

Using the UNIX System

Using the UNIX System

Richord Gouthier
RLG Corporation

Reston Publishing Company, Inc.
R Prentice-Hall Company

Reston, Virginia

Library of Congress Cataloging in Publication Data

Gauthier, Richard L.
Using the UNIX system.

Bibliography
Includes index.
1. UNIX (Computer system) I. Title

QA76.7.G37 001.64 81-10571
ISBN 0-8359-8164-9 AACR2

Copyright© 1981 by
Heston Publishing Company ,Inc.

A Prentice-Hall Company
Heston, Virginia

No part of this book may be reproduced in any way, or by any means,
without permission in writing from the publisher.

10987654321

Printed in the United States of America

Table of Contents v

CONTENTS

1. Introduction 1
2. Getting Started 3
2.1 Setting and Using a Password 4
2.2 UNIX Command Format 7
2.3 Exit UNIX 8
2.4 Summary 9
2.5 Questions 9
3. Creating and Maintaining Files 11
3.1 Creating New Text Files 11

3.1.1 Invoking ed Editor 12
3.1.2 Append Mode 13
3.1.3 Printing Text 14
3.1.4 Saving Text 15
3.1.5 Exiting the Editor 15
3.1.6 Summary 16

3.2 Maintaining Existing Files 16
3.2.1 Locating Text in a File 18
3.2.2 Inserting Text 20
3.2.3 Deleting Text 21
3.2.4 Replacing Text 22
3.2.5 Changing Contents of Line 23
3.2.6 Using Line Numbers 26
3.2.7 Printing 27
3.2.8 Deleting 28
3.2.9 Searching 29

3.2.10 Substitute 30
3.2.11 Change Command 32
3.2.12 Moving Text 33
3.2.13 Write File, Read File 34
3.2.14 The Undo Command "u" 37

3.3 Special Uses 38
3.3.1 The List Command "fi" 38
3.3.2 Use of Metacharacters 39

3.3.2.1 The Metacharacter "*" 41
3.3.2.2 The Metacharacters " [] " 41

vi Table of Contents

3.3.2.3 The Metacharacter "&" 42

3.3.2.4 The Metacharacters "$, Q" 42
3.4 Summary 43
3.5 Questions 44
4. The Unix File System 46

4.1 Knowing Where You Are 49
4.1.1 Contents of a Directory 50
4.1.2 Changing Directories 51

4.2 Directories and Files 53
4.2.1 Creating and Deleting Directories 54
4.2.2 Removing Files 58
4.2.3 Permissions 59

4.3 Summary 62
4.4 Questions 62
5. Manipulation of Files 65

5.1 Concatenation of Files 65
5.2 Copy Files 68
5.3 Move Files 69
5.4 Print Files 71

5.5 Line Printer Spooler 75
5.6 Compare Two Files 77

5.7 Remove Files 78
5.8 Find Files 81
5.9 Archive and Library Maintainer 84

5.10 Change Mode 89
5.11 Change Owner 90
5.12 Change Group 93
5.13 Questions 94

6. Introduction to the UNIX Shell 97
6.1 Input/Output Redirection 97
6.2 Background Commands 99
6.3 Pipes and Filters 100
6.4 Use of Metacharacters 102
6.5 Summary 105
6.6 Questions 105
7. UNIX Commands 106

7.1 Communications 106
7.1.1 Sending and Receiving Mail 106
7.1.2 Write to All Users 110
7.1.3 Write to Another User 111
7.1.4 Permit or Deny Messages 114

Table of Contents vii

7.1.5 Questions 115
7.2 Information Handling Commands 115

7.2.1 Select of Reject Lines Common to Two Files ___ 116
7.2.2 Convert and Copy a File 119
7.2.3 Differences Between Two Files 122
7.2.4 Differences Between Three Versions of a File 125
7.2.5 Find Pattern Matches in Files 128
7.2.6 Octal Dump 131
7.2.7 Table of Contents For Archive Files 134
7.2.8 Word Count 135
7.2.9 Report Repeated Lines in a File 137

7.2.10 Split a File Into Pieces 141
7.2.11 Sort or Merge Files 143
7.2.12 Questions 147

7.3 Running of Programs 147
7.3.1 Echo Arguments 148
7.3.2 Terminate a Process Extreme Prejudice 150
7.3.3 Suspend Execution for an Interval 152
7.3.4 Run a Command at Low Priority 153
7.3.5 Pipe Fitting 154
7.3.6 Questions 155

7.4 Status Inquiries 156
7.4.1 List the Contents of a Directory 156
7.4.2 Print and Set Date 169
7.4.3 Who is on the System 161
7.4.4 Get Terminal Name 162
7.4.5 Working Directory Name 163
7.4.6 Process Status 164
7.4.7 Summarize Disk Usage 168
7.4.8 Disk Free Space 171
7.4.9 Determine File Type 172

7.4.10 Print Calendar 173
7.4.11 Questions 175

7.5 Terminal Handling 176
7.5.1 Setting a Terminal 176
7.5.2 Setting The Terminal Tabs 179
7.5.3 Questions 180

8. The UNIX Shell 181
8.1 Simple Shell Files 181

8.1.1 Shell Files and Arguments 183
8.1.2 Nesting Shell Files 185

viii Table of Contents

8.2 Use of Variables 186
8.3 Summary 189
8.4 Questions 189
9. System Administrator 190

9.1 Introduction to System Administrator 190
9.1.1 Privileged Users 190
9.1.2 Adding New Users 193
9.1.3 Changing File Ownership and Protection 195

9.2 Introduction to System Components 197
9.2.1 .Hardware 198

9.2.1.1 The Mainframe 198
9.2.1.2 The Disk Drive(s) 198
9.2.1.3 Terminals 199
9.2.1.4 The Line Printer 200
9.2.1.5 The Tape Drive 200

9.2.2 Software 201
9.2.3 File Systems-A Brief Look 202

9.3 Starting and Stopping the System 202
9.3.1 Shutting Down the System 203
9.3.2 Booting the System 205
9.3.3 Booting Procedure 205
9.3.4 File Integrity Check-Simple Case 206

9.4 System Resources and the Administrator 209
9.4.1 Disk Space 209
9.4.2 Memory and Processes 211
9.4.3 Accounting 212

9.5 Some Odds and Ends 212
9.5.1 The File /etc/re 213
9.5.2 The Program /etc/ cron 213
9.5.3 The File /etc/ttys 213
9.5.4 The Line Printer Spooling Mechanism 214
9.5.5 Useful Shell Files 217

9.6 File System:A Closer Look 219
9.6.1 Structure of any File System 220
9.6.2 Mounted File System 222

9.7 Dumps 223
9.7.1 When to Take Dumps 224
9.7.2 How to Take Dumps 224
9.7.3 How to Restore Individual Files 225
9.7.4 Restoring an Entire File System 226

9.8 Repairing Damaged UNIX File Systems 227

Table of Contents ix

9.8.1 The Basic Checking Programs 227
9.8.2 !check Output 229
9.8.3 Dcheck Output 231
9.8.4 File Destruction 232
9.8.5 Destroying a Directory 234

9.9 Using a Back-up Copy of UNIX 234
9.9.1 What Is a Back-up UNIX 234
9.9.2 Possible Differences in Configuration 235
9.9.3 Repairing Root File Systems 235
9.9.4 Determing if a Problem is Hardware or Software _ 237
9.9.6 Questions 237
9.10 Backup and Maintenance Commands 239

9.10.1 File system Directory Consistency Check 239
9.10.2 File System Storage Consistency Check 241
9.10.3 Generate Names from i-numbers 244
9.10.4 Clear i-nodes 245
9.10.5 Construct a File System 247
9.10.6 Build Special Files 248
9.10.7 Mount a File System 251
9.10.8 Dismount a File System 252
9.10.9 Substitute User ID Temporarily 253

9.10.10 Update the Super Block 255
9.10.11 Tape Archiver 256
9.10.12 Incremental File System Dump 260
9.10.13 Incremental File System Restore 262
9.10.14 Questions 264

Appendices 265
A: System Errors 265
B: UNIX Commands 269
C: Answers 276
D: References 285
E: Index 289

ACKNOWLEDGMENTS

I am indebted to many of my colleagues and friends who painstakingly
read the manuscript, "Using The UNIX System", and made suggestions
for improvements in addition to correcting typographical errors.

In particular, I would like to thank Jack Waugh and Dan Porges for their
contribution to chapter 9 on "System Administration"; Wendel Yale, Stu
McDonald and other members of the RLG Corporation technical staff for
their critical review and ideas for examples; ATEX, UNIDOT, and Santa
Cruz Operations for their critical reading of the manuscript; Bob McClure
and Kent Harris of UNIDOT for their assistance in helping me typeset the
book; and to all the others that I may have overlooked, but who contributed
to its completion.

This book was typeset using Don Knuth's TEX system running under UNIX
on the ONYX C8002.

Type used in this book is from the family of computer modern type fonts
designed by Don Knuth with METAFONT. Final output was produced on
the Alphatype CRS at BNR INC. and the Stanford Computer Science
Department. Special thanks to David F'Uchs at Stanford and Patrick
Milligan at BNR INC. for their assistance and patience during the final
stages of the phototypesetting process.

TEX, a system for technical text. Copyright 1979 by the American
Mathematical Society.

To my family - Pat and Darrin - who made sure that everything I thought
was obvious, was.

xi

PREFACE

"USING THE UNIX* SYSTEM" has been written for people with some
knowledge of computer sciences, but with no specific knowledge of the
UNIX system. However, this does not exclude those who are already using
the UNIX system. They will find that many options exist that are rarely
used, but extremely valuable.

The UNIX system presented in this book is based on version 7.

How to read this book

Chapters 2,3, and 4 are designed for the novice who is just about to learn
the UNIX system or has just started. These three chapters provide the
foundation necessary to understand the basics of the UNIX system and
continue on to the following chapters of this book.

The basic items covered in these chapters are:

Logging in and out of the UNIX system

Setting your password

The UNIX command format

Creating and maintaining files

Getting around in the file system

Use of some basic UNIX commands

*Unix is a trademark of Bell Laboratories
xiii

xiv

Chapter 6 introduces the basic functions and capabilities of the Shell pro­
gram such as:

I/O direction

Pipes and filters

Background commands

Metacharacters

Chapter 8 continues with some of the more advanced capabilities of the
shell program such as:

Shell files

Shell arguments

Nesting shell files

Chapters 5 and 7 provide a description of many of the more frequently used
commands. They have been placed in sections pertaining to their function.

The sections included are:

Manipulation of files and directories (chapter 5)

Communications (chapter 7 .1)

Information Handling (chapter 7 .2)

Running Programs (chapter 7.3)

Status Inquiries (chapter 7.4)

Terminal Handling (chapter 7.5)

The last chapter, chapter 9, covers the duties of the system administrator
and should be read last. This covers those functions necessary to control
who uses the system, backup and recovery of the system, the file system,
and the use of those commands dedicated to the maintenance of the system
in general.

The appendices cover such things as the answers to questions, some of the
UNIX system error messages, and a brief summary of all the commands
defined in this book. They do not cover all of the options that are available,
but only the most frequently used ones.

It would be impossible in any reasonably sized book to cover all of the
ways in which one could use these commands. I have tried to describe the
ones that you would be most likely to use with the idea in mind that they
will give you clues as to how you might extend your knowledge to more
sophisticated usages.

1. Introduction

UNIX is more than just an operating system for 16 and 32 bit com­
puters. It has become a trademark for a family of software written with
unusual simplicity that can be easily directed at a large number of applica­
tions such as ofice automation, database management, communications,
etc. In addition, there exists a wealth of software tools that can be used to
generate new applications.

Although the UNIX system was designed for program development, it
has proven to be an ideal system for software applications.

The UNIX system offers many features for program development and
applications such as:

o A hierarchical file system

o Compatible file, device and interprocess 1/0

o Asynchronous processing

o Command language interpreter

o Over 100 subsystems and utilities

o A variety of languages including Fortran 77,
Fortran VI, Pascal, Basic, and C

While all of these features are nice, the real advantage is that they can

1

2 Chapter 1

be made available on a new computer within a very short time frame. This
again is because of the inherent portability aspects of the UNIX system.

The time required to move the UNIX system to a new computer is
not only less expensive, but is only a fraction of what would be required to
rewrite the vast amounts of existing software applications.

Although the UNIX system was designed and implemented first on the
PDP-11 computer, one of its strong points has been its "portability". This
combined with the large number of application programs has made it a
target of most modern mini and micro computers. At this point in time,
the UNIX system has been implemented on many systems, some of which
are the PDP-11 family, the DEC VAX, IBM Series/1, Zilog Z8000, Amdahl
470, Univac 1108, Perkin Elmer/Interdata and Univac V77.

The first UNIX system became operational in February of 1971.
Currently there are over 2500 installations with more being added each day.
UNIX is the standard interactive system at almost every major university in
the world and is becoming increasingly common in most of the commercial
world.

Rapid advances and changes are now occurring in electronic technol­
ogy and state-of-the-art computer and communication architecture. These
changes, combined with end-user demand for turn-key small scale systems
are one of the driving demands for the UNIX system.

Many commercial corporations are planning their future product
strategies around the UNIX system. They believe that the UNIX system is
part of a wave of the future in generating new computing applications.

2. Getting Started

There are two things you must have before getting started. The first is
a login name. This is usually selected by you and provided by the system
administrator. Your login name is generally your first name, nickname, or
your initials. Without it you will not be able to use the UNIX system.
The second is a terminal. The UNIX system is capable of dealing with a
wide variety of terminals. If you have a choice, find one that has an easy
keyboard to use. The set up of your terminal is also important. For the
time being this is best done by the system administrator. If you have any
problems report them to the administrator. Later we will discuss some of
the duties of the administrator.

Now assuming we have a login name and a terminal we can get started.
Once the terminal is turned on and connected to the UNIX system, "login:"
will appear on your terminal. You then enter your login name provided by
the system administrator and the UNIX system will respond with a prompt
sign "$" . This is an indication that the UNIX system has accepted your
login name and is ready to do your bidding.

Example:

UNIX ->
user ->

login:
dick<r> remember you must depress

the return key "<r>"

3

4 Chapter 2

UNIX -> $ UNIX is ready, you are in the
system and ready to go

One of the first things to remember is that you must always depress
the return key(sometimes known as the carriage return key) after entering
any command or responding to a UNIX command. We will indicate that a
return key is required by the symbol "<r>". The UNIX response to your
input that is accepted is always a "$" unless you are the superuser (more
on this later). If the input was not correct, UNIX will respond either with
a brief message(see appendix A) or with a "?".

Example:

UNIX response to an illegal login name:

UNIX ->
user ->
UNIX ->

login:
dack<r>
passwd:

login name should be "dick"
Asking for a password

The UNIX system will not let you know that the login name is illegal,
thus making it harder for someone to make a guess at a real login name.
In this case nothing you enter will allow you to log into the UNIX system.
Any input by you will result in the "login:" command being typed again.

UNIX ->
->

login incorrect
login:

At this point you can try again. The system will continue to do this
until you enter a correct login name.

2.1. Setting and Using a Password

When you are first assigned a login name you do not as yet have a
password. The system administrator does not set it. Once you have suc­
cessfully logged into the system you can then set your own password. This

Setting and Using a Password 5

is done by entering the command "passwd < r >" . The passwd you issue
must be longer then 6 characters or if shorter it must be complex (i.e., use
special and non printing characters).

Example:

We will assume that "dick" is logged into the system.

user -> passwd<r>
UNIX -> Changing password for dick

-> New password:
user -> enter password, but not

echo'd
UNIX -> Retype new password:
user -> enter password, but not

echo'd
UNIX -> $ indicates password was ac-

cepted

In this example it was the first time the password had been set. This is
indicated by the UNIX command "New password:". In each case (entering
original password and retyping it) the system does not display the charac­
ters typed by you. This is to help insure that no one can see what it is.

Now let's change an existing password:

Example:

user -> passwd<r>
UNIX -> changing password for dick

-> Old password:
user -> enter password, but no echo
UNIX -> New password:
user -> enter new password, but no

echo
UNIX -> Retype new password:
user -> enter new password, but no

echo

6 Chapter 2

We have now entered an original password and then changed it. In
each case we made no mistakes. However if we did make a mistake, the
system would have issued a diagnostic. Following is a list of the diagnostics
issued by the system:

1) If the password is less than 6 characters and not complex.

"Please use a longer password."

2) If password is wrong when retyped.

"Mismatch - password unchanged."

3) If Old password is not entered correctly.

"Sorry."

In each case we will have to start over with the exception of diagnostic
1. In this case we must supply a longer password. We cannot change the
password of another user unless we are the superuser (more on this later).

Also remember your password, because if you forget it, you cannot
get into the system. When this happens you will have to go to the system
administrator and have it deleted. You can then login and reset it. Some
administrators assign you a temporary password "dummy" until you reset
it. This is just to let you know that it shouldn't happen again.

Using the password is automatic once it has been set. Each time you
login, the system will ask you for your password. You in turn must provide
it or the system will not let you login.

Example:

UNIX -> login:
user -> dick<r>
UNIX -> passwd:
user -> enter password, but it is not

echo'd
UNIX -> $ you are now in UNIX and

ready to go

IF you enter an incorrect password, the system will ask you to login
again.

UNIX Command Format 7

2.2. UNIX Command Format

Now that we are in the system we must know how to use it. We have
at our disposal commands that perform various functions. These functions
will be explained in detail in the later chapters. However we must know
the format for them and a little about what they do. A UNIX command
is simply a single word (the command itself) starting in column one and
followed by a return "<r>" or a set of one or more arguments telling the
command more about what it is to do. For example the "login and passwd"
were both UNIX commands.

As we saw, the simplest command is a name followed by the return
key. If arguments are required they follow the command separated by one
or more blanks (i.e., command argl arg2 ...). Lets now define the mean­
ing for the syntax of a command (more on arguments later). For now we
will just assume that they specify additional information.

1) command
2) []
3)

The actual command (starting in column 1)
Anything inside the brackets may or may not exist.
The preceding argument can be repeated

Lets now look at some examples and what they mean:

command [argl arg2] Means that argl and arg2 may or
may not be used with this com­
mand.

command arg . . . Means that arg may be repeated
one or more times.

command [arg ...] Means that arg may be repeated
zero or more times.

command argl [arg2 ...] [arg3] Means that argl must exist, arg2
may be repeated zero or more
times, and arg3 may or may not
exist.

This is a very simple format and all of the UNIX commands will be
defined using it. Again the meanings of the arguments will be defined later.

8 Chapter 2

Next let's look at what happens when we make a mistake while enter­
ing a command. The UNIX system allows you to use the character "#" on
your terminal as a means in which to cancel the previous character just
entered.

Example:

user
user

- > pase#swo#d<r>
- > pese###asswd<r>

interpreted as "passwd"
interpreted as "passwd"

Sometimes we find that we have made too many mistakes and want
to start over again. We can do this by entering the character "Q". This
character eliminates everything entered on that line prior to the special
character "O" .

Example:

user ->
UNIX ->

piseworO deletes everything "pisewor"
no response, goes to new line

Thus we can override some characters or if the command is too messed
up, we can start over.

2.3. Exit UNIX

At some point you will be ready to quit using the UNIX system. You
can just leave, or you may want to logout (exit) UNIX (i.e., bring UNIX
back to the "login:" state).

There are several reasons why you should do this. The first is that
the system accounting may be recording your time on the system which
could result in a charge or questions of why you were on so long, and the
second reason is that someone else may want to use the terminal. To exit
the system you need only depress the control(cntl) key and the letter "d"
at the same time. It is best to hold down the cntl key and then depress the

Questions 9

letter d. This will result in the system responding with the login command
"login:".

Example:

user -> ctrl key + letter d
UNIX - > login:

If the system does not respond with "login:" then try again. Make
sure that you had not started a command before exiting UNIX or it may
not accept the exit command.

2.4. Summary

We have now learned how to enter the UNIX system, set and use
our password, a little about the UNIX command structure, correcting or
eliminating typing errors, and exiting the system.

We should now try logging into and out of the system and using a
password several times to assure ourselves that we understand it completely.

Once in the system you will find that the error messages provided are
somewhat cryptic. In other words they do not tell you in detail what you
did wrong. The most common error message provided by the system is
a "?" which simply says that you did something wrong. More on error
messages in the following chapters.

2.5. Questions

(1) If you do not have a login name on an available system and want one,
how do you go about getting it?

(2) How do you select a login name?

(3) How long (in characters) must a password be?

(4) What do you do if you forget your password?

10 Chapter 2

(5) What character or characters are used to separate the command and
its arguments?

(6) After entering a command, what must you do to invoke the command?

(7) How does UNIX tell you that the command issued was correct?

(8) What is the character used by the UNIX system as a prompt?

(9) If you enter an incorrect character what can you do to replace it with
the correct character?

(10) If you entered a command and it is not correct, what can you do to
correct it or replace it?

S. Creating and Maintaining Filas

3.1. Creating New Text Files

Next to the UNIX system itself, the "ed" editor is one of the most
important tools. Without it, it would be dificult to create and maintain
text files. The "ed" editor is a line oriented editor. That is, it only allows
the user to manipulate one or more lines of text or text within a line. A
line is the text entered until a "return key <r>" is struck. Text can be
entered in any format desired exactly the same as one would do using any
typewriter.

The "ed" editor has been designed to be used on any ASCII terminal.

11

12 Chapter 3

3.1.1. fuvoking ed Editor

The first step is to start the editor and then position it such that it is
ready to receive new text or modify existing text.

The format is to enter the command "ed" followed by one or more
blanks and then the name of your text file. This name can consist of any
legal name. A filename is limited to 14 characters. Most of the characters
available on your keyboard are usable, however it is in your best interest to
use combinations that are meaningful and in some way indicate what you
are doing. For example, the author has named this chapter of the book
"chapt3 _ ed". As you can see it will be very easy to locate this chapter
simply by referencing its name. We know that it is chapter 3 and references
theed editor.

Once the command and text file name have been provided simply
depress the return key. This will invoke the "ed" editor and will respond
by 1) typing a "?" followed by the name on the next line. This question
mark indicates that you have created a new text file which did not pre­
viously exist and contains no information. If a numeric (value) is returned
by the system, it indicates that this text file already exists and the value
represents the number of characters of text in this file.

Example:

Opening a new file

user -> ed letter<r>
ED -> ?letter

At this point you have created an empty file (i.e., no text). Always
remember to depress the return key (sometimes called the carriage return
key). In all the examples we will indicate the need to depress the return
key by the symbol "<r>". This is very important because nothing will
happen until you do depress it.

Opening an existing file.

user -> ed testdoc<r>

Append Mode 13

ED -> 1234

You have now requested an existing text file named "testdoc" contain­
ing 1234 characters of text. Remember that the name originally given the
file must be' used to recall it. You cannot enter any name other than the
name the file had been originally created with as in this case with the name
"testdoc". You will learn that the computer will only interpret input that
is exactly like that originally entered by you. Remember that commands
must always start in column one.

Now let's assume that we have created an empty file called "letter".
The first thing we will want to do is enter some text. To do this we must
enter the append mode.

3.1.2. Append Mode

To enter the append mode we simply enter the command "a<r>".
The system will return to a new line. No other indications will be given
that you are in the append mode. At this point you can start entering any
text just as if you were using a standard typewriter.

Example:

user -> a<r>
ED - > no response, only positions at

next line
user -> This is a test to see if I am<r>
user - > entering text in the file ' 'letter'' . <r>
user -> Once I have completed it I shall find<r>
user -> that I have created 4 new lines of data<r> .

At this point let's exit the append mode. There is only one command
that can be given. All other text will be entered as ordinary text to your
file.

The "exit append mode" is simply a ".<r>" (period followed by a car­
riage return). Remember that you must have previously struck the return

14 Chapter 3

key "<r>" before typing the exit command if any text was entered (i.e.,
must be first character on a line).

Example:

user - > that I have created 4 new lines of data. <r>
user -> . <r> This will exit the append

mode

If you had not struck the return key at the end of the last line of text
and instead struck the ".<r>", it would have resulted in the "." being
entered as text and the <r>would have positioned you to a new line.
However, you would still be in the append mode and any new text entered
would be accepted into your file.

3.1.3. Printing Text

Now that you have entered text into the file "letter", you may want to
see what you have entered. First you must position yourself to the first line
of text. This can be accomplished by entering the command "lp<r>".
This command will position you at the first line of your text and print
it. Then to print additional lines you need only depress the return key
"<r>".

Example:

Let's now print the 4 lines of text entered in the file "letter"

user -> 1p<r>
ED -> This is a test to see if I am
user -> <r>
ED -> entering text in the file ''letter''
user -> <r>
ED -> Once I have completed it I shall find
user -> <r>
ED -> that I have created 4 new lines of data.

Exiting the Editor 15

You may continue this until the end of your text. The editor will
respond with a "?" when the end of your text has been reached.

3.1.4. Saving Text

After entering the lines of text and viewing them you may want to
exit the editor. However before you do so, you must save your work. At
this point your text resides in a temporary area maintained by the editor.
To save your text simply enter the command ''w < r >" . This will save
your text in the previously named file "letter" and then respond with the
number of characters in your file.

Example:

user -> w<r>
ED -> 144

If the editor does not respond with the character count, be sure that
you are not still in the append mode, because your file was not saved. You
should get used to writing your text out to a file every now and then.
There are many reasons for wanting to do this, some of which are accidental
changes that destroy large parts of your file, forgetting to save your text
when finishing, etc.

3.1.5. Exiting the Editor

After being sure that you have saved your text you may want to exit
the editor. This is accomplished by entering the command "q<r>". This
command causes you to exit the ed editor and places you under the control
of the UNIX system. It is very important to remember where you are (i.e.
under control of the editor or UNIX). This is because the command struc­
ture used is different for UNIX and the editor even though they appear to
be very similar.

16

Example:(quit or exit the editor)

user ->
UNIX ->

3.1.6. Summary

q<r>
$

Chapter 3

back under UNIX control

We have now learned to create a new file, enter text, print it, save it,
and exit the editor. The key points are to make sure that:

1) When creating a new file, the editor responds with a "?". Otherwise
you are using an existing file.

2) When exiting the append mode you are positioned at a new line.

3) When saving your text, the editor indicates it has been saved by return­
ing the number of characters in your file.

4) When quitting the editor the UNIX prompt appears as "$",otherwise
you are still in the editor.

3.2. Maintaining Existing Files

Now that we have learned to create a new file, we can add to, delete
from, and modify the text in this file. Again we request the file in the same
manner that we did in creating it. However, this time we will expect the
system to respond with a character count instead of "?file name"

Example:

user -> ed letter<r>
ED -> 144

At this point you are now positioned at the last line of the file.

Adding to the End of Existing File

Maintaining Existing Files 17

One of the requirements you will have is to add new text to the end
of your existing file. To accomplish this you need only enter the command
"$p<r>" which causes you to be positioned at the end of your existing
text. Then you can enter the append mode command as in (section 3.2.2).
Once completed, you follow the same procedures (quit append mode, save
text, etc.) as defined in the previous section.

Example:

Adding new text at the end of the existing file "letter"

user -> $p<r> position to end of existing
text

ED -> that I have created 4 new lines of data
user -> a<r> enter append mode
user -> I will now enter two new lines of <r>
user -> text to see if it is accepted. <r>
user -> .<r> exit append mode

At this point the file will contain the previous text plus any new text
entered. It's probably a good idea to save your text using the command
''w<r>". You can review it by the same procedure defined in section
(3.2.4). When you first enter an existing file, you are automatically posi­
tioned at the last line. However it's a good habit to position yourself just
before you perform a task.

You should also be aware that when appending anywhere other than
the end of your file, new data will be inserted just after the point at which
you were positioned when you entered the append mode.

Example:

Printing old and new text

user -> 1p<r>
ED - > This is a test to see if I am
user -> <r>

18

ED -> next line

Chapter 3

This procedure is repeated
until a "?" appears indicat­
ing the end of the file

Our text will now look as follows:

This is a test to see if I am
entering text in the file "letter" .
Once I have completed it I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

3.2.1. Locating Text in a File

While the file contains only a few lines of text, it is not dificult to
find any given line by simply printing each line as previously described.
However, as the size of the file increases this may present problems. We
have already learned how to position ourselves at the beginning and end of
a file.

Example:

Position at beginning of a file (first line)

user -> 1p<r>
ED -> This is a test to see if I am

-> Position to end of a file (last line)
user -> $p<r>
ED -> text to see if it is accepted.

Although this gets us to the first and last line of our file, it does not
help if we need to locate text somewhere else in the file. One way is to
skip over lines of text until we find what we are looking for, but first we
need to know how to position ourselves. We have learned that "lp<r>"
indicates the first line and "$p<r>" indicates the end of the text. We can

Locating Text in a File 19

now begin to use the command ".p<r>" to print the current line we are
positioned at.

Example:

user -> 1p<r>
ED - > This is a test to see if I am

At this point if we depress the return key "<r>" it causes the next
line to be printed. However if we want to print the same line we can use
the command ".p<r>".

Example:

user -> 1p<r>
ED -> This is a test to see if I am
user -> .p<r>
ED -> This is a test to see if I am

This command is important because you can extend it to skip over
lines. For example if you want to skip forward in your file "letter" two lines
at a time, you simply modify your command ".p" by saying ".+2p". This
states that you want to position at the current line plus 2 and print it.

Example:

user -> 1p<r> position to first line
ED - > This is a test to see if I am
user -> .+2p<r>
ED - > Once I have completed it I shall find

You can then repeat this command which will print every other line .
. , You can then substitute any value in place of the 2 if you would like to

20 Chapter 3

skip more lines at a time. For example to skip 10 lines at a time you would

enter the command ".+lOp<r>". You can then repeat this command as

many times as you like. Once it reaches the end of the text the editor will

respond with a "?" indicating that it has reached the end.

Just as we skipped forward, we can skip backward by replacing the

plus sign "+" by the minus sign "-".

Example:

Position at the end of the file and skip backwards 2 lines at a time.

user -> $p<r> position at end of line

ED -> text to see if it is accepted.

user -> .-2p<r> position to last line minus
two.

ED -> that I have created 4 new lines of data.

This process can be repeated to continue skipping backward until the

first line in the file is located or passed. When this occurs the editor will

respond with a "?".

Later we will learn other ways of locating lines of text, but for now

this will be suficient for dealing with small files.

3.2.2. Inserting Text

There will be times when we have forgotten lines of text which must

be included. This can be accomplished by first positioning to the line just

past where you want to insert. Then by entering the command "i<r>" the

editor will place you in the insert mode. You can then proceed to enter new

lines of text. Each new line will be placed one after the other. Insertion

will start at the line prior to where you are positioned when entering insert

mode.

Example:

Insert two new lines just after the second line of existing text.

Deleting Text 21

user -> 3p<r> position after second line of
text.

ED -> Once I have completed it I shall find
user -> i<r> enter insert mode
user -> I am now inserting two lines of <r>
user -> text to demonstrate how it works. <r>
user -> .<r> exit insert mode

Notice that the command to exit the insert mode is the same as the
one for exiting the append mode. Our text will now look as follows:

This is a test to see if I am
entering text in the file "letter".
I am now inserting two lines of
text to demonstrate how it works.
Once I have completed it I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

3.2.3. Deleting Text

There will be many times when you find that text being entered is
not what you had intended or just that you have changed your mind.
When this happens you will need a way of deleting that text. This can
be accomplished by positioning yourself at the line to be deleted. Then by
entering the command "d<r>" you can delete the line. Notice that in the
append and insert mode you position just after or at the position whereas
to delete you position yourself at the line to be deleted.

Example:

Delete the two lines just previously inserted.

22

user -> 3p<r>

Chapter 3

position at first line to be
deleted

ED - > I am now inserting two lines of

user -> d<r> deletes line just printed

user - > d < r > deletes next line

Now that we have deleted the two lines we can look at the results. Our

text will now look as follows:

This is a test to see if I am
entering text in the file "letter".
Once I have completed it I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

3.2.4. Replacing Text

To replace a line we can use the two commands "delete and insert";

however, this same task can be accomplished using a single command

"change line". We first position to the line to be replaced (just as we would

for delete). We then enter the command "c<r>" and proceed to enter the

new line.

Example:

user -> 3p<r> position to line being re-
placed

ED -> Once I have completed it I shall find

user -> c<r> enter change (replace) mode
user -> After completion, I shall find <r>
user -> .<r> exit change mode

Changing Contents of Line 23

The change (replace) mode is exited the same way as append and in­
sert modes. The example shows only one line being added. As many lines
may be added as necessary or until the exit change mode ".<r>" is given.
The file will now appear as:

This is a test to see if I am
entering text in the file "letter".
After completion, I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

3.2.5. Changing Contents of Line

This command allows a line to be partially changed rather than com­
pletely re-enter it. You must position to the line to be changed as with
the replace or delete commands. Then you must provide the command
(substitute) followed by the text to be replaced and the text that is to
replace it, each separated by the seperator "/".

Format: s/old text/new text/

Example:

Restore line previously replaced to its original status.

user
ED
user

->
->
->
->

3p<r> position to line 3
After completion, I shall find
s/After completion,/Once I have
completed it/ <r>

At this point the line has been restored to its original state. To see
the resultes you may print the line by entering the command ". p < r >" or
you may add a letter "p" to the end of the substitute command "s/After
completion,/Once I have completed it/p".

24 Chapter 3

The file will now look as follows:

This is a test to see if I am
entering text in the file "letter" .
Once I have completed it I shall find
that I have created 4 new lines of data..
I will now enter two new lines of
text to see if it is accepted.

If you have to add text to the beginning or end of any single line two
special indicators are provided("-" for beginning and "$" for end). Notice
that the $which was previously used to determine the end of a file is now
used to determine the end of a line. The editor knows which way to use it
because of the context in which it is used.

Example:

Add the text "then" to the start of line three:

user -> 3p<r> position to line 3

ED -> Once I have completed it I shall find
user -> sJ- /Then /p<r>
ED -> Then once I have completed it I shall find

Notice that we left the word "Once" capitalized. We can correct this
by:

user -> s/0/o/p<r> substitute "o" for "O"
ED -> Then once I have completed it I shall find

This same format can also be used to enter text at the end of a line.

Changing Contents of Line

add "to my amazement" to the end of line three.

user -> s/$1 to my amazement. /p<r>
ED - > Then once I have completed it

-> I shall find to my amazement.

25

This allows you to add, delete, change anything within a single line. To
delete, do not provide a replacement argument. Be very careful when using
these substitutions. They must have the blanks exactly where they are
needed or the text will run together. If you are trying to do the examples
in this book and find that the count is different by one or two characters,
it's probably because you had more or less blanks or invisible characters
in your text than the examples do. Later on you will learn how to display
these invisible characters.

Example:

To delete the word "Then" from the third line.

user -> s/Then //p<r>
ED - > once I have completed it

-> I shall find to my amazement.
user -> s/to my amazement.//p<r>
ED - > once I have completed it I shall find

We have restored the line back to its original state with the exception
that the "O" on "once" must be capitalized. This could have been done
at the same time we eliminated "Then", or could be done at the end by a
simple substitute command "s/o/O/p<r>".

To substitute it at the same time as eliminating "Then", we would
enter the command "s/Then o/0/p<r>". The string must be exactly the
same as found in the file (i.e., if 2 blanks appear between "then and once"
the substitute must show two blanks). One other point must be clarified
before going on. The use of special characters must be treated in a special
way. They are the characters c-. $(* \&).

To make use of these characters we must place the backslash "\" in
front of the special character being used. In the case of the backslash

26 Chapter 3

character itself, we use a double "\ \" backslash to indicate a single one.
Remember this is done only when you want to treat the special character as
part of your text. Otherwise it has a special meaning to theed editor(i.e.,
- and $as explained earlier).

3.3.6. Using Line Numbers

To this point we have dealt primarily with single line commands. We:
have however shown several examples that deal with line numbers. As you
remember, the commands lp, 3p, $p (line 1, line 3, last line) all dealt wi~h
specific lines. Now we will explain in greater detail the use of line numbers.
We must specify a range (line n to line m) where n is the starting line
number and mis the ending line number. Thus for a complete file we need
only state "1,$" which indicates starting at the first line and ending at the
last line. Then to create a listing of the entire program we need only state
"1,$p<r>" which will cause all lines of the file to be printed out.

user -> 1,$p<r> it is assumed that the file has
been opened

ED - > This is a test to see if I am
-> entering text in the file ' 'letter• • .
-> Once I have completed it I shall find
-> that I have created 4 new lines of data.
-> I will now enter two new lines of
-> text to see if it is accepted.

Thus, if we know the line numbers we can create a listing of only that
part of our file we require.

Example:

user -> 4p<r> positioned at the 4th line

We can tell what line number we are positioned at any time we choise.
This can be accomplished by using the command ".=p". The editor will
respond with the current line number.

/
/

/

Example:

user
ED

-> .=p<r>
-> 5

Printing 27

print line number
line number at which cur­
rently positioned

This can be helpful after making numerous changes to the file. We can
view several lines by providing the range "from, to" . We can also use the
current line indicator "." in place of the from/to number.

Example:

user -> . ,$p print from current location to
end of file with line numbers

ED - > I will now enter two new lines of
-> text to see if it is accepted.

Now that we can use line numbers, let's explore how they can be used
with several of the commands we have already been introduced to.

3.3.7. Printing

We have shown how one can print the entire program by first position­
ing to the start using "lp<r>" and then printing each line by striking the
return key <r>. Now we can print any part of our file or the complete
file by simply adding the "from, to" range.

Example:

user
user

-> 1,$p<r>
-> . ,$p<r>

print entire file
print current location to the
last line in file

28 Chapter 3

user -> 5,10p<r> print only lines 5 through 10

Remember that anytime you give a range that's beyond the text avail­
able in your file, the editor will respond with a "?". In fact, whenever there
is a command sequence it does not understand it will respond with a "?".
It will then be up to you to figure out what is wrong.

We can actually include the plus (+) and minus (-) in the line number
expression from/to.

Example:

user -> .+Sp<r> print the 5th line past the
current position

user -> .-Sp<r> print the 5th line preceding
the current position

user -> $-5,$p print the last 5 lines of the
file

user -> . ,$-10p print from current position to
10th line from end

As can be seen from this example we can print any combination of
lines we desire. This same capability is also available on all of the following
commands in this section.

3.3.8. Deleting

As with the print command we can delete any combination of lines
using the same syntax, but instead of the "p" you replace it with a "d".

Example:

user
user

-> 1,$d<r>
-> . ,$d<r>

would delete entire file
would delete from the current
location to the end of the file

Searching 29

user -> 5,10d<r> delete lines 5 through 10
user -> .+Sd<r> delete the 5th line after cur-

rent
user -> .-Sd<r> delete the 5th line preceding

the current line
user -> $-5,$d delete the last 5 lines of the

file
user -> . ,$-10d delete from current position

to 10th from end

It is very easy to delete lines; however, one must be careful that lines
are not accidentally deleted. We described the write command (w) earlier.
This command can be issued at any time during the creation and main­
tenance of the file.

This should be done from time to time for a number of reasons. One
reason is to save work prior to complex changes. For example, if you are
going to delete various lines of text, then a simple write command will
assure you that all changes made prior to this can be saved. Remember
that while you are adding text, deleting text, etc., you are always writing
in a temporary file and not until you issue a write command will it be made
permanent.

3.3.9. Searching

Now we will discuss how to locate strings of text in a file other than by
skipping through the file using the line control described in section (3.3.6).
With the line control range "from/to" we can now define how one can locate
any string of characters in a file. It is similar in syntax to the substitute
command except that there exists only one argument enclosed in "/". The
format is "/text/ <r>". This will cause the editor to search for the exact
text pattern in the file. The editor will then stop at that line where the
text pattern was found and print it.

Example:

Locate the text "I have completed it"

user -> /I have completed it/ <r>

30 Chapter 3

ED -> Once I have completed it I shall find

One can search for subsequent occurrences by simply entering the

characters "/ /" and striking the return key.

Once something else is performed (i.e., substitute, delete, etc.) the

complete pattern must be reentered.

Example:

Locate all occurrences of "new line"

user -> /I have/ <r> initiate search
ED - > Once I have completed it I shall find

user - > I I< r>

If the "// <r>" is repeated it will eventually return to the first occur­
rence. This is because once it reaches the end of the file, it starts over again
from the beginning of the file. So in the previous example if the return key
is struck one more time, the results would be:

user -> I l<r>
ED -> Once I have completed it I shall find

If there had been another occurrence of this text, the editor would

have located and printed it. Since no other occurrence existed, the editor

found the same occurrance as before. We have now learned a new way to

locate text strings in our files. Next we will see how we can replace a text

string for multiple occurrences by using a single command.

3.3.10. Substitute

Earlier we described the use of the substitute command on a single

line. Now let's explore the use of it across several lines or more. The only

Substitute 31

difference between the single line use and multiple use is that we provide a
range "from, to" in front of the substitute command, and a "g" (for global)
at the end. Thus the syntax from our previous example would be:

user - > 1, $s/ after completion/Once I have
-> completed it/g<r>

ED - > There is no response from the
editor

The editor will locate all occurrences of "after completion" and replace
it with "Once I have completed it", but there will be no indication that it
was completed.

Notice that the range "1,$" can take on any of the characteristics
shown in the previous examples of print, delete, change. It is important
to remember the "g", because without it the editor will only look for all
occurrences on the line where you are currently positioned. It is important
to note that the "g" can appear at the beginning or at the end of your com­
mand. Hit appears at the beginning, it will make all the changes on that
line where you are currently positioned. H, on the other hand, it appears
at the end of the command, it will make all the changes within the range
of lines you specify. As with the search command, the text string to be
matched must be identical. H capital letters are used, or blanks, they must
be included. The global substitute just described changes all occurrences
in the range specified without user intervention. However, there may be
occasion when you want to change only selected occurrences. This can be
accomplished in one of three ways. The first is to use the search command
to locate an occurrence of the string and then use the single line substitute
command. However this will require entering both commands for as many
occurrences as exist. We could also use the global substitute (if the number
of occurrences we do not want changed are few). However in either case,
it requires more effort than should be necessary. In place of these other
two solutions, we can use a special conditional substitution which works
the same as the global substitute just shown except that it stops at each
occurrence and waits for a response from you. You can then indicate that it
is to be changed or left the same. As soon as you have made your decision,
the editor moves to the next one and again waits.

32 Chapter 3

Example:

Change all occurrences of "r' to ''you" in the file "letter"

user ->

ED ->
->
->
->
->
->

1, $x/I/you/gp<r> x stands for conditional com-
mand.

this is a test to see if you am
entering text in the file ' 'letter' ' .
Once you have completed it you shall find
that you have created 4 new lines of data.
You will now enter two new lines of
text to see if it is accepted.

Change all occurences of "you" back to "r'

user -> 1,$x/you/I/gp<r>
user -> 1,$p<r>
ED - > This is a test to see if I am

- > entering text in the file ' 'letter' ' .
-> Once I have completed it I shall find
-> that I have created 4 new lines of data.
- > I will now enter two new lines of
- > text to see if it is accepted.

Both global substitute commands are very useful when a string must
be changed throughout a large text file.

3.2.11. Change Command

As with the other commands, the change command may contain a
range (from, to). This range will cause those lines to be deleted, and the
editor will then wait for new text to be entered. Once a ".<r>" is en­
countered by the editor it exits the change mode and awaits a new com ..
mand.

Moving Text 33

Example:

Remove 4 lines of text and replace it with 2 lines of text. The file
looked as follows prior to the change command:

This is a test· to see if you am
entering text in the file "letter".
Once you have completed it you shall find
that you have created 4 new lines of data.
you will now enter two new lines of
text to see if it is accepted.

user -> 3,6c<r>
user -> This is line 1 replacement
user -> This is line 2 replacement
user -> .<r>
user -> 1,$p<r>

<r>
<r>

ED -> This is a test to see if you am
-> entering text in the file •'letter''.
-> This is line 1 replacement
-> This is line 2 replacement

This command is useful when several lines must be replaced rather
than just changed.

3.2.12. Moving Text

Quite frequently you will find it necessary to move one or more lines to
another location in the text. This can be accomplished by use of the move
command (m). You must specify the range (from,to) lines to be moved,
followed by the move command (m) and it in turn followed by the line
number where the text is to be moved to (i.e., "from,to m where").

The from, to range represents the lines to be moved. The "where" line
indicates that the text will be moved, starting after that line.

34 Chapter 3

Example:

Move lines 1 and 2 to the end of the file (letter)

Prior to the change command, the file "letter" looks as follows:

This is a test to see if I am
entering text in the file "letter" .
Once I have completed it I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

user -> 1,2 m $<r>

The file "letter" looks as follows after the move:

user -> 1,$p<r>
ED - > Once I have completed it I shall find

-> that I have created 4 new lines of data.
-> I will now enter two new lines of
-> text to see if it is accepted.
-> This is a test to see if I am
-> entering text in the file ' 'letter' ' .

& we can see by this example, we can move any amount of text to

another place in the file by use of this command. This is generally known

as cut and paste, because we are taking (cutting) text from one part of the
file and puting (pasting) it in another part of the file.

3.2.13. Write File, Read File

There will be times when text from a particular file will be used in

other files and possibly within the same file. The write command allows

Write File, Read File 35

you to save the entire file or any part of that file in another file. You can use
the read command to read any existing file into the file you are currently
editing.

The command to write out the current file you are editing is ''w". We
have already used this command when saving our file. However when using
the ''w" by itself we are saving our text into the file having the same name
as we used in invoking the file. To write the current file being edited to
another file having a different name, we simply enter the write command
followed by one or more spaces and the name of our new file.

Example:

Let's assume we are currently editing the file "letter" and we are about
to make some major changes. Ifwe think that it is wise or necessary to save
the text as it currently exists we can simply enter the following command:

user
ED

-> w temp<r>
-> 272 The number of characters

written

The new file "temp" now contains the same text as does "letter".
However once the file "temp" has been written out, any changes to "letter"
will not be reflected in "temp".

Example:

Another case is where you want to save only part of the current file
being edited. This is done using the same command as before, except that
you specify the from/to range as used on other commands(i.e., p,d,s,etc.).

Using the same example as before, but writing out only the first 3 lines
we would say:

user -> 1,3w temp<r>

Remember that in both examples, if anything existed in the file "temp"
it will be replaced by the the write ''w" command upon execution. The
new file "temp" will look as follows:

36 Chapter 3

This is a test to see if I am
entering text in the file "letter".
Once I have completed it I shall find

Now let's look at how we can read these files and place the text from
them into the current file being edited. We have two formats for reading
text into the file being edited. The first is just an "r file" which will read
the complete file and append it to the end of the file being edited. The
second format is to position yourself to the line in your current file and
issue ".r file". This command will read the complete file and append it just
after the current position(specified by ".").

Example:

Let's read the 3 lines of text just saved in the file temp and place it
at the end of the file letter. The current file "letter" looks as:

user
ED

This is a test to see if I am
entering text in the file "letter".
Once I have completed it I shall find
that I have created 4 new lines of data.
I will now enter two new lines of
text to see if it is accepted.

-> r temp<r>
-> 99 number of characters just

read

The file now looks like:

user -> 1,$p<r>
ED - > This is a test to see if I am

The Undo Command "u" 37

-> entering text in the file •'letter••.
-> Once I have completed it I shall find
-> that I have created 4 new lines of data.
-> I will now enter two new lines of
-> text to see if it is accepted.
-> This is a test to see if I am
-> entering text in the file ''letter••.
-> Once I have completed it I shall find

Again remember that until we write the current file out, what we see
here is only in a temporary buffer. Now to read the same lines in, but just
after line 3, we will say:

user -> 3p<r> position to line 3
ED -> Once I have completed it I shall find
user -> .r temp<r>
ED -> 99 number of characters just

read in
user -> 1,$p<r>
ED -> This is a test to see if I am

-> entering text in the file ''letter'•.
-> Once I have completed it I shall find
-> This is a test to see if I am
-> entering text in the file ''letter••.
-> Once I have completed it I shall find
-> that I have created 4 new lines of data.
-> I will now enter two new lines of
-> text to see if it is accepted.

The write and read commands can be very powerful when you need to
save parts of an existing file and later use them in a new file.

3.2.14. The Undo Command "u"

There will be times when you find that a change you just made was
not necessary or wrong. The Undo command "u" can be used to restore the
line just changed to its previous state by typing the command "u<r>".

38 Chapter 3

Example:(restore achanged line to its original state)

We have a line of text as follows:

I will now enter two new lines of

And we change it as follows:

I wil not want to new lines of

Now to change it back without having to retype it we say:

user -> u<r>
ED - > I will now enter two new lines of

This command can only be used immediately after making the

changes. If you go elsewhere within the file and do something else you will

find that entering the command "u" will have no effect on the previous

change. In fact, it will change the current line that may have just been

edited.

3.3. Special Uses

There are many special ways in which the editor can be used. As
you use it try different things and see how they work. In this section we

will provide you with a few ideas of things that can be done.

3.3.1. The List Command "l"

The editor provides two commands for printing the contents of the

lines you are editing. We have already described one of them which is

"p". The second command "l", meaning list, provides more information

than can be obtained by using the "p" command. Its main attribute is

that it makes characters that are normally invisible, visible, such as tabs

and backspaces. In addition to this, the "l" command will fold long lines

for printing. For example any line that exceeds 72 characters is printed

on multiple lines. To tell that it was folded and where it was folded, a

backslash "\" is inserted at the end of each part of a line folded.

Use of Metacharacters 39

Some of the invisible characters are:

o tab - printed as >
o backspace - printed as <
o form feed - printed as 014
o vertical tab - printed as 013
o bell - printed as \ 07
o new line - printed as \n

Generally when these special characters appear, it is because you
have accedently typed one of these characters.

Example:

user -> 1,$l<r>
ED - > This is a test to see if I am>

-> enterin\07g text in the file •'letter••.
-> Once I have completed it I shall find
-> This is a test to see if I am
-> entering text in the file ••letter••.

We have two invisible characters in this file. The first is a tab ">"
and the second is the bell character "\07". We would have never known
they were there if not for the "l" command.

3.3.2. Use of Metacharacters

You were previously introduced to certain characters that have
special meanings when they occur on the left side of a substitute command,
or in a search for a particular line. These special characters are often called
metacharacters.

The Metacharacter "."

This character when used on the left side of a substitute command,
or in a search, stands for any single character.

40 Chapter 3

Example:(represent a any single character)

Find an occurrence in the file "letter" that contains "e" and "t"
separated by any single character.

user -> /e.t/<r>
ED - > This is a test to see if I am
user - > I I< r >

-> EDentering te:x:t in the file •'letter'•.

We can see by this example that the first occurrence is the word
"test" with the "e. t" being the "est". The next occurrence is on the next
line and is the word "entering" with the "e. t" being the "ent" .

This command is useful when dealing with invisible characters as
we defined in section 3.4.1. If, for example, we have text which contains
one of these invisible characters, we can get rid of it by substituting as
follows:

Example:

We have a line which contains the bell character "\07".

the line of text is:

enterin\07g text in the file "letter".

user -> s/enterin.g/entering/p<r>
ED - > entering te:x:t in the file • 'letter• ' .

Notice that the bell character appears as three characters "\07".
However it is actually only represented as a single character internally and
the "." will work.

You must make sure that the "." metacharacter is used properly.
Since it matches any character, you must be sure that the pattern is exact
or the results may not be what you intended.

The Metacharacters " [] " 41

3.3.2.1. The Metacharacter "*"

The metacharacter "*", or star, is used to indicate that a character
followed by the "*" is to stand for any characters following.

Example:

If we have a large number of spaces between some text, we can
suppress the spaces to a single space by saying:

The text is: "The file as we know it."

user -> s/e *as w/p<r>
ED -> The file as we know it.

3.3.2.2. The Metacharacters "[]"

The metacharacters "[]" allow you to specify a number of charac­
ters that you may want to recognize when performing an operation.

Example:

The text is:

1 The cat is yellow
2 Why do you care
3 How is it going

user - > 1, $s;- [0-9] I lp<r>
ED - > The cat is yellow

- > Why do you care
-> How is it going

42 Chapter 3

As we can see from this example we can delete any digit that ap­

pears at the beginning of a line. The characters in the brackets are refered

to as a character class which can be used in place of a series of single

commands.

3.3.2.3. The Metacharacter "&"

The metacharacter "&" is used primarily to save typing.

Example:

user
ED

If we have a line of text:

"This is how the Gauthier's recognize their dog."

We could change this to say:

"This is how the Gauthier's can recognize their dog."

by entering the command:

-> s/Gauthier 's/Gauthier 's can/p<r>

-> This is how the Gauthier's can recognize their dog.

We should not have to repeat the name Gauthier's and this is where

the "&" can be used to replace it.

user -> s/Gauthier 's/&: can/p<r>
ED - > This is how the Gauthier's can recognize their dog.

3.3.2.4. The Metacharacters "$, -"

We have already talked about the metacharacters "$ and _,,. But

for a quick review we will show a couple of examples.

Summary 43

The "$" depending on how it is used can indicate the end of your
file, or the end of a line. When used as a range (line 1 to line $) it is clear
that we are talking about the end of the file "l,$p" will print the entire
file. However the command "s/$/./p" will indicate that the period "." will
be placed at the end of the current line.

Example:

line of text:

this is the

user -> s/$/end of line/p<r>
ED - > this is the end of line

The metacharacter "-" is the same as the "$" except that it indi­
cates the beginning of a line instead of the end. By reversing the previous
example we can see:

The line of text is:

end of line

user - > sr /this is the/p<r>
ED - > this is the end of line

3.4. Summary

As we stated before, the editor is one of the most important and
most frequently used commands. Without it you will not be able to create
and maintain files.

We have not been able to show all the possible ways in which you
can use this editor. The best way to learn is to try different things and see
if they work. In our examples we have shown the log form of how each
function works. Try taking short cuts (assume that the editor understands
some of the information already) and see what happens.

44 Chapter 3

3.5. Questions

(1) When you invoke a file using "ed", how can you

a) tell if it's a new file?

b) tell that it's an existing file?

(2) When entering the append mode, where do you start adding data?

(3) How do you exit the append mode?

(4) For each of the following commands, describe:

- how it is invoked

- how you exit from it (if appropriate)

- what its function is

- what change takes place (position)

a) append

b) insert

c) change

d) delete

e) print

(5) What is the procedure for replacing part of a line of text?

(6) What is the procedure to save text once it has been entered?

How do you know that it has been saved?

(7) what command is used to exit the editor?

(8) What is the command used to print the entire file?

(9) What indication is given (if any) when the end of the file is reached?

(10) What is the meaning of each of the following characters:

a)$

b) ~

c) *

Questions 45

d) g

e) ?

(11) Describe the function performed by each of the following commands:

a) .=p

b) .-lp

c) .+lp

d) .p

e) 1,3c

new line of text

f) .,.+3d

g) /The/

h) s;- /The/p

i) l,$w newfile

j) s/$/$/p

k) gs/you/1/p

1) s/I/you/pg

4. The UNIX File System

Now that we know how to log into the UNIX system and create

files, we should know a little about where we are and what we can do.

The UNIX file system is a hierarchical file system and plays a

very important role in the overall usage of the system. The user has access

to 3 kinds of files: ordinary disk files, directories, and special files.

Ordinary files are those created by the user as we defined in

chapter three. They contain whatever information the user places in them.

A file of text consists simply of a string of characters. They may represent

normal text such as documents, computer programs, or whatever else the

user may want.

Special files constitute the most unusual feature of the UNIX

file system and will be described in more detail in chapter 9.

Directories provide the mapping between the names of files and

the files themselves, and thus induce a structure on the file system as a

whole. The system maintains several directories for its own use. One of

these is the root directory. All files in the system can be found by tracing

a path through a chain of directories until the desired file is reached. The

starting point for such searches is often at the root. Each user generally

has a directory assigned by the systems administrator. This directory is

known as the user root directory for that particular user. This root direc-

46

The UNIX File System 47

tory differs from the system root directory in that it is used by that user
only. This is accomplished by the fact that the file system is hierarchical
in its structure. The following example shows its format.

t

System root directory

I
!

User root directories

User root directories

figure 4.1

~

The example above shows only one level of the file system (i.e.,
root, and user roots). Each of the user roots in turn can have subdirectories.
The user who owns that particular user root may set up any number of
files and subdirectories within their own root directory.

User root directory

I
t !

Directory A Directory B

I l t t
File_1 Directory A.1 File_2

figure 4.2

The number of files and directories available to each user is only

48 Chapter 4

limited by system parameters for all files and directories. This is not the

concern of the user but of the system administrator. If the system runs

out of space, it is the duty of the administrator to see how it can be fixed,

which might include requests to the users to eliminate files or directories.

See chapter 9 on the duties of the system administrator.

As we can see from the file system in figure 4.2, we have a user

root directory and under it two subdirectories(directory A and directory

B). Then we find a file and directory under directory A and a file under

directory B.

When the user logs into the system (s)he is positioned at his/her

root directory. Then from this directory (s)he can move to any subdirec­

tories or files.

In figure 4.2 , once logged in the user has access from his/her

root directory to directory A or B. Once moved to directory A the user

has access to file_l or directory A.1. Notice that the user does not have

access to file_l directly from the root directory. (S)he must first position

to directory A. Thus a user has immediate access to any file directly under

a given directory, but to access files under subdirectories it is necessary to

position to that subdirectory prior to accessing the file.

This leads us to the definition of a "pathname". A pathname is

a series of directory names separated by "/" and ending in either a directory

name or a file name (depends on its usage).

Now let's look at all the legal pathnames that may exist in

figure 4.2.

Let's say the user login name is "dick" and that his root direc­

tory is "dick" . Then the pathnames available to him under his root direc­

tories are:

A

B

A/file_l

A/A.1

B/file_2

Notice that the user root directory "dick" is not included in

the pathnames. This is because it becomes the base and everything else is

Knowing Where You Are 49

an extension of this base. Thus in order for us to access file_ 1, we must
position ourselves at directory A and then we have access to it. Remember
that we cannot include a file name in a path unless it is the last name in the
path and even this depends on how the path is used (more on this later).

The "/" character used to separate pathnames is to be used
very carefully as it can be interpreted in several ways.

For example a pathname not started with a "/" causes the sys­
tem to begin the search in the user's current directory. If the user is in
his/her root directory then the pathname A/A.l will start looking for the
directory A in the root directory "dick" and then look for the directory A. l
in the directory A.

If you are looking for a directory or file and the pathname you
gave is incorrect, the system will respond as:

path ->
UNIX ->

->

A/A.2
A/A.2: bad directory
$

The system simply prints the pathname you requested and the
message "bad directory" .

4.1. Knowing Where You Are

When you get a message telling you that a pathname is bad,
and you know it exists, you will want to try to find it. The first UNIX
command we will use once logged into the system is the command "pwd"
which when issued provides you with the pathname specifying where you
are.

Command: pwd

Syntax: pwd

Function: Prints the pathname of the current directory.

50

Example:

user ->
UNIX ->

->

Chapter 4

Let's say we are positioned in directory A.1

pwd
/dick/A/A.1
$

Notice that the pwd command provides the complete pathname
including the user root directory. If there was a file system directory it
would also be provided. This is useful when you are not sure just where you
are and need this information to get back to another directory. The file
system directory is controlled by the system administrator and should not
cause you any trouble. However you must know that it exists if you want
to use a complete pathname to get to a particular directory. The "pwd"
command will provide you with all the information necessary to allow you
to use a complete pathname.

Example:

user ->
UNIX ->

->

pwd<r>
/usr/dick/A
$

let's say that the file system direc­
tory name is "usr" . Then to see
our current directory "A.1" we
will say:

assuming that we are in A

In this case, as in the previous case, we see that the "/" is at
the start of the pathname. This indicates that the system will start search­
ing from the system root directory and not from your user root directory .
. hr If we were to issue the command "pwd" just after login, we would see
"/usr/dick" displayed as our current pathname.

Changing Directories 51

4.1.1. Contents of a Directory

Next we will want to see what files and directories we have in
our current directory. To see what the names are in our current directory
we can issue the command "ls" . This command will give us a list of all
names in alphabetical order.

Example:

user ->
UNIX ->

->
->

ls<r>
A
B
$

Currently positioned in the direc­
tory / usr /dick

As we can see only the names are provided. We must remember
which are directories and which are files. Again, as we stated before, only
the directories and files directly under the current directory are shown. In
other words files 1 and 2 and directory A.1 are not shown.

4.1.2. Changing Directories

To enable us to see the files and directories at the lower levels,
we can use the command "cd pathname". This will position us at the
directory whose name was the last one in the pathname(i.e., /usr/dick/A
would result in the system being positioned to directory A). If we know
where we are, we do not have to provide the complete pathname, only the
extension from where we are to where we want to be.

Example: After login see where we are, list
names in current(working) direc­
tory, and change to one of the
subdirectories.

52

user ->
UNIX ->

->

user ->

UNIX ->
->
->

user ->
UNIX ->
user ->
UNIX ->

->
user ->
UNIX ->

->
->

pwd<r>
/usr/dick
$

ls<r>

A
B

$
cd A<r>
$
pwd<r>
/usr/dick/A
$
ls<r>
A.1
file_1
$

Chapter 4

get current pathname
current directory

list names in current direc­
tory

change to directory A
ready for next command
see where we are
current directory

list names in directory A

We can now see where we are in our file system, see what direc­
tories and files we have in our current(working) directory, and change to a

new directory. Let's now look at how we can change to a directory that is

not a subdirectory to the one we are currently positioned in. To be sure,

we can always provide the complete pathname to the directory we want.

However there are shorter ways to describe it. In the previous example we

positioned ourselves in the directory A. The only directory we can change

to going forward (next subdirectory) is directory A.l. However if we want

to go to directory B we will have to state the complete pathname. Let's

look at the different ways in which we can change to another directory

regardless of where it is.

Example: Changing to another directory

Directories and Files 53

user -> pwd<r>
UNIX -> /usr/dick

-> $
user -> cd A/A.1 change to directory A.1
UNIX -> $ now positioned at A.1
user -> cd ./ change back to A
UNIX -> $ now positioned at A
user -> cd ./B change to directory B
UNIX -> $ now positioned at B
user -> cd ./A/A.1 change back to A.1
UNIX -> $ now positioned at A.1
user -> cd ./. ./ change back to dick
UNIX -> $ now positioned at dick

As you can see from the various ways of changing directories,
it could be very easy to get lost. Just remember that anytime you are not
sure where you are, you can issue the "pwd" command.

Also as can be seen from the examples shown, you must always
provide a direct path to a given directory. In the example "cd .. /B" you
see that you had to go back to the directory dick (i.e., .. / takes you back
one directory) and then forward to the directory B. This is because there
was no other way to get to the directory B.

4.2. Directories and Files

Earlier we saw that the command "ls" would provide us with a
list of the names of directories and files in the current directory. However
it did not tell us which ones were directories and which ones were files. We
can extend the command "ls" by adding an argument that will provide us
with additional information. By adding the argument "-1" (the letter 1) to
the ls command we will be provided with the following information.

Example:

user -> ls -l<r>

54

UNIX -> total 2

-> drwxrwxr-x

-> drwxrwxr-x

-> $

2
2

Chapter 4

dick
dick

32 Dec 30 18:54 A
32 Dec 30 18:55 B

There is much more information here then we need at this time,

but let's quickly review it.

o The d indicates that this entry is a directory

o The rwxrwxr-x specifies permissions(more later)

o The 2 specifies the number of links(more later)

o The name dick specifies the owner of the entry

o The value 32 is the size in characters

o The next entry is the date last modified

o The name A or B is the name of the directory

The main thing to remember for now is that the "d" indicates

that the entry is a directory. If it had been a file, then the "d" would have

been replaced with "-". The other is the name of the file or directory. The

remaining items in the entry will be explained later.

4.2.1. Creating and Deleting Directories

To this point in the discussion, we have assumed that the direc­

tories were always there. However the only directory available for a new

user is the user root directory created by the system administrator. Any

other directories under this root directory must be created by the user,

and when the user is finished with them (s)he must delete them, or just

let them exist unused. To create a new directory a user must postion to

where the directory is to be created. In the case of a new user it is not

necessary, because the only directory that exists is his/her root directory.

Once positioned to where the directory is to be created, the user enters

"mkdir directory name" .

Command: mkdir

Syntax:

Function:

Option:
Example:

user ->
UNIX ->
user ->
UNIX ->
user ->
UNIX ->

->
->

Creating and Deleting Directories 55

mkdir directory ...

The command mkdir (make directory) creates one
or more new directories.

No options exist for this command.
For a new user create directories A and B

mkdir A B<r>
$ Indicates directories created
pwd<r>
/usr/dick
ls<r>
A
B
$

The new directories would appear as follows:

User root directory

I
t •

Directory A Directory B

figure 4.3

Notice that after the directories are created you remain in your
current directory. The directories A and B have been created and to use
them you must change directories(cd) to one of them. Once changed you
may create new directories or files under them. You do not have to create
all directories at once. You may create them anytime, as you need them.

56 Chapter 4

There will be times when you are permanently through with a
directory. When this happens you should delete it. This is because it does
take space in the system and the system storage could fill up if no one
ever deleted their files and directories. To delete a directory you must be
positioned in the directory that references the one to be deleted. In the
previous case we created two directories A and B and were positioned in
the user root directory(see figure 4.3). So to delete the directories A and B

we first make sure that we are in the root directory "/usr/dick". Now we
simply say "rmdir directory name".

Command:

Syntax:

Function:

Option:
Example:

user ->
UNIX ->

user ->
UNIX ->

->

user ->
UNIX ->

rmdir

rmdir directory .

The command rmdir(remove directory) does just
what it says; it removes one or more directories
from the system. You must be sure that when you
remove a directory no files or subdirectories exist
in the directory being deleted.

No options exist for this command.
Remove directories A and B

rmdir A B<r>
$ indicates directories have been

removed
pwd<r>
/usr/dick
$ ready to accept next com-

mand
ls<r>
$ indicates nothing in root

directory

Once the directories A and B have been deleted, your root direc­
tory is the only one remaining.

Creating and Deleting Directories 57

User root directory

figure 4.4

As we can see from figure 4.4, the only thing that remains is
the root directory for "dick". We do not ever want to delete our own
root directory. If we do, we will not be able to login again. This will be
better understood when you read chapter 9 on the duties of the system
administrator.

58 Chapter 4

4.2.2. Removing Files

We have discussed the creation and deletion of directories(mkdir,
rmdir) and a way of creating files(ed editor). Now we will show one way
of deleting files. Thus we will be able to create and delete both directories
and files. To delete a file we must position ourselves in the directory where
the file exists and then simply issue the command "rm filename".

Example:

Let's say we have created the files filel and file2 both under our
root directory.

User root directory

I
~ t t

File1 File2 File3

figure 4.5

user -> rm file1 file3<r>
UNIX -> $ files removed
user -> pwd<r>
UNIX -> /usr/dick

-> $
user -> ls<r>
UNIX -> file2

-> $

We can see from these examples that the creation and deletion
of both files and directories are performed in a similar way. In other words
in all cases you must be positioned in the correct directory, and the only

Permissions 59

indication from UNIX that it has performed its task correctly is the prompt
sign "$". If it had not performed its task, it would have issued one of the
following diagnostics depending on the command issued.

If it doesn't exist(wrong directory or name)
"rm: filename nonexistent"
"rmdir: directoryname nonexistent"
If you do not own the file or directory
"rm: filename non-existent"
"rmdir: directoryname non-existent"

4.2.3. Permissions

At this point we have not talked about permissions, that is who
can read and/or write on a file. This is very important, because you can
get in a lot of trouble if you try to access something that you do not have
permission to see. Remember earlier we showed you how to tell a directory
from a file. There was some other information there that was not necessary
at the time; however, now it is appropriate to know a little more about it.
Let's start by reviewing the example in section 4.2. By using the "ls -1"
command we can see the information we need.

Example:

user -> ls -l<r>
UNIX -> total 2

-> drwxrwxr-x 2 dick 32 Dec 30 18:54 A
-> drwxrwxr-x 2 dick 32 Dec 30 18:55 B
-> $

We have already explained some of the information, but let's
quickly review it again.

o The d indicates that this entry is a directory

60 Chapter 4

o The rwxrwxr-x specifies permissions
o The 2 specifies the group
o The name dick specifies the owner of the entry
o The value 32 is the size in characters
o The next entry is the date last modified
o The name A or B is the name of the directory

What we need to understand is just what the permissions(rwxrwx ..)

mean. UNIX provides three(3) levels of protection to each owner of a file

or directory. They include:

o read/write/execute permission for the owner
o read/write/execute permission for the group
o read/write/execute permission for all others

First let's understand who the owner, group, and others are and

how and where they are set.

The owner is the one who is logged in. In our previous examples

"dick" was the one logged in and is the owner of all files and directories

created by him. Thus when a "ls -1" command is issued the owner's login

name will appear immediately after the permissions and group number:

drwxrwxrwx 2 dick 32 Dec 30 18:54 A

I Owner (login name)

Group number

Permissions

Now let's look at the specific meaning of the permissions. If

we read from left to right we will see three (3) sets of "rwx's". The first

group is the read/write/execute permission for the owner, the second group

is the read/write/execute permission for the group, and the third is the

Permissions 61

read/write/execute permission for all others. These permissions can be set
by the system and by individuals (owners, groups, etc.). How we set them
will be described in more detail in chapter 5. We can now see each of the
permissions and their meanings.

drwxrwxrwx 2 dick

I Owner

Group

All others

32 Dec 30 18:54 A

r = read permission, if "-" then no read permission

w =write permission, if"-" then no write permission

x = execute permission, if "-" then no execute permission

Example:

-rwxrwxrwx 2 dick 32 Dec 30 18:54 A

This entry means that A is a file and everyone has read/write/
execute permission.

-rwxrwxrwx 2 dick 32 Dec 30 18:54 A

This entry means that A is a file and the owner and group have
read/write permission and all others have only read permission.

-rw-r-r- 2 dick 32 Dec 30 18:54 A

This entry means that A is a file and only the owner (dick) has
read/write permission while the group and all others have read permission
only.

-rw- 2 dick 32 Dec 30 18:54 A

This entry means that A is a file and only the owner (dick) has
read/write permission. The group and all others cannot access the file.

62 Chapter 4

-rwxr-xr-x 2 dick 32 Dec 30 18:54 A

This entry means that A is a file and only the owner (dick) has

permission to write. Everybody has permission to read and execute the file.

4.3. Summary

You should make sure that you understand the basic principles

explained in this chapter before going on to the next. The file structure

and how you use it is essential in the overall ease with which UNIX can help

you. First make sure that you understand what a hierarchical file system

is and then how you find your way through it. The next important item is

to understand the meaning of a pathname and the various ways in which

it can be constructed.

4.4. Questions

(1) When you first log into the system where are you positioned?

(2) How many subdirectories and files can you have at any one time?

(3) What type of file system used by UNIX?

Define it.

(4) If you are not sure where you are in the file system at any given time,

what can you do to find out where you are?

(5) Define the function of each of the following commands:

a) ls

b) cd

c) mkdir

d) rmdir

e) rm

(6) How can you tell directory names from file names?

(7) What are the three levels of read/write permissions allowed under
UNIX?

Questions 63

(8) Using the following file structure under the user root directory "dick",
describe the function of each of the following commands and what
effect they will have on the file structure if executed (assume that they
are executed in the order they appear).

User root "dick"

I
t t
A 8

I ~
t • •

A1 A2 81 82

a) login dick

b) cd A/Al

c) cd .. /A2

d) cd .. / .. /B

e) rmdir Bl

f) rmdir Al

g) pwd

h) mkdir Bl.l

5. Manipulation of Files

Now that you have learned how to log into the system, and some
manipulation of files and directories, you can extend this knowledge with
the following commands. The ability to move or copy files from one place
to another, list and archive files, and in general provide for the management
of your files is needed. UNIX provides a wealth of commands for providing
these capabilities. The following commands are directly related to this and
are explained in the following sections.

5.1. Concatenation of Files

Command:

Syntax:

Function:

64

cat

cat [-u] [filel. ..]

The usage of this command is to concatenate one
or more files and direct the results to your ter­
minal, a file, or another command.

Option:

Example:

Concatenation of Files 65

Only one option exists for this command "-u" . It
is used to change the block size of the output when
a size other then the default "512-byte blocks" are
required.

(1) The simplest and most frequent use of this command is for printing the
contents of a file on your terminal. If you would like to see the contents
of a file named "filel" you could enter "cat filel" and immediately see
the results.

user -> cat f ile1 <r>
UNIX -> 1 line one

-> 3 line three
-> 7 line seven
-> 6 line six
-> 2 line two
-> 5 line five
-> 4 line four
-> $

As can be seen from these results, it is a very fast way to see the
contents of any file.

(2) A more representative way of using the cat command is to combine
several files. This is useful when several people are working on a report
and the results are to be output as a single copy. You have four files
"a,b,c,d" each containing some text. To see all of them you need only
say "cat a b c d" and the results will appear on your terminal.

user -> cat a b c d <r>
UNIX -> a a a a a

-> b b b b b
-> c c c c c

-> d d d d d
-> $

66 Chapter 5

Notice that the order in which the files are given in the cat com­

mand is the order in which they are concatenated.

user -> cat d c b a <r>
UNIX -> d d d d d

-> c c c c c

-> b b b b b
-> a a a a a

-> $

(3) The results of a cat command can be directed to another file or com­

mand as well as to the terminal. To accomplish this we can enter "cat

a b c d > e" which will place the results in the file named "e".

user - > cat a b c d > e < r >
UNIX -> $

The only indication that the command has completed is the UNIX

prompt sign "$". However the results are now in the file "e". To view them

we can enter "cat e" and the results are:

aaaaa
bbbbb
cc cc c
ddddd
$

(4) The cat command can also be used to enter data into a new file. This

is accomplished by not entering a name of an input file. We say "cat

> x" and the command will wait for input from your terminal.

user -> cat >x <r>

Copy Files 67

-> This is a test to see if I can
-> enter new text into the file x.
-> <ctrl>-d
-> $

The "< ctrl >-d" was necessary to terminate the input and save
the data just entered in the file x.

user -> cat x <r>
UNIX -> This is a test to see if I can

-> enter new text into the file x.
-> $

Again remember that the "$" is the prompt from UNIX telling you
that it is ready for another command.

Summary:

The syntax is very simple. You must have at least one blank
after the command and each of the input files specified. However the out­
put direction does not require blanks and therefore they are used only for
readability. This is probably a good habit to get used to.

5.2. Copy Files

Command: cp

Syntax: cp filel file2

or

cp filel ... filen directory

68

Function:

Option:

Example:

Chapter 5

This command is used to copy one file to another
or several files to a directory. The files being
copied are not affected. However if the new file
already existed it will be lost and the contents will
be those of the file being copied.

No options exist other than the specific usage
described in the syntax.

(1) Simply copy one file to another. Copy file "aa" to file "aal", where
file "aa" contains:

1 1 2 1 1
2 2 1 2 2

We enter the command:

user ->
UNIX ->

cp aa aa1 <r>
$

The "$" indicates that the copy was completed and the new file
"aal" contains the same data as the file "aa". Remember that if the file
"aal" already existed its previous contents are lost. To see the contents of
the new file we need only execute the cat command.

user ->
UNIX ->

->
->

cat aa1 <r>
1 1 2 1 1
2 2 1 2 2
$

(2) Now let's copy several files to a new directory. The files "ab c d" will
be copied to the directory "dirl". As before, any files in the new direc­
tory with the same name will be replaced with the files being copied.
To execute this function we enter:

user ->
UNIX ->

Move Files

cp a b c d dir1 <r>
$

69 I

We can now change directories to "dirl" and perform an "ls" com­
mand to see if the files have been moved.

user -> cd dir1 <r>
-> ls dir1 <r>

UNIX -> a

-> b

-> c
-> d
-> $

If other files already existed in the directory "dirl" they would also
be displayed.

Summary:

This command is useful when backup copies are required. You can
change the original copy and if you need to recover to its previous state,
you can by simply copying it back.

5.3. Move Files

Command: mv

Syntax: mv filel file2

or

mv directory! directory2

70

Function:

Option:

Chapter 5

or

mv filel ... filen directory2

This command is similar to the copy command
with the exception being that the original file is
deleted. One additional feature is the ability to
move a complete directory to another one.

No options exist other than those in the syntax.

Example:

(1) The first example will be moving one file to another. We will move
the file "aal" created in the copy example to a file called "aa2".

user - > mv aa1 aa2 <r>
UNIX -> $

If we now execute the command "ls" we can see that only the file
"aa2" exists. The file "aal" has been deleted. However, the contents of
"aa2" are exactly the same as were the contents of "aal". If we made
a mistake, we can still recover by copying the file "aa2" back to "aal".
Notice that if we had moved it back we would have lost "aa2".

(2) Now let's move all of the files in one directory to a second directory.
We could do this by using the format "mv filel...filen directory2" or
by simply specifying the two directories "mv directoryl directory2".
In the first case we would be required to name each of the files being
moved, whereas in the second case we need only name the directories,
which would require that all files be moved. Let's say that directoryl
contains the files a b c and d. And the new directory "directory2"
contains the files x and y. We now execute the command:

user - > mv directory1 directory2 <r>

Print File 71

UNIX -> $

We can now list the files in the first directory which will show no
files. Then let's list the files in the second directory which will display the
four files moved plus the two files already there.

user -> ls directory! <r>
UNIX -> $

The "$" response indicates no files.

user -> ls directory2 <r>
UNIX -> a

-> b
-> c
-> d
-> x
-> y
-> $

Summary:

The two things to be careful about are (1) that you have deleted
the file(s) being moved and (2) that any files by the same name will be
replaced.

5.4. Print File

Command: pr

Syntax: pr [option] ... [file] ..

72

Function:

Option:

-n

+ii
-h

-wn

-ln

-t

-SC

-m

Example:

Chapter 5

This command produces a printed listing of one or
more files. The output is separated into pages with
a heading on each page consisting of the name of
the file and the date and time of the printing. The
options can alter this somewhat. The output is
directed to the standard output unless you redirect
it(see chapter 6 on redirection).

The following options can be used with the pr com­
mand:

Produce n-column output where n can be any
number of columns that will fit on a page.

Start the printing n pages into the file.
take the next argument as the page header instead
of the default header.
When multi-column output is selected, take the
width of the page to be n characters instead of the
default (72 characters).

Change the length of the page to be n lines instead
of the default (66 lines).

Do not print the 5 line header or the 5 line trailer
normally supplied for each page.

Separate columns by the single character c instead
of by the appropriate amount of white space. A
missing c is treated as a tab.

Print all files simultaneously, each in one column.

(1) Print a file with the header automatically generated.

user ->
UNIX ->

->
->

pr letter
Dec 20 14:54 1980 letter Page 1
This is a test to see if I am
entering text in the file ''letter''.

Print File 73

-> Once I have completed it and shall find
-> that I have created 4 new lines of data.
- > I will now enter two new lines of text
- > to see if it is accepted.

As we can see the header consists of the date and time, the page
number, and the name of the file being printed. This header appears at the
top of each page.

(2) The next example is to print the same file without the header being
generated.

user ->
UNIX ->

->
->
->
->
->

pr -t letter <r>
This is a test to see if I am
entering text in the file ''letter''.
Once I have completed it and shall find
that I have created 4 new lines of data.
I will now enter two new lines of text
to see if it is accepted.

(3) The next example will use three files and print them out simul­
taneously, each in a column in the order they are named.

user -> pr -m file1 file2 file3<r>
UNIX ->

-> Jan 6 19:17 1981 Page 1

1 line one 1 line one 1 line one
3 line three 3 line three 3 line three
7 line seven 6 line six 7 line seven
6 line six 2 line two 6 line six
2 line two 7 line seven 5 line five
5 line five 5 line five 2 line two
4 line four 4 line four 4 line four

74 Chapter 5

$

(4) Now let's see how we can take advantage of the line count and the

number of columns. We have seen that the "ls" command produces a
single list of names for a given directory. By using the "pr" command

with column and line arguments we can generate a multiple column

list.

user -> ls lpr -5 -120<r>

UNIX ->
-> Jan 6 19:18 1981 Page 1

AB c ch7.inf.fmt
a cat ch7.stat
a.out cc ch7 .stat.fmt
aa ch5 chapt.fmt
ab ch5.1 chapt2
ar ch7.accn chapt2.fmt
b ch7 .accn.fmt chapt4
ba ch7.bkup chapt4.fmt
bb ch7.bkup.fmt chapt5
book ch7.inf chapt5.fmt
$

chapt6 d
chapt6.fmt dcheck
chgrp dd
chmod debug
ch own df
clri di ff
cmp ditr.3
comm filel
command filel.c
cp filel.o

Notice that we used the ls command and a special symbol "fi" to

get the list of names. This will be defined in the next chapter. In this

chapter we just want to concentrate on the specific commands themselves.

We asked the pr command to produce 5 columns and limit the

number of lines to 20. This is so we can see a complete page on a crt.

Summary:

The pr command is generally used when a printout of the file or

files is required. As we saw from the previous examples we produced output

on our own terminal (standard output). One way in which to output to a

printer is by using the lpr command defined next.

Line Printer Spooler 75

5.5. Line Printer Spooler

Command:

Syntax:

Function:

Option:

-r
-c

-m

-n

Example:

lpr

lpr [option] ... [file] ...

This command allows you to print a file in the
background while you are doing other things. The
file(s) are placed in a queue and printed as the
printer becomes available. This allows any user
to request the printing of a file and not have to
be concerned with others who may be requesting
printing at the same time.

The following options are available with the com­
mand. They are:

Remove the file(s) after it has been queued.
Copy the file to insulate against changes that may
happen before printing.

Report by mail(see chapter 7) when printing is
complete.

Do not report by mail(default).

(1) Send a file to the printer for printing and immediately give control
back to allow the user to continue doing something else while the job
is printing.

user ->
UNIX ->

lpr letter<r>
$

76 Chapter 5

The lpr command has put the file in a queue and will print it

whenever the printer is free. However the user is given control to continue

doing whatever else is necessary.

(2) The user has several options available when printing. One is to remove

the file being printed as soon as it has finished printing. This is

generally used when the file has been generated only for this printing.

user ->
UNIX ->

lpr -r letter <r>
$

Once the file "letter" has been printed, the system will remove it.

This is the same as if you had issued a "rm letter" command.

(3) The next example is just the opposite of the -r option. The -c option

will allow you to start printing a file and immediately allow you to

change it without affecting the file being printed.

user ->
UNIX ->

lpr -c letter<r>
$

In the previous examples the file was queued for printing, but if

you had decided to continue editing(changing) it, the changes might have

been reflected in the printed output. In this case a copy of the file is made

for printing so that all new changes will not affect it.

Summary:

This command is very useful when you want to print something

but do not want to see if the printer is busy or if you don't want to wait

until the printing is complete before doing something else. Your file(s) are

identified from others by your login name being printed on the first page of

your output. Thus there is no need to wait at the printer for your output

or have to identify it by the actual text printed.

Compare Two Files 77

5.6. Compare Two Files

Command:

Syntax:

Function:

Option:

-1

-s

Example:

cmp

cmp [-1] [-s] filel file2

The usage of this command is to compare two files
and report any differences between them. It an­
nounces the byte and line number at which the
difference occurred.

Two options exist that can alter the results of the
compare.

This option provides a complete list of the
differences between the files. It prints (1) The posi­
tion in the file (in decimal) of where the difference
occurred. (2) The actual character(in octal)
This option results in a return code based on
the results of the compare. No other output is
generated. If the two files were identical the return
code is set to zero. For different files it is set to one
and if the file(s) are inaccessible the return code is
set to two.

(1) The simplest usage of the compare command is without the use of
options. It will stop and print out the first occurrence of a difference
between the two files. We have two files "aa and bb" which contain:

file aa file bb
1 1 2 1 1 1 11 11

78

3.

Chapter 5

2 2 1 2 2 2 2 2 2 2

Notice that the differences are line 1 column 3 and line 2 column

user ->
UNIX ->

->

cmp aa bb <r>
aa bb differ: char 3, line 1

$

As we stated before, only the first occurrence is printed.

(2) In this case we will use the option "-1". We can then see the exact

location of each difference and the actual characters that are different.

user ->
UNIX ->

->
->

cmp -1 aa bb <r>
5 62 61
15 61 62
$

We can see that in this case the position in the file is relative to the

beginning of the file for each difference. Thus position 15 is the same as line

2 column 5. The octal representation of the actual characters themselves

must be decoded.

Summary:

The option "-s" does not produce any output other than return

codes and is generally used in conjunction with other commands in what we

call shell files which will be reviewed in chapter 8. It should also be pointed

out that when comparing two files using the "-1" option , the differences

reported could be very large.

5. 7. Remove Files

Command: rm

Syntax:

Function:

Option:

-f

-r

-i

Example:

Remove Files 79

rm [options] file ...

This function removes one or more files from a
directory. A file can only be removed if the user
issuing the rm command has write permission in
that directory. Read/write permission on the file
being deleted is not required.

Three options exist for this command. They are:

This option is useful only when a file does not have
read/write permission. Under normal conditions
when a file does not have read/write permission,
the system asks if the file should be deleted. If
the user responds ''y", the file is deleted. The -f
option forces all files regardless to be deleted. The
''y" is never asked.
This option allows all files and sub- directories to
be deleted.
This option allows the user to interactively delete
files.

(1) Since we have already seen the basic format of the remove, we will
look at the options available in these examples. The first is the ability
to remove everything below a directory level. For example if we had
a structure as shown in figure 4.1, we could remove all of the files and
directories below the user root by use of the option "-r". We must first
position ourselves to the user root directory (or whereever we want to
start removing).

user -> rm -r *<r>
UNIX -> $

80 Chapter 5

The "*" is a special symbol that indicates remove everything within

the directory currently positioned at, including all subdirectories (more on

this in the next chapter). This single command with the -r option will

remove everything but the user root directory.

(2) Now let's see how we can interactively remove files. This may be useful

when we have a lot of files in a directory and want to delete many of
them. Rather than enter each name, we can use the interactive option
"-i", and the system will provide the file names and all we have to do
is state ''y" for ''yes" delete the file, or "n" for "no" don't delete the
file.

user -> rm -i *<r>
UNIX -> file1:
user -> y<r>
UNIX -> file2:

->
->
->

UNIX -> $

As we can see from this example the system gives us each name

and we decide if we want to delete it or not. Again the "*" is used to
specify all files in this directory.

Summary:

We demonstrated the value of the remove command in chapter 4;

however, as you can see we have expanded it to the point that it could be

very dangerous if not used properly. Thus before using it you should always

be aware of the directory that you are in and certain that the pattern you

are using is correct. The time that it takes to do this will be rewarded

many times over by not having to go to backup tapes to recover things you

accidentally deleted.

5.8. Find Files

Command:

Syntax:

Function:

Option:

-name filename

-type c

-links n
-user uname

-group gname

Find Files 81

find

find pathname. . . option. . .

The find command recursively descends the direc­
tory hierarchy for each pathname in the starting
pathname provided and looks for files that match
the options provided. For those options provid­
ing a value, such as number of days, etc., a plus
sign(+) means more than and a minus sign (-)
means less than. Any number of pathnames and
options can be given in a single command just so
long as it is consistent.

Each option is preceded by a minus sign(-). There
is no order required other than a logical order to
you. Multiple options are assumed to be AND'd,
that is to say they all must be true for the com­
plete statement to be true. A logical OR can be
used for alternative options and is specified by a
"-o". Parentheses must be "escaped", that is to
say that a "\" must precede both the "(" and "
)" . The options are:

True if this filename matches the
current file name.
True if the type of the file is c for
character file.
True if the file has n links.
True if the file belongs to the user
(login name or numeric user ID).

True if the file belongs to a group
(group name or numeric group
ID).

82

-size n
-inum n

-atime n

-mtime n

Chapter 5

True if the file is n blocks long.
True if the file has inode number
n.
True if the file has been accessed
inn days.

True if the file has been modified
inn days.

-exec command Executes a UNIX command.
True if executed command returns
a zero.

-ok command

-print

-newer file

Example:

Like the -exec command except
that the generated command is
written on the standard output,
then the standard input is read
and the command executed only
upon response y.

Always true; causes the current
pathname to be printed (when
condition is met).

True if the current file has been
modified more recently than the
argument file.

(1) The most common use of this command is to locate a file when the
number of directories is too large to manually search. Let's say that
we would like to see if there are any files named a.out in the author's
directories. To accomplish this we need only say:

user ->
UNIX ->

->

find /rp3/dick -name a. out -print <r>
/rp3/dick/unixbk/a.out
$

We were able to find one occurrence of the file "a.out". Notice that
the complete pathname is printed. Also without the "-print" option noth­
ing would have been displayed. In this case "rp3" is the root of a file system

Find Files 83

and the directory "dick" is the author's root directory. We could, if need
be, search more than one root directory by placing them before or after
the pathname "/rp3/dick" leaving one space between them (i.e.,/rp3/dick
/rp3/sam /rp3/karen ...).

(2) Another example is the use of the "find" command during maintenance
of the system. We could run out of space and not know why it hap­
pened. Sometimes this is because one or more very large files were
generated. The reason could be on purpose or accidentally. To cor­
rect this the system administrator must first determine the reasons for
the overflow. This can sometimes be accomplished by use of the find
command. For example we can say:

user ->
UNIX ->

->

find I -size +50 -mtime -1 -print <r>
/rp3/dick/unixbk/ar
$

We have asked to see a list of all the files that are greater than 50
blocks (512 bytes/block) and were created in the last 24 hours. There is
only one entry in this example; however, there could be many of them. If
this was the case, you would have to see which ones caused the problem if
any.

(3) Yet another use of the find command is to locate and delete files that
are no longer required. A case in point is the object modules "* .o"
that are created when the c compiler is run. To delete these files we
can execute the find command and then remove each file manually, or
we can do it in the find command itself.

user ->
UNIX ->

->
->
->
->
->

find I -name • *. o • -print <r>
/rp3/dick/working/prog1.o
/rp3/dick/unixbk/file1.o
/rp3/dick/unixbk/tbl.o
/rp3/dick/yard/test1.o
/rp3/dick/mbox.o
$

This command generated only a list of the ".o" files. We would
then have to delete each of them using the remove (rm) command. However

84 Chapter 5

we can remove them at the same time we are finding them by using the -
exec option. We simply say:

user ->
UNIX ->

find I -name • *. o • -exec rm\; <r>
$

The $ indicates that all ".o" files have been removed. In this ex­
ample we did not know the names of all the ".o" files and were able to use
the "*" just as we would in any UNIX command to indicate that anything
coming before the ".o" was not important.

Summary:

This command is useful to anyone who has to find one or more
specific files and doesn't know what directory(s) to start looking in. It is
very useful to the system administrator who must keep the necessary free
space available, but maintain the file system when something goes wrong.

5.9. Archive and Library Maintainer

Command:

Syntax:

Function:

Option:

d

ar

ar option [posname) archive_file [filel. ..]

The ar command is issued to save or store groups
of files into a single archive file. It provides the
capability to create, add, extract, list, move, and
delete files from/to an archive file.

Several options exist each of which is represented
as an option to the ar command and perform the
following tasks.

Delete the named files from the archive file.

r

q

t
p
m

x

v

c

a

b

u

Example:

Archive and Library Maintainer

Replace the named files in the archive file. If the
files does not exist, the new file is added.
Quickly append the named files to the end of the
archive file. No check is performed to determine if
the file already exists.
Prints a table of contents of the archive file.
Prints the contents of the selected files.
Moves the named files to the end of the archive
file or if posname is given, moves to indicated
position.
Extract the named files, Does not alter the archive
file.

The following options are used in conjunction
with the other options.

Verbose-when used with d,r ,q,m,x, prints the
function performed and the file name.
Create archive file. Normally archive file is auto­
matically created.
Used with any option, will place the archive temp
files in a local directory.
Used with r or m specifies that the named file is to
be placed after the file indicated by the posname.
Same as a except that placement is before.
Used with r, indicates that only those files with
modified dates later than the archive files are re­
placed.

(1) Adding new files to an existing or none existing archive file can be
accomplished by using the r option. Let's say we have four files
named a,b,c,d. We can add them to an archive file by simply say­
ing:

user ->
UNIX ->

->

ar rv library ab c d < r >
a-a
a-b

85

86 Getting Started

·-> a - c
-> a-d
-> ar: creating library
-> $

We can see that this is a new library by the fact that the
message "ar: creating library" appears. If the library already existed

we would not get this message. The use of the v option is to let us

know what is happening. It's probably a good idea to use it (at least at

first). It defines the function performed "a = add" followed by the

name of the file.

(2) Next we replace an existing file in library with a new one. To do

this we use the same command format.

user ->
UNIX ->

->

ar rv library b < r >
r-b
$

Notice that in this case we did not create a new library, but
only used an existing one. The file "b" in library was replaced by the
new file "b".

(3) There may be times when we would like more than one copy of a
file in the library at the same time. We add a file to the end of the
library by using the q option.

user ->
UNIX ->

->

ar qv library a < r >
q-a
$

There will now exist two copies of the file a.

(4) At some time we will want to get a list of all names of the files in

our library. To do this we use the option t.

user -> art library <r>

Archive and Library Maintainer 87

UNIX -> a

-> b

-> c

-> d

-> a

-> $·

In this case we did not have to name the files. As we can see from
the previous function we have two copies of the file "a".

(5) We can also print the contents of selected files by using the option p.
Note that if we do not enter any names the contents of all files will be
printed. In this case we may want to direct the output to another file.

user -> ar p library b >/dev/lp
UNIX -> $

The contents of file b in the archive file "library" is extracted and
directed towards the printer. The use of">" for I/O direction is explained
in chapter 6, but for now we are interested only in the archive functions.

(6) There will also be times when we require a file to be extracted from
an archive file. By using the option x we can do this.

user -> ar xv library b c <r>
UNIX -> x - b

-> x - c
-> $

The archive file has not been affected and the two files b and c
have been placed in the current directory. If no file names had been given,
all files in the archive file would have been extracted.

(7) We can delete any or all files in an archive file by use of the option d.
Once they have been deleted they can only be replaced by the same
file from outside the archive file.

88

user ->
UNIX ->

->

Chapter 5

ar dv library a <r>
d-a
$

The first occurence of "a" was deleted in this case. If you re­
member we added a file a to the end of the archive library earlier.
Thus we only deleted the first copy of it. To delete the next copy we
must perform the function over again.

(8) In an earlier example we saw that we could add to the end of an
archive file by using the option q. We can also move files around
within an archive file by the use of the option m. By itself it will
always move the named file to the end of the archive file. How­
ever we can move a file before or after another file by use of the
options a or b appended to the option m. The option u is used for
conditional replacement based on the modified dates of the files.
To move file a (currently at the end of the archive file) to the front
of the archive file we need only give the following command using
the following data base.

b
c
d
a

user ->
UNIX ->

->

- existing files in library and their order

ar mbv b library a < r >
m- a
$

The new order of the library will be

a
b
c
d

Change Mode

Summary:

We cannot possibly show all of the ways one can use the com­
mand ar. You must create your own archive file and just experiment.
You can start with the files and functions shown here.

5.10. Change Mode

Command:

Syntax:

Function:

Option:

chmod

chmod option file . . .

The chmod command allows us to change the
read, write, execute permissions on one or more
files. Refer back to the "ls" command for details
on the permissions for a file.

The options come in two forms, the first being an
octal representation of the permissions, and the
second being a symbolic representation. The octal
mode requires that your specify the entire set of
changes for a file. In other words you are not
allowed to change one condition, without affect­
ing the others. The octal mode is simply an octal
number constructed from the logical ORing of the
following modes.

o 4000 set execution mode for user (login name or ID)
o 2000 set execution mode for group (group name or ID)
o 1000 sticky bit, not read, write, execute permissions
o 0400 user (login name) read permission
o 0200 user (login name) write permission
o 0100 user (login name) execute permission

89

90 Chapter 5

o 0070 group read,write,execute permission
o 0007 all others read,write,execute permission

The symbolic mode has the form:

chmod [ugoa)[+-=)[rwxstugo] file ...
where:
[who] op permission[op permission] ...
Takes on the form:

who= [ugoa]

u = user{ login name)
g =group
o =others
a = user ,group,others(default)

op = +{for add permission)
-{for delete permission)

permission= [rwxstugo]

r =read
w =write
x =execute
s = set owner or group id
t = save text - sticky
ugo = permission to be taken from
the current mode.

Example:

(1) One of the simplest ways to protect your files from destruction by
other people is to write protect them. Let's say that the file "filel"
used in previous examples is to be protected from others. The current
setting of permissions for filel can be seen be issuing a "ls -1 filel"
command:

-rw-rw-rw- 1 dick 83 Oct 15 17:03 filel

Change Mode 91

The current mode is read-write for everyone. To change it we say:

user
or
user
UNIX

->
->
->
->

chmod 0644 file1 <r>

chmod go-w file1 <r>
$

We can see the results by using the "ls -1 filel"

UNIX - > -rw-r--r-- 1 dick
-> $

83 Oct 15 17:03 file1

The results are the same using the octal mode or the symbolic
mode. Which one you use is up to you. In the octal case we stated that
the 6 was read,write permission for the user(login name) and 44 was for
read only for group and others. In the symbolic case we stated that go was
group and others and to turn the write permission off for both of them(­
w).

(2) There are times when we will want to make a file executable (see chap­
ter 8, making shell files). Again we can do this by using the octal or
the symbolic modes. To make the file "filel" executable we simply say:

user
or
user
UNIX

->
->
->
->

chmod 0755 file1 <r>

chmod a+x file1 <r>
$

By issuing a "ls -1 filel" we can see the permissions.

UNIX - > -rwxr-xr-x 1 dick
-> $

83 Oct 15 17:03 file1

92 Chapter 5

In both cases we have made the file "filel" executable. The octal
case says that we want the user to have read, write, execute permission
while the group and others have only read and execute permission.

Summary:

This command is very useful when used properly. Be careful that
you don't set the permissions so that you cannot access the file yourself.
It's a good habit to check the changes by using the "ls" command after
each change to be sure that they are correct.

5.11. Change Owner

Command:

Syntax:

Function:

Option:

Example:

ch own

chown owner file.

This command allows you to change the ownership
of one or more files to a specific owner(login name).
To change ownership you must be the owner of the
file or be the superuser.

No options exist for this command.

(1) Since there is only one format we will show it. We will take a file
owned by dick and change it to another owner(login name). Again we
will use the file "filel" as our example. Its current format is:

-rwxr-xr-x 1 dick 83 Oct 15 17:03 filel

The current owner is dick as seen above. Now let's issue the chown
commmand.

user - > chown darrin file1 <r>

Change Group 93

UNIX -> $

Now to see the results we issue a "ls -1 filel" command.

UNIX - > -rwxr-xr-x 1 darrin
-> $

83 Oct 15 17:03 file1

As we can see the only thing that has changed is the owner from
dick to darrin. Remember that the new owner must be a legal login name;
otherwise, the owner will not change.

Summary:

This command is necessary to the system administrator who must
set up new login names and directories in addition to other requirements.
The average user will probably not have that much need for it; however,
there may be times when it will be useful.

5.12. Change Group

Command:

Syntax:

Function:

Option:

chgrp

chgrp group file.

This command allows you to change a group of
one or more files to a specific group(group name).
To change group you must be in the same group
for a file or be the superuser.

No options exist for this command.

Example:(change group ownership)

94 Chapter 5

(1) Since there is only one format, we will show it. We will take a file in
the group root and change it to another group(group name). Again
we will use the file "filel" as our example. Its current format is:

-rwxr-xr-x 1 dick 83 Oct 15 17:03 filel

The current group is 1 as seen above. Now let's issue the chgrp
commmand.

user ->
UNIX ->

chgrp 2 file1 <r>
$

Now to see the results we issue a "ls -1 filel" command.

-rwxr-xr-x 2 darrin 83 Oct 15 17:03 filel $

As we can see the only thing that has changed is the group, from 1
to 2. Remember that the new group must be a legal group name, otherwise,
the group will not change.

Summary:

This command is necessary to the system administrator who must
set up new login names and directories in addition to groups. The average
user will probably not have that much need for it; however, there will be
times when it will be useful. It is more useful to the average user than is
the chown command because it is more likely one will change groups from
time to time.

5.13. Questions

Using the following files and directories, answer questions 1-4.

filel
1 1 1 1 1 1
1 1 1 1 1 1

file2
222222
222222

Questions 95

user root "dick"

C directories

0 F 1

0 F2 Files

0 F3

figure 5.1

{1) Show the results of the following commands:

a) cat filel file2

b) cat filel file2 > file3

c) cat > file4

(2) Describe how the following command works and when it should be
used:

lpr filel

(3) Describe the function of the command "pr" and when you might use
it.

(4) Deseribe the resulting file structure and where you are positioned after
each of the following commands:

a) login dick

b) cd A

c) cp Fl .. /B

d) cd .. /

e) cp A/F2 B/FA

f) cp AB

g) mv BC

96 Chapter 5

h) mv C/FA B/Fl

(5) What are the change owner and change group commands?

Why would you want to use them?

(6) Describe the results of the following commands:

a) chmod 0755 filel

b) chmod 0664 file2

c) chmod 0700 filel

d) chmod 0644 file2

Input/Output Redirection 97

6. Introduction to the UNIX Shell

The UNIX shell is both a command language and a programming
language that provides an interface to the UNIX operating system. This
chapter will deal with some of the simple things needed to increase the
capability for each of your UNIX commands. Up to this point we have
described several UNIX commands. However, in each case the input to
the system and the output from the system were controlled by the system
(refered to as standard input and standard output). If you remember, for
the commands "pwd" and "ls" the input was the command itself, and the
output was information obtained by the system and directed back to your
terminal.

Standard input/output unless otherwise changed by the user is
(input) from the terminal and (output) back to the terminal. There are
going to be times when you will want the input/output direction changed
(going to and coming from) to a place other than the terminal.

6.1. Input/Output Redirection

To direct input/output from your terminal to another media, you
can use the symbols "<, < <, >, > >". The symbol "<" is used to direct
the input from a file to a command or another file.

98 Chapter 6

Example:

Let's say that we have a file that contains a list of directories that
we are going to sort in reverse order. This file is called "dir" and contains
the names "A B C". We can then say:

user -> sort -r < dir<r>
UNIX -> c

-> B

-> A
-> $

As we can see from this command, the file "dir" is used as the
input instead of your terminal. Each command defaults to the standard
input(your terminal) unless you direct it elsewhere. In this case we are
directing the input by use of the symbol "<".

Let's now see what we do to direct the output to a file instead of
your terminal. In this case we use the symbol ">" to indicate that the
output is to be placed somewhere else.

Example:

Place the output from the "ls" command in a file called lsout.

user -> ls -1 > lsout<r>
UNIX -> $
user -> cat lsout<r> display contents of file
UNIX -> A

-> B

-> c
-> $

Notice that the output from the file looks exactly like that which
would have been displayed directly on your terminal. The difference is that
it is more permanent. We can now call it up and use it anytime we like. If
the file lsout already existed, we would replace the previous contents with

Background Commands 99

the new contents. However if we want to keep the existing contents and
just add this new data to it we can simply use the output directive "> >".

Example:

Place the output from the "ls" command in the file lsout(adding
to the previous contents).

The current file "lsout" looks as follows:

user

A
B
c

UNIX
user
UNIX

->
->
->
->
->
->
->
->
->
->

ls » lsout<r>
$
cat lsout<r> display contents of file
A
B
c
A
B

c
$

As we can see from this example we have just added this list to
the end of the identical list previously generated.

6.2. Background Commands

There may be times when you would like to run a program or UNIX
command without having to wait until it finishes before doing something
else. This can be accomplished by use of the symbol "&" added to the end
of the command.

Example:(Run UNIX program in the background)

100 Chapter 6

If we want to get a list of file and directory names and place them
in another file "dir", but while we're doing it we would like to start editing
yet a third file, we would say:

user -> ls > dir&<r>
UNIX -> 165 this is the process number

-> $ you can now start your edit
user -> ed letter<r>
UNIX -> 271

-> ready to start editing

What we have done is to start the "ls" command running and then
immediately (before the "ls" finishes) start editing the file "letter". The
UNIX system creates what is called a new process which runs the first com­
mand and gives control of the shell back to you so that you can continue
doing something else. The number of processes that you can have running
at the same time is limited by the UNIX system itself and if that limit has
been exceeded a message will be given. More information will be provided
about processes later.

Remember that not all commands can run in the background. It
is not dificult to determine which ones can and which ones cannot be ex­
ecuted as background processes. For example it would make no sense to
run the editor in the background mode when you are trying to edit a file.

6.3. Pipes and filters

We have discussed how to redirect the input and output of a com­
mand. Now we will look at how we can pass data generated by one com­
mand to another. This is accomplished by the use of the symbol "fl" :

Example:

Get the directory and file names using the "ls" command and pass
the results to the sort routine which will sort the names in reverse order
and write it out to the standard output(your terminal)

user -> ls -1 I sort -r<r>

UNIX -> c
-> B
-> A
-> $

Pipes and filters

This is the same as if we had said:

user -> ls -1 >file1; sort -r <file1 <r>
UNIX -> c

-> B

-> A
-> $

101

Notice that we can write more than one command on a single line
by separating them with the symbol ";". This is the same as if we had
written each command as:

user -> ls -1 >file1 <r>
UNIX -> $
user -> sort -r < file1 <r>
UNIX -> c

-> B
-> A
-> $

The only difference between these two examples is that the second
example requires a temporary file "filel". The first example uses what we
call a pipeline between the two commands that allows the data generated
by the "ls" command to be directed to the second command "sort"; thus
the temporary file is not needed. If we needed the data generated by the
first command at a later time then it would be more practical to use the
temporary file. Pipes are useful when the data is to be used only by another
command right away and then discarded.

A filter is a command that reads its standard input, transforms it
in some way, and prints the result as output. The sort command is a filter

102 Chapter 6

in that it accepts the standard input, sorts it according to the arguments
provided by you and outputs the results.

For example, the previous example used the sort command to ac­
cept data from the ls command and then output it in a selected order.

6.4. Use of Metacharacters

Many of the commands accept arguments which are the names of
files.

For example:

user -> ls -1 /usr/dick/file1<r>

Prints information about the file "filel" as previously defined.

The shell provides a mechanism for generating a list of file names
that match a pattern. The first such symbol that can be used for matching
is "*". This symbol used by itself says that all entries are to be selected,
and when used with part of a name it allows you to select all names that
match that pattern.

Example:

user -> ls -1 /usr/dick/fil*<r>

This command will select all names that start with "fil". The
remaining characters are ignored in the selection process. The "*" can be
used anywhere in a name and if necessary more than once.

user -> ls -1 /usr/dick/*e1<r>

This pattern will select all names that end in "el" .

Use of Metacharacters 103

user -> ls -1 /usr/dick/*aa*<r>

This pattern will select all names that have an aa somewhere in
the name.

user -> ls -1 /usr/dick/f*e1<r>

This pattern will select all names that start with "r' and end with
"el".

The use of "*" indicates that one or more characters are involved.
Many times you will want to find names that are similar except for one
character in a particular position. In this case you can use the symbol "?".
Whereever it appears in a name, it means that that exact position in the
name is to be ignored.

Example:

user -> ls -1 file?<r>

This pattern will select all the names that start with file and have
only one additional character. The last character can be any legal charac­
ter. For example "filel,file2,filex" are all patterns that would be selected
by this command. The "?" can appear more than once and anywhere in a
name.

user -> ls -1 f?le?<r>

This pattern will select all the names that start with "r', followed
by any single character, followed by the letters "le", and ending with any
single character.

104 Chapter 6

As with the "*", used by itself it will select everything, whereas
the "?" used by itself will select all names that have only a single character.
The files "A,B,C'' for example would be selected.

We can also select names based on a range of values. This is ac­
complished by entering the values in the range in a set of brackets"[]".

Example:

user -> ls -1 [a-z]*<r>

This pattern will select all names that start with a letter a to z fol­
lowed by any number of other characters. Thus we could select the names
"axxy23,cer5t,z,etc".

The symbols we have just defined (< > * ? fi &) are called
metacharacters and have a special meaning to the shell as we have just
described. However there may be times when we want to use these charac­
ters in a name. We can accomplish this by inserting the symbol "\" just
before the metacharacter. If we use more than one metacharacter in a
name we need one "\" for each metacharacter.

Example:

user - > 1 s -1 file\?< r >

The ? is literally interpreted as the character "?" and the file name
is "file?". No pattern search is created in this case.

user -> ls -1 f*le\ ?<r>

This command selects only the name "f*le?".

Questions 105

6.5. Summary

In this chapter we have learned how to (1) redirect our
input/output, (2) run commands in the background, (3) use pipes and
filters, and (4) use metacharacters to select names based on a pattern.
There are too many commands to show exactly how all of these features
work on each of the commands so it is in your best interest to experiment
with them. In most cases it will be obvious if a particular feature will or
will not work. In all other cases you can just try it. It won't take you long
to know when you can or cannot use them.

6.6. Questions

(1) From where does UNIX expect your input and where does it place any
output generated?

(2) What is the procedure to direct data generated by a command to a
file instead of your terminal?

(3) What is the procedure to direct data to your command instead of from
your terminal?

(4) In UNIX terminology, define what a process is.

(5) an you have more than one process running at the same time?

If yes, how can you do it?

(6) Can you pass data from one command to another without using a
temporary file? If yes, what is this procedure called, and how do you
invoke it?

(7) What are the special characters " * , ? " and what do they do?

(8) What is the function performed by the following command:

ls -1 [a-z]*

7. UNIX Commands

7 .1. Communications

Communications is a very important function in everyday life. In busi­
ness it is even more important in that you are always having to communi­
cate with someone. However the problems are much more dificult because
of the timing. The difference of only a few minutes can be critical in making
a decision. With the time changes around the world and the fact that
everyone is not always where they are supposed to be, it is even more criti­
cal. Thus any means by which we can communicate in a way that is easy
and yet assures us that the other party(s) will be able to get our message or
contact us can be worth large amounts of money. The following commands
provide the user with a means to communicate with the system and with
other users.

7 .1.1. Sending and Receiving Mail

Command: mail

106

Syntax:

Function:

Option:

-r

-q

-p

-f

Sending and Receiving Mail I 107 I

mail [login name].

or

mail [-r] [-q] [-p] [-f file]

The mail command provides a user with the ability
to read mail sent by others, in first-out or first­
in order, and allow it to be printed. The user can
also send mail to other users.

Several options exist which may be used in con­
junction with the mail command. They are:

This option causes the messages to be ordered as
first-in,first-out. If no option is provided, a last­
in,first-out order is used.

This option causes mail to exit after interrupt
without changing the mailbox.
This option causes the mail to be printed.
This option causes the named file (mailbox) to be
printed as if it were the mailbox.

Once you are reading your mail you have the ability to control it with
the following options.

<r>
d
p

s[file].

w[file] ...

return key goes to new line
delete message and go on to the next
print message again
go back to previous message
Save the message in the named files (mailbox is
default)

Save the message, without a header, in the named
files (mailbox is default)

108

m[user name].

Chapter 7

Mail the message to the named persons (yourself
is default)

EOT(control-D) Put unexamined mail back in the mailbox and
stop

q
x

?

Example:

Same as EOT
Exit, without changing the mailbox file
Escape to Shell to do another UNIX command
Print a summary of the commands

(1) When you first log into the system, it will inform you if you have
any mail (i.e., someone has sent you mail). The system will appear as
follows:

UNIX -> login:
user -> dick<r>
UNIX -> you have mail

-> $

At this point, to see the mail you simply enter the name "mail" with
any of the options desired (-r,-q,-p) and strike the return key <r>. All
messages sent to you since the last time you viewed your mail will be dis­
played.

The order will be determined by the option -r or no option. In this
case let's say that three messages were sent.

user ->
UNIX ->

->
->
->
->
->
->
->

mail<r>

From Patricia Sat Jan 10 10:49:34 1981
this is the third message to be sent

From darrin Sat Jan 10 10:49:07 1981
This is the second message to be sent

From Roy Sat Jan 10 10:48:03 1981

Sending and Receiving Mail 109

-> This is the first of several messages
- > to be sent to dick.
->
-> save?

We can see from this example that the three messages are dated and
time stamped and in this case outputted in order of last-in, first-out. Now
let's see how we send mail to others.

(2) We will send a message to the three people that we received messages
from. We will also send a message to ourself to see how it is handled.

user -> mail patricia darrin roy dick<r>
UNIX -> no response(waits for mes-

sage)

user -> This is to let you know that I recieved<r>
-> your message and will follow up on it. <r>
-> strike control-d keys
-> to exit and send message.

UNIX -> $

This message has now been sent to the four people named in the mail
command above. When they login or request mail, they will be informed
that mail has been sent to them. More than one message can be sent by
you and/ or others at different times. The system dates and time stamps
each message and concatenates it to any other messages that have been
sent. Thus when the user requests mail, all messages are displayed.

Remember the message we sent to ourself? We can view it by simply
entering the command "mail". In fact for any mail that has been sent
after we are logged into the system, we can view it by entering the mail
command. There is no indication that mail was sent so we will have to
check every now and then. If not, the mail will stay until the next time we
login.

user -> mail<r>
UNIX -> From dick Sat Jan 10 11:21:23 1981

110

->
->
->

user ->

Chapter 7

This is to let you know that I received<r>
your message and will follow up on it. <r>
save?
y<r> ''y" indicates save, "n" no

save
UNIX -> $

As we can see from this example the system asks us if we want to
save the message or not. If the answer is yes, we enter a "y" and return,
otherwise any other response will result in the message(s) not being saved.

Any time during processing (after you have logged in) you may ask the
system if any mail has been sent by entering the commmand "mail". If
some has been sent the system will display your mail, however if no mail
is sent the system will merely respond with the message "no mail".

user -> mail<r>
UNIX - > no mail

-> $

Summary:

This is a very useful command when you cannot see the individual in
person and want to be assured that they will be informed.

You must remember that when sending messages you have to have the
correct login name or the message may be sent to the wrong person or
possibly not sent at all.

7.1.2. Write to All Users

Command: wall

Syntax: wall

Function:

Option:

Example:

Write to Another User 111

This command is generally issued by the systems
administrator when everyone on the system must
be notified of some upcoming event such as no disk
space, hardware failure (tape drive, printer, etc.).

There are no options for this command.

(1) Send a message to all users that the printer is broken and will be
unavailable until further notice.

user ->
->
->
->

UNIX ->
->
->

Summary:

wall<r>
The computer will be down for about one
hour. Please logoff.

control- "d" to send message
Broadcast Message .
The computer will be down for about one
hour. Please logoff.

As we stated before, this command is very useful when all users must
be immediately notified. The message is sent to only those people who
are currently logged into the system. However, others will receive messages
when they log in.

7.1.3. Write to Another User

Command: write

Syntax: write user [ttyname]

112

Function:

Option:

Chapter 7

This command allows you to write to another user
who is currently logged into the system. You can
then talk to each other by the use of this com­
mand. You must set up a protocol so that the
messages being sent back and forth are not inter­
mixed. This can be accomplished in a number of
ways similar to those used on CB's and other one
way radios. If you do not want to have messages
interrupt you during some task, you can deny mes­
sages by use of the command "mesg".

NO options exist for this command.

Example:

(1) You are logged in as "dick" and will write to the user whose login name
is "darrin".

dick's input:

user -> write darrin<r>
UNIX -> no response, awaits for mes­

sage to be entered

->
->
->
- > darrin • s terminal :

UNIX - > message from dick tty1

Darrin can then wait for the message from dick or enter ''write dick".
One must be careful not to overwrite the other's message being entered.
This requires a protocol that will insure that a message is not sent at the
same time the other user is entering a message to be sent. A simple protocol
that will allow each user to know when the other is sending or waiting to
receive is as follows:

- when you receive a message "message from -
tty?"

Write to Another User 113

- you wait until you receive the first message with
a "o" at the end. This will indicate that its your
turn to respond.
- each time either of you want a response from the
other, issue a "o" at the end of the last line of your
message.

- when you are finished, you can issue a "oo" to
indicate that you are signing off.

How you set up a protocol is not important as long as each of you
understand what it is and how it works.

Now let's continue with our example. Once you have issued the com­
mand you can start entering your message. Each time you strike the return
key <r>you will send that line to the other person.

dick responds(after issuing the write)

user - > This is to let you know that I am <r>
-> working on project x and will be done <r>
-> with the specification by tomorrow. oo<r>
->
->
->

Input to darrin's terminal

UNIX ->
->
->
->
->

This is to let you know that I am
working on project x and will be done
with the specification by tomorrow. oo
EDF
$

As we can see from this example, the date entered by dick is exactly
the same as that sent to darrin. Although it is not shown in this example, if
we had not used the protocol shown earlier, and darrin had started entering
a message at the same time dick was sending his, the message would have
overlapped with the text being entered by darrin.

114 Chapter 7

Summary:

This command, unlike the mail command, allows you to correspond
with another person logged into the system immediately opposed to waiting
until the other user asks for mail. Sometimes, if the message is long, you
can use the mail to send it and then use the write command to tell the
other user that (s)he has mail. Again remember about setting up some kind
of protocol.

7 .1.4. Permit or Deny Messages

Command:

Syntax:

Function:

Option:

Example:

mesg

mesg [n] [y)

This command allows you to permit others to
write to you or deny them permission to write to
you. There will be times when you do not want
others to write to you and interfere with what you
are doing.

There are two options which, when used with this
command, allow you to control other users writ­
ing to you. The first option, "n", allows you to
deny others from writing to you. This option will
remain in effect as long as you are logged in or un­
til you use the "y" option to allow others to write
to you. The second option "y" is as we just stated;
that is, it will allow others to write to you at any

· time. The def a ult is that the system will allow
others to write to you.

(1) Let's say you are about to do an edit and do not want anyone to write
a message to you until you have completed it. All you have to do is:

user ->
UNIX ->

Questions

mesg n<r>
$

115

At this point no other users can write to you. If they try, the system
will send them a message telling them that they cannot write to you.

Then, just as soon as you are finished with the editing you should
enter the mesg command to allow others to write to you. Since there may
be a very good reason for sending you a message and you do not want to
miss it.

user ->
UNIX ->

mesg y<r>
$

At this point you have set the conditions so that others may write to
you.

Summary:

You should learn to use this command with caution. It is probably
not in your best interest to have it set to deny others writing to you. So
again use it with caution. Remember that once you log out and then log
back in the option will be set to allow others to write to you.

7.1.5. Questions

(1) Can mail be sent to more than one person at a time?

(2) Can several people send you mail while you are not on the system?

(3) When does the UNIX system tell you that you have mail?

(4) If there is a problem with the system, is there any way to automatically
inform all the current users on the system?

(5) when writing to another user, when is the message sent and when is it
received?

116 Chapter 7

(6) Who can you write to?

7 .2. Information Handling Commands

The need to perform small but important functions when dealing with

your files is unavoidable. However without the proper tools to perform

these functions, it can become a very dificult if not impossible task. UNIX

is one of those systems that provide a wealth of tools that can make life

much more bearable.

The following commands are used by all users when dealing with the

selection and gathering of information about files and directories.

7 .2.1. Select or Reject Lines Common to Two Files

Command:

Syntax:

Function:

0

0

0

comm

comm [-[123]] filel file2

The usage of this command is to select or reject
lines that are common to two sorted files. A three
column output is produced based on the options
which can include:

lines different only in filel
lines different only in file2
lines identical in both files

Select or Reject Lines Common to Two Files 117

Option:

Example:

The options "123" represent the columns that
are displayed. Including one or more of the op­
tions will result in the corresponding column being
suppressed(not printed). Thus the option "-1"
would result in the differences for the first file to
be suppressed. The option "-12" would result in
the differences for both files being suppressed. i.e.,
the only printout would be the lines identical in
both files.

(1) The simplest usage is just to compare two sorted files using no options.
Thus for the two files:

sfilel sfile2
1 line one 1 line one
2 line two 2 line two
3 line three 3 line three
4 line four 4 line four
5 line five 5 line five
6 line six 6 line six
7 line seven 7 line seven

We can enter the command:

user -> comm sfile1 sf ile2 <r>
UNIX -> 1 line one

-> 2 line two
-> 3 line three
-> 3 line three
-> 4 line four
-> 5 line five
-> 6 line six
-> 7 line seven
-> $

We can see by the results of this compare that there exist three columns
of output. Their meaning is:

118

0

0

0

Chapter 7

Column 1 shows the lines in sfilel that are different
from sfile2.
Column 2 shows the lines in sfile2 that are different
from sfilel.
Column 3 displays the lines that are identical in
sfilel and sfile2.

(2) Now we can start using the options to display only the columns of out­
put that we want. First by using any one of the options by themselves

will result in the suppression of the printing for that option. Thus the

command:

user -> comm -1 sfile1 sf ile2 <r>
UNIX -> 1 line one

-> 2 line two
-> 3 line three
-> 4 line four
-> 5 line five
-> 6 line six
-> 7 line seven
-> $

As can be seen from this example the differences for the file "sfilel"
are not printed. If we were to use the option -2 or -3 then those columns

would not be printed.

(3) We can also use combinations of the options. This will allow us to

print only those columns we actually want. In the previous example

we saw that we could only suppress one column at a time. However if
we want to suppress two columns we simply use the option numbers

representing those columns we want suppressed. To produce only the

differences for sfilel we would say:

user - > comm -23 sfile1 sfile2 <r>

UNIX ->
->

Convert and Copy a File

3 line three
$

119

We can even suppress all three columns by using the option -123;
however, the results would be meaningless.

Summary:

The syntax for this command is the same as the others. We can also
direct the results (output) to another file or command.

7 .2.2. Convert and Copy a File

Command:

Syntax:

Function:

Option:

The options are:

if=
of=
ibs=n
obs=n
bs=n
cbs=n
skip=n

dd

dd [option-value].

This command provides the capability to specify
input and output files and various conversion and
copy options. Some of its usefulness is in dealing
with tape of different formats, EBCDIC and ASCII
formats, upper and lower case characters blocking,
etc.

Many options exist which can be used together.

input file name.
output file name.
input block size n bytes(default 512)
output block size n bytes-(def 512)
set both ip/op block size
conversion buffer size
skip n input records before copy

120

files=n
seek=n

count=n

conv=

- conv =

ascii
ebcdic
ibm

lease
ucase
swap
noerror
sync
.. ' ..

Chapter 7

copy n files from (tape) input
seek n rec's from beginning of
output file before copying
copy only n input records

The next option contains several suboptions and
is useful when transferring data between different
computers.

convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII
to EBCDIC
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input record to ibs
several comma-separated conversions

Example:

(1) A simple case of outputting blocked data or inputting blocked data.
Output data blocked 16 blocks to a record

user - > dd of=/dev/rmtO bs=16b.

Input data blocked 16 blocks to a record

user -> dd if=/dev/rmtO bs=16b.

Convert and Copy a File 121

In both these cases raw I/O is specified where /dev/rmtO happens to
be the name of a tape unit. The block size is obvious; however, you must
remember to include the b after the block size number.

(2) Next we may want to convert all alphabetic data in a file to upper case
letters. This can be done by use of the option conv=ucase. Lets take
the file "filel" and convert it to upper case letters. The current file
"filel" contains:

1 line one
3 line three
7 line seven
6 line six
2 line two
5 line five
4 line four

To convert it to upper case letters we enter:

user -> dd if=f ile1 of=ab conv=ucase <r>
UNIX -> 1 LINE ONE

-> 3 LINE THREE
-> 7 LINE SEVEN
-> 6 LINE SIX
-> 2 LINE TWO
-> 5 LINE FIVE
-> 4 LINE FOUR
-> $

Only the alphabetics will be converted to upper case. We could have
left the option "of=ab" off and the standard I/O would have been used,
which in this case is to the terminal.

(3) Another useful option is the "conv=swab". The PDP-11 series com­
puters reverse the order of the bytes in a word. And although this
is not noticeable to the user of a PDP-11 computer it is a problem
when moving data to another 16 bit computer that doesn't reverse

122 Chapter 7

the order(and most others don't). When swapping the order of bytes
between computers, a file with the bytes reversed looks as:

lll.,ENO EN3
L NIEHTER
E 7Il.,ENS VENE6
L NI EIS
X 2Il.,ENT OW5
L NI EIFEV4
L NIEOFUR

To convert it to the correct format can be done as:

user ->
UNIX ->

->
->
->
->
->
->

Summary:

dd if=ba conv=swab <r>
1 LINE ONE
3 LINE THREE
7 LINE SEVEN
6 LINE SIX
2 LINE TWO
5 LINE FIVE
4 LINE FOUR

As we can see by these examples the usefulness of this command is in
the handling of data between computers where formats are different.

7.2.3. Dift'erences Between Two Files

Command: di ff

Syntax: diff [-efbh] filel file2

Function:

Option:

-e

-b

-f

-h

Example:

Differences Between Two Files 123

This command defines the changes that must be
made in two files in order to bring them into
agreement(Iook exactly alike). This capability can
provide you with the methodology to keep backup
copies of files without having to keep the total
contents of each file.

Four options exist that provide additional
capabilities for tl:ie differential file comparator.
These are:

This option is the most important in that it
produces a set of difference commands that are
compatible with the ed editor, thus providing a
means in which to upgrade a file out of match with
another.

This option causes all trailing blanks (spaces and
tabs) to be ignored and other strings of blanks to
compare equal.

This option produces a script of differences similar
to that of the -e option, but not useful with ed.

This option is much faster, but does not do as
good a job of finding all the differences.

(1) A simple usage of the diff command is to find out just what the
differences are. This can be done with the two files:

filel file2
1 line one 1 line one
3 line three 3 line three
7 line seven 6 line six
6 line six 2 line two
2 line two 7 line seven
5 line five 5 line five
4 line four 4 line four

124 Chapter 7

Then executing the command:

user -> diff f ile1 f ile2 <r>
UNIX -> 3d2

-> < 7 line seven
-> 5a5
-> > 7 line seven
-> $

We can see that by simply deleting line 7 of filel (third line) and ad­
ding a new line (same as line 7 just deleted) just after line 5, we can make
filel look exactly like file2. Although the two files on first glance look quite
different, they are actually quite similar.

(2) There are times when you would like to back off from a file and
reconstruct an older one from the new one without having to do it by
hand. This can be accomplished by using the -e option which finds
the differences just as the previous example, but produces output ac­
ceptable to the ed editor. Again using the same files as shown above,
we can demonstrate the results.

user -> dif f -e f ile1 file2 <r>
UNIX -> Sa

-> 7 line seven
->
-> 3d
-> $

This output can now be run through the ed editor and update filel so
that it will look exactly like file2.

Summary:

This is a very useful tool when the need arises to keep backup copies
of files such as programs or documents. It only requires a diff file be kept
as each new version of a file is created. This will generally be many times
smaller than keeping the total file each time.

Differences between 3 versions of a file 125

7 .2.4. Differences between 3 versions of a file

Command:

Syntax:

Function:

Option:

-e

-x3

Example:

diff.3

diff.3 [-ex3] filel file2 file3

This command allows you to compare three
different versions of a file and find out what the
differences are. The basic information provided
after a run is:

- All three files are different
- filel is different
- file2 is different
- file3 is different

The information given is suficient to reconstruct
an earlier file to look like the latest one.

There are three options available. They are:

produces output in a format acceptable to the ed
editor.
produces output that will allow the incorporation
of only changes different in file3.

(1) The first example is to show the command usage without any options.
The three files are:

126 Chapter 7

filel file2 file3
1 line one 1 line one 1 line one
3 line three 3 line three 3 line three
7 line seven 6 line six 7 line seven
6 line six 2 line two 6 line six
2 line two 7 line seven 5 line five
5 line five 5 line five 2 line two
4 line four 4 line four 4 line four

The command is:

user -> diff 3 file! file2 file3 <r>
UNIX -> ====2

-> 1:2a
-> 2:3,4c
-> 6 line six
-> 2 line two
-> 3:2a
-> ----
-> 1:4,5c
-> 6 line six
-> 2 line two
-> 2:5a
-> 3:4c
-> 6 line six
-> ====3
-> 1:6a
-> 2:6a
-> 3:6c
-> 2 line two
-> $

The preceding information provided us with the the differences in each
of the files. The format is:

(1) file: line number append

Differences between 3 versions of a file

the first entry "1:2a" would translate to

file 1: line 2 append

127

which is saying that something must be appended after line 2 of filel
in order to bring it in line with file 2.

(2) file: line number , line number change

The second entry "2:3,4c "
"6 line six"
" 2 line two " would translate to

ctrlinefile 2: line 3 to line 4 change

which is saying that lines 3 and 4 must change in file 2 to bring it
in line. These two formats describe the differences between the three files
along with "====" telling you which file is different.

(3) The next example uses the same data files, but will use the option -e
to produce code acceptable to theed editor.

user -> diff 3 -e f ile1 file2 file3 <r>
UNIX -> 6a

-> 2 line two
->
-> 4,Sc
-> 6 line six
->
-> $

In this example we are shown the changes (in ed format) that are
necessary to incorporate into file 1 all the changes between files 2 and 3. If
we wanted only the changes flagged in file 3 and not file 2, we could run
with the option "-x(-3)".

Summary:

This command is generally used with three versions of the same file.
It provides you with the means by which to keep backup copies three deep
and still be able to create one copy from the others.

128 Chapter 7

7 .2.5. Find Pattern Matches in Files

Command:

Syntax:

Function:

Option:

grep

grep [option] ... expression [file]

This command is used when a string pattern is to
be located in one or more files. In the case of a
single file one could simply edit the file and search
for the pattern desired. However grep is useful
when more than one file is involved. The single
command "grep" can locate all occurences of a
pattern without having to look at each individual
file. Grep patterns are limited regular expressions
similar to those used in theed editor.

The following options can be used:

-v All lines but those matching are printed.
-c Only a count of matching lines is printed.
-1 The names of files with matching lines are

listed(once) separated by newlines.
-n Each line is preceded by its line number in the

file.
-b Each line is preceded by the block number on

which it was found.
-s No output is produced, only status.
-h Do not print filename headers with output lines.
-y Lower case letters in the pattern will also

match upper case letters in the input.
-e expression

Used when a pattern starts with "-".

Example:

(1) In our previous command descriptions, we used several files that were
similar. They were files "filel,file2, file3". They are:

Find Pattern Matches in Files 129

filel file2 file3
1 line one 1 line one 1 line one
3 line three 3 line three 3 line three
7 line seven 6 line six 7 line seven
6 line six 2 line two 6 line six
2 line two 7 line seven 5 line five
5 line five 5 line five 2 line two
4 line four 4 line four 4 line four

To find all of the occurrences of "seven" we can say:

user -> grep seven f ile1 f ile2 file3 <r>
UNIX -> file1 :7 line seven

-> file2:7 line seven
-> file3:7 line seven
-> $

The information obtained provides us with the file name and a listing
of the complete line. We could have written this command two different
ways and still obtained the same information.

(1) grep seven file? <r>

(2) grep seven fil* <r>

In both cases we must be sure that those are the only files with that
file name pattern(i.e., file names: file5 or filtemp).

(2) In the previous example we found that the lines containing the pat­
terns were located, but not where they were in each of the files. We
can use the -n option to obtain the line number for each occurrence.
Thus we can say:

user ->
UNIX ->

->

grep -n seven file? <r>
file1:3:7 line seven
file2:5:7 line seven

130 Chapter 7

-> f ile3: 3: 7 line seven
-> $

The only difference between this example and the previous one is that
the line numbers have been included. The entry reads (from left to right)
file name, line number, line.

(3) Another case is where we are looking for a pattern that could exist in
upper or lower case letters. Because of the large number of combina­
tions it would be too dificult to search on all possible patterns. Thus
the option -y provides us with a single way to express it. For this
example we have edited a file to contain some upper case letters. The
file looks as follows:

fl.lex
1 line one
3 line three
7 line seven
6 line six
2 line Two
5 line Five
4 line Four

We can then enter the command:

user -> grep -y f f ilex
UNIX -> 5 line Five

-> 4 line Four
-> $

<r>

In this case we were looking for anything that contained an "f or F".

(4) We can also combine options to give us additional information when
necessary. In the previous case we could look for upper case letters
only. If we wanted the line numbers as well (option -n) we could say:

user - > grep -y -n f filex <r>

UNIX ->
->
->

Octal Dump

6:5 line Five
7:4 line Four
$

131

Notice that in the previous two examples the file name is not given.
This happens when only one file is named. The last example provided us
with the line numbers as well as the lines themselves.

Summary:

Grep can be very useful when a large number of files are involved. An
example of how it's used can be seen in locating a pattern(say a variable
name) in several c programs enabling you to change or delete them.

7 .2.6. Octal Dump

Command:

Syntax:

Function:

Option:

b
c

od

od [-bcdox] file [[+]offset[.] [b]]

The octal dump program provides the facility to
dump a file or part of a file in one or more for­
mats as specified by the options. For example, it
is useful in determining if there are some hidden
characters in the text that are causing problems.

Several options exist that provide the capability
to see the text in different formats. These options
are:

Each byte is interpreted in octal.
Each byte is interpreted in ASCII, with
the hidden characters being displayed
in a special format. These formats are:

132

d
0

x

Chapter 7

1) null= \0
2) backspace = \ b
3) formfeed = \f
4) newline = \n
5) return = \r
6) tab= \t
7) Others= 3 digit octal numbers

Each word is interpreted in decimal.
Each word is interpreted in octal(default).
Each word is interpreted in hex.

Example:

(1) Let's first look at a simple octal dump of a two line file. The content
of the file is:

filea
1 1 2 1 1
2 2 1 2 2

user - > od filea <r>
UNIX ->

0000000 030440 030440 031040 030440
0000000 030412 031040 031040 030440
0000020 031040 031012
0000024

-> $

This is just a plan octal dump of the two line file "filea".

Octal Dump 133

(2) This next example will show the same octal dump; however, it will use
the option -b which dumps the data one line at a time.

user -> od -b filea <r>
UNIX ->

0000000 061 040 061 040 062 040 061 040
0000000 061 012 062 040 062 040 061 040
0000020 062 040 062 012
0000024

-> $

This is exactly the same output as the previous example with the ex­
ception that it is represented one character at a time instead of one word
at a time.

(3) The most useful option is the one that presents the text in ASCII,
but displays all the hidden characters. There are many times when
something doesn't work properly and it is because there exists one or
more of these hidden characters.

user -> od -c filea <r>
UNIX ->

0000000 1 1 2 1 1 \n 2 2 1
0000020 2 2 \n
0000024

-> $

134 Chapter 7

In this example the only hidden characters are the newline characters

"\n". However, if they were not supposed to be there, they would not be

visible without the use of this command.

Summary: The principal use of this command is during debug, whether

it be a computer program or a document being formatted.

7 .2. 7. Table of Contents For Archive Files

Command:

Syntax:

Function:

Option:

Example:

ranlib

ranlib archive file

This command is useful when dealing with archive

files that contain program object modules used by

the loader. It produces a table of contents at the

beginning of an archive file that allows the loader
to find all references to all object programs in the
file during a single pass. Without this table of

contents it would be required to arrange the object
programs such that a single pass could be made

over the archive file in order to find all the refer­
ences.

No options exist for this command.

(1) There is nothing to do but enter the command name and the name of

the archive file. The table of contents will be generated. It should be

noted however that once this table of contents exists, any changes will

make the table of contents invalid until it is run again. If you forget

to run it after a change, and then use it it will tell you it's out of date.

user - > ranlib library <r>

Word Count 135

UNIX -> $

No message will be produced unless there is a problem. The table of
contents named "_.S~EF" will be produced and placed at the beginning
of the archive file.

Summary:

This command is useful only when used in conjunction with the loader.
It eliminates the need to organize the programs within the archive file.

7 .2.8. Word Count

Command:

Syntax:

Function:

Option:

w
c

Example:

WC

wc (-lwc] (file ...]

This command provides a count of the number
of lines, number of words, and number of charac­
ters of one or more files. A line is delimited by
a newline character "\n", a word is delimited by
spaces, tabs or newline, and a character is just
that: every character in the file.

The options allow the user to specify only those
statistics (s)he requires. They are:

count the number of lines in the file.
count the number of words in the file.
count the number of characters in the file.

(1) First let's use the basic command with a simple file. The contents of
the file are:

136

filel
1 line one
3 line three
7 line seven
6 line six
2 line two
5 line five
4 line four

-> $

Chapter 7

We can then execute the command:

user ->
UNIX ->

->

wc file1 <r>
7 21 83 f ile1

$

To read this we find first the number of lines which is 7, and then
the number of words which is 21, and finally the number of characters 83
followed by the file name.

(2) We can use the options to obtain only that data we need. For example,
if we only need the number of lines in the file we can say:

user ->
UNIX ->

->

wc -1 file1 <r>
7 file1

$

This gives us only the number of lines and the file name.

(3) Another way of using this command is to get the count of a large num­
ber of files. For example, you may want to know how many lines and
characters there are in a group of programs that are used as a single

Report Repeated Lines in a File 137

system. Let's say that the files that start with "fil" are the programs
that make up this set. To see the total count on lines and characters
we need only say:

user -> WC -le fi1* <r>
UNIX -> 7 83 f ile1

-> 7 83 file1. c
-> 1 5 file1 .o
-> 7 83 file2
-> 7 83 f ile3
-> 0 83 f ilen
-> 29 420 total
-> $

Reading from left to right, we have the number of lines, followed by
the number of characters and the name of the file. The last line contains
the total count for both the lines and the characters.

Summary:

This command can be used anytime you need to know the count for
lines, words, and characters in a file or files.

7.2.9. Report Repeated Lines in a File

Command:

Syntax:

Function:

uniq

uniq [-options [+nJ [-n]] [input] [output]

This command looks for adjacent lines that are
the same. In the default case (no options) all but
the first line of those that are the same are deleted.
Thus if 4 consecutive lines are the same, then the
lines 2, 3, and 4 are deleted. The output file will
consist of lines that are different.

138

Option:

u

d
c

+n

-n

Example:

Chapter 7

Three options exist which perform the following

functions:

Only the lines that are not repeated
are output.
Only the repeated lines are output.

generate an output(as with no option) with the

number of occurrences of each line appearing at
the beginning of the line.

The arguments (+n and -n) specify skipping an
initial portion of each line in the comparison.

The first n fields together with any blanks before

each are ignored. A field is defined as a string of

non-space, non-tab characters separated by tabs
and spaces from its neighbors.

The first n characters are ignored. Fields are
skipped before characters.

(1) Let's start with a simple file as follows and generate a new file eliminat­

ing all second and succeeding copies of repeated lines.

The file "fl" is:

1 line one
3 line three
3 line three
7 line seven
6 line six
2 line two
2 line two
5 line five
4 line four

Report Repeated Lines in a File 139

user -> uniq f1 f2<r>
UNIX -> $
user -> cat f2<r>
UNIX -> 1 line one

-> 3 line three
-> 7 line seven
-> 6 line six
-> 2 line two
-> 5 line five
-> 4 line four
-> $

We can see that the new file "f2" contains only lines that are not
repeated. If more than two occurrences of a line exist it is treated the
same way, that is to say, all but the first occurrence is deleted. We should
also notice that the file must be in order(see sort) or we will not find other
occurrences.

(2) This example will use the option -u to output only the lines that are
not repeated.

user -> uniq -u f1<r> direct output to terminal
UNIX -> 1 line one

-> 7 line seven
-> 6 line six
-> 5 line five
-> 4 line four
-> $

The two lines 2 and 3 which were repeated are not output at all.
(3) There may be times when all we want are the lines that are repeated.

In this case we can use the option -d.

user -> uniq -d f 1 <r>

140

UNIX ->
->
->

3 line three
2 line two
$

Chapter 7

(4) Now let's get the count of the number of occurrences of each line. This

is done using the option -c.

user -> uniq -c f1<r>

UNIX -> 1 1 line one
-> 2 3 line three

-> 1 7 line seven

-> 1 6 line six

-> 2 2 line two

-> 1 5 line five

-> 1 4 line four
-> $

The first number is the number of occurrences of that line. Thus line

2 and 5 have two occurrences while the rest all have only one occurrence.

(5) There will be a time when you will want to make your selection based

only on part of the line. In this case the arguments +n and -n are

available so that you can skip an initial portion of each line. The op­

tions allow you to skip a number of fields and/ or a number of charac­

ters. Lets' use a file that contains matching data in the first field. This

file "f3" looks as follows.

file "f3"
1 line one
3 line three
3 line three3
7 line seven
6 line six
2 line two
2 line two2
5 line five
4 line four

Split a File Into Pieces
I 141 1

user -> uniq -1 f3<r>
UNIX -> 1 line one

-> 3 line three
-> 3 line three3
-> 7 line seven
-> 6 line six
-> 2 line two
-> 2 line two2
-> 5 line five
-> 4 line four
-> $

As we can see, the only difference occurred in the first field and we
skipped it, thus we were able to output all the lines. If the option had not
been used, lines 3 and 7 would have been deleted from the output.

Summary:

Remember that the repeated lines must be in adjacent order to be
found. This can be accomplished by using the sort command. In the
examples we did not specify an output file so that the output would be
directed to the terminal. Normally you would specify an output file.

7 .2.10. Split a File Into Pieces

Command:

Syntax:

Function:

split

split [-n] [file [name]]

This command splits a file into n-line pieces
(default 1000 lines), as many as are necessary onto
a set of output files. If a name is given for the out­
put file, the letters aa,ab,ac, ... will be appended
to the end of the output file for each file that is
generated. If no output file is given then the name
"x" is provided.

142

Option:

Example:

Chapter 7

Only one option exists for this command. It is -n

an<l: specifies the number of lines the command is

to place in each output file.

{1) Let's use the file "fl" from the example in section 7.2.9 (command

uniq). We will then split this file into two {2) line files starting with

the name "ff'.

user -> split -2 f1 ff<r>

UNIX -> $
user -> ls *<r>
UNIX -> f 1

-> ff aa
-> ff ab
-> ff ac
-> ff ad
-> ff ae
-> $

user -> cat ff aa ff ab ffac ffad ffae<r>

UNIX -> 1 line one
-> 3 line three
-> 3 line three
-> 7 line seven
-> 6 line six
-> 2 line two
-> 2 line two
-> 5 line five
-> 4 line four
-> $

If we were to list the file "fl", we would see the same thing. The only

difference is that the lines are now contained in five (5) different files.

Sort or Merge Files 143

Summary:

The main use for this command is to split your data into smaller files
when (1) they become too large to manage, or (2) when they exceed the
limits of a file used by various programs such as the editor "ed" .

7.2.11. Sort or Merge Files

Command:

Syntax:

Function:

Option:

b

c

d

f

sort

sort [-option ...] [+posl [-pos2]] ... [-o name]
[-T directory] [name] ...

This command sorts or merges files together and
writes the result on the spcified file (def a ult is
standard output). If no sort key is specified, the
default is the complete line. A file can be sorted
based on one or more keys and in order as specified
by the options.

The following options are available with this com­
mand:

this option causes the sort to ignore leading
blanks(spaces and tabs) in the field comparisons.
Check that the input file is sorted according to the
ordering rules; no output is provided unless the
file is out of sort.
"dictionary" order: only letters,digits and blanks
are significant in comparisons.
treat upper case letters as if they are lower case
letters.
ignore characters outside the ASCII range 040-
0176 in nonnumeric comparisons.

144

m

n

0

r

tx

T

u

Chapter 7

this option specifies that the named files are to be

merged. It expects the input files to have already

been sorted.
sorted by arithmetic value. A numeric string can

consist of optional blanks, optional minus sign,

and zero or more digits with optional decimal

point.

the name following this option specifies a file where

the output is to be placed. If it doesn't exist, then

the output goes to the standard output.

reverse the sense of comparisons (i.e., numeric

values would be ordered starting with the largest

value down to the lowest value).

the "t" specifies that a tab character other than

the default (blanks) is to be used as the separator.

The x is the actual character to be used as the

separator.

this option allows you to name a directory where

all the temporary files used by the command will

be held.
when two or more lines match the same key, only

one of them is output. This is to eliminate dupli­

cates,etc.

Specifying keys on which to sort is accomplished by use of the argu­

ments (+posl and -pos2). Each of these pairs can be used to restrict a sort

key to a field beginning at posl and ending at pos2. Posl tells the sort to

skip a number of fields starting from the beginning of the line. Pos2 tells

the sort to skip a number of characters into the field specified by posl.

Example:

(1) Let's first sort a file on each complete line. In other words the sort key

is the complete line. This is the def a ult when no options are specified.

The file "filel'' is to be sorted.

1 line one
3 line three
7 line seven

user

6 line six
2 line two
5 line five
4 line four

->
UNIX ->

->
->
->
->
->
->
->

Sort or Merge Files 145

sort file! <r>
1 line one
2 line two
3 line three
4 line four
5 line five
6 line six
7 line seven
$

(2) We can just as easily sort the same file in reverse order by using the
option "-r".

user -> sort -r file1 <r>
UNIX -> 7 line seven

-> 6 line six
-> 5 line five
-> 4 line four
-> 3 line three
-> 2 line two
-> 1 line one
-> $

In each of these two cases the sort key was the entire line. If we had
wanted to sort only on the numeric value in the first field, we could have
the option "-n". If the field is the first in the line, the position arguments
(pos) need not be used. However if the field is anywhere else in the line, it
will have to be used. Let's look at an example using these options.

(3) First sort on the first field which is numeric.

146 Chapter 7

user -> sort -n file1 -o outfile<r>

UNIX -> $

The file will look exactly like the sorted file from example 1. But in
this case we requested that the results be placed in the file "outfile".

(4) We could also sort using the number option if the sort key were other
than the first field by using the "pos" arguments. Let's say that the
number field is the last instead of the first field in the line. We would
then say:

user - > sort -n +2 file2 -o outfile <r>

UNIX -> $

The results are placed in the output file named "outfile". The sort key
used is the third field even though we have used the argument +2. This is
because the first field is zero, the second one, the third two and so on.

(5) We can also use multiple options together where they do not conflict.
For example we can sort on a numeric field and request that the output
be reversed.

user -> sort -nr file1 -o file2<r>

UNIX -> $

The output has been sorted on the first field which is numeric and
output with the largest value being first and the lowest value being last.

Summary:

The sort command is a very powerful function and will be useful in
solving many problems. The examples we have shown are only a few of
the ways in which it can be used. The best way to learn is to use these
examples as a basis and try other options.

Running of Programs 147

7 .2.12. Questions

(1) You have a tape containing EBCDIC characters and you want to read it into your computer (tape drive= mtO). What command is used and what are the parameters?

(2) What command (and parameters) would you use to generate a set of difference commmands compatible with the ed editor (use filel and file2 as two of the parameters)?

(3) You have six files in a directory each containing text. What command can be issued to locate all occurrences of the pattern "syntax"?
(4) What do the following commands do?

a) wc filel

b) split -10 filel F

c) sort -r filel -o file2

7.3. Running of Programs

This set of commands lends itself to the execution of programs. They are especially useful during the execution of shell files (see chapter 6). They cover such things as setting up the automatic executing of programs at some specific time, or spooling a process and waiting for it to finish, etc.

148 Chapter 7

7 .3.1. Echo Arguments

Command:

Syntax:

Function:

Option:

Example:

echo

echo [-n] [arg].

This command writes its arguments separated by

blanks and terminated by a newline on the stand­

ard output. This is especially useful when using

shell files and you want to know what is happening

as it happens.

The only option "-n" is to provide a facility to

eliminate the newline which is added to the end

of each argument. In this case the arguments will

appear one after another separated by a blank.

(1) Create a shell file that executes several commands and echoes the start

of each command.

We will first create our shell file "echo" as:

echo starting command 1
command 1
echo starting command 2
command 2
echo starting command 3
command 3
echo end of shell file

We can then execute the shell file as defined in chapter 6.

user -> sh echo<r>

UNIX ->
->
->
->
->

Echo Arguments

starting command 1
starting command 2
starting command 3
end of shell file
$

149

This command is useful when you want an audit trail of what is hap­
pening during the execution of a shell file. Another use is when you want
to see if the shell file is executing correctly.

(2) We can also echo the names of arguments that are passed to a shell
file. This can be useful when we want to know that the right argument
is passed at the right time, or just to create an audit trail. The shell
file "echol" is:

echo $1
command 1 $1
echo $2
command 2 $2
echo end of shell file

We can then envoke it by:

user -> sh echo! test! test2<r>
UNIX -> test!

-> test2
-> end of shell file
-> $

As we can see by this example, all we are doing is printing the argu­
ments that were being passed to a shell file. This may appear to be of no
value, but there will be many cases when you will be calling a shell file from
another shell file and the arguments are not coming directly from you.

Summary:

The echo command is used in many ways, some of which have been
shown here. One that hasn't is issuing instructions when some interaction

150 Chapter 7

is required between the user and the programs. You will find other uses as

you become more familiar with it.

7 .3.2. Terminate a Process With Extreme Prejudice

Command:

Syntax:

Function:

Option:

Example:

kill

kill [-option] processid.

This command is used to kill a process when it is

tying up the system or you have decided that it is

not needed just after you invoked it. The process

ID can be obtained by use of the command "ps".

The processes specified to be killed must belong to

you unless you are the superuser.

The only option allowed with this command is a

signal number. This will kill processes that do not

catch the default signal. For example the option

"-9" is a sure kill. You can shut the system down

with a kill "-1 1".

(1) Let's say that you start a spooled print. Because the spooler starts

the job and returns control to you, you will have to find the process

number before you can kill it (terminate it). First you must issue a

"ps" command to find the process id. Once you have it, you can then

issue the kill command along with the process id.

user - > ps <r>

UNIX ->

PID TTY TIME C:MD

Terminate a Process With Extreme Prejudice 151

1455 co 0:01
3130 2 0:03
4317 2 0:41
4354 ? <defunct>
4355 2 0:00
4356 2 0:03 lpr

$ ->

In this case you have only requested your own active processes. Because
you are terminal (tty) 2, you can look at the functions being performed.
From this you select the one that you want to terminate and issue the kill
command. Because the one you want to terminate is the line spooler, you
can see that the process id is "4356".

user -> kill 4356<r>
UNIX -> $

Just to be sure that the correct process was killed, you can issue
another "ps". The process "4356" should be terminated (not there).

user -> ps<r>
UNIX ->

PID TTY TTh1E GMD
1455 co 0:01
3130 2 0:03
4317 2 0:41
4354 ? <defunct>
4355 2 0:00

$ ->

152 Chapter 7

Summary:

This command should be used carefully, because if you kill the wrong

process, you may terminate yourself and the system will log you out. It is

probably a good idea to use the option "-9" to insure that you have killed

the process.

7 .3.3. Suspend Execution for an Interval

Command:

Syntax:

Function:

Option:

Example:

sleep

sleep time

This command allows you to suspend execution

for some designated period of time (where "time"

is in seconds). This provides you with the ability

to delay the execution of a command perhaps until

something else completes.

There are no options for this command.

(1) Let's say that we want to remind someone else on the system that they

will have to perform some designated task one hour from now. If we

are not going to be around, we can say:

user -> sleep 3600<r>
-> write sam<r>
-> Please perform the designated task

-> cnt'l-d

The system will wait for 3600 seconds before issuing the message. The

problem here is that we cannot logoff the system. In the next chapter we

Run a Command at Low Priority 153

will learn how to create shell procedures that can be invoked at a later
time, but for now all we want to show is how the sleep command might be
used.

Summary:

There exist many reasons for using this command. The knowledge
that it exists will allow you to use it as you find the need.

7 .3.4. Run a Command at Low Priority

Command:

Syntax:

Function:

Option:

Example:

nice

nice [-number) command [arguments)

This command allows you to execute a command
with a low scheduling priority, i.e., you can ex""
ecute it without having much effect on other com­
mands you are executing. If the "-number" is
provided, it causes the priority to be incremented.
The higher the number, the lower the priority.
This is valid up to a limit of 20, with 10 being the
def a ult if no number is provided.

No options exist for this command.

(1) Let's dump a directory of files while we are using the editor.

user -> nice -20 tar cO working.t<r>
UNIX -> 234 process number

-> $
user -> ed file1<r>

->

154 Chapter 7

->
->

As we can see, the only difference will be that the tar dump executes at

a low priority providing us with more cpu time to edit our program "filel".

Summary:

As with the sleep command there will be times when this command is

of value. It is probably used most frequently by the system administrator

when performing tasks during normal or heavy use of the system.

7 .3.5. Pipe Fitting

Command:

Syntax:

Function:

Option:

-i
-a

Example:

tee

tee [options] [file] ..

This command provides you with
the capability to echo something
to your terminal (standard out­
put) and at the same time save it
in a file. This is more frequently
used when you are executing a
shell procedure (see chapter 8).

Two options exist for this com­
mand. They are:

ignores interrupts
causes the output to be appended
to the files rather than overwrit­
ing them.

(1) We have a series of commands to execute and want to keep a record

of the order in which they were executed.

Questions

The series of commands could appear as:

tee command! -a filel

command!

tee command2 -a filel

command2

tee command3 -a filel

command3

If executed, the results would appear as:

UNIX -> command1
-> command2
-> command3
-> $

user -> cat file1 <r>
UNIX -> command1

-> command2
-> command3
-> $

155

We can see from this example that the data saved in the file is the same as what is echoed to the terminal. This is useful when you are running a set of commands and cannot watch them complete, but need to know if they executed properly.

Summary:

The use of this command can be better understood after reading chap­ter 8 on the use of shell files.

7.3.6. Questions

(1) What is the purpose of the echo command?
(2) You have created a process that is not needed. The process number is

102. What is the command used to terminate this process? How can
you check to be sure that it was terminated?

156 Chapter 7

(3) Provide the command that will cause a long running program to ex­

ecute with minimum impact on any other programs currently running.

7 .4. Status Inquiries

There will be times when you will need information about the system

or just information in general. The availability of commands that are easy

to use, and provide you with information on the system such as file and

directory information, free space on a file system, amount of space you

have used in a directory, who's on the system, etc., are very valuable. In

addition you can obtain information about the date, time, etc.

These commands provide you with this type of information any time

you find that you need it. The following commands are available:

7.4.1. List the Contents of a Directory

Command:

Syntax:

Function:

Option:

ls

ls [-options. . .] name. . .

This command provides you with information

about your directories and files such as read/write

permissions, date of last change, etc. The

standard output using only the "ls" command

without options provides you with a sorted out­

put (alphabetically) of the names of all files and

directories under the directory you are currently

positioned at.

There are several options that can prove to be use­

ful in selecting and ordering your list. These are:

Provides a list in long form (see chapter 4).

t

a
s

d

r

u

c

f

g

Example:

List the Contents of a Directory 157

sort by time modified (latest first) instead of by
name as is normal.
list all entries. Usually "." entries are not listed.
give the size in blocks, including indirect blocks,
for each entry.
give the status information of the named directory
(-1 option data) and don't provide its contents (files
and directories under it).
reverse the order of the sort to get the names of the
files and directories in reverse alpha- betic order.
this uses time of last access instead of last
modification for sorting
use the time of last modification to in ode (mode,
etc.) instead of last modification to file for sort­
ing.

print i-number in first column of the report for
each file listed.
force each argument to be interpreted as a direc­
tory and list the name found in each slot. This
option turns off -1, -t, -s, and -r and turns on -a.
The order is the order in which entries appear in
the directory.
provide the group ID instead of owner ID in long
listing.

(1) We have already seen the basic use of the "ls" command in chapter 4.
Here we will look at a few of the options that may be useful. The first
of these options is the use of "-a" which provides the user with the
ability to see all entries because the system usually suppresses entries
starting with "." and " .. ".

user -> ls -al<r>
UNIX ->

total 829

158 Chapter 7

drwxrwxr-x 4 dick 1376 Jan 12 10:30

drwxrwxr-x 13 dick 400 Jan 17 10:49

-rw-rw-r- 1 dick 5705 Dec 2115:35 ar

drwxrwxr-x 2 dick 704 Dec 20 13:48 book

-rw-rw-r- 1 dick 3207 Dec 22 08:55 cat

-rw-rw-r- 1 dick 18371 Jan 2 18:47 ch5

-rw-rw-r- 1 dick 1009 Jan 5 15:31 ch7.accn

-rw-rw-r- 1 dick 1466 Jan 5 15:34 ch7.bkup

-rw-rw-r- 1 dick 23807 Jan 5 15:38 ch7.inf

-rw-rw-r- 1 dick 627 Jan 3 18:30 ch7.stat

-rw-rw-r- 1 dick 9756 Jan 5 14:05 chapt2

-rw-rw-r- 1 dick 21570 Jan 5 14:41 chapt4

-rw-rw-r- 1 dick 36678 Jan 6 20:39 chapt5

-rw-rw-r- 1 dick 10362 Jan 5 15:28 chapt6

-rw-rw-r- 1 dick 597 Dec 23 15:16 df

-rw-rw-r- 1 dick 2915 Dec 21 21:14 diff

UNIX -> $

The only difference between this ls command and one not using the "­

a" option is that the first two entries would not have been displayed. Notice

that if the "l" option had not beep used, the output would have been only

the names. Thus multiple options can be used with caution in a single "

ls" command.

(2) Now let's look at the same list, but sorted according to the time each

entry was modified. This is listed as latest modified first instead of by

name.

user -> ls -tl<r>

UNIX ->

total 829
-rw-rw-r- 1 dick 36678 Jan 6 20:39 chapt5

Print and Set Date 159

-rw-rw-r- 1 dick 23807 Jan 5 15:38 ch7.inf
-rw-rw-r- 1 dick 1466 Jan 5 15:34 ch7.bkup
-rw-rw-r- 1 dick 1009 Jan 5 15:31 ch7.accn
-rw-rw-r- 1 dick 10362 Jan 5 15:28 chapt6
-rw-rw-r- 1 dick 21570 Jan 5 14:41 chapt4
-rw-rw-r- 1 dick 9756 Jan 5 14:05 chapt2
-rw-rw-r- 1 dick 627 Jan 3 18:30 ch7.stat
-rw-rw-r- 1 dick 18371 Jan 2 18:47 ch5
-rw-rw-r- 1 dick 597 Dec 23 15:16 df
-rw-rw-r- 1 dick 3207 Dec 22 08:55 cat
-rw-rw-r- 1 dick 2915 Dec 21 21:14 diff
-rw-rw-r- 1 dick 5705 Dec 21 15:35 ar
drwxrwxr-x 2 dick 704 Dec 20 13:48 book

UNIX -> $

We can see from this example that although the same information is
provided, it is in a totally different format. This command is useful when
you are trying to find out what files have been most recently modified. We
can use more than one option at a time; however, you should be sure that
they do not conflict with each other. For example you would not want to
use the options "t and u" together, because they both order the output in
a different way.

Summary:

This command is described in chapter 4 using only the "-1" option.
However there will be times when you will find other options a great benefit
to you in obtaining additional information.

7 .4.2. Print and Set Date

Command: date

Syntax: date [yymmddhhmm[.ss]]

160

Function:

Option:

Chapter 7

This command is used by most users to get the
date and time. However the system administrator
must have the ability to set the date and time
whenever starting or restarting the system.

The options consist of:

yy year (if year doesn't change, not needed)
mm month (value 01 to 12)
dd day (value 01 to 31) depends on month
hh hour of the day (24 hour clock)
mm minutes (00 to 60)
.ss seconds (00 to 60)

Example:

(1) Any time the user wants to know the time and/or date, this command

can be executed.

user ->
UNIX ->

->

date<r>
Sat Jan 10 14:51:02 EST 1981

$

This command can be issued at any time by any user.

(2) The setting or resetting of the date is generally done by the systems

administrator. However anyone who has permission can set or reset

the date and time.

user ->
UNIX ->

->

date 8101101816<r>
Sat Jan 10 18:16 EST 1981
$

Who is On the System 161

Summary:

This command is just another of the useful commands found in UNIX.
Although it may not be used frequently, when it is, it is very useful. How
many times have you been caught without your watch and needed to know
the time and/ or date?

7 .4.3. Who is On the System

Command:

Syntax:

Function:

Option:

Example:

who

who [who-file) [am I)

This command provides a list of all the users cur­
rently on the system and what terminal they are
connected to.

Two options exist for this command. The
first is a file that provides the "who" command
with the necessary information that is normally
(default) provided by the system file "/etc/utmp".
Typically the given file will be /usr / adm/wtmp,
which contains a record of all the logins since it
was created. The second option "am I" tells you
who you are logged in as.

(1) Let's first try this command without any options.

user -> who<r>
UNIX ->

->
->
->

darrin ttyb Jan 11 08:32
dick ttya Jan 11 09:44
pat ttyh Jan 11 14:12
$

162 Chapter 7

The information provided includes the user's name, terminal, date and

time of login.

(2) Next let's see what the command does when the option "am I" is used.

user ->
UNIX ->

->

Summary:

who am i<r>
dick tty1 Jan 17 11:22

$

This command is useful when you want to write to someone else and

you want to see if they are logged in, or maybe you need their correct login

name. There will also be times when you need to know the terminal you

or others are using.

7.4.4. Get Terminal Name

Command:

Syntax:

Function:

Option:

Example:

tty

tty

This command prints the terminal name that you
are currently using.

No options exist for this command.

(1) Since there is only one use of this command, it produces the following

output.

user -> tty<r>

Working Directory Name

UNIX -> ttyx
-> $

Summary:

163

Although you can obtain the same information by using the command
"who am i", it is just a simple way of getting this information.

7.4.5. Working Directory Name

Command:

Syntax:

Function:

Option:

Example:

pwd

pwd

This command provides you with a complete path­
name to your current (working) directory.

No options exist for this command.

(1) There exists only one form of usage for this commmand.

user · ->
UNIX ->

Summary:

pwd
/rlg/dick/book

This command is very useful when you are not sure where you are.
This command is explained in more detail in chapter 4.

164

7 .4.6. Process Status

Command:

Syntax:

Function:

Option:

a

x

Example:

Chapter 7

ps

ps [option ...] [namelist]

This command provides you with information
about what is currently active in the system.
Depending on the options used, this command
will provide you with information about all the
processes with or without terminals, long listings
or short listings.

Three (3) options exist for this command. They
can be used separately or together.

this option asks for information about all the
processes associated with all terminals. In other
words, all the processes that have been invoked
from a terminal.
this option asks for information about all the
processes that are not associated with a terminal.
These are generally processes invoked by the sys­
tem.
This option provides you with a long listing. This
listing displays many things about the current
status of the system. See examples for more
detailed information.

(1) First let's try it with no options.

user -> ps<r>

Process Status 165

UNIX ->

PID TTY TIME C:MD
203 co 0:03
741 co 0:35
751 ? <defunct>
752 co 0:00 te status
753 co 0:03 .Sp

$ ->

As we can see from this example we are provided with information
about our status. The information provided is:

o process ID
o terminal number for controlling tty
o cumulative execution time for the process
o process command (what it's doing)

The process ID is necessary when you have done something wrong and
have to kill that process (see kill command). The process description tries
to tell you what you are doing in that process. For example, the first
process says you are in the shell. This is almost always the case because
anytime you are logged into the system you are placed under control of the
shell. The next process says that the program "te status" is being executed.
This happens to be a program that is being executed with one argument
which is "status". The next two processes define the execution of the "ps"
command itself. This is because I executed it directly from the editor.

(2) Now let's execute the ps command with the option "a" to obtain the
status on all users.

user -> ps a<r>
UNIX ->

166 Chapter 7

PID TTY TIME CMD
1494 co 0:01
27 1 0:00 -x
15 ? 1:07
21 Ip 0:00
28 2 0:00 - 0
1553 5 0:00
30 6 0:00 -x
852 7 0:08
1700 co 0:01
1706 co 0:22
1713 ? <defunct>
1714 co 0:00
1715 co 0:04 .sp

This option simply provides the same information as was shown for an
individual user, but in this case for all active users on the system, whereas
the previous example displayed only the requesting user's information.

(3) Now we will look at all the processes being used instead of only our
own, but including more detail.

user -> ps axl<r>
UNIX ->

Process Status 167

F s urn PIO PPID CPU PRI NICE ADDR sz WC HAN TTY TIME CMD
3 s 0 0 0 147 0 20 57 4 7670 ? 1196:56 swapper
1 s 0 1 0 0 30 20 377 12 10574 ? 0:02
1 s 4 1494 1 0 30 20 323 16 10630 co 0:01
1 s 0 27 1 0 28 20 365 12 107574 1 0:00 - x
1 s 0 13 1 0 40 20 351 12 164000 1: 10
1 s 1 15 1 0 40 20 332 28 164000 1:07
1 s 0 21 1 0 29 20 341 12 110264 lp 0:00
1 s 0 28 1 0 28 20 362 12 110104 2 0:00 - 0
1 s 0 1553 1 0 28 20 173 12 110022 s 0:00
1 s 0 30 1 0 28 20 354 12 110166 6 0:00 - x
1 s 6 852 1 0 28 20 262 16 110332 7 0:08
1 s 0 1700 1494 0 30 20 127 16 11224 co 0:01
1 s 0 1706 1700 4 26 20 74 40 56356 co 0:32
1 z 0 1719 1706 s so 20 0 0 ? <defunct>
1 s 0 1720 1706 0 30 20 123 16 11350 co 0:00
1 R 0 1721 1720 173 60 20 214 24 co 0:05 .sp

As we can see this option provides us with a lot more information than
any of the previous. From left to right, the information shown consists of:

F

s

UID
PID

PPID
CPU
PRI

NICE
ADDR

sz
WC HAN

flags associated with the process (01: in core, 02:
system process, 04: locked in core (physical I/O),
10: being swapped, 20: being traced by another
process)).

the state of the process (0: nonexistent, S: sleep­
ing, W: waiting, R: running, I: intermediate, Z:
terminated, T: stopped).

the user ID of the process owner
the process ID of the process (used with the kill
command)

the process ID of the parent process
processor utilization for scheduling
the priority of the process; high numbers mean low
priority

used in priority computation
the core address of the process if resident, other­
wise the disk address
the size i blocks of the core image of the process
the event for which the process is waiting or sleep­
ing; if blank, the process is running

168

TTY
TThIB

Summary:

Chapter 7

the controlling tty for the process
the cumulative execution time for the process

This command is generally used by the system administrator when

there are problems with the system such as process table overflow, program

out of control, etc. However sometimes a user may have started a job and

then decided that it should be terminated. This can be accomplished by

using the ps command, obtaining the PID and killing the process associated

with that program. For more information see chapter 9.

7.4. 7. Summarize Disk Usage

Command:

Syntax:

Function:

Option:

Example:

du

du [-s] [-a] [name. . .]

This command provides you with the number of
blocks used by each file and a total count for all
files. The command will obtain this information
for all files in the current directory and all its sub­
directories.

Two options exist for this command. The first "­
s" provides only the grand total for all files. The
second "-a" causes an entry to be generated for
each file.

(1) Let's first try the command with no options.

user - > du /rlg/dick<r>

Summarize Disk Usage 169

UNIX -> 24

24 /rlg/ dick/ .calendars
479 /rlg/dick/bin
12 / r lg/ dick/. directories
532 /rlg/ dick/ awssim/ onyx/interp
16 /rlg/dick/awssim/onyx/h
36 /rlg/ dick/ awssim/ onyx/ common
41 /rlg/ dick/ awssim/ onyx/lib
643 /rlg/dick/awssim/onyx
1233 /rlg/dick/awssim
9 /rlg/dick/.ticklers
166 /rlg/dick/simdoc
43 /rlg/ dick/working
392 /rlg/dick/onyx
274 /rlg/dick/reldata
30 /rlg/dick/source/new /yard/libr
89 /rlg/dick/source/new /yard/yard
123 /rlg/dick/source/new /yard
124 /rlg/dick/source/new
1 /rlg/dick/source/staging
90 /rig/dick/source/stdio
224 /rig/dick/source
25 /rig/ dick/library
333 /rig/dick/book
136 /rlg/ dick/ atlas. tests
135 /rlg/ dick/templet
2 /rig/dick/play-work
89 /rlg/dick/newbook
302 /rlg/dick/emap.man
3932 /rlg/ dick

-> $

In this example we were given the block count for each directory and
the total for all the directories.

(2) Let's look at the command with the option "-a".

170 Chapter 7

user - > du -a /rlg/dick/book<r>

UNIX ->

13 /rlg/ dick/book/ appdx.a
27 /rlg/ dick/book/ chapt.1
23 /rlg/ dick/book/ cha pt. 2
19 /rlg/ dick/book/ chapt.3
17 /rlg/ dick/book/ chapt.4
21 /rlg/ dick/book/ chapt.5
16 /rlg/ dick/book/ chapt.6
16 /rlg/ dick/book/ chapt. 7
29 /rlg/ dick/book/ chapt.8
14 /rlg/dick/book/chapt.9
2 /rlg/ dick/book/ doit
38 /rlg/ dick/book/ steve.mac
7 /rlg/ dick/book/table.n
1 /rlg/ dick/book/title.n
32 /rlg/ dick/book/ comm
37 /rlg/ dick/book/ comm.fmt
16 / rlg/ dick/book/ status
329 /rlg/ dick/book

-> $

Each file in the directory book is listed and the number of blocks are

given on the left-hand side. As we can see, we have 329 blocks used by all

the files in directory "book" .

(3) Now let's try it with the option "-s".

user -> du -s /rlg/dick/book<r>

UNIX ->
->

Disk Free Space

329 /rlg/dick/book
$

171

In this case only the total is provided.

Summary:

This command is useful when disk space is at a premium and you want
to know which files and/or directories can have the most effect if deleted.
Again this command is described in chapter 9.

7 .4.8. Disk Free Space

Command:

Syntax:

Function:

Option:

Example:

df

df [file system]

This command provides a printout of the number
of blocks available on the selected file system. It
is generally used by the systems administrator;
however, any time you think the system is get­
ting low on storage you can check to see how
many blocks are still free (see chapter 9 on the
administration of a UNIX system).

No options exist for this command.

(1) On this particular system there exist two file systems. They are called
rpl and rp3. To find the number of available blocks of data on file
system rp3 we simply say:

user -> df /dev/rp3<r>

172

UNIX ->
->

/dev/rp3 6346
$

Chapter 7

In this case the file system rp3 has 6346 blocks of free space still avail­

able for use.

Summary:

As we can see, we must know the file system's name before we can

obtain information about its available space. In addition to this we must

provide the information that it is a special file (information about it can be

found in the directory "dev").

7.4.9. Determine File Type

Command:

Syntax:

Function:

Option:

Example:

file

file filename.

This command performs a series of tests on each
filename provided and attempts to classify it. The

file can be ascii, object, c programs, etc.

There are no options with this command.

(1) Let's try a few cases and see the results.

user ->
UNIX ->

->
->
->
->

file prog.c prog.o status doit<r>
prog.c: c program
prog.o: executable
status: roff, nroff, or eqn input
doit: commands
$

Print Calendar 173

We have four (4) files here. The first is a c program, the second is an
object module, the third is a nroff file, and the fourth is a set of UNIX com­
mands. In this example the command was able to get all of them correctly.
However there will be cases where it is not sure and will guess wrong.

Summary:

This command is useful when you are not sure of the contents of a file,
although it is wise to look carefully because of the mistakes possible when
using it.

7 .4.10. Print Calendar

Command:

Syntax:

Function:

Option:

Example:

cal

cal [month] year

This command prints the calendar for a given
month within a year or for a complete year. The
year must be given and can be between 1 and 9999.
This means that if you say 81, you will get the
year 81 and not 1981.

There is one option and it specifies the month. It
can be between 1 and 12.

(1) First let's ask for the calendar for 1981. We say:

user -> cal 1981 <r>
UNIX ->

1981

17 4 Chapter 7

Jan Feb Mar

SMTuWThFS SMTuWThFS SMTuWThFS

1 2 3 1234567 1234567

45678910 8 9 10 11 12 13 14 8 9 10 11 12 13 14

11 12 13 14 15 16 17 15 16 17 18 19 20 21 15 16 17 18 19 20 21

18 19 20 21 22 23 24 22 23 24 25 26 27 28 22 23 24 25 26 27 28

25 26 27 28 29 30 31 29 30 31

Apr May Jun

SMTuWThFS SMTuWThFS SMTuWThFS

1 2 3 4 1 2 123456

5 6 7 8 9 10 11 3456789 7 8 9 10 11 12 13

12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20

19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27

26 27 28 29 30 24 25 26 27 28 29 30 28 29 30
31

Jul Aug Sep
SMTuWThFS SMTuWThFS SMTuWThFS

1 2 3 4 1 1 2 3 4 5

567891011 2345678 6 7 8 9 10 11 12

12 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19

19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26

26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30
30 31

Oct Nov Dec

SMTuWThFS SMTuWThFS SMTuWThFS

1 2 3 1234567 12345

45678910 8 9 10 11 12 13 14 6 7 8 9 10 11 12

11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19

18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26

25 26 27 28 29 30 31 29 30 27 28 29 30 31

-> $

(2) Now let's see how to see the calendar for a given month.

Questions

user - > cal 1 1981 <r>
UNIX ->

Jan 1981
SMTuWThFS
1 2 3
45678910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

UNIX -> $

Summary:

175

We can see that this command, as with the date command, provides
an easy way in which to view any month or year.

7.4.11. Questions

(1) How do you see where you are in the file system?

(2) How do you find out how many blocks are left in the file system "usr"?

(3) You don't have a watch available, and need to know the time. How do
you find out by using the computer?

(4) How can you tell what name you are logged in as?

(5) Provide the active process ID numbers for all users.

(6) Provide the calendar for the year 1981?

176 Chapter 7

7 .5. Terminal Handling

The terminal handling commands allow you to view the current set­
ting on your terminal and make changes as dictated by the terminal itself.
There exist many different terminals and it would be impossible to use all
of them without the capability to adjust as dictated by any given terminal.

7 .5.1. Setting a Terminal

Command:

Syntax:

Function:

Option:

even
-even

odd
-odd
raw
-raw

nl
-nl
echo
-echo
lease

stty

stty [option ...]

This command allows you to view any terminal on
the system and then set it up based on the options
so that it will work on this system. It provides
for such commands as input/output speed, parity,
etc.

The following options can be used with the stty
command to set or unset the 1/0 options for a
given terminal.

turn even parity to on
turn even parity off
turn odd parity to on
turn odd parity to off
turn on raw mode input
turn off raw mode input
Accept only new-line to end lines
allow return key for new line
echo back each character typed
do not echo back each character typed
map upper case to lower case

-lease
tabs
-tabs
ek

erase

kill

cr[0123]
nl[0123]
tab[0123]
ffi) fll
bsO bsl
tty33

tty37

vt05

tn300

ti700

tek

hup
-hup
0

Example:

Setting a Terminal

do not map to lower case
save tabs
replace tabs by spaces when printing

177

reset erase and kill characters back to normal #and
a
set erase character to next character typed after
erase option.

set kill character to next character after kill op­
tion
select style of delay for carriage return
select style of delay for linefeed
select style of delay for tab
select style of delay for form feed
select style of delay for backspace
set all modes suitable for the Teletype Corporation
Model 33 terminal
set all modes suitable for the Teletype Corporation
Model 37 terminal
set all modes suitable for the Digital Equipment
Corp. VT05 terminal

set all modes suitable for a General Electric
TermiNet 300
set all modes suitable for a Texas Instruments 700
series terminal
set all modes suitable for a Tektronix 4014 ter­
minal
hang up dataphone on last close
do not hang up dataphone on last close
hang up phone line immediately 50 75 110 134
150 200 300 600 1200 1800 2400 4800 9600 exta
extb set terminal baud rate to the number given,
if possible.

(1) Let's first view the setting on our terminal.

user -> stty<r>

178 Chapter 7

UNIX ->
->

speed 1200 baud
erase= '#'; kill= •o•

->
->

even odd -nl echo -tabs tab2 ff 1
$

We can see that the following options are set for this terminal.

1) baud rate is 1200

2) The erase character is "#"

3) the kill character is "O"

4) even parity is on

5) odd parity is on

6) return key is used for new-line

7) the characters are echoed back to the terminal

8) tabs are replaced by spaces when printing

9) the tab delay

10) the form feed delay

If need be we can change any of these options by simply including
them after the stty command.

(2) Next let's look at the way in which we set another terminal.

user ->
UNIX ->

stty 9600 >/dev/tty2<r>
$

If you want to make sure that it has been set to 9600 baud, you can
issue the "stty > / dev /tty2" command and it will show you what is set.
This is an example of when you will need to know the terminal number
before setting it. You will generally use this format when setting a printer
terminal for printing.

(3) Another common change is for the erase character. The system always
defaults to the erase character "#" when you login. However when you
are using a crt you may want to use the backspace character instead
of the "#". To set it we need only say:

user ->
UNIX ->

Setting The Terminal Tabs

stty erase{bkspc}<r>
$

179

It appears as though we did not provide a character for the erase op­
tion. However the backspace on the key board when struck backs up one
space. And although you cannot see it it is there (one of the non printable
characters).

Summary:

This command is necessary whenever you have a new terminal and
have to set it up for use. There will also be times when you need to change
the baud rate for remote entry or for printing or whatever.

7 .5.2. Setting The Terminal Tabs

Command:

Syntax:
Function:

Option:

-n

terminal

Example:

tabs

tabs [option]
This command allows us to set the tabs on
a variety of terminals as defined in "options" .
However the def a ult is suitable for most 300 baud
terminals.

Two options exist for this command. They are:

This is present when the left margin is not in­
dented as in normal.
The following terminals can be identified by the
system and the proper tab settings made.

(1) To set the tabs for a DIABLO 1620 we say:

180 Chapter 7

user -> tabs 1620<r>

UNIX -> $

The system will get the proper settings for the DIABLO 1620 and make
the settings.

Summary:

If the terminal you have is not one of the ones listed in the options
under terminals, you will have to have your system administrator set up a
new terminal description in the system.

7 .5.3. Questions

(1) You have a printer connected to your computer and its current baud
setting is 9600. How do you change it to 1200 baud (printer is tty3
and you are on ttyl)?

(2) What is the advantage to using the option -tabs on the stty command?

(3) You have a diablo 1620 terminal. How can you set the tabs on it?

8. The UNIX Shell

To this point in our discussion we have talked about using one UNIX
command at a time or tying them together with a pipe or temporary file.
Now we will look at using a file which will contain several UNIX commands
and perform a task the same as if we were entering them one at a time.
There will be occasions when you will find yourself entering a series of
commands to perform a particular task time after time. The advantage to
entering it one time and placing it in a shell file will become very apparent.
In addition to being able to place UNIX commands in a shell file, you will be
able to control them to some extent with a simple set of constructs similar
to those found in programming languages. The reason they are called shell
files is that they are executed under control of the shell program which
runs under UNIX. Other than that they look like any other file.

8.1. Simple Shell Files

There will be times when you find that you are entering the same set
of commands over and over again to perform a task. If it's only a simple
command there is no problem. However as the command gets more com­
plex or involves more than one command it is time to start thinking about
using shell files. Another reason is to provide a simple methodology for
none UNIX users to perform complicated tasks without having to know

181

182 Chapter 8

the details of all the commands.

A shell file consists of one or more UNIX commands that can perform
a specific task. The file itself is created by using the editor and entering the
commands just as you would directly on your terminal. The difference is
that this file of commands can be executed any number of times by simply
entering the name of the file.

Let's create a small shell file that will generate a list of the files in a
selected directory and provide a count of the number of lines, words, and
characters for each file. To execute this command directly on your terminal
you would enter "cd work;wc *". To use it from 8. shell file we must first
create a file "count" that will contain the commands "cd work;wc *". We
use the editor "ed" to accomplish this first taek.

Now that it is created, we can execute it in one of two ways. The first
is to use the "sh" command followed by the file name. This will cause the
commands in the file to be executed as though they were coming directly
from the terminal. The second is to change the mode of the file to execute
by use of the chmod command.

Example:

user -> ed count<r>
ED -> ?count
user -> a<r>

-> cd work; WC *<r>
-> .<r>
-> w<r>

ED -> 7
user -> q<r>
UNIX -> $

We have now created the shell file "count" which when executed will
produce a count of the lines, words, and ch&racters for all files in your
directory ''work" .

Now let's execute it using the "sh" command.

user - > sh count<r>

Shell Files and Arguments 183

UNIX -> 7 2t 83 filet
-> 7 2t 83 file2
-> 7 2t 83 file3
-> t 5 tt tablet
-> t 5 11 table2
-> 6 6 34 x
-> 29 79 305 total
-> $

Now, if we change the mode to execute by use of the command "chmod
0777 count", we can execute it without having to use the shell command.

user -> count<r>
UNIX -> 7 2t 83 filet

-> 7 2t 83 f ile2
-> 7 2t 83 f ile3
-> t 5 11 tablet
-> t 5 tt table2
-> 6 34 x
-> 29 79 305 total
-> $

This is useful if the results are always coming from the directory
''work"; however, it is not very flexible. The next section covers how we
can make these shell commands a little more powerful by use of arguments.

8.1.1. Shell Files and Arguments

Using the same example from the previous section we can extend its
capability to handle selected directories by use of an argument in the calling
sequence. This is somewhat like the use of options in a single command.

An argument in a shell file is represented by the use of the symbol
"$n", where n can have the value 1 to 9. Thus you can use up to nine(9)
arguments in a shell file.

In the previous section we could only obtain the counts for files in
directory ''work". Let's now use our knowledge of arguments to allow the
user to select the directory that is to be used.

184 Chapter 8

All we need do is replace the directory name ''work" with the argument
symbol "$1". This tells us that we must supply the name of the directory

at the time we invoke the shell file. Thus our new shell file will contain "cd
$1; wc *". We can then execute it as follows:

user -> count work<r>
UNIX -> 7 21 83 f ile1

-> 7 21 83 f ile2
-> 7 21 83 file3
-> 1 5 11 table1
-> 1 5 11 table2
-> 6 6 34 x
-> 29 79 305 total
-> $

As we can see, the results are the same, but we were able to select the
directory at the time we invoked the shell file. Next let's expand our shell
file to allow us to also produce the count for only those files we select at
the time we execute it. Thus our new shell file will contain "cd $1; wc $2".
Now we have to supply two arguments, with the first one always being the
directory and the second being the file or pattern that we want. To execute
it we say:

user ->
UNIX ->

->
->
->
->

count work file?<r>
7 21 83 f ile1
7 21 83 f ile2
7 21 83 f ile3
21 63 249 total
$

We have asked only for those files that start with "file" and have only
one additional character which can be any legal character.

Nesting Shell Files 185

8.1.2. Nesting Shell Files

The ability to nest shell files exists in UNIX. Arguments are handled
the same way as with a single shell file. There exist many uses for this
capability, with one common usage being:

Example:

(1) create a master shell file that controls the function of several local shell
files. In this case we have four shell files, each controlling the functions
of a local directory. The master shell file is used to invoke all of the
others. You could invoke each of the local shell files independently,
but it is much easier to invoke them all at the same time.

In this example the local shell files will provide us with a list of the files
in a specific directory and then the line count for each file in that directory.

shelll contains:
filel
file2
file3
in dir dick/ A

shell2 contains:
filea
fileb
filec
in dir dick/B

Then the master shell file will be:

master contains:
cd dick/A
echo shelll
shelll
cd .. /B
echo shell2
shell2
cd .. /C
echo shell3
shell3
echo done

shell3 contains:
filex
filey
filez
in dir dick/C

To execute this master shell procedure, you will have to change the
mode to execute on each of the shell files and make sure that you have per­
mission to execute them (i.e., they belong to you). If not you can call each

186 Chapter 8

of them by use of the command "sh". We could make this more flexible by
passing arguments indicating what directories should be used.

8.2. Use of Variables

Another useful capability in the use of shell procedures is the use of
variables. They provide you with the ability to assign string-valued vari­
ables. These variable names must begin with a letter and consist only of
letters, digits and underscores. The string cannot contain blanks.

Example:

Let's first try a simple shell procedure that echo's some messages to
the terminal after some event.

The procedure (print) will look as follows:

A=first _time
B=second_ time
C=third_ time

echo $A
echo $B
echo $C

echo that's it folks

user -> sh print
UNIX -> first_ time
UNIX -> second_ time
UNIX -> third_ time
UNIX -> that's all folks

We can also assign pathnames to a variable.

In this case we will change directories to another one, execute the shell
file "print" in that directory and then change back to the current directory.

Use of Variables 187

The shell file "print" is in the previous directory (one level back) and we
will execute the following shell file called "xx".

Pathl= .. /
Path2=current

cd $Pathl
sh print
cd $Path2
echo finished

To execute this procedure and see the results we say:

user -> sh print
UNIX -> first_ time
UNIX -> second_ time
UNIX -> third_ time
UNIX -> that's all folks
UNIX -> finished

This example is very useful for a number of reasons, one being that
you can execute shell files in other directories, but the most important one
is that you set up pathname that have special meaning to you. Let's show
an example of what we mean.

The following variables have a special meaning to the shell and should
be avoided for general use.

$MAIL When the shell is used interactively, it will look
at the file specified by this variable before it issues
a prompt. If the specified file has been modified
since it was last looked at the shell prints the mes­
sage ''you have mail" before prompting for the
next command.

188

$HO:ME

$PATH

Chapter 8

This is the def a ult argument for the cd command.
The current directory is used to resolve file name
feferences that do not begin with a "/". The
H011E directory is the directory specified by the
login reference found in the password file.

A list of directories that contain commands(the
search path). This provides you with the
capability to search selected directories for in­
formation which are different than the standard
directories which are "/bin and /usr/bin".

these special variables are generally set in a ".profile" file located in
your home directory. This file is executed automatically each time you
login. This can allow you to setup any conditions you may desire each time
you enter the system. By doing this way instead of invoking it directly,
you elliminate the chance that you might forget.

Example:

Let's set up a shell procedure that will be executed automatically each
time you login. It will perform the following functions:

1) Search my bin file as well as /bin and /usr /bin.

2) Change the backspace character from #to backspace key.

The shell file must be named ".profile" or the system will not automati­
cally invoke it.

stty erase
echo backspace is backspace key
PATH=:/usr/dick/bin:/bin:/usr/bin

The path also defines the order in which the system will search the
designated directories. In this case, /usr /dick/bin will be searched first.

The stty command doesn't display the backspace key because it is an
invisible character, but it is there.

Questions 189

8.3. Summary

We have only lightly touched on the capabilities of the shell. However
this will provide you will enough information to perform many of the
simpler (and more common) tasks. Once you have confidence in this then
you can move on to the more complicated procedures.

8.4. Questions

(1) What is a shell file and what is its value?

(2) How many arguments are allowed in a shell file?

(3) Show an example of nested shell files.

(4) What variables are restricted from general use?

9. SYSTEM ADMINISTRATOR

9.1. Introduction to System Administration

The system administrator is the person at a computer installation
who is responsible for day-to-day operation of the machine. This includes
bringing the system up and down when necessary; adding new users to the
system and removing obsolete users; taking tape dumps of the file system
so that files will be recoverable in case of a disaster; running accounting
programs that tell you who is using how much computer time and disk
space; and generally making sure that the system operates as smoothly as
possible. Other responsibilities include keeping the system log book. This
book should reflect anything that is done to the system along the lines of
bringing it up or down; any hardware changes - permanent or temporary;
and device or file system errors that are discovered.

9.1.1. Privileged Users

There are at least two privileged users on the system who have spe­
cial powers and abilities beyond those of ordinary users. One of these is
called the "superuser" - the actual login name is "root", but the term

190

Privileged Users 191

superuser is common usage in UNIX terminology. The superuser can do
almost anything conceivable to the system or the file structure. The other,
less privileged special user is called "bin", and does not have any special
privileges directly. However, "bin" owns many important system files, and
as a result of this can do things to those files that nobody else except the
superuser can do.

The superuser is a truly formidable user. No file protections affect
him/her (with a couple of trivial and accidental exceptions); the superuser
can read and write anybody's files or directories. However, as a wise man
once said: "With great power, there must also come great responsibility."
The superuser can, by making a tiny mistake, destroy the entire file system,
cripple it so that the operating system will not run, and make a general
mess of the system. For instance, the superuser could effectively bring down
the system by doini thilil:

user ->
->

UNIX ->

chdir /bin
rm *

If you do this, no ordinary system programs will run. This includes
the programs that the superuser uses to fix the system. If you were foolish
enough to make this mistake, you would have to bring down the system,
restore your root file system from a backup (a complicated undertaking),
and explain to your superior that you had messed up. You probably want to
avoid this. On the other hand, even the most expert and high-minded su­
peruser eventually makes a mistake, so don't become despondent if (when)
you do mess up. If you follow the other procedures in this chapter - par­
ticularly those relating to backup of file systems for use in case of disaster
- you can recover from the most moronic of errors with not too much work
lost.

Note, by the way, the prompt "\'" - as opposed to the normal UNIX
prompt"$".

This is the superuser prompt, and it reminds you that you are indeed
the superuser and have awesome power. Because of the power of the super­
user, you are advised to keep the number of people who know the password
down to two - yourself and somebody who is to use it only in case of
emergency - that is, if you yourself are unavailable.

192 Chapter 9

There are two ways to become the superuser. One is to login as user
named "root" and give the right password. The other is to run the program
"su" from the shell. You must give the password in this case as well. When
you are done as superuser, type a control-D and you will be either logged
out (if you logged in as "root") or returned to your normal privileges (if you
ran "su"). Also, when the system is first "booted up" and is still running
in single-user mode, you have superuser powers (this is explained further
under "Booting The System" below).

Coming up superuser using root or su.

UNIX -> login:
user -> root<r>
UNIX -> password:
user -> <r> enter password, no echo
UNIX -> # This is superuser prompt

To use su, you must already be logged in.

UNIX -> $ normal user prompt
user -> su<r>
UNIX -> password:
user -> <r> enter password, no echo
UNIX ~> # This is superuser prompt

The other privileged user is called "bin". It has no special privileges in
the sense that the superuser does; however, "bin" owns all of the programs
in /bin and / usr /bin, and usually the devices (special files) such as the ter­
minals, and the printer. In general any "system-owned" file will be owned
either by "root" (the superuser) or by "bin". As system administrator you
will be able to be logged in as both "root" and "bin" . If you can do what
you have to do by logging in only as "bin" rather than as "root", you should
do so; the less time you spend as superuser, the less accidental damage you
can do. To log in as bin, you do the same as shown above with root.

A word of philosophy: in this section it may seem to you that we
are being pessimistic about your abilities, inasmuch as we have repeatedly

Adding New Users 193

assumed that you at some point will make some horrible mistake. This
is no reflection on the individual administrator; computer programmers
are simply aware from unpleasant personal experience of the well-known
Murphy's Law: "Anything that can go wrong, will." The most bril­
liant programmers have done the stupidest things in the past, often from
overconfidence in their ability to operate the system. It just seems to be
a fact of life: at some point something bad will happen, in spite of the
expertise of the people involved, and sometimes because of their expertise.
This is why all of the warnings in this guide are here; it is also why we
strongly advise a policy of being prepared for disaster.

9.1.2. Adding New Users

Let us turn our attention to some simple tasks that you will have to
perform and that do not require too much specialized knowledge to per­
form. For a start, let us see how to add a new user to the system.

The complete system list of users is the file /etc/passwd, known as the
"password file". Each line in this file contains an entry for one user. For
instance, the first few lines of a typical /etc/passwd might be:

root:ty2IuAdu:O:l:Super-User:/:

su::O:l:Super-User:/:

daemon::l:l:System:/usr/1115:

bin::3:1:System:/bin:

opr::3:1:0perator:/usr /adm:

dump: :3: 1 :System: /usr / adm: /usr / adm/ dumper

games::26:1:Games:/usr/games:

dick:nnAnXu4n:92:2:Dick Gauthier: /rlg/ dick:

roy:jjtx62bk:68:2:Roy Oishi:/rlg/roy:

lea:NYr2Njzk:11:5:Lea Gallardo:rlg/lea:

The fields in each line - separated by colons - are as follows: the login
name; the encrypted form of the user's password (not the password itself);
the user id; the group id; the user's full name, (or other comment), the
login directory - that is, the directory in which the user finds him/herself

194 Chapter 9

immediately upon logging in; and the user's shell (command interpreter).

If this last field is left out, the ordinary UNIX shell is used. The user

"dump" in the above example is a pseudo-user who runs only the program

/usr/adm/dumper whens/he logs in; when this program finishes "dump"
is logged out. The user id and the group id are numbers between 0 and

255. Each user should have a distinct user id number; related users (those

working on the same project) should have the same group id. The group­

id file, analogous to /etc/passwd, is /etc/group.

To add a new user, you simply add a new line to /etc/passwd. The new

line will look like the above lines, with one important note: the password

field must be left empty. This indicates to UNIX that the user has no

password. When the user logs in for the first time, s/he should use the

"passwd" (See chapter 2) to give him/herself a password; this program will

take care of changing /etc/passwd to reflect the change.

user -> ed /etc/passwd<r> You must have write permis-
sion

ED -> 1234
user -> $ go to end of file
user -> a enter add mode
user -> sam:: 12: 1 :Sam Jones: /usr/sam: <r>
user -> exit add mode
user -> w<r> write changes out to file
ED -> 1264
user -> q

UNIX -> #

If, as is generally done, you have named a directory that does not yet

exist as the new user's login directory, you must create this directory before

the user can log in. Use mkdir as described in chapter 7, then change the

ownership of the directory from "root" to the new user's, as described in

the following section.

user -> cd /usr<r> position at root directory
UNIX -> #

user -> mkdir sam must match dir name in
passwd file

Changing File Ownership and Protection 195

UNIX -> # you must have write permis­
sion

9.1.3. Changing File Ownership and Protection

Other easy functions that you will have to perform include changing
ownership and protection information. To change the ownership of a file,
you must be the superuser. The command for changing ownership is simply:

#chown USERNAME FILENAME

- where USERNAME is the login name of the user, the file is to be
owned by, and FILENAME is of course the name of the file.

Similarly, you can change any file's group-association with

#chgrp GROUPNAME FILENAME

- where GROUPNAME is a group name listed in /etc/group.

user ->
UNIX ->

chgrp 1 sam<r>

Let us review at this point the meaning of the protections on a file.
There are nine bits of protection information; they represent the ability to
read, write, and execute a file; such abilities being for the user her /himself,
those in the group associated with the file, and all others - thus, nine
combinations. If you type "ls -1" you can see this on the left-hand side:

user -> ls -l<r>
UNIX ->

-rwxr-xr-x
-rw-rw-rw-
-rwsr-sr-x

1 dick
1 dick
1 root

25102
7548
3322

Apr 6 15:11
Sep 16 15:37
Apr 8 1976

3dcomp
iii
passwd

196 Chapter 9

drwxr-xr-x 2 dick 256 Sep 21 15:55 sacourse

drwxrwxr-x 2 root 512 Dec 18 09:24 book

-rw-r-r- 1 dick 83 Oct 15 17:03 filel

-rw-r-r- 1 dick 83 Oct 19 13:31 file2

-rw-r-r- 1 dick 83 Oct 19 13:44 file3

-rw-r-r- 1 dick 83 Oct 22 18:43 filen

-rw-r-r- 1 dick 82 Oct 19 12:18 sfilel

-rw-r-r- 1 dick 83 Oct 15 17:05 sfile2

-rw-r-r- 1 dick 82 Oct 19 13:47 sfile3

-rw-r-r- 1 dick 11 Oct 15 15:45 tablel

-rw-r-r- 1 dick 11 Oct 15 15:45 table2

-rw-rw-r- 1 dick 11 Oct 15 15:45 table3

-rw-rw-r- 1 dick 11 Oct 15 15:45 table4

For most files here, the owner (dick) can read and write them, but

those in his group and all others can only read them; for the file "iii",

everybody - user, group members, and others - can both read and write.

The file "3dcomp" is a program and is marked executable by anyone. The

file "sacourse" is a directory. The fact that it is a directory is shown by

"ls" as a 'd' at the left of the protection bits. Don't misinterpret this -

there is no 'd' bit, and you can't make a file a directory by changing its

protection; "ls" just chooses to display the information in this way.

There is one final protection possibility; programs with the "set-uid"

bit on will execute with their "effective user id" the same as the owner's.

Thus, if the superuser owns a program that requires his powers to run, but

he wants to let everybody use it, he can set the set-uid bit of the program;

then whoever runs it can do what the superuser could do until the program

ends. For example, look at the program "passwd", in the above list, which

is used to change a user's password. The passwd program requires the set­

uid feature because in order to change the /etc/passwd file, the effective

user-id must be that of "root"; when an ordinary user runs this program it

is as if (s)he temporarily becomes "root" . When the program is done, all is

set back to normal. Note, by the way, that the set-uid bit displays on the

"ls -1" listing as an 's' in the 'x'-bit position. Don't be misled by this; the

set-uid bit is separate from the execute bit. The "ls" program just chooses

to put the 's' there (perhaps the author of "ls" thought it would only make

sense with the 'x' bit on; we should know better).

Some of the permission bits have slightly different meanings for direc­

tories than for plain files (in some senses, a directory is a file). For direc­

tories, the 'x' bit means "search permission"; if a user cannot search a direc-

Introduction to System Components 197

tory (s)he cannot "chdir" to it or access any file under it in any way. Write
permission for a directory means the ability to add, remove, or rename
files in the directory. Thus, permission to remove a file is independent of
permission to write it or make it empty. User programs (even for the super­
user) cannot write to a directory as though it were an ordinary file. Read
permission for the directory works as with plain files; it allows the directory
to be read. The "ls" program reads directories to obtain filenames. Note
that the ability to read a file is independent of the ability to read its name.

To change a file's protections, use the "chmod" command:

$chmod OCTAL-#FILENAME

The octal number is formed as follows: the digits from left to right are
the "user", "group", and "everybody" protections. Each digit is the sum
of 1 for execute/search permission, 2 for write permission, and 4 for read
permission. Thus to let a file be readable by all and writable by you alone,
issue:

user - > chmod 644 FILENAME

UNIX -> $

This will result in a uid setting of '-rw-r-r-'.

To set the set-uid bit, prefix the protection number with '4'; prefixing
by '2' instead will turn on the "set-gid" bit, which is like the set-uid bit
but works by groups. (Prefixing by '6' will set both of these bits.) In order
to change a file's protections you must either own it or be the superuser.

9.2. Introduction to System Components

This section tells about the basic components of your system - the
hardware, a brief idea of the different categories of software, and a brief
introduction to "file systems".

198 Chapter 9

9.2.1. Hardware

The basic hardware of your system includes a mainframe, otherwise
known as "the computer"; one or more disk drives, which hold all of your
system's data; several terminals of one sort or another, either typewriter­
like or video-display; a line printer, which is an output-only device; and a

tape drive, which reads and writes tapes.

9.2.1.1. The Mainframe

The mainframe is the central unit of your system. It contains a Central
Processing Unit (CPU) and the computer's primary memory. The processor
is the active component that executes programs by copying the program
into its memory and then performing the machine instructions that make
up the program. In addition, the CPU's operator console - the front panel
and its switches - is the means by which the machine is started and stopped.
The operator's console is different for each Computer and requires reading
the instructions provided with it.

9.2.1.2. The Disk Drive(s)

Every UNIX system has at least one disk drive, each of which in turn
contains one or more disks inside the drive. There are various sorts of
drives: they can have non-removable disks, or they can have removable
disks and be front-loading drives, or they can have removable disks and be

top-loading drives. A disk can contain between 2.5 and over 100 megabytes,
depending on the kind of drive. (A megabyte is one million bytes or charac­
ters.) The "tr an sf er rate" - the speed with which data can be read or

written - also varies with the disk model. Every model of disk drive has
its own set of lights and buttons, but most have some combination of the
following:

READY
FAULT

This light should be on for system operation.
This means a serious hardware error: you may
need hardware repairs.

LOAD
PROT

Terminals 199

This light means that you may remove a disk.
This means that the disk cannot be written on; to
clear it push the button containing or correspond­
ing to the light.

The disk is used to contain all data in the system when that data is
not being actively processed. This includes not only data that programs
operate on but the programs themselves - when you ask for a program to
be run UNIX arranges for a file with that name to be read from the disk
into the main memory and be executed.

A word here on the care of your drives and disks: a single particle of
dust that gets into the drive can ruin the disk. The drive is amazingly sen­
sitive to such things. Care should be taken that no dust or other particles
get in by any means; you are advised not to smoke or eat in the machine
room.

Disk drives are generally numbered 0,1, ... so that the processor can
tell them apart. If you have more than one drive, it is useful to be able
to change the association of numbers to drives during emergencies (see the
section on Using a Backup Copy of UNIX). On some types of disk drives,
this may be accomplished by simply exchanging the unit number plugs -
the plastic covers for the "ready" lights. On other types of drives, cables
must be changed around.

9.2.1.3. Terminals

You will have one or more types of terminals, which are the major
point of contact between users and the computer. The terminals come in
a variety of flavors; you may have a CRT (tv-screen) terminal; you may
have a hard-copy terminal, which prints its output onto paper directly;
and/or you may have a Diablo-like terminal which produces high-quality
output that "doesn't look like a computer did it" and is suitable for busi­
ness correspondence. Your terminals probably have an "online/ofline" or
"online/local" switch, which must be in the "online" position in order to
communicate with the machine. In addition, different terminals run at
different speeds, possibly controlled by a switch on the terminal. In order
for UNIX to know the type and speed of the terminal on each line, there is
a file that contains that information; the updating of this file is the system
administrator's responsibility and will be explained in a later section.

200 Chapter 9

9.2.1.4. The Line Printer

The line printer is usually your major hard-copy device. The most
important things to note about it are the lights and buttons. There is an
online/ofline button and a corresponding indicator light that tells whether
or not the printer is listening to the computer. If this light is off, the printer
is not going to print anything - on the other hand, the computer knows
when the printer isn't listening, so it waits until the printer is on line again.
When the printer is off-line, you can hit the "top-of-form" button and the
printer will eject a page. There are several error indicators, such as "paper",
"gate", and "ribbon", that go on when something goes physically wrong
with printer operation. (You may have to lift up the printer cover to see
these.) When the "alarm" light on the printer panel goes on, one or more
of these error lights will also be on. Fix the problem indicated, and push
the "alarm" button - this clears the error state. Now push the "online"
button to bring the printer back on line; the printer should start up with as
little loss of output as possible. There is another problem that sometimes
happens with the printer on some systems - the printer just sits for a while
without printing, for no apparent reason. This is described as "the printer
is stuck", and it is a software problem, not a hardware problem. You can
unstick the printer in 30 seconds from any UNIX terminal, but that will
be described later on (see "unsticking the line printer" in a later section).

9.2.1.5. The Tape Drive

Tapes are the best way to store large amounts of data if the data is
not in constant use. For example, tapes are used to save large portions
of your disk file system on tape as insurance against disk disaster. Tapes
are also the best facility for getting data or programs from one computer
system to another.

Tape drives may have a data density of 800 bytes/inch (that is,
characters/inch) or of 1600 bytes/inch. Some drives have a switch that
selects which density is to be used, and a tape written with a given den­
sity must be read with that density. Another source of incompatibility is
the number of tracks; there are 7-track and 9-track tape drives. Neither
of these types of drive can read tapes written by the other. Many UNIX
installations are capable of reading and writing only 9-track tapes.

Drives also vary in speed, but this only affects how fast things are read

Software 201

and written, and does not really affect operation in any other way - speed
of writing and speed of reading need not be the same.

Again, there are several kinds of tape drive you may have; all of them
work in almost the same way. To put a tape on the drive, you must take
a tape and, if you are writing on it, there must be a plastic ring (called
not unreasonably the ''write ring") in the back of the tape reel. If on the
other hand it's an important tape that you want to make sure you don't
accidentally write over, there should be no write ring in the tape. The tape
drive is incapable of writing on a tape which has no write ring.

Once you have a tape with the ring in or out as desired, put it on the
empty hub. Thread it through to the take-up reel (follow the diagram on
the drive) and see that it is firmly attached to the take-up reel. Now push
"load". The tape will wander about looking for its "load point", which is
just a bit of foil towards the start of the tape. The tape always starts here;
in this way the beginning of the tape is found. Depending on your drive
model, you may now have to push the "on line" button - do whatever you
have to do to make the "on-line" light go on. The tape is now ready for
use by a program. After you are done with the tape, push the "rewind"
button. Depending on what has been done with the tape, the rewind will
either go back to the load point, or, if it is already there, it will rewind
the tape totally off the take-up reel; thus you may have to push the button
twice to take the tape off.

9.2.2. Software

The software of a computer system is the collection of programs
that run on it. The UNIX operating system has two general parts to
its software. The first and most essential piece is called variously the
"kernel" or "nucleus". The nucleus performs only the most basic functions
of an operating system: it arranges for all of the input/output operations
and it gives everybody their little pieces of computer time (this is called
"scheduling" in the trade).

The rest of the software includes the Shell (the command interpreter)
and the user commands. When you "boot" the system (described later),
the boot mechanism takes the kernel off the disk (where it is stored) and
reads it into memory. The machine can then start going. The kernel knows
where the other software is and arranges for it to be invoked when users
request it, but these other programs are not actually part of the kernel.

202 Chapter 9

The commands and programs available to system users are simply

files stored in the file system, mostly in the directories called "/bin" and

"/usr/bin". (More on these directories and their significance later.) The

system administrator can add programs to these directories, thus making

them available for general use. By way of contrast, the kernel can only be

changed by a UNIX specialist, and will only need to be changed if your

installation gets new hardware of some sort, or if your pattern of system

use changes and you find that you need new system resources.

Some important parameters in the UNIX kernel are:

- which disk (or part thereof) is to hold the root file system

- what part of which disk is to serve as swap space

9.2.3. File Systems - A Brief Look

A file system is a UNIX concept that you as system administrator will

become quite familiar with. A file system is an organized group of files that

fit either on all of one disk or, if you have larger disks than the maximum
size of a UNIX file system, on part of a disk. (File systems never start on

one disk and end on another.) You have one essential file system called the

"root" file system; it contains the minimum needed to run UNIX. Other file

systems are made accessible by "mounting" them onto the root directory

structure, with the effect that what appears to the user to be an ordinary

(though rather large) directory is in fact stored on a separate file system -

though the ordinary user need not normally concern himself with this fact.

For example, the entire directory "/usr" and all of its subdirectories may

be a mounted file system on your computer.

This facility allows for some flexibility in using your system. You may

want to have different file systems mounted at different times, for instance.

Many system administration tasks are done in terms of whole file systems:

taking tape dumps and checking disk integrity are the most important of

these.

9.3. Starting and Stopping the System

This section explains how to start and stop UNIX. Whenever you do

something like this it is your responsibility to enter everything that you do

Shutting Down the System 203

in the system log book.

9.3.1. Shutting Down the System

There are a number of times you might want to stop the machine. Your
daily routine may provide for stopping the system at the end of the working
day and starting it up again in the morning. If hardware maintenance to
the mainframe or the disks is needed you will probably need to stop the
system. If, at all possibl,e you should follow the procedure explained here
to make sure that the file systems are not damaged during the shutdown
process, and make the whole thing as painless as possible for your users.

The first thing to do is to become the superuser (see section 9.1 of
this document). After this, you should alert all users to the impending
shutdown by running

user -> enters /etc/wall
-> (message here
-> any number of lines)

user -> <cntrl>d <
UNIX -> #

- which will send the message you type to all logged-in terminals. If
you have enough advance knowledge of the shutdown you ought to put a
note to that effect in /etc/motd, the message-of-the-day file that is listed
on the the terminal whenever a user logs in.

Having alerted users to the shutdown, you should keep running ''who"
(which lists all logged-in users) until all users except yourself have logged
off. At this point run

user - > ps alx
UNIX ->

204 Chapter 9

F s urn PIO PPID CPU PRI NICE ADDR sz WCHAN TTY TIME CMD
1 s 0 1 0 0 30 20 74 12 11556 ? 0:22 /etc/init
1 s 13 6908 1 0 28 20 135 16 107466 co 0:03 -sh
0 s 0 21 1 0 28 20 147 12 107632 1 0:00 - x
1 s 0 8 1 0 40 20 65 12 164000 7:05 /etc/update
1 s 1 10 1 0 40 20 155 28 164000 5:49 /etc/cron
1 s 0 19 1 0 40 20 71 12 164000 lp 0:01 /etc/openup
1 s 13 6675 1 0 28 20 61 16 107714 4 0: 10 -sh
1 s 4 9214 1 0 30 20 141 16 12062 2 0:02 -sh
0 s 0 24 1 0 28 20 253 12 110060 5 0:00 -x
0 s 0 25 1 0 28 20 267 12 110224 6 0:00 -x
1 s 0 26 1 0 28 20 117 12 110370 co 0:00 -ps axl

- there should be no user processes running.

This means that there should be no named commands running except
for the "update" process and whatever "daemons" have been started up by
/etc/re (which will be explained in a later section). If there are still some
user processes around, either make sure that they end soon or kill them
outright using the kill command described below.

Now perform the following three functions:

user -> kill -1 1<r>

user -> sync<r>

- and HALT the CPU -

(you can kill all processes ex­
cept "init" (process 1) and
bring the system back to
single user mode)

At this point (after you have halted the CPU) the system has been
gracefully halted. If at this point you are turning your system over to
a hardware repairer, you should take steps to protect the contents of
your disks against the repairer's mistakenly overwriting them. If you have
removable disks, remove them. Otherwise have the data backed up to tape.
Computer fixers have an amazing talent for stomping good data on disks.

Booting Procedure 205

9.3.2. Booting the System

"Booting" the system is a process that enables the computer to start
operation. The reason for a "boot" procedure is as follows: when the
machine is first started, there is no program running, nor is there one
in memory. Thus the first thing to do is get a program into memory.
Unfortunately, the program - the operating system kernel - is out there on
the disk, and the processor doesn't know where it is; thus a program has
to be put in the processor telling it how to get the operating system into
memory. Now, there is no way to get this program off the disk because
the processor doesn't know where it is or how to read it in because there
is no program in memory . . . you see the problem. Well, then, how does
the system get started? The answer is that you must load in one tiny
program that knows how to read in another program (a larger one) which
in turn knows how to read in the operating system itself. This is called
bootstrapping because it's like lifting yourself by your bootstraps.

If you have halted the machine as in the last section, you are in fact
ready to boot. If the system "crashed" - meaning that something went
wrong and the system has stopped while doing something useful - you must
HALT the machine before booting (see the hardware description section of
the manual for the computer you are using).

9.3.3. Booting Procedure

After going through the steps described in the "Booting the System"
section above, type "boot" (and a line feed or carriage return; this is im­
plied from here on). You should see a ":" prompt. The exact boot start
procedure depends on the computer type. It could be as defined above or
simply a button on the computer.

Then type a command of the form

xx(O,O)unix

where xx is the UNIX two-letter code for the type of disk you are
booting from (this is not the same as the DEC two-letter codes described
above for some processor models). Some of the codes are:

rp RP03

206 Chapter 9

hp RP04/5/6
rk RK05

When you get the "#" prompt, UNIX is up in single user mode.
Procede with the file system integrity check described below.

9.3.4. File Integrity Cheek - Simple Case

When the system is brought up single-user you should run file sys­
tem integrity checking procedure (generally called "chk") which runs the
checking programs on each file system. These programs can detect incon­
sistencies in the file system and report what is wrong. Here is a typical
"chk":

dcheck / dev /rrpl

icheck / dev /rrpl

dcheck / dev /rrk3

icheck / dev /rrk3

This procedure should be run daily even if the system does not go
down, so that you are alerted to any problems before they get worse. Fixing
file systems can become complicated in dificult cases, but as long as your
hardware is in good shape the dificult cases should be rather rare. The
dificult cases will be dealt with in a later section; for the moment you should
just learn to recognize when the file system is healthy, as it usually is -
especially if you followed the recommended graceful shut-down procedure.

The output from the above "chk" procedure might look like this when
nothing is wrong:

/dev/rrpl:

/dev/rrpl:

files 542 (r=448,d=47,b=13,c=34)

used 8779 (i=212,ii=7,iii=0,d=8553)

free 6586

missing 0

File Integrity Check - Simple Case

/dev/rrpl:

/dev/rrpl:

entries link
976 0
981 0
984 0
999 0
1000 0
1001 0
1002 0
1003 0
1004 0
1005 0

/dev/rrp3:

/dev/rrp3:

cnt
0
0
0
0
0
0
0
0
0
0

files 1003 (r=934,d=69,b=0,c=0)

used 7564 (i=206,ii=O,iii=0,d=7358)

free 6834

missing 0

/dev/rrp3:

/dev/rrp3:

207

The general format of a normal output from "chk" is, for each file
system, the device name of that system twice, followed by some of these
entries: spcl, files, large, huge, direc, indir, used, and free (the "huge" entry
can be missing). The following indicate ERROR output and some sort of
file system problem: "missing", "dup", "dups in free", "bad freeblock", or
anything at all between the two "/dev/whatever:" lines. Any discrepancies
in the output should be fixed in acccordance with section 8 of this docu­
ment.

Some UNIX systems have an check command. When this is available,
it can handily take the place of the the icheck and check commands invoked
by the chk procedure mentioned above. If f check does not ask you any

208 Chapter 9

questions, everything is OK. Typical fcheck output for a healthy file system
looks like this:

/f dev /root:

Phase 1 - Check Blocks

Phase 3 - Check Pathnames

Phase 4 - Check Reference Counts

Phase 5 - Check Free List

235 files 1713 blocks 2200 free

When all file system problems have been fixed, you are ready to bring
UNIX up multi-user.

Coming up Multi-User

There are only a few things to do in order to bring up the system
multi-user. First, set the system date.

You set the date on a UNIX system with a command of the form

#date yyMMddhhmm.ss

where the two-digit fields are the year, month, day-of-month, hour,
minute, and second. ".ss" can be omitted to specify zero seconds. The
year, or the year and month can be omitted if these have not changed since
the system was brought down. Hence, usually only the hours and minutes
need be entered, for example:

user ->
UNIX ->

date 1321
Mon Feb 16 13:21:58 PST 1981

for 21 minutes after 1 in the afternoon.

The system will then print out the date in a human-readable form to
make sure that you entered it right - if it's wrong, fix it.

Next you might want to change /etc/ motd to mention if there is anyth­
ing the users ought to know - if files were lost, for example.

Disk Space 209

To do this simply enter the message in the file motd just as you would
do with any other file. It is always located in the directory /etc.

Finally, type <cntrl>d. Within a few seconds, the shell file /etc/re
will be executed - this mounts the standard file systems and will be covered
in more detail later -, all terminals will be enabled, and the system will
be up multi-user. Again, don't forget to enter everything you did in the
system log book.

9.4. System Resources and the Administrator

As system administrator you have the job of making sure that all users
have a fair share of system resources. The principal resources that you need
to worry about are disk space and processes.

9.4.1. Disk Space

Disk space is a resource that users don't worry about until they run
out of it. The system administrator, on the other hand, has to worry about
it before it runs out. If you do this properly, you should be able to avoid
running out of disk space.

First you should know how much free space you need on your file
systems. When your computer system is installed, you should be aware
of about how much free storage is normal on your user file systems, and
notice when the free space shrinks dramatically. You will probably want to
keep about 15%of each file system free - less if a given file system doesn't
change much, more if it does. The most unusual file system in this respect
is the one containing the directory /tmp; this directory will start out the
day empty and will fluctuate wildly during the day. It is recommended
that you have at least 100 blocks of free storage per simultaneous user on
/tmp.

Now you need to know the programs that detect a shortage of space.
When you bring up the system and run the "chk" procedure (or fcheck,
as applicable), you will find that under each file system there is a count
of the free blocks. Running out of blocks will prevent any existing files
from growing and new files from being created. You can determine how
much free space there is by issuing the "dr' command. This will tell you

210 Chapter 9

how many free blocks there are on any given file system. Between these
two programs you can be warned when storage gets tight. If the console
terminal ever starts typing:

No space on dev M/m

(with numbers in place of the M and m)

a file system has completely run out of space. It is best to avoid this
if possible, for among the possible unpleasant consequences are damage to
file system integrity, and users being unable to save their editing work.

Now: suppose you are running out of storage. What should you do?
First of all, if you have a momentary shortage on /tmp, you can wait a
minute and see if whoever is gobbling up the space stops whatever it is
(s)he is doing. Some things that use /tmp space are: large sorting jobs,
compiling programs, editing, and text processing; you may run into others.
If the situation persists, you will have to delete some /tmp files - you may
want to run "ls -lut /tmp", which lists all files on /tmp sorted in order of
last access. This will show you which files have not been accessed for a
while and could perhaps be deleted. If all else fails, you could bring down
the system and start it again, which would clear the /tmp directory; but
you shouldn't have to do this unless everything has ground to a halt as a
result of a /tmp space shortage.

When you are running out of space on an ordinary user file system,
first ask around to see if anybody admits to having generated thousands
of blocks (possibly by accident) - /etc/wall is good for this. In conjunction
with this you could alert people that space is tight and they should remove
what files they can. If this fails, you will have to do some detective work.
The programs "du" and "find" are both useful here. The program "du"
simply tells you how many blocks are used by a given directory and all files
and subdirectories in it. This can be used if you suspect any particular user

of being responsible for massive disk usage; however, if you don't know
where to start looking for the culprit, the "find" command may be more
useful. This program is described more fully in chapter 5 , but notice now

that between its options to find files by size, owner, and date, you have a

powerful tool for discovering the disk-eater. For instance, the command

user - > find /usr -size +1000 -a -mtime -2 -a
-> -exec ls -1 {}' '{' ';}

Memory and Processes 211

will run "ls -1" on all files in /usr larger than 1000 blocks that have
been modified in the last two days. This might well tell you exactly why
you ran out of space.

Find is also useful for building a list of files that have not been accessed
for a given time (say, two months). Frequently if you bring such files to the
attention of their owners, the owners will admit that the files can be deleted
or archived to tape. This can save substantial amounts of disk space. (For
archiving files to tape, see tar(Chapter 9.10).

9.4.2. Memory and Processes

It is possible for your system demands to increase to such an extent
that you run into the limits on memory or on processes. These two problems
are closely related in their symptoms; they appear as serious degradation of
response time if they are of moderate seriousness, and can stop the system
totally if things are severely wrong.

Reaching the limits of memory manifests itself as "thrashing", which
is the operating system spending so much of its time giving people their
turns at the CPU that the time-sharing routines actually take up more of
the machine's time than the programs that the time-sharing is supposed to
manage. If this happens frequently, you may need more memory. If, on
the other hand, you suddenly experience a dramatic slowdown and suspect
that somebody is just doing too much computing, you can use the "PS"
command. You should be familiar with what the output from "ps" looks
like when things are normal; if you run "ps" and find that somebody is
running 10 "nroff' jobs at once, for instance, you may well want to advise
them that this is hurting everybody's system performance.

Finally, you might actually run into the limit on processes. UNIX
allows only a fixed number of processes to run at a time; this number is
installation-dependent. If you do try and run too many processes at once,
the system will simply refuse to create the new process. The shell indicates
this refusal by typing "try again" if it does happen. In such a c you
may be able to use "ps" to see if somebody has forked off many p1 esses
by accident. If all attempts to "ps" are met with "try again", ab lt all
you can do is get people who are in the editor to save their work a l get
everyone to logoff. This may reduce the number of processes running , the
point where you can run "ps". If this does not help, you must crasl. (i.e.,
bring down ungracefully) the system by halting the CPU then rebooJ the

212 Chapter 9

system and fix any file systems that have been damaged as a result of the
crash. Fortunately, it is rare that someone fills up the process table this
badly by mistake.

If needed, you can reconfigure your kernel to increase the limit on the
number of processes.

9.4.3. Accounting

There are two standard UNIX programs that will do accounting for
you: "ac", which performs login accounting to see how much time each user
uses, and "sa", which analyses a log of executions of shell commands.

The program itself just generates a human-readable summary of the
login statistics; the actual logging is done by the routines invoked whenever
a user logs in or out.

For this accounting to happen, the file /usr / adm/wtmp must exist; if
it does not exist, no accounting takes place.

The command

/etc/ ace ton / usr / adm/ acct

in your /etc/re file will enable this log-keeping.

Remember that both of the data files will tend to grow to excess and
should be cleared regularly - perhaps once a month.

9.5. Some Odds and Ends

This chapter covers some miscellaneous pieces of system procedure:
the file /etc/re, which is run each time UNIX comes up multi-user; the
program /etc/cron, which can be used to run programs automatically at a
given time of each day, week or month; the file /etc/ttys, which tells UNIX
what kind of terminals are attached where; how to unstick the line printer;
and some words on shell files.

The File /etc/ttys 213

9.5.1. The File /etc/re

The file /etc/re is a shell file which is run automatically each time
UNIX comes up multi-user. You should be aware of what it does so that
you can modify it when necessary.

The /etc/re file generally contains three types of commands. It will
have "mount" commands, which are detailed elsewhere - they put your
non-root file systems on the directory tree; it will have "housekeeping"
commands - perhaps including something like "rm /tmp/*" to clear /tmp,
or some local accounting procedures; and it will have lines that start up
programs called "daemons". A daemon is a program that does not really
belong to any user in many cases it executes as long as UNIX runs, check­
ing every once in a while to see if it needs to do anything, for example,
/etc/cron and /etc/update. The /etc/cron program is explained below the
/etc/update program forces disk updates every thirty seconds and should
be run at every installation.

9.5.2. The Program /etc/cron

The program /etc/cron is used to run other programs at regular time
intervals. It reads from the input file /usr /lib/ crontab, which has the for­
mat detailed in cron's entry in the manual. To give a quick example, sup­
pose you have a procedure called "/usr/adm/dumper" which takes nightly
tape dumps, and you want to have this run at 8:00 PM every weeknight.
The requisite line in /usr/lib/crontab would be:

0 20 * * 1-5 /usr/adm/dumper

This line says that at minute 0, hour 20, every day of every month,
but only on Monday through Friday: run /usr/adm/dumper.

Note that in order for the "cron" program to be running at all, it must
be invoked somewhere. A good place to start /etc/cron is in /etc/re.

9.5.3. The File /etc/ttys

This file contains information about each terminal.

Each line of the "ttys" file describes one port. The first character on

214 Chapter 9

each line is "O" or "1": "O" lines will be ignored. Next comes a character

describing the terminal type. The code for this will be installation depend­

ent, but "O" is always used for dial-in lines and the console. The remainder

of the line is the name of the special file in / dev that refers to the port.

For example, the line

lOconsole

indicates that / dev /console is configured for login.

The actual physical ports are on the back of one of the mainframe

cabinets. You might want to attach a little label to each outlet with the

letter of its port so that you can move terminals from port to port.

9.5.4. The Line Printer Spooling Mechanism

If your installation has a line printer, the chances are that from time

to time you will have trouble with its associated spooling mechanism. Here

we explain how that mechanism works, and present procedures for clear­

ing up problems that can arise. spooling is simply the means users can

arrange to have files printed without having to worry about whether the

printer happens to be available or not. (The term comes from "SPOOL",

for Simultaneous Peripheral Operation On-Line).

Users spool files by using the "lpr" command. "lpr" places a copy of

the file to be printed in the directory "/usr/lpd", along with a short file

saying what to do with it and on whose behalf. Then "lpr" executes the

line printer daemon "/etc/lpd".

"Lpd" first checks for the presence of a file named "lock" in the

"/usr /lpd" directory. If it is there, "lpd" exits, assuming that another

instance of itself is still active; otherwise, it creates the lock file. Thus,

at most one instance of "lpd" can be active at once. Once the daemon

has created the lock file, it keeps looking for command files, following their

instructions, then removing them. When there are no more command files,

the daemon removes its lock file and then exits.

On some systems the line printer occasionally gets "stuck". The

symptoms of this are 1) nothing that is sent through "lpr" is printed; 2)

the directory /usr /lpd has the files in it for printing; 3) the printer is on­

line. To fix this problem do a "ps a". Look for a process that is called

"lpd" or "/etc/lpd". Note the number of this process. Now issue "kill -3

The Line Printer Spooling Mechanism 215

PROCID" - PROCID being the "lpd" process number. This should start
the printer.

If there is no "lpd" process, remove the lock file and try starting one
up, thus:

user -> rm -f /usr/lpd/lock<r>
user -> /etc/lpd<r>

If this does not work, you may have some other problem. For a start,
test the line printer by typing:

user -> echo stuff > /dev/lp<r>

The printer should print the word "stuff' and eject a page. If this still
doesn't work, you may have hardware problems.

Sometimes, somebody will spool a file to the line printer with "lpr",
and then decide that no printout of the file is wanted after all. To get rid
of the unwanted file, first stop the printer by taking it ofline. Then "chdir"
to "/usr /lpd" and do "ls -1". Note that "lpr" creates two files here each
time it is run; a small file of commands for the line printer daemon named
with "dfa" and a number, and a copy of the data to be printed on a file
whose name ends in the same number. Try to guess, on the basis of file
owner and size, which file is the one to be removed. "cat" one or more files
(interrupting the output after the first few lines) if necessary to make sure;
then remove the file and the corresponding "df a" file.

If the unwanted file has already started to be printed, the above steps
are still appropriate. Afterward, however, you must kill the line printer
daemon, remove the lock files and start up another daemon, then put the
printer back on-line.

This all sounds complicated, so let's go through a complete example.
Suppose user Joe accidentally typed

user -> lpr <bigmodule.o<r>

216 Chapter 9

when what was intended was:

user -> lpr <bigmodule.c<r>

Now, object code does not look pretty coming out on the printer, and it

usually contains form feed characters, which cause the printer to throw out

a lot of paper. On seeing this we stop the printer by hitting the OFFLINE

button. We then go to our terminal, where we are already logged in, and

the following session ensues:

user ->
user ->

chdir /usr/lpd<r>
ls -l<r>

UNIX ->

total 6
-rw-rw-rw- 1 mary 226 Mar 17 03:28
-rw-rw-rw- 1 joe 843 Mar 17 03:25
-rw-rw-rw- 1 mary 63 Mar 17 03:28
-rw-rw-rw- 1 joe 63 Mar 17 03:25
-rw-rw-rw- 1 sue 41 Mar 17 12:29
- 1 daemon 0 Mar 17 12:14

user -> rm [de] fa02326<r>
user -> ps a<r>
UNIX -> 8: 1356 - 0

-> 2284
-> h: 393 -w
-> i: 2314 ed chapt.2
-> i: 12
-> 8: 2320 lpd

cfa02324
cfa02326
dfa02324
dfa02326
dfa02329
lock

Useful Shell Files

-> 2337 ps a
-> 2315 /bin/sh recompile

user -> kill 2320<r>
UNIX -> 2320: not found
user -> su<r>
UNIX -> Password:
user ->
UNIX -> #
user -> kill 2320
UNIX -> #
user -> cnt"l-d
UNIX -> $

enter password, no echo
superuser prompt

out of superuser

217

Between the'#\' and the'~' is a non printing character <CTRL>D.
Now we put the printer back on-line. It prints a little more garbage
(emptying the buffer), and ejects a final page. We rip off the paper, return
to the terminal, and type:

user ->
user ->
UNIX ->

rm -f lock<r>
/etc/lpd<r>
$

and the printer starts on Mary's printout. End of example.

9.5.5. Useful Shell Files

One of the good things about UNIX is that it is very simple to make
up a "shell procedure" which contains commands to be executed. The
art of shell programming can produce highly sophisticated procedures that
are as complex as any program, but are also simple enough that a non­
programmer familiar with shell commands can put one together about as
fast as (s)he can type the commands themselves. Some places where shell

218 Chapter 9

files would be appropriate are in a daily or weekly dump procedure, a
daily housekeeping and/or accounting procedure, and in general any place
where you have a standard list of commands to type. Shell files reduce the
possibility of error; the more important and/or boring a procedure is, the
better the idea of making it a shell procedure.

To make a shell procedure, simply edit a file and put in the commands
that you want to run. You should include comments that explain what is
going on. A comment can be entered by making the first character on a line
a':'; it must be followed by a space before the comment. (This is also the
format for a label in a shell procedure.) When you are done editing the file,
you must change the protection of the file so that the execute bit is on. A
good protection for this is 775 "rwxrwxr-x", which lets everybody execute
it and read it, while only you and members of your group can change it.

You may want to supply arguments to the procedure. In this case,
you can use the shell variables $1,$2,$3 ... $9. The $1 variable is the first
argument to the command, $2 the second, and so on. For instance, a simple
procedure to list out and remove all of a directory might read:

user -> ls -1 $1 > rmlist<r>
user -> rm $1/*<r>

If this file is called "cleanout", you can invoke it on /tmp by typing

user -> cleanout /tmp<r>

Finally, note that the command "shift" in a shell file bumps each ar­
gument up by one - $2 becomes $1, and so on. This allows you to make
a shell procedure take an arbitrary number of arguments for processing; a
version of "cleanout" that does this is:

echo >rmlist

ford do

ls -1 $d > >rmlist

rm $d/*

File Systems: A Closer Look 219

done

You could now clean out several directories with one command line:

user - > cleanout direct1 direct2 direct3

9.6. File Systems: A Closer Look

At this point, we have referred to file systems many times. You have
a vague idea of what they are and what they are for. You also know that
a file system is a collection of files, and that a file system fits onto one
disk (or else several fit on a larger disk); you know that file systems are
attached somehow to the root directory tree; and you know that they must
be guarded from damage lest damage beget damage. Now you will learn
the secrets of the file systems.

220 Chapter 9

9.6.1. Structure of any File System

Here is the overall picture of a file system. The parts are explained

below.
block

0 boot block

superb lock

2

i-list

(not to scale)
2 + isize

data,
indirect,
and free

fsize

UNIX views any disk (or part of a big disk) that can hold a file sys­

tem as a sequence of blocks of 512 characters (or "bytes"). The blocks are

generally thought of as being numbered 0, 1, 2, ... on any given disk (or

part). For each file system, there is:

1) a bootstrap block (block 0)

- used during the booting of UNIX.

It is not really involved in the file system format.

2) the "superblock"

(block 1)

- the "header data" for the file system. It includes the file system size

("fsize"), the number of blocks that can contain i-nodes ("isize"), and the

head of the list of free blocks (we're simplifying a bit here; for the full­

blown format see File System(V) or FILSYS(5) in the UPM).

Structure of any File System

3) some blocks of i-nodes

(the "i-list")

221

- each file on the file system has exactly one i-node (there are 8 i-nodes
to a block). The i-node contains information pertaining to the type of a file
(regular, device, or directory); the owner of the file; the protection bits; the
number of links to a file - remember that UNIX allows people to share files
in this manner; the file size; the dates of most recent file access (reading)
and modification (writing); and pointers to the actual data blocks of the
file. The root directory of the file system is i-node 2.

4) some blocks of data. The actual data in the files are contained here.
Unused blocks in this part of the file system are chained to form the
free list.

Also mixed with the data blocks are indirect blocks, which are blocks,
i.e., full of block numbers. If a file is over a certain size, the i-node points to
one or more indirect blocks, which in turn point to the actual data blocks.
The i-node of an extremely large file could have 10 pointers to data blocks,
a pointer to an indirect block that points to data blocks, a pointer to an
indirect block that points to indirect blocks that point to data blocks, and
a triple-indirect pointer.)

An i-number is the number of an i-node (the "i" stands for "index"),
where the first i-node is numbered 1, the second 2, and so on. The i-number
of a file may be thought of as the system's internal name or identifier for
the file.

The i-nodes are allocated to files in the order that they become avail­
able. Since a typical UNIX installation has a lot of file creation and deletion
going on, i-node numbers are pretty well scattered and unpredictable. The
situation is the same for block numbers.

Closely related to the question of file systems is the format of a direc­
tory. Unlike many other systems, UNIX keeps only two pieces of informa­
tion in a directory entry: the i-node number and the file name as it is known
in that directory. This is how a file can have more than one link to it; two
directories have entries with the same i-node number. It also makes clear
that UNIX files do not have names intrinsically associated with them; the
names are provided by the directory, not by the i-node. All other informa­
tion is contained in the i-node. Thus when UNIX tries to open a given file
name in your directory, it goes to the directory, finds the i-node number,
then goes to that i-node in the file system; it then checks permissions from

222 Chapter 9

the i-node and finds the beginning of the data.

You should also be aware that UNIX considers devices - terminals,

tape drives, disk drives, even main memory - to be "special files"; they thus

have i-nodes. The file/device equivalence is deeply ingrained in UNIX; this

is why a program can take input from either a file or a device, depending

on what you tell the shell to have it do.

9.6.2. Mounted File Systems

A particular file system is identified in your kernel configuration as the

root file system. The root file system contains the bare essentials that you

need to run UNIX; when you bring up UNIX and are running as a single­

user, you are running with just the roo~ file system. What, then, of all the

others that you have?

The other file systems sit on other disk drives and, until called upon,

are basically unknown to UNIX. The way to make UNIX aware of a non­

root file system is to "mount" the file system on the root. Suppose, for

instance, you want to mount the file system on disk /dev/rp9. First you

must have a place to mount it; this place is simply a directory. Assuming

an empty directory named "/fs" had been created for mounting purposes,

whenever you want to mount the file system on disk /dev /rp9, you could

type:

user -> /etc/mount /dev/rp9 /fs<r>

From this mounting until /dev/rp9 is unmounted or the system goes

down, the original directory /fs and anything below it is inaccessible. Any

reference to /fs is now a reference to the top-level directory of the file system

on /dev /rp9. If you were to mount /dev /rp9 instead on a file called /fstwo,

a file (on the mounted system) that would have been called /fs/dirl/filel

would be called /fstwo/dirl/filel. In this way, the apparent size of the

UNIX "file system" as the ordinary user perceives it is expanded far beyond

the limits of an individual disk. Note that the opposite of "mount" is

"umount" (not "unmount"); for example,

Dumps 223

user -> /etc/umount /dev/rp9<r>

(Note that these two programs are in /etc, not in /bin.)

You will have a standard set of file systems to be mounted in standard
places. The "mount" commands for these should be in /etc/re, which you
will recall is the shell file that is run when the system goes from single-user
to multi-user. The particular file systems that you have will be installation­
dependent; you will have exactly one root file system, and one or more user
file systems. You may have an entire file system of scratch space (/tmp);
if you do not you will just have a scratch directory /tmp on the root file
system .

. "Since /tmp tends to grow wildly (though it shrinks

. " about as fast), this isn't too good an idea.

The issue of which file systems go where and how large they are will
be determined by you based on the available hardware and how you will
be using the system.

9.7. Dumps

The most important responsibility of the system administrator is to
take, or arrange for the taking of, regular tape dumps. This means that
some or all of the files on the disk file systems are written out to a mag­
netic tape in such a way that they can be retrieved in the event that the
files are deleted, either accidentally by the user, deliberately by a user who
later changes his/her mind about the deletion and wants the file, or totally
unpredictably by the system in the event of a system foul-up. (It is also
possible for you, as the superuser, to make a mistake and delete somebody
else's file. You, of course, will be very careful not to do this. After you have
made your first embarrassing mistake and deleted somebody's important
file, you will be even more careful in the future.) If for any of these reasons
a file is deleted, and in addition you have no recent backup of the file, you
will be sorry.

224 Chapter 9

9. 7 .1. When to Take Dumps

The UNIX dump program, described below (and in more detail in
Chapter 9.10), allows you to dump onto tape only those files that have been
changed after a certain time, which you specify. If you specify the special
time "zero", the complete file system is dumped.

The issue of when to take dumps, and how comprehensive each dump
is to be, will depend on what your pattern of file activity is like. Suppose,
for instance, that a full dump of your complete system takes up three 2400-
foot tapes, and only a small proportion of your file system changes every
day. You might want to take a weekly full dump and take "incremental
dumps", as they are called, every night on a smaller tape. In this fashion
you can get any day's complete system back by restoring only the full dump
and the right day's incremental dump. If, on the other hand, you had one
file system containing data that changed every day, you might want to take
a daily full dump of that system only, and use the above scheme on the
other file systems. You can determine a reasonable dump scheme when
your system is installed, but you should know the rationale behind it so
that you can adjust it if your pattern of file system use changes.

The question of how long to save the dumps must also be addressed.
On the one hand, tapes cost money and you don't have an infinite number
of them, so you will want to re-use them; on the other hand, the best dump
procedure in the world is useless if the tapes have been written on since
the dump you want was taken. One scheme that has proven effective is
to save the daily, incremental dumps for a week after they are made; save
the weekly dumps for about a month; and perhaps save the monthly tapes
forever - that is, away from the machine, so that nobody will take them
and overwrite them. This may seem excessive, but someday somebody is
going to want something they deleted six months ago, and you will make
them very happy by being able to give them some version of what they
want.

9. 7 .2. How to Take Dumps

The UNIX dump/restore programs are described in full in section 9.10,
but some of the more common modes of use are outlined here. You will
probably want to write shell procedures to automate your dumping once
you figure out just what it is that you want to do.

How to Restore Individual Files 225

At this point we might mention that you should run file system in­
tegrity checks on your file systems before you take a dump. Dumps are
supposed to be a safe backup; if the file system is damaged at the time you
make the dump, the whole point of the operation is lost.

DEVICE is the name of the special file that represents the disk (or disk
partition) containing the file system to be dumped. For example, /dev /rrkO
is the name for drive 0 of an RK05 disk subsystem. This dumps all ("a")
files on the file system modified since "time zero" ("O") and updates ("u")
the internal log to indicate that a full dump was taken at this time.

To take an incremental dump of the same file system, use:

user - > du.mp 9 /dev/rrkO

This dumps all the files (in the file system on disk rkO) that have been
changed since the last full dump of that file system.

If at all practicable, dumps should be taken when there is little or no
user activity on the system. This is to reduce the incidence of files being
modified while they are being dumped. Such an event may sometimes be
detected by the dump program and reported as a "phase error".

Incidentally, "dump" and "ncheck" do not require the file system they
are working on to be mounted.

9. 7 .3. How to Restore Individual Files

A procedure will be given here that assumes that each dump is only
one tape volume and that you are interested in just one file.

Mount the latest dump tape that may have a good version of the file
you want. Do a command of the form:

user - > restor x FILE

- replacing Fll.,E with the name of the desired file, stripped of any
mount point name prefix. For example if the file is normally called

226 Chapter 9

"/a/b/c" but "/a" is the name of the mount point, use "/b/c". In other
words, file names on the tape are relative to the file system dumped.

If restor says the file is not there, presumably the tape you mounted

is an incremental dump and you will have to go back to the full dump

tape and start over. Otherwise, it will give you the file's i-number and type

"mount the desired tape volume". The file will then be read from the tape

and saved on a file in your current directory, and named with the original

file's i-number in decimal. If you want the file saved under its old name,

you will have to rename it.

9. 7.4. Restoring an Entire File System

If a file system gets totally garbled, you may find that you want to

restore the entire file system from tape. This is a last-ditch emergency

measure, but here's how to do it. First, make sure the file system you are

restoring onto is not mounted. If it is the root file system, the only way to

do this is to bring the system down and bring up a backup copy of UNIX.

Otherwise, type:

user - > I etc/umount DEVICE

If "umount" complains "mount device busy", someone is using it. That

is, their current directory is on the file system in question, or they have

some file on it open. Ask everyone to "chdir" to some other directory

(including yourself!), then try the "umount" command again. Of course,

you don't have to worry about unmounting non-root file systems if you are

up in single-user mode, since it will not have been mounted. As soon as

you succeed in getting the file system unmounted, do:

user -> /etc/mkfs DEVICE SIZE

- where DEVICE is whatever / dev name your disk is on, and SIZE

is the size of the file system in blocks. This totally and irretrievably zaps

the file system, so be sure you have done it right - in particular, make sure

The Basic Checking Programs 227

you have specified the right file system! In fact, it might be a good idea to
dump the file system before swapping it.

Mount the full dump tape that you are restoring from and issue:

user - > restor r DEVICE

If you want, you can then mount the latest incremental dump tape
and do the "restor" procedure on that as well.

9.8. Repairing Damaged UNIX File Systems

Now that you know what a file system has inside it, you are ready
to learn how to repair it when it gets damaged. The word "damaged" in
this context refers to inconsistencies in the control information for the file
system or bad data in the files; it rarely implies physical damage to the disk
drives themselves. The art of fixing file systems depends on experience and
confidence; it will take a while before you really feel comfortable, especially
as you recall the consequences of certain errors. If you are going to repair a
file system and think you may get it messed up - especially if there seems
to be a lot of confusing damage - you might well want to dump it to tape
beforehand.

Before starting to fix a file system, be sure none of your users can get
at it. You want to be the only one doing anything to it. Usually, the best
way to assure this is to have the system up single user.

9.8.1. The Basic Checking Programs

As mentioned earlier, the basic file integrity programs should be run
1) whenever the system is brought up; 2) when the system seems to have
something mysterious wrong with it, and 3) daily, if at no other point.
You should be aware that running the checks on "live" file systems while
UNIX is running may give bogus error messages, since the disk may be in
the process of being updated as the checks run. Even more important, the
file system should be unmounted if possible when you are actually repair-

228 Chapter 9

ing damage, otherwise you are performing surgery on a patient while the

patient is jogging.

There are two checking programs: "icheck" and "dcheck". The

"icheck" program checks the consistency of the i-node structure and free­

block list of the file system; the "dcheck" program checks the consistency

of the directory structure. You will probably want to make up a shell pro­

cedure called something like "chk" to run these programs on your regular

set of file systems. Also, notice that for every UNIX block device such as

disks and tapes there is a "raw device"; that is, in addition to / dev /rkO

you have / dev /rrkO. This is the same as the regular device but the system

can perform more eficient i/ o on it. The "icheck" and "dcheck" programs

can take these in place of the regular devices, and will run faster if you

supply them instead.

Before we go much further, note this: we will be discussing ways of

fixing file systems by changing data on the disk. After you think a file

system has been fixed, run both "icheck" and "dcheck" again to be sure.

The techniques presented in this chapter can sometimes have side effects

that themselves must be taken care of. Hence, fixing file systems is an

iterative process. As you become more experienced, you will learn to cut

down the number of iterations. But it is still good practice to run the

checking programs one final time to make sure, even if you think you have

eliminated all the problems.

If you are repairing your root file system, you must HALT the machine

and REBOOT the system immediately after you fix the errors because the

system stores the root file system's control data in core as well as on disk,

rewriting the information from core to the disk when forced to. Fixing

file system errors only writes the corrected version on disk; if you let the

system continue to run bad data will be rewritten out from core eventually

and thereby invalidate your repair work. The basic complication of fixing

the root file system is that it cannot be unmounted. The two possible solu­

tions to this are to halt and reboot as outlined above, or to boot a backup

system. If you are using the former method, having the system single-user

is absolutely essential. Never add files to nor add to a file on a sick file

system.

Icheck Output 229

9.8.2. lcheck Output

The number of each block in the data blocks area of a healthy file
system is either in the free list or in the list of blocks belonging to some
file, but not both. Each block (number) must occur exactly once on exactly
one of these lists. "Icheck" finds deviations from this rule. A block number
occurring more than once is a duplicate. One occurring less than once is
called missing. Of course, all the block numbers on the lists are supposed to
be in the proper range (from 2 + isize up to but excluding fsize). "Icheck"
detects violations of this, too. Out of range block numbers are called bad.

In an earlier section we showed the "normal" output of "icheck". Let's
see it again, and explain it in more detail:

/dev/rpl:

files 540 (r=446,d=47,b=13,c=34)

used 8751 (i=212,ii=7,iii=0,d=8525)

free 6614

missing 0

One at a time:

The "files" name contains the total number of all kinds of files; "r"
gives the number of "regular files"; "d" gives the number of directories; "b"
gives the number of block special files; and "c" gives the number of charac­
ter special files. "used" is total number of blocks in use and the numbers
of single-, double-, and triple- indirect blocks and directory blocks. "free"
is the number of blocks not being used right now.

1) Free-list errors: The free-list is a list of block numbers, each of which
refers to a block that can be allocated by UNIX for use as a data block.
If this gets messed up, it can be either harmless or horrible. If blocks
are missing, then those blocks are not available for use. If there is one
block missing, it's not harmful (though of course you lose one block); if
there are hundreds, you have a problem. If, on the other hand, blocks
on the free list should not be there, you have a potentially frightful
situation; blocks that belong to a file may be allocated to a new file as
well, causing all sorts of havoc.

There are three sorts of diagnostics from "icheck" pertaining to these
cases:

230

missing#

#dup; inode=O, class=free

#dups in free

Chapter 9

(The character '#' is replaced by the appropriate number in each case.)
The first case corresponds to the relatively harmless case where there are
missing blocks; the second two are potentially disastrous on an active file
system. If any of these errors appear, ignore any others for the time being
and perform the following fix:

user -> icheck -s /dev/???

The "-s" option stands for "salvage". It regenerates the free list to
consist of all the blocks that are not in files.

If this is the root system, halt and reboot immediately after doing the
salvage. Errors of the next type will be detected during the "icheck -s".

2) I-node errors: These are announced by the error messages:

b#bad; inode=i#; class=[iclass]

b#dup; inode=i#; class=[iclass]

fu the above, [iclass] can be either: 1st, 2nd, or 3rd indirect, or data
(small, large, huge, or "garg"). In each of these cases (bad or dup), you
have to destroy the files involved (more on that below). In the "dup" case,
you will not have been told all of the i-nodes involved since the duplication
was only noted at the second occurrence of the indicated block in a file;
the first occurrence must also be found in order for you to take care of it.
To find all of the files associated with the dup'ed block, run:

user -> icheck -b #/dev/???

This will list all i-nodes associated with block '#'. All of these must be
destroyed.

NOTE: If you have any of these messages with class= huge or gar­
gantuan, you may also have any number of other, spurious error messages.

Dcheck Output 231

This is probably because you have a bad indirect block, which contains
a whole lot of control information, all of which is totally wrong. If this
happens, do not panic. Look through all of the error messages - there may
be hundreds - and find the one that has a bad block in class=data(large).
Destroy the file in the i-node given in that message. Now run "icheck"
again on that file system. Most likely, all or most of the other errors will
have gone away.

Because dups can be between the free list and files, if your initial
"icheck" run shows any dups, try a salvage. If you are lucky, all the dups
will go away. Otherwise, you will have to destroy files as described above.

All "icheck" detected errors should be cleared up before you go on to
"dcheck".

9.8.3. Deheek Output

Recall that every i-node contains a link count, which is supposed to
be the number of directory entries that point to this i-node. Whenever the
last link is removed, the kernel is supposed to actually delete the file, that
is, free up all its blocks and mark its i-node as free, too. Hence, no files
should have zero links. "Dcheck" detects violations of these rules.

In the case where there are no errors, "dcheck" will simply print the
name of the device whose file system is being checked. If errors do exist,
"dcheck" will list out a table with these columns:

in ode

entries

link count

The inode is of course the i-node number. The "entries" is the number
of directories that have that i-node listed as being a file in that directory.
The linkcount is the number in the i-node itself, telling how many links the
file thinks it has. Normally, "entries" and "linkcount" are equal and non­
zero for each file; "dcheck" lists only those cases where they are unequal
or both zero. Here is what to do in any of these cases:

1) entries=linkcount=O: The i-node is "allocated" but has no links. This

232 Chapter 9

is not a dangerous situation, but it can be easily fixed by clearing the

i-node. To do this do:

user -> clri /dev/??? inumber

using the appropriate device name. You can also use the raw interface

to the device, and you can clear any number of i-nodes by listing their

numbers on one command, for example:

user -> clri /dev/rhpOO 241 1001

for each i-node that needs to be cleared, using the "cooked" interface

to the device (for example, "clri 241 /dev /rkO", not "clri 241 /dev /rrkO").

After doing a series of "clri" s on a cooked device, type "sync". Use care to

type the correct i-number.

2) entries is less than linkcount: If entries=O, you can do a "clri" as in

the above case on that i-node. If both numbers are greater than zero,

the thing to do is bide your time; as links to that file are removed,

both of the counts will drop until the entries=O. Then do the "clri".

3) entries is greater than linkcount: This is very dangerous! The file has

some links to it but the i-node itself thinks that there are fewer than

there are. When links are removed, at some point the inode's linkcount

will go to zero (causing the i-node to be reallocated) but some direc­

tories will still think that the file is theirs. Result: horrible havoc. You

must destroy the file and remove all directory references to it. See "file

destruction" below.

After fixing all the "dcheck" errors you are going to, go back to

"icheck" to salvage the missing blocks that will have appeared as a result

of your "clri" ing.

9.8.4. File Destruction

This section explains how to destroy files. Normally, files are removed

by giving the "rm" command, but if there are any file system errors "rm"

File Destruction 233

can cause more corruption of the system. In this section you are given
a more surgical sort of technique, which involves zapping the i-node and
removing any directory references to it. It is presumed that you know the
i-node number; this can be gotten from the file name by doing an "ls -i"
on the directory containing it. If the file you are required to destroy is a
directory, don't rush ahead just yet; see the next section of this chapter.

Before you destroy a file, you might want to try and recover the con­
tents of it. The name of the file can be gotten from the "-i" option of
"ncheck"; this will give you an idea of how important the file is. The best
way to salvage a file that is about to be destroyed is to do a simple "cp" of
it to a different, healthy file system. Since creating new files on a corrupt
file system can make the situation worse.

Of course, if the file in question contains dups or bads, the data you
recover will be questionable. In the case of a block duplicated between two
files, the chances are one will be correct and the other wrong.

In the case where you want to destroy a non-directory regular file, the
procedure is:

1) Find the file name(s) under which the i-node is known, if you don't
know already. To do this, do:

user -> ncheck -i [inode#] /dev/???

You will get a list of file names associated with that file.

2) Mount the file system:

user -> /etc/mount /dev/??? filesystemname

3) Copy any of the files you are going to use, to a healthy file system, or
to tape.

4) Do "rm -f" on each name given by ncheck.

5) Unmount the file system.

6) Do a "clri" on each i-node involved on the file system.

234 Chapter 9

7) Do "sync" .

8) Again, "icheck -s" would also be a good idea. REMEMBER TO

REBOOT IF IT'S THE ROOT FILE SYSTEM!!!

9.8.5. Destroying a Directory

You mustn't just zap the i-node of a directory, because then all of

the files under it in the directory structure are lost. Before you destroy

the directory, try and make a new directory somewhere in the file system,

and link to all of the members of the doomed directory. Then you can do

"rm" on all of the file names in the doomed directory. Now the directory

is empty, and can be zapped as in the last section (except that you must

use "rmdir" rather than "rm -f'.

If you can't find the files in the doomed directory because the damage

is too great, you could zap the directory and run "dcheck" again; in this

case you will probably lose the files under the directory. You will appreciate

again the value of regular disk backups if this should happen to you.

9.9. Using a Baek-up Copy of UNIX

It is a good idea to maintain a backup copy of the operating system for

dealing with situations where the normal root file system may be damaged.

If, for instance, you were to accidentally lose the shell or the "init" pro­

gram, whether due to a mistyped command while in Superuser mode, or

due to hardware problems, you would be unable to use your main system

at all. In that case, having a backup system could save the time that would

otherwise be required to get a copy from another UNIX installation in order

to rebuild UNIX.

9.9.1. What Is A Baek-up UNIX

A backup copy of UNIX (or simply "backup system") is a copy of your

root file system, kept on a disk or tape that is not normally mounted on

any drive on your computer.

If the backup system is away from the computer, then no error on your

Repairing Root File Systems 235

or the machine's part can hurt it.

It is most convenient to keep the backup system on a disk. However,
if you have only one disk drive, a disk backup is not suficient for all even­
tualities, and you should have a backup system on tape. Using a backup
system from tape resembles the process of installing UNIX for the first time
on your computer.

9.9.2. Possible Differences in Configuration

It may be necessary to have one or more different kernel configurations,
in addition to the one you normally boot, for emergency situations. If this
is the case, a copy of each configuration should be kept on your normal
root file system as well as on the backup system.

As an example, on our Computer (at the time of this writing), there
are a big disk and four little disks. The normal kernel configuration we
run (on a file with link "/unix") has its root and swap devices on the big
disk. An alternate configuration ("rkunix") is set up with one of the small
disks as its root and swap device. We can boot it in case the big disk is
not working.

As another example, a site has two disk drives, each of which has a
removable disk. Each disk holds 9000 blocks. The drives are equipped with
switches that allow the unit numbers to be changed, so that it is possible
to boot from either drive. Because of the needs of this site, the normal
root file system takes up the entire 9000 blocks of a disk, so the swap space
must be on the other disk. A different configuration, with a smaller root
file system, is used for the backup disk. This backup system contains both
its root file system and its swap area on the same disk. This alternate
configuration is necessary so that the backup system will not use the main
system for its swap area and thereby overwrite it.

9.9.3. Repairing Root File Systems

When there is only minor damage to your normal root file system, you
can get away with repairing it without using the backup, as described in
section 9.9.1. With the system up single-user, do any clri's that are indi­
cated, then do "icheck -s", and halt and reboot the system without doing

236 Chapter 9

"sync" {which you otherwise always do before halting the processor). This

is not as bad as doing surgery on a jogging patient; it is more like minor

surgery performed on oneself.

However, when much repair must be done on the file system that is

normally your root file system, it is better to bring up a backup system.

Now, the file system that is normally the root system is no longer the root

system {the backup is), and you can work on it, unmounted, like any other

non-root file system.

Be sure to refer to the file system undergoing repair by the appropriate

name while the backup system is up. For example, suppose you have two

RK05 disk drives, and during normal operations / dev /rkO is the root sys­

tem and /dev/rkl is mounted as /usr. Suppose you have decided to mount

the backup system to repair the normal root file system. A reasonable way

to proceed would be to (with the processor halted) replace the "/usr" disk

with the backup disk, switch the drive unit numbers so that the drives

exchange names, and boot the backup system. Then the disk that you

normally call /dev/rkO is now /dev/rkl.

The above remarks about working on the root file system also apply

when you need to restore the root file system from a dump tape. To con­

tinue the example with the RK05's, you could restore the normal root

system from the previous night's full dump tape by mounting the tape and

typing the following commands to the backup system:

user - > /etc/mkfs /dev/rrk1 4000

user - > res tor r I dev /rrk1

Last chance before scribbling on / dev / rrkl

user - > icheck /dev/rrk1

Once the normal root system is restored from the tape and appears

healthy when ichecked and dchecked, you would type "sync", halt the

processor, reload the disks that are normally loaded, switch the drive unit

numbers back to normal, and boot the regular system.

Questions 237

9.9.4. Detennining Whether a Problem is in Hardware or Software

Suppose you walk in one morning and your UNIX system is dead. Perhaps it typed a "panic" message on the console, or just halted the processor, or just won't take a login. The normal procedure would be to halt the processor (if it isn't already), reboot the system single-user, and start checking file systems. But suppose the system won't boot? In that case, the thing to do is try booting the backup system. If it doesn't work, the chances are you have a hardware problem and you would be justified in calling in a hardware repairer.

If, on the other hand, the backup system does boot, you should check the regular root file system with icheck and dcheck. After clearing up the problems indicated, make sure that the files /etc/init and /bin/sh match those on the backup system. For example, if your normal root file system is called "rkl" from the point of view of the backup system, the following could happen (after the icheck and dcheck gave a clean bill of health):

user -> /etc/mount /dev/rk1 /mnt
user -> cmp /mnt/etc/init /etc/init
user -> cmp /mnt/bin/sh /bin/sh
UNIX -> /mnt/bin/sh /bin/sh differ: char 22 line 2 user -> cp /bin/sh /mnt/bin/sh
user -> sync

In this example, "init" appeared okay, but the shell appeared to have been garbaged. The system administrator then copied the shell on the backup disk ("/bin/sh") into the one on the normal root disk ("/mnt/bin/sh").

9.9.5. Questions

(1) Who are privileged users and what are their powers?
(2) Describe a procedure to add new users to the system.
(3) Before stopping the system how do you inform all active users?

238 Chapter 9

(4) How do you check for active processes (both user and system

processes)?

(5) When is a file system most likely to go bad?

(6) How can you see how much space is left on any file system?

(7) How can you automatically initiate special procedures when the system

is brought up multi user?

(8) How do you activate or de-activate a terminal port?

(9) What is an i-number?

(10) What is a recommended way of taking tape dumps?

(11) How do you restore files from a dump?

(12) What are the two types of errors reported when running icheck?

(13) What is a recommended procedure for running checks on the file sys­

tem?

File System Directory Consistency Check 239

9.10. Backup and Maintenance Commands

Maintenance of the system is one of the most important functions, be­
cause without it little or nothing would get done. Chapter 9 describes the
duties of the system administrator and the responsibilities required of that
job. However without the proper tools to help in the day to day activities
of maintenance, it would be very dificult to accomplish this. Thus the
UNIX system provides tools that help to provide such things as bringing
the system up and down, adding and deleting users, taking tape dumps,
recovering from unforeseen disasters, etc. Although chapter 9 describes
the functions (combination of tools) necessary to perform these tasks, this
section provides a little more detail on each of them.

The maintenance of UNIX is described in chapter 9 and includes the
use of most of the commands defined in this section. In fact it tries to tie
them together in a useful manner. It may be more advantagous to first
read chapter 9 and then reference this section when you feel that more
information is needed about an individual command.

The following commands are used by the system administrator when
dealing with system maintenance.

9.10.1. File System Directory Consistency Cheek

Command:

Syntax:

Function:

dcheck

dcheck [-i numbers] [filesystem]

This command is used to compare the link-count
in each i-node with the number of directory entries
by which it is referenced. It can also provide the
name of entries specified by an i-number. Again
this command is used during system administra­
tion (chapter 9 should be referenced before using
it).

240 Chapter 9

Option: no options are available with this command.

Example:

(1) The dcheck is run by the system administrator when checking the in­
tegrity of the file system. Chapter 9 provides more detail about the
order in which these checks are made. The following is an example of
what the output looks like when correct and when there are errors.

user ->
UNIX ->

entries
-> 448
-> 450
-> 653
-> 733
-> 1317

dcheck /dev/rp1
/dev/rp1:

link cnt
0 0
0 0
0 0
0 0
0 0

In this example all of the entries equal the link count which equals
zero. This indicates that the i-node is "allocated", but has no links. This
is not dangerous,_ but it can be easily fixed by clearing the i-node using the
command "clri".

user ->
UNIX ->

->entries
-> 6
-> 39
-> 40
-> 46

dcheck /dev/rp1
/dev/rp1:

link cnt
2 4
1 0
1 0
0 0

File System Storage Consistency Check 241

-> 48
-> 51
-> 64

0
0
3

0
0
2

In this example, !nodes 39 and 40 are directory links pointing to noth­
ing. In ode 64 still contains data (of questionable validity). All references
to these inodes must be removed, but first try to save any data in the files.

Summary:

Every i-node contains a link count, which is supposed to be the number
of directory entries that point to a specific i-node. Once the file is free, all
its blocks and its i-node is freed too. Thus no file should ever have zero
links. This is the task of "dcheck", to detect violations of these rules.

If the dcheck finds no errors, it returns to UNIX with no message.

9.10.2. File System Storage Consistency Check

Command:

Syntax:

Function:

icheck

icheck [-s] [-b numbers] [filesystem]

This command examines a file system. It checks
for consistency for both the free block list and for
the used blocks. The number of each block in the
data blocks area of a healthy file system is either
in the free list or in the list of blocks belonging
to some file, but not both. Each block (number)
must occur only once on exactly one of these lists.

A block number occurring more than once is a
duplicate. One occurring less than once is called
missing. Out of range block numbers are called
bad. The normal output produced by this com­
mand is:

242

0

0

0

0

Option:

-s

-b

Example:

Chapter 9

The total number of files and the number of

regular, directory, block special and character spe­

cial files.
The total number of blocks in use and the numbers

of single-, double-, and triple- indirect blocks and

directory blocks.

The number of free blocks.
The number of blocks missing (not found in any

file or in the free list).

Two options exist for this command. They are:

This option causes icheck to ignore the actual free

list and reconstruct a new one. The file system
should be dismounted while this is done. Once

the command has completed the system should

be rebooted. This is to assure that the new file
structure is placed on disk. You should not "sync"

before stopping the system for reboot. This op­

tion causes the normal output reports to be sup­
pressed.

This option followed by a list of block numbers

will cause the command to produce a diagnostic

whenever the listed block number is found.

(1) Let's first look at an icheck that contains no bad data.

user - > icheck I dev /rp1

File System Storage Consistency Check 243

-> /dev/rp1:
-> files 739 (r=619,d=73,b=13.c=34)
-> used 11571 (i=277,ii=10,iii=O,d=11274) -> free 3797
-> missing 0

This output can be interpreted as:

files:

user ->
->
->
->
->
->

Contains the total number of all kinds of files. "r"
provides the number of regular files, "d" provides
the number of directories, "b" provides the number
of block special files, and "c" provides the number
of characters special files.

icheck /dev/rp1
/dev/rp1:
files 739 (r=619,d=73,b=13,c=34)
used 11571 (i=277,ii=10,iii=O,d=11274)
free 3
missing 3794

This example shows us that there are blocks missing from the free list.
This is one of the more frequent errors and can be easily fixed by running
the "icheck" command with the "-s" option, then rebooting the system
without having "sync'd". If you leave it this way you will not be able to
run because of the unavailability of free blocks.

Summary:

The important function of icheck is to insure the integrity of your file
system, because without a clean file system you stand a good chance of
losing much of your data. We have shown one example of a bad file system
"Free-list errors". However there are other more critical errors which can
occur. These errors will exist when there are blocks on the free list which
should not be there. In this case you have a potentially frightful situation.
Chapter 9 provides you with details on handling this type of problem.

244 Chapter 9

9.10.3. Generate Names from i-numbers

Command:

Syntax:

Function:

Option:

-i

-a

-s

Example:

ncheck

ncheck [-i numbers] [-a] [-s] [filesystem]

This command is used to produce pathnames vs.

i-number list of all files on a specific file system.

It's principal use is to locate names of files that

may be improperly set in the file system.

The following options can be used with this

produces a list of pathnames for the i-numbers

that follow this option.

produces the same list as with the "-i" option with

the exception that files starting with "." and " .. "

which are normally suppressed will be printed.

This option reduces the report to include only spe­

cial files and files with set-user-ID mode. This can

be used to discover concealed violations of security

policy.

{1) From the resulting run of the command "dcheck", we found that the

i-node numbers 39, 40 and 64 had problems. To find out what direc­

tories or files are referenced by these numbers we can simply run the

"ncheck" command as follows:

user ->
UNIX ->

ncheck -39 40 64 /dev/rp1 <r>

/dev/rp1:

Clear i-nodes 245

-> 64 /xxx3
-> 40 /dq/trb/x
-> 39 /dq/trb/x2
-> 64 /working/xxx1
-> 64 /working/xxx2

From this information we can then procede to investigate these specific
files or directories and see if we can save them either by clearing the bad i­
nodes, or making copies and then clearing.

Summary:

This command is generally used when you want to destroy a non­
directory regular file and to do this you need to know the name of the file.
As you can see from the example, the names of the files are produced based
on the i-node numbers provided. Chapter 9 provides more detail on how
this command is used in conjunction with other commands.

9.10.4. Clear i-nodes

Command:

Syntax:

Function:

Option:

Example:

clri

clri filesystem i-number.

The primary purpose of this command is to
remove a file which for some reason appears in no
directory. However there are also times when an
i-node must be removed when it does appear in
a directory. In this case care should be taken to
track down the entry and remove it with a "rm"
command before clearing the i-node. Before using
this command read chapter 9, Administration of
a UNIX system.

No options exist for this command.

246 Chapter 9

(1) We must know the file system that we are in before we can delete

any i-nodes. Once we have that information we must find out more

about each i-node number before we delete them. The commands

"dcheck,icheck,and ncheck" provide use with this information. Once

we have determined that the i-node number is to be deleted we can do

so by saying:

user ->
UNIX ->

clri /dev/rmt1 39 40 64<r>

Once you have cleared the i-nodes, you should perform a "sync" opera­

tion. It is usually a good idea to perform a "icheck -s" as well. Remember

that if you are in the root file system, you must reboot.

Summary:

Some of the reasons for clearing i-nodes are (1) entries=linkcount=O,

(2) entries are less than linkcount, (3) entries are greater than linkcount.

You must be aware of the dangers when clearing i-nodes. It is possible

to create more problems by clearing i-nodes than not, or at least without

carefully checking out all alternatives and trying to save the files before

clearing. Again as with other commands in this section, ref er to chapter 9

for details on using clri.

Construct a File System 247

9.10.5. Construct a File System

Command:

Syntax:

Function:

Option:

Example:

mkfs

/etc/mkfs [filesytem] [block count]

This command creates a new file system on a disk
or part of a disk based on the number of blocks
provided in the argument [block count]. This file
system can then be used by attaching it to the
root file system though the use of the mount com­
mand. This command destroys anything that was
previously there. If, for example, an existing file
system was in such bad shape that it could not
be fixed, or that it would be too much effort to
fix, then creating a new file system will destroy
the contents of the current file system leaving you
with an empty file system. This commmand must
be issued before you start using any file system.
Any new disk that is attached to your system
must have this file system generated. Also notice
that this command is not directly executable from
the normal /bin or /usr /bin directories. This is
because it is a special command that is control­
led by the system administrator who will decide
when a file system should or should not be built.
Generally the directory "/etc" has read/write per­
mission for the superuser only.

No options exist for this command.

(1) Create a file system on a new disk that's 15000 blocks. You must first
find out what the file system has been called (if anything) by looking
in the directory "/dev". If the file system name does not exist, you can
create its name and characteristics by using the command "mknod"

248 Chapter 9

or directly with this command and a special protocol(see UNIX pro­

grammers manual "mkfs(lm)").

In this case we will assume that the file system name exists. We can

then create the new file system by entering:

user ->
UNIX ->

Summary:

/etc/mkfs /dev/rp3 15000<r>

$

As we stated before, if the file system name already exists in the direc­

tory "/dev", we can use this simple format as shown in the previous ex­

ample. However if the name does not exist, you will have to provide a lot

more information either directly through the mkfs command or using other

commands in addition to the mkfs command.

9.10.6. Build Special Files

Command:

Syntax:

Function:

mknod

/etc/mknod name [c] [b] major minor

This command is used to make special files (see

chapter 9 on system administration). Generally

these special files are contained in the directory

"/ dev" which describes the characteristics of such

things as device drivers (disk, tape, etc.) and the

file systems available on this specific system. The

major and minor device numbers generally pertain

to a driver (major - for example the tty driver) and

the specific entries in that driver (minor - each tty

in the tty driver). These numbers are specific to

each system and if not documented can be found

in the system program source file named "conf .c".

Option:

Example:

Build Special Files 249

As with several of the other commands, this
command has to be executed from the directory
"/etc". This is because it is a system command
used in the creation of special system functions.

The two options specify that the special file is "b" -
block-type (disk,tape) or "c" - character-type (tty).

(1) Let's say we want to create a new name for an existing tty device. We
can first find the major /minor numbers of that device by issuing the
command "ls -1 /dev" which will provide us with a list of all the special
files and their major/minor device numbers as well as their name and
if they are a character or block device. They will look as follows:

total 1
crw-w-w- 1 bin 0, 0 Jan 20 17:40 console
c-w-w-w- 1 bin 0, 40 Jan 20 17:38 Ip
brw-rw-rw- 1 bin 1, 0 Jan 15 16:40 mtO
crw-rw-rw- 1 bin 3, 0 Jan 20 17:26 rmtO
brw-r- 1 bin 0, 1 Jan 16 18:01 rpl
brw-r- 1 bin 0, 2 Oct 29 04:07 rp2
brw-r- 1 bin 0, 3 Dec 16 10:40 rp3
crw-r- 1 bin 2, 1 Jan 16 18:03 rrpl
crw-r- 1 bin 2, 2 Oct 29 04:07 rrp2
crw-r- 1 bin 2, 3 Oct 29 04:07 rrp3
crw-w-w- 1 bin 0, 2 Jan 20 17:02 ttyl
crw-w-w- 1 bin 0, 6 Jan 21 07:18 tty2
crw-w-w- 1 bin 0, 1 Jan 20 17:02 tty3

We can see that the first character of each entry provides us with the
type of entry (block or character), then the major/minor device number(i.e.,
0, 1), and last of all the name of the special file. The other information is
the same as that found in any "ls -1" command.

If we are to create a new entry (name) with the same characteristics
as an existing entry we can do so by entering:

250 Chapter 9

user -> /etc/mknod ttyob c 0 1<r>

UNIX -> $

We can then see what we have created by entering the command "ls -

1 /dev".

total 1
crw-w-w- 1 bin 0, 0 Jan 20 17:40 console

c-w-w-w- 1 bin 0, 40 Jan 20 17:38 lp

brw-rw-rw- 1 bin 1, 0 Jan 15 16:40 mtO

crw-rw-rw- 1 bin 3, 0 Jan 20 17:26 rmtO

brw-r- 1 bin 0, 1 Jan 16 18:01 rpl

brw-r- 1 bin 0, 2 Oct 29 04:07 rp2

brw-r- 1 bin 0, 3 Dec 16 10:40 rp3

crw-r- 1 bin 2, 1 Jan 16 18:03 rrpl

crw-r- 1 bin 2, 2 Oct 29 04:07 rrp2

crw-r- 1 bin 2, 3 Oct 29 04:07 rrp3

crw-w-w- 1 bin 0, 1 Jan 2114:34 ttyOb

crw-w-w- 1 bin 0, 2 Jan 20 17:02 ttyl

crw-w-w- 1 bin 0, 6 Jan 21 07:18 tty2

crw-w-w- 1 bin 0, 1 Jan 20 17:02 tty3

We have now created a new entry "ttyOb" which has the same charac­

teristics as does the entry "tty3". If we want to create an entry that is

different than any of the existing entries, we will have to understand the

limitations of the special file we are creating. Again this information can

be obtained from the system programs source file "conf.c".

Summary:

This command is directly tied into the system drivers and it is essen­

tial that you know more about the internals of the system than what is

explained in this book. The kernal of UNIX is only about 10,000 source

statements of which 800 or so are assembly and the rest are C language

statements.

Mount a File System 251

9.10. 7. Mount a File System

Command:

Syntax:

Function:

Option:

Example:

mount

/etc/mount [file system [-r]]

The only file system that is automatically mounted
when the system is booted is the "root file sys­
tem". This file system contains the bare essentials
that you need to run UNIX.

All other file systems (see the command "mkf s")
are unknown to UNIX until you execute the
"mount" command. This can be done by you issu­
ing the specific command, or automatically by the
system when it is booted (see special files "/etc/re"
as defined in chapter 9). Once the file system has
been mounted, it will remain mounted until you
bring the system down or unmount it.

Only one option exists for this command "-r" and
it specifies that the file system should be mounted
as read only.

(1) Mount the file system whose name is rp3.

user ->
UNIX ->

/etc/mount /dev/rp3 programs<r>
$

The file system "rp3" has been defined in the directory "/dev" which
defines the special files(i.e.,device drivers,etc.). It must exist or you will get
an error message from the system. The named programs must be direc­
tories having already been created. Once this command has been executed

252 Chapter 9

the file system "rp3" will be made available through the root directory to

the directory "programs".

Summary:

If you forgot to mount the file system "pr3" and try to access the data

in that file system you will find that it is treating the directory "programs"

as just another directory under the root file system. In addition the direc­

tory that is the root for each file system must be created in the UNIX root

file system.

9.10.8. Dismount a File System

Command:

Syntax:

Function:

Option:

Example:

umount

/etc/umount file system

This command simply dismounts the specified file
system if it is mounted. If it is not mounted a
message to that effect will be given.

No options exist for this command.

(1) We will dismount the file system "rp3" which we just mounted in the

previous example.

user ->
UNIX ->

Summary:

/etc/umount /dev/rp3<r>
$

This command would generally be controlled by the system ad­

ministrator. As with some of the other special commands, it is found in

the directory "/etc" and must be executed from there.

Substitute user ID Temporarily 253

9.10. 9. Substitute user ID Temporarily

Command:

Syntax:

Function:

Option:

Example:

SU

su [userid]

This command allows you to change to another
user's ID and perform tasks that may have been
read/write protected if the tasks were performed
from within your own userid. Your current direc­
tory and user environment is unchanged. If the
userid you are changing to has a password, the
system will request that you enter it. To return to
your own environment you must strike the control
key and the letter "d" at the same time "cntl-d".
This will place you back in your own enviornment
exactly as you were when you left. You will not
be able to get into the new environment without
it.

No options are available for this command.

(1) The most common use of this command is to become the superuser
when you need to access directories or files and do not have permission
under your current login name. To change to superuser you say:

user -> su<r>
UNIX -> Password:
user -> enter password, but not echo'd
UNIX -> #

You can tell that you are the superuser by the fact that the prompt
"#" appears. If it had not allowed you to become superuser, it would have
issued the prompt "$" instead.

254 Chapter 9

(2) We can also enter as another user by issuing the login name of that
user. Thus we say:

user ->
UNIX ->
user ->
UNIX ->

su joe<r>
Password:

$
enter password, but not echo'd

You will now be in the directory of the other user and under control
of his permissions.

Summary:

This command is useful when you must have access to something that
you would otherwise not have permission to see. Again your original direc­
tory and environment is not changed when you return (return by striking
"cnt'l-d").

Update the Super Block 255

9.10.10. Update the Super Block

Command:

Syntax:

Function:

Option:

Example:

sync

sync

The UNIX system provides all users with buffers
for controlling input/output. However as files
are changed, deleted, or added, they are writ­
ten onto the disk only every so often. Thus if
at any time the system goes down (i.e., power
failure, disk failure, etc.) the file system is sub­
ject to the status at that time. It can mean that
your file systems could be destroyed or at least
damaged. The "sync" command is used to flush
out the buffers and update the file system on disk.
It is automatically executed by the system every
so often (execution is controlled by the system
administrator, but generally updated between 30
seconds and two minutes). Each time the system
is stopped the operator should perform a "sync"
to insure that the disk copy reflects what is in
memory.

No options exist for this command.

(1) Before stopping the system you should perform a "sync".

user ->
UNIX ->

Summary:

sync<r>
$

256 Chapter 9

The only indication that the sync has performed its task is the UNIX

prompt. If you are close to the computer, you may hear the disk move.

Once the system has gone down (power failure, etc.) it is too late to

perform a sync. You will then have to check the file system using the other

commands previously described (icheck, dcheck, etc.).

9.10.11. Tape Archiver

Command:

Syntax:

Function:

Option:

r

x

tar

tar [option] [name]

This command saves and restores files on magtape.
The exact function performed by this command
is determined by the option or options specified.
You have the ability to save and restore individual
files or complete directories.

The options are divided into two parts. The first is
the specification of the function to be performed,
and the second includes modifiers that may be
added to a given function.

The following options specify the functions avail­
able:

The named files are written on the end of the
tape.

The named files are extracted from the tape. If
a complete directory and its files and subdirec­
tories are written on the tape, then "x" will ex­
tract everything including the directories. If mul­
tiple entries of the same thing are on the tape, the
last one will overwrite the previous one.

t

u

0, ... ,7

v

w

f

b

m

Example:

Tape Archiver 257

This function provides a listing of the files and
directories on the tape based on the names
provided. If no names are provided everything on
the tape is listed.
The named files are added to the tape if they are
not already there, or if they have been modified
since the last time they were created.

The following options are used as modifiers to the
functions specified above:

This modifier selects the drive on which the tape
is mounted. The def a ult is 1.
This option causes tar to print the name of each
file or directory that has been affected by the
function specified. Used with the "t" option, it
provides more information than just the name.
this option causes tar to print the action to be
taken followed by the file name, then wait for user
confirmation. If you respond with a ''y", the action
is taken, otherwise any other character entered will
cause the action to not be taken.
causes tar to use the next argument as the name of
the archive instead of the tape "/ dev /mt?". If the
name of the file is "-", tar writes to the standard
output or reads from the standard input. Thus it
can be used in a filter chain.
used as the blocking factor when reading or writ­
ing files. The default is 1 and the maximum is
20.
this option is used to complain if all of the links to
the files that are being dumped are not resolved.
this option tells tar not to restore the modification
times. The mod time will remain that of the time
when the files were extracted.

258 Chapter 9

{1) First let's try to create a tape archive of the files in a single directory.

We must position ourselves to the dirctory that contains the informa­

tion that is being archived, or we must provide the complete path

name.

user - > tar co directory! <r>

UNIX -> $

This command will write all of the files (and subdirectories) to the

tape. All previous data on the tape will be destroyed. If we want to see

what is being placed on the tape, we can use the option ''v". Thus we

would say:

user -> tar cvO work<r>

UNIX -> a work/file1, 1 block
-> a work/file2, 3 blocks
-> a work/file3, 14 blocks
-> a work/file4, 2 blocks
-> $

In this example the only difference is that we have requested that the

names of the files we are archiving on the tape be printed. The "a" indicates

that the file is being added to the tape, and the block indicates the number

of tape blocks that are required to hold it. As we pointed out before, this

option "c" creates a new tape destroying everything that was previously on

it. If we wanted to add new files to the tape or replace existing ones, we

would use the option "r" instead of "c". Thus if the file did not exist, it

would be added and if it existed, it would be replaced.

(2) Now let's see how the files can be blocked. This is generally necessary

when you have large amounts of data to archive. The blocking allows

more data to be placed on the tape than it would otherwise allow

{because of the record gaps that are generated).

user - > tar cv0b16 work<r>

Tape Archiver 259

UNIX -> a work/file1, 1 block
-> a work/file2, 3 blocks
-> a work/file3, 14 blocks
-> a work/file4, 2 blocks
-> $

In appearance there is no difference; however, the amount of data that
can be placed on the tape is much more than if no blocking were used. If
you try without blocking and run out of tape, a message will be issued. In
this case you will want to try again with the blocking being used.

(3) Any time that we would like to see what we have on any given tape,
we need only use the option "t" . This will allow us to see the contents
of a tape before doing anything else.

user -> tar to work<r>
UNIX -> work/f ile1

-> work/f ile2
-> work/f ile3
-> work/f ile4
-> $

We are provided with only the names of the files, the byte count and
block sizes are not provided.

(4) Now let's extract the files we have just placed on the tape. To ac­
complish this we will use the extract option "x". We must be posi­
tioned at the directory where we want the files to be placed.

user -> tar xvO work<r>
UNIX -> x work/file1, 83 bytes, 1 block

-> x work/file2, 34 bytes, 3 blocks
-> x work/file3, 122 bytes, 14 blocks
-> x work/file4, 40 bytes, 2 blocks
-> $

In this case we are given the size of each file in bytes in addition to
the number of blocks. The "x" indicates that the files are being extracted.

260 Chapter 9

(5) Now that we have learned to create and extract files, let's see how we

can use it as the front or rear end of a filter chain. In this case we will

use the "dd" command to convert each file to ASCII from EBCDIC,

first before writing to the tape and then after reading it from the tape.

user ->
UNIX ->

->

tar cvf - filei I dd of=/dev/rmtO conv=ascii<r>

a filei, 1 block

$

In this example, we are telling tar to create a new archive containing

the file "filel" and that before placing it on tape, we want to convert the

contents (which is EBCDIC) to ASCII. Now if we want to reverse this pro­

cedure and read the file from tape, converting it back to EBCDIC, we can

do so by saying:

user ->
·uNIX ->

->

dd if=/dev/rmtO conv=ebcdic I tar xvf - file1 <r>

x filei, 1 block

$

The "dd" command is explained in chapter 7.2.2. Notice that when

we use tar in a filter chain, we must specify raw magnetic tape archive

"/dev/rmtO" is the raw 1/0 driver for mtO. Your raw 1/0 names can be

obtained from the directory "/dev".

Summary:

This command is useful to everyone and can be used for your own

personal backup tape.

9.10.12. Incremental File System Dump

Command: dump

Syntax:

Function:

Option:

f

u

0-9

s

Incremental File System Dump 261

dump [option [argument ...] filesystem]

This command is generally used by the system
administrator for providing a back up of all the
data on the file systems. It provides the facility to
dump files based on various criteria such as dump­
ing only files that have changed for the day ,etc.
Thus the system administrator can minimize the
amount of time that is required for taking dumps
by not having to create a complete dump each
day. Methods for taking dumps are explained in
chapter 9.

The following options are used in conducting
dumps.

place the dump on the next argument file instead
of on the tape.
if the dump completes successfully, write the
date of the beginning of the dump on the file
"/etc/ddate". This file records a separate date for
each filesystem and each dump level.
this number is the "dump level". All files modified
since the last date stored in the file "/etc/ddate"
for the same file system at lesser levels will be
dumped. If no date is determined by the level, the
beginning of time is assumed. Thus the option 0
causes the entire file system to be dumped.
this option allows you to specify the size of the
dump tape(in feet). Immediately following the "s"
option is the numeric value specifying the size of
the dump tape. When the size specified is reached
during a dump, the dump will wait for the reel to
be changed. The def a ult size is 2300 feet.

262

d

Example:

Chapter 9

this option allows you to specify the density of

the tape, expressed in BPI. The argument follow­

ing this option is the numeric value of the density

"BPf'. This is used to calculate the amount of

tape used per write. The default is 1600.

(1) To take an incremental dump of a file system, you can say:

user ->
UNIX ->

dump 9 /dev/rmt1<r>

This command will dump all the files (in the file system on disk rmtl)

that have been changed since the last full dump of that file system.

Summary:

Although this command is explained in more detail in chapter 9, it is a

necessary command for the system administrator. Too often this command

is not used on a consistent bases and will only be noticed the first time the

disk fails and all the data files are destroyed. Don't let that happen.

9.10.13. Incremental File System Restore

Command:

Syntax:

Function:

Option:

restor

option [argument ...]

This command is used to read magtapes that have

been dumped using the "dump" command.

The following options can be used with this com­

mand.

f

r orR

x

t

Example:

Incremental File System Restore 263

this option allows you to use a specific tape instead
of the def a ult. The name of the tape is an argu­
ment which follows the "r' option.
This option allows you to specify the filesytem
where the tape is read and loaded. The name of
the file system is the argument following the the
option "r or R" . If the option is "R" instead of
"r", restor asks which tape of a multi volume set to
start on. This allows restor to be interrupted and
then restarted (an icheck -s must be done before).
Each file on the tape named by an argument is
extracted. The file name has all "mount" prefixes
removed (i.e., /usr /bin/lpr is named /bin/lpr on
the tape). Chapter 9 explains procedures for keep­
ing the amount of tape read to a minimum.
this option prints the date the tape was written
and the date the file system was dumped from.

(1) Normally you will want to restore specific files that have been damaged
for whatever reason. To accomplish this you need only enter:

user - > restor x file1 <r>
UNIX -> #

Remember to provide the file name or names stripped of any
mount point name prefix. For example if the file is normally called
"/user/dick/filel", but "/user" is the name of the mount point, use
"/dick/filel". In other words, file names on the tape are relative to the file
system dumped.

Summary:

This command is used with the "dump" command and is usually under
the control of the system administrator. If, during a restore you find that

264 Chapter 9

the system cannot find a file, then presumably the tape you mounted is an
incremental dump and you will have to go back to the full dump tape and
start over. Restoring the entire file system from tape should always be a
last-ditch emergency measure. See chapter 9 for details on restoring file
systems.

9.10.14. Questions

(1) What are the purposes of the following commands?

a) icheck

b) ncheck

c) clri

(2) Why must one use the "mount" command?

(3) If you find a file that has read/write permissions set such that you
can't access it, what must you do to access it?

(4) When would you select the dump command over the tar command?

System Error Messages 265

APPENDIX A

The UNIX kernel will print error messages on the system console in
case of I/ 0 device errors, overflowing of system tables, or errors in the
operating system. This is a summary of those error messages.

eIT on dev d/ d

bn ddddd er dddddd dddddd

This is a message printed in case ofl/O device error. d/d is the major
and minor device number of the device on which the error occurred. A list
of major/minor device numbers and the devices they correspond to may be
made with the following command:

user -> ls -1 /dev I grep • • ~b' •

This will produce an output in a form like this:

brw-r- 1 bin 8,0 Mar 13 15:13 hkOO
brw-r-r- 1 bin 8, 1 Mar 27 12:06 hkOl
brw-r- 1 bin 8, 2 Jan 13 14:32 hk02
brw-r- 1 bin 8, 3 Jan 13 14:32 hk03
brw-r- 1 bin 8, 4 Mar 13 15:18 hk04
brw-r- 1 bin 8, 8 Jan 13 14:32 hklO
brw-r- 1 bin 8, 9 Mar 10 09:30 hkll
brw-r- 1 bin 8, 10 Jan 13 14:32 hk12
brw-r- 1 bin 8, 11 Mar 13 23:22 hk13
brw-r- 1 bin 8, 12 Mar 10 16:53 hk14
brw-rw-rw- 1 bin 3, 0 Apr 10 17:45 mtO
brw-rw-rw- 1 bin 3, 4 Apr 10 01:27 mt4
brw-rw-rw- 1 bin 3, 32 Feb 12 21:44 nmtO
brw-rw-rw- 1 bin 3, 36 Aug 27 12:04 nmt4

266 Appendix A

This is a listing of the "block special files" in the "/ dev" directory; this

directory contains all the "special files" that refer to devices on the system.

"Block special files" are the disk and tape devices.

The first three columns are not really different from those in a "ls -1"

of ordinary files, except for the "b" at the beginning indicating a "block

special file"; what is different is the next column, which is the file size in

bytes for ordinary files. In the case of special files, this column contains

the major and minor device number of that device, separated by a comma.

Thus, the error message

err on dev 8/0

bn ddddd er dddddd dddddd

indicates an error on device "/dev /hkOO", which in this case is the first

part of RK07 drive 0.

ddddd after "bn" is the block number on the device where the error

occurred. The numbers after "er" are two device error registers; which

registers they are and what their contents mean is dependent on the kind

of device on which the error occurred.

bad block on d/d

This is an error message printed in case of a corrupt file system. d/ d

again indicates the major and minor device number of the device with the

corrupt file system. This error means that some file is claimed to use a

block which is not within the limits of the file system on which the file

exists. You will probably have to repair this file system.

bad count on d/d

This also indicates a corrupt file system; it means that the count of

free blocks or free i-nodes on the file system is bad. Again, repair is called

for.

no space on d/ d

This indicates that the free space on the file system on the device in

question has been exhausted. People may have lost parts of their files if

they were writing them out from the editor; this is not recoverable. The

best course of action is to use "/etc/wall" to send a warning message to all

users that they should not create any files on or copy any files to that file

system and urge people to remove files from that file system.

Out of inodes on d/d

System Error Messages 267

This indicates that the free space in the i-list of the file system on the
device in question has been exhausted. The same comments apply as with
the "no space" message.

no file

This indicates that a program tried to open a file, but there weren't
enough slots in the system "open file" table to accomodate it. The best
course is to warn users with "/etc/wall" if this error repeatedly occurs, and
to increase the size of the "open file" table.

Inode table overflow

This indicates that a program tried to use a file, but there weren't
enough slots in the system "in-core inode" table to accomodate it. Again,
warn users if this repeatedly occurs, and increase the size of the "in-core
inode" table.

panic: reason

This indicates an error so serious that the operating system could not
continue to run. The machine should be halted, and the reason noted. The
possible reason's are:

"out of swap space"

This indicates that the space available on the swapping area of disk
space for programs swapped out of main memory has been exhausted.
Either more swap space should be found or the maximum number of
processes allowed on the system should be reduced.

"out of text"

This indicates that the system tried to execute a program whose ex­
ecutable code portion could be shared between multiple users using that
program, but there weren't enough slots in the system "shared text" table
to record that this program was in use. You have to increase the size of the
"shared text" table for your system.

"swap error"

This indicates that an I/ 0 error occurred in the process of swapping
a program out to the swap area or swapping it in to main memory. Before
this message, an I/ 0 error message should have been printed on the system
console. If this problem recurs, have a customer engineer look at the drive
which has the swap area on it.

268 Appendix A

"no clock"

This indicates that UNJX was unable to start the hardware clock on

the machine. If such a clock is installed, this indicates hardware dificulties.

"parity"

This indicates a main memory parity error; this is a hardware failure.

"(other)"

Other "panics" indicate either a software problem in the operating

system or a hardware problem.

Summary UNIX Commands 269

APPENDIX B

Archive and Library Maintainer

ar option [posname] archive_file
[filel...]

options

d delete files from lib

r replace files in lib

t print files in lib

x extract files from lib

v verbose

c create lib

Build Special Files

4000 execution mode user

2000 execution mode group

0400 read permission

0200 write permission

0100 execute permission

0070 group read,write,execute permis­
sion

0007 all others

Change Owner

ch own owner file ...

Clear i-nodes

/etc/mknod name [c] [b] major minor clri filesystem i-number ...

-c file is character file

-b file is block file

major minor specific driver

Change Group

chgrp group file ...

Change Mode

chmod option file ...

options

Compare Two Files

comm [-[123]] filel file2

123 represent columns displayed

Compare Two Files

cmp [-1][-s] filel file2

-1 provide complete diff table

-s return code based on results

Concatenate Files

270 Appendix B

cat [-u] [filel...]

-u specify block size other

Construct a File System

/etc/mkfs [filesystem] [block count]

Convert and Copy a File

dd [option-value] ...

options

if= input file

of= output file

bs=n set both ip /op block size

skip=n skip n ip records

files=n compy n files from tape

seek=n seek n rec' s

count=n compy only nip rec's

conv=

ascii EBCDIC to ASCII

ebcdic ASCII to EBCDIC

lease map to lower case

ucase map to upper case

Copy Files

cp filel file2

or

cp filel.. .filen directory

Determine File Type

file filename

lel ... filen directory

Diff Between Versions of a File

diff3 [-ex3] filel file2 file3

-e output accepted by editor

-x3 only differences in file3

Differences Between Two Files

diff [-efbh] filel file2

-e produces editor commands

-b ignore trailing blanks and tabs

-f produce script of diff's

-h faster check

Disk Free Space

df [file system]

Dismount a File System

/etc/ umount filesystem

Echo Argument

echo [-n] [arg] ...

-n eliminate new lines

Directory Consistency Check

dcheck [-i numbers] [filesystem]

numbers obtained from itself or icheck

Summary UNIX Commands 271

Storage Consistency Check

icheck [-s] [-b numbers] [filesystem]

-s reconstruct new free list

-b issue error when block #found

Find Pattern Matches in Files

grep [option]... expression [file]

options

-v print lines not matching

-n line preceded by its line number

-y match lower case letters to upper

Generate Names from i-numbers

ncheck [-i numbers] [-a] [-s]
[filesystem]

-i produces path names

-s produces path's for special files

Get Terminal Name

tty

Incremental File System Dump

d specify density in "BPf'

Incremental File System Restore

restor option [argument ...]

options

f specify specific tape

r or R specify filesystem

x extract each named file

t prints date

y size of tape

List the Contents of a Directory

ls [-option ...] name ...

options

l long list

t sort by time

a list all entries(. and ..)

d status of named directory

Mount a File System

dump [option [argument ...] filesystem] /etc/mount [filesystem [-r]]
options

f place dump on next arg file

u after completing, write date

0-9 dump level

s specify size of tape

-r mount as read only

Move Files

mv filel file2

or

mv directory! directory2

272

or

mv filel ... filen directory2

Octal Dump

od [-bcdox] file [[+offset[.][b]]

c interpreted in ASCII

d interpreted in decimal

o interpreted in octal

x interpreted in hex

Permit or Deny Messages

mesg [n] [y]

Pipe Fitting

tee [options] [file] ...

options

-i ignores interrupts

-a append output to file

Print and Set Date

date [yymmddhhmm[.ss]]

Print Calendar

cal [month] year

Print File

pr [option] ... [file] ...

options

-n n column output

Appendix B

+n start print nth page

-h next arg as page header

-wn width of page

-ln length of page

Process Status

ps [option ...] [namelist]

options

a list all process from terminals

x list all process (system)

l long list

Remove Files

rm [options] file ...

options

-f forse all files to be deleted

-r delete all files & subdir's

-i interactive delete

Report Repeated Lines in a File

uniq [-options [+n] [-n]] [input]
[output]

options

u lines not repeated are output

d only repeated lines are output

Run a Command at Low Priority

Summary UNIX Commands 273

nice [-number] command [arguments]

number 1-20 with 20 lowest priority

Sending and Receiving Mail

mail [login name] ...

Setting a Terminal

stty [option ...]

Setting the Terminal Tabs

tabs [-n] [terminal]

-n left margin not indented

Sort or Merge Files

sort [-option ...] [+posl [-pos2]] .. .

[-o name] [-T directory] [name] .. .

options

b ignore leading blanks

f upper lower case letters

m merge

n sorted by arithmetic value

o output file

u eliminate duplicates

Split a File into Pieces

split [-n] [file [name]]

-n no. lines to be placed in output

Substitute User ID Temporarily

su [userid]

Suspend Execution for an Interval

sleep time

time is in seconds

Table of Contents for Archive Files

ranlib [archive file]

Tape Archiver

tar [option] [name]

options

r names written on end of tape

x names are extracted from tape

t list names

u added to tape if not there

0, ... , 7 select tape drive

v print names

b blocking factor

Terminate a Process

kill [-option] processid ...

option = signal number

Update the Super Block

sync

Who is on the System

who [who-file] [am i]

274

Word Count

wc [-lwc] [file]

1 count number lines

w count number words

c count number characters

Working Directory Name

pwd

Write to all Users

wall

Write to Another User

write user [ttyname]

Find Files

find pathname... option ...

option

-name filename

-mtime n T if modified in n days

-print prints current pathname

Summarize Disk Usage

du [-s] [-a] [name ...]

-s provide only grand total

-a generate entry for each file

Appendix B

Answers to Questions 275

APPENDIX C

Chapter Two

(1) Request it from the system administrator.

(2) It's your choise, however it should be short and easy to remember.
(3) The password should be sex or more characters. It can be shorter if

complex(i.e., invisible and special characters).

(4) Ask the system administrator to remove it.

(5) One or more blanks

(6) Depress the return key.

(7) Generally responds with the prompt sign "$".

(8) "$"

(9) Enter the character "#" immediatly after the bad character.
(10) You can kill it by use of the "O" character.

Chapter Three

(1) a) returns the message "?filename". b) returns the message "n" where
n = size of file in bytes

(2) When the append mode is invoked, you are positioned just after the
line you where at when append was invoked.

(3) You must be on a new line and then enter the character ".".
(4) a) append a(r)

.(r)

add new text

text is added after current position

b) insert i(r)

.(r)

276 Appendix C

insert new text

text is inserted before current position

c) change c(r)

.(r)

change(replace) existing lines of text

text is changed at current position

d) delete d(r)

nothing required

delete current line of text

line of text is deleted at current position

e) print p(r)

nothing required

delete current line of text

line of text is deleted at current position

(5) Using the substitute command. s/oldtext/newtext/

(6) Use the "w" commmand. Ed will respond with the number of charac­

ters written.

(7) The quit command "q".

(8) With the command "l,$p"

(9) The editor will display the character "?".

(10) $- is determined by context and means either (1) the end of a line, or

(2) the end of the file.

-- This character indicates the beginning of a line of text.

* - This means any number of consecutive occurences of the same

character.

g - When used with commands such as substitute, it refers to global.

When in front of the command it is global for that line of text, and

when it appears at the end of the command, its range is over the entire

file or the range specified.

Answers to Questions 277

(11) a) print line number currently positioned at.

b) print line just before current line positioned at.

c) print line just after current line positioned at

d) print current line positioned at.

e) replace lines 1,2,3 with one line "new line".

f) delete current line positioned at plus next 3 lines.

g) find first occurrance of the text "The"

h) Add the text "the" to the beginning of the line currently positioned
at.

i) write the complete file (lines 1 to the end) out to a new file named
"newfile"

j) add the character "$" to the end of the current line of text.

k) replace all strings ''you" in the current line with the text "I".

1) replace all strings "I" in the file with the text ''you".

Chapter Four

(1) In your root directory(i.e., if your login name is "dick", you would
probalbly be in the directory " ... /dick".

(2) Limits are what iis set by the system administrator. You can continue
creating subdirectors and files until the system complaines.

(3) Hierarchical file system.

(4) Use the command "pwd".

(5) a) list subdirectories and files within the current directory.

b) change to another directory.

c) make a new directory.

d) remove an existing directory.

e) remove files.

(6) Use the "ls -1" command. All directories will start with "drw " ,and
all files will start with "-rw ".

(7) Owner(login name), group, and all others.

278 Appendix C

(8) a) positioned at user root "dick"

b) positioned at dick/ A/ Al

c) positioned at dick/ A/ A2

d) positioned at dick/B

e) removed directory Bl

f) error can't remove directory Al(positioned incorrectly)

g) dick/B

h) the new structure looks as:

Chapter Five

(1) The output from the following commands is:

a) 1 1 1 1 1 1
1 1 1 1 1 1
222222
2 2 2 2 2 2

Answers to Questions 279

b) $ - data is in file4

c) - The system will wait for input from your ter­
minal and place it in the file "file4"

(2) The file "filel" is spooled to the printer and waits for its turn to be
printed. UNIX gives control back and issues the prompt "$" as soon
as the file has been queued for printing.

(3) It provides for limited formation of your text such as page numbers
and headers. It does not direct the output to a given printer, but to
the standard output.

(4) a) change directory to A and copy file Fl to the directory B providing
the same file name "Fl".

b) Change directory to user root dick and copy file F2 from directory
A to directory B changing the file name to FA.

c) Copy all files in directory A to directory B keeping all file names the
same. Directory A will be unchanged.

d) Move all files in directory B to directory C and when complete, B
will be an empty directory.

e) Move file FA from directory C to directory B changing its name to
Fl.

(5) The owner and group of a file enjoy the read/write protections. Thus
protection can allow an owner or a group the right to read and/or
write a file.

(6) a) read/write/execute for owner, read/execute for group and others
-rwxr-x-r-x

b) read/write for owner and group, read only for all others
-rw-rw-r-

c) read/write/execute only for owner

-rwx-

d) read/write for owner, read only for group and others

280 Appendix C

-rw-r-r-

Chapter Six

(1) Standard input/output is used. It accepts input from the users ter­

minal and putputs text back to the users terminal.

(2) The character ">" is used to direct data from a command to a new

file. In this case if the file already existed, the data would have been

replaced with the new data. If the existing data in an existing file was

to be saved, and the new data concatenated to it, the character "> >"
is used.

(3) The use of the special characters "<" and "< <".

(4) A process is a computer function performing a single task.

(5) Yes; by use of the special character "&" which is attached to the end

of your command.

(6) Yes; by use of the special character "fi" placed between the command

passing the data and the command receiving the data.

(7) They are metacharacters and are used for creating patterns that help

locate files and directory names. The first "*" means any number of

characters and the "?" means any single character in that position.

(8) Creates a pattern that will select only those names starting with a

letter "a,b,c,d, ... ,z". The remainder of the name can be anything.

Chapter Seven

Communications

(1) Yes; the only limit is that they must have a legal login name.

(2) Yes; the mail will be dated and time stamped and will remain there

until you view it.

(3) When you login or anytime after that you may enter "mail" and see if

you have mail.

(4) Yes; using the command ''wall".

(5) The message is sent as soon as you depress the control-don your ter­

minal and it's received immediatly.

(6) You can write to anyone who is currently logged in and has not denied

you permission by use of the mesg command.

Answers to Questions

Information Handling

(1) dd if=mtO conv=ascii

(2) diff -e filel file2

(3) grep Syntax *
(4) a) produce a line, word, and character count for the file "filel".

281

b) split the file "filel" into 10 equal parts placing the results in Faa ,
Fab, ,Faj.

c) Sort the file "filel" in reverse order and place the output in the file
"file2".

Running Programs

(1) Provides a "echo" of the ext selected by you (arguments to the com­
mand echo). Generally used to create a trace (or flow) of multiple
commands.

command echo). Generally used to create a trace (or flow) of multiple
commands.

(2) kill -9 102 use the "ps" command

(3) "nice" where the argument can be 1 to 20 with 20 being the lowest
priority.

Statistics

(1) issue the "pwd" command.

(2) df /dev/usr

(3) date

(4) who am i

(5) ps a

(6) cal 1981 - don't put 81 for 1981, because it will give you the year 81.

Terminals

(1) stty 1200 > /dev/tty3 - notice that you have to direct the output
because it is not your terminal.

(2) Most printers can skip over tabs faster then over blanks. Thus the
printer should print faster.

282

(3) tabs 1620

Chapter Eight

Appendix C

(1) A shell file is exactly the same as any other file except that it contains

UNIX and/ or ED commands that can be executed. Its value is that it

requires no programming experience and yet it can perform tasks that

would otherwise require programming experience.

(2) 9 arguments are allowed. The values may be $1, $2, ... , $9.

(3) An example of nested procedures would be where procedure A invoked

procedure B.

(4) $MAIL, $HOME, $PATH are special variables.

Chapter Nine

(1) Two privileged users - superuser and bin. The superuser has access

to everything, protections do not have any affect. The bin user has

control over the directories /bin and /usr /bin.

(2) a) edit the password file "/etc/passwd"

b) add new user to end of password file.

c) make a directory for the user.

d) change the owner of the directory to that of the new user

e) set the rpiorities if any.

(3) Use the ''wall" command.

(4) use the "ps axl" command.

(5) after a power failure

(6) use df / dev / filesystem

or

icheck / dev /filesystem

(7) Place the commands in the file /etc/re.

(8) By editing the /etc/ttys file. The first chatacter is 0 or 1 where 0 =
deactivate and 1 = activate. You must bring the system down to a

simgle user status after changing the ttys file and then bring it back

up to multi user.

Answers to Questions 283

(9) An i-number is the number of an i-node(or index), where the i-number
of a file may be thought of as the system's internal name or identifier
for a file.

Backup and Maintenance

(1) a) icheck - Used to examine a file system by checking for consistency
for both the free block list and for the sued blocks. b) ncheck - Provides
the pathnames associated with i-numbers. c) clri - Primary purpose of
this command is to remove a file which doesn't appear in a directory
or for removing i-nodes.

(2) The files on a file system (other then the root file system) cannot be
accessed by users until the file system is mounted

(3) Become the superuser by issuing the command "su".

(4) The primary purpose of the dump command is to create a backup in
case of computer failure, whereas tar is used for selective dumps that
can be easily restored.

284 Appendix C

APPENDIX D

{1) D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System,"

Comm. ACM, Vol. 17, No. 7, July 1974, pp.365-375.

{2) D. M. Ritchie, "UNIX Time-Sharing System: A Retrospective," Bell

System Technical J., Vol. 57, No. 6, Oct. 1978, pp. 1947-1969.

(3) D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan,

"UNIX Time-Sharing System: The C Programming Language," Bell

System Technical J., Vol. 57, No. 6, Oct. 1978, pp. 1991-2019.

(4) B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, Englewood Cliffs, N.J., 1978.

(5) K. Thompson, "The UNIX Command Language," in Structured

Programming - Inf otech State of the Art Report, Info tech

International Ltd., Berkshire, England, Mar. 1975, pp.375-384.

(6) S. R. Bourne, "An Introduction to the UNIX Shell," Bell System

Technical J., Vol. 57, No. 6, Oct. 1978, pp.2792-2822.

(7) S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System:

Portability of C Programs and the UNIX System," Bell System

Technical J., Vol. 57, No. 6, Oct. 1978, pp.2021-2048.

{8) B. W. Kernighan and J. R. Mashey, "The UNIX Programming

Environment," Software-Practice & Experience, Vol. 9, No. 1,

January 1979.

{9) Richard Miller, "UNIX-A Portable Operating System?" Operating

Systems Rev., Vol. 12, No. 3, July 1978, pp.32-37.

{10) T. A. Dollotta and J. R. Mashey, "An Introduction to the

Programmer's Workbench," Proc. 2nd Int'l Conf. Software Eng., Oct.

1976, pp. 164-168.

{11) E. L. Ivie, "The Programmer's Workbench-A Machine for Software

Development," Comm. ACM, Vol. 20, No. 10, Oct. 1977, pp.746-753.

{12) J. Lions, "Experiences with the UNIX Time-Sharing System,"

References I 285 I

Software-Practice & Experience, Vol. 9, No. 9, September 1979.

{13) T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing
System: The Programmer's Workbench," Bell System Technical J.,
Vol. 57, No. 6, Oct. 1978, pp. 2177-2200.

{14) J. R. Mashey, "Using a Command Language as a High-Level
Programming Language," Proc. 2nd Int'l Conf. Software Eng., Oct.
1976, pp. 169-176.

{15) T. A. Dolotta and J. R. Mashey, "Using a Command Language as
the Primary Programming Tool," in Command Language Directions:
Proc. 79 IFIP Working Conf. Command Languages, D. Beech, ed.,
North-Holland, Amsterdam, The Netherlands, 1980.

{16) D. M. Harland, "High Speed Data Acquisition:Running a Realtime
Process and a Time-Shared System (UNIX) Concurrently," Software­
Practice & Experience, Vol. 10, No. 4, April 1980.

{17) D. M. Ritchie, "The Evolution of the UNIX Time-Sharing System,"
Proc. Symp. Language Design and Programming Methodology,
Sidney, Australia, 1979.

{18) E. Yourdon and L. L. Constantine, Structured Design, Yourdon Press,
London, 1975.

{19) M.A. Jackson, Principles of Program Design, Academic Press, London,
1975.

{20) F. T. Baker, "Structured Programming in the Production
Programming Environment," Proc. Int'l Conf. Reliable Software,
1975, pp. 172-185.

{21) M. J. Rochkind, "The Source Code Control System," IEEE Trans.
Software Eng., Vol. SE-1, No. 4, Dec. 1975, pp. 364-370.

{22) A. L. Glasser, "The Evolution of a Source Code Control System,"
SICSOFT, Vol. 3, No. 5, Nov. 1978, pp. 121-125.

{23) S. I. Fieldman, "MAKE-A Program for Maintaining Computer
Programs," UNIX Programmer's Manual, Vol. 9, Apr. 1979, pp. 255-
265.

{24) D. J. Pearson, "The Use and Abuse of a Software Engineering System,"
AFIPS Conf. Proc., 1979 NCC, pp. 1029-1035.

{25) D. Teichroew and E. A. Hershey III, "PLS/PSA: A Computer-Aided

286 Appendix D

Technique for Structured Documentation and Analysis of Information

Processing Systems," IEEE Trans. Software Eng., Vol. SE-3, No. 1,

Jan. 1977, pp. 42-48.

(26) W. Teitelman, INTERLISP Reference Manual, Xerox Corp. Palo Alto

Research Center, Palo Alto, Calif., Dec. 1978.

(27) W. Teitelman, "A Display Oriented Programmer's Assistant," CSL 77-

3, Xerox Corp. Palo Alto Research Center, Palo Alto, Calif., Mar.

1977.

(28) A. Kay and A. Goldberg, "Personal Dynamic Media," Computer, Mar.

1977, pp. 31-41.

(29) B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley,

Reading, Mass., 1976.

(30) D. E. Hall, D. K. Scherrer, and J. S. Sventek, "A Virtual Operating

System," Comm. ACM, Vol. 23, No. 9, Sept. 1980, pp. 495-502.

(31) C. R. Snow, "The Software Tools Project," Software-Practice &

Experience, Vol. 8, No. 5, Sept.-Oct. 1978.

(32) P. H. Enslow, Jr., Portability of Large Cobol Programs: The Cobol

Programmer's Workbench, Geo~gia Institute of Technology, Atlanta,

Ga., Sept. 1979.

(33) J. P. L. Woodward, "Applications for Multilevel Secure Operating

Systems," AFIPS Conf. Proc., 1979 NCC, June 1979, pp. 319-328.

(34) G. J. Popek et al., "UCLA Secure UNIX," AFIPS Conf. Proc., 1979

NCC, June 1979, pp. 355-364.

(35) E. J. McCauley and P. J. Drongowski, "KSOS-The Design of a Secure

Operating System," AFIPS Conf. Proc., 1979 NCC, June 1979, pp.

345-353.

(36) E. J. McCauley, G. L. Barksdale, and J. Holden, "Software

Development Using a Development Support Machine," ADA

Environment Workshop, DoD High Order Language Working Group,

Nov. 1979, pp. 1-9.

(37) M. Risenberg, "Software Costs Can Be Tamed, Developers Told,"

Computerworld, Jan. 29, 1980, pp. 1-8.

(38) J. E. Stockenberg and D. Taffs, "Software Test Bed Support

Under PWB/UNIX," ADA Environment Workshop, DoD High Order

References 287

Language Working Group, Nov. 1979, pp. 10-26.

(39) R. A. Allshouse, D. T. McClellan, E.G. Prine and C. P. Rolla, "CSDP
as an ADA Environment," ADA Environment Workshop, DoD High
Order Language Working Group, No. 1979, pp. 113-125.

(40) P. Wegner, "The ADA Language and Environment," Proc. Electro/80,
Western Periodicals Co., North Hollywood, Calif., May 1980.

(41) R. A. Robinson and E. A. Krzysiak, "An Integrated Support Software
Network Using NSW Technology," AFIPS Conf. Proc., 1980 NCC,
May 1980, pp. 671-676.

(42) A. B. Barak and A. Shapir, "UNIX with Satellite Processors,"
Software-Practice & Experience, Vol. 10, No. 5, May 1980.

(43) P .Brin ch Hansen, "Sructured multiprogramming," Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1978.

(44) H. Lycklama and C. Christensen, "A minicomputer satellite processor
system," The Bell System Tech. Journal, 57, 6, part 2, 2103-2113
(1978)

(45) K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, 6th
edn., Bell Telephone Lab., Murray Hill, N. J., 1975.

(46) J. Lions, "The UNIX Operating System," Commentary, Bell Telephone
Laboratories, Murray Hill, N. J., 1977.

(47) W. N. Joy, S. L. graham and C. B. Haley, "UNIX Pascal User's
Manual," Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1977.

(48) J. Larmouth, "Scheduling for a share of the machine," Software­
Practice and Experience, 5, 29-49 (197 4).

(49) J. Lions, "An operation system case study," Operating Systems
Review, 12, No. 3, 46-53 (1978).

288 Appendix E

APPENDIX E

a 13-14.

ac 212.

accounting 190, 212.

add 16.

append 13-14.

ar 84-89.

archive 84.

archive files 84.

argument 7, 183-184, 218.

audit trail 190, 212.

background 75, 99.

background process 75, 99-100.

backspace 188.

backup copies 234.

basic check programs 227-228.

block 65, 83, 171, 209, 241.

block or character type 81.

booting 205.

build special files 248-250.

c 22-23.

cal 173-175.

calendar 173.

carriage return key 4, 11.

cat 64-67.

change.

- directory 51-53.

- group 93-94, 195.

- mode 89-92, 197.

- ownership 92-93, 195.

chgrp 93-94.

chmod 89-92, 183.

clear i-nodes 232.

clri 232, 245, 246.

cmp 77, 78, 237.

column 72.

comm 116-119.

command 7, 8.

- - editor(ed) 11.

- . 25, 29.

- / ... / search 29, 30.

Index 289

- a append 13, 14. - cp 67-69.

- c replace 22, 23. - date 159-161.

- i insert 20, 21. - dcheck 239-242.

- 1 list 38, 39. - dd 119-122.

- m move 33, 34. - df 171-172.

- p print 14, 15, 17, 27, 28. - diff 122-125.

- q quit 15, 16. - diff.3 125-127.

- r read 36, 37. - du 168-171.

- s substitute 23, 26, 30, 31. - dump 260-262.

- u undo 37, 38. - echo 148-150.

- w write 15, 17, 34-36. - file 172-173.

- x conditional substitute 30. - find 71-84.

- - UNIX. - grep 128-131.

- ar 84-89. - icheck 241-243.

- cal 173-175. - kill 150-151.

- cat 64-67. - lpr 75, 76.

- cd 51-53. - ls 156-159.

- chgrp 93, 94. - mail 106-110.

- chmod 89-92. - mesg 114, 115.

- chown 92, 93. - mkdir 54, 55.

- clri 245, 246. - mkfs 226.

- cmp 77, 78. - mknod 248-250.

- comm 116, 119. - mount 251, 252.

290

- mv 69, 71.

- ncheck 225, 244.

- nice 153, 154.

- od 131-134.

- passwd 4-6.

- pr 71, 74.

- ps 164-168.

- pwd 49, 50, 163.

- ranlib 134, 135.

- restor 227, 262-264.

- rm 58, 59, 78-80.

- rmdir 56-57.

- sleep 152, 153.

- sort 143-146.

- split 141-143.

- stty 176-179.

- SU 192, 253, 254.

- sync 255, 256.

- tabs 179, 180.

- tar 256-260.

- tee 154, 155.

- tty 162, 163.

- umount 252.

Appendix E

- uniq 137-141.

- wall 110-111.

- WC 135-137.

- who 161, 162.

- write 111-114.

command language 181.

communications 111.

compare 77.

computer 198.

concatenation 64.

configuration 235.

construct a file system 236.

contents 156-159.

control "d" 8, 9, 192, 209, 254.

convert 119.

copy 67-69.

cp 67-69.

create 11.

creating directory 54, 55.

current status 164-168.

daemons 204, 214.

date 159-161.

dcheck 206, 228.

dcheck output 207, 239-242.

dd 119-122.

delay 152, 153.

delete text 21, 22, 28, 29.

deleting directory 56, 57.

deny 54.

dev 225.

df 171, 172, 209.

diff 122-125.

diff.3 125-127.

difference 122-127.

directory 46.

- change 186.

- consistency check 207.

- delete 54.

- destruction 234.

- root 79, 221.

- user root 79.

disk.

- free space 171, 209.

- integrity 210, 239.

- space 171, 172.

- summarize usage 206, 210.

Index

dismount a file system 223.

du 168-171, 210.

291

dump 223-225, 260-262.

dump/restore programs 227, 260.

echo 148-150.

ed 11.

editor 11.

entries 231, 240, 246.

errors 207, 265-268.

execute permission 60, 61.

exit 8, 9.

extract 256-260.

file.

- archive 84-89.

- command 172, 173.

- convert 119-122.

- copy 67-69.

- destruction 227, 232.

- integrity check 206, 239, 241.

- locked 214.

- merge 143-146.

- name 12, 16.

- ownership 92, 93, 195.

292

- read 36, 37.

- restore 262, 264.

- sort 116.

- special 46, 222.

- system 46.

- text 11.

- type 172.

- write 34-36.

file system.

- administrator 190.

- construction 226.

- dismount 223.

- hierarchical 46.

- incremental dump 260.

- incremental restore 262.

- mount 222.

- repairing 227.

filter 101, 102.

find 81-84, 210.

free space 209, 242.

free-list errors 207, 229, 243.

from/to range 29.

grep 128-131.

Appendix E

grep patterns 129.

group 93, 94.

group ID 157.

hardware 198, 201.

hardware failure 198, 200.

header data 72.

hidden characters 39, 131, 132.

hierarchical file 46.

i 20, 21.

i-node number 221, 246.

i-nodes 221, 230, 245.

icheck 206, 228, 241-243.

icheck output 206, 229.

incremental dump 260.

incremental file system dump 260.

incremental file system restore 262.

input/output redirection 97-99.

- < 97, 98.

- << 97.

- > 97, 98.

- >> 97, 99.

insert text 20, 21.

invisible character 36 (see hidden char

).

invoke 12.

kill 150, 152, 204.

1 38, 39.

legal group 94.

library 86.

line 38.

line numbers 26, 27.

line spooler 75.

linkcount 81, 231, 240, 246.

list 38, 39, 56, 159.

list contents 38, 39.

locate text 18-20.

lock 214.

locked files 214.

log out 8.

login 3, 4.

login name 4.

long listing 156-159.

low priority 153, 154.

Index

low scheduling priority 153, 154.

lower case 120, 121, 143, 177.

lpd 214.

lpr 75, 76, 214.

ls 156-159.

m 33, 34.

mail 106-110.

mailbox 107.

mainframe 198.

major/minor numbers 248.

merge files 144.

mesg 114, 115.

message 109, 114.

message-of-the-day 203.208.

metacharacters 39-43.

- - editor.

- . 25, 39, 40.

- * 25, 41.

- [] 25, 41.

- & 24, 42.

- $24, 25, 42, 43.

- \25.

- ? 12, 20.

- -25, 42, 43.

- - UNIX.

- * 80, 102, 104, 129.

293

294

- ? 4, 103, 104, 129.

- < 97, 98, 104.

- > 97, 98, 104.

- \.

-& .

mkdir 54, 55.

mkfs 236, 247, 248.

mknod 248-250.

mount 222, 237, 251.

mount a file system 222, 237.

move text 33, 34, 69-71.

multi-user 208.

mv 69-71.

ncheck 225, 244.

newline 134, 135.

nice 153, 154.

octal 78, 131.

octal mode 78.

octal representation 78.

od 131-134.

offiine 199.

online 199.

order 143.

Appendix E

ordering rules 143.

ordinary file 46.

owner ID 157.

p 14, 15.

parity 176, 177.

passwd 5, 6.

password 4, 6.

path 53, 188.

pathname 48, 163.

pattern 129.

permission 54, 59-62, 79, 160, 196.

- execute 60, 61.

- read 60, 61.

- write 60, 61.

pipe 100.

pr 71-74.

print 14, 15, 27, 28, 71-74.

process 150, 151, 211.

- background 97.

- id 165.

- multiple 211.

- status 165.

- table 211.

programming language 181.

prompt sign 3, 16, 66.

protocol 112, 113.

ps 164-168, 211.

pwd 49, 50, 163.

q 15-16.

quit 8, 9, 15.

range 31.

ranlib 134, 135.

raw I/ 0 176, 260.

read file 36, 37.

read permission 60, 61.

reboot 228.

receiving mail 108-110.

redirect 97.

reject lines 56, 78-80.

remove 56, 78-80.

remove directory 56-59.

Index

repairing damaged file system 227.

repeated lines 30.

replace text 32.

restor 225, 236, 262-264.

return 4, 11.

return key 4, 11.

reverse order 143, 156.

rewind 201.

ribbon 200.

rm 58, 59, 78-80.

rmdir 56, 57.

root 46, 190.

root directory 46, 54.

run commands 181.

s 23, 26.

save 15, 17, 34-36.

search 29, 30, 71, 128, 196.

select 29, 30.

select lines 29.

sending mail 107.

set-uid bit 89, 92, 93, 196.

setting tabs 179.

setting terminal 162.

shell arguments 183, 184, 218.

shell files 181-183, 217.

shell procedure 181, 217, 218.

shell programs 181, 217.

short listing 156.

295

[296 I

shutdown 203.

single-user mode 203.

skip text 26, 29.

sleep 152, 153.

sort 143-146.

sort files 143.

special character 39-43.

speed 176, 198, 200.

split 141-143.

spooler 75.

spooling 75, 150, 214.

standard input/output 97.

standard output 7 4, 143.

stop the system 202.

storage 209, 210.

storage consistency check 207.

string pattern 128.

stty 176-179.

SU 190, 192, 253.

subdirectory 47.

substitute 23, 26, 30, 31.

summarize disk usage 168, 241.

super block 220.

Appendix E

superuser 191, 192, 203.

sync 204, 237, 255, 256.

system administrator 4, 190.

tabs 179, 180.

take-up reel 200.

tape archiver 84.

tape drive 200.

tape dumps 256, 260.

tar 256-260.

tee 154, 155.

terminal 199.

terminal information 199.

terminate a process 150.

text file 11.

u 37, 38.

umount 223, 252.

undo 37, 38.

uniq 137-141.

upper case 120, 121, 143, 176.

variables 186.

w 15, 34, 36.

wall 110, 111, 209.

WC 135-137.

who 161, 162.

who am i 162.

word count 135.

write 111-114.

$3, 16, 24, 25, 191, 253.

* 25, 80, 102, 104.

+n 20, 28.

-n 20, 28 .

. 25 .

. = 26, 27.

I 23, 48, 49.

/bin 193.

/etc/cron 212, 213.

/etc/motd 203, 208.

/etc/passwd 193, 194.

/etc/re 212, 213, 251.

/etc/ttys 212, 213.

/usr/bin 192.

/usr/lpd 214.

< 97' 98, 104.

<< 97.

> 97' 98, 104.

>> 97, 99.

Index 297

? 4, 20, 103, 104.

Asen 11, 119, 120, 131, 143.

DEVICE 119, 120.

EBCDIC 119, 120.

#8, 178, 191, 253.

& 99, 100, 104.

08, 178.

