THIRD EDITION

~Ada 95

ProBLEM SOLVING AND PROGRAM DESIGN

Michael B. Feldman
The George Washington University

Elliot B. Koffman

‘Temple University

Vv ADDISON-WESLEY
Addison-Wesley is an imprint -
of Addison Wesley Longman, Inc.

Reading, Massachusetts Harlow, England Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney Bonn
Amsterdam Tokyo Mexico City.

s

Sr. Acquisitions Editor: Susan Hartman
Associate Editor: Katherine Harutunian
Production Editor: Patricia A. O. Unubun
Cover Design: Diana Coe

Production Coordination: Diane Freed
Copy Editor: Barbara Willette

Access the latest information about Addison-Wesley books from our World Wide Web
site: www.awl.com/cseng

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed in initial
caps or in all caps.

The programs and the applications presented in this book have been included for their

instructional value. They have been tested with care but are not guaranteed for any par-
ticular purpose Neither the publisher nor the author offers any warranties or represen-
tations, nor do they accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Feldman, Michael B.
Ada 95 : problem solving and program design / Michael B
Feldman, Elliot B. Koffman. — 3rd ed.
p. cm.
ISBN 0-201-36123-X
1. Ada 95 (Computer program language) | Koffman, Elliot B. II.
Title.
QA76.73.A35 F43 1999
005.133—dc21 99-11613
cip

This book was typeset by Michael B. Feldman in FrameMaker 5.5 on an Apple
Macintosh 7500. The fonts used were Christiana, Courier Pitch, and Helvetica It was
printed on New Era Matte.

Copyright © 1999 by Addison Wesley Longman, inc.

All rights reserved. No part of this publication may be reproduced, stored in a database
or retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. Printed in the United States of America.

456789 10-MA-04

PREFACE

USRI T EIRATNR

This textbook is intended for the introductory course in problem solving and program
design using Ada 95. It assumes no prior knowledge of computers or programming, and
for most of its material, high school algebra is sufficient mathematical background. The
first two editions of this book have been used with success in a large number of intro-
ductory courses.

While the book is generally oriented to the first-term student of programming, there
is more material here than is usually covered in a first course. Chapters 11 through 17
focus on abstract data types, generics, recursion, dynamic data structures, inheritance-
oriented programming, and concurrency. They can be used selectively in a fairly
advanced first course or as part of a second-level course. The book covers the Ada 95
language thoroughly enough to serve as a useful introduction for professionals.

The Ada 95 language standard was adopted early in 1995 by the International Stan-
dards Organization and the American National Standards Institute. Ada is a foundation
language in a growing number of institutions (about 150 at this writing). Ada is also a
language of choice in many important industry sectors, especially commercial aviation
and air traffic control, high-speed and metropolitan rail transportation, scientific and
communications satellites, and manufacturing control. The consensus among teachers
of Ada is that its pedagogical virtues are very similar to its industrial ones.

Problem Solving and Program Design

The primary focus of this book is problem solving with Ada 95, not a study of the Ada
95 programming language per se. We achieve this focus by selecting features of the lan-
guage that lend themselves to good program design. We also emphasize abstraction and
use the time-tested six-step approach to software development: problem specification,
analysis, design, test planning, implementation, and testing. Each of the 35 case studies
throughout the book follows this software development method.

New in the Third Edition

This edition includes a number of new end-of-chapter projects. Also, a new Chapter 2
uses an Ada 95 “spider” package—similar to the turtle graphics of Logo—to introduce
the basics of algorithms and the fundamental sequential. loop, and test control struc-
tures, all in a platform-independent animated framework. Chapter 2 is independent of
the others and thus provides flexibility to an instructor who sees real benefit in intro-
ducing all the major control structures together as early as possible. Instructors who
were satisfied with the presentation order in the first two editions can simply skip from
Chapter 1 to Chapter 3 without loss of continuity.

This edition also contains alphabetical indexes of syntax displays, case studies, and
program style guides and a new Appendix A, High-Resolution Color Graphics. This
appendix provides a platform-independent package for simple two-dimensional graph-
ics and examples including a high-resolution color spider package.

ase
m

iV Ada 95 Problem Solving and Program Design

General Organization of the Book

The order of presentation is designed to do justice both to modern programming con-
cepts and to the power of Ada. Each chapter beyond Chapters 1 and 2 presents a bal-
anced mixture of a number of important language and computing issues. These are
organized in a number of categories; most chapter section headings give the main cate-
gory of the section as well as the specific topic, to orient teacher and student alike to the
flow of material in a given category from chapter to chapter. The categories are:

* Problem Solving: Here is where language-independent concepts of program de-
sign, algorithm development, and so forth, are introduced.

* Control Structures: Each of these sections introduces the program-level control
structures of Ada: decisions, loops, assignments, and so on.

* Data Structures: In each of these sections appears a discussion of data types and
their uses, in the usual order of scalar types followed by structured or composite
(record and array) types.

¢ System Structures: Each of these sections introduces a concept that is useful in
what is often called “programming in the large.” These concepts help the student,
right from the start, to realize that real-world programs really consist of many
smaller pieces built up in systematic fashion. Included under System Structures are
such things as functions and procedures, packages, and exception handling and
propagation.

¢ Tricks of the Trade: These are the universal techniques that all programmers must
learn in order to survive productively: debugging techniques, program tracing,
documentation techniques, and the like.

Preface v
Pedagogical Features
In this book we employ several proven pedagogical features:

» Complete, compilable programs: From the beginning, students see full, com-
pilable, executable programs. These are captioned “Program x.y” to identify them
clearly as compilable programs and not fragments, which are embedded in the text
or numbered as figures. Each listing of a main program is immediately followed by
a sample execution, to give the student an idea of the expected results.

A particular advantage of Ada as a teaching language is that the strong standard
ensures that program behavior will be nearly independent of the particular compil-
er or computer being used. The programs in this book have been fully tested and
can be compiled and executed using any validated Ada 95 compiler.

* Case Studies: A case study is a program that is developed from specifications, step
by step, from a statement of the problem to a complete working program. The soft-
ware development method is taught, reinforced, and applied. We focus much at-
tention on program testing and the development of test plans.

Of the 35 case studies, some—especially in the early chapters—are presented in
their entirety, while others are intentionally left incomplete so that their completion
can be assigned as class projects.

o Syntax displays: A syntax display is a brief description, with words and examples,
of the syntax and interpretation of a newly introduced structure. These are set apart
typographically for ease of use, and they codify the language structures as they are
first presented.

* Programming style displays: These are brief discussions, again set apart typo-
graphically, offering advice to the student about how to write good programs.
Many of these are of course universal and language-independent; many are also
Ada-specific.

¢ End of section exercises: Following most sections there are two kinds of exercises,
self-check and programming.

* End of chapter exercises: Each chapter review contains a set of quick-check exer-
cises with answers, review questions, and programming projects.

o Error discussions and chapter review: Each chapter ends with a section that dis-
cusses common programming errors and a review section that includes a table of
Ada constructs introduced in that chapter.

Program Design Issues

Concepts of object-oriented programming (OOP) are introduced throughout the book
as appropriate. While it is true that type extension and dynamic polymorphism are gen-
erally seen as necessary to “full” OOP, it is essential for the student to understand that
these are not sufficient. Ada’s strong support for packages, generics, exceptions, private
types, and subprogram overloading—like their equivalents in other languages —play

Vi Ada 95 Problem Solving and Program Design

important roles as well. The idea that an object—even a scalar object—has state (value)
and behavior (appropriate operations) is introduced beginning in Chapter 3, and “object
thinking” is pervasive in the book. Type extension per se is an advanced topic that can-
not be understood without a good grounding in the other topics, so it is deferred until
Chapter 16.

We present stepwise refinement of an algorithm right from the start but make only
rare use of top-down implementation through procedure stubs and the like. It is crucial
to foster habits of design for reusability very early, and this argues for early emphasis
of packages and the reusable functions and procedures they provide.

Functions are presented very early: They are used in Chapter 4 and written in
Chapter 5. Procedure calls are introduced in Chapters 2 and 3 to support the spider
package and Ada’s input/output operations; procedures are writlen starting in Chapter
7. Functions are more intuitive than procedures, and, in Ada, cannot have 1N ouT (“vari-
able”) parameters. Since functions in Ada are not restricted in their result type—arrays
and records as well as scalars can be returned—this early exposure to functions will
pay off later in encouraging students to use functional notation where possible. Intro-
ducing functions early allows us to introduce the writing of packages early (again in
Chapter 5).

Enumeration types are introduced very early (Chapters 2 and 4). Enumerations are
a useful structure for representing a set of values without regard to their internal repre-
sentation. Students of other languages have a hard time seeing the utility of enumera-
tions because they are so hard to read and display. In Ada, the input/output library
provides a generic package for reading and displaying enumeration values. Further-
more, enumerations serve as a useful vehicle for motivating generic instantiation (for
Enumeration_I0) and attributes (Pos, Val, Succ, Pred) very early in the game.

Records and arrays are presented together in Chapter 9, with records first. Other
books have introduced arrays of scalars early, with arrays of records as an “advanced”
topic. We prefer to teach that arrays of records are as natural as arrays of integers.

Design of abstract data types (ADTs) is introduced systematically beginning in
Chapter 11. ada.calendar is seen as an ADT, and the discussion continues with ADTs
for calendar dates, monetary quantities, employee records, and multiple spiders.
Unconstrained array types are treated along with generics in Chapter 12; multidimen-
sional arrays and variant records are introduced in Chapter 13. Chapter 14 presents an
introduction to recursion. Dynamic data structures, in the form of one-way linked lists,
as well as subunits and LIMITED PRIVATE types, are introduced in Chapter 15, with
applications to stacks and queues. Tagged records are introduced in Chapter 16; these
are seen to be supportive of the type extension (inheritance) that is now seen as essen-
tial to full object-oriented programming.

Finally, Chapter 17 introduces the important concept of concurrent programming,
introducing Ada’s task types and protected types as language-provided constructs for
concurrency.

Preconditions and postconditions for subprograms are introduced at the start. We
encourage the development of programs from their documentation; in case studies, the
steps of the algorithm are written before the program is developed and become com-
ments as the program is refined.

We encourage appropriate use of comments but do not get carried away with them;
the programs and the book would be far too long if we used industrial-strength com-
ment conventions.

Preface vii

Ada Issues

Ada 95 is a rich and powerful language. It is important to introduce the language to
beginners, step by step, without overwhelming them. Here is a list of a number of Ada
capabilities and how we have handled them:

* Numeric Types: Subtypes are introduced early in the book, as a way of specifying
ranges of values that are sensible in the application. Where values shouldn’t be
negative, we always use a positive subtype, for example, and often use a subtype
with range constraints where it makes sense not to allow the full range of integer.

We have avoided the use of new and derived numeric types because the compati-
bility issues that arise from their use create more problems than they solve for be-
ginners. It is range checking that is important to them, not the esoterica of type
compatibility.

Furthermore, using new or derived numeric types for simple beginning-level nu-
merical problems gives completely counterintuitive results: Attempting to use
types for distance, rate, and time, for example, to compute the old

Distance := Rate * Time;

formula leads to type-compatibility grief that no novice should have to endure.

* Packages and related issues: Using packages is introduced in Chapter 2 with the
spider system and in Chapter 3 with the use of the various sublibraries of
Ada.Text_Io. In Chapter 4, students learn how to use some of the capabilities of
Ada.calendar, which has a richness that is not often explored even by advanced
Ada texts. ada.cCalendar is a recurring theme in this book, and is discussed in the
absract data type material of Chapter 11, since Time and the various Time and pu-
ration operations from Ada.calendar serve as a particularly nice predefined ex-
ample of a private ADT. Also, students understand times and dates intuitively;
there is nothing esoteric about them. The year range of ada.calendar (1901-2099)
provides an opportunity to discuss the Year 2000 problem.

Also in Chapter 4, use of a simple screen-control package is introduced. Students
will need to compile this before they use it, since it is provided with the book and
is not part of most compiler distributions. Thus they will learn how to compile a
package and understand specifications very early on, even if they don’t yet under-
stand the details of the package body, which are discussed at some length in Chap-
ter 8. screen is used in a number of examples in the book, especially for menu
handling, plotting, and the spider examples.

By Chapter §, students are writing simple packages; by Chapter 6 they are learning
about overloaded function and procedure names. Private types and operator over-
loading appear in Chapter 11.

* The usk clause: This is introduced in Chapter 8. Ada industry practice generally
avoids the usk clause for a number of good reasons. We avoid it here, in general,
because qualifying all references to package resources helps the student to really
understand which resources are provided by which libraries.

o

Vi

.
1

Ada 95 Problem Solving and Program Design

usk and its Ada 95 variant use TYPE can be useful in taking advantage of the over-
loading of infix operators; this is discussed in Chapter 11. usk is a better solution
for novices than the industry-favored device of renaming declarations.

Generic predefined libraries: For numeric input/output, we use the Ada 95
Ada.Text_IO.Integer_ Text IO and Ada.Text I0.Float_Text_ Io. Using these
new “preinstantiations” obviates the need for the student to instantiate numeric 1n-
put/output packages. The new “preinstantiations” are introduced in Chapter 3 and
are used consistently throughout. In Chapter 4 the student learns to instantiate
Ada.Text_I0.Enumeration_I0 for the desired enumeration type. The student in-
stantiates Ada.Numerics.Discrete_Random beginning in Chapter 8.

Generics in general: Some simple generic units appear starting in Chapter 12.
Writing generics is really an advanced topic that should wait until CS2, when the
student is better equipped to handle the underlying abstraction principles.

Exceptions: Discussion of Ada’s predefined exceptions occurs in Chapter 3, where
compilation and run-time errors in general are introduced. Robust exception han-
dling cannot be taken up until after the control structures have been presented, and
so program level exception handling is first discussed in Chapter 6. Robust input
loops are presented in Chapter 7, along with a package providing robust input op-
erations. User-defined exceptions are introduced in Chapter 11, as a natural aspect
of abstract data types.

Lexical style: We have continued the practice of the earlier cditions in using upper-
case reserved words. We believe that beginners in programming should learn the
structure templates through heavy reinforcement, and the uppercase reserved
words make the structure templates stand out. Ada is not a case-sensitive language,
and although reserved words are printed in the standard in lowercase, an uppercase
convention is perfectly allowable and is, in our experience, pedagogically effec-
tive. It is emphasized in the text that teachers and students can, and should, develop
their own coding styles and that consistency of style is more important than follow-
ing any specific rule.

Only one statement appears per line. We believe that this makes for more modifi-
able code and is a good habit for students to develop. Similarly, each variable and
constant is declared in a separate declaration on its own line.

Procedure parameters: Named association is used exclusively in the early chapters
and almost exclusively thereafter. This is not only good Ada but also good peda-
gogy because—as our experience shows—the student has a much easier time un-
derstanding the formal/actual binding if the two always appear together.

Initialization expressions: Initialization expressions are introduced in Chapter 8,
along with record types, and the reader is advised to use initializations to ensure
that record fields are always well defined. With some reluctance we have decided
not to introduce initialization expressions for variables. It is true that a declaration
with a static initialization such as

X: Float := 57.0;

contributes to program readability. However, an initialization such as

r— et bt s fomed ik
e wWioe-

39

4.1
42

4.3
44

4.5

CONTENTS

TG K S REIRRRY &

Introduction to Computers and Programming
Electronic Computers Then and Now

Hardware Components of a Computer

Computer Software

Problem Solving and Programming

The Software Development Method

CASE STUDY Changing a Flat Tire
Programming Languages

About Ada

Processing a High-Level Language Program

A Step-by-Step Compilation Exercise

Tricks of the Trade: Common Programming Errors

Introducing Algorithms: Adventures of the Spider
Introducing the Spider

Straight-Line Algorithms

Algorithms with Single Loops

Algorithms with Nested Loops

Algorithms with Conditional Execution

Putting It All Together: The Drunken Spider

Introduction to Straight-Line Programs

The General Structure of Ada Programs

System Structures: Numerical Input and Qutput

Data Structures: Declaring Constant and Variable Objects
System Structures: General Form of an Ada Program
Problem Solving: Software Development [llustrated
CASE STUDY Converting Units of Measurement
Control Structures: Assignment Statements

Control Structures: Input/Output Statements

Data Structures: Introduction to Data Types and Expressions
CASE STUDY Finding the Value of a Coin Collection
Tricks of the Trade: Common Programming Errors

Problem Solving and Using Packages

Data Structures: Introduction to Subtypes

Problem Solving: Building Programs from Existing Information
CASE STUDY Finding Area and Circumference of a Circle
Problem Solving: Extending a Problem Solution

CASE STUDY Unit Price of a Pizza

Data Structures: Introducing Enumeration Types

CASE STUDY Translating from English to French Color Names
System Structures: The Importance of Packages

System Structures: Using Ada’s Calendar Package

CASE STUDY Displaying Today’s Date in "mm/dd/yyyy" Form

136
137
141

Xi

xii Contents

47

5.1
52
5.3
54

5.5
5.6
57
58

59

6.1

6.2

CASE STUDY Displaying Today’s Date in "MONTH dd, yyyy" Form
System Structures: Using a Screen-Control Package
Tricks of the Trade: Common Programming Errors

Decision Statements; Writing Functions and Packages
Control Structures: Boolean Expressions and the IF Statement
CASE STUDY Given Today, Find Yesterday and Tomorrow
Problem Solving: Decision Steps in Algorithms

CASE STUDY Finding the Alphabetically First Letter

Tricks of the Trade: Tracing a Program or Algorithm

Problem Solving: Extending a Solution

CASE STUDY Payroll Problem

CASE STUDY Computing Overtime Pay

Control Structures: The Multiple-Alternative IF Statement
System Structures: Using Ada’s Math Library

System Structures: Writing Functions

System Structures: Writing a Package

CASE STUDY Finding the Largest and Smallest of Three Numbers
Tricks of the Trade: Common Programming Errors

Counting Loops; Subtypes

Control Structures: Counting Loops and the FOR Statement
CASE STUDY Sum of Integers

Problem Solving: Generalizing a Solution

CASE STUDY General Sum Problem

CASE STUDY Minimum, Maximum, and Average of a List of Numbers

Problem Solving: Using an External File for Input Data

Problem Solving: Repeating a Program Body

CASE STUDY Multiple-Employee Payroll Problem

Control Structures: Nested Loops

Data Structures: More on Subtypes

Tricks of the Trade: Debugging and Regression Testing

System Structures: Overloading and the Useful Functions Package
System Structures: Introduction to Exception Handling

Tricks of the Trade: Common Programming Errors

Other Loop Forms; Procedures; Exception Handling
Control Structures: The General LOOP and EXIT Statements
CASE STUDY The Water Balloon Drop

Problem Solving: Loop Design

Control Structures: The WHILE Statement

System Structures: Robust Exception Handling

CASE STUDY Robust Menu-Driven Command Interpreter
System Structures: Writing Procedures

System Structures: A Package for Robust Input

Tricks of the Trade: Testing with Exception Handling
Tricks of the Trade: Programs That Never Halt

Tricks of the Trade: Common Programming Errors

7. 10 Continuing Saga: A Child Package for the Spider

144
145
150

153
154
154
163
163
166
169
169
173
175
182
183
188
191
193

199
200
205
209
209
211
214
217
217
220
224
231
232
239
241

245
245
252
255
266
267
272
276
285
290

291
292

Scalar Data Types; the CASE Statement

Data Structures: Numeric Data Types

System Structures: More on Ada.Numerics; the USE Clause
CASE STUDY Approximating the Value of e

System Structures: More on Ada.Numerics: Random Numbers
Data Structures: The Boolean Type

CASE STUDY Testing Whether a Number s Prime

Data Structures: The Character Type

Control Structures: The CASE Statement

Continuing Saga: Inside the Spider Package

Tricks of the Trade: Common Programming Errors

Composite Types: Records and Arrays

Data Structures: Record Types

Control Structures: Records as Subprogram Parameters
System Structures: A Package for Calendar Dates

Data Structures: Hierarchical Records

Data Structures: Array Types

Problem Solving: Selecting Array Elements for Processing
Problem Solving: Using Arrays

Problem Solving: Reading Part of an Array

Data Structures: Interesting Array Examples

Problem Solving: Searching and Sorting an Array
CASE STUDY Sorting an Array of Records

Tricks of the Trade: Common Programming Errors

Strings and Files

Data Structures: The String Data Type

CASE STUDY Generating Cryptograms

System Structures: Ada 95 Character and String Packages
System Structures: A Systematic View of Text Files
Problem Solving: Operating System Redirection of Standard Files
CASE STUDY A Histogram-Plotting Program

Problem Solving: Getting Input Values from a String
Problem Solving: Reading Command Parameters

CASE STUDY Lengths of Lines in a Text File

Tricks of the Trade: Common Programming Errors

Programming with Objects: Abstract Data Types

System Structures: Abstract Data Types (ADTs)

System Structures: The ADT Package Ada.Calendar

CASE STUDY World Times

System Structures: Writing an ADT for Calendar Dates
System Structures: Writing an ADT for Money Quantities
System Structures: Using an ADT to Create a Mini-Data Base
CASE STUDY Employee Inquiry System

Continuing Saga: Writing an ADT for Multiple Spiders
Tricks of the Trade: Common Programming Errors

Contents Xiii

301
301
315
321
326
329
337
340
347
351
359

367
368
373
376
381
385
39]
397
404
405
410
415
21

429
429
436

443
454
455
459
460
462
464

469
470
474
478
482
492
503
508
514
515

Xiv Contents

12
12.1
122

123
124
12.5
12.6

13

13.1
13.2
13.3
134
13.5
13.6

14

14.1
14.2
143
144

14.5

14.6
14.7

15

15.1
15.2
15.3
154
155
156

15.7

16

16.1
16.2
16.3
164
16.5
16.6

Introduction to Unconstrained Array Types and Generics
Data Structures: Unconstrained Array Types

Problem Solving: A General Sorting Program

CASE STUDY Software Support “HotLine”

System Structures: Generic Units

Problem Solving: A Generic Sorting Program

System Structures: A Generic Sets Package

Tricks of the Trade: Common Programming Errors

Multidimensional Arrays and Variant Records
Data Structures: Multidimensional Arrays

Problem Solving: Using Multidimensional Arrays
Data Structures: Variant Records

System Structures: Geometric Figures

Continuing Saga: Keeping Track of Multiple Spiders
Tricks of the Trade: Common Programming Errors

Recursion

Problem Solving: The Nature of Recursion

Tricks of the Trade: Tracing a Recursive Function
Problem Solving: Recursive Mathematical Functions
Problem Solving: More Recursive Programs

CASE STUDY Printing an Array Backward

CASE STUDY Displaying an Array in Normal Order

CASE STUDY Discovering Whether a String is a Palindrome

Problem Solving: More Case Studies in Recursion
CASE STUDY Towers of Hanoi '
CASE STUDY Picture Processing with Recursion
Problem Solving: Recursive Searching

CASE STUDY Recursive Binary Search

Tricks of the Trade: Debugging Recursive Subprograms

Access Types and Dynamic Data Structures

Data Structures: Access Types and the NEW Operator

Data Structures: Linked Lists and Their Operations

Data Structures: Linked Lists with Head and Tail Pointers
Problem Solving: Ordered Insertions in Linked Lists

System Structures: A Generic Version of the Linked List Package
Problem Solving: Stacks and Queues

CASE STUDY Checking for Balanced Parentheses

Tricks of the Trade: Debugging Programs with Linked Lists

Programming with Objects: Tagged Record Types
System Structures: Object-Oriented Programming
System Structures: Tagged Types

Data Structures: General Access Types

System Structures: Class-Wide Types

System Structures: Dynamic Dispatching
Heterogeneous Linked Lists

519
520
524
524
529
537
544
552

557
557

567
574
584
585

591
591
595
598

603
606
607
611
611
617

Contents XV

17 Introduction to Concurrent Programming 701
17.1 Problem Solving: What Is Concurrent Programming? 701
172 System Structures: Task Types and Task Objects 704
17.3 System Structures: Protected Types and Protected Objects 711
17.4 Continuing Saga: Multiple Concurrent Spiders 716
Appendix A: High-Resolution Color Graphics 729
A.l AdaGraph: A Basic High-Resolution Graphics Package 729
A2 Using AdaGraph Operations 733
A3 A High-Resolution Color Spider Package 735
A4 Using the High-Resolution Spider Package 738
Appendix B: The Ada Character Set, Delimiters, and Reserved Words 743
B.l1 The Ada Character Set 743
B2 Delimiters 744
B.3 Reserved Words 745
Appendix C: Ada’s Predefined Environment: Package Standard 746
Appendix D: Specification of the Package Ada.Text_IO 750
Appendix E: Specifications of the Ada Math Libraries 758
Appendix F: Summary of Ada Execution-Time Exceptions 758
F.1 Exceptions Defined in the Language 758
F.2 Exception Defined in Ada.Calendar 759
F.3 Exception Defined in Ada.Numerics 759
F4 Exceptions Defined in Ada.Text_IO 759
Index of Syntax Displays 761
Index of Style Displays 763
Index of Example Programs 764

General Index 769

Preface ix
X: Float := 3.0 + Sqrt(Y);

is permitted but should not be used, because an exception that is raised if Y is neg-
ative will propagate unexpectedly. Instead of artificially limiting initializations to
static expressions, we have simply chosen not to use them at all.

* Private and limited private types: Private types are covered in depth in Chapter 11,
in the discussion of abstract data types. Specifically, a number of examples are giv-
en of situations in which giving a client access to the details of a type would allow
the client inadvertently to violate the integrity of the abstraction. The exported
types in this chapter all provide for default initialization so that assignment and
equality test are always meaningful operations.

In later chapters attention is paid to those situations—especially in the use of dy-
namic data structures—in which assignment and equality test can indeed be used
misleadingly, for example, to copy just the headers of lists. The potential for abuse
of these operations provides useful justification for limited private types, for ob-
jects of which assignment and equality test are prohibited.

* Subunits and Ada stubs: The list-handling packages of Chapter 15 serve as a way
to introduce this concept, which is confusing if brought in too early. Besides being
an interesting Ada technique for doing top-down testing, the use of subunits serves
as a convenient way to present the operations of the packages as individual pro-
gram displays and files.

e Tasks and protected types: Ada is unique among major programming languages in
providing support for parallelism and concurrency within the language. Parallel-
ism is now seen as a “recurring paradigm” in computing, and we think it important
to introduce students to it as early as possible in their education. The material in
Chapter 17 serves this purpose; we have made it independent of Chapters 12-16 so
that a teacher desiring to introduce concurrency in a CS1-level course can do so
after Chapter 11.

Instructor’'s Manual and Other Online Resources

Information regarding this text is available from the Addison-Wesley World Wide Web
site at http://www.awl.com/cseng/titles/0-201-36123-X.

The Instructor’s Manual is available electronically. The public part, containing
chapter and section summaries and objectives, new terms, notes, and suggestions, as
well as program libraries and errata, is at http://www.seas.gwu.edu/faculty/mfeld-
man/cslbook. The private part, containing solutions to exercises and projects, is avail-
able to instructors only from Addison-Wesley. Contact your sales representative for
access information.

It is intended that teachers make the full set of about 200 programs and packages
available to their students so that they need not waste time keying them in. Of course
the programs are available on the included CD-ROM; we hope that teachers will make
them available centrally for courses using central systems for projects. The programs
are also available from the above-named WWW sites.

X Ada 95 Problem Solving and Program Design

Afterword

This book’s earlier editions incorporated a great deal of new material that is intended to
introduce the beginning programmer to the power of Ada while building on the suc-
cessful pedagogy of the earlier Koffman works. The earlier editions’ success among
teachers of Ada—in a number of cases, even serving as critical “ammunition” in mov-
ing introductory courses to Ada— confirms the soundness of the approach.

The present edition builds on the success of the first two, serving as an important
aid to teachers ready to introduce students to Ada 95.

Acknowledgments

All the programs have been tested using the GNU Ada 95 Translator (GNAT), running
on an IBM-compatible computer under Windows, an Apple Macintosh under MachTen,
and a Sun-SPARC computer under Solaris. The authors acknowledge the School of
Engineering and Applied Science Computing Facility at The George Washington Uni-
versity for having provided the Solaris computing resources.

The authors are indebted to the following educators, who served as formal review-
ers and provided unusually cogent and helpful assistance: Todd W. Breedlove, Jessica
Lambert, Linda Null, David Nash, Ming Wang, and Phyllis Ann Williams. John Dalbey
provided the original Spider package. We are further indebted to Chet Lund for some
very creative project ideas; to Thibault Estier, Magnus Kempe, Laurent Pautet, and Paul
Pukite for their Ada 95 electronic reference documents; to James Cross for GRASP; to
Jerry van Dijk for the original AdaGraph package for Windows and other help; and to
Martin Carlisle and James Hopper for their help in developing AdaGraph ports to other
platforms. We offer thanks to Ada Core Technologies for providing the GNAT compil-
ers, and to Tenon Intersystems for allowing us to distribute MachTen CodeBuilder.

The Addison-Wesley editorial and production staff, including Susan Hartman,
Katherine Harutunian, Patricia Unubun, Diane Freed, Bob Woodbury, and Lynne Doran
Cote, deserve hearty thanks for their expert and always good-natured assistance.

Finally, Ruth Feldman has earned a vote of gratitude for tender loving care and help
on the index. Ben and Keith Feldman have, as before, always been there to cheer their
father on through the development of (in their words) “yet another book.”

Bethesda, Maryland Michael B. Feldman
Philadelphia, Pennsylvania Elliot B. Koffman

CHAPTER 1

SRR AR S LY ORI RS Sk

Introduction to Computers and
Programming

1.1 Electronic Computers Then and Now

12 Hardware Components of a Computer

1.3 Computer Software

1.4 Problem Solving and Programming

1.5 The Software Development Method

1.6 Programming Languages

1.7 About Ada

1.8 Processing a High-Level Language Program

1.9 A Step-by-Step Compilation Exercise

1.10 Tricks of the Trade: Common Programming Errors

Chapter Review

In this chapter we introduce computers and computer programming. We begin with a
brief history of computers and a description of the major components of a computer,
including memory, central processor, input devices, and output devices. We also dis-
cuss how information is represented in a computer and how it is manipulated.

You are about to begin the study of programming using one of the richest and most
interesting programming languages available today: the Ada language. This chapter
begins a discussion of the main topics of this book: problem solving, programming, and
Ada. We first discuss problem solving with a computer. Then languages for computer
programming are described. We describe the process for creating a program and the
roles performed by special programs that are part of a computer system. These pro-
grams include the operating system, compiler, editor, and loader. Finally, we take you
through a first exercise in compiling a program and examining error listings.

2 Introduction to Computers and Programming

1.1 Electronic Computers Then and Now

It is difficult to live in today’s world without having some contact with computers.
Computers are used to provide insiructional material in schools, to print transcripts, to
send out bills, to reserve airline and concert tickets, to play games, and to help authors
write books. Several kinds of computers cooperate in dispensing cash from an auto-
matic teller machine; “embedded” or “hidden” computers help to control the ignitions,
fuel systems, and transmissions of modern automobiles; at the supermarket, a computer
device reads the bar codes on the packages you buy, to total your purchase and help
manage the store’s inventory. Even a microwave oven has a special-purpose computer
built into it.

However, it wasn’t always this way. Computers as we know them did not exist at all
before the late 1930s, and as recently as the early 1970s, they were fairly mysterious
devices that only a small percentage of our population knew much about. Computer
know-how turned around when advances in solid-state electronics led to cuts in the size
and cost of electronic computers. Today, a personal computer (see Fig. 1.1) costs under
$1000 and fits easily on a desk or in a briefcase. A computer that fits in the palm of
one’s hand costs only a few hundred dollars. These computers have computational
power comparable to those of 15 years ago, which cost more than $100,000 and filled a
9-foot by 12-foot room. This price reduction is even more remarkable when we con-
sider the effects of inflation over the last decade. It is said that if the development of
automobiles had progressed at the same rate as that of computers, a luxurious car
would cost only a few dollars and would be as fast as the Space Shuttle.

If we take the literal definition of computer as being a device for counting or com-
puting, the abacus might be considered the first computer. However, the first electronic
digital computers were designed in the late 1930s and 1940s.

An early large-scale, general-purpose electronic digital computer, called the
ENIAC, was built in 1946 at the University of Pennsylvania with funding supplied by
the U.S. Army. The ENIAC was used for computing ballistics tables, for weather pre-
diction, and for atomic energy calculations. The ENIAC weighed 30 tons, occupied a
space 30 by 50 feet, and could perform 5 multiplications per second (see Fig. 1.2).

A computer is basically a device for performing very simple computations and
decisions, such as determining the alphabetical ordering of two words or summing two
numbers, at incredible speeds (millions of these simple operations per second) and with
great accuracy. To accomplish anything useful, a computer must be programmed, or
given a sequence of explicit instructions (the program) indicating which simple opera-
tions to catry out, in which order, and how many times.

To program the ENIAC, hundreds of wires and thousands of switches had to be
connected in a certain way. In 1946, Dr. John von Neumann of Princeton University
proposed the concept of a stored program computer in which the instructions of a pro-
gram would be stored in computer memory rather than be set by wires and switches.
Because the contents of computer memory could be changed easily, it was much less
difficult to reprogram this computer to perform different tasks than it was to reprogram
the ENIAC. Von Neumann'’s design is the basis of the digital computer as we know it
today.

1.1 Electronic Computers Then and Now 3

e iyt oo e

Figure 1.1 (a) Macintosh Powerbook G3 (photo courtesy of Apple Computer, Inc.;
Photographer: John Creenleigh)
(b) Palm 1™ Connected Organizer (Palm Computing, Inc, a 3Com Company)
(c) 1BM PC 300GL Desktop Computer (photo courtesy of IBM)

4 Introduction to Computers and Programming

Figure 1.2 The ENIAC Computer (photo courtesy of Unisys Corporation)

A Brief History of Computers

Table 1.1 lists some of the important milestones along the path from the abacus to mod-
emn-day electronic computers. We often use the term first generation to refer to elec-
tronic computers that used vacuum tubes (1939-1958). The second generation began in
1958 with the changeover to transistors. The third generation began in 1964 with the
introduction of integrated circuits. The fourth generation began in 1975 with the advent
of large-scale integration. Since then, change has come so rapidly that we don’t even
count generations anymore. However, the late 1970s saw the beginning of the continu-
ing “personal computer revolution” with computers that individuals and families could
afford being sold at retail in computer stores.

1.1 Electronic Computers Then and Now 5

Table 1.1 Milestones in the Development of Computers and Programming

Languages
Date Event
2000 B.C The abacus is first used for computations.
1642 AD Blaise Pascal, in France, creates a mechanical adding machine for tax
computations. It is unreliable.
1670 In Germany, Gottfried von Leibniz creates a more reliable adding

machine, which adds, subtracts, multiplies, divides, and calculates
square roots.

1842 Charles Babbage, in England, designs an Analytical Engine to per-
form general calculations automatically. Ada Byron, daughter of the
poet Lord Byron and known later as Lady Lovelace, assists him in
programming this machine.

1890 Herman Hollerith designs a system to record and tabulate data for the
decennial U.S. census. The information is stored as holes on cards,
which are interpreted by machines with electrical sensors. Hollerith
starts a company that will eventually become IBM.

1939 Alan Turing and a team at Bletchley, England, begin developing a
series of code-breaking computers culminating in the all-vacuum-tube
Colossus.

1939 John Atanasoff at Iowa State University, with graduate student Clif-

ford Berry, designs and builds an early digital computer. His project is
funded by a grant for $650. Atanasoff is now generally credited with
building the first electronic digital computer. However, he never filed
for a patent for his invention.

1941 Konrad Zuse, in Berlin, develops Z3, possibly the first operational
program-controlled calculating machine, based on electromechanical
relays.

1943 Howard Aiken, at Harvard, develops the Mark I, essentially an elec-
tromechanical realization of Babbage's Analytical Engine.

1946 I. Presper Eckert and John Mauchly design, build, and patent the Elec-

tronic Numerical Integrator and Calculator (ENIAC) at the University
of Pennsylvania. It uses 18,000 vacuum tubes and costs $500,000 to
build.

1946 John von Neumann, at Princeton, proposes that a program be stored in
a computer in the same form that data are stored. His proposal, called
“von Neumann architecture,” is still the basis of most medern comput-
ers.

1951 Eckert and Mauchly build the first general-purpose commercial com-
puter, the UNIVAC.
1957 John Backus and his team at IBM complete the first FORTRAN com-

piler. This is a milestone in the development of programming lan-
guages.

6 Introduction to Computers and Programming

Date

Event

1958

1958

1959

1964

1965

1970

1971

1972
1973
1973

1975
1975
1975
1976

1977

1977

1978

1979

1979-82
1981

The first computer to use the transistor as a switching device, the IBM
7090, is introduced.

Seymour Cray builds the first fully transistorized computer, the CDC
1604, for Control Data Corporation.

Aided by the computer pioneer Grace Hopper of UNIVAC, the
CODASYL Committee publishes the specification for COBOL. This
is the first effort to standardize a programming language; it is followed
by the development of the first procedures to validate a compiler.

The first computer using integrated circuits, the IBM 360, is
announced.

The CTSS (Compatible Time-Sharing System) is introduced at MIT.
It allows several users simultaneously to use, or share, a single com-
puter.

A first version of UNIX is running on the DEC PDP-7.

The Pascal programming language is introduced by Niklaus Wirth of
the Technical University of Zurich.

Dennis Ritchie of Bell Laboratories develops the language C.

Part of the UNIX operating system is developed in C.

A court declares the ENIAC patent to be invalid, because ENIAC was
derived from Atanasoff’s invention. After 34 years, Atanasoff is rec-
ognized as having invented the first electronic digital computer.

The first microcomputer, the Altair, is introduced.

The first supercomputer, the Cray-1, is announced.

The U.S. Department of Defense (DoD) High-Order Language Work-

ing Group (HOLWGQ) is created to find a solution to the DoD’s “soft-
ware crisis.” The group’s efforts culminate in the adoption of Ada.

Digital Equipment Corporation introduces its popular minicomputer,
the VAX 11/780.

Steve Wozniak and Steve Jobs begin producing Apple computers in a
garage.

Radio Shack announces the TRS-80, one of the first fully packaged
microcomputers to be sold in retail stores, in time for the Christmas
season.

Dan Bricklin and Bob Frankston develop the first electronic spread-
sheet, called VisiCalc, for the Apple computer.

After a competition lasting several years, the preliminary specification
of Ada is published by the U.S. government. Ada’s design team at
ClI-Honeywell-Bull is headed by Jean Ichbiah and includes about a
dozen American and European language experts.

Bjarne Stroustrup of Bell Laboratories introduces “C with Classes.”

IBM introduces the IBM Personal Computer. The business world now
acknowledges that microcomputers are “real.”

1.1 Electronic Computers Then and Now 7

Date Event
1982 Sun Microsystems introduces its first workstation, the Sun 100.
1983 The Ada language standard is adopted by the government and by the

American National Standards Institute (ANSI).
1983-85 C with Classes is redesigned and reimplemented as C++,

1984 Apple introduces the Macintosh, the first widely available computer
with a “graphical user interface” using icons, windows, and a mouse
device.

1984 The Internet contains approximately 1,000 host computers.

1987 The Internet contains approximately 10,000 host computers.

1987 Ada is adopted as an international standard by the International Stan-
dards Organization (ISO).

1988 The Ada 9X project is begun, to consider extensions to the Ada lan-

guage. Christine Anderson oversees the project for the U.S. govern-
ment; the design team is headed by Tucker Taft of Intermetrics.

1989 The Internet contains approximately 100,000 host computers.

1990 Over 500 different Ada compilers have been validated. Compil-
ers—all handling the same Ada language —are readily available for all
categories of computers from laptops to supercomputers.

1992 The Internet contains approximately 1,000,000 host computers.

1992 The United States, Canada, and dozens of other countries around the
world are redesigning their air traffic control systems using
state-of-the-art computers running software written mostly in Ada.

1994 GNAT, the GNU Ada 95 Compilation System, is released as the first
compiler to implement the evolving Ada 9X design. GNAT is distrib-
uted free to many thousands of users over the Internet and on
CD-ROMs.

1995 The Internet, originally a university and defense research network
started in the 1970s by the U.S. government, has hundreds of thou-
sands of computers and millions of government, academic, commer-
cial, and individual users and becomes a subject of widespread
discussion in the public press. The World Wide Web, nonexistent in
1990, experiences explosive growth and popularity

1995 The Boeing 777, the most computer-dependent airliner to date, makes
its first commercial flights. Its several million lines of software are
written mostly in Ada.

1995 Ada 9X becomes Ada 95 when ISO and ANSI adopt the extended lan-
guage as a U.S. and international standard. The first validated Ada 95
compilers appear.

1996 The Internet contains approximately 10,000,000 host computers.

8 Introduction to Computers and Programming

Date Event

1996 The Java Virtual Machine (JVM)—an “interpreter” program that runs
applets, or small application programs distributed via the Inter-
net—appears in World Wide Web browser programs for desktop per-
sonal computers. One of the programming languages used to produce

applets is also called Java.

1996 Intermetrics AppletMagic, the first Ada 95 compiler that produces
JVM applets, enters distribution.

1997 One of the authors of this book (Feldman) flies between Washington
and Paris on a Boeing 777. It is a very nice airplane.

1997 GNAT is fully validated for the Ada 95 core language and all annexes.

1998 The “Year 2000 Problem” —an unknown but very large number of

older computers and programs must be heavily modified so that they
can distinguish between the year 1900 and the year 2000—is dis-
cussed nearly every day in newspapers and radio and TV news pro-
grams. It is still unknown just what the cost of solution—estimated at
many billions of dollars—will be or just how many people will be

affected when 2000 arrives.
1998 GNAT for the Java Virtual Machine enters distribution.
1998 The cost of a typical personal computer is just over $1,000.
1998 The Internet contains an estimated 30,000,000 host computers.

Categories of Computers

Modern-day computers are classified according to their size and performance. The
three major categories of computers are mainframes, minicomputer, and microcomput-
ers. These categories are useful but rough: As technology continues to improve, the cat-
egories increasingly blur into one another.

Businesses, research laboratories, and university computing centers often use larger
computers called minicomputers and mainframes. These are most noticeable in that
they can be used simultaneously by many individuals, all working on separate prob-
lems. Supercomputers, the most powerful mainframes, can perform in seconds compu-
tations that might take hours or days on a smaller computer or years with a hand
calculator.

You are probably most familiar with desktop computers such as the Apple Macin-
tosh or the “IBM-compatible” models from many manufacturers. The latter are called
“IBM-compatible” because they were originally imitators, or “clones” of the IBM Per-
sonal Computer. Currently, they are often called “Wintel” computers—they run
Microsoft Windows software and are based on a hardware design by Intel.

When these computers first appeared in the early 1980s, they were called micro-
computers or personal computers because they were usually used by one person at a
time and were small enough to fit on or next to a desk. They were also “micro” because
they did not have much computing power compared to the physically larger ones. The
most powerful microcomputers, called workstations, are commonly used by engineers
to produce engineering drawings and to assist in the design and development of new
products. The smallest general-purpose microcomputers are often called laptops or

1.2 Hardware Components of a Computer 9

notebooks because they can fit into a briefcase and are often used on one’s lap in an air-
plane. Finally, at this writing, paimtop computers—hand-held, pocket-sized devices
originally designed for maintaining one’s telephone list and appointment calendar but
increasingly running general-purpose software —are selling for just a few hundred dol-
lars and are becoming extremely popular.

Often, the term embedded computer is used to refer to a computer that is built into
a larger system and not operated directly by a human user. Embedded computers are
found in automobiles, automatic teller machines, cash registers, and so on.

This book was written by using an Apple Macintosh microcomputer; the programs
were tested on a Macintosh, an IBM-compatible personal computer running Microsoft
Windows 95. and a Sun workstation.

1.2 Hardware Components of a Computer

Despite significant variations in cost, size, and capabilities, digital computers have been
remarkably similar throughout their 50-year history. They all consist of hardware, the
physical equipment, and sofiware, the programs that are loaded into the hardware to
perform computational tasks.

Most computers consist of the following hardware components:

* main memory

* secondary memory, which includes storage devices such as hard disks, floppy
disks, CD-ROMs, and writable CDs

* the central processing unit
* input devices, such as scanners, keyboards, and mice

* output devices, such as monitors and printers

Figure 1.3 shows how these components interact, with arrows showing the direc-
tion of information flow.

All information that is to be processed by a computer must first be entered into the
computer memory via an input device. The information in memory is manipulated by
the central processing unit (CPU), and the results of this manipulation are stored in
memory. Information in memory can be displayed through an output device. A second-
ary storage device is often used for storing large quantities of information in a semiper-
manent form.

Main Memory

Main memory—often called random-access memory, or RAM—is used for storing
information and programs. All types of information —numbers, names, lists, and even
pictures —can be represented and stored in main memory.

10 Introduction to Computers and Programming

Secondary
memory

© 1

Iﬂ I)
Compact disk Diskette °
—
)
Monitor
— J
Mouse
tnput ¢ RAM (main Output
devices [>1 memory) *] devices
4
Y

Central
[mamm) processing
LLLLL L] I | °,
LT T unit
[ssmummi T ey
o) Juw)

Keyboard ooo I
\ /

Printer

Figure 1.3 Hardware Components of a Computer

Imagine the memory of a computer as an ordered sequence of storage locations
called memory cells. To be able to store and retrieve (access) information, there must be
some way to identify the individual memory cells. To accomplish this, each memory
cell has associated with it a unique address, which indicates its relative position in
memory. Figure 1.4 shows a computer memory consisting of 1000 memory cells with
‘addresses 0 through 999. Today’s personal computers often have several million indi-
vidual cells. Main memory —RAM —is conventionally measured in megabytes, where
one megabyte is approximately one million cells.

The information stored in a memory cell is called the contents of a memory cell.
Every memory cell always contains some information, although we may have no idea
what that information is. Whenever new information is placed in a memory cell, any
information that is already there is destroyed and can no longer be retrieved. In Fig. 1.4
the contents of memory cell 3 is the number -26, and the contents of memory cell 4 is
the letter H.

1.2 Hardware Components of a Computer 11

Memory cell

Memory cell
addresses 4

<1 contents

/

Ny

998

H

999

Figure 1.4 A Computer Memory with 1000 Cells

Although not shown in the figure, a memory cell can also contain a program
instruction. The ability to store programs as well as data in the same physical memory
is called the stored program concept, first developed by John von Neumann. A pro-
gram'’s instructions must be loaded into main memory before that program can be exe-
cuted. The great benefit of a stored program computer is that its operation can be
changed by simply loading a different program into memory.

A memory cell as shown in Fig. 1.4 is actually a grouping of smaller units called
bytes. A byte is the amount of storage required to store a single character. The number
of bytes in a memory cell depends on the kind of information stored in that cell and var-
ies from computer to computer. A byte is an aggregate of an even smaller unit of stor-
age called a bit; a bit is a binary digit (0 or 1). In most computers, there are eight bits to
a byte.

Each value stored in memory is represented by a particular pattern of Os and 1s. To
store a value, the computer sets each bit of a selected memory cell to O or 1, thereby
destroying what was previously in that bit. Each value is represented by a particular
pattern of Os and 1s. To retrieve a value from a memory cell, the computer copies the
pattern of Os and 1s stored in that cell to another area where the bit pattern can be pro-
cessed. The copy operation does not destroy the bit pattern that is currently in the mem-
ory cell. The process described above is the same regardless of the kind of
information—character, number, or program instruction—stored in a memory cell.

12 Introduction to Computers and Programming

Secondary Memory

Most computers have a limited amount of main memory. Consequently, secondary
memory provides additional storage capability on most computer systems. For exam-
ple, a disk drive, which stores data on a disk, is a common secondary storage device for
today’s computers.

There are two kinds of disks: hard disks and floppy disks (sometimes called dis-
kettes); a computer may have one or more drives of each kind. A hard disk cannot nor-
mally be removed from its drive, so the storage area on a hard disk is often shared by all
users of a computer. On the other hand, each computer user may have his or her own
floppy disks that can be inserted in a disk drive as needed. Hard disks can store much
more data than floppy disks and operate much more quickly, but they are also much
more expensive. Floppy disks are called “floppy” because the actual recording surface
is a flexible piece of magnetically coated plastic.

The currently popular 3.5-inch-diameter floppy disks are encased in a hard plastic
outer shell to protect them from damage. The older 5.25-inch-diameter disks, which are
rapidly disappearing from the scene, were encased in a (usually) black sealed envelope
of heavy paper or flexible plastic. One inexperienced user once called the university’s
computer support organization to report that files were repeatedly disappearing from
the floppy disk. On arriving at the user’s office, the support technician immediately
noticed that the user was keeping the disk from getting lost by sticking it to a metal file
cabinet with magnets. Of course, the magnets erased the data on the disk. This user was
not unintelligent, merely inexperienced, and had never been told not to use magnets
near a floppy disk!

Many types of information can be stored on disk, for example, a term paper, a com-
pu.er program, payroll data from a business, or data from earthquake seismic readings
taken by a research center. Each of these collections of information is called a file. You
must give a file a unique name when you first store it on a disk so that you can retrieve
the file at a later date.

Comparison of Main and Secondary Memory

Main memory is much faster and more expensive than secondary memory. For exam-
ple, a typical 3.5-inch floppy disk holds approximately one megabyte (1 million bytes)
of data and costs less than a dollar. Currently, main memory comes in modules of up to
64 megabytes and costs several dollars per megabyte. At this writing. a personal com-
puter hard disk can store several gigabytes (a gigabyte is a billion bytes) and costs a
dollar or less per megabyte.

An increasingly popular form of memory is called CD-ROM (compact disk
read-only memory). CD-ROM:s are plastic disks similar to audio CDs. CD-ROMs are
very inexpensive: a CD-ROM containing hundreds of megabytes of programs or other
information may cost as little as a few dollars. The disadvantage of CD-ROMs is that
your computer cannot store new information on them. This is why they are called
“read-only.”

New forms of secondary memory appear with increasing frequency. A Zip hard-
ware unit costs about $100 and uses floppy disks with 100-megabyte capacity. Also, for
a few hundred dollars you can purchase a writable compact disk unit, capable of stor-
ing, as well as reading, information on a CD.

1.2 Hardware Components of a Computer 13

The CPU normally transfers data between secondary memory and main memory; it
manipulates the data in main memory only. Data in main memory are volatile: They
disappear when you reset or switch off the computer. Data in secondary memory are
nonvolatile: They do not disappear when the computer is switched off and are magneti-
cally “erased” only by a program operating under an explicit command from the user.
You can remove a floppy disk from the computer and set it aside for later use; the data
will remain on the disk until explicitly erased.

Central Processing Unit

The CPU has two roles: coordinating all computer operations, and performing arith-
metic and logical operations on data. The CPU follows the instructions contained in a
program which has been loaded into memory. These instructions specify which opera-
tions should be carried out and in what order; the control unit then transmits coordinat-
ing control signals to the computer components. For example, if the instruction requires
reading a data item, the CPU sends the necessary control signals to the input device.

To process a program stored in memory, the CPU retrieves each instruction in
sequence (fetches the instruction), interprets (decodes) the instruction to determine
what should be done, and then retrieves any data necessary to carry out that instruction.
Next, the CPU performs the actual manipulation of the data it retrieves from memory
(executes the instruction). Finally, the CPU can store the results of these manipulations
back in memory for later use.

The CPU can perform such arithmetic operations as addition, subtraction, multipli-
cation, and division. It can also compare the contents of two memory cells, for exam-
ple, to determine which is the larger value or to determine whether the two values are
equal. On the basis of the result of the comparison, the CPU can make a simple deci-
sion about which instruction to execute next. The ability to make simple decisions is
the basis of a computer’s real power.

A typical modern CPU can perform each operation in much less than one millionth
of a second.

Input and Output Devices

We use input/output (I/0) devices to communicate with the computer. Specifically, they
allow us to enter data for a computation into memory and to observe the results of the
computation.

You will be using a keyboard (see Fig. 1.5) as an input device and a monitor or dis-
play screen as an output device. When you press a key on the keyboard, a binary-coded
version of that character is sent to main memory and is also displayed (echoed) on the
monitor at the position of the cursor, a moving place marker. A computer keyboard
resembles a typewriter keyboard except that it has some extra keys for performing spe-
cial functions. On the keyboard shown m Fig. 1.5, the row of keys at the top (labeled F1
through F12) are function keys. The function performed by each of these keys depends
on the program that is executing.

Another common input device is a mouse. This is a device you hold in your hand,
moving it around a pad on your desk. Several different mechanisms are used for mice.
In one common one, as you move the mouse, a rubber ball attached to its bottom
rotates, causing small rollers inside the mouse to send a signal to the computer. The

14 Introduction to Computers and Programming

Functicn Backspace /Enter (Return) , Num lock

Escape keys key key key
key \ / \ \ \

w | e l=aaHES
kGY\ H ‘ ..Ts ;}T‘{uﬂ !"“_N';:r'_‘:{-—"{ &’. qum » il ree ":r{_-‘!:"-}‘ !
n ""T"‘ AT 'L' T o T3 emir Fert E7 Ve]'ﬁ’zﬁﬁ
Caps lock ¢~ 6 IH Ef . T N T Wﬁgﬂ
key : : i - : R . DR
shitt 7| _
key
\ Control Alternate Delete Cursor control Numeric
key key key keys keypad

Figure 1.5 A Computer Keyboard

computer then moves the mouse cursor (normally a small box or arrow) around the
screen to follow your hand motion. You select an operation by moving the mouse cur-
sor to a particular word or picture, then pressing (clicking) a button on the mouse.

Humorous stories abound regarding new users’ inexperience with using a mouse.
In one case, a user picked up the mouse, pointed it at the computer screen, and clicked
the button. This user, reasoning from experience with TV remote-control devices, was
quite surprised when the computer did not respond. Another story tells of a user who
placed the mouse on the floor, then stepped on the button without moving the mouse.
This user was evidently thinking of the mouse as being similar to the foot pedal that
comes with a sewing machine. These stories, funny as they are, are worth remembering
as further examples of the observation that “inexperience does not equate to stupidity.”

A trackball is a variant of a mouse that is commonly installed on laptop computers.
The rotating ball is fixed in place on the keyboard; you roll it with your fingertip. An
even newer mouse variant is the trackpad, a touch-sensitive pad built into the lower
edge of the keyboard; you move the cursor by simply moving your fingertip across the
pad.

A monitor is similar to a television screen. It provides a temporary display of the
information that appears on the screen. If you want paper, or hard-copy, output, you
must send your computational results to an output device called a printer.

Computer Networks

Often, several individual computers are interconnected as a computer network. The net-
work usually comprises a number of personal computers or workstations, one or more
central file servers, each with a very large hard disk, and perhaps a high-quality central
print server. Many computer laboratories arrange their computers in a network.

You have probably heard of the Internet. This is a huge network of networks, inter-
connecting most university computers all over the world and many business, govern-
ment, and individually owned computers as well. The Internet provides many very

1.3 Computer Software 15

large file servers, as well as electronic bulletin boards and mail services. The Internet is
a fascinating, ever-changing collection of resources, and if you have access to it, you
will enjoy sending messages to friends in far-away places, looking up source material
in libraries, and bringing interesting programs and other files into the computer you are
using.

A risk in using the Internet is that you will become “hooked” on it, spending so
much time “net surfing” that you neglect other work. Be careful! Also keep in mind that
the Internet is the only medium in which anyone can be a publisher. Since there is no
reliable way to sort out good information from useless information or outright lies, you
must learn how to evaluate what you read on the Internet. Don’t be misled into thinking
that because it’s on the Web, it must be true!

Discussion

By the time you read this book, new computers, new kinds of secondary memory, and
new input/output devices will have emerged on the market, and prices will have
dropped enough to make our price indications obsolete. It might seem that the changes
are too frequent for mere humans to follow, but in fact, the basic hardware structure of
a computer remains: A computer consists of main and secondary memory, a CPU, and
input/output devices. If you keep this in mind, you will able to keep the amazing tech-
nological changes in perspective.

EXERCISES FOR SECTION 1.2

Self-Check

1. What are the contents of memory cells 0 and 999 in Fig. 1.4? What memory
cells contain the letter X and the fraction 0.005?

2. Explain the purpose of the memory, CPU, and disk drive and disk. What input
and output devices will be used with your computer?

1.3 Computer Software

Like computer hardware, software is changing rapidly, and categorizations are increas-
ingly blurry. On the other hand, it is usually workable to divide software into operating
systems, application programs, and software development tools.

16 Introduction to Computers and Programming

Operating Systems

Some of you will be using a time-shared computer. In this environment many users are
connected by terminals to one large, central computer, and all users share the central
facilities.

Many of you will be using a personal computer. A personal computer is a smaller,
desktop computer that is used by one individual at a time. Personal computers are often
connected together in a computer network. Regardless of what computer you are using,
it will be necessary to interact with a supervisory program that is within the computer
called the operating system (OS). In time-shared computers, it is the responsibility of
the operating system to allocate the central resources among many users. Some tasks of
the operating system are:

» validating the user’s identification and password;

making application programs and software development tools available to users;

allocating memory and processor time;

providing input and output facilities;

retrieving needed files; and

*» saving new files.

The operating system on a personal computer performs these tasks as well; the only
difference is that often there is no user validation. In a computer network, managing the
communication among the various computers and devices is an operating system
responsibility.

Some of today’s commonly used operating systems are:

« Macintosh OS, developed by Apple Computer and currently available only on Ap-
ple’s own Macintosh computers;

» Windows 95, Windows 98, and Windows NT, developed by Microsoft and in-
stalled on computers from many companies using CPUs based on an Intel design;

¢ MS-DOS, an older Microsoft design whose use is declining in favor of the Win-
dows variants; and

« UNIX, developed in the 1970s by Bell Laboratories and the University of Califor-
nia at Berkeley and currently available in many variants, including Sun's Solaris,
Tenon’s MachTen, Hewlett-Packard’s HP/UX, IBM’s AIX, Silicon Graphics’
IRIX, and several freely distributed ones such as FreeBSD, BSD386, and Linux.

Application Programs

An application program is simply one we use directly to do some work on a computer.
Word processors, spreadsheet programs, electronic-mail handlers, World Wide Web
browsers, music composition programs, and computer games are all examples of appli-
cations. So are programs for power plant control, automatic teller machines, grocery

1.3 Computer Software 17

checkout, and automobile fuel management and antilock braking. These programs have
an amazing variety of purposes, but they all use services provided by an operating sys-
tem, and they were all developed by using a special category of applications called soft-
ware development tools.

Software Development Tools

A software development tool is an application program whose purpose is to aid a soft-
ware developer in producing other programs. You will probably use the following soft-
ware development tools in connection with this book:

¢ the editor or interactive development environment to enter or modify a program;

* the compiler to translate your program into hardware instructions;

the binder/linker to link your program together with other modules to form an ex-
ecutable whole; and

the debugger to help you find errors that arise from the execution of your program.

Discussion

When mainframes were the only computers in existence, the operating system and soft-
ware tools were generally supplied by the builder of the hardware. This was called bun-
dling. At that time, therefore, most people viewed software tools as a part of the OS.
More recently, however, the software industry has grown independently of the hard- .
ware industry, and there is active competition in the production of programs of all
kinds. Since the software on a given computer now generally comes from a variety of
sources —preinstalled when you buy the computer, purchased separately, installed from
a CD collection, or downloaded from the Internet—it is obvious that software develop-
ment tools are just a special kind of application.

Having completed our general introduction to computer history, hardware, and
software, we can move on to the specific focus of this book, namely, software develop-
ment and the problem-solving process that is so essential to effective software.

EXERCISE FOR SECTION 1.3

Self-Check

1. Explain the different categories of software and give examples of each.

18 Introduction 1o Computers and Programming

14 Problem Solving and Programming

Computer problem-solving ability is a combination of art and science, the transforma-
tion of a description—in English or another human language—of a problem into a form
that permits a mechanical solution and the implementation of that solution on a com-
puter. A relatively straightforward example of this process is transforming a word prob-
lem into a set of algebraic equations that can then be solved for one or more unknowns.

Most problems are not so easily solved. The problem-solving process is more diffi-
cult because problem descriptions are often incomplete, imprecise, or ambiguous. The
successful problem solver needs to learn the following skills:

1. Ask the right questions to clarify the problem and obtain any information that
is missing from the problem statement (this process is called problem specifi-
cation).

2. Analyze the problem, attempting to extract its essential features and identify
what is provided (the problem inputs) and what is required (the problem out-
puts).

3. Determine whether there are any constraints or simplifying assumptions that
can be applied to facilitate the problem solution. We often cannot solve the
most general case of a problem but must make some realistic assumptions that
limit or constrain the problem so that it can be solved.

4. Apply knowledge of the problem environment and the formulas or equations
that characterize it, to develop a series of steps whose successful completion
will lead to the problem solution, eventually implementing or coding these
steps in a form that can be submitted to a computer.

5. Once the solution is obtained, verify its accuracy by developing and carrying
out a plan for testing it.

1.5 The Software Development Method

Students in many subject areas receive instruction in specific problem-solving methods.
For example, business students are encouraged to follow a systems approach to prob-
lem solving; engineering and science students are encouraged to follow the engineering
and scientific method. Although these problem-solving methods are associated with
very different fields of study, their essential ingredients are quite similar. We will
describe one such method below.

This book is concemned with a particular kind of problem solving, namely, develop-
ing solutions that use computers to get results. We mentioned earlier that a computer
cannot think; therefore, to get it to do any useful work, we must provide a computer
with a program that is a list of instructions. Programming a computer is 2 lot more
involved than simply writing a list of instructions. Problem solving is an important
component of programming. Before we can write a program to solve a particular prob-
lem, we must consider carefully all aspects of the problem and then organize its solu-
tion.

1.5 The Software Development Method 19

A software developer is someone who is involved with the design and implementa-
tion of reliable software systems. This title emphasizes the fact that programmers, like
engineers, are concerned with developing practical, reliable solutions to problems.
However, the product that a software developer produces is a software system rather
than a physical system.

To highlight the analogy with engineering, some people refer to this method as soft-
ware engineering and to software developers as software engineers. To emphasize the
fact that one need not be an actual engineer or even an engineering student to develop
good software, we instead use the terms software development and software developer
in this book.

Steps in the Software Development Method

Software can be complicated, so software development requires the developer to use a
methodical working style. Details of different methods vary somewhat, but these meth-
ods have in common that they are systematic, step-by-step approaches. The software
development method that is used in this book is typical of the methods used in industry.
Here are the major steps:

1. Problem specification: State the problem and gain a clear understanding of
what is required for its solution. This sounds easy, but it can be the most criti-
cal part of problem solving. A good problem solver must be able to recognize
and define the problem precisely. If the problem is not totally defined, you
must study the problem carefully, eliminating the aspects that are unimportant
and zeroing in on the root problem.

2. Analysis: Identify problem inputs, desired outputs, and any additional require-
ments of or constraints on the solution. Identify what information is supplied
as problem data and what results should be computed and displayed. Also, de-
termine the required form and units in which the results should be displayed
(for example, as a table with specific column headings).

3. Design: Develop a list of steps (called an algorithm) to solve the problem and
verify that the algorithm solves the problem as intended. Writing the algorithm
is often the most difficult part of the problem-solving process. Once you have
the algorithm, you should verify that it is correct before proceeding further.

4. Test plan: Develop a strategy for proving to yourself and to others that your al-
gorithm will get the proper results. It is highly advisable to write a plan for
testing the program you will write, even before you have written it. Which test
cases will you choose? What are the special cases that must be tested? Pretend
you are a potential purchaser of the program and ask, “Which tests would I re-
quire to be convinced that this program behaves as advertised?”

5. Implementation or coding: Implement the algorithm as a program. This re-
quires knowledge of a particular programming language. Each algorithm step
must be converted into a statement in that programming language.

6. Testing: Run the completed program, testing it with the test cases specified in
the test plan.

20 Introduction to Computers and Programming

If the first three steps in the list above are not done properly, you will either solve
the wrong problem or produce an awkward, inefficient solution. To perform these steps
successfully, it is most important that you read the problem statement carefully before
attempting to solve it. You may need to read each problem statement two or three times.
The first time, you should get a general idea of what is being asked. The second time,
you should try to answer the questions:

¢ What information should the solution provide?
» What data do I have to work with?

The answer to the first question will tell you the desired results, or the problem outputs.
The answer to the second question will tell you the data provided, or the problem
inputs. It may be helpful to underline the phrases in the problem statement that identify
the inputs and outputs.

As was indicated above, the design phase is often the most difficult part of the
problem-solving process. When you write an algorithm, you should first list the major
steps of the problem that need to be solved (called subproblems). Don’t try to list each
and every step imaginable; instead, concentrate on the overall strategy. Once you have
the list of subproblems, you can attack each one individually, adding detail or refining
the algorithm. The process of solving a problem by breaking it up into its smaller sub-
problems, called divide and conquer, is a basic strategy for all kinds of problem solving
activities.

If you do not develop a proper test plan, you risk just running the program with
casually chosen inputs, thereby missing important test cases which, should they arise
after the program is completed and delivered, may cause the program to fail unexpect-
edly. A program’s behavior must be, to the greatest extent possible, predictable, even if
the user makes errors in operating it.

The principle of predictable performance requires that a test plan should include
cases of “bad” as well as “good” input. An especially tragic, and true, story of unpre-
dictable software is a certain radiation machine that, in treating several cancer patients,
responded to some unexpected operator keystrokes by giving the patients lethally high
radiation dosages, killing them instead of treating their cancer.

The software development method can be used with any actual programming lan-
guage; indeed, only the implementation phase really requires detailed knowledge of a
language or a particular computer. Even the testing phase is, in industry, often carried
out by individuals who do not know programming but specialize in developing good
tests of programs.

In this book you will see numerous examples of the software development method,
with each step spelled out in some detail. To get us started, here is an example of the
method applied to a real-life problem. This illustrates that while our method is espe-
cially useful in developing software, the systematic, step-by-step approach is certainly
not limited to software development.

CASE
STUDY

1.5 The Software Development Method 21

CHANGING A FLAT TIRE

Problem Specification
You are driving a car with two friends and suddenly get a flat tire. Fortunately, there is a
spare tire and jack in the trunk.

Analysis
After pulling over to the side of the road, you might decide to subdivide the problem of
changing a tire into the subproblems below.

Design

Here are the main steps in the algorithm to change a tire.
Algorithm

1. Loosen the lug nuts on the flat tire; don’t remove them yet.

2. Get the jack and jack up the car.

3. Remove the lug nuts from the flat tire and remove the tire.

4. Get the spare tire, place it on the wheel, and tighten the lug nuts.
5. Lower the car.

6. Secure the jack and flat tire in the trunk.

Because these steps are relatively independent, you might decide to assign sub-
problem 1 to friend A, subproblem 2 to friend B, subproblem 3 to yourself, and so on.
If friend B has used a jack before, the whole process should proceed smoothly; how-
ever, if friend B does not know how to use a jack, you need to refine step 2 further.

Step 2 Refinement
2.1. Get the jack from the trunk.
2.2. Place the jack under the car near the flat tire.
2.3. Insert the jack handle in the jack.
2.4. Place a block of wood under the car to keep it from rolling.
2.5. Jack up the car until there is enough room for the spare tire.
Step 2.4 requires a bit of decision making on your friend’s part. Because the actual

placement of the block of wood depends on whether the car is facing uphill or down-
hill, friend B needs to refine step 2.4.

Step 2.4 Refinement

2.4.1 If the car is facing uphill, then place the block of wood in back of a tire that is not
flat; if the car is facing downhill, then place the block of wood in front of a tire
that is not flat. This is actually a conditional action: One of two alternative ac-
tions is executed, depending on a certain condition.

22 Introduction to Computers and Programming

Finally, step 2.5 involves a repetitive action: moving the jack handle until there is
sufficient room to put on the spare tire. Often, people stop when the car is high enough
to remove the flat tire, forgetting that an inflated tire requires more room. It may take a
few attempts to complete step 2.5.

Step 2.5 Refinement

2.5.1. Move the jack handle repeatedly until the car is high enough off the ground that
the spare tire can be put on the wheel.

Refined Algorithm
Here is the refined algorithm thus far. You can continue refining it until you are satisfied
that every detail has been properly specified.

1. Loosen the lug nuts on the flat tire; don’t remove them yet.
2. Get the jack and jack up the car.
2.1. Get the jack from the trunk.
22. Place the jack under the car near the flat tire.
2.3. Insert the jack handle in the jack.
24. Place a block of wood under the car to keep it from rolling.

2.4.1. If the car is facing uphill, then place the block of wood in back of a
tire that is not flat; if the car is facing downhill, then place the block
of wood in front of a tire that is not flat.

2.5. Jack up the car until there is enough room for the spare tire.

2.5.1. Move the jack handle repeatedly until the car is high enough off the
ground that the spare tire can be put on the wheel.

Loosen the lug nuts from the flat tire and remove the tire.
Get the spare tire, place it on the wheel, and tighten the lug nuts.

Lower the car.

AN AN

Secure the jack and flat tire in the trunk.

The algorithm for changing a flat tire has three categories of action: sequential exe-
cution, conditional execution, and repetition. Sequential execution simply means to
carry out steps 2.1 through 2.5 in the sequence listed. Step 2.4.1 illustrates conditional
execution in that placement of the block of wood depends on the angle of inclination of
the car. Step 1.5.1 illustrates repetition.

In general, the order of steps in an algorithm is very important. For example, the car
cannot be lowered before it has been raised. Sometimes, there are several sequences for
the steps in an algorithm, any one of which will produce a proper result, but in any case

1.6 Programming Languages 23

the steps cannot be written in a careless, arbitrary order. To succeed in software devel-
opment, you must be willing to focus on solving problems in a careful, step-by-step
fashion.

1.6 Programming Languages

Writing a computer program requires knowing a system of instructions for the com-
puter. There are many such systems; these have come to be called programming lan-
guages. Like human languages (often called natural languages by computer people),
programming languages have vocabularies—sets of acceptable words and gram-
mars—and rules for combining words into larger units analogous to sentences and
paragraphs.

There is an important distinction between programming languages and natural lan-
guages. Because a person can think, he or she can understand or “make sense” of
another person’s communication, even if the second person’s grammar or usage is poor.
Because a computer cannot think, it is far less tolerant of a programmer’s poor gram-
mar or usage and will usually stop and refuse to proceed until the errors are corrected.
This is not as difficult as it may seem: Although natural languages grew over many cen-
turies and are filled with irregularities and strange constructions, programming lan-
guages were designed by humans expressly to be consistent and regular and are
therefore easier to learn and use than natural languages.

There are many different programming languages, which fall into three broad cate-
gories: machine, assembly, and high-level languages.

Machine Languages

Machine language is the native tongue of a computer. Each machine-language instruc-
tion is a binary sequence (string of Os and 1s) that specifies an operation and the mem-
ory cells involved in the operation. Three instructions in a machine language might be:

0010 0000 0000 0100
0100 0000 0000 0101
0011 0000 0000 0110

Obviously, what is easiest for a computer to understand is most difficult for a person to
understand and vice versa. Each type of central processor has its own system of
machine instructions. The Motorola Power PC, the Intel Pentium, and the Sun SPARC
are examples of different CPU types whose machine-language programs are nor inter-
changeable.

Assembly Languages

Assembly language allows us to use descriptive names to reference data and instruc-
tion; however, each operation is typically a very small and specific one. The machine
language above might have been written as

24 Introduction to Computers and Programming

LOAD Cost
ADD Profit
STORE Price

in an assembly language. Generally, each assembly-language instruction represents one
machine-language instruction for a specific type of computer. A program called an
assembler is used to translate assembly language to machine language.

High-Level Languages

High-level languages (also called high-order languages, mostly by the U.S. govern-
ment) are most often used by programmers (program writers). High-level languages are
much easier to use than machine and assembly languages. A high-level language pro-
gram is more portable. This means that it can be made to execute with little or no mod-
ification on many different types of computers. '

Some common high-level languages are BASIC, FORTRAN, COBOL, Pascal, C,
C++, Java, and Ada. Each of these languages was designed with a specific purpose in
mind. FORTRAN is an acronym for FORmula TRANslation, and its principal users
have been engineers and scientists. BASIC (Beginners All-purpose Symbolic Instruc-
tional Code) was designed in the 1960s to be learned and used easily by students.
COBOL (COmmon Business Oriented Language) is used primarily for business
data-processing operations. Pascal (named for Blaise Pascal) was designed in the early
1970s as a language for teaching programming. C (whose developers designed B first)
combines the power of an assembly language with the ease of use and portability of a
high-level language. C++ is an extension of C that supports object-oriented program-
ming. Java is an object-oriented language that combines many of the aspects of C++
and Ada.

One of the most important features of high-level languages is that they allow us to
write program statements that resemble human language or everyday mathematics. We
can reference data that are stored in memory using descriptive names (e.g., Name,
Rate) rather than numeric memory cell addresses. We can also describe operations
that we would like performed using familiar symbols. For example, in several
high-level languages the statement

Price = Cost + Profit

means add Cost to Profit and store the result in price.

Because a computer can execute only programs that are in its machine language, a
high-level language program must be converted or translated into machine language
before it can be executed. A program called a compiler carries out the translation;
sometimes, the compiler produces assembly language, which is then further translated
by the assembler. The original high-level language program is called the source pro-
gram; the resulting machine-language program is called the objecr program. Section
1.8 describes the steps required to process a high-level language program.

Armed with a general introduction to progrmming languages, we begin our study
of one specific programming language: Ada 95.

1.7 About Ada 25

EXERCISE FOR SECTION 1.6

Self-Check

1. What do you think the following high-level language statements mean?

+ C

O X %
R
[4
N+
W w

+ A

1.7 About Ada

The name Ada honors Augusta Ada Byron (1815-1852), Countess of Lovelace, the
daughter of the English poet Lord Byron. Ada assisted the computer pioneer Charles
Babbage in “programming” his early machines; she is therefore sometimes credited
with having been the first programmer. In learning Ada you will be learning a computer
language that can be used equally well for teaching introductory programming con-
cepts and for developing large practical computer systems. Programs in Ada are rela-
tively easy to read, understand, and maintain (keep in good working order).

The richness of Ada is such that you are learning a language that can serve you very
well throughout your career, no matter how large or complex the programs you will
need to write. This book introduces you to a large and useful part of the language; you
will undoubtedly learn the more advanced features as your experience and interest
grows. The standard nature of Ada ensures that you will be able to use everything you
learn in this book about Ada, regardless of the computer or Ada compiler you use.

Ada was developed in the late 1970s and early 1980s at the direction of the U.S.
Department of Defense (DoD). Although it seems hard to believe, in the mid-seventies
several hundred languages were in use in defense-oriented computer systems. DoD
determined that the use of a modern and strongly standardized programming language
might result in more reliable and portable software at lower cost to the taxpayer and
therefore organized a competition for the best design of a new language for its needs.

The result of this competition was a language, designed by the French engineer
Jean [chbiah and his international team of language experts, that is rich in capabilities
for building software systems for general as well as defense purposes.

Ada’s Capabilities

The capabilities of high-level languages like Ada can be organized in a way similar to
the way sections are titled in chapters of this book:

* Control structures are, as we discussed above, those structures that allow the pro-
grammer to instruct the computer precisely which operations to carry out in which
order. In this book you will study all the important control structures of Ada.

26 Introduction 1o Computers and Programming

¢ Data structures provide ways to organize data—numbers, letters, sequences of let-
ters, records, and other groupings—so that they can be processed by the control
structures of the program. Most of the data structures—scalar types, records, and
arrays—of Ada are presented in this book.

 System structures provide ways to organize control structures and data structures
into units of appropriate size so that systems of programs can be built reliably and
without great difficulty. Procedures and functions allow grouping of data and con-
trol statements into small, cohesive units; packages allow procedures, functions,
and other resources, such as data type declarations, to be organized into larger units
or modules so that they can be put in libraries for you and others to use in many
applications. We consider exception handling to be a system structure because ex-
ception handling provides a standard way to control the flow of error information
from one part of a system to another.

The facilities of Ada also include fasking—a powerful capability for building con-
current programs (programs containing segments that execute, or appear to execute,
simultaneously)—and representation specifications—which explicitly associate
high-level constructs with the lowest levels of the computer hardware. Tasking is intro-
duced briefly in Chapter 17; representation specifications do not appear in this book.
You will learn about both subjects as you continue your education in this interesting
language.

The Ada Standard

A standard is a document describing a common way to do or build something. Engi-
neering standards developed early in the twentieth century covered the sizes and shapes
of mechanical fasteners such as nuts and bolts. The ability to attach a nut from one
manufacturer to a bolt from another was an important advance in the Industrial Revolu-
tion; the automobile industry owes much of the success of mass production to stan-
dards. Standards play a role in your own life, too. For example, because of standards,
you can buy a replacement for a burned-out light bulb without worrying whether or not
it will screw into the socket in your study lamp.

In the computer industry, standards have governed the formulation and dimensions
of physical media such as punched cards and magnetic tape; as computer software has
grown and matured since the 1940s, so has the industry’s attention to standards for pro-
gramming languages. A language standard describes the structure of valid and invalid
programs in the language and therefore serves as a defining document for users and
compiler writers alike.

Some language standards are voluntary and represent a “lowest common denomi-
nator” subset of the language facilities. The “subset” nature of these standards makes it
difficult to move a program from one compiler to another, ¢ven if both theoretically
accept the same language. The Ada standard is an exception to this rule: DoD, in the
interest of encouraging programs to be written in a truly common language, irrespec-
tive of computer or compiler supplier, took measures accordingly.

The reference manual for Ada (usually abbreviated RM) was adopted by the Amer-
ican National Standard Institute (ANSI) in January 1983, and by the International Stan-
dards Organization (ISO) in 1987. By 1991, more than 400 different Ada compilers had
been validated, which means that they successfully passed a series of several thousand

1.7 About Ada 27

small test programs (known as the Ada Compiler Validation Capability, or ACVC)
designed to evaluate their conformance to the standard. This unusually high degree of
conformance to a language standard means that Ada programs are usually quite easy to
port, or move to a different compiler on the same computer or to a different computer.
To an extent unprecedented in the history of computers, Ada compilers all accept the
same language.

From Ada 9X to Ada 95

In 1988 the process was begun to determine whether the Ada standard should be
revised to extend the language and, if so, to design the necessary extensions. This
project was called “Ada 9X": the 9X designation meant that it was intended to be com-
pleted sometime in the 1990s. This time the design team was headed by the American
Tucker Taft, a language expert at Intermetrics.

The Ada 9X standard was completed at the end of 1994, and the revised standard,
now called Ada 95, was adopted in 1995 by ISO (February) and ANSI (April). Six or
seven years may seem a long time to revise a language standard, but in fact, every other
major language revision has taken even longer. Designing a language is complex and
highly specialized, and convincing a large number of organizations to approve the
design and vote favorably on a national or international standard is time-consuming and
requires much skill in the art of human persuasion.

The Ada 95 extensions are very interesting and useful, and many of the new fea-
tures will be covered in this book. These include, among others, many changes and
additions to the standard libraries as well as language constructs for object-oriented
programming. In fact, Ada 95 is the first internationally standardized object-oriented
programming language.

This book introduces Ada 95 throughout. In the text we refer simply to Ada in most
cases, using the terms Ada 83 and Ada 95 for those few situations in which we deem it
important to distinguish between the earlier standard and the current one.

Ada’s Use around the World

At this writing, Ada is being actively used by the defense software industry whose
needs inspired Ada’s creation. More directly relevant to you in your everyday lives, Ada
is used in

- * the control software of nearly every new commercial aircraft model, including the
Boeing 777, the Airbus 340, and many regional airliners;
* nearly every country’s air traffic control system;

* high-speed railroads, including the French TGV and the French/British Channel
Tunnel system;

* urban rail systems, including those of Paris, London, Caracas, Cairo, Calcutta, and
Hong Kong;

* electronic funds transfer and other banking applications;

28 Introduction to Computers and Programming

* a number of communications and navigational satellites and ground-based equip-
ment, including the Global Positioning System (GPS) navigational terminals now
becoming popular in rental and private automobiles; and

e steel mills, industrial robotics, medical electronics, and telecommunications.

These software applications share a common attribute: They are less visible than
those running on your desktop computer, but they are of vital importance in the smooth,
safe operation of our transportation, communication, and business systems. Many of
these are called safety-critical software systems: They must function properly because
lives and property are at stake.

As it happens, the same language attributes that make Ada a language of choice in
these important systems also make it a desirable language for education. Whether or
not you actually write defense or safety-critical software in your career, your knowl-
edge of Ada will serve you well, providing a solid foundation for further knowledge of
other languages and many application areas.

1.8 Processing a High-Level Language Program

Before it can be processed, a high-level language program must be entered at the termi-
nal, then translated, and finally loaded into memory for execution. As was discussed in
Section 1.3, a number of software development tools—programs that help us develop
other programs—assist in this task. These are described next, and the process is sum-
marized in Fig. 1.6.

The mechanics of entering a program as a source file and translating and executing
it differ somewhat from system to system, although the general process is the same. In
this section we describe this general process.

Each computer has its own special control language for communicating with its
operating system. In many common systems, such as the Apple Macintosh, Microsoft
Windows, or X-windows, the line-oriented command language is replaced by a graphi-
cal user interface (GUI), in which you select operations from menus, using a mouse to
do the selection. Although space does not allow us to provide all the details here, we
will discuss the general process. Your instructor will provide the specific commands for
your system.

Logging On or Booting Up

Before you can use a time-shared or networked computer, you must log on, that is,
identify yourself to the operating system, which may check to determine that you have
a valid account on the system. To use a personal computer, you must switch it on, then
wait for a brief period while it starts, or boots up. The startup process begins with a
very small program that loads the operating system. Because one small program loads
the next, the process is called booting up, from the expression “picking yourself up by
your bootstraps.”

1.8 Processing a High-Level Language Program 29

You enter the program and
save it as a source file

The compiler attempts to You correct compilation
translate the program errors

Failure

Success
List of errors
Y
New
object Other
file object

files

The linker links the new
object file with other
abject files

Load
file

The loader places the
load file into memory

Executable
program in
memory

Figure 1.6 Preparing a Program for Execution

30 Introduction to Computers and Programming

Creating a Program or Data File

In most cases you will use a software tool called an editor to enter or modify your Ada
program. After accessing the editor, you can start to enter a new Ada program, or mod-
ify an existing one. Once your program is complete, you must save the program as a
permanent file on disk. Follow these steps to create and save a program file:

1. access the editor program;

2. indicate that you are creating a new file and specify its name, or specify the
name of the existing program to be modified;

3. enter each line of your program, or make the necessary changes; and

4. save your program as a permanent file in secondary memory.

Compiling Your Program

Once you have created your program and you are satisfied that each line is entered cor-
rectly, you can attempt to compile it. Some Ada compilers require that before you can
use the compiler for the first time, you must set up a project or library. The command to
do this depends on the specific compiler, and it is not repeated each time you log on or
boot up. The Ada system will create some files or directories on your file system; they
are for use by the compiler and linker, and you should not disturb them!

If your program will not compile because it contains errors, the compiler produces
a list of errors for your information. You must reedit the program to eliminate the errors
before going further. Follow these steps to correct and reexecute a program file:

reaccess the editor program,;
get your program file;
correct those statements that contained errors;

save your edited program file; and

oL

compile the saved program file.

When the source program is error-free, the compiler saves its machine-language
translation as an object file.

Binding and Linking

Your next step is to call the binder program (sometimes called linker) to combine your
object program with additional object files needed for your program to execute. These
may be system files, such as input/output modules, or other application modules (pack-
ages, in Ada terms) that you or others have written. Generally, the binder needs only to
be told the name of your main program; it then proceeds to save the final result as a
load file, or executable program, on disk.

1.9 A Step-by-Step Compilation Exercise 31

Executing a Program

Once a program has been linked into an executable file, you can execute it repeatedly.
Depending on your operating system, you either just type the name of the program, or
select it from a menu of programs. Doing this actually invokes an operating system
module called the loader, which copies the program from secondary storage to RAM
and then the CPU executes the program.

In executing a program, the CPU examines each program instruction in memory
and sends out the command signals required to carry out the instruction. Although the
instructions are normally executed in sequence, as we will see later, it is possible to
have the control unit skip over some instructions or execute some instructions more
than once.

During execution, data can be entered into memory and manipulated in some spec-
ified way. Special program instructions are used for requesting the user to enter input
data, then reading the data into memory. After some manipulation of the input data,
instructions are used for displaying or printing resuit values—program output—from
memory.

Figure 1.7 shows the effect of executing a payroll program stored in memory. The
first step of the program requires entering data into memory that describe the employee.
In the second step, the employee data are manipulated by the central processor and the
results of computations are stored in memory. In the final step, the computational
results may be displayed as payroll reports or employee payroll checks.

EXERCISES FOR SECTION 1.8

Self-Check

1. What is the role of a compiler?

2. What is the difference between the source file and the object file? Which do
you create and which does the compiler create? Which one is processed by the
linker? What does the loader do?

1.9 A Step-by-Step Compilation Exercise

Now that you have read about the steps in creating, compiling, and executing a program
file, you probably want to try one. After getting the detailed instructions for using your
computer, operating system, and Ada compiler, try the program given in Program 1.1.

32 Introduction to Computers and Programming

Memory

Machine language

program for

computing salary \

and deductions

Step 1 \ Step 2
Input data:
employse Program | | pata entered _| Central
hours and input "] during execution > prq;:essmg
/ uni

Computed results s Program__| Qutput results:
output | paychecks or
reports

Step 3

00

Figure 1.7 Flow of Information during Program Execution

Program 1.1 A First Ada Program

WITH Ada.Text_IO;
PROCEDURE Hello IS

--| A very simple program; it just displays a greeting.
--| Author: Michael Feldman, The George Washington University
--| Last Modified: June 1998

BEGIN -- Hello

Ada.Text_IO.Put(Item => "Hello there. ");
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
Ada.Text_IO.New_Line;

END Hello;

Do not be concerned at this point about what each of the statements in this program
means; just enter it exactly as given (or copy it from a program distribution supplied
with this book) and take it from there. Compile it, bind (link) it, and execute it. When
the program is executed, the following line should appear on your display screen:

Hello there. We hope you enjoy studying Adal

1.9 A Step-by-Step Compilation Exercise 33

Listing Files

Compilers usually provide an option to create a listing file at the time of compilation.
The listing file serves two important purposes:

1. It displays your source text, usually with line numbers, and identifies any er-
rors the compiler may have found in your program;

2. It serves as an “official” record of the compilation, marked with the name of
the compiler and the date and time of compilation. If you are taking a course,
you may be required to submit listing files for your programming exercises or
projects.

Find out how to request a listing file from your compiler, then recompile Program
1.1 and examine the listing by displaying or printing it. For example, Figure 1.8 shows
a listing file from the author’s compilation with GNAT.

Figure 1.8 Listing from an Error-Free Program Compilation

GNAT 3.10p (970814)
Copyright 1992-1997 Free Software Foundation, Inc.

Compiling: hello.adb (source file time stamp: 1998-06-28 19:24:19)

. WITH Ada.Text_IO;
. PROCEDURE Hello IS

. ==| A very simple program; it just displays a greeting.
. ==| Author: Michael Feldman, The George Washington University
. =-| Last Modified: June 1998

NV e W N -
.

8. BEGIN -- Hello

9.

10. Ada.Text_IO.Put(Item => “"Hello there. ");

11. Ada.Text_IO.Put(Item => "We hope you enjoy studying Adati");
12. Ada.Text_IO.New_Line;

13.

14. END Hello;

14 lines: No errors

Examining the Program

Let us briefly go through the listing file in Fig. 1.8 to get a quick idea of the structure of
this program.

Line 1 informs the compiler that this program will be making use of a package
called ada.Text_10. A statement like this almost always precedes the rest of an Ada
program file. A fuller explanation of packages will appear in the next few chapters; for
now you should know that input and output are done in Ada by means of standard pack-
ages. Ada.Text_IO is the most used standard package.

34 Introduction 1o Computers and Programming

Line 2 informs the compiler that this program is to be called Hello (in Ada a pro-
gram is called a proceDURE). Lines 3 through 7 are comments, or remarks for the
human reader of the program. Comments are not processed by the compiler. The start
of a comment is indicated by --, that is, by two hyphens; the comment always includes
all remaining text on that line. Note, for example, that line 8 has a comment following
the initial BEGIN.

Lines 9 and 13 are left blank just to make the program easier to read. The section of
the program between BEGIN (line 8) and END (line 14), called the body, or executable
statements section, contains a list of actions the program is to perform. Each statement
or action ends with a semicolon. In this program there are three statements, all calling
for output actions. The statements in lines 10 and 11,

Ada.Text_IO.Put(Item => "Hello there. ");
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");

display the strings enclosed in quotes on the screen. The statement in line 12,
Ada.Text_IO.New_Line;

terminates the line displayed on the screen by advancing the cursor (a blinking place
marker) to the first position of the next line. All these statements are prefixed by
Ada.Text_1I0 as our way of indicating to the compiler (and to the reader of this pro-
gram) that the operations in question are meant to be the ones provided by the
Ada.Text_1o package. More about this later.

1.10 Tricks of the Trade: Common Programming Errors

One of the first things you will discover in writing programs is that a program often
does not compile or run correctly the first time that it is submitted. When you are learn-
ing to develop programs, you will probably make mistakes in your programs. Learning
a programming language is a lot like learning another human language: There are rules
of grammar, spelling and usage that you must learn. You will get better at it as your
experience grows, but even very experienced developers make programming errors,
and you should not be discouraged by the ones you make when you are starting out.

Programming errors are so common that they have their own special
name —bugs—and the process of correcting them is called debugging a program. To
alert you to potential problems, a section on common errors appears near the end of
many chapters of this book.

There are three basic categories of errors:

o Compilation errors are detected and displayed by the compiler as it attempts to
translate your program. Compilation errors are mistakes in following the lan-
guage’s rules of syntax (grammar) or semantics (meaning). If a statement has a
compilation error, it cannot be translated and your program cannot be executed.
When a compilation error is detected, an error message appears in your listing file
indicating that you have made a mistake and what the cause of the error might be.
As you gain some experience, you will become more proficient at understanding
€ITOT Messages.

1.10 Tricks of the Trade: Common Programming Errors 35

* Run-time errors are detected during execution of a program. A run-time error,
called an exception in Ada, occurs as a result of directing the computer to perform
an illegal or inappropriate operation, such as dividing a number by 0 or attempting
to store in a variable a number that is outside the acceptable range for that variable.
When an exception is raised—that is, when an error occurs—the computer stops
executing your program and a diagnostic message is displayed that sometimes in-
dicates the line of your program where the exception was raised. One of the inter-
esting features of Ada is that it provides a way for programmers to predict the
occurrence of exceptions and to handle them when they arise. In this manner a pro-
grammer can prevent the computer from halting the program. We will return later
to the matter of handling exceptions in programs.

* Logic or algorithm errors result from developing an incorrect algorithm to solve a
problem or translating a correct algorithm into a program incorrectly. These are er-
rors in problem solving rather than programming. Such errors cannot be detected
automatically —because the program compiles successfully and runs without ter-
minating on an error message—but gets an incorrect or unexpected answer. The
computer did exactly what you told it, which was not necessarily what you meant
for it to do! Detecting and correcting logic errors can be done only by careful and
thorough testing.

In this section we will limit our discussion to compilation errors; we will take up
the other categories later.

Syntax Errors

Program 1.2 shows a program similar to Hello but containing three syntax errors that
we have intentionally put in the file. A syntax error is a mistake in the use of the lan-
guage’s syntax, or rules of grammar.

Program 1.2 A Program with Syntax Errors

WITH Ada.Text_IO;
PROCEDURE Hello_Syntax IS

--| A very simple program; it just displays a greeting.
--| Author: Michael Feldman, The George Washington University
--| Last Modified: June 1998

BEGIN -- Hello_Syntax
Ada.Text_IO.Put(Item => "Hello there. ");
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adai”;
Ada.Text_IO.New_Line

EMD Hello_Syntax;

Figure 1.9 shows the relevant part of the listing file generated by GNAT.

36 Introduction to Computers and Programming

Figure 1.9 Listing from a Program with Syntax Errors

1. WITH Ada.Text_IO;
2. PROCEDURE Hello_Syntax IS

4. --| A very simple program; it just displays a greeting.
5. =-=-| Author: Michael Feldman, The George Washington University
6. --| Last Modified: June 1998

8. BEGIN -- Hello_Syntax

10. Ada.Text_IO.Put(Item => “Hello there. ");
11. Ada.Text_IO.Put(Item => "We hope you enjoy studying Ada!®;

>>> missing ")"
12. ada.Text_IO.New_Line
>>> missing ";"

13.
14. EMD Hello_Syntax;

>>> incorrect spelling of keyword “END"

The actual format of the listing and error messages produced by your compiler may
differ from Fig. 1.9. In this GNAT listing, whenever an error is detected, the compiler
inserts a line starting with >>>. A vertical line (|) points to the position in the preced-
ing line where the error was detected. This is usually, but not always, where the error
occurred. The error is explained on the next line.

In attempting to compile this program, the compiler discovered that:

* in line 11, a left parenthesis is not matched by a corresponding right parenthesis;
« in line 12, a semicolon is missing at the end of the statement on that line;

* in line 14, END is misspelled as Emp.

The nature of these errors highlights an essential difference between human com-
munication in languages like English and programming in languages like Ada. In
human communication a speaker or writer sometimes makes grammatical errors, but
the listener or reader can usually understand the content anyway. In programming lan-
guages the rules of grammar are much simpler than those of human languages, but they
must be observed exactly.

A compiler is designed to discover syntax errors and does so mechanically and
slavishly, without emotion. The compiler is just a program, and can process only what
you submit to it. It has no idea what you meant to write, and so while it is quite good at
discovering errors, it often guesses imperfectly at the desired correction. In this exam-
ple we were lucky and the messages were obvious.

One of the purposes of this book is to teach you the syntax of Ada little by little.
You’ll see a lot of correct examples and read syntax displays that state the rules. You’ll
find that—as with the human languages you know—as your experience with program-
ming grows, you'll know more and more syntax and make fewer and fewer errors.

1.10 Tricks of the Trade: Common Programming Errors 37

Semantic Errors

In Program 1.3 we have properly followed the syntax rules —rules of punctuation, key-
word spelling, and “word order” —but have intentionally coded two semantic errors, or
errors in meaning. A semantic error is an inconsistency in the use of values, variables,
packages, and so on.

Program 1.3 A Program with Semantic Errors

WITH Ada.Text_IO;
PROCEDURE Hello_Semantic IS

--| A very simple program; it just displays a greeting.
-=| Author: Michael Feldman, The George Washington University
--| Last Modified: June 1998

BEGIN -~ Hello_Semantic
Ada.Text_IO.Put(Item => 12345);
Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
Ada.Txt_IO.New_Line;

END Hello_Semantic;

Figure 1.10 shows the listing, with the errors indicated by the compiler.
Figure 1.10 Listing from a Program with Semantic Errors

1. WITH Ada.Text_IO;
2. PROCEDURE Hello_Semantic IS

3.

4. --| A very simple program; it just displays a greeting.

5. --| Author: Michael Feldman, The George Washington University
6. --| Last Modified: June 1998

7.

8. BEGIN -~ Hello_ Semantic

9.

10. Ada.Text_IO.Put(Item => 12345);

>>> invalid parameter list in call
>>> possible missing instantiation of Text_IO.Integer_I0

11. Ada.Text_IO.Put(Item => "We hope you enjoy studying Adal");
12. Ada.Txt_IO.New_Line;

>>> missing with for "Ada.Txt_IO"

13.
14. END Hello_Semantic;

Here the compiler discovered that:

* in line 10, we inadvertently provided an invalid parameter—a numerical one in-
stead of the expected character string—to a procedure call;

38 Introduction to Computers and Programming

* in line 12, we neglected to supply a wiTs statement for the package ada.Txt_Io0.
In this case, the compiler detected the error but guessed the wrong cause —We sim-
ply misspelled ada.Text_10 as Ada.Txt_IO.

This last case shows how in programming, sometimes you make a certain error but
the compiler interprets it as something entirely different. Remember, the compiler is
only a computer program and is not as good a detective as you are! This can be frustrat-
ing at the start, but your skill at detective work will grow with experience.

Generally, the compiler will discover syntax errors, then stop the compilation and
produce a listing file so that you can correct those. When you recompile, the compiler
may then discover semantic errors it missed while it was checking the syntax.

Propagation Errors

Because the compiler cannot always determine the exact cause of an error, one syntax
or semantic error sometimes leads to the generation of a number of error messages.
(These “extra” errors are often called propagation errors.) It can be intimidating to
look at a listing file containing dozens of error messages, but often all the messages
really stem from just a couple of errors. For this reason, it is often a good idea to con-
centrate first on correcting the first one or two errors in a program and then to recom-
pile, rather than to attempt to fix all the errors at once.

A Last Bit of Advice

This section’s purpose has been to introduce you to the nature of compilation errors and
the kinds of messages you can expect from your compiler. The Ada standard requires
compilers to be “fussy” —to detect as many errors as possible before a program is exe-
cuted. This “fussiness” may irritate you at first, but in fact, Ada programmers appreci-
ate that once their programs are accepted by the compiler, they are very likely to
execute properly. This helps them to develop software that works.

Finally, you must keep in mind that an operating system, compiler, or other com-
puter program is just a computer program. It is very good at its mechanical job, but it
has no real intelligence, and no emotions at all. Unlike a parent, teacher, or colleague, it
will never get angry at you, but will continue slavishly to point out your mistakes in fol-
lowing its rules. We cannot emphasize too strongly that programming errors come from
lack of experience —or lack of sleep—and not from “stupidity” or lack of ability.

CHAPTER REVIEW o _

FAASY

This chapter described the basic components of a computer: main and secondary mem-
ory, the central processor or CPU, and the input and output devices. Remember these
important facts about computers:

1. A memory cell is never empty, but its initial contents may be meaningless to
your program.

Chapter Review 39
The current contents of a memory cell are destroyed whenever new informa-
tion is placed in that cell.

A program must be copied into the memory of the computer before it can be
executed.

Data cannot be manipulated by the computer before they are first read into
memory.

A computer cannot think for itself; you must use a programming language to
instruct it in a precise and unambiguous manner to perform a task.

Programming a computer can be fun—if you are patient, organized, and care-
ful.

Quick-Check Exercises

© © N o w»

The translates a language program into

After a program is executed, all program results are automatically displayed.
True or false?

Specify the correct order for these four operations: execution, linking, transla-
tion, loading.

A high-level language program is savedondiskasa____ fileora
e.

The________ findssyntaxerrorsinthe ___ file,

A machine-language program is saved on disk as an file.
The is used to create and save the source file.

The creates the load file.

The programisusedtoplacethe _____file into mem-

Answers to Quick-Check Exercises

AN G A

Compiler, high-level, machine language
False

Translation, linking, loading, execution
Source, program

Compiler, source

Object

40 Introduction to Computers and Programming

7.
8.
9.

Editor
Linker
Loader, load

Review Questions

1

2
3.
4

A computer can think. True or false?
List the three categories of programmming languages.
Give three advantages of programming in a high-level language such as Ada.

What processes are needed to transform an high-level language program to a
machine-language program ready for execution?

List the five phases in the software development method. Which phases re-
quire actual use of a computer?

Programming Projects

1.

This three-part project will help you to become familar with the development
tools that are available to you.

Find out how to use the software development tools on your computer. Com-
pile, bind, and execute Program 1.1, and compile Programs 1.2 and 1.3 to see
just how your compiler reports errors to you. Is there a listing file? A special
window in the editor?

Now use your editor to correct the errors in Programs 1.2 and 1.3. Recompile,
bind, and execute these programs.

Finally, use your editor to introduce some deliberate errors into Program 1.1.
Don’t be concerned that you don’t know Ada yet; just try changing some of
the statements. Compile your modified program and observe the messages.

RIS

Introducing Algorithms:
Adventures of the Spider

2.1 Introducing the Spider

22 Straight-Line Algorithms

23 Algorithms with Single Loops

24 Algorithms with Nested Loops

25 Algorithms with Conditional Execution

2.6 Putting It All Together: The Drunken Spider

Chapter Review

The purpose of this chapter is to introduce you to algorithms through programming a
simple picture-drawing creature called the spider. This chapter is the first of several
installments in a “continuing saga,” an example that begins here and recurs in some
sections of later chapters. We introduce an imaginary spider that steps around an imag-
inary room drawn on the screen. The spider recognizes a number of commands, which
we can issue by writing, compiling, and executing spider programs.

We use the spider to introduce a number of algorithmic concepts, including control
structures and parameters. We'll return to these much more formally and completely
beginning in Chapter 3; the goal here is to just give you a quick introduction, to get you
started writing some “fun” programs while you continue to read the more thorough
chapters that follow.

This chapter and the other spider sections in the book are optional in the sense that
no other parts of the book depend upon them. However, because they introduce pro-
grams that are very simple and clear and give you obvious feedback on the screen, we
think you will find them useful in understanding algorithms and a number of Ada pro-
gram constructs. We urge you to compile and run these examples on a computer,
observe their behavior, and experiment with them by making changes as you see fit.

2.1 Introducing the Spider

This section introduces an imaginary spider that steps around an imaginary room drawn
on the screen. The spider recognizes a number of commands, which we can issue by
writing, compiling, and executing spider programs.

11

42 Introducing Algorithms: Adventures of the Spider

The spider is simulated by an Ada package within which is the set of commands
that the spider recognizes and obeys. The package is a very important construct in Ada;
it provides a way of encapsulating, or grouping, a set of related operations. Most Ada
programs consist of a main procedure and a number of packages. We’ll be using many
packages in this book; some are standard Ada packages, and others are specific to the
book. The spider package is one of the latter.

An Ada package is divided in two parts: the interface or specification, which gives
a “table of contents” for the set of resources it provides, and the implementation or
body, which contains the actual program segments for the various operations. Every-
thing you need to know to use an Ada package is generally contained in the interface:
There are specifications for the various resources and (in a well-written package) com-
ments indicating how these are to be used.

The standard Ada packages are “built in,” that is, provided with the compiler and
ready to use. Generally, the interface and implementation for a nonstandard package
like spider are provided in the form of two Ada source files; we assume that you have
access to this book’s packages on the computer you are using.

The spider specification is shown as Program 2.1 and explained in this chapter. We
will study the body of the spider package in detail in Chapter 8. In this chapter, we just
show and explain 14 programs that use some of the commands in the spider package;
you don’t need to understand yet just how the package works. By the time you’ve com-
pleted Chapter 8, you will be able to understand the spider package’s internal mecha-
nisms.

Before you can use the spider package, you must compile (but not link) both the
specification and the body. If you have a collection of this book’s programs available on
disk or CD-ROM, now is a good time to find and compile the two files. File names are
not part of the Ada standard, but some compilers require certain naming conventions.
The Spider specification and body files will probably be called spider.ads and spi-
der.adb, Tespectively (ads = Ada specification; adb = Ada body). but the file names
may vary. You will also need to compile the package screen, whose file names are
(most likely) screen.ads and screen.adb.

Program 2.1 The Spider Package

PACKAGE Spider IS

--| This package provides procedures to emulate “"Spider"

--| commands. The spider can move around

--' the screen drawing simple patterns.

«-| Author: John Dalbey, Cal Poly San Luis Obispo, 1992
Adapted by M. B. Feldman, The George Washington University
Last Modified: December 1998

-- These are the spider's simple parameterless methods

PROCEDURE Start;

-- Pre: None

-- Post: Spider's room appears on the screen
-- with spider in the center.

PROCEDURE Quit;
-- Pre: None
-- Post: End the drawing

2.1 Introducing the Spider 43

PROCEDURE Step;

-- Pre: None

-~ Post: Spider takes one step forward in the direction it is facing.
-~ Raises: Hit_the Wall if spider tries to step into a wall.

PROCEDURE TurnRight;
-~ Pre: None
-- Post: Spider turns 90 degrees to the right.

-~ now some types, and methods that use the types

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);
SUBTYPE Steps IS Integer RANGE 1..20;

PROCEDURE Face (WhichWay: IN Directions);
-- Pre: WhichWay has been assigned a value
-~ Post: Spider turns to face the given direction.

FUNCTION IsFacing RETURN Directions;
-- Pre: None
-- Post: Returns the direction the spider is facing.

FUNCTION RandomDirection RETURN Directions:
-=- Pre: None
-- Post: Returns a random direction

PROCEDURE ChangeColor (NewColor: IN Colors);
-~ Pre: NewColor has been assigned a value
-- Post: Spider leaves its tracks in the new color

FUNCTION IsPainting RETURN Colors;
-- Pre: None
-~ Post: Returns the color in which the spider is painting

FUNCTION RandomColor RETURN Colors;
-- Pre: None
-- Post: Returns a random color

FUNCTION AtWall RETURN Boolean;
-- Pre: None
-~ Post: Returns True if the spider is standing next to a wall

FUNCTION RandomStep RETURN Steps;

-- Pre: None

-- Post: Returns a random number in the range 1..20
Hit_The_wWall: EXCEPTION;

TYPE Switch IS (On, Off);

PROCEDURE Debug (Setting: IN Switch);
-- Pre: None
-- Post: Turns on or off single stepping through the program.

FUNCTION Debugging RETURN: Switch;
-- Pre: None
-- Post: Returns on or Off depending on Debug setting

END Spider;

44 Introducing Algorithms: Adventures of the Spider
2.2 Straight-Line Algorithms

In this section we use the spider to introduce you to straight-line algorithms. A
straight-line algorithm is one that is just a straight sequence of instructions, with no
decisions or “forks in the road” and no backtracking to an earlier point in the algorithm.
The algorithm just moves in one direction.

Let’s look at a very simple spider program, Program 2.2. As you can see, it just
calls the spider’s start and stop commands. The sample run shows that calling spi-
der.Start draws a “room” on the screen, placing the spider icon (an asterisk) in the
center. The spider starts out facing north (up the screen). Calling spider.guit just ends

the program.
Program 2.2 The Simplest Spider Program

WITH Spider;
PROCEDURE Startup IS

~--| Very simple Spider program; just starts and stops
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Startup
Spider.Start;
Spider.Quit;

END Startup;

Sample Run of Program 2.2

In Program 2.3 the spider takes five steps forward. You can see this from the five
commands, each reading spider.step. The sample run shows the spider in a location
five rows north (upward) from the starting point.

2.2 Straight-Line Algorithms 45

Program 2.3 The Spider Walks a Line

WITH Spider;
PROCEDURE Walk_Line IS

-~| Walk line with spider
~-| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Walk_Line
Spider.Start;
Spider.Step;
Spider.Step;
Spider.Step;
Spider.Step;
Spider.Step;
Spider.Quit;

END Walk_Line;

Sample Run of Program 2.3

—— * e e e & e o+ = o e . LI) LI I
[1
L T
—— P e s e e 4 e e s s e e 4 e e s e o s .
e » e s o s s 4 s s e e & e s s s e o »
0-.0....0* ® & & 2 e s e s
¢ e s e o e s e 4 o L
S e e e e e s s 4 e ¢ e s s e s e s @
L T T T
e s e e s e e s e o & « s e e e e e o
L T S e s e e e s .
e 4 s e e 4 s e o o s e e o e s e
S s s s s s s e E e e s e s e e e e
P s s e e e 6 4 e s e 4 4 e 4 s e e e » had
® » s e s e s s e 4 e 2 s e s e & & + /7
® & & 4 * e s e & 2 e & & e = ° e e o » .
L
S e e e e e s e e e e s s e e e e
© e 4 4 4 4 v e e e L
© e o s o e e s e e s o o e e s e e .

In Program 2.4 the spider walks around a square box, taking three steps forward,
then turning right, then taking more steps, turning right again, and so on. Since it ends
up back where it started from, there’s nothing to show in the sample run. If you run the
program, though, you’ll observe the spider walking around the square.

e

46 Introducing Algorithms: Adventures of the Spider

Program 2.4 The Spider Walks around a Box

WITH Spider;
PROCEDURE Walk_Box IS

--| Walk 4 x 4 box with spider
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Walk_Box
Spider.Start;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

Spider.Step;
Spider.Step;
Spider.Step;
.Spider.TurnRight;

Spider.Quit;

END Walk_Box;

Spider Commands with Parameters

So far, we've used four spider commands: start, Quit, Step, and TurnRight. In Pro-
gram 2.5 we introduce two more commands: Face and Changecolor. Here are two lines
selected from the specification in Program 2.1:

TYPE Directions IS (North, East, South, West);
TYPE Colors IS (Red, Green, Blue, Black, None);

These lines introduce enumeration types, which we’ll cover in more depth in Chap-
ter 4. For now, just understand that each of these types provides a list of values: pirec-
tions gives the four compass points, and colors gives five possibilities: red, green,
blue, white, and no color at all. We come now to two procedures defined in the specifi-
cation:

PROCEDURE Face (WhichWay: IN Directions);
-- Pre: WhichWay has been assigned a value
-- Post: Spider turns to face the given direction.

2.2 Straight-Line Algorithms 47

PROCEDURE ChangeColor (NewColor: IN Colors):
-=- Pre: NewColor has been assigned a value
-- Post: Spider leaves its tracks in the new color

The first, Face, must be called by including a parameter selected from one of the
directions, for example,

Spider.Face(WhichWay => Spider.West);

which will cause the spider to turn (without moving) to face in a westerly direction
(leftward on the screen). The second procedure, changeColor, must be called with a
parameter selected from one of the color values, for example,

Spider.ChangeColor(NewColor => Spider.Red);

which will cause the spider to leave a red mark on the screen each time it takes a step.

As with all the packages provided by this book, each operation is accompanied by a
pair of comments. These, like all comments, are ignored by the compiler but are impor-
tant parts of the documentation that a human reader needs. The first comment describes
the preconditions for using the operation. Preconditions are the expectations or
assumptions the operation makes about the way it is called. In this case the precondi-
tion warns us that the operations must be called with well-defined direction and color
values. The second comment gives the postconditions, that is, the results after the oper-
ation has completed its work.

The combination of preconditions and postconditions serve as a kind of contract
between the writer of an operation and its user; if the user promises to meet the precon-
ditions, the writer promises that the operation will deliver the postconditions.

Now let’s use these two operations. In Program 2.5 the spider walks around the
same kind of square as in Program 2.4, but this time it ““draws” each side in a different
“color.” We’ve put “color” in quotation marks because the spider package does not
require a color monitor to operate properly. As you can see from the sample run, the
spider uses the letters R, G, B, and k to simulate the actual colors red, green, blue, and
black. Also, a dot simulates the no-color (“invisible™) case; it does not show up on the
screen because a new dot is displayed over the one in the room grid. You’ve probably
guessed by now that the spider starts up leaving its tracks in the “none” color, that is,
leaving no tracks.

Now is a good time to mention the small status box in the upper-left corner of the
screen, which displays the spider’s current direction and color.

Program 2.5 The Spider Draws a Box

WITH Spider;
PROCEDURE Draw_Box IS

--| braw 4 x 4 box with spider, changing colors as we go
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Draw_Box

Spider.start;

48 Introducing Algorithms: Adventures of the Spider

Spider.Face(WhichWay => Spider.West);

Spider.ChangeColor (NewColor => Spider.Green);
Spider.Step;

Spider.Step;

Spider.Step;

Spider.TurnRight;

Spider.ChangeColor(NewColor => Spider.Black);
Spider.sStep;

Spider.step;

Spider.Step;

Spider.TurnRight;

Spider.ChangeColor (NewColor => Spider.Red);
Spider.Step;

Spider.step;

Spider.Step;

Spider.TurnRight;

Spider.ChangeColor (NewColor => Spider.Blue);
Spider.Step;

Spider.Step;

Spider.Step;

Spider.TurnRight;

Spider.Quit;

END Draw_Box;

Sample Run of Program 2.5

A « * e & ¢ & = « & s ¢ e
| < | e s s e s s e e e s e s s
| B |
-— e e e s e e s a e e s e
e s s e s e s e e s e s e
ot e e e s s e e e e e e
e e e s e s e e e e e e e
e« s o oo s RRRB
e o o s e s Ko o B oo o o
P D -
e« s s e« s KGG*,
et e e e a e e e e e e e
S
e e e e e e e e e s e e e
e e e e s e s e e e e e e
e o b s s e s s s s e b e »
e e e e e e s e s e e e e
e e s e s s e e e s e e e
e e e e e e e e e e e e e
e e e e s e e e e e e e

e o o s ® + 8 s e 8 & 3 e & ¥ = e o &

" s & e o o s

e 6 0 o e s e & s s e

e s ¢ o e 3 e s o =

s s o o s & &

e 5 e e e & s o s o o e o

¢ o & @ o 8 ® e s e 3 e e ® & s v 2 v =

« o e 8 ¢ o v s o e s

2.3 Algorithins with Single Loops 49

EXERCISES FOR SECTION 2.2

1. Write a spider program that requests the spider to draw two of your initials on
the screen. For example,

X X XXXXX XXXXX X
XX XX X X X
XXX XXX XXX or XXX X
X X X X X X X
X X X XXXXX XXXXX

2.3 Algorithms with Single Loops

Program 2.5 contains four sequences of almost identical statements. Leaving aside
color changes for 2 moment, Program 2.5 contains sequences of the form

Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

This sequence appears four times in this straight-line program.
Algorithms quite frequently involve repetitive sequences of steps. Indeed, we could
write the basic box-drawing algorithm as a repetition:

Algorithm for drawing a box:

1. Repeat steps 1.1 and 1.2 four times.
1.1 Take three steps forward.
12 Turmn right.

In programming, a repetition is generally called a loop. We can translate this algo-
rithm into a program that uses an Ada control structure called the For construct. Pro-
gram 2.6 contains just such a structure. The phrases

FOR Side IN 1..4 LOOP
and
END LOOP;

instruct the spider to repeat, four times, whichever statement or sequence of statements
appears between them. These two phrases are said to bracket the intervening state-
ments; the intervening statements themselves are called the loop body. The For con-
struct in this case starts a counter, called Side here, with the value 1, and carries out the
loop body for each value of the counter from 1 to 4 inclusive (that is what 1. .4 means).

50 Introducing Algorithms: Adventures of the Spider

Program 2.6 The Spider Draws a Box Using a Loop Control Structure

WITH Spider;
PROCEDURE Draw_Box_with_1_Loop IS

--| Praw 4 x 4 box with spider - use loop
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Draw_Box with_ 1_Loop

Spider.Start;
Spider.ChangeColor (NewColor => Spider.Red);

FOR Side IN 1..4 LOOP
Spider.Step;
Spider.Step;
Spider.Step;
Spider.TurnRight;

END LOOP;

Spider.Quit;

END Draw_Box_with_l_Loop;

Sample Run of Program 2.6

e e e e e e e e
P2l

O

| R | e e s e s n e e e e e e e ae e s

- « ® & s s e e * 8 e s 4 e = 2+ * ¢ & » o

B

B

T

.. « e+« «RRRR .+«

B N I

T T

c v st s e e e *RRR . v o 0 o

.. e e e e e e e e e e e e e

e e e e e e e e e e e e e e e

S

e e e e e e e e e e e e e e e e e

B

e e e e e e e e e e e e e e e e

T

e e e e e e e e e e e e e e

I ..

2.3 Algorithms with Single Loops 51

Random Directions and Colors

The box drawn by the spider in Program 2.6 is exactly the same every time the program
is run: always in the same location, always red. Let’s make the program more interest-
ing by causing the spider to start walking in a randomly selected direction, and to
change the color of each side by a random color selection. We can get random colors
and directions from these two spider operations:

FUNCTION RandomDirection RETURN Directions;
-- Pre: None
~=- Post: Returns a random direction

FUNCTION RandomColor RETURN Colors;
-= Pre: None
-- Post: Returns a random color

These have obvious meanings, made more so by the postconditions. Program 2.7
makes use of these operations to draw a box that will look different each time the pro-
gram is one. The sample run shows just one execution; try running the program a num-
ber of times to observe its behavior.

Program 2.7 Drawing a Box Using Random Colors and Starting Direction

PROCEDURE Draw_Box with_1_Loop_2 IS

~-| Draw 4 x 4 box with spider -~ use loop

--| Colors and starting direction are selected randomly

~=| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Draw_Box with_1l Loop_2

Spider.Start;
Spider.Face(WhichWay => Spider.RandomDirection);

FOR Side IN 1..4 LOOP
Spider.ChangeColor(NewColor => Spider.RandomColor);
Spider.step;
Spider.step;
Spider.step;
Spider.TurnRight;
END LOOP;

Spider.Quit;

END Draw_Box with_l_Loop_2;

52 Introducing Algorithms: Adventures of the Spider

Sample Run of Program 2.7

| > | D

0 S 1 P
-
......... Roe e Ko v oo o oo
......... R'e oK oo oo oo
......... RRRR ..o oo

EXERCISES FOR SECTION 2.3_

1.

Write and test a program that instructs the spider to draw a pattern in the shape
of a highway "yield" sign, that is,

R R
R

Hints: Start the spider facing west, draw the top line, and so on. Also note that
you can get the spider to draw a “blank” by changing its color to None.

24 Algorithms with Nested Loops

Programs 2.6 and 2.7 both contain a sequence of statements

Spider.Step;
Spider.Step;
Spider.Step;

2.4 Algorithms with Nested Loops 53

which is, itself, a repetition. Let’s take this into account by rewriting the box-drawing
algorithm, adding the color change as we go:

Algorithm for drawing a box:
1. Repeat steps 1.1 through 1.3 four times.

1.1 Choose a color.

1.2 Repeat step 1.2.1 three times.
1.2.1 Take one step forward.

1.3 Turn right.

This algorithm is saying that each of the four times we reach step 1.2, we execute
step 1.2.1 three times. The real power in algorithms is that we can combine straight-line
sequences with repetitions (and conditional executions, as we shall see shortly) in
almost unlimited ways.

How can we represent this new algorithm in a program? We can combine control
structures, to reflect the algorithm steps. In this case we can include an entire For con-
struct inside another one. To put it another way, a statement in a loop body can be
another entire loop construct. This is called nesting control structures. Program 2.8
shows this: The inner loop construct

FOR Count IN 1..5 LOOP
Spider.step;
END LOOP;

is nested inside the outer one; for variety we changed the number of steps to 5. We use
indentation in the program to highlight the nesting, as we use indentation in algorithms
and other outlining methods. The indentation is not required by the compiler, but it cer-
tainly makes a difference in the clarity of the program! The behavior of this program is
very similar to that of Program 2.7, so we have omitted the sample run. Try running it
yourself several times to observe the randomness again.

Program 2.8 The Spider Draws a Box Using Nested Loop Control Structures

WITH Spider;
PROCEDURE Drav_Box_with_2_ Loops IS

~-~| Draw 4 x 4 box with spider - use nested loops
--| Aauthor: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -~ Draw_Box_with_2 Loops

Spider.start;
Spider.Face(WhichWay => Spider.RandomDirection);

FOR Side IN 1..4 LOOP
Spider.ChangeColor(NewColor => Spider.RandomColor);
FOR Count IN 1..5 LOOP
Spider.Step;
END LOOP;
Spider.TurnRight;

54 Introducing Algorithms: Adventures of the Spider

END LOOP;
Spider.Quit;

END Draw_Box_with_2_Loops;

Spiral Patterns

So far, our loop constructs have used literals to represent the bounds (starting and end-
ing values) of the counters. This is not required; loop bounds can vary. To see this, con-
sider the loop structure of Program 2.9:

FOR Line IN 1..10 LOOP
spider.ChangeColor(NewColor => Spider.RandomColor);

-~ inner loop takes its bound from outer count
FOR Count IN 1..Line LOOP

Spider.Step;
END LOOP;

Spider.TurnRight;
END LOOP;

As the comment indicates, the inner loop takes its high bound from the current
value of the outer loop’s counter. When the first line is being drawn (Line is 1), the
inner loop counter ranges from 1 to 1, so the spider takes one step. When the second
line is drawn (Line is 2), the spider takes two steps, and so on until the spider takes ten
steps to draw the tenth line. This results in the spiral pattern shown in the sample run;
make sure you understand how this happens.

Program 2.9 The Spider Draws a Spiral Pattern

WITH Spider;
PROCEDURE Spiral IS

~--| praw spiral pattern with spider - use nested loops
-~| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Spiral

Spider.Start;
spider.Face(WhichWay => Spider.RandomDirection);

-~ draw ten lines, starting in a random direction
FOR Line IN 1..10 LOOP
Spider.ChangeColor (NewColor => Spider.RandomColor});

-- inner loop takes its bound from outer count
FOR Count IN 1l..Line LOOP

Spider.sStep;
END LOOP;

Spider.TurnRight;
END LOOP;

2.4 Algorithms with Nested Loops 55

Spider.Quit;
END Spiral;

Sample Run of Program 2.9

| ~ | et e e e e e e e e e e e e e
| 6] S e vt e s s e e e e e e e e e ..
«+++«.RRRRRRRRR......
O e
©+ e+« K.RRRRR.R.
« e e+ KE.KL. L LURVR e ...
« e+ e+ K.K.B.R.R. s
c e+« K.KGG.R.R. .,
S L T
«+++« . KRRRRRR.R.
B
«+ .*GGGGGGGGGG

EXERCISES FOR SECTION 2.4

1. Write and test a program that instructs the spider to draw a pattern in the shape
of a solid triangle, that is,

B

BB

BBB
BBBB
BBBBB
BBBBBB

2. Write a spider program to draw a checkerboard pattern, that is,

GGGG
GGGG

GGGG
GGGG

56 Introducing Algorithms: Adventures of the Spider

2.5 Algorithms with Conditional Execution

Another important algorithmic structure is conditional execution. To introduce the need
for this, consider Program 2.10, which commands the spider to take 12 steps forward.
As you can see from the sample run, this program terminates with the raising of an
exception, in this case spider.Hit_the_Wall.

Program 2.10 The Spider Crashes into a Wall

WITH Spider;
PROCEDURE Spider_Crash IS

--| This program demonstrates an Ada 95 runtime error.

--| Spider tries to take 12 steps from center of room;

-] it hits the wall and an exception is raised.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN ~- Spider Crash

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Red);

FOR Count IN 1..12 LOOP
Spider.Step;
END LOOP;

Spider.Quit;

END Spider_ Crash;

Because the spider started out in the middle of its room, it could not take more than
ten steps forward in the same direction; its crashing into the wall is simulated in the spi-
der package by this exception. The traceback—whose form, like that of a listing file,
depends on the compiler— shows the line number in spider_crash in which the excep-
tion was raised, in this case line 16, or the spider.step statement. The traceback also
shows where the exception originated, back in the spider package body, but we are not
studying that body yet.

The exception is Ada’s mechanism for signaling an error condition in a program. A
raised exception can be handled by the subprogram in which it raised, or by the one
that called that subprogram, or, eventually, by the main program. The Ada standard pre-
scribes that when an exception is raised in some called subprogram and is not handled
there, it is propagated (passed back to) to the calling subprogram. If no subprogram
handles the exception, it eventually comes back to the main program. If it is not han-
dled in the main program either, the main program terminates, with or without a com-
piler-dependent traceback. -

2.5 Algorithms with Conditional Execution 57

Sample Run of Program 2.10

“ & s e o s o
PR T T Y
o o e & o & o e o
« » s e e s .
P S
.
« s s & & o .
.
-
* e e s s e e e
« e o s o
. .
.
v & e .
e e s e s & o e

P e e s s s e e s s s 8 e s s e
I
e o e e
s WMV HOVDTONOW
e s e s e 0 s e
e e e e
e e s e v s e s

« o e .
.
e ¢ e o+

.
« e e v e @
-
.

.
e o e o o

raised SPIDER.HIT_ THE_WALL
Traceback Information

Program Name File Name Line
spider.step spider.adb 264
spider_crash spider_crash.adb 16

Using Conditional Execution to Prevent Run-Time Exceptions

We will take up exception handling in detail in Chapter 7. Meanwhile, it is important to
consider how to prevent the exception from being raised. In this case the spider pro-
gram can check to see whether the spider will step into a wall, using a conditional exe-
cution. The spider package provides a condition-testing, or Boolean operation

FUNCTION AtWall RETURN Boolean;
-- Pre: None
-- Post: Returns True if the spider is standing next to a wall

which will be true if, and only if, the spider will hit the wall on its next step.
Now in Program 2.11 the lines

IF Spider.AtWall THEN
EXIT;
END IF;

58 Introducing Algorithms: Adventures of the Spider

test the condition spider.atwall. If the condition is true, the EXIT statement causes the
program to exit the repetition early, continuing execution just below exp zoop. The
effect of this in the current program is that the spider walks up to, but not into, the wall.
You can see from the sample run that this program terminates normally, with no excep-
tion.

Program 2.11 The Spider Goes to the Wall and Stops

WITH Spider;
PROCEDURE Go_to_Wall IS

~--| Spider steps up to the first wall it meets, then stops
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -~ Go_to_Wall

Spider.start;
Spider.ChangeColor(NewColor => Spider.Blue);

FOR Count IN 1..12 LOOP
IF Spider.AtWall THEN
EXIT;
END IF;
Spider.sStep;
END LOOP;

Spider.Quit;

END Go_to_Wall;

The General Loop Structure

In Program 2.11 the spider tries to count to 12 but never gets there because it reaches
the wall and stops. In fact, it is unnecessary to count at all. We can use a general loop
construct for this, as Program 2.12 shows.

Program 2.12 The Spider Goes to the Wall, Using a General Loop Structure

WITH Spider;
PROCEDURE Go_to_Wall_2 IS

—-| spider steps up to the first wall it meets, then stops

—-| This version uses a general loop instead of a counting loop
~-| Author: M. B. Feldman, The George Washington University

--| Last Modified: July 1998

BEGIN -- Go_to_Wall 2

Spider.start;
Spider.ChangeColor (NewColor => Spider.Blue);

LOOP

2.5 Algorithms with Conditional Execution 59

IF Spider.AtWall THEN
EXIT;
END IF;
Spider.Step;
END LOOP;

Spider.Quit;

END Go_to_Wall 2;

A general loop structure looks like a For structure without a For phrase. In the
statements

LooP
IF Spider.AtWall THEN
EXIT;
END IF;
Spider.Step;
END LOOP;

each time the program reaches the end of the loop body —in this case, after it has exe-
cuted Spider.step—it returns to the top of the loop body and executes the body again.
Since the first statement of the loop body is our condition-testing construct, the pro-
gram has the desired effect: it keeps looping until the spider reaches the wall, then
stops.

General loops like this must be used with care. What if the condition never
becomes true? (This will not happen in this program, of course, but might happen in
some other program.) The program will keep looping indefinitely. Programs (especially
embedded ones) are sometimes written to loop indefinitely, and we will see one shortly,
but a program that unintentionally loops without stopping is a program with a bug in it!

Program 2.13 builds on the previous one by commanding the spider to take a walk
around the edges of its room. The first section of the program repeats the general loop
of Program 2.12; the second section consists of a four-repetition counting loop, inside
of which is nested another general loop as above.

Program 2.13 The Spider Tours lts Room

WITH Spider;
PROCEDURE Tour_Room IS

--| spider takes a tour around the edges of its room.
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Tour_Room

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

-- first get to a wall
LOOP
IF Spider.AtWall THEN
EXIT;
END IF;

60 Introducing Algorithms: Adventures of the Spider

Spider.Step;
END LOOP;

~- now turn and tour the four walls
FOR Wall IN 1..4 LOOP
Spider.TurnRight;

-~ walk the length of this wall
LOOP

IF Spider.AtWall THEN

EXIT;

END IF;

Spider.Step;
END LOOP;

END LOOP;

Spider.Quit;

END Tour_Room;

Sample Run of Program 2.13

— *..%+.....BBBBBBBBBBB
| ~ 1 B.ovoeooveeweeBooooess..B
| B | BuovoevewsoBioewoeoewaooB
-—- - O - T R -
B...+.eoeee6Boooocoes. B
- S - B -
- S - Y -
B...:.e:.ooeB.oooooueoe..B
B..:ovoooeesBooseeso.. B
Be oo ooeeeeBoeoeasoasa B
BuevoveweoeoBoeoeoessos B
B e v o o ¢ ¢ s o s e o oo o+ o4 B
B e v o vt s o o s s s s o e B
B o ¢ o o v e s s o s o s o s s 4. B
B o v v o o o s s o s s oo e+ .B
B o o o s o o o o e o a s s 400048
B o o o o o o o o o s o s o s s s+ B
B o v v o o o o = s o « o« s s s s+ 4+ B
B o o v ¢ o s o a s auwaees e sB
BEBBEBBBBBBBBBBBBBBB

Using EXIT WHEN instead of IF for Conditional Loop Execution

Program 2.14 is very similar to Program 2.13, with identical screen behavior (and,
therefore, no sample run). :

2.5 Algorithms with Conditional Execution 61

Program 2.14 The Spider Tours Its Room, Using EXIT WHEN

WITH Spider;
PROCEDURE Tour_Room 2 IS

--| Spider takes a tour around the edges of its room.

--| This version uses EXIT WHEN instead of IF.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

BEGIN -- Tour_ Room 2

Spider.Start;
Spider.ChangeColor(NewColor => Spider.Blue);

-- first get to a wall
LOOP
EXIT WHEN Spider.AtWall;
Spider.Step;
END LCOP;

-- now turn and tour the four walls
FOR Wall IN 1..4 LOOP
Spider.TurnRight;

-- walk the length of this wall
LOOP
EXIT WHEN Spider.AtWall;
Spider.Step;
END LOOP;
END LOOP;

Spider.Quit;
END Tour_Room_2;
The difference is that the two conditional statements

IF Spider.AtWall THEN
EXIT;
END IF;

are replaced with a more concise Ada equivalent,
EXIT WHEN Spider.AtwWall;
which gives the indefinite loop construct
LOOP
EXIT WHEN Spider.Atwall;

Spider.Step;
END LOOP;

62 Introducing Algorithms: Adventures of the Spider

EXERCISE FOR SECTION 25

1. Modify Program 2.14 so that the spider covers the four walls completely but
does not visit any parts of the walls a second time. Hint: Count the number of
steps the spider takes while touring the first wall and the number of steps in
touring the third (parallel) wall.

2.6 Putting It All Together: The Drunken Spider

Finally, we develop a spider program that puts together everything we've learned here.
Imagine that the spider discovers a large glass of beer in its room and drinks enough
beer to become inebriated (a fancy word for “drunk”). The spider tries to tour its room
but is too drunk to do this properly. Instead, the spider tries to take a random number of
steps. If it does so without reaching a wall, it turns right, selects another random num-
ber, and resumes walking. If the spider reaches a wall, it turns around and walks in the
opposite direction, completing its count in the new direction. You can probably under-
stand this program, Program 2.15, without further explanation.

Program 2.15 The Drunken Spider

WITH Spider;
PROCEDURE Drunken_Spider IS

--| Spider tries to tour its room but has drunk too much, so
--| takes a random number of steps and may hit the wall. If the
--| spider hits the wall, it turns around and keeps going.

--| Author: M. B. Feldman, The George Washington University

--| Last Modified: July 1998

BEGIN -- Drunken_Spider
Spider.Start;
LOOP -- keep going forever

Spider.Face(WhichWay => Spider.RandomDirection);
Spider.ChangeColor (NewColor => Spider.RandomColor);

-- Spider will count steps correctly
-- but might change direction
FOR Count IN 1l..Spider.RandomStep LOOP

IF Spider.AtWall THEN
Spider.TurnRight;
Spider.TurnRight;

END IF;

Spider.Step;

Chapter Review 63

END LOOP;
Spider.TurnRight;
END LOOP;

END Drunken_Spider;

Sample Run of Program 2.15

| B | c e e e e e e s+ eGGGGEG
-— D
D
e 2 - T
D B -
.+ .KKKKKKKKKKKKK. ...
e e v K i i i i U URB e e e e
B S | B -
KKKKKKKKKKRB . « ¢ 4 o4 4.
c KoL L 0 RB L. ..
e v « K i i iV U RB e e
e e o Koo o v o o RB . tu e
c e « Ko i i i 0 URB e e e .
e v B ... RGGGGGGGGG
« « + B .. © e s e e e s o s e e s o
D -
...BBBBBBBBBBB*C
D -

The main loop in this program is a general loop without a count or ExxT condition
to terminate it. It is therefore a program that will loop indefinitely. This is similar to the
program in an automatic teller machine or similar embedded program, which termi-
nates only when the equipment itself is shut off. In our case, we need not shut off the
computer. Rather, in most computers, pressing the coNTRoL and ¢ keys simuitaneously
(usually referred to as ctr1-c) will terminate your currently executing program. In the
sample run of brunken_spider, we pressed ctrl-c to stop the program; most terminals
will display this on the screen as “c, and you can see this here at the end of the bottom
row of Bs.

CHAPTER REVIEW |

RS St

i

The goal of this chapter has been to get you started with developing algorithms and
implementing them as programs using control structures. We introduced straight-line
algorithms, as well as those with single and nested repetitive loops and with conditional

64 Introducing Algorithms: Adventures of the Spider

execution. The spider has served as an easy-to-understand mechanism for introducing
these structures; the patterns drawn by the spider gave you obvious feedback on the
behavior of the spider programs.

Each structure and technique that we discuss here is covered in full detail, with
many more applications, in the chapters to come: straight-line programming in Chap-
ters 3 and 4, conditional execution in Chapter 5, counting loops in Chapter 6, general
loops and exception handling in Chapter 7.

In this chapter—and most of the book—all the programs are in standard, plat-
form-independent Ada, assuming only that your computer has a simple monochrome
screen with 24 rows and 80 columns. In case you are wondering how to do high-resolu-
tion or color graphics with Ada, Appendix A shows how to do just this and even pro-
vides a high-resolution color spider package. High-resolution color graphics is always
dependent upon a particular “platform” (computer plus operating system) and the kind
of monitor you have.

CHAPTER 3

Introduction to Straight-Line
Programs

3.1 The General Structure of Ada Programs

3.2 System Structures: Numerical Input and Output

33 Data Structures: Declaring Constant and Variable Objects
34 System Structures: General Form of an Ada Program

3.5 Problem Solving: Software Development lllustrated

3.6 Control Structures: Assignment Statements

3.7 Control Structures: Input/Output Statements

3.8 Data Structures: Introduction to Data Types and Expressions
3.9 Tricks of the Trade: Common Programming Errors

- Chapter Review

Programming is a problem-solving activity. If you are a good problem solver, you have
the potential to become a good programmer. One goal of this book is to help you
improve your problem-solving ability. It is beneficial to approach each programming
problem in a systematic and consistent way. In this chapter we show you how to apply
the software development method that we introduced in Chapter 1.

A straight-line program is one in which the execution flows in a straight line from
the beginning to the end. There is no repetition of statements already executed; there is
no opportunity for the program to take alternative paths depending on conditions in its
data. This chapter and the next one focus on developing straight-line programs; Chapter
5 introduces alternative paths and Chapter 6 introduces repetition.

Historically, straight-line programs have been called sequential programs. More
recently, “sequential program” has been used in contrast to “parallel program” or “con-
current program.” The two meanings of “sequential” can be confusing. For clarity,
therefore, we use “straight-line program” here.

65

66 Introduction to Straight-Line Programs
3.1 The General Structure of Ada Programs

Let us start our systematic study of programming by building on the simple Ada pro-
gram introduced as Program 1.1.

B Example 3.1

Program 3.1 is similar to Program 1.1 but with the important difference that instead of
just displaying a greeting, this program asks the user (the person running the program)
to enter his or her initials, then greets the user with these initials. In general we will not
show the programs with numbered lines, but we do so here for extra clarity.

Program 3.1 Displaying Initials

1. WITH Ada.Text_IO;

2. PROCEDURE Hello_Initials I8
3.
4, --| Requests, then displays, user's first and last initials.
5. --| Author: Michael Feldman, The George Washington University
6. --| Last Modified: June 1998

7.

8.

9. Initiall : Character; -- objects that hold initials
10. Initial2 : Character;

11.

12. BEGIN -- Hello_lInitials

13.
14. -- Prompt for (request user to enter) user's initials

15. ada.Text_IO.Put(Item => "Enter your two initials> *);
16. Ada.Text_IO.Get(Item => Initiall);

17. Ada.Text_IO.Get(Item => Initial2);

18.

19. -- Display user's initials, with a greeting

20. Ada.Text_I0.Put(Item => "Hello ");

21. Ada.Text_IO.Put(Item => Initiall);

22. Ada.Text_IO.Put(Item => Initial2);

23. Ada.Text_IO.Put(Item => “. Enjoy studying Adal");
24. Ada.Text_IO.New_Line;

25.

26. END Hello_Initials;

Sample Run

Enter your two initials> MF
Hello MF. Enjoy studying Ada!

Lines 9 and 10 identify the names of two variable objects (initiall and
Initial2)—memory cells that will be used to store the initials. A comment is used at
the end of line 9 to indicate the purpose of these variable objects. The section of the
program between the reserved word 1s (line 2) and the reserved word BecIn (line 12)
is called the declarative section, or sometimes just the declarations. Generally, this sec-
tion describes objects (such as our two variable objects here) and rypes (more on this
later) to the compiler.

3.1 The General Structure of Ada Programs 67

As in Program 1.1 and all the other programs in this book, the first few lines of this
program—in this case, lines 3 through 7—constitute a banner comment identifying the
author, date, and purpose of the program. Comments also appear in lines 14 and 19;
each comment serves as a brief description of the following program section. Com-
ments are ignored by the compiler but make up an important part of the program docu-
mentation.

The statements in lines 15 through 17 are all calls to input/output procedures. As
before, each statement containing Ada.Text_I0.Put causes some information to be
displayed on the video screen during program execution. The statement

Ada.Text_IO.Put(Item => "Enter your two initials> ");
asks the program user to enter two letters. The statements

Ada.Text_IO.Get(Item => Initiall);
Ada.Text_IO.Get(Item => Initial2);

cause the program to wait until two letters are entered on the keyboard by the program
user. These letters are “read” (stored) into the two memory cells listed, one letter per
cell. The last output line of the program is displayed by the ada.Text_Io.Put state-
ments in lines 20 through 24. These statements display the string "Hello -, the two let-
ters just read, and finally the longer greeting message. The symbol => is known as
“arrow,” and it is proper to pronounce a phrase like Item => Initiall as “Item arrow
Initiall” u

| Example 3.2

Program 3.2 is similar to Program 3.1 except that it reads a person’s name instead of
just that person’s initials. The declaration of FirstName describes a variable object that
is able to hold a sequence of exactly ten characters (letters, digits, etc.). That is why the
prompt lines request an entry of exactly that many letters.

Program 3.2 Displaying the User’s Name

WITH Ada.Text_IO;
PROCEDURE Hello_Name IS

--| Requests, then displays, user's name
-=| Author: Michael Feldman, The George Washington University
--| Last Modified: June 1998

FirstName: String(l1..10); -- object to hold user‘s name
BEGIN -- Hello_Name

-~ Prompt for (request user to enter) user's name
Ada.Text_I0.Put

(Item => "Enter your first name, exactly 10 letters.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Put

(Item => "Add spaces at the end if it's shorter.> ");
Ada. Text IO.Get(Item => FirstName);

68 Introduction to Straight-Line Programs

-- Display the entered name, with a greeting
Ada.Text_IO.Put(Item => "Hello “);
Ada.Text_IO.Put{Item => FirstName);
Ada.Text_IO.Put(Item => ". Enjoy studying Ada!");
Ada.Text_IO.New Line;

END Hello_Name;
Sample Run

Enter your first name, exactly 10 letters.
Add spaces at the end if it's shorter.> Michael
Hello Michael . Enjoy studying Ada!

Note that in the prompting section of this program, two of the statements are spread
over two lines. It is perfectly acceptable, and often desirable, to break up a statement in
this fashion, especially if it serves to fit the statements more esthetically onto displayed
or printed lines. We can split an Ada statement anywhere except in the middle of a word
or in the middle of a quoted string. Also, if a comment is split over two or more lines,
each line must begin with --. |

Reserved Words and ldentifiers

All of the lines in the preceding programs satisfy the syntax rules for the Ada language.
The programs contain several different elements: reserved words (keywords), pre-
defined identifiers, special symbols, and names for memory cells. Let’s look at the first
three categories. The reserved words all appear in this book in uppercase; they have
special meanings in Ada and cannot be used for other purposes. The reserved words in
Programs 1.1, 3.1, and 3.2 are (in order of appearance)

WITH PROCEDURE IS BEGIN END

The predefined identifiers also have special meanings, but they can be used by the
programmer for other purposes (however, we don’t recommend this practice). The pre-
defined identifiers in Programs 1.1, 3.1, and 3.2 are (in order of appearance)

Ada.Text_IO Put New_Line Character Get String

There are also some symbols (e.g., =, *, >=) that have special meanings in Ada.
Appendix B contains a complete list of reserved words and special symbols; Appendix
C summarizes the predefined identifiers.

What is the difference between reserved words and predefined identifiers? You can-
not use a reserved word as the name of a memory cell, but in certain cases you can use
a predefined identifier. Exactly how Ada would treat such a “reused” predefined identi-
fier depends on just which identifier is involved. In any case the result would be very
confusing to the reader of the program. Therefore we strongly recommend that you
treat predefined identifiers as though they were reserved words and refrain from reusing
them.

The other identifiers that appear in the three sample programs are described in more
detail in the next sections.

PROGRAM
STYLE

3.1 The General Structure of Ada Programs 69

Use of Uppercase and Lowercase

Throughout the text, issues of good programming style are discussed in displays
like this one. Programming style displays provide guidelines for improving the
appearance and the readability of your programs.

Most programs are examined, studied, and used by someone other than the
original author. A program that follows consistent style conventions is easier to
read and understand than one that is sloppy or inconsistent. These conventions
have no effect whatsoever on the computer; they just make it much easier for
humans to understand programs. ;

In this text, reserved words always appear in uppercase. This is because the
reserved words determine the structure and organization of the program. Writing
them in uppercase, combined with a consistent indentation style, makes the struc-
ture and organization of the program immediately visible to the human eye.

Identifiers are in mixed uppercase and lowercase. The first letter of each iden-
tifier is capitalized. If an identifier consists of two or more words (such as
New_Line), each word is usually capitalized, and the words are sometimes sepa-
rated by an underscore character.

The compiler does not differentiate between uppercase and lowercase in
reading your program. You could write the reserved word BEGIN as begin and the
predefined identifier character as CHARACTER or even CharAcTeR. The compiler
doesn’t care, but we do, as humans striving for clarity and consistency. The com-
piler does, however, treat the underscore as a character, so Two_words is different
from TwoWords.

Your instructor may prefer a different convention,; if so, it is prudent to follow
it. In the end, what matters most is using a well-thought-out and consistent pro-

gramming style.

Programs and Packages

Ada is a language that is designed for writing real-world programs that can be very
large, sometimes numbering hundreds of thousands of statements. Because a single
program file of that length would be completely unmanageable for humans and com-
puters alike, Ada is built around the idea of libraries and packages. Using these, sets of
commonly used operations can be tested once and then put in a library for others to use.
Ada comes with many standard, predefined packages; one that you will use very often
is ada.Text_10. All the predefined Ada libraries begin with the form ada. Later in the
book you will learn how to use other predefined packages and to write packages of your
own. For now, keep in mind that almost every Ada program is preceded by at least one
wiTH clause (formally called a context clause) of the form

WITH Package_Name;

wiTH clauses inform the compiler to which packages it must refer in order to understand
the operations you are using. Preceding a program by the context clause

WITH Ada.Text_IO;

70 Introduction to Straight-Line Programs

informs the compiler that the program will be using this package to read input data
from the keyboard and display output data on the monitor. Omitting the context clause
would cause one or more compilation errors.

3.2 System Structures: Numerical Input and Output

So far, our program examples have used only character and string quantities. Comput-
ers are commonly used to work with numbers, so it is time for a numerical example or
two. Computer programs use two general kinds of numerical values: integer values,
such as 0, 2, and 1048, which are “whole numbers” with no fractional part, and floar-
ing-point values, such as 0.0, 3.14159 and -185.7, which are numbers with fractional
parts. Ada requires us, generally, to keep integer numbers and floating-point numbers
separate and not to mix them in the same calculation.

In Ada, reading numerical values from the keyboard or a file, and writing or dis-
playing these, are done by using two important components of the standard Ada librar-
ies, called Ada.Integer_Text I0 and Ada.Float_Text_I0. You now know of three
input/output packages. If your program reads or dlsplays ordinary characters and
strings or uses Ada.Text_IO.New_Line, precede your program with a context clause:

WITH Ada.Text IO;

If your program reads and displays integer quantities, precede it by

WITH Ada.Integer_ Text IO;

If your program reads and displays floating-point quantities, precede it by
WITH Ada.Float_ Text_IO;

It is permissible to have two, or even all three, context clauses, if necessary.

B Example 3.3
Program 3.3 converts inches to centimeters.
Program 3.3 Converting Inches to Centimeters

WITH Ada.Text_IO;
WITH Ada. Float_Text_IO H
PROCEDURE Inch_to_CM IS

--| Converts inches to centimeters
--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: June 1998

CMPerInch : CONSTANT Float := 2.54;
Inches : Float;
Centimeters : Float;

3.2 System Structures: Numerical Input and Output 71

BEGIN -- Inch_to_CM

-=- Prompt user for value in inches
Ada.Text_IO.Put (Item => "Enter a length in inches> ");
Ada.Float_Text_I0.Get (Item => Inches);

-- Compute equivalent value in centimeters
Centimeters := CMPerInch * Inches;

-~ Display result

Ada.Text_IO.Put (Item => "That equals ");
Ada.Float_Text_IO.Put (Item => Centimeters);
Ada.Text_IO.Put (Item => * centimeters");
Ada.Text_IO.New_Line;

END Inch_to_CM;
Sample Run

Enter a length in inches> 30.5
That equals 7.74700E+01 centimeters

The number of inches to be converted is read into the variable object Inches by the
statement

Ada.Float_Text_IO.Get (Item => Inches);

The Get statement looks similar to the one in the earlier examples. There are many
different et statements in the input/output libraries; they have in common the fact that
each is able to accept keyboard input and store it in a single data element. As before, we
write the prefix Ada.Float_Text_10 to indicate that we are interested in the Get sup-
plied by the floating-point input/output package.

The statement

Centimeters := CMPerInch * Inches;

computes the equivalent length in centimeters by multiplying the length in inches by

the floating-point constant 2.54 (the number of centimeters per inch); the product is

stored in memory cell centimeters. The symbol : = is called the assignment symbol.
The statement

Ada.Float_Text_IO.Put (Item => Centimeters);

displays the value of centimeters as the floating-point number 7.74700E+01 in scien-
tific notation. The value printed is equivalent to 7.747 x 10, or 77.47, as will be
explained later.

Suppose the user enters a negative number of inches at the keyboard (say, —1.45).
The program will compute a negative number of centimeters. Whether this is appropri-
ate or not depends on the use we are making of the program. Throughout this book we
will be introducing better and better ways of ensuring that user input is appropriate
before proceeding to a caiculation that may not make sense. At this stage we can only
identify the problem; we do not yet have the tools to solve it. |

72 Introduction to Straight-Line Programs

B Example 3.4

Program 3.4 computes the distance of an automobile trip by asking the user to enter the
estimated trip time in hours and the average speed in miles per hour.

Program 3.4 Finding Distance Traveled

WITH Ada.Text_IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Distance IS

--| Finds distance traveled, given travel time and average speed
--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: June 1998

HowLong : Natural;
HowFast : Natural;
HowFar : Natural;

BEGIN -- Distance

-- prompt user for hours and average speed
Ada.Text_IO.Put

(Item => "How many hours will you be driving (integer) ? *);
Ada.Integer_Text_IO.Get (Item => Howlong);
Ada.Text_IO.Put

(Item=>"At what average speed (miles per hour, integer) ? ");
Ada.Integer_Text IO.Get (Item => HowFast);

-- compute distance driven
HowFar := HowFast * HowLong;

-- display results

Ada.Text_IO.Put (Item => "You will travel about ");
Ada.Integer_ Text_IO.Put (Item => HowFar);

Ada.Text_ IO.Put (Item => " miles");
Ada.Text_IO.New_Line;

END Distance;
Sample Run

How many hours will you be driving (integer) ? 3
At what average speed (miles per hour, integer) ? 55
You will travel about 165 miles

The numbers are nonnegative integer values (type Natural, which includes zero).
Nonnegative integers are still integers, so we can make use of the integer input/output
package Ada.Integer_Text 10, calling the Get and Put operations there.

In Programs 3.3 and 3 4 there are two context clauses (W1TH clauses) preceding the
program. Why do we need both? Because we are displaying prompts to request user
input as well as titles to make the output meaningful, we need to use the charac-
ter-string part of Ada.Text_zo to do this, in addition to the appropriate numerical
input/output package. Ada requires us to supply context clauses for all packages we are
using.

3.3 Data Structures: Declaring Constant and Variable Objects 73

In testing this program, we entered positive numbers for the trip time and speed.
You might find it interesting to execute the program yourself and enter a negative num-
ber. An exception will be raised. This will be discussed in Section 3.11. .

3.3 Data Structures: Declaring Constant and Variable Objects

Every program begins with one or more context clauses, followed by a program head-
ing such as

PROCEDURE Distance IS

We tell the Ada compiler the names of memory cells used in a program through
object (constant and variable) declarations. The programs seen so far contained decla-
rations for constants and variables. The constant declaration

CMPerInch: CONSTANT Float := 3.54;

in Program 3.3 specifies that the identifier cMperznch will be used as the name of the
constant value 2.54. Identifiers that are declared in a constant declaration are called
constants. Data values that will not change (for example, the number of centimeters per
inch is always 2.54) should be associated with an identifier that is a constant. Any Ada
statement (other than the declaration) that attempts to change the value of a constant
will give rise to a compilation error. A good reason for using constants in a program is
that accidental attempts to change constant values will be caught by the compiler.
The variable object declarations

Initiall: Character;
Initial2: Character;

in Program 3.1 give the names of two identifiers that will be used to reference data
items that are individual characters as denoted by the predefined identifier character.
The variable declarations

Inches : Float;
Centimeters: Float;

in Program 3.3 give the names of two identifiers that will be used to reference data
items that are floating-point values (for example, 30.0 and 563.57) as denoted by the
predefined identifier Float. The variable declarations in Program 3.4

HowLong: Natural;
HowFast: Natural;
HowFar : Natural;

give the names of three identifers whose values will be nonnegative integers, using
Ada’s predefined integer type Natural. We wish these numbers to be nonnegative
because negative time and negative speed do not make good physical sense. We will
come back frequently to the question of defining sensible ranges of values for our vari-
ables.

74 Introduction to Straight-Line Programs

An identifier given in a variable declaration statement to the left of the : (colon)
symbol is called a variable object, or usually just variable. Variables are used in a pro-
gram for storing input data items and computational results. The identifier appearing to
the right of the : symbol (for example, Integer, Float, Character, String) tells the
Ada compiler the data type (for example, an integer value, a floating-point value, a sin-
gle character, or a sequence of characters) of the data that will be stored in the variable.
Data types will be considered in more detail in Section 3.9.

You have quite a bit of freedom in selecting the identifiers, or names of variables
and constants, that you use in a program. Some valid and invalid identifiers are the fol-
lowing:

Valid identifiers: INITIALLl, initiall, Inches, Centimeters, CM_Per_Inch,
hello

Invalid identifiers: 1LETTER, CONSTANT, BEGIN, Two*Four, Joe's,
CM__Per_Inch :

The syntax rules for identifiers are as follows:

1. An identifier must always begin with a letter; 1LETTER is invalid.
2. An identifier must consist only of letters, digits, and underscores.

3. You cannot use two or more underscore characters in succession; the first
character cannot be an underscore. cM__Per__Inch is invalid (two underscores
in succession).

4. You cannot use an Ada reserved word as an identifier; BEGIN is invalid.

Note again that both uppercase and lowercase may be used, but remember the style
recommendations from Section 3.1. The syntactic rules do not place a limit on the
length of an identifier, except that an identifier may not be split over more than one line.
Ada requires a declaration for every identifier you create and use in your program (no
declaration is required or desirable for predefined identifiers). Identifiers that you create
and use are called user-defined identifiers.

The names of variables, constants, procedures, packages, package instances, and so
on are all identifiers; therefore all follow the syntactic rules just given.

The reserved words and identifiers used thus far are summarized here under their

appropriate categories:

Program names: Hello Hello_Initials Hello_Name
Inch_To_CM Distance

Predefined packages: Ada.Text_IO Ada.Text_IO.Integer_IO

Ada.Text_IO.Float_IO
Operations in predefined packages: ~ Put New_Line Get

Variable objects: Initiall Initial2 FirstName Inches Cen-
timeters HowLong HowFast HowFar
Constant objects: CMPerInch

Predefined types: Character String Integer Float

3.3 Data Structures: Declaring Constant and Variable Objects 75

'In this section we introduced the context clause, program heading, constant decla-
ration, and variable declaration. The syntactic form of each of these Ada language con-
structs is summarized in the following syntax displays. Each display describes the
syntactic form of a construct and provides an example.

SYNTAX

DISPLAY Context Clause

Form:
WITH list of package names ;
~ Example:

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

Interpretation:

A context clause informs the compiler that the named package(s) is (are) being
used by this program. The compiler will check all references to resources (e.g.,
procedures) provided by the package(s), making certain that the program is using
them correctly.

Note:

Context clauses can appear only at the very beginning of a source file. Generally,
we will give only one package name per context clause: this makes it easier to
add or delete context clauses.

SYNTAX

DISPLAY Program Heading

Form:

PROCEDURE program name IS
Example:

PROCEDURE Distance IS

Interpretation:
A program heading is used to signal the start of a program.

SYNTAX

DISPLAY Comment

Form:

-- comment

76 Introduction to Straight-Line Programs

SYNTAX
DISPLAY

SYNTAX
DISPLAY

Example:

.-~ This is a comment :

Interpretation: R
A double hyphen indicates the start of a comment; the comment ends at the end

. of the line. Comments are listed with the program but are otherwise ignored-by . -

the Ada compiler. Note that if you write a program statement following a com-
ment on the same line, it will be treated by the compiler as part of the comment
and therefore it will be ignored!

Constant Object Declaration

Form:

150me_cdnstant : CONSTANT type := value;

‘Example:

Pi : CONSTANT Float := 3.14159;

_Interpretation:

The specified value is associated with the identifier Some_constant. The value of
Some_constant cannot be changed by any subsequent program statements.

Variable Object Declaration

~ Form:
variable list : type ;
Example:
Initiall, Initial2: Character;
Interpretation:

A memory cell is allocated for each variable (an identifier) in the variable list.
The rype of data (Character in this case) to be stored in each variable is specified
between the colon and the semicolon. Commas are used to separate the identifiers
in the variable list.

To make it easier to add and delete variable declarations. we generally will

- write each declaration on its own line and give only one variable per declaranon

3.3 Data Structures: Declaring Constant and Variable Objects 77

PROGRAM

STYLE Choosing Identifier Names

It is very important to pick meaningful names for identifiers; they will be easier
to understand when used in a program. For example, the identifier salary would
be a good name for a variable used to store a person’s salary; the identifiers s and
Bagel would be bad choices.

There is no restriction on the length of an identifier. However, it is difficult to
form meaningful names using fewer than three letters. On the other hand, typing
errors become more likely when identifiers are too long. A reasonable rule of
thumb is to use names that are between three and ten characters in length.

If you mistype an identifier, the compiler will usually detect this as a syntax
error and display an undefined identifier message during program translation.
Sometimes, mistyped identifiers resemble other identifiers, so avoid picking
names that are similar to each other.

Make sure that you do not choose two names that are identical except for
their use of case; the compiler will not be able to distinguish between them.

Some Ada experts advocate using underscores to break up multiword identi-
fiers, writing cu_per_1nch, for example, instead of our cMperinch. In this book
we generally use underscores in program names (it’s easier for some operating
systems) but avoid them in variable and constant names (it makes the names a bit
shorter). Of course, consistency is important, and also, if your instructor prefers
underscores in your variable names, use them!

PROGRAM

STYLE Form of Declarations and Context Clauses

From the syntax displays, you can see that Ada permits several package names to
appear in a single context clause and several variable names to appear in a decla-
ration. Declarations are often changed during the development of a program as
variables are added and removed.

It is therefore much easier to develop a program (and to read it as well) if
each variable and constant is declared in a separate declaration on its own line.
All programs in this book follow this style convention, and we recommend that
you follow it too.

The same recommendation applies to context clauses: Because any number
of context clauses can precede a program, we recommend that each context
clause name only a single package and appear on its own line.

78 Introduction to Straight-Line Programs

PROGRAM
STYLE

Banner Comments

Each program in this book contains a banner comment, sometimes called a block
comment or header comment, giving a brief description of the program, with
author and date information. An example is

-~| Finds distance traveled,

--| given travel time and average speed

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: June 1998

Like all comments, banner comments are ignored by the compiler and are
inserted purely for documentation purposes. The use of banner comments is
strongly recommended in programs in any programming language, even though
neither Ada nor any other language requires them.

EXERCISES FOR SECTION 3.5

Self-Check

1. Should the value of 7 (3.14159) be stored in a constant or a variable? Why?
2. Which of these are valid Ada identifiers?
MyProgram prog2 prog#2 2NDone procedure "MaxScores"

3. Indicate which of the following identifiers are Ada reserved words, predefined
identifiers, identifiers, and invalid identifiers.

END Put BILL PROCEDURE SUE’S
Rate OPERATE START BEGIN CONSTANT
Xyz123 123xXY2 This_Is_A Long_One ¥=2

3.4 System Structures: General Form of an Ada Program

To summarize what we have learned so far, the programs shown earlier all have the
general form described in Figure 3.1:

+ Each program begins with one or more context clauses followed by a program

heading.

¢ The last line of each program begins with the reserved word np.

3.4 System Structures: General Form of an Ada Program 79

* The program heading is followed by declarations, if any, which may appear in any
order.

* The reserved word sEGIN signals the start of the sequence of executable statements
part of the program. The sequence of executable statements consists of the program
statements that are translated into machine language and executed. The program
statements that we have seen so far consist of those that perform computations and
input/output operations. These are described in the next section.

¢ The last line in a program has the form

END pname;
where pname is the name of the program.

* Each declaration and statement in an Ada program ends with a semicolon.

* An Ada statement can extend over more than one line; such a statement cannot be
split in the middle of an identifier, a reserved word, a number, or a string. Also, we
can write more than one statement on a line, although we will not do so in this book
and do not recommend it. Each line of a comment must be preceded by --.

Figure 3.1 General Form of an Ada Program

WITH packagel;
WITH package2;

WITH packageN;
PROCEDURE pname IS

declarations (variables, constants, etc.)
BEGIN

program statement;

program statement;

END pname

One of the main functions of a computer is to perform arithmetic computations and
display the results of computations. Such operations are specified by the sequence of
executable statements that appear in the program body following the reserved word
BEGIN. Each statement is translated by the Ada compiler into one or more instructions
in machine language, which are copied to the object file and later executed. Declara-
tions, on the other hand, describe to the compiler the meaning and purpose of each
user-defined identifier. They result in the allocation of some memory space to hold the
data values.

80 Introduction to Straight-Line Programs

PROGRAM
STYLE

CASE
STUDY

Use of Blank Space

The consistent and careful use of blank spaces can significantly enhance the style
of a program. A blank space is required between words in a program line (e.g.,
between PROCEDURE and Distance in Program 3 4).

Because extra blanks between words and symbols are ignored by the com-
piler, you may insert them as desired to improve the style and appearance of a
program.

Always leave a blank space after a comma and before and after operators
such as *, —,and =. Indent by two or more spaces all lines except for the first
and last lines of the program and the line BEGIN.

Finally, use blank lines between sections of the program.

All of these measures are taken for the sole purpose of improving the style
and hence the clarity of the program. They have no effect whatever on the mean-
ing of the program as far as the computer is concerned; however, they make it
easier for people to read and understand the program.

Be careful not to insert blank spaces where they do not belong. For example,
there cannot be a space between the characters : and = that make up the assign-
ment symbol :=. Also, you cannot put a blank in the middle of an identifier.

3.5 Problem Solving: Software Development Illustrated

In this textbook we will provide solutions to a number of case studies of programming
problems. We obtain the solutions by following the software development method out-
lined in Section 1.5. Let’s go through a case study, step by step.

CONVERTING UNITS OF MEASUREMENT

Problem Specification

You work in a store in the United States that imports fabric. Most of the fabric you
receive is measured in square meters; however, the store’s customers want to know the
equivalent amount in square yards. You need to write a program that performs this con-
version.

Analysis
The first step in understanding this problem is to determine what you are being asked to
do. It should be clear that you must convert from one system of measurement to
another, but are you supposed to convert from square meters to square yards or vice
versa? The problem states that you receive fabric measured in square meters, so the
problem input is fabric size in square meters. Your customers want to know the equiva-
lent amount in square yards, which must be your problem output.

To solve this problem, with or without a computer, we need to know the relation-
ship between square meters and square yards. By examining a metric table, we find that
1 square meter equals 1.196 square yards.

3.5 Problem Solving: Software Development Hlustrated 81

We summarize the data requirements and relevant formulas below. As shown
below, we will use the name squareMeters to identify the memory cell that will con-
tain the problem input and the name squarevards to identify the memory cell that will
contain the program result, or the problem output.

Data Requirements and Formulas

Problem Inputs:
squareMeters — the fabric dimensions in square meters

Problem Outputs:
SquareYards — the fabric dimensions in square yards

Formulas or Relations:
1 square meter equals 1.196 square yards

Design
Next, we try to formulate the algorithm that we must follow to solve the problem. We
begin by listing the three major steps, or subproblems, of the algorithm.

Initial Algorithm

1. Read the fabric size in square meters.
2. Convert the fabric size to square yards.

3. Display the fabric size in square yards.

In using the term read, we mean: “Find out the value of this quantity from the user
of the program”; because this quantity will change from run to run, we need to ask the
user for its value each time. Generally, this is done by instructing the computer to ask
the user to enter the value on the computer keyboard; sometimes it is done by reading it
from an external disk file (secondary storage). Similarly, in using the term display, we
usually mean “instruct the computer to show the value on the computer monitor.”

Next, we decide whether any steps of the algorithm need further refinement or
whether they are perfectly clear as stated. Step 1 (reading data) and step 3 (displaying a
value) are basic steps and require no further refinement. Step 2 is fairly straightforward,
but it might help to add some detail. The refinement of step 2 follows.

Step 2 Refinement

2.1 Multiply the fabric size in square meters by 1.196; the result is the fabric size in
square yards.

The complete algorithm with refinements is shown below. The algorithm resembles
an outline for a paper. The refinement of step 2, numbered as step 2.1, is indented under
step 2. We list the complete algorithm with refinements below to show you how it all
fits together.

Algorithm with Refinements

1. Read the fabric size in square meters.

2. Convert the fabric size to square yards.

82 Introduction to Straight-Line Programs

2.1 Multiply the fabric size in square meters by 1.196; the result is the fabric
size in square yards.

3. Display the fabric size in square yards.

Test Plan

We need to test three cases: a normal case of a positive floating-point value, a zero
value, and a negative value. In the last case the program will compute a negative num-
ber of square yards. Since this doesn’t make physical sense, we will need a way of
ensuring that it does not happen. Section 3.9 will offer some first solutions to this.

Implementation
To implement the solution, we must write the algorithm as an Ada program that is
acceptable to the compiler. Ada’s syntax or grammatical rules require that we first list
the problem data requirements—that is, what memory cell names we are using and
what kind of data will be stored in each memory cell. Next, we convert each algorithm
step into one or more Ada statements. If an algorithm step has been refined, we convert
its refinements into Ada statements. You will be able to do this yourself as you learn
more about Ada.

Program 3.5 shows the program along with a sample execution (the last two lines
of the figure). We show the test run for a normal positive value; we leave it to you to run
the program for the other test cases.

Program 3.5 Converting Square Meters to Square Yards

WITH Ada.Text IO;
WITH Ada.Float_Text_IO;
PROCEDURE Metric_Conversion IS

~--| Converts square meters to sguare yards
--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: June 1998

MetersToYards : CONSTANT Float := 1.196; -- conversion constant
SquareMeters : Float; -- input - metric size
SguareYards : Float; -- output - US size

BEGIN -~ Metric_Conversion

-- Read the fabric size in square meters
Ada.Text_IO.Put (Item => "Enter the fabric size in square meters > ");
Ada.Float_Text_I0.Get(Item => SquareMeters);

-- Convert the fabric size to square yards
SquareYards := MetersToYards * SquareMeters;

-- Display the fabric size in square yards
Ada.Text_IO.Put(Item => "The fabric size in square yards is ");
Ada.Float_Text_IO.Put(Item => SquareYards);
Ada.Text_IO.New_Line;

END Metric_Conversion;

3.6 Control Structures: Assignment Statements 83

Sample Run

Enter the fabric size in square meters > 45.00
The fabric size in square yards is 5.38200E+01

The program consists, as before, of two parts: the declaration part and the program
body. The declaration part is based on the data requirements identified in the problem
analysis and tells the compiler what memory cells are needed in the program. Memory
cells are needed for storing the variables squareMeters and squarevards and for stor-
ing the conversion constant MetersTo¥ards (whose value is 1.196).

The program body begins, as always, with the line

BEGIN

and contains the Ada statements that are translated into machine language and later
executed. In the program body we find the statements that express the algorithm steps
as Ada statements. The statement

Ada.Float_Text_IO.Get (Item => SquareMeters);

reads the data value typed by the program user (in this case, 45.00) into the memory
cell named SquareMeters. The statement

SquareYards := MetersToYards * SquareMeters;

computes the equivalent fabric size in square yards by multiplying the size in square
meters by 1.196; the product is stored in memory cell SquareYards.

Finally, the put statements display a message string, the value of squareyards, and
a second message string. The instruction displays the value of squarevards-as a real
number in Ada scientific notation (5.38200E+01). The value printed is equivalent to
5.382 x 10!, or 53.82, as will be explained later.

Testing
The sample run shows the result for a positive input. As was discussed in the test plan
section, you should run the program for zero and negative input values.

3.6 Control Structures: Assignment Statements

The assignment statement is used in Ada to perform computations. The assignment
statement

SquareYards := MetersToYards * SquareMeters;

in Program 3.5 assigns a value to the variable squarevards, in this case the result of the
multiplication of the constant MetersTovards by the variable squareMeters. Valid
information must be stored in both MetersToYards and SquareMeters before the

84 Introduction to Straight-Line Programs

MetersToYards SquareMeter

SquareYards

Figure 3.2 Effect of squarevards := MetersToYards * SquareYards;

assignment statement is executed. As shown in Fig. 3.2, only the value of squarevards
is affected by the assignment statement; MetersToYards and SquareMeters retain their
original values.

The symbol := is the assignment symbol in Ada and should be pronounced
“becomes” or “takes the value of” rather than “equals.” The : and = must be adjacent
characters with no intervening space. The general form of the assignment statement is
shown in the next display.

SYNTAX

DISPLAY Assignment Statement (Arithmetic)

Form:

result := expression ;
Example:

X =Y+ 2+ 2.0;

Interpretation:

The variable specified by resuit is assigned the value of expression. The previous

- value of result is destroyed. The expression can be a single variable or a single
constant, or it can involve variables. constants. and arithmetic operators, some of
which are listed in Table 3.1. The variable specified by result must be of the same
data type as the expression,

Table 3.1 Some Arithmetic Operators

Operator Meaning

+ addition
- subtraction

3.6 Control Structures: Assignment Statements 85

Table 3.1 Some Arithmetic Operators

Operator Meaning

* multiplication
/ division

* exponentiation

It is permissible to write assignment statements of the form
Sum := Sum + Item;

where the variable sum is used on both sides of the assignment operator. This is obvi-
ously not an algebraic equation, but it illustrates something that is often done in pro-
gramming. This statement instructs the computer to add the current value of the
variable sum to the value of rtem; the result is saved temporarily and then stored back
into Sum. The previous value of sum is destroyed in the process as illustrated in Fig.
3.3; however, the value of Item is unchanged.

Assignment statements can also be written with an expression part that consists of a
single variable or value. The statement

NewX := X;
instructs the computer to copy the value of x into Newx. The statement
NewX := -X;

instructs the computer to get the value of x, negate this value, and store the result in
NewX (e.g., If x is 3.5, Newx is -3.5; if X is —17.4, Newx is 17.4). Neither of the assign-
ment statements above changes the value of x.

Figure 3.3 Effect of sum := sum + Item;

86 Introduction to Straight-Line Programs

SYNTAX
DISPLAY

EXERCISES FOR SECTION 3.6

Self-Check

1. Which of the following are valid Ada assignment statements? Why?
X = Y;
A =B ~-C;
P+ Q = R;
G 3= G;
3 + 4;
3 + K;
S *7T;

8 mm
o
"

3.7 Control Structures: Input/Output Statements

Information cannot be manipulated by a computer unless it is first stored in main mem-
ory. There are three ways to place a data value in memory: Associate it with a constant,
assign it to a variable, or read it into a variable from the terminal or a file. The first two
approaches can be followed only when the value to be stored will be the same every
time the program is run. If we wish to be able to store different information each time,
it must be read in as the program is executing (an input operation).

As it executes, a program performs computations and assigns new values to vari-
ables. The results of a program’s execution can be displayed to the program user by an
output operation.

Input/output operations in Ada are performed by procedures that are included in a
set of library packages supplied with each Ada compiler. We will use procedures from
Ada.Text_IO,Ada.Integer_Text_IO,and Ada.Float_Text_I0; later we will use other
parts of the input/output libraries. The specific procedure used to read or display a value
is determined by the rype of that value. For the time being, we will manipulate values of
four different types: character, string, floating-point number, and integer. As you write
each program, you should be aware of the input/output operations that need to be per-
formed and give the required context clauses. Input/output operations in Ada are done
using procedure calls, so we now present a syntax display that shows the form of a call.

* Procedure Call Statement (Simple)

Form: _
. pname (list of petgmete’rs);

3.7 Control Structures: Input/Qutput Statements 87

Example:

Ada.Text_I0.Put(Item => “Hello.");
Ada.Text_I0.New_Line;

Interpretation:

The list of parameters is enclosed in parentheses; each actual parameter value is
preceded by the name of that formal parameter.

Note:

In the case of input/output operations, the most important parameter—the value
to be output or the variable receiving the input—is always called 1tem. There is
no special Ada rule that requires this; it is just the name chosen by the designers
of ada.Text_10.

As the second example shows, it is possible for a procedure to require no
parameters at all. The number, order, and type of parameters are, of course, deter-
mined by the writer of the procedure, not by its user.

Performing Input Operations

A procedure call statement is used to call an input/output procedure. In Program 3.3,
the procedure call statement

Ada.Float_Text_IO.Get (Item => Inches);

reads a floating-point value (a number with a decimal point) into the variable Inches.
This statement causes the number entered at the keyboard to be stored in the variable
Inches, as illustrated in Fig. 3.4. After typing a number, the program user should press
the enTER key or the space bar.

Now recall that in Program 3.1, a user’s initials were read. Because each person
using the program probably will have different initials, the statements

Ada.Text_IO.Get (Item => Initiall);
Ada.Text_IO0.Get (Item => Initial2);

are used to read in two letters. These statements cause the next two characters entered
at the terminal to be stored in the variables 1nitiall and Initial2 (type Character),
one character per variable. Figure 3.5 shows the effect of these statements when the let-
ters EK are entered.

Number Entered 30.5

Inches
|30.5}:

Figure 3.4 Effect of ada.Float_Text_10.Get(Item=>Inches);

88 Introduction 10 Straight-Line Programs

SYNTAX
DISPLAY

Letters entered EK

Initiall

Initial2

Figure 3.5 Effect of Input of Character Values

It may be necessary to press the ENTER key after typing in the data characters. Some
systems will read in these characters as they are typed; most will not begin to read them
until after the ENTER key is pressed.

The procedure Ada.Integer_Text_IO.Get is used to read an integer (a number
without a decimal point). This number may or may not be preceded by a sign. The vari-
able into which this number is stored must be of type Integer.

The number of characters read by an input operation depends on the type of the
variable into which the data are placed. Only one character is read for a variable of type
character. In the case of integer and floating-point values, the computer skips over any
leading blanks and then continues to read characters until a character that cannot be
part of a number is reached (e.g., a blank or a letter) or the ENTER key is pressed.

How does a program user know when to enter the input data and what data to
enter? Your program should print a prompting message (as explained later in this sec-
tion and as the examples have shown) to inform the program user what data to enter and
when. The cursor indicates the current position on the video screen. As each character
is entered, the cursor advances to the next screen position.

Input Tokens

It is interesting to note that the four input characters in Program 3.3 make up a single
data value, the number 30.5, which is stored in the variable Inches (type Float). In
Program 3.1, each input character represents a separate data value and is stored in a dif-
ferent variable. And in Program 3.2, where a user’s name is read, the sequence of
exactly ten characters represents a single value. A sequence of one or more characters
representing a single input value is commonly called a token. The input sequence 30.5
is a floating-point token, the sequence Jane Smith is a string token, and the initials Js
represent two single-character tokens

Get Procedure (Character)

Form:

Ada.Text_IO.Get (Item => variable);

SYNTAX
DISPLAY

SYNTAX
DISPLAY

SYNTAX
DISPLAY

3.7 Control Structures: Input/Output Statements 89

Example:
Ada.Text_IO.Get (Item => Initiall);

Interpretation:

The next character pressed on the keyboard is read into variable (type charac-
ter). A blank counts as a character: an ENTER does not.

Get Procedure (String)

Form:

Ada.Text_IO.Get (Item => variable);

Example:

Ada.Text_I0.Get (Item => First_Name);

Interpretation:

Variable must be a variable of type string (low..high).where 1 <low < high.
Exactly high — low + | characters are read from the keyboard. An ENTER does not

count as a character; the computer will wait until exactly the right number of
keys, excluding ENTERS, are pressed.

Get Procedure (Integer)

Form:

Ada.Integer_Text_IO.Get (Item => variable });
Example:

Ada.Integer_Text_I0.Get (Item => How_Long);

Interpretation:

The next string of numeric characters entered at the keyboard is read. The
numeric string is converted into an integer value and stored in variable (type
Integer). Any leading blank characters or ENTERs are ignored. The first nonblank
character may be a sign (+ or) or a digit. The data string is terminated when a
nonnumeric character is entered or the space bar or ENTER key is pressed.

Get Procedure (Floating Point)

Form:

Ada.Float_Text I0.Get (Item => variable);

90 Introduction to Straight-Line Programs

Example:

Ada.Float_Text_IO.Get (Item => Inches);.

Interpretation: ‘ : ;

The next string of numeric and other characters entered at the keyboard is read.
The characters in this string are converted into a floating-point value and stored in
variable (type Float). Any leading blank characters or ENTERS are ignored.

The first nonblank character may be a sign (+ or -) or a digit; the remaining
characters must be an integer token (if the value is a whole number) or & single
decimal point surrounded by numeric characters. Scientific notation (e.g.,
123.45E+02) is also permitted.

The data string is terminated when a character is entered that cannot be part
of one of the above tokens, or the space bar or ENTER key is pressed.

Performing Qutput Operations

To see the results of a program execution, we must have some way of displaying the
values of selected variables. In Program 3.3 the statements

Ada.Text_IO.Put (Item => "That equals ");
Ada.Float_Text_IO.Put (Item => Centimeters);
Ada.Text_IO.Put (Item => " centimeters.”);
Ada.Text_IO.New_Line;

display the output line
That equals 7.74700E+01 centimeters.

The procedure ada.Text_10.Put is called twice, first to display the string “That
equals® and next to display the string " centimeters.". A string must be enclosed in
double quotes. When the Ada.Text_I0.Put statement is executed, the characters
enclosed in the quotes are printed, but the quotes are not.

The procedure Ada.Float_Text_I0.Put displays the value of variable Centime-
ters (type Float) between two strings. The number displayed is 77.47 expressed in
scientific notation. In normal scientific notation, 7.747 x 10" means multiply 7.747 by
10, or move the decimal point right one digit. Because superscripts cannot be entered or
displayed at the terminal, the capital letter E is used in computers to indicate scientific
notation.

Formatting Character and String Output Values

In Program 3.1 the statements

Ada.Text_IO.Put (Item => Initiall);
Ada.Text_IO.Put (Item => Initial2);

display the characters stored in the two variables Initiall and Initial2 (type Char-
acter). Each statement causes a single character to be displayed at the current cursor
position.

SYNTAX
DISPLAY

SYNTAX
DISPLAY

SYNTAX
DISPLAY

3.7 Control Structures: Input/Output Statements 91

If the variable given to Ada.Text_I0.Put is of type string(low..high) as in Pro-
gram 3.2,

Ada.Text_IO.Put (Item => First_Name);

exactly high — low + 1 characters are displayed.

The procedure Ada. Integer_Text_1I0.Put is used to display integer values. When-
ever an output operation is performed, , the characters to be displayed appear at the cur-
rent cursor position.

The procedure Ada.Text_10.New_Line is used to segment our program output into
lines. Each time Ada.Text_I0.New_Line is executed, the cursor is advanced to the first
position of the next line on the screen.

Put Procedure (Character) |

Form:.

Ada.'rext_;_IO.'Put (Item => variable)i
- Example:

Ada.Text_IO.Put (Item => Im.t:.all),

Interpretation: : _
The value of variable (type character) is displayed on the screen, and the cursor
is advanced to the next position. :

Put Procedure (Stfing)

Form: v

Ada.Text IQ.Put (Item => variable);
Example: v .
Ada.Text_IO.Put (Item => First_Name);

Interpretation:

Variable must be a Qanable of type string (low..highj}, where l _low hxgh ‘
Exactly high - low + 1 characters are displayed on the screen, and the cursor is
advanced to the first position after the end of the string. - :

New_Line Procedure
Form: » ,
Ada.Texﬁ__IO.Nev);Line (Spacing => positive number);

92 Introduction to Straight-Line Programs

PROGRAM
STYLE

‘Example: ,
Ada.Text IO New Line Spaclng => 3);

_ Interpretatmm

If spacing is 1, the cursor is moved to the ﬁrst posmon of the next line of the dis-
play. If Spacing is greater than 1, this action is perfonned spacing times. If
Spacing is omitted, 1 is used as the default. , .

Using Prompting Messages to Request Data from the User

The statements
Ada.Text_IO.Put (Item => "Enter your two initials >");
and
Ada.Text_IO.Put (Item => "Enter a length in inches >");
are both used to display prompts or prompting messages in Programs 3.1 and 3.3,
respectively.
A prompting message is a string that is displayed just before an input opera-
tion is performed. Its purpose is to request that the program user enter data; it

may also describe the format of the data expected. It is very important to precede
each input operation with a prompting message; otherwise, the program user may

have no idea that the program is waiting for data entry or what data to enter.

Formatting Numerical Output Values

Program output is usually designed to be read by humans from a screen display or a
printed report. It is therefore important that the output be formatted or organized in a
way that makes it most easily understood. For example, the decimal value 77.47 is
much more obvious to most people than the scientific-notation form of the same value,
7.74700E+01. Also, displays and reports should be organized in nice neat columns so
that the information in them is easily digested by the human reader.

Programming languages facilitate production of useful reports by providing ways
of precisely controlling both the form and the width of output values, especialty numer-
ical ones. In the case of Ada, the integer and floating-point put procedures provxde
additional parameters for output formatting. These are values that are supplied in the
procedure call statement.

Integer Output Values

The procedure Ada.Integer_Text_IO.Put is used to display integer values. Whenever
an output operation is performed, ‘the characters to be displayed appear at the current
cursor position.

The integer put procedure allows one additional parameter called width, which
indicates the number of print positions to be used for the output value. The statement

Ada.Integer_ Text_ IO.Put (Item => HowFar, Width => 4);

SYNTAX
DISPLAY

3.7 Control Structures: Input/Output Statements 93

will right-justify the displayed value of BowFar to four positions. This means that if
HowFar is 327, when the value is displayed, it will be preceded by one blank. If HowFar
is 19, it will be preceded by two blanks; if HowFar is 1024, it will be preceded by no
blanks at all.

Now suppose that HowFar is 12000, which would be a very long trip! In that case
the field in the display. wouid be extended to five positions so that no important infor-
mation would be lost.

In Program 3.4 the output statement supplied no value for width at all. Ada permits
the omission of procedure parameters, but only if the author of the procedure has sup-
plied a default value, which will be used instead. The integer put comes with a default
value for width, but this value can vary from compiler to compiler. This is why in the
remaining programs in this book, a value for width will usually be supplied in the pro-
cedure call. We recommend that you follow this practice as well because it makes your
programs more portable (independent of a particular compiler).

Put Procedure (Integer)

Form:

Ada.Integer_ Text_IO.Put
(Item => variable, Width => field width);

Example:
Ada.Integer_Text IO.Put (Item => How_Long, Width => §);

Interpretation:

The value of variuable (type Integer) is displayed, using the next width positions
on the screen. If the value (including sign) occupies less than width positions, it
will be preceded by the appropriate number of blanks.

If the value occupies more than width positions. the actual number of posi-
tions is used. If width is omitted, a compiler-dependent width is used by default.

Table 3.2 shows some examples of formatted integer values.
Table 3.2 Formatted Integer Values

Value Width Displayed Output

234 4 Q234
234 5 00234
234 6 000234
234 4 -234
234 6 a-234
234 Len 00234 (if Len is 6)
234 1 234

234 0 234

94 Introduction to Straight-Line Programs

Floating-Point Output Values

The procedure Ada.Float_Text Io.Put is used to display floating-point values.
Whenever an output operation is performed, the characters to be displayed appear at the
current cursor position. This procedure provides for three formatting parameters:

* rore, which indicates the number of positions before the decimal point,
* aft, which indicates the number of positions after the decimal point, and

* Exp, which indicates the number of positions desired following the . If Exp is 0,

no exponent will appear at all; this produces a decimal value, rather than a scien-
tific-notation one.

Look again at Program 3.3. If we change the output statement from
Ada.Float_Text_IO.Put (Item=>Centimeters);

to

Ada.Float_Text_I0.Put (Item=>Centimeters, Fore=>5, Aft=>2, Exp=>0);

this will produce the value 77.47 preceded by three blanks, instead of 7.74700E+01.
Table 3.3 shows some examples of formatted floating-point values.

Table 3.3 Formatted Floating-Point Values

Value Fore Aft Exp Displayed Value
3.14159 2 2 0 Q3.14
3.14159 1 2 0 3.14
3.14159 3 1 0 Qas.1
3.14159 1 3 0 3.142
3.14159 2 5 0 03.14159
3.14159 1 3 2 3.142E+00
0.1234 1 2 0 0.12

-0.006 1 2 0 -0.01

-0.006 1 2 2 —6.00E-3

-0.006 1 5 0 ~0.00600

-0.006 4 3 0 Q0-0.006

It is very important to realize that these are just different ways of formarting output
values, that is, controlling the visible form of these values on the screen. Nothing in
these output statements alters the actual value stored in memory.

SYNTAX
DISPLAY

3.7 Control Structures: Input/Output Statements 95

Put Procedure (Floating Point)

Form:

Ada.Float_Text_I0.Put
(Item => variable , Fore => width before point ,
Aft => width after point , Exp => width of exponent);

Example:

Ada.Float_Text_IO.Put
(Item => Inches, Fore => 5, Aft => 2, Exp => 0);

Interpretation:
The value of variable is displayed on the screen. Fore gives the desired number
of positions in the integer part (to the left of the decimal point); Aft gives the
exact number of positions in the fractional part (to the right of the decimal point):
Exp gives the exact number of positions in the exponent (after the E).

If the integer part of the value, including sign, occupies fewer than rore posi-
tions. blanks are added on the left. If exp is 0. no exponent is displayed.

EXERCISES FOR SECTION 3.7

Self-Check

1. Correct the syntax errors in the program below and rewrite it so that it follows
our style conventions. What does each statement of your corrected program
do? What is printed?

PROCEDURE SMALL;
X: Float;
Y: Foat;
x: Float;
BEGIN;
15.0 = ¥;
Z =Y + 3.5;
Y + 2z = x;
Put(x, ¥, 2)
end small;

2. Provide the statements needed to display the line below. Display the value of X
using ten characters in the space provided.

The value of X is —==weecwa- pounds.

96 Introduction to Straight-Line Programs

3.8 Data Structures: Introduction to Data Types and
Expressions

First, let’s clarify exactly what is meant by a data type in a programming language. A
data type is a set of values and a set of operations on those values. The data type of the
object stored in a particular memory cell determines how the bit pattern in that cell is
interpreted. For example, the same bit pattern can represent a type Integer object, a
type Character object, a type Float object, or even a program instruction. A pre-
defined data type is a data type that is predefined in the programming language (for
example, Integer, Float, and character). Besides the standard data types, program-
mers can define their own data types in Ada. Indeed, defining our own types will be an
important part of our study, to be started in Chapter 4.

It is important to understand that in Ada, every variable or constant object has a
type, that is, every object has a known set of values we can assign it, and a set of opera-
tions that we can validly perform on it. In the terminology of object-oriented program-
ming, every object has a set of states (values) and a set of merthods (operations). Taken
together, the methods characterize the object’s behavior.

Character Data Type

Our first predefined type is Character. We have already seen (Program 3.1) that char-
acter variables can be used to store any single-character value. A Character value
mentioned in a program—a literal —must be enclosed in single quotes (for example,
'a'); however, quotes are not used when character data are entered as tokens. When the
Ada.Text_I0.Get procedure is used to read character data into a Character variable,
the next character entered at the terminal is stored in that variable. The blank character
is entered by pressing the space bar; it is written in a program as the literal ' '.

B Example 3.5

Program 3.6 first reads and echos three characters entered at the keyboard. Next, it
prints them in reverse order enclosed in asterisks. Each character is stored in a variable
object of type character; the character value ' +* is associated with the constant object
Border. The lines

Ada.Text_IO.Put (Item=>Third);
Ada.Text_IO0.Put (Item=>Second);
Ada.Text_IO.Put (Item=>First);

display the three characters in reverse order. As shown in the program output, each
character value is printed in a single print position.

Program 3.6 Reversing Three Letters

WITH Ada.Text_ IO;
PROCEDURE Reverse_letters IS

3.8 Data Structures: Introduction to Data Types and Expressions 97

--| Reverses the order of three input letters
~-| Author: Michael B. Feldman, The George Washington University
--| Last Modified: June 1998

Border : CONSTANT Character := '*';
First, Second, Third : Character; -- input - three characters

BEGIN -- Reverse_Letters

-- Prompt for three characters
Ada.Text_IO.Put(Item => "Enter 3 characters> “);
Ada.Text_IO.Get(Item => First);
Ada.Text_IO.Get(Item => Second);
Ada.Text_IO.Get(Item => Third);
Ada.Text_IO.New_Line;

-- Display these characters in reverse order
Ada.Text_IO.Put(Item => Border):;
Ada.Text_IO.Put(Item => Third);
Ada.Text_IO.Put(Item => Second);
Ada.Text_IO.Put(Item => First);
Ada.Text_IO.Put(Item => Border);
Ada.Text_IO.New_Line;

END Reverse_Letters;
Sample Run

Enter 3 characters> FBI

IBF

Several operations are defined for character values; the most obvious one is assign-
ment. An assignment statement can be used to store a literal value into a character con-
stant or variable or to copy the value of one character variable into another. Comparison
operations on character values will be introduced in Chapter 5.

Float Data Type

The standard data types in Ada represent familiar objects. For example, the data type
Float is that subset of real numbers (in the mathematical sense) that can be represented
on the computer. Every rloat value in Ada is a real number; however, not all real num-
bers can be represented in Ada or in any programming language. Some real numbers
are too large or too small or cannot be represented precisely owing to the finite size of a
memory cell (more on this in Chapter 7). The normal arithmetic operations for real
numbers (+, —, *, /) and the assignment operation (:=) can be performed on Float
objects in Ada. The metric conversion problem discussed in Section 3.5 is an example
of the use of objects of type Float.

98 Introduction to Straight-Line Programs

Integer Data Type

The other predefined data types that represent numbers are Integer, Natural, and Pos-
itive. Integer values in Ada cormrespond to the mathematical integers (e.g., =77, 0,
999, +999). However, because of the finite size of a memory cell, not all integers can be
represented in Ada, and every Ada compiler has predefined positive and negative limits
on type Integer values. These limits are not specified in the standard and are most
commonly either -32768 and +32767. (16-bit arithmetic) or —2147483648 and
+2147483647 (32-bit arithmetic). Natural values correspond to the nonnegative inte-
gers (including 0); Positive values correspond to the positive integers (excluding 0).

Actually, the types Natural and Positive are subtypes of Integer: Every positive
integer is also an integer. We will introduce a discussion of subtypes in Chapter 4 and
revisit the subject frequently.

The basic distinction between type Float and the three integer data types is that a
number with a decimal point and fractional part can be stored in a Float object, but
only whole numbers can be stored in type Integer, Natural, and Positive objects. We
often use these to represent a count of items because a count must always be a nonneg-
ative whole number.

What are the operations on integer values? The operations +, —, and * have obvious
meanings of sum, difference, and product, respectively. What about division? Dividing
one integer by another always gives an integer result, which is the “whole number,” or
quotient, part of the division. Thus 3/2 gives a result of 1, 14/4 gives a result of 3, and
2/3 gives a result of 0. The fractional part, or remainder, is lost in the division opera-
tion.

Because the remainder is lost in an integer division, Ada provides an operation ReM
that can be applied to two integers. REM gives the remainder in the division operation, as
you would compute it in a “long division.” Here are some examples:

3 REM 2 is 1 (dividing 3 by 2 gives a quotient of 1 and a remainder of 1).

14 REM 4 is 2 (dividing 14 by 4 gives a quotient of 3 and a remainder of 2).

2 REM 3 is 2 (dividing 2 by 3 gives a quotient of 0 and a remainder of 2).

One last operator merits discussion here: The operator *+ is used to represent expo-
nentiation, or raising a value to a given power. Given a variable x whose current value
is 3,

X ** 2 is 9 (multiply 3 by 3).

X *+ 3 js 27 (multiply 3 by 3 by 3).

x *+ 4 is 81 (multiply 3 by 3 by 3 by 3).
and so on.

Exponentiation is also defined to raise a floating-point value to a given power. The
power must be an integer, however. If ¥ is a floating-point variable with value 1.2, then

y *+ 2is1.44 (multiply 1.2 by 1.2).

y ** 3is1.728 (multiply 1.2 by 1.2 times 1.2).

y ** 1,5 is not allowed, and will result in a compilation error.

Literals and Tokens

Objects of a data type can be variables, constants, or literals. A literal is a value that
appears directly in a program. For example, a Float literal is a number that begins with
a digit and contains a decimal point (e.g., 0.112, 456.0, 123.456). A Float literal may
have a scale factor, which is the capital letter £ followed by an optional sign and an

3.8 Data Structures: Introduction to Data Types and Expressions 99

integer (e.g., 0.112E3, 456.0E-2). The scale factor means “multiply the preceding real
number by 10 raised to the power appearing after the letter £ (e.g., 0.112E3 is 112.0,
456.0E—2 is 4.56). A Float literal may be preceded by a + or — sign when it appears in
a program. Examples of valid and invalid F1oat literals are shown in Table 3.4.

Table 3.4 Some Valid and Invalid r1oat Literals

Valid r1oat Literals Invalid F1oat Literals

3.14159 150 (no decimal point)

0.005 .12345 (no digit before .)

12345.0 12345. (no digit after .)

15.08-04 (valueis 0.0015) 15E-03 (15 invalid Float)
2.345e2 (value is 234.5) 12.5E.3 (.3 invalid exponent)

-1.2E+6 (value is -1200000) -.123E3 (-.123 invalid Float)

1.15g-3 (value is 0.00115)

The last valid literal in Table 3.4, 1.15e-3, has the same value as 1.15 x 10~ in
normal scientific notation where the exponent -3 causes the decimal point to be moved
left three digits. A positive exponent causes the decimal point to be moved to the right;
the + sign may be omitted when the exponent is positive.

The preceding example has concentrated on Float literals; Integer, Character,
string, and enumeration literals (next chapter) are also commonly used.

You might be wondering what the difference is between the terms literal and token.
Conventionally, a sequence of characters representing a value is called a literal when it
appears within the text of a program, and such a sequence is called a token when it is
read from an input device or displayed on an output device.

Expressions with Several Operators

Ada allows us to write expressions with many variables, constants, literals, and opera-
tors; in fact, there is no formal limit at all on the complexity of an expression. We must
therefore know the order in which the various parts of an expression are evaluated.
We’ll take a systematic look at this in Chapter 8. To give you some help in the mean-
time, suppose W, X, Y, and z are all Integer variable objects, and let x be 3, ¥ be 4, and
z be 7. Here’s how Ada will evaluate some assignments to the variable w:

We=X*Y + 2;

will store (3 x 4) + 7, or 19, in w. The result of the multiplication is added to z. It is as
though the expression were written

W= (X *Y) +32;

which is also correct Ada and gets the same result. Now

100 Introduction to Straight-Line Programs
We:e=2Z2 +X*Y;

stores 7 + (3 x 4) in w. Again the result of the multiplication is added to z; this is equiv-
alent to writing

Wi=2+ (X *Y);

which, of course, is also correct Ada. Ada follows the basic rule that multiplications
and divisions are done before additions and subtractions, but parentheses can be used to
override the basic rule. For example,

W=X* (Y + 2);

causes 3 X (4 + 7), or 33, to be stored in w. The parentheses force the addition to be done
first and the result to be multiplied by z. Consider

We=X/Y+ 32;

which stores (3/4) + 7, or 7, in w (remember division of integers!), and
W= X/ (Y +2);

which stores 3/(4 + 7), or 0, in w (again, dividing the integers here gives 0).

Now suppose that we have two or more addition or subtraction operators in the
same expression. In this case, the operations are done in left-to-right order.
W:=X~-Y+ 2;
stores (3 — 4)+7 or 6 in w; the subtraction is done first. If we had written
W= X - (Y + 2);

the result in w would be 3 - (4 + 7), or —8. Again, the parentheses force the addition to
be done first. Make sure you understand why

We=X-~-Y =~ 2;
and
Ws=X-=-(Y=-12);

store -8 and 6, respectively, in w. A similar left-to-right rule applies to multiplication
and division operators. Finally, exponentiation is done even before multiplication or
division, so the expression :

Pi * R ** 2
is equivalent to
Pi * (R ** 2)

and not

PROGRAM
STYLE

CASE
STUDY

3.8 Data Structures: Introduction to Data Types and Expressions 101

(Pi * R) *% 2

Using Parentheses to Write Expressions You Can Understand

Ada has many operators; you will study most of them in this book. The compiler
follows very systematic rules (known formally as precedence and association
rules) in evaluating complicated expressions with many operators; these are
spelled out in Chapter 8. The compiler “knows exactly what it is doing” and will
always get a result that is correct by those rules.

However, a human writer or reader of a program may have trouble sorting out
the order of execution of the operations in an expression with more than one or
two operators, and the result can sometimes be unpleasantly surprising if the
human sorts it out differently than the compiler does. Remembering the prece-
dence and association rules is difficult and also unnecessary.

You should instead use two very simple rules in writing an expression: Keep
it as simple as you can, and use a lot of parentheses to indicate both to the com-
piler and to yourself what the intention of the expression is. Using extra parenthe-
ses will save you time in debugging; using too few parentheses to save writing

effort is false economy.

Using Integer Objects

The following case study gives an example of manipulating Integer objects in Ada.

FINDING THE VALUE OF A COIN COLLECTION

Problem Specification

Your little sister has been saving nickels (U.S. five-cent coins) and pennies (U.S.
one-cent coins) for quite a while. Because she is getting tired of lugging her piggy bank
with her whenever she goes to the store, she would like to trade in her collection for
one-dollar banknotes (a dollar is 100 cents) and some change. To do this, she would
like to know the value of her coin collection in dollars and cents.

Analysis

To solve this problem, we must be given the count of nickels and the count of pennies
in the collection. The first step is to determine the total value of the collection in cents.
Once we have this figure, we can do an integer division using 100 as the divisor to get
the dollar value; the remainder of this division will be the loose change that she should
receive. In the data requirements below, we list the total value in cents (Totalcents) as
a program variable because it is needed as part of the computation process; it is not a
required problem output.

Data Requirements and Formulas

Problem Inputs:
Nickels : Natural (the number of nickels)

102 Introduction to Straight-Line Programs

Pennies : Natural (the number of pennies)

Problem Outputs:

Dollars : Integer (the number of dollars she should receive)
Change : Integer (the loose change she should receive)

Additional Program Variables
TotalCents : Integer (the total number of cents)

Relevant Formulas
One nickel equals five pennies.

Desi
The algorithm is straightforward and is displayed next.

Initial Algorithm

1. Read in the count of nickels and pennies.
2. Compute the total value in cents.

3. Find the value in dollars and loose change.
4

Display the value in dollars and loose change.

Steps 2 and 3 need refinement.

Step 2 Refinement
2.1. TotalCents is 5 times Nickels plus Pennies.

Step 3 Refinement:
3.1. pollars is the integer quotient of Totalcents and 100.

3.2. change is the integer remainder of Totalcents and 100.
Algorithm with Refinements
1. Read in the count of nickels and pennies.
2. Compute the total value in cents.
2.1. TotalCents is 5 times Nickels plus Pennies.

3. Find the value in dollars and loose change.

3.1. Dollars is the integer quotient of Totalcents and 100.
3.2. change is the integer remainder of TotalcCents and 100.

Display the value in dollars and loose change.

3.8 Data Structures: Introduction to Data Types and Expressions 103

Test Plan

In addition to testing some typical values, there are several special cases in our test
plan: zero nickels and/or zero pennies, and negative input values. Let’s put the test plan
in the form of a table, shown as Table 3.5.

Table 3.5 Test Plan for Coin Collection

Test Case Nickels Pennies Reason Expected Result
1 30 77 typical $2.27
2 0 59 no nickels $0.59
3 13 0 no pennies $0.65
4 0 0 no coins $0.00
5 13 =5 negative ?
6 Xyz 4 bad input ?

The last two cases test for out of range input (a negative number when a natural
number is required) and “bad” input (letters instead of digits). The question marks indi-
cate that we won’t know the result until we run the test. It is important always to test
programs with “bad” as well as “good” input: The programmer cannot control which
keys will be pressed by the human user, and a program’s behavior must always be pre-
dictable.

Implementation
Program 3.7 shows the program. The statement

TotalCents := 5 * Nickels + Pennies;
implements algorithm step 2.1 and the statements

Dollars := TotalCents / 100;
Change := TotalCents REM 100;

implement algorithm steps 3.1 and 3.2.

Note how a value of 1 for the width parameter is used to format the displayed val-
ues so that they appear just next to the title text. Can you explain why width=>1 accom-
plishes this?

Program 3.7 Finding the Value of a Coin Collection

WITH Ada.Text_IO;
WITH Ada.Integer_Text IO;
PROCEDURE Coin Collection IS

--| Finds the value of a coin collection,

--| given pennies and nickels

--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: June 1998

104 Introduction to Straight-Line Programs

Pennies : Natural; ~- input - number of pennies
Nickels : Natural; ~- input - number of nickels
Dollars : Natural; -~ output - value in dollars
Cents : Natural; -- output - value in cents
TotalCents : Natural;

BEGIN -- Coin_Collection

-- prompt user for number of nickels and pennies
Ada.Text_IO.Put (Item => "How many nickels do you have? ");
Ada.Integer_Text I0.Get (Item => Nickels);

Ada.Text_IO.Put (Item => "How many pennies do you have? “});
Ada.Integer Text_I0.Get (Item => Pennies);

Ada.Text_IO.New Llne,

-- compute total value in cents
TotalCents := 5 * Nickels + Pennies;

-- find the value in dollars and change

Dollars := TotalCents / 100;

Cents := TotalCents REM 100;

-- display the value in dollars and change
Ada.Text_IO.Put (Item => "Your collection is worth “);
Ada. Integer Text_IO.Put (Item => Dollars, Width => 1);
Ada.Text_IO.Put (Item => " dollars and ");

Ada. Integer Text_IO.Put (Item => Cents, Width => 1);
Ada.Text_IO.Put " cents.");

Ada.Text_IO0.New_Line;

END Coin_Collection;
Sample Run, Case 1

How many nickels do you have? 30
How many pennies do you have? 77

Your collection is worth 2 dollars and 27 cents.
Sample Run, Case 2

How many nickels do you have? 0
How many pennies do you have? 59

Your collection is worth 0 dollars and 59 cents.

Sample Run, Case 3

How many nickels do you have? 13
How many pennies do you have? 0

Your collection is worth 0 dollars and 65 cents.
Sample Run, Case 4

How many nickels do you have? 0
How many pennies do you have? 0

3.8 Data Structures: Introduction to Data Types and Expressions 105

Your collection is worth 0 dollars and 0 cents.

Testing

This test run shows input of test cases 1 through 4 from the test plan. These results
agree with the expected results. We defer the two error cases until the next section when
we discuss errors in general.

Memory Area for the Coin Collection Program

The left side of Figure 3.6 shows the coin collection program loaded into memory and
the program memory area before execution of the program body. The right side of the
figure shows the contents after the program has run.

The question mark in memory cells Pennies, Nickels, Dollars, Cents, and
TotalCents indicates that these variables are undefined (value unknown) before pro-
gram execution begins. During program execution, the data values 30 and 77 are read
into the variables Nickels and Pennies, respectively. After the assignment statements
are used to compute values for TotalcCents, Dollars, and Cents, all variables are
defined (have known values) as shown in the right side of Fig. 3.6.

Machine-language Machine-language

- instructions instructions
Pennies Pennies
Nickels Nickels
=]
Dollars Dollars

Cents cents
TotalCents PotalCents
=1 227
Memory before execution Memory after execution

Figure 3.6 Memory for Coin Collection Program

106 Introduction to Straight-Line Programs

EXERCISES FOR SECTION 3.8

Self-Check

1.

Evaluate the following expressions with 7 and 22 as operands:
2/1 7/ 22 22 REM 7 7 REM 22
Repeat this exercise for the pairs of integers:

15, 16 3, 23 4, 16

Given the declarations:

Pi : CONSTANT Float := 3.14159;
Maxl : CONSTANT Integer := 1000;

the Float variables x and v, and the Integer variables a, B, and 1, indicate
whether each of the following assignments is valid, and, if so, what its value is.
Assume thatais 3,8is 4,and yis-1.0.

a. I := A REM B; i(I := (MaxI - 990) / A;
b. 1 := (990 - MaxI) / a; . X::=A/Y¥;

C. I := A REMY; l. X := pi ** 2;

d. X :=Pi *Y¥; M. X := Pi **+ ¥;

e. I :=A/ B; n. X := A/ B;

f. x :=a/ B; 0. I := (MaxI - 990) REM A;
ﬁ.xzzARsu(A/a); P. I := A REM 0;

h. I :=8/0; Q. I := A REM (MaxI - 990);
i. I := A REM (990 - MaxI);

If we assume that a is 5, B is 2, and v is 2.0, what values are assigned by the
valid statements in Exercise 2?7

Assume that you have the following integer variables:
Color, Lime, Straw, Yellow, Red, Orange

and the following floating-point variables:

Black, White, Green, Blue, Purple, Crayon

Evaluate each of the statements below given the following values: color is 2,
Black is 2.5, Crayon is -1.3, straw is 1, Red is 3, Purple is 0.3El.

White := Crayon * 2.5 / Purple;

Green := Black / Purple;

Orange := Color / Red;

Orange := (Color + Straw) / (2*Straw);
Lime := Red / Color + Red REM Color ;
Purple := Straw / Red * Color;

e an o

3.9 Tricks of the Trade: Common Programming Errors 107

S. Let a,B, c,and x be the names of four Float variables and let 1, 7, and K be
the names of three Integer variables. Each of the following statements con-
tains a violation of the rules for forming arithmetic expressions. Rewrite each
statement so that it is consistent with these rules.

a. X := 4.0 A * C; d. K := 3(1 + J);
b. a := ac; €. X := S5A / BC;
C. I :=2*-J; f. 1 :=533;

3.9 Tricks of the Trade: Common Programming Errors

Section 1.10 introduced the three main categories of programming errors: compilation
errors, run-time errors, and logic or algorithm errors. In this section we look at some
common semantic errors and discuss run-time errors.

Semantic Compilation Errors

Program 3.8 is a modified version of the distance program, Program 3.4. The modified
program contains a few intentional errors: We declared How_Fast as Float and also
used Ada.Float_Text_I0 calls instead of Ada.Integer_Text_ 10 calls. These are all
errors that beginners commonly make.

Program 3.8 Distance Program with Intentional Errors

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Distance with_Errors IS

--| Finds distance, given travel time and average speed
--| Author: Michael eldman, The George Washington University
--| Last Modified: June 1998

HowLong : Natural;
HowFast : Float;
HowFar : Natural;

BEGIN -- Distance_with_Errors

-- prompt user for hours and average speed
Ada.Text_IO.Put

(Item => "How long will you be driving (integer) ? ");
Ada.Float_Text I0.Get (Item => HowLong);
Ada.Text_IO.Put

(Item => "At what speed (miles per hour, integer)?%);
Ada.Float_Text_ IO.Get (Item => HowFast);

-- compute distance driven
HowFast := HowLong * HowFar;

-- display results
Ada.Text_IO.Put (Item => “"You will travel about “");

108 Introduction to Straight-Line Programs

Ada.Float_Text IO.Put (Item => HowFar);
Ada.Text_IO.Put (Item => " miles");
Ada.Text_ IO.New_Line;

END Distance with_Errors;

Figure 3.7 shows a listing from a GNAT compilation of this program.
Figure 3.7 Compilation Listing with Error Messages

1. WITH Ada.Text_IO;

2. WITH Ada.Float_Text IO;

3. PROCEDURE Distance_with Brrors IS
4.
5. --| Finds distance, given travel time and average speed

6. --| Author: Michael eldman, The George Washington University
7. =-| Last Modified: June 1998

8.

9. HowLong : Natural;

10. HowFast : Float;

11. HowFar : Natural;

12.

13. BEGIN -- Distance_with_Errors

14.

15. ~~ prompt user for hours and average speed

16. Ada.Text_IO.Put

17. (Item => "How long will you be driving (integer) 2?");

18. Ada.Float_Text_IO.Get (Item => Howlong);
>>> invalid parameter list in call

19. Ada.Text_IO.Put

20. (Item => "At what speed (miles per hour, integer) ? “);
21. Ada.Float_Text_IO.Get (Item => HowFast);

22.

23. -- compute distance driven

24. HowFast := HowLong * HowFar;

>>> expected type "Standard.Float"
>>> found type "Standard.Integer”

25.

26. -- display results

27. Ada.Text_IO.Put (Item => “"You will travel about ");
28. Ada.Float_Text_ IO.Put (Item => HowFar);

>>> invalid parameter list in call
>>> possible missing instantiation of Text_ 10.Integer IO

29. Ada.Text_IO.Put (Item => " miles");
30. Ada.Text_IO.New_Line;

31.

32. END Distance_with_Errors;

The first message, at line 18, informs us that the Ttem parameter to et is invalid, in
this case because we tried to use the floating-point Get to read into an Integer variable.
The same message appears at line 28, for the same reason. Finally, the message at line

3.9 Tricks of the Trade: Common Programming Errors 109

24 indicates that the multiplication is invalid, because we are trying to multiply a Float
variable (the incorrectly declared HowFast) by a Natural one (HowLong). Such mixing
of integer and floating-point values is not allowed.

Recall from Section 1.10 that compilation errors are of two general kinds: syntax
errors and semantic errors. Some Ada compilers distinguish between these in their error
messages; others (for example, GNAT) do not. Some compilers try to find both syntac-
tic and semantic errors at the same time; others (like GNAT) generally do it in two
stages, first finding the syntax errors, then the semantic ones.

In languages such as Ada with data types, semantic errors occur quite frequently.
One of the things you will need to be careful about is making sure that the types of your
variables match the expectation of the expression or procedure in which the variables
are used. If a procedure expects an Integer variable, supplying a Float variable won't
do; also, you cannot mix Integer and Float variables in the same expression!

Finally, recall our advice from Section 1.10: There is no need to panic at getting a
long list of messages; it happens to all new programmmers and occasionally to experi-
enced ones as well. There are probably only a few actual errors and many extra mes-
sages because of propagation, or because you repeated the error in several places, so
it’s best just to try to correct the first one or two errors, then recompile. You'll be
amazed at how quickly the number of messages decreases.

Run-Time Errors

As was discussed above, run-time errors are called exceptions in Ada. The most com-
mon exceptions encountered by beginners are those relating to the ranges of variables
in their programs. A range error occurs when a program tries to save an inappropriate
value in a variable. This can happen in one of two ways: Either the program itself com-
putes a result that is out of range for the variable in which it will be saved, or the pro-
gram user enters an out-of-range value from the keyboard. Ada gives the name
Constraint_Error to such a range error; Ada uses the term raising an exception for
reporting the occurrence of such a runtime error.

As an example of the second case, consider case 5 of the test plan for the coin col-
lection program (Program 3.7, Table 3.4). Figure 3.8 shows a sample run in which we
enter a negative value for the number of pennies. Recall that the variable rennies was
declared to be of type Natural, that is, nonnegative.

Figure 3.8 Sample Run of coin_collection, Negative Input Entered

How many nickels do you have? 13
How many pennies do you have? -5

raised Constraint_Error

Traceback Information
Program Name File Name Line

coin_collection coin_collection.adb 22

The form of the exception report and “trace back” to your source program varies
from compiler to compiler, but the content is the same: You are told which exception
was raised and where.

110 Introduction to Straight-Line Programs

Figure 3.9 shows the results of test case 6, in which “bad” input is entered, namely,
a sequence of characters that cannot be an integer token.

Figure 3.9 Sample Run of coin_collection, Noninteger Input Entered

How many nickels do you have? xyz
raised unhandled exception
raised ada.text_io.data_error

Traceback Information
Program Name File Name Line

coin_collection coin_collection.adb 22

In this case the exception raised is an input/output exception called
Ada.Text_IO.Data_Error. This exception is raised when a Get operation gets a token
of the wrong form, in this case a string of letters instead of an integer. The difference
between Constraint_Error and Data_Error is that in the former case the value is
formed correctly but is too large or too small, while in the latter case the token is not
formed properly. :

To summarize, Ada’s data types and exception system are designed to help you
write programs whose results will make sense. In this book we will pay very careful
attention to this matter, because it is important and can be very useful to you.

Debugging a program can be time-consuming. The best approach is to plan your
programs carefully and desk check them beforehand to eliminate bugs before they
occur. If you are not sure of the syntax for a particular statement, look it up in the syn-
tax displays in the text. Also, take care that your program variables have types that are
appropriate and sensible. If you follow this approach, you will save yourself much time
and trouble.

CHAPTER REVIEW |

o e i

In this chapter you have seen how to use the Ada programming language to perform
some fundamental operations. You learned how to instruct the computer to read infor-
mation into memory, perform some simple computations, and display the results of
those computations. All of this was done using symbols (punctuation marks, variable
names, and special operators such as *, -, and +) that are familiar, easy to remember,
and easy to use. You have also learned a bit about data types, a very important concept
in developing programs whose results make sense.

In the remainder of this text we introduce more features of the Ada language and
provide rules for using these features. You must remember throughout that, unlike the
rules of English, the rules of Ada—like those of any computer language —must be fol-
lowed precisely. The compiler will be unable to translate Ada instructions that violate
these rules. Remember to declare every identifier that is used as a variable or constant
object and to terminate program statements with semicolons.

New Ada Constructs

Chapter Review 111

Table 3.6 describes the new Ada constructs introduced in this chapter.

Table 3.6 Summary of New Ada Constructs

Construct

Effect

Context Clause

WITH Ada.Text_IO;

Program Heading

PROCEDURE Payroll IS

Constant declaration

Tax : CONSTANT Float := 25.00;

Star :
CONSTANT Character := '*';

Variable declaration

X: Float;

Me : Integer;

Assignment Statement

Distance := Speed * Time;

Input Statements

Ada.Text_IO.Get
(Item=>Initial);

Ada.Integer_Text_IO.Get
{Item=>HowMany);

Ada.Float_Text_IO.Get
(Item=>PayRate);

Output Statements

Ada.Text_IO.Put(Item=>Initial);

indicates that package ada.Text_I0 is
used by the program

identifies payroll as the name of the
program

associates the constant, Tax, with the
Float value 25.00

associates the constant, star, with the
Character value ' *°

declares a variable object named x for
storage of Float values

declares a variable object named Me for
storage of Integer values

computes the product of speed and Time
and assigns it to bistance.

enters data into the character variable
Initial

enters data into the integer variable How-
Many

enters data into the float variable
PayRate

displays the value of the character vari-
able Initial

V12 Introduction to Straight-Line Programs

Construct

Effect

Ada.Integer_Text_IO.Put
(Item=>HowMany, Width=>35);

Ada.Float_Text_IO.Put
(Item=>GrossPay, Fore=>4,
Aft=>2, Exp=>0);

displays the value of the integer variable
HowMany, using five columns on the dis-
play

displays the value of the float variable
PayRate using four columns before the

decimal point and two columns after the
decimal point.

Quick-Check Exercises

1. What value is assigned to x by the following statement?

X := 25.0 * 3.0 / 2.5;

2. Given the result from Exercise 1, now what value is assigned to x?

X := X - 20.0;

3. Show the exact form of the output displayed when x is 3.456.

Ada.Text_IO.Put(Item => "Three
Ada.Float_Text_IO.Put(Item=>X,
Ada.Text_IO.Put(Item => '*');
Ada.Float_Text_ IO.Put(Item=>X,
Ada.Text_IO.Put(Item => '*');
Ada.Float_Text_IO.Put(Item=>X,
Ada.Text_IO.New_Line;

values of X are”);
Fore=>2, Aft=>1, Exp=>0);

Fore=>1, Aft=>2, Exp=>0);

Fore=>2, Aft=>3, Exp=>0);

4. Show the exact form of the output displayed when N is 345.

Ada.Text_IO.Put(Item => "Three

values of N are");

Ada.Integer_Text_ IO.Put(Item => N, Width => 4);

Ada.Text_IO.Put(Item => '*');

aAda.Float_Text_IO.Put(Item => N, Width => 5});

Ada.Text_IO.Put(Item => '*');

Ada.Float_Text_IO.Put(Item => N, Width => 1);

Ada.Text_IO.New_Line;

5. What data type would you use to represent each of the following items: num-
ber of children at school, a letter grade on an exam, the average number of
school days students are absent each year?

6. Suppose Ada.Integer_Text_I0.Get is called twice in succession, for exam-

ple,

Ada.Integer_Text_IO.Get(Item => X);
Ada.Integer_Text_IO.Get(Item => Y});

What character(s) may be typed after the first number is entered? What may be
typed after the second number is entered?

Chapter Review 113

Suppose Ada.Text_I0.Get is called twice in succession, for example,

Ada.Text_IO.Get(Item => X);
Ada.Text_I0.Get(Item => Y);

What happens if a blank is entered after the first character? What happens if
ENTER is pressed after the first character?

What kind of errors does a compilation listing show?

Answers to Quick-Check Exercises

A o

30.0

10.0

Three values of X are 3.5%*3.46* 3.456
Three values of N are 345* 345+%345
Natural, Character, Float (Or NonNegFloat)
Any number of blanks and/or ENTERS; same

The blank will be read into v; the enTer will be skipped, and the next character
(if it is not an ENTER) Will be read into v.

Compilation errors: syntax and semantic errors

Programming Projects

1.

Write a program that reads three data items into variables x, ¥, and z and then
finds and displays their product and sum,

Write a program that reads in the weight (in pounds) of an object and then
computes and displays its weight in kilograms and grams. (Hint: One pound is
equal to 0.453592 kilogram or 453.59237 grams.)

Write a program to convert a temperature in degrees Fahrenheit to degrees
Celsius. Use the formula

Celsius = (5/9) x (Fahrenheit - 32)

Eleven nations in Europe are changing over to a common currency called the
euro. Foreigners traveling in Europe will nced to know how many euros their
dollars will buy. On Jan. 1, 1999, the day the euro was introduced, one euro
was worth about $1.17 in U.S. currency, but this exchange rate can change at
any time. Develop a program that prompts the user for the exchange rate and
the number of dollars to be exchanged and then displays the equivalent amount
in euros.

114 Introduction to Straight-Line Programs

5.

A track star competes in a 1-mile race. Write a program that reads in the race
time in minutes (Minutes) and seconds (Seconds) for this runner and then
computes and displays the speed in feet per second (Fps) and in meters per
second (Mps). (Hint: There are 5280 feet in 1 mile, and 1 kilometer equals
3282 feet.) Test your program on each of the following times: :

minutes seconds

3 52.83
3 59.83
4 00.03
4 16.22

A cyclist coasting on a level road slows from a speed of 15 kilometers per hour
(km/h) to 5 km/h in 1 minute. Write a computer program that calculates the cy-
clist’s constant rate of acceleration and determines how long it will take the
cyclist to come to rest, given an initial speed of 10 miles per hour (Hint: Use
the equation a = (v¢— v,) / ¢, where a is acceleration, ¢ is time interval, v, is the
initial velocity, andf vr is the final velocity.)

If a human heart beats on the average of once a second for 78 years, how many
times does the heart beat in a lifetime? (Use 365.25 for days in a year.) Rerun
your program for a heart rate of 75 beats per minute.

You have just gotten back from a trip to the beautiful country of Lal.a Land.
While you were there, you found a great deal on a car, so you brought it back
with you. But you have a problem: In your country the distances are measured
in miles, but in LaLa Land, the distances are measured in furlongs. Each fur-
long is 1/8 mile (really!). So the odometer (mileage counter) in your beautiful
new car tells you how many furlongs you’ve traveled. Not only that, but
speeds are measured in furlongs per fortnight (fpf). Each fortnight is two
weeks or 14 days (really). Since in Lala Land, the highway speed limits are,
of course, given in these units, your car’s digital speedometer gives your car’s
speed in fpf!

You love your new car, but don’t have money for a new speedometer. Luckily,
you’re a great programmer, so you can develop a program to convert from fpf
to miles per hour (mph). That way, when you look at your speedometer and
see, for example, 147840, your program will immediately tell you that you’re
traveling 55 mph.

Design and code such a program, testing it with some typical highway speeds.
The program will ask for a speed in fpf, and display the result in mph.

Different compilers for a given language all follow the same syntax and se-
mantic rules but do not necessarily give the same error messages. In this
project you will explore the error messages generated by your Ada compiler.
Start with the program distance_with_Errors (Program 3.8). Compile it and
compare the error messages with those shown in Figure 3.7. Now correct those
errors but introduce some more errors of your own. Recompile the program
and observe the messages. Repeat this process several times; try to get as many
different messages as possible.

SRS

Problem Solving and Using
Packages

41 Data Structures: introduction to Subtypes

42 Problem Solving: Building Programs from Existing information
43 Problem Solving: Extending a Problem Solution

44 Data Structures: Introducing Enumeration Types

45 System Structures: The Importance of Packages

4.6 System Structures: Using Ada’s Calendar Package

4.7 System Structures: Using a Screen-Control Package

4.8 Tricks of the Trade: Common Programming Errors

Chapter Review

Programmers who use the software development method seldom tackle each new pro-
gram as a unique event. Information that is contained in the problem statement and
amassed during the analysis and design phases helps the programmer plan and com-
plete the program. Programmers also use segments of earlier program solutions as
building blocks to construct new programs. At the very least, they use knowledge
gained from previous programs.

The approach followed in the design phase of the method is called stepwise refine-
ment. This means that we start with the most abstract formulation of a problem and
work down to more detailed subproblems. In this chapter we will show several ways to
facilitate and enhance the refinement approach to programming.

In Section 4.1 we introduce the subtype as an important concept in data structures.
In Sections 4.2 and 4.3 we discuss topics in problem solving. In Section 4.4 we intro-
duce another data structures concept, the enumeration type, and in Section 4.5 we
present an important concept in system structures, the package. You will see how pack-
ages are used by working with a standard Ada package, ada.calendar, which provides
date and time services in a way common to all Ada compilers.

You will also see how to use a package that is provided with this book. This pack-
age, screen, provides several services for dealing with the terminal screen—namely,
clearing the screen, moving the cursor to a specific row—column position, and making
the terminal beep.

115

116 Problem Soiving and Using Packages

4.1 Data Structures: Introduction to Subtypes

Recall that a type is a set of values and a set of operations that are appropriate and valid
for those values. These two sets define the states and behavior of objects of the type. A
subtype defines a subset of the values associated with the original type, or base type;
the operations of the subtype are the same as those of the base type.

A scalar type is one each of whose values consists of a single component. All the
types we have seen so far, except for strings, are in this category. Composite types,
whose values may consist of several components, are introduced in Chapter 9. In this
section we consider how to create subranges of the predefined scalar types Integer,
Float, and Character. Subtypes are used both to make a program more readable and to
enable detection of an attempt to give a variable a value that is unreasonable in the
problem environment.

Subtypes of Predefined Scalar Types

So far in this book we have used two subtypes that are predefined in the Ada language
and are thus always available:

SUBTYPE Natural IS Integer RANGE 0..Integer'last;
SUBTYPE Positive IS Integer RANGE 1l..Integer'Last;

Each of these subtypes defines a subset of the values its base type Integer. All the
usual Integer operations remain available: A positive integer is still an integer.

Ada provides no equivalent predefined subtypes of Float. Let us now introduce a
programmer-defined subtype,

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

which defines the subset of Float containing the nonnegative values. We’ll be defining
and using this subtype in many of the programs in this book.

Subtypes have a common characteristic. An attempt to assign to a variable a value
that is not in the defined set of values causes a compilation error or warning if the com-
piler can detect the attempt. If the compiler cannot detect the attempt—for example,
because the out-of-range value is not computed until the program is executed—the
compiler builds a check into your program to ensure that Constraint_Error is raised
if, during execution, the value is indeed out of range.

B Example 4.1

Subtype declarations begin with the reserved word susTypE. Two subtypes are declared
below, as well as some variables:

SUBTYPE SmallInt IS Integer RANGE -50..50;
SUBTYPE Capitalletter IS Character RANGE 'A'..'Z';

X, ¥, 2 : SmalllInt;
NextChar : CapitalLetter;
Hours_Worked : NonNegFloat;

SYNTAX
DISPLAY

4.1 Data Structures: Introduction to Subtypes 117

The first subtype, smallint, is a subtype with base type Integer. The following
sequence of assignment statements will cause constraint_Error to be raised at run
time:

X
Y
Z

RSN
4 ~e ~e

o se o0

= Y H

Why is there no compilation error? Remember that the compiler does not actually
carry out the computation that you specify; it only produces an object program, which
carries out the computation when it is executed. Even though it might be obvious to you
that this simple computation will produce an out-of-range result, it is not obvious to the
compiler, so the checking can be done, and the exception raised, only at run time.

capitalLetter has the base type character. Any character from 'a* to 'z inclu-
sive may be stored in a variable of type capitalLetter. Constraint_Error will be
raised if an attempt is made to store any other character in a variable of type capital-
Letter. For example, the assignment statement

NextChar := 'a‘;

causes the exception to be raised because the character 'a' is not included in the sub-
type capitalLetter. The compiler might notice this attempted out-of-range assign-
ment, but instead of considering this an outright error, it will often give a warning
stating that the statement will cause constraint_Error to be raised at run time.]

Subtype Declaration

Form:

SUBTYPE subtype-name IS
base-type-pname RANGE minvalue .. maxvalue;

Example:
SUBTYPE Upperxcase IS Character RANGE 'A’'..'2°;

Interpretation:

A new subtype named subtype-name is defined. A variable of type subtype-name
may be assigned a value from minvalue through maxvalue inclusive. The values
minvalue and maxvalue must belong to the base type, and minvalue must be less
than maxvalue.

Compatibility Rules for Types and Subtypes

Ada does not allow a programmer accidentally to mix the types of operands for an
operator. This means that the expression v1 + v2 leads to a compilation error such as
“type incompatible operands” if v1 is one data type (say Integer) and v2 is another

118 Problem Solving and Using Packages

PROGRAM
STYLE

Motivation for Using Subtypes

You may be wondering why we bother with subtypes. They don’t seem to pro-
vide any new capabilities. However, they do provide additional opportunity for
your program to “bomb” because attempting to store an out-of-range value in a
variable causes an exception, usually constraint_Error, to be raised. This
should happen only as the result of an error by either the programmer or the pro-
gram user.

The use of subtypes ensures the immediate detection of an out-of-range
value. This contributes to a program’s reliability and usefulness because it
ensures that variables do not acquire values that are meaningless in the problem
being solved (such as a negative number of hours worked in a week).

In this book we use subtypes extensively, especially where it is necessary that
a variable be nonnegative.

(say Float). However, what if v1 is type Integer and v2 is type smallint (a subtype
of Integer)? In this case the expression is valid because smallint and Integer are
considered compatible types. Ada has simple compatibility rules: Two values are com-
patible if they have the same type name or one value’s type is a subtype of the other
value’s type (Integer and smallInt, for example) or if their types are subtypes of the
same base type (Positive and Smalllnt, for example).

For an interesting example of subtype compatibility, suppose x is Integer and v is
Natural. No matter what value v has, it is still an integer value, so executing the state-
ment

X = Y3

is always valid and will not raise an exception. On the other hand, consider the state-
ment

Y := X;

It is legal to write this statement, and it will compile without error, but it is not always
valid at execution time, because it depends on the value of x at that moment. If x’s value
happens to be nonnegative, the execution will go through normally, but if x’s value hap-
pens to be negative, Constraint Error is raised on the attempt to assign this
out-of-range value to Y. We observed this behavior in Section 3.8, in testing our coin
collection program with a negative number of pennies.

The compatibility relationship between operands determines what operators can be
used with the operands. An operator can be used only with operands that are compati-
ble with it and with each other. Assignment of a value to a variable is possible only if
the value and the variable are compatible. And an actual parameter that is supplied to a
function or procedure must be compatible with the corresponding formal parameter.

These rules ensure, for example, that a Float value is not assigned to an Integer
variable, that an Integer value is not assigned to a Float variable, and that an Integer
value is not supplied to Ada.Text_I0.Put (which expects a character). On the other
hand, a Positive value can be supplied to Ada.Integer_Text_r0.Put (which expects
an Integer) because of the subtype relationship.

CASE
STUDY

4.2 Problem Solving: Building Programs from Existing Information 119

4.2 Problem Solving: Building Programs from Existing
Information

Programmers seldom start off with a blank slate (or empty screen) when they develop a
program. Often some—or all—of the solution can be developed from information that
already exists or from the solution to another problem.

Carefully following the software development method generates important system
documentation before you even begin to code a program. Such documentation, consist-
ing of a description of a problem’s data requirements (developed during the analysis
phase) and its solution algorithm (developed during the design phase), summarizes
your intentions and thought processes.

You can use this documentation as a starting point in coding your program. For
example, you can begin by copying the problem data requirements into the program
declaration section, then editing those lines to conform to the Ada syntax for constant
and variable declarations, thereby completing the declaration section of the program.
This approach is especially helpful if the documentation was created with a word pro-
cessor and is in a file that you can edit.

To develop the program body, first use the initial algorithm and its refinements as
program comments. The comments describe each algorithm step and provide program
documentation that guides your Ada code. After the comments are in place in the pro-
gram body, you can begin to write the Ada statements. Place the code for an unrefined
step directly under that step. For a refined step, either edit the refinement to convert it
from English to Ada or just replace it with Ada code. We illustrate the entire process in
the next two case studies.

FINDING AREA AND CIRCUMFERENCE OF A CIRCLE

Problem Specification
Read in the radius of a circle and compute and print its area and circumference.

Analysis

Clea.rlz, the problem input is the circle radius. Two outputs are requested: the circle area
and circumference. These variables should be type NonNegFloat because the inputs and
outputs may contain fractional parts but cannot meaningfully be negative. The geomet-
ric relationships between a circle’s radius and its area and circumference are listed next,
along with the data requirements.

Data Requirements and Formulas

Problem Constant
Pi : CONSTANT NonNegFloat := 3.14159;

Problem Inputs

Radius : NonNegFloat --radius of a circle

Problem Outputs

Area : NonNegFloat --area of a circle
Circum : NonNegFloat --circumference of a circle

120 Problem Soiving and Using Packages

Relevant Formulas

area of a circle = Tt X radins?
circumference of a circle = 2r X radius

Design
Having listed the problem inputs and outputs, we can now list the steps necessary to
solve the problem.

Initial Algorithm
1. Read the circle radius.

2. Find the area.
3. Find the circumference.
4

Print the area and circumference.

Pay close attention to the order of the steps. We could interchange steps 2 and 3 —it
doesn’t matter whether we compute the area or the circumference first—but clearly,
step 1 must precede the others, because we cannot compute with values we haven’t yet
read from the user.

Algorithm Refinements

Next, we refine any steps that do not have an obvious solution (steps 2 and 3).

Step 2 Refinement
2.1. Assign Pi * Radius ** 2 to Area.

Step 3 Refinement
3.1. Assign 2.0 * Pi * Radius to Circumference.

Test Plan

The special cases that need to be tested are zero radius and negative radius. A zero
radius should give zero area and circumference; a negative radius should raise an
exception.

Implementation

Program 4.1 is the Ada program so far. The program body consists of the initial algo-
rithm with its refinements. This outline contains the “framework” consisting of PRocE-
DURE, BEGIN, and END, some declarations, and just comments in the program body.
Including the statement

NULL;

just after the BEGIN in fact makes the program syntactically correct Ada even though it
has no other statements. It can be compiled just to check whether the basic framework
and declarations are correct.

4.2 Problem Solving: Building Programs from Existing Information 121

Program 4.1 Framework for Area and Circumference

PROCEDURE Area_And_Circum Frame IS

--| Finds and displays the area and circumference of a circle
--| Author: M. B. Feldman, The George Washington University
~--| Last Modified: June 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;
Pi : CONSTANT NonNegFloat := 3.14159;

Radius : NonNegFloat; -- input - radius of a circle
Area : NonNegFloat; -- output - area
Circumference : NonNegFloat; -- output - circumference

BEGIN -- Area And_Circum Frame
NULL;

-- 1. Read the circle radius

-~ 2. Find the area
-- 2.1 Assign Pi * Radius ** 2 to Area

-=~ 3. Find the circumference
-- 3.1 Assign 2.0 * Pi * Radius to Circumference

-- 4. Display the Area and Circumference

END Area_And_Circum Frame;

SYNTAX

DISPLAY Null Statement

Form:
NULL;
Example:

PROCEDURE SmallestAdaProcedure IS
BEGIN

NULL;
END SmallestadaProcedure;

Interpretation:

The null statement is used to indicate an “empty™ sequence of statements. NULL is
sometimes used to satisfy a syntax rule requiring a sequence of statements, even
when the sequence is (intentionally) empty.

To write the final program, we must

* convert the refinements (steps 2.1 and 3.1) to Ada,
* write Ada code for the unrefined steps (steps 1 and 4),

* add the necessary context clauses for input and output,

122 Problem Solving and Using Packages

* delete the NuLL statement, and
* delete the step numbers from the comments.
Program 4.2 is the final program.

Program 4.2 Area and Circumference

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Area And_Circum IS

--| Finds and displays the area and circumference of a circle
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: June 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

Pi : CONSTANT NonNegFloat := 3.14159;

Radius : NonNegFloat; -- input - radius of a circle
Area : NonNegFloat; -- output - area
Circumference : NonNegFloat; -- output - circumference

BEGIN -- Area And Circum

-- Read the circle radius
Ada.Text_IO.Put (Item => "Enter radius > ");
Ada.Float_Text I0.Get (Item => Radius);

-- Find the area
Area := Pi * Radius ** 2;

-- Find the circumference
Circumference := 2.0 * Pi * Radius;

-- Display the Area and Circumference
Ada.Text_IO.Put (Item => "The area is ");
Ada.Float_Text_IO.Put (Item => Area, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_JO.New_Line;
Ada.Text_IO.Put (Item => "The circumference is ");
Ada.Float_Text_IO.Put

(Item => Circumference, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

END Area_ And Circum;
Sample Run

Enter radius > 5.0
The area is 78.54
The circumference is 31.42

CASE
STUDY

4.3 Problem Solving: Extending a Problem Solution 123

Testing

The sample run shows a good test of the solution because it is relatively easy to com-
pute the area and circumference by hand for a radius value of 5.0. The radius squared is
250, so the value of the area appears to be correct. The circumference should be 10
times f, which is also an easy number to compute by hand. We leave the other tests in
the test plan for you to complete.

EXERCISES FOR SECTION 4.2

Self-Check

1. Describe the problem inputs and outputs and algorithm for computing an em-
ployee’s gross salary given the hours worked and hourly rate.

2. Describe the problem inputs and outputs and algorithm for the following prob-
lem: Read in a pair of numbers and determine the sum and average of the two
numbers.

Programming

1. Write a program for Self-Check question 2.

4.3 Problem Solving: Extending a Problem Solution

Another way programmers reuse existing information is by noting that the solution of
one problem is often the basis for the solution to another problem. For example, we can
easily solve the next problem by building on the solution to the previous problem.

UNIT PRICE OF A PIZZA

Problem Specification

You and your college roommates frequently order a late-night pizza snack. There are
many pizzerias in the area that deliver to dormitories. Because you are on a tight bud-
get, you would like to know which pizza is the best value.

Analysis

To find which pizza is the best value, we must be able to do a meaningful comparison
of pizza costs. One way to do this is to compute the unit price of each pizza. The unit
price of an item is obtained by dividing the total price of that item by a measure of its
quantity. A good measure of quantity is the pizza weight, but pizzas are not sold by

124 Problem Solving and Using Packages

weight—they are sold by size (diameter), measured in inches. Consequently, the best
that we can do is to use some meaningful measure of quantity based on the pizza diam-
eter. One such measure is the pizza area. So for our purposes we will define the unit
price of a pizza as its price divided by its area.

The data requirements below list the pizza size and price as problem inputs.
Although the problem statement does not ask us to display the pizza area, we are listing
it as a problem output because the pizza area will give us some idea of how many
friends we can invite to share our pizza. The radius (one-half of the diameter) is listed
as a program variable because we need it to compute the pizza area, but it is not a prob-
lem input or output.

Data Requirements

Problem Constant

Pi : CONSTANT Float := 3.14159;

Problem Inputs

Size : NonNegFloat -- diameter of a pizza

Price : NonNegFloat -- price of a pizza

Problem Outputs

Area : NonNegFloat -- area of a pizza

UnitPrice : NonNegFloat -- unit price of a pizza

Relevant Formulas

area of a circle = 7 X radius?
radius of a circle = diameter/2
unit price = price/area

Design

We m%ntioned earlier that we are basing the problem solution on the solution to the
Case Study in Section 4.2 (finding the area and circumference of a circle). The initial
algorithm is similar to the one shown earlier. The step that computes the circle circum-
ference (step 3) has been replaced with one that computes the pizza unit price.

Initial Algorithm
1. Read in the pizza diameter and price.

2. Compute the pizza area.
3. Compute the pizza unit price.
4

Display the unit price and area.

The refinement of step 2 shows that we must compute the pizza radius before we
can compute its area.

Step 2 Refinement
2.1 Assign Diameter / 2 to Radius.

2.2. Assign Pi * Radius ** 2 to Area.

4.3 Problem Solving: Extending a Problem Solution 125

Step 3 Refinement
3.1. Assign Price / Area to UnitPrice.

Test Plan

To test this program, run it with a few different pizza sizes. You can verify that the pro-
gram is working correctly by multiplying the unit price and area. This product should
equal the price of the pizza.

Implementation

Program 4.3 shows the framework for the Ada program. We will write this program the
same way as before: by editing the data requirements to develop the program declara-
tion part and by using the initial algorithm with refinements as a starting point for the
program body.

In Program 4.3, instead of defining our own constant pi, we are using the constant
pi provided by an Ada standard library, Ada.Numerics (Annex A.5 in the Ada 95 Refer-
ence Manual). There, pi is given to 50 decimal places. Note that to use this library, we
just write the usual context clause

WITH Ada.Numerics;
and then get the value of pi as ada.Numerics.Pi.
Program 4.3 Framework for Pizzeria

WITH Ada.Numerics;
PROCEDURE Pizzeria_ Frame IS

--| computes and displays the unit price of a pizza
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

-- Pi : CONSTANT NonNegFloat := 3.14159;
-=- unnecessary; better to get this from the standard library!
-- we can just refer to Ada.Numerics.Pi

Diameter : NonNegFloat; =-- input - diameter of a pizza
Price : NonNegFloat; ~- input - price of a pizza
UnitPrice : NonNegFloat; -- output - unit price of a pizza
Area : NonNegFloat; -- output - area of a pizza
Radius : NonNegFloat; -- radius of a pizza

BEGIN -- Pizzeria_Frame

NULL;
-- 1. Read in the pizza diameter and price
-- 2. Compute the pizza area

-- 2.1 Assign Diameter/2 to Radius
-- 2.2 Assign Pi * Radius ** 2 to Area

126 Problem Solving and Using Packages

-- 3. Compute the pizza unit price
-- 3.1 Assign Price / Area to UnitPrice

-- 4. Display the unit price and area

END Pizzeria Frame;
Program 4 4 gives the final program.
Program 4.4 Unit Price of a Plzza

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;
WITH Ada.Numerics;
PROCEDURE Pizzeria IS

--| Computes and displays the unit price of a pizza
-=| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

Diameter : NonNegFloat; -- input - diameter of a pizza
Price : NonNegFloat; =-- input - price of a pizza
UnitPrice : NonNegFloat; =-- output - unit price of a pizza
Area : NonNegFloat; -- output - area of a pizza
Radius : NonNegFloat; -- radius of a pizza

BEGIN -- Pizzeria

-=- Read in the pizza diameter and price
Ada.Text_IO.Put (Item => *"Size of pizza in inches > ");
Ada. Float Text_I0.Get (Item => Diameter);

Ada.Text_. TOo.Put (Item => "Price of pizza $");

Ada. Float Text_IO0.Get (Item => Price);

-- Compute the pizza area
Radius := Diameter/2.0;
Area := Ada.Numerics.Pi * Radius ** 2;

-- Compute the pizza unit price
UnitPrice := Price / Area;

-- Display the unit price and area
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => "The pizza unit price is $");
Ada.Float_Text_IO.Put

(Item => UnitPrice, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;
Ada. Text 10.Put (Item => "The pizza area is ");
Ada. Float Text_I0.Put

(Item => Area, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.Put (Item => " square inches.");
Ada.Text_IO.New_Line;

END Pizzeria;

PROGRAM
STYLE

PROGRAM
STYLE

4.3 Problem Solving: Extending a Problem Solution 127

Sample Run

Size of pizza in inches > 10
Price of pizza $8.50

The pizza unit price is $0.11
The pizza area is 78.54 square inches.

Testing

The sample run gives one test. You can supply others.

Using Comments

Comments make a program more readable by describing the purpose of the pro-
gram and by describing the use of each identifier. For example, the comment in
the declaration

Radius: NonNegFloat; -- program input - radius of a circle

describes the use of the variable radius.

You should place comments within the program body to describe the purpose
of each section of the program. The stepwise refinement method that we use in
this book uses comments in the program framework for each step of the algo-
rithm and its refinements. Some of these comments are turned into program state-
ments as these are written; others remain as program documentation.

You may wish to add other comments to a program to make it easier for your-
self and others to understand. Make sure a comment within the program body
adds useful descriptive information about what the step does rather than simply
restate the step in English.

For example, the comment

-~ Find the area of the circle
Area := Pi * Radius ** 2;

is more descriptive than, and therefore preferable to,

-=- Multiply the Radius by itelf and Pi
Area := Pi * Radius ** 2;

More on Banner Comments

Begin each program with a header section, sometimes called a block comment or
banner comment, that consists of a series of comments specifying the program-
mer’s name, the date of the current version, and a brief description of what the
program does. The banner form used in the program examples in this book is
usually acceptable. If you write the program for a class assignment, you should
also list the class identification and your instructor’s name. Your instructor may
also require other kinds of comments in your program.

128 Problem Solving and Using Packages

A final word on comments: If a program has too few comments, the reader may
have difficulty understanding the program. On the other hand, if there are too many
comments, finding the program text among the comments will be difficult. Writing
effective comments—knowing just how much to write—is a skill that must be prac-
ticed.

Motivation for Conditional and Repetition Control Structures

So far, we have extended the solution to one problem (find a circle radius and circum-
ference) into a second related problem (find the unit price of a pizza). We are not really
finished yet because our goal was to be able to do a cost comparison of several pizzas
with different prices and sizes in order to determine the best value.

One way to accomplish our larger goal is to run this program several different
times, once for cach pizza, and record the results. Then we can scan the list of results to
determine which pizza has the lowest unit price.

A better solution would be to write a program that repeated the computation steps
and also compared unit prices, displaying as its final result the size and price of the
pizza with the lowest unit price. Let’s write an algorithm that will give us this improved
solution.

Initial Algorithm for Improved Solution to Pizza Problem

1. For each size of pizza, read in the pizza size and price and compute unit cost. Com-
pare the unit cost just computed with the previous unit costs and save the size and
price of the pizza whose unit cost is the smallest so far.

2. Display the size and price of the pizza with the smallest unit cost.

The purpose of step 1 of the algorithm is to perform the cost computation for each
individual pizza and somehow save the size and price of the pizza whose unit cost was
the smallest. After all costs are computed, step 2 displays the size and price of the pizza
that is the best buy.

Step 1 Refinement
1.1. Repeat the following steps for each size of pizza:

1.2. Read in the next pizza size and price.
1.3. Compute the unit price.

1.4, If the new unit price is the smallest one so far, then save this pizza’s size, price,
and unit price.

Step 1.1 specifies the repetition of a group of steps: step 1.2 (read), step 1.3 (com-
pute), and step 1.4 (compare). We will repeat these steps as many times as necessary
until all unit prices are computed. Each time we compute a new unit price, step 1.4
compares it to the others, and the current pizza’s size and price are saved if its unit price
is smaller than any others computed so far. If the unit price is not the smallest so far, the
current pizza’s size and price are not saved. Step 1.4 is a selection step because it
selects between the two possible outcomes: (a) save the pizza’s data and (b) do not save
the pizza’s data.

4.4 Data Structures: Introducing Enumeration Types 129

We will discuss control structures for selection and repetition fully in Chapters 5, 6,
and 7.

4.4 Data Structures: Introducing Enumeration Types

So far, most of the data types you have seen have been numerical (Integer, Float). In
this section you will be introduced to the important concept of enumeration types. An
enumeration type is defined by a list of values taking the form of identifiers. These
types are called enumeration types because their values are enumerated, or given in a
list. An enumeration type is useful in representing a fixed set of values that are not
numerical, such as the days of the week, the months of the year, the years (freshman,
sophomore, junior, senior) in a high school or college career, or the expenditure catego-
ries in an accounting program. Ada encourages you to use enumeration types by pro-
viding a small but useful set of operations on them and also an input/output package
that makes it easy to read enumeration values from a keyboard or disk file and display
them on the screen.

Defining Enumeration Types

In many programming situations the standard data types and their values are inade-
quate. For example, in a budget program we might want to distinguish among the fol-
lowing categories of expenditures: entertainment, rent, utilities, food, clothing,
automobile, insurance, and miscellaneous. We could always assign an arbitrary code
that associates entertainment with a character value of 'e', rent with a character value
of 'r', and so on. However, enumeration types allow us to specify the set of values
directly. For example, the enumeration type Expenses declared below has eight possi-
ble values enclosed in parentheses:

TYPE Expenses IS
(entertainment, rent, utilities, food,
clothing, automobile, insurance, miscellaneous);

ExpenseKind : Expenses;

The variable Expensekind (type Expenses) can contain any of the eight values
listed after Expenses 1s. The values, called enumeration literals, associated with an
enumeration type are generally identifiers and therefore must conform to the syntax of
identifiers. The type declaration must precede any variable declaration that references
it.

The enumeration type pays has the values Monday, Tuesday, and so on:

TYPE Days IS
(Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

It is permissible for the same enumeration literal to appear in several enumeration
types, just as it is permissible for the same numerical value to appear in several numer-
ical types. It is, for example, possible to define the three types

130 Problem Solving and Using Packages

SYNTAX
DISPLAY

TYPE Traffic_Light_Colors IS (Red, Yellow, Green);
TYPE Primary_ Paint_Colors IS (Red, Yellow, Blue);
TYPE Primary TV_Colors IS (Red, Blue, Green);

in the same program without causing difficulties for the compiler. On the other hand,
the compiler treats the Red from Traffic_Light_Colors as a different value from the
Red from Primary_TV_Colors.

Enumeration Type Declaration

Form:

TYPE enumeration-type IS (identifier-list);

Example:

TYPE Class IS (Freshman, Sophomore, Junior, Senior);

Interpretation:

A new data type named enumeration-tvpe is declared. The enumeration literals,
or values associated with this type, are specified in the identifier-list. The order in
which the enumeration literals are given is important, because it defines an order-

ing of the literals: Freshman is less than Sophomore: Junior is greater than
Freshman.

Enumeration Type Attributes and Operations

The order relationship between the values of an enumeration type is fixed when the
type is declared. Each literal has a position in the type, given as a value of type Natu-
ral. For type pays, the first value in its list (Monday) has position 0, the next value
(Tuesday) has position 1, and so on.

An assignment statement can be used to define the value of a variable whose type is
an enumeration type. The variable

Today : Days; ~-current day of the week
Tomorrow : Days; --day after Today

specifies that Today and Tomorrow are type pays and, therefore, can be assigned any of
the values listed in the declaration for type pay. Consequently, the assignment state-
ments

Today := Friday;
Tomorrow := Saturday;

assign the values Friday to variable Today and saturday to variable Tomorrow.

An important aspect of Ada’s type system is the notion of attributes. These are
characteristics of a type or variable that can be queried by a program. For the case of
enumeration types-six important attributes are:

* First, which gives the first or lowest value in the type;

148 Problem Solving and Using Packages

Ada.Text_IO.Flush;
Ada.Text_IO.Put (Item => Ada.Characters.Latin_1.ESC);
Ada.Text_IO.Put ("["):
Ada.Integer_Text_ IO.Put (Item => Row, Width => 1);
Ada.Text_IO.Put (Item => ';');
Ada.Integer_ Text IO.Put (Item => Column, Width => 1);
Ada.Text_IO.Put (Item => '£');

END MoveCursor;

END Screen;

Using the Screen Package

Ada’s standard packages—the ones whose names begin with Ada. —come with the Ada
compiler and do not need to be compiled. Before any non-standard package can be
used by other programs, it must be compiled. The specification must be compiled first,
then the body. To use the screen package, you must have a copy of the specification and
body files available in your computer’s file system. If you do not, you must type them
in exactly as shown in Programs 4.8 and 4.9, then compile them both. If you subse-
quently modify the specification file, you must recompile both it and the body, and all
other programs that use the package as well. If you do not modify either file, you will
not have to recompile it; your Ada compiler’s library system will keep it available for
use with any program with the context clanse

WITH Screen;

As an example of the use of the screen package, consider Program 4.10, which first
clears the screen, then beeps three times, then draws a “smiley face” in the center of the
screen. After each beep, there is a statement

DELAY 0.1;

which causes the computer to wait 0.1 second before sending the next beep. This is
done so that even on a very fast computer you will hear three distinct beeps.

Program 4.10 Smiley: a Program That Uses the Screen Package

WITH Ada.Text_IO;
WITH Screen;
PROCEDURE Smiley IS

--| Draws a "smiley face" in the center of the terminal screen
--| Author: M. B. Feldman, The George Washington University
--] Last Modified: July 1998

BEGIN -- Smiley

Screen.ClearScreen;
Screen.Beep;

DELAY 0.1;
Screen.Beep;

DELAY 0.1;
Screen.Beep;

4.7 System Structures: Using a Screen-Control Package 147

The package provides three procedures. The first two, Beep and Clearscreen, take
no parameters: A procedure call statement

Screen.Beep;
causes the terminal to beep; a procedure call statement

Screen.ClearScreen;

causes the screen to go blank, erasing all previous information from it. The last proce-
dure, Movecursor, takes row and column parameters, so that, for example,

Screen.MoveCursor (Row => 10, Column => 22);
Text_I0.Put (Item => '*');

has the effect of displaying an asterisk in the location of row 10, column 22. Finally,

Screen.MoveCursor (Row => 5, Column => 10);
Text_IO.Put (Item => "=—e—- “):

displays the string ----- in row 5, columns 10 through 14, inclusive.

Note the style of comments documenting each of these procedures. These are
called preconditions and postconditions and are used to describe each procedure’s
assumptions and behavior in an informal but structured way. We’ll come back to this
subject in more detail in Chapter 7; meanwhile, you can get used to reading this style of
documenting our packages.

Program 4.9 gives the body of this package. You might not understand exactly how
the procedures work. Don’t worry about this right now; we’ll return to it in Chapter 8.

Program 4.9 Body of Screen Package

WITH Ada.Characters.Latin_l;
WITH Ada.Text_IO;

WITH Ada.Integer_Text IO;
PACKAGE BODY Screen IS

-~| Body of screen-handling package
-~| Author: M. B. Feldman, The George Washington University
~--| Last Modified: July 1998

PROCEDURE Beep IS

BEGIN
Ada.Text_JO.Put (Item => Ada.Characters.Latin_l.BEL);
Ada.Text_IO.Flush;

END Beep;

PROCEDURE ClearScreen IS

BEGIN
Ada.Text_IO.Put (Item => Ada.Characters.Latin_l.ESC);
Ada.Text_IO.Put (Item => "[2J");
Ada.Text_IO.Flush;

END ClearScreen;

PROCEDURE MoveCursor (Column : Width; Row : Depth) IS
BEGIN

146 Problem Solving and Using Packages

writing. Doing this requires an additional package that uses Ada.Text_zo to send con-
trol characters to the terminal; the control characters act as instructions to it instead of
data it should display. Because this package, which we will call screen, is not part of
standard Ada, we provide it with this book. The details of just how this package oper-
ates are left until Chapter 8, but it is possible for you to use the package without under-
standing its innards.

A package consists of two files, the specification file and the body file. As was dis-
cussed in Section 4.6, the specification gives the “contract with the user,” or list of
promised resources. The body delivers the actual source code for the procedures and
functions promised by the specification. Because the input/output and Ada.calendar
packages are supplied in precompiled form by all Ada compilers, we have seen only
their specifications; the source code for the bodies is not available to us. Other packages
may be supplied to you in source-code form, with both the specification and body files
provided. screen is one of these packages.

Program 4.8 shows the specification for screen.

Program 4.8 Specification for Screen Package

PACKAGE Screen IS

--| Procedures for drawing pictures on ANSI Terminal Screen
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

-- constants; the number of rows and columns on the terminal

~

ScreenDepth : CONSTANT Integer := 2
: :t= 8

4
ScreenWidth CONSTANT Integer 0;

-

-~ subtypes giving the ranges of acceptable inputs
-- to the cursor-positioning operation

SUBTYPE Depth IS Integer RANGE 1..ScreenDepth;
SUBTYPE Width IS Integer RANGE 1..ScreenWidth;

PROCEDURE Beep;
-~ Pre: None
-- Post: Terminal makes its beep sound once

PROCEDURE ClearScreen;
-~ Pre: None
~-- Post: Terminal Screen is cleared

PROCEDURE MoveCursor (Column : Width; Row : Depth);
—-- Pre: Column and Row have been assigned values
-- Post: Cursor is moved to the given spot on the screen

END Screen;

This package provides two constants, Screenwidth and ScreenDepth, correspond-
ing to the number of columns (usually 80) and rows (usually 24) on the screen. There
are also two subtypes, width and Depth, giving the ranges for valid cursor positions
(1..screenDepth and 1..Screenwidth, respectively).

4.7 System Structures: Using a Screen-Control Package 145

WITH Ada.Calendar;
PROCEDURE Todays_Date_? 1s

--| Displays today's date in the form MONTH dd, yyyy

--| An enumeration type is used for months

--| The date is gotten from PACKAGE Ada.Calendar

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

TYPE Months IS
(January, February, March, April, May, June,
July, August, September, October, November, December);

PACKAGE Months_IO Is
NEW Ada.Text_IO.Enumeration IO(Enum => Months);

RightNow : Ada.Calendar.Time; -- current time
ThisYear : Ada.Calendar.Year_ Number; -- current year
ThisMonth : Ada.Calendar.Month_Number; -- current month
ThisDay ¢ Ada.Calendar.Day Number; -=- current day

MonthName: Months;
BEGIN -- Todays_Date_2

-- Get the current time value from the computer's clock
RightNow := Ada.Calendar.Clock;

-- Extract current month, day, and year from the time value

ThisMonth := Ada.Calendar.Month(Date => RightNow);
ThisDay := Ada.Calendar.Day (Date => RightNow);
ThisYear := Ada.Calendar.Year (Date => RightNow);

-- Format and display the date
MonthName := Months'Val(ThisMonth - 1);

Ada.Text_IO.Put (Item => "Today's date is ");

Months Io Put (Item => MonthName, Set => Ada. Text_I0.Upper_Case);
Ada. Text I0.Put (Item => ' ');

Ada. Integer_Text_IO Put (Item => ThisDay, Width => 1);
Ada.Text_IO.Put (Item => *,');

Ada.Integer_Text_IO.Put (Item => ThisYear, Width => 5);
Ada.Text_IO.New_Line;

END Todays_Date_ 2;
Sample Run

Today's date is JULY 24, 1998

4.7 System Structures: Using a Screen-Control Package

The ada.Text_10 package provides operations for reading from the terminal keyboard
and writing to the screen, but it provides no direct operanons for controlling the screen
in interesting ways, such as moving the cursor to a given row—column position before

144 Problem Solving and Using Puckages

CASE
STUDY

Testing
The sample run shows the correct date, correctly formatted.

DISPLAYING TODAY’S DATE IN "MONTH DD, YYYY"
FORM

Problem Specification
Display today’s date in the form MONTH dd, yyyy.

Analysis

This problem is similar to the previous one. In fact, it can be solved just by modifying
the previous algorithm. Package Ada.Calendar gives us only the number of the current
month from 1 to 12, so we need to specify the names of the months. We can do this
with an enumeration type:

TYPE Months IS
(January, February, March, April, May, June,
July, August, September, October, November, December);

The current month can be displayed by using an instance of ada.Enumeration_10,
as in the colors program:

PACKAGE Month IO IS
NEW Ada.Text_IO.Enumeration_IO(Enum => Months);

Design
All steps of the algorithm are the same. except for a step 3 refinement.

Step 3 Refinement
3.1 Find the name of the month.

3.2 Format and display the current month, day, and year.

We reed to find the name corresponding to the number of the current month. Because
the month is given from 1 to 12, and the positions of the names are 0 to 11, subtracting
1 from the month will give us the right position in Months, from which we can find the
month name using the val attribute. If the month name is stored in a variable
Month_Name of type Months, we have

Month_Name := Months'Val(This_Month - 1);
The solution to this problem is shown in Program 4.7.
Program 4.7 Displaying Today's Date in Another Format

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;

4.6 System Structures: Using Ada’s Calendar Package 143

Test Plan :

In this case, no user inputs are provided to the program. The only thing to test is the
correct extraction and formatting of the month, day, and year. It is easy to check
whether the program produced the correct date; just look at an ordinary calendar.

Implementation
Program 4.6 shows the Ada program for this problem.

Program 4.6 Displaying Today's Date

WITH Ada.Text_I0;

WITH Ada.Calendar;

WITH Ada.Integer_Text_IO;
PROCEDURE Todays_Date IS

--| Finds and displays today's date in the form mm/dd/yyyy
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

current time

RightNow : Ada.Calendar.Time; -

ThisYear : Ada.Calendar.Year Number; -- current year
ThisMonth : Ada.Calendar.Month_Number; -~ current month
ThisDay : Ada.Calendar.Day_Number; -=- current day

BEGIN -- Todays_Date

-- Get the current time value from the computer's clock
RightNow := Ada.Calendar.Clock;

-=- EBExtract current month, day, and year from the time value
ThisMonth := Ada.Calendar.Month(Date => RightNow);
ThisDay := Ada.Calendar.Day (Date => RightNow);
ThisYear := Ada.Calendar.Year (Date => RightNow);

-- Format and display the date

Ada.Text_IO.Put (Item => "Today's date is ");
Ada.Integer Text_ IO.Put (Item => ThisMonth, Width => 1);
Ada.Text_IO.Put (Item => '/‘');

Ada.Integer_Text_IO.Put (Item => ThisDay, Width => 1);
Ada.Text_IO.Put (Item => '/');

Ada.Integer_Text_IO.Put (Item => ThisYear, Width => 1);
Ada.Text_IO.New_Line;

END Todays_Date;
Sample Run
Today's date is 7/24/1998

The program begins with the appropriate context clauses, including one for ada.cal-
endar. Variables for the time, month, day, and year are declared.

Finally, the results are formatted and displayed using a sequence of put statements
from Ada.Text_I0 and Ada.Integer_Text_1o. Notice how the integer values are dis-
played using a width of | to keep them “up against” the slashes.

142 Probiem Solving and Using Packages

2. Extract the current month, day, and year from the time value.
3. Format and display the date.

Algorithm Refinements

Step 2 Refinement
2.1. Extract the current month from the time value.

2.2. Extract the current day from the time value.
2.3. Extract the current year from the time value.

We can illustrate the steps in the refinement process with a diagram that shows the
algorithm subproblems and their interdependencies. An example of such a diagram,
called a structure chart, is shown in Fig. 4.2.

As we trace down this diagram, we go from an abstract problem to a more detailed
subproblem. The original problem is shown at the top, or level 0, of the structure chart.
The major subproblems appear at level 1. The different subproblems resulting from the
refinement of each level-1 step are shown at level 2 and are connected to their respec-
tive level-1 subproblem. This diagram shows that the subproblem Extract date values
from time value is dependent on the solutions to the subproblems Extract month, extract
day, and extract year. Because the subproblem Get current time is not refined further,
there are no level-2 subproblems connected to it.

Structure charts are intended to show the structural relationship between the sub-
problems. The algorithm (not the structure chart) shows the order in which each step
must be carried out to solve the problem.

Display
today's date
?:,tncé’gggﬁgﬁg Extract date values Format and
clock from time value display date
Extract Extract Extract
month day year

Figure 4.2 Structure Chart for Formatting and Displaying Today'’s Date

CASE
STUDY

4.6 System Structures: Using Ada’s Calendar Package 141

Note 3:

The type of each actual parameter must agree with the type of the corresponding
formal parameter. Ada does not allow. for example. an integer-valued actual
parameter to be associated with a float-valued formal parameter.

Note 4:

In this book. each actual parameter is listed with the name of the corresponding
formal parameter (the two are separated by =>). Therefore, strictly speaking. the
order of the actual parameters does not have to match that of the formal parame-
ters. It is nevertheless good practice to list the actual parameters in an order corre-
sponding to the order of the formal parameters.

Note that as the second example shows, functions can be defined to have no param-
eters at all. The number, order, and type of the parameters is, of course, determined by
the writer of the function, not its user.

DISPLAYING TODAY'S DATE IN "MM/DD/YYYY"
FORM

Let’s use the knowledge gained in this chapter to solve the problem of displaying
today’s date.

Problem Specification
Display today’s date in the form mm/dd/yyyy; for example, if today is October 21,
1998, we display 10/21/1998. If today is July 8, 2000, we display 7/8/2000.

Analysis

Today’s date can be obtained from the computer’s internal clock by using the appropri-
ate Ada calendar facilities to get a time value and then to extract the month, day, and
year. These three values can then be formatted to give the desired display.

Data Requirements

Problem Data Types:

We need only the type Time and the subtypes Year_Number, Month_Number, and
Day_Number, all provided by the standard package ada.calendar.

Problem Inputs:
No inputsl need to be entered by the user.

Problem Outputs:
Today’s date, in the form mm/dd/yyyy.

Design
Initial Algorithm

1. Get the current time value from the computer’s clock.

140 Probiem Solving and Using Packages

SYNTAX
DISPLAY

the assignment statement
This_Year := Ada.Calendar.Year(Date => Right_Now);

will store the current calendar year in This_Year. Since Ada.Calendar.Year_Number is
an ordinary integer subtype, ordinary integer operations can be performed on the value
in This_year; specifically, its value can be displayed. This function call is analogous to
an Ada.Text_I0 procedure call such as

Ada.Text_IO.Put(Item => FirstInitial);

in the sense that a value is being supplied to correspond to the formal parameter. The
formal parameter of put is called 1tem; the formal parameter of Year is called pate.

In using the operations of ada.calendar, we have no knowledge of the details of
how they perform. This is of no concern to us; the “contract” embodied in the specifica-
tion tells us what to expect, and this is all we need to know.

Function Call Statement (Simple)

Form:
‘variable := fname (actual parameters);
Example:

This_Month := Ada.Calendar.Month(Date => Right Now) ;

R:Lght Now := Ada.Calendar.Clock;

Interpretation:

The list of parameters (if any) is enclosed in parentheses: each actual parameter
value is preceded by the name of that formal parameter. The variable must be of
the same type as the return type of the function fname. The function fname is
called, and its returned value is stored in variable. During the function execution,
the named actual parameters are assocxated with the corresponding formal
parameters.

Note 1:

Multiple parameters are separated by commas. Be careful here: The formal
parameters are separated by semicolons, but the actual parameters are separated
by commas.

Note 2:

The number of actual and formal parameters must be the same. Each actual
parameter that is an expression is evaluated when frame is called; this. value is
assigned to the corresponding formal parameter. :

4.6 System Structures: Using Ada’s Calendar Package 139

Recall from Section 4.1 that a type consists of a set of values and a set of operations
on these values and that a subtype is a subset of the original set of values together with
the full original set of operations. For example, in declaring Month_wumber to be a sub-
type of Integer and giving its range as 1..12, we are saying that any variables of
type Month_Number can hold integer values only in the range | through 12, inclusive.
Similarly, variables of subtype pay_Number can hold integer values in the range 1
through 31, inclusive. All of the operations on integers apply to values of these sub-
types, but if an operation attempts to store a value that is outside the declared range,
this operation is improper and a Constraint_Error exception will be raised at run
time.

We reiterate that subtypes are a convenient way to inform the compiler—and the
reader of a program—that certain variables have ranges that are restricted according to
their intended use. Ada can then help us to avoid and recover from errors by checking
that variables store numbers only of appropriate size.

The declarations

This_Year : Ada.Calendar.Year_Number;
This_Month : Ada.Calendar.Month_Number;
This_Day : Ada.Calendar.Day_Number;

declare variables of the three subtypes provided by Ada.calendar.Again we have used
qualified references; this is done to remind both the compiler and the human reader of
the package in which the resources are defined.

Next we consider how to determine the current time of day in Ada. Returning to the
Ada.Calendar specification in Fig. 4.1, the next line

FUNCTION Clock RETURN Time;

specifies a function called clock. Given the declaration
Right_Now: Ada.Calendar.Time;

then an assignment statement such as

Right_Now := Ada.Calendar.Clock;

will be compiled into machine instructions that read the computer’s internal clock,
which delivers the current time of day and stores this time value in the variable
Right_Now. The expression Ada.calendar.Clock is a function call; we will see other
function calls shortly.

This value is not very useful to us in this form; for example, we cannot display a
time value because its precise form is not available to us. But as the next three lines,

FUNCTION Year (Date: Time) RETURN Year_ Number;
FUNCTION Month (Date: Time) RETURN Month_Number;
FUNCTION Day (Date: Time) RETURN Day Number;

of the specification show, the package gives us operations to extract the year, month,
and day from the internal time value. Each of these operations is a function with a sin-
gle parameter Date, which is of type Time. For example, if we declare a variable

This_Year : Ada.Calendar.Year Number;

138 Problem Solving and Using Packages

~- functions to get the current time
-- and return its date components

FUNCTION Clock RETURN Time;

FUNCTION Year (Date : Time) RETURN Year_ Number;
FUNCTION Month (Date : Time) RETURN Month_Number;
FUNCTION Day (Date : Time) RETURN Day_ Number;

-- Ada.Calendar provides many other interesting facilities;
-~ for clarity, these are omitted from this figure.

END Ada.Calendar;
After the first line,
PACKAGE Ada.Calendar IS

which indicates the beginning of a package specification, four type declaration state-
ments are given. The line

TYPE Time IS PRIVATE;

specifies Time as a PRIVATE type, the details of whose values are not known to the pack-
age user. We do not know whether a Time value is an Integer value, or Float, or
string, or something we haven’t thought of yet. On the other hand, we are told that this
internal value represents a year, calendar day, and time of day in a single bit pattern. We
don’t really need to know any more about Time values, because the package provides
all the operations necessary to work with them.

We will discuss PRIVATE types in detail later, especially in Chapter 11, where we
will develop a few of our own. For now, you need to know that because Time is a2 PRI-
VATE type, the only way you can use Time values is to work with them according to the
various operations provided by ada.calendar. There is, for example, no way to display
a Time value on the screen. You will see a few ada.calendar operations in a short
while.

Given a program preceded by a context clause

WITH Ada.Calendar;
the declaration
Right_Now : Ada.Calendar.Time;

declares a variable capable of holding a time value. The form ada.calendar.Time is
similar to the form Ada.Text_I0.New_Line in that the name of the package is used to
qualify the use of the package resource: Time is a resource provided by Ada.calendar
just as New_Line is a resource provided by Ada.Text_Io.

In the specification of ada.calendar in Fig. 4.1, the next three lines give subtype
declarations for years, months, and days:

SUBTYPE Year Number IS Integer RANGE 1901..2099;
SUBTYPE Month_Number IS Integer RANGE 1..12;
SUBTYPE Day_Number IS Integer RANGE 1..31;

4.6 System Structures: Using Ada’s Calendar Package 137

A special kind of package, one that groups a type together with a complete set of
operations for that type, is often called an abstract data type (ADT) package. ada.cal-
endar is an excellent example of an ADT package.

You will work with three kinds of packages in this book:

* standard packages—such as ada.Text_z0 and aAda.Numerics, which you have
seen already, and Ada.Calendar, introduced in Section 4.6—which are re-
quired by the Ada standard and supplied with all compilers;

» packages supplied along with this book, such as the screen-control package in-
troduced in Sections 4.7; and

» packages written as part of your study of this book, such as the packages intro-
duced starting in Chapter 5 and continuing throughout the book.

4.6 System Structures: Using Ada’s Calendar Package

In this section you will see how to use another standard Ada library package, Ada.cal-
endar. This important package is specified in the Ada Reference Manual, Section 9.6

In all Ada packages, the resources provided are listed in an Ada source file called
the package specification. The package specification plays two roles: It describes the
package to the compiler, and it serves as a “contract” with the programmer who is using
it, telling this human user exactly what resources to expect. Some of the different kinds
of resources provided by a package are

¢ types and subtypes,
¢ procedures, and

¢ functions.

Ada’s calendar package provides a number of useful resources relating to dates and
times. Figure 4.1 shows a part of the specification for ada.calendar; for clarity we
have listed only those services needed in this example. Figure 11.3 gives the entire
specification for ada.calendar.

Figure 4.1 Partial Specification of Package Ada.Calendar

PACKAGE Ada.Calendar IS

-~ standard Ada package, must be supplied with compilers
-- provides useful services for dates and times

-~ type definitions
TYPE Time IS PRIVATE;
SUBTYPE Year_ Number IS Integer RANGE 1901..2099;

SUBTYPE Month Number IS Integer RANGE 1..12;
SUBTYPE Day_Number IS Integer RANGE 1..31;

136 Problem Solving and Using Packages

EXERCISES FOR SECTION 4.4

Self-Check
1. Evaluate each of the following assuming Today (type Day) is Thursday before
each operation.
a. Day'Pos(Monday) €. Day'Succ(Sunday)
b. Day'Pos(Today) f. Dpay'Pred(Monday)
C. Day'Val(é6) ﬁ. Day'val(0)
d. Today < Tuesday . Today >= Thursday

4.5 System Structures: The Importance of Packages

Consider the input/output libraries we have been using in this book. Each of the various
Get and Put statements in the earlier examples is really a procedure call statement. A
procedure is a kind of system building block, a way of putting together a group of pro-
gram statements and treating them as a unit, causing them to be executed by means of
procedure calls. In this book you will learn how to write procedures; in this chapter you
will continue just to use procedures written by others.

The cet and put procedures that we have been using were written by another pro-
grammer at another time; they were supplied to us as part of a package called
Ada.Text_I0. Just as a procedure is a kind of subprogram, a way of grouping state-
ments, a package is a way of grouping subprograms (and other program entities that we
will introduce later on). It is through the use of packages that procedures can be written
and tested for general use (that is, by other programmers) and put in 2 form in which
they can be supplied to others. Ada compilers come with several standard library pack-
ages. ada.Text_10 is one of these; in the next section you will see another, called
Ada.Calendar.

The package concept is one of the most important developments to be found in
modern programming languages, such as Ada, Modula-2, Turbo Pascal, C++, Eiffel,
and Java. The designers of the different languages have not agreed on what terms to use
for this concept: Package, module, unit, and class are commonly used. But it is gener-
ally agreed that the package—as it is called in Ada—is the essential programming tool
to be used for going beyond the programming of very simple class exercises to what is
generally called software engineering, or building real programs of real size for the real
world.

It is the package that allows us to develop a set of related operations and other enti-
ties, especially types, to test these thoroughly, and then to store them in an Ada program
library for our future use or even to distribute them to others. Grouping a set of related
entities in a well-defined module, with a clearly specified interface to other programs, is
called encapsulation. Encapsulation is the way we produce software components that
are predeveloped and pretested for reusabiliry within an organization or distribution in
the wider world.

4.4 Data Structures: Introducing Enumeration Types 135

Program 4.5 Translating between French and English Colors

WITH Ada.Text_IO;
PROCEDURE Colors IS

--| pisplays a French color, given the English color
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: July 1998

TYPE English_Colors IS
(white, black, red, purple, blue, green, yellow, orange);

TYPE French_Colors IS
(blanc, noir, rouge, violet, bleu, vert, jaune, orange);

PACKAGE English_Color IO IS
NEW Ada.Text_IO.Enumeration_IO (Enum => English Colors);

PACKAGE French_ Color_ IO IS
NEW Ada.Text_IO.Enumeration_IO (Enum => French_Colors);

Eng_Color : English_Colors;

Fr_Color : French_Colors;
Position : Natural;

BEGIN -~ Colors

Ada.Text_IO.Put (Item => "Please enter an English color > ");
English_Color_IO.Get (Item => Eng_Color);

Position := English_Colors'Pos(Eng_Color);
Fr_Color := French_Colors'Val(Position);

Ada.Text_IO.Put (Item => "The French color is ");
French_Color_l0.Put (Item => Fr_Color, Set => Ada.Text_IO.Lower_Case);
Ada.Text_IO.New_Line;

END Colors;
Sample Run

Please enter an English color > blue
The French color is bleu

Testing
The sample run gives one test. To complete the test plan, run the other tests including
one for invalid input.

134 Problem Solving and Using Packages

(blanc, noir, rouge, violet, bleu, vert, jaune, orange);

Problem Inputs:
English color (Eng_color : English_Colors).

Problem Outputs:
French color (Fr_color : French_cColors).

Desi

We wg:le careful to list the French and English colors in the same order, so given an
English color, the corresponding French color will be in the same position in the French
color type. The program depends on this correspondence, which gives us the following
algorithm.

Initial Algorithm
1. Prompt the user to enter one of the eight English colors, Eng_color.

2. Find the corresponding French color, Fr_color.

3. Display the French color.

Algorithm Refinements

The only step needing refinement is step 2. We can find the French color corresponding
to a given English one by using the Pos and val attributes. Since the French and
English colors have corresponding positions, we can find the position of the English
color in its type, then use that position to find the corresponding value in the French
type. To do this, we shall use a program variable Position of type Natural to store the
color position within its type.

Step 2 Refinement
2.1. Save in Position the position of Eng_color in its type.

2.2. Save in Fr_color the corresponding value in the French type.

Test Plan

This algorithm depends upon each of the French colors being in the same position in its
type as the corresponding English color. Since the number of colors is relatively small,
all the cases can be checked to be sure the two color types were given correctly. We also
need to test for invalid input, for example, a word or other sequence of characters that is
not an English color. If an invalid token is entered, ada.Text_IO.Data_Error should
be raised and the program should halt.

Implementation

The complete program is shown in Program 4.5. The program begins with a context
clause for Ada.Text_ro. Within the program, the two color types are defined and
instances of Ada.Text_IO.Enumeration_I0 are created to read and display values of
these types. Finally, the sequence of statements implements the refined algorithm just

developed.

SYNTAX
DISPLAY

CASE
STUDY

4.4 Data Structures: Introducing Enumeration Types 133

Put Procedure (Enumeration)

Form:

instance.Put
(Item => variable , Width => field width,
Set => Text_lIO.Upper_Case or Text_IO.Lower_Case);

Example:

Day_I0.Put
(Item => Some_Day, Width => 5, Set => Lower_Case);

Interpretation:

The value of variable (of some enumeration type) is displayed, using the next
width positions on the screen. If the value would occupy less than width posi-
tions, it is followed by the appropriate number of blanks; if the value would
occupy more than width positions. the actual number of positions is used.

If width is omitted, a compiler-dependent width is used by default. The stan-
dard values Text_10.Upper_Case and Text_IO.Lower_Case are used to deter-
mine the form of the displayed value. If set is omitted, the value is displayed in
uppercase.

TRANSLATING FROM ENGLISH TO FRENCH COLOR
NAMES

Problem Specification

Your rcommate comes from France and you are taking a watercolor-painting class
together. To make communication with your roommate easier you would like to have
the computer give you some help in remembering the French names of the major col-
ors. You'd like to enter an English color name on the keyboard and let the program dis-
play the corresponding French name. The English color names are white, black, red,
purple, blue, green, yellow, and orange; the French color names are blanc, noir, rouge,
violet, bleu, vert, jaune, and orange.

Analysis

The French and English colors can be represented by two enumeration types
French Colors and English Colors and can be read and displayed using two
instances of Enumeration_1o, which we will call French_color_1o and
English_Color_IO.

Data Requirements

Problem Data Types:

English colors, an enumeration type:
TYPE English_Colors IS
(white, black, red, purple, blue, green, yellow, orange);

French colors, also an enumeration type:
TYPE French_Colors IS

132 Problem Solving and Using Packages

SYNTAX
DISPLAY

Input/Output Operations for Enumeration Types

One of the most convenient Ada features for using enumeration types is a built-in
input/output package for reading and displaying enumeration literals. Within
Ada.Text_I0 iS a generic package called Enumeration_Io, which cannot be used
immediately. Instances must be created; each instance is “tailored” to read and display
exactly the literals in a specific enumeration type. For example, in a program in which
the type pays is defined and the variable declaration Today:Days appears, we could
write

PACKAGE Day_IO IS NEW Ada.Text_IO.Enumeration_ IO(Enum=>Days);

which would give us the ability to read a value from the keyboard into Today or to dis-
play the value of Today on the screen, using procedure calls like

Day_IO.Get(Item => Today);
Day_IO.Put(Item => Today, Width => 10);

In the case of Get, the exception pata_Error is raised if the value entered on the key-
board is not one of the seven literals in pays. In this manner the input/output system
automatically checks the validity of the value that is entered, making sure that it is a
legal value in the enumeration type.

Get Procedure (Enumeration)

Form:

instaace.eet (Item => variable);
Example:

‘Day_IO.Get (Item => Some_Day};

Interpretation:
By instance we mean an instance of Ada.Text_IO.Enumeration_IO for some
enumeration type. The next string of characters that is entered at the keyboard is
read into variable (of the same enumeration type). Any leading blank characters
or RETURNS are ignored. The first nonblank character must be a letter, and the
characters must form an identifier. The data string 1s terminated when a noniden-
tifier character is entered or the space bar or RETURN key is pressed.

If the identifier that is read is not one of the literals in the enumeration type
for which instance was created, Ada.Text_I0.Data_Error is raised.

SYNTAX
DISPLAY

4.4 Data Structures: Introducing Enumeration Types 131

* Last, which gives the last or highest value;
* Pos, which given a value in a type, gives its position in the type;
* val, which given a position in a type, gives the value in that position;

* Pred, which given a value in a type, gives its predecessor, that is, the value that
precedes it in the type; and

* suec, which, given a value in a type, gives its successor, that is, the value that fol-
lows.

Some examples are given below; they assume that Today is Friday and Tomorrow is
Saturday.

Days'First is Monday

Days'Last iS Sunday ...
Days'Pos (Monday) is- 0,
Days'Val(0) iS Monday’
bDays'Pos(Sunday) 1S 6
Days'Val(6) is Sunday
Days'Pred(Wednesday) iS Tuesday
Days'Pred(Today) iS Thursday
Days'Succ(Tuesday) iS Wednesday
Days'Succ(Today) 18 Saturday

Because enumeration types are not cyclical (i.e., do not “wrap around™), the queries
Days'Pred(Monday) and Day'Succ(Sunday) are undefined and would cause a run-time
exception—namely, the raising of Constraint_Error —if attempted. Similarly, if
Tomorrow had the value sunday, Days'Succ(Tomorrow) would cause an exception.
Whether the assignment statement

Tomorrow := Days'Succ(Today);

would cause an exception depends on the value of Today; it cannot cause a compilation
error because the value of Today is usually unknown at compilation time.

Attribute Query

Form: _
type'’attribute-name or type'attr.ibute-name(value) e
Example: |
Traffic__Light_Colots ‘FPirst

Days'Succ(Wednesday)
Days ' Pos (Today)

Interpretation: : S G
An attribute query answers a question about certain characteristics of types of .
variables. For each type, the set of attributes is predefined by the language and
cannot normally be changed by the programmer. Note the required presence of -
the single quote or apostrophe in the attribute query. .~ PR

4.7 System Structures: Using a Screen-Control Package 149

DELAY 0.1;

Screen.MoveCursor (Row => 7, Column => 34);
Ada.Text_IO.Put (Item => "HAVE A NICE DAY!");
Screen.MoveCursor (Row => 9, Column => 39);
Ada.Text_IO.Put (Item => " ");
Screen.MoveCursor (Row => 10, Column => 37);
Ada.Text_IO.Put (Item => "/ \");
Screen.MoveCursor (Row => 11, Column => 36);
Ada.Text_IO.Put (Item => "/ \"):
Screen.MoveCursor (Row => 12, Column => 35);
Ada.Text_IO.Put (Item => "| |"y;:
Screen.MoveCursor (Row => 13, Column => 35);
Ada.Text_IO.Put (Item => "] 0 0 |[");
Screen.MoveCursor (Row => 14, Column => 36);
Ada.Text_IO.Put (Item => "\ [} /");
Screen.MoveCursor (Row => 15, Column => 37);
Ada.Text_IO.Put (Item => "\ __/ /");
Screen.MoveCursor (Row => 16, Column => 38);

Ada.Text_IO.Put (Item => o\ /")
Screen.MoveCursor (Row => 17, Column => 39);
Ada.Text_IO.Put (Item => Yo "):
Screen.MoveCursor (Row => 24, Column => 1);
END Smiley;
Sample Run

HAVE A NICE DAY!

There is one more thing you need to know about screen. Even though all Ada com-
pilers support the same Ada language, not all Ada programs can show correct output on
all terminals because different kinds of terminals have different characteristics. This
package assumes that the terminal you are using responds to ANSI control sequences.
Most UNIX and VMS terminals do. So does an IBM-PC or compatible computer run-
ning DOS or Windows 95, provided that the ANSI.SYS device driver is listed in the
computer’s CONFIG.SYS file. If you run smiley but your screen does not look like the
sample run, see your computer center or teacher or, if you are using your own PC-com-
patible, check whether ANSI.SYS is properly installed. Some installations of Windows
NT cannot handle ANSIL.SYS; instead, you can use the alternative package on the
CD-ROM.

150 Problem Solving and Using Packages

4.8 Tricks of the Trade: Common Programming Errors

When you define enumeration types, keep in mind that the order is important. For
example,

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
is not the same as
TYPE Days IS (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

because the positions of the various literals are different in the two types.

An enumeration Get first reads characters until it reads a character that cannot be
part of an enumeration literal, then checks whether the literal read is a valid one in the
given type. If aBc is a valid literal but not aBci23, entering aBci23 will cause
Ada.Text_IO.Data_Error to be raised.

When you work with packages that are not part of the Ada system, remember that
they may have to be compiled before you can use them. Compile the specification first,
then the body. After the specification is compiled, you can compile any program that
uses the package, but you cannot link that program until the body is compiled. Once
you have compiled the package, the compiled form remains available in your file sys-
tem unless you delete it.

CHAPTER REVIEW

s S

In this chapter, we discussed more aspects of problem solving. We reviewed the step-
wise-refinement approach to solving problems and showed how to use the documenta-
tion created by following the software development method as the outline of the final
program. We also showed how we could extend a solution to one problem to form the
basis of the solution for another problem. We illustrated how structure charts are used
to show relationships between different levels of subproblems or between algorithm
steps and their refinements. We discussed the representation of the various steps in an
algorithm and illustrated the stepwise refinement of algorithms.

In this chapter enumeration types were introduced, along with Ada’s standard
input/output library for reading and displaying enumeration values. Enumeration types
are useful in allowing the programmer to give meaningful names to values such as days
of the week, months of the year, colors of the rainbow, and command sets.

This chapter also continued the use of packages, begun in Chapter 3 with the use of
the input/output libraries. We discussed Ada’s standard package Ada.Calendar and a
package called screen that is provided with this book.

New Ada Constructs in Chapter 4
Table 4.1 describes the new Ada constructs introduced in this chapter.

Chapter Review 151

Table 4.1 Summary of New Ada Constructs

Construct Effect

Subtype definition:

SUBTYPE FDIC_Insured IS declares a subtype of Float in the range
Float RANGE 0.0..100000.0; 0.0-100000.0

Enumeration type definition:

TYPE CompassPoints IS defines a type whose values are enumer-
(North, South, East, West); ated as a list of identifiers

Quick-Check Exercises

1. Does a compiler translate comments?
Each statement in a program should have a comment. (True or false?)

What is a structure chart?

> won

Explain how a structure chart differs from an algorithm.

Answers to Quick-Check Exercises

1. No

2. False

3. A structure chart is a diagram that is used to show an algorithm’s subproblems
and their interdependence.

4. A structure chart shows the relationship between subproblems; an algorithm
lists the sequence in which subproblems are performed.

Review Questions for Chapter 4

1. Discuss the strategy of stepwise refinement.
2. Provide guidelines for the use of comments.

3. Briefly describe the steps you would take to derive an algorithm for a given
problem.

4. The diagram that shows the algorithm steps and their interdependencies is
called a .

152 Problem Solving and Using Packages

Programming Projects

L.

Write a program that draws two of your initials in the center of the screen. For
example,

X X XXXXX XXXXX X
XX XX X X X
XXX XXX XXX or XXX X
X X X X X X X
X X X XXXXX XXXXX

Write a program that clears the screen, and then beeps and flashes the word
HELP in the center of the screen three times at 1-second intervals. (Hint: To
“flash™ a word, display a word and then display the same number of blank
characters in the same spot on the screen.)

Write a program that displays today’s date in the center of the screen.

Find out the names of the days of the week in some other language and write a
program that translates from those names to the English ones. Revise your pro-
gram to do the translation in the other direction.

Many different date forms are in current use around the world. Here are a few
examples of how September 21, 1998 might appear in different countries:

21/9/1998 (many countries; the day is written before the month)
21 September 1998 (Britain)
21.IX.1998 (Germany; the month is given as in Roman numerals)

Modify Program 4.6 or Program 4.7 so that one or more of these forms is used.
If you are familar with any other date forms, you can use those as well.

In shopping for a new house, you must consider several factors. In this prob-
lem the initial cost of the house, the estimated annual heating fuel costs, and
the annual tax rate are available. Develop a case study for a program that will
determine the total cost after a five-year period for each set of house data be-
low. You should be able to inspect your program output to determine the “best
buy.”

Initial House Cost Annual Fuel Cost Tax Rate
$67.000 $2300 0.025
$62,000 $2500 0.025
$75,000 $1850 0.020

To calculate the house cost, add the fuel cost for five years to the initial cost,
then add the taxes for five years. Taxes for one year are computed by multiply-
ing the tax rate by the initial cost.

CHAPTER 5

LA IR RN R ERAR R

Decision Statements; Writing
Functions and Packages

5.1
52
5.3
54
5.5
5.6
5.7
58
59

Control Structures: Boolean Expressions and the IF Statement
Problem Solving: Decision Steps in Algorithms

Tricks of the Trade: Tracing a Program or Algorithm

Problem Solving: Extending a Solution

Control Structures The Multiple-Alternative IF Statement
System Structures: Using Ada’s Math Library

System Structures: Writing Functions

System Structures: Writing a Package

Tricks of the Trade: Common Programming Errors

Chapter Review

In this chapter we show you how to represent decisions in algorithms by writing steps
with two or more alternative courses of action. You will see how to implement condi-

tional execution in Ada by using Boolean conditions and the Ada 1F statement.

This chapter also introduces you to the process of writing simple reusable functions
and putting them in packages for later use by yourself and others. As examples of reus-
able functions, we consider those 1n the standard Ada math library.

This continues the practice begun in Chapter 4, in which each chapter introduces
new material that will help you structure small program units but also shows you imme-
diately how to integrate this new material into larger, system-level units. In this way
you will always focus your attention on the two equally important problems of building
individual programs and building libraries of programs into systems.

153

154 Decision Statements; Writing Functions and Packages

CASE
STUDY

5.1 Control Structures: Boolean Expressions and the IF
Statement

All the algorithms that we illustrated in Chapters 3 and 4 are straight-line algo-
rithms—that is, each algorithm step is executed exactly once in the order in which it
appears. Often, we are faced with situations in which we must provide alternative steps
that may or may not be executed, depending on the input data. To motivate the need for
conditional execution, let us start with a case study.

GIVEN TODAY, FIND YESTERDAY AND TOMORROW

Problem Specification
Prompt the user for a day of the week from the terminal, and display yesterday and
tomorrow.

Analysis

Recall from Chapter 4 that the days of the week are best represented as an enumeration
type, so the days can easily be read and displayed by an instance of ada.Text_z0.
Enumeration_I0. Yesterday and tomorrow can be found by using the successor and
predecessor attributes.

Data Requirements

Problem Data Types
Days of the week, an enumeration type:

TYPE Days IS (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

Problem Inputs
Today : Days

Problem Outputs

Yesterday: Days
Tomorrow: Days

Design

Initial Algorithm
1. Prompt the user for the current day and read it from the keyboard.

2. Find Yesterday and Tomorrow
2.1. Set Yesterday to the predecessor of Today.
2.2. Set Tomorrow to the successor of Today.

3. Display the results on the screen.

5.1 Control Structures: Boolean Expressions and the IF Statement 155

Algorithm Refinements

This algorithm looks fine, but recall that in Ada the enumeration types do not “wrap
around.” Suppose the user entered Monday or saturday. The predecessor of Monday and
the successor of saturday are undefined, and trying to compute either one would raise
Constraint_Error. This is a case in which the language type system does not quite
agree with the physical world. To account for this, we need to include two special cases
in our algorithm, which result in revisions to steps 2.1 and 2.2:

2.1. If today is the first day of the week, then yesterday is the last day of the (previous)

week; otherwise, yesterday is the predecessor of today.

2.2. If today is the last day of the week, then tomorrow is the first day of the (follow-
ing) week; otherwise, tomorrow is the successor of today.

These special cases are, in fact, conditional steps: They include the words if and
otherwise.

Test Plan

In addition to a normal case, we need to test two special cases, namely, those in which
today is sunday (to be sure that tomorrow is Monday) and today is Monday (to be sure
that yesterday was sunday). Also test for invalid input that is not one of the seven day
abbreviations.

Implementation
Program 5.1 gives the complete solution to the problem. The statements corresponding
to the revised algorithm steps 2.1 and 2.2 are examples of the [F statement:

IF Today = Days'First THEN
Yesterday := Days'Last;
ELSE
Yesterday := Days'Pred(Today);
END IF;

and

IF Today = Days'Last THEN
Tomorrow := Days'First;
ELSE
Tomorrow := Days'Succ(Today);
END IF;

Program 5.1 Finding Yesterday and Tomorrow

WITH Ada.Text_ IO;
PROCEDURE Three_Days IS

--| Finds yesterday and tomorrow, given today
--| Author: Michael Feldman, The George Washington University
--| Last Modified: June 1998

TYPE Days IS (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday):
PACKAGE Day_IO0 IS
NEW Ada.Text_IO.Enumeration IO (Enum => Days);

156 Decision Statements; Writing Functions and Packages

Yesterday : Days;
Today ¢ Days;
Tomorrow : Days;

BEGIN -- Three Days

-- prompt user to enter a day abbreviation
Ada.Text IO.Put (Item => "Enter the name of a day of the week > ");
Day_I0.Get (Item => Today);

-- find yesterday
IF Today = Days'First THEN
Yesterday := Days'Last;
ELSE '
Yesterday := Days'Pred(Today);
END IF;

Ada.Text_IO.Put (Item => "Yesterday was ");
Day_IO.Put (Item => Yesterday);
Ada.Text_IO.New_Lline;

Ada.Text_IO.Put (Item => "Today is *);
Day_IO.Put (Item => Today);
Ada.Text_IO.New_Line;

-- find tomorrow
IF Today = Days'Last THEN
Tomorrow := Days'First;
ELSE
Tomorrow := Days'Succ(Today);
END IF;

Ada.Text_IO.Put (Item => "Tomorrow is ");
Day_I0.Put (Item => Tomorrow);
Ada.Text_IO.New_Line;

END Three_Days;
Sample Run

Enter the name of a day of the week > monday
Yesterday was SUNDAY

Today is MONDAY

Tomorrow is TUESDAY

Testing
The sample run shows only one special-case test. To complete the test plan, run the pro-
gram for the other cases as well.

Boolean Expressions and Conditions
In the statement

IF Today = Days'First THEN
Yesterday := Days‘'Last;

5.1 Control Structures: Boolean Expressions and the IF Statement 157

ELSE
Yesterday := Days'Pred(Today);
END IF;

the expression
Today = Days'First

is called a Boolean expression. There are only two possible values for a Boolean
expression: True or False. If Today is, in fact pays'First, the preceding Boolean
expression evaluates to True; if not, the expression evaluates to False. Chapter 8 exam-
ines all the operators that can be used on Boolean expressions. For now, we will con-
centrate on learning how to write and use simple Boolean expressions called
conditions.

Most conditions that we use will have one of the following forms:

variable relational operator variable
variable relational operator constant

Relational operators are the familiar symbols

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)
= (equal to)

/= (not equal to)

Al these operators should be familiar to you except the last. Ada uses the symbol
pair /=to express the condition “not equal to.” In mathematics this is usually written #,
but this symbol does not appear on computer keyboards. Also, be careful that you write
>= and not => for “greater than or equal to”; the latter symbol is used in Ada for other
things, such as

Ada.Text_IO.Put(Item => "Hello");

and its mistaken use as a relational operator will lead to a compilation error.

The variables in a Boolean condition can be of Integer, Float, String, Or enumer-
ation type. In the Integer and Float cases the relational operators have their familiar
meanings: 3 < 4,-17.5 > —30.4. In the case of enumeration types the comparisons are
with respect to the order in which the values are defined in the type definition. Given
two types
TYPE Days IS (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);
TYPE Colors IS (Red, Orange, Yellow, Green, Blue, Purple);

these conditions are all true:

158 Decision Statements; Writing Functions and Packages

Monday < Tuesday
Wednesday /= Tuesday
Wednesday = Wednesday
Wednesday >= Tuesday

Purple > Red
Yellow < Green
Green >= Yellow

The conditions

Purple > Friday
3 <= 4.5
Green > 2

would cause compilation errors because the two values in each comparison are associ-
ated with different types and therefore cannot be compared. It would be like comparing
apples and oranges.

If the Integer variable 1 is 5, the Float variable x is 3.9, and the pays variable
Today is Wednesday, these relations are true:

I>0
X <= 3.9
Today > Tuesday

Finally, we note that the character type is defined as an enumeration type and the
relations are with respect to the alphabetic order. It’s actually a bit more complicated
than this; we’ll come back to it in more detail in Chapter 8.

H Example 5.1

The relational operators and some sample conditions are shown in Table 5.1. Each con-
dition is evaluated according to the following variable values: |

X Power MaxPow Y Item MinItem MomOrDad Num Sentinel
=5 1024 1024 7 1.5 -999.0 'M* 999 999

Table 5.1 Ada Relational Operators and Sample Conditions

Operator Condition Meaning Value
<= X <=0 x less than or equal to 0 true

< Power < MaxPow Power less than MaxPow false
>= X >= Y x greater than or equal to v false
> Item > MinItem Item greater than MinItem true
= MomOrbad = ‘M’ MomoOrDad equal to "M true

/= MinItem /= Item MinItem # Item true

" 5.1 Control Structures: Boolean Expressions and the IF Statement 159

Operator Condition Meaning Value
/= Num /= Sentinel Num # Sentinel false
The IF Statement

You can use the IF statement to select among several alternatives. An IF statement
always contains a Boolean expression. For example, given the Float variables Gross-
Pay, NetPay, and Tax, the IF statement

IF GrossPay > 100.00 THEN
NetPay := GrossPay — Tax;
ELSE
NetPay := GrossPay;
END IF;

selects one of the two assignment statements listed. It selects the statement following
THEN if the Boolean expression is true (i.e, if Grossray is greater than 100.00); it
selects the statement following ELsE if the Boolean expression is false (i.e., if Gross-
Pay is not greater than 100.00).

The preceding 1F statement has two alternatives, exactly one of which will be exe-
cuted for a given value of Grosspay.

Figure 5.1 is a graphic description, called a flowchart, of the preceding rr state-
ment. This figure shows that the condition enclosed in the diamond-shaped box
(Grosspay > 100.00) is evaluated first. If the condition is true, the arrow labeled True is
followed, and the assignment statement in the rectangle on the right is executed. If the
condition is false, the arrow labeled False is followed, and the assignment in the rectan-
gle on the left is executed.

Example 5.2 illustrates that an 1F statement can also have a single alternative that is
executed only when the condition is true.

False GrossPay True

>
v W \
NetPay :=

= NetPay :=

GrossPay — Tax;
Figure 5.1 Two-Alternative IF Statement

GrossPay;

160 Decision Statements; Writing Functions and Packages

True
X /= 0.0

Y

Product :=
False Product * X;

r

Figure 5.2 Single-Alternative IF Statement

B Example 5.2

The following IF statement has one alternative, which is executed only when x is not
equal to 0. It causes Product to be multiplied by x; the new value is then saved in prod-
uct, replacing the old value. If x is equal to 0, the multiplication is not performed. Fig-
ure 5.2 is a flowchart of this 1F statement.

-- Multiply Product by a nonzero X only
IF X /= 0.0 THEN
Product := Product * X;
END IF; |

®m Example 5.3

The following Ir statement has two alternatives. It displays either Ei Mom or Hi Dad
depending on the character stored in the variable Momorbad (type character). If this
variable’s value is 'M', "Hi Mom" is displayed. If the variable has any other value at all,
"Hi Dad" is displayed.

IF MomOrDad = 'M' THEN
Ada.Text_IO.Put(Item => “Hi Mom");
Ada.Text_l0.New_Line;

ELSE
Ada.Text_IO0.Put(Item => "Hi Dad");:
Ada.Text_IO.New_line;

END IF;

Notice that the statement sequences may include one or more statements, all termi-
nated by semicolons, and also that the END IF; is always required whether the IF state-
ment has one alternative or two. |

The forms of the IF statement that we have used so far are summarized in the dis-
plays that follow.

SYNTAX
DISPLAY

SYNTAX
DISPLAY

3.1 Control Structures: Boolean Expressions and the IF Statement 161

IF Statement (Two Alternatives)

Form:

IF condition THEN
statement sequence T
ELSE
statement sequence F
END IF;

Example:

IF X >= 0.0 THEN
Ada.Text_IO.Put(Item => "Positive");
ELSE
Ada.Text_IO.Put(Item => "Negative");
END IF;
Interpretation:
If the condition evaluates to true. then statement sequence T is executed and
statement sequence F is skipped; otherwise. statement sequence T is skipped and
statement sequence F is executed.

Note:

There is no semicolon after THEN or after ELSE. Inserting a semicolon here will
cause a compilation error.

IF Statement (One Alternative)

Form:

IF condition THEN
statement sequence T
END IF;

Example:

IF X > 0.0 THEN
PosProd := PosProd * X;
CountPos := CountPos + 1;
END IF;
Interpretation:

If the condition evaluates to true, then statement sequence T is executed; other-
wise, it is skipped. '

162 Decision Statements; Writing Functions and Packages

PROGRAM
STYLE

Formatting the IF statement

In all the 1F statement examples, the statement sequences are indented. If the
word ELSE appears, it is entered on a separate line and aligned with the words 1F
and enxp 1F. The format of the IF statement makes its meaning apparent. This is
done solely to improve program readability and is highly recommended; the for-
mat that is used makes no difference to the compiler.

EXERCISES FOR SECTION 5.1

Self-Check

1.

State the types of the values that can appear as operands of the relational oper-
ators.

Assuming that x is 15.0 and v is 25. 0, what are the values of the following
conditions?

X /=Y X <X X >= (Y - X) X=(Y+ X - Y)

For each of the following program fragments, state whether the fragment is le-
gal. If not, why not? If so, what is displayed?

IF 12 < 12 THEN
Ada.Text_IO.Put{Item
ELSE
Ada.Text_IO.Put(Item => "Always");
END IF;

0
\"

"Never");

IF 12 < 15.0 THEN
Ada.Text_IO.Put(Item => “Never");
ELSE
Ada.Text_IO.Put(Item => "Always");
END IF;

varl := 15.0;
var2 := 25.12;
IF (2*vVarl) > Var2 THEN
Ada.Text_IO.Put(Item => "OK");
ELSE
Ada.Text_IO.Put(Item => "Not OK");
END IF;

varl := 15.0;

var2 := 25.12;

IF (2*Varl) > Var2 THEN
Ada.Text_IO.Put(Item => "0K");

END IF;

Ada.Text_IO.Put(Item => "Not OK"):;

CASE
STUDY

5.2 Problem Solving: Decision Steps in Algorithms 163

5.2 Problem Solving: Decision Steps in Algorithms

Let’s continue our study of conditional execution with another case study, this one to
find the alphabetically first letter of three letters.

FINDING THE ALPHABETICALLY FIRST LETTER

Problem Specification
Read three letters and find and display the one that comes first in the alphabet.

Analysis

From the previous section we know how to compare two items to see which one is
smaller using the relational operator <. We can use this operator to determine whether
one letter precedes another in the alphabet. For example, the condition 'a* < '¢* s
true because a precedes F in the alphabet. Because we have no direct way to compare
three items, our strategy will be to do a sequence of pairwise comparisons. We will start
by comparing the first two letters to find the smaller of that pair. The result of the sec-
ond comparison will be the smallest of the three letters.

Data Requirements

Problem Inputs
Chl, Ch2, Ch3 : Character

Problem Outputs
AlphaFirst : Character -- the alphabetically first letter

Design

Initial Algorithm
1. Read three letters into chi1, ch2, and ch3.

2. Save the alphabetically first letter of ch1, ch2, and ch3 in AlphaFirst.
3. Display the alphabetically first letter.

Algorithm Refinements

Step 2 can be performed by first comparing ch1 and ch2 and saving the alphabetically
first letter in AlphaFirst; this result can then be compared to ch3. The refinement of
step 2 follows.

Step 2 Refinement
2.1. Save the alphabetically first letter of ch1 and ch2 in alphaFirst.

2.2. Save the alphabetically first letter of ch3 and AlphaFirst in AlphaFirst.

Figure 5.3 shows the structure chart that corresponds to this algorithm.

164 Decision Statements; Writing Functions and Packages

Find and display the
alphabetically first
letter
Read three Find the Display the
letters alphabetically resslt y
first letter
Save first of ch1 Save first of Ch3
and ch2 in and AlphaFirst
AlphaFirst In AlphaFirst

Figure 5.3 Structure Chart for Finding the Alphabetically First Letter

Test Plan

Test this program with different sequences of letters corresponding to the possible
orderings of three distinct letters. Also, test it with cases in which at least two of the let-
ters are equal. In this way you are ensuring that all of the paths through the IF state-
ments are tested.

Implementation

Program 5.2 shows the desired program. The IF statement with two alternatives saves
either chl or ch2 in alphaFirst. The IF statement with one alternative stores ch3 in
AlphaFirst if ch3 precedes the value already in Alpharirst. Later you will see that IF
statements with more than two alternatives are also possible in Ada.

Program 5.2 Finding the First Letter

WITH Ada.Text_IO;
PROCEDURE First_Letter IS

--| Finds and displays the alphabetically first letter.
~-| Author: Michael Feldman, The George Washington University
--| Last Modified: July 1998

Chl, ch2, Ch3 : Character; -- input - three letters
AlphaFirst ¢ Character; ~- output - first letter
BEGIN -- First_Letter

~- Read three letters
Ada.Text_IO.Put

5.2 Problem Solving: Decision Steps in Algorithms 165

(Item => "Enter any three letters, then press ENTER > ");
Ada.Text_IO.Get (Item => Chl); ;
Ada.Text_I0.Get (Item => Ch2);
Ada.Text_I0.Get (Item => Ch3);

-=- Save the smaller of Chl and Ch2 in AlphaFirst
IF Chl < Ch2 THEN

AlphaFirst := Chl; -~ Chl comes before Ch2
ELSE

AlphaFirst := Ch2; -- Ch2 comes before Chl
END IF;

-- Save the smaller of Ch3 and AlphaFirst in AlphaFirst
IF Ch3 < AlphaFirst THEN

AlphaFirst := Ch3; -- Ch3 comes before AlphaFirst
END IF;

-- Display result

Ada.Text_IO.Put (Item => AlphaFirst);

Ada.Text_IO.Put (Item => " is the first letter alphabetically”);
Ada.Text_I0.New_Line;

END First_Letter;
Sample Run

Enter any three letters, then press ENTER > THE
E is the first letter alphabetically

Testi:ua%
As usual, the sample output shows one of the test cases.

EXERCISES FOR SECTION 5.2

Self-Check

1. What value is assigned to x for each of the following segments when v is 15.0.

a. X = 25.0;
IFY /= (X - 10.0) THEN
X 3= X - 10.0;
ELSE
X = X/ 2.0;
END IF;

b, IF Y < 15.0 THEN
X =5 * Y,
ELSE
X 1= 2 * Y;
END IF;

166 Decision Statements; Writing Functions and Packages

Programming
1. Write Ada statements to carry out the following steps.
a. If 1tem is nonzero, multiply Product by 1tem and save the result in Product;
otherwise, skip the multiplication. In either case, display the value of Product.
b. Store the absolute difference of x and v in z, where the absolute difference is
(X - Y)or (Y - X),whichever is positive.
c. If xis zero, add 1 to zerocount. If x is negative, add x to Minussum. If X is

greater than zero, add x to plussum.

5.3 Tricks of the Trade: Tracing a Program or Algorithm

A critical step in the design of an algorithm or program is to verify that it is correct
before you spend extensive time entering or debugging it. Often, a few extra minutes
spent in verifying the correctness of an algorithm will save hours of testing time later.

One important technique, a hand trace or desk check (mentioned in Chapter 1),
consists of a careful, step-by-step simulation on paper of how the computer would exe-
cute the algorithm or program. The results of this simulation should show the effect of
each step’s execution using data that are relatively easy to process by hand.

As an example, the completely refined algorithm for the alphabetically first letter
problem appears next.

Refined Algorithm
1. Read three letters into ch1, ch2, and ch3.

2. Save the alphabetically first letter of ch1, ch2, and ch3 in AlphaFirst.

2.1

Save the alphabetically first letter of ch1 and ch2 in AlphaFirst.
2.1.1, zF chl precedes Ch2 THEN

2.1.2. alphaFirst gets chl

ELSE

2.1.3 alphaFirst gets Ch2

END IF;

2.2 Save the alphabetically first letter of ch3 and Alpharirst in AlphaFirst.

2.2.1. IF ch3 precedes AlphaFirst THEN
2.2.2.AlphaFirst gets ch3

END IF;

5.3 Tricks of the Trade: Tracing a Program or Algorithm 167
3. Display the alphabetically first letter.

Table 5.2 shows a trace of the algorithm for the data string TaE. Each step is listed
at the left in order of its execution. The values of variables that are referenced by a step
are shown after the step. If a step changes the value of a variable, the table shows the
new value. The effect of each step is described at the far right. For example, the table
shows that the step

Read three letters into chl, ch2, Ch3

stores the letters T, B, and E in the variables chl, ch2, and ch3.

Table 5.2 Trace of First Letter Algorithm

Algorithm Step Chl Ch2 Ch3 AlphaFirst Effect
? ? ? ?

1. Read three letters T H E Reads the data
2.1-1 IS‘T'<'H' ?
If chi1 precedes ch2 value is false
2.13 _ H +H- is first so far
AlphaFirst gets Ch2
22.1 Is '+ < 'm’ ?
If ch3 precedes value is true
AlphaFirst
222 E +E” is first
AlphaFirst gets Ch3
3. Display AlphaFirst Displays

‘B’ is the

first letter.

The trace in Table 5.2 clearly shows that the alphabetically first letter, E, of the
input string is stored in AlphaFirst and displayed. To verify that the program is cor-
rect, it would be necessary to select other data that cause the two conditions to evaluate
to different combinations of their values. Because there are two conditions and each has
two possible values (true or false), there are 2 x 2, or 4 different combinations that
should be tried. (What are they?) An exhaustive (complete) desk check of the program
would show that it works for all of these combinations.

Besides testing for the four cases discussed above, you should verify that the pro-
gram works correctly for unusual data. For example, what would happen if all three let-
ters or a pair of letters were the same? Would the program still provide the correct
result? To complete the desk check, it would be necessary to show that the program
does indeed handle these special situations properly.

In tracing each case, you must be very careful to execute the program exactly as it
would be executed by the computer. A desk check in which you assume that a particular
step will be executed a certain way, without explicitly testing each condition and trac-
ing each program step, is of little value.

168 Decision Statements; Writing Functions and Packages

B Example 5.4

In later chapters you will see that it is useful to be able to order a pair of data values so
that the smaller value ends up in one variable (say, x) and the larger value ends up in
another (say, ¥). To understand the algorithm for doing this, imagine that you have a
blue cup filled with orange juice and a red one filled with milk. If you wanted to
exchange the contents of the two cups, you’d need to used a third cup, and you'd follow
these steps:

1. Pour the contents of the blue cup into the third cup.

2. Pour the contents of the red cup into the blue cup.

3. Pour the contents of the third cup into the red cup.

Now given two values stored in the variables x and ¥, the following IF statement

rearranges any two values stored in these two variables as just described. If the two
numbers are already in the proper order, the statement sequence is not executed.

IF X > Y THEN -- switch X and Y
Temp := X; -- Store old X in Temp
X := Y; -- Store old Y in X
Y := Temp; -- Store old X in Y
END IF;

The variables x, ¥, and Temp must, of course, all be the same type. As in the cups
analogy, an additional variable, Temp, is needed for storage of a copy of one of the val-
ues. The trace in Table 5.3 illustrates the need for Temp, assuming that x and v have
original values of 12.5 and 5.0, respectively. If Temp were not used, one of the values
would be lost; be sure you understand why this is so. |

Table 5.3 Trace of IF Statement to Order Xand Y

Statement Part X Y Temp Effect
12.5 50 ?
IF X > Y THEN 125> 5.0is true
Temp := X; 125 Store old x in Temp
X = Y; 50 Store old ¥ in x

Y := Temp; 12.5 Storeoldxiny

CASE
STUDY

54 Problem Solving: Extending a Solution 169

EXERCISES FOR SECTION 5.3

Self-Check

1. Provide sample data and traces for the remaining three cases of the alphabeti-
cally first letter problem. Also, test the special cases where two letters are the
same and all three letters are the same. What is the value of the conditions in
the latter case?

5.4 Problem Solving: Extending a Solution

Often, what appears to be a new problem will turn out to be a variation of one that you
have already solved. Consequently, an important skill in problem solving is the ability
to recognize that a problem is similar to one that you solved earlier. As you progress
through your education, you will start to build up a collection of programs and proce-
dures. Whenever possible, you should try to adapt or reuse parts of a program that have
been shown to work correctly. In this section we show a Case Study that solves a sim-
ple payroll problem; shortly we will introduce a second payroll problem whose solu-
tion is an extension of the first one.

PAYROLL PROBLEM

Problem Specification

Develop a program to compute the pay owed in a given week to an employee of a com-
pany. The gross pay is computed as the number of hours that employee worked times
the employee’s wage per hour. The ner pay is the gross pay minus the income tax that is
deducted and sent to the government. The tax is 15% of that part of the gross pay that
exceeds $100. That is, if the employee earns $250 in a given week, the tax is 15% of
$150, or $22.50.

Analysis
We begin by listing the data requirements and the algorithm.

Data Requirements

Problem Constants

maximum salary without a tax deduction (TaxBracket = 100.00)
tax rate (TaxRate = 0.15)

Problem Inputs

hours worked (Hours : NonNegFloat)
hourly rate (Rate : NonNegFloat)

170 Decision Statements; Writing Functions and Packages

Problem Outputs

gross pay (GrossPay : NonNegFloat)
tax (Tax: NonNegFloat)

net pay (NetPay : NonNegFloat)

Relevant Formulas

gross pay = hourly rate x hours worked
tax = tax rate x (gross — tax bracket)
net pay = gross pay - tax

Unlike problem inputs, whose values may vary, problem constants have the same
values for each run of the program. Each constant value is associated with an identifier
(Taxrate and PaxBracket above). The program style display following this problem
describes the reason for this association.

Desi
The structure chart for this algorithm is given in Fig. 54.

Initial Algorithm
1. Display user instructions.

2. Enter hours worked and hourly rate.
3. Compute gross salary.

4. Compute net salary.

5.

Display gross salary, tax, and net salary.

Now let’s write the refinement of algorithm step 4 as a decision step.

Step 4 Refinement

4.1. 1r GrossPay > TaxBracket THEN
Deduct a tax of TaxRate x (GrossPay — TaxBracket)

ELSE
Deduct no tax
END IF;
Find gross
and net pay
Display user Read the Compute Compute Display
instructions data gross pay net pay results

Figure 5.4 Structure Chart for Payroll Program

5.4 Problem Solving: Extending a Solution 171

Test Plan

To test this program, run it with several sets of data. One data set should yield a gross
salary greater than $100.00, and the other should yield a gross salary less than $100.00.
You should also test the program with a data set that yields a gross salary that is $0.00,
one that yields a gross salary of exactly $100.00, and at least one for invalid inputs.

Implementation
The payroll program is shown in Program 5.3.

Program 5.3 Payroll Program

WITH Ada.Text_IO;
WITH Ada.Float_Text_I0;
PROCEDURE Weekly_Pay IS

| computes and displays gross pay and net pay given an hourly

| rate and number of hours worked. Deducts a tax of 15% of
--| gross salary exceeding $100.

{ Author: Michael Feldman, The George Washington University

| Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

TaxBracket : CONSTANT NonNegFloat := 100.00;
-- maximum salary for no deduction
TaxRate: CONSTANT NonNegFloat := 0.15; -- tax rate

Hours: NonNegFloat; -- inputs - hours worked, hourly rate
HourlyRate: NonNegFloat;

GrossPay: NonNegFloat; -~ outputs - gross pay, net pay

Tax: NonNegFloat;

NetPay: NonNegFloat;

BEGIN -- Weekly Pay

-- Enter Hours and Rate

Ada.Text_IO.Put (Item => "Hours worked > ");
Ada.Float_Text_IO.Get (Item => Hours);
Ada.Text_IO.Put (Item => "Hourly rate $");
Ada.Float_Text_IO.Get (Item => HourlyRate);
Ada.Text_IO.New Line;

-~ Compute gross salary
GrossPay := Hours * HourlyRate;

-=- Compute tax and net salary
IF GrossPay > TaxBracket THEN
Tax := TaxRate * (GrossPay - TaxBracket);

NetPay := GrossPay - Tax; -~ Deduct a tax amount
ELSE

NetPay := GrossPay; -- Deduct no tax
END IF;

-- Display Results

Ada.Text_IO.Put (Item => "Gross pay is $");

Ada.Float_Text_IO.Put(Item => GrossPay, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => “TaxDeduction is §$");

172 Decision Statements; Writing Functions and Packages

Ada.Float_Text_IO.Put (Item => Tax, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_I0.New_Line;

Ada.Text_IO.Put (Item => "Net pay is $");

Ada.Float_Text_IO.Put (Item => NetPay, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_I0.New_Line;

END Weekly_ Pay;
Sample Run

Hours worked > 35
Hourly rate $7.50

Gross pay is $262.50
TaxDeduction is $24.38
Net pay is $238.13

Testing

The sample run shows one set of test data from the test plan.

PROGRAM

STYLE Use of Constants

The constants Tax and TaxBracket appear in the preceding IF statement and in
Program 5.3. We might have been tempted to insert the constant values (100.00
and 0.15) directly in the 1r statement, writing
IF GrossPay > 100.00 THEN

Tax := GrossPay - 0.15 * (GrossPay - 100.);

NetPay := GrossPay — Tax;
ELSE

NetPay := GrossPay;
END IF;

There are two reasons why it is better style to use the constants as we did
originally. First, the original 1F statement is easier to understand because it uses
the names Tax and TaxBracket, which are descriptive, rather than numbers,
which have no intrinsic meaning.

Second, a program that is written with constants is much easier to modify
than one that is not. If the tax bracket and tax value were to change—and
tax-related things always change—we would need to change only the constant
declaration. If the constant values were inserted directly in the IF statement, as
was just shown above, we would have to change them not only in the IF state-
ment but also in all the other statements in which they appeared. In a program of
realistic length, finding all these occurrences would be a tedious and error-prone
process.

For both reasons we recommend that you try to avoid dispersing constant val-
ues through your programs; instead, use constants that are declared by name.

CASE
STUDY

54 Problem Solving: Extending a Solution 173

Extending the Problem Solution

An experienced programmer usually writes programs that can be easily changed or
modified to fit other situations. One reason for this is that programmers (and program
users) often wish to make slight improvements to a program after having used it. If the
original program is designed carefully from the beginning, the programmer will be able
to accommodate changing specifications with a minimum of effort. In the next problem
it is possible to insert a new decision step rather than having to rewrite the entire pro-
gram.

COMPUTING OVERTIME PAY

Problem Specification
Develop a payroll program so that employees who work more than 40 hours a week are
paid 1.5 times their hourly rate for all overtime hours.

Analysis

This problem is an extension of the payroll problem solved by Program 5.3. Employees
who work more than 40 hours should be paid one rate for the first 40 hours and a higher
rate for the extra hours over 40. Employees who work 40 hours or less should be paid
the same rate for all hours worked. We can solve this problem by replacing step 3 (com-
pute gross pay) in the original algorithm with a decision step that selects either a
straight pay computation or a computation with overtime pay.

Data Requirements

Problem Inputs

hours worked (Hours : NonNegFloat)
hourly rate (Rate : NonNegFloat)

Problem Outputs

gross pay (Gross : NonNegFloat)
tax (Tax: NonNegFloat)

net pay (Net : NonNegFloat)

Problem Constants

maximum salary for no tax deduction (TaxBracket = 100.00)
amount of tax deducted (Tax = 25.00)

maximum hours without overtime pay (MaxHours = 40.0)

Relevant Formulas

gross pay = hourly rate x hours workcd
tax = tax rate x (gross — tax bracket)
net pay = gross pay — tax

Design
The critical change to the algorithm involves modifying step 3 of the algorithm. The
algorithm is repeated next, followed by a new refinement for step 3.

174 Decision Statements; Writing Functions and Packages

Initial Agorithm
1. Display user instructions.

2. Enter hours worked and hourly rate.

3. Compute gross pay including any overtime pay.
4. Compute net pay.

5. Display results.

Algorithm Refinements

Step 3 Refinement
3.1. 1F no overtime hours were worked THEN

3.2. Compute GrossPay as Hours * HourlyRate
ELSE
3.3. Compute Grosspay as (the pay for 40 hours) + (the pay for overtime hours)

END IF;

implementation
As shown below, we should replace the assignment statement in Program 4.1 that com-

putes gross pay by

-- Compute gross pay including any overtime pay
IF Hours <= MaxHours THEN
GrossPay := Hours * HurlyRate;
ELSE
GrossPay :=
(MaxHours * HourlyRate) +
((Hours — MaxHours) * (1.5 * HourlyRate)};
END IF;

If the condition Hours <= MaxHours is true, there is no overtime pay, so gross pay is
computed as before; otherwise, Grosspay is computed by using the second assignment
statement above. The pay for the first 40 hours is added to the pay earned for the over-
time hours (Hours - MaxHours).

Note how we have used parentheses in the overtime calculation to make our inten-
tion clear. Modifying Program 5.3 as discussed here is left as an exercise.

5.5 Control Structures: The Muitiple-Alternative IF Statement 175

EXERCISES FOR SECTION 5.4

Self-Check

1. Trace Program 5.3 when Hours is 30.0 and HourlyRrate is 9.00. Perform the
trace when Hours is 20.0 and Rate is 6.00.

2. Rewrite the algorithm for the payroll problem so that the computation of gross
salary is performed in two steps rather than in one. First compute the base pay
for all hours worked. Then add in an extra amount only if overtime hours were
worked.

5.5 Control Structures: The Multiple-Alternative IF Statement

Until now, we have used 1F statements to implement decisions involving one or two
alternatives. In this section you will see how the IF statement can be used to implement
decisions involving more than two alternatives.

®m Example 5.5

The following 1F statement has three alternatives. It causes one of three variables (Num-
Pos, NumNegq, O NumZero) to be increased by 1 depending on whether x is greater than 0,
less than 0, or equal to 0, respectively. This statement might be part of a program to
keep track of the number of positive, negative, and zero values in a set of values. It
assumes that all the variables have been properly initialized. The word ELsIF is an Ada
reserved word and is not a typographical error.

-- Increment NumPos, NumNeg, or NumZero depending on X
IF X > 0 THEN
NumPos := NumPos + 1;
ELSIF X < 0 THEN
NumNeg := NumNeg + 1;
ELSE -- X =0
NumZero := NumZero + 1l;
END IF;

The execution of this IF statement proceeds as follows: The first condition (x > 0)
is tested; if it is true, the statement NumPos := NumPos+1 increments Numpos by 1 and the
rest of the IF statement is skipped. If the first condition is false, the second condition (x
< 0) is tested; if it is true, NumNeg is incremented; otherwise, Numzero is incremented. It
is important to realize that the second condition is tested only when the first condition
is false. A trace of the IF statement for x = -7 is shown in Table 5.4.

176 Decision Statements; Writing Functions and Packages

Table 5.4 Trace of IF Statement in Example 5.5 for X = -7

Statement Part . X Effect

-7
IF X > 0 THEN =7> 0 is false
ELSIF X < 0 THEN -7 <0is true
NumNeg := NumNeg + 1; Add] to NumNeg

SYNTAX

DISPLAY IF Statement (Multlple Alternatives)

“Form:

IF condition, THEN
statement sequence;
ELSIF condition, THEN
statement sequence,
ELSIF condition, THEN
statement sequence;
ELSE
statement sequence,
. END IF;

Example:

IF B >= 0 THEN
Ada.Text_IO.Put(Item=>"Positive");
BELSIF N = 0 THEN
Ada.Text_IO.Put(Item=>"Zexo");
ELSE.
Ada.Text_I0.Put(Item=>"Negative");
END 1IF;

Interpretation:
The conditions in a multiple-altemative IF statement are evaluated from top to
bottom until a true value is obtained. The statement sequence following the first

.true condition is executed and the rest of the Ir statement is skxpped If every
condition is false, statement sequence, (between ELSE and £ND) is executed.

Notes:

At most, one statement sequence is executed. If ELSE and statement sequence,

are present, exactly one statement sequence is always executed. If BLSE and state-

ment sequence,, are omitted, no statement sequence is executed when every
~ expression is false.

Also note the spellmg reqmred by Ada: ELSTF is spelled without a second E
or space; END IF must have a space between END and IF.

PROGRAM
STYLE

5.5 Control Structures: The Multiple-Alternative IF Statement V17

Writing a Multiple-Alternative IF Statement

When writing a multiple-alternative 1F statement, align the reserved words IF,
ELSE, ELSIF, and END IF and indent each statement sequence consistently. This is
done to make the IF statement more readable.

Order of Conditions

Very often, the conditions in a multiple-alternative decision are not mutually exclusive.
This means that it may be possible for more than one condition to be true for a given
data value. If this is the case, the order of the conditions becomes very important
because only the statement sequence following the first true condition is executed.

® Example 5.6

Table 5.5 describes the assignment of letter grades (as commonly used in the United
States) based on the score on a 100-point examination.

Table 5.5 Letter Grades in LS. Universities

Exam Score Grade Assigned
90 and above A (excellent)
80-89 B (very good)
70-79 C (fair)

60-69 D (barely passing)
below 60 F (failing)

The following muitiple-alternative 1r statement displays the letter grade assigned
according to this table. The last three conditions are true for an exam score of 85; how-
ever, a grade of B is assigned because the first true condition is score >= 80.

-- correct grade assignment
IF Score >= 90 THEN

Ada.Text_IO.Put (Item=>'A‘);
ELSIF Score >= 80 THEN

Ada.Text_IO.Put (Item=>'B');
ELSIF Score >= 70 THEN

Ada.Text_IO.Put (Item=>'C');
ELSIF Score >= 60 THEN

Ada. Text_IO .Put (Item=>'D');
ELSE

Ada.Text_IO.Put (Item=>'F');
END IF;

178 Decision Statements; Writing Functions and Packages

It would be wrong to write the decision as shown next. All passing exam scores (60
or above) would be incorrectly categorized as a grade of D because the first condition
would be true and the rest would be skipped. Writing the 1F this way would be a mis-
translation of the table into code.

-- incorrect grade assignment
IF Score >= 60 THEN

Ada.
ELSIF
Ada.
ELSIF
Ada.
ELSIF
Ada.
ELSE
Ada.

Text_IO.Put
Score >= 70
Text_IO.Put
Score >= B0
Text_IO.Put
Score >= 90
Text_I0.Put

Text_I0.Put

(Item=>'D');

THEN
(Item=>'C"');
THEN
(Item=>'B"');
THEN
(Item=>'A"');

(Item=>'F');

END IF;]

W Example 5.7

You can use a multiple-alternative 1F statement to implement a decision table that
describes several alternatives. Let’s say that you are an accountant setting up a payroll
system for a small firm. Each line of Table 5.6 indicates an employee’s salary range and
a corresponding base tax amount and tax percentage. Given a salary amount, the tax is
calculated by adding the base tax for that salary range and the product of the percentage
of excess and the amount of salary over the minimum salary for that range.

Table 5.6 Tax Table for Example 5.7

Bracket Salary Range Base Tax Percentage of Excess
1 0.00 — 1499.99 0.00 15%
2 1500.00 - 2999.99 22500 16%
3 3000.00 — 4999.99 465.00 18%
4 5000.00 - 7999.99 825.00 20%
5 8000.00 - 14999.99 1425.00 25%

For example, the second line of the table specifies that the tax due on a salary of
$2000.00 is $225.00 plus 16% of the excess salary over $1500.00 (i.e., 16% of
$500.00). Therefore the total tax due is $225.00 plus $80.00, or $305.00.

The 1F statement in Fig. 5.5 implements the tax table. If the value of salary is
within the table range (0.00 to 14999.99), exactly one of the statements assigning a
value to Tax will be executed. A trace of the 1F statement for salary = $2000.00 is
shown in Table 5.7. The value assigned to Tax is $305.00, as desired.

3.5 Control Structures: The Multiple-Alternative IF Statement 179
Figure 5.5 IF Statement for Tax Table 5.6

IF salary < 0.0 THEN
Ada.Text_ IO.Put (Item=>"Error! Negative salary $");
Ada,Float.Text_IO.Put (Item=>Salary, Fore=>1, Aft=>2, Exp=0);
Ada.Text_IO.New_Line;

ELSIF Salary < 1500.00 THEN -- first range
Tax := 0.15 * salary;

ELSIF Salary < 3000.00 THEN -- second range
Tax := (Salary — 1500.00) * 0.16 + 225.00;

ELSIF Salary < 5000.00 THEN -- third range
Tax := (Salary - 3000.00) * 0.18 + 465.00;

ELSIF Salary < 8000.00 THEN -- fourth range
Tax := (Salary — 5000.00) * 0.20 + 825.00;

ELSIF Salary < 15000.00 THEN -- fifth range
Tax := (Salary ~ 8000.00) * 0.25 + 1425,00;

ELSE
Ada.Text_IO.Put (Item=>"Error! Too large salary $");
Ada.Float.Text_I0.Put (Item=>Salary, Fore=>1, Aft=>2, Exp=0);
Ada.Text_I0.New_Line;

END IF; |

Table 5.7 Trace of Fig. 5.5 for Salary = $2000.00

Statement Part Salary Tax Effect
2000.00 ?

IF Salary < 0.0 2000.0 < 0.0 is false

ELSIF Salary < 1500.00 2000.0 < 1500.0 is false

ELSIF Salary < 3000.00 2000.0 < 30000 is true

Ta’(‘s;;a:y — 1500.00) difference is 500.00

* 0.16 product is 80.00

+ 225,00 sum is 305.00
E{R.Y(,)LGERAM Validating the Value of Variables

It is important to validate the value of a variable before you perform computa-
tions using invalid or meaningless data. Instead of computing an incorrect tax
amount, the IF statement above displays an error message if the value of salary
is outside the range covered by the table (0.0 to 14999.99). The first condition is
used to detect negative salaries, and an error message is displayed if salary is
less than zero. All conditions evaluate to False if salary is greater than
14999.99, and the alternative following ELSE displays an error message.

180 Decision Statements; Writing Functions and Packages

Nested IF Statements

The statement sequence inside a control statement can contain another control state-
ment. For example, an IF statement can contain another IF. The second control state-
ment is said to be nested inside the first control statement. The inner control statement
can itself contain a control statement; in fact, there is no theoretical limit on the depth
to which control statements can be nested.

The ability to nest control statements allows us to write very sophisticated 1
grams. In Chapters 5 and 6 we will introduce many examples of 1F statements =
inside loops and vice versa. For the time being, consider the following example

B Example 5.8

Many U.S. secondary schools and universities use the Grade Point Average
summarize each student’s achievement. Each subject receives a grade of A ¢ Pl
then each grade is assigned a numerical weight: A is weighted 4.0, B is 3.0, C J,D
is 1.0, and F is 0.0. Then the GPA is formed by summing all the subject we _.ts and
dividing by the number of subjects. ‘

Depending on a student’s GPA, the following fragment—which uses nested 1F
statements—displays one of three messages. If the GPA is less than or equal to 1.5, the
painful message following the second ELSE is displayed. If GPA is greater than 1.5, the
inner IF statement is executed, and a more pleasant message is displayed.

.

IF GPA > 1.5 THEN
IF GPA < 3.0 THEN
Ada.TextIO.Put(Item => "Progressing satisfactorily”);
ELSE
Ada.Text_IO.Put
(Item => "Made the Honors List - send money");
END IF;
ELSE
Ada.Text_IO.Put (Item => "Flunked out");
END IF;

The following nested statements have the same effect as the ones above. Again, the
inner 1F statement is executed when GPA exceeds 1.5.

IF GPA <= 1.5 THEN
Ada.Text_IO.Put (Item => “Flunked out");
ELSE
IF GPA < 3.0 THEN
Ada.Text_IO.Put (Item => “Progressing satisfactorily");
ELSE
Ada.Text_IO.Put
(Item => "Made the Honors List - send money");
END IF;
END IF;

Nested 1F statements can sometimes be confusing to write and to read. Often, a sin-
gle multiple-alternative IF statement can replace nested 1F statements, resulting in a
more readable program. Verify for yourself that the following 1r statement has the
same effect as the earlier nested IF statements.

PROGRAM
STYLE

5.5 Control Structures: The Multiple-Alternative IF Statement 181

IF GPA <= 1.5 THEN

Ada.Text_IO.Put (Item => "Flunked out");

ELSIF GPA < 3.0 THEN

Ada.Text_IO.Put (Item => "Progressing satisfactorily");

ELSE

Ada.Text_IO0.Put (Item => "Made the Honors List - send money");

END IF;

indentation Conventions for Nested Control Structures

1t is a good idea to develop a consistent indentation style for nested control struc-
tures. Note in the preceding examples that the entire nested IF is indented the
same amount as the put following the ELSE.

Developing a consistent indentation style is one way of making your pro-
grams clear and easy to read. Many companies have adopted companywide or
projectwide programming style standards that include indentation rules. This
makes it easy for programmers to read each other’s source code. There is no one
“best” indentation rule; the most important principle is consistency.

In this book we indent each structure several spaces deeper than the structure
within which it is nested. The complete program examples use a consistent
indentation of two spaces, and the code fragments in the text are usually indented
a bit more for added clarity. We recommend an indentation convention similar to
that used in the programs. If your teacher states different rules, follow them con-
sistently.

EXERCISES FOR SECTION 5.5

Self-Check

1. Trace the execution of the ¥ statement in Fig. 5.7 for salary = 13500.00.

2. What would be the effect of reversing the order of the first two conditions in

the 1F statement of Fig. 5.77

Programming

1. Rewrite the 1F statement for Example 5.8 using only the relational operator <

in all conditions.

182 Decision Statements; Writing Functions and Packages

2. Implement the following decision table using a multiple-alternative 1F state-
ment. Assume that the grade point average is within the range 0.0 - 4.0.

Grade Point Average Transcript Message

00-099 Failed semester ~-- registration suspended
10-199 On probation for next semester

20-299 (no message)

30-349 Deans list for semester

35-40 Highest honors for semester

5.6 System Structures: Using Ada’s Math Library

We use computers for many kinds of applications, some of which require that we actu-
ally write programs to do mathematical computations. It is therefore useful to have
available a set of the usual elementary functions such as square root, sine, cosine, and
so on. Ada provides such a set of functions in a standard library called Ada.Numer-
ics.Elementary_Functions. The full description of this standard library package is
found in Appendix E; Program 5.4 shows how one of the its functions, sqrt, is used to
compute a square root. The name of its Float parameter (and that of the other functions
in the library) is x.

Program 5.4 Computing Several Square Roots

WITH Ada.Text_IO;

WITH Ada.Float_Text_IO;

WITH Ada.Numerics.Elementary_Functions;
PROCEDURE Square_Roots IS

--| Illustrates the square root function provided by
-=-| Author: Michael Feldman, The George Washington University
--| Last Modified: July 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

First : NonNegFloat;
Second: NonNegFloat;
Answer: NonNegFloat;

BEGIN -~ Square_Roots

Ada.Text_IO.Put (Item => "Please enter first number > ");
Ada.Float_Text_IO.Get(Item => First);

Answer := Ada.Numerics.Elementary Functions.Sqrt(X => First);
Ada.Text_IO.Put (Item => “The first number's square root is ");

Ada. Float Text_ IO.Put (Item => Answer, Fore => 1, Aft => 5, Exp => 0);
Ada.Text_. 10.New _Line;

5.7 System Structures: Writing Functions 183

Ada.Text_I0.Put (Item => "Please enter second number > ");
Ada.Float_Text_IO.Get(Item => Second);
Ada.Text_IO.Put (Item => "The second number's square root is "});
Ada.Float_Text_IO.Put
(Item => Ada.Numerics.Elementary_ Functions.Sgrt (X => Second),
Fore => 1, Aft => 5, Exp => 0);
Ada.Text_IO.New Line;

Answer := Ada.Numerics.Elementary Functions.Sqrt(X => First + Second);
Ada.Text_IO.Put

(Item => "The square root of the sum of the numbers is ");
Ada.Float_Text_IO.Put (Item => Answer, Fore => 1, Aft => 5, Exp => 0);
Ada.Text_IO.New Line;

END Square_Roots;
Sample Run

Please enter first number > 9

The first number's square root is 3.00000

Please enter second number > 16

The second number's square root is 4.00000

The square root of the sum of the numbers is 5.00000

As you can see from the sample run, this program prompts the user for two float-
ing-point values and computes the square roots of the two numbers and of their sum.
Note in the program that the second call of the square root function is nested in the Put
statement and that in the third call, the parameter is the expression First + Second.
This is just to illustrate that function calls can be nested in other expressions and that
expressions can be nested in function calls.

In Chapter 8 we’ll come back to the math library.

5.7 System Structures: Writing Functions

In Chapter 4 you saw how to use some functions in a predefined package, namely, the
Month, Day, and Year functions in the standard package Ada.Calendar; in the previous
section you saw how to use the square root function from another standard package,
Ada.Numerics.Elementary Functions. This section introduces the very important
subject of how to write such functions; the next section shows how to put functions in
packages for yourself and others to use again later.

Function Specifications

In general, a function is written so as to require the caller to supply some values to it
When called, the function performs its desired computation and then refurns a result to
the calling program. The line indicating the name of the function, the list of expected
parameters, and the type of the returned result is called a function specification or
sometimes function declaration. You saw three such specifications in Chapter 4:

FUNCTION Year (Date: Time) RETURN Year_ Number;

184 Decision Statements; Writing Functions and Packages

FUNCTION Month (Date: Time) RETURN Month_ Number;
FUNCTION Day (Date: Time) RETURN Day_Number;

The specification for vear tells the compiler—and the reader—that this function
must be called with one value of type Time and that it returns a result of type
Year_Number to the program that calls it. The other two specifications are similar.

Here is a specification for a function to find the larger of two integer values and
return it to the calling program:

FUNCTION Maximum({Valuel, Value2: Integer) RETURN Integer;

Notice that between the parentheses is a list of the expected parameters and that after
the word RETURN is the type of the returned result. In this case the function is to deter-
mine which of the two parameters is larger and return it as the result.

Calling a Function

Recall from Chapter 4 that we were able to extract the year from a system-generated
time value by writing

ThisYear := Calendar.Year(Date => RightNow);

where This_Year was declared as a variable of type Ada.calendar.Year_Number and
RightNow was a variable of type ada.Calendar.Time. Notice that between the paren-
theses is an association of the name of the formal parameter (Date) with the variable
containing the value of the actual parameter (RightNow).

How could we use our function Maximum in a similar way? Given an integer vari-
able Larger, writing

Larger := Maximum (Valuel => 24, Value2 => -57);

stores the value 24 in the variable Larger because that is the larger of the two values.
Given two integer variables Grade1 and Grade2, writing

Gradel := -24;
Grade2 := 113;
Larger := Maximum(Valuel=>Gradel,Value2=>Grade2);

stores in Larger the valuc 113, again because that is the larger value. Notice again how
the formal parameters valuel and value2 are associated with the actual parameters
Gradel and Grade2, and notice that it is improper to write, for example,

Larger := Maximum (Gradel => Valuel ,Grade2 => Value2);

because valuel is the formal parameter and Grade1 is the actual. The formal parameter
comes first, followed by the actual parameter.

The difference between these two examples is that the function vear already exists
(in package ada.calendar) but the function Maximum does not. We have a specification
indicating the name of the function, how it is to be called, and what it returns, but we do
not yet actually have a function that will find the larger number.

5.7 System Structures: Writing Functions 185

Function Bodies

To complete our function Maximum, we need to write a finiction body, that is, a small
program in Ada in a form that the compiler will recognize as a function. Here is the
desired function body:

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN
IF Valuel > Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;
RETURN Result;
END Maximum;

This function body has the basic form of an Ada program. There is a header line
similar to the first line of a program; this line ends with the word 1s. Next there is a sec-
tion of declarations; here we are declaring only a single program variable result. Fol-
lowing the word BEGIN is the statement sequence of the function body, and the function
body ends with an enp. The 1F statement in the function body stores in the variable
Result the larger of valuel and value2. Finally, the value in Result is returned to the
calling program as the function result. This value can be stored directly in a variable of
the calling program, as in the examples above, or used as part of an expression imple-
menting a larger calculation.

The variable result is called a local variable of the function. Because it is declared
inside the function body, it has no existence outside the function body. It is good prac-
tice when writing a function to put the variables that are needed by the function inside
the function body so that they are the private property of the function and cannot be
seen or disturbed by any other program.

To see an example of how a function is declared as part of a larger program, con-
sider Program 5.5, in which the user is prompted to enter two integer values
Firstvalue and Secondvalue. These values are then passed to the function Maximum,
which returns the larger value to the main program. The answer is then displayed. The
function Maximum is declared in the declaration part of the main program.

Program 5.5 Finding the Larger of Two Integer Values with a Function

WITH Ada.Text_IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Max_Two IS

--| Finds the larger of two integer values using our

--| Maximum function.

--| Author: Michael Feldman, The George Washington University
--| Last Modified: July 1998

FirstValue: Integer; -- input
SecondValue: Integer; -- input
Larger: Integer; -- output

-~ function specification

186 Decision Statements; Writing Functions and Packages

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;

-=- function body
FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN
IF Valuel > Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;
RETURN Result;
END Maximum;

BEGIN

Ada.Text_IO.Put (Item => “Please enter first integer value > “);
Ada.Integer_Text_IO.Get (Item => FirstvValue);
Ada.Text_IO.Put (Item => “Please enter second integer value > ");
Ada.Integer_Text_IO.Get (Item => SecondValue);

Larger := Maximum(Valuel=>FirstValue, Value2=>SecondValue);

Ada.Text_IO.Put (Item => "The larger number is ");
Ada.Integer Text IO.Put (Item => Larger, Width => 1);
Ada.Text_I0.New_Line;

END Max_Two;
Sample Run

Please enter first integer value > 374
Please enter second integer value > -158
The larger number is 374

SYNTAX

DISPLAY Function Specification

Form: , '
FUNCTION fname (formal parameters) RETURN result type ;
Example: ‘

FUNCTION Square (Num : Integer) RETURN Integer;

Interpretation:

The function fname is declared. The list of formal parameters is enclosed in
parentheses. The data type of the function result is indicated by the identifier
result type. : ‘ '

5.7 System Structures: Writing Functions 187

SYNTAX

DISPLAY Function Body

Form:

FUNCTION fname (formal parameters) RETURN result type IS
local declaration section

BEGIN
statement sequence

END fname;

Example:

FUNCTION Square (Num : Integer) RETURN Integer IS
Result: Integer;

BEGIN
Result := Num * Num;
RETURN Result;

END Square;

Interpretation:

The function fname is declared. The list of formal parameters is enclosed in
parentheses. The data type of the function result is indicated by the identifier
result type. Any identifiers that are declared in the local declaration section exist
only during the execution of the function. The function body describes the data
manipulation to be performed by the function. At least one RETURN statement
must be executed each time the function is called.

Note 1:

The result type is not restricted in Ada. It may be any type.

Note 2:

If there are no parameters, you should omit the formal parameters and parenthe-
ses.

Neote 3:

The first line of the function body must agree exactly with the function specifica-
tion. except that the specification ends with a semicolon and the first line of the
body ends with 1s. The way the line ends indicates to the compiler whether it
should treat the line as a ‘specification or as the first line of a body. It is therefore
important not to confuse the two endings, lest you confuse the compiler.

EXERCISES FOR SECTION 5.7

Self-Check

. In programming, what is a function? Briefly describe why you think functions
are useful.

188 Decision Statements; Writing Functions and Packages
5.8 System Structures: Writing a Package

As you have seen, it is possible to declare a function as part of a program. It is certainly
permitted to declare a function like this, and doing so provides an easy way to test the
function. However, the real usefulness of functions—and of procedures, for that mat-
ter—is achieved when they are collected together as a group of related items and placed
in a package. A package is compiled and placed in a library, either your own personal
program library or, in 2 group project, the team’s library. Once a package is compiled,
it—and all the resources in it—is available for use by means of a simple context clause
(WITH statement).

Package Specifications and Package Bodies

Recall from Section 4.7 that a package consists of two files: the specification and the
body. The specification is like a table of contents for the package, listing all the differ-
ent resources (types, functions and procedures) that are available in the package; the
package body contains the actual Ada code for each of these resources.

In the case of the standard packages (ada.Text_Io and Ada.Calendar, for exam-
ple) the package body source files are not always supplied with the compiler, since
these may be trade secrets of the compiler developer. In this case, the executable (pre-
compiled) version of the package body is supplied. These are usually installed along
with the compiler and are usually available to you without further action on your part.

In the case of programmer-defined packages, it is the programmer’s responsibility
to write both the specification file and the body file. This book shows a number of pro-
grammer-defined packages, for which the Ada source code is given.

Ada requires that a package be separated into these two files to provide a mecha-
nism for encapsulation, which is defined as separation of specification and implemen-
tation. The specification serves as a “contract” between the package and the programs
that use the package. Writing this contract in one file, then providing the contract
“deliverables” in a second file, encapsulates the implementation of the package. Encap-
sulation is one of the important principles in object-oriented programming (OOP);
when you develop packages, you are, in fact, doing one form of GOP.

A Package Containing Minimum and Maximum Functions

Finding the larger or smaller of two numbers is frequently required in programming.
The programming task would therefore be made easier if we could write functions once
to find the minimum and maximum, then package them up for future use. Our first step
is to write a package specification. Remember that the specification is a table of con-
tents for the package. This specification can be compiled as it stands, just to be sure that
there are no compilation errors. The package specification is shown as Program 5.6.
Note again the use of preconditions and postconditions to document the functions.

Program 5.6 Package Specification for Min_Max

PACKAGE Min_Max IS

--| specifications of functions provided by Min Max package

5.8 System Structures: Writing a Package 189

--| Author: Michael Feldman, The George Washington University
~=-| Last Modified: July 1998

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
-- Pre: Valuel and Value2 have been assigned values
-- Post: Returns the smaller of the two input values

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
-- Pre: Valuel and Value2 have been assigned values
-- Post: Returns the larger of the two input values

END Min Max;

We now must write the package body. We can incorporate the Maximum function
written above. Also, we can write the Minimum function very easily: Given the Maximum
function, writing a Minimum function is just a matter of making a change to the inequal-
ity in the IF statement:

IF Valuel < Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;

Program 5.7 gives the entire package body. Be certain that you understand that the
package specification contains the function specifications and the package body con-
tains the function bodies.

Program 5.7 Package Body for Min_Max

PACKAGE BODY Min_Max IS

--| bodies of functions provided by Min Max package
--| Author: Michael Feldman, The George Washington University
--| Last Modified: July 1998

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN

IF Valuel < Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;
RETURN Result;

END Minimum;

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN

IF Valuel > Value2 THEN
Result := Valuel;
ELSE

190 Decision Statements; Writing Functions and Packages

SYNTAX
DISPLAY

SYNTAX
DISPLAY

Result := Value2;
END IF;
RETURN Result;

END Maximum;

END Min_Max;

:,,Package Speaﬁcatlon 3

‘ jForm
' 'PACKAGE pname 1s

" “list of specifications of resources
prov;ded by the package . :

- Example:

PACKAGE Min Max IS = - :
.FUNCTION Minimum (Valuel, Value2: Im:eger) RBTURN Integer-
- 'PUNCTION Maximum (Valuel Valuez. Intege:) RETURN Integer‘ B

. ENDMin Max;

Interpretatwn.
The package specification gives a list or “table of contents" of the resources to be

- provided by the package. These resources can be procedures, functions, and types

(see Section 4.6 for an example of a package providing types). The package spec-
ification must be compﬂed before the corresponding body is compiled. .

Package Body

:Form:

_ 'PACKAGE BODY pname IS

‘sequence of- function and procedure bodms
" implementing the rescurces ‘lieted in the
package spec;f;cata.on for pname

END pname;)

Example:

_Program 5.7 serves as an example For brevny we will not repeat it here.

CASE
STUDY

5.8 System Structures: Writing a Package 191

Interpretation:

The resources (functions and procedures) that are promised in the specification
must be delivered in the corresponding package body. If any are missing, a com-
pilation error will result.

Note:

The function and procedure specifications in the package specification must
agree exactly with the corresponding function and procedure headers in the pack-
age body. Specifically, the names, types, and order of parameters must agree
exactly. A formal parameter named valuel in the specification cannot, for exam-
ple. be called val1 in the body. Ada compilers are very fussy about this. Care
taken here will avoid compilation errors.

FINDING THE LARGEST AND SMALLEST OF THREE
NUMBERS

Problem Specification
Find the largest and smallest of three numbers to be provided by the user.

Analysis
We cannot directly compare the three numbers, so, as in Program 5.2, we will compare
them pairwise.

Data Requirements

Problem Inputs
the three numbers (Numl, Num2, Num3: Integer)

Problem Outputs

the largest and smallest numbers (Largest,Smallest: Integer)

Desi

Instead of doing the comparisons directly, we can use the package Min_Max to find the
larger and smaller of pairs of numbers. Given the three numbers, we can find the

smaller of the first two numbers, then find the smaller of this result and the third num-
ber. We can apply the same approach to finding the largest number.

Initial Algorithm
1. Prompt the user for the three numbers.

2. Find the largest of the three numbers.
3. Find the smallest of the three numbers.
4. Display the results.

192 Decision Statements; Writing Functions and Packages

Algorithm Refinements

Step 2 Refinement:
2.1. Let Largest temporarily be the larger of Num1 and Num2.

2.2. Now let Largest be the larger of itself and Num3.

Step 3 Refinement:
3.1. Let smallest temporarily be the smaller of Num1 and Num2.

3.2. Now let smallest be the smaller of itself and num3.

Test Plan
Test with different orderings of three integers to be certain that the maximum and mini-
mum are always selected regardless of the original ordering.

implementation

The coding is straightforward because our minimum and maximum functions already
exist in the package. Assuming that the specification and body for Min_Max have both
been successfully compiled, Program 5.8 solves the problem. Note the context clause

WITH Min_Max;

at the beginning of the program, along with the other context clauses for the input/out-
put packages.

Program 5.8 Find the Minimum and Maximum of Three Integers

WITH Ada.Text_IO;

WITH Ada.Integer Text_ IO0;
WITH Min Max;

PROCEDURE Min_Max_Three IS

--| Finds the largest and smallest of three integer values

--| using the Minimum and Maximum functions from package Min_Max
--| Author: Michael Feldman, The George Washington University
--| Last Modified: July 1998

Numl: Integer; -= program inputs
Num2: Integer;
Num3: Integer;
Largest: Integer; -- program outputs
Smallest: Integer;

BEGIN -- Min_Max_Three

-~ prompt user for inputs

Ada.Text_IO0.Put (Item => "Please enter first integer value > ");

Ada.Integer_Text_IO.Get (Item =>
Ada.Text_10.Put (Item => "Please
Ada.Integer_ Text_IO0.Get (Item =>
Ada.Text_IO.Put (Item => "Please
Ada.Integer_ Text_IO.Get (Item =>

Numl);
enter second integer value > ");
Num2) ;
enter third integer value > *);
Num3);

5.9 Tricks of the Trade: Common Programming Errors 193

-- find largest of the three inputs
Largest := Min_Max.Maximum(Valuel=>Numl, Value2=>Num2);
Largest := Min_Max.Maximum(Valuel=>Largest, Value2=>Num3);

-- find smallest of the three inputs
Smallest := Min_Max.Minimum(Valuel=>Numl, Value2=>Num2);
Smallest := Min_Max.Minimum(Valuel=>Smallest, Value2=>Num3);

~~ display results

Ada.Text_IO.Put (Item => "The smallest number is ");
Ada.Integer_ Text_ IO.Put (Item => Smallest, Width => 1);
Ada.Text_IO.Put (Item => " and the largest number is “);
Ada.Integer_Text_IO.Put (Item => Largest, Width => 1l);
Ada.Text_IO.New_Line;

END Min Max_Three;
Sample Run

Please enter first integer value > -29

Please enter second integer value > 574

Please enter third integer value > 0

The smallest number is -29 and the largest number is 574

Testing

Once again, the sample run shows just one test case.

EXERCISES FOR SECTION 5.8

Self-Check

1. What is the difference between a package specification and a package body?
Why do we require both?

5.9 Tricks of the Trade: Common Programming Errors

When writing IF statements, remember not to put a semicolon after TREN or ELSE and
always to put semicolons after the other statements. Also do not forget the required Enp
IF; at the end of the entire structure. Also remember that the end of an 1F statement is
always written END IF (two words), while the alternatives of a multiple-alternative 1
are written ELSIF (one word, only one E).

When writing multiple-alternative 1 statements, be careful to put the alternatives
in an order that is correct for the problem being solved.

194 Decision Statements; Writing Functions and Packages

When writing a package, be sure that everything you promise in the specification is
delivered in the body and that the parameter list for each function or procedure in the
specification matches exactly the corresponding procedure or function header in the
body. Remember that you must compile the package specification without compilation
errors before you can attempt to compile the package body.

If the body of a package is changed but not the specification, do not recompile the
specification; just recompile the body and repeat the link step. If you recompile the
specification, all programs that use the package will have to be recompiled.

CHAPTER REVIEW

DU SRR ke RN Sl SN USRI R oL N 2 i L REEDE Y i

This chapter introduced you to an important control structure, the 1F statement, for
building decision steps into programs. IF statements are of three types: single-alterna-
tive, two-alternative, and multiple-alternative. IF statements provide a way to build
decision making into a program.

You also learned how to write simple user-defined functions and how to structure a
package you are writing. A package consists of a specification file and a body file. The
specification gives a “contract with the user,” telling both the reader and the compiler
what to expect in a package. The body then provides all the things promised by the
specification.

New Ada Constructs in Chapter 5

The new Ada constructs that were introduced in this chapter are described in Table 5.8.

Table 5.8 Summary of New Ada Constructs

Construct Effect

IF Statement

One Alternative

IF X /= 0.0 THEN Multiplies Product by x
Product := Product * X; only if x is nonzero.

END IF;

Two Alternatives

IF X >= 0 THEN If x is greater than or equal
Ada.Integer.Text_IO.Put(Item=>X); t0 0, the message * is

EL:ga.Text_Io.Put(is positive"); positiven is displayed.
Ada.Integer.Text_IO.Put(Items>X):; Otherwise, the message
Ada.Text_IO.Put(" is positive"); " is negative® is dis-

END IF; played.

Several Alternatives

Chapter Review 195

Construct Effect
IF X < 0.0 THEN One of three messages is
Ada.Text_IO.Put(Item=>"negative"); displayed depending on
Abex oo whether x is negativ i-
ELSIF X = 0.0 THEN " gative, posi
tive, or zero.

Ada.Text_IO.Put(Item=>"zero");

AbsX := X;ELSE

Ada.Text_IO.Put(Item=>"positive");
END IF;

Function Specification

FUNCTION Sign (X :Float) RETURN Character;

Function Body

FUNCTION Sign (X :Float) RETURN Character IS

Temp: Character;
BEGIN -- Sign
IF X >= 0 THEN

absx is set to represent the
absolute value or magni-
tude of x.

specifies a function

Returns a character value
that indicates the sign (' +*
or '-') of its type Float

Temp := '+'; argument.
ELSE
Temp = '-';
END IF;
RETURN Temp;
END Sign;
Quick-Check Exercises
1. An 1F statement implements execution.

What is pseudocode?

The relational operator /= means
A

S vk v

What values can a Boolean expression have?

is used to verify that an algorithm is correct.

When speed is 75, what value is assigned to Fee by the 1F statement on the

left? By the 1F statement on the right? Which 1F statement is correct?

IF Speed > 35 THEW
Fee := 20.00;

ELSIF Speed > 50 THEN
Fee := 40.00;

ELSIF Speed > 75 THEN
Fee := 60.00;

END IF;

IF Speed > 75 THEN
Fee := 60.0;

ELSIF Speed > 50 THEN
Fee := 40.00;

ELSIF Speed > 35 THEN
Fee := 20.00;

END IF;

7. Explain the difference between the statements on the left and the statements on
the right below. For each of them, what is the final value of x if the initial val-

ueof xis 1?

196 Decision Statements; Writing Functions and Packages

IF X >= 0 THEN IF X >= 0 THEN
X =X+ 1; X =X+ 1;
ELSIF X >= 1 THEN END IF;
X =X + 2; IF X >= 1 THEN
END IF; X =X + 2;
END IF;

Answers to Quick-Check Exercises

A O

Conditional

A mixture of English and Ada used to describe algorithm steps

True and False

Not equal

Hand trace

left: 20.00, first condition is met; right: 40.00. The one on the right is correct.

A multiple-alternative IF statement is on the left; a sequence of IF statements
is on the right. x becomes 2 on the left; x becomes 4 on the right.

Review Questions for Chapter 5

A decision in Ada is actually an evaluation of a(n) expression.
List the six relational operators discussed in this chapter.

What should the programmer do after writing the algorithm but before enter-
ing the program?

Trace the following program fragment and indicate what will be displayed if a
data value of 27.34 is entered.

Ada.Text_IO0.Put(Item => "Enter a temperature> ");
Ada.Float.Text_I0.Get (Temp);
IF Temp > 32.0 THEN
Ada.Text_IO.Put(Item => "Not Freezing");
ELSE
Ada.Text_IO.Put(Item => "Ice Forming”);
END IF;

Write the appropriate IF statement to compute GrossPay given that the hourly
rate is stored in the variable rRate and the total hours worked is stored in the
variable Hours. Pay time and a half for more than 40 hours worked.

Explain the difference between a package specification and a package body.

Chapter Review 197

Programming Projects

L.

Modify the structure chart and program for the first letter problem (Section
5.2) to find the alphabetically first of four letters.

Modify the structure chart and program for the first letter problem to find the
alphabetically /ast of three letters.

Develop and test the program—a modification of Program 5.3 —for the over-
time pay problem described in Section 5.4.

Develop and test a payroll program based on Program 5.3 that computes the
tax withheld according to the tax rates given in Table 5.6 and Figure 5.5.

Write a program that reads in a rcom number, its capacity, and the size of the
class enrolled so far and displays an output line showing the classroom num-
ber, capacity, number of seats filled and available, and a message indicating
whether the class is filled or not. Display the following heading before the out-
put line.

Room Capacity Enrollment Empty seats Filled/Not Filled

Display each part of the output line under the appropriate column heading.
Test your program with the following classroom data:

Room Capacity Enroliment
426 25 25
327 18 14
420 20 15
317 100 90

Write a program that will determine the additional state tax owed by an em-
ployee. The state charges a 4% tax on net income. Determine net income by
subtracting a $500 allowance for each dependent from gross income. Your
program will read gross income, number of dependents, and tax amount al-
ready deducted. It will then compute the actual tax owed and display the dif-
ference between tax owed and tax deducted followed by the message
“Taxpayer owes" Or "Refund to taxpayer®,depending on whether this dif-
ference is positive or negative.

The Ring-a-Ding-Ding Telephone Company has the following rate structure
for long-distance calls:

a. Any call started after 6:00 P M. (1800 hours) but before 8:00 AM (0800
hours) is discounted 50%.

b. Any call started after 8:00 AM. (0860 hours) but before 6:00 pM. (1800

hours) is charged full price.
c. All calls are subject to a 4% federal tax.

d. The regular rate for a call is $0.25 per minute.

198 Decision Statements; Writing Functions and Packages

10.

e. Any call longer than 60 minutes receives a 15% discount on its cost (after
any other discount is subtracted but before tax is added).

Write a program that reads the start time for a call based on a 24-hour clock
and the length of the call. The gross cost (before any discounts or tax) should
be displayed, followed by the net cost (after discounts are deducted and tax is
added).

Write a program that uses package Min_Max to find the smallest and largest of
four integers read from the terminal.

Create and test a second version of package Min_Max. Copy the specification
and body of Min_Max, change the name in both files to Min_Max_Float, and
modify the functions so that Float parameters are used instead of Integer.
Write a program that tests both packages together. (Hint: You will need two
context clauses.)

In trying to determine the best maximum speed limit on a highway, the traffic
police would like to collect statistical data on the actual speeds of cars under
the new laws; they have hired you to develop a computer program to help
them. As a first step, develop and test a package, speeds, that provides a func-
tion to classify a speed into one of the following classifications:

Class 1: 0 < speed <= 45 miles per hour (m.p.h.)
Class 2: 45 < speed <= 55

Class 3: 55 < speed <= 65

Class 4: 65 < speed <= 75

Class 5: 75 < speed

The specification will contain an enumeration type to define the classes:
TYPE SpeedClasses IS (Classl, Class2, Class3, Class4, Class5);
a subtype to specify the realistic range of speeds on the highway:

SUBTYPE SpeedRange IS Natural RANGE 0..130;

and a function specification:

FUNCTION Classify (Speed: SpeedRange) RETURN SpeedClasses;

The package body will contain the function body for classify

The main program should test the function according to a test plan that you de-
sign. For each test, prompt the user for a speed, call the function to classify it,
and display the speed classification using an instance of Ada.Text_I0.
Enumeration_IO.

Counting Loops; Subtypes

6.1 Control Structures: Counting Loops and the FOR Statement

62 Problem Solving: Generalizing a Solution

6.3 Problem Solving: Using an External File for Input Data

64 Problem Solving: Repeating a Program Body

6.5 Control Structures: Nested Loops

6.6 Data Structures: More on Subtypes

6.7 Tricks of the Trade: Debugging and Regression Testing

6.8 System Structures: Overloading and the Useful Functions Package
6.9 System Structures: Introduction to Exception Handling

6.10 Tricks of the Trade: Common Programming Errors

Chapter Review

The preceding chapters introduced you to two control structures: sequence, in which
statements are simply written one after the other, and conditional execution or selec-
tion, embodied in the IF statement, which allows one of a set of paths to be taken.

The third category of control structure in structured programming is repetition, or
iteration, which allows a section of a program to be repeated, the number of repetitions
being determined by some condition. In this chapter you will see how to specify the
repetition of a group of statements (called a counting loop) using the For statement.
You will study how to design counting loops in Ada programs. Two other repetition
constructs are introduced in Chapter 7.

Also in this chapter, the important concept of subtypes is extended, and you will see
how using subtypes of scalar data types—integer, float, character, and enumera-
tion—makes reading and writing programs easier and makes the programs more reli-
able.

Finally, two important system-structuring ideas are introduced: overloading and
exception handling. Overloading permits several operations with similar behavior to be
given the same name, and exception handling provides a method for keeping control
when an error arises, instead of returning control automatically to the run-time system.

199

200 Counning Loops; Subtypes

6.1 Control Structures: Counting Loops and the FOR Statement

Just as the ability to make decisions 1s a very important programming tool, so is the
ability to specify that a group of operations is to be repeated. For example, a company
with seven employees will want to repeat the gross pay and net pay computations in its
payroll program seven times: once for each employee.

The repetition of steps in a program is called a loop. The loop body contains the
steps to be repeated. Ada provides three control statements for specifying repetition.
This chapter examines the For statement; the general and WHILE statements are exam-
ined in Chapter 7.

The FOR Statement

The ror statement can be used to specify some forms of repetition quite easily, as
shown in the next examples.

W Example 6.1

The statements

n
v

"Hello there.
"Hello there.

Ada.Text_IO.Put(Item ;
;
"Hello there. *;
!
i

Ada.Text_IO.Put(Item
Ada.Text_IO.Put(Item
Ada.Text_IO.Put(Item
Ada.Text IO.Put(Item

v

v

"Hello there. ";
“Hello there. "

0 naau
v

v

can be written more concisely as

FOR Count IN 1..5 LOOP
Ada.Text_IO.Put(Item => "Hello there. ";
END LOOP;

The preceding For statement causes the put operation to be performed five times.
The ror statement is used to implement counting loops, which are loops where the
exact number of loop repetitions can be specified as a variable or constant value. Here,
the number of repetitions required was five. The reserved words END LooP terminate the
FOR statement.

The For statement specifies that the variable count should take on each of the val-
ues in the range 1 to 5 during successive loop repetitions. This means that the value of
count is 1 during the first loop repetition, 2 during the second loop repetition, and 5
during the last loop repetition.

count is called a loop counter because its value controls the loop repetition. In our
example the loop counter is intialized to 1 when the For statement is first reached; after
each execution of the loop body, the loop counter is incremented by 1 and tested to sec
whether loop repetition should continue.

6.1 Control Structures: Counting Loops and the FOR Statement 201

Unlike other variables, a For loop counter is not declared. A loop counter may also
be referenced in the loop body, but its value cannot be changed by statements in the
loop body. Example 6.3 shows a For statement whose loop counter is referenced in the
loop body.

B Example 6.2

The following For loop displays a sequence of HowMany asterisks. If HowMany has a
value of 5, five asterisks in a row will be displayed; if RowMany has a value of 27, 27
asterisks will be displayed, and so on.

FOR Count IN 1 .. HowMany LOOP
Ada.Text_IO.Put(Item => '*');
END LOOP; |

B Example 6.3

Program 6.1 uses a For loop to print a list of integer values and their squares. During
each repetition of the loop body, the statement NumSquared := Num*+*2; computes the
square of the loop counter Num; then the values of Num and Numsquared are displayed. A
trace of this program is shown in Table 6.1.

Program 6.1 Squares

WITH Ada.Text_IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Squares IS

--| Displays a list of integer values and their squares.
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

MaxNum : CONSTANT Natural := 4;
NumSquared : Natural; -- output - square of Num

BEGIN -- Squares

Ada.Text_IO.Put(Item => " Num Num ** 2 *);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => * ——— eecceccae- ")

Ada.Text_IO.New_ Line;

FOR Num IN l..MaxNum LOOP
NumSquared := Num ** 2;
Ada.Integer Text_ IO.Put (Item => Num, Width => 10);
Ada.Integer_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text_IO.New_Line;

END LOOP;

END Squares;

202 Counting Loops; Subtypes

Sample Run

Num Num ** 2

=W N

The trace in Table 6.1 shows that the loop counter Num is initialized to 1 when the
FOR loop is reached. After each loop repetition, Num is incremented by 1 and tested to
see whether its value is still less than or equal to MaxNum (4). If the test result is true, the
loop body is executed again, and the next values of Num and Numsquared are displayed.
If the test result is false, the loop is exited. Num is equal to MaxNum during the last loop
repetition. After this repetition the value of num becomes undefined (indicated by the
question mark in the last table line), and the loop is exited. The counter num ceases to
exist and cannot be referenced again unless the loop is entered again, in which case the
counter is given a new existence. []

Table 6.1 Trace of Program 6.1

Statement Num NumSquared Effect
? ?
FOR Num IN 1..MaxNum LOOP 1 Initialize Num
NumSquared := Num**2; 1 NumSquared gets 1 * 1
Ada.Integer_ Text IO.Put Displayl
(Item=>Num,Width=>10);
Ada.Integer_Text_IO.Put D]sp]ay]
(Item=>NumSquared,Width=>10);
Increment and test Num 2 2<=4istrue
Square := Num~*2; 4 NumSquared gets 2 * 2
Ada.Integer_Text_IO.Put Display 2
(Item=>NumSquared,Width=>10);
Ada,Integer_Text_IO.Put Display 4
(Item=>NumSgquared,Width=>10);
Increment and test Num 3 3<=4istrue
NumSquared := Num**2; 9 NumSquared gets 3 * 3
Ada.Integer_Text IO.Put Display 3
(Item=>Num,Width=>10);
Ada.Integer_Text IO.Put Display 9
(Item=>NumSquared,Width=>10);
Increment and test Num 4 4 <=4 istrue
NumSquared := Num**2; 16 NumSquared gets 4 * 4

Ada.Integer_ Text IO.Put
(Item=>Num,Width=>10);

Display 4

6.1 Control Structures: Counting Loops and the FOR Statement 203

Statement Num NumSquared Effect

Ada.Integer_Text_IO.Put Display 16
(Item=>NumSquared,Width=>10);

Increment and test Num ? Exit loop

It is also possible to count backward in a For loop. Writing IN REVERSE instead of
IN causes the loop counter to start at its maximum value and be decremented by 1,
instead of incremented, in each loop iteration. Finally, it is not necessary for the mini-
mum counter value —generally called the lower bound of the loop—to be 1. These
aspects of counting loops are illustrated in the next example.

B Example 6.4

Program 6.2 is a modification of Program 6.1. This time the smallest and largest num-
bers MinNum and MaxNum are read from the terminal, and the squares are printed from
low to high and then from high to low. There are two loops in this program!]

Program 6.2 Finding the Squares in Forward and Reverse Order

WITH Ada.Text_I0;
WITH Ada.Integer_Text_IO;
PROCEDURE Squares_Up_and_Down IS

--| pDisplays a list of integer values and their squares,
-~| in forward, then in reverse order

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

MinNum : Positive; -- input - smallest value to square
MaxNum : Positive; -- input - largest value to square
NumSquared : Natural; -- output - square of Num

BEGIN -~ Squares_Up_and_Down

Ada.Text_IO.Put

(Item => "Enter the smallest positive you wish to square > ");
Ada.Integer_ Text_IO.Get(Item => MinNum);
Ada.Text_IO.Put

(Item => "Enter the largest positive you wish to square > ");
Ada.Integer Text_ IO.Get(Item => MaxNum);

Ada.Text_IO.Put(Item => " Num Num ** 2 ");
Ada.Text_IO.New Line;
Ada.Text_IO.Put(Item => " ——— ——mme—e=")}

Ada.Text_I0.New_Line;

FOR Num IN MinNum..MaxNum LOOP
NumSquared := Num ** 2;
Ada.Integer_Text IO.Put (Item => Num, Width => 10);
Ada.Integer_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text_IO.New_Line;

204 Counting Loops; Subrypes

END LOOP;

Ada.Text_I0.New_Line;

FOR Num IN REVERSE MinNum..MaxNum LOOP
NumSquared := Num ** 2;
Ada.Integer_Text IO.Put (Item => Num, Width => 10);
Ada.Integer_Text_IO.Put (Item => NumSquared, Width => 10);
Ada.Text_IO.New_Line;

END LOOP;

END Squares_Up_and_Down;

Sample Run

Enter the smallest positive you wish to square > 3
Enter the largest positive you wish to square > 7
Num Num ** 2

SYNTAX

DISPLAY FOR Statement (Counting Loop, Simple Form)

Forms:

FOR counter IN lowbound .. hlghbound 'LOOP
statement seguence
END LOOP;

FOR counter IN REVERSE lowbound .. highbound LOOP
statement sequence ' ,
END LOOP;

Example:

FOR I IN Min .. Max LOOP
Ada.Integer_Text IO.Put (Item => I ‘Width => 5);
Ada,Text_IO. New_Llne-

END LOOP;

Interpretation:

The number of times statement sequence is executed is determined by the values
of lowbound and highbound. The value of the loop counter counter is set.to low-
bound before the first execution of statement sequence; counter is incremented
by 1 after each execution of statement sequence. Lowbound and highbound must
‘be expressions, constants. or variables with' integer or enumeration values.

CASE
STUDY

6.1 Control Structures: Counting Loops and the FOR Statement 205

If REVERSE is present, as in the second form above, counter is initialized to
repetitions before the first execution of statemenr sequence. then decremented by
1 after each execution of statement sequence.

Note:

If the value of highbound is less than that of lowbound, statement sequence is not
executed. No statement within statement sequence can change the vaiue of
counter. The variable counter is not declared separately and has no existence out-
side the loop.

Accumulating a Sum

We can use a counting loop to accumulate the sum of a collection of data values as
shown in the next problem.

SUM OF INTEGERS

Problem Specification
Write a program that finds the sum of all integers from 1 to N.

Analysis
To solve this problem, it will be necessary to find some way to form the sum of the first
N positive integers.

Data Requirements

Problem Inputs
the last integer in the sum (N : Positive)

Problem Outputs
the sum of integers from 1 to N (sum : Natural)

Design
Initial Algorithm

I. Prompt the user for the last integer ().
2. Find the sum (sum) of all the integers from 1 to n inclusive.

3. Display the sum.

Algorithm Refinements

Step 2 Refinement
2.0. Set sumto zero

206 Counting Loops; Subtypes

2.1. Add1tosum
2.2. Add21tosum
2.3. Add3tosum

2.N. Addnto sum

For a large value of N it would be rather time-consuming to write this list of steps.
We would also have to know the value of v before writing this list; consequently, the
program would not be general, since it would work for only one value of n.

Because steps 2.1 through 2.N are all quite similar, we can represent each of them
with the general step

2.i. Add i to sum

This general step must be executed for all values of i from 1 to N, inclusive. This
suggests the use of a counting loop with i as the loop counter.

Program Variables:

loop counter —represents each integer from 1 toN (i : Positive).

The variable i will take on the successive values 1, 2, 3, ...,N.Each time the
loop is repeated, the current value of i must be added to sum. We now have a new
refinement of step 2.

Step 2 Refinement

2.1. ror each integer i from 1 to N Loop
Add i to Sum
END LOOP;

Test Plan
What should happen if a zero is entered for N? A negative number? You should predict
the results and test to find out whether your predictions were correct.

Implementation
The complete program is shown in Program 6.3. The statements

Sum := 0; -- Initialize Sum to zero
FOR I IN1 .. N LOOP

Sum := Sum + I ; -- Add the next integer to Sum
END LOOP;

are used to perform step 2. To ensure that the final sum is correct, the value of sum must
be initialized to zero (algorithm step 2.0) before the first addition operation. The For
statement causes the assignment statement Sum := Sum + I; to be repeated N times. Each
time, the current value of 1 is added to the sum being accumulated and the result is
saved back in sum. Note that sum must be of type Natural, rather than positive, to ini-
tialize it to zero.

6.1 Control Structures: Counting Loops and the FOR Statement 207

Program 6.3 Sum of Integers from 1 to N

WITH Ada.Text_IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Sum_Integers IS

--| Finds and displays the sum of all integers from 1 to N.
--| author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

N : Positive; -- input - last integer added
Sum : Natural; -- output - sum being accumulated

BEGIN -- Sum_Integers
-- Read the last integer, N
Ada.Text_IO.Put (Item => "Enter the last integer in the sum > ");
Ada.Integer_Text_IO.Get (Item => N);

-~ Find the sum (Sum) of all integers from 1 to N

sum := 0; -~ Initialize Sum to 0
FOR I IN 1 .. N LOOP

Sum := Sum + I; -=- Add the next integer to Sum
END LOOP;

-- Display the sum

Ada.Text_IO.Put (Item => "The sum of the integers from 1 to “);
Ada.Integer_Text_IO.Put (Item => N, Width => 1);
Ada.Text_IO.Put (Item => “ is ");

Ada.Integer Text_IO.Put (Item => Sum, Width => 1);
Ada.Text_I0.New_Line;

END Sum_Integers;
Sample Run

Enter the last integer in the sum > 25
The sum of the integers from 1 to 25 is 325

A trace of the program for a data value of 3 is shown in Table 6.2. The trace verifies
that the program performs as desired because the final value stored in sum is 6 (1+2+3).
The loop counter I ceases to exist after it reaches the value of v (3 in this case). As
shown in the table, the statement sum := sum + I; isexecuted exactly three times.

Testing

Did the test results agree with your predictions?

208 Counting Loops; Subtypes

Table 6.2 Trace of Program 6.3

Statement i N Sum Effect
Ada.Text_ IO0.Put(Item=>"Enter...”"); ? 7 ? Display prompt
Ada.Integer_Text_ IO.Get(Item=>N) 3 Read 3 into N
sum := 0; 0 Initialize sum
FOR I IN 1..N LOOP 1 3 0 Initializez

Sum := Sum + 1 1 Add 1 to sum
Increment and test 1 2 3 2 <=3 is true

Sum := Sum + 1 3 Add 2 to sum
Increment and test 1 3 3 3 <=3 istrue

Sum := Sum + 1; 6 Add3tosum
Increment and test 1 7 3 Exit loop
Ada.Text_IO.Put Display message

(Item=>"The Sum is”);

Ada.Integer_Text 10.Put 6 Display 6
(Item =>Sum, Width=>1);

EXERCISES FOR SECTION 6.1

Self-Check

1. For each of the following programs, state whether the program is legal. If so,
what does it display? If not, why not?

4. WITH Ada.Integer_ Text_IO;

PROCEDURE LoopTest IS

BEGIN
FOR Count IN 1..10 LOOP

Ada.Integer_Text_IO.Put(Item => Count);

END LOOP;
Ada.Text_IO.New_Line;
Ada.Integer_Text IO.Put(Item => Count);
Ada.Text_IO.New_Line;

END LoopTest;

b. WITH Ada.Integer_ Text_I0;
PROCEDURE LoopTest IS
Count: Positive;

BEGIN
Count := 537;
FOR Count IN 1..10 LOOP

6.2 Problem Solving: Generalizing a Solution 209

Ada.Integer_Text_IO.Put(Item => Count);
END LOOP;
Ada.Text_IO.New_Line;
Ada.Integer_ Text_IO.Put(Item => Count);
Ada.Text_IO.New Line;
END LoopTest;

Programming

1. Write a program fragment that will compute the sum of the squares of the inte-
gers from 1 to 10, inclusive.

2. Write a For loop that will display the line
10987654321

a. using REVERSE in the loop statement
b. without using REVERSE in the loop statement

6.2 Problem Solving: Generalizing a Solution

After you finish a program, someone will often ask a “What if?” question. The person
asking the question usually wants to know whether the program would still work if
some of the restrictions implied by the problem statement were removed. If the answer
is “No,” you might have to modify the program to make it work. Try to anticipate these
questions in advance and make your programs as general as possible right from the
start. Sometimes this can be as easy as changing a program constant to a problem input.
One question that comes to mind for the last problem is: What if we wanted to find
the sum and average of a list of any numbers, not just the sum of the first N integers.
Would the program still work? Clearly, the answer to this question is “No.” However, it
would not be too difficult to modify the program to solve this more general problem.

CASE
STUDY GENERAL SUM PROBLEM

Problem Specification
Write a program that finds and displays the sum of a list of numbers.

Analysis

To add any list of numbers, a new variable (Currentvalue) would be needed to store
each value to be summed. The numbers must be provided as input data. Because the
numbers are not necessarily positive, we will make currentvalue and Sum type Inte-
ger.

210 Counting Loops; Subtypes

Data Requirements

Problem Inputs

number of items to be summed (Numvalues : Natural)
temporary storage for each data value to be summed (Currentvalue: Integer)

Problem Outputs:
sum of the NumValues data values (Sum: Integer)

Design

Initial Algorithm
1. Prompt the user for the number (Numvalues) of values to be summed.

2. Prompt the user for each data value and add it to the sum.

3. Display the sum.

This algorithm is very similar to the earlier one. Step 2 is modified slightly and is
refined below.

Algorithm Refinements

Step 2 Refinement
2.1. Initialize sumto 0.

2.2. For each data value Loop
Read the data value into Currentvalue and add currentvalue to Sum.
END LOOP;

In this refinement the variable currentvalue is used to store each number to be
summed. After each number is read into Currentvalue, it is added to sum. If there are
more data items, the loop body is repeated, and the next data item replaces the last one
in currentvalue. The number of data values to be summed is read into NumValue
before the loop is reached. Numvalues determines the number of loop repetitions that
are required. A loop counter is needed to count the data items as they are processed and
to ensure that all data are summed.

Program Variables
loop counter —the number of data items added so far (cCount : Positive)

Implementation
The program is very similar to Program 6.3. We leave it, as well as the test plan and
testing, as an exercise.

We can further generalize this solution to find the minimum, maximum, and aver-
age of a list of data values—for example, the results of a class examination. The aver-
age is computed by finding the sum of all the values, then dividing by the number of
values. From the previous example we know how to find the sum. The minimum and
maximum can be found at the same time, using our package Min_Max.

CASE
STUDY

6.2 Problem Solving: Generalizing a Solution 211

MINIMUM, MAXIMUM AND AVERAGE OF A LIST OF
NUMBERS

Problem Specification
Write a program that finds and displays the minimum, maximum, and average of a list
of integers.

Analysis

This is quite similar to the previous two problems. We can use the variables cur-
rentvalue and sum as above. As each value is read, it must be added into the sum and
also compared against the current minimum, smaliest, and the curmrent maximum,
Largest. The comparisons can be handled by the Minimum and Maximum functions
already provided in the Min_Max package.

Because each new value, including the first, needs to be compared to smallest and
Largest, what initial values should these two variables have? It might be tempting to
simply initialize them to zero, like the sum. This would be a mistake: Suppose that all
the values to be read happened to be positive? The program would give incorrect
results, since it would report that the smallest value was zero instead of the really small-
est value (which in this case would be greater than zero).

One way to solve this problem is to initialize smallest to the largest possible inte-
ger value that we will accept from the user. For now, we will just let this be the largest
possible value of the type Integer. This way, any value that the user could enter would
automatically be no larger than this initial value. Luckily, Ada gives us an easy way to
discover the largest possible value of Integer: It is the attribute Integer'vLast. This
value is a large number whose actual value depends upon the compiler you are using.
Because we also need to find the largest number, we should initialize Largest to the
smallest possible Integer value, namely, Integer'First.

Data Requirements

Problem Inputs

number of items to be averaged (Numvalues : Positive)
temporary storage for each data value (Currentvalue: Integer)

Problem Outputs

minimum of the Numvalues data values (smallest: Integer)
largest of the Numvalues data values (Largest: Integer)
average of the Numvalues data values (Average: Integer)

Initial Algorithm

1. Prompt the user for the number (NumvValues) of values to be summed.

2. Prompt the user for each data value; add it to the sum, determine whether it is a
new minimum, and determine whether it is a new maximum.

Divide the sum by the number of numbers to produce the average.

4. Display the minimum, maximum, and average.

212 Counting Loops; Subtypes

This algorithm is very similar to the earlier one. Step 2 is modified and is refined
below; there is a new step 3.

Algorithm Refinements

Step 2 Refinement
2.1. Initialize sum to 0, Smallest 10 Integer'Last, and Largest {0 Integer'First.

2.2. For each data value r.oop
Read the data value into currentvalue and add currentvalue to Sum
Determine whether the data value is a new minimum or maximum
END LOOP;

In this refinement the variable currentvalue is used to store each number to be
summed. After each number is read into currentvalue, it is added to sum. If there are
more data items, the loop body is repeated and the next data item replaces the last one
in currentvalue. The number of data values to be summed is read into NumvValues
before the loop is reached. Numvalues determines the number of loop repetitions that
are required. A loop counter is needed to count the data items as they are processed and
ensure that all data are summed.

We need a further refinement of step 2.2:

Step 2.2 Refinement:
2.2 For each data value Loop

2.2.1 Read the data value into Currentvalue and add currentvalue to Sum
2.2.2 Replace smallest with the smaller of itself and currentvalue

2.2.3 Replace vargest with the larger of itself and currentvalue

END LOOP;

Program Variables
loop counter—the number of data items added so far (count : Watural)

Implementation ‘
Program 6.4 shows the entire program. Note that this program finds the average as an
integer value by dividing sum by Numvalues. This is because all the numbers are inte-
gers and the division throws away the fractional part of the quotient. In Chapter 8 we
will examine how to convert between integer and floating-point values. This will allow
us to calculate the average of a set of integers as a floating-point value.

Averages are generally stated as fractional values, but this can sometimes be con-
fusing if the data values are inherently whole numbers. For example, it was reported
some years ago that the average American family had 2.5 children. While this was true
mathematically, many thought it was a bit strange: What does it mean to have half a
child? In this situation, saying “the average is about 3” might have been more effective,
especially in comparison with earlier years in which the average number of children
was about 4. The important fact was that families were getting smaller!

6.2 Problem Solving: Generalizing a Solution 213

Program 6.4 Finding Minimum, Maximum, and Average Values

WITH Ada.Text_I10;

WITH Ada.Integer Text_IO;
WITH Min Max;

PROCEDURE Min_Max_Average IS

--| Finds and displays the minimum, maximum, and average
--| of a list of data items.

--| Author: M. B. Feldman, The George Washington University
~-| Last Modified: August 1998

NumValues: Positive; -- input - number of items averaged
CurrentValue: Integer; -- the next data item to be added

Sums Integer; -- program variable - accumulated sum

Smallest: Integer; -- output - minimum of the data values

Largest: Integer; -- output - maximum of the data values

Average: Integer; -- output - average of the data values
BEGIN -- Min_Max_Average

-- Read the number of items to be averaged
Ada.Text_IO.Put(Item =>

"Enter number (at least 1) of integers to be averaged > “);
Ada.Integer_Text_IO.Get(Item => NumValues);
Ada.Text_IO.New_Line;

-~ Initialize program variables
Smallest := Integer'Last;
Largest := Integer'First;

Sum := 0;

-- Read each data item, add it to Sum,

-- and check if it is a new minimum or maximum

FOR Count IN 1 .. NumValues LOOP
Ada.Text_ IO.Put(Item => "Integer item no. ");
Ada.Integer_Text IO.Put(Item => Count, Width => 1);
Ada.Text_Io.Put(Item = " > ");
Ada.Integer_Text_IO.Get(Item => CurrentValue);

Sum := Sum + CurrentValue;
Smallest := Min Max.Minimum
(Valuel => Smallest, Value2 => CurrentValue);
Largest := Min Max.Maximum
(Valuel => Largest, Value2 => CurrentValue);
END LOOP;

-- compute the average; since Sum and NumValues are integers,
-- the average is truncated; that is, the fractional part
-= is discarded

Average := Sum / NumValues;

-- Display the results

Ada.Text_IO.Put(Item => "The Smallest is ");
Ada.Integer Text IO.Put(Item => Smallest, Width => 1);
Ada.Text_I0.New_Line;

214 Counting Loops; Subtypes

Ada.Text_IO.Put(Item => "The Largest is ");
Ada.Integer_Text_ IO.Put(Item => Largest, Width => 1);
Ada.Text_IO.New_Line;

Ada.Text IO.Put(Item => "The Average is ");
Ada.Integer_ Text IO.Put(Item => Average, Width => 1);
Ada.Text_IO.New_Line; .

END Min_Max Average;
Sample Run

Enter number (at least 1) of integers to be averaged > 7

Integer item no. 1 > -5
Integer item no. 2 > 2
Integer item no. 3 > 29
Integer item no. 4 > 16
Integer item no. 5 > 0
Integer item no. 6 > -17
Integer item no. 7 > 4
The Smallest is -17

The Largest is 29

The Average is 4

EXERCISES FOR SECTION 6.2

Self-Check

1. In Program 6.4, explain how and why we choose the initial values of the vari-
ables smallest and Largest.

6.3 Problem Solving: Using an External File for Input Data

A modification of Program 6.4 could use an external (disk) file for the input data. In
fact, most real-world computer programs make heavy use of external files. The user
prepares a file of data using an editor, then uses it later as input to the program. If the
program is being developed and debugged, requiring several test runs, preparing the
data this way saves having to enter them interactively each time the program is tested.
We shall cover this topic more systematically in Chapters 9 and 10; for now, let’s just
consider how Program 6.4 would be changed to allow an external file for input.

The Get operations that we have been working with all assume that input is coming
interactively from the keyboard. In fact, each cet (for characters, strings, integers,
floating-point quantities, and enumeration literals) has a second form requiring an addi-
tional parameter that names a disk file. For example, the input operation to read an inte-
ger value from a disk file called, say, Testscores, would be

6.3 Problem Solving: Using an External File for Input Data 215

Ada.Integer_Text I0.Get (File => TestScores, Item => CurrentValue):;

In general these operations look just like the interactive ones except for the file name.
TestScores is an Ada variable, which must be declared as

TestScores: Ada.Text_IO.File_Type;

The type File_type is provided by ada.Text_1o0.

Now suppose that the user prepared the input data with an editor and stored them in
a disk file called scores.dat. The program needs a way to associate the name of the
file in the program (Testscores in this case) with the name of the file as it is known to
the operating system (scores.dat in this case). This is done by means of an operation
called ada.Text_10.0pen. In this case the operation would look like this:

Ada.Text_IO.Open
(File => TestScores, Mode => Ada.Text IO0.In_File,
Name => "scores.dat");

The parameter Mode indicates whether we are reading from the file (ada.Text_r0.
In_File, as in this example) or writing to it (ada.Text_ro.out_rile). Notice also that
the operating system file name must appear in quotes.

It is important to type the name of the file exactly as it is listed in the directory you
get from the operating system. Many operating systems use case-sensitive file names,
which means that if the operating system file name is lowercase (e.g., scores.dat),
your parameter in the open statement must also be uppercase (as in our example); if the
operating system file name is in lowercase, your parameter must be also. If you supply
to open a file name that does not exist in your current directory, the Ada exception
Name_Error will be raised.

Program 6.5 shows this modified program. There are no prompts, because there is
no interactive user entering the data. The file scores.dat, created with an editor, con-
tains first the number of values to be read, then the actual values, one value per line.
The program opens the file, then enters a loop that “logs,” or displays on the terminal,
the values as they are read from the file and processed; finally, the results are displayed
as before. The sample run shows the results for the following file contents:

Program 6.5 Finding Minimum, Maximum, and Average of Values from a File

WITH Ada.Text_IO;

WITH Ada.Integer_ Text_ IO;

WITH Min_Max;

PROCEDURE Min_Max_Average File IS

--| Finds and displays the minimum, maximum, and average
--| of a list of data items; the data items are read from a file.

216 Counting Loops; Subtypes

--| Author: Michael B. Feldman, The George Washington University
--| Last Modified: September 1998

NumValues: Positive; -~ input - the number of items to be averaged
CurrentValue: Integer; -- input - the next data item to be added
Smallest: Integer; -- output - minimum of the data values
Largest: Integer; -- output - maximum of the data values
Average: Integer; -- output - average of the data values

Sum: Integer; -- program variable - sum being accumulated

TestScores: Ada.Text_IO.File_Type;
-- program variable - names the input file

BEGIN -~ Min_Max Average File

-- Open the file and associate it with the file variable name
Ada.Text_IO.Open

(File => TestScores, Mode => Ada.Text_IO.In File,

Name => "gcores.dat");

~-- Read from the file the number of items to be averaged
Ada.Integer Text IO.Get(File => TestScores, Item => NumValues);
Ada.Text_IO.Put("The number of scores to be averaged is “);
Ada.Integer_ Text_IO.Put(Item => NumValues, Width => 1);
Ada.Text_IO.New_Line;

~- Initialize program variables
Smallest := Integer'Last;
Largest := Integer'First;

Sum := 0;

-- Read each data item, log to the screen, add it to Sum,

-~ and check if it is a new minimum or maximum

FOR Count IN 1 .. NumValues LOOP
Ada.Integer_Text_IO.Get(File => TestScores, Item => CurrentValue);
Ada.Text_IO.Put("Score number ");
Ada.Integer_Text_ IO.Put(Item => Count, Width => 1);
Ada.Text_IO.Put(" is “);
Ada.Integer_Text_IO.Put(Item => CurrentValue, Width => 1);
Ada.Text_IO.New_Line;

Sum := Sum + CurrentValue;
Smallest :=
Min_Max.Minimum(Valuel => Smallest, Value2 => CurrentValue);
Largest :=
Min Max.Maximum(Valuel => Largest, Value2 => CurrentValue);
END LOOP;

-- compute the average; since Sum and NumValues are integers,
-- the fractional part of the average is discarded

Average := Sum / NumValues;

-- display the results

Ada.Text_IO.Put(Item => "The Smallest is ");
Ada.Integer_Text_IO.Put(Item => Smallest, Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_10.Put(Item => "The Largest is ");

CASE
STUDY

6.4 Problem Solving: Repeating a Program Body 217

Ada.Integer_ Text_IO.Put(Item => Largest, Width => 1);
Ada.Text_IO.New_Line;

Ada.Text IO.Put(Item => "The Average is ");
Ada.Integer_Text_ IO.Put(Item => Average, Width => 1);
Ada.Text_IO.New_Line;

END Min Max_Average File;
Sample Run

The number of scores to be averaged is 8

Score number 1 is 57
Score number 2 is 22
Score number 3 is 100
Score number 4 is 42
Score number 5 is 37
Score number 6 is 70
Score number 7 is 81
Score number 8 is 100

The Smallest is 22
The Largest is 100
The Average is 63

6.4 Problem Solving: Repeating a Program Body

In the discussion of repetition in programs we mentioned that we would like to be able
to execute the payroll program for several employees in a single run. We will see how
to do this next.

MULTIPLE-EMPLOYEE PAYROLL PROBLEM

Problem Specification
Modify the payroll program from Section 5.4 (Program 5.3) to compute gross pay and
net pay for a group of employees.

Analysis

The number of employees must be provided as input data along with the hourly rate
and hours worked by each employee. The same set of variables will be used to hold the
data and computational results for each employee. The computations will be performed
in the same way as before.

Data Requirements

Problem Constants

maximum salary for no tax deduction (TaxBracket = 100.0)
tax rate (TaxRate = 25.00)

218 Counting Loops; Subtypes

Problem Inputs

number of employees (NumEmp : Positive)
hours worked by each employee (Bours : NonNegFloat)
hourly rate for each employee (Rate : NonNegFloat)

Problem Outputs

gross pay (Gross : NonNegFloat)
pet pay (Net : NonNegFloat)

Design
Algorithm
1. Prompt for the number of employees (NumEmp).

2. For each employee Loop
Enter payroll data and compute and print gross and net pay.
END LOOP;

An additional variable is needed to count the number of employees processed and to
control the For loop in step 2.

Program Variable
loop counter—counts the employees that are processed: (CountEmp : Positive)

The structure chart is shown in Fig. 6.1. (The structure chart for the subproblem
“find gross and net pay” was shown in Fig. 54.)

Implementation:

Program 6.6 gives the entire program. Notice how the code is very similar to that in the
original program, with the addition of a few more declarations and the loop construct.
Sample output is given for three employees.

Compute gross pay
and net pay for a
group of employees

I
[]

Enter the number Find gross
of employees and net pay

Figure 6.1 Structure Chart for Multiemployee Payroll Program

6.4 Problem Solving: Repeating a Program Body 219

Program 6.6 Multiemployee Payroll Program

WITH Ada.Text_IO;

WITH Ada.Integer Text_IO;
WITH Ada.Float_Text IO;
PROCEDURE Multi_Payroll IS

--| computes and displays gross pay and net pay for a number
--| of employees, given each employee's hourly rate and

--| hours worked.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

TaxBracket : CONSTANT NonNegFloat := 100.00;
-- maximum salary for no tax

TaxRate : CONSTANT NonNegFloat := 0.15; -=- tax rate
NumEmp : Positive; -~ inputs - number of employees
Hours : NonNegFloat; ~-=- hours worked, hourly rate

HourlyRate: NonNegFloat;

GrossPay: NonNegFloat; -- outputs ~ gross pay, net pay
Tax: NonNegFloat;
NetPay: NonNegFloat;

BEGIN -- Multi Payroll

Ada.Text_IO.Put ("Please enter number of employees > ");
Ada.Integer_Text_IO.Get (Item => NumEmp);

FOR CountEmp IN 1 .. NumEmp LOOP

-=- Enter Hours and HourlyRate

Ada.Text_IO.Put (Item => "Employee number “);
Ada.Integer_Text IO.Put (Item => CountEmp, Width => 1);
Ada.Text_IO. New_Line;

Ada.Text_IO.Put (Item => * Hours worked > ");
Ada.Float_Text_IO.Get (Item => Hours);

Ada.Text_IO.Put (Item => " Hourly rate $");
Ada.Float_Text_IO.Get (Item => HourlyRate);

-- Compute gross salary
GrossPay := Hours * HourlyRate;

-~ Compute net salary
IF GrossPay > TaxBracket THEN
Tax := TaxRate * (GrossPay - TaxBracket);

NetPay := GrossPay - Tax; -~ Deduct a tax amount
ELSE

Tax := 0.0;

NetPay := GrossPay; -- Deduct no tax
END IF;

-- Display Results
Ada.Text_IO.Put (Item => " Gross pay is $");
Ada.Float_Text_IO.Put

(Item => GrossPay, Fore => 1, Aft => 2, Exp => 0);

220 Counting Loops; Subtypes

Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => * Tax deduction is $");
Ada.Float_Text_IO.Put

(Item => Tax, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put (Item => " Net pay is §");
Ada.Float_Text_IO.Put

(Item => NetPay, Fore => 1, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

END LOOP;

END Multi_Payroll;
Sample Run

Please enter number of employees > 3
Employee number 1
Hours worked > 35
Hourly rate $7.50
Gross pay is $262.50
Tax deduction is $24.38
Net pay is $238.13
Employee number 2
Hours worked > 37.5
Hourly rate $11.25
Gross pay is $421.88
Tax deduction is $48.28
Net pay is $373.59
Employee number 3
Hours worked > 3
Hourly rate $6.50
Gross pay is $19.50
Tax deduction is $0.00
Net pay is $19.50

6.5 Control Structures: Nested Loops

In this section we examine nested loops. Nested loops consist of an outer loop with one
or more inner loops. Each time the outer loop is repeated, the inner loops are reentered,
their loop control parameters are reevaluated, and all required iterations are performed.

B Example 6.5

Program 6.7 shows a program with two nested For loops. The outer loop is repeated
three times (for outercounter equals 1,2, and 3). Each time the outer loop is repeated,
the statements

Ada.Text_IO.Put (Item => "OUTER");
Ada.Integer_Text_IO.Put (Item => OuterCounter, Width => 7);
Ada.Text_IO.New_Line;

6.5 Control Structures: Nested Loops 221

display the string "ouTER" and the value of outercounter (the outer loop counter)..
Next, the inner loop is entered, and its loop counter InnercCounter is reset to 1. The
number of times the inner loop is repeated depends on the current value of outer-
counter. Each time the inner loop is repeated, the statements

Ada.Text_IO.Put (Item => "INNER");
Ada.Integer_Text IO.Put (Item => InnerCounter, Width => 10);
Ada.Text_IO.New Line;

display the string "INNER" and the value of Innercounter (the inner loop counter). W

Program 6.7 Nested FOR Loops

WITH Ada.Text_IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Nested_Loops Is

--| Illustrates a pair of nested FOR loops.
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

BEGIN -- Nested_Loops

Ada.Text_IO.Put (Item => * OuterCounter InnerCounter");
Ada.Text_IO.New_Line;

FOR OuterCounter IN 1 .. 3 LOOP

Ada.Text_IO.Put(Item => "OUTER");
Ada.Integer Text IO.Put (Item => OuterCounter, Width => 10);
Ada.Text_IO.New_Line;

FOR InnerCounter IN 1 .. OuterCounter LOOP
Ada.Text_IO.Put(Item => " INNER");
Ada.Integer_Text_IO.Put (Item => InnerCounter, Width => 22);
Ada.Text_IO.New Line;

END LOOP;

END LOOP;

END Nested_Loops;

Sample Run
OuterCounter InnerCounter

OUTER 1

INNER 1
OUTER 2

INNER 1

INNER 2
OUTER 3

INNER 1

INNER 2

INNER 3

222 Counting Loops; Subtypes

In Program 6.7 the outer loop counter outercounter is used as the upper bound
that determines the number of repetitions of the inner loop. This is perfectly valid. It is
also valid to use the same variable name as the loop counter of both an outer and an
inner For loop in the same nest. This is strongly discouraged, however, because it
causes the compiler to create two “nested” variables with the same name. Although this
is not a problem for the compiler, it certainly is a source of confusion for the human
reader of the program!

B Example 6.6

Program 6.8 prints an isosceles triangle. The program contains an outer loop (loop
counter Row) and two inner loops. Each time the outer loop is repeated, two inner loops
are executed. The first inner loop prints the leading blank spaces; the second inner loop
prints one or more asterisks.

The outer loop is repeated five times; the number of repetitions performed by the
inner loops is based on the value of row. Table 6.3 lists the inner loop control parame-
ters for each value of row. Four blanks and one asterisk are printed when Row is 1, three
blanks and three asterisks are printed when Row is 2, and so on. When Row is 5, the first
inner loop is skipped and nine (2 x 5 — 1) asterisks are printed.]

Program 6.8 Triangle

WITH Ada.Text_ IO;
PROCEDURE Triangle IS

-=-| Draws an isosceles triangle
-~-| Author: M. B. Feldman, The George Washington University
~-=-| Last Modified: August 1998

NumLines: CONSTANT Integer := 5;
Blank : CONSTANT Character := ' ';
Star ¢+ CONSTANT Character := '*';
BEGIN -- Triangle
FOR Row IN 1 .. NumLines LOOP -~ draw each row
FOR LeadBlanks IN REVERSE 1 .. NumLines - Row LOOP
Ada.Text_IO.Put(Item => Blank); -- leading blanks
END LOOP;
FOR CountStars IN 1 .. (2*Row) - 1 LOOP -
Ada.Text_IO.Put(Item => Star); -- display asterisks
END LOOP;
Ada.Text_IO.New_Line; -- terminate row

END LOOP;

END Triangle;

6.5 Control Structures: Nested Loops 223

Sample Run

*
*kk
% % de o ke
d de o ek kK
d % o d & g e de e

Table 6.3 Trace of inner Loop Parameters in Triangle

Row LeadBlanks CountStars Eﬂ'ect
1 REVERSE 1..4 1..1 Displays 4 blanks and 1 asterisk
2 REVERSE 1..3 1.3 Displays 3 blanks and 3 asterisks
3 REVERSE 1..2 1.5 Displays 2 blanks and 5 asterisks
4 REVERSE 1..1 1.7 Displays 1 blank and 7 asterisks
5 REVERSE 1..0 1.9 Displays 0 blanks and 9 asterisks
EXERCISES FOR SECTION 6.5
Self-Check

1. What is displayed by the following program segments, assuming that u is 3
and N is 5?

4. FOR I IN 1..N LOOP
FOR J IN 1..I LOOP
Ada.Text_IO.Put(Item => '*');
END LOOP;
Ada.Text_IO.New_Line;
END LOOP;

b. FOR I IN L..N LOOP
FOR J IN 1..M LOOP
Ada.Text_IO.Put(Item => '*');
END LOOP;
Ada.Text_I0.New_Line;
END LOOP;

2. Show the output displayed by the following nested loops.

FOR I IN 1..2 LOOP

Ada.Text_IO.Put(Item=>"Outer");

Ada.Integer_ Text_IO.Put(Item=>I, Width=>5);

FOR J IN 1..3 LCOP
Ada.Text_IO.Put(Item=>"Inner ");
Ada.Integer_Text_IO.Put(Item=>I, Width=>3);
Ada.Integer Text_IO.Put(Item=>J, Width=>3);

END LOOP;

FOR K IN REVERSE 1..2 LOOP

224 Counting Loops; Subtypes

Ada.Text_IO.Put(Item=>"Inner ");
Ada.Integer Text_IO.Put(Item=>I, Width=>3);
Ada.Integer_Text_ IO.Put(Item=>K, Width=>3);
END LOOP;
END LOOP;

Programming

1. Write a nest of loops that causes the following output to be displayed.

S N S
NNV N
www
-~

6.6 Data Structures: More on Subtypes

In this section we continue our study of subtypes. We begin with enumeration subtypes.

Subtypes of Enumeration Types

Subtypes of programmer-defined types can be defined just as easily as subtypes of pre-
defined types. As an example, consider the month-name type introduced in Section 4.6:

TYPE Months IS
(January, February, March, April, May, June,
July, August, September, October, November, December);

Now we can define subtypes for three seasons as follows:

SUBTYPE Spring IS Months RANGE March .. May;
SUBTYPE Summer IS Months RANGE June .. August;
SUBTYPE Autumn IS Months RANGE September .. November;

We cannot easily define a subtype winter (the months December, January, and
February) because, unfortunately, Ada requires that the values of a subtype be speci-
fied in the form of a range and therefore contiguous, that is, adjacent in the base type
definition. Sometimes a way can be found to work around this, as in the case of the
day-names type introduced in Section 5.1:

TYPE Days IS
(Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);

Since Monday through Friday are contiguous and satuday and Sunday are contiguous,
we can define subtypes for weekdays and weekend days:

6.6 Data Structures: More on Subtypes 225

SUBTYPE Weekdays IS Days RANGE Monday .. Friday;
SUBTYPE Weekend IS Days RANGE Satday .. Sunday;

However, this work-around requires the pays type to look different from the “normal”
American calendar in which the week starts on Sunday.

Type Membership: The Operator IN

An important operator that applies to almost all types in Ada is IN. It can be used to
determine whether a given value is a member of a given type’s set of values.

m Example 6.7

Suppose that Today is of type pays and that we have defined the two subtypes week-
days and weekend as above. The following IF statement serves as an example of the use
of I

IF Today IN Weekdays THEN

Ada.Text IO.Put(Item => “Another day, another dollar...");
ELSE

Ada.Text IO.Put(Item => "We've worked hard, let's play hard!");
END IF;

Program 6.9 can be used to determine whether we need to go to work tomorrow. It
is based on Program 5.1. Notice the use of the 1F statement shown above. n

Program 6.9 Do We Have to Work Tomorrow?

WITH Ada.Text_IO;
PROCEDURE Work Days IS

--| Demonstrates the use of enumeration subtypes:

--| prompts user for a day of the week and determines whether
--| the following day is a weekday or weekend day.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

TYPE Days IS (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);
SUBTYPE WeekDays IS Days RANGE Monday .. Friday;
SUBTYPE WeekEnd IS Days RANGE Saturday .. Sunday;
PACKAGE Day_IO IS NEW Ada.Text_ IO.Enumeration_IO (Enum => Days);

Today : Days; -~ input - day of the week
Tomorrow : Days; -- output -~ next day

BEGIN -- Work Days
-- prompt user to enter a day name

Ada.Text_IO.Put (Item => "Enter a day of the week > ");
Day_IO.Get (Item => Today);

226 Counting Loops; Subtypes

-- find tomorrow
IF Today = Days'Last THEN
Tomorrow := Days'First;
ELSE
Tomorrow := Days'Succ(Today);
END IF;

Ada.Text_IO.Put (Item => "Tomorrow is ");
Day_IO.Put (Item => Tomorrow);
Ada.Text_IO.New_line;

-- Is Tomorrow a week day or a weekend day?

IF Tomorrow IN Weekdays THEN
Ada.Text_IO.Put (Item => "Another day, another dollar...");
Ada.Text_IO.New Line;

ELSE
Ada.Text_IO.Put (Item => “"We've worked hard, let's play hard!");
Ada.Text_IO.New_Line;

END IF;

Ada.Text_IO.Put (Item => “Rave a good day tomorrow.");
Ada.Text_IO.New_Line;

END Work Days;
Sample Run

Enter a day of the week > Saturday
Tomorrow is SUNDAY

We've worked hard, let's play hard!
Have a good day tomorrow.

As you have seen in this chapter, another use for 1N is in counting loops. So far, you
have seen only loops whose range is 1..repetitions. Another useful form of the
counting loops is to give the name of a type or subtype as the range of the loop. Sup-
pose that smallint is defined with a range -50. .50:

SUBTYPE SmallInt IS Integer RANGE -50 .. 50;

then the loop

FOR Counter IN SmallInt LOOP
Ada.Integer_Text_IO.Put(Item => Counter);
Ada.Text_IO.New_Line;

END LOOP;

displays all the values in the type smallInt (-50,-49,-48, .., one at a time.

B Example 6.8

Program 6.10 displays the addition table for integer values between O and 9 (type
smallnat). For example, the table line beginning with the digit 9 shows the result of
adding to 9 each of the digits 0 through 9. The initial For loop prints the table heading,
which is the operator + and the list of digits from O through 9.

6.6 Data Structures: More on Subtypes 227

The nested For loops are used to print the table body. The outer For loop (loop
counter Left) first prints the current value of Left. In the inner ror loop, each value of
Right (0 through 9) is added to Left and the individual sums are printed. Each time the
outer loop is repeated, 10 additions are performed; a total of 100 sums are printed. W

Program 6.10 Addition Table

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Addition_Table IS

--| Displays an addition table.
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

MaxDigit : CONSTANT Natural := 9;
SUBTYPE SmallNatural IS Natural RANGE 0 .. MaxDigit;

BEGIN -- Addition_Table

-- Display the table heading.
Ada.Text_IO.Put(Item => "+");

FOR Right IN SmallNatural LOOP -~ Display heading
Ada.Integer_Text IO.Put(Item => Right, Width => 3);

END LOOP;

Ada.Text_IO.New_Line; -- Terminate heading

-=- Display the table body.
FOR Left IN SmallNatural LOOP

~- Digplay each row of the table
Ada.Integer_Text_ IO.Put(Item => Left, Width => 1);

FOR Right IN SmallNatural LOOP
Ada.Integer_ Text_IO.Put (Item => Left + Right, Width => 3);
END LOOP;
Ada.Text_IO.New_Line; -- Terminate table row
END LOOP;

END Addition_Table;

Sample Run

+ 012 3 456 7 89
001 2 3 456 78 9
1 12 3 456 7 8 910
2 2 3 4 5 6 7 8 91011
3 3 456 7 8 9101112
4 4 5 6 7 8 910111213
5 5 6 7 8 91011 12 13 14
6 6 7 8 91011 12 13 14 15
7 7 8 91011 12 13 14 15 16
8 8 910 11 12 13 14 15 16 17
9 910 11 12 13 14 15 16 17 18

228 Counting Loops; Subtypes

B Example 6.9

Program 6.11 shows how this structure can be used to display all the days, weekdays,
and weekend days in the week. This program uses three For loops, one for the base
type Days and one for each of the two subtypes. To make it interesting, we display the
days in reverse order. |

Program 6.11 Using Enumeration Subtypes

WITH Ada.Text_IO;
PROCEDURE Reverse_Display Days IS

| Display the days of the week, weekdays, weekend days;

| demonstrate enumeration subtypes and how they can be used
--| to control a loop running in reverse.

| Author: M. B. Feldman, The George Washington University

| Last Modified: August 1998

TYPE Days IS (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

SUBTYPE WeekDays IS Days RANGE Mon .. Fri;

SUBTYPE WeekEnd IS Days RANGE Sat .. Sun;

PACKAGE Day IO IS NEW Ada.Text_IO.Enumeration_IO (Enum => Days):;

BEGIN -- Reverse Display_bDays

Ada.Text_I0.Put (Item => "The days of the week are ");
FOR Day IN REVERSE Days LOOP
Day_IO.Put (Item => Day, Width => 4);
END LOOP;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => "The weekdays are ");
FOR Day IN REVERSE WeekDays LOOP
Day_I10.Put (Item => Day, Width => 4);
END LOOP;
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => “The weekend days are ");
FOR Day IN REVERSE WeekEnd LOOP
Day_IO.Put (Item => Day, Width => 4);
END LOOP;
Ada.Text_IO.New_Line;

END Reverse_ Display_Days;
Sample Run
The days of the week are SUN SAT FRI THU WED TUE MON

The weekdays are FRI THU WED TUE MON
The weekend days are SUN SAT

6.6 Data Structures: More on Subtypes 229

H Example 6.10

Program 6.12 uses the screen package from Chapter 4 to draw vertical and horizontal
lines on the screen, dividing the screen into four quadrants. We repeat the subtype and
constant declarations from screen here, just to remind you:

ScreenDepth : CONSTANT Integer := 24;
ScreenWidth : CONSTANT Integer := 80;

SUBTYPE Depth IS Integer RANGE l..ScreenDepth;
SUBTYPE Width IS Integer RANGE l..ScreenWidth;

The loop

FOR Count IN Screen.Width LOOP
Screen.MoveCursor (Row => 12, Column => Count);
Ada.Text_IO.Put (Item => '=');
Screen.MoveCursor
(Row => 13, Column => (Screen.Screen_Width - Count) +
Ada.Text_IO.Put (Item => '=');
END LOOP;

draws the horizontal separator consisting of two lines of hyphen characters on rows 12
and 13 of the screen. The parameters to the first call of screen.Movecursor move the
cursor one position to the right in each loop iteration; just to make the program more
interesting, the second call moves the cursor one position to the left each time. |

Program 6.12 Dividing the Screen into Four Quadrants

WITH Ada.Text IO;
WITH Screen;
PROCEDURE Four_ Pieces IS

--| This program divides the screen into four pieces

--| by drawing horizontal and vertical lines. The Screen

--| package is used to position the cursor.

-=-| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

BEGIN -- Four_Pieces
Screen.ClearScreen;

FOR Count IN Screen.Depth LOOP
Screen.MoveCursor (Row => Count, Column => 41);
Ada.Text_I0.Put (Item => '|*');
Screen.MoveCursor
(Row => (Screen.Screen_Depth - Count) + 1, Column => 42);
Ada.Text IO.Put (Item => '[');
END LOOP;

FOR Count IN Screen.Width LOOP
Screen.MoveCursor (Row => 12, Column => Count);
Ada.Text_IO.Put (Item => ‘'-');
Screen.MoveCursor

230 Counting Loops; Subtypes

SYNTAX
DISPLAY

(Row => 13, Column => (Screen.Screen_Width - Count) + 1);
Ada.Text_IO.Put (Item => '-');
END LOOP;

Screen.MoveCursor (Row => 24, Column => 1);

END Four_ Pieces;

FOR Statement (Counting Loop, Type-Name Form)

Forms:

- FOR counter IN type-name LOOP
statement sequence
END LOOP;
FOR counter IN REVERSE type-—name I.OOP
statement segquence -
END LOOP, :

~Example:

FOR Whichnay IN Weekdays LOOP .
: Day_IO.Put (Item => Wh;chDay, Ada.'rext Io New I..J.ne, -
’ 'END LCOP; - R .

Inwerpretation‘
‘The number of times statement sequence is executed is detemnned by the num-
ber of values in the type given by fype-name, which must be the name of an inte- -
ger or enumeration type or subtype. B
The value of the loop counter counter is set to type-name'First. ‘before the
first execution of statement sequence; counter is incremented to its successor
value after each execution of statement sequence; the last execution of statement
sequence occurs when counter is equal to rype-name ' Last.
- “The value of counter must not be changed within statement sequence. The -
variable counter is not declared separately and has no existence outside the loop.
If REVERSE is present, counter is initialized to fype-name* Last and the itera- -
tion is done backward, decrementing counter to its predecessor value after each -
execution of statement sequence. o

Limitations of the FOR Statement

The For statement is very powerful and useful, but it has one important limitation: The
loop counter is always either incremented (by taking the successor) or decremented (by
taking the predecessor) The FoRr statement can therefore be used only to loop through
all the values of a given range. There is no way to count by 2s, for example.

Ada provides two other loop statements, which can be used with arbitrary loop con-
trol conditions, not just counting straight through the values of a range. Specifically, we
can use either the general loop or the WHILE loop structure, both of which we present in
Chapter 7.

6.7 Tricks of the Trade: Debugging and Regression Testing 231

EXERCISES FOR SECTION 6.6

Self-Check

1. Explain why it is a good idea to use the name of a subtype, instead of literals,
in a loop statement, wherever it is possible to do so.

6.7 Tricks of the Trade: Debugging and Regression Testing

Chapters 1 and 3 described the general categories of error messages that you are likely
to see: compilation errors and run-time errors, or exceptions. It is also possible for a
program to execute without generating any error messages but still produce incorrect
results. Sometimes the cause of an exception, or the origin of incorrect results, is appar-
ent and the error can be fixed easily. Often, however, the error is not obvious and may
require considerable effort to locate.

The first step in attempting to find a logic error is to try to determine what part of
the program is generating incorrect results. Then insert extra output statements in your
program to provide a trace of its execution. For example, if the averaging loop in Pro-
gram 6.4 is not computing the correct sum, you might want to insert extra diagnostic
output statements, such as the last five lines in the following loop:

FOR Count IN 1 .. Numltems LOOP
Ada.Text_IO.Put(Item => "Integer item no. ");
Ada.Integer_Text_IO.Put(Item => Count, Width => 1);
Ada.Text_IO.Put(Item =" >");
Ada.Float_Text_IO.Get (Item => CurrentValue);
Sum := Sum + CurrentValue;

-- diagnostic statements
Ada.Text_IO.Put (Item => "*¥*x**Suym = “);
Ada.Integer_Text_IO.Put (Item => Sum);
Ada.Text_IQ.Put (Item => "#***xCount = ");
Ada.Integer_Text IO.Put (Item => Count);
Ada.Text_IO.New_Line;

END LOOP;

The diagnostic put statements will display each partial sum that is accumulated and
the current value of count. Each of these statements displays a string of asterisks at the
beginning of its output line. This makes it easier to identify diagnostic output in the
debugging runs and makes it easier to locate the diagnostic put statements in the source
program,

Once it appears that you have located an error, you will want to take out the extra
diagnostic statements. As a temporary measure, it is sometimes advisable to make these
diagnostic statements comments by preceding them with comment marks (--). This is
called commenting out code. If errors crop up again in later testing, it is easier to
remove the comment marks than to retype the diagnostic statements.

232 Counting Loops; Subtypes

Using Debugger Programs

Many compilation systems have debugger programs available to help you debug an
Ada program. The debugger program lets you execute your program one statement at a
time (single-step execution) so that you can see the effect of each statement. You can
select several variables whose values will be automatically displayed after each state-
ment executes. This allows you to trace the program’s execution. Besides printing a
diagnostic when a run-time error occurs, the debugger indicates the statement that
caused the error and displays the values of the variables you selected.

You can also separate your program into segments by setting breakpoints at
selected statements. A breakpoint is like a fence between two segments of a program.
You can request the debugger to execute all statements from the last breakpoint up to
the next breakpoint. When the program stops at a breakpoint, you can select variables
to examine, in this way determining whether the program segment executed correctly.
If a program segment executes correctly, you will want to execute through to the next
breakpoint. If it does not, you might want to set more breakpoints in that segment or
perhaps perform single-step execution through that segment.

The debugger is generally a feature of the compilation system, not part of the pro-
gramming language. Therefore we cannot give any further details, because they depend
on the system that you are working on. You should try to find out from your teacher or
computer center whether an Ada debugger is available and, if so, how to use it. Debug-
gers are helpful and can save you a lot of time in debugging a complicated program.

Regression-Testing a Program

After all compilation errors have been corrected and the program appears to execute as
expected, the program should be tested thoroughly to make sure that it works. Go back
to your test plan and run all the tests again, not just the one that exposed the logic error.
This principle is called regression testing and is designed to help you be sure that fixing
one logic error did not accidentally introduce another one!

6.8 System Structures: Overloading and the Useful Functions
Package

In Section 5.8 we showed how to write a simple package, Min_Max, containing func-
tions to find the minimum and maximum of two integer values. Let us rework that
package to include two more useful mathematical functions: the sum of integers from 1
to N and the product of integers from 1 to N. The latter function is called factorial.

First, we shall rewrite the package specification to name the package
Useful_Functions and include specifications for the two new functions. Note in the
specification that the sum and factorial functions require parameters of type Positive
and return Positive results. Program 6.13 shows the package specification.

6.8 System Structures: Overloading and the Useful Functions Package 233

Program 6.13 Specification for Package Useful_Functions

PACKAGE Useful_ Functions 1S

--| specifications of functions provided

-~| by Useful_Functions package

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Minimum (Valuel, Value2: Float) RETURN Float;
-- Pre: Valuel and Value2 have been assigned values

-- Post: Returns the smaller of the two input values

FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Maximum (Valuel, Value2: Float) RETURN Float;
-- Pre: Valuel and Value2 have been assigned values

-- Post: Returns the larger of the two input values

FUNCTION Sum (N: Positive) RETURN Positive;
-- Pre: N has been assigned a value
-- Post: Returns the sum of integers from 1 to N

FUNCTION Factorial (N: Positive) RETURN Positive;
-- Pre: N has been assigned a value
-- Post: Returns the product of integers from 1 to N

END Useful Functions;

The Overloading Principle

There is something else noteworthy about the specification in Program 6.13. Function
specifications appear for rwo functions called Minimum and two functions called Maxi-
mum. Looking at the two Minimum functions,

FUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer;
FUNCTION Minimum (Valuel, Value2: Float) RETURN Float;

we see that they have the same names but different parameter profiles; that is, their
input parameters and return types are different. This is an example of overloading,
which in Ada allows two or more different operations to have the same name, as long as
there is enough difference in their parameter profiles that the compiler can distinguish
them.

The advantage of overloading is that operations with similar behavior or function-
ality can be given similar names. This makes programs easier to write and to read
because the programmer is not forced to invent names like MinimumInteger and Mini-
mumFloat merely because the language requires all subprograms to have distinct
names.

Actually, you've been using overloading all along when you’ve used the standard
input/output libraries. Each package in these libraries has several cets and several
Puts, all with the same name but different parameter profiles.

234 Counting Loops; Subtypes

PROGRAM
STYLE

When the compiler reaches a procedure or function call, it selects the appropriate
procedure to include in the executable program by examining the parameter profile. If
the profile matches one of the procedures made available by context clauses, all is well.
If there is no match, a compilation error results. It could be that there are two matches;
this case also results in a compilation error.

Another example of overloading comes from the arithmetic operations that we have
been doing. An assignment statement such as

Result := Result + Count;

uses a different + depending on whether its operands are Integer or Float. Indeed, the
machine instructions generated by the compiler are quite different for the two numeric
types. We could write specifications for the integer and float versions of + that look just
like function specifications:

FUNCTION "+" (Left: Integer; Right: Integer) RETURN Integer;
FUNCTION “+" (Left: Float; Right: Float) RETURN Float;

Mathematically, an arithmetic operation is just a special kind of function; writing
an operator specification this way just reflects that mathematical fact. There is no prob-
lem in naming both of the operations + (the quotes are required in this form for syntac-
tic reasons): They have different parameter profiles, so the compiler can distinguish
between them.

Specifications of all the predefined types and operators in Ada appear in the Lan-
guage Reference Manual in a section called PACKAGE Standard; a version of this very
useful description appears in Appendix C. PACKAGE Standard is automatically available
to all Ada programs; no context clause is necessary. When the compiler reaches a state-
ment such as

Result := Result + Count;

it examines the types of Result and count to discover whether a matching + is avail-
able. If Result is an integer and count is a float, for example, there is no matching + in
PACKAGE Standard, SO a compilation error arises.

Using Overloading Wisely

Used carefully, overloading can be a very helpful concept in writing Ada pro-
grams, because it allows operations to be given meaningful names, and all opera-
tions with similar functionality can be given the same name.

Clearly, overloading can be abused by using it too much or by using it to
name functions and procedures that do not have similar behavior. This would
‘mislead and confuse the reader of a program and so should be avoided.

6.8 System Structures: Overloading and the Useful Functions Package 235

Writing the Body of Useful_Functions

The next step is to provide the package body of useful_Functions, which consists of
function bodies for the six functions. The body of sum is adapted from Program 6.3; the
body of Factorial can be readily adapted from the body of sum. (Note, however, that
Result is initialized to 1, not 0). The complete package body appears in Program 6.14.

Program 6.14 Body of Useful_Functions

PACKAGE BODY Useful Functions IS

~-| Body of Useful Functions package
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

-~ minimum of two Integer values
PUNCTION Minimum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN ~- Minimum
IF Valuel < Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;
RETURN Result;
END Minimum;

-- minimum of two Float values
FUNCTION Minimum (Valuel, Value2: Float) RETURN Float IS
Result: Float;
BEGIN -- Minimum
IF Valuel < Value2 THEN
Result := Valuel;
ELSE
Result := Value2;
END IF;
RETURN Result;
END Minimum;

~- maximum of two Integer values
FUNCTION Maximum (Valuel, Value2: Integer) RETURN Integer IS
Result: Integer;
BEGIN -~ Maximum
IF Valuel > Value2 THEN
Result := Valuel;
ELSE
Result := Value2:;
END IF;
RETURN Result;
END Maximum;

-- maximum of two Float values
FUNCTION Maximum (Valuel, Value2: Float) RETURN Float IS
Result: Float:;
BEGIN -- Maximum
IF Valuel > Value2 THEN
Result := Valuel;
ELSE

236 Counting Loops; Subtypes

Result := Value2;
END IF;
RETURN Result;
END Maximum;

-=- gum of integers from 1 to N
FUNCTION Sum (N: Positive) RETURN Positive IS
Result: Natural;
BEGIN -- Sum
Result := 0;
FOR Count IN 1..N LOOP
Result := Result + Count;
END LOOP;
RETURN Result;
END Sum;

-- factorial, or product of integers from 1 to N
FUNCTION Factorial (N: Positive) RETURN Positive IS
Result: Positive;
BEGIN -- Factorial
Result := 1;
FOR Count IN 1..N LOOP
Result := Result * Count;
END LOOP;
RETURN Result;
END Factorial;

END Useful Functions;

Program 6.15 illustrates the overloading principle in action by finding the maxi-
mum of two integers and the maximum of two floats, Notice in this program that
Useful_Functions.Maximum appears to be called twice. In fact, different functions are
being called, as you can see from the different parameter profiles: In the first call inte-
gers are supplied; in the second call, floats are supplied.

Program 6.15 lllustrating the Overloading Principle

WITH Ada.Text_IO;

WITH Ada.lInteger_Text_IO;
WITH Ada.Float_Text_IO;
WITH Useful_Functionms;
PROCEDURE Max_Int_Flt IS

—=| Tllustrates the overloading principle using the Maximum
--| functions for both integer and float quantities

--| author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

Intl : Integer; -- inputs
Int2 : Integer;

LargerInt : Integer; -- output
Fltl Float; ~-- inputs
Flt2 : Float;

LargerFlt : Float; -= output

BEGIN -~ Max_lnt_?lt

6.8 System Structures: Overloading and the Useful Functions Package 237

Ada.Text_IO.Put (Item => “Please enter first integer value > ");
Ada. Integer Text_IO.Get (Item => Intl);
Ada.Text_I0.Put (Item => “"Please enter second integer value > ");
Ada. Integer_Text_Io Get (Item => Int2);

LargerInt := Useful Functions.Maximum(Valuel=>Intl, Value2=>Int2);

Ada.Text_IO.Put (Item => "The larger integer is ");
Ada.Integer_Text_ IO.Put (Item => LargerInt, Width => 1);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => "Please enter first float value > ");
Ada. Float Text_IO.Get (Item => Fltl);
Ada.Text_. 10.Put (Item => "Please enter second float value > ");
Ada. Float_Text_IO Get (Item => Flt2);

LargerFlt := Useful Functions.Maximum(Valuels>Fltl, Value2=>Fit2);

Ada.Text_IO.Put (Item => "The larger float is ");
Ada.Float_Text_IO.Put

(Item => LargerFlt, Fore => 1, Aft => 2, Bxp => 0);

Ada.Text_IO.New_Line;

END Max_ Int_Flt;

Sample Run

Please enter first integer value > -27
Please enter second integer value > 34
The larger integer is 34

Please enter first float value > 29.77
Please enter second float value > 15.09
The larger float is 29.77

Finally, Program 6.16 gives a program that prompts the user for an integer between

1 and 10, then displays a table of the sum and factorial of each of the integers from 1 to
the number entered.

Program 6.16 A Program That Uses Useful_Functions

WITH Ada.Text_IO:

WITH Ada.Integer Text_I0;

WITH Useful Functions;
PROCEDURE Sum_and_Factorial IS

Prompts the user for an integer N from 1 to 10

and displays the sum and factorial of all integers from
1 to N. Sum and Factorial are gotten from the

Useful_ Functions package.

Author: M. B. Feldman, The George Washington University
Last Modified: August 1998

SUBTYPE OneToTen IS Positive RANGE 1..10;

MaxNum: OneToTen; -- input - a value from one to ten
SumToCount: Positive; -- output - sum and product of

238 Counting Loops; Subtypes

PROGRAM
STYLE

ProdToCount: Positive; -~ integers from one to Count

BEGIN -- Sum_and_Factorial

Ada.Text IO.Put (Item => "Please enter an integer from 1 to 10 > ");
Ada.Integer_ Text I10.Get (Item => MaxNum);
Ada.Text_I0.New_Line;

Ada.Text_IO.Put(Item => " N Sum Factorial®);
Ada.Text_IO0.New_Line;

Ada.Text_IO.Put(Item => " “y;
Ada.Text_IO.New_Line;

FOR Count IN 1l..MaxNum LOOP
SumToCount 1= Useful Functions.Sum (N => Count);
ProdToCount := Useful Functions.Factorial (N => Count);

Ada.Integer_Text_ IO.Put (Item => Count, Width => 3);
Ada.Integer_Text_IO.Put (Item => SumToCount, Width => 7);:
Ada.Integer Text_IO.Put (Item => ProdToCount, Width => 9);
Ada.Text_IO.New_Line;

END LOOP;

END Sum_and_Factorial;
Sample Run

Please enter an integer from 1 to 10 > 9

N Sum Factorial

1 1 1
2 3 2
3 6 6
4 10 24
5 15 120
6 21 720
7 28 5040
8 36 40320
9 45 362880
Displaying a Table

Program 6.16 displays a table of output values. The table heading is displayed,
before the loop is reached, by the statements

Ada.Text_IO.Put (Item => " N sum Factorial®);
Ada.Text_IO.New Line;
Ada.Text_IO.Put (Item => ° ")
Ada.Text_IO.New_Line;

The spaces in the first string are used to align the column headings over their
respective table values. We have left enough spaces to center the column titles of
the respective values. The second string is used to “draw a line” between the col-
umn titles and the values. Within the For loop, the four statements

6.9 System Structures: Introduction to Exception Handling 239

Ada.Integer Text IO.Put (Item => Count, Width => 3);
Ada.Integer_ Text_IO.Put (Item => SumToCount, Width => 7);
Ada.Integer_Text_IO.Put (Item => ProdToCount, Width => 9);
Ada.Text_IO.New Line;

display three output values on each line of the table, using 19 columns per line.

6.9 System Structures: Introduction to Exception Handling

It is useful to take a close look at Program 6.16 and make a list of the things that could
g0 wrong with its execution:

* The user could enter a value that is a perfectly good integer value but is out of range
for the variable Maxnum (for example, the user could enter a 0, a negative number,
or a number greater than 10). In this case the program would terminate with a
constraint_Error, Ada’s usual exception for out-of-range conditions.

* The user could enter a value that begins with a nonnumeric character, such as asc
or a1. In this case the program would terminate with Ada.Text_I0.Dpata_Error,
because the input/output system would complain about bad data.

* The user could enter a value that, when passed to Factorial, could produce a re-
sult that is simply too large. Factorials grow quite large very quickly, and it does
not take a very large input value to cause the factorial to be larger than Inte-
ger 'Last.

As written, Program 6.16 will terminate if any of these conditions arises, and the
Ada “run-time system” will display a message. Generally the name of the exception
will be displayed, but otherwise the form of the message depends upon the compiler.

Ada provides a useful mechanism called exception handling, which allows the pro-
grammer to “catch” the exception before it goes to the Ada run-time system. The pro-
grammer can supply, at the bottom of the program, procedure, or function, a set of
statements, called exception handlers, indicating what is to be done in case an excep-
tion is raised. Later chapters, beginning with Chapter 7, will introduce exception han-
dling systematically; for now, Program 6.17 shows you the general idea.

Program 6.17 Sum and Factorial with Exception Handling

WITH Ada.Text_IO;

WITH Ada.Integer_Text_IO;
WITH Useful_Functions;
PROCEDURE Robust_Sum Fact IS

--| Prompts the user for an integer N from 1 to 50

--| and displays the sum and factorial of all integers from
--| 1 to N. Sum and Factorial are gotten from the package
--| Useful_Functions.

--| This version incorporates an exception handler part.
--| Author: M. B. Feldman, The George Washington University

240 Counting Loops; Subtypes

--| Last Modified: August 1998

SUBTYPE OneToFifty IS Positive RANGE 1..50;

MaxNum: OneToFifty; -- input - a value from one to ten
SumToCount: Positive; -~ outputs - sum and product of
ProdToCount: Positive; -~ integers from one to Count

BEGIN -- Robust_Sum Fact

Ada.Text_IO.Put (Item => "Please enter an integer from 1 to 50 > “);
Ada.Integer_Text_IO.Get (Item => MaxNum);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => " N Sum Factorial”);
Ada.Text_IO.New_Line;

Ada.Text_IO.Put(Item => " "y;
Ada.Text_IO.New_Line;

FOR Count IN 1..MaxNum LOOP
SumToCount := Useful Functions.Sum (N => Count);
ProdToCount := Useful Functions.Factorial (N => Count);

Ada.Integer_Text_IO.Put (Item => Count, Width => 3);
Ada.Integer_Text IO.Put (Item => SumToCount, Width => 7);
Ada.Integer Text IO.Put (Item => ProdToCount, Width => 9);
Ada.Text_I0.New_Line;

END LOOP;

EXCEPTION

WHEN Constraint_Error =>
Ada.Text_I0.Put
(Item => "The input value or result is out of range.");
Ada.Text_IO.New_Line;
WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put (Item => "The input value is not well formed.");
Ada.Text_IO.New_Line;

END Robust_Sum Fact;
Sample Run

Please enter an integer from 1 to 50 > 100
The input value or result is out of range.

Notice that at the bottom of the program, there is a section:

EXCEPTION

WHEN Constraint_Error =>
Ada.Text_IO.Put
(Item => “The input value or result is out of range.");
Ada.Text_IO.New_Line;
WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put (Item => "The input value is not well formed.");
Ada.Text_IO.New_Line;

6.10 Tricks of the Trade: Common Programming Errors 241
END Robust_Sum_Fact;

Each group of statements beginning with weEN is called an exception handler. If the
program executes normally, execution stops at the “normal” last statement (the last line
before the word EXCEPTION); it is as though the exception-handling section were not
there. However, if an exception is raised anywhere in the program, execution of the
statement causing the exception is halted, and control is passed immediately to the
appropriate exception handler. Once the handler’s statements have been executed (in
this case, displaying a message), the program terminates normally. No message is dis-
played by the run-time system; because the program handled its own exception, the
run-time system has no need to do so. Try running this program with various good and
bad inputs to observe how it behaves.

How useful is this? We will see in Chapter 7 how exception handling can make pro-
grams much less prone to terminate with error messages from the run-time system and
also how exception handling can be used to ensure the validity of user input. In the sim-
ple case considered here, the usefulness of exception handling is that it allows the pro-
grammer to control the form of the message displayed when the program terminates.
This is better than leaving it to the run-time system, the form of whose messages
depends on the compiler.

6.10 Tricks of the Trade: Common Programming Errors

Remember that the counter variable in a For loop has no existence outside the loop. If
you need to remember the value of the counter variable, copy it into a different vari-
able.

CHAPTER REVIEW

BEAFPU RN R ARBIS T QRN NG TR ER IR . ST THTERS S LD R s RO

We showed how to implement repetition in Ada using the counting loop or For state-
ment.

Algorithm and program traces are used to verify that an algorithm or program is
correct. Errors in logic can be discovered by carefully tracing an algorithm or program.
Tracing an algorithm or program before entering the program in the computer will save
you time in the long run.

We also introduced the important concept of subtypes. Subtypes are used both to
improve program readability and to enable the detection of out-of-range values. The
operators that can be used with a subtype are the same as for its base type.

We also discussed the issue of type compatiblity. A subtype is compatible with its
base type and with all other subtypes of the same base type. This means that an opera-
tor can have one operand whose type is the subtype and one operand whose type is the
base type, or indeed another subtype.

242 Counting Loops; Subtypes

Another important concept that was introduced in this chapter was overloading,
which in Ada permits several functions or procedures to be given the same name, as
long as they have different parameter profiles. This is convenient for giving names to
operations like Minimum, which have similar function regardless of the type on which
they operate. .

Finally, exception handling was discussed. Exception handling is Ada’s way of
allowing a program to keep control even in the event of an error.

New Ada Constructs in Chapter 6
The new Ada constructs introduced in this chapter are described in Table 6.4.

Table 6.4 Summary of New Ada Constructs

Construct Effect
FOR statement:
FOR CurMonth IN March..July LOOP The loop body is repeated for
Ada.Float_Text I0.Get each value of curMonth from
(Item=>MonthSales); March through July, inclusive.
YearSales := YearSales+MonthSales;

For each month, the value of
Monthsales is read and added
10 YearSales.

END LOOP;

Quick-Check Exercises

For each of the following program fragments, indicate how many times each output
statement is executed and the last value displayed.

1. FOR I IN 1..10 LOOP
FOR J IN 1..5 LOOP
Ada.Integer_Text_IO.Put(Item => I * J, Width => 5);
END LOOP;
Ada.Text_IO.New_Line;
END LOOP;

2. FOR I IN 1,,10 LOOP
FOR J IN 1..I LOOP
Ada.Integer_Text_ IO.Put(Item => I * J, Width => §);
END LOOP;
Ada.Text_IO.New Line;
END LOOP;

3. FOR Counter IN 1..5 LOOP
Ada.Integer_Text_IO.Put(Item => Counter, Width => 5);
END LOOP;
Ada.Integer_Text IO.Put(Item => Counter, Width => 5);

Chapter Review 243

Answers to Quick-Check Exercises

L.

The put statement executes 50 times; the New_Line executes {0 times; the last
value displayed is 50.

The put statement executes 1 +2 + 3 + ... + 9 + 10, or 55, times; the New_Line
executes 10 times; the last value displayed is 100.

No result is displayed, because the program has a compilation error. The vari-
able counter cannot be accessed outside of the loop.

Review Questions

Write a FOR statement that runs from 'z to *a* and displays only the conso-
nants. (Hint: Test each character against the vowels.)

Write a nested loop that displays the first six letters of the alphabet on a line,
the next five letters on the next line, the next four letters on the next line, and
so on, down to and including one letter (the letter u) on the last line. Use either
uppercase or lowercase letters.

Explain the overloading principle. What examples have you seen of its use?

Programming Projects

1.

Modify Programming Project 11 of Chapter 5 so that ten speeds are handled in
a single run. Also, print a count of the number of speeding automobiles.

Compute and display a table showing the first 15 powers of 2, starting with 2°.

Develop a program that reads in 20 values and displays the number of values
that are positive (greater than or equal to 0) and the number that are negative.
Also display "more positive" or "more negative" on the basis of the result.

Section 4.3 presented a case study to determine the best value of several pizzas
in a pizzeria. Program 4.4 implemented part of the solution by computing the
price per unit area of a pizza. In this project you can complete the solution by
extending Program 4.4 so that the user is prompted for the number of pizzas to
be compared, then for the size and price of each pizza. The program will then
compute the best value. Find out the sizes and prices of the pizzas in a pizzeria
near you and use those data to test your program,

Develop a program that prompts the user for a starting month and year and an
ending month and year and then writes, into an output file, one line for each
day in the period between the starting and ending dates. Each line should show
the month, the day, and the year.

Develop a program that prints the multiplication table for the integers 0
through 9.

244 Counting Loops; Subrypes

7.

Modify the group payroll program (Program 6.6) so that the input is taken
from a file, the tax is computed using the rates of Fig. 5.5 and Table 5.6, and,
at the end of the run, a summary is given of the total amount of gross pay for
the company and the total amount of tax withheld.

When the euro, the new common European currency, was introduced on Jan.
1, 1999, its exchange rates against 11 existing European currencies were fixed.
For example, one euro is worth exactly 13.56 Austrian schillings. The ex-
change rates against other currencies will vary. In this project you will develop
a case study and a program that produces a table of currency values. The pro-
gram will prompt the user for the exchange rates for the U.S. dollar and the
British pound. Each row of the table will represent one of the 13 noneuro cur-
rencies; the columns will be labeled 1, 50, 100, 200, and 500. In each cell of
the table, display the number of euros a traveler could purchase for the given
number of other currency units. For example, fill in the franc row to show the
number of euros for 1, 50, 100, 200, and 500 francs, respectively. The fixed
exchange rates follow; you can check a bank or newspaper for the dollar and

pound rates.
Austrian schillings 13.56 Irish punts 0.79
Belgian francs 40.34 Italian lire 1.936.27
Dutch guilders 2.20 Luxembourg francs 40.34
Finnish markkas 595 Portuguese escudos 200.48
French francs 6.56 Spanish pesetas 166.39
German marks 1.96

(Thanks to Chet Lund!) The Bunny Hop is a party dance that was popular in
the 1940s and 1950s. All the party guests stand in a line around the room; each
guest faces the back of the previous one and holds his or her waist loosely. The
music starts and the dancers follow these steps:

Step sideways with the right foot.
Bring the right foot back.

Step sideways with the right foot.
Bring the right foot back.

Step sideways with the left foot.
Bring the left foot back.

Step sideways with the right foot.
Bring the right foot back.

Step sideways with the right foot.
Bring the right foot back.

Step sideways with the right foot.
Bring the right foot back.

Hop forward one step on both feet.
Hop forward one step on both feet.
Hop forward one step on both feet.

The pattern repeats until the music stops or everyone is tired. Develop a pro-
gram that prompts the user for a number of repetitions and then uses nested
loops to display that number of repetitions of the pattern. Ask your instructor if
you and the other students in your class can demonstrate the dance.

Other Loo Forms; Procedures;
Exception Handling

7.1 Control Structures: The General LOOP and EXIT Statements

72 Problem Solving: Loop Design

73 Control Structures: The WHILE Statement

74 System Structures: Robust Exception Handling

7.5 System Structures: Writing Procedures

76 System Structures: A Package for Robust Input

7.7 Tricks of the Trade: Testing with Exception Handling

7.8 Tricks of the Trade: Programs That Never Halt

79 Tricks of the Trade: Common Programming Errors

7.10 Continuing Saga: A Child Package for the Spider
Chapter Review

7.1 Control Structures; The General LOOP and EXIT Statements

In all the loops we have used so far, the exact number of loop repetitions required could
be determined before the start of loop execution. We used the FoR statement to imple-
ment these counting loops.

Ada’s For loop is limited in that counting can proceed only over a range that is dis-
crete (ie., of an integer or enumeration type). Furthermore, the counter variable is
updated by taking its successor (or predecessor if REVERSE is used)— either adding 1
(subtracting 1) if it is an integer counter or taking the succ (Pred) attribute if it is an
enumeration counter. This means that counting cannot proceed, for example, by 2s.

There are three kinds of looping problems for which the Ada For statement is inap-
propriate:

» when the loop does not step through all the values of a discrete type in forward or
reverse order (e.g., only every third value is of interest);

» when the most natural type for the loop control variable is not discrete (e.g., if it is
Float); and

245

246 Other Loop Forms, Procedures; Exception Handling

* when the number of iterations depends on conditions arising during the execution
of the loop.

The first two cases are called counter-controlled loops; they are still controlled by
counters even though a FoRr statement cannot be used. The third case is often called an
event-controlled loop, because some arriving event, in the input data or some user inter-
action, triggers the end of the loop. In cases like these we can use the general
LooP/Ex1T and WHILE loop to implement conditional loops. The general Loop statement
is discussed next; the wHILE statement is introduced later in the chapter.

R Example 7.1

Program 7.1 displays the odd numbers from 1 to 39, inclusive. Because the step size is
not 1, we cannot use a o loop for this. A general loop structure is used instead. A vari-
able oddNumber is declared and used to control the loop. oddNumber is initialized to 1;
then the structure

LOOP
EXIT WHEN OddNumber > 39;

oo

END LOOP;
controls the loop. Inside the loop body, 0ddNumber is incremented:
OddNumber := OddNumber + 2;

The loop ends when the ex1T condition becomes true. This is tested each time the
EXIT statement is reached.]

Program 7.1 Looping When the Increment Is Not 1

WITH Ada.Text_ IO;
WITH Ada.Integer_ Text_IO;
PROCEDURE Odd_Numbers IS

—-| Displays odd numbers from 1 to 39 inclusive
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

OddNumber : Integer;

BEGIN -- Odd_Numbers

OddNumber := 1; -- initialize loop

LOOP
EXIT WHEN OddNumber > 39; -- test for exit
Ada.Integer_Text_ IO.Put(Item => Oddnumber, Width => 3);
OddNumber := Oddnumber + 2; -- update

END LOOP;

Ada.Text_IO.New_Line;

7.1 Control Structures: The General LOOP and EXIT Statements 247

END Odd_Numbers;

Sample Run

1 3 5 7 911 13 15 17 19 21 23 25 27 29 31 33 35 37 39

B Example 7.2

Program 7.2 displays a table of Celsius and equivalent Fahrenheit temperatures for the
range of temperatures from 100 degrees Celsius to ~20 degrees Celsius in steps of ~10
degrees. The assignment statement

Fahrenheit := (1.8 * Celsius) + 32.0;

converts each Celsius value in this range to a real Fahrenheit value. You can check this
formula by knowing the freezing points (0 and 32 degrees) and boiling points (100 and
212 degrees) in the two systems. Because an integer can’t be multiplied by 1.8 and the
step size is not 1, a general loop 1s used instead of a For.

Three Float constants are declared in the program. cstart is the starting value of
the Float loop control variable Celsius, CLimit is the limit value, and cstep is the
step value. The loop is executed for values of celsius in the sequence 1000, 90.0,
80.0,...,0.0,-10.0,-20.0.]

Program 7.2 Looping When the Increment Is Not an Integer

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Temperature_Table IS

--| pisplays a table of Fahrenheit and

--| equivalent Celsius temperatures.

--| Author: M. B. Feldman, The George Washington University
--{ Last Modified: August 1998

CStart : CONSTANT Float := 100.0; =-- initial Celsius temp
CStep : CONSTANT Float := -10.0; -- change in Celsius temp

CLimit : CONSTANT Float := -20.0; -- final Celsius temp
Celsius : Float; -~ Celsius temp
Fahrenheit : Float; -- Fahrenheit temp

BEGIN -- Temperature_ Table

Ada.Text IO.Put(Item => “Celsius Fahrenheit");
Ada.Text_IO.New_Line (Spacing => 2);
Celsius := CStart; -~ ipnitialize
LOOP

EXIT WHEN Celsius < CLimit; -- test for exit

Fahrenheit := 1.8 * Celsius + 32.0;
Ada.Float_Text_ IO.Put

248 Other Loop Forms; Procedures; Exception Handling

(Item => Celsius, Fore => 4, Aft => 0, Exp => 0);
Ada.Text_IO.Put(Item => " ");
Ada.Float_Text_IO.Put

(Item => Fahrenheit, Fore => 3, Aft => 1, Exp => 0);
Ada.Text_IO.New_Line;

Celsius := Celsius + CStep; -- update
END LOOP;

END Temperature Table;

Sample Run
Celsius Fahrenheit
100.0 212.0
90.0 194.0
80.0 176.0
70.0 158.0
60.0 140.0
50.0 122.0
40.0 104.0
30.0 86.0
20.0 68.0
10.0 50,0
0.0 32.0
-10.0 14.0
-20.0 -4.0

B Example 7.3

Program 7.3 traces the progress of a hungry worm approaching an apple. Each time it
moves, the worm cuts the distance between itself and the apple by its own body length
until the worm is close enough to enter the apple. A general loop is the correct looping
structure to use because we have no idea beforehand how many moves are required.

Program 7.3 Looping Controlled by an Event

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Worm_and_Apple IS

--| Displays distances between a worm and an apple. The wornm
--| keeps reducing the distance by its body length until it is
--| close enough to bite the apple.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

WormLength: CONSTANT NonNegFloat := 8.5;
-- worm body length in CM

InitialDist: NonNegFloat; =-- input - starting distance
-- of worm from apple

7.1 Control Structures: The General LOOP and EXIT Statements 249

Distance: NonNegFloat; -- output - diminishing distance
-- between worm and apple

BEGIN -- Worm_and_Apple

Ada.Text_IO.Put (Item => *Initial distance (CM) away from apple > ");
Ada. Float Text_IO.Get(Item => InitialDist);
Ada. Text_IO New_Line;

-- Cut the distance between the worm and the apple by
-- the worm's body length until the worm is close enough
-- to bite the apple

Distance := InitialDist; -- initialize
LOOP
EXIT WHEN Distance <= WormLength; -- test for exit

Ada.Text_IO.Put(Item => "The distance is ");
Ada. Float Text_I0.Put

{Item => Dlstance, Fore => 4, Aft => 2, Exp => 0);
Ada.Text_IO.New_Line;

Distance := Distance - WormLength; -- update
END LOOP;

-- Display final distance before entering the apple.
Ada.Text_IO.New_Line;

Ada.Text_ T10.Put (Item => "Final distance between worm and apple is *);
Ada. Float Text_IO.Put(Item => Distance, Fore => 4, Aft => 2, Exp => 0);
Ada.Text_. To. New Line;

Ada. Text 10.Put({Item => "The worm bites the apple.");
Ada.Text_IO.New_Line;

END Worm_and_Apple;

Sample Run

Initial distance (CM) away from apple > 27
The distance is 27.00

The distance is 18.50

The distance is 10.00

Final distance between worm and apple is 1.50
The worm bites the apple.

The assignment statement just before the loop initializes the variable pistance to
the starting distance, InitialDist, which the user entered as 27. Next, the loop header
is reached and the loop exit condition

Distance <= WormLength

is evaluated. Because this condition is not yet true, the loop body (through ENp LooP) is
executed. The loop body displays the value of pistance, and the statement

Distance := Distance - WormLength;

250 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

reduces the value of bistance, thereby bringing the worm closer to the apple. The loop
exit condition is tested again with the new value of pistance (18.50); because 18.50 <=
8.5 is still not true, the loop body displays pistance again, and pistance becomes
10.00. The loop exit condition is tested a third time, the loop body dxsplays Distance
again, and pistance becomes 1.50. The loop exit condition is tested again; because
1.50 <= 8.5 is true, loop exit occurs, and the statements following the loop end are exe-
cuted.

It is important to realize that the loop is not exited at the exact instant that Distance
becomes 1.50. If more statements appeared in the loop body after the assignment to
Distance, they would be executed. Loop exit does not occur until the loop exit condi-
tion is retested at the top of the loop and found to be true. |

Every loop must contain initialization, test, and update steps. Unlike a FOR, which
has a very strict syntax, in a general loop the initialization and update steps can be arbi-
trary statements. Therefore the compiler cannot check to ensure that you have included
them, so you must be careful. In Program 7.3, if the initialization statement is missing,
the initial value of pistance will be meaningless. The last step ensures that we make
progress toward the exit condition (Distance <= WormLength) during each repetition of
the loop. If the last step is missing, the value of pistance cannot change, so the loop
will execute “forever” (an infinite loop).

LOOP Statement (General)

Form:

LOOP
statement sequence;
EXIT WHEN condition;
statement sequence;
END LOOP;

Example:

Power0£f2 := 1;

LOOP
EXIT WHEN PowerOf2 > 10000;
Ada.Integer_Text_IO.Put (Item => Poweron),
Power0f2 := PowerOf2 * 2;

END LOOP;

7.1 Control Structures: The General LOOP and EXIT Statements 251

Interpretation:

Statement sequence| is executed and condition (a Boolean expression) is tested.
If condition is found to be true, the loop is exited and the next program statement
after Enp LoOP is executed, If condition is found to be false, statement sequence,
is executed and the loop is repeated.

Notes:
ExIT transfers out of the innermost loop in which it appears; that is, if ExIT
appears inside a nested loop, only the inner loop is exited.

So far, we have seen only loops in which the Ex1T statement is the first one in
the loop body, that is, statement sequence; is empty. Later we will look at other
cases.

| Example 7.4

It is instructive to compare the two loop forms that we currently know how to write: the
FOR loop and the general loop. We can always get the effect of a FOR loop using a gen-
eral loop, but we cannot always get the effect of a general loop using a FOR loop. The
following loops behave identically:

FOR i IN 1..5 LOOP
Square := i * i;
Ada.Integer_Text_IO.Put (Item => i, width => 1);
Ada.Integer_Text_IO.Put {Item => Square, Width => 1);
Ada.Text_IO.New_Line;

END LOOP;

i =1

LOOP
EXIT WHEN i > 5;
Square := i * i;
Ada.Integer_ Text_IO.Put (Item => i, Width => 1);
Ada.Integer_Text_IO.Put (Item => Square, Width => 1);
Ada.Text_IO.New Line;
i:=1+1;

END LOOP; ||

We can make the following observations about the two loop forms just shown:

1. The statement i := 1; in the general loop is our initialization statement; in the
For loop, this is handled implicitly as part of the ror statement.

2. The statement i := i+1; in the general loop body increments i by 1. This step
is implicit in the For loop.

3. Unlike the For statement, in which the counter variable is declared implicitly
and has no existence outside the loop body, the loop variable in the general
loop is a “normal” variable: It must be declared, and it is known outside the
loop body just like any other variable.

252 Other Loop Forms; Procedures; Exception Handling

CASE
STUDY

Now that we’ve seen examples of the three cases in which a general loop is appro-
priate, let’s go on to a case study.

THE WATER BALLOON DROP

You and your friends are celebrating the end of final exams and are thinking of interest-
ing things to do. You think it might be fun to drop water-filled rubber balloons from the
tops of various high buildings onto the street below. On the other hand, you realize that
the people on the ground might react unfavorably to this sport, so you decide instead to
use your programming knowledge to develop a computer simulation. The simulation
will, given the height of the building, track the balloon’s progress on its way to the
ground. The desired time interval is an input to the program. The time interval and
building height are inputs; at each interval the program will display the elapsed seconds
and the distance remaining.

The distance traveled in ¢ seconds by a object dropped from an initial height is rep-
resented by the formula distance = 1/2 x gt2 , where g is the gravitational constant
9.80665.

Analysis
Data Requirements and Formulas

Problem inputs:

Height of the building in meters (BuildingHeight: NonNegFloat)
Desired time interval in seconds (DeltaT: NonNegFloat)

Problem Outputs:

Elapsed time (ElapsedTime: NonNegFloat)
Current height (Beight: Float)

Formulas:
distance traveled = 1/2 x g x (elapsedtime)?

Desi
The initial algorithm follows.

Algorithm

1. Read inputs from user
2. Initialize Height t0 BuildingHeight
3. 1oop
3.1. EXIT WHEN Height <= 0.0
3.2 Increment elapsed time by time interval
3.3 Height is the initial height minus the distance traveled

34 Display current height and current elapsed time

7.1 Control Structures: The General LOOP and EXIT Statements 253
END LOOP

Test Plan
We leave the test plan as an exercise.

Implementation
Program 7.4 shows the resulting program.

Testing

The sample output shows the result of dropping an object from a building approxi-
mately the height of the Washington Monument (150 meters). The balloon drops to the
ground quite rapidly, doesn’t it?

Program 7.4 Simulating an End-of-Exams Prank

WITH Ada.Text_ IO;
WITH Ada.Float_Text IO;
PROCEDURE Balloon_Drop IS

~-| simulates the travel of a water balloon from the top of
-~| a building.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

SUBTYPE NonNegFloat IS Float RANGE 0.0 .. Float'Last;

g : CONSTANT NonNegFloat := 9.80665;
-~ gravitational constant

BuildingHeight: NonNegFloat; -~ input - height of building

DeltaT: NonNegFloat; -- input - time interval
Height: Float; -~ output - height of balloon
ElapsedTime: NonNegFloat; -- output - elapsed time

BEGIN -- Balloon_Drop

-- Enter building height and time interval.

Ada.Text_IO.Put(Item => "Building height in meters > ");
Ada.Float_Text_IO.Get(Item => BuildingHeight);

Ada.Text_IO.Put (Item => "Time in seconds between table lines > ");
Ada.Float_Text_IO.Get(Item => DeltaT);

Ada.Text_IO.New_Line(Spacing => 2);

-- Display balloon height until it hits the ground.
Ada.Text_IO.Put(Item => " Time Height");
Ada.Text_IO0.New_Line;

ElapsedTime := 0.0;
Height := BuildingHeight; -- initialize

LOOP
EXIT WHEN Height <= 0.0;
Ada.Float_Text_IO.Put
(Item => ElapsedTime, Fore => 8, Aft => 3, Exp => 0);
Ada.Float_Text_ IO.Put

254 Other Loop Forms; Procedures; Exception Handling

(Item => Height, Fore => 8, Aft => 3, Exp => 0);

Ada.Text_IO.New_Line;

ElapsedTime := ElapsedTime + DeltafT;

Height := BuildingHeight - 0.5 * g * (ElapsedTime ** 2);
END LOOP;
-~ Balloon hits the ground.
Ada.Text_IO.New_Line;
Ada.Text_IO.Put(Item => "SPLATT!!!");
Ada.Text_IO.New Line;

END Balloon_Drop;
Sample Run

Building height in meters > 150
Time in seconds between table lines > 0.5

Time Height
0.000 150.000
0.500 148.774
1.000 145.097
1.500 138.968
2.000 130.387
2.500 119.354
3.000 105.870
3.500 89.934
4.000 71.547
4.500 50.708
5.000 27.417
5.500 1.674

SPLATT!!!

EXERCISES FOR SECTION 7.1

Self-Check

1. What values would be printed if the order of the statements in the loop body of
Progam 7.1 were reversed?

2. What is the least number of times that the body of a general loop may be exe-
cuted?

3. How would you modify the loop in Program 7.3 so that it also determines the
number of moves (CountMoves) made by the worm before biting the apple?
Which is the loop control variable, Distance Or CountMoves?

4. How many times is the following loop body repeated? What is printed during
each repetition of the loop body?

72 Problem Solving: Loop Design 255

X := 3;

Count := 0;

LOOP
EXIT WHEN Count >= 3;
X =X * X;
Ada.Integer_Text_IO.Put(Item => X);
Count := Count + 1;

END LOOP;

5. Answer Self-Check Exercise 4 if the last statement in the loop is
Count := Count + 2;

6. Answer Self-Check Exercise 4 if the last statement in the loop body is omitted.

Programming

1. There are 9870 people in a town whose population increases by 10% each
year. Write a loop that determines how many years (Count¥ears) it takes for
the population to go over 30,000.

2. Write a loop that prints a table showing n and 2" while 2" is less than 10,000.

7.2 Problem Solving: Loop Design

It is one thing to be able to analyze the operation of loops like those in Programs 7.1
through 7.4; it is another to design our own loops. We will attack this problem in two
ways. One approach is to analyze the requirements for a new loop to determine what
initialization, test, and update of the loop control variable are needed. A second
approach is to develop templates for loop forms that frequently recur and to use a tem-
plate as the basis for a new loop. We will discuss loop templates later in this section.

To gain some insight into the design of the loop that is needed for the worm and
apple problem, we should study the comment in Program 7.3 that summarizes the goal
of this loop:

-- Cut the distance between the worm and the apple by
-- the worm's body length until the worm is close enough
-- to bite the apple

To accomplish this goal, we must concern ourselves with loop control and loop pro-
cessing. Loop control involves making sure that loop exit occurs when it is supposed
to; loop processing involves making sure the loop body performs the required opera-
tions.

To help us formulate the necessary loop control and loop processing steps, it is use-
ful to list what we know about the loop. In this example, if bistance is the distance of
the worm from the apple, we can make the following observations:

256 Other Loop Forms; Procedures; Exception Handlng

1. Just before the loop begins, bistance must be equal to InitialDist.

2. During pass i, Distance must be less than the value of pistance during pass i
- 1 by the length of the worm (for i > 1).

3. Just after loop exit, pistance must be between 0 and the worm’s body length.

Statement | simply indicates that Initialpist is the starting distance of the worm
from the apple. Statement 2 says that the distance of the worm from the apple must be
cut by the worm’s body length during each iteration. Statement 3 derives from the fact
that the worm enters the apple when bistance <= WormLength. Distance cannot be less
than wormLength after loop exit; if it were, loop exit should have occurred at the end of
an earlier pass.

Statement 1 by itself tells us what initialization must be performed. Statement 2
tells us how to process Distance within the loop body (ie., reduce it by the worm’s
length). Finally, statement 3 tells us when to exit the loop. Because pistance is
decreasing, loop exit should occur when pistance <= WormLength is true. These con-
siderations give us the following outline, which is the basis for the loop shown in Pro-
gram 7.3,

1. [Initialize pistance to Initialbist

2. wnoop
EXIT WHEN Distance <= WormLength
3. Display Distance
4. Reduce pistance by WormLength

END LOOP;

Working Backward to Determine Loop Initialization

It is not always so easy to come up with the initialization steps for a loop. In some cases
we must work backward from the results that we know are required in the first pass to
determine what initial values will produce these results.

B Example 7.5

Your little cousin is learning the binary number system and has asked you to write a
program that displays all powers of 2 that are less than a certain value (say 10,000).
Assuming that each power of 2 is stored in the variable Power, we can make the follow-
ing observations about the loop: L

1. Power during pass / is 2 times Power during passi— | (fori>1).

2. Ppower must be between 10,000 and 20,0004'just after loop exit.

7.2 Problem Solving: Loop Design 257

Statement 1 derives from the fact that the powers of a number 2 are all multiples of
2. Statement 2 derives from the fact that only powers less than 10,000 are displayed.
From statement 1 we know that Power must be multiplied by 2 in the loop body. From
statement 2 we know that the loop exit condition is Power >= 10000, so the loop repeti-
tion condition is Power < 10000. These considerations lead us to the following outline:

1. Initialize power to

2. roop
EXIT WHEN Power >= 10000
3. Display power
4. Muitiply power by 2

END LOOP;

One way to complete step 1 is to ask what value should be displayed during the first
loop repetition. The value of w raised to the power 0 is 1 for any number w; specifically,
20 is 1. Therefore, if we initialize Power to 1, the value displayed during the first loop
repetition will be correct. |

General Loops with Zero Iterations

The body of a general loop is not executed if the loop repetition test fails (evaluates to
false) when it is first reached. To verify that you have the initialization steps correct,
you should make sure that a program still generates the correct results for zero itera-
tions of the loop body. If wormLength is greater than or equal to the value read into Ini-
tialDist (say, 2.5), the loop body in Program 7.3 would not execute, and the following
lines would be correctly displayed:

Initial distance (CM) away from apple > 2.5

Final distance between worm and apple is 2,50
The worm bites the apple.

Entering an Unspecified Number of Values

Very often, we do not know exactly how many data items will be entered before a pro-
gram begins execution. This may be because there are too many data items to count
them beforehand (e.g., a stack of exam scores for a very large class) or because the
number of data items provided may depend on how the computation proceeds.

There are two ways to handle this situation using a general loop. One approach is to
ask whether there are any more data before each data item is read. The user should
enter ¥ (for yes) or v (for no), and the program would either read the next item (¥) or
terminate data entry (). The v/n variable is sometimes known as a flag. The other way
is to terminate data entry when a particular value occurs in the data. This value is often
called a sentinel: It comes at the end of the data.

258 Other Loop Forms; Procedures; Exception Handling

Flag-Controlled Loop

| Example 7.6

Let us use this approach to design a loop that accumulates the sum (in sum) of a collec-
tion of exam scores. The statements below are true assuming that MoreData always
contains the value 'y' or ',

1. sumis the sum of all scores read so far.

2. MoreData is 'N' just after loop exit.

From statement 1 we know that we must add each score to sum in the loop body and
that sum must initially be O for its final value to be correct. From statement 2 we know

that loop exit must occur when Morepata is 'N', so the loop repetition condition is
MoreData = 'Y'. These considerations lead us to the following loop form:

1. Initialize sumto 0
2. Initialize MoreDatato ___
3. voop
EXIT WHEN MoreData = 'N';
4. Read the next score into Score
5. Add score to sum
6. Read the next value of Morepata

END LOOP;

The loop exit condition, MoreData = 'N', derives from the fact that Morepata is
either 'y' or 'N', and loop exit occurs when Morebata is 'N'. To ensure that at least
one pass is performed, step 2 should be

2. Initialize MoreData to 'Y’

In the following loop, the value of the type Character variable Morepata controls
loop repetition. It must be initialized to 'v' before the loop is reached. A new character
value (¥’ or 'n') is read into MoreData at the end of each loop repetition. The loop
processing consists of reading each exam score (into score) and adding it to sum. Loop
exit occurs when the value read into Morebata is not equal to '¥'.

Sum := 0;
MorebData := 'Y';
LOOP

EXIT WHEN MoreData = 'N'

Ada.Text_IO. Put (Item => "Enter the next score > ");
Ada.Integer_Text_ IO.Get (Item => Score);
Ada.Text_IO.New_Line;

Sum := Sum + Score;

7.2 Problem Solving: Loop Design 259

Ada.Text_IO.Put
(Item => "Any more data? Enter Y (Yes) or N (No) > ");
Ada.Text_IO.Get (Item => MoreData);
END LOOP;

The following sample dialogue would be used to enter the scores 33, 55, and 77.
The problem with this approach is that the program user must enter an extra character
value, v, before each actual data item is entered.

Enter the next score > 33

Any more data? Enter Y (Yes) or N (No) > Y

Enter next data item > 55

Any more data? Enter Y (Yes) or N (No) > ¥

Enter next data item: 77

Any more data? Enter Y (Yes) or N (No) > N |
Template for Flag-Controlled Loop

The general form of the loop just seen can be used to write other loops as the need
arises. This general form is

I. Initialize flag variable to its affirmative value

2. LooP

EXIT WHEN flag variable is no longer true

Read new value of flag variable

END LOOP;

Sentinel-Controlled Loops and Priming Reads

A second approach to solving the problem addressed in the preceding section is to
instruct the user to enter a unique data value, or sentine! value, when done. The pro-
gram would test each data item and terminate when this sentinel value is read. The sen-
tinel value should be carefully chosen and must be a value that could not normally
occur as data. This approach is more convenient because the program user enters only
the required data.

H Example 7.7

The following statements must be true for a sentinel-controlled loop that accumulates
the sum of a collection of exam scores.

1. sumis the sum of all scores read so far.

2. score contains the sentinel value just after loop exit.

260 Other Loop Forms; Procedures; Exception Handling

Statement 2 derives from the fact that loop exit occurs after the sentinel is read into
score. These statements lead to the following trial loop form:

Incorrect Sentinel-Controlied Loop

1. Initialize sumto 0

2. Initialize score to

3. roop
EXIT WHEN Score is the sentinel
4. Read the next score into score
5. Add score to sum

END LOOP;

Becausc score has not been given an initial value, the loop exit condition in step 3
cannot be evaluated when it is first reached. One way around this would be to initialize
Score to any value other than the sentinel (in step 2) and then read in the first score at
step 3. A preferred solution is to read in the first score as the initial value of score
before the loop is reached and then switch the order of the read and add steps in the
loop body. The outline for this solution is shown below.

Correct Sentinel-Controlled Loop
1. Initialize sumto 0
2. Read the first score into score
3. noop
EXIT WHEN Score is the sentinel
4, Addscore to sum
5. Read the next score into score

END LOOP;

Step 2 reads in the first score, and step 4 adds this score to 0 (initial value of sum).
Step 5 reads all remaining scores, including the sentinel. Step 4 adds all scores except
the sentinel to sum. The initial read (step 2) is often called the priming read, to draw an
analogy with an old hand-operated water pump that must be primed by pouring a cup of
water into it before it can begin to pump water out of a well. The following Ada imple-
mentation uses ~1 (value of sentinel) as the sentinel because all normal exam scores
will be nonnegative:

Sum := 0;

Ada.Text_IO0.Put (Item => "When done, enter -1 to stop.");
Ada.Text_IO.New_Line;

Ada.Text_IO.Put (Item => "Enter the first score > ");

72 Problem Solving: Loop Design 261

Ada.Integer_Text_IO.Get (Item => Score);
Ada.Text_10.New_Line;
LOOP
EXIT WHEN Score = Sentinel
Sum := Sum + Score;
Ada.Text_IO.Put (Item => "Enter the next score > ");
Ada.Integer_ Text_ I0.Get (Item => Score);
Ada.Text_IO.New Line;
END LOOP;

Although it might look strange at first to see the statement
Ada.Integer_Text_IO.Get (Item => Score);

at two different points in the program, this is a perfectly good programming practice
and causes no problems. Note that score must be Integer, not Natural, because the
sentinel value is negative. The following sample dialogue would be used to enter the
scores 33, 55, and 77. Compare this with the dialogue shown in Example 7.6.

When done, enter -1 to stop.
Enter the first score > 33
Enter the next score > 55
Enter the next score > 77
Enter the next score > -1
The sum of the scores is 165.

It is usually instructive (and often necessary) to question what happens when there
are no data items to process. In this case the sentinel value should be entered as the
“first score,” and loop exit would occur right after the first (and only) test of the loop
repetition condition, so the loop body would not be executed (i.e., a loop with zero iter-
ations). sum would retain its initial value of Q, which would be correct. |

Template for a Sentinel-Controlled Loop with a Priming Read
1. Read the first value of input variable
2. rLoop

EXIT WHEN input variable is equal to the sentinel

Read the next value of input variable

END LOOP;

The sentinel value must be a value that would not be entered as a normal data item. For
program readability we usually store the sentinel value in a constant.

262 Other Loop Forms; Procedures; Exception Handling

Remembering the Previous Data Value in a Loop

In some situations it is necessary to remember the data value that was processed during
the previous iteration of a loop. For example, some keyboards are “bouncy” and cause
multiple occurrences of the same character to be sent when a single key is pressed.
Some faculty members are forgetful and may enter the same exam score twice in suc-
cession. An IF statement nested inside a loop can be used to check whether or not the
current data value is the same as the last data value.

B Example 7.8

Program 7.5 finds the product of a collection of data values. If there are multiple con-
secutive occurrences of the same data value, only the first occurrence is included in the
product. For example, the product of the numbers 10, 5, 5, 5, and 10 is 10 x 5 x 10, or
500. Assuming that a new data value is read into NextNum during each loop iteration,
we can make the following observations.

1. Product in pass i is the same as Product in pass i — 1 if NextNum in pass i is
NextNum in pass i — 1; otherwise, Product during pass i is NextNum times Prod-
uct in pass i — 1 (fori> 1).

2. nNextNum is the sentinel just after loop exit.

Statement 1 requires the loop to “remember” the value that was read into NextNum
during the previous iteration. We will introduce a new program variable, previousNum,
for this purpose. The current value of Nextium should be incorporated in the product

only if it is different from the previous value of NextNum (saved in PreviousNum). A
trial loop form follows.

Initial Loop Form

1. Initialize Product to _____

2. Initialize PreviousNumto ____

3. Read the first number into NextNum

4. LooOP

EXIT WHEN NextNum is the sentinel

5. IF NextNum is not equal to PreviousNum THEN
6. Multiply Product by NextNum
END IF;

7. Set PreviousNum tO NextNum

8. Read the next number into NextNum

END LOOP;

7.2 Problem Solving: Loop Design 263

For product to be correct during the first pass, it must be initialized to 1 (step 1).
We must also initialize Previousium so that the condition in step 4 can be evaluated. To
ensure that the first number read into NextNun is incorporated in the product, we must
pick a value for Previousnum that is different from the initial data value. The safest
thing to do is to initialize previousium to the sentinel. (Why?) These considerations
lead to the following revised loop form.

Revised Loop Form

1. Initialize product to 1

2. Initialize previousum to the sentinel

3. Read the first number into NextNum

4. Loor

EXIT WHEN NextNum is the sentinel

5. IF NextNum is not equal to PreviousNum THEN
6. Multiply Product by NextNum
END IF;

7. Set previousNum t0 NextNum

8. Read the next number into NextNum

END LOOP;

Within the loop, steps 7 and 8 prepare for the next iteration by sairing the previous
value of NextNum in PreviousNum before reading the next data value. (What would hap-
pen if the order of these two steps were reversed?)]

Program 7.5 illustrates the proper form of a sentinel-controlled lcop. The constant
Sentinel has the value O because it is meaningless to include 0 in a collection of num-
bers being multiplied. To determine whether or not to execute the loop, each value that
is read into NextNum must be compared to sentinel. For this test to make sense in the
beginning, the first data value must be read before the loop is reached. The next value
must be read at the end of the loop so that it can be tested before starting another itera-
tion.

Program 7.5 Product of a Series of Integers

WITH Ada.Text_IO;
WITH Ada.Integer_Text_IO;
PROCEDURE Multiply Integers IS

--| Finds the product of a collection of non-zero integers.
--| If there are multiple consecutive occurrences of the same
--| value, only the first value is included in the preduct.
--| Author: M. B. Feldman, The George Washington University

264 Other Loop Forms; Procedures; Exception Handhing

~~| Last Modified: August 1998

Sentinel : CONSTANT Natural := 0; -~ sentinel value

NextNum : Integer; -- input - new data item
PreviousNum : Integer; -~ save previous data item
Product : Integer; -- output - product of data

BEGIN -- Multiply Integers

Product := 1;

PreviousNum := Sentinel;

Ada.Text_IO.Put (Item => “Enter 0 to stop.");

Ada.Text IO.New_Line;

Ada.Text_IO.Put (Item => “Enter first number > ");
Ada.Integer_Text_IO.Get (Item => NextNum); -- priming read

LOOP
EXIT WHEN NextNum = Sentinel;

IF NextNum /= PreviousNum THEN
Product := Product * NextNum; -- compute next product
END IF;
PreviousNum := NextNum; -- remember previous item
Ada.Text_IO.Put (Item => "Enter next number > ");
Ada.Integer_Text_IO.Get (Item => NextNum);
END LOOP;

Ada.Text_IO.Put (Item => "The product is *);
Ada.Integer_ Text_ IO.Put(Item => Product, Width => 1);
Ada.Text_JO.New_Line;

END Multiply_Integers;
Sample Run

Enter 0 to stop.
Enter first number > 10

Enter next number > 5
Enter next number > 5
Enter next number > 5
Enter next number > 10
Enter next number > 0

The product is 500

Remember, in a sentinel-controlled loop, the read operation appears twice: before
the loop header (the priming read) and at the end of the loop body.

7.2 Problem Solving: Loop Design 265

Spm(éRAM A Problem with Sentinel-Controlled Loops

Sentinel-controlled loops are popular, but they do have a disadvantage. We have
been stressing the importance of defining subtypes that reflect the range of data
that will normally appear. A sentinel, on the other hand, makes sense only if it is
a value that does not normally appear in the data. Therefore the range of data val-
ues must be extended beyond the normal range to accommodate the sentinel, as
we extended the range of score to be Integer rather than Natural.

The difficulty that arises in extending the range is that the Get call might not
catch an incorrectly entered data value. One solution is to use an extra variable of
the extended range just to read the input data. If a value is entered into it that is
not the sentinel, that value is copied into the other variable, whose range is that of
the normally occurring data. Copying the value will raise constraint_Error if
the value is out of range.

EXERCISES FOR SECTION 7.2

Self-Check

1. What output values are displayed by the following loop for a data value of 57

Ada.Text_IO.Put{Item => "Enter an integer> ");
Ada.Integer_Text_IO0.Get(Item => X);
Product := X;
Count := 0;
LooP
EXIT WHEN Count >= 4;
Ada.Integer_Text_IO.Put(Item => Product, Width => 1);
Product := Product * X;
Count := Count + 1l;
END LOOP;

2. What values are displayed if the call to Ada.Integer_Text_IO.Put comes at
the end of the loop instead of at the beginning?

3. Discuss the difference between flag-controlled and sentinel-controlled loops.

Programming

1. Write a program segment that computes 1 +2 + 3 + ... + (W - 1) + N, where N
is a data value. Follow the loop body with an IF statement that compare this
value to (N x (N + 1)) / 2 and displays a message indicating whether the values
are the same or different. What message do you think will be displayed?

266 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

7.3 Control Structures: The WHILE Statement

Ada has another kind of loop statement that is also present in other languages: the
wHILE statement. This statement always tests the loop exit condition at the top of the
loop.

Here are a wHILE statement and a general Loop statement that both accomplish the
same purpose, which is to compute and display all powers of 2 less than 10,0600:

Power := 1;

WHILE Power < 10000 LOOP
Ada.Integer_ Text IO.Put (Item => Power, Width => 5);
Power := Power * 2;

END LOOP;

Power := 1;

LOOP
EXIT WHEN Power >= 10000;
Ada.Integer_Text_ IO.Put (Item => Power, Width => 5);
Power := Power * 2;

END LOOP;

The test in the WHILE loop (Power < 10000) is the complement, or opposite, of the
test that is used in the general loop. The loop body is repeated as long as the value of
power is less than 10,000. Loop repetition stops when the condition is false, whereas in
the general loop, repetition stops when the condition is true. The condition in a wHILE is
thus a loop continuation condition, whereas that in the general loop is a loop exit condi-
tion. The test in a WHILE is always done at the top; in a general loop it can be placed
wherever the programmer finds it to be suitable.

WHILE Statement

.Form: "

WHILE expression LOOP
statement segquence
END LOOP;

Example:

Power0f2 := };
‘WHILE PowerOfZ < 10000 LOOP
Ada.Integer_Text IO.Put (Item => PowerOfZ),
. PowerOf2 := PowerOf2 * 2;
END LOOP;

Interpretation:

The expression (a condition) is tested, and if it is true, the statement sequence is

executed and the expression is retested. The statement sequence is repeated as

long as (waILE) the expression is true. When the expression is tested and found to
" be false, the wariE loop is exited and the next program statement after exp Loop

is executed. Note: If the expression evaluates to false the first time it is tested, the

statement sequence will not be executed.

7.4 System Structures: Robust Exception Handling 267

To summarize our study of loop constructs: This book uses all three loop forms, but
we prefer the general loop over the wiILE loop for two reasons. First, the general loop
is more flexible, because we can place an EXIT wREN statement at the top of the loop
body, or at the bottom, or in the middle, as the algorithm dictates. Second, the *“positive
logic” of the general loop—the loop terminates upon a true condition—is usually
clearer and more intuitive than the “negative logic” of the wiILE —the loop terminates
upon a false condition.

EXERCISES FOR SECTION 7.3

Self-Check

1. Discuss the differences between the general and wHILE loop statements.

Programming

1. In Programs 7.1 through 7.5, rewrite the general loops as wHILE loops. Make
sure you translate the loop exit conditions properly!

7.4 System Structures: Robust Exception Handling

A good program should be written to anticipate likely input errors and behave accord-
ingly, retaining control instead of *“crashing” or just returning control to the operating
system. Such a program is called a robust program; the property of robustness is advan-
tageous in a program. A robust Ada program is one that retains control and behaves pre-
dictably even when exceptions are raised.

Program 6.17 was written with an exception-handling section at the end so that it
would display an appropriate message if an input value was out of range or badly
formed or if a result would overflow the computer’s arithmetic system. This is only a
partial solution, because the program terminates without giving the user another chance
to enter an acceptable value. There are many techniques for completing the solution;
the one that we consider here is the use of Ada exception handlers.

We will get user input by entering a loop that exits only when the input value is
acceptable. We will detect out-of-range or badly formed input values using an excep-
tion handler form similar to that in Program 6.17. It is necessary to associate the excep-
tion handler with the input statement rather than with the entire program. A pseudocode
description of the process follows.

268 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

Template for a Robust Input Loop, Initial Version

LOOP
Prompt the user for an input value

Get the input value from the user
ex1T the loop if and only if no exception was raised on input

If an exception was raised, notify the user

END LOOP;

The first two lines in the loop body should present no problem to you at this point.
The last line is coded using an exception-handler section like that in Program 6.17.

As is clear from the following syntax displays, Ada’s rules require that an exception
handler be associated with a block or frame, that is, a sequence of statements between a
BEGIN and an END. A procedure or function has a block as part of its body; the exception
handler in Program 6.17 is associated with that block. Luckily, we can build a smaller
block wherever we need one within a program, just by enclosing a group of statements
between BEGIN and END.

Exception Handler

Form:

WHEN exception name =>
sequence of statements

Example:

VHEN Constraint_Error =>
Ada.Text_IO. Put(Item => *Input number is out of range"};
Ada., ‘I'ext 10.New_Line;
Ada. 'l‘ext I0. Put(Item => “Please try entering it again.");
Ada. 'rext I10.New_Line;)

Interpretation:
This structure is valid only in the exception-handler part of a BEGIn/END block. If

exception name was raised in the block, sequence of stutements is executed. after
which control passes to the next statement after the block’s Enb.

Note:

Exceprion name can be a predefined exception or a programmer-defined excep-
tion. In Chapter 11 we will show how to define your own exceptions. The pre-
defined exceptions that are most commonly used follow:

* Constraint_Error—an attempt is made to store a value in a variable that is
out of range - for that variable, that is, out of the range of the variable's type
or subtype

* Ada.Text_IO.Data_Error—an attempt is made to read a value which is in-
valid for the variable being read

SYNTAX
DISPLAY

7.4 System Structures: Robust Exception Handling 269

Exception Handler Block

Form:

BEGIN
normal sequence of statements

EXCEPTION

WHEN exception-name; =>
sequence-of-statements;

WHEN exception-name; =>
sequence-of-statements;...

WHEN exception-namey =>
sequence-of-statementsy

END;

Example:
An example is given in Program 7.6.

Interpretation:
The only code permitted between EXCEPTION and END is a sequence of one or
more exception handlers.

If an exception is raised by any statement in normal-sequence-of-statements,
execution of the statement causing the exception is immediately halted, and con-
trol passes to the appropriate exception handler. If the block has no excep-
tion-handler part or no exception handler is appropriate (i.e., the exception that
was raised is not named in any of the handlers), control passes out of the block to
the statement following the enp, and the exception is reraised at that point.

Note:

The last sentence means that if an exception is raised in executing the statements
of a function or procedure and that function or procedure has no exception-han-
dler part, the exception is propagated, or “passed back,” to the program that
called the function or procedure, and an attempt is made to find an appropriate
handler rhere. If the procedure was the main program, the program ends and con-
trol passes to the Ada run-time system, which reports the exception to the user.

In the following pseudocode (a refinement of the pseudocode on page 268) the
entire loop body is made into a block by enclosing it between BecIN and Enp. The struc-
ture beginning EXCEPTION is associated with this block.

Template for a Robust Input Loop, Refined Version

LOOP

BEGIN

Prompt the user for an input value
Get the input value from the user
EXIT; -- valid data

EXCEPTION -- invalid data

270 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

Determine which exception was raised and notify the user
END;

END LOOP;

If control reaches the Ex1T—that is, if the input is correct—loop exit occurs. Con-
trol passes to the exception handler if the input is incorrect; after execution of the
exception handler, control flows to the Enp Loor, which of course causes the loop to be
repeated. This gives the user another chance.to enter correct input.

EXIT Statement

Form:

EXIT;

Example:

An example was just given in the robust input loop pseudocode.
Interpretation:

EXIT is a meaningful statement only within a loop structure. Ex1T transfers con-
. trol to the next statement after the nearest END LOOP.

B Example 7.9

Program 7.6 shows a robust input handler. The purpose of the program is to add five
integers in the range -10 through 10. A subtype smailint is declared with this range,
then Ada.Integer_Text_I0.Get is used to get input in this range, storing the value in
the variable Inputvalue of type smallint. If the value that is entered is out of range,
the attempt to store it in Inputvalue raises constraint_Error. The exception handler
for constraint_Error notifies the user that the input is out of range.

Program 7.6 An Example of Robust Numeric Input

WITH Ada.Text_IO0;
WITH Ada.Integer Text_ IO;
PROCEDURE Exception_Loop IS

| Illustrates how to write a robust input loop that
| prompts user to re-enter invalid input and
--| refuses to continue until input is good.
| Author: M. B. Feldman, The George Washlngton University
| Last Modified: August 1998

MinvVal : CONSTANT Integer := =10;
MaxVal : CONSTANT Integer := 10;
SUBTYPE SmallInt IS Integer RANGE Minval .. Maxval;

7.4 System Structures: Robust Exception Handling 271

InputValue: Smallint;

Sum:

Integer;

BEGIN -- Exception_Loop

Sum := 0;

FOR Count IN 1..5 LOOP

LooP

-- inner loop just to control robust input

BEGIN -~ block for exception handler

Ada.Text_IO.Put(Item => "Enter an integer between ");
Ada.Integer_Text_IO.Put (Item => SmallInt'First, Width => 0);
Ada.Text_IO.Put(Item => " and ");

Ada.Integer_Text_IO.Put (Item => SmallInt'Last, Width => 0);
Ada.Text_IO.Put(Item => " > ");

Ada.Integer_ Text IO.Get(Item => InputValue);

EXIT; -- leave the loop only upon correct input

EXCEPTION

WHEN Constraint Error =>

Ada.Text_IO.Put ("Value is out of range. Please try again.");
Ada.Text_IO.New_Line;

WHEN Ada.Text_ IO.Data_Error =>

Ada.Text_IO.Put ("Value is not an integer. Please try again.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;

END; -- block for exception handler

END LOOP;

Sum := Sum + InputValue; -- add new value into Sum
END LOOP;

Ada.Text_IO.Put (Item => "The sum is ");
Ada.Integer_ Text IO. Put (Item => Sum, Width => 1);
Ada.Text_IO.New Line;

END Exception_Loop;

Sample Run

Enter an integer between -10 and 10 > 20
Value is out of range. Please try again.
Enter an integer between -10 and 10 > -11
Value is out of range. Please try again.
Enter an integer between -10 and 10 > x
Value is not an integer. Please try again.
Enter an integer between -10 and 10 > 0
Enter an integer between -10 and 10 > -5
Enter an integer between -10 and 10 > y
Value is not an integer. Please try again.
Enter an integer between -10 and 10 > 3
Enter an integer between -10 and 10 > 4
Enter an integer between -10 and 10 > -7

The sum is -5

272 Other Loop Forms; Procedures; Exception Handling

CASE
STUDY

Suppose that the input entered is not an integer; for example, suppose that it is a let-
ter. In this case, ada.Text_I0.Data_Error is raised. In this situation the letter is not
consumed from the input stream. If the program just loops around, it will try to read the
same letter again and again and again, causing an infinite loop. To prevent this unpleas-
ant occurrence, the handler for ada.Text_10.Data_Error contains a statement,

Ada.Text_I0.Skip Line;

that causes the bad input to be skipped, creating a fresh line for input. Actually,
Ada.Text_I0.Skip_Line causes all input, up to and including the carriage return with
which you end a line, to be skipped.

Suppose a floating-point value—say, 345.67—is entered when an integer is called
for. An odd consequence of the design of ada.Text_10 is that the 345 will be accepted
as a valid integer, and the decimal point will raise Ada.Text_I0. Data_Error if you try
to read another integer. When your program is reading an integer token with
Ada.Integer_Text_I0.Get, input stops whenever a character is reached that is not part
of an integer token. In this case the decimal point stops input. This is one reason for
including the ada.Text_10.Skip_Line statement in the exception handler. B

ROBUST MENU-DRIVEN COMMAND INTERPRETER

Problem Specification

A very important and common computer application is a command interpreter, which
accepts and processes commands from the keyboard. Your development group is start-
ing work on a package to perform various statistical operations—averaging, finding the
median, and plotting—on data sets. Your part of the project is to develop a menu-driven
command interpreter, leaving the details of the statistical operations to your colleagues.
The command interpreter must behave properly, no matter what the input from the key-
board.

Analysis

The best way to represent this fixed set of commands is with an enumeration type.
Input of enumeration values is then provided by an instance of Ada.Text_1o.
Enumeration_I0, Which allows the user to enter commands in either uppercase or low-
ercase and validates the input by raising Ada.Text_10.Data_Error if the input is not a
valid command.

Data Requirements

Problem Types:
the valid commands (TYPE Commands IS (A, M, P, Q);)

Problem Inputs:
a user command (MenuSelection: Commands)

7.4 System Structures: Robust Exception Handling 273

Problem Outputs:

No actual computations are done in this stage of development; the only outputs are sta-
tus messages from the command interpreter.

Design
Initial Algorithm

The basic algorithm for a command handler is a loop that is not exited until the user
enters a “quit” command.

1. roop
2. Prompt the user to enter a command
3. EXIT WHEN the command is to quit
4, The command was not quit, SO process it

END LOOP;

Algorithm Refinements
The program cannot proceed if the user enters an invalid command. This leads to a

refinement of Step 2:
2.1 vLoop

2.1 Prompt the user to enter a command
2.2 Ex1r if and only if the command is valid

END LOOP;

and so the refined algorithm is a pair of nested general loops:
1. nooe

2.1 rvroor
2.2 Prompt the user to enter a command
2.3 ExIT if and only if the command is valid
END LOOP;

3. EXIT wHEN the command is to quit

4. The command was not quit, SO process it

END LOOP;

Test Plan

Since it is very important that the program behave properly for all input cases, it is nec-
essary to test the behavior for each one of the valid commands and for representative
samples of invalid input.

274 Other Loop Forms; Procedures; Exception Handling

Implementation

Program 7.7 shows an implementation of this algorithm using Ada exception handling
to catch invalid input. This program uses screen.Movecursor to control the positioning
of the cursor and pELAY to cause execution to be delayed for a brief period before clear-
ing the screen and prompting the user again. Correct input results in the program exit-
ing from the inner loop, then selecting and performing the desired command. The
program leaves the outer loop and terminates when the command entered is o or qQ,
which in this program represents “quit”” For the other valid commands, the program
displays a “stub” message, indicating that a computation would be performed at that
point, if the code for the computation were present.

Program 7.7 Framework for a Menu-Driven Command Interpreter

WITH Ada.Text_ IO;

WITH Ada.Integer_Text_I0;
WITH Screen;

PROCEDURE Menu_Handler IS

--| Framework for a menu-driven command interpreter
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

TYPE Commands IS (A, M, P, Q);
PACKAGE Command_IO IS
NEW Ada.Text_IO.Enumeration_IO (Enum => Commands);

MenuSelection : Commands; -- input - a commands
BEGIN -- Menu_Handler

LOOP ~-- this is the outer loop that keeps the program
-- running until a "quit" command is entered.

LOOP -- inner loop continues until valid input is entered
BEGIN -~ exception handler block

Screen.ClearScreen;

Screen.MoveCursor (Row => 5, Column => 20);
Ada.Text_IO.Put (Item => "Main Command Menu");
Screen.MoveCursor (Row => 7, Column => 20);
Ada.Text_IO.Put (Item => “A - Compute Average");
Screen.MoveCursor (Row => 8, Column => 20);
Ada.Text_IO.Put (Item => "M - Compute Median");
Screen.MoveCursor (Row => 9, Column => 20);
Ada.Text_IO0.Put (Item => "P - Plot the data");
Screen.MoveCursor (Row => 10, Column => 20);
Ada.Text_IO.Put (Item => “"Q - Quit the program”);

Screen.MoveCursor (Row => 14, Column => 20);
Ada.Text_IO.Put ("Enter a command, please > ");

~- this statement will raise Data_Error if input
~- is not one of the valid commands
Command_I0.Get (Item => MenuSelection);

-~ these statements are executed if command is valid

7.4 System Structures: Robust Exception Handling

-- otherwise, control passes to exception handler
Screen.MoveCursor (Row => 17, Column => 20);
Ada.Text_XO.Put ("Thank you for correct input.”);
EXIT; -~ valid command; go process it

EXCEPTION -- invalid command

WHEN Ada.Text I0.Data_ Error =>
Screen.MoveCursor (Row => 17, Column => 20);
Screen.Beep;
Ada.Text_IO.Put
(Item => "Invalid command; please re-enter");
Ada.Text_IO.Skip_Line;
Ada.Text_IO.New_Line;
DELAY 2.0;

END; -- of exception handler block
END LOOP;

-— We come here if command was valid
Screen.MoveCursor (Row =>20, Column => 20);

EXIT WHEN MenuSelection = Q;

IF MenuSelection = A THEN
Ada.Text_IO.Put
{Item => "Here we would do the average. ");
Ada.Text_IO.New_Line;
ELSIF MenuSelection = M THEN
Ada.Text_ IO.Put
(Item => "Here we would do the median. ");
Ada.Text_IO.New Line;
ELSIF MenuSelection = P THEN
Ada.Text_IO.Put
(Item => "Here we would do the plotting.“);
Ada.Text_IO.New Line;
END IF;

DELAY 2.0;

END LOOP;

Ada.Text_IO.Put (Item => "Goodbye for today. "):
Ada.Text_IO.New_Line;

END Menu_Handler;
Sample Run

Main Command Menu

Compute Average
Compute Median
Plot the data
Quit the program

0 X
]

Enter a command, please > m

275

276 Other Loop Forms; Procedures; Exception Handling

PROGRAM
STYLE

Thank you for correct input.

Here we would do the median.

Testing
The sample run shows the state of the screen after input of a correct command.

Stubs in Programs

The command interpreter of Program 7.6 contains several stubs, which are just
statements indicating that a part of the program is still under development. A
well-designed stub is legal code so that the program can be compiled and tested
even without being fully developed.

It is quite common to use stubs in program development; it is a useful tech-
nique in writing and testing programs incrementally. Such incremental develop-
ment allows you to run a partially completed program so that you are not
overwhelmed by having to develop the program all at once.

EXERCISES FOR SECTION 7.4

Self-Check

1. How would Program 7.7 be different if Ada did not provide exception han-
dling?

2. Inprogramming, what are stubs and how are they used?

Programming

1. Modify Program 7.7 so that the user is given three attempts (instead of an un-
limited number of attempts) to enter a given value correctly.

7.5 System Structures: Writing Procedures

In this book you have been using calls to procedures provided by the standard
input/output libraries and another package called screen. In this section you will learn
how to write procedures.

7.5 System Structures: Writing Procedures 277

Writing Procedures

Procedures and functions are both subprograms, but they differ in two important ways.
First, a procedure is called with a procedure call statement, as in

Ada.Float_Text IO.Put (Item => X, Fore => 3, Aft => 2, Exp => 0);
whereas a function is used in an expression, for example,
Temp := UsefulFunctions.Minimum (Valuel => X, Value2 => Y) + 45;

A function returns a result so that the result can be used in an expression; a procedure
does not return a result.

The second important difference is that a function is permitted to have parameters
that are passed only into the function, whereas a procedure is allowed to have parame-
ters of three kinds, or modes:

e Mode 1N parameters—These are passed into the procedure and, inside the proce-
dure, are treated as constants and may not be changed (e.g., they may not appear
on the left side of an assignment statement).

¢ Mode out parameters—These are computed in the procedure and passed out to the
caller.

* Mode IN ouT parameters—These are passed info the procedure, possibly changed
by it, and passed back out again.

The determination of a particular parameter’s mode is based on the direction of the data
flow between the procedure and its calling programs. If the parameter is used to trans-
mit data fo the procedure, its mode should be Iv; if the parameter receives data from the
procedure, its mode should be ouT.

Mode 1N parameters are similar to the parameters of a function and are used to
transmit values that will not be changed by the procedure, only used by it. For example,
the parameters to the various Put procedures provided by Ada.Text_IO are IN parame-
ters, because the data and formatting values are transmitted from the caller to the proce-
dure.

Mode our parameters are commonly used in input routines like the Get operations
in ada.Text_I0. It might seem strange that an input routine should have an our param-
eter, but the input routine receives a value from the terminal or a file and passes it out to
the program that calls it. The caller receives the input value from the procedure.

Mode 1 out parameters are used when a procedure will modify its parameters. An
example follows.

B Example 7.10

Here is a procedure specification for a procedure order, which orders the values in the
two variables whose names are supplied to it as actual parameters, placing the smaller
of the two values in x and the larger in 1:

PROCEDURE Order (X: IN OUT Float; Y: IN OUT Float);

278 Other Loop Forms; Procedures; Exception Handling

A procedure call statement
Order (X => Numl, Y => Num2);

is intended to order the values in the two floating-point variables Num1 and Num2. Sup-
pose, for example, that num1 is 3.0 and Num2 is ~5.0. After the above call we want Num1
to be -5.0 and Num2 to be 3.0. Ordering pairs of values is a very common operation in
programming, especially in sorting applications. Here is the body of procedure order:

PROCEDURE Order (X: IN OUT Float; Y: IN OUT Float) IS
-~ Pre: X and Y are assigned values
-- Post: X has the smaller value and Y has the larger value

Temp: Float;
BEGIN

IF X > Y THEN
-- interchange the values of X and Y
Temp := X;
X = ¥;
Y := Temp;
END IF;

END Order;

The variable Temp is a local variable of the procedure, necessary to carry out the
interchange. Temp is created when the procedure is called: it is destroyed when the pro-
cedure returns to its caller. x and ¥ must be 1§ ouT parameters because their values are
changed by the procedure. The effect of calling procedure order is shown in Program
7.8, which carries out a very simple sort of three numbers Num1, Num2, and Num3 by call-
ing order three times:

Order (X => Numl, Y => Num2);
Order (X => Numl, Y => Num3);
Order (X => Num2, Y => Num3);

Because each statement contains a different association of actual parameters with
the formal parameters x and v, a different pair of variables is ordered each time the pro-

cedure is called. Figure 7.1 shows a structure chart for this program. [|
Sort 3 numbers
Numl, Num2,Num3
Order Order Order
Numl, Num2 Numl, Num3 Num2 , Num3

Figure 7.1. Structure Chart for Simple Sort Program

7.5 System Structures: Writing Procedures 279

Program 7.8 A Very Simple Sorting Program

WITH Ada.Text_IO;
WITH Ada.Float_Text_IO;
PROCEDURE Sort_3_Numbers IS

--| Reads three numbers and sorts them

--| so that they are in increasing order.

--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

Numl : Float; -~ a list of three cells
Num2 : Float;
Num3 : Float;

-- procedure specification
PROCEDURE Order (X: IN OUT Float; ¥: IN OUT Float);

-- procedure body

PROCEDURE Order (X: IN OUT Float; Y: IN OUT Float) IS

-- Pre: X and Y are assigned values.

-- Post: X has the smaller value and Y has the larger value.
Temp : Float; -- copy of number originally in X

BEGIN -~ Order

IF X > Y THEN
-- interchange the values of X and Y

Temp := X; -~ Store old X in Temp
X := Y; -- Store old Y in X
:= Temp; -~ Store old X in ¥
END IF;
END Order;
BEGIN -- Sort_3_Numbers

Ada.Text_IO.Put (Item => "Enter 3 float values to be sorted>");
Ada.Text_IO.New_Line;

Ada.Float_Text_IO.Get(Item => Numl);

Ada.Float_Text_ IO.Get(Item => Num2);

Ada.Float_Text IO.Get(Item => Num3);

-- Sort the numbers

Order (X => Numl, ¥ => Num2);
Order (X => Numl, Y => Num3);
Order (X => Num2, Y => Num3);

-- Display the results.
Ada.Text_IO.Put(Item => "Phe three numbers in order are: ");

Ada.Float_Text_IO.Put (Item => Numl, Fore => S, Aft => 2, Exp => 0);
Ada.Float_Text_IO.Put (Item => Num2, Fore => 5, Aft => 2, Exp => 0);
Ada.Float_Text_IO.Put (Item => Num3, Fore => 5, Aft => 2, Exp => 0);

Ada.Text_IO.New_Line;

END Sort_3_Numbers;

280 Other Loop Forms; Procedures; Exception Handling

Sample Run

Enter 3 float values to be sorted>
23.7 -99.4 1.78
The three numbers in order are: -99.40 1.78 23.70

To show the importance of the choice of parameter mode for procedure order, Fig-

ure 7.2 gives a compilation listing for a modification of the procedure, with the param-
eter modes changed from 1N ouT to 1n. Notice that the Ada compiler has marked as
errors the lines in which attempts are made to change the 1n parameters.

Figure 7.2 Procedure Order with Compilation Errors

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

i1,

12,
13.

PROCEDURE Order (X: IN Float; Y: IN Float) IS

Temp : Float; -- copy of number originally in X

BEGIN ~~ Order

IF X > Y THEN

-- interchange the values of X and Y
Temp := X;-- Store old X in Temp
X :=Y; -- Store old Y in X

>>> assignment to “IN" mode parameter not allowed
Y := Temp;-- Store old X in Y
I

>>> assignment to "IN® mode parameter not allowed

END IF;

J4. END Order;

Rules for Parameter List Correspondence

The correspondence between actual and formal parameters is determined by
their position in their respective parameter lists unless named association is
used. These lists must be of the same size. The names of corresponding actual
and formal parameters may be, and often are, different.

The type of each actual parameter must be compatible with the type of the cor-
responding formal parameter, that is, either of the same type or of a related
subtype.

For mode out and IN ouT parameters, an actual parameter must be a variable.
For mode 1n parameters, an actual parameter may be a variable, constant, or
expression.

7.5 System Stuctures: Writing Procedures 281

The Procedure Data Area

Each time a procedure call statement is executed, an area of memory is allocated for
storage of that procedure’s data. Included in the procedure data area are storage cells
for any formal parameters, local variables or constants that may be declared in the pro-
cedure. The procedure data area is always erased when the procedure terminates, and it
is recreated (with all nonconstant cells undefined) when the procedure is called again.

Memory cells are allocated in the procedure data area for each formal parameter.
These cells are used in different ways for parameters of the three modes:

« For a mode 1N parameter, the value of the corresponding actual parameter is
copied into this cell when the procedure is called. The compiler will not permit
a statement within the procedure to change the value in this cell.

+ For a mode out parameter, the local cell is initially undefined; the procedure
computes a value and saves it in this memory cell. After the procedure com-
pletes its work, just before it returns to its calling program, the value in the lo-
cal cell is copied back into the actual parameter in the calling program.

« For a mode 1IN our parameter, the behavior is a combination of the other two.
The actual value is copied into the local cell when the procedure is called.
Statements of the procedure may change the value in the local cell. Just before
the procedure returns to its caller, the value in the local cell is copied back into
the actual parameter in the calling program.

We note that these rules apply to parameters of scalar type, which are the only kind
we have studied so far. Beginning in Chapter 9, you will see that parameter-passing
behavior may differ somewhat for parameters of structured type. Also, parameters are
passed to a function’s data area, just as they are to a procedure’s; recall, though, that
function parameters in Ada can have mode v parameters only; mode ouT and 1N OUT
parameters are not permitted.

Executing a Procedure with Parameters

In executing Program 7.8, suppose that the user enters 8.0, 10.0, and 6.0, for Num1,
Num2, and Num3, respectively. Figure 7.3 shows the data areas for the main program and
procedure order immediately after the statement

Order(X => Numl, Y => Num2);

calls the procedure but before its first executable statement. This diagram shows the
data values read into Numi1, Num2, and Num3. The double-headed arrows symbolize the
copying of main program variables Numl and Num2 into formal parameters x and Y,
respectively. It also shows that the local variable Temp is undefined initially.

The execution of the procedure is traced in Table 7.1. The actual and formal param-
eters are shown at the top of the table. Because the value of numl is less than that of
Num2, the True alternative is skipped and the variable values are unchanged.

282 Other Loop Forms; Procedures; Exception Handling

Main program data area Procedure Order data area

formal parameters

Num] - > X

8.0 8.0

Num2 * il §

10.0 10.0
local varlables

Num3 Temp

Figure 7.3 Parameter Correspondence for Order (Num1, Num2) (after Order has
been called but before its statements have been executed)

Table 7.1 Trace of Procedure Execution for Order (Num1, Num2)

Statement in order ~ Numl X Num2 Y Temp Effect
80 80 100 100 ?

IF X > Y THEN 80>100
is false;
do nothing

Just before 8.0 80 100 100 Copy

procedure returns parameter values
back to actuals

The parameter correspondence specified by the procedure call statement
Order (X => Numl, X => Num3);

is pictured in Fig. 7.4. This time parameter x corresponds to variable Num1 and parame-
ter ¥ corresponds to variable Num3, and the values are copied accordingly.

This second execution of the procedure is traced in Table 7.2. The actual and for-
mal parameters are shown at the top of the table. The procedure execution switches the
values stored in main program variables Num1 and Num3, as desired.

7.5 System Structures: Writing Procedures 283

Main program data area Procedure Order data area

formal parameters

Numl > X
8.0 8.0
Num2 » Y
10.0 6.0
local variables
Num3 < Temp

Figure 7.4 Parameter Correspondence for Order (Num1, Num3) (after Order has
been called but before its statements have been executed)

Table 7.2 Trace of Procedure Execution for Order (Num1, Num3)

Statement in Order Numl X Num2 ¥ Temp Effect
8.0 80 60 80 7?7

IF X > Y THEN 8.0>60is true
Temp := X; 8.0 save old x in Temp;
X 1= ¥; 6.0 save old Y in ¥;
Y := Temp; 80 8.0 save Temp in v.
Just before 6.0 60 80 8.0 copy
procedure returns parameter values
back to actuals

Syntax Rules for Parameter Lists

This section presents the syntax rules for procedure declarations and procedure call
statements with parameters. The displays that follow summarize these rules.

SYNTAX

DISPLAY Procedure Specification (Procedure with Parameters)

Form:

PROCEDURE pname (formal-parameters);

284 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

SYNTAX
DISPLAY

Example;
PROCEDURE Double (X: IN Integer; Y: OUT Integer);) ;
Interpretation: - ’ :

The procedure pname is declared. The formal parameters are enclosed in paren-
theses and separated by semicolons. ' S

Procedure Body (Procedure with Parameters)

Form:

PROCEDURE pname (formal-parameters) IS
local declaration-section

BEGIN
statement sequence

END pname;

Example:

PROCEDURE Double (X: IN Integer; Y: OUT Integer) Is
BEGIN

Y =2 * ¥X;
END Double;

Interpretation:

The procedure pname is declared. The formal parameters are enclosed in paren-
theses and separated by semicolons. Any identifiers that are declared in the decla-
ration-section are defined only during the execution of the procedure.

The statement sequence describes the data manipulation to be performed by

the procedure. The formal parameter names are used in this description.

Procedure Call Statement (Procedure with Parameters)

Form:

pname (actual-parameters)

Example:

Double (Y => Q, X => P);

Interpretation:

The actual-parameters are enclosed in parentheses and separated by commas;
each actual parameter is preceded by the name of the corresponding formal

parameter. When procedure pname is called into execution, each actual parameter
is associated with the corresponding formal parameter.

PROGRAM
STYLE

7.6 System Structures: A Package for Robust Input 285

The formal parameter list determines the form of any actual parameter list
that may be used to call the procedure. This form is determined during the trans-
lation of the program when the compiler processes the procedure declaration.

Later, when a procedure call statement is reached. the compiler checks the
actual parameter list for consistency with the formal parameter list. An actual
parameter list may be a list of expressions, variables, or constants separated by
commas. The actual parameter list must satisfy the rules shown in the following
box.

Named Association in Actual Parameter Lists

In this book, named association is used to associate each formal parameter with
an actual parameter (the two are separated by =>). This naming is optional in
Ada; if it is used, the order of the actual parameters does not have to match the
order of the formal parameters. The previous example pouble shows this; the
actual/formal pairs occur out of order.

1t is, however, good practice to use named association and also to list the
actual parameters in an order corresponding to the order of the formal parame-
ters. In this way, no confusion arises for the reader of the program as to which
actual parameter matches which formal parameter.

EXERCISES FOR SECTION 7.5

Self-Check

1. It is tempting to programmers to avoid the problem of deciding whether pa-
rameters should be 1N, ouT, or IN ouT by simply assigning the same mode to all
parameters. If you were to do this, which mode would you use? Why? Do you
think choosing a single mode is a good idea?

7.6 System Structures: A Package for Robust Input

The ability to request and read numeric input robustly is a very common requirement in
programs. It therefore makes sense to consider how we can package robust input so that
it can just be used, instead of rewritten, for each program that needs to do it.

We will do this by analogy with the ada.Integer_Text_Io and Ada.
Float_Text_I0 packages that we have been using all along in this book. These stan-
dard packages read input values by calls to procedures that are called Get (recall that
because of overloading, these procedures can all have the same name provided that they
have different parameter profiles). We shall write a package, Robust_Input, that pro-

286 Other Loop Forms; Procedures: Exception Handling

vides the necessary robust Get operations for integer and floating-point values.
Robust_Input is 2 good example of how we can encapsulate commonly needed opera-
tions in a package with an easy-to-understand interface.

Program 7.9 gives the package specification for Robust_1nput. There are two pro-

cedures, both called Get (this is permitted because of the overloading principle). Here
is the one for integer input:

PROCEDURE Get (Item : OUT Integer;

Minval : IN Integer
Maxval : IN Integer);

This procedure will read an integer value from the keyboard and return it to the caller in

the actual parameter corresponding to tem. The other two parameters specify the range
of acceptable input. The procedure Get for floating-point values is analogous.

Program 7.9 Specification for Package Robust_input

PACKAGE Robust_Input IS

--| Package for getting numeric input robustly.

--| Author: M. B, Feldman, The George Washington University
--| Last Modified: August 1998

PROCEDURE Get (Item : OUT Integer;
MinvVal : IN Integer;
MaxVal : IN Integer);
-~ Gets an integer value in the range MinVal..MaxVal
-~ Pre: MinvVal and MaxVal are defined
-- Post: Minval <= Item <= MaxVal

PROCEDURE Get (Item : OUT Float;
MinVal : IN Float;
MaxVal : IN Float);
-~ Gets a float value in the range MinvVal..MaxVal
-- Pre: Minval and MaxVal are defined
-- Post: MinVal <= Item <= MaxVal

END Robust_Input;

Program 7.10 gives the package body for Robust_1Input. It consists of the bodies of
the two procedures promised in the procedure specification. Note that in the body for
the integer Get, a subtype is declared corresponding to the range parameters and a cor-
responding variable:

SUBTYPE TempType IS Integer RANGE MinVal..MaxVal;
TempItem : TempType; -- temporary copy of Item

The statement sequence of this procedure is very similar to that of Program 7.7; a
loop is used to retain control if an exception is raised. The subtype TempType and vari-
able TempItem are necessary so that if Ada.Integer_Text_I0.Get produces a value
that is out of range, constraint_Error will be raised.

7.6 System Structures: A Package for Robust Input 287

Program 7.10 Body of Package Robust_Input

WITH Ada.Text_IO;

WITH Ada.Integer_ Text_IO;
WITH Ada.Float_Text_IO;
PACKAGE BODY Robust_Input IS

--| Body of package for robust numeric input handling
--| author:s M. B. Feldman, The George Washington University
--| Last Modified: August 1998

PROCEDURE Get (Item : OUT Integer;
Minval : IN Integer;
MaxvVal : IN Integer) IS

SUBTYPE TempType IS Integer RANGE MinvVal..MaxVal;
TempItem : TempType; -- temporary copy of Item

BEGIN -- Get

LOOP
BEGIN -- exception handler block
Ada.Text_IO.Put(Item => "Enter an integer between ");
Ada.Integer Text_IO.Put(Item => MinVal, Width => 0);
Ada.Text_IO. Put(Item => " and ");
Ada. Integer Text_I0.Put(Item => MaxVal, Width => 0);
Ada.Text_IO. Put(Item a> " > "),
Ada.Integer_Text_IO.Get(Item => TempItem);
Item := Templtem;
BXIT; -- valid data
EXCEPTION -- invalid data
WHEN Constraint_Error =>
Ada.Text_I0.Put (Item =>
"Value is out of range. Please try again.");
Ada.Text_IO.New_Line;
Ada.Text_IO.Skip_Line;
WHEN Ada. Text I0.Data_Error =>
Ada.Text__ 10.Put (Item =>
"value is not an integer. Please try again.");:
Ada.Text_IO.New_Line;
Ada.Text_I0.Skip_Line;
END; -- exception handler block
END LOOP;

END Get;

PROCEDURE Get (Item : OUT Float;
Minval : IN Float;
MaxVal : IN Float) IS

SUBTYPE TempType IS Float RANGE Minval..Maxval;
TempItem : TempType; -- temporary copy of Item

BEGIN ~-- Get

LOOP
BEGIN -~ exception handler block
Ada.Text_IO.Put
(Item => "Enter a floating-point value between ");

288 Other Loop Forms; Procedures; Exception Handling

Ada.Float_Text_ IO.Put
(Item => MinVal, Fore=> 1, Aft => 2, Exp => 0);
Ada.Text_IO.Put(Item => " and ");
Ada.Float_Text_ I0.Put
(Item => MaxVal, Fore=> 1, Aft => 2, Exp => 0);
Ada.Text IO.Put(Item => “ > »);
Ada.Float_Text_IO.Get(Item => TempItem);
Item := TempItem;
EXIT; -- valid data
EXCEPTION -- invalid data
WHEN Constraint_Error =>
Ada.Text_IO.Put (Item =>
"Value is out of range. Please try again.");
Ada.Text_IO.New_Line;
Ada.Text_I0.Skip Line;
WHEN Ada.Text_IO.Data_Error =>
Ada.Text_IO.Put (Item =>
"Value is not floating point. Please try again.");
Ada.Text_IO.New_ Line;
Ada.Text_IO.Skip Line;
END; -- exception handler block
END LOOP;

END Get;

END Robust_Input;

Finally, Program 7.11 serves to test the package operations. Two integer and two
floating-point subtypes are declared; the Robust_1nput operations are called. This is an
example of a “test driver” program, whose purpose is just to test the operations pro-
vided by a package.

Program 7.11 A Program That Uses Robust_input

WITH Robust_Input;
PROCEDURE Test_Robust_Input IS

--| Demonstrates Robust_Input package
--| Author: M. B. Feldman, The George Washington University
~-| Last Modified: August 1998

SUBTYPE SmallInt IS Integer RANGE -10 ..10;
SUBTYPE LargerInt IS Integer RANGE -100..100;
SUBTYPE SmallFloat IS Float RANGE -10.0 ..10.0;
SUBTYPE LargerFloat IS Float RANGE -100.0..100.0;

Small ¢ Smalllnt;
SmallF : SmallFloat;
Larger : Largerlnt;
LargerF : LargerFloat;

BEGIN -- Test_Robust_Input

Robust_Input.Get(Small,SmallInt‘'First,Smalllnt'Last);
Robust-lnput.Get(Larger,LargerInt'First,LargerInt'Last);
Robust'Input.Get(SmallF,SmallFloat'First,SmallFloat'Last);
Robust:Input.Get(LargerF,LargerFloat'First,LargerFloat'Last);

7.6 System Structures: A Package for Robust Input 289

END Test_Robust_Input;
Sample Run

Enter an integer between -10 and 10 > 11

Value is out of range. Please try again.

Enter an integer between -10 and 10 > -11

Value is out of range. Please try again.

Enter an integer between -10 and 10 > 10

Enter an integer between -100 and 100 > 101

value is out of range. Please try again.

Enter an integer between -100 and 100 > 99

Enter a floating-point value between -10.00 and 10.00 > 10.001
Value is out of range. Please try again.

Enter a floating-point value between -10.00 and 10.00 > -12
Vvalue is out of range. Please try again.

Enter a floating-point value between ~10.00 and 10.00 > x
Value is not floating point. Please try again.

Enter a floating-point value between -10.00 and 10.00 > 0
Enter a floating-point value between -100.00 and 100.00 > 5.0003

EXERCISES FOR SECTION 7.6

Self-Check

1. The following procedure is like the ones in Program 7.10 but does not have a
loop or special block for the exception handlers; the handlers are just written to
go with the procedure’s BEGIN and END. s this correct as far as the Ada compil-
er is concerned? If so, describe the difference in behavior from the original.

PROCEDURE Get (Item : OUT Integer;
Minval : IN Integer;
Maxval : IN Integer) IS

SUBTYPE TempType IS Integer RANGE MinVal..Maxval;
TempItem : TempType; -- temporary copy of MinVal

BEGIN -~ Get

Ada.Text_IO.Put(Item => "Enter an integer between ");
Ada.Integer_Text IO.Put(Item => Minval, wWidth => 0);
Ada.Text I0.Put(Item => " and ");
Ada.Integer_Text_IO.Put(Item => MaxVal, Width => 0);
Ada.Text IO.Put(Item => " > ");
Ada.Integer_Text_IO.Get(Item => TempItem);

Item := Templtem;

EXCEPTION -- invalid data
WHEN Constraint_ Error =>
Ada.Text_IO.Put
("Value entered out of range. Try again.");
Ada.Text_IO.New Line;
Ada.Text_ IO.Skip_Line;

290 Other Loop Forms; Procedures; Exception Handling

WHEN Ada.Text_IO.Data Error =>
Ada.Text_IO.Put
("Value entered not an integer. Try again.");
Ada.Text_IO.New_Line;
Ada.Text_I0.S8kip_Line;

END Get;
Programming

1. Write a procedure similar to those in Robust_input (Programs 7.9 and 7.10)
that reads a month name robustly.

7.7 Tricks of the Trade: Testing with Exception Handling

Ada’s exception handling provides a powerful tool for designing programs whose
behavior is predictable even if its inputs are badly formed or out of range. If exception
handling were not available, it would be the programmer'’s responsibility to validate all
incoming data—for example, by checking its range with an 1F statement. Indeed, Ada
programs can certainly be written this way—with no use of exception handling—but
the result would not take advantage of this built-in power.

Even if exception handling is used to advantage, however, the programmer still has
several important responsibilities in this area:

* Analyze your program so that you know the places where exceptions may be
raised, and be sure to place exception handlers in appropriate blocks in your
program. This will ensure that exceptions are not unexpectedly passed back to
the calling program or to the run-time system.

* When you test your program, be sure to test it with badly formed or out-of-
range data so that your exception-handling flow is tested. When you are fin-
ished testing, you should be confident that you know exactly what your pro-
gram will do under each set of input conditions. The test data that are supplied
to Program 7.11 show an example of how this is done.

In summary, Ada’s exception handling provides a useful way to take account of
unusual circumstances in your program but does not relieve you of the responsibility to
design and test carefully so that your program’s behavior will always be predictable.

7.8 Tricks of the Trade: Programs That Never Halt

This chapter has covered general and wHILE loops in which the programmer must sup-
ply an explicit test for loop exit, and explicit statements that modify the conditions that
the loop test will examine. What happens if you make an error in writing the exit test or
loop-incrementation statements? There is a risk that the exit test will never become
true. so the loop will never exit at all! The result will be a nonhalting program.

7.9 Tricks of the Trade: Common Programming Errors 291

Sometimes it is easy to see that your program is in such an infinite loop. If the loop
body displays some output in every cycle, you will see a continuous stream of output
on the screen. On the other hand, if the loop body just does a computation and no out-
put is displayed until after loop exit, the program will appear to have “hung,” with noth-
ing apparently happening. In either case it is up to you to interrupt the program from
the keyboard. This kind of external interrupt is not part of the programming language,
but rather a function of the operating system. In most systems, pressing control-c will
interrupt the program, but this is not always the case. If you are on a single-user com-
puter, sometimes you have no alternative but to reboot it or even switch it off altogether.

We are discussing this topic here and not as a common error, because a nonhalting
program is not always an incorrect one. Programs that never halt are actually quite
common in embedded systems. For example, an automatic teller machine has a pro-
gram in it that starts when power is switched on and stops only when power is switched
off. There is probably no halting code in the program itself. A nonhalting program is
undesirable only if you did not intend to write it!

7.9 Tricks of the Trade: Common Programming Errors

Beginners sometimes confuse IF and loop statements because both statements contain
a condition. Make sure that you use an IF statement to implement a decision step and a
loop statement to implement a conditional loop. Remember to terminate each control
structure with an END IF or END LooP. The compiler will detect a syntax error if an END
IF Or END LOOP is missing.

Be careful when using tests for equality and inequality to control the repetition of a
wHILE or general loop. The following loop is intended to process all transactions for a
bank account while the balance is positive:

LOOP
EXIT WHEN Balance = 0.0
Update (Balance);

END LOOP;

If the bank balance goes from a positive to a negative amount without being exactly
0.0, the loop will not terminate (an infinite loop). The following loop would be safer:

Loorp
EXIT WHEN Balance <= 0.0
Update (Balance);

END LOOP;

Verify that the loop exit condition for a loop will eventually become true. If you use
a sentinel-controlled loop, remember to provide a prompt that tells the program user
what value to enter as the sentinel. Make sure that the sentinel value cannot be entered
as a normal data item.

Keep in mind that exception handlers have to be associated with BEGIN-END
blocks, and remember that once a program transfers to an exception handler, control
does not automatically return to the statement that caused the exception. If you need to
return to that statement (as in the robust input lcop), you need to use a LOOP-END LOOP
structure to do so.

292 Other Loop Forms; Procedures; Exception Handling

7.10 Continuing Saga: A Child Package for the Spider

Let’s pay another visit to the spider. You’ve seen so far how to command the spider to
move around and draw shapes on the screen. Now that you know how to write proce-
dures, let’s consider how to add our own commands to the set of commands the spider
can obey. Look again at the specification, Program 2.1. Specifically, we note the
absence of two useful commands:

* Left (the spider can already turn right) and

* Step(HowMany: Positive), that is, step forward a given number of steps, not
just a single step.

Suppose we were just writing a spider program. How could we get the effect of the
Left command? There are several ways, as we show in these code fragments. First, we
can turn left by turning right:

Spider.Right;
Spider.Right;
Spider.Right;

This works, but it is not very realistic—would you turn left that way? Another approach
is to ask in which direction the spider is facing and then tell it to face in another direc-
tion:

IF Spider.IsFacing = North THEN
Spider.Face(WhichWay => West);

ELSIF Spider.IsFacing = East THEN 2
Spider.Face(WhichWay => North);

ELSIF Spider.IsFacing = South THEN
Spider.Face(WhichWay => East);

ELSE -~ Spider must be facing West
Spider.Face(WhichWay => South);

END IF;

This will work, but we have to be very careful in writing it that all the directions are
covered and that the Face command has the right parameter. We note that spi-
der.Directions 1S an enumeration type,

TYPE Directions IS (North, East, South, West);

and that a left turn can be implemented very easily as the predecessor of the current
direction. We've seen a similar problem before, in Program 5.1, in which given a repre-
sentation of today, we needed to find yesterday and tomorrow. We must be a bit careful
in taking the predecessor: If the current direction is North, just taking the predecessor
will fail on Constraint_Error because the enumeration doesn’t “wrap around.” The
statement that we need is, in fact,

IF Spider.IsFacing = Spider.North THEN
Spider.Face(Spider.West);

ELSE
Spider.Face(Spider.Directions'Pred(Spider.IsFacing));

END IF;

7.10 Continuing Saga: A Child Package for the Spider 293

or, to write it in more general terms (in case some day the directions are given in
French),

IF Spider.IsFacing = Spider.Directions'First THEN
Spider.Face(Spider.Directions'Last);

ELSE
Spider.Face(Spider.Directions'Pred(Spider.IsFacing));

END IF;

Implementing the new step is much easier: It’s just a counting loop with spi-
der.step as the loop body.

Putting the New Commands in a Child Package

It is now time to implement the new commands as a set of procedures. Because these
are commonly used commands, it is best to put them in a package. Since this new pack-
age is not just using the original spider package but is, in fact, closely related to it, we
can define this relationship in an Ada child package.

We have seen child packages before; indeed, all the standard packages that we've
used are children of Ada. The specification for our child package, spider.My_Stuff,
appears as Program 7.12 and just codes the procedure specifications that we’ve dis-
cussed here.

Program 7.12 Specification for Child Package Spider.My_Stuff

PACKAGE Spider.My Stuff IS

--| Additional Spider Commands; this is a child package.
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

PROCEDURE Left;
-- Pre: None
-- Post: Spider turns 90 degrees to the left.

PROCEDURE Step(HowMany: IN Positive):

-- Pre: None

-~ Post: Spider takes HowMany steps forward

- in the direction it is facing.

-- Raises: Hit_the Wall is if spider tries to step into a wall.

END Spider.My Stuff;

The body of spider.My_stuff appears as Program 7.13. The procedure bodies
incorporate the statements that we just discussed; note, however, that no qualifications
are necessary on the various calls. That is, we can write IsFacing instead of spi-
der.IsFacing, and so on. This tells us that the body of the child package can automat-
ically “see” everything in its parent package’s specification. (It cannot see into its
parent package’s body, though.)

294 Other Loop Forms; Procedures; Exception Handling

SYNTAX
DISPLAY

Program 7.13 Body of Child Package Spider.My_Stuff

PACKAGE BODY Spider.My Stuff IS

--| Cchild Package Body for Additional Spider Commands
--| Author: M. B. Feldman, The George Washington University
--| Last Modified: August 1998

PROCEDURE Left IS
BEGIN
IF IsFacing = Directions'First THEN
Face(Directions'Last);
ELSE
Face(Directions'Pred(IsFacing));
END IF;
END Left;

PROCEDURE Step(HowMany: IN Positive) IS
BEGIN
FOR Count IN 1l..HowMany LOOP
Step;
END LOOP;
END Step;

END Spider.My_Stuff;

Child Package

Syntactically, a child package is exactly like any other, except for its name, which
is of the form Parent.child. The parent package must exist already to permit
compilation of the child package. Under normal circumstances, one is not per-
mitted to compile new children of the package ada, since this parent package is
reserved for standard (language-defined) packages ;

Writing Applications of the Spider Packages, Parent and Child

Program 7.14 shows how to use the packages spider and spider.My_stuff. Note that
because this program uses both packages, it must have context clauses (wxTas) for both.
The spider draws a box, turning left at the corners instead of right. This program is sim-
pler than Program 2.8 because we can take advantage of the muitiple-step command in
the child package. We omit the sample run because it is very similar to the output of the
box programs of Section 2.4.

Program 7.14 The Spider Draws a Counterclockwise Box

WITH Spider;
WITH Spider.My_Stuff;
PRCCEDURE Draw_Box_with_Loops_Left IS

--| Draw 4 x 4 box with spider, turning left as it goes
--| Author: M. B. Feldman, The George Washington University

Chapter Review 295

--| Last Modified: August 1998

BEGIN -- Draw_Box_with_Loops_Left

Spider.Start;

FOR Side IN 1..4 LOOP
Spider.My Stuff.Step(HowMany => 5);
Spider.My_stuff.Left;

END LOOP;

Spider.Quit;

END Draw_Box_with_Loops_Left;

CHAPTER REVIEW | | |

This chapter introduced the general Loop and EXIT statements and the WHILE statement.
These are used to implement loops whose repetition is controlled by a condition, espe-
cially when the exact number of repetitions required is not known before the loop
begins. In designing a general or waILE loop, we must consider both the loop control
and loop processing operations that must be performed. Separate program statements
are needed for initializing and updating variables that appear in the loop repetition con-
dition.

One common technique for controlling the repetition of a loop is using a special
sentinel value to indicate that all required data have been processed. In this case, an
input variable must appear in the loop repetition condition. This variable is initialized
when the first data value is read (priming read), and it is updated at the end of the loop
when the next data value is read. Loop repetition terminates when the sentinel value is
read.

Writing procedures is an important part of programming, and this technique was
also introduced in this chapter. Finally, we considered exception handling in some
detail, and a package providing robust numeric input operations was developed.

New Ada Constructs in Chapter 7
The new Ada statements introduced in this chapter are described in Table 7.3.

296 Other Loop Forms; Procedures; Exception Handling

Table 7.3 Summary of New Ada Constructs

Construct

Effect

General loop statement

Sum := 0;
LOooP
EXIT WHEN Sum > MaxSum;
Ada.Text_IO.Put
(Item=>"Next integer > ");
Ada.Integer_ Text_ I0.Get
(Item=>Next);
Sum := Sum + Next;
END LOOP;

WHILE Statement

sum := 0;
WHILE Sum <= MaxSum LOOP
Ada.Text_IO.Put
(Item=>"Next integer > ");
Ada.Integer_Text_IO.Get
(Item=>Next);
Sum := Sum + Next;
END LOOP;

Procedure with Parameters

PROCEDURE A (X : IN Float;
Op : IN Character;
XTo3 : IN OUT Float) IS

BEGIN --A
IF Op = '*' THEN
XTo3 := X * X * X;
ELSIF Op = '+' THEN
XTo3 (=X + X + X;
ELSE
Ada.Text_IO.Put
(Item => "Invalid");
END IF;
END A;

Procedure Call Statement
A (X=>5.5, Op=>'+', XTo3=>Y);

Exception-Handler Block

BEGIN
X =Y + 2
Y:=A/G
EXCEPTION
WHEN Constraint_Error =>
Ada.Text_I0.Put
(Item=>"0Out of Range"):;

~ ~

END;

A series of data items is read; their sum
is accumulated in sum. This process
stops when the accumulated sum
exceeds MaxSum.

A series of data 1tems is read; their sum
is accumnulated in sum. This process
stops when the accumulated sum
exceeds Maxsum,

Procedure a has two 1IN parameters and
one IN OUT parameter

If op is '+, then the value returned is x
* X * X; otherwise,ifopis '+',then
the value returned is x + x + X; other-
wise, an error message is displayed. A
result is returned by assigning a new
value to the actual parameter (a variable)
that corresponds to parameter xTo3.

Calls procedure a. 5.5 is passed into x,
'+ is passed into op, and the value 16.5
is stored in v.

If ¥ + z is out of range for x, "Out of
Range” is displayed. If G is 0, a cannot
be divided by G and "out of Range" is
displayed.

Control passes to the statement follow-
ing END.

Chapter Review 297

Quick-Check Exercises

1
2
3.
4

A wrILE loop is called a loop.
A waILE loop is always used for counting. (True or false?)
The priming step for a wHILE loop is what kind of statement? When is it used?

The sentinel value is always the last value added to a sum being accumulated
in a sentinel-controlled loop. (True or false?)

It is an error if a wHILE loop body never executes. (True or false?)

Answers to Quick-Check Exercises

1.

R

Conditional

False

An input operation, used in a sentinel-controlled loop
False, the sentinel should not be processed.

False

Review Questions for Chapter 6

Define a sentinel value.

For a sentinel value to be used properly when reading in data, where should the
input statements appear?

Write a program called sum to sum and display a collection of integer amounts
entered at the standard input device until a sentinel value of -1 is entered. Use
a WHILE statement.

Write a procedure called LetterGrade that has one input parameter called
Grade and that will display the corresponding letter grade using a straight scale
(90-100is an A, 80-89 is a B, etc.).

Explain the difference between 1N parameters, OUT parameters, and IN OUT pa-
rameters.

Explain the allocation of memory cells when a procedure is called.
Explain the purpose of a robust input loop.

Hand trace the program below given the following data:
40,20,80,40

1.0,40,20,1.0

9.0,30,30,1.0

298 Other Loop Forms; Procedures; Exception Handling

-22.0,10.0,8.0,2.0

WITH Ada.Text_I0;
WITE Ada.Float_Text IO;
PROCEDURE Slope IS

Sentinel CONSTANT Float := 0.0;
Slope, y2, yl, x2, x1 : Float;

BEGIN -- Slope

Ada.Text_IO.Put(Item => "Enter four real numbers > *);

Ada.Text_IO.New_Line;

Ada.Float_Text_I0.Get(Item => y2);

Ada.Float_Text_IO.Get(Item => yl);

Ada.Float_Text_IO.Get(Item => x2);

Ada.Float_Text_ IO.Get(Item => xl);

Slope := (y2 - yl) / (X2 - x1);
