

Literals and Tokens

Objects of a data type can be variables, constants, or literals. A literal is a value that
appears directly in a program. For example, a Float literal is a number that begins with
a digit and contains a decimal point (e.g., 0.112,456.0,123.456). A Float literal may
have a scale factor, which is the capital letter e followed by an optional sign and an
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integer (e.g., o. ii2E3, 456.oe-2). The scale factor means "multiply the preceding real
number by 10 raised to the power appearing after the letter e (e.g., o.ii2E3 is 112.0,
456. OE-2 is 4.56). A Float literal may be preceded by a + or - sign when it appears in
a program. Examples of valid and inv^d Float literals are shown in Table 3.4.

Table 3.4 Some Valid and Invalid Float Literals

Valid Float Literals Invalid Float Literals

3.14159 150 (no decimal point)

0.005 .12345 (no digit before .)

12345.0 12345. (no digit after .)

15.0E<04 (valueis 0.0015) 15E-03 (15 invalid Float)

2.345E2 (value is 234.5) 12. 5E. 3 (. 3 invalid exponent)

-1.2E+6 (value is -1200000) -.123E3(-.123 invalid Float)

1.15E-3 (value is 0.00115)

The last valid literal in Table 3.4, i. 15E-3, has the same value as 1.15 x 10"^ in
normal scientific notation where the exponent -3 causes the decimal point to be moved
left three digits. A positive exponent causes the decimal point to be moved to the right;
the + sign may be omitted when the exponent is positive.

The preceding example has concentrated on Float literals; integer. Character,
string, and enumeration literals (next chapter) are also commonly used.

You might be wondering what the difference is between the terms literal and token.
Conventionally, a sequence of characters representing a value is called a literal when it
appears within the text of a program, and such a sequence is called a token when it is
read from an input device or displayed on an output device.

Expressions mth Several Operators

Ada allows us to write expressions with many variables, constants, literals, and opera
tors; in fact, there is no formal limit at all on the complexity of an expression. We must
therefore know the order in which the various parts of an expression are evaluated.
We'll take a systematic look at this in Chapter 8. To give you some help in the mean
time, suppose w, X, Y, and z are all integer variable objects, and let x be 3, y be 4, and
z be 7. Here's how Ada will evaluate some assignments to the variable w:

W := X * Y + Z;

will store (3x4) + 7, or 19, in w. The result of the multiplication is added to z. It is as
though the expression were written

W := (X * Y) + Z;

which is also correct Ada and gets the same result. Now
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w != z + X * Y;

stores 7 + (3 X 4) in w. Again the result of the multiplication is added to z; this is equiv
alent to writing

W ;= Z + (X * Y);

which, of course, is also correct Ada. Ada follows the basic rule that multiplications
and divisions are done before additions and subtractions, but parentheses can be used to
override the basic rule. For example,

W := X * (Y + Z);

causes 3 x (4 + 7), or 33, to be stored in w. The parentheses force the addition to be done
first and the result to be multiplied by z. Consider

W := X / Y + Z;

which stores (3/4) + 7, or 7, in w (remember division of integers!), and

W ;= X / (Y + Z);

which stores 3/(4 + 7), or 0, in w (again, dividing the integers here gives 0).
Now suppose that we have two or more addition or subtraction operators in the

same expression. In this case, the operations are done in left-to-right order.

W := X - Y + Z;

stores (3 - 4)+7 or 6 in w; the subtraction is done first. If we had written

W := X - (Y + Z);

the result in w would be 3 - (4 + 7), or -8. Again, the parentheses force the addition to
be done first. Make sure you understand why

W := X - Y - Z;

and

W : = X - (Y - Z);

Store -8 and 6, respectively, in w. A similar left-to-right rule applies to multiplication
and division operators. Finally, exponentiation is done even before multiplication or
division, so the expression

Pi * R ** 2

is equivalent to

Pi * (R ** 2)

and not
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(Pi * R) ** 2

PROGRAM

STYLE
Using Parentheses to Write Expressions You Can Understand

Ada has many operators; you will study most of them in this book. The compiler
follows very systematic rules (known formally as precedence and association
rules) in evaluating complicated expressions with many operators; these are
spelled out in Chapter 8. The compiler "knows exactly what it is doing" and will
^ways get a result that is correct by those rules.

However, a human writer or reader of a program may have trouble sorting out
the order of execution of the operations in an expression with more than one or
two operators, and the result can sometimes be unpleasantly surprising if the
human sorts it out differently than the compiler does. Remembering the prece
dence and association rules is difficult and also unnecessary.

You should instead use two very simple rules in writing an expression: Keep
it as simple as you can, and use a lot of parentheses to indicate both to the com
piler and to yourself what the intention of the expression is. Using extra parenthe
ses will save you time in debugging; using too few parentheses to save writing
effort is false economy.

CASE

STUDY

Using integer Objects

The following case study gives an example of manipulating integer objects in Ada.

FINDING THE VALUE OF A COIN COLLECTION

Problem Specification
Your little sister has been saving nickels (U.S. five-cent coins) and pennies (U.S.
one-cent coins) for quite a while. Because she is getting tired of lugging her piggy bank
with her whenever she goes to the store, she would like to trade in her collection for
one-dollar banknotes (a dollar is 100 cents) and some change. To do this, she would
like to know the value of her coin collection in dollars and cents.

Analysis
To solve this problem, we must be given the count of nickels and the count of pennies
in the collection. The first step is to determine the total value of the collection in cents.
Once we have this figure, we can do an integer division using 100 as the divisor to get
the dollar value; the remainder of this division will be the loose change that she should
receive. In the data requirements below, we list the total value in cents (Totaicents) as
a program variable because it is needed as part of the computation process; it is not a
required problem output.

Data Requirements and Formulas

Problem Inputs:
Nickels : Natural (the number of nickels)
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Pennies : Natural (the number of pennies)

Problem Outputs:
Dollars : Integer (the number of dollars she should receive)
Change ; Integer (the loose change she should receive)

Additional Program Variables
TotalCents : Integer (the total number of cents)

Relevant Formulas

One nickel equals five pennies.

Design
The algorithm is straightforward and is displayed next.

Initial Algorithm
1. Read in the count of nickels and pennies.

2. Compute the total value in cents.

3. Find the value in dollars and loose change.

4. Display the value in dollars and loose change.

Steps 2 and 3 need refinement.

Step 2 Refinement

2.1. TotalCents is S times Nickels plus Pennies.

Step 3 Refinement:

3.1. Dollars is the integer quotient of TotalCents and 100.

3.2. Change is the integer remainder of TotalCents and 100.

Algorithm with Refinements
1. Read in the count of nickels and pennies.

2. Compute the total value in cents.

2.1. TotalCents is 5 times Nickels plus Pennies.

3. Find the value in dollars and loose change.

3.1. Dollars is the integer quotient of TotalCents and 100.

3.2. Change is the integer remainder of TotalCents and 100.

4. Display the value in dollars and loose change.



J.5 Data Structures: Introduction to Data Types and Expressions 103

Test Plan
In addition to testing some typical values, there are several special cases in our test
plan: zero nickels and/or zero pennies, and negative input values. Let's put the test plan
in the form of a table, shown as Table 3.5.

Table 3.5 Test Plan for Coin Collection

Test Case Nickels Pennies Reason Expected Result

1 30 77 typical $2.27

2 0 59 no nickels $0.59

3 13 0 no pennies $0.65

4 0 0 no coins $0.00

5 13 -5 negative ?

6 xyz 4 bad input ?

The last two cases test for out of range input (a negative number when a natural
number is required) and "bad" input (letters instead of digits). The question marks indi
cate that we won't know the result until we run the test. It is important always to test
programs with "bad" as well as "good" input: The programmer cannot control which
keys will be pressed by the human user, and a program's behavior must always be pre
dictable.

Implementation
Program 3.7 shows the program. The statement

TotalCents ;= 5 * Nickels + Pennies;

implements algorithm step 2.1 and the statements

Dollars t- TotalCents / 100;
Change := TotalCents REM 100;

implement algorithm steps 3.1 and 3.2.
Note how a value of 1 for the width parameter is used to format the displayed val

ues so that they appear just next to the title text. Can you explain why width=>i accom
plishes this?

Program 3.7 Finding the Value of a Coin Collection

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_lO;
PROCEDURE Coin_Collection IS

— I Finds the value of a coin collection,
—• I given pennies and nickels
— 1 Author; Michael B. Feldinan, The George Washington University
— I Last Modified: June 1998
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Pennies : Natural

Nickels : Natural

Dollars : Natural

Cents : Natural

TotalCents ; Natural

BEGIN — Coin Collection

— input - number of pennies
— input - nvimber of nickels
— output - value in dollars
— output - value in cents

— prompt user for number of nickels and pennies
Ada.Text_lO.Put (Item => "How many nickels do you have? ");
Ada.lnteger_Text_IO.Get (Item => Nickels);
Ada.Text_IO.Put (Item => "How many pennies do you have? ");
Ada.Integer_Text_IO.Get (Itern => Pennies);
Ada.Text_IO.New_Line;

— compute total value in cents
TotalCents := 5 * Nickels + Pennies;

— find the value in dollars and change
Dollars := TotalCents / 100;
Cents :== TotalCents REM 100;

— display the value in dollars and change
Ada.Text_IO.Put (Item => "Your collection is worth ");
Ada.Integer_Text_IO.Put (Item => Dollars, Width =>1);
Ada.Text_IO.Put (Item => " dollars and ");
Ada.Integer_Text_IO.Put (Item => Cents, Width => 1);
Ada.Text_IO.Put T" cents.");
Ada.Text_IO.New_Line;

END Coin_Collection;

Sample Run, Case 1

How many nickels do you have? 30
How many pennies do you have? 77

Your collection is worth 2 dollars and 27 cents.

Sample Run, Case 2

How many nickels do you have? 0
How many pennies do you have? 59

Your collection is worth 0 dollars and 59 cents.

Sample Run, Case 3

How many nickels do you have? 13
How many pennies do you have? 0

Your collection is worth 0 dollars and 65 cents.

Sample Run, Case 4

How many nickels do you have? 0
How many pennies do you have? 0



3.8 Data Structures: Introduction to Data Types and Expressions 105

Your collection is worth 0 dollars and 0 cents.

Testing
This test run shows input of test cases I through 4 from the test plan. These results
agree with the expected results. We defer the two error cases until the next section when
we discuss errors in general.

Memory Area for the Coin Collection Program

The left side of Figure 3.6 shows the coin collection program loaded into memory and
the program memory area before execution of the program body. The right side of the
figure shows the contents after the program has run.

The question mark in memory cells Pennies, Nickels, Dollars, cents, and
Totaicents indicates that these variables are undefined (value unknown) before pro
gram execution begins. During program execution, the data values 30 and 77 are read
into the variables Nickels and Pennies, respectively. After the assignment statements
are used to compute values for Totaicents, Dollars, and cents, all variables are
defined (have known values) as shown in the right side of Fig. 3.6.

Machine-language
instructions

Pennies

Nickels

Dollars

Cents

Totaicents

Machine-language
instructions

Pennies

30

Nickels

77

Dollars

Cents

27

Totaicents

227

Memory before execution Memory after execution

Figure 3.6 Memory for Coin Collection Program
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EXERCISES FOR SECTION 5.8

Self-Check

1. Evaluate the following expressions with 7 and 22 as operands:

2/7 7/22 22 REM 7 7 REM 22

Repeat this exercise for the pairs of integers:

15, 16 3, 23 4, 16

2. Given the declarations:

Pi ; CONSTANT Float := 3.14159;

MaxI : CONSTANT Integer :<= 1000;

the Float variables x and y, and the integer variables a, b, and i,indicate
whether each of the following assignments is valid, and, if so, what its value is.
Assume that a is 3, b is 4, and y is -1.0.

a. I B A REM B; j. I B (MaxI - 990) / A;
b. I o (990 - MaxI) / A; k.

1.
X = A / Y;

c. I = A REM Y; X B Pi ** 2;

d. X S Pi * Y; m. X = Pi ** Y;
e. I S A / B; n. X s A / B;
f. X S A / B; 0. I = (MaxI - 990) REM A;
g. X B A REM (A / B); P- I = A REM 0;

h. I = B / 0; q- I B A REM (MaxI - 990);

i. I = A REM (990 - MaxI);

If we assume that a is 5, b is 2, and y is 2.0, what values are assigned by the
valid statements in Exercise 2?

Assume that you have the following integer variables:

Color, Lime, Straw, Yellow, Red, Orange

and the following floating-point variables:

Black, White, Green, Blue, Purple, Crayon

Evaluate each of the statements below given the following values: color is 2,
Black is 2.5, Crayon is —1.3, Straw is 1, Red is 3, Purple is 0.3E1.

a. White Crayon * 2.5 / Purple;
b. Green := Black / Purple;
C. Orange := Color / Red;
d. Orange := (Color + Straw) / (2*Straw);
e. Lime ;= Red / Color + Red REM Color ;
f. Purple ;= Straw / Red * Color;
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Let A, B, c, and x be the names of four Float variables and let i, J, and k be
the names of three integer variables. Each of the following statements con
tains a violation of the rules for forming arithmetic expressions. Rewrite each
statement so that it is consistent with these rules.

a. X ;= 4.0 A * C; d. K := 3(1 + J);
b. A ;= AC; e. X := 5A / BC;
C. I := 2 * -J; f. I := 5J3;

3.9 Tricks of the Trade: Common Programming Errors

Section 1.10 introduced the three main categories of programming errors: compilation
errors, run-time errors, and logic or algorithm errors. In this section we look at some
common semantic errors and discuss run-time errors.

Semantic Compilation Errors

Program 3.8 is a modified version of the distance program. Program 3.4. The modified
program contains a few intentional errors; We declared How_Fast as Float and also
used Ada.Fioat__Text_io calls instead of Ada.integer_Text_io calls. These are all
errors that beginners commonly make.

Program 3.8 Distance Program with intentional Errors

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Distance_with_Errors IS

Finds distance, given travel time and average speed
Author: Michael aldman, The George Washington University
Last Modified: June 1998

HowLong : Natural;
HowFast : Float;
HowFar : Natural;

BEGIN — Distance_with_Errors

— prompt user for hours and average speed
Ada.Text_IO.Put
(Item => "How long will you be driving (integer) ? ");

Ada.Float_Text^IO.Get (Item => HowLong);
Ada.Text_lO.Put
(Item => "At what speed (miles per hour, integer)?");

Ada.Float_Text__IO.Get (Item «•> HowFast);

— compute distance driven
HowFast :» HowLong * HowFar;

— display results
Ada.Text_lO.Put (Item => "You will travel about ");
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Ada.Float_Text_IO.Put (Item => HowFar);
Ada.Text_IO.Put (Item => " miles");
Ada.Text_IO.New_Line;

END Distance_with_Errors;

Figure 3.7 shows a listing from a GNAT compilation of this program.

Figure 3.7 Compilation Listing with Error Messages

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

WITH Ada.Text_IO;
WITH Ada.Float_Text_lO;
PROCEDURE Distance with Errors IS

Finds distance, given travel time and average speed
Author: Michael eldman, The George Washington University
Last Modified: June 1998

HowLong : Natural;
HowFast : Float;

HowFar : Natural;

BEGIN — Distance_with_Errors

» prompt user for hours and average speed
Ada.Text_IO.Put
(Item => "How long will you be driving (integer) ?");

Ada.Float Text 10.Get (Item «> HowLong);

' " I
»> invalid parameter list in call

Ada.Text_IO.Put
(Item => "At what speed (miles per hour, integer) ?

Ada.Float_Text_IO.Get (Item => HowFast);

— compute distance driven
HowFast := HowLong * HowFar;

I
>» expected type "Standard.Float"
>» found type "Standard.Integer"

26. — display results
27. Ada.Text_IO.Put (Item => "You will travel about ");
28. Ada.Float Text 10.Put (Item => HowFar);

"  " I
>» invalid parameter list in call
»> possible missing instantiation of Text_IO.Integer_IO

29. Ada.Text_IO.Put (Item => " miles");
3 0. Ada.Text_IO.New_Line;
31.

32. END Distance_with_Errors;

The first message, at line 18, informs us that the item parameter to Get is invalid, in
this case because we tried to use the floating-point Get to read into an integer variable.
The same message appears at line 28, for the same reason. Finally, the message at line
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24 indicates that the multiplication is invalid, because we are trying to multiply a Float
variable (the incorrectly declared HowFast) by a Natural one (HowLong). Such mixing
of integer and floating-point values is not allowed.

Recall from Section 1,10 that compilation errors are of two general kinds: syntax
errors and semantic errors. Some Ada compilers distinguish between these in their error
messages; others (for example, GNAT) do not. Some compilers try to find both syntac
tic and semantic errors at the same time; others (like GNAT) generally do it in two
stages, first finding the syntax errors, then the semantic ones.

In languages such as Ada with data types, semantic errors occur quite frequently.
One of the things you will need to be careful about is making sure that the types of your
variables match the expectation of the expression or procedure in which the variables
are used. If a procedure expects an integer variable, supplying a Float variable won't
do; also, you cannot mix integer and Float variables in the same expression!

Finally, recall our advice from Section 1.10: There is no need to panic at getting a
long list of messages; it happens to all new programmmers and occasionally to experi
enced ones as well. There are probably only a few actual errors and many extra mes
sages because of propagation, or because you repeated the error in several places, so
it's best just to try to correct the first one or two errors, then recompile. You'll be
amazed at how quickly the number of messages decreases.

Run-Time Errors

As was discussed above, run-time errors are called exceptions in Ada. The most com
mon exceptions encountered by beginners are those relating to the ranges of variables
in their programs. A range error occurs when a program tries to save an inappropriate
value in a variable. This can happen in one of two ways: Either the program itself com
putes a result that is out of range for the variable in which it will be saved, or the pro
gram user enters an out-of-range value from the keyboard. Ada gives the name
constraint_Error to such a range error; Ada uses the term raising an exception for
reporting the occurrence of such a runtime error.

As an example of the second case, consider case 5 of the test plan for the coin col
lection program (Program 3.7, Table 3.4). Figure 3.8 shows a sample run in which we
enter a negative value for the number of pennies. Recall that the variable Pennies was
declared to be of type Natural, that is, nonnegative.

Figure 3.8 Sample Run of coin_coiiection, Negative Input Entered

How many nickels do you have? 13
How many pennies do you have? -5

raised Constraint_Error

Traceback Information

Program Name File Name Line

coin_collection coin_collection.adb 22

The form of the exception report and "trace back" to your source program varies
from compiler to compiler, but the content is the same: You are told which exception
was raised and where.
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Figure 3.9 shows the results of test case 6, in which "bad" input is entered, namely,
a sequence of characters that cannot be an integer token.

figure 3.9 Sample Run of coin_coiiection, Noninteger input Entered

How many nickels do you have? xyz

raised unhandled exception

raised ada. text_^io. data_error

Traceback Information

Program Name File Name Line

COin_collection coin_collection.adb 22

In this case the exception raised is an input/output exception called
Ada.Text_io.Data_Error. This exception is raised when a Get operation gets a token
of the wrong form, in this case a string of letters instead of an integer. The difference
between constraint_Error and Data_Error is that in the former case the value is
formed correctly but is too large or too small, while in the latter case the token is not
formed properly.

To summarize, Ada's data types and exception system are designed to help you
write programs whose results will make sense. In this book we will pay very careful
attention to this matter, because it is important and can be very useful to you.

Debugging a program can be time-consuming. The best approach is to plan your
programs carefully and desk check them beforehand to eliminate bugs before they
occur. If you are not sure of the syntax for a particular statement, look it up in the syn
tax displays in the text. Also, take care that your program variables have tjpes that are
appropriate and sensible. If you follow this approach, you will save yourself much time
and trouble.

CHAPTER REVIEW

In this chapter you have seen how to use the Ada programming language to perform
some fundamental operations. You learned how to instruct the computer to read infor
mation into memoiy, perform some simple computations, and display the results of
those computations. All of this was done using symbols (punctuation marks, variable
names, and special operators such as *, -, and +) that are familiar, easy to remember,
and easy to use. You have also leamed a bit about data types, a very important concept
in developing programs whose results make sense.

In the remainder of this text we introduce more features of the Ada language and
provide rules for using these features. You must remember throughout that, unlike the
rules of English, the rules of Ada—like those of any computer language—must be fol
lowed precisely. The compiler will be unable to translate Ada instructions that violate
these rules. Remember to declare every identifier that is used as a variable or constant
object and to terminate program statements with semicolons.
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New Ada Constructs

Table 3.6 describes the new Ada constructs introduced in this chapter.

Table 3.6 Summary of New Ada Constructs

Construct Effect

Context Clause

WITH Ada.Text_IO;

Program Heading

PROCEDURE Payroll IS

Constant declaration

Tax ; CONSTANT Float := 25.00;

Star :

CONSTANT Character

indicates that package Ada.Text_io is
used by the program

identifies Payroll as the name of the
program

associates the constant, Tax, with the
Float value 25.00

associates the constant, star, with the
Character value ' * '

Variable declaration

X: Float;

Me : Integer;

Assignment Statement

Distance != Speed * Time;

Input Statements

Ada.Text_IO.Get
(Item=>Initial);

Ada.Integer_Text_lO.Get
(Iteni=>HowMany);

Ada.Float_Text_IO.Get
{Itein=>PayRate);

Output Statements

Ada.Text_IO.Put(Item=>lnitial);

declares a variable object named x for
storage of Float values

declares a variable object named Me for
storage of integer values

computes the product of speed and Time
and assigns it to Distance.

enters data into the character variable

Initial

enters data into the integer variable How-
Many

enters data into the float variable

PayRate

displays the value of the character vari
able Initial
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Construct Effect

Ada. integer__Text_io. Put displays the value of the integer variable
(item=>HowMany, width'=>5); HowMany, using five columns on the dis

play

Ada,Float_Text_io.Put displays the value of the float variable
(itera=>GrossPay, Fore">4, payRate using four columns before the
Aft=>2, Exp=>o) j decimal point and two columns after the

decimal point.

Quick-Check Exercises

1. What value is assigned to x by the following statement?

X := 25.0 * 3.0 / 2.5;

2. Given the result from Exercise 1, now what value is assigned to x?

X ;= X - 20.0;

3. Show the exact form of the output displayed when x is 3.456.

Ada.Text_I0.Put(Item => "Three values of X are");
Ada.Float_Text_IO.Put(Itein=>X, Fore=>2, Aft=>l, Exp=>0);
Ada. Text_IO. Put (Item <=> ' *');
Ada.Float_Text_IO.Put(ltem=>X, Fore«>l, Aft=>2, Exp=>0);
Ada.Text_To.Put(Item => '*');
Ada.Float_Text_IO.Put(Item=>X, Fore=>2, Aft=>3, Exp=>0);
Ada. Text_IO. New__Line;

4. Show the exact form of the output displayed when n is 345.

Ada.Text_IO.Put(Item => "Three values of N are");
Ada.Integer_Text_IO.Put(Item «> N, Width =>4);
Ada.Text_IO.Put(Item => '*');
Ada.Float_Text_IO.Put(Item => N, Width => 5);
Ada.Text_IO.Put(Item => '*')»
Ada.Float_Text_IO.Put(Item => N, Width =>1);
Ada.Text_IO.New_Line;

5. What data type would you use to represent each of the following items: num
ber of chilien at school, a letter grade on an exam, the average number of
school days students are absent each year?

6. Suppose Ada.integer_Text_io.Get is called twice in succession, for exam
ple,

Ada.Integer_Text_IO.Get(Item => X);
Ada.Integer_Text_IO.Get(Item => Y);

What character(s) may be typed after the first number is entered? What may be
typed after the second number is entered?
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7. Suppose Ada. Text_io. Get is called twice in succession, for example,

Ada.Text_IO.Get(Item => X);
Ada.Text_IO.Get(Item =»> y);

What happens if a blank is entered after the first character? What happens if
ENTER is pressed after the first character?

8. What kind of errors does a compilation listing show?

Answers to Quick-Check Exercises

1. 30.0

2. 10.0

3. Three values of X are 3.5*3.46* 3.456

4. Three values of N are 345* 345*345

5. Natural, Character, Float (orNonNegFloat)

6. Any number of blanks and/or enters; same

7. The blank will be read into y; the enter will be skipped, and the next character
(if it is not an enter) will be read into y.

8. Compilation errors: syntax and semantic errors

Programming Projects

1. Write a program that reads three data items into variables x, y, and z and then
finds and displays their product and sum.

2. Write a program that reads in the weight (in pounds) of an object and then
computes and displays its weight in kilograms and grams. (Hint: One pound is
equal to 0.453592 kilogram or 453.59237 grams.)

3. Write a program to convert a temperature in degrees Fahrenheit to degrees
Celsius. Use the formula

Celsius = (5/9) x (Fahrenheit - 32)

4. Eleven nations in Europe are changing over to a common currency called the
euro. Foreigners traveling in Europe will need to know how many euros their
dollars will buy. On Jan. 1, 1999, the day the euro was introduced, one euro
was worth about $1.17 in U.S. currency, but this exchange rate can change at
any time. Develop a program that prompts the user for the exchange rate and
the number of dollars to be exchanged and then displays the equivalent amount
in euros.
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5. A track star competes in a 1-mile race. Write a program that reads in the race
time in minutes (Minutes) and seconds (seconds) for this runner and then
computes and displays the speed in feet per second (fps) and in meters per
second (mps). (Hint: There are 5280 feet in 1 mile, and 1 kilometer equals
3282 feet.) Test your program on each of the following times:

minutes seconds

3  52.83

3  59.83

4  00.03

4  16.22

6. A cyclist coasting on a level road slows from a speed of 15 kilometers per hour
(kni/h) to 5 km/h in 1 minute. Write a computer program that calculates the cy
clist's constant rate of acceleration and determines how long it will take the
cyclist to come to rest, given an initial speed of 10 miles per hour (Hint: Use
the equation a = (v^- v,) /1, where a is acceleration, t is time interval, v, is the
initial velocity, and Vf is the final velocity.)

7. If a human heart beats on the average of once a second for 78 years, how many
times does the heart beat in a lifetime? (Use 365.25 for days in a year.) Rerun
your program for a heart rate of 75 beats per minute.

8. You have just gotten back from a trip to the beautiful country of LaLa Land.
While you were there, you found a great deal on a car, so you brought it back
with you. But you have a problem: In your country the distances are measured
in miles, but in LaLa Land, the distances are measured in furlongs. Each fur
long is 1/8 mile (really!). So the odometer (mileage counter) in your beautiful
new car tells you how many furlongs you've traveled. Not only that, but
speeds are measured in furlongs per fortnight (fpf). Each fortnight is two
weeks or 14 days (really). Since in LaLa Land, the highway speed limits are,
of course, given in these units, your car's digital speedometer gives your car's
speed in fpf!

You love your new car, but don't have money for a new speedometer. Luckily,
you're a great programmer, so you can develop a program to convert from fpf
to miles per hour (mph). That way, when you look at your speedometer and
see, for example, 147840, your program will immediately tell you that you're
traveling 55 mph.

Design and code such a program, testing it with some typical highway speeds.
The program will ask for a speed in fpf, and display the result in mph.

9. Different compilers for a given language all follow the same syntax and se
mantic rules but do not necessarily give the same error messages. In this
project you will explore the error messages generated by your Ada compiler.
Start with the program Distance_with_Errors (Program 3.8). Compile it and
compare the error messages with those shown in Figure 3.7. Now correct those
errors but introduce some more errors of your own. Recompile the program
and observe the messages. Repeat this process several times; ̂  to get as many
different messages as possible.
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Chapter Review

Programmers who use the software development method seldom tackle each new pro
gram as a unique event. Information that is contained in the problem statement and
amassed during the analysis and design phases helps the programmer plan and com
plete the program. Programmers also use segments of earlier program solutions as
building blocks to construct new programs. At the very least, they use knowledge
gained from previous programs.

The approach followed in the design phase of the method is called stepwise refine
ment. This means that we start with the most abstract formulation of a problem and
work down to more detailed subprobleras. In this chapter we will show several ways to
facilitate and enhance the refinement approach to programming.

In Section 4.1 we introduce the subtype as an important concept in data structures.
In Sections 4.2 and 4.3 we discuss topics in problem solving. In Section 4.4 we intro
duce another data structures concept, the enumeration type, and in Section 4.5 we
present an important concept in system structures, the package. You will see how pack
ages are used by working with a standard Ada package, Ada. calendar, which provides
date and time services in a way common to all Ada compilers.

You will also see how to use a package that is provided with this book. This pack
age, Screen, provides Several services for dealing with the terminal screen—namely,
clearing the screen, moving the cursor to a specific row-column position, and making
the terminal beep.
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4.1 Data Structures: Introduction to Subtypes

Recall that a type is a set of values and a set of operations that are appropriate and valid
for those values. These two sets define the states and behavior of objects of the type. A
subtype defines a subset of the values associated with the original type, or base type;
the operations of the subtype are the same as those of the base type.

A scalar type is one each of whose values consists of a single component. All the
types we have seen so far, except for strings, are in this categoiy. Composite types,
whose values may consist of several components, are introduced in Chapter 9. In this
section we consider how to create subranges of the predefined scalar types integer,
Float, and Character. Subtypes are used both to make a program more readable and to
enable detection of an attempt to give a variable a value that is unreasonable in the
problem environment.

Subtypes of Predefined Scalar Types

So far in this book we have used two subtypes that are predefined in the Ada language
and are thus always available:

SUBTYPE Natural IS Integer RANGE 0..Integer'Last;
SUBTYPE Positive IS Integer RANGE 1..Integer'Last;

Each of these subtypes defines a subset of the values its base type integer. All the
usual Integer operations remain available: A positive integer is still an integer.

Ada provides no equivalent predefined subtypes of Float. Let us now introduce a
programmer-defined subtype,

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

which defines the subset of Float containing the nonnegative values. We'll be defining
and using this subtype in many of the programs in this book.

Subtypes have a common characteristic. An attempt to assign to a variable a value
that is not in the defined set of values causes a compilation error or waming if the com
piler can detect the attempt. If the compiler cannot detect the attempt—for example,
because the out-of-range value is not computed until the program is executed—the
compiler builds a check into your program to ensure that constraint_Error is raised
if, during execution, the value is indeed out of range.

■ Example 4.1

Subtype declarations begin with the reserved word subtype. Two subtypes are declared
below, as well as some variables:

subtype Smallint IS Integer RANGE -50..50;
SUBTYPE CapitalLetter IS Character RANGE 'A'..'Z';

X, Y, Z : Smallint;
NextChar ; CapitalLetter;
Hours Worked : NonNegFloat;
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The first subtype, smallint, is a subtype with base type integer. The following
sequence of assignment statements will cause constralnt_Error to be raised at run
time:

X ;= 26;

Y ;= 25;

Z  := X + Y;

Why is there no compilation error? Remember that the compiler does not actually
carry out the computation that you specify; it only produces an object program, which
carries out the computation when it is executed. Even though it might be obvious to you
that this simple computation will produce an out-of-range result, it is not obvious to the
compiler, so the checking can be done, and the exception raised, only at run time.

capitaiLetter has the base type character. Any character from • a* to • z' inclu
sive may be stored in a variable of type CapitaiLetter. constraint_Error will be
raised if an attempt is made to store any other character in a variable of type capital-
Letter. For example, the assignment statement

NextChar t- 'a•;

causes the exception to be raised because the character • a' is not included in the sub
type CapitaiLetter. The compiler might notice this attempted out-of-range assign
ment, but instead of considering this an outright error, it will often give a warning
stating that the statement will cause constraint_Error to be raised at run time. ■

SYNTAX ^ ^
DISPLAY Subtype Declaration

Form:

SUBTYPE subtype-name IS
baae-type-name RANGE minvalue .. maxvalue}

Example:

SUBTYPE Uppercase IS Character RANGE ■A'..'Z';

Interpretation:
A new subtype named subtype-name is defined. A variable of type subtype-name
may be assigned a value from minvalue through maxvalue inclusive. TTie values
minvalue and maxvalue must belong to the base type, and minvalue must be less
than maxvalue.

Compatibility Rules for Types and Subtypes
Ada does not allow a programmer accidentally to mix the types of operands for an
operator. This means that the expression vi + V2 leads to a compilation error such as
"type incompatible operands" if vi is one data type (say integer) and V2 is another
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PROGRAM

STYLE
Motivation for Using Subtypes

You may be wondering why we bother with subtypes. They don't seem to pro
vide any new capabilities. However, they do provide additional opportunity for
your program to "bomb" because attempting to store an out-of-range value in a
variable causes an exception, usually constraint_Error, to be raised. This
should happen only as the result of an error by either the prograimner or the pro
gram user.

The use of subtypes ensures the immediate detection of an out-of-range
value. This contributes to a program's reliability and usefulness because it
ensures that variables do not acquire values that are meaningless in the problem
being solved (such as a negative number of hours worked in a week).

In this book we use subtypes extensively, especially where it is necessary that
a variable be nonnegative.

(say Float). However, what if vi is type integer and V2 is type smaiiint (a subtype
of Integer)? In this case the expression is valid because smaiiint and integer are
considered compatible types. Ada has simple compatibility rules: Two values are com
patible if they have the same type name or one value's type is a subtype of the other
value's type (integer and smaiiint, for example) or if their types are subtypes of the
same base type (positive and smaiiint, for example).

For an interesting example of subtype compatibility, suppose x is integer and y is
Natural. No matter what value y has, it is still an integer value, so executing the state
ment

X :» Y;

is always valid and will not raise an exception. On the other hand, consider the state
ment

Y := X;

It is legal to write this statement, and it will compile without error, but it is not always
valid at execution time, because it depends on the value of x at that moment. If x's value
happens to be nonnegative, the execution will go through normally, but if x's value hap
pens to be negative, constraint_Error is raised on the attempt to assign this
out-of-range value to y. We observed this behavior in Section 3.8, in testing our coin
collection program with a negative number of pennies.

The compatibility relationship between operands determines what operators can be
used with the operands. An operator can be used only with operands that are compati
ble with it and with each other. Assignment of a value to a variable is possible oiUy if
the value and the variable are compatible. And an actual parameter that is supplied to a
function or procedure must be compatible with the corresponding formal parameter.

These rules ensure, for example, that a Float value is not assigned to an integer
variable, that an integer value is not assigned to a Float variable, and that an integer
value is not supplied to Ada.Text_io.Put (which expects a character). On the other
hand, a Positive value can be supplied to Ada. integer_Text_io.Put (which expects
an Integer) because of the subtype relationship.
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4.2 Problem Solving: Building Programs from Existing
Information

Programmers seldom start off with a blank slate (or empty screen) when they develop a
program. Often some—or all—of the solution can be developed from information that
already exists or from the solution to another problem.

Carefully following the software development method generates important system
documentation before you even begin to code a program. Such documentation, consist
ing of a description of a problem's data requirements (developed during the analysis
phase) and its solution algorithm (developed during the design phase), summarizes
your intentions and thought processes.

You can use this documentation as a starting point in coding your program. For
example, you can begin by copying the problem data requirements into the program
declaration section, then editing those lines to conform to the Ada syntax for constant
and variable declarations, thereby completing the declaration section of the program.
This approach is especially helpful if the documentation was created with a word pro
cessor and is in a file that you can edit.

To develop the program body, first use the initial algorithm and its refinements as
program comments. The comments describe each algorithm step and provide program
documentation that guides your Ada code. After the comments are in place in the pro
gram body, you can begin to write the Ada statements. Place the code for an unrefined
step directly under that step. For a refined step, either edit the refinement to convert it
from English to Ada or just replace it with Ada code. We illustrate the entire process in
the next two case studies.

CASE

STUDY FINDING AREA AND CIRCUMFERENCE OF A CIRCLE

Problem Spediication
Read in the radius of a circle and compute and print its area and circumference.

Analysis
Clearly, the problem input is the circle radius. Two outputs are requested: the circle area
and circumference. These variables should be type NonNegPioat because the inputs and
outputs may contain fractional parts but cannot meaningfully be negative. The geomet
ric relationships between a circle's radius and its area and circumference are listed next,
along with the data requirements.

Data Requirements and Formulas

Problem Constant

Pi : CONSTANT NonNegFloat := 3.14159;

Problem Inputs
Radius : NonNegFloat —radius of a circle

Problem Outputs
Area : NonNegFloat —area of a circle
Circum : NonNegFloat —circumference of a circle
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Relevant Formulas

area of a circle = 7C x radius^
circumference of a circle = 2nx radius

Design
Having listed the problem inputs and outputs, we can now list the steps necessary to
solve the problem.

Initial Algorithm
1. Read the circle radius.

2. Find the area.

3. Find the circumference.

4. Print the area and circumference.

Pay close attention to the order of the steps. We could interchange steps 2 and 3—it
doesn't matter whether we compute the area or the circumference first—but clearly,
step 1 must precede the others, because we cannot compute with values we haven't yet
read from the user.

Algorithm Refinements
Next, we refine any steps that do not have an obvious solution (steps 2 and 3).

Step 2 Refinement

2.1. Assign Pi * Radius ** 2 to Area.

Step 3 Refinement

3.1. Assign 2.0 * Pi * Radius to Circumference.

Test Plan
The special cases that need to be tested are zero radius and negative radius. A zero
radius should give zero area and circumference; a negative radius should raise an
exception.

Implementation
Program 4.1 is the Ada program so far. The program body consists of the initial algo
rithm with its refinements. This outline contains the "framework" consisting of proce
dure, BEGIN, and END, some declarations, and just comments in the program body.
Including the statement

NULL;

just after the begin in fact makes the program syntactically correct Ada even though it
has no other statements. It can be compiled just to check whether the basic framework
and declarations are correct.
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Program 4.1 Framework for Area and Circumference

PROCEDURE Area_And__Circura_Frame IS

— I Finds and displays the area and circumference of a circle
—j Author: M. B. Feldman, The George Washington University

Last Modified: June 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0
Pi : CONSTANT NonNegFloat := 3.14159;

Float'Last;

Radius : NonNegFloat; — input - radius of a circle
Area : NonNegFloat; — output - area
Circumference : NonNegFloat; — output - circumference

BEGIN — Area_And Circum_Frame
NULL; "

— 1. Read the circle radius

— 2. Find the area

— 2.1 Assign Pi * Radius ** 2 to Area

— 3. Find the circumference

— 3.1 Assign 2.0 * Pi * Radius to Circumference

— 4. Display the Area and Circumference

END Area_And_Circum_Frame;

Null Statement

Form:

NULL;

Example:

PROCEDURE SmallestAdaProcedure IS

BEGIN

NULL;

END SmallestAdaiProcedure;

Interpretation:

The null statement is used to indicate an "empty" sequence of statements, null is
sometimes used to satisfy a syntax rule requiring a sequence of statements, even
when the sequence is (intentionally) empty.

To write the final program, we must

• convert the refinements (steps 2.1 and 3.1) to Ada,

• write Ada code for the unrefined steps (steps 1 and 4),

• add the necessary context clauses for input and output.
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• delete the null statement, and

• delete the step numbers from the comments.

Program 4.2 is the final program.

Program 42 Area and Circumference

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Area And Circum IS

— I Finds and displays the area and circumference of a circle
— I Author: M. B. Feldman, The George Washington University
— Last Modified: June 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

Pi : CONSTANT NonNegFloat := 3.14159;

Radius : NonNegFloat; — input - radius of a circle
Area : NonNegFloat; — output - area
Circumference : NonNegFloat; — output - circumference

BEGIN — Area_And_Circum

— Read the circle radius

Ada.Text_IO.Put (Item => "Enter radius > ");
Ada.Ploat_Text_IO.Get (Item => Radius);

— Find the area

Area ;= Pi * Radius ** 2;

— Find the circumference

Circumference := 2.0 * Pi * Radius;

— Display the Area and Circumference
Ada.Text_IO.Put (Item => "The area is ");
Ada.Float_Text_IO.Put (Item => Area, Fore => 1, Aft ~> 2, Exp => 0);
Ada.Text_IO.New_Line;
Ada.Text~IO.Put (Item => "The circumference is ");
Ada.Float_Text_IO.Put
(Item => Circumference, Fore => 1, Aft => 2, Exp => 0);

Ada.Text_IO.New_Line;

END Area_And_Circum;

Sample Run

Enter radius >5.0

The area is 78.54

The circumference is 31.42
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Testing
The sample run shows a good test of the solution because it is relatively easy to com
pute the area and circumference by hand for a radius value of 5.0. The radius squared is
25.0, so the value of the area appears to be correct. The circumference should be 10
times jc, which is also an easy number to compute by hand. We leave the other tests in
the test plan for you to complete.

EXERCISES FOR SECTION 4.2

Self-Check

1. Describe the problem inputs and outputs and algorithm for computing an em
ployee's gross salary given the hours worked and hourly rate.

2. Describe the problem inputs and outputs and algorithm for the following prob
lem; Read in a pair of numbers and determine the sum and average of the two
numbers.

Programming

1. Write a program for Self-Check question 2.

4.3 Problem Solving: Extending a Problem Solution

Another way programmers reuse existing information is by noting that the solution of
one problem is often the basis for the solution to another problem. For example, we can
easily solve the next problem by building on the solution to the previous problem.

STUDY uMiT PRICE OF A PIZZA

Problem Specification
You and your college roommates frequently order a late-night pizza snack. There are
many pizzerias in the area that deliver to dormitories. Because you are on a tight bud
get, you would like to know which pizza is the best value.

Analysis
To find which pizza is the best value, we must be able to do a meaningful comparison
of pizza costs. One way to do this is to compute the unit price of each pizza. The unit
price of an item is obtained by dividing the total price of that item by a measure of its
quantity. A good measure of quantity is the pizza weight, but pizzas are not sold by
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weight—they are sold by size (diameter), measured in inches. Consequently, the best
that we can do is to use some meaningful measure of quantity based on the pizza diam
eter. One such measure is the pizza area. So for our purposes we will de^e the unit
price of a pizza as its price divided by its area.

The data requirements below list the pizza size and price as problem inputs.
Although the problem statement does not ask us to display the pizza area, we are listing
it as a problem output because the pizza area will give us some idea of how many
friends we can invite to share our pizza. The radius (one-half of the diameter) is listed
as a program variable because we need it to compute the pizza area, but it is not a prob
lem input or output.

Data Requirements

Problem Constant

Pi ; CONSTANT Float := 3.14159;

Problem Inputs
size : NonNegFIoat — diameter of a pizza
Price ; NonNegFIoat — price of a pizza

Problem Outputs
Area : NonNegFIoat — area of a pizza
UnitPrice ; NonNegFIoat — unit price of a pizza

Relevant Formulas

area of a circle = 7t x radius^
radius of a circle = diameter/2

unit price = price/area

Design
We mentioned earlier that we are basing the problem solution on the solution to the
Case Study in Section 4.2 (finding the area and circumference of a circle). The initial
algorithm is similar to the one shown earlier. The step that computes the circle circum
ference (step 3) has been replaced with one that computes the pizza unit price.

Initial Algorithm
1. Read in the pizza diameter and price.

2. Compute the pizza area.

3. Compute the pizza unit price.

4. Display the unit price and area.

The refinement of step 2 shows that we must compute the pizza radius before we
can compute its area.

Step 2 Refinement

2.1 Assign Diameter / 2 to Radius.

2.2. Assign Pi * Radius ** 2 to Area.
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Step 3 Refinement

3.1. Assign Price / Area to UnitPrice.

Test Plan
To test this program, run it with a few different pizza sizes. You can verify that the pro
gram is working correctly by multiplying the unit price and area. This product should
equal the price of the pizza.

Implementation
Program 4.3 shows the framework for the Ada program. We wiU write this program the
same way as before; by editing the data requirements to develop the program declara
tion part and by using the initial algorithm with refinements as a starting point for the
program body.

In Program 4.3, instead of defining our own constant pi, we are using the constant
Pi provided by an Ada standard library, Ada,Numerics (Annex A.5 in the Ada 95 Refer
ence Manual). There, pi is given to 50 decimal places. Note that to use this library, we
just write the usual context clause

WITH Ada.Numerics;

and then get the value of pi as Ada.Numerics.Pi.

Program 4.3 Framework for Pizzeria

WITH Ada.Numerics;
PROCEDURE Pizzeria Frame IS

Computes and displays the unit price of a pizza
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

~ Pi : CONSTANT NonNegFloat := 3.14159;
— unnecessary; better to get this from the standard library!
— we can just refer to Ada.Numerics.Pi

Diameter : NonNegFloat; — input - diameter of a pizza
Price : NonNegFloat; — input - price of a pizza
UnitPrice : NonNegFloat; —• output - unit price of a pizza
Area : NonNegFloat; — output - area of a pizza
Radius : NonNegFloat; — radius of a pizza

BEGIN — Pizzeria_Frame
NULL;

— 1. Read in the pizza diameter and price

— 2. Compute the pizza area
— 2.1 Assign Diameter/2 to Radius
— 2.2 Assign Pi * Radius ** 2 to Area
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— 3. Compute the pizza unit price
— 3.1 Assign Price / Area to UnitPrice

— 4. Display the unit price and area

END Pizzeria_Pranie;

Program 4.4 gives the final program.

Program 4.4 Unit Price of a Pizza

WITH Ada.Text__IO;
WITH Ada. Float_Text_IO;
WITH Ada.Numerics;
PROCEDURE Pizzeria IS

Computes and displays the unit price of a pizza
Author: H. B. Feldman, The George Washington University
Last Modified: July 1998

SUBTZPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

Diameter : NonNegFloat; — input - diameter of a pizza
Price : NonNegFloat; — input - price of a pizza
UnitPrice : NonNegFloat; — output - unit price of a pizza
Area : NonNegFloat; — output - area of a pizza
Radius : NonNegFloat; — radius of a pizza

BEGIN — Pizzeria

— Read in the pizza diameter and price
Ada.Text_IO.Put (Item »=> "Size of pizza in inches > ");
Ada.Float_Text_IO.Get (Item => Diameter);
Ada.Text_IO.Put (item => "Price of pizza $");
Ada.Float_Text_IO.Get (Item => Price);

—- Compute the pizza area
Radius Diameter/2.0;
Area := Ada.Numerics.Pi * Radius ** 2;

— Compute the pizza unit price
UnitPrice := Price / Area;

— Display the unit price and area
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item »> "The pizza unit price is $");
Ada.Float_Text_IO.Put
(Item => UnitPrice, Fore => 1, Aft »> 2, Exp =>0);

Ada.Text_IO.New_Line;
Ada.Text~lO.Put~(Item => "The pizza area is ");
Ada.Float_Text_IO.Put
(Item => Area, Fore => 1, Aft => 2, Exp =>0);

Ada.Text_IO.Put (Item => " square inches.");
Ada.Text_IO.New_Line;

END Pizzeria;



43 Problem Solving: Extending a Problem Solution 127

Sample Run

size of pizza in inches > 10
Price of pizza $8.50

The pizza unit price is $0.11
The pizza area is 78.54 square inches.

Testing
The sample run gives one test. You can supply others.

PROGRAM

STYLE

PROGRAM

STYLE

Using Comments

Comments make a program more readable by describing the purpose of the pro
gram and by describing the use of each identifier. For example, the comment in
the declaration

Radius; NonNegFloat; — program input - radius of a circle

describes the use of the variable Radius.

You should place comments within the program body to describe the purpose
of each section of the program. The stepwise refinement method that we use in
this book uses comments in the program framework for each step of the algo
rithm and its refinements. Some of these comments are turned into program state
ments as these are written; others remain as program documentation.

You may wish to add other comments to a program to make it easier for your
self and others to understand. Make sure a comment within the program body
adds useful descriptive information about what the step does rather than simply
restate the step in English.

For example, the comment

— Find the area of the circle

Area ;= Pi * Radius ** 2;

is more descriptive than, and therefore preferable to,

— Multiply the Radius by itelf and Pi
Area := Pi * Radius ** 2;

More on Banner Comments

Begin each program with a header section, sometimes called a block comment or
banner comment, that consists of a series of comments specifying the program
mer's name, the date of the current version, and a brief description of what the
program does. The banner form used in the program examples in this book is
usually acceptable. If you write the program for a class assignment, you should
also list the class identification and your instructor's name. Your instructor may
also require other kinds of comments in your program.
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A final word on comments: If a program has too few comments, the reader may
have difficulty understanding the program. On the other hand, if there are too many
comments, finding the program text among the conunents will be difficult. Writing
effective comments—knowing just how much to write—is a skill that must be prac
ticed.

Motivation for Conditional and Repetition Control Structures

So far, we have extended the solution to one problem (find a circle radius and circum
ference) into a second related problem (find the unit price of a pizza). We are not really
finished yet because our goal was to be able to do a cost comparison of several pizzas
with different prices and sizes in order to determine the best v^ue.

One way to accomplish our larger goal is to run this program several different
times, once for each pizza, and record the results. Then we can scan the list of results to
determine which pizza has the lowest unit price.

A better solution would be to write a program that repeated the computation steps
and also compared unit prices, displaying as its final result the size and price of the
pizza with the lowest unit price. Let's write an algorithm that will give us this improved
solution.

Initial Algorithm for Improved Solution to Pizza Problem
1. For each size of pizza, read in the pizza size and price and compute unit cost. Com

pare the unit cost just computed with the previous unit costs and save the size and
price of the pizza whose unit cost is the smallest so far.

2. Display the size and price of the pizza with the smallest unit cost.

The purpose of step 1 of the algorithm is to perform the cost computation for each
individud pizza and somehow save the size and price of the pizza whose unit cost was
the smallest. After all costs are computed, step 2 displays the size and price of the pizza
that is the best buy.

Step 1 Refinement

1.1. Repeat the following steps for each size of pizza:

1.2. Read in the next pizza size and price.

1.3. Compute the unit price.

1.4. If the new unit price is the smallest one so far, then save this pizza's size, price,
and unit price.

Step 1.1 specifies the repetition of a group of steps: step 1.2 (read), step 1.3 (com
pute), and step 1.4 (compare). We will repeat these steps as many times as necessary
until all unit prices are computed. Each time we compute a new unit price, step 1.4
compares it to the others, and the current pizza's size and price are saved if its unit price
is smaller than any others computed so far. If the unit price is not the smallest so far, the
current pizza's size and price are not saved. Step 1.4 is a selection step because it
selects between the two possible outcomes: (a) save the pizza's data and (b) do not save
the pizza's data.
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We will discuss control structures for selection and repetition fully in Chapters 5,6,
and?.

4.4 Data Structures: Introducing Enumeration Types

So far, most of the data types you have seen have been numerical (integer, Float). In
this section you will be introduced to the important concept of enumeration types. An
enumeration type is defined by a list of values taking the form of identifiers. These
types are called enumeration types because their values are enumerated, or given in a
list. An enumeration type is useful in representing a fixed set of values that are not
numerical, such as the days of the week, the months of the year, the years (freshman,
sophomore, junior, senior) in a high school or college career, or the expenditure catego
ries in an accounting program. Ada encourages you to use enumeration types by pro
viding a small but useful set of operations on them and also an input/output package
that makes it easy to read enumeration values from a keyboard or disk file and display
them on the screen.

Defining Enumeration Types

In many programming situations the standard data types and their values are inade
quate. For example, in a budget program we might want to distinguish among the fol
lowing categories of expenditures: entertainment, rent, utilities, food, clothing,
automobile, insurance, and miscellaneous. We could always assign an arbitrary code
that associates entertainment with a character value of • e •, rent with a character value
of 'r', and so on. However, enumeration types allow us to specify the set of values
directly. For example, the enumeration type Expenses declared below has eight possi
ble values enclosed in parentheses:

TYPE Expenses IS
(entertainment, rent, utilities, food,
clothing, automobile, insurance, miscellaneous);

BxpenseKind : Expenses;

The variable ExpenseKind (type Expenses) can contain any of the eight values
listed after Expenses is. The values, called enumeration literals, associated with an
enumeration type are generally identifiers and therefore must conform to the syntax of
identifiers. The type declaration must precede any variable declaration that references
it.

The enumeration type Days has the values Monday, Tuesday, and so on:

TYPE Days IS

(Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

It is permissible for the same enumeration literal to appear in several enumeration
types, just as it is permissible for the same numerical value to appear in several numer
ical types. It is, for example, possible to define the three types
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TYPE Traffic_Light_Colors IS (Red, Yellow, Green);
TYPE Primary_Paint_CQlors IS (Red, Yellow, Blue);
TYPE Priinary_TV_Colors IS (Red, Blue, Green);

in the same program without causing difficulties for the compiler. On the other hand,
the compiler treats the Red from Traf f ic_Light__coiors as a different value from the
Red from Priinary__TV__Colors.

SYNTAX

DISPLAY
Enumeration Type Declaration

Form:

TYPE enumeration-type IS {identifier-list)}

Example:

TYPE Class IS (Freshman, Sophomore, Junior, Senior);

laterpretation:

A new data type named enumeration-type is declared. The enumeration literals,
or values associated with this type, are specified in the identifier-list. The order in
which the enumeration literals are given is important, because it defines an order
ing of the literals: Freshman is less than sophomore; Junior is greater than
Freshman.

Enumeration Type Attributes and Operations

The order relationship between the values of an enumeration type is fixed when the
type is declared. Each literal has a position in the type, given as a value of type Natu
ral. For type Days, the first value in its list (Monday) has position 0, the next value
(Tuesday) has position 1, and so on.

An assignment statement can be used to define the value of a variable whose type is
an enumeration type. The variable

Today : Days; —current day of the wee)t
Tomorrow : Days; —day after Today

specifies that Today and Tomorrow are type Days and, therefore, can be assigned any of
the values listed in the declaration for type Day. Consequently, the assignment state
ments

Today := Friday;
Tomorrow := Saturday;

assign the values Friday to variable Today and Saturday to variable Tomorrow.
An important aspect of Ada's type system is the notion of attributes. These are

characteristics of a type or variable that can be queried by a program. For the case of
enumeration types,^six important attributes are:

• First, which gives the first or lowest value in the type;
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Ada.Text_IO.Flush;
Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.BSC);
Ada. Text_IO. Put ("['■);
Ada.lnteger_Text_IO.Put (Item => Row, Width => 1);
Ada.Text_Io7Put Yitem =>
Ada.Integer Text 10.Put (Item ■=> Column, Width => 1);
Ada.Text_IoTPut Jltem => 'f' );

END MoveCursor;

END Screen;

Using the Screen Package
Ada's standard packages—the ones whose names begin with Ada. —come with the Ada
compiler and do not need to be compiled. Before any non-standard package can be
used by other programs, it must be compiled. The specification must be compiled first,
then the body. To use the screen package, you must have a copy of the specification and
body files available in your computer's file system. If you do not, you must type them
in exactly as shown in Programs 4.8 and 4.9, then compile them both. If you subse
quently modify the specification file, you must recompile both it and the body, and all
other programs that use the package as well. If you do not modify either file, you will
not have to recompile it; your Ada compiler's library system will keep it available for
use with any program with the context clause

WITH Screen;

As an example of the use of the screen package, consider Program 4.10, which first
clears the screen, then beeps three times, then draws a "smiley face" in the center of the
screen. After each beep, there is a statement

DELAY 0.1;

which causes the computer to wait 0.1 second before sending the next beep. This is
done so that even on a very fast computer you will hear three distinct beeps.

Program 4.10 Smiley: a Program That Uses the Screen Package

WITH Ada.Text_I0;
WITH Screen;
PROCEDURE Smiley IS

Draws a "smiley face" in the center of the terminal screen
Author; M. B. Feldman, The George Washington University
Last Modified! July 1998

BEGIN — Smiley

Screen.ClearScreen;
Screen.Beep;
DELAY 0.1;
Screen.Beep;
DELAY 0.1;
Screen.Beep;
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The package provides three procedures. The first two, Beep and ciearscreen, take
no parameters; A procedure call statement

Screen.Beep;

causes the terminal to beep; a procedure call statement

Screen.ClearScreen;

causes the screen to go blank, erasing all previous information from it. The last proce
dure, Movecursor, takes row and column parameters, so that, for example.

Screen.HoveCursor (Row => 10, Column »> 22);
Text_IO.Put (Item => '*');

has the effect of displaying an asterisk in the location of row 10, column 22. Finally,

Screen.HoveCursor (Row -> 5, Column => 10);
Text_IO.Put (Item => " ");

displays the string in row 5, columns 10 through 14, inclusive.
Note the style of comments documenting each of these procedures. These are

called preconditions and postconditions and are used to describe each procedure's
assumptions and behavior in an informal but structured way. WeTl come back to this
subject in more detail in Chapter 7; meanwhile, you can get used to reading this style of
documenting our packages.

Program 4.9 gives the body of this package. You might not understand exactly how
the procedures work. Don't worry about this right now; we'll retum to it in Chapter 8.

Program 4.9 Body of Screen Package

WITH Ada.Characters.Latin 1;
WITH Ada.Text_I0; ~
WITH Ada.Integer Text 10;
PACKAGE BODY Screen IS

— I Body of screen-handling package
— I Author: M. B. Feldman, The George Washington University
~| Last Modified: July 1998

PROCEDURE Beep IS
BEGIN

Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.BEL);
Ada.Text_IO.Flush;

END Beep;

PROCEDURE ClearScreen IS

BEGIN

Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.ESC);
Ada.Text_IO.Put (Item => "I2J"); "
Ada.Text_IO.Flush;

END ClearScreen;

PROCEDURE HoveCursor (Column : Width; Row : Depth) IS
BEGIN
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writing. Doing this requires an additional package that uses Ada.Text_io to send con
trol characters to the terminal; the control characters act as instructions to it instead of
data it should display. Because this package, which we will call screen, is not part of
standard Ada, we provide it with this book. The details of just how this package oper
ates are left until Chapter 8, but it is possible for you to use the package without under
standing its innards.

A package consists of two files, the specification file and the body file. As was dis
cussed in Section 4.6, the specification gives the "contract with the user," or list of
promised resources. The body delivers the actual source code for the procedures and
functions promised by the specification. Because the input/output and Ada.calendar
packages are supplied in precompiled form by all Ada compilers, we have seen only
their specifications; the source code for the bodies is not available to us. Other packages
may be supplied to you in source-code form, with both the specification and body files
provided, screen is one of these packages.

Program 4.8 shows the specification for screen.

Program 4.8 Specification for Screen Package

PACKAGE Screen IS

— I Procedures for drawing pictures on ANSI Terminal Screen
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

— constants; the number of rows and columns on the terminal

ScreenDepth : CONSTANT Integer 24;
ScreenWidth : CONSTANT Integer := 80;

—- subtypes giving the ranges of acceptable inputs
— to the cursor-positioning operation

SUBTYPE Depth IS Integer RANGE 1..ScreenDepth;
SUBTYPE Width IS Integer RANGE 1..ScreenWidth;

PROCEDURE Beep;

— Pre: None

— Post: Terminal makes its beep sound once

PROCEDURE ClearScreen;

— Pre: None

— Post: Terminal Screen is cleared

PROCEDURE MoveCursor (Column : Width; Row : Depth);
— Pre: Column and Row have been assigned values
— Post: Cursor is moved to the given spot on the screen

END Screen;

This package provides two constants, screenwidth and ScreenDepth, correspond
ing to the number of columns (usually 80) and rows (usually 24) on the screen. There
are also two subtypes, width and Depth, giving the ranges for valid cursor positions
(l. .ScreenDepth and 1. .ScreenWidth, respectively).
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WITH Ada.Calendar;

PROCEDURE Todays_Date__2 IS

Displays today's date in the form MONTH dd, yyyy
An enumeration type is used for months
The date is gotten from PACKAGE Ada.Calendar
Author: M. B. Feldman, The George Washington University
Last Modified: July 1998

TYPE Months IS

(January, February, March, April, May, June,
July, August, September, October, November, December);

PACKAGE Months_IO IS
NEW Ada.Text_IO.Enumeration_IO(Enum => Months);

RightNow : Ada.Calendar.Time; — current time
ThisYear : Ada.Calendar.Year_Nuraber; — current year
ThisMonth : Ada.Calendar.Month_Number; — current month
ThisDay : Ada.Calendar.Day_Number; — current day

MonthName: Months;

BEGIN — Todays_Date_2

— Get the current time value from the computer's clock
RightNow := Ada.Calendar.Clock;

— Extract current month, day, and year from the time value
ThisMonth

ThisDay
ThisYear

= Ada.Calendar.Month(Date => RightNow);
= Ada.Calendar.Day (Date => RightNow);
= Ada.Calendar.Year (Date => RightNow);

— Format and display the date
MonthName := Months'Val(ThisMonth - 1);

Ada.Text_IO.Put (Item =»> "Today's date is ");
Months_lO.Put (Item => MonthName, Set => Ada.Text_IO.Upper_Case);
Ada.Text_IO.Put (Item => • •);
Ada.lnteger_Text__IO.Put (Item => ThisDay, Width => 1);
Ada.Text_IO.Put "item => ',');
Ada.Integer_Text_lO.Put (Item => ThisYear, Width =>5);
Ada.Text_IO.New_Line;

END Todays_Date_2;

Sample Run

Today's date is JULY 24, 1998

4.7 System Structures: Using a Screen-Control Package

The Ada.Text_io package provides operations for reading from the terminal keyboard
and writing to the screen, but it provides no direct operations for controlling the screen
in interesting ways, such as moving the cursor to a given row-column position before
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Testing
The sample run shows the coirect date, correctly formatted.

CASE

STUDY DISPLAYING TODAY'S DATE IN "MONTH DO, YYYY"
FORM

Problem Specification
Display today's date in the form MONTH dd, yyyy.

Analysis
This problem is similar to the previous one. In fact, it can be solved just by modifying
the previous algorithm. Package Ada. calendar gives us only the number of the current
month from 1 to 12, so we need to specify the names of the months. We can do this
with an enumeration type:

TYPE Months IS

(January, February, March, April, May, June,
July, August, September, October, November, December);

The current month can be displayed by using an instance of Ada.Enumeration__io,
as in the colors program:

PACKAGE Month_I0 IS
NEW Ada.Textile.Enumeration_IO(Enum -> Months);

Design
All steps of the algorithm are the same, except for a step 3 refinement.

Step 3 Refinement

3.1 Find the name of the month.

3.2 Format and display the current month, day, and year.

We need to find the name corresponding to the number of the current month. Because
the month is given from 1 to 12, and the positions of the names are 0 to 11, subtracting
1 from the month will give us the right position in Months, from which we can find the
month name using the vai attribute. If the month name is stored in a variable
Month_Name of type Months, we have

Month_Name := Months'Val(This_Month - 1);

The solution to this problem is shown in Program 4.7.

Program 4.7 Displaying Toda/s Date in Another Format

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_10;
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Test Plan
In this case, no user inputs are provided to the program. The only thing to test is the
correct extraction and formatting of the month, day, and year. It is easy to check
whether the program produced the correct date; just look at an ordinary calendar.

Implementation
Program 4.6 shows the Ada program for this problem.

Program 4.6 Displaying Toda/s Date

WITH Ada.Text_I0;
WITH Ada.Calendar;
WITH Ada. I nteger_Text_IO;
PROCEDURE Todays_Date IS

— I Finds and displays today's date in the form mm/dd/yyyy
—( Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

RightNow : Ada.Calendar.Time; — current time
This Year : Ada. Calendar. Year__Number; — current year
ThisMonth : Ada.Calendar.Month_Number; — current month
ThisDay : Ada.Calendar.Day_Number; — current day

BEGIN — Todays_Date

— Get the current time value from the computer's clock
RightNow :» Ada.Calendar.Clock;

— Extract current month, day, and year from the time value
ThisMonth

ThisDay
ThisYear

= Ada.Calendar.Month(Date => RightNow);
Ada.Calendar.Day (Date => RightNow);

= Ada.Calendar.Year (Date => RightNow);

— Format and display the date
Ada.Text_lO.Put (Item => "Today's date is ");
Ada.Integer_Text_IO.Put (Item => ThisMonth, Width =>1);
Ada.Text_IO.Put (Item => '/');
Ada.Integer_Text_IO.Put (Item => ThisDay, Width =>1);
Ada.Text_lO.Put (Itern => '/');
Ada.lnteger_Text_lO.Put (Item => ThisYear, Width =>1);
Ada.Text_IO.New_Line;

END Todays_Date;

Sample Run

Today's date is 7/24/1998

The program begins with the appropriate context clauses, including one for Ada.cal
endar. Variables for the time, month, day, and year are declared.

Finally, the results are formatted and displayed using a sequence of Put statements
from Ada.Text_io and Ada.integer_Text_io. Notice how the integer values are dis
played using a width of 1 to keep them "up against" the slashes.
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2. Extract the current month, day, and year from the time value.

3. Format and display the date.

Algorithm Refinements

Step 2 Refinement

2.1. Extract the current month from the time value.

2.2. Extract the current day from the time value.

2.3. Extract the current year from the time value.

We can illustrate the steps in the refinement process with a diagram that shows the
algorithm subproblems and their interdependencies. An example of such a diagram,
called a structure chart, is shown in Fig. 42.

As we trace down this diagram, we go from an abstract problem to a more detailed
subproblem. The original problem is shown at the top, or level 0, of the structure chart.
The major subproblems appear at level 1. The different subproblems resulting from the
refinement of each level-1 step are shown at level 2 and are connected to their respec
tive level-1 subproblem. This diagram shows that the subproblem Extract date values
from time value is dependent on the solutions to the subproblems Extract month, extract
day, and extract year. Because the subproblem Get current time is not refined further,
there are no level-2 subproblems connected to it.

Structure charts are intended to show the structural relationship between the sub-
problems. The algorithm (not the structure chart) shows the order in which each step
must be carried out to solve the problem.

Extract

year
Extract

day
Extract

month

Display
today's date

Extract date values

from time value

Format and

display date

Get current time

from computer's
clock

Tigure 42 Structure Chart for Formatting and Displaying Today's Date
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Note 3:

The type of each actual parameter must agree with the type of the corresponding
formal parameter. Ada does not allow, for example, an integer-valued actud
parameter to be associated with a float-valued formal parameter.

Note 4:

In this book, each actual parameter is listed with the name of the corresponding
formal parameter (the two are separated by =>). Therefore, strictly speaking, the
order of the actual parameters does not have to match that of the formal parame
ters. It is nevertheless good practice to list the actual parameters in an order corre
sponding to the order of the formal parameters.

Note that as the second example shows, functions can be defined to have no param
eters at all. The number, order, and type of the parameters is, of course, determined by
the writer of the function, not its user.

CASE

STUDY DISPLAYING TODAY'S DATE IN "MM/DD/YYYY"
FORM

Let's use the knowledge gained in this chapter to solve the problem of displaying
today's date.

Problem Specification
Display today's date in the form mm/dd/yyyy; for example, if today is October 21,
1998, we display io/2i/i998. If today is July 8,2000, we display 7/8/2000.

Analysis
Today's date can be obtained from the computer's internal clock by using the appropri
ate Ada calendar facilities to get a time value and then to extract the month, day, and
year. These three values can then be formatted to give the desired display.

Data Requirements

Problem Data Types:
We need only the type Time and the subtypes Year_Nuinber, Month_Number, and
Day_Nuinber, all provided by the standard package Ada.calendar.

Problem Inputs:
No inputs need to be entered by the user.

Problem Outputs:
Today's date, in the form mm/dd/yyyy.

Design

Initial Algorithm
1. Get the current time value from the computer's clock.
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the assignment statement

This_Year := Ada.Calendar.Year(Date => Right_Now);

will Store the current calendar year in This_Year. Since Ada.Calendar .Year^Number is
an ordinary integer subtype, ordinary integer operations can be performed on the value
in This_Year; specificaUy, its value can be displayed. This function call is analogous to
an Ada.Text^io procedure call such as

Ada. Text_IO. Put (Item «=> Firstlnitial);

in the sense that a value is being supplied to correspond to the formal parameter. The
formal parameter of Put is called item; the formal parameter of Year is called Date.

In using the operations of Ada.calendar, we have no knowledge of the details of
how they perform. This is of no concern to us; the "contract" embodied in the specifica
tion tells us what to expect, and this is all we need to know.

SYMTAX

DISPLAY Function Call Statement (Simple)
Form:

variable fname (actual parameters);

Example:

This_Month := Ada.Calendar.Month(Date °> Right Now);
Right_Now := Ada.Calendar.Clock; ~

Interpretatioii'.

The list of parameters (if any) is enclosed in parentheses: each actual parameter
value is preceded by the name of that formal parameter. The variable must be of
the same type as the return type of the function/name. The function yhome is
called, and its returned value is stored in variable. During the function execution,
the named actual parameters are associated with the corresponding formal
parameters.

Note 1:

Multiple parameters are separated by commas. Be careful here: The formal
parameters are separated by semicolons , but the actual parameters are separated
by commas.

Note 2:

The number of actual and formal parameters must be the same. Each actual
parameter that is an expression is evaluated when Jhame is called; thi.s value is
assigned to the corresponding formal parameter.
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Recall from Section 4.1 that a type consists of a set of values and a set of operations
on these values and that a subtype is a subset of the original set of values together with
the fiill original set of operations. For example, in declaring Month_Nuinber to be a sub
type of Integer and giving its range as 1.. 12, we are saying that any variables of
type Month_Nuinber can hold integer values only in the range 1 through 12, inclusive.
Similarly, variables of subtype Day_Nutnber can hold integer values in the range 1
through 31, inclusive. All of the operations on integers apply to values of these sub
types, but if an operation attempts to store a value that is outside the declared range,
this operation is improper and a constraint_Error exception will be raised at run
time.

We reiterate that subtypes are a convenient way to inform the compiler—and the
reader of a program—that certain variables have ranges that are restricted according to
their intended use. Ada can then help us to avoid and recover from errors by checking
that variables store numbers only of appropriate size.

The declarations

This_Year : Ada.Calendar.Year_Nuinber;
This_Month : Ada. Calendar. Month_Nuinber ?
This~Day : Ada.Calendar.Day_Number;

declare variables of the three subtypes provided by Ada. calendar. Again we have used
qualified references; this is done to remind both the compiler and the human reader of
the package in which the resources are defined.

Next we consider how to determine the current time of day in Ada. Returning to the
Ada.Calendar Specification in Fig. 4.1, the next line

FUNCTION Clock RETURN Time;

specifies a function called clock. Given the declaration

Ri9ht_Now: Ada.Calendar.Time;

then an assignment statement such as

Right_Now ;= Ada.Calendar.Clock;

will be compiled into machine instructions that read the computer's internal clock,
which delivers the current time of day and stores this time value in the variable
Right__Now. The expression Ada. calendar, clock is a junction call; we will see other
function calls shortly.

This value is not very useful to us in this form; for example, we cannot display a
time value because its precise form is not available to us. But as the next three lines,

FUNCTION Year (Date: Time) RETURN Year_Number;
FtJNCTION Month (Date: Time) RETURN Month_Number;
FUNCTION Day (Date; Time) RETURN Day^Number;

of the specification show, the package gives us operations to extract the year, month,
and day from the internal time value. Each of these operations is a function with a sin
gle parameter Date, which is of type Time. For example, if we declare a variable

This Year : Ada.Calendar.Year Number;
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functions to get the current time
— and return its date components

FUNCTION Clock RETURN Time;

FUNCTION Year (Date : Time) RETURN Year_Numberj
FUNCTION Month (Date : Time) RETURN Month_Number;
FUNCTION Day (Date : Time) RETURN Day_Number;

— Ada.Calendar provides many other interesting facilities;
— for clarity, these are omitted from this figure.

END Ada.Calendar;

After the first line,

PACKAGE Ada.Calendar IS

which indicates the beginning of a package specification, four type declaration state
ments are given. The line

TYPE Time IS PRIVATE;

specifies Time as a private type, the details of whose values are not known to the pack
age user. We do not know whether a Time value is an integer value, or Float, or
string, or something we haven't thought of yet. On the other hand, we are told that this
internal value represents a year, calendar day, and time of day in a single bit pattern. We
don't really need to know any more about Time values, because the package provides
all the operations necessary to work with them.

We will discuss private types in detail later, especially in Chapter 11, where we
will develop a few of our own. For now, you need to know that because Time is a pri
vate type, the only way you can use Time values is to work with them according to the
various operations provided by Ada.calendar. There is, for example, no way to display
a Time value on the screen. You will see a few Ada.calendar operations in a short
while.

Given a program preceded by a context clause

WITH Ada.Calendar;

the declaration

Right_Now : Ada.Calendar.Time;

declares a variable capable of holding a time value. The form Ada.calendar.Time is
similar to the form Ada.Text_io.New_Line in that the name of the package is used to
qualify the use of the package resource: Time is a resource provided by Ada.calendar
just as New__Line is a resource provided by Ada.Text_io.

In the specification of Ada.calendar in Fig. 4.1, the next three lines give subtype
declarations for years, months, and days:

SUBTYPE Year_Number IS Integer RANGE 1901..2099;
SUBTYPE Month_Number IS Integer RANGE 1..12;
SUBTYPE Day__Number IS Integer RANGE 1..31;
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A special kind of package, one that groups a type together with a complete set of
operations for that type, is often called an abstract data type (ADT) package. Ada.cal
endar is an excellent example of an ADT package.

You will work with three kinds of packages in this book:

•  standard packages—such as Ada. Text__io and Ada. Numerics, which you have
seen already, and Ada.calendar, introduced in Section 4.6—which are re
quired by the Ada standard and supplied with all compilers;

•  packages supplied along with this book, such as the screen-control package in
troduced in Sections 4.7; and

•  packages written as part of your study of this book, such as the packages intro
duced starting in Chapter 5 and continuing throughout the book.

4.6 System Structures: Using Ada's Calendar Package

In this section you will see how to use another standard Ada library package, Ada .cal
endar. This important package is specified in the Ada Reference Manual, Section 9.6

In all Ada packages, the resources provided are listed in an Ada source file called
the package specification. The package specification plays two roles: It describes the
package to the compiler, and it serves as a "contract" with the programmer who is using
it, telling this human user exactly what resources to expect. Some of the different kinds
of resources provided by a package are

•  types and subtypes,

•  procedures, and

•  functions.

Ada's calendar package provides a number of useful resources relating to dates and
times. Figure 4.1 shows a part of the specification for Ada.calendar; for clarity we
have listed only those services needed in this example. Figure 11.3 gives the entire
specification for Ada.calendar.

Figure 4.1 Partial Specification of Package Ada.Caiendar

PACKAGE Ada.Caiendar IS

standard Ada package, must be supplied with compilers
— provides useful services for dates and times

— type definitions

TYPE Time IS PRIVATE;

SUBTYPE Year_Number IS Integer RANGE 1901..2099;
SUBTYPE Month_Number IS Integer RANGE 1..12;
SUBTYPE Day_Nuinber IS Integer RANGE 1..31;
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EXERCISES FOR SECTION 4.4

Self-Check

1. Evaluate each of the following assuming Today (type Day) is Thursday before
each operation.

a. Day'Pos(Monday) e. Day'Succ(Sunday)
b. Day'Pos(Today) f. Day'Pred(Monday)
C. Day'Val(6) g. Day'731(0)
d. Today < Tuesday h. Today >= Thursday

4.5 System Structures: The Importance of Packages

Consider the input/output libraries we have been using in this book. Each of the various
Get and Put statements in the earlier examples is really a procedure call statement. A
procedure is a kind of system building block, a way of putting together a group of pro
gram statements and treating them as a unit, causing them to be executed by means of
procedure calls. In this book you will learn how to write procedures; in this chapter you
will continue just to use procedures written by others.

The Get and Put procedures that we have been using were written by another pro
grammer at another time; they were supplied to us as part of a package called
Ada.Text_io. Just as a procedure is a kind of subprogram, a way of grouping state
ments, a package is a way of grouping subprograms (and other program entities that we
will introduce later on). It is through the use of packages that procedures can be written
and tested for general use (that is, by other programmers) and put in a form in which
they can be supplied to others. Ada compilers come with several standard library pack
ages. Ada.Text_io is one of these; in the next section you will see another, called
Ada.Calendar.

The package concept is one of the most important developments to be found in
modem programming languages, such as Ada, Modula-2, Turbo Pascal, C++, Eiffel,
and Java. The designers of the different languages have not agreed on what terms to use
for this concept: Package, module, unit, and class are commonly used. But it is gener
ally agreed that the package—as it is called in Ada—is the essential programming tool
to be used for going beyond the programming of very simple class exercises to what is
generally called software engineering, or building re^ programs of real size for the real
world.

It is the package that allows us to develop a set of related operations and other enti
ties, especially types, to test these thoroughly, and then to store them in an Ada program
library for our future use or even to distribute them to others. Grouping a set of related
entities in a well-defined module, with a clearly specified interface to other programs, is
called encapsulation. Encapsulation is the way we produce software components that
are predeveloped and pretested for reusability within an organization or distribution in
the wider world.
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Program 45 Translating between French and English Colors

WITH Ada.Text__IO;
PROCEDURE Colors IS

— I Displays a French color, given the English color
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: July 1998

TYPE Bnglish__Colors IS
(white, black, red, purple, blue, green, yellow, orange);

TYPE French_Colors IS
(blanc, noir, rouge, violet, bleu, vert, jaune, orange);

PACKAGE English_Color_IO IS
NEW Ada.Text_IO.Enumeration_IO (Enum => Bnglish_Colors);

PACKAGE French_Color_IO IS
NEW Ada.Text_IO.Enunieration_IO (Enum => French_Colors);

Eng_Color : English_Colors;
Fr__Color : French_Colors;
Position : Natural;

BEGIN — Colors

Ada.Text_IO.Put (Item => "Please enter an English color > ");
English_Color_IO.Get (Item => Eng_Color);

Position := English_Colors'Pos(Eng_Color);
Fr_Color := French_Colors'Val(Position);

Ada.Text_IO.Put (Item => "The French color is ");
French_Color_10.Put (Item => Fr_Color, Set => Ada.Text_IO.Lower_Case);
Ada.Text_lO.New_Line; ~ "*

END Colors;

Sample Run

Please enter an English color > blue
The French color is bleu

Testing
The sample run gives one test. To complete the test plan, run the other tests including
one for invalid input.
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(blanc, noir, rouge, violet, bleu, vert, jaune, orange);

Problem Inputs;
English color (Eng__Color ; English_Colors).

Problem Outputs:
French color(Fr_Color : French_Colors).

Design
We were careful to list the French and English colors in the same order, so given an
English color, the corresponding French color will be in the same position in the French
color type. The program depends on this correspondence, which gives us the following
algorithm.

initial Algorithm
1. Prompt the user to enter one of the eight English colors, Eng_coior.

2. Find the corresponding French color, Fr_coior.

3. Display the French color.

Algorithm Refinements
The only step needing refinement is step 2. We can find the French color corresponding
to a given English one by using the Pos and val attributes. Since the French and
English colors have corresponding positions, we can find the position of the English
color in its type, then use that position to find the corresponding value in the French
type. To do this, we shall use a program variable Position of type Natural to store the
color position within its type.

Step 2 Refinement

2.1. Save in Position the position of Eng^coior in its type.

2.2. Save in Fr_coior the corresponding value in the French type.

Test Plan
This algorithm depends upon each of the French colors being in the same position in its
type as the corresponding English color. Since the number of colors is relatively small,
all the cases can be checked to be sure the two color types were given correctly. We also
need to test for invalid input, for example, a word or other sequence of characters that is
not an English color. If an invalid token is entered, Ada.Text_io.Data_Error should
be raised and the program should halt.

Implementation
The complete program is shown in Program 4.5. The program begins with a context
clause for Ada.Text_io. Within the program, the two color types are defined and
instances of Ada.Text__io.Enuineration_io are created to read and display values of
these types. Finally, the sequence of statements implements the refined algorithm just
developed.
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SYNTAX

DISPLAY
Put Procedure (Enumeration)

Fonn:

instance.Put

(Item »> variable , Width => field width,
Set =■> Text_IO.Dpper_Case or Text_IO.Lower_Case);

Example:
Day_IO.Put

(Item => Some_Day, width => 5, Set =»> Low6r_Case);

Interpretation:
The value of variabie (of some enumeration type) is displayed, using the next
Width positions on the screen. If the value would occupy less than width posi
tions, it is followed by the appropriate number of blanks; if the value would
occupy more than width positions, the actual number of positions is used.

tf width is omitted, a compiler-dependent width is used by default. The stan
dard values Text_io.upper_case and Text_io.iiower_case are used to deter
mine the form of the displayed value. If set is omitted, the value is displayed in
uppercase.

CASE
STUDY TRANSLATING FROM ENGLISH TO FRENCH COLOR

NAMES

Problem Specification
Your roommate comes from France and you are taking a watercolor-painting class
together. To make communication with your roommate easier you would like to have
the computer give you some help in remembering the French names of the major col
ors. You'd like to enter an English color name on the keyboard and let the program dis
play the corresponding French name. The English color names are white, black, red,
purple, blue, green, yellow, and orange; the French color names are blanc, noir, rouge,
violet, bleu, vert, Jaune, and orange.

Analysis
The French and English colors can be represented by two enumeration types
French_coiors and Engiish_coiors and can be read and displayed using two
instances of Enumeration_io, which we will call Prench_color 10 and
English_Color_IO.

Data Requirements

Problem Data Types:
English colors, an enumeration type:
TYPE English_Colors IS

(white, black, red, purple, blue, green, yellow, orange);

French colors, also an enumeration type:
TYPE French Colors IS
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Input/Output Operations for Enumeration Types

One of the most convenient Ada features for using enumeration types is a built-in
input/output package for reading and displaying enumeration literals. Within
Ada.Text_io is a generic package called Enumeration_io, which cannot be used
immediately. Instances must be created; each instance is "tailored" to read and display
exactly the literals in a specific enumeration type. For example, in a program in which
the type Days is defined and the variable declaration Today;Days appears, we could
write

PACKAGE Day_IO IS NEW Ada.Text_lO.Enumeration^IO(Enuin=>Days);

which would give us the ability to read a value from the keyboard into Today or to dis
play the value of Today on the screen, using procedure calls like

Day__IO. Get (Item => Today);
Day~IO. Put (Item »=> Today, Width => 10);

In the case of Get, the exception Data_Error is raised if the value entered on the key
board is not one of the seven literals in Days. In this manner the input/output system
automatically checks the validity of the value that is entered, making sure that it is a
legal value in the enumeration type.

SYNTAX

DISPLAY
Get Procedure (Enumeration)

Form:

instance.Get (Item => variable );

Example:

Day_I0.Get (Item => Soroe_Day);

Interpretation:

By instance we mean an instance of Ada.Text_io.Enumeration_io for some
enumeration type. The next string of characters that is entered at the keyboard is
read into variable (of the same enumeration tjiie). Any leading blank characters
or RETURNS are ignored. The first nonblank character must be a letter, and the
characters must form an identifier. The data string is terminated when a noniden-
tifier character is entered or the space bar or return key is pressed.

If the identifier that is read is not one of the literals in the enumeration type
for which instance was created, Ada.Text_io.Data__Error is raised.
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• Last, which gives the last or highest value;

• Poa, which given a value in a type, gives its position in the type;

• vai, which given a position in a type, gives the value in that position;

• Pred, which given a value in a type, gives its predecessor, that is, the value that
precedes it in the type; and

• succ, which, given a value in a type, gives its successor, that is, the value that fol
lows.

Some examples are given below; they assume that Today is Friday and Tomorrow is
Saturday.

Days"First is Monday
Days'Last is Sunday . ̂
Days • Pos (Monday) is o)/
Days'Val(O) is Monday'
Days' Pos (Sunday) is 6
Days'Val(6) is Sunday
Days'Pred(Wednesday) is Tuesday
Days'Pred(Today) is Thursday
Days'Succ(Tuesday) is Wednesday
Days'Succ(Today) is Saturday

Because enumeration types are not cyclical (i.e., do not "wrap around"), the queries
Days' Pred (Monday) and Day' Succ (Sunday) are undefined and would cause a run-time
exception—namely, the raising of constraint_Error — if attempted. Similarly, if
Tomorrow had the value Sunday, Days'Succ(Tomorrow) would cause an exception.
Whether the assignment statement

Tomorrow := Days•Succ(Today);

would cause an exception depends on the value of Today; it cannot cause a compilation
error because the value of Today is usually unknown at compilation time.

SYNTAX ^ ̂
DISPLAY Attribute Query

Form:

type'attrxbate-name or type'attribute-name(value)

Example:

Traff ic_Jtiight_Colora * First
Day8'Succ(Wednesday)
Days'Poa(Today)

Interpretation:
An attribute query answers a question about certain characteristics erf ty^ or
variables. For each type, the set of attributes is predefined by the language ami
cannot normally be changed by the programme:. Note the required pres^ce of
the single quote or apostrophe in the attribute query.
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DELAY 0.1;
Screen.MoveCursor (Row =>7, Coluinn => 34);
Ada.Text_IO.Put (Item => "HAVE A NICE DAY!");
Screen.MoveCursor (Row => 9, Column => 39);
Ada.Text_IO.Put (Item => " ");
Screen.MoveCursor (Row => 10, Column => 37);
Ada.Text_IO.Put (Itern => "/ \");
Screen.MoveCursor (Row => 11, Column => 36);
Ada.Text_IO.Put (Item => "/ \");
Screen.MoveCursor (Row => 12, Column => 35);
Ada.Text_IO.Put (Item => "| |");
Screen.MoveCursor (Row => 13, Column => 35);
Ada.Text_IO.Put (Item => ") 0 0 |");
Screen.MoveCursor (Row => 14, Column => 36);
Ada.Text_IO.Put (Item => "\ o /");
Screen.MoveCursor (Row => 15, Column => 37);
Ada.Text_IO.Put (Item => "\ \ / /");
Screen.MoveCursor (Row => 16, Column => 38);
Ada.Text_lO.Put (Item => "\ /");
Screen.MoveCursor (Row => 17, Column => 39);
Ada.Text_IO.Put (Item => " ") ;
Screen.MoveCursor (Row => 24, Column => 1);

END Smiley;

Sample Run

HAVE A NICE DAYl

/  \

/  \

I
0  0 I

\  o /

\ \ / /
\  /

There is one more thing you need to know about screen. Even though all Ada com
pilers support the same Ada language, not all Ada programs can show correct output on
all terminals because different kinds of terminals have different characteristics. This

package assumes that the terminal you are using responds to ANSI control sequences.
Most UNIX and VMS terminals do. So does an IBM-PC or compatible computer run
ning DOS or \Mndows 95, provided that the ANSI.SYS device driver is listed in the
computer's CONFIG.SYS file. If you run smiley but your screen does not look like the
sample run, see your computer center or teacher or, if you are using your own PC-com
patible, check whether ANSI.SYS is properly installed. Some installations of Windows
NT cannot handle ANSI.SYS; instead, you can use the alternative package on the
CD-ROM.
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4.8 Tricks of the Trade: Common Programming Errors

When you define enumeration types, keep in mind that the order is important. For
example,

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

is not the same as

TYPE Days IS (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

because the positions of the various literals are different in the two types.
An enumeration Get first reads characters until it reads a character that cannot be

part of an enumeration literal, then checks whether the literal read is a valid one in the
given type. If abc is a valid literal but not abci23, entering abci23 will cause
Ada.Text_lO.Data_Error tO be raised.

When you work with packages that are not part of the Ada system, remember that
they may have to be compiled before you can use them. Compile the specification first,
then the body. After the specification is compiled, you can compile any program that
uses the package, but you cannot link that program until the body is compiled. Once
you have compiled the package, the compiled form remains available in your file sys
tem unless you delete it.

CHAPTER REVIEW

In this chapter, we discussed more aspects of problem solving. We reviewed the step-
wise-refinement approach to solving problems and showed how to use the documenta
tion created by following the software development method as the outline of the final
program. We ̂so showed how we could extend a solution to one problem to form the
basis of the solution for another problem. We illustrated how structure charts are used
to show relationships between different levels of subproblems or between algorithm
steps and their refinements. We discussed the representation of the various steps in an
algorithm and illustrated the stepwise refinement of algorithms.

In this chapter enumeration types were introduced, along with Ada's standard
input/output library for reading and displaying enumeration values. Enumeration types
are useful in allowing the programmer to give meaningful names to values such as days
of the week, months of the year, colors of the rainbow, and command sets.

This chapter also continued the use of packages, begun in Chapter 3 with the use of
the input/output libraries. We discussed Ada's standard package Ada.Calendar and a
package called screen that is provided with this book.

New Ada Constructs in Chapter 4

Table 4.1 describes the new Ada constructs introduced in this chapter.
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Table 4.1 Summary of New Ada Constructs

Construct Effect

Subtype definition:

SUBTYPE FDic_insured IS declares a subtype of Float in the range
Float RANGE 0 • 0.. 100000.0; 0 0—100000 0

Enumeration type definition:

TYPE compasspoints IS defines a type whose values are enumer-
(North, South, East, West); ated as a list of identifiers

Quick-Check Exercises

1. Does a compiler translate conunents?

2. Each statement in a program should have a comment. (True or false?)

3. What is a structure chart?

4. Explain how a structure chart differs from an algorithm.

Answers to Quick-Check Exercises

1. No

2. False

3. A structure chart is a diagram that is used to show an algorithm's subproblems
and their interdependence.

4. A structure chart shows the relationship between subproblems; an algorithm
lists the sequence in which subproblems are performed.

Review Questions for Chapter 4

1. Discuss the strategy of stepwise refinement.

2. Provide guidelines for the use of comments.

3. Briefly describe the steps you would take to derive an algorithm for a given
problem.

4. The diagram that shows the algorithm steps and their interdependencies is
called a .
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Programming Projects

1. Write a program that draws two of your initials in the center of the screen. For
example,

X  X XXXXX XXXXX X

XX XX X X X

XXX XXX XXX or xxx x

X  X X X x x x

X  X X XXXXX XXXXX

2. Write a program that clears the screen, and then beeps and flashes the word
HELP in the center of the screen three times at 1-second intervals. (Hint: To
"flash" a word, display a word and then display the same number of blank
characters in the same spot on the screen.)

3. Write a program that displays today's date in the center of the screen.

4. Find out the names of the days of the week in some other language and write a
program that translates from those names to the English ones. Revise your pro
gram to do the translation in the other direction.

5. Many different date forms are in current use around the world. Here are a few
examples of how September 21,1998 might appear in different countries:

21/9/1998 (many countries; the day is written before the month)

21 September 1998 (Britain)

21.IX.1998 (Germany; the month is given as in Roman numerals)

Modify Program 4.6 or Program 4.7 so that one or more of these forms is used.
If you are familar with any other date forms, you can use those as well.

6. In shopping for a new house, you must consider several factors. In this prob
lem the initial cost of the house, the estimated annual heating fuel costs, and
the annual tax rate are available. Develop a case study for a program that will
determine the total cost after a five-year period for each set of house data be
low. You should be able to inspect your program output to determine the "best
buy."

Initial House Cost Annual Fuel Cost Tax Rate

$67,000 $2300 0.025

$62,000 $2500 0.025

$75,000 $1850 0.020

To calculate the house cost, add the fuel cost for five years to the initial cost,
then add the taxes for five years. Taxes for one year are computed by multiply
ing the tax rate by the initial cost.
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Chapter Review

In this chapter we show you how to represent decisions in algorithms by writing steps
with two or more alternative courses of action. You will see how to implement condi
tional execution in Ada by using Boolean conditions and the Ada if statement.

This chapter also introduces you to the process of writing simple reusable functions
and putting them in packages for later use by yourself and others. As examples of reus
able functions, we consider those m the standard Ada math library.

This continues the practice begun in Chapter 4, in which each chapter introduces
new material that will help you structure small program units but also shows you imme
diately how to integrate this new material into larger, system-level units. In this way
you will always focus your attention on the two equally important problems of building
individual programs and building libraries of programs into systems.
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5.1 Control Structures: Boolean Expressions and the IF
Statement

All the algorithms that we illustrated in Chapters 3 and 4 are straight-line algo
rithms—that is, each algorithm step is executed exactly once in the order in which it
appears. Often, we are faced with situations in which we must provide alternative steps
that may or may not be executed, depending on the input data. To motivate the need for
conditional execution, let us start with a case study.

CASE

STUDY GIVEN TODAY, FIND YESTERDAY AND TOMORROW

Problem Specification
Prompt the user for a day of the week from the terminal, and display yesterday and
tomorrow.

Analysis
Recall from Chapter 4 that the days of the week are best represented as an enumeration
type, so the days can easily be read and displayed by an instance of Ada.Text^io.
Enumeration_io. Yesterday and tomorrow can be found by using the successor and
predecessor attributes.

Data Requirements

Problem Data Types
Days of the week, an enumeration type:

type Days IS (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

Problem Inputs
Today : Days

Problem Outputs
Yesterday: Days
Tomorrow: Days

Design

Initial Algorithm
1. Prompt the user for the current day and read it from the keyboard.

2. Find Yesterday and Tomorrow

2.1. Set Yesterday to the predecessor of Today.

2.2. Set Tomorrow to the successor of Today.

3. Display the results on the screen.



5.1 Control Structures: Boolean Expressions and the IF Statement 155

Algorithm Refinements
This algorithm looks fine, but recall that in Ada the enumeration types do not "wrap
around " Suppose the user entered Monday or Saturday. The predecessor of Monday and
the successor of Saturday are undefined, and trying to compute either one would raise
constraint_Error. This is a case in which the language type system does not quite
agree with the physical world. To account for this, we need to include two special cases
in our algorithm, which result in revisions to steps 2.1 and 2.2:

2.1. If today is the first day of the week, then yesterday is the last day of the (previous)
week; otherwise, yesterday is the predecessor of today.

2.2. If today is the last day of the week, then tomorrow is the first day of the (follow
ing) week; otherwise, tomorrow is the successor of today.

These special cases are, in fact, conditional steps: They include the words if and
otherwise.

Test Plan
In addition to a normal case, we need to test two special cases, namely, those in which
today is Sunday (to be sure that tomorrow is Monday) and today is Monday (to be sure
that yesterday was Sunday). Also test for invalid input that is not one of the seven day
abbreviations.

Implementation
Program 5.1 gives the complete solution to the problem. The statements corresponding
to the revised algorithm steps 2.1 and 2.2 are examples of the IF statement:

IF Today = Days'First THEN
Yesterday ;=» Days'Last;

ELSE

Yesterday := Days'Pred(Today);
END IF;

and

IF Today = Days'Last THEN
Tomorrow ;= Days'First;

ELSE

Tomorrow ;= Days'Succ(Today);
END IF;

Program 5.1 Rndmg Yesterday and Tomorrow

WITH Ada.Text_I0;
PROCEDURE Three^Days IS

—) Finds yesterday and tomorrow, given today
— I Author: Michael Feldman, The George Washington University
— Last Modified: June 1998

TYPE Days IS (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

PACKAGE Day_IO IS
NEW Ada.Text_lO.Enumeration_IO (Enum => Days);
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Yesterday i Days;
Today : Days;
Tomorrow : Days;

BEGIN — Three__Days

— prompt user to enter a day abbreviation
Ada.Textile.Put (Item «> "Enter the name of a day of the week > ");
Day__IO.Get (Item => Today);

— find yesterday
IF Today » Days'First THEN

Yesterday ;= Days'Last;
ELSE

Yesterday := Days'Fred(Today);
END IF;

Ada.Textile.Put (Item => "Yesterday was ");
Day__IO.Put (Item => Yesterday);
Ada. Text_^IO. New__Line;

Ada.Textile.Put (Item => "Today is ");
Day_IO.Put (Item => Today);
AdaTText_IO.New_Line;

— find tomorrow

IF Today = Days'Last THEN
Tomorrow ;= Days'First;

ELSE

Tomorrow ; ■= Days' Succ (Today);
END IF;

Ada.Text_IO.Put (Item => "Tomorrow is ");
Day_IO.Put (Item => Tomorrow);
Ada.Text_IO.New_Line;

END Three_Days;

Sample Run

Enter the name of a day of the week > monday
Yesterday was SUNDAY
Today is MONDAY
Tomorrow is TUESDAY

Testing
The sample run shows only one special-case test. To complete the test plan, run the pro
gram for the other cases as well.

Boolean Expressions and Conditions
In the statement

IF Today = Days'First THEN
Yesterday := Days'Last;
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ELSE

Yesterday := Days'Pred(Today);
END IF;

the expression

Today = Days'First

is called a Boolean expression. There are only two possible values for a Boolean
expression: True or False. If Today is, in fact Days'First, the preceding Boolean
expression evaluates to True; if not, the expression evaluates to False. Chapter 8 exam
ines all the operators that can be used on Boolean expressions. For now, we will con
centrate on learning how to write and use simple Boolean expressions called
conditions.

Most conditions that we use will have one of the following forms:

variable relational operator variable
variable relational operator constant

Relational operators are the familiar symbols

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

= (equal to)

/=» (not equal to)

All these operators should be familiar to you except the last. Ada uses the symbol
pair /= to express the condition "not equal to." In mathematics this is usually written
but this symbol does not appear on computer keyboards. Also, be careful that you write
>= and not => for "greater than or equal to"; the latter symbol is used in Ada for other
things, such as

Ada.Text_IO-Put(Item => "Hello");

and its mistaken use as a relational operator will lead to a compilation error.
The variables in a Boolean condition can be of integer. Float, string, or enumer

ation type. In the integer and Float cases the relational operators have their familiar
meanings: 3 < 4,-17.5 >-3 0.4.In the case of enumeration types the comparisons are
with respect to the order in which the values are defined in the type definition. Given
two types

TYPE Days IS (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

TYPE Colors IS (Red, Orange, Yellow, Green, Blue, Purple);

these conditions are edl true:
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Monday < Tuesday
Wednesday Tuesday
Wednesday » Wednesday
Wednesday >= Tuesday

Purple > Red
Yellow < Green

Green >= Yellow

The conditions

Purple > Friday
3 <«» 4.5

Green > 2

would cause compilation enors because the two values in each comparison are associ
ated with different types and therefore cannot be compared. It would be like comparing
apples and oranges.

If the Integer variable i is 5, the Float variable x is 3.9, and the nays variable
Today is Wednesday, these relations are true:

I > 0

X <= 3.9

Today > Tuesday

Finally, we note that the character type is defined as an enumeration type and the
relations are with respect to the alphabetic order. It's actually a bit more complicated
than this; we'll come back to it in more detail in Giapter 8.

■ Example 5.1

The relational operators and some sample conditions are shown in Table 5.1. Each con
dition is evaluated according to the following variable values: ■

Power MaxPow Item Minltem MomOrDad Num Sentinel

-5 1024 1024 1.5 -999.0 'M' 999 999

Table 5.1 Ada Relational Operators and Sample Conditions

Operator Condition Meaning Value

<= X <= 0 X less than or equal to 0 true

< Power < MaxPow Power less than MaxPow false

>= X >= Y X greater than or equal to y false

> Item > Minltem Item greater than Minitem true

BS MomOrDad " *H' MomOrDad equal to 'w true

/ = Minltem /» Item Minltem ̂ Item true
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Condition Meaning Value
/= Num /= Sentinel Num ̂  Sentinel false

The JF Statement

You can use the if statement to select among several alternatives. An if statement
always contains a Boolean expression. For example, given the Float variables Gross-
Pay, NetPay, and Tax, the if statement

IF GrossPay > 100.00 THEN
NetPay ;= GrossPay — Tax;

ELSE

NetPay := GrossPay;
END IF;

selects one of the two assignment statements listed. It selects the statement following
THEN if the Boolean expression is true (i.e, if GrossPay is greater than 100.00); it
selects the statement following else if the Boolean expression is false (i.e., if Gross-
Pay is not greater than 100.00).

The preceding if statement has two alternatives, exactly one of which will be exe
cuted for a given value of GrossPay.

Figure 5.1 is a graphic description, called a flowchart, of the preceding if state
ment. This figure shows that the condition enclosed in the diamond-shaped box
(GrossPay > 100. oo) is evaluated first. If the condition is true, the arrow labeled True is
followed, and the assignment statement in the rectangle on the right is executed. If the
condition is false, the arrow labeled False is followed, and the assignment in the rectan
gle on the left is executed.

Example 5.2 illustrates that an if statement can also have a single alternative that is
executed only when the condition is true.

False 'GrossPajr True

A O
o

/

\
NetPay :=
GrossPay;

NetPay ;=

GrossPay - Tax;

Figure 5.1 Two-Alternative IF Statement
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X /

False

True
0.0 >

Product :=

Product * X;

'

Figure 5.2 Single-Alternative IF Statement

■ Example 5.2

The following if statement has one alternative, which is executed only when x is not
equal to 0. It causes Product to be multiplied by x; the new value is then saved in Prod
uct, replacing the old value. If x is equal to 0, the multiplication is not performed. Fig
ure 5.2 is a flowchart of this if statement.

— Multiply Product by a nonzero X only
IF X /= 0.0 THEN

Product ;= Product * X;

END IF; ■

■ Example 5.3

The following if statement has two alternatives. It displays either Hi Mom or Hi Dad
depending on the character stored in the variable MomorDad (type character). If this
variable's value is ■ m' , "Hi Mom" is displayed. If the variable has any other value at all,
"Hi Dad" is displayed.

IF MomOrDad = 'M' THEN

Ada.Text_IO.Put(Item => "Hi Mom");
Ada.Text_IO.New_Line;

ELSE

Ada.Text_I0.Put(Item => "Hi Dad");
Ada.Text_I0.New_line;

END IF;

Notice that the statement sequences may include one or more statements, all termi
nated by semicolons, and also that the end if; is always required whether the if state
ment has one alternative or two. ■

The forms of the if statement that we have used so far are summarized in the dis
plays that follow.
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IF Statement (Two Alternatives)

Form:

IF condition THEN

statement sequence T
ELSE

statement sequence F
END IF?

Example:

IF X >= 0.0 THEN

Ada.Text_lO.Put(Item => "Positive")?
ELSE

Ada.Text 10.Put(Item => "Negative")?
END IF?

Interpretatioii:

If the condition evaluates to true, then statement sequence T is executed and
statement sequence F is skipped; otherwise, statement sequence T is skipped and
statement sequence F i s executed.

Note:

There is no semicolon after then or after else. Inserting a semicolon here will
cause a compilation error.

SYNTAX

DISPLAY
IF Statement (One Alternative)

Form:

IF condition THEN

statement sequence T
END IP?

Example:

IF X > 0.0 THEN

PosProd ;=» PosProd * X;
CountPos ;= CountPos +1?

END IP?

Interpretation:
If the condition evaluates to true, then statement sequence T is ex^nited; other
wise, it is skipped.
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PROGRAM

STYLE
Formatting the IF statement

In all the IF statement examples, the statement sequences are indented. If the
word ELSE appears, it is entered on a separate line and aligned with the words if
and END IF. The format of the if statement makes its meaning apparent. This is
done solely to improve program readability and is highly recommended; the for
mat that is used makes no difference to the compiler.

EXERCISES FOR SECTION 5.1

Self-Check

1. State the types of the values that can appear as operands of the relational oper
ators.

2. Assuming that x is 15.0 and y is 2 5.0, what are the values of the following
conditions?

X /= y X < X X >= (Y - X) (Y + X - Y)

For each of the following program fragments, state whether the fragment is le
gal. If not, why not? If so, what is displayed?

a. IF 12 < 12 THEN

Ada. Text__IO• Put (Item => "Never");
ELSE "

Ada.Text_I0.Put(Item => "Always");
END IF;

b. IF 12 < 15.0 THEN
Ada.Text_I0.Put(Item ■=> "Never");

ELSE

Ada.Text_I0.Put(Item => "Always");
END IF;

C. Varl ;= 15.0;
Var2 := 25.12;
IF (2*Varl) > Var2 THEN

Ada.Text_I0.Put(Item => "OK");
ELSE

Ada.Text_IO.Put(Item => "Not OK");
END IF;

d. Varl := 15.0;
Var2 := 25.12;
IF (2*Varl) > Var2 THEN

Ada.Text_IO.Put(Item => "OK");
END IF;
Ada.Text IO.Put(Item => "Not OK");
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5.2 Problem Solving: Decision Steps in Algorithms

Let's continue our study of conditional execution with another case study, this one to
find the alphabetically first letter of three letters.

CASE

STUDY FINDING THE ALPHABETICALLY FIRST LETTER

Problem Specification
Read three letters and find and display the one that comes first in the alphabet.

Analysis
From the previous section we know how to compare two items to see which one is
smaller using the relational operator <. We can use this operator to determine whether
one letter precedes another in the alphabet. For example, the condition'A' < 'F' is
true because a precedes f in the alphabet. Because we have no direct way to compare
three items, our strategy will be to do a sequence of pairwise comparisons. We will start
by comparing the first two letters to find the smaller of that pair. The result of the sec
ond comparison will be the smallest of the three letters.

Data Requirements

Problem Inputs
Chl, Ch2, Ch3 : Character

Problem Outputs
AlphaFirst : Character — the alphabetically first letter

Design

Initial Algorithm
1. Read three letters into chi, ch2, and ch3.

2. Save the alphabetically first letter of chi, ch2, and ch3 in AlphaFirst.

3. Display the alphabetically first letter.

Algorithm Refinements
Step 2 can be performed by first comparing chi and ch2 and saving the alphabetically
first letter in AlphaFirst; this result can then be compared to ch3. The refinement of
step 2 follows.

Step 2 Refinement

2.1. Save the alphabetically fu'st letter of chi and Ch2 in AlphaFirst.

2.2. Save the alphabetically first letter of ch3 and AlphaFirst in AlphaFirst.

Figure 5.3 shows the structure chart that corresponds to this algorithm.



164 Decision Statements; Writing Functions and Packages

Find and display the
alphabetically first
letter

Read three

letters

Find the

alphabetically
first letter

Display the
result

Save first of chi
and ch2 in

AlphaFirst

Save first of Ch3
and AlphaFirst
in AlphaFirst

Figure 5.3 Structure Chart for Finding the Alphabetically First Letter

Test Plan
Test this program with different sequences of letters corresponding to the possible
orderings of three distinct letters. Also, test it with cases in which at least two of the let
ters are equal. In this way you are ensuring that all of the paths through the if state
ments are tested.

Implementation
Program 5.2 shows the desired program. The if statement with two alternatives saves
either chi or ch2 in AlphaFirst. The if statement with one alternative stores ch3 in
AlphaFirst if ch3 precedes the value already in AlphaFirst. Later you will see that if
statements with more than two alternatives are also possible in Ada.

Program 5.2 Finding the First Letter

WITH Ada.Text_IO;
PROCEDURE First__Letter IS

— I Finds and displays the alphabetically first letter.
—j Author; Michael Feldman, The George Washington University
— I Last Modified: July 1998

Chi, Ch2, Ch3 : Character;
AlphaFirst ; Character;

BEGIN — First Letter

— input - three letters
— output - first letter

— Read three letters

Ada.Text 10.Put
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(Item => "Enter any three letters, then press ENTER > ");
Ada.Text_IO.Get (Item => Chi);
Ada.Text 10.Get (Item => Ch2);
Ada.Text~IO.Get (Item => Ch3);

— Save the smaller o£ Chi and Ch2 in AlphaFirst
IF Chi < Ch2 THEN

AlpheUPirst := Chi; — Chi comes before Ch2
ELSE

AlphaFirst Ch2; — Ch2 comes before Chi
END IF;

— Save the smaller of Ch3 and AlphaFirst in AlphaFirst
IF Ch3 < AlphaFirst THEN

AlphaFirst := Ch3; — Ch3 comes before AlphaFirst
END IF;

— Display result
Ada.Text_lO.Put (Item => AlphaFirst);
Ada.Text_IO.Put (Item =»> " is the first letter alphabetically");
Ada.Text_IO.New_Line;

END First_Letter;

Sample Run

Enter any three letters, then press ENTER > THE
B is the first letter alphabetically

Testing
As usum, the sample output shows one of the test cases.

EXERCISES FOR SECTION 5.2

Self-Check

1. What value is assigned to x for each of the following segments when y is 15.0.

a. X := 25.0;
IF Y /= (X - 10.0) THEN

X ;= X - 10.0;

ELSE

X := X / 2.0;

END IF;

b. IF Y < 15.0 THEN

X ;= 5 * Y;

ELSE

X :» 2 * Y;

END IF;
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Programming

1. Write Ada statements to carry out the following steps.

a. If Item is nonzero, multiply product by item and save the result in Product;
otherwise, skip the multiplication. In either case, display the value of Product.

b. Store the absolute difference of x and y in z, where the absolute difference is
(X - Y) or (Y - X), whichever is positive.

c. If X is zero, add 1 to zerocount. If x is negative, add x to Minussum. If x is
greater than zero, add x to piussum.

5.3 Tricks of the Trade: Tracing a Program or Algorithm

A critical step in the design of an algorithm or program is to verify that it is correct
before you spend extensive time entering or debugging it. Often, a few extra minutes
spent in verifying the correctness of an algorithm will save hours of testing time later.

One important technique, a hand trace or desk check (mentioned in Chapter 1),
consists of a careful, step-by-step simulation on paper of how the computer would exe
cute the algorithm or program. The results of this simulation should show the effect of
each step's execution using data that are relatively easy to process by hand.

As an example, the completely refined algorithm for the alphabetically first letter
problem appears next.

Refined Algorithm

1. Read three letters into chi, ch2, and ch3.

2. Save the alphabetically first letter of chi, ch2, and Ch3 in AlphaFirst.

2.1. Save the alphabetically first letter of chi and ch2 in AlphaFirst.

2.1.1. IF Chi precedes ch2 then

2.1.2. AlphaFirst gets Chi

ELSE

2.1.3 AlphaFirst gets Ch2

END IF;

2.2 Save the alphabetically first letter of ch3 and AlphaFirst in AlphaFirst.

2.2.1. IF ch3 precedes AlphaFirst then

2.2.2AlphaFirst gets Ch3

END IF;
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3. Display the alphabetically first letter.

Table 5.2 shows a trace of the algorithm for the data string the. Each step is listed
at the left in order of its execution. The values of variables that are referenced by a step
are shown after the step. If a step changes the value of a variable, the table shows the
new value. The effect of each step is described at the far right. For example, the table
shows that the step

Read three letters into chi, ch2, ch3

stores the letters t, h, and e in the variables chi, ch2, and ch3.

Table 5.2 Trace of First Letter Algorithm

Algorithm Step Chl Ch2 Ch3 AlphaFirst Effect
? ? 7

1. Read three letters T H E Reads the data

2.1.1

If chi precedes ch2
Is 'T' < 'H' ?

value is false

2.1.3 H 'H' is first so far

AlphaFirst gets Ch2

2.2.1

If ch3 precedes
AlphaFirst

Is 'E' < 'H' ?

value is true

2.2.2 E ' E' is first

AlphaFirst gets Ch3

3. Display AlphaFirst Displays
'B' is the

first letter.

The trace in Table 5.2 clearly shows that the alphabetically first letter, e, of the
input string is stored in AlphaFirst and displayed. To verify that the program is cor
rect, it would be necessary to select other data that cause the two conditions to evaluate
to different combinations of their values. Because there are two conditions and each has
two possible values (true or false), there are 2 x 2, or 4 different combinations that
should be tried. (What are they?) An exhaustive (complete) desk check of the program
would show that it works for all of these combinations.

Besides testing for the four cases discussed above, you should verify that the pro
gram works correctly for unusual data. For example, what would happen if all three let
ters or a pair of letters were the same? Would the program still provide the correct
result? To complete the desk check, it would be necessary to show that the program
does indeed handle these special situations properly.

In tracing each case, you must be very careful to execute the program exactly as it
would be executed by the computer. A desk check in which you assume that a particular
step will be executed a certain way, without explicitly testing each condition and trac
ing each program step, is of little value.
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■ Example 5.4

In later chapters you will see that it is useful to be able to order a pair of data values so
that the smaller value ends up in one variable (say, x) and the larger value ends up in
another (say, y). To understand the algorithm for doing this, imagine that you have a
blue cup filled with orange juice and a red one filled with milk. If you wanted to
exchange the contents of the two cups, you'd need to used a third cup, and you'd follow
these steps;

1. Pour the contents of the blue cup into the third cup.

2. Pour the contents of the red cup into the blue cup.

3. Pour the contents of the third cup into the red cup.

Now given two values stored in the variables x and y, the following if statement
reairanges any two values stored in these two variables as just described. If the two
numbers are ̂ ready in the proper order, the statement sequence is not executed.

IF X > Y THEN ~ switch X and Y

Temp := X; — Store old X in Temp
X ;= Y; — Store old Y in X
Y := Temp; — Store old X in Y

END IF;

The variables x, y, and Temp must, of course, all be the same type. As in the cups
analogy, an additional variable. Temp, is needed for storage of a copy of one of the val
ues. The trace in Table 5.3 illustrates the need for Temp, assuming that x and y have
original values of 12.5 and 5.0, respectively. If Temp were not used, one of the values
would be lost; be sure you understand why this is so. ■

Table 5.3 Trace of IF Statement to Order X and Y

Statement Part x y Temp Effect

123 Jjo ?

IF X > Y THEN 12.5 >5.0 is true

Temp ;= X; 12.5 Store old X in Temp

X  Y; 5.0 Store old Y in X

Y := Temp; 12.5 Store old X in Y
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EXERCISES FOR SECTION 5.3

Self-Check

1. Provide sample data and traces for the remaining three cases of the alphabeti
cally first letter problem. Also, test the special cases where two letters are the
same and all three letters are the same. What is the value of the conditions in
the latter case?

5.4 Problem Solving: Extending a Solution

Often, what appears to be a new problem will turn out to be a variation of one that you
have already solved. Consequently, an important skill in problem solving is the ability
to recognize that a problem is similar to one that you solved earlier. As you progress
through yoiu* education, you will start to build up a collection of programs and proce
dures. Whenever possible, you should try to adapt or reuse parts of a program that have
been shown to work correctly. In this section we show a Case Study that solves a sim
ple payroll problem; shortly we will introduce a second payroll problem whose solu
tion is an extension of the first one.

CASE

STUDY PAYROLL PROBLEM

Problem Specification
Develop a program to compute the pay owed in a given week to an employee of a com
pany. The gross pay is computed as the number of hours that employee worked times
the employee's wage per hour. The net pay is the gross pay minus the income tax that is
deducted and sent to the government. The tax is 15% of that part of the gross pay that
exceeds $100. That is, if the employee earns $250 in a given week, the tax is 15% of
$150, or $22.50.

Analysis
We begin by listing the data requirements and the algorithm.

Data Requirements

Problem Constants

maximum salary without a tax deduction (TaxBracket = lOO. oo)
tax rate (TaxRate = o.is)

Problem Inputs
hours worked (Houra : NonNegPloat)
hourly rate (Rate : NonNegFloat)
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Problem Outputs
gross pay (OrossPay I NonUegFloat)
tax (Tax: NonNegFloat)
net pay (NetPay : NonNegFloat)

Relevant Formulas

gross pay = hourly rate x hours worked
tax = tax rate x (^oss - tax bracket)
net pay = gross pay - tax

Unlike problem inputs, whose values may vary, problem constants have the same
values for each run of the program. Each constant value is associated with an identifier
(TaxRate and TaxBracket above). The program style display following this problem
describes the reason for this association.

Design
The structure chart for this algorithm is given in Fig. 5.4.

Initial Algorithm
1. Display user instructions.

2. Enter hours worked and hourly rate.

3. Compute gross salary.

4. Compute net salary.

5. Display gross salary, tax, and net salary.

Now let's write the refinement of algorithm step 4 as a decision step.

Step 4 Refinement

4.1. IF GrossPay > TaxBracket then
Deduct a tax of TaxRate x (GrossPay - TaxBracket)
ELSE

Deduct no tax

END IF;

Compute
gross pay

Compute
net pay

Display user
Instructions

Display
results

Find gross
and net pay

Read the

data

Figure 5.4 Structure Chart for Payroll Program
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Test Plan
To test this program, run it with several sets of data. One data set should yield a gross
salary greater than $100.00, and the other should yield a gross salary less than $100.00.
You should also test the program with a data set that yields a gross salary that is $0.00,
one that yields a gross salary of exactly $100.00, and at least one for invalid inputs.

Implementation
The payroll program is shown in Program 5.3.

Program 5.3 Payroll Program

WITH Ada.Text_I0;
WITH Ada.Float_Text_IO;
PROCEDURE Weekly_Pay IS

— I Computes and displays gross pay and net pay given an hourly
—-j rate and number of hours worked. Deducts a tax of 15% of
— I gross salary exceeding $100.
— I Author: Michael Feldman, The George Washington University
— I Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

TaxBracket : CONSTANT NonNegFloat := 100.00;
— maximum salary for no deduction

TaxRate: CONSTANT NonNegFloat := 0.15; — tax rate

Hours: NonNegFloat; — inputs - hours worked, hourly rate
HourlyRate: NonNegFloat;
GrossPay: NonNegFloat; — outputs - gross pay, net pay
Tax: NonNegFloat;
NetPay: NonNegFloat;

BEGIN ~ Weekly_Pay

— Enter Hours and Rate

Ada.Text_IO.Put (Item =»> "Hours worked > ");
Ada.Float_Text_IO.Get (Item => Hours);
Ada.Text_IO.Put (Item => "Hourly rate $");
Ada.Float_Text_IO.Get (Item => HourlyRate);
Ada.Text_IO.New_Line;

— Compute gross salary
GrossPay := Hours * HourlyRate;

— Compute tax, euid net salary
IF GrossPay > TaxBracket THEN
Tax :° TaxRate * (GrossPay - TaxBracket);
NetPay := GrossPay - Tax; — Deduct a tax amount

ELSE

NetPay := GrossPay; — Deduct no tax
END IF;

— Display Results
Ada.Text_IO.Put (item => "Gross pay is $");
Ada.Float_Text_lO.Put(Item => GrossPay, Fore => 1, Aft => 2, Exp =>0);
Ada.Text_lO.New_Line;
Ada.Text_IO.Put (Item => "TaxDeduction is S");
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Ada.Float_Text_lO.Put (Item «> Tax, Fore => 1, Aft => 2, Exp =>0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => "Net pay is $");
Ada.Float_Text_IO.Put (Item => NetPay, Fore »> 1, Aft »> 2, Exp => 0);
Ada.Text_IO.New_Line;

END Weekly_Pay;

Sample Run

Hours worked >35

Hourly rate $7.50

Gross pay is $262.50
TaxDeduction is $24.38
Net pay is $238.13

Testing
The sample run shows one set of test data from the test plan.

PROGRAM

STYLE
Use of Constants

The constants Tax and TaxSracket appear in the preceding if statement and in
Program 5.3. We might have been tempted to insert the constant values (100.00
and 0.15) directly in the if statement, writing

IF GrossPay > 100.00 THEN
Tax GrossPay - 0.15 * (GrossPay - 100.);
NetPay := GrossPay — Tax;

ELSE

NetPay := GrossPay;
END IF;

There are two reasons why it is better style to use the constants as we did
originally. First, the original if statement is easier to understand because it uses
the names Tax and TaxBracket, which are descriptive, rather than numbers,
which have no intrinsic meaning.

Second, a program that is written with constants is much easier to modify
than one that is not. If the tax bracket and tax value were to change—and
tax-related things always change—we would need to change only the constant
declaration. If the constant values were inserted directly in the if statement, as
was just shown above, we would have to change them not only in the if state
ment but also in all the other statements in which they appeared. In a program of
realistic length, finding all these occurrences would be a tedious and error-prone
process.

For both reasons we recommend that you try to avoid dispersing constant val
ues through your programs; instead, use constants that are declared by name.
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Extending the Problem Solution

An experienced programmer usually writes programs that can be easily changed or
modified to fit other situations. One reason for this is that programmers (and program
users) often wish to make slight improvements to a program after having used it. If the
original program is designed carefully from the beginning, the programmer will be able
to accommodate changing specifications with a minimum of effort. In the next problem
it is possible to insert a new decision step rather than having to rewrite the entire pro
gram.

CASE

STUDY COMPUTING OVERTIME PAY

Problem Specification
Develop a payroll program so that employees who work more than 40 hours a week are
paid 1.5 times their hourly rate for all overtime hours.

Analysis
This problem is an extension of the payroll problem solved by Program 5.3. Employees
who work more than 40 hours should be paid one rate for the first 40 hours and a higher
rate for the extra hours over 40. Employees who work 40 hours or less should be paid
the same rate for all hours worked. We can solve this problem by replacing step 3 (com
pute gross pay) in the original algorithm with a decision step that selects either a
straight pay computation or a computation with overtime pay.

Data Requirements

Problem Inputs
hours worked (Hours : NonNegFloat)
hourly rate (Rate ; NonNegFloat)

Problem Outputs
gross pay (Gross : NonNegFloat)
tax (Tax: NonNegFloat)
net pay (Net : NonNegFloat)

Problem Constants

maximum salary for no tax deduction (TaxBracket = lOO. oo)
amount of tax deducted (Tax = 25.00)
maximum hours without overtime pay (MaxHours = 40.0)

Relevant Formulas

gross pay = hourly rate x hours worked
tax = tax rate x (gross - tax bracket)
net pay = gross pay - tax

Desi^
The critical change to the algorithm involves modifying step 3 of the algorithm. The
algorithm is repeated next, followed by a new refinement for step 3.



174 Decision Statements: Writing Functions and Packages

initial Agorithm
1. Display user instructions.

2. Enter hours worked and hourly rate.

3. Compute gross pay including any overtime pay.

4. Compute net pay.

5. Display results.

Algorithm Refinements

Step 3 Refinement

3.1. IF no overtime hours were worked then

3.2. Compute GrossPay as Hours * HourlyRate

ELSE

3.3. Compute GrossPay as (the pay for 40 hours) + (the pay for overtime hours)

END IF;

Implementation
As shown below, we should replace the assignment statement in Program 4.1 that com
putes gross pay by

— Compute gross pay including any overtime pay
IF Hours <B HaxHours THEN

GrossPay :<= Hours * HurlyRate;
ELSE

GrossPay
(MaxBours * HourlyRate) +
((Hours - HaxHours) * (1.5 * HourlyRate));

END IF;

If the condition Hours <» HaxHours is true, there is no overtime pay, so gross pay is
computed as before; otherwise, GrossPay is computed by using the second assignment
statement above. The pay for the first 40 hours is added to the pay earned for the over
time hours (Hours - HaxHours).

Note how we have used parentheses in the overtime calculation to make our inten
tion clear. Modifying Program 53 as discussed here is left as an exercise.
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EXERCISES FOR SECTION 5.4

Self-Check

1. Trace Program 5.3 when Hours is 30.0 and HouriyRate is 9.00. Perform the
trace when Hours is 20.0 and Rate is 6.00.

2. Rewrite the algorithm for the payroll problem so that the computation of gross
salary is performed in two steps rather than in one. First compute the base pay
for all hours worked. Then add in an extra amount only if overtime hours were
worked.

5.5 Control Structures: The Multiple-Alternative IF Statement

Until now, we have used if statements to implement decisions involving one or two
altematives. In this section you will see how the if statement can be used to implement
decisions involving more than two altematives.

■ Example 5.5

The following if statement has three alternatives. It causes one of three variables (Num-
Pos, NumNeg, or Numzero) to be mcreased by 1 depending on whether x is greater than 0,
less than 0, or equal to 0, respectively. This statement might be part of a program to
keep track of the number of positive, negative, and zero values in a set of values. It
assumes that all the variables have been properly initialized. The word elsif is an Ada
reserved word and is not a typographical error.

— Increment NumPos, NumNeg, or NumZero depending on X
IF X > 0 THEN

NumPos := NumPos + 1;

ELSIF X < 0 THEN

NumNeg NumNeg + 1;
ELSE — X = 0

NumZero := NuraZero + 1;

END IF;

The execution of this if statement proceeds as follows: The first condition (x > o)
is tested; if it is true, the statement NumPos ; = NumPos+i increments NumPos by 1 and the
rest of the if statement is skipped. If the first condition is false, the second condition (x
< o) is tested; if it is tme, NumNeg is incremented; otherwise, Numzero is incremented. It
is important to realize that the second condition is tested only when the first condition
is false. A trace of the if statement for x = -7 is shown in Table 5.4.
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Table 5.4 Trace of IF Statement in Example 5.5 for X = -7

Statement Part X Effect

IF X > 0 THEN

ELSIF X < 0 THEN

NuinNeg := NumNeg + 1;

-7

-7 > 0 is false

-7 < 0 is true

Add 1 to NumNeg

SYNTAX

DISPLAY
IF Statement (Multiple Alternatives)

Form:

IF condition^ THEN
statement sequence^

ELSIF condition2 THEN
statement sequence^

ELSIF conditioSj^ THEN
statement seguenceu

ELSE

Statement sequence^
END IF;

Example:

IF K >= 0 THEN

Ada.Text IO.Put(Item=>"Positive");
ELSIF N » 0 THEN

Ada.Text IO.Put(Item=>"Zero");
ELSE ~

Ada.Textile.Put(Item=>"Negative");
END IF;

biterpretation:

The conditions in a multiple-alternative if statement are evaluated from top to
IxJttom until a true value is obtained. The statement sequence following the furst
true condition is executed and the rest of the if statement is skipped. If every
condition is false, statement sequence^ (between else and end) is executed.

Notes:

At most, one statement sequence is executed. If else and statement sequence,^
are present, exactly one statement sequence is always executed. If else and state
ment sequence„ are omitted, no statement sequence is executed when every
expression is false.

Also note the spelling required by Ada: els if is spelled without a second e
or space; end if must have a space between end and if.
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PROGRAM

STYLE
Writing a Multiple-Alternative IF Statement

When writing a multiple-alternative if statement, align the reserved words if,
ELSE, ELSiF, and END IF and indent each statement sequence consistently. This is
done to make the if statement more readable.

Order of Conditions

Very often, the conditions in a multiple-alternative decision are not mutually exclusive.
This means that it may be possible for more than one condition to be true for a given
data value. If this is the case, the order of the conditions becomes very important
because only the statement sequence following the first true condition is executed.

■ Example 5.6

Table 5.5 describes the assignment of letter grades (as commonly used in the United
States) based on the score on a 100-point examination.

Table 5.5 Letter Grades In U.S. Universities

Exam Score Grade Assigned

90 and above A (excellent)

80-89 B (very good)

70-79 C (fair)

60-69 D (barely passing)

below 60 F (failing)

The following multiple-alternative if statement displays the letter grade assigned
according to this table. The last three conditions are true for an exam score of 85; how
ever, a grade of B is assigned because the first true condition is score >= 80.

— correct grade assignment
IF Score >=90 THEN

Ada.Text_I0.Put (Item=>'A');
ELSIF Score >= 80 THEN

Ada.Text_I0.Put (Item=>'B');
ELSIF Score >= 70 THEN

Ada.Text_IO.Put (Item=>'C);
ELSIF Score >= 60 THEN

Ada.Text_I0.Put (Item=>'D');
ELSE ~

Ada.Text_IO.Put (Item=>'F');
END IF;
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It would be wrong to write the decision as shown next. Ail passing exam scores (60
or above) would be incorrectly categorized as a grade of D because the first condition
would be true and the rest would be skipped. Writing the if this way would be a mis
translation of the table into code.

— incorrect grade assignment
IF Score >=60 THEN

Ada.Text_IO.Put (Item=>'D')
ELSIF Score >= 70 THEN

Ada.Text_IO.Put (Item=>'C)
ELSIF Score >=80 THEN

Ada.Text_IO.Put (ltem=>'B')
ELSIF Score >= 90 THEN

Ada.Text_IO.Put (Item=>'A•)
ELSE

Ada.Text 10.Put (Item=>'F')
END IF;

■ Examples.?

You can use a multiple-alternative if statement to implement a decision table that
describes several altematives. Let's say that you are an accountant setting up a payroll
system for a small firm. Each line of Table 5.6 indicates an employee's salary range and
a corresponding base tax amount and tax percentage. Given a salary amount, the tax is
calculated by adding the base tax for that salary range and the product of the percentage
of excess and the amount of salary over the minimum salary for that range.

Table 5.6 Tax Table for Example 5.7

Bracket Salary Range Base Tax Percentage of Excess

1 0.00-1499.99 0.00 15%

2 1500.00-2999.99 225.00 16%

3 3000.00-4999.99 465.00 18%

4 5000.00-7999.99 825.00 20%

5 8000.00-14999.99 1425.00 25%

For example, the second line of the table specifies that the tax due on a salary of
$2000.00 is $225.00 plus 16% of the excess salary over $1500.00 (i.e., 16% of
$500.00). Therefore the total tax due is $225.00 plus $80.00, or $305.00.

The IF statement in Fig. 5.5 implements the tax table. If the value of salary is
within the table range (0.00 to 14999.99), exactly one of the statements assigning a
value to Tax will be executed. A trace of the if statement for salary = $2000.00 is
shown in Table 5.7. The value assigned to Tax is $305.00, as desired.
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Figure 5.5 IF Statement for Tax Table 5.6

IF Salary <0.0 THEN

Ada.Text__IO.Put (Item=>"Error! Negative salary S");
Ada.Float.Text_10.Put (Itein=>Salary, Fore=>l, Aft=»>2/ Exp»0);
Ada. Text__IO. New__Line;

ELSIF Salary < 1500.00 THEN — first range
Tax ;= 0.15 * Salary;

ELSIF Salary < 3000.00 THEN — second range
Tax := (Salary - 1500.00) * 0.16 + 225.00;

ELSIF Salary < 5000.00 THEN — third range
Tax ;= (Salary - 3000.00) * 0.18 + 465.00

ELSIF Salary < 8000.00 THEN — fourth range
Tax := (Salary - 5000.00) * 0.20 + 825.00;

ELSIF Salary < 15000.00 THEN — fifth range
Tax (Salary - 8000.00) * 0.25 + 1425.00;

ELSE

Ada.Text_lO.Put (Item=>"ErrorI Too large salary $");
Ada.Float.Text_IO.Put (Itein=>Salary, Fore=>l, Aft=>2, Exp=0);
Ada.Text IO.New_Line;

END IF; "■

Table 5.7 Trace of Rg. 5.5 for Salary = $2000.00

Statement Part Salary Tax Effect

2000.00

IF Salary < 0.0

ELSIF Salary < 1500.00

ELSIF Salary < 3000.00

Tax : =
(Salary - 1500.00)

* 0.16

+ 225.00

2000.0 < 0.0 is false

2000.0 < 1500.0 is false

2000.0 < 3000.0 is true

difference is 500.00

product is 80.00

sum is 305.00

PROGRAM
STYLE

Validating the Value of Variables
It is important to validate the value of a variable before you perform computa
tions using invalid or meaningless data. Instead of computing an incorrect tax
amount, the if statement above displays an error message if the value of salary
is outside the range covered by the table (0.0 to 14999.99). The first condition is
used to detect negative salaries, and an error message is displayed if salary is
less than zero. All conditions evaluate to False if salair is greater than
14999.99, and the alternative following else displays an error message.
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Nested IF Statements

The statement sequence inside a control statement can contain another control state
ment. For example, an IF statement can contain another IF. The second control state
ment is said to be nested inside the first control statement. The inner control statement

can itself contain a control statement; in fact, there is no theoretical limit on the depth
to which control statements can be nested.

The ability to nest control statements allows us to write very sophisticated r
grams. In Chapters 5 and 6 we will introduce many examples of if statements ̂
inside loops and vice versa. For the time being, consider the following example

■ Example 5.8

Many U.S. secondary schools and universities use the Grade Point Average
summarize each student's achievement. Each subject receives a grade of A tl F;
then each grade is assigned a numerical weight: A is weighted 4.0, B is 3.0, C .0, D
is 1.0, and F is 0.0. Then the CPA is formed by summing all the subject we ^.its and
dividing by the number of subjects.

Depending on a student's CPA, the following fragment—which uses nested if
displays one of three messages. If the CPA is less than or equal to 1.5, the

painful message following the second else is displayed. If CPA is greater than 1.5, the
inner if statement is executed, and a more pleasant message is displayed.

IF CPA >1.5 THEN

IF GPA <3.0 THEN

Ada.TextIO.Put(Item => "Progressing satisfactorily");
ELSE

Ada.Text_IO.Put
(Item => "Made the Honors List - send money");

END IF;

ELSE

Ada.Text_IO.Put (Item => "Flunked out");
END IF;

The following nested statements have the same effect as the ones above. Again, the
inner if statement is executed when GPA exceeds 1.5.

IF GPA <=1.5 THEN

Ada.Text_IO.Put (Item => "Flunked out");
ELSE

IF GPA <3.0 THEN

Ada.Text_I0.Put (Item => "Progressing satisfactorily");
ELSE

Ada.Text_IO.Put
(Item => "Made the Honors List - send money");

END IF;

END IF;

Nested if statements can sometimes be confusing to vmte and to read. Often, a sin
gle multiple-alternative if statement can replace nested if statements, resulting in a
more readable program. Verify for yourself that the following if statement has the
same effect as the earlier nested if statements.



5-5 Control Structures: The Multiple-Alternative IF Statement 181

IF GPA <=1.5 THEN

Ada.Text_IO.Put (Item => "Flunked out");
ELSIF GPA <3.0 THEN

Ada.Text_lO.Put (Item => "Progressing satisfactorily");
ELSE

Ada.Text_IO.Put (Item => "Made the Honors List - send money");
END IF; ■

PROGRAM

STYLE
Indentation Conventions for Nested Control Structures

It is a good idea to develop a consistent indentation style for nested control struc
tures. Note in the preceding examples that the entire nested if is indented the
same amount as the put following the else.

Developing a consistent indentation style is one way of making your pro
grams clear and easy to read. Many companies have adopted companywide or
projectwide programming style standards that include indentation rules. This
makes it easy for programmers to read each other's source code. There is no one
"best" indentation rule; the most important principle is consistency.

In this book we indent each structure several spaces deeper than the structure
within which it is nested. The complete program examples use a consistent
indentation of two spaces, and the code fragments in the text are usually indented
a bit more for added clarity. We recommend an indentation convention similar to
that used in the programs. If your teacher states different rules, follow them con
sistently.

EXERCISES FOR SEaiON 5.5

Self-Check

1. Trace the execution of the if statement in Fig. 5.7 for salary = 13500.00.

2. What would be the effect of reversing the order of the first two conditions in
the IF statement of Fig. 5.7?

Programming

1. Rewrite the if statement for Example 5.8 using only the relational operator <
in all conditions.
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2. Implement the following decision table using a multiple-alternative if state
ment. Assume that the grade point average is within the range 0.0 - 4.0.

Grade Point Average Transcript Message

0.0-0.99 Failed semester — registration suspended

1.0-1.99 On probation for next semester

2.0-2.99 (no message)

3.0-3.49 Deans list for semester

3.5-4.0 Highest honors for semester

5.6 System Structures: Using Ada's Math Library

We use computers for many kinds of applications, some of which require that we actu
ally write programs to do mathematical computations. It is therefore useful to have
available a set of the usual elementary functions such as square root, sine, cosine, and
so on. Ada provides such a set of functions in a standard library called Ada.Numer
ics. Eiementary_Punctions. The full description of this standard library package is
found in Appendix E; Program 5.4 shows how one of the its functions, sqrt, is used to
compute a square root. The name of its Float parameter (and that of the other functions
in the library) is x.

Program 5.4 Computing Several Square Roots

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
WITH Ada.Numerics.Elementary_Functions;
PROCEDURE Square Roots IS

Illustrates the squcure root function provided by
Author: Michael Feldman, The George Washington University
Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

First : NonNegFloat;
Second: NonNegFloat;
Answer: NonNegFloat;

BEGIN — Square_Roots

Ada.Text_IO.Put (Item => "Please enter first number > ");
Ada.Float_Text_IO.Get(Item => First);
Answer := Ada.Numerics.Elementary_Functions.Sqrt(X => First);
Ada.Text_I0.Put (Item => "The first number's square root is ");
Ada.Float_Text_IO.Put (Item => Answer, Fore => 1, Aft => 5, Exp => 0);
Ada.Text 10.New Line;
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Ada.Text_IO.Put (Item => "Please enter second number > ");
Ada.Float_Text_IO.Get(Item => Second);
Ada.Text_IO.Put (Item => "The second number's square root is ");
Ada.Float_Text_IO.Put
(Item => Ada.Numerics.Elementary_Functions.Sqrt (X => Second),
Fore => 1, Aft => 5, Exp => 0);

Ada.Text_IO.New_Line;

Answer := Ada.Numerics.Elementary_Functions.Sqrt(X => First + Second);
Ada.Text_IO.Put
(Item => "The square root of the sum of the numbers is ");

Ada.Float_Text_lO.Put (Item => Answer, Fore => 1, Aft => 5, Exp =>0);
Ada.Text_IO.New_Line;

END Square_Roots;

Sample Run

Please enter first number > 9

The first number's square root is 3.00000
Please enter second number >16

The second number's square root is 4.00000
The square root of the sum of the numbers is 5.00000

As you can see from the sample run, this program prompts the user for two float
ing-point values and computes the square roots of the two numbers and of their sum.
Note in the program that the second call of the square root function is nested in the Put
statement and that in the third call, the parameter is the expression First + second.
This is just to illustrate that function calls can be nested in other expressions and that
expressions can be nested in function calls.

In Chapter 8 we'll come back to the math library.

5.7 System Structures: Writing Functions

In Chapter 4 you saw how to use some functions in a predefined package, namely, the
Month, Day, and Year functions in the standard package Ada.calendar; in the previous
section you saw how to use the square root function from another standard package,
Ada.Numerics.Eiementary_Functions. This section introduces the very important
subject of how to write such functions; the next section shows how to put functions in
packages for yourself and others to use again later.

Function Specifications

In general, a function is written so as to require the caller to supply some values to it.
When called, the function performs its desired computation and then returns a result to
the calling program. The line indicating the name of the function, the list of expected
parameters, and the type of the returned result is called a function specification or
sometimes declaration. Yovl saw three such specifications in Chapter 4:

FUNCTION Year (Date: Time) RETURN Year_Number;
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FUNCTION Month (Date: Time) RETURN Month_Nuinber;
FUNCTION Day (Date: Time) RETURN Day_Number;

The specification for Year tells the compiler—and the reader—that this function
must be called with one value of type Time and that it returns a result of type
Year_Number to the program that calls it. The other two specifications are similar.

Here is a specification for a function to find the larger of two integer values and
return it to the calling program;

FUNCTION Maximum(Value1, Value2; Integer) RETURN Integer;

Notice that between the parentheses is a list of the expected parameters and that after
the word return is the type of the returned result. In this case the function is to deter
mine which of the two parameters is larger and return it as the result.

Calling a Function

Recall from Chapter 4 that we were able to extract the year from a system-generated
time value by writing

ThisYear := Calendar.Year(Date => RightNow);

where This_Year was declared as a variable of type Ada.calendar.Year__Number and
RightNow was a variable of type Ada.calendar.Time. Notice that between the paren
theses is an association of the name of the formal parameter (Date) with the variable
containing the value of the actual parameter (RightNov^

How could we use our function Maximum in a similar way? Given an integer vari
able Larger, writing

Larger := Maximum (Valuel => 24, Value2 => -57);

stores the value 24 in the variable Larger because that is the larger of the two values.
Given two integer variables Gradei and Grade2, writing

Gradel := -24;
Grade2 ;= 113;

Larger := Maximum(Valuel=>Gradel,Value2=>Grade2);

stores in Larger the value 113, again because that is the larger value. Notice again how
the formal parameters valuei and value2 are associated with the actual parameters
Gradel and Grade2, and notice that it is improper to write, for example.

Larger := Maximum (Gradel => Valuel ,Grade2 => Value2);

because valuei is the formal parameter and Gradel is the actual. The formal parameter
comes first, followed by the actual parameter.

The difference between these two examples is that the function Year already exists
(in package Ada. calendar) but the function Maximum does not. We have a specification
indicating the name of the function, how it is to be called, and what it returns, but we do
not yet actually have a function that will find the larger number.
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Function Bodies

To complete our function Maximum, we need to write a function body, that is, a small
program in Ada in a form that the compiler will recognize as a function. Here is the
desired function body:

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;

BEGIN

IF Valuel > Value2 THEN

Result := Valuel;

ELSE

Result := Value2;

END IF;

RETURN Result;

END Maximum;

This function body has the basic form of an Ada program. There is a header line
similar to the first line of a program; this line ends with the word is. Next there is a sec
tion of declarations; here we are declaring only a single program variable Result. Fol
lowing the word begin is the statement sequence of the function body, and the function
body ends with an end. The if statement in the function body stores in the variable
Result the larger of vaiuei and value2. Finally, the value in Result is returned to the
calling program as the function result. This value can be stored directly in a variable of
the calling program, as in the examples above, or used as part of an expression imple
menting a larger calculation.

The variable Result is called a local variable of the function. Because it is declared

inside the function body, it has no existence outside the function body. It is good prac
tice when writing a function to put the variables that are needed by the function inside
the function body so that they are the private property of the function and cannot be
seen or disturbed by any other program.

To see an example of how a function is declared as part of a larger program, con
sider Program 5.5, in which the user is prompted to enter two integer values
Firstvalue and secondvaiue. These values are then passed to the function Maximum,
which returns the larger value to the main program. The answer is then displayed. The
function Maximum is declared in the declaration part of the main program.

Program 5.5 Finding the Larger of Two Integer Values with a Function

WITH Ada.Text_I0;
WITH Ada. I iiteger_Text_IO;
PROCEDURE Max_TWO IS

— I Finds the larger of two integer values using our
— 1 Maximum function.
— I Author: Michael Feldman, The George Washington University
— I Last Modified: July 1998

Firstvalue: Integer; — input
SecondValue: Integer; — input
Larger: Integer; — output

— function specification
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FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;

— function body
FUNCTION Maximum (Valuel, Value2; Integer) RETURN Integer IS
Result: Integer;

BEGIN

IF valuel > Value2 THEN

Result := Valuel;
ELSE

Result := Value2;
END IF;

RETURN Result;

END Maximum;

BEGIN

Ada.Text_IO.Put (Item => "Please enter first integer value > ");
Ada.Integer_Text_lO.Get (Item => FirstValue);
Ada.Text_IO.Put (Item => "Please enter second integer value > ");
Ada.Integer_Text_IO.Get (Item => SecondValue);

Larger := Maximum(Valuel='>FirstValue, Value2=>SecondValue);

Ada.Text_IO.Put (Item => "The larger number is ");
Ada.Integer_Text_IO.Put (Item => Larger, Width =>1);
Ada.Text_IO.New_Line;

END Max_Two;

Sample Run

Please enter first integer value > 374
Please enter second integer value > -158
The larger number is 374

SYNTAX

DISPLAY
Function Specification

Form:

FUNCTION fname ( formal parameters ) RETURN result type ;

Example:

FUNCTION Square (Num ; Integer) RETURN Integer;

Interpretation:

The function fname is declared. The list of formal parameters is enclosed in
parentheses. The data type of the function result is indicated by the identifier
result type.
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DISPLAY
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Function Body

Form:

FUNCTION fname ( formal parameters ) RETURN result type IS
local declaration section

BEGIN

stateiRent sequence

END fname;

Example:

FUNCTION Square (Num : Integer) RETURN integer IS
Result: Integer;

BEGIN

Result ;= Num * Num;

RETURN Result;

END Square;

Interpretation:

The function fhanie is declared. The list of formal parameters is enclosed in
parentheses. The data t3rpe of the function result is indicated by the identiher
result type. Any identifiers that are declared in the local declaration section exist
only during the execution of the function. The function body describes the data
manipulation to be performed by the function. At least one return statement
must be executed each time the function is called.

Note 1:

The result type is not restricted in Ada. It may be any type.

Note 2:

If there are no parameters, you should omit the formal parameters and parenthe
ses.

Note 3:

The first line of the function body must agree exactly with the function specifica
tion. except that the specification ends with a semicolon and the first line of the
body ends with is. The way the line ends indicates to the compiler whether it
should treat the line as a specification or as the first line of a body. It is therefore
important not to confuse the two endings, lest you confuse the compiler.

EXERCISES FOR SECTION 5.7

Self-Check

1. In programming, what is a function? Briefly describe why you think functions
are useful.

/
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5.8 System Structures: Writing a Package

As you have seen, it is possible to declare a function as part of a program. It is certainly
permitted to declare a function like this, and doing so provides an easy way to test the
function. However, the real usefulness of functions—and of procedures, for that mat
ter—is achieved when they are collected together as a group of related items and placed
in a package. A package is compiled and placed in a library, either your own personal
program library or, in a group project, the team's library. Once a package is compiled,
it—and all the resources in it—is available for use by means of a simple context clause
(with statement).

Package Specifications and Package Bodies

Recall from Section 4.7 that a package consists of two files: the specification and the
body. The specification is like a table of contents for the package, listing all the differ
ent resources (types, functions and procedures) that are available in the package; the
package body contains the actual Ada code for each of these resources.

In the case of the standard packages (Ada.Text_io and Ada.calendar, for exam
ple) the package body source files are not always supplied with the compiler, since
these may be trade secrets of the compiler developer. In this case, the executable (pre
compiled) version of the package body is supplied. These are usually installed along
with the compiler and are usually available to you without further action on your part.

In the case of programmer-defined packages, it is the programmer's responsibility
to write both the specification file and the body file. This book shows a number of pro
grammer-defined packages, for which the Ada source code is given.

Ada requires that a package be separated into these two files to provide a mecha
nism for encapsulation, which is defined as separation of specification and implemen
tation. The specification serves as a "contract" between the package and the programs
that use the package. Writing this contract in one file, then providing the contract
"deliverables" in a second file, encapsulates the implementation of the package. Encap
sulation is one of the important principles in object-oriented programming (OOP);
when you develop packages, you are, in fact, doing one form of OOP.

A Package Containing Minimum and Maximum Functions

Finding the larger or smaller of two numbers is frequently required in programming.
The programming task would therefore be made easier if we could write functions once
to find the minimum and maximum, then package them up for future use. Our first step
is to write a package specification. Remember that the specification is a table of con
tents for the package. This specification can be compiled as it stands, just to be sure that
there are no compilation errors. The package specification is shown as Program 5.6.
Note again the use of preconditions and postconditions to document the functions.

Program 5.6 Package Specification for Min_Max

PACKAGE Min_Max IS

— 1 specifications of functions provided by Min_Max package
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— I Author: Michael Feldman, The George Washington University
— I Last Modified: July 1998

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
— Pre: Valuel and Value2 have been assigned values
— Post: Returns the smaller of the two input values

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
— Pre; Valuel and Value2 have been assigned values
— Post: Returns the larger of the two input values

END Min_Max;

We now must write the package body. We can incorporate the Maximum function
written above. Also, we can write the Minimum function very easily: Given the Maximum
function, writing a Minimum function is just a matter of making a change to the inequal
ity in the if statement:

IF Valuel < Value2 THEN

Result :- Valuel;

ELSE

Result ;= Value2;

END IF;

Program 5.7 gives the entire package body. Be certain that you understand that the
package specification contains the function specifications and the package body con
tains the function bodies.

Program 5.7 Package Body for Min_Max

PACKAGE BODY Min__Max IS

— I bodies of functions provided by Min_Max package
— I Author: Michael Feldman, The George Washington University
— I Last Modified: July 1998

FUNCTION Minimum (Valuel, Value2: integer) RETURN integer IS
Result: Integer;

BEGIN

IF Valuel < Value2 THEN

Result := Valuel;

ELSE

Result Value2;

END IF;

RETURN Result;

END Minimum;

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;

BEGIN

IF Valuel > Value2 THEN

Result :- Valuel;

ELSE
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Result Value2;
END IF;
RETURN Result;

END Maximum;

END Min_Max;

Package Spedficatioil

Fmm: ' ,

PACKAGE pnsune IS
list of specifications of resources
provided by the package

END pname;

SYNTAX

DISPLAY

Example:

PACKAGE Min_Max IS
FUNCTION Minimum (Valtiel, Value2: Integer) RETURN Integer;
FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;

END Min_Max;

InterpretatioB:

The package specification gives a list or *table of contents" of the resources to be
provided by the package. These resources can be procedures, fimctions, and Qrpes
(s^ Section 4.6 for an example of a package providing types). Tlie package spec
ification must be compiled befwe the corresponding body is compiled.

SYNTAX

DISPLAY
Package Body

Farm:

PACKAGE BODY pname IS
aeguence of function and procedure bodies
implementing the resources listed in the .
package specification for pname

END pname;

Example:

Program 5.7 serves as an example. For brevity we will not repeat it here.
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Interpretation:

The resources (functions and procedures) that are promised in the specification
must be delivered in the corresponding package body. If any are missing, a com
pilation error will result.

Note:

The function and procedure specifications in the package specification must
agree exactly with the corresponding function and procedure headers in the pack
age body. Specifically, the names, types, and order of parameters must agree
exactly. A formal parameter named value i in the specification cannot, for exam
ple. be called vaii in the body. Ada compilers are very fussy about this. Care
taken here will avoid compilation errors.

CASE

STUDY FINDING THE LARGEST AND SMALLEST OF THREE

NUMBERS

Problem Specification
Find the largest and smallest of three numbers to be provided by the user.

Analysis
We cannot directly compare the three numbers, so, as in Program 5.2, we will compare
them pairwise.

Data Requirements

Problem Inputs
the three numbers (Numi, Nuin2, Num3: integer)

Problem Outputs
the largest and smallest numbers (Largest, smallest: integer)

Design
Instead of doing the comparisons directly, we can use the package Min_Max to find the
larger and smaller of pairs of numbers. Given the three numbers, we can find the
smaller of the first two numbers, then find the smaller of this result and the third num
ber. We can apply the same approach to finding the largest number.

Initial Algorithm
1. Prompt the user for the three numbers.

2. Find the largest of the three numbers.

3. Find the smallest of the three numbers.

4. Display the results.
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Algorithm Refinements

Step 2 Refinement:

2.1. Let Largest temporarily be the larger of Numi and Num2.

2.2. Now let Largest be the larger of itself and Num3.

Step 3 Refinement:

3.1. Let Smallest temporarily be the smaller of Nvimi and Num2.

3.2. Now let Smallest be the smaller of itself and Num3.

Test Plan
Test with different orderings of three integers to be certain that the maximum and mini
mum are always selected regardless of the original ordering.

Implementation
The coding is straightforward because our minimum and maximum functions already
exist in the package. Assuming that the specification and body for Min_Max have both
been successfully compiled, Program 5.8 solves the problem. Note the context clause

WITH Min_Max;

at the beginning of the program, along with the other context clauses for the input/out
put packages.

Program 5.8 Find the Minimum and Maximum of Three Integers

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Min_Max;
PROCEDURE Min_Max_Three IS

Finds the largest and smallest of three integer values
using the Minimum and Maximum functions from package Min_Max
Author: Michael Feldman, The George Washington University
Last Modified: July 1998

Nural: Integer; -- progreun inputs
Num2: Integer;
Num3: Integer;
Largest: Integer; — program outputs
Smallest: Integer;

BEGIN — Min_Max_Three

— prompt user for inputs
Ada.Text_IO.Put (Item => "Please enter first integer value > ");
Ada.Integer_Text_IO.Get (Item => Numl);
Ada.Text_IO.Put (Item => "Please enter second integer value > ");
Ada.Integer_Text_IO.Get (Item => Num2);
Ada.Text_IO.Put (Item => "Please enter third integer value > ");
Ada.Integer_Text_IO.Get (Item => Num3);
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— find largest of the three inputs
Largest :» Min_Max.Maximuin(Valuel=>Nuinl, Value2=>Num2);
Largest ;= Min_Max.Maxiinum(Valuel=»>Largest, Value2a>Hum3);

— find smallest of the three inputs
Smallest Min__Max.Minimum(Value 1 »>Numl, Value2a>Num2);
Smallest := Min_Max.Miniraum(Valuel=>Smallest, Value2=>Num3)j

— display results
Ada.Text_IO.Put (Item => "The smallest number is ");
Ada.Integer_Text_lO.Put (Item => Smallest, Width => I);
Ada.Text_IO.Put (Item => " and the largest number is ");
Ada.Integer_Text_IO.Put (Item => Largest, Width =>1);
Ada.Text_IO.New_Line;

END Min_Max_Three;

Sample Run

Please enter first integer value > -29
Please enter second integer value >574
Please enter third integer value > 0
The smallest number is -29 and the largest number is 574

Testing
Once again, the sample run shows just one test case.

EXERCISES FOR SEaiON 5.8

Self-Check

1. What is the difference between a package specification and a package body?
Why do we require both?

5.9 Tricks of the Trade: Common Programming Errors

When writing if statements, remember not to put a semicolon after then or else and
always to put semicolons after the other statements. Also do not forget the required end
IF; at the end of the entire structure. Also remember that the end of an if statement is
always written end if (two words), while the alternatives of a multiple-alternative if
are written elsif (one word, only one e).

When writing multiple-alternative if statements, be carefiil to put the alternatives
in an order that is correct for the problem being solved.
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When writing a package, be sure that everything you promise in the specification is
delivered in the body and that the parameter list for each function or procedure in the
specification matches exactly the corresponding procedure or function header in the
body. Remember that you must compile the package specification without compilation
errors before you can attempt to compile the package body.

If the body of a package is changed but not the specification, do not recompile the
specification; just recompile the body and repeat the link step. If you recompile the
specification, dl programs that use the package will have to be recompiled.

CHAPTER REVIEW

This chapter introduced you to an important control structure, the if statement, for
building decision steps into programs, if statements are of three types: single-altema-
tive, two-alternative, and multiple-alternative, if statements provide a way to build
decision making into a program.

You also learned how to write simple user-defined functions and how to structure a
package you are writing. A package consists of a specification file and a body file. The
specification gives a "contract with the user," telling both the reader and the compiler
what to expect in a package. The body then provides all the things promised by the
specification.

New Ada Constructs in Chapters

The new Ada constructs that were introduced in this chapter are described in Table 5.8.

Table 5.8 Summary of New Ada Constructs

Construct Effect

IF Statement

One Alternative

IF X /= 0.0 THEN Multiplies Product by x
Product ;= Product * X;

END IF?

Two Alternatives

only if X is nonzero.

IF X >= 0 THEN If X is greater than or equal
Ada. integer. Text_io. Put (itein=>x); q, the message " is
Ada.Ta=ct_io.Put( ■ is positive"), positive" is displayed.

C1L1O& 1_ * 1_

Ada. Integer. Text_io. Put (item=>x); Otherwise, the message
Ada.Text_I0.Put(" is positive"); " is negative"is dis-

END IF; played.

Several Alternatives
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Construct Effect

IF X < 0.0 THEN

Ada.Text 10.Put(Item°>"negative");
AbsX -X;

BLSIF X ° 0.0 THEN

Ada.Text_IO.Put(Item=>"zero");
AbsX t- X;ELSE
Ada.Text__IO.Put (Item=>"positive");

END IF;

One of three messages is
displayed depending on
whether x is negative, posi
tive, or zero.

AbsX is set to represent the
absolute value or magni
tude of X.

Function Specification

FUNCTION Sign (X iFloat) RETURN Character;

Function Body

FUNCTION Sign (X :Float) RETURN Character IS
Temp: Character;

BEGIN — Sign
IF X >= 0 THEN

Temp ;= '+';

ELSE

Temp := '-';
END IF;

RETURN Temp;

END Sign;

specifies a function

Returns a character value

that indicates the sign (* +'
or • - •) of its type Float
argument.

Quick-Check Exercises

execution.1. An IF statement implements

2. What is pseudocode?

3. What values can a Boolean expression have?

4. The relational operator /= means .

5. A is used to verify that an algorithm is correct.

6. When Speed is 75, what value is assigned to Fee by the if statement on the
left? By the if statement on the right? Which if statement is correct?

if Speed >35 THEN

Fee := 20.00;
ELSIF Speed >50 THEN
Fee :*» 40.00;

ELSIF Speed >75 THEN
Fee := 60.00;

END IF;

IF Speed > 75 THEN
Fee := 60.0;

ELSIF Speed > 50 THEN
Fee 40.00;

ELSIF Speed >35 THEN
Fee t" 20.00;

END IF;

7. Explain the difference between the statements on the left and the statements on
the right below. For each of them, what is the final value of x if the initial val
ue of X is 1?
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IF X >= 0 THEN IF X >= 0 THEN

X := X + Ij X != X + 1;
ELSIF X >= 1 THEN END IF;

X ;= X + 2; IF X >= 1 THEN

END IF; X := X + 2;
END IF;

Answers to Quick-Check Exercises

1. Conditional

2. A mixture of English and Ada used to describe algorithm steps

3. True and False

4. Not equal

5. Hand trace

6. left: 20.00, first condition is met; right: 40.00. The one on the right is correct.

7. A multiple-alternative if statement is on the left; a sequence of if statements
is on the right, x becomes 2 on the left; x becomes 4 on the right.

Review Questions for Chapter 5

1. A decision in Ada is actually an evaluation of a(n) expression.

2. List the six relational operators discussed in this chapter.

3. What should the programmer do after writing the algorithm but before enter
ing the program?

4. Trace the following program fragment and indicate what will be displayed if a
data value of 27.34 is entered.

Ada.Text_lO.Put(Item => "Enter a temperature> ");
Ada.Float.Text_IO.Get (Temp);
IF Temp > 32.0""then

Ada.Text_IO.Put(Item => "Not Freezing");
ELSE

Ada.Text_IO.Put(Item => "Ice Forming");
END IF;

5. Write the appropriate if statement to compute GrossPay given that the hourly
rate is stored in the variable Rate and the total hours worked is stored in the

variable Hours. Pay time and a half for more than 40 hours worked.

6. Explain the difi'erence between a package specification and a package body.
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Programming Projects

1. Modify the structure chart and program for the first letter problem (Section
5.2) to find the alphabetically first offour letters.

2. Modify the structure chart and program for the first letter problem to fmd the
alphabetically last of three letters.

3. Develop and test the program—a modification of Program 5.3—for the over
time pay problem described in Section 5.4.

4. Develop and test a payroll program based on Program 5.3 that computes the
tax withheld according to the tax rates given in Table 5.6 and Figure 5.5.

5. Write a program that reads in a room number, its capacity, and the size of the
class enrolled so far and displays an output line showing the classroom num
ber, capacity, number of seats filled and available, and a message indicating
whether the class is filled or not. Display the following heading before the out
put line.

Room Capacity Enrollment Empty seats Filled/Not Filled

Display each part of the output line under the appropriate colunm heading.
Test your program with the following classroom data:

Room Capacity Enrollment

426 25 25

327 18 14

420 20 15

317 100 90

6. Write a program that will determine the additional state tax owed by an em
ployee. The state charges a 4% tax on net income. Determine net income by
subtracting a $500 allowance for each dependent from gross income. Your
program will read gross income, number of dependents, and tax amount al
ready deducted. It will then compute the actual tax owed and display the dif
ference between tax owed and tax deducted followed by the message
"Taxpayer owes" or "Refund to taxpayer", depending on whether this dif
ference is positive or negative.

7. The Ring-a-Ding-Ding Telephone Company has the following rate structure
for long-distance calls:

a. Any call started after 6:00 PM. (1800 hours) but before 8:00 AJvi (0800
hours) is discounted 50%.

b. Any call started after 8:00 a.m. (0800 hours) but before 6:00 PM. (1800
hours) is charged full price.

c. All calls are subject to a 4% federal tax.

d. The regular rate for a call is $0.25 per minute.
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e. Any call longer than 60 minutes receives a 15% discount on its cost (after
any other discount is subtracted but before tax is added).

Write a program that reads the start time for a call based on a 24-hour clock
and the length of the call. The gross cost (before any discounts or tax) should
be displayed, followed by the net cost (after discounts are deducted and tax is
added).

8. Write a program that uses package Min_Max to find the smallest and largest of
four integers read from the terminal.

9. Create and test a second version of package Min_Max. Copy the specification
and body of Min__Max, change the name in both files to Min_Max_Fioat, and
modify the functions so that Float parameters are used instead of integer.
Write a program that tests both packages together. (Hint: You will need two
context clauses.)

10. In trying to determine the best maximum speed limit on a highway, the traffic
police would like to collect statistical data on the actual speeds of cars under
the new laws; they have hired you to develop a computer program to help
them. As a first step, develop and test a package, speeds, that provides a func
tion to classify a speed into one of the following classifications:

Class 1:0 < speed <= 45 miles per hour (m.p Ji.)
Class 2: 45 < speed <= 55
Class 3: 55 < speed <= 65
Class 4: 65 < speed <= 75
Class 5: 75 < speed

The specification will contain an enumeration type to define the classes:

TYPE SpeedClasses IS (Classl, Class2, Class3, Class4, ClassS);

a subtype to specify the realistic range of speeds on the highway:

SUBTYPE SpeedRange IS Natural RANGE 0..130;

and a function specification:

FUNCTION Classify (Speed: SpeedRange) RETURN SpeedClasses;

The package body will contain the function body for classify

The main program should test the function according to a test plan that you de
sign. For each test, prompt the user for a speed, call the function to classify it,
and display the speed classification using an instance of Ada.Text_io.
Enumeration 10.
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Chapter Review

The preceding chapters introduced you to two control structures: sequence, in which
statements are simply written one after the other, and conditional execution or selec
tion, embodied in the if statement, which allows one of a set of paths to be taken.

The third category of control structure in structured programming is repetition, or
iteration, which allows a section of a program to be repeated, the number of repetitions
being determined by some condition. In this chapter you will see how to specify the
repetition of a group of statements (called a counting loop) using the for statement.
You will study how to design counting loops in Ada programs. Two other repetition
constructs are introduced in Chapter 7.

Also in this chapter, the important concept of subtypes is extended, and you will see
how using subtypes of scalar data types—integer, float, character, and enumera
tion—makes reading and wnting programs easier and makes the programs more reli
able.

Finally, two important system-structuring ideas are introduced: overloading and
exception handling. Overloading permits several operations with similar behavior to be
given the same name, and exception handling provides a method for keeping control
when an error arises, instead of returning control automatically to the run-time system.

199
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6.1 Control Structures: Counting Loops and the FOR Statement

Just as the ability to make decisions is a very important programming tool, so is the
ability to specify that a group of operations is to be repeated. For example, a company
with seven employees will want to repeat the gross pay and net pay computations in its
payroll program seven times: once for each employee.

The repetition of steps in a program is called a loop. The loop body contains the
steps to be repeated. Ada provides three control statements for specifying repetition.
This chapter examines the for statement; the general and while statements are exam
ined in Chapter 7.

The FOR Statement

The FOR statement can be used to specify some forms of repetition quite easily, as
shown in the next examples.

■ Example 6.1

The statements

Ada.Text_IO.Put(Itein => "Hello there.
Ada.Text_IO.Put(Item => "Hello there.
Ada.Text_lO.Put(Item => "Hello there.
Ada.Text_lO.Put(Item => "Hello there.
Ada.Text_IO.Put(Item => "Hello there.

can be written more concisely as

FOR Count IN 1..5 LOOP

Ada.Text_IO.Put(Item => "Hello there.
END LOOP;

The preceding for statement causes the put operation to be performed five times.
The FOR statement is used to implement counting loops, which are loops where the
exact number of loop repetitions can be specified as a variable or constant value. Here,
the number of repetitions required was five. The reserved words end loop terminate the
FOR statement.

The FOR statement specifies that the variable count should take on each of the val
ues in the range 1 to 5 during successive loop repetitions. This means that the value of
Count is 1 during the first loop repetition, 2 during the second loop repetition, and 5
during the last loop repetition. ■

Count is called a loop counter because its value controls the loop repetition. In our
example the loop counter is intialized to 1 when the for statement is first reached; after
each execution of the loop body, the loop counter is incremented by 1 and tested to see
whether loop repetition should continue.
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Unlike other variables, a for loop counter is not declared. A loop counter may also
be referenced in the loop body, but its value cannot be changed by statements in the
loop body. Example 6.3 shows a for statement whose loop counter is referenced in the
loop body.

■ Example 6.2

The following for loop displays a sequence of HowMany asterisks. If HowMany has a
value of 5, five asterisks in a row will be displayed; if HowMany has a value of 27, 27
asterisks will be displayed, and so on.

for Count IN 1 .. HowMany LOOP

Ada. Text_IO. Put (Item =«> ' *') ?
END LOOP; ■

■ Example 6.3

Program 6.1 uses a for loop to print a list of integer values and their squares. During
each repetition of the loop body, the statement Numsquared := Num**2; computes the
square of the loop counter Num; then the values of Num and NumSquared are displayed. A
trace of this program is shown in Table 6.1.

Program 6.1 Squares

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Squares IS

— I Displays a list of integer values and their squares.
— I Author; M. B. Feldman, The George Washington University
— I Last Modified: August 1998

MaxNum : CONSTANT Natural := 4;

NumSquared : Natural; — output - square of Num

BEGIN — Squares

Ada.Text_IO.Put(Item => " Num Num ** 2 ");
Ada.Text_IO.New_Line;
Ada. Text_IO. Put (Item => " —" );
Ada.Text_IO.New_Line;

FOR Num IN 1..MaxNum LOOP

NumSquared Num ** 2;
Ada.Integer_Text_IO.Put (Item => Num, Width => 10);
Ada.lnteger_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text IO.New_Line;

END LOOP;

END Squares;
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Sample Run

Hum

1

2

3

4

Hum ** 2

1

4

9

16

The trace in Table 6.1 shows that the loop counter Hum is initialized to 1 when the
FOR loop is reached. After each loop repetition, Hum is incremented by 1 and tested to
see whether its value is still less than or equal to MaxHum (4). If the test result is true, the
loop body is executed again, and the next values of Hum and Humsquared are displayed.
If the test result is false, the loop is exited. Hum is equal to MaxHum during the last loop
repetition. After this repetition the value of Hum becomes undefined (indicated by the
question mark in the last table line), and the loop is exited. The counter Hum ceases to
exist and cannot be referenced again unless the loop is entered again, in which case the
counter is given a new existence. ■

Table 6.1 Trace of Program 6.1

Statement Hum HumSquared Ejfect

? ?

FOR Hum IH 1..MaxHum LOOP 1 Initialize Hum

HumSquared := Hum**2; 1 HumSquared gets 1*1

Ada.Integer_Text^IO.Put
(Itera=>Hum,Width=>10);

Display 1

Ada. Integer_Text__IO. Put
(Item=>HumSquared,Width=>10);

Display 1

Increment and test Hum 2 2 <= 4 is true

Square := Hum**2; 4 HumSquared gets 2*2

Ada.Integer jrext_IO.Put
(Item=>HumSquared,Width=>10);

Display 2

Ada.Integer_Text_IO.Put
(ltem=>HumSquared,Width=>10);

Display 4

Increment and test Hum 3 3 <= 4 is true

HumSquared ;= Hum**2; 9 HumSquared gets 3*3

Ada.Integer_Text_IO.Put
(Item=>Hum,Width=>10);

Display 3

Ada.Integer_Text_IO.Put
(Item=>HumSquared,Width=>10);

Display 9

Increment and test lJum 4 4 <= 4 is true

HumSquared ;= Hum**2j 16 HumSquared gets 4*4

Ada.Integer_Text_IO.Put
(Item=>Hum,Width=>10);

Display 4
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Statement Num NumSquared Ejfect

Ada.Integer__Text_IO.Put Display 16
{Iteiii=>NuniSquared,Width=>10);

Increment and test Num ? Exit loop

It is also possible to count backward in a for loop. Writing in reverse instead of
IN causes the loop counter to start at its maximum value and be decremented by I,
instead of incremented, in each loop iteration. Finally, it is not necessary for the mini
mum counter value—generally called the lower bound of the loop—to be 1. These
aspects of counting loops are illustrated in the next example.

■ Example 6.4

Program 6.2 is a modification of Program 6.1. This time the smallest and largest num
bers MinNum and MaxNum are read from the terminal, and the squares are printed from
low to high and then from high to low. There are two loops in this program! ■

Program 6.2 Finding the Squares in Forward and Reverse Order

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Squares_Up_and_Down IS

Displays a list of integer values and their squares,
in forward, then in reverse order
Author: H. B. Feldman, The George Washington University
Last Modified: August 1998

MinNum : Positive; — input - smallest value to square
MaxNum : Positive; — input - largest value to square
NumSquared : Natural; — output - square of Num

BEGIN — Squares_Up_and_Down

Ada.Text_IO.Put
(Item => "Enter the smallest positive you wish to square > ");

Ada.Integer_Text_IO.Get(Item => MinNum);
Ada.Text_IO.Put
(Item => "Enter the largest positive you wish to square > ");

Ada.Integer_Text_IO.Get(Item => MaxNum);

Ada.Text_IO.Put(Item => " Num Num ** 2 ");
Ada.Text_IO.New_Line;
Ada. Text_IO. Put (I tern => " ") ;
Ada.Text_IO.New_Line;

FOR Num IN MinNum..MaxNum LOOP

NumSquared ;= Num ** 2;
Ada.Integer_Text_lO.Put (Item => Num, Width => 10);
Ada.Integer_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text 10.New Line;
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END LOOP;

Ada.Text_IO.New^Line;
FOR Num IN REVERSE MinNum..MaxNum LOOP

NumSquared := Num ** 2;
Ada.Integer_Text_IO.Put (Item => Num, Width => 10);
Ada.Integer_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text IO.New_Line;

END LOOP;

END Squares_Op_and_Down;

Sample Run

Enter the smallest positive you wish to square > 3
Enter the largest positive you wish to square > 7

Num Num ** 2

3 9

4 16

5 25

6 36

7 49

7 49

6 36

5 25

4 16

3 9

SYNTAX

DISPLAY
FOR Statement (Counting Loop, Simple Form)

Forms:

FOR counter IN lowbound

statement sequence

END LOOP;

. bighbound LOOP

FOR counter IN REVERSE lowbound .. bighbound LOOP
statement sequence

END LOOP;

Example:

FOR I IN Min .. Max LOOP

Ada.Integer_Text_IO.Put (Item »> I, Width =>5);
Ada.Text_IO.New_Line;

END LOOP;

loterpretation:

The number of times statement sequence is executed is determined by the values
of lowbound and highbound. The value of the loop counter counter is set to low-
bound before the first execution of statement sequence; counter is incremented
by 1 after each execution of statement sequence. Lowbound and highbound must
be expressions, constants, or variables with integer or enumeration values.
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If REVERSE is present, as m the second form above, counter is initialized to
repetitions before the first execution of statement sequence, then decremented by
1 after each execution of statement sequence.

Note:

If the value of highbound is less than that of lowbound, statement sequence is not
executed. No statement within statement sequence can change the value of
counter. The variable couraer is not declared separately and has no existence out
side the loop.

Accumulating a Sum

We can use a counting loop to accumulate the sum of a collection of data values as
shown in the next problem.

CASE

STUDY SUM OF INTEGERS

Problem Specification
Write a program that finds the sum of all integers from 1 to N.

Analysis
To solve this problem, it will be necessary to find some way to form the sum of the first
N positive integers.

Data Requirements

Problem Inputs
the last integer in the sum (n : Positive)

Problem Outputs
the sum of integers from 1 to N (sum ; Natural)

Design

Initial Algorithm
1. Prompt the user for the last integer (n) .

2. Find the sum (sum) of all the integers from 1 to n inclusive.

3. Display the sum.

Algorithm Refinements

Step 2 Refinement

2.0. Set Sum to zero



206 Counting Loops: Subtypes

2.1. Add 1 to Sum

2.2. Add 2 to sum

2.3. Add 3 to sum

2J^. Add N to Sum

For a large value of n it would be rather time-consuming to write this list of steps.
We would also have to know the value of n before writing this list; consequently, Ae
program would not be general, since it would work for only one value of n.

Because steps 2.1 through 2 are all quite similar, we can represent each of them
with the general step

21. Add i to Sum

This general step must be executed for all values of i from 1 to n, inclusive. This
suggests the use of a counting loop with i as the loop counter.

Program Variables:
loop counter—represents each integer from 1 to n (i ; positive).

The variable i will take on the successive values i, 2, 3, ...,n. Each time the
loop is repeated, the current value of i must be added to sum. We now have a new
refinement of step 2.

Step 2 Refinement
2.1. FOR each integer i from 1 to N loop

Add i to Sum

END loop;

Test Plan
What should happen if a zero is entered for n? A negative number? You should predict
the results and test to find out whether your predictions were correct.

Implementation
The complete program is shown in Program 6.3. The statements

Sum 0; — Initialize Sum to zero
FOR I IN 1 .. N LOOP

Sum 1° Sum t I ; — Add the next integer to S\un
END LOOP;

are used to perform step 2. To ensure that the final sum is correct, the value of sum must
be initialized to zero (algorithm step 2.0) before the first addition operation. The for
statement causes the assignment statement sum : ° sum +1; to be repeated n times. Each
time, the current value of i is added to the sum being accumulated and the result is
saved back in sum. Note that sum must be of type Natural, rather than positive, to ini
tialize it to zero.
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Program 6.3 Sum of Integers from 1 to N

WITH Ada.Textile;
WITH Ada.Integer_Text_IO;
PROCEDURE Sum_Integers IS

Finds and displays the sum of all integers from 1 to H.
Author; M. B. Feldman, The George Washington University
Last Modified: August 1998

N  : Positive; — input - last integer added
Sum : Natural; — output - sum being accumulated

BEGIN — Sum_Integers

— Read the last integer, N
Ada.Text_IO.Put (Item => "Enter the last integer in the sum > ");
Ada.lnteger_Text_IO.Get (Item => N);

— Find the sum (Sum) of all integers from 1 to N
Sum ;= 0; — Initialize Sum to 0
FOR I IN 1 .. N LOOP

Sum := Sum +1; — Add the next integer to Sum
END LOOP;

— Display the sum
Ada.Text_IO.Put (Item => "The sum of the integers from 1 to ");
Ada.Integer_Text_IO.Put (Item => N, Width => 1);
Ada.Text_IO.Put (Item => " is ");
Ada.Integer_Text_IO.Put (Item => Sum, width => 1);
Ada.Text_IO.New_Line;

END Sum_Integers;

Sample Run

Enter the last integer in the sum > 25
The sum of the integers from 1 to 25 is 325

A trace of the program for a data value of 3 is shown in Table 6.2. The trace verifies
that the program performs as desired because the final value stored in sum is 6 (1+2+3).
The loop counter i ceases to exist after it reaches the value of n (3 in this case). As
shown in the table, the statement Sum := sum + i; is executed exactly three times.

Testing
Did the test results agree with your predictions?
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Table 62 Trace of Program 6.3

Statement i N Sum Effect

Ada.Text_IO.Put(Item=>"Enter..."); ? 7 7 Display prompt

Ada.Integer_Text_l0.Get(Item=>N) 3 Read 3 into n

Sum ;= 0; 0 Initialize sum

FOR I IN 1..N LOOP 1 3 0 Initialize i

Sum :*= Sum + 1 1 Add 1 to Sum

Increment and test i 2 3 2 <= 3 is true

Sum := Sum + 1 3 Add 2 to Sum

Increment and test i 3 3 3 <= 3 is true

Sum Sum + 1; 6 Add 3 to Sum

Increment and test i 7 3 Exit loop

Ada.Text_IO.Put
(Item=>"The Sum is");

Display message

Ada.Integer_Text 10.Put
(Item =>Sma, wTdth=>l);

6 Display 6

EXERCISES FOR SECTION 6.1

Self-Check

1. For each of the following programs, state whether the program is legal. If so,
what does it display? If not, why not?

a. WITH Ada.Integer_Text 10;
PROCEDURE LoopTest Is"
BEGIN

FOR count IN 1..10 LOOP

Ada. Integer__Text_IO. Put (Item => Count);
END LOOP; "
Ada.Text_IO.New_Line;
Ada.Integer_Text_IO.Put(Item => Count);
Ada.Text_IO.New_Line;

END LoopTest;

b. WITH Ada.Integer_^Text_IO;
PROCEDURE LoopTest IS

Count: Pos itive;
BEGIN

Count := 537;

FOR count IN 1..10 LOOP
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Ada • lnteger_Text__IO. Put (Item => Count);
END LOOP; ""
Ada.Text_IO.New_Line;
Ada.lnteger_Text_IO.Put(Item => Count);
Ada. Text_IO. New__Line;

END LoopTest;

Programming

1. Write a program fragment that will compute the sum of the squares of the inte
gers from 1 to 10, inclusive.

2. Write a for loop that will display the line

10 98765432 1

a. using reverse in the loop statement

b. without using reverse in the loop statement

6.2 Problem Solving: Generalizing a Solution

After you finish a program, someone will often ask a "What if?" question. The person
asking the question usually wants to know whether the program would still work if
some of the restrictions implied by the problem statement were removed. If the answer
is "No," you might have to modify the program to make it work. Try to anticipate these
questions in advance and make your programs as general as possible right from the
start. Sometimes this can be as easy as changing a program constant to a problem input.

One question that comes to mind for the last problem is: What if we wanted to find
the sum and average of a list of any numbers, not just the sum of the firet N integers.
Would the program still work? Clearly, the answer to this question is "No." However, it
would not be too difficult to modify the program to solve this more general problem.

CASE

STUDY GENERAL SUM PROBLEM

Problem Specification
Write a program that finds and displays the sum of a list of numbers.

Analysis
To add any list of numbers, a new variable (currentvaiue) would be needed to store
each value to be summed. The numbers must be provided as input data. Because the
numbers are not necessarily positive, we will make currentvaiue and Sum type inte
ger.
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Data Requirements

Problem Inputs
number of items to be summed (Numvaiues : Natural)
temporary storage for each data value to be summed (currentvaiue: integer)

Problem Outputs:
sum of the NumValues data values (sum: Integer)

Design

initial Algorithm
1. Prompt the user for the number (Numvalues) of values to be summed.

2. Prompt the user for each data value and add it to the sum.

3. Display the sum.

This algorithm is very similar to the earlier one. Step 2 is modified slightly and is
refined below.

Algorithm Refinements

Step 2 Refinement

2.1. Initialize sum to 0.

2.2. FOR each data value loop

Read the data value into currentvaiue and add currentvaiue to Sum.
END LOOP;

In this refinement the variable currentvaiue is used to store each number to be
summed. After each number is read into Currentvaiue, it is added to sum. If there are
more data items, the loop body is repeated, and the next data item replaces the last one
in Currentvaiue. The number of data values to be summed is read into Numvaiue
before the loop is reached. Numvaiues determines the number of loop repetitions that
are required. A loop counter is needed to count the data items as they are processed and
to ensure that all data are summed.

Program Variables
loop counter—the number of data items added so far (count ; positive)

Implementation
The program is very similar to Program 6.3. We leave it, as well as the test plan and
testing, as an exercise.

We can further generalize this solution to find the minimum, maximum, and aver
age of a list of data values—for example, the results of a class examination. The aver
age is computed by finding the sum of all the values, then dividing by the number of
values. From the previous example we know how to find the sum. The minimum and
maximum can be found at the same time, using our package Min_Max.
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CASE

STUDY MINIMUM, MAXIMUM, AND AVERAGE OF A LIST OF
NUMBERS

Problem Specification
Write a program that finds and displays the minimum, maximum, and average of a list
of integers.

Analysis
This is quite similar to the previous two problems. We can use the variables cur-
rentvaiue and Sum as above. As each value is read, it must be added into the sum and
also compared against the current minimum, smallest, and the current maximum.
Largest. The comparisons can be handled by the Minimum and Maximum functions
already provided in the Min_Max package.

Because each new value, including the first, needs to be compared to Smallest and
Largest, what initial values should these two variables have? It might be tempting to
simply initialize them to zero, like the sum. This would be a mistake: Suppose that all
the values to be read happened to be positive? The program would give incorrect
results, since it would report that the smallest value was zero instead of the really small
est value (which in this case would be greater than zero).

One way to solve this problem is to initialize smallest to the largest possible inte
ger value that we will accept from the user. For now, we will just let this be the largest
possible value of the type integer. This way, any value that the user could enter would
automatically be no larger than this initial value. Luckily, Ada gives us an easy way to
discover the largest possible value of integer: It is the attribute integer'Last. This
value is a large number whose actual value depends upon the compiler you are using.
Because we also need to find the largest number, we should initialize Largest to the
smallest possible integer value, namely, integer' First.

Data Requirements

Problem Inputs
number of items to be averaged (Numvalues : Positive)
temporary storage for each data value (currentvalue: integer)

Problem Outputs
minimum of the Mumvalues data values (smallest: integer)
largest of the Numvalues data values (Largest: Integer)
average of the Numvalues data values (Average: integer)

Initial Algorithm
1. Prompt the user for the number (NumValues) of values to be summed.

2. Prompt the user for each data value; add it to the sum, determine whether it is a
new minimum, and determine whether it is a new maximum.

3. Divide the sum by the number of numbers to produce the average.

4. Display the minimum, maximum, and average.
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This algorithm is very similar to the earlier one. Step 2 is modified and is refined
below; there is a new step 3.

Algorithm Refinements

Step 2 Refinement

2.1. Initialize sum to 0, Smallest to integer 'Last, and Largest tO Integer ■ First.

2.2. FOR each data value loop

Read the data value into Currentvalue and add CurrentValue to sum
Determine whether the data value is a new minimum or maximum
END LOOP;

In this refinement the variable currentvalue is used to store each number to be
summed. After each number is read into currentvalue, it is added to sum. If there are
more data items, the loop body is repeated and the next data item replaces the last one
in Currentvalue. The number of data values to be summed is read into Numvaiues
before the loop is reached. Numvaiues determines the number of loop repetitions that
are required. A loop counter is needed to count the data items as they are processed and
ensure that all data are summed.

We need a further refinement of step 2.2:

Step 2.2 Refinement:

2.2 FOR each data value loop

2.2.1 Read the data value into currentvalue and add currentvalue to sum

2.2.2 Replace smallest with the smaller of itself and currentvalue

2.2.3 Replace Largest with the larger of itself and currentvalue

END LOOP;

Program Variables
loop counter—the number of data items added so far (count ; Natural)

Implementation
Program 6.4 shows the entire program. Note that this program finds the average as an
integer value by dividing sum by Numvaiues. This is because all the numbers are inte
gers and the division throws away the fractional part of the quotient. In Chapter 8 we
will examine how to convert between integer and floating-point values. This will allow
us to calculate the average of a set of integers as a floating-point value.

Averages are generally stated as fractional values, but this can sometimes be con
fusing if the data values are inherently whole numbers. For example, it was reported
some years ago that the average American family had 2.5 children. While this was true
mathematically, many thought it was a bit strange: What does it mean to have half a
child? In this situation, saying "the average is about 3" might have been more effective,
especially in comparison with earlier years in which the average number of children
was about 4. The important fact was that families were getting smaller!
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Program 6.4 finding Minimum, Maximum, and Average Values

WITH Ada.Text_IO;
WITH Ada.Integer Text 10;
WITH Min_Max; "*
PROCEDURE Min_Max_Average IS

Finds and displays the minimum, maximum, and average
of a list of data items.

Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

NumValues: Positive; — input - number of items averaged
CurrentValue: Integer; — the next data item to be added

Sum: Integer; — program variable - accumulated sum

Smallest: Integer; — output - minimum of the data values
Largest: Integer; — output - maximum of the data values
Average: Integer; — output - average of the data values

BEGIN — Min_Max_Average

— Read the number of items to be averaged
Ada.Text_IO.Put(Item =>
"Enter number (at least 1) of integers to be averaged > ");

Ada.Integer_Text_lO.Get(Item => NumValues);
Ada. Text__IO. New_Line;

— Initialize program variables
Smallest Integer'Last;
Largest Integer'First;
Sum := 0;

— Read each data item, add it to Sum,
— and check if it is a new minimum or maximum

FOR Count IN 1 .. NumValues LOOP

Ada.Text_lO.Put(Item => "Integer item no. ");
Ada. Integer_Text_IO. Put (Item => Count, Width =»> I);
Ada.Text_IO.Put(Item => " > ");
Ada.Integer_Text_IO.Get(Item => CurrentValue);

Sum := Sum + CurrentValue;
Smallest := Min_Max.Minimum

(Valuel => Smallest, Value2 => CurrentValue);
Largest := Min_Max.Maximum

(Valuel => Largest, Value2 => CurrentValue);
END LOOP;

— compute the average; since Sum and NumValues are integers,
— the average is truncated; that is, the fractional part
— is discarded

Average := Sum / NumValues;

— Display the results
Ada.Text_IO.Put(Item => "The Smallest is ");
Ada.Integer_Text_IO.Put(Item => Smallest, Width => 1);
Ada.Text 10.New Line;
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Ada.Text_lO.Put(Item "> "The Largest is ");
Ada.Integer_Text_IO.Put(Item => Largest, Width =>1);
Ada. Text__IO. New_Line;
Ada. Text_IO. Put (Item •»> "The Average is ");
Ada.Integer__Text_IO.Put(Item => Average, Width =>1);
Ada.Text_IO.New_Line;

END Min_Max_Average;

Sample Run

Enter number (at least 1) of integers to be averaged > 7

Integer item no. 1 > -5
Integer item no. 2 > 2
Integer item no. 3 > 29
Integer item no. 4 > 16
Integer item no. 5 > 0
Integer item no. 6 > -17
Integer item no. 7 > 4
The Smallest is >17

The Largest is 29
The Average is 4

EXERCISES FOR SECTION 6.2

Self-Check

1. In Program 6.4, explain how and why we choose the initial values of the vari
ables Smallest and Largest.

6.3 Problem Solving: Using an External File for Input Data

A modification of Program 6.4 could use an external (disk) file for the input data. In
fact, most real-world computer programs make heavy use of external files. The user
prepares a file of data using an editor, then uses it later as input to the program. If the
program is being developed and debugged, requiring severd test runs, preparing the
data this way saves having to enter them interactively each time the program is tested.
We shall cover this topic more systematically in Chapters 9 and 10; for now, let's just
consider how Program 6.4 would be changed to allow an external file for input.

The Get operations that we have been working with all assume that input is coming
interactively fix)m the keyboard. In fact, each Get (for characters, strings, integers,
fioating-point quantities, and enumeration literals) has a second form requiring an addi
tional parameter that n^nes a disk file. For example, the input operation to read an inte
ger value from a disk file called, say, Testscores, would be
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Ada.lnteger__Text_IO.Get (File => TestScores, Item => CurrentValue);

In general these operations look just like the interactive ones except for the hie name.
TestScores is an Ada variable, which must be declared as

TestScores; Ada.Text_IO.File_Type;

The type File_Type is provided by Ada.Text_io.
Now suppose that the user prepared the input data with an editor and stored them in

a disk file called scores.dat. The program needs a way to associate the name of the
file in the program (TestScores in this case) with the name of the file as it is known to
the operating system (scores.dat in this case). This is done by means of an operation
called Ada. Text_io.Open. In this case the operation would look like this:

Ada.Text_IO.Open
(File => TestScores, Mode => Ada.Text_lO.ln_File,
Name => "scores.dat");

The parameter Mode indicates whether we are reading from the file (Ada.Text_io.
in_File, as in this example) or writing to it (Ada.Text_io.out_File). Notice also that
the operating system file name must appear in quotes.

It is important to type the name of the file exactly as it is listed in the directory you
get fi-om the operating system. Many operating systems use case-sensitive file names,
which means that if the operating system file name is lowercase (e.g., scores.dat),
your parameter in the open statement must also be uppercase (as in our example); if the
operating system file name is in lowercase, your parameter must be also. If you supply
to Open a file name that does not exist in your current directory, the Ada exception
Name_Error will be raised.

Program 6.5 shows this modified program. There are no prompts, because there is
no interactive user entering the data. The file scores .dat, created with an editor, con
tains first the number of values to be read, then the actual values, one value per line.
The program opens the file, then enters a loop that "logs," or displays on the terminal,
the values as they are read from the file and processed; finally, the results are displayed
as before. The sample run shows the results for the following file contents:

8

57

22

100

42

37

70

81

100

Program 6.5 Finding Minimum, Maximum, and Average of Values from a File

WITH Ada.Text_I0;
WITH Ada.Integer_Text_lO;
WITH Min_Max;
PROCEDURE Min_Max_Average_File IS

— I Finds and displays the minimum, maximum, and average
—J of a list of data items; the data items are read from a file.
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Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

NumValues: Positive; — input - the number of items to be averaged
CurrentValue: Integer; — input - the next data item to be added

Smallest: Integer; — output - minimum of the data values
Largest: Integer; — output - maximum of the data values
Average: Integer; — output - average of the data values

Sum: Integer; — program variable - sum being accumulated
TestScores: Ada.Text_IO.File_Type;

— program variable - names the input file

BEGIN — Min_Max_Average__File

— Open the file and associate it with the file variable name
Ada.Text_IO.Open
(File => TestScores, Mode «=> Ada.Text_IO.In__File,
Name => "scores.dat");

— Read from the file the number of items to be averaged
Ada.Integer_Text_IO.Get(File => TestScores, Item => NumValues);
Ada.Text_IO.Put("The number of scores to be averaged is ");
Ada.Integer_Text_IO.Put(Item => NumValues, Width =>1);
Ada.Text_IO.New_Line;

— Initialize program variables
Smallest :» Integer'Last;

Largest := Integer'First;
Sum := 0;

— Read each data item, log to the screen, add it to Sum,
—- and check if it is a new minimum or maximum

FOR Count IN 1 .. NumValues LOOP

Ada. Integer__Text__IO. Get (File °> TestScores, Item »=> CurrentValue);
Ada.Text_IoTput("Score number ");
Ada. Integer_Text__IO. Put (Item => Count, Width => 1);
Ada.Text_IO.Put(" is ");
Ada.lnteger_Text_IO.Put(Item => CurrentValue, Width •=>!);
Ada.Text_IO.New_Line;

Sum :- Sum + CurrentValue;

Smallest

Min_Max.Minimum(Value1 => Smallest, Value2 => CurrentValue);
Largest :

Min_Max.Maximum(Value1 => Largest, Value2 => CurrentValue);
END LOOP;

— compute the average; since Sum and NumValues are integers,
— the fractional part of the average is discarded

Average := Sum / NumValues;

— display the results
Ada.Text^IO.Put(Item => "The Smallest is ");
Ada.Integer__Text_lO.Put(Item => Smallest, Width => 1);
Ada.Text_IO.New_Line;
Ada.Text~I0.Put7ltem »=> "The Largest is ");
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Ada.Integer_Text_IO.Put(Item => Largest, Width => 1);
Ada.Text_IO.New_Line;
Ada.Text_io.Put(Item => "The Average is ");
Ada.Integer_Text_IO.Put(Item => Average, Width => 1);
Ada.Text_IO.New_Line;

END Min_Max_Average_File;

Sample Run

The number of scores to be averaged is 8
Score number 1 is 57

Score number 2 is 22

Score number 3 is 100

Score number 4 is 42

Score number 5 is 37

Score number 6 is 70

Score number 7 is 81

Score number 8 is 100

The Smallest is 22

The Largest is 100
The Average is 63

6.4 Problem Solving: Repeating a Program Body

In the discussion of repetition in programs we mentioned that we would like to be able
to execute the payroll program for several employees in a single run. We will see how
to do this next.

CASE

STUDY MULTIPLE-EMPLOYEE PAYROLL PROBLEM

Problem Specification
Modify the payroll program from Section 5.4 (Program 5.3) to compute gross pay and
net pay for a group of employees.

Analysis
The number of employees must be provided as input data along with the hourly rate
and hours worked by each employee. The same set of variables will be used to hold the
data and computational results for each employee. The computations will be performed
in the same way as before.

Data Requirements

Problem Constants

maximum salary for no tax deduction (TaxBracket = ioo. o)
tax rate (TaxRate = 25.00)
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Problem Inputs
number of employees (NumEmp : Positive)
hours worked by each employee (Hours : NonMegFioat)
hourly rate for each employee (Rate : NonNegFioat)

Problem Outputs
gross pay (cross : NonNegFioat)
net pay (Net : NonNegFioat)

Design

Algorithm
1. Prompt for the number of employees (NumEn^)).

2. FOR each employee loop
Enter payroll data and compute and print gross and net pay.
END LOOP;

An additional variable is needed to count the number of employees processed and to
control the for loop in step 2.

Program Variable
loop counter—counts the employees that are processed: (countEmp ; positive)

The structure chart is shown in Fig. 6.1. (The structure chart for the subproblem
"find gross and net pay" was shown in Fig. 5.4.)

Implementation:
Program 6.6 gives the entire program. Notice how the code is very similar to that in the
original program, with the addition of a few more declarations and the loop construct.
Sample output is given for three employees.

Find gross
and net pay

Enter the number
of employees

Compute gross pay
and net pay for a

group of employees

Figure 6.1 Structure Chart for Multiemployee Payroll Program
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Program 6.6 Multiemployee Payroll Program

WITH Ada.Text_IO;
WITH Ada.Integer Text_lO;
WITH Ada.Float Text 10;
PROCEDURE Multi Payroll IS

Computes and displays gross pay and net pay for a number
of employees, given each, employee's hourly rate and
hours worked.

Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

TaxBracket : CONSTANT NonNegFloat := 100.00;
— maximum salary for no tax

TaxRate : CONSTANT NonNegFloat := 0.15; — tax rate

NumEmp : Positive; — inputs - number of employees
Hours : NonNegFloat; — hours worked, hourly rate
HourlyRate: NonNegFloat;

GrossPay: NonNegFloat; ~ outputs - gross pay, net pay
Tax: NonNegFloat;
NetPay: NonNegFloat;

BEGIN — Multi_Payroll

Ada.Text_IO.Put ("Please enter number of employees > ");
Ada.Integer_Text_IO.Get (Itern => NumEmp);

FOR CountEmp IN 1 .. NumEmp LOOP

— Enter Hours and HourlyRate
Ada.Text_IO.Put (Item "> "Employee number ");
Ada.Integer_Text_lO.Put (Item => CountEmp, width => 1);
Ada.Text_lO. New_Line;
Ada.Text_IO.Put (Item => " Hours worked > ");
Ada.Float_Text_IO.Get (Item => Hours);
Ada.Text_IO.Put (Item => " Hourly rate S");
Ada.Float_Text_IO.Get (Item => HourlyRate);

— Compute gross salary
GrossPay := Hours * HourlyRate;

— Compute net salary
IF GrossPay > TaxBracket THEN
Tax :« TaxRate * (GrossPay - TaxBracket);
NetPay := GrossPay - Tax; — Deduct a tax amount

ELSE

Tax :=> 0.0;

NetPay :=» GrossPay; — Deduct no tax

END IP;

— Display Results
Ada.Text_IO.Put (Item => " Gross pay is $");
Ada.Float_Text_IO.Put
(Item => GrossPay, Fore => 1, Aft => 2, Exp =>0);
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Ada. Text__IO. New__Line;
Ada.Text~IO.Put (Item => " Tax deduction is $");
Ada. Float__Text_IO. Put
(Item => TaxT Fore => 1, Aft => 2, Exp => 0);

Ada.Textile.New_Line;
Ada.Text~IO.Put (Item => " Net pay is $")j
Ada.Float_Text_IO.Put
(Item => NetPay, Fore => 1, Aft «=> 2, Exp => 0);

Ada.Text_IO.New_Line;

END LOOP;

END Multi^Payroll;

Sample Run

Please enter number of employees > 3
Employee number 1

Hours worked >35

Hourly rate $7.50
Gross pay is $262.50
Tax deduction is $24.38
Net pay is $238.13

Employee number 2
Hours worked > 37.5

Hourly rate $11.25
Gross pay is $421.88
Tcix deduction is $48.28

Net pay is $373.59
Employee number 3

Hours worked > 3
Hourly rate $6.50
Gross pay is $19.50
Tax deduction is $0.00

Net pay is $19.50

6.5 Control Structures: Nested Loops

In this section we examine nested loops. Nested loops consist of an outer loop with one
or more inner loops. Each time the outer loop is repeated, the inner loops are reentered,
their loop control parameters are reevaluated, and all required iterations are performed.

■ Example 6.5

Program 6.7 shows a program with two nested for loops. The outer loop is repeated
three times (for outer counter equals 1,2, and 3). Each time the outer loop is repeated,
the statements

Ada.Text_IO.Put (Item => "OUTER");
Ada.Integer_Text_IO.Put (Item => OuterCounter, Width => 7);
Ada.Text IoTncw Line;
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display the string "Outer" and the value of Outercounter (the outer loop counter).
Next, the inner loop is entered, and its loop counter innercounter is reset to 1. The
number of times the inner loop is repeated depends on the current value of Outer-
counter. Each time the inner loop is repeated, the statements

Ada.Text_IO.Put (Item => "INNER");
Ada.Integer_Text_IO.Put (Item => InnerCounter, Width => 10);
Ada.Text_IO.New_Line;

display the string "inner" and the value of innercounter (the inner loop counter). ■

Program 6.7 Nested FOR Loops

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
PROCEDURE Nested_Loops IS

Illustrates a pair of nested FOR loops.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

BEGIN — Nested_Loops

Ada.Text_lO.Put (Item => " OuterCounter InnerCounter");
Ada.Text_IO.New_Line;

FOR OuterCounter IN 1 .. 3 LOOP

Ada.Text_IO.Put(Item => "OUTER");
Ada.Integer_Text_IO.Put (Item => OuterCounter, Width => 10);
Ada.Text_lO.New_Line;

FOR InnerCounter IN 1 .. OuterCounter LOOP

Ada.Text_IO.Put(Item => " INNER");
Ada.Integer_Text_IO.Put (Item => InnerCounter, Width => 22);
Ada.Text_lO.New_Line;

END LOOP; "*

END LOOP;

END Nested_Loops;

Sample Run

OuterCounter InnerCounter

OUTER 1

INNER 1

OUTER 2

INNER 1

INNER 2

OUTER 3

INNER 1

INNER 2

INNER 3
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In Program 6.7 the outer loop counter outercounter is used as the upper bound
that determines the number of repetitions of the inner loop. This is perfectly valid. It is
also valid to use the same variable name as the loop counter of both an outer and an
inner for loop in the same nest. This is strongly discouraged, however, because it
causes the compiler to create two "nested" variables with the same name. Although this
is not a problem for the compiler, it certainly is a source of confusion for die human
reader of the program!

■ Example 6.6

Program 6.8 prints an isosceles triangle. The program contains an outer loop (loop
counter Row) and two inner loops. Each time the outer loop is repeated, two inner loops
are executed. The first inner loop prints the leading blank spaces; the second inner loop
prints one or more asterisks.

The outer loop is repeated five times; the number of repetitions performed by the
inner loops is based on the value of row. Table 6.3 lists the inner loop control parame
ters for each value of row. Four blanks and one asterisk are printed when row is 1, three
blanks and three asterisks are printed when Row is 2, and so on. When Row is 5, the first
inner loop is skipped and nine (2x5-1) asterisks are printed. ■

Program 6.8 Triangle

WITH Ada.Text_IO;
PROCEDURE Triangle IS

Draws an isosceles triangle
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

NumLines: CONSTANT Integer :» 5;
Blank : CONSTANT Character ;

Star : CONSTANT Character := * *';

BEGIN — Triangle

FOR Row IN 1 .. NumLines LOOP — draw each row

FOR LeadBlanks IN REVERSE 1 .. NumLines Row LOOP
Ada.Text_IO.Put(Item => Blank); — leading blanks

END LOOP; ~

FOR CountStars IN 1 .. (2*Row) - 1 LOOP
Ada.Text_IO.Put(Item => Star); — display asterisks

END LOOP;

Ada.Text__IO.New_Line; — terminate row

END LOOP;

END Triangle;
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Sample Run

•kieieitie

*******

*********

Table 6.3 Trace of inner Loop Parameters in Triangle

Row LeadBlanks CountStars Effect

1 REVERSE 1. .4 1..1 Displays 4 blanks and 1 asterisk

2 REVERSE 1. .3 1..3 Displays 3 blanks and 3 asterisks

3 REVERSE 1. .2 1.5 Displays 2 blanks and 5 asterisks

4 REVERSE 1. .1 1..7 Displays 1 blank and 7 asterisks

5 REVERSE 1. .0 1..9 Displays 0 blanks and 9 asterisks

EXERCISES FOR SECTION 6.5

Self-Check

1. What is displayed by the following program segments, assuming that m is 3
and N is 5?

a. FOR I IN 1..N LOOP

FOR J IN 1..I LOOP

Ada.Text_IO.Put(Item => '*');
END LOOP;

Ada.Text_IO.New_Line;
END LOOP;

b. FOR I IN 1..N LOOP
FOR J IN I..M LOOP

Ada.Text_IO.Put(Item => '*');
END LOOP;

Ada.Text_IO.New Line;
END LOOP;

2. Show the output displayed by the following nested loops.

FOR I IN 1..2 LOOP

Ada.Text_IO.Put(Item=»>"Outer");
Ada.Integer_Text 10.Put(Item=>I, Width=>5);
FOR J IN 1..3 LOOP

Ada.Text_lO.Put(Item=>"Inner ");
Ada. Integ^Br_Text_IO. Put (Item=>I, Width=>3);
Ada. Integer_Text 10. Put (Item=»>J, Width='>3);

END LOOP;

FOR K IN REVERSE 1..2 LOOP
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Ada. Text_IO. Put (11ein=> " Inner " );
Ada. Integer__Text_IO. Put (Itera=>I, Width=>3) j
Ada. lnteger_Text_IO. Put (Item=»>K, Width=>3);

END LOOP; ~ ~
END LOOP;

Programming

1. Write a nest of loops that causes the following output to be displayed.

1

1 2

12 3

12 3 4

12 3

1 2

1

6.6 Data Structures: More on Subtypes

In this section we continue our study of subtypes. We begin with enumeration subtypes.

Subtypes of Enumeration Types

Subtypes of programmer-defined types can be defined just as easily as subtypes of pre
defined types. As an example, consider the month-name type introduced in Section 4.6:

TYPE Months IS

(January, February, March, April, May, June,
July, August, September, October, November, December);

Now we can define subtypes for three seasons as follows:

SUBTYPE Spring IS Months RANGE March .. May;
SUBTYPE Summer IS Months RANGE June .. August;
SUBTYPE Autumn IS Months RANGE September .. November;

We cannot easily define a subtype winter (the months December, Janueiry, and
February) because, unfortunately, Ada requires that the values of a subtype be speci
fied in the form of a range and dierefore contiguous, that is, adjacent in the base type
definition. Sometimes a way can be found to work around this, as in the case of the
day-names type introduced in Section 5.1:

TYPE Days IS
(Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

Since Monday through Friday are contiguous and satuday and Sunday are contiguous,
we can define subtypes for weekdays and weekend days:
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SUBTYPE Weekdays IS Days RANGE Monday .. Friday;
SUBTYPE Weekend IS Days RANGE Satday .. Sunday;

However, this work-around requires the Days type to look different from the "normal"
American calendar in which the week starts on Sunday.

Type Membership: The Operator IN

An important operator that applies to almost all types in Ada is in. It can be used to
determine whether a given value is a member of a given type's set of values.

■ Example 6.7

Suppose that Today is of type Days and that we have defined the two subtypes week
days and Weekend as above. The following if statement serves as an example of the use
of in:

IF Today in Weekdays THEN
Ada. Text_I0. Put (Item =«> "Another day, another dollar...");

ELSE

Ada.Text 10.Put(Item =»> "We've worked hard, let's play hardl");
END IF;

Program 6.9 can be used to determine whether we need to go to work tomorrow. It
is based on Program 5.1. Notice the use of the if statement shown above. ■

Program 6.9 Do We Have to Work Tomorrow?

WITH Ada.Text^IO;
PROCEDURE Work_Daya IS

Demonstrates the use of enumeration subtypes:
prompts user for a day of the week and determines whether
the following day is a weekday or weekend day.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

TYPE Days IS (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

SUBTYPE WeekDays IS Days RANGE Monday .. Friday;
SUBTYPE WeekEnd IS Days RANGE Saturday .. Sunday;
PACKAGE Day_l0 IS NEW Ada.Text_I0.Enumeration_I0 (Enum »> Days);

Today : Days; — input - day of the week
Tomorrow : Days; — output - next day

BEGIN ~ Work_Days

— prompt user to enter a day name
Ada.Text_I0.Put (Item => "Enter a day of the week > ");
Day_I0.Get (Item »> Today);
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— find tomorrow

IF Today = Days'Last THEN
Tomorrow := Days'First;

ELSE

Tomorrow := Days'Succ(Today);
END IF;

Ada.Textile.Put (Item => "Tomorrow is ");
Day__IO.Put (Item => Tomorrow);
AdaTText_IO.New_Line;

— Is Tomorrow a week day or a weekend day?
IF Tomorrow IN Weekdays THEN

Ada.Text_IO.Put (Item => "Another day, another dollar...");
Ada.Text_IO.New_Line;

ELSE

Ada.Text_IO.Put (Item => "We've worked hard, let's play hard!");
Ada.Text_IO.New_Line;

END IF;

Ada.Text_IO.Put (Item => "Have a good day tomorrow.");
Ada.Text_IO.New_Line;

END Work_Days;

Sample Run

Enter a day of the week > Saturday
Tomorrow is SUNDAY

We've worked hard, let's play hard!
Have a good day tomorrow.

As you have seen in this chapter, another use for in is in counting loops. So far, you
have seen only loops whose range is i. .repetitions. Another useful form of the
counting loops is to give the name of a type or subtype as the range of the loop. Sup
pose that smaiiint is defined with a range -so.. so:

SUBTYPE Smalllnt IS Integer RANGE -50 .. 50;

then the loop

FOR Counter IN Smalllnt LOOP
Ada.Integer_Text_IO.Put(Item => Counter);
Ada.Text_IO.New_Line;

END LOOP; ~

displays all the values in the type smaiiint (-50,-49, -48,...), one at a time.

■ Example 6.8

Program 6.10 displays the addition table for integer values between 0 and 9 (type
smaliNat). For example, the table line beginning with the digit 9 shows the result of
adding to 9 each of the digits 0 through 9. The initial for loop prints the table heading,
which is the operator + and the list of digits from 0 through 9.
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The nested for loops are used to print the table body. The outer for loop (loop
counter Left) first prints the current value of Left. In the inner for loop, each value of
Right (0 through 9) is added to Left and the individual sums are printed. Each time the
outer loop is repeated, 10 additions are performed; a total of 100 sums are printed. ■

Program 6.10 Addition Table

WITH Acla.Text_I0;
WITH Ada. Integer_Text__IO;
PROCEDURE Addition Table IS

Displays an addition table.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1996

MaxDigit : CONSTANT Natural :» 9;
SUBTYPE SmallNatural IS Natural RANGE 0 .. MaxDigit;

BEGIN — Addition__Table

— Display the table heading.
Ada.Text_IO.Put(Item => "+");
FOR Right IN SmallNatural LOOP — Display heading
Ada.Integer Text_IO.Put(Item »> Right, Width =>3);

END LOOP;

Ada.Text_lO.New_Line; — Terminate heading

— Display the table body.
FOR Left IN SmallNatural LOOP

— Display each row of the table
Ada. Integer_Text__IO. Put (Item => Left, Width => 1);

FOR Right IN SmallNatural LOOP

Ada.Integer Text 10.Put (Item => Left + Right, Width «> 3);
END LOOP;

Ada.Text_IO.New_Line; — Teminate tatble row

END LOOP;

END Addition_Table;

Sample Run

+  0 1 2 3 4 5 6 7 8 9

0  0 1 2 3 4 S 6 7 8 9

1  1 2 3 4 5 6 7 8 9 10

2  2 3 4 5 6 7 8 9 10 11

3  3 4 5 6 7 8 9 10 11 12

4  4 5 6 7 8 9 10 11 12 13

5  5 6 7 8 9 10 11 12 13 14

6  6 7 8 9 10 11 12 13 14 15

7  7 8 9 10 11 12 13 14 15 16

8  8 9 10 11 12 13 14 15 16 17

9  9 10 11 12 13 14 15 16 17 18
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■ Example 6.9

Program 6.11 shows how this structure can be used to display all the days, weekdays,
and weekend days in the week. This program uses three for loops, one for the base
type Days and one for each of the two subtypes. To make it interesting, we display the
days in reverse order. ■

Program 6.11 Using Enumeration Subtypes

WITH Ada.Text_IO;
PROCEDURE Reverse_Display__Days IS

Display the days of the week, weekdays, weekend days;
demonstrate enumeration subtypes and how they can be used
to control a loop running in reverse.
Author; M. B. Feldman, The George Washington University
Last Modified: August 1998

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
SUBTYPE WeekDays IS Days RANGE Mon .. Fri;
SUBTYPE WeekEnd IS Days RANGE Sat .. Sun;
PACKAGE Day_lO IS NEW Ada.Text_lO.Enumeration_IO (Enum => Days);

BEGIN — Reverse_^Display_Days

Ada.Text_IO.Put (Item => "The days of the week are ");
FOR Day IN REVERSE Days LOOP

Day_IO.Put (Item => Day, Width =>4);
END LOOP;

Ada.Text_IO.New_Line;

Ada.Text_10.Put (Item «=> "The weekdays are ");
FOR Day IN REVERSE WeekDays LOOP

Day_IO.Put (Item => Day, Width => 4);
END LOOP;

Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => "The weekend days are ");
FOR Day IN REVERSE WeekEnd LOOP

Day_IO.Put (Item => Day, Width =>4);
END LOOP;

Ada.Text_IO.New_Line;

END Reverse_Display_Days;

Sample Run

The days of the week are SUN SAT FRi THU WED TUE MON
The weekdays are FRI THU WED TUE MON
The weekend days are SUN SAT
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■ Example 6.10

Program 6.12 uses the screen package from Chapter 4 to draw vertical and horizontal
lines on the screen, dividing the screen into four quadrants. We repeat the subtype and
constant declarations from screen here, just to remind you:

ScreenDepth : CONSTANT Integer i- 24;
ScreenWidth : CONSTANT Integer 80;

SUBTYPE Depth IS Integer RANGE 1..ScreenDepth;
SUBTYPE Width IS Integer RANGE 1..ScreenWidth;

The loop

FOR Count IN Screen.Width LOOP

Screen.MoveCursor (Row => 12, Column => Count);
Ada.Text_IO.Put (Item =>
Screen.MoveCursor

(Row => 13, Column => (Screen.Screen_Width - Count) +
Ada.Text_IO.Put (Item => '-'); "

END LOOP;

draws the horizontal separator consisting of two lines of hyphen characters on rows 12
and 13 of the screen. TTie parameters to the first call of screen.MoveCursor move the
cursor one position to the right in each loop iteration; just to make the program more
Interesting, the second call moves the cursor one position to the left each time. ■

Program 6.12 Dividing the Screen into Four Quadrants

WITH Ada.Text_IO;
WITH Screen;

PROCEDURE Four Pieces IS

This program divides the screen into four pieces
by drawing horizontal and vertical lines. The Screen
package is used to position the cursor.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

BEGIN — Four_Pieces

Screen.ClearScreen;

FOR Count IN Screen.Depth LOOP
Screen.MoveCursor (Row => Count, Column => 41);
Ada.Text_IO.Put (Item =» '(*);
Screen.MoveCursor

(Row => (Screen.Screen_Depth - Count) + 1, Column => 42);
Ada.Text_IO.Put (Item «>~' |');

END LOOP;

FOR Count IN Screen.Width LOOP

Screen.MoveCursor (Row »> 12, Column => Count);
Ada.Text_IO.Put (Item => '- *);
Screen.MoveCursor
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(Row => 13, Column => (Screen.Screen_Width - Count) + 1)
Acia.Text__IO.Put (Item =>

END LOOP; ""

Screen.MoveCursor (Row => 24, Column => 1);

END Four Pieces;

SYNTAX

DISPLAY
FOR Statement (Counting Loop, Type-Name Form)

Forms:

FOR counter IN type-name LOOP
statement sequence

END L(M)P;

FOR counter IN REVERSE type-name LOOP
statement sequence

END LOOP;

Example:

FOR WhichDay IN Weekdays LOOP
Day 10.Put (Item => WhichDay; Ada,Text__IO,New_Line;

END LOOP;

Interpretatioii:

The number of times statement sequence is executed is determined by the num
ber of values in the type given by type-name, which must be the name of ah inte
ger or enumeration type or subtype.

The value of the loop counter counter is set to /ype-ncme'First before the
first execution of statement sequence; counter is incremented to its successor
value after each execution of statement sequence; the last execution of statement
sequence occms wh&n counter is equsd to type-name'h&at.

The value of counter must not be changed within statement sequence. The
variable counter is not declared separately and has no existence outside the loop.

If REVERSE is present, counter is initialized to type-name'"Laat and the itera
tion is done backward, decrementing counter to its predecesscff value after each
ejJScyxtSonof statement sequence.

Limitations of the FOR Statement

The FOR statement is very powerful and useful, but it has one important limitation: The
loop counter is always either incremented (by taking the successor) or decremented (by
taking the predecessor). The for statement can therefore be used only to loop through
all the values of a given range. There is no way to count by 2s, for example.

Ada provides two other loop statements, which can be used with arbitrary loop con
trol conditions, not just counting straight through the values of a range. Specifically, we
can use either the general loop or the while loop structure, both of which we present in
Chapter?.
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EXERCISES FOR SECTION 6.6

Self-Check

1. Explain why it is a good idea to use the name of a subtype, instead of literals,
in a loop statement, wherever it is possible to do so.

6.7 Tricks of the Trade: Debugging and Regression Testing

Chapters 1 and 3 described the general categories of error messages that you are likely
to see: compilation errors and run-time errors, or exceptions. It is also possible for a
program to execute without generating any error messages but still produce incorrect
results. Sometimes the cause of an exception, or the origin of incorrect results, is appar
ent and the error can be fixed easily. Often, however, the error is not obvious and may
require considerable effort to locate.

The first step in attempting to find a logic error is to try to determine what part of
the program is generating incorrect results. Then insert extra output statements in your
program to provide a trace of its execution. For example, if the averaging loop in Pro
gram 6.4 is not computing the correct sum, you might want to insert extra diagnostic
output statements, such as the last five lines in the following loop:

FOR Count IN 1 .. NumIterns LOOP

Ada.Text_lO.Put(Item => "Integer item no. ");
Ada.Integer_Text_IO.Put(Item => Count, width =>1);
Ada.Text_Io7Put(Ytem => " >
Ada.Float_Text_IO.Get (Item =•> CurrentValue);
Sum := Sum + CurrentValue;

— diagnostic statements
Ada.Text_lO.Put (Item => "*****Sum = ");
Ada.lnteger_Text_IO.Put (Item => Sum);
Ada.Text_IO.Put (Item => "*****count = ");
Ada. Integer_Text_IO. Put (Item =»> Count);
Ada.Text_10.New_Line;

END LOOP;

The diagnostic Put statements will display each partial sum that is accumulated and
the current value of count. Each of these statements displays a string of asterisks at the
beginning of its output line. This makes it easier to identify diagnostic output in the
debugging runs and makes it easier to locate the diagnostic Put statements in the source
program.

Once it appears that you have located an error, you will want to take out the extra
diagnostic statements. As a temporary measure, it is sometimes advisable to make these
diagnostic statements comments by preceding them with comment marks (—). This is
called commenting out code. If errors crop up again in later testing, it is easier to
remove the comment marks than to retype the diagnostic statements.
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Using Debugger Programs

Many compilation systems have debugger programs available to help you debug an
Ada program. The debugger program lets you execute your program one statement at a
time (single-step execution) so that you can see the effect of each statement. You can
select several variables whose values will be automatically displayed after each state
ment executes. This allows you to trace the program's execution. Besides printing a
diagnostic when a run-time error occurs, the debugger indicates the statement that
caused the error and displays the values of the variables you selected.

You can also separate your program into segments by setting breakpoints at
selected statements. A breakpoint is like a fence between two segments of a program.
You can request the debugger to execute all statements from the last breakpoint up to
the next breakpoint. When the program stops at a breakpoint, you can select variables
to examine, in this way determining whether the program segment executed correctly.
If a program segment executes correctly, you will want to execute through to the next
brealqjoint. If it does not, you might want to set more breakpoints in that segment or
perhaps perform single-step execution through that segment.

The debugger is generdly a feature of the compilation system, not part of the pro
gramming language. Therefore we cannot give any further details, because they depend
on the system that you are working on. You should try to find out from your teacher or
computer center whether an Ada debugger is available and, if so, how to use it. Debug
gers are helpful and can save you a lot of time in debugging a complicated program.

Regression-Testing a Program

After all compilation errors have been corrected and the program appears to execute as
expected, the program should be tested thoroughly to maJce sure that it works. Go back
to your test plan and run all the tests again, not just the one that exposed the logic error.
This principle is called regression testing and is designed to help you be sure that fixing
one logic error did not accidentally introduce another one!

6.8 System Structures: Overloading and the Useful Functions
Package

In Section 5.8 we showed how to write a simple package, Min_Max, containing func
tions to find the minimum and maximum of two integer values. Let us rework that
package to include two more useful mathematical functions: the sum of integers from 1
to N and the product of integers from 1 to N. The latter function is call&d factorial.

First, we shall rewrite the package specification to name the package
usefui_Functions and include specifications for the two new functions. Note in the
specification that the sum and factorial functions require parameters of type Positive
and return positive results. Program 6.13 shows the package specification.
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Program 6.13 Specification for Package Useful_Functions

PACKAGE Useful Functions IS

Specifications of functions provided
by Useful_Functions package
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Minimum (Valuel, Value2: Float) RETURN Float;
— Pre: Valuel and Value2 have been assigned values
— Post: Returns the smaller of the two input values

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Maximum (Valuel, Value2: Float) RETURN Float;
— Pre: Valuel and Value2 have been assigned values
— Post; Returns the larger of the two input values

FUNCTION Sum (N: Positive) RETURN Positive;
— Pre: N has been assigned a value
— Post: Returns the sum of integers from 1 to N

FUNCTION Factorial (N: Positive) RETURN Positive;
— Pre: N has been assigned a value
— Post: Returns the product of integers from 1 to N

END Useful__Functions;

The Overloading Principle

There is something else noteworthy about the specification in Program 6.13. Function
specifications appear for two functions called Minimum and two functions called Maxi
mum. Looking at the two Minimum functions,

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Minimum (Valuel, Value2: Float) RETURN Float;

we see that they have the same names but different parameter profiles; that is, their
input parameters and return types are different. This is an example of overloading,
which in Ada allows two or more different operations to have the same name, as long as
there is enough difference in their parameter profiles that the compiler can distinguish
them.

The advantage of overloading is that operations with similar behavior or function
ality can be given similar names. This makes programs easier to write and to read
because the programmer is not forced to invent names like Minimuminteger and Mini-
mumFloat merely because the language requires all subprograms to have distinct
names.

Actually, you've been using overloading all along when you've used the standard
input/output libraries. Each package in these libraries has several Gets and several
Puts, all with the same name but different parameter profiles.
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When the compiler reaches a procedure or function call, it selects the appropriate
procedure to include in the executable program by examining the parameter profile. If
the profile matches one of the procedures made available by context clauses, all is well.
If there is no match, a compilation error results. It could be that there are two matches;
this case also results in a compilation error.

Another example of overloading comes from the arithmetic operations that we have
been doing. An assignment statement such as

Result := Result + Count;

uses a different + depending on whether its operands are integer or Float. Indeed, the
machine instructions generated by the compiler are quite different for the two numeric
types. We could write specifications for the integer and float versions of + that look just
like function specifications:

FUNCTION "+" (Left; Integer; Right: Integer) RETURN Integer;
FUNCTION "+" (Left; Float; Right; Float ) RETURN Float;

Mathematically, an arithmetic operation is just a special kind of function; writing
an operator specification this way just reflects that mathematical fact. There is no prob
lem in naming both of the operations + (the quotes are required in this form for syntac
tic reasons): They have different parameter profiles, so the compiler can distinguish
between them.

Specifications of all the predefined types and operators in Ada appear in the Lan
guage Reference Manual in a section called package standard; a version of this very
useful description appears in Appendix C. package standard is automatically available
to all Ada programs; no context clause is necessary. When the compiler reaches a state
ment such as

Result ;= Result + Count;

it examines the types of Result and count to discover whether a matching + is avail
able. If Result is an integer and count is a float, for example, there is no matching + in
PACKAGE standard, SO a compilation error arises.

PROGRAM

STYLE
Using Overloading Wisely

Used carefully, overloading can be a very helpful concept in writing Ada pro
grams, because it allows operations to be given meaningful names, and all opera
tions with similar functionality can be given the same name.

Clearly, overloading can be abused by using it too much or by using it to
name functions and procedures that do not have similar behavior. This would
mislead and confuse the reader of a program and so should be avoided.
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Writing the Body of Useful_Functions

The next step is to provide the package body of usefui_Functions, which consists of
function bodies for the six functions. The body of sum is adapted from Program 6.3; the
body of Factorial can be readily adapted from the body of sum. (Note, however, that
Result is initialized to 1, not 0). The complete package body appears in Program 6.14.

Program 6.14 Body of UsefuLFunctions

PACKAGE BODY Useful_Functions IS

~| Body of Useful_Functions package
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

— minimum of two Integer values
FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;

BEGIN — Minimum

IF Valuel < Value2 THEN

Result := Valuel;
ELSE

Result ;= Value2;
END IF;

RETURN Result;

END Minimum;

— minimum of two Float values

FUNCTION Minimum (Valuel, Value2: Float) RETURN Float IS
Result: Float;

BEGIN — Minimum

IF valuel < Value2 THEN

Result := Valuel;
ELSE '

Result := Value2;
END IF;

RETURN Result;
END Minimum;

— maximum of two Integer values
FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;

BEGIN — Maximum

IF Valuel > Value2 THEN

Result := Valuel;
ELSE

Result := Value2;
END IF;

RETURN Result;
END Maximum;

— maximum of two Float values

FUNCTION Maximum (Valuel, Value2: Float) RETURN Float IS
Result: Float;

BEGIN — Maximum

IF Valuel > Value2 THEN

Result Valuel;
ELSE
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Result :<= Value2;

END IF;
RETURN Result;

END Maximum;

— sum of integers from 1 to N
FUNCTION Sum {N: Positive) RETURN Positive IS
Result: Natural;

BEGIN — Sum

Result 0;

FOR Count IN 1..N LOOP

Result ;= Result + Count;

END LOOP;

RETURN Result;

END Sum;

— factorial, or product of integers from 1 to N
FUNCTION Factorial (N: Positive) RETURN Positive IS
Result: Positive;

BEGIN — Factorial

Result := 1;

FOR Count IN 1..N LOOP

Result := Result * Count;

END LOOP;

RETURN Result;

END Factorial;

END Useful_Functions;

Program 6.15 illustrates the overloading principle in action by finding the maxi
mum of two integers and the maximum of two floats. Notice in this program that
useful_Punctions.Maximum appears to be called twice. In fact, different functions are
being called, as you can see from the different parameter profiles: In the first call inte
gers are supplied; in the second call, floats are supplied.

Program 6.15 Illustrating the Overloading Principle

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
WITH Ada.Float_Text_IO;
WITH Useful_Functions;
PROCEDURE Max_Int_Flt IS

Illustrates the overloading principle using the Maximum
functions for both integer and float quantities
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

Intl : Integer; — inputs
Int2 : Integer;

Largerint : Integer; — output

Fltl : Float; — inputs
Flt2 : Float;

LargerFlt : Float; — output

BEGIN — Max Int Fit
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Ada.Text_IO.Put (Item => "Please enter first integer value > ");
Ada.Integer_Text_IO.Get (Item => Intl);
Ada.Text_IO.Put (Item => "Please enter second integer value > ");
Ada.lnteger_Text_IO.Get (Item => Int2);

Largerint := Useful_Functions.Maximura(Valuel=>Intl, Value2=>Int2);

Ada.Text_IO.Put (Item => "The larger integer is ");
Ada.Integer_Text_IO.Put (Item => Largerint, Width =>1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => "Please enter first float value > ");
Ada.Float_Text_IO.Get (Item => Fltl);
Ada.Text_IO.Put (Item => "Please enter second float value > ");
Ada.Float_Text_IO.Get (Item => Flt2)j

LargerFlt ;= Useful_Functions.Maximum(Valuel=>Fltl, Value2=>Flt2);

Ada.Text_IO.Put (Item => "The larger float is ");
Ada.Float_Text_IO.Put
(Item => LargerFlt, Fore => 1, Aft => 2, Exp =>0);

Ada.Text_IO.New_Line;

END Max_Int_Flt;

Sample Run

Please enter first integer value > -27
Please enter second integer value >34
The larger integer is 34
Please enter first float value > 29.77

Please enter second float value > 15.09

The larger float is 29.77

Finally, Program 6.16 gives a program that prompts the user for an integer between
1 and 10, then displays a table of the sum and factoriEil of each of the integers from 1 to
the number entered.

Program 6.16 A Program That Uses Useful_Functions

WITH Ada.Text_IOj
WITH Ada.Integer_Text_IO;
WITH tJseful_Functions;
PROCEDURE Svim and Factorial IS

Prompts the user for an integer N from 1 to 10
and displays the sum and factorial of all integers from
1 to N. Sum and Factorial are gotten from the
Useful_Functions package.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SUBTYPE OneToTen IS Positive RANGE 1..10;

MaxNum: OneToTen; — input - a value from one to ten
SumToCount: Positive; — output - sum and product of
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ProdToCount: Pos it1ve;

BEGIN — Sum and Factorial

integers from one to Count

Ada.Text_IO.Put (Item => "Please enter an integer from 1 to 10 > ");
Ada.Integer_Text_IO.Get (Item => MaxNum);
Ada.Text_IO.New_Line;

Sum Factorial");

") ;

Ada.Text_IO.Put(Item => " N
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => " —
Ada.Text 10.New Line;

FOR Count IN l..HaxNum LOOP

SumToCount Useful_Functions.Sum (N => Count);
ProdToCount Useful_Functions.Factorial (N "> Count);

Ada.Integer_Text_IO.Put (Item => Count, Width =>3);
Ada.Integer_Text_IO.Put (Item »> SumToCount, Width =>7);
Ada.Integer_Text_IO.Put (Item => ProdToCount, Width =>9);
Ada.Text loTwew Line;

END LOOP;

END Sum_and_Factorial;

Sample Run

Please enter an integer from 1 to 10 > 9

N  Sum Factorial

1

3

6

10

15

21

28

36

45

1

2

6

24

120

720

5040

40320

362880

PROGRAM

STYLE
Displaying a Table

Program 6.16 displays a table of output values. The table heading is displayed,
before the loop is reached, by the statements

Ada.Text_IO.Put (Item =>
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item «>
Ada.Text 10.New Line;

Sum Factorial");

").

The spaces in the first string are used to align the column headings over their
respective table values. We have left enough spaces to center the column titles of
the respective values. The second string is used to "draw a line" between the col
umn titles and the values. Within the for loop, the four statements
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Ada.Integer_Text_IO.Put (Item => Count, Width =>3);
Ada.lnteger3^ext_I0.Put (Item => SumToCount, Width => 7);
Ada.Integer_Text_IG.Put (Item => ProdToCount, Width =>9);
Ada.Text_IO.New_Line;

display three output values on each line of the table, using 19 columns per line.

6.9 System Structures: Introduction to Exception Handling

It is useful to take a close look at Program 6.16 and make a list of the things that could
go wrong with its execution:

• The user could enter a value that is a perfectly good integer value but is out of range
for the variable MaxNum (for example, the user could enter a 0, a negative number,
or a number greater than 10). In this case the program would terminate with a
constraint_Error, Ada's usual exception for out-of-range conditions.

• The user could enter a value that begins with a nonnumeric character, such as abc
or Ai. In this case the program would terminate with Ada.Text_io.Data_Error,
because the input/output system would complain about bad data.

• The user could enter a value that, when passed to Factorial, could produce a re
sult that is simply too large. Factorials grow quite large very quickly, and it does
not take a very large input value to cause the factorial to be larger than inte
ger 'Last.

As written. Program 6.16 will terminate if any of these conditions arises, and the
Ada "mn-time system" will display a message. Generally the name of the exception
will be displayed, but otherwise the form of the message depends upon the compiler.

Ada provides a useful mechanism called exception handling, which allows the pro
grammer to "catch" the exception before it goes to the Ada run-time system. The pro
grammer can supply, at the bottom of the program, procedure, or function, a set of
statements, called exception handlers, indicating what is to be done in case an excep
tion is raised. Later chapters, beginning with Chapter 7, will introduce exception han
dling systematically; for now. Program 6.17 shows you the general idea.

Program 6.17 Sum and Factorial with Exception Handling

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_lO;
WITH Useful_Functions;
PROCEDURE Robust_Sum_Fact IS

Prompts the user for an integer N from 1 to 50
and displays the sum and factorial of all integers from
1 to N. Sum and Factorial are gotten from the package
Useful_Functions.
This version incorporates an exception handler part.
Author: M. B. Feldman, The George Washington University
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— I Last Modified: August 1998

SUBTYPE OneToFifty IS Positive RANGE 1..50;

MaxNum: OneToFifty; — input - a value from one to ten
SumToCount: Positive; — outputs - sum and product of
ProdToCount: Positive; — integers from one to Count

BEGIN — Robust_Sum_Fact

Ada.Text_IO.Put (Item => "Please enter an integer from 1 to 50 > ");
Ada.Integer_Text_IO.Get (Item => MaxNum);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => " N Sum Factorial");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => " ");
Ada.Text_IO.New_Line;

FOR Count IN 1..MaxNum LOOP

SumToCount :» Oseful_Functions.Sum (N => Count);
ProdToCount :=» Useful_Functions.Factorial (N => Count);

Ada.Integer_Text_IO.Put (Item => Count, Width =>3);
Ada.Integer_Text_IO.Put (Item => SumToCount, Width =>7);
Ada.Integer_Text~IO.Put (Item => ProdToCount, Width =>9);
Ada.Text 10.New Line;

END LOOP;

EXCEPTION

WHEN Constraint_Error «=>
Ada.Text_ip.Put
(Item => "The input value or result is out of range.");

Ada.Text_IO.New_Line;
WHEN Ada.Text_IO.Data_Error »>
Ada.Text_IO.Put (Item »> "The input value is not well formed.");
Ada.Text~lO.New_Line;

END Robust_Sum_Fact;

Sample Run

Please enter an integer from 1 to 50 > 100
The input value or result is out of range.

Notice that at the bottom of the program, there is a section:

EXCEPTION

WHEN Constraint_Error =>
Ada.Text_IO.Put
(Item «> "The input value or result is out of range.");

Ada.Text_IO.New_Line;
WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IoTput (Item => "The input value is not well formed.");
Ada.Text_IO.New_Line;
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END Robust_Suin_Fact;

Each group of statements beginning with when is called an exception handler. If the
program executes normally, execution stops at the "normal" last statement (the last line
before the word exception); it is as though the exception-handling section were not
there. However, if an exception is raised anywhere in the program, execution of the
statement causing the exception is halted, and control is passed immediately to the
appropriate exception handler. Once the handler's statements have been executed (in
this case, displaying a message), the program terminates normally. No message is dis
played by the run-time system; because the program handled its own exception, the
run-time system has no need to do so. Try running this program with various good and
bad inputs to observe how it behaves.

How useful is this? We will see in Chapter 7 how exception handling can make pro
grams much less prone to terminate with error messages from the run-time system and
also how exception handling can be used to ensure the validity of user input. In the sim
ple case considered here, the usefulness of exception handling is that it allows the pro
grammer to control the form of the message displayed when the program terminates.
This is better than leaving it to the run-time system, the form of whose messages
depends on the compiler.

6.10 Tricks of the Trade: Common Programming Errors

Remember that the counter variable in a for loop has no existence outside the loop. If
you need to remember the value of the counter variable, copy it into a different vari
able.

CHAPTER REVIEW

We showed how to implement repetition in Ada using the counting loop or for state
ment.

Algorithm and program traces are used to verify that an algorithm or program is
conect. Errors in logic can be discovered by carefully tracing an algorithm or program.
Tracing an algorithm or program before entering the program in the computer will save
you time in the long run.

We also introduced the important concept of subtypes. Subtypes are used both to
improve program readability and to enable the detection of out-of-range values. The
operators that can be used with a subtype are the same as for its base type.

We also discussed the issue of type compatiblity. A subtype is compatible with its
base type and with all other subtypes of the same base type. This means that an opera
tor can have one operand whose type is the subtype and one operand whose type is the
base type, or indeed another subtype.



242 Counting Loops; Subtypes

Another important concept that was introduced in this chapter was overloading,
which in Ada permits several functions or procedures to be given the same name, as
long as they have different parameter profiles. This is convenient for giving names to
operations like Minimum, which have similar function regardless of the type on which
they operate.

Finally, exception handling was discussed. Exception handling is Ada's way of
allowing a program to keep control even in the event of an error.

New Ada Constructs in Chapter 6

The new Ada constructs introduced in this chapter are described in Table 6.4.

Table 6.4 Summary of New Ada Constructs

Construct Effect

FOR statement:

FOR CurMonth IN March..July LOOP

Ada. Float__Text_IO. Get
(Item->MonthSales);

YearSales ;= YearSales+MonthSales;

END LOOP;

The loop body is repeated for
each value of curMonth from

March through July, inclusive.
For each month, the value of
MonthSales is read and added

to YearSales.

Quick-Check Exercises

For each of the following program fragments, indicate how many times each output
statement is executed and the last value displayed.

1. FOR I IN 1..10 LOOP
FOR J IN 1..5 LOOP

Ada. Integer_Text_IO. Put (Item => 1 * J, Width «=> 5);
END LOOP;

Ada.Text lO.NewJLine;
END LOOP;

2. FOR I IN 1..10 LOOP
FOR J IN 1..I LOOP

Ada.Integer Text_IO.Put(Item => I * J, Width =>5);
END LOOP;

Ada.Text_IO.New_Line;
END LOOP;

3. FOR Counter IN 1..5 LOOP
Ada. Integer_Text_^IO. Put (Item => Counter, Width =>5);

END LOOP; ~
Ada.lnteger_Text__IO.Put(Item => Counter, width => 5);
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Answers to Quick-Check Exercises

1. The Put statement executes 50 times; the New_Line executes 10 times; the last
value displayed is 50.

2. The Put statement executes 1 + 2 + 3 + ... + 9 + 10, or 55, times; the New_Line
executes 10 times; the last value displayed is 100.

3. No result is displayed, because the program has a compilation error. The vari
able Counter cannot be accessed outside of the loop.

Review Questions

1. Write a FOR statement that runs from ■ z ■ to • a- and displays only the conso
nants. {Hint: Test each character against the vowels.)

2. Write a nested loop that displays the first six letters of the alphabet on a line,
the next five letters on the next line, the next four letters on the next line, and
so on, down to and including one letter (the letter u) on the last line. Use either
uppercase or lowercase letters.

3. Explain the overloading principle. What examples have you seen of its use?

Programming Projects

1. Modify Programming Project 11 of Chapter 5 so that ten speeds are handled in
a single run. Also, print a count of the number of speeding automobiles.

2. Compute and display a table showing the first 15 powers of 2, starting with 2°.

3. Develop a program that reads in 20 values and displays the number of values
that are positive (greater than or equal to 0) and the number that are negative.
Also display "more positive" or "more negative" on the basis of the result.

4. Section 4.3 presented a case study to determine the best value of several pizzas
in a pizzeria. Program 4.4 implemented part of the solution by computing the
price per unit area of a pizza. In this project you can complete the solution by
extending Program 4.4 so that the user is prompted for the number of pizzas to
be compared, then for the size and price of each pizza. The program will then
compute the best value. Find out the sizes and prices of the pizzas in a pizzeria
near you and use those data to test your program.

5. Develop a program that prompts the user for a starting month and year and an
ending month and year and then writes, into an output file, one line for each
day in the period between the starting and ending dates. Each line should show
the month, the day, and the year.

6. Develop a program that prints the multiplication table for the integers 0
through 9.
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7. Modify the group payroll program (Program 6.6) so that the input is taken
from a file, the tax is computed using the rates of Fig. 5.5 and Table 5.6, and,
at the end of the run, a summary is given of the total amount of gross pay for
the company and the total amount of tax withheld.

8. When the euro, the new common European currency, was introduced on Jan.
1,1999, its exchange rates against 11 existing European currencies were fixed.
For example, one euro is worth exactly 13.56 Austrian schillings. The ex
change rates against other currencies will vary. In this project you will develop
a case study and a program that produces a table of currency values. The pro
gram will prompt Ae user for the exchange rates for the U.S. dollar and the
British pound, l^ch row of the table will represent one of the 13 noneuro cur
rencies; the columns will be labeled 1,50,100,200, and 500. In each cell of
the table, display the number of euros a traveler could purchase for the given
number of other currency units. For example, fill in the franc row to show the
number of euros for 1, 50, 100, 200, and 500 francs, respectively. The fixed
exchange rates follow; you can check a bank or newspaper for the dollar and
pound rates.

Austrian schillings 13.56 Irish punts 0.79
Belgian francs 40.34 Italian lire 1,936.27
Dutch guilders 2.20 Luxembourg francs 40.34
Finnish markkas 5.95 Portuguese escudos 200.48
French francs 6.56 Spanish pesetas 166.39
German marks 1.96

9. (Thanks to Chet Lund!) The Bunny Hop is a party dance that was popular in
the 1940s and 1950s. All the party guests stand in a line around the room; each
guest faces the back of the previous one and holds his or her waist loosely. The
music starts and the dancers follow these steps:

Step sideways with the right foot.
Bring the right foot back.
Step sideways with the right foot.
Bring the right foot back.
Step sideways with the left foot.
Bring the left foot back.
Step sideways with the right foot.
Bring the right foot back.
Step sideways with the right foot.
Bring the right foot back.
Step sideways with the right foot.
Bring the right foot back.
Hop forward one step on both feet.
Hop forward one step on both feet.
Hop forward one step on both feet.

The pattern repeats until the music stops or everyone is tired. Develop a pro
gram that prompts the user for a number of repetitions and then uses nested
loops to display that number of repetitions of the pattern. Ask your instructor if
you and the other students in your class can demonstrate the dance.
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Chapter Review

7.1 Control Structures: The General LOOP and EXIT Statements

In all the loops we have used so far, the exact number of loop repetitions required could
be determined before the start of loop execution. We used the for statement to imple
ment these counting loops.

Ada's FOR loop is limited in that counting can proceed only over a range that is dis
crete (i.e., of an integer or enumeration type). Furthermore, the counter variable is
updated by taking its successor (or predecessor if reverse is used)— either adding 1
(subtracting 1) if it is an integer counter or taking the succ (pred) attribute if it is an
enumeration counter. This means that counting cannot proceed, for example, by 2s.

There are three kinds of looping problems for which the Ada for statement is inap
propriate:

• when the loop does not step through all the values of a discrete type in forward or
reverse order (e.g., only every third value is of interest);

• when the most natural type for the loop control variable is not discrete (e.g., if it is
Float); and

245
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• when the number of iterations depends on conditions arising during the execution
of the loop.

The first two cases are called counter-controlled loops; they are still controlled by
counters even though a for statement cannot be used. The third case is often called an
event-controlled loop, because some arriving event, in the input data or some user inter
action, triggers the end of the loop. In cases like these we can use the general
LOOP/exit and while loop to implement conditional loops. The general loop statement
is discussed next; the while statement is introduced later in the chapter.

■ Example 7.1

Program 7.1 displays the odd numbers from 1 to 39, inclusive. Because the step size is
not 1, we cannot use a for loop for this. A general loop structure is used instead A vari
able oddNumber is declared and used to control the loop, oddNumber is initialized to 1;
then the structure

LOOP

exit when OddNumber >39;

END LOOP;

controls the loop. Inside the loop body, OddNumber is incremented:

OddNumber := OddNumber + 2;

The loop ends when the exit condition becomes true. This is tested each time the
EXIT statement is reached. ■

Program 7.1 Looping When the Increment Is Not 1

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_IO;
PROCEDURE Odd_Numbers IS

— I Displays odd numbers from 1 to 39 inclusive
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

OddNumber : Integer;

BEGIN — Odd__Numbers

OddNumber := 1; ~ initialize loop
LOOP

EXIT WHEN OddNumber > 39; ~ test for exit
Ada. Integer__Text_^IO. Put (Item => Oddnumber, Width =>3);
OddNumber Oddnumber t 2; — update

END LOOP;

Ada.Text 10.New Line;
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END Odd_Nuinbers;

Sample Run

1  3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

■ Example 7.2

Program 7.2 displays a table of Celsius and equivalent Fahrenheit temperatures for the
range of temperatures from 100 degrees Celsius to -20 degrees Celsius in steps of-10
degrees. The assignment statement

Fahrenheit ;= (1.8 * Celsius) + 32.0;

converts each Celsius value in this range to a real Fahrenheit value. You can check this
formula by knowing the freezing points (0 and 32 degrees) and boiling points (100 and
212 degrees) in the two systems. Because an integer can't be multiplied by 1.8 and the
step size is not 1, a general loop is used instead of a for.

Three Float constants are declared in the program, cstart is the starting value of
the Float loop control variable Celsius, CLimit is the limit value, and cstep is the
step value. The loop is executed for values of Celsius in the sequence 100.0, 90.0,
80.0,... ,0.0,-10.0,-20.0. ■

Program 7.2 Looping When the Increment Is Not an Integer

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Temperature_Table IS

Displays a table of Fahrenheit and
equivalent Celsius temperatures.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

cstart ; CONSTANT Float := 100.0; — initial Celsius temp
cstep : CONSTANT Float := -10.0; — change in Celsius temp
CLimit : CONSTANT Float := -20.0; — final Celsius temp

Celsius : Float; — Celsius temp
Fahrenheit : Float; — Fahrenheit temp

BEGIN — Temperature_Table

Ada.Text_lO.Put(Item => "Celsius Fahrenheit");
Ada.Text_IO.New_Line (Spacing =>2);

Celsius := CStart; — initialize
LOOP

EXIT WHEN Celsius < CLimit; — test for exit

Fahrenheit :» 1.8 * Celsius + 32.0;

Ada.Float Text 10.Put
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(Item ~> Celsius, Pore => 4, Aft => 0, Exp =>0);
Ada.Text_IO.Put(Item => " ");
Ada.Float_Text_IO.Put
(Item => Fahrenheit, Fore => 3, Aft => l, Exp => 0);

Ada. Text_IO. New__Line;

Celsius := Celsius + CStep; — update
END LOOP;

END Temperature_Table;

Sample Run

Celsius Fahrenheit

100.0 212.0

90.0 194.0

80.0 176.0

70.0 158.0

60.0 140.0

50.0 122.0

40.0 104.0

30.0 66.0

20.0 68.0

10.0 50.0

0.0 32.0

-10.0 14.0

-20.0 -4.0

■ Example 7.3

Program 7.3 traces the progress of a hungry worm approaching an apple. Each time it
moves, the worm cuts the distance between itself and the apple by its own body length
until the worm is close enough to enter the apple. A general loop is the correct looping
structure to use because we have no idea beforehand how many moves are required.

Program 7.3 Looping Controlled by an Event

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Worm_and_Apple IS

Displays distances between a worm and an apple. The worm
keeps reducing the distance by its body length until it is
close enough to bite the apple.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

WormLength: CONSTANT NonNegFloat := 8.5;
— worm body length in CM

InitialDist: NonNegFloat; — input - starting distance
of worm from apple
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Distance: NonNegFloat; — output - diminishing distance
between worm and apple

BEGIN — Worm_and_Apple

Ada.Text_IO.Put (Item => "Initial distance (CM) away from apple > ");
Ada.Float_Text_IO.Get(Item => InitialDist);
Ada.Text_IO.New_Line;

— Cut the distance between the worm and the apple by
— the worm's body length until the worm is close enough
— to bite the apple

Distance := InitialDist; — initialize
LOOP

EXIT WHEN Distance <= WormLength; — test for exit

Ada.Text_IO.Put(Item => "The distance is ");
Ada.Float_Text_IO.Put
(Item => Distance, Fore => 4, Aft => 2, Exp =>0);

Ada.Text_IO.New_Line;

Distance := Distance - WormLength; — update
END LOOP;

— Display final distance before entering the apple.
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => "Final distance between worm and apple is ");
Ada.Float_Text_IO.Put(Item => Distance, Fore => 4, Aft => 2, Exp =>0);
Ada.Text_IO.New_Line;
Ada.Text~IO.Put(Item => "The worm bites the apple.");
Ada.Text~IO.New_Line;

END Worm_and_Apple;

Sample Run

Initial distance (CM) away from apple > 27

The distance is 27.00

The distance is 18.50

The distance is 10.00

Final distance between worm and apple is 1.50
The worm bites the apple.

The assignment statement just before the loop initializes the variable Distance to
the starting distance, InitialDist, which the user entered as 27. Next, the loop header
is reached and the loop exit condition

Distance <= WormLength

is evaluated. Because this condition is not yet true, the loop body (through end loop) is
executed. The loop body displays the value of Distance, and the statement

Distance Distance - WormLength;
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reduces the value of Distance, thereby bringing the worm closer to the apple. The loop
exit condition is tested again with the new value of Distance (18.50); because 18.50 <=
8.5 is still not true, the loop body displays Distance again, and Distance becomes
10.00. The loop exit condition is tested a third time, the loop body displays Distance
again, and Distance becomes 1.50. The loop exit condition is tested again; because
1.50 <= 8.5 is true, loop exit occurs, and the statements following the loop end are exe
cuted.

It is important to realize that the loop is not exited at the exact instant that Distance
becomes 1.50. If more statements appeared in the loop body after the assignment to
Distance, they would be executed. Loop exit does not occur imtil the loop exit condi
tion is retested at the top of the loop and found to be true. ■

Every loop must contain initialization, test, and update steps. Unlike a FOR, which
has a very strict syntax, in a general loop the initialization and update steps can be arbi
trary statements. Therefore the compiler cannot check to ensure that you have included
them, so you must be careful. In Program 73, if the initialization statement is missing,
the initial value of Distance will be meaningless. The last step ensures that we make
progress toward the exit condition (Distance <= wonnLength) during each repetition of
the loop. If the last step is missing, the value of Distance cannot change, so the loop
will execute "forever" (an infinite loop).

SYNTAX

DISPLAY
LOOP Statement (General)

Form:

LOOP

Statement seguencej
EXIT WHEN condition;
statement sequence^

END LOOP;

Example:

PowerOf2 := 1;

LOOP

EXIT WHEN PowerOfZ > 10000;

Ada.Integer_Text__IO.Put (Item => PowerOfZ);
PowerOf2 ;«= PowerOfZ * 2;

END LOOP;
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Interpretatioii:

Statement sequencei is executed and condition (a Boolean expression) is tested.
If condition is found to be true, the loop is exited and the next program statement
after end loop is executed. If condition is found to be false, statement sequence2
is executed and the loop is repeated.

Notes:

EXIT transfers out of the innermost loop in which it appears; that is, if exit
appears inside a nested loop, only the inner loop is exited.

So far, we have seen only loops in which the exit statement is the first one in
the loop body, that is, statement sequencei is empty. Later we wiU look at other
cases.

■ Example 7.4

It is instructive to compare the two loop forms that we currently know how to write: the
FOR loop and the general loop. We can always get the effect of a FOR loop using a gen
eral loop, but we cannot always get the effect of a general loop using a FOR loop. The
following loops behave identically:

FOR i IN 1..5 LOOP

Square := i * i;
Ada.Integer_Text_IO.Put (Item => i. Width => 1);
Ada.Integer_Text_IO.Put (Item => Square, Width =>1);
Ada.Text_lO.New_Line;

END LOOP;

i  := 1;
LOOP

EXIT WHEN i > 5;

Square := i * i;
Ada.lnteger_Text_IO.Put (Item => i. Width =>1);
Ada.lnteger~Text_IO.Put (Item => Square, Width =>1);
Ada.Text_IO.New_Line;
i := i + 1;

END LOOP; ■

We can make the following observations about the two loop forms just shown:

1. The statement i : =* i; in the general loop is our initialization statement; in the
FOR loop, this is handled implicitly as part of the for statement.

2. The statement i :» i+i; in the general loop body increments i by 1. This step
is implicit in the for loop.

3. Unlike the for statement, in which the counter variable is declared implicitly
and has no existence outside the loop body, the loop variable in the general
loop is a "normal" variable: It must be declared, and it is known outside the
loop body just like any other variable.
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Now that we've seen examples of the three cases in which a general loop is appro
priate, let's go on to a case study.

CASE
STUDY the water BALLOON DROP

You and your friends are celebrating the end of final exams and are thinking of interest
ing things to do. You think it might be fun to drop water-filled rubber balloons from the
tops of various high buildings onto the street below. On the other hand, you realize that
the people on the ground might react unfavorably to this sport, so you decide instead to
use your programming knowledge to develop a computer simulation. The simulation
will, given the height of the building, track the balloon's progress on its way to the
ground. The desired time interval is an input to the program. The time interval and
building height are inputs; at each interval the program will display the elapsed seconds
and the distance remaining.

The distance traveled in t seconds by a object dropped from an initial height is rep
resented by the formula distance = 1/2 x gr, where g is the gravitational constant
9.80665.

Analysis

Data Requirements and Formulas

Problem inputs:
Height of the building in meters (BuildingHeight: NonNegFloat)
Desired time interval in seconds (oeitaT; NonNegFloat)

Problem Outputs:
Elapsed time (ElapsedTime: NonNegFloat)
Current height (Height: Float)

Formulas:

distance traveled = 1/2 x g x (elapsedtime)^

Design
The initial algorithm follows.

Algorithm
1. Read inputs from user

2. Initialize Height to BuildingHeight

3. LOOP

3.1. EXIT WHEN Height <=0.0

3.2 Increment elapsed time by time interval

3.3 Height is the initial height minus the distance traveled

3.4 Display current height and cunent elapsed time
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END LOOP

Test Plan
We leave the test plan as an exercise.

Implementation
Program 7.4 shows the resulting program.

Testing
The sample output shows the result of dropping an object from a building approxi
mately the height of the Washington Monument (150 meters). The balloon drops to the
ground quite rapidly, doesn't it?

Program 7.4 Simulating an End-of-Exams Prank

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Balloon_Drop IS

— I Simulates the travel of a water balloon from the top of
— I a building.
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

g : CONSTANT NonNegFloat t- 9.80665;
— gravitational constant

BuildingHeight: NonNegFloat; — input - height of building
DeltaT: NonNegFloat; — input - time interval

Height: Float; — output - height of balloon
ElapsedTime: NonNegFloat; — output - elapsed time

BEGIN — Balloon_Drop

— Enter building height and time interval.
Ada.Text_IO.Put(Item => "Building height in meters > ");
Ada.Float_Text_IO.Get(Item => BuildingHeight);
Ada.Text_IO.Put (Item => "Time in seconds between tsHjle lines > ");
Ada.Float_Text_IO.Get(Item => DeltaT);
Ada.Text_IO.New_Line(Spacing =>2);

—> Display balloon height until it hits the ground.
Ada.Text_IO.Put(Item => " Time Height");
Ada.Text_IO.New_Line;

ElapsedTime :=* 0.0;
Height t- BuildingHeight; — initialize

LOOP

EXIT WHEN Height <= 0.0;
Ada.Float_Text_IO.Put
(Item =•> ElapsedTime, Fore => 8, Aft => 3, Exp =>0);

Ada.Float Text 10.Put
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(Item => Height, Fore => 8, Aft => 3, Bxp =>0);
Ada.Text_IO.New_Line;
ElapsedTime ElapsedTime t DeltaT;
Height := BuildingHeight - 0.5 * g * (ElapsedTime ** 2);

END LOOP;

— Balloon hits the ground.
Ada.Text_IO.New_Line;
Ada.Text^lO.Put(Item => "SPLATT11!");
Ada. Text__IO • New__Line;

END Balloon^Drop;

Sample Run

Building height in meters > 150
Time in seconds between table lines > 0.5

Time Height
0.000 150.000

0.500 148.774

1.000 145.097

1.500 138.968

2.000 130.387

2.500 119.354

3.000 105.870

3.500 89.934

4.000 71.547

4.500 50.708

5.000 27.417

5.500 1.674

SPLATT!1!

EXERCISES FOR SECTION 7.1

Self-Check

1. What values would be printed if the order of the statements in the loop body of
Progam 7.1 were reversed?

2. What is the least number of times that the body of a general loop may be exe
cuted?

3. How would you modify the loop in Program 7.3 so that it also determines the
number of moves (countMoves) made by the worm before biting the apple?
Which is the loop control variable. Distance or CountMoves?

4. How many times is the following loop body repeated? What is printed during
each repetition of the loop body?
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X ;= 3;

Count := 0;

LOOP

EXIT WHEN Count >= 3;

X := X * X;

Ada.Integer_Text_IO.Put(Item => X);
Count ;= Count + 1;

END LOOP;

5. Answer Self-Check Exercise 4 if the last statement in the loop is

Count := Count + 2;

6. Answer Self-Check Exercise 4 if the last statement in the loop body is omitted.

Programming

1. There are 9870 people in a town whose population increases by 10% each
year. Write a loop that determines how many years (countYears) it takes for
the population to go over 30,000.

2. Write a loop that prints a table showing n and 2" while 2" is less than 10,000.

7.2 Problem Solving: Loop Design

It is one thing to be able to analyze the operation of loops like those in Programs 7.1
through 7.4; it is another to design our own loops. We will attack this problem in two
ways. One approach is to analyze the requirements for a new loop to determine what
initialization, test, and update of the loop control variable are needed. A second
approach is to develop templates for loop forms that frequently recur and to use a tem
plate as the basis for a new loop. We will discuss loop templates later in this section.

To gain some insight into the design of the loop that is needed for the worm and
apple problem, we should study the comment in Program 7.3 that summarizes the goal
of this loop:

— Cut the distance between the worm and the apple by
— the worm's body length until the worm is close enough
•— to bite the apple

To accomplish this goal, we must concern ourselves with loop control and loop pro
cessing. Loop control involves making sure that loop exit occurs when it is supposed
to; loop processing involves making sure the loop body performs the required opera
tions.

To help us formulate the necessary loop control and loop processing steps, it is use
ful to list what we know about the loop. In this example, if Distance is the distance of
the worm from the apple, we can make the following observations:
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1. Just before the loop begins, Distance must be equal to initiaiDlst.

2. During pass i. Distance must be less than the value of Distance during pass i
- 1 by the length of the worm (for i > 1).

3. Just after loop exit. Distance must be between 0 and the worm's body length.

Statement 1 simply indicates that initiaiDist is the starting distance of the worm
from the apple. Statement 2 says that the distance of the worm from the apple must be
cut by the worm's body length during each iteration. Statement 3 derives from the fact
that the worm enters the apple when Distance <= wormLength. Distance cannot be less
than WormLength after loop exit; if it were, loop exit should have occmred at the end of
an earlier pass.

Statement 1 by itself tells us what initialization must be performed. Statement 2
tells us how to process Distance within the loop body (i.e., reduce it by the worm's
length). Finally, statement 3 tells us when to exit the loop. Because Distance is
decreasing, loop exit should occur when Distance <= wormLength is true. These con
siderations give us the following outline, which is the basis for the loop shown in Pro
gram 7.3.

1. Initialize Distance to InitiaiDist

2. LOOP

EXIT WHEN Distance <= WormLength

3. Display Distance

4. Reduce Distance by WormLength

END LOOP;

Working Backward to Determine Loop Initialization

It is not always so easy to come up with the initialization steps for a loop. In some cases
we must work backward from the results that we know are required in the first pass to
determine what initial values will produce these results.

■ Example 7.5

Your little cousin is learning the binary number system and has asked you to write a
program that displays all powers of 2 that are less than a certain value (say 10,000).
Assuming that each power of 2 is stored in the variable power, we can make the follow
ing observations about the loop:

1. Power during pass / is 2 times Power during pass i - 1 (for / > 1).

2. Power must be between 10,000 and 20,000 just after loop exit.
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Statement 1 derives from the fact that the powers of a number 2 are all multiples of
2. Statement 2 derives from the fact that only powers less than 10,000 are displayed.
From statement 1 we know that Power must be multiplied by 2 in the loop body. From
statement 2 we know that the loop exit condition is Power >= loooo, so the loop repeti
tion condition is Power < 10000. These considerations lead us to the following outline:

1. Initialize Power to

2. LOOP

EXIT WHEN Power >= 10000

3. Display Power

4. Multiply Power by 2

END LOOP;

One way to complete step 1 is to ask what value should be displayed during the first
loop repetition. The value of n raised to the power 0 is 1 for any number n; specifically,
2® is 1. Therefore, if we initialize Power to 1, the value displayed during the first loop
repetition will be correct. ■

General Loops with Zero Iterations

The body of a general loop is not executed if the loop repetition test fails (evaluates to
false) when it is first reached. To verify that you have the initialization steps correct,
you should make sure that a program still generates the correct results for zero itera
tions of the loop body. If wormLength is greater than or equal to the value read into ini-
tiaiDist (say, 2.5), the loop body in Program 7.3 would not execute, and the following
lines would be correctly displayed:

Initial distance (CM) away from apple >2.5

Final distance between worm and apple is 2.50
The worm bites the apple.

Entering an Unspecified Number of Values

Very often, we do not know exactly how many data items will be entered before a pro
gram begins execution. This may be because there are too many data items to count
them beforehand (e.g., a stack of exam scores for a very large class) or because the
number of data items provided may depend on how the computation proceeds.

There are two ways to handle this situation using a genei^ loop. One approach is to
ask whether there are any more data before each data item is read. The user should
enter y (for yes) or n (for no), and the program would either read the next item (y) or
terminate data entry (n). The y/n variable is sometimes known as a flag. The other way
is to terminate data entry when a particular value occurs in the data. This value is often
called a sentinel: It comes at the end of the data.
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Flag-ControUed Loop

■ Example 7.6

Let us use this approach to design a loop that accumulates the sum (in sum) of a collec
tion of exam scores. The statements below are true assuming that MoreOata always
contains the value • y • or • n •.

1. Sum is the sum of all scores read so far.

2. MoreData is ' N' just after loop exit.

From statement 1 we know that we must add each score to sum in the loop body and
that Sum must initially be 0 for its final value to be correct. From statement 2 we know
that loop exit must occur when Moreoata is 'n*, so the loop repetition condition is
MoreData = 'Y*. These considerations lead us to the following loop form:

1. Initialize Sum to 0

2. Initialize MoreData to

3. LOOP

EXIT WHEN MoreData " 'N';

4. Read the next score into Score

5. Add Score to Sum

6. Read the next value of MoreData

END LOOP;

The loop exit condition, MoreData = -n-, derives from the fact that MoreData is
either 'y* or -n' , and loop exit occurs when MoreData is 'n* . To ensure that at least
one pass is performed, step 2 should be

2. Initialize MoreData to ' y '

In the following loop, the value of the type character variable MoreData controls
loop repetition. It must be initialized to ■ y ■ before the loop is reached. A new character
value ('Y' or 'N') is read into MoreData at the end of each loop repetition. The loop
processing consists of reading each exam score (into score) and adding it to sum. Loop
exit occurs when the value read into MoreData is not equal to • Y •.

Sum := 0;

MoreData ;= * Y■ ;
LOOP

EXIT WHEN MoreData = 'N'
Ada.Text_IO. Put (Item => "Enter the next score > ");
Ada.Integer_Text_IO.Get (Item => Score);
Ada.Text_lO.New_Line;
Sum := Sum + Score;
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Ada.Text_IO.Put
(Item => "Any more data? Enter Y (Yes) or N (No) > ");

Ada.Text 10.Get (Item => MoreData);

END LOOP;

The following sample dialogue would be used to enter the scores 33, 55, and 77.
The problem with this approach is that the program user must enter an extra character
value, Y, before each acmal data item is entered.

Enter the next score >33

Any more data? Enter Y (Yes) or N (No) > Y
Enter next data item > 55

Any more data? Enter Y (Yes) or N (No) > Y
Enter next data item: 77

Any more data? Enter Y (Yes) or N (No) > N I

Template for Flag-Controlled Loop

The general form of the loop just seen can be used to write other loops as the need
arises. This general form is

1. Initialize flag variable to its affirmative value

2. LOOP

EXIT WHEN flag variable is no longer true

Read new value of flag variable

END LOOP;

Sentinel-Controlled Loops and Priming Reads

A second approach to solving the problem addressed in the preceding section is to
instruct the user to enter a unique data value, or sentinel value, when done. The pro
gram would test each data item and terminate when this sentinel value is read. The sen
tinel value should be carefully chosen and must be a value that could not normally
occur as data. This approach is more convenient because the program user enters only
the required data.

■ Example 7.7

The following statements must be true for a sentinel-controlled loop that accumulates
the sum of a collection of exam scores.

1. Sum is the sum of all scores read so far.

2. Score contains the sentinel value just after loop exit.
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Statement 2 derives from the fact that loop exit occurs after the sentinel is read into
Score. These statements lead to the following trial loop form:

Incorrect Sentinel-Controlled Loop

1. Initialize sum to 0

2. Initialize score to

3. LOOP

EXIT WHEN Score is the sentinel

4. Read the next score into score

5. Add Score to Sum

END LOOP;

Because score has not been given an initial value, the loop exit condition in step 3
cannot be evaluated when it is first reached. One way around this would be to initialize
Score to any value other than the sentinel (in step 2) and then read in the first score at
step 3. A preferred solution is to read in the first score as the initial value of score
before the loop is reached and then switch the order of the read and add steps in the
loop body. The outline for this solution is shown below.

Correct Sentinel-Controlled Loop

1. Initialize sum to 0

2. Read the first score into score

3. LOOP

EXIT WHEN Score is the sentinel

4. Add Score to Sura

5. Read the next score into Score

END LOOP;

Step 2 reads in the first score, and step 4 adds this score to 0 (initial value of sum).
Step 5 reads all remaining scores, including the sentinel. Step 4 adds all scores except
the sentinel to sum. The initial read (step 2) is often called the priming read, to draw an
analogy with an old hand-operated water pump that must be primed by pouring a cup of
water into it before it can begin to pump water out of a well. The following Ada imple
mentation uses -1 (value of sentinel) as the sentinel because all normal exam scores
will be nonnegative:

Sum := 0;

Ada.Text_IO.Put (Item => "When done, enter -1 to stop.");
Ada.Text_IO.New_Line;
Ada.Text 10.Put (Item => "Enter the first score > ");
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Ada.Integer_Text_IO.Get (Item => Score);
Ada.Text 10.New Line;
LOOP

EXIT WHEN Score ° Sentinel

Sum Sum + Score;

Ada.Text_IO.Put (Item => "Enter the next score > ");
Ada.lnteger_Text_IO.Get (Item => Score);
Ada.Text_IO.New_Line;

END LOOP;

Although it might look strange at first to see the statement

Ada.Integer_Text_lO.Get (Item => Score);

at two different points in the program, this is a perfectly good programming practice
and causes no problems. Note that score must be integer, not Natural, because the
sentinel value is negative. The following sample dialogue would be used to enter the
scores 33,55, and 77. Compare this with the dialogue shown in Example 7.6.

When done, enter -1 to stop.
Enter the first score >33

Enter the next score >55

Enter the next score >77

Enter the next score > -1

The sum of the scores is 165.

It is usually instructive (and often necessary) to question what happens when there
are no data items to process. In this case the sentinel value should be entered as the
"first score," and loop exit would occur right after the first (and only) test of the loop
repetition condition, so the loop body would not be executed (i.e., a loop with zero iter
ations). Sum would retain its initial value of 0, which would be correct. ■

Template for a Sentinel-Controlled Loop with a Priming Read

1. Read the first value of input variable

2. LOOP

EXIT WHEN input variable is equal to the sentinel

Read the next value of input variable

END LOOP;

The sentinel value must be a value that would not be entered as a normal data item. For

program readability we usually store the sentinel value in a constant.
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Remembering the Previous Data Value in a Loop

In some situations it is necessary to remember the data value that was processed during
the previous iteration of a loop. For example, some keyboards are "bouncy" and cause
multiple occurrences of the same character to be sent when a single key is pressed.
Some faculty members are forgetful and may enter the same exam score twice in suc
cession. An IF statement nested inside a loop can be used to check whether or not the
current data value is the same as the last data value.

■ Example 7.8

Program 7.5 finds the product of a collection of data values. If there are multiple con
secutive occurrences of the same data value, only the first occurrence is included in the
product. For example, the product of the numbers 10,5,5,5, and 10 is 10 x 5 x 10, or
500. Assuming that a new data value is read into NextNum during each loop iteration,
we can make the following observations.

1. Product in pass i is the same as Product in pass t - 1 if NextNum in pass i is
NextNum in pass i - 1; otherwise, Product during pass i is NextNum times Prod
uct in pass i - 1 (for i > 1).

2. NextNum is the sentinel just after loop exit.

Statement 1 requires the loop to "remember" the value that was read into NextNum
during the previous iteration. We will introduce a new program variable, previousNum,
for this purpose. The current value of NextNum should be incorporated in the product
only if it is different from the previous value of NextNum (saved in PreviousNum). A
trial loop form follows.

Initial Loop Form

1. Initialize Product to

2. Initialize PreviousNum to

3. Read the first number into NextNum

4. LOOP

EXIT WHEN NextNum is the sentinel

5. IF NextNum is not equal to PreviousNum THEN

6. Multiply Product by NextNum

END IF;

7. Set PreviousNum to NextNum

8. Read the next number into NextNum

END LOOP;
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For Product to be correct during the first pass, it must be initialized to 1 (step 1).
We must also initialize PreviousNum so that the condition in step 4 can be evaluated. To
ensure that the first number read into NextNum is incorporated in the product, we must
pick a value for PreviousNum that is different firom the initial data value. The safest
thing to do is to initialize PreviousNum to the sentinel. (Why?) These considerations
lead to the following revised loop form.

Revised Loop Form

1. Initialize Product to 1

2. Initialize PreviousNum to the sentinel

3. Read the first number into NextNum

4. LOOP

EXIT WHEN NextNum is the sentinel

5. IF NextNum is not equal to PreviousNum THEN

6. Multiply Product by NextNum

END IF;

7. Set PreviousNum to NextNum

8. Read the next number into NextNum

END LOOP;

Within the loop, steps 7 and 8 prepare for the next iteration by saving the previous
value of NextNum in PreviousNum before reading the next data value. (What would hap
pen if the order of these two steps were reversed?) ■

Program 7.5 illustrates the proper form of a sentinel-controlled loop. The constant
Sentinel has the value 0 because it is meaningless to include 0 in a collection of num
bers being multiplied. To determine whether or not to execute the loop, each value that
is read into NextNum must be compared to sentinel. For this test to make sense in the
beginning, the first data value must be read before the loop is reached. The next value
must be read at the end of the loop so that it can be tested before starting another itera
tion.

Program 7.5 Product of a Series of Integers

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Multiply_Integers IS

Finds the product of a collection of non-zero integers.
If there are multiple consecutive occurrences of the same
value, only the first value is included in the product.
Author: M. B. Feldman, The George Washington University
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--I Last Modified: August 1998

Sentinel : CONSTANT Natural :>= 0; •— sentinel value

NextNum : Integer; — input - new data item
PreviousNum : Integer; — save previous data item
Product ; Integer; — output - product of data

BEGIN — Multiply_lntegers

Product ;»= 1;

PreviousNum := Sentinel;
Ada.Text_IO.Put (Item =» "Enter 0 to stop.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => "Enter first number > ");
Ada.Integer_Text_I0.6et (Item => NextNum); — priming read

LOOP

EXIT WHEN NextNum = Sentinel;

IF NextNum /= PreviousNum THEN

Product ;= Product * NextNum; — compute next product
END IF;

PreviousNum NextNum; — remember previous item
Ada.Text_lO.Put (Item => "Enter next number > ");
Ada.Integer_Text_IO.Get (Item => NextNum);

END LOOP;

Ada.Text_IO.Put (Item => "The product is ");
Ada. Integer_Text_IO. Put (Item «=> Product, Width =>1);
Ada.Text_IO.New_Line;

END Multiply_Integers;

Sample Run

Enter 0 to stop.

Enter first number >10

Enter next number > 5

Enter next number > 5

Enter next number > 5

Enter next number >10

Enter next number > 0

The product is 500

Remember, in a sentinel-controlled loop, the read operation appears twice: before
the loop header (the priming read) and at the end of the loop body.
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PROGRAM

STYLE
A Problem with Sentinel-Controlled Loops

Sentinel-controlled loops are popular, but they do have a disadvantage. We have
been stressing the importance of defining subtypes that reflect the range of data
that will normally appear. A sentinel, on the other hand, makes sense only if it is
a value that does not normally appear in the data. Therefore the range of data val
ues must be extended beyond the normal range to accommodate the sentinel, as
we extended the range of score to be integer rather than Natural.

The difficulty that arises in extending the range is that the Get call might not
catch an incorrectly entered data value. One solution is to use an extra variable of
the extended range just to read the input data. If a value is entered into it that is
not the sentinel, that value is copied into the other variable, whose range is that of
the normally occurring data. Copying the value will raise constraint_Error if
the value is out of range.

EXERCISES FOR SECTION 7.2

Self-Check

1. What output values are displayed by the following loop for a data value of 5?

Ada.Text_IO.Put(Item => "Enter an integer> ");
Ada.Integer_Text_IO.Get(Item => X);
Product := X;
Count ;= 0;

LOOP

EXIT WHEN Count >= 4;

Ada.lnteger_Text_IO.Put(Item => Product, Width => 1);
Product := Product * X;
Count ;= Count + 1;

END LOOP;

2. What values are displayed if the call to Ada.integer_Text_io.put comes at
the end of the loop instead of at the beginning?

3. Discuss the difference between flag-controlled and sentinel-controlled loops.

Programming

1. Write a program segment that computes 1 + 2 + 3 + + I)+ N, where N
is a data value. Follow the loop body with an if statement that compare this
value to iNx(N+I))/2 and displays a message indicating whether the values
are the same or different. What message do you think will be displayed?
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7.3 Control Structures: The WHILE Statement

Ada has another kind of loop statement that is also present in other languages: the
WHILE statement. This statement always tests the loop exit condition at the top of the
loop.

Here are a while statement and a general loop statement that both accomplish the
same purpose, which is to compute and display all powers of 2 less than 10,000:

Power := 1;

WHILE Power < 10000 LOOP

Ada.Integer_Text_IO.Put (Item => Power, Width =>5);
Power := Power * 2;

END LOOP;

Power := 1;

LOOP

EXIT WHEN Power >= 10000;
Ada.Integer_Text__IO.Put (Item «»> Power, Width =>5);
Power ;= Power * 2;

END LOOP;

SYNTAX

DISPLAY

The test in the while loop (Power < loooo) is the complement, or opposite, of the
test that is used in the general loop. The loop Iwdy is repeated as long as the value of
Power is less than 10,OCX). Loop repetition stops when the condition is false, whereas in
the general loop, repetition stops when the condition is true. The condition in a while is
thus a loop continuation condition, whereas that in the general loop is a loop exit condi
tion. The test in a while is always done at the top; in a general loop it can be placed
wherever the programmer finds it to be suitable.

WHILE Statement

Form:

while expressioD LOOP
statement sequence

END LOOP;

Example:

PowerOf2 :» 1;

WHILE PowerOf2 < 10000 LOOP

Ada.Integer_Text_IO.Put (Item «> PowerOf2);
PowerOf2 :» PowerOf2 * 2;

END LOOP;

Inteipretation:

The expression (a condition) is tested, and if it is true, the statement sequence is
execut^ and the expression is retested. The statement sequence is repeated as
long as (while) the expression is true. When the expression is tested and found to
be false, the while loop is exited and the next program statement after end loop
is executed. Note: If the expression evaluates to false the first time it is tested, the
statement sequence will not be executed.
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To summarize our study of loop constructs: This book uses all three loop forms, but
we prefer the general loop over the while loop for two reasons. First, the general loop
is more flexible, because we can place an exit when statement at the top of the loop
body, or at the bottom, or in the middle, as the algorithm dictates. Second, the "positive
logic" of the general loop—the loop terminates upon a true condition—is usually
clearer and more intuitive than the "negative logic" of the while—the loop terminates
upon a false condition.

EXERCISES FOR SECTION 7.3

Self-Check

1. Discuss the differences between the general and while loop statements.

Programming

1. In Programs 7.1 through 7.5, rewrite the general loops as while loops. Make
sure you translate the loop exit conditions properly!

7.4 System Structures: Robust Exception Handling

A good program should be written to anticipate likely input errors and behave accord
ingly, retaining control instead of "crashing" or just returning control to the operating
system. Such a program is called a robust program; the property of robustness is advan
tageous in a program. A robust Ada program is one that retains control and behaves pre
dictably even when exceptions are raised.

Program 6.17 was written with an exception-handling section at the end so that it
would display an appropriate message if an input value was out of range or badly
formed or if a result would overflow the computer's arithmetic system. This is only a
partial solution, because the program terminates without giving the user another chance
to enter an acceptable value. There are many techniques for completing the solution;
the one that we consider here is the use of Ada exception handlers.

We will get user input by entering a loop that exits only when the input value is
acceptable. We will detect out-of-range or badly formed input values using an excep
tion handler form similar to that in Program 6.17. It is necessary to associate the excep
tion handler with the input statement rather than with the entire program. A pseudocode
description of the process follows.



268 Other Loop Forms; Procedures; Exception Handling

Template for a Robust Input Loop, Initial Version

LOOP

Prompt the user for an input value

Get the input value from the user

EXIT the loop if and only if no exception was raised on input

If an exception was raised, notify the user

EKD LOOP;

The first two lines in the loop body should present no problem to you at this point.
The last line is coded using an exception-handler section like that in Program 6.17.

As is clear from the following syntax displays, Ada's rules require that an exception
handler be associated with a block or frame, that is, a sequence of statements between a
BEGIN and an end. A procedure or function has a block as part of its body; the exception
handler in Program 6.17 is associated with that block. Luckily, we can build a smaller
block wherever we need one within a program, just by enclosing a group of statements
between begin and end.

SYNTAX c « L.
DISPLAY Exception Handier

Form;

when exception aaae «>
sequence of stateineats

Example;

WHEN constraint_Error »>
Ada. Text__IO. Put (Item => "Input number is out of range");
Ada,Text_lO.New_Line;
Ada. Text__IO. Put (Item => "Please try entering it again.");
Ada.Text_lO.NewjLine;

Interpretation:

This structure is valid only in the exception-handler part of a begin/end block. If
exception name was raised in the block, sequence of statements is executed, after
which control passes to the next statement after the block's end.

Note:

Exception name can be a predefined exception or a programmer-defined excep
tion. In Chapter 11 we will show how to define your own exceptions. The pre
defined exceptions that are most commonly used follow:
• cons-traint_Error—an attempt is made to store a value in a variable that is

out of range for that variable, that is, out of the range of the variable's type
or subtype

• Ada.Text_io.Data_Error—an attempt is made to read a value which is in
valid for the variable being read



7.4 System Structures: Robust Exception Handling 269

SYNTAX

DISPLAY
Exception Handler Block

Form:

BEGIN

normal sequence of statements

EXCEPTION

WHEN exception-name/ =>
sequence-of statements i

WHEN exception-name2 ->
sequence-of statements 2 • • •

WHEN exception-nameo =>
sequence-ofstat emen tSf;

END;

Example:

An example is given in Program 7.6.

Interpretation:

The only code permitted between exception and end is a sequence of one or
more exception handlers.

If an exception is raised by any statement in normal-sequence-oj-statements,
execution of the statement causing the exception is immediately halted, and con
trol passes to the appropriate exception handler. If the block has no excep
tion-handler part or no exception handler is appropriate (i.e., the exception that
was raised is not named in any of the handlers), control passes out of the block to
the statement following the end, and the exception is reraised at that point.

Note:

The last sentence means that if an exception is raised in executing the statements
of a function or procedure and that function or procedure has no exception-han
dler pan, the exception is propagated, or "passed back," to the program that
called the function or procedure, and an attempt is made to find an appropriate
handler there. If the procedure was the main program, the program ends and con
trol passes to the Ada run-time system, which reports the exception to the user.

In the following pseudocode (a refinement of the pseudocode on page 268) the
entire loop body is made into a block by enclosing it between begin and end. The struc
ture beginning exception is associated with this block.

Template for a Robust input Loop, Refined Version

LOOP

BEGIN

Prompt the user for an input value
Get the input value from the user
EXIT; — valid data

EXCEPTION — invalid data
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Determine which exception was raised and notify the user

END;

END LOOP;

If control reaches the exit—that is, if the input is correct—loop exit occurs. Con
trol passes to the exception handler if the input is incorrect; after execution of the
exception handler, control flows to the end loop, which of course causes the loop to be
repeated. This gives the user another chance to enter correct input.

SYNTAX

DISPLAY
EXIT Statement

Form:

EXIT;

Example:

An example was just given in the robust input loop pseudocode.

Interpretation:

EXIT is a meaningful statement only within a loop structure, exit transfers con
trol to the next statement after the nearest end loop.

■ Example 7.9

Program 7.6 shows a robust input handler. The purpose of the program is to add five
integers in the range -10 through 10. A subtype smaiiint is declared with this range,
then Ada.integer_Text_io.Get is used to get input in this range, storing the value in
the variable inputvalue of type smaiiint. If the value that is entered is out of range,
the attempt to store it in inputvalue raises constraint_Error. The exception handler
for constraint_Error notifies the user that the input is out of range.

Program 7.6 An Example of Robust Numeric Input

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Exception_Loop IS

Illustrates how to write a robust input loop that
prompts user to re-enter invalid input and
refuses to continue until input is good.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

MinVal : CONSTANT Integer := -10;
MaxVal : CONSTANT Integer := 10;
SUBTYPE Smaiiint IS integer RANGE MinVal MaxVal;
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InputValue: Smalllnt.;
Sum: Integer;

BEGIN — Exception_Loop

Sum 0;

FOR Count IN 1..5 LOOP

LOOP — inner loop just to control robust input
BEGIN — block for exception handler

Ada.Text_lO.Put(Item => "Enter an integer between ");
Ada.lnteger_Text_lO.Put (Item => Smalllnt'First, Width => 0);
Ada.Text_lO.Put(Item => " and ");
Ada.Integer_Text_IO.Put (Item => Smalllnt'Last, Width =>0);
Ada.Text_IO.Put(Item => " > ");
Ada.Integer_Text_IO.Get(Item => InputValue);

EXIT; — leave the loop only upon correct input

EXCEPTION

WHEN Constraint_Error ->
Ada.Text_IO.Put ("Value is out of range. Please try again.");
Ada.Text_IO.New_Line;

WHEN Ada.Text_IO.Data_Error =»
Ada.Text_IO.Put ("Value is not an integer. Please try again.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;

END; — block for exception handler
END LOOP;

Sum Sum + InputValue; — add new value into Sum
END LOOP;

Ada.Text_IO.Put (Item => "The sum is ");
Ada.Integer_Text_IO. Put (Item => Sum, Width => 1);
Ada.Text_IO.New_Line;

END Exception_Loop;

Sample Run

Enter an integer between -10 and 10 > 20
Value is out of range. Please try again.
Enter an integer between -10 and 10 > -11
Value is out of range. Please try again.
Enter an integer between -10 and 10 > x
Value is not an integer. Please try again.
Enter an integer between -10 and 10 > 0
Enter an integer between -10 and 10 > -5
Enter an integer between -10 and 10 > y
Value is not an integer. Please try again.
Enter an integer between -10 and 10 > 3
Enter an integer between -10 and 10 > 4
Enter an integer between -10 and 10 > -7
The sum is -5
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Suppose that the input entered is not an integer; for example, suppose that it is a let
ter. In this case, Ada.Text_io.Data_Error is raised. In this situation the letter is not
consumed from the input stream. If the program just loops around, it will try to read the
same letter again and again and again, causing an infinite loop. To prevent this unpleas
ant occurrence, the handler for Ada.Text__io.Data_Error contains a statement,

Ada. Text__IO. Skip_Line;

that causes the bad input to be skipped, creating a fresh line for input. Actually,
Ada.Text_io.skip_Line causes all input, up to and including the carriage return wi^
which you end a line, to be skipped.

Suppose a floating-point vtdue—say, 345.67—is entered when an integer is called
for. An odd consequence of the design of Ada.Text_io is that the 345 will be accepted
as a valid integer, and the decimal point will raise Ada. Text__io. Data_Error if you try
to read another integer. When your program is reading an integer token with
Ada. integer__Text_io.Get, input stops whenever a character is reached that is not part
of an integer token. In this case the decimal point stops input. This is one reason for
including the Ada. Text_iG. skip_Line statement in the exception handler. ■

CASE

STUDY ROBUST MENU-DRIVEN COMMAND INTERPRETER

Problem Specification
A very important and common computer application is a command interpreter, which
accepts and processes commands from the keyboard. Your development group is start
ing work on a package to perform various statistical operations—averaging, finding the
median, and plotting—on data sets. Your part of the project is to develop a menu-driven
command interpreter, leaving the details of the statistical operations to your colleagues.
The command interpreter must behave properly, no matter what the input from the key
board.

Analysis
The best way to represent this fixed set of commands is with an enumeration type.
Input of enumeration values is then provided by an instance of Ada.Text_io.
Enumeration_io, which allows the user to enter commands in either uppercase or low
ercase and validates the input by raising Ada.Text_io.Data_Error if the input is not a
valid command.

Data Requirements

Problem Types:
the valid commands (type commands is (a, m, p, q);)

Problem Inputs:
a user command (HenuSelection: Commands)
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Problem Outputs:
No actual computations are done inlhis stage of development; the only outputs are sta
tus messages from the command interpreter.

Design

Initial Algorithm
The basic algorithm for a command handler is a loop that is not exited until the user
enters a "quit" command.

I. LOOP

2. Prompt the user to enter a command

3. EXIT WHEN the command is to quit

4. The command was not quit, so process it

END LOOP;

Algorithm Refinements
The program cannot proceed if the user enters an invalid command. This leads to a
refinement of Step 2:

2.1 LOOP

2.1 Prompt the user to enter a command

2.2 EXIT if and only if the command is valid

END LOOP;

and so the refined algorithm is a pair of nested general loops:
1. LOOP

2.1 LOOP

2.2 Prompt the user to enter a command

2.3 EXIT if and only if the command is valid

END LOOP;

3. EXIT WHEN the command is to quit

4. The command was not quit, so process it

END LOOP;

Test Plan
Since it is very important that the program behave properly for all input cases, it is nec
essary to test the behavior for each one of the valid commands and for representative
samples of invalid input.
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Implementation
Program 7.7 shows an implementation of this algorithm using Ada exception handling
to catch invalid input. This program uses screen .Movecursor to control the positioning
of the cursor and delay to cause execution to be delayed for a brief period before clear
ing the screen and prompting the user again. Correct input results in the program exit
ing from the inner loop, then selecting and performing the desired command. The
program leaves the outer loop and terminates when the command entered is q or q,
which in this program represents "quit." For the other valid commands, the program
displays a "stub" message, indicating that a computation would be performed at that
point, if the code for the computation were present.

Program 7.7 Framework for a Menu-Driven Command Interpreter

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
WITH Screen;

PROCEDURE Menu Handler IS

Framework for a menu-driven command interpreter
Author: M. B. Feldman; The George Washington University
Last Modified: August 1998

TYPE Commands IS (A, M, P, Q);
PACKAGE Command_l0 IS

NEW Ada.Text_I0.Enumeration_I0 (Enum => Commands);

MenuSelection : Commands; — input - a commands

BEGIN — Menu__Handler

LOOP — this is the outer loop that keeps the program
— running until a "quit" command is entered.

LOOP — inner loop continues until valid input is entered
BEGIN — exception handler block

Screen.ClearScreen;
Screen.MoveCursor (Row => 5, Column => 20);
Ada.Text_IO.Put (Item => "Main Command Menu");
Screen.MoveCursor (Row => 7, Column => 20);
Ada.Text_IO.Put (Item => "A - Compute Average");
Screen.MoveCursor (Row => 8, Column => 20);
Ada.Text_IO.Put (Item => "M - Compute Median");
Screen.MoveCursor (Row => 9, Column => 20);
Ada.Text_IO.Put (Item => "P - Plot the data");
Screen.MoveCursor (Row => 10, Column => 20);
Ada.Text_IO.Put (Item => "Q - Quit the program");

Screen.MoveCursor (Row => 14, Column => 20);
Ada.Text_IO.Put ("Enter a command, please > ");

— this statement will raise Data_Error if input
— is not one of the valid commands

Coinmand_IO.Get (Item => MenuSelection);

~ these statements are executed if command is valid
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— otherwise, control passes to exception handler
Screen.MoveCursor (Row => 17, Column => 20);
Ada.Text_IO.Put ("Thank you for correct input.");
EXIT; — valid command; go process it

EXCEPTION — invalid command

WHEN Ada.Text_IO.Data_Error =>
Screen.MoveCursor (Row => 17, Column => 20);
Screen.Beep;

Ada.Text_lO.Put
(Item => "Invalid command; please re-enter");

Ada.Text_IO.Skip_Line;
Ada.Text_IO.New_Line;
DELAY 2.0;

END; — of exception handler block
END LOOP;

— We come here if command was valid
Screen.MoveCursor (Row =>20, Column => 20);

EXIT WHEN MenuSelection = Q;

IF MenuSelection = A THEN

Ada.Text_IO.Put
(Item => "Here we would do the average. ");

Ada.Text_IO.New_Line;
ELSIE MenuSelection = M THEN

Ada.Text_IO.Put
(Item => "Here we would do the median. ");

Ada.Text_lO.New_Line;
ELSIE MenuSelection = P THEN

Ada.Text_IO.Put
(Item => "Here we would do the plotting.");

Ada.Text_IO.New_Line;
END IF;

DELAY 2.0;

END LOOP;

Ada.Text_IO.Put (Item => "Goodbye for today. ");
Ada.Text_IO.New_Line;

END Menu_Handler;

Sample Run

Main Command Menu

A - Compute Average
M - Compute Median
P - Plot the data

Q - Quit the program

Enter a command, please > m
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Thank you for correct input.

Here we would do the median.

Testing
The sample run shows the state of the screen after input of a correct command.

PROGRAM

STYLE
Stubs in Programs

The command interpreter of Program 7.6 contains several stubs, which are just
statements indicating that a part of the program is still under development. A
well-designed stub is legal code so that the program can be compiled and tested
even without being fully developed.

It is quite common to use stubs in program development; it is a useful tech
nique in writing and testing programs incrementally. Such incremental develop
ment allows you to run a partially completed program so that you are not
overwhelmed by having to develop the program all at once.

EXERCISES FOR SECTION 7.4

Self-Check

1. How would Program 7.7 be different if Ada did not provide exception han
dling?

2. In programming, what are stubs and how are they used?

Programming

1. Modify Program 7.7 so that the user is given three attempts (instead of an un
limited number of attempts) to enter a given value correctly.

7.5 System Structures: Writing Procedures

In this book you have been using calls to procedures provided by the standard
input/output libraries and another package called screen. In this section you will learn
how to write procedures.
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Writing Procedures

Procedures and functions are both subprograms, but they differ in two important ways.
First, a procedure is called with a procedure call statement, as in

Ada.Float_Text_IO.Put (Item => X, Fore => 3, Aft => 2, Exp =>0);

whereas a function is used in an expression, for example,

Temp ;= UsefulFunctions.Minimum (Valuel => X, Value2 ~> Y) +45;

A function returns a result so that the result can be used in an expression; a procedure
does not return a result.

The second important difference is that a function is permitted to have parameters
that are passed only into the function, whereas a procedure is allowed to have parame
ters of three kinds, or modes:

• Mode IN parameters—These are passed into the procedure and, inside the proce
dure, are treated as constants and may not be changed (e.g., they may not appear
on the left side of an assignment statement).

• Mode OUT parameters—These are computed in the procedure and passed out to the
caller.

• Mode IN otJT parameters—These are passed into the procedure, possibly changed
by it, and passed back out again.

The determination of a particular parameter's mode is based on the direction of the data
flow between the procedure and its calling programs. If the parameter is used to trans
mit data to the procedure, its mode should be is; if the parameter receives data^rom the
procedure, its mode should be out.

Mode IN parameters are similar to the parameters of a function and are used to
transmit values that will not be changed by the procedure, only used by it. For example,
the parameters to the various Put procedures provided by Ada.Text_io are in parame
ters, because the data and formatting values are transmitted from the caller to the proce
dure.

Mode OUT parameters are commonly used in input routines like the Get operations
in Ada.Text 10. It might seem strange that an input routine should have an out param
eter, but the input routine receives a value from the terminal or a file and passes it out to
the program that calls it. The caller receives the input value from the procedure.

Mode IN OUT parameters are used when a procedure will modify its parameters. An
example follows.

■ Example 7.10

Here is a procedure specification for a procedure order, which orders the values in the
two variables whose names are supplied to it as actual parameters, placing the smaller
of the two values in x and the larger in y:

PROCEDURE Order (X: IN OUT Float; Y: IN OUT Float);
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A procedure call statement

Order (X => Numl, y => Nuin2);

is intended to order the values in the two floating-point variables Numi and Uujn2. Sup
pose, for example, that Numi is 3.0 and Num2 is —5.0. After the above call we want Numi
to be -5.0 and Num2 to be 3.0. Ordering pairs of values is a very common operation in
programming, especially in sorting applications. Here is the body of procedure order:

PROCEDURE Order (X: IN OUT Float; Y; IN OUT Float) IS
"" Pre: X and Y are assigned values

Post: X has the smaller value and Y has the larger value

Temp: Float;

BEGIN

IF X > Y THEN

— interchange the values of X and Y
Temp := X;
X  Y;

Y := Temp;
END IF;

END Order;

The variable Temp is a local variable of the procedure, necessary to carry out the
interchange. Temp is created when the procedure is called; it is destroyed when the pro
cedure returns to its caller, x and y must be in out parameters because their values are
changed by the procedure. The effect of calling procedure order is shown in Program
7.8, which carries out a very simple sort of three numbers Numi, Num2, and Num3 by call
ing Order three times:

Order (X => Numl, Y => Num2);
Order (X => Numl, Y => Num3);
Order (X => Num2, Y => Num3);

Because each statement contains a different association of actual parameters with
iht formal parameters x and y, a different pair of variables is ordered each time the pro
cedure is called. Figure 7.1 shows a structure chart for this program. ■

Order

Numl,Num2
Order

Numl, Num3
Order

Num2,Num3

Sort 3 numbers

Numl,Num2,Num3

Figure 7.1. Structure Chart for Simple Sort Program



75 System Structures: Writing Procedures 279

Program 7.8 A Very Simple Sorting Program

WITH Ada.Text_IO;
WITH Ada.Float__Text_IO;
PROCEDURE Sort""3 Numbers IS

Reads three numbers and sorts them
so that they are in increasing order.
Author; M. B. Feldman, The George Washington University
Last Modified: August 1998

Numl : Float; — a list of three cells
Num2 : Float;

Num3 : Float;

— procedure specification
PROCEDURE Order (X: IN OUT Float; Y: IN OUT Float);

— procedure body
PROCEDURE Order (X; IN OUT Float; Y: IN OUT Float) IS
— Pre: X and Y are assigned values.
— Post: X has the smaller value and Y has the larger value.

Temp : Float; — copy of number originally in X

BEGIN — Order

IF X > Y THEN

— interchange the values of X and Y
Temp := X; — Store old X in Temp
X :« Y; — Store old Y in X
Y := Temp; — Store old X in Y

END IP;

END Order;

BEGIN — Sort_3_Numbers

Ada.Text 10.Put (Item => "Enter 3 float values to be sorted>");
Ada.Text~IO.New_Line;
Ada.Float_Text_IO.Get(Item => Numl);
Ada.Float~Text_IO.Get(Item => Num2);
Ada.Float3Text_IO.Get(Item »> Num3);

— Sort the numbers

Order (X => Numl, Y => Num2);
Order (X => Numl, Y => Num3);
Order (X => Num2, Y => Num3);

— Display the results.
Ada.Text_IO.Put(Item => "The three numbers in order are: ");
Ada.Float Text 10.Put (Item => Numl, Fore => 5, Aft => 2, Exp => 0);
Ada.Float''Text~IO.Put (Item => Num2, Fore => 5, Aft => 2, Exp => 0);
Ada.Float'"Text~IO.Put (Item => Num3, Fore => 5, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

END Sort 3 Numbers;
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Sample Run

Enter 3 float values to be sorted>
23.7 -99.4 1.78

The three numbers in order are; -99.40 1.78 23.70

To show the importance of the choice of parameter mode for procedure order. Fig
ure 7.2 gives a compilation listing for a modification of the procedure, with the param
eter modes changed from in out to in. Notice that the Ada compiler has marked as
errors the lines in which attempts are made to change the in parameters.

Figure 7.2 Procedure Order with Compilation Errors

1. PROCEDURE Order (X: IN Float; Y: IN Float) IS
2.

3. Temp ; Float; — copy of number originally in X
4.

5. BEGIN — Order

6.

7. IF X > y THEN

8. — interchange the values of X and Y
9. Temp := X;— Store old X in Temp
10. X := Y; — Store old Y in X

I
»> assignment to "IN" mode parameter not allowed

11. Y := Temp;— Store old X in Y

I
»> assignment to "IN" mode parameter not allowed

12. END IF;
13.

14. END Order;

Rules for Parameter List Correspondence

1. The correspondence between actual and formal parameters is determined by
their position in their respective parameter lists unless named association is
used. These lists must be of the same size. The names of corresponding actual
and formal parameters may be, and often are, different.

2. The type of each actual parameter must be compatible with the type of the cor
responding formal parameter, that is, either of the same type or of a related
subtype.

3. For mode gut and in out parameters, an actual parameter must be a variable.
For mode in parameters, an actual parameter may be a variable, constant, or
expression.
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The Procedure Data Area

Each time a procedure call statement is executed, an area of memory is allocated for
storage of that procedure's data. Included in the procedure data area are storage cells
for any formal parameters, local variables or constants that may be declared in the pro
cedure. The procedure data area is always erased when the procedure terminates, and it
is recreated (with all nonconstant cells undefined) when the procedure is called again.

Memory cells are allocated in the procedure data area for each formal parameter.
These cells are used in different ways for parameters of the three modes:

•  For a mode in parameter, the value of the corresponding actual parameter is
copied into this cell when the procedure is called. The compiler will not permit
a statement within the procedure to change the value in this cell.

•  For a mode out parameter, the local cell is initially undefined; the procedure
computes a value and saves it in this memory cell. After the procedure com
pletes its work, just before it returns to its calling program, the value in the lo
cal cell is copied back into the actual parameter in the calling program.

•  For a mode in out parameter, the behavior is a combination of the other two.
The actual value is copied into the local cell when the procedure is called.
Statements of the procedure may change the value in the local cell. Just before
the procedure returns to its caller, the value in the local cell is copied back into
the actual parameter in the calling program.

We note that these rules apply to parameters of scalar type, which are the only kind
we have studied so far. Beginning in Chapter 9, you will see that parameter-passing
behavior may differ somewhat for parameters of structured type. Also, parameters are
passed to a function's data area, just as they are to a procedure's; recall, though, that
function parameters in Ada can have mode in parameters only; mode out and in out
parameters are not permitted.

Executing a Procedure with Parameters

In executing Program 7.8, suppose that the user enters 8.0, 10.0, and 6.0, for Numi,
Num2, and Num3, respectively. Figure 7.3 shows the data areas for the main program and
procedure order immediately after the statement

Order(X => Numl, Y => Num2);

calls the procedure but before its first executable statement. This diagram shows the
data values read into Numi, Nura2, and Num3. The double-headed arrows symbolize the
copying of main program variables Numi and Numz into formal parameters x and y,
respectively. It also shows that the local variable Temp is undefined initially.

The execution of the procedure is traced in Table 7.1. The actual and formal param
eters are shown at the top of the table. Because the value of Numi is less than that of
Num2, the True alternative is skipped and the variable values are unchanged.
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Main program data area Procedure order data area

formal parameters

1  1
► X

1  1
110.o| jlG.G 1
Num3

1  1
local variables

Temp

m

Figure 73 Parameter Correspondence for Order (Numl, Num2) (after Order has
been called but before Its statements have been executed)

Table 7.1 Trace of Procedure Execution for Order (Numl, Num2)

Statement in Order Numl x Nuin2 y Temp Effect
8.0 8.0 10.0 10.0 ?

IF X > Y THEN 8.0 > 10.0
is false;
do nothing

Just before 8.0 8.0 10.0 10.0 Copy
procedure returns parameter values

back to actuals

The parameter correspondence specified by the procedure call statement

Order (X => Numl, X => Num3);

is pictured in Fig. 7.4. This time parameter x corresponds to variable Numi and parame
ter Y corresponds to variable Num3, and the values are copied accordingly.

This second execution of the procedure is traced in Table 7.2. The actual and for
mal parameters are shown at the top of the table. The procedure execution switches the
values stored in main program variables Numl and Num3, as desired.
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Procedure order data area

formal parameters

X

Main program data area

Numl

Num3

local variables
Temp

Figure 7.4 Parameter Correspondence for Order (Numl, Num3) (after Order has
been called but before its statements have been executed)

SYNTAX

DISPLAY

Table 7.2 Trace of Procedure Execution for Order (Numl, Num3)

Statement in Order Numl x Num2 y Temp Effect

8.0 8.0 6.0 8.0 ?

IF X > Y THEN 8.0 > 6.0 is true

Temp := X; 8.0 save old x in Temp;

X ;= Y; 6.0 save old y in x;

Y := Temp; 8.0 8.0 save Temp in y.

Just before

procedure returns
6.0 6.0 8.0 8.0 copy

parameter values
back to actuals

Syntax Rules for Parameter Lists

This section presents the syntax rules for procedure declarations and procedure call
statements with parameters. The displays that follow summarize these rules.

Procedure Specification (Procedure witii Parameters)

Form:

PROCEDURE paame (formal"parameters)}
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SYNTAX

DISPLAY

Example:

PROCEDURE Double (X: IN Integer; Y: OUT Integer);

Interpretation:
The procedure pname is declared. The formal parameters are enclosed in paren
theses and separated by semicolons.

Procedure Body (Procedure with Parameters)

Form:

PROCEDURE pnajne (formal-parameters) IS
local declaration-section

BEGIN

Statement sequence
END pname/

Example:

PROCEDURE Double (X: IN Integer; Y; OUT Integer) IS
BEGIN

Y := 2 * X;
END Double;

SYNTAX

DISPLAY

Interpretation:

The procedure pname is declared. The formal parameters are enclosed in paren
theses and separated by semicolons. Any identifiers that are declared in the decla
ration-section are defined only during the execution of the procedure.

The statement sequence describes the data manipulation to be performed by
the procedure. The formal parameter names are used in this description.

Procedure Call Statement (Procedure with Parameters)

Form:

pname (actual-parameters)

Example:

Double (Y => Q, X => P);

Interpretation:

The actual-parameters are enclosed in parentheses and separated by commas;
each actual parameter is preceded by the name of the corresponding formal
parameter. Wlien procedure pname is called into execution, each actual parameter
is associated with the corresponding formal parameter.



7.6 System Structures: A Package for Robust Input 285

The formal parameter list determines the form of any actual parameter list
that may be used to call the procedure. This form is determined during the trans
lation of the program when the compiler processes the procedure declaration.

Later, when a procedure call statement is reached, the compiler checks the
actual parameter list for consistency with the formal parameter list. An actual
parameter list may be a list of expressions, variables, or constants separated by
commas. The actual parameter list must satisfy the rules shown in the following
box.

PROGRAM

STYLE
Named Association in Actual Parameter Lists

In this book, named association is used to associate each formal parameter with
an actual parameter (the two are separated by =>). This naming is optional in
Ada; if it is used, the order of the actual parameters does not have to match the
order of the formal parameters. The previous example Double shows this; the
actual/formal pairs occur out of order.

It is, however, good practice to use named association and also to list the
actual parameters in an order corresponding to the order of the formal parame
ters. In this way, no confusion arises for the reader of the program as to which
actual parameter matches which formal parameter.

EXERCISES FOR SECTION 7.5

Self-Check

I. It is tempting to programmers to avoid the problem of deciding whether pa
rameters should be in, out, or in out by simply assigning the same mode to all
parameters. If you were to do this, which mode would you use? Why? Do you
think choosing a single mode is a good idea?

7.6 System Structures: A Package for Robust Input

The ability to request and read numeric input robustly is a very common requirement in
programs. It therefore makes sense to consider how we can package robust input so that
it can just be used, instead of rewritten, for each program that needs to do it.

We will do this by analogy with the Ada.integer_Text_io and Ada.
Fioat_Text_io packages that we have been using all along in this book. These stan
dard packages read input values by calls to procedures that are called Get (recall that
because of overloading, these procedures can all have the same name provided that they
have different parameter profiles). We shall write a package, Robust_input, that pro-
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vides the necessaiy robust Get oper&tions for integer and floating-point values.
Robust_input is a good example of how we can encapsulate commonly needed opera
tions in a package with an easy-to-understand interface.

Program 7.9 gives the package specification for Robust_input. There are two pro
cedures, both called Get (this is permitted because of the overloading principle). Here
is the one for integer input:

PROCEDURE Get (Item ; OUT Integer;
MlnVal : IN Integer
MaxVal ; IN Integer);

This procedure will read an integer value from the keyboard and return it to the caller in
the actual parameter corresponding to item. The other two parameters specify the range
of acceptable input. The procedure Get for floating-point values is analogous.

Program 7.9 Specification for Package Robustjnput

PACKAGE Robust_Input IS

— I Package for getting numeric input robustly.
— Author: M. B. Feldman, The George Washington University
—j Last Modified: August 1998

PROCEDURE Get (Item : OUT Integer;
MinVal : IN Integer;
MaxVal : IN Integer);

— Gets an integer value in the range MinVal..MaxVal
— Pre: MinVal and MaxVal are defined
— Post: MinVal <= Item <= MaxVal

PROCEDURE Get (Item : OUT Float;
MinVal : IN Float;
MaxVal : IN Float);

— Gets a float value in the range MinVal..MaxVal
— Pre: MinVal and MaxVal are defined

— Post: MinVal <= Item <= MaxVal

END Robust_Input;

Program 7.10 gives the package body for Robust_input. It consists of the bodies of
the two procedures promised in the procedure specification. Note that in the body for
the integer Get, a subtype is declared corresponding to the range parameters and a cor
responding variable:

SUBTYPE TempType IS Integer RANGE MinVal..MaxVal;
Tempitern : TempType; — temporary copy of Item

The statement sequence of this procedure is very similar to that of Program 7.7; a
loop is used to retain control if an exception is raised. The subtype TempType and vari
able Tempitem are necessary so that if Ada.integerjrext_io.Get produces a value
that is out of range, constraint_Error will be raised.
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Program 7.10 Body of Package Robustjnput

WITH Ada.Text_IO;
WITH Ada. lnteger_Text__IO;
WITH Ada.Float_Text_IO;
PACKAGE BODY Robust_Input IS

— I Body of package for robust numeric input handling
— I Author: M. B. Feldman, The George Washington University

I  Last Modified: August 1998

PROCEDURE Get (Item : OUT Integer;
MinVal : IN Integer;

MaxVal : IN Integer) IS

SUBTYPE TempType IS Integer RANGE MinVal..MaxVal;
Tempitem : TempType; — temporary copy of Item

BEGIN — Get

LOOP

BEGIN — exception handler block
Ada.Text IO.Put(Item => "Enter an integer between ");
Ada.Integer_Text_IO.Put(Item => MinVal, Width =>0);
Ada.Text_IO.Put(Item => " and ");
Ada.Integer_Text_IO.Put(Item => MaxVal, Width =>0);
Ada.Text 10.Put(Item «> " > ");
Ada.lnteger_Text_IO.Get(Item => Templtem);
Item := Templtem;
EXIT; — valid data

EXCEPTION — invalid data

WHEN Constraint_Error =>
Ada.Text_IO.Put (Item =>
"Value^is out of range. Please try again.");

Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;

WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put (Item =>
"Value~is not an integer. Please try again.");

Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;

END; — exception handler block
END LOOP;

END Get;

PROCEDURE Get (Item : OUT Float;
MinVal : IN Float;

MaxVal : IN Float) IS

SUBTYPE TempType IS Float RANGE MinVal..MaxVal;
Templtem : TempType; — temporary copy of Item

BEGIN — Get

LOOP

BEGIN — exception handler block
Ada.Text_IO.Put
(Item => "Enter a floating-point value between ");
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Ada.Float_Text_IO.Put
(Item => MinVal, Fore=> l, Aft => 2, Exp =>0);

Ada.Text_I0.Put(Item => " and ");
Ada.Float_Text_IO.Put
(Item => MaxVal, Fore=> 1, Aft => 2, Exp =>0);

Ada.Text_IO.Put(Item => " > ");
Ada.Float_Text_lO.Get(Item => Tempitem);
Item := Tempitem;
EXIT; — valid data

EXCEPTION — invalid data
WHEN Constraint_Error =>
Ada.Text_IO.Put (Item =>
"Value is out of range. Please try again.");

Ada.Text_lO.New_Line;
Ada.Text_IO.Skip_Line;

WHEN Ada.Text_IO.Data_Error =>
Ada.Text_lO.Put (Item =>
"Value is not floating point. Please try again.");

Ada.Text_IO.New_Line;
Ada.Text_lO.Skip_Line;

END; — exception handler block
END LOOP;

END Get;

END Robust_Input;

Finally, Program 7.11 serves to test the package operations. Two integer and two
floating-point subtypes are declared; the Robust_input operations are called. This is an
example of a "test driver" program, whose purpose is just to test the operations pro
vided by a package.

Program 7.11 A Program That Uses Robustjnput

WITH Robust_Input;
PROCEDURE Test_Robust_Input IS

Demonstrates Robust_Input package
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SUBTYPE Smallint IS Integer RANGE -10 ..10;
SUBTYPE Largerint IS Integer RANGE -100..100;
SUBTYPE SmallFloat IS Float RANGE -10.0 ..10.0;
SUBTYPE LargerFloat IS Float RANGE -100.0..100.0;

Small : Smallint;
SmallF : SmallFloat;
Larger : Largerint;
LargerF : LargerFloat;

BEGIN — Test_Robust_Input

Robust_Input.Get(Small,Smallint'First,Smallint•Last);
Robust_Input.Get(Larger,Largerint'First,Largerint'Last);
Robust_Input.Get(SmallF,SmallFloat'First,SmallFloat■Last);
Robust_Input.Get(LargerF,LargerFloat'First,LargerFloat'Last)
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END Test_Robust_lnput;

Sample Run

Enter an integer between -10 and 10 > 11
Value is out of range. Please try again.
Enter an integer between -10 and 10 > -11
Value is out of range. Please try again.
Enter an integer between -10 and 10 > 10
Enter an integer between -100 and 100 > 101
Value is out of range. Please try again.
Enter an integer between -100 and 100 > 99
Enter a floating-point value between -10.00 and 10.00 > 10.001
Value is out of range. Please try again.
Enter a floating-point value between -10.00 amd 10.00 > -12
Value is out of range. Please try again.
Enter a floating-point value between -10.00 and 10.00 > x
Value is not floating point. Please try again.
Enter a floating-point value between -10.00 and 10.00 > 0
Enter a floating-point value between -100.00 and 100.00 > 5.0003

EXERCISES FOR SECTION 7.6

Self-Check

1. The following procedure is like the ones in Program 7.10 but does not have a
loop or special block for the exception handlers; the handlers are just written to
go with the procedure's begin and end. Is this correct as far as the Ada compil
er is concerned? If so, describe the difference in behavior from the original.

PROCEDURE Get (Item : OUT Integer;
MinVal : IN Integer;

MaxVal : IN Integer) IS

SUBTYPE TempType IS Integer RANGE MinVal..MaxVal;
Templtem ; TempType; — temporary copy of MinVal

BEGIN — Get

Ada.Text_IO.Put(Item => "Enter an integer between ");
Ada. Integer_Text__IO. Put (Item => MinVal, Width =>0);
Ada.Text_I0TPut(Item => " and ");
Ada.Integer_Text_IO.Put(Item => MaxVal, Width => 0);
Ada. Text_IO. Put (Item =»> " > ");
Ada.lnteger_Text_lO.Get(Item => Templtem);
Item := Templtem;

EXCEPTION — invalid data

WHEN Constraint_Error =>
Ada.Text_IO.Put
("Value entered out of range. Try again.");

Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;
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WHEN Ada.Text_10.Data Error =>
Ada.Text_IO.Put ~
("Value entered not an integer. Try again.");

Ada.Text_IG.New_Line;
Ada.Text_IO.Skip_Line;

END Get;

Programming

1. Write a procedure similar to those in Robust_input (Programs 7.9 and 7.10)
that reads a month name robustly. ~

7.7 Tricks of the Trade: Testing with Exception Handling

Ada's exception handling provides a powerful tool for designing programs whose
behavior is predictable even if its inputs are badly formed or out of range. If exception
handling were not available, it would be the programmer's responsibility to validate all
incoming data—for example, by checking its range with an if statement. Indeed, Ada
programs can certainly be written this way—with no use of exception handling—but
the result would not take advantage of this built-in power.

Even if exception handling is used to advantage, however, the programmer still has
several important responsibilities in this area:

•  Analyze your program so that you know the places where exceptions may be
raised, and be sure to place exception handlers in appropriate blocks in your
program. This will ensure that exceptions are not unexpectedly passed back to
the calling program or to the run-time system.

•  When you test your program, be sure to test it with badly formed or out-of-
range data so that your exception-handling flow is tested. When you are fin
ished testing, you should be confident that you know exactly what your pro
gram will do under each set of input conditions. The test data that are supplied
to Program 7.11 show an example of how this is done.

In summary, Ada's exception handling provides a useful way to take account of
unusual circumstances in your program but does not relieve you of the responsibility to
design and test carefully so that your program's behavior will always be predictable.

7.8 Tricks of the Trade: Programs That Never Halt

This chapter has covered general and while loops in which the programmer must sup
ply an explicit test for loop exit, and explicit statements that modify the conditions that
the loop test will examine. What happens if you make an error in writing the exit test or
loop-incrementation statements? There is a risk that the exit test will never become
true, so the loop will never exit at all! The result will be a nonhalting program.
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Sometimes it is easy to see that your program is in such an infinite loop. If the loop
body displays some output in every cycle, you will see a continuous stream of output
on the screen. On the other hand, if the loop body just does a computation and no out
put is displayed until after loop exit, the program will appear to have "hung," with noth
ing apparently happening. In either case it is up to you to interrupt the program from
the keyboard. This kind of external interrupt is not part of the programming language,
but rather a function of the operating system. In most systems, pressing control-c will
interrupt the program, but this is not always the case. If you are on a single-user com
puter, sometimes you have no alternative but to reboot it or even switch it off altogether.

We are discussing this topic here and not as a common error, because a nonhalting
program is not always an incorrect one. Programs that never halt are actually quite
common in embedded systems. For example, an automatic teller machine has a pro
gram in it that starts when power is switched on and stops only when power is switched
off. There is probably no haldng code in the program itself. A nonhalting program is
undesirable only if you did not intend to write it!

7.9 Tricks of the Trade: Common Programming Errors

Beginners sometimes confuse if and loop statements because both statements contain
a condition. Make sure that you use an if statement to Implement a decision step and a
loop statement to implement a conditional loop. Remember to terminate each control
structure with an end if or end loop. The compiler will detect a syntax error if an end
IF or end loop is missing.

Be careful when using tests for equality and inequality to control the repetition of a
WHILE or general loop. The following loop is intended to process all transactions for a
bank account while the balance is positive:

LOOP

EXIT WHEN Balance =0.0

Update (Balance);
END LOOP;

If the bank balance goes from a positive to a negative amount without being exactly
0.0, the loop will not terminate (an infinite loop). The following loop would be safer:

LOOP

EXIT WHEN Balance <=0.0

Update (Balance);
END LOOP;

Verify that the loop exit condition for a loop will eventually become true. If you use
a sentinel-controlled loop, remember to provide a prompt that tells the program user
what value to enter as the sentinel. Make sure that the sentinel value cannot be entered

as a normal data item.

Keep in mind that exception handlers have to be associated with begin-end
blocks, and remember that once a program transfers to an exception handler, control
does not automatically return to the statement that caused the exception. If you need to
return to that statement (as in the robust input loop), you need to use a loop-end loop
structure to do so.



292 Other Loop Forms; Procedures: Exception Handling

7.10 Continuing Saga: A Child Package for the Spider

Let s pay another visit to the spider. You've seen so far how to command the spider to
move around and draw shapes on the screen. Now that you know how to write proce
dures, let's consider how to add our own commands to the set of commands the spider
can obey. Look again at the specification, Program 2.1. Specifically, we note the
absence of two useful commands:

•  Left (the spider can already turn right) and

•  step(HowMany: Positive), that is. Step forward a given number of steps, not
just a single step.

Suppose we were just writing a spider program. How could we get the effect of the
Left command? There are several ways, as we show in these code fragments. First, we
can tum left by turning right:

Spider.Right;
Spider.Right;
Spider.Right;

This works, but it is not veiy realistic—would you tum left that way? Another approach
is to ask in which direction the spider is facing and then tell it to face in another direc
tion:

IF Spider.IsFacing = North THEN
Spider.Face(WhichWay => West);

ELSIF Spider.IsFacing = East THEN ?
Spider.Face(WhichWay => North);

ELSIF Spider.IsFacing = South THEN
Spider.Face(WhichWay => East);

ELSE — Spider must be facing West
Spider.Face(WhichWay => South);

END IF;

This will work, but we have to be very careful in writing it that all the directions are
covered and that the Face command has the right parameter. We note that spi
der. Direct ions IS an enumeration type,

TYPE Directions IS (North, East, South, West);

and that a left tum can be implemented very easily as the predecessor of the current
direction. We've seen a similar problem before, in Program 5.1, in which given a repre
sentation of today, we needed to find yesterday and tomorrow. We must be a bit careful
in taking the predecessor: If the current direction is North, just taking the predecessor
will fail on constraint_Error because the enumeration doesn't "wrap around." The
statement that we need is, in fact,

IF Spider.IsFacing » Spider.North THEN
Spider.Face(Spider.West);

ELSE

Spider.Face(Spider.Directions'Pred(Spider.IsFacing));
END IF;
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or, to write it in more general terms (in case some day the directions are given in
French),

IF Spider.IsFacing = Spider.Directions'First THEN
Spider.Face(Spider.Directions'Last);

ELSE

Spider.Face(Spider.Directions'Fred(Spider.IsFacing));
END IF;

Implementing the new step is much easier: It's just a counting loop with spi
der, step as the loop body.

Putting the New Commands in a Child Package

It is now time to implement the new commands as a set of procedures. Because these
are commonly used commands, it is best to put them in a package. Since this new pack
age is not just using the original spider package but is, in fact, closely related to it, we
can define this relationship in an Ada child package.

We have seen child packages before; indeed, all the standard packages that we've
used are children of Ada. The specification for our child package, spider.My_stuff,
appears as Program 7.12 and just codes the procedure specifications that we've dis
cussed here.

Program 7.12 Specification for Child Package Spider.My.Stuff

PACKAGE Spider.My_Stuff IS

— I Additional Spider Conunands; this is a child package.
— I Author: M. B. Feldman/ The George Washington University
— I Last Modified: August 1998

PROCEDURE Left;

— Pre: None

— Post: Spider turns 90 degrees to the left.

PROCEDURE Step(HowMany: IN Positive);
— Pre; None

— Post: Spider takes HowMany steps forward
in the direction it is facing.

— Raises: Hit_the_Wall is if spider tries to step into a wall.

END Spider.My_Stuff;

The body of spider.My_stuff appears as Program 7.13. The procedure bodies
incorporate the statements that we just discussed; note, however, that no qualifications
are necessary on the various calls. That is, we can write isFacing instead of spi
der. isFacing, and so on. This tells us that the body of the child package can automat
ically "see" everything in its parent package's specification. (It cannot see into its
parent package's body, though.)
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Program 7.15 Body of Child Package Splder.My_Stuff

PACKAGE BODY Spider.My_Stuff IS

Child Package Body for Additional Spider Commands
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SYNTAX

DISPLAY

PROCEDURE Left IS

BEGIN

IF isFacing = Directions'First THEN
Face(Directions'Last);

ELSE

Face(Directions•Pred(IsFacing));
END IF?

END Left;

PROCEDURE Step(HowMany: IN Positive) IS
BEGIN

FOR Count IN 1..HowMany LOOP
Step;

END LOOP;

END Step;

END Spider.My_Stuff;

Child Package

Syntactically, a child package is exactly like any other, except for its name, which
is of the form Parent. child. The parent package must exist already to permit
compilation of the child package. Under normal circumstances, one is not per
mitted to compile new children of the package Ada, since this parent package is
reserved for standard (language-defined) packages.

Writing Applications of the Spider Packages, Parent and Child

Program 7.14 shows how to use the packages spider and spider.My_stuff. Note that
because this program uses both packages, it must have context clauses (withs) for both.
The spider draws a box, turning left at the comers instead of right. This program is sim
pler than Program 2.8 because we can take advantage of the multiple-step command in
the child package. We omit the sample run because it is very similar to the output of the
box programs of Section 2.4.

Program 7.14 The Spider Draws a Counterclockwise Box

with Spider;
WITH Spider.My_Stuff;
PROCEDURE Draw_Box_with__Loops_Left IS

--I Draw 4x4 box with spider, turning left as it goes
— I Author: M. B. Feldman, The George Washington University
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— I Last Modified: August 1998

BEGIN — Draw_Box_with__Loops_Left

Spider.Start;

FOR Side IN 1..4 LOOP

Spider.My_Stuff.Step(HowMany =>5);
Spider.My Stuff.Left;

END LOOP;

Spider.Quit;

END Dr aw_Box_with_Loops^Le f t;

CHAPTER REVIEW

This chapter introduced the general loop and exit statements and the while statement.
These are used to implement loops whose repetition is controlled by a condition, espe
cially when the exact number of repetitions required is not known before the loop
begins. In designing a general or while loop, we must consider both the loop control
and loop processing operations that must be performed. Separate program statements
are needed for initializing and updating variables that appear in the loop repetition con
dition.

One common technique for controlling the repetition of a loop is using a special
sentinel value to indicate that all required data have been processed. In this case, an
input variable must appear in the loop repetition condition. This variable is initialized
when the first data value is read (priming read), and it is updated at the end of the loop
when the next data value is read. Loop repetition terminates when the sentinel value is
read.

Writing procedures is an important part of programming, and this technique was
also introduced in this chapter. Finally, we considered exception handling in some
detail, and a package providing robust numeric input operations was developed.

New Ada Constructs in Chapter 7

The new Ada statements introduced in this chapter are described in Table 7.3.
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Table 7.3 Summary of New Ada Constructs

Construct Effect

General loop statement

Sum s= 0;
LOOP

EXIT WHEN Sum > MaxSum;
Ada.Text_IO.Put
(Item=>"Next integer > ");

Ada.Integer_Text_IO.Get
(Item=>Next); ~
Sum ;= Sum + Next;

END LOOP;

WHILE Statement

Sum 0;

WHILE Sum <= MaxSum LOOP

Ada.Text_IO.Put
(Item=>"Next integer > ");

Ada.lnteger_Text_IO.Get
(Item=>Next);

Sum ;= Sum + Next;

END LOOP;

Procedure with Parameters

PROCEDURE A (X ; IN Float;
Op ; IN Character;
XTo3 : IN OUT Float) IS

BEGIN —A

IF Op = **• THEN

XTo3 := X * X * X;

ELSIF Op = •+• THEN
XTo3 ;= X + X + X;

ELSE

Ada.Text_IO.Put
(Item => "Invalid");

END IF;

END A;

Procedure Call Statement

A (X=>5.5, Op=>'+', XTo3=>Y);

Exception-Handler Block

BEGIN

X ;= Y + Z;

Y :«= A / G;

EXCEPTION

WHEN Constraint__Error =>
Ada.Text_IO.Put
(Item=>"Out of Range");

END;

A series of data items is read; their sum
is accumulated in sum. This process
stops when the accumulated sum
exceeds MaxSum.

A series of data items is read; their sum
is accumulated in sum. This process
stops when the accumulated sum
exceeds Maatsum.

Procedure a has two in parameters and
one IN OUT parameter

If op is ' *', then the value returned is x
* X * x; otherwise, if op is • + •, then
the value returned is X + x + x; other
wise, an error message is displayed. A
result is returned by assigning a new
value to the actual parameter (a variable)
that corresponds to parameter xto3.

Calls procedure a. 5.5 is passed into x,
• + • is passed into op, and the value 16.5
is stored in y.

If Y + z is out of range for x, "Out of
Range" is displayed. If g is 0, a cannot
be divided by g and "out of Range" is
displayed.
Control passes to the statement follow
ing END.
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Quick-Check Exercises

1. A WHILE loop is called a loop.

2. A WHILE loop is always used for counting. (True or false?)

3. The priming step for a while loop is what kind of statement? When is it used?

4. The sentinel value is always the last value added to a sum being accumulated
in a sentinel-controlled loop. (True or false?)

5. It is an error if a while loop body never executes. (True or false?)

Answers to Quick-Check Exercises

1. Conditional

2. False

3. An input operation, used in a sentinel-controlled loop

4. False, the sentinel should not be processed.

5. False

Review Questions for Chapter 6

1. Define a sentinel value.

2. For a sentinel value to be used properly when reading in data, where should the
input statements appear?

3. Write a program called sum to sum and display a collection of integer amounts
entered at the standard input device until a sentinel value of -1 is entered. Use
a while statement.

4. Write a procedure called Lettercrade that has one input parameter called
Grade and that will display the corresponding letter grade using a straight scale
(90-100 is an A, 80-89 is a B, etc.).

5. Explain the difference between in parameters, out parameters, and in out pa
rameters.

6. Explain the allocation of memory cells when a procedure is called.

7. Explain the purpose of a robust input loop.

8. Hand trace the program below given the following data:

4.0,2.0,8.0,4.0

1.0,4.0,2.0,1.0

9.0,3.0,3.0,1.0
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-22.0,10.0,8.0,2.0

WITH Ada.Text_IO;
WITH Ada.Float Text_lO;
PROCEDURE Slope IS

Sentinel CONSTANT Float :>= 0.0;
Slope, y2, yl, x2, xl : Float;

BEGIN — Slope
Ada. Text_^IO. Put (Item => "Enter four real numbers > ");
Ada.Text~IO.New_Line;
Ada.Float_Text_IO.Get(Item => y2);
Ada.Float~Text_IO.Get(Item => y1);
Ada.Float_Text__IO.Get (Item => x2);
Ada.Float_Text~IO.Get(Item => xl);
Slope := (y2 - yl) / (x2 - xl);
WHILE Slope /« Sentinel LOOP
Ada.Text_IO.Put(Item => "Slope is ");
Ada.Float_Text_IO.Put(Item => Slope, Fore=>l, Aft=>2,Exp=>0);
Ada.Text_IO.New_Line;
Ada. Text__IO. Put (Item => "Enter four real numbers > ");
Ada.Text~IO.New_Line;
Ada.Float_Text_IO.Get(Item => y2);
Ada.Float_Text_IO.Get(Item => yl);
Ada.Float_Text_lO.Get(Item => x2);
Ada.Float_Text_lO.Get(Item => xl);
Slope 1= (y2 - yl) / (x2 - xl);

END LOOP;

END Slope;

Programming Projects

1. Write a program that will find the product of a collection of data values. Your
program should terminate when a zero value is read.

2. Write a program to read in an integer N and compute slow =1 + 2 + 3 + ... + A^
(the sum of all integers from 1 to AO- Then compute Fast = (Nx(N+ 1)) / 2
and compare Fast and slow. Your program should print both Fast and slow
and indicate whether or not they are equal. (You will need a loop to compute
Slow.) Which computation method is preferable?

3. Write a program to read a list of integer data items and find and print the index
of the first and the last occurrences of the number 12. Your program should
print index values of 0 if the number 12 is not found. The index is the sequence
number of the data item 12. For example, if the eighth data item is the only 12,
the index value 8 should be printed for the first and last occurrence.

4. Write a program to read in a collection of exam scores ranging in value from 1
to 100. Your program should count and display the number of outstanding
scores (90-100), the number of satisfactory scores (60-89), and the number of
unsatisfactory scores (1-59). Test your program on the following data:

63 75 72 72 78 67 80 63 75 90 89 43 59 99 82 12 100
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In addition, display each exam score and its category, and the average exam
score for the collection.

5. Write a program to process weekly employee time cards for all employees of
an organization. Each employee will have three data items indicating an identi
fication number, the hourly wage rate, and the number of hours worked during
a given week. Each employee is to be paid time and a half for all hours worked
over 40. A tax amount of 3.625 percent of gross salary will be deducted. The
program output should show the employee's number and net pay. Use
Robust_input and some local procedures.

6. In Program 7.7 the command interpreter will loop indefinitely, refusing to exit
until the input is correct. It is not always desirable to give a user an unlimited
number of attempts to enter correct input. For example, if the input loop is re
questing a user identification code or password, repeated incorrect entries may
indicate that the user is unauthorized and is trying to guess the authorization
sequence. Modify Program 7.7 so that the user is given five attempts to enter a
given command properly. At the end of five unsuccessful attempts, the pro
gram will terminate with an appropriate message.

7. Redesign the body of Robust_iiiput (Programs 7.10) so that the range of the
input data is checked explicitly with an if statement instead of including a
handler for constraint Error. Could you eliminate exception handling alto
gether? {Hint: How would you deal with the case of an alphabetic character
being entered instead of an integer?)

8. Suppose you own a soft-drink distributorship that sells Coke (ID number 1),
Pepsi (ID number 2), Canada Dry (ID number 3), and Dr. Pepper (ID number
4) by the case. Develop a case study and a program to

a. read in the case inventory for each brand for the start of the week;

b. process all weekly sales and purchase records for each brand; and

c. display the fmal inventory. Each transaction will consist of two data items.
The first item will be the brand identification number (an integer). The
second will be the amount purchased (a positive integer value) or the
amount sold (a negative integer value). The weekly inventory for each
brand (for the start of the week) will also consist of two items: the identifi
cation and initial inventory for that brand. For now, you may assume that
you always have sufficient foresight to prevent depletion of your inventory
for any brand. Use Robust_input (Programs 7.9 and 7.10) to handle the
interactive numerical input. (Hint: Your data entry should begin with eight
values representing the case inventory. These should be followed by the
transaction values.)

9. Modify your results from Project 8 so that the program is menu-driven. Modi
fy the menu handler of Program 7.7 to handle these selections:

B  Enter inventory
P  Purchase soda

S  Sell soda

D  Display inventory
Q  Quit program
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10. Modify your results from Project 9 so that the inventory is read from an exter
nal file instead of entered interactively. The program should also write the new
inventory out to an external file before quitting. Make sure that the output file
has the same format as the input file, so that each run of the program can use
the inventory file generated by the previous run.

11. The square root of a number N can be approximated by repeated calculation
using die formula

NG = .5(LG + (N / LG))

where ng stands for next guess and lg stands for last guess. Write a function
that implements this process where the first parameter will be a positive float
number, the second will be an initial guess of the square root, and the third will
be the computed result.

The initial guess will be the starting value of lg. The procedure will compute a
value for ng using the formula above. The difference between ng and lg is
checked to see whether these two guesses are almost identical. If so, the proce
dure is exited and ng is the square root; otherwise, the new guess (ng) becomes
the last guess (lg) and the process is repeated (i.e., another value is computed
for NG, the difference is checked, etc.).

For this program the loop should be repeated until the difference is less than
0.005 (Delta). Use an initial guess of 1.0 and test the program for the numbers
4.0,120.5,88.0,36.01, and 10000.0.

12. Add and test a command NECorner to spider.My_stuff (Programs 7.13 and
7.14) that causes the spider to move to the northeast comer of its room. Now
add and test three more commands; SECorner, swcorner, and Nwcorner,
which cause the spider to move to the other comers.

13. Develop and test a program to read a calendar date, in the familiar mmm do yyyy
form, robustly. Use an enumeration type for the month names. To get the day
and year values, you can just use the Robust_input.Get procedure. There is
more to this than just getting the month, day, and year separately. The user
could enter Feb 30 1998, for example. The month, day, and year are all valid
individually, but the date is invalid. The program must therefore validate the
entire date as well as its individual components. (Hint: Investigate the possibil
ities in Ada.Calendar. See the full Specification in Figure 11.3.)
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Chapter Review

So far in our programming, we have used six predefined data types: integer, Natural,
Positive, Float, Boolean, and character. In this chapter we take a closer look at
these data types and discuss the various operations that can be performed on them. All
the data types in this chapter are scalar data types; that is, only one value can be stored
in a single variable. In Chapter 9 we will begin a study of composite data types, that is,
data types that can be used to store multiple values in a single variable.

In Sections 8.2 and 8.3 we revisit some of the facilities in Ada.Numerics, showing
how to plot a sine curve and generate random numbers.

Section 8.6 introduces one more control structure, namely, the case statement. This
statement is a convenient alternative to the multiple-altemative if structure in many
programs.

Finally, Section 8.7 opens up the body of the spider package. By now you have
learned enough material to understand this package in its entirety.

8.1 Data Structures: Numeric Data Types

The predefined data types integer. Natural, Positive, and Float are used to repre
sent numeric information, integer variables are used to represent data that are inher
ently whole numbers; Float variables are used to represent numeric data that may have

301
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a fractional part. The subtypes Natural and Positive are used to represent integer val
ues that cannot sensibly be negative; a Natural value is allowed to be zero; a Positive
value is not.

Differences between Numeric Types

You may be wondering why it is necessary to have so many numeric types. Because a
whole number is a special case of one wiA a fractional part (i.e., the fractional part is
zero), the data type Float could, in theory, be used for all numerical values. There are
two important reasons why, in practice, we do not do this.

First, it is always best to use the most appropriate type for representing the values
in a program. This not only makes the program easier for the reader to understand but
also makes it possible for the compiler to ensure that the values that are assigned to a
variable are appropriate values and that the operations that are performed on them are
appropriate operations.

Another reason for not using Float values exclusively is that on many computers,
operations involving integers are faster and less storage space is needed to store inte
gers. Also, operations with integers are always precise, whereas there may be some loss
of accuracy when dealing with floating-point values.

These differences result from the way floating-point numbers and integers ask rep
resented internally in memory. All data are represented in memory as binary sequences,
sequences of Os and Is. However, the binary sequence that is stored for the ptnteger
value 13 is not the same as the binary sequence that is stored for the Float value 13.0.
The actual internal representation that is used is computer-dependent, but it will nor
mally have the format shown in Fig. 8.1, In some computers, floating-point format uses
more bits than integer format.

As Fig. 8.1 shows, integers are represented by standard binary integer values, if
you are familiar with the binary number system, you know that, for example, the inte
ger 13 is represented as the binary number 01101.

Floating-point format is analogous to scientific notation. The storage area occupied
by a floating-point number is divided into two parts: the mantissa and the exponent.
TTie mantissa is a binary fraction between 0.5 and 1.0 (-0.5 and -1.0 for a negative
number). The exponent is a power of 2. The mantissa and exponent are ehosen so that
the formula

floating-point-number = mantissa x

is correct.

Besides the capability of storing fractions, floating-point format can represent a
range of numbers considerably larger than can integer format. For example. Program
8.1 shows how to use attributes to find the characteristics of the integer and float
ing-point types provided by your Ada compiler.

Integer Floating-point

Binary number Mantissa Exponent

Figure 8.1 Integer and Floating-Point Formats
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Program 8.1 Retrieving Some Characteristics of Numeric Types

WITH Ada.Integer Text 10;

WITH Ada.Float_Text_IO;
WITH Ada.Text 10; ""
PROCEDURE Attributes IS

Displays various integer and float attributes
Author! M. B. Feldman, The George Washington University
Last Modified: August 1998

BEGIN — Attributes

Ada.Text_IO.Put(Item => "Smallest integer is ");
Ada. Integer_Text__IO. Put (Item => Integer' First);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Largest integer is ");
Ada.Integer_Text_IO.Put(Item => Integer'Last);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Bits in an integer ");
Ada.Integer_Text_IO.Put(Item => Integer'Size, Width =>1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Smallest float is ");
Ada.Float_Text_IO.Put(Item => Float'First);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Largest float is ");
Ada.Float_Text_IO.Put(Item => Float'Last);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Bits in a float ");
Ada.Integer_Text_IO.Put(Item => Float'Size, Width => 1);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Bits in a mantissa ");
Ada.Integer_Text_lO.Put(Item => Float'Mantissa, Width °> 1);
Ada.Text_IO.New_Line;

END Attributes;

Sample Run

Smallest integer is -2147483648
Largest integer is 2147483647

Bits in an integer 32
Smallest float is -3.40282E-I-38

Largest float is 3.40282E+38
Bits in a float 32

Bits in a mantissa 21

The sample ran, under GNAT on the Apple Macintosh, shows 32 bits for both
Integer and Float; this is typical of current computers and compilers. Note that for the
same number of bits (32), the range of floating-point numbers is approximately the
huge range -10^^ to +10^^, while the range of integers is only about -10^..+10^.
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Numeric Literab

A constant value that appears in an expression is called a literal. In Ada a Float literal
must have a decimal point in it and at least one digit on either side of the point. A literal
may also have a decimal scale factor. For example, in the literal 2.998E+5 the scale fac
tor is 10^; in the literal 3E4 the scale factor is 10^ (this is another way to write the value
30,0(K)). It is also possible in Ada to use underscores—not commas—to separate
groups of digits, so 30_ooo is a valid integer literal.

It is also possible to write literals in nondecimal number system bases. The decimal
literal 29 can also be represented as 2#iiioi# (16 + 8 + 4 + 1) in base 2 (binary), 8#35#
(24+5) in base 8 (octal), and 16#id# (16 + 13) in base 16 (hexadecimal). Bases 2-16
are provided in Ada. The same base syntax is also legal for input tokens!

Type of an Expression

The type of an expression is determined by the type of its operands, and all operands of
an expression must be the same type. For example, in the expression

X + 3.5

the variable x must be the same type (Float) as the literal 3.5; the expression is type
Float. If I is an Integer variable, ̂ e expression

10 - I

is type Integer. If I is a Float variable, this expression is incorrect and will lead to a
compilation error.

Numeric Operators

There are two kinds of arithmetic operators: monadic and dyadic. A monadic operator
takes a single operand; a dyadic operator takes two operands. In Ada, the three monadic
operators are +, -, and abs. If x has an integer or float value, +x returns the same value
(essentially it has no effect), -x negates the value (e.g., -(-x) = x), and abs x retums the
absolute value (e.g., ABS 3 = abs (-3) = 3).

The four dyadic arithmetic operators +, -, *, and / can be used with integer or
floating-point operands. The operands must both be Float (or subtypes of Float) or
both be Integer (or subtypes of integer). The division operator / deserves special
consideration. If the operands of a division operation are floating-point values, the full
result is kept and is also floating point. If the operands of division are integer values, the
result is an integer equal to the truncated quotient of m divided by n (i.e., the integer part
of the quotient). For example, if m is 7 and n is 2, the value of m/n is the truncated quo
tient of 7 divided by 2 or 3. On the other hand, if x is 7.0 and y is 2.0, then x/y is 3.5.

Ada provides one more dyadic operator, exponentiation, represented by **. An
expression x**m means "raise x to the Mth power," that is, multiply x by itself m times.
The left operand of ** can be an integer or floating-point value; the right operand must
be an integer value. Further, if the left operand is an integer, the right operand must not
be negative because then the result would not be an integer value.
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Example 8.1

Table 8.1 shows some examples of valid and invalid expressions involving the integer
and floating-point division operators. For integer division, the result is always 0 when
the magnitude of the first operand is less than the magnitude of the second operand. ■

Table 8.1 The Division Operators

3 / 15 = 0 3 / -15 =  0 3.0 / 15.0 = 0.2

15 / 3 = 5 15 / -3 = -5 15 / 3.0 is invalid (mixed types)

16 / 3 = 5 16 / -3 = -5 16.0 / 3.0 = 5.333...

17 / 3 = 5 -17 /  3 = -5 -17.0 / 3.0 = -5.667...

18 / 3 = 6 -18 / -3 =  6 18.0 / 3.0 = 6.0

The remainder operator, rem, can also be used with integer operands. The expres
sion A REM B is equal to the remainder of a divided by b, if a and b are both positive.
The following relations are satisfied by the rem operator:

A REM (-B) » A REM B

(-A) REM B = -(A REM B)

Table 8.2 shows some typical results for the integer division and rem operators.

Table 8.2 Results of integer Division and RFM Operators

A/B A REM B A/B A REM B

10 5 2 0 -10 5 -2 0

11 5 2 1 -11 5 -2 -1

12 5 2 2 -12 5 -2 -2

13 5 2 3 -13 5 -2 -3

14 5 2 4 -14 5 -2 -4

10 -5 -2 0 -10 -5 2 0

1] -5 -2 1 -11 -5 2 -1

12 -5 -2 2 -12 -5 2 -2

13 -5 -2 3 -13 -5 2 -3

14 -5 -2 4 -14 -5 2 -4

ABS and REM are reserved words that represent operators and not function names.
Therefore the expression abs x is correct without parentheses. In the expression
ABS (-3) the parentheses denote that the operator abs is applied after the operator -.
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■ Example 8.2

Program 8.2 displays each digit of its input value Decimal in reverse order (e.g., if Dec
imal is 738, the digits that are printed are 8,3,7). This is accomplished by displaying
each remainder (0 through 9) of Decimal divided by 10; the integer quotient of Decimal
divided by 10 becomes the new value of Decimal. ■

Program 8.2 Displaying Digits in Reverse Order

WITH Ada.Text_I0;
WITH Robust_lnput;
WITH Ada.Integer_Text_IO;
PROCEDURE Display_Digit8 IS

— I Displays digits of a nonnegative integer in reverse order.
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

Base : CONSTANT Natural :<= 10; — number system base
Decimal : Natural; — original number
Digit : Natural; — each digit

BEGIN — Display_Digits

Robust_Input.Get (Item«=>Decimal, MinVal=>0, MaxVal => Natural'Last);

— Find and display remainders of Decimal divided by 10
Ada.Text 10.Put{Item«=> "The digits in reverse order are ");
LOOP

EXIT WHEN Decimal ° 0;

Digit Decimal REM Base; — Get next remainder
Ada. Integer__Text__IO. Put (Item => Digit, Width =>2);
Decimal :«= Decimal / Base; — Get next quotient

END LOOP;

Ada.Text_IO.New_Line;

END Display_Digits;

Sample Run

Enter an integer between 0 and 2147483647 > 9752013
The digits in reverse order are 3102579

The input value Decimal is used as the loop control variable. Within the loop, the
REM operator is used to assign to Digit the rightmost digit of Decimal, and integer divi
sion is used to assign the rest of the number to Decimal. The loop is exited when Deci
mal becomes 0. Trace this program as an exercise.
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Multiple-Operator Expressions Revisited

Often, a problem requires writing an expression that contains more than one operator,
as discussed in Section 3.8. In such a case, it is always wise to use parentheses to show
exactly which operations apply to which operands. However, to make the result of an
expression predictable even if the programmer omits the parentheses, programming
languages, including Ada, provide rules for the order of execution of operations. These
are called precedence and associativity rules. For example, in the expression a + b * c,
is * performed before + or after? Is the expression x / y * z evaluated as (X / Y) * z or
X / (Y * z) ? Understanding these rules will help you to understand expressions better.

Some expressions with multiple operators are

1.8 * Celsius + 32.0

(Salary - 5000.00) * 0.20 + 1425.00

where Celsius and salary are Float variables. In both of these cases the algebraic
rule that multiplication is performed before addition is applicable. The use of parenthe
ses in the second expression ensures that subtraction is done first. The following Ada
rules for expression evaluation are based on standard algebraic rules.

Rules for Expression Evaluation

a. All parenthesized subexpressions are evaluated furst. Nested parenthesized
subexpressions are evaluated inside out, with the innermost subexpression
evaluated first.

b. Operator precedence—knihmttk. operators in the same subexpression are
evaluated in the following order:

**,ABs first
*, /, REM next
+ , - (monadic) next
+, - (dyadic) last

c. Left associative—OpetdXots in the same subexpression and at the same prece
dence level (such as + and -, or * and /) are evaluated left to right.

Note that in Ada, certain combinations of operators require parentheses. For exam
ple, A**B**c is a compilation error according to Ada syntax rules; you must write either

or (A**B)**C. ■

■ Example 8.3

The formula for the area of a circle

a = 7cx

can be written in Ada as

Area ;= Pi * Radius ** 2 ;
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Area

Figure Evaluation Tree for Area ?= Pi * Radius ** 2

V  (P2 - PI) / (T2 - Tl)i

Figure 8.3 Evaluation Tree for Average Velocity

where Pi is the constant we have seen before. The evaluation tree for this formula is

shown in Fig. 8.2. In this tree the arrows connect each operand with its operator. The
order of operator evaluation is shown by the number to the left of each operator; the
rules that apply are shown to the right. ■

■ Example 8.4

The formula for the average velocity, v, of a particle traveling on a line between points
Pi and P2 in time to t2 is

V =

r^-r,
This formula can be written in Ada as

V := (P2 - PI) / (T2 - Tl);

It is evaluated as shown in Fig. 8.3. ■

■ Example 8.5

Consider the expression

Z- (A+B/2)+W*y
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which contains integer variables only. The parenthesized subexpression (a + b / 2) is
evaluated first (rule a) beginning with a / 2 (rule b). Once the value of b / 2 is deter
mined, it can be added to a to obtain the value of ( a + b / 2). Next the multiplication
operation is performed (rule b) and the value for w * y is determined. Then the value of
(A + B / 2) is subtracted from z (rule c), and finally this result is added to w * y. Figure
8.4 gives an evaluation tree. ■

Writing Mathematical formulas in Ada

There are two problem areas in writing a mathematical formula in Ada; one concerns
multiplication and the other concerns division. In everyday algebra, multiplication is
often implied in a mathematical formula by writing the two items to be multiplied next
to each other, for example, a = be. In Ada, however, the * operator must always be used
to indicate multiplication, as in

A := B * C

The other difficulty arises in formulas involving division. We normally write the
numerator and denominator on separate lines:

y-b
m =

x-a

In Ada, all assignment statements must be written in a linear form; consequently,
parentheses are often needed to enclose the numerator and the denominator and to
clearly indicate the order of evaluation of the operators in the expression. The formula
above would be written as

M ;= (Y - B) / (X - A);

■ Example 8.6

Table 8.3 illustrates how several mathematical formulas can be written in Ada. Assume

that all variables except j are Float. ■

Z  -(A+B/2) + W*Y

V/ \/
b  aC* J *5

Figure 8.4 Evaluation Tree for Z - (A + B / 2} + W * Y
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Table 83 Mathematical Formulas and Ada Expressions

Mathematical Formula Ada Expression

1. b^-Aac B**2-4.0*A*C

2. a + b-c A+B-C

3.
a-¥b

c + d

1

1+a^

(A + B) / (C + D)

4. 1.0 / (1.0 + A ** 2)

5. a X -(b + c) A * (-{B + C))

6. xJ X ** J

The points illustrated in Table 8.3 are sununarized as follows:

• Always specify multiplication explicitly by using the operator * where needed (1).

• Use parentheses to control the order of operator evaluation (3,4).

• Never write two arithmetic operators in succession; they must be separated by an
operand or parentheses (5).

• Never mix operand types in an expression (1,4; note the floating-point constants
there). The only exception is the exponentiation operator **, whose right operand
must be integer even if its left operand is Float. Thus the exponentiation in (1),
(4), and (6) is correct.

■ Examples.?

This example shows the use of the monadic operator abs, which computes the absolute
value of its operand. If the value of x is -3.5, the statement

y := 5.7 + ABS(X + 0.5)

assigns a value of 8.7 to the Float variable y. The execution of this statement is traced
as follows:

1. The expression argument (x + o. 5) is evaluated as -3.0.

2. The ABS operator returns the absolute value of its operand (3.0).

3. The sum of 5.7 and the function result (3.0) is assigned to y (8.7).
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Assignment Compatibility

An expression involving floating-point operands can be assigned to a variable only of
type Float (or a subtype thereof). An expression involving integer operands can be
assigned to a variable of type integer (or a subtype thereof). As was discussed in Sec
tion 6.9, an attempt to assign a value of the wrong type to a variable will result in a
compilation error; an attempt to assign an out-of-range value to a variable (e.g., a nega
tive expression result to a Positive variable) will result in constraint_Error being
raised.

Conversions among Numeric Types

Ada does not allow mixing types in an expression (except in the case of exponentiation,
as discussed above). However, Ada does provide a means for performing explicit con
version of a value of one type into a value of another. Specifically, Ada allows explicit
conversion of float values to integer values and vice versa. This is done by using a func
tion-call syntax, where the name of the new type is used as the function. The result of
this "function call" is of the new type, unless ̂ e result is out of range, in which case
constraint_Error is raised as usual.

An integer value always has an exact equivalent in floating-point form, but a float
ing-point value does not always have an exact integer equivalent. Ada therefore rounds
such a conversion to the nearest integer value, rounding away from zero if the float
quantity is exactly halfway between two integers.

Suppose we have the following declarations:

F: Float;
N: NonNegFloat;
I: Integer;
P: Positive;
T: Natural;

Here are some conversions that can be done:

F Ploat(I); — always possible
N Ploat(P); — always possible
I :=» Integer(F); — always possible; result is rounded

I • ̂ Integer(N); — always possible, result is rounded

N • a NonNegFloat(I); — raises Constraint_Error if I is negative
T • a Natural(F); — raises Constraint__Error if F is negative

I : = Integer(5.49); — result is 5

I • 8 Integer(5.51); — result is 6

I • 8 Integer(5.5); — result is 6

I • ̂ Integer(-5.3); — result is -5

I : = Integer(-5.6); — result is -6

I • s Integer(-5.5); — result is -6

Conversion between two subtypes of integer or two subtypes of Float is always
possible and will succeed if the result is in range. If i happens to be -57, for example,
then
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T ;= Natural(I);

will raise constraint Error.

■ Example 8.8

In the very common problem of calculating the average of a set of floating-point num
bers, the sum of the numbers—sumofitems, say—is Float (or a subtype thereof) but
the number of numbers—Numof items, say—is Positive (or a subtype thereof). It is a
compilation error to write the expression

SumOfltems / NumOfltems

because the types do not agree; instead, we can write the expression

SumOfltems / Float(NumOfltems)

which divides the value of sumOfitems by the floating-point equivalent of NumOfitems.
This expression is used in the assignment statement below to store the "average value"
in Average:

Average SumOfltems / Float(NumOfltems); H

PROGRAM

STYLE
Explicit Type Conversion

We now know that Ada allows type conversion to be done explicitly so that float
ing-point and integer values can be combined in an expression. It is advisable to
do this only when it is really necessaiy. Overuse of such conversions—in the
most extreme case, to do all arithmetic in floating point—makes a program much
more difficult to understand and also robs you of the assistance you get from Ada
in ensuring that appropriate values and operations are used. An occasional
explicit conversion is beneficial, but as in so many other things, moderation is a
virtue.

Fixed-Point Types: The Duration Type

In addition to the integer and floating-point types that we use so much, Ada provides a
third kind of numeric type: the fixed-point type. Type Duration is a fixed-point pre
defined type and is used by package Ada.calendar. Whereas Ada.Calendar.Time rep
resents time of day ("what time is it now?"). Duration represents elapsed time ("how
long before the train leaves?"). A duration value of 1.0 represents the passage of
exactly one second; a value of 0.1 represents the passage of a tenth of a second. Pack
age Ada.Calendar provides a subtype of Duration called Day_Duration as foUows:

SUBTYPE Day_Duration IS Duration RANGE 0.0 .. 86_400.0;
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whose range is chosen to span exactly one day, because 86,400 is the number of sec
onds in 24 hours. Ada.calendar also provides a function to retrieve, from a value of
type Ada.Calendar.Time, the number of seconds since midnight on the given day;

FUNCTION Seconds (T; Time) RETURN Day_Duration;

This function goes along with the Year, Month, and Day functions that we used in Sec
tion 4.6. All you need to know about Duration and Day_Duration values is that they
are much easier to work with if they are first converted to type Float.

■ Example 8.9

Program 8.3 displays the time of day in hhimm:ss form, using European or military
24-hour time.

Program 8.3 Time of Day

WITH Ada.Text_IO;
WITH Ada.Integer_Text_I0;
WITH Ada.Calendar;

PROCEDURE Time_of_Day IS

Displays the current time in hh:mm:ss form, 24-hour clock
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

CurrentTime : Ada.Calendar.Time;
SecsPastMidnight : Natural;
MinsPastMidnight : Natural
Sees : Natural

Mins : Natural

Hrs : Natural

BEGIN — Time__of_Day

CurrentTime :- Ada.Calendar.Clock;

SecsPastMidnight
MinsPastMidnight
Sees

Mins

Hrs

» Natural(Ada.Calendar.Seconds(CurrentTime));
» SecsPastMidnight/60;
- SecsPastMidnight REM 60;
» MinsPastMidnight REM 60;
= MinsPastMidnight / 60;

Ada.Text_IO.Put(Item => "The current time is ");
Ada.lnteger_Text_IO.Put (Item => Hrs, Width =>1);
Ada.Text_IO.Put (Item => ';');

IF Mins <10 THEN

Ada.Text_IO.Put (Item => '0');
END IF;

Ada.Integer_Text_IO.Put (Item => Mins, width => 1);
Ada.Text_IO.Put (Item => ':');

IF Sees <10 THEN

Ada.Text_IO.Put (Item => '0');
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END IF;

Ada.Integer_Text_IO.Put (Item «> Sees, Width =>1);

END Time_of_Day;

Sample Run

The current time is 16:05:44

This program uses the package Ada.calendar to find the time of day. Recall that
Ada. Calendar. Clock retums a value of type Ada. calendar. Time. The Statement

CurrentTime :- Ada.Calendar.Clock;

finds the value of current date/time; the function call

.. Ada.Calendar.Seconds(CurrentTime);

returns the value of seconds since midnight as a Duration value. Since Ada does not
provide many arithmetic operations to deal with Duration values, it is easier to convert
this value to integer form. Declaring

SecsPastMidnight: Daylnteger;

we can proceed to write

SecsPastMidnight Natural(Ada.Calendar.Seconds(CurrentTime));

Note how we converted the Duration value. A fixed-point type can be fractional; since
we are not interested in fractions of seconds, the rounding doesn't hurt us.

Finding the hours, minutes, and seconds in the current time is straightforward:

MinsPastHidnight i- SecsPastMidnight / 60;
Sees :"= SecsPastMidnight REM 60;
Mins :- MinsPastMidnight REM 60;
Hrs := MinsPastMidnight / 60;

As an example of these calculations, suppose that the current time is 11:55:20 PM.
Knowing that an hour has 3600 seconds and a minute 60, we can easily calculate the
value that Ada.calendar. Seconds returns the number of seconds past midnight, as

(3600 X 23) + (60 x 55) + 20 = 82800 + 3300 + 20 = 86120

We now have to go back the other way, extracting hours, minutes, and seconds. The
number of minutes past midnight is 86120/60, or 1435 (integer division!); the number
of seconds is 86120 rem 60, or 20, and so on. ■

Fixed-Point Types: Decimal Types

Because a floating-point representation system uses a fixed number of bits in its man
tissa, and therefore provides a fixed maximum number of significant digits, it is only a
rough approximation of the real numbers, and many values cannot be represented
exactly.
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We will discuss this problem further in Section 8.2. For now, consider that there are
business applications, especially those using monetary quantities, in which exact repre
sentation is essential. Ada 95 has a solution for this. The Ada 95 standard contains, in
addition to the base language, a number of annexes, or appendices. Most of the stan
dard libraries we use in this book appear in Annex A, which all compiler developers are
required to implement. Other annexes are optional. One optional annex is Annex F,
Information Systems. This annex provides for decimal types, that is, fixed-point types
whose machine representation of fractional decimal quantities is exact. We will not
consider decimal types in depth in this book.

EXERCISES FOR SECTION 8.T

Self-Check

1. Suppose we have the following declarations:

F: Float;

U: NonNegFloat;
I: Integer;

T: Natural;

and that f is -3.7, and i is -5. Describe the result of each of the following as
signment statements:

F := Float(I);
I  ;= Integer(F);

I  ;= Integer(N);

N := NonNegFloat(I);
T := Natural(F);

I  := Integer(6.2);
I  := Integer(100.88);
I  ;= Integer(9.5);

2. Some older Ada compilers used to use 16 bits for integer, so integer'Last
was 32767. Suppose we called Ada.calendar.clock and converted the result
to Integer. At what time of day would it make a difference whether inte
ger ' Last is 32767 or something larger?

8.2 System Structures: More on Ada.Numerics; the USE Clause

As we saw in Section 5.6, Ada provides a standard library of elementary mathematical
functions, called Ada.Numerics.Elementary__Functions. The filll specification is
given in Appendix E; Table 8.4 shows some of the functions that are provided:
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Table 8.4 Some Functions in Ada.Nuinerics.Eleinen'tary_Functions

Function Purpose

Arctan(X) Returns the angle y in radians satisfying X = tan(y),
where -Jt/2 <= y <= 7c/2

Cos(X) Returns the cosine of angle X (in radians)

Exp(X) Returns e^ where e = 2.71828...

Log(X) Returns the natural logarithm of X for .y > 0.0

Sin(X) Returns the sine of angle X (in radians)

Sqrt(X) Returns the square root of X for X >= 0.0

All functions take arguments of type Float (or a subtype thereof) and return a
value of type Float. The arguments for sin and cos must be expressed in radians, not
degrees. The arguments for Log and sqrt must be nonnegative; a negative argument
will cause the exception Ada.Numerics .Argament_Error to be raised.

■ Example 8.10

The predefined exponentiation operator in Ada does not apply to floating-point expo
nents. This means that it is not possible to write directly when x and y are type Float.
Some, but not all, math packages provide such an exponentiation operation. However,
from the study of logarithms we know that

ln(x^) = y X InCx)

and

z = e'"<z)

where e is 2.71828... So we can derive that

j^y-gCvxinW)

This formula can be implemented in Ada as

XToPowerY :« Ada.Numerics.Elamentary_Functions.Exp
(y * Ada.Numerics.Elementary_Functions.Ln(x)) H

Writing Terse Code: The USE Clause

In this book we have been faithful to the convention that all calls to package-provided
procedures and functions be prefixed with the name of the package, as in

Ada.Text_IO.New_Line;
Ada. Integer_Text__IO. Get (Item => Next_Num) j
Y := Ada.Numerics.Elementary_Functions.Sqrt (X);



82 System Structures: More on AdaHumerics; the USE Clause 317

Prefixing the name of the package is called qualification. There are two main advan
tages to doing this. First, the reader can tell at a glance exactly which package has pro
vided a given operation. Even in a class project a program may have SiTH-ed" several
packages, including standard Ada packages, compiler-provided packages like
Ada.Numerics.Eiementary_Functions, and packages that you write yourself or that
are supplied by your teacher. Qualification makes it easy to see, for debugging purposes
or for enhancing your program at a later date, just which operations came from which
packages. We will discuss the second advantage in a moment.

Ada provides a method for avoiding the need to qualify all references to pack
age-provided operations. This is called the use clause; it looks just like a context
clause, and (in this book) is written at the top of a program unit along with the context
clause. For example,

WITH Ada.Numerics.Elementary_Punctions;
USE Ada .Numerics. Elementary__Functions;

might appear at the top of a program. If a use clause is present, qualifying the package
references is no longer required, although it is certainly still permitted. Given a use
clause, the two statements

Y ;= Ada.Numerics.Elementary_Functions.Sqrt(X);
Y := Sqrt(X);

are both permitted and have the same meaning. An advantage of the use clause is that
expressions can be somewhat more tersely written, but of course the information about
just which package provided the sqrt operation is lost to the reader.

This direct information about which package provides which operation is also lost
to the compiler if a use clause is present. This means that the compiler, in translating an
unqualified reference to a package operation, must search its tables for all the packages
mentioned by use clauses, and this is a somewhat time-consuming task for the com
piler. This is the second advantage of qualified reference; It makes the compiler's job a
bit easier.

PROGRAM

STYLE
The Proper Use of USE Clauses

As we have seen, a use clause has certain advantages, but qualification of all ref
erences also has advantages. Many experienced Ada professionals believe that
the advantages of qualification outweigh those of use clauses, and we tend to
agree. Generally, we will avoid use clauses, continuing in the style with which
we began the book.

There are certain circumstances, such as the math library, in which the names
of the operations are so obvious, and relate so closely to everyday mathematics,
that the more compact expression notation is desirable; in such cases we will
write a use clause. Some authors and developers also write use clauses for the
standard input/output libraries; we choose not to do this.

As in the case of type conversions, moderation is a virtue in the use of use
clauses, and we advocate careful, case-by-case consideration of whether the use
or the qualified reference is more advantageous.
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■ Example 8.11

The function sqrt (square root) can be used to compute the roots of a quadratic equa
tion in X of the form

aX^ + bX + c = 0

where a, b, and c are type Float. The two roots are expressed in algebraic form as

Root, = -b^Jb'-Aac ^-b-Jb'-4ac
'  2a ^ 2a

The Ada implementation is

IF Disc >0.0 THEN

Rootl := (-b + Sgrt(Disc)) / (2.0 * a);
Root2 := (-b - Sqrt(Disc)) / (2.0 * a);

END IF;

where the variable Disc represents the discriminant Qp- - Aac) of the equation. ■

■ Example 8.12

Program 8.4 draws a sine curve. It uses the Ada function sin, provided by the math
package Ada.Numerics.Elementary__Functions, which returns &e trigonometric sine
of its parameter, an angle expressed in radians.

Program 8.4 Plotting a Sine Curve Using the Math Package

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
WITH Ada.Numerics;

USE Ada.Numerics;
WITH Ada.Numerics.Elementary_Functions;
USE Ada.Numerics.Elementary_Functions;
PROCEDURE Sine_Curve IS

— I Plots a sine curve.
— I Author: H. B. Feldman, The George Washington University
— I Last Modified: August 1998

RadPerDegree : CONSTANT Float := Pi / 180.0; — radians per degree
— Pi in Ada.Numerics

MinAngle : CONSTANT Float
MaxAngle : CONSTANT Float
PlotWidth : CONSTANT Integer
PlotHeight :CONSTANT Integer

=0.0; — smallest angle
= 360.0; — largest angle
=40; — width of plot
=20; — height of plot

StepAngie : CONSTANT Float := — change in angle
(MaxAngle-MinAngle) / Float(PlotHeight);

Star ; CONSTANT Character — plotting symbol
Blank: CONSTANT Character —to "pad" the '*

SUBTYPE ColumnRange IS Integer RANGE 0..PlotWidth;
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Angle : Float; — angle in degrees
Radian : Float; — angle in radians
Scale : Float; — scale factor
Pad : ColumnRange; — blank padding size

BEGIN — Sine__Curve

Ada.Text_lO.Put(Item => " Sine curve plot");
Ada.Text_IO.New_Line(2);
Scale := Float(PlotWidth / 2);
Angle MinAngle;

LOOP

EXIT WHEN Angle > MaxAngle;

Radian := Angle * RadPerDegree;
Pad := Natural(Scale * (1.0 + Sin(Radian)));

Ada.Float_Text_IO.Put
(Item =>Angle, Fore => 4, Aft => 0, Exp »> 0);

— Display blank padding
Ada.Text_IO.Put(Item => Blank);
FOR BlankCount IN 1 .. Pad LOOP

Ada.Text_IO.Put(Item => Blank);
END LOOP;

Ada.Text_IO.Put(Item => Star); — Plot * in next column
Ada. Float__Text_IO. Put
(Item °>Sin(Radian), Fore => 6, Aft => 6, Exp => 0);

Ada.Text_lO.New_Line;
Angle := Angle + StepAngle;

END LOOP;

END Sine__Curve;

Sample Run

sine curve plot

0.0 * 0.000000

18.0 * 0.309017

36.0 * 0.587785

54.0 * 0.809017

72.0 * 0.951057

90.0 * 1.000000

108.0 * 0.951057

126.0 * 0.809017

144.0 * 0.587785

162.0 * 0.309017

180.0 * -0.000000

198.0 * -0.309017

216.0 * -0.587785

234.0 * -0.809017

252.0 * -0.951056

270.0 * -1.000000

288.0 * -0.951056

306.0 * -0.809017

324.0 * -0.587785
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342.0

360.0

-0.309017

*  0.000000

Because degrees are a more intuitive way to represent angles, the outer for loop is
executed for values of Angle equal to 0,18,36, 360 degrees. This requires a conver
sion to radians to give sin a sensible parameter value. We need a conversion constant,
RadPerDegree, which is the value TC/ISO.O. We use the value of Pi provided by
Ada.Numerics.

Now let us see how to plot the curve. For each Angle, the first of the assignment
statements

Radian 1^= Angle * RadPerDegree;
Pad := Natural(Scale * (1.0 + Sin(Radian));

computes the number of radians corresponding to Angle. Then the variable Pad is
assigned a value based on sin (Radian). This value increases from 0 when
Sin(Radian) is -1.0 to twice the value of Scale when Sin(Radian) is 1.0. Pad, the
limit variable in the inner for loop, determines how many blanks precede each charac
ter * displayed on the screen. In this way tlie position of each * displayed represents the
sine of the current angle. The angle is displayed at the left end of each line; the sine
value is also displayed as a floating-point number after each *. ■

PROGRAM

STYLE
Checking Boundary Values

Example 8.12 states that the value of Pad ranges from 0 to twice scale as the sine
value goes from -1.0 to 1.0. It is always a good idea to check the accuracy of
these assumptions; this can usually be done by checking the boundaries of the
range as shown below.

sin(Radian)'is -1.0, Pad is Natural(Scale * (1.0 + (-1.0)))
Pad is Natural(20.0 * 0.0)
Pad is Natural(0.0) - 0

Sin(Radian) is +1.0, Pad is Natural(Scale * (1.0 1.0))
Pad is Natural(20.0 * 2.0)
Pad is Natural(40.0) » 40

It is also a good idea to check the boundary values for all loop control vari
ables to see that they make sense. For example, the outer loop control variable.
Angle, has an initi^ value of MinAngie (0.0) and a final value of MaxAngie
(360.0). The inner loop control variable, Biankcount, has an initial value of 1 and
a final value of pad.
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CASE

STUDY APPROXIMATING THE VALUE OF e

Problem Specification
Computing a value by approximation is a frequent problem in engineering and scien
tific computation. Here we give an example of this. The math constant e (whose value
is the nonterminating decimal 2.71828...) is the base of the natural logarithms. This
value is provided by Ada as Ada.Nunverics.E. Suppose we did not have the numerics
package; develop a program that will compute the value of e. The user will supply the
desired number of decimal places of accuracy.

Analysis
There are a number of mathematical quantities that can be represented using a series
approximation, where a series is represented by a summation of an infinite number of
terms. For example, e can be determined by ev^uating the expression

1 + 1/1! +1/2! +1/3! + ...+l/n! + ...

where n\ is the factorial of n, defined as follows:

0!=:1

rt! = n X (rt - 1)! (for n >= 1)

Notice that this is just a different, equivalent, way of defining the same Factorial
that we defined in Section 6.7. Instead of calculating the factorial for each term in the
series, we shall use a different method as outlined below.

We can get an approximation to the value of e by summing the series for a finite
value of n. Obviously, the larger the value of n we use, the more accurate will be the
computed result. This expression can be represented by using summation notation as

n

y i
^i\
1 = 0

where the first term is obtained by substituting 0 for i (1/0! is 1/1), the second term is
obtained by substituting 1 for i (l/l!), etc.

To get an approximation to the desired accuracy, we use a successive approxima
tions method. Suppose that the number of decimal places is given by Places. Start with
a single term, then add terms until two successive approximations differ by no more
than 1/10^^®°®®. This last quantity is usually called epsilon, which in mathematics is
used to mean a very small interval. For example, if we desire six decimal places, epsi
lon is 0.000001 = 1/10®.

Design
A general loop can be used to implement the preceding formula easily. The data
requirements and algorithm follow.

Data Requirements

Problem Inputs:
the number of decimal places (places : Positive)
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Problem Outputs;
the approximate value of e (e: Float)

Program Variables:
I, to produce the i/h term (i: Natural)
the /th term of the series (ithTerm : Float)
the previously computed estimate of e (eoid: Float)
the desired accuracy (Epsilon; Float)

Design
The algorithm for this case study follows.

Algorithm
1. Prompt user for the value of Places

2. Set Epsilon to 1.0/10.0^^®°®®

3. Initialize e to 1.0

4. Initialize the ith term to 1.0

5. LOOP

6. Save previous e in eoid

7  Increment i

8. Compute the ith term in the series

9. Add the ith term to e

10. EXIT WHEN e and eoid differ by no more than Epsilon

END LOOP;

11. Display the approximate value of e

Implementation
Program 8.5 implements this algorithm.

Program 8.5 Estimating e by Successive Approximations

WITH Ada.Text_lO;
WITH Ada.Integer Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Estimate_e IS

Computes the value of e by a series approximation.
Number of places of accuracy is specified by user input.
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

Places : Positive; — Input - decimal places of accuracy
e  : Float; — Output - the value being approximated
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eOld : Float; — the value being approximated
i  ; Natural; — to produce the i-th term
ithTerm ; Float; — ith term in series
Epsilon : Float; — desired difference between successive tries

BEGIN — Estimate_e

Ada.Text_IO.Put (Item => "Enter desired number of decimal places > ");
Ada.Integer_Text_IO.Get(Item => Places);

Epsilon ;= 1.0 / (10.0 ** Places);

Ada.Text_IO.Put (Item => "Number of Terms Approximate Value of e");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => " ");
Ada.Text_IO.New_Line;

— Compute each term and add it to the accumulating sum.
e := 1.0; — initial sum
ithTerm := 1.0; — first term
i  := 0;

LOOP — and quit when desired accuracy is achieved

eOld ;= e; — save previous approximation

i  ;= i + 1;

ithTerm ;= ithTerm / Float(i);

e := e + ithTerm; — find new value

Ada.Integer_Text_IO.Put(Item => i, Width =>9);
Ada.Float_Text_IO.Put
(Item => e, Fore => 10, Aft => Places+2, Exp => 0);

Ada.Text_IO.New_Line;

EXIT WHEN ABS (e - eOld) <= Epsilon;

END LOOP;

END Estimate_e;

Sample Run

Enter desired number of decimal places > 10
Number of Terms Approximate Value of e

1 2.000000000000

2 2.500000000000

3 2.666666746140

4 2.708333492279

5 2.716666936874

6 2.718055725098

7 2.718254089355

8 2.718278884888

9 2.718281745911

10 2.718281984329

11 2.718281984329

Inside the loop, the statement
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ithTerm := ithTerm / Float(i);

computes the value of the ith term in the series by dividing the previous term by the
type Float representation of the variable i. The formula

(i/(t-l)!)/i=l/(/x(/-l)!) = l//!

shows that this division does indeed produce the next term in the series. Because 0! is
1, ithTerm must be intialized to 1.0. The statement

e = e + ithTerm;

adds the new value of ithTerm to the sum being accumulated in e. Trace the execution
of this loop to satisfy yourself that ithTerm takes on the values 1/1!, 1/21,1/31, and so
on, during successive loop iterations.

Numerical Inaccuracies

One of the problems in processing floating-point numbers is that there is sometimes an
error in representing floating-point data. Just as there are certain numbers that cannot
be represented exactly in the decimal number system (e.g., the fraction 1/3 is
0.333333...), so there are numbers that cannot be represented exactly in floating-point
form. The representational error will depend on the number of binary digits (bits) that
are used in the mantissa: The more bits there are, the smaller the error.

The number 0.1 is an example of a real number that has a representational error.
The effect of a small error is often magnified through repeated computations. Therefore
the result of adding 0.1 ten times is not exactly 1.0, so the following loop might fail to
terminate on some computers:

Trial := 0.0;
LOOP

EXIT WHEN Trial =0.0;

Trial ;= Trial + 0.1;

END LOOP;

If the loop repetition test is changed to Trial < i.o, the loop may execute ten
times on one computer and eleven times on another. For this reason, it is best to use
integer values—which are always exact—whenever possible in loop repetition tests.

Other problems occur when manipulating very large and very smdl real numbers.
In adding a large number and a small number, the larger number may "cancel out" the
smaller number (a cancellation error). If x is much larger than y, x + y and x may have
the same value (e.g., 1000.0 + 0.0001234 is equal to 1000.0 on some computers).

For this reason, you can sometimes obtain more accurate results by carefuly select
ing the order in which computations are performed. For example, in computing the
value of e in the preceding case study, the terms of the series

1 + 1/11 + 1/2! + ... + l/«!
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were generated in left-to-right order and added to a sum being accumulated in e. When
n is large, the value of 1/n! is very small, so the effect of adding a very small term to a
sum that is larger than 2.0 may be lost. If the terms were generated and summed in
right-to left-order instead, the computation result might be more accurate.

If two very small numbers are multiplied, the result may be too small to be repre
sented accurately and will become zero. This is called arithmetic underflow. Similarly,
if two very large numbers are multiplied, the result may be too large to be represented.
This is called arithmetic overflow and, in Ada, causes constraint_Error to be raised.
Arithmetic underflow and overflow can also occur in processing very large and small
integer values.

EXERCISES FOR SEaiON 8.2

Self-Check

1. Rewrite the following mathematical expressions using Ada math functions.

a. J(U+V)xW^

b. log„(X'')

c Jix-rf

d. \XY-W/Z\

2. Evaluate the following expression;

Sqrt(ABS(Integer(-15.8)})

Programming

1. We know that e is in fact provided by Ada as Ada.Numerics.e. Look up this
value and check the results of Program 8.5 against it for several different num
bers of decimal places of accuracy.

2. Write a function that computes, for float numbers a and b, e° ̂ Call this
function with several different values of a and b, and display the results. Veri
fy for yourself that the results are correct.

3. Using type conversion, write an Ada statement to round any float value x to
the nearest two decimal places. {Hint: You have to multiply by 100.0 before
rounding.)
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8.3 System Structures: More on Ada.Numerics: Random
Numbers

It is common in simulation and other applications to use random or pseudorandom
numbers. A random number has a completely unpredictable value (e.g., the seconds
part of a call to Ada.Calendar .clock) that depends on the precise time it was called.
Running the program at a different time of day will most likely give a different number.
A pseudorandom sequence, on the other hand, is a sequence of numbers within a given
range. The numbers are produced by some mathematical formula such that the numbers
appear to have been chosen randomly, but the sequence can be repeated the next time
the program is run.

Pseudorandom Numbers in Ada.Numerics

It is beyond the scope of this book to discuss the mathematics of pseudorandom num
bers, but it is usefiil to know that Ada provides random number generators in
Ada.Numerics. Figure 8.5 shows part of the specification of a discrete random number
generator.

Figure 8.5 Partial Specification for Ada.Numerics.Discrete_Random

GENERIC

TYPE Result_Subtype IS (<>);
PACKAGE Ada.Numerics.Discrete_Random IS

— Basic facilities

TYPE Generator IS LIMITED PRIVATE;

FUNCTION Random (Gen : Generator) RETURN Result_Subtype;

PROCEDURE Reset (Gen : IN Generator);

PRIVATE

... — as in Ada.Calendar.Time, we do not know the form of this

END Ada.Numerics.Discrete_Random;

This package is generic, like Ada.Text_io.Enumeration_io. Before it can be used,
it must be instantiated or "tailored." You will learn more about writing and using gener-
ics in Chapter 12; for now, you need to know that the line

TYPE Result_Subtype IS (<>);

means that the package can be instantiated for any integer or enumeration type or sub
type and that the resulting instance will produce pseudorandom values in the range of
that type or subtype. For example, to produce a generator of random integers in the
range 1 to 50, we would write

SUBTYPE Fifty IS Integer RANGE 1..50;
PACKAGE Randoms0 IS
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NEW Ada.Nuinerics.Discrete_Random (Result_Subtype => Fifty);

The line

TYPE Generator IS LIMITED PRIVATE;

indicates a type whose values have no operations available. Contrast this with
Ada.Calendar.Time, a merely private type whose values we can assign and test for
equality. It is beyond our scope to explain why this type is necessary; to use the random
number generator, you must declare a variable of this type (say, g) and simply pass it to
the operations Random and Reset each time you call them. For example, given a vari
able Number of type Fifty, the Statement

Number := Randoms0.Random (Gen => G);

stores in Number a pseudorandom value in the range 1 to 50.
The random number generator produces a sequence of numbers. The generator

starts itself with the same value (unknown to us) each time the program is run. There
fore, if we just make a sequence of calls as above, we will get the same sequence of val
ues tomorrow as we did yesterday. The procedure Reset can be used to prevent this
repetition of the sequence; for example, the call

Randoms0.Reset(Gen => G);

causes the generator to be set from the time-of-day clock, so each run of the program
produces a different sequence.

■ Example 8.13

Program 8.6 generates a sequence of 120 pseudorandom integers in the range 1 to 50.
The nested loops provide for displaying these numbers in rows of 12. Try compiling
this program and running it several times. Do you get the same sequence each time?
Try commenting out the line that resets the generator and then recompiling the program
and running it several times. Do you get the same sequence each time now? ■

Program S.6 Generating a Pseudorandom Sequence

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Ada. Numeric s. Di s orete__Random;
PROCEDURE Random__Numbers IS

— I Generates 120 random integers in the range 1..50
— I Uses the random number generator from Ada.Numerics
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

SUBTYPE RandomRange IS Positive RANGE 1..5G;
PACKAGE Random_50 IS NEW Ada.Numerics.Discrete_Random
(Result_Subtype »> RandomRange);
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G: Random 50.Generator;

BEGIN — Random Numbers

Random__50.Reset (Gen => G);

— LIMITED PRIVATE variable;
— we must keep passing it to Random/
— but can't use it.

— starts G from time of day clock

— displays 10 rows of 12 numbersFOR Row IN 1..10 LOOP

FOR Num IN 1..12 LOOP

Ada. Integer_Text_^IO. Put
(Item «> Random__50. Random (Gen => G), Width =>4);

END LOOP; "
Ada.Text_^IO.New Line;

END LOOP; ~

END Random__Numbers;

Sample Run

14 36 11 6 17 6 31 39 15 31 46 27

35 43 12 35 43 44 39 1 35 33 21 46

47 41 25 40 20 37 32 37 5 48 26 46

50 30 2 30 13 30 39 25 13 11 7 45

41 10 9 14 11 6 41 47 32 24 33 25

15 15 27 26 32 36 5 34 47 30 22 21

8 14 29 17 41 34 17 25 46 15 38 33

43 5 31 13 23 1 30 3 46 14 8 10

3 47 6 44 29 33 33 11 48 33 2 6

42 14 45 5 38 29 34 43 38 9 32 23

EXERCISES FOR SECTION 8.5

Programming

1. The discrete random number generator can be instantiated for enumeration
types. Declare

TYPE Coin IS (Tails, Heads);

and write a program similar to Program 8.6 that generates and displays a large
number of coin flips and counts the number of heads and tails. Instantiate
Ada.Text_io.Enumeration_io to display the flips. Is the number of heads
roughly the same as the number of tails? Do the heads and tails alternate, or are
there runs of heads and runs of tails?
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8.4 Data Structures: The Boolean Type

We introduced the Boolean data type in Chapter 5. We have used Boolean expressions
(expressions that evaluate to True or False) to control loop repetition and to select one
of Ae alternatives in an if statement. Some examples of Boolean expressions are the
following:

GrossPay > TaxBracket
Item /=« Sentinel

TranType = 'C

Boolean is one of Ada's predefined types; in fact, it is an enumeration type, defined as

TYPE Boolean IS (False, True);

The simplest Boolean expression is a Boolean variable or constant. A Boolean
variable or constant can be set to either of the Boolean values. False or True. The state
ment

Debug : CONSTANT Boolean :=> True;

specifies that the Boolean constant Debug has the value True; the declarations

Switch : Boolean;
Flag : Boolean;

declare switch and Flag to be Boolean variables, that is, variables that can be assigned
only the values True and False.

Boolean Operators

A Boolean variable or constant is the simplest form of a Boolean expression (e.g.,
switch). We have used the relational operators (-, <, >, etc.) with numeric data to form
conditions or Boolean expressions (e.g.. Salary < Minsal).

There are four Boolean operators: and, or, xor, and not. These operators are used
with operands that are Boolean expressions:

(Salary < MinSal) OR (NumDepend > 5)
(Temp > 90.0) AND (Humidity > 0.90)
Athlete AND (NOT Failing)
Married XOR CollegeGraduate

The first expression can be used to determine whether an employee pays income tax. It
evaluates to True if either condition in parentheses is true. The second expression can
be used to describe an unbearable summer day: temperature and humidity both above
90. The expression evaluates to True only when both conditions are true. The third
expression has two Boolean variables (Athlete and Failing) as its operands. Any indi
vidual for whom this expression is true is eligible for intercollegiate sports. The fourth
expression evaluates to True if the individual is either married or a college graduate but
not both. It might be useful to a public opinion pollster.
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The Boolean operators can be used with Boolean expressions only. The Boolean
operators are summarized in Table 8.5, which shows that die and operator yields a true
result only when both its operands are true, that the or operator yields a false result
only when both its operands are false, and that the xor operator yields a true result only
when exactly one of its operands is true. The not operator has a single operand and
yields the logical complement, or negation, of its operand.

Table 8.5 Boolean Operators

Opl Op2 NOT opl opl AND Op2 opl OR Op2 opl XOR Op2
false

false

true

true

false

true

false

true

true

true

false

false

false

false

false

true

false

true

true

true

false

true

true

false

Operator Precedence

The precedence of an operator determines its order of evaluation. Table 8.6 shows the
precedence of all operators that can occur in an Ada expression.

Table 8.6 Operator Precedence

Operator Precedence

**, NOT, ABS highest (evaluated first)

*, /, REM multiplying operators

+ , - monadic adding operators

+, -» & dyadic adding operators
(& is concatenation, coming in Chapter 10)

<, <=, /=, >«=, > relational operators

AND, OR, XOR dyadic logical operators (evaluated last)

■ Example 8.14

The expression

X < Y + Z

involving the float variables x, y, and z is interpreted as

X < (Y + Z)

because + has higher precedence than <. The expression

X < Y OR z < Y
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is interpreted as

(X < Y) OR (Z < Y)

because or has lower precedence than <. The expression

NOT Sunny OR Warm

is interpreted as

(NOT Sunny) OR Warm

because not has higher precedence than or.
As is clear from Table 8.6 and Example 8.14, Ada has many operators, and their

relative precedences are often difficult to remember. It is therefore advisable to keep
expressions relatively simple and to use parentheses to make clear what you mean. ■

■ Example 8.15

Table 8.7 gives legal Boolean expressions if x, y, and z are Float and Flag is type
Boolean. The value of each expression is shown in brackets assuming that x is 3.0, y is
4.0, z is 2.0, and Flag is True.

Table 8.7 Some Boolean Expressions

Expression Value

1. (X > Z) AND (Y > Z) True

2. (X + Y/Z) <=3.5 False

3. (Y > X) XOR (Y > Z) False

4. NOT Flag False

5. (X = 1.0) OR (X = 3.0) True

6. (0.0 < X) AND (X < 3.5) True

7. (X <= Y) AND (Y <= Z) False

8. NOT Flag OR ((Y + Z) >= (X - Z)) True

9. NOT (Flag OR ((Y + Z) >= (X - Z))) False

Expression 1 gives the Ada form of the relationship "X and Y are greater than Z." It
is often tempting to write this as

X AND Y > z

However, this is an illegal Boolean expression because the float variable x cannot
be an operand of the Boolean operator and. Similarly, expression 5 shows the correct
way to express the relationship "X is equal to 1.0 or to 3.0."
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Flag Y Z X Z

I True I [4.0 I |2.0| |3.0 | | 2.0 |
NOT Flag OR (( Y + Z ) >= ( X - Z ))

u  w

Figure 8.6 Evaluation Tree for a Boolean Expression

Expression 6 is the Ada form of the relationship 0.0 < X < 3.5 (i.e., "X is in the
range 0.0 to 3.5"). Similarly, expression 7 shows the Ada form of the relationship X <=
Y<= Z, that is, "Yis in the range X to Z, inclusive."

Finally, expression 8 is evaluated in Fig. 8.6; the values given at the beginning of
this example are shown above the expression. The expression in Fig. 8.6 is rewritten
below with parentheses enclosing the term not Flag. Although these parentheses are
not required, they do clarify the meaning of the expression, and we recommend their
use:

(NOT Flag) OR ((Y + Z) >= (X - Z)) ■

Short-Circuit Boolean Operators

When evaluating Boolean expressions, Ada evaluates both sides of the expression but
in an order that is not defined by the language. This is not usually a problem; generally,
we are interested only in the final result of the evaluation. Circumstances do arise, how
ever, when it is desirable to evaluate the right side of an and only if the left side is true,
or the right side of an or only if the left side is false. Ada provides for this purpose two
additional operators: and then and or else. These are called short-circuit operators:
The evaluation of the right operand is skipped if evaluating the left operand determines
the result of the expression.

■ Example 8.16

Both sides are always evaluated in the expression

NOT Flag OR ((Y + Z) /= (X - Z))

but in the expression

NOT Flag OR ELSE ((Y + Z) /= (X - Z))
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if Flag is True, then not Flag is False, so the expression must evaluate to True regard
less of the value of the parenthesized expression following or (i.e.. True or ... must
always be True). Consequently, the parenthesized expression following or else is not
evaluated when Flag is True.

Short-circuit evaluation has important applications. Sometimes it is necessary to
omit evaluation of the right operand, lest a run-time error arise. ■

■ Example 8.17

If X is 0, the expression

(X /= 0.0) AND (Y / X > 5.0)

is False because (X /» 0.0) is False and False and .. . must always be False. Not
only is there no need to evaluate the subexpression ( y / x > 5. o) when x is zero, it is an
error to do so: constraint_Error would be raised because the divisor x is zero. An
expression like this must be written

(X /= 0.0) AND THEN (Y / X > 5.0)

to prevent the right side from being evaluated whenever x is zero. ■

Boolean Assignment Statements

We can write assignment statements that assign a Boolean value to a Boolean variable.
The statement

Same := X = Y;

assigns True to the Boolean variable same when x and y are equal; otherwise. False is
assigned. The assignment above has the same effect as the if statement

IF X = Y THEN

Same := True;

ELSE

Same False;
END IF;

■ Example 8.18

The following assignment statement assigns the value True to Even if and only if n is an
even number;

Even := (N REM 2) = 0;

This statement assigns True to Even when the remainder of n divided by 2 is 0. (All
even numbers are divisible by 2.) ■



334 Scalar Data Types; the CASE Statement

Using Boolean Variables as Program Flags

Boolean variables are sometimes used as program flags to signal whether or not a spe
cial event occurs in a program. The fact that such an event occurs is important to the
future execution of the program. A Boolean variable used as a program flag is initial
ized to one of its two possible values (True or False) and reset to the other as soon as
the event being monitored occurs.

■ Example 8.19

In Section 7.6 we developed, for package Robust__input, a procedure for reading an
integer value item between the values Minvai and Maxval. TTiat procedure used Ada
exception handling to determine whether the input value was in range. Suppose Ada did
not have an exception-handling capability. (Some languages don't.) Here is a loop for
reading input within range that has similar behavior but does not use exception han
dling:

— Keep reading until a valid number is read.
Between := False; — Assume a valid number is not read
WHILE NOT Between LOOP

Ada.Text_IO.Put(Item => "Enter an integer between ");
Ada.Integer_Text_IO.Put(Item => MinVal, Width =>0);
Ada.Text_IO.Put(Item => " and ");
Ada.Integer_Text_IO.Put(Item => MaxVal, Width =>0);
Ada.Text_IO.Put(Item => " > ");
Ada.Integer_Text_IO.Get(Item => Item);
Between := (Item >= MinVal) AND (item <= MaxVal);

END LOOP;

This loop continues to read integer values until a value between its two input
parameters, Minvai and Maxval, is entered. The first data value within range is returned
as the procedure result. The Boolean variable Between is used as a program flag to sig
nal whether or not the event "data entry of an integer between Minval and MaxVal" has
occurred. The variable Between is initialized to False before the while loop. Inside the
WHILE loop, the assignment statement

Between := (Item >= MinVal) AND (Item <= MaxVal)

resets Between to True when a value between Minvai and Maxvai is read into n. The
loop is repeated as long as Between is still False. Finally, we could write the last state
ment equally well as

Between :« Item IN MinVal .. MaxVal; ■
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Reading and Displaying Boolean Values

It is easy to read and display Boolean values in Ada because Boolean is an enumeration
type. All that is necessary is to instantiate Ada.Text_io.Enunieration_io to handle the
job. Because Boolean is a commonly used predefined type, this instance can be created
once and for all in your Ada program library. Putting the lines

WITH Ada.Text_IO;
PACKAGE Boolean_lO IS NEW Ada.Text_IO.Enumeration_lO (Enum => Boolean);

in file and compiling that file are all it takes. You can then supply a context clause

WITH Boolean_I0;

to use the Get and Put operations for Boolean values.

■ Example 8.20

Two well-known laws of logic are called De Morgan's laws after their discoverer.
These two laws state that for two Boolean variables x and y, for any combination of val
ues of X and y,

NOT(X OR Y) = (NOT X) AND (NOT Y)
NOT(X AND Y) = (NOT X) OR (NOT Y)

Program 8.7 illustrates the validity of these laws, the use of a Boolean flag to con
trol an input loop, and also the use of Booiean_io. ■

Program 8.7 Demonstration of De Morgan's Laws and Boolean_IO

WITH Ada.Text_I0;
WITH Boolean_I0;
PROCEDURE Show^DeMorgan IS

Demonstrates the validity of De Morgan's Laws,
and also Boolean_lO
a Boolean flag is also used to control the input loop
Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

X  : Boolean;

Y  : Boolean;

Morelnput : Boolean;

BEGIN — Show_DeMorgan

Morelnput := True;
WHILE Morelnput LOOP

Ada.Text_IO.Put (Item => "Please enter True or False value for X >");
Boolean_IO.Get (Item =■> X);
Ada.Text_IO.Put (Item => "Please enter True or False value for Y >");
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Boolean_IO.Get (Item => Y);

Ada.Text_IO.Put("NOT(X OR Y) = ");
Boolean_lO.Put(Item => NOT(X OR Y), Width =>1);
Ada. Text_lO. New__Line;

Ada.Text_IO.Put("(NOT X) AND (NOT Y) = ");
Boolean_IO.Put(Item »> (NOT X) AND (NOT Y), Width => 1);
Ada.Text_lO.New_Line;
Ada.Text_IO.New_Line;

Ada.Text_lO.Put("NOT(X AND Y) = ");
Boolean_IO.Put(Item => NOT(X AND Y), Width => 1);
Ada. Text__10. New__Line;

Ada.Text_IO.Put("(NOT X) OR (NOT Y) = ")j
Boolean_Io.Put(Item => (NOT X) OR (NOT Y), Width »> 1);
Ada.Text_iO.New_Line;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put
(Item=>"Another combination (enter True or False)? ");

Boolean_IO.Get (Item => Morelnput);

END LOOP;

END Show_DeMorgan;

Sample Run

Please enter True or False value for X > false

Please enter True or False value for Y > false

NOT(X OR Y) = TRUE

(NOT X) AND (NOT Y) = TRUE

NOT(X AND Y) = TRUE
(NOT X) OR (NOT Y) = TRUE

Do you wish to try another combination (True/False)? true
Please enter True or False value for X > false

Please enter True or False value for Y > true

NOT(X OR Y) = FALSE
(NOT X) AND (NOT Y) = FALSE

NOT(X AND Y) = TRUE
(NOT X) OR (NOT Y) = TRUE

Do you wish to try another combination (True/False)? false

The program prompts the user for values for Boolean variables x and y. These val
ues must be entered as any enumeration values would, as True or False. (The case of
the letters does not matter.) The sample run shows, by evaluating the four Boolean
expressions above, that De Morgan's laws are true for the two cases shown. You can try
the remaining two cases yourself.

This case study involves the manipulation of type Natural data. It also illustrates
the use of Boolean variables as program flags.
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PROGRAM

STYLE

CASE

STUDY

Using a Global Boolean Constant for Debugging

We mentioned earlier that the programmer should plan for debugging by includ
ing diagnostic print statements in the original code. One way to prevent the diag
nostic print statements from executing during production runs is to declare a
global Boolean constant (say, Debugging) whose value is True during debugging
and False during production runs. The declaration part of the main program will
contain the constant declaration

Debugging : CONSTANT Boolean ;= True; — turn diagnostics on

during debugging runs and the constant declaration

Debugging : CONSTANT Boolean := False; — turn diagnostics off

during production runs.
The diagnostic print statements below will be executed only when Debugging

is True (i.e., during debugging runs):

IF Debugging THEN
Ada.Text_I0.Put (Item => "Procedure ProcessGoods entered");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => "Input parameter Salary is ");
Ada.Float_Text_IO.Put
(Item => Salary, Fore => 6, Aft => 2, Exp =>0);

Ada.Text_10.New_Line;
END IF;

TESTING WHETHER A NUMBER IS PRIME

Problem Specification
Write a program that tests a positive integer to determine whether or not it is a prime
number. A prime number is an integer that has no divisors other than 1 and itself.
Examples of prime numbers are the integers 2,3,5,7, and 11.

Analysis
Our program will either display a message indicating that its data value is a prime num
ber or display the smallest divisor of the number if it is not prime.

Data Requirements

Problem inputs
the number to be tested for a prime number (n : Positive)

Problem Outputs
the smallest divisor if n is not prime (FirstDiv ! Positive)
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Find the first

divisor

Read the

integer to
be tested

Display the
divisor or a

message

Determine whether a

positive integer is pnme

Figure 8.7 Structure Chart for Prime-Testing Program

Design

Initial Algorithm
1. Read in the number to be tested for a prime number.

2. Find the smallest divisor > 1 or determine that the number is prime.

3. Display a message that the number is prime or print its smallest divisor.

We will use the Boolean variable Prime as a program flag to indicate the result of
step 2 as described below. A structure chart is shown in Fig. 8.7.

Additional Program Variables
program flag that will be set to True if n is prime. False otherwise
(Prime : Boolean)

Step 3 Refinement

3.1. IF N is prime then

Display a message that n is prime

ELSE

Display the first divisor of N

END IF;

Let us consider step 2. Define a subtype sraallPos to include the positive numbers
from 2 to MaxN (1000). Variable FirstDiv (the first divisor) is type smaiipos, and we
need to compute the values of FirstDiv and Prime by determining whether or not N
has any divisors other than 1 and itself.

If N is an even integer, it is divisible by 2. Therefore, 2 is the only even integer that
can be prime, and 2 is the smallest divisor of all other even integers.

If N is an odd integer, its only possible divisors are the odd integers less than n. In
fact, it can be proved that a number is prime if it is not divisible by any odd integer less
than or equal to its square root. These considerations form the basis for the algorithm
shown next.
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Step 2 Refinement
2.1. IF N = 2 THEN

2.2. N is a prime number

ELSiF N is even then

2.3. 2 is the smallest divisor and n is not prime

ELSE

2.4. Test each odd integer between 3 and n to see whether it is a divisor of n

END IF;

Step 2.4 must test each odd integer as a possible divisor of n until a divisor is found.

Step 2.4 Refinement
2.4.1.Assume that n is a prime number (i.e., set Prime to True)

2.4.2 .Initialize Firstolv to 3

2.4.3 .LOOP

EXIT WHEN Prime is False OR FirstDiv >= LOOP

2.4.4.IF FirstDiv is a divisor of n then

2.4.5.Set Prime to False (n is not prime)

ELSE

2.4.6. Set FirstDiv to the next odd number

END IF;

END LOOP;

Implementation
The implementation and testing are left as an exercise. When you develop this program,
be sure to test it with some relatively small numbers. It is very CPU-intensive, and test
ing it with large numbers on a time-sharing computer will be discourteous to other
users!

EXERCISES FOR SECTION 8.4

Self-Check

1. Draw the evaluation tree for expression 9 of Example 8.15.

2. Evaluate the following statements.
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a. Boolean'Pos(True)
b. Boolean'Pred(True)
C. Boolean *Succ(False)
d. Boolean'Pos(True) - Boolean'Pos(False)

3. Write the following Boolean assignment statements.

a. Assign a value of True to Between if the value of n lies between -k and +k,
inclusive; otherwise, assign a value of False.

b. Assign a value of True to upcase if ch is an uppercase letter; otherwise, as
sign a value of False.

c. Assign a value of True to Divisor if M is a divisor of N; otherwise, assign
a value of False.

Programming

1. Write a function that returns a Boolean value indicating whether or not its
first parameter is divisible by its second parameter.

8.5 Data Structures: The Character Type

Character variables are declared by using the data type character. A character literal
consists of a single printable character (letter, digit, punctuation mark, etc.) enclosed in
single quotes. A character value may be assigned to a character variable or associated
with a constant identifier as follows:

star : CONSTANT Character := '*•;

NextLetter : Character;

NextLetter := ' A';

The character variable NextLetter is assigned the character value 'A' by the
assignment statement above. A single character variable or literal can appear on the
right-hand side of a character assignment statement. Character values can also be com
pared, read, and displayed. Each character has its own unique numeric code; the binary
form of this code is stored in a memory cell that has a character value.

The Ada 95 standard (Reference Manual, Section A.3) uses the 256-character ISO
8859-1 (Latin-1) character set. This character set, an extension of the older 128-charac-
ter ASCII set, includes the usual letters a-z and A-Z but also a number of additional
characters to provide for the additional letters used in non-English languages. For
example, French uses accented letters such as e and a; German has letters using the
umlaut such as u; the Scandinavian languages have dipthongs such as s; and so forth.
For the purposes of this book we use just the 26 uppercase and lowercase letters of
English.
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Figure 8.8, which is adapted from the Reference Manual, Annex A, Section A.l,
gives the first 128 characters of the character set; these are the most commonly used
ones. The position of each character is equal to that character's internal code. For
example, character ■ Pos (' A *) is 65.

Figure 8.8 The Rrst 128 Characters of the Ada Character Type

TYPE Character IS

(nul, sob. stx. etx. eot. enq. ack. bel, — 0. .7

bs, ht. If, vt. ff, cr. so. si. — 8. .15

die, del. dc2, dc3. dc4. nak. syn. etb. 16..23

can. em. sub. esc. fs. gs. rs. us. — 24..31

1  t

t
1 t1 1

t •$', 9 32. .39

' Cf •)'/ " * « ' + ', 9  9 ~  9 •  9 — 40..47

•0', ■1'/ •2*, •3', '4', '5', •6', '7', 48..55
'8', ■9', 1 • < 1 •

9  t ° 9 — 56..63

■6' , 'A', ■B' , ■c, 'D', •E' , •F' , 'G', — 64..71
'H', •I', ' J* / •K' , •L', ■M' , •N' , '0', — 72..79

'P' , •Q', 'R' , 'S' , ■T', '0' , 'V' , ■w. 80..87
'X', ■Y', 'Z' , ■ [' , 9 _ 9 — 88..95

# •a', 'b', •c, 'd'. 'e', •f, 'g', 96..103
'h'. 'i', 'j'. •k' , 'I*, 'm', 'n', 'o', — 104..111

'P'» •q' f 'r', '8' , 'f , '«• , ■V, 'W , 112..119
•x' , 'y'/ ' z', • I '. ^ 9 del. — 120..127

•  );

The ordinary printable characters have codes from 32 (code for blank or space) to
126 (code for symbol -); the additional European characters have codes from 160 to
255. The other codes represent nonprintable control characters. Sending a control char
acter to an output device causes the device to perform a special operation such as
returning the cursor to column 1, advancing the cursor to the next line, ringing a bell,
and so on.

■ Example 8.21
Program 8.8 reads a sentence ending in a period and counts the number of blanks in the
sentence. Each character that is entered after the prompting message is read into the
variable Next and tested to see whether it is a blank.

The statement

Ada.Text_IO.Get (Item => Next);

appears once to prime the loop and a second time within the loop body and is used to
read one character at a time from the data line because Next is type Character. The
loop is exited when the last character that is read is a period. ■
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Program 8.8 Counting the Number of Blanks in a Sentence

WITH Ada.Text_IO;
WITH Ada.Integer_Text_lO;
PROCEDURE Blank Count IS

— I Counts the number of blanks in a sentence.
— I Author: M. B. Feldman, The George Washington University
— I Last Modified: August 1998

Blank : CONSTANT Character := '

Sentinel : CONSTANT Character := — sentinel char

Next : Character; — next character in sentence
Count ; Natural; — number of blank characters

BEGIN — Blank__Count

Count := 0; — Initialize Count
Ada.Text_IO.Put (Item => "Enter a sentence ending with a period.");
Ada.Text_IO.New_Line;

— Process each input character up to the period
Ada.Text_lO.Get(Item => Next); — Priming read
Ada.Text_IO.Put(Item => Next);

LOOP

EXIT WHEN Next = Sentinel;
IF Next s Blank THEN

Count := Count +1; — Increment blank count
END IF;

Ada.Text_IO.Get(Item => Next); — Get next char
Ada.Text_IO.Put(Item => Next);

END LOOP; ~

Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "The number of blanks is ");
Ada.Integer__Text_IO.Put(ltem => Count, Width =>1);
Ada.Text_IO.New_Line;

END Blank_Count;

Sample Run

Enter a sentence ending with a period.
The q uick brown fox jumped over th e lazy dogs.
The q uick brown fox jumped over th e lazy dogs.
The number of blanks is 16

Using Relational Operators with Characters

In Program 8.8, the Boolean expressions

Next = Blank

Next >= Sentinel
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are used to determine whether two character variables have the same or different val
ues. Order comparisons can also be performed on character variables by using the rela
tional operators <,<=>,>, and >= .

To understand the result of an order comparison, we must know something about
the way characters are represented internally. These binary numbers are compared by
the relational operators in the normal way. Looking at Figure 8.8, you can see some
features of the "ordinary" part of the code;

• The digits are an increasing sequence of consecutive characters:

'0'<'1'<'2'<'3'<'4'<'5'<'6'<'7'<'8'<'9'

• The uppercase letters are an increasing sequence of consecutive characters:

'A'<'B'<'C'< ... <*X'<'Y'<'Z'

• The lowercase letters are an increasing sequence of consecutive characters:

■a'<'b'<'c'< ... <'x'<'y'<'z'

• The digit characters precede the uppercase letters; the uppercase letters precede the
lowercase letters:

'0' < *9' < 'A' < 'Z' < 'a* < '2'

■ Example 8.22
Let us write a function specified by

FUNCTION Capitalize (InChar ; Character) RETURN Character;

If inChar is a lowercase letter. Capitalize (inChar) returns the corresponding
uppercase letter; otherwise, capitalize (inchar) just returns inchar unchanged. The
function body makes use of the pos (position) and val (value) attribute functions as
well as the fact that all the uppercase letters are "together" in the type character, as are
all the lowercase letters. If inChar is lowercase, its position relative to -a- is used to
find the value of the corresponding uppercase letter. As an example, if inChar is ' g', its
position relative to • a • is 6 (remember, the positions start with 0). The corresponding
uppercase value is the value at the same position relative to 'A' , namely, 'g* .

FUNCTION Capitalize (InChar : Character) RETURN Character IS
Temp : Character;

BEGIN
IF InChar >= 'a' AND InChar <= 'z' THEN

Temp := Character'Val(Character'Pos(Inchar)
- Cheuracter' Pos (' a') + Character' Pos (' A');

ELSE

Ten^ := InChar;
END IF;
RETURN Temp;

END Capitalize;
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In the IF condition, instead of using explicit comparison operators, we can use
Ada's IN operator to test for subtype membership.

FUNCTION Capitalize (inChar : Character) RETURN Character IS
Temp ! Character;

BEGIN

IF InChar IN 'a' .. 'z* THEN

Temp := Character'Val(Character'Pos(Inchar)
- Character'Pos(■a') + Character'Pos( 'A');

ELSE

Temp := InChar;
END IF;
RETURN Temp;

END Capitalize;

As it happens, the package Ada.characters.Handling (see below) provides a
function To_upper that provides this behavior; it is instructive to see here how you
would write it if it were not in the standard library. ■

Representing Control Charaders
The character set includes a number of "nonprintable" characters that are used for con
trolling input and output devices. These control characters cannot be represented in
programs in the usual way (i.e., by enclosing them in quotes). A control character can
be specified in Ada using its position in the Character type (see Figure 8.8). For exam
ple, Character'Vali 10) is ^e line feed character, and Character'Val(7) is the bell
character. The statements

Ada.Text_10.Put(Item => Character'Val(10));
Ada.Text_I0.Put(Item => Character'Val{7));
Ada.Text_I0.Put(Item => Character'Val(7));

will cause the output device to perform a line feed and then ring its bell twice.
Ada also has a more intuitive way of representing the control characters; the Char

acter type gives them all names. The statements

Ada.Text_IO.Put(Item => Character.LF);
Ada.Text_IO.Put(Item => Character.Bel);
Ada.Text_IO.Put(Item => Character.Bel);

give the same effect as the statements above, but use the names of the characters instead
of their numerical values. A program that uses the Ada. characters. Latin_i package
must of course be preceded by a context clause

NITH Ada.Characters.Latin 1;

■ Example 8.23
A collating sequence is a sequence of characters arranged in the order in which they
appear in a character set. The character type is really an enumeration type; each char
acter's position in this type corresponds to its Latin-1 value. Given the declarations



5.5 Data Structures: The Character Type 345

MinPos : CONSTANT Positive := 32;

MaxPos ; CONSTANT Positive := 90;

the loop

FOR NextPos IN MinPos .. MaxPos LOOP

Ada.Text 10.Put(Item => character'Val(NextPos));
END LOOP;

displays part of the Latin-1 collating sequence. It lists the characters with values 32
through inclusive. The first character—in position 32— is a blank, as follows:

!•'#$%&' ()*+,-./0123456789: ;<°>?@ABCDEFGHIJKLMNOPQRSTUVWXyZ ■

■ Example 8.24

In Section 4.7 we introduced the package screen (Programs 4.8 and 4.9), which we
have used several times since. In Section 4.7 we advised you not to worry about the
details of the package body; now, having studied the character type systematically,
you are ready to understand those details. In Program 4.9 the procedure Beep contains a
statement

Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.BEL);

which sends the bell character to the terminal. Instead of displaying this character, the
terminal will beep. Procedure Clearscreen contains the statements

Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.ESC);
Ada. Text_IO. Put (Item =»> " [ 2 J" );

which send four characters to the terminal. According to standard American National
Standards Institute (ANSI) terminal control commands, this sequence will cause the
screen to be erased. Finally, the procedure MoveCursor contains these lines:

Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.ESC);
Ada.Text_IO.Put (Item => '[');
Ada.Integer_Text_IO.Put (Item => Row, Width => 1);
Ada.Text_IO.Put (Item => * ;');
Ada.Integer_Text_IO.Put (Item => Column, Width => 1);
Ada.Text_IO.Put (Item => 'f');

The sequence of characters sent to the terminal by these statements will cause the
cursor to be moved to the given row/column position. Suppose row is 15. Under these
circumstances, sending the integer value row does not cause the terminal to display the
characters 15; rather, because these characters are sent in the middle of a control com
mand (preceded by Ada.characters.Latin_i.Esc and '[ ')i the terminal obeys the
command and moves the cursor to row 15. The command must end with • f •. It might
seem strange to you, but that is what the ANSI terminal control standard specifies. As
you saw in the examples using the screen package, these commands really do cause the
terminal to carry out the desured actions. ■
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The Package Ada.Charader5.Handling

Ada provides a package Ada.characters .Handling, which contains a set of functions
to do useful operations on characters. Figure 8.9 gives a partial specification for this
package; the full specification is in the Reference Manual, Annex A, Section A.3.

Figure 8.9 Partial Specification of Ada.Characters.Handling

PACKAGE Ada.Characters.Handling IS

— Character classification functions

FUNCTION Is Control (Item IN Character) RETURN Boolean;
FUNCTION Is Graphic (Item IN Character) RETURN Boolean;
FUNCTION Is~Letter (Item IN Character) RETURN Boolean;
FUNCTION Is*"Lower (Item IN Character) RETURN Boolean;
FUNCTION Is Upper (Item IN Character) RETURN Boolean;
FUNCTION IS~Digit (Item IN Character) RETURN Boolean;
FUNCTION Is_Alphanumeric (Item IN Character) RETURN Boolean;
FUNCTION Is_Special (Item IN Character) RETURN Boolean;

- Conversion functions for Character and String

FUNCTION To_Lower (Item
FUNCTION To_Upper (Item

FUNCTION To_Lower (Item
FUNCTION To~Upper (Item

IN Character) RETURN Character;
IN Character) RETURN Character;

IN String) RETURN String;
IN String) RETURN String;

END Ada.Characters.Handling;

The functions ls_Letter, ls__Lower, ls_Upper, and Is_Digit return True if their
input character is in the given category; is_Aiphanumeric returns True if the character
is a letter or a digit; is_controi returns True if the input character has position 0..31;
is_Graphic returns true if the input character has position 32..126.

To_upper, like the function capitalize in Example 8.23, returns an uppercase let
ter; To_Lower produces a lowercase letter. There are corresponding Unctions for
strings: the second To_upper converts all letters in the string to uppercase.

EXERCISES FOR SECTION 8.5

Self-Check

1. Evaluate the following. Assume that the letters are consecutive characters.

a. Character'Pos('D') - Character•Pos('A')

b. Character'Pos('d') - Character'Pos('a')
C. Character'Succ(Character'Pred('a'))

d. Character'Val(Character'Pos('C'))
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e. Character' Val (Cheuracter' Pos (' C ) -

Character'Pos('A')+Character'Pos{* a'))

f. Character'Pos('7') - Character'Pos('6')
g. Character•Pos('9') - Character'Pos('0')

h. Character'Succ(Character'Succ(Character'Succ('d')))
i. Character'Val(Character'Pos('A') + 5)

8.6 Control Structures: The CASE Statement

The CASE statement is used in Ada to select one of several alternatives. It is especially
useful when the selection is based on the value of a single variable or a simple expres
sion. The type of this variable or expression must be discrete; that is, it must be an inte
ger or enumeration type or subtype.

■ Example 8.25

The CASE statement

CASE HomOrDad IS

WHEN 'M' =>

Ada.Text_IO.Put (Item => "Hello Mom - Happy Mother's Day");
WHEN 'D* =>

Ada.Text_IO.Put (Item => "Hello Dad - Happy Father's Day");
WHEN OTHERS =>

Ada.Text_IO.Put (Item => "invalid character ");
Ada.Text_IO.Put (Item => MomOrDad);

END CASE;

has the same behavior as the following if statement:

IF MomOrDad = 'M' THEN

Ada.Text 10.Put (Item => "Hello Mom - Happy Mother's Day");
ELSIF MomOrDad = 'D' THEN

Ada.Text_IO.Put (Item => "Hello Dad - Happy Father's Day");
ELSE

Ada.Text_IO.Put (Item => "invalid character ");
Ada.Text_lO.Put (Item »> MomOrDad);

END IF;

The message displayed by the case statement depends on the value of the case
selector MomOrDad. If the CASE selector matches the first case choice, • m ', the first mes
sage is displayed. If the case selector matches the second case choice,'d' , the second
message is displayed. Otherwise, the when others clause is executed.

The when others choice is necessary whenever the other choices of the case state
ment do not exhaust all possible values of the selector; if it were not present in this case
(assuming MomorDad is tjrpe character), a compilation error would arise. ■
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■ Example 8.26

Given the enumeration type Days,

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

if Today is of type Days, the following case statement displays the fiill name of a day of
the week:

CASE Today IS
WHEN Mon =>

Ada.Text 10.Put (Item => "Monday");
WHEN Tue =>

Ada.Text^IO.Put (Item => "Tuesday");
WHEN Wed =>

Ada.Text_I0.Put (Item => "Wednesday");
WHEN Thu ->

Ada.Text_IO.Put (Item => "Thursday");
WHEN Fri =>

Ada.Text 10.Put (Item => "Friday");
WHEN Sat =>

Ada.Text_IO.Put (Item => "Saturday");
WHEN Sun =>

Ada.Text_IO.Put (Item => "Sunday");
END CASE;

Seven different choices are shown in this program; the value of Today (type Day) is
used to select one of these for execution. The seven possible values of Today are listed
in CASE choices; the task for that case choices, a sequence of statements, follows the =>
("arrow") symbol. Because all seven values of Today are listed in case choices, no
WHEN OTHERS is uecessary. After the appropriate Ada.Text_io.Put statement is exe
cuted, the CASE statement and procedure are exited.

We might use such a statement instead of an Enumeration_io instance because the
enumeration Put displays a value either in uppercase or in lowercase, with no option to
display a value with initial uppercase only. ■

■ Example 8.27

A CASE Statement can be used in a student transcript program that computes a student's
grade point average (GPA), as is the custom in most United States universities. For each
case shown, the total points (points) earned toward the GPA increase by an amount
based on the letter grade (Grade); the total credits earned toward graduation (crad-
credits) increase by 1 if the course is passed. The expression

Character•Pos('A') - Character'Pos(Grade) + 4

evaluates to 4 when the Grade is ■ A', 3 when Grade is • b•, and so on. In the following
CASE statement, note the two "short cuts" that we have used: the range 'a- .. 'D' and
the sequence 'F' | 'i' | 'w, where the vertical bars mean "or."

CASE Grade IS

WHEN 'A-.-'D' =>

Points ;= Points+Character'Pos('A')-Character * Pos(Grade)+4;
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GradCredits := GradCredits + 1;

WHEN 'P' =>

GradCredits := GradCredits + 1;

WHEN 'F' I 'I' I 'W =>
Ada.Text_IO.Put (Item => "No points to GPA or graduation");
Ada.Text_IO.New_Line;

WHEN OTHERS => ~
Ada.Text_IO.Put (Item => "Illegal grade ");
Ada.Text_IO.Put (Item =>grade);
Ada.Text_IO.New_Line;

END CASE;

A grade of A through D earns a variable number of points (4 for an A, 3 for a B,
etc.) and one graduation credit; a grade of P earns one graduation credit; and a grade of
F, I, or W earns neither graduation credits nor points. The when others clause displays
an error message if the program user enters a grade that is not listed in a case choice. ■

■ Example 8.28

Given an enumeration type

TYPE Months IS

(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

and variables ThisYear in the range 1901 ..2099 (the range of Year_Number in
Ada.Calendar), oaysInMonth of type Positive, and ThisMonth of type Months, this
CASE Statement saves in oaysinMonth the number of days in ThisMonth:

CASE ThisMonth IS

WHEN Feb =>

IF (ThisYear MOD 4 => 0) AND
((ThisYear MOD 100 /= 0) OR (ThisYear MOD 400 = 0)) THEN
NumberO£Days := 29; — leap year

ELSE

NumberOfDays 28;
END IF;

WHEN Apr | Jun | Sep | Nov =>
NumberOfDays 30;

WHEN Jan | Mar | May | Jul | Aug | Oct | Dec ==>
NumberOfDays := 31;

END CASE;

All values of ThisMonth are covered in the choices; no when others is needed. ■
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SYNTAX

DISPLAY
CASE Statement

Form:

CASE selector IS

WHEN cboicei «=>
statement sequencei

WHEN choice^ =>
statement sequence^

WHEN c/ioice„ =>
statement sequence^

WHEN OTHERS =>

Statement seguenceo
END CASE;

Example:

CASE N IS

WHEN 1 I 2 =>
Ada.Text_lO.Put {Item «>

WHEN 3 I 4"=>
Ada.Text_iO.Put (Item =>

WHEN 5 I 6~=>
Ada.Text_io.Put (item =>

WHEN OTHERS °>

Ada.Text 10.Put (Item «>
END CASE;

CASE Month IS

WHEN December | January ..
Ada.Text_IO.Put (Item «>

WHEN March .. May =>
Ada.Text_IO. Put (Item «=>

WHEN June .. August ->

Ada.Text_IO.Put (Item =>
WHEN September .. November
Ada.Text_lO.Put (Itan =>

ND CASE;

Interpretation:

The selector expression is evaluated and compared to each of the case choices.
Each choice is a list of one or more possible values for the selector. Only one
statement sequence will be executed; if the selector value is listed in choicej,
statement sequence, is executed. If the selector value is not listed in any choice;^
statement sequence„ is executed. Control is next passed to the first statement fol
lowing the END CASE.

Notes:

• A WHEN OTHERS alternative must be present if the other choices do not cover
all possible values in the type of selector.

• Each possible selector value may appear in, at most, one choice;.

• The type of each value listed in choice; must correspond to the type of the
selector expression.

• Any discrete (integer or enumeration) data type is permitted as the selector
type.

"Buckle my shoe");

"Shut the door");

"Pick up sticks");

"Forget it...");

February =>
"Winter months");

"Spring months");

"Summer months");
»>

"Autumn months");



8.7 Continuing Saga: Inside the Spider Package 351

PROGRAM

STYLE
Comparison of the IF and the CASE Statements

You can use an if-then-elsif statement, which is more general than the case
statement, to implement a multiple-altemative decision. The case statement,
however, is more readable and should be used whenever practical. It is also more
reliable, because the compiler checks to ensure that all values of the selector vari
able are covered in the choices.

EXERCISES FOR SECTION 8.6

Self-Check

1. Write an if statement that corresponds to the following case statement:

CASE X > Y IS

WHEN True =>

Ada.Text_IO.Put(Item => "X greater");
WHEN Falae'*=>
Ada. Text_IO. Put (Item =«> "Y greater or equal");

END CASE;

Programming

1. Rewrite the case statement in Example 8.28 as an if structure.

2. If type color is defined as the enumeration type (Red, Green, Blue, Brown,
Yellow), write a case statement that assigns a value to Eyes (type color), giv
en that the first two letters of the color name are stored in Letter i and

Letter2.

3. Write a case statement that displays a message indicating whether Nextch
(type Character) is an operator symbol (+, <, >, /), a punctuation sym
bol (conuna, semicolon, parenthesis, brace, bracket), or a digit. Your statement
should display the category selected. Write the equivalent if statement.

8.7 Continuing Saga: Inside the Spider Package

You have seen a number of examples of how to use the spider package, whose specifi
cation was given as Program 2.1. You have not yet looked inside the body of the pack
age; you now have enough background to understand the body. This package uses



352 Scalar Data Types; the CASE Statement

much of the material that was discussed in this chapter, including numeric subtypes,
Boolean expressions, case statements, and the screen package. Program 8.9 shows the
body of the spider package. It quite long, but we can examine it in sections.

Program 8.9 Body of the Spider Package

WITH Ada.Text_I0;
WITH Ada. Numerics. Discrete__Random;
WITH Screen;

PACKAGE BODY Spider IS

This package provides procedures to emulate "Spider"
commands. The spider can move around the screen drawing
single patterns. This version is for a 24 x 80 screen.
Original Author: John Dalbey, Cal Poly San Luis Obispo, 1992
Adapted by; Michael B. Feldman, The George Washington University
Last Modified: August 1998

— Spider's View of her Room - rows and cols both numbered 1..20
SUBTYPE Rows IS Positive RANGE 1..20;
SUBTYPE Cols IS Positive RANGE 1..20;
RowsInRoom : CONSTANT Positive :° Rows'Last;
ColsInRoom : CONSTANT Positive :° Cols'Last;

— Screen Description Constants: for 24 x 80 screen,
— 1 spider row = 1 screen row, 1 spider col = 2 screen cols
RowLow : CONSTANT Screen.Depth := 2; — room row bounds
RowHigh : CONSTANT Screen.Depth := RowLow + Rows'Last;
ColLow : CONSTANT Screen.Width := 21; — lower column bound

— Spider Current State Information
Spidersym
CurrentColumn:

CurrentRow i

Heading
Ink !

CONSTANT character

Cols;
Rows;

Directions;
Colors;

— spider's position
in the room.

— spider's direction
— spider's color

— internal procedures and functions, not in specification
— and therefore not available to client program

FUNCTION ColorSymbols (Color: Colors) RETURN Character IS
— Pre: Color is defined

— Post: Returns the drawing character corresponding to Color
BEGIN

CASE Color IS

WHEN Red => RETURN 'R'

WHEN Blue => RETURN 'B'

WHEN Green => RETURN 'G'

WHEN Black => RETURN 'K'

WHEN None => RETURN '.'

END CASE;

END ColorSymbols;

FUNCTION Compass (Direction: Directions) RETURN Character IS
— Pre: Direction is defined

— Post: Returns drawing character corresponding to Direction
BEGIN

CASE Direction IS
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WHEN North => RETURN

WHEN East => RETURN '>'

WHEN South => RETURN 'V

WHEN West => RETURN '<'

END CASE;

END Compass;

PROCEDURE DrawSymbol (Which: Character) IS
— Pre; Which is defined

— Post: Which appeeirs in its proper position on the screen
BEGIN

Screen.MoveCursor (Row => (RowLow - 1) + CurrentRow,
Column => (ColLow - 2) + (2 * CurrentColumn));

Ada.Text_IO.Put (item => Which);
Ada.Text_IO.Flush;

END DrawSymbol;

PROCEDURE DrawStatus IS

— Pre: None

— Post: Status Box appears on the screen
BEGIN

Screen.MoveCursor

Ada.Text_IO.Put ("
Screen.MoveCursor

Ada.Text_IO.Put ("| |")
Screen.MoveCursor

Ada.Text_IO.Put ("
Screen.MoveCursor

Ada.Text_IO.Put ("
END DrawStatus;

(Row =>

")
(Row =>

(Row =>

I  I")
(Row =>

— ")

2, Column => 1);

3, Column => 1);

4, Column -> 1);

5, Column => 1);

PROCEDURE DrawRoom IS

— Pre: None

— Post: Room appears on the screen
BEGIN

Screen.ClearScreen;

Screen.MoveCursor (Row => 1, Column =>1);
— Top Bar
Ada.Text 10.Put (" ");
Ada.Text~IO.Put (" ");
Ada.Text IO.New_Line;
FOR I in~1..20 LOOP
Ada.Text_IO.Put (" ");
Ada.Text_IO.Put ("| |");
Ada.Text IO.New_Line;
END LOOpT
Ada.Text_IO.Put (" " );
Ada.Text_IO.Put (•■ ");
DrawStatus;

END DrawRoom;

PROCEDURE ChangeColor (NewColor : Colors) IS
— Pre: NewColor is defined
— Post: Ink is changed to NewColor and displayed in status box
BEGIN

Ink :- NewColor;
Screen.MoveCursor ( Row => 4, Column =>3);
Ada.Text_IO.Put (ColorSymbols(Ink));

END ChangeColor;
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PROCEDURE ShowDirection IS

— Pre; None

— Post: Heading is displayed in the status box
BEGIN

Screen.MoveCursor(Row => 3,Column =>3);
Ada.Text_^IO.Put (Compass(Heading));

END ShowDirection;

PROCEDURE ShowSpider IS
— Pre: None

— Post: The spider symbol appears in its current position
BEGIN

DrawSymbol (SpiderSym);
END ShowSpider;

— Random number generators; instances of the generic one
PACKAGE Randomsteps IS NEW Ada.Numerics.Discrete_Random
(Result_Subtype => steps);

GSteps: Randomsteps.Generator;

PACKAGE RandomColors IS NEW Ada.Numerics.Discrete_Random
(Result_Subtype => Colors); ~

GColors : RandomColors.Generator;

PACKAGE RandomDirections IS NEW Ada.Numerics.Discrete_Random
(Result_Subtype => Directions);

GDirections : RandomDirections.Generator;

— These procedures are in the package specification
— and implement the "official" spider commands

PROCEDURE Start IS

BEGIN

DrawRoom;

CurrentColumn := 10; — these are in the spider's view
CurrentRow := 11;

Heading := North;
ChangeColor(NewColor «»> Green);
ShowSpider;
ShowDirection;

RandomSteps.Reset(Gen => GSteps);
RandomColors.Reset(Gen »> GColors);
RandomDirections. Reset (Gen '>> GDirections);

END Start;

PROCEDURE TurnRight IS
BEGIN

IF Heading « Directions'Last THEN
Heading := Directions'First;

ELSE

Heading := Directions'Succ (Heading);
END IF;

ShowDirection;

END TurnRight;

PROCEDURE Face (WhichWay: IN Directions) IS
BEGIN

Heading := WhichWay;
ShowDirection;

END Face;
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FUNCTION IsPainting RETURN Colors IS
BEGIN

RETURN Ink;

END IsPainting;

FUNCTION IsFacing RETURN Directions IS
BEGIN

RETURN Heading;
END IsFacing;

FUNCTION Atwall RETURN Boolean IS

BEGIN

— Check for out of bounds (in the spider's view)
CASE Heading IS

WHEN North =>

RETURN CurrentRow <= Rows'First;

WHEN East =>

RETURN CurrentColumn >= Cols'Last;

WHEN South =>

RETURN CurrentRow >= Rows'Last;

WHEN West =>

RETURN CurrentColumn <= Cols'First;

END CASE;

END AtWall;

FUNCTION RandomStep RETURN Steps IS
BEGIN

RETURN RandomSteps.Random(GSteps);
END RandomStep;

FUNCTION RandomColor RETURN Colors IS

BEGIN

RETURN RandomColors.Random(GColors);

END RandomColor;

FUNCTION RandomDirection RETURN Directions IS
BEGIN

RETURN RandomDirections.Random(GDirections);
END RandomDirection;

PROCEDURE Step IS

BEGIN

— leave a track where spider is standing
DrawSymbol (ColorSymbols (Ink) );

— If out of bounds raise exception.
IF AtWall THEN

Screen.Beep;
RAISE Hit_the_Wall;

END IF;

— change the spider's location
CASE Heading IS

WHEN North =>

CurrentRow := CurrentRow - 1;

WHEN East »>

CurrentColumn := CurrentColumn + 1;

WHEN South =>
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CurrentRow ;= CurrentRow + 1;

WHEN West =>

CurrentColuran ;= CurrentColumn - If
END CASE;

— draw the spider in her new location
DrawSyntbol (SpiderSym);

— if debug mode, wait for user to press RETURN
IF Debugging ̂  On THEN

Ada.Text IO.Skip_Line;
ELSE

DELAY 0.2;

END IF;

END Step;

PROCEDURE Quit IS

— Quit contmand.

BEGIN

Screen.MoveCursor(Row => 23,Column =>1);

END Quit;

DebugFlag : Boolean := False; — Is single stepping on?

PROCEDURE Debug (Setting: Switch) is
— Toggle debugging mode
BEGIN

IF Setting = ON THEN
DebugFlag := true;
Screen.MoveCursor (Row => 10,Column =>1);

Ada.Text_IO.Put ("~ DEBUG ON — ");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (" Press Enter");

ELSE

DebugFlag false;
Screen.MoveCursor (Row => 10,Column =>1);

Ada.Text_IO.Put (" ");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (" ");

END IF;

END Debug;

FUNCTION Debugging RETURN Switch IS
BEGIN

IF DebugFlag THEN
RETURN On;

ELSE

RETURN Off;

END IF;

END Debugging;

END Spider;

State Variables and Coordinate Transformations

First we describe the spider's view of its environment. The spider's room has 20 rows
(RowsinRoom) and 20 colunms (coisinRoom), defined in terms of the positive subtypes
Rows and cols:
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— Spider's View of her Room - rows and cols both numbered 1..2 0
SUBTYPE Rows IS Positive RANGE 1..20;
SUBTYPE cols IS Positive RANGE 1..20;
RowsInRoom : CONSTANT Positive := Rows'Last;

ColsInRoom : CONSTANT Positive t- Cols'Last;

Recalling that Directions and colors were defined in the package specification as

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);

now in the body we declare the spider's own symbol, an asterisk ('*'), and four vari
ables that describe the current location, direction, and color of the spider. These vari
ables together compose the spider's state, that is, all its characteristics that can change
during the life of the program. The variables are therefore called state variables.

— Spider Current State Information
Spidersym : CONSTANT character := '*';
CurrentColumn; Cols; ~ spider's position
CurrentRow : Rows; — in the room.
Heading : Directions; — spider's direction
Ink ; Colors; — spider's color

We now must consider that the spider's room is "painted" on a terminal screen that
is defined in the package screen (Program 4.8). The screen has 24 rows (the subtype
Screen.Depth) and 80 columns (the subtype screen.width). We therefore describe Ae
location and size of the actual room picture on the screen as follows:

~ Screen Description Constants for 24 x 80 screen,
— 1 spider row => 1 screen row, 1 spider col = 2 screen cols
RowLow : CONSTANT Screen.Depth s= 2; — lower row bound
RowHigh : CONSTANT Screen.Depth

:= RowLow + Rows'Last; — upper row bound
ColLow : CONSTANT Screen.Width ;= 21; — lower col bound
ColHigh : CONSTANT Screen.Width

:=• ColLow + 2 * Cols'Last; — upper col bound

The upper left comer of the room is at row = 2, column = 21. This corresponds to
the spider's row = 1, column = 1. The spider's row = 20, column = 20, corresponds to
the screen coordinates row = 22 (2 + 20), column 61 (21 + 2*20). Why are we multiply
ing the columns by 2? Each screen column is about half as wide as each screen row is
high, so to make the room look square, we use altemating screen columns. In graphics
terminology: the terminal screen has rectangular pixels (picture elements).

We are dealing with two sets of coordinates, the spider's coordinates (a row/column
pair as viewed by the spider) and the room's physical coordinates on the screen (a dif
ferent row/column pair as seen on the screen). The procedure Drawsymboi has the
responsibility to convert between the coordinate systems. This is a simple example of
coordinate transformation, a concept that is often used in computer graphics and other
engineering applications.

PROCEDURE DrawSymbol (Which: Character) IS
— Pre: Which is defined

— Post: Which appears in its proper position on the screen
BEGIN

Screen.MoveCursor (Row => (RowLow - 1) + CurrentRow,
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Column => (ColLow - 2) + (2 * CurrentColumn))?
Ada.Text_IO.Put (Item => Which);
Ada.Text_IO.Flush;

END DrawSymbol;

Note how the parameters to screen.Movecursor are computed. For example, the
spider's row 1 is the screen's row 2; the spider's column 10 is the screen's column 39
(19 + 2*10). The call to Ada.Text_io.Flush is present because in many operating sys
tems output is buffered, that is, nothing is actually displayed on the screen until a line is
complete. Including the Flush call therefore indicates a complete line to the operating
system, and the character is displayed immediately.

You have noticed that the spider's color is displayed as a specific character and its
direction is displayed by an "arrow" pointing in the correct direction. The next two
functions, coiorsymbois and compass, take care of the necessary transformations, each
function using a case statement to determine the appropriate character.

FUNCTION ColorSymbols (Color: Colors) RETURN Character IS
— Pre: Color is defined

— Post: Returns the drawing character corresponding to Color
BEGIN

CASE Color IS

WHEN Red »> RETURN 'R<

WHEN Blue => RETURN 'B'

WHEN Green »> RETURN 'G'

WHEN Black => RETURN 'K'

WHEN None «=> RETURN '. '

END CASE;

END ColorSymbols;

FUNCTION Con^ass (Direction: Directions) RETURN Character IS
— Pre: Direction is defined

— Post: Returns drawing character corresponding to Direction
BEGIN

CASE Direction IS

WHEN North => RETURN

WHEN East => RETURN '>'

WHEN South => RETURN 'v'

WHEN west => RETURN •<'

END CASE;

END Compass;

The Spider's User Commands

The declarations and subprograms above are all included in the spider package body
but not in the package specification. These, and several other "service subprograms,"
are not intended to be called by a spider program. Omitting them from the specification
guarantees that they cannot be called by an external program; they are reserved for
internal use only.

Let's look at one of the spider's user commands, that is, the subprograms that are
indeed listed in the specification. Atwaii returns a Boolean value; each of the case
choices returns the result of computing a Boolean expression.

FUNCTION AtWall RETURN Boolean IS

BEGIN
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— Check for out of bounds (in the spider's view)
CASE Heading IS

WHEN North =>

RETURN CurrentRow <= Rows'First;

WHEN East ->

RETURN CurrentColumn >- Cols'Last;
WHEN South =>

RETURN CurrentRow >= Rows'Last;

WHEN west ->

RETURN CurrentColumn <= Cols'First;
END CASE;

END AtWall;

Finally, we examine the following if statement contained in the procedure step:

— If out of bounds raise exception.
IF AtWall THEN

Screen.Beep;

RAISE Hit_the_Wall;
END IF; The next statement,

The statement

RAISE Hit_the__Wall;

is the first time we have seen raise used; in this case it causes Hit_the_waii to be
raised immediately. Because there is no exception handler in step, the procedure halts
and returns to its caller, where the exception is raised again. This is what caused the
program spider_cra8h (Program 2.10) to terminate with an exception. In the other spi
der programs we used if statements to prevent "crashes"; instead, we could have used
exception handlers, and we invite you to do this as an exercise.

In this brief trip through the spider package you have seen that this package pulls
together many of the concepts that were introduced in this chapter and earlier ones. The
spider package is an easily understood example of a computer graphics application.
You might be curious about whether computer graphics can be done using Ada. Of
course it can; we just did! We used a very simple, monochrome, 24 x 80 screen but used
a number of important graphics principles to do so. Appendix A shows examples of
high-resolution color graphics with Ada.

8.8 Tricks of the Trade: Common Programming Errors

A good deal of care is required in working with complicated expressions. It is easy to
omit parentheses or operators inadvertently. If an operator or a single parenthesis is
omitted, a syntax error will be detected. If a pair of parentheses is omitted, the expres
sion, although syntactically correct, may compute the wrong value.

Sometimes it is beneficial to break a complicated expression into subexpressions
that are separately assigned to temporary variables and then to manipulate these tem
porary variables. For example, it is easier to write correctly the three assignment state
ments

Tempi := Sqrt(X + Y);
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Temp2 1 + Tempi;
z  i" Tempi / Temp2;

than the single assignment statement

Z  := Sqrt(X + Y) / (1 + Sqrt(X + Y));

which has the same effect. Using three assignment statements also happens to be more
efficient in this case because the square root operation is performed only once; it is per
formed twice in the previous single assignment statement.

Be careful to use the correct type of operands with each operator. The arithmetic
operators can be used only with operands of type integer or Float or subtypes of
these. The relational operators can be used with any scalar data type. The Boolean
operators can be used only with type Boolean operand.

Make sure that an operator does not have incompatible type operands. The Boolean
expression

3 /= '3'

is invalid because it compares an integer to a character value. All operators require
compatible operands; make sure that you supply the right type operand to mathematical
functions. An example is sqrt, whose argument must be Float and nonnegative.

Remember that in a case statement there must be enough case choices to exhaust
every possible value of the case selector variable or expression. If there are not, a when
OTHERS choice must be provided; otherwise, a compilation error will result. If you find
that you are writing a large number of when others choices, your case selector variable
may be of an inappropriate type (e.g., integer instead of a subtype or enumeration
type).

CHAPTER REVIEW

This chapter described how to write arithmetic expressions involving several operators
and introduced a package of mathematical functions called Ada.Numerics.
Eiementary_Functions. Also introduced was the idea of an explicit type conversion.
Type conversion makes it possible to mix integer and floating-point values in one
expression by explicitly converting floats to integers and vice versa.

This chapter also discussed the manipulation of other scalar data types, including
the standard types. Boolean and character, and presented more detail on program
mer-defined subtypes. Several new operators were introduced, including the integer
operator rem and ̂ e Boolean operators and, or, xor, and not. Attention was paid to
certain attributes of scalar types, such as the First and Last attributes of subtypes and
the pos and val attributes of integer and, especially, enumeration values.

The concept of pseudorandom numbers was introduced in this chapter, along with a
description of some of Ada's random-number facilities.

The CASE statement was introduced, along with a number of examples of its use. A
package was shown that provided facilities for printing the value of numbers in words.
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New Ada Constructs in Chapter 8

The new Ada constructs introduced in this chapter are described in Table 8.8.

Table 8.8. Summary of New Ada Constructs

Statement Effect

Arithmetic Assignment

I  :=J/K+ (L+5) REM N;

Character Assignment

NextCh := •A';

Boolean assignment

Even ;= (N REM 2=0);

Case Statement

CASE NextCh IS

WHEN 'A'I 'a' =>
Ada.Text_IO.Put(Itein=>"Excellent")

WHEN 'B' I 'b' =>
Acla.Text__IO.Put(Item=>"Good");

WHEN 'C'l 'c' =>
Ada.Text 10. Put (Itein=>"OK" );

WHEN 'D' I 'd'I'F' I 'f• =>
Ada. Text__IO. Put (11em=> " Poor ");
Probation(WhichStudent => IDNum);

WHEN OTHERS =>

Ada.Text_IO.Put
(Item => "Grade out of Range!");

END CASE;

Adds the result (an integer) of
j/K to the result (an integer) of
(L+5) REM N. J, K, L, and N
must all be type integer or an
integer subtype.

Assigns the character value 'A'
to NextCh.

If N is an even number, assigns
the value True to Even; other
wise, assigns the value False to
Even.

Displays one of four messages
based on the value of Nextch If

NextCh is •D','d','F pro
cedure Probation is also C^led
with IDNum as an actual parame
ter.

Qxikk-Check Exercises

1. The operator means floating-point division, the operator means inte
ger division, and the operator yields the remainder of division.

2. Write a Boolean condition that is True if N divides M.

3. Evaluate the Boolean expression

True AND ((30 REM 10) = 0)
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4. Evaluate the Boolean expression

False AND (((30 REN 10) / 0) 0)

What occurs when Ada evaluates this expression? Suppose the and were re
placed by and THEN?

5. In the Latin-1 character set, give the values of these expressions:

Character•Val(Character•Pos('a'))
Character'Val(Character'Pos('a') * 3)
Character'Val(Character'Pos('z') - 26)
Character'Val(Character'Pos('z') - 32)

6. If two variables are type-compatible, can one always be assigned to the other?

7. Under what condition can one variable be assigned to another when they are
not type-compatible?

8. A CASE statement is often used instead of .

9. Which of the following can appear in a case selector?

a range of integers, a list of integers, a Float value, a Boolean value, a char
acter value, a string value, an enumeration literal

Answers to Quick-Check Exercises

1. / (float operands), / (integer operands), rem, integer

2. (M REM N) - 0

3. True

4. constraint_Error is raised; the error won't be detected because in short-cir
cuit evaluation the right side won't be evaluated.

5. 'a', 'd', 'a', '2*

6. Yes, if they are the same type or the one getting a new value is the base type
and the other is a subtype of that base type. If the one getting a new value is a
subtype, the value of ̂ e variable being assigned must be in range.

7. A variable of one numeric type can be converted to the other type.

8. A multiple-altemative if construct

9. All but Float and string

Review Questions

1. Compare and contrast integer types and floating-point types. What are the ad
vantages and disadvantages of each?
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2. What is the result of each of the following operations?

11 REM 2 11/2
12 REM -3 12 / -3
27 REM 4 -25 / 4
18 REM 6 -18 / -5

3. What is the result of the expression (3 + 4/ 2) + 8-i5 rem 4?

4. Write an assignment statement that rounds a floating-point variable Numi to
two digits after the decimal point, leaving the result in Numi.

5. Write a procedure called change that has one im parameter C, type Nonueg-
Fioat, and four out parameters q, d, n, and p, type Natural. The procedure re
turns the number of quarters ($0.25 coins) in q, the number of dimes ($0.10
coins) in d, the number of nickels ($0.05 coins) in n, and the number of pen
nies ($0.01) in p to make change with the minimum number of coins, c (the
change amount) is less than $1.00. {Hint. Use the integer division and rem op
erators.)

6. List and explain three computational errors that can occur in type Float ex
pressions.

7. Write an if statement that displays True or False according to the following
conditions: Either Flag is True or color is Red, or both Money is Plenty and
Time is Up.

8. Write the statement to assign a value of True to the Boolean variable overTime
only if a worker's weekly Hours are greater than 40.

9. Write a Boolean expression using the Character' pos attribute that determines
whether the position of ■ a' in Latin-1 is greater than that of * z *. What is the
value of this expression?

10. When should an if statement be used instead of a case statement?

11. Write a CASE statement to select an operation based on inventory. Increment
TotalPaper by PaperOrder if Inventory is ' B' or ' C •; increment TotalRib-
bon by RibbonOrder if Inventory is ' L', ' T', or ' D ", increment TotalLabel
by LabelOrder if Inventory is 'A' or 'X'. Do not take any action if invento
ry is ■ M •.

12. Write the for statement that displays the character values of the positive num
bers 32 through 126, inclusive. Use ordNum as the loop control variable. What
is the value of ordNum after completion of the loop?

Programming Projects

1. Write a program to read in a collection of integers and determine whether each
is a prime number. Test your program with the four integers 7,17,35, and 96.
All numbers should be processed in one run.
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2. Let n be a positive integer consisting of up to ten digits, ̂10^9..^!. Write a pro
gram to list in one column each of the digits in the number n. The rightmost
digit, di, should be listed at the top of the column. (Hint: As computed accord
ing to the formula

digit = n REM 10

what is the value of digit if n = 3704?)

Test your program for values of n equal to 6,3704, and 170498.

3. An integer N is divisible by 9 if the sum of its digits is divisible by 9. Use the
algorithm developed for Programming Project 2 to determine whether the fol
lowing numbers are divisible by 9.

H «= 154368

N = 621594

N <= 123456

4. Redo Programming Project 3 by reading each digit of the number to be tested
into the character variable Digit. Form the sum of the numeric values of the
digits. (Hint. The numeric value of Digit (type Character) is

Character'Pos(Digit) - Character'Pos('0').)

5. The value of is represented by the series

1 +x + jp'/2\ + ... + y/n! +...

Write a program to compute and print the value of this series for any x and any
n. Compare the result to £xp(x) (available in the Ada math library) and print a
message o.k. or Not O.K., depending on whether the difference between
these results exceeds 0.001. How many terms—that is, what value of n—seem
to provide good results without making the computation take too many steps?

6. The interest paid on a savings account is compounded daily. This means that if
you start with StartBal dollars in the bank, at the end of the first day you will
have a balance of

StartBal x (1 + ratef'i65)

dollars, where rate is the annual interest rate (0.10 if the annual rate is 10 per
cent). At the end of the second day you will have

StartBal x (1 + ratel365) x (1 + ratel365)

dollars, and at the end of N days you will have

StartBal x (1 + ra/e/365)^

dollars. Write a program that processes a set of data records, each of which
contains values for StartBal, rate, and N and computes the final account bal
ance.

7. Compute the monthly payment and the total payment for a bank loan, given:
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a. the amount of the loan,

b. the duration of the loan in months, and

c. the interest rate for the loan.

Your program should read in one loan at a time, perform the required compu
tation, and display the values of the monthly payment and the total payment.
Test your program with at least the following data (and more if you want):

Loan Months Rate

16000 300 12.50

24000 360 13.50

30000 300 15.50

42000 360 14.50

22000 300 15.50

300000 240 15.25

(Hints: The formula for computing monthly payment is
months „ ,

ratemxexm xloan
m„n,hpay =

where

rarem= rate/1200.0

exm = (l.O + ratem)

The formula for computing the total payment is

total = monthpay x months.)

8. Refer to Chapter 5, Programming Project 11, which called for the development
of a classification package for automobile speeds. In this project you will de
velop a simulator for a speed survey, in the form of a main program that col
lects and summarizes the speeds for 500 passing cars. Use an instance of
Ada.Numerics.Discrete_Random to generate random speeds of passing cars;
choose an appropriate range for these speeds, based on your experience on the
highways. Keep track of the number of cars in each of the five categories, and
at the end of the run, display your results numerically and in the form of a hor
izontal bar graph. A line in the bar graph will look like this, say, for 153 Class
3 cars:

Cl&ss 3 153 ****************

Note that there are 16 asterisks; each asterisk represents ten speeds. If the num
ber of cars is not an exact multiple of ten, include one asterisk for the "extra"
cars. For example, eight cars in a given class will be represented by a single as
terisk, and eighteen cars will be represented by two asterisks.
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9. A company has ten employees, many of whom work overtime (more than 40
hours) each week. The company accountant wants a payroll program that reads
each employee's name, hourly rate (rate), and hours worked (hours). The pro
gram must compute the gross salary and net pay as follows:

{hours X rate (hours <40)
1.5 X rate X (hours - 40) + 40 X rate (hours >40)

{gross (gross <65)
gross-(l5 + 0.45 X gross) (gross>65)

The program should print each employee's gross salary and net pay. The total
amount of the payroll, which can be computed by adding the gross salaries for
all employees, should be displayed at the end. Test your program on the fol
lowing data:

Name Rate Hours

Ivory Hunter 6.50 35

Track Star 4.50 10

Smokey Bear 3.25 80

Oscar Grouch 6.00 10

Jane Jezebel 4.65 25

Fat Eddie 8.00 40

Pumpkin Pie 9.65 35

Sara Lee 5.00 40

Human Eraser 6.25 52

10. If you've studied the body of the spider package, you can try modifying it.
Here are some possibilities:

a. Move the spider's room-coordinate declarations (cols, rows, etc.) to the
specification, then add to the package a procedure Jump with row and col
umn parameters. This allows a spider program to cause the spider to jump
to an arbitrary location in its room. Now write a spider program that causes
the spider to jump to a random location.

b. (Difficult) Modify the package and procedure start so that a spider pro
gram can specify the size of the room using parameters to the start proce
dure. This will require a great deal of thought and redesign of the package!
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Chapter Review

In the programs written so far, each variable was associated with a single memory loca
tion. These variables are called scalar variables, and their data types are scalar or
unstructured types. In this chapter we will begin the study of composite types. A com
posite type is one that defines a collection of related data values. The items in a variable
of a composite type can be processed individually, although some operations may be
performed on the structure as a whole.

Ada provides type constructors, which can be used to form composite types from
simpler types. The type constructors record and array are introduced in this chapter,
and some simple cases are explored. More complex and interesting uses of arrays and
records are taken up beginning in Chapter 11.

A record is a data structure containing a group of related data items; the individual
components, or fields, of a record can contain data of different types. An array is a data
structure that is used for storage of a collection of data items that are all of the same
type. An array has elements; each element has a position within the array, known as its
index ox subscript.

567
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Think of a single record as being analogous to a 3 x 5 file card containing, for
example, the name, address, birthday, and phone number of one of your friends. Each
card has the same structure: a collection of fields, each field having its own type. A
record type declaration, then, is a way to describe ̂ s record structure. Bach data item
is stored in a separate record field; we can reference each data item stored in a record
through its field name. For example. Person.Name references the field Name of the
record Person.

Think of an array as being analogous to the box in which you keep your set of
cards. An array type declaration describes the structure of the array. If the array is
called Friends, then one of the friend records might be referenced as Friends (37), the
card in the thirty-seventh position of the array. Each array element can hold a value of
any type, whether it be a simple integer or character or a complex user-defined record
type. An array element can even hold another array.

Records and arrays make it easier to organize and represent information in Ada and
other modem programming languages, and these composite types are an important
contributor to die power of these languages to enable us to write complex programs.

9.1 Data Structures: Record Types

As described in the introduction, a record is a stmcture containing several fields, each
field having its own type; this stmcture is described by a record type declaration. As is
always the case with types, the record type declaration does not create any records; it is
only a template or recipe for creating records.

Record Type Declaration

Before a record can be created or saved, the record format must be specified by means
of a record type declaration.

■ Example 9.1

The staff of our small software firm is growing rapidly. To keep our records more
accessible and organized, we decide to store relevant data, such as Ae descriptive infor
mation shown below, in an employee data base:

ID : 1234

Name: Caryn Jackson
Gender : Female

Number of Dependents: 3
Hourly Rate: 7.50

Noting that the number of dependents should be of type Natural and the hourly
rate and taxable salary should both be of type NonNegFioat, let us give an appropriate
type declaration for each piece of information in the first three lines above:

NameSlze :CONSTANT Positive 20;
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SUBTYPE IDType IS Positive R2VNGE 1111.. 9999;
SUBTYPE NameType IS String(l..NameSize);
TYPE GenderType IS (Female,Male);

We next declare a record type EmpioyeeBasic to store this basic information. We
must specify the name of each field and the type of information stored in each field. We
choose the field names in the same way as we choose all other identifiers: The names
describe the nature of the information represented.

TYPE EmpioyeeBasic IS RECORD
ID ; IDType;
Name : NameType;

Gender : GenderType;
NumDepend : Natural;
Rate ; NonNegFloat;

END RECORD;

The record type is a template that describes the format of each record and the name
of each individual data element. A variable declaration is required to allocate storage
space for a record. The record variables clerk and Janitor are declared next.

Clerk : EmpioyeeBasic;
Janitor : EmpioyeeBasic;

The record variables clerk and Janitor both have the structure specified in the
declaration for record type EmpioyeeBasic. Thus the memory allocated for each con
sists of storage space for five distinct values. Figure 9.1 shows the record variable
Clerk, assuming that the values shown earlier are stored in memory. ■

As illustrated in the type declaration for EmpioyeeBasic, each of the fields of a
record can be a predefined or user-defined type. There are no limitations on the type of
a field, except that the type specification must be the name of a type that has already
been declared. The record type declaration is described in the next display.

Record variable clerk

ID

Name

Sex

NumDepend

Rate

1234

ry Ja

Female

3.98

ck

Figure 9.1 Record Variable Clerk
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SYNTAX

DISPLAY
Record Type Declaration

Form:

TYPE rec-type IS RECORD
Pi : typei;
Fj : typoit

Fd « type„j
END RECORD;

Example:

TYPE Fraction IS RECORD

Numerator: integer;

Denominator: Positive;

END RECORD;

Interpretation:

The identifier rec-type is the name of the record structure being described. Each
identifier F,- is a field name; the data type of each field F/ is specified by typei

Note:

type^ may be any predefined or user-defined type. Also, the field names must be
unique: No two fields may have the same field name.

Manipulating Individual Fields of a Record

We can reference a record field by using a Jield selector, which consists of the record
variable name followed by the field name. A period separates the field name and record
name.

■ Example 9.2

The data shown in Fig. 9.1 could have been stored in clerk through this sequence of
assignment statements:

Clerk.ID := 1234;

Clerk.Name := "Caryn Jackson ";
Clerk.Gender := Female;

Clerk.NumDepend 3;
Clerk.Rate :« 7.50;

Once data are stored in a record, they can be manipulated in the same way as other
data in memory.

The statements

Ada.Text_IO.Put(Item => "The clerk is ");
CASE Clerk.Gender IS

WHEN Female =>

Ada.Text_IO.Put (Item => "Ms.
WHEN Male =>

Ada.Text_IO.Put (Item => "Mr. ");
END CASE;
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Ada.Text_IO.Put (Item => Clerk.Name);

display the clerk's name after an appropriate title (ms . or Mr.). For the data above, the
output would be

The clerk is Ms. Caryn Jackson I

■ Example 9.5

Program 9.1 computes the distance from an arbitrary point on the x-y plane to the origin
(intersection of the x- and y-axes). The values of the x-coordinate and the y-coordinate
are entered as data and stored in the fields x and y of the record variable Point i. The

formula distance, d, from the origin to an arbitrary point {X, Y) is computed by the fol
lowing formula:

= Jx
Each coordinate of the record variable pointi is read separately. Ada.Text_xo

does not provide operations to read an entire record; we will write our own operations
to read records later in this chapter. ■

Program 9.1 Distance from Point to Origin

WITH Ada.Text_IO;
WITH Ada.Float_Text_lO;
WITH Ada.Numerics.Elementary_Functions;
USE Ada.Numerics.Elementary_Functions;
PROCEDURE Distance_to_Origin IS

Finds the distance from a point to the origin.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Point IS RECORD

X : Float;
Y : Float;

END RECORD;

Point1 : Point; — the data point
Distance ; Float; — its distance to the origin

BEGIN — Distance_to_Origin

Ada.Text_lO.Put(Item => "Enter X coordinate (floating point) > ");
Ada. Float_Text_lO. Get (item =»> Point 1. X);
Ada.Text_IO.Put(Item => "Enter Y coordinate (floating point) > ");
Ada.Float_Text_lO.Get(Item => Point1.Y);
Distance := Sqrt(Pointl.X ** 2 + Pointl.Y ** 2);
Ada.Text_IO.Put(Item => "Distance to origin is ");
Ada.Float_Text_IO.Put(Item => Distance, Fore=>l,Aft=>2,Exp='>0);
Ada.Text_IO.New_Line;

END Distance_to_Origin;
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Sample Run

Enter X coordinate (floating point) > 3
Enter Y coordinate (floating point) > 4
Distance to origin is 5.00

Operations on Records

A type is always a set of values and a set of operations on those values. Now that we
know how to declare record types, let us summarize the operations that are available for
record values.

Four basic operations act on a record: store, retrieve, assignment, and equality test.

• Store: The store operation inserts a value into the record field. If ri is a record with
a Held named fi and e is an expression that is compatible with field fi, the state
ment

Rl.Fl := E;

stores the result of evaluating e in field fi of record ri.

• Retrieve: If the field Rl.Fl is compatible with variable C (that is, if they have the
same type), the statement

C := Rl.Fl;

retrieves the value in field fi of record ri and copies it into c. Note that it is always
permissible, given two record variables ri and r2 of the same type, to write

Rl.Fl := R2.F1;

• Assignment: An assignment statement can also be used to copy the entire contents
of one record to another of the same type. If ri and r2 are record variables of the
same type, the statement

Rl ;= R2;

copies all fields of record r2 to record ri.

• Equality test: Finally, Boolean expressions such as

Rl = R2

are permitted; this expression is true if and only if each field of ri is equal to its
corresponding field in r2. Further, the result of the Boolean expression

Rl /= R2

is true if and only if at least one of the fields of ri is not equal to its corresponding
field in r2.

If Clerk and Janitor are both record variables of type Employee, the statement

Clerk ;= Janitor; —copy Janitor to Clerk
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copies each field of Janitor into the corresponding field of clerk. It is also permissible
to determine in a single statement whether two records ri and r2 of the same record
type are equal, that is, whether each field of ri is equal to the corresponding field of r2 .
For example,

IF RI = R2 THEN

DoSomething;
ELSE

DoSomethingElse;
END IF;

executes DoSomething if Ri and R2 both contain the same field values, field by field,
and executes DoSomethingEiee otherwise.

Because arithmetic and logical operations—except for equality and inequal
ity—can be performed only on individual memory cells, record variables cannot be
used as the operands of predefined arithmetic and relational operators. These operators
can be used only with individual fields of a record. However, we shall see in Chapter 11
that it is possible for a programmer to define arithmetic and relational operators on
records.

EXERCISES FOR SEaiON 9.1

Self-Check

1. Each part in an inventory is represented by its part number, a descriptive name,
the quantity on hand, and price. Define a record type Part.

2. A catalog listing for a textbook consists of the author's name, title, publisher,
and year of publication. Declare a record type cataiogEntry and variable
Book and write assignment statements that store the relevant data for this text
book in Book.

9.2 Control Structures: Records as Subprogram Parameters

A record can be passed as a parameter to a function or procedure, provided that the
actual parameter is of the same type as its corresponding formal parameter. The use of
records as parameters can shorten parameter lists considerably because one parameter
(the record variable) can be passed instead of several related parameters.
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Reading a Record

Ada normally uses procedures to read data from the terminal or a file. The Get proce
dures that are available in the input/output packages are defined only for individual val
ues, not for records. To read a record, we can use a call of the appropriate Get to read
each held. It is common to read an entire record at once, so it makes sense to dehne a
procedure for doing this; the body of the procedure will contain the individual Get calls
for each record held.

■ Example 9.4

Program 9.2 contains a procedure GetPoint to read a point in the x-y plane and a func
tion Distance, which calculates the distance between two points Pi = (Xj, 7]) and P2 =
(X2, Y2). The formula that is used to calculate the distance d is

d = +

The main program requests the coordinates of two points from the user, then calcu
lates and displays the distance between them. Notice how straightforward it is to write
and call subprograms with record parameters. ■

Program 9.2 Distance between Two Points

WITH Ada.Text 10;

WITH Ada.Float_Text_IO;
WITH Ada.Numerics.Elementary_Functions;
USE Ada.Numerics.Elementary^Functions;
PROCEDURE Distance_between_Points IS

— I Finds the distance between two points on the x-y plane.
— 1 Author: Michael B. Feldman, The George Washington University
— Last Modified: September 1998

TYPE Point IS RECORD

X  : Float;

Y : Float;

END RECORD;

Point1 : Point; — one data point
Point2 : Point; — the other data point

PROCEDURE GetPoint(Item: OUT Point) IS
— Pre: none

— Post; the point, Item, is defined with values from the user

BEGIN

Ada.Text_IO.Put(Item => "Enter X coordinate (floating point) > ");
Ada.Float_Text_IO.Get(Item => Item.X);
Ada.Text_IO.Put(Item => "Enter Y coordinate (floating point) > ");
Ada. Float__Text__IO. Get (Item => Item. Y);

END GetPoint;
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FUNCTION Distance(PI ; Point; P2 : Point) RETURN Float IS
— Pre: PI and P2 are defined

— Post: returns the Cartesian distance between the points

BEGIN

RETURN Sqrt((P2.X-Pl.X) ** 2 + (P2.Y-Pl.y) **2);

END Distance;

BEGIN — Distance_between_Points

Ada.Text_IO.Put(Item => "First Point");
Ada.Text_IO.New_Line;
GetPoint (Item =»> Pointl);
Ada. Text__IO. Put (Item => "Second Point");
Ada.Text_IO.New_Line;
GetPoint(Item => Point2);
Ada.Text_lO.Put(Item => "Distance between points is ");
Ada.Float_Text_IO.Put
(Item => Distance(Pointl, Point2)/ Fore=>l,Aft=>2,Exp=>0);

Ada.Text_IO.New_Line;

END Distance_between_Points;

Sample Run

First Point

Enter X coordinate (floating point) > 3
Enter Y coordinate (floating point) > 4
Second Point

Enter X coordinate (floating point) > 9
Enter Y coordinate (floating point) > 12
Distance between points is 10.00

Record Aggregate Assignment

When an entire record must be assigned at one time, it is unnecessary to assign each
field in a separate assignment statement. Instead, you can use an aggregate. An aggre
gate is just a list of all the field values in the record, separated by commas and enclosed
in parentheses. An aggregate looks like a parameter list in a procedure call: The values
can just be listed in sequence (positional association) or given with their names (named
association). Generally, we will use the latter form because it is clearer and easier to
understand.

A record clerk of type Employee, as used above, could be filled in with an aggre
gate assignment as follows:

Clerk :=

(ID => 1234,
Name => "Caryn Jackson
Gender »> Female,
NumDepend =» 2,
Rate => 7.50);



576 Composite Types: Records and Arrays

We have listed the fields in the order in which they were declared in the type defini
tion, but in fact we could have put them in any order because the field names help the
compiler (and the human reader) make the association.

It is permissible to write an aggregate assignment without specifying the field
names, for example.

Clerk :«= (1234,"Caryn Jackson Female, 2, 7.50);

However, this form, called positional association, is not nearly as clear and also
requires that the fields be listed exactly in the order in which they appear in the type
definition. We will generally use the first, or named association, form of record aggre
gate assignment.

EXERCISES FOR SEaiON 9.2

Self-Check

For the record type Part in Self-Check Exercise 1, Section 9.1, provide the
following program segments for a record variable p: part:

a. Assign a value to each record field using an individual assignment state
ment

b. Assign a value to p using an aggregate with named association

c. Same as (b), but use positional association

9.3 System Structures: A Package for Calendar Dates

In Chapters 4 and 8 we discussed some of the uses of Ada's predefined package
Ada.Calendar. This package provides many facilities for working with dates and times,
but it does not provide a way to represent calendar dates that is suitable for reading and
displaying. In this section we develop a specification for a simple package to give us a
nicer form for dates, including procedures to read and display dates. In Chapter 11 we
will refine this package to make it more capable and robust.

Specification for the Simple Dates Package

The package specification is found in Program 9.3.

Program 9.3 Specification of Simple Dates Package

WITH Ada.Calendar;

PACKAGE Simple_Dates IS
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— I Specification for package to represent calendar dates
—j in a form convenient for reading and displaying.
—j Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

TYPE Months IS

(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

TYPE Date IS RECORD

Month: Months;

Day: Ada. Calendar. Day__Number;
Year: Ada.Calendar.Year_Number;

END RECORD;

PROCEDURE Get(Item: OUT Date);

— Pre: None

— Post: Reads a date in mmm dd yyyy form, returning it in Item

PROCEDURE Put(Item: IN Date);

— Pre: Item is defined

— Post: Displays a date in mmm dd yyyy form

FUNCTION Today RETURN Date;
— Pre: None

— Post: Returns today's date

END Simple_Dates;

We want the simpie_Dates package to provide a standard representation for the
months of the year. We do this by giving an enumeration type Months representing the
abbreviated names of the months:

TYPE Months IS

(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

We can now make use of this type and the day and year types provided by
Ada.Calendar to define a record type for a date, using the month abbreviation for the
month field, as follows:

TYPE Date IS RECORD

Month: Months;
Day: Ada.Calendar.Day^Number;
Year: Ada.Calendar.Year_Number;

END RECORD;

We could have defined our own year and month number types, but we chose instead
to use types that were already available to us in a predefined Ada package (instead of
"reinventing the wheel"). The input program Get will read a date in the form

OCT 31 1998

and the output program Put will display dates in this form as well.
One more operation is included: a function Today that returns a date record that is

initialized with the date the program is being run. In other words, given a declaration
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D: Simple^Oates.Date;

the statement

D := Siniple_Dates.Today;

sets the fields of d to today's month, day, and year, respectively. Two things are note
worthy about this function. First, it is an example of a parameterless function; like
Ada .Calendar .Clock, it requires no parameters. Second, the return type of the function
is a record, namely, one of type Date.

Body of the Dates Package

Program 9.4 shows the body of package simpie_Dates.

Program 9.4 Body of Simple Dates Package

WITH Ada.Calendar;

WITH Ada.Text_I0;
WITH Ada.Integer_Text 10;
PACKAGE BODY Siinple_Dates IS

Body for package to represent calendar dates
in a form convenient for reading and displaying.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PACKAGE Month_IO IS
NEW Ada.Text_IO.Enumeration_IO(Enum => Months);

PROCEDURE Get(Item: OUT Date) IS

BEGIN -- Get

Month_IO.Get(Item => Item.Month);
Ada. Integer__Text_IO. Get (Item => Item. Day);
Ada. Integer__Text__IO. Get (Item => Item. Year);

END Get;

PROCEDURE Put(Item: IN Date) IS

BEGIN -- Put

Month_IO.Put (Item => Item.Month, Width=>l);
Ada.Text_IO.Put(Item => • ');
Ada.Integer_Text_IO.Put(Item => Item.Day, Width => 1);
Ada.Text_IO.Put(Itero => ' ');
Ada.Integer_Text_IO.Put(Item => Item.Year, Width =>4);

END Put;

FUNCTION Today RETURN Date IS
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Right__Now : Ada.Calendar.Time; — holds internal clock value
Result : Date;

BEGIN — Today

— Get the current time value from the computer's clock
Right__Now := Ada. Calendar .Clock;

— Extract the current month, day, and yeatr from the time value
Result.Month := Months'Val(Ada.Calendar.Month(Right^Now)- 1);
Result.Day ;= Ada.Calendar.Day (Right_Now);
Result.Year := Ada.Calendar.Year (Date => Right_Now);

RETURN Result;

END Today;

END Simple__Dates;

There are just two procedures; Get and Put. simpie__Dates.Get expects its input to
be in the form given above. It is not a robust procedure like the ones in Robust_input
(Section 7.6) that prompt the user until correct input is entered; it is more like the pre
defined Get routines in Ada.Text_io: If anything is wrong with the input. Get simply
allows the exception to be passed back to the calling routine.

What can go wrong? The month, day, or year that the user enters can be badly
formed or out of range, or the combination of month, day, and year can form a nonex
istent date such as Feb 30 1999. A badly formed monA, day, or year will result in
Ada.Text_io.Data__Error being raised by Mcnths_io; an out-of-range month or year
will result in constraint_Error being raised. This routine does not discover the case
of a nonexistent date; a revised version of the package, to be developed in Chapter 11,
will correct this shortcoming and add the desired robustness.

The procedure simpie_Dates.put displays a date in the mmm dd yyyy form. Also
note how the function Today uses the package Ada.calendar to produce today's date
and return it to the caller. Program 9.5 shows a test of the simpie_t)ates package.
Because the package is not robust, we include an exception-handling loop in the test
program.

Program 9.5 Test of Simple Dates Package

WITH Ada.Text_I0;
WITH Simple_^Dates;
PROCEDURE Test_Simple_Dates IS

—-j Program to test the Simple_Dates package
~| Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

D: Simple^Dates.Date;

BEGIN — Test_Simple_Dates

D := Simple_Dates.Today;
Ada. Text_IO. Put (Item =»> "Today is ");
Simple Dates.Put(Item => D);
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Ada.Text_IO.New_Line;

LOOP

BEGIN — block for exception handler
Ada.Text_IO.Put("Please enter a date in MUM DD YYVY form > ");
Simple_Dates.Get(Item => D);
EXIT; — only if no exception is raised

EXCEPTION

WHEN Constraint_Error =>
Ada.Text_IO.Skip_Line;
Ada.Text_IO.Put(Item => "Invalid date; try again, please.");
Ada.Text_IO.New_Line;

WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Skip^Line;
Ada.Text_lO.Put(Item => "Invalid date; try again, please.");
Ada.Text_IO.New_Line;

END;

END LOOP;

Ada.Text__IO.Put(Item => "You entered ");
Simple__Dates. Put (Item => D);
Ada.Text_lO.New_Line;

END Test_Simple__Dates;

Sample Run

Today is SEP 4 1998
Please enter a date in HMM DO YYYY form > mmm dd yyyy
Invalid date; try again, please.
Please enter a date in MMM DD YYYY form > Dec 15 1944

You entered DEC 15 1944

EXERCISES FOR SECTION 9.5

Self-Check

1. Can a client program that uses simpie_Dates change the day field of a Date
variable? For example, suppose the variable represents November 30, 1998.
Can the client program change the 30 to a 31 ? •
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9.4 Data Structures: Hierarchical Records

In solving any programining problem, we must select data structures that enable us to
represent a variety of different kinds of information efficiently in the computer. The
selection of data structures is a very important part of the problem-solving process. The
data structures that are used can have a profound effect on the efficiency and simplicity
of the completed program.

The data structuring facilities in Ada are quite powerful and general. In the previ
ous examples, all record fields were scalar types or strings. It is possible to declare a
record type with fields that are other structured types. We will call a record type with
one or more fields that are record types a hierarchical record.

We began our study of records by introducing a record type Employee. In this sec
tion we will modify that record by adding new fields for storage of the employee's
address, starting date, and date of birth. We repeat for convenience the declarations for
EmployeeBasic:

NameSize rCONSTANT Positive := 20;

SUBTYPE IDType IS Positive RANGE 1111..9999;
SUBTYPE NameType IS String(1..NameSize);
TYPE GenderType IS (Female,Male);
TYPE EmployeeBasic IS RECORD

ID ; IDType;

Name : NameType;

Gender : GenderType;
NumDepend : Natural;
Rate : NonNegFloat;

END RECORD;

and add some constants and subtypes:

ZipCodeSize : CONSTANT Positive 5;
AddressSize : CONSTANT Positive := 20;

SUBTYPE AddressString IS String(1..NameSize);
SUBTYPE ZipString IS String(l..ZipCodeLength);

Next we define an additional record type: Address.

TYPE Address IS RECORD

Street : AddressString;
City : AddressString;
State : AddressString;
ZipCode : ZipString;

END RECORD;

Finally, here is the declaration of the hierarchical record for an employee and a dec
laration of an employee variable. Notice how simple the employee record is, given the
component record types; notice also how we have used the Date type provided by the
package simpie__Dates developed in the previous section:

TYPE Employee IS RECORD
PayData : EmployeeBasic;
Home : Address;
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StartDate

BirthDate
END RECORD;

Siniple_Dates. Date;
Simple_Dates.Date;

Progranmter: Employee;

If Programmer is a record variable of type Employee, the hierarchical structure of
Programmer can be sketched as shown in Fig. 9.2. This diagram provides a graphic dis
play of the record form. It shows that Programmer is a record with fields PayData, Home,
StartDate, and BirthDate. Each of these fields is itself a record (called a subrecord of
Programmer). The fields of each subrecord are indicated under it.

To reference a field in this diagram, we must trace a complete path to it starting
from the top of the diagram. For example, the field selector

Programmer.StartDate

references the subrecord StartDate (type simple_Dates.Date) of the variable Pro
grammer. The field selector

Programmer.StartDate.Year

references the year field of the subrecord Programmer .StartDate. The field selector

Programmer.Year

is incomplete (which Year field?) and would cause a compilation error.
The record copy statement

Record variable

Programmer

PayData

ID Name Gender NumDepend Rate

StartDate

ThisMonth Day Year

Subrecord

Programmer. Home

Home

Street City State ZipCode

BirthDate

ThisMonth Day Year

Figure 9.2 Record Variable Programmer
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Progrcimmer. StartDate i= DayOfYear;

is legal if DayofYear is a record variable of type Date. This statement copies each field
of DayOfYear into the corresponding field of the subrecord Programmer .startDate.

The statements

Ada.Text_IO.Put(Item => "Year started: ");
Ada.Integer_Text__IO.Put(Item => Programmer.StartDate.Year, Width=>4);
Ada.Text_IO.Put(Item => "Month started: ");
Ada.Integer_Text_IO.Put(Item => Progreunmer.StartDate.Month, Width=>4);

display two fields of the subrecord Programmer. StartDate. The statements

Ada.Text_IO.Put(Item => Programmer.PayData.Name);
Ada.Text_lO.Put(Item => "started work in ");
Ada.Integer_Text_IO.Put(Itern => Programmer.StartDate.Year, Width=>4);

display the line

Caryn Jackson started work in 1985

Procedure ReadEmpioyeesasic in Program 9.6 can be used to read in a record of
type EmployeeBasic.

Program 9.6 Procedure ReadEmployeeBasic

PROCEDURE ReadEmployeeBasic (Item : OUT EmployeeBasic) IS
— Reads one basic employee record into Item.
— Pre : None

— Post: Data are read into record Item.

BEGIN — ReadEmployeeBasic

Ada.Text_IO.Put(Item => "ID > ");
Ada.Integer_Text_IO.Get(Item => Item.ID);
Ada.Text_IO.Put(Item => "Name > ");
Ada.Text_IO.Get(Item => Item.Name);
Ada.Text_lO.Put(Item => "Gender (Female or Male) > ");
GenderType_IO.Get(Item °> Item.Gender);
Ada.Text_IO.Put(Item => "Number of dependents > ");
Ada.Integer_Text__IO.Get(Item => Item.NumDepend);
Ada.Text_lO.Put(Item => "Hourly rate > ");
Ada.Float_Text_IO.Get(Item => Item.Rate);

END ReadEmployeeBasic;

Program 9.7 calls this procedure, simpie_Dates.Get, and ReadAddress (see Pro
gramming Exercise 1 below).

Program 9.7 Procedure ReadEmployee

PROCEDURE ReadEmployee (Item : OUT Employee) IS
— Reads a record into record variable Item.

— Pre : None

— Post: Reads data into all fields of record Employee.
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BEGIN — ReadEmployee

ReadBmployeeBasic (Item -> Item.PayData);
ReadAddress (Item -> Item.Home);
Simple_Dates.Get (Item ■=> Item.StartDate);
Simple_Dates.Get (Item <^> Item.BirthDate)

END ReadEmployee;

The procedure call statement

ReadEmployee (Clerk)

causes the data read to be stored in record variable clerk. This procedure uses
GenderType_io to read the gender of the employee; GenderType_io would need to be
defined as an instance of Ada.Text_I0.Enumeration_l0.

This example has shown that even though the standard text input/output packages
provide for reading and displaying only a single value at a time, it is easy to construct
an input or display procedure for a simple record type (e.g., simpie_Dates .Get) and to
write one for an entire hierarchical record by calling the simpler ones.

EXERCISES FOR SECTION 9.4

Self-Check

1. What must be the type of NewAddress if the following statement is correct?

Programmer.Home := NewAddress;

2. Write the field selector needed to reference each of the following fields:

a. the programmer's salary

b. the programmer's street address
c. the programmer's month of birth
d. the month the programmer started working

Programming

1. Write the procedure ReadAddress suggested above.
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9.5 Data Structures: Array Types

A record contains fields, each of which is potentially of a different type; such a com
posite type is often called heterogeneous. An array, on the other hand, contains ele
ments all of which are of the same type; such a type is often called homogeneous. As
with record types, we first declare an array type, which provides a template, or recipe,
for creating arrays. Then we actually create an array—cause the compiler to allocate
storage for it—with an array variable declaration.

Array Type Declaration

The array type FioatArray is declared below followed by the declaration of array x of
type FioatArray:

TYPE FioatArray IS ARRAY (1..8) OF Float;
X ; FioatArray;

The type declaration indicates our desire that each array be a collection of eight
memory cells. The variable declaration causes a specific collection of eight cells to be
associated with the name x; these memory cells are usually adjacent to each other in
memory. Each element of array x can contain a single Float value, so a total of eight
Float values can be stored and referenced using the array name x.

Referencing Elements of an Array

To process the data stored in an array, we must be able to reference each individual ele
ment. The array subscript (sometimes called array index) is used to differentiate
between elements of the same array. For example, if x is the array with eight elements
declared above, we refer to the elements of the array x as shown in Fig. 9.3.

The subscripted variable x (i) (read as "x sub 1") may be used to reference the first
element of the array x; X(2), the second element; and x(8), the eighth element. The
number enclosed in brackets is the array subscript. As we will see later, the subscript
does not have to be a constant.

■ Example 9.5

Let X be the array shown in Fig. 9.3. Some statements that manipulate this array are
shown in Table 9.1.

X{1) X(2) X(3) X(4) X(5) X(6) X(7) X{8)

16.0 12.0 6.0 8.0 2.5 12.0 14.0 1 -54.5

Figure 9.3 The Eight Elements of the Array X
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Table 9.1 Statements that Manipulate Array X

Statement Explanation
Ada.Float_Text_lO.Put(X(1));

X(4) := 25.0;

Sum X(l) + X(2);

Sum := Sum + X(3);

X(4) := X(4) + 1.0;

X(3) := X(l) + X(2);

Displays value of x (l), or 16.0.
Stores value25.0inX(4).
Stores sum of x (l) and x(2), or 28.0, in Sum.
Adds X {3) to Sum. The new sum is 34.0.

Adds 1.0 to X(4). The new X(4) is 26.0.
Stores sum of X( 1) and x( 2). or 28.0, in X( 3),

The contents of array x are shown in Fig. 9.4 after execution of these statements.
Only x(3) and x(4) are changed. ■

■ Example 9.6

Some declarations for a manufacturing plant operations program are shown below. The
type declarations declare two scalar subtypes, EmpRange and HoursRange; an enumera
tion type. Days; and two array types, EmpArray and DayArray. Two array variables.
Vacation and PiantHours, are declared in the variable declaration section:

NiunEmp : CONSTANT Positive 10; — Number of employees
SUBTYPE EmpRange IS Positive RANGE l..NumEmp; — subscript range
SUBTYPE HoursRange IS Float R7U9GE 0.0..24.0; — hours in a day
TYPE Days IS
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

TYPE EmpArray IS ARRAY(EmpRange) OF Boolean;
TYPE DayArray IS ARRAY(Days) OF HoursRange;

Vacation : EmpArray;
PiantHours : DayArray;

The array vacation has ten elements (subscripts 1 through NumEmp); each element
of array vacation can store a Boolean value. The contents of this array could indicate
which employees were on vacation (vacation(i) is True if employee i is on vacation).
If employees 1,3,5,7, and 9 were on vacation, the array would have the values shown
in Fig. 9.5.

The array PiantHours has seven elements (subscripts Monday through Sunday). The
array element PiantHours (Sunday) could indicate how many hours the plant was oper
ating during Sunday of the past week. The array shown in Fig. 9.6 indicates that the
plant was closed on the weekend, operating single shifts on Monday and Thursday,
double shifts on Tuesday and Friday, and a triple shift on Wednesday. ■

16.0 12.0 28.0 26.0 2.5 12.0 14.0 -54.5

Figure 9.4 The Array X After Modification
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Vacation(1) True

Vacation(2) False

Vacation(3) True

Vacation(4) False

Vacation(5) True

Vacation(6) False

Vacation(7) True

Vacation(8) False

Vacation(9) True

Vacation(10) False

PlantHours(Sunday) 0.0

PlantHours(Monday) 8.0

PlantHours(Tuesday) 16.0

PlantHours(Wednesday) 24.0

PlantHours(Thursday) 8.0

PlantHours(Friday) 16.0

PlantHours(Saturday) 0.0

Figure 9.6 Array PlantHours

SYNTAX

DISPLAY
Array Type Dedaration

Form:

TYPE array-type IS ARRAY (suhscript-type ) OF element-type;

Example:

SUBTYPE WordWidth IS Positive RANGE 1..32;
TYPE BitVector IS ARRAY (WordWidth) OF Boolean;

Interpretation:

The identifier array-type describes a collection of array elements; each element
can store an item of type element-type. The subscript-type can be any discrete
type, that is, any predefined or user-defined integer or enumeration type or sub
type. There is one array element corresponding to each value in the sub
script-type. All elements of an array are of the same element-type.
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Notes:

1. The element-type can be any predefined or user-defined scalar or com
posite type.

2. A floating-point type cannot be a subscript-type because it is not dis
crete, as it represents a continuous range of values.

3. It is unwise to use as a subscript-type a predefined type with a large
range of values (e.g., integer) because doing so would result in arrays
with a gigantic number of elements. Generally, our subscript types will
be either user-defined subtypes of integer with fairly small ranges or
user-defmed enumeration types.

It is important to realize that an array type declaration does not cause allocation of
storage space in memory. The array type describes the structure of an array only. Only
variables actually store information and require storage. Storage space is not allocated
until a variable of this type is declared.

Operations on Arrays

Two basic operations act on elements of an array: store and retrieve; also, as in records,
assignment and equality test are available for array variables.

• Store: The store operation inserts a value into the array. If a is an array, c is an ex
pression that is compatible with the element type of a, and i is an expression that
is compatible with the subscript type, the statement

A(i) := C;

stores the contents of c in element i of array a.

• Retrieve: If c is a vanable that is assignment compatible with the element type of
A, the statement

C := A(i);

retrieves element i of array a and copies its value into c. For both of these state
ments the value of subscript i must be m the range of the array subscript type; oth
erwise, Constraint_Error will be raised.

• Assignment: The assignment operator can also be used to copy the contents of one
array to another if the arrays are compatible (of the same array type). If A and B are
compatible arrays, the statement

A := B;

copies all values associated with array b to array a.

• Equality test: The equality and inequality operators can also be used to compare
two arrays if they are compatible (of the same array type). If a and b are compatible
arrays, the Boolean expression

A = B;
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evaluates to True if and only if each element of a is equal to the corresponding el
ement of B, and the Boolean expression

A /= B;

evaluates to True if and only if any elements of a are not equal to the corresponding
elements of b.

The discussion above summarizes all the information that wc need to know to use an

array. We do not need to know how Ada stores the elements of m array in memory or
how it implements the retrieve and store operators above.

Aggregate Array Assignment

As in the case of records, an entire array can be filled with values by three methods:

• assignment to each element with an individual assignment statement, either ran
domly or sequentially;

• copying one entire array to another with an array assignment statement, as dis
cussed just above; and

• storing values in an entire array using an aggregate, similar to that used in records.

It is the last method that concerns us now. Given an array a of type TestArray, the
100 Float values could, if they were all known in advance, be stored in a with a single
statement such as

A := (1.0, 27.0, 35.0, -4.0, 15.0, ...);

where the ellipsis must be replaced completely with the other 95 values. This is surely
tedious, but it is better than writing 100 separate assignment statements. As in the case
of records, named association can also be used:

A != (1 => 1.0, 2 => 27.0, ...);

where the remaining 98 values also need to be supplied. Whereas in record aggregates
we prefer named association, in array aggregates it can be cumbersome because an
array can have a large number of elements. In using array aggregates we will generally
use positional association unless there is a good reason not to do so.

A common and useful application of array aggregates is to initialize most or all ele
ments of an array with the same value. Suppose that our array a were to be "cleared" so
that all values were 0. This could be done in a loop:

FOR I ZM l..MaxSize LOOP

A(I) :=■ 0.0;
END LOOP;

or with a single aggregate assignment:

A  (l..MaxSl2e "> 0.0);



390 Composite Types: Records and Arrays

The aggregate assignment is certainly more concise, expresses the will of the program
mer clearly, and may possibly execute faster. Suppose now that a were to be initialized
such that its first 5 elements were as above but the other 95 were to be 0. The assign
ment

A := (1.0, 27.0, 35.0, -4.0, 15.0, OTHERS => 0.0);

does the trick. The others clause informs the compiler to store Os in all those elements
not expressly listed in the aggregate. If, say, only the first, third, and fifth elements were
nonzero, named association could be used:

A := (1 => 1.0, 3 => 27.0, 5 «=> 35.0, OTHERS => 0.0);

Finally, the assignment

A := (OTHERS => 0.0);

fills the entire array with Os even more concisely: Because no other elements were
explicitly filled, the others applies to all elements.

It is important to remember in using an aggregate that all elements of the array
must be initialized by the aggregate; otherwise, a compilation error results, others ini
tializes all elements that are not otherwise given.

EXERCISES FOR SECTION 9.5

Self-Check

1. What is the difference between the expressions X3 and x (3) ?

2. For the following declarations, how many memory cells are reserved for data
and what type of data can be stored there?

TYPE AnArray IS ARRAY(1..5) OF Character;
Grades : AnArray;

When is the memory allocated: after the type declaration or after the variable
declaration?

3. Write the variable and type declarations for all of the following valid arrays:

a. Subscript type Boolean, element type Float

b. Subscript type • A'.. • f•, element type integer

C. Subscript type character, element type Boolean

d. Subscript type integer, element type Float

e. Subscript type character, element type Float

f. Subscript type Float, element type character
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g. Subscript type Day (enumeration type), element type f loat

9.6 Problem Solving: Selecting Array Elements for Processing

Using a Subscript as an Index to an Array

As indicated in the preceding section, the subscript type of an array may be any discrete
type or subtype. In the next few sections, most of the examples will deal with arrays
whose subscript type is a subtype of type Positive. We are doing this because it is
expedient; you should keep in mind that the features described carry over to other sub
script types as well. We will discuss arrays with nonnumeric subscripts in Section 9.9.

Each array reference includes the array name and a parenthesized subscript. The
subscript (sometimes called an index) that is used to reference an array element must be
an expression that is compatible with the declared subscript type. Very often, the sub
script type is a subtype with a minimum value of 1 (e.g., (i. .Maxsize)). Because the
minimum subscript value is positive, it must be an expression whose value is in the
range specified by the subscript type. For the array vacation declared in Example 9.6,
the allowable subscript values are the positive integers from 1 through 50.

■ Example 9.7

Table 9.2 shows some sample statements involving the array x shown in Fig. 9.3. i is
assumed to be a Positive variable with value 6. Make sure you understand each state
ment.

Table 9.2 Some Sample Statements for Array X

Statement Effect
Ada. Float_Text_lo. Put (X (4)); Displays 8.0 (value of X (4)).
Ada.Float_Text_l0.Put(X(i)); Displays 12.0 (value of X(6)).
Ada.Float_Text__lo.Put(X(i)+1.0); Displays 13.0 (valueof 12.0+ 1.0).
Ada. Float_Text__lO. Put (X (1+1)); Displays 14.0 (value of x (7)).
Ada.Float_Text_lO.Put(X(2*I)); Constraint^Error: there is no X( 12).
Ada.Float_Text_lO.Put (X(2*I-4)); Displays -54.5 (value of X(8)).
Ada. Float Text 10. Put Displays -54J (value of X(8)).
(X(Positive(X(4))));

X(l) := X(l+l); Assigns 14.0(valueofX(7))toX(6).
X(l-l) s=X(l); Assigns 14.0 (new value of X(6)) to X(5).
X(i) - 1 X(i); Syntax error: Illegal assignment statement

The last Put statement uses Positive(X(4) > as a subscript expression. Because
this evaluates to 8, the value of x(8) (and not X( 4)) is displayed. If the value of Posi-
tive(X(4)) were outside the range 1 through 8, constraint_Error would be raised at
execution time.
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Two different subscripts are used in the last three assignment statements in the
table. The first assignment copies the value of x(7) into x(6) (subscripts i+i and i);
the second assignment statement copies the value of x(6) into x{5) (subscripts i and
i-i). The last assignment statement causes a syntax error, because there is an expres
sion to the left of the assignment symbol, :=.

In Table 9.2 there is an attempt to display element x (12), which is not in the array.
This attempt will result in constraint_Error being raised. ■

SYNTAX - „ ,
DISPLAY Array Reference

Form;

name {subscript)

Example;
X(3*I - 2)

Interpretation;

The subscript must be an expression that is compatible with the subscript-type
specified in the declaration for the array name. If the expression is of the wrong
data type, a "type mismatch" compilation error will be detected: if the value
expression depends on values not known at compile time, constraint_Brror
will be raised at execution time if the expression value is out of the subscript
range.

Using FOR Loops mth Arrays

Often we wish to process the elements of an array in sequence, starting with the first.
An example would be entering data into the array or displaying its contents. This can be
accomplished by using a for loop whose loop control variable (e.g., i) is also used as
the array subscript (e.g., x(i)). Increasing the value of the loop control variable by 1
causes the next array element to be processed.

B Example 9.8

The array cubes declared below can be used to store the cubes of the first ten integers
(e.g.,Cubes(l) is 1,Cubes(10) is 1000).

size : CONSTANT Positive ;= 10;

SUBTYPE Index IS Positive RANGE l-.Size;
TYPE IntArray IS ARRAY (Index) OF INTEGER;

Cubes : IntArray; — array of cubes

The FOR Statement

FOR I IN 1 .. size LOOP

Cubes(I) := I * I * I;
END LOOP;
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1 8 27 64 125 216 343 512 729 1000

Figure 9.7 Array Cubes

initializes this array as shown in Fig. 9.7.
A better way to write the for loop is

FOR I IN Index LOOP

Cubes(I) ;= I * I * I;
END LOOP;

The behavior of this loop is the same as that of the previous loop: Each element of
the array is accessed in sequence. The advantage of writing the loop this way is that,
assuming that index is the subscript type of the array, if the bounds of index are ever
changed and the program is recompiled, no other statements will have to change. In
cases in which an entire array is being referenced in sequence, we will usually use this
form of loop control. ■

■ Example 9.9

Program 9.8 reads an array of values from the terminal, calculates the average of the
values, and displays a table of differences, each showing the given value's difference
from the average.

Program 9.8 Table of Differences

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
WITH Ada.Float_Texl;_lO;
PROCEDURE Show_Differences IS

— I Computes the average value of an array of data and
—>1 prints the difference between each value and the average.
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

Maxltems : CONSTANT Positive 8; — number of data items

SUBTYPE Index IS Positive RANGE 1..Maxltems;
TYPE FloatArray IS ARRAY (Index) OF Float;

X  : FloatArray; — array of data
Average : Float; — average value of data
Sum ; Float; — sum of the data

BEGIN — Show_^Differences

~ Enter the data.

Ada.Text_IO.Put(Item => "Please enter ");
Ada.Integer_Text_IO.Put(Item => Maxltems, Width=»0);
Ada.Text_IO.Put(Item => " floating-point numbers > ");
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Ada.Text_IO.New_Line;

FOR I IN Index LOOP

Ada. Float Text_IO. Get (Item «=> X(I));
END LOOP;

Ada. Text^IO. New__Line;

— Compute the average value.
Sum :<= 0.0; — Initialize SUM
FOR I IN Index LOOP

Sum Sum + X(I); — Add each element to Sum
END LOOP;

Average Sum / Float(Haxltems); — Find average value
Ada.Text_IO.Put(Item «> "Average value is ");
Ada.Float_Text_IO.Put(Item=>Average, Fore=>5, Aft»>2, Exp=>0);
Ada.Text_IO.New_Line;

— Display the difference between each item and the average.
Ada. Text__IO. Put
(Item "> "Table of differences between X(I) and average");

Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => " I X(l) Difference");
Ada. Text_IO. New__Line;

FOR I IN Index LOOP

Ada.Integer Text 10.Put(Itern => I, Width=>4);
Ada.Text_IoTput(Item => " ");
Ada.Ploat_Text_IO.Put(Item=>X(I), Forea>5, Aft=>2, Exp=>0);
Ada.Text_IO.Put(Item => " ");
Ada.Float_Text_IO.Put
(Item=>X(I)-Average, Fore=>5, Aft=>2, Exp=>0);

Ada.Text_lO.New_Line;
END LOOP; ~

END Show^Differences;

Sample Run

Please enter 8 floating-point numbers >
16 12 6 8 2.5 12 14 -54.5

Average value is 2.00
Table of differences between X(I) and average

1  X(I) Difference
1  16.00 14.00

2  12.00 10.00

3  6.00 4.00

4  8.00 6.00

5  2.50 0.50

6  12.00 10.00

7  14.00 12.00

8  -54.50 -56.50

In this program the declarations

MaxIterns ; CONSTANT Positive := 8; — number of data items

SUBTYPE Index IS Positive RANGE l..MaxItems;
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TYPE FloatArray IS ARRAY (Index) OF Float;

X : FloatArray; — array of Float numbers

declare an array type and allocate storage for an array object x with subscripts in the
range 1-8. The program uses three for loops to process the array x. The loop control
variable i is also used as the array subscript in each loop.

The first for loop

FOR I IH Index LOOP

Ada. Float_Text_IO. Get (I tern =»> X (I));
END LOOP;

is used to read one data value into each array element (the first item is stored in X( i),
the second item in x(2), etc.). The Get procedure is called once for each value of i in
the range of index, that is, from 1 to 8; each call causes a new data value to be read and
stored in x(i). The subscript i determines which array element receives the next data
value. The sample mn causes the array to acquire the values shown in Fig. 9.3.

The second for loop is used to accumulate (in sum) the sum of all values stored in
the array; this loop will be traced later. The last for loop,

FOR I IN Index LOOP

Ada.Integer_Text_IO.Put(Item => I, Width=>4);
Ada.Text_IO.Put(Item => " ");
Ada.Float_Text_IO.Put(Item «> X(I), Fore=>5, Aft=>2, Exp=>0);
Ada.Text_IO.Put(Item => " ");
Ada.Float_Text_IO.Put(Item => X(I)-Average, Fore=>5, Aft=>2, Exp=>0);
Ada. Text_IO. New_^Line;

END LOOP;

is used to display a table showing each array element, x (i), and the difference between
that element and the average value, x (i) - Average.

The program firagment

Sum := 0.0; — Initialize SUM
FOR I IN Index LOOP

Sum Sum -i- X(I); — Add each element to SUM
END LOOP;

accumulates the sum of all eight elements of array x in the variable sum. Each time the
FOR loop is repeated, the next element of array x is added to sum. The execution of this
program fragment is traced in Table 9.3 for the first three repetitions of the loop.

Table 9.3 Partial Trace of FOR Loop of Program 9.8

Statement Part i x(i) sum Effect

Sum:= 0; 0 Initializes sum

FOR I IN Index LOOP 1 16.0 Initializes i to 1

Sum ;= Sum + X(I) 16.0 Add x( 1) to Sum

increment and test I 2 12.0 2 <» 8 is true
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Statement Part X(I) Sum Effect

Sum ;=« Sum + X(I)

increment and test I

Sum ;= Sum + X(I)

28.0 Add x(2) to Sum

6.0 3 <= 8 is true

34.0 Add x(3) to Sum

PROGRAM

STYLE

In Program 9.8 the subscripted variable X(i) is an actual parameter for the float
ing-point Get and Put procedures. It is always necessary to read data into an array one
element at a time as shown in this example. In most instances it is also necessary to dis
play one array element at a time.

Designing Arrays for Expansion and Reuse

The constant Maxitems and subtype index are used throughout Program 9.8 to
represent the subscript range of the array. This enables us to extend the program
easily to handle more items by just changing the constant value and recompiling
the program. Nothing else in the program needs to be changed.

EXERCISES FOR SECTION 9.6

Self-Check

1. Describe the effect of each statement in Table 9.2, assuming that I is 5.

2. If an array is declared to have ten elements, must the program use all ten of
them?

3. The following sequence of statements changes the initial contents of array x
displayed in Fig. 9.3. Describe what each statement does to the array and show
the final contents of array x after all statements execute.

I  :«= 3;

X(I) ;= X(I) + 10.0;

X(I - 1) := X(2 * I - 1);

X(I + 1) := X(2 * I) + X(2 * I + 1);

FOR I IN 5 .. 7 LOOP

X(I) := X(I + 1);
END LOOP;

FOR I IN REVERSE 1..3 LOOP

X(I + 1) := X(I);
END LOOP;
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Write program statements that will do the following to array x shown in Fig.
9.3.

a. Replace the third element with 7.0.

b. Copy the element in the fifth location into the first one.

c. Subtract the first element from the fourth and store the result in the fifth

one.

d. Increase the sixth element by 2.

e. Find the sum of the first five elements.

f. Multiply each of the first six elements by 2 and place each product in an
element of the array Answer Array.

g. Display all even-numbered elements on one line.

9.7 Problem Solving: Using Arrays

Sequential Versus Random Access to Arrays

The same array can be processed in sequential order and in random order. Often, we
need to manipulate all elements of an array in some uniform manner (as in Program
9.8). In situations like this it makes sense to process the array elements in sequence
(sequential access), starting with the first and ending with the last. This is usually
accomplished by using a for loop whose loop control variable is also the array sub
script.

Suppose the program represented the total sales of each of eight different products.
In that case, in a second part of the program we might want to modify a specific value
to account for additional sales. We might prompt the user for a product number (1-8 in
this case) and an amount, then select just that array element for processing. This is
called random access because the order is not predictable beforehand.

Copying and Comparing Arrays

A third way of manipulating an array—accessing the entire array at once—is provided
by the assignment (;=), equality (=), and inequality (/=) operations. As in the case of
records, it is possible to assign the entire contents of one array to another array pro
vided that the arrays are compatible. Arrays follow the same compatibility rules as sca-
lars and records do: Two arrays are compatible if their type names are identical or they
are subtypes of the same type. Given the declarations

MaxSize : CONSTANT Positive := 100;

SUBTYPE Index IS Positive RANGE 1..MaxSize;
TYPE TestArray IS ARRAY (Index) OF Float;
W : TestArray;
X : TestArray;
Y ; TestArray;
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the assignment statement

X := Y;

copies each value in array y to the corresponding element of array x (i.e., y( i) is copied
to X (1), Y(2) to X (2), etc.). Furthermore, the use of = and /= in the fragment

IF X = Y THEN

Ada.Text_I0.Put(Item => "Arrays X and Y are equal");
ELSIE W /= Y THEN

Ada.Text_I0.Put(Item => "Arrays W and Y are unequal");
END IF;

is quite correct. The additional declaration

Z  ; ARRAY (Index) OF Float;

happens to be correct Ada, although we recommend against its use. z is declared
directly as an array mstead of as a variable of an array type as x and y were. The Ada
compiler, which tries to establish the type name of every variable, will give z an inter
nal type name, which our program cannot know. The assignment statements

Z  := Y;

X ;= Z;

— invalid array copy
— invalid array copy

and the if fragment

IF Z = X THEN ..

are illegal and result in compilation errors. Even though array z has the same structure
as arrays x and y, the type of array z is anonymous and is not compatible with the type
of arrays x and y (type TestArray). Note that the elements of z are compatible with the
elements of x and y (they are all Float), and therefore assignments such as

Z(3) := Y(5);
X(9) := Z(l);

and comparisons such as

IF X(9) = Z(l) THEN...
IF Y(3) /= Z(5) THEN ...

are legal.

PROGRAM

STYLE
Avoiding Anonymous Array Types

Because using anonymous (unnamed) array types causes difficulties with array
assignment and comparison, the use of anonymous (unnamed) types should be
avoided, and we avoid it in this book.
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Arrays as Parameters

The rules for manipulating array parameters in a procedure are similar to those for
manipulating scalar parameters: in parameters may not be altered by the procedure.

The next two examples illustrate the use of arrays as parameters assuming the fol
lowing declarations:

MaxSize ; CONSTANT Positive := 5;
SUBTYPE Index IS Positive RANGE 1..MaxSize;
TYPE TestArray IS ARRAY (Index) OF Float;
X, Y, Z : TestArray;

■ Example 9.10

Although it is possible to use a single assignment statement to copy one array to
another, no arithmetic on entire arrays is defined in Ada. For example, the assignment
statement

Z  := X + Y; — illegal addition of arrays

is invalid because Ada has no predefined operator + that acts on array operands. Proce
dure AddArray in Program 9.9 can be used to add two arrays of type TestArray.

Program 9.9 Procedure AddArray

PROCEDURE AddArray (A, B : IN TestArray; C : OUT TestArray) IS
— Pre: A(I) and B(I) (I in range Index) are assigned values
— Post: C(I) ;=A(I) +B(I) (I in range Index).

BEGIN -- AddArray

— Add corresponding elements of each array
FOR I IN Index LOOP

C(I) := A(I) + B(I);

END LOOP;

END AddArray;

The parameter correspondence established by the procedure call statement

AddArray (A => X, B => Y, c => Z);
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Main program data area Procedure data area

array x

1.5 2.2 3.4 5.1 6.7

array Y

2.0 4.5 1.3 4.0 5.5

-array z

? ? ? ? ?

Formal parameters

---->■ array A

1.5 2.2 3.4 5.1 6.7

2.0 4.5 1.3 4.0

in
ni

array c

Local variable

I

Figure 9.8 Parameter Correspondence for AddArray(X, Y, Z)

is shown in Fig. 9.8.
Formal parameter arrays a and b in the procedure correspond to actual arrays x and

y; formal parameter array c corresponds to actual array z. The procedure results are
stored in array z. After execution of the procedure, z (i) will contain the sum of x (i)
and Y(1), or 3.5; z (2) will contain 6.7, and so on. Arrays x and y will be unchanged. ■

More on the Rules of Parameter Passing
Recall from Section 7.5 that the values of actual scalar in out parameters are always
copied into the corresponding formal parameters in the procedure's data area and that
all the OUT and in out results are copied back into the calling program just before the
procedure terminates normally and returns to the caller. The rules for strucmred param
eters are somewhat different. The Ada standard allows structured parameters to be cop
ied, as for scalars, but also allows them to be passed more efficiently, simply by
copying the address of the actual parameter into the location of the corresponding for
mal parameter in the subprogram's data area. The Ada compiler writer can choose
which method to use.

If the latter method (usually called call by reference) is used, a modification to an
IN OUT parameter will be effective immediately in the calling program, instead of wait
ing until the procedure returns to its caller. This is because in the latter method, the for
mal parameter and the actual parameter refer to exactly the same set of locations. Why
are the rules different for the scalar and structured cases?

Suppose that an exception is raised in the execution of the procedure and is not
handled by an exception handler in that procedure. Ada requires that the procedure ter
minate abnormally and that the exception be propagated (passed back) to the calling
program, which could then handle it with its own handler. In this case the scalar out or
IN OUT parameters will not be copied back, because the procedure didn't terminate nor-
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mally. This is usually a good thing: The program writer is sure that the original param
eter values, not the new ones, remain in the calling program if the procedure does not
run to normal completion.

Why not do the same thing with array and record parameters? Arrays and records
can be large, and so copying them to and from subprograms could lake a large amount
of time and space. Ada therefore gives the compiler the option of just passing the
address of a structured parameter. Most Ada compilers pass structured parameters by
reference; some compilers pass small ones by copying and large ones by reference to
try to get the best of both worlds. Although in theory a user does not know which
method is being used, it is reasonably safe to assume that a compiler will use reference
passing for large structured parameters, and therefore:

• There is no large time or space penalty in using arrays or records as parameters.

•  It is wise to assume that, if a subprogram propagates an exception back to the call
er, some of the actual parameters may have new values but others may not. It is
certain, however, that by the time a procedure returns normally—no exception is
raised, or at least it is successfully handled within the procedure—all the parame
ters will have acquired their new values.

■ Example 9.11

Procedure Exchange in Program 9.10 exchanges the values of its two type Float
parameters.

Program 9.10 Procedure Exchange

PROCEDURE Exchange (P, Q ; IN OUT Float) IS
— Exchanges the values of P and Q.

— Pre: P and Q are assigned values.
— Post: P has the value passed into Q and vice-versa.

Temp : Float; — temporary variable for the exchange

BEGIN — Exchange

Temp := P;

P := Q;

Q := Temp;

END Exchange;

The procedure call statement

Exchange (X(l), X(2));
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Main program data area
Procedure data area

Formal parameters

Array X

Figure 9.9 Parameter Correspondence for Exchange(X(l ),X(2))

uses this procedure to exchange the contents of the first two elements (type Float) of
array x. The actual parameter x(i) corresponds to formal parameter p; the actual
parameter x(2) corresponds to formal parameter q. This correspondence is shown in
Fig. 9.9 for the array x.

It is not permitted to use a subscripted variable as a formal parameter. For example,
the procedure declaration

PROCEDURE Exchange ( X(i), X(j) : IN OUT Float);

would cause a compilation error. ■

PROGRAM

STYLE
Choosing the Best Parameter Mode

It is very important to keep in mind that all Ada compilers pass all scalar parame
ters by copying, and most compilers pass structured parameters by reference,
regardless of their mode. This is quite different from the rules of other languages,
especially Pascal.

In Pascal, programmers often pass arrays by reference (var parameters) to
save time and space, even if the array is not going to be modified and is used as a
read-only parameter. Therefore programmers who have Pascal experience often
think that they should pass all Ada arrays as in out to be sure they are passed by
reference. This is a misunderstanding that leads to poor design. In Ada, arrays are
(almost always) passed by reference even if they are in parameters, and scalars
are never passed by reference even if they are in out.

Because of this rule, there is absolutely no efficiency gain in passing an array
as an in out parameter when its use is as an in parameter. It is therefore best to
choose the parameter mode that best describes the use of the parameter, not the
method by which it is passed.
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EXERCISES FOR SECTION 9.7

Self-Check

1. When is it better to pass an entire array of data to a procedure rather than indi
vidual elements?

2. When is a copy of an entire array made for an array that is a function proce
dure parameter? What happens to the copy after the procedure executes?

3. Is it acceptable to modify, within a function, an element of an array that is
passed as a parameter to that function? What about a procedure?

4. Given the following declarations:

A: ARRAY(1..5) OF Integer;

B: ARRAY(1..5) OF Integer;
C, D: ARRAY(l..5) OF Integer;

TYPE List IS ARRAY (1..5) OF Integer;

E: List;
F: List;

G, H: List;

Explain why each of the following statements is valid or invalid:

A ;= B;

C  := D;

E := F;

G := H;

Programming

1. Write a procedure that assigns a value of True to element i of the output array
if element i of one input array has the same value as element i of the other in
put array; otherwise, assign a value of False. If the input arrays have subscript
type indexType, the output array should have the following type:

TYPE BoolArray IS ARRAY(IndexType) OF Boolean;
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9.8 Problem Solving: Reading Part of an Array

Usually, we don't know exactly how many elements there will be in an array. For exam
ple, if we are processing exam scores, there might be 150 smdents in one class, 200 in
the next, and so on. In this situation we can declare an array that will accommodate the
largest class. Only part of this array will actually be processed for a smaller class.

■ Example 9.12

The array scores declared below can accommodate a class of up to 250 students. Each
array element can contain an integer value between 0 and 100.

MaxSlze : CONSTANT Positive ;= 250j
MaxScore : CONSTANT Positive := 100;
SUBTYPE Classlndex IS Positive RANGE l..MaxSize;
SUBTYPE ClassRange IS Natural RANGE O..MaxSize;
SUBTYPE ScoreRange IS Natural RANGE 0..MaxScore;
TYPE ScoreArray IS ARRAY (Classlndex) OF ScoreRange;

Scores : ScoreArray;

ClassSize : ClassRange;

Procedure ReadScores in Program 9.11 reads up to 250 exam scores. It displays a
warning message when the array is filled. The actual number of scores read is returned
as the value of classSize.

Program 9.11 Procedure ReadScores

PROCEDURE ReadScores (Scores : OUT ScoreArray;
ClassSize : OUT ClassRange) IS

— Reads an array of exam scores (Scores)
— for a class of up to MaxSize students.
— Pre : None

— Post: The data values are stored in array Scores.
The number of values read is stored in ClassSize.

Sentinel : CONSTANT Integer := -1; — Sentinel value
TempScore : Integer; — Temporary storage for a score

BEGIN

Ada.Text_IO.Put
(Item => "Enter next score after the prompt or -1 to stop.");

Ada.Text_IO.New_Line;

ClassSize ;= 0; — initial class size
— Read each array element until done.
LOOP

Robust_lnput.Get(Item => TempScore,
MinVal => Sentinel,
MaxVal => ScoreRange'Last);

EXIT WHEN (TempScore = Sentinel) OR (ClassSize = MaxSize);
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ClassSlze ClassSize + 1;
Scores(ClassSize) s= TempScore; — Save the score

END LOOP;

IF ClassSize = MaxSize THEN

Ada. Text__IO. Put (Item => "Array is filled.");
Ada.Text 10.New Line;

END IF; ~

END ReadScores;

In any subsequent processing of array scores, the variable classsize should be
used to limit the number of array elements processed. Only the subarray with subscripts
1. .ClassSize is defined. All array elements with subscripts larger than classsize are
still undefined and should not be manipulated, ciasssize should be passed as a param
eter to any procedure that processes the partially filled array. ■

EXERCISES FOR SEaiON 9.8

Self-Check

1. In procedure ReadScores, what prevents the user from entering more than
MaxSize scores?

2. What is the range of data values that can be entered? What is the range of data
values that can be stored in the array?

3. Why can't we use a for loop instead of a general loop in procedure Read-
scores?

9.9 Data Structures: Interesting Array Examples

As we have seen, in Ada the subscript type of an array can be any discrete type or sub
type. A number of different array types are described in Table 9.4.

Table 9.4 Some Array Types and Applications

Application

Storing a person's name, up to ten letters

Declarations

SUBTYPE NameLength IS Positive RANGE 1..10;
TYPE NameArray IS ARRAY(NameLength) OF Character;
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Name : NameArray;

Example
Name(1) := •A';

Application

Storing Fahrenheit temperatures corresponding to -10 through 10 degrees Celsius

Declarations

SUBTYPE CelsiusRange IS Integer RANGE -10..10;
TYPE TemperatureArray IS ARRAY(CelsiusRange) OF Float;
Fahrenheit : TemperatureArray;

Example
Fahrenheit(-10) 14.0;

Application

Storing the number of times each capital letter occurs

Declarations

SUBTYPE Uppercase IS Character RANGE 'A'..'Z';
TYPE LetterCountArray IS ARRAY(Uppercase) OF Natural;
LetterCount : LetterCountArray;

Example
LetterCount('A') ;= 0;

Application

Storing a set of flags indicating which letters occurred and which did not

Declarations

SUBTYPE Uppercase IS Character RANGE 'A'..'Z';
TYPE LetterFoundArray IS ARRAY(Uppercase) OF Boolean;
LetterFound ; LetterFoundArray;

Example
LetterCount('X') := False;

^plication

Storing the number of True answers and False answers to a quiz

Declarations

TYPE AnswerArray IS ARRAY(Boolean) OF Natural;
Answers : AnswerArray;

Example
Answers(True) 15;
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The array Name has 10 elements and can be used to store the letters of a person's
name. The array Fahrenheit has 21 elements and can be used to store the Fahrenheit
temperature corresponding to each Celsius temperature in the range -10 though 10
degrees Celsius. For example, Fahrenheit(O) would be the Fahrenheit temperature,
32.0, corresponding to 0 degrees Celsius. Arrays Lettercount and LetterFound have
the same subscript type (i.e., the uppercase letters) and will be discussed in Example
9.14. The array Answers has only two elements with subscript values False and True.

■ Example 9.13

The array Monthsaies, declared below, could be used to keep track of the amount of
sales in each month. The subscript type is simpie^Dates.Months, so the subscript val
ues are the constants Jan to Dec.

TYPE SalesArray IS ARRAY (Simple_Dates.Months) OF Float;
CurrentMonth : Simple_Dates.Months;
MonthSales : SalesArray;
CurrentSales : Float;

The element type of SalesArray is given as Float, which can be negative. This is
appropriate because in an unusually bad month, the value of returned goods can exceed
that of newly sold goods, so the net sales can be negative. The aggregate assignment

MonthSales := {OTHERS => 0.0);

initializes this array to all zeros. The statement

MonthSales(CurrentMonth) :» MonthSales(CurrentMonth) + CurrentSales;

adds the value of currentsales to the element of MonthSales selected by the subscript
CurrentMonth. I

■ Example 9.14

The arrays Lettercount and LetterFound described in Table 9.4 have the subscript
type Uppercase. Hence there is an array element for each uppercase letter. Letter-
count ( 'A') could be used to count the number of occurrences of the letter a in a line;
LetterFound('A') could be used to indicate whether or not the letter a occurs. If the
letter a occurs, LetterFound('A') would be True; otherwise, LetterFound('A')
would be False.

Program 9.12 uses the arrays Lettercount and LetterFound described above to
display the number of occurrences of each letter in a line of text. The case of the letter
is ignored (e.g., ■ t • and ♦ t • are considered the same letter). Only counts greater than 0
are printed.
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Program 9.12 Concordance Program

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Ada.Characters.Handling;
PROCEDURE Concordance IS

Finds and displays the nmnber of occurrences of each letter.
The case of each letter is immaterial. Letters with counts

of zero are not displayed.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

Sentinel : CONSTANT Character := '.';

SUBTYPE Uppercase IS Character RANGE ■A' .. 'Z' ;
SUBTYPE Lowercase IS Character RANGE ■a'.. 'z';
TYPE LetterCountArray IS ARRAY (Uppercase) OF Natural;
TYPE LetterFlags IS ARRAY (Uppercase) OF Boolean;

LetterCount : LetterCountArray; — array of counts
LetterFound ; LetterFlags; — array of flags
NextChar : Character; — each input character

BEGIN — Concordance

— Initialize LetterCount
LetterCount := (OTHERS «=> 0); — Initialize counts
LetterFound := (OTHERS => False); — Initialize flags

— Read and process each data character.
Ada.Text^IO.Put(Item => "Enter a line of text ending with a period.");
Ada.Text_IO.New_Line;

LOOP
Ada.Text_IO.Get(Item => NextChar);

— Increment the count for this character, if it is a letter
IF NextChar IN Uppercase THEN

LetterCount(NextChar) := LetterCount(NextChar) + 1;
LetterFound(NextChar) := True;

ELSIF NextChar IN Lowercase THEN
NextChar :° Ada.Characters.Handling.To_Upper(NextChar);
LetterCount(NextChar) := LetterCount(NextChar) + 1;
LetterFound(NextChar) := True;

END IF;
EXIT WHEN NextChar = Sentinel;

END LOOP;

— Display counts of letters that are in the line.
Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Letter Occurrences");
Ada.Text_IO.New_Line;
FOR WhichChar IN Uppercase LOOP

IF LetterFound(WhichChar) THEN
Ada.Text_IO.Put(Item => " ");
Ada.Text_IO.Put(Item => WhichChar);
Ada.Integer_Text_IO.Put
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(Item => LetterCount(WhichChar), Width -> 16);
Ada.Text_IO.New_Line;

END IF;

END LOOP;

END Concordance;

Sample Run

Enter a line of text ending with a period.
This is a test of the concordance program.

Letter Occurrences

A  3

C  3

D  1

E  3

F  1

G  1

H  2

I  2

. M 1
N  2

0  4

P  1

R  3

S  3

T  4

In Program 9.12 the array LetterFound is not really needed and was included in
the example mainly to show an application of an array of Booleans. The condition

LetterFound(Nextchar)

could be written just as easily as

LetterCount(Nextchar) > 0

Writing the condition in this way would eliminate the need for the second array. ■

EXERCISES FOR SECTION 9.9

Self-Check

1. Describe the following array types, assuming that indexType is a subtype of
Integer with range -5-5;

a. ARRAY (1..2 0) OF Character;

b. ARRAY ('0'..'9'> OF Boolean;

C. ARRAY(IndexType) OF Float;
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d. ARRAY (Boolean) OF Character;

e. ARRAY (Character) OF Boolean;

Provide array type definitions for representing the following:

a. The areas associated with each room in a group of rooms (living room,
dining room, kitchen, etc.).

b. The number of students in each grade of an elementary school.

c. A letter associated with each color in a collection of colors. This letter will

be the first letter of the color name.

9.10 Problem Solving: Searching and Sorting an Array

In this section we will discuss two common problems in processing arrays: searching
an array to determine the location of a desired value and sorting an array to rearrange
the array elements in sequence. As an example of an array search, we might wish to
search the array of exam scores read in by procedure Readscores (see Section 9.8, Pro
gram 9.11) to determine which student, if any, got a particular score. An example of an
array sort would be rearranging the array elements so that they are in increasing (or
decreasing) order by score.

Searching an Array

We repeat the type definitions used in Section 9.8 for convenience here:

MaxSize : COMSTAMT Positive 250;
MaxScore : CONSTANT Positive 100;
SUBTYPE Classlndex IS Positive RANGE 1..MaxSize;
SUBTYPE ClassRange IS Natural RANGE 0..MaxSize;
SUBTYPE ScoreRange IS Natural RANGE 0..MaxScore;
TYPE ScoreArray IS ARRAY (Classlndex) OF ScoreRange;

Scores : ScoreArray;

ClassSize : ClassRange;

We can search an array for a particular score (called the search target) by examining
each array element and testing to see whether it matches the target score. If a match
occurs, we have found the target and can return its subscript as the search result. If a
match does not occur, we should continue searching until either we get a match or we
test all array elements. The input data requirements for a search function are as follows:

Scores : ScoreArray — the array to be searched
ClassSize : ClassRange — the number of elements in Scores
Target : ScoreRange — the score being searched for

The function result is the subscript of the first element containing Target, or zero if
Target was not found. The algorithm for searching the an*ay is:
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Algorithm for Search
1. Start with the first array element.

2. LOOP

EXIT WREN the current element is the last element

OR the current element matches the target

3. Advance to the next element.

END LOOP;

4. IF the current element matches the target then

5. Return its subscript.

ELSE

6. Return zero.

END IF;

The loop in step 2 compares each array element to the target. Loop exit occurs if
there is a match or if the element being tested is the last element. After loop exit, the if
statement defines the function result by repeating the last comparison. Program 9.13
shows function search. The function uses a local variable currentscore to control the

loop. This variable must be able to go temporarily "out of range" to ciasssize+i if the
array is full and the target is not present. To avoid a constraint error in this situation,
Currentscore is of type Integer.

Program 9.13 Function Search

FttNCTION Search (Scores: ScoreArray; ClassSize: ClassRange;
Target: ScoreRange) RETURN ClassRange IS

— Searches for Target in array Scores
— Pre : ClassSize and subarray Scores(1..ClassSize) are defined
— Post: Returns the subscript of Target if found;

otherwise, returns 0

Currentscore: Integer; — array subscript

BEGIN — Search

— Compare each value in Scores to Target until done
Currentscore := 1; — Start with the first record
LOOP

EXIT WHEN (Currentscore > ClassSize)
OR ELSE (Scores(Currentscore) = Target)

Currentscore := Currentscore +1; — advance to next score
END LOOP;

— Define the function result.

IF Currentscore <» ClassSize

AND THEN Scores (CurrentScore) =« Target THEN
RETURN Currentscore;

ELSE
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RETURN 0;

END IF;

END Search;

The loop condition compares the array element selected by currentscore to the
target. If they are equal, loop exit occurs. If they are unequal and the last element has
not been reached, currentscore advances to the next array element.

Loop exit occurs when the last element is reached or the target is found. Note that if
the array is full and the target is not present, currentscore will be ciasssize+i. We
must ensure that no attempt is made in this case to reference an array element, and
therefore the loop and if tests are written as short-circuit tests. After loop exit, the if
statement returns the subscript (currentscore) of the current element if Target was
found; otherwise, it returns zero.

Sorting an Array

In Section 7.5 we discussed a simple sort operation involving three numbers. We per
formed the sort by examining pairs of numbers and exchanging them if they were out
of order. There are many times when we would like to sort the elements in an array, for
example, to display a grade report in alphabetical order or in order by score. Let's
assume that we are interested in upward sorting, that is, the first element of the sorted
array contains the smallest value.

This section discusses a fairly intuitive (but not very fast) algorithm called the
selection sort. To perform a selection sort of an array with n elements (subscripts i. .n),
we locate the smallest element in the subarray with subscripts 2. .n and then switch this
smallest element with the element at subscript 1, thereby placing the smallest element
at position 1. Then we locate the smallest element remaining in the subarray with sub
scripts 3. .N, and switch it with the element at subscript 2, thereby placing the second
sm^est element at position 2. Then we locate the smallest element remaining in subar
ray 4. .n and switch it with the element at subscript 3, and so on.

Figure 9.10 traces the operation of the selection sort algorithm. The diagram on the
left shows the original array. Each subsequent diagram shows the array after the next
largest element is moved to its final position in the array. The subarray in the darker
color represents the portion of the array that is sorted after each exchange occurs. Note
that it will require, at most, n-i exchanges to place the smallest element of an array
with N elements. The algorithm follows.

PositionToFill = 1 PositionToFill PositionToFill = 3 PositionToFill = 4

45

23

15

34

23

45

15

34

23

45

34

15

Figure 9.10 Trace of Selection Sort
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Selection Sort Algorithm
1. FOR PositionToFill IN 1..N-1 LOOP

2. Find the smallest element in subarray PositionToFiii+i. .n.

3. IF the smallest element is not at subscript PositionToFill then

Switch the largest element with the one at subscript PositionToFill.

END IF;

END LOOP;

The refinement of step 2 also contains a for loop and is shown next.

Step 2 Refinement

2.1. Save PositionToFill as the position of the smallest so far in the subarray

2.2. FOR ItemToCompare IN PositionToFill+1..N LOOP

2.3. IF the element at itemTocompare is smaller than smallest so far then

Save ItemToCompare as the position of the smallest so far.

END IF;

END LOOP;

Continuing with our use of the scoreArraytype, procedure seiectsort in Program
9.14 implements the selection sort algorithm.

Program 9.14 Selection Sort Procedure

PROCEDURE Seiectsort

(Scores: IN OUT ScoreArray; ClassSize: IN ClassRange) IS
— Pre: Scores and ClassSize are defined

— Post: The first ClassSize elements of Scores

are sorted in ascending order

IndexOfMin: ClassRange;

BEGIN

FOR PositionToFill IN 1..ClassSize - 1 LOOP

— Find the element in subarray PositionToFill..ClassSize
— with largest Score
IndexOfMin t- PositionToFill;
FOR ItemToCompare IN PositionToFill + 1 .. ClassSize LOOP
IF Scores(ItemToCompare) < Scores(IndexOfMeoc) THEN

IndexOfMin := ItemToCompare;
END IF;

END LOOP;

IF IndexOfMin /= PositionToFill THEN

Exchange(Scores(PositionToFill),Scores(IndexOfMin));
END IF;
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END LOOP;

END SelectSort;

Local variable indexofMin holds the location of the smallest exam score found so

far in the current subarray. After each execution of the inner for loop, procedure
Exchange is called to exchange the elements with subscripts indexOfMin and Positi-
onToFiii, provided that the element at positionToFiii is not the smallest element.
After the execution of selectsort, the elements of the array scores are in increasing
order.

Analysis of Search and Sort: Big-0 Notation

There are many algorithms for searching and sorting arrays. Because arrays can have a
very large number of elements, the time that is required to process all the elements of
an array can become significant, so it is important to have some idea of the relative effi
ciency of different algorithms. It is difficult to get a precise measure of the performance
of an algorithm or program. For this reason we normally try to approximate the effect
on an algorithm of a change in the number of items, N, that it processes. In this way, we
can see how an algorithm's execution time increases with N, so we can compare two
algorithms by examining their growth rates.

For example, if we determine that the expression

2N^ + N-5

expresses the relationship between processing time and N, we say that the algorithm is
an 0(N^) algorithm where O is an abbreviation for Order of Magnitude. (This notation
is called Big-0 Notation) The reason that this is an 0(Ar) algorithm instead of an
OONP") algorithm or an OifP" + N - 5) is that we are interested in only the
fastest-growing term (the one with the largest exponent) and we ignore constants.

To search an array of N elements for a target, we have to examine all N elements
when the target is not present in the array. If the target is in the array, we only have to
search until we find it. However, it could be anywhere in the array, and it is equally
likely to be at the beginning of the array as at the end. So on average, we have to exam
ine NH array elements to locate a target value that is in an array. This means that an
array search is an 0{N) process, so the growth rate is linear.

To determine the growth rate of a sorting algorithm, we normally focus on the num
ber of array element comparisons that it requires. To perform a selection sort on an
array with N elements requires N - 1 comparisons during the first pass through the
array, iV- 2 comparisons during the second pass, and so on. Therefore the total number
of comparisons is represented by the series

l+2 + 3 + ... + (N-2) + (A^-l)

The value of this series is expressed in closed form as

(NxN-1) _ N

2  2 2

Therefore selection sort is an 0(N^) process and the growth rate is quadratic (propor
tional to the square of the number of elements).
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What difference does it make whether an algorithm is an 0(N) process or an 0(N^)
process? Table 9.5 evaluates N and for different values of N. A doubling of N causes

to increase by a factor of 4. Since N increases much more slowly with N, the perfor
mance of an OiN) algorithm is not as adversely affected by an increase in A'' as is an
OiN^) algorithm.

Table 9.5 Table of Values of N and

N

2 4

4 16

8 64

16 256

32 1024

64 4096

128 16384

256 65536

512 262144

In this book we will be using relatively small arrays in our programming, so algo
rithm performance is not a major concern. However, analyzing the performance of
algorithms is an important subject about which you will study a great deal as you
progress in your education, because knowing how to compute the expected Big 0 of an
algorithm can, for large arrays and other data structures, make the difference between
writing a program whose running time is acceptable and one that may run for weeks or
months.

CASE

STUDY SORTING AN ARRAY OF RECORDS

Our Study of arrays began with a statement that the element type of an array can be any
type, including a structured type like a record. In this section we consider how to sort
an array of records.

Declaring an Array of Records

We begin with a set of declarations similar to the ones in the previous section. The new
declarations define a subtype studentName as a string of (exactly) 20 characters, a type
scoreRecord as a record containing a student's name and a test score, and a type
scoreArray as an array of these records.

MaxSize ! CONSTANT Positive := 250;
MaxScore : CONSTANT Positive ;= 100;

SUBTYPE StudentName IS Stringt1..20);
SUBTYPE Classlndex IS Positive RANGE 1..MaxSize;
SUBTYPE ClassRange IS Natural RANGE 0..MaxSize;
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SUBTYPE ScoreRange IS Natural RANGE O..MaxScore;

TYPE-ScoreRecord IS RECORD

Name: StudentName;

Score: ScoreRange;

END RECORD;

TYPE ScoreArray IS ARRAY (Classlndex) OF ScoreRecord;

Scores : ScoreArray;

ClassSize : ClassRange;

These declarations mean that each element of scores is a record with two fields.

We can store values in an element of the array by combining subscripting with field
selection:

Scores(27).Name := "Jones, Mary ";
Scores(27).Score ;= 79;

Note that the string representing the name must be exactly 20 characters long, and
therefore we have included the extra blanks as required. Figure 9.11 shows a diagram
of this array structure, with the first three records occupied.

Scores(1)

Scores(2)

Scores(3)

Name
Array scores

Score

Scores(250)

80

70

75

Figure 9.11 An Array of Records
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Reading Records from a File

In fact, arrays of records are more often filled by reading fields from an external file.
Program 9.15 uses modified versions of Programs 9.10 and 9.14. The procedure
GetRecords assumes that a data file has been created, either by another Ada program or
by a human using a text editor. In this file, each line consists of a student name and a
score. In creating such a file, one must be careful to provide exactly 20 characters in the
student name. Assuming that the person who created this file was careful and that all
the data in the file are valid, the two fields in each student record are read from the file
by

Ada.Text__IO.Get(File => F, Item => Scores(WhichStudent).Name);
Ada.Integer_Text_IO.Get(File =»> F, Item => Scores(WhichStudent).Score);

Sorting the File of Records

Given the selectsort procedure from Program 9.14, sorting the file of records is easy.
Instead of using the "whole" array element as the key, or basis of comparison, the score
field of each array element is used. In the sort procedure itself, only a single line needs
to be modified: the line which compares two array elements needs to be changed to

IF Scores(ItemToCompare).Score < Scores(indexOfMax).Score THEN

After the execution of procedure seiectsort, the student records will be ordered
by exam score (record with smallest score first).

The revised version of selectsort appears as a procedure in Program 9.15, with
the necessary changes made to accommodate the fact that we are using a file of score
records instead of an array of scores.

Program 9.15 Sorting a File of Test Score Records

WITH Ada.Text_IO;
WITH Ada. Integer_^Text_IO;
WITH Simple_Dates;
PROCEDURE Sort_Score_File IS

— I Sorts and displays an array of test score records
— I The records are read from a file scorfile.dat
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

MaxSize : CONSTANT Positive := 250?
MaxScore : CONSTANT Positive :« 100;

SUBTYPE StudentName IS String(l..20);
SUBTYPE Classlndex IS Positive RANGE 1..MaxSize;
SUBTYPE ClassRange IS Natural RANGE 0..MaxSize;
SUBTYPE ScoreRange IS Natural RANGE 0..MeucScore;

TYPE ScoreRecord IS RECORD

Name: StudentName;

Score: ScoreRange;

END RECORD;
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TYPE ScoreArray IS ARRAY (Classlndex) OF ScoreRecord;

Scores : ScoreArray;
ClassSize : ClassRange;

PROCEDURE GetRecords

(Scores: OUT ScoreArray; ClassSize: OUT ClassRange) IS
— Pre: None

— Post: Scores contains records read from file; ClassSize
indicates the number of records read

TestScores: Ada. Text__IO.File_Type;
TempSize: ClassRange;
TempRecord: ScoreRecord;

BEGIN — GetRecords

— Open the file and associate it with the file variable name
Ada.Text_IO.Open
(File => TestScores, Mode => Ada.Text_IO.In_File,
Name => "scorfile.dat");

— Read each data item

— and store it in the appropriate element of Scores

TempSize O; — initial class size
— Read each array element until done.
LOOP

EXIT WHEN Ada.Text__IO.End_Of_File(TestScores) OR
TempSize « MaxSize;

Ada.Text_IO.Get(File => TestScores, Item => TempRecord.Name);
Ada.Integer_Text_IO.Get
(File => TestScores, Item => TempRecord.Score);

TempSize := TempSize + 1;
Scores(TempSize) :- TempRecord; — Save the score

END LOOP;

IF TempSize = MaxSize THEN
Ada.Text_IO.Put(Item => "Array is filled.");
Ada. Text_IO. New__Line;

END IF; "

ClassSize :« TempSize;

END GetRecords;

PROCEDURE Exchange(Student1, Student2: IN OUT ScoreRecord) IS
— Pre: Studentl and Student2 are defined

— Post: Studentl and Student2 are interchanged

TempRecord: ScoreRecord;

BEGIN

TempRecord := Studentl;
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Student1 := Student2;
Student2 TempRecord;

END Exchange;

PROCEDURE SelectSort

(Scores: IN OUT ScoreArray; ClassSize: IN ClassRange) IS
— Pre: Scores and ClassSize are defined

— Post: The records in the first ClassSize elements of Scores

are sorted in ascending order by score

IndexOfMin: ClassRange;

BEGIN

FOR PositionToFill IN 1..ClassSize - 1 LOOP

— Find the element in subarray 1..PositionToFill
— with largest Score
IndexOfMin := PositionToFill;

FOR ItemToCompare IN PositionToFill t 1 .. ClassSize LOOP
IF Scores(ItemToCompare).Score < Scores(IndexOfMin).Score THEN

IndexOfMin ItemToCompare;
END IF;

END LOOP;

IF IndexOfMin /=» PositionToFill THEN

Exchange(Scores(PositionToFill),Scores(IndexOfMin));
END IF;

END LOOP;

END SelectSort;

PROCEDURE DisplayScores
(Scores: IN ScoreArray; ClassSize: IN ClassRange) IS
— Pre: Scores and ClassSize are defined

— Post: dislays the first ClassSize records in Scores

BEGIN

FOR I IN 1..ClassSize LOOP

Ada. Integer_Text__IO. Put (Item => I, Width =>3);
Ada.Text_lO.Put(Item => " ");
Ada.Text_lO.Put(Item => Scores(I).Name);
Ada.lnteger_Text_^IO.Put(Item => Scores(I).Score, Width =>4);
Ada.Text_IO.New_Line;

END LOOP;

END DisplayScores;

BEGIN — Sort_Score_File

Ada.Text_IO.Put(Item => "Today is ");
Simple_Dates.Put(Item => Simple_Dates.Today);
Ada.Text_IO.New_Line;

GetRecords(Scores =■> Scores, ClassSize => ClassSize)
Ada.Text_IO.Put(Item => "Original Test File:");
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Ada.Text_IO.New_Line;
Ada. Text_^IO. New__Line;
DisplayScores(Scores '=> Scores, ClassSize -> ClassSize);

SelectSort(Scores => Scores, ClassSize => ClassSize);
Ada.Text_lO.New^Line;
Ada.Text_IO.Put(Item => "Sorted Test File;");
Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;
DisplayScores(Scores -> Scores, ClassSize ==> ClassSize);
Ada.Text_IO.New_Line;

EHD Sort Score File;

Sample Run

Today is SEP 6 1998
Original Test File;

1  Jones, Mary 75
2  Hubbard, Kathy 99
3  Andersen, Lars 80
4  Gribben, George 21
5  Rogers, Roy 34
6  Evans, Dale 76

7  VanDoren, Charles 100

Sorted Test File;

1  Gribben, George 21
2  Rogers, Roy 34
3  Jones, Mary 75
4  Evans, Dale 76

5  Andersen, Lars 80

6  Hubbard, Kathy 99
7  VanDoren, Charles 100

EXERCISES FOR SECTION 9.10

Self-Check

1. Another technique for searching an array is to introduce a program flag, say,
Found, that is initially False and is set to True inside a search loop if the target
value is found. Loop repetition continues as long as Found is still False and all
elements have not been tested. After loop exit, the value of Found determines
whether the current subscript or zero is returned as the function result. Write
the procedure body.

2. Trace the execution of the selection sort on the list below. Show the array after
each exchange occurs. How many exchanges are required? How many com
parisons?
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10 55 34 56 76 5

3. How could you get the scores in descending order (largest score first)? What
changes would be needed to sort the array class by student name instead of
score?

Programming

Write a procedure to count the number of students with a passing grade on the
exam (60 or higher).

Another method of performing the selection sort is to place the smallest value
in position 1, the next smallest in position 2, and so on. Write this version.

Modify Program 9.15 so that the array is sorted by the students' names instead
of by the test scores.

Combine procedures selectsort and Readscores, and function Search, into a
program to read a set of scores from a file, sort the array, and then determine
whether any student got a score of 75 on the test.

9.11 Tricks of the Trade: Common Programming Errors

When programmers use records, their most common compilation error is incorrectly
specifying the record field to be manipulated. The full field selector (record variable
and field name) must be used unless the entire record is to be manipulated. Copying
one record to another or comparison of two records can be done only if the two records
are of the same type. Passing a record as a parameter to a procedure or function can be
done only if the actual parameter has the same type as the formal one. When records
axe read, or written at the terminal, each field must be processed separately.

Similarly, in using arrays the most common compilation errors come from type
inconsistencies. Remember that two arrays must have the same type name to be
assigned or compared and that an array passed as an actual parameter must have the
same type as the formal parameter.

The most common run-time error when arrays are used is a conatraint_Error,
which is raised when the subscript value is outside the allowable range for the array
being processed. Most often, this error is caused by an incorrect subscript expression, a
loop parameter error, or a nonterminating loop. Before you spend considerable time
debugging, you should carefully check all suspect subscript calculations for
out-of-range errors. You can check most easily by inserting diagnostic output state
ments in your program to print subscript values that might be out of range.
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If an out-of-range subscript occurs inside a loop, you should make sure that the
loop is terminating properly. If the loop control variable is not being updated as
expected, the loop may be repeated more often than required. This could happen, for
example, if the update step came after the loop end statement or if the loop begin and
end were erroneously omitted.

You should also doublecheck the subscript values at the loop boundaries. If these
values are in range, it is likely that all other subscript references in the loop will be in
range as well. Using the form

FOR SubscriptVariable IN IndexType LOOP

instead of writing the bounds explicitly helps to ensure that the subscript variable stays
in bounds, because the loop body cannot modify it.

As with all Ada data types, make sure that there are no type inconsistencies. The
subscript type and element type used in all array references must correspond to the
types specified in the array declaration.

CHAPTER REVIEW

Summary

In this chapter we studied the record data structure. Records were shown to be useful
for organizing a collection of related data items of different types. We were able to cre
ate some very general data structures to model our "real-world" data organization
through the use of hierarchical records.

In processing records, we learned how to reference each individual component
through the use of a field selector consisting of the record variable name and field
name separated by a period.

Each individual component of a record must be manipulated separately in an input
or output operation or in an arithmetic expression. However, it is permissible to assign
one record variable to another record variable of the same type (record copy statement),
to compare two records of the same type for equality or inequality, and to pass a record
as a parameter to a procedure or function.

This chapter also introduced a data structure called an array, a convenient facility
for naming and referencing a collection of like items. We discussed how to declare an
array type and how to reference an individual array element by placing a subscript in
parentheses, following the array name.

The FOR statement enables us to reference easily the elements of an array in
sequence. We used for statements to initialize arrays, to read and print arrays, and to
control the manipulation of individual array elements in sequence.

New Ada Constructs in Chapter 8

The new Ada constructs that were introduced in this chapter are described in Table 9.6.
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Table 9.6 Summary of New Ada Constructs

Statement Effect

Record Declaration

SUBTYPE PartID IS

Positive RANGE 1111..9999;

TYPE Part IS RECORD

ID : PartID;

Quantity ; Integer;
Price ; Float;

END RECORD;

Nuts, Bolts : Part;

A record type Part is declared
with fields that can store two

integers and a float numl>er.
Nuts and Bolts are record

variables of type Part.

Record Reference

TotalCost := Nuts.Quantity * Nuts.Price;

Ada.Integer_Text_IO.Put(Item=>Bolts.ID);

Record Copy

Bolts := Nuts;

Record Aggregate Assignment

Bolts :=

(ID='>2234, Quantity=>53, Price=>0.09);

Multiplies two fields of Nuts.

Displays ID field of Bolts .

Copies record Nuts to Bolts.

Assigns values to all fields of
Bolts.

Record Compare

IF Nuts » Bolts THEN

Array Declaration

TYPE IntArray IS

ARRAY (1..10) OF Integer;

Cube, Count : IntArray

SUBTYPE Index IS Integer RANGE 0..10;

Name: ARRAY (Index) OF Character;

Array Reference

FOR I IN 1 .. 10 LOOP

Cube(I) ;= I * I * I;
END LOOP;

IF Cube(5) > 100 THEN

Ada.Integer_Text_IO.Put
(I teni=>Cube (1), Width=>5);

Ada.Integer_Text_IO.Put
(Item=>Cube(2),Width=>5);

Compares Nuts to Bolts.

The data type describes an
array with 10 type Integer ele
ments.

Cube and Count are arrays with
this structure.

The data type Index is a range
used as a subscript type

Name is an array of characters.

Saves I^ in the Ith element of
array cube.

Compares cube(5) to 100.

Displays the first two cubes.
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Statement Effect

Array Aggregate Assignment

Count :» (3=>29,5"=>17,OTHERS => 1); Sets all elements of Count to 1

exceptcount(3) and
Count(5).

Array Copy

Count i" Cube; Copies contents of array Cube
to array count.

Array Comparison

IF Count f- Cube THEN Compares each element of
Count to the corresponding
element of cube.

Quick-Check Exercises

1. What is the primary difference between a record and an array? Which would
you use to store the catalog description of a course? Which would you use to
store the names of students in the course?

2. What is a field selector?

3. When can you use the assignment operator with record operands? When can
you use the equality operator?

4. If Astudent is a variable whose type is the record type declared below, provide
a program segment that displays the initials of Astudent.

TYPE Student IS RECORD

First: String(1..20);
Last : String(1..20);
Age: Natural;
Score: Natural;
Grade : Character;

END RECORD;

5. How many fields are there in a record of type student?

6. If an Integer uses four bytes of storage and a character uses one byte, how
many bytes of storage are occupied by a variable of type student?

7. Write a procedure that displays a variable of type student.

8. What is a composite structure?

9. Which predefined types cannot be array subscript types? Array element types?

10. Can values of different types be stored in an array?

11. If an array is declared to have ten elements, must the program use all ten?
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12. When can the assignment operator be used with an array as its operands? An
swer the same question for tihe equality operator.

13. The two methods of array access are and .

14. The loop allows us to access the elements of an array in
order.

Answers to Quick-Check Exercises

1. The values stored in an array must all be the same type; the values stored in a
record do not have to be the same type. Record for catalog item; anay for list
of names.

2. Used to select a particular record field for processing.

3. When the records are the same type; when the records are the same type.

4. Ada. Text_IO. Put (Item='>AStudent. First (1));

Ada.Text_lO.Put (Item=>AStudent.Last(1));

5. 5

6. 49

7.

PROCEDURE WriteStudent (OneStu : Student) IS
BEGIN

Ada.Text_IO.Put (Item«>"Student is ");
Ada.Text_IO.Put (Item=>OneStu.First);
Ada.Text_IO.Put (Item=>' ');
Ada. Text_IO. Put (Itein»>OneStu. Last);
Ada.Text~IO.Put (Item»>"; age is ");
Ada.Integer_Text_IO.Put (Item => OneStu.Age, Width»>l);
Ada.Text_IO.Put (Item=>"; score is ");
Ada.Integer_Text_IO.Put (Item => OneStu.Score, Width=>l);
Ada.Text_IO.Put (Item=>"; grade is ");
Ada.Text_lO.Put (Item°>OneStu.Grade);
Ada.Text_IO.New_Line;

END WriteStudent;

8. A composite structure is a grouping of related values in main memory.

9. Float; all can be element types.

10. No.

11. No.

12. If the arrays are the same type.

13. Direct, and sequential

14. FOR, sequential.
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Review Questions for Chapter 8

1. Declare a newspaper subscriber record called Subscriber, which contains the
fields Name, streetAddress, Monthly Bill (how much the subscriber owes),
and which paper the subscriber receives (weekday, Sunday, or Both).

2. Write an Ada program to enter and then display the data in record competi
tion declared below:

StringSize: CONSTANT Positive 20;

TYPE OlympicEvent IS RECORD
Event: String(1..StringSize);
Entrant: String(1..StringSize);
Country : String(l..StringSize);
Place ; Integer

END RECORD;

Competition; OlympicEvent;

3. Declare the proper data structure to store the following student data: Grade
Point Average, Major, Address (consisting of StreetAddress, City, State, and
ZipCode) and ClassSchedule (consisting of up to six class records, each of
which has Description, Time, and Days fields). Use whatever data types are
most appropriate for each field.

4. Declare an array of floats called week that can be referenced by using any day
of the week as a subscript, where Sunday is the first subscript.

5. What are two common ways of selecting array elements for processing?

6. Write an Ada program segment to print out the index of the smallest and the
largest numbers in an array x of 20 integers with values from 0 to ICQ. Assume
array x already has values assigned to each element.

7. The parameters for a procedure are two arrays (type FioatArray) and an inte
ger representing the length of the arrays. The procedure copies the first array in
the parameter list to the other array in reverse order using a loop structure.
Write the procedure.

Programming Projects

1. A number expressed in scientific notation is represented by its mantissa (a
fraction) and its exponent. Write a procedure that reads two character strings
representing numbers in Ada scientific notation and stores each number in a
record with two fields. Write a procedure that displays the contents of each
record as a floating-point value. Also write a procedure that computes the sum,
product, difference, and quotient of the two numbers. (Hint: The string literal
"-0.1234E20" represents a number in scientific notation. The fraction -0.1234
is the mantissa and the number 20 is the exponent.)
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2. Write a program to read n data items into two arrays x and y of size 20. Store
the product of corresponding elements of x and y in a third array z, also of size
20. Display a three-column table showing the arrays x, Y, and z. Then compute
and display the square root of the sum of the items in Z. Make up your own da
ta, with N less than 20.

3. Assume for the moment that your computer has the very limited capability of
being able to read and display only single decimal digits at a time and to add
together two integers consisting of one decimal digit each. Write a program to
read in two integers of up to ten digits each, add these numbers together, and
display the result. Test your program on the following numbers:

X = 1487625

y = 12783

X = 60705202

y = 30760832

X = 1234567890

Y = 9876543210

{Hints: Store the numbers x and y in two arrays x and y of size 10, one decimal
digit per element (type character). If the number is less than 10 digits in
length, enter enough leading zeros (to the left of the number) to make the num
ber 10 digits long.

array X

[1] [2] 13] [4] [5] [6] [7] [8] [9] [10]
0 0 0 1 4 8 7 6 2 5

array Y

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
0 0 0 0 0 1 2 7 8 3

You will need a loop to add together the digits in corresponding array ele
ments, starting with the element with subscript 10. Don't forget to handle the
carry if there is one! Use a Boolean variable carry to indicate whether or not
the sum of the last pair of digits is greater than 9.)

4. Write a program for the following problem: You are given a collection of
scores for the last exam in your computer course. You are to compute the aver
age of these scores and then assign grades to each student according to the fol
lowing rule. If a student's score is within 10 points (above or below) of the
average, assign the student a grade of satisfactory. If the score is more than
10 points higher than the average, assign the student a grade of outstanding.
If the score is more than 10 points below the average, assign the student a
grade of unsatisfactory. {Hint. The output from your program should con
sist of a labeled three-column list containing the name, exam score, and grade
of each student.)
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5. It can be shown that a number is prime if there is no smaller prime number that
.divides it. Consequently, to determine whether N is prime, it is sufficient to
check only the prime numbers less than N as possible divisors. Use this infor
mation to write a program that stores the first 100 prime numbers in an array.
Have your program display the array after it is done.

6. The results of a survey of the households in your township have been made
available. Each record contains data for one household, including a four-digit
integer identification number, the annual income for the household, and the
number of members of the household. Write a program to read the survey re
sults into three arrays and perform the following analyses.

a. Count the number of households included in the survey and print a
three-column table displaying the data read in. (You may assume that no
more than 25 households were surveyed.)

b. Calculate the average household income, and list the identification number
and income of each household that exceeds the average.

c. Determine the percentage of households having incomes below the pover
ty level. The poverty level income can be computed using the formula

p = $6500.00 + $750.00 (m - 2)

where m is the number of members of each household. This formula shows

that the poverty level depends on the number of family members, m, and
that the poverty level increases as m gets larger.

Test your program on the following data:

Identification number Annual income Household members

1041 $12,180 4

1062 13,240 3

1327 19,800 2

1483 22,458 8

1900 17,000 2

2112 18,125 7

2345 15,623 2

3210 3,200 6

3600 6,500 5

3601 11,970 2

4725 8,900 3

6217 10,000 2

9280 6,200 1
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Chapter Review

This chapter contains two main topics—strings and text files—and shows how they are
used, as well as several ways in which they are related.

In this chapter you will see that a string is just an array of characters and that Ada
provides a number of special operations, such as slicing and concatenation, to deal with
strings. There are also some standard Ada 95 libraries to deal with character and string
translations and variable-length strings.

You will also see more examples of how to use files of data with your programs.
You will learn to enter program data from data files and to save program results on out
put files. Using data files frees you from having to reenter test data continually while
debugging a program. Using output files enables you to save output on disk rather than
to simply view it on the screen. Input and output redirection allows you to specify, on
the command line, the names of disk files to be used instead of the keyboard and the
screen.

Finally, you will learn about the Ada 95 commtind line package, which provides a
standard way to get input arguments from the operating system command line.

10.1 Data Structures: The String Data Type

Until now, we have used strings in Ada in a very intuitive way, without much system
atic consideration. In this section we will take a somewhat more systematic look at the
character string, an important data structure in many applications. Ada provides a pre
defined type string, which is a certain kind of array of characters. The basic ideas are
as follows:

429
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A string value is an array of characters, with a subscript range that must be a sub
type of Positive.

It is possible to assign or refer to a part, or slice, of a string.

String values can be compared and assigned like other Ada variables, but their
lengths must match exactly.

Strings can be concatenated, or "pasted together," to form longer ones.

Declaring a String Variable

The declarations

NameSize : CONSTANT Positive :<= 11;
SUBTYPE NameType IS String(1..NameSize);

provide for string values containing exactly 11 characters. Now the declarations

FirstName : NameType;
LastName : NameType;

allocate storage for two string variables.

Referencing Individual Characters in a String

We can manipulate individual characters in a string variable in the same way that we
manipulate individual elements of an array.

■ Example 10.1

The following program fragment reads 11 characters into string variable FirstName
and displays all characters stored in the string:

Ada.Text_IO.Put(Item => "Enter your first name and an initial,");
Ada.Text_IO.Put(Item ■=> " exactly 11 characters > ");

FOR I IN 1..NameSize LOOP
Ada.Text_IO.Get (Item => FirstName(I));

END LOOP;

Ada.Text_IO.Put (Item => "Hello ");
FOR I IN 1..NameSize LOOP

Ada.Text_IO.Put (Item => FirstName(I));
END LOOP;

Ada.Text_IO.Put(Item => ' ! ');
Ada.Text_IO.New_Line;

A sample run of this program segment is as follows:

Enter your first name and an initial, exactly 11 characters > Jonathon B.
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Hello Jonathon B.1

Eleven data characters are read into string variable FirstName after the prompt in
the first line is displayed. The string variable FirstName is

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J o n a t h o n B

The statements

FirstName(9) ;=
FirstName(10) := 's';

replace the contents of FirstName (9) (the blank character) and FirstName (lo) (capital
b) with the two characters shown above (an apostrophe and the letter s). The if state
ment

IF FirstName(I) = "• THEN
Ada.Text_IO.Put (Item => "possessive form");

END IF;

displays the message possessive form when the value of i is 9. ■

A Character Is Not Compatible with a One-Character String

■ Example 10.2

String variable onestring, declared below, is a string of length 1.

OneString : String(1..1);
NextCh : Character;

The assignment statements

OneString(1) :» NextCh;
NextCh := OneString(1);

are valid; they store a copy of Nextch in string onestring. However, the assignment
statements

OneString := NextCh;
NextCh := OneString;

are invalid; they cause a "type compatibility" compilation error. A string that happens
to be only one character long is still of a different type than a character! ■

Assigning, Comparing, and Displaying Strings

Besides manipulating individual characters in a string variable, we can manipulate the
string as a unit.
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■ Example 10.3

The assignment statement

LastName "Appleseed";

appean to store the string value Appleseed in the string variable LastName declared
earlier. This is not true, however: String assignment is correct only if the lengths of the
strings on both sides are exactly the same. Because Appleseed has only nine letters, the
assignment above might cause a warning at compilation time but would always cause
constraint_Error to be raised at execution time. If we add two blanks, the assignment
will go through as desired:

LastName "Appleseed

The contents of LastName is

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
A p p l e s e e d # #

where the # characters are used here only to give a visible picture of the blank.
The statements

Ada. Text_lO. Put (Item >=> LastName);
Ada.Text_lO.Put (Item => ');
Ada.Text_IO. (Item => PirstName);
Ada.Text_IO.New_Line;

display the output line

Appleseed , Jonathon B.

Note the two blanks following the last name!
As with other array types, we can copy the contents of one string variable to

another of the same length, and we can compare two strings of the same length. ■

■ Example 10.4

The statement

PirstName LastName;

copies the string value stored in LastName to PirstName; the Boolean condition

PirstName = LastName

is True after the assignment but would have been False before.

Reading Strings

Ada provides several Get procedures in Ada.Text_io for entering a string value.
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■ Example 10.5

The statement

Ada.Text__IO.Get(FirstNaine);

reads exactly 11 characters (including blanks, punctuation, and so on) into the string
variable FirstName. The data entry operation is not terminated by pressing the enter
key; if only five characters are entered before the enter is pressed, the computer simply
waits for the additional six characters! This is a common error made by many Ada
beginners, who think that their program is stuck when nothing seems to happen after
ENTER is pressed. In fact, the program is doing just what it was told: Read exactly 11
characters. It is not possible to read more than 11 characters into FirstName; the addi
tional characters just stay in the file waiting for the next Get call.

This is an unsatisfying way to read strings, since it provides no way to read a string
that is shorter than the maximum length of the string variable. A better way is to use the
Get_Line procedure in Ada. Text_io. ■

■ Example 10.6

Given a variable

NameLength : Natural;

the statement

Ada.Text_IO.Get_Line (Item => LastName, Last => NameLength);

tries to read 11 characters as before, but if enter is pressed before 11 characters are
read, reading stops. NameLength is used as an out parameter corresponding to
Get_Llne's formal parameter Last, and after the Get operation, NameLength contains
the actual number of characters read. If fewer characters are read than the string can
accommodate, the remaining characters in the string are undefined. ■

■ Example 10.7

Given the declarations

FirstNameLength : Natural;
LastNameLength : Natural;

the statements

Ada.Text__IO.Put(Item => "Enter your first name followed by CR > ");
Ada.Text_IO.Get_Line(Item => FirstName, Last => FirstNameLength);
Ada.Text_IO.Put(Item => "Enter your last name followed by CR > ");
Ada.Text_IO.Get_Line(Item => LastName, Last -> LastNameLength);
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can be used to enter string values into the string variables FirstName and LastName. Up
to 11 characters can be stored in FirstName and LastName. If the data characters

Johnny are entered after the first prompt and the data characters Appieseed are entered
after the second prompt, string FirstName contains

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
J o h n n y ? ? ? ? ?

and string LastName contains

(1) (2) (3) (4) (5) (6)
A p p l e s

(7) (8) (9) (10) (11)
e  e d ? ?

The variables FirstNameLength and LastNameLength contain 5 and 9, respec
tively. The statement

Ada.Text_I0.Put(Item => FirstName);

will display johnny followed by five blanks. ■

SYNTAX

DISPLAY

The first two syntax displays below appeared originally in Section 3.8; they are
repeated here for completeness. The third display specifies the Get__Line procedure.

Get Procedure (Character)

Form:

Ada.Text_10.Get (Item => variable );

Example:

Ada.Text_IO.Get (Item => Initiall);

Interpretation:

The next character pressed on the keyboard is read into variable (type Charac
ter). A blank counts as a character: ENTER does not.

SYNTAX

DISPLAY
Get Procedure (String)

Form:

Ada.Text_I0.Get (Item => variable );
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SYNTAX

DISPLAY

Example:

Ada.Text_IO.Get (Item => First_Name);

Interpretation:

Variable must be a variable of type string < low. .high), where I ̂  low > high.
Exactly high - low + 1 characters are rejd from the keyboard, enter does not
count as a character; the computer will wait until exactly the specified number of
characters are entered.

Get.Line Procedure

Form:

Ada.Text_IO.Get_Line (Item => variablel , Last => variable!) ,•

Example:

Ada.Text_IO.Get_Line
(Item => First_NaiQe, Last => NameLength);

Interpretation:

Variablel must be a variable of type string (low. .high), where 1 ̂  low ̂  high.
Get_Line attempts to read high - low + 1 characters. Reading stops if enter is
pressed. After the Get_Line operation, variablel contains the actual number of
characters read. If the string variable is only partially tilled by the operation, the
remaining characters are undefined.

String Slicing

The flexibility of string handling in Ada is enhanced by using string slicing. This is the
ability to store into, or extract, a slice, or section, of a string variable just by specifying
the bounds of the desired section.

■ Example 10.8

Given the string variables FirstName and LastName as above, the slices

FirstName(1..4)
LastName (5..11)

refer to the first through fourth characters of FirstName and the fifth through eleventh
characters of LastName, respectively. The statement

Ada.Text_IO.Put(Item => FirstName(1..FirstNameLength));

displays the string Johnny with no extra blanks. Given declarations

WholeNameLength : Natural;
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WholeName : String(1..24);

the statements

WholeNameLength FirstNameLength -f LastNameLength * 2;
WholeName(1..LastNameLength) :- LastName(1..LastNameLength);
HholeName(LastNameLength-t-l..LastNameLength-t-2)
WholeName(LastNameLength+S..WholeNameLength) :»
FirstName(1..FirstNameLength);

Ada.Text_IO.Put(Item => WholeName(1..WholeNameLength));

will store in WholeName, and display

Appleseed, Johnny

String Concatenation

One more string operation merits consideration here. The string concatenation operator
&, applied to two strings si and S2, concatenates, or "pastes together," its two argu
ments.

■ Example 10.9

The statement

S3 SI & S2;

stores in S3 the concatenation of si and S2. For the assignment to be valid, the length of
S3 still must match the sum of the lengths of si and S2; if it does not,
constraint_Error will be raised, as usual. Continuing with the name example above,
WholeName can be created more simply by using concatenation:

WholeNameLength := FirstNameLength + LastNameLength + 2;
WholeName(1..WholeNameLength) :»
LastName(l..LastNameLength) & " & FirstName(1..FirstNameLength);

Concatenation is an operation on strings that remms a string, so the result of a concate
nation can also be passed directly as a parameter, for example to Ada.Text_io.Put:

Ada.Text_IO.Put(Itero =>
LastName(1..LastNameLength) & " & FirstName(l..FirstNameLength)); H

CASE ^

STUDY GENERATING CRYPTOGRAMS

Problem Specification
A cryptogram is a coded message that is formed by substituting a code character for
each letter of an original message, usually called the plain text. The substitution is per
formed uniformly though the original message, that is, all A's might be replaced by Z,
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all B's by Y, and so on. We will assume that all other characters, including numbers,
punctuation, and blanks between words, remain unchanged.

Analysis
The program must examine each character in the message and replace each character
that is a letter by its code symbol. We will store the code symbols in an array code with
subscript range ('A'..'z*) and element type character. The character stored in
Code (' A') will be the code symbol for the letter • a •. This will enable us simply to look
up the code symbol for a letter by using that letter as an index to the array code.

Data Requirements

Problem Types
SUBTYPE Uppercase IS Character RANGE 'A'..'Z';

Problem Inputs
the array of code symbols (Code : array (Uppercase) of character)
the plain text message

Problem Outputs
the encrypted message or cryptogram

Design
The imtial algorithm follows.

Initial Algorithm
1. Read in the code symbol for each letter.

2. Read the plain text message.

3. Encode the message.

4. Display the cryptogram.

Step 1 Refinement

1.1 Display the alphabet.

1.2. FOR each uppercase letter loop

Read in the code symbol and store it in string code.

END LOOP;

step 3 Refinement

3.1 FOR each character in the message loop

32 IF it is a letter then

3.3 Convert to the corresponding code symbol.

END IF;

END LOOP;
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Test Plan
We leave the test plan as an exercise.

Implementation
Program 10.1 shows the implementation of the cryptogram generator.

Program 10.1 Cryptogram Generator

WITH Ada.Text_I0;
PROCEDURE Ciryptogram IS

Program to generate a cryptogram
Author: Michael B. Feldroan, The George Washington University
Last Modified: September 1998

SUBTYPE Letter IS Character RANGE 'A'..'Z';
TYPE CodeArray IS ARRAY (Letter) OF Character;

SUBTYPE Message IS String(1..60);

Code : CodeArray; — input - array of code symbols
PlainText ; Message; -- input - plain text message
CodedText : Message; — output - coded message

HowLong : Natural;

FUNCTION Cap (InChar : Character) RETURN Character IS
Pre: InChar is defined

— Post: if InChar is a lower-case letter, returns its upper-case
equivalent; otherwise, returns InChar unmodified

BEGIN — Cap

IF InChar IN 'a'..'z' THEN

RETURN Character'Val(Character'Pos(InChar)
- Character'Pos('a') + Character'Pos('A'));

ELSE

RETURN InChar;

END IF;

END Cap;

BEGIN — Cryptogram

Ada.Text_IO.Put(Item »> "Enter a code symbol under each letter.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
Ada.Text_IO.New_Line;

— Read each code symbol into array Code.
FOR NextLetter IN Letter LOOP

Ada.Text_IO.Get(Item => Code(NextLetter));
END LOOP;

Ada.Text_IO.Skip^Line;

— Read plain text message
Ada.Text_IO.Put(Item °> "Enter each character of your message.");
Ada.Text 10.New Line;
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Ada.Text_IO.Put(Item => "No more than 60 characters/ please.");
Ada. Text__IO. New_Line;
Ada.Text_IO.Put(Item => "Press RETURN after your message.");
Ada.Text_IO.New_Line;

— Display scale so user knows how many cheuracters
Ada.Text_IO.Put(Item => " 1 2 3" &

4  5 6");

Ada.Text_IO.New_Line;
Ada.Text IO.Put(Item => "123456789012345678901234567890" &

-123456789012345678901234567890");

Ada. Text_IO. New__Line;

Ada.Text_IO.Get_Line (Item => PlainText, Last => HowLong);

— Encode message by table lookup
FOR WhichChar IN 1..HowLong LOOP

IF Cap(PlainText(WhichChar)) IN Letter THEN
CodedText(WhichChar) :^ Code(Cap(PlainText(WhichChar)));

ELSE

CodedText(WhichChar) PlainText(WhichChar);
END IF;

END LOOP;

— Display coded message
Ada.Text_IO.Put (Itern -> CodedText(1..HowLong));
Ada.Text_IO.New_Line;

END Cryptogram;

Sample Run

Enter a code symbol under each letter.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

zyxwvutsrqponmlkj ihgfedcba
Enter each character of your message.
No more than 60 characters, please.
Press ENTER after your message.

1  2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890

The quick brown fox jumped over the lazy dogs
gsv jfrxp yildm ulc qfnkvw levi gsv ozab with

In the sample ran, the code symbol for each letter is entered directly beneath that
letter. Since a message is limited to 60 characters in length, the program displays a
scale, and each letter of the plain text message is entered below its position number.

Testing
The sample run gives one test; we leave the rest as an exercise.
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EXERCISES FORSECTIOM 10.1

Self-Check

1. Suppose that SI is •ABCDE',s2is 'FGHi',ands3 is declared as string (i.. 8)
and has a value 'pqrstuvw'. Explain what will happen as a result of each of
these assignments:

S3 SI & S2;
S3 := Sl(2..4) & S2;
S3(1..5) :«= S3(4..8);

2. Why is a space or a comma not encoded in program cryptogram?

Programming

1. Make changes to the cryptogram program to encode the blank character and
the punctuation symbols and ..

2. Write a procedure that stores the reverse of an input string parameter in its out
put parameter (for example, if the input string is 'happy ', the output
string should be • yppah •.) The actual length of the string being reversed
should also be an input parameter.

3. Write a program that uses the procedure in Programming Exercise 2 to deter
mine whether or not a string is a palindrome. (A palindrome is a string that
reads the same way from left to right as it does from right to left—for instance,
'Level • is a palindrome.)

10.2 System Structures: Ada 95 Character and String Packages

Ada 95 provides several standard packages for dealing with characters and vari
able-length strings; these offer a rich collection of operations for text processing.

To cover the Ada 95 string packages here in much detail would go beyond our
available space. Instead, we give a summary of the capabilities, referring the reader to
vSection A.4 of the Ada 95 Reference Manual.

Type Character

In Ada 83 the type character is defined in terms of the 128-character ASCII code. In
Ada95, Character is given a more international flavor; this type is defined in terms of
the Latin-1 character set, which has 256 values and allows for the additional letters
used in non-English languages, such as the French k, the German ii, and the Scandina-
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vian S.. Since the first 128 characters are the same as in the familiar ASCII, the change
causes few problems for most work in English. This was discussed in Section 8.5,
along with the package Ada.characters.Handling.

AdaStrings, Ada.Strings.Maps, and Ada.Strings.Fixed

Ada.Strings provides a number of interesting child packages for dealing with text pro
cessing and encoding. We show only a very small selection here.

Ada.Strings.Maps provides a set of types and functions used for creating sets of
characters and translating between them. For example, if m is of type Ada.strings.
Maps. CharacterjMapping and C is of type Character,

M := Ada.Strings.Maps.To_Mapping(From => "ABCD", To => "PQRS");

returns in M a mapping that maps - a- into 'P', 'B' into 'Q', 'C into -R'.and 'D' into
•s •. All other characters—the ones not named in the mapping—are mapped into them
selves. The statement

C  Ada.Strings.Maps.Value(M, '0');

returns • s • to the variable c; the statement

C  Ada.Strings.Maps.Value(M, '6');

returns 'g* to the variable c, that is, it makes no change.
Ada.Strings.Fixed provides a large number of search, delete, replace, trim, and

other operations on normal Ada fixed-length strings such as we have been studying
here.

One useful function. Translate, translates an entire string into another string using
the character mappings from Ada.strings.Maps. For example, if si is a ten-character
string containing "abc 123 od" , and S2 is a ten-character string, the statement

S2 := Ada.Strings.Fixed.Translate(Source =>> SI, Mapping M);

returns "pqr 123 ss" to S2.

These functions make it easy to develop translators such as the cryptogram pro
gram. As an example. Program 10.2 shows a modified cryptogram program that uses
many of the facilities described in this section.

Program 10.2 Cryptogram Using Ada 95 Facilities

WITH Ada.Text_lO;
WITH Ada.Characters.Handling;
WITH Ada.Strings.Maps;
WITH Ada.Strings.Fixed;
PROCEDtJRE Cryptogram_2 IS

Program to generate a cryptogram, using Ada 95 facilities
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998
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SUBTYPE Message IS String<l..60);

Code I String(1..26); — input - string of code symbols
PlainText i Message; — input - plain text message

CodedText : Message; — output - coded message

CodeMap : Ada.Strings.Maps.Character_Mapping;
HowLong : Natural;

BEGIN — Cryptogram__2

Ada.Textile.Put(Item => "Enter a code symbol under each letter.");
Ada.Text_IO.New_Line;
Ada.Text~IO.Put(Item »> "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
Ada.Text_IO.New_Line;

— Read code string from terminal, convert to mapping
Ada. Text_IO. Get (Item '=> Code);
Ada. Text_lO. Skip__Line;
CodeMap Ada.Strings.Maps.To Mapping
(From => "ABCDEFGHIJKLMNOPQRSTUVWXYZ", To «> Code);

— Read plain text message
Ada.Text_IO.Put(Item => "Enter each character of your message.");
Ada. Text_IO. New__Line;
Ada.Textile.Put(Item => "No more than 60 characters, please.");
Ada.Textile.New_Line;
Ada.Textile.Put(Item => "Press RETURN after your message.");
Ada. Text_lO. New__Line;

— Display scale so user knows how many characters
Ada.Text lO.Put(Item => " 1 2 3" &

4  5 6");

Ada.Text 10.New Line;
Ada.Text~IO.PutTltem => "123456789012345678901234567890" &

"123456789012345678901234567890");

Ada.Text_IO.New_Line;

Ada.Text_IO.Get__Line (Item => PlainText, Last => HowLong);

— Encode message using Translate function
CodedText(1..HowLong) :=

Ada.Strings.Fixed.Translate
(Source =>

Ada.Characters.Handling.To_Upper
(Item => PlainText(1..HowLong)),

Mapping => CodeMap);

— Display coded message
Ada.Text_IO.Put (Item => CodedText(1..HowLong));
Ada.Text_IO.New_Line;

END Cryptogram_2;
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Ada.String5.Bounded and Ada.Strings.Unbounded

Ada.Strings.Bounded is a generic package that provides a similar set of operations on
bounded strings, which are strings with a given maximum length whose actual length
can vary. The package is generic, with a single parameter Max to give the maximum
length of all strings created by a given instance of the package. For example,

MaxHame: CONSTANT Positive ;= 30;

PACKAGE Names IS

NEW Ada.Strings.Bounded.Generic_Bounded_Length(Max => MaxName);

provides an instance so that a string variable, say.

Name: Names.Bounded_String;

can be at most 30 characters long. The package keeps track of the actual length.
Finally, Ada.strings.unbounded provides similar operations for unbounded

strings, that is, strings for which no maximum length is given. The actual length of a
string object such as

VeryLongString: Ada.Strings.Unbounded.Unbounded_String;

can range from 0 to positive • Last.

10.3 System Structures: A Systematic View of Text Files

Up to this point, we have written most programs as interactive programs; in other
words, each program reads all input data from the keyboard and displays all outputs on
the screen. This mode of operation is fine for small programs. However, as you begin to
write larger programs, you will see that there are many advantages to using disk files
for program input and output.

You can create a data file using a text editor in the same way that you create a pro
gram file. Once the data file is entered in computer memory, you can carefully check
and edit each line before you save it as a disk file. When you enter data interactively,
you do not have the opportunity to examine and edit the data.

After the data file is saved on disk, you can instruct your program to read data from
the data file rather than from the keyboard. This mode of program execution is called
batch mode. Because the program data are supplied before execution begins, prompting
messages are not required in batch programs. Instead, batch programs must contain dis
play statements that echo print data values, thereby providing a record of the data that
are read and processed in a particular run.

Besides giving you the opportunity to check for errors in your data, using data files
has another advantage. Because a data file can be read many times, during debugging
you can rerun the program as often as you need to without retyping the test data each
time.

You can also instruct your program to write its output to a disk file rather than dis
play it on the screen. When output is written to the screen, it disappears after it scrolls
off the screen and cannot be retrieved. However, if program output is written to a disk
file, you can use an operating system command such as type filename (VAXA'MS
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and MS-DOS) or cat filename (UNIX) to list file filename as often as you wish or
look at it with your editor. You can also get a hard copy of a disk file by sending it to the
printer.

Finally, you can use the output file generated by one program as a data file for
another program. For example, a payroll program may compute employee salaries and
write each employee's name and salary to an output file. A second program that prints
employee checks could use the output of the payroll program as its data file.

Ada's Package Spediication for Text Files

You know already that in Ada, input and output are done with packages; Ada.Text__io
is the one we are using in this book. An exceipt of the Ada.Text_io specification deal
ing with files appears as Fig. 10.1.

Figure 10.1. Section of Ada.TextJO Dealing with Text Files

WITH 10 Exceptions;
PACKAGE'Text^IG IS

TYPE File_Type IS LIMITED PRIVATE;

TYPE File__Mode IS (In_File, 0ut_File);

— File Management

PROCEDURE Create(File : IN OUT File_Type;
Mode : IN File_Mode ;= Out^File;
Name : IN String := "";
Form : IN String : = *"•);

PROCEDURE Open(File ; IN OUT File^Type;
Mode : IN File_Mode; Name : IN String;
Form : IN String := "");

PROCEDURE Close(File : IN OUT File_Type);
PROCEDURE Delete(File : IN OUT File_Type);
PROCEDURE Reset(File : IN OUT File_Type; Mode : IN File_Mode);
PROCEDURE Reset(File : IN OUT File~Type); ~

FUNCTION Mode(File : IN File_Type) RETURN File_Mode;
FUNCTION Name(File : IN File_Type) RETURN String;
FUNCTION Form(File ; IN File_Type) RETURN String;

FUNCTION Is_Open(File : IN File_Type) RETURN Boolean;

— Control of default Input and output Files

PROCEDURE Set_Input(File : IN File_Type);
PROCEDURE Set__Output(File : IN File_Type);

FUNCTION Standard_Input RETURN File_Type;
FUNCTION Standard_Output RETURN File_Type;
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FUNCTION Current_Input RETURN File_Type;
FUNCTION Current_Output RETURN FileJPype;

— Specification of Line and Page lengths

PROCEDURE Set_Line_Length(File : IN File Type; To : IN Count);
PROCEDURE Set_Line_Length{To : IN Count)!

PROCEDURE Set_Page Length(File ; IN File__Type; To ; IN Count);
PROCEDURE Set_Page!Length(To : IN Count)!

FUNCTION Line_Length(File ! IN File_Type) RETURN Count;
FUNCTION Line_Length RETURN Count;

FUNCTION Page_Length{File : IN File_Type) RETURN Count;
FUNCTION Page_Length RETURN Count; "

— Column, Line, and Page Control

PROCEDURE New_Line
(File ; IN File__Type; Spacing : IN Positive__Count := 1);

PROCEDURE New_Line(Spacing : IN Positive_Count 1);

PROCEDURE Skip__Line
(File ; IN File_Type; Spacing : IN Positive__Count := 1);

PROCEDURE Skip_Line(Spacing : IN Positive_Count := 1);

FUNCTION End_of_Line(File : IN File_Type) RETURN Boolean;
FUNCTION End^of^Line RETURN Boolean;

PROCEDURE New_Page(File : IN File_Type);
PROCEDURE New_Page;

PROCEDURE Skip_Page(File : IN File_Type);
PROCEDURE Skip^Page;

FUNCTION End of_Page(File : IN File Type) RETURN Boolean;
FUNCTION End^of^Page RETURN Boolean!

FUNCTION End_of_File(File : IN File_Type) RETURN Boolean;
FUNCTION End_of_File RETURN Boolean;

PROCEDURE Set_Col(File : IN File_Type; To : IN Positive_Count);
PROCEDURE Set_Col(To : IN Positive_Count);

PROCEDURE Set_Line(File ; IN File_Type; To : IN Positive__Count);
PROCEDURE Set_Line(To : IN Positive_Count);

FUNCTION col(File : IN File_Type) RETURN Positive_Count;
FUNCTION Col RETURN Positive_Count;

FUNCTION Line(File : IN File_Type) RETURN PositivejCount;
FUNCTION Line RETURN Positive_Count;

FUNCTION Page(File : IN File_Type) RETURN Positive_Count;
FUNCTION Page RETURN PositivejCount;

— Cheuracter Input-Output

PROCEDURE Get(File : IN File_Type; Item : OUT Character);
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PROCEDURE Get(Item

PROCEDURE Put(File
PROCEDURE Put(Item

OUT Character);
IN File_Type; Item
IN Character);

— String Input-Output

PROCEDURE Get(File
PROCEDURE Get(Item

PROCEDURE Put(File
PROCEDURE Put(Item

IN File Type; Item
OUT String);
IN File_Type; Item
IN String);

IN Character);

OUT String);

IN String);

PROCEDURE Get_Line(File
Item

PROCEDURE Get_Line(Item
PROCEDURE Put Line(File
PROCEDURE Put^Line(Item

IN File_Type;
OUT String; Last :
OUT String; Last :
IN File_Type; Item
IN String);

OUT natural);
OUT natural);
:  IN String);

END Text_IO;

A file is defined as a type:

TYPE File_Type IS LIMITED PRIVATE;

We have seen private before, but not limited private. The latter term is used to
designate a type that behaves like a private type—the client program cannot directly
access details of objects of that type—but is even more restricted; The assignment and
equality-checking operations are taken away. A type of this kind has no predefined
operations; all client-accessible operations must be defined in the package specifica
tion.

Refer to this partial specification as you read the remainder of this section. Many
more operations are defined in the specification than we will ever be using in this book,
but it is helpful to know that the Ada standard defines all the operations in such a clear
fashion as a package specification. The full specification for Ada.Text_io, which runs
for a number of pages, appears in Appendix D.

Reading and Writing Files mth AdaJextJO

Several previous examples have used files for their input and output. This section gives
a systematic explanation of how to get an Ada program to read from a data file and to
write program results to an output file with Ada.Text_io. At any given time, a text file
can be available for either input or output, but not both simultaneously.

A text file is a collection of characters stored under the same name in secondary
memory (that is, on a disk). A text file has no fixed size. To mark the end of a text file,
the computer places a special character, called the end-of-file character (denoted as
<eof>), following the last character in a text file. The Ada literature usually refers to
this marker as ihtfile terminator. Its exact form depends on the operating system.

As you create a text file using an editor program, you press Ae enter key to sepa
rate the file into lines. Each time you press enter, another special character, called the
end-of-line character (denoted as <eol>), or line terminator, is placed in the file.
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Here are the contents of a text file that consists of three lines of letters, blank char
acters, and punctuation. Each line ends with <eoi>, and <eof> follows the last <eoi> in
the file. For convenience in scanning the file's contents, we have listed each line of the
file as a separate line. In the actual file stored on disk the characters are stored in con
secutive storage locations, each character occupying a single storage location. The first
character of the second line (the letter i) occupies the next storage location following
the first <eoi>.

This is a text £ilei<eol>

It has two lines.<eolxeof>

A text file can also contain numeric data or mixed numeric and character data. Here

is a text file that consists of numeric data and blank characters. Each number is stored

on disk as a sequence of digit characters; blank characters separate numbers on the
same line.

1234 345<eol>

999 -17<eol><eof>

The Keyboard and the Screen as Text Files

In interactive programming, Ada treats data entered at the keyboard as if they were read
from the predefined file called Ada.Text_io.standard_input. Pressing the enter key
enters the <eoi> in this file. In interactive mode we normally use a sentinel value to
indicate the end of data rather than attempt to enter <eof> in the system file
Ada.Text_io.standard__input. We could use <eof>, however. Its keyboard representa
tion depends on the operating system; controi-o and controi-z are often used.

Similarly, displaying characters on the screen is equivalent to writing characters to
system file Ada.Text_io. standard_output. The New_Line procedure places the <eol>
in this file, resulting in the cursor moving to the start of the next line of the screen. Both
standard_input and standard_ou'tpu'b are text files because their individual compo
nents are characters.

The EndjyfJLine and End_of_File Functions

Both <eoi> and <eof > are different from the other characters in a text file because they
are not data characters; in fact, the Ada standard doesn't even specify what they should
be because their form depends on the operating system. Many of the Ada Get opera
tions skip over the line terminators. However, if an Ada program attempts to read
<eo£>, the exception Ada.Text_io.End_Error is raised.

If we can't read or write these characters in the normal way, how do we process
them? Ada.Text_io provides two functions that enable us to determine whether the
next character is <eoi> or <eof>. The function Ada.Text_io.End_of__Line returns a
value of True if the next character is <eoi>; the function Ada.Text_io.End__of_File
returns a value of True if the next character is <eof>. The algorithm that follows uses
the End__of_Line and End_of_File functions to control the processing of a data file.
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Algorithm Skeleton for Processing a Text File, Character by
Character

LOOP

EXIT WHEN Ada.Text_IO.End_of_File (data file);
LOOP

EXIT WHEN Ada.Text_IO.End_of__Line (data file);
— process each character in the current line

END LOOP;

END LOOP;

If the data file is not empty, the initial call to End_of_Fiie returns a value of False,
and the computer executes the inner loop. This loop processes each character in a line
up to (but not including) the <eoi>. For the two-line character data file shown above,
the first execution of the loop processes the first line of characters:

This is a text filel

When the next character is <eol>, the End_of_Line function retums True, so the
inner loop is exited. The <eoi> is processed immediately after loop exit, and the outer
loop is repeated.

Each repetition of the outer loop begins with a call to the End_of_Fiie function to
test whether the next character is the <eof > character. If it is, the End_of__Fiie function
retums True, so the outer loop is exited. If the next character is not <eof>, the
End_of_File function retums False, so the inner loop executes again and processes the
next line of data up to <eol>. For the file above, the second execution of Ae inner loop
processes the second line of characters:

It has two lines.

After the second <eol> is processed, the next character is <eof>, so the
End_of_File function retums True, and the outer loop is exited. We use this algorithm
later in a program that duplicates a file by copying all its characters to another file.

SYNTAX

DISPLAY
End_of_Llne Function (for Text Files)

Torino

Ada .Text__IO.End_of_Line( filename)

Interpretation:

The function result is True if the next character in file filename is <eci>; other
wise, the function result is False.

Note:

If filename is omitted, the file is assumed to be Ada.Text_io.standard_input
(usually the terminal keyboard).
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End.of.File Function (for Text Files)

FtHin:

Ada. Text__IO. End_of _Pile (fii ename)

Interpretation:

The function result is True if the next character in hie filenaine is <eo£>; other
wise, the function result is False.

Note:

filename is omitted, the fiie is again assumed to be
Ada.Text_io. standard_znput. If a read operation is attempted when
End_pf_Fiie (filename) is True, an attempt to read past the end of the input hie
error occurs and the program stops.

Declaring a Text File

Before we can reference a text file in a program, we must declare it just like any other
data object, as in

InData ; Ada.Text^IO.File_Type;
OutData : Ada.Text_IO.File_Type;

Directoiy Names for Files

To read or write a text file with an Ada program, we must know the file's directory
name, or external name, which is the name used to identify it in the disk's directory. A
disk's directory lists the names of all files stored on the ̂ sk. A file's directory name
must follow the conventions that apply on your particular computer system. For exam
ple, some systems (MS-DOS, for example) limit you to a file name that consists of
eight characters, a period, and a three-letter extension. Many programmers use the
extension .dat or . txt to designate a text file.

Preparing a File for Input or Output

Before a program can use a file, the file must be prepared for input or output. If a file is
being used for input, its components can be read as data. As we said above, a file cannot
be read and written simultaneously. If a file is being used for output, new components
can be written to the file.

The procedure call statement

Ada. Text__lO. open
(File =»> InData, Mode => Ada.Text_I0.1n__File, Name => "scores.dat");
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prepares file inData for input by associating it with the disk file scores.dat and mov
ing its file position pointer to the beginning of the file. The file position pointer selects
the next character to be processed in the file. The file scores. dat must have been pre
viously created and located in the current disk directory; if it is not available, the excep
tion Ada.Text_l0.Name__Error is raised.

The procedure call statement

Ada.Text_IO.Create
(File=>OutData, Mode=>Ada.Text_IO.Out_File, Naine='>"test.out") j

prepares file outoata for output. If no file test, out exists on disk, a file that is initially
empty (that is, test .out has no characters) is created. If a file test, out already exists
on disk, it is deleted and a new one is created.

To read and process a file a second time in the same program run, first close it by
performing an operation such as

Ada.Text_I0.Close(File => OutData);

and then reopen it for input. A program can read and echo print (to the screen) an out
put file it creates by calling the close procedure with the newly created file as its
parameter. An open operation prepares this file for input, and your program can then
read data from that file.

It is important to keep in mind that although names in Ada are not case-sensitive,
file names in directories usually are (though this depends a bit on the operating system).
So TEST.DAT is not the same file as test.dat. Using a name in the open procedure
whose case is inconsistent with that of the actual file name is a common cause of

Name_Error.

Generally, your program expects the file to be in the current directory, the same
directory as the program itself. If you want to use a file from a different directory, you
must give the full path in the Create or Open. The path format varies from system to
system,but will often resemble c;\myfiles\test.dat (DOS, Windows) or /usr/stu-
dent/mary/rayfiles/test .dat (UNIX).

Finally, a file name doesn't have to be coded explicitly into your program. A file
name is nothing but a string, so the program can prompt the user for it. This will be
shown in the next program example.

Reading and Writing a Text File

You've learned how to declare a text file and how to prepare one for processing. All that
remains is to find out how to instruct the computer to read data fi-om an input file or to
write program results to an output file.

If Nextch is a type character variable, we know that the procedure call statement

Ada.Text_IO.Get (Item => NextCh);

reads the next data character typed at the keyboard into Nextch. This is really an abbre
viation for the procedure call statement

Ada.Text_IO.Get (File => Ada.Text_IO.Standard_Input, Item => NextCh);
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which has the same effect. The statement

Ada.Text_IO.Get (File => InData, Item => NextCh);

reads the next character from file moata into Nextch, where the next character is the

one selected by the file position pointer. The computer automatically advances the file
position pointer after each read operation. Remember to open inoata for input before
the first read operation.

In a similar manner the procedure call statements

Ada.Text_IO.Put (Item => NextCh);
Ada.Text_IO.Put (File => Ada.Text_IO.Standard_Output, Item => NextCh);

display the value of ch on the screen. The statement

Ada.Text_IO.Put (File => OutData, Item => NextCh);

writes the value of ch to the end of file outoata. Remember to open outoata for output
before the first call to procedure Put.

■ Example 10.10

It is a good idea to have a backup or duplicate copy of a file in case the original file data
are lost. Program 10.3 is an Ada program that copies one file to another; it prompts the
user for the names of the input and output files.

Program 10.3 File Copy Program

WITH Ada.Text_IO;
PROCEDURE Copy_File IS

— I Program copies its input file into its output file
—-j then closes the output file, re-opens it for input,
— I and displays its contents on the screen.
— I Author: Michael B. Feldman, The George Washington University
—( Last Modified: September 1998

MaxName : CONSTANT Positive := 80;
SUBTYPE NameRange IS Positive RANGE 1..MaxName;

InFileName : String(NameRange):- (OTHERS °> '#');
OutFileName : String(NameRange):= (OTHERS => '#');
InNcuneLength : NcuneRange;
OutNameLength: NameRange;
InData : Ada.Text_IO.File_Type;
OutData : Ada.Text_IO.File_Type;

NextCh : Character;

BEGIN — Copy_File

— get input file name and open it
Ada.Text_I0.Put(Item => "Please enter name of file to copy >");
Ada.Text_IO.Get_Line(Item => InFileName, Last => inNameLength);
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Ada.Text_IO.Open (File=>InData, Mode=>Ada.Text_IO.In_File,
Name=>InFileName(1..inNameLength));

— get output file name and create it
Ada.Text_IO.Put(Item => "Please enter name of the new file >");
Ada.Text_IO.Get__Line(Item => OutFileName, Last => OutNameLength);
Ada.Text_IO.Create(File=>OutData, Mode=>Ada.Text_IO.Out_File,

Name=>OutFileName(1..OutNameLength));

— copy input file to output file, character by character
LOOP

EXIT WHEN Ada.Text_IO.End of File(File => InData);
LOOP

EXIT WHEN Ada.Text_IO.End_of_Line(File => InData);

Ada.Text_IO.Get(File => InData, Item => NextCh);
Ada.Text_IO.Put(File => OutData, Item => NextCh);

END LOOP;

Ada.Text_IO.Skip_Line(File => InData);
Ada.Text_IO.New_Line(File => OutData);

END LOOP; ~

Ada.Text_IO.Close(File => InData);
Ada.Text~IO.Close(File => OutData);

— reopen the new file and display it on the screen
Ada.Text_IO.Open(File=>InData, Mode=>Ada.Text_IO.In_File,

Name->OutFileName(1..OutNameLength));

WHILE NOT Ada.Text_IO.End_of_File(File => InData) LOOP
WHILE NOT Ada.Text_IO.End_of_Line(File => InData) LOOP

Ada.Text_IO.Get(File => InData, Item => NextCh);
Ada.Text_IO.Put(Item °> NextCh);

END LOOP;

Ada.Text_IO.Skip_Line(File => InData);
Ada.Text_IO.New_Line;

END LOOP;

Ada.Text_IO.Close(File => InData);

EXCEPTION

WHEN Ada.Text_lO.Name_Error =>
Ada.Text_lO.Put
(Item => "File to copy doesn't exist in this directory!");

Ada.Text_IO.New_Line;

END Copy_File;

The first set of nested loops in Program 10.3 implement the algorithm first shown
above. The data file, inData, is the argument in the calls to functions End_of_Line and
End_of_File. As long as the next character is not <eol>, the statements

Ada.Text 10.Get (File => InData, Item => NextCh);
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Ada.Text__IO.Put (File => OutData, Item => NextCh);

read the next character of inData into Nextch, and then write that character to file out-
Data.

If the next character is <eoi>, the inner loop is exited and the statements

Ada.Text__IO.Skip__Line (File => InData);
Ada.Text__IO.New__Line (File => Out Data);

are executed. The Ada.Text__io.skip__Line procedure does not read any data but sim
ply advances the file position pointer for inData past the <eol> to the first character of
the next line. The second statement writes the <eoi> to file outData. After the <eoi> is

processed, function End__of_File is called again to test whether there are more data
characters left to be copied.

It is interesting to contemplate the effect of omitting either the skip__Line or the
New__Line Statement. If the New_Line is omitted, the <eoi> will not be written to file
OutData whenever the end of a line is reached in file inData. Consequently, outData
will contain all the characters in moata on one (possibly very long) line. If the
skip__Line is omitted, the file position pointer will not be advanced and the <eol> will
still be the next character. Consequently, End__of__Line( inData) will remain True, the
inner loop is exited immediately, and another <eol> is written to file outData. This
continues "forever" or until the program is terminated by its user or until its time limit
is exceeded.

After copying the file, the program closes test.out, reopens it for input, and dis
plays its contents on the screen; the algorithm in the second part of the program is
nearly identical to that in the first part. We have used while instead of general loops just
to show another way to code the same algorithm.

A common source of error is forgetting to use a file name with End__of__Line or
End__of_Fiie. In this case the system uses Ada.Text_io.standard_input. A similar
error is forgetting to use a file name with Get or Put. Normally, no error diagnostic is
displayed, because there is nothing illegal about this; the computer simply assumes that
the keyboard or screen is intended instead of the disk file. The cause of the incorrect
behavior of the program is therefore not obvious. ■

Behaviors of the Various Get Operations in AdaJextJO

Learning to write input operations correctly is one of the most difficult tasks for a
beginner in any programming language, including Ada. It is important to realize that
Ada.Text_io provides many different Get operations. We most frequently use four
types: Get for a single character. Get and Get__Line for strings (as we used in section
10.1), and Get for numeric and enumeration values. Each of these behaves slightly dif
ferently with respect to blanks and line terminators in a file (including
standard_input). Here is a summary of their behaviors; we have used the "short form"
for reading from the terminal, but the behavior is identical if a file is used.

• Get (Item : OUT Character) first skips any line terminators, then reads one char
acter from the input file. A blank counts as a character.
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• Get (Item ; OUT String) first determines the length of the String and attempts to
perform exactly that number of character Get operations. It follows that line termi
nators are skipped. In fact, even if each character in the input is immediately fol
lowed by a line terminator (i.e., all the lines are one character long), all the
characters are read and all the line terminators are skipped.

• Get_Line (Item : OUT String? Last : OUT Natural) reads characters (includ
ing blanks) up to the length of the string. Reading stops if the string's length is
longer than the current line (i.e., if a line terminator is encountered). The line ter
minator is then skipped, that is, the equivalent of a skip_Line is executed. If the
input line is longer than the string, the remaining characters in the line remain
available for the next input operation.

• Get (Item : numeric or enumeration type) skips Over any leading blanks, tab
characters, and line terminators, then reads characters as long as they continue to
meet the syntax of a literal of the desired type. The character that causes reading to
stop remains available for the next input operation.

This operation can cause trouble if you are not careful: Suppose that you are trying
to read an integer value and accidentally type a few numeric dgits followed by a letter
or punctuation character. This last character will cause reading to stop but remain avail
able-, the already-read numeric digits make up a valid integer literal, so the typing error
will not be discovered until the next input operation, which will probably not expect
that character and raise Ada.Text_iG.Data_Error. Be careful!

Now is the time to take another look at the procedures m the package
Robust_input (Section 7.6) to be certain that you understand exactly how they work to
prevent such a situation from arising.

10.4 Problem Solving: Operating System Redirection of
Standard Files

Many popular operating systems, including UNIX and MS-DOS, have a feature that
allows the standard input and output files—normally the keyboard and screen, respec
tively—to be "redirected" or temporarily reassigned to disk files. This feature, which is
independent of Ada or any other programming language, allows you, for example, to
tell a program that normally gets its input interactively to get it instead from a given
file. Similarly, a program that normally writes its output to the screen can be told to put
all that output in a file instead. In UI^ or MS-DOS, if you have an Ada program
called MyProg, say, which uses keyboard Get calls, executing the operating system-level
command

MyProg < FileOne.dat

causes MyProg to take all its standard input from Fiieone.dat instead of the keyboard.
(This assumes that FiieOne.dat has been created and filled with data.) Executing the
command

MyProg < FileOne.dat > FileTwo.dat
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causes the program, without any change in its source code, to read its input from Fiie-
one.dat and write its output to piieTwo.dat. This is a handy technique, used in writ
ing many operating system commands. It doesn't work well if the program is highly
interactive, with a lot of prompting, because the prompts go to the output file while the
input comes from the input file, untouched by human hands! The next case study will
show a program that does not prompt but uses keyboard Get calls; its input data can be
entered either from the keyboard or by redirection.

A HISTOGRAM-PLOTTING PROGRAM

Researchers in linguistics or cryptography (the study of secret codes) are often inter
ested in the frequency of occurrence of the various letters in a section of text. A partic
ularly useful way to summarize the number of occurrences is the histogram or bar
graph, in which a bar is drawn for each letter, the length of the bar corresponding to the
relative frequency of occurrence.

Problem Specification
Write a program that draws a histogram for the frequency of occurrence of the letters of
the alphabet. Uppercase and lowercase letters are to be counted separately; nonletter
characters can be ignored.

Analysis
This program is a variation of the concordance program. Program 9.13, developed in
Section 9.9. Instead of getting input as a single line from the terminal, this program will
read a text file by using input redirection, compute the number of occurrences of each
of the 52 (lowercase and uppercase) letters, and draw an appropriately tall vertical bar
on the screen for each of the 52 letters. A sample screen dump, produced by running
the program with its own source file used as input, is shown in Fig. 10.2.

Design

Algorithm
The initial algorithm for this program is as follows:

1. Initialize all letter counters to 0.

2. Read the input file character by character. For each character that is a letter, incre
ment the appropriate letter counter.

3. Plot the results on the screen.

We leave it to the student to fill in the algorithm refinements and to develop a test
plan.

Implementation
Program 10.4 gives the program for this case study.
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Figure 102 Output from Histogram Program for Its Own Source File
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Program 10.4 Histogram-Plotting Program

WITH Ada.Text_IO;
WITH Ada.Integer_Text__IO;
WITH Screen;

PROCEDURE Histogram IS

Plots a histogram on the screen consisting of vertical bars.
Each bar represents the frequency of occurrence of a given
alphabet letter in the input file.
The input file is assumed to be Standard_lnput;
use input redirection if you wish to use a-disk file instead.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

SUBTYPE Uppercase IS Character RANGE 'A'..'Z';
SUBTYPE Lowercase IS Character RANGE 'a'..'z';
TYPE Occurrences IS ARRAY(Character RANGE <>) OF integer;
Uppers : Occurrences(Uppercase);
Lowers : Occurrences(Lowercase);

NextCh : Character;

Scale : Natural;

MaxCount : Natural 0;

WhichCol : Screen.Width;

PROCEDURE Plot(WhichCol
BottomRow

HowMany

Screen.Width;
Screen.Depth;
Screen.Depth;
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WhichChar : Character) ZS

— draws one vertical bar on the screen

— Pre: WhichCol, BottomRow, HowMany, and WhichChar are defined
— Post: draws a bar in coluinn WhichCol, using character WhichChar

to do the plotting. The bottom of the bar is given by
BottomRow; the bar contains HowMany characters.

BEGIN — Plot

FOR Count IN 0 .. Howmany - 1 LOOP

Screen.MoveCursor(Column => WhichCol, Row => BottomRow - Count);
Ada.Text_IO.Put(Item »> WhichChar);

END LOOP;

END Plot;

BEGIN — Histogram

—• initialize letter-counter arrays
Uppers := (OTHERS =>0);
Lowers := (OTHERS =>0);

— read each character in the file; update letter counters
LOOP

EXIT WHEN Ada.Text IO.End_Of_File;
LOOP

EXIT WHEN Ada.Text_IO.End_Of_Line;

Ada.Text_IO.Get(NextCh);
CASE NextCh IS

WHEN Uppercase »>

Uppers(NextCh) :» Uppers(NextCh) + 1;
IF Uppers(NextCh) > MaxCount THEN
HaxCount :- Uppers(NextCh);

END IF;

WHEN Lowercase ->

Lowers(NextCh) :» Lowers(NextCh) + 1;
IF Lowers(NextCh) > MaxCount THEN
MaxCount := Lowers(NextCh);

END IF;

WHEN OTHERS =>

NULL;

END CASE;

END LOOP;

Ada.Text_IO.Skip Line;
END LOOP;

Scale := MaxCount / 20 + 1;

Screen.ClearScreen;

Screen.HoveCursor(Row => 1, Column => 15);
Ada.Text_lO.Put(Item => "Scale: 1 star = ");
Ada.Integer_Text_lO.Put(Item => Scale, Width =>1);
Ada.Text_IO.Put(Item => " occurrences");
Screen.MoveCursor(Row => 22, Column =>4);
Ada.Text 10.Put
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(Item => "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ");
WblchCol 4;

FOR C IN Lowercase LOOP

IF Lowers(C) /= 0 THEN
Plot(WhlchCol, 21, Lowers(C) / scale + 1,

END IF?

WhichCol := WhichCol + 1;

END LOOP;

FOR C IN Uppercase LOOP

IF Uppers(C) /= 0 THEN
Plot(WhichCol, 21, Uppers(C) / scale +1,

END IF?

WhichCol := WhichCol + 1?

END LOOP;

Screen.MoveCursor(Row => 24, Column => 1);

END Histogram;

Procedure Plot takes care of plotting the vertical bars on the screen, from bottom
to top. Its parameters are the column in which the bar is desired, the bottom row of the
column, the height of the column, and the character to be used for plotting the bar.
Screen.Movecursor is used to move the cursor from the bottom of the column to the

top, plotting a character at each point.
The main program counts the occurrences of each letter as was done in the concor

dance program (Program 9.12), with one essential difference: A record must be kept of
the maximum number of occurrences. This is done because a column can be no more

than 20 rows high, so the height of the columns must be scaled to the maximum. For
example, if no letter occurs more than 60 times in the file, a 20-row column corre
sponds to approximately 60 occurrences. Each dot in the column then corresponds
roughly to toee occurrences of that letter; the number of occurrences of each letter,
then, is divided by three to get the height of the column; 1 is added so that if there are
any occurrences at all of a given letter, that colunm will be at least one row tall.

EXERCISES FOR SECTION 10.4

Programming

1. Rewrite copy_Fiie (Program 10.3) so that redirection is used to get the names
of the input and output fries.
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10.5 Problem Solving: Getting Input Values from a String

Ada.Text_io provides Get and Put operations that do not use files at all. Each of the
Get operations takes its input from a string instead of either standard_input or a
named file. For example, suppose we have

Line : String(1..80);
LineLength : Natural;

integerVariable: Integer;
IntLast : Natural;

FloatVariable : Float;
FloatLast : Natural;

We can read an entire line (of 80 characters or less) into Line and then read individual
values from that string. Suppose we know that the first value in the line is supposed to
be an integer value and that the second value is supposed to be a float value. We can
write

Ada.Text_IO.Get_Line (Item => Line, Last => LineLength);

and then read from the string Line into the integer variable

Ada.Integer_Text_lO.Get
(From => Line, Item => IntegerVariable, Last => IntLast);

which reads the first token from Line, converts it to integer form, and stores it in inte
gerVariable. The behavior of this Get is identical to the other integer Gets—for exam
ple, raising Ada.Text_io.Data_Error if the first token is not a string representing an
integer value—except that input comes from a string instead of a file. The variable
IntLast contains the index (in Line) of the last character read.

Now we can read the second token as a float value, by writing

Ada. Float__Text_IO. Get
(From => Line(lntLast+1..Line'Last),
Item => FloatVariable,
Last => FloatLast);

Note that as with the From parameter, we must specify the slice of Line that follows the
first (integer) value.

This input style is used in writing "industrial-strength" robust input procedures. For
example, such a procedure could handle a Data_Error exception by rereading the
token using a different Get.

To reiterate: All the Gets—character, string, integer, float, and enumeration—have
three forms:

• Input comes from standard input.

• Input comes from an external named text file.

• Input comes from a string.
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EXERCISES FOR SECTION 10.5

Self-Check

1. Suppose that the name of a text file given as a parameter to Ada. Text_io. open
is not a valid file name or that the file cannot be found in the current directory.
What happens? When does it happen?

Programming

1. "Hard-wiring" the name of a file into a program is usually considered to be
poor programming style, because it limits the flexibility of the program. Re
write copy_Fiie (Program 10.3) so that the names of the input and output files
are read as strings from the keyboard. {Hint: Use Get^Line.)

10.6 Problem Solving: Reading Command Parameters

It is common that a program must be "configured" with certain values before it begins
to do its work. A popular method for passing such parameters into the program is to use
command line parameters (sometimes called command line flags or command line
options). Ada provides this capability in the package Ada.command_Line, which allows
a program to retrieve the flags or parameters entered on the operating system command
line when the program is invoked. The specification for this package is shown in Fig.
10.3.

Figure 10.5 Ada 95 Command Line Package

PACKAGE Ada.Coi[iiaand_Line IS

FUNCTION Argunient_Count RETURN Natural;

FUNCTION Argument (Number ; IN Positive) RETtJRN String;

FUNCTION Command_Name RETURN String;

TYPE Status IS RANGE implementation-defined;

Success : CONSTANT Status;

Failure ! CONSTANT Status;

PROCEDURE Set_Status (Code ; IN Status);

END Ada.Command_Line;

Program 10.5 illustrates the use of the first two functions.
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Program 10.5 Illustration of Ada.Command.Line

WITH Ada.Text_IO;
WITH Ada. Coinmand__Line;
PROCEDURE Coininand_Arguments IS

— I Demonstrate Ada 95 coimnand-line parameters
— I Author: Michael B. Feldroan, The George Washington University
— I Last Modified: September 1998

HowMany: Natural; — how many command-line arguments were there?

BEGIN — Command_Arguments

Ada.Text_IO.Put(Item -> Ada.Command_Line.Command_Name);

HowMany :- Ada.Command_Line.Argument_Count;

IF HowMany = 0 THEN
Ada.Text_IO.Put_Line(Item => ": No command-line arguments today.");

ELSE

Ada.Text_IO.Put_Line(Item => ": The command-line arguments are: ");

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put
(Item => Ada. Command__Line. Argument (Number => Count));

Ada.Text IO.New_Line;
END LOOP;

END IF;

END Command_Arguments;

Sample Run

command_arguments: The command-line arguments are:
abc

123

3xy

Note that Argument always returns a string; if the program requires an integer, float, or
enumeration value, the appropriate string-input Get procedure (see Section 10.5) can be
used to convert the string.

The sample run illustrates the result of typing, on the UNIX command line (for
example),

command__arguments abc 123 3xy

Some operating systems allow a program, invoked by the command line, to return a
value, usually a small nonnegative integer, to the command shell. The procedure
set_statu8 can be used to set this value if the operating system allows it. Furthermore,
the function coiranand_Name allows the program to find out its own name as known to
the operating system, that is, the name by which it is invoked on the command line.
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CASE

STUDY LENGTHS OF LINES IN A TEXT FILE

In preparing this book for production at the publisher, the authors were faced with
meeting a page layout requirement that no line of program source code exceed 72 char
acters in length. This requirement led to the present case study; the author actually used
the resulting program to assist in meeting the layout requirement.

Problem Specification
Develop a program that, given the name of a text file and a specified limit on line
length, reads each line of the file and displays it, together with its line number, if and
only if it exceeds the given limit. At the end, display the maximum line length found in
the file. The program is to have two input arguments: the maximum desired length and
the name of Ae file being checked.

Analysis
The program can use command line parameters to get its input arguments. The full data
requirements are as follows.

Data Requirements

Program inputs
desired maximum length (MaxLength: Natural)
text file to be checked (inputText; Ada. Text_I0. File_Type)

Program Outputs
line number of each long line (LineNumber: Natural)
each excessively long line (Line: string (i.. 12 o))

Design

Algorithm
1. Get command arguments and open the input file.

2. Read each line of the file and display it with its line number if and only if its length
exceeds the desired maximum.

3. Display the length of the longest line found.

We leave the straightforward refinements and test plan to the student as an exercise.

Implementation
Program 10.6 implements the algorithm. The first command argument is an integer, so
it is read from that argument (as string) using the string-input Ada.integer_Text_io.
Get procedure. The second argument is a file name and so can be passed directly from
the command argument to the Ada.Text_io.open operation.

Program 10.6 Find the Lengths of the Lines in a Text File

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
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WITH Ada.Coinmand_Llne;
PROCEDURE Line__Length IS

Compute maximum line length in a file
First command line parameter gives the desired max nuiober
of characters; second parameter gives input file.
Program displays lines longer than the desired max,
and finds the length of the longest line in the file.
Author: Michael B. Feldraan, The George Washington University
Last Modified: September 1998

DesiredMax: Natural; — input - desired maximum length
MaxLength : Natural; — output - maximum line length

LineNumber: Natural; — counts the lines in the file
Line : String(l..120); — holder for input line read from file
Length : Natural; — holds length of current line

InputText : Ada.Text_IO.File_Type;

BEGIN — Line_Length;

— Get command parameters and open input file
Ada.Integer_Text_IO.Get {From =«> Ada.Command_Line.Arguraent(1),

"" Item => DesiredMax,
Last => Length);

Ada.Text_lO.Put
(Item => "Reading from " & Ada.Command_Line.Argument(2));

Ada.Text_IO.New_Line;

Ada.Text_IO.Open (File => InputText, Mode => Ada.Text_IO.In_File,
Name => Ada.Command_Line.Argument(2));

— loop through file reading lines
MaxLength 0;
LineNumber : «■ 0;

LOOP
EXIT WHEN Ada.Text_IO.End_of_File (File => InputText);

Ada.Text_IO.Get_Line
(File => InputText, Item => Line, Last => Length);

— keep track of number of lines in the file
LineNumber := LineNumber -<■ 1;

— is line too long?
IF Length > DesiredMax THEN

Ada.Integer_Text_IO.Put(Item => LineNumber, Width =>3);
Ada.Text_I07put(Item => " " & Line(l..Length));
Ada.Text_IO.New_Line;

END IF; ~

— is line longer than longest so far?
IF Length > MaxLength THEN

MaxLength := Length;
END IF;
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BHD LOOP;

— display results
Ada.Text_IO.Put(Item => "The longest line length in " &

Ada. Coimnand__Line. Argument (2) & " is ");
Ada.Integer_Text_lO.Put(Item => Hso^ength, Width =>1);
Ada.Text_IO.New_Line;

END Line_Length;

Testing
The sample run shows the results of running the program on its own source file, that is,
of typing, on the command line,

line_length 71 line_length.adb

Sample Run

Reading from line length.adb
5

13

The longest line length in line_length.adb is 72

10.7 Tricks of the Trade: Common Programming Errors

A variable of type string(i. .N) is a string variable of length N (a constant). A string
variable of leng^ N can be assigned a string value consisting of exactly N characters. If
a string value that is too short or too long is assigned to a string variable,
constraint_Error is generally raised at run time; the error may not have been detected
by the compiler. If one string variable is assigned to another, they must both be the
same length. You can use string slicing to ensure that the lengths agree. Also keep in
mind that if s is a string of length 1, then

s := 'A';

is not valid because s is a string and * a * is a character.
When reading a string, do not forget that the Ada.Text_io.Get procedure for

strings reads exactly the number of characters caUed for by the string length. If you
enter fewer characters, even if you press enter, the program will wait for you to enter
the remaining characters.

File processing in any progranuning language can be difficult to master; Ada is no
exception. The name, which will be used as a file variable in the program, will usually
differ from the actual directory name of the associated disk file. All file names must be
declared as variables (type Ada.Text_io.Fiie_Type) and associated with the corre
sponding disk file by using a Ada.Text_io.create or Ada.Text_io.open procedure
call statement.
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The Ada.Text_io.Get procedures can be used only after a file (other than standard
input) has been opened for Input. Similarly, the Ada.Text_io.put procedure can be
used only after a file (other than standard output) has been created for output. Be sure to
specify the file name as the first Get or Put parameter; otherwise, standard input (key
board) or standard output (screen) is assumed. Ada.Text_io.End_Error is raised if a
Get operation is performed when the file position pointer for a file has passed the last
file component. Also, when you use Ada.Text_io.End_Of_Line or Ada.Text_io.
End_of_File to control data entry, don't forget to include the name of the data file as
the function argument.

CHAPTER REVIEW

In this chapter you studied the use of Ada strings, which are arrays of characters. A
number of useful operations are provided for strings, and several standard packages as
well.

You also learned how to instruct a program to read its data from a data file rather
than from the keyboard and how to save the output generated by a program as a file on
disk. Both techniques make it easier to debug large programs because test data can be
prepared in advance and read repeatedly by a program in successive test runs, instead
of needing to be entered each time the program is restarted.

New Ada Constructs in Chapter 10

The new Ada constructs that were introduced in this chapter are listed in Table 10.1.

Table 10.1 New Ada Constructs

Construct Effect

String Declaration

Name : String(l..11);

String Assignment

Name := "Daffy Duck"

String Concatenation

Name := "Jane" s " " & "Jones'

String Slicing

IF Count(1..5) = Cube(6..10)

String Input

Ada.Text_IO.Get_Line
(Item->Name,Last->L);

Declares a string variable Name of length 11.

Saves "Daffy Duck" in array Neutie.

Saves "Jane Jones" in array Name.

Compares slices of count and cube.

Reads a string into Name. Stops if all charac
ters of Name are filled or if the end of the
input line is reached. The number of charac
ters read is returned in L.
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Construct Effect

File Declaration, Open and Close

Mylnput: Ada.Text_I0.File_Type; Declares two files.
MyOutput; Ada.Text_I0.File_Type;

Ada.Text_IO.Open Attempts to open a data file for input.
(File'=>MyInput,
Mode'=>Ada. Text_I0. In_File,
Name=>"mydata.dat");

Ada. Text__I0. Open Attempts to open a data file for output.
(File=>MyOutput,
Mode=>Ada. Text__I0. 0ut_File,
Name=>"testoutput.dat");

Ada.Text_I0.Close(File=>MyInput); Closes the file.

End of File and End ofUne Functions

IF Ada.Text_I0.End_0f_File True if we are at the end of the file.
(File=>MyInput) THEN

IF Ada.Text 10.End 0f__Line True if we are at the end of the current line
(File=>Myinput) THEN in the file.

Quick-Check Exercises

1. The

tion prepares it for output.

2. A separates a

operation prepares a file for input, and the opera-

file into lines, and the

appears at the end of a file.

3. What happens if a program attempts to read past the file terminator in a file?

4. What happens if a given file on disk cannot be found by a program?

What happens if a program attempts to write to a file that is open for input (or
read from a file that is open for output)?

AnsH^ers to Quick-Check Exercises

1. Open,Create

2. Line terminator or <eoi>, text, file terminator or <eof >

3. Ada. Text_IO. End_Error is raised.

4. Ada. Text_IO. Naine_Error is raised.

5. Ada.Text 10.Mode Error is raised.
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Review Questions for Chapter 10

1. List three advantages to using files for input and output instead of the standard
input and output you have used thus far in this course.

2. Where are files stored?

3. There are at least four different ways to provide the names of external files to a
program. One is operating system redirection. What are the others?

4. Write a loop that reads up to ten integer values from a data file and displays
them on the screen. If there are not ten integers in the file, the message That • s
all, folks should be displayed after the last number.

Programming Projects

1. The results of a true-false exam have been coded for input to a program. Each
student's information consists of a student identification number and that stu

dent's answers to ten true-false questions. The available data are as follows:

student ID Answer string

0080 FTTFTFTTFT

0340 FTFTFTTTFF

0341 FTTF7T7TTT

0401 TTFFTFFTTT

0462 TTFTTTFFTP

0463 TTTTTTTTTT

0464 FTFFTFFTFT

0512 TFTFTFTFTF

0618 TTTFFTTFTF

0619 FFFFFFFFFF

0687 TFTTFTTFXF

0700 FTFFTTFFFT

0712 FTFTFTFTFT

0837 TFTFTTFTFT

Develop and test a program that first reads in the answer string representing
the ten correct answers (use ftfptpftft as data), then reads the student re
sponses into an array and, for each student, computes the number of correct re
sponses. The program then determines the best score. Best, and display a
three-colunm table displaying the ID number, score, and grade for each stu
dent. The grades are A if the score is equal to Best or Best - 1, C if it is Best
- 2 or Best - 3, and F otherwise.

2. Assume that a set of sentences is to be processed. Each sentence consists of a
sequence of words, separated by one or more blank spaces. Write a program
that will read these sentences and count the number of words that have one let
ter, two letters, and so on, up to ten letters.
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3. Write an interactive program that plays the game of Hangman. Read the word
to be guessed into the string word. The player must guess the letters belonging
to Word. The program should terminate when either all letters have been
guessed correctly (player wins) or a specified number of incorrect guesses
have been made (computer wins). {Hint: Use a string solution to keep track
of the solution so far. Initialize solution to a string of symbols ■ * ■. Each time
a letter in word is guessed, replace the corresponding • * • in solution with
that letter.)

4. Write a program that reads several lines from a data file and writes each word
of the file on a separate line of an output file, followed by a count of the num
ber of letters in that word. After all lines are processed, the program should
display the number of words processed and data lines read. Assume that words
are separated by one or more blanks. Include a procedure, skipBlanks, that
skips over a sequence of blanks between words.

5. Whatsamatta U. offers a service to its faculty for computing grades at the end
of each semester. A program processes three weighted test scores and calcu
lates a student's average and letter grade (an A is 90-100, a B is 80-89, and so
on). The program reads the student data from a file and writes each student's
name, test score, average, and grade to an output file.

Write a program to provide this valuable service. The data will consist first of
the three test weights, then a series of student records, each of which consists
of the student's name, ID number (four digits), and the three test scores. Calcu
late the weighted average for each student and the corresponding grade. This
information should be printed along with the initial three test scores. The
weighted average for each student is equal to

weightl * gradel + veight2 * grade2 + weights * gradeS

For summary statistics, print the highest average, the lowest average, the aver
age of the averages, the median average, and the total number of students pro
cessed. The median is that average obtained by the "middle" student when the
file is sorted by weighted average. To find this, it will be necessary to read the
file into an array and store each student's average in a field of the memory
record. In this way the array can be sorted. Some sample data follow:

0.35 0.25 0.40

Mouse, Minnie 1014 100 76 88

Duck, Donald 2234 90 85 65

6. Develop a case study and menu-driven program to maintain records for your
bank savings account. The program will take its initial input from a file, each
line of which represents a transaction. Each transaction will have a date, a
transaction type (deposit, withdrawal, or interest), and an amount of money.
The transactions will be stored in an array of capacity 200. Once the array is
initialized from the file, the user will be able to enter more transactions interac
tively, and, at user option, display the entire set of transactions and a running
account balance after each transaction. Finally, the program will write the set
of transactions back to the file.
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Programming with Objects:
Abstract Data Types

11.1 System Structures: Abstract Data Types (ADTs)

112 System Structures: The ADT Package Ada.Calendar

11.3 System Structures: Writing an ADT for Dates

11.4 System Structures: Writing an ADT for Money Quantities

11.5 System Structures: Using an ADT to Create a Mini-Data Base

11.6 Continuing Saga: Writing an ADT for Multiple Spiders

11.7 Tricks of the Trade: Common Programming Errors

Chapter Review

Many of the programs in this book so far have focused on developing a single program
for a single application. In this chapter we consider the question of building reusable
software components, or software building blocks that can be used by many programs.
These fall into several categories; the one we take up here is called abstract data types.

An abstract data type (ADT) is a package whose specification provides a type and a
set of operations on that type. ADTs are an important form of encapsulation, which is,
in turn, one of the key concepts in object-oriented programming (OOP). Encapsulation
is the process of locating, in a single module, a data structure and all its operations.
ADT packages are quite similar to the classes that are used in other object-oriented lan
guages.

In this chapter you will see how package Ada.Calendar is a good example of an
ADT, and you will use a number of its operations for the first time.

Also in this chapter you will leam to write ADTs, and you will see the details of
three useful reusable components: calendar dates, currency or monetary quantities, and
employee records. Finally, we return to the spider, presenting an ADT to support multi
ple spiders in one room.

469
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11.1 System Structures: Abstract Data Types (ADTs)

Data abstraction is a powerful programming tool. It is the conceptual approach of com
bining a data type wiA a set of operations on that data type. Furthermore, data abstrac
tion is the philosophy that we can use such data types without knowing the details of
their representation in the underlying computer system.

Data abstraction enables us to consider the data objects needed and the operations
that must be performed on those objects without being concerned with unnecessary
details. Indeed, data abstraction is an important part of object-oriented programming.

You have already practiced data abstraction—you have used the Float data type to
represent decimal numbers without knowing much about the internal representation of
that data type on a computer. In fact, floating-point representations vary considerably
from one computer to another. In some cases there are no hardware instructions for
floating-point arithmetic; it is all done with calls to subprograms. The point is that you
have used floating-point literals, variables, and operations with confidence, without
knowing or even caring how they are represented.

The most important thing in data abstraction is the familiar definition of type: a set
of values and a set of operations that are appropriate for those values. Each one of the
types you have used so far, whether predefined or user-defined, has not only values but
also operations. In Ada the compiler ensures that all operations that are applied to a
value are appropriate for that value. Ada provides powerful facilities for defining your
own types—your own data abstraction—and with careful design, you can guarantee
that all operations applied to values of your own types are appropriate for those values.

Ada's Specification for Predefined Types: Package Standard

Ada has a convenient way of specifying all the predefined types— integer, Float,
Boolean, Character, and SO on—and their operations. Because Ada programmers leam
very quickly to understand package specifications, the designers of the language chose
to specify these things with a package specification called standard. Figure 11.1 shows
the section of standard that describes Float. Notice that the arithmetic and relational
operators are specified as functions. For example,

FUNCTION "+" (Left, Right : Float) RETURN Float;

tells US concisely that"+" takes two Float operands and returns a result of type Float.
Mathematically, an operator is really just a certain kind of function, so this notation is
appropriate. You will see later in this chapter that Ada also gives you the ability to spec
ify new operators in this manner.

Figure 11.1 Section of Package Standard Describing Float

PACKAGE Standard IS

— Section of package Standard that defines the type Float and its
— operations. Excerpted and reformatted from the Ada 95 RM Sect. A.l.

TYPE Float IS DIGITS Implementation_Defined;
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— "Implementation Defined" means that the Standard does not
— specify the details, because they depend on the computer's
— arithmetic system.

— The predefined operators for this type are as follows:

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

■/="
•<"

'<="

•>"

">=■'

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

Right
Right
Right
Right
Right
Right

Float)
Float)

RETURN Boolean;
RETURN Boolean;

Float) RETURN Boolean;
Float) RETURN Boolean;
Float) RETURN Boolean;
Float) RETURN Boolean;

FUNCTION "+" (Right
FUNCTION (Right
FUNCTION "ABS"(Right

Float) RETURN Float;
Float) RETURN Float;
Float) RETURN Float;

FUNCTION "+" (Left, Right
FUNCTION (Left, Right
FUNCTION (Left, Right
FUNCTION "/" (Left, Right

Float) RETURN Float;
Float) RETURN Float;
Float) RETURN Float;
Float) RETURN Float;

FUNCTION "**" (Left : Float; Right ; Integer) RETURN Float;

END Standard;

As another example from standard, consider Fig. 11.2, which shows the specifica
tion for the predefined type integer. Notice the style in which all the familiar integer
operations are listed.

Figure 11.2. Section of Package Standard Describing Integer

PACKAGE standard IS

—> This is the section of the paclcage Standard that describes
— the predefined type Integer.
— Excerpted and reformatted from the Ada 95 RM, Section A.l.

TYPE Integer IS RANGE Implementation_Defined;

- The predefined operators for this type are as follows;

FUNCTION "=" (Left, Right
FUNCTION "/=" (Left, Right
FUNCTION "<" (Left, Right
FUNCTION "<=" (Left, Right
FUNCTION ">" (Left, Right
FUNCTION ">=" (Left, Right

Integer)
Integer)
Integer)
Integer)
Integer)
Integer)

RETURN
RETURN

RETURN

RETURN

RETURN

RETURN

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

FUNCTION "+" (Right
FUNCTION (Right
FUNCTION "ABS" (Right

Integer) RETURN Integer;
Integer) RETURN Integer;
Integer) RETURN Integer;

FUNCTION "+"

FUNCTION
(Left, Right
(Left, Right

Integer) RETURN Integer;
Integer) RETURN Integer;
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FUNCTION

FUNCTION "/"

FUNCTION "REM"

FUNCTION "MOD"

(Left, Right
(Left, Right
(Left, Right
(Left, Right

Integer) RETURN Integer;
Integer) RETURN Integer;
Integer) RETURN Integer;
Integer) RETURN Integer;

FUNCTION "**" (Left : Integer; Right : Integer) RETURN Integer;

END Standard;

The Nature of an ADT

An abstract data type, or ADT, is really just a formal name for a type: a set of values
and a set of operations that are appropriately applied to those values.

A program that uses an abstract data type is called a client program. A client pro
gram can declare and manipulate objects of the data type and use the data type's opera
tors without knowing the details of the internal representation of the data type or the
implementation of its operators; these details are hidden from the client program (this
is called information hiding by computer scientists). In this way we separate the use of
the data and operators (by the client program) from the representation of the type and
implementation of the operators (by the abstract data type). This provides several
advantages. It allows us to implement the client program and abstract data type inde
pendently of each other. If we decide to change the implementation of an operator
(function or procedure) in the abstract data type, we can do this without affecting the
client program. Finally, because the internal representation of a data type is hidden
from its client program, we can even change the internal representation at a later time
without modifying the client.

An ADT is an important kind of reusable software component. ADTs are written so
as to be usable by a variety of client programs. An ADT needs to have no knowledge of
the client programs that will use it; the client programs needs to have no knowledge of
the intemd details of the ADT. Ideally, ADTs are thought of as being analogous to the
various integrated electronic components that are used in modem computers and other
devices: One needs to understand only the interface to an ADT to "plug it in" to a pro
gram, the way electronic components are plugged into a circuit board.

ADTs facilitate programming in the large because they reside in ever-larger librar
ies of program resources. Having large libraries of general resources available makes
the client programs much simpler because their writers do not have to "reinvent the
wheel." The modem software industry is devoting much time and effort to the develop
ment of component libraries; your study of ADTs will give you a taste of how this
development is done.

ADTs are built in Ada by using packages; ADT packages are very similar to the
class encapsulations that are used in other object-oriented languages. The remainder of
this chapter introduces concepts of ADTs and discusses four ADTs in particular: the
predefined package Ada.calendar and four user-written packages for calendar dates,
currency quantities, employee records, and multiple spiders.
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The Structure of an ADT

Abstract data types are a general concept in programming, independent of any particu
lar programming language. An ADT consists of the specification of one or more data
types and a set of operations that are applicable to the type or types. Generally the type
is a composite type, often a record of some kind. The operations can be classified into
several classes:

• Constructor: A constructor creates, or constructs, an object of the type by putting
its component parts together into a unified whole.

• Selector: A selector selects a particular component of an object.

• Inquiry: An inquiry operation asks whether an object has a particular property, for
example, whether it is empty.

• Input!output: As usual, an input/output operation is the communication link be
tween the value of an object and the world outside the program, usually a human
operator at the terminal or a disk file or printer.

Ada Features for ADTs

Ada provides many capabilities to help us develop ADTs. Here is a summary of the
abstraction features that we use in this book. We will make use of the first six in this
chapter; the last two will be introduced in Chapter 12 and used to advantage in the
remaining chapters.

• Ada provides subtypes. This feature allows us to define a class of numeric or enu
meration values and attach range constraints to it. This allows the compiler to make
certain that we never assign an out-of-range value to a variable.

• Ada provides record field initialization. This allows us to define a record type in
such a way that each field in each variable of that type is initialized to a predeter
mined value.

• Ada provides packages. As we have seen throughout this book, a package is an ide
al way of encapsulating—grouping together—resources—types, functions, proce
dures, important constants, and so on—and making them available to client
programs. A package specification acts as a "contract" between the writer of the
package and the writer of the client program. Furthermore, the compiler checks to
make sure that the contract is followed: Everything that is promised in the specifi
cation must be delivered in the package body, and client programs must use the
package resources correctly, for example, by calling procedures only with the cor
rect parameters.

• Ada provides private types. The private type capability enables us to write a pack
age that provides a new type to client programs, in such a way that the client pro
gram cannot accidentally misuse values of the type by referencing information that
is most properly kept private, that is, restricted for the internal use of the package
body only.



474 Programming with Objects: Abstract Data Types

Ada provides operator overloading. This allows us to write new arithmetic and
comparison operators for new types and use them just as we use the predefined op
erators.

Ada provides user-defined exceptions. This enables the writer of a package to pro
vide exceptions to client programs in order to signal to a client when it has done
something inappropriate with the package. The writer of the client program can
write exception handlers for user-defined exceptions that work exactly like the
handlers we write for the predefined exceptions such as constraint_Error.

Ada provides attributes such as the First and Last attributes that we have used
frequently thus far. Attributes make it possible to write subprograms that manipu
late data structures without knowing all their details. This is especially useful in the
case of arrays, in which a subroutine that manipulates an array parameter can be
written without knowing the array bounds: All it needs to do is to inquire about the
array bounds by asking for the First and Last attributes. This will be used to great
advantage starting in Chapter 12.

Finally, Ada provides generic definition. Generic definition allows us to write sub
programs and packages that are so general that they do not even have to know all
the details of the types they manipulate; these types can be passed to the generic
unit as parameters when the generic unit is instantiated. We have seen generic in
stantiation so far only with respect to the Ada.Text_io libraries. Chapter 12 will
introduce more about generics and show you how to write generic units of your
own.

EXERCISES FOR SECTIOISI 11.1

Self-Check

1. Explain the various kinds of operations in an ADT.

11.2 System Structures: The ADT Package Ada.Calendar

Before learning to write ADTs, it is helpful to study an existing one in detail. We have
used the predefined package Ada.Calendar in a number of previous examples in this
book without paying much attention to the fact that Ada. calendar serves as an excel
lent example of a well-thought-out ADT. It happens that Ada.Calendar is always pro
vided with an Ada compiler (indeed, it must be provided), and our own ADTs will often
be written in the style of Ada.Calendar. Systematic study of Ada.Calendar will teach
you a lot about the design of ADTs and prepare you to start writing your own.
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Resources Provided by Ada.Calendar

Package Ada.calendar uses a type Duration, which is actually defined in standard,
not here. Duration is a measure of elapsed time: One duration unit is exactly equal to
one elapsed second. Note that this is not the same as the time of day. Time of day, often
called "wall clock" time in computing applications, gives a particular instant of time:
12:05 PM. on January 25, 1980, for example. Duration measures the passage of time:
Two minutes, or 120 seconds, elapse between 12:05 pm. and 12:07 p.m on the same
day. Time of day is one of the resources provided by Ada.calendar, in the form of a
type Time.

The purpose of Ada.Calendar is to provide a useful number of operations on
time-of-day values. Figure 11.3 shows the entire specification of package Ada.Calen
dar, which we have copied straight from the Ada standard, making changes only in the
formatting and comments in the specification.

Figure 11.3. Full Specification of Ada.Calendar

PACKAGE Ada.Calendar IS

— standard Ada package, must be supplied with compilers
— provides useful services for dates and times

— type definitions

TYPE Time IS PRIVATE;

SUBTYPE Year_Number IS Integer RANGE 1901..2099;
SUBTYPE Month_Number IS Integer RANGE 1..12;
SUBTYPE Day_Number IS Integer RANGE 1..31;
SUBTYPE Day_Duration IS Duration RANGE 0.0..86_400;
— Duration is a predefined (standard) fixed-point type;
— Day_Duration range is the number of seconds in 24 hours

— constructor operation

— constructs a Time value from its components; note that the
— default for Seconds is 0.0, so if Seconds value isn't given,
— the time is assumed to be at midnight

FUNCTION Time_Of (Year : Year_Number;
Month : Month_Number;
Day : Day__Number;
Seconds : Day_Duration:=0.0) RETURN Time;

— selector operations

FUNCTION Year (Date : Time) RETURN Year_Number;
FUNCTION Month (Date : Time) RETURN Month_Number;
FUNCTION Day (Date : Time) RETURN Day_Number;
FUNCTION Seconds (Date : Time) RETURN Day_Duration;

— splits a Time value into its component parts

PROCEDURE Split (Date : IN Time;
Year : OUT Year_Number;
Month : OUT Month_Number;
Day : OUT Day__Nuraber;
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Seconds ; OUT Day__Duration);

-- read the computer's clock to get the current time of day

FUNCTION Clock RETURN Time;

— arithmetic and comparison operations

— note that only the "sensible" operations are defined.
— this is possible because Time is a private type with no
— predefined operations except and »

FUNCTION "<" (Left, Right : Time)
FUNCTION "<=" (Left, Right : Time)
FUNCTION ">" (Left, Right ; Time)
FUNCTION ">=" (Left, Right : Time)

RETURN Boolean;

RETURN Boolean;
RETURN Boolean;

RETURN Boolean;

FUNCTION "+" (Left : Time; Right : Duration) RETURN Time;
FUNCTION "+" (Left : Duration; Right s Time) RETURN Time;
FUNCTION (Left : Time; Right : Duration) RETURN Time;
FUNCTION (Left : Time; Right : Time) RETURN Duration;

— exported exceptions

— Time Error is raised by Time__Of if its actual parameters
— don't form a proper date, and also by "+" and if they
— can't return a date whose year number is in range,
— or if can't return a value that is in the

— range of the type Duration.

Time Error : EXCEPTION;

PRIVATE

— implementation-dependent (the details depend on the computer's
— internal clock structure, and are not important because Ada.Calendar
— provides all the operations we need)

END Ada.Calendar;

The first line of code in Ada.calendar is a partial type definition:

TYPE Time IS PRIVATE;

The definition is completed at the bottom of the figure, below the word private. Ada
provides certain rules for the use of private types. First, variables of the type may be
declared; for example,

MyBirthDay : Ada.Calendar.Time;
LastWeek : Ada.Calendar.Time;

are permissible declarations. Second, one variable of a private type may be assigned the
value of another variable of the same type, and two variables of a private type may be
compared for equality or inequality. For example,

LastWeek := MyBirthday;
IF LastWeek /= MyBirthday THEN...
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are both valid operations. No other operations are predefined. Indeed, one of the pur
poses of private types is to allow the writer of a package to define exactly those opera
tions he or she deems appropriate.

Following the definition of Time are four subtype declarations. Three of these give
the acceptable ranges for year, month, and day values; the fourth specifies the number
of duration units, or seconds, in a 24-hour day: 86,400. The Ada standard says that any
time value from midnight on January 1,1901, to midnight on December 31,2099, must
be treated as a unique valid value by Ada.calendar; furthermore, two consecutive time
values must not differ by more than 20 milliseconds.

Time is treated as a private type for two reasons. First, the internal representation of
a time value is dependent on the form that the hardware clock uses for time values. Sec
ond, not all operations make sense for time values. If Time were treated as just some
sort of integer value, for example, we could multiply two times together; however, mul
tiplying 3 P.M by 4 PJkl is meaningless! Making Time a private type allowed the design
ers of Ada to control precisely the set of sensible operations on Time values. What are
these operations?

To use time values well, the client program must be able to create time values, for
example, by supplying a month, a day, and a year. Ada.calendar provides a function
Time_of for this purpose. An operation like Time_of, which constructs a value of the
new type from its component parts, is called a constructor operation. There are also five
selector operations. Year, Month, Day, Seconds, and split, which allow the client pro
gram to select various components of a time value in a useful form (integer and dura
tion values). The first four of these operations are functions that return individual
components; split is a procedure that produces all four components in a single call.
The next operation is Clock, which returns the current time of day as a Time value.

We know from the discussion above that each time value is unique; also, time val
ues are monotonically increasing; that is, as time progresses, each new value is greater
than the previous one. This conforms to our real-world view of time and the concepts of
"earlier" and "later." Because time is monotonically increasing—rom//y ordered is
another mathematical term with similar meaning—we can confidently compare two
values. As for any private type, Ada already provides equality and inequality operators,
so Ada.Calendar provides the Others: <, <=, >, and >=. Notice that these are specified as
functions; they can be used in function form, for example,

IF Ada.Calendar."<="(RightNow, AnotherTime) THEN...

or as normal infix operators, for example,

IF RightNow <= AnotherTime THEN...

(The latter form is permitted only if a use Ada.calendar appears at the top of the pro
gram.)

To do computations with time values, Ada provides some arithmetic operations.
Only those operations that make sense are provided by the package, as follows:

FUNCTION "+" (Left ; Time; Right s Duration) RETURN Time;
FUNCTION "+" (Left ; Duration; Right ; Time) RETURN Time;
FUNCTION (Left : Time; Right : Duration) RETURN Time;
FUNCTION (Left : Time; Right : Time) RETURN Duration;
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For example, adding two times together makes no sense (what docs it mean to add
3 P.M. to 4 PA1 ?); it is therefore not possible to do so with Ada.calendar operations. It
does make sense to add a duration to a time; for example, 3 P.M. plus one hour is 4 pm.
The two "+" operations are provided to ensure that the time value can appear on the
right or the left. Finally, the subtraction operations are sensible ones: Subtracting 3 pjsI.
from 4 PM. gives one elapsed hour; subtracting two hours from 7 AJvl gives 5 am.
These operations serve as an excellent example of the usefulness of private types in
ensuring that a client cannot perform meaningless operations or operations that do not
make physical sense.

The final line of code in the specification defines an exception Time_Error. This
exception is raised whenever a Tiine_of call would return an invalid time value, for
example, if 2 (February), 30, and 1999 were supplied as parameters: February 30 does
not exist. Ada.calendar also understands leap years, so Time_Error would be raised if
2,29, and 1999 were supplied to Time_of, because 1999 is not a leap year. Time_Error
is also raised if the subtraction operator is given two times that are so far apart that the
computer cannot represent the number of elapsed seconds that separate them.

CASE

STUDY: WORLD TIMES

As an example of the use of Ada.calendar, consider the problem of determining the
time in other time zones around the world.

Problem Spedfication
Write a program to allow the user to enter the abbreviation of one of a set of cities and
display the current time in that city.

Analysis
Given a table of city codes and the number of time zones separating each from the
user's home time zone, we can use Ada.calendar to find the current local time, then
add or subtract the appropriate number of seconds to find the time elsewhere.

Data Requirements

Problem Inputs

city : Cities

Design

Algorithm
1. Read the value of city from the keyboard.

2. Find the current local time.

3. Find the time in city by using the time zone offset table.

4. Display the local time and the time in city.
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Test Plan
Since you can easily look up the number of hours of offset, test the program for the dif
ferent allowed cities, and be certain that the time is computed properly. Also test, as
usual, for invalid input, that is, a token that is not a city code.

implementation
Program 11.1 gives the program for worid_Time. Type cities gives a list of city names
or abbreviations; a procedure Readcity reads a city name robustly, refusing to permit
an invalid city to be entered; and a procedure oispiayTime is used to display a time
value in a useful form. oispiayTime is a modification of TimeofDay, developed earlier
in Program 7.3.

Program 11.1 Time around the World

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Ada.Calendar;

PROCEDURE World_Time IS

— I Finds the current time in any of several time zones
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

TYPE Cities IS (Paris, London, Rio, Caracas, DC,
Chicago, Denver, Seattle, Honolulu);

PACKAGE City_IO IS NEW Ada.Text__IO.Enuraeration_IO(Cities);

TimeHere : Ada.Calendar.Time;
TimeThere : Ada.Calendar.Time;
There : Cities;

FUNCTION AdjustTime(T: Ada.Calendar.Time; City: Cities)
RETURN Ada.Calendar.Time IS

— given a time value, finds the corresponding time
~ in a given time zone

TYPE TimeDiffs IS ARRAY (Cities) OF Integer;

— table of time differences from DC; modify this table if you are
— not located in the Eastern U.S. time zone

Offsets : CONSTANT TimeDiffs :=

(Paris => +6, London => +5, Rio => +2, Caracas => -1, DC => 0,
Chicago => -1, Denver => -2, Seattle => -3, Honolulu => -5);

BEGIN — AdjustTime

RETURN Ada.Calendar."+"(T, Duration(Offsets(City) * 3600));

END AdjustTime;

PROCEDURE Readcity(City : OUT Cities) IS

— reads a city name from the terminal, robustly
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BEGIN — ReadCity

LOOP

BEGIN — exception handler block
Ada.Text_IO.PutJLine
(Item => "Please enter one of the following:");

Ada.Text_IO.Put_Line
(Item => "Paris, London, Rio, Caracas, DC, ");

Ada.Text_IO.Put(Item =>
"Chicago, Denver, Seattle, Honolulu >");

City_IO.Get(Item => City);
EXIT; — good input data

EXCEPTION bad input data
WHEN Ada.Text_IO.Data_Brror =>
Ada. Text__IO. Skip__Line ;
Ada.Text_IO.Put
(Item => "Invalid city name; please try again.");

Ada. Text_IO. New__Line;
END; — exception handler block

END LOOP;

END ReadCity;

PROCEDURE DisplayTime(T: Ada.Calendar.Time) IS

SecsPastMidnight : Natural
MinsPastMidnight : Natural
Sees : Natural

Mins : Natural

Hrs : Natural

BEGIN — Display_Time

SecsPastMidnight :=
Natural(Ada.Calendar.Seconds(T));

MinsPastMidnight
Sees

Mins

Hrs

= SecsPastMidnight/60;
= SecsPastMidnight REM 60;
= MinsPastMidnight REM 60;
= MinsPastMidnight / 60;

Ada.Integer_Text__IO.Put (Item => Hrs, Width => 1);
Ada.Text_IO.Put (Item => ':');
IF Mins <10 THEN

Ada.Text_IO.Put (Item => '0');
END IF; ~
Ada.Integer_Text_IO.Put (Item => Mins, Width => 1);
Ada.Text_IO.Put (Item => ':');
IF Sees < 10 THEN

Ada.Text_IO.Put (Item => '0');
END IF; ~
Ada.Integer_Text_IO.Put (Item => Sees, Width «=> 1);

END DisplayTime;

BEGIN — World_Time

ReadCity(City => There);
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TimeHere := Ada.Calendar.Clock;
TimeThere ;= AdjustTime(T=>TimeHere, City=>There);

Ada.Text_^IO.Put(Item => "Current local time is ");
DisplayTime(T => TimeHere);
Ada.Text_IO.New_Line;
Ada. Text__IO. Put (Item => "Current time in ");
City_IO.Put(Item => There, Width =>1);
Ada.Text_IO.Put(Item => " is ");
DisplayTirae(T => TimeThere);
Ada.Text_IO.New_Line;

END World_Time;

Sample Run

Please enter one of the following:
Paris, London, Rio, Caracas, DC,
Chicago, Denver, Seattle, Honolulu >xxx
Invalid city name; please try again.
Please enter one of the following:
Paris, London, Rio, Caracas, DC,
Chicago, Denver, Seattle, Honolulu >paris
Current local time is 22:46:44

Current time in PARIS is 4:46:44

The function AdjustTime does the work of computing the new time. It contains a
table of offsets, or number of time zones away from local time. Ada.caiendar. "+•• is
used to add or subtract the appropriate number of seconds:

RETURN Ada.caiendar."+"(T, Duration(Offsets(City) * 3600));

The array offsets gives the time zone differences; the number of seconds is com
puted by multiplying the number of time zones by 3600 (the number of seconds in an
hour), then converting to type Duration.

It is important to note that on most computers, Ada.calendar.Clock gives the cur
rent local time, not some universal time value. The array offsets is initialized to the
offsets from the authors' home time zone, the Eastern U.S. zone; you will have to
change the table values if you are running this program in another zone. An exercise
suggests an approach to solving this problem in a more robust manner.

EXERCISES FOR SECTION 11.2

Programming

Write a program that tests the operations in package Ada.caiendar. Try to add
two times together, for example. Also investigate what happens when Tiine_of
is called with parameters that would lead to an invalid time value (February
30, for example, or February 29,1997). Does Ada.caiendar behave correctly?
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11.3 System Structures: Writing an ADT for Calendar Dates

Section 11.2 illustrated the use of an ADT. It is now time to consider how we might
write an ADT of our own.

In Chapter 9 we developed a package simpie_Dates for representing, reading, and
displaying calendar dates. A difficulty with that package is that the user can enter and
store a meaningless date (February 30, for example). In this section we improve the
package so that it is more robust and offers more capabilities.

Specification for the Improved Dates Package

The specification for our improved package appears in Program 11.2. We represent a
date using the same record form as in siinpie_Dates, but now it is a private type so that
a client program does not manipulate the fields directly. This prevents the user from
storing an invalid date in a date variable. We shall also move the input/output opera
tions into a child package Dates. lo. This is a style that we shall use in other ADTs as
well.

Program 11.2 Specification for Improved Dates Package

WITH Ada.Calendar;

PACKAGE Dates 15

Specification for package to represent calendar dates
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Months IS

(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Mov, Dec);

SUBTYPE Year_Number IS Ada.Calendar.Year_Nuinber;
SUBTYPE Day__Number IS Ada.Calendar.Day_Nuinber;

TYPE Date IS PRIVATE;

Date_Error : EXCEPTION;

— constructors

FUNCTION Today RETURN Date;
— Pre: None

— Post: Returns today's date; analogous to Ada.Calendar.Clock

FUNCTION Date_Of(Year : Year_Nuinber;
Month : Months;

Day : Day_Number) RETURN Date;
— Pre: Year, Month, and Day are defined
— Post: Returns a Date value

— Raises: Date_Error if the year, month, day triple do not
form a valid date (Feb. 30, for example)

— Analogous to Ada.Calendar.Time__Of

— selectors
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FUNCTION Year (D: Date) RETURN Year_Nuinberj
FUNCTION Month(D; Date) RETURN Months;
FUNCTION Day (D: Date) RETURN Day_Nuinber;
— Pre: D is defined

— Post: Return the year, month, or day component, respectively

PRIVATE

TYPE Date IS RECORD

Month: Months := Months'First;

Day: Day_Number := Day_Number'First;
Year: Year__Number := Year_Number'First;

END RECORD;

END Dates;

We define two subtypes Year_Number and Month_Number as "nicknames" for the
ones provided by Ada.calendar. Because Date is a private type, a client program has
no direct access to its fields. Therefore we need to supply constructors Today, as in
Simple_Dates, and Date_Of by analogy with the Time_Of constructor in Ada.calen
dar. Further, we need selectors Year, Month, and Day, by analogy with the correspond
ing ones in Ada.calendar, each of which selects and returns the given component of
the date record. Also by analogy with Ada.calendar, we provide an exception
Date_Error, raised when Date__of would produce a meaningless date such as February
30 or June 31.

SYNTAX

DISPLAY
Private Type Definition

Form:

PACKAGE PackageName IS

TYPE TypeName IS PRIVATE;

PRIVATE

TYPE TypeName IS full type definition (usually a record)
END PackageName}

Example:

PACKAGE Rationals IS

TYPE Rational IS PRIVATE;

PRIVATE

TYPE Rational IS RECORD

Numerator: Integer;
Denominator: Positive;

END RECORD;

END Rationals;



484 Programming with Objects: Abstract Data Types

Interpretation:

A private type can be defined only in a package specification. The first occur
rence of TypeName defines it as a private type; the Ml type definition appears at
the end of the specification, in the private section.

Note:

Do not confuse private tj-pes with limited private ones. A private type auto
matically has the predefine operations ;=, =, and /«=, in addition to any opera
tions you define in the package. A limited private type has no pr^efined
operations at all. limited private types are useM in certain situations and are
discussed in Chapter 15.

SYNTAX

DISPLAY
User-Defined Exception

Form:

ExcepnonNome ; EXCEPTION;

Example:

ZeroDenominator: EXCEPTION;

Interpretation:

Exceptions are usually defined in a package specification. The exception can be
raised by an operation in the corresponding package body by the statement

RAISE ExceptionName ;

A client program can have an exception handler for this exception, of the form

WHEN ExceptionName ->

Body of the tmproved Dates Package

Program 11.3 shows the body of package Dates. Because Ada. calendar already knows
how to validate a date, the constructor function Date_of just uses Ada.calen
dar.Time__Of to do this. If Time_of does not raise Time_Error, the date is valid. The
selectors Year, Month, and Day should be obvious, and Today works just as it did in
simpie_Dates, calling the appropriate Ada.calendar operations to produce the date.

Program 11.3 Body of Improved Dates Package

WITH Ada.Calendar;

PACKAGE BODY Dates IS

— I Body for package to represent calendar dates
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

FUNCTION Today RETURN Date IS
— Finds today's date and returns it as a record of type Date



113 System Structures: Writing an ADTfor Calendar Dates 485

— Today's date is gotten from Ada.Calendar

Right^Now : Ada.Calendar.Time; — holds internal clock value
Temp : Date;

BEGIN — Today

—• Get the current time value from the computer's clock
Right_Now := Ada.Calendar.Clock;

— Extract the current month, day, and year from the time value
Temp.Month := Months'Val(Ada.Calendar.Month(Right_Now)- I);
Temp.Day := Ada.Calendar.Day (Right_Now);
Temp.Year ;= Ada.Calendar.Year (Date => Right_Now);

RETURN Temp;

END Today;

FUNCTION Date_Of(Year : Year_Number;
Month : Months;

Day ; Day_Number) RETURN Date IS

— constructs a date given year, month, and day.

Temp: Ada.Calendar.Time;

BEGIN — Date_Of

Temp := Ada.Calendar.Time_Of(Year=>Year,
Month=>Month8'Pos(Month)+1, Day=>Day);

— assert: M, D, and Y form a sensible date if Time_error not raised

RETURN (Month => Month, Year => Year, Day => Day);
-- assert: a valid date is returned

EXCEPTION

WHEN Ada.Calendar.Time_Error =>
RAISE Date_Error;

END Date_Of;

FUNCTION Year (D: Date) RETURN Year Number IS

BEGIN

RETURN D.Year;

END Year;

FUNCTION Month (D: Date) RETURN Months IS
BEGIN

RETURN D.Month;
END Month;

FUNCTION Day (D: Date) RETURN Day_Number IS
BEGIN

RETURN D.Day;

END Day;

END Dates;
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The Child Package DatesJO

As was mentioned earlier, it is a good idea to separate construction of dates and selec
tion of date fields from input and output of dates, and so we provide a child package.
Dates. 10, to handle the Get and Put operations. Recall that a child package can be
thought of as an extension of its parent package.

Program 11.4 shows the specification of the child package.

Program 11.4 Specification for Dates Child Package for Input/Output

WITH Ada.Text_I0;
PACKAGE Dates.10 IS

— I Specification for child package to read and display dates
j Author: Michael B. Feldman, The George Washington University

— Last Modified: September 1998

TYPE Formats IS

(Full, — February 7, 1998
Short, — 07 FEE 98
Numeric); — 2/7/98

PROCEDURE Get(Item: OUT Date);
PROCEDURE Get(File: IN Ada.Text_IO.Pile_Type; Itern: OUT Date);
— Pre: File is open
— Post: Reads a date in mmm dd yyyy form from standard or input

or an external file, respectively

PROCEDURE Put(Item: IN Date; Format: IN Formats);
PROCEDURE Put(File: IN Ada.Text_IO.File_Type;

Item: IN Date; Format: IN Formats);

— Pre: File is open; Item and Format are defined
— Post: Writes a date in the desired format to standard output

or an external file, respectively

END Dates.10;

In this specification we define an enumeration type. Formats, as follows:

TYPE Format IS (Full, Short, Numeric);

which we will use in the output procedure to determine which of the four following
forms will be used to display a date;

February 4, 199
04 FEE 99

2/4/99

Program 11.5 gives the body of the child package.

Program 11.5 Body of Dates Child Package for Input/Output

WITH Ada.Calendar;

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_IO;
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PACKAGE BODY Dates.10 IS

Body for child package to read and display calendar dates
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PACKAGE Month_IO IS
NEW Ada.Text_IO.Enumeration_IO(Enum => Months);

PROCEDURE Get(File: IN Ada.Text__IO.File_Type? Item: OUT Date) IS

M: Months;
D: Day_Number;
Y: Year_Number;

BEGIN -- Get

Month_IO.Get (File => File, Item => M);
Ada.Integer_Text_IO.Get(File => File, Item => D);
Ada.Integer_Text_IO.Get(File => File, Item => Y);

assert: M, D, and Y are well-formed and in range
otherwise one of the Get's would raise an exception

Item := Date_Of (Month => M, Year => Y, Day => D);
— assert: Item is a valid date if Date__Error not raised

EXCEPTION

WHEN Ada.Text_IO.Data_Error =>
RAISE Date_Error;

WHEN Constraint_Error =>
RAISE Date_Error;

WHEN Date_Error =>
RAISE Date_Error;

END Get;

PROCEDURE WriteShort

(File: IN Ada.Text_IO.File__Type; Item: IN Date) IS
— Pre: Item is assigned a value
— Post: Writes a date in dd MMM yy form

Last2Digits : Natural;

BEGIN — WriteShort

Last2Digits := Item.Year REM 100;

IF Item.Day <10 THEN

Ada. Text_IO. Put (File =«> File, Item => '0');
END IF;

Ada. Integer__Text_IO. Put
(File => File, Item => Item.Day, width => 1);

Ada.Text_IO.Put(File => File, Item => • ');
Month_IO.Put (File => File, Item => Item.Month, Width =>1);
Ada.Text_IO.Put(File => File, Item => ' ');
IF Last2Digits <10 THEN
Ada.Text_IO.Put(File »> File, Item => '0');

END IF;
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Ada.Integer_Text_IO.Put
{File => File, Item => Last2Digits, Width => 1);

END WriteShort;

PROCEDURE WriteFull

(File; IN Ada.Text_IO.File_Type; Item: IN Date) IS
— Pre: Item is assigned a value
— Post: Writes a date in Monthname dd, yyyy form

BEGIN

CASE Item.Month IS

WHEN Jan =>

Ada.Text_IO.Put(File => File, Item => "January");
WHEN Feb =>

Ada.Text_IO.Put(File => File, Item => "February");
WHEN Mar »>

Ada.Text_IO.Put(File => File, Item => "March");
WHEN Apr =>
Ada.Text_IO.Put(File -> File, Item => "April");

WHEN May =>

Ada.Text_IO.Put(File => File, Item => "May");
WHEN Jun ">

Ada.Text_IO.Put(File => File, Item => "June");
WHEN Jul =>

Ada.Text_IO.Put(File => File, Item => "July");
WHEN Aug =>

Ada.Textile.Put(File => File, Item => "August");
WHEN Sep =>
Ada.Textile.Put(File => File, Item => "September");

WHEN Get =>

Ada.Text_IO.Put(File => File, Item => "October");
WHEN Nov =>

Ada.Text_IO.Put(File => File, Item => "November");
WHEN Dec «=>

Ada.Text_IO.Put(File => File, Item => "December");
END CASE;

Ada.Text_IO.Put(File => File, Item => * ');
Ada.lnteger_Text_IO.Put
(File => File, Item => Item.Day, Width => 1);

Ada.Text_IO.Put(File => File, Item => ", ");
Ada.lnteger_Text_IO.Put
(File => File, Item => Item.Year, Width =»> 1);

END WriteFull;

PROCEDURE WriteNumeric

(File: IN Ada.Text_IO.File_Type; Item: IN Date) IS
— Pre: Item is assigned a value
— Post: Writes a date in rom/dd/yy form

Last2Digits : Natural;

BEGIN

Last2Digits := Item.Year REM 100;

Ada.Integer_Text_IO.Put
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(File => File, Item => Months'Pos(Item.Month)+l. Width => 1);
Ada.Text_IO.Put(File => File, Item =>
Ada.integer_Text_IO.Put
(File => File, Item => Item.Day, width => 1);

Ada.Text_IO.Put(File => File, Item =>
IF Last2Digits <10 THEN
Ada.Text_IO.Put(File => File, Item => '0');

END IF;

Ada.Integer_Text_IO.Put
(Pile => File, Item => Last2Digits, Width => 1);

END WriteNumeric;

PROCEDURE Put(File; IN Ada.Text_IO.File_Type;
Item: IN Date; Format: IN Formats) IS

BEGIN — Put

CASE Format IS

WHEN Short =>

WriteShort(File => File, Item => Item);
WHEN Full =>

WritePull(File => File, Item => Item);
WHEN Numeric =>

WriteNumeric(File => File, Item => Item);
END CASE;

END Put;

PROCEDURE Get(Item: OUT Date) IS

BEGIN -- Get

Get(File => Ada.Text_IO.Standard_Input, Item => Item);
END Get;

PROCEDURE Put(Item: IN Date; Format: IN Formats) IS
BEGIN — Put

Put(File => Ada.Text_IO.Standard_Output, Item => Item,
Format => Format);

END Put;

END Dates.10;

The procedure Dates. lO.Get reads a date a bit more robustly than its counterpart
in simpie_Dates. If the date that is read is ill-formed (month, day, or year is not of the
proper form), or if the combination would yield a meaningless date, Date_Error is
raised and must be handled by the client program. This is analogous to the way in
which the various Get procedures in Ada.Text_io raise Data_Error for ill-formed or
out-of-range input. ~

The procedure Dates. lo.Put displays a date in one of the three forms given previ
ously, depending upon the value of the parameter Format. Put calls one of three local
procedures WriteFull, writeShort, and WriteNumeric, depending on a case state
ment to select the appropriate one. writeshort and WriteNumeric are based on
Todays_Date (Program 4.6) and Todays_Date_2 (Program 4.7); writeFull needs
explanation.

WriteFull uses a case statement to write the appropriate month name, depending
on the month field of the date record. It would have been nice to use an enumeration
type for the full names of the months, because Enumeration_io is so easy to use.
Unfortunately, the Put procedure in Enumeration_io displays or writes the enumera
tion literal either in uppercase letters or in lowercase ones; there is no way to get it to
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PROGRAM

STYLE

display just the first letter as a capital. Because in U.S. correspondence we always capi
talize just the first letter of the month, we need to use the case statement to control the
precise form of the string displayed.

Procedures in a Package Body but Not in the Specification

It is worth noting that the three procedures writeFuii, writeshort, and write-
Numeric appear only in the package body; they are not given in the specification.
This is quite intentional: These procedures are not intended for use by the client
program; their only purpose is to refine the procedure Put, which is indeed
intended for the client.

When you design a package, you should consider very carefully just which
operations to give to the client, list these in the specification, and implement them
in the body. It is, of course, a compilation error to list a procedure or function in
the specification and not put a corresponding body in the package body. This is
because the specification is a contract that makes promises to the client that the
body must fulfill. However, it is not an error to write procedures or functions in
the body but not in the specification. Indeed, it is often quite desirable to do this,
as the Dates example illustrates.

Program 11.6 shows a test of the Dates and nates. lo packages. The program dis
plays the current date in all three formats, then asks the user to enter a date and displays
that date all three ways.

Program 11.6 Test of Improved Dates Package

WITH Ada.Text_IO;
WITH Dates;

WITH Dates.10;

PROCEDURE Test__Dates IS

Demonstration of Dates package
Author: Michael B. Peldman, The George Washington University
Last Modified: September 1998

D: Dates.Date;

BEGIN — Test_Dates

— first test the function Today
D :>= Dates.Today;
Ada.Text_IO.Put(Item =>
Ada.Text_IO.New_Line;
Dates.10.Put(Item => D,

Ada.Text_IO.New_Line;
Dates.10.Put(Item => D,

Ada.Text_IO.New_Line;
Dates.loTput(Item => D,
Ada.Text 10.New Line;

"Today is

Format ss> Dates.10.Short);

Format => Dates.10.Full);

Format => Dates.10.Numeric);

LOOP
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BEGIN — block for exception handler
Ada.Text_IO.Put("Please enter a date in MMM DD YYYY form > ");
Dates.10.Get(Item => D);
EXIT; — only if no exception is raised

EXCEPTION

WHEN Dates. Date__Error =>
Ada.Text_IO.Skip_Line;
Ada.Text_IO.Put
(Item => "Badly formed date; try again, please.");

Ada.Text_IO.New_Line;
END;

END LOOP;

Ada.Text_IO.Put(Item => "You entered ");
Ada.Text_IO.New_Line;
Dates.10.Put(Item => D, Format => Dates.10.Short);
Ada.Text_IO.New_Line;
Dates.10.Put(Item => D, Format => Dates.10.Full);
Ada.Text_lO.New_Line;
Dates.10.Put(Item => D, Format => Dates.10.Numeric);
Ada.Text_IO.New_Line;

END Test_Dates;

Sample Run

Today is
07 SEP 98

September 7, 1998
9/7/98

Please enter a date in MMM DD YYYY form > Jul 8 1947

You entered

08 JUL 47

July 8, 1947
7/8/47

EXERCISES FOR SECTION 11.5

Self-Check

1. Explain the advantages of making the data record a private type.

Programming

1. Write a short program that attempts to access a field of a date record directly.
Explain the result you get.

2. Expand Program 11.6 so that the user has a chance to enter a number of dates.
Use this to test the dates package with a number of test cases that will show
whether Dates is behaving correctly for all inputs.
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Suppose that package Ada.calendar did not have a date-validating operation.
Rewrite the body of Dates so that a date supplied to Date_of is validated by
your package, raising Date__Error if the date would be meaningless. Do not
use Ada.Calendar.Time Of to do this.

11.4 System Structures: Writing an ADT for Money Quantities

In this section we develop an ADT for monetary quantities, which we shall call cur
rency. What is important about this ADT is that in writing operations for Currency val
ues, we discover that not all operations make sense. An advantage of the ADT approach
is that we can control the set of operations to allow only meaningful ones to be done.

Requirements
We require a way to represent monetary values to ensure that calculations with these
quantities make sense and are exact. Only sensible operations should be allowed. It is
meaningful to compare, add, subtract, and divide monetary quantities but not to multi
ply them—$4.00/$2.00 is a dimensionless ratio 2.0, but $2.00 x $3.00 has no meaning.
On the other hand, it is certainly sensible to multiply a currency value by a "normal"
dimensionless quantity, for example, to find 25% of $150.00.

To understand the exact-result requirement, you must realize that not every firac-
tional decimal value can be represented exactly as a binary floating-point quantity, and
sometimes operations such as addition and subtraction cause the result to be rounded
off. While this approximation to the real numbers is often acceptable, it is unacceptable
in monetary calculations—you would not be happy if the bank approximated your
account balance.

Analysis
We are asked to construct a software component providing a type and a set of opera
tions. There are no specific problem inputs and outputs, but we shall need to provide
input and output operations so that our user—again, another programmer—can write
client programs that read and display currency values.

To ensure exact operations, we cannot simply use floating-point values. Because
integer arithmetic is exact, we will represent currency as a pair of two nonnegative inte
ger values. Dollars and cents, and a Boolean value to indicate whether the currency
value is positive or not. We will then be able to write an ADT that provides exact oper
ations.

Design
We now look at the important algorithms in currency calculations. We are allowing
both positive and negative values and representing a currency value as a pair of inte
gers. Given a currency quantity q, denote its dollars and cents parts by q . Dollars and
Q.Cents, respectively; we carry the sign separately as a flag q.Positive. First let us
see how to convert a float value to a currency value;

Algorithm for Converting a Float F to a Currenq' Quantity Q
1. Q.Dollars is the integer part of abs p; abs means absolute value, as usual.
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2. Q.Cents is 100x(abS F - Q.Dollars)

3. Q. Positive is True if and only if f >= 0.0

Note how the cents part of a currency value is calculated as the fractional part of the
Float value, multiplied by 100.

Now let us look at key algorithms for adding and subtracting two positive currency
values.

To Add Two Positive Currency Values Ql and Q2
to Produce Result

1. Set Tempcents to the sum of Qi. cents and q2 . cents

2. IF Tempcents >99 THEN we have a carry:

3. Result.Cents is Tempcents — 100

4. Result.Dollars is Ql.Dollars + Q2.Dollars + 1

5. ELSE no carry:

6. Result.Cents is TempCents

7. Result .Dollars is Ql .Dollars + Q2.Dollars

END IF;

To Subtract Q2 from Ql to Produce Result
1. IF Ql < Q2 THEN Result is negative:

2. Interchange qi and q2

END IF;

3. IF Ql.Cents < Q2.Cents THEN We need a borrow:

4. Result.Cents is (100 + Ql.Cents) - Q2.Cents

5. Result.Dollars IS (Ql.Dollars - 1) - Q2.Dollars

6. ELSE no borrow:

7. Result .Cents is Ql. Cents - Q2. Cents

8. Result.Dollars is Ql.Dollars - Q2.Dollars

END IF;

Make sure you understand these algorithms; try some examples by hand to test
yourself.

Program 11.7 shows the specification for this ADT package. The type Quantity is
declared to be private so that we can control all operations on values of this type. Note
that we are also providing a subtype centsType, which has range 0-99.
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Program 11.7 Specification for Currency Package

PACKAGE Currency IS

Specification of the abstract data type for representing
and manipulating Currency numbers.
All values of type Currency.Quantity are initialized to 0.0.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

SUBTYPE CentsType IS Integer RANGE 0..99;
TYPE Quantity IS PRIVATE;

— Operations

FUNCTION MakeCurrency (F : Float)
— constructor:

— Pre : F is defined

— Post: returns a Currency Quantity

RETURN Quantity;

FUNCTION MakeFloat (Q : Quantity) RETURN Float;
— constructor:

— Pre; Q is defined
— Post: returns the value of Q in Float form

Quantity) RETURN Natural;
Quantity) RETURN CentsType;
Quantity) RETURN Boolean;

FUNCTION Dollars (Q

FUNCTION Cents (Q

FUNCTION IsPositive(Q
— selectors:

— Pre: Q is defined
— Post: Dollars returns the Dollars part of Q; Cents the Cents part

Quantity) RETURN Boolean;
Quantity) RETURN Boolean;
Quantity) RETURN Boolean;
Quantity) RETURN Boolean;

FUNCTION "<" (Q1 : Quantity; Q2
FUNCTION ">" (Q1 : Quantity; Q2
FUNCTION "<="(Q1 : Quantity; Q2
FUNCTION ">="(01 ; Quantity; Q2
— inquiry operators:
— Pre : Q1 and Q2 are defined
— Post: return Q1 < Q2, Q1 > Q2, Q1 <= Q2, and Q1 >= Q2, respectively

FUNCTION "+" (Q : Quantity) RETURN Quantity;
FUNCTION (Q ; Quantity) RETURN Quantity;
FUNCTION "ABS"(Q : Quantity) RETURN Quantity;
— monadic arithmetic constructors:

>- Pre: Q is defined
— Post: return Q, -Q, ABS Q respectively

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

(Q1

(Q1
(F

(Q

(Q1
(Q

Quantity;
Quantity;
Float;

Quantity;
Quantity;
Quantity;

Q2

Q2

Q

F

Q2

F

Quantity) RETURN Quantity;
Quantity) RETURN Quantity;
Quantity) RETURN Quantity;
Float ) RETURN Quantity;
Quantity) RETURN Float;
Float ) RETURN Quantity;

— dyadic arithmetic constructors!
— Pre : Q1 and Q2 are defined
— Post: these are the sensible arithmetic operators on Quantity.

Note that multiplying two monetary values is not sensible.

PRIVATE
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— A record of type Quantity consists of a pair of Natural values
— such that the first number represents the Dollars part
— and the second number represents the Cents part.
— The sign of a Quantity value is indicated by a Boolean field
— called Positive.

TYPE Quantity IS RECORD
Positive: Boolean := True;
Dollars : Natural := 0;
Cents : CentsType 0;

END RECORD; — Quantity

END Currency;

Looking at the operations on the currency type, we see first that operators are pro
vided to produce a currency quantity from its dollars and cents components and to con
vert in both directions between our currency type and Float values. The next group of
operations are selectors to return the Dollars and cents parts and an inquiry operator
to determine whether or not a currency value is positive.

The next four operators are the usual comparison operations that we saw in
Ada.Calendar. Note that we can use predefined equality/inequality with no problem
because two currency values are equal if and only if their dollars, cents, and signs are
respectively equal. The comparison operators are followed by three monadic arithmetic
operators whose meaning should be obvious.

The final six operators are interesting ones. Note that addition and subtraction are
defined for currency values, as one would expect. But multiplication is defined only for
a currency value and a Float value, not for two currency values. This is because the
product of two currency values is meaningless, but finding, for example, 0.25 (which
might represent 25%) of a currency value is indeed meaningful. The two multiplication
operations allow the mixed operands to be presented in either order. Similarly, the divi
sion operations are meaningful ones: Dividing one currency value by another gives a
normal Float; dividing a currency value by a Float gives a currency value.

Defining operators as we have done here is called operator overloading. Recall the
similar group of operators in Ada.calendar; it makes no difference whether the opera
tors are provided by a predefined package such as Ada.calendar or by a user-defined
package such as currency. Operators are really nothing more than functions with an
unusual syntax, appearing between their parameters instead of preceding them.
Because function names can be overloaded, so can operator names. Operator overload
ing allows us to write operations that are mathematical in nature using the familiar
mathematical symbols.

It is important to understand that Ada allows us to overload only the operator sym
bols that are already available in the language; we cannot, for example, define a new
operator "?" because "?" is not already an operator in Ada. Also bear in mind that, for
reasons that are beyond the scope of this book to explain, it is not possible to overload
the two membership operators "in" and "not in".

The last part of the specification is, as usual, the private part, in which the cur
rency type is defined in full. Note that it is just a record with three fields and that all
three fields are initialized as before.
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Implementation
Now Program 11.8 gives the body for currency. The key to understanding the opera
tions is the first four function bodies. The first two. Add and subtract, are not provided
to client programs; they are there only to make writing the other operators more conve
nient for us.

Program 11.8 Body of Currency Package

PACKAGE BODY Currency IS

Body of the abstract data type for representing
and manipulating Currency numbers.
All values of type Currency.Quantity are initialized to 0.0.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

- internal operations, not exported to the client

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

FUNCTION Add (Ql: Quantity; Q2: Quantity) RETURN Quantity IS
— Pre: Ql >= 0.0 and Q2 >= 0.0.
— Post: Returns the sum of Ql £uid Q2.

—• This is just an auxiliary routine used in "+" and below.

Result : Quantity;
TempCents : Natural;

BEGIN — Add

TempCents Ql.Cents t Q2.Cents;
IF TempCents >99 THEN — we had a carry
Result.Cents := TempCents - 100;
Result.Dollars := Ql.Dollars + Q2.Dollars + 1;

ELSE

Result.Cents := TempCents;
Result.Dollars :- Ql.Dollars + Q2.Dollars;

END- IF;

RETURN Result;

END Add;

FUNCTION Subtract (Ql: Quantity; Q2: Quantity) RETURN Quantity IS
~ Pre: Ql >= 0.0 and Q2 >= 0.0.
— Post: Returns the difference of Ql and Q2.
— This is just an auxiliary routine used in and below.

Result Quantity;

BEGIN — Subtract

IF Ql > Q2 THEN — Result is positive
IF Q2.Cents > Ql.Cents THEN — we need a borrow
Result.Cents := (100 + Ql.Cents) - Q2.Cents;
Result.Dollars := (Ql.Dollars - 1) - Q2.Dollars;

ELSE

Result.Cents != Ql.Cents - Q2.Cents;
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Result.Dollars := Ql.Dollars - Q2.Dollars;
END IF;

ELSE — Result is negative
Result.Positive False;
IF Ql.Cents > Q2.Cents THEN — we need a borrow

Result.Cents := (100 + Q2.Cents) - Ql.Cents;
Result.Dollars := (Q2.Dollars - 1) - Ql.Dollars;

ELSE

Result.Cents := Q2.Cents - Ql.Cents;
Result.Dollars Q2.Dollars > Ql.Dollars;

END IF;

END IF;

RETURN Result;

END Subtract;

— Exported Operators

FUNCTION "+"(Q1 ; Quantity; Q2 ; Quantity) RETURN Quantity IS
BEGIN

IF Ql.Positive AND Q2.Positive THEN
RETURN Add(Ql,Q2);

ELSIF (NOT Ql.Positive) AND (NOT Q2.Positive) THEN
RETURN -Add(-Ql, -Q2);

ELSIF Ql.Positive AND (NOT Q2.Positive) THEN
RETURN Subtract(Ql, -Q2);

ELSE — NOT Ql.Positive AND Q2.Positive;
RETURN Subtract(Q2, -Ql);

END IF;

END

FUNCTION "-"(Ql ; Quantity; Q2 ; Quantity) RETURN Quantity IS
BEGIN

RETURN Ql + (-Q2);
END

FUNCTION MeJceCurrency (P : Float) RETURN Quantity IS
Result: Quantity;
T: Float;

BEGIN

T := Float'Truncation(ABS F); — get whole-number part
Result := (Positive => True,

Dollars => Natural(T), — just a type change
Cents => Natural(100.0 * (ABS P - T)));

IF F < 0.0 THEN

Result.Positive False;
END IF;

RETURN Result;
END MakeCurrency;

FUNCTION MakeFloat (Q : Quantity) RETURN Float IS
Result: Float;

BEGIN

Result := Ploat(100 * Q.Dollars + Q.Cents) / 100.0;
IP Q.Positive THEN

RETURN Result;

ELSE
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RETURN -Result;
END IP;

END MakeFloat;

FUNCTION Dollars (Q : Quantity) RETURN Natural IS
BEGIN

RETURN Q.Dollars;

END Dollars;

FUNCTION Cents {Q : Quantity) RETURN CentsType IS
BEGIN

RETURN Q.Cents;

END Cents;

FUNCTION IsPositive(Q : Quantity) RETURN Boolean IS
BEGIN

RETURN Q.Positive;
END IsPositive;

FUNCTION ">" (Q1 ! Quantity; Q2 : Quantity) RETURN Boolean IS
BEGIN

RETURN MakeFloat(Ql) > MakeFloat(Q2);
END ">";

FUNCTION "<" (Q1 ; Quantity; Q2 : Quantity) RETURN Boolean IS
BEGIN — stub

RETURN True;

END "<";

FUNCTION ■•<=" (Q1 I Quantity; Q2 ; Quantity) RETURN Boolean IS
BEGIN — stub

RETURN True;
end

FUNCTION ">=" (Q1 ; Quantity; Q2 : Quantity) RETURN Boolean IS
BEGIN — stub

RETURN True;
END »>=";

FUNCTION "+"(Q : Quantity) RETURN Quantity IS
BEGIN

RETURN Q;
END "+";

FUNCTION "-"(Q : Quantity) RETURN Quantity IS
BEGIN

RETURN (Positive => NOT Q.Positive,
Dollars => Q.Dollars,
Cents => Q.Cents);

END

FUNCTION "ABS"(Q ; Quantity) RETURN Quantity IS
BEGIN — stub

RETURN Q;
END "ABS";

FUNCTION "*"(F : Float; Q ; Quantity) RETURN Quantity IS
BEGIN

RETURN{MakeCurrency(F * MakeFloat(Q)));
END
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FUNCTION "*"(Q ; Quantity; F : Float ) RETURN Quantity IS
BEGIN — stub

RETURN Q;

END

FUNCTION "/"(Ql ; Quantity; Q2 : Quantity) RETURN Float IS
BEGIN

RETURN MakeFloat(Ql) / MakeFloat(Q2);
END "/";

FUNCTION "/"(Q : Quantity; F : Float ) RETURN Quantity IS
BEGIN — stub

RETURN Q;
END "/";

END Currency;

Add and Subtract are implemented following the algorithms above. The exported
addition operator which can handle positive or negative values, uses Add or sub
tract according to the signs of its operands; the exported operator just adds a
negated value.

The next two operations are our constructors to convert to and from currency val
ues. Note how these are written. In going from Float to currency, we need to find the
whole-number part of the float quantity, because this will be the Dollars part of the
currency quantity. We do this by using ̂ e attribute function Float - Truncation, which
does just what we want.

Finally, the remaining operators are given, mostly as stubs. You can complete the
package and develop a program to test it, as an exercise. Programs 11.9 and 11.10 give
the specification and body for a child package currency. lo. We do not show a test pro
gram; we leave its development as an exercise.

Program 11.9 Specification for Currency.lO Child Package

WITH Ada.Text_IO;
PACKAGE Currency.lO IS

Specification of the input/output child package for Currency
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— input operations to read a Quantity from terminal or file

PROCEDURE Get (Item : OUT Quantity);
PROCEDURE Get (File: IN Ada.Text_IO.Pile_Type; Item : OUT Quantity);
— Pre : File is open ~
— Post: The currency quantity is read as a normal

floating point value.

— output operations to display a Quantity on terminal or
— write it to an external file

PROCEDURE Put (Item : IN Quantity; Width: IN Natural:«8);
PROCEDURE Put (File : IN Ada.Text_IO.File_Type;

Item : IN Quantity; Width: IN Natural:=8);
— Pre: File is open, Item is defined
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— Post! Displays or writes the currency quantity.
Width is used by analogy with integer^IO

END Currency.10;

Program 11.10 Body of Currency.lO Child Package

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Ada. F loat_Text__IO;
PACKAGE BODY Currency.10 IS

— I Body of the input/output child package for Currency
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

— input procedures

PROCEDURE Get (File: IN Ada.Text_IO.File_Type; Item : OUT Quantity) IS
F: Float;

BEGIN — Get

— just read it as a Float quantity, then convert
Ada. Float__Text_IO. Get (File => File, Item => F);
Item := MakeCurrency(F);

END Get;

PROCEDURE Get (Item : OUT Quantity) IS
BEGIN — Get

Get(File => Ada.Text_IO.Standard_Input, Item => Item);
END Get;

— output procedures

PROCEDURE Put (File : IN Ada.Text_IO.File_Type;
Item : IN Quantity; Width: IN Natural:=8) IS

BEGIN — Put

— dollars first

IF IsPositive(Item) THEN
Ada.Integer_Text_IO.Put(File=>File, Item=>Dollars(Item),Width=>l);

ELSE

Ada.lnteger_Text_IO.Put
(File=>File, item=>-Dollars(Item),Width=>l);

END IF;

— then decimal point and cents
Ada. Text__IO. Put (File => File, Item => '.');
IF Cents(Item) < 10 THEN

Ada.Text_IO.Put(File => File, Item => '0');
END IF;

Ada.lnteger_Text_IO.Put
(File => File, Item => Cents(Item),Width => 1);

END Put;

PROCEDURE Put (Item : IN Quantity; Width: IN Natural:=8) IS
BEGIN — Put
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Put(File => Ada.Text_IO.Standard_Output, Item => Item,
Width => Width);

END Put;

END Currency.10;

This example has shown the advantage of using a private type not just to encapsu
late representation details, but also to give us complete control over the operations a cli
ent is permitted to do. As part of developing your test program, you might wish to
attempt some operations that are not provided in the package, such as multiplying two
currency values. Attempting this will result in a compilation error; this tells you that the
compiler is aiding you in controlling the client operations.

The USE and USE TYPE Clauses

The use clause allows unqualified references to package capabilities. Given three Cur
rency. Quantity variables ci, C2, and C3, a currency addition operation is ordinarily
written

C3 := Currency."+"(C1,C2);

that is, just writing ••+" as a function. However, if a client program were preceded by

USE Currency;

it could be written

Cl := C2 + C3;

One of the advantages of Ada's permitting operator symbols such as "+" to be
defined as functions is that they can be used in expressions in infix form, as in the above
line. When the expressions get more complex, this makes programs even more read
able. Compare the line

Currency.l0.Put(Item => Currency."+"(D, Currency. (E,F)));

with the line

Currency.10.Put(Item => A + E * F);

This is possible, however, only if a use clause appears in the client program. Otherwise,
the operator not only must be qualified (as in currency."+") but also must be used as a
prefix function call like any other function call.

Many in industry recommend against using the use statement because in a program
that wiTHs and uses many packages, the uses make so many types and operations
directly visible that it is very confusing to the reader. Ada 95 adds the use type state
ment as a compromise so that use can in general be avoided without losing the benefit
of user-defined operators. Writing, for example,

USE TYPE Currency.Quantity;
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gives direct visibility to only the infix operators that are declared in the package but to
nothing else, and specifically not to other operations such as MakeCurrency, Dollars,
and Cents.

SYNTAX

DISPLAY
Operator Overioading

Form

FUNCTION " GpSymboI "(Pormall: Typel; Fornial2; Type2)
RETtJRN JReturniype ;

Example

FUNCTION (Ql! Quantity; Q2:Quantity) RETURN Quantity;

Interpretatioii:

The function, defined in a package p, will be associated with the operator
opsymbol and can be called irOni a client program in one of two ways. If x is of
type Ret umType,

X  Actaall OpSymbol Actual2;

can be used if a use or use type statement appears in the client program; other
wise,

X s= p."OpSymbol"(Actuail, Actual2);

is required.

Notes:

1. The quotation marks around the operator are required in the second form above
and are not allowed in the first case.

2. The operators "in" and "NOT in" cannot be overloaded. All other predefined
operators can be overloaded.
3. The precedence of the operator cannot be changed by an overload; for exam
ple, any "+•• qperator will have lower precedence than any operator.

PROGRAM

STYLE
The USE Clause Again

The USE clause would allow us to write unqualified references to all the infix
operators in currency.

Most Ada experts advise that qualified references should be used wherever
possible because they clarify programs by always indicating the name of the
package whose operation is being called. These same experts often advocate
never writing a use clause because then qualified references are optional. In this
book we use the use where appropriate—for example, to make infix ADT opera
tors possible—but we also use qualified reference in most cases, even where a
use is present and the qualification is optional.

When you have an ADT that provides infix operators, the Ada 95 use type
clause provides a nice compromise because it allows the infix operators to be
unqualified, but nothing else.
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PROGRAM

STYLE
Advantages of Private Types

A client program that uses ADT currency does not need to know the actual inter
nal representation of data type Quantity (i.e., a record with two fields). The cli
ent can call an operator function of ADT currency to perform an operation (e.g.,
currency addition) without having this knowledge. In feet, it is better to hide this
information from the client program to prevent the client from directly manipu
lating the individual fields of a rational variable.

It is advantageous for a client program not to have direct access to the repre
sentation of a rational quantity for three reasons:

1. It is easier to write and read a client program that treats a currency quan
tity just like a predefined one, that is, without being cluttered with direct
reference to implementation details.

2. The client program cannot directly store values in the fields of a curren
cy variable.

3. If we change the representation—for example, to an array of two ele
ments instead of a record—the client program does not have to be modi
fied in any way, only recompiled.

There is a fourth advantage, which would apply if the type represented some
thing more sophisticated, say, a data base record of some khid. Each record might
contain information for "intemal use only," that is, for use only by the data man
agement program itself, not for use by clients. Making the record private
ensures that the entire record structure is not made available to the client, only
that information which the ADT designer chooses to supply via the ADT opera
tions. This is an important advantage for large, complicated, and secure applica
tions.

11.5 System Structures: Using an ADT to Create a Mini-Data
Base

In this section we will develop an ADT for employee records that could be used in a
larger data base application. TTiis ADT also uses the Dates and currency ADTs from
Sections 11.3 and 11.4, respectively, and will be used in a case study in this section to
produce an interactive query system for employees.

For our purposes an employee record will contain six fields:

• Identification number, an integer in the range 1111-9999

• Name, up to 30 characters

• Gender, male or female

• Number of dependents, that is, spouse and/or children

• Annual salary, a currency quantity

• Start date, that is, the date when the employee joined the organization
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Program 11.11 shows the specification of a package Employees. Note that the con
stant MaxName, the subtypes IDType and NameType, and the types GenderType and
Employee are provided in the specification. For reasons that are discussed several times
in this chapter, the record type Employee is private so that client programs do not have
direct access to the field names or structure of the record. (A justification for this might
be the intention to add more fields in the future that are never accessed by clients but
are handled purely internally by the package body.)

Program 11.11 Specification for Employees Package

WITH Currency;

WITH Dates;

PACKAGE Employees IS

— I Specification for ADT package to handle Employee records
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified; September 1998

— constant and type definitions

MaxName: CONSTANT Positive := 30;
SUBTYPE NameType IS String(1..MaxName);

SUBTYPE IDType IS Positive RANGE 1111..9999;
TYPE GenderType IS (Female, Male);

TYPE Employee IS PRIVATE;

— operations

— constructor

FUNCTION MakeEmployee (ID: IDType;
Name: NameType;
Gender: GenderType;
NumDepend: Natural;
Salary:
StartDate:

— Pre: all input parameters are defined
— Post; returns a value of type Employee

— selectors

Currency.Quantity;

Dates.Date) RETURN Employee;

FUNCTION RetrievelD

FUNCTION RetrieveName

FUNCTION RetrieveGender

(OneEmp; Employee) RETURN IDType;
(OneEmp: Employee) RETURN NameType;
(OneEmp: Employee) RETURN GenderType;

FUNCTION RetrieveNumDepend (OneEmp: Employee) RETURN Natural;
FUNCTION RetrieveSalary (OneEmp: Employee) RETURN Currency.Quantity;
FUNCTION RetrieveDate (OneEmp: Employee) RETURN Dates.Date;
— Pre; OneEmp is defined
— Post: each selector retrieves its desired field

PRIVATE

TYPE Employee IS RECORD
ID: IDType := IDType'Last;
Name: NameType := (OTHERS => ■ );
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Gender: GenderType Female;
NuraDepend: Natural ;= 0;
Salary: Currency.Quantity := Currency.MakeCurrency(0.00);
StartDate: Dates.Date Dates.Date_0£(1980, Dates.Jan, 1);

END RECORD;

END Employees;

Because a client program cannot get into the details of an employee record, the
ADT package must provide a set of constructor and selector operations. These are
shown in the specification as the constructor MakeEmployee and the selectors
RetrieveName, RetrieveGender, RetrieveNumDepend, RetrieveSalary, and
RetrieveDate. The body of this relatively simple package is given in Program 11.12.
Additional operations on employee records depend upon how the records will be used,
as you will see in the next section.

Program 11.12 Body of Employees Package

PACKAGE BODY Employees IS

Body of ADT package to handle Employee records
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

—' operations

— constructor

FUNCTION MakeEmployee (ID: IDType;
Name: NameType;

Gender: GenderType;
NumDepend: Natural;
Salary: Currency.Quantity;
StartDate: Dates.Date) RETURN Employee IS

TempRecord: Employee;

BEGIN — MakeEmployee

TempRecord :»
(ID => ID, Name => Name, Gender => Gender,

NumDepend => NumDepend, Salary => Salary, StartDate => StartDate);
RETURN TempRecord;

END MakeEmployee;

FUNCTION RetrievelD (OneEmp: Employee) RETURN IDType IS
BEGIN

RETURN OneEmp.ID;

END RetrievelD;

FUNCTION RetrieveName (OneEmp; Employee) RETURN NameType IS
BEGIN

RETURN OneEmp.Name;
END RetrieveNcune;

FUNCTION RetrieveGender (OneEn^: Employee) RETURN GenderType IS
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BEGIN

RETURN OneEmp.Gender;
END RetrieveGender;

FUNCTION RetrieveNumOepend (OneEmp: Employee) RETURN Natural IS
BEGIN

RETURN OneEmp.NumDepend;
END RetrleveNumDepend;

FUNCTION RetrieveSalary (OneEmp: Employee) RETURN Currency.Quantity IS
BEGIN

RETURN OneEmp.Salary;
END RetrieveSalary;

FUNCTION RetrieveDate (OneEmp: Employee) RETURN Dates.Date IS
BEGIN

RETURN OneEmp.StartDate;
END RetrieveDate;

END Employees;

In Programs 11.13 and 11.14 we give the specification and body for a child pack
age for simple employee input and output, providing procedures ReadEmpioyee and
DispiayEmpioyee. The read procedure is not robust; invalid input will result in pro
gram termination. Similarly, the display procedure merely copies the fields onto the
screen, with no additional formatting. As an exercise, you can improve this child pack
age and write a program to test it and the parent package Employees.

Program 11.13 Specification for Employees.lO Child Package

PACKAGE Employees.lO IS

Child Package for Employee Input/Output
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PROCEDURE ReadEmpioyee (Item: OUT Employee);
— reads an Employee record from the terminal
— Pre: none

— Post: Item contains a record of type Employee

PROCEDURE DispiayEmpioyee (Item: IN Employee);
— displays an Employee record on the screen
— Pre: Item is defined

— Post: displays the fields of Item on the screen

END Employees.lO;

Program 11.14 Body of Employees.lO Child Package

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
WITH Ada. Integer__Text__IO;
WITH Dates.10; " "
WITH Currency.10;
PACKAGE BODY Employees.lO IS



115 System Structures: Using an ADT to Create a Mini-Data Base 507

— I Body of Child Package for Employee Input/Output
— I Author: Michael B. Peldman, The George Washington University
— I Last Modified: September 1998

PACKAGE GenderType^IO IS
NEW Ada.Text_lO.Enumeration_IO(Enum => GenderType);

PROCEDURE ReadEmployee (Item: OUT Employee) IS

S: String(1..MaxName);
Count; Natural;

BEGIN — simple, non-robust ReadEmployee

Ada.Text_IO.Put(Item => "ID > ");
Ada.Integer_Text_IO.Get(Item => Item.ID);
Ada.Text_IO.Skip_Line;

Ada.Text^IO.Put(Item => "Name > ");
Ada.Text_IO.Get_Line(Item => S, Last => Count);
Item.Name(l..Count) := S(l..Count);

Ada.Text_IO.Put(Item => "Gender (Female or Male) > ");
GenderType_IO.Get(Item => Item.Gender);

Ada.Text__IO.Put(Item => "Number of dependents > ");
Ada. Integer__Text__IO. Get (Item => Item.NuinDepend);

Ada.Text^IO.Put(Item => "Salary > ");
Currency.IO.Get(Item => Item.Salary);

Ada.Text_lO.Put(Item => "Starting Date, imwn dd yyyy > ");
Dates.10.Get(Item => Item.StartDate);

END ReadEmployee;

PROCEDURE DisplayEmployee (Item: IN Employee) IS

BEGIN — simple DisplayEmployee

Ada.Integer_Text_IO.Put(Item => Item.ID, Width => 1);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => Item.Name);
Ada. Text_IO. New__Line;
GenderType__IO.Put (Item => Item.Gender);
Ada.Text_IO.New_Line;
Ada.Integer_Text_IO.Put(Item => item.NumDepend, Width =>1);
Ada.Text^IO.New_Line;
CurrencyTlO.Put(Item => Item.Salary);
Ada.Text_lO.New_Line;
Dates.10.Put(Item => Item.StartDate, Format => Dates.10.Pull);
Ada.Text_lO.New_Line;

END DisplayEmployee;

END Employees.10;
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It is worth mentioning that the input/output procedures are making direct refer
ences to the employee fields (e.g., item.Gender) even though Employee is a private
type. This shows an essential difference between a child package, which can be thought
of as a separate part of the original parent, and a client package or program, which just
uses the package. A child package, being part of a "family," has knowledge of private
family details that are not available to clients. Naturally, as is the case with human fam
ilies, this knowledge of private details must be used with care!

CASE

STUDY EMPLOYEE INQUIRY SYSTEM

To show a useful application of the package Employees, we introduce a case study
involving an interactive query system that allows the user to build and modify a data
base of employee records.

Problem Specification
We have a small company with no more than 25 employees. We wish to allow an inter
active user to enter employee information into a computer and be able to do the follow
ing kinds of operations:

• Enter a new record into the computer

• Given an employee ID, search for and display that employee's record

• Given an employee ID, retrieve the record, change some of the other fields of the
record, and return it to the database

• Delete a record when an employee leaves the company

• Display the entire set of employee records on the screen

Analysis
Because we already have a package that can handle individual employee records, we
have two tasks ahead of us:

1. Develop a way of holding a number of records and performing the above oper
ations

2. Develop a way for an interactive user to enter commands into the system

The two tasks are best separated into a set of operations that manipulate the data
base without concern for any user interaction and a "user interface" that can handle
user interactions without concern for the details of the data base operations. This is a
very common approach to separation of concerns in designing a system.

Design
In keeping with the separation outlined above, we design the following system compo
nents:



113 System Structures: Using an ADT to Create a MinUData Base 509

1. A data base package, a set of operations in the form of procedures that a client
program can call. The user of this part of the system, like the user of the em
ployee package, is a programmer who is creating a larger application. The
same database package could be used by many different applications, one of
which is component 2 below.

2. A user interface program, in our case a menu-driven program to allow a user
to select from a set of commands to do the functions listed above. Here, the
user is an end user, a member of the company such as the personnel or payroll
manager, not a programmer.

Program 11.15 shows the specification for the data base package. The programmer
using this package sees only a set of operations; the data base itself is encapsulated in
the body of the package, as we shall see.

Program 11.15 Specification for Data Base Package

WITH Employees;
PACKAGE Database IS

— I Specification of the abstract data object for a data base
— I of employee records
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

— Exported Exception

DatabaseFull: EXCEPTION;

— Operations

PROCEDURE Initialize;
— Pre : None

— Post: Database is emptied of all records

PROCEDURE Insert (E : Employees.Employee;
Success : OUT Boolean);

— Pre ; E is defined

— Post : Inseirts new element E into database

Success is True if insertion is performed, and False
if database already has an element with the same ID as E.

— Raises: DatabaseFull if the database is full before insertion

PROCEDURE Replace (E ; Employees.Employee;
Success : OUT Boolean);

— Pre : E is defined

— Post : Finds record in database with E's ID, and replaces it
with B. Success is True if replacement is performed, and False
if database has no element with the same ID as E.

PROCEDURE Retrieve (ID : IN Employees.IDType;
E  : OUT Employees.Employee;
Success : OUT Boolean);

— Pre : ID is defined

— Post: Copies into E the database record with the given ID
Success is True if the copy is performed, and False
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if database has no element with the given ID

PROCEDURE Delete (ID : IN Employees.IDType;
Success : OUT Boolean);

— Pre : ID is defined

— Post: Deletes from database the record with the given ID
Success is True if deletion is performed, and False
if database has no element with the given ID

PROCEDURE Display;
— Pre ; None

— Post: The database records are displayed in order by ID

END Database;

Test Plan
The data base operations can be tested by a simple program consisting of a number of
calls to procedures in the package. A number of operations need to be done, just to be
certain that they all operate correctly. Specifically, note that the operations ̂  have a
"successful" result and a "not successful" result. Test cases must be carefully chosen to
be sure that all operations behave correctly whether the result is successful or not.

Implementation
The body of the data base package is given in Program 11.16. As can be seen firom the
types and other declarations, the data base is a simple structure: We are just using an
array to store the employee records; this array is contained in a record along with a field
indicating the number of records stored in the array. The entire company's records are
stored in the data base variable company.

Program 11.16 Body of Data Base Package

WITH Ada.Text_IO;
WITH Employees;
WITH Employees.10;
PACKAGE BODY Database IS

Body of the abstract data object for a data base
of employee records
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— declarations for the Employee database, TableType

MaxData: CONSTANT Positive := 25;

SUBTYPE Companylndex IS Natural RANGE 1..MaxData;
SUBTYPE CompanyRange IS Natural RANGE 0..MaxData;
TYPE DataArray IS ARRAY(Companylndex) OF Employees.Employee:

TYPE TableType IS RECORD
Data: DataArray;

CurrentSize: CompanyRange :» 0;
END RECORD;

Company: TableType;
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PROCEDURE Initialize IS

BEGIN — Initialize

Company.CurrentSize := 0;
END Initialize;

PROCEDURE Insert (E : Employees.Employee;
Success : OUT Boolean) IS

BEGIN ~ Insert

Success ;= True;

— First search database for E's ID; set Success false if found
FOR Which IN 1..Company.CurrentSize LOOP
IF Employees.RetrieveID(Company.Data(Which)) =

Employees.RetrievelD(E) THEN
Success := False;
RETURN;

END IF;

END LOOP;

— we didn't find a matching record, so we can insert this one
Company.CurrentSize ;= Company.CurrentSize + 1;
Company.Data(Company.CurrentSize) ;= E;

END Insert;

PROCEDURE Replace (E : Employees.Employee;
Success : OUT Boolean) IS

BEGIN » Stub

Ada.Text_lO.Put(Item => "Replace is still under construction.");
Ada. Text__IO. New_Line;

END Replace;

PROCEDURE Retrieve (ID : IN Employees.IDType;
E  : OUT Employees.Employee;
Success : OUT Boolean) IS

BEGIN — stub

Ada.Text_IO.Put(Item =■> "Retrieve is still under construction.");
Ada. Text__IO. New_Line;

END Retrieve;

PROCEDURE Delete (ID : IN Employees.IDType;
Success : OUT Boolean) IS

BEGIN ~ stub

Ada.Text_IO.Put(Item => "Delete is still under construction.");
Ada.Text_IO.New_Line;

END Delete;

PROCEDURE Display IS
BEGIN — Display

FOR Which IN 1..Company.CurrentSize LOOP
Employees.10.DisplayEmployee (Item => Company.Data(Which));
Ada.Text_lO.New_Line;

END LOOP;

END Display;

END Database;
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Three operations are fiilly coded in this package:

• Initialize clears out the array by setting its currentsize field to zero. There is
no need actually to "erase" the records themselves; they will be overwritten by
newly arriving records.

• Insert loops through the array looking for a record with the given ID. As given in
the postconditions for this operation, if a record is found, the insertion fails, be
cause otherwise we would be inserting two or more employee records with the
same ID. If we search the entire occupied part of the array widiout finding a record
with the same ID, we just store the new record in the next available array cell.

• Display loops through the array, calling the employee display procedure repeated

ly.

The rest of the operations are left as an exercise. They are coded as stubs; if one is
called, it simply displays an "under construction" message.

Given the single constructor and field-by-field selector operations provided by
package Employees, the best way to change a single field in the record is to retrieve the
record with a Retrieve call, then retrieve the individual fields, change the desired ones,
and construct a new record, calling Replace to put it back in the data base. An alterna
tive design would modify the employee package with some new constructor operations,
each of which modifies a single field of its record parameter.

Finally, because the records are kept in the array in no particular order, the easiest
way to delete a record with a given array subscript is just to copy the last record in the
array into that position, then to decrement the variable in which you keep track of how
many records are present. That is, if there are 20 records in the 100-element array, and
you wish to delete record number 7, just copy record number 20 into position 7, and
change the number of records to 19.

Program 11.17 gives a simple test program, which you can use as an example to
build a more elaborate one. For brevity we omit the sample run.

Program 11.17 Simple Test of Data Base Package

WITH Ada.Text_IO;
WITH Employees?
WITH Employees.10;
WITH Database;

PROCEDURE TeBt_Database IS

Simple Test of Employee Data Base
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

E: Employees.Employee;
Success: Boolean;

BEGIN — Test_Database

Database.Initialize;

FOR Count IN 1..3 LOOP
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Employees.10.ReadEmployee(Item => E);
Database.Insert(E => E, Success -> Success);
Ada. Textile. Put (Item => " ");
Ada.Text_IO.New_Line;
Database.Display;
Ada. Text_IO. Put (Item => " ");
Ada. Text__IO. New_Line;

END LOOP;

END Test_Database;

The final step is to build an interactive interface to the data base system. We leave
this as an exercise; you can start with the robust menu handler given as Program 7.7 in
Section 7.4.

Abstract Data Types and Abstract Data Objects

Our data base implementation is actually what is known as an abstract data object
(ADO) implementation. An ADO differs from an ADT in that an ADT, as we have seen
in the date, currency, and employee cases, provides a type so that client programs can
declare variables ("objects") of the type, whereas an ADO encapsulates a single object
in the package body, unseen by client programs and manipulated only by calls to the
ADO operations.

An alternative data base design would tum the package into an ADT, which would
provide a private type TabieType to client programs. The client then could declare
several data bases, for example, one for each of the company's several offices. Each
data base operation would have a parameter indicating which data base was being
manipulated.

EXERCISES FOR SECTION 11.5

Programming

1. In the package Employees. 10, revise the body of the procedure ReadEmpioyee
to make it robust, and the procedure oispiayEmployee to provide "prettier"
formatting of the output. Also, write a program to test the package Employees.

2. Add to package Employees.lo two procedures—GetEmpioyee and PutEm-
ployee—that read and write employee records using a disk file.



514 Programming with Objects: Abstract Data Types

3. Complete the case study in this section by completing the data base operations
and by doing a detailed design, structure chart, algorithm specification, and
coding for the menu-driven inquiry program.

11.6 Continuing Saga: Writing an ADT for Multiple Spiders

In our continuing study of the spider, all packages and programs have assumed that
only one spider lives in the room. How could we emulate a situation in which the room
contains an entire village of spiders? As we saw in Chapter 8, the spider package imple
ments what we now know as an abstract data object. To provide for multiple spiders,
we need an abstract data type. Program 11.18 gives a sketch of a specification for an
ADT package spiders.

Program 11.18 Package Specification for Multiple Spiders

PACKAGE Spiders IS

This package provides procedures to emulate multiple
spiders. The spiders can move around
the screen drawing simple patterns.
Author: John Dalbey, Cal Poly San Luis Obispo, 1992
Adapted by: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Spider IS PRIVATE;

PROCEDURE TurnRight (Which: IN OUT Spider);
— Pre: None

— Post; Spider turns 90 degrees to the right,

FUNCTION AtWall (Which: Spider) RETURN Boolean;
— Pre: None

— Post; Returns True if the spider is standing next to a wall
(edge of the room) and facing it, and False otherwise.

PRIVATE

TYPE Spider IS RECORD
Ink : ScreenColors;
Heading : Directions;
CurrentColumn : RoomWidth; — spider's position
CurrentRow : RoomHeight; — in the room.

END RECORD;

END Spiders;
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Here spider is a private type that, like Employee, is provided to client programs. The
specification shows examples of just two procedures, TurnRight and step. Note that
each procedure now has a parameter of type spider. A spiders client might then
declare

Charlotte: Spiders.Spider;
Murgatroyd: Spiders.Spider;

and proceed to call spider operations such as

Spiders.step(Which => Charlotte);
Spiders.TurnRight(Which => Murgatroyd);

Completing the package is left as an exercise.

11.7 Tricks of the Trade: Common Programming Errors

The most common error in writing and using overloaded operators in Ada is to misun
derstand when the operator must be placed in quotation marks. Quotation marks are
required if the operator is used in prefix form (e.g.. Currency. "+"(C1,C2)) and not
permitted if the operator is used in infix form (e.g., ci + C2). Infix form is of course
allowed only in the presence of a use or use type statement to eliminate the need for
qualification.

In writing an exception handler for a package-defined exception, do not forget that
the exception name must be qualified unless a use is present, for example,

EXCEPTION

WHEN Dates.Date_Error =>

A common design error in writing ADTs is to put too much in the specification.
Often an ADT has extra functions or procedures in the body that are used only by other
operations in the body and not intended to be used by client programs. Putting specifi
cations for these in the package specification provides them to the client, whether or not
this was intended.

CHAPTER REVIEW

In this chapter you studied abstract data types, or ADTs, implemented in Ada as pack
ages. ADTs are characterized by a type and a set of operations applicable to that type.
In Ada the type in an ADT package is often declared as private, which prevents a cli
ent program from directly accessing the values stored in variables of the type, requiring
instead that the client use package-provided operations.

Operator overloading is another useful Ada feature that was introduced in this
chapter. If the ADT is a mathematical type for which addition, for example, is appropri
ate, this addition operation can be called •■+". Similarly, a comparison operation imple
menting "less than" for the new type can be called "<••.
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Yet another important concept used in this chapter is the package-provided excep
tion. An exception can be defined to report an unusual condition, such as a client action
that violates an assumption of the package. If an exception is provided in the package
specification, a client program can handle it with a normal Ada exception handler.
Exception handling is thus no different for package-provided exceptions than it is for
predefined ones.

New Ada Constructs in Chapter 11

The new constructs introduced in this chapter are given in Table 11.1.

Table 11.1 New Ada Constructs in Chapter 11

Construct Effect

Private Type Definition

PACKAGE ComplexNumbers IS
TYPE Complex IS PRIVATE;

PRIVATE

TYPE Complex IS RECORD
RealPart: Float;
ImaginaryPart: Float;

END RECORD;

END ComplexNumbers;

User-Defined Exception

SomethinglsWrong: EXCEPTION;

Operator Overloading

FUNCTION "+"(Left
RETURN Complex;

Right: Complex)

Defines a type complex that has no
predefined operations other than
copying and equality.

The type definition is completed here
in the private section.

Usually placed in a package specifica
tion; defines an exception that can be
raised by an operation in the package
body and handled by an exception
handler in the client program.

Creates an additional meaning for the
"+•' operator.

Quick-Check Exercises

A(n)
a(n).

operation selects a particular component of an ADT object,
creates an ADT object from its component parts, and a(n)

operation asks whether an ADT object has a given property.

2. The syntax for an exception handler depends on whether the exception is a
predefined one or a user-defined one (True/False).
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3. List all the operator symbols in Ada that can be overloaded. List the ones that
cannot.

Answers to Quick-Check Exercises

1. Selector, constructor, inquiry

2. False, the syntax is exactly the same,

3. /, **, MOD, REM, ABS, AND, OR, NOT, xoR, &, =, /=, <, <=, >, and >= all Can
be overloaded; in and not in cannot be.

Review Questions

1, Explain the rules for private types. Which operations can be done on objects
of a PRIVATE type?

2, Suppose we wrote, and included in currency, an operation called that ac
tually added its operands instead of multiplying them. Would this be legal in
Ada? Explain. Even if it is legal, give some reasons why it is not a good idea to
do this.

Programming Projects

1. The worid_Tiine program presented in Section 11,2 has a limitation: The array
of time zone offsets must be completely redefined if the program user is not in
the Eastern U.S. time zone. In many applications, time zone offsets are com
puted with respect to Greenwich Mean Time, often refeired to as GMT or Zu
lu, This is the local time in Greenwich, England. Modify world_Time so that
Zulu is used as the "zero point" for the offsets, (Encyclopedias and almanacs
usually describe the various official time zones around the world; so do ama
teur radio guides.) Because your computer's clock normally reports only local
time, your program will need to find out from the user the time zone in which
he or she is located before it can compute the time elsewhere,

2. Write a program that asks the user to enter a group of currency quantities from
the keyboard, reads these numbers into an array, then sorts them and displays
the largest, smallest, median, and average values,

3. Complete and test the currency package of Section 11.4,

4. Complete and test the various packages in the employee data base project and
the interactive user interface,

5. Refer to Section 9.4 on hierarchical records. Develop an ADT to handle ad
dress records. Given the ADTs for address records, employee records (Section
11,5), and dates (Section 11,3), develop an ADT that uses these to provide op-
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erations on the hierarchical employee records described in Section 9.4 and
modify the inquiry system of Section 11.5 so that hierarchical employee
records can be manipulated by the terminal user.

6. Modify the bank account program given in Chapter 10, Programming Project
6. By analogy with Programs 11.11 through 11.17, develop an ADT for a bank
transaction, a child package for transaction input/output, and a data base pack
age to store transaction records. Use the dates packages (Programs 11.3
through 11.5) and the currency packages (Programs 11.5 through 11.10) to
represent the transaction date and amount, respectively.

7. Complete the spiders ADT package of Section 11.6.
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Chapter Review

This chapter introduces you to two features of Ada that make the language extremely
useful for developing reusable software components: unconstrained array types and
generics. An unconstrained array type is one that is declared in such a way that the
bounds of the array are not specified in the type declaration; rather, they are supplied
only when a variable of the type is declared. Many arrays of the same number of
dimensions but differing sizes can be declared from the same type definition. Moreover,
subprograms can be written that accept these arrays as parameters and work with them
without knowing their sizes in advance. This is extremely helpful in writing gen
eral-purpose programs such as sorts and numerical algorithms.

As it happens, we have been using an unconstrained array type all along in this
book: Ada's string type is one of these, predefined in standard. In this chapter you
will learn how to define and use unconstrained array types of your own. Understanding
unconstrained array types is an important part of understanding how to use generics
well; that is why the two subjects are together in this chapter.

A generic component (package or subprogram) is one that is parametrized at the
level of the types with which it works. There are generic formal and actual parameters,
just like the "normal" ones that we use with subprograms and variant records. A generic
component can be instantiated or "tailored" to work with a specific type. This means
that a very general program or package can be written whose code is independent of the
type it manipulates. Versions of it can be created with a single statement in each case to
handle many different types.

519
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You have been using generic units from the start in this book. You tailored
Ada.Text_io.Enuineration_io for different enumeration types, most recently
Dates.Months in Section 11.3. Also, in Section 8.3 we tailored Ada.Numer
ics . Discrete_Random for a range of random numbers. This chapter shows you how to
create your own generics and tailor them for many interesting purposes.

Through the careful design of generic units, an entire industry of reusable, tailor-
able, software components can be built up and used for a wide range of applications.
Indeed, several small companies have been quite successful in doing exactly that.

12.1 Data Structures: Unconstrained Array Types

The purpose of unconstrained array types is to allow subprograms that operate on
arrays to be written without prior knowledge of the bounds of the arrays. Let us start
with a type definition:

TYPE ListType IS ARRAY (Integer RANGE <>) OF Float;

The phrase integer range <> means that the subscript range, or bounds, of any
variable of type ListType must form an integer subrange; the symbol <> is read "box"
and means "we'll fill in the missing range when we declare ListType variables."

The type ListType is said to be unconstrained. When variables are declared, the
compiler must know how much storage to allocate, and so each variable declaration
must carry a range constraint, for example:

Ll : ListType(1..50); — 50 elements
L2 : ListType(-10..10); — 21 elements
L3 : ListType(0..20); — 21 elements

Operations on Unconstrained Array Types

The operations of assignment and equality testing are defined for unconstrained array
types, but for either operation to proceed without raising constraint_Error, both
operands must be variables of the same unconstrained array type and both operands
must have the same number of elements. So

Ll L2;

will raise constraint_Error, but the following operations will all succeed:

L2 1= L3;

Ll (20..40) := L2;
L2 (1..5) ;= Ll (6..10);

These slicing operations were introduced in Chapter 10 in the discussion of Ada
strings. Ada's string type is actually defined in standard as follows:

type string IS ARRAY (Positive RANGE <>) OF Character;



12.1 Data Structures: Unconstrained Array Types 521

making strings just a special case of unconstrained arrays. The slicing operations work
for all one-dimensional arrays just as they do for strings.

Attribute Functions for Unconstrained Arrays

Ada defines a number of attribute functions that can be used to determine the bounds of
array variables. Given the type ListType above and the variable l2,

• L2 • First returns the low bound of l2, or -10 in this case.

• L2 • Last retums the high bound of l2 , or 10.

• L2 • Length returns the number of elements in l2 , or 21.

• l2 • Range returns the range -lo.. lo.

The last attribute is useful in controlling loops, for instance,

FOR WhichElement IN L2'Range LOOP
Ada.Float_Text_lO.Put

(Itein=>L2 (WhichElement), Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

END LOOP;

The construct l2 • Range is a short way of writing l2 • First. .l2 • Last, so the same
fragment could be written as follows:

FOR WhichElement IN L2'First..L2'Last LOOP

Ada.Float_Text_lO.Put
(Itera=>L2(WhichElement)/ Fore=>l, Aft=>2, Exp=>0);

Ada. Text__IO. New_Line;
END LOOP;

■ Example 12.1

To show the utility of unconstrained arrays, consider a function to find the maximum
value stored in an array of floating-point numbers. For this function to be generally use
ful and reusable, it needs to be able to work for all kinds of floating-point arrays, no
matter what their bounds. Using the type ListType, Program 12.1 shows such a func
tion contained in a test program.

The program also contains a procedure DispiayList, which displays the contents
of a ListType variable, whatever its bounds. The main program declares two lists of
differing bounds, then displays the lists and tests the function Maxvaiue. From the out
put of the program, you can see that the maximum is found correctly even though the
two lists have different sizes. ■

Program 12.1 A Demonstration of Unconstrained Arrays

WITH Ada.Text_IO;
WITH Ada.Float Text 10;
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PROCEDURE Test Max Value IS

illustrates use of unconstrained array types
Author: Michael 6. Feldman, The George Washington University
Last Modified: September 1998

TYPE ListType IS ARRAY(Integer RANGE <>) of Float;

LI : ListType(1..5); — 5 elements
L2 : ListType(-4..3); — 8 elements

— local procedure to display the contents of a list

PROCEDURE DisplayList(L: ListType) IS
— Pre: L is defined

— Post: display all values in the list

BEGIN — DisplayList

FOR Count IN L'Range LOOP
Ada.Float_Text_IO.Put(Item=>L(Count), Fore=>3, Aft»>l, Exp=>0);

END LOOP;

Ada.Text_IO.New_Line;

END DisplayList;

FUNCTION MaxValue(L: ListType) RETURN Float IS
— Pre: L is defined

— Post: returns the largest value stored in L

CurrentMax : Float;

BEGIN — MaxValue

CurrentMax := Float'First; — minimum value of Float

FOR WhichElement IN L'Range LOOP
IF L(WhichElement) > CurrentMax THEN

CurrentMax := L(WhichElement);

END IF;

END LOOP;

— assert: CurrentMax contains the largest value in L

RETURN CurrentMax;

END MaxValue;

BEGIN — Test_Max_Value

LI := (0.0, -5.7, 2.3, 5.9, 1.6);
L2 := (3.1, -2.4, 0.0, -5.7, 8.0, 2.3, 5.9, 1.6);

Ada.Text_IO.Put(Item=> "Testing MaxValue for float lists");
Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;
Ada.Text_IO.PutTltem=> "Here is the list LI");
Ada.Text 10.New Line;
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DisplayList(L -> LI);

Ada.Text_IO.Put(Item=> "The maximum value in this list is ");
Ada.Float_Text_IO.Put(Item => MaxValue(L=>L1),

Fore=>l, Aft=>2, Exp=>0);
Ada. Text__IO. New_Line;
Ada.Text_lO.New_Line;

Ada.Text_IO.Put(Item=> "Here is the list L2");
Ada.Text_lO.New_Line;
DisplayList(L «> l2);

Ada.Text__IO.Put(Item=> "The maximum value in this list is ");
Ada. Float__Text_IO. Put (Item => MaxValue (L=>L2),

Fore=>l, Aft=>2, Exp=>0);
Ada.Text_IO.New_Line;

END Test_Max_Value;

Sample Run

Testing MaxValue for float lists

Here is the list LI

0.0 -5.7 2.3 5.9 1.6

The maximum value in this list is 5.90

Here is the list L2

3.1 -2.4 0.0 -5.7 8.0 2.3 5.9 1.6

The maximum value in this list is 8.00

SYNTAX

DISPLAY
Unconstrained Array Type

Form:

TYPE ArrayType IS ARRAY (IndexType RANGE <>) OF ValueTypa ;

Example:

SUBTYPE DayslnYear IS Positive RANGE 1..366;
SUBTYPE Temperature IS Float RANGE -100.0 .. 200.0;
TYPE TemperatureReadings IS

ARRAY (DayslnYear RANGE <>) OF Tea^rature;

biterpretation:
The array type is declared with mimmum and nmimum bounds givoi by
indexType. The actual bounds of an array variable must be supplied, as a sub
range of IndexType, when that variable is declared. It is therefore illegal to
declare

Temps t TeanperatureReadings;

Rather, the declaration must include bounds;

Temps: TemperatureReadings {1..31);
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Slidng and Unconstrained Arrays

In Section 10.1 we studied array slicing in the context of strings. Slicing is actually
more general: It is available for all one-dimensional unconstrained arrays in Ada. For
example, given the function Maxvaiue from Program 12.1 and a Float variable y, it is
permissible to call Maxvaiue with a slice as its parameter, as in

Y := MaxValue(L => L2(0..2));

which would search only the given slice of the array for a maximum value. As an exer
cise, you can modify Program 12.1 to test this concept.

EXERCISES FOR SECTION 12.1

Programming

Modify Program 12.1 to call Maxvaiue with parameters li (2.. 4), l2 (o.. 2),
and L2 (-4.. -1) and ascertain that the program correctly finds the given maxi
mum values.

12.2 Problem Solving: A General Sorting Program

We introduced the concept of sorting and sort procedures in earlier chapters. The utility
of a sort procedure is greatly enhanced if it can be used with a wide variety of argu
ments. In this section we develop a sort that wiU work for arrays of the same uncon
strained type but differing bounds; in Section 12.4 we will exploit the full generality of
Ada's generics to create a sort that will work with any unconstrained array type at all,
regardless of its index type or element type.

CASE

STUDY: SOFTWARE SUPPORT "HOTLINE"

You are employed in the customer-support department of a software company, the
toll-free telephone system is open seven days a week, and your supervisor is interested
in knowing how many calls arrive each day and also in seeing die data presented in
order of increasing number of calls. That is, the day with the fewest calls will appear
first, and the day with the most calls will appear last. Your supervisor might also wish to
see the data for weekdays or weekend days only.
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Analysis
Since you are experienced in data handling, you realize that this is basically a sorting
problem, and so you develop a sort program that will work with arrays of cdl records.
The program should handle correctly arrays of one through seven elements, so that, for
example, just the weekdays or just the weekend days can be sorted.

Data Requirements

Probem Inputs
a set of up to seven pairs of data, each giving a day of the week (type nays) and a num
ber of calls (type Natural)

Problem Outputs
a display of the data pairs, sorted in order of increasing number of calls

Design
Here is a good application of unconstrained array types. Let us define the types

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
SUBTYPE DayRange IS Natural RANGE 0..6;
TYPE CallRecord IS RECORD

DayOfWeek : Days;
NumberOfCalls: Natural;

END RECORD;

TYPE Callers IS ARRAY(DayRange RANGE <>) OF CallRecord;

and write a procedure Exchange capable of exchanging two elements of type Natural.
The procedure seiectsort will be a simple modification of the one we did in Section
9.10.

Algorithm
We developed a simple sorting algorithm and procedure seiectsort in Section 9.10.
We can just adapt the sort procedure to the current record stnicure; the algorithm is
unchanged.

Implementation
Program 12.2 gives the modified sort procedure seiectsort, together with auxiliary
procedures Exchange and Dispiaycaiiers. The main program declares three arrays of
type callers with differing bounds and illustrates the sort procedure operating on the
three arrays in turn. Note how the attributes are used in seiectsort to make the proce
dure independent of the bounds of the parameter.

Program 12.2 Sorting Unconstrained Arrays

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Phone__Sei:vice IS

— I Shows sorting of unconstrained arrays and slices
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998
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SUBTYPE DayRange IS Natural RANGE 0..6;
SUBTYPE Weekdays IS DayRange RANGE 0..4;
SUBTYPE Weekend IS DayRange RANGE 5..6;

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
TYPE CallRecord IS RECORD

DayOfWeek : Days;
NumberOfCalls: Natural;

END RECORD;

TYPE Callers IS ARRAY{DayRange RANGE <>) of CallRecord;

PACKAGE Days_IO IS NEW Ada.Text_IO.Enumeration_lO{Enuin => Days);

ThisWeek: Callers(DayRange);
WeekdayCallers: Callers(Weekdays);
WeekendCallers; Callers(Weekend);

PROCEDURE DisplayCallers (List: Callers) IS
— Pre: List is defined

— Post: display all elements in the vector

BEGIN — DisplayCallers
FOR Count IN List'Range LOOP

Days 10.Put (ltem=>List(Count).DayOfWeek, Width=>3);
Ada.Integer_Text_IO.Put
(ltem=>List(Count).NumberOfCalls, Width=>4);

Ada.Text_IO.New_Line;
END LOOP;

Ada.Text_IO.New_Line;
END DisplayCallers;

PROCEDURE Exchange(Valuel, Value2: IN OUT CallRecord) IS
— Pre: Valuel and Value2 are defined
— Post: Valuel and Value2 are interchanged

TempValue: CallRecord;

BEGIN — Exchange
TempValue := Valuel;
Valuel := Value2;
Value2 :« TempValue;

END Exchange;

PROCEDURE SelectSort(List: IN OUT Callers) IS
— Pre; List is defined

Post: elements of List are arranged in ascending order

IndexOfMin: DayRange;

BEGIN

FOR PositionToFill IN List'First..List'Last - 1 LOOP

IndexOfMin := PositionToFill;

FOR ItemToCompare IN PositionToFill + 1..List'Last LOOP
IF List(ItemToCompare).NumberOfCalls
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< List(IndexOfMin).NumberOfCalls THEN
IndexOfMin ;= ItemToCompare;

END IF;

END LOOP;

IF IndexOfMin /= PositionToFill THEN

Exchange(List(PositionToFill),List(IndexOfMin));
END IF;

END LOOP;

END SelectSort;

BEGIN — Phone_Service

ThisWeek := ((Mon, 12), (Tue, 23), (Wed, 100), (Thu, 40),
(Fri, 52), (Sat, 17), (Sun, 2));

WeekdayCallers ThisWeek(Weekdays);
WeekendCallers := ThisWeek(Weekend);

Ada.Text_IO.Put(Item=> "Testing SelectSort for telephone callers");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item=> "Here is ThisWeek before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

SelectSort(List => ThisWeek);
Ada.Text_IO.Put(Itein=> "Here is ThisWeek after upward sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(ltem=> "Here is WeekdayCallers before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => WeekdayCallers);
Ada.Text_IO.New_Line;

SelectSort (List =•> WeekdayCallers);
Ada.Text_IO.Put
(Item=> "Here is WeekdayCallers after upward sorting.");

Ada.Text_IO.New_Line;
DisplayCallers(List -> WeekdayCallers);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item=»> "Here is the WeekendCallers before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => WeekendCallers);
Ada.Text_IO.New_Line;

SelectSort(List => WeekendCallers);
Ada.Text_IO.Put
(Item=> "Here is WeekendCallers after upward sorting.");

Ada.Text_IO.New_Line;
DisplayCallers(List => WeekendCallers);
Ada.Text_IO.New_Line;

END Phone Service;
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Sample Run

Testing SelectSort for telephone callers
Here is ThisWeek before sorting.
HON 12

TUB 23

WED 100

THU 40

PRI 52

SAT 17

SUN 2

Here is ThisWeek after upward sorting.
SUN 2

MON 12

SAT 17

TUB 23

THU 40

FRI 52

WED 100

Here is WeekdayCallers before sorting.
MON 12

TUB 23

WED 100

THU 40

FRI 52

Here is WeekdayCallers after- upward sorting.
MON 12

TUB 23

THU 40

FRI 52

WED 100

Here is the WeekendCallers before sorting.
SAT 17

SUN 2

Here is WeekendCallers after upward sorting.
SUN 2

SAT 17

Unconstrained arrays and slicing make it easier to write programs that deal with
partially filled arrays. Look again at Program 9.15, in which an array of scores is
sorted. If the score array type were defined as an unconstrained type similar to callers
and the variable scores were declared as an array object similar to vi, then the proce
dure SelectSort would need only a single parameter—namely, the name of the actual
array to be sorted. Once Scores was partially filled, the slice scores(i. .ciasssize)
could be passed as the single actual parameter. You can make this change as an exer
cise.
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EXERCISES FOR SECTION 12.2

Programming

1. Modify Program 9.15 so that scoreArray is defined as an unconstrained array
type and selectsort requires only a single parameter.

12.3 System Structures: Generic Units

Ada's system of types and procedures requires that the type of a procedure's actual
parameter always match that of the formal parameter. This means that a procedure or
function that needs to do the same thing to values of two different types must be written
twice—once for each type. Consider the procedure Exchange:

PROCEDURE Exchange(Value1, Value2: IN OUT Natural) IS
TempValue: Natural;

BEGIN

TempValue
Valuel

Value2

END Exchange;

= Valuel;

= Value2;

= TempValue;

A procedure to exchange two Float values would have the same sequence of state
ments, but the type references would be different:

PROCEDURE Exchange(Valuel, Value2; IN OUT Float) IS
TempValue: Float;

BEGIN

TempValue
Valuel

Value2

END Exchange;

= Valuel;

= Value2;

= TempValue;

Obviously, we could modify the first version to give the second version by using an
editor. Because we are likely to need the Natural version again, we modify a copy of it.
This gives two versions of a procedure that are almost the same; because of overload
ing, the two can both be called Exchange. Carrying this to its extreme, we could build
up a large library of Exchange programs with our editor and be ready for any eventual
ity. Exchange could even be made to work with array or record structures, because Ada
allows assignment for any type.

There is a problem with this approach: It clutters our file system with a large num
ber of similar programs. Worse still, suppose that a bug turns up in the statements for
Exchange or in another program with more complexity. The bug will have turned up in
one of the versions; the same bug will probably be present in all of them, but we would
probably forget to fix all the others! TTiis is, in miniature, a problem that industry has
long faced: multiple versions of a program, all similar but not exactly alike, all requir
ing debugging and other maintenance.
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Returning to our simple example, it would be nice if we could create one version of
Exchange, test it, then put it in the library. When we needed a version to work with a
particular type, we could just tell the compiler to use our pretested Exchange but to
change the type it accepts. The compiler would make the change automatically, and we
would still be left with only a single copy of the procedure to maintain.

It happens that Ada allows us to do exactly this. The solution to this problem is
generics. A generic unit is a recipe or template for a procedure, function, or package.
Such a unit is declared with formal parameters that are types and sometimes that are
procedure or function names. An analogy can be drawn with an unusual recipe for a
layer cake: all the elements are there except that the following items are left as parame
ters to be plugged in by the baker:

•  The number of layers

•  The kind of filling between the layers

•  The flavor of the cake itself

•  The flavor of the icing

This recipe was pretested by the cookbook author, but before we can use it for a
three-layer yellow c^e with marshmallow filling and chocolate icing, we need to (at
least mentally) make all the changes necessary to the ingredients list. Only after this
instance of the recipe has been created does it make sense to try to make a cake using it.

Generic Type Parameters

■ Example 12.2

Program 12.3 is a specification for a generic exchange program. This specification indi
cates to the compiler that we wish vaiueType to be a formal parameter. The formal
parameters are listed between the word generic and the procedure heading. Writing

TYPE VaiueType IS PRIVATE;

tells the compiler that any type, including a private one, can be plugged in as the kind
of element to exchange. We will introduce more examples of type parameters below.

Program 12.3 Specification for Generic Exchange Procedure

generic

TYPE VaiueType IS PRIVATE; — any type OK except LIMITED PRIVATE
procedure SwapjGeneric(Value1, Value2: IN OUT VaiueType);

1  Specification for generic exchange procedure
I Author; Michael B. Feldman, The George Washington University

— I Last Modified: September 1998
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The body of swap_Generic appears as Program 12.4. Notice that Swap_Generic
looks essentially the same as the integer and Float versions, except for the use of
valueType wherever a type is required. vaiueType is 2l formal type parameter.

Program 12.4 Body of Generic Exchange Procedure

PROCEDURE Swap_Generic(Value1, Value2: IN OUT ValueType) IS

— I Body of generic exchange procedure
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

TempValue: ValueType;

BEGIN — Swap__Generic

TempValue
Valuel

Value2

= Valuel;
= Value2;
= TempValue;

END Swap_Generic;

The specification and body of a generic procedure or function are, syntactically,
independent compilation units; as such, they reside (usually) in separate files. Compil
ing the specification and the body creates a version of the generic that is ready to be
wiTH-ed by a client, then instantiated, or tailored by plugging in the desired type. A
wiTH-ing client could, for example, include the following statements:

PROCEDURE IntegerSwap IS NEW Swap__Generic (ValueType => Integer);
PROCEDURE CharSwap IS NEW Swap_Generic (ValueType => Character);

The notation is familiar; we have used it in creating instances of Ada.Text_io.
Enumeration^io and Other Standard-library generics. Program 12.5 shows how the
swap_Generic procedure could be tested and used. The two instantiations above appear
in the program. B

Program 12.5 A Test of the Generic Swap Procedure

WITH Swap_Generic;
WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Test__Swap_Generic IS

— I Test program for Swap_Generic
— I Author: Michael B. Feldman, The George Washington University
—j Last Modified: September 1998

X : Integer;
Y : Integer;

A : Character;

B : Character;
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PROCEDURE integerSwap IS NEW Swap__Generic (ValueType »> Integer);
PROCEDURE CharSwap IS NEW Swap_Generic (ValueType => Character);

BEGIN — Test_Swap_Generic

X := 3;

y := -5;

A ;= 'X';

B := 'q';

Ada.Text_IO.Put("Before swapping, X and Y are, respectively ");
Ada. Integer_Text__IO. Put (Item => X, Width =>4);
Ada.Integer_Text_IO.Put(Item => Y, Width =>4);
Ada.Text_IO.New_Line;

IntegerSwap(Value1 => X,Value2 => Y);

Ada.Text_IO.Put("After swapping, X and Y are, respectively ");
Ada.Integer_Text_IO.Put(Item => X, Width =>4);
Ada.Integer_Text~IO.Put(Item => Y, Width =>4);
Ada.Text_IO.New_Line;
Ada.Textile.New_Line;

Ada.Text_IO.Put("Before swapping, A and B are, respectively ");
Ada.Text_IO.Put(Item => A);
Ada.Text_IO.Put(Item => B);
Ada.Text_IO.New_Line;

CharSwap(Value1 => A,Value2 => B);

Ada.Text_^IO.Put("After swapping, A and B are, respectively ");
Ada.Text~IO.Put(Item => A);
Ada.Text_IO.Put(Item => B);
Ada.Text_IO.New_Line;

END Test_Swap_Generic;

Sample Run

Before swapping, X and Y are, respectively 3 -5
After swapping, X and Y are, respectively -5 3

Before swapping, A and B are, respectively xq
After swapping, A and B are, respectively qx

Generic Subprogram Parameters

Sometimes, a generic recipe needs to be instantiated with the names of functions or
procedures. To continue the food analogy, a certain fish recipe can be prepared by
either baking or broiling; the rest of the recipe is independent. So the action "desired
cooking method" would be a parameter of that recipe.
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■ Example 12.3

Consider the function Maximum from Program 5.6, which returns the larger of its two
Integer operands:

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS

Result: Integer;

BEGIN

IF Valuel > Value2 THEN

Result := Valuel;

ELSE

Result Value2;
END IF;

RETURN Result;

END Maximum;

We would like to make a function that returns the larger of its two operands,
regardless of the types of these operands. As in the case of Generic_swap, we can use
a generic type parameter to indicate that an instance can be created for any type. This is
not enough, however. The if statement compares the two input values: Suppose the
type that we use to instantiate does not have an obvious, predefined, "greater than"
operation? Suppose that the type is a user-defined record with a key field, for example?
"Greater than" is not predefined for records! We can surely write such an operation, but
we need to inform the compiler to use it; when writing a generic, we need to reassure
the compiler that all the operations used in the body of the generic will exist at instanti
ation time. Let us indicate in the generic specification that a comparison function will
exist.

Program 12.6 is the desired generic specification. The with syntax here takes get
ting used to, but it works.

Program 12.6 Specification for Generic Maximum Function

GENERIC

TYPE ValueType IS PRIVATE;
WITH FUNCTION Compare(L, R : ValueType) RETURN Boolean;

FUNCTION Maximum_Generic(L, R : ValueType) RETURN ValueType;

— I Specification for generic meucimum function
--I Author: Michael B. Feldman/ The George Washington University
— I Last Modified: September 1998

The body of the generic function, shown as Program 12.7, looks similar to the one
just given for Maximum.

Program 12.7 Body of Generic Maximum Function

FUNCTION Maximum_Generic(L, R ; ValueType) RETURN ValueType IS

— I Body of generic maximum function
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Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

BEGIN — Maximum_Generic

IF Compare(L, R) THEN
RETURN L;

ELSE

RETURN R;

END IF;

END Maximum_Generic;

An instantiation for Float values might be

FUNCTION FloatMax IS

NEW Maximum_Generic {ValueType=>Float, Compare=>

Notice how the "greater than" operator is supplied. It makes no difference that the
generic expected a function and we gave it an operator; after all, an operator is a func
tion. What is important is that the structure of Ae actual parameter matches the struc
ture of the formal parameter. As long as there is a ">" available for Float (of course
there is, in standard), the instantiation will succeed.

The Ada compiler has no idea what the function compare will do when the generic
is instantiated. It turns out, then, that if we just supply "<■• as an actual parameter for
Compare, the instantiation finds the minimum instead of the maximum! Program 12.8
shows a total of six instantiations, giving minimum and maximum functions for inte
ger, Float, and Currency values. All the minimums are called Minimum; all the maxi-
mums are called Maximum; this is the normal Ada overloading principle in action. ■

Program 12.8 Test of Generic Maximum Function

WITH Ada.Text_I0;
WITH Ada.Float_Text_IO;
WITH Ada. Integer__Text_IO;
WITH Currency; uiE Currency;
WITH Currency.10;
WITH Maximum_Generic;
PROCEDURE Test_Maximum__Generic IS

Test program for Generic Maximum, using six instances
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

FUNCTION Maximum IS
NEW Maximum_Generic (ValueType=>Float, Compare=>

FUNCTION Minimum IS
NEW Maximum_Generic (ValueType=>Float, Compare=>

FUNCTION Maximum IS
NEW Maximum_Generic (ValueType=>Integer, Compare=> ">");

FUNCTION Minimum IS
NEW Maximum_Generic (ValueType=>lnteger, Compare=>
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FUNCTION Maximum IS

NEW MaximumjGeneric (ValueType=>Quantity, Compare=>
FUNCTION Minimum IS

NEW Maximum_Generic (ValueType=>Quantity, Compare=>

BEGIN ~ Test_Maximum_Generic

Ada.Text_IO.Put("Maximum of -3 and 7 is ");
Ada. Integer_Text__IO. Put (Item => Maximum(-3, 7), Width=>l);
Ada.Text_lO.New_Line;
Ada.Text_IO.Put("Minimum of -3 and 7 is ");
Ada.Integer_Text_IO.Put(Item => Minimum(-3, 7), Width=>l);
Ada. Text_IO. New__Line (Spacing => 2);

Ada.Text_IO.Put("Maximum of -3.29 and 7.84 is ");
Ada.Float_Text_IO.Put
(Item => Maximum(-3.29, 7.84), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Minimum of -3.29 and 7.84 is ");
Ada.Float_Text_IO.Put
(Item => Minimum(-3.29, 7.84), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line(Spacing => 2);

Ada.Text_IO.Put("Maximum of 23.65 and 37.49 is ");
Currency.10.Put

(Item => Maximum(MakeCurrency(23.65), MakeCurrency(37.49)));
Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Minimum of 23.65 and 37.49 is ");
Currency.10.Put
(Item =» Minimum(MakeCurrency(23.65), MakeCurrency(37.49)));

Ada. Text__I0. New_Line (Spacing => 2);

END Test_Maximum_Generic;

Sample Run

Maximum of -3 and 7 is 7
Minimum of -3 and 7 is -3

Maximum of -3.29 and 7.84 is 7.84
Minimum of -3.29 and 7.84 is -3.29

Maximum of 23.65 and 37.49 is 37.49
Minimum of 23.65 and 37.49 is 23.65

Generic Array Parameters

An important use for generics, combined with unconstrained array types, is building
very general subprograms to deal with arrays. For a generic to be instantiated for many
different array types, we need to specify formal parameters for the index and array
types.
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■ Example 12.4

Program 12.9 is a specification for a function Maxiniuin__Array_Generic that returns the
"largest" of all the elements in an array, regardless of the index or element type. "Larg
est" is in quotes because we know already that we can make it work as a minimum
finder as well.

Program 12.9 Specification for Generic Array Maximum Function

GENERIC

TYPE ValueType IS PRIVATE; — any nonlimited type
TYPE indexType IS (<>); ~ any discrete type
TYPE ArrayType IS ARRAY(IndexType RANGE <>) OF ValueType;
WITH FUNCTION Compare(L, R : ValueType) RETURN Boolean;

FUNCTION Maximum__Array_Generic(List: ArrayType) RETURN ValueType;

— I Specification for generic version of array maximum finder
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

The syntax of the specification for IndexType means "any discrete type is OK as an
actual parameter." Recalling that discrete types are the integer and enumeration types
and subtypes, this is exactly what we need for the index type of the array. The specifica
tion for ArrayType looks like a type declaration, but it is not. Rather, it is a description
to the compiler of the kind of array type that is acceptable as an actual parameter. In this
case the array type must be indexed by IndexType (or a subtype thereof) and have ele
ments of type ValueType (or a subtype thereof).

The body of Maximum_Array_Generic can be seen in Program 12.10. You can write
a test program for it as an exercise. As a hint, consider the following declarations:

TYPE FloatVector IS ARRAY(Integer RANGE <>) OF Float;
TYPE CurrencyVector IS ARRAY (Positive RANGE <>) OF Currency.Quantity;

and instantiate the generic as follows:

FUNCTION Maximum IS

NEW Maximum_Array_Generic{ValueType=>Float, IndexType=>Integer,
ArrayType=>FloatVector, Compare=>">");

FUNCTION Minimum IS

NEW Maximum_Array_Generic(ValueType=>Currency.Quantity,
lndexType=>Positive,
ArrayType=>CurrencyVector, Compare=>"<")J ■

Program 12.10 Body of Generic Array Maximum Function

FUNCTION Maximum_Array_Generic(List; ArrayType) RETURN ValueType IS

I  Body of generic array maximum finder
—I Author: Michael B. Feldman, The George Washington University
— 1 Last Modified: September 1998
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Result: ValueType;

BEGIN — Maxiinum_Array_Generic

Result := List(List'First);
FOR WhichElement IN List'Range LOOP
IF Compare(List(WhichElement), Result) THEN
Result := List(WhichElement);

END IF;

END LOOP;

RETURN Result;

END Maximum_Array__Generic;

EXERCISES FOR SECTION 12.3

Self-Check

1. Review the ADTs we developed in Chapter 11. For which ones could
Swap_Generic not be instantiated? How about Maximura_Generic?

Programming

1. Modify the test program for swap__Generic to instantiate for some other types.

2. Repeat problem 1 forMaximum_Generic.

3. Write a test program for Maximum__Array_Generic as suggested in the section.

12.4 Problem Solving: A Generic Sorting Program

Let us continue our study of generics with the development of a generic sort procedure
that uses much of what we have done in the chapter. We develop a sort procedure that
will work correctly for any variable of any unconstrained array type, regardless of its
bounds, index type, or element type.

In Program 12.2 we developed seiectsort, which works for any array of a partic
ular unconstrained array type. We just need to modify it to make it generic. We also
have our procedure swap_Generic, which we can instantiate and use to handle
exchanges.

Program 12.11 is the specification for the generic sort routine. This is similar to
Maximum_Array_Generic from Program 12.9.
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Program 12.11 Specification for Generic Sort Procedure

GENERIC

TYPE ElementType IS PRIVATE; — any nonlimited type will do
TYPE IndexType IS (<>); — any discrete type for index
TYPE ListType IS ARRAY (IndexType RANGE <>) OF ElementType;
WITH FUNCTION Compare (Left, Right : ElementType) RETURN Boolean;

PROCEDURE Sort_Generic(List: IN OUT ListType);

Specification for Generic Exchange Sort - will sort input
array in order according to Compare
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

With your current knowledge of generics, you can understand this specification
easily. The body of the generic sort can be found as Program 12.12. Notice that the
body begins with the context clause

WITH Swap_Generic;

and instantiates this procedure for whatever the element type turns out to be. We have
here a case of one generic instantiating another; this is the kind of situation that demon
strates the power of generics to help write very general programs. The rest of the proce
dure body is very similar to our earlier select sort procedure (Program 12.2), with the
necessary modifications.

Program 12.12 Body of Generic Sort Procedure

WITH Swap_Generic;
PROCEDURE Sort_Generic(List: IN OUT ListType) IS

— I Body of Generic Sort Procedure
I Author; Michael B. Feldman, The George Washington University

— I Last Modified; September 1998

— we need to make an instance of Swap__Generic for this case
PROCEDURE Exchange IS NEXfl Swap_Generic''(ValueType => ElementType);

IndexOfMin: IndexType;

BEGIN — Sort_Generic

FOR PositionToFill IN List'First .. IndexType■Pred(List'Last) LOOP

IndexOfMin := PositionToFill;

FOR ItemToCompare IN
IndexType'Succ(PositionToFill) .. List'Last LOOP
IF Compare(List(ItemToCompare), List(IndexOfMin)) THEN

IndexOfMin ;= ItemToCompare;
END IF;

END LOOP;
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IF IndexOfMin /=» PositionToFill THEN

Exchange(List(PositionToFill), List(IndexOfMin))
END IF;

END LOOP;

END Sort Generic;

Using the Generic Sort to Order an Array of Records

sort_Generic can be especially useful in sorting arrays of records as we did in Pro
grams 9.14 and 12.2. Consider the following declarations:

MaxSize : CONSTANT Positive := 250;
MaxScore : CONSTANT Positive ;= 100;

SUBTYPE StudentName IS String(1..20);
SUBTYPE Classlndex IS Positive RANGE 1.,MaxSize;
SUBTYPE ClassRange IS Natural RANGE 0..MaxSize;
SUBTYPE ScoreRange IS Natural RANGE 0..MaxScore;

TYPE ScoreRecord IS RECORD

Name: StudentName;
Score: ScoreRange;

END RECORD;

TYPE ScoreArray IS ARRAY (Classlndex RANGE <>) OF ScoreRecord;

Here is a "compare" function that tells us whether one record is "less than" another
(in the sense that one score is lower than the other):

FUNCTION ScoreLess(Scorel, Score2 : ScoreRecord) RETURN Boolean IS
BEGIN

RETURN Score1.Score < Score2.Score;
END ScoreLess;

This function compares the score fields of the two records, returning True if the
first record is "less than" the second and False otherwise. We could have named this
function of course, but we chose not to do so in the interest of clarity. Given
sort_Generic, it takes only a single instantiation statement to create a sort that will
order an array of score records in ascending order:

PROCEDURE SortUpScores IS NEW Sort_Generic
(ElementType => ScoreRecord,
IndexType => Classlndex,
ListType => ScoreArray,
Compare => ScoreLess);

Given variables scores and ciasssize as follows:

Scores: ScoreArray(Classlndex'First..ClassIndex'Last);
ClassSize: ClassRange;
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we see that scores can hold up to 250 records and classsize can be used to determine
the actual number of records read from a file into the array. The array can easily be put
in ascending order by score, just by calling sortupscores with the appropriate array
slice:

SortUpScores(List => Scores(1..ClassSize));

Program 12.13 demonstrates the sort for two entirely different array types: an array
of float values and an array of phone call records as we used in Section 12.2.

Program 12.13 Test of Generic Sort Procedure

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_IO;
WITH Ada.Float_Text_IO;
WITH Sort^Generic;
PROCEDURE~Test_Sort_Generic IS

Demonstrates Sort_Generic using two unrelated kinds of lists;
this is not a realistic application but rather just shows that
many instances of a generic can occur within one client program.
Author; Michael B. Feldman, The George Washington University
Last Modified; September 1998

SUBTYPE Index IS Integer RANGE 1..10;
TYPE FloatVector IS ARRAY(Index RANGE <>) OF Float;

VI ; FloatVector(1..10);

SUBTYPE DayRange IS Natural RANGE 0..6;
SUBTYPE Weekdays IS DayRange RANGE 0..4;
SUBTYPE Weekend IS DayRange RANGE 5..6;

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
TYPE CallRecord IS RECORD

DayOfWeek : Days;
NuraberOfCalls; Natural;

END RECORD;

TYPE Callers IS ARRAY(DayRange RANGE <>) of CallRecord;

PACKAGE Days_IO IS NEW Ada.Text_IO.Enumeration_IO(Enum => Days);

ThisWeek: Callers(DayRange);

— if we are going to sort CallRecords,
we need to know how to compare them

FUNCTION "<" (L, R: CallRecord) RETURN Boolean IS
BEGIN

RETURN L.NumberOfCalls < R.NumberOfCalls;
END "<";

FUNCTION ">" (L, R; CallRecord) RETURN Boolean IS
BEGIN

RETURN L.NumberOfCalls > R.NumberOfCalls;
END ">";
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— local procedures to display the contents of two kinds of lists

PROCEDURE DisplayCallers (List: Callers) IS
BEGIN — DisplayCallers
FOR Count IN List'Range LOOP
Days_IO.Put (Itein=>List(Count) .DayOfWeek, Width=>3);
Ada.Integer_Text_IO.Put
(Item=>List(Count).NumberOfCalls, Width=>4);

Ada.Text_IO.New_Line;
END LOOP;

Ada.Text_l0.New_Line;
END DisplayCallers;

PROCEDURE DisplayFloatVector (V: FloatVector) IS
BEGIN

FOR Count IN VFirst. .V'Last LOOP

Ada. Float_Text_IO. Put (Itein=>V (Count), Fore=>4, Af t=>2, Exp=>0);
END LOOP;

Ada.Text_IO.New_Line;
END DisplayFloatVector;

— two instances of Sort_Generic for Float vectors;
— the first sorts in increasing order, the second in decreasing order

PROCEDURE SortUpFloat IS NEW Sort^Generic
(ElementType => Float, ""
IndexType => Index,
ListType => FloatVector,
Compare => "<");

PROCEDURE SortDownFloat IS NEW Sort_Generic
(ElementType => Float,
IndexType => Index,
ListType => FloatVector,
Compare => ">");

— two instances of Sort_Generic for Callers;
— the first sorts in increasing order, the second in decreasing order

PROCEDURE SortUpCallers IS NEW Sort_Generic
(ElementType => CallRecord,
IndexType => DayRange,
ListType => Callers,
Compare => "<");

PROCEDURE SortDownCallers IS NEW Sort_Generic
(ElementType => CallRecord,
IndexType => DayRange,
ListType => Callers,
Compare =>>

BEGIN — Test_SortjGeneric

VI := (0.7, 1.5, 6.9, -3.2, 0.0, 5.1, 2.0, 7.3, 2.2, -5.9);
Ada. Text_IO. New__Line;
Ada.Text_IO.Put(Item=> "Testing Sort_Generic for float vectors");
Ada.Text_10.New_Line;
Ada.Text_I0.Put(ltem=> "Here is the vector before sorting.");
Ada.Text_IO.New_Line;
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DisplayFloatVector(V => Vl(3..3));
Ada.Text_IO.New_Line;

SortUpFloat(List => Vl(3..3));
Ada.Text_IO.Put(Item=> "Here is the vector after upward sorting.");
Ada.Text_IO.New_Line;
DisplayFloatVector(V => VI);
Ada.Text_lO.New_Line;

SortDownFloat(List => VI);
Ada.Text_IO.Put(Itera=> "Here is the vector after downward sorting.");
Ada.Text_10.New_Line;
DisplayFloatVector(V => VI);
Ada.Text_IO.New_Line;

ThisWeek := ((Mon, 12), (Tue, 23), (Wed, 100), (Thu, 40),
(Fri, 52), (Sat, 17), (Sun, 2));

Ada.Text_IO.Put(Item=> "Testing Sort_Generic for telephone callers");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Iteni=> "Here is ThisWeek before sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

SortUpCallers(List => ThisWeek);
Ada.Text_IO.Put(Itera=> "Here is ThisWeek after upward sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

SortDownCallers(List => ThisWeek);
Ada.Text_IO.Put(Item=> "Here is ThisWeek after downward sorting.");
Ada.Text_IO.New_Line;
DisplayCallers(List => ThisWeek);
Ada.Text_IO.New_Line;

END Test_Sort_Generic;

Sample Run

Testing Sort_Generic for float vectors
Here is the vector before sorting.

0.70 1.50 O.90 -3.20 0.00 5.10 2.00 7.30 2.20 -5.90

Here is the vector after upward sorting.
-5.90 0.70 1.50 -3.20 0.00 2.20 2.00 6.90 5.10 7.30

Here is the vector after downward sorting.
7.30 5.10 6.90 0.70 1.50 2.20 2.00 0.00 -3.20 -5.90

Testing Sort_Generic for telephone callers
Here is ThisWeek before sorting.
MON 12

TOE 23

WED 100

THO 40

FRI 52

SAT 17

SUN 2
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Here is ThisWeek after upward sorting.
SUN

MON

TUB

SAT

THU

FRI

2

12

23

17

40

52

WED 100

Here is ThisWeek after downward sorting.
WED 100

FRI 52

THU 40

TUB 23

SAT 17

MON 12

SUN 2

SYNTAX

DISPLAY
Generic Specification

Form:

GENERIC

list of generic formal parameters
PROCEDURE pname {list of procedure parameters );

GENERIC

list of generic formal parameters
FUNCTION fname (list of function parameters ) RETURN ResultType;

GENERIC

list of generic forniai parameters
PACKAGE pname IS
specifications of resources provided by the package

END pname ;

Example:

GENERIC

TYPE ValueType IS PRIVATE;
TYPE IndexType IS (<>);
WITH FUNCTION "+"(L,Rs ValueType) RETURN ValueType;
WITH FXraCTION "*"(L,R: ValueType) RETURN ValueType;
Zero: ValueType;

PACKAGE Vectors IS

TYPE Vector IS ARRAY(IndexType RANGE <>) OF ValueType;
Bounds_Error: EXCEPTION;
FUNCTION "+"(L, R: Vector) RETURN Vector;
FUNCTION "•"(L, R: Vector) RETURN ValueType;

END Vectors;

Interpretation:

The generic specification defines a generic procedure, function, or package, for
which a corresponding body must also be provided. The list of generic formal
type, procedure or function, and object parameters indicates the structure of the
parameters to be supplied at instantiation of the generic.
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Here are tiie forms of the generic type parameters we have seen here and their
interpretation. There are other generic type parameters, but their discussion is
beyond the scope of this book. This form:

TYPE ValueParameterUaine IS PRIVATE?

most commonly used as a value parameter, indicates that any type can be
matched at instantiation, including a private type, as long as it is not limited
PRIVATE. That is, the operations of assignment and equality testing must be
defined for the type.

This form:

TYPE IndexParameterMaroe IS (<>}?

indicates that any discrete type—that is, an integer or enumeration type or sub
type—can be matched at instantiation. This form is commonly used to specify
the index type of an array type.

Finally, this form:

TYPE ArrayParameterName IS
ARRAY (IndexParaiaeterNaroe RANGE <>} OF ValueParameterNaiae;

indicates that any unconstrained array type with the given index and value types
can be matched at instantiation.

EXERCISES FOR SECTION 12.4

Self-Check

1. Explain how sort_Generic could be instantiated to order an array of score
records in alphabetical order by the name of the student.

2. Explain how sort_Generic could be instantiated to order an array of score
records in descending order by score.

Programming

1. Modify Test_sort__Generic SO that the element type is aanother type we have
defined in this book. Try it for currency or Date, for example.

12.5 System Structures: A Generic Sets Package

Up to this point we have seen only generic functions and procedures. In this section we
develop a generic package, namely, one for representing discrete sets, or sets of inte
gers or enumeration values.
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Sets are very important both in mathematics and in computer applications. Given a
universe of objects or values, a set S is just a collection of objects belonging to that uni
verse. Some common universes are the integers, the positive integers, alphabet letters,
and sets of values that we could represent as enumeration types. Sets are so important
in programming that some languages, especially Pascal, provide sets as a predefined
type. Ada does not have a predefined set type; in this section we will show an ADT that
will emulate Pascal's predefined type, using a generic package.

Often sets are described just by listing their members between braces, as in the set
{a, b} taken from the universe of English alphabet letters. In general, there is no order
ing associated with a set, so {a, b} and {b, a} usually describe the same set. Two sets
are said to be equal if they have the same members. A set is said to be empty if it has no
members. In cases in which there is no ordering, it also makes no difference if we name
a member twice, so {a, b,a} - {b,a,b} = {a, b}.

Operations on Sets

What are the important operations associated with sets? Certainly, inserting a member
in a set and deleting a member from a set are essential; so are testing a set to see
whether a given element is a member and testing a set to see whether it is empty. The
last two operations are predicate or inquiry selector operations; they return Boolean
values. The most important dyadic constructor operations are as follows:

• The union of two sets S and T (written usually as 5 u 7), which returns the set con
taining all of 5's members and all of Ts members

• The intersection of 5 and T{Sr\T), which returns the set containing all elements
which are members of both S and T

• The difference S-T, which returns the set containing all elements which are mem
bers of S but not of T

An often-used monadic constructor is the complement -S, which returns the set
containing all elements in the universe which are not members of S.

We will use + and * to represent the union and intersection, respectively, because
the union and intersection symbols are not part of the ASCII character set. For example,
if the universe is the letters a-k, inclusive, and S = {a, d, e, g} and T = {b, c, d, e, k},
then

S + T= {a, b, c, d, e, g, k)
5*r={rf,e}

5- r= {a, g} and r- .9 = {b, c, k}
-S = {b, c,f, h, i,j, k}

Finally, two more inquiry operations are commonly used;

• the improper subset operation; S is an improper subset of T if and only if all mem
bers of S are also members of T.

• the proper subset operation: 5 is a proper subset of T if and only if all members of
S are members of T but at least one member of T is not a member of S.
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Because the subset symbols are also missing from the type character, we use <=
and < for improper and proper subset, respectively. For example, {b, c} < {a, b, c, d, e}
and {b, c} <= {n, b, c, d, ej but is not a subset of {c, e}. Also, {a, b} <= {a, b}.

Specifying the Generic SetADT

Mathematically, sets can be infinite (all the integers, for example). In programming
applications, however, it is finite sets that are most interesting. Therefore we confine
ourselves to representing finite sets and specifically to sets that are taken from finite
universes of integers or enumeration values. As we shall see, it is easy to use Ada's
generic facility to build a package that provides a good but more flexible approximation
of the predefined set facility of Pascal.

A universe is either an integer subtype or an enumeration type, which means that a
universe also happens to be a valid index range for arrays. Choosing a universe, we
implement a set as a one-dimensional array of Boolean values, with index range corre
sponding to that universe. Given a set 5 Aat is represented in this fashion, if a given
member of the universe is a member of S, we let the corresponding element of S be
True; otherwise we let that element be False. This representation is often called the
characteristic function or bit map of a set, and is an especially compact way to repre
sent a large set. For example, suppose we choose the universe a-g. Every set over this
universe is represented as a Boolean array indexed a-g, and specifically the set S = {a,
d, e, g} is represented as

True False False True True False True

Now let us devise a generic Ada package for this ADT. A framework for the generic
part of the specification is

GENERIC

TYPE Universe IS (<>);

PACKAGE Sets_Generic IS

END Sets_Generic;

The second line specifies a generic parameter that can match any discrete type, that
is, any enumeration type or integer subtype. This is exactly what we need for our finite,
discrete universes.

Program 12.14 gives the desired specification, complete with a private part defining
the type set. Making sets a private type allows client programs to copy sets and check
them for inequality using the predefined =, and /= operations but prohibits clients
from direct access to the implementation of sets. This leaves us, the package writer, the
flexibility to change the implementation of sets without requiring any code changes in
client programs.
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Program 12.14 Specification for Generic Set Package

GENERIC

TYPE Universe IS (<>); — any integer or enumeration type

PACKAGE Sets Generic IS

Generic specification for sets over discrete universes
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Set IS PRIVATE;

Phi: CONSTANT Set; — empty set

— constructors

FUNCTION "+" (S: Set; E: Universe) RETURN Set;
FUNCTION (S: Set; E: Universe) RETURN Set;
— Pre: S and E are defined

— Post; returns S with E inserted or deleted respectively;
"+" has no effect if IsIn(S,E); has none if NOT IsIn(S,E)

FUNCTION Singleton(E: Universe) RETURN Set;
FUNCTION "+" (El, E2: Universe) RETURN Set;
— Pre: E, El, and E2 are defined

— Post: returns a set made from one or two elements

FUNCTION "+" (S, T : Set) RETURN Set;
FUNCTION (S, T ; Set) RETURN Set;
FUNCTION (S, T : Set) RETURN Set;
— Pre: S and T are defined

— Post: returns the union, intersection, and difference of
S and T, respectively

FUNCTION (S : Set) RETURN Set;
— Pre: S is defined

— Post: returns the complement of S

— selectors

FUNCTION Isin (S : Set; E : Universe) RETURN Boolean;
— Pre: S and E are defined
— Post: returns True if and only if E is a member of S

FUNCTION IsEmpty (S : Set) RETURN Boolean;
— Pre: S is defined

— Post: returns True if and only if s is empty

FUNCTION SizeOf (S : Set) RETURN Natural;
— Pre: S is defined

— Post: returns the number of members in S

FUNCTION "<=" (S, T : Set) RETURN Boolean;
FUNCTION "<" (S, T : Set) RETURN Boolean;
— Pre: S and T are defined

— Post: returns True if and only if s is
an improper or proper subset of T, respectively
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PRIVATE

TYPE SetArray IS ARRAY (Universe) OF Boolean;
TYPE Set IS RECORD

Store: SetArray := (OTHERS => False);
END RECORD;

Phi: CONSTANT Set := (Store => (OTHERS => False));
END Sets_Generic;

Note in the type definition that the Boolean array is stored in a record. This is to
allow us to initialize all sets by default to the empty set: Recall that Ada allows us to
default-initialize only objects of a record type. Note also the constant Phi, which we
use to represent the empty set. The constant is partially declared at the top of the speci
fication, then completed in the private part, after the full type definition for the private
type is given.

The operations to insert and delete a member are shown as operators"+" and
respectively, so that given a set s and an element e, the expressions s + e and s - e are
meaningful. We include two additional constructor operators: singleton, which cre
ates a singleton set—a set with a single member—from its element parameter, and
another "+•• operator to create a set from two elements. Specifying all these operations
as functions makes it easy to create a set with the desired membership. For example, a
client program could instantiate sets_Generic as follows:

SUBTYPE SmallNatural is NATURAL RANGE 0..15);
PACKAGE NaturalSets IS NEW Sets_Generic(Universe => SmallNatural);

and then, having declared a variable,

S: NaturalSets.Set;

can include the odd small naturals in s with

S  := 7+3+13+5+1+9+11+15;

Implementing the Generic Set ADT

Program 12.15 shows the body of the package sets_Generic. Note that the union,
intersection, and difference operators construct their results by looping through the
sets, finding elementwise and, or, and not values.

Program 12.15 Body of Generic Set Package

PACKAGE BODY Sets_Generic IS

— I Body of generic sets package
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: September 1998

— constructors

FUNCTION "+" (S: Set; E: Universe) RETURN Set IS
Result: Set ;= S;
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BEGIN — "+"

Result.store (E) := True;
RETURN Result;

END "+";

FUNCTION (S: Set; E; Universe) RETURN Set IS
Result: Set := S;

BEGIN —

Result.Store (E) := False;
RETURN Result;

END

FUNCTION Singleton(E: Universe) RETURN Set IS
BEGIN — Singleton
RETURN Phi + E;

END Singleton;

FUNCTION "+" (El, E2: Universe) RETURN Set IS
BEGIN ~ "+"

RETURN Phi + El + E2;
END "+";

FUNCTION "+" (S, T : Set) RETURN Set IS
Result: Set;

BEGIN — "+"

FOR E IN Universe LOOP

Result.Store(E) S.Store(E) OR T.Store(E);
END LOOP;

RETURN Result;

END "+";

FUNCTION (S, T : Set) RETURN Set IS
Result: Set;

BEGIN ~

FOR E IN Unrverse LOOP

Result.Store(E) := S.Store(E) AND T.Store(E);
END LOOP;

RETURN Result;

END

FUNCTION (S, T : Set) RETURN Set IS
Result: Set;

BEGIN —

FOR E IN Universe LOOP

Result.Store(E) := S.Store(E) AND NOT T.Store(E);
END LOOP;

RETURN Result;
END

FUNCTION (S : Set) RETURN Set IS
Result: Set;

BEGIN —

FOR E IN Universe LOOP

Result.Store(E) := NOT S.Store(E);
END LOOP;

RETURN Result;
END

— selectors
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FUNCTION Isin (S : Set; E : Universe) RETURN Boolean IS
BEGIN — isin

RETURN S.Store (E);

END ISin;

FUNCTION isEmpty (S : Set) RETURN Boolean IS
BEGIN — IsEmpty

RETURN S = Phi;
END IsEmpty;

FUNCTION SizeOf (S : Set) RETURN Natural IS
Result; Natural := 0;

BEGIN -- SizeOf

FOR E IN Universe LOOP

IF S.Store(E) THEN
Result := Result + 1;

END IF;

END LOOP;

RETURN Result;

END SizeOf;

FUNCTION "<=" (S, T : Set) RETURN Boolean IS
BEGIN — ••<="

RETURN (S + T) = T;

end

FUNCTION "<" (S, T : Set) RETURN Boolean IS
BEGIN — "<"

RETURN S /= T AND THEN S <= T;

END

END Sets Generic;

An Application: Music Makers

Program 12.16 shows an example of how sets_Generic might be used. An enumera
tion type instruments is declared, representing common musical instruments. The
generic package is instantiated for these, and variables are created representing differ
ent kinds of musical ensembles, depending on the instruments usually found in them.
The program shows one local procedure DispiayEnsembie which operates by using an
instance of Ada.Text io.Enumeration_io and iterating through an ensemble to dis
play only those instruments present in that ensemble.

Program 12.16 A Music Makers Program

WITH Ada.Text_IO;
WITH Sets_Generic;
PROCEDURE Music_Makers IS

I  Example of the use of Sets_Generic, to create musical ensembles
—I Author; Michael B. Feldman, The George Washington University
— 1 Last Modified; September 1995

TYPE Instruments IS

(Violin, Viola, Cello, BassViol, — classical strings
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Piano, Harpsichord, Organ, — classical keyboards
Clarinet, Saxophone, — single—reed woodwinds
Oboe, Bassoon, — double-reed woodwinds
Flute, Piccolo, — flutes
Trumpet, Trombone, FrenchHorn, Tuba, — brass
Tympani, Snare, TomTom, BassDrum, — drums
Cymbals, Triangle, Bells, Marimba, — percussion
Guitar, Banjo, Ukelele, — folk strings
Accordion, Keyboard); — miscellaneous

PACKAGE Music_IO IS
NEW Ada.Text_IO.Enumeration_IO(Enum => Instruments);

PACKAGE Ensembles IS MEW Sets_Generic (Universe => Instruments);
USE Ensembles;

SUBTYPE Ensemble IS Ensembles.Set; — nickname for this program

Strings: CONSTANT Ensemble := Violin + Viola + Cello + BassViol;
Brasses: CONSTANT Ensemble := Trumpet + Trombone + FrenchHorn + Tuba;
JazzDrums: CONSTANT Ensemble := Snare + TomTom + BassDrum + Cymbals;

JazzCombo: Ensemble;
StringQuartet: Ensemble;
PhillyStringBand: Ensemble;
RockBand; Ensemble;

PROCEDURE DisplayEnsemble(Band: Ensemble) IS
BEGIN

FOR Instrument IN Instruments LOOP

IF IsIn(Band, Instrument) THEN

Music_IO.Put(Instrument);
Ada.Text IO.New_Line;

END IF; ~
END LOOP;

Ada.Text_lO.New_Line;
END DisplayEnsemble;

BEGIN — Music__MakerB

JazzCombo := JazzDrums + Guitar + BassViol + Trumpet;
Ada.Text_IO.Put(Item => "Jazz Combo:");
Ada.Text_IO.New_Line;
DisplayEnsembleTsand => JazzCombo);

PhillyStringBand ;= Guitar + Ukelele + Banjo + Accordion
+ Saxophone + Snare + BassDrum;

Ada.Text_IO.Put(Item => "Philly String Band:");
Ada.Text_IO.New_Line;
DisplayEnsemble(Band => PhillyStringBand);

StringQuartet := Strings - BassViol;
Ada.Text_IO.Put(Item => "String Quartet:");
Ada.Text_IO.New_Line;
DisplayEnsemble(Band => StringQuartet);

RockBand := Guitar + Keyboard + JazzDrums;
Ada.Text_IO.Put(Item => "Rock Band:");
Ada.Text_IO.New_Line;
DisplayEnsemble(Band => RockBand);
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END Music_Makers;

Sample Run

Jazz Combo:

BASSVIOL

TRUMPET

SNARE

TOMTOM

BASSDRUM

CYMBALS

GUITAR

Philly String Band:
SAXOPHONE

SNARE

BASSDRUM

GUITAR

BANJO

UKELELE

ACCORDION

String Quartet;
VIOLIN

VIOLA

CELLO

Rock Band:

SNARE

TOMTOM

BASSDRUM

CYMBALS

GUITAR

KEYBOARD

One of the ensembles in the program, philiystnngBand, reveals the author's Phil
adelphia upbringing: This city is the home of the String Band, which—as can be seen
from the instruments—contains more than strings and no violins. A large number of
String Bands march in Philadelphia's New Year's Day parade; prizes are awarded to the
groups that have the most imaginative costumes as well as the best music.

As an exercise, you can create some of your favorite musical ensembles. Try creat
ing a brass band and a symphony orchestra. This example highlights one of the difficul
ties in using sets in the pure mathematical sense; Because duplicate elements do not
change the set, we cannot, using this representation, keep track of just how many of
each instrument are in a particular ensemble—only the instrument types are repre
sented.

12.6 Tricks of the Trade: Common Programming Errors

In dealing with unconstrained array types, a common error is neglecting to supply
bounds when a variable is declared, which leads to a compilation error. Keep in mind
that bounds are generally not supplied in declaring a procedure or function parameter
whose type is an unconstrained array type.
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In writing generic specifications, it is sometimes difficult to figure out exactly
which formal parameters to write. We have studied generic type parameters only
briefly, and you will be wise to keep your generic specifications simple, following the
examples in the chapter. Neglecting to supply a generic procedure or function parame
ter will result in a compilation error if the compiler encounters that procedure or func
tion in the body. We always need to reassure the compiler that an appropriate operation
will be supplied at instantiation, and the way to do this is by defining appropriate for
mal parameters.

CHAPTER REVIEW

In this chapter we studied two important concepts in building reusable software compo
nents. Unconstrained array types allow us to define array types such that the bounds of
a given array are left unspecified until the array variable is declared. Unconstrained
array types facilitate writing general-purpose subprograms that deal with arrays, such
as vector operations and sort procedures.

Generic definition allows us to create templates, or recipes, for subprograms and
packages. These templates allow us to leave such things as parameter types, sizes, and
operations unspecified until instantiation time. Once a generic template is compiled,
multiple versions of it, called instances, can then be created, each with a single state
ment. The availability of generic definition and instantiation gives us the potential for
building large and powerful libraries of reusable software components with much less
effort and with much greater maintainability. In this chapter we saw a number of useful
generic components for exchanging values, finding the maximum, sorting, and vector
handling.

New Ada Constructs in Chapter 12

The new Ada constructs that were introduced in this chapter are listed in Table 12.1.

Table 12.1 Summary of New Ada Conslruds

Construct Effect

Unconstrained Array Type

SUBTYPE weeks IS Positive RANGE 1..52; Declares an arrav
SUBTYPE Rainfall IS Float RANGE 0.0..500.0; ■
TYPE RainTable IS type whose van-

ARRAY (Weeks RANGE <>) OF Rainfall; ables can be
secondQuarter; RainTable(14..26); indexed by any

subrange of Weeks
and a variable

with 13 elements.
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Construct Effect

Generic Specification

GENERIC Specifies a func
tion to find the

CTPE value^e IS PRIVATE, location of the
TYPE IndexType IS (<>); ,
TYPE ArrayType IS "largest value in
ARRAY(IndexType RANGE <>) OF ValueType; an array.

WITH FUNCTION Compare(LpR: ValueType)
RETURN Boolean;

FUNCTION IndexOfMax(A: ArrayType) RETURN IndexType;

Quick-Check Exercises

1. Define an unconstrained array type.

2. How many dimensions can an unconstrained array type have?

3. Explain what is meant by a generic template.

4. What is a generic type parameter? Give examples.

5. What is a generic procedure or function parameter? Give examples.

6. Given a generic parameter

WITH FUNCTION Compare(L,R; ValueType) RETURN Boolean;

explain why it is legal to match this with an operator ••<" or ->•• at instantia
tion.

Answers to Quick-Check Exercises

1. An unconstrained array type is one in which the bounds of array variables are
not fixed until the variables are declared.

2. There is no language-defined limit on the number of dimensions; uncon
strained array types are no different from other array types in this regard.

3. A specification of a procedure, function, or package that must be instantiated
before it can be used.

4. A generic type parameter specifies which class of types is acceptable as a
match in creating an instance. Examples are any type that is not limited pri
vate, any discrete type, and any unconstrained array type with given index and
element types.

5. A generic procedure or function parameter indicates to the compiler that the
name of a procedure or function with a matching parameter list will be sup
plied at instantiation.
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An operator is just a certain kind of function. Ada does not care whether the
name of such a function is an operator symbol or an identifier, as long as there
is a correct match of the parameters and result type of the function.

Review Questions

1. Explain how unconstrained array types, and array attributes, facilitate creating
general-purpose array-handling programs.

2. One generic parameter form we did not discuss in the chapter is

TYPE SomeParameterNaine IS LIMITED PRIVATE;

which allows any type, even a limited private one, to be supplied as a match
at instantiation. Suppose we used one of these type forms in a generic package
specification. What limitations would this place on the kinds of statements that
could appear in the body of the package?

Programming Projects

1. In Section 9.10 we developed a function search (Program 9.13) that looks
through an array for a particular value. Revise search to make it generic, and
write a test program for several instances.

2. Revise the case study of Section 9.10, in which an array of score records is
read from a file, then sorted. Use the generic sort procedure from Section 12.4,
instantiating it as suggested there.

3. Demonstrate Maximuin_Array_Generic for some interesting instantiations.

4. A useful function similar to Maxirauin_Array_Generic is one that finds the lo
cation of the "maximum" value in an array or slice, rather than the value itself.
Write such a function as a generic, then write a generic sort program that uses
it.

5. A useful function similar to Maxiraum_Array_Generic is one that finds the lo
cation of the "maximum" value in an array or slice, rather than the value itself.
Write such a function as a generic, then write a generic sort program that uses
it.

6. Invent some interesting kinds of sets and instantiate and test the generic sets
package for these.

7. Modify Program 12.16 to create some musical ensembles that interest you.
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8. Ada provides an interesting feature for working with Boolean arrays: The log
ical operators not, and, or, and xor (exclusive or) are predefined for these ar
rays. This allows us to simplify the operators in the sets package by removing
the loops and replacing them by expressions of the form s. store and t . store.
Modify the pac^ge to take advantage of this feature.

9. The feature described in exercise 8 can also lead to a very nice code optimiza
tion. The PRAGMA (compiler directive) Pack, applied to a Boolean array type,
will often allocate space for objects of this type using a single bit per Boolean
value. Because many computers have hardware logical instructions that oper
ate on binary words, the compiler can often implement an intersection, for ex
ample, using a small number of "word-wise" machine instructions. Write a
program to examine this issue. The attribute size, applied to a data structure,
returns a Positive value giving the number of bits allocated for that structure.
So you can declare

TYPE BitArray IS ARRAY(Character) OF Boolean;
TYPE BitArrayZ IS ARRAY(Character) OF Boolean;
PRAGMMA Pack(BitArray2);

and then use ordinary integer output procedures to display setArray • size and
setArray2' Size. Is there a difference in the packed and unpacked versions of
the type?

If your compiler allows you to examine the machine or assembly code it pro
duces, and if you can understand machine or assembly language, check to see
whether your compiler is indeed taking advantage of the optimization we have
just described.
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Chapter Review

So far, the arrays that we have seen have been one-dimensional ones, and the record
structures have been fairly simple. In this chapter we look at more interesting and com
plex structured types,

A multidimensional array has, as the name suggests, more than one dimension.
Instead of being a linear collection of elements, it may have the "shape" of a rectangle
(two-dimensional) or even a rectangular solid or cube (three-dimensional). In fact,
there is in theory no limit to the number of dimensions an array type can have, and
examples with more than three are not uncommon. Multidimensional arrays give us the
ability to structure information in useful tabular forms.

A variant record is one with several different possible structures, instead of just one
structure as we saw in Chapter 9. The structure of the record is determined, at execution
time, by the value of a special field called the discriminant field; case constructs are
used both to declare the record type and to process variables of the type.

13.1 Data Structures: Multidimensional Arrays

■ Example 13.1

One two-dimensional object we are all familiar with is a tic-tac-toe board. The declara
tions

SUBTYPE MoveRange IS Positive RANGE 1..3;
TYPE GameSymbol IS (X, O, E); — for Tic Tac Toe; E indicates empty cell
TYPE BoardArray IS ARRAY (MoveRange, MoveRange) OP GameSymbol;

557
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SYNTAX

DISPLAY

Empty : CONSTANT GameSymbol := E;
TicTacToe : BoardArray;

allocate storage for the array TicTacToe. This array has nine storage ceils arranged in
three rows and three columns. A single enumeration value may be stored in each cell.
TicTacToe is a two-dimensional array as pictured in Fig. 13.1.

Figure 13.1 A Tic-Tac-Toe Board Stored as Array TicTacToe

Column

1 2 3

1  X 0 E

Row 2 0 X 0 < TicTacToe (2,3)

3  X X X

This array has nine elements, each of which must be referenced by specifying a row
subscript (1,2, or 3) and a column subscript (1,2, or 3). Each array element contains a
character value. The array element TicTacToe(2,3) pointed to in Fig. 13.1 is in row 2,
column 3 of the array ; it contains the enumeration value 0. The diagonal line consisting
of array elements TicTacToe (i /1), TicTacToe (2,2), and TicTacToe (3,3) represents
a win for player X; each cell contains the value X. B

Array Type Declaration (Multidimensional)

Form:

TYPE multidiM IS

ARRAY {range2, range2, — / range„)
OF element'type ;

Example:

TYPE YearByMonth IS ARRAY (1900..1999, Month) OF Real?
TYPE Election IS ARRAY (Candidate, Precinct) OF Integer;

Interpretation:

Range^ represents the suhscript-type of dimension i of array type multidim.
Each subscript-type is a discrete (integer or enumeration) range, which may be
written explicitly (as in 1900.. 1999) or as a type or subtype name (as in Month).
The element-type may be any predefined type or a previously defined scalar or
composite data type.

Although we will focus our discussion on arrays with two and three dimensions,
there is no limit on the number of dimensions allowed in Ada. However, there may be a
limit imposed by the particular implementation you are using. The amount of memor>'
space allocated for storage of a multidimensional array is the product of the ranges and
therefore can be quite large.
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■ Example 13.2

The array Table declared below

Table ; ARRAY (1..7, I..5, 1..6) OF Float;

consists of three dimensions: the first subscript may take on values from 1 to 7; the sec
ond, from 1 to 5; and the third, from 1 to 6. A total of 7 x 5 x 6, or 210, floating-point
numbers may be stored in the array Table. All three subscripts must be specified in
each reference to array Table (e.g. Table (2,3,4)). ■

Storage of Multidimensional Arrays

Most Ada implementations store multidimensional arrays in adjacent memory cells to
simplify accessing the individual elements. The elements of a two-dimensional array
are often stored in order by row (i.e., first row 1, then row 2, and so on). This is called
row-major order. To access a particular array element, the compiler computes the offset
of that element from the first element stored. To perform this computation, the compiler
must know the size of each element in bytes and the number of elements per row. Both
values are available from the array type declaration.

For example, the array TicTacToe would be stored in row-major form as shown in
Fig. 13.2. There are three elements per row, and each element occupies one byte of
storage. The offset for element TicTacToe(i, j) is computed from the formula

Offset = (/ - 1) X 3 + (/- 1)

This formula gives a value of 0 as the offset for element TicTacToe (i, i) and a value of
5 as the offset for element TicTacToe (2,3).

Not all compilers use a row-major form for a multidimensional array; Fortran com
pilers, for instance, store arrays in a column-by-column, or column-major, form. It is
interesting to note that the Ada standard does not require a particular way of storing
these structures: an Ada compiler can use row-major, column-major, or some other
unusual form. Usually there is no particular reason for you to know the storage method;
it is an abstraction just like floating-point numbers are.

TicTacToe

Row 1

Row 2

Row 3

■TicTacToe(1, 1)

•TicTacToe(2, 3)

Figure 13.2 Array TicTacToe in Memory, Row-Major Form
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Manipulation ofTwo-Dimensional Arrays

A row subscript and a column subscript must be specified to reference an element of a
two-dimensional array. The type of each of the two subscripts must be compatible with
the corresponding subscript type specified in the array declaration. Assuming that
Game 10 is an instance of Ada.Text_IO.Enumeration_IO for values of type GameSym-
bol, Aeloop

FOR Column IN MoveRange LOOP
Game_IO.Put (Item => TicTacToe(1,Column));

END LOOP;

displays the first row of array TicTacToe (TicTacToe (l /1), TicTacToe (1,2), and Tic
TacToe (1,3)) on the current output line. The loop

FOR Row IN MoveRange LOOP
Game_lO.Put (Item => TicTacToe(Row, 1));
Ada.Text_IO.New_Line;

END LOOP;

displays the second column of TicTacToe (TicTacToe(l,2), TicTacToe(2,2), and
TicTacToe(3,2)) in a vertical line.

■ Example 13.3

We can use aggregates in multidimensional arrays just as we did in one-dimensional
arrays. We can use an aggregate assignment

TicTacToe (MoveRange => (MoveRange => EMPTY));

or even

TicTacToe := (OTHERS => (OTHERS => EMPTY));

The double aggregate indicates that for each of the rows, all the columns are to be
set to Empty.

We can use nested loops to access all elements in a multidimensional array in a
predetermined order. In the next examples the outer-loop control variable deteimines
the row being accessed, and the inner-loop control variable selects each element in that
row. '

■ Example 13.4

Procedure Displaysoard in Program 13.1 displays the current status of a tic-tac-toe
board. A sample output of this procedure is shown in Fig. 13.3. ■

Program 13.1 Procedure DisplayBoard

PROCEDURE DisplayBoard (TicTacToe : BoardArray) IS
Pre ; Array TicTacToe is defined.
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~ Post: Displays all elements of array TicTacToe.

BEGIN — DisplayBoard

Ada. Text_lO. Put (I tern => •• ");
Ada.Text_IO.New_Line;
FOR Row IN MoveRange LOOP
— Display all columns of current row
FOR Column IN MoveRange LOOP
Ada.Text_IO.Put(Item => "| ;
Game IO.Put(Item => TicTacToe (How,Column));

END LOOP;

Ada.Text_IO.Put(Item => "| ;
Ada. Text_^IO. New__Line;
Ada. Text_lO. Put (Item => " ");
Ada.Text_IO.New Line;

END LOOP;

END DisplayBoard;

Figure 13.3 Sample Output of DisplayBoard

|x|o|El

|o|xlo|

|X|E|X|

■ Example 13.5

Function isFiiied in Program 13.2 returns a value of True if a tic-tac-toe board is
all filled up; it returns a value of False if there is at least one cell that contains the value
Empty. We are assuming that all cells are initialized to Empty before the game begins. To
move to a particular cell, the current player replaces the constant Empty in that cell with
an X or an 0. Function isFiiied could be c^led before making a move to determine
whether there were any possible moves left. The if statement

IF IsFiiied(TicTacToe) THEN
Ada.Text_IO.Put(Item => "Game is a drawl");
Ada.Text IO.New_Line;

END IF; ~

displays an appropriate message when there are no moves. ■

Program 13.2 Function IsFiiied

FUNCTION IsFiiied (TicTacToe : BoardArray) RETURN Boolean IS
— Pre ! Elements of array TicTacToe are assigned values.

An empty cell contains the value Empty
— Post: Returns True if array is filled; otherwise,

returns False.
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BEGIN — IsPilled

— Set Board_Filled to False and return if any cell is empty.
FOR Row IN MoveRange LOOP
FOR Column IN MoveRange LOOP
IF TicTacToe(Row,Column) = Empty THEN
RETURN False; — board is not filled

END IF;

END LOOP;

END LOOP;

RETURN True; — board is filled

END isFilled;

■ Example 13.6

Procedure EnterMove in Program 13.3 is used to enter a move into the array TicTac-
Toe. EnterMove calls procedure Robust_input.Get (see Program 7.10) twice to enter a
pair of values into the move coordinates, MoveRow and Movecolumn. If the cell selected
by these coordinates is empty, its value is reset to the character that is stored in Player
(xoro). ■

Program 15.3 Procedure EnterMove

PROCEDURE EnterMove (Player ; GameSymbol;
TicTacToe : IN OUT BoardArray) IS

— Pre : Player is "X" or "0" and array TicTacToe has at least
one empty cell.

— Post: The value of Player is stored in the empty cell of
TicTacToe whose coordinates are read in; the rest

of array TicTacToe is unchanged.

MoveRow : MoveRange; — coordinates of selected cell
MoveColumn : MoveRange;

BEGIN — EnterMove

LOOP

Ada.Text_IO.Put(Item => "Enter your move row and then the column");
Ada.Text_IO.New_Line;
RobustInput.Get (MinVal => 1, MaxVal => 3, Item => MoveRow);
RobustInput.Get (MinVal => 1, MaxVal => 3, Item => MoveColumn);

IF TicTacToe(MoveRow, MoveColumn) = Empty THEN
EXIT;

ELSE

Ada.Text_IO.Put(Item => "Cell is occupied - try again");
Ada.Text_IO.New_Line;

END IF;

END LOOP;

TicTacToe(MoveRow, MoveColumn) := Player; — Define cell

END EnterMove;
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EXERCISES FOR SECTION 13.1

Self-Check

1. Declare a three-dimensional array type in which the first subscript consists of
letters from 'A' to 'F' , the second subscript consists of integers from 1 to 10,
and the third consists of the user defined type nay. Floating-point numbers will
be stored in the array. How many elements can be stored in an array with this
type?

2. Assuming the declarations below

TYPE MatrixType IS ARRAY (1.. 5, 1..4) OF Float;
Matrix ; MatrixType,

answer the following questions:

a. How many elements are there in array Matrix?

b. Write a statement to display the element in row 3, column 4.

c. Assuming row-major storage, what is the offset for this element?

d. What formula is used to compute the offset for Matrix (i, j) ?

e. Write a loop that computes the sum of elements in row 5.

f. Write a loop that computes the sum of elements in column 4.

g. Write a nested loop structure that computes the sum of all array elements,

h. Write nested loops that display the array after it has been rotated 90 de
grees counterclockwise. Your program segment should display column 4
as the first output line, column 3 as the second output line, and so on.

Programming

1. Write a function that determines whether either player has won a game of
tic-tac-toe. The function should first check all rows to see whether one player
occupies all the cells in that row, then all columns, and then the two diagonals.
The function should return a value from the enumeration type (Nowinner,
XWins, YWins).
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13.2 Problem Solving: Using Multidimensional Arrays

The subscript type for each dimension of the multidimensional array TicTacToe is a
subrange of type integer. It is not necessary for the subscript types to all have the same
base type. The arrays in the next example have a different subscript type for each
dimension.

■ Example 13.7

A university offers 50 courses at each of five campuses. The registrar's office can con
veniently store the enrollments of these courses in the following array Enroll.

MaxCourse : CONSTANT Positive ;= 50; — maximum number of courses
SUBTYPE Course IS Positive RANGE 1..50;

TYPE Campus IS (Main, Ambler, Center, Delaware, Montco);
TYPE CourseByCampus IS ARRAY (Course, Campus) OF Natural;

Enroll : CourseByCampus;

This array consists of 5 x 50 = 250 elements, as shown in Fig. 13.4. Enroll(i,
Center) represents the number of students in course 1 at center campus.

If the registrar wanted to break down this enrollment information according to stu
dent rank, a three-dimensional array with 1000 elements would be required. The addi
tional declarations for this array follow, and the array is shown in Fig. 13.5.

TYPE Rank IS (Freshman, Sophomore, Junior, Senior);
TYPE CourseByCampusByRank IS ARRAY (Course, Campus, Rank) OF Natural;

ClassEnroll : CourseByCampusByRank;

Number of students taking course 1
at Center campus

.Enroll (1,Center)

Course

Course

Course

Main Ambler Center Delaware Montco

Figure 15.4 Two-Dimensional Array Enroll
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Number of seniors taking
course 1 at Center campus

ClassEnroll (1,Center,Senlor}

I
Senior

Junior

Sophomore

Freshman

Course

Course

Course

Main Ambler Center Delaware Montco

Figure 13.5 Three-Dimensional Array ClassEnroll

The subscripted variable ciassEnroii( 1, center, senior) represents the num
ber of seniors taking course 1 at center campus. ■

■ Example 13.8

We can again use aggregates to initialize the entire three-dimensional array to zero,
which would need to be done at the beginning of a university registration cycle, for
example.

ClassEnroll := (OTHERS => (OTHERS => (OTHERS =>0))); ■

■ Example 13.9

Given a variable Total, of type Natural, the program segment

Total := 0;
FOR ClassRank IN Rank LOOP

Total := Total + ClassEnroll(1, Center, ClassRank);
END LOOP;

computes the total number of students of all ranks in course 1 at center campus. The
program segment
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Total := 0;

FOR CurCampus IN Campus LOOP
FOR ClassRank IN Rank LOOP

Total t- Total + ClassEnroll(1, CurCampus, ClassRank);
END LOOP;

END LOOP;

computes the total number of students in course 1 (regardless of rank or campus).
Finally, the total enrollment is computed by the program segment

Total := 0;

FOR CurCourse IN Courses LOOP

FOR CurCampus IN Campus LOOP
FOR ClassRank IN Rank LOOP

Total := Total + Clas8Enroll(CurCourse,CurCampus, ClassRank);
END LOOP;

END LOOP;

END LOOP; ■

■ Example 13.10

Suppose we wanted to store and tabulate our student data by gender as well. Given an
enumeration type

TYPE Gender IS (Female, Male);

we could declare a four-dimensional array structure

TYPE CourseByCampusByRankByGender IS
ARRAY (Course, Campus, Rank, Gender) OF Natural;

This is difficult to visualize, because our physical world is three-dimensional, but it is
quite normal in progranuning. ■

EXERCISES FOR SECTION 13.2

Self-Check

1. Declare a three-dimensional array that can be used to keep track of the number
of students in the math classes (Mathl, Algebra, Geometry, AlgebraZ, Trigo
nometry, Calculus) at your old high school according to the grade level and
gender of the students. How many elements are in this array?

2. Extend row-major order to three dimensions and show how the array ciassEn-
roii might be stored in row-major form. What would be the offset for the ar
ray element ciassEnroli(i,center,senior) and the general formula for
ClassEnroll(i,j,k)?
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Programming

1. Write program segments that perform the following operations:

a. Enter the enrollment data.

b. Find the number of juniors in all classes at all campuses. Students will be
counted once for each course in which they are enrolled.

c. Find the number of sophomores on all campuses who are enrolled in
course 2.

d. Compute and display the number of students at Main campus enrolled in
each course and the total number of students at Main campus in all cours
es. Students will be counted once for each course in which they are en
rolled.

e. Compute and display the number of upper-class students in all courses at
each campus, as well as the total number of upper-class students enrolled.
(Upper-class students are Juniors and seniors.) Again, smdents will be
counted once for each course in which they are enrolled.

2. Starting from Example 13.10, write a program segment that will find the num
ber of female sophomores at all campuses.

13.3 Data Structures: Variant Records

The record types that we have seen so far are such that all records of a given record type
have exactly the same form and structure. It is possible and often very useful, however,
to define record types that have some fields that are the same for all variables of that
type (fixed part) and some fields that may be different (variant part). Such a structure is
called a variant record.

Consider an application from business information systems. There are three catego
ries of employee in a particular company: One group (professionals) receives a fixed
monthly salary, one group (sales) receives a fixed monthly salary plus a commission on
their sales, and the third group (clerical) receives an hourly wage and is paid weekly on
the basis of the number of hours worked.

How shall we represent a pay record for employees? The record type that we saw in
Section 11.5 is oversimplified; it does not take into account the different categories. We
require a record type that can represent any of several structures, depending on the cat
egory. This is a perfect application for a variant record type.

A pay record for a given pay period has a fixed part giving the employee's ID and
name, the ending date of the pay period, and a variant part giving the pay information
according to the pay status. Given these basic type declarations:

SUBTYPE NameRange IS Positive RANGE 1..20;
SUBTYPE NameType IS String(NameRange);
SUBTYPE IDType IS Positive RANGE 1111..9999;
SUBTYPE WorkHours IS Float RANGE O.O..168.0;
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SUBTYPE CommissionPercentage IS Float RANGE 0.00..0.50;
TYPE PayCategories IS (Unknown, Professional, Sales, Clerical);

here is a declaration of this variant record type:

TYPE Employee (PayStatus : PayCategories ;= Unknown) IS RECORD
ID : IDType;
NameLength: NameRange;
Name : NameType;
PayPeriod : Dates.Date;

CASE PayStatus IS
WHEN Professional =>

MonthSalary ; Currency.Quantity;
WHEN Sales »>

WeekSalary ; Currency.Quantity;
CommRate : CommissionPercentage;
SalesAmount : Currency.Quantity;

WHEN Clerical =>

HourlyWage : Currency.Quantity;
HoursWorked : WorkHours;

WHEN Unknown =>

NULL;

END CASE;

END RECORD;

The line at the beginning of the record declaration,

TYPE Employee (PayStatus ; PayCategories := Unknown) IS RECORD

indicates to the compiler that the record is a discriminated record that may have a vari
ant part and that the discriminant field, which indicates which of several variants is
present, is paystatus. The discriminant is a special field that looks like a parameter of
a procedure; indeed, it has many of the aspects of a parameter in that the record is
parametrized, or varies, according to the value of the discriminant. The reason for hav
ing a value unknown used as a default will be explained shortly.

The fixed part of a record always precedes the variant part. The variant part begins
with the phrase

CASE PayStatus IS

and declares the different forms the variant part can have. The null case indicates that
there is no variant part for paystatus equal to unknown. There are three different pay
records, each of a different variant.

For each variable of type PayRecord, the compiler will usually allocate sufficient
storage space to accommodate the largest-of the record variants shown in Fig. 13.6.
However, only one of the variants is defined at any given time; this particular variant is
determined by the discriminant field value.

Suppose we declare

Jane: Employee(PayStatus => Professional);



13.3 Data Structures: Variant Records 569

Then Jane's record would look like the fixed part and variant 2 of the record in Fig.
13.6. Because Jane.PayStatus is Professional, only the variant field MonthSalary
may be correctly referenced. All other variant fields are undefined. The fragment

Ada.Text_IO.Put("Jane's full name is ");
Ada.Text_I0.Put(Jane.Name(1..Jane.NameLength));
Ada.Text_I0.New_Line;
Ada.Text_IO.Put("and her monthly salary is S");
Currency.10.Put(Jane.MonthSalary)j
Ada.Text_IO.New_Line;

displays the lines

Jane's full name is Jane Smith

and her monthly salary is $5000.00

In Ada, the compiler and run-time system are very careful to check the consistency
of the discriminant value with the references to fields in the record. If, at execution
time, an attempt is made to access a field that is not defined in the current variant (i.e.,
the variant determined by the current discriminant value), constraint_Error is raised.
For this reason, a case statement is often used to process the variant part of a record.
By using the discriminant field as the case selector, we can ensure that only the cur
rently defined variant is manipulated.

Fixed part
4522

Jun

15

1991

Variant 1

Variant 2

Variant

Unknown

Professional

5000.00

Sales

500.00

0.15

25000.00

Variant 4 Clerical

6.50

37.5

Figure 13.6 Four Variants of a Variant Record
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Displaying a Variant Record

The fragment in Fig. 13.7 displays the data stored in the variant part of a record cur-
rentEmp. The value of CurrentEmp. Pay Status determines what information will be
displayed.

Figure 13.7 Displaying a Variant Record

Ada.Text_lO.Put(Item => "Employee ID ");
Ada.Integer_Text_IO.Put(Item => CurrentEmp.ID, Width =>4);
Ada. Text_^IO. New_Line;
Ada.Text~IO.PutTltem => "Employee Name ");
Ada.Text_IO.Put(Item => CurrentEmp.Name(1..CurrentEmp.NameLength));
Ada.Text_IO.New_Line;
Ada.Text'lO.PutJltem => "Pay Period Ending ");
Dates.Put(Item => CurrentEmp.PayPeriod, Format => Numeric);
Ada. Text_IO. New__Line;

CASE CurrentEmp.PayStatus IS

WHEN Onknovm =>

Ada.Text_IO.Put(Item »> "Unknown pay status!");
Ada.Text_IO.New_Line;

WHEN Professional =>
Ada.Text_IO.Put("Monthly Salary is $");
Currency.10.Put(item=>CurrentEmp.MonthSalary);
Ada.Text_IO.New_Line;

WHEN Sales >=>

Ada. Text__IO. Put ("Weekly Salary is $") ;
CurrencyTiO.Put(Item=>CurrentEmp.WeekSalary);
Ada.Text_IO.New_Line;
Ada.Text__IO.Put("Commission percent is ");
Ada.Float_Text_IO.Put
(Item=>CurrentEmp.CommRate, Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put("Sales this week $");
Currency.10.Put(Item=>CurrentEmp.SalesAmount);
Ada.Text_IO.New_Line;

WHEN Clerical =>

Ada.Text_IO.Put("Hourly wage is S");
CurrencyTiO.Put(Item=>CurrentEmp.HourlyWage);
Ada. Text_IO. New__Line;
Ada.Text~IO.PutT"Hours worked this week ");
Ada.Float_Text_IO.Put
(Item=>CurrentEmp.HoursWorked, Fore=>l, Aft=>2, Exp=>0);

Ada. Text__IO. New__Line;

END CASE;
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Record Type with Variant Part

Form:

TYPE rec-t^e {discriminant
IDI : typei',
ID2 i types;

discjtype := default) IS RECORD

fixed part

JDn : type„;
CASE discriminant IS

WHEN value2 =>
field-list 2

WHEN value^ =>
field-li3t2

variant part

WHEN value„ =>
field-listn;

WHEN OTHERS =>

others-field-list

END CASE;

END RECORD;

Example:
TYPE Pace (Bald : Boolean) IS RECORD
Eyes I Color;
Height: inches;
CASE Bald IS

WHEN True =>

WearsWig : Boolean
WHEN False °>

HairColor s Color;
END CASE;

END RECORD;

Interpretation:
The field-list for the hxed part is declared first. The variant part starts with the
reserved word case. The identifer discriminant is the name of the discriminant
field of the record; the discriminant field name is separated by a colon from its
type {disc-type), which must be an enumeration type (such as Boolean) or a sub
range of an integer type.

■pie case values (value value2 valuej^ are lists of values of the dis
criminant field as defined by discriminant-type. Field-listi describes the record
fields associated with value,. Each element offield-list, specifies a field name and
its type.
Note 1:

Ail field names must be unique. The same field name may not appear in the fixed
and variant parts or in two field lists of the variant part.
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Note 2:

An empty field list (no variant part for that case label) is indicated by null
instead of a field list.

Note 3:

As in all case forms, all values of the discriminant must be covered by when
clauses. Values not covered otherwise can be covered by a when others clause.

Note 4:

If default is omitted from the discriminant declaration, all variables of the
type must be constrained at the time they are declared: that is, a value for the dis
criminant must be supplied. If the default is present, unconstrained variables may
be declared; that is, variables without an explicit discriminant value.

Constrained and Unconstrained Variant Records

Ada has very strict rules to guarantee two things:

• The discriminant of a variant record is always defined, that is, it always has some
value.

• The discriminant value is always consistent with the actual data stored in the
record.

The first condition is ensured by requiring that if a default value for the discriminant is
not present in the record declaration, all declarations of variables must supply a value
for the discriminant. In the pay status case above, a default of unknown is supplied;
therefore it is possible to declare a record without a discriminant value, as in

CurrentEmp : PayRecord;

Supplying a discriminant value is not prohibited, however;

AnotherEmp : PayRecord(PayStatus=>Professional);

is allowed. In the case of the Face record in the preceding syntax display, it would be a
compilation error to declare

JohnsFace ; Face;

and in this case a discriminant value is required:

JohnsFace : Face(Bald=>False);

An unconstrained record variable is one that has a default discriminant value and
none is supplied in the variable declaration. It is permissible to change the discrinunant
value of an unconstrained record at execution time, under rules to be specified in the
next section. This means that the variable CurrentEmp can hold a professional
employee at one moment, a sales employee at another. This is a common use of variant
records in data processing.
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A constrained record variable is one whose discriminant value is supplied when the
variable is declared. Both AnotherEmp and the second JohnsFace are constrained. It is
not permitted to change the discriminant value of a constrained record at execution
time; this means that we are "stuck" with the discriminant value. AnotherEmp is con
strained because we chose to make it so even though the discriminant has a default;
JohnsFace is constrained because we have no choice, because no default is supplied for
Bald. JohnsFace cannot take into account his losing his hair at a later date.

Storing Values into Variant Records

Ada's rules for variant records might seem cumbersome, but the rules are designed to
guarantee that the contents of a variant record are always consistent. Here are the basic
rules for storing values into a variant record variable;

PROGRAM

STYLE

• Any field of the variable may be selected and read individually, by a field selector,
at any time.

• Any field of the variable may be selected and changed individually (say, by an as
signment statement) except a discriminant field; if the change is not consistent with
the current discriminant value, constraint_Error is raised.

• The discriminant field of a constrained record cannot be changed under any cir
cumstances.

• The discriminant field of an unconstrained record can be changed, but only if the
entire record is changed at the same time. There are two ways to do this: Use a
record aggregate or copy another record.

A common application of variant records is to read the value of a discriminant from
the terminal or a file, then create a record variable with that variant. By the rules above,
the value cannot be stored directly into the discriminant. It, and the other fields of the
record, must be held in temporary variables and stored as a unit into the variant record
using an aggregate.

As we have seen, there is often a distinct advantage in supplying a default value for
the discriminant. If we do not, all variables of the type must be constrained when they
are declared, and much of the flexibility of variant records—especially their ability to
change structure at execution time—is lost.

Declaring Variant Records

We recommend that variant record type declarations usually have a default value
supplied for the discriminant. Otherwise, all variables of that type will have to be
constrained when they are declared, and much of the flexibility of variant
records—especially their ability to change structure at execution time—will be
lost.
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Operations on Variant Records

As always in Ada, assignment and equality testing are defined for variant records. How
ever, certain rules apply ;

• A variant record value can always be assigned to an unconstrained variable of the
same record type. This is possible because it is permissible to change the discrim
inant of an unconstrained variable.

• A variant record value can be assigned to a constrained variable of the same record
type only if the discriminant values match. This restriction follows from the fact
that the discriminant value of a constrained variable cannot be changed, ever.

• Two variant record values can be compared for equality only if the discriminant
values agree; otherwise, constraint_Error is raised.

Section II.5 developed an ADT for handling a data base of employee records. As an
exercise, you can modify that ADT, and the associated interactive client program, to
handle the more realistic variant employee records described in this section.

EXERCISES FOR SECTION 13.3

Self-Check

I. How many bytes of storage are required for each of the variants of Employee?
You will probably have to check your Ada compiler documentation to deter
mine the storage required by each of the fields comprising this record.

Programming

1. Write a procedure to display a record of type Face as declared in the previous
syntax display.

13.4 System Structures: Geometric Figures

In this section we introduce a package to represent, read, and display various geometric
figures, including their areas and perimeters.

We need to provide first a representation scheme for geometric figures, with a use
ful set of operations, and second, a means for interactive users to read and display these
figures. As in other ADTs we have developed, it is useful to separate these two con
cerns.
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We first develop an abstract data type that allows a client program to construct a
geometric figure. The characteristics for a circle are different from those for a rectangle
(a square is a rectangle whose width and height are equal), so we use a record with a
variant part. In this case, the fixed part of the record will contain its area and perimeter,
which are computed automatically as the figure is constructed. Here is the variant type
Figure:

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;
TYPE FigKind IS (Rectangle, Square, Circle);

TYPE Figure (FigShape : FigKind ;= Rectangle) IS RECORD
Area ; NonNegFloat := 0.0;
Perimeter : NonNegFloat := 0.0;
CASE FigShape IS

WHEN Rect I Square =>
Width : NonNegFloat := 0.0;
Height ; NonNegFloat := 0.0;

WHEN Circle =>

Radius : NonNegFloat 0.0;
END CASE;

END RECORD;

Implementing the Specification of Geometry

The package specification appears as Program 13.4.

Program 13.4 Specification for Geometry Package

PACKAGE Geometry IS

Defines an abstract data type for a geometric figure.
Operations include constructors for rectangles, circles,
and squares, and selectors for width, height, side,
area and perimeter.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— Data Types

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;
TYPE FigKind IS (Rectangle, Square, Circle);

TYPE Figure (FigShape : FigKind := Rectangle) IS PRIVATE;

— Exported Exception

ShapeError: EXCEPTION;

— Constructor Operations

FUNCTION MakeRectangle (Width, Height : NonNegFloat) RETURN Figure;
— Pre ; Width and Height are defined
— Post: returns a rectangle

FUNCTION MakeCircle (Radius ; NonNegFloat) RETURN Figure;
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— Pre : Radius is defined

— Post: returns a circle

FUNCTION MakeSquare (Side : NonNegFloat) RETURN Figure;
— Pre : Side is defined

— Post: returns a square

— selectors

FUNCTION Shape
FUNCTION Height
FUNCTION Width

FUNCTION Radius

FUNCTION Side

FUNCTION Perimeter

FUNCTION Area

— Pre

— Post

(OneFig : Figure) RETURN FigKind;
(OneFig : Figure) RETURN NonNegFloat;
(OneFig : Figure) RETURN NonNegFloat;
(OneFig : Figure) RETURN NonNegFloat;
(OneFig : Figure) RETURN NonNegFloat;
(OneFig : Figure) RETURN NonNegFloat;
(OneFig : Figure) RETURN NonNegFloat;

OneFig is defined.
Returns the appropriate characteristic

— Raises: ShapeError if the requested characteristic is
undefined for the shape of OneFig

PRIVATE

TYPE Figure (FigShape : FigKind := Rectangle) IS RECORD
Area : NonNegFloat := 0.0;
Perimeter ; NonNegFloat 0.0;
CASE FigShape IS

WHEN Rectangle 1 Square =>
Width : NonNegFloat 0.0;
Height : NonNegFloat := 0.0;

WHEN Circle *=>

Radius : NonNegFloat := 0.0;
END CASE;

END RECORD;

END Geometry;

We have defined the data type Figure as a private type. Why? If the client pro
gram had access to the details of the record representing the figure, it could, for exam
ple, change the perimeter field by simply plugging in a new number. Because the
figure would no longer make geometric sense, this action would violate the abstraction.
Note the syntax for declaring a private type with a variant: The discriminant appears
first in the partial declaration and later in the complete declaration in the private part
of the specification.

The following design decisions make the data type safe from accidental misuse:

1. The data type is declared private to keep client programs from prying into,
and changing, fields of the record, such as the area and the perimeter, or
changing the length of the side without changing the area and perimeter fields
accordingly.

2. All fields of the type are initialized to 0.0 by default so that every variable of
the type is automatically well defined (a figure with sides of 0.0 also has area
and perimeter of 0.0).

3. The area and perimeter are calculated automatically when the figure is con
structed because these are uniquely determined by the other characteristics.
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The operations in the package are three constructors, MakeRecangle, Makecircie,
and Makesquare, which construct the appropriate variant given the relevant characteris
tics, and a set of selectors shape, width. Height, side, Radius, Area, and Perimeter,
which return these characteristics of the figure. Note that even though a square and a
rectangle use the same variant, the constructors and selectors are different for them.
Also, we export an exception shapeError to prevent a client from applying an inappro
priate selector (e.g., finding the radius of a square).

A client program can declare variables of type Figure in either constrained or
unconstrained form. The variable

SomeShape ; Figure;

can hold, at different moments, a circle, a square, or a rectangle; it is unconstrained.
However,

BigSquare : Figure (FigShape => Square);

can hold only a square, because it is constrained; that is, we plugged a discriminant
value into the declaration of the variable and are now "locked in" to that value.

Implementing the Package Body

Program 13.5 shows the package body for Geometry.

Program T3.5 Body of Geometry Package

WITH Ada.Numerics; USE Ada.Numerics;
PACKAGE BODY Geometry IS

— I Body of abstract data type package for geometric figures.
— I Author: Michael B. Feldman, The George Washington University
— 1 Last Modified: September 1998

— Internal functions, not exported to client. ComputePerimeter
— and ComputeArea are used to ensure that all figures are
— constructed with these attributes automatically inserted.
— The exported selectors Perimeter and Area assume that these
— fields have been set by the internal functions.

FUNCTION ComputePerimeter (OneFig ; Figure) RETURN NonNegFloat IS
— Pre : The discriminant and characteristics of OneFig are defined.
— Post: Returns Perimeter of OneFig.

BEGIN — ComputePerimeter

CASE OneFig.FigShape IS
WHEN Rectangle =>
RETURN 2.0 * (OneFig.Width + OneFig.Height);

WHEN Square =>
RETURN 4.0 * OneFig.Width;

WHEN Circle =>

RETURN 2.0 * Pi * OneFig.Radius;
END CASE;
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END ComputePerimeter;

FUNCTION ComputeArea (OneFig : Figure) RETURN NonNegFloat IS
Pre : The discriminant and characteristics of OneFig are defined.

— Post: Returns Area of OneFig.

BEGIN — ComputeArea

CASE OneFig.FigShape IS
WHEN Rectangle =>
RETURN OneFig.Width * OneFig.Height;

WHEN Square =>
RETURN OneFig.Width ** 2;

WHEN Circle =>

RETURN Pi * OneFig.Radius ** 2 ;
END CASE;

END ComputeArea;

— Exported Operations

FUNCTION MakeRectangle (Width, Height : NonNegFloat) RETURN Figure IS

Result : Figure(FigShape => Rectangle);

BEGIN — MakeRectangle

Result.Height
Result.Width

Result.Area

Result.Perimeter

= Height;
= Width;
» ComputeArea(Result);
= ComputePerimeter(Result);

RETURN Result;

END MakeRectangle;

FUNCTION MakeCircle (Radius : NonNegFloat) RETURN Figure IS

Result: Figure (FigShape => Circle);

BEGIN — MakeCircle

Result.Radius

Result.Area

Result.Perimeter

= Radius;
= ComputeArea(Result);
= ComputePerimeter(Result)

RETURN Result;

END MakeCircle;

FUNCTION MakeSquare (Side : NonNegFloat) RETURN Figure IS

Result: Figure (FigShape => Square);

BEGIN — MakeSquare

Result.Height
Result.Width

Result.Area

= Side;

= Side;
= ComputeArea(Result);



13.4 System Structures: Geometric Figures 579

Result.Perimeter ;= ComputePerimeter(Result);

RETURN Result;

END MakeSquare;

FUNCTION Shape (OneFig : Figure) RETURN FigKind IS

BEGIN — Perimeter

RETURN OneFig.FigShape;
END Shape;

FUNCTION Perimeter (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Perimeter

RETURN OneFig.Perimeter;
END Perimeter;

FUNCTION Area (OneFig ; Figure) RETURN NonNegFloat IS

BEGIN ~ Area

RETURN OneFig.Area;
END Area;

FUNCTION Height (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Height
CASE OneFig.FigShape IS

WHEN Rectangle | Square ->
RETURN OneFig.Height;

WHEN OTHERS =>

RAISE ShapeError;
END CASE;

END Height;

FUNCTION Width (OneFig ; Figure) RETURN NonNegFloat IS

BEGIN — Width

CASE OneFig.FigShape IS
WHEN Rectangle | Square =>
RETURN OneFig.Width;

WHEN OTHERS =>

RAISE ShapeError;
END CASE;

END Width;

FUNCTION Side (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Side

CASE OneFig.FigShape IS
WHEN Square =>
RETURN OneFig.Height;

WHEN OTHERS =>

RAISE ShapeError;
END CASE;

END Side;

FUNCTION Radius (OneFig : Figure) RETURN NonNegFloat IS

BEGIN — Radius
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CASE OneFig.FigShape IS
WHEN Circle =>

RETURN OneFig.Radius;
WHEN OTHERS =>

RAISE ShapeError;
END CASE;

END Radius;

END Geometry;

The constructor functions create the appropriate variant of the record from the rele
vant components, then calculate the area and perimeter. Local functions computeArea
and computePerimeter are used to assist. These are not given in the specification. The
user can find out the area and perimeter by calling the appropriate selector, whose code
is straightforward. Note that even though a square is ̂ so a rectangle, we distinguish
between them in many of the operations. Note in many of these operations how a case
statement is used to control the processing of the variant data.

The Child Package GeometiyJO

As in the currency and employee ADTs in Chapter 11, we choose to separate the
input/output operations into a child package. Programs 13.6 and 13.7 give the specifica
tion and body for Geometry. 10. Procedure Get reads in the enumeration value denoting
the kind of figure, reads the data required for the kind of figure indicated by the dis
criminant field, and calls the appropriate constructor. This procedure serves as a good
example of how to read a variant record from the interactive user. As before, in the Get
and Put procedures, a case statement controls the processing of the data in the variant
part.

Program 13.6 Specification for Ceometry.lO Child Package

PACKAGE Geometry.10 IS

Child Package: Input/Output for Geometric Figures
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PROCEDURE Get (Item : OUT Geometry.Figure);
— Pre : None

— Post: Item contains a geometric figure.

PROCEDURE Put (Item : IN Geometry.Figure);
— Pre : Item is defined.
— Post: Item is displayed.

END Geometry.10;

Program 13.7 Body of Ceometry.lO Child Package

WITH Robust_Input;
WITH Ada.Float_Text_IO;
WITH Ada.Text_IO;
PACKAGE BODY Geometry.10 IS
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— I Body of Input/Output Package for Geometric Figures
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

MaxSize: CONSTANT NonNegFloat := 1_000_000.0;

PACKAGE FigKind_IO IS NEW Ada.Text_IO.Enumeration_IO (Enum => FigKind);

— Local procedure ReadShape and RobustGet are used only within
— the package, therefore not exported.

PROCEDURE ReadShape (Item : OUT FigKind) IS
— Pre: none

— Post: Item contains a figure kind. ReadShape reads robustly.

Tempitem: FigKind?

BEGIN — ReadShape

LOOP

BEGIN

Ada.Text_IO.Put
(Item => "Enter a shape: rectangle, circle, square > ");

FigKind_IO.Get(Item => Tempitem);
Item := Tempitem;
EXIT?

EXCEPTION

WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put ("Value not a valid shape. Please try again.");
Ada.Text_IO.New_Line ?
Ada.Text_IO.Skip_Line ?

END?

END LOOP;

END ReadShape?

PROCEDURE Get (Item : OUT Figure) IS

Shape : FigKind?
Height : NonNegFloat?
width : NonNegFloat;
Side : NonNegFloat?
Radius : NonNegFloat;

BEGIN -- Get

— Read the shape character and define the discriminant
ReadShape(Shape);

— Select the proper variant and read pertinent data
CASE Shape IS

WHEN Rectangle =>

Ada.Text_lO.Put(Item "> "Enter width.")?
Ada.Text_lO.New_Line ?
Robust_Input.Get
(Item => Width, MinVal =«> 0.0, MaxVal => MaxSize)?

Ada.Text_lO.Put(item => "Enter height.");
Ada.Text_IO.New_Line;



582 Multidimensional Arrays and Variant Records

Robust_Input.Get
(Item => Height, MinVal => 0.0, MaxVal => MaxSize);

Item := MakeRectangle(Width, Height);

WHEN Square «=>
Ada.Text_lO.Put(Item => "Enter length of side.");
Ada. Text_lO. New__Line;
Robust_Input.Get
(Item => Side, MinVal => 0.0, MaxVal => MaxSize);

Item :« MakeSguare(Side);

WHEN Circle =>

Ada.Text_IO.Put(Item => "Enter circle radius.");
Ada.Text_lO.New^Line;
Robust__Input. Get
(Item => Radius, MinVal => 0.0, MaxVal => MaxSize);

Item := MakeCircle(Radius);

END CASE;

END Get;

PROCEDURE Put (Item: IN Figure) IS

BEGIN — DisplayFigure

— Display shape and characteristics
Ada.Textile.Put(Item => "Figure shape: ");
FigKind__IO. Put (Item => Shape (Item), Width =>1);
Ada. Text_IO. New__Line;

CASE Item.FigShape IS
WHEN Rectangle =>

Ada.Text_IO.Put(Item => "height = ");
Ada.Float_Text_IO.Put
(Item => Height(Item), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_IO.Put(Item => "; width = ");
Ada. Float_Text__IO. Put
(Item => Width(Item), Fore=>l, Aft=>2, Exp=>0);

WHEN Square =>
Ada.Text_IO.Put(Item => "side = ");
Ada.Float_Text_IO.Put
(Item => Height(ltera), Fore=>l, Aft=>2, Exp=>0);

WHEN Circle =>

Ada.Text_lO.Put(Item => "radius = ");
Ada. Float_Text_^IO. Put
(Item => Radius(Item), Fore=>l, Aft=>2, Exp=>0);

END CASE;

Ada.Text_IO.Put(Item => "; perimeter = ");
Ada.Float_Text_IO.Put
(Item => Perimeter(Item), Fore=>l, Aft=>2, Exp=>0);

Ada.Text_lO.Put(Item => "; area = ");
Ada.Float_Text_IO.Put
(Item => Area(Item), Fore=>l, Aft=>2, Exp=>0);

Ada.Text 10.New Line;
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END Put;

END Geometry.10;

Program 13.8 shows a brief and straightforward test program for the package. Note
how simple this program is, because we have encapsulated all the details in the parent
and child packages.

Program 15.8 Demonstration of Geometry Package

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_lO;
WITH Geometry;
WITH Geometry.10;
PROCEDURE Test_Geometry IS

— I Program to test package Geometry
~| Author: Michael B. Feldman, The George Washington University
—j Last Modified: September 1998

MyFig : Geometry.Figure; — a figure

BEGIN — Test_Geometry

FOR TestTrial IN 1..3 LOOP

Ada.Text_IO.New_Line;
Ada.Text_I0.Put7ltem =»> " Trial #");
Ada.Integer_Text_IO.Put(Item => TestTrial, Width =>1);
Ada. Text_IO. New__Line;
Geometry7lO.Get""(Item => MyFig);
Geometry.10.Put (Item => MyFig);

END LOOP;

END Test_Geometiry;

Sample Run

Trial #1

Enter a shape: rectangle, circle, square > triangle
Value not a valid shape. Please try again.
Enter a shape: rectangle, circle, square > rect
Value not a valid shape. Please try again.
Enter a shape: rectangle, circle, square > rectangle
Enter width.

Enter a floating-point value between 0.00 and 1000000.00 > 3
Enter height.
Enter a floating-point value between 0.00 and 1000000.00 > 5
Figure shape: RECTANGLE
height = 5.00; width = 3.00; perimeter = 16.00; area = 15.00

Trial #2

Enter a shape: rectangle, circle, square > circle
Enter circle radius.

Enter a floating-point value between 0.00 and 1000000.00 > 4
Figure shape: CIRCLE
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radius » 4.00; perimeter » 25.13; area - 50.27

Trial #3

Enter a shape: rectangle, circle, square > square
Enter length of side.
Enter a floating-point value between 0.00 and 1000000.00 > 5
Figure shape: SQUARE
side = 5.00; perimeter = 20.00; area = 25.00

EXERCISES FOR SECTION 13.4

Programming

1. Add the variant

RightTriangle : (Base, Height : Float);

to Figure and modify the operators to include triangles. Use the formulas

area =1/2 base x height

hypotenuse = 'Jbase^ +height^
where base and height are the two sides that form the right angle.

13.5 Continuing Saga: Keeping Track of Multiple Spiders

Let's return once again to the spider system, in particular to the multiple-spider pack
age developed in Section 11.6 (Program 11.19). This package is missing an important
feature. Each location in the room can hold only one spider. We would like to add a new
exception to the spiders package specification,

Hit_a_Spider: EXCEPTION;

which, by analogy with the exception Hit_the_wali, can be raised by Jump and han
dled by a user's spider program if a second spider tries to move into an occupied loca
tion. Although each individual spider's record contains its current location, nothing in
the package keeps track of the overall state of the room, so there is no way to know
whether any given location is occupied.

Sections 13.1 and 13.2 give us the data and control structures necessary to detect a
collision. Let us define, in the body of spiders, a type RoomType as

TYPE RoomType IS ARRAY (RoomHeight, RoomWidth) OF Boolean;

where False means an empty location and True means an occupied one. Now we can
declare, in the body of the package, a room variable

Occupied: RoomType;
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Which spider operations must be modified accordingly?
First, we must initialize the room, with all locations unoccupied. We can do this in

the DrawRoom procedure with the statement

Occupied := (OTHERS => (OTHERS => False));

Next, when a spider enters the room at a given location, we must mark its square as
occupied. We can do this in the start procedure, to which we already pass parameters
Row and Col, with the statement

Occupied (Row, Col) := True;

Finally, when a spider attempts to move (using the Jump procedure), we need to
detect a collision. We write the new algorithm for Jump, leaving the details of the cod
ing as an exercise. Note that a spider can jump over, but not into, an occupied location.

Algorithm for Spiders.Jump
1. IF the spider is trying to Jump into or through the wall then

2. RAISE Hit_the_Wall

ELSIE the spider is trying to jump into an occupied location then

3. RAISE Hit_a_Spider

ELSE

4. Mark the spider's current location as unoccupied

5. Mark the spider's new location as occupied

6. Draw the spider in its new location

7. Change the spider's own location coordinates

END IF;

13.6 Tricks of the Trade: Common Programming Errors

When you use multidimensional arrays, make sure the subscript for each dimension is
consistent with its declared type. Of course, if any subscript value is out of range,
Constraint_Error will be raised.

If you use nested for loops to process the array elements, make sure that loop con
trol variables used as array subscripts are in the correct order. The order of the loop
control variables determines the sequence in which the array elements will be pro
cessed.

Understanding variant records is not always easy. In defining variant record struc
tures, remember that the only way to allow for changing the variant stored in a variant
record variable is to supply a default value for the discriminant. This action makes the
variable unconstrained.
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In using variant record variables, keep in mind that the value of the discriminant
field determines the form of the variant part that is currently defined; attempting to
manipulate any other variant will cause either a compilation error or the raising of
constraint_Error. It is the programmer's responsibility to ensure that the correct vari
ant is being processed; consequently, a variant record should always be manipulated in
a CASE statement with the discriminant field used as the case selector to ensure that the
proper variant part is being manipulated.

CHAPTER REVIEW

Multidimensional arrays were used to represent tables of information and game boards.
Nested loops are needed to manipulate the elements of a mutidimensional array in a
systematic way. The correspondence between the loop-control variables and the array
subscripts determines the order in which the array elements are processed.

Also in this chapter, we introduced variant records. A variant record is one that can
have one of several structures, depending on the value of a special field called the dis
criminant. We used variant records to represent employee records and geometric fig
ures.

New Ada Constructs in Chapter 13

The new Ada constructs introduced in this chapter are described in Table 13.1.

Table 13.1 Summary of New Ada Constructs

Construct Effect

Declaring Multidimensional Arrays

SUBTYPE Weeks IS Positive RANGE 1..52;

TYPE Days IS
(Mon,Tue,Wed,Thu,Fri,Sat,Sun);

TYPE YearMatrix IS YearMatrix describes a
ARRAY (Weeks, Days) OF Float; two-dimensional array with

52 rows and 7 columns

Sales ; YearMatrix; Sales is an array of this
type and can store 364 float
numbers.

Multidimensional Array References

Sales := (OTHERS=> (OTHERS=>0.0)); Initializes all elements of
Sales to zero.

Ada. Float Text_l0. Put Displays the element of
(item=>Sales(3, Mon)); Sales for Monday of week

3.

Ada. Float Text 10.Get Reads the value for the first
(Item=>SalesT 1» Sun)); Sunday into Sales.
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Construct Effect

TotalSales := 0.0?
FOR Week IN Weeks LOOP

FOR Today IN Days LOOP
TotalSales i- TotalSales

+ Sales(Week,Today);
END LOOP;

END LOOP?

Variant Record Declaration

TYPE KidKind IS (Girl, Boy)?

TYPE Child(Gender: KidKind:=Girl) IS RECORD
First: Character?
Last: Character?
Age: Natural?

CASE Gender IS

WHEN Girl =>

Sugar: Float?

Spice: Float?
WHEN Boy =>

Snakes: Integer ?
Snails: Integer?
Tails: Integer;

END CASE?

END RECORD;

Kid : Child?

Referencing a Record Variant

CASE Kid.Gender IS

WHEN Girl =>

Ada.Text_lO.Put
(Item => "Lbs. of sugar>");

Ada.Float_Text_IO.Get
(Item=>Kid.Sugar)?

WHEN Boy =>
Ada.Integer_Text_IO.Put
•(ltem=>"No. of snakes>")?

Ada. Integer__Text_lO. Get
(Item°>Kid.Snakes)?

END CASE?

Finds the total sales for the
entire year.

A record type with a variant
part IS declared. The dis
criminant is an enumera
tion value.

Each record variable can
store two characters and an
integer.

One variant part can store
two float values, and the
other can store three integer
values.

Kid is a Child record.

Uses a CASE statement to
read data into the variant
part of the record Kid. If
discriminant is Girl, reads
a value into the fleld
Kid. Sugar; if the discrimi
nant is Boy, reads a value
into the fleld Kid.Snakes.

Quick-Check Exercises

1. How many subscripts can an array have in Ada?

2. What is the difference between row-major and column-major order? Which
does Ada use?

3. What does row-major order mean when an array has more than two sub
scripts?
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4. What control structure is used to process all the elements in a multidimension
al array?

5. Write a program segment to display the sum of the values (type Float) in each
column of a two-dimensional array. Table, with data type array (i.. 5, i.. 3)
OF Float. How many column sums will be displayed? How many elements
are included in each sum?

6. Write the type declaration for an array that stores the batting averages by posi
tion (Catcher, Pitcher, FirstBase, and SO on) for each of 12 baseball teams
in each of two leagues (American and National).

7. When should you use a variant record?

8. Explain the use of the discriminant field. Can a variant record have more than
one discriminant field?

9. Explain the difference between a constrained variant record and an uncon
strained one.

Answers to Quick-Check Exercises

1. There is no specific limit; however, the size of the array is limited by the mem
ory space available, and multidimensional arrays require memory equal to the
product of the dimensions, which can be quite large.

2. In row-major order, the first row of the array is placed at the beginning of the
memory area allocated to the array. It is followed by the second row, and so
on. In column-major order, the fu*st column is placed at the beginning of the
array memory area. The Ada standard does not specify an ordering, but many
compilers use row-major order.

3. If an array Table has n subscripts, the array elements are placed in memory in
the order Table(i,i,...,l,l). Table(l,l,...,l,2). Table(1,1,
..., 1,3), and so on. Then the next-to-last subscript is changed, and the ele
ments Tabie(i,i,... ,2,i), Table(i,i,... ,2,2), Table(i,i,... ,2,3) ...

are placed. The first subscript will be the last one that changes.

4. Nested FOR loops.

5.

ColumnSum := 0.0;

FOR Column IN 1..3 LOOP
ColumnSum := 0.0;

FOR Row IN 1..5 LOOP
ColumnSum := ColumnSum + Table(Row,Col);

END LOOP;
Ada.Text_IO.Put(Item=>"Sum for column ");
Ada.Integer_Text_IO.Put(Item=>Column, Width=>l);
Ada.Text_IoTput(Ttem=>"is ");
Ada.Integer_Text_IO.Put(Item=>ColumnSum);

END LOOP;
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Three column sums, five elements added per column.

TYPE Position IS

(Pitcher, Catcher, FirstBase, SecondBase, ThirdBase,
Shortstop, LeftField, CenterField, RightField);

TYPE League IS (American, National);
SUBTYPE Teams IS Positive RANGE 1..15;
TYPE BAArray IS ARRAY (League, Teams, Position) OF Float;

7. When an object has some fields that are always the same and a small number
of fields that may be different.

8. The discriminant field is a special field of a variant record, used to distinguish
between the variants. A record may have more than one discriminant.

9. A constrained variant record is one in which the discriminant is given a value
when the variable is declared, which "locks in" the variant. An unconstrained
record is one in which a default value was supplied for the discriminant, which
allows the variant to change over the life of the variable.

Review Questions for Chapter 13

1. Define row-major order and column-major order. For an array type whose
three dimensions are 1..4, 2..3, and 5..7, draw storage layouts for both
row-major and column-major order.

2. Write the variant declaration for supplies, which consists of either paper,
Ribbon, or Labels. For Paper the information needed is the number of sheets
per box and the size of the paper. For Ribbon the size, color, and kind (carbon
or Cloth) are needed. For Labels the size and number per box are needed. For
each supply, the cost, number on hand, and reorder point must also be stored.
Use whatever data types are appropriate for each field.

3. Write the declaration for vehicle. If the vehicle is a Truck, we need to know
its Bedsize and cabsize. If the vehicle is a wagon, we need to know whether
or not it has a third row of seats (Boolean). If the vehicle is a sedan, the infor
mation needed is Twoooor or Fourooor. For all vehicles we need to know
whether the transmission is Manual or Automatic; whether it has Aircondi-
tioning, PowerSteering, or PowerBrakes (all Boolean); and the gaS mileage.
Use whatever data types are appropriate for each field.

Programming Projects

1. Starting with the tic-tac-toe procedures from Section 13.1, develop an interac
tive program that allows two people to play tic-tac-toe against each other.

2. Sta^ng with the class-enrollment program segments in Section 13.2, develop
an interactive program for the registrar to use.
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3. Write a set of procedures to manipulate a pair of matrices. You should provide
procedures for addition, subtraction, and multiplication. Each procedure
should validate its input parameters (i.e., check all matrix dimensions) before
performing the required data manipulation.

4. The results from the mayor's election have been reported by each voting dis
trict as follows:

Voting District Candidate A Candidates Candidate C Candidate D

1 192 48 206 37

2 147 90 312 21

3 186 12 121 38

4 114 21 408 39

5 267 13 382 29

Wnte a program to do the following:

a. Display the table with appropriate headings for the rows and columns.

b. Compute and display the total number of votes received by each candidate
and the percent of the total votes cast.

c. If any one candidate received over 50% of the votes, the program should
print a message declaring that candidate the winner.

d. If no candidate received over 50% of the votes, the program should print a
message declaring a runoff between the two candidates receiving the high
est number of votes; the two candidates should be identified by their letter
names.

e. Run the program once with the above data and once with candidate C re
ceiving only 108 votes in precinct 4.

5. Write a program that reads the five cards representing a poker hand into a
two-dimensional array (first dimension, suit; second dimension, rank). Evdu-
ate the poker hand by using procedures to determine whether the hand is a
flush (all one suit), a straight (five consecutive cards), a straight flush (five
consecutive cards of one suit), four of a kind, a full house (three of one kind,
two of another), three of a kind, two pair, or one pair.

6. Do Problem 5, but represent a card as a record with two fields representing the
suit and the rank, and a poker hand as an array of these records.

7. Modify the package spiders as suggested in Section 13.5, to detect spider col
lisions in the room.

8. Modify the employees and data base packages (Programs 11.11 through
11.17) to accommodate the variant record for Employee.
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Chapter Review

This book has shown many examples of procedures and functions, as well as programs
that call them. You know that a function can call another function; that is, a statement in
the body of a function f contains a call of another function g. What would happen if a
statement in f contained a call of f? This situation—a function or procedure calling
itself—not only is permitted, but in fact is very interesting and useful. The concept of a
subprogram—a function or a procedure—calling itself is a mathematical concept called
recursion, and a subprogram that contains a call to itself is called a recursive subpro
gram.

Recursion can be an alternative to iteration (looping), although a recursive solution
to a given problem uses somewhat more computer time and space than an iterative
solution to the same problem; this is due to the overhead for the extra procedure calls.
However, in many instances the use of recursion enables us to specify a natural, simple
solution to a problem that would otherwise be difficult to solve. For this reason, recur
sion is an important and powerful tool in problem solving and programming.

14.1 Problem Solving: The Nature of Recursion

lYoblems that lend themselves to a recursive solution have the following characteris
tics:

• One or more simple cases of the problem (called stopping cases) have a simple,
nonrecursive solution.

591
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• For the other cases, there is a process (using recursion) for substituting one or more
reduced cases of the problem that are closer to a stopping case.

• Eventually, the problem can be reduced to stopping cases only, all of which are rel
atively easy to solve.

The recursive algorithms that we write will generally consist of an if statement
with the form shown below:

IF the stopping case is reached THEN
Solve it

ELSE

Reduce the problem using recursion
END IF;

Figure 14.1 illustrates what we mean by this. Let's assume that for a particular problem
of size N, we can split this problem into one involving a problem of size 1, which we
can solve (a stopping case), and a problem of size - 1, which we can split further. If
we split the problem N times, we will end up with N problems of size 1, all of which we
can solve.

■ Example 14.1

Consider how we might solve the problem of multiplying 6 by 3, assuming that we
know the addition tables but not the multiplication tables. The problem of multiplying 6
by 3 can be split into the two problems:

Problem 1. Multiply 6 by 2.

Problem 2. Add 6 to the result of problem 1.

Because we know the addition tables, we can solve problem 2 but not problem 1.
However, problem 1 is simpler than the original problem. We can split it into the two
problems 1.1 and 1.2, leaving us three problems to solve, two of which are additions.

Size N -1
problem

Size N
problem

Size 1
problem

Size 1
problem

Size N - 2
problem

Size 1

problem
Size 2

problem

Size 1
problem

Figure 14.1 Splitting a Problem into Smaller Problems
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Problem 1. Multiply 6 by 2.

Problem 1.1 Multiply 6 by 1.

Problem 1.2 Add 6 to the result.

Problem 2. Add 6 to the result of problem 1.

Even though we don't know the multiplication tables, we are familiar with the sim
ple rule that, for any Af, Af x 1 is M. By solving problem 1.1 (the answer is 6) and prob
lem 1.2, we get the solution to problem 1 (the answer is 12). Solving problem 2 gives
us the final answer, 18.

Program 14.1 implements this approach to doing multiplication as the recursive
Ada function Multiply, which returns the product, M x N, of its two arguments.

Program 14.T Recursive Multiplication

FUNCTION Multiply (M ; IN Integer; N : IN Positive)
RETURN Integer IS

— Performs multiplication recursively using the + operator
— Pre : M and N are defined and N > 0
— Post: returns M * N

Result: Integer;

BEGIN — Multiply

IP N = 1 THEN

Result := M; — stopping case
ELSE

Result := M + Multiply(M, N-1); — recursion
END IF;

RETURN Result;

END Multiply;

The stopping case is reached when the condition n » i is True. In this case the
answer is A/ (A/ x 1 is Af). If iV is greater than 1, the statement

Result ;=» M + Multiply(M, N-1) — recursive step

executes, splitting the original problem into the two simpler problems;

Problem 1. Multiply Af by - 1.

Problem 2. Add M to the result.

The first of these problems is solved by calling Multiply again with n-i as its sec
ond argument. If the new second argument is greater than 1, there will be additional
calls to function Multiply. The recursive step in function Multiply splits the problem
of multiplication by N into an addition problem and a problem of multiplication by
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To demonstrate how this function works. Program 14.2 shows Multiply modified
to display the values of its parameters each time it is called, and the return value before
it returns. The test program prompts the user for two numbers, then calls Multiply. ■

Program 14.2 A Test of Recursive Multiplication

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IOf
PROCEDURE Test_Multiply IS

Demonstration of recursive Multiply function
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

Firstint : Integer; — inputs
Secondint : Positive;

Answer : Integer; ~ output

FUNCTION Multiply (M : IN Integer; N : IN Positive)
RETURN Integer IS
— Performs multiplication recursively using the + operator
— Pre : M and N are defined
~ Post; returns M * N

Result: Integer;

BEGIN — Multiply

Ada.Text_IO.Put(Item => "Multiply called with parameters");
Ada.Integer_Text_IO.Put(Item => M, Width => 2);
Ada.Integer_Text~IO.Put(Item => N, Width =>3);
Ada.Text 10.New Line;

— stopping case
IF N = 1 THEN

Result := M;

ELSE

Result := M + Multiply(M, N-1); — recursion
END IF;

Ada.Text IO.Put(Item => "Returning from Multiply with result ");
Ada.Integer_Text_IO.Put(Item => Result, Width => 1);
Ada. Text__IO. New_Line;

RETURN Result;

END Multiply;

BEGIN — Test_Multiply

Ada.Text_IO.Put(Item => "Please enter a integer > ");
Ada.Integer Text_IO.Get(Item => Firstint);
Ada.Text loTput(Item => "Please enter a positive integer > ");
Ada.lnteger_Text_IO.Get(Item => Secondint);

Answer := Multiply(M => Firstint, N => Secondint);

Ada.Text ID.Put(Item => "The product of the two integers is ");
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Ada.Integer_Text_IO.Put(Item => Answer, Width => 1);
Ada.Text_IO.New_Line;

END Test_Multiply;

Sample Run

Please enter a integer > 6
Please enter a positive integer > 3
Multiply called with parameters 6 3
Multiply called with parameters 6 2
Multiply called with parameters 6 1
Returning from Multiply with result 6
Returning from Multiply with result 12
Returning from Multiply with result 18
The product of the two integers is 18

EXERCISES FOR SECTION 14.1

Self-Check

1. Show the problems that are generated by the function call Multiply (5,4). Use
a diagram similar to Fig. 14.1.

14.2 Tricks of the Trade: Tracing a Recursive Function

Hand-tracing an algorithm's execution provides us with valuable insight into how that
algorithm works. We can also trace the execution of a recursive procedure or function.
We will illustrate how to do this by studying a recursive function next.

In Section 14.1 we wrote the recursive function Multiply (see Program 14.1). We
can trace the execution of the function call Multiply(6,3) by drawing an activation
frame corresponding to each call of the function. An activation frame shows the param
eter values for each call and summarizes its execution.

The three activation frames generated to solve the problem of multiplying 6 by 3
are shown in Fig. 14.2. Each downward arrow indicates a recursive call of the function;
the ̂ ow is drawn starting from the line of the activation frame in which the recursive
call is made. The value returned from each call is shown alongside each upward arrow.
The upward arrow from each function call points to the operator + because the addition
is performed just after the return.

Figure 14.2 shows that there are three calls to function Multiply. Parameter m has
Ae value 6 for all three calls; parameter N has the values 3,2, and finally 1. Because n
is 1 in the third call, the value of m (i.e., 6) is returned as the result of the third and last
call. After remming to the second activation frame, the value of m is added to this result
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Answer:® Multiply(6, 3)

18

□
H is 6

N is 3

3 ® 1 is false
Result:® 6 + Multiply(6, 2)

Return , Result

12
M is 6

M is 2

2 ® 1 is false

Result:® 6 + Multiply(6, 1)
Return i k Result

M 3.8 6

M is 1

1 = 1 is true

Result is 6
Return

Figure 142 Trace of Function Call Answer ?= Multiply(6,3)

and the sum (i.e., 12) is returned as the result of the second call. After returning to the
first activation frame, the value of M is added to this result, and the sum (i.e., 18) is
returned as the result of the original call to function Multiply.

Parameter and Local Variable Stacks

To keep track of the values of m, n, and Result at any given point, a special data struc
ture, called a stack, is used. Think of the times you have stood in line in a c^eteria.
Clean dishes are always placed on top of a stack of dishes. When you need a dish, you
remove the one that was most recently placed on the stack; the next to last dish that was
placed on the stack moves to the top of the stack.

Similarly, whenever a new function call occurs, the parameter values associated
with that call are placed ("pushed") on the top of the parameter stack. Also, a new cell
whose value is initially undefined is placed on top of the stack for the local variable
Result. Whenever m, n, or Result is referenced, the value at the top of the correspond
ing stack is always used. When a subprogram return occurs, the vdue that is currently
at the top of each stack is removed ("popped"), and the value just below it moves to the
top, just as in the cafeteria stack.

As an example, let's look at the three stacks right after the first call to Multiply
(but before Multiply does any work). There is one cell on each stack, as shown below.
Result has no value yet, because Multiply computes it.

After first call to Multiply:
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M  N Result

|6| |3| |?|

Just after the second call to Multiply, the number 2 is placed on top of the stack for
N, and the top of the stack for Result becomes undefined again as shown below. The
top cells represent the top of each stack.

After second call to Multiply:

M  N Result

|6| |2| |?|
|6| |3| |?|

Multiply is called again, and this time the number 1 is placed on top of the stack.
After third call to Multiply:

M  N Result

|6| 111 |?|
|6| |2| !?!
|6| |3| |?|

Because 1 is the stopping case. Result can be computed.
After first computation o/Result:

M M Result

6 111 |6
6 |2| 1?
6 |3| 1?

The function can now return, which causes the values at the top of the stack to be
removed. Because Multiply was called in a statement that computes Result, a new
value of Result is placed on top of the stack.

After first return and second computation o/Result:

M  N Result

|6|
|6|

2 I I 12 I
3| |?|

The function can now return yet again and compute a new value of Result.
After second return and third computation of Result:

M  N Result

|6| |2| |18|

Finally, we return to the main program; the final value of Result is left on top of
the stack, where it can be picked up and copied into Answer.

After third return:

M  N Result

1?| j?| |18|

We can write recursive subprograms without being concerned about stacks; the
stacks and instructions to manipulate them are automatically placed in your program by
the compiler.
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For illustrative purposes we have used separate stacks for each parameter in our
discussion; however, the compiler actually maintains a single stack. Each time a call to
a subprogram occurs (even a nonrecursive one), all its parameters and local variables
are pushed onto the stack along with the memory address of the calling statement. The
latter gives the computer the retum point after execution of the procedure or function.
Although multiple copies of a procedure's parameters may be saved on the stack, there
is only one copy of the procedure body in memory.

Stacks are used by most programming languages to implement all subprogram
calls, not just recursive ones. Indeed, recursive calls are really just a special case in
which the calling and called subprograms are the same.

EXERCISES FOR SECTION 14.2

Self-Check

1. Trace the execution of Multiply (5,4) and show the stacks after each recur
sive call.

14.3 Problem Solving: Recursive Mathematical Functions

Many mathematical functions are defined recursively. An example is the factorial of a
number n (n!).

• 0! is 1.

• n! is « X («-l)!,forn>0.

Thus 4! is 4 X 3 X 2 X 1, or 24. It is quite easy to implement this definition as a
recursive function in Ada.

■ Example 14.2

Function Factorial in Program 14.3 computes the factorial of its argument N.

Program 14.3 Recursive Factorial Function

FUNCTION Factorial (N : IN Natural) RETURN Positive IS
— Computes the factorial of N (NI) recursively
— Pre : N is defined and N >= 0

Post: returns N!

BEGIN — Factorial
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— stopping case

— recursion

IF N = 0 THEN

RETURN 1;
ELSE

RETURN N * Factorial(N-1);
END IF;

END Factorial;

The recursive step

Result ;= N * Factorial(N-l);

implements the second line of the factorial definition above. This means that the result
of the current call (argument n) is determined by multiplying the result of the next call
(argument n-i) by n.

A trace of

Answer ;= Factorial(N =>3);

is shown in Fig. 14.3.
The value that is returned from the original call, Factorial (n => 3), is 6, and this

value is assigned to Answer. Be careful when using the factorial function; its value
increases very rapidly and could lead to an integer overflow exception (e.g., 10! is
24320).

Answer:® Factorial (3)

RETURN 1

RETURN 2 * Factorial(l)

RETURN 1 * Factorial(O)

RETURN 3 * Factorial(2)

Figure 14.3 Trace of Answer ?= Factorial(3)



600 Recursion

Although the recursive implementation of function Factorial follows naturally
from Its definition, this function can be implemented easily using iteration. The itera
tive version is shown in Program 14.4; it is in fact the same function that appeared back
in Program 5.19, as one of the useful functions there.

Program 14.4 Factorial, Iterative Version

FUNCTION Factorial_lterative (N ; IN Natural) RETURN Positive IS
— Computes the factorial of N (N!) iteratively
— Pre ; N is defined and N >= 0

— Post; returns N!

Result : Positive; — holds the product

BEGIN — Factorial_lterative

Result ;= 1;

FOR Count IN 2 .. N LOOP

Result ;= Result * Count;

END LOOP;

RETURN Result;

END Factorial_Iterative;

Note that the iterative version contains a loop as its major control structure,
whereas the recursive version contains an if statement. ■

■ Example 14.3

The Fibonacci numbers are a sequence of numbers that have many varied uses. They
were originally intended to model the growth of a rabbit colony. The Fibonacci
sequence 1,1,2,3,5,8,13,21,34,... increases rapidly: Each number in the sequence
is the sum of the two previous ones. The fifteenth number in the sequence is 610 (that's
a lot of rabbits). The Fibonacci sequence is defined below:

• Fib] is 1.

• Fib2 is 1.

• Fib„ is Fib„_2 + Fib„_i, forn > 2.

Verify for yourself that the sequence of numbers shown above is correct. A recur
sive function that computes the Mh Fibonacci number is shown as Program 14.5. Each
recursive step generates two recursive calls to function Fibonacci. ■

Program 14.5 Fibonacci

FUNCTION Fibonacci (N : IN Natural) RETURN Positive IS
Returns the Nth Fibonacci number, computed recursively

— Pre : N is defined and N >= 0



!43 Problem Solving: Recursive Mathematical Functions 601

— Post: returns N!

BEGIN — Fibonacci

IF (N = 1) OR (N = 2) THEN
RETURN 1;

ELSE

RETURN Fibonacci(N-2) + Fibonacci(N-1)j
END IF;

END Fibonacci;

■ Example 14.4

The greatest common divisor (GCD) of two positve integers is the largest integer that
divides them both; Euclid's algorithm for finding the GCD is defined recursively:

• GCD(M, N)\iN\fN<-M and N divides M.

• GCD(M, AO is GCD(A^,M)\fM<N.

• GCD(A/, AO is GCD(A^, remainder of M divided by AO otherwise.

This algorithm states that the GCD is A^ if A^ is the smaller number and N divides M.
If M is the smaller number, the GCD determination should be performed with the argu
ments transposed. If A^ does not divide M, the answer is obtained by finding the GCD of
Nsmd the remainder of M divided by N. The function gcd is shown as Program 14.6. ■

Program 14.6 Greatest Common Divisor, Recursive Version

FUNCTION GCD (M, N : IN Positive) RETURN Positive IS
— Pre ; M and N are defined.

— Post: Returns the greatest contmon divisor of M and N.

Result: Positive;

BEGIN — GCD

IF (N <= M) AND (M REM N = 0) THEN
Result ;= N;

ELSIF M < N THEN

Result := GCD(N, M);
ELSE

Result := GCD(N, M REM N);
END IF;

RETURN Result;

END GCD;



602 Recursion

EXERCISES FOR SECTION 14.3

Self-Check

1. If Ada did not have an exponentiation operation (**), we could write our own.
Complete the following recursive function, which calculates the value of a
number (Base) raised to a power (power).

FUNCTION PowerOf (Base: Integer; Power: Positive)
RETURN Integer IS

Result: Integer;

BEGIN — PowerOf

IF Power = THEN
Result := ;

ELSE

Result := * ;
END IF;

END PowerOf;

2. What is the output of the following program? What does function strange
compute?

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE TestStrange IS

FUNCTION Strange (N : Integer) RETURN Integer IS
Result: Integer;

BEGIN

IF N = 1 THEN

Result := 0;

ELSE

Result := 1 + Strange (N / 2);
END IF;

END Strange;

BEGIN — TestStrange

Ada. integer_Text__IO. Put (Item => Strange (8);
Ada.Text_IoTNew_Line;

END TestStrange;

3. Explain what would happen if the terminating condition for the Fibonacci
function were just (N=\).
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Programming

1. Write a recursive function, Findsum, that calculates the sum of successive inte
gers starting at 1 and ending at N (i.e., FindSum(N) = (1 + 2 + ... + (W- 1) +
AO).

2. Write an iterative version of the Fibonacci function.

14.4 Problem Solving: More Recursive Programs

This section examines three familiar problems and implements a recursive procedure or
function to solve each.

CASE
STUDY PRINTING AN ARRAY BACKWARD

Problem Specification
Provide a recursive solution to the problem of displaying the elements of an array in
reverse order.

Analysis
If the array x has elements with subscripts x'First. .x'Last, the element values
should be displayed in the sequence x(X'Last), X(X'Laat-i), X(X'Last-2), ...,
X (X • First+1), X (X' First). The Stopping case is displaying an array with one element;
the solution is to display that element. For larger arrays the recursive step is to display
the last array element (x(X'Last)) and then display the subarray with subscripts
X' First.. X' last-1 backward.

Data Requirements

Problem Inputs
an array of integer values (x : intArray)

Problem Outputs
the array values in reverse order (x(X'Last), x(X'Last-i), ... , x(X'First+i),
X(X'First))

Algorithm
1. IF X'First = X • Last (i.e., if slice X has only one element), then

2. Display x(X*Last)

ELSE

3. Display x( X'Last)
4. Display the subarray with subscripts x • First.. x • Last-i

END IF;
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Implementation
Program 14.7 implements the recursive algorithm and gives a test program.

Program 14.7 Printing an Array Backward

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
PROCEDURE Test Print Baclcward IS

Demonstration of recursive procedure to print an array backward
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE intArray IS ARRAY(Integer RANGE <>) OF Integer;
Test: IntArray(1..10);

PROCEDURE PrintBackward (X : IntArray) IS

— Prints a slice of an integer array X with bounds X'First..X'Last.
— Pre : Array X is defined and X'First <= X'Last.
— Post: Displays X(X'Last), X(X'Last-l), ... , X(X'First)

BEGIN — PrintBackward

IF X'First = X'Last THEN — stopping case - slice has only one ele
ment

Ada.Integer_Text__IO.Put{Item => X(X'Last), Width =>3);
ELSIF X'First > X'Last THEN — error in specifying slice bounds
Ada.Text 10.Put(Item => "Error in bounds of array slice");
Ada. Textile. New__Line;

ELSE ~
~ recursive step
Ada.lnteger_Text__10.Put(Item => X(X'Last), Width =>3);
PrintBackward (X => X(X'First..X'Last-1));

END IF;

END PrintBackward;

BEGIN — Te8t_Print__Backward

Test := (1,3,5,7,9,11,13,15,17,19);
PrintBackward(X => Test(1..3));
Ada. Text__l0. New_Line;

END Test_Print_Backward;

Sample Run

5  3 1

Given the following array type and variable:

TYPE IntArray IS ARRAY(Integer RANGE <>) OF integer;
Test: IntArray(1..3);
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the procedure call printBackward(Test(i..3)) results in the three Put statements
being executed in the order indicated below, and the elements of Test will be printed
backward as desired.

Ada.Integer_Text_IO.Put (Item => Test{3));
Ada. Integer_Text_^IO.Put (Item => Test (2));
Ada.lnteger_Text_IO.Put (Item => Test(1));

To verify this, we trace the execution of the procedure call statement above in Fig.
14.4.

Each rightward arrow indicate a recursive procedure call; each leftward arrow indi
cates a return to the previous level.

Call PrintBacJcward with parameter Test (l.. 3).

Display Test(3).

Call PrintBac)cward with parameter Test (1.. 2).

Display Test(2).

Call PrintBackward with parameter Test (i.. i).

Display Test(i).

Return from third call.

Return from second call.

Return from original call.

As shown, there are three calls to procedure PrintBackward, each with different
parameters. The procedure returns always occur in the reverse order of the procedure
calls; in other words, we return from the last call first, then we return from the next to
last call, and so on. This time there are no statements left to execute affer the returns,
because the recursive call

PrintBackward (X(X'First..X'Last-1))

occurs at the end of the recursive step.

PrintBackward (Test(1..3))

X is Test(l..1)
1 = 1 is true

Display Test(l)
Return

X is Test(1..3)

3 a 1 is false

Display Test(3)

PrintBackward (Test(1..2))
Return

X is Test(l..2)

2 a 1 is false

Display Test(2)
PrintBackward (Teat(1..2))
Return

Figure 14.4 Traceof PrintBackward(Test(1..3))
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CASE

STUDY DISPLAYING AN ARRAY IN NORMAL ORDER

Problem Specification
Provide a recursive procedure that displays the elements of an array in normal order.

Analysis
We can use the approach just followed to display the elements of an array in normal
order. Again the stopping case is an array with just one element.

Data Requirements

Probiem Inputs
an array of integer values (x : intArray)

Probiem Outputs
the array values in normal order (x(X'First), x(X'First+i), ... , x(X'Last-i),
X(X'Last))

Algorithm
1. IF X' First = X ■ Last (i.e., if slice x has only one element) then

2. Display X(X'Last)

ELSE

3. Display the subarray with subscripts x• First. .x'Last-i

4. Display X(X'Last)

END IF;

The only difference between this algorithm and the one shown earlier is that steps 3
and 4 are transposed.

Implementation
The implementation and testing is left as an exercise.

You might be wondering whether there are any special performance problems asso
ciated with passing arrays through a series of recursive calls. Recall that the Ada stan
dard does not specify whether an array is passed to a subprogram by creating a local
copy or by just passing its address. A compiler writer can choose to do it either way.

If indeed the array is passed by copying, hypothetically a large array might be cop
ied many times in a recursive call, leading to a huge consumption of space for all the
local copies and time for the copying. In practice, however, this is not a cause for con
cern because in most Ada compilers, if the array to be passed is longer than just a few
elements, only its address is passed. Declaring an array parameter with mode in (or
unspecified mode) guarantees that it cannot be modified by the subprogram.
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CASE

STUDY DISCOVERING WHETHER A STRING IS A
PALINDROME

Problem Specification
A palindrome is a string or sentence that reads the same backward and forward.
RADAR is a palindrome. When the Biblical first man met the Biblical first woman, he
might have said "Madam, I'm Adam," which is a palindrome if one neglects the punc
tuation. (Adam, in his first fit of anger, might also have said "Mad am I, Madam.") The
problem is to write a program that discovers whether a string of 80 characters or less is
a palindrome.

Analysis
Our program can discover whether a string is a palindrome by first finding the reverse
of the string, then checking whether the string is the same as its reverse.

Data Requirements

Probiem Inputs
the input string (s: string)

Problem Outputs
a message to the user indicating whether s is a palindrome

Algorithm
1. Find the reverse r of the given string s

2. IF R is equal to s then

the original string is a palindrome

ELSE

the original string is not a palindrome

END IF;

Step 1 Refinement

1.1. IF s is empty or has only one character then

1.2. R is the same as s

ELSE

1.3. Remove the first character of s, and concatenate it to the reverse of the rest
of s

END IF;

Step 1,3 contains the words "to the reverse of the rest of s". Because the purpose of
the step is to find the reverse, this suggests a recursive algorithm. Step 1.1 tests for the
stopping case; step 1.2 implements the stopping case. We can write this as a recursive
code fragment:
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IF S'Length <= 1 THEN
RETURN S;

ELSE

RETURN StringReverse(S(S'First+l..S'Last)) & S(S'First);;
END IF;

The recursive call passes the tail of s, that is, s with the first character removed. We call
our recursive function stringReverse and not Reverse because the latter is a reserved
word in Ada, which we cannot use for anything else.

Implementation
Program 14.8 shows the program Palindrome, which uses the recursive function
StringReverse just described. To make the output illustrate the recursion better, we
have included an output statement in stringReverse that just displays the value of the
parameter to this function. In the sample run you can observe that the string passed to
StringReverse is shorter and shorter. Note also that we are using Get_Line to read the
string, then passing only the useful slice to stringReverse.

Program 14.8 Palindrome

WITH Ada.Text_IO?
PROCEDURE Palindrome IS

Display the reverse of a string of 80 characters or less, and
indicate whether the string is a palindrome
Author: Michael B. Feldroan, The George Washington University
Last Modified: September 1998

Input: String(1..80); — the input string
Last : Natural; — index of input string's last character
R  : String(1..80); — the reverse of the input string

— local function StringReverse

FUNCTION StringReverse(S: String) RETURN String IS
— returns the reverse of a string
— Pre: S is defined

— Post: returns the reverse of S

BEGIN — StringReverse

— these are just to illustrate the recursion
Ada.Text^IO.Put(S);
Ada.Text_IO.New_Line;

IF S'Length <° 1 THEN
RETURN S;

ELSE

RETURN stringReverse(S(S'First+l..S'Last)) & S(S'First);
END IF;

END StringReverse;

BEGIN — Palindrome

FOR Trial IN 1..5 LOOP
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Ada. Text_.IO. Put
(Item => "Please enter a string of 80 characters or less.");

Ada.Text_lO.New_Line;
Ada.Text_lO.Get_Line(Item => Input, Last => Last);

R(l..Last) :<= StringReverse(lnput(l. .Last));
Ada.Text_IO.Put("The reverse of the string is ");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => R(l..Last));
Ada.Text_lO.New_Line;

IF R (l..Last) = Input (l..Last) THEN
Ada.Text_IO.Put(Item => "The string is a palindrome.");
Ada.Text_lO.New_Line;

ELSE

Ada.Text_IO.Put(Item => "The string is not a palindrome.");
Ada.Text_IO.New_Line;

END IF; ""

Ada.Text_IO.New_Line;

END LOOP;

END Palindrome;

Sample Run

Please enter a string of 80 characters or less.
radar

radar

adar

dar

ar

r

The reverse of the string is
radar

The string is a palindrome.

Please enter a string of 80 characters or less.
Madam, I'm Adam
Madam, I'm Adam

adam, I'm Adam
dam, I'm Adam

am, I'm Adam

m, I'm Adam

,  I'm Adam

I'm Adam

I'm Adam

'm Adam

m Adam

Adam

Adam

dam

am

m

The reverse of the string is
madA m'I ,madaM
The string is not a palindrome.
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Please enter a string of 80 characters or less.
madamimadain

madamimadam

adamimadam

damimadam

amimadain

mimadam

imadam

madam

adam

dam

am

m

The reverse of the string is
madamimadam

The string is a palindrome.

Please enter a string of 80 characters or less.
abc

abc

be

c

The reverse of the string is
cba

The string is not a palindrome.

Please enter a string of 80 characters or less.
X

X

The reverse of the string is
X

The string is a palindrome.

As you can see from the second and third test cases, this program treats blanks and
punctuation marks as ordinary characters and so does not discover that "Madam, Tm
Adam" is a palindrome. As an exercise, you can improve this program so that blanks
and punctuation are ignored and uppercase letters are treated the same as lowercase
ones.

EXERCISES FOR SECTION 14.4

Self-Check

1. Trace the execution of PrintNormal and printBackward on an array that has
the integers 5,8,10,1 stored in consecutive elements.

Programming

1. Provide an iterative procedure that is equivalent to PrintBackward.
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Write a recursive procedure that reverses the elements in an array x(i. .n).
The recursive step should shift the slice x(2. .n) down one element into the
subarray x(1..n-1) (i.e., x(i) gets x(2), x(2) gets x(3), ... x(n-1) gets
X (N)), store the old X (1) in x ( n ), and then reverse the subarray x (i.. n- i).

14.5 Problem Solving: More Case Studies in Recursion

This section presents two more case studies in recursion: Tower of Hanoi and picture
processing with recursion.

CASE

STUDY TOWERS OF HANOI

The Towers of Hanoi problem is a representation of an old Asian puzzle. It involves
moving a specified number of disks from one tower (or peg) to another. The disks are
arranged on the first tower in order of increasing size, with the largest disk on the bot
tom. Legend has it that the world will come to an end when the problem is solved for
64 disks. In the version of the problem shown in Fig. 14.5 there are five disks (num
bered 1 through 5) and three towers or pegs (lettered A, B, C). The goal is to move the
five disks from peg A to peg C subject to the following rules:

1. Only one disk may be moved at a time, and this disk must be the top disk on a
peg.

2. A larger disk may never be placed on top of a smaller disk.

Problem Specification
Solve the Towers of Hanoi Problem for N disks, where is a parameter.

Analysis
The solution to the Towers of Hanoi problem consists of a printed list of individual disk
moves. We need a recursive procedure that can be used to move any number of disks
from one peg to another, using the third peg as an auxiliary.

2r

4r^

A

A

Figure 14.5 Towers of Hanoi
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Data Requirements

Problem Inputs
the number of disks to be moved (n : integer)
the from peg (FromPeg : ' A'..' C')
the to peg (ToPeg : ■A' .. 'C')
the auxiliary peg (AuxPeg : • a •.. • c')

Problem Outputs
a list of individual disk moves

Design
The stopping cases of the problem involve moving one disk only (e.g., "move disk 2
from peg A to peg C"). A simpler problem than the original would be to move four
disks subject to the conditions above, or three disks, and so on. Therefore we want to
split the original five-disk problem into one or more problems involving fewer disks.
Let's consider splitting the original problem into the following three problems:

1. Move four disks from peg A to peg B.

2. Move disk 5 from peg A to peg C.

3. Move four disks from peg B to peg C.

Step 1 moves all disks but the largest to tower B, an auxiliary tower that was not
mentioned in the original problem. Step 2 moves the largest disk to the goal tower,
tower C. Then step 3 moves the remaining disks from B to the goal tower, where they
will be placed on top of the largest disk. Let's assume that we will be able to perform
step 1 and step 2 (a stopping case); Fig. 14.6 shows the status of the three towers after
completion of these steps. At this point, it should be clear that we can solve the original
five-disk problem if we can complete step 3.

Unfortunately, we still don't know how to perform step 1 or step 3. However, both
these steps involve four disks instead of five, so they are simpler than the original prob
lem. We should be able to split them into even simpler problems. Step 3 involves mov
ing four disks from tower B to tower C, so we can split it into two three-disk problems
and a one-disk problem:

3.1. Move three disks from peg B to peg A.

3.2. Move disk 4 from peg B to peg C.

3.3. Move three disks from peg A to peg C.

il

B

1
1  51

Figure 14.6 Towers of Hanoi after Steps 1 and 2
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1

2r

JLIZZZ

Figure 14.7 Towers of Hanoi after Steps 1,2,3.1, and 3.2

Figure 14.7 shows the status of the towers after completion of steps 3.1 and 3.2. We
now have the two largest disks on peg C. Once we complete step 3.3, all five disks will
be on peg C as required.

By splitting each A^-disk problem into two problems involving N - 1 disks and a
one-disk problem, we will eventually reach all cases of one disk, which we know how
to solve.

Initial Algorithm
1. IF AT is 1, THEN

2. Move disk 1 from the from peg to the to peg

ELSE

3. Move N - 1 disks from the from peg to the auxiliary peg using the to peg

4. Move disk N from the from peg to the to peg

5. Move N- 1 disks from the auxiliary peg to the to peg using the from peg

END IF;

If A/ is 1, a stopping case is reached. If A/^ is greater than 1, the recursive step (fol
lowing else) splits the original problem into three smaller subproblems, one of which
is a stopping case. Each stopping case displays a move instruction. Verify that the
recursive step generates the three problems listed after Fig. 14.5 when A/ is 5, the from
peg is A, and the to peg is C.

Implementation
The implementation of this algorithm is shown as procedure Tower in Program 14.9.
Procedure Tower has four parameters. The procedure call statement

Tower (N => 5, FromPeg => 'A',ToPeg => 'C',AuxPeg => 'B');

solves the problem posed earlier of moving five disks from peg a to peg c using b as an
auxiliary. An auxiliary procedure MoveDisk is included.

Program 14.9 A Test of Towers of Hanoi

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Test_Tower IS

— I Demonstration of the recursive procedure Tower,
— I which solves a 3-peg Towers of Hanoi problem
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--I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

SUBTYPE Pegs IS Character RANGE •A'..'C';

PROCEDURE MoveDisk (PromPeg, ToPeg: Pegs; Which: Natural) IS

— Auxiliary procedure implementing a 1-disk move

BEGIN

Ada.Text_IO.Put(Item => "Move disk ");
Ada. Integer__Text__IO. Put (Item => Which, Width => 1);
Ada.Text__IoTPut(Ytem => " from peg ");
Ada.Textile.Put(Item => FromPeg);
Ada.Text_IO.Put(Item => " to peg ");
Ada.Textile.Put(Item => ToPeg);
Ada. Text__IO. New_Line;

END MoveDisk;

PROCEDURE Tower (FromPeg, ToPeg, AuxPeg: Pegs; N; Natural) IS

— Moves N disks from FromPeg to ToPeg
— using AuxPeg as an auxiliary.

BEGIN — Tower

IF N = 1 THEN

— Stopping case
MoveDisk(FromPeg, ToPeg, 1);

ELSE

— recursive step
Tower (FromPeg, AuxPeg, ToPeg, N-1);
MoveDisk(FromPeg, ToPeg, N);
Tower (AuxPeg, ToPeg, FromPeg, N-1);

END IF;

END Tower;

BEGIN — Test_Tower

Tower (FromPeg => 'A', ToPeg => 'B', AuxPeg «=> 'C, N => 5);

END Test_Tower;

Sample Run

Move disk 1 from peg A to peg B

Move disk 2 from peg A to peg C

Move disk 1 from peg B to peg C

Move disk 3 from peg A to peg B

Move disk 1 from peg C to peg A

Move disk 2 from peg C to peg B

Move disk 1 from peg A to peg B

Move disk 4 from peg A to peg C

Move disk 1 from peg B to peg C

Move disk 2 from peg B to peg A

Move disk 1 from peg C to peg A

Move disk 3 from peg B to peg C

Move disk 1 from peg A to peg B
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Move disk 2 from peg A to peg C

Move disk 1 from peg B to peg C

Move disk 5 from peg A to peg B

Move disk 1 from peg C to peg A

Move disk 2 from peg C to peg B

Move disk 1 from peg A to peg B

Move disk 3 from peg C to peg A

Move disk 1 from peg B to peg C

Move disk 2 from peg B to peg A

Move disk 1 from peg C to peg A

Move disk 4 from peg C to peg B

Move disk 1 from peg A to peg B

Move disk 2 from peg A to peg C

Move disk 1 from peg B to peg C

Move disk 3 from peg A to peg B

Move disk 1 from peg C to peg A

Move disk 2 from peg C to peg B

Move disk I from peg A to peg B

In Program 14.9 the stopping case (move disk 1) is implemented as a call to proce
dure MoveDisk. Each recursive step consists of two recursive calls to Tower with a call
to MoveDisk sandwiched between them. The first recursive call solves the problem of
moving N- \ disks to the auxiliary peg. The call to MoveDisk displays a message to
move disk N to the to peg. The second recursive call solves the problem of moving the
N- I disks back from the auxiliary peg to the to peg.

Testing
The procedure call statement

Tower (FromPeg => * A', ToPeg => 'C *, AuxPeg => 'B', N => 3);

solves a simpler three-disk problem: Move three disks from peg A to peg C. Its execu
tion is traced in Fig. 14.8. Verify for yourself that this list of steps does indeed solve the
three-disk problem.

Comparison of Iteration and Recursive Procedures

It is interesting to consider that procedure Tower in Program 14.9 will solve the Tower
of Hanoi Problem for any number of disks. The three-disk problem results in a total of
seven calls to procedure Tower and is solved by seven disk moves. The five-disk prob
lem results in a total of 31 calls to procedure Tower and is solved in 31 moves. In gen
eral, the number of moves required to solve the «-disk problem is 2" - 1: We say that it
is a 0(2") problem. Because each procedure call requires the allocation and initializa
tion of a local data area in memory, the computer time increases exponentially with the
problem size. For this reason, be careful about running this program with a value of n
that is larger than 10.

The dramatic increase in processing time for larger towers is a function of this
problem, not recursion. In general, however, if there are recursive and iterative solu
tions to the same problem, the recursive solution requires more time and space because
of the extra procedure calls.
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Tower (•A','C','B',3) -

FroniPeg is 'A'

ToPeg is 'C
AuxPeg is 'B'

N is 3

Tower ('A', 'B', 'C, 2)

Move 3 from A to C

Tower ('B', 'C, "A", 2)

Return

FrontPeg is 'A'
ToPeg is 'B'
AuxPeg is 'C

N is 2

Tower ("A", 'C, 'B', 1)
Move 2 frcxn A to B

Tower ('C, 'B', 'A', 1)
Return

FromPeg is 'B'
ToPeg is 'C
AuxPeg IS 'A'

N is 2

Tower ('B', 'A', 'C, 1)
Move 2 frcrni B to C

Tower ('A', 'C, "B", 1)

Return

ProjnPeg is 'A'
ToPeg is 'C
AuxPeg is 'B'

N is 1

Move 1 frtm A to C

Return

FroitiPeg is 'C
ToPeg is 'B'
AuxPeg is 'A'

M is 1

Move 1 frcn C to B

Return

Fronffeg is 'B*

ToPeg IS 'A'

AuxPeg is 'C

N is 1

Move 1 from B to A

Return

FromPeg is 'A'
ToPeg is 'C
AuxPeg is 'B'
N is 1

Move 1 frm A to C

Return

Figure 14.8 Trace of Tower ('A', 'B', 'C, 3)

Although recursion was not really needed to solve the simpler problems in this
chapter, it was extremely useful m formulating an algorithm for Towers of Hanoi. For
certain problems, recursion leads naturally to solutions that are much easier to read and
understand than their iterative counterparts. In those cases the benefits gained from
increased clarity far outweigh the extra cost in time and memory of running a recursive
program.

Many would argue that the recursive programs are esthetically more pleasing. They
are indeed often more compact. Once you are accustomed to thinking recursively, the
recursive form is somewhat easier to read and understand than the iterative form.

Some programmers like to use recursion as a conceptual tool. Once they have writ
ten the recursive form of a function or procedure, they can translate it into an iterative
version if run-time efficiency is a major concern.
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CASE

STUDY PICTURE PROCESSING WITH RECURSION

The next problem is a good illustration of the power of recursion. As for the Towers of
Hanoi problem, its solution is relatively easy to write recursively; however, the problem
would be much more difficult without using recursion. Unlike Towers of Hanoi, which
is a cute and popular exercise, picture-processing algorithms have real applications.

Problem Specification
We have a two-dimensional grid g of cells, each of which may be empty or filled. The
filled cells that are connected form a blob. There may be several blobs on the grid. We
would like a function that accepts as input the coordinates of a particular cell and
returns the size of the blob containing the cell.

There are three blobs in the sample grid in Fig. 14.9. If the function parameters rep
resent the X and y coordinates of a cell, the result of Biobs i2e(G,3,4) is 5, the result of
Biobsi2e(G,i,2) is 2, the result of Biobsi2e(G,5,5) is 0, and the result of Biob-
Si2e(G,5,1) is 4.

Figure 14.9 Grid with Three Blobs

1  2 3 4 5

I I I X I I I X

X  I

X  I

X  I X

I  X

Analysis
Function Biobsi2e must test the cell specified by its arguments to see whether it is
filled. There are two stopping cases: The cell (x, y) is not on the grid, or the cell (X,
Y) is empty. In either case the value returned by Biobsi2e is 0. If the cell is on the grid
and filled, the value returned is 1 plus the size of the blobs containing each of its eight
neighbors. To avoid counting a filled cell more than once, we will mark it as empty
once we have visited it.

Data Requirements

Problem Inputs
the gnd (Grid: BlobArray)
thex and Y coordinates of the point being visited (x, y : integer)

Problem Outputs
the number of the cells in the blob containing point (x, y)
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Algorithm
1. IF cell (x, y) is not in the array then

2. Return a count of 0

ELSIE cell (x, y) is empty, then

3. Return a count of 0

ELSE

4. Mark cell (x, y) as empty

5. Add 1 and see whether the blob contains any of the eight neighbors of cell
(X, Y)

END IF;

Function Blobsize is shown in Program 14.10, assuming the declarations below.
The array type BlobArray has element values Filled or Empty. The array g has, as
usual, bounds c * Range (1) for the rows and g • Range (2) for the columns.

Program 14.10 Computing the Size of Blobs in a Grid

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
PROCEDURE Test_Blob_Size IS

Illustrates the recursive function BlobSize, which computes
size of a "blob" or group of filled cells on a grid.
Author: Michael B. Feldman, The George Washington University
Last Modified; September 1998

TYPE Fill IS (Empty, Filled);
TYPE BlobArray IS ARRAY (Integer RANGE <>,Integer RANGE <>) OF Fill;

Test; BlobArray(1..5,1..5);

PROCEDURE DisplayGrid(Grid: BlobArray) IS
— Pre: Grid is defined

— Post: displays Grid on the screen

BEGIN — DisplayGrid

FOR Column IN Grid'Range(2) LOOP —- top border
Ada.Text_IO.Put(Item => " ");

END LOOP; "
Ada.Text_IO.Put(Item => '-');
Ada.Text_IO.New_Line;

FOR Row IN Grid'Range(l) LOOP
FOR Column IN Grid'Range(2) LOOP
IF Grid(Row, Column) = Filled THEN

Ada.Text_IO.Put(Item => "| X ");
ELSE

Ada.Text_IO.Put(Item => "| ");
END IF; ""

END LOOP;
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Ada. Text_IO. Put (I tern => ' | ;
Ada. Text_IO. New_^Line;

FOR Column IN Grid'Range(2) LOOP — after each row
Ada.Text_IO.Put(Item => " ");

END LOOP;

Ada.Text_IO.Put(Item =>
Ada.Text_IO.New_Line;

END LOOP;

END DisplayGrid;

FUNCTION BlobSi2e(Grid : BlobArray; X, Y; integer) RETURN Natural IS
— Counts the number of filled cells in the blob containing
— point (X, Y).
— Pre : Blob array Grid and point (X,Y) are defined.
— Post: Returns the size of the blob containing point (X, Y).

Resets the status of each cell in the blob to Empty.

CopyOfGrid : BlobArray(Grid'Range(1),Grid'Range(2));
— because functions can't modify
— their parameters, in Ada

FUNCTION Blob (X, Y : Integer) RETURN Natural IS

— Inner function that performs the counting operation for BlobSize
— Pre : Global array CopyOfGrid and point (X,y) are defined.
— Post; Returns the size of the blob containing point (X, Y).

Resets the status of each cell in the blob to Empty.

Result! Natural;

BEGIN — Blob

IF (X NOT IN CopyOfGrid'Range(1)) OR
(Y NOT IN CopyOfGrid'Range(2)) THEN
Result ;= 0; — cell not in grid

ELSIF CopyOfGrid(X, Y) = Empty THEN
Result := 0;

ELSE ~ cell is filled

— recursive step
CopyOfGrid(X, Y) := Empty;
Result := 1 + BlobrX' Y+

END IF;

— cell is empty

1) + Blob(X, Y+1) +

Y+1) + Blob(X+l, Y) +

Y-1) + Blob(X, Y-1) +
Y-1) + Blob(X-l, Y);

RETURN Result;

END Blob;

BEGIN

CopyOfGrid ;= Grid;
RETURN Blob(X,Y);

END BlobSize;

BEGIN — Test Blob Size
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Test ;= ((Empty, Filled, Empty, Empty, Filled),
(Filled, Empty, Empty, Filled, Pilled),
(Empty, Empty, Filled, Filled, Empty ),
(Filled, Empty, Empty, Empty, Empty ),
(Filled, Filled, Filled, Empty, Empty ));

DisplayGrid (Grid => Test);

Ada.Text_IO.Put(Item => "BlobSi2e(3,4) is ");
Ada.Integer__Text_lO.Put(Item => BlobSi2e(Test,3,4), Width => 1);
Ada.Text_IO.New_Line;

Ada,Text_IO.Put(Item => "BlobSi2e(l,2) is ");
Ada.Integer__Text_lO.Put(Item => BlobSise(Test,1,2), Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "BlobSi2e(5,5) is ");
Ada.Integer_Text_IO.Put(Item => BlobSi2e(Test,5,5), Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item °> "BlobSi2e(5,l) is ");
Ada.Integer_Text_IO.Put(Item => BlobSiae(Test,5,1), Width => 1);
Ada.Text_IO.New_Line;

END Test_Blob_Si2e;

Sample Run

X  I X I X

BlobSi2e(3,4) is 5
BlobSi2e(l,2) is 2
BlobSi2e(5,5) is 0
BlobSize(5,l) is 4

The auxiliary function Blob in Program 14.10, declared within Biobsize, imple
ments the counting algorithm; function Blobsize simply calls the recursive function
Blob, passing on its arguments, and returns the count computed by function Blob as its
own result. The purpose of the auxiliary function is to protect ̂ e acmal array from
being modified when filled cells are reset to empty by function Blob. We will come
back to this point shortly.

If the cell that is being visited is off the grid or is empty, a value of zero is returned
immediately. Otherwise, the recursive step executes, causing function Blob to call itself
eight times; each time, a different neighbor of the current cell is visited. The cells are
visited in a clockwise manner, starting with the neighbor above and to the left. The
function result is defined as the sum of all values returned from these recursive calls
plus 1 (for the current cell).
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The sequence of operations performed in function Blob is important. The if state
ment tests whether the cell (x, y) is on the grid before testing whether (x, y) is empty.
If the order were reversed, constraint_Error would be raised whenever (x, y) was
off the grid.

Also, the recursive step resets Grid(x, y) to Empty before visiting the neighbors of
cell (x, y). If this were not done first, cell (x, y) would be counted more than once
because it is a neighbor of all its neighbors. A worse problem is that the recursion
would not terminate. When each neighbor of the current cell is visited. Blob is called
again with the coordinates of the current cell as arguments. If the current cell is Empty,
an immediate return occurs. If the current cell is still Filled, the recursive step would
be executed erroneously. Eventually, the program will run out of time or memory
space; the latter is signaled in Ada by the raising of storage_Error.

A side effect of the execution of function Blob is that all cells that are part of the
blob being processed are reset to Empty. This is the reason for using two functions.
Because the array is passed as a parameter to function Biobslze, a local copy copyof-
Grid is saved when Biobslze is first called. Only this local array is changed by func
tion Blob, not the actual array. If the counting operation were performed in function
Biobslze instead of in function Blob, eight copies of this array would be made each
time the recursive step was executed. Using the function Blob and the array that is glo
bal to all recursive calls of Blob (but still local to Biobslze) prevents the unnecessary
copying.

EXERCISES FOR SECTION 14.5

Self-Check

1. How many moves are needed to solve the six-disk problem?

2. Estimate the size of the largest Towers of Hanoi problem that could be solved
in less than one day. Assume that one disk can be moved each second.

3. Estimate the size of the largest Towers of Hanoi problem that could be solved
in less than one year. Assume that one disk can be moved each second.

4. Trace the execution of function Biobslze for the coordinate pairs (1,1) and (1,
2) in the sample grid.

5. Is the order of the two tests performed in function Biobslze critical? What
happens if we reverse them or combine them into a single condition?

Programming

1. Modify TestTower to read in a data value for N (the number of disks).
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CASE

14.6 Problem Solving: Recursive Searching

STUDY RECURSIVE BINARY SEARCH

In Section 9.10 we discussed one technique for searching an array, and we wrote a
function that returned the index of a target key in an array if the target was present. To
do this, it was necessary to compare array element keys to the target key, starting with
the first array element. The comparison process was terminated when the target key was
found or the end of the array was reached. We must make N comparisons to determine
that a target key is not in an array of N elements. On the average, we must make N/2
comparisons to locate a target key that is in the array. The number of comparisons is
directly proportional to the number of elements in the array, so we say that this search
method is 0(AO.

Often we want to search an array whose elements are arranged in order by key
field. We can take advantage of the fact that the array keys are in ascending order and
terminate the search when an array key greater than or equal to the target key is
reached. There is no need to look any further in the array; all other keys will also be
larger than the target key.

Both these search techniques are called sequential search because we examine the
array elements in sequence. The modified algorithm discussed above is a sequential
search of an ordered array. On the average, a sequential search of an ordered array
requires M2 comparisons to locate the target key or determine that it is not in the array;
so we still have an OiN) process.

The array searches described above are considered linear searches because their
execution time increases linearly (in direct proportion) with the number of array ele
ments. This can be a problem in searching very large arrays (for example, //> 1000).
Consequently, we often use the binary search algorithm described below for large
sorted arrays.

Problem Specification
Your employer has a directory of customers that she keeps in alphabetical order. Since
business has been vei7 good, this list has become too large to search efficiently using a
linear search. Write an improved search algonthm that takes advantage of the fact that
the array is sorted.

Analysis
The binary search algorithm takes advantage of the fact that the array is ordered to
eliminate half of the array elements with each probe into the array. Consequently, if the
array has 1000 elements, it will either locate the target value or eliminate 500 elements
with its first probe, 250 elements with its second probe, 125 elements with its third
probe, and so on. Only 10 probes are necessary to completely search an array of ICKX)
elements. (Why?) You can use the binary search algorithm to find a name in a large
metropolitan telephone directory using 30 or less probes, so this algorithm should be
suitable for your employer.
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The number of probes to completely search an iV-element array obviously varies
with the number of elements N. Can we find a formula for this variation? Because each

probe eliminates half the elements, the maximum number of probes is determined by
the number of times we can "cut the array in half before we are left with only one ele
ment.

Let's consider some values of N corresponding to powers of 2. If is 8 (2^), for
example, we first search an eight-element array, then a four-element array, then a
two-element array, and finally a one-element array. We cut the array three times. UN is
32 (2^), we cut the array five times; if N is 256 (2®), we cut the array 8 times; if N is
1024 (2*®), we cut it 10 times. Indeed, we make a maximum of only 16 cuts even if N is
32,768 (2^^)! If N is not an exact power of 2, the number of probes is determined by the
next higher power of 2: If N is 1000,1024, or 2^®, is the determining power of 2.

An equivalent way of saying "1024 is 2^®" is "10 is the logarithm, to the base 2, of
1024," or "log2 1024 = 10." The formula that we are looking for is that the number of
binary search probes into an array of N elements is log2 N. Another way of saying this
is that binary search is an 0(log2 N) algorithm. This is much faster than sequential
search, isn't it?

Now let's develop the binary search algorithm. Because the array is ordered, all we
have to do is compare the target key with the middle element of the subarray we are
searching. If their keys are the same, we are done. If the middle value is larger than the
target, we should search the left half of the array next; otherwise, we should search the
right half of the array.

The subarray to be searched, slice, has subscripts slice'First, .slice'Last.
The variable Middle is the subscript of the middle element in this range. The right half
of the array (subscripts Middle.. slice' Last) is eliminated by the first probe as shown
in Fig. 14.10. The new subarray to be searched is slice (Slice • First. .Middie-i), as
shown in Fig. 14.11. The target value, 35, is found on this probe.

The binary search algorithm can be stated clearly by using recursion. The stopping
cases are:

• The array has no elements (slice' First>siice' Last or slice' Length=o).

• The middle value is the target value.

Target

I  35 I

35 < 45 ,

20 35 37 40 45 50 51 55 67

First Middle Last

Figure 14.10 First Probe of Binary Search
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Target

35 = 35

20 35 37 40 45 50 51 55 67

I  t 1
First Middle Last

4

Figure 14.11 Second Probe of Binary Search

In the first case the function result is 0 (we'll require that arrays submitted to this
algorithm have positive subscript ranges); in the second case the function result is Mid
dle. The recursive step is to search the appropriate subarray.

Data Requirements

Problem Inputs
array to be searched (Slice : SearchArray)
target being searched for (Target : KeyType)

Problem Outputs
the location of Target, or 0 if not found

Algorithm
1. Compute the subscript of the middle element

2. IF the slice has zero length then

3. Return a result of 0

ELSiF the target is the middle value then

4. Return the subscript of the middle element

ELSIF the target is less than the middle value then

5. Search the subarray with subscripts slice • First. .Middie-i

ELSE

6. Search the subarray with subscripts Middie+i. .slice • Last

END IF;

In each of the recureive steps (steps 5 and 6), the bounds of the slice are listed as a
part of the actual table parameter in the recursive call. The actual parameters define the
search limits for the next probe into the array.
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Test Plan
You should test the binaiy search function very carefully. Besides verifying that it
locates target values that are present in the array, verify that they also determine when a
target value is missing. Use target values that are within the range of values stored in
the array, a target value that is less than the smallest value in the array, and a target
value that is greater than the largest value in the array. Make sure that the binary search
function terminates regardless of whether the target is missing or where it is located if it
is not missing.

Implementation
In the initial call to the recursive procedure, the entire array is normally given. For
example, given the following declarations:

SUBTYPE KeyType IS Integer;
TYPE SearchArray IS ARRAY(Positive RANGE <>) of KeyType;

Test: SearchArray(1..9);
Location: Natural;

the procedure call statement

Location := BinarySearch (Test, 35);

could be used to search an array Test for the target key 35. Function Binarysearch is
shown in Program 14.11.

The assignment statement

Middle := (Slice'First + Slice'Last) / 2;

computes the subscript of the middle element by finding the average of slice • First
and Slice'Last.

Program 14.11 A Test of Recursive Binary Search

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
PROCEDURE Test_Binary__Search IS

Test program for Recursive Binary Search
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE SearchArray IS ARRAY(Positive RANGE <>) OF Integer;
Test: SearchArray(1..9);

FUNCTION BinarySearch
(Slice: SearchArray; Target: Integer) RETURN Natural IS
— Performs a recursive binary search of an ordered array of
— keys with bounds Slice'First..Slice'Last.
— Pre : Target and Slice are defined.

0 < Slice'First <= Slice'Last

— Post: Returns the subscript of Target if found in array Slice;
otherwise, returns 0
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Middle : Natural; — the subscript of the middle element

BEGIN — BinarySearch

Middle := (Slice'First -i- Slice'Last) / 2; — define Middle

— Determine if Target is found or missing or redefine subarray.

IF Slice'Length = 0 THEN
RETURN 0; — stopping case: Target missing

ELSIF Slice(Middle) = Target THEN
RETURN Middle; — stopping case: Target found

ELSIF Slice(Middle) > Target THEN — search lower subarray
RETURN BinarySearch (Slice(Slice'First..Middle-1),Target);

ELSE — search upper subarray
RETURN BinarySearch (Slice(Middle+l..Slice'Last),Target);

END IF;

END BinarySearch;

BEGIN — Test_Binary_Search

Test := (20,35,37,40,45,50,51,55,67);

Ada.Text_IO.Put(Item => "BinarySearch(Test,35) is");
Ada.Integer__Text_IO.Put(Item => BinarySearch(Test,35));
Ada.Text_IoTNew_Line;
Ada.Text_IO.Put(Itern => "BinarySearch(Test,19) is");
Ada. Integer__Text_IO. Put (Item => BinarySearch (Test, 19));
Ada.Text_I07New_Line;
Ada.Text~IO.Putjltem => "BinarySearch(Test,75) is");
Ada.lnteger__Text_IO.Put(Item «> BinarySearch(Test,75));
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "BinaiT'Search(Test,20) is");
Ada.Integer_Text__IO.Put(Item => BinarySearch(Test,20));
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "BinarySearch(Test,67) is");
Ada.Integer_Text_IO.Put(Item => BinarySearch(Test,67));
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "BinarySearch(Test,54) is");
Ada.Integer_Text_IO.Put(Item => BinarySearch(Test,54));
Ada.Text_IO.Hew_Line;

END Test_Binary_Search;

Sample Run

BinarySearch(Test,35) is 2
BinarySearch(Test,19) is 0
BinarySearch(Test,75) is 0
BinarySearch(Test,20) is 1
BinarySearch(Test,67) is 9
BinarySearch(Test,54) is 0

The binary search function is written to return 0 if the target is not found. This
works only because we have required that the array bounds be positive, because other
wise, 0 could be a valid subscript. Binary search would be more general if it could
accept arrays with arbitrary integer bounds; in that case it would be better to convert the
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binary search function to a procedure with two out parameters: the index of the target if
found and a program flag indicating whether the target was found. This modification is
left as an exercise.

14.7 Tricks of the Trade: Debugging Recursive Subprograms

The most common problem with a recursive procedure or function is that it might not
terminate properly. For example, if the terminating condition is not correct or incom
plete, the procedure may call itself indefinitely or until all available memory is used up.
Normally, a "stack ovei^ow," or storage_Error exception, is an indicator that a recur
sive procedure is not terminating. Make sure that you identify all stopping cases and
provide a terminating condition for each one. Also be sure that each recursive step leads
to a situation that is closer to a stopping case and that repeated recursive calls will even
tually lead to stopping cases only.

Sometimes it is difficult to observe the result of a recursive procedure execution. If
each recursive call generates a large number of output lines and there are many recur
sive calls, the output will scroll down the screen more quickly than it can be read. On
most systems it is possible to stop the screen temporarily by pressing a control charac
ter sequence (e.g., controi-s). If this cannot be done, it is still possible to cause your
output to stop temporarily by displaying a prompting message followed by a
Ada.Text_io.Get(Nextchar)operation. Your program will resume execution when
you enter a data character.

CHAPTER REVIEW

This chapter provides many examples of recursive procedures and functions. Studying
them should give you some appreciation of the power of recursion as a problem-solving
and programming tool and should provide you with valuable insight regarding its use.
It may take some time to feel comfortable thinking in this new way about program
ming, but it is certainly worth the effort.

Quick-Check Exercises

1. Explain the use of a stack in recursion.

2. Which control statement do you always find in a recursive procedure or func
tion?

3. Why would a programmer conceptualize the problem solution using recursion
and implement it using iteration?

4. What causes a stack overflow error, indicated in Ada by storage_Error?

5. What can you say about a recursive algorithm that has the following form?
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IF condition THEN

Perform recursive step
END IF;

Answers to Quick-Check Exercises

1. The stack is used to hold all parameter and local variable values and the return
point for each execution of a recursive procedure.

2. IF statement.

3. When its solution is much easier to conceptualize using recursion but its im
plementation would be too inefficient.

4. Too many recursive calls.

5. Nothing is done when the stopping case is reached.

Review Questions for Chapter 14

1. Explain the nature of a recursive problem.

2. Discuss the efficiency of recursive procedures.

3. Differentiate between stopping cases and a terminating condition.

4. Convert the following program from an iterative process to a recursive func
tion that calculates an approximate value for e, the base of the natural loga
rithms, by summing the series

1 + 1/1!-H/2! + ...-f1W!

until additional terms do not affect the approximation.

PROCEDURE ELog IS

ENL; Float;

Delta: Float;

Fact: Float;

N: Float;

BEGIN — Elog

ENL := 1.0;

N := 1.0;

Fact := 1.0;

Delta := 1.0;

LOOP

ENL := ENL + Delta;

N := N + 1.0;

Fact := Fact * N;

Delta := 1.0 / Fact;

EXIT WHEN ENL = (ENL + Delta);
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Ada.Text_IO.Put(Item => "The value of e is ");
Ada. Float_Text__IO. Put
(Item => ENl7 Fore => 3, Aft => 15, Exp => 0);

END Elog;

Programming Projects

1. Give a recursive definition of the integer addition operation. Write and test a
recursive function to produce the sum of two integers. (Hint: Use the built-in
"+" operation only to add 1 to a number.)

2. Write a procedure that reads each row of an array as a string and converts it to
a row of Grid (see Fig. 14.9). The first character of row 1 corresponds to
Grid(1,1), the second character to Grid( i, 2), and so on. Set the element val
ue to Empty if the character is blank; otherwise, set it to Filled. The number of
rows in the array should be read first. Use this procedure in a program that
reads in cell coordinates and prints the number of cells in the blob containing
each coordinate pair.

3. The expression for computing C(n, r), the number of combinations of n items,
taken r at a time, is

C(n,r) =
r!(n-r)!

where ! means factorial. Write and test a function for computing C(«, r).

4. Write a recursive function that returns the value of the following recursive def
inition:

F{X,Y) = X-YifX or Y<0
F(X, Y) = Fix - 1, y) + Fix, T- 1) otherwise

5. Write a recursive procedure that lists all of the two-letter subsets for a given
set of letters. For example:

('A', 'C, 'E\ 'G') => ('A', 'O, CA', -E'), ('A', 'G'),
(•€', 'E'), CC, -G*), CE', 'G')

6. Write a procedure that accepts an 8 x 8 array of characters that represents a
maze. Each position can contain either an -x' or a blank. Starting at position
(1,1), list any path through the maze to get to location (8,8). Only horizontal
and vertical moves are allowed (no diagonal moves). If no path exists, write a
message indicating this. Moves can be made only to locations that contain a
blank. If an • x • is encountered, that path is blocked and another must be cho
sen. Use recursion.

7. We can use a merge technique to sort two arrays. The merge sort begins by
taking adjacent pairs of array values and ordering the values in each pair. It
then forms groups of four elements by merging adjacent pairs (first pair with
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Original
array

5 5 3 1

8 8 5 3

7 3 7 5

3 7 8 5

9 9 1 7

12 12 5 8

5 1 9 9

1 5 12 12

Ordered

pairs
Merged
pairs

Merged
quads

Figure 14.12 Merge Sort

second pair, third pair with fourth pair, and so on) into another array. It then
takes adjacent groups of four elements from this new array and merges them
back into the original array as groups of eight, and so on. The process termi
nates when a single group is formed that has the same number of elements as
the array. Figure 14.12 shows a merge sort for an array with eight elements.
Write a recursive merge sort procedure.

8. Improve the palindrome-finding program (Program 14.8) so that blanks and
punctuation are ignored and the program is case-insensitive. (Hinr. Use opera
tions from Ada.Characters .Handling to write a function that takes a string s
as a parameter and returns a string representing s with all letters converted to
uppercase, as well as blanks and punctuation removed. "Madam, I'm Adam"
would be converted to "madamimadam" . Use the result of calling this function
as the input to StringReverse.)

9. Modify Binary search into a procedure with two output parameters; the loca
tion of the key if found and a flag indicating whether or not the key was found.

10. Using the modified Binarysearch of Programming Project 8 as a starting
point, write a generic binary search procedure that can handle any array with
any nonlimited element type and any index type.
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Chapter Review

Dynamic data structures are data structures that expand and contract as a program exe
cutes. A dynamic data structure is a collection of elements—called nodes—that are
generally implemented as records. Whereas an array always contains storage for a fixed
number of elements, in a dynamic data structure the programmer can increase or reduce
the storage allocated, as elements are added to or deleted firom the structure.

Dynamic data structures are extremely flexible. It is relatively easy to add new
information by creating a new node and inserting it between two existing nodes. It is
also relatively easy to delete a node. In this chapter we introduce dynamic data struc
tures and a new kind of Ada type called an access type. Access types—often called
pointer types—are an essential part of using dynamic data structures.

Also introduced in this chapter are the stack and queue data structure, implemented
using linked lists.

15.1 Data Structures: Access Types and the NEW Operator

You know how to use arrays to store collections of data. You also know that it is possi
ble for each array element to be a record and have seen a number of examples of such
data structures. One characteristic of data collections is that they can vary in size con
siderably from one run of a program to the next or even during a run. In such cases, an
array is not the best structure in which to store the records, because the array size is
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fixed and therefore must be estimated before the records are read in. If only a few
records are present, much space is wasted. Worse, the array cannot expand to hold a
number of records greater than its size.

There is a solution to this problem, called dynamic data structures or linked data
structures. Using dynamic data structures, the programmer can increase or decrease the
allocated storage to add or delete data items in the collection. In languages like Ada that
provide built-in support for linked structures, the compiler associates with an execut
able program a special storage area, called the dynamic storage pool, or sometimes just
pool, which it initially leaves unassigned to any program variable. A system module
called the storage allocator is linked into the program and assumes responsibility for
allocating blocks of storage from the pool, and returning extra blocks to the pool, at
execution time. The pool is like a "storage account" from which a program can "bor
row" storage to expand a structure, returning the storage when it is no longer needed.
The storage allocator can then use that storage to satisfy another storage request from
the program.

A special kind of variable is provided for referencing space allocated dynamically
from the pool. In Ada these are called access variables; in other languages, such as Pas
cal and C, they are referred to as pointer variables. Ada allows us to declare access
types, and each access variable is an object of an access type. The values of each access
type are called access values or, informally, pomterj. A pointer or access value is an
abstraction for a hardware address but often does not have the same form.

Consider a record type called RecType, defined as

TYPE RecType IS RECORD

... fields ...

END RECORD;

The type definition

TYPE RecPointer IS ACCESS RecType;

gives us the ability to declare access variables of type RecPointer, that is, variables that
can designate, or hold pointers to, things of type RecType. For example, a declaration

PI, P2, P3: RecPointer;

allocates storage for three such variables.
When an access variable is created in Ada, its value is always initialized to a spe

cial, unique internal value known as null. This indicates that the pointer doesn't point
to anything (yet). It is important to realize that declaring such variables does not cause
any records to be allocated; each variable is given just enough space to hold the address
of a record.

How do the records themselves come into being? The Ada operator new creates
them. An assignment statement such as

Pi ;= NEW RecType;
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causes the storage ajlocator to search the pool, looking for a block of space large
enough to hold a record of type RecType. When such a block is found, an access value
designating (pointing to) this block is stored in the variable pi. Figure 15.1 shows dia-
grammatically how dynamic allocation works. The cloudlike shape represents the pool,
arrows represent pointers, and diagonal lines represent null.

INITIAL CONDITION

PI, P2, P3 : RecPointer

STORAGE POOL

0
0

PI : NEW RecType;

P3 : = PI;

PI : NEW RecType;

PI ; NEW RecType

PI

P2

P3

P1

P2

P3

P1

P2

P3

PI

P2

P3

Figure 15.1 Dynamic Allocation
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An access variable can acquire a value in only two ways: A value can be delivered
by a NEW operation, as above, or it can be copied from another access value. For exam
ple,

P3 := PI;

causes p3 to point to the same record to which pi points. An assignment statement to an
access varicAle copies only an access value; it does not copy the designated value!

If we write

PI := NEW RecType;

a second time, space for another record is found in the pool, its address is stored in pi,
and P3 is left pointing to the "old" record. If we write

PI := NEW RecType;

a third time, the record previously pointed to by pi is left with nothing pointing to it,
thus making it inaccessible. This space, in general, remains allocated and unavailable
for other use. This simation is often called, picturesquely, a "storage leak," because the
storage "leaks away" and can no longer be used. We will return to this subject later in
the chapter.

Creating a Linked Structure

Much of the usefulness of dynamic allocation comes from our ability to link together
blocks in the storage pool. When we do this, we refer to the result as a linked structure,
and to the linked blocks as nodes (sometimes called cells). One very common linked
strucmre is the singly linked list, in which each node is connected to the next node by a
single pointer. This is analogous to the links in a chain. If you have ever constructed a
chain of paper clips, in which you repeatedly add a clip to the end of the chain, you've
made a physical singly linked list.

We can connect two nodes if we include a pointer field in each node. The declara
tions

TYPE ElectricityType IS (DC, AC);

TYPE Node;

TYPE NodePointer IS ACCESS Node;
TYPE Node IS RECORD

Power : ElectricityType;
Volts : Natural;

Next : NodePointer;

END RECORD;

identify NodePointer as a pointer type. A pointer variable of type NodePointer points
to a record of type Node wi^ three fields: Power, volts, and Next. The Next field is also
of type NodePointer.
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Note that the first declaration of Node is incomplete; it just mentions the name
Node without filling in the details. This device is used to inform the compiler of the
existence of the type Node so that the next type definition can use it. Using an incom
plete type definition meets Ada's requirement that types must be defined before they
can be used.

Now let us declare some pointer variables:

P : NodePointer;
Q : NodePointer;
R : NodePointer;

As in the previous example, p, q, and r are automatically given initial null values. The
assignment statements

P := NEW Node;
Q :=> NEW Node;

allocate storage for two records of type Node, storing their addresses in p and q. Initially
the Power and volts fields of these records are as yet undefined; the Next fields of both
are initially null. Pointer initialization is one of the few cases in Ada in which objects
are automatically given initial values at declaration.

In Ada terminology a nonnull access object designates (points to) a value. The
block of space that p points to is p's designated value. We can refer to the designated
value of p using the expression p.all, and to the Power field of p. all by the expression
p.ALL.Power. The assignment statements

p.ALL.Power ;= AC;

P.ALL.Volts := 115;
Q.ALL.Power DC;

Q.ALL.Volts ;= 12;

define the nonlink fields of these nodes, as shown in Fig. 15.2. Here and in later figures
we have left out the cloud symbol for simplicity. The Next fields are still null.

The .ALL construct is the way Ada represents a dereferencing operation, that is, an
operation to find that value to which a pointer points. To simplify the syntax necessary
to select a field of a designated value, Ada allows us to omit the .all part and just
select the field directly. Therefore the following four assignment statements are equiva
lent to the ones just given: We will use the abbreviated form throughout this chapter.
Because p is an access variable, we can read the expression p.Power as "find the value
designated by p and select its Power field."

Power Volts Next

AC 115

Q Power Volts Next

DC 12

Figure 15.2 Nodes PALL and QALL
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Power Volts Next

AC 115

Power Volts Next

DC 12

Figure 15.3 Nodes R.ALL/P.ALL and Q.ALL

p.Power := AC;

P.Volts := 115;

Q.Power != DC;

Q.Volts := 12;

Let us do some more pointer manipulation. The assignment statement

R := P;

copies the value of pointer variable p into pointer variable r. This means that pointers p
and R contain the same access value and, therefore, point to the same node, as shown in
Fig. 15.3.

The pointer assignment statements

P := Q;

Q := R;

have the effect of exchanging the nodes pointed to by p and q, as shown in Fig. 15.4.
The statements

Electricity_IO.Put(Item => Q.Power, Width => 4);
Electricity~IO.Put(Item => P.Power, Width =>4);

display the Power fields of the records designated by q and p.

Power Volts Next

Power Volts Next

DC 12

Figure 15.4 Nodes R.ALL/Q,ALL and PALL
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Power Volts Next

AC 115

p Power volts Next

DC 12

Power Volts Next

•> ?

Figure 15.5 Nodes R.ALL, PALL, and QALL

For the situation depicted in Fig 15.4 the line

AC DC

would be displayed. (As usual, we assume that Electricity_io is an instance of
Ada. Text_IO. Enumerat ion_IO.)

The statement

Q  NEW Node;

changes the value of q to designate a new node, thereby disconnecting q from its previ
ous node. The new values of pointer variables p, q, and r are shown in Fig. 15.5. The
data fields of the new node designated by q are, of course, initially undefined.

It is important to understand the difference between p and p's designated value, p is
an access variable (type NodePointer) and is used to store the address of a data struc
ture of type Node, p can be assigned a new value either by calling new or by copying
another access value of the same type, p. all is the pool-allocated record designated by
p and can be manipulated like any other Ada record. The field selectors p.power and
p.Volts may be used to reference data (in this case an enumeration value and an inte
ger) stored in this record.

Connecting Nodes

Now we can grow data structures of varying size by connecting nodes together in a sin
gly linked list. If we look at the nodes allocated in the last section, we see that their
Next fields are currently null. Since the link fields are type NodePointer, they can
themselves be used to designate values. The assignment statement

R.Next := P;

copies the value stored in p (an access value) into the Next field of node r. all. In this
way, nodes r and p become connected. Similarly, the assignment statement

P.Next Q;
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Power Volts Next

R.Next

Power Volts Next

Power Volts Next

AC 115

DC

1- P;

!= Q;

Figure 15.6 Connecting Nodes R.ALL, P.ALL, and Q.ALL

copies the access value stored in access variable q into the link field of node p.all,
thereby connecting nodes p and q. The situation after execution of these two assign
ment statements is shown in Fig. 15.6.

The data structure pointed to by r has now grown to form a chain of all three nodes.
The first node is referenced by r.all. The second node can be referenced by p.all or
R.ALL.Next.ALL, sincc they both have the same value. Finally, the third node may be
referenced by q . all or p. all .Next. all or even r . all .Next. all .Next. all.

Summary of Operations on Access Values

Let us summarize the operations available for access values. Access types are actually
similar to private types. Given types

TYPE Something IS ... ;
TYPE PointerToSomething IS ACCESS Something;

if PI and p2 are variables of type PointerToSomething and s is a variable of type
Something, the available operations are allocation, for example,

PI !» NEW Something;

which allocates a block of type something, returning to pi an access value designating
the new block; assignment, for example,

P2 ;= PI;

which copies the access value from pi to p2; dereferencing, for example,

S  ;= PI.ALL;

which copies the value designated by pi into s; and equality/inequality, for example,

IF PI = P2 THEN ...
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which is True if and only if pi and P2 are equal. Be sure you understand the difference
between the line above and

IF PI.ALL = P2.ALL THEN ...

which compares the designated values.
You may be aware that in some other programming languages, especially C, other

operations, for example, incrementation and decrementation, are available for pointer
values. These operations are not available in Ada.

Returning Dynamic Storage to the Pool

In Fig. 15.1 we allocated a block of storage from the pool but later caused its pointer to
point elsewhere (see the last two diagrams in Fig. 15.1). Because no other access value
designated it, the block became inaccessible. What happens to a inaccessible block?

In theory the Ada storage allocator could include a module that automatically keeps
track of inaccessible blocks and makes them available to be reallocated. Such a module
is often called a garbage collector because it keeps track of discarded memory blocks.
Garbage collectors are provided in some languages, such as Lisp, Snobol, and Java, but
are very rarely included in Ada systems. This is because Ada was designed for use in
real-time systems in which program timing is very important. Garbage collection is a
complex process whose time performance can be unpredictable because it depends on
how badly fragmented the storage pool is. For this reason, many Ada users prefer not to
have a garbage collector, and therefore compiler implementers usually do not provide
it.

An Ada program that continually allocates blocks, then discards them just by mak
ing them inaccessible, could well run out of pool storage at some point in operation.
Because an Ada system is unlikely to provide an automatic garbage collector, the pro
grammer is responsible for recycling the garbage. Ada provides a standard operation,
unchecked_Deaiiocation, to return dynamically allocated storage to the pool. This is
a generic procedure, with the specification

GENERIC

TYPE Object IS LIMITED PRIVATE;
TYPE Name IS ACCESS Object;

PROCEDURE Unchecked_Deallocation (X: IN OUT Name);

To use this procedure, it must be wiTH-ed in a context clause and instantiated by using
the access type and the designated type as actual parameters. For example,

PROCEDURE Dispose IS
NEW Unchecked_Deallocation (Object => Node, Name => NodePointer);

creates an instance for the types used in this section, and the procedure call statement

Dispose (X => P);

will return p's designated block to the pool. Paraphrasing the Ada standard, we describe
this operation as follows:
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• After executing the Dispose call, the value of p is null.

• If p is already null, the call has no effect (in particular, it is not an error).

• If p is not NULL, then the call indicates that p. all is no longer needed and may be
returned to the pool.

Because we can copy access values, the situation can arise in which more than one
access value designates the same block of storage. This situation is known as aliasing.
For this reason we must be careful when returning storage to the pool. Errors will result
if the block returned is later referenced by another access value that still designates
them; indeed, the Ada standard says specifically that the effect of doing so is unpredict
able. Suppose p designates a node. If we write

Q := P;
Dispose(X => P);

then the cells designated by p are returned to the pool and the meaning of q.all is
unpredictable. In this situation, a variable like q is usually called a dangling pointer. It
is important to be sure that there is no need for a particular block before returning the
storage occupied by it. Also, we must be careful when coding not to create dangling
pointers; these lead to execution errors that will not always give rise to nice Ada excep
tions.

Running Out of Dynamic Storage?

It is possible to exhaust the supply of cells in the pool. If this happens in Ada, the stor
age ̂locator raises the predefined exception storage__Error.

Normally, we can assume that enough memory cells are available in the pool. How
ever, in writing large programs that create sizable dynamic data structures, it is advis
able to code an exception handler for storage_Error in the part of the program that
does the allocation. Later in the chapter we will discuss some methods for avoiding
unnecessary calls to the allocator.

PROGRAM

STYLE
Programs Should Clean Up after Themselves

When a program that allocates memory dynamically ends, generally the operat
ing system will release all the memory that program used, including the dynamic
memory. However, this is not always the case: In some environments, dynamic
memory is taken from a systemwide storage pool, often called the system heap.
In such a situation, if a program does not deallocate all its dynamic memory
before it ends, that memory remains inaccessible to other programs. It is there
fore good programming practice for programs always to deallocate any dynamic
memory they have allocated.
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EXERCISES FOR SECTION 15.1

Self-Check

For Fig. 15.6, indicate whether each assignment statement is legal, and explain
the effect of each legal one.

a. R.ALL.Power := "CA";

b. P.ALL i- R.ALL;

C. P.ALL.Power := "HT";

d. P := 54;

e. R.ALL.Next.ALL.Volts

f. P := R;

g. R.ALL.Next.ALL.Next.ALL.Power

h. Q.ALL.Volts := R.ALL.Volts;

The assignment statements

0;

"XY";

R ;= P;

P ;= Q;

Q := R?

are used to exchange the values of pointer variables r and q (type NodePoint-
er). What do the following assignment statements do?

R.Power := P.Power;

P.Power ;= Q.Power;
Q.Power ;= R.Power;

15.2 Data Structures: Linked Lists and Their Operations

A linked list is a sequence of list elements or nodes in which each node is linked or con
nected to the node following it. A linked list with three nodes follows:

Ll Hat Boy Cat

Each node in this list has two fields: The first field contains data, and the second
field is a pointer to the next node. There is a pointer (Head) to the first node or list head.
The last node always has a null pointer value, indicated as usual by a diagonal line.
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Lists are an important data structure because they can be modified easily, regardless
of how many elements may be in the list. For example, a new node containing the string
"Bye" can be inserted between the strings "Boy and "Cat" by changing only one
pointer value (the one from "Boy") and setting the pointer from the new node to point to
"Cat";

Ll Hat Boy Bye Cat

Similarly, it is easy to delete a list element. Only one pointer value has to be
changed—the pointer that currently points to the element being deleted. For example,
we can delete the string "Boy" from the previous linked list by changing the pointer
from the node "Ace". The node containing string "Boy" is effectively disconnected
from the list since there is no longer a pointer to it. The new list consists of the strings
"Hat","Bye","Cat":

Ll Hat Boy •— -*■ Bye cat 1^

In Section 15.1 we saw how to connect three nodes with pointer fields. The data
structure shown in Fig. 15.6 could be considered a list of three nodes with pointer vari
able R as the pointer to its head. Each node has two data fields (power and volts) and
one pointer field (Next). The pointer value null is once again drawn as a diagonal line:

AC 115 DC 12 ? ?

Some linked List Operations
This section and the ones that follow will treat some common list-processing opera
tions and describe how they are implemented using access types and variables. We will
start out with a simple package specification shown in Program 15.1.

Program 15.1 Specification for Linked List Package

PACKAGE Linked_Lists IS

I  SpGcification for simple linked lists with a single pointer
—1 Author; Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

SUBTYPE WordType IS String(1..3);

TYPE List IS PRIVATE;

PROCEDURE AddToFront (L: IN OUT List; Word: IN WordType);
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— Pre: Word is defined; L may be empty
— Post: Word is inserted at the beginning of L

PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType);
— Pre: Word is defined; L may be empty
— Post: Word is appended to the end of L

FUNCTION Copy (L: IN List) RETURN List;
— Pre: L may be empty
— Post: returns a complete copy of the list L

PROCEDURE Display (L: IN List);
— Pre: L may be empty
— Post: displays the contents of L's Word fields, in the

order in which they appear in L

PRIVATE

TYPE ListNode;
TYPE List IS ACCESS ListNode;
TYPE ListNode IS RECORD

Word: WordType :» "###";
Next: List;

END RECORD;

END Linked_Lists;

This package provides a PRIVATE type List:

SUBTYPE WordType IS String(1..3);
TYPE List IS PRIVATE;

The type declarations in the PRIVATE part are as follows:

TYPE ListNode;
TYPE List IS ACCESS ListNode;
TYPE ListNode IS RECORD

Word: WordType ;= "###";
Next: List;

END RECORD;

The package provides four operations:

• AddToFront, which adds a new node to the beginning of a list,

• Display, which displays all the values in the list, in the order in which the nodes
occur,

• AddToEnd, which adds a new value to a list by first storing the value in a node, then
connecting this node to the end of the list, and

• Copy, which returns a complete copy of the list.
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Given a list li as follows:

Ll Hat Boy Cat

the statement

Display(Ll);

displays

Hat...Boy...Cat...

and the statement

AddToEnd(Ll, "Dog");

changes li as follows:

Ll Hat Boy Cat

Program 15.2 is an illustration of these linked list operations.

Program 15.2 A Demonstration of the Linked List Package

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Linked_Lists; USE Linked_Lists;
PROCEDURE Test_ListS IS

Illustrates the singly linked list package operations
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

Ll: List;

L2: List;

BEGIN — Test__Lists

— first test the traverse and copy operations for empty list

Ada.Text_I0.Put_Line(Item => " ");
Display(Ll);
Ada.Text_I0.New_Line;
L2 := Copy(Ll);
Display(L2);
Ada.Text_I0.New_Line;
Ada. Text_I0. Put_Line (I tern => " " );

— add to end of empty list

AddToEnd(Ll, "Hat");
Display(Ll);
Ada.Text 10.New Line;
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L2 := Copy(Ll);
Display(L2);
Ada.Text_IO.New_Line;
Ada. Text_IO. Put_Line (I tern => " " );

— add to end of nonempty list

AddToEnd(Li, "Boy");
Display(LI);
Ada.Text_IO.New_Line;
Ada. Text_IO. Put_Line (Item => " — " );

— add again to end of nonempty list

AddToEnd(LI, "Cat");
Display(LI);
Ada.Text_IO.New_Line;
Ada. Text_lO. Put_Line (Item => " ");

— add to front of nonempty list and copy result

AddToFront(LI, "Top");
Display(LI);
Ada.Text_IO.New_Line;
L2 := Copy(LI);
Display(L2);
Ada.Text_IO.New_Line;
Ada.Text~lO.Put_Line(Item => " •■);

END Test__Lists;

Sample Run

Hat...
Hat...

Hat...Boy...

Hat...Boy...Cat...

Top.. .Hat Boy Cat...
Top...Hat...Boy...Cat...

Program 15.3 gives the body of the package. To show the bodies of the various
operations as separate programs, we have used Ada subunits. Subunits provide a way to
write the subprograms of a package as a collection of separate files. In the package
body we indicate by the words is separate that each procedure or function body is
given in a separate We.

Program 15.3 Body of Linked List Package

WITH Ada.Text_10;
PACKAGE BODY Linked Lists IS
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Skeleton of package body for singly-linked lists;
the operations are provided as subunits of the package.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PROCEDURE AddToPront (L: IN OUT List; Word: IN WordType) IS SEPARATE;

PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS SEPARATE;

FUNCTION Copy (L: IN List) RETURN List IS SEPARATE;

PROCEDURE Display (L: IN List) IS SEPARATE;

END Linked_Lists;

We are now ready to examine how the various linked list operations are imple
mented. For absolute clarity in this set of program illustrations we include the explicit
dereferencing operations (the .alls). Be certain that you understand exactly how each
operation works before moving to the next.

Program 15.4 shows the implementation of AddToFront. We need to indicate to the
Ada compiler that this procedure is indeed the subunit referred to in the package body.
The first line of the program,

SEPARATE (Linked_Lists)

accomplishes this.

Program 15.4 Implementation of AddToFront

SEPARATE (Linked_Lists)
PROCEDURE AddToFront (L: IN OUT List; Word: IN WordType) IS

— I subunit of singly linked list package
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: September 1998

Temp: List;

BEGIN — AddToFront

Temp := NEW ListNode;
Temp.ALL.Word := Word;
Temp.ALL.Next := L;
L := Temp;

END AddToFront;

This procedure is simple and straightforward, but one must be very careful, in writ
ing operations like this, to get the order of statements exactly right:

1. Allocate a new node, returning an access value in Temp.

2. Store the word value in the new node.
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3. Copy the access value in l—pointing to the first node in the list, if any—to the
Next field of our new node.

4. Copy Temp's value back into l, which makes l point to the new first node.

Suppose we wrote these statements in the wrong order, for example, we copied
Temp to L before copying l to Temp. This would overwrite l's old value, and we'd lose
access to the entire list!

In writing linked list operations, one must always ask whether the operation
behaves properly if its list parameter is empty. In this case, if l is initially empty, its
NULL value is copied into the Next field of the new node, and all is well.

In the next two sections we implement the remaining three operations, first recur
sively and then iteratively.

SYNTAX

DISPLAY
Subunit Stub

Form:

SEPARATE(Pac/rage Name)
PROCEDURE ̂ (Parameters) IS ...

SEPARATE(Pac/cage Name)
FUNCTION F (Parameters) RETURN ReturnType IS ...

Example:

SEPARATE(Singly_Linked_Li3t3)
PROCEDURE AddToFront(L; IN OUT List; Word: IN WordType) IS ...

Interpretation:

A subunit is a separate file containing a procedure or function that was given as a
subunit stub in an earlier package body.

Note:

The line beginning with separate does not end with a semicolon.

Recursive implementations of Linked List Operations

Linked lists are sometimes called recursive data structures because each node contains
a pointer to a node of the same type, which is a bit like a recursive procedure containing
a call to the same procedure. Indeed, linked list operations can be easily implemented
as recursive subprograms.

Program 15.5 gives the implementation of Display.

Program 15.5 Recursive Implementation of Linked List Display

SEPARATE (Linked_Lists)
PROCEDURE Display(L: IN List) IS

Recursive implementation of Display
subunit of singly linked list package
Author: Michael B. Feldman, The George Washington University
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— \ Last Modified: September 1998

BEGIN — Display

IF L = NULL THEN

RETURN; — Stopping case
ELSE

Ada.Text_IO.Put(Item => L.ALL.Word);
Ada.Text_IO.Put(Item =>

Display(L => L.ALL.Next); — recursion
END IF;

END Display;

Note carefully that like every recursive subprogram, Display has a stopping case,
namely, the end of the list is reached when a null link is encountered. If the link is not
NULL, we are not yet at the end of the list, so we display the value in the node, then
invoke Display recursively for a smaller set of the data, that is, the remainder of the list
following the first node.

Program 15.6 shows the recursive implementation of AddToEnd.

Program 15.6 Recursive Implementation of AddToEnd

SEPARATE (Linked_Lists)
PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS

Recursive implementation of AddToEnd
subunit of singly linked list package
Author; Michael B. Feldman, The George Washington University
Last Modified: September 1998

BEGIN

IF L = NULL THEN

L := NEW ListNode'(Word,NULL); — stopping case
ELSE

AddToEnd(L.ALL.Next, Word); — recursive case
END IF;

END AddToEnd;

Note again that it has the required stopping case, namely, that its parameter is null.
In this stopping case, the in out parameter representing the list is simply made to point
to a new list node containing the desired word. The syntax of the line

L := NEW ListNode'(Word,NULL);

warrants explanation. Here we are calling new and plugging in the fields of the newly
allocated block with a record aggregate (Word,null). The apostrophe preceding the
aggregate it is required; the construct

ListNode'(Word,NULL)
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is called a qualified aggregate.
Returning to Program 15.6, if we are not at the stopping case, that is, not yet at the

end of the list, we make a recursive call of AddToEnd, which attempts to add the new
value to the end of a list that is shorter by one node.

Now consider the copy operation. You might think that copy is a very simple,
almost trivial operation. Suppose we implemented copy with the following body;

SEPARATE (Linked_Lists)
FUNCTION Copy(L: IN List) RETURN List IS
BEGIN

RETURN L;

END Copy;

Would a client program with the line

L2 ;= Copy(Ll);

receive a correct result in l2? No indeed! Simply copying the access value in li does
not copy the list—it copies only the pointer to the beginning of the list! The result
would be that li and l2 would both point to the same node. This is called a shallow
copy. Now suppose a modification is made to li, for example, a new node is added to
its end. Since l2 points to the same list, changing the list headed by li would also
change the list headed by l2 because they are exactly the same list.

This is not what "copying" a value usually means in programming. If you copy an
array a into another one a of the same type, a and b are distinct, and changing a value in
A does not change a at all. To get a faithful copy of a list, we must copy the entire list,
that is, the word in each node of the original must be copied to a newly allocated node
of the result. l2 will be a deep copy of li.

Program 15.7 shows a recursive implementation of copy. In the stopping case the
parameter is null, so we just return that value. If the parameter is nonnull, the result of
the recursive call is a node whose word value is copied from the original and whose
link is a pointer to a copy of the remainder of the original.

Program 15.7 Recursive Implementation of Copy

SEPARATE (Linked_Lists)
FUNCTION Copy(L: IN List) RETURN List IS

— I Recursive implementation of Copy
— I subunit of singly linked list package

I Author: Michael B. Feldman/ The George Washington University
— I Last Modified; September 1998

BEGIN

IF L = NULL THEN

RETURN NULL; — stopping case
ELSE

RETURN —. recursive case

NEW ListNode'(L.ALL.Word, Copy(L.ALL.Next));
END IF;
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END Copy;

If you are having any trouble understanding this, there is nothing more effective
than pretending you are the copy function and drawing a picture of the input list and the
result list as it is constructed at each level of recursion.

It is still possible with our package to write, for two lists li and l2, a statement like

L2 := LI;

This is very misleading because it implies that the list is copied, whereas in fact only
the pointer to the first node is copied. Indeed, modifying a node in the list pointed to by
L2 will also modify that node in the list pointed to by li because the two pointers point
to the same list! In Section 15.5 we will present an approach using limited private
types that prohibits a package user of a package from writing such a misleading copy
operation.

Iterative Implementation of Linked List Operations

Recursively implemented linked list operations are clean and sometimes even elegantly
simple. On the other hand, in most real applications of linked lists, iterative operations
are used, so we show iterative versions in this section. The price we pay for eliminating
the recursion is that the iterative versions are often more complicated, and sometimes
more difficult to understand, than their recursive counterparts.

Program 15.8 shows an iterative version of AddToEnd.

Program 15.8 Iterative Implementation of AddToEnd

SEPARATE (Linked_Lists)
PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS

Iterative implementation of AddToEnd
we must do a linear search to find the end of the list
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

Current; List; — designates each node of input list in turn

BEGIN — AddToEnd

IF L = NULL THEN

L := NEW ListNode'(Word,NULL);

ELSE

-1- initialize the loop
Current ;= L;

— search until the end
WHILE Current.ALL.Next /= NULL LOOP
Current ;= Current.ALL.Next;

END LOOP;
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— we found the end; Current designates last node
— so attach a new node to the node Current designates
Current.ALL.Next := NEW ListNode'(Word, NULL);

END IF;

END AddToEnd;

Iterative list operations generally consist of a main while loop and, in fact, are gen
erally quite similar to many array algorithms. Recall from Chapter 7 that every while
loop must contain three distinct features:

• Initialization, which appears before the while

• A condition, given in the while statement itself, for continuing the loop

• Incrementation, in which some variable is modified to keep the loop moving for
ward toward completion

These three features are present in Program 15.8: A pointer current, declared to
serve as the loop variable, is initialized by

Current := L;

which sets Current to point to the beginning of the list. The test to continue the loop is

while Current.all.Next /= NULL LOOP

because, after the loop is finished, we need current not to be null but rather to be
pointing to the last node of the list. This is so that we can connect the new node to the
last node's Next field. This is accomplished by the statement

Current.ALL.Link ;= NEW ListNode•(Word, NULL);

Finally, the incrementation step is

Current ;= Current.ALL.Next;

in which current is dereferenced and set to the Next value in the designated node.
Program 15.8 contains a special case to see whether the head pointer l itself needs

to be modified; this will happen only if l is initially empty. Assuming that l is non
empty, we have another while loop, with current initialized as in Display to the start
of the list. In this case the loop body consists only of the incrementation step because
we are simply searching to find the end of the list.

To be certain you understand AddToEnd, practice tracing its execution. Draw a
pointer variable current and move it down the list during each loop iteration. Start
with the following list and add "Art" to its end:

Li Hat Boy Cat
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EXERCISES FOR SECTION 15.2

Programming

1. Write procedure Display as an iterative procedure.

2. Write an iterative version of the function copy.

3. Write a recursive function that returns the length of a list, that is, the number of
nodes in the list.

4. Write a recursive function that finds the length of a list.

15.3 Data Structures: Linked Lists with Head and Tail Pointers

The operations AddToFront and AddToEnd are two of the most common and important
list operations. We have seen that AddToFront is very simple: A node is allocated and a
few values are copied. On the other hand, we saw in the previous section that AddToEnd
must search the entire list in order to find the last node.

We can make AddToEnd independent of the list length by making a very simple
change to our data structures: Keep track of the last node by building in a pointer to it.
All we need to do is change the declarations in the private part to

TYPE ListNode;

TYPE ListPtr IS ACCESS ListNodej
TYPE ListNode IS RECORD

Word: WordType := "###";
Next: ListPtr;

END RECORD;

TYPE List IS

Bead: ListPtr;

Tail: ListPtr;

END RECORD;

This introduces a new type ListPtr, which serves the role of our former List type,
and also changes our List type fi-om a simple pointer into a header record containing
two pointers, one to the head of the list and one to the tail. This gives a list like the fol
lowing:

Ll Hat Boy Cat Dog
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The various operations must be modified to reflect the changed data structures. The
key change is to AddToEnd, which is shown as Program 15.9. Note that the while loop
or recursive call is gone; no search is necessary because we know immediately where
the last node is. This is a very good example of how a small change to a data structure
can result in a large change in performance. Here we have used a bit more space for the
extra pointer but have eliminated the list search.

Program 15.9 AddToEnd with Head and Tail Pointers

SEPAEIATE (Linked_Lists)
PROCEDURE AddToEnd (L: IN OUT List; Word: IN WordType) IS

— I AddToEnd using head and tail pointers
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

BEGIN ~ AddToEnd

IF L.Head = NULL THEN

L.Head := NEW ListNode'(Word,NULL);
L.Tail := L.Head;

ELSE — L.Tail points to a node; new node goes after it

L.Tail.ALL.Next NEW ListNode'(Word,NULL);
L.Tail :- L.Tail.ALL.Next;

END IF;

END AddToEnd;

EXERCISES FOR SECTION 15.3

Programming

1. Modify the list package of Section 15.3 to implement a list as a record contain
ing head and tail pointers.

15.4 Problem Solving: Ordered Insertions in Linked Lists

A linked list is often used as an implementation for an ordered sequence of elements
which appear in order according to some key. This can be thought of as a linked list
analogy to a sorted array. It is therefore important to understand how to insert a new
value into a linked list that is already sorted.
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The insertion process has four distinct cases:

1. An inserted node is the first one to be added to an empty list.

2. The inserted node's key is less than those of all others in the list; therefore the
node goes at the beginning of a nonempty list.

3. The key is greater than all the others; therefore the node goes at the end of the
list.

4. The key lies between two others; therefore the node goes in the middle of the
list somewhere.

For the list representation we have been using, these four cases are illustrated in
Fig. 15.7. A iterative procedure insertinorder is shown as Program 15.10. We leave it
to you to develop a recursive version, which you will find to be a much simpler proce
dure.

Ll

Initial Condition

Case 1 .□
lnsertlnOrder(Ll, "Hat")

Ll

Hat

Case 2:D
XnsertlnOrder(Ll,

Ll

Ago Hat

Case 3'D
InsertlnOrderiLl, "Toy")

Ll

Ago Hat Toy

Case 4:D
InsertlnOrder(Ll, "Lab")

Ll

Ago Hat Lab Toy

Figure 15.7 Ordered Insertion in Linked List
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Program 15.10 Ordered Linked List Insertion

SEPARATE (Linked_Lists)
PROCEDURE InsertlnOrder (L: IN OUT List; Word: IN WordType) IS

— I Iterative implementation of InsertlnOrder;
— I if Word already in list, second occurrence must follow first one
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

Current: ListPtr; — designates each node of input list in turn
Previous: ListPtr; — trailer - one node behind Current
Temp: ListPtr; — holds pointer to newly allocated node

BEGIN ~ InsertlnOrder

IF L.Head = NULL THEN -- case (1)
AddToFront (L, Word);

ELSIF Word < L.Head.ALL.Word THEN — case (2)
AddToFront (L, Word);

ELSIF Word >= L.Tail.ALL.Word THEN — case (3)
AddToEnd (L, Word);

ELSE — case (4)

— at this point, we know L not empty and
— first word <= Word < last word

Temp

Previous

Current

= NEW ListNode'(Word, NULL);
= L.Head; — first node

= Previous.ALL.Next; — second node, if any

WHILE Word >= Current.ALL.Word LOOP

Previous := Current;
Current := Current.ALL.Next;

END LOOP;

— assert: Previous.ALL.Word <=» Word < Current.ALL.Word

— insert new node between Previous and Current
Temp.ALL.Next := Current;

Previous.ALL.Next := Temp;

END IF;

END InsertlnOrder;

Notice how the each of the four cases is handled; only case 4 requires a search
through the list. Note also that two pointers are used to search the list because the new
node is inserted between two others, in this case those designated by previous and
Current, respectively. Make sure you understand exactly how the procedure operates
by tracing its actions on the example cases shown in the figure. This succession of calls
to InsertlnOrder builds and maintains a sorted list.
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EXERCISES FOR SECTION 15.4

Programming

1. Write a recursive version of insertinorder.

15.5 System Structures: A Generic Version of the Linked List
Package

We now build a generic version of our list package so that the element type is not
restricted to three-character strings. The specification for Lists_Generic is given as
Program 15.11.

Program 15.11 Generic Linked List Package

GENERIC

TYPE ElementType IS PRIVATE;
WITH PROCEDURE DisplayElement (Item: IN ElementType);

PACKAGE Lists_Generic IS

Specification for generic singly-linked lists
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE List IS LIMITED PRIVATE;

ListEmpty: EXCEPTION;

PROCEDURE MakeEmpty (L : IN OUT List);
— Pre: L is defined

— Post: L is empty

FUNCTION isEmpty (L : IN List) RETURN Boolean;
— Pre: L is defined
— Post: returns True if L is empty, False otherwise

PROCEDURE AddToFront (L: IN OUT List; Element: IN ElementType);
— Pre: Element is defined; L may be empty
— Post: Element is inserted at the beginning of L

FUNCTION RetrieveFront (L: IN List) RETURN ElementType;
— Pre: L is defined; L may be empty
— Post: returns a complete copy of the list L

Raises: ListEmpty if the list is empty before the retrieval

PROCEDURE RemoveFront (L: IN OUT List);
— Pre: L is defined; L may be empty
— Post: The first node of L is removed
— Raises: ListEmpty if the list is empty before the removal
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PROCEDURE AddToEnd (L: ZN OUT List; Element: IN ElementType);
— Pre: Element is defined; L may be empty
— Post: Element is appended to the end of L

PROCEDURE Copy (Target: OUT List; Source; IN List);
— Pre: Source may be empty
— Post: Returns a complete copy of Source in Target

PROCEDURE Display (L: IN List);
— Pre: L may be empty
— Post: displays the contents of L's Element fields, in the

order in which they appear in L

PRIVATE

TYPE ListNode;
TYPE ListPtr IS ACCESS ListNode;
TYPE ListNode IS RECORD

Element: ElementType;
Next: ListPtr;

END RECORD;

TYPE List IS RECORD

Head: ListPtr;
Tail: ListPtr;

END RECORD;

END Lists_Generic;

The generic parameters are ElementType, the element to be contained in each list
node, and DispiayEiement. The latter parameter is needed because the Display opera
tion needs to know exactly how to display each element of the list. It cannot simply call
Ada.Text_io.Put as in the nongeneric version because the element type is not neces
sarily a string. For example, if we had

SUBTYPE NameType IS String (1..20);

we could instantiate the package as

PACKAGE NameLists IS

NEW Lists_Generic
(ElementType => NameType, DispiayEiement => Ada.Text lO.Put);

Of course, this would display all the names on the list on a single line. To tailor the
DispiayEiement operation better, we could write, in our client program,

PROCEDURE DisplayName (Item: NameType) IS
BEGIN

Ada.Text_IO.Put (Item => Item) ;
Ada.Text_IO.New_Line;

END DisplayName;

and instantiate the list package as

PACKAGE NameLists IS

NEW Lists_Generic
(ElementType => NameType, DispiayEiement => DisplayName);



658 Access Types and Dynamic Data Structures

Similarly, if EiementType were some record type, we would need only to provide a
procedure to display one record and then instantiate the list package with that proce
dure supplied as the parameter.

Now look at the type declaration for the list type:

TYPE List IS LIMITED PRIVATE?

We have changed the list from private to limited private. This is because while a
PRIVATE type allows assignment and equality test, a limited private type has no pre
defined operations at ail, prohibiting even these two. As was mentioned in Section 15.3,
it is desirable to disallow these operations for linked lists because they are misleading,
copying and comparing only the header pointers instead of the list itself.

Operations in the Generic Linked list Package

Declaring the list type as limited private necessitates changing the list copy opera
tion from a function to a procedure:

PROCEDURE Copy (Target: OUT List; Source: IN List);

because writing

L2 := Copy (LI);

is no longer allowed (the := is prohibited). Copying is done now by writing

Copy (Target => L2, Source => LI);

that is, as a procedure call.
To give us more flexibility in using the package, we have added four additional

operations:

PROCEDURE MakeEmpty (L : IN OUT List);
FUNCTION IsEmpty (L : IN List) RETURN Boolean;
FUNCTION RetrieveFront (L; IN List) RETURN EiementType;
PROCEDURE RemoveFront (L: IN OUT List);

The behavior of these operations is obvious from the postconditions. RemoveFront
results in a list like the following:

Ll

1
Hat Boy Cat Dog

while MakeEmpty produces a list like the following:

Ll Hat Boy Cat Dog
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We show MakeEmpty and RemovePront as Programs 15.12 and 15.13, respectively.
Note that these operations, as written, do not use unchecked_Deaiiocation to return
the discarded nodes to the storage pool. Therefore they remain allocated but completely
inaccessible. Over a long program execution, if these operations were done repeatedly,
the storage pool would be exhausted and storage_Error would be raised. We leave it
as an exercise to correct this design flaw and to complete the other operations in the
package.

Program 15.12 Procedure MakeEmpty

SEPARATE (Lists_Generic)
PROCEDURE MakeEmpty (L ; IN OUT List) IS

— I MakeEmpty - subunit of Lists_Generic
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified; September 1998

BEGIN

L.Head NULL;
L.Tail := NULL;

END MakeEmpty;

Program 15.13 Procedure RemovePront

SEPARATE (Lists_Generic)
PROCEDURE RemovePront (L; IN OUT List) IS

— I RemovePront; subunit of Lists_Generic
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

Temp: ListPtr;

BEGIN — RemovePront

IF L.Head = NULL THEN

RAISE ListEmpty;

ELSE — L.Head points to a node; remove it

Temp := L.Head;

L.Head := L.Head.ALL.Next; — jump around first node
Dispose (X => Temp);

END IF;

END RemovePront;
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EXERCISES FOR SECTION 15.5

Programming

1. Complete the generic linked list package.

15.6 Problem Solving: Stacks and Queues

A stack is a data structure in which only the top element can be accessed. To illustrate,
the plates stored in the spring-loaded device in a buffet line perform like a stack. A cus
tomer always takes the top plate; when a plate is removed, the plate beneath it moves to
the top. The last plate placed on the stack is the first removed; a stack is therefore a
last-in, first-out (UFO) structure.

A queue is a data structure that models a real-life queue in a bank or other service
situation. New arrivals get on at the end of the queue; customers are removed from the
front of the queue as they are served. The earliest arrival in a queue is the first to be
served, so the queue is a first-in, first out (FIFO) structure.

Implementing Stacks Using Linked lists

The following diagram shows a stack of three characters. The letter C, the character at
the top of the stack, is the only one we can access. We must remove C from the stack to
access the symbol +. Removing a value from a stack is called popping the stack, and
storing a data item in a stack is called pushing it onto the stack.

We can implement a stack as a linked list in which all insertions and deletions are
performed at the list head. A list representation of the stack containing C, +, and 2 is as
follows:
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Next we draw the stack after we push the symbol * onto it:

If we pop this stack, we restore the stack to its earlier state.

-♦ c ^—^ ^

.  .. 1

implementing a Generic Stack ADT
Program 15.14 gives a specification for a generic stack package.

Program 15.14 Generic Stack Package

WITH Lists_Generic;
GENERIC

TYPE StackElement IS PRIVATE;
PACKAGE Stacks Generic IS

— I Generic package for LIFO stacks
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

— type definition

TYPE stack IS LIMITED PRIVATE;

— exported exceptions

StackEmpty : EXCEPTION;

— constructors

PROCEDURE MakeEmpty (S :
— Pre: S is defined
— Post: S is empty

IN OUT Stack);

PROCEDURE Push (S : IN OUT Stack; E : IN StackElement);
— Pre: S and E are defined
— Post: S is returned with E as the top StackElement

PROCEDURE Pop (S ; IN OUT Stack);
— Pre: S is defined
— Post: S is returned with the top StackElement discarded
— Raises; StackEmpty if s contains no StackElements

— selector

FUNCTION Top (S : IN Stack) RETURN StackElement;
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— Pre: S is defined

— Post: The top StackElement of S is returned
— Raises: StackEmpty if S contains no StackElements

— inquiry operations

FUNCTION IsEmpty (S : IN Stack) RETURN Boolean;
— Pre: S is defined

— Post: returns True if S is empty, False otherwise

PRIVATE

PROCEDURE Dummy (Item: StackElement);

PACKAGE Lists IS

NEW Lists_Generic(ElementType => StackElement,
~  DisplayElement => Dummy);

TYPE Stack IS RECORD

Store : Lists.List;

END RECORD;

END Stacks_Generic;

This package takes a single generic parameter, StackElement, and represents a
stack as a limited private type, implemented as a record containing a linked list as its
only field. The package provides an exception, stackEmpty, which is raised if a client
program attempts to pop, or retrieve the top element of, an empty stack. The operations
are easily understood from the postconditions.

The PRIVATE section of Program 15.14 warrants explanation. Because
Lists_Generic requires two generic parameters, we must supply these when we
instantiate. The element parameter in the instantiation of Lists_Generic is obvious;
the second parameter is a procedure Dummy whose specification is given in the private
section. We are not interested in displaying the full contents of the stack, so the stack
package contains no call to the linked list Display procedure. We therefore provide a
do-nothing procedure, just to satisfy the requirements of the list package. The body of
Dummy, which is never called but must be given in the body of stacks_Generic, is just

PROCEDURE Dummy (Item: StackElement) IS
BEGIN

NULL;

END Dummy;

As an exercise, you can complete the stack package. Doing so is easy because you
have the list package already available. Push will contain a call to AddToFront, Pop will
contain a call to RemoveFront, and Top will contain a call to RetrieveFront.

Stack Applications

In Section 14.2 we showed how compilers use stacks to store procedure and function
parameters. Compilers also use stacks for data storage while translating expressions. In
general, we use stacks in a program to remember a sequence of data objects or actions
in the reverse order from that in which they were encountered. Stacks are often an alter-
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native to recursion. To show this, consider a nonrecursive version of stringReverse,
which was given as a recursive function in Program 14.8. The algorithm for this func
tion is as follows:

Algorithm for Nonrecursive String Reverse
1. Create an empty stack.

2. Push each data character in the input string onto the stack.

3. Retrieve each character from the stack, copy it into the output string, then pop the
stack.

Step 2 Refinement

2.1 FOR each character in the input string loop

2.2 Push the character onto the stack

END LOOP;

Step 3 Refinement

3.1 FOR each character in the stack loop

3.2 Copy the character into the output string

3.3 Pop the stack

END LOOP;

Try carrying out this algorithm by hand. Draw a picture of the stack, then push into
it the letters of the word house. Popping the characters into the output string will pro
duce the string esuoh. Make sure you understand the algorithm. Program 15.15 shows a
function implementing this algorithm.

Program 15.15 A Nonrecursive String Reverse Function

WITH Stacks_Generic;
FUNCTION StringReverse(S: String) RETURN String IS

— I Returns the reverse of a string, using a stack instead of recursion
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

PACKAGE Char_Stacks IS
NEW Stacks_Generic(StackElement => Character);

USE Char_Stacks;

OneStack: Stack;

Result; String (S'Range);

BEGIN — StringReverse

IF S'Length <= 1 THEN
RETURN S;

END IF;
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MakeEmpty (OneStack);

FOR Count IN S'Range LOOP

Push (OneStack, S(Count));
END LOOP;

FOR Count IN Result'Range LOOP
Result (Count) := Top (OneStack);
Pop (OneStack);

END LOOP;

RETURN Result;

END StringReverse;

In this function, which might be included in a program like palindrome (Program
14.8), stacks_Generic is instantiated for the type character, then the algorithm is
translated straightforwardly into Ada.

CASE

STUDY CHECKING FOR BALANCED PARENTHESES

Another application of a stack is to determine whether the parentheses in an expression
are balanced. For example, the expression

(a + b * (c / (d - e))) + (d / e)
1  2 3 321 1 1

has balanced parentheses. We can solve this problem without using a stack by ignoring
all characters except the symbols ( and ). We start a counter at 1 and add 1 for each
open parenthesis that follows another open parenthesis and subtract 1 for each closed
parenthesis that follows another closed parenthesis. Because we are ignoring all other
symbols, the parentheses that are being considered do not have to be consecutive char
acters. If the expression is balanced, the final count will be 1, and it will always be pos-
itive.

This task becomes more difficult if we expand our notion of parentheses to include
braces and brackets. For example, the expression

(a + b * {c / [d - 6]}) + (d / e)

is balanced, but the expression

(a + b * {c / [d - e}) + (d / e)

is not because the subexpression [d - e} is incorrect.

Problem Specification
The set of open parenthesis symbols is {, [, and (. An expression is balanced ii each
subexpression that starts with the symbol { ends with the symbol }; the same is true for
the symbol pairs [ ] and (). In other words, the unmatched open parenthesis nearest to
each closed parenthesis must have the correct shape (e.g., if } is the closed parenthesis
in question, the symbol { must be the nearest unmatched open parenthesis).
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Analysis
Solving this problem without stacks would be fairly difficult, but with stacks it
becomes easy. First, scan the expression from left to right, ignoring all characters
except for parenthesis symbols (including braces and brackets). Push each open paren
thesis symbol onto a stack of characters. For a closed parenthesis symbol, pop an open
parenthesis from the stack and see whether it matches the closed parenthesis. If the
symbols don't match or the stack is empty, there is an error in the expression. If they do
match, continue the scan.

Data Requirements

Problem Input
expression to be checked for balanced parentheses (Expression: string)

Problem Output
the function result indicating whether the parentheses in Expression are balanced

Program Variables
stack of open parentheses (Parenstack: stack)
next character in input expression (Nextchar : character)
open parenthesis at top of stack (OpenParen : character)
index to Expression (index : Positive)
program flag (Balanced : Boolean)

Algorithm
1  Create an empty stack of characters.

2. Assume that the expression is balanced (Balanced is True).

3. WHILE we are still in the expression and the expression is balanced loop

4. Get the next character in the expression.

5. IF the next character is an open parenthesis then

6. Push it onto the stack.

ELSiF the next character is a closed parenthesis then

7. Pop the top of the stack.

END IF;

8. IF Stack was empty or its top was incorrect then

9. Set Balanced to False.

END IF;

END LOOP;

10. The expression is balanced if Balanced is True and the stack is empty.
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The IF statement in step 5 tests each character in the expression, ignoring all characters
except for open and closed parenthesis symbols. If the next character is an open paren
thesis symbol, it is pushed onto the stack. If the next character is a closed parenthesis
symbol, the nearest unmatched open parenthesis is retrieved (by popping the stack) and
compared to the closed parenthesis (steps 7 and 8). If the next character is not an open
or closed parenthesis symbol, it is ignored.

Implementation
Program 15.16 shows a function that determines whether its input parameter (an
expression) is balanced.

Program 15.16 Function IsBalanced

WITH Stacks_Generic;
FUNCTION IsBalanced (Expression: String) RETURN Boolean IS

—I Determines whether a string is balanced with respect to
— I parentheses () [] and {}

j Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

PACKAGE Char Stacks IS NEW stacks_Generic(StackElement => Character);
USE Char_Stacks;

ParenStack: Stack; ~ stack of open parentheses
NextChar : Character; — next character in input expression
OpenParen : Character; — open parenthesis at top of stack
Index : Positive; — index to Expression
Balanced : Boolean; — program flag

BEGIN — IsBalanced

MakeEmpty (ParenStack);
Balanced := True;

Index := Expression'First;

WHILE Index <= Expression'Last AND THEN Balanced LOOP

NextChar := Expression (Index);
CASE NextChar IS

WHEN '(• I 't' I '{' => ^ .
Push (ParenStack, NextChar); — Push open parenthesis

WHEN ')' I •]• I ■}' =>
IF isEmpty (ParenStack) THEN

Balanced := False;
ELSE

OpenParen := Top (ParenStack); — Get nearest open paren
pop (ParenStack);
CASE NextChar IS — Do open and close match.

WHEN •)' =>
Balanced := OpenParen = '('

WHEN ' ]' =>
Balanced := OpenParen = ' [ '

WHEN '}' =>
Balanced := OpenParen = '<'
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WHEN OTHERS =>

NULL;

END CASE;

END IF;

WHEN OTHERS =>

NULL;

END CASE;

Index := Index + 1;
END LOOP;

— move on to next character

RETURN Balanced AND IsEmpty (ParenStack);

END IsBalanced;

The IF statement from step 5 of the algorithm is in fact written as a case statement,
which more easily tests for open and closed parentheses. Each open parenthesis is
pushed onto stack Parenstack. For each closed parenthesis. Top retrieves the nearest
unmatched open parenthesis from the stack, and Pop pops the stack. If the stack is
empty. Balance is set to False, causing the while loop exit. Otherwise, the case state
ment sets Balanced to indicate whether the character popped matches the current
closed parenthesis symbol. After loop exit occurs, the function result is returned. It is
True only when the expression is balanced and the stack is empty.

Implementing Queues as Linked Lists

A queue can be used to model any kind of queueing situation, such as a line of custom
ers waiting at a checkout counter or a stream of jobs waiting to be printed by a printer.
For example, here is a linked list representing a queue of three students waiting to
speak to their advisor, who insists on strict FIFO order in student conferences:

Students Kann Choi Rajwan

1

The name of the student who has been waiting the longest is Kann (pointed to by
the head pointer); the name of the most recent arrival is Rajwan (pointed to by the tail
pointer). Kann will be the first one to leave the queue when the advisor becomes avail
able, and the head pointer will be reset to point to Choi. Any new students will be added
to the end of the queue after Rajwan. Here is the queue after Kann leaves it:

Students RajwanChoi
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Here is the queue after Perez arrives:

Students Choi Rajwan Perez

Program 15.17 gives the specification for a generic queue package. It is similar to
the stack package in its structure.

Program 15.17 Generic Queue Package

WITH Lists__Generic j
GENERIC

TYPE QueueEleraent IS PRIVATE;

PACKAGE Queues_Generic IS

— I Generic package for FIFO queues
I Author: Michael B. Feldman, The George Washington University

— I Last Modified: September 1998

— type definition

TYPE Queue IS LIMITED PRIVATE;

— exported exceptions

QueueEmpty : EXCEPTION;

— constructors

PROCEDURE MakeEmpty (Q : IN OUT Queue);
— Pre: Q is defined
— Post: Q is empty

PROCEDURE Enqueue (Q : IN OUT Queue; E : IN QueueElement);
Pre: Q and E are defined

— Post: Q is returned with E as the top QueueElement

PROCEDURE Dequeue (Q ; IN OUT Queue);
— Pre: Q is defined
— Post: Q is returned with the top QueueElement discarded

Raises: QueueEmpty if Q contains no QueueElements

— selector

FUNCTION First (Q : IN Queue) RETURN QueueElement;
— Pre: Q is defined
— Post: The first QueueElement of Q is returned
— Raises; QueueEmpty if Q contains no QueueElements

— inquiry operations

FUNCTION isEmpty (Q : IN Queue) RETURN Boolean;
Pre: Q is defined
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— Post: returns True if Q is empty. False otherwise

PRIVATE

PROCEDURE Dummy (Item: QueueElement);

PACKAGE Lists IS

NEW Lists_Generic(ElementType => QueueElement,
DisplayElement => Dummy);

TYPE Queue IS RECORD

Store : Lists.List;
END RECORD;

END Queues_Generic;

We leave it as an exercise to complete the package body for this package. As in the
stack package, the queue operations are easily written in terms of the list ones. Enqueue
will call AddToEnd, Dequeue will call RemoveFront, and SO on.

EXERCISES FOR SECTION 15.6

Programming

1. Complete the generic stack package given in this section.

2. Complete the generic queue package given in this section.

15.7 Tricks of the Trade: Debugging Programs with Linked Lists

The three most common errors in writing programs using dyamic structures are deref
erencing a null pointer, infinite loops and infinite recursion, and off-by-one problems.

Dereferencing a Null Pointer

When processing linked data structures, make sure that the pointer to the next node is
not NULL. If pointer p has the value null, the record p. all is undefined. Therefore, the
condition

(P.ALL.ID /= 9999) AND (P /= NULL)

will cause constraint_Error to be raised when p is null. You can prevent this by writ
ing the expression using the short-circuit operator and then:

(P /= NULL) AND THEN (P.ALL.ID /= 9999)
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This causes the left side to be evaluated first and evaluates the right side only if the
left side is True.

Infinite Loops and Infinite Recursion

A linked list program can get into an infinite loop in two ways. First, if you write a
WHILE loop and forget to write an incrementation step, the loop has no way to progress
toward completion. In this case the program will either appear to "hang" or possibly
will display the same value over and over.

Second, your program could get stuck in an infinite loop or infinite recursion while
creating a dynamic data structure. If this happens, it is quite possible that the program
will keep allocating new blocks and consume all the memory cells in the storage pool.
If this happens, storage_Error is raised. For both of these reasons, be especially care
ful in writing the while condition and the loop incrementation statement. Be certain the
loop is always initialized properly and incremented each time through. Also be careful
that your recursive programs will eventually reach a stopping case.

Off-by-One Errors

Off-by-one errors are common in linked list programs. In traversing a list with K ele
ments, for example, sometimes only the first K - 1 elements or the last AT - 1 are dis
played. These logic errors will not raise exceptions but will give incorrect results. They
are usually caused by careless loop initialization or termination conditions. Note that a
program that tries to go one step too far will generally "fall off the end of the list," caus
ing constraint_Error to be raised Upon dereferencing a null pointer.

Some debugging tools allow you to display the value of a pointer variable, but such
a value cannot normally be displayed with Ada.Text_io procedures. It is therefore <fif-
ficult to debug programs that manipulate pointers. You will have to trace the execution
of such a program by printing an information field that uniquely identifies the list ele
ment being processed instead of the pointer value itself. In doing a trace, drawing a pic
ture of the list as it is built and manipulated is enormously helpful.

In writing driver programs, it is often helpful to create a sample linked structure
using the technique shown in Section 15.1. The data and pointer fields of the structure
can be defined using assignment statements.

CHAPTER REVIEW

Access types and dynamic data structures are used to create linked lists, which are an
extremely important data structure in computing. Linked lists are found in nearly evei^
kind of computer application: Spreadsheet processing, operating system niodules, com
pilers, and many others commonly employ linked lists and other dynamic data struc
tures.
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New Ada Constructs in Chapter 15

The new Ada constructs introduced in this chapter are described in Table 15,1.

Table 15.1 Summary of New Ada Constructs

Statement Effect

TYPE NodePointer IS

ACCESS ListNode;
Declares an access (pointer) type whose vari
ables can point to values of type ListNode

P: NodePointer;
Q: NodePointer;

and two variables of the access type

PROCEDURE Dispose IS NEW
Unchecked_Deallocation
(Object => ListNode,
Name => NodePointer);

Instantiates a predefined generic procedure to
give an operation to return tree nodes to the
storage pool

P  := NEW ListNode; Allocates a node and stores a pointer to it in p

Q := P; Copies one pointer value to another

Q.ALL := P.ALL; Copies one record's contents to the other

Review Questions for Chapter 15

Differentiate between dynamic and nondynamic data structures.1.

2. Define a simple linked list. Indicate how the pointers are used to establish a
link between nodes. Also indicate any other variables that would be needed to
reference the linked list.

Write a procedure that links a node into an existing list. Parameters are a point
er to the head of the linked list and a pointer to the node to be inserted. Assume
that dummy sentinel records exist at the beginning and end of the linked list
and there are no duplicate records.

Given the following type definitions, insert the new element, preserving ID or
der:

TYPE Node;

TYPE Ptr IS ACCESS Node;
TYPE Node IS RECORD

ID : INTEGER;

Name : String(1..10);
GPA : NonNegFloat;
Link : PTR

END RECORD;

Write an algorithm to remove a node (identified by TargetiD) from an ordered
list that does not contain a dummy record at the beginning.



672 Access Types and Dynamic Data Structures

5. Write the necessary procedures to duplicate all elements in one linked list that
have a Grade Point Average (CPA) of 3.5 or above in another linked list. The
original list is ordered by ID number; the new list should be ordered by CPA.
Do not remove nodes from the existing list. Assume that the list nodes are type
Node as described in question 3. Parameters will be a pointer to the head of
the existing list and to the head of the new linked list (cPAHead).

6. Declare a node for a two-way, or doubly linked, list, and indicate how a tra
versal would be made in reverse order (from the last list element to the list
head). Include any variables or fields that are necessary.

Programming Projeds

1. Write a procedure that attaches one list to the end of another. Note that this
procedure destroys the original lists.

2. Write a function that returns the concatenation of two lists li and l2 , that is, a
list containing copies of all the nodes of Ll followed by copies of all the nodes
of L2. Note that this function does not destroy either li or l2 .

3. Write a procedure that deletes from an ordered list l the first node containing a
given word.

4. Write a procedure that deletes from an ordered list l the last node containing a
given word.

5. Write a procedure that deletes from an ordered list l all nodes containing a
given word.

6. Write a function that takes two ordered lists as inputs, then returns a list in
which the two input lists are merged. That is, if li contains abc" , "hij" , and
"PQR" and L2 contains "def", "hij", "MNO", and "std", the result list contains
"ABC", "DEF", " HIJ", "HIJ", "MNO" ,"PQR", and "STU".

7. Complete the generic package given in Section 15.5, writing the body and the
remaining operations. Also correct the design flaw in MakeEmpty and Remove-
Front, so that the latter returns the discarded node to the storage pool and the
former returns all nodes in the list to the storage pool. (Hint: MakeEmpty must
loop through the list, returning each node one at a time.)

8. Sometimes a list node is declared to have two pointers, one to the next node
and one to the previous node. Develop a package for such doubly linked lists,
and write the operations so that advantage is taken of the fact that each node
points to its predecessor as well as its successor. Specifically, how does having
the extra pointers simplify operations like ordered insertion and deletion?

9. Modify your employee data base system from Section 11.5 so that the data
base is represented as an instance of the generic list package from Section
15.5.
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Chapter Review

The variant records that we studied in Chapter 13 provide much expressive power to
create complex types with several different parts. However, they have an important lim
itation: A variant record must be fully defined and compiled, and case statements are
used to control processing its various parts.

In this chapter we look at tagged types, a generalization of variant records that
allows new variants to be added without recompiling the packages in which the original
variants are declared. Tagged types implement type extension, a kind of inheritance.
Inheritance is an important concept used in many object-oriented programs.

We also discuss general access types, a generalization of the access types in Chap
ter 15. General access types allow the programmer to create a pointer to a statically
declared variable, not just a dynamically allocated block. The combination of general
access types and tagged types gives a very interesting and powerful style of object-ori
ented programming.

16.1 System Structures: Object-Oriented Programming

Object-oriented programming (OOP) is a programming methodology that relies on a
number of language features. These are:

• Encapsulation, provided very well by Ada's packages and especially by private
types

• Genericity, provided by Ada's generics capability

673
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• Inheritance, through which a new type takes on some or all of the properties of an
existing one. This is provided by Ada's derived types, and extended considerably
in tagged types, both of which are subjects of this chapter.

• Polymorphism, partially supported by Ada's procedure and function overloading,
and extended significantly through the concept of dynamic dispatching

In OOP, an object has two important characteristics:

1. It has state, that is, it has a value that may change over time.

2. It has behavior, that is, it has a set of operations that act on it, and these opera
tions are the only ones that can change its state (value).

In working with this book you have been using OOP concepts since the earliest
chapters. You have been working with Ada variables; object is just a more modem
name for variable. As you know, each variable has a type and can take on only values
from that type's set of values.

Also, each type has a set of operations associated with it. The predefined types,
such as integer or Ada.Calendar.Time, all have predefined operations, and only the
given operations are valid for values of the given type. Throughout the book we have
emphasized Ada compilers' concern for validity of operations: they give compilation
errors wherever they can, and compile mn-time checks into the program wherever they
cannot.

Further, you have used packages right along, starting with the input/output pack
ages and other predefined packages such as Ada.calendar and Ada.Numerics. You
have used other packages and perhaps even written one or two yourself. Having
reached this point, you are quite accustomed to encapsulation.

In Chapter 11 you explored the idea of doing your own encapsulation, writing new
types and sets of operations, and implementing ̂ ese in ADT packages. Most of the
ADTs in Chapter 11 defined private record types; private types allowed us to control
precisely which predefined and programmer-defined operations were valid. This preci
sion of control over operations is a very important aspect of OOP.

Chapter 12 introduced you to writing generic packages; in earlier chapters you used
a few generic packages, such as Ada.Text_I0.Enumeration_I0 and Ada.Numerics.
Discrete_Random. You are therefore at least a bit familiar with genericity.

Some writers use the term object-based programming to describe programrning
that uses "only" encapsulation and genericity but not inheritance and polymorphism.
These writers believe inheritance and polymorphism to be of paramount importance
and that any program that doesn't take advantage of these two concepts is simply not
object-oriented. We think the distinction is somewhat artificial; encapsulation and
genericity are just as important in developing good object-oriented designs.
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16.2 System Structures: Tagged Types

The variant records we studied in Chapter 13 provide much expressive power to create
complex types with several different parts. However, they have an important limitation;
A variant record must be fully defined and compiled, and case statements are used to
control processing its various parts.

Now suppose a new variant must be added. Consider the employee record of Sec
tion 13.4, which we repeat here for clarity:

TYPE PayCategories IS (Unknown, Professional, Sales, Clerical);

TYPE Employee (PayStatus : PayCategories := Unknown) IS RECORD
ID : IDType;
Name : NameType;
PayPeriod ; Dates.Date;

CASE PayStatus IS
WHEN Professional =>

MonthSalary : Currency.Quantity;
WHEN Sales ->

WeekSalary : Currency.Quantity;
CommRate ; CommissionPercentage;
SalesAmount : Currency.Quantity;

WHEN Clerical =>

HourlyWage ; Currency.Quantity;
HoursWorked : WorkHours;

WHEN Unknown =>

NULL;

END CASE;

END RECORD;

Suppose a new category of employee is added. Manager, for example. The enumer
ation type PayCategories must be modified, and the variant type declaration must be
changed, adding a choice when Manager, to account for the new variant. All operations
on objects of the type must be similarly changed.

Further, if the type declaration happened to appear in a package specification, every
client of that package must at least be recompiled and perhaps even modified. It would
be nice if we could somehow extend a type, adding new fields and operations but with
out modifying or recompiling existing packages or programs. This is called type exten
sion and is provided in Ada by tagged types. A tagged type is analogous to a variant
record, but it can be extended without changing the original type declaration.

Tagged Types

A record type can be declared as tagged to indicate that it will potentially be extended
by adding additional fields. Each object of a tagged type is given a tag by the compiler;
you can think of a tag as analogous to a hidden discriminant. Whereas with ordinary
variant records the programmer must write explicit code to use a discriminant, a tag is
manipulated automatically in the executing program.

As an example of a tagged type, consider representing a person with three general
characteristics: a name, a gender, and a date of birth. We can declare this as follows:
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TYPE Person IS TAGGED RECORD

Name: NameType;
Gender: Genders;

BirthDate: Date;

END RECORD;

where Genders has been declared as:

TYPE Genders IS (Female, Male);

and the name and birth date fields are, respectively, some string type and a date from
our package Dates.

Now suppose we declare Person in the specification of a package Persons,
together with a number of operations that are implemented in the package body. We
then write one or more client programs that use Persons. At a later date we discover a
need to represent personnel, or people who work m a company. An employee is a per
son with a company identifier and a second date indicating when she or he joined the
company. Note the "is a" relationship: An employee is a person with additional charac
teristics. Without tagged types, we would either develop an entire new personnel type,
or go back and modify our original person type. Using tagged types, we can derive a
new type based on the existing one:

TYPE Employee IS NEW Person WITH RECORD
ID: IDRange;

StartDate: Date;

END RECORD;

This declares a new type and reflects the "is a" relationship directly. Each employee
now has five fields: the two new ones and the three it inherited from the person type.
Furthermore, the new type can be declared in a new package, with a new set of opera
tions, without disturbing the existing package or any programs that use it. This tech
nique is called programming by extension.

We can carry this further, of course. The payroll department in our company wishes
to extend our employee type for payroll purposes and so needs three special categories
of employees. The new types can be derived from the employee type:

TYPE Professional IS NEW Employee WITH RECORD
MonthSalary : Quantity;

END RECORD;

TYPE Sales IS NEW Employee WITH RECORD
WeekSalary : Quantity;
CommRate : CommissionPercentage;

END RECORD;

TYPE Clerical IS NEW Employee WITH RECORD
HourlyWage : Quantity;

END RECORD;

where the Quantity values are taken from package currency. In a further refinement of
the "is a" relationship, a professional is an employee, who in turn is a person. As
before, the new types can be declared and used in one or more new packages, without
causing any modification of the older packages or any of their clients.
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It is instructive to note that in Ada 83 new types can be derived from ordinary Ada
83 types. The new type has the same structure (set of values) as the original, and the
operations of the original type are generally inherited by the new one. Ada 95 adds to
this the ability to extend the type.

Converting among Derived Tagged Types

The five types declared above form a type hierarchy:

Person

Employee
Professional

Sales

Clerical

Ada allows us to convert explicitly from a lower type to a higher one. If p is a Person, e
is an Employee, and r is a Professional, we can write an aggregate

R := (Name => "Nancy",
Gender => Female,
BirthDate => Date_Of(1950, Oct, 21),
ID => 2345,

StartDate => Date_Of(1990, Jul, 1),
MonthSalary => 5000.00);

and can "up-convert" to p

P  := Person(R);

which is a familiar conversion construct. In the case of tagged types, the conversion
"strips off' the extra fields.

How do we "down-convert"? Since a conversion to a lower type generally adds
fields, we use a special aggregate structure for this. If we had

P  != (Name => "Nancy",
Gender => Female,
BirthDate => Date_Of(1950, Oct, 21);

we could make e by writing

E  ;= (P WITH ID => 2345, StartDate => Date^Of(1990, Jul, 1));

The text following with is called an extension aggregate. Generally, of course, cli
ent programs will not use the aggregate form because types like these will, in general,
be PRIVATE. This brings us to the subject of operations on tagged types.

Primitive and Nonprimitive Operations on Tagged Types
The operations on tagged types are rather special. A fundamental Ada 95 notion is the
primitive operation. Put simply, a primitive operation of a type is either a predefined
operator on the type—such as the operators on integer, for example—or an operation
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(function, subprogram, or operator) that is declared just below the type in the same
package specification and has a parameter of that type. Nearly all the operations in the
packages thus far in this book have been, in Ada 95 terminology, pnmitive. The term
becomes important in the context of tagged types. Each primitive operation of a tagged
type T is inherited by all types derived from t; sometimes we desire the inheritance, but
sometimes we do not.

We shall explain this in the context of three package specifications, persons, per
sonnel, and Payroll, which appear as Programs 16.1,16.2, and 16.3, respectively.

Program 16.1 Specification for Persons Package

WITH Dates; USE Dates;

PACKAGE Persons IS

Specification for Persons. This package provides a root type
Person, with the fields Name, Gender, and BirthDate. Person
is a tagged private type, which means that it has all the
characteristics of an ordinary private type but also that it
can be extended by derivation.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Genders IS (Female, Male);

SUBTYPE NameRange IS Positive RANGE 1..20;
SUBTYPE NameType IS String(NameRange);

TYPE Person IS TAGGED PRIVATE;

— selectors

FUNCTION NameOf (Whom: Person) RETURN NameType;
FUNCTION GenderOf(Whom: Person) RETURN Genders;
FUNCTION DOBOf (Whom: Person) RETURN Date;
— Pre: Whom is defined

— Post: returns the appropriate field value

PROCEDURE Put(Item: IN Person);
— Pre: Item is defined
— Post: Item's fields are displayed

PACKAGE Constructors IS

this inner package is necessary so that MakePerson is not a
"primitive" function, that is, so that it is not inherited

— by types derived from Person.

FUNCTION MakePerson(Name : String;
Gender : Genders;

BirthDate: Date) RETURN Person;

— Pre: Name, Gender, and BirthDate are defined
Post; returns a Person with the given field values

END Constructors;

PRIVATE
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TYPE Person IS TAGGED RECORD

NameLength: NcimeRange := 1;
NameField : NameType ;= (OTHERS => • ');
Gender : Genders := Female;
BirthDate : Date;

END RECORD;

END Persons;

In Program 16.1, Person is a private type with initialized fields, as in most of our
packages. Note, in the visible part of the specification (above the private line), the
declaration

type Person IS TAGGED PRIVATE;

which is consistent with our understanding of private declarations, with the addition of
TAGGED. The package specification further gives four operations in the selector cate
gory; this style is familiar to you from earlier packages. However, the constructor oper
ation is not declared here, but rather in an inner package, constructors. Why the
unfamiliar structure?

Our intention in writing persons is to allow new types to be derived and extended
from Person. Consider the type Employee introduced earlier. An employee is a person
with additional fields; the type Employee inherits all the primitive operations of Person,
that is, for each primitive Person operation, there is a similar one for Employee, with a
similar parameter profile. So the Employee type also has operations Nameof, Genderof,
and DOBOf.

Inheritance is fine for the selectors: For example, a client will certainly wish to find
out an employee's name, and an inherited operation just like the Person selector is a
perfectly good operation to return the name. The constructor is a different story, how
ever, because we need to pass all the field values into it. A person has three fields; an
employee has five. If we wrote a person constructor as a primitive operation (e.g.,
Makeperson), it would be inherited by the employee type, so a client could call
Make-Person with a parameter of type Employee. But this would be wrong! The object
would be constructed with only three of its fields filled in!

Writing a separate constructor for Employee is a useful thing to do, and we shall do
it shortly. However, it does not solve our problem because MakePerson would still be
available for the client to call.

Because it would be very unsafe and therefore unwise to allow MakePerson to be
inherited by derived types, we need to take preventive action. There are several ways to
do this; here we handle the problem by realizing that—by Ada's rules of primitive oper
ations—an operation that is declared in an inner package, such as Persons.construc
tors in Program 16.1, is not primitive and is therefore not inherited. Putting the
constructor in an inner package puts a small burden on the client programmer, who can
write Persons .NameOf but must write Persons, cons tractors. MakePerson. This is a
small price to pay for the added safety.
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Deriving New Tagged Types

Program 16.2 gives the specification for Personnel.

Program 16.2 Specification for Personnel Package

WITH Persons; USE Persons;

WITH Dates; USE Dates;

PACKAGE Personnel IS

Specification for Personnel, which provides a type Employee,
a derivative of Persons.Person. Note that the operations on
objects of type Persons.Person are inherited by objects of
type Employee, so we need selectors only for the new
fields 1 As in the case of Persons, we place the constructor
in an inner package.
Author; Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE Employee IS NEW Person WITH PRIVATE;
— Here is where Employee is derived; the extension fields are
— also PRIVATE, so clients cannot access them directly.

TYPE IDType IS NEW Positive RANGE 1111..9999;

— selectors

FUNCTION StartOf (Whom: Employee) RETURN Date;
FUNCTION IDOf (Whom: Employee) RETURN IDType;
— Pre: Whom is defined

— Post: return the appropriate field values

PROCEDURE Put(Item: Employee);
— Pre: Item is defined

— Post: Item is displayed

PACKAGE Constructors IS

— as in Persons, we use an inner package to prevent the
— constructor from being inherited by further derivatives
— of Employee

FUNCTION MakeEmployee(Name : String;
Gender : Genders;

BirthDate: Date;

StartDate: Date;

ID IDType) RETURN Employee;
— Pre: Neime, Gender, BirthDate, StateDate, and ID are defined
— Post: Whom contains the desired field values

END Constructors;

PRIVATE

TYPE Employee IS NEW Person WITH RECORD
ID : IDType := 1111;
StartDate ; Date;

END RECORD;
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END Personnel;

Its Structure is similar to that of Persons, but note how the type Employee is
declared:

TYPE Employee IS NEW Person WITH PRIVATE;

The syntax with private indicates a private extension; it allows Employee to be a pri
vate type just as Person is. Personnel also provides selectors startof and iDOf and a
constructor MakeEmpioyee in an inner package.

The type Employee inherits the primitive operations of Person: Nameof, GenderOf,
and DOBOf. This is fine; employees also have these fields. What about Put? per
sons. Put displays the fields of a person. If Put were inherited by Employee, it would,
of course, display only the fields diat Employee and Person have in common, which is
not what we desire. We therefore supply another Put for the employee type. Because it
has a similar parameter profile, the only difference being the substitution of Employee
for Person, this new employee operation is said to override the corresponding person
operation. The body of Personnel.Put—we will show this shortly—displays all five
fields of an employee.

Why were we able to override Person.Put so simply, without using an inner pack
age? The key is that the two Put parameter profiles are so similar. The constructors'
parameter profiles are very different from one another, so writing a MakePerson in Per
sonnel, with a profile appropriate for Employee, simply would not have solved that
problem.

Program 16.3 gives the specification for Payroll, which gives the three pay catego
ries we sketched earlier.

Program 16.3 Specification for Payroll Package

WITH Currency; USE Currency;
WITH Dates; USE Dates;
WITH Persons; USE Persons;

WITH Personnel; USE Personnel;
PACKAGE Payroll IS

Specification for Payroll, a set of payroll categories
derived from Personnel. Each type has a primitive operation
Put, which overrides the one inherited from Employee.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

SUBTYPE CommissionPercentage IS Float RANGE 0.00..0.50;

TYPE Professional IS NEW Employee WITH PRIVATE;
TYPE Sales IS NEW Employee WITH PRIVATE;
TYPE Clerical IS NEW Employee WITH PRIVATE;

PROCEDURE Put(Item: Professional);
PROCEDURE Put(Item: Sales);
PROCEDURE Put(Item: Clerical);

PACKAGE Constructors IS
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— constructors for the three new types
FUNCTION MakeProfessional(Naitie : String;

Gender : Genders;

BirthDate : Date;

StartDate : Date;

ID : IDType;
MonthSalary: Quantity)
RETURN Professional;

FUNCTION MakeSales (Name
Gender

BirthDate

StartDate

ID

WeekSalary
CommRate

String;
Genders;

Date;

Date;

IDType;

Quantity;
CommissionPercentage)

RETURN Sales;

FUNCTION MakeClerical (Name : String;
Gender : Genders;

BirthDate : Date;
StartDate : Date;

ID : IDType;

HourlyWage; Quantity)
RETURN Clerical;

— Pre: All input fields are defined
— Post: Returns an initialized value of the respective type

END Constructors;

PRIVATE

— full extensions for the three types

TYPE Professional IS NEW Employee WITH RECORD
MonthSalary : Quantity;

END RECORD;

TYPE Sales IS NEW Employee WITH RECORD
WeekSalary : Quantity;
CommRate : CommissionPercentage;

END RECORD;

TYPE Clerical IS NEW Employee WITH RECORD
HourlyWage : Quantity;

END RECORD;

END Payroll;

The three types are closely related—all are used by the payroll department—so it is
sensible to collect them into a single package as we have done here. Note the three
derived private type declarations, the three overriding Put operations, and the three
constructors in the inner package. We have not included field selectors, preferring to
leave that as an exercise.

Before going on to the package bodies, look at Program 16.4, which illustrates the
use of these packages.



162 System Structures: Tagged Types 683

Program 16.4 Creating a Company of Employees

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Currency; USE Currency;
WITH Dates; USE Dates;
WITH Persons; USE Persons;
WITH Personnel; USE Personnel;
WITH Payroll; USE Payroll;
PROCEDURE Use_Payroll IS

— 1 Demonstrates the use of tagged types
— I Author: Michael B. Feldman, The George Washington University
—j Last Modified: September 1998

— demonstrates the use of tagged types

George: Person;
Mary : Employee;
Martha: Professional;
Virginia: Sales;
Herman: Clerical;

BEGIN

— first construct all the people

George :=« Persons.Constructors.MakePerson(
Name => "George",
Gender => Male,

BirthDate => Date_Of(1971,Nov,2));

Mary := Personnel.Constructors.MakeEmployee(
Name => "Mary",
Gender => Female,
BirthDate => Date Of(1950,Get,21),
ID => 12347
StartDate => Date_Of(1989,Jul,I));

Martha := Payroll.Constructors.MakeProfessional(
Ncune => "Martha",
Gender => Female,
BirthDate => Date_Of(1947,Jul,8),
ID => 2222,

StartDate => Date_Of(1985,Jun,6),
MonthSalary => MakeCurrency(50000.00));

Virginia := Payroll.Constructors.MakeSales(
Name => "Virginia",
Gender => Female,
BirthDate => Date Of(19 5 5,Feb,1),
ID => 34567
StartDate => Date_Of(1990,Jan,1),
WeekSalary => MakeCurrency(2500.00),
CommRate => 0.25);

Herman := Payroll.Constructors.MakeClerical(
Name => "Herman",
Gender => Male,
BirthDate => Date__Of (1975,May, 13),
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ID => 1557,

StartDate => Date_Of(1991,Jul,l),
HourlyWage => MakeCurrency(7.50));

Now display them all. Note that each Put is a different
primitive operation.

Put(Item => George);
Ada.Text_IO.Put_Line(Item =>
Put(Item => Mary);

Ada.Text_IO.Put_Line(Item =>
Put(Item => Martha);
Ada.Text_IO.Put_Line(Item =>
Put(Item"=> Virginia);
Ada.Text_IO.Put_Line(Item =>
Put(Item~=> Herman);
Ada.Text_IO.Put_Line(Item =>

END Use_Payroll;

Sample Run

Name: George

Gender: male

Birth Date: November 2, 1971

Name; Mary

Gender: female

Birth Date: October 21, 1950

ID Number: 1234

Start Date: July 1, 1989

Name: Martha

Gender: female

Birth Date; July 8, 1947
ID Number: 2222

Start Date: June 6, 1985

Category: Professional
Monthly Salary: 50000.00

Name: Virginia
Gender: female

Birth Date: February 1, 1955
ID Number: 3456

Start Date: January 1, 1990

Category: Sales
Weekly Salary; 2500.00
Commission Rate: 0.25

Name: Herman

Gender: male

Birth Date: May 13, 1975
ID Number: 1557

Start Date: July 1, 1991

Category: Clerical
Hourly Wage: 7.50
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Each of the five variables is of a different type; in each case the appropriate con
structor is called—an Ada compiler would reject an attempt to call an inappropriate
one—and the appropriate Put is used to display the contents.

Bodies of the Tagged Type Packages

The bodies of Persons, Personnel, and Payroll are given as Programs 16.5,16.6, and
16.7, respectively.

Program 16.5 Body of Persons Package

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
WITH Dates.10;

PACKAGE BODY Persons IS

— I Body of Persons package
— I Author: Michael B. Feldman, The George Washington University
— I Last Modified; September 1998

PACKAGE Gender_IO IS NEW Ada.Text_IO.Enumeration_IO(Enum =»> Genders);

FUNCTION NameOf(Whom; Person) RETURN NameType IS
BEGIN

RETURN Whom.NameField;
END NameOf;

FUNCTION GenderOf(Whom: Person) RETURN Genders IS
BEGIN

RETURN Whom.Gender;

END GenderOf;

FUNCTION DOBOf(Whom: Person) RETURN Date IS
BEGIN

RETURN Whom.BirthDate;
END DOBOf;

PROCEDURE Put(Item: Person) IS
BEGIN

Ada.Text_IO.Put(Item =»> "Name: ");
Ada.Text_IO.Put(Item => Item.NameField(1..Item.NameLength));
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Gender: ");
Gender_IO.Put(Item => Item.Gender, Set => Ada.Text_IO.Lower_Case);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Birth Date: ");
Dates.10.Put(Item => Item.BirthDate, Format => Dates.10.Full);
Ada.Text_IO.New Line;

END Put; ~

PACKAGE BODY Constructors IS

FUNCTION MakePerson(Name : String;
Gender : Genders;
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BirthDate: Date) RETURN Person IS

Temp: NameType;
BEGIN — MakePerson

Temp(1..Name'Length) := Name; — copy into slice of Temp

RETURN (NameLength => Name'Length,
NameField «> Temp,
Gender => Gender,

BirthDate => BirthDate);

END MakePerson;

END Constructors;

END Persons;

Program 16.6 Body of Personnel Package

WITH Ada.Text_IO;
WITH Ada.lnteger_Text_IO;
WITH Dates.10;

PACKAGE BODY Personnel IS

— I Body of Personnel package
— 1 Author; Michael B. Peldman, The George Washington University
— I Last Modified: September 1998

PACKAGE BODY Constructors IS

FUNCTION MakeEmployee(Name : String;
Gender : Genders;

BirthDate; Date;

StartDate: Date;

ID : IDType) RETURN Employee IS
BEGIN

— note how the Persons constructor is used, with an
— aggregate for the Person fields and an
— extension aggregate to add in the extra fields.
RETURN (Persons.Constructors.MakePerson(

Name => Name,

Gender => Gender,

BirthDate => BirthDate)
WITH

StartDate => StartDate,

ID => ID);

END MakeEmployee;

END Constructors;

FUNCTION StartOf (Whom: Employee) RETURN Date IS
BEGIN

RETURN Whom.StartDate;

END StartOf;

FUNCTION IDOf (Whom: Employee) RETURN IDType IS
BEGIN

RETURN Whom.ID;

END IDOf;
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PROCEDURE Put(Item; Employee) IS
BEGIN

— Note that we can convert Employee to Person and
— call Persons.Put for the common fields
Persons.Put(Item => Persons.Person(Item));

Ada.Text_IO.Put(Item => "ID Number: ");
Ada.Integer_Text_IO.Put(Item => Positive(item.ID), Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Start Date: ");
Dates.10.Put(Item => Item.StartDate, Format => Dates.10.Full);
Ada.Text_lO.New_Line;

END Put;

END Personnel;

Program 16.7 Body of Payroll Package

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
WITH Currency.10;
PACKAGE BODY Payroll IS

— I Body of Payroll package
—j Author: Michael B. Feldman, The George Washington University
— I Last Modified: September 1998

PACKAGE BODY Constructors IS

— constructors for the three new types

FUNCTION MakeProfessional (Name : String;
Gender : Genders;
BirthDate : Date;
StartDate : Date;
ID : iDType;
MonthSalary: Quantity)
RETURN Professional IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee(
Name => Mame^
Gender => Gender,
BirthDate => Birthdate,
StartDate => StartDate,
ID => ID)
WITH MonthSalary => MonthSalary);

END MakeProfessional;

FUNCTION MakeSales (Name

Gender

BirthDate

StartDate

ID

WeekSalary
CommRate

RETURN Sales IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee

String;
Genders;
Date;

Date;

IDType;
Quantity;

CommissionPercentage)
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(Name => Name,
Gender ■=> Gender,
BirthDate => Birthdate,
StartDate => StartDate,
ID => ID)
WITH WeekSalary => WeekSalary, CommRate => CommRate);

END MakeSales;

FUNCTION MakeClerical (Name : String;
Gender : Genders;
BirthDate : Date;
StartDate : Date;
ID : IDType;
HourlyWage: Quantity)
RETURN Clerical IS

BEGIN

RETURN (Personnel.Constructors.MakeEmployee
(Name »> Name,
Gender ■=> Gender,
BirthDate => Birthdate,
StartDate => StartDate,
ID => ID)
WITH HourlyWage => HourlyWage);

END MakeClerical;

END Constructors;

PROCEDURE Put(Item: Professional) IS
BEGIN

Put(Item => Employee(Item));
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Category: Professional");
Ada. Text_IO. New__Line;
Ada.Text~IO.PutTltem => "Monthly Salary: ");
Currency.10.Put(Item «> Item.Monthsa1ary);
Ada.Text_IO.New_Line;

END Put; ~

PROCEDURE Put(Item: Sales) IS
BEGIN

Put(Item => Employee(Item));
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => "Category: Sales");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "Weekly Salary: ");
Currency.10.Put(Item => Item.WeekSalary);
Ada.Text_lO.New_Line;
Ada.Text_IO.Put(Item => "Commission Rate: ");
Ada.Float_Text_IO.Put(Item => Item.CommRate, Fore=>l,Aft=>2,Exp=>0)
Ada.Text_IO.New_Line;

END Put;

PROCEDURE Put(Item: Clerical) IS
BEGIN

Put(Item => Employee(Item));
Ada.Text_IO.New_Line;

Ada.Text lO.Put(Item => "Category: Clerical");
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Ada.Text^IO.New_Line;
Ada.Text_IO.Put(Item => "Hourly Wage: ");
Currency.10.Put(Item => Item.HourlyWage);
Ada.Text 10.New Line;

END Put;

END Payroll;

In Program 16.7, in the body of the constructor MakeEmployee we up-convert the
employee to a person, then use MakePerson to fill in the person fields. Finally, we use
an extension aggregate to fill in the remaining fields. Similarly, in the put procedure we
up-convert as before and reuse the persons.put to display the person fields, and then
we display the additional employee fields.

Variables of Tagged Types

Throughout this development we have declared each variable to be of a specific tagged
type. TTiis is analogous to declaring constrained variant variables, as in Chapter 13. A
plausible question is, then, whether there exists something analogous to unconstrained
variant types and variables. The answer to the question is Yes, and we shall show how
to do this in Section 16.4. A related question is whether, and how, we can create a "data
base" or table of tagged records (e.g., an array of them). The answer to this question is
also Yes, and the details are also shown in Section 16.4. Before we can complete the
explanation, we must digress into presentation of a different variety of pointer type,
namely, the general access type, which, like the tagged type, is new in Ada 95.

16.3 Data Structures: General Access Types

The access types that we saw in Chapter 15 can acquire values in only two ways: as the
result of an ̂ locator (new) operation or as a copy of another access value. In particular,
there is no direct way to cause an access value to designate a declared variable or con
stant. As it happens, there are really two kinds of access types:

• Pool-specific access types, which are just the access types we worked with in
Chapter 15

• General access types, which can designate variables, constants, and dynamically
allocated values.

Here are three versions of an access type declaration:

type IntegerPointer IS ACCESS Integer;
TYPE integerPointer IS ACCESS ALL Integer;
TYPE IntegerPointer IS ACCESS CONSTANT Integer;

The first declares a familiar access type, which we now call pool-specific. It can desig
nate only an integer value allocated from the pool. The second declares a general
access type that can designate an integer variable, integer constant, or pool value. The
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third is a restricted "read-only" form of the second: If p is of this type, it can be derefer
enced only to read the designated value, not to write it. That is, p.all is not valid on
the left side of an assignment statement. This is analogous to an in parameter.

Given a general access type of the second kind, can its values point to any integer
variable or constant? No. In keeping with Ada's general philosophy of explicimess in
operations, Ada requires that the programmer indicate explicitly that a variable or con
stant is intended to be "pointed to." For example, the integer variable x, declared as

X ;Integer;

cannot be designated by an access value, but the variable y, declared as

Y: ALIASED Integer;

can indeed be so designated. In everyday English, an alias is a nickname, or a name
that a person uses in addition to his or her given name. (A criminal might use a number
of aliases to avoid detection.) In programming, the term aliased is a fairly standard one
and means, by analogy, that the variable can be referred to not only by its name but by
any number of aliases (access values).

Suppose p is a general access type as above. How does p acquire a value? Of
course, p can still be copied from another access variable or assigned Ae result of a new,
but we are interested in designating variables. We can cause p to designate y, for exam
ple, by writing

P := Y'Access;

The 'Access attribute returns an access value designating y, or, informally, a pointer to
Y.

Program 16.8 illustrates general access types. An array, PromptTabie, is made to
contain access values that designate strings of different lengths. The four prompts are
declared as aliased to allow them to be designated. If we wished the prompts to be
CONSTANT strings, the access type would then be written as follows:

TYPE StringPointer IS ACCESS CONSTANT String;

Program 16.8 Illustration of General Access Types

WITH Ada.Text_I0;
PROCEDURE General_Access_Types IS

Illustrates general access types
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TYPE StringPointer IS ACCESS ALL String;
— ALL makes StringPointer a "general access type" as opposed to
— a "pool-specific access type." StringPointer values
— can designate declared variables and constants,
— as well as dynamically allocated (NEW) values

Promptl: ALIASED String := "Enter a command >";
Prompt2: ALIASED String ;= "Thank you.";
Prompts: ALIASED String := "Invalid; try again.";
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Proinpt4: ALIASED String := "Bye now.";
— ALIASED means

"able to be designated by a general access value"

PromptTable: ARRAY (1..4) OF StringPointer :=
(Promptl'Access, Prorapt2'Access,
Prompts'Access, Prompt4'Access);

— We fill the array with access values; for example,
— Promptl'Access returns an access value designating Promptl

BEGIN -- General_Access_Types

— display all the prompts in the table
FOR Which IN PromptTable•Range LOOP
Ada.Text_IO.Put(Item => PromptTable(Which).ALL); -- dereference
Ada.Text_IO.New_Line;

END LOOP;

END General_Acce3S_Types;

Sample Run

Enter a command >

Thank you.
Invalid; try again.
Bye now.

Armed with this introduction to general access types, we are ready to use them in a
more elaborate discussion of tagged types.

16,4 System Structures: Class-Wide Types

We used Programs 16.1 through 16.7 to illustrate a hierarchy of tagged types, defining
Person, Employee, Professional, Sales, and Clerical. We declared one variable of
each type, George, Mary, Martha, Virginia, and Herman, demonstrating the appropriate
constructors and selectors for each. The time has come to answer two questions left
open in Section 16.2:

• How can we declare a variable that can hold a value of any type in the hierarchy?

• How can we declare an array, each of whose elements can be a value of any type
in the hierarchy?

Class-Wide Types

Each tagged type t has an attribute t • class, which represents the entire type hierarchy
for which t is the parent. In our example a variable of type Person-class can hold a
value of any of our five types or indeed of any type derived from any of these in the
future. Person'Class is known as a class-wide type, and the variable is known as a
class-wide variable.
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We are getting closer to answering our questions. However, there is a small catch:
A class-wide variable cannot simply be declared but must be immediately initialized to
a specific value of one of the types, and thereafter, the variable can change its value but
not its type.

This rule is analogous to the rules for constrained variant records. A tagged type
can be extended indefinitely, with an unknown number derived types, each with an
unknown number of extension fields. The compiler cannot possibly know which types
might be derived—added to t'class—in the future, so it cannot even guess at the size
of a variable of such an unknown type. This problem does not arise with ordinary vari
ant records because all the possible variants are known when the type declaration is
compiled—an ordinary variant record cannot be extended later without rewriting and
recompiling the original type declaration.

This is not very helpful when we contemplate setting up a "data base"—an array,
say—of tagged objects such as employees. Since there are different types of employee,
each element of the array could be of a different type. Furthermore, these elements
could not all be immediately initialized because we might obtain the employee data
interactively or from an external file. Moreover, we might later wish to add new tj^s
of employees without having to modify the data base structure. Indeed, the possibility
of future modifications is exactly what first motivated our use of tagged types.

Continuing the analogy with variant records, is there a tagged-type analogue to an
unconstrained variant record, that is, a variable whose type—within a class—can be
left initially unspecified and can change over time?

The answer here is Yes, but the solution is not quite as simple as that for variant
records. The difference is that by the time an unconstrained variant object is declared,
the compiler knows all the possible variants and can therefore know how to arrange for
the space to be allocated. In contrast, as we have just seen, a class-wide variable can be
declared and the class later extended.

Class-Wide General Access Types and Heterogeneous Arrays

We solve the problem in Program 16.9, using general access types. We omit the output
of this program because it is identical to that of Program 16.4.

Program 16.9 Creating an Array of Payroll Records

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Currency; USE Currency;
WITH Dates; USE Dates;

WITH Persons; USE Persons;

WITH Personnel; USE Personnel;
WITH Payroll; USE Payroll;
PROCEDURE Payroll_Array IS

Demonstrates the use of classwide general access types
and dispatching operations
Author; Michael B. Feldman, The George Washington University
Last Modified: September 1998

George : ALIASED Person;
Mary : ALIASED Employee;
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Martha : ALIASED Professional;
Virginia: ALIASED Sales;
Herman : ALIASED Clerical;
— These values can now be designated by general access values

TYPE PayrollPointer IS ACCESS ALL Person'Class;
— a PayrollPointer value can designate a value of type
— Person, or of any type derived from Person, such as
— Employee, Sales, Professional, or Clerical

TYPE PayrollArray IS ARRAY (1..5) OF PayrollPointer;
— We can put all our employees in an array by designating
— them with PayrollPointer values

Company: PayrollArray;

BEGIN

— first construct all the people, as before

George := Persons.Constructors.MakePerson(
Name => "George",
Gender => Male,

BirthDate => Date_Of(1971,Nov,2});

Mary := Personnel.Constructors.MakeEmployee(
Name => "Mary",
Gender => Female,
BirthDate => Date_Of(1950,Oct,21),
ID => 1234,

StartDate => Date_Of(1989,Jul,l));

Martha := Payroll.Constructors.MakeProfessional(
Name => "Martha",
Gender => Female,
BirthDate => Date_Of(1947,Jul,8),
ID => 2222,

StartDate => Date_Of(1985,Jun,6),
MonthSalary => MakeCurrency(50000.00));

Virginia := Payroll.Constructors.MakeSales(
Name => "Virginia",
Gender => Female,
BirthDate => Date_Of(1955,Feb,l),
ID => 3456,

StartDate => Date_Of(1990,Jan,1),
WeekSalary => MakeCurrency(2500.00),
CommRate => 0.25);

Herman := Payroll.Constructors.MakeClerical(
Name => "Herman",
Gender => Male,
BirthDate => Date_Of(1975,May,13),
ID => 1557,

StartDate => Date__Of (1991, Jul, 1),
HourlyWage => MakeCurrency(7.50));

— Now put the people into the company; each array element is
— a different type I
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Company ;= (Herman'Access, Martha'Access, Virginia'Access,
Mary'Access, George'Access);

— Now display them all. Note that each time Put is invoked,
— precisely the appropriate Put is "dispatched".

FOR Which IN Company'Range LOOP
Put(Company(Which).ALL);
Ada.Text_IO.Put_Line(Item => " ");

END LOOP;

END Payroll_Array;

Here our five people are declared as in Program 16.4, but now they are aliased.
We further declared a general access type PayroiiPointer and an array of values of
this type:

TYPE PayroiiPointer IS ACCESS ALL Person'Class;
TYPE PayrollArray IS ARRAY (1..5) OF PayroiiPointer;

The access type can designate any type m Person'Class; each array element is a
value of that access type. We can now declare a variable

Company: PayrollArray;

and, after constructing all the people as in Program 16.4, we can put them into the com
pany, using an array aggregate:

Company := (Herman'Access, Martha'Access, Virginia'Access,
Mary'Access, George*Access);

The type PayrollArray is an example of how Ada allows you to create a heteroge-
nous array, that is, an array, each of whose values is a different type. Strictly speaking,
the values in Company are all just class-wide access values, but each designated value
is a different type, so the desired behavior is obtained. Our questions are answered.

16.5 System Structures: Dynamic Dispatching

Given the array of values in Program 16.9, we display the entire company Just by loop
ing through the array, dereferencing each pointer to obtain the value to display:

FOR Which IN Company'Range LOOP
Put(Company(Which).ALL);
Text_lO.Put_Line(Item => " ");

END LOOP;

There is more to the Put in the above loop than meets the eye. Note that each value
being displayed is of a different type, each of which has its own Put as defined in the
three packages of Section 16.2. If we had used vanant records, we would need a cme
to decide which variant to display. Here, the appropriate put is selected, at execution
time, automatically. This is called dynamic dispatching, and it is a very important tech
nique in object-oriented programming. The correct Put is said to be dispatched.
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Dispatching is closely related to primitive operations. In our example, Put is a
primitive operation of Person. For Person and each type derived from Person, that is,
each type in Person'Class, Put is inherited by default or, as in our situation, overrid
den. The five Puts have the same name and parameters differing only by the type within
Person'Class. The correct Put can thus be dispatched.

We note that the values designated by company (which) could have been placed in
company by dynamic allocation instead of using aliased variables. In fact, the next
section shows how to make Company fully dynamic.

16.6 Heterogeneous Linked Lists

To end our discussion of tagged types and also of linked lists, we show in Program
16.10 a fully dynamic example. Once again we omit the output, which is again identi
cal to that of Program 16.4.

Program 16.10 Creating a Linked List of Payroll Records

WITH Ada.Text_IO; USE Ada.Text_IO;
WITH Currency; USE Currency; ""
WITH Dates; USE Dates;
WITH Persons; USE Persons;
WITH Personnel; USE Personnel;
WITH Payroll; USE Payroll;
WITH Lists__Generic;
PROCEDURE Payroll_List IS

— I Demonstrates the use of a heterogeneous list.
— I Author; Michael B. Feldman, The George Washington University
— I Last Modified; September 1998

TYPE PayrollPointer IS ACCESS ALL Person'Class;
— as before, this can designate a Person or anything
— derived from Person

PROCEDURE PutPerson (Item; IN PayrollPointer) IS
BEGIN

Put(Item => Item.ALL); — dispatch to the appropriate Put
Ada. Text_IO. Put_Line (I tem =»> " ••).

END PutPerson; '

PACKAGE PayrollLists IS NEW Lists_Generic
(ElementType => PayrollPointer, DisplayElement => PutPerson);

USE PayrollLists;
— The list element type is now a classwide pointer

Company; List;
Temp ; PayrollPointer;

BEGIN — Payroll_List

— Construct all the people dynamically, and add each one
— to the end of the list as it is constructed. We no longer
— need an explicit variable for each person.
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Temp NEW Person'(Persons.Constructors.MakeFerson(
Name => "George",

Gender => Male,

BirthDate => Date__Of (1971,Nov, 2))) j
AddToEnd(Company, Temp);

Temp ;= NEW Employee'(Personnel.Constructors.MakeEmployee(
Name => "Mary",
Gender => Female,

BirthDate => Date_Of(1950,Oct,21),
ID => 1234,

StartDate => Date_Of(1989,Jul,l)));
AddToEnd(Company, Temp);

Temp := NEW Professional'(Payroll.Constructors.MakeProfessional(
Name => "Martha",

Gender => Female,

BirthDate -> Date_Of(1947,Jul,8),
ID => 2222,

StartDate => Date_Of(1985,Jun,6),
MonthSalary => MakeCurrency(50000.00)));

AddToEnd(Company, Temp);

Temp := NEW Sales'(Payroll.Constructors.MakeSales(
Name => "Virginia",
Gender => Female,
BirthDate => Date_Of(1955,Feb,1),
ID => 3456,

StartDate => Date_Of(1990,Jan,1),
WeekSalary => MakeCurrency(2500.00),
CommRate => 0.25));

AddToEnd(Company, Temp);

Temp ;= NEW Clerical*(Payroll.Constructors.MakeClerical(
Name => "Herman",

Gender => Male,

BirthDate => Date_Of(1975,May,13),
ID => 1557,
StartDate => DatejOf(1991,Jul,1),
HourlyWage => MakeCurrency(7.50)));

AddToEnd(Company, Temp);

— Now we can display the list.

Display (Company);

END Payroll_List;

Here we use our generic singly linked list package from Section 153, instantiating
it for our class-wide access type and declaring a few useful variables:

TYPE PayrollPointer IS ACCESS ALL Person'Class;
as before, this can designate a Person or anything

— derived from Person

PROCEDURE PutPerson(Item: IN PayrollPointer) IS
BEGIN

Put(Item => Item.ALL); — This will dispatch to the proper Put
Ada.Text lO.Put_Line(Itero => ");
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END PutPerson;

PACKAGE PayrollLists IS NEW Lists_Generic
(ElementType => PayrollPointer, DisplayElement => PutPerson);

USE PayrollLists;
— The list element type is now a classwide pointer

Company; List;
Temp ; PayrollPointer;

Note that the element type in each list node is one of our class-wide pointers. We
can now use Temp as a "holding area" for a dynamically allocated professional, for
example, and then add it to the end of our company list:

Temp ;= NEW Clerical*(Payroll.Constructors.MakeClerical(
Name => "Herman",
Gender => Male,
BirthDate => Date_0f(1975,May,13),
ID => 1557,

StartDate => Date_0f(1991,Jul,l),
HourlyWage => MakeCurrency(7.50)));

AddToEnd(Company, Temp);

Note also the PutPerson procedure with which we instantiate Lists Generic. The
first line of the procedure body calls Put with a parameter gotten by dereferencing the
pointer. Since the pointer type is classwide, the Put that is actually called depends on
the type of the pointer's desi^ated value. This is another example of dispatching.

After building a linked list of five people constructed in this manner. Display is
called. This list procedure dispatches the appropriate Put to display each person:

Display (Company);

This presentation has only scratched the surface of the facilities Ada provides for
olsject-oriented programming; a full treatment is beyond the scope of this book. The
discussion here should give you an indication of the power of type extension and
dynamic dispatching and perhaps an appreciation of why object-oriented programming
has become such a popular technique for building software systems.

No technique is perfect, and there is a price to be paid for inheritance. Large, deep
type hierarchies, while very powerful, can also be difficult to work with and maintain
because all the derived types and operations depend very intimately on types and oper
ations that are higher in the hierarchy. A change at the top can cause a "ripple effect"
through the hierarchy; this may be an advantage, but the high degree of coupling
among types might also have unanticipated effects.

As an example of why a large type hierarchy constructed with inheritance is often
difficult to use and maintain, consider a variable Virginia of type Sales and an expres
sion

GenderOf(Virginia)

Now suppose a problem arises that leads you to suspect a bug in GenderOf. How do you
know where to look for the definition and body of cenderof ? It is not defined in the
same package with sales; indeed, it is defined in Persons, at the top of the type hierar
chy. To discover this, you must look in every package specification all the way up the
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hierarchy, because the operation could have been defined, like idof, in an intermediate
package. The deeper the hierarchy, the more difficult it is to locate the definition of any
given operation.

This is clearly quite different from the other ADTs that we have seen, in which the
type provided by the package and all its operations were defined in full in that package.

Like any odier powerful tool, inheritance must be used with common sense and
moderation, and the tradeoffs must be carefully considered. Use it to build hierarchical
structures of types that are truly related in some obvious way; avoid the trap of using it
solely because it is there.

CHAPTER REVIEW

In this chapter we presented some introductory material on tagged types. The latter is a
very important capability of Ada because it provides inheritance and therefore facili
tates object-oriented programming. Closely related to tagged types is general access
types, which are pointers that can designate declared variables as well as dynamically
^located ones.

New Ada Constructs in Chapter 16

The new Ada constructs introduced in this chapter are described in Table 16.1.

Table 16.1 Summary of New Ada Constructs

Construct Effect
Tagged Type

TYPE Motorvehicie IS TAGGED RECORD Declares a tagged type, which Can be
Axles; positive; extended by derivation to produce
Enginesize: Positive; dynamic variants
Weight: Positive; ■'

END RECORD;

FUNCTION Axiesof(M: Motorvehicie) If Axlesof is declared just below
RETURN Positive; Motorvehicie in the same package

spec, it is a primitive operation.
TYPE TopType IS (Soft, Hard);

TYPE Automobile IS NEW Motorvehicie Automobile is derived from MotorVe-
wiTH RECORD hide and inherits its primitive opera

D tionsoors: Positive;
Top: TopType;

END RECORD;

FUNCTION TopOf (A: Automobile) DoorsOf is a primitive operation of
RETURN TopType; Automobile
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Construct Effect

Extension Aggregate

A: Automobile;

A := (MakeVehicle

(Axles => X,

BngineSize => E,
Weight => W)
WITH

Doors => 4,

Top => Soft);

Class-Wide Type

V: MotorVehicle'Class;

General Access Type

TYPE V_Pointer IS
ACCESS ALL MotorVehicle'Class;

Aliased Variable

V; ALIASED MotorVehicle;
VP: V_Pointer;
VP := VAccess;

A is an Automobile that inherits sev
eral of its fields from MotorVehicle

V can be a MotorVehicle, an Automo
bile, or anything else derived from
MotorVehicle.

Can designate (point to) a value of
MotorVehicle or anything derived
from it.

Can be pointed to by a value of type
v_pointer. VP contains a pointer to v.

Quick-Check Exercises

1. What is a tagged type? How is it related to a variant record?

2. What is a primitive operation?

3. What is a derived tagged type?

4. What is the difference between a pool-specific and a general access type?

5. What IS an aliased variable?

Answers to Quick-Check Exercises

1. A type that is extensible, that is, one from which new types can be derived that
have additional fields.

2. An operation on a tagged type that is declared just below it in the same pack
age specification and has a parameter of the tagged type.

3. A type that has been derived from a previously defined tagged type, possibly
with an extension consisting of one or more new fields.
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4. A pool-specific access type can acquire a value only by a call to new or by a
copy of another access vdue; a general access type can acquire a value either
by a NEW call or by taking the 'Access attribute of an aliased variable.

5. An aliased variable is one that may be designated (pointed to) by a general ac
cess value.

Review Questions for Chapter 16

1. Write the tagged type declarations for supplies. For each supply, the cost,
number on hand, and reorder point must be stored. For Paper the information
needed is the number of sheets per box and the size of the paper. For Ribbon
the size, color, and kind (carbon or cloth) are needed. For Labels the size and
number per box are needed. Use whatever data types are appropriate for each
field.

3. For the motor vehicle example begun in Table 16.1, complete a reasonably full
set of tagged type declarations that describe different types of vehicles, epe-
cially motorcycles, automobiles, and large trucks.

Programming Projects

1. Modify the geometric shapes example from Section 13.5 so that the basic
shape is a tagged type with perimeter and area fields, and other shapes are de
rived from the basic one. Use the style of the employees example fr^om Section
16.2.

2. Modify the employees and data base packages (Programs 11.11 through
11.17) to accommodate the tagged record hierarchy described in this chapter.

3. Develop a data base structure for motor vehicles, similar to the employees data
base of Programs 11.11 through 11.17, starting with the tagged types in Table
16.1 and adding a realistic set of derived types.

4. Develop a tagged record structure for the different kinds of people in a univer
sity: undergraduates, graduate students, faculty, and staff. The detailed design
of the different record types is up to you; use your imagination and experience
to determine which fields and operations each type ought to have. Then devel
op a university data base that is similar to the employee data base.
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Introduction to Concurrent
Programming

17.1 Problem Solving: What Is Concurrent Programming?

17.2 System Structures: Task Types and Task Objects

17.3 System Structures: Protected Types and Protected Objects

17.4 Continuing Saga: Multiple Concurrent Spiders

Chapter Review

Each program that we have seen so far has been a sequential, or single-threaded, one;
that is, it has consisted of a series of steps that are executed in sequence, one after the
other. In this chapter we introduce the idea of a concurrent, or multithreaded, program,
one in which several things can happen—or at least appear to happen—simultaneously.

Concurrent actions are really a part of most interesting programs. For example, a
time-shared operating system must deal with a number of human users working simul
taneously at their terminals. Further, many real-time applications, especially those con
trolling physical processes, are composed of concurrent program segments, each
responsible for its own physical subsystem. Finally, the world is concurrent, filled with
people doing different things all at the same time, and a program that would model that
world is best seen as comprising concurrent program segments.

This chapter introduces you to the fascinating field of concurrent programming,
which is the writing of concurrent programs. Ada provides an especially rich and inter
esting set of structures for concurrent programming; this chapter presents some of these
structures. In particular, we introduce Ada task types and protected types. A task object
is an active program, carrying on its activities independently of other tasks and interact
ing with others only where necessary. A protected object is passive; its purpose is to
encapsulate a data structure and provide services to tasks upon request, allowing many
tasks to view the structure simultaneously but authorizing only one task at a time to
modify the structure.

17.1 Problem Solving; What Is Concurrent Programming?

Much of the programming world involves concurrent applications. Here are some
examples from operating systems, real-time systems, and simulation.

701
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Operating Systems

When you and your colleagues all log in to terminals connected to the same time-shar
ing system, each of you works separately, but you are all using the same computer.
Each of you has the feeling that the computer is working only on your task, yet many of
you are working simultaneously. How is this seeming paradox possible?

The illusion that you are alone on the time-shared computer is caused by a combi
nation of fast computers and clever programming. Suppose you are using the computer
to edit a program or read electronic mail. You read and type at human speed. A very fast
typist can enter 100 words per minute, or—at an average of six characters per
word—about 10 characters per second. In the tenth of a second between two of your
keystrokes, a modem computer can execute hundreds of thousands of machine instmc-
tions. If those "extra" machine instructions could be put to productive use, the com
puter would have plenty of time between your keystrokes to service other human users.
It is not unusual for a modem time-shared computer to handle 100 or more simulta
neous users, each working at human speed.

Managing all those instructions and users is part of the responsibility of a modem
operating system. An operating system is, as you know by now, just a sophisticated
program; in fact, it is a concurrent program, capable of managing many devices and
human users to give the illusion of simultaneity.

Some time-shared computers consist of a single CPU; others consist of a set of
identical CPUs. With more than one CPU, programs can be executed in parallel-ihzx.
is, literally at the same time. With a single CPU, no real parallel execution is possible,
but that one CPU can be shared in such a way that many programs seem to be executing
in parallel. Concurrent programming is the creation of programs that consist of seg
ments that have the potential for parallel execution; depending upon the actual number
of CPUs available, execution of a concurrent program may be literally parallel, entirely
time-shared, or some combination of the two.

Real-Time Systems

Many computer systems exist to control physical systems of one kind or another.
Examples abound in medical technology, manufacturing and robotics, and transporta
tion. In the latter domain, real-time computer programs control modem automotive fuel
systems, aircraft such as the Boeing 777, and railroads such as the Channel Tunnel
between France and England and the subway system in Washington, D.C. These are, of
necessity, concurrent programs: They must manage a number of electronic devices
simultaneously; these devices, in turn, are connected to physical machines such as an
automobile's fuel injection system or a railroad's "turnout" (a movable section of track
that allows a train to enter one or the other of two rail lines).

Modeling and Simulation

Concurrent programming is useful in modeling or simulating physical systems, even if
those systems are not directly controlled by a computer. For example, the waiting and
service times in a bank, supermarket, or other ser\'ice organization can be studied by
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writing a program in which each customer and each server—bank teller, supermarket
checker, airline reservation clerk—is represented by its own program segment, which
interacts with the other segments.

Similarly, a subway system can be modeled by a program in which each train, sta
tion, turnout, and block (section of track that is permitted to hold at most one train) is
represented by a program segment. The flow of simulated customers in the bank, or of
trains in the subway, can be controlled or varied at will.

Simulation is an important tool in optimizing physical systems—for example,
choosing the most effective number of open checkout lanes in a supermarket or the fre
quency and maximum speed of trains in a subway. Studying the computer model pro
vides information and insight into the behavior of the physical system if the former is a
faithful representation of the latter; concurrent programming provides a natural way of
assigning program segments to represent physical objects and therefore aids greatly in
developing good simulations.

Ada is one of only a few programming languages—and the only popular one—to
provide built-in structures for concurrent programming. In this chapter, we use a series
of examples to present a few of the basic Ada structures and end with a spider program,
namely, a simulation of a family of spiders, all trying simultaneously to move around
the room without bumping into walls or other spiders.

Ada Structures for Concurrent Programming

In concurrent programming, an execution of a program segment is called a process. For
example, when, logged into a time-sharing system, you invoke the electronic mail pro
gram, a process is created. The mail program itself is just a file on disk; when it is
loaded into memory and executed, that execution is a process. If you and several
friends all log in at the same time and invoke the e-mail program, several copies of that
program are executing simultaneously on the same computer. One program has given
rise to multiple simultaneous processes. Ada's term for process is task; Ada provides
task types to allow the creation of multiple processes—which Ada calls task

resulting from a single program declaration.
Generally, your incoming e-mail is stored in a system file called the electronic mail

box, or just mailbox. Suppose you are reading your mail when a friend sends you a
message. The new message must be added to your mailbox file; your reading must be
momentarily suspended while the file is modified (you nught not notice the temporary
suspension, but it happens anyway). Now suppose that two incoming messages arrive at
the same time. Not only must your reading be suspended, but something in the mail
software must update your mailbox one message at a time. If this protection were not
provided—if two messages could update the mailbox literally at the same time—the
mailbox would become hopelessly garbled and therefore useless.

The e-mail situation is an example of a readers-writers problem, a category of com
puting problems in which multiple readers of, and multiple writers to, a data structure
must be prevented fi-om interfering with one another. The prevention technique is called
mutual exclusion; update actions on the data structure are handled one at a time while
other actions are excluded. Ada's protected types provide mutual exclusion. We can
declare a protected type, and variables of that type, with read operations called pro-
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tectedfunctions and update operations called protected procedures. Ada guarantees that
these protected operations execute correctly. Specifically, multiple calls to a protected
procedure are executed one at a time.

Section 17.2 introduces task types and task objects; Section 17.3 introduces pro
tected types and protected objects.

17.2 System Structures: Task Types and Task Objects

An Ada task is an interesting structure. It has aspects of a package, a procedure, and a
data structure but is really none of these; it is something different altogether:

• Like a package, a task has a specification and a body. Unlike a package, it must be
declared in an enclosing structure, not put in a separate file and compiled separate
ly-

• Like a procedure, a task has a declaration section and a sequence of executable
statements. However, it is not called like a procedure; rather, it starts executing im
plicitly, automatically, as a part of its enclosing block.

• Like a data structure, it has a type and is brought into existence by declaring a vari
able of the type. Indeed, like a variant record, it can have one or more discrimi
nants.

Program 17.1 illustrates these aspects of tasks.

Program 17.1 A Task within a Main Program

WITH Ada.Text_iOj
PROCEDURE 0ne_Task IS

Show the decleuration of a simple task type and one
variable of that type.

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— A task type has a specification
TASK TYPE SimpleTask (Message; Character);

— A task type has a body
TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..10 LOOP
Ada.Text lO.PutC'Hello from Task " & Message);
Ada.Text~IO.New_Line;

END LOOP; ~

END SimpleTask;

Task_A: SimpleTask(Message => 'A');
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BEGIN — One Task

— Unlike procedures, tasks are not "called" but are activated
— automatically.

— Task_A will start executing as soon as control reaches this
point, just after the BEGIN but before any of the main program's

— statements are executed.

NULL;

END One_Task;

Sample Run

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

Hello from Task A

First note the overall structure of the program. A task type, simpieTask, is declared
with a discriminant. Message. This task specification is followed by a task body in
which the message is displayed ten times. Next, Task_A is declared as a task variable,
usually called a task object, with a discriminant value of • a •.

Reaching the main begin of this program, we discover that the program has no exe
cutable statements, just a null statement to satisfy the rule that a procedure must have
at least one statement. Yet the sample run shows the task actually displaying Hello
from Task A ten times. The task was never called from the main program, yet it exe
cuted anyway.

In fact, the task began its execution just after the main begin was reached. In Ada
this is called "task activation": All tasks that are declared in a given block are activated
just after the begin of that block. Here there is only one task, Task_A.

Multiple Task Objects of the Same Type

Program 17.2 shows the declaration of two task objects, Task_A and Task_B. Further,
the task type is modified to allow two discriminants: the message and the number of
times the niessage is to be displayed. A discriminant acts here like a parameter of the
task, but it is not a fully general parameter; like a variant-record discriminant, it must
be of a discrete—integer or enumeration-type. A string, for example, cannot be used
as a task discriminant.

Program 17.2 Two Tasks within a Main Program

WITH Ada.Texi:__I0;
PROCEDURE Two"'Tasks IS
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Show the declaration of a simple task type and two
variables of that type.

Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— A task type has a specification
TASK TYPE SimpleTask (Message: Character? HowMany: Positive);

— A task type has a body
TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put("Hello from Task " & Message);
Ada. Text_IO. New__Line;

END LOOP;

END SimpleTask;

— Now we declare two variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5);
Task_B: SimpleTask(Message => 'B', HowMany =>7);

BEGIN — Two_Tasks

Task A and Task__B will both start executing as soon as control
reaches this point, again before any of the main program's

— statements are executed. The Ada standard does not specify
— which task will start first.

NULL;

END Two_Tasks;

Sample Run

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B

Hello from Task B
Hello from Task A

Hello from Task A

Hello from Task A
Hello from Task A

Hello from Task A

As in Program 17.1, Task_A and Task_B are activated just after the main begin.
Now there are two tasks; in which order are they activated? The Ada standard does not
specify this, leaving it instead up to the compiler implementer. In a short while, we
shall see how to control the order in which tasks start their work.
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Looking at the sample run from Program 17.2, we see that Task_B evidently
started—and completed—its work before Task_A even started its own work. This tells
us first that the compiler we used activated Task_B first, and also that, once scheduled
for the CPU, Task_B was allowed to continue executing until it completed its run. This
seems odd: The tasks do not really execute as though they were running in parallel;
there is, apparently, no time-sharing. If there were, we would expect Task_A and
Task_B output to be interleaved in some fashion.

In fact, the Ada standard allows, but does not require, time-slicing. Time-slicing,
implemented in the run-time support software, supports "parallel" execution by giving
each task a slice, usually called a quantum, which is a certain amount of time on the
CPU. At the end of the quantum the run-time system steps in and gives the CPU to
another task, allowing it a quantum, and so on, in "round-robin" fashion.

Cooperating Tasks

If Program 17.2 were compiled for a computer with several processors, in theory
Task_A and Task_B could have been executed—truly in parallel—on separate CPUs,
and no time-slicing would be needed. With a single CPU, we would like to emulate the
parallel operation, ensuring concurrent execution of a set of tasks even if the Ada
run-time system does not time-slice.

To get "parallel" behavior portably, using one CPU or many, with or without
time-slicing, we code the tasks in a style called cooperative multitasking: that is, we
design each task so that it periodically "goes to sleep," giving up its turn on the CPU so
that another task can execute for a while.

Program 17.3 shows how this is done, using a delay statement in each iteration of
the task body's for loop. The delay causes the task to suspend its execution, or "sleep."
Now while Task_A is "sleeping," Task_B can be executing, and so on. The cooperating
nature of the two tasks is easily seen in the sample output.

Program 17.3 Using DELAY to Achieve Cooperation

WITH Ada.Text_I0;
PROCEDURE Two_Cooperating_Tasks IS

Show the declaration of a simple task type and two
variables of that type. The tasks use DELAYS to cooperate.
The DELAY causes another task to get a turn in the CPU.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

— A task type has a specification
TASK TYPE SimpleTask (Message: Character; HowMany: Positive);

— A task type has a body
TASK BODY SimpleTask IS

BEGIN — SimpleTask

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
Ada.Text 10.New Line;
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DELAY 0.1; — lets another task have the CPU
END LOOP;

END SimpleTask;

— Now we declare two variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5);
Task_B: SimpleTask(Message => 'B', HowMany => 7);

BEGIN — Two_Cooperating_Tasks

— Task A and Task__B will both start executing as soon as control
— reaches this point, again before any of the main program's
— statements are executed. The Ada standeurd does not specify
— which task will start first.

NULL;

END Two_Cooperating_Tasks;

Sample Run

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B

Hello from Task A

Hello from Task B
Hello from Task A

Hello from Task B

Hello from Task B

Controlling the Starting Order of Tasks

We know that the Ada standard does not specify an order of activation for multiple
tasks in the same program. Each compiler can use a different order; indeed, a compiler
is—theoretically—free to use a different starting order each time the program is run,
though practical compilers rarely if ever take advantage of this freedom.

Although we cannot control the actual activation order of tasks, we can gain control
of the order in which these tasks start to do their work by using a so-called "start but
ton." This is a special case of a task entry, which is a point in a task at which it can syn
chronize with other tasks. This is illustrated in Program 17.4.

Program 17.4 Using "Start Buttons" to Control Tasks' Starting Order

WITH Ada.Text_I0:
PROCEDURE Start_Buttons IS

Show the declaration of a simple task type and three
variables of that type. The tasks use DELAYS to cooperate.
"Start button" entries are used to to control starting order.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998
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TASK TYPE SimpleTask (Message! Character; HowMany: Positive) IS

— This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

— The task will "block" at the ACCEPT, waiting for the "button'
— to be "pushed" (called from another task, Main in this case).
ACCEPT StartRunning;

FOR Count IN 1..HowMany LOOP
Ada.Text_lO.Put(Item => "Hello from Task " & Message);
Ada.Text_IO.New_Line;
DELAY 0.1; — lets another task have the CPU

END LOOP;

END SimpleTask;

— Now we declare three variables of the type
Task_A: SimpleTask(Message => 'A', HowMany =>5);
Task_B: SimpleTask(Message => 'B', HowMany => 7);
Task_C! SimpleTask (Message => 'C, HowMany => 4);

BEGIN — Start_Buttons

— Tasks will all start executing as soon as control
— reaches this point, but each will block on its ACCEPT
— until the entry is called. In this way we control the starting
— order of the tasks.

Task_B.StartRunning;
Task_A.StartRunning;
Task_C.StartRunning;

END Start_Buttons;

Sample Run

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task C

Hello from Task B

Hello from Task A

Hello from Task B
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SYNTAX

DISPLAY

Hello from Task B

In this program, the task specification is expanded to include an entry specification:

ENTRY StartRunning;

This is, syntactically, similar to the subprogram specifications that usually appear in
package specifications. The task body includes, immediately after its begin, the corre
sponding line

ACCEPT StartRunning;

According to the rules of Ada, a simpieTask object, upon reaching an accept state
ment, must wait at that statement until the corresponding entry is called by another
task. In Program 17.4, then, each task—Task_A, Task_B, and Task_c—is activated just
after the main program's begin, but—before it starts any work—each reaches its
respective accept and must wait there (in this simple case, possibly forever) until the
entry is called.

How is the entry called? In our first three examples the main program had nothing
to do. In this case its job is to "press the start buttons" of the three tasks, with the entry
call statements

Task_B.StartRunning;
Task_A.StartRunning;
Task__C. StartRunning;

These statements are syntactically similar to procedure calls. The first statement
"presses the start button" of Task__B. Since Task_B was waiting for the button to be
pressed, it accepts the call and proceeds with its work.

The main program is apparently executing—in this case, pressing the start but
tons—in "parallel" with the three tasks. In fact, this is true. In a program with multiple
tasks, the Ada run-time system treats the main program as a task as well.

Task Type Specification

Form:

TASK TYPE tnaaie {optional list of discrimnents ) IS
ENTRY g3;

ENTRY e2}

END tname}

Example:

TASK TYPE Philosopher (Name: Natural) IS
ENTRY Come_to_Life (First, second: Chopstick);

END Philosopher;

Interpretation:

The task type specification gives a list of the entries to be provided by the task
objects.
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SYNTAX X L a ̂
DISPLAY

Form:

TASK BODY tname IS

local declaration-section

BEGIN

statement sequence
END tname;

Example:

The simpieTask bodies shown in this section serve as examples; we need not
repeat them here.

Interpretation:
The task body contains the local declarations and statement sequence of the task.
Multiple task objects of the type can be declared; each task object has, in effect, a
copy of the task body,

A task body can contain code that is much more interesting than we have seen. Ada
provides the select statement to give a programmer much flexibility in coding task
bodies. For example, using the select,

• The accept statement can be written to "time out" if a call is not received within a
given time interval.

• The task can be made to terminate—end its execution—if the call is never re
ceived.

• The task specification can provide a number of entries and its body can be made to
respond to whichever of a set of different entry calls occurs first, then loop around
and respond again.

The select construct is one of the most interesting in all of programming; entire
books can be written about the possibilities it offers. Space does not permit a full dis
cussion of the select here; we hope this brief discussion has sparked your curiosity to
learn more about it.

In this section we have seen the basics of task types and objects. We now proceed to
introduce protected types and objects.

17.3 System Structures; Protected Types and Protected Objects

In Section 17.1 we discussed mutual exclusion using the example of an e-mail reader.
Here we look at an analogous, but simpler, situation. Suppose we have a three-task pro
gram like Program 17.4, but we want each task to write its output in its own area of the
screen. The desired output is

Hello from Task A Hello from Task B Hello from Task c
Hello from Task A Hello from Task B Hello from Task C
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Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B Hello from Task C
Hello from Task A Hello from Task B

Hello from Task B

Hello from Task B

This simple example is representative of multiwindow programs. We modify the
task specification to read

TASK TYPE SimpleTask (Message: Character;
HowMany; Screen.Depth;
Column: Screen.Width) IS . . .

adding a third discriminant, column, to indicate which screen column each task should
use for the first character of its repeated message. Further, we modify the main loop of
the task body as follows:

FOR Count IN 1..HowMany LOOP
Screen.MoveCursor(Row => Count, Column => Column);
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
DELAY 0.5; — lets another task have the CPU

END LOOP;

That is, the task positions the screen cursor to the proper column before writing the
message. Program 17.5 shows the fiill program.

Program 17.5 Several Tasks Using the Screen

WITH Ada.Text_I0;
WITH Screen;

PROCEDURE Columns IS

Shows tasks writing into their respective columns on the
screen. This will not always work correctly, because if the
tasks are time-sliced, one task may lose the CPU before
sending its entire "message" to the screen. This may result
in strange "garbage" on the screen.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

TASK TYPE SimpleTask (Message: Character;
HowMany: Screen.Depth;
Column: Screen.Width) IS

This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

Each task will write its message in its own column
ACCEPT StartRunning;
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FOR Count IN l..HowMany LOOP
Screen.MoveCursor(Row => Count, Column => Column);
Ada.Text_IO.Put(Item => "Hello from Task " & Message);
DELAY 0.5; — lets another task have the CPU

END LOOP;

END SimpleTask;

— Now we declare three variables of the type
Task_A: SimpleTask(Message => 'A', HowMany =» 5, Column => 1);
Task_B: SimpleTask(Message => 'B', HowMany => 7, Column => 26);
Ta3k_C; SimpleTask (Mess age => 'C, HowMany => 4, Column => 51);

BEGIN — Columns

Screen.ClearScreen;
Task_B.StartRunning;
Task_A.StartRunning;
Task_C.StartRunning;

END Columns;

Sample Run

Hello from Task A Hello from Task B Hello from Task C
2Hello from Task

C;26fI2;lfHello from Task AHello from Task B [[3;IfHello
from Task A3;26fHello from Task BHello from Task C4;4;lfHello from Task
A51fHello from Task C26fHello from Task B5;526;fJfHello from Task BHello
from Task A

Hello from Task B

Hello from Task B

The output from running this program is not exactly what we intended! Instead of
the desired neat columns, we got messages displayed in seemingly random locations,
interspersed with apparent "garbage" like

C;26f(2;lf

What happened here? To understand this, recall the body of screen.MoveCursor
(included in Program 4.9):

PROCEDURE MoveCursor (Column ; Width; Row : Depth) IS
BEGIN

Ada.Text_IO.Put (Item => ASCII.ESC);
Ada.Text_IO.Put ("[");
Ada.Integer_Text_IO.Put (Item => Row, Width =>1);
Ada.Text_lO.Put (Item => ';');
Ada.Integer_Text_IO.Put (Item => Column, Width =>1);
Ada.Text_lO.Put (Item => 'f');

END MoveCursor;

Positioning the cursor requires an instruction, up to eight characters in length, to
the ANSI terminal software: the esc character, then ■ t •, followed by a possibly
two-digit Row, then •; •, then a possibly two-digit column value, and finally • f •. Once it
receives the entire instruction, the terminal actually moves the cursor on the screen.
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Suppose the Movecursor call is issued from within a task, as in the present exam
ple. Suppose further that in this case the Ada run-time system does provide time-slicing
to give "parallel" behavior of multiple tasks. It is quite possible that the task's quantum
will expire after only some of the eight characters have been sent to the terminal, and
then another task will attempt to write something to the terminal. The terminal never
recognized the first instruction, because it received only part of it, so instead of obeying
the instruction, it just displays the characters. The "garbage" string above, c;26f [2; if,
consists of pieces from several different intended instructions.

This problem arose because a task was interrupted in mid-instruction, and then
another task was allowed to begin its own screen instruction. This is called a race con
dition because two tasks are, effectively, in a race to write to the screen, with unpredict
able results. It is actually a readers-writers problem: Multiple tasks are interfering with
each other's attempts to write to the screen.

To prevent this problem from ruining our columnar output, we must protect the
screen so that—whether or not we have time-slicing—a task is allowed to finish an
entire display operation before another task can begin one. We can do this in Ada with a
protected type, as shown in Program 17.6.

Program 17.6 Using a Protected Type to Ensure Completion of a Screen Action

WITH Ada.Text_I0;
WITH Screen;

PROCEDURE Protect_Screen IS

Shows tasks writing into their respective columns on the
screen. This time we use a protected type, whose procedure
can be executed by only one task at a time.
Author; Michael B. Feldman, The George Washington University
Last Modified: September 1998

PROTECTED TYPE ScreenManagerType IS

If multiple calls of Write are made simultaneously, each is
executed in its entirety before the next is begun.
The Ada standard does not specify an order of execution.

PROCEDURE Write (Item; IN String;
Row; IN Screen.Depth;
Column: IN Screen.Width);

END ScreenManagerType;

PROTECTED BODY ScreenManagerType IS

PROCEDURE Write (Item; IN String;
Row; IN Screen.Depth;
Column; IN Screen.Width) IS

BEGIN — Write

Screen.MoveCursor(Row => Row, Column => Column);
Ada.Text_IO.Put(ltem => Item);

END Write;

END ScreenManagerType;
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Manager: ScreenManagerType;

TASK TYPE SimpleTask (Message: Character;
HowMany: Screen,Depth;
Column: Screen.Width) IS

— This specification provides a "start button" entry.
ENTRY StartRunning;

END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

— Each task will write its message in its own column
— Now the task locks the screen before moving the cursor,
— unlocking it when writing is completed.

ACCEPT StartRunning;

FOR Count IN 1..HowMany LOOP

— No need to lock the screen explicitly; just call the
— protected procedure.
Manager. Write (Row => Count, Column => Coliimn,

Item => "Hello from Task " & Message);

DELAY 0.5; — lets another task have the CPU
END LOOP;

END SimpleTask;

— Now we declare three variables of the type
Task_A: SimpleTask(Message => 'A', HowMany => 5, Column => 1);
Task_B: SimpleTask(Message => 'B', HowMany => 7, Column => 26);
Task_C: SimpleTask(Message => 'C, HowMany => 4, Column => 51);

BEGIN — Protect_Screen

Screen.ClearScreen;
Task_B.StartRunning;
Task_A.StartRunning;
Ta3k_C.StartRunning;

END Protect_Screen;

In this program, we declare a type

PROTECTED TYPE ScreenManagerType IS

PROCEDURE Write (Item: IN String;
Row: IN Screen.Depth;
Column: IN Screen.Width);

END ScreenManagerType;

Manager: ScreenManagerType;
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An object of this type in this case Manager, provides a procedure write to which
are passed all the parameters of the desired screen operation: the string to be written,
the row, and the column. Any task wishing to write to the screen must do so by passing
these parameters to the screen manager. The simpieTask body now contains a call

Manager.Write(Row => Count, Column => Column,
Item => "Hello from Task " & Message);

as required. The body of the protected type is

PROTECTED BODY ScreenManagerType IS

PROCEDURE Write (Item; IN String;
Row: IN Screen.Depth;
Column: IN Screen.Width) IS

BEGIN — Write

Screen.MoveCursor(Row => Row, Column => Column);
Ada.Text_IO.Put(Item => Item);

END Write;

END ScreenManagerType;

and the write procedure encapsulates the MoveCursor and Put operations.
What is the difference between this protected write procedure and an ordinary pro

cedure? Ada guarantees that each call of a protected procedure will complete before
another call can be started. Even if several tasks are running, trading control of the CPU
among them, a task will not be allowed to start a protected procedure call if another c^l
of the same procedure, or any other procedure of the same protected object, is still
incomplete. In our case, this provides the necessary mutual exclusion for the screen.

Protected types can provide functions and entries in addition to procedures. Pro
tected functions allow for multiple tasks to examine a data structure simultaneously but
not to modify the data structure. Protected entries have some of the properties of both
task entries and protected procedures. A detailed discussion of these is beyond our
scope here.

The next section will introduce a more interesting use of protected types.

17.4 Continuing Saga: Multiple Concurrent Spiders

In Section 11.6 we developed the package specification spiders for multiple spiders
(Program 11.18); we left the body as an exercise. However, we could not, at that time,
consider how to program the spiders so that they acted independently of each other,
crawling at will around the room. In this section we show how to develop multiple con
current spiders.
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Developing a Task Type for Drunken Spiders

Recall the "drunken spider" program from Program 2.15. There the spider, in a state of
inebriation, lurched around its room, taking a random number of steps and occasionally
hitting the wall. Here we see a number of drunken spiders trying to get around, occa
sionally hitting the wall and sometimes bumping into each other. Suppose a spider
refers to itself as Me. The main loop of that spider's life is given by the following:

LOOP

FOR Count IN 1..Random_20.Random (Gen => G) LOOP

BEGIN — to handle exception
Spiders.Step(Me);

EXCEPTION

WHEN Spiders.Hit_the_Wall => — turn around
Spiders.Right (Me)7
Spiders.Right (Me);

WHEN Spiders.Hit_a_Spider => — turn right
Spiders.Right (Me);

END;

END LOOP;

Spiders.Right (Me);

END LOOP;

In an endless loop, the spider first selects a random number of steps in the range
1..20, then tries to step forward that number of times. If it hits the wall (spi
ders .Hit_the_waii is raised), it turns around and keeps stepping in the opposite direc
tion; if it bumps into another spider (spiders.Hit_a_spider is raised), it turns right
and continues its walk.

Program 17.7 shows a full program in which this loop is incorporated in a task type
Drunken_spider_Task, with a discriminant Mycoior and a "start button" entry called
Hatch. The discriminant has a default value Spiders. Black; this means that if a spider
object declaration fails to provide a value for the discriminant, the default value will be
taken.

Program 17.7 Three Drunken Spiders

WITH Spiders;
WITH Ada.Text_IO;
WITH Ada.Numerics.Discrete_Random;
PROCEDURE Three__Drunken_Spiders IS

Multiple drunken spiders try to tour their room.
The spiders are represented as task objects.
Author; Michael B. Feldman, The George Washington University
Last Modified: September 1998

— Now a spider is a task object, as defined by this type.
— Note: default color is black.

TASK TYPE Drunken_Spider_Task
(MyColor: Spiders.Colors := Spiders.Green) IS
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— one "start button" entry to bring spider to life
ENTRY Hatch;

END Drunken_Spider_Task;

TASK BODY Drunken_Spider_Ta8k IS

Me: Spiders.Spider;

BEGIN — Drunken_Spider_Task

ACCEPT Hatch; — come to life here

— Randomize all starting parameters
Spiders.Start (Which => Me,

Row => Spiders.RandomStep,
Col => Spiders.RandomStep,
WhichColor => MyColor,
WhichWay «'> spiders.RandomDirection);

LOOP

Spider will count steps correctly but might change direction
FOR Count IN 1..Spiders.RandomStep LOOP

BEGIN — to handle exception
Spiders.Step(Me);

EXCEPTION

WHEN Spiders.Hit^the__Wall => — turn around
Spiders.TurnRight (Me);
Spiders.TurnRight (Me);

WHEN Spiders .Hit_a__Spider => — turn right
Spiders.TurnRight (Me);

END;

END LOOP;

Spiders.TurnRight (Me);

END LOOP;

EXCEPTION

WHEN OTHERS «=>
Ada.Text_IO.Put(Item => "This spider is dying.");
Ada.Text_IO.New_Line;

END Drunken_Spider_Task;

— Now declare some spider objects
Charlotte : Drunken_Spider_Task(MyColor => Spiders.Green);
Murgatroyd: Drunken_Spider_Task(MyColor => Spiders.Red);
Arachne : Drunken_Spider__Task(MyColor => Spiders.Blue);

BEGIN — Three_Drunken_Spiders

Spiders.Draw_Room;

Bring the spiders to life, then stand back and watch!
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Charlotte.Hatch;
Murgatroyd.Hatch;
Arachne.Hatch;

END Three_Drunken_Spiders;

Within the task body is a local variable

Me: Spiders.Spider;

which is referred to further in the task body. If we declare multiple objects of type
Drunken_spider_Task, each one will have its own Me variable.

The rest is straightforward: Each spider waits at its accept to be hatched, then calls
Spiders. start with random values for the starting direction and position. At this
point, the spider starts executing its main loop.

Three Drunken_spider_Task objects are declared with their respective color dis
criminants. After the main begin, each spider is brought to life, and nothing is left for
the main program to do but watch the action.

Protecting the Spider Move Operation

We are not quite finished with the multiple spider example. Consider the algorithm for
detecting a possible collision between spiders and acting accordingly:

Algorithm for Spider Move
1. Compute location into which spider is trying to move

2. IF the spider is trying to move to an occupied square then

3. RAISE Hit_a_Spider

ELSE

4. Step out of the current space into the unoccupied square

END IF;

Step 4 can be refined into

Step 4 Refinement
4.1 Draw a colored mark in the current square

4.2 Mark the current space as unoccupied

4.3 Mark the new space as occupied

4.4 Draw a spider symbol in the new square

There are therefore several operations to be done to record the spider's move,
involving both the screen and the room board in which we keep track of occupancy.
Because several spiders are crawling around concurrently, we must be sure that steps
4.1 through 4.4 are done as a single operation. Consider a situation in which Murga
troyd executes its step 4.1 and 4.2, vacating its square, but then—before Murgatroyd
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actually moves to its new space in steps 4.3 and 4.4—charlotte is able to move into
that same square because it is not yet marked as occupied. This is not a very good situ
ation—it leaves Murgatroyd without a square.

This is another example of a situation in which mutual exclusion is necessary. We
can handle this by analogy with the screen protector from Program 17.6. We will define
a protected type that "owns" the room array, with a procedure Move to encapsulate steps
4.1 through 4.4 in one protected operation.

Let us add to the body of spiders the following declarations:

TYPE Status IS (Unoccupied, Occupied);
TYPE BoardType IS ARRAY (RoomHeight, RoomWidth) OF Status;

PROTECTED TYPE Rooin_Type IS

PROCEDURE Move (Which: IN OUT Spider; HowMany: IN Natural);

PRIVATE

RoomBoard: BoardType := (OTHERS => (OTHERS => Unoccupied));

END Room_Type;

PROTECTED BODY Room_Type IS SEPARATE;

Room: Room_Type;

Our protected type Room_Type has some memory, RoomBoard, that belongs to it
exclusively, as indicated in the private section. Move is a protected operation; a given
call of Move will be executed in its entirety before another Move can be started. The dec
larations above show the protected body as a separate subunit; the subunit is given in
full as Program 17.8.

Program 17.8 Protecting the Room Board from Multiple Accesses

SEPARATE (Spiders)
PROTECTED BODY Room_Type IS

Body of protected type for the spider's room.
The room array is protected from concurrent access by
requiring all access to be via the protected procedure Move.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998

PROCEDURE Move (Which: IN OUT Spider; HowMany: IN Natural) IS
Row: RoomHeight;
Column: RoomWidth;

BEGIN — Move

— If out of bounds raise exception.
IF NearWall (Which, HowMany) THEN

RAISE Hit__the_Wall;
END IF;

Row := Which.CurrentRow;

Column := Which.CurrentColumn;
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— Compute new proposed location
CASE Which.Heading ZS

WHEN North =>

Row := Which.CurrentRow - HowMany;
WHEN East =>

Column !=» Which.CurrentColumn + HowMany;
WHEN South =>

Row := Which.CurrentRow + HowMany;
WHEN West =>

Column != Which.CurrentColumn - HowMany;
END CASE;

— Is this space occupied?
IF RoomBoard(Row, Column) - Occupied THEN
RAISE Hit_a_Spider;

ELSE

— put a block down where spider is standing; vacate space
DrawSymbol(Which => Which, WhichChar => ColorSymbols(Which.Ink));
RoomBoard(Which.CurrentRow, Which.CurrentColumn) := Unoccupied;

— occupy new space

RoomBoard(Row, Column) := Occupied;
Which.CurrentRow := Row;
Which.CurrentColumn ;= Column;
ShowSpider (Which);

END IF;

END Move;

END Room_Type;

All that remains is to modify the bodies of those operations in the Spiders package
body that involve a move. Here is Jump, for example:

PROCEDURE Jump (Which: IN OUT Spider; HowMany: IN Positive) IS
BEGIN

— Concurrent spiders now, so move must be protected.
Room.Move(Which, HowMany);

IP Debugging = On THEN — if debug mode,
Ada.Text_lO.Skip_Line; — wait for user to press ENTER

ELSE

DELAY 0.1;

END IF;

END Jump;

We leave it to you as an exercise to complete the package body.
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SYNTAX

DISPLAY
Protected Type Specification

Form:

PROTECTED TYPE pname (optional list of discriminants ) IS
specifications of functions, procedures, and entries

PRIVATE

declarations of encapsulated data structures
END pname;

Fxample:

See the Room__Type and ScreenManagerType specifications in this chapter.

Interpretation:

The protected type specification gives a list of the procedures, functions, and
entries to be provided by the protected objects. The private part is optional.

SYNTAX

DISPLAY
Protected Body

Form:

PROTECTED BODY pname IS

BEGIN

entry, procedure, and function bodies
END pname;

Example:

See the Rooinjrype and ScreenManagerType bodies in this chapter.

Interpretation:

The protected body contains the bodies of the protected operations.

Arrays of Task Objects

Finally, we show an example of how tasks really do have aspects of data objects. Pro
gram 17.9 shows how we could create an array of spider objects.

Program 17.9 Creating an Array of Spiders

WITH Spiders;
WITH Ada.Text_IO;
WITH Ada.Numerics.Discrete_Random;
PROCEDURE Drunken_Spiders_Family IS

Multiple drunken spiders try to tour their room.
The spiders are represented as task objects;
a spider family is represented by an array of spiders.
Author: Michael B. Feldman, The George Washington University
Last Modified: September 1998
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SUBTYPE RandomSteps IS Positive RANGE 1..20;

PACKAGE Random_20 IS NEW Ada.Numerics.Discrete_Randoin
{Result_Subtype => RandomSteps);

G! Random_2 0.Generator;

PACKAGE RandomHeading IS NEW Ada.Numerics.Discrete_Randora
(Result_Subtype => Spiders.Directions); ~

D: RandomHeading.Generator;

— Now a spider is a task object, as defined by this type.
TASK TYPE Drunken_Spider_Task
(MyColor; Spiders.ScreenCoiors := Spiders.Black) IS

— one "start button" entry to bring spider to life
ENTRY Hatch;

END Drunken_Spider_Task;

TASK BODY Drunken_Spider_Task IS

Me; Spiders.Spider;

BEGIN ~ Drunken_Spider_Task

ACCEPT Hatch; — come to life here

— Randomize all starting parameters
Spiders.Start (Which => Me,

Row => Random_20.Random(Gen => G),
Col => Random_20.Random(Gen => G),
WhichColor => MyColor,
WhichWay => RandomHeading.Random(Gen => D));

LOOP

— Spider will count steps correctly but might change direction
FOR Count IN 1..Random_20.Random (Gen => G) LOOP

BEGIN ~ to handle exception
Spiders.Step(Me);

EXCEPTION

WHEN Spiders.Hit_the_Wall => — turn around
Spiders.Right (Me);
Spiders.Right (Me);

WHEN Spiders. Hit_a__Spider => — turn right
Spiders.Right (Me);

END;

END LOOP;

Spiders.Right (Me);

END LOOP;

EXCEPTION
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WHEN OTHERS =>

Ada.Text_IO.Put(Item => "This spider is dying.");
Ada.Text_10.New_Line;

END Drunken_Spider_Task;

SUBTYPE FamilyRange IS Positive RANGE 1..10;
TYPE FamilyType IS ARRAY (FamilyRange) OF Drunken_Spider_Task;

Family: FamilyType; — now we have an entire array of spiders

BEGIN — Drunken_Spiders_Family

Spiders.DrawRoom;

Bring the spiders to life, then stand back and watch!
FOR Which IN FamilyRange LOOP
Family(Which).Hatch;
END LOOP;

END Drunken_Spiders_Family;

Instead of declaring named spider variables as we did in Program 17.7, we give a
few new declarations:

SUBTYPE FamilyRange IS Positive RANGE 1..10;
TYPE FamilyType IS ARRAY (FamilyRange) OF Drunken_SpiderJPask;
Family: FamilyType; — now we have an entire array of spiders

Here we declare Family as a ten-element array of spider task objects. As in the case
of ordinary task variables, the entire array of spiders is activated just after the main
BEGIN. We then cause all the spiders to hatch by using a simple for loop;

FOR Which IN FamilyRange LOOP
Fami ly(Which).Hatch;

END LOOP;

Varying the bounds of FamilyRange is sufficient to change the size of the spider
family.

CHAPTER REVIEW

In this chapter we introduced Ada tasks and protected types. These are used to support
concurrent programming, which is the writing of programs with multiple threads of
control or processes.

Tasks are active program units that act as processes; in a given propam, each task
is separately activated and executes independently of the others. A task is an interesting
kind of program unit: It has a specification and a body like a package, contains a decla-
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ration section and a sequence of statements like a procedure, and has a type like a data
structiu:e. Tasks are declared like other variables; they can also be array elements. We
have seen a few examples of task discriminants and entries; other tasldng statements,
especially the select statement, are very interesting but beyond the scope of our dis
cussion here.

A protected type is a way to create an encapsulated data structure with operations
that are protected in a concurrent environment. Protected operations can be fiinctions,
procedures, or entries; in this brief presentation we have introduced only procedures.
The Ada 95 standard provides that multiple concurrent calls of a protected procedure
are fiilly executed one at a time, preventing the multiple calls from interfering with
each other and modifying the data structure unpredictably.

We have hardly begun to explore the richness of concurrent programs in Ada; we
hope this brief introduction has sparked your interest in the subject and that you will
continue to learn more about concurrent programming in general and its Ada imple
mentation in particular.

New Ada Construct in Chapter 17

The new Ada constructs introduced in this chapter are described in Table 17.1.

Table 17.1 Summary of New Ada Constructs

Construct Effect

Task Type

TASK TYPE SimpleTask
(Message: Character;
HowMany: Positive) IS

ENTRY StartRunning;
END SimpleTask;

TASK BODY SimpleTask IS

BEGIN — SimpleTask

ACCEPT StartRunning;

FOR Count IN 1..HowMany LOOP
Ada.Text_IO.Put
(Item => "Hello from Task " & Message);

Ada.Text IO.New_Line;
DELAY O.T;

END LOOP;
END SimpleTask;

SimpleTask is a type;
Message and HowMany
are discriminants whose

values are passed to the
task objects when they
are activated. Star

tRunning is a "start but
ton" entry.

Each task object waits
here for its entry to be
called, and then contin
ues on its own.

Here is the task's main

loop.
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Construct Effect

Task Object

Task_A: SimpleTask
(Message => 'A', HowMany =>5);

Task_B: SimpleTask
"  (Message => 'B', HowMany =>7);

Entry Call

Task_B.StartRunning;
Task"A.StartRunning;

Protected Type

PROTECTED TYPE ScreenManagerType IS
PROCEDURE Write (Item: IN String?

Row: IN Screen.Depth;
Column: IN Screen.Width);

PRIVATE

— a data structure could be declared here

END ScreenManagerType;

PROTECTED BODY ScreenManagerType IS
PROCEDURE Write (Item: IN String;

Row: IN Screen.Depth;
Column: IN Screen.Width) IS

BEGIN —• Write

Screen.MoveCursor

(Row => Row, Column => Column);
Ada.Text__IO.Put(Item => Item);

END Write;"
END ScreenManagerType;

Protected Object

Manager: ScreenManagerType;

Two task objects are
declared with discrimi

nant values.

The two tasks' "start

button" entries are

called.

ScreenManagerType

provides a protected
procedure write. Multi
ple calls to write are
guaranteed to be pro
cessed one at a time.

This provides mutual
exclusion on operations
that modify the pro
tected structure.

This is the body of the
protected type.

Manager is a protected
object.

Quick-Check Exercises

1. How is a task different from a procedure?

2. When are tasks activated? What is the order of activation?

3. If multiple tasks are active, how do they share the CPU?

4. How does a task handle an accept in its task body?
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5. What happens when a task calls an entry in another task?

6. How does a protected procedure differ from an ordinary procedure?

Answers to Quick-Check Exercises

1. A procedure is called, but a task is activated implicitly and has its own thread
of control.

2. Tasks are activated just after the begin of the block in which they are declared.
Ada does not predefine an order of activation.

3. The run-time system may or may not time-slice the tasks; if it does not, the
first task to get the CPU will keep it until that task reaches a delay or other
statement that causes it to block.

4. The task waits at the accept until another task calls the entry.

5. It waits at the point of call until the called task accepts the call at an accept
statement.

6. An ordinary procedure can be called simultaneously by several tasks. Multiple
calls of a protected procedure are executed one at a time.

Review Questions for Chapter 17

1. Explain, in as much detail as you can provide, how multiple tasks can share a
single computer.

2. Explain why protected types are necessary.

Programming Projects

1. Investigate whether your Ada implementation supports time-slicing and, if it
does, whether time-slicing can be tumed on and off at will. Experiment with
doing so, using Program 17.2 as a test program.

2. Experiment with using different starting orders in Program 17.4. Is there any
difference in the behavior?

3. Develop a program that uses two tasks to write two lines of asterisks repeated
ly across the screen. One task will write 80 asterisks from left to right in row 5
and then "erase" the line by writing 80 blanks from right to left in that row.
The other task will write 80 asterisks from right to left in row 10 and then
"erase" that line by writmg blanks from left to right. Use DELAY statements
in the tasks to ensure that the output is interleaved. The visual effect will be in
teresting.
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4. Section 17.4 suggests a modification to the body of the Spiders package (Pro
gram 7.11, modified according to the specification in Program 11.19) using a
protected type to keep track of the spiders on the board. Modify the package
accordingly and test it using Program 2.13 or 2.14. Now remove the protection
from the Move procedure, that is, declare it as an ordinary procedure and the
board as an ordinary data structure. Test again; is there any difference in the
behavior?

5. (Thanks to Chet Lund for this challenging adaptation of Edsger Dijkstra's fa
mous "Dining Philosophers" problem published in 1971.) This project in
volves five students over a weekend; each student alternately eats Chinese
food and sleeps. That's it. The five students are sitting at a large round table in
the student union building. They eat and sleep at the table (these students are
not in condition to leave the table after eating). This project simulates their be
havior over the weekend. The weekend is 48 hours long. Use one second on
the computer to represent one hour of weekend time. The simulation rules are
as follows:

•  There are five students, each represented by a task object.

•  There are five chopsticks, each represented by a protected object with
pickup and putDown procedures, in an array of five chopsticks.

•  Between each pair of students is a single chopstick. To eat, a student must
pick up her left chopstick and her right chopstick. After eating, a smdent
puts down both chopsticks, freeing them for the adjacent students.

•  Only one student can have a chopstick at a time.

•  There is enough food in the center of the table for the entire weekend.

•  Each student eats for periods of 1,2,3, or 4 hours at a time; the length of an
eating period is determined randomly. Each student sleeps for random pe
riods of 1,2,3, or 4 hours at a time.

•  If all five students hold just one chopstick and are waiting for the other one,
everything deadlocks and they all starve.

•  After the 48 hours is over, each student must be allowed to complete her
current eating and sleeping cycle.

•  Your program will use discriminants to assign each student a pair of chop
sticks in the declaration for that student.

Here is some sample output from a run.

Nikki is eating.
Nikki finished eating.
Nikki is sleeping.
Nikki is finished sleeping.

Passing quit to diner tasks
Nikki is finished sleeping.
Nikki TASK is terminating

All tasks have quit. Program completed.



APPENDIX A

High-Resolution Color Graphics

A1 AdaCraph: A Basic High-Resolution Graphics Package

h2 Using AdaCraph Operations

A.3 A High-Resolution Color Spider Package

A4 Using the High-Resolution Spider Package

Many beginning students of Ada ask whether it is possible to do computer graphics
with Ada. The answer is very simple: Of course it is! In fact, in this book we have actu
ally done some: Our screen package is a very simple computer graphics package, and
its operations ciearscreen and Movecursor are very similar to operations that are
found in all graphics packages.

Computer graphics is almost never a part of a programming language. Rather,
graphics capabilities are provided through libraries. These libraries are generally plat
form-specific; that is, they are specific to a certain combination of CPU, operating sys
tem, and display type. Indeed, our Ada screen package is not part of Ada; it is an added
package that is specific to platforms that support the ANSI 24-row, 80-column mono
chrome display emulator.

In the body of this book, we have focused on software development using standard
Ada 95; we have not wished to distract the reader with discussions of platform-depen
dent issues such as graphics. On the other hand, color graphics is interesting and excit
ing. The purpose of this appendix is to introduce the reader to high-resolution color
graphics using a particular graphics package, AdaCraph. We describe this package in
Section A.l. In Section A.2 we show a sine-wave plotting example that illustrates many
AdaCraph operations. In Section A.3 we show a new version of the spider package in
which the spider draws in color on a high-resolution display. Finally, in Section A.4 we
show two interesting spider programs that use the new package.

A.1 AdaCraph: A Basic High-Resolution Graphics Package

AdaCraph was originally developed for the Microsoft Windows 95, 98, and NT plat
forms by Jerry van Dijk, an Ada developer in the Netherlands. The package is quite
simple to understand and to use but provides many useful capabilities. The interface
(package specification) for AdaCraph is not very Windows-specific; therefore, others,
specifically Martin Carlisle, James Hopper, and Michael Feldman, have developed
AdaCraph adaptations for several other platforms, including Apple Macintosh, Tcl/Tk,
XLib, and Java Virtual Machine (JVM).

729
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The result is a collection of packages that provide very similar graphics functions
for multiple platforms; in other words, we have provided a platform-independent
high-resolution color graphics capability for Ada 95. The examples in this appeiidix are
entirely platform-independent. All the package versions and examples are provided on
the CD-ROM that accompanies this book.

Figure A.l gives an extract from the AdaGraph package specification. For brevity,
we will omit detailed descriptions of the various operations; we prefer to let the precon
ditions and postconditions speak for themselves. We note only that the specification
provides for opening and closing a graphics window, drawing lines and polygons in the
window, displaying text in the window, and responding to mouse actions, especially
button clicks.

Figure A1 Specification for the AdaGraph package

PACKAGE Adagraph IS

Basic 16-color High-Resolution Graphics Package
Selected Types and Operations
Author: Jerry van Dijk, Leiden, Netherlands
Adapted by M. B. Feldman, The George Washington University
Last Modified: November 1998

— Output Types

16-Color Palette; more colors could be used if we were sure
that the display supported them

TYPE Color_Type IS (Black, Blue, Green, Cyan, Red, Magenta, Brown,
Light Gray, Dark_Gray, Light_Blue, Light_Green,
Light^Cyan, Light_Red, Light_Magenta, Yellow, White);

Indicates whether a graphic shape will be drawn as an outline
—  or as a filled area

TYPE Pill_Type IS (Fill, No_Fill);

— Graphic Window Management Operations

PROCEDURE Get_Max_Si2e (X_Size, Y_Size : OUT Integer);
— Pre: None

Post: X Size and Y_Size contain the maximum X (horizontal) and Y
(vertical) coordinates, respectively, of graphics windows on
the display. The coordinates are in the range O..X_Size and
O..Y_Size

PROCEDURE Create Graph_Window (
~  X_Max, Y_Max : OUT Integer;

X_Char, Y_Char : OUT Integer);
— Pre: None

Post; Opens a graphic window on the display, of the maximum size,
The OUT parameters X_Max and Y_Max contain the maximum
horizontal and vertical cordinates, respectively; X_Char
and Y_Char contain the width and height, respectively,
in pixels, of characters to be displayed

— Raises: Window_Already_Open if the graphic window is already open

PROCEDURE Ext Create_Graph_Window (
X Max, Y Max : OUT Integer;
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X_Char, Y_Char ; OUT Integer);
— Pre: None ~
— Post: Like Create_Graph_Window, but guarantees that the display

area of the window is of the maximum size possible

PROCEDURE Create_Sized_Graph__Window (X_Size, Y_Size ; IN Integer;
X_Max, Y_Max : OUT Integer;
X_Char, Y_Char : OUT Integer);

— Pre: X_Size and Y_Size are defined
— Post: Like the previous two operations, but also sets the display

area of the window to the size given by X_Size and Y Size

PROCEDURE Destroy_Graph_Window;
— Pre: None

— Post: Closes the graphic window
— Raises: Window_Already_Closed if the window is already closed

FUNCTION Is_Open RETURN Boolean;
— Pre: None

— Post: Returns True if the graphic window is active. False otherwise

PROCEDURE Set_Window__Title (Title : IN String);
— Pre: Title is defined

— Post: Sets the title to be displayed at the top of the window

— Graphic Operations

PROCEDURE Clear_Window (Hue : IN Color_Type := Black);
— Pre: Hue is defined

— Post: Erases the contents of the graphic window and clears it to
the given color. Black by default

FUNCTION Get^Pixel (X, Y : IN Integer) RETURN Color_Type;
~ Pre: X and Y are defined ~
— Post: Returns the color of the pixel at the <X, Y> coordinates

PROCEDURE Put_Pixel (X, Y ! IN Integer; Hue : IN Color_Type := White);
— Pre: X, Y, and Hue are defined

— Post: Colors a single pixel at the <X, Y> coordinates

PROCEDURE Draw_Line (XI, Yl, X2, Y2 ; IN Integer;
Hue : IN Color_Type := White);

—- Pre: XI, Yl, X2, Y2, and Hue are defined

— Post: Draws a line 1 pixel wide, in the given color,
from <X1, Yl> to <X2, Y2>

PROCEDURE Draw_Box (XI, Yl, X2, Y2 ; IN Integer;
Hue : IN Color_Type := White;
Filled : IN Fill_Type := No_Fill);

— Pre: XI, Yl, X2, Y2, Filled, and Hue are defined
— Post: Draws a rectangle, in the given color,

from <X1, Yl> to <X2, Y2>. If Fill^Type is No_Fill,
draws an outline in the given color; if Fill_Type is
Fill, draws a filled box.

PROCEDURE Draw_Circle (X, Y, Radius : IN Integer;
Hue : IN Color_Type ;=• White;
Filled : IN Fill_Type := No_Fill);

— Pre: X, Y, Hue, and Filled are defined
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— Post: Draws a circle centered at <X, y> with radius Radius

PROCEDURE Draw__Ellipse (XI, Yl, X2, Y2 : IN Integer;
~  Hue : IN Color_Type := White;

Filled ; IN Fill_Type := No_Fill);
— Pre: XI, Yl, X2, Y2, Filled, and Hue^are defined
— Post; Draws an ellipse whose bounding rectangle is given by

<X1, y2> and <X2, y2>

PROCEDURE Flood_Fill (X, Y : IN Integer;
Hue : IN Color^Type := White);

— Pre: X, Y, and Hue are defined
Post: Reads the color at <X, Y> and then replaces this color

by Hue in all directions until another color is encountered

PROCEDURE Display_Text (X, Y : IN Integer;
Text ; IN String;
Hue : IN Color_Type := White);

— Pre: X, Y, Text, and Hue are defined
Post: Displays the given text string in the graphics window.

The character size is the default one in the system; it
is returned by the window-creating operations

— Polydraw Support

FUNCTION Where_X RETURN Integer;
FUNCTION Where_Y RETURN Integer;
— Pre: None

Post: Return the horizontal and vertical positions, respectively,
of the current drawing point

PROCEDURE Goto__Xy (X, Y ; IN Integer);
— Pre: X and^Y are defined
— Post: Moves the current drawing point to <X, Y>

PROCEDURE Draw To (X, Y ; IN Integer; Hue : IN Color_Type := White);
— Pre: X, Y,~and Hue are defined

Post: Draws a line 1 pixel wide, in the given color,
from the current drawing point to <X, Y>, and moves
the current drawing point to <X, Y>

— Input Types

TYPE Event Type IS
(None, Moved, Left_Up, Left_Down, Right__Up, Right_Down);

TYPE Mouse_Type IS RECORD
Event : Event Type; — indicates which mouse event occurred;
X Pos : Integer; — gives the location of the cursor when
Y~Pos : Integer; — the mouse event occurred

end"RECORD;

— Input Operations

FUNCTION Key_Hit RETURN Boolean;
— Pre: None

Post: Returns True if a character is available (i.e., if a
key has been pressed)

FUNCTION Get_Key RETURN Character;
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— Pre: None

— Post; Waits until a cheuracter is available and returns it

FUNCTION Mouse_Event RETURN Boolean;
— Pre; None

— Post; Returns True if a mouse event in the graphic window has
become available

FUNCTION Get_Mouse RETURN Mouse_Type;
— Pre: None ~
— Post; Waits for a mouse event in the graphical window to occur,

and returns a record containing the event type and the
coordinates of the mouse pointer

PRIVATE

END Adagraph;

A.2 Using AdaGraph Operations

Recall Program 8.4, which plots a sine curve using character graphics. Program A.l is
an adaptation of Program 8.4, in which AdaGraph operations are used to plot a more
realistic sine wave.

Program A.1 Drawing a High-Resolution Sine Curve

WITH AdaGraph;
USE AdaGraph;
WITH Ada.Text_IO;
WITH Ada.Numerics;
WITH Ada.Numerics.Elementary__Functions;
USE Ada. Numerics; ""
USE Ada.Numerics.Blementary_Functions;
PROCEDURE Sine Wave IS

Plots a sine curve, using high-resolution graphics.
Author; M. B. Feldman, The George Washington University
Last Modified; November 1998

XMax

YMax

XChar

YChar

Integer;

Integer;

Integer;

Integer;
Mouse; AdaGraph.Mouse_Type;

width of graphic window
height of graphic window
width of character font

height of character font
click to quit program

Radians PerDegree CONSTANT Float ;= Pi / 180.0;
— radians per degree
— Pi in Ada.Numerics

MinAngle ; CONSTANT Integer 0; — smallest angle
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MaxAngle : CONSTANT Integer := 360; — largest angle

MaxAmplitude ; Float; — max plot height
Sine : Float; — current sine value
Height : Integer; — height of plot pixel

BEGIN

AdaGraph.Create_Graph_Window(X_Max => XMax, Y_Max => YMax,
X~Char => XChar, Y_Char => YChar);

MaxAmplitude := Float(YMax / 6);
AdaGraph.Set_Window_Title(Title => "Sine Wave");
AdaGraph.Clear_Window(Hue => AdaGraph.White);
AdaGraph.Draw_Line(Xl =>1, X2 => XMax,

Y1 => YMax / 2, Y2 => YMax / 2,
Hue => AdaGraph.Black);

AdaGraph.Goto__XY(X =>0, Y => YMax / 2);

FOR Degrees IN MinAngle .. MaxAngle LOOP
IF Degrees REM 2=0 THEN
Sine ;= Sin(Float(Degrees) * RadiansPerDegree);
Height := YMax / 2 + Integer(MaxAmplitude * Sine);
AdaGraph.Draw_To(X => Degrees / 2,

Y  => Height,
Hue => AdaGraph.Blue);

DELAY 0.01;

END IF;

END LOOP;

LOOP

IF AdaGraph.Mouse_Event THEN
Mouse := AdaGraph.Get_Mouse;
EXIT WHEN

Mouse.Event = AdaGraph.Left_Down OR
Mouse.Event = AdaGraph.Right_Down;

END IF;

END LOOP;

AdaGraph.Destroy_Graph_Window;

END Sine_Wave;

The output of this program is shown in Figure A.2.The program first creates a
graphic window using the AdaGraph operation

AdaGraph.Create_Graph_Window(X_Max => XMax, Y_Max => YMax,
X_Char => XChar, y_Char => YChar);

The four output parameters xMax, YMax, xchar, and YChar are set by this operation; they
represent the maximum display area of the window and the size of any displayed text.
Next, the statement

MaxAmplitude := Float(YMax / 6);

computes the maximum height (amplitude) of the sine wave. We intend to plot the
curve above and below a horizontal line through the center of the window; the curve
will be one-third the height of the window itself. We draw a black center line on a white
background as follows;
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Figure A.2 A High-Resolution Sine Curve

AdaGraph.Clear_Window(Hue => AdaGraph.White);
AdaGraph.Draw_Line(Xl =>1, X2 => XMax,

Y1 => YMax / 2, Y2 => YMax / 2,
Hue => AdaGraph.Black);

We then position the drawing point at the left end of this line:

AdaGraph.Goto_XY(X => 0, Y => YMax / 2);

which is similar to a screen.Movecursor call. Finally, the following loop actually plots
the sine wave, by drawing short line segments. Each common point represents a
2-degree increment plotted against its sine value.

We encourage you to experiment with AdaGraph. For example, consider modifying
the histogram-plotting program described in the case study of Section 10.4.

A.3 A High-Resolution Color Spider Package

The Spider package that we first presented in Chapter 2 provides an imaginary spider
that crawls around its room—a 20 x 20 grid—and draws in monochrome characters,
using letters to represent its colored tracks. Program A.2 gives a more exciting version
of the package which we call spider_Hires (for "Spider, High Resolution"). This time,
the spider lives in a 200 x 200 grid and leaves multicolored tracks. Each spider step is
now a very small one, l/200ih of the screen window, and the spider is no longer limited
to 90-degree turns but can make more precise turns in increments of 1 degree.

The new spider package is implemented using AdaGraph; that is, the operations in
the body of the package use AdaGraph operations to carry out the graphics manipul-
tions. Therefore, spider_Hires is just as platform-independent as AdaGraph is.
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Program A.2 The Spider Goes "Hi-Res"

PACKAGE Spider_Hires IS

This package provides procedures to emulate "Spider"
commands. The spider can move around
the screen drawing simple patterns.
This is a high-resolution color version of the package.
Author: John Dalbey, Gal Poly San Luis Obispo, 1992
Adapted by M. B. Feldman, The George Washington University
Last Modified: November 1998

— These are the spider's simple parameterless methods

PROCEDURE Start;

— Pre: None

— Post: Spider's room appears on the screen
with spider in the center.

PROCEDURE Quit;
— Pre: None

— Post: End the drawing

— now some types, and methods that use the types

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);
SUBTYPE Steps IS Integer RANGE 1..200;
SUBTYPE Degrees IS Float RANGE O.O..360.0;

PROCEDURE Step(HowMany: Steps ;= 1);
— Pre: None

— Post: Spider takes HowMany steps forward in the direction
it is facing; default is 1.

— Raises: Hit_the_Wall if spider tries to step into a wall.

FUNCTION RandomStep RETURN Steps;
— Pre: None

— Post: Returns a random step in the range 1..200

PROCEDURE TurnRight(HowFar: Degrees := 90.0);
— Pre: None

— Post: Spider turns HowMany degrees to the right;
default is 90.

FUNCTION RandomTurn RETURN Degrees;

— Pre; None

— Post: Returns a random angle of turn

PROCEDURE Face (WhichWay; IN Directions);
— Pre: WhichWay has been assigned a value

Post: Spider turns to face the given direction.

FUNCTION IsFacing RETURN Directions;
— Pre: None

Post: Returns the nearest direction the spider is facing.
(Rounds the spider's heading to the nearest direction)

FUNCTION RandomDirection RETURN Directions;
— Pre: None



AJ A High-Resolution Color Spider Package 737

— Post; Returns a random direction

PROCEDURE ChangeColor (NewColor; Colors);
— Pre: NewColor has been assigned a value
— Post: Spider leaves its tracks in the new color

FUNCTION IsPainting RETURN Colors;
— Pre: None

— Post: Returns the color in which the spider is painting

FUNCTION RandomColor RETURN Colors;
— Pre: None

~ Post: Returns a random color

FUNCTION AtWall RETURN Boolean;
— Pre: None

— Post: Returns True if the spider is standing next to a wall

Hit__The_Wall: EXCEPTION;

TYPE Switch IS (On, Off);

PROCEDURE Debug (Setting: IN Switch);
— Pre: None

— Post: Turns on or off single stepping through the program.

FUNCTION Debugging RETURN Switch;
— Pre: None

— Post: Returns on or Off depending on Debug setting

TYPE Speeds IS (Slow, Medium, Fast);

PROCEDURE SetSpeed (Speed: IN Speeds);
— Pre: Speed is defined
— Post: Execution speed is set as desired

PROCEDURE Wait;
— Pre: None

— Post: Causes the program to wait for a mouse click
before proceeding

END Spider_Hires;

Most of the spider operations are unchanged from the low-resolution version. We
have designed the new package so that your old spider programs will still work with
minimal change. To use an old program, you need only change all the spider refer
ences to spider_Hires and recompile.

Here we mention some of the new operations. First, the step and TurnRight com
mands now have parameters with default values:

PROCEDURE Step(HowMany; Steps := 1);
PROCEDURE TurnRight(HowFar: Degrees := 90);

A command such as

Spider_Hires.Step;

causes the spider to take one step forward, and a command such as
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Spider_Hires.TurnRight;

causes a 90-degree right turn. Thus these commands in an old program will behave
properly with the new package.

The new package dso has a speed control feature:

TYPE Speeds IS (Slow, Medium, Fast);
PROCEDURE SetSpeed (Speed: IN Speeds);

The spider starts out moving Fast. A command such as

Spider_Hires.SetSpeed (Speed => Spider_Hires.Medium);

causes the spider to draw somewhat more slowly.
Still another change is

PROCEDURE Wait;

Calling this procedure, as in

Spider^Hires.Wait;

causes the spider to pause until the mouse is clicked.
Finally, the debugging option is changed. With the debug mode set to on, a mouse

click controls the single step operation instead of an enter keypress.

A.4 Using the High-Resolution Spider Package

In this section we present two examples of interesting patterns drawn by the high-reso
lution spider.

Drawing High-Resolution Spirals

First, Program A.3 is an almost exact copy of Program 2.9. The only difference is that
the spider now draws 120 lines instead of ten.

Program A.5 A Spider Program to Draw a High-Resolution Spiral

WITH Spider_Hires;
PROCEDURE Spiral IS

Draw spiral pattern with spider - use nested loops
High-resolution version
Author; M. B. Feldman, The George Washington University
Last Modified: November 1998

BEGIN — Spiral

Spider_Hires.Start;
Spider_Hires.Face(WhichWay => Spider_Hires.RandomDirection);
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Figure A.3 The Spider Draws a High-Resolution Spiral

— draw 120 lines, starting in a random direction
FOR Line IN 1..120 LOOP

— inner loop takes its bound from outer count
FOR Count IN l..Line LOOP

Spider_Hires.Step;
END LOOP;

Spid6r_Hires.TurnRight;
END LOOP;

Spider_Hires.Quit;

END Spiral;

Figure A.3 shows the output of this program. This is a prettier pattern than the
lower resolution one, isn't it?

Drawing Regular Polygons

Now let's investigate how the spider can draw regular polygons. Recall from your study
of plane geometry that the interior angles of a polygon must add up to 360 degrees.
Further, in an AT-sided regular polygon, all the angles must be the same size, namely,
360/A^ degrees. For example, the angles in a square are all 90 degrees, the angles in an
equilateral triangle are all 120 degrees, and those in a pentagon are all 72 degrees. The
algorithm for drawing an N-sided polygon with sides of length L is then
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1. FOR Side IN 1. JV LOOP

2. Draw a line of length L

3. Turn 360/A^ degrees

END LOOP

The old spider can make only 90-degree turns. It can draw rectangular boxes, but it
can't draw other polygons. On the other hand, the new spider can turn an arbitrary
number of degrees, and therefore it can draw polygons of an arbitrary number of sides.

In Program A.4 the spider does exactly this. The program contains a procedure
Polygon, which carries out the algorithm we just presented. Note that the turn com
mand contains a type conversion:

TurnRight(HowFar => 360.0/Float(Sides));

This is necessary because the degrees are given as a floating-point quantity and we can
not legally divide it directly by an integer.

Program A.4 A Spider Program That Draws Some Regular Polygons

WITH Spider__Hires;
USE Spider^Hires;
PROCEDURE polygons IS

— I Draw regular polygon pattern with spider
— 1 High-resolution version
— I Author; M. B. Feldman, The George Washington University
— I Last Modified: November 1998

PROCEDURE Polygon(Length: IN Steps; Sides: Positive) IS
BEGIN

FOR Side IN 1..Sides LOOP
Step(HowMany => Length);
TurnRight(HowFar => 360.0/Float(Sides));

END LOOP;

END Polygon;

BEGIN

Start;

Polygon(Length => 15, Sides =>5);
Wait;
Pace(WhichWay => West);
Polygon(Length => 25, Sides => 11);
Quit;

END Polygons;
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Figure A.4 The Spider Draws Regular Polygons

In the main program, Polygon is called twice, first to draw a pentagon, then to draw
an 11-sided regular polygon. Figure A.4 shows the output.

Drawing Polystars

Finally, we consider a variation of polygons, called polystars. A polystar is a tegular
figure, but the angles are very sharp ones, so the lines cross each other to produce a star
shape. Specifically, the polystar algorithm is
1. FOR Side IN 1. JV LOOP

2. Draw a line of length L

3. Turn 180- 180/iV degrees

END LOOP

To draw a six-pointed star, we would turn 150 degrees; to draw a ten-pointed one,
we'd turn 162 degrees, and so on. Figure A.5 shows a 17-pointed polystar; Program A.5
is a spider program that produces it.

It is worth experimenting with polygons and polystars; uy various numbers of sides
and various lengths. It's fun!
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Figure A.4 The Spider Draws a 17-Pointed Polystar

Program A.5 A Spider Program to Draw a 17-Sided Polystar

WITH Spider_Hires;
USE Spider_Hires;
PROCEDURE Polystars IS

Draw polystar pattern with spider
High-resolution version
Author: M. B. Feldman, The George Washington University
Last Modified: November 1998

PROCEDURE Polystar(Length; IN Steps; Sides: IN Positive) IS
— Pre: Length and sides are defined

Post: Draws a polystar pattern with the spider
BEGIN

FOR Side IN 1..Sides LOOP
Step(HowMany => Length);
TurnRight(HowFar => 180.0 - 180.0/Float(Sides));

END LOOP;

END Polystar;

BEGIN — polystars
Start;

Polystar(Length => 80, Sides => 17);
Quit;

END Polystars;



APPENDIX B

The Ada Character Set, Delimiters,
and Reserved Words

B.l The Ada Character Set

B.2 Delimiters

B.3 Reserved Words

This appendix is adapted from the Ada 95 Reference Manual, Sections 2.1, 2.2, and
2.9.

B.l The Ada Character Set

The Ada 95 standard uses the ISO 8859-1 (Latin-1) character set. This character set
includes the usual letters A-Z, but also a number of additional characters to provide for
the additional letters used in non-English languages. For example, French uses
accented letters such as e and German has letters using the umlaut such as u, the
Scandinavian languages have dipthongs such as ae, and so forth. For purposes of this
book, we use just the 26 letters of English; if you are in another country and wish to use
the additional letters, you can find out locally how to do so on your computer or termi
nal. The following characters are used in constructing programs in this book:

(a) uppercase letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(b) lowercase letters

abcdefghijklmnopqrstuvwxyz

(c) digits

0123456789

(d) special characters

(e) the space character
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Fonnat effectors are the characters called horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed.

The following names are used in referring to special characters:

symbol name symbol name

•• quotation > greater than

# sharp _
underline

& ampersand 1 vertical bar

• apostrophe, tick 1 exclamation point

( left parenthesis $ dollar

) right parenthesis % percent

* star, multiply ? question mark

+ plus % commercial at

r comma [ left square bracket

- hyphen, minus \ backslash

• dot, point, period ] right square bracket

/ slash, divide * circumflex

' colon grave accent

t semicolon { left brace

< less than > right brace

ta equal - tilde

B.2 Delimiters

A delimiter is either one of the following special characters:

s  - { ) * + , - . / ; ; < = > !

or one of the following compound delimiters, each composed of two adjacent special
characters:

3> ** •= /= >= <= « » <>

The following names are used in referring to compound delimiters:

delimiter name

=> arrow

double dot

** double star, exponentiate
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delimiter name

:= assignment (pronounced: "becomes")

/= inequality (pronounced: "not equal")

>= greater than or equal

<= less than or equal

« left label bracket

» right label bracket

o box

B.3 Reserved Words

The identifiers listed below are called reserved words and are reserved for special sig
nificance in the language. In this book the reserved words always appear in uppercase.

ABORT ELSE NEW RETURN
ABS ELSIF NOT REVERSE
ABSTRACT END NULL

ACCEPT ENTRY SELECT
ACCESS EXCEPTION SEPARATE
ALIASED EXIT OF SUBTYPE
ALL OR

AND FOR OTHERS TAGGED
ARRAY FUNCTION OUT TASK
AT TERMINATE

GENERIC PACKAGE THEN
BEGIN GOTO PRAGMA TYPE
BODY

IF

PRIVATE

PROCEDURE
CASE IN PROTECTED UNTIL
CONSTANT IS

RAISE

USE

DECLARE RANGE WHEN
DELAY LIMITED RECORD WHILE
DELTA LOOP REM WITH
DIGITS RENAMES
DO MOD REQUEUE XOR

A reserved word must not be used as a declared identifier.



APPENDIX C

Ada's Predefined Environment:
Package Standard

This appendix, adapted from the Ada 95 Reference Manual, Section A.l, outlines the
specification of the package standard containing all predefined identifiers in the lan
guage. The corresponding package body is not specified by the language.

The operators that are predefined for the types declared in the package Standard are
given in comments since they are implicitly declared. Italics are used for pseudonames
of anonymous types (such as root_reaI) and for undefined information (such as
ifljpl emen t a t i on-defi n ed).

PACKAGE standard is
PRAGMA Pure(standard);

TYPE Boolean IS (False, True);

— The predefined relational operators for this type are as follows;

FUNCTION "="

FUNCTION ••/="

FUNCTION "<"

FUNCTION "<="

FUNCTION ">"

FUNCTION •■>="

(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right
(Left, Right

Boolean)
Boolean)
Boolean)
Boolean)
Boolean)
Boolean)

RETURN
RETURN

RETURN

RETURN

RETURN

RETURN

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

The predefined logical operators and the predefined logical
— negation operator are as follows:

FUNCTION "AND" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "OR" (Left, Right : Boolean) RETURN Boolean;
FUNCTION "XOR" (Left, Right ; Boolean) RETURN Boolean;

FUNCTION "NOT" (Right : Boolean) RETURN Boolean;

— The integer type root_integer is predefined.
— The corresponding universal type is universal_integer.

TYPE Integer IS RANGE implementation-defined;

SUBTYPE Natural IS Integer RANGE
SUBTYPE Positive IS Integer RANGE

Integer'Last;
Integer'Last;

- The predefined operators for type Integer are as follows

- FUNCTION (Left, Right ; Integer) RETURN Boolean;

— FUNCTION "/«=" (Left, Right : Integer) RETURN Boolean;

FUNCTION "<" (Left, Right : Integer) RETURN Boolean;

— FUNCTION "<=" (Left, Right : Integer) RETURN Boolean;

— FUNCTION ">" (Left, Right : Integer) RETURN Boolean;

— FUNCTION ">=" (Left, Right : Integer) RETURN Boolean;
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-- FUNCTION "+"

~ FUNCTION

— FUNCTION "ABS'

(Right : Integer) RETURN Integer;
(Right : Integer) RETURN Integer;
(Right : Integer) RETURN Integer;

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

• + " (Left, Right
(Left, Right
(Left, Right
(Left, Right

REM" (Left, Right
MOD" (Left, Right

■/"

Integer)
Integer)
Integer)
Integer)
Integer)
Integer)

RETURN Integer;
RETURN Integer;
RETURN Integer;
RETURN Integer;
RETURN Integer;
RETURN Integer;

~ FUNCTION "**" (Left : Integer; Right : Natural) RETURN Integer;

— The specification of each operator for the type
— root_integer, or for any additional predefined integer
— type, is obtained by replacing Integer by the name of the type
— in the specification of the corresponding operator of the type
— Integer. The right operand of the exponentiation operator
— remains as subtype Natural.

— The floating point type root_real is predefined.
— The corresponding universal type is universal_real.

TYPE Float IS DIGITS implementation-defined}

— The predefined operators for this type are as follows:

— FUNCTION II a 11 (Left, Right Float) RETURN Boolean;
— FUNCTION "/ = " (Left, Right Float) RETURN Boolean;
— FUNCTION (Left, Right Float) RETURN Boolean;
— FUNCTION "<=" (Left, Right Float) RETURN Boolean;
— FUNCTION (Left, Right Float) RETURN Boolean;
■- FUNCTION (Left, Right Float) RETURN Boolean;

— FUNCTION 11 + 11 (Right :  Float) RETURN Float;
— FUNCTION (Right :  Float) RETURN Float;
■- FUNCTION "ABS" (Right : Float) RETURN Float;

- FUNCTION II+ " (Left, Right : Float) RETURN Float;
— FUNCTION (Left, Right ; Float) RETURN Float;
- FUNCTION (Left, Right Float) RETURN Float;
- FUNCTION (Left, Right Float) RETURN Float;

- FUNCTION •< * * II (Left Float; Right : Integer) RETURN

The specification of each operator for the type rootjceal, or
for any additional predefined floating point type, is
obtained by replacing Float by the name of the type in the
specification of the corresponding operator of the type Float.

In addition, the following operators are predefined for the
root numeric types:

FUNCTION (Left
RETURN root_real}

FUNCTION (Left
RETURN root real;

root_integer; Right : root_real)

root_real; Right : root integer)



748 Ma's Predefined Environment: Package Standard

FUNCTION "/" (Left ; root_real} Right ; root^integer)
RETURN root_reai;

— The type universal_fixed is predefined.
— The only multiplying operators defined between
— fixed point types are

FUNCTION (Left : universal_^fixed; Right : aniversal_^fixed)
RETURN universalj£ixed}

FUNCTION (Left : universal_fixed; Right : universal_fixed)
RETURN universa I_fixedj

— The declaration of type Character is based on the standard ISO
— 8859-1 character set.

— There are no character literals corresponding to the positions
— for control characters.

— They are indicated in italics in this definition.

TYPE Character IS

(nul. soh. Stx, etx, eot. enq. ack, bel. — 0. .7

bs, ht. If, vt, ff, cr. so, si. — 8. .15

die. del. dc2. dc3, dc4, nak. syn. etb, — 16..23

can. em, sub. esc, fs. gs. rs. us, —
24..31

•  1

f •I', 1 N 1

/ •%', t
— 32. .39

')'/ /  f

1  1

i —
40..47

•0' , •1', •2', ■3', ■4' , '5' , •6', ■7', 48..55

'8', •9' r •  t
1 • •

t  f '<■ , « a *
—

56..63

■A' , •B' , 'C, 'D' , 'E' , •F' , •G', -- 64. .71

'H', •I' , 'J', •K' , •L', 'M', 'N', ■0' , —
72. .79

■?• , 'T' , '0' r 'V' , •w, — 80..87

■X-, •Y', 'Z', • ]', f ^ t —
88..95

t 'a' , 'b* , •c, •d'. •e', 't' , 'g', — 96..103

'h' , •i'» ' j' 1 'k'. '1', ■ra' , 'n' , •o', — 104..111

'P' t 'q' f 'r' , 's' , 'f , 'u' , 'V , •w' , __ 112..119

•x' , •y f 'z', ■r. ■}' , "  f del. —
120..127

reserved_128, reserved_129, bph, nbh,
reserved_132, nel, ssa, esa,

hts, htj, vts, pld, plu, ri, ss2, ss3,

dcs, pul, pu2, sts, cch, mw, spa, epa,

SOS, reserved_153, sci, csi,
St, osc, pm, ape,

... );
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— The predefined operators for the type Character are the same as
— for any enumeration type.

— The declaration of type Wide_Character is based on the standard
— ISO 10646 BMP character set.

— The first 256 positions have the same contents as type
— Character.

TYPE Wide_Character IS (nul, soh ... FFFE, FFFF);

PACKAGE ASCII IS ... END ASCII; —Obsolescent; see J.

— Predefined string types:

TYPE String IS ARRAY(Positive RANGE <>) OF Character;
PRAGMA Pack(String);

— The predefined operators for this type are as follows:

—FUNCTION (Left, Right: String) RETURN Boolean;
—FUNCTION "/=" (Left, Right: String) RETURN Boolean;
—FUNCTION "<" (Left, Right: String) RETURN Boolean;
—FUNCTION "<=" (Left, Right: String) RETURN Boolean;
—FUNCTION ">" (Left, Right: String) RETURN Boolean;
—FUNCTION ••>=" (Left, Right: String) RETURN Boolean;

—FUNCTION (Left: String; Right: String) RETURN String;
—FUNCTION (Left: Character; Right: String) RETURN String;
—FUNCTION (Left: String; Right: Character) RETURN String;
—FUNCTION (Left; Character; Right: Character) RETURN String;

TYPE Wide_String IS ARRAY(Positive RANGE <>) OF Wide_Character;
PRAGMA Pack(Wide_String);

— The predefined operators for this type correspond to
— those for String

TYPE Duration IS

DELTA implementation-defined RANGE implementation-defined*,

— The predefined operators for the type Duration are the same
— as for any fixed point type.

— The predefined exceptions:

Constraint_Error: EXCEPTION;
Program_Error : EXCEPTION;
Storage_Error : EXCEPTION;
Tasking~Error : EXCEPTION;

END Standard;
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Specification of the Package
Ada.Text 10

This appendix, adapted from the Ada 95 Reference Manual, Section A. 10.1, gives the
specification for Ada.Text_io. Note that the numeric subpackages integer_io and
Fioat_io are given here as generic. The standard also provides for the preinstantiated
packages Ada.integer_Text^io and Ada.Float_Text_io as we have used in this
book. These last two package! are part of the standard libraries and do not need to be
created or compiled by the user.

Explanations of the most common input/output exceptions are given in Appendix F,
along with the other exceptions that a student is likely to encounter.

WITH Ada.IO_Exceptions;
PACKAGE AdaTText_IO IS

TYPE File_Type IS limited private;

TYPE File_Mode IS (In_File, Out_File, Append_File);

TYPE Count IS RANGE 0.. implementation-defined;
SUBTYPE Positive_Count IS Count RANGE 1 .. Count'Last;
Unbounded : CONSTANT Count ;= ; ~ line and page length

SUBTYPE Field IS Integer RANGE 0 .. implementation-defined;
SUBTYPE Number_Base IS Integer RANGE 2 .. 16;

TYPE Type_Set IS (Lower_Case, Upper_Case);

— File Management

PROCEDURE Create (File : IN out File_Type;
Mode : IN File_Mode := Out_File;
Name : IN String :=
Form : IN String := "");

PROCEDURE Open (File : IN out File_Type;
Mode : IN File_Mode;
Nsune : IN String;
Form ; IN String := "");

PROCEDURE Close (File : IN out File_Type);
PROCEDURE Delete (File : IN out File_Type);
PROCEDURE Reset (File : IN out File Type; Mode ; IN File_Mode);
PROCEDURE Reset (File : IN out File_Type);

FUNCTION Mode (File ; IN File_Type) RETURN File_Mode;
FUNCTION Name (File : IN File_Type) RETURN String;
FUNCTION Form (File : IN File_Type) RETURN String;

FUNCTION Is_Open(File ; IN File_Type) RETURN Boolean;
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— Control of default input and output files

PROCEDURE Set_lnput (File : IN File_Type);
PROCEDURE Set_Output(File ; IN File_Type);
PROCEDURE Set_Error (File : IN FileJType);

FUNCTION Standard_Input RETURN File_Type;
FUNCTION Standard~Output RETURN File_Type;
FUNCTION Standard~Error RETURN File_Type;

FUNCTION Current_Input RETURN File_Type;
FUNCTION Current_Output RETURN File_Type;
FUNCTION Current_Error RETURN File_Type;

TYPE File_Access IS ACCESS CONSTANT File_Type;

FUNCTION Standard_Input RETURN File_Access;
FUNCTION Standard_Output RETURN File_Access;
FUNCTION Standard_Error RETURN File_Access;

FUNCTION Current_Input RETURN File_Access;
FUNCTION Current_Output RETURN File_Access;
FUNCTION Current_Error RETURN File_Access;

—Buffer control

PROCEDURE Flush (File : IN OUT File_Type);
PROCEDURE Flush;

— Specification of line cuid page lengths

PROCEDURE Set_Line_Length(File : IN File_Type; To
PROCEDURE Set_Line_Length(To : IN Count);

PROCEDURE Set_Page_Length(File : IN File_Type; To
PROCEDURE Set_Page_Length(To : IN Count);

IN Count);

IN Count);

FUNCTION Line__Length(File : IN File_Type) RETURN Count;
FUNCTION Line^Length RETURN Count;

FUNCTION Page_Length(File : IN File Type) RETURN Count;
FUNCTION Page_Length RETURN Count; ~

— Column, Line, and Page Control

PROCEDURE New_Line

PROCEDURE New Line

(File
Spacing

(Spacing

IN File_Type;
IN Positive_Count
IN Positive Count

PROCEDURE Skip_Line (File
Spacing

PROCEDURE Skip_Line (Spacing

IN File_Type;
IN Positive_Count
IN Positive Count

);

);

);

);

FUNCTION Bnd_Of_Line(File : IN File_Type) RETURN Boolean;
FUNCTION End__Of_Line RETURN Boolean;

PROCEDURE New_Page (File : IN File_Type);
PROCEDURE New_Page;

PROCEDURE Skip_Page (File : IN File_Type);
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PROCEDURE Skip_Page;

FUNCTION End_Of_Page(File ; IN File_Type) RETURN Boolean;
FUNCTION End_Of_Page RETURN Boolean;

FUNCTION End_Of_File(File ; IN File_Type) RETURN Boolean;
FUNCTION End_Of__File RETURN Boolean;

PROCEDURE Set_Col (File : IN File_Type; To : IN Positive_Count);
PROCEDURE Set_Col (To : IN Positive_Count);

PROCEDURE Set_Line (File ; IN File__Type; To : IN Positive__Count);
PROCEDURE Set_Line(To : IN Positive_Count);

FUNCTION Col (File : IN File_Type) RETURN Positive_Count;
FUNCTION Col RETURN Positive_Count;

FUNCTION Line (File ; IN File__Type) RETURN Positive__Count;
FUNCTION Line RETURN Positive_Count;

FUNCTION Page(File : IN File_Type) RETURN Positive_Count;
FUNCTION Page RETURN Positive_Count;

— Character Input-Output

PROCEDURE Get(File : IN File_Type; Item : OUT Character);
PROCEDURE Get(Item : OUT Character);

PROCEDURE Put(File : IN File_Type; Item : IN Character);
PROCEDURE Put(Item : IN Character);

PROCEDURE Look_Ahead (File : IN File_Type;
Item : OUTCharacter;

End_Of_Line : OUT Boolean);
PROCEDURE Look_Ahead (Item : OUT Character;

End_Of_Line : OUT Boolean);

PROCEDURE Get_Immediate(File : IN File_Type;
Item : OUT Character);

PROCEDURE Get_Iromediate(Item : OUT Character);

PROCEDURE Get Immediate(File : IN File_Type;
~  Item : OUT Character;

Available : OUT Boolean);

PROCEDURE Get_lmmediate(Item : OUT Character;
Available : OUT Boolean);

— String Input-Output

PROCEDURE Get(File : IN File_Type; Item : OUT String);
PROCEDURE Get(Item ; OUT String);

PROCEDURE Put(File : IN File_Type; Item ! IN String);
PROCEDURE Put(Item : IN String);

PROCEDURE Get_Line(File ; IN Pile_Type;
Item ; OUT String;
Last ; OUT Natural);

PROCEDURE Get_Line(Item : OUT String; Last : OUT Natural);
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PROCEDURE Put_Line(File ; IN File_Typej Item ; IN String);
PROCEDURE Put~Line(Item ; IN String);

— Generic packages for Input-Output of Integer Types

GENERIC

TYPE Num IS RANGE <>;
PACKAGE lnteger_IO IS

Default_Width
Default Base

Field := Num'Width;
Number Base 10;

PROCEDURE Get(File
Item

Width

PROCEDURE Get(Item
Width

PROCEDURE Put(File
Item

Width

Base

PROCEDURE Put(Item
Width

Base

PROCEDURE Get(From
Item

Last

PROCEDURE Put(To
Item

Base

END Integer_IO;

IN File_Type;
OUT Num;

IN Field := 0);
OUT Num;

IN Field := 0);

:  IN File_Type;
:  IN Num;

:  IN Field ;= Default_Width;
:  IN Number Base Default_Base);
;  IN Num;

;  IN Field := Default_Width;
:  IN Number_Base ;= Default^Base);
IN String; ""
OUT Num;

OUT Positive);
OUT String;
IN Num;

IN Niunber Base :» Default Base);

— Generic PACKAGES for Input-Output of Real Types

GENERIC

TYPE Num IS digits <>;
PACKAGE Float 10 IS

Default_Fore
Default_Aft
Default_Exp

Field ;= 2;
Field := Num'Digits-1
Field := 3;

PROCEDURE Get(File

Item

width

PROCEDURE Get(Item

Width

PROCEDURE Put(File

Item

Fore

Aft

Exp
PROCEDURE Put(Item

Fore

Aft

Exp

IN File_Type;
OUT Num;

IN Field 0);
OUT Num;

IN Field :- 0);

IN File_Type;
IN Num;

IN Field := Default_Fore;
IN Field := Default_Aft;
IN Field := Default_Exp);
IN Num;

IN Field := Default_Fore;
IN Field Default~Aft;
IN Field ;= Default__Exp);
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PROCEDURE Get(From
Item

Last

PROCEDURE Put(To
Item

Aft

Exp

END Float 10;

IN String;
OUT Num;

OUT Positive);
OUT String;
IN Num;

IN Field := Default_Aft;
IN Field := Default_Exp);

— Generic package for Input-Output of Enumeration Types

GENERIC

TYPE Enuro IS (<>);

PACKAGE Enumeration_lO IS

Default_Width : Field := 0;
Default_Setting ; Type__Set := Upper_Case;

PROCEDURE Get(File ;
Item :

PROCEDURE Get(Item :

PROCEDURE Put(File
Item

Width

Set

PROCEDURE Put(Item
Width

Set

PROCEDURE Get(From

Item

Last

PROCEDURE Put(To
Item

Set

END Enumeration 10;

IN File__Type;
OUT Enum);

OUT Enum);

IN Pile__Type;
IN Enum;

IN Field := Default_Width;
IN Type_Set := Default^etting) ;
IN Enum;

IN Field := Default_Width;
IN Type__Set := Default~Setting);

IN String;
OUT Enum;

OUT Positive);
OUT String;
IN Enum;

IN Type_Set := Default__Setting);

— Exceptions

Status_Error
Mode_Error
Name_Error
Use_Error
Device_Error
End_Error
Data_Error
Laybut_Error

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

EXCEPTION

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

RENAMES

IO__Exceptions
lO^Exceptions
lO_Exceptions
IO_Exceptions
IO_Exceptions
IO_Exceptions
IO_Exceptions
10 Exceptions

.Status_Error;

.Mode_Error;

.Name_Error;

.Use__Error;

.Device_Error;

.End_Error;

.Data_Error;

.Layout_Error;

PRIVATE

... — not specified by the language
END Ada.Text 10;
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Specifications of the Ada Math
Libraries

This appendix, adapted from the Ada 95 Reference Manual, Sections A.5.1 and A.5.2,
give the specifications for the packages Ada.Numerics, Ada.Numerics.Ploat_Random,
Ada.Numerics.Elementary_Functions, and the generic package Ada.Numerics.
Disc rete_Random.

PACKAGE Ada.Numerics IS

Argument_Error ; EXCEPTION;
Pi ; CONSTANT ;=

3.14159_26535_89793_23846_26433 83279_50288 41971_69399 37511;
e  ; CONSTANT := - _ _

2.71828_18284_59045_23536_02874_71352_66249_77572_47093_69996;
END Ada.Numerics;

PACKAGE Ada.Numerics.Elementary_Punctions IS

FUNCTION Sqrt (X Float) RETURN Float;
FUNCTION Log (X Float) RETURN Float;
FUNCTION Log (X, Base Float) RETURN Float
FUNCTION Exp (X Float) RETURN Float;
FUNCTION " (Left, Right Float) RETURN Float

FUNCTION Sin (X Float) RETURN Float;
FUNCTION Sin (X, Cycle Float) RETURN Float;
FUNCTION Cos (X Float) RETURN Float;
FUNCTION Cos (X, Cycle Float) RETURN Float;
FUNCTION Tan (X Float) RETURN Float;
FUNCTION Tan (X, Cycle Float) RETURN Float;
FUNCTION Cot (X Float) RETURN Float;
FUNCTION Cot (X, Cycle Float) RETURN Float;

FUNCTION Arcsin (X Float) RETURN Float;
FUNCTION Arcsin (X, Cycle Float) RETURN Float;
FUNCTION Arccos (X Float) RETURN Float;
FUNCTION Arccos (X, Cycle Float) RETURN Float;
FUNCTION Arctan (X Float;

X Float ;= .  ) RETURN Float;
FUNCTION Arctan (Y Float;

X Float := *  f

Cycle Float) RETURN Float;
FUNCTION Arccot (X Float;

Y Float := .  ) RETURN Float;
FUNCTION Arccot (X Float;

Y Float := •  r

Cycle Float) RETURN Float;
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FUNCTION Sinh (X Float) RETURN Float;

FUNCTION Cosh (X Float) RETURN Float;

FUNCTION Tanh (X Float) RETURN Float;

FUNCTION Coth (X Float) RETURN Float;

FUNCTION Arcsinh (X Float) RETURN Float;

FUNCTION Arccosh (X Float) RETURN Float;

FUNCTION Arctanh (X Float) RETURN Float;

FUNCTION Arccoth (X Float) RETURN Float;

END Ada.Numerics.Elementary_Functions;

PACKAGE Ada.Numerics.Float_Randora IS

— Basic facilities

TYPE Generator IS limited private;
SUBTYPE Unifcrmly_Distributed IS Float RANGE 0.0 .. 1.0;
FUNCTION Random (Gen : Generator) RETURN Uniformly_Distributed;

PROCEDURE Reset (Gen : IN Generator;
Initiator ; IN Integer);

PROCEDURE Reset (Gen ; IN Generator);

— Advanced facilities

TYPE State IS private;

PROCEDURE Save (Gen
To_State

PROCEDURE Reset (Gen
From State

IN Generator;

OUT State);

IN Generator;

IN State);

Max Image_Width : constant := implementation-defined integer value;

FUNCTION Image (Of_State : State) RETURN String;
FUNCTION Value (Coded_State : String) RETURN State;

PRIVATE

... — not specified by the language
END Ada.Numerics.Float_Random;

GENERIC

TYPE Result_SubTYPE IS (<>);
PACKAGE Ada.Numerics.Discrete_Random IS

— Basic facilities

TYPE Generator IS limited private;

FUNCTION Random (Gen : Generator) RETURN Result_SubTYPE;

PROCEDURE Reset (Gen : IN Generator;
Initiator : IN Integer);

PROCEDURE Reset (Gen : IN Generator);

— Advanced facilities

TYPE State IS private;
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PROCEDURE Save (Gen ; IN Generator;

To__State : OUT State);
PROCEDURE Reset (Gen ; IN Generator;

Prom_State : IN State);

Max_Image_Width : constant := implementation-defined integer value;

FUNCTION Image (Of_State : State) RETURN String;
FUNCTION Value (Coded_State ; String) RETURN State;

PRIVATE

... — not specified by the language
END Ada.Numerics.Discrete Random;
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Summary of Ada Execution-Time
Exceptions

F.l Exceptions Defined in the Language

F2 Exception Defined in Ada.Caiendar

F.3 Exception Defined in Ada.Numerics

F.4 Exceptions Defined in Ada.Text_IO

This appendix summarizes the predefined Ada exceptions. Ada distinguishes excep
tions defined in the language from those defined in standard packages. The summary
should help students to write exception handlers and to interpret run-time messages that
report unhandled exceptions propagated out of a main program.

F.l Exceptions Defined in the Language

The following exceptions are predefined in the Ada language:

• constraint_Error is raised if an attempt is made to store a value in a variable that
is out of range for that variable, that is, out of the range of the variable's type or
subtype. It will also be raised if an attempt is made to dereference a null access val
ue (pointer), to copy a string or similar array into another of a different size, or to
copy a variant record object into another that is constrained to a different value of
the discriminant.

• program_Error is raised in a number of situations that are unlikely to arise in
courses that use this book. For example, wiTH-ing a number of packages could
cause an attempted call of a subprogram whose body has not yet been elaborated.
This occurrence is rare in student projects with simple package dependencies but
arises occasionally in industry.

• storage_Error is raised if the storage pool is exhausted by dynamic allocation,
typically in an infinite loop in whose body a new call is executed. The exception is
also raised if the run-time stack is exhausted by subprogram calls, for example, by
an infinite recursion.

• Tasking_Error is raised if two concurrent Ada tasks are unable to communicate.
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F.2 Exception Defined in Ada.Calendar

One exception is defined in the package Ada.Calendar:

• Ada. Calendar. Time_Error is raised if the actual parameters in a call of Ada. cal
endar. Time_Of do not form a valid date or if subtracting two values of type
Ada.Calendar.Time results in a value that lies outside the range of the predefined
type Duration.

F.3 Exception Defined in Ada.Numerics

One exception is defined in the package Ada.Numerics:

• The Argument_Error exception is raised by a subprogram in a child unit of
Ada.Numerics to signal that one or more of the acmal subprogram parameters are
outside the domain of the corresponding mathematical function.

F.4 Exceptions Defined in Ada.TextJO

The following exceptions can be raised by Ada.Text_io operations:

• Ada.Text_io.status_Error is rai.sed by an attempt to operate upon a file that is
not open and by an attempt to open a file that is already open.

• Ada.Text_io.Mode_Error is raised by an attempt to read from, or test for the end
of, a file whose current mode is out_Piie and also by an attempt to write to a file
whose current mode is in_Fiie. This exception is also raised by specifying a file
whose current mode is 0ut_File in a call of Set_lnput, skip_Line, End_of_Line,
skip__page, or End_of_Page or by Specifying a file whose current mode is in_Fiie
in a call of Set_Output, Set_Line_Length, Set_Pag6__Length, Line_Length,
Page_Length, New__Line, or New__Page.

• Ada.Text_io.Name_Error is raised by a call of Create or Open if the string given
for the parameter Name does not allow the identification of an external file. For ex
ample, this exception is raised if the string is improper or, alternatively, if either
none or more than one external file corresponds to the string. In student programs,
this exception is often raised if the case of the file name given in the procedure call
does not agree with the case of the name in the student's directory. This is espe
cially common in UNIX, in which file names are case-sensitive.

• Ada.Text_io.use_Error is raised if an operation is attempted that is not possible
for reasons that depend on characteristics of the external file. For example, this ex
ception in raised by the procedure create, among other circumstances, if the given
mode is out_Fiie but the form specifies an input-only device, if the parameter
Form specifies invalid access rights, or if an external file with the given name al
ready exists and overwriting is not allowed.
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• Ada.Text_io.Device_Error is raised if an input-output operation cannot be com
pleted because of a malfunction of the underlying system. This should rarely occur
in a student program.

• Ada.Text_io.End_Error is raised by an attempt to skip (read past) the end of a
file. In student programs this may happen if the file terminator is immediately pre
ceded by a line terminator. In this case a solution is to include a handler for this
exception in the file input section of the program. Sometimes, inserting a
Ada.Text_io.skip_Line call in the file input loop will work as well.

• Ada.Text_io.Data__Error is raised by a procedure Get if the input character se
quence faTls to sati^ the required syntax or if the value input does not belong to
the range of the required type or subtype. Common causes are entering an integer
or character literal where a Float literal is required and entering an invalid enumer
ation literal.

• Ada.Text 10. Layout_Error is raised by Col, Line, or Page if the value returned
exceeds count'Last. The exception Layout_Error is also raised on output by an
attempt to set column or line numbers in excess of specified maximum line or page
lengths, respectively (excluding the unbounded cases). It is also raised by an at
tempt to Put too many characters to a string.
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Cryptogram Using Ada 95 Facilities 44I

Demonstration of De Morgan's Laws and Boolean_IO 335
Demonstration of Geometry Package 583
Displaying Digits in Reverse Order 305
Displaying Initials 55
Displaying the User's Name 57
Displaying Today's Date in Another Format ] 44
Displaying Today's Date I43
Distance between Two Points 374
Distance from Point to Origin 371
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Function Search
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Ada.Calendar 137,474
Ada.Characters .Handling 346,441
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ANSI (American National Standard

Institute) 26
application program 16
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Arguraent_Error 759
arithmetic operator 84
arithmetic overflow 325

arithmetic underflow 325
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array subscript 385,391
array type 367,385
array type declaration 387
array type, unconstrained 520,523
array, copying and comparing 397
array, heterogeneous 692
array, multidimensional 557
array, reading part of 404
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to 397

array, three-dimensional 564
array, unconstrained 519
assembly Language 23
assignment compatibility 311
assignment statement 83
assignment symbol 84
associativity rules 307
attribute

first 130,521
last 131,521
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position 130
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range 521
successor 131,154
unconstrained array 521
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Attributes 303
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Balloon_Drop 253
banner comment 67,78,127
BEGIN 79
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binder, program 30
Blank_Count 342
body, function 185,187
body, package 42,146,188,190
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body, protected type 716,722
body, task 704,711
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Boolean condition 157

Boolean expression 154,156
Boolean operation 57
Boolean operators 329
Boolean type 329
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documentation 119
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finding the alphabetically first letter

163
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printing an array backward 603
recursive binary search 622
robust menu-driven command

interpreter 272
software support "hot line" 524
sorting an array of records 415
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testing whether a number is prime 337
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141
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form 144
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color names 133

unit price of a pizza 123
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Coin_Collection 103
Colors 135

Columns 712
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compiler 36
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context clause 69, 70, 75
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Currency 494,496
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currency package 492
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Currency JO 499,500
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dangling pointer 640
data base package 509
data structure, dynamic 632
data type 96
Data_Error 110,239,272,760
Database 509,510
date input/output package 486
Dates 482,484
DatesJ0 486,487
Day_Number subtype 138
deallocation 639

debugging
programs with linked lists 669
recursive subprograms 627

debugging a program 34
decision table 178
declaration

constant object 76
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declaration, function 183
declaration, variable 73,76
deep copy of a linked list 649
DELAY statement 148
delimiters, table of 744
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Device_Error 760
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Display_Digits 306
DisplayBoard 560
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Draw_Box_with_l_Loop 50
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ELSIF 175
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End_Error 760
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error
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exception 56,109
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Device_Error 760
End_Error 760
Layout_Error 760
Mode_Error 759
Name.Error 759
Program_Error 758
RAISE 483
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Storage_Error 640,758
Tasking_Error 758
Time_Error 478,759
Use_Error 759
user-defined 484
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exception handler block 269
exception handling 199,239,267,290
Exception_Loop 270
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executable program 30
EXIT statement 58,270
EXIT WHEN 60,246
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extension aggregate 689
external file, using for input 214

Factorial 598

factorial 232
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factorial, recursive 598
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Fibonacci 600
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First (attribute) 130,521
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flag-controlled loop 258
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floating-point value 70
FOR statement 49,199,204,230
formal parameter 184
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formatted output 92
formulas, mathematical 309
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function

calling 140,184
writing 183
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GCD601
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array parameters 535
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maximum function 533
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Get_Line 435
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Hello_Initials 66
Hello_Name 67
Hello_Semantic 37
Hello_Syntax 35
heterogeneous array 692
heterogeneous linked list 695
hierarchical record 381
high-level language 24
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multiple-alternative 175,176
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behaviors of the various Gets 453
Boolean values 335
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text file 444,453
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sentinel-controlled 259
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zero iterations 257

LOOP statement (general) 250
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loop, event-controlled 246
loop, general 58
loop, indefinite 63
loop, nested 52,220
looping problems 245
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laptop computer 8
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(case study) 191
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last-in, first-out (LIFO) 660
Layout_Error 760
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462
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Line_Length 463
linked list 634,641
linked list package, generic 656
linked list, heterogeneous 695
Linked_Lists 642,645
linker, program 30
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Lists_Generic 656
literal 98
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logging on (a computer) 28
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loop body 200
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Max_Int_Flt 236
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Min_Max_Average 213
Min_Max_Average_File 215
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multithreaded program 701
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Put 71,95

Ada.Integer_Text_IO 70
full specification 750
Get 72,89
Put 72,93

AdaJ^umerics 125

full specification 755
AdaJ*lumerics.

Elementary_Functions 182,315
Ada.Numerics.Discrete_Random 326

full specification 756
Ada.Numerics .Elementary_Function

s

fiill specification 755
Ada.Numerics .Float_Random

full specification 756
Ada.Strings 441
Ada.Slrings .Bounded 443
Ada.StringsPixed 441
Ada.Strings.Maps 441
Ada.Strings .Unbounded 443
Ada.TextJO 67,277

full specification 750
Get 88
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Get_Line 433,435
New_Line 91
Put 91

Ada.Text_IO.Enumeration_IO 132,
154,335

Ada's standard 470,746
AdaGraph 729
currency input/output 499
date input/output 486
employee data base 509
employee input/output 506
employee records 503
generic linked list 656
generic queue 668
generic stack 661
geometry 575
geometry input/output 580
high-resolution color graphics 729
improved dates 482
minimum/maximum 188
monetary quantities 492
multiple spiders 514
payroll 681
personnel 680
persons 678
robust input 285
screen 229

screen control 145

simple dates 376
spider 41,351
spider child 292
useful functions 232

writing 188
package body 42,146, 188,190
package implementation 42
package interface 42
package specification 42,137,146,188,

190

package, file names for 42
package, generic discrete set 544
Palindrome 608

palmtop computer 9
parameter 47

actual 184

formal 184

formal-actual association 278,280
parameter modes (IN, OUT, IN OUT)
277,281

parameter passing 277,281,400

Payroll 681,687
payroll problem (case study) 169
PayrolLArray 692
Payroll.List 695
personal computer 8
Personnel 680,686
Persons 678,685
Phone_Service 525
Pi, constant from Ada.Numerics 125
picture processing with recursion (case

study) 617
Pippik, Moishe see Maurice Navel
pizza, unit price of (case study) 123
Pizzeria 126

Pizzeria_Frame 125
pointer 632
pointer, dangling 640
pointers, head and tail 652
polygon 739
Polygons 740
polymorphism 674
polystar 741
Polystars 742
pool-specific access type 689
Pos (attribute) 131
positional association 376
Positive type 98,116,301
postcondition 47,147
precedence rules 307,330
precondition 47,147
Pred (attribute) 131,154
predefined character and string

packages 440
predefined identifier 68
predictable performance 20
prime number 337
priming read 259
primitive operation on tagged type 677
printing an array backward (case study)
603

private type 138,477,482,495,504,
515

private type definition 483
problem inputs 19
problem outputs 19
problem solving 18
problem specification 19
procedure 46
modes of parameters (IN, OUT,
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IN OUT) 277
writing 277

procedure body 284
procedure call statement 86,284
procedure specification 283
processes, simultaneous 703
program

binding or linking 30
compiling 30
debugging 34
editing 30
executing 31
general structure of 78
listing file 33
sequential 65
straight-line 65

program flag 334
program heading 75
program, stored 11
Program_Error 758
programming language

assembly language 23
high-level language 24
machine language 23

programming languages 23
prompting message 88,92
propagation error 38
Protect_Screen 714
protected body 722
protected object 701
protected type 711,714,720,722
pseudorandom numbers 326

qualified aggregate 649
queue 660
Queues_Generic 668

random numbers 326

Random_Numbers 327
Range (attribute) 521
ReadEmployee 383
ReadEmployeeBasic 383
readers-writers problem 703
reading part of an array 404
ReadScores 404

real-time systems 702
record type 367,368
records, operations on 372
recursion 591

stopping case 591
recursive binary search (case study) 622
recursive data structure 647
recursive subprogram 591
redirection of standard files 454

refinement, algorithm 21
regression testing 232
relational operators 158
REM operator 98,305
RemoveFront 659

repeating a program body 217
repetition 49
reserved words (keywords) 68

table of 745

reusable software component 472
Reverse_Display_Days 228
Reverse_Letters 96
robust input package 285
robust menu-driven conunand

interpreter (case study) 272
robust program 267
Robust_Input 286,287
Robust_Sum_Fact 239
Room_Type 720
round-robin 707

run-time errors 35,109

R

race condition 714

RAISE (exception) 483
random 51

random access memory (RAM) 9

safety-critical software systems 28
scalar data type 116,301
scientific notation 90

Screen 146,147
screen control package 145
screen package 229
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Search 411

searching an array, recursive binary 622
searching an array, sequential 410
SELECT statement 711
selector operation 473
SelectSort 413
semantic error 37,107
sentinel-controlled loop 259
SEPARATE (subunit) 645
sequential program 65,701
sequential versus random access to

arrays 397
Sets_Generic 547,548
Show_DeMorgan 335
Show_Differences 393
simple dates package 376
Simple_Dates 376,378
simulation 702

simultaneous process 703
sine curve 318

sine wave

high-resolution 733
Sine_Curve 318
Sine_Wave 733
single-threaded program 701
singly linked list 634
Smiley 148
software development 19
software development method 19

analysis 19
coding 19
design 19
implementation 19
problem specification 19
test plan 19

example of 103
testing 19

software development tool 17
software engineering 19
software support "hot line" (case study)
524

Sort_3_Numbers 279
Sort_Generic 538
Sort_Score_File 417
sorting an array 412,524,537
sorting an array of records (case study)
415

specification, entry 710
specification, function 183,186

specification, generic 543
specification, package 42,137,146,

188,190
specification, procedure with

parameters 283

specification, protected type 716, 722
specification, task 704
Spider 42,352
spider child package 292
spider package 41,351

high-resolution 735
spider, concurrent 716
spider, drunken 62
Spider.My_Stuff 293,294
Spider_Crash 56
Spider_Hires 736
Spiders 514
spiders, multiple 584
Spiral 54, 738
spiral pattern 54

high-resolution 738
Sqrt function 182
square root 182,318

Square_Roots 182
Squares 201
Squares_Up_and_Down 203
stack 660

Stacks_Generic 661
start button 708

Start_Buttons 708
starting order of tasks 708
Startup 44
state variables 356

Status_Error 759
storage allocator 632
storage of multidimensional arrays 559
storage pool 632
Storage_Error 758
Storage_EiTor exception 640
stored program 11
straight-line algorithms 44
straight-line program 65
string type 429

assigning, comparing, and displaying
431

concatenation 436

getting input values from 459
reading 432
slicing 435



780 General Index

StringReverse 663
subscript in an array 367
subscript, array 391
subscripted variable 385
subtype 116,224

compatibility 117
Day_Number 138
declaration 117
Month_Number 138
Natural 98,116
Positive 98,116
programmer defined 116
the operator IN 225
Year_Number 138

subunit 645

Succ (attribute) 131,154
successive approximations 321
sum of integers (case study) 205
Sum_and_Factorial 237
Sumjntegers 207
Swap_Generic 530,531
syntax error 35

Taft, S. Tucker (designer of Ada 95) 27
tagged type 675
tagged type, deriving a new 676
tagged type, primitive operation 677
task body 704,711
task object 701,704,705
task specification 704
task type 704,705
task type specifation 710
task type, drunken spider 717
task variable 705

task, starting order of 708
Tasking_Error 758
Temperature_Table 247
test plan
example of 103

Test_Binary_Search 625
Test_Blob_Size 618
Test_Database 512
Test_Dates 490
Test_Geometry 583
Test Lists 644

Test_Max_Value 522
Test_Maximum_Generic 534
Tesl_Multiply 594
Test_Print_Backward 604
Test_Robust_rnput 288
Test_Simple_Dates 379
Test_Sort_Generic 540
Test_Swap_Generic 531
Test_Tower 613
testing whether a number is prime (case

study) 337
text file 443

behavior of the Get operations 453
directory name for 449
keyboard and screen as 447
preparing for input or output 449
redirection of standard files 454

Three_Days 155
Three_Drunken_Spiders 717
three-dimensional array 564
Time 138

Time type 475
Time.^or 478,759
Time_of_Day 313
time-slicing 707,714
To_Lower 346
To_Upper 346
today's date in "mm/dd/yyyy" form
(case study) 141

today's date in "MONTH dd, yyyy"
form (case study) 144

Todays_Date 143
Todays_Date_2 145
Tour_Room 59
Tour_Room_2 61
towers of Hanoi (case study) 611
trace of algorithm 166,167,168,176,
202,208,223

traceback 110

tracing a recursive function 595
translating from english to french color

names (case study) 133
Triangle 222
Two_Cooperating_Tasks 707
Two_Tasks 705
type

access 632,689
array 367,385

aggregate 389
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copying and comparing 397
declaration 387
element 367
index 385

one-dimensional 385
operations 388
passing as parameter 399
reading part of 404
sequential versus random access
397

subscript 367,385,391
using FOR loops with 392

assignment compatibility 311
Boolean 329

assignment statement 333
operators 329

Character 96,340,440
relational operations 342
representing control characters 344
table of values 341,743,748

class-wide 691

composite 301,367
conversions among numeric types

311

Day_Number 138
decimal 314

Duration 312,475
enumeration 46,129,154,224

Boolean 335

Character 340

declaration 130

File_Type 444
fixed point 312
fixed-point 314
Float 97,301

internal representation 302
range of values 303

Integer 98,301
internal representation 302
range of values 303

limited private 327,446,658,662,
668

Month_Number 138
multidimensional array 557
Natural 98,301
one-dimensional array 385

Positive 98,301
private 138,477,482,495,504,515

advantages of 503

private, defining a 483
protected 711,714, 720,722
record 367

aggregate 375
declaration 368,370
field 367

field selection 370
hierarchical 381
operations 372
variable declaration 369

scalar 116,301
String 429
tagged record 675
task 705,710
Time 138,475
unconstrained array 519,520,523
variant record 557, 567
Year_Number 138

type defined 96,472
type extension 675
type hierarchy 677

u

Unchecked_Deallocation 639
unconstrained array type 519,520,523
unconstrained variant record 572

undefined variable 105

unit price of a pizza (case study) 123
up-conversion 677
USE clause 316,501,502
USE TYPE clause 501

Use_Error 759

Use_Payroll 683
useful functions package 232
UsefuLFunctions 233,235
user interface 509

user-defined identifier 74

using FOR loops with arrays 392

V

Val (attribute) 131
validation, compiler 26
value of a coin collection (case study)
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101

variable declaration 73,76
variable declaration, record 369
variable, undefined 105
variant record 557,567

constrained 572
unconstrained 572

volatile memory 13

w

Walk.Box 46
Walk_Line 45
water balloon drop (case study) 252
Weekly_Pay 171
WHEN clause 269,347
WHEN OTHERS clause 347
WHILE statement 266

WITH clause 69

Work_Days 225
workstation computer 8
world times (case study) 478
World_Time479
Worm_and_Apple 248
writing a package 188
writing functions 183

X

XOR operator 329

Year_Number subtype 138


