
S/36 POWER TOOLS 

TIPS AND TECHNIQUES FROM NEWS 3X/400 

Edited by Chuck Lundgren 

A Division of 
DUKE COMMUNICATIONS INTERNATIONAL 

Loveland, Colorado 



,<1'-

Copyright ©1991 by DUKE PRESS 

DUK. COMMUNICATIONS INTERNATIONAL 
Loveland, Colorado 

All rights reserved. No part of this book may be reproduced in any form by 
any electronic or mechanical means (including photocopying, recording, or 
information storage and retrieval) without permission in writing from the 
publisher. 

It is the reader's responsibility to ensure procedures and techniques used 
from this book are accurate and appropriate for the user's installation. No 
warranty is implied or expressed. 

This book was printed and bound in the United States of America. 
First Edition: February 1991 
Third Printing: January 1992 

ISBN 0·9628743·0-2 



About This Book 

What to Do First 
To receive updates for this book, along with notices of future products for 
the S/36 from Duke Communications, please fill out the registration card in 
the back of this book and mail it to: 

S/36 Power Tools 
Duke Communications International 
PO Box 3438 
Loveland, Colorado 80539 USA 

What This Book Is 
This book is a collection of the best tools, tips, and techniques published in 
the past five years in NEWS/34-38 (pre-August 1988) and NEWS 3X/400 
(August 1988 to October 1990). This collection appeared as articles, 
Programs of the Month, BitStops, and Technical Corner questions and 
answers. You'll find more than 280 programs and procedures here, 
including 28 assembler subroutines. 

How This Book Is Arranged 
I have arranged chapters alphabetically by function group and clustered 
similar material within each chapter. 

A cross-reference of articles and programs and procedures appears in 
Appendix A. The cross-reference also includes a short description of each 
program and procedure. 

Some Caveats 
Please exercise the same caution when using the procedures and programs 
published in this book as you would with any new routines: back up your 
files before using a new procedure or program with the files or when 



iv 

making significant changes (0 your files, and test all programs and proced
ures before placing them into production. 

It is your responsibility (0 ensure the procedures, programs, and tech
niques used in this book are accurate and appropriate for your installation. 
No warranty is implied or expressed. 

If You Encounter Problems 
Every effort has been made (0 ensure that the programs work as the 
original author intended, but as with all software, there may be some 
anomalies (a.k.a. bugs). If you encounter problems, you can contact the 
editor in several ways: 

(1) Mail a description of the problem to Duke Communications at the 
above address, or fax it to (303) 667-2321. 

(2) Leave a message in the S/36 Message Base on Newslink, Duke 
Communications' electronic bulletin board system. For information on 
how (0 subscribe (0 Newslink, call (800) 373-3853 (U.S.), (800) 621-1544 
(Canada), (303) 663-4700 (Colorado), or 061-976-3376 (England). 
Fax (303) 667-2321, or write: 

Newslink 
PO Box 3438 
Loveland, CO 80539 USA 

How Did We Do? 
We would appreciate any feedback you have on how useful this book was 
for you. Assuming the S/36 is around a few more years (and we have no 
doubts that it will be), we anticipate publishing a second volume of S/36 
Power Tools. Your feedback will enable us (0 select material for that book. 

How Are You Doing It BeHar? 
If you have improved the techniques or programs published in this book, or 
if you have created new programs that you wish (0 share with the S/36 
programming community, please write and tell us. We are always looking 
for new material for Programs of the Month, Technical Corner, and feature 
articles. If you just want (0 send us code but don't want (0 write the article 
describing it, that's okay too. If you send us the code and we accept it, we'll 
take care of the rest. 

Interested? Send your program, an article outline, or just a query letter to: 

Articles Manager 
NEWS3X/400 
PO Box 3438 
Loveland, CO 80539 USA 



Acknowledgments 

Although the cover names only one editor, actually several people wore the 
editor's hat. Foremost is Kathy Nelson, who not only edited and checked 
each published item for consistency, correctness, and clarity, but also 
managed the entire book project. Without her dedication, fortitude, 
editorial skill, creative input, and occasional harassment, this book would 
not exist. 

Mel Beckman and Gary Kratzer provided invaluable editing and code 
testing for several chapters. Mel also made many suggestions that sped up 
and simplified the editing process. Gary and Mike Patton sifted through 
the material and helped determine what material constituted "best" as 
compared to "just okay." If any material in this book is somehow less than 
best, they are not to blame - the fault is mine. 

The dirty jobs of digging through the diskette archives for published 
articles and retyping BitStop or Technical Corner pieces that had been lost 
and not found - as well as copying, collating, Fed Ex'ing, and Emailing
were done by the tireless Trish Frease. 

Kent Rickard assembled the artwork from the previously published 
material. 

Proofreading was done by Connie Bernard, Marie Stoupa, Nancy Arndt, 
John Ghrist, and Dave Bernard. 

The cover concept and book design are by Steve Adams. The cover was 
illustrated by Bob Martin. 

The layout was done by Kay Marquardt on her brand new Macintosh 
IIci, using Quark Xpress 3.0. 

Jan Mason worked closely with the printer in scheduling and printing 
the book. 

The book concept was Ronnie Patterson's, who also pushed for its 
production early on. 

The authors of all the articles, Programs of the Month, BitStops, and 
Technical Corner pieces reprinted in this book are, in alphabetical order: 
Garry Abbott, Charles Ackerman, Noaman Afzal, Georgia Agallianos, Mark 
Allen, David Andrews, Ed Antus, George Applegate, Chuck Balsly, Robert 
Barber, Alex Barish, Charles Barnard, Gary Barrett, Mel Beckman, Martin 
Bell, George Biernadski, John Blum, Brian Blume, Mark E. Bonney, Don 
Bower, John B. Bowers, John Cirocco, Jeff Cole, Richard Comstock, Wells 



vi 

Cooner, Steve Cranmer, H. C. Currie, B. Booth Deakins, Ray W. DeMers, 
William H. Dixon, Marcia Dore, Matt Drage, Ron Elliott, Teresa Elms, 
Eric S. Feinstein, John Field, Lou Forlini, Larry N. Forrister, Bob French, 
Ed Froste, John Fruetel, Perry Gardai, Tim Gardner, John Gioannetti, Ed 
Girou, Rick Graham, Richard Green, Robert Griffiths, Hermann Rivilla 
Gutierrez, Tim Hack, James H. Hamby, James Harr, E.R. Helmus, 
Lisa Hendricks, Matthew Henry, Bruce Hobbs, Ted Holt, Manuel 
Humberto, Michael Ingram, Jerry Inhoff, Sven Johnson, Deborah A. 
Kacerek, Debra Kahn, Gerry Karpen, John E. King, Simon Kitchen-Dunn, 
Barry W. Knapp, Paul Koeller, Rick Koenig, Donald]. Kott, Gary T. 
Kratzer, Rebecca Langren, Mark Lazarus, Darryn Lee, Steve Leichman, 
Alvaro de Leon, Joe Madeiros, Michael K. Maenhout, Ernie Malaga, Sarah 
E. McBride, Tom McLendon, Ron Mendel, George A. Meyer, Paul 
Michels, Judy Miller, Anthony Mossbarger, Ray Mueller, Bret B. Myrick, 
Sr., Abraham Notik, Michael Otey, Mike Patton, Jeffrey Pisarczyk, 
Timothy J. Plas, Paul Podlipny, Robert Puhalla, Heather G. Quinn, 
Michael J. Ranks, Esteban Riviera, Jorge Rodriquez, Bill Roehmer, 
Anthony Romo, Mark Rubinstein, Dennis Ruud, David C. Schlosser, 
Edward Schroeck, Bob Schuette, Carl W. Selley, Paul Sherrill, Nasser 
Shukayr, Warren Preston Sights III, Jeff Silden, Ken Sims, Bob Skowron, 
Grace E. Sogomian, Carson Soule, Rick Stanley, Dan Stephens, Chris 
Stevenson, Bruce Stradling, Thomas Straitwell, William Strejc, Burt Swan, 
Robin Tan, Bob Tipton, Ray Trimber, Victor J. Vergata, Nancy R. 
Vogelsang, Dale S. Walker, John W. Warns, Roger Washburn, Elliot 
Weinshenker, and Tammy A. Zitzmann. 

I am very grateful for the efforts of all these people. 

Chuck Lundgren 
Chico, California 



Table of Contents 


Chapter 1 Backup and Restore 
2 Saving and Restoring Files with Alternate Indexes 


2 Restoring File Groups 


• 3 Restoring a File to Disk Using a New Name 


• 6 Saving All User Libraries 

12 Saving #LIBRARY to Tape 

• 12 Finding the Number of Active Jobs 

14 Backing Up at Night or in the Morning 

14 The Order in Which Files Are Saved to Tape 

15 SAVE/COMPRESS Algorithm 

16 Diskette and Tape Capacities 

Chapter 2 Communications 
Transferring Files and Library Members via FTS• 20• 29 Transmitting S/36 Object Code 

40 Transmitting 256-Byte Records with MSRJE 

41 Using Screen Formats in ICF Programs 

41 Suppressing Autodial Console Messages 

42 Terminating BSC Jobs Automatically 

42 VARYing Off Remote Devices on a Single Line 

43 Transmitting Orders from PCs to the S/36 

44 Communicating with a PC Several Blocks Away 

44 Communicating with PCs via the 5208 and DIAL/3X 

45 Transferring Files Between PCs and the S/36 via Asynchronous 
Communications 

45 Correcting DFU Zone Conversions When Using Display Station 
Passthrough 

46 Adding an Inexpensive Asynchronous Modem to a 5363 

46 Adding More Than 64 Remote Workstations 

47 Maximum Data Rates for S/36 Communications Adapters 

48 Improving Response Time in a Multipoint Communications Network 

• = Code on diskette 



viii 

Chapter 3 Data Conversion, Edits, 

and Validation 

Converting 24-Hour to 12-Hour Time, Part 1 • 	 52 
Converting 24-Hour to 12-Hour Time, Part 2 
• 	 53 
Converting 24-Hour to 12-Hour Time, Part 3 
• 	 53 
Converting and Editing 24-Hour to 12-Hour Time in OCL
• 	 54 
Validating Days in Dates in OCL
• 	 55 
Testing for Numeric Values, Part 1 
• 	 56 
Testing for Numeric Values, Part 2 
• 	 57 
Converting Gregorian and Julian Dates and Validating Dates 
• 	 58 
Formatting Left-Hand Negative Signs 
• 	 59 

60 Overriding RPG's Date Edit Code 

61 	 Converting Date Format from MMDDYY to YYMMDD in OCL 

61 	 Formatting Dates 

Computing Day of the Week in OCL
• 	 62 
Computing Day of the Week in RPG 
• 	 62 
Editing Fields Using O-Spec Edit Codes 

• 	 64 
 Centering a String 
• 	 66 
Justifying, Centering, and Converting Lowercase and Uppercase Strings 
• 	 67 

Chapter 4 DFU, SDA, and SEU 
Preventing Member Naming Conflicts 
• 	 72 

74 Printing Multiple Copies ofDFU Reports 

74 	 Printing DFU Reports at 15 CPI 


Changing Only Command Text in Menus 
• 	 75 

Chapter 5 DiskeHes 
• 	 78 ~eading and Writing Diskettes from RPG 

89 Retrieving Deleted Diskette Files 

103 	 Repairing Damaged Diskettes 


Retrieving Diskette Available Space and Volume ID
• 104 
lOS 	 Converting 8-Inch to 5 1/4-Inch Diskettes 



ix 

Chapter 6 DisplayWrite 
108 	 Merging Data with DispiayWrite/36 Documents 

Merging Printed Output with DispiayWrite/36 Documents • 	 121 
132 Integrating Application Programs and DispiayWrite/36 

Assigning #LIBRARY as DispiayWrite/36 Default Library • 	 141 
142 Accessing PC DispiayWrite/3 Documents from DispiayWrite/36 

Chapter 7 Documentation 
Cross-Referencing Files, Programs, and Procedures • 	 144 
Cross-Referencing Queries • 	 159 
Documenting RPG Program LOA Usage • 	 169 

• 	 176 Documenting RPG Structured Opcodes 

• 	 183 Detecting Duplicate or Outdated Members in Two Libraries 

• 	 191 Saving Print Screens as Source Members 

Chapter 8 Files 
• 194 
.205 
.208 

• 	 214 
215 
216 
216 
217 
218 
218 
219 
220 
221 
221 
221 

• 	 222 
• 	 223 

224 
224 
225 

Accessing Files Dynamically from RPG 

Retrieving a File's Users 

Displaying Record Locks 

Finding the Last Record Number in a File 

Counting Records with Same Partial Keys in Indexed Files 

Reducing Sort Work File Size 

Allocating Sort Output Files 

Performance Differences Between SORTA and SORTR 

Using #GSORT vs. Alternate Indexes 

File Output Using DISP-OLD 

File Extends Explained 

File Extends and EDF-Wait 

Reducing File Extends 

Calculating File Extend Values 

Resizing Files 

Clearing Test Files 

Creating Empty Test Files 

Dump Files Explained 

Calculating Indexed File Size 

Processing Indexed Files vs. Sequential Files with Alternate Indexes 



x 

225 	 Processing Large Indexed Files 

.227 Keeping Large Indexed Files Open 

232 Processing Alternate Indexes in COBOL 

233 Keysorting During IPL 
233 Blocking Records 

Running a Dedicated COPYDATA • 235 
.236 Reorganizing Files Automatically 

Making a File Delete-Capable • 	 241 
.242 Deleting Multiple Files 

.243 Saving History Files 

Chapter 9 Folders 
.246 Maintaining Folders Automatically 

253 Reducing Folder Size 

Chapter 10 IDDU and Query/36 
.256 Printing an Enhanced Query Report Header Page 

257 Running Query/36 on the Job Queue 

257 Deleting and Creating Files from Query/36 

258 Converting Date Formats in Query/36, Part 1 

258 Converting Date Formats in Query/36, Part 2 

258 Creating RPG F-, 1-, and O-Specs from IDDU with Query/36 

.259 Creating RPG F- and I-Specs from IDDU 

268 Creating IDDU File Definitions 

268 Defining S/36 Filler Fields 

269 Updating IDDU Definitions 

Chapter 11 Libraries 
• 272 	 Retrieving a Library's Users 

275 	 Testing for Library Existence 


Retrieving Library Directory Information 
• 275 
.282 Listing Members Created or Modified Within Given Date Range 

.285 Retrieving Source and Procedure Members from a Library 

.290 	 Retrieving Program Source 

Writing Source and Procedure Members to a Library • 	 291 
297 Undeleting a Library Member 



xi 

.300 	 Re-creating Source from Message and Menu Object Members 

306 Re-creating Source from Format, Menu, and Message Object Members 

.307 Setting Library Member Attributes 

321 Keeping Help Text in Source Members 

.322 Unlocking a BASIC Source Program 

.323 Adding Members to and Compressing #LIBRARY 

323 Resizing #LIBRARY 


324 Removing PTF Libraries 


Chapter 12 MAPICS 
326 Reducing Time and Diskettes for MAPICS SAVE 

.326 Deleting MAPICS Backup Diskettes 

.327 Reorganizing MAPICS Files That Use Alternate Indexes 

337 Canceling MAPICS' AMZOO Job Automatically 

337 Using Autoresponse When Condensing AMALIB 

Chapter 13 Performance 
.340 	 Managing S/36 Performance - Part 1. A Perspective . 

• 	 353 Managing S/36 Performance - Part 2. A Streamlined Approach to S/36 
Disk Management 

• 	 366 Managing S/36 Performance - Part 3. Improving Performance 
by Merging Memory 

• 376 	 Evaluating Cache Performance with SMF 

• 385 	 Monitoring Realtime Memory Usage 

Chapter 14 POP 
.392 Retrieving Library and Member Information in POP 

.410 Editing in Two FSEDIT Sessions 

.411 Emulating RPGONL and COBOLONL in POP 

.412 Removing Diagnostics from RPG Programs 

Blanking Out Columns 1-5 and 75-80 in RPG Source with POP • 	 413 
Positioning LIBR to a Given Member• 415 

.415 Transmitting Library Members via ODF/36 and POP 

.430 Putting a Job on the Job Queue from POP 

.431 	 Evoking a Job from POP 

431 Improving POP's File Copy 



xii 

.432 

.434 

.446 
447 

.448 

.448 

.449 

Renaming Single Files in POP 

Renaming and Copying Multiple Files in POP 

Improving POP's File Delete 

Improving File and Library Save in POP 

Restricting POP's File Display with a File Mask 

Browsing Spool Files with POP 

Improving and Adding Operations in POP 

Chapter 15 Printers 

• 	 454 
.456 

458 
459 
459 
460 
460 
461 

• 	 462 
479 
480 

.480 
482 

• 	 482 
483 
483 
484 

• 	 485 
487 
488 
489 
490 
490 
490 

• 	 491 

Opening and Closing Printer Files in RPG 

Retrieving the Spool 10 

Resetting Page Numbers 

Numbering Pages 

Forcing Printer Overflow 

Printing Boldface 

Printing Report Lines Using Arrays 

Printing Lines and Dashes 

Printing a Sample Report from O-Specs 

Printing Tips for Hold, Halt, and Align 

Controlling the Spool File with OCL 

Prompting for Report Parameters 

Changing LPI, CPI, and LPP After Reports Are Created 

Changing CPI After a Report Is Created 

Setting CPI and FONT for a Printer File 

Processing COPYPRT Files from a Program 

Suppressing PRINT Key Output 

Resetting Forms Types for Printing After IPL 

Automatically Responding to SYS-6300 Message 

Executing Spool Commands During High System Usage 

Operation of the Spool File Interlock 

Explanation of Spool File Size and Extents 

Printing on a Remote Printer 

Transferring a Spool File Between a S/36 and an AS/400 

Programming with IPDS 



xiii 

Chapter 16 Programming 

506 Debugging RPG Program Dump Files 


516 Debugging RPG Programs Using Conditional DEBUG 


517 Debugging RPG Programs Using DEBUG Files 


Profiling an RPG Program • 517 
Naming the Compile Listing with the Program Name• 531 

.532 Using Indicators Properly in RPG Programs 

541 Saving and Restoring Indicators, Part 1 

542 Saving and Restoring Indicators, Part 2 


543 Reversing the Value of an Indicator of an Unknown Status 


544 Checking an Indicator in an IF Statement 


544 Nesting IF Statements 


.546 Printing Action Diagrams for Structured Verbs 

552 Overhead in External Program Calls 

552 Using External Program Calls in COBOL/36 

.553 Using ICF-INTRA to Implement External Program Calls 

.564 Using Dynamically Privileged RPG Subroutines 

.566 Using RPG Assembly Language Subroutines in COBOL Programs 

.570 Retrieving the DTF Control Block in COBOL Programs 

Searching for Strings • 571 
.574 Generating Random Numbers 

.579 Sorting Packed Dates in Files 

Processing DUP Keys in RPG • 581 
.582 Redisplaying User Procedure Parameters with the DUP Key 

.586 Running Procedures in Parallel 

587 Explanation of SUBR95 

588 Flagging NEPs to Go to End-of-Job 

589 Setting "Log OCL" Procedure Attributes 

589 SSP Procedure Messages 

590 Displaying Error Messages Without Message Members 


590 Using SSP's ERR Procedure to Display User Messages 




xiv 

Chapter 17 Security 

594 Using S/36 Security 

.605 Preventing a User from Signing On to Multiple Workstations 

608 Sending Secured Objects to Remote S/36s 

609 	 Preventing Deletion of Files or Libraries with Security 

609 	 Signing On When the Default User Library and Menu Have Been 
Deleted 

Chapter 1 8 System 
• 	 612 

• 625 
643 

.643 
650 
651 

• 	 651 
652 

• 	 653 
• 	 655 
• 658 
.659 

660 
661 

.662 

.666 
667 

.668 
669 

• 	 670 
• 670 
.671 

673 

• 	 673 
674 

Displaying the VTOC Graphically 

Displaying Free Disk Space 

Differences Between Actual Disk Space and CATALOG Listing 

Retrieving a File's or Library's Users 

Explanation of the Job Queue 

Manipulating the Job Queue 

Executing an OCL Statement on the Job Queue 

Changing Procedures Already Enqueued on the Job Queue 

Displaying and Updating of the LDA and UPS I Switches 

Saving and Restoring the LDA and UPSI Switches 

Granting Console Capability to Any Workstation 

Running CACHE from Other Than the System Console 

Explanation of Task Work Area (#SYSTASK File) 

Explanation of SMF's Swap-in Counter 

Improving on the DATAFl Conditional Statement 

Sending a Message to the Console 

Creating Console Messages That Survive an IPL 

Outputting to SYSLIST Device 

Using Autoresponse for Specific Messages 

Displaying System Error Message Text 

Retrieving the CPU Serial Number 

Determining the System Date Format 

Retrieving the System Date in a Procedure 

Resetting the System Time Without IPL 

Changing Session Dates When System Date Was Changed Without 
IPLing 



xv 

675 Necessity of IPLs 


676 Running PTF Procedure LDMARES 


677 Upgrading to a New S/36 


Chapter 19 Tapes 
680 Deciphering the Tape Header Label Format 

680 Reading Tapes with Nonstandard or Missing Labels 

Preventing Tape Rewind When Saving Individual Items • 	 681 
681 IPLing from Tape 

Chapter 20 Workstations 
Retrieving Cursor Position in Demand or Primary Workstation Files • 	 684 
Reading Screen When Roll Key Pressed • 	 685 
Enabling Function and Command Keys Dynamically • 	 686 
Reading Under Format • 	 688 
Creating Externally Described Workstation Files • 	 696 
Creating S/36 Help Screens on a PC • 	 708 
Customizing Screen Attributes in Menus • 	 715 
Changing the Console Screen Format • 	 719 

721 Using 5250 Terminals in Data Mode 

722 Canceling Continuously Updating, Display-Only Programs 

722 Clearing the Last Screen Format When Using $$TIMER 

723 Diacritic Mode Explained 

724 Entering Special Characters on a Workstation 

724 Differences Between 5251 and 5291 Character Sets 

725 Toggling Cursor Sizes on 5291 and 5292 Workstations 


725 Fixing a 3197-0 ROM Bug 


727 Appendix A 


739 Index 






Backup and 

Restore 


-CHAPTER 

1 



2 S/36 Power Tools 

Saving and Restoring Files with Alternate Indexes 
anSYa'ered by Mel Beckman 

QAs a consultant, I work on a wide range of customer sites, each with its 
own unique set of files. My problem is that I often must restore, from 

tape or diskette, an indexed file for which there are many alternate indexes. 
Sometimes the customers have saved the alternate indexes along with the 
file, but even in these situations, I frequently need to restore a file that now 
has more alternate indexes than it did when originally saved. Is there a way 
to rebuild all the alternate indexes after I restore the backup - without 
writing down the key values for each alternate index? 

AA little-known fact about alternate indexes is that, when they are backed 
up to tape or diskette, only the key position and length information are 

saved; the index itself is not. When the alternate index is restored, SSP 
simply performs a BLOINOEX to re-create the index, using the parent file 
name associated with the index when it was originally saved. Thus, rather 
than restoring alternate indexes that may have been saved with the original 
file (and which won't include alternate indexes created subsequently), you 
should save the existing alternate indexes on a separate diskette. 

Restoring File Groups 
by Carl W. Selley 

Because only the key reconstruction information is saved, alternate indexes 
take up practically no room on the diskette. (You can save up to 70 alternate 
indexes on one 20 diskette - the maximum number of datasets a 20 
diskette can store.) After saving, you can safely delete the alternates, 
rename the original file (it is essential that you keep a copy of the original 
file until the backup is restored and verified), restore the backup, and 
restore the alternates from the diskette you just saved them on. If alternate 
indexes happen to use a standard dot-name prefix (e.g., CUST.XI, 
CUST.X2), you can use the SAVE ALL and RESTORE ALL to simplify 
saving and restoring the alternate indexes. 

If you save more than one file group on the same tape or set of tapes or 
diskettes, you can save a lot of time by specifying in the S/36 SAVE proce
dure a set name identical to the file group prefix. For example, you would 
use the set name PAY for files in a group with the prefix PAY. Then when 
you need to restore all files within a file group, you only need specify 

II RESTORE ALL. file-group .... 

instead of having to restore each file individually. 



3 Backup and Restore 

Restoring a File to Disk Using a New Name 
by Anthony Mossbarger 

Figure 1·1 

Procedure 
RESTFILE 

a Code on diskette: 

Procedure RESTFILE 
Screen Format Member RESTFLFM 

The RESTFILE procedure (Figure 1-1) is a tool you can use to restore 
diskette or tape files to disk with a different name. I have found procedure 
RESTFILE useful for restoring files to disk for testing or problem solving 
without disturbing production files. Procedure RESTFILE lets you restore 
all or part of a diskette or tape file. 

Procedure RESTFILE uses one prompt screen (Figuresl-2a and 1-2b). 
Two mandatory input fields, diskette or tape file name and disk file name, 
are entered on the prompt screen. Then, six optional input fields are avail· 
able. You can indicate the number of records to be allocated to the disk file 
and thus limit the number of records from the diskette or tape to be 
restored. Or, you can specify the name of a file on disk that has the number 
of records needed for allocation of the disk file. If number of records to be 
allocated is not entered, the file from diskette or tape will be restored with 
its original allocation. 

You can specify an input device (11 is the default for diskettes and T1 
for tape), the diskette location (SI is the default), automatic advance to file 
location (default-AUTO), and you can choose to place the restore on the 
job queue (default-Y). If you place the restore on the job queue, several 
files from the same media can be restored in order. If RESTFILE is placed 
on the job queue, a message is sent to the originating workstation after the 
file is restored to disk. 

All input fields are edited by procedure RESTFILE except for 
diskette location. If an error is detected by RESTFILE, the input screen is 
displayed with the appropriate message on line 24. 

• 	 RESTFILE - THIS PROCEOURE IS USED TO RESTORE A FILE FROM 

DISKETTE OR TAPE TO DISK WITH A NEW NAME, 


PARAMETER #1 - DISKETTE OR TAPE FILE NAME (B) 

PARAMETER #2 - DISK FILE NAME (8) 

PARAMETER #3 - NUMBER OF RECORDS FOR DISK FILE (8) 

PARAMETER #4 - DISK FILE NAME WITH # OF RECORDS 


TO BE ALLOCATED TO NEW FILE (8) 

PARAMETER /15 - DEVICE TYPE (DISKETTE OR TAPE) (2) 

PARAMETER #6 - DISKETTE LOCATION (5) 

PARAMETER #7 - AUTO ADVANCE TO FILE LOCATION (6) 

PARAMETER #B - PLACE ON J08Q (Y OR N) (1) 

PARAMETER /19 - ERROR MESSAGE (79) 


II IF JOBQ-YES GOTO START. 
II EVALUATE P5-'ll' P6-'Sl' P7·'AUTO 'PB-'N' 



4 5/36 Power Tools 

II TAG AGAIN 
II PROMPT MEMBER-RESTFLFM,FORMAT-SCRNOI ,LENGTH-'S,B,S,S,2,5,6,1 ,79' 
II IF 7CD7/2007 CANCEL 

II IF 7171 EVALUATE P9-'Enter Diskette or Tape File Name' 
II IF ?1?1 GOTO AGAIN 

II IF ?271 EVALUATE P9-'Enter Disk File Name' 
II IF 7271 GOTO AGAIN 

II IF DATAF1-?2? EVALUATE P9-'File ?2? is already on Disk' 
II IF DATAFI-72? GOTO AGAIN · II IFF ?4?1 IFF DATAF1-?47 EVALUATE P9-'File ?4? does not exist on Disk' 
II IFF 74?1 IFF DATAFI-74? GOTO AGAIN · II IFF ?4?1 IFF ?3?1 EVALUATE P9-'Only one parameter can be entered for + 

RECORDS allocated to the Disk File' 
II IFF ?471 IFF 7371 GOTO AGAIN · I! IFF ?57/11 IFF ?57/Tl EVALUATE P9-'Device for Input must be lIar Tl' 
I! IFF 75?/l1 IFF 75?/TI GOTO AGAIN · II IF 757/11 IFF ?77/AUTO IFF ?7?/NOAUTO + 

EVALUATE P9-'Auto Advance must be AUTO or NOAUTO' 
II IF ?5?/ll IFF ?7?/AUTO IFF ?7?/NOAUTO GOTO AGAIN · /I IFF ?S?/Y IFF ?B?/N EVALUATE P9-'Place on JOBO must be "Y" or "N'" 
II IFF 7B?/Y IFF ?S?/N GOTO AGAIN 

II IF JOSQ-NO IF ?5?/ll • 'RESTFILE 71?,?27,?3?,?4?,?57,767,?7?,7S7'
II IF JOBO-NO IF 757/Tl • 'RESTFILE ?1?,727,73?,747,?5j' 

II IF 7S7/Y JOBQ 7CLIB?,RESTFILE,?1?,?27,73?,?47,?57,?6?,77?,7B7,7WS? 
II IF ?S?/Y RETURN · /I TAG START · II IFF 7471 EVALUATE P3-?F'A,747'? 
/I IF 75' 11 '? ITl GOTO TAPE · II IF ?l?/AUTO EVALUATE Pl-'YES' 
II ELSE EVALUATE Pl-'NO ' 

• COPY DISKETTE FILE TO DISK 

/I LOAD $COPY 

II FILE NAME-COPYIN,UNIT-11,LABEL-?I?,LOCATION-76'S1'7,AUTO-?l'YES'? 

II IFF 7371 FILE NAME-COPYO,UNIT-F1 ,LABEL-?27,RECORDS-?3?

II ELSE FILE NAME-COPYO,UNIT-Fl ,LABEL-72? 

II RUN 

II IFF 73?1 COPYFILE OUTPUT-SAME,LIMIT-737 
II ELSE COPYFILE OUTPUT-DISK 
II END 
II IF JOBQ-YES MSG 79?,File ?17 has been copied to disk as ?2? 
II RETURN 

COpy TAPE FILE TO DISK 
II TAG TAPE 
I! LOAD $COPY 
/I FILE NAME -COpy IN, UN IT-Tl ,LABEL-717 ,VOLID- I BM IRD, RECF~I- FB, RECL- 256,
II BLKL-24576,END-REWIND 
/I IFF 73?1 FILE NAME-COPYO,UNIT-Fl,LABEL-?27,RECORDS-73:7 
II ELSE FILE NAME-COPYO,UNIT-F1,LASEL-72? 
II RUN 
II IFF ?3?1 COPYFILE OUTPUT-SAME,LIMIT-737
II ELSE COPYFILE OUTPUT-DISK 
II END 
II IF JOBQ-YES MSG 79?,File 717 has been copied to disk as 72? 



5 

Figure 1-2a 

Prompt screen 

REST FILE 


Figure 1-2b 

Screen format 
member 
RESTFLFM 

Backup and Restore 

RESTFILE Optional-* 

Restores a Diskette or Tape file to disk with a new name 

Name of Diskette or Tape file. 

Name of Disk file. 

Number of RECORDS to be allocated to the disk file 

-OR- Enter the name of a file on disk with the same 
number of RECORDS needed. 

Enter Device for input ..... 11, Tl 

Diskette location. .. 51 ,S2,S3,Ml.nn,M2.nn 

Automatic advance to file location. ,AUTO,NOAUTO 

Place job on JOBQ ?, ,Y,N 

Cmd-7 to Cancel 

1 4 " , 6 
0001 SSCRNOl 
0002 D 8 136Y Y CRESTFILE 
0003 D 10 169Y COptional-* 
0004 D 56 3 9Y CRestores a Diskette or X 
0005 DTape fi le to disk wi th a new name 
0006 D 51 511Y CName of Diskette or TapX 
0007 De file, 
0008 DllNAME 8 567Y Y Y Y Y 
0009 D 51 711Y CName of Disk file .. . . . ,X 
0010 D 
0011 DF1NAME 8 767Y Y Y Y 
0012 D 51 911Y CNumber of RECORDS to beX 
0013 D allocated to the disk file 
0014 DRECIN 8 967Y YN Y Y 
0015 D 1 978Y C' 
0016 511111Y C-OR- Enter the name of X 
0017 Da fil e on disk with the same 
0018 D 461216Y Cnumber of RECORDS needeX 
0019 Dd, 
0020 DFILE 81267Y YB Y Y 
0021 0 11278Y C' 
0022 0 511411Y CEnter Device for input.X 
0023 D. ,ll,Tl 
0024 DDEVICE 21467Y YB Y Y 
0025 D 11478Y C' 
0026 0 511611Y CDiskette location. , .X 
0027 0 .. .51 ,S2 ,S3, Ml . nn, M2 nn 
0028 DDLOC 51667Y Y Y Y 
0029 D 11678Y C' 
0030 511811 Y CAutomatic advance to fiX 
0031 Ole location, ... , ,AUTO,NOAUTO 
0032 DAUTO 61867Y YA Y Y 
0033 0 11878Y C' 
0034 0 512011Y CPlace job on JOBQ ? , ,X 
0035 0 , ,Y ,N 
0036 DJOBQ 12067Y YA Y Y Y 
0037 D 12078Y C' 
0038 0 152331 Y CCmd-7 to Cancel 
0039 DERRMSG 7924 2Y Y Y Y 

http:S2,S3,Ml.nn,M2.nn


6 5/36 Power Tools 

Saving All User Libraries 
program by DavidAndrews 

Utility 
LIBBAK lets 
you save all 
libraries in 
one step 
instead of 
saving them 
oneata time 
with the 
SAVELIBR 
command. 

Figure 1-3 

LIBBAK 
prompt screen 

a
Code on diskette: 


Procedure LIBBAK 

RPG program LIBBAK 

Screen format member LIBBAKFM 

Message member LIBMSG 


Regularly backing up your S/36 files and libraries to diskette is essential for 
your archives and for recovery in case of accidental data loss. Saving your 
files is quick and easy because you can use the SAVE ALL command to 
back up all your files at once; saving your libraries isn't so simple. The mis
named SAVE ALL command won't save all your libraries at once. Although 
the SAVELIBR command commonly is used to back up libraries, you must 
supply the library name as one of SAVELIBR's parameters - which means 
you can back up only one library at a time. If you have a lot of libraries to 
save, backing them up individually can be a lengthy process. 

Utility LIBBAK lets you back up all your user libraries to diskette in 
one step. LIBBAK also lets you save individual libraries. Utility LIBBAK 
comprises RPG program LIBBAK, screen format member LIBBAKFM, 
message member LIBMSG, and procedure LIBBAK. 

LI BBAK PROCEDURE 

Saves a specified library or ALL libraries 
to diskette 

Name of library to save or ALL ALL 

Volume ID of diskette(s) .. BACKUP 

Beginning diskette location . Sl.S2.S3,M1 ,nn.M2.nn Sl 

Cmd3-Previous Menu Cmd7-End 

To execute the utility, type LIBBAK. A prompt screen (Figure 1-3; screen 
format member LIBBAKFM is in Figure 1-4) displays. three default parame
ters. The first parameter is either the name of an individual library you want 
to save or the useful default ALL. Parameter 2 is the backup diskette's vol
ume 10, which defaults to BACKUp, and parameter 3 is the beginning 
diskette slot location, which defaults to S1. (You can change the procedure to 
specify as defaults for parameters 2 and 3 the volume 10 and slot location you 
most commonly use.) Parameters 2 and 3 need to be entered only once. 

Procedure LIBBAK (Figure 1-5) performs an ALLOCATE that ensures 
you have dedicated use of the diskette drive. LIBBAK also uses the 

http:nn.M2.nn


7 

Figure 1-4 

Screen format 
member 
LIBBAKFM 

Backup and Restore 

AUTO-YES,CONTINUE-YES keywords to locate the next available 
diskette slot location automatically while you save the libraries. 

To save an individual library, specify a library name in parameter 1, 
enter values for parameters 2 and 3 if necessary, and press Enter. Procedure 
LIBBAK verifies the library's existence and the validity of parameters 2 
and 3 before continuing. If procedure LIBBAK detects an error, the screen 
is redisplayed with the questionable field in reverse image and the error 
message at the bottom of the screen (see Figure 1-6 for message member 
LIBMSG). To continue, correct the error and press Enter. LIBBAK then 
saves the library (using SAVELIBR) and redisplays the prompt screen. 
Enter the name of the next library you want to save, or press Command 
key 7 to end LIBBAK. 

To save all libraries, accept the parameter 1 default ALL, specify param
eters 2 and 3 if necessary, and press Enter. Before utility LIBBAK saves all 
libraries, it creates a file in a format that can be converted into a save 
procedure. First, $LABEL generates a VTOC list that is saved in disk file 
SAVEPRNT. Then #GSORT sorts file SAVEPRNT in library name sequence 
and outputs file SAVEPRT2. An alternate index named SAVEPRTX is built to 
provide a key (consisting of the eight-character library names) over file 
SAVEPRT2 so program LIBBAK can read the file multiple times. 

Program LIBBAK (Figure 1-7) is loaded to read file SAVEPRT2 and to 
output, in $MAINT format, disk file LIBBAK, which contains the OCL 
necessary to save all your user libraries in SAVELIBR format. (#LIBRARY 
is not considered a user library, so LIBBAK will not save it.) Finally, 
$MAINT copies the file into the current library to create procedure LIB
BAK?WS?, which is called to perform the actual backup. After the libraries 
are saved, LIBBAK performs housekeeping that deletes the LIBBAK?WS? 
procedure and any remaining work files. 

Utility LIBBAK lets you save all your libraries to diskette in one easy 
step. With some simple modifications, LIBBAK also can back up libraries 
onto tapes and save #LIBRARY. So next time you run a SAVE ALL - which 
saves "almost all" - run utility LIBBAK to make your backup complete. 

1 2 4 8 
0001 SPROMPT 0124 29YY 29 COG 
0002 D#sCONS 16 133Y CLIBBAK PROCEDURE 
0003 D#SCONS 42 320Y CSaves a specified libraX 
0004 Dry or ALL llbraries 
0005 D#SCONS 11 420Y eto diskette 
0006 D#SCONS 63 6 4Y CName of library to saveX 
0007 D or ALL 
0008 DLI BRARY 8 66901 Y 21 21 Y 
0009 D#sCONS 63 8 4Y CVolume ID of diskette(sX 
0010 D) 
0011 DVOLUMEID 8 86902 Y 22 22 Y 
0012 
0013 

D#SCONS 
Dtlon 

6310 4Y 
Sl,S2,S3,Ml nn,M2.nn 

CBeginning diskette locaX 

0014 DLOCATION 5106903 Y 23 23 Y 
0015 D#SCONS 7523 2Y CCmd3-Previous Menu CX 
0016 Dmd7-End 



8 5/36 Power Tools 

Figure 1-5 0017 OMESSAGE 7524 229 29 29 M 

Procedure Set up initial procedure attributes. 

LlBBAK II MEMBER USER1-LIBMSG 

Procedure mayan 1 y be run on the conso 1 e. 
*************************.****************.******* 

II IF CONSOLE-NO ERR 0004,23 
II IF CONSOLE-NO RETURN 

Allocate diskette drive. 

II TAG ALLOC 
II ALLOCATE UNIT-Il ,AUTO-YES,CONTINUE-YES,WAIT-NO 
I I IF 7C07-2032 ERR 0001,123 
II IF 7C07-2033 ERR 0001,123 
II IF 7C07-1011 GOTO ALLOC 
II IF 7C07-1012 RETURN 

Test for one-time use. 

I I SWITCH OXXXXXXX 
II IFF ?17- IFF 727- IFF 737- SWITCH 1XXXXXXX 
II IFF 717- IFF 727- IFF 737- GOTO SKIP 

Processi ng for prompt screen. 

II IF 717- EVALUATE Pl-ALL 

II IF 727- EVALUATE P2-BACKUP 

II IF 737- EVALUATE P3-S1 
II TAG PROMPT 
II PROMPT MEMBER-LIBBAKFM,FORMAT-PROMPT,START-l ,LENGTH-'S,B,5,O,O,O,O,O,O,6' 
II IF 7e07-2007 OEALLOC UNIT-Il 
II IF 7CO?-2007 RETURN 
II IF 7C07-2003 OEALLOC UNIT-Il 
I I IF ?CO? -2003 RETURN 
II IF 717- GOTO PROMPT 

Screen error processing. 
*****************************************•• * •••• *. 
I I TAG SKIP 

I I 
 EVALUATE Pl 0-' , P21- .. P23-' , P23-' , P29-' , 

I I LOCAL OFFSET-l,OATA-'737' ,6LANK-5 
I I IFF ?L'l,2'?-Sl IFF 7L'l,2'7-S2 IFF 7L'l,2'7-S3 IFF 7L 1,2' ?-Ml IFF ?L'l,2'?-M2 + 

EVALUATE P23-1 P29-1 P10-0002U1 
I I IF ?L'l,l'7-M IFF ?L'3,l'7-. EVALUATE P23-1 P29-1 Pl0-0002U1 
II IF ?L'l,l'7-M IFF 7L'4,2'7>00 EVALUATE P23-1 P29-1 Pl0-0002Ul 
I I IF 7L'l,l'7-M IF ?L'4,2'?>10 EVALUATE P23-1 P29-1 P10-0002U1 
I I IF ?L'l,l'?-S IFF ?L'3,3'?- EVALUATE P23-1 P29-1 Pl0-0002Ul 
II IF 7297-1 GOTO PROMPT 
I I IFF ?l?-ALL IFF OATAFl -71? EVALUATE P21-1 P29-1 P10-0003U1 
I I IF 729?-1 GOTO PROMPT 
I I IFF 7VOLI 0' 737 '7-727 EVALUATE pn-1 P29'1 Pl0-0005Ul 
I I IF 7297-1 GOTO PROMPT 

Save a single library. 

II IF ?17-ALL GOTO SAVEALL 
1/ * 'Library ?1? is now being saved to diskette' 
II SAVELIBR ?17,1,727,737 

II IFF SWITCH1-l GOTO PROMPT 

111FT SWITCH1-1 OEALLOC UNIT-Il 

111FT SWITCH1-1 RETURN 


Save all libraries. 
****************************** •• **********.******* 



9 Backup and Restore 

II TAG SAVEALL 

II * 'Saving ALL libraries to diskette' 


* Delete workfiles. 
II IF DATAF1-SAVEPRNT DELETE SAVEPRNT, Fl ,REMOVE 
II IF DATAF1-SAVEPRTX DELETE SAVEPRTX,Fl ,REMOVE 
II IF DATAF1-SAVEPRT2 DELETE SAVEPRT2, Fl ,REMOVE 
II IF DATAF1-LIBBAK DELETE LIBBAK,Fl ,REMOVE 

* Generate VTOC file, 
II LOAD SLABEL 
I I RUN 
II DISPLAY UNIT-Fl ,LABEL-ALL,SORT-NAME,OUTPUT-SAVEPRNT 
II END 

* Select all of the libraries from the VTOC 1ist; ng.
II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-SAVEPRNT,RETAIN-S
II FILE NAME-OUTPUT,LABEl-SAVEPRT2,RECORDS ?F'A,SAVEPRNT'?,EXTEND-l0,RETAIN-T 
I I RUN 

HSORTR 8A 3X 8 N 

I C 26 32EQCLI BRARY 

FDC 8 LI BRARY NAME 


I I END 

• End procedure if no libraries exist. 
II IF ?F'A,SAVEPRT2'?=0 DEALLOC UNIT-Il 
II IF ?F'A,SAVEPRT2'?-0 ERR 0006,23 
II IF ?CD?-1012 RETURN 

II LOCAL OFFSET-l1,DATA-'?2?' ,BLANK-6 
II LOCAL OFFSET-21,DATA-'?3?' ,BlANK-5 
I I LOCAL OFFSET -31, DATA-' ?WS?' , BLANK-2 
II EVALUATE P64-?F'A,SAVEPRT2'?*2+5 
II BLDINDEX SAVEPRTX,l,8,SAVEPRT2 

* Create file that will later be converted to procedure. 
I I LOAD LI BBAK 
II FILE NAME-SAVEPRNT,LABEL-SAVEPRTX 
II FILE NAME-LIBBAK,RECOROS-?64?,EXTEND-l0,RETAIN-T 
I I RUN 

* Change file into executable procedure. 
II IF PROC-'LIBBAK?WS?,?CLIB?' REMOVE LIBBAK?WS?,PROC,?CLIB?
II LOAD SMAINT 
II FILE NAME-LIBBAK,RETAIN-S 
I I RUN 
II COpy FROM-DISK,TO-?CLIB?,FILE-LIBBAK,NAME-LIBBAK?WS? 
II END 

• Save libraries. deallocate diskette drive. perform REMOVEs/DELETEs.
II INCLUDE LIBBAK?WS? 
II DEALLOC UNIT-Il 
II REMOVE LIBBAK?WS?,PROC,?CLIB?
II DELETE SAVEPRTX,Fl ,REMOVE 
II DELETE SAVEPRT2,Fl ,REMOVE 

I I RETURN 

PROCEDURE: 	 LIBBAK 

WRITTEN BY: 	 Dave Andrews 

DESCRIPTION: 	 This procedure saves all of the libraries 

on the system or a selected library to 

diskette, 

PARAMETERS: 	 ?01 ? - Name of library to save or ALL. 

?02? - Diskette volume 10. 

?037 Beginning diskette location. 


5?217 Position cursor/reverse image on screen 
for invalid library name error. 

722? ~ Position cursor/reverse image on screen 
for invalid volume 10 error. 



10 5/36 Power Tools 

723? Position cursor/reverse image on screen 
for invalid diskette location error. 

7297 ~ Sound alarm/display error message on 
prompt screen. 

*****************************************************************. 

Figure 1-6 L1BMSG.l 
0001 Diskette drive is not available now 

Message member 0002 Invalid diskette location 
0003 Specified library does not exist on the disk

LIBMSG 0004 Procedure can only be run on the system console 
0005 Specified volume id does not match with diskette volume id 
0006 No libraries are on the system to save 

Figure 1-7 

Program LIBBAK 

... 1 ... 2 ...... 3 6 .. 8 
0001 H P064 LI BBAK 
0002 H(SPACE 
0003 H**************************************************************** 
0004 H"" PROGRAM: LIBBAK 
0005 H"" 
0006 W" WRITTEN BY: Dave Andrews 
0007 H"" 
0008 H"" DESCRIPTION: This program creates a r,1e containing all 
0009 H"' of the libraries to b. backed up onto 
0010 H** diskette in a format that can be converted 
0011 H** into a procedure. 
0012 H********************************************************.******* 
0013 FSAVEPRNTIF F 256 8L 8AI 1 DISK LI BRARY FI LE 
0014 FLI BBAK 0 F 120 120 DISK A PROCEDURE FILE 
0015 E CNST 5 19 CONSTANTS FOR OUT ARRAY 
0016 E OUT 120 ARRAY FOR OUTPUT LINE 
0017 ISAVEPRNTID 01 
0018 I 8 LIBNAM LIBRARY NAME 
0019 I(SPACE 
0020 I UDS 
0021 I 11 16 VDLlD VOlUME 10 OF DISKETTES 
0022 I 21 22 LOCATN DISKETTE LOCATION 
0023 I 31 32 WSID WORKSTATION ID 
0024 c************···************************************************* 
0025 C"" PROGRAM OUTLINE 
0026 C**************************************************************** 
0027 C MOVE CNST.l CNST1 19 
0028 C MOVE CNST.2 CNST2 19 
0029 C MOVE CNST.3 CNST3 19 
0030 C MOVE CNST .4 CNST4 19 
0031 C MOVE CNST.5 CNST5 19 
0032 C MOVE 'BLANKS KEY 8 
0033 C EXCPTSTART 
0034 C"" 
0035 C KEY SETLLSAVEPRNT 
0036 C MOVE .N' EOF 
0037 C EOF DOUEQ' Y' 
0038 C READ SAVEPRNT 50 
0039 C 50 MOVE ·Y· EOF 
0040 C EOF I FNE 'Y' 
0041 C MOVE "BLANKS OUT 
0042 C MOVEACNSTl OUT.l 
0043 C MOVEALI BNAM OUT.14 
0044 C EXSR SFIND 
0045 C MOVEACNST2 OUT.B 
0046 C ADD 14 S 
0047 C MOVEAVOLID OUT.B 
0048 C EXSR SFIND 
0049 C MOVEACNST3 OUT.S 
0050 C ADD 19 B 



Backup and Restore 11 

0051 C MOVEALOCATN OUT,B 
0052 C EXCPTDETAI L 
0053 C END 
0054 C END 
0055 C" 
0056 C EXCPTRUN 
0057 C" 
0058 C KEY SETLLSAVEPRNT 
0059 C MOVE 'N' EOF 
0060 C EOF DOUEQ'Y' 
0061 C READ SAVEPRNT 50 
0062 C 50 MOVE 'Y' EOF 
0063 C EOF IFNE 'Y' 
0064 C MOVE 'BLANKS OUT 
0065 C MOVEACNST4 OUT,l 
0066 C MOVEALIBNAM OUT,18 
0067 C EXSR SFIND 
0068 C MOVEACNST5 OUT,B 
0069 C ADD 14 B 
0070 C MOVEALI8NAM OUT,B 
0071 C EXCPTDETAI L 
0072 C END 
0073 C END 
0074 C" 
0075 C EXCPTEND 
0076 C SETON LR 
00770078 C/SPACEC.*--······.·····_···-.•. _•... *._.•......• ** ••• _***._._.*v**.*.*. 
0079 Co. SFIND - FIND THE END OF THE CHARACTER STRING 
0080 c·*······_·_·_········ __ ·_·_·*·-.-··**.·_.·. __ .__ ·._.-..• v.v •• v._ 

0081 C SFIND BEGSR 
0082 C Z-ADD120 A 30 
0083 C Z-ADDO B 30 
0084 C A DOUEQO 
0085 C OUT,A I FNE 'BLANK 
0086 C Z-ADDA 
0087 C Z-ADDO A 
0088 C ELSE 
0089 C SliB A 
0090 C END 
0091 C END 
0092 C ADD 1 B 
0093 C ENDSR 
0094 OLI8BAK EADD START 
0095 a 23 ' I I COPY LlBRARY-P, NAME-' 
0096 a 29 'LIBBAK' 
0097 a WSID 31 
0098 a EADD START 
0099 a 14 'I I LOAD SMAINT' 
0100 0" 
0101 a EADD DETAIL 
0102 a OUT 120 
0103 a·' 
0104 0 EADD RUN 
0105 a 6 ' If RUN' 
0106 0" 
0107 0 EADD END 
0108 a 'I I END' 
0109 a EADD END 
0110 a 'II CEND' 

CNST 
II FILE NAME
,UNIT-Il,PACK
,RETAIN-l,LOCATION
II COPYLIBR FROM
,TO-DISK,FILE



12 5/36 Power Tools 

Saving #LlBRARY to Tape 
answered /Jy Mel Beckman 

QWhenever we try to back up to tape, we get this message: 

UBSVALL 
SAVELIBR PROCEDURE IS RUNNING 
SYS-2401 OPTIONS ( 123 ) 
CANNOT SAVE THE SYSTEM U BRARY ON TAPE ... 

Is the ability to perform this backup for the system library new to 
Release 5.0? Or is there something in our configuration (Model B24 5360 
with a nine-track tape unit and three 200 MB disk drives) that does not 
permit us to perform this backup? We now use SSP Release 4.0. 

AYes, the ability to back up the system library to tape is new to Release 
5.0. Restoring #LIBRARY from tape is also supported in this expanded 

function. One way to complete the reload from tape is to specify: 

IPL TC 
or 

IPL T1 
Another way is to mount the #LIBRARY tape and then perform an IPL 

from diskette. (The procedure for this is different for each machine and is 
described in IBM's manual Operating Your Computer. ) When you IPL from 
diskette, the system first checks to see whether a tape is mounted; if so, the 
IPL takes place from the tape drive. 

There is nothing in your configuration to prevent Release 5.0 from per
forming this backup. 

Finding the Number of Active Jobs 
/Jy Mel Beckman 

Code on diskette: a Assembler program ACTIVE 

Suppose the COMPRESS step in your S/36 nightly batch job encounters a 
spool writer or a MRT job. If the COMPRESS senses that the system is not 
dedicated, it issues an operator message. Unfortunately, no one is there to 
answer the message, and the entire nightly job hangs up. What you need in your 
nightly batch jobs is a procedure substitution expression that returns the num
ber of active jobs so the batch job can test whether the system is dedicated. If 
the system is not dedicated, the COMPRESS step can be bypassed temporarily. 



Figure 1-8 

Samp/eOCL 
code that checks 
for activejobs 

Backup and Restore 13 

IBM neglected to supply such a procedure substitution expression, but 
assembler program ACTIVE returns the number of currently active jobs 
via the ?CO? substitution parameter. 

The resulting assembler program returns the job count in the substitu
tional parameter ?CO? This count includes spool writers and other system 
jobs that affect dedication status, but does not include communication 
tasks and command processors that do not compromise dedicated mode. 
Because the program returns the number of active jobs through a substitu
tional parameter, you can use this program with any procedure without 
regard to how the procedure uses UPSI switches or the LOA. 

The sample OCL in Figure 1-8 will keep the nightly batch job from 
stalling in the COMPRESS step. Note how the COMPRESS command is 
executed only if a single job is running (you must condition on a job count 
of one because there is always at least one job running). 

• Don't attempt COMPRESS unless the system is dedicated 

I I LOAD ACT! VE 
II RUN 
II IF ?CD?/0001 COMPRESS 



14 5/36 Power Tools 

Backing Up at Night or in the Morning 
answered by Mel Beckman 

Q	I would like some feedback on the age-old debate about whether it's 
best to do your daily system backup first thing in the morning or at the 

end of the day in a one-shift, one-programmer shop. 

AEvening backup is safer if your company operates primarily during the 
daytime. If you wait until the morning, an entire day's work exists 

solely in the machine for 12 or more hours, and thus your data is vulnerable 
more than halfthe time to lightning, fire, flood, and criminal assault. The extra 
effort that an evening backup requires pays off in acceptable protection. 

The Order in Which Files Are Saved to Tape 
answered by John Fruetel and Burt Swan 

Q	What is the order of the file backup when I do a SAVE ALL? We 
currently back up onto 16 to 18 tapes, and finding the files is a long task. 

AThe system saves files in VTOC (random) order, but alternate indexes 
appear last because they contain no actual "data." With alternate 

indexes, the SAVE provides a record that describes how to rebuild the index, 
so it is important that the indexes be restored after the actual data files. 

To gain control of the SAVE order, you can rename the application files 
with a group name (e.g., AP.xxxxx for accounts payable files) and then save 
each group to its own set name: 

SAVE ALL.1 .group name,volid.set name,T1 . LEAVE 

For simplicity, make your group names and set names the same. After sav
ing file groups, do a separate SAVE of all files that do not belong to a group. 

Assuming your file sizes are not too volatile, you should have a good 
idea of the reel on which a file set begins after cataloging a set of backup 
tapes. Using 3,600-foot tapes can reduce the number of reels by SO percent, 
correspondingly reducing your number of choices; If you have historic data 
on disk that you do not need to back up every day, you also can reduce your 
choices by giving these files group names but not saving them. This prac
tice keeps the historic data from taking up space on the daily backup tapes. 

If you need to restore by application, this method is quite convenient: 

RESTORE ALL,set name, ,T1 

If you are trying to restore only one file, the method admittedly may be 
cumbersome. 



Backup and Restore 15 

SAVE/COMPRESS Algorithm 
Answered by Mel Beckman 

QI need some information about how the SAVE/CO~IPRESS algorithm 
works. In our company, we need to transfer information from tape to 

microfiche, but none of the local microfiche companies can handle 
compressed data. If I can get answers about the compression algorithm, the 
microfiche companies can create some special programs to convert the data. 
Without the special programs, we must make about 200 diskettes each time 
we store data. This process takes considerably more time than we want to 
expend. Please help us; IBM won't! 

AThe S/36 cannot generate compressed data to an attachable tape drive. 
Because this restriction stems from how the S/36 Control Storage 

Processor microcode has been written, you cannot override it with a simple 
OCL change. However, many (if not most) computer output microfiche 
companies can accept diskettes in lieu of tapes. 

But, to answer your question - the S/36 SAVE/COMPRESS algorithm 
is really quite straightforward. The option to save data files in a compressed 
format is controlled by a parameter in the SAVE procedures and $COPY 
utility program. (Library and folder members are already stored in a com
pressed format.) If you select this parameter, redundant and repetitive 
characters are removed as you copy the data to diskette. These characters 
are replaced by control characters, which allow reconstruction to the data's 
original format on disk. 

The incoming data file can be defined in terms of three different string 
types: nonduplicate (the string contains no duplicate characters), prime dupli
cate (the string contains only characters of prime value, the implemented 
prime value being that of the blank, X' 40'), and non prime duplicate (the string 
contains consecutive identical non blank characters). Each of these string types 
in the original data file is converted to a compressed string (Figure 1-9). 

The first byte on a compressed string is a control byte that defines the 
string type and the string length. In Technical Bulletin G360-1 009, IBM 
provides additional information about control bytes as they relate to string 
types. The construction of the control byte is illustrated in Figure 1-10. 



16 5/36 Power Tools 

Figure 1-9 Original KKK K T T T TAB C D - - - --0 
Data D2 D2 D2 D2 E3 E3 E3 E3 C1 C2 C3 C4 40 40 40 40 40 FO

Example of 
compressed data I / --.. -----. 

Compressed C4 D2 C4 E3 04 C1 C2 C3 C4 85 01 FO 
Data 

Figure 1-10 

Control byte I~I~L~I-=-I~L~I':'I~I 
~...., ...... --.

example 
Bits 0 - 1 = Control Bits -_.....:I. 

00 = Non-duplicate 
01 = Not Valid 
10 = Prime Duplicate 
11 = Non-prime Duplicate 

Bits 2 - 7 = String Length (Bytes) ------1 
00000o = Not Valid 
111111 = Maximum Count 

(63 Bytes) 

Note: Figures 1a and lb have been adapted from examples in IBM's Technical 
Bulletin G360-1009. 

DiskeHe and Tape Capacities 
by John A. Gioannetti 

Whether you use diskettes, magnetic tapes, tape cartridges, or a combination 
of these media, deciding how much off-line storage space you require can be 
difficult. For example, if you use diskettes as your backup media, you may 
(justifiably) feel that it takes too much time to initialize and label two 10 (sin
gle-density) diskettes when you can use one 20 (double-density) diskette. As 
a result, you waste off-line storage capacity backing up everything to 20s 
without checking to determine whether a 10 supplies adequate capacity. 

If you choose magnetic tape or tape cartridge as your backup medium, the 
frustrating problems encQuntered when backing up to diskette persist. You 
might run out of space in mid-backup if you use a 600-foot tape, but when a 
600-foot tape is sufficient, using a 3,600-foot tape wastes storage space. 

The chart in Figure 1-11 lists the capacities ofvarious diskette and mag
netic tape formats and provides storage equivalents in alternative media. The 



Backup and Restore 17 

"Total Bytes" column on the chart helps you decide whether diskette or tape is 
the best medium and, in the case of diskette, which initialization format to use. 

Note that your usable space for tapes is slightly less than that stated on 
the chart because some of the space is reserved for a header label for each 
file (a file locator automatically created by the system). Use the amounts 
specified on the chart as a guideline to maximum values. 

Ifyou don't know how many bytes you need to copy to off-line storage, use 
the S/36 CATALOG command to display the VTOC. The VTOC lists the 
space allocated for a file in blocks as well as records and furnishes the record 
length. Multiply the actual number of records in the file by the record length to 
determine how many bytes are needed for off-line storage of a particular file. 

Another tip: on the S/36, you can save additional space when backing 
up to diskette by using the COMPRESS parameter in the SAVE command 
to compress duplicate character strings. 

Figure 1-11 

Diskette and maganetic tape storage capacities 

Media 

Type 


Diskette 1 

Diskette 1 

Diskette 2 

Diskette 2 

Magnetic Tape 

Magnetic Tape 

Magnetic Tape 

Magnetic Tape 

Magnetic Tape 

Tape Cartridge 

Tape Cartridge 

Fixed Disk: 

Diskette Storage Equivalent Bytes Number
Form<lt Total TotalPer of lD lD 2D 2DType Blocks BytesSector Sectors Format 1 Format 2 Format 1 Format 2 

1 128 1,924 96.20 246,272 1.0 

2 512 592 118.40 303,104 1.23 

1 256 3,848 384.80 985,088 4.00 

2 1,024 1,184 473.60 1,212,416 4.92 

300ft. 2,250.00 5,760,000 23.39 

600ft. 4,500.00 11,520,000 46.78 

1200ft. 9,000.00 23,040,000 93.56 

24OOft. 18,000.00 46,080,000 187.11 

3600ft. 27,000.00 69,120,000 280.67 

450ft. 16,857.00 43,200,000 175.42 

550ft. 20,625.00 52,800,000 214.40 

8809 Tape Drive (Reel to Reel): 
1 Block = 10 Sectors = 2,560 Bytes 1,600 Bytes per Inch =19,200 Bytes 

per Foot 

0.81 0.25 0.20 

1.0 0.31 0.25 

3.25 1.0 0.81 

4.00 1.23 1.0 

19.00 5.85 4.75 

38.01 11.69 9.50 

76.01 23.39 19.00 

152.03 46.78 38.01 

228.04 70.17 57.01 

142.53 43.85 35.63 

174.20 53.60 43.55 

6157 Tape Drive (Cartridge): 
8,000 Bytes per Inch = 96,000 Bytes 

per Foot 



18 5/36 Power Tools 



Communications 


-CHAPTER 

2 




20 5/36 Power Tools 

Transferring Files and Library Members via FTS 
by John Fruetel 

Code on diskette: a Procedure FTSPRC 
RPG program FTSPRG 
Screen format member FTSPRGFM 

One day my company bought a small distributing company in the Pacific 
Northwest. The company was doing all its paperwork by hand, so we 
needed to set it up with some kind of on-line order entry and accounts 
receivable system that would be tied to our S/36 in central California. 
Because the company was small, we couldn't justify a big expense. My mis
sion - which I had no choice but to accept - was to design a system and 
have the small new company up and running in a couple of months. Soon 
after I accepted, I had the strange feeling that somehow I had committed 
myself to something I knew nothing about. Little did I know my salvation 
would be my discovery of IBM's File Transfer Subroutines (FTS). 

Before I discovered FTS, however, I explored other ways to bring the 
company on-line in a short time for a reasonable amount of money. As I saw 
it, there were only two options. The first was to set up the people in Wash
ington with a remote workstation controller, terminals, printers, and a full
time leased line from here to there. The second was to give the people at 
the distributing company a small S/36 and to develop a departmental pro
cessing system. Because at that time I knew nothing about getting two 
S/36s to communicate with each other, I decided it would be easier to give 
the people at the remote site a 5294 controller. 

However, when the phone company said that a dedicated line from 
central California to the Puget Sound area of Washington would cost more 
than $1,000 per month, I realized this approach would be much too expen
sive in the long run. It became apparent that the only cost-effective option 
would be to install a small S/36 at the remote site and to transfer data 
between it and our big S/36 here in California. 

The first data transfer solution I investigated was IBM's Distributed 
Data Management (DDM). DDM lets a S/36 use another computer's files 
(either a S/36, a S/38, an AS/400, or a 8/370) as if they were present on the 
local system. DDM was popular in the trade journals and seemed ideal for 
my application. Because a permanent leased line to the remote site was too 
costly, we could use DDM to upload and download files on the remote 
computer in batch processing once or twice a week. At first DDM's one
time charge of $2,000 seemed reasonable, but then the hidden costs of 
DDM began to multiply. DDM works best with a leased line, the system 
overhead for running DDM is quite high, and programmer and program
ming time must be allocated to maintain necessary network information. 



Communications 21 

I was discouraged until I came across FTS in Chapter 12 of Using /)~vs
tem/36 Communications (SC21-9082). I had never heard of FTS before, but 
according to the manual, FTS would "allow a user application program to 
send or retrieve entire data files and library members from one System/36 to 
another." This sounded exactly like what I needed. And best of all, FTS is 
free! FTS is included on the Base Communications disk (feature 6001 for 
the 5360 and 5362, and feature 6047 for the 5363 and 5364), a part of SSP. 

More and more companies are connecting S/36s and need to exchange 
files and library members. Until FTS, they had to use DDM to copy files, 
or they had to write their own RPG applications to transfer files and library 
members using bisynchronous communications. These RPG applications 
had two major problems: first, the hundreds of programs written by hun
dreds of different programmers were incompatible, and second, RPG could 
not access files and libraries directly, resulting in complicated programs and 
procedures. FTS has none of these problems. By definition, it is compati
ble among all S/36s. And because it is written in assembler, it handles files 
and libraries with ease. Furthermore, FTS assembler subroutines perform 
the transfers in less time than RPG takes. 

With a sense of all of FTS's benefits, I was amazed that no one seemed 
to know very much about it. Even the IBM people with whom I spoke 
didn't seem to know that FTS existed. For some reason I don't completely 
understand, FTS has not been very popular even though it has notable 
capabilities - including a few, such as transferring library members, that 
DDM currently doesn't have on the S/36. To boost FTS' popularity, after 
describing FTS's functions and how to install it, I will explain how to use it 
in RPG programs and give an example. 

What FTS Is and Does 
The theory of operation behind FTS is remarkably simple and straightfor
ward. The File Transfer Subroutines are IBM-supplied subroutines that 
can be incorporated into RPG II, COBOL, or assembly language programs 
to send or retrieve entire files or library members between two S/36s (Fig
ure 2-0. An important characteristic of FTS is that a user-written program 
runs on only one system to perform the file or library member transfer. 
FTS automatically evokes a special FTS job on the target system to com
plete the transfer. Other transfer methods, including DDM and bisynch, 
require user-written programs running simultaneously on both systems. 
System A and System B must have a communications link established 
between them in the form of an Interactive Communication Feature (lCF) 
session (using either dial-up or leased point-to-point lines). You do not 
need to purchase ICF support from IBM, however, as everything you need 
is included free with the Base Communications Feature discussed earlier. 
FTS works with APPC (Advanced Program-to-Program Communications), 
BSCEL (Bisynchronous Communications Equivalence Link), Peer, and 



22 S/36 Power Tools 

Asynchronous Subsystems, but FTS does not enable an ICF session with 
the remote computer automatically. Also, FTS (Release 5.0 and later) 
optionally functions with APPN (Advanced Peer-to-Peer Networking) to 
transfer files between S/36s that are not necessarily adjacent nodes in the 
communications network (hereafter, I will use the word "file" to refer to 
both data files and library members). 

Two different subroutines exist for FTS: SUBRFI is used in COBOL 
or assembler programs, and SUBRF2 is used in RPG II programs. Because 
RPG is the predominant language in the S/36 world, my example is in RPG 
II using SUBRF2, but the concepts regarding the proper use of FTS apply 
to COBOL and assembler as well. 

Installing FTS on a 5/36 
Installing FTS is easy. If you have Base Communications on your S/36, 
FTS is installed as well! If you have not installed Base Communications, 
you must do so for FTS to function. Installation is accomplished via Screen 
21.1 of the CNFIGSSP procedure. The installation requires SSP diskettes, 
and you should apply the most recent PTFs after installing Base Commu
nications support (see "FTS and PTF 05298," page 24). Installing Base 
Communications puts SUBRF1 and SUBRF2 in #LlBRARY. 

FTS (Release 5.0 and later) puts a few load members and a single pro
cedure in #LlBRARY. One of the load members, #FT#Ml, is a message 
member that contains the text for the various FTS error codes. FTS is a lit
tle different from most IBM products that display error messages either at 
the system console or at the user's workstation. With FTS, if an error occurs 
(e.g., a user program requests a nonexistent file from a remote system), 
ERRMIC (the twelfth RLABL parameter in Figure 2-2) returns a Message 
Identifying Code (MIC) specifying the exact problem, and the user pro
gram must handle the FTS error accordingly. Your program can retrieve the 
text for FTS messages from #FT#Ml message member by using the 
// MEMBER statement and the IBM-supplied message-retriever subrou
tine SUBR23 (described in the RPG reference manual). Unfortunately, the 
message codes returned by FTS are not included in any of the message 
manuals. The codes and their meanings are listed only in Chapter 12 of 
Using System 36 Communications and in #FT#M 1 in #LlBRARY. 

With the exception of the message member #FT#Ml, the other load 
members and procedure included in #LlBRARY cannot be referenced by 
user programs; they are used internally by SUBRFI and SUBRF2 only. 

Using FTS in an RPG Program 
To use the FTS assembler subroutine to transfer data from one S/36 to 
another, code an EXIT operation to execute SUBRF2 (line 1 in Figure 2-2). 
Follow the EXIT operation by coding 13 parameters - each specified with 
the RPG II RLABL operation code - to specify which operations and 



Communications 23 

functions FTS is to perform. Figure 2-3 shows the meaning of the general 
parameters in Figure 2-2 that are used whether you are transferring files or 
library members. Six other parameters - QUALl through QUAL6 - are 
used for both file and library copying, but the meaning of the parameters 
differs with the specific task. Certain parameter values are required for 
each type of transfer. Figures 2-4 and 2-5 show the parameter meanings 
when FTS is used to transfer files and library members respectively. 

Another FTS parameter that requires further explanation is the PWORO 
parameter, which contains the password to use with your user 10 when FTS 
attempts to log on to the remote system. The PWORO parameter is required 
only when the remote S/36 has password security active. FTS users must have 
a user ID that is the same on the remote system as on the local system; their 
password on the remote system, however, can differ from their local password. 
Unfortunately, password requirements can make FTS difficult to use when 
running a batch procedure with many users. FTS can validate everyone's user 
10 on the remote system, but there is no efficient way to enter and validate 
passwords. Hardcoding passwords causes difficulty. If more than one person is 
to use an FTS program in a batch procedure, passwords should be placed in a 
table or keyed in by the user as a parameter to the program. 

Sample RPG Program -with FTS 
Procedure FTSPRC (Figure 2-6), in conjunction with the RPG program 
FTSPRG (Figure 2-7), sends and retrieves entire data files or library mem
bers from one S/36 to another. 

Procedure FTSPRC runs in one of two ways, either interactively or in 
batch mode, depending on the parameters you specify on the prompt screen. 
If you specify the first three parameters, FTSPRC assumes FTS is to be run 
in batch mode and does not prompt you for more information (Figure 2-8a; 
Figure 2-8b contains the format member). If any of the first three parameters 
are not specified, FTSPRC assumes FTS is to run interactively and prompts 
the user for more information. Procedure FTSPRC then places the parame
ters regarding this file transfer into the LOA for program FTSPRG to use. 

Program FTSPRG is simply a shell that calls the assembler subroutine 
SUBRF2, although it does contain logic to switch QUALl with QUAL4 and 
QUAL3 with QUAL6 if FTS is being used to receive a file from the remote 
system (QUALl and QUAL3 are source file/library names; QUAL4 and 
QUAL6 are target file/library names). The program does this because FTS 
normally refers to files as SOURCE and TARGET files. The SOURCE file 
is the file being sent or being received and is not necessarily a resident on 
the local system. I find this a little confusing, so I prefer to reference files as 
LOCAL or REMOTE. The logic in FTSPRG translates the SOURCE and 
TARGET names so the label LOCAL always refers to files on the local sys
tem, and REMOTE always refers to files on the remote system. 



24 S/36 Power Tools 

A Good Choice 
As I said, FTS does not appear to be very popular in the S/36 world, and I 
don't understand why; the minor obstacles I've discussed here can be over
come easily. FTS is a powerful facility free for the asking for all S/36 own
ers with communications. It does not require complex programming, and it 
is an efficient means of communication. FTS even does a few things (e.g., 
transfer library members) that DDM cannot do on the S/36 at this time. If two 
S/36s need to communicate with each other from time to time in batch mode, 
FTS is an inexpensive substitute for DDM and an excellent choice for get
ting the job done. Because of FTS, that strange feeling I had when given my 
"mission" quickly turned into a satisfied feeling of accomplishment. 

>_,C_::::'<~:_, ,-,:",,'.<,:,"'" ",'; _:,:~,> ' 

;;;:'l!iCl!~tp=9f~:,;?;i .... t).;i ... ;~:r ii," ......' . ...... ..i~)I ... ;;11'"'i 

••. i .. ,~¢le~se~~9,lI~erssbouldb~ a\Vare~f~pot~ntiall'r: wi~.IlfTStfPTFsh~xe, .... i... ,.'.i.·.·.· 
{S;l~e~iap~R~~~~he~~yst .: ~1()11P~~~~ros;~98(}b~;ijltn~jlFrn§;~as~tthtik 

~~~nchf(}i~~UiScornll)unipa~n~~~pport. ijutonce ~F"i ".' .be~*~pplied,t~7!.tisYS2 
i&i~iteijll~~n~~~,~m§or4~iwitiP;jno~~~r s~~~m~,*t .. ~~~ha~lR ...... ,. i;Q§2'!~pp~i~p·I~'.'~(i9~tn,~;:1j 

Jl~leaseS.O.e()mputers with ~1'F 05298 are unabJe t()com:rnunicate wi~b Release 4;9 or 
'[ti;ea.i~r S/~~s.;\;\!ii'Yi~i;j;;P, " ')5: ~;f t~ ');" ',itt' ;ii', ii" 
. '., .' Ifthe ·corpputersiY0I.l~reipl~nning.,comml.lnicai:e with are not 'using SSP Releasei 5.0 

;i;'; wi~irrn~'iap,~P y~~,;are'~Rtpf!~nip;~::~oq~~l.. (~#lls~~iCa~2jls(~;'.;1
FIS, y(}~n~.. ... '.rernove~TF05298 frqIl'l YO\lt8yst¢rp. .. ... ...... ............... ..... .....' 


ii•••.••.•..•. i. ...........;...· ........ ·.d.. o ...••.••. i ·.· ~ ..,:. n..vl·.n.,.c. .•... .. i••..•... fi.·· o..·.s.. igJ.... .•. .. ... t.t.·.•.. h.,.e·
· .... ill.;.p ...•...i .•.•. ~ .. s•.•.•...;...•·.·fi.· .•. ·e. e¥e .•. n.... ·.~....•.. '(.. n. off·· .d.;~k:ei~fe~p·bati}~j ."0. 

·~;·r.pnrirn?(~em()vfng~ PTFreqlJiresaoeaic~ted.sy .. J1tlilve8s~tVice·~idiaWth 

lliifkeri!pe .~~ ~~rv~ :;tLLP+F ...... ....;:;;:~;;~;; .. > 'Ii. ..' 
c>" _ ,:~'" __ "_,:,,<; <_:' ,;'_ , ;':'_!, ~':,:c_' ,_ :,_,,'_ - .,-", ',_ _ , " :> __ ,.,",,' ,~,"-' ,:: __ ,_~-_: _:'::",:~; '>"_:-":' '_'~ 


{';'This;QCL'Meds,t9 .b¢.:keyed:evefi;timeil ne'WPTr:;idislf,e~e i~.jppli~· to.the 

terii··()r.(i¥it~ry~uin$t~lt R~fease!(l.of'l~tetY:} '. };,i. ·.r21i" .. ,•.•. \l?t·.. ......f;fl ... ·i\i1.iU.... ;..;' 


Figure 2-1 System A System B 
Local RemoteStructure of 

FTS 

FTS Send ... File Torget System
1 1 

1 FTS Retrieve I File 
I--I

:.---File--
Torget System A

http:PTFreqlJiresaoeaic~ted.sy


Communications 25 

EXIT SUBRF2Figure 2-2 
RLABLFCODEl 
RLABLQUAL18Calling sequence RLABLQUAL26 

for SUBRF2 in RLABLQUAL38 
RLABLQUAL48

RPG programs RLABLQUAL56 
RLABLQUAL68to transferfiles RLABLREPL 1 
RLABLLOCNAM8 
RLABLPWORD4 
RLA8LRCODEl 
RLAB LERRM [C8 

Figure 2-3 General parameters for FTS 

Parameter Length Required Meaning 

FCODE 1 Y A one-character field that may contain an S or an R to 

indicate whether the user wants to send or retrieve a 
data file or library member. 

REPL 1 N A one-character field that specifies whether an existing file 
or library member should be replaced when the transfer 
is complete. Valid values for this field are Y, N, or blank. 
If the value isn't specifed (left blank), N is assumed. 

LOCNAM 8 Y This field specifies the logical name of the system with 
which you are communicating. The name given here 
must be the same as that specified with the 
CNFIGICF procedure. Also, this location must be 
currently active (i.e., it must have been ENABLED). 

PWORD 4 ? This field should contain the password to use with 
your user 10 when FTS attempts to log on to the 
remote system. This field is required only if the 
remote S/36 has password security active. 

RCODE 1 Y This one-character field contains the return code for FTS 
error meassages. Interpretations of the returned values are: 
0: Normal completion, no problems 
1: Problems at the local system 
2: Problems at the remote system 
If t or 2 is returned, field ERRMIC indicates the error 

more specifically. 
ERRf\HC 8 Y If RCODE returned 1 or 2, this field will contain an 

MIC code specifying the error. 
APPN 1 N This field specifies whether FTS should use (APPN) 

capabilities of locating a S/36 that may not be directly 
connected to the local S/36. Valid values for this field 
are Y (yes), N (no), or none. If no value is specified, the 
default is N. 



26 5/36 Power Tools 

Figure 2-4 Parameter meanings for file transfer 

Parameter Length Required Meaning 

QUALl 8 Y This field contains the name of the file to be transmit
ted or received (source file name). File groups are not 
allowed here. 

QUAL2 6 N This optional field may contain the file date of the file 
name specifed in QUALl. 

QUAL3 8 Y This field is required to be blank. 
QUAL4 8 N This optional field specifies the target file name for the 

transfer. If no value is specified, the source file name 
from QUALl is used. 

QUALS 5 N Target system file date. If used, this field contains the 
file creation date for the file specified by QUAL4. 

QUAL6 8 Y This parameter is required to be blank for file transfer. 

Figure 2-5 Parameter meanings for library member transfer 

Parameter Length Required 	 Meaning 

QUALI 8 Y N arne of the library containing the member to be copied. 
QUAL2 6 Y Library member type to be transferred. Valid values 

are: SOURCE, PROC, LOAD, and SUBR. 
QUALJ 8 Y Name of the library member to be transferred. 
QUAL4 8 N Name of the library that will contain the transferred 

library member. If no value is specified for this field, 
the library name from QUALl is used. 

QUALS 6 Y This field is required to be blank. 
QUAL6 8 N This field indicates the name of the library member at 

the target system. If this field isn't specified, the name 
from QUAL3 is used as the target system 

RLABLAPPNlFigure 2-6 
Procedure FTSPRCProcedure 

FTSPRC * 	 This procedure will transmit or receive entire data files or library 
members to/from a remote S/36. 

Parameters: 

Pl-S)end or R)eceive Data 

P2-Enabled Location Name (MUST be enabled) 

P3~Local File or Library Name 

P4~Library Member Name (leave blank for files) 

P5~L;brary Member Type (leave blank for files} 

P6~Remote File or Library Name 




Communications 27 

P7=Remote Member Name (leave blank for files) 
P8"Replace Existing File or Library Member (YIN) 
P9=Password (use if remote system has password security) 

P10,Use APPN (YIN) 

II IFF '?17'1 IFF '727'1 IFF '737'/ GOTO DOlT 
* 
II PROMPT MEMBER-FTSPRGFM,FORMAT-Sl ,START-l ,LENGTH '1,8,8,8,6,8,8,1,4,1' 

/1 IF ?CD7=2003 RETURN 

II ELSE IF 7CD7-2007 RETURN 

II ELSE IF ?C07=2005 EVOKE FTSPRC *ALL 

II ELSE GOTO DOlT 

I I RETURN 


I I TAG DOlT 


II LOCAL BLANK-*ALL 

II LOCAL OFFSET-l ,DATA-'71?' 

I I LOCAL OFFSET - 2, OATA- '? 37 ' 

II LOCAL OFFSET-l0,DATA-'?57' 

II LOCAL OFFSET-16,DATA-'14?' 

II LOCAL OFFSET-24,DATA-'?67' 

II LOCAL OFFSET-38,DATA-'?7?' 

II LOCAL OFFSET-45,DATA-'?87' 

II LOCAL OFFSET-47,DATA-'?27' 

II LOCAL OFFSET-55,DATA·'?97' 

II LOCAL OFFSET-68,DATA-'710?' 


I I LOAD FTSPRG 

II RUN 


II IF ?L'59,1 '7=0 RETURN 

II MEMBER USER1-#FT#Ml ,LIBRARY-#LIBRARY 

II * ?L' 54,4' 7 

/1 PAUSE 


Figure 2-7 

Program FTSPRG 

FTSPRG
H*""''''''''' _.............................................. * ..... _................ * ............ _ .............. * ........... -* ..... * * * ...... * .... * 

H* 

H* Program FTSPRG 

H* 

H* This program will use SUBRF2 to either transmit or receive a file 
H* or a library member tolfrom another S/36. The remote S/36 must 
H* have been enabled using the ENABLE procedure. 
H* 

H* The parameters for SUBRF2 are defined in the LOA. 

H* __ .*-----_.._it_._*_._.H--*.--_._._._-_._._-_ .... __ ._-_. __ .. _-_ .. ___ ._. __ . 
H* 
I UDS 
I 1 FCODE 
I 9 QUALI 
I 10 15 QUAL2 

16 23 QUAL3 
24 31 QUAL4 
32 37 QUAL5 
38 45 QUAL6 
46 46 REPL 
47 54 LOCNAM 
55 58 PWORD 
59 59 RCODE 
60 67 ERRM IC 
68 68 APPN 

1* 
C*** ••• 111 ... *** ...... *_ ..... ** .. ****"" *** .. *** .-11 ...... it ••• it "'*. __ .* .... it '" ••• * *** * __ ** * 
C' 
C* In the 'C' specs of this program, I check to see if this program 



28 5/36 Power Tools 

e· is going to receive a file/library member from the remote system 
c· If so, the program swaps QUAL 1 with QUAL4 and QUAL2 wi th QUAL6. 
C· Why? Because FTS uses SOURCE and TARGET names and I prefer to use 
e· names as they appear on the local and remote system 
c· 
C** *****.*******.*********** .. *** ****** *** *** ..... *.* *** ........ 11-* *** ....... ** .. 

c· 
c 
c 
c 
c 
c 
c 
c 
c 
C· 
e 
e 
e 
e 
c 
c 
c 
e 
c 
e 
c 
c 
e 
c 
C' 
C 
C' 

Figure 2·8a 

Prompt screen for 
specifying FTS 
parameters 

Figure 2·8b 

SFGR 
specifications for 
FTS parameter 
prompt screen 

FCODE 	 I FEQ 'A' 

MOVE QUAL 1 TMP 

MOVE QUAL4 QUAL1 

MOVE TMP QUAL4 

MOVE QUAL3 TMP 

MOVE QUAL6 aUAL3 

MOVE TMP QUAL6 

END 


EXIT SUBRF2 
RLABL eCODE 
ALABL QUAL1 
ALABL QUAL2 
RLABL QUAL3 
RLABL QUAL4 
ALABL QUAL5 
RLABL QUAL6 
RLABL REPL 
RLABL LOCNAM 
RLABL PWOAD 
RLABL ReODE 
RLABL ERAMIC 
RLABL APPN 

SETON 	 LR 

** Send or Receive Files or Library Members to/from a Remote System ** 

Send or Aeceive Data (S or R) 

Remote Location Name (must be enabled). 

Local Library or Flle Name. 

Library Member Name (for transferrlng library members) 

Library Member Type (for transferring library members). 

Remote Library or File Name 

Remote Member Name (for transferring library members) 

Replace existing File or Library MembRr (Y/N) 

Password. 

Use APPN capabilities (YIN) 

Cmd3 0 Return Cmd5-Evoke 

4 
SS1 YY Y 23C[G 
D 70 7Y 
Ds or Library Members 
D 51 4 7Y 
D or R) 
DFCOOE 1 466Y Y 
D 57 6 7Y 
Dust be enab 1 ed) . 
DLOCNAM 8 666Y Y 

Y C·· Send or Rece i ve F i 1eX 
to/from a Remote System ** 

CSend or Receive Data (SX 

y 
CRemate Location Name (mX 

y 



Communications 29 

0 57 B 7Y Clocal library or File NX 
Dame. 
OQUAl1 B B66Y Y Y 
0 5710 7Y Clibrary Member Name ( foX 
Dr transferring library members). 
OQUAl3 B1066Y Y Y 
0 5712 7Y Clibrary Member Type (foX 
Dr transferring library members). 
OQUAl2 61266Y Y Y 
0 5714 7Y CRemote Library or File X 
ONeme 
DQUAL4 B1466Y Y Y 
0 11476Y C' 
0 5716 7Y CRemote Member Name ( forX 
o transferring library members) 
OQUAl6 B1666Y Y Y 
0 11676Y C' 
0 5718 7Y CReplace existing File oX 
Dr Library Member (YIN) 
OREPL ll866Y Y Y 
0 l1876Y C' 
0 5720 7Y CPassword. .X 
0 
OPWORO 42066Y Y Y 
0 12076Y C' 
DFAOO04 5722 7Y CUse APPN capabilities (X 
OY/N) 
OAPPN 12266Y Y Y 
OFAOO03 12276Y C' 
0 112420Y CCmd3~Return 

0 102445Y CCmd5-Evoke 

TransmiHing 5/36 Obiect Code 
by Gary T. Kratzer 

program by Mel Beckman 

a 
Code on diskette: 


Procedure MAKE$F 
RPG programs MAKE$F, MAKMEM 
Screen format member MAKE$FFM 
Assembler subroutine SUBRCS 

Utility With the increasing popularity of public electronic mail and bulletin board 
MAKE$F systems, more and more people want to transmit S/36 object programs to 
eliminates other users via an electronic medium. Transmitting object programs rather 
inaccurate than source programs lets recipients run the programs without having a 
interpretation of compiler for the original source language. 
transmittedcode To transmit object code electronically, however, you must first overcome 
by using the some difficulties. These difficulties involve representing data in a manner 
IBM-supplied that ensures that the message goes through clearly. Object programs are 
$FEFIX library stored as binary data containing non printable characters, while electronic 
memberpatch mail is stored as text and is restricted to printable characters - the letters A 
utility. to Z, numbers, and symbols. When you transmit object programs in binary 

form over communications lines, communications software misinterprets the 
non printable characters as control characters, garbling the data at the receiv
ing end. Also, most electronic networks use ASCII character encoding, 
while the S/36 uses IBM's EBCDIC character set. Any message exchanged 



30 5/36 Power Tools 

Figure 2-9 

Utility 
MAKE$F 
overview 

between a S/36 and an electronic network (or between two S/36s via an elec
tronic network) usually undergoes translation from EBCDIC to ASCII and 
vice versa, a difficult proposition under the best of circumstances. 

To solve these potential transmission problems, utility MAKE$F con
verts the binary data into hexadecimal "nibbles" and thereby uses two 
characters to represent each eight-bit binary byte. Under this scheme, the 
binary value 10011010 (X'9A') is transmitted as two characters, 9 and A. 
Anyone-byte binary value can be represented hexadecimally by a combi
nation of digits 0 through 9 and letters A through F. Because these are 
printable characters and because these characters survive EBCDIC/ASCII 
translation, they can be safely transmitted electronically as a plain text mes
sage. On the receiving S/36, the hex representation of the program is con
verted back into binary form and stored in a S/36 library member. 

There are two types of S/36 object modules: 0- and R-modules. The 
MAKE$F utility works only with R-modules, which are usually compiled or 
assembled - but unlinked - programs. If you want to use MAKE$F on a 
compiled or assembled program, specify NOLINK at compile time (which 
creates an R-module), use MAKE$F on the R-module, and after sending 
and running the MKxxxxxx procedure on the target machine, link the R
module using IBM's OLINK procedure to create an executable O-module. 

Utility MAKE$F, which transforms the code for transmission and then 
restores it on the receiving end,comprise two sections. The first section 
consists of procedure MAKE$F, a prompt screen, program MAKE$F, and 
procedure MKSUBRCS. The first section is run on Iche sending system to 
create a patch procedure, MKxxxxxx (xxxxxx being the object program 
name), that will be transmitted to the receiving system. Utility MAKE$F's 
second section, run on the receiving system, consists. of the transmitted 
patch procedure and program MAKMEM. The transmitted patch proce
dure contains the hex representation of the object program. When the 
patch procedure is run on the receiving system, it calls MAKMEM and 
$FEFIX to re-create the object program in a specified library. Figure 2-9 
shows how the two sections of MAKE$F are interrelated. 

Electronic Mail Network 

Sending System Receiving System 

MAKE$F MKx.xxxxx 
procedureUtility 



Communications 31 

A more detailed review of the first section of utility MAKE$F shows it 
to be straightforward. When you type in MAKE$F, prompt screen MAKE$F 
(Figure 2-10a; Figure 2-10b shows the prompt screen specifications.) On 
this screen, you enter the name of the program to be converted to hex nib
bles and the library it resides in. You also may designate the library that will 
contain the object program on the receiving system. (The default library is 
#LIBRARY.) Procedure MAKE$F (Figure 2-11) then uses the IBM-sup
plied utility $MAINT to copy the object program in binary form into file 
BINARY. This file consists of records eight bytes long; the first seven 
records contain the library directory entry; the remaining records contain the 
binary object code. Program MAKE$F (Figure 2-12) converts all of these 
records into hex form and includes them in the MKxxxxxx patch procedure 
being created in file OUTPUT. Procedure MAKE$F then calls $MAINT to 
copy the procedure contained in file OUTPUT to the library containing the 
original object program. As a safety feature, program MAKE$F automati
cally generates special checksums that will be used by $FEFIX on the 
receiving system to detect any transmission-induced errors in the hex data. 
MAKE$F uses assembler subroutine SUBRCS to compute checksums. 

Figure 2-13 shows a sample patch procedure, MKSUBR$C, that was 
produced on the sending system by the first section of utility MAKE$F. 
Procedure MKSUBR$C contains the hex representation for an assembler 
subroutine named SUBR$C. 

At this point, MAKE$F has created a patch procedure ready for trans
mission on an electronic mail system or bulletin board system as a plain 
text message. The recipient of this message need only extract and run pro
cedure MKSUBR$C to re-create the object program R-module SUBR$C in 
#RPGLIB (the library specified on the prompt screen). 

Before you run procedure MKSUBR$C on the receiving system, you 
must have previously compiled program MAKMEM (Figure 2-14). Proce
dure MKSUBR$C first stores the hex representation of the library directory 
entry in the LOA, along with the number of records in the original 
BINARY file. Program MAKMEM can then re-create the BINARY file and 
insert the library directory entry into the first seven records. To do this, it 
retrieves the hex representation of the directory entry from the LOA and 
converts it into binary representation. The remaining records are written as 
binary zeros to reserve space for the program object code that will be 
inserted into R-module SUBR$C. 

$MAINT runs next, reading file BINARY and creating a new library 
member in the target library (#RPGLIB in this example). $MAINT uses 
the first seven records from BINARY to create a library directory entry 
identical to the original library directory entry from the sending system, 
with the remaining records holding space in the currently empty object 
library member. Finally, patch utility $FEFIX inserts the actual binary 
object code into the newly created library member. When it finishes, object 



32 5/36 Power Tools 

Figure 2-1 Oa 

MAKE$F 
screen 

Figure 2-1 Ob 

Screen format 
member 
MAKE$FFM 

program SUBR$C exists in #RPGLIB, identical in every way to the original 
object program from the sending system. 

Utility MAKE$F opens up electronic mail networks for exchanging 
object programs between S/36s. Because programs can be exchanged with
out being limited by the compilers available on the receiving end, useful 
routines written in uncommon languages like FORTRAN and assembler 
can be shared more easily. 

MAKESF PROCEDURE Optional-* 

Creates a SFEFIX procedure to recreate the 
object code for a subroutine member 

Name of member to be recreated 

Name of library containing R member to be recreated 

Name of library to contain the recreated member 

(this is also the library that will contain the MKxxxxxx proc) 


Cmd4-Put on Job queue Cmd7-Cancel procedure 

4 
SMAKESFPl YY DG 
DFLOOOl 16 130Y CMAKESF PROCEDURE 
DFLOO02 10 169Y COptional-* 
DFLOOO3 42 319Y CCreates a SFEFIX procedX 
Dure to recreate the 
DFLOO04 35 422Y Cobject code for a subroX 
Dutine member 
DFLOO05 63 7 3Y CName of member to be reX 
Dereated 
DFLOOO6 6 768Y Y Y 
DFLOOO7 2 775Y Y Y Y 
DFLODll 63 9 3Y CName of library containX 
Ding A member to be recreated 
DFL0012 8 968Y Y Y 
DFAOOOl 6412 3Y C (this is also the libX 
Drary that will contain the MKxxxxxx proc) 
DFAOOOl 6311 3Y CName of library to contX 
Dain the recreated member 
DFA0002 81168Y Y y 
DFA0003 11178Y C' 
DFA0004 2124 2Y CCmd4-Put on job Queue 
DFA0005 212453Y CCmd7-Cancel procedure 



Communications 33 

Figure 2-11 

Procedure MAKESF is a utility that generates a SFEFIX procedure to re-create a given 
MAKE$F 	 subroutine or load member. $FEFIX is the IBM library patch utility that 

exists on every S/36. When object members (R or 0) are converted 
to this format. each hex byte is represented by two characters. This 
hex nibble representation will survive conversion between EBCDIC and 
ASCII. and ;s thus a useful way to exchange object members on electronic 
bulletin board services. MAKESF computes checksums that are verified 
when the object member is re-created, thus ensuring integrity of 
transported object code. 

* Parm 1: name of module to be re-created 
2: 	 name of library containing input module (and to contain MK, proc) 
3: 	 name of library to receive re-created module when the MK .. proc 

1S executed (defaults to #LIBRARY) 

II 	IF ?1?1 IF JOBQ-NO IF EVOKED-NO + 

PROMPT MEMBER-MAKESFFM.FORMAT-MAKESFPl ?3·#LIBRARY·? 
II IF ?CD?/2007 RETURN 
II IF ?CD?/2004 JOBQ ?CLIB?MAKESF.?1??2??3? 
II IF ?CD?/2004 RETURN 
II IF JOBO-NO IF EVOKED-NO + 

·*MAKESF* - Make a SFEFIX proc to recreate a subroutine member' 

* Create a disk file containing the member to be cloned 

II IF DATAFI-BINARY?WS? DELETE BINARY?WS?Fl 
II LOAD SMAINT 
II FILE NAME-BINARY?WS?BLOCKS-25.EXTEND-25 
I I RUN 
II COpy FROM-?2?TO-DISK. FILE-BINARY?WS? ,LIBRARY R,NAME-?l? 
I I END 

* Set up LOA and run MAKESF to create SFEFIX procedure with checksums 

II IF DATAFI-MAKESF?WS? DELETE MAKESF?WS?Fl 
II LOCAL OFFSET-256.DATA-·?1?' .BLANK-6 Modu 1 e name 
II LOCAL OFFSET-263.DATA-·?2?·.BLANK-B Library name 
II LOCAL OFFSET-271 .DATA-·?3·#LIBRARY·?· .BLANK-B Target 1 i brary name 
II LOCAL OFFSET-279.DATA-·?F'A.BINARY?WS?·?· # of records in BINARY file 

II LOAD MAKESF 
II FILE NAME-BINARY.LABEL-BINARY?WS?RETAIN-S 
II FILE NAME-OUTPUT.LABEL-MAKESF?WS?RECORDS-500.EXTEND-500 
I I RUN 
* 
* Place the MKxxxxxx SFEFIX procedure in the library 

I I LOAD SMAINT 
II FILE NAME-MAKESF?WS?RETAIN-S 
I I RUN 
II COpy FROM-DISK.FILE-MAKESF?WS?TO-?2?RErAIN A 
II END 

Figure 2-12 

Program MAKE$F 
4 B 

0001 H 064 MAKESF 
0002 F* 
0003 F* Make SFFFIX procedure to recreate an R or 0 module 
0004 F* 
0005 FBINARY ID F8000 8 DISK 
0006 FOUTPUT 0 F9600 96 DISK 
0007 E BINB 4 B B-byte binary chunks 
0008 E BIN 32 1 Binary string 
0009 HEX 32 Hex string 
0010 HOI 16 Hex digit table O-F 
0011 HNY 16 1 Hex nybble table O-F 
0012 E DCL 20 80 OCL text 
0013 E OUT 96 1 Output work area 



34 5/36 Power Tools 

0014 I' 
0015 I' SMAINT binary input file contains library member to be converted 
0016 l* 
0017 IBINARY 
0018 I 8 BIN8,X 
0019 I' 
0020 l* Redefine BIN8 and BIN 
0021 I' 
0022 I OS 
0023 I 32 BINS 
0024 I 32 BIN 
0025 I' 
0026 I' Redefine OUT alray as a 97-byte field last byte requIred by SUBRCS 
0027 J' 
0028 I DS 
0029 I 96 OUT 
0030 97 OUTPUT 
0031 I' 
0032 I' Breakdown of hex address for incrementing 
0033 I' 
0034 OS 
0035 4 AODR 
0036 1 ADDRI 
0037 2 ADDR2 
0038 3 ADDR3 
0039 4 4 ADDR4 
0040 I' 
0041 1* Local data area contains procedure parameters and size of file BINARY 
0042 I' 
0043 I UOS 
0044 I 256 261 I NPMEM 
0045 I 263 270 INPLIB 
0046 I 271 27S TRGUB 
0047 I 279 2860#RECS 
0048 C/EJ ECT 
0049 C' 
0050 C' Initialization 
0051 C' 
0052 C MOVE '0000' ADOR Set starting address 
0053 C BITOF'01234567'HEXOO Make X'OO' constant 
0054 C' 
0055 C* Initialize hex conversion tables 
0056 C' 
0057 C BITOF'01234567'XOO Constant X'OO' 
0058 C MOVE XOO HNY Clear hex values ARRAY WITH X'OO' 
0059 C BlTON'7' HNY, X'Ol' 
0060 C BITON'6' HNY,3 X'02' 
0061 C SITON'67' HNY,4 X'03' 
0062 C BITON'5' HNY,5 and on. 
0063 C BITON'57' HNY,6 and on. 
0064 C BITON'56' HNY,7 ad nauseum 
0065 C BITON'567' HNY,8 
0066 C BITON'4' HNY,9 
0067 C BITON'47' HNY,10 
0068 C BITON'46' HNY,11 
0069 C BITON'467' HNY,12 
0070 C BITON'45' HNY,13 
0071 C BITON'457' HNY,14 
0072 C BITON'456' HNY,15 
0073 C BlTON' 4567' HNY, 16 
0074 C MOVEA'01234567'HDI,1 Initialize hex digit 
0075 C MOVEA'B9ABCDEF'HDI,9 table from O-F 
0076 C' 
0077 C* Read directory entry (seven 8-byte records) and convert to tlex 
0078 C' 
0079 C DO 4 X 20 For the first 4 recs 
OOBO C READ BINARY Read into BIN8 arry 
0081 C END End DO 
0082 C EXSR BINHEX Convert to hex 
0083 C MOVEAHEX,l DIRA 64 Save as part A 
0084 C' 
0085 C MOVE HEXOO BIN Clear the BIN array 
0086 C DO 3 20 For the last 3 recs 
0087 C READ BINARY Read into BIN8 arry 
0088 C END End DO 
0089 C EXSR BINHEX Convert to hex 



Communications 35 

0090 C MOVEAHEX, 1 DIRB 
0091 C" 
0092 C" Output initial lines of procedure 
0093 C" 
0094 C EXCPTFRONT 
0095 CjEJECT 
0096 C" 
0097 C" 
0098 C" 
0099 C 
0100 C 
0101 C 
0102 C 
0103 C 
0104 C 
0105 C 
0106 C 
0107 C 
0108 C" 
0109 C" 
0110 C" 
0111 C 
0112 C 
0113 C 
0114 C 
0115 C 
0116 C 
0117 C 
0118 C 
0119 C 
0120 C 
0121 C 
0122 C 
0123 C 
0124 C 
0125 C' 
0126 C* 
0127 C" 
0128 C 
0129 C 
0130 C 
0131 C 
0132 C" 
0133 C* 
0134 C" 
0135 C 
0136 C 
0137 C 
0138 C 
0139 C 
0140 C 
0141 C 
0142 C" 
0143 C" 
0144 C' 

'0145 C 
0146 C 

Build and output HDR line, Format: HDR 

MOVEA'BLANKS OUT,l 
MOVEA'HDR' OUT,l 
MOVEAINPMEM OUT,ll 
MOVEA'OOOOO' OUT,16 
EX IT SUBRCS 
RLABL OUTPUT 
RLABL CHKSUM 
MOVEACHKSUM OUT,6 
EXCPTOUTLIN 

8ulld and output PTF line, Format: PTF 

MOVEA"BLANKS 
MOVEA' PTF' 
MOVEA'R' 
MOVEAINPMEM 
Z-ADD12 
LOKUPOUT,X 
MOVEA' ,99, , ' 
ADD 5 
MOVEATRGL I B 
EXIT SUBRCS 
RLABL 
RLABL 
MOVEACHKSUM 
EXCPTOUTL I N 

Loop to produce DATA lines, with 

EOF 	 DOUEO'Y' 
EXSR DATA 
EXSR BUMP@ 
END 

OUT,l 
OUT,l 
OUT,ll 
OUT ,12 
X 

OUT,X 
X 
OUT,X 

OUTPUT 
CHKSUM 
OUT,6 

48 	 Save as part B 

cksm inpmeOOOOO 

Clear output area 
Built HDR 	 line 

Compute checksum 

Insert checksum 
Emit the 1; ne 

cksm Tmodnam,lv .. libnam 

Clear output area 
Bu il d PTF 	 1 i ne 

11 
(Rel lev always 99) 

Compute checksum 

Insert checksum 
Emi t the 1 i ne 

checksums, until done 

Do unt ; 1 EOF 
Generate data line 
Bump addr by X'20' 

End 

Build and 	 output END line with checksum. Format: END cksm 

MOVEA"BLANKS OUT,l Clear output area 
MOVEA' END' OUT,l Bui 1d END 1 ; ne 
EX IT SUBRCS Compute checksum 
RLABL OUTPUT 
RLABL CHKSUM 
MOVEACHKSUM OUT,6 Insert checksum 
EXCPTOUTLIN Emit the line 

End of program 

END 	 TAG 

SETON LR 


0147 CjEJECT 
0148 C" 
0149 C* Subroutine to build and output a DATA line 
0150 C* Format: DATA cksm addr hexdatastri ng 
0151 C* 
0152 C DATA BEGSR 
0153 C" 
0154 C MOVEAHEXOO 
0155 C DO 4 
0156 C NLR READ BINARY 
0157 C NLR END 
0158 C LR MOVE 'Y' 
0159 C LR X COMP 1 
0160 C LR 11 GOTO DATAX 
0161 C' 
0162 C EXSR BINHEX 
0163 C' 
0164 C MOVEA"BLANKS 
0165 C MOVEA'DATA 

BIN 
X 20 

LR 

Clear binary string 
Get 32 bytes data 

EOF 
11 

If LR, set EOF flag 
I f no records read 
Get out 

OUT,l 
OUT,l 

Conve rt to hex 

Clear output area 
'DATA' 



36 5/36 Power Tools 

0166 C MOVEA'OO' OUT ,11 'DATA 00' 
0167 C MOVEAADDR DUT,14 'DATA 00 @@@@' 
0168 C MOVEAHEX, 1 OUT,19 Copy hex datastream 
0169 C' 
0170 C EXIT SUBRCS Compute checksum 
0171 C RLABL OUTPUT 
0172 C RLABL CHKSUM 4 
0173 C MOVEACHKSUM OUT,6 Insert checksum 
0174 C EXCPTOUTLI N Emit the 1 i ne 
0175 C' 
0176 C DATAX ENDSR 
0177 C/EJ ECT 
0178 C' 
0179 C' Subroutine to convert binary data to hexadecimal. 
0180 C' Input: BIN An arry of 32 binary bytes to be convertee 
0181 C' Output: HEX An array of 32 hex nybble pairs 
0182 C' 
0183 C BINHEX 8EGSR 
0184 C' 
0185 C MOVEA'BLANKS HEX Clear output area 
0186 C DO 32 X For each bin byte 
0187 C' 
0188 C MOVE 8IN,X 8ITS Get binary byte 
0189 C BITOF'0123' BITS Clear high-order 
0190 C Z-ADDl Y 20 
0191 C BITS LOKUPHNY,Y 11 Lookup hex nibble 
0192 C MOVE HOI. Y HEX,X Emit right hex nyb 
0193 C' 
0194 C MOVE BIN,X BITS Get Ibi nary byte 
0195 C BITOF' 4567' 8ITS Clear low-order 
0196 C TESTB'O' BITS 11 Shift 
0197 C 11 BITON'4' BITS bits 
0198 C TESTB'l ' BITS 11 , n 
0199 C 11 BITON'5' BITS high 
0200 C TESTB'2' BITS 11 l1ybble 
0201 C 11 8ITON' 6' BITS to 
0202 C TESTB'3' BITS 11 low 
0203 C 11 BITON'7' BITS nybble 
0204 C BITOF' 0123' BITS Clear" high-order 
0205 C Z-ADDl Y 
0206 C BITS LOKUPHNY, Y 11 Lookup hex nybble 
0207 C MOVELHDI ,Y HEX, X Emi t 1eft hex nyb 
0208 C' 
0209 C END End DO 
0210 C ENDSR 
0211 C/EJECT 
0212 C' 
0213 C· Subrout ; ne to bump a hex address by X'20' 
0214 C' Input: ADDR data structure containing four-digit hex address 
0215 C' Output: ADDR is incremented by X'20' 
0216 C' 
0217 C BUMP@ BEGSR 
0218 C Z-ADDl X 20 
0219 C ADDR3 LOKUPHDI,X 10 Lookup hex digit 
0220 C ADD 2 X Bump for X'20' 
0221 C X COMP 16 11 If overfl ow 
0222 C 11 SUB 16 X Then normal ize 
0223 C MOVE HDI. X ADDR3 And store 
0224 C' 
0225 C 11 Z-ADDl X 20 If carry 
0226 C 11 ADDl'l2 LOKUPHDI. X 10 Lookup hex digit 
0227 C 11 ADD 1 X Bump for X'100' 
0228 C 11 X COMP 16 12 If overflow 
0229 C 11 12 SUB 16 X Then normalize 
0230 C 11 MOVE HDI,X ADDR2 And store 
0231 C' 
0232 C 11 12 Z-ADDl X 20 If ca rry 
0233 C 11 12 ADDRl LOKUPHDI,X 10 Lookup hex digit 
0234 C 11 12 ADD 1 X Bump for X'1000' 
0235 C 11 12 MOVE HDI,X ADDRl And store 
0236 C' 
0237 C ENOSR 
0238 O/EJECT 
0239 O' 
0240 O· Front part of procedure 
0241 O· 



Communications 37 


0242 OOUTPUT FRONT 
0243 0 OCl,l 80 

0244 0 INPMEM 31 

0245 0 FRONT 
0246 0 OCl,2 80 

0247 0 18 'R' 
0248 0 INPMEM 32 

0249 0 TRGLI 8 52 

0250 0 FRONT 
0251 0 OCl,3 80 

0252 0 FRONT 
0253 0 OCl,4 80 

0254 0 #RECS 34 

0255 0 FRONT 
0256 0 OCl,5 80 

0257 0 FRONT 
0258 0 OCl,6 80 

0259 0 OIRA 65 

0260 0 49 '99' 
0261 0 FRONT 
0262 0 OCl,7 80 

0263 0 FRONT 
0264 0 OCl,8 80 

0265 0 DIRB 49 

0266 0 FRONT 
0267 0 OCl,9 80 

0268 0 FRONT 
0269 0, OCl,10 80 

0270 0 FRONT 
0271 0 OCl,11 80 

0272 0 FRONT 
0273 0 OCl,12 80 

0274 0 FRONT 
0275 0 OCl,13 80 

0276 0 FRONT 
0277 0 OCl,14 80 

0278 0 FRONT 
0279 0 OCl,15 80 

0280 0 FRONT 
0281 0 OCl,16 80 

0282 0 TRGLI B 50 

0283 0 FRONT 
0284 0 OCl.17 80 

0285 0 FRONT 
0286 0 OCl,18 80 

0287 0 INPMEM 22 

0288 0 FRONT 

0289 0 OCl,19 80 

0290 0 FRONT 
0291 0 OCl,20 80 

0292 O· 
0293 0* Variably built lines corltaining checksums 
0294 O· 
0295 0 OUTLIN 
0296 0 OUT 96 


Procedure text 

II COpy lIBRARY-P.NAME MKxxxxxx 
II • 'Re-creating x-module xxxxxx in library xxxxxxxx 
~ Build an empty member in a $MAINT file with the correct directory entry
II LOCAL OFFSET-201 ,OATA '00000000' Number of SMAINT records 
II lOCAL OFFSET-209,DATA-+ 
'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
II LOCAL OFFSET-?73,DATA-+ 
'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' 
I I lOAO MAKMEM 
II FILE NAME-BINARY,LABEl-SMAINT,RETAIN·J,BlOCKS·25,EXTEND-25 
II RUN 
* Copy renamed member to target 11brary
II LOAD SMAINT 
II FILE NAME-SMAINT,RETAIN-S 
II RUN 
II COpy FROM DISK,FIlE-SMAINT,RETAIN-R,TO-targ11b 
II END 
* Patch the new xxxxxx member to insert object code 
II lOAD SFEFIX 
I I RUN 



38 5/36 Power Tools 

Figure 2-13 

Sample patch 
procedure 
MKSUBR$C 

Figure 2-14 

Program 
MAKMEM 

1/ * 'Ae-creating A-module SUBASC in library #APGLIB ' 
* Build an empty member in a SMAINT file with the correct directory entry 
// LOCAL OFFSET-201,DATA- '00000071' Number of SMAINT records 

// LOCAL OFFSET-209,DATA-+ 

'D9E2E4C2D95BC3404000000400000000000060020000009900022000110001187, 

II LOCAL OFFSET-273,DATA-+ 

, 091 7114431 000000000000000000000000000086AOOOOOOO ' 

// LOAD MAKMEM 

II FILE NAME-BINAAY,LABEL-SMAINT,RETAIN J,BLOCKS-25,EXTENIl-25 

// AUN 

* Copy renamed member to target librar'Y 
I I LOAD SMAI NT 
II FILE NAME-SMAINT,RETAIN-S 
I I RUN 
II COPY FROM-DISK,FILE-SMAINT,RETAIN-R,TO-#RPGLIB 
1/ END 
• Patch the new SUBRSC member to insert object code 
// LOAD SFEFIX 
1/ AUN 
HDA 38AA SUBRSOOOOO 
PTF CE87 RSUBRSC,99, ,#RPGLIB 
DATA 2M2 00 0000 E20BE2E4C2D95BC300000000DDOOOOOOOOOOOOOOOOOOOOOOOOOOOO0000000000 
DATA B306 00 0020 0000000000000000000000000000000000000000000000000000000000000000 
DATA E460 00 0040 E32D002D340800A93401 OOA 1 340200A53501 00A91 C0200C0023COOOOC El C0200 
DATA E07A 00 0060 01 020FOl 0001 OOCFOEOl 00CFOOD90EOl 00A900002D292723211 C181 30FOB0703 
DATA 46BB 00 OOBO E32D005BOODC3501 00A94D020200CDF2815CODOl 0001 OOCDFl B41 B3C0000021 C 
DATA B3AO 00 OOAO 0200D502C08700AAOC00008600D30EOl 0003000000202927231 El A1311 OA0501 
DATA FCDS 00 OOCO E32E008A00090D01000300CFF282140C00008600CFOF00008600D93702000336 
DATA 821 F 00 OOEO 0200CFOC00008700863501 00016COOOOOOOEOl 002824221 El A16141 OOE070501 
DATA DCB8 00 0100 E33000BBOODl 00D30FOl 00CFOOD3 Fl 876EOEOl 00A900DCC201 0000C2020000CO 
DATA A458 00 01 20 870000350200D5B04000F20114370200D90F0000030000302C2 2121009070301 
DATA F4ED 00 0140 E30EOOCAOOD9Fl0213E202013COOOOD3F0870000000000000000000000000000 
DATA 9E33 00 0160 000000000000000000000000000000000000000000000000000000OOOOOOOBOl 
DATA 6E9D 00 0180 E30600DCOOOOOOOl 000003000000000000000000000000000000000000000000 
DATA 6 F 65 00 01 AO 0000000000000000000000000000000000000000000000000000000000000000 
DATA 5622 00 01 CO C500000COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0000000000 
DATA 76ES 00 OlEO 0000000000000000000000000000000000000000000000000000000000000000 
END 2843 

4 7 8 
0001 064 MAKMEM 
0002 F* 
0003 F4 Create an empty SMAINT file with directory entry 
0004 F* This file will be read by SMAINT to create an empty R- or O-module 
0005 F* for patching by SFEFIX, 
0006 F* 
0007 FBI NARY 0 F8000 S DISK 
0008 E BINS 7 B 8-byte binary chunks 
0009 E BIN 56 Binary byte string 
0010 E HEX 56 H~JX nybble string 
0011 1* 
0012 1* Redefine BINS and BIN (which will contain the directory entry) 
0013 1* 
0014 I OS 
0015 I 56 BIN8 
0016 56 BIN 
0017 1* 
0018 1* Local data area contains number of records to put in fi Ie BINARY 
0019 1* and the library directory entry in hexadecimal flotation. 
0020 1* 
0021 I UDS 
0022 I 201 2080#RECS 
0023 I 209 320 HEX 
0024 C/EJECT 
0025 C* 
0026 C· Initialization 
0027 C* 
0028 C BITOF'01234567'HEXOO Make X'OO' constant 
0029 C* 
0030 C* Convert 56 directory entry bytes from hex nybbles to binary 
0031 C' 

0032 C DO 56 x 50 For each hexnyb pair 




Communications 39 

0033 C MOVE HEX,X NYB Get right nybbl e 
0034 C EXSR CNVNYB Convert to binary 
0035 C MOVE BINNYB BINARY Save it 
0036 C MOVELHEX,X NYB Get 1eft nybb 1 e 
0037 C E'XSR CNVNYB Convert to binary 
003B C TESTB' 4' BINNYB 11 Shift 
0039 C 11 BITON'O' BINARY bits 
0040 TESTB' 5' BINNYB 11 1n 
0041 11 BITON'l ' BINARY low nybble 
0042 TESTS'6' BINNYB 11 of BI NNYB 
0043 11 BITON' 2' BI NARY to high 
0044 TESTB'7' BINNYB 11 nybble of 
0045 C 11 BITON' 3' BINARY BINARY 
0046 C MOVE BINARY BIN ,X Save b:1 nary byte 
0047 C END End DO 
0048 C' 
0049 C' Output directory entry to SMAINT binary file 
0050 C' 
0051 C DO 7 50 For each 8-bytes 
0052 C EXCPTB] N REC Output a record 
0053 C SUB 1 #RECS Deer tota 1 records 
0054 C END End DO 

0055 C' 

0056 C' Output zero- f i 11 ed data records 

0057 C' 

0058 C DO #RECS X For the rees 1eft 

0059 C EXCPTZEROS Output zeroed rees 

0060 C END End DO 

0061 C' 

0062 C' End of program 

0063 C' 

0064 C SETON LR 

0065 C/EJECT 

0066 C' 

0067 C' Subroutine to convert a hex nybble to a binary nybble 

0068 C' 

0069 C CNVNYB BEGSR 

0070 C MOVE NYB BI NNYB Extract hex nybble 

0071 C BITOF'0123' BINNYB digits portion 

0072 C NYB I FLT '0 If not a through 9 

0073 C MOVE HEXOO BINNYB Then clear bin nyb 

0074 C NYB COMP 'A' 11 If 'A' 

0075 C 11 SlTON '46' BINNYB then set X'A' 

0076 C NYB CaMP B 11 If 'B' 

0077 C 11 SITON' 467' BINNYB then set X'S' 

0078 C NYB COMP 'C' 11 Etc, , , 

0079 C 11 SITON' 45' SINNYB 

0080 C NY8 CaMP '0 ' 11 

0081 C 11 BlTON' 457' BINNYB 

0082 C NYB COMP , E' 11 

0083 C 11 SITON' 456' BINNYB 

0084 C NYB COMP , F' 11 

0085 C 11 BITON' 4567 ' BINNYB 

0086 C END 

0087 C ENDSR 

0088 O' 
0089 O' Binary directory records 
0090 O' 
0091 OB I NARY BINREC 
0092 a BIN8, X 
0093 O' 
0094 O' Binary-zero records 
0095 O' 
0096 0 ZEROS 
0097 0 HEXOO 
0098 0 HEXOO 
0099 0 HEXOO 3 
0100 0 HEXOO 4 
0101 a HEXOO 
0102 0 HEXOO 
0103 0 HEXOO 
0104 0 HEXOO 



40 5/36 Power Tools 

TransmiHing 256-Byte Records with MSRJE 
answered by Ed Girou 

QI need help with multisession remote job entry (MSRJE) transmission 
from a S/36 to a mainframe. Specifically, I need a way for the S/36 to 

send records without breaking them into 80-byte records that must be 
rebuilt when received on the mainframe. Do you know how to get S/36 
MSRJE to send records as long as 256 bytes? 

A The length of records sent by S/36 MSRJE depends on the version of 
RJE, or JES Gob Entry Subsystem), used on the host end. JESZ 



Communications 41 

supports records of up to 80 bytes; JES3, with some configuration effort, 
supports records of up to 256 bytes. 

Some S/36 shops use a program that creates 80-byte transfer records by 
reading input files as variable-length data and using a compression routine, 
which lets one dataset contain multiple files and maximizes the amount of 
data transferred in one communications put. In fact, one of my clients 
includes a CRC-type (cyclic redundant check-type) counter at the end of 
the file so the decompression program on the receiving end can validate 
that the complete, correct file has been received. 

Using Screen Formats in ICF Programs 
answered by Mel Beckman 

QI have three S/36s hooked up in a multipoint environment, and I am 
attempting to use ICF (SNA Peer). After I enable the primary and one 

secondary location subsystem, I attempt to evoke a procedure on the 
remote system. I have written an RPG II program to pass the procedure 
name, library, and parameters using the ICF-defined screen format 
$$EVOK. However, I keep getting error SYS-5465, "Screen format used by 
program not found." I can't seem to find the error. Can you help me? 

A ICF programs require that a continuation (K) line be coded for the 
workstation (Figure 2-15). If this line isn't coded, workstation data 

management attempts to find a screen format named $$EVOK, which 
doesn't exist. If the continuation line is coded, workstation data 
management treats the $$EVOK name as an ICF function. 

Figure 2-15 

Continuation line for an /CF workstation file 

FICFILE 
F 

CD 80 
3. . .. 4 

WORKSTN 
KFMTS 

6 . 

"NONE 

.. 8 

Suppressing Autodial Console Messages 
answered by Nasser Shukayr 

QIf you've done any autodial applications, you know that every time the 
ACU makes a call and the phone rings, SSP issues the message: 

"SYS-8605 LINE-N CALL SUCCESSFUL TO" 

If we made only three or four calls a day, this message would be no prob
lem. But because we autodial all our branch offices repeatedly during the 



42 5/36 Power Tools 

night, we must display and clear dozens of these SYS-8605 messages when 
we come in the next morning. Can you suggest a way to stop SSP from 
issuing this less than useful information? 

AEnter the INFOMSG NO command at the system console at the end 
of the day to stop displaying informational messages. In the morning, 

enter INFOMSG YES to re-enable the display of informational messages. 

Terminating BSC Jobs Automatically 
answered by JeffSilden 

QWe have a problem with the Binary Synchronous Communications (BSC) 
on our S/36. When the system evokes the RPG II program that handles 

communications, the program sits in memory all day waiting for the phone to 
ring. Consequently, our 3:00 a.m. disk compress and library condense will not 
run, and no employees are here at the time to cancel the communications job. 

We need to run the compress daily, but we cannot afford downtime dur
ing normal business hours. Is there a way to cancel this evoked job from 
within another procedure? 

AUnfortunately, the BSC support IBM provides with the SSP is not 
. sufficient for your purposes. BSC support will "hang" until one of 

three things happens: the line is disconnected, a call comes in, or you 
cancel the job (with the Attention key or an operator command). 

An idea that comes to mind immediately would be to put a timer on the 
modem to (literally) turn out the lights at a predetermined hour. Although 
this technique would cause the program to go - almost immediately - to 
end of job, it also would generate an error messag,e. 

Perhaps your best solution would be to rewrite the application using 
the SSP-ICF Bisync Equivalence Link (BSCEL). This support is newer 
and more sophisticated, and therefore more costly. With BSCEL, you can 
add coding calls to the $$TIMER function. Such calls can allow the pro
gram to terminate automatically after a predetermined amount of time has 
elapsed without activity. The beautiful part about BSCEL (other than the 
fact that it solves your problem) is that you're just an ordinary batch BSC 
communications line and program from the other end's perspective 
hence the name of the product. 

VARYing Off Remote Devices on a Single Line 
answered by Bob Tipton 

QI find it necessary to vary off and then vary on all remote workstations and 
printers on our S/36 several times during the day. I am tired of keying in 

20 VARY commands, one for each remote device, every time I want to vary 
them off or on. Is there a better way to vary the status of remote devices? 



Communications 43 

AThere is no need to vary the status of each remote device individually 
(i.e., V OFF,Rl or V OH~P3). With one command, you can vary the 

status of remote control units on a communications line. When the status of a 
remote control unit is changed, the status of all devices attached to the control 
unit change. Thus, to change the status of remote control units (and therefore 
all devices attached to them) on line one, in console mode key the command 

VOFF"l 

to vary off the control units or 

V ON, ,1 

to vary on the control units. 

TransmiHing Orders from pes to the 5/36 
answered by Matthew Henry 

QHow can I, a wholesaler using a S/36, connect to clients who want to 
enter their orders electronically? Because my clients use PCs and 

midrange computers, I would have to be able to receive data files in both 
ASCII and EBCDIC formats. Ideally, I would like to send and receive a 
standard format via a store and forward mailbox system. I'm familiar with 
the mailbox options for the ASCII world; however, I don't know what kind 
oftelecommunications are available for EBCDIC transmissions. If it's 
possible to connect directly to a S/36, must my clients also subscribe to the 
same network, or can a service such as DASnet connect all of us? 

AThere are three possible solutions to your problem. One, check out 
IBM's 9270 Voice Response Unit (VRU), a touch-tone phone entry 

system compatible with the S/36. The unit is user programmable and lets 
customers know things such as whether you stock an item they need. Two, 
you could use IBM's Interactive Communication Facility (lCF), which is 
standard equipment on the S/36. You'll also need a modem and access to 
DASnet. Using this method is akin to using an electronic answering 
service. Or three, you could connect your S/36 to your customers; use two 
numbers - one for PC dial-ins and one for midrange computer dial-ins. 
Connect the PCs dialing in to a PC that is locally attached to your S/36. 
The other number, used by those dialing in from a midrange computer, 
would be connected directly to your S/36, which would transfer data 
directly to a mailbox-type system on your S/36. The locally attached PC 
would need PC Support/36 to transfer the PC records to the S/36 to 
translate data from ASCII to EBCDIC automatically. You can automate the 
S/36 end easily, and, depending upon how frequently you need to 
exchange data, you can automate the PC end by running PC Suppon/36 on 
an hourly basis or daily basis. 



44 S/36 Power Tools 

Communicating with a PC Several Blocks Away 
answered by Chuck Ealsly and Ed Girou 

QWe have a meat plant seven blocks down the street from our main 
office. The meat plant is on a leased line with a PC/AT running 

remote emulation. An attached Proprinter XL is configured as a 5256. 
Business conditions require a faster printer (in the 300-400 Ipm range) at 
the plant, and I see my options as either continuing as we are with the 
remote devices or using the remote devices as local devices. If we run them 
as remote devices, we'll need a different controller at the meat plant 
because PC remote emulation won't support a high-speed twinaxial printer. 
Geographically, the devices are close enough to be local devices connected 
by twinaxial or fiber-optic cable. Do you have any suggestions for getting 
either type of cable laid for a reasonable amount of money? 

AWe have two possible solutions to your connectivity problem. Solution 
one is to obtain easement rights to bury a twinaxial cable. Be sure to 

use the proper lightning arresters, and expect a lengthy "settling down" 
time interval. For some reason, underground twinaxial cable is extremely 
sensitive and causes line drops. Also, insist that the cable be run as a single 
piece of wire (Le., no cable splices). Solution two is to order an unloaded 
telephone line, which lets you use inexpensive 57.6 Kbps modems (i.e., 
direct-line drivers or short-haul modems, which cost approximately $750 on 
each end) with either a PC SDLC board, a 5X94 controller, or a used 5251 
Model 12. 

Communicating with PCs via the 5208 and DIAL/3X 
answered by Chuck Ealsly 

QOur problem involves a 5208 (ASCII link protocol converter) and 
DIAL/3X (program 5799-PCE, Feature Code 9076, Release 1.0). We 

have connected our 5208 to a S/36 (model D24) and some PS/2s with 
DIAL/3X, which lets PS/2 users use an asynchronous modem to call the 
S/36. The PS/2s are configured in the 5208 as FILEXFR terminals, and we 
added new translation tables to accommodate special Danish characters. In 
general, this setup works fine and communications are established; however, 
there are times when the 5208 does not receive incoming calls properly, 
which means the PS/2 doesn't receive the sign-on display until we turn the 
device off and then on again. Have you ever heard of such a problem? 

A Your hardware setup is okay. The IBM 5208 protocol converter is a 
private-label version of Telematics PCI-251 protocol converter; both 

units can use a variety of terminal emulation packages on remote PCs and 
PS/2s. DIAL/3X is used for two main reasons: for 5251 keyboard 



Communications 45 

compatibility and for PC Support/36/38.lfyou don't need PC Support or 
file transfer capability, however, you may be better off choosing some other 
software because support for DIAL/3X is somewhat spotty. You can configure 
any commercial software emulator package, such as CrossTalk, to operate 
with the 5208, and you can resolve keyboard differences with any com
mercial key reassignment program. An alternative is to contact Telematics' 
local PCI distributor and purchase its software. 

Transferring Files Between PCs and the S/36 via 
Asynchronous Communications 
answered by Ed Girou 

QHow can I call PCs in batches from a S/36 and transfer files up and 
down? Can I use the S/36 asynchronous communications support? 

AThe S/36 asynchronous communications support is extremely limited 
and isn't recommended for interactive or serious batch processing. 

Transferring a file from a PC to the S/36 using asynchronous 
communications doesn't use an error-correcting protocol (such as 
XMODEM), which results in undetected data errors caused by line noise. 
The best solution is to use a local PC to poll the remote PCs and transfer 
archival compressed files using an error-correcting transfer protocol (e.g., 
XMODEM, ZMODEM, DART, and FAST). Once the data files are on the 
PC, they can be decompressed and passed to the S/36 via PC Support/36 
for further processing. This distributed approach also reduces the 
processing demands on your S/36. 

The PC at your location could do the polling or just wait for the remote 
users to call it. If you decide to use the PC for polling, you'll need a com
munications program, such as DCA's CrossTalk Mk.4, that has a script lan
guage. Ifyou decide to have remote users call the PC, use a BBS(bulietin 
board system) program, such as WildCat, which is inexpensive, easy to set 
up, and has solid security features. 

Correcting DFU Zone Conversions When Using 
Display Station Passthrough 
by Judy Miller 

We are a target system for both a S/36 and a S/38 using Display Station 
Passthrough (DSPT) and APPC. Both remote systems were using a DFU 
program over one of our files that contained a 5.0 packed field, a 5.2 packed 
field, and a 1.0 packed field. The remote S/38 updated all fields correctly, 
but the S/36 always placed zero in the 1.0 field. 



46 5/36 Power Tools 

Finally, we found the solution in Appendix E of the Programmer's/User's 
Workstation Guide. The section on S/36 considerations with DSPT states 
that a problem exists with zone conversion from the S/36 local workstation 
controller. To solve the problem, simply re-create the DFU program with 
edit code 3 over all the numeric fields. 

Adding an Inexpensive Asynchronous 
Modem to a 5363 
by Don Bower 

According to IBM, you need a serial adapter card (Feature Code 2620, 
$225) to use asynchronous communications on a S/36 5363. And, if you fur
ther follow IBM's advice, you need to attach an IBM 5853 1,200/2,400 bits 
per second (bps) asynchronous modem ($690) to that adapter card to com
plete your connection to the telephone network. Most people are unaware, 
however, that the 5363 essentially contains an embedded PC, with card 
slots identical to PC card slots. Thus, instead of using an IBM asyn
chronous adapter and external modem, I decided to plug a $200 Everex 
1,200/2,400 bps internal modem board directly into my 5363 system unit. It 
works like a charm, and because the SSP support (Feature Code 60(}1) that 
lets you write programs to access the asynchronous port directly is free from 
IBM, I now have a simple, inexpensive, and ele:gant connection to the out
side world at a $715 savings. 

Internal modem boards are less expensive than external modem boards 
because they don't require a power supply, a switch, external indicators, or 
a case. And because extra external cables and boxes are eliminated, plug
ging the modular telephone line directly into the modem board in the back 
of your 5363 system unit makes the installation clean and uncluttered. With 
the capabilities of internal asynchronous modems improving to 4,800 and 
even 9,600 bps, you can expect to match low- and medium-speed syn
chronous modem performance at a fraction of the cost. 

In addition, the 5363's PC chassis lets you use any PC-board device 
that looks like an asynchronous port to the PC. Fax boards (which cost less 
than $500) are one example of this kind of device. 

Adding More Than 64 Remote Workstations 
answered by Teresa Elms and Jeff Silden 

Q	I need more than 64 remote workstations on a S/36. Is there any way 
to add remote workstations via a local line and some "black boxes"? 

AYou can purchase protocol converters that attach to a twinaxial port and 
allow synchronous devices (such as 5250-compatible displays) or 



Communications 47 

asynchronous devices (such as 3101 displays) to connect the S/36 via dial
up telephone lines. Then your only limitation would be the maximum 
number of local workstations. If your remote devices do not need to be 
operational all day, you might also consider using dial-up lines rather than 
dedicated lines to connect to your S/36 communications adapter; multiple 
remote devices could then share one remote workstation address. 

Maximum Data Rates for 
5/36 Communications Adapters 
answered by Mel Beckman, Jeff Silden, and Bob Tipton 

QWe run a distributed data processing system that uses S/36s (5360s) as 
the major remote nodes. These machines are attached to our 

mainframe via a 3725 communications controller and leased lines running 
at 9,600 bps. One of our S/36s is a development machine and resides in
house. I am attempting to boost the line speed of this machine, which is 
attached via line driver to the 3725, from 9,600 bps to 19,200 bps. 

The mainframe and the S/36 converse fine at 9,600 bps. But when I 
reconfigure the NCP program on the 3725 to support 19,200 bps and simi
larly boost speed on the line drivers, the S/36 will not respond to polling 
from the mainframe. We use external clocking, but I am sure there must be 
a speed setting for the communications lines on the S/36. I have come to 
the conclusion that it is probably a hardware switch on a card (probably the 
EIA line interface card) because I cannot find any software parameter to 
specify it. I have even taken the machine through IBM CE diagnostics. 

I would like to know where and how to specify the S/36 communica
tions line speed, even if it is just a pencil switch setting. I am continuously 
testing new communications methods and would like to test them at differ
ent speeds without an IBM engineer resetting the speed for me each time. 
Can you help me out? 

AThere are no internal speed settings for the communications lines on a 
S/36 using the EIA interface. Unless you have an IBM digital 

communications adapter, all S/36 communications with the eternal clock 
features rely on the modem (or modem eliminator) for line-speed clocking. 

Your problem could be that you are attempting to exceed the maximum 
data rate for the communications equipment installed on your machine. The 
rules for determining communications data rates are complex. The following 
information summarizes the S/36 Functions Reference Manual, Chapter 12. 

If your S/36 has an SLCA (Single-Line Communications Adapter) 
installed, the maximum data rate you can use is 9,600 bps for a 5360 system 
unit and 19,200 bps for a 5362 system unit. If you have an MLCA (Multi
Line Communications Adapter) installed on a 5360 system unit, line four 



50 5/36 Power Tools 



Data Conversion, Edits, 

and Validation 


-CHAPTER 

3 




52 5/36 Power Tools 

Converting 24-Hour to 12-Hour Time, Part 1 
by Charles Ackeman 

a Code on diskette: 


RPG subroutine C24T012A 


With the idea that users should not have to feel like saying "tenhut" when 
trying to decipher the military time on a screen or on a report, I devised 
simple subprogram C24T012A (Figure 3-1) to convert the time from a 24
hour format to a 12-hour format. Because C24T012A is written in RPG II, 
it can be used by S/3X and AS/400 programmers. 

S/36 programmers can use C24T012A as a subroutine in a program by 
eliminating the first two lines of code (PLIST and PARM) and the last line 
of code (SETON LR). The eight-byte work field TIMEAP will contain 
the time in HH:MM XX format. 

C24T012A is a technique no shop should be without. With its simple 
way of converting the time to the more familiar 12-hour format, your report 
and screens can look more polished. You will eliminate the "technical" look 
the 24-hour or military format conveys. 

3 .. . 4 6 .. 8Figure 3-1 C ·ENTRY PLiST 
C PARM TIMEAPCode to convert 
•••• ******* •• ******.**.******************** ••• **** ••••******.*.*****24-hourto 12

hour time. (This · -C24T012A
code is contained 

· Convert time of day into 12-hour format and put into alphain source member 
C24T012A on · field TIMEAP. 

diskette.) 
*****************.*.***** •••• **************.**********•••• *** •• ***** 

C TIME #TlME 60 TIME OF DAY 
C MOVEL#TIME #HOUR 20 HOUR 
C #HOUR COMP 12 90 SEE IF PM 
C 90 #HOUR SUB 12 #HOUR P.M. 
C MOVEL#TIME TIME 40 > TIME OF DAY 
C MOVEL#HOUR TIME >FIELD. 
C MOVEL#TIME #HOUR SEE IF AM OR PM 
C #HOUR COMP 11 90 
C 90 #HOUR COMP 24 90 
C MOVE 'AM' AMPM 2 AM OR PM FIELD 
C 90 MOVE 'PM' AMPM 
C MOVELTIME WRK3 
C MOVE': ' WRK3 
C MOVE TIME WRK5 
C MOVELWRK3 WRK5 
C #HOUR COMP 0 90 
C 90 MOVEL' 12' WRK5 
C MOVELWRK5 T1MEAP 8 
C MOVE AMPM TIMEAP 
C MOVELTIMEAP WRK1 LEADING ZERO? 
C WRK1 COMP '0' 95 YES .. 
C 95 MOVEL' T1MEAP BLANK IT OUT. 
C SETON LR 



Data Conversion, Edits, and Validation 53 

Converting 24-Hour to 12-Hour Time, Part 2 
byleffCole 

Code on diskette: a 
RPG subroutine C24T012B 

Converting 24 Hour to 12 Hour Time, Part 1 shows a subprogram to convert 
the time from a 24-hour format to a 12-hour format. S/36 programmers may 
find the C24T012B subroutine in Figure 3-2 easier and quicker to imple
ment into existing software. 

The C24T012B subroutine moves the hour portion of the system time 
into PMTEST and compares the hour to 12. If the hour is greater than 12, 
12 is subtracted from the hour. The time then prints with the appropriate 
12-hour abbreviation. 

Figure 3-2 c· 
. 2 3 . . .. 4 . " 7 

Code to convert CSR 
CSR 

TIMESR BEGSR 
TIME TMPTME 60 

24-hourto 12 CSR MOVELTMPTME PMTEST 20 

hour time. (This 
code is contained 

CSR 
CSR 
CSR 
CSR 

12 
11 

PMTEST 
MOVELTMPTME 
COMP 12 
SUB 1200 
SETON 

UTIME 

UTIME 

40 
12 

12 

11 

in source member CSR ENDSR 

C24T012B 011 

diskette.) 0 5 'TIME:' 
0 N12UTIME '16 '0 : lIoA, M,' 
0 12UTIME 16 '0 . lIoP. M, ' 

Converting 24-Hour to 12-Hour Time, Part 3 
by Carson Soule 

Code on diskette: a 
RPG subroutine C24T012C 

I do not offer here yet another time conversion routine. Instead, I offer a 
more structured version (program C24T012C in Figure 3-3) of a previously 
published technique because I believe structured code is much clearer and 
as a result more reliable and transportable. In my version, only one indica
tor (86) connects the calculations and the output and only two indicators 
are used in the time conversion. 

Indicator 50 is set on when the system time is moved into WTIM. 
WTIM is truncated to the hours and minutes (WHR) and compared to 
1200 (noon). If the hour is greater than or equal to 1200, indicator 51 is set 
on, PM is moved into WPM, and 1200 is subtracted from the time to arrive 



54 5/36 Power Tools 

at the 12-hour format. If indicator 50 is on but 51 isn't, it must be before 
noon rather than after noon, so AM is moved to WPM. Then WHR is com
pared to 0100 to determine whether the time is between midnight and 1:00 
AM. If this is the case, 1200 is added to the time. At this point, the time 
conversion is complete, indicator 86 is set on, and the headings are printed. 

Figure 3-3 
C 

1 
TIME 

... 2 .. 3 ... ... 4 ... ... 5 
- GET SYSTEM TIME AND SIMULATE lP OUTPUT 

... 6 . ... 8 

Code to convert C' 
CSR TIME BEGSR 

24- into 12-hour C WFRS COMP 0 50lF FIRST TIME 

time. (This code 
C 
C 

50 
50 

TIME 
MOVELWTIM 

WTIM 
WHR 

60 
40 

THEN GET TIME 
EXTRACT HR/MIN 

appeares in C 
C 

50 
50 51 

WHR COMP 1200 
MOVE 'PM' WPM 

51 511F HOUR->NOON 
THEN PM 

source member 
C24T012Con 

C 
c 
C 

50 51 
50N51 
50 WHR 

SUB 1200 
MOVE 'AM' 
COMP 0100 

WHR 
WPM 

51 

THEN ADJUST HR 
ELSE AM 
IF < 1 :00 

diskette.) c 
C 

50 
50 

51 ADD 
ADD 

1200 
1 

WHR 
WFRS 

THEN ADJUST HR 
NOT FIRST TIME 

C 50 SETON 86 PRINT HEADINGS 
C N50 SETOF 86 ELSE END HDR PR 
C ENDSR 
c· 
0 D 2 86 
0 OR OF 
0 4 'TIME' 
0 WHR 11 , : , 
0 WPM 14 
o· 

Converting and Editing 24-Hour to 
12-Hour Time in OCL 
by Heather G. Quinn 

a
Code on diskette: 


Procedure C24T012 

In the history of BitStop, you have published a number of time conversion tech
niques. Here is one more for the collection. On the S/36, converted time can be 
handled external to any program and passed into a program via the LOA. 
Because LOA data is available at program load time (before the first calculation 
cycle), this data may be used on IP-conditioned O-specs in RPG II programs. 

Procedure C24T012 in Figure 3-4 may be called from any other proce
dure. It takes the system time, converts it to 12-hour format, and inserts a 
colon{:) between the hours and minutes of the converted time. Upon return 
to the calling procedure, the edited data is available in positions 1 through 
7 of the LOA and in returning parameter 3. Thus, the converted and edited 
time may be used as you will, in a procedure or a program. 



Data Conversion, Edits, and Validation 55 

111FT 'TIME'>115959 	EVALUATE P2-PMFigure 3-4 
111FT ?TIME?>125959 EVALUATE P1,6-?TIME?-120000 
II ELSE IFF ?TIME?>005959 EVALUATE P1,6"?TIME?·120000Procedure II LOCAL OFFSET-1,DATA-"l'?TIME"?' 

C24T012 	 II EVALUATE P3-'?L'l ,2":'L'3,2"?2'AM'" 
II LOCAL OFFSET-1 ,BLANK-7 
I I LOCAL OFFSET -1, OATA-' ?3?' 
I I RETURN <ALL 

Proeedu re .. C24TOl2" : Convert 24 - hou r System Ti me to 12 - hou r AM/PM time, and 
return to calling procedure with converted. edited time 
in positions 1-7 of the Local Data Area and in 
Parameter 3. (Use of this procedure is limited to the 
S/36 only, because of parameter manipulations. Allows 
converted time to be used in any manner in any prac 
or RPG II program. includlng use on 1P-conditioned 
Output specs.) 

Validating Days in Dates in OCL 
by Edward Schroeck 

a
Code on diskette: 


Procedure VALOAY 

A previously published BitStop presented a S/36 procedure that validated 
the day portion of a date in the MMOOYY format. Procedure VALOAY 
(Figure 3-5) accomplishes the same thing and more. This procedure will 
not allow the month or the day to be zero, validates the month portion of 
the date, and accommodates February 29 as valid for leap years. 

I establish an array for the days in the LOA and issue a prompt screen. 
If either the entered day or month is zero, switch 1 comes on, the proce
dure displays an appropriate error message, and the prompt screen is redis
played for re-entry. 

If the month is February, the procedure divides the year by 4 and then 
multiplies that result by 4. If the value so obtained is the same as the year the 
user entered, it's a leap year, so 29 is inserted in positions 3 and 4 of the array. 

The procedure then validates the day and checks to see that the value 
entered for month is less than 12. If either of these tests fails, the proce
dure again loops for re-entry of the date. 

Note that a century year must be a multiple of 400 (not just a multiple 
of 4) to be a leap year. However, procedure VALOAY recognizes any year 
that ends in 00 as a leap year. Because we are coming up on the year 2000 
(which will be a leap year), this should present no problems. However, the 
procedure will produce unpredictable results if you use it to validate dates 
in the years 1700, 1800, and 1900. 

< DATE VALIDATION USING ONLY OCLFigure 3-5 II LOCAL BLANK-<ALL 

II TAG START
Procedure II SWITCH 00000000 
II LOCAL OFFSET-1,DATA- '312831303130313130313031'VALDAY 



56 5/36 Power Tools 

II PROMPT MEMBER-TDATE,FORMAT-SCRN01 ,LENGTH-'2,2,2,13,13' 
II IF 717-0 EVALUATE P4-'MONTH - ZERO 
II IF 71'=0 	 SWITCH 10000000 
II ELSE EVALUATE P4" 

I I IF 727 -0 EVALUATE P5-' DAY - ZERO 

II IF '27-0 SWITCH 10000000 

II ELSE EVALUATE P5-' 

II IF SWITCH-1 GOTO START
. 

IF FEBRUARY AND LEAP YEAR MOVE 29 TO DAYS IN FEBRUARY. 
II IFF 717=02 GOTO START2 
II EVALUATE P7-'37/4 
I I EVALUATE PB-777*4 
II IF 737-787 LOCAL OFFSET-3,DATA-'29' 
• END FEBRUARY LEAP YEAR CHECK 

I I TAG START2 
I I EVALUATE P6-717*2-1 
II IF 72?>?L'767,2'7 EVALUATE P5-'INVALID DAY 
II IF 72'>7L'767,2" SWITCH 10000000 
I I ELSE EVALUATE P5-' 
II IF 717>12 EVALUATE P4-'INVALID MONTH' 
II IF 717>12 SWITCH 10000000 
II ELSE EVALUATE P4-' 
I I IF SWITCH-1 GOTO START 

Testing for Numeric Values, Part 1 
by Gerry Karpen a	Code on diskette: 


RPG code NUMCKI 


I have a routine to test a field for all numeric values. My method involves 
three calculation lines and a IS-element array into which the field to be 
tested is moved (Figure 3-6). 

Because the values zero through 9 are an FO to an F9 hexadecimal 
value in the computer, one needs only to test the literal characters zero and 
9 against every element in the array to determine whether there is some
thing greater than or less than those two digits. Using the LOKUP com
mand, RPG can test every character in the array against the Factor I digit. 
If a number less than FO is found, indicator 02 is set on. If indicator 02 is 
not on, I test for a value greater than F9. Indicator 02 is set on if a value 
greater than F9 is found. Based on the condition of indicator 02 after these 
two calculations have been performed, the field can be determined to be 
either numeric (indicator 02 is not on) or non-numeric (indicator 02 is on). 
Subsequent logic may then use this indicator to condition calculations. 
(Note: Because an alphanumeric field cannot be used in computations, the 
tested field should be defined twice in the I-specs - once as alphanumeric 
for test purposes and once as numeric - for computational purposes if the 
test proves it to be all numeric.) 



Data Conversion, Edits, and Validation 57 

Figure 3-6 
C 

1 
01 

3 ... 
MOVEAFLD 

. 4 
AR 

5 .. 7 . ... 8 

Code to testfor C 
C 

01 
01N02 

'0' 
'9' 

LOKUPAR 
LOKUPAR 

02 
02 

all numeric data. 
(This code 
appears in a 

0 01 02 
FLD 15 

39 'NOT NUMERIC 

member 0 01N02 39 ' NUMERIC 

NUMCKlon 
diskette.) 

Testing for Numeric Values, Part 2 
by H. C. Currie 

Code on diskette: a 
RPG code NUMCK2 

You can construct a simple routine to test for an all-numeric field if you take 
advantage of certain features of the RPG MOVE operation. Specifically, when 
an alphanumeric field is moved to a numeric field, only the digit portion of 
each alphanumeric character is moved to the digit portion of the correspond
ing numeric character. The zoned portion of the numeric character is set auto
matically to hex F. (The only exception to this is the rightmost numeric 
character, which is set to hex D if the zone of the rightmost alphanumeric 
character is hex D). Thus, if you perform such a move on a test field, the 
numeric digits will be unchanged by the move because all numbers (0 to 9) 
already contain the hex F zone; only alphanumeric digits will change. 

The subroutine NUMCK2 (Figure 3-7) uses this fact to advantage in test
ing for non-numeric fields. In NUMCK2, the field to be tested (ALPHAl) is 
moved to a numeric field (NUMER1) of the same field size. During the 
move, any non-numeric digits will have the zoned portion of the digit 
changed to hex F (or possibly hex D, if it is the rightmost digit in NUMER1 
and the zone portion of the corresponding digit in ALPHA! is hex D). Field 
NUMERI is moved to field ALPHA2 because the RPG II compiler does not 
permit comparisons between numeric and alphanumeric fields. 

Then ALPHA1 is compared to ALPHA2. If the test field is numeric, 
ALPHA 1 will be identical in content to ALPHA2, and indicator 66 will be 
set off. If the test field is non-numeric, ALPHAI will be different from 
ALPHA2, and indicator 66 will be set on. 

Subroutine NUMCK2 can accommodate all numeric field sizes, up to 
the maximum of 15 digits. And subroutine NUMCK2 will flag numeric 
fields that contain one or more embedded blanks as non-numeric. 

Unlike similar routines, signed numeric fields will not be kicked out as 
non-numeric fields by NUMCK2. If you are editing fields that should con
tain only unsigned numeric data, you may want signed numbers to be 



58 5/36 Power Tools 

Figure 3-7 

Code to testfor 
aI/numeric 
data. (This code 
appears in 
member 
NUMCK20n 
diskette.) 

flagged as non-numeric. You can accomplish this by using the MOVEL 
operation instead of the MOVE operation to move the test field to the 
ALPHA1 field. Using the MOVEL operation in this situation works as long 
as the field you are testing has a length less than 15. If the field length is 
equal to 15, the MOVEL is identical in effect to the MOVE because the 
receiving field (ALP HAl) has a field length of 15. 

3 
MOVE 'ZERO ALPHAl 

C MOVE ANYFLD ALPHAl 

C EXSR NUMCHK 


CSR NUMCHK BEGSR 

CSR MOVE ALPHAl NUMERl 150 

CSR MOVE NUMERl ALPHA2 15 

CSR ALPHAl COMP ALPHA2 6666 

CSR MOVE 'ZERO ALPHAl 15 

CSR ENDSR 


Converting Gregorian and Julian Dates and 
Validating Dates 
by Chuck Lundgren 

Figure 3·8a 

RPG subroutine 
@DTEl that 
converts a 
Gregorian date to 
a Julian date 

a Code on diskette: 


Program @DTEl, @DTE2, @DTLY 


There is an easy way to validate qates in entry programs that involves con

verting the date from the Gregorian format (MMDDYY) to the Julian for

mat (YYnnn, where nnn = chronological day number within year). First 

save the Gregorian date in a work field. Next, convert the Gregorian date to 

the Julian date using routine@DTE1 (Figure 3-8a); then convert the Julian 

date back to the Gregorian date using routine @DTE2 (Figure 3-8b). After

ward, compare the saved Gregorian date to the newly created Gregorian 

date (the date converted to and from the Julian date). If the old date and 

the new date are the same, the date is valid; if they differ, the date is 

invalid. Routine @DTLY (Figure 3-9) is used by both routines to deter

mine if the year is a leap year. 


C 
C 
C 
C 
C 
C 
c 
C 
c 
C 
C 
C 
C 

2 3 ... 4 . .. 8 
@DTEl BEGSR 
#MM ADD 2 #TEMPl 50 

MULT 3055 #TEMPl 
DIV 100 #TEMPl 

#TEMPl SUB 91 #000 30 
MOVEL#CC #CCYY 40 
MOVE #yy #CCYY 
EXSR @DTLY 

#MM IFGT 2 
SUB 2 #000 
ADD #LY #ODD 
END 
ADD #00 #000 



Data Conversion, Edits, and Validation 59 

Figure 3·8b 

RPG subroutine 
@DTE2 that 
converts a Julian 
date to a 
Gregorian date 

Figure 3·9 

RPG subroutine 
@DTLY 
determines ifthe . . 
gtven year tS a 
leap year 

Z-ADD#DDD #YYDDD 50 
MOVEL#YY #YYDOD 
ENDSR 

2 3 6 
C @DTE2 BEGSR 
C MOVELHYYODD #YY 

MOVE #YYODD #000 30 
MOVE #cc #CCYY 40 
MOVELHYY #CCYY 

( EXSR @DTLY 
C #LY ADD 59 HTEMPl 
C #000 IFGT HTEMPl 
( 2 SUB #LY HTEMP2 50 
C ADD #000 #TEMP2 
C ELSE 
( Z-AOO#DOO #TEMP2 
C END 
C #TEMP2 ADD 91 HTEMP3 50 
( #TEMP3 MULT 100 HTEMPl 
C #TEMPl DIV 3055 #MM 
C #MM MUL T 3055 HTEMPl 
C DIV 100 #TEMPl 
C #TEMP3 SUB #TEMPI #00 
C SUB 2 HMM 
C ENDSR 

2 3 
( @DTLY BEGSR 
C Z-AODO #LY 10 
C #CCYY DIV 4 HTEMPO 40 
( MULT 4 HTEMPO 
C HCCYY COMP HTEMPO 91 
C 91 Z-ADDI #LY 
C #CCYY DIV 100 #TEMPO 
C MULT 100 #TEMPO 
C #CCYY COMP HTEMPO 91 
C 91 Z-ADDO #LY 
C #CCYY DIV 400 #TEMPO 
C MULT 400 #TEMPO 
( #CCYY (OMP #TEMPO 91 
C 91 Z-ADDI #LY 
C ENDSR 

Formatting Left-Hand Negative Signs 
by Elliot Weinshenker 

a Code on diskette: 


RPG code NEGLFT 


"If IBM had intended for us to have a floating negative sign on the left, 
they'd have provided us with an edit code for that." Such was my argument 
to management, who still insisted on having a negative sign on the left for 
our month-to-month variance figures on several different reports. 

Once I resigned myself to the effort, I found that writing the routine 
(Figure 3-10) to provide a floating negative sign on the left was easier than 
I expected. If the value in question (LIeS) is less than zero, I multiply it 
by -1 to make it positive (indicator 30 retains the fact that it was negative) 
and then move it to an alpha array (A08). The routine loops to inspect each 
element of the array (beginning at the left) and replaces each leading zero 
with a blank space. When the first nonzero digit is encountered, the pro



60 5/36 Power Tools 

gram backs off the subscript (X) one position and moves in the negative 
sign. The resulting array can be printed as an alpha field with zeroes sup
pressed and with the negative sign just to the left of the number. 

Figure 3-10 
C 

2 
LICS 

3 . 
COMP 'ZEROS 30 

8 

Routine to place 
af/oating 
negative sign on 

C' 
C 
c· 
C 
C 

30 

Z-ADD1 

MULT -1 
MOVE LICS 

X 

LICS 
AMT8 

20 

the left. (This C 
c· 

MOVEAAMTS ADS 

code appears in 
source member 

C 
C" 
C 

LOOP01 

x 

TAG 

COMP 9 80 

NEGLFTon C 
C 80 30 

AOS,1 COMP "ZEROS 
SETON 

S9 
70 

diskette.) C 
COR 

89 
80 GOTO TAG01 

C" 
C A08,X COMP "ZERO 40 
C 40 MOVEA' , A08,X 
C 40 ADD 1 X 
C 40 GOTO LOOP01 
C 30 SUB 1 X 
C 30 MOVEA'-' A08,X 
C TAG01 TAG 
C MOVEAA08 S1 8 
C· 
C Z-ADD"ZEROS LICS 
C MDVE "ZEROS ATM8 
C· 

Overriding RPG's Date Edit Code 
answered by Bob Tipton 

QMy company was recently purchased by a Fortune 500 company. As a 
result, our new corporate MIS department has sent down a reporting 

standard edict: "All dates on all reports are to be separated with dashes." 
Because the standard Y edit code (which we use on our S/36 reports) 
separates dates with slashes, not dashes, we are faced with having to set up 
edit words for every date on every report just to change the date separator 
characters. Is there an easy way to change the date separator on the S/36? 

AThere is a much easier way than setting up edit words to edit your 
report dates with dashes instead of slashes. The RPG compiler has the 

ability to override the date edit code on a program-by-program basis. To 
separate your dates with dashes instead of slashes, simply key a dash (-) in 
column 20 of the H-specs in every program that outputs a date with a Y 
edit code. Then recompile the programs, and your dates will be edited with 
dashes instead of slashes. 



Data Conversion, Edits, and Validation 61 

Converting Date Format from MMDDYY 
to YYMMDD in OCL 
by Groce E. Sogomion 

Converting date formats from MMDDYY to YYMMDD can be performed 
with a single EVALUATE statement in a S/36 procedure because when 
division is performed in an EVALUATE statement, the remainder is 
dropped. The EVALUATE statement used is: 

II EVALUATE P1.6=?DATE?OOOO+(DATE/100) 

Although the SET command in OCL accomplishes the same task, our DP 
department prefers to use the EVALUATE statement because it does not 
alter the session date. 

FormaHing Dates 
by Timothy J. Plos 

Programming tricks, such as the famous one-line RPG trick to convert dates 
between YYMMDD and MMDDYY format, are notorious for the problems 
they can cause during program maintenance. But if you use this particular 
trick, you could be adversely affecting system performance as well. 

This frequently published trick uses RPG's truncation properties and 
some "magic" constants: YYMMDD MULT 100.0001 MMDDYY or 
MMDDYY MULT 10000.01 YYMMDD. You define the date fields with 
six digits and zero decimal positions. Because this conversion trick is so 
compact, we used it in many AS/400 applications - and got 150,000 to 
200,000 decimal data size exceptions every day in the Performance Tools 
Exception Occurrence Summary Report. 

The technique's reliance on truncation is precisely what causes the 
problem. The compiler builds in an exception-handling routine that says 
"do nothing but truncate the result field." This exception routine invokes 
system overhead functions that adversely affect performance. Instead of 
relying on truncation for date conversion, you can use the four lines of 
MOVE and MOVEL logic in Figure 3-11 to reformat a date - which is 
also executed many times faster than the truncation trick. 

Figure 3-11 3 . ... 4 . . 5 . .. .. . 6 
c MOVEL MMDDYY WORK4 40 
c MOVE MMDDYY WORK2 20Code to reformat c MOVEL WORK2 YYMMDD 60 

dote c . MOVE WORK4 YYMMDD 

http:10000.01


62 5/36 Power Tools 

Computing Day of the Week in OCL 

by Mark Allen 

Figure 3-12 

. EVALUATE 
statements to 
determine day of 
the week. (This 
code appears as 
procedure 
CMPDAYon 
diskette.) 

a Code on diskette: 

Procedure CMPDAY 

Our daily backup procedure writes to magazine drive 1 on Mondays, 
Wednesdays, and Fridays and to magazine drive 2 on Tuesdays, Thursdays, 
and Saturdays. To make our night operator's job easier, we have him mount 
both magazine drives each night. Thus, we need a procedure that identifies 
the proper magazine for the current day of the week. 

When the EVALUATE statements (see Figure 3-12) are included in 
the backup procedure, it computes a day of the week value in parameter 7, 
where a value of zero means Sunday, a value of one means Monday, and so 
on. The procedure then selects the appropriate magazine for the backup 
file, and the operator doesn't need to intervene. 

II LOCAL BLANK-*ALL 
I I LOCAL OFFSET -257, DATA-' ?DATE7' 

* 
II EVALUATE P1,2-?L'257,2'7 
I I EVALUATE P2, 2-n' 259,2' 7 
II EVALUATE P3,2-?L'261 ,2'7 

* 
II IF 711>2 GOTO PSTFEB 
II EVALUATE P1,2-?11+12 
I I EVALUATE P3,2-?37-1 

* 

II TAG PSTFEB 

II EVALUATE P1,2-71?+1 

II EVALUATE P5,5-(?3?*365)+(?3?/4) 

II EVALUATE PS,5-(11?*30)+(?1?*S/10) 

II EVALUATE P5,5-?S?+?5? 

II EVALUATE P5,5-?5?+?27 

II EVALUATE P6,5-75?/7 

II EVALUATE P7,1-?5?-(?6?*7) 


Computing Day of the Week in RPG 
by Ed Antus 

Code on diskette: a RPG code CMPDAY 

Our present calendar, instituted in 1582 by Pope Gregory XIII, makes 
every fourth year a leap year except for centennial years, which are leap 
years only if evenly divisible by 400. (To correct for the extra leap years 
that had been added since the time of Julius Ceasar, Pope Gregory decreed 
that the date October 4, 1582, was to be followed by October 15, thus 
bringing the spring equinox back to March 21.) Because the Gregorian cal
endar has been in place since 1582, it is relatively easy to compute the day 



Data Conversion, Edits, and Validation 63 

Figure 3-13 

Code to compute 
day ofweek. 
(This code 
appears as source 
member 
CMPDAYon 
diskette.) 

of the week for the first day of any month for any year since 1583 simply by 
determining the number of days that have gone by since January 1, 1583 
(which happened to be a Saturday), and then dividing that number by 
seven and using the remainder to determine the day of the week. 

The RPG E- and C-specs in Figure 3-13 perform these computations. The 
partial program assumes that field SYEAR contains the year and field SMON 
contains the month for which you want to know the day of the week for the first 
of the month. The partial program begins by calculating the number of days 
from January 1, 1583, until January 1 of the desired year as field TOTOYS. The 
Z-AOO operation sets on indicator 38 if there is no remainder (i.e., year is a leap 
year). Next, the program counts the number of century years and the number of 
quadracentennial years to correct for centuries that are and are not leap years. 
Finally, if the year is a leap year (as shown by indicator 38), and the month is less 
than March, that year's leap day is subtracted from field TOTOYS (the leap day 
doesn't affect the first day ofJanuary or February). The program then adds to 
field TOTOYS the number of days from January 1 to the first day of the 
desired month (as read from array OAT) and adds one more to get the number 
of days since January 1, 1583, for the first day of the desired month and year 
(field OSAUM). The division and remainder statements yield field WKOYl, 
the number of days into a new seven-day cycle. A table lookup based on field 
WKOYI yields field FSTOAY, the number for the day of the week; a value of 1 
indicates Sunday, a value of 2 indicates Monday, and so on. 

Just for a historic note, the American colonies adopted the Gregorian 
Calendar in 1752 by "suppressing" the 11 days between September 2 and 
September 14, 1700 (a rule Benjamin Franklin thought would delight those 
who liked to sleep, for they could "lie down on the second of this month 
and not perhaps awake till the morning of the fourteenth"). Therefore, if 
you need to know on what day of the week William Penn's August 1684 
mortgage payment was due, your answer will be in accordance with our cal
endar (new style), not the calendar he knew (old style) . 

1 , .... , 2 .. ,3 , .... ,4 .. , , .. 5 .. , .. ,6 .. , .. ,7 .. , .. ,8 
OAT 12 32 3 0 
TABON 1 7 1 0 TABNO 1 0 

C' SYEAR - century and year (1943, 2030 , 3501 , etc,) 
C' SHON - 2·digit valid month number 1-12 . 
C' 
C· Calculate total days including extras for leap years. 
C SYEAR MULT 365.25 TOTDYS 92 
C Z-ADDTOTDYS DADIFF 22 38 
C' 
C* Determine number of century-years not leap years and 
C' subtract from total days, 
C SYEAR DIV 100 NUMCNT 20 
C SYEAR DIV 400 CNTLPS 40 
C 38 MVR CNDIFF 20 38 
C NUMCNT SUB CNTLPS NONLPS 20 
C • 

C SUB NONLPS TOTOYS 

C' 

C' If data is in leap year, is earlier than March, and 

C' extra day has not already baen removad (cantury 




64 S/36 Power Tools 

C' year divisible by 400). subtract 1 day. 
C 38 SMON COMP 3 38 
C 38 SUB 1 TOTDYS 
C • 
C TOTDYS ADD DAT.SMON DASUM 70 
C ADD 1 DASUM 
C DIV 7 DAOUD 60 
C MVR WKDY1 10 
C· 
C' FSTDAY - number of day of the week (l-Sunday. 2-~londay. 
C' Etc.) 
C Z-ADD1 FSTDAY 10 
C SETOF 38 
C WKDY1 LOKUPTABDN TABND 38 
C 38 Z-ADDTABND FSTDAY 
C' 

•• OAT. TOTAL DAYS ARRAYjMONTH-TO-MONTH 
000031059090120151181212243273304334 
•• TABONjTABND - FST DAY OF THE MONTH 
07 
11 
22 
33 
44 
55 
66 

Editing Fields Using O-Spec Edit Codes 
by Mel Beckman 

Code on diskette: a Assembler subroutine @DATA 

Assembly As an RPG programmer, I've often wanted to use the conversion and edit fea
language tures ofRPG 1- and O-specs directly, without performing file 1/0. For example, 
subroutine I may have a binary number in C-specs that I want to convert to decimal for 
@DATAlets use in some computations. Or I may want to edit a numeric field to insert com
you use RPG l mas and a decimal point and then store the edited result in an array element 
and O-specs to for display later as a list on the screen. It's easy, using RPG I-specs, to convert a 
perform data binary number to decimal, or, using O-specs, to edit a dollar amount with deci
conversIOns mals and commas. But it's impossible to use RPG's built-in conversions and 
(such as binary edits "on demand" in RPG C-specs. Writing RPG calculations to perform such 
to decimal) tasks is cumbersome, and the resulting routines run V(~ry slowly. 
without using a Fortunately, a simple assembly language subroutine can put all the data 
dummy disk transformation capabilities of I - and O-specs on tap for use in your C-specs. 
file. The subroutine does this by exploiting an often-ignored feature of RPG: 

special device files. A special device file looks and works like a disk or 
printer file: you define the file using F-specs, access the file using RPG 
operation codes, and format data for output to and input from the file using 
0- and I-specs. Special device files, however, call a user-supplied assembly 
language routine to perform 1/0 instead of using the system-supplied 



Data Conversion, Edits, and Validation 65 

Figure 3-14 

Example of 
RPG code 
using 
SRDATA rou
tine 

devices such as disks, workstations, or printers. 
@DATA is one such user-supplied routine whose output is directly con

nected to its input. Thus, whatever your RPG program outputs to the 
@DATA special device file, the program can read back in through the same 
file. By using the RPG EXCPT and READ operation codes, you can use the 
@DATA special device file from within C-specs to perform editing on output 
and conversion on input. Because no physical input or output takes place, the 
subroutine adds virtually no time to the execution of your program. 

To use the subroutine, code an F -spec for the special device file as 
shown in Figure 3-13. In the device field of the F -spec (positions 40-46), 
code the word SRDATA to specify that @DATA is the assembler routine 
you're supplying to handle I/O for the special device file. (For special 
device files, RPG requires the user-supplied assembler routine name to be 
in the form @XXXX. On the F -spec, RPG requires you to replace the @ with 
SR.) The record length for the special file can be any value up to 4096
whatever length you need to accommodate the data you want to transform. 
You also must supply 1- and O-specs to carry out whatever data transforma
tion you need; Figure 3-14 demonstrates editing a number using an RPG 
edit code and converting a binary number to decimal. Finally, whenever 
you want to perform a conversion in C-specs, code EXCPT and READ 
operations as shown in the example. 

Using @DATA lets you transform any number of fields simultaneously in 
a single EXCPT/READ operation. You can gain further flexibility by using 
pseudo-record-ID constants on your O-specs and record-identifying logic on 
your I-specs to create any number of unique data transformation "sets." 

Complete documentation for RPG special device files is contained in 
the S/36 Programming with RPG manual. 

1 4 . 6 8 
FCONVERT UD F 128 SPECIAL SRDATA 
ICONVERT 

1 10 EDITED 
11 140DEC 

e EXCPTSRDATA 
C READ CONVERT 

OCONVERT E SRDATA 
0 PLAIN M 10 
0 BINARY 14 



66 5/36 Power Tools 

Centering a String 
by EdwardL. Girou 

a Code on diskette: 


RPG code CTRTXT 


The code in Figure 3-15 centers a non-blank line of text regardless of its 
justification. 

Figure 3-15 


A routine to center text. (This code appears as member CTRTXT on diskette.) 

... 2 3 4 ...... 5 ...... 6 7 ...... 8 

HDR 132 1 


I' 
I' Data structure redefining HDR array as the field HEADER 



Data Conversion, Edits, and Validation 67 

1* 
I DS 
I 1 132 HDR 
I 1 132 HEADER 

J* 
1* Subroutine to center the contents of array HDR 
1* 
C Z-ADD132 x 
C HDR.X DOWEQ*BLANK 
C SUB 1 x 
C END 
C* X is the length of the input field. Calculate 
C* the offset needed to center the text using 
C· formula: 
C* StartPosition - (132 - FieldLength)/2 + 1 
C 132 SUB X X 
C DIV 2 X 
C ADD 1 x 
C* Shift text to start in StartPosition 
C MOVE *BLANKS HDR 
C MOVEAHEADER HDR.X 
C MOVEAHDR.1 HEADER 
C END 
C ENDSR 

Justifying, Centering, and Converting 
Lowercase and Uppercase Strings 
by Gary T. Kratzer 

a Code on diskette: 

Assembler subroutines SUBRAT, SUBRCS 

In SearchingforStrings, I presented assembler subroutine SUBR$F, which 
performs a high-speed string search on a field. You could easily write sub
routine SUBR$F in RPG or any other high-level language; however, its 
purpose is to give programmers a sort of "black box" routine that can per
form this task much faster than a high-level language can. RPG's array pro
cessing logic is very slow when you reference an array with a variable index. 
I focus on array processing because programmers usually choose this 
method when they must perform string operations. 

In this article, I also focus on RPG's lack of horsepower in this area by 
giving you two more assembler subroutines that perform string handling. 
By using these two routines, you can cut down on the overhead created by 
RPG array processing and thereby add some much needed horsepower to 
your programs. First, I provide subroutine SUB RAT, which left-justifies, 
right-justifies, or centers text within a field. And second, I offer subroutine 
SUBRCS, which converts text from uppercase to lowercase or vice versa. 



68 5/36 Power Tools 

East Side, West Side 
To use subroutine SUB RAT in an RPG program, you must code an EXIT 
SUBRAT operation as follows: 

C 
C 
C 
C 

EXIT SUBRAT 
RLABL 
RLABL 
RLABL 

OP 
TEXT 
RCODE 

? 
1 

• OP - a one-byte field that contains a code indicating the type of opera
tion you want to perform. An L means left-justify, an R right-justify, and a 
C means center the text within the field. Note that when centering text, 
the possibility always exists that the text cannot be exactly centered - that 
is, one end may have one fewer blank than the other depending on the 
field size and number of characters to be centered. If this is the case, the 
left side of the text will have one fewer blank. F OIr example, if subroutine 
SUB RAT centers the text NOW IS THE TIME in a 20-byte field, there 
are two blanks on the left and three on the right. 

• TEXT - a field (no data structures allowed) up to 256 bytes long that 
contains the text to be adjusted. After returning firom subroutine SUBRAT, 
the text is adjusted in this same field according to the operation you 
requested. 

• RCODE - a one-byte field that contains the return code. This field will 
contain a 0 on a normal return or a 1 if the operation code was invalid. 

Uptown, Downtown 
Using subroutine SUBRCS in an RPG program is identical to using 
subroutine SUBRAT except for the first input parameter (OP) data. Again, 
you must code an EXIT SUBRCS operation as foHows: 

C EXIT SUBRCS 
C RLABL OP 1 
C RLABL TEXT ? 
C RLABL RCODE 1 

• OP - a one-byte field that contains a code indicating the type of opera
tion you want to perform. An L means convert uppercase to lowercase, and 
a U means lowercase to uppercase. Note that the field to be converted can 
contain any mixture of alpha characters, numbers, or special characters, but 
only alpha characters are affected in the conversion. This way you can pass 
anything to subroutine SUBRCS, and only the characters that should be 
converted will be. 

• TEXT - a field (no data structures allowed) up to 256 bytes long that con
tains the text to be converted. After returning from subroutine SUBRCS, the 
text is converted in this same field according to the operation you requested. 



Data Conversion, Edits, and Validation 69 

• RCODE - a one-byte field that contains the return code. This field con
tains a 0 on a normal return or a 1 if the operation code was invalid. 

All Around the Town 
Both subroutine SUB RAT and subroutine SUBRCS address common string 
handling problems programmers face in data processing. These subroutines 
are useful, for example, when merging leads files. Suppose you do telemar
keting and trade lead lists with other companies. You want to merge their 
files with your own, but their standards for entering data differ from yours. 
They may let operators enter data free form, whereas yours must adhere to 
strict guidelines. They also allow upper- and lowercase names, and you 
allow only uppercase. You could use subroutine SUB RAT to left-justify the 
fields to remove leading blanks that inevitably would appear, and you could 
use subroutine SUBRCS to convert the data to all uppercase. These two 
subroutines can increase the efficiency of many of your programs. 



10 5/36 Power Tools 



DFU, SDA, and SEU 


-CHAPTER 

4 




72 5/36 Power Tools 

Preventing Member Naming Conflicts 
by Ray W Dei"Y.ers 

Figure 4-1 

Modifications to 
SE U procedure. 
(This code is 
contained in 
procedure 
SEUMODon 
diskette.) 

a Code on diskette: 

Procedure SEUMOD 
Screen format member SEUMODFM 

Have you ever inadvertently used the name of an SSP procedure when you 
created a new S/36 procedure in your user library? Then, when you tried to 
run the SSP procedure, your procedure ran instead - because when you 
run a procedure, the system looks in your current library before it searches 
#LIBRARY. To avoid this conflict, you should always check #LIBRARY 
before assigning a name to a new user procedure, but even the best of us 
sometimes forget to do that (after all, coding a new procedure is much more 
exciting than searching a directory listing). You can modify the IBM-sup
plied SEU procedure so that it will automatically notify SEU users of poten
tial conflicts between the name of a user proceduH: that is being created 
under SEU and the name of any existing procedun:::s in #LIBRARY. The 
modification requires only 15 lines ofOCL. Because you will be modifying 
an IBM-supplied procedure, it is a good idea to make a backup copy of SEU 
in library #SEULIB. 

Once you have the backup copy, add the new code in Figure 4-1 to the 
beginning of the S/36 SEU procedure. So that the added OCI statements 
can return messages to the SEU user, you also must create the screen for
mat member in Figure 4-2a, which must be copied to library #SEULIB. 
The screen is shown in Figure 4-2b. These additional OCL statements 
cause SEU to run for an additional few seconds - a small price to pay for 
preventing name conflicts. However, if you find the time delay unaccept
able, you can restore the original version of SEU using your backup copy. 

Added code 
Check #LIBAAAY for member presence

II IF 75?I#LIBRARY GOTO OK 
II SWITCH 1111XXXX • 1-4 - NON-DISPLAY 
II IF PROC- '71? ,#L1BRARY' SWITCH OXXXXXXXXX • PROCEDURE EXISTS 
II IF SOUACE-'?1? ,#LIBRARY· SWITCH XOXXXXXXXX • SOURCE EXISTS 
II IF LOAD-'?1? ,#L1BRARY· SWITCH XXOXXXXXXX • LOAD EXISTS 
II IF SUBR- '71? ,#LIBRARY' SWITCH XXXOXXXXXX " SUB-ROUTINE EXISTS 
II IF SWITCH1-1 IF SWITCH2-1 IF SWITCH3-1 IF SWITCH4-1 GOTO OK. 
II TAG AGAIN 
II PROMPT MEMBER-SEUMODFM,FORMAT-WERROR,LIBRARY-#SEULIB,UPSI-YES 
II IF 7CD7/2001 GOTO OK • CMO-1 CONTINUE 
II IF 7C07/2007 CANCEL • CMO-7 CANCEL 
II GOTO AGAIN. 
II TAG OK 

End of added code 

remainder of standard S/36 SEU procedure 



DFU I SDA, and SEU 73 

Figure 4-2a 

Screen format 
member 
SEUMODFM 

Figure 4-2b 

Screen format 
SEUMODFM 
for modified 
SE Uprocedure 

1 7 .. 
SWERROR 0124 YY AG 
D 790202Y Y Y Y WARNING 
D WARNING WARNING WARNING 
DMEMBER OB0537Y Y Y 
D 600710Y 91 A PROCEDURE with this nX 
Dame already exits in #LIBRARYII 
D 600B10Y 92 A SOURCE with this nameX 
D already exits in #LIBRARYI I 
D 600910Y 93 A LOAD MEMBER with thisX 
D name already exits in #LIBRARYI I 
D 601010Y 94 A SUB-ROUTINE with thisX 
D name already exits in #LlBRARYI I 
D 601310Y This member is being usX 
Oed to control system activities. 
D 601410Y therefore this Member-NX 
Dame should not be used in any library 
D 601510Y except the System LibraX 
Dry itself (#LIBRARY)!! 
D 1B2330Y Y CMD-7. End of job 
D 392422Y Y (CMD-1 ... Continue ·SEU·X 
D with this name) 

WARNING WARNING WARNING WARNING 

A PROCEDURE with this name already exits in #LIBRARYI I 
A SOURCE with this name already exits in #LIBRARY! I 
A LOAD MEMBER with th,S name already eXlts in #LIBRARYI! 
A SUB-ROUTINE with this name already exits in #LIBRARY! I 

This member is being used to control system activities. 
therefore this Member-Name should not be used in any library 
except the System Library itself (#LIBRARY)!! 

CMD-7 .. End of job 
(CMD-1 ... Continue ·SEU' with this name) 



74 5/36 Power Tools 

Printing Multiple Copies of DFU Reports 
by Richard Comstock 

On the S/36, you can place a /I PRINTER statement before a /I LOAD 
statement if you specify CONTINUE-YES. I've used the following code 
to obtain multiple copies of a DFU list: 

II PRINTER CONTINUE-YES,COPIES-3 
LIST DMM0150,DFUDMM""" ,#DMASII 

If you later want only a single copy of a particular printout produced, you 
can turn off multiple-copy printing by including at 

II PRINTER CONTINUE-NO 

statement before you request the single-copy printout, 

Printing DFU Reports at 15 CPI 
by John Blum 

Before SSP Release 5.1, if you specified a value greater than 132 for printer 
line width on a DFU LIST procedure, the list would automatically print at 
15 CPI. Alas, this is no longer true, An alternative is to use the SET proce
dure, but this approach is not satisfactory because the typical use of LIST 
is for a quick-and-dirty report. 

I have solved the problem by adding three lines to the beginning of and 
modifying one line in IBM's #LIST procedure located in #DFULIB (Fig
ure 4-3), This technique lets you use the SORT/NOSORT parameter as an 
indicator for 10115 CPI. If you want 15 CPI and SORT, specify.PSORT for 
the SORT/NOSORT parameter; POSORT produces 15 CPI and 
NOSORT. The first EVALUATE statement defaults P64 to to, so the pro
cedure is not affected unless PSORT or POSORT is specified in the 
SORT/NOSORT parameter. 

Figure 4-3 II EVALUATE P64-10 
II IF ?4?-POSORT EVALUATE P4-'NSORT' P64-16 

Modifications to II IF ?4?-PSORT EVALUATE P4-'SORT' P64-15 

IBM's#LIST 
procedure located 
in #DFULIB 

Also change the PRINTER statement to: 

II PRINTER NAME-#DFPRINT ,CPI -?64? 



DFU, SDA, and SEU 75 

Changing Only Command Text in Menus 
by Dennis Ruud 

Figure 4·4 

Procedure 
MCOM 

a Code on diskette: 

Procedure MCOM 

Menus on the S/36 are slick, easy-to-build tools for running and keeping track 
of programs. SDA is the quickest, easiest way to build the menus, but some
times you must change only a few little things in the command text. It is time
consuming to go through all the SDA screens and prompts and wait for the 
screen to recompile just for a missing comma or misspelled word. What you 
need is a quick way to change the command text without going through SDA. 

A menu, screen format, and screen format member all have the same 
name (e.g., MYMENU). A command text source member bears the name 
of the menu with two pound signs appended (e.g., MYMENU##). To 
change only the command text of a menu, just use SEU, DSU, or FSEDIT 
to edit the command text. After making the changes, use the CREATE 
procedure to recompile the command text. Procedure MCOM in Figure 4
4 provides a quick way to edit and recompile the command text. 

One word of caution. Don't serialize the command text when you end the 
editing session. If you serialize the command text, it will write over the menu 
name and option numbers. Also remember that the command text is a source 
member, not a procedure member. 

* USES SEU OR FSEDIT IN POP TO MAKE CHANGES TO COMMAND TEXT FROM 
* A SPECIFIED MENU 

LOCAL DATA AREA CONTENTS 
1 - 6 Menu Name 

7 - 8 ## means we are after the command text of a menu 


II LOCAL BLANK-*ALL,DATA- '?MENU7' Load LDA with menu name 

II LOCAL OFFSET-7,DATA-'##' ## characters attached to 

* menu name make it the command text 

II IF 7L" ,6'7- GOTD NDMENU rf 1st 6 characters are blank, 


it's not a valid menu. 

'SEU ?L' 1, S'?, S, ?SLlB7 For SEU users 

FSEDIT ?L",S'?,S,?SLlB? For POP users 

CREATE ?L' 1, S'?, REPLACE, ?SLlB?, HALT Creates msg member from text 

II GDTD END 

II TAG NOMENU 
II * 'REQUESTED MENU IS NOT A USER MENU PROCEDURE TERMINATED,' 

II PAUSE 

II TAG END 
II LOCAL BLANK-'ALL 



76 5/36 Power Tools 



Diskettes 


-CHAPTER 

5 




78 5/36 Power Tools 

Reading and Writing Diskettes from RPG 
by Mel Beckman 

In an example 
ofgeneric tool 
design, the 
author shows 
how the 
program he 
designed to 
a!!owan RPG 
programmer to 
read and write 
any part of any 
diskette 
spawned 
another tool. 

a Code on diskette: 

Procedures RECVOK, SENOOK 

RPG programs RECVOK, SENOOK 

Assembler subroutine SUBROK 


Although programmers are like other professionals in using specialized tools 
to practice their craft, they possess a unique ability. Unlike most workers 
who rely on tangible tools to extend their power or their reach, program
mers seemingly are able to conjure their tools from thin air. This phe
nomenon seems so because programming tools are nothing more than 
programs themselves. Kernighan and Plauger, in their book Software Tools, 
suggest that to qualify as a truly useful tool, a program should be generic. 
For example, one can make a tool to read a disk file and print its contents on 
the printer, but a tool designed to copy data from any input device to any 
output device is much more useful. This more ver.satile tool can still print a 
file, by copying it from a disk to a printer. However, it also can copy from 
disk to disk, tape to printer, diskette to disk, and so on. A programming tool 
is made to be used, and its maker can justify the extra coding effort required 
to generalize it because a general-purpose tool normally gets more use than 
a special-purpose one. And another benefit comes along with the initial ver
satility: new tools can be created by building on top of existing tools. 

In this spirit, I present two general-purpose tools (the second builds on 
the first) that let you access the diskette drive and send data directly from 
one S/36 diskette drive to another S/36 diskette drive. The first tool allows 
an RPG programmer to read and write any part of any diskette. As an 
example of its usefulness, one application I was working on especially 
needed this capability to sequentially read and write 20 diskettes. I could 
have written a standalone program in assembler language to provide only 
the capability I then needed. However, because I was creating a tool, I 
avoided assumptions about what others might want to do and created 
instead a small, general-purpose assembler subroutine that could read and 
write diskettes. The subroutine is designed to be called from RPG so that 
any RPG programmer can use it. 

The application that originally needed the subroutine is a tool too - one 
that many S/36 users may find useful. This second tool is an RPG program that 
can copy a diskette from one machine (e.g., a S/36 5360) and write it directly 
onto a diskette in another machine (e.g., a S/36 PC) connected by a communi
cations line. The fact that the source machine uses 8-inch diskettes and the tar
get uses 5 1!4-inch diskettes is irrelevant - this is a general-purpose tool, 
remember? But I'm getting ahead of myself. Let's look at the first tool first. 



--

--

----

Diskettes 79 

Figure 5-1 

Physical layout 
ofa diskette 

The First Tool 
Before I describe how to use subroutine SUBRDK, an assembler language 
subroutine that performs diskette I/O operations for an RPG program, a 
brief discussion of diskette anatomy will give us a common ground from 
which to proceed. Figure 5-1 illustrates the physical layout of a diskette. 
Every diskette contains 75 usable concentric circular tracks, numbered 00 
through 74. Two-sided diskettes have another set of tracks on the second 
side. Each track is divided into sections, called sectors, that are analogous 
to records in a disk file. One sector is the smallest amount of data that can 
be read or written in one operation. The number of sectors per track and 
the number of bytes per sector determine the capacity of the diskette. Fig
ure 5-2 summarizes the details of various diskette formats. 

Track 72 

'/' 
~ 

1 ~ 
/"" -/./'! / 'i/ "'''- '\ 

II 
.' \\I II \\\\( (1/ \,\ \ 

\\\ 1/1\ \\\ //1 J 
~\'\ 11/' /\ ~~--~~ !............ --.-/ 


\ ~ 


~ \~ 

Track 00 

One Sector 



80 5/36 Power Tools 

Figure 5-2 

Disketteformat 
information 

Figure 5-3 

Calling sequence 
for subroutine 
SUBRDK 

Referring again to Figure 5-1, track 00 is caUed the index track because 
it contains the dataset labels for the files stored on the diskette. This is a 
kind of "table of contents" for the diskette (details about dataset labels can 
be found in the IBM manual Diskette General Information - GA21-9182). 
Regardless of how the rest of the diskette is initialized, the index track is 
always formatted to contain 26 128-byte sectors, each containing one 
dataset label. For two-sided diskettes, track 00 on the second side contains 
a continuation of the index track. It is formatted as 26 256-byte sectors, 
each containing two dataset labels. 

Diskette How Bytes Sectors Bytes 
Type Initialized per Sector per Track per Disket 

10 FORMAT 128 26 246,272 
10 FORMAT2 512 8 303,104 
20 FORMAT 256 26 985,088 
20 FORMAT2 1024 8 1,212,416 

To call the subroutine from an RPG program, code an EXIT SUBRDK 
operation, which must be followed by a list of seven RLABL parameters 
(Figure 5-3). Each parameter is described below. 

C EXIT SUBRDK Call SUBRDK 
C RLABL FUNC 1 Function code 
C RLABL MOD 1 Modifier bits 
C RLABL TRACK 20 Track number 
C RLABL HEAD 101 Head number 
C RLABL SECTOR 20 Sector number 
C RLABL COUNT 20 Sector count 
C RLABL BUFF Buffer array 

Function. This one-character field indicates the diskette operation to be 
performed. The codes are: 

1: Read data. The number of sectors to be read is specified in the count 
parameter. You cannot read more sectors than your buffer can hold. Deleted 
sectors are bypassed (i.e., not counted). 

2: Read data, including deleted sectors. Otherwise, this is identical to func
tion code 1. 

5: Write data. The number of sectors to be written is specified in the count 
parameter. You cannot write more sectors than your butTer can hold. 



Diskettes 81 

Figure 5-4 

Bit numbers for 
BITONand 
BITOF 

6: Delete. The number of sectors to be deleted is specified in the count 
parameter. 

8: Select the diskette slot specified in the track parameter. Numbers 1 
through 3 select the individual slots, 4 through 13 select the first magazine, 
and 14 through 24 select the second magazine. 

9: Eject the diskette. 

A: Orient the autoloader by positioning it at slot 1. 

After the operation is completed, an error code may be returned in this 
field. If an error code is returned, the requested operation was not per
formed. The error codes are: 

L: The buffer is too large - it cannot exceed 2,048 bytes. 

S: The buffer is too small - it must be at least 256 bytes. 

Modifier Byte. The modifier byte contains bits set to modify the operation 
being performed. You can set or clear the desired bits using the RPG opera
tion codes BITON and BITOF. The bit numbers listed in Figure 5-4 are 
the ones to use in BITON or BITOF operations. 

Bit 0 OFF Single-density reading and writing. 

Bit 0 ON Double-density reading and writing. 

Bit 4 OFF One-sided diskette. 

Bit 4 ON Two-sided diskette. 

Bit 6 OFF. 7 OFF 128-byte sectors 

Bit 6 OFF. 7 ON 256-byte sectors 

Bit 6 ON. 7 OFF 512-byte sectors 

Bit 6 ON. 7 ON 1024-byte sectors 


Track. This two-digit field specifies the number of the track to be read or 
written, from 10 to 74. For the select diskette function, this field contains 
the number of the slot to select. Remember that if you are reading the 
index track, you must specify single-density, 128-byte sectors for side one. 
For the side two-index track, specify double density, 256-byte sectors. 

Head. This one-digit field specifies which read/write head to use. For one
sided diskettes, this field must be set to 0 (zero). For two-sided diskettes, a 
o(zero) indicates side one, and a 1 indicates side two. 

Sector. This two-digit field specifies the number of the sector at which the 
read or write operation will start. More than one sector can be processed in 
one operation. Sectors are numbered from 1 to 26 for single-density record
ing, or 1 to 8 for double-density recording. 

Count. This two-digit field specifies the number of sectors to read or write. 
You cannot process more sectors than will fit in the buffer. 



82 5/36 Power Tools 

Buffer. The buffer must be an array, from 256 to 2,048 bytes long. Only the 
total size of the array is significant. Code only the array name - don't use a 
field, data structure, or index name. Data will be read into or out of the 
array without regard to where individual array entries start or stop. For 
example, an array containing six 256-byte entries would constitute a buffer 
size of 1,536 bytes. If you were to read eight 128-Ibyte sectors, the data 
would fill the first four 256-byte entries of the array (a total of 1,024 bytes). 

Programs that use SUBRDK must allocate the diskette drive before the 
program is loaded by using the statement II ALLOCATE UNIT-Il. Failure 
to do this will cause the program to terminate abnormally. Also, whenever 
reading the index track, use the '~Read Deleted" operation (code 2) 
because the index track almost certainly will contain some deleted sectors. 
If you encounter the message "Permanent Diskette I/O Errors" while 
debugging your own program that uses SUBRDK, you probably are trying 
to read or write the wrong sector size or density. 

When I realized the breadth of the first tool's potential, my inclination 
to create tools of general usefulness emerged, and I designed a program 
that uses the first tool to copy a diskette from one S/36 to another. Hence, 
the result of applying the first tool produced a second tool in its own right, 
with its own special capabilities. 

The Second Tool 
Most models of the S/36 use 8-inch diskettes. The single exception is the 
S/36 PC (Model 5364), which uses only 5 1/4-inch diskettes. This presents a 
problem when data must be exchanged between the two machines. Some
how, one must be able to transfer files, libraries, and folders between the 
two machines - preferably by copying 8-inch diskettes directly onto 8-inch 
or 5 1/4-inch diskettes. IBM offers several solutions, each of which requires 
the purchase of between $700 and $1,800 of special IBM software, and pos
sibly, depending on your system, an enhanced 5251 emulation board. 

The best of the IBM solutions requires an IBM PC/AT directly 
attached to the 5364. The PC/AT method can copy a diskette in about 15 
minutes and requires one operator intervention and an intermediate file on 
the PC/AT hard disk. But not everyone is likely to have a PC/AT handy 
because it costs nearly as much as the 5364 (many users have only a mini
mum-cost single-diskette IBM PC or compatible). If a PC/AT is not avail
able, the copying process can require up to 45 minutes per diskette, 
depending on the technique used. 

The solution presented here costs nothing, requires no operator inter
vention or special IBM software, and works with any kind of PC attached 
to a S/36 5364. The hardware requirements are modest: single-line commu
nications on both S/36s and an inexpensive 9,600 bps (bits per second) 
modem eliminator (costs less than $200). Many users will have the commu
nications feature installed already, making this a zero-cost alternative. 



Diskettes 83 

This technique depends on two not-so-obvious facts. First, the 8-inch and 
5 1I4-inch diskettes, although different in size, are logically identical. That is, 
as far as the S/36 programming is concerned, both diskette sizes have the same 
internal format. Second, the 5364 is capable of transmitting data at 9,600 bps, 
even though IBM claims a limit of 4,800 bps. Why this is so isn't clear, but 
nothing in the IBM software or hardware prevents data transmission at 9,600 bps. 

The idea here is to copy a 2D diskette from one machine directly onto 
a 2D diskette in another machine (the target machine) by passing the data 
over the communications line. Because no intermediate files are used to 
hold the diskette contents, no operator intervention is required, and the 
only time you need to be concerned with is the transmission time. At 9,600 
bps, a diskette can be copied in 21 minutes. 

The two RPG programs shown in Figures 5-5 and 5-6 implement the 
method. Both programs use subroutine SUBRDK to access the diskette 
drive directly. The first program, SENDDK, runs on the machine that con
tains the diskette to be copied. It reads the diskette directly and transmits 
the data over the communications line to the target machine, where it is 
received by the second program RECVDK. This union of the program and 
the subroutine achieved, RECVDK writes the data directly to the diskette 
as it is received. The procedures associated with each program are shown in 
Figures 5-7 and 5-8. Parameter 1 for each procedure is the magazine slot 
number to be selected, if any. 

F or simplicity, the programs accept slot numbers in the range of 01 
through 24, just as SUBRDK expects them. If the machine doesn't have a 
magazine drive, parameter 1 should be left blank. Note also that if a maga
zine drive is installed, you must specify a slot number because slot 01 is not 
assumed. Running the programs establishes the communications link auto
matically, as long as Remote Workstation Support is not varied on. 

A closer look at SENDDK reveals some interesting facets of the sci
ence of diskette copying. If a magazine slot is specified (i.e., passed in the 
LDA), SENDDK calls subroutine SUBRDK, which selects the diskette in 
that slot. Program SENDDK then reads and transmits the index track from 
side one of the diskette. Remember that the side one index track is format
ted in single-density mode with 128-byte sectors for all diskette formats 
supported by the S/36. Only the last 19 of the 26 index sectors should be 
copied because the first seven sectors contain information specific to the 
physical layout of the diskette itself. Sector 7 contains the volume label, 
which you don't want to change, and other sectors below this contain the 
diskette bad-sector map, which is unique for each diskette. If this informa
tion were copied, problems could arise later when trying to read the new 
diskette. To avoid copying the information in the first seven sectors, pro
gram SENDDK begins reading at sector 8. 

Next, the index track from side two is read and transmitted. The side 
two index track is formatted in double-density mode with 256-byte sectors. 



84 5/36 Power Tools 

Because SENOOK uses a 2,048-byte buffer, reading all 26 sectors requires 
four diskette operations. Finally, the 74 data tracks are read and transmit
ted. Each data track contains 16,384 bytes on both sides, so a total of eight 
diskette operations is needed. The RPG subroutine CPYTRK contains a 
small loop that accomplishes this task. The record length for the bisyn
chronous communications file is 2,048, so you can transfer the entire 
diskette buffer in one bisynchronous operation. The receiving program, 
RECVOK, is essentially a mirror image of program SENOOK - it 
receives diskette data from the communications line and writes it directly 
onto the diskette. 

The programs, as currently written, copy all the tracks on a diskette, 
even if they do not all contain useful data. Thus, if a diskette is only half 
"full," 21 minutes are still needed for copying. 'Ib do otherwise would 
require that the programs analyze each dataset label to determine begin
ning and ending tracks - a process that would greatly complicate the pro
grams while adding little to their utility. 

The Hidden Benefits 
After going through the process of implementing these two utilities, it's 
interesting to look at a few hidden benefits reaped by sticking to the 
generic tool philosophy. These programs are not restricted to transferring 
data between a 5360 and a 5364. They will copy diskettes from any S/36 
model to any other S/36 model. And because the communications line is 
the medium, diskettes can be sent across town or across the country, with 
copying times ranging from four minutes (57,600 bps) to 42 minutes (4,800 
bps). Because an exact duplicate of the diskette is being made, virtually 
any kind of 20 diskette can be copied (e.g., PTF, SSP). With minor pro
gram modifications, other diskette densities could be handled. 

Because SUBROK is a separate tool, new tools can be created by build
ing on it in the same way SENOOK and RECVDK do. The possibilities 
are numerous. For example, it would be trivial to make a tool that reads a 
diskette into a temporary disk file and then copies that disk file any num
ber of times to blank diskettes. This kind of mass diskette duplicator is 
something software distributors might find handy. For another example, 
consider users who must read I-Exchange diskettes created by the 5280 
system, a programmable, intelligent workstation (no longer in production). 
They could grow their own utility to do this (the format is documented in 
publication GA21-9182, mentioned previously) and avoid having to buy 
IBM's feature 6000, which is necessary for S/36 users who want to read the 
5280 diskettes. Enterprising readers will doubtles~i come up with their own 
tools built upon SUBROK. 

The purpose of this article has been twofold: to convey the concept of 
generalized programming tools and to illustrate some benefits of this con
cept through presentation of two genuinely useful utilities. Clearly, it 



Diskettes 85 

Figure 5-5 

Program 
SENDDK 

makes sense to create tools with an eye toward future uses, even if those 
future uses are not immediately apparent. Distributing such tools to other 
programmers enhances the likelihood that the extra effort will pay of. I 
don't pretend to foresee all possible uses for the tools described in this arti
cle, but now other fertile minds are working on that problem. 

3 4 7 8 
0001 H 064 SENDDK 
0002 F" 
0003 F" TRANSMIT A DISKETTE VIA BSCA 
0004 F" 
0005 FCOMMOUT 0 F2048204B BSCA 
0006 E BUFF 2048 1 
0007 TCOMMOUT ST EYM REMon REMOT2 97015 
0008 I" 
0009 1"- THE LOA CONTAINS THE DISKETTE SLOT TO BE SELECTED, IF ANY 
0010 I" 
0011 I UDS 
0012 I 2 SLOTH 
0013 C/EJECT 
0014 C" 
0015 C" IF A VALID DISKETTE SLOT WAS PASSED IN THE LOA, SELECT THAT SLOT 
0016 C" 
0017 C SLOTH COMP '01' 11 11 If slotH is 
0018 C 11 SLOTH COMP '24' 1111 between 01 and 24 
0019 C 11 MOVE SLOTH TRACK Then set s 1 ot# 
0020 C 11 MOVE '8' FUNC And 
0021 C 11 EXSR DKTIOS Select it 
0022 C" 
0023 C" READ AND TRANSMIT THE INDEX TRACK FROM SIDE 1 
0024 C" 
0025 C" The index track on side one consists of 26 128-byte sectors. 
0026 C" recorded in single density mode. The first seven tracks contain 
0027 C" physical diskette information that we don't want to copy. so we 
0028 C" read sectors 8 through 20 and transmi t them. then we read sectors 
0029 C" 21 through 26 and transmi t those. 
0030 C" 
0031 C" 
0032 C MOVE '2' FUNC Read data/CAM 
0033 C BITOF'01234567'MOD Single density, 128 
0034 C Z-ADDO TRACK Track 0 is index trk 
0035 C Z-ADDO HEAD Side 1 
0036 C Z-ADD8 SECTOR Start wi sector 08 
0037 C Z-ADD13 COUNT 13 sectors at once 
0038 C EXSR DKTIOS Read 1st part 
0039 C EXCPTCOMM Send it 
0040 C" 
0041 C Z-ADD21 SECTOR Cant; nUB w/sector 21 
0042 C Z-ADD6 COUNT 6 sectors at once 
0043 C EXSR DKTIOS Read 2nd part 
0044 C EXCPTCOMM Send it 
0045 C" 
0046 C" READ AND TRANSMIT THE INDEX TRACK FROM SIDE 2 
0047 C" 
0048 C" The index track on side two consists of 26 206-byte sectors. 
0049 C" recorded in double density mode. We read 8 sectors at a time and 
0050 C" transmit them. 
0051 C" 
0052 C BITON" 07' MOD 256 byte sectors 
0053 C Z-ADDOl HEAD Side 2 
0054 C Z-ADDOl SECTOR Start w/sector 01 
0055 C Z-ADD08 COUNT 8 sectors per read 
0056 C EXSR DKTIOS Read 1st chunk 
0057 C EXCPTCOMM 
0058 C" 
0059 C Z-ADD09 SECTOR Cont i nue w/sector 09 
0060 C EXSR DKTIOS Read 2nd chunk 
0061 C EXCPTCOMM Send it 
0062 C" 



86 5/36 Power Tools 

0063 C Z-ADD17 SECTOR Continue w/sector 17 
0064 C EXSR DKTIOS Read 3rd chunk 
0064 C EXCPTCOMM Send it 
0066 C· 
0067 C Z-ADD25 SECTOR Continue w/sector 25 
0068 C Z-ADD02 COUNT Only two left 
0069 C EXSR DKTIOS Read last chunk 
0070 C EXCPTCOMM Send it 
0071 C/EJECT 
0072 C' 
0073 C' READ AND WRITE THE 74 DATA TRACKS, BOTH SIDES 
0074 C' 
0075 C' There are eight 1024~byte sectors on each track. The subroutine 
0076 C· CPYTRK is called 74 times. It reads and transmits one track on 
0077 C· each call. 
0078 C· 
0079 C Z-A0074 BEANS 20 
0080 C LOOP TAG 
0081 C EXSA CPYTRK 
0082 C SUB 1 BEANS 11 
0083 C 11 GOTD LOOP 
0084 C' 
0085 C' END OF J08 
0086 C' 
0087 C SETON LA 
0088 C/SPACE 
0089 C· 
0090 C· COPY ONE TRACK BOTH SlOES 
0091 C· 
0092 C CPYTRK BEGSR 
0093 C' 
0094 C BITON '067' MOD 1024 byte sectors 
0095 C AOD 1 TRACK Bump track number 
0096 C Z-ADDO HEAD Head 0 
0097 C Z-ADDl SECTDR Start with sector 
0098 C Z-ADD2 COUNT 2 sectors each time 
0099 C· 
0100 C* Read and transmit eight sectors from side 1, then eight sectors 
0101 C· from side 2, two sectors at a time 
0102 C· 
0103 C CPLOOP TAG 
0104 C EXSR DKTIOS Read two sectors 
0105 C EXCPTCOMM Send them 
0106 C ADD 2 SECTOR Bump sector number 
0107 C SECTOR COMP 8 11 [f done with side 
0108 C 11 Z-ADDl SECTOR Then start over 
0109 C 11 ADD 1 HEAD I,ith side two 
0110 11 HEAD COMP 11 [f done with side 
0111 11 GOTO CPYEND Then return 
0112 GOTO CPLOOP 1:1 se repeat 
0113 C' 
0114 C CPYEND ENDSR 
0115 C/EJECT 
0116 C' 
0117 C' DISKETTE lOS ROUTINE 
0118 C' 
0119 C DKTIOS BEGSR 
0120 C EXIT SUBRDK Ca 11 SUBRDK 
0121 C RLABL FUNC Funct i on code 
0122 C RLABL MOD I~od;f;er bits 
0123 C RLABL TRACK 20 Track number 
0124 C RLABL HEAD 20 Head number 
0125 C RLABL SECTOR 20 Sector number 
0126 C RLABL COUNT 20 Sector count 
0127 C RLABL BUFF Buffer array 
0128 C ENDSR 
0129 OCOMMOUT COMM 
01300 BUFF 2048 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 

Diskettes 87 

Figure 5-6 

Program 
RECVDK 

064 
F' 
F' RECEIVE 
F' 
FCOMMIN 10 
E 
TCOMMIN SR 
ICOMMIN NS 
I 
I' 
1'- THE LDA 
I' 
I 
I 
CI EJ ECT 
C' 
C' IF A VALID DISKETTE 

C
C SLOT# 

C 11 SLOT# 

C 11 
C 11 
C 11 
C' 
C' RECEIVE AND 
C' 
C' The index 

2 SLOT# 

SLOT WAS PASSED IN THE LDA, SELECT THAT SLOT 

CaMP '01 ' 11 11 If s10t# is 
CaMP '24' 1111 between 01 and 24 
MOVE SLOT# TRACK Then set slot# 
MOVE '8' FUNC And 
EXSR DKTIOS Select it 

C' recorded in single density mode. The 
C' physical diskette information that we 
C' receive sectors 8 through 20 and write 
C' 21 through 26 and wr,te those. 
C' 
C 
C 
C 
C 
C 
C 
C 
C 
C' 
C 
C 
C 
C 
C' 
C' RECEIVE 
C' 

RECVDK 

A DISKETTE VIA BSCA 

F20482048 BSCA 

BUFF 204B 1 


EYA REMon REMOTI 97015 

01 


12048 BUFF 


CONTAINS THE DISKETTE SLOT TO BE SELECTED, IF ANY 

UDS 

WRITE THE INDEX TRACK FROM SIDE 1 


track on side one consists of 26 128-byte sectors. 


READ COMMIN 
MOVE '5' FUNC 
BITOF'01234567'MOD 
l-ADDO 
l-ADDO 
l-ADD8 
l-ADD13 
EXSR DKTI as 

READ COMMIN 
l-ADD21 
l-ADD6 
EXSR DKTIOS 

AND WRITE THE INDEX TRACK 

TRACK 
HEAD 
SECTOR 
COUNT 

SECTOR 
COUNT 

first seven 
don't want 

them, then 

FROM SIDE 2 

tracks contain 
to copy, so we 

we receive sectors 

Receive a buffer 
Write 
Single density, 128 
Track 0 is index trk 
Side 1 
Start wlsector 08 
13 sectors per receive 
Write 1st part 

Receive a buffer 
Continue w/sector 21 
6 sectors per receive 
Write 2nd part 

C' The index track on side two consists of 26 256-byte sectors, 

C' recorded in double density mode. We receive 8 sectors at a time and 

C' write 
C' 
C 
C 
C 
C 
C 
C 
C' 
C 
C 
C 
C' 
C 
C 
C 
C' 
C 
C 
C 
C 
C/EJECT 
C' 
C' RECEIVE 

them 

READ COMMIN 
BITON' 07' MOD 
l-ADDOI 
l-ADD01 
l-ADD08 
EXSR DKTIOS 

READ COMMIN 
l-ADD09 
EXSR DKTIOS 

READ COMMIN 
Z-ADD17 
EXSR DKTIOS 

READ COMMIN 
l-ADD25 
l-ADD02 
EXSR DKTIOS 

AND WRITE THE 74 DATA 

HEAD 
SECTOR 
COUNT 

SECTOR 

SECTOR 

SECTOR 
COUNT 

TRACKS, BOTH 

Receive a buffer 
256 byte sectors 
Side 2 
Start wlsector 01 
B sectors per receive 
Write 1st chunk 

Receive a buffer 
Continue w/sector 09 
Write 2nd chunk 

Receive a buffer 
Continue w/sector 17 
Write 3rd chunk 

Receive a buffer 
Continue w/sector 25 
Only two left 
Write last chunk 

SIDES 



88 5/36 Power Tools 

Figure 5-7 

Procedure 

SENDDK 


0075 C' 
0076 C' There are eight 1024-byte sectors on each track. The subroutine 
0077 C' CPYTRK is called 74 times, It receives and writes one track on 
0078 C· each call 
0079 C· 
0080 C Z-ADD74 BEANS 20 
0081 C LOOP TAG 
0082 C EXSR CPYTRK 
0083 C SUB 1 BEANS 11 
0084 C 11 GOTO LOOP 
0085 C· 

0086 C' END OF JOB 

0087 C· 

0088 C SETON LR 

0089 C/SPACE 

0090 C' 

0091 C· COPY ONE TRACK - BOTH SIDES 

0092 C· 

0093 C CPYTRK BEGSR 

0094 C· 

0095 C BITON '067' MOD 1024 byte sectors 

0096 C ADD 1 TRACK Bump track number 
0097 C Z-ADDO HEAD Head 0 
0098 C Z-ADDl SECTOR Start with sector 
0099 C Z-ADD2 COUNT 2 sectors each time 
01 00 C' 
0101 C' Receive and write eight sectors on side 1, then eight sectors 
0102 C· on side 2, two sectors at a time. 
0103 C· 
0104 C CPLOOP TAG 
0105 C READ COMMIN Receive a buffer 
0106 C EXSR DKTIOS Write two sectors 
0107 C ADD 2 SECTOR Bump sector number 
0108 C SECTOR COMP 8 11 If done with side 1 
0109 C 11 Z-ADDl SECTOR Then start over 
0110 C 11 ADD 1 HEAD With side two 
0111 C 11 HEAD COMP 1 11 If done with s; de 
0112 C 11 GOTO CPYEND Then return 
0113 C GOTO CPLOOP El se repeat 
0114 C' 
0115 C CPYEND ENDSR 
0116 C/EJ ECT 
0117 C' 
0118 C' DISKETTE lOS ROUTINE 
0119 C' 
0120 C DKTIOS BEGSR 
0121 C EXIT SUBRDK Call SUBRDK 
0122 C RLABL FUNC 1 Function code 
0123 C RLABL MOD 1 Modifier bits 
0124 C RLABL TRACK 20 Track numbe r 
0125 C RLABL HEAD 20 Head number 
0126 C RLABL SECTOR 20 Sector number 
0127 C RLABL COUNT 20 Sector count 
0128 C RLABL BUFF Buffer array 
0129 C ENDSR 

I I • "SENDDK' SEND A DISKETTE VIA BSC VOLUME: 7VOLID?' 

* Parameter 1 ;s the diskette slot to select. if any 

I I EVALUATE Pl, 2-7 17 Make Parm-1 two digits right justified 
II LOCAL OFFSET-l,DATA-'71?',BLANK-2 Put slot parameter in the LOA 

I I ALLOCATE UNIT - T1 
I I LOAD SENDDK 
I I COMM L1NK-1 
I I RUN 



Diskettes 89 
1/ .. I·RECVDK- - RECEIVE A DISKETTE VIA Bse VOLUME. ?VOLIO?'Figure 5-8 .. Parameter 1 is the diskette slot to select. if any 
II EVALUATE P1,2-717 Make Parm~l two digits right justified

Procedure 1/ LOCAL OFFSET-l ,OATA-'?1?' .BLANK 2 Put slot parameter in the LOA 
II ALLOCATE UNIT-II

RECVDK 	 1/ LOAD RECVDK 
II COMM LINE-I 
II RUN 

Retrieving Deleted Diskette Files 
by John B. Bowers 

It has happened to every programmer, I suppose - that moment of non
chalance when you think you've finally become incapable of stupid mis
takes. You do a group file delete without looking, and then ... Oops! 

Your blood turns to ice water, your throat constricts, and you fleetingly 
wonder whether the VW has enough gas to reach Mexico. Thank God for 
diskette backups, right? Well, no. That's where this nightmare begins. 



90 5/36 Power Tools 

The week before Christmas I was working late on the 5360, knocking out 
a year-to-date report using a group of temporary files. I finished in the early 
evening, spooled the report, and deleted the files - without looking. The files 
were grouped and subgrouped under AB.C.nnn. I should have deleted the 
group as AB.C; instead, I deleted it as AB. You can imagine the rest. AB.D.nnn 
and AB.E.nnn were live files, critical files, and they were gone in a flash. 

Because I didn't realize my error in time, the rleal problem occurred the 
next day when Gretchen did the daily save on the AB files. As its first task, 
the backup she ran called the INIT procedure: 

INIT WORK, ,DELETE,Ml.0l,Ml.l0 

Need I say more? I had deleted the files from Fl, and now they were 
gone from lIas well. I learned the cheerful news when I called in to let the 
office know I was planning to take the day off. A few terse words and I was 
in the car, wondering about Mexico and trying to remember everything I 
had ever heard about the PATCH procedure, which was not much. 

I was reasonably certain of one thing - the data should still be on the 
diskettes. INIT "DELETE does not erase a diskette; it merely deletes the 
volume tabl~ of contents (VTOC). If I could somehow rebuild that VTOC, 
I should be able to restore those files. 

It took several fruitless phone calls and two days of cold sweat to get 
the job done. The manual in which the PATCH procedure is documented 
is difficult to obtain (Program Problem Diagnosis and Diagnostic Aids, LY2l
0590), and on-line Help isn't much help. Using, of all things, a booklet the 
IRS puts out about magnetic media W2s, I managed to decipher the header 
record layouts for the deleted files and rebuild their VTOC entries with the 
PATCH procedure. Just a month later, using the same PATCH techniques 
on a 5364, I was able to recover for a client files on the little 5 1/4 inch 
diskettes, as well. So the same procedures apply. 

Can You Recover? 
Before I describe how I rescued files with the PATCH procedure, I need to 
say a few words about deletions. A diskette file can get smoked in two pri
mary ways: with the DELETE command or with the INIT command . 

. Each method has options - some allow recovery, and some don't. 
The DELETE command offers three types of delete: SCRATCH, 

ERASE, and REMOVE. The default is SCRATCH, and it is also the safest. 
When you run DELETE with the SCRATCH option, the computer sets 
the expiration date to the current session date. Both the data and the VTOC 
remain intact until another file is written onto the diskette. The ERASE 
option literally erases the data from the data tracks, leaving the file without 
recovery. The REMOVE option obliterates the VTOC but leaves the data 
intact, allowing recovery of the header records via the: methods described here. 

The INIT procedure likewise has options: FORMAT and FORMAT2 

http:DELETE,Ml.0l,Ml.l0


Diskettes 91 

initialize the entire diskette, leaving no data anywhere to be recovered, 
whereas the RENAME option (the default) changes the volume ID and 
owner ID but does not affect labels or data. The DELETE option is the 
same as DELETE ALL,I1,REMOVE; it deletes only the label record but 
leaves data in a recoverable state. 

Perhaps the following explanation of how to recover those missing files that 
are recoverable will be helpful to you - if you ever get to be as cocky as I was. 

Beginning the Recovery Process 
Ifyou have password security, you can run PATCH from any display sta
tion. If not, you must work from the console. Only users with service aid 
authority can use PATCH. With the diskette to be patched in slot 1, you 
begin by typing the command PATCH 11 from any menu or command 
screen. You can also access PATCH through the HELP menu. Select 
Option 8, which brings up the PROBSERVE menu. Now select Option 2, 
and you have the SERVICE menu. Option 10 on this menu is the PATCH 
procedure. Be sure to specify 11, the diskette drive, because PATCH 
defaults to F1, the hard disk. Only the very brave should fool around with 
Fl. The PATCH diskette utility setup screen (Figure 5-9) calls for a 
diskette address in one of three formats: sequential sector. address; cylinder, 
head, record address; and label sector address. 

Figure 5-1 on page 79 illustrates the physical layout of a diskette. A 
diskette contains 75 usable concentric circular tracks numbered 00 through 
74. Two-sided diskettes have another set of tracks on the flip side. Each 
track is divided into sectors, which are analogous to records in a disk file. 
One sector is the smallest amount of data that can be read or written in one 
operation. The number of sectors per track and the number of bytes per 
sector determine the capacity of a diskette. 

Track 00 is called the index track because it contains dataset labels for 
files stored on the diskette - the VTOC for the diskette. Regardless of how 
the rest of the diskette is initialized, the index track is always formatted to 
contain 26 128-byte sectors, each containing one dataset label. For two-sided 
diskettes, track 00 on the flip side contains a continuation of the index track, 
formatted as 26 256-byte sectors. (For more information about diskette inter
nal formats, see the IBM Diskette General Information Manual, GA21-9182.) 

To rebuild the VTOC on Track 00, you first look at label sector address 
0000007L where the VOL1 (i.e., volume label) record resides. (The first six 
tracks, usually referred to as the CE tracks, are used for diagnostics.) To 
look at the volume label record, you must enter the address as shown in 
Figure 5-10. Because this sector is a label sector, you need to enter an L 
where the S is, to the left of HEX in the last line. Also, do yourself a favor 
and eliminate the need to do hex-to-decimal conversion gymnastics by 
changing the word HEX (the default) to DEC on the last line. 

Sector address 0000007L (Figure 5-11a) shows the volume label 



92 5/36 Power Tools 

(WORK) and owner ID (EXPEDATA) of the diskette. The screen looks 
like a disk dump, with four columns of hex values on the left and the corre
sponding EBCDIC values on the right. When you begin patching, you 
enter hex values on the left for the missing header r,ecords. How accurate 
you are can be seen on the right when you press Enter. I advise you to 
check your progress periodically. 

Each large column on the left contains four hex bytes per row; two posi
tions, or nibbles, constitute a byte. The entire screen constitutes a 128-byte 
record. You must keep track of the hex positions yourself. It's a bit difficult at 
first, but as soon as you get used to multiplying everything by 16, it's easier. For 
example, the fifth row from the top starts in position (l + (16 "" 4», or position 
65, and ends in position (16 + (16 "" 4», or position 80. From this screen, you 
can move forward or backward using Command keys. Command key 1 pages 
to the next sector (OOOOOO8L), and Command key 2 pages to the previous label 
sector (OOOOOO6L). The actual work will begin in label sector 00OOOO8L (where 
the label records begin), so use Command key 1 to page forward. 

A newly initialized diskette looks like Figure 5-11 b. If you have 
deleted a VTOC entry, the screen will look like Figure 5-11c. This screen 
is a dead giveaway that everything has been nuked; note the words 
"deleted sector," the D in the first position, and alll:he hex blank (i.e., '40') 
values. Paging forward from deleted sectors, you may find labels that look 
like Figure 5-11 d - if there are more files on the diskette that haven't 
been deleted. Be careful to skip over them as you patch. For each file you 
recover, you must change a label that looks like the screen in Figure 5-11 b 
or Figure 5-11c to a label that looks like the screen in Figure 5-11b. Figure 
5-12 details a diskette label record layout. To make your files restorable, 
each field must be rebuilt correctly. 

The old saying goes that there are eight ways to stick a diskette into a 
computer, and seven are wrong. The same complexiity comes into play 
when you rebuild the label records on the index track. Are you dealing with 
files from a SAVE, SAVELIBR, SAVEFLDR, ARCHIVE, TRANSFER, or 
FROMLIBR operation? If the files came from a SAVE, were they saved as 
a group? Compressed? Multivolume? What was the record length? Is the 
diskette ID or 2D? Was the diskette initialized using FORMAT or FOR
MAT2? You must know this information. 

You have two primary ways to find out what kind of data lives on the 
diskette and where it is located. One is to refer to a diskette catalog that 
was printed before your disaster, which makes the job monumentally eas
ier. The other is to plow through the entire diskette one sector at a time 
using Command key 1. For the sake of this exercise, assume you are work
ing with 2D diskettes initialized as FORMAT2. (The chart in Figure 5-13 
compares diskettes and formats.) 



Diskettes 93 

Finding the Missing Label Information 
By paging forward through the label sector addresses, you have identified 
the label sectors you need to recover. To rebuild the missing label records, 
you must know where the actual data resides. The physical data begins in 
sector 1 of Track 01. To get to Track 01, enter the value 0000001 (i.e., the 
sequential sector address for sector 0 at the SS@ prompt on any PATCH 
screen, and blank out the next field (which contains an L if you are in Track 
00). Press Enter, and you find yourself looking at the first sector of Track 01 
(Figure 5-14a). For 20 diskettes initialized as FORMAT2, each sector con
tains 1,024 bytes. You can page through the sector 256 bytes at a time using 
the Roll keys, but to get to the next sector you must use Command key 1. 

In this example, each of the 74 tracks has eight 1,024-byte sectors. It 
takes a long time to page through that many sectors using Command key 1! 
Yet, if you don't know what files are on the diskette, or where they are 
located, that is what you must do. Enjoy. 

Figure 5-14a shows what the beginning of a data file looks like. The clue 
is FMT1 (embedded format 1) in position 1 of the record. The file name (in 
this example, LH.P.51O) begins in position 8 and the file date (in VYMMDD 
format) in position 16. #SAVE (the default) is the set name assigned to the 
files when they were saved, and the file name in position 83 is the name of 
the file that follows if there was a group save (in this case, LH.P.206). 

Figure 5-14b details what the start of a FROMLIBR record looks like. The 
S in position 1 shows this record to be a source member. The member name 
starts in position 2. FROMLIBR on the S/36 always has a record length of 008. 

Figure 5-14c is an example of a library saved with SAVELIBR. Unless 
you knew the library record was there, I'm not sure you could recognize it. 
The library name starts near the bottom of the screen, in position 205 
(#WORK). SAVELIBR always has a record length of 128. 

Figure 5-14d is an example of a TRANSFER file. TRANSFER records 
are found only on diskettes initialized as FORMAT because EXCHANGE 
format does not work under FORMAT2. 

Rebuilding the Label Records 
Before you begin rebuilding the label records, take another look at Figure 
5-14a. At the top of the screen is the sector address. The address following 
the SS@ prompt is the same location on diskette that you would see under 
FILE LOCATION on a catalog printout (i.e., sequential sector address in 
Figure 5-9). The address following the CHR prompt is the cylinder (i.e., 
track), head, record (i.e., sector) address. The CHR address format is the 
address format you use in building the label records - ifyou changed from 
HEX to DEC mode when you started PATCH 11. Ifyou page forward 
through a few sectors, you notice that each track (cylinder) has eight sectors 
and two heads (00 and 00. Address 010008 gives way to 010101, and address 



94 5/36 Power Tools 

010108 to 020001. The last address on the diskette in our example is 740108. 
The format is CCHHSS (e.g., 740108 means track 74, head 01, sector 08). 

With this very primitive background in what data looks like on the 
diskette, let's begin rebuilding the label for file name LH.P.51O. The first 
data sector for this file is shown in Figure 5-14a. The label, when you fin
ish, will look like Figure 5-11d. Step by step, let's walk through the fields 
in the label record and understand them. 

To begin the patch, you move the cursor to the appropriate position in 
the hex data area (not the character data area on the right) and type in the 
replacement values (see Figure 5-15 for a table of EBCDIC hex values). 
This step is difficult and demands patience. It's best to address the fields in 
the label record one at a time and press Enter (without the P Command 
code) to check your work. You can avoid looking up hex codes for EBCDIC 
character values and instead key these characters directly by preceding 
each with a single quote character. Thus, you can key "FRED" as 
'F'R'E'D and the file name as 'L'H'.'P'.'5'1O. 

Positions 1 through 4 contain the constant value HDRI. 

Positions 6 through 13 contain the file name. 

Position 5 and Positions 14 through 22 are reserved. Ignore them. 


Positions 23 through 27, the diskette record length, are 01024 if the diskette 

was initialized as FORMAT2 or 00256 if initialized as FORMAT. TRANS

FER files are always 00128. 


Position 28 is a constant: R for files, blank for TRANSFER. 

Positions 29 through 33 hold the beginning address of the file in CCHSS for
mat. Remember the address on the right of the data sector following the 
CHR prompt? Just drop the leading zero of the cylinder - 00 becomes 0, 
01 becomes 1 (e.g., address 010001 becomes 01001; 020107 becomes 
02107). 

Position 34 is a constant: 3 if FORMATZ, 1 if FORMAT. 

Positions 35 through 39 contain the ending address of the file. This address is 
the CCHHSS address found on the last sector of data in the file. If you omit 
this entry, a restore of the file either won't work or will give unpredictable 
results. To find this address, locate the next file aft,er the file on which you 
are working, and use Command key 2 to look at the sector just preceding. 
That address gives you the sector address of the end of the current file. If 
there is no next file, that's a problem. If the diskette was initialized before 
the SAVE, you probably can detect whether the file is the last file because it 
will be followed by a bunch of hex initialization values (see Figure 5-16). 
Changes in data patterns, such as character data to packed numbers, may 
also be a tip off to an end of file. Finally, you can always resort to trial-and
error and check your guess by browsing the results using POPLIB. 



Diskettes 95 

Position 43 is a constant: P if this file was saved in COMPRESS format, oth
erwise blank. 

Position 44 is a constant: E for data, folder, or library file, H for TRANSFER. 

Position 45 is used for multivolume files only: C indicates whether this file 
continues on the next diskette; L indicates the last installment of a multi
volume file. 

Positions 46 through 47 are also for multivolume files only and contain the 
sequence number of the current volume. For example, a file spanning 
three diskettes would appear as COl in positions 45 through 47 of the first 
diskette, C02 on the second diskette, and L03 on the last diskette. 

Positions 48 through 53 indicate the date the file was created. This date is 
optional, but you should include it, if possible, because diskette expiration 
dates are computed using this date as a starring point. You can use any date 
because the computer doesn't really care when the file was built. The date 
format is YYMMDD. 

Positions 54 through 57 contain the record length of the actual data. Datafiles 
will not restore ifthis value is incorrect. Find this number on the diskette cata
log or from some other source such as a data dictionary or program listing. 
Sometimes you can deduce the length if you are working with consistent 
data (e.g., alphabetized customer names). Note the following defaults: 

TRANSFER - 0128 

SAVELlBR - 0128 

FROMLlBR - 0008 

SAVEFLDR 2560 


Positions 67 through 72 hold the expiration date of the file in YYMMDD for
mat. If this file is protected (i.e., retention 999 on the SAVE command), you 
enter 999999. Otherwise, use the expiration date of your choice. 

Positions 75 through 79 indicate the sector address of the file following this 
one, if any. This field is required, and reconstructing it is usually as simple 
as adding 1 to the ending sector address. (But keep in mind that CHR 
addresses "roll over" after sector 08 - e.g., 010008 becomes 010101.) For mul
tivolume files that are continued on the next diskette, this address is 75001. 

Positions 96 through 106 are the constant value IBMSYSTEM36. 

Position 109 is blank unless this file was part of a group save, in which case 
you use a constant value 1. 

Position 110 contains a constant value: 

1 = data file 
2 - FROMLIBR or ARCHIVE 
3 = SAVEFLDR 
4 = SAVEFLDR extent 
9 - SAVEll SR 

blank - TRANSFER. 



96 5/36 Power Tools 

Figure 5·9 

PATCH utility 
screen 

Remember that the first 26 sectors are 128-byte records (of which only the 
last 19 - sectors 08 through 26 - are available for label records). Begin
ning with sector 27 on a two-sided diskette, the sectors become 256-byte 
records. You can record two labels on each of these 52 additional sectors, 
but for the positions of the second record, you must add 128 to the position 
numbers above. 

When all label positions in a record are restored, you must move the 
cursor to the L at the top of the screen (to the left of CHR) and replace that 
L with a P - for PATCH. (If you neglect to change the L to P, none of your 
changes will be applied permanently. You then press Enter to apply the 
changes. A reassuring message should appear in reverse image at the lower 
right of the screen: "Sector is patched." 

The PATCH utility is a handy parachute. Don't be afraid to use it when 
appropriate. Better yet, don't ever let yourself become so perfect at your 
craft that you do things without looking, else you may find yourself writing 
the next how-to article for NEWS 3X/400. 

S/36 PATCH DISKETTE UTILITY W2 

Select Dlskette sector(s) 

Rep 1 y formats: SSSSSS S Diskette sequential sector address 

CCHHSS C Diskette cylinder head record address 

SSSSSS L 0, skette label sector address 

Exit option 

S HEX (HEX,DEC) 

Cmd7-End 



Diskettes 97 

Figure 5-10 

PATCH utility 
screen with 
entry 

Figure S-l1a 

Volume label 
record 

S/36 PATCH DISKETTE UTILITY W2 

Select Diskette sector(s). 

Reply formats: SSSSSS S Diskette sequential sector address 

CCHHSS Diskette cylinder head record address 

SSSSSS Diskette label sector address 

Exit option 

000007 DEC (HEX,DEC) 

Cmd7-End 

S/36 PATCH DISKETTE UTILITY W2 

SS@~ 0000007 L CHR 000007 Decimal 
Addr 00 04 08 OC 
0000 E5D6D3Fl E6D6D902 40404040 40404040 *VOLIWORK 
0010 40404040 40404040 C9C204E2 E8E2E3C5 IBMSYSTE* 
0020 04F3F640 40C5E707 C5C4C1E3 C1404040 *M36 EXPEOATA 
0030 40404040 40404040 40404040 40404040 
0040 40404040 40404004 404040F3 404040E6 M W* 
0050 40404040 40404040 40404040 40404040 
0060 40404040 40404040 40404040 40404040 
0070 40404040 40404040 40404040 40404040 

Cmdl-Next sector Cmd2-Previous sector Cmd7-End Roll keys-Page sector 



98 5/36 Power Tools 

Figure 5-11 b 

Initialized 5/36 PATCH DISKETTE UTILITY 

label record 012 

SS@ 0000008 L CHR 000008 Decimal 
Addr 00 04 08 OC 
0000 C8C4D9F1 40C4C1E3 C1404040 40404040 *HDR1 DATA 
0010 40404040 4040FOFO FOF8F040 FOF1FOFO 00080 0100* 
0020 F1 F3F7F4 F1FOF840 404040C5 40404040 *1374108 E 
0030 40404040 40404040 40404040 40404040 
0040 40404040 40404040 4040FOF1 FOFOF140 01001 * 
0050 40404040 40404040 40404040 40404040 
0060 40404040 40404040 40404040 40404040 
0070 40404040 40404040 40404040 40404040 

Cmd1-Next sector Cmd2-Previous sector Cmd7-End Roll keys-Page sector 

Figure 5-11 c 
5/36 PATCH DISKETTE UTI L1TY

Deleted label 
SS@' 0000009 L CHR- 000009 Decimal D4~ 1eted sectorrecord Addr 00 04 08 OC 

0000 C4404040 40404040 40404040 40404040 *0 
0010 40404040 40404040 40404040 40404040 
0020 40404040 40404040 40404040 40404040 
0030 40404040 40404040 40404040 40404040 
0040 40404040 40404040 40404040 40404040 
0050 40404040 40404040 40404040 40404040 
0060 40404040 40404040 40404040 40404040 
0070 40404040 40404040 40404040 40404040 

Cmd1-Next sector Cmd2-Previous sector Cmd7-End Roll keys-Page sector 

012 



Diskettes 99 

Figure 5-11 d 

Rebuilt label 5/36 PATCH DISKETTE UTILITY W2 

record S5@= 0000008 
Addr 00 

L CHR= 000008 
04 

Decimal 
08 OC 

0000 C8C4D9Fl 4003C848 o748F5Fl F0404040 'HoRl LH. P. 510 
0010 40404040 4040FOFl FOF2F409 FOFl FOFO 01024R0100' 
0020 F1 F3FOF1 FOFOF240 404007C5 404040F9 '1301002 PE 9' 
0030 FOFOF2 FO F7FOF2FO F0404040 40404040 '002070200 
0040 4040F9FO FOF2FOF8 4040FOF1 FOFOF340 * 900208 01003 ' 
0050 40404040 40404040 40404040 404040C9 I' 
0060 C204E2E8 E2E3C504 F3F64040 F1 F14040 *8M5Y5TEM36 11 * 
0070 40404040 40404040 40404040 40404040 

Cmd1-Next sector Cmd2-Previous sector Cmd7-End Roll keys-Page sector 

Figure 5-12 

Diskette label record layout 

Position Description Position Description 

1-4 HDRI 46-47 Sequence number 
6-13 File Name (multivolume only) 
23-27 Diskette Record Length 48-53 File date 
28 R (blank for TRANSFER) 54-57 Record length 
29-33 Starting address (CCHSS) 67-72 Expiration date 
34 1 (FORMAT) 75-79 Start address of next file 

3 (FORMATZ) 96-106 IBMSYSTEM36 
35-39 Ending address (CCHSS) 109 1 = group save else blank 
43 P = compressed format 110 1 = data file 
44 E= file, folder, library 2 = FROMLIBR or ARCHIVE 

H= TRANSFER file 3 = SAVEFLDR 
45 C= continued on next volume 4 = SAVEFLDR extent 

L= last volume of file 9 = SAVELIBR 
else blank blank = TRANSFER 



100 S/36 Power Tools 

Figure 5-13 

DiskeHe Type/Format Record Size Ending Address Diskette size 
basics 	 10 FORMAT 00080 73026 

10 FORMAT2 00256 74015 
20 FORMAT 00256 74126 
20 FORMAT2 01024 74108 

Figure 5-14a 
5/36 PATCH OISKETTE UTILITY 	 '112Beginning of a 

SS@- 0000001 CHR- 010001 Decimalfile 
Addr 00 04 08 OC 

0000 C604E3Fl 00000003 C84B074B F5F1 FOFS "FMT1 ... LH.P.510S" 

0010 FOFOF2FO F7E30080 00C81 COO 1COOOOOO "00207T.0.H ... 

0020 00000000 00000000 04000000 0008C107 ....... AP* 

0030 C905E509 40401302 3C75530E OOAOOOOl 'INVR . K. e .. u .. " 

0040 E761 0000 00200003 7BE2C1E5 C5404040 'X/ .. .. #SAVE 

0050 01 C303C8 4B074BF2 FOF6007B 04C3E2C4 '. CLH P.206.#MCSO" 

0060 C3E34000 00000000 00000000 00000000 oCT 
 " 
0070 00000000 00000000 00000000 00000000 " 
0080 00000000 00000000 00000000 00000000 
0090 00000000 00000000 00000000 00000000 
OOAO 00000000 00000000 00000000 00000000 " 
OOBO 00000000 00000000 00000000 00000000 
OOCO 00000000 00000000 00000000 00000000 
0000 00000000 00000000 00000000 00000000 .... " 
OOEO 00000000 00000000 00000000 00000000 .... " 
OOFO 00000000 00000000 00000000 00000000 <0 

Cmd1-Next sector Cmd2-Previous sector Cmd7 - End Ao II keys-Page sector 

Figure 5-14b 

FROMLlBR 5/36 PATCH OISKETTE UTILITY 	 '112 

record 
SS@- 0000117 CHR- 080005 Decimal 

Addr 00 04 08 OC 
0000 E2C107C3 C8C5C302 4000000C 60002COO "SAPCHECK 
0010 00000000 00000051 00062000 00000289 ...... e .. .i* 
0020 01181125 40000000 80551800 00000000 ... 0; ... 
0030 00000000 00000000 CAFOFOFO F140C65C 0001 F"" ........... _........... *.It. 
0040 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C ......_........................ 0050 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C ... __ ._._._.... __ . 
0060 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C 
0070 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C ..._...........-...
0080 5C5C5C16 87FOFOFO F240C65C 5987FOFO it. __ .g0002 F*OgOO. 
0090 FOF340C6 5C188970 Cl07C3C8 C5C30270 "03 F".;· APCH ECK' " 
OOAO 3587FOFO FOF440C6 5C59Bl FO FOFOF540 ".90004 F'~£0005 " 
OOBO C65C4009 C5C30609 C44003Cl EB06E4E3 "F" RECORO LAYOUT" 
OOCO 40C60609 40E3C8C5 40C16107 40C3CBC5 " FOR THE A/P CHE" 
0000 C3024009 C5C7C9E2 E3C5094B 2F87FOFO "CK REGISTER .. gOO" 
OOEO FOF640C6 5C5SCAFO FOFOF740 C65C5C5C *06 F*n0007 F*··· 
OOFO 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C ........ -.......... _.

Cmd1-Next sector Cmd2-Previous sector Cmd7 - End Roll keys- Page sector 



Diskettes 101 

Figure 5-14c 
S/36 PATCH DISKETTE UTILITY W2SAVELIBR SS@- 0000949 CHR- 600005 Dec i mal 

Addr 00 04 08 OClibrary record 
0000 0003AA5D 03ADOE03 AA5E03AA 61001000 .j) . i;· i/ 

0010 03000000 0003AA62 03ADOE02 A903ADOB .... i_"_" . z. 

0020 00040000 00000000 00000000 00000000 

0030 00000000 00000000 00000000 00000000 .. · 
0040 00000000 00000000 00000000 00000000 

0050 00000000 00000000 00000000 00000000 
 · 0060 00000000 00000000 00000000 00000000 ...· 0070 00000000 00000000 00000000 00000000 
0080 00000000 00000000 00000000 00000000 · · 0090 00000000 00000000 00000000 00000000 
OOAO 00000000 00000000 00000000 00000000 · 
OOBO 00000000 00000000 00000000 00000000 
OOCO 00040002 A9409002 07000006 7BE6D6D9 .. Z o. .#WOR· 
0000 02404040 00000500 02820500 010010E2 'K .... ¥. .. S· 
OOEO 00000000 00000000 00000000 00000000 
OOFO 00000000 00000000 00000000 00000000 

Cmdl-Next sector Cmd2-Previous sector Cmd7 - End Roll keys-Page sector 

Figure 5-14d 
5/36 PATCH DISKETTE UTILITY W2

TRANSFER 
SS@- 0000001 CHR- 010001 Decimalfile Addr 00 04 OB OC 

0000 F1C1F1F9 F8F94040 40404040 40404040 'lA1989 
0010 40404040 40404040 E8D6E409 40C3D6D4 YOUR COM' 
0020 D7Cl05E8 40404040 40404040 40404040 'PANY 
0030 40404040 40404040 40404040 40404040 
0040 40404040 40404040 4040C6C9 D9E2E340 FIRST' 
0050 C1C4C409 C5E2E240 03C905C5 4848484B 'ADORESS LINE ..... 
0060 48484848 48484840 40404040 40404040 
0070 40404040 40404040 40404040 40404040 
0080 00000000 00000000 00000000 00000000 
0090 00000000 00000000 00000000 00000000 
OOAO 00000000 00000000 00000000 00000000 · 
OOBO 00000000 00000000 00000000 00000000 
OOCO 00000000 00000000 00000000 00000000 ... · 0000 00000000 00000000 00000000 00000000 · OOEO 00000000 00000000 00000000 00000000 · OOFO 00000000 00000000 00000000 00000000 

Cmdl-Next sector Cmd2-Previous sector Cmd7 -End 



102 5/36 Power Tools 

Figure 5-15 
Collating

Tab/eo! Sequence
EBCDIC hex 
values 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Hex Collating HexCharacter CharaderValue Sequence Value 

Blank 40 49 s A2 
¢ 4A 50 t A3 

4B 51 u A4 
< 4C 52 y A5 
( 40 53 w A6 
+ 4E 54 x A7 
I 4F 55 A8Y 
& 50 56 z A9 
! 5A 57 { CO 
$ 5B 58 A C1 
• 5C 59 B C2 
) 50 60 C C3 
; 5E 61 0 C4 
.., 5F 62 E C5 

- (minus) 60 63 F C6 
/ 61 64 G C7 
I 6A 65 H C8I 

, 6B 66 I C9 
% 6C 67 } 00 

_ (underscore) 60 68 J 01 
> 6E 69 K 02 
? 6F 70 L 03 , 79 71 M 04 
: 7A 72 N 05 
# 7B 73 0 06 
@ 7C 74 P 07 
I 7D 75 Q 08 
= 7E 76 R 09 
" 7F 77 \ EO 
a 81 78 S E2 
b 82 79 T E3 
c 83 80 U E4 
d 84 81 V E5 
e 85 82 W E6 
f 86 83 X E7 
9 87 84 Y E8 
h 88 85 Z E9 
i 89 86 0 FO 
i 91 87 1 F1 
k 92 88 2 F2 
I 93 89 3 F3 
m 94 90 4 F4 
n 95 91 5 F5 
0 96 92 6 F6 

97 93 7 F7P 
q 98 94 8 F8 
r 99 95 9 F9 
- A1 



Diskettes 103 

Figure 5·16 

Initialized data 
S/36 PATCH DISKETIE UTILITY W2 

sector 55@ 0000001 
Addr 00 

CHR 010001 
04 

Hexadecimal 
08 DC 

0000 DB6DB6DB 6DB6DB6D B6DB6DB6 DB6DB6DB *--q--q--q--q--q-* 
0010 6DB6DB6D B6DB6DB6 DB6DB6DB 6DB6DB6D *-q--q--q--q--q--* 
0020 
0030 

B6DB6DB6 
DB6DB6DB 

DB6DB6DB 
6DB6DB6D 

6DB6D86D 
B6DB6DB6 

86D86DB6 
DB6DB6DB 

*q--q--q--q--q--q* 
*--q--q--q--q--q-* 

0040 6DB6DB6D B6DB6DB6 DB6D86DB 6DB6DB6D *-q--q--q--q--q--* 
0050 
0060 

B6DB6DB6 
DB6DB6DB 

DB6DB6DB 
6DB6DB6D 

6DB6DB6D 
B6DB6DB6 

B6DB6DB6 
DB6DB6DB 

*q--q--q--q--q--q* 
*--q--q--q--q--q-* 

0070 
0080 

6DB6DB6D 
B6DB6DB6 

B6DB6DB6 
DB6DB6DB 

DB6DB6DB 
6DB6DB6D 

6DB6DB6D 
B6DB6DB6 

*-q--q--q--q--q--* 
*q--q--q--q--q--q* 

0090 DB6DB6DB 6DB6DB6D B6DB6DB6 DB6DB6DB *--q--q--q--q--q-* 
OOAO 6DB6DB6D 86DB6DB6 DB6DB6DB 6D86DB6D *-q--q--q--q--q--* 
OOBO 
ODeD 
0000 
ODED 
OOFO 

B6DB6DB6 
DB6DB6DB 
6DB6DB6D 
B6DB6DB6 
DB6DB6DB 

DB6DB6DB 
6DB6DB6D 
B6DB6DB6 
DB6DB6DB 
6DB6DB6D 

6DB6DB6D 
B6DB6DB6 
DB6DB6D8 
6DB6DB6D 
86D86D86 

B6DB6DB6 
DB6DB6DB 
6DB6DB6D 
B6DB6DB6 
DB6DB6D8 

*q--q--q--q--q--q* 
*--q--q--q--q--q-* 
*-q--q--q--q--q--* 
*q--q--q--q--q--q*
*--q--q--q--q--q-* 

Cmdl-Next sector Cmd2-Previous sector Cmd7-End Roll keys-Page sector 

Repairing Damaged DiskeHes 
by Mel Beckman 

When you encounter the dreaded permanent diskette I/O error while 
restoring a backup file from diskette, SSP forces you to cancel the job 
losing the part of the file that was copied successfully. In many cases, 
though, you might be happy to get as much data as you could, resorting to 

manual methods to repair damaged records. 
An undocumented IBM utility, 11 DIAG, lets you locate the bad spots 

on a diskette and correct them. Although the data stored at the bad location 
is lost, the utility usually can repair the diskette so that a subsequent 
restore operation can be completed normally. You carry out the repair pro
cess in two steps: the first searches out all bad diskette sectors, and the sec
ond rewrites the sectors correctly. You insert the diskette you want to repair 
in diskette slot Sl. Then type: 

11DIAG SCAN 

and press Enter. At the next prompt screen, you press Enter, and 11 DIAG 
scans the diskette, printing a report that notes all bad sectors. After you 
retrieve the I1DIAG report, type: 

11DIAG RECOVER 

and press Enter. At the prompt screen, you enter the sector address for a 
bad sector (from the report) and press Enter. I1DIAG attempts to read the 
sector to recover the data. The utility rewrites recoverable data to diskette 
several times (you can specify up to 99 times) to ensure that the data 



104 5/36 Power Tools 

"sticks." If the data cannot be recovered, IlOIAG writes a zero sector. You 
repeat this process for each bad sector on the report. 

If the diskette has been damaged physically or the errors are too 
numerous, IlOIAG may not be able to repair the diskette. But most 
diskette errors are the result of magnetic, not physical, changes and can be 
corrected. After correcting all bad sectors and restoring the file to disk, you 
should check all the records to determine whether any are missing or dam
aged. Missing records contain binary zeros; damaged records have some 
fields overwritten by binary zeros. 

Retrieving DiskeHe Available Space and Volume ID 
by Simon Kitchen-Dunn 

a
Code on diskette: 


Procedure SPACE 
RPG program SPACE 

Our OP department has a heavy workload relative to staff resources (i.e., both of 
us are real busy). Therefore, we'd rather not deal with procedures that "bomb" 
because of an unexpected condition, like having an unattended backup 
procedure fall over because the diskettes fill up at inopportune moments. 

I wrote procedure SPACE (Figure 5-17) and program SPACE (Figure 5
18) to help alleviate this problem. The procedure simply obtains a VTOC 
listing for the diskette, writes the listing to a file, and calls program SPACE, 
which reads the VTOC listing file and writes the volume 10 and diskette 
space information to the LOA. The program also writes the number of 
available bytes, which it computes by multiplying the number of available 
sectors by the number of bytes per sector. Provided you can compute the 
amount of diskette space a procedure will require, you can call procedure 
SPACE from that procedure and compare the amount of space that remains 
on the diskette to the amount of space needed (Figure 5-19). The proce
dure then can warn the operator, before the procedure's main task starts, if 
a new diskette is needed. 

Figure 5-17 • PARAMETER 1 IS LOCATION, DEFAULT S1 
• 	 USE OF LOCAL DATA AREA:

FROM TO DESCRIPTION
Procedure 
SPACE 1 6 VOLUME IDENTITY 

7 10 SECTORS FREE 
11 14 BYTES PER SECTOR 
15 21 BYTES FREE 

1/ LOAD SLABEL 
II PRINTER NAME-SSYSLIST,PRIORITY-O,FORMSNO-VTOC 
1/ RUN 
II DISPLAY UNIT-Il,LOCATION-71'S1'?,LABEL-ALL 
/ / END 
1/ LOAD SUASF 
I I RUN 



Diskettes 105 

I I SPOOL SPOOLID- FVTOC, NAME -VTOCPRT, RETAI N·· T, RELCANS- CANCEL 
I I END 
II LOAD SPACE 
II FILE NAME-VTOCPRT,RETAIN-S 
I I RUN 
I I RETURN 
• THESE LINES ARE MERELY TO VERIFY THAT THE PROCEDURE IS WORKING CORRECTLY 

I I • 'DISKETTE IN POSITION 71' 51'? VOLUME IDENTITY IS ?L' 1,6'?' 

II • 'SPACE AVAILABLE ?L'7,4'? SECTORS EACH ?L'11 ,4'? BYTES, ?L'15,7'? BYTES FREE' 

I I PAUSE 


Figure 5-18 0001 H 2 
3 4 6 8 

SPACE 

Program SPACE 0002 
0003 

FVTOCPRT IP 
IVTOCPRT NS 

F 600 
01 

150 DISK 

0004 I 25 30 ID 
0005 I 47 500AVAIL 
0006 I 67 700BPS 
0007 UDS 
0008 6 VOLl D 
0009 100AVAIL 
0010 11 140BPS 
0011 I 15 210BFREE 
0012 C 01 ADD 1 RECORD 10 
0013 C RECORD COMP 3 03 
0014 C 03 MOVE ID VOLID 
0015 C RECORD COMP 4 04 
0016 C 04 BPS MULT AVAIL BFREE 
0017 C 04 SETON LR 

I I TAG CHECKFigure 5-19 
SPACE 
II IF ?L'l ,6'?/CPYINV IF ?L'7,4'?·0000 IF VOLID-'CPYINV,S2' GOTO STARTSample II IFF ?L'7,4'?·0000·· 'INSERT NEW CPYINV DISKETTE, SLOT 1 FULl'!!!' 

procedure that INIT CPYINV, , ,S1,S2 
II GOTO CHECK

calls procedure II TAG START 
II IF ACTIVE-ORDERS' 'ORDER ENTRY ACTIVE'SPACE 

Converting a-Inch to 5 1/4-lnch DiskeHes 
by Mark Lazoros, Chuck LUl1dgrel1, Jeffrey Pisarcz)'k, a1ld Bill Roehmer 

QNext week I take delivery of two 5363s, which will replace an 
overloaded 5362 currently serving (remotely) a main office and a 

branch office. My problem is that I have no way to copy and load files and 
programs from the 5362's 8-inch diskettes to the 5363's 5 1/4-inch diskettes. 
I have talked to both IBM and the third-party vendor who sold me the 
machines, They insist that changing formats is my responsibility, and they 
claim not to have the necessary resources to change formats in their offices. 
In short, I am on my own, Besides a pair of scissors, what do I need to get 
my 8-inch diskettes down to 5 l/4-inch diskettes? 

AMoving your 8-inch diskettes to 5 l/4-inch diskettes may not be as 
tough as you think it will be, and there is more than one way to do it. 

First, IBM's Diskette Exchange Utility has software that runs on both the 
PC/AT and the 5362 that will do the job. This utility requires an IBM 



106 S/36 Power Tools 

PC/AT with a 5250 emulation board. Please note you can use only an IBM 
PC/AT - no clones. The program checks to make sure the PC is an 
authentic PC/AT from IBM. 

Second, if you feel comfortable turning your data over to another com
pany, take a look at the media conversion companies in the marketplace. 
Typically, these companies charge you on a per diskette basis. 

Finally, you can buy a separate 8-inch diskette drive and controller that 
attaches to a PC. With this, you can copy your diskettes directly from an 8
inch drive to a 5 1/4-inch drive without having to go between the PC/AT 
and 5362. Two or three third-party vendors handle the hardware and soft
ware combination you need. 



DisplayWrite 


-CHAPTER 

6 




108 5/36 Power Tools 

Merging Data with DisplayWrite/36 Documents 
by Paul Koeller 

Data/text merge functions are some of the most powerful yet least underWhether you 
stood functions of DisplayWrite/36 (DW/36). These functions, which let a choose multicopy 
user merge data into a document created by DisplayWrite, can save hours merge or column 
and, in many cases, eliminate the need to write application programs. Thislist merge, here 
article, which assumes familiarity with DW/36, reviews the basics of creatare tips and 
ing a shell document and merge processing and provides tips and techtechniques for 
niques that experienced users will find helpful. merging with 

There are two basic types of merge in OW/36, multicopy merge and colotherDW 
umn list merge. Multicopy merge provides a mass mailing function. Thedocuments, S/36 
user creates a shell letter containing both the constant text and the places to files, and 
insert the variable information (Figure 6-0. In the figure, x's represent variQuery/36. 
able information merged when the document is printed. Printing the shell 
document creates multiple copies of the letter, one letter for each record. 

Figure 6·1 

Multicopy merge example 

*date 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxx 


Dear xxxxxxx, 

As one of the most valued customers in the state of xxxxxxxx, you'll be glad to hear 
that we are having a huge sale and you're invited. The sale will be held on Saturday, 
October 10, from 10:00 to 5:00. Hope to see you there. 

Sincerely, 

John Smith 

The other type of merge, column list merge, provides a way to produce a 
report. The user creates a shell document that defines the format of the report 
and the data to be merged into the report (Figure 6-2). Again, x's represent 
variable information merged when the document prints a single report. 



Figure 6·2 

Column list 
merge example. 
This report lists 
all %ur 
customers. The 
report is sorted 
by state, within 
state by city, 
and within city 
alphabetically 
by customer last 
name. 

STATE CITY 

xxxxxxxxxxxx xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxx xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxx xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxx xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

xxxxxxxxxxxxxx 

DisplayWrite 109 

CUSTOMER NAME 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxx 

After you determine the type of merge you want, you must decide where 
to get the data that will be merged. You can merge data from three sources: 
other DW documents, S/36 files, and Query/36. The source you choose 
depends on several factors: where the data is stored, the amount of data, the 
complexity of the data, and the complexity of the document that you plan to 
produce. The source of your data can be specified either on the individual text 
instructions that control the merge or on page 3 of the print options display. 



110 5/36 Power Tools 

Figure 6·3 

Column format 
fill-in document 

Merging from a Fill-in Document 
One source for your data is another DW document. This source is the easiest 
to tap, but it is also the most limited. You start by creating a fill-in document 
containing the names of the fields that you wish to merge along with actual 
data for those fields. Using a fill-in document to store data eliminates the 
need to learn about files, dictionaries, queries, and other data processing con
cepts. Your entire merge application - defining the data, entering the data, 
and printing the letters - can be accomplished without leaving DW/36. 

Before you decide to use a fill-in document for storing data, however, 
you need to understand its limitations. Data stored in a fill-in document 
can be used only with a multicopy merge shell document. Also, you can 
neither produce a column list report froIl! data stored in a fill-in document 
nor sort data into a different order. And there is no efficient way to select a 
subset of the records to be merged. Finally, you cannot edit numeric fields 
merged from a fill-in document. 

If you do decide to use a fill-in document, you must choose one of two 
formats. The first format, column format (Figure 6-3), uses the first line of 
the fill-in document to define the names and lengths of fields. You key an 
ampersand (&), the name of the field, and then tab to the right to allow 
enough space for the maximum length of data that you expect for that 
field. The process is repeated for each field to be merged. Once the fields 
have been defined, you enter the data in the columns under the field 
names. Each line in the document represents one record. Column format 
fill-in documents work best when the total length of all of the fields does 
not exceed 80 characters. That way you can enter the data without having 
to "window" the display to the right for the last fields. 

&NAME &STRl &STR2 &CITY &ST &AMT 

John Smith 123 Main St PO BOX 456 Rochester MN $123.45 
Mary Jones 4567 18th Ave Aust-in TX $98.56 
Tom Johnson 654 Wi 11 ow Lane RR1 1 Carmel NY S6.18 

With the second format of a fill-in document, row format (Figure 6-4), 
you define each field on a separate line and then leave a blank line to indi
cate the end of the field names. As before, you key an ampersand (&) fol
lowed by the name of the field. Then you press the Field Exit key to start 
a new line. You repeat this process until all the field names have been 
entered, and then you press Field Exit one more time to leave a blank line. 
Once the fields have been defined, you enter the data for each field on a 
separate line and leave a blank line at the end to indicate the end of the 
record. Each group of lines represents one record of data. Row format fill-in 
documents are designed for cases where there are more than 80 bytes of 



Figure 6-4 

Row format 
fill-in document 

DisployWrite 111 

data per record or where the length of the fields varies greatly. If you have 
several fields, you need to be sure you don't forget to enter data for one of 
the fields, leaving a line blank. OW/36 assumes a blank line means the end 
of a record. 

&NAME 
&STR1 
&STR2 
&CITY 
&ST 
&AMT 

John Smith 
123 Main St 
PO Box 456 
Rochester 
MN 
$123.45 

Mary Jones 
4567 18th Ave 

Austin 
TX 
$98.56 

Merging from a File 
Another source for merge data could be a S/36 file, either an existing file or 
one you create for a particular merge. When you merge from a file, you first 
must use IOOU to define the file. Records are merged in the order they 
were added to the file. For example, if you create a file with 100 records, 
you can print 100 copies of a multicopy document or produce a column list 
report with 100 lines in the report. Merging from a file is best when you 
have a lot of data but you are not concerned with the order of the records. 

Merging from a Query 
The final source for your merge data is Query/36. This method is by far the 
most powerful method used to merge data with OW/36. Suppose you want 
to create a mass mailing to a customer listing and save postage by sorting 
the letters in zip code sequence. Simply use Query/36 to create a query 
that specifies the name of the file, and then select to sort on zip code. 
When the letters are printed by OW/36, they will be printed in zip code 
order. Or suppose you want to generate a customer report. In the report, 
you want to sort the records by state, within state by city, and within city by 
last name. Furthermore, you want to generate report breaks each time you 
start a new city or state and have subtotals for each of those breaks that 
show the number of customers in each city and the minimum, maximum, 
and average balance due within each city and state. And not only that, you 



112 5/36 Power Tools 

Figure 6-5 

Query/Text 
functions 

want each state to start on a new page and you need column headings on 
each page. This sounds like a lot of work, but with the help of OW/36 and 
Query/36, you can produce such a report quite easily. 

You can use Query/36 in several ways. Many people don't realize they 
can get to Query/36 from OW/36. By pressing Command 17 from the 
OW/36 edit display, you have access to the full function of Query/36 and 
also to some special functions that were built just for OW/36. You can cre
ate or change a query that specifies 

• the file to use 
• which fields in the file to use 
• the sorting of the fields 
• which records from the file to select 
• subtotals and totals on the selected fields 
• column headings 
• numerous other functions available in Query/36 

and then return to OW/36. Query/36 offers you three options that save 
keystrokes and time in OW/36. The options appear as options 6, 7, and 8 
on the Work With Queries display (Figure 6-5). 

WORK WITH QUERIES 

Type choices, press Enter. 
ITEM CHOICE POSSIBLE CHDIC[S 
Option •.. l=Create 2=RElvlse 3=Copy 4=Delete 

5=View 6:TE!xt data merge 
7=Text column Jist 8=Text multlcopy 

Query name. Name, blank for list 
Library name • • nOUERY Name. blank for list 

Cmd7=End CmdB=Reset 

With option 6, Text data merge, the query with which you are working is 
run and the report is displayed on a split-screen in OW/36. You then can copy 
all or parts of the report into the shell document you are editing. This option 
is useful when you want to produce a one-time report with the current data 
and add text or formatting that isn't available with a normal query report. 

With option 7, Text column list, Query/36 creates all of the text instruc
tions needed in your OW document to produce a column list shell docu



Figure 6-6 

Text column list 
returned by 
Query/36 

DisplayWrite 113 

ment. The instructions are displayed on a split-screen in DW/36 (Figure 6
6). You then can copy the instructions into the document you are editing. 
The text instructions built include the data fields in the order that you 
specified in the query, the column headings for the selected fields, and 
even the running heading instructions to make sure the headings print cor
rectly at the top of each page. Using this option can reduce significantly the 
time it takes to create column list reports. 

COLLIST.TXTPDK P:12 EDIT Instruction PG:l LN:? 
<2 .... : .... 3 .... : •... 4 .... : ...• 5 .... v •••• 6 .... : .... 7 ..•• : •... 8 .... : ...• 9) ... : .. 
This is a report that lists our customers. the cit~ they live ln, and 
the current amount that they owe us. 

GUESTQRY."QUERY P:12 QUERY INPUT PG:l LN:l 
r 

ibrh 
CUSTOMER NAME CITY AMOUNT DUE 

ierh 
'&NRME '&eITY '&RATE 

icrh 

Finally, with option 8, 'lext multi-copy, Query/36 creates multicopy 
data field instructions for each field specified in the query. Again, these 
text instructions are displayed on the split-screen in DW/36. You then can 
copy the instructions into the shell document you are editing. 

An extremely powerful function of DW/36 and Query/36, dependent col
umn lists, is also available. By combining the two types of merge - multi
copy and column list - it is possible to create a multicopy shell document 
that, for example, sends one letter to each of your customers and within the 
letter merges a list of that customer's purchases. This is done by creating two 
queries: the first query controls the multicopy merge and the second controls 
the column list merge. This second query is the key to this function. In the 
second query, you specify to select records that have customer name equal to 
the customer name currently selected by the first query. For example, 

NAME EQ NAME(QUERY1 .#QUERY) 

Using the dependent column list function adds powerful versatility to the 
basic merge function. 



114 5/36 Power Tools 

Figure 6-7 

Datafield 
instruction 
display 

Creating a Shell Document 
After determining which type of merge you wam and where to store and 
how to retrieve the merge data, you are ready to create the shell document. 
Your shell document specifies the constant text that appears when the doc
ument is printed and the placement of variable data that is merged into the 
shell document. 

DW/36 provides several text instructions that define and control the data 
merged into your document. The most important instruction, the data field 
instruction, specifies the name of the field to be merged, the type of merge, and 
the source of the merge data (Figure 6-7). To create a data field instruction in 
your document, you either 1) press Command 5 (Goto), type.& in the prompt, 
and press Enter, or 2) press Command 9 (Text Instructions), select option 12 
(Data field), and then select option 1 (Print the data from a data field). 

SHELL,TXTPDK P:12 EDIT Instruction PG:l LN:12 
<2 ••. T: ... T3 ••• T: ... T4 .•• T: ••. T5 ... Tv ... T6 .•. T: ... P ... T: ... TB .•. T: ••• T9> .•. : •. 

Dear NAME(*PRINT"M,,) 

You owe us &AMT("PRINT,.M,,) 

DATA fIELD (.&) 
This instruction prints the value of a data fleld from a described data 
fl1e, query, or document. 
Type choices, press Enter. 


ITEM CHOICE POSSIBLE CHOICES 

Data Field name • .• _ NAME 


file/query/document. "PRINT Name, "PRINT, or "NOTE 
library/folder • Name if query or document speclfied 

Letters or list ._ 1=Multlple letters 2=Cnlumn list 
File id _. __ • _ A=E (for duplicate fields) 
Instruction length • 1=255 (Blanl< to display en~ ire 

instruction) 

Cmd3=Go Bacl< Cmd5=NumeriC editing Cmd6-Character editing 

Cmd7=End Cmd14=Subdi rectory Cmdll5=Delete instruction 


Two other useful text instructions are the begin and end conditional text 
instructions shown in Figure 6-8. They are used in a multicopy shell docu
ment to specify text or instructions optionally printed in each letter. This is 
done by comparing one of the fields from the current record of data to a con
stant value. Some common reasons for using conditional text are to suppress 
the printing of blank address lines, to print different salutations based on the 
sex of the recipient, or to select different paragraphs to be included based on 
the amount of money a customer owes. Conditional text instructions can be 
nested up to seven levels deep by performing multiple compares. 

Figure 6-9, a typical multiple-letter shell document, shows the use of 
both data field text instructions and the begin and end conditional text 
instructions. The symbol • represents the text instruction symbol. The data 



DisplayWrite 115 

Figure6-S 

Begin/End 
conditional text 
display 

Figure 6-9 

Multiple-letter 
shell document 

SHELL,TXTPOK P:12 EDIT Instruction PG:l LN:16 
<2 ... T: •.. n ... T: ... T4 ... T: ..• TS ... Tv .•• T6 ... T: ••• T7 ... T: .•• TB •.. T: ••• T9) ... : .• 

*bct(AMT,*PRINT"GT,100,,)Because you owe us more than 5100.00, we are 
~dding a !10.00 service charge to your account. 
"ect 

BEGIN and END CONDITIONAL TEXT INSTRUCTIONS (.bct / .ect) 
The Begin and End Conditional Text instructions marl< the beglnnlng and end 
of the text to be printed when the specified condition is true. 
Type cholces, press Enter. 

ITEM CHOICE POSSIBLE CHOICES 
Instruction type . . .. 1 I=Begin (Enter choices below) 2=End 

field name ..... _ AMT Data field or variable name 
File/query/document. "PRINT file/query/document name or "PRINT 

library/folder If quary or document specified 
Selection criteria GT EO, NE, GT, GE, LT, LE 
Test value. . . 100 
File id..... A-E 

Instruction length . 	 1-255 (Blank to display entire 

instruction) 


Cmd3=Go bacl< Cmd7=End Cmdl4=Subdirectory Cmdl6=Oelete instruction 

*&NAME(*PRINT"M,,) 

*&STR1(*PRINT"M,,) 

*bct(STR2,*PRINT "NE,' '" )W&STR2(*PRINT "M,,) 

*ect*&CITY(*PRINT"M,,) *&ST(*PRINT"M,,) 


Dear *&NAME(*PRINT"M,.) 

You owe us W&AMT(*PRINT"M,,) 

*bct(AMT,*PRINT"GT,100,,)Because you owe us more than 5100.00, wa are 
adding a 510.00 service charge to your account . 
• eet 

field instructions (.&) represent places in the letter where variable informa
tion will be inserted into the letter. The first begin conditional text instruc
tion determines whether the contents of field STR2 is equal to blanks. If 
the field is not equal to blanks, the recipient of the letter has a second 
address line that will be printed. If the field STR2 is equal to blanks, the 
recipient has only one address line. The begin conditional text instruction is 
used to ensure that a blank line is NOT printed in the address. 



116 5/36 Power Tools 

Figure 6-10 

Datafield 
headings with 
runmng 
headings 

The second begin conditional text instruction determines whether the 
value of field AMT is greater than 100. If the value of the field is greater 
than 100, a sentence is printed telling the customer that a $10 service 
charge was added to his or her account. If the value is less than or equal to 
100, that sentence is not printed. 

The data field heading instruction (.dfu) lets you merge up to three lines 
of heading text for a field. The lines of heading can be defined either in 
IDDU when you create the data dictionary or in Query/36 when you define 
the query. These headings are especially useful on a column list shell docu
ment. With the data field heading instructions inside running heading 
instructions (Figure 6-10), DW/36 prints the column headings at the top of 
each page regardless of the number of pages the column list produces. For 
example, you might define a column list shell document that produces a list 
of new customers. Some months you have 10 new customers, and some 
months you have 1,000. By using running heading instructions to define 
your headings, DW/36 makes sure that every page gets the correct headings 
regardless of how many new customers you have this month. In Figure 6-10, 
the top half of the display shows the text instructions, and the bottom half 
shows what the printed document will look like. 

FIGURE10.TXTPDK P,12 EDIT Instruction PG,l LN,7 
<2 •••• ' •••• 3 •••• ' •••• 4 •••• , •••• T•••• v •••• 6 •••• ' •••• 7 •••• , •••• B•••• , •••• 9> ••• ' •. 
This document demonstrates the use of the data field heading text 
instruction and running headIng text lnstructlons to prInt column 

headings over columnar data that may span several pages. 

ibrh 

idfh(NAME. 'PRINT ••C.) idfh(RATE. *PRINT ••C.) 

ierh 
i&NAME('PRINT •• M •• ) i&RRTE(*PRINT •• M •• 1 
*crh 

FIGURE10.TXTPDKP,12 RESOLVED OUTPUT PG,l LN,l 

This document demonstrates the use of the data field heading text 
instruction and running headlng text instructlons to prlnt column 

headlngs over columnar data that may span several pages. 


F 
THE NAME 
OF THE CURRENT 
PERSON RMOUNT OUE 

R 
RPRIL 390.00 

Several other features have been built into DW/36 to make creating 
shell documents easier. Once you have created one data field instruction in 
your shell document, DW/36 remembers the source of the data and multi
ple letter or column list options that you specified on the previous data 
field instruction. Therefore, you can create additional fields simply by typ
ing a period followed by an ampersand and the name of the field. Another 
helpful hint is to specify ·PRINT for the file/query/document prompt on 



DisplayWrite 117 

your data field instructions. This tells OW/36 that, rather than specifying 
your merge source now, you will provide it when you submit the print 
request. When you submit the print request, specify the merge source on 
page 3 of the print options. Using ·PRINT is especially useful when you 
want to merge a shell document with different queries. 

After you create your shell document and your data, you are ready to 
see the results of your work. Using the view print (Command 19) function 
of DW/36, you can see what your output looks like before you print hun
dreds of copies of a multicopy letter. When you use view print, DW/36 
builds only the first multicopy letter and displays it on a split-screen. An 
error page is appended to the end of the document. Errors in your shell 
document, such as a misspelled field name, result in an error message. You 
can correct those errors before you submit the final printing request. 

There are several things to consider when you print a multicopy shell 
that will produce a large number of letters. Before the Office Enhance
ments Feature of DW/36, when you printed a multicopy document, DW/36 
produced one large work document in a work folder named #TEXTWRK. 
This single work document could become very large and degrade perfor
mance. Furthermore, all of the letters were merged before any of the letters 
were spooled for printing. With the Office Enhancement Feature, however, 
10 multicopy letters are now built in #TEXTWRK and then spooled for 
printing. You can take advantage of this feature by starting to print those 
first 10 letters while DW/36 builds the next 10. To do this, use the change 
option of the OW/36 print queue and change the "Defer printing until 
complete" prompt to No. This tells the system that the spool file can start 
printing even though DW/36 is still adding pages to the spool file. 

Using the TEXTDOC MERGE Function 
Another function of DW/36 that many people may not know about or under
stand is the TEXTDOC MERGE procedure. Procedure TEXTDOC 
MERGE lets you merge a shell document while resolving the data field, 
data field heading, begin/end conditional text, and include (·inc) text 
instructions. All other text instructions and controls, such as tabs, are left in a 
form that can be edited. This function is useful if you need to merge the 
data and the includes into your shell but still do additional editing on the 
document before you print it. For example, when creating a customer pro
posal, you may want to merge standard information such as the customer's 
name and address and several standard paragraphs based on the product in 
which the customer is interested. Besides the standard information, how
ever, you want to personalize the proposal by adding some text. You could 
use the TEXTDOC MERGE procedure to merge in the standard informa
tion and then edit the resulting document to add the personal messages. 

Moreover, with Release 5.1 of DW/36, TEXTDOC Merge is capable of 
two additional functions. The first is the capability to produce a report that 



118 5/36 Power Tools 

has multiple lines of text for each record merged. For example, in a listing 
of all of your customers, on the first line you may want the customer's name 
and address, on the second line his or her account number, and on the next 
several lines a description of the customer's needs. 

You begin by defining a shell document with multicopy data fields (Fig
ure 6-11). In the shell document, begin and end keep-text instructions ensure 
that none of the records is split across a page boundary when the records are 
merged. Also, the data field for the description field (DESC) must be pre
ceded by a required tab to indent the text for the d(:scription field over to the 
tab stop in column 55 when it is line-adjusted on subsequent lines. 

Figure 6-11 

Multiple-line 
report shell 
document 

FIGUREll;TXTPDK P:12 EDIT Instruction PG:l LN:7 
<2 •.•• : •.•• 3•••• : ••• .4 •... : ..•. v •••• T.••• 6 ..•• : •..• 7 •..• : •••. >•••• : •••• 9 •••. : •• 

Name/address: i&NAME(*PRINT •• M•• ) i&ADDR(*PRINT •• M •• ) 
Account number: *& 

Description of current nBeds: i&DESC(*PRINT. ,M .. fiek 


Figure 6-12 

Multiple-line report output 

Name/address: John Smith 123 Main St 
Account number: 12345 
Description of current needs: Wants more information on using 

column list merge. 

Name/address: Mary Jones 4567 18th Ave 
Account number: 78901 
Description of current needs: Wants to understand TEXTDOC 

MERGE. 

Name/address: Tom Johnson 654 Willow Lane RR1 
Account number: 23456 
Description of current needs: Wants to use dependent column list 

merge to create a report. 



DisplcyWrite 119 

After you have created the shell, use the TEXTDOC MERGE proce
dure and specify the OPTIONS keyword to display the Merge Options dis
play. On the Merge Options display, specify yes for the "Multiple line 
report" prompt and specify 3 (Adjust page and line endings) for the 
"Adjust/paginate options." DW/36 will produce a report for you similar to 
the one shown in Figure 6-12. 

The second new function in TEXTDOC MERGE lets you create an 
include (·inc) instruction by merging in a data field that contains text spec
ifying the include instruction. To use this function, you must define a data 
field that contains the exact characters for the include instruction. Enter 
this as if you were typing the instruction directly on the edit display: 

.inc(DDCNAME.FLDNAME.n n,) 

where DOCNAME is the name of the document to be included, FLD
NAME is the name of the folder that contains the document, and n n is a 
list of pages to be included optionally. 

You might use this function to create an application that builds a sales 
proposal letter. Suppose your company sells 10 different products. You 
write an application program your sales people can use to enter a prospec
tive customer's name and address and also to check the products in which 
the customer is interested. The application program creates a record in a 
file that contains the customer name, address, and an include instruction 
that selects pages from the document containing descriptions of each of the 
10 products. Then procedure TEXTDOC MERGE merges the three 
fields into a shell letter; the customer's name and address are merged into 
the letter, and an include instruction selects the correct pages of product 
information to be included when the document is printed. 

Advanced Tips and Techniques 
Now that you are aware of the merge functions available in DW/36, I'll 
share some tricks that I've found helpful in producing merge documents. 
In many cases, adjusting the line endings is useful. Specifying yes on the 
"Adjust line endings" prompt on page 2 of the print options changes the 
formatting of text merged into a shell document. When merging a long 
character field into a multicopy shell, for example, this specification causes 
text that would not normally fit between the margins to wrap around into 
paragraphs. And by changing your tab stops and using required tabs, you 
can create indented paragraphs of merged text. 

Another technique - ending a line of column list data fields with a carriage 
return (not a "required carriage return") and then adjusting the line endings
causes the data field to be repeated several times across the line (Figure 6-13). 
Specify a single column list data field instruction, followed by a tab and a carrier 
return. Beforehand, set up the document margins and tabs to let three names be 
merged onto each line. When the document is printed, the "Adjust line end



120 5/36 Power Tools 

Figure 6-13 

Adjusting line 
endings on a 
column list 

ings" prompt on page 2 of the print options is set to yes. The bottom half of the 
display shows how the data looks when it is merged into the document. 

When creating data field instructions, it is helpful to use the display 
length prompt on the instruction displays to reserve enough space on the 
edit display for the longest string of data that will be merged. For example, 
if you're merging a name field and the longest name is 20 characters, set 
the data field instruction length to 20 so you can see that space reserved on 
the edit display. This is especially useful if you are using tabs and there is 
other text on the line after the data field instruction. 

FIGURED, TXTPDK P:12 EDIT Instruction PG:l LN:;> 
<. ... : .... 3 .•.• : ...•4••.• : •• T • 5 .••. : ..• v6 .•.• : .••• ;> ...• T....B•... : •... '3 •••. : • ). 

&NAME(MULTLINE,UOUERV,C,,) 

FIGURE13,TXTPDK P:12 RESOLVED OUTPUT PG:l LN:l 

John Smith Mary Jones Tom Johnson 

One more technique when using data field instructions helps you specify 
numeric editing or character editing for the merged data, Numeric editing 
cannot be used when you are merging from a fill-in document. To specify 
numeric editing for a data field, press Command 5 from the data field 
instruction display. This lets you specify numeric editing options such as 

• the decimal point character 
• the thousands separator character 
• how negative numbers are printed 
• how leading zeros are handled (e.g., float currency sign) 
• if a value of zero is to be printed 
To specify character editing for a data field, press Command 6 from the 

data field instruction display. This facility, which lets you specify options 
that change the capitalization of character fields, is useful when the data in 
your file is stored in all capital letters. 

Finally, when working with begin and end conditional text, the place
ment of the instructions causes the most problems. If you want to use condi



DisplayWrite 121 

tional text to remove a blank line completely, you need to ensure that the 
entire line is within the conditional text. This is accomplished most easily by 
putting the begin conditional text instruction as the very first thing on a line 
and the end conditional text instruction as the first thing on the next line 
(Figure 6-9). If you have problems with extra spaces when printing condi
tional text, look closely at the location of your instructions, and you should be 
able to see how to get rid of them. Also, you can use the "Adjust line end
ings" option on page 2 of the print options to adjust the text if you are using 
conditional text to merge varying length text into the middle of a paragraph. 

In summary, DW/36 provides numerous merge functions. So many, in 
fact, that it can be overpowering. You need to try the functions. Start. small 
and work your way up to advanced merge applications. Experiment and see 
what happens. You will surprise yourself at what you can accomplish with 
just a little work. 

Merging Printed Output 
with DisplayWrite/36 Documents 
by Paul Podlipny 

Code on diskette: a RPG program CASDWM 
Procedure CASDWM 
Screen format member CASDWMFM 

You can improve Since the advent of DispiayWrite/36 (OW/36) on the S/36, many companies 
your on-line have used it to standardize all their system and application documentation. It 
documentation makes sense to write documentation on the same system where you are devel
using DW/36 to oping applications and performing operations. A major advantage of using 
incorporate DW/36 to create your documentation is the ability to use it as on-line help 
copies ofactual through help labels embedded in the text that identify help text associated 
print-keys and with a particular area of a screen and through text documents stored in folders. 
sample reports. As part of our documentation, our company uses copies of actual applica

tion printouts, such as print-keys and sample reports. The simplest way to 
copy printouts is to extract the data from the spool file using COPYPRT, copy 
the file into a library member using $MAINT, and use the GET function to 
merge the data into a OW136 document. With this method, however, it is 
impossible to control adequately the formatting of the resulting data, such as 
page breaks and line spacing. Our solution, utility CASOWM, offers an ele
gant method of dropping all extraneous data (e.g., spool header and 
spacing/skipping controls), handling multiple reports, and maintaining the 
original page integrity of the printouts. This technique makes it easy to incor
porate sample reports and print-keys into your on-line documentation and to 
update the documentation when you change the layouts of your reports. 



122 5/36 Power Tools 

Figure 6-14a 

Merge prompt 
screen 

The five components of the CASDWM utility (see Figure 6-14a for the 
prompt screen and 6-14b for screen format member CASDWMFM) 
include procedure CASDWM (Figure 6-15), which controls the overall 
function of the utility; program CASDWM (Figure 6-16), which processes 
and reformats the sample reports from the spool file; Interactive Data Defi
nition Utility (lDDU) file definitions (Figures 6-17, 6-18, and 6-19); two 
queries used by the DW/36 merge function in merging the file into a 
"shell" DW/36 document (Figures 6-20 and 6-21); and the shell DW/36 
document that indicates how the data should be merged and formatted for 
maintaining page integrity (Figures 6-22 and 6-2:3a through 6-23g). After 
these five components have done their work, you use the DW/36 GET 
function (Command key 14) to include the document that contains the 
merged data in your application documentation. 

•• CASDWM UTILITY" 

Copy all SPOOL entries wlth a speclfied 
name into a DW/36 document. 

SPOOL forms name 

Document name 

Document folder. 

Procedure CASDWM 
Procedure CASDWM begins with the deletion of work files CASDWM 
and CASDWM?WS?, if they already are on disk, and then prompts for the 
required parameters via the prompt screen shown in Figure 6-14a. The 
parameters are the forms name of the group of spool entries you want to 
merge into your shell document, the name of this new document to be cre
ated, and the folder where the document should be stored. The procedure 
inserts an F in front of the forms-name parameter. We normally put the 
entries into the spool file with a unique forms name, such as our initials, set 
up by using the PRINT procedure. To make certain that entries will not be 
printed before we run procedure CASDWM, we use the PRINT procedure 
to direct printouts to a printer configured on the system but not attached to 
a physical device. Next, the procedure runs the $UASF program (the 
COPYPRT utility), which extracts all spool entries with the specified forms 
name and writes them to work file CASDWM?WS? The utility then can
cels all the copied spool entries from the spool file. 

Program CASDWM 
Program CASDWM (Figure 6-16) is the merge program that processes the 
output from the COPYPRT utility (i.e., file CASDWM?WS?) and copies it 
into work file CASDWM. The program assigns a report number to each 
copied spool file entry and writes into the CASDWM output file this report 



DisplayWrite 123 

number on every header and detail print line. Next, the program processes 
all print control information from the input spool file to convert all spacing 
information into the same number of separate blank lines as the original 
report. This step also converts all "skip to new line" control characters into 
blank lines in the CASDWM output file, giving the DW/36 document 
exactly the same page layouts as the original report. Last, at the end of each 
report page, the merge program inserts the .pa page instruction that will 
convert to a DW/36 page instruction when merged into DW/36. 

At this point, the program has extracted the data from each original entry 
in the spool file and written it to a work file. Each entry now has a report 
number, a header record, a number of detail records, and various blank detail 
records that have been added to the work file to represent the skipping and 
spacing control characters found in the original SPOOL file entries. 

Defining File CASDWM 
You define the file created by program CASDWM to the system by using 
IDDU. The IDDU header record definition listing (Figure 6-17) shows 
how to define fields PRC, PRPTNO, and PTTL in a format named CAS
DWMH. The header record of each report included in the work file con
tains an H in position 1, which is defined as the record ID for the format. 
PRPTNO is the two-digit sequential report number assigned by the pro
gram to each header record for each report, and PTTL is the title of each 
report (i.e., the procedure name from the spool file header record). 

The IDDU detail print record definition listing (Figure 6-18) shows 
how to define fields PRC, PRPTNO, and PTXTl, PTXT2, and PTXT3 in 
a format named CASDWMP. The detail records of each report included in 
the work file contain a P in position 1, which is defined as the record ID for 
the format. PRPTNO is the two-digit sequential report number assigned 
by the program for each report, and PTXT1, PTXT2, and PTXT3 are 
fields that define the data in each print line of the report. In IDDU, a field 
may be only 60 characters long, thereby requiring three field definitions to 
define the full print line. 

Figure 6-19 shows the complete file definition listing of file CASDWM 
composed of the two formats defined in Figures 6-17 and 6-18. 

Executing the Merge 
Now that you've created file CASDWM and completed the IDDU defini
tions, you need two queries and a shell DW /36 document to merge the data. 
The first query, CASDWMQH (Figure 6-20), processes all the H records in 
file CASDWM. It extracts the H records and writes each of the fields to a 19
byte sequential file, #QRYOUT, in the format defined earlier by IDDU. The 
second query, CASDWMQP (Figure 6-21), processes the print detail (P) 
records from the file created by program CASDWM as well as from file 
#QRYOUT created by the first query. This query contains a little "trick," 



124 5/36 Power Tools 

called a dependent query, and cannot be run outside of DW/36. A dependent 
query is one that uses a dependent value in the VALUE column of the 
DW/36 SELECT RECORDS display and can be used only to merge data 
into a column list in a DW/36 document. It is a reference to another query. In 
this case, the shaded portion of Figure 6-21 defines the records from file CAS
DWM that should be selected based on each report number sequentially from 
file #QRYOUT. This step provides each report with begin format DW/36 
instructions before the data, and page end and reset format DW/36 instruc
tions after the data. Both queries are called by the shell OW/36 document 
(Figure 6-22), merging the data to produce the desired result. 

The shell DW/36 document into which all print records associated with 
each report are inserted consists of DW/36 format instructions only. Figures 6
23a through 6-23c show the prompt screens used to generate the first instruc
tion in the shell document. This instruction F tells DW/36 how to arrange the 
document and how to print it. Figures 6-23d through 6-23g show the data 
field prompt screens that instruct OW /36 how to place the data fields (PTTL 
and PTXTl, PTXT2, and PTXT3) from fiie CASDWM into the shell docu
ment and which query programs to execute to retrieve the data. 

These steps create a merged document that contains the original spool 
reports, each beginning on a new page, in the folder specified on the 
prompt screen. If the document name already exists in the specified folder, 
an error message is issued, and the procedure doe:~ not replace an existing 
document. Procedure CASDWM ends with the deletion of file CASDWM 
and the #QRYOUT files. 

Because utility CASDWM always produces a new document, you must 
use the DW/36 GET function (Command key 14) ItO include either the 
entire document or relevant portions in your application documentation. 
When you execute this step, be careful to copy the formats in front of each 
page, or the merged data may be adjusted incorrectly in the target document. 

Customizing Utility CASDWM 
The way the merge function is currently defined, all merged reports are 
printed on II-by-8.5 inch paper at 15 characters per inch (cpi), no matter 
what the original reports' width. However, you may want print-key copies 
and other reports to print on 8.5-by-l1 inch paper at 10 cpi after being 
merged into DW/36. 

One way to do so would be to define on the prompt screen a page for
mat prompt to ask the user which of the two page formats to use. Based on 
the response, the controlling procedure could direct the processing down 
one of two paths. The I1-by-8.5 path is described in this article. The 8.5
by-11 path would cause the extracted spool data tCi be processed by a dif
ferent program that would truncate the data and write it into a file 85 
characters in length. You would have to develop a second set of IDDU defi
nitions and query programs, and you would need a second shell DW/36 



Figure 6-14b 

Screen format 
member 
CASDWMFM 

Figure 6-15 

Prodecure 
CASDWM 

DisplayWrite 125 

document to accommodate the new file and printing requirements. 
Despite the initial setup work, the result - improved documentation 

that includes print-keys and samples of actual application reports appropri
ately formatted - is certainly worth the effort, The DWj36 merge function 
achieves this goal easily and effectively. 

· 1 4 6 .. 7 8 
SINPUT1 
D 
Dw; th a 
D 
Dent 

39 415Y 
specH; ed 

26 515Y 

Y 

Y 

CCopy all SPOOL entries X 

Cname into a DW/36 documX 

D 26 720V CSPOOL forms name X 
D.. 
DSPOOLIO 4 747Y Y Y 
D 26 920Y CDocument name .. ....... X 
D. 
DDOCNAME 12 947Y Y Y 
D 261120Y CDocument folder ..... X 
O. 
DDOCFLDR 81147Y Y Y 

* DisplayWrite Merge Procedure 
• CASDWM forrn.document,folder 

// INFOMSG NO · // LOAD SDELET 
// RUN 
// IF DATAF1-CASDWM?WS? REMOVE LABEL-CASDWM?WS?UNIT-F1 
// IF DATAF1-CASDWM REMOVE LABEL-CASDWM,UNIT-F1 
// END 

// PROMPT MEMBEA-CASDWMFM, FORMAT - INPUT1 .START -1 . LENGTH - '4,12.8' 

// LOAD SUASF 
// RUN 
// SPOOL SPOOLID-F?1?,NAME-CASDWM?WS?RELCANS-CANCEL. 
// END · // LOAD 
/1 FILE NAME-CASDWS,LABEL-CASDWM?WS?,RETAIN-S.DBLOCK-40 
// FILE NAME-CASDWP.LABEL-CASDWM.DBLOCK-40,RECORDS-?F'A,CASDWM?WS?'?,EXTEND-500 
/1 RUN · 
IDDULINK LINK,CASDWM.CASDCT, 

TEXTDOC MERGE.CASDWM.CASTXT,?2??3?,NOREPLACE.NOOPTIONS · // LOAD SDELET 
1/ RUN 
/1 REMOVE LABEL-CASDWM.UNIT-Fl 
// REMOVE LABEL-#QRYOUT.UNIT-F1 
I I END · // RETURN · 




126 5/36 Power Tools 

4Figure 6-16 6 8 
00001 H 
00002F***" .*.. * .. *** .... **** ... *.* .... * ... it **** *".it ...... *** ...... *l!" *** ** ** .. it .. ** .. it .. ***Merge program 
00003F* 

CASDWM 00004F* Program Title: 
00005F* CAS DisplayWrite Merge Processor 
00006F* 
00007F* Description; 
00008F* Process Spool File into a Merge Print File 
00009F* 
00010F' Halts, Switches and Command Keys: 
00011F* None 
00012F* 
00013F* Written for CAS by: 
00014F' CS I January 1, 1988 
00015F* 
00018F* 
00019F**"''''' *** ............ ** ...... *** .... ** ** ..... * .... **.- .... ** .... **** ........................ ** ** *** 

00020FCASDWS I P F 150 150 DISK 
00021 FCASDWP 0 F 150 150 DISK 
0002 2F*"" **** ... *** ...... ** ...... *** .... ** ...... *** .... ** ...... +.+ ..... *.* .... ** .............. __ •• it *** 

000231******************··**··***********************·.*.**.*****.******** 

000241CASDWS NS 01 1 CH 
000251 12 19 HPRC 
000261 42 49 HPRT 
000271' 
000281 NS 02 lNCH 
000291 200PAG 
000301 400LIN 
00031 I 11 142 DTXT 
000321' 
000331***************··*******************·***********.******************* 
00034C******·****************························· •••••••••••••••••••• 
00035C 01 00 DO HEADER CALCS 
00036C MOVE 'H' PRC 1 REPORT HEADER 
00037C PRPTNO ADD 1 PRPTNO 20 INCREMENT REPOR 
00038C MOVELHPRC PTTL 16 REPORT TITLE 
00039C MOVE HPRT PTTL REPORT TITLE 
00040C EXCPTRPTHDR WR ITE REPORT HE 
00060C 
00061 C 

Z-ADDOl 
Z-AODl 

WPAG 
WLIN 

40 SET NEW PAGE # 
SET NEW LI NE # 

00041 C END END DO HEADER 
00042C' 
00043C 02 DO DO PRINT LINE 
00044C MOVE ' P' PRC PRINT RECORD 
00045C WPAG IFNE DPAG IF NEW PAGE 
00046C EXSR NEWPAG START NEW PAGE 
00047C END END IF WPAG 
00048C WLIN IFLT DLIN IF NEW LINE 
00049C EXSR NEWLIN SPACE TO NEW LI 
00050C END END IF WLIN 
00051 C MOVELOTXT PTXT 132 WRITE REPORT LI 
00052C EXCPTR PTLI N WR ITE REPORT LI 
00053C DLIN ADO 1 WLI N 40 NEXT LINE 
00054C END END DO PRINT LI 
00055C* 
00056C"-----------------------
00057C NEWPAG BEGSR 
00058C*'-----------------------------
00059C EXCPTPAGEND WRITE NEW PAGE 
00060C Z-ADDOPAG WPAG 40 SET NEW PAGE # 
00061 C Z-ADOl WLIN SET NEW LINE # 
00062C ENDSR END NEW PAGE 
00063C* 
00064C"-----------------------------
00065C NEWLIN 8EGSR 
00066C**-------------
00067C WLIN DO OLIN WLIN DO UNTI L WLIN-D 
00068C EXCPT8LKLIN WRITE BLANK LIN 
00069C END END DO WLiN 
00070C ENDSR END NEW LINE 
00071C' 
00072C···········*·····*········**··········**··**···· ••• ~ •••• *** •• ** ••••• 
000730•• * * ** ** * •••••••••••••• *" •••••• *" .... * ..... * ..... *" *" •• if."" •• """ •• * ....... 

000740CASDWP RPTHDR 
000750 PRC 



DisplayWrite 127 

Figure 6-17 

IDD Uheader 
record 
definition 

Figure 6-18 

IDDU detail 
print record 
definition 

000760 PRPTNO 3 
000770 PTTL 19 
000780' 
000790 RPTLIN 
000800 PRC 
000810 PRPTNO 
000820 PTXT 135 
000830' 
000840 PAGEND 
000850 PRC 
000860 PRPTNO 
000870 , .pa' 
000880' 
000890 BLKLIN 
000900 PRC 
000910 PRPTNO 
000920'
000930·***··***···**·································· ..•.•...•....•.•...• 

FORMAT DEFINITION LISTING 

Definition name------- CASDWMH Revision date- 12/30/87 
Data di ct i onary------- CASDCT Rev i sed by---- CS 

Input record 1ength---- 150 Creation date- 12/30/87 
Output record 1ength---- 150 Created by---- CS 
Short comment------- CAS DisplayWrite Merge Report Header 

FIELD LIST 

FIELD BEGIN LENGTH DATA SHORT COMMENT 

PRC 1 CHAR Record Code 
PRPTNO 2,0 ZONE Report Number 
PTTL 4 16 CHAR Report Title 

20 131 

RECORD ID CODES 

FIELD POS TEST VALUE 

PRC EO 

FORMAT DEFINITION LISTING 

Definition name------- CASDWMP Revision date- 12/30/87 
Data dictionary--- CASDCT Revi sed by---- CS 

Input record length---- 150 Creation date- 12/30/87 
Output record 1ength---- 150 Created by-- CS 
Short comment------- CAS DisplayWrite Merge Print Record 

FIELD LIST 

FI ELD BEGIN LENGTH DATA SHORT COMMENT 

PRC 1 1 CHAR Record Code 
PRPTNO 2 2,0 ZONE Report Number 
PTXTl 4 60 CHAR Report Text 1 
PTXT2 64 60 CHAR Report Text 2 



128 5/36 Power Tools 

Figure 6-19 

IDDU 
CASDWMjile 
definition 

Figure 6-20 

Query on 
header record 

PTXT3 	 124 12 CHAR Report Text 3 
136 15 

RECORD 10 CODES 

FIELD POS TEST VALUE 

PRC EQ P 

FILE DEFINITION LISTING 

Definition name--- CASDWM Revision date- 12/30/B7 
Data d 1 ct i onary--- CASDCT Revi sed by-- CS 

Fi Ie type DISK Creation date- 12/30/87 
Max record length-- 150 Created by-- CS 
Short comment--- CAS DisplayWrite Merge File 

RECORD FORMAT LIST 

RECORD INPUT OUTPUT 
FORMAT LENGTH LENGTH SHORT COMMENT 

CASDWMH 150 150 CAS D,splayWrite Merge Report Header 

CASDWMP 150 150 CAS DisplayWrite Merge Print Record 


5727QU1QU 	 R05MOO IBM SYSTEM/36 QUERY 09/12/B8 15.01.49 PAGE 1 

QUERY NAME CASDWMQH 

LIBRARY CASLIB 

QUERY DESCRIPTION --- CAS DisplayWrite Merge Report Header Query 


FILE NAME ---- 
DICTIONARY CASDCT 

FILE DEFINITION NAME 

RECORD FORMAT CASDWMH 


COLLATING SEQUENCE EBCDIC 

SELECT RECORDS 

AND/ FIELD 

OR NAME TEST VALUE 


No record se 1ect i on tests, so a 11 records se 1ected 

SELECT FIELDS 

FIELD SORT ASCENDING/ 

NAME PRIORITY DESCENDING COMMENTS 


PRC Record Code 

PRPTNO Report Number 

PTTL Report Title 


FORMAT AND SUMMARIZE COLUMNS 

SUMMARY FUNCTIONS: I-TOTAL 2-AVERAGE 3-MINIMUM 4-MAXJMUM 5-COUNT 
OVER

RIDE 
FIELD SUMMARY COLUMN COLUMN DEC DEC 
NAME FUNCTIONS SPAC ING HEADING LEN POS LEN POS 

PRC 	 0 PRC 

http:15.01.49


DisplayWrite 129 

PRPTNO PRPTNO 2 o 
PTTL PTTL 16 

SELECT OUTPUT DEVICE 

OUTPUT DEVICE ----- DISK 
TYPE OF OUTPUT --- DETAI L 

DISK FILE DETAILS 

FI LE NAME #QRYOUT 

DATA IN FILE ----- NEW 

PRINT DEFINITION --- NO 


DISK OUTPUT FILE RECORD FORMAT 

OUTPUT RECORD LENGTH 19 

FIELD LIST 

FI ELD BEGIN LENGTH DEC POS DATA SHORT COMMENT 

PRC 1 CHAR Record Code 
PRPTNO 2 o ZONE Report Number 
PTn 16 CHAR Report Title 

QUERY NAME CASDWMQPFigure 6-21 U BRARY CASU B 
QUERY DESCRIPTION --- CAS DisplayWrite Merge Report Line Query Query on detail 
FILE NAME ---- print record DICTIONARY CAS OCT 

FILE DEFINITION NAME -- 

RECORD FORMAT ---- CASDWMP 


COLLATING SEQUENCE -- EBCDIC 

SELECT FIELDS 

FIELD SORT ASCENDING/ 
NAME PRIORITY DESCENDING COMMENTS 

PRC Report Code 
PRPTNO Report. Number 
PTXT1 Report Text 1 
PTXT2 Report Text 2 
PTXT3 Report Text 3 

FORMAT AND SUMMARIZE COLUMNS 

SUMMARY FUNCTIONS l-TOTAL 2-AVERAGE 3-MINIMUM 4-MAXIMUM 5-COUNT 

OVER
RIDE 

FIELD SUMMARY COLUMN COLUMN DEC DEC 
NAME FUNCTIONS SPACING HEADING LEN POS LEN POS 

PRC 0 PRC 1 
PRPTNO 2 PRPTNO 2 0 
PTXTl 2 PTXTl 60 
PTXT2 PTXTZ 60 
PTXTJ PTXT3 12 

SELECT OUTPUT DEVICE 

OUTPUT DEVICE ---- DISK 



130 5/36 Power Tools 

Figure 6-22 

DW/36 merge 
document 

Figure 6-23a 

Typestyle prompt 
screen 

Figure 6-23b 

Page layout 
prompt screen 

TYPE OF OUTPUT ------- DETAIL 


DISK FILE DETAILS 


FILE NAME #QRYOUT 

DATA IN FILE NEW 

PRINT DEFINITION --- NO 


DISK OUTPUT FILE RECORD FORMAT 


OUTPUT RECORD LENGTH -- 135 

FIELD LIST 

FIELD BEGIN LENGTH DEC POS DATA SHORT COMMENT 

PRC 1 CHAR Record Code 

PRPTNO 2 0 ZONE Report Number 

PTXTl 60 CHAR Report Text 1 

PTXT2 64 60 CHAR Report Text 2 

PTXT3 124 12 CHAR Report Text 3 


CASDWM,CASTXT P 15 EDIT Format Change PG. LN: 7 
<. . .... 2 .... · .3 ......... 4 .. : .... 5.. . .. 6. .. 7. . B ... 

F 
*&PTTL 

*&PTXT1*&PTXT2*&PTXT3 

pa 

R 


TYPESTYLE/COLOR 
Format Change Menu bypass' 
Type choi ces. press Enter, 

ITEM CHOICE 	 POSSIBLE CHOICES 
Typestyle (Pitch) 230 	 1 -65 (10) . 66-153 (12). 

154-200 (PSM). 211-239 (15). 
240-249 (5), 250-259 (17.1), 
260-279 (8.55) 

Color. o 	 O-Base 1-B1 ue 2=Red 
3-Pink 4-Green 5"'-Turquo;se 
6-Ye 11 ow S-Black 16-Brown 

Enter-Continue Cmd3-Go 	 back Cmd7-End 

PAGE LAYOUT/PAPER OPTIONS (2 of 2) 
Format Change Menu bypass: p 
Type choices, press Enter. 

ITEM CHOICE POSSIBLE CHOICES 

Paper width 11 .1-45.5 inches 

Paper length 8.5 .1-45.5 inches 

Printing paper source, 


fi rst page 1-3"Paper drawer 4-Manual reed 

following pages 5-Enve lope reed 6=ContinuQus feed 


Rotate paper 1-Auto 2,0 3-90 4-1S0 5-270 (degrees) 
Print header on l-A11 pages 2-Following pages 
Pr i nt foote r on 1-A11 pages 2-Following pages 

Enter-Continue Cmd3-Go back Cmd7-End Roll=Previous options 



Figure 6-23c 

Margins and tabs 
prompt screen 

Figure 6-23d 

PITL data field 
instroctions 

Figure 6-23e 

PTXTl data 
field instroctiOlts 

DisplayWrite 131 

MARGI NS AND TABS 

1 2 3 4 5 4 5 6 
0 0 0 0 0 0 0 0 
< :T .. . . T. ·T . . T. ... T . . . T. .. . T. . .. T/\/\/ .. .T . . :T. . .. T . :T. ..T . . > .3. 

Format Change Menu bypass: m 

CHANGE MARGIN: Move cursor to where you want margin. type: 


(for Left Margin) (for Right Margin) 

CLEAR ALL TABS: Press Cmd4 

CLEAR TAB: Move cursor to the tab setting. Press the space bar. 


SET TAB: 	 Move the cursor to where you want the tab setting. 

-For Flush Left Tab. type T -For Center Tab. type C 

-For Decimal Tab. type D -For Flush Right Tab. type 

-For Comma Tab. type M -For Colon Tab. type N 


Enter~Continue Cmd3-Go back Cmd4-Clear tabs 
Cmd7-End Cmd1 O-W'; ndow 

DATA FIELD (.&) 
This instruction prints the value of a data field from a described data 
file. query, or document. 
Type choi ces, press Enter 

ITEM CHOICE POSSIBLE CHOICES 

Data field name PTTL 


File/query/document. CASDWMQH Name. 'PRINT. or 'NOTE 

Library/folder CASLIB Name if query or document specified 

Letters or 1 i st 1 1-Multiple letters 2-Column list 
Fi 1e ; d A-E (for duplicate fields) 
Instruction length 6 1-255 (Blank to display entire 

instruction) 
Cmd3-Go back Cmd5~Numeric editing Cmd6-Character editing 
Cmd7-End Cmd14-Subdirectory Cmd16-Delete instruction 

DATA FIELD (.&) 
This instruction prints the value of a data field from a described data 
file, query. or document. 
Type choices. press Enter. 

ITEM CHOICE POSSIBLE CHOICES 

Data field name PTXTl 


File/query/document CASOWMQP Name. 'PRINT. or 'NOTE 

Library/folder CASLI B Name if query or document specified 

Letters or list 2 1-Multiple letters 2-Column list 
Fi 1 e i d A-E (for duplicate fields) 
Instruction length 1,255 (Blank to display entire 

instruction) 
Cmd3'Go back Cmd5~Numeric editing Cmd6~Character editing 
Cmd7-End Cmd14-Subdirectory Cmd16~Delete instruction 



132 5/36 Power Tools 

Figure 6-23' 

PTXT2data 
field instructions 

Figure 6-23g 

PTXT3data 
field instructions 

DATA FIELD 
This instruction prints the value of a 
file, query, or document. 
Type choi ces. press Enter. 

ITEM 
Data field name . 

Fi Ie/query/document. 
Library/folder 

Letters or list 
Fi I e id 
I nst ruet ; on 1ength 

CHOICE 
PTXT2 
CASDWMOP 
CASLIB 
2 

Cmd3-Go back Cmd5-Numeric editing 
Cmd7-End Cmd14-Subdirectory 

This instruction prints the 
file, query, or document. 
Type choices, press Enter. 

ITEM 
Data field name . 

File/query/document. 
Library/folder 


Letters or list . 

Fi lei d 

Instruction length 


DATA FIELD (&) 
value of a data 

CHOICE 

PTXT3 

CASDWMOP 

CASLIB 

2 

(.&) 
data 

Cmd3-Go back Cmd5-Numeric editing 
Cmd7-End Cmd14-Subdirectory 

field from a described data 

POSSIBLE CHOICES 

Name. "PRINT. or "NOTE 
Name if Query or document specified 
I-Multiple letters 2-Column list 
A-E (for duplicate fields) 
1-255 (Blal1k to display entire 
instruction) 

Cmd6-Cllaracter editing 
Cmdl6-Delete instruction 

field from a described data 

POSSIBLE CHCIICES 

Name, "PRINT. or "NOTE 
Name if Quer'y or document specified 
I-Multiple letters 2-Column list 
A-E (for duplicate fields) 
1-255 (Blank to display entire 
instruction) 

Cmd6-Character editing 
Cmd16-0elete instruction 

Integrating Application Programs and 
DisplayWrite/36 
by Nancy R. Vogelsang and Tammy A. Zitzmann 

You can combine 
an RPG program 
and 
DisplayWrite/36 
in a single 
procedure. 

Among the various strengths of the S/36, one key strength is its word pro
cessing ability, The S/36 supports DisplayWrite/36 (DW/36), a full-function 
word processor. While you can use Query/36 to merge your data processing 
information into your word processing documents, combining DW/36 with 
RPG for the same purpose may seem questionable. But when we 
attempted it, we found it to be a match made in heaven. 

One of our clients, a public health nursing agency, asked us for help 
automating several of its federally mandated forms .. Because we could cre
ate most of these forms using DW/36, we proceeded smoothly on the pro



DisplayWrite 133 

jecr. But when we came to one set of forms - form 485 and form 487 
that required a combination of heavy-duty word processing and data pro
cessing, we knew DW/36 would need some outside help. 

Form 485 (Figure 6-24a) contains basic information about a patient; form 
487 (Figure 6-24b) contains additional information that does not fit on form 
485. Some of the information needed on these forms is contained in files 
already resident on the S/36 (shown in Figures 6-24a and 6-24b), some 
requires the operator to check the correct boxes (shown in Figure 6-24a), and 
some requires the convenience of word processing, such as word wrap and 
spell checking (shown in Figures 6-24a and 6-24b). 

We could easily use DW/36 to create form 487. Box 7 is constant data 
and the operator could key box 8 and merge the data for boxes 1 through 6 
from existing data files. But creating a shell document for form 485 pre
sented a problem because the transcriber must key in variable-length text 
(e.g., box 10). Not knowing in advance how long the text will be makes it 
impossible to hard code the correct number of carrier returns in the shell 
format to allow for printing within the appropriate box. Also, DW/36 cannot 
tell the printer to skip to a specific line number. 

In designing our solution, we knew we wanted to use the data already 
contained in the S/36 files to fill in appropriate boxes on the forms, and we 
knew that capturing and presenting the questions for the other boxes in a 
sequential order was critical because the operator would be keying from dic
taphone tapes created by the nurses. Our first approach was to use an RPG 
program for form 485; print "SEE ATTACHED FORM 487" in boxes lo, 
21, and 22, which require heavy text entry; and use DW/36 to create form 
487. We ran into a bureaucratic obstacle, however, in that the federal govern
ment requires text in these boxes; only continuing text can be on form 487. 

After carefully analyzing the problem, we remained committed to RPG 
for printing form 485. Using RPG, however, requires working within certain 
constraints. It means sacrificing word wrap and spell check for the few lines 
contained in these boxes. It also means that after filling in one of these boxes, 
the operator must be able to key any additional text on form 487 sequentially 
without having to search the dictaphone tape. The application must let the 
operator leave the RPG program, go to DW /36, type the remaining text for 
any of these boxes, and then return to the RPG program at the point of exit. 

The Actual Steps 
Let's look now at how we achieved this merger of RPG and DW/36. Proce
dure PRT485 (Figure 6-25) controls the merger. First, procedure PRT485 
calls program PRTBEG (Figure 6-26), which prompts for the patient num
ber to use in creating work files. Two one-record files provide the interface 
between an RPG program that prints form 485 (in our case, program 
PRT485) and DW/36. The first file - PATSY, containing all the informa
tion entered on form 485 - displays previously entered information when 



134 5/36 Power Tools 

Figure 6·24a 

Form 485 

control is returned to the print program. The second file - PATWRK, con
taining only the information necessary to print the top boxes on form 487 
- is merged with the DW/36 document when form 487 is printed. To 
ensure unique file names, we embed the patient number in the file name. 
Using Z group files (Z, because there were none on the system), we label 
the PATWRK file Z.xxxx and the PATSY file Z.xxxxSV, where xxxx is the 
four-digit patient number. 

Departmllflt of Health and Human SeMces Form Approved 

HtaIIl'I Care Financing AdministratiOn OMS No 09J8..0:J57 


-c-~=cc-~_H=0"lM~E~H""E",A"LTH CERTIFICATION AND PLAN O'F TREATMENT 

I 
8. Date of Bit1h~ _,-~ _~ -1_9~T=~~~~jlo:-Mo~iiOn-s_ OoSeIF~9Quency/Route (N)ew (C)ha-;;g;d 

1" 'COo9·eM IPnnClpal DiagnOSIS Date I 
~ - ----~ -~- -~ f=--~. 
12. ICD.9-CMI Surgical Procedure Oatf) 

. ~-----~~--- ~---~-- ~.~ 
13 ICD-9-CMI Other PerMan! Diagnoses Dato 

__~~L ____________-1.~ --L~----.------ -~---- _--~ - ___ 
14. DME and Supplies 	 i 15. Salety Measures 

~6_-N~n-alR8Cl-------~- -- -----~. _. ~=t1!- Aii9rg;es:--=---==- ==- -=-=-= .---~~~~=-=_-~= 
IB.A. funcliooal Limitationq 	 118.8 ActiVIties Permitted 

[J =,::':"r [j P8r~lv'lS 9 0 l"l'lallv BI",d I 1 I:J ~:;~~'~ [] ~d~~1 gea,rr'lj A f-J W",..,IC_M"

rJ flocoor' .... ncRI 6 0 Fr>du'~I\C. II [--1 ~~~:tE":!,on 2 1__ '; BOd'8$! Of1P 7 [~l ~~~,::..nr B L-J w~r..... 

3 r -::;onr.~c'u ~ 7 LJA,mo..t",I\" B [~:2 O·~e. 151__,1,) 3 l..J Up A, Tol~'~'..d e 0 C,urcne' C [J Nu fl"WK"t<o"'c 

4 r~j ....0&(1"11 e [_1 Sp"ech I 4 L~ T'ansfer O""lCh." 9 C] Cane D n 01"", 'Sp~c,ly) 

~~~"~~'~~_ i§£::::~-~__~]~~:'~-j_;~~;~'~~~=~B~S~~=5~-:'~'=
m 

21 Ordl,}(s for DIscipline and Treatmenls (SpecIfy Amount/Frequency/Duration, 

22. GoalS/Rehabtlltation Potential!l)iSCharge Plans -_._

23. Verbal Stan of· Care and NtJrso's 

24 ~n;~~;i~ :~a~::::~:·c'::""",lic,.'"b,~",--_ ----------'~25~D.-"--,HccH~A~Aec~[--o---- - ----
Signed POT 	 26 I J cenlly recenrly that tile above home health 

serv'ces are r&qUlrlJ(j and arc authorized by me w;th a 
wrlnen plan for treatment whICh will be periodicallyJ reVl8WE~ by me ThiS patlenl rs under my care, I!I confilled 
to hiS home and'9 In need of ntermlt1enl skilled n",r911'19 

27 Attencling PhysIcIan's SIgnature (ReqUired on 485 Kept on FIle -roSie sig~ ~~:s~;~/:':~::~ :r!:s~e~~c~a".:a::O~ 
In MedIcal Records of HHA) I no lonner has a need for such care Of therapy. but 

continues to need occupational therapy 

Form HCFA~B5 (C41 (4.a1) 



__ __ 

Figure 6-24b 

Form 487 

DisplayWrite 135 

Program PRTBEG passes a valid patient number back to procedure 
PRT485 in positions 1 through 4 of the LOA. To avoid the overhead of using 
a BLOFILE to create the PATSY file, we define the file twice in the print 
program (i.e., once as an output file, and once as an update/chain file) and con
dition the use of the correct file on the appropriate external switch. Before 
loading the print program, the procedure determines whether the operator has 
created forms for this patient previously. If forms have been created, Z.xxxxSV 

o.p.r1ment 01 He."~ and Hu,,*" ServIces Form AppI'OIIecI 

......, Car. Fm!!lCinp ~r.cion OMS No. 09J8-0357 


ADDENDUM TO: oPLAN OF TREATMENT 0 MEDICAL UPDATE 
'~~~I."~"'~"'_cl._'m_No_'____1'2_~ ~_'.__~I~:3~C.rt~"'_~_'~_~~'~~~~__~I_"_M~_"._'R_~oroNO Is.pmVlderNo. 
:::- ! IFrom. To· I ~ 
I. Patient's Name 17. Provider Narne 

• "emNo. 

9 SIgnature 01 Ph~ician 
I '0 DOl' 

'1, ~n.1 NlmelSignature of NurM"'~'pist 

FOfm HCFA-4I7 (Cot) ("-11) 

http:I~:3~C.rt


136 5/36 Power Tools 

exists and switch 4 is set on to update it; the print program chains to the 
PATSY file to display the previously entered information. If forms have not 
been created, Z.xxxxSV does not exist and switch 3 is set on to create the file. 

The print program displays the first screen (Figure 6-27a). If the operator 
happened to key the wrong patient number, he or she now can press Com
mand key 3, which causes switch 1 to be set on. The procedure returns to the 
PRTBEG program to prompt for another patient number. If the patient num
ber is correct, the operator can begin to key the required information. If the 
operator needs to key additional information for box 10, he or she presses 
Command key 5 to interface with OW /36. The program sets on switch 2 and 
places a 1 in position 5 of the LOA so that on return to the print program, the 
correct screen will be displayed with the cursor positioned at the correct field. 

Control returns to procedure PRT485, which activates the OW/36 inter
face. When activating the OW/36 interface, the procedure skips the step to 
LINK the file; we need to do that only before we print the document. If the 
operator is creating the forms for this patient (i.e., if switch 3 is on), the shell 
format is copied and a new document is created. We call our new document 
Zxxxx to make it easy for the operator to know what file name is to be 
merged with OW/36. Next, procedure PRT485 calls the OW/36 editor to let 
the operator enter text for form 487 into the just-created document. The 
information in boxes 1 through 6 will be merged from the Z.xxxx file; box 7 
is constant text; box 8 is where the operator starts keying the continued text. 

Because DW/36 doesn't allow data fields in header margin text, we in
serted the data fields directly in the document. For operator ease of use, 
the first line of text in the document contains a DW/36 comment instruc
tion. The comment, a form of on-line documentation, informs the operator 
to press Command N (next stop code) to position the cursor at the appro
priate place to begin typing the remaining text for box 10. After completing 
the text entry, the operator presses Command key 7 and chooses not to 
print the document at this time. Upon exiting from DW/36, procedure 
PRT485 sets switches 3 and 4 to indicate the existence of the PATSY file 
(i.e., switch 3 is set off, switch 4 is set on). 

The procedure again loads the print program, which displays the correct 
screen with the cursor positioned at the next field to be entered. The operator 
continues entering data. For operator ease of use, when creating the $SFGR 
screen specifications, we specified controlled field exit on each input field and 
null fill on each format. The operator fills in information on screens 2 and 3 
(Figures 6-27b and 6-27c), interfacing with DW/36 through Command key 5 
as necessary. On screen 4 (Figure 6-27d), the operator enters the additional 
doctors as required; one form will be printed for each doctor entered. 

The program sets off switch 2 when exiting the program from screen 4, 
causing procedure PRT485 to execute an IDDULINK to link the IDDU 
specifications to the Z.xxxx file. The procedure again calls the DW/36 edi
tor to let the operator key any additional text for form 487. When the opera



Figure 6-25 

Procedure 

PRT485 


DisplayWrite 137 

tor has completed keying the entire text for form 487, he or she performs a 
spelling check using the medical supplement to the DW/36 dictionary. 
Now when the operator presses Command key 7 to end the edit session, he 
or she selects printing, along with a display of the print options. On page 3 
of the print options display (Figure 6-28), the operator defines the name of 
the file at the File/query/document prompt. The file name, thanks to our 
naming convention, is the same as the document name, except for the. 
between the Z and the number. The operator can find the document name 
in the upper left corner of the display. Once the operator has defined the 
file name, he or she is finished processing this patient and can return to 
program PRTBEG to prompt for the next patient number. 

The technique we've demonstrated here could be used to combine any 
RPG program with DW/36. It's one way to merge the power of word pro
cessing and data processing. 

• ENTER AND PRINT FORMS 485 and 487 

• 	 SWITCH SETTINGS 
* 	 U1 set on in PRT485 to recycle to prompt for patient number 

U2 set on in PRT485 to go to and then return from DW/36 
* 	 U3 Create Z.xxxxSV file 

U4 Update Z.xxxxSV file 
* 	 US set on in PRTBEG to indicate end of procedure 

• 	 LOA USAGE 
* 	 Positions 1 4 Patient Number 
* 	 Postlon 5 Screen to display when returning to PRT485 

// TAG AGAIN 
// LOCAL OFFSET-1, BLANK-5 
// SW ITCH 00000000 
* Prompt for Patient Number 
// LOAD PRTBEG 
// FILE NAME-WCHMST,DISP-SHR 
// FILE NAME-WCHLST,LABEL-WCHMSTYE,DISP-$HR 
// RUN 
1/ IF SWITCH8-1 RETURN 
* Determine status of files Z.xxxx and Z.xxxxSV 
1/ IFF DATAF1-Z.n'l,4'?SV GOTO CHKSW 
/1 IF ?F'A,Z.n'l,4'?SV'?>00000000 GOTO CHKSW 
// LOAD SDELET 
// RUN 
// SCRATCH UNIT-Fl,LABEL-Z.n'l.4'?SV 
// END 
// TAG CHKSW 
// IF DATAF1-Z. ?L'l,4'?SV SWITCH XX01XXXX 
// ELSE SWITCH XX10XXXX 
// IFF DATAF1-Z.?L'l,4'? GOTD PRT485 
// LOAD SDELET 
// RUN 
1/ SCRATCH UNIT-Fl,LABEL-Z. ?L'l,4'? 
// END 
* Print form 485 
II TAG PRT485 
// LOAD PRT485 
II FILE NAME-WCHMST,DISP-SHR 
// FILE NAME-WCHLST,LABEL-WCHMSTYE,DISP-SHR 
1/ FILE NAME-WCHDDC,DISP-SHR 
// FILE NAME-ICDA.DISP-SHR 
1/ FILE NAME-PATWRK,RECORDS-l,LABEL-Z.?L·l,4·? 
/1 FILE NAME-PATSV,RECORDS-1,LABEL-Z.?L'l,4'?SV 
1/ FILE NAME-PATUP,LABEL-Z.?L'l,4'?SV 
// PRINTER NAME-PRT485,FDRMSNO-485,LINES-66,LPI-6,PRIORITY-O,DEVICE-P2 
1/ RUN 
* 	 Return to prompt for different Patient No. 



138 5/36 Power Tools 

Figure 6-26 

Program 
PRTBEG 

Figure 6-27a 

Prompt screen 1 

// IF SWITCH1-l GOTO AGAIN 
• Interface to DW/36 
/ / TAG DW36 
// IF SWITCH2-0 lDDULlNK LlNK,Z,?L'l,4'?,NEWDICT,PATWRK 
// IF SWITCH3-1 TEXTOOC COPY,487SHELL,ADDENDUM,Z?L'l,4'7 ,TXT485 
TEXTDOC REVISE,Z?L'l ,4'?,TXT485 
// SWITCH XX01XXXX 
• DW/36 Interface active, return to PRT485 
// IF SWITCH2-1 GOTO PRT485 
* Prompt for next Patient No. 
// GOTO AGAIN 

· 4 , .. ... 6 8 
0001 H PRTBEG 
0002 FPRTBEGFMCP 40 WORKSTN 
0003 FWCHMST IC 300 300R 4AI DISK 
0004 FWCHLST IC 300 300R 4AI 2 DISK 
0005 E MSG 1 40 
0006 IPRTBEGFMNS 01 1 Cl 
0007 I 50PATNO 
0008 I NS 09 
0009 lWCHMST NS 
0010 IWCHLST NS 
0011 lLDA UDS 
0012 I 40PATNO 
0013 C SETOF 10 
0014 C KG SETON LRUB 
0015 C KG GOTO ENO 
0016 C/SPACE 
0017 C 09 GOTO END 
0018 C/SPACE 
0019 C 01 PATNO CHAINWCHMST 10 
0020 C 01 10 PATNO CHAINWCHLST 10 
0021 C 01Nl0 SETON LR 
0022 C/SPACE 
0023 C END TAG 
0024 OPRTBEGFMD 09 
0025 0 K8 ' SCRNl 
0026 0 01 10 
0027 0 K8 ' SCRNl 
0028 0 10 MSG.l 40 
** MSG 
INVALID PATIENT NUM8ER 

HOME HEALTH CERTIFICATION AND PLAN OF TREATMENT 

Patient Name: 

10 Medications: Dose/Frequency/Route (N)ew (C)hanged: 

12. Surgical Procedure' 

14. DME and Supplies: 

15. Safety Measures' 

16. Nutritional Requirements' 

17 Allergies' 

CMD 3:00PSl wrong patient-try again CMD 5:DW/36 ENTER: Cont i nue 



DisplayWrite 139 

Figure 6·27b 
HOME HEALTH CERTIFICATION AND PLAN OF TREATMENT 

Prompt screen 2 
Pat i ent Name; 

18A Funct i ona 1 Limitations 
o 1 Amputat i on 0 5 Paralysis 0 Legally Bl i nd 
0 2 Bowel/Bladder a 6 Endurance a A Dyspnea 
0 3 Cont racture a 7 Ambulation 
a 4 Hear-ing a 8 Speech a Other 

18B Activities Permitted 
a 1 Complete Bedrest 6 Partlal Weight Bearing o A Wheelchair 
a 2 Bedrest BRP a 7 Independent at Home o B Walker 
o 3 Up as Tolerated a 8 Crutches a c No Restrictions 
a 4 Transfer Bed/Chair 0 9 Cane 
0 5 Exercises Prescribed a Other 

19. 	Mental Status 
0 1 Or; ented 0 Forgetful a 5 Disoriented a Agitated 
a 2 Comatose a Oepressed 0 6 Lethargic 0 Other 

20. 	 Prognosis: a 1 Poor o 2 Guarded a 3 Fai r a 4 Good a 5 Excellent 

CMD 3: Prey; aus Screen 	 ENTER:Continue 

Figure 6·27c 
HOME HEALTH CERTIFICATION AND PLAN OF TREATMENT

Prompt screen 3 
Patient Name: 

21. 	 Orders for Discipl ine and Treatments: 

22. Goals/Rehabilitation Potential/Discharge Plans: 
More 0 

More 0 

CMD 3"Previous Screen CMD 5:DWj36 ENTER:Continue 



140 5/36 Power Tools 

Figure 6-27d 

Prompt screen 4 

Figure 6-28 

D/W/36 print 
options disp/ay
screen 3 

4 HOME HEALTH 

Patient Name' 

Doctor· 
Address. 

Doctor: 
Address .. : 

Doctor: 
Address. 

Doctor: 
Address .. : 

CMD 3:Previous Screen 

Z1234.TXT485 

Type choices. press Enter. 

ITEM 
Print revision symbols 

Symbols to be printed 

Cancel on error. 
Print error log 

Forms number for error log 
Clear log before printing. 

File/query/document. 
Library/folder 

Save pri nted output 
Document name. 

Folder name. 

CERTIFICATION AND PLAN OF TREATMENT 

PRINT OPTIONS 

CHOICE 
2 

Z.1234 

CmdZ-Save in PC file Cmd3-Go back 
Cmd9"'Change format opt ions 
Cmd14~Subdirectory:printed output 

License' 

License: 

License: 

License: 

ENTER:Print 485 

Page 3 of 3 

POSSIBLE CHOICES 

l-Yes 2-No 


l-Yes 2-No 
1=Yes 2=No 
Pri nter form 

l·Yes 2-'No 


File/query/document name 
If query or document specified 

l·Yes ;:-No 
Blank for list of documents 
Blank for list of folders 

Cmd5-Print Queue Cmd7-End 
Roll down~Additional print options 
Cmd15~Subdiroctory:query document 



DisplayWrite 141 

Assigning #LIBRARY as DisplayWrite/36 
Default Library 
by Lorry N. Forrister 

Figure 6·29 

Procedure 
TEXTDOC 

FIgure 6-3Oa 

Menu #0 

a Code on diskette: 


Procedure TEXTOOC 

Screen format member #0 

Message menu member #0## 

When users in my shop sign on to OisplayWrite/36, their application library 
is assigned to their session by default because SSP is unaware they no 
longer need it. A problem results when a library backup or reorganization 
requires users to stop work and sign off, causing considerable inconve
nience to the OW /36 users, 

1b alleviate the problem, I wrote procedure TEXTOOC to transfer 
these users from the application library to #LIBRARY automatically. And 
through a new menu, users can return to their previous menu and library 
with a single keystroke. 

Procedure TEXTOOC (Figure 6-29) is placed in each affected applica
tion library to be invoked in place of IBM's TEXTOOC:After reassigning 
the user's session to #LIBRARY, my procedure invokes the IBM proce
dure. When the user is through with OW /36, menu #0 (Figures 6-30a and 
6-30b) is displayed so the user can return to the previous menu and library 
by simply pressing Command 3. Menu load members #0 and #0## (Figure 
6-31) must be placed in #LIBRARY when compiled. This technique also 
works if OW /36 is invoked from a help menu. 

II LIBRARY NAME-O Change current library. 

II MENU #O.#LIBRARY Change session menu and session library. 

II RESET TEXTDOC "ALL End current procedure and start real job. 


Press Cmd3 to return to previous menu 

1 Return to Displaywrite/36. 
2. Sign OFF the system. 

Cmd3-Previous menu Cmd5-Main help menu Home-Sign on menu 



142 5/36 Power Tools 
. 1 2 3 4Figure 6-30b 	 6 

S' FREE FORM MENU 
s#o YY Y 56CScreen format DWSID 2 178Y 

member #0 	 DINPUT 12022 3 Y 
DCOMMAND 7 1 2Y Y ccmlMAND 
DINOUIRY 7 169Y 05Y CINClUIRY 
DMNUTITL 40 120Y Y C x 
D 
DPRMPTl 3821 2Y C x 
0 
DPRMPT2 372142Y 05Y CCmdl-Resume job 
0 
DFMOOOl 381214Y CPress Cmd3 to return to X 
D previous menu. 
DFMOO02 291414Y C1. Return to Displaywri X 
Dte/36. 
DFMOO03 231514Y C2. Sign OFF the system. 
DFMOO04 1819 2Y CCmd3-Previous menu 
DFMOO05 191927Y CCmd'5-Main help menu 
DFMOO06 171953Y CHom'3-Sign on menu 

Figure 6-31 #0##,2 
0001 TEXTDOC 

0002 OFF
Menu command 

source member 
#0## 

Accessing PC DispiayWrite/3 Documents 
from DispiayWrite/36 
answered by Georgia Agallianos 

QI just started using DisplayWrite/36 (DWj36) on my S/36; I also have 
5250 emulation on a PC/XT, which is loaded with DisplayWrite/3 

(DW/3). One of the selling points of using DW/3 on a PC over using 
DW/36 on the S/36 is to cut down on I/O on the S/36. Can I upload DW/3 
documents to DW/36 on the S/36? 

A You can use DW/3 on the PC and simply transfer the documents to the 
S/36 in a separate step. To transfer documents from DW/3 to DW/36, 

make sure the documents are saved as RFT (revisable form text). The 
documents then can be uploaded with PC Support/36 and read by DW/36 , 



Documentation 


-CHAPTER 

7 




144 5/36 Power Tools 

Cross-Referencing Files, Programs, 
and Procedures 
by Ray Mueller 

program by Paul Michels 

This utility 
creates and 
prints/our 
cross-reference 
reports: File 
Label by 
Program, 
Program by 
File Label, 
Program by 
Procedure, and 
Procedure by 
File. 

a Code on diskette: 


Procedure XREF 

RPG programs XREF01, XREF02, XREF03, XREF04, XREFOS 

You've been asked "merely" to add one more field to a screen and a report. 
Of course, you'll have to store the additional data in the relevant file - a file 
that has no room for an additional field - but without hesitation, you reply 
"no problem." Your reply really means, "I am the great omniscient pro
grammer. I'll simply expand the record length of the file." Naturally, you 
realize only later that other programs access the file and your task of 
"merely" adding another field becomes "track down every program that 
accesses the file so they can be modified to recognize the new field." Still 
feel like the omniscient programmer? 

You will if you use the S/36 XREF utility - a file, program, and procedure 
cross-reference utility that provides four reports. The XREF utility not only 
answers the question, "What programs access file X?" but also identifies the 
procedures that load those programs. 

Information for these cross-reference reports is derived from the proce
dure members of a user-specified library. The utility copies the procedure 
members into a work file and then extracts procedure, program, and file name 
from each procedure's OCL code and writes this information into an output 
file. The utility produces one output file record for each file referenced in 
each program. If a procedure member references the file by a file name, the 
XREF utility extracts the file's disk label from the OeL code. The cross-ref
erence reports are then obtained from sorted versions of the output file. 

The utility consists of procedure XREFand five RPG programs
XREF01, XREF02, XREF03, XREF04, and XREFOS. The procedure 
prompts for user input, creates the work file, performs the necessary sorting, 
and generally directs the action of the programs. Program XREFOl writes the 
output file; the subsequent programs read the sorted file and produce the 
desired reports. The procedure uses no prompt screens because user input is 
minimal: users need only specify the library to be analyzed, the report(s) to 
be produced, and whether the job is to be submitted to the job queue. 

Procedure XREF (Figure 7-1) begins by testing for adequate disk 
space for the several files that will be created. If 2,000 blocks of contiguous 
disk space are not available, the procedure will be canceled. You may want 
to modify the procedure if this estimate of disk space is too big or too small 
for the libraries you will be analyzing; you could even modify the procedure 



Documentation 145 

so that it estimates the space required. 
In any case, if sufficient disk space is available, the procedure requests 

the name of the library to be analyzed. The procedure then checks whether 
that library is not found. If the library is found, the procedure displays a list 
of five report options, allowing you to select anyone of four reports by speci
fying options 1 through 4 or to select all of them by specifying option s. If 
you enter any number other than 1,2,3, or 4, the procedure uses option 5, 
the default. The procedure stores the report option as parameter 2. The 
only other user input is the option to submit the job to the job queue. 

After the user input phase is complete, the procedure loads the 
$MAINT utility, which copies all the procedure members in the specified 
library into work file OCLFILE. This work file is then processed by pro
gram XREF01 to create output file XREFA, which is needed by the 
remaining programs. After program XREFOI creates file XREFA, the pro
cedure either branches to one of three tags (TWO, THREE, or FOUR) or 
proceeds sequentially, depending on the report option contained in param
eter 2. If parameter 2 contains the value 1 or 5, the procedure sorts file 
XREFA in file name/program name sequence. Program XREF02 processes 
that sorted file (add rout file XREFB) and generates the files/programs cross
reference listing. When program XREF02 finishes, the procedure continues 
sequentially (if parameter 2 equals 5) or branches to the END tag. 

If parameter 2 contains any number other than 1 or 5, the preceding 
steps are bypassed and processing commences at the appropriate tag (i.e., 
TAG TWO for option 2, TAG THREE for option 3, and so on). The pro
cessing logic at each of these tags is similar to that of TAG ONE (i.e., the 
procedure sorts file XREFA and calls a report-writing program). The differ
ence between the TAGs is simply the order in which file XREFA is sorted 
and the report-writing program is called (e.g., at TAG TWO, file XREFA is 
sorted in program name/file name sequence). The procedure terminates by 
deleting file XREFA. Note that file XREFB is defined with RETAIN-j. 

That's all there is to the procedure. The real heart of this utility, however, 
is program XREF01, so let's look at it in detail. Again, program XREF01 
(Figure 7-2) reads file OCLFILE and creates file XREFA, which is sorted 
appropriately and then processed by the succeeding programs to produce the 
specific reports. With the input record stored as an array, the program can 
scan the record one byte at a time and extract program names, which are then 
stored in array PGN, and file names, which are stored in array LBL. 

The program recognizes two types of input records (lines 7 and 12). Type 
01 records contain two slashes followed by a blank in the first three positions 
and no asterisk in the fourth position. The // signifies the record may contain 
a procedure, file name, file label, or program name (a potentially informative 
record), but an asterisk would signify a prompt statement. A record without 
the // or with an asterisk in position 4 is designated as type 02. Because type 
02 records contain no useful information for program XREF01, the first of 



146 5/36 Power Tools 

the C-specs directs program logic to the end of the program if indicator 02 is 
on, and the RPG cycle resumes with the next record from file OCLFILE. 

Provided the record is potentially informativc! (i.e., type 01), the pro
gram determines whether it is a /I COpy stateme:nt. If the record is a 
II COpy statement, the program needs only to save the procedure name 
(which should be in positions 24 through 31) in field PRC. If the record is 
not a COpy statement, the record may be a LOAD or a FILE statement; 
thus, control passes to the ELSE statement (line 22), and the procedure 
calls subroutine LOAD to begin analyzing the record. 

The ensuing processing sequence is ilIustrate:d in Figure 7-3. Subrou
tine LOAD tests for the presence of a LOAD statement and, if found, 
stores the program name associated with it. If the record is not a LOAD 
statement, subroutine LOAD calls subroutine FILE, which tests for the 
presence of a FILE statement. If the record is a FILE statement, subrou
tine FILE calls subroutine LABEL, which tests for the presence of a file 
label. If subroutine LABEL finds a file label, the file label is stored, as long 
as it is not a substitution expression. If there is no file label, subroutine 
LABEL calls subroutine NAME, which extracts a file name from the 
record, again, as long as it is not a substitution expression. 

Note: Program XREF01 has no way of knowing what value will be sub
stituted at execution time. That is why it is coded to drop any names or 
labels containing question marks. You can modify the program to test for 
any character, including the apostrophe, when looking for names or labels. 

All of the subroutines operate much the same way as subroutine LOAD, so 
a description of the flow and function of the LOAD subroutine will help you 
understand the function of the other subroutines. Subroutine LOAD (lines 30 
through 57 in Figure 7-2) sets on indicator 03 to signal that the keyword 
LOAD has been found; thus, the subroutine begins by setting off indicator 03. 
Next, field X is initialized. Field X serves as the indc!x for array OCL as the 
subroutine scans each character of the input record. Field X also serves as the 
counter for the DO loop that performs the scanning (lines 33 through 54). 

Within this DO loop, field X is incremented, and the current character 
of array OCL is tested against the character L (i.e., the subroutine is look
ing for the keyword LOAD). If the current character is not an L, control 
passes to the END statement in line 53, and the loop is repeated to exam
ine the next element of array OCL (provided field X is less than or equal to 
110). If the character is an L, the subroutine determines whether the six 
characters (beginning with the character before the L) are ~LOAD~. If the 
literal l6LOADl6 is not found, control passes to the END statement in line 
52, and, again, the loop is repeated. If the literall6LOADl6 is found, the 
subroutine sets on indicator 3 (line 40) and extracts the program name from 
the LOAD statement via another DO loop. 

Before this DO loop begins, the program increments field X (the index for 
array OCL, which is currently positioned at the L) so that it points to the 



Documentation 147 

assumed start of the program name. Notice that the subroutine assumes that 
on the LOAD statement (i.e., array OCL), the word LOAD will be followed 
by a single blank and then the program name. With index X in the correct posi
tion, the program name is copied from array OCL into array PGN, one charac
ter at a time, in the subsequent DO loop (lines 44 through 50). If the DO loop 
encounters a blank or a comma, indicator 10 will terminate the DO loop 
because the DO loop's END statement is conditioned by indicator 10 (line 50). 

Recall that subroutine LOAD sets on indicator 03 when the LOAD 
keyword is found. Thus, if the entire OCL statement has been scanned, 
and this keyword is not found, indicator 03 will not be on. In this situation, 
subroutine LOAD calls subroutine FILE (line 56). The call to subroutine 
FILE initiates the remainder of the subroutine control logic shown in Fig
ure 7-2. As mentioned above, the remaining subroutines work in much the 
same way as subroutine LOAD does, scanning array OCL for the first letter 
of a keyword (i.e., F for FILE, L for LABEL, N for NAME) and then test
ing the array for the complete keyword. As you will see, the procedure and 
program names are not output at this point. Instead, they are saved until 
the file names that correspond to the procedure and program are found. 
When the program finds a file name, the program writes an output record 
that contains a procedure name, program name, and a file name or label 
name (lines 63 through 83 in Figure 7-2). 

When you look closely at subroutine FILE, you will notice that this 
output is controlled by an EXCPT statement (line 78). Thus, subroutine 
FILE writes to the output file only if field LABEL is non blank. (Field 
LABEL is filled by either subroutine NAME or subroutine LABEL, 
depending on whether a file name or a file label is found.) Thus, the sub
routine produces one output record for each file referenced in the proce
dure member. Because there should be at least one label or file name for 
each procedure, each record in the output file contains all the necessary 
information for the reports to be generated. 

Using the normal RPG cycle, program XREFOl continues processing 
until all the records in file OCLFILE have been processed. Again, through 
the exception output logic in subroutine FILE, the program writes one 
output record for each file referenced by each program. All that remains 
now is to sort file XREFA according to the cross-reference report desired 
and to write the reports. Although all the hard work is finished, let's look at 
a report-writing program to see how the remaining work is done. Because 
each of the report-writing programs are quite similar, a close look at pro
gram XREF02 will show you how the others function. 

The purpose of program XREF02 (Figure 7-4) is to produce the 
files/programs cross-reference report (an example is shown in Figure 7-5). 
The program uses three files: file XREFA, which you are quite familiar with 
by now; file XREFB, which is the add rout file produced by the SORT util
ity called by procedure XREF; and file CROSSREF, a printer output file. 



148 5/36 Power Tools 

To get a better idea of the program's logic, keep in mind how the output is 
formatted (Figure 7-5) and how the program "sees" the input file (Figure 7
6). When you look at how the output file is sortc~d, think "control break," 
and you'll easily see how the program's output logic works. Specifically, a 
collection of program names are saved and printed when a file name control 
break occurs. Notice that in the report itself, up to seven program names are 
listed on each line - a more aesthetic output format than simply listing a 
column of file names and program names. This format also produces output 
that fits easily into a favorite storage medium _. a three-ring binder. Now 
let's see how the program reads the input file and formats the output file. 

Program XREF02 defines three arrays: array AXR, which consists of 
seven elements of six bytes each (these elements are names of programs 
that reference a given file; the array represents one line on the report), and 
arrays HEOI and HE02, which are defined at the end of the source listing. 

The program's I-specs define three fields. The first is field CHR, the first 
character of the program name. The other two are the program name field, 
PGN, and the file name field, FLE, both ofwhich define the control breaks 
mentioned above. The final I-specs define field LIB from the user LOA, which 
contains the name of the library being processed, a:, written by procedure XREE 

Program XREF02's C-specs copy the file name into field HFLE when
ever a new file name is encountered (i.e., a level 2 control break occurs). 
Each time a new program name is encountered (i.e., a level 1 control break 
occurs), the program name is added to the end of array AXR, with field X 
acting as the array index. Notice, however, that if the first character of the 
program name is $ or #, either of which would indicate an IBM-supplied 
program, the program name is not output. The program assumes that you 
are not interested in file references by IBM-supplied programs, a reason
able assumption because you probably won't modify the program anyway. 

When seven program names have been accumulated, the array of file names 
is output as exception time output (lines 24 and 25). If there are not seven file 
names to output, the contents of array AXP are output as exception time output 
when a new file name is encountered (lines 29 through 32). The comparison in 
line 29 prevents a line from printing with just a file name and no program names. 

Notice that in the O-specs for this excep~ion time output, the fields are 
blanked out after they are printed. By blanking the fields, the program pre
vents program names from spilling over from previous lines. For example, if 
there were 12 program names associated with a file name, the first seven 
would print on one line and the next five would print on the next line. If the 
output fields were not blanked out, the last two program names from the first 
line would appear as the last two program names on the second line. Because 
the file name also is blanked out, it will appear only once, even though there 
may be more than one line of program names for that given file name. 

That's about all there is to program XREF02~. Program XREF03 (Fig
ure 7-7) is almost identical to program XREF02, except the order of file 



Figure 7-1 

Procedure 
XREF 

Documentation 149 

and program names are reversed because program XREF03's purpose is to 
print the programs/files cross-reference report (Figure 7-8). Programs 
XREF04 and XREFOS (Figures 7-9 and 7-10) should also be easy to follow 
because they mirror the structure of programs XREF02 and XREF03; pro
grams XREF04 and XREFOS create files/procedure cross-reference reports 
(Figure 7-11) and programs/procedures cross-reference reports (Figure 7
12), respectively. The only significant departure from the logic in program 
XREF02 is that program XREF04 does not test for IBM-supplied proce
dures (i.e., procedure names that begin with $ or #); the program assumes 
that you want to know which files are used in each procedure, including 
files being processed by an IBM utility such as #GSORT. 

The XREF utility can be a real productivity boost, but it is not designed 
to handle every variation of OCL programming. Most significantly, this utility 
cannot handle substitution expressions; you'll either have to manually resolve 
the substitution expressions before you run the utility or modify the utility to 
simulate the runtime substitution. The utility also does not work properly if 
FILE statements are not coded between the LOAD and RUN statements. 

Extra spaces between the keyword FILE and the file name or between 
the keyword LOAD and the program name cause problems, too. These 
spaces may make your programs more readable, but the XREF utility is not 
designed to recognize them. If your procedures contain additional spaces, 
you could modify the program to scan for the first nonblank character fol
lowing the keyword instead of simply skipping a given number of spaces. If 
you use the plus sign (+) as a continuation character in your OCL state
ments, you'll also have to modify the utility to skip over any plus signs 
between a keyword and the program or file name. 

The last limitation in using the XREF utility concerns procedure calls from 
different libraries. Ifa procedure calls programs from another library, you will 
not get the file name cross-references for that program. You can bypass this lim
itation in one of two ways. First, you could copy all of your libraries that con
tains OCL into file OCLFILE. If this solution strains your system, you could 
write a program that has the necessary logic to process multiple libraries. 

Despite these few special-case limitations, the XREF utility can be 
indispensable when you need to track down the connections between files, 
programs, and procedures. When you have the XREF utility on your sys
tem, you'll still look like "the great omniscient programmer" when some
one requests a "simple" expansion of file records. 

•• LIBRARY CROSS-REFERENCE PROCEDURE 
/1 REGION SIZE-04 
/1 IF JOBQ-YES GOTO START. 
* Test for disk work space 

1/ IF BLOCKS-2000 GOTO ENOUGH 

II * There;s not enough contiguous disk space to run this' 

II * . procedure Need at least 2000 blocks' 




150 5/36 Power Tools 

II PAUSE 
II CANCEL 
II TAG ENOUGH. 
II • ' Library cross-reference procedure is running
II IF 71?- .' Enter library name to process'

II IFF DATAFl-71R7 PAUSE' Library 717 is not on disk - procedure will end' 

II IFF DATAF1-?1? CANCEL 

II LOCAL OFFSET-l ,DATA-'71?' ,BLANK-B. 

Prompt for options 

I I • 
II' Library: 717' 
I I • 

II • 1) Files and programs in which they are used' 

II • 2) Programs and file labels accessed by them' 

II * 3) Files and procedures in which they are used' 
II • 4) Programs and procedures that load them' 

II • 5) ALL reports' 

I I • 

II' Enter report option desired. Default is ALL reports' 

I I IF 72R7- EVALUATE P2-5 
I I IF 72?-0 EVALUATE P2-5 
I I IF 72?>5 EVALUATE P2-5 

II 
I I Opti on 72? selected. Put on JOBQ7 (YIN) , 
I I IFF 73R7-Y GOTO START 
I I JOBQ 3,?ClIB7,XREF,?17,?27 
II RETURN 

II TAG START 

Create OCL workfile 

II IF JOBQ-NO .' Getting procedure members from 71? library' 
II LOAD $MAINT 
II FilE NAME-OCLFILE,RETAIN-J,BlOCKS-2000
II RUN II COPY FROM-71?,TO-DISK,FILE-OCLFILE,LlBRARY-P,RECL-120,NAME-ALl 
I I END 
II IF JOSQ-NO .' Creating OCl statement workfile' 
I I IF DATAFl -XREFA DELETE XREFA, F1 
I I LOAD XREF01 
II FILE NAME-OCLFILE,RETAIN-S 
II FILE NAME-XREF,LASEL-XREFA,RECORDS-3000 
I I RUN 

Determine which reports to print 

II IF 727-2 GOTO TWO 
II IF 727-3 GOTO THREE 
II IF ?27-4 GOTO FOUR 

II IF JOBQ-NO • ' Files I programs cross-reference is running'
II REGION SIZE-36 
II lOAD #GSORT 
II FILE NAME-INPUT,LABEL-XREFA 
I I FILE NAME-OUTPUT, LABEL- XREFB, RETAI N-J ,RECORDS -7 F 'A, XREFA ' 7 
I I RUN 

HSORTA 14A 3 

FNC 7 14 FILE NAME 

FNC 1 6 PROGRAM NAME 


I I END 
I I LOAD XREF02 
I I FILE NAME-XREFA 
II FILE NAME-XREFB,RETAIN-S 
II RUN 
II IFF 727-5 GOTO END 

II TAG TWO 
II IF JOSQ-NO Programs I files cross-reference is running' 
II REGION SIZE-36 



Documentation 151 

II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-XREFA 
II FILE NAME-OUTPUT,LABEL-XREFB,RETAIN J,RECORDS-?F'A,XREFA" 
I I RUN 

HSORTA 14A 3 

FNC 1 6 PROGRAM NAME 

FNC 7 14 FILE NAME 


II END 
II LOAD XREF03 
II FILE NAME-XREFA 
II FILE NAME-XREFB,RETAIN-S 
I I RUN 
II IFF 72':5 GOTO END 

II TAG THREE 
II IF JOBO-NO * Procedures files cross-reference is running' 
II REGION SIZE-36 
II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-XREFA 
II FILE NAME-OUTPUT,LABEL-XREFB,RETAIN-J,RECORDS-7F'A,XREFA" 
I I RUN 

HSORTA 19A 
FNC 7 14 FILE NAME 
FNC 15 22 PROCEDURE NAME 

I I END 
II LOAD XREF04 
II FILE NAME-XREFA 
II FILE NAME-XREFB,RETAIN-S 
I I RUN 
II IFF 72'-5 GOTO END 

II TAG FOUR 
II IF JOBO-NO • ' Programs / procedures cross-reference is running' 
II REGION SIZE-36 
II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-XREFA
II FILE NAME-OUTPUT,LABEL-XREFB,RETAIN-J,RECORDS-?F'A,XREFA'7 
II RUN 

HSORTA 14A 

FNC 1 6 PROGRAM NAME 

FNC 15 22 PROCEDURE NAME 


II END 
I I LOAD XREF05 
II FILE NAME-XREFA 
II FILE NAME-XREFB,RETAIN-S 
I I RUN 

II TAG END 
DELETE XREFA, Fl 

Figure 7-2 4 6 7 
0001 H P 64 B XREFOl 

Program 0002 FOCLFILE IPE F1200 120 DISK 
0003 FXREF 0 F 880 22 2 DISK

XREFOI 0003AE CHKCPY 1 1 23 II COPY LIBRARY-P,NAME
0004 E LBL 8 1 FILE NAME OR LABEL 
0005 E PGN 6 1 PROGRAM NAME 
0006 E OCL 120 1 OCL STATEMENT 
0007 10CLFlLE NS 01 1 CI 2 CI 3 C 
0008 I AND 4NC' 
0009 I 23 CHK 
0010 I 1 120 OCL 
0011 I 24 31 NAM 
0012 I NS 02 
0013 I DS 
0014 I 8 LABEL 
0015 I 8 LBL 
0016 C' 
0017 C· 
0018 C 02 GOTO THRU 
0019 C CHK IFEQ CHKCPY TEST FOR NEW PROCEDURE 
0020 C MOVE NAM PRC SAVE PROCEDURE NAME 
0021 C GO TO THRU SKIP THE REST OF THIS CYCLE 



152 5/36 Power Tools 

0022 C ELSE IF NOT "II COPY" STATEMENT. 
0023 C EXSR lOAD lOOK FOR lOAD STATEMENT 
0024 C END 
0025 C THRU TAG 
0026 C' 
0027 C' Test to see if current statement is a LOAD statement 
0028 C' if it is. extract the program name 
0029 C' 
0030 C lOAD BEGSR 
0031 C SETOF 03 WILL TURN ON IF "LOAD" STATMT FOUND 
0032 C Z-ADDO X 30 
0033 C x DOUGTll0 SCAN THRU POSTION 110 OF STATEMENT 
0034 C ADD 1 X 
0035 C OCl,X rHQ 'l' 1ST lETTER OF "lOAD"" ,MAKE TEST 
0036 C SUB 1 X DECREMENT 1 TO INCl 8lANK IN TEST 
0037 C MOVEAOCl,X TEST6 6 EXTRACT 6 TEST CHARACTERS 
0038 C ADD 1 XRESTORE INDEX 
0039 C TEST6 I FEQ ' LOAD TEST FOR "LOAD" KEYWORD 
0040 C SETON 03 03 ON • CURRENT RECORD IS lOAD STMT 
0041 C ADD 5 X INCRMN INDEX BY 5 TO GET PGM NAME 
0042 C Z-ADDl Y 10 INITIALIZE PROGRAM NAME ARRAY INDEX 
0043 C MOVE 'BlANK PGN CLEAR PROGRAM NAME ARRAY 
0044 C DOUGT6 GET UP TO 6 CHARACTERS FOR PGM NAMEy 
0045 C MOVE OCl,X PGN, Y MOVE CHARACTER TO PGM NAME ARRAY 
0046 C ADD 1 X 
0047 C ADD 1 Y 
0048 C OCl, X COMP 10 COMMA OR BLANK INDICATE END OF THE 
0049 C Nl0 OCL,X COMP 10 PROGRAM NAME 
0050 C 10 GOTO EXITl NAME FOUND EXIT SUBROUTINE 
0051 C ENO 
0052 C GOTO EXIT1 
0053 C END 
0054 C END 
0055 C END 
0056 C EXIT1 TAG IF CURRENT RECORD WAS NOT A lOAD 
0057 C N03 EXSR FilE STATEMENT, TEST FOR A FILE STATEMNT 
0058 C ENOSR 
0059 C' 
0060 C' Test to see if current record ;s a FILE statement 
0061 C' .. . same basic logic ;s used in following subroutines 
0062 C' as in LOAD subroutine 
0063 C' 
0064 C FILE BEGSR 
0065 C MOVE ·BLANK lBL 
0066 C Z-ADDO X 
0067 C X DOUEQ108 
0068 C ADD 1 X 
0069 C OCl X IFEQ 'F' 
0070 C SUB 1 X 
0071 C MOVEAOCL,X TEST6 
0072 C ADD 1 X 
0073 C TEST6 IFEQ ' FILE IS CURRENT RECORD IS FILE STATEMENT 
0074 C EXSR LABEL LOOIC FOR "LABEL" KEYWORD 
0075 C LABEL IFEQ 'BLANKS IF "LABEL" IS NOT FOUND, 
0076 C EXSR NAME ,GET THE "NAME" 
0077 C END 
0078 C LABEL I FNE ·BLANKS IF LABEL OR NAME FOUND WRITE RECORD 
0079 C EXCPTWRITE 
0080 C END 
0081 C END 
0082 C END 
0083 C END 
0084 C ENDSR 
0085 C' 
0086 C' Test for keyword LABEL in the OCl FilE statement 
0087 C· 
0088 C LABEL BEGSR 
0089 C Z-ADDO X 
0090 C X DOUEQ107 
0091 C ADD 1 X 
0092 C OCl,X I FEQ 'L' 
0093 C SUB 1 X 
0094 C MOVEAOCL,X TESn 
0095 C ADD 1 X 
0096 C TEsn IFEQ ',LABEL-' 



Documentation 153 

0097 C ADD 6 X 
0098 C Z-ADDl Y 
0099 C Y DOUGT8 
0100 C OCL,X IFEQ '7' EXCLUDE LABELS CONTAINING 
0101 C MOVE "BLANKS LABEL SU8STITUTION EXPRESSIONS 
0102 C GOTO EXIT2 
0103 C END 
0104 C MOVE OCL,X LBL, Y 
0105 C ADD 1 X 
0106 C ADD 1 Y 
0107 C OCL,X COMP 04 
0108 C N04 OCL,X COMP 04 
0109 C 04 GOTO EXIT2 
0110 C END 
0111 C GOTO EXIT2 
0112 C END 
0113 C END 
0114 C END 
0115 C EXIT2 ENDSR 
0116 C" 
0117 C' If LABEL keyword not found. use fi 1 e NAME for output 
0118 C' 
0119 C NAME BEGSR 
0120 C Z-ADDO X 
0121 C X DOUEQ108 
0122 C ADD 1 X 
0123 C OCL X IFEQ 'N' 
0124 C SUB 1 X 
0125 C MOVEAOCL,X TEST6 
0126 C ADD 1 X 
0127 C TEST6 IFEQ ' NAME-' 
0128 C ADD 5 X 
0129 C Z-ADDl Y 10 
0130 C Y DOUGT8 
0131 C OCL X IFEQ .? ' EXCLUDE FILE NAMES CONTAINING 
0132 C MOVE 'BLANKS LABEL SUBSTITUTION EXPRESSIONS 
0133 C GOTO EXIT3 
0134 C END 
0135 C MOVE OCL,X L8L Y 
0136 C ADD 1 X 
0137 C ADD 1 Y 
0138 C OCL,X COMP 04 
0139 C N04 OCL,X COMP 04 
0140 C 04 GOTO EXIT3 
0141 C END 
0142 C GOTO EXIT3 
0143 C END 
0144 C END 
0145 C END 
0146 C EXIT3 ENDSR 
0147 C' 
0148 C' 
0149 OXREF WRITE 
0150 0 PGN 6 
0151 0 LBL 14 
0152 0 PRC 22 

II COpy LI BRARY - p, NAME



I 

154 5/36 Power Tools 

Figure 7-3 

Flow chatt for 
colling 
subroutines in 
program 
XREFOJ 

Subroutine 
LOAD 

Keyword 
"LOAD" 
found 

8 

Subroutine 

FILE 

Store ProcEdure 
Name 

? 

Call Subroutine 
LABEL 

y Keyw0D>
"NAME" 

found 
? 

.....II-----------'N 



Documentation 155 

Figure 1-4 

Program 
XREF02 

Figure 1-5 

Example 
file/program 
cross-reference 
report 

• , 1 7 8 

0001 H P 64 XREF02 

0002 F' PRINT FILES/PROGRAMS XREF 

0003 FXREFA IP F 22 22R I DISK 

0004 FXREF8 IRE F 300 3 3IT EDISK 

0005 FCROSSREFO F 80 80 OF PRINTER 

0006 E AXR 7 6 

0007 E HED1 32 32 1 

0008 E HED2 48 48 1 

0009 E XREFB XREFA 

0010 IXREFA NS 

0011 I 1 CHR 

0012 I 6 PRG II 

0013 I 14 FLE l2 

0014 I LIDS 

0015 I 8 LIB 

0016 C' 

0017 C' 

0018 C l2 MOVE FlE HFlE 8 
0019 C II CHR CDMP '$' 10 TEST FOR I BM UTI L1TY 
0020 C llNl0 CHR COMP '#' 10 TEST FOR IBM SORT PROGRAM 
0021 C II 10 GOTO BYPASS BYPASS, IF IBM PROGRAM 
0022 C II ADD 1 X 10 

0023 C II MOVE PRG AXR,X 

0024 C II x COMP 6 99 

0025 C II 99 EXCPT 0026 C II 99 SliB X X 

0027 C II SETOF 99 

0028 C BYPASS TAG 

0029 Cl2 X COMP 0 99 

0030 Cl2 99 EXCPT 

0031 Cl2 99 SliB X X 

0032 Cl2 SETOF 99 

0033 C' 

0034 C' 

0035 OCROSSREFH 102 OF 

0036 0 OR 1 P 

0037 0 HEOl 44 

0038 0 lIDATE Y 53 

0039 0 67 'PAGE' 

0040 0 PAGE 72 

0041 0 H OF 

0042 0 OR lP 

0043 0 20 'LIBRARY: ' 

0044 0 LIB 29 

0045 0 H OF 

0046 0 OR lP 

0047 0 22 'FILE lABEL' 

0048 0 HED2 72 

0049 0 99 

0050 0 HFlE B 20 

0051 0 AXR,l B 30 

0052 0 AXR,2 B 37 

0053 0 AXR,3 B 44 

0054 0 AXR,4 B 51 

0055 0 AXR,5 B 58 

0056 0 AXR,6 B 65 

0057 0 AXR,7 B 72 


FILES / PROGRAMS CROSS REFERENCE 

--- PROGRAMS THAT LISE FILE -- 

------------ PROGRA"S THAT USE FILE ----------- 
ARII 	 ARDSL ARJRN AROPN ARRAA ClCAD CTPRM 

ClSCO CTSMN INWRK 
AR1IA 	 ARRAA ClCAD CTSMN 
ARIID 	 AROPM CTAAC ClCAD CTPRM CTSMN 
AR1IL 	 ARBDO ClCAD ClPRM 
ARllR 	 ARBOJ ARBOO ARBOR ARDSl ClCAD CTPRM 

ClSCO ClSMN 



156 5/36 Power Tools 

figure 7·6 

Sorted version 

B!:Q9!:~!!! 
ARll 
ARll 

fil~ 
ADSL 
ARJN 

ofoutput jile ARll AROPN 

ARll INWRK 
ARllA ARRAA 
ARllA CTCAD 
ARllA CTSMN 
ARllD AROPM 
ARllD CTAAC 
ARllD CTCAD 
ARllD CTPRM 
ARllD CTSMN 
ARllL ARBDO 

4 6 8figure 7·7 1 
0001 H P 64 XREF03 
0002 F' PRINT PROGRAM/FILES XREFProgram 0003 FXREFA IP F 22 22R I DISK 

XREF03 0004 FXREFB IRE F 300 3 3JT EDISK 
0005 FCROSSREFO F 80 80 OF PRINTER 
0006 E AXR 6 8 
0007 E HEDl 32 32 
0008 E HED2 51 51 
0009 E XREFB XREFA 
0010 IXREFA NS 
0011 I 1 CHR 
0012 I 6 PRG l2 
0013 I 7 14 FlE Ll 
0014 I UDS 
0015 I B LIB 
0016 C' 
0017 C' 

'$ ,0018 C CHR COMP 10 
0019 C Nl0 CHR COMP 10'#' 
0020 C 10 GOTO BYPASS 
0021 C l2 MOVE PRG HPRG 6 
0022 C II X ADD 1 X 20 
0023 C L1 MOVE FlE AXR,X 
0024 C II X COMP 5 99 
0025 C II 99 EXCPT 
0026 C II 99 X SUB X X 
0027 C II SETOF 99 
002B C BYPASS TAG 
0029 Cl2 X COMP 0 99 
0030 Cl2 99 EXCPT 
0031 Cl2 99 SUB X X 
0032 Cl2 SETOF 99 
0033 C' 
0034 C' 
0035 OCROSSREFH 102 OF 
0036 0 OR 1 P 
0037 0 HED1 44 
003B 0 UDATE Y 53 
0039 0 67 'PAGE' 
0040 0 PAGE 72 
0041 0 H OF 
0042 0 OR lP 
0043 0 20 'LI BRARY , 
0044 0 LIB 29 
0045 0 H 2 OF 
0046 0 OR lP 



Documentation 157 

Figure 7-8 

Example 
programlfile 
cross-reference 
repott 

Figure 7-9 

Program 
XREF04 

0047 0 19 'PROGRAM' 
0048 0 HED2 75 
0049 0 E 1 99 
0050 0 HPRG B 18 
0051 0 AXR,I B 32 
0052 0 AXR,2 B 41 
0053 0 AXR,3 B 50 
0054 a AXR,4 B 59 
0055 0 AXR,5 B 68 
0056 0 AXR,6 B 77 

PROGRAMS / FILES CROSS REFERENCE 

- FI LE LABELS USED IN PROGRAM -

---------- FILE LABELS USED IN PROGRAM ----------
CTAVP CTl4G CTl4H 
CTBCK INOIK INOIL INOIM 
CTBIL CTSOC cnOG 
CTEAD ARII ARIIA ARIID AI!! I L ARIIR ARIIX AR60E 

AR60P AR61E AR61E AR61ES ARSIG AR61H AR61J 
AR95 CTOI CT02 ETiOA CTIOD CTIOE CTIOG 

CTIOP CTIOO CTiOT eTlI CTIS ETl4J CTI4" 
ETI7B CTIBI CTIBC CTlBO ETISF CTZOA CTZOH 
CT20J CTZON CTZOR ETZOV ETZOW CTZOZ CTZ50 

1 4 B 
0001 P 64 B XREF04 
0002 F' PRINT FILES/PROCEDURES XREF 
0003 FXREFA IP 22 22R I DISK 
0004 FXREFB IRE F 300 3 3IT EDISK 
0005 FCROSSREFO F 80 80 OF PRLNTER 
0006 E AXR 6 8 
0007 E HEDI 34 34 1 
0008 E HED2 51 51 
0009 E XREFB XREFA 
0010 IXREFA NS 
0011 I 15 22 PRC Ll 
0012 I 7 14 FLE L2 . 
0013 I UDS 
0014 I 8 LIB 
0015 C' 
0016 c· 
0017 C L2 MOVE FLE HFLE 8 
001B C L 1 X ADD 1 X 20 
0019 C Ll MOVE PRC AXR,X 
0020 e L 1 X COMP 5 99 
0021 C L1 99 EXCPT 
0022 e L 1 99 X SUB X X 
0023 e L1 SETOF 99 
0024 eL2 x COMP a 99 
0025 CL2 99 EXCPT 
0026 CL2 99 X SUB X X 
0027 CL2 SETOF 99 
0028 C' 
0029 C' 
0030 OCROSSREFH 102 OF 
0031 0 OR lP 
0032 0 HEDI 46 
0033 a UOATE Y 56 
0034 0 67 'PAGE' 
0035 0 PAGE 72 
0036 0 H OF 
0037 0 OR lP 
0038 a 20 'LIBRARY' 
0039 0 LIB 29 
0040 a H OF 
0041 0 OR lP 
0042 0 16 'FI LE' 
0043 0 HED2 75 
0044 0 E 1 99 
0045 0 HFLE B 20 



8 

158 5/36 Power Tools 

0046 0 AXR .1 B 32 

0047 0 AXR.2 B 41 

0048 0 AXR.3 B 50 

0049 0 AXR.4 B 59 

0050 0 AXR.5 B 68 

0051 0 AXR.6 B 77 


FilES / PROCEDURES CROSS REFERENCE 

--- PROCEDURES THAT USE FilE --- 

. 1 4
Figure 7·10 0001 P 64 B XREF05 
0002 F* PRINT PROGRAMS/PROCEDURES XREFProgram 0003 FXREFA IP 22 22R r DISK 

0004 FXREFB IRE 300 3 31T EDrSK
XREFOS 
0005 FCROSSREFO F 80 80 OF PRI NTER 

0006 E AXR 6 B 

0007 E HEDl 37 37 1 

0008 E HED2 51 51 1 

0009 E XREFB XREFA 

0010 IXREFA NS 

0011 I 1 CHR 

0012 I 6 PROG l2 

0013 I 15 22 PRDe II 

0014 I UOS 

0015 I LIB 

0016 C* 

0017 C' 


'$ ,0018 C CHR COMP 10 

0019 C Nl0 CHR COMP '#' 10 

0020 C 10 GOTO BYPASS 

0021 C l2 MOVE PROG HPROG 6 

0022 C II ADO 1 X 20 

0023 C II MOVE PROC AXR.X 

0024 C II X COMP 5 99 

0025 C II 99 EXCPT 

0026 C II 99 SUB X X 

0027 C II SETOF 99 

0028 C BYPASS TAG 

0029 Cl2 X COMP 0 99 

0030 Cl2 99 EXCPT 

0031 Cl2 99 SU8 X X 

0032 Cl2 SETOF 99 

0033 OCROSSREFH 102 OF 

0034 0 OR lP 

0035 0 HEOl 49 

0036 0 UDATE Y 56 

0037 0 67 'PAGE' 

0038 0 PAGE 72 

0039 0 H OF 

0040 0 OR lP 

0041 0 20 . LIBRARY:' 

0042 0 LIB 29 

0043 0 H OF 

0044 0 OR lP 

0045 0 19 'PROGRAM' 

0046 0 HED2 75 

0047 0 99 

0048 0 HPROG B 20 

0049 0 AXR .1 B 32 

0050 0 AXR.2 B 41 

0051 0 AXR.3 B 50 

0052 0 AXR.4 8 59 

0053 0 AXR.5 B 68 

0054 0 AXR.6 B 77 


PROGRAMS / PROCEDURES CROSS REFERENCE 

-- PROCEDURES THAT lOAD PROGRAM -- 



Documentation 159 

Figure 7-11 --.------ PROCEDURES THAT LOAO PROGRAM ----------

Example 
program/ 

CTADI 
CTAD7 
CTAIR 
CTAIRT 

CTPZOZ 
CTPI7 
CTP22 
CTP22 

CTP41 

CTP25J 
CTP25J 

CTXNZ 

CTP30 
CTP30 

CTXXZ5 

procedure CTAL T 
CTAVL 

CTX91 
CTPII CTPl3 CTPl4E CTPI4F CTP 14L CTPI4M 

cross-reference CTXIOA CTXl4 

report 

Figure 7-12 ------------ PROCEDURES THAT USE FILE ------------

ARII ARPII INP04Example ARIIA ARPI1A 
ARIID ARPI1Dprocedurelfile 
ARIIL ARPIIL 
ARllR ARPllRcross-reference 

report 

Cross-Referencing Queries 
by Gary T. Kratzer and Tim Gardner 

program by Tim Gardner 

a Code on diskette: 

Procedure QRYXRF 
RPG program QRYXRF 
Screen format member QRYXRFFM 
RPG code #QRYEXT 
Assembler subroutine SUBLR 

System-wide documentation has always been the bane of the data process
ing manager, and with Query/36 and its wide range of uses, this task is even 
more difficult. Query/36 itself provides no "stock" facility for retrieving or 
listing query cross-referencing information. Utility QRYXRF, which assists 
Query users in developing cross-referencing information and listings of the 
queries on their systems, is especially useful for the avid Query user 
because it places the generated information in a file for which IDDU speci
fications are given. Thus, in addition to the sample report presented here, 
you can generate numerous other reports to assist you in documenting and 
listing your queries and the files and formats they use. 

QRYXRF utility comprises a prompt screen (Figure 7-13), screen for
mat member QRYXRFFM (Figure 7-14), RPG program QRYXRF (Figure 
7-1S), and procedure QRYXRF (Figure 7-16). Before using QRYXRF, you 
need to build the IDDU specifications (Figures 7-17 and 7-18) for the 
cross-reference file #QRYEXT generated by program QRYXRF. You may 
also want to add your own column headings and specify numeric editing for 
field LSTCHG (Date Last Changed). Note that file #QRYEXT contains a 
record for each file format the query uses, not just one record for each 
query. Rather than using IDDU to build the IDDU specifications, you can 



160 S/36 Power Tools 

Figure 7-13 

QRYXRF 
prompt screen 

simply key the F - and I -specs for the file (Figure 7-19) into a source mem
ber and then use the S/36 IODUXLAT procedure to translate them into 
their IOOU field, format, and file definitions. 

QUERY CROSS-REFERENCE FILE BUILD 
Opt i ona 1 * 

L; brary 1 

Library 2 

Library 3 

Library 4 

Library 5 

Library 6 

Library 7 

Library 8 

Cmd3~Previous Menu Cmd4-Put on Job Queue Cmd7-End of Job 

Utility QRYXRF in Action 
When you run procedure QRYXRF, the prompt screen asks you to enter one 
to eight libraries that contain your queries. After entering the library names, 
you may either press Enter to continue processing interactively, or press 
Command key 4 to place the procedure on the job queue. In either case, 
procedure QRYXRF loads program QRYXRF, which uses subroutine SUB
RLO to search the requested libraries for queries. (Queries are stored in 
libraries as subroutine members with a subtype of 58.) When the program 
finds a query, it uses subroutine SUBRLR to read the first two sectors of the 
member, where the cross-reference information about each query is stored. 
The program then formats this information and outputs it to file #QRYEX'f. 

When program QRYXRF has processed all the Ilibraries, the program 
ends, and procedure QRYXRF runs the IOOULINK procedure that links 
the query definition you created earlier to the output file #QRYEXT. In 
the IOOULINK procedure call within procedure QRYXRF, be sure to 
specify the name of the folder where the query definition exists. 

PuHing Utility QRYXRF to Work 
Now that you've created a file with information about the queries on your 
system, you can use Query/36 to generate a variety of cross-reference 
reports. The sample report in Figure 7-20 is part of a format cross-reference 



Documentation 161 

Figure 7-14 

Screen format 
member 
QRYXRFFM 

listing (Figures 7-21 and 7-22 show the field selection and sort sequence 
specification for the generated report), which can be useful when the 
IDDU specifications for a file format change. When you change a file for
mat, it is often necessary to update the query so that system error message 
QRY-1058, "File level does not match query," does not occur the next time 
the query is run (usually during a batch job in the middle of the night). 

With some minor program modifications, you can extend utility 
QRYXRF to search more libraries or to create a different output file for 
each library. You can generate countless other Query reports from file 
#QRYEXT. It would be helpful, for example, to examine all queries that 
reference a customer master file. So put utility QRYXRF to work for you to 
lighten the burden of system-wide documentation. 

4 
SPARAMTRS YY OCG 
0 32 125Y CQUERY CROSS-REFERENCE FX 
OILE 
0 
0 

BUILD 
10 269Y 
63 6 2Y 

COptional . 
eli brary 1 .X 

0 
OPARM01 B 66701 Y 41 Y 41 Y 
0 1 67BY C' 
0 63 B 2Y CLibrary 2 .X 
0 
OPARM02 8 86702 Y 42 Y 42 Y 
0 1 878Y C' 
0 6310 2Y CLibrary 3 .X 
0 
OPARM03 8106703 Y 43 Y 43 Y 
0 11078Y C' 
0 6312 2Y CLibrary 4 .X 
0 
DPARM04 8126704 Y 44 Y 44 Y 
0 11278Y C' 
0 6314 2Y CLibrary 5 .X 

OPARM05 8146705 Y 45 Y 45 Y 
0 11478Y C' 
0 6316 2Y CLibrary 6 .X 
0 
DPARM06 8166706 Y 46 Y 46 Y 
0 11678Y C' 
0 6318 2Y CLibrary 7 .X 
0 
DPARM07 8186707 Y 47 Y 47 Y 
0 11878Y C' 
0 6320 2Y CLibrary 8 .X 
0 
OPARM08 8206708 Y 48 Y 48 Y 
0 12078Y C' 
0 422 2Y Y CCmd3 
0 1322 7Y CPrevious Menu 
0 42228Y Y CCmd4 
0 162234Y CPut on Job Queue 
0 42254Y Y CCmd7 
0 102259Y CEnd of Job 
DMESSG 60242009 09 



8 

162 5/36 Power Tools 

, " 2 4 5 '" '" 7Figure 7-15 
64 QRYXRF 

Program 
QRYXRF 

F*********************************·****··*******······******** •••• *** 

F··**·********···***********···**·········******······ •••••• **** •• * •• 

F' PROGRAM NAME, QRYXRF 
F' DESCRIPTION", Build an extract file of query formats 
F' PROGRAMMER, Tim Gardner 
F' DATE WR ITTEN, May 1990 

FQRYEXT 0 F 108 DISK
E******···**··****·········*****·········**···········*******.•• * •• *. 

FIL 5 54 Iluery File OS's 
LIB 8 8 Input l'ibraries 

1**·* * * •• * •• **** *.**. * * •••••• * ** •• * * ••• * •• * •• ** •• * * * '. *. *.*. * * •••••• * * 
UDS 

64 LI B 
I' 
!DI RDS OS 
I DRTYPE 
I DRNAME 
I 10 15 DRADDI1 
I 16 18 DR#TXT 

19 22 DRLI NI< 
23 27 DR#STM 
28 31 DRSCA 
32 33 DRRLD 
34 36 DRCORr: 
37 37 DRATA'I 
38 38 DRATR2 
39 39 DRATR:! 
40 41 DRMRT 
42 43 DRREL 
44 46 DRTOTL 
47 47 DRATR4 
48 53 DRMOD 
54 59 DR DATE 
60 63 DRTIME 
64 650DRATR5 
66 69 DRPTF@ 
70 70 DRATR6 
71 80 AVAIL 

I' 
I OS 
I 1 256 BUFFl 

257 512 BUFF2 
1 1 HEXOO 
2 45 ORYDSC: 

46 53 LSTUSR 
73 73 DISKBT 
75 75 PRTRBT 

131 400 FIL 
I' 
I OS 

54 FILEDS 
1 HEXZZ 

1 8 FI LNA~' 
9 16 D I CNAM 

17 24 I F I LN~ 
36 43 I FMTNM 

c****···***···*****·····*·***··**····*···*****·····*·*.** •• *** ••••••• 
C' 
C BlTON' 012.34567' HEXFF Initialize Hex FF'S 
C' 
C 1 DO 8 10 Do max 8 libraries 
C LIB, L IFNE 'BLANKS If valid library 
C' 
C MOVE LIB, L LIBNAM Initialize for 
C MOVE 'R' MBRTYP di rectory reads 
C MOVE 'BLANKS MBRNAM through all R
C EXSR GETDIR modul es 
C' 
C MBRTYP DOWEO'R' Do while R-module 
C' 
C DRATR5 I FEO 58 If Query 
C EXSR OPEN Open it 
C NU1 EXSR READ Read it 
C NU1 EXSR QRYPRC Process ; t 



Documentation 163 

C 	 END End IF 
C' 
C NU1 	 EXSR GETDIR Get next dir 
C 	 END End DOW 
C 	 END End IF 
C NU1 	 END End DO 
C' 
C 	 SETON LR 
C******************************************************************** 


C' Open A-module for sector reads 

C' 

C OPEN 	 BEGSR 
C' 
C 	 MOVE '0' OP Specify open 
C 	 EXIT SUBRLR Sector get 
C 	 RLABL OP Opcode 
C 	 RLABL LIBNAM Library 
C 	 RLABL DRNAME Member 

RLABL MBRTYP Type 
RLABL RCODE Return code 

C' 
C RCODE 	 CCiMP '0' U1L11 Terminal error 
C' 
C 	 ENDSR 
C******************************************************************** 

C' Read first 512 bytes of query definition 
C' 
C READ 	 BEGSR 
C' 
C 	 MOVE 'N' OP Spec i fy read next 
C 	 EX IT SUBRLR Sector get 
C 	 RLABL OP Opcode 
C 	 RLABL BUFF1 Text buffer 
C 	 RLABL RCODE Return code 
C' 
C RCODE 	 IFEQ '0' If good return 
C 	 EXIT SUBRLR Sector get 
C 	 RLABL OP Opcode 
C 	 RLABL BUFF2 Text buffer 
C 	 RLABL RCODE Return code 
C' 
C ELSE Else 
C SETON U1 Terminal error 
C END End IF 
C' 
C 	 ENDSR 
C******************************************************************** 

C' Exit to SUBRLD for 	next member name or to reset 1 i brary 
C' 
C GETDIR 	 BEGSR 
C' 
C 	 EXIT SUBRLD Directory read 
C 	 RLABL LI BNAM B Library 
C 	 RLABL MBRNAM B Member 
C 	 RLABL MBRTYP 1 Type 
C 	 RLABL DIRDS Directory OS 
C 	 RLABL RCODE Return code 
C' 
C RCODE 	 IFEQ '2 ' If end of R-modules 
C 	 MOVE 'Q' MBRTYP Flag to quit libr 
C 	 ELSE El se 
C RCODE 	 COMP '0' U1 U1 Terminal error 
C U1 	 MOVE '0' MBRTYP Flag to quit 1ibr 
C 	 END End IF 
C' 
C 	 ENDSR 
C******************************************************************** 

C' Evaluate query for output 
C' 
C ORYPRC 	 BEGSR 
C' 
C DISKBT IFNE HEXFF Determine type
C MOVE 'F' QTYPE F'File 
C ELSE 
C PRTRBT IFNE HEXFF 
C MOVE ' P' OTYPE P~Print 



164 5/36 Power Tools 

C ELSE 
C 
C 

MOVE 
END 

'0' QTYPE D-Display 

C END 
c· 
C DO S FILLVL 10 Do max 5 formats 
C MOVE FIL,FILLVLFILEDS Load file OS 
C 
C N33 

HEXZZ COMP HEXFF 
EXCPTFILOUT 

33 If query defined 
Output record 

C N33 END End DO 
C· 
C ENDSR
0······****··*****············**······················ .......•••••... 

OQRYEXT FILOUT 
o FILNAM 8 
o DICNAM 16 
o IFILNM 24 
o IFMTNM 32 
o QRYDSC 76 
o LSTUSR 84 
o FILLVL 8S 
o DRNAME 93 
o DRDATE 99 
o LIBNAM 107 
o QTYPE 108 

Figure 7-16 • Procedure: QRYXRF 
• Parameters: 1-8 libraries containing Query modules. Procedure 
// IF JOBQ-YES GOTO QUEUEDQRYXRF · /1 TAG PROMPT 
/1 PROMPT MEMBER-QRYXRFFM,FORMAT-PARAMTRS,LENGTH-'S,8,8,8,8,8,8,8,SO' 
/1 EVALUATE P41- P42- P43- P44- P4S- P46- P47- P4S- POg
// IF 7CD7/2003 RETURN 
// IF 7CD7/2007 CANCEL · /1 TAG EDIT 
// IF 717/ GOTO P01END 
/1 IF DATAFl-717 GOTO POl END 
/1 EVALUATE POg-' LIBRARY NOT ON DISK' P41-'X' 
// GOTO PROMPT 

// TAG POl END 
/1 IF 727/ GOTO P02END 
// IF DATAFl-727 GOTO P02END 
// EVALUATE POg-'LIBRARY NOT ON DISK' P42-'X' 
/1 GOTO PROMPT · II TAG P02END 
II IF 7371 GOTO P03END 
II IF DATAFl-737 GOTO P03END 
/1 EVALUATE P09-'LIBRARY NOT ON DISK' P43-'X' 
/1 GOTO PROMPT · II TAG P03ENO 
II IF 747/ GOTO P04END 
II IF OATAFl-747 GOTO P04END 
II EVALUATE P09-'LIBRARY NOT ON DISK' P44-'X' 
II GOTO PROMPT · /1 TAG P04END 

II IF 7571 GOTO POSEND 

I I IF DATAFl - 7S7 GOTO POSEND 
/1 EVALUATE POg-'LIBRARY NOT ON DISK' P4S-'X' 
/1 GOTO PROMPT 

II TAG POSEND 
/1 IF 7671 GOTO P06END 
1/ IF DATAFl-767 GOTO P06END 
II EVALUATE POg-'LIBRARY NOT ON DISK' P46-'X' 
II GOTO PROMPT 



Documentation 165 

Figure 7-17 

IDDU 
specifications 
forfile 
#QRYEXT 
(Part 1) 

II TAG P06END 
II IF ?7?1 GOTO P07END 
II IF DATAFl-77? GOTO P07END 
II EVALUATE P09-'LIBRARY NOT ON DISK' P47-'X' 
I I GOTO PROMPT 

I I TAG P07END 
II IF ?8?1 GOTO P08END 
II IF DATAF1-?8? GOTO P08END 
II EVALUATE P09-'LIBRARY NOT ON DISK' P48-'X' 
II GOTO PROMPT 

II TAG P08END 
II IF 7CD?/2004 JOBQ 7CLIB?,QRYXRF,71?,?2?,?3?,?4?,?5?,?6?,77?,?8? 
II IF ?CD?/2004 RETURN 

II TAG QUEUED
II LOCAL OFFSET-1 ,DATA-'?1?' ,BLANK-64
II LOCAL OFFSET-9,DATA-'?2?'
II LOCAL OFFSET-17,DATA-'?3?'
II LOCAL OFFSET-25,DATA-'?4?' 
II LOCAL OFFSET-33,DATA-'?5?'
II LOCAL OFFSET-41,DATA-'?6?'
II LOCAL OFFSET-49,DATA-'?7?'
II LOCAL OFFSET-57,DATA-'?8?' 

II IF DATAF1-#QRYEXT DELETE #QRYEXT,F1 

II SWITCH OXXXXXXX 
II LOAD QRYXRF
II FILE NAME-QRYEXT,LABEL-#QRYEXT,RECORDS-100,EXTEND-100 
II RUN 

II IF SWITCH1-1 PAUSE 'Terminal error occurred during run 
II IF SWITCH1-1 RETURN 
* 
II IDDULINK LINK,#QRYEXT,fo1dername,QRYEXT 

SELECT AND SEQUENCE FIELDS FOR A FORMAT 
Definition QRYEXT Dictionary' CARIBOU 
Type choices. press Enter. 

ITEM CHOICE POSSIBLE CHOICES 
Field definition name Name, ALL to create multiple fields 

Sequence number 120 0-9999 

Position list to. Name or sequence number 


LIST OF FIELD DEFINITIONS TOP 
Or type sequence number(s). press Ente r. 
SEQ NAME BEGIN LENGTH DATA COMMENT 

10 FILNAM 1 8 CHAR Fi 1 e name 

20 DICNAM 9 8 CHAR IDDU dictionary name 

30 I FILNM 17 CHAR IDDU f 4 1 e name 

40 IFMTNM 25 CHAR IDDU format name 

50 QRYDSC 33 44 CHAR Query description 

60 LSTUSR 77 8 CHAR Last user to maintain 

70 FILLVL 85 1,0 ZONE Fi 1 e level 

80 QRYNAM 86 8 CHAR Query name 

90 LSTCHG 94 6,0 ZONE Date last changed 


Cmd4-Show names only Cmd12"'Renumber Roll-Page 
Cmd3-Go back Cmd5"'Create field Cmd8-Reset selections 



166 5/36 Power Tools 

Figure 7-18 

IDDU SELECT AND SEQUENCE FIELDS FOR A FORMAT 
Definition: QRYEXT Dictionary: CARIBOUspecificationsfor Type choices. press Enter. 

file #QRYEXT ITEM CHOICE POSSIBLE CIWICES 
Field definition name Name. ALL ':0 create multiple fields

(Part 2) 
Sequence number 120 0-9999 
Position list to. Name or sequence number 

LIST OF FIELD DEFINITIONS MORE 
Or type sequence number(s). press Enter. 
SEQ NAME BEGIN LENGTH DATA COMMENT 

100 L1BNAM 100 8 CHAR Query library naMe 

110 OUTYPE 108 CHAR Output device (printer, display, or file) 


Cmd4-Show names only Cmd12-Renumber Roll =Pclge 
Cmd3-Go back Cmd5-Create field CmdS-Reset selections 

Figure 7-19 

F- and I-specs/orfile #QRYEXT. (This is member#QRYEXT on diskette.) 

1 2 4 , " 5 " , 6 " , 7 8 " , 9 
FQRYEXT IP F 108 108 DISK 
IQRYEXT NS 
I 1 8 FILNAM Di sk file name 
I 9 16 DICNAM IDDU dictionary 
I 17 24 IFILNM IDDU file name 
I 25 32 IFMTNM IDDU format name 
I 33 76 QRYDSC auery dese 
I 77 84 LSTUSR Last user update 
I 
I 

85 
86 

850FILLVL 
93 QRYNAM 

File level 
Query name 

(1- 5) 

I 94 990LSTCHG Last rna; nt date 
I 100 107 LI BNAM Query 1i b name 
I 108 108 QTYPE Query type 

Figure 7-20 

Sample report (partial) createdfrom file #QRYEXT 

07/05/90 12.09.52 Query Format Cross Reference (QRYFMTXR) PAGE 
Dictionary IDDU IDDU Fi 1e Query Query Query File Last Date Output 

Name Format Fi 1e Name Name Library Description leve 1 User Last Type 
Name Name Name Changed 

@MAPICS1 ARCMTTOO ARCMTT M.ARCMTT ARCOMENT JODY A/R Inquiry Comments Report ARlO OHWOWMAN 90/04/04 
@MAPICS1 CHECKBOO CHECKB M.CH£CKB CHECKSAP QUERIES A/P Checks Inquiry (MAPICS # vs Bank II) M SCHRODER 90/03/26 
@MAPICS1 CHECKROO CHECKR M.CHECKR CHECKSPR QUERIES P/R Checks Inquiry (MAPICS # vs Bank If) SCHRODER 90/03/26 
@MAPICS1 CORHST01 CORHST M.CORHST CUSPOINQ QUERIES Look Up Order!lnvo;ce from Customer PO OHWOWMAN 90/03/16 

@MAPICS1 CDRHST02 CORHST M.CORHST CUSPOINQ QUERIES look Up Order/Invoice from Customer PO OHWOWMAN 90/03/16 
@MAPICS1 CUSMASOO CUSMAS M.CUSMAS CUSNOPAR aUERIES Customers That Won't Accept Partial Shipment TRAPPER 90/03/21 
@MAPICS1 CUSMAS M.CUSMAS CUSLOKUP aUERIES Customer Number Look Up by Name M TRAPPER 90/03/20 
@MAPICS1 CUSMAS M. CUSMA$ CUSTNM JODY Customers 60000000 - 699999999 OHWOWMAN 90/03/21 
@MAPICS1 CUSMAS M.CUSMAS CUSCREO QUERIES Customer Credit Info by Rep SCHRODER 90/03/20 
@MAPICS1 CUSMAS M.CUSMAS MTDCMEMO QUERIES Monthly list of Cr Memos by Cr Memo Number M CAPNKIRK 90/07/03 
@MAPICS1 CUSMAS M.CUSMAS EOITCClS QUERIES Edit Customer Master for Inval;d Cust Cls M TRAPPER 90/03/21 
@MAPICS1 CUSMAS M.CUSMAS FORFIlLY JODY All Cust()mers- City,State,Cr.Limit,l.Payment OHWOWMAN 90/03/21 

http:12.09.52


Documentation 167 

@MAPICSI CUSMAS M CUSMAS INVSLMAN JODY Invoices by Salesman (M. MTHACT) MTHEND2A OHWOWMAN 90(05(22 

@MAPICSI CUSMAS M.CUSMAS INSHIP aUERIES Pick Lists in Shipping SCHRODER 90(05(28 

@MAPICSI CUSMAS M. CUSMAS CUSHERX aUER I ES Customer Address List - Select TerrjAep SCHRODER 90(04(26 

@MAPICSI CUSMAS M. CUSMAS CUSHERS aUER I ES SCHRODER 90(04(26 

~MAPICSI CUSMAS M CUSMAS CUSTHOLD JOOY Customers on Hold AP5 OHWOWMAN 90(04(04 

@MAPICSI CUSMAS CUSMAS CUSTTERR QUERIES Customer Address List Select Terr/Rep SCHRODER 90/06/06 
@MAPICSI CUSMAS CUSMAS CUSTREPA QUERIES Active Customers by Rep TRAPPER 90(03/21 
@MAPICSI CUSMAS M. CUSMAS CUSTOPSB QUERIES Top Customers wjSales 5000 in Prey 12 Mths SCHRODER 90/04/04 
@MAPICSI CUSMAS M. CUSMAS CUSTOPS QUER I ES Top Customers 'vi/Sales > 5000 Prey 12 Mths TRAPPER 90(03/21 

Figure 7-21 

Sample report 
SELECT AND SEQUENCE FIELDS ALL

field selections Query: QRYFMTXR Library: QRY Opt i on: REVISE 
Press Enter to confirm 
Select the fields to appear in the report and specify the sequence by typing 
numbers beside the names, or press Cmd11 to select all fields: press Enter. 

SEQUENCE NAME 
10 01 CNAM 
20 IFMTNM 
30 I FILNM 
40 FI LNAM 
50 QRYNAM 
60 LI BNAM 
70 QRYDSC 
80 FILLVL 
90 LSTUSR 

100 LSTCHG 
110 QTYPE 

Cmd3-Go back Cmd4 c Show comments Cmd5=Show report Cmd6=Fast roll 
Cmd7=End Cmd10=Show files Cmdl1-Select all Cmd12-Renumber 
Cmd13=Show report layout Roll =Page 

Figure 7-22 

Sample report SELECT 	 SORT FIELDS ALL 
Query: QRYFMTXR Library: QRY Opt i on: REVISEsort sequence Press Enter to conflrm. 

Select up to 5 fields on which to sort records by specifying sort 

priority (1-5) and the order: A (ascending) or D (descending). Press Enter. 


SORT 	 SORT 
PRTY AID NAME PRTY AID NAME 

1 	 A DI CNAM QTYPE 

A IFMTNM 

A IFILNM 


FILNAM 

QRYNAM 

LI BNAM 

QRYDSC 

FILLVL 

LSTUSR 

LSTCHG 


Cmd3-Go back Cmd4-Show comments Cmd5"'Show report Cmd6=Fast roll 
Cmd7-End Cmd10~Show files Cmd12=Renumber 
Cmd13-Show report layout Roll-Page 



168 S/36 Power Tools 



Documentation 169 

Documenting RPG Program LDA Usage 
by Perry Gardai 

program by Ted Holt 

Now you can 
10cateLDA 
positions across 
all members 
within a library. 
Utility MAPLDA 
generates three 
reports: a map of 
the positions of 
theLDA, a 
listing ofLDA 
use by field name, 
and a listing of 
LDA use by field 
startingposition. 

a Code on diskette: 


Procedure MAPLOA 

RPG programs MPL01, MPL02, MPL03 

To ensure data and system integrity when you perform maintenance on 
unfamiliar software, you need to understand how the programmer used the 
local data area (LOA) throughout the application. Unhappily, the LOA is 
one of the most widely used but least documented features in S/36 applica
tions. Although SSP does not provide any means of mapping the use of the 
LOA across all RPG members within a library, utility MAPLOA and its 
three short programs do. They give you a graphic display of LOA use by 
printing an X in the encumbered LOA positions. In addition to this map, 
utility MAPLDA provides two reports with more detailed information 
about where and how an application uses the LOA. 

GeHing Started 
Procedure MAPLOA and programs MPL01, MPL02, and MPL03 com
prise utility MAPLOA. You initiate procedure MAPLOA (Figure 7-23) by 
keying in MAPLOA followed by the library name to be analyzed. If you 
omit the library name, the procedure prompts for it before continuing. The 
$MAINT routine starts the process by extracting all the source members 
from the target library and placing them in disk file WRK.?WS?1. In prepa
ration for program MPL01 (Figure 7-24), the file name of the target library 
is loaded into positions 1 through 8 of the LOA. 

Program MPL01 uses file WRK.?WS?1 to produce the map (Figure 7
25), printing an X in the appropriate location for each of the 5 12 LOA posi
tions used within the library. In addition, program MPL01 creates file 
WRK.?WS?2, which contains one record for each field name referenced in 
the User Data Structure (UOS) section of the RPG I-specs. The data con
tained in each record includes the UOS field name, the RPG source member 
name referencing it, the starting and ending positions of the field, the deci
mal value of the field, and any comment included in the input specification. 

After program MPL01 terminates, procedure MAPLOA sorts file 
WRK.?WS?2 in the first of two sort routines. The first sort routine - by 



170 5/36 Power Tools 

LOA field name within RPG member name sequence - results in output 
file WRK.?WS?3. Program MPLOZ (Figure 7-Z6) uses file WRK.?WS?3 to 
produce a report listing LOA use by field name (Figure 7-Z7). MPLOZ is a 
straightforward program that prints one line on the output report for each 
WRK.?WS?3 record it reads. 

The second sort of file WRK.?WS?Z - by LOA field starting position 
within field ending position sequence - results in output file 
WRK.?WS?.4. This file is input for program MPL03 (Figure 7-Z8), which 
produces a report of LOA use by field starting position (Figure 7-Z9). Like 
program MPLOZ, program MPL03 is a simple read/write print program. 

Because you use the CONTINUE-YES paramelter on the printer files for 
programs MPL01 and MPLOZ, and CONTINUE-NO for the printer file 
associated with program MPLD3, a single spool entry contains all three print
outs. Although the sequential production of the reports at the end of the pro
cedure is efficient in most cases, the single spool ently eliminates your ability 
to identify and control the individual listings on the spool file. If you want to 
build three separate spool file entries, you can omit the CONTINUE parame
ter or change it to -NO for programs MPLD1 and MPLOZ. 

Limitations 
Utility MAP LOA's three reports give a good picture of what is going on in 
the LOA, but there are a few limitations. Utility MAPLOA analyzes LOA 
usage within RPG programs only. If the target library contains source pro
grams in languages other than RPG, the resulting reports will not reflect 
the entire picture of LOA use within the library. In fact, in the unlikely 
event you have a non-RPG member with an I in position 6 and UOS in 
positions 18 through ZO, you must modify the procedure to ensure that pro
gram MPL01 processes only RPG members; otherwise, unpredictable 
results occur. You can modify the procedure easily by requiring program 
MPL01 to check the submember type for RPG and to process only those 
records contained within RPG source members. 

Another limitation arises because not all LOA use within a library may be 
in programs. A prime example is information from a prompt screen loaded 
into the LOA for further processing requirements wil:hin a procedure. 

The third limitation relates to MRT programs, which frequently use IBM's 
SUBRZ1 routine instead of the UOS to read and write the LOA. Utility 
MAPLOA doesn't "see" calls to SUBR21 as LOA refe:rences. You could mod
ify your programs that call SUBRZl to use the UOS in the last RLABL param
eter for SUBRZ1, thus making the LOA usage visible to utility MAPLOA. 

Because of these three limitations, the utility cannot give, in all circum
stances, a full picture of LOA usage within an application library. Never
theless, utility MAPLOA is a powerful automated tool you can use to 
improve your understanding of an application's architecture and design 
before you start to modify it. 



Documentation 171 

* MAPLDA - SHOW LOA USAGE IN RPG PROGRAMS FOR A LIBRARYFigure 7·23 
II IF 717/ * 'Enter name of library to be searched: leave blank to cancel.'Procedure // IF ?1R?/ RETURN 

MAPLDA * 
/ / LOAD $MAINT 
// FILE NAME-WRK.?WS?l .BLOCKS-20.EXTEND-5,RETAIN-J 
/ / RUN 
// COPY FROM-?1R?,TO-DISK,LIBRARY-S,FILE-WRK ?WS?1 ,NAME-ALL,RECL-96 
// END 

// LOCAL OFFSET-1 ,DATA-'?l? Library name in LOA 1-8 

/ / LOAD MPLD1 
// FILE NAME-SOURCE,LABEL-WRK.?WS?1 ,DBLOCK-12 
// FILE NAME-DISK,LABEL-WRK.?WS?2,BLOCKS 4,EXTEND-4,RETAIN-J 
// PRINTER NAME-REPORT,CONTINUE-YES 
// RUN 

// LOAD #GSORT 
// FILE NAME-INPUT,LABEL-WRK.?WS?2 
// FILE NAME-OUTPUT,LABEL-WRK ?WS?3,BLOCKS-4,EXTEND-4,RETAIN-J 
// RUN 

HSORTR 14A 48 
FNC 1 14 FIELD NAME / MEMBER NAME 
FDC 15 48 REST OF RECORD 

// END 

/ / LOAD MPLD2 
// FILE NAME-DISK,LABEL-WRK.?WS?3,DBLOCK-12 
// PRINTER NAME-REPORT,CONTINUE-YES 
// RUN 

// LOAD #GSORT 
// FILE NAME-INPUT,LABEL-WRK.?WS?2 
// FILE NAME-OUTPUT,LABEL-WRK ?WS?4,BLOCKS-4,EXTEND-4,RETAIN-J 
// RUN 

HSORTR 8A 3X 48 
FNC 15 22 FROM POSITION / TO POSITION 
FDC 1 4B ENTIRE RECORD 

// END 
* 
/ / LOAD MPLD3 
// FILE NAME-DISK,LABEL-WRK.?WS?,4,DBLOCK-12 
// PRINTER NAME-REPORT,CONTINUE-NO 
II RUN 

Figure 7·24 

Program MPLDI 

1 4 B 
P064 MPLD1 

F*** THIS PROGRAM 
F*** - PRINTS A MAP SHOWING LOA USAGE IN RPG MEMBERS OF A LIBRARY 
F*** - BUILDS A WORK FILE FOR OTHER REPORTS, 
F* 
F*** INDICATORS 
F* 01 RECORD 10, // COPY RECORD 
F* 02 RECORD 10, START OF TABLE/ARRAY 
F* 03 RECORD 10, COMPILER DIRECTIVE OR COMMENT 
F* 04 RECORD 10, I SPEC WITH UDS IN 18-20 
F* 05 RECORD 10, I SPEC WITH FIELD DEFINITION 
F* 06 RECORD 10, CATCH-ALL 
F* 
F* 21 ONE-TIME CALCS HAVE BEEN COMPLETED 
F* 31 - RECORD IS I SPEC WITHIN UDS 
F* 32 RECORD IS MEM8ER OF A TABLE/ARRAY 
F* 



172 5/36 Power Tools 

F" 51 ERROR FOUND IN I SPEC 
F" 52 LOOP CONTROL, SUBROUTINE PROCES 
F" 61 LOOP CONTROL, SUBROUTINE CHART 
F" 
F" Bl EXCPT LINE INDICATOR 
F" 82 EXCPT LINE INDICATOR 
F" 
FSOURCE IP 96 96 2 DISK 
FDISK 0 48 48 2 DISK 
FREPORT 0 132 132 20F PRINTER 
E" Array LOA should be defined with 256 elements on S/34, 512 on 5/36. 
E LOA 512 1 CHART OF LDA USAGE 
E LDA100 100 SUBSTRING OF ARRAY LOA 
ISOURCE NS 01 1 C/ 2 C/ 3 C 
I AND 4 CC 5 CO 6 CP 
I" 1/ COPY STATEMENT 
I 24 31 MEMBER MEMBER NAME 

I NS 02 C" 2 C" C 

I" START OF TABLE/ARRAY 

I NS 03 7 C" 

I OR 7 C/ 

I" COMMENT OR COMPILER DIRECTIVE 

I NS 04 6 CI 18 CU 19 CD 

I AND 20 CS 

I" UDS RECORD 

I NS 05 6 C I 15 C 19 C 

I" I SPEC WITH FIELD DEFINITION 


44 470FROM FIELD BEGINNING POS. 
48 510TO FIELD ENDING POS. 
52 52 DEC DECIMAL PLACES 
53 5B FIELD FIELD NAME 
75 96 COMMEN COMMENT/P~OGRAM 10 

NS 06 
I" CATCH ALL 
I UDS 

LI BR LI BRARY NAME 
C" - BEGIN ONE-TIME CALCS HI LOEQ 
C N21 MOVE LOA FILL ARRAY LOA WITH DOTS (1ST TIME) 
C" Factor 2 of the fall owi ng line should be 256 for 5/34, 512 for S/36 
C N21 Z-ADD512 LDALEN 40 DEFINE LOA LENGTH 
C N21 SETON 21 DO NOT REPEAT l-TIME CALCS 
C' - END ONE TIME CALCS HILOEQ 
C" 
C 01 SETOF 3132 
C· 
C 02 SETON 32 BEGINNING OF TABLE/ARRAY 
C" 
C 04 SETON 31 BEGINNING OF LOA 
C" 
C 05 32 SKIP COMPILE TIME TABLE/ARRAY DATA 
COR 05N31 SETOF 05 I SPEC IS NOT INSIDE LOA 
C' 
C 05 EXSR PROCES SPEC INSIDE OF LOA 
C· 
C 06 SETOF 31 INDICATE THAT WE'RE NOT IN LOA FIELDS 
C'" 
CLR EXSR CHART 
c******-***· HILOEQ 
C PROCES BEGSR PROCESS I SPEC WITHIN LOA 
C" 
C FROM COMP 0001 51 FROM/TO MUST BE I N RANGE 
C N51 TO COMP LOALEN 51 1 TO LDALEN 
C 51 GOTO PROC90 
C· 
C Z-AOOFROM x 40 
C· 
C PROC50 TAG 
C" 
C MOVE 'X' LOA ,X PUT X'S IN LOA ARRAY IN 
C ADD 0001 X POSITIONS BETWEEN FROM AND TO 



Documentation 173 

C x COMP TO 52 
C N52 GOTO PROC50 
C" 
C PROC90 TAG 
C ENDSR 
c*******···* HILOEQ 
C CHART BEGSR PRINT CHART OF LOA USAGE 
C" 
C SETON Bl 
C EXCPT PRINT SCALE 
C SETOF 81 
C' 
C Z-ADDOOOl 40 
C" 
C SETON 82 SET TO PRINT EXCPT LINE 
C' 
C CHAR20 TAG 
C" HI LOEQ 
C F ADD 0099 T 40 
C T COMP LOA LEN 61 
C 61 MOVE LDALEN T 
C MOVE "BLANKS LDA100 
C MOVEALDA,F LDA100 
C EXCPT PRINT PART OF LOA 
C N61 ADD 0100 
C N61 GOTO CHAR20 
C" 
C SETOF 82 DON'T PRINT EXCPT LINE ANYMORE 
C" 
C SETON 81 
C EXCPT PRINT SCALE 
C SETOF 81 
C" 
C ENOSR 
ODISK 05N51 
o FIELD 6 
o MEMBER 14 
o FROM 18 
o TO 22 
o DEC 23 
o COMMEN 45 
OREPORT H 305 lP 
o OR OF 
o UDATE Y 8 
o 76 'LOA USAGE FOR LIBRARY' 
o LIBR 84 
o 120 'PAGE' 
o PAGE 124 
o 0 1 05 51 
o 8 '"ERROR" 
o MEMBER 20 
o FIELD 28 
a FROM 34 
o TO 40 
o E 2 Bl 
o 34 + .1 .... + .... 2· 
o 54 + ... 3 .... + .4' 
o 74 ... 5 .... + .... 6' 
o 94 . + • ... 7 .... + .... 8' 
o 114 .. + .. 9 .... + ..0' 
o E 2 82 
a 6 
a 8 
a T 3 12 
o LOA100 114 



174 5/36 Power Tools 

Figure 7-25 

Map ofLDA use 

1/1 B/B9 LDA USAGE FOR LIBRARY NEWS343B PAGE 
.,+ 1. . .. 2 .3. ..4. . .. 5 ... + .• 6. +, 7 .B. ,. .0 

1 100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
101 200 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)xxxxxxxxxxxxxx 
201 300 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx .xx 
301 400 xxxxxxxxxxxxxxxxxxxxx. 
401 500 .. x 
501 512 xxxxxxx. 

. . . 1. . + .... 2. . . . 3 .... + •... 4. .. 5 . 6. .7. . .. B.. .9 . .. .0 

1 4 8Figure 7-26 
P064 B MPLD2 

F*** PRINT REPORT OF LDA USAGE IN RPG PROGRAMS BY FIELD NAMEProgram 
F*** 

MPLD2 FDISK IP 48 4B 2 DISK 
FREPORT 0 132 132 20F PRINTER 
[DISK NS 01 
I FIELD L1 
I 14 MEMBER 
I 15 180FROM 
I 19 220TO 
I 23 23 DEC 
I 24 45 COMMEN 
I UDS 
I LIBR LI BRARY NAME 
OREPORT H 205 1 P 
0 OR OF 
0 UDATE Y 8 
0 72 'LDA USAGE FOR LI BRARY , 
0 LIBR BO 
0 120 'PAGE' 
0 PAGE 124 
0 H 1P 
0 OR OF 
0 72 'BY FIELD NAME' 
0 H 1 P 
0 OR OF 
0 9 'FIELD' 
0 18 'MEMBER' 
0 26 'FROM' 
0 32 'TO' 
0 42 'DECIMALS' 
0 54 'COMMENT/ID' 
0 H 1 P 
0 OR OF 
0 9 
0 18 
0 26 
0 32 
0 42 
0 66 
0 01 
0 L1 FIELD 10 
0 MEMBER 20 
0 FROM 3 26 
0 TO 3 32 
0 DEC 38 
0 COMMEN 66 
0 T L1 



Documentation 175 

1/18/89 LDA USAGE FOR LIBRARY NEWS3438Figure 7-27 
BY FI ELD NAME 
FIELD MEMBER FROM TO DECIMALS COMMENT flDList of LDA use 

by field name CHARl MASQCH 7 12 MAsaCH 

CHAR2 MAsaCH 19 24 MAsaCH 

CHAR3 MAsaCH 31 36 MAsaCH 

CODE INVOl 10 10 0 

CONSTl NEWS02 67 86 

CONST2 NEWS02 87 106 

CONST3 NEWS02 107 126 

CONST4 NEWS02 127 146 

CONST5 NEWS02 147 166 

CONST6 NEWS02 167 186 

COUNT ADDDUP 100 104 0 ADDDUP 
CONOUP 100 104 0 CONDUP 
CONOUl 100 104 0 CONDUl 
NDUP2 100 104 0 NDUP2 
NDUP22 100 104 0 NDUP22 
PHODUP 100 104 0 PHODUP 
PHODU2 100 104 0 PHODU2 

1 2 ... ... 3 4Figure 7-28 ... 7 8 
P064 B MPLD3 

F'" PRINT REPORT OF LDA USAGE IN RPG PROGRAMS BY FIELD STARTING POSITIONProgram 
F*** 


MPLD3 FDISK IP 48 48 2 DISK 

FREPORT 0 132 132 20F PRINTER 
!DISK NS 01 
I 1 6 FIELD 
I 7 14 MEMBER 
I 15 180FROM L1 
I 19 220TO 
I 23 23 DEC 
I 24 45 COMMEN 
I UDS 
I LIBR LI BRARY NAME 
OREPORT H 205 1P 
0 OR OF 
0 UDATE Y 8 
0 72 'LDA USAGE FOR' LI BRARY 
0 LIBR 80 
0 120 'PAGE' 
0 PAGE 124 
0 H lP 
0 OR OF 
0 77 'BY FIELD STARTING POSITI' 
0 79 'ON' 
0 H 1 lP 
0 OR OF 
0 6 'FROM' 
0 12 'TO' 
0 20 'FIELD' 
0 30 'MEM8ER' 
0 42 'DECIMALS' 
0 54 'COMMENT/IO' 
0 H 1 1P 
0 OR OF 
0 6 



176 S/36 Power Tools 

0 12 -
0 20 
0 30 -
0 42 
0 66 
0 D 1 01 
0 FROM 3 6 
0 TO 3 12 
0 FIELD 21 
0 MEMBER 32 
0 DEC 38 
O· COMMEN 66 
0 T 1 L 1 

1/18/89 LOA USAGE FOR LIBRARY NEWS3438 
BY FIELD STARTING POSITIONFigure 7·29 
FROM TO FI ELD MEMBER DECIMALS COMMENT /ID 

List of LDA use YESNOl NEWS02 
by field starting LASTM DEFINC 0 

LASTM INCSCH 0
position WSIDNO NEWCNT 

2 WSIDNO TMPOIN 
6 INVNO INVOl 0 
6 INVNO INV02 0 
6 MASS1 MASQCH MASQCH 
8 LDAFIL TESTU 

YESN02 NEWS02 

3 YESN03 NEWS02 
3 LASTY DEF INC 0 
3 4 LA STY INCSCH 0 
3 10 WSUSER NEWCNT 
3 10 WSUSER TMPOIN 

4 4 YESN04 NEWS02 

YESN05 NEWS02 

6 YESN06 NEWS02 

10 STARTl NEWS02 0 
12 CHARl MASQCH MASQCH 

LDATYP TESTU 

Documenting RPG Structured Opcodes 
by Perry Garda; 

program by Bruce Stradling 

a Code on diskette: 

Procedure DOGRP 
RPG program DOGRP 
Screen format member DOGRPFM 

Little by little, the distinctions between RPG II and RPG III are beginning 
to diminish. Under Release 4.0 of the S/36 SSp, IBM has supplied the RPG 
II programmer with the structured programming opcodes (lFxx, DOUxx, 
DOWxx, and CASxx) so zealously touted by advocates of the S/38. These 



Figure 7-300 

Prompt screen for 
DOGRP utility 

Documentation 177 

codes offer a dramatic reduction in indicator use. But because each opcode 
must terminate with an END opcode, and because an error caused by the 
absence of a required END statement can be difficult to detect, debugging 
a program that uses Do Group opcodes is often time-consuming. 

Procedure DOGRP and its related program give you a tool that visually 
establishes the relationships between structured programming (Do Group) 
opcodes and END statements. The utility reads a source member and pro
duces a listing that connects each structured programming opcode to its 
corresponding END statement with a set of vertical lines; as an added ben
efit, the utility indents nested Do Group operations. When the utility is 
used during the debugging process, a violation of the END statement 
requirement becomes evident when the dots emanating from the Do 
Group opcode do not match up with an END statement. In addition, the 
indentation of nested Do Groups and related operations helps the mainte
nance programmer follow the logic of the program. 

RPG - Do Group Source Listing Module 

This module list and ties the Do RPG Operators 
with correspondlng Else and End Operators 

Enter RPG Source Member Name to be listed 

Enter Library Name containing RPG source member 

List the entire source or just the "C" speclficatlons? (ALL,CONLY) CONLY 

Cmd3-Previous Menu Cmd4-Place on JOBO Cmd5-Display Via Copyprt 

The utility consists of a prompt screen (Figure 7-30a; Figure 7-30b is 
the prompt screen. format member), procedure DOGRP (Figure 7-31), and 
program DOGRP (Figure 7-32). 

Utility DOGRP is called with four parameters: parameter 1 is the name 
of the program you are debugging, parameter 2 is the name of the library in 
which it resides, and parameter 3 is the portion of the program you want 
processed. If the entire source member is to be listed, enter ALL for 
parameter 3. If only the C-specs need to be listed, enter CONLY. 

In addition, an optional fourth parameter is available to those programmers 
who want to conserve paper or system resources; the parameter allows the pro
grammer to display the DOGRP listing on the CRT.lb use the optional param
eter to view the DOGRP listing on your workstation, key ",CRT" following the 



178 5/36 Power T0015 

value for the third parameter, or press Command key 5 from the prompt screen. 
To send the DOGRP job to the job queue, press Command key 4 from the 
prompt screen. This precludes using the CRT option with the JOBQ option. 

Procedure DOGRP (Figure 7-30) begins by determining whether param
eters 1 and 2 have values. If they are blank, procedure DOGRP forces the 
current library into parameter 2 via an EVALUKfE statement. Ifat this 
point the listing is not directed to the job queue, procedure DOGRP displays 
prompt screen DOGRPFM, which requires the programmer to supply values 
for parameters 1 and 3 (and to change the value of parameter 2, if necessary). 

The procedure then determines whether Command keys 3, 4, 5, or 7 
were used. Command key 3 terminates the procedure and returns control 
to the previous menu. Command key 4 directs the remainder of the proce
dure.to the job queue to free up the workstation, and Command key 5 
directs the debugged listing to the user's workstation. Command key 7 can
cels procedure DOGRP and returns control to the master procedure. 

Procedure DOGRP then ensures that parameters 1 and 2 have established 
values. If either parameter is still blank, the procedure once again prompts for 
the values. This time the procedure asks for the information by using standard 
screen messages (e.g., Enter RPG Source Program to be Documented). Ifall 
of these effons fail to establish the necessary valw::s, the procedure is can
celed, and control is returned to the previous menu or master procedure. 

After all housekeeping functions are out of the way, the real work begins. 
The procedure first loads parameters 1, 2, and 3 into the LDA via three II 
LOCAL OFFSET statements. The values established in the LDA subse
quently are passed to program DOGRP. Next, the procedure uses a 
$MAINT routine to copy the specified source member into disk file 
DOGROUP, which will be read by program DOGRP. After file DOGROUP 
is created, the procedure loads and executes program DOGRP (Figure 7-32). 

This program is written using Do Group logic. In fact, the Do Group 
logic used within program DOGRP allows file DOGROUP to be read 
within one RPG cycle. Remember, each record of file DOGROUP repre
sents one line of the original RPG II source member. For the purposes of 
this article, program DOGRP is also the program used as input for the 
debug listing. Therefore, Figure 7-32 is the result of running program 
DOGRP against its own source member. As you can see, this listing of pro
gram DOGRP lets you understand Do Group logic quite easily. 

To determine when and how much to indent the Do Group logic in the 
selected source member, program DOGRP uses four fields (defined in its 
C-specs) to act as indexes to arrays that hold the starting column positions 
of each line to be printed. Array index It controls movement to the right of 
information in the output LNE array, which holds the indented version of 
the line from the original source member (in 120 one-byte elements). Array 
index 12 controls the placement of an ELSE statement, ensuring that it 
corresponds with its respective IF statements. Auay index 13 is the index 



Documentation 179 

to array lOX, which stores the column numbers indicating how far a line 
has been moved to the right when it is indented. Index 14 controls the 
placement of a nonstructured programming opcode so that it prints two 
positions to the right of the Do Group in which it is nested. 

In program DOGRp, the first Do Group loop (lines 43 through 58) does 
two things until a C·spec is read: 1) it branches to subroutine LOAD; and 
2) by using exception output, all RPG specs that precede the C·specs in 
the selected source member are printed (i.e., if the user specified ALL to 
the third parameter). Within subroutine LOAD, heading information is 
developed by manipulating the II COpy statement (i.e., the first record in 
the file created by $MAINT utility) to pick up the source member's refer
ence number, date, and time (lines 138 through 162). 

When a record containing a C-spec is read, another Do Group loop (lines 
59 through 128) determines whether the record contains a Do Group opcode 
and, if it does, indents the opcode (when necessary) and inserts the appro
priate number of dots based on the type of operation and the amount of 
nesting. If the code is a Do Group code, the line is indented from column 
28. The codes IF, DO, and the first CAS are indented two spaces, while the 
codes ELSE, END, and additional CAS are not indented. If the code is not 
a Do Group code, the line is indented two spaces and the record is printed. 

As each C-spec is analyzed and the appropriate number of dots 
inserted, the entire line is moved to array LNE. This array is output, and 
the result is the indented style of the debug report with each Do Group 
opcode visually connected to its corresponding END. As a final step, pro
gram DOGRP again determines whether ALL was specified to the third 
parameter. If so, it loops through the remaining RPG specifications from 
the selected source member and prints them (lines 129 through 135). At 
Last Record (LR) time (i.e., when the LR indicator comes on), the program 
branches to the #TG002 tag (line 137) and ends. 

To END or not to END. That is the question answered by procedure 
DOGRP. With this new debugging tool, you can let your eyes find the 
errors your logic is not always able to detect. I don't know about you, but to 
me, the visual picture drawn by DOGRP is worth more than a thousand 
words in an RPG II compile listing. 

Figure 7·30b 1 2 3 4 6 
1 SPROMPT 0124 YYY Y 	 COEG 
2 0 36 119Y Y CRPG - Do Group Source LX 
3 Oisting Module 

member 4 0 79 4 lY C This modulX 
5 De list and ties the Do RPG OperatorsDOGRPFM 	 6 D 79 5 lY C with corX 
7 Dresponding Else and End Operators. 
e D 70 e lY CEnter RPG Source MemberX 
9 D Name to be listed 

10 DPARMOl 8 87201 Y Y Y 
11 D 7010 lY CEnter Library Name contX 
12 Daining RPG source member, 
13 DPARM02 8107202 Y Y Y 

Screen format 



180 5/36 Power Tools 

14 0 7012 lY CList the entire source X 
15 Dor just the "c" specifications7 (ALL,CDNLY) 
16 DPARMD3 5127203 YA Y CCONLY 
17 D 1820 lY CCmd3-Previous Menu 
18 0 182021Y CCmd4-Place on JOSQ 
19 0 242041Y CCmd5-Display Via CopyprX 
20 Dt 

Figure 7·31 	 II IF 727- EVALUATE P2-7CLIS7 
II IF JOSQ-YES GOTO JOSO

Procedure 	 II IF 717- PROMPT MEMSER-DOGRPFM,FORMAT-PROMPT,START-l,LENGTH-'S,S,3' 
II IF 7CD7-2003 RETURNDOGRP II IF 7CD7-2004 JOSO 7CLIS7,DOGRP,717,727,?3? 
II IF ?CD7-2004 RETURN 
II IF 7CD7-2005 EVALUATE P4-CRT 
II IF 7CD7-2007 RETURN 
II TAG JOSO 
II IF EVOKED-NO IF JOSQ-NO IF 7171 'ENTER RPG SOURCE PROGRAM TO SE DOCUMENTED'0 

II IF 71R71 RETURN 
II IF EVOKED-NO IF JOBQ-NO IF 7271 ° 'ENTER NAME OF LIBRARY CONTAINING SOURCE' 
II IF ?2R71 RETURN 

II LOCAL OFFSET-l,BLANK-19,DATA-'717'

II LOCAL OFFSET-9,DATA-'727, 
II LOCAL OFFSET-17,DATA-'?37'
II LOAD $MAINT 
II FILE NAME-DOGROUP,UNIT-Fl ,SLOCKS-200,RETAIN-J 
II RUN 
II COpy FROM-72?,TO-DISK,FILE-DOGROUP,RECL-120,NAME-71?,LIBRARY-S,SVATTR-YES 
II END 
II LOAD DOGRP 
II FILE NAME-INPUT,LABEL-DOGROUP
II IF 747-CRT PRINTER NAME-OUTPUT,PRIORITY-O,FORMSNO-DGRP 
II RUN 
II IFF 747/CRT RETURN 
II LOAD SUASF 
II RUN 
II SPOOL SPOOLID-FDGRP,NAME-DOGRP7WS7,RELCANS-CANCEL 
II END 
I I IF JOSQ-YES MSG 7WS7,DO GROUP LISTING IS IN FILE NAMIE-DOGRP7WS7 
II IF JOBQ-YES RETURN 
I I LOAD $UASC 
II FILE NAME-DOGRP7WS7,DISP-SHR 
II RUN 

0II 'DELETE FILE DOGRP7WS?,F1777 (NO-O YES-I)' 
II IF 7R7/1 DELETE DOGRP7WS7,Fl 

Figure 7·32 

Program DOGRP (shown after run through utility DOGRP) 

0001 H 64 DOGRP 
0002 FINPUT 10 120 DISK 
0003 FOUTPUT 0 132 OF PRINTER 
0004 E LNE 105 1 
0005 E lOX 20 2 0 
0006 E CPY 120 1
0007 I*@··················································· ...••......•••. 
OOOS IO@ CALC. FLO FILE USAGE OTHR 
0009 IO@ IND. INPUT10UTPUT COND. CDMP. ARITH. LOKUP REC NRF Ei~R EOF USES 
0010 IO@ LR C X X 
0011 I o@ OF , . . P X 
0012 IO@ 60 C 
0013 1°. 70 P C X 
0014 IO@ INDICATOR USAGE SUMMARY INSERTED 3/03/86 AT 16 25.34 SY BRUCE 
0015 I.@ •• •••• •• ••••••• •• ••••• •• •••• ••• •••••• ••• ••••••••••• ••• ,f ••••••••••• 
0016 IINPUT NS 
0017 I 1 7 COPY A 
0018 I 6 6 TYPE A 
0019 I 7 7 ASTER A 



Documentation 181 

0020 I 28 32 OP5 A 5 
0021 I 28 29 OP2 A 2 
0022 28 30 OP3 A 3 
0023 1 27 REC27 A 27 
0024 28 120 REC93 A 93 
0025 1 120 CPY A120 
0026 DS 
0027 120TD N 12 .0 
0028 40STIME N 4 .0 
0029 7 120SDATE N 6.0 
0030 13 180REFNO N 6.0 
0031 19 200MM N 2 .0 
0032 21 220DD N 2 .0 
0033 23 240YY N 2 .0 
0034 19 240DATE N 6 .0 
0035 25 280TIME N 4 0 
0036 UDS 
0037 1 8 MEMBER A 8 
0038 9 16 LISR A 
0039 17 19 ALL A 
0040 C TIME TD 
0041 C SUB 1 11 20 
0042 C SETON OF 
0043 C TYPE DOUEQ'C' 
0044 C READ INPUT LR INPUT - READ 
0045 C LR GOTO #TG002 
0046 C COPY CASEQ'II COPY' LOAD 
0047 C END 
0048 C COpy IFNE '/1 COPY' 
0049 C COPY IFNE '// CEND' 
0050 C ALL IFEQ 'ALL' 
0051 C TYPE IFNE 'C' 
0052 C EXCPTPRTALL 
0053 C N70 SETON 70 
0054 C END 
0055 C END 
0056 C END 
0057 C END 
0058 C END 
0059 C TYPE DOWEQ'C' 
0060 C ASTER I FEQ '.' 
0061 C EXCPTPATALL 
0062 C N70 SETON 70 
0063 C GOTO #TGOOl 
0064 C END 
0065 C OP2 I FNE 'I F' 
0066 C OP2 IFNE 'DO' 
0067 C OP3 I FNE 'CAS' 
0068 C OP5 IFNE 'END 
0069 C OP5 1FNE 'ELSE 
0070 C 11 ADD 2 14 30 
0071 C MOVEAAEC93 LNE,I4 
0072 C EXCPTPRTREC 
0073 C N70 SETON 70 
0074 C GOTO #TGOOl 
0075 C END 
0076 C END 
0077 C END 
0078 C END 
0079 C END 
0080 C OP5 IFNE 'ELSE 
0081 C OP5 IFNE 'END 
0082 C OP3 IFNE OP3SAV 
0083 C ADD 2 11 
0084 C END 
0085 C END 
0086 C END 
0087 C OP3 1FEO 'CAS' 
0088 C MOVE OP3 OP3SAV 
0089 C ELSE 
0090 C MOVE' OP3SAV 
0091 C END 
0092 C OP2 IFEO ' IF' 
0093 C ADD 1 13 30 
0094 C Z-ADDll IDX, 13 
0095 C END 



182 5/36 Power Tools 

0096 C OP5 I FNE 'ELSE ' 
0097 C MOVEAREC93 LNE, 11 
0098 C ELSE 
0099 C Z-ADDIDX, 13 12 30 
0100 C MOVEAREC93 LNE, 12 
0101 C END 
0102 C EXCPTPRTREC 
0103 C OP5 I FEQ 'ELSE 
0104 C SUB 1 13 
0105 C END 
0106 C OP5 I FEQ 'END 
0107 C SUB 2 11 
0108 C 13 IFNE 0 
0109 C 11 IFLT IDX,I3 
0110 C " SUB 13 
0111 C END 
0112 C END 
0113 C ELSE 
0114 C MOVEA' " LNE, 11 
0115 C END 
0116 C #TGOOl TAG #TG001 TAG 
0117 C READ INPUT LR INPUT - READ 
0118 C LR GOTO #TG002 
0119 C END 
0120 C ALL IFEQ "ALL' 
0121 C COpy DOUEQ'// CEND' 
0122 C EXCPTPRTALL 
0123 C READ INPUT LR INPUT - READ 
0124 C LR GOTO #TG002 
0125 C END 
0126 C END 
0127 C SETON LR 
0128 C #TG002 TAG #TG002 TAG 
0129 C LOAD BEGSR LOAD - SUBROUTINE 
0130 C Z-ADDl 30 
0131 C #TG003 TAG #TG003 TAG 
0132 C 'R' LOKUPCPY,L 60 
0133 C N60 GOTO #TG004 
0134 C ADD 1 
0135 C 'E' LOKUPCPY,L 60 
0136 C N60 GOTO #TG003 
0137 C ADD 1 
0138 C ' F' LOKUPCPY,L 60 
0139 C N60 GOTD #TG003 
0140 C ADD 1 
0141 C LOKUPCPY,L 60 
0142 C N60 GOTO #TG003 
0143 C ADD 1 L 
0144 C MOVEACPY,L REFNO 
0145 C ADD 12 L 
0146 C MOVEACPY,L YY 
0147 C ADD 3 L 
0148 C MOVEACPY,L MM 
0149 C ADD 3 L 
0150 C MOVEACPY,L DO 
0151 C ADD 8 L 
0152 C MOVEACPY,L TIME 
0153 C #TG004 ENDSR #TG004 TAG 
0154 OOUTPUT 0305 OF 
0155 0 7 'LI SRARY' 
0156 0 9 
0157 0 LISR 18 
0158 0 33 'DATE' 
0159 0 SDATE Y 42 
0160 0 52 'TIME' 
0161 0 STIME 58 
0162 0 75 'PAGE' 
0163 0 PAGE Z 80 
0164 0 120 'DO GROUP LISTING' 
0165 0 DFN70 
0166 0 33 'REF' 
0167 0 42 "RECORD' 
0168 0 OFN70 
0169 0 6 'NAME' 
0170 0 20 'DATE' 
0171 0 27 'TIME' 



Documentation 183 

0172 0 35 'NUMBER' 
0173 0 OFN70 
0174 0 8 
0175 0 22 
0176 0 28 
0177 0 35 
0178 0 10 OFN70 
0179 0 MEMBER 8 
0180 0 DATE Y 22 
0181 0 TIME 28 
0182 0 REFNO 35 
0183 0 EF PRTREC 
0184 0 REC27 27 
0185 0 LNE 132 
0186 0 EF PRTALL 
0187 0 CPY 120 

Detecting Duplicate or Outdated Members 
in Two Libraries 
by Perry Gardai 

program by Brian Blume 

a Code on diskette: 

Procedure UTLLIB 
RPG programs UTLIBl, UTLIB2, UTLIB3 
Screen format member UTLLIBFM 

Use utility In nearly every data processing shop, changes to production applications 
UTLLIBto take place in test libraries. Keeping track of which programs and proce
track and dures are current, which ones have been moved from the test library to the 
remove production library, and minimizing program and procedure redundancy 
duplicate between libraries can be an extremely laborious chore. Redundancy also 
procedures and can result when two production libraries with minimal program and proce
programs. dure differences are set up to support two separate operation environments. 

You should track and remove duplicate procedures and programs for 
several reasons. First, you can save significant disk space by minimizing 
program and procedure r.edundancy. Second, you can avoid inadvertent 
application errors by ensuring that test programs are not resident in produc
tion libraries. And third, you can ensure that only the newest version of a 
particular program is staged for production runs. 

Utility UTLLIB, which detects duplicate and outdated programs and 
procedures between two libraries, consists of prompt screen UTLLIB (Fig
ure 7-33); procedure UTLLIB (Figure 7-34); RPG programs UTLIBl, 
UTLIB2, and UTLIB3 (Figures 7-35 through 7-37, respectively); and 
screen format member UTLLIBFM (Figure 7-38). Utility UTLLIB com
pares the directory of one library - the source library - to the contents of 
a second library - the target library - by using the selected member 
name, member subtype, and date and time that member was last logged 
into a library. The result is a detailed exception report of any unmatched 
conditions existing between the directories of the two libraries. 



184 5/36 Power Tools 

Figure 7-33 

UTLLlB prompt 
screen 

s Y S T E M 3 6 

Library Comparison Utility 

Source Library ---> 
Target Library -~-> 

Output Report Info: 

Pr; nter Id _0_> P1 (DeFault - P1) 

Copies ---> 01 (Default - 01) 

Enter: Process Cmd 7: Ex; t 
UTLLIB 

Procedure UTLLlB 
Keying in UTLLIB activates procedure UTLLIB, which first performs 
some housekeeping to ensure that UTLLIB is not already active, that 
there is sufficient disk space to run the procedure, and to clear positions 
256 through 275 of the LOA. Then, the prompt screen requires you to sup
ply the names of the source and target libraries, the default setting of the 
printer 10, and the number of copies to be printed. The prompt screen is 
edited for errors and redisplayed with appropriate messages if errors are 
detected. When no errors are present, the remainder of the procedure is 
sent to the job queue so the terminal can be released for other functions. 

When procedure UTLLIB starts to run from the job queue, all work 
files from previous runs of procedure UTLLIB are deleted, and program 
UTLIBI is executed to create dummy file #OUMMY. The dummy file is 
copied to create a dummy library source member, #OUMMY, which is 
placed in both the source and target libraries via two TOLIBR commands 
because the LISTLIBR procedures that follo\\' issue a terminal error if exe
cuted on "empty" libraries. 

Next, procedures LISTLIBR and COPYOATA create disk files of the 
library directories ofthe source and target libraries. File #FILEOIB, created 
as a sequential file from the source library directory, and file #FILE02B, 
created as an indexed file from the target library, are used as input to pro
gram UTLIB2. Program UTLIB2 is the core of this entire process. 

Hovv UTLLlB Works 
Program UTLIB2 reads the records from file #FILEOIB and, using mem
ber name and type as the key, chains to file #FILE02B. If the chain fails, 
the record (library directory entry) in the source library is for a new.mem
ber. If the chain is successful- meaning the members exist in both 



Figure 7-34 

Procedure 

UTLLIB 


Documentation 185 

libraries - the date and time information is compared. If the source date is 
earlier, it has not been updated by the target; if the source date is later, the 
target has not been updated; if the dates are the same, both versions are the 
same. Each time a chain fails or a date and time discrepancy exists, a con
solidated record is written to #REPORT, the output file. Each record con
tains the source library name, member name, type and subtype, date and 
time logged into the directory, and the number of statements along with 
codes that designate each record's status: N for new member, U for 
updated member, or 0 for old member. The codes are used in the print 
program UTLIB3 to print the member status information. 

File #REPORT now contains one record for each discrepancy found 
between the source and target libraries. Ifno records exist in file #REPORT, 
meaning the two libraries are identical, procedure UTLLlB sets switch one on 
and branches to the /I TAG NOREC statement. Program UTLlB3 prints a 
report with the message U No Members Found u. Ifexception records do 
exist, file #REPORT is renamed to #FILE and sorted back into file #REPORT 
to arrange the records in member name within member type sequence. 

Program UTLlB3 now uses file #REPORT to produce the final listing 
(Figure 7-39). The report follows the basic format of a system-provided direc
tory listing; the additions are the names of the source and target libraries being 
analyzed in the headings and the Status column. The Status column indicates 
the nature of the unmatched condition (NEW MEMBER, UPDATED VER
SION, or OLDER VERSION) between the two libraries. After the report 
program is executed, all the work files are deleted, and the empty source 
member #DUMMY is removed from the source and target libraries. 

You should note that procedure UTLLlB compares the directory of the 
source library to the target library directory; therefore, it cannot determine 
whether members exist in the target library that don't exist in the source 
library. To get this information, you have to run the procedure a second 
time with the library names reversed. 

Although UTLLlB cannot actually provide library maintenance func
tions, it certainly can provide important information regarding the status of 
each member within the source library so the operator can determine the 
release level of each member in the working library. 

II IF JOBQ-YES GOTO PROCESS • PROCESS ON JOB QUEUE 

HOUSEKEEPING ROUTINE 

II IF ACTIVE-UTLLIB GOTO ERRORD • PROC 'UTLLIB' ACTIVE ALREADY 
II IFF BLOCKS-100 GOTO ERRORE • NOT ENOUGH SPACE AVAILABLE 
II LOCAL OFFSET-256,BLANK-20 • BLANK OUT LDA 

MAIN PROMPT SCREEN 

I I TAG RETRY 
I I EVALUATE Pl-'?L' 256, S'?' • SOURCE LIBRARY LDA 
II EVALUATE P3-'?L'264,S'?' • TARGET LIBRARY LDA 



186 S/36 Power Tools 

II EVALUATE P5-'P1' * DEFAULT PRINTER ID 
II EVALUATE P6-'Ol' * DEFAULT COPIES 
I I PROMPT MEMBER-UTLLIBFM, FORMAT -UTLLIB, START -1 ,LENGTH-' B, 26, B, 26,2,2' 
II IF ?CD?/2007 RETURN 
II LOCAL OFFSET-256,DATA-'?1?' * ACCEPT INPUT SOURCE LIBRARY 
II LOCAL OFFSET-264,DATA-'?2?' * ACCEPT INPUT TAnGET LIBRARY 
I I LOCAL OFFSET - 272, DATA- '? 3? ' * ACCEPT INPUT (P1 - 01)
II IF ?L'272,2'?1 LOCAL OFFSET-272,DATA-'P1' * DEFAULT PARAMETER 
II IF ?L'274,2'?1 LOCAL OFFSET-274,DATA-'01' • 'DEFAULT PARAMETER 
I I EVALUATE P2-' * BLANK OUT ERROR CODE 
I I EVALUATE P4-' , * BLANK OUT ERROR CODE 

CHECK FOR ERA DRS 

II IF ?L'256,S'?1 GOTO ERRORB1 
II IFF DATAF1-?L'256,S'? GOTO ERRORC1 
II IF ?L'264,S'?1 GOTO ERRORB2 
II IFF DATAF1-?L'264,S'? GOTO ERRORC2 

GOOD DATA - PROCESS ON JOB QUEUE 

II JOBQ 3, ,UTLLIB 

I I RETURN 


ERR 0 R SUB R 0 UTI N E S 

II TAG ERRORB1 
II EVALUATE P2-'Library name is blank 
II LOCAL OFFSET-256,BLANK-8 
II GOTO RETRY 

I I TAG ERRORB2 
II EVALUATE P4-'Library name is blank 
II LOCAL OFFSET-264,BLANK-8 
I I GOTO RETRY 

II TAG ERRORC1 
II EVALUATE P2-'Source library not on disk' 
II LOCAL OFFSET-256,BLANK-S 
I I GOTO RETRY 

II TAG ERRORC2 
II EVALUATE P4-'Target library not on disk' 
II LOCAL OFFSET-264,BLANK-8 
/ I GOTO RETRY 

/1 TAG ERRORD 
/1 PAUSE ,**. ERROR: UTLLIB is already active. Job is canceled' 
I I RETURN 

/1 TAG ERRORE 
II PAUSE ,**. ERROR: Not enough disk space to run UTLLIB, Job is canceled' 
/ I RETURN 
****** •• * •• ***** •• ********** ••••• * •••••••••••••••••••••••••• *** •••••••• **** •• ** 

PRO C E S S o N JOB QUE U E 

/ I TAG PROCESS 

NOHALT 3,SESSION 


DELETE SCRATCH FILES 

1/ IF DATAF1-#DUMMY DELETE #DUMMY, F1 
II IF DATAF1-#FILE DELETE #FILE, F1 
II IF DATAF1-#FILE01A DELETE #FILE01A, F1 
1/ IF DATAF1-#FILE02A DELETE #FILE02A, F1 
II IF DATAF1-#FILE01B DELETE #FILE01B,F1 
1/ IF DATAF1-#FILE02B DELETE #FILE02B,F1 
1/ IF DATAF1-#REPORT DELETE #REPORT,F1 

COPY LIBRARIES TO DISK 

I I LOAD UTLIB1 * BUILD DUMMY MEMBEFI FILE 
II FILE NAME-OUTPUT,LABEL-#DUMMY,RECORDS-5 
1/ RUN 



Documentation 	 187 

TOLlBR #DUMMY, Fl , ,REPLACE,?L' 256,8'? * PLACE MEMBER INTO SOURCE LIBRARY 
TOLIBR #DUMMY,Fl, ,REPLACE,?L'264,8'? • PLACE MEMBER INTO TARGET LIBRARY 

SOURCE LI BRARY 
L1STLIBR DIR, L1BRARY,?L' 256,S'?, , , , ,#FI LEOlA 
COPYDATA #FILE01A, ,#FILE01B""" INCLUDE,24,EQ,' I' 

TARGET LI BRARY 
LISTLIBR DIR,LIBRARY,?L'264,S'?"" ,#FILE02A 
COPYDATA #FILE02A, ,#FILE02B"", ,INCLUDE,24,EQ, 'I'" ,1.1 ,12 
**-------------------------------

BUILD REPORT FILE 

II LOAD UTLIB2 
II FILE NAME-INPUT1,LABEL-#FILE01B,RETAIN-S
II FILE NAME-INPUT2,LABEL-#FILE02B,RETAIN-S
II FILE NAME-OUTPUT,LABEL-#REPORT,RECORDS-l00,EXTEND-l00 
II RUN 

SORT REPORT FILE 

II IF ?F'A,#REPORT'?/OOOOOOOO SWITCH lXXXXXXX 
II IF ?F'A,#REPORT'?IOOOOOOOO GOTO NOREC 
II RENAME #REPORT,#FILE 

II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-#FILE,RETAIN-S 
II FILE NAME-OUTPUT,LABEL-#REPORT,DISP-NEW,RECORDS-?F'A,#FILE'? 
I I RUN 

HSORTR 11 A 3X 40 
FNC 17 19 * MEMBER TYPE 
FNC 9 16 * MEMBER NAME 
FDC 1 40 

I I END 

PRINT REPORT 

II TAG NOREC 
I I LOAD UTLI B3 
II FILE NAME-INPUT,LABEL-#REPORT,RETAIN-S 
II PRINTER NAME-REPORT,DEVICE-?L'272,2'?,COPIES-?L'274,2'? 
II RUN 

CLEAN UP ROUTINE 

II IF DATAF1-#DUMMY DELETE #DUMMY, Fl 

II IF DATAF1-#FILE DELETE #FILE, Fl 

II IF DATAF1-#FILE01A DELETE #FILE01A,Fl 

II IF DATAF1-#FILE02A DELETE #FI LE02A, Fl 

II IF DATAF1-#FILE01B DELETE #F I LEOl B, Fl 

II IF DATAF1-#FILE02B DELETE #FI LE02B, F1 

II IF DATAF1-#REPORT DELETE #REPOAT, Fl 


II IF SOURCE-'#DUMMY,?L'256,S'?' REMOVE #DUMMY,S,?L'256,S'? 
II IF SOURCE-'#DUMMY,?L'264,S'?' REMOVE #DUMMY,S,?L'264,S'? 

.Figure 7-35 	 4 6 .. , 7 8 
0001 H 064 8 1 UTLIBl 
0002 FOUTPUT 96 96 DISKProgram 	 0 
0003 C SETON 	 LR 

UTLlBl 	 0004 OOUTPUT T LR 
0005 0 7 'II COPY' 
0006 0 30 'LI8RAAY-S,NAME-#DUMMY' 
0007 0 T LR 
0008 0 'II END' 



188 5/36 Power Tools 

Figure 7-36 

Program UTLlB2 

0001 H 064 
0002 FINPUT1 
0003 FINPUT2 
0004 FOUTPUT 
0005 I1NPUTl 
0006 I 
0007 I 
OOOB I 
0009 I 
0010 I 
0011 I 
0012 I 
0013 I 
0014 I 
0015 IINPUT2 
0016 I 
0017 I 
0018 I 
0019 I 
0020 I 
0021 I 
0022 I 
0023 I 
0024 I 
0025 I' DEFINE 
0026 I 
0027 I 
0028 I 
0029 I 
0030 I 
0031 I 
0032 I 
0033 I 
0034 I 
0035 1* DEFINE 
0036 I 
0037 I 
0038 I 
0039 
0040 
0041 
0042 
0043 I 
0044 I 
0045 I 
0046 I 
0047 C' 
0048 C 
0049 C 
0050 C 99 
0051 C 
0052 C 
0053 C 
0054 C 90 
0055 C N90 
0056 C 91 
0057 COR 92 
005B C 
0059 C' 
0060 OOUTPUT 
0061 0 
0062 0 
0063 0 
0064 0 
0065 0 
0066 0 
0067 0 
006B 0 
0069 0 
0070 0 

IP F 132 132 
Ie F 132 132R12AI 
0 F 40 40 
NS 01 

NS 02 

OS 
RECOl 

REC02 

UDS 

SETOF 
MEM COMP 'DUMMY 

GOTO BYPASS 
MOVELMEM 
MOVE TYPE 

KEY CHAININPUT2 
EXCPTWRITE 

RECOl COMP REC02 

EXCPTWR ITE 
BYPASS TAG 

EADD WRITE 
SLiB 
MEM 
TYPE 
SUBT 
MM 
DO 
yy 
HH 
M 
STMTS 

4 
1 

DISK 
DISK 
DISK 

1 
12 
16 
22 
25 
2B 
32 
35 

117 

12 
16 
22 
25 
2B 
32 
35 

1 
1 
9 

10 
13 
15 
17 
19 
21 

25 
25 
33 
34 
37 
39 
41 
43 
45 

256 

KEY 

KEY 


16 
17 
20 
22 
24 
26 
28 
30 
33 

8 
UTLI B2 

A 

8 MEM • MEMBER NAME 

12 TYPE MEMBER TYPE 

18 SUBT • SUB TYPE 

230MM • MONTH 

26000 • DAY 

290YY • YEAR 

330HH • HOUR 

360M • MINUTES 


1190STMTS • # OF STATEMENTS 

8 MEM2 • MEMBER NAME 

12 TYPE2 • MEMBER TYPE 

18 SUBT2 • SUB TYPE 

230MM2 • MONTH 

260002 • DAY 

290YY2 • YEAR 

330HH2 • HOUR 

360M2 • MINUTES 


••• DATA STRUCTURE 

22 RECOl • RECORD ONE 

B MEM • MEMBER NAME 

9 TYPE • MEMBER TYPE 


12 SUBT • SUB TYPE 

140YY • YEAR 

160MM • MONTH 

lBODD • DAY 

200HH • HOUR 

220M • MINUTES 


46 REC02 • RECORD TWO 

32 MEM2 • MEMBER NAME 

33 TYPE2 • MEMBER TYPE 

36 SUBT2 • SUB TYPE 

3BOYY2 • YEAR 

400MM2 • MONTH 

420002 • DAY 

440HH2 • HOUR 

460M2 • MINUTES 


••• LOCAL DATA AREA 
263 SLiB • SOURCE LI BRARY 

909192 

99 


12 

90 

9192 



Documentation 189 

0071 0 90 40 'N' 
0072 0 91 40 'U' 
0073 0 92 40 '0' 

Figure 7-37 

Program UTLIB3 

1 , " 2 " , 4 5 '" , " 6 '" 7 , " 8 
0001 H 064 B 1 

, , 

UTLI83 
0002 FINPLIT IP F 40 40 DISK 
0003 FREPORT 0 F 132 132 OF PRINTER 
0004 IINPUT NS 01 
0005 I 1 8 LIB L2 • LI BRARY NAME 
0006 I 9 16 MEM • MEMBER NAME 
0007 I 17 17 TYPE Ll • MEMBER TYPE 
0008 I 18 20 SU8T • MEM8ER SUB TYPE 
0009 I 21 260DATE • MEMBER DATE 
0010 I 27 280HH • MEMBER HOURS 
0011 I 29 300MM • MEMBER MINUTES 
0012 I 31 330STMTS • # OF STATEMENTS 
0013 I' 34 39 FILLER - OPEN SPACE 
0014 I 40 40 CODE NEW/UPDATED/OLD 
0015 I UDS • LOCAL DATA AREA 
0016 I 256 263 LlBl • LIBRARY ONE SOURCE 
0017 I 264 271 LlB2 • LIBRARY TWO TARGET 
0018 C' 
0019 C TIME UTI ME 60 
0020 C TOTAL ADD 1 TOTAL 50 
0021 C CODE CaMP 'N' 90 
0022 C CODE COMP 'U' 91 
0023 C CODE COMP '0' 92 
0024 C' 
0025 OREPORT 0 104 L2 
0026 0 OR OF 
0027 0 5 'DATE: ' 
0028 a UOATE Y 14 
0029 0 48 'S Y S T E M 3 6' 
0030 0 75 'PAGE: ' 
0031 a PAGE z 80 
0032 0 0 L2 
0033 a OR OF 
0034 0 'TIME: ' 
0035 a UTIME 14 
0036 0 44 'LIBRARY COMPARISON' 
0037 a 52 'UTILITY' 
0038 a 76 'UTLLlB' 
0039 0 D L2 
0040 0 OR OF 
0041 0 20 'SOURCE LIBRARY •• -> 

0042 a LIBl 30 
0043 a 43 'COMPARED TO' 

__ a>0044 a 65 'TARGET LIBRARY 

0045 a LlB2 75 

0046 0 D 1 L2 

0047 0 OR OF 

0048 0 7 'LIBRARY' 

0049 a 17 'MEMBER' 

0050 0 27 'MEMBER' 

0051 0 36 ' SUB 

0052 a 45 'MEMBER' 

0053 a 56 'MEMBER' 

0054 a 64 '# OF ' 

0055 0 85 'STATUS' 

0056 0 D 1 L2 

0057 a OR OF 

0058 0 'NAME' 

0059 0 16 'NAME' 

0060 0 26 'TYPE' 

0061 0 35 'TYPE' 

0062 0 44 'DATE' 

0063 0 55 'TIME' 

0064 a 64 'STMTS' 




190 5/36 Power Tools 

0065 0 D L2 
0066 0 OR OF 
0067 0 8 
006B 0 19 
0069 0 27 
0070 0 37 
0071 0 47 
0072 0 56 
0073 0 64 
0074 0 90 
0075 0 D L 1 
0076 0 D 01 
0077 0 Ll LIB 8 
0078 0 MEM 19 
0079 0 TYPE 25 
0080 0 SUBT 35 
0081 0 DATE Y 47 
0082 0 HH 53 
0083 0 54 
0084 0 MM 56 
00B5 0 STMTS 64 
0086 0 90 90 · NEW MEM8ER' 
0087 0 91 90 'UPDATED VERSION' 
008B 0 92 90 'OLOER VERSION' 
0089 0 T 104 LR Ul 
0090 0 5 . DATE :' 
0091 0 UOATE Y 14 
0092 0 48 'S Y S T E M 3 6' 
0093 0 75 'PAGE: . 
0094 0 PAGE Z BO 
0095 0 T 2 LR Ul 
0096 0 44 'LIBRARY COMPARISON' 
0097 0 52 · UTI L1TY' 
0098 0 76 'UTLLlB' 
0099 0 T 2 LR Ul 
0100 0 
0101 0 L1Bl 

20 
30 

· SOURCE LI BRARY ---> 
0102 0 43 'COMPARED TO' 
0103 0 65 ·TARGET LI 8RARY ....... , 
0104 0 L1B2 75 
0105 0 T 32 LR Ul 
0106 0 50 .••• NO MEMBERS FOU~'D 
0107 0 T 22 LRNUI 
0108 0 10 'TOTAL # OF' 
0109 0 27 ·MEMBERS LI STEO: 
0110 0 TOTAL 1 37 
0111 0 T 3 LR 
0112 0 17 END OF REPORT' 

Figure 7-38 1 ... 
0001 SUTLLlB 

3 .. 4 

Screen format 
Member 

0002 D 
0003 D 
0004 Dity 

17 430Y 
26 625Y 

Y 
Y Y 

CS Y S T E M 
CLibrary Comparison UtilX 

UTLLIBFM 
0005 0 
0006 OLlBl 

19 910Y 
8 936Y Y Y 

CSource Library 

0007 D 
0006 0 

26 950Y 
191110Y 

Y 
CTarget Library ---> 

0009 DLlB2 81136Y Y Y 
0010 D 261150Y Y 
0011 0 191310Y COutput Report Info: 
0012 D 151517Y CPrinter Id 
0013 OPRINT 21536Y Y Y 
0014 0 
0015 D 

141550Y 
111721Y 

C(Default - PI) 
CCop; es ---> 

0016 OCOPY 21736Y Y Y 
0017 
0018 

D 
D 

141750Y 
292210Y 

C(Default - 01) 
CEnter: Process Cmd 7X 

0019 0: Exit 
0020 D 62370Y Y CUTLLI 8 



Documentation 191 

DATE: 12/16/66 S Y S T E M 36 	 PAGE 1Figure 7-39 
TIME: 11 :15:11 LIBRARY COMPARISON UTILITY 

UTLLIB 
SOURCE LIBRARY ---> #UTILITY COMPARED TO TARGET LIBRARY ---> #LIBRARY 

detailed 
LI BRARY MEMBER MEMBER SUB MEMBER MEMBER # OF STATUS

exception report NAME NAME TYPE TYPE DATE TIME STMTS 

#UTlLITY 	 U08P P 10/03/88 09: 18 043 OLDER VERSION 

#UTlLITY 	 UMENU S MNU 2/22/88 09 :00 048 NEW MEMBER 
UMENU## S MNU 2/22/B8 09:00 022 NEW MEMBER 

TOTAL # OF MEMBERS LISTED 

Saving Print Screens as Source Members 
by George A. Meyer 

a Code on diskette: 

Procedure GEOPK 
RPG program GEOPK 

Utility GEOPK enables you to include screen images in a word processing 
file for documentation purposes. Procedure GEOPK (Figure 7-40) and RPG 
program GEOPK (Figure 7-41) capture screen images by loading output 
from the Print key into a library as source code. To copy a screen into a 
library, first stop the spool writer. Then call up the screen image that you 
want a hard copy of, and press the PRINT key. Hold the subsequent spool 
file on the print queue. While the spool writer is stopped, you can display, 
print via the PRINT key, and HOLD as many screen images as you want. 
Just keep a list of the screen images and their respective spool IDs. 

Once you have all the screen images held on the spool file, run proce
dure GEOPK on each of the spool IDs. Procedure GEOPK has three 
parameters: the spool 10, the name of the library member that will contain 
the screen image, and a request for rerun or cancel. The procedure runs the 
COPYPRT procedure to copy the specified spool file into a disk file by the 
same name and saves the name of the file in the LOA. Then the procedure 
loads program GEOPK, which reads the file name from the LOA, writes a 
II COpy statement at the beginning of output file LIBO, copies the screen 
image file line by line to file LIBO, and writes a II CEND statement at end 
of file. Because the screen image file was not created by $MAINT, these 
OCL statements are needed by SSP procedure TOLIBR, which creates 
the library source member containing the screen image (for more informa
tion about II COpy and II CEND, see chapter 4 of the IBM S/36 System Ref
erence Manual). Procedure TOLIBR is called by procedure GEOPK when 
program GEOPK has run. After you run procedure and program GEOPK, 
the screen image will be in the specified source member, ready for editing. 

There are a few safety checks built into procedure GEOPK. If a file on 
disk has the same name as the one you specify in the spool 10 parameter, 



192 5/36 Power Tools 

Figure 7-40 

Procedure 

GEOPK 


Figure 7-41 

Program 
GEOPK 

or if a procedure, source, subroutine, or load member has the same name as 
the one you specify in the library member parameter, the procedure will be 
canceled. If you have any other potential name conflicts, you need to mod
ify procedure GEOPK to include the appropriate: checks. 

We have found this procedure most useful for including problem 
screens in letters to software vendors and for local documentation. (We use 
the EDIT function of POP to add the additional text.) 

II TAG RERUN 
I I EVALUATE P1 ~' 


I I EVALUATE P2-' 

I I EVALUATE P3·' 


II • ' ENTER SPOOL ID ' 

II IF DATAF1·'lR' GOTO A 

1/ COPYPRT 'l',?l',CANCEL 


II • ' ENTER NAME TO BUILD 

II LOCAL OFFSET-1 ,DATA· '72R?' 


II IF SOURCE·"2','CLIB" GOTO B 

II IF SUBR·'?2?,?CLIB?' GOTO B 

II IF PROC·'?2?,?CLIB?' GDTO B 

II IF LOAD·'?2??CLIB?' GOTO B 


I I LOAD GEOPK 

II FILE NAME·PRINT,LAABEL·'1' 

I I FI LE NAME· LI BO, LABEL-?2? ,DISP-NEW, RECORDS·200, EXTEND·1 00 

I I RUN 


II TOLlBR 72',F1" ,?CLlB?", ,ALL,L1BRARY 


1/ IF DATAF1-'1? DELETE 'p, F1 ,REMOVE. 
II TAGE C 
II • ' ENTER Y TO RERUN OR N TO CANCEL 
II IF ?3R?·Y GOTO RERUN 
II IF ?3R"N CANCEL 
II ELSE GOTO C 

II TAG A 
II PAUSE '?1' FILE ALREADY EXISTS JOB IS CANCELED, PRESS 0 ' 
II CANCEL 

1/ TAG B 
// PAUSE "2' LIBRARY MEMBERS EXIST JOB IS CANCELED, PRESS 0 ' 
/1 CANCEL 

4 B 
H 24 GEOPK 
FPRINT I P F 150 150 DISK 
FLIBO 0 F 96 96 DISK 
l' 
IPRINT AA 01 1 CH 
I OR 02 1NCH 
I 1 1 CH 
I 09 90 IP 
ILDA UDS 
I 6 LN 
l' 
OLIBO 0 01N02 
0 OR 02N01 
0 01N02 23 '1/ COPY LIBRARY-S,NAME-' 
0 01N02 LN 29 
0 02N01 IP 85 
OLIBO T LR 7 'II CEND' 
O· 



Files 


-CHAPTER 

8 




194 5/36 Power Tools 

Accessing Files Dynamically from RPG 
by Perry Gardai 

program by Mel Beckman 

a Code on diskette: 


Procedure FLEDIT 

RPG program FLEDIT 
Screen format member FLEDITFM 
Assembler subroutine SUBRFA 

Most computers and common high-level languages offer dynamic access to 
a file within a program, without compiling file attributes (e.g., record 
length) into the machine-executable version of thc~ program. Such a fea
ture, which IBM calls Special Allocate, is especially useful for text proces
sors, file editors, communications file processing, and other applications for 
which the exact composition of a file is unknown. Special Allocate is an 
integral part of SSP used by many of IBM's own programs. Special Allo
cate's file access capabilities also can add power and flexibility to the RPG 
programmer's arsenal, but IBM unfortunately has not provided an interface 
between Special Allocate and RPG. 

Such an interface is provided by subroutine SUBRFA. With SUBRFA, 
you can open numerous files simultaneously, without coding the II FILE 
statement in the program's calling procedure or defining the file in the 
RPG F -specs. You can open any type of file (sequential, indexed, or direct) 
with any record length and manipulate the file in any routine manner (e.g., 
add, change, and delete record; randomly access keyed or relative record 
numbers; read next and read prior). The only restriction is that the files 
must exist on disk; you can create new records, but not new files, on the fly. 

Program FLEDIT (Figure 8-1) is one example of how SUBRFA is 
incorporated into a program. Although FLEDIT is a relatively unsophisti
cated file editor, it provides an adhoc file edit capability absent in most S/36 
installations. FLEDIT's simplicity makes it a good vehicle for becoming 
acquainted with SUBRFA. Program FLEDIT uses screen format member 
FLEDITFM (Figure 8-2) and is called by procedure FLEDIT (Figure 8-3). 

Before you use program FLEDIT to call SUBRFA, you must under
stand the various RLABL (record label) statements SUBRFA requires to 
open, access, and close a file. Figures 8-4a through 8-4d offer you a detailed 
explanation of the RLABL code structures for each file function. The val
ues supplied in these RLABLs control SUBRFA. After you code the 
RLABL statements, you can use SUBRFA with program FLEDIT, the 
two-screen file editor mentioned earlier. 

The first screen of program FLEDIT asks for the name of the file to be 
opened, access type (I, 0, Of U), keyed file flag, and share level. Procedure 



Files 195 

Figure 8-1 

Program 

FLEDIT 


FLEDIT lets you skip this first screen by entering the call command in a 
format similar to 

FLED IT filename,mode,share, + keyflag 

Parameter 1 is the name of the file to be opened. Parameter 2 must be U for 
update, I for input, or 0 for output, and defaults to U if unspecified. Parame
ter 3 is the share level (listed under the description of the PARMS RLABL in 
Figure 8-4c), which defaults to MM. A K for parameter 4 accesses the file 
through its keys; leave this parameter unspecified for unkeyed access. 

After you enter the file name, screen two (Figure 8-5) displays records 
contained in the file. Initially, no record is displayed; you can press "roll up" 
to view the first record in the file. You then can manipulate the file by using 
the command and function keys displayed at the bottom of the screen. 

The beauty of using Special Allocate via SUBRFA is that there is not a 
single II FILE statement in the procedure, yet program FLEDIT can edit 
any file on the system. FLEDIT uses only one file at a time, but you can 
employ the same principles to access any number of files within a single 
program. By comparing the manipulation of screen two and the code in 
FLEDIT, you quickly gain appreciation for the simplicity and power the 
Special Allocate function incorporates into an application program. 

*. 3 4 
0001 H 064 FLEDIT 
0002 F* 
0003 F* Primitive file editor using SUBRFA 
0003 F* By Mel Beckman 
0004 F* 
0005 FWORKSTN CD F 2048 WORKSTN 
0006 F KINFDS INFDS 
0007 E SEG 10 4 0 Segment numbering 
0008 E REC 4096 1 Data record buffer 
0009 E BIN 4096 1 Binary data hold 
0010 E R50 10 50 Screen buffer 
0011 E MSGKEY 1 22 6 MSG 60 Screen buffer 
0012 1* 
0013 1* Open file prompt screen input 
0014 1* 
0015 IWORKSTN 1 CO 
0016 I 2 9 NAME 
0017 I 10 13 PARMS 
0018 1* 
0019 1* File data screen input 
0020 1* 
0021 IWClRKSTN 1 Cl 
0022 I 2 100 KEY 
0023 I 101 1040NEWRP 
0024 I 105 604 R50 
0025 1* 
0026 J* Data record data structure 
0027 1* 
0028 IRECORD OS 
0029 I 14096 REC 
0030 1* 
0031 1* File open feedback data structure 
0032 1* 
0033 IFEEDBK OS 
0034 I 80FFRUSD 
0035 I 120FFRECL 
0036 I' 
0037 1* Workstation info data structure 
0038 1* 



196 5/36 Power Tools 

0039 IINFDS OS 
0040 I 'STATUS STATUS 
0041 1* 
0042 I' Local data area containing initial file open parameters 
0043 I" 
0044 I UDS 
0045 I 201 208 NAME 
0046 I 209 212 PARMS 
0047 C/EJECT 
0048 c· 
0049 C" I f file spec; fi ed on procedure call. then skip initial prompt 
0050 C' 
0051 C NAME CaMP 'BLANKS 11 
0052 C 11 GOTO OPEN2 
0053 C" 
0054 C" Prompt for a file name to open 
0055 C· 
0056 C OPENl TAG 
0057 C EXCPTPROMPT 
0058 C READ WORKSTN 1111 
0059 C KG GOTO EOJ 
0060 C" 
0061 C· Open the file 
0062 C· 
0063 C OPEN2 TAG 
0064 C MOVE . "OPEN OP 
0065 C EXIT SUBRFA Call SUBRFA to open 
0066 C RLABL OP 
0067 C RLABL DTF 128 
0068 C RLABL NAME 
0069 C RLA8L PARMS 
0070 C RLABL FEEDBK 
0071 C· 
0072 C EXSR MSG Get message text 
0073 C MOVE LOP TESTA 
0074 C TESTA IFNE If returncode bad 
0075 C GOTO OPENl Then retry open 
0076 C END 
0077 C· 
0078 C MOVE "BLANKS REC Clear record buffer. 
0079 C MOVE 'BLANKS R50 screen buffer 
0080 C MOVE 'ZEROS SEG and segment flags 
0081 C/EJECT 
0082 C' 
0083 C· Process data requests 
0084 C· 
0085 C DATA TAG 
0086 C' 
0087 C EXCPTEOIT 
0088 C SETOF KAKBKC 
0089 C SETOF KDKEKF 
0090 C SETOF KGKHKI 
0091 C SETOF KJKKKL 
0092 C SETOF KPKOKR 
0093 C SETOF KY 
0094 C READ WORKSTN 1111 
0095 C KG GOTO EOJ 
0096 C MOVE "BLANKS OP Clear opcode 
0097 C· 
0098 C· Process OPEN request 
0099 C' 
0100 C STATUS. IHO 01125 If HELP pressed 
0101 C MOVE . 'CLOSE' OP Then close file 
0102 C EXIT SUBRFA 
0103 C RLABL OP 
0104 C RLABL DTF 
0105 C GOTO OPENl Go perform open 
0106 C END 
0107 C" 
010B C· Process command keys 
0109 C" 
0110 C EXSR CMO Go process the cmd 
0111 C· 
0112 C' Perform disk data management operation if one is pend; ng 
0113 C" 



Files 197 

0114 C OP I FNE "BLANKS If we have an op 
0115 C EXIT SUBRFA Ca 11 SUBRFA to exec 
0116 C RLABL OP 
0117 C RLABL DTF 
0118 C RLABL RECORD 
0119 C RLABL KEY 
0120 C" 
0121 C MOVELOP TESTA 
0122 C TESTA IFEQ If returncode OK 
0123 C EXSR SAVEBN Then save binary 
0124 C MOVE "BLANKS R50 clear buffer 
0125 C MOVEAREC,RP R50,1 move recdata 
0126 
0127 

C 
C 

EXSR 
END 

SEGTAG and set seg tags 

0128 C" 
0129 C EXSR MSG Get possible msgtext 
0130 C END 
0131 C" 
0132 C" 
0133 C GOTO DATA 
0134 C" 
0135 C" End of program 
0136 C" 
0137 C EOJ TAG 
0138 C SETON LR 
0139 C/EJ ECT 
0140 C" 
0141 C' Retrieve possible message text 
0142 C" 
0143 C MSG BEGSR 
0144 C" 
0145 C MOVE "BLANK MSGTXT 7B 
0146 C MOVELOP TESTl 
0147 C MOVE LOP TEST2 
0148 C TESTl I FNE If error retn 
0149 C TEST2 I FEQ '##' and its a sys err 
0150 C MOVE OP SYSERR then build msg 
0151 C MOVEL' SYS- ' SYSERR 
0152 C MOVELSYSERR MSGTXT 
0153 C MOVE OP SYSMIC Extract MIC 
0154 C MOVE '1 ' SYSLVL Set for USERl 
0155 C EXIT SUBR23 Ret r; eve msg text 
0156 C RLABL SYSMIC 4 
0157 C RLABL SYSTXT 69 
0158 C RLABL SYSLVL 1 
0159 C RLABL SYSRET 
0160 
0161 
0162 

C 
C 
C 

MOVE SYSTXT 
ELSE 
Z-ADDl 

MSGTXT 

X 20 

Set 
E1 se 

message 
we must 

text 
lookup 

0163 
0164 

C 
C 11 

OP LOKUPMSGKEY, X 
MOVELMSG,X MSGTXT 

11 Lookup message 
If found, set it 

0165 C Nl1 MDVELOP MSGTXT El se show wi erda 
0166 C Nll MOVE '7ERROR?' MSGTXT 
0167 C END 
0168 C END 
0169 C" 
0170 C ENDSR 
0171 CjEJECT 
0172 C' 
0173 C" Process command/function keys 
0174 C" 
0175 C CMD BEGSR 
0176 C' 
0177 
0178 

C NEWRP 
NEWRP 

IFGT 0 
IFLE FFRECL 

If new ree 
;s valid 

pas 

0179 
0180 

C 
C 

MOVEAR50 
Z-ADDNEWRP 

REC, RP 
RP 40 

Copy from buffer 
Set new RP 

0181 C MOVE "BLANKS R50 C1 ear buffer 
0182 
0183 
0184 

C 
C 
C 

MOVEAREC,RP 
EXSR SEGTAG 
END 

R50 Copy to buffer 
Set segment tags 

0185 C END 
0186 C' 
0187 
0188 

C 
C 

STATUS JFEQ 01122 
MOVE ' "GUN OP 

If roll-up 
Then get next 



198 5/36 Power Tools 

0189 C Z-ADDl RP 40 
0190 C END 
0191 C' 
0192 C STATUS IFEQ 01123 If roll-down 
0193 C MOVE . 'GETP OP Then get prey 
0194 C Z-ADDl RP 40 
0195 C END 
0196 C' 
0197 C KA EXSR NXTSEG Next ree segment 
0198 C KB EXSR PRVSEG Prev ree segment 
0199 C KC MOVE . 'GETK OP Get by key 
0200 C KC Z-ADDl RP 
0201 C KP MOVE • 'ADD OP Add record 
0202 C KP Z-ADDl RP 
0203 C KQ MOVE "DEL OP Delete record 
0204 C KR MOVE . 'LlPD OP Update record 
0205 C KR MOVEAR50 REC. RP (copy from buffer) 
0206 C KR EXSR RESTBN (restore bin data) 
0207 C KF MOVE • 'REL OP Release record 
0208 C KH MOVE . 'GETR OP Get by RRN 
0209 C KH Z-ADDl RP 
0210 C KI MOVE • 'SBOF OP Set BOF 
0211 C KJ MOVE "SEOF OP Set EOF 
0212 C KK MOVE . 'GETF OP Get first 
0213 C KK Z-ADDl RP 
0214 C KL MOVE . 'GETL OP Get last 
0215 C KL Z-ADDl RP 
0216 C KY MOVE • 'FEOD OP Fix end-of-data 
0217 C' 
0218 C ENDSR 
0219 C/EJECT 
0220 C' 
0221 C' Subroutine to advance to next record segment 
0222 C' 
0223 C NXTSEG BEGSR 
0224 C' 
0225 C MOVEAR50 REC.RP Copy from buffer 
0226 C ADD 500 RP Bump to next seg 
0227 C RP IFGT FFRECL If past EOR 
0228 C SUB 500 RP Then undo 
0229 C END 
0230 C' 
0231 C MOVE 'BLANKS R50 Clear buffer 
0232 C MOVEAREC. RP R50 Copy to buffer 
0233 C EXSR SEGTAG Set segment tags 
0234 C' 
0235 C ENDSR 
0236 C/SPACE 
0237 C' 
0238 C' Subroutine to backup to prev record segment 
0239 C' 
0240 C PRVSEG BEGSR 
0241 C' 
0242 C MOVEAR50 REC. RP Copy from buffer 
0243 C SUB 500 RP Bump to next seg 
0244 C RP IFLT 1 If past BOR 
0245 C Z-ADDl RP Then anchor at 1 
0246 C END 
0247 C' 
0248 C MOVE 'BLANKS R50 Clear buffer 
0249 C MOVEAREC.RP R50 Copy to buffer 
0250 C EXSR SEGTAG Set segment tags 
0251 C' 
0252 C ENDSR 
0253 C/SPACE 
0254 C' 
0255 C' Subroutine to compute segment tags 
0256 C' 
0257 C SEGTAG BEGSR 
0258 C' 
0259 C MOVE 'BLANKS SEG Clear seg array 
0260 C Z-ADDRP TAG 40 Clear seg array 
0261 C 1 DO 10 X For each seg tag 
0262 C TAG IFLE FFRECL If EOR not reached 
0263 C Z-ADDTAG SEG.X 40 Set tag 



Files 199 


0264 C ADO 50 TAG Bump tag 

0267 C' 

0269 C/EJ ECT 
0270 C' 
0271 C' Save binary data and clear in record buffer 

0274 C' 

0276 C' 

0285 C' 

0287 C/EJECT 
0288 C' 

0265 C ENO 
0266 C END 

0268 C ENDSR 

0272 C' This ;s to prevent non-displayable characters from being output. 
0273 C' Anything less than blank (X·40·) is nondisplayable. 

0275 C SAVE8N BEGSR 

0277 C 1 00 FFRECL C 40 
0278 C REC. C IFLT If nondisplayable 
0279 C MOVE REC.C BIN.C Then save bin data 
0280 C MOVE REC.C And put marker char 
0281 C ELSE Else 
0282 C MOVE BIN.C Clear bin data 
0283 C ENO 
0284 C ENO 

0286 C ENOSR 

0289 C* Restore binary data and clear in record buffer 
0290 C* This is to ensure that nondisplayable data is not cbrrupted 
0291 C' 

0292 C RESTBN BEGSR 

0293 C' 


0300 C/EJECT 


0302 0 K8 'FLEDITOO' 


0306 O· 

0307 0 EOIT 

0308 0 K8 . FLEOITOl . 


0294 C 1 DO FFRECL C 40 

0295 C BIN.C IFLT If nondisplayable 

0296 C MOVE BIN.C REC.C Then rest bin data 

0297 C END 

0298 C ENO 

0299 C ENOSR 


0301 OWORKSTN PROMPT 


0303 0 NAME 8 

0304 0 PARMS 12 

0305 0 MSGTXT 90 


0309 0 NAME 8 

0310 0 PARMS 12 

0311 0 KEY 111 

0312 0 FFRECLZ 115 

0313 0 FFRUSOZ 123 

0314 0 SEG.l Z 127 

0315 0 R50.1 177 

0316 0 SEG.2 Z 181 

0317 0 R50.2 231 

0318 0 SEG.3 Z 235 

0319 0 R50.3 285 

0320 0 SEG.4 Z 289 

0321 0 R50.4 339 

0322 0 SEG.5 Z 343 

0323 0 R50.5 393 

0324 0 SEG.6 Z 397 

0325 0 R50.6 447 

0326 0 SEG.7 Z 451 

0327 0 R50.7 501 

0328 0 SEG.8 Z 505 

0329 0 R50.B 555 

0330 0 SEG.9 Z 559 

0331 0 R50.9 609 

0332 0 SEG.10Z 613 

0333 0 R50.10 663 

0334 0 MSGTXT 741
.* Message keys and text 
#41 Permanent I/O error 
#42 End or beg i nn i ng of f i 1 e 
#43 Invalid operation code 



200 5/36 Power Tools 

Figure 8-2 

Screen format 
member 
FLEDITFM 

#44 
#45 
#48 
#49 
#50 
#53 
#60 
#61 
#62 
#63 
#70 
#75 
#99 
#UB41 

Duplicate key 
Duplicate key in another index 
Key out of sequence 
Invalid key length 
File is full 
Undefined access type 
Fi 1 e not opened 
Record update attempted before 

Record not found 
Record update attempted before input 
Invalid relative record number 
Invalid data record 
Update key error 
Duplicate relative record number 

#BADOPBad operation code 
input 

calling SUBRFA 
to SUBRFA is not closed 

length of RPG record buffer 

Y 

6 
G 

CO 
CFilename: 

7 ... 8 

Y 
Y 
Y 

COpen 

C 
e 

parameters. 

FLEDIT 
\ X 

CI-Input K-Keyed X 

CO-Output Share Level X 

eU-Update (RR. RM. MM. X 

235DEMNSTUVWX 
Y Cl 

CFi lename: 


COpen parameters: 

Y 
Y 
Y 

CFLEDIT 
CKey. 

Y Y 
CRecLang: 

CRecords: 

Y 
Cl . .. : ... 10. .... 20. .X 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 

#DTFE DTF field is not 256 bytes long when 
#NOTC Fi 1 e open attempted. but DTF passed 
#RLERRRecord length of file opened exceeds 
#UNOP File is unopened 

1 
SFLEDITOO 
DFAOOOl 
DFAOO02 
DFLOOO4 
DFLOOO5 
DFLOO06 
DFLOO07 
DFLOOO8 
DFAOOOl 
DFLOOO9 
0 
DFLOO12 
Daccess 
DFLOO13 
0 
DFLOO15 
DMR. NO) 
DFAODOl 
DSFLEDITOl 
DDID 
DDFAOOOl 
DDFLOO04 
DDFLOO05 
DDFLOO06 
DDFLOO07 
DDFLOO08 
DDFAOOOl 
DDFAOOOl 
DDFLOO16 
DDFAOO02 
DDFAOO04 
DDFAOOOl 
DDFAOO02 
DDFAOOOl 
DDFAOOOl 
DO. : ... 30. 
DDFAOO03 
DDFAOO02 
DDFAOO04 
DDFAOO03 
DDFAOO05 
DDFAOO04 
DDFAOO06 
DDFAOO05 
DDFAOO07 
DDFAOO06 
DDFAOO08 
DDFAOO07 
DDFAOO09 
DDFAOO08 
DDFA0010 

1 1 2Y 
9 1 4Y 
8 114Y 

16 132Y 
1 149Y 
2 151Y 
1 154Y 

18 156Y 
30 241Y 

30 341Y 

30 441Y 

30· 541Y 

7824 2Y 

1 1 2Y 
9 1 4Y 
8 114Y 

16 132Y 
1 149Y 
2 151Y 

154Y 
168Y 

4 2 9Y 
99 214Y 

8 511Y 
4 520Y 
8 544Y 
8 553Y 
4 6 6 

50 	 6l1Y 
.. 40. 

4 7 6Y 
50 7l1Y 

4 8 6Y 
50 811 Y 
4 9 6Y 

50 911Y 
410 6Y 

50l0l1Y 
411 6Y 

501111 Y 
412 6Y 

501211Y 
413 6Y 

5013l1Y 
414 6Y 

3 ... 4 
YY 

Y Y 

Y 

Y 
Y 
Y 

Y 
YN 

Y Y 

Y 

YN Z 

. .. 50 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 

Y Y 



Figure 8-3 

Procedure 
FLED!T 

Figure 8-4a 

Validfile 
opcodes 

Figure 8-4b 

RLABLcode 
structures for 
closing a file 

Files 201 

DDFA0009 501411Y Y Y Y Y 
DDFAOOll 415 6Y 
DDFA0010 501511Y Y Y Y Y 
DDFA0012 416 6Y 
DDFA0011 501611Y Y Y Y Y 
DDFA0023 56017 1 Y C X 
DO Help-Open a X 
DDnew file ShiftCmd3-Add record Enter-X 
DDUpdate buffer ShiftCmd4-Delete record Cmd9-Set to BOF X 
DO Roll-Read next/prev ShiftCmd5-Update record Cmdl0-Set to EOF X 
DO Cmdl-Next rec segment Cmd6-Release record Cmdl1-Get fiX 
DDrst record Cmd2-Prev ree segment Cmd7-End program Cmd12X 
DO-Get last record Cmd3-Gev by key Cmd8-Get by RRN X 
DO Cmd24-Fix end of data 
DDFAOOOl 7824 2Y 

* Fi1e editor 

// LOCAL OFFSET-201 ,DATA-'?l?' ,BLANK-8 File name 

1/ LOCAL OFFSET-209,OATA-'?2'U'?' ,BLANK-l Access Default: Update 

// LOCAL OFFSET-210,DATA-'?3'MM'?' ,BLANK-2 Share 1eve 1 Default: SHRMM 

1/ LOCAL OFFSET-212,OATA-'?4?' ,BLANK-l Keyed f1 ag Default: Un keyed 

II MEMBER USER1-##MSGl 

/ / LOAD FLED IT 

II RUN 


·ADD: Add a record to the file "GETP: Get previous 
·DEL: Delete a record "GETR: Get by RRN (CHAIN direct) 
·GETA: Get a record by key above "GETF: Get the first record 
·GETC: Get current record "GETL: Get the last record 
"GETD: Get next duplicate key "UPD: Update the last record read 
·GETE: Get keyed equal or high (SETll) "REL: Release the last record read 
"GETK: Get keyed (CHAIN) "S80F: Set to beginning of file 
"GETN: Get next "SEOF: Set to end of file 

The OP field may contain an error code after returning from SUBRFA. The error 
code always begins with '#'. The standard codes are shown in the compile-time 
table at the end of program FlEDIT. If the error code starts with '##', 
the remaining four digits are an SSP Message Identification Code (MIC) for a 
system message described in the IBM System Messages publication. 

EXIT SUBRFA 

RlABl OP 

RlABl DTF 


OP 	 Contains the operation code, .. ·ClOSE," left justified. 

DTF 	 The DTF field associated with the file you are closing. After you close 
the file, you can open a different file to take its place in the same DTF 
field. By using different DTF fields, you can open numerous files 
simultaneously. 



202 5/36 Power Tools 

Figure 8-4c 

RLABL code 
stroctures for 
opening afile 

OP 

DTF 

NAME 

PARMS 

FEEDBK 

EXIT 5UBRFA 
RlABl OP 6 
RlABl DTF 128 
RlABl NAME 8 
RlABl PARMS 4 
RlABl FEEDBK 

Contains one of the operation codes associated with file manipulation 
functions. For example, to open the file, enter ""OPEN" in the "OP" 
field. 

A 128-byte field that contains the "Define- the-file" control block for 
the file being opened. This field must be unique for each file that is 
opened within the program and cannot be an array or an array 
element. Never change the content of this field, because it is used by 
SUBRFA internally. 

The name of the file to be opened. This field must be the exact label 
of the file as it appears on the 5/36 VTOe. 

Contains the "open" parameters xyyz, where: 

x::::: 	Type of processing 
I ::::: Input 
U ::::: Update 
o ::::: Output 

yy ::::: Share level 
RR ::::: Read/Read 
RM ::::: Read/Modify 
NO ::::: No Sharing 
MM::::: Modify/Modify 
MR ::::: Modify/Read 

z ::::: 	 Keyed access 
K ::::: Keyed access 

The name of the data structure that will receive information about 
the file attributes after the file is opened. The format of this data 
structure is 

positions 1 - 8 number of records used 
positions 9 - 12 record length 
positions 13 - 20 file capacity in records 

Like data from any file, only code and use what you need for your 
particular application. 



Files 203 

Figure 8-4d EXIT SUBRFA 
RLABLcode RLABL OP 
stroctures for RLABL DTF 
accessillg afile RLABL record 

RLABL key 

OP 	 Contains one of the operation codes:, left justified. 

DTF 	 The name of the DTF field that is associated with the file you are 
accessing. 

record 	 Name of the field or data structure that will contain the record being 
accessed. 

key 	 Contains the key data for indexed file operations or the relative record 
number (left justified, eight digits) for RRN operations. 

Figure 8-5 

FLEDIT illitial 
Filename: EDITPROF Open parameters: U MM FLEDIT 

display Key: 
RecLeng: 512 	 Records: 

1 . . 10 . . .. 20 .... : ... 30 . 40 . . .. 50 

Help-Open a new file ShiftCmd3-Add record 
Enter-Update buffer ShiftCmd4-Delete record Cmd9-Set to BOF 
Roll-Read next/prey ShiftCmd5-Update record CmdlO-Set to EOF 
Cmd1-Next rec segment Cmd6-Release record Cmd11-Get first record 
Cmd2-Prev rec segment Cmd7-End program Cmd12-Get last record 
Cmd3-Get by key Cmd8-Get by RRN Cmd24-Fix end of data 



204 5/36 Power Tools 



Files 205 

Retrieving a File's Users 
by Perry Gardai 

program by Matthew Henry 

When your S/36 
file maintenance 
chores are 
stymiedby a ''file 
in use" message, 
use this utility to 
identify who is 
using the file. The 
S/36 utility 
TESTUF 
determines which 
workstations or 
jobs are using a 
particularfile 
andgives you a 
tool upon which 
to build nefJlJ 
utilities. 

a Code on diskette: 

Procedure TESTUF 
RPG program TESTUF 
Assembler subroutine SUBRUF 

Most S/36 programmers know how frustrating it is to try to perform file main
tenance functions such as a DELETE or variations of COPYDATA, 
RENAME, and SAVE that require a dedicated file. Invariably, an unknown 
culprit is using the file you need. Unfortunately, IBM provides no way to 
determine who is using a particular file. To solve this problem, we present 
the S/36 TESTUF utility, which offers an easy and effective method of 
determining file use from any terminal on the system. The TESTUF utility 
allows you to determine the users of a file, including each active procedure 
and program and the job start time, as well as the file sharing level in effect 
for each user. The procedure does not require the target file to be dedicated. 

Procedure TESTUF (Figure 8-6) serves as the user interface by calling 
program TESTUF (Figure 8-7), which calls subroutine SUBRUE For ease 
of access, procedure TESTUF and program TESTUF should be stored in 
#LIBRARY. 

To use the TESTUF utility, simply key in 
TESTUF filename 

where filename (parameter 1) is the name of the file to be checked for cur
rent users. Procedure TESTUF loads the file name into the LDA, begin
ning in position 247. The TESTUF utility uses LDA positions 201 
through 262 to avoid conflict with the LDA positions IBM's POP uses. 
Procedure TESTUF initializes parameter 2 to zero and loads it into the 
LDA starting in position 255, where it serves as a loop counter. Procedure 
TESTUF then calls program TESTUF, a one-cycle RPG program that 
calls SUBRUF via the EXIT operation and three RLABL statements. The 
first RLABL statement contains the file name you specified. Subroutine 
SUBRUF retrieves information about one user of this file and stores the 
user information in data structure JOBDS, named in the third RLABL 
statement. (This data structure must be at least 47 bytes long to hold all 
the information SUBRUF returns. If the data structure is not long enough, 
SUBRUF will not return any data.) 



206 S/36 Power Tools 

Because the specified file could have several users, SUBRUF allows 
repetitive calls to retrieve information about each of them. The second 
RLABL statement, JOB#, specifies the user for which SUBRUF should 
return information. Field JOB# contains 0 to return information about the 
first job using the specified file, 1 for the second job, 2 for the third job, and 
so on. After calling SUBRUF, program TESTUF copies the contents of 
the JOBDS data structure (information about a user of the file) into LDA 
positions 201 through 262 via the LJINFO field, and procedure TESTUF 
displays this user information on your workstation screen. Then procedure 
TESTUF increments the counter, parameter 2, and repeats the process 
until position 209 of the LDA (corresponding to field JOBNAM in data 
structure JOBDS) is blank. This loop is repeated as often as jobs are found 
running from the specified file and results in a scrolling screen that displays 
messages containing information about all users of the specified file. 

The JOBDS data structure returned by SUBRUF contains information 
about the file sharing level (access privileges) for each user. The field 
SHRLVL is a one-digit code with the following meaning: 

Code Sharing Level 
o Read/Modify 
1 Read/Read 
2 Modify/Read 
3 No Sharing 
4 Modify/Modify 

Program TESTUF uses an array to translate this numeric code into the stan
dard alphabetic notation used by the SSP to designate file sharing levels (e.g., 
SHRMM is the notation that designates a sharing level of Modify/Modify). 

When position 209 of the LDA is blank (Le., no other jobs are using the 
specified file), the procedure performs a final test of parameter 2. If param
eter 2 is 0 at this time, no workstation or job is using the specified file, and 
a message is issued accordingly. (If parameter 2 is a value other than 0, no 
message is issued in addition to the file user information.) In either case, 
procedure TESTUF then terminates. 

As with any user members stored in an IBM-supplied library (e.g., 
#RPGLIB or #LIBRARY), you should remember that subroutine SUB
RUF, program TESTUF, and procedure TESTUF will be removed from 
the system each time you install a new release of SSP. Therefore, you 
should keep a copy of all the components of this utility in your tool kit 
library so you can readily replace them after you install a new release. 

The TESTUF utility demonstrates tool building -- it uses a core tool 
(SUBRUF) to create a new tool. You can implement a core tool as a subroutine 
to incorporate into other tools, to build completely new tools, or to use one tool 
in different ways. For instance, you could incorporate the TESTUF utility 
directly into the IBM-supplied DELETE, COPYDATA, or SAVE procedures 
to show a list of jobs using a file before you get the "file in use" message. 



Figure 8-6 

Procedure 
TESTUF 

Figure 8-7 

Program 
TESTUF 

Files 207 

The TESTUF utility can help you in your file maintenance chores by 
identifying who is using the file that you need to access. And you also can 
make your programming efforts more effective if you use these tool-build
ing concepts. 

.,.. Find out who's using a file 
1/ INFOMSG YES 
1/ LOCAL OFFSET-247.DATA-'?lR?' ,BLANK-S 
/ I EVALUATE P2, 3-0 
II • 'The following jobs are using file ?17: 
/1 TAG LOOP 
/1 LOCAL OFFSET-255,OATA·'727' 
// LOAD TESTUF 
// RUN 
1/ IF 7L'W9,l'?- GOTO DONE 
1/ * 'Job ?L'209,S'?, User ?L'201,S'?, Proc 7L'217,S'?, + 

Running ?L'233,S'?(?L'225,S'?), DISp·?L'25S,5'?' 
1/ EVALUATE P2,3-?2?+1 
// GOTO LOOP 
1/ TAG DONE 
// IF 72?-000 * '(nobody)' 
/ I PAUSE 

*. 4 S 
0001 H 064 TESTUF 

0002 * 

0003 *- This program tests SUBRUF by retrieving job information for a job 

0004 * using a specified file. 

0005 * 

0006 E SHR 10 10 5 

0007 I UOS 

ODDS I 201 246 LJ INFO 

0009 I 247 254 FI LNAM 

0010 I 255 2570JOB# 

0011 I 25B 262 SHRTXT 

0012 IJOBOS OS 

0013 I 1 8 USERID 

0014 I 9 16 JOBNAM 

0015 I 17 24 FSTPRC 

0016 I 25 32 CURPRC 

0017 I 33 40 PRGNAM 

0018 I 41 460JSTIME 

0019 I 1 46 JINFO 

0020 I 47 470SHRLVL 

0021 C SETON LR 

0022 C EXIT SUBAUF 

0023 C RLABL FILNAM 

0024 C RLABL JOB# 

0025 C RLABL JOBOS 

0026 C MOVE JINFO LJINFO 

0027 C SHRLVL ADD 1 X 20 

0028 C MOVE SHR,X SHRTXT 5 

•• Share levels 

SH RRMSH RRRSH RMRNOSH R SHRMM 




208 5/36 Power Tools 

Displaying Record Locks 
by Gary T. Kratzer 

program by Mel Beckman 

Use utility 
SHOWURto 
determine 
which record is 
locked and 
which terminal 
is responsible. 

a Code on diskette: 


Procedure SHOWUR 

RPG program SHOWUR 
Assembler subroutine SUBRUR 
Screen format member SHOWURFM 

The record lock is a fact of life in S/36 shops. Because the S/36 was designed for 
multiple users in an interactive environment, operators constantly update 
records in master files. Quite often, different operators try to update the same 
record at the same time. The system looks unfavorably on such attempts, and it 
responds by "freezing" any terminal that tries to access a record already in use. 

In the interactive environment, a record's integrity depends on up-to-the
minute inform.ation. When Operator A updates an address in a record, the 
updated record writes over any previous version of the record in the master 
file. Operator B then uses the updated version when later changing the 



Files 209 

phone number in the same record. This update likewise replaces the version 
previously supplied by Operator A, and your master file record now contains 
both the correct address and the correct phone number. The interactive envi
ronment, by design, cannot accommodate simultaneous record updating. 

To minimize the chances of record locks, interactive programmers take 
a number of tacks. A S/36 program might include a comma"nd that releases 
a record immediately after it has been read. Or the program might make 
use of "busy flags" to warn operators that the record they want to access is 
already in use. A section of IBM's System/36 Concepts and Programmers Guide 
(SC21-9019) is devoted to avoiding record locks. But despite such "tricks," 
record locks are common at S/36 sites. 

Workstations can freeze up for many reasons - a record lock being but one. 
When a workstation freezes, your first task is to determine the cause. Ifall work
stations are inhibited, and you can't invoke system console mode, you probably 
do not have a record lock. But if only certain workstations are frozen, and those 
workstations share some or all of the same files, a record lock is likely. 

So what do you do when you discover a potential record lock? How do you 
determine which record is locked and which job is responsible? Most S/36 
sites don't even try to answer these questions. Instead, they commonly "cure" 

. the record lock by asking all users (including the operator using the record that 
others have tried to access) to end their jobs. The coveted record is released 
along with all other records, and any frozen terminals become functional again. 
. This approach works but at times is problematic. If a record lock occurs 

in the midst of a giant system update that takes several hours, you don't want 
to forsake the update to get one or two frozen terminals up and running. 
Having all users end their jobs also is not convenient when workstations are 
spread out over several floors or several buildings. So isn't there a better way? 

Have no fear! Utility SHOWUR is here! Utility SHOWUR displays 
information about records that a particular job uses and, as a result, helps 
you determine the source of a record lock. All you need to do is determine 
which file(s) the operator of the frozen terminal is trying to use, and 
SHOWUR does the rest. Utility SHOWUR comprises program SHOWUR 
(Figure 8-8), screen format member SHOWURFM (Figure 8-9), procedure 
SHOWUR (Figure 8-10), and assembler subroutine SUBRUR. 

10 use the utility, simply key in the letters SHOWUR, followed by the 
name of the file.you're interested in. The resulting screen (Figure 8-11) 
displays a list of jobs using that particular file, as well as certain related 
information. The Roll keys let you page through the entries. If no data is 
shown on the screen, the specified file either is not on the system or is not 
being used by any tasks. If the file you try turns out not to be the culprit, 
you may change the file name to display additional files. 

Three columns in the display indicate where a record lock may exist. 
Column RRN shows which of the file's records the job has last read. If the 
job has not released the record after reading it with an intent to update, a Y 



210 5/36 Power Tools 

will appear in column Owned. Ifother jobs are trying to use the same record, a 
Y appears in column Waiting. In such instances, as illustrated by the matching 
RRNs in Figure 8-11, you have a record lock. The other jobs then must wait 
until the job owning the record has released it before they can acquire it. 

When would such a situation occur? A typical scenario involves an oper
ator who brings up a customer's record to change the address, but who goes 
to lunch without releasing the record. If another operator tries to bring up 
the same customer's record at this time, his or her terminal becomes frozen 
- because the record is "locked" on the first operator's screen. With the 
information provided by utility SHOWUR, you easily can rectify the situa
tion. The first operator (or an authorized substitute) need only complete the 
update and release the record, thereby "thawing'" the second operator's ter
minal. Be aware, however, that another job may already be waiting for the 
record in question - in which case you would again have a record lock. 

SHOWUR can be a useful weapon in your computing arsenal. With this 
utility, you can conquer one problem typical of a multiuser environment. So 
next time your system freezes up, give SHOWUR a try. You'll save yourself 
hours on the phone and miles of legwork, and you'll have your users up and 
running again in no time. 

Figure 8-8 6 .. 8 
0001 H 064 SHOWUR 
0002 F"Program 
0003 F" By: Mel Beckman, 10/01/87

SHOWUR 0004 F' 
0005 F' Display a list of all records for use in a specified file 
0006 F* 
0007 FWORKSTN CD F 2000 WORKSTN 
0008 F KINFDS EXCPDS 
0009 E LIN 20 80 Screen 1ines 
0010 I" 
0011 1* Screen input 
0012 I' 
0013 IWORKSTN NS 
0014 I 
0015 I' 
0016 1* Data structure returned by SUBRUR 
0017 I" 
0018 IRECDS OS 
0019 I 1 8 USERID 
0020 I 9 16 JOBNAM 
0021 I 17 24 FSTPRC 
0022 I 25 32 CURPRC 
0023 I 33 40 PRGNAM 
0024 I 41 480RRN 
0025 I 49 49 FLAGS 
0026 I' 
0027 1* Screen line data structure 
0028 I' 
0029 I OS 
0030 I 1 80 SCREEN 
0031 I 1 8 SJOBNA 
0032 I 11 18 SUSERI 
0033 I 21 28 SFSTPR 
0034 I 31 38 SCURPR 
0035 I 41 48 SPRGNA 
0036 I 51 580SRRN 
0037 I 63 63 SOWNEID 
0038 I 71 71 SWAITG 
0039 I" 
0040 1* Workstation status data structure 



Files 211 

0041 I' 
0042 I EXCPDS OS 
0043 I 
0044 I' 
0045 1* LOA contains name 
0046 I' 
0047 I UOS 
0048 I 
0049 CjEJ ECT 
0050 C' 
0051 C' Main event loop 
0052 C' 
0053 C EOJ 
0054 C' 
0055 C 
0056 C 
0057 C 
0058 C KG 
0059 C' 
0060 C FILNAM 
0061 C 
0062 C 
0063 C 
0064 C' 
0065 C STATUS 
0066 C EOF 
0067 C 
0068 C 
0069 C 
0070 C' 
0071 C STATUS 
0072 C 
0073 C 11 
0074 C 
0075 C' 
0076 C 
0077 C' 
0078 C' End of program 
0079 C' 
0080 C 
0081 CjEJ ECT 
0082 C' 
0083 C' Page routine 
0084 C' Build a page of 
0085 C' 
0086 C PAGE 
0087 C' 
0088 C 
0089 C 
0090 C 
0091 C 
0092 C' 
0093 C 
0094 C 
0095 C 
0096 C 
0097 C 
0098 C JOBNAM 
0099 C 
0100 C 
0101 C 
01 02 C 
0103 C 
0104 C 
0105 C 
0106 C 
0107 C' 
0108 C 
0109 Cj EJ ECT 
0110 C' 
0111 C* Line routine 
0112 C* Build a screen 
0113 C' 
0114 C LINE 
0115 C' 
0116 C USERIO 

of initial file 

OOUEQ'Y' 

EXSR PAGE 
EXCPTSCRNOl 
READ WORKSTN 
MOVE 'Y' 

IFNE OLONAM 
MOVE FILNAM 
Z-ADDO 
END 

IFEQ 01122 

I FNE 'Y' 

Z-ADD16 

END 

END 


IFEQ 01123 

SUB 16 

Z-ADDO 

END 


END 

SETON 

data for output 

BEGSR 

Z-ADDSEQ# 
MOVE 'BLANKS 
MOVE 'BLANKS 
MOVE 'BLANK 

DO 20 
EXIT SUBRUR 
RLABL 
RLABL 
RLABL 
I FGT 'BLANKS 
EXSR LINE 
MOVEASCREEN 
ADD 
ELSE 
MOVE 'Y' 
MOVEL' **End**' 
END 

END 


ENDSR 

line 

8EGSR 

IFEQ 'BLANKS 

'STATUS STATUS 

201 208 FILNAM 

1111 
EOJ 

OLDNAM 8 
SEQ# 30 

SEQ# 

SEQ# 11 
SEQ# 

LR 

in the LIN array 

X 30 
LIN 
MSGLIN 70 
EOF 

Y 30 

FILNAM 
X 
RECDS 

LIN, Y 
X 

EOF 
MSGLIN 

Do until EOJ 

Build a screen page 
Display it 

Read the screen 

If Cmd7, set EOJ 


If name changed 
Save old name 
Reset SEQ# 


End IF 


If roll-up 

If not EOF 

then bump SEQ# 


End IF 

End IF 


If roll-down 
Then unbump X 

Adjust underflow 
End IF 

End DO 

Set starting point 
Clear line array 
Clear message line 
Clear EOF flag 

Do 20 times 
Get record user 

(name of file) 
(sequence #) 
(data structure) 

If valid name 
Build a line 
Store ; t 
Bump seq# 

Else 

Set EOF fl ag 

Show EOF msg 


End IF 
End DO 

If no user-ID 



212 5/36 Power Tools 

0117 C MOVEL'MRT JOB' SUSERI Then ; t' 5 a MRT 
0118 C ELSE El so 
0119 C MOVE USERID SUSERI It's a user 
0120 C END End IF 
0121 C' 
0122 C MOVE JOBNAM SJOBNA Copy jobname 
0123 C MOVE FSTPRC SFSTPR fi rst proc 
0124 C MOVE ClIRPRC SCURPR current proc 
0125 C MOVE PRGNAM SPRGNA prog name 
0126 C' MOVE RRN SRRN RRN 
0127 C TESTB'6' FLAGS 11 If owned bit on 
0128 C 11 MOVE 'Y' SOWN EO set "owned" 
0129 C Nll MOVE ' SOWN ED else clear it 
0130 C TESTB' 7' FLAGS 11 If waiting bit on 
0131 C 11 MOVE 'Y' SWAITG set "waiting" 
0132 C Nll MOVE ' SWAITG else clear it 
0133 C' 
0134 C ENDSR 
0135 OWORKSTN SCRNOl 
0136 0 K8 'SHOWUR01' 
0137 a FILNAM 8 
0138 a LIN 1608 
0139 0 MSGLIN 1678 

. 1 .. . 2 .. . 4 .. ... 6 ... . .. 7Figure 8-9 SSHOWLIROl NY AG15 
DFA0010 23 119Y CRecords in use for fileSHOWURFM DFAOOOl 8 143Y Y Y 
DFAOOOl 8 2 lY Y CJob namescreen format 
DFAOO02 8 211Y 	 Y C User 

member 	 DFAOO03 8 221Y Y Clst Proe 
DFAOO04 8 231Y Y CCur Proe 
DFAOO06 8 241Y Y C Prog 
DFAOO07 8 251Y Y C RAN 
DFAOO08 5 261Y Y COwned 
DFAOO09 7 268Y Y CWaiting 
DFAOO03 1600 3 lY 
DFL0023 7023 2Y Y 
DFLOO24 7924 2Y CRoll keys-page X 
0 Enter-update Cmd7-End program 

Figure 8-10 

SHOWUR01 Records ; n use for file CUSMAST 
sample screen Job name 

W2113118 
User 

MEL 
1st Proe 
LIBR# 

Cur Proe 
FLEDIT 

Prog 
FLED IT 

RRN 
00003241 

Owned 
Y 

Waiting 

W3102215 GARY CUSLI8 CMAINT CMAINT 00003241 Y 
W4082216 DON CUSUB CMAINT CMAINT 00000200 Y 
W4082222 DON CUSLI8 CUPDAT CUPDAT 00001565 Y 
W7120101 TRISH CUSLIB CDELET CDELOl 00001565 Y 

• * End* * 

Roll keys-page Enter-update Cmd7-End program 




Files 213 

II LOCAL OFFSET-201,DATA-'?l?',BLANK-8Figure 8·11 
II LOAD SHOWUR 

I I RUN
Procedure 

SHOWUR 



214 5/36 Power Tools 

Finding the Last Record Number in a File 
by Richard E. Green 

Figure 8-12 

Partialprogram 
FINDLAST 

a Code on diskette: 


RPG code FINDLAST 


I have often needed to add records to an indexed file whose key field was a 
one-up number. Normally, the last sequential number was maintained in a 
control file record. If an additional record was to be added, an add program 
read the last record number from the control file record, incrementing the 
last record number by one to determine the next record number and updat
ing the control file record. If the add program had an abnormal end of job, 
and the control record was not updated, another program had to be run to 

rebuild the key and to update the control record. 
Panial program FINDLAST (Figure 8-12) provides a solution to this 

problem by using a binary search (the old "I can find any number between 
two numbers in ten tries" routine) to find the last record number. Program 
FINDLAST eliminates the need both for the control record and the entire 
rebuild program. Program FINDLAST divides the range of values for the 
last record number in half. A CHAIN operation determines in which half 
the last record number occurs. The split-and-check process is continued 
until the next record to be read equals the last record read. 

This program can work with either indexed files or direct files. The 
only restriction on direct files is that the initial "high" number cannot be 
greater than the file length and that the file not be full. If the file is full, the 
program will incorrectly return the high value as the available record. 

. 4 6 
0065 C· HI LO EQ 
0066 C Z-ADD99999 HIGH 50 THIS ROUTINE FINDS THE 
0067 C Z-ADDO LOW 50 NEXT AVAILABLE RECORD. 
0068 C OVER1A TAG 
0069 C HIGH SUB LOW DIFF 50 HIGH CONTAINS THE 
0070 C DIFF DIV 2 DIFF H LAST UNFOUND NUMBER. 
0071 C DIFF ADD LOW DIFF LOW CONTAINS THE 
0072 C HIGH COMP DIF 41 LAST FOUND RECORD. 
0073 C 41 GOTO PASS1A 
0074 C· HI LOEQ 
0075 C DIFF CHAININUNTFEA 40 
0076 C 40 Z-ADDDIFF HIGH 
0077 C N40 Z-ADDDIFF LOW 
0078 C GDTO OVER1A 
0079 C· 
0080 C PASS1A TAG 
0081 C Z-ADDHIGH RCDNBR 50 



Files 215 

Counting Records with Same Partial Keys 
in Indexed files 
answered by Mike Patton and Ken Sims 

QI have a keysorted indexed file on a S/36 that is approaching one million 
records. The key length is 14 characters long, starts in position one of the 

record, and takes values from 01000000000000 to 20999999999999. Duplicate 
keys are not allowed. Is there a quick way, without reading the entire file, to 
determine how many keys start with 01, how many with 02, and so on? 

AYou can come up with the desired tallies without reading the file if your 
records are sequential and evenly spaced, and if none of these 

sequential records has been deleted. As long as the restriction against 
duplicate keys is enforced via an evenly spaced series of numbers (1,2,3,4, ... 
n), then a simple program fragment counts occurrences in each major group: 

MOVE *BLANKS LIMIT 14 
MOVE '02' LIMIT 

LIMIT SETLLHUGEFILE 
READPHUGEFILE 99 (EQ) 

When the first two bytes are ignored, the record key that is read at this point 
contains the highest key in the 01 group. (Note that, for this solution to work, 
at least one record must exist in the 01 group; if no 01 record exists, the error 
indicator 99 indicates that the beginning of the file has been reached.) 

Unless these criteria are met, there is no way to calculate the record count 
without reading the entire file. But you can arrive at this calculation fairly 
quickly by reading the file as a sequential file, ignoring the index. As you read, 
keep a count of the number of each record type with this program fragment: 

FIELD1 	 IFEQ 01 
ADD 1 RECS01 
ELSE 

FIELD1 IFEQ 02 
ADD 1 RECS02 

FIE LD1 	 IFEQ 20 
ADD 1 RECS20 
END 

END 

At the end of the job, you can print/display the totals. 



216 5/36 Power Tools 

Reducing Sort Work File Size 
by Alex Barish 

When writing OCL statements for a sort job, most S/36 programmers don't 
bother including a II FILE statement for the sort work file. When a II FILE 
statement is not specified for the work file, the system allocates a work file 
large enough to contain all the records from the input file. This automatic 
file allocation can add up to a lot of wasted disk space, especially if only a 
fraction of the records are selected for sorting. To conserve disk space, you 
can use the file size substitution expression in an EVALUATE statement 
to calculate the needed work file size. This trick can prove invaluable if 
you are sorting a very large file and disk space is tight. 

For example, if you want to sort file MASTER, and you know the 
application well enough that you're sure no more than one-third of the 
input records will be selected for sorti~g, the statement 

II EVALUATE P63=?F'A,MASTER'?/3 

will place the value for the required number of records in parameter 63. 
You then can use a statement such as 

II FILE NAME-WORK.RETAIN-J,RECOROS-?63? 

to allocate an appropriately sized sort work file. Just be sure that you aIlo
cate enough space. SSP ignores an EXTEND parameter on a II FILE 
statement for a work file. 

Allocating Sort Output Files 
by Robert E. Puhalla 

The size of our report files varies widely over the course of a month (e.g., 
from zero records to several thousand records). We sort these files in our 
daily report jobs that run at night, but the variance in size makes it difficult 
to automate the sorting procedure. For example, if I use a substitution 
expression to allocate the sort output file, the job halts with an error if the 
substitution expression contains zero (Le., no records in the file to be 
sorted). To get around that problem, I could specify some standard size for 
the output file, but specifying a large sort output file wastes disk space if 
the report file happens to be smaIl, while specifying a small sort file results 
in too many extents (and thus slow processing) if the report file is large. 

To solve this problem, I include the following two OCL statements in 
my job that sorts file XYZ 

II FILE NAME-INPUT,LABEL-XYZ,DISP-SHR 
II FILE NAME-OUTPUT,LABEL-ABC,RECORDS-1 ,EXTEND-?F'A,XYZ'? 

Output file ABC will have at least one record but only one extent. Some



Files 217 

times there may be only one (blank) record in the output file, a situation 
that procedure SORT will interpret as "no records to be sorted." There
fore, I place an N in position 36 of the sort's H-spec to specify that no mes
sage is to be issued when the sort procedure finds no records to sort. 

Performance Differences Between SORTA 
and SORTR 
answered by Bob Tipton 

QA "Great Sort Debate" is raging in our shop. One of my cohorts 
contends that the use of ADDROUT (Address Output) sort files 

increases the performance of sorts. I contend the ADDROUT file is a disk 
saving technique, not a performance improvement. Who is right? 

AYour cohort is right, if you think solely in terms of the sort. An add rout 
sort (SORTA) can be significantly faster than a tagalong sort (SORTR). 

However, sorts are seldom done alone. That is, you usually sort a file to 
come up with a report. If you consider the aggregate time of the sort and its 
print program, you are right; addrout sorts conserve disk space because they 
store three-byte relative record addresses instead of entire records, but they 
degrade the performance of the job .. 

To illustrate, let's suppose you use an add rout sort on a file and then 
print a report. When the sort is finished, you have two files: an addrout file 
that contains the relative record addresses and the original input file. To 
print the report in sorted order, the print program must use th.e relative 
record addresses stored in the addrout file to chain to the input file. One
and only one - record from the input file is retrieved from disk at a time. 

Thus, for every record, the system reads the addrout file to locate a 
record and then chains to the input file to retrieve the record. The time 
your cohort claims you gained by using an addrout sort is lost in this latter 
part of the job. 

On the other hand, if you had used a tagalong sort instead of an add rout 
sort, the system might have taken longer to sort the records, but you would 
end up with a single file of actual data records for the print program to read. 
There would be no need to read one file and chain to another. In fact, if 
you had used a tagalong sort, you then could "block" the number of records 
the S/36 read from the input file in one disk access and thus reduce disk 
accesses and improve performance. 

Because addrout sorts ultimately degrade system performance and 
because tagalong sorts ultimately improve system performance, if disk space is 
no problem, you should use tagalong sorts. Ifdisk space is a problem, consider 
purchasing more disk. The amount of time saved by using tagalong sorts 
instead of addrout sorts probably will pay for the new disk drive in a hurry. 



218 5/36 Power Tools 

Using #GSORT vs. Alternate Indexes 
answered by Ron Mendel 

Qwe've been looking for a way to speed up daily report processing in 
our S/36 shop. In particular, we'd like to reduce the time our 

applications spend sorting files with the #GSORT utility. Is there another 
sorting method that doesn't take so long? 

AWhen your report requires you to process a file in an order other than the 
physical record order, consider using the BLDINDEX utility procedure. 

My tests indicate that BLDINDEX is up to four times faster than #GSORT 
- with best performance obtained when you give BLDINDEX a 64 K region 
on a machine that is not swapping heavily. By processing the file via an 
alternate index (built by BLDINDEX), your report application will perform 
considerably faster. Be aware, however, that BLDINDEX is useful only when 
your report must process the entire file. If your report selects only a portion of 
the file for processing, you must use #GSORT because BLDINDEX does not 
allow selective Include or Omit functions like #GSORT does. 

File Output Using DISP-OLD 
by Alex Barish 

On the S/36, you can specify DISP-OLD (disposition = old) in the FILE 
OCL statement to indicate that you want to use an existing file as output. 
This specification amounts to writing over the old data, not to be confused 
with adding records to an existing file. In any program that creates a new 
copy of a file (e.g., a transaction file), you can specify DISP-OLD in the 
output FILE statement rather than use the DELETE procedure to delete 
the old copy of the file and then use the BLDFILE procedure to create a 
new (empty) copy. The DISP-OLD specification in a FILE statement 
resets the number of records to zero, in effect creating an empty copy, and 
is much faster than a DELETE followed by a BLDFILE. 

Also, in a job that uses SORT, you can specify the same file name on 
the input and output file statements, with DISP-OLD specified in the out
put file statement, to sort the file in place. If you use this technique, SORT 
does not create another copy of the input file; it simply rearranges the 
records within the existing file. Use this approach with caution (i.e., have a 
current backup copy of the file) because if any such job fails to run to com
pletion for any reason (e.g., power failure), you may lose the data in the file. 



Files 219 

File Extends Explained 
answered by Mike Patton and Gary Kratzer 

QPlease explain what happens when an EXTEND is executed on a file. 
Does each extend relocate a file to a portion of the disk large enough 

to handle the size of the file plus the extend value? I'm hoping your 
explanation will help me understand the following scenario. The sequence 

System: S/36, 90 MB, Release 4 
Available disk space: 4,500 blocks 
File(s) being extended: 2,600 blocks 
Extend value: 200 records 
Number of records available before extend: 30 
Number of records to be added to file: 250 

causes the file to be extended more than once. Disk space is minimal, and 
I've run a compress right before the program that adds the records. If the 
file is extended more than once when I run the program, a message is 
issued that says the file is full. I increase the extend size to prevent multi
ple extends, which solves the problem. But why? 

AWhen a file is extended, it is copied to another place on disk that has been 
allocated storage based on the size of the original file plus the extend 

value (unless the file is not indexed or is an alternate index and enough 
space is available immediately after the file to accommodate the extend). 
The original space the file occupied then is made available. The number of 
records available after an extend generally is larger than the requested 
number because file allocations are rounded up to the nearest block. 

The following pseudocode illustrates the sequence of events that 
occurs when a file is extended: 

Is the file non-indexed or an alternate index? 
Ifso 

Is additional space available immediately after the file? 
If so 

Extend the file by moving end of file pointer (extend in place). 
Else 

Is a larger contiguous area of the disk available for the file? 
If so 

Relocate the file to that area and free original file space. 
Else 

Give file full message 



220 S/36 Power Tools 

Else 
Is a larger contiguous area of the disk available for the file? 
If so 

Relocate the file to that area and free original file space. 
Extend all related alternates. 

Else 
Give file full message. 

In your case, the file probably was extended once, which used up most of 
the available disk space. Then, when a second extend was attempted, no 
room was available for the new file - hence, the "file full" message. Forc
ing only one extend cured the problem because there was plenty of con
tiguous space before the first extend was executed. 

File Extends and EDF.;.Wait 
answered by Gary Kratzer and Mike Patton 

QOn several occasions, I have encountered a status of "EDF-Wait" when 
displaying the Status Users screen on our S/36 Model 5364. I cannot 

find any reference to this condition in the IBM-supplied documentation. 
What causes this condition? How severe is it? How can it be avoided? 

AAn EDF-Wait can occur on all S/36 models. When this message 
appears on the Status Users screen, it indicates that, in the current 

program, a file being output or added to has filled up. The file is being 
extended automatically by a value that is either an attribute of the file (i.e., 
the EXTEND parameter established when the file was created) or that has 
been specified by the OeL in the procedure that is runhing. 

This is not a "severe" condition unless you have too little contiguous 
disk space to allow the file to EXTEND by the value specified, in which 
case the program will fail with an error message and a difficult recovery effort 
may be necessary. EDF-Wait can be indicative of a larger problem (i.e., that 
your EXTEND value is so small that many EXTENDs are executed during 
a given run of the program, thereby reducing overall system efficiency). 

Extends cannot always be avoided because it usually is not known how 
many records will occupy a file. Extends can be reduced, though, by speci
fying a larger EXTEND value. You can specify a larger value by putting an 
extend value on the 1/ FILE statement or by giving the file a default 
extend value when it is built via BLDFILE. Note that the EXTEND 
value on the 1/ FILE statement overrides any default extend value. 



Files 221 

Reducing File Extends 
by Donald1. Kott 

Do you have files that keep getting extended and contain a large number 
of unused records after they have been organized? Figure 8-13 shows a 
technique I use to eliminate this problem. First, I I.Ise the COPYDATA 
procedure to organize the file and copy it to file STKORG14. Then, I 
delete the original file and use the EVALUATE statement to add a fixed 
number of records to the actual number of records used. Finally, I use the 
COPYDATA procedure to coPy STKORG14 back to the original file name, 
using the value from the EVALUATE statement in the records parameter 
of the COPYDATA procedure. When I am finished, the original file size 
has been incremented by a fixed number of records to allow new records to 
be added. This technique works well with any file that has an extend 
value, and the file need never contain a large number of unused records. 

Figure 8·13 COPYDATA FILENAME •. STKORG14 .. , .. REORG.OMlT.2.EQ. 'D' · DELETE FILENAME.F1Technique to 
eliminate unused II EVALUATE P10-1500+?F'A.STKORG14·1 · 
records 	 · STKORG14 •. FILENAME. RECORDS. 11 O? ..COPYDATA T. NOREORG · DELETE STKORG14.F1 

Calculating File Extend Values 
by Nasser Shukayr 

When you write a batch OCL procedure to add transactions to a master file, 
you usually assign the master file a reasonable EXTEND value. Calculat
ing the ideal EXTEND value helps ensure that the file is extended only 
once and that zero disk space is wasted. 

To calculate the ideal EXTEND value, let X be the number of allo
cated records in the master file, let Y be the number of actual records in the 
master file, and let Z be the number of records in the transaction file. The 
ideal extend value for the master file is simply Y plus Z, minus X. 

Resizing Files 
by Marcia Dore 

Because most of my S/36 procedures are coded with EXTEND parameters 
on the FILE statements to prevent my files from filling up, I usually end 
the week with files over-allocated, wasting precious disk space. 

http:STKORG14.F1
http:FILENAME.F1
http:REORG.OMlT.2.EQ


222 5/36 Power Tools 

To alleviate this problem, I use the following technique weekly to 
resize the files: 

II EVALUATE P1=?F'A,OLDFILE'?+value 

where value is the average number of records added to OLDFILE during a 
week, 

Then 

II COPYDATA OLDFILE, ,NEWFILE,RECORDS,?1?, ,T,REORG 
II DELETE OLDFILE,F1 
II RENAME NEWFILE,OLDFILE 

resizes the file accordingly. 
I've recovered about 10,000 blocks of disk space using this technique, 

and, as an added bonus, this technique holds down the number of 
EXTENDs required during processing, 

Clearing Test Files 
by Ron Mendel 

Code on diskette: a Procedure UTERASE 

One of the most tedious chores in testing S/36 programs is deleting test 
files, tracking down the attributes, and building a new (empty) file for the 
next round of testing (which is necessary because the programs you are 
testing "expect" the output files to be empty), Before you can delete and 
rebuild test files, you must identify the test file's attributes by reviewing a 
VTOC listing, I have alleviated this problem with the S/36 utility 
UTERASE (Figure 8-14), Utility UTERASE prompts for a file name and 
then invokes $COPY to copy a test file to a temporary work file. The 
/I SELECT RECORD,FROM-O,TO-O statement allows the utility to copy 
all file attributes, but does not copy records. The DELETE and 
RENAME statements then ensure that you end up with a new file that has 
the same name as the old file. 

Figure 8-14 	 • Procedure... UTERASE 
* Function. Erases all records in a file

Procedure 	 * Parameters 1. Name of fi 1e to erase 
II IF 71?1' 'Enter the label of the file to era.e (or press Enter to exit)'UTERASE II IF 71R?1 RETURN 
II IFF DATAF1-?1? RETURN 
II IF DATAF1-UTERASE DELETE UTERASE.F1. 
/I LOAD $ COpy

II FILE NAME-COPYIN,LABEL-?1? 

II FILE NAME-COPYO,LABEL-UTERASE 
I I RUN 
II COPYFILE OUTPUT-DISK 

http:UTERASE.F1


Files 223 

II SELECT RECORD,FROM-O,TO-O 

I I END 
· II DELETE ?17,Fl 
II RENAME UTERASE,?17 

Creating Empty Test Files 
by David C. Schlosser 

a Code on diskette: 


Procedure CRTEFL 


On the S/36, when testing a revised program, you usually need to create 
copies of existing files so the testing does not disturb live data. Creating 
copies of existing files requires using the COPYDATA procedure to make 
copies of master files and using the BLDFILE procedure to create empty 
transaction files. The problem is that you must find the record length, key 
length, and other information in the program listings and enter that infor
mation into a procedure to build each empty transaction file. 

However, if you use the $COPY utility, you can create an empty trans
action file without knowing its "vital statistics." Figure 8-15 shows the nec
essary OCL statements. In the figure, nnnn is the number of records to be 
allocated to the test file. The key to this technique is the line 

II SELECT RECORDS,FROM-O,TO-O 

which keeps the $COPY utility from transferring any records into the new file. 

* Procedure. CRTEFLFigure 8-15 * Parameters. 1. Copy fi 1 e name 
2. Test file nameProcedure 3. No. of test file records 

II IF ?1?-· 'Enter the name of the file to copy (or press Enter to exit)'CRTEFL II IF ?1R?- RETURN 
II IF OATAF1-71? GOTO TNAME 
II PAUSE 'Flle ?1? not found' 
II RETURN · II TAG TNAME 
II IF 72?-· 'Enter the name of the test file (or press Enter to e.it)'
II IF ?2R?- RETURN 
II IFF DATAF1-?2? GOTO COUNT 
/1 * 'Test file 121 already exists. Delete it? (Y-Yes, N or Enter-exit)'
II IF ?4R?- RETURN 
II IFF ?4?o'Y' RETURN 

OELETE ?27, F1 
· II TAG COUNT 
II IF 137- * 'Enter the number of test file records (or press Enter to exit)'
II IF ?3R?- RETURN 
II IF ?3?-0000 RETURN 

II LOAD SCOPY 
II FILE NAME-COPYIN,OISP-SHR,LABEL-?17
II FILE NAME-COPYO,RECORDS-?3?,LABEL-?2? 

I I RUN 

II COPYFILE 

II SELECT RECORD,FROM-O,TO-O 

II END 




224 5/36 Power Tools 

Dump Files Explained 
answered by Mike Patton 

QOn the S/36 VTOC listing, I notice something called #DUMP.nn, 
where nn equals a number from 00 to 99. I have three of them on the 

VTOC, but I can't find any information about them in the system reference 
manual. What are they,· and where do they come from? 

A"Dump" files are created when the system recognizes a program or 
hardware error that makes it impossible (or dangerous) to continue with 

the task running at the time. The system's response is, quite simply, to end 
abnormally, thus placing most of the contents of main and control storage into 
the file #DUMP.nn. The information in this file can help the savvy user (or 
IBM, in instances where someone discovers a problem with the SSP) 
determine the cause of the system failure - and, with luck, solve the problem. 

However, one of two situations appears to be occurring on your system: 
(a) one or more of your users is running flawed program(s) and is responding 
to the system error message without determining (or worrying about) the rea
son, or (b) the flawed program is set up to use the autoresponse facility, 
thereby relieving your users of the necessity to respond to the error(s). In 
either case, it is important to determine which of your programs is failing. 
Main storage dumps do tend to get in the way of productive computer usage. 

Calculating Indexed File Size 
answered by Ron Elliott 

QI am puzzled by a data-storage calculation reported by our S/36. An 
indexed file on disk is allocated for 500 records, with a record length of 

64 bytes. By subtracting the beginning location of this file from the beginning 
location of the next file, the file in question clearly occupies 16 blocks. At 40 
records per block, I figure there should be enough space in the file for 640 
records, but the VTOC says it will hold only 512 records. What gives? 

A In indexed files on the S/36, a relatively small amount of file space is 
used to store the file index, which occupies disk space immediately 

preceding the data area of the file. One index entry exists for each record in 
the file, and each entry in the index occupies a number of bytes equal to 
the key length plus three. In the example you cite, 500 64-byte records 
occupy 125 sectors (12.5 blocks) of disk space (at 256 bytes per sector), and 
the index occupies the other 35 sectors (3.5 blocks) in the same file. 

To calculate the number of sectors required for the index of a file, you can 
follow a simple three-step procedure. First, compute the index entry length 
by adding three to the key length. Second, divide 256 (the number of bytes in 



Files 225 

a sector) by the result of step 1, discarding any remainder. And third, divide 
the total number of entries (i.e., records in the file) by the result of step 2. The 
rounded result will be the number of sectors required for the index. 

Processing Indexed Files vs. Sequential Files 
with Alternate Indexes 
answered by Mel Beckman andMike Patton 

QWhich is better as the primary file on the S/36, a traditional indexed 
file or a sequential file with an alternate index? If two programs are 

processing two identical files, is there any significant additional system 
overhead associated with alternatei~dex processing? 

ADespite slight additional overhead, the alternate index is the best way 
to handle indexed files on the S/36. With alternate indexes, you gain 

global key update ability. You also can put the parent file on a different 
drive from the index and thereby improve performance. To reorganize the 
file, you simply read through the index best suited for the physical order of 
the particular job being processed. 

If the file must be reorganized, the "file" on which the COPYDATA 
procedure or $COPY program should run is the alternate index whose 
order, by the definition of its key, most closely approximates the order in 
which the file most frequently needs to be accessed. This rule holds true, 
regardless of whether multiple keys are defined for the file. A REORG 
would be specified, but the output file would be S (sequential), and it 
would be in order physically by the key field(s) specified in its index. The 
closer the relationship between a file's most frequently used key order and 
its physical sequence, the faster it can be processed. 

After the file has been reorganized, the "disorganized" copy of the file 
must be deleted. But before deleting the disorganized copy, you must 
delete the file's alternate indexes. Once everything is deleted, the orga
nized copy of the file may be renamed to the name of the original, and its 
alternate indexes may then be rebuilt. 

Processing Large Indexed Files 
answered by Mike Patton, Mel Beckman, and Barry W Knapp 

QWe have a huge indexed file on our S/36 (500,000 records) to which we 
add 10,000 to 30,000 records a day. This file is empty at the start of the 

month and full at the end of the month. As the month progresses, the job 
that adds records to this file takes longer and longer to finish. By the end of 
the month, the job takes forever to run! Is there a way to speed the process 
of adding records to this file? 



226 5/36 Power Tools 

AThere may be two reasons why your S/36 takes so much time to add 
records to your large indexed file: duplicate key testing or a large 

index overflow. 
In duplicate key testing, when your program attempts to add a record to 

the file, disk data management on the S/36 must scan the entire index (as 
well as the index overflow area that contains the keys for records added to 
the file since the last key reorganization) to see whether the key already 
exists in the file. As more records are added to the file, the S/36 takes 
longer and longer to check the index for a duplicate key. 

If duplicate keys are not a concern ofyours (i.e., if you know that no 
duplicate keys will ever exist in the file, or if you don't care if they do), you 
can use the BYPASS-YES parameter on the output file's II FILE statement to 
dramatically speed the process of adding lots of records to the large indexed 
file. Specifying YES for this parameter instructs the S/36 not to check the 
index area for a possible duplicate key, so a record is added directly to the file. 

Ifyou use BYPASS-YES, the job that adds records to your large indexed 
file should perform more consistently. In other words, at the end of the month, 
it won't take very much longer to add records to the file than it did at the 
beginning of the month (the difference will be the time required to extend the 
file if your file is extendable). For more information about the BYPASS-YES 
parameter, see Chapter 5 of the S/36 System R£ference Manual (SC21-9020). 

Another reason it takes so much time to add records may be a large 
overflow. An overflow is that portion of the index containing keys added 
since the last full keysort. The prime portion of an index is the portion that 
contains all the sorted keys upon completion of a full keysort. For keysort 
performance reasons, keysort does not always remove the overflow (i.e., it 
does not always merge the overflow with the prime). 

An index with no overflow or an index with a small overflow will help 
performance in duplicate key processing as well as add or update key pro
cessing. This is due to two reasons: 

1. There is a storage index on only the prime portion of the index. 
2. The overlow area is maintained by the SSP in sorted order. The time it 

takes to add a key to the index increases as the size of the overflow increases. 
One way to remove the overflow is to run the keysort procedure and 

specify the CHKDUP (check for duplicate keys) parameter. If your file 
does have duplicate keys, you will get a SYS-1367 (take a 0). To prevent 
these halts from stopping you on an overnight run, code your autoresponse 
accordingly. If this type of keysort does improve p(:rformance, you may 
want to schedule such keysorts regularly. 



Files 227 

Keeping Large Indexed Files Open 

by Gary T. Kratzer and Nasser Shukayr 

Code on diskette: a Procedure KEEPOPEN 
RPG program KPOPEN 

In the struggle to keep S/36 interactive response times acceptable to users, 
programmers must pull rabbits out of hats. One surefire trick to improve 
interactive response time is to improve program initiation time. The 
biggest culprit of slow program initiation is the indexed file because the 
system must scan the entire index to build a storage index. And when stor
age indexes are built over and over again for the same large indexed files 
throughout the day, there can be a significant cost in interactive initiation 
time. But you can rectify this situation by keeping all frequently accessed 
indexed files open throughout the day. 

When large indexed files are kept open, their storage indexes are built 
only once, and all programs using that file share the same storage index. In 
other words, each user does not "own" his or her own storage index. Only 
the first user of the file must endure the initiation delay caused by the stor
age index being built. 

To keep indexed files open, you must run a program that remains active 
continuously. A MRT-NEP program - a Multiple Requester Terminal pro
gram that has the Never-Ending-Program attribute set - serves this pur
pose well. Unlike an ordinary Single-Requester-Terminal (SRT) program, 
which is not capable of releasing the requesting display station, a MRT-NEP 
can release its requesters and remain active. Although there are other meth
ods you can use to keep files open, the MRT-NEP program offers an advan
tage that many other methods do not: the MRT-NEP can be canceled by a 
workstation other than the system console. In addition, the MRT-NEP does 
not tie up a workstation or cause the system to perform unnecessary process
ing because once activated, it remains in a suspended state. 

Let's look at the basic components of the MRT procedure and program 
needed to keep large indexed files open. Following the MRT procedure 
name, which is KEEPOPEN (Figure 8-16) in our example, you can key 
data to be passed to the MRT program as a workstation input record. For 
example, if you key in KEEPOPEN NOW IS THE TIME, the characters 
NOW IS THE TIME are passed to the program as the first input record. 
When you key the name of the MRT procedure, the succeeding characters 
are saved until the MRT program performs its first input operation. In our 
example program, KPOPEN (Figure 8-17), the first input record is used to 
pass a cancellation code so you can terminate the program on demand. The 



~28 5/36 Power Tools 

scheme is simple: a blank input record starts the program, and a non blank 
input record cancels the program. The input record is blank if you don't 
key any data following the MRT procedure name. 

File Statements and Specifications 
Coding, at least of file names, is installation-specific. You can, however, get a 
good idea of what the file statements should look like by using our exam
ples. When you create procedure KEEPOPEN, you must answer yes to the 
"MRT procedure?" prompt before replacing the procedure in the library to 
let it invoke MRT program KPOPEN. The system checks only the proce
dure name to see whether the MRT program is already active; it does not 
check to see which library the procedure comes from, only that it's active, so 
make sure the procedure name is unique within the entire system. 

Because the program that accesses the files to be kept open is input 
only, you define the disposition of the file as SHRRM, wnich specifies that 
the MRT program may only read the file but that all other programs may 
read or modify the file. 

You can override the SSP default storage index size by specifying the 
maximum size of the storage index to be built with the STORINDX key
word on the II FILE statement. Before doing this, you should understand 
how the SSP calculates the storage index size. If your system has 128 K of 
main storage, the maximum default storage index size is 2 K. On systems 
with more than 128 K of main storage, the maximum default storage index 
size is 8 K. The SSP uses a combination of factors to determine the size of 
the storage index. You can override this SSP-computed size by specifying a 
larger size for the storage index, which often speeds up indexed reads. 
However, depending on the file's key length and number of records, there 
may be a maximum storage index size that the SSP can use effectively. 
Chapter 8 in IBM's Concepts and Programmer's Guide (SC21-9019) explains 
how to compute an efficient storage index size. 

If you want to build a storage index for referenced files only, do not 
specify STORINDX-YES on the /I FILE statement. If you want to build 
storage indexes for an entire family of files by referencing just the parent, 
do specify STORINDX-YES on the 1/ FILE statement. 

You can reference up to 15 randomly processed files in a single RPG 
program. Ifyou want to keep more than 15 large indexed files open, you 
must create more than one RPG program and MRT procedure. You could 
use a different program or procedure to keep open groups of large files 
related to the same application. Remember that a file with alternate 
indexes requires only one file statement in the RPG program (i.e., refer
encing the parent file causes the creation of a storage index for each alter
nate index defined over the parent file). 



Files 229 

The primary file in program KPOPEN is a WORKSTN file. The pro
gram does not read or write to the workstation file; all input for the work
station program actually comes from data passed through the first input 
record by the MRT procedure. The program always processes exactly one 
input record and releases the requester after handling this input record. 
Because the program never reads or writes to the workstation device, you 
don't need to define a screen format member; thus, in the F -specs, you 
code a KFMTS continuation line specifying *NONE. 

For the workstation file record length, specify at least as many charac
ters as the maximum amount of input data you expect to use to cancel the 
program. For example, if you want to call (and thereby cancel) the program 
with the passed data of CANCEL, specify a record length of at least six. If 
you ke.y in more characters than the record Jength allows, a blank input 
record is passed to the program. 

I-Specs 
For the workstation file, you must define two record types in the I-specs: a 
blank record (ignored by the program) to start the program and a non blank 
record to cancel the program. Remember, the input record does not actu
ally come from the workstation device; the record comes from the data that 
is keyed in after the MRT procedure name. 

C-Specs 
To avoid terminal errors, you must reference each disk file defined in the 
F -specs in a CHAIN or READ operation in the C-specs. Although the 
operations are never executed, you must code at least one input operation 
for each chained, demand, or full procedural input file in your program; 
otherwise, the RPG compiler issues an error message. You also need to pro
vide a way to signal the program to go to end-of-job when the cancellation 
record is received, which can be done by setting on LR when the input 
indicator for a nonblank record is on. 

O-Specs 
In the O-specs, you code an R (release) in column 16 of program KPOPEN 
to release the display station when a record other than the cancellation 
record (i.e., the nonblank record) is processed. No screen format name is 
required in the O-specs. 

After you have coded the RPG specifications, you must specify how 
you want the program compiled. On the RPG compiler (RPGC) procedure, 
specify 1 as the value for the "Maximum number of requesting display sta
tions" parameter. Also, specify NEP as the value for the "Never-Ending
Program" parameter. 

Now that you have created program KPOPEN, the best way to use it is 
to call it conditionally from an existing procedure just before a large 



230 5/36 Power Tools 

indexed file is used. You also can call it at the start of the day; you may 
want to include it in one of your initial startup procedures. 

You cancel program KPOPEN by keying KEEPOPEN with a non blank 
first parameter. The parameter is passed to program KPOPEN as an input 
record; program KPOPEN is coded so a nonblank input record causes indi
cator LR to be set on, which cancels the program (Figure 8-18). Another 
way to cancel program KPOPEN is to use the STOP SYSTEM command, 
which causes an end-of-program status for all MRT-NEP programs as soon 
as the last requester is released. Because program KPOPEN normally has 
zero requesters, the STOP SYSTEM cancels the program immediately. 

Because all existing references to the data file (e.g., any indexed data 
files you choose to open and keep open using this technique) must allow 
file sharing, you may have to make a few changes to existing procedures. If 
you have files that can't be shared, you can either modify the existing 
FILE statement to allow file sharing, or, if the application requires a non
shared file, you can add the necessary OCL statements to cancel the 
KEEPOPEN procedure before running the application. If you have many 
programs that do not allow file sharing for large indexed files, you may 
need to make a lot of changes to your FILE OCL statements. But the per
formance improvement this technique offers is worth the effort. 

And now for the bottom line: the results of the benchmarks performed 
on a dedicated S/36 5360 Model 0 with a frequently used interactive pro
gram that references a large indexed file (630,000 records) along with an 
alternate index (Figure 8-19). The program also n~ferences other smaller 
files. When not using this technique, it takes about 22 seconds to initiate 
the interactive program on a dedicated system; if the system is being used 
by other jobs, the program takes approximately 47 seconds to be initiated. 

When using this technique, however, and when the large indexed file 
and the large alternate index are already open, it takes only about one and 
one-half seconds to initiate the program on a dedicated system; on a 
nondedicated system, the initiation time is less than three seconds. If all 
the indexed files used by the program are already open, initiation time is 
less than one second on a dedicated system, and initiation time is less than 
two seconds on a nodedicated system. 

Every time you use program KPOPEN, 21 seconds are saved on a dedi
cated system, and 45 seconds are saved on a typically loaded system. When 
you multiply the number of large indexed files in the VTOC by the num
ber of times you use the inquiry program each day, it adds up to significant 
time savings achieved with relatively little programming effort. 

No single technique can guarantee that your system response time will 
change suddenly from unacceptable to acceptable. However, you can reduce 
significantly the amount of time your system spends doing nonproductive 
work by speeding up the running of your large indexed files. So go for it! 
Write a simple MRT-NEP program, and start initiating your programs faster. 



Files 231 

// LOAD KPOPENFigure 8-16 
/1 FILE NAME-APTRANS,DISP-SHRRM 
// FILE NAME-APVEND.DlSP-SHRRMMRTprocedure // FILE NAME-CUMASTER.DISP-SHRRM 

KEEPOPEN I I RUN 

3 4 ... 5 6Figure 8-17 KPOPEN 
F*******************************************************.**********Program F* 

KPOPEN F* Program name: KPOPEN (a MRT-NEP program) 
F* Date: 01-25-88 
F* Purpose: This is a MRT-NEP program that will keep the 
F* large indexed files open 
F* Special instructions: Campi 1e with Number of Requestors-1. * 
F* and with the NEP option set 
F* Files used: SCREEN workstation file 
F* APTRANS accounts payable transaction file 
F* APVEND accounts payable vendor file 
F* CUMASTER customer master file 
F* 
F****************************************************************** 
F* 
F* 
F* I N 0 I CAT 0 R USA G E 
F* 
F* 01 Blank input record, used when starting the program 
F* 02 Non-blank input record. used to cancel the program 
F* 
F* -------------- ----------------- 
FSCREEN CP 80 80 WORKSTN 
F KFMTS "NONE 
FAPVEND IC F 120 120R 5AI DISK 
FCUMASTERIC F 384 384R 6AI DISK 
FAPTRANS IC F 72 72R 7Al DISK 
ISCREEN NS 01 1 C 
I OR 02 
1* 
lAPVEND NS 
I KVEND 
ICUMASTERNS 
I 6 KCUST 
lAPTRANS NS 
I KTRANS 
C* +-----------
C* A non-blank input record causes the program to be cancelled. I 
C* +--------------------------------------------------------------+ 
C 02 SETON LR 
C* +-- - - ----- -- - --- - ----- - -- ---- -- - ----- -- ----- ----- - -- ------ - ----+ 


C* The following instructions are never executed. The RPG 

C* compiler requires at least one input operation for each 

C* input file. 

C* +---------------------------------- 
C 02NLR DO <Never executed> 
C KVEND CHAINAPVEND 02 
C KCUST CHAINCUMASTER 02 
C KTRANS CHAINAPTRANS 02 
C END 
0" 
0* Release the requesting workstation. 
0* +--------- -------------------------- ------------+ 
OSCREEN DR 01 



232 5/36 Power Tools 

II IF ACTIVE-KE€POPEN KEEPOPEN CANCEL 
COMPRESS

Figure 8-18 . 

Calling 
KEEPOPEN 
with the cancel 
option 

Figure 8-19 Conditions Dedicated Actual intra-day 

Some actual system timings 

timing data, No storage indexes in memory 22 seconds 47 seconds 
elapsedtime 
between 
requesting an 
actual 
interactive 

Indexes for the two large files 
(>630,000 records) in memory 

Indexes in memory for all files 
used by the program 

< 2 seconds 

< 1 second 

< 3 seconds 

< 2 seconds 

program and 
the appearance 
ofthe first 
screen format 

Processing Alternate Indexes in COBOL 
answered by Georgia Agallianos 

QOur shop (with a S/36 5362) is one of the few that use COBOL. I have 
. read about alternate index processing in the COBOL manual, but I'm 
still not clear about how to do it. Where can I find information and 
examples on alternate index processing? 

'AGenerally, alternate index files are not treated any differently by 
COBOL (or any other high-level language) than normal indexed files 

are. You simply specify the file as indexed, but you :,pecify the same key as 
that defined in the alternate index - not as it is defined in the physical 
"parent" file. Next, you use the name of the alternate index to code the 
II FILE statement. As with normal indexed files, COBOL expects you to 
specify whether the file is duplicate-capable within the program. If you 
define your physical file so it has unique keys, use alternate indexes to 
specify duplicate keyed paths. COBOL will halt with a runtime error when 
the file is opened unless you have informed it to expect the duplicate key 
capability of the file. Chapter 8 in the S/36 Concepts and Programmer's Guide 
(SC21-9019-5) contains additional information. 



Files 233 

Keysorting During IPL 
answered by Mel Beckman and Gary T. Kratzer 

QDuring IPL, my S/36 displays the message that one of our large files is 
being keysorted. If I immediately IPL the system again after the first 

IPL is finished, the same file is keysorted again, even though no records have 
been added to the file. Was the file really keysorted during the first IPL? 

AUnder SSP Release 4.0, IBM issued the message "Conditionally sorting 
keys for file xxx" during IPL to indicate that a keysort might be in 

progress for a particular file. By comparing the number of records in the 
overflow index with the total number of records in the file, the SSP then 
determined whether the file really needed keys orting. If the percentage of 
overflow records exceeded a certain threshold (about 7 percent), the file was 
keysorted. For large indexed files, keysorting did not occur until quite a few 
records had been added to the file. At SSP Release 5.0, IBM removed the 
word "conditionally" from the IPL keysort message, leading you to believe 
that the file was actually being keysorted when it really wasn't. 

Keysorting a large file may improve system performance, even if the 
SSP doesn't think it's necessary. You can force a keysort by running the 
KEYSORT procedure with the CHKDUP parameter. If the file contains 
duplicate keys (even though duplicates are allowed), you will receive dupli
cate key messages that you easily can bypass by responding with a 1 to the 
second message. The file still will be keysorted. 

Blocking Records 
answered by Mel Beckman 

QI have some S/36 disk data management questions about blocking files. 
I have a basic working knowledge of DDM; for example, I know that 

read and write operations are performed in 256-byte increments, and so on. 
For the sake of the discussion below, let's not consider using CACHE. 

1. Presume that the file in Figure 8-20a is in key sequence and that the key 
to the file is the RRN. If an initial 

'0001 ' 	 SETLL·F I LE 
READ FILE 

is performed, are the first four records of this file in the program's buffer· 
because DDM I/O is always in 256-byte increments, even though the F
spec doesn't block to 256? 



234 5/36 Power Tools 

Figure 8·200 

File blockedto 
256-byte 
increments 

2. The file in Figure 8-20b is the same as the file in Figure 8·20a except 
this file is blocked to 512 bytes. If the following instructions 

'0003' 	 SETLLFILE 

READ FILE 


are performed, are RRNs 1 through 8 or RRNs 3 through 10 put into the 
program's buffer? 

3. Next, the instructions 

'0005' 	 SETLLFILE 

READ FILE 


are performed. Does another physical disk I/O opc:ration take place here? If 
it does, what records are in the buffer? 

4. As long as a requested record is already in the program's buffer, will 
physical disk I/O not be performed? Will the answers to these questions 
change ifthe file is defined as an update file? Does the file's OeL DISP· 
parameter affect any of this? I would imagine that if program Ns buffer 
holds RRNs 1 through 8, and another program (B) updates RRN 6, when 
program A goes to read RRN 6, DDM will know to reread those records 
(will just the sector that holds RRN 6 be reread)? 

A t. Yes, four records are read because of the 256-byte disk sector size 
(and the record size you give divides evenly into 256). 

2. Records 1 through 8 go into the buffer because the buffer must begin 
with the first 256-byte sector that contains the requested record. In this ' 
case, record 0003 is the second to last record in the first sector, so records 1 
and 2 are along for the ride. 

3. No, when you do a subsequent read of record 0005, no more physical I/O 
occurs because the record is in the buffer already. 

4. As long as the record exists in the buffer, no physical 110 occurs on either 
input or update, unless the file is shared. For shared files, if another pro
gram updates a record that's currently in your buffer, DDM invalidates your 
buffer (i,e., makes it look empty). Thus, your next disk request results in 
an automatic reread of the entire buffer, which gives you a new copy of the 
record. 

1 ... 2 3 . . 4 . 5 .. 6 . . 7 

FFILE IF F 64 64L 4AI 1 DISK 




Files 235 

Figure 8-20b 

File blocked to 
512-byte 
increments 

2 4 6 . 7 
FFILE IF F 512 64L 4AI 1 DISK 

Running a Dedicated COPYDATA 

by Donald1. Kott 

Figure 8-21 

Procedure 
STKORG14. 
Substitute your 
own namefor 
FILENAME 
and the workfile 
STKORGJ4, 
and tailor the 
COPYDATA 
statementfor 
yourfile. 

a Code on diskette: 

Procedure STKORG14 

If you use the COPY DATA procedure to remove deleted records, problems 
can occur because COPYDATA can copy a file that another job is reading. 
Figure 8-21 shows a procedure in which I use a II FILE statement before a 
II COPY DATA statement to prevent COpyDATA and other jobs from 
interfering with each other. 

The WAIT-NO parameter of the FILE statement lets procedure 
STKORG14 continue even if another job is using the designated file. 
Immediately after the FILE statement, the procedure checks the return 
code. A return code of 2030 or 2031 indicates the file was not acquired 
because it was in use. If the file is in use, the operator receives a message 
that procedure STKORG14 cannot be run, and the job is canceled. A 
return code of 0000 indicates that the file was acquired. 

If the file is acquired, the DISP-OLD and JOB-YES parameters in the 
FILE statement prevent other users from reading the file until the COPY
DATA procedure has completed the reorganization of the file. With the file 
free-and free from interference-procedure STKORG14 reorganizes the 
file and removes deleted records. It then deletes the designated file and 
renames file STKORG14 to the original file name. 

// FILE NAME-FILENAME,JOB-YES,DISP-OLD,WAIT-NO 
* Check to see if file is being used 

/1 IF 7CD7-0000 GOTO OK 

II * 'The file is being used. cannot organize' 

II PAUSE 'Program Canceled, Enter <0> to continue' 

II CANCEL 

// TAG OK 
· I I IF DATAF1 -STKORG14 DELETE STKORG14, F1 · COPYDATA FILENAME, ,STKORG14.", ,REORG,OMIT,2,EQ, 'D' · DELETE FILENAME,F1 · RENAME STKORG14,FILENAME 



236 5/36 Power Tools 

Reorganizing Files Automatically 
by Perry Gardai 

program by Steve Leichman 

Looking/or an 
easier way to 
reorgamze your 
index files.? This 
S/36 utility 
automatically 
deletes alternate 
indexes, creates 
reorganization 
OCL, peiforms 
the actual 
reorganization, 
then rebuilds the 
alternate indexes 
after 
reorganization is 
complete - all 
with one easy 
command 

a Code on diskette: 


Procedures REORG, REORG 1 

RPG program REORG 

File reorganization: that painful, necessary process that you really should 
perform regularly on your indexed files, but only get around to sporadically. 
It's painful because you're always forgetting about those alternate indexes 
that must be deleted before a reorganization. It's painful also because you 
have to enter the same long list of parameters over and over again in the 
COPY DATA statement if you want to reorganize multiple files. But regular 
file reorganization is necessary because files in key-sequential order, with 
delete-coded records removed, are better stewards of response time and 
disk space than disordered files that store many "deleted" records. And so 
you may welcome REORG, a S/36 utility that automatically: 

• deletes all alternate indexes associated with a file 
• retrieves reorganization parameters from system data 
• reorganizes the file in primary key-sequential order, dropping deleted 

records 
• re-creates all alternate indexes over the file. 

The REORG utility consists of three procedures - REORG, REORG 1, 
and REORG2 - and one program - also named REORG. Procedure 
REORG is the master procedure of the utility and should be stored in the 
system library or in your tool kit library. 

Procedure REORG (Figure 8-22) first checks for parameter 1, the name 
of the file to be reorganized. The procedure performs a CATALOG to 
retrieve information about the file and its alternate indexes and then saves 
that information in a disk file for input to program REORG to create OCL 
that performs the major functions of the utility. 

Next, procedure REORG calls program REORG (Figure 8-23), which 
creates the OCL required to specify the appropriate parameters, delete the 
alternate indexes, perform the actual reorganization, and rebuild the alter
nate indexes that may be attached to parent files. Procedure REORG then 
copies the OCL (created by program REORG) to a library procedure mem
ber named REORG2. Note that the OCL will be different for every execu
tion of the utility because the OCL is designed to delete and rebuild 
specific alternate indexes. 

Finally, procedure REORG calls procedure REORG2 (Figure 8-24), 
which deletes the alternate indexes and calls procedure REORG 1 (Figure 



Figure 8·22 

Procedure 

REORG 


Files 237 

8-25) to perform the actual parent file reorganization. After the reorganiza
tion step, control returns to procedure REORG2, which rebuilds all alter
nate indexes for the parent file. Note that the position of the key in relation 
to the file is established by the three /I POSITION statements. The order 
of the POSITION statements is critical because it ranks the noncontiguous 
fields in order of significance. After the alternate indexes are rebuilt, the 
utility ends, and you may begin the next reorganization. 

Note that you are responsible for ensuring that the parent file, and all 
alternate indexes defined over it, are not in use by any other jobs because the 
8/36 will not allow the $DELET or COPYDATA (with the delete parameter) 
statements to be executed if the files are in use. You also should be aware that 
if your 8/36 allows more than one job from the job queue to be executed con
currently, you should not run this utility if someone else is running it (e.g., a 
user at another workstation or a previous submission on the job queue). 

This simple utility can help any 8/36 shop reorganize data files without 
the worry about forgotten alternate indexes and without the need to key 
repetitive parameters in COPYDATA statements. The time you save will 
certainly be worth the effort. 

// IFF 71?/ • '?17 is being reorganized.' 
// IF 7111 • 'This will REORGANIZE a data file.' 
// IF 71?1 • 'KEY IN THE FILE TO REORGANIZE.' 
II IF ?1R?1 CANCEL 
II IFF DATAF1-?1R7 • '71? IS NOT ON DISK' 
/1 IFF DATAF1-?1R? PAUSE 
1/ IFF DATAF1-?1R? RESET REORG 

CATALOG THE DISK AND STORE IN DISK FILE 
I I IF DATAF1-REOR?WS7X1 DELETE REOR?WS7X1 ,F1 
II LOAD $LABEL 
II RUN 
II DISPLAY LABEl-?17,UNIT-F1 ,OUTPUT-REOR?WS?X1 
1/ END 
1/ IF DATAF1-REOR?WS1X2 DELETE REOR7WS?X2,F1 

SORT THE CATALOG 
1/ LOAD #GSORT 
1/ FILE NAME-INPUT,LABEL-REOR7WS1X1 ,RETAIN-S 
II FILE NAME-OUTPUT,LABEL-REOR1WS?X2,RECORDS-?F'A,REOR?WS?X1 '7 
1/ RUN 

HSORTR 1A 3X 132 
o C 1 5EQCUSER 

OOC 1 SEQC····· 

I C 22 22EQCD 

IDe 22 22EQCI 

10C 22 22EQCS 

IDe 22 22EQCX 

IOC 77 77GECO 

FNC 23 23 DUMMY 

FDC 1 132 ALL DATA 


I I END 
II IF DATAF1-REOR?WS7X3 DELETE REOR?WS7X3,F1 
•• READ THE CATALOG AND SET UP OCl 
1/ SWITCH 10000000 
1/ lOAD REORG 
1/ FILE NAME-INPUT,LABEL-REOR?WS7X2,RETAIN-S 
1/ FILE NAME-REORG2,LABEL-REOR?WS?X3,RECORDS-500, EXTEND-100 
1/ RUN 
I I SW ITCH 00000000 
•• PLACE THE OCl INTO SESSION lIBRARY 



238 5/36 Power Tools 

Figure 8-23 

Program 
REORG 

II LOAD $MAINT 
II FILE NAME-REOR?WS?X3,RETAIN-S 
II RUN 
II COPY TO-?SLIB',FROM-DISK,FILE-REOR'WS?X3,NAME-REORG2,RETAIN-R,LIBRARY-P 
I! END 
REDRG2 

4 6 B 
0001 H 024 REORG 
0002 FINPUT IP 132 132 DISK 
0003 FREORG2 0 120 120 DISK 
0004 F" 
0005 F" FUNCTION REORGANIZE A DATA FILE 
0006 F" Ul-REORG U2-CLRPFM U3-PURGE ROUTINE 
0007 F" U4-DELETE A FILE 
0008 F" GRANAT DATA - SL - 3/86 
0009 F" 
0010 E AN 99 8 ALTERNATE NAME 
0011 E PO 99 4 0 KEY POSITION 
0012 E LE 99 2 0 KEY LENGTH 
0013 E NC 99 2 NON-CONTIG FLAG 
0014 E ST 99 1 STATUS 
0015 E NCC 99 1 0 NOI~-CONTIG COUNT 
0016 E ANW 9 1 NAME WORK ARRAY 
0017 E XNW 9 1 NAME WORK ARRAY 
0018 IINPUT AA 01 22 CX 
0019 I 1 8 ALTNAM 
0020 I 36 36 STATUS 
0021 I 38 38 STATU2 
0022 I 70 730POS 
0023 I 76 770LEN 
0024 I 71 72 NON CON 
0025 I CC 03 22 C 
0026 I 70 730POS 
0027 I 76 770LEN 
0028 I 8B 02 
0029 I 8 FI LENM 
0030 C N02 GOTO NOT02 
0031 C" SET -up THE PARENT NAME 
0032 C MOVE 'BLANKS ANW 
0033 C MOVEAF I LENM ANW 
0034 C Z-AODl Z 20 
0035 C "BLANK LOKUPANW,Z 24 
0036 C MOVE' , ANW,Z 
0037 C MOVEAANW PLABEL 
0038 C GOTO OUT 
0039 C NOT02 TAG 
0040 C· 
0041 C ADD 1 X 20 
0042 C MOVE ALTNAM AN,X 
0043 C MOVE POS PO,X 
0044 C MOVE LEN LE ,x 
0045 C MOVE NON CON NC,X 
0046 C STATUS IFEQ '1' 
0047 C MOVE STATU2 ST,X 
0048 C ELSE 
0049 C MOVE STATUS ST,X 
0050 C END 
0051 C 01 Z-ADDl XX 10 
0052 C 03 ADD 1 XX 
0053 C Z-ADDXX NCC,X 
0054 C OUT TAG 
0055 CLR EXSR LRSR 
0056 C· 
0057 C" THIS SUBR WILL CREATE THE OCL 
0058 C" 
0059 C LRSR BEGSR 
0060 C" GENERATE DELETE RECORDS 
0061 C Z-ADDl X 
0062 C AN,l COMP 'BLANKS 23 
0063 C 23 GOTO NODEL 
0064 C AGNl TAG 
0065 C AN,X COMP "BLANKS 21 



Files 239 

0066 C 21 GOTO NODEL 
0067 C SETOF 26 
0068 C NC,X COMP 'NC' 25 
0069 C 25 NCC,X COMP 1 26 
0070 C N26 EXCPTDELX 
0071 C SETON 31 
0072 C X CaMP 99 2222 
0073 C 22 ADD 1 X 
0074 C 22 GOTO AGNl 
0075 C* 
0076 C NaDEL TAG 
0077 C EXCPTCOPY 
0078 C' GENERATE REBULID RECORDS, IF NOT 'DELETE' 
0079 C U4 GOTO ENDIT 
0080 C Z-ADDl X 
0081 C AGN2 TAG 
0082 C AN,X COMP *BLANKS 21 
0083 C 21 GOTO ENDIT 
0084 C NC,X CaMP 'NC' 21 
0085 C SETOF 414243 
0086 C SETOF 4445 
0087 C N21 GOTO NOT21 
0088 C* SET-UP THE ALTERNATE NAME 
0089 C MOVE *BLANKS XNW 
0090 C MOVE AN,X ALTXX 
0091 C MOVEAALTXX XNW 
0092 C Z-ADDl Z 
0093 C *BLANK LOKUPXNW,Z 24 
0094 C MOVE " XNW,Z 
0095 C MOVEAXNW ALABEL 
0096 C NCC,X CaMP 1 41 
0097 C NCC,X CaMP 2 42 
0098 C NCC,X COMP 3 44 43 
0099 C X ADD 1 YY 20 
0100 C NCC,YY COMP NCC,X 45 
0101 C NOT21 TAG 
0102 C* 
0103 C ST,X COMP '2' 91 DUPES ALLOWED 
0104 C EXCPTBLDX 
0105 C X COMP 99 2222 
0106 C 22 ADD 1 X 
0107 C 22 GOTO AGN2 
0108 C* 
0109 C ENDIT ENDSR 
0110 OREORG2 1 P 
0111 0 24 ' I I Copy LI BRARY p, NAME-R' 
0112 0 48 'EORG2 
0113 0 N31 DELX 
0114 0 24 'II LOAD $DELET 
0115 0 N31 DELX 
0116 0 24 'II RUN 
0117 0 DELX 
0118 a 24 'II SCRATCH UNIT-Fl , LABEL' 
0119 0 25 
0120 a AN,X 33 
0121 a 31 COPY 
0122 a 24 ' I I END 
0123 0 COpy 
0124 a U4 6 'DELET2 ' 
0125 a U3 6 'CLRPF3' 
0126 0 U2 6 'CLRPF2 ' 
0127 0 Ul 6 .REORGl ' 
0128 0 F I LENM 15 
0129 a 31NU4 COPY 
0130 a 24 'I I LOAD SFBLD 
0131 a 31NU4 COpy 
0132 a 24 'II RUN 
0133 a N21 BLDX 
0134 a 24 'II FILE ATTRIB X, POSITIO' 
0135 0 26 'N- ' 
0136 0 PO,X 30 
0137 0 41 ' ,LENGTH
0138 a LE ,x 40 
0139 0 48 'DUPKEY- ' 
0140 0 91 52 'YES, ' 
0141 0 N91 51 'NO, ' 



240 5/36 Power Tools 

Figure 8·24 

Procedure 
REORG2. 
This shows 0 

sompleofo' 
REORG2 
procedure 
creoted by 
REORG. 

Figure 8·25 

Procedure 
REORGl 

0142 0 N21 BLDX 
0143 0 10 ' I I PLABEL-' 
0144 0 PLABEL 19 
0145 0 N21 BLDX 
0146 0 'II LABEL-' 
0147 0 AN,X 17 
0148 0 21 41 BLDX 
0149 0 24 'II FILE ATTF: I B- X, DUPKEY- ' 
0150 0 91 28 'YES, ' 
0151 0 N91 27 'NO, ' 
0152 0 21 41 BLDX 
0153 0 10 'II PLABEL -
0154 0 PLABEL 19 
0155 0 21 41 BLDX 
0156 0 9 'II LABEL-' 
0157 0 ALABEL 18 
0158 0 21 42 BLDX 
0159 0 24 'II POSITIN1-XXXX, LENGTH1 ' 
0160 0 25 
0161 0 PO ,x 16 
0162 0 LE ,x 27 
0163 0 45 28 
0164 0 21 43 BLDX 
0165 0 24 'II POSITIN2-XXXX,LENGTH2' 
0166 0 25 
0167 0 PO,X 16 
0168 0 LE, X 27 
0169 0 45 28 
0170 0 21 44 BLDX 
0171 0 24 'II POSITIN3;XXXX, LENGTH3' 
0172 0 25 
0173 0 PO,X 16 
0174 0 LE ,x 27 
0175 0 T 31 LRNU4 
0176 0 24 'II END 
0177 0 T LR 
0178 0 24 '~I CEND 

II LOAD $DELET 
II RUN 
II SCRATCH UNIT-Fl,LABEL-CKHALTl 
II SCRATCH UNIT-Fl,LABEL-CKHALT2 
I I SCRATCH UNIT-Fl ,LABEL-CKHSL 
II END 
REORGl CKHIST 
I I LOAD $ FBLD 
II RUN 
II FILE ATTRIB-X,POSITION-0013,LENGTH-l0,DUPKEY-NO, 
II PLABEL-CKHIST, 
I I LABEL-CKHALTl 
II FILE ATTRIB-X,POSITION-0002,LENGTH-27,DUPKEY-NO, 
II PLABEL-CKHIST, 
I I LABEL - CKHALT2 
II FILE ATTRIB-X,DUPKEY-YES, 
II PLA8EL-CKHIST, 
I I LABEL-CKHSL, 
I I POSITIN1-000l, LENGTH1-l0, 
II POSITIN2-0015,LENGTH2-02, 
I I POSITIN3-0021, LENGTH3-03 
II END 

REORG A FILE 
II IF 71R?1 • 'KEY IN THE FILE TO CLEAR OUT,' 
II IFF DATAF1-?1R? • '?1? IS NOT ON DISK' 
II IFF DATAF1-?lR? PAUSE 
II IFF DATAF1-71R? RESET REORG1 
II IF DATAF1-CLR?WS?WRK DELETE CLR?WS?WRK,Fl 
COPYDATA ?1?" CLR?WS?WRK, , , , ,REORG 
DELETE? 1? ,Fl 
RENAME CLR?WS?WRK,?l? 



Files 241 

Making a File Delete-Capable 
by Mel Beckman 

Figure 8-26 

Procedure 

SETDEL 


a Code on diskette: 

Procedure SETDEL 

Assembler program SETDEL 


Those of you who use the S/36 deleted record capability know of an annoy
ing omission by IBM:" it is impossible to make a file "delete-capable" after 
the file has been created. If you inadvertently attempt to delete a record 
from a file that is not delete-capable, the program is canceled with option 2 
or 3. Copying the file with COPYDATA does not get the file into a delete
capable state, and neither does restoring the file from diskette. Seemingly, 
the only way to get the file into a delete-capable state is by writing a 
$COPY procedure to copy the file, with DFILE-YES specified in the 
II FILE statement for the output file. If alternate indexes have been built 
over the file, you must delete the indexes and rebuild them after copying 
the file. The RIF (Rochester Irk Factor) increases in direct proportion to 
the number of records in the file. 

Fortunately, a tiny assembler language program can be used to make 
any file delete-capable. If alternate indexes are associated with the file, 
they are made delete-capable also. 

Program SETDEL is called from procedure SETDEL (Figure 8-26), 
which can be stored in #LIBRARY. Program SETDEL works on the princi
ple that the SSP reads into memory the VTOC entry for every II FILE 
statement. Program SETDEL simply sets the delete-capable bit in each 
VTOC entry, and the SSP automatically writes the entries back to the 
VTOC at end of job. The SETDEL procedure in Figure 8-26 shows only 
one FILE statement, but you can code as many as you like - program 
SETDEL will process them all. Note that you only need to specify a FILE 
statement for one member in a "family" (parent plus alternate index files) 
to make the whole family delete-capable. 

II LOAD SETDEL 

II FILE NAME-?1? 

II RUN 




242 5/36 Power Tools 

Deleting Multiple Files 
by Charles M. Barnard 

a Code on diskette: 

Procedure DEL 

Figure 8-27 shows a 'procedure I wrote to avoid having to write 

II IF DATAF1-filename DELETE filename,F1 

every time Iwanted to delete a temporary file that might or might not 
exist. Procedure DEL deletes up to 11 individual files with one call from 
the terminal. 

The procedure performs an existence check before it attempts to delete a 
file and then deletes the file if the check succeeds. The procedure exits if the 
passed file name is blank, and the procedure will not let you delete all files. 

This procedure may be inserted within most other procedures, as long 
as the nested depth plus the number of files passed does not exceed 16. 

Figure 8-27 DEL MULTIPLE FILE DELETION UTILITY WITH EXISTENCE CHECK. C. BARNARD 

Procedure DEL 'USAGE: DEL FILE1.FILE2",FILEll (WILL DELETE UP TO ELEVEN FILES)' 

•• IF JOBQ-NO IF EVOKED-NO' 'DEL ?17,?2??3?,?4?,?5?,?S?,?7??B?,?9?,?10?,?11?' 

/ / LOAD $DELET 



Files 243 

I I RUN 

I I IFF 171 IF DATAF1 -?1? SCRATCH UNIT-F1 .LABEL-71? 

II IFF 2?1 IF DATAF1-?2? SCRATCH UNIT-F1 .LABEL-72? 

I I IFF 311 IF DATAF1-?3? SCRATCH UNIT-F1 .LABEL-?3? 

II IFF 4?1 IF DATAF1-74? SCRATCH UNIT-F1.LABEL-?4? 

II IFF 511 IF DATAF1-15? SCRATCH UNIT-F1.LABEL-15? 

I I IFF 5?1 IF DATAF1-?6? SCRATCH UNIT-F1 .LABEL-16? 

II IFF 6?1 IF DATAF1-?7? SCRATCH UNIT-F1. LABEL-77? 

I I IFF 7?1 IF DATAF1 -?B? SCRATCH UNIT-F1.LABEL-?8? 

I I IFF 8?1 IF DATAF1-?8? SCRATCH UNIT-F1.LABEL-?8? 

I I IFF 9? I IF DATAF1-?9? SCRATCH UNIT-F1. LABEL-?9? 

I I IFF 10?1 IF DATAF1-?10? SCRATCH UNIT-F1.LABEL-l101 

I I IFF 1171 IF DATAF1-?11? SCRATCH UNIT-F1 .LABEL-711? 

II END 


Saving History Files 
by Thomas Straitwell and Martin Bell 

Code on diskette: a Procedure HISTCOPY 

Figure 8-28 

Procedure 
HISTCOPY 

When a S/36 is configured to save the history file periodically, the file is 
copied to a user file called HISTCOPY whenever the system history file 
becomes 80 percent filled. If the history file fills up twice in the same day, 
however, the system attempts to create a duplicate copy of the user file 
HISTCOPY and locks up the workstation until someone intervenes. 

You can prevent this situation by using IBM's HISTCOPY procedure. 
If you add the OCL statements shown in Figure 8-28, the system creates 
history files named HIST.l, HIST.2, and so on, avoiding duplicate names. 
Procedure HISTCOPY uses an n-positional stack procedure to maintain n 
history files. As the system history file is saved, the nth file is deleted, and 
the others are renamed. We can change the size of the stack easily. 

• HISTCOPY PROCEDURE: MAINTAINS AN N-POSITIONAL STACK OF HISTORY 
FILE 	RDLLOVERS. 

P1 - N POS IT IONS COUNTER 
P2 - N-1 COUNTER 

• INITIALIZE COUNTERS 
I I EVALUATE P1. 1-5 P2. 1-4 
• DELETE OLDEST F~LE IN STACK 
II IF DATAF1-HIST.?1? DELETE HIST.71?F1 
• RENAME OTHER FILES IN STACK 
II TAG LOOP 
II IF DATAF1-HIST.?2? RENAME HIST.?27.HIST?1? 
II EVALUATE P1.1-?17-1 P2.1-?2?-1 
II IF ?17>1 GOTO LOOP 
• RENAME NEWEST FILE 

II RENAME HISTCOPY.HIST 1 




Files 243 

I I RUN 
II IFF 7"1 IF DATAFl-717 SCRATCH UNIT-Fl ,LABEL-717 
II IFF 7271 IF DATAFl-727 SCRATCH UNIT-Fl,LABEL-?27 
II IFF 7371 IF DATAFl-73? SCRATCH UNIT-Fl ,LABEL-73? 
II IFF 7471 IF DATAFl-747 SCRATCH UNIT-Fl,LABEL-?47 
II IFF ?5?1 IF DATAFl-75? SCRATCH UNIT-Fl,LABEL-?5? 
II IFF 7571 IF DATAF1-?67 SCRATCH UNIT-Fl,LABEL-?6? 
II IFF 7671 IF DATAFl-77? SCRATCH UNIT-Fl,LABEL-?77 
II IFF 7771 IF DATAFl-7B7 SCRATCH UNIT-Fl ,LABEL-'87 
II IFF 7B71 IF DATAF1-?87 SCRATCH UNIT-Fl,LABEL-787 
II IFF 7971 IF DATAF1-'9? SCRATCH UNIT-Fl,LABEL-79? 
II IFF 71071 IF DATAFl-7107 SCRATCH UNIT-Fl ,LABEL-?107 
II IFF 711?1 IF DATAFl-711? SCRATCH UNIT-Fl ,LABEL-7117 
/1 END 

Saving History Files 
by Thomas Straitwell and Martin Bella	Code on diskette: 

Procedure HISTCOPY 

Figure 8·28 

Procedure 
HISTCOPY 

When a S/36 is configured to save the history file periodically, the file is 
copied to a user file called HISTCOPY whenever the system history file 
becomes 80 percent filled. If the history file fills up twice in the same day, 
however, the system attempts to create a duplicate copy of the user file 
HISTCOPYand locks up the workstation until someone intervenes. 

You can prevent this situation by using IBM's HISTCOPY procedure. 
If you add the OCL statements shown in Figure 8-28, the system creates 
history files named HISTl, HIST2, and so on, avoiding duplicate names. 
Procedure HISTCOPY uses an n-positional stack procedure to maintain n 
history files. As the system history file is saved, the nth file is deleted, and 
the others are renamed. We can change the size of the stack easily. 

• HISTCOPY PROCEDURE: MAINTAINS AN N-POSITIONAL STACK OF HISTORY 
FILE 	 ROLLOVERS, 

Pl - N POSITIONS COUNTER 
P2 - N-l COUNTER 

• INITIALIZE COUNTERS 
II EVALUATE Pl ,1-5 P2.1-4 
• DELETE OLDEST F~LE IN STACK 
II IF DATAF1-HIST.'17 DELETE HIST.?17.Fl 
• RENAME OTHER FILES IN STACK 
II TAG LOOP 
II IF DATAF1-HIST.'27 RENAME HIST.'2?HIST.717 
II EVALUATE Pl.1-717-1 P2,1-?27-1 
II IF 71'>1 GOTO LOOP 
• RENAME NEWEST FILE 
II RENAME HISTCOPV,HIST.l 

http:HIST.?17.Fl


244 5/36 Power Tools 



Folders 


-CHAPTER 

9 




246 5/36 Power Tools 

Maintaining Folders Automatically 
by Rotl Elliott 

program by Matthew Henry 

Figure 9-1 

Prompt screen 
MAIN 

a
Code on diskette: 


Procedure FOLDMK 
RPG program FOLDMK 
Screen format member FOLDMKFM 
Message member FOLDMKMG 

If you use S/36 folders to store documents, you know the value of organiz
ing your documents; you're probably also familiar with the headaches that 
often accompany folder maintenance. Like user libraries, folders must be 
saved, restored, condensed, and reallocated. And you may have problems 
remembering folder names when trying to perform maintenance functions 
on all the system's folders. 

One solution to the problem of keeping track of folder names is utility 
FOLDMK with prompt screen MAIN (Figure 9-1), which automatically tracks 
your system's folders and performs any SSP maintenance task - system ser
vice programs such as CONDENSE and SAVEFLDR - on every folder 
you've chosen. Utility FOLDMK consists of RPG program FOLDMK (Figure 
9-2), screen format member FOLDMKFM (Figure 9-3), message member 
FOLDMKMG (Figure 9-4), and procedure FOLDMK (Figure 9-5). 

FOLDMK 	 FOLDMK PROCEDURE 

Type cholces. press Enter. 

Procedure to run 	 SSP folder procedure 

Procedure parameters Folder name assumed 
to be fi rst parameter 

Name of file with Unot to use" folder names Name of indexed file 
Name of procedure to create Any valid procedure 

Name of llbrary to place new procedure in 	 Any existing library 

Delete procedure after it runs 	 V-Yes. delete it 
N"No, keep it 

Cmd3"'Prev; DUS menu Cmd7~Cancel procedure Help-More information 



Folders 247 

Before Using Procedure FOLDMK 
Before you can use utility FOLDMK, you must build an indexed file to 
contain the names of the folders you want to exclude from processing. 
Because IBM-supplied folders (i.e., #WPFLDR, #IWPCLD2, #IDDFLDR, 
#QRYFLDR, #WPDOCS, #OFCFLDR, #PROFLIB, #PRFFLDR, 
#IDDUSMP, and #USERDCT) generally remain static, routine mainte
nance on them is unnecessary, and you may want to exclude them from pro
cessing. You also may want to exclude specific user folders from automatic 
maintenance functions. Any label for the indexed file will do (our example's 
indexed file is NOTDFILE); however, the file must have a record length of 
eight bytes with the key defined over bytes 1 through 8. . 

Using Utility FOLDMK 
Utility FOLDMK works by building a procedure to carry out the mainte
nance chores. A series of screens prompts you for information to build the 
procedure. The first screen, screen MAIN, prompts you for the name of the 
SSP procedure (e.g., SAVEFLDR or CONDENSE) that you want to be 
executed automatically for all folders. Screen MAIN also prompts for 
optional procedure parameters. Note that the SSP procedures check these 
parameters for errors when the procedures are executed. In the CON
DENSE procedure, for example, the second (optional) parameter must 
contain the word FOLDER preceded by a comma. 

The remaining prompts ask you for the name of the indexed file, the 
name of the procedure you are creating, the name of the library in which you 
want the newly created procedure stored, and whether you want to delete or 
save the procedure utility FOLDMK creates. You may want to save the pro
cedure so you can execute it again without having to re-create it. Be aware, 
however, that the saved procedure contains only the names of folders that 
were on the system when utility FOLDMK created the procedure. 

After responding to the prompts, press Enter for utility FOLDMK to cre
ate the procedure to perform the chosen SSP function on all nonexcluded fold
ers. After utility FOLDMK finishes building the procedure, screen ASK2RUN 
(Figure 9-6) is displayed and asks whether you want to execute the procedure 
immediately at the workstation or execute it later via an EVOKE or the JOBQ. 

Regular folder maintenance is a necessary burden, but utility 
FOLDMK frees you from the tedium of reading VTOC lisJings and helps 
you keep your folders slim and trim. 



0005 

0010 

0015 

0020 

0025 

0030 

0035 

0040 

0045 

0050 

0055 

0060 

0065 

0070 

8 

248 5/36 Power Tools 

Figure 9-2 

Program 
FOLDMK 

... 1 3 .. 4 7 ..
0001 H**·**······**····*·······****························ .•........... 

0002 H* Program: FOLDMK Written by: Matthew P. Henry 
0003 H' This program reads the VTDe directly and builds a procedure 
0004 H' for every folder on the system except ones found in the not

H' to-do file. 
0006 H' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - - -' 
0007 H* Indicators: 
0008 H" 10 - Used for NOTDFILE chain operation in subroutine SFLDR 
0009 H' 20 - Used for TEST8 operation in SFLDR 

H"----------------------------------------------------------------, 
0011 H' SWltches:
0012 H·····················**··············**····**·····**·.*.* .. ** •••• * 
0013 H 64 FOLDMK 
0014 FPROCFI LEO 80 80 DISK 

FNOTDFILEIC 8 8R 8AI 1 DISK 
0016 E CNT 3 77 LNG 2 0 
0017 E aT 80 
0018 INOTDFILENS 
0019 IVTOCDS DS 

I 1 1 FFORG 
0021 I 3 10 FFLABL 
0022 I 11 160FFCRDT 
0023 I 17 17 FFTYPE 
0024 I 20 20 FFFLAG 

I 119 126 FFPAR 
0026 I DS 
0027 I 80 OTOS 
0028 I 80 OT 
0029 UDS 

1 8 LPROC 
0031 9 54 LPABA 
0032 55 62 LNME 
0033 63 70 LNEWL 
0034 71 71 LDELE 

c· Initialization 
0036 C LPROC IFEQ 'CONDENSE' 
0037 C LPARA I FEQ "BLANKS 
0038 C MOVEL'FOLDER' LPARA 
0039 C END 

C END 
0041 C' 
0042 C MOVE 'BLANKS OTDS 
0043 C MOVELCNT,l OTOS 
0044 C Z-ADOLNG.1 o 

C MOVEALNAME OT.O 
0046 C EXSR SFBLK 
0047 C MOVEACNT.2 OT.O 
0048 C EXCPTHEADER 
0049 C' Main control routine 

C FFORG OOULE"BLANK 
0051 C MOVE 'BLANKS NAME 
0052 C EXSR SUBRVR 
0053 C FFORG I FGT 'BLANK End of VTOC? 
0054 C EXSR SFLDR Select folder 

C END End IFGT 'BLANK 
0056 C END End DOULE 'BLANK 
0057 C' 
0058 C LDELE IFEQ 'y' Delete option? 
0059 C MOVE 'BLANKS OTOS Blank output 

MOVELCNT.3 OTDS move constant 
0061 C Z-ADOLNG.3 o set length 
0062 C MOVEALNAME OT.O move name 
0063 C EXSR SFBLK Find blank 
0064 C MOVEA' . P. ' OT.O Add P for REMOVE 

C ADD 3 o set pointer 
0066 C MOVEALNEWL OT.O Move 1 i bra ry name 
0067 C EXCPTDELOPT Output OeL 
0068 END End lFEQ 'Y' 
0069 C· Termination 

C EXCPTFOOTER 
0071 C SETON LR 
0072 C"------
0073 C' Subroutines 
0074 C" 



Folders 249 

0075 C' Se 1ect 
0076 C 
0077 C 
0078 C 10 
0079 C 
0080 C 20 
0081 C 
0082 C 
0083 C 
0084 C 
0085 C 
0086 C 
0087 C 
0088 C 
0089 C 
0090 C 
0091 C 
0092 C 
0093 C 
0094 C 
0095 C 
0096 C' 

folder 
SFLDR 
FFLABL 
FFORG 

LPARA 

10 Label in not do file 

FFFLAG 20Must be folder DDA 

OlOS Initialize work area 
OTDS 
OT,4 move procedure name 
OT,13 
a 20 

Find next blank 
Parameters empty? 

OT,O No. move comma 
o index up 
OT,O move pa ramete rs 

End IFNE "BLANKS 
Write prac line 
End DO 
End IFEQ 'F' 

Read VTOC 
NAME Name 
VTOCOS Return data 

up search 

SEOS 	 End of search flag 
Search 
Blank? 

SEOS Yes: end search 
No: 
Pointer eq 80? 

SEOS 	 Yes: end search 
No: 

o 	 increment 
End I FEO 80 
End I FEQ "BLANK 
End DOUEa '1 ' 

BO 

24 'II IF JOBa-NO IF EVOKED-' 
42 'NO EVALUATE P20-NO' 

14 'II IF ?20?-NO 
37 '* . 'Working with folder' 
45 
46 

80 

23 'II IF ?20?-NO 	 • "Remoyi' 
47 'ng procedure 	 from librar' 
49 'y'" 

BO 

'II CEND' 
Length 

24 
09 
11 

0097 C- Call SUBRVR to open 
0098 C 	 SUBRVR 
0099 C 
0100 C 
0101 C 
0102 C 
0103 C" 
0104 C· Find blank in work 
0105 C" Setting 0 to start 
0106 C 	 SFBLK 
0107 C 
0108 C 	 HOS 
0109 C 	 OT,O 
0110 C 
0111 C 
0112 C 	 a 
0113 C 
0114 C 
0115 C 
0116 C 
0117 C 
0118 C 
0119 C 
0120 OPROCFILEE 
0121 0 
0122 OPROCFILEE 
0123 0 
0124 0 
0125 O' Folder output 
0126 OPROCFILEE 
0127 0 
0128 0 
0129 0 
0130 0 
0131 OPROCFILEE 
0132 0 
0133 O· Footer to close procedure 

BEGSR 
CHAINNOTDFILE 
I FEQ 'F' 
TESTB '1 ' 
DO 
MOVE "BLANKS 
MOVEL'// 
MOVEALPROC 
MOVEAFFLABL 
Z-ADD13 
EXSR SFBLK 
I FNE "BLANKS 
MOVEA' , ' 
ADD 1 
MOVEALPARA 
END 
EXCPTOFLDR 
END 
END 
ENDSR 

VTOC 
BEGSR 
EXIT SUBRVR 
RLABL 
RLABL 
ENDSR 

area OT 
point speads 
BEGSR 
MOVE 'a' 
DOUEa'l' 
IFEQ "BLANK 
MOVE '1' 
ELSE 
IFEQ BO 
MOVE '1' 
ELSE 
ADD 
END 
END 
END 
ENDSR 

HEADER 
OTDS 
HEADER 

OFLDR 

FFLABL 

OFLDR 
OTDS 

0134 OPROCFILEE 
0135 0 
0136 0 
0137 0 
0138 OPROCFILEE 
0139 0 
0140 OPROCFILEE 
0141 0 
** Program constants 
// COPY LIBRARY-P,NAME

,HIST-NO 

// REMOVE 

/. 


DELOPT 

DELOPT 
OTDS 
FOOTER 



0010 

0020 

0030 

0040 

0050 

0060 

0070 

0080 

'250 S/36 Power Tools 

Figure 9-3 
0001 SMAIN NY 63 Y 

4 6 7 
CG123456 

Screen format 0009 DFLOOOl 
D 

79 1 2Y 
FOLDMK PROCEDURE 

Y CFOLDMK X 

member 0011 DFLOO02 26 3 2Y CType choices, press EntX 

FOLDMKFM 
0012 
0013 

Der. 
DFLOO03 44 3Y CProcedure to run X 

0014 D 
0015 DFLOO04 8 54964 Y 51 51 Y N 
0016 DFLOO05 20 559Y CSSP folder procedure 
0017 DFLOO06 44 7 3Y CProcedure parameters 
0018 D. 
0019 DFLOO07 22 759Y CFolder name assummed 

DFLOO08 44 81364 Y Y N X 
0021 D 
0022 DFLOO09 21 860Y eto be first parameter 
0023 DFAOO02 4410 3Y CName of file with "not X 
0024 Dto use" folder names 
0025 DFAOOOl 8104964 Y 53 53 Y N 
0026 DFAOOO3 201 U59Y eName of indexed file 
0027 DFAOOOl 4412 3Y eName of procedure to crX 
0028 Oeate 
0029 DFAOO02 8124964 Y 54 54 Y N 

DFAOO05 191259Y CAny valid procedure 
0031 DFAOO03 4414 3Y eName of library to placX 
0032 De new procedure in 
0033 DFAOO04 8144964 Y 55 55 Y ~ 
0034 DFAOO06 201459Y CAny existing library 
0035 DFAOOOl 4416 3Y CDelete procedure after X 
0036 Dit runs 
0037 DFAOO02 1164964 YA 56 56 Y N 
0038 DFAOO03 161659Y CY-Yes, delete it 
0039 DFAOO04 131759Y CN-No, keep it 

DFAOOOl 7023 2Y CCmd3-Previous menu X 
0041 DCmd7-Cance1 procedure 
0042 DFL0010 7024 264 Y M 
0043 SINFO 0100 Y Y 
0044 DFLOOOl 64 410Y Y INX 
0045 DFORMATIONAL WINDOW 
0046 DFLOO02 1 510Y Y C 
0047 DFLOO03 60 512Y C X 
0048 0 
0049 DFLOO04 573Y Y C 

DFLOO05 610Y Y C 
0051 OFLOO06 60 612Y M 
0052 DFLOO07 1 673Y Y C 
0053 OFLOO08 1 710Y Y C 
0054 OFLOO09 60 712Y C X 
0055 0 
0056 OFL0010 1 773Y Y C 
0057 DFLOOl1 64 810Y Y Y C X 
0058 D Working 
0059 SASK2RUN 0100 NY Y CG123456 

OF LOOOI 53 613Y Y C RUN X 
0061 DPROCEDUAE NOW 
0062 OFLOO02 1 713Y Y C 
0063 OFLOO03 49 715Y C X 
0064 0 
0065 OFLOO04 765Y Y C 
0066 DFAOO03 1 813Y Y C 
0067 OFAOOOI 18 815Y CCreated procedure: 
0068 DFAOO02 8 834Y Y Y 
0069 DFAOO04 9 843Y C L; bra ry: 

DFAOO02 8 853Y Y Y 
0071 DFAOO06 2 862Y C 
0072 OFAOO05 1 865Y Y C 
0073 DFAOO06 1 913Y Y C 
0074 DFAOO07 49 915Y C X 
0075 0 
0076 DFAOO08 1 965Y Y C 
0077 DFLOO05 11013Y Y C 
0078 DFLOO06 221015Y CAun the procedure now? 
0079 OFLOO07 11038Y Y8 Y Y N 

OFAOO03 241040Y CY - Run at terminal X 
0081 0 



Folders 251 

00B2 DFLOOOB 11065Y Y C 
00B3 DFLOO09 11113Y Y C 
00B4 OFAOO05 491115Y C X 
00B5 D N - Do not run now 
00B6 OFLOOll 11165Y Y C 
00B7 DFAOO07 11213Y Y C 
00B8 DFAOOOl 491215Y X 
0089 0 0-5 - Place on job queue 
0090 OFAOOOB .11265Y Y C 
0091 OFAOO09 11313Y Y C 
0092 OFAOO04 491315Y C X 
0093 0 E = Evoke procedure 
0094 OFA0010 11365Y Y C 
0095 DFAOOll 11413Y Y C 
0096 OFL0010 491415Y X 
0097 0 
0098 OFAOO12 11465Y Y C 
0099 OFLOO12 531513Y Y C Enter-Continue CmX 
0100 Dd7-Cance 1 

FOLOMKMG,lFigure 9-4 * Message for FOLDMK procedure and program 
0001 Must have a procedure name, please enter a procedure nameMessage member 0002 Must have a file name, please enter a file name 
0003 File does not exist, reenter an existing nameFOLDMKMG 
0004 Must have a new procedure name, please enter a procedure name 
0005 Must have a library name, please enter a library name 
0007 Name is not a library, reenter a valid library name 
0008 Delete prompt must be 'yo or 'N'. please reenter 
* Text for INFO window 
0101 Reading VTOC, please wait 
0102 Copying procedure to specified library 
* End of procedure messages 
0201 Procedure has been evoked, press Enter 
0202 Procedure has finished running, press Enter 
0203 Procedure has been placed on the job queue, press Enter 

II MEMBER USER1-FOLOMKMGFigure 9-5 
* Screen procedure parameters can be changed by changing values belowProcedure · FOLDMK I I EVALUATE P3-#FOLOMK P4-7It1S??TIME7P5-#LIBRARY P6-Y · II TAG BEGIN 
I I EVALUATE P64-1 
II PROMPT MEMBER-FOLOMKFM,FORMAT-MAIN,LENGTH-'8,44,8,B,B,l ,0,0,0,6' 
II IFF 7C07-0000 RETURN 
II EVALUATE P51- P52- P53- P54- P55- P56- P63= 1 
II IF 71'- GOTO BEGIN 710F'OOOlUl', ?51F'l'7 
II IF 737- GOTO BEGIN ,10F'0002Ul', 753F'l'? 
I I IFF OATAFl ·737 GOTO BEGIN 710F'0003Ul'? 753F'l '7 
II IF 747- GOTO BEGIN ?10F'0004Ul '7 754F'l'? 
II IF 757- GOTO BEGIN ?10F'0005Ul'7 755F'l', 
II IFF OATAFl-75? GOTO BEGIN 710F'0006Ul" 755F'l'7 
II IFF LOAO-'#PTFLOG,?5?' GOTO BEGIN 710F'0007Ul'7 755F'l' 7 
II IFF 767-Y IFF ?67-N GOTO BEGIN ?10F'0008Ul'7 '56F'l'? · I I TAG RUN 

I I EVALUATE Pl1 -' 01 01 Ul ' 

II PROMPT MEMBER-FOLOMKFM,FORMAT-INFO,START 11 ,LENGTH-'6' 


II LOCAL OFFSET-Ol,OATA- '717' .BLANK-71 

II LOCAL OFFSET-09,OATA-'?2?' 

II LOCAL OFFSET-55,DATA-'?4?' 

II LOCAL OFFSET-63,OATA-'757' 

II LOCAL OFFSET-71,OATA-'?6?' 

II EVALUATE Pl0-?ItIS??TIME? 

I I LOAD FOLOMK 

1/ FILE NAME-NOTDFILE.LABEL-?3R',OISP-SHRRM,IBLOCK-l00,DBLOCK-100 




252 5/36 Power Tools 

Figure 9-6 

Screen 
ASK2RUN 

II FILE NAME-PROCFILE,LABEL-710R7,DISP-NEW,RECORDS-SOO,EXTEND-50 
II RUN 

II EVALUATE P11-'0102U1' 
II PROMPT MEMBER-FOLDMKFM,FORMAT-INFO,START-11 ,LENGTH-'S' 
II INFOMSG NO 
I I TOLlBR 7107, F1, , ,7S7" "ALL 
II IF DATAFl-7107 DELETE 7107,Fl 

II INFOMSG YES 

II EVALUATE P6-E 

II PROMPT MEMBER-FOLDMKFM,FORMAT-ASK2RUN,START-4,LENGTH-'S,S,l' 

II IFF 7C07-0000 GOTO END 

II IF 767-E EVOKE 74?,?S?

II ELSE IF 7S7-Y ?47 ,75? 

II ELSE IF 7S7-0 JOBQ 767,757, 74? 

II ELSE IF 76?>0 IFF 767>5 Joao ?67, ?5?, 74? 

II ELSE GOTO END 


II TAG END 

I I RETURN 


Name: FOLDMK 

Purpose: Make procedure for working with all folders on a system 


.. Parameters: 	 P1 Name of procedure to run 
P2 Parameters for procedure 
P3 File name of Mdo not use" folder names 
P4 Name of 	new procedure created by FOLDMK 
P5 Library to place new procedure in 
PS YIN to delete new procedure after running it 
Pl0 Error message for prompt screen 

Fi le name for FOLDMK procedure 

Switches: NONE 

LOA data: See program FOLDMK 


FOLDMK 	 FOLDMK PROCEDURE 

Type choices, 	press Enter. 
·····················INFORMATIONAL WINDOW······················· 

Proced • 	 • dure 
###################RUN PROCEDURE NOW################# 

Proced •• *# 	 #•••••••• mmed 
# Created procedure: MKFOLD Library: #LIBRARY # rking ameter 
# # 

Name of # Run the procedure now7 Y - Run at terminal # indexed file 
# N - Do not rUri now # 

Name of p # 0-5 - Place on job queue # d procedure 
# E - Evoke procedure # 

Name of # # ti ng library 
##Enter-Continue#####Cmd7-Cancel##################### 

Delete procedure after it runs Y-Yes, delete it 
N-No, keep it 

Cmd3-Prev;ous menu Cmd7-Cancel procedure Help-More information 



Folders 253 

Reducing Folder Size 
answered by JeffSilden 

Qwe use DisplayWrite/36 (DW/36) for printing, spell checking, creating 
documents, and so on. I've noticed that the folders on which we use 

DW/36 develop a number of extents each day, hurting DW/36 
performance. As a result, we use the ALLOCATE FOLDER (ALOC 
FLDR) procedure at the end of each day to eliminate the extents. 
However, sometimes the folder doesn't shrink. Why not? How can I reduce 
the folder to the smallest size possible? 

AYour decision to use procedure ALOCFLDR is a good one because 
ALOCFLDR reorganizes the contents of the folder specified in 

parameter 1. It doesn't matter whether the folder contents are DW/36 
documents, PS/36 mail logs, or IDDU definitions. However, make sure to 
specify MIN as the second parameter to procedure ALOCFLDR. If 
procedure ALOCFLDR's second parameter is left blank, the folder is 
organized, but its reorganization doesn't necessarily release free space 
contained within the folder. To reduce the folder to its minimum size, use 
the CONDENSE procedure before using ALOCFLDR, specifying 
FOLDER as the second parameter. 

Also, you should allocate more space to the folder at the start of the day 
to minimize automatic extending. Then, periodically run the CONDENSE 
procedure against that folder to keep it as organized as possible. 



254 5/36 Power Tools 



IDDU and 

Query/36 


-CHAPTER 

10 




256 5/36 Power Tools 

Printing an Enhanced Query Report Header Page 

answered by George Applegate and Gary T. Kratzer 

Code on diskette: a
Procedure QQRYID 
RPG program QQRYID 

QWe have a problem with people running Query reports and then 
forgetting about them. Although everyone prints a cover page, it does 

not tell me who ran the reports. I've thought about setting up individual 
libraries for everyone who uses Query, but our space is limited. Is there a 
way to print the workstation or user 10 on the cover page? Do you have any 
other suggestions? 

AIt would be nice if each user who runs a Query report would meet his 
or her responsibility to go pick it up. Barring that, Figures 10-1 and 10

2 contain a procedure and program that do the trick. Program QQRYID 
writes the user 10, workstation 10, date, and time to a printed header page. 
The printer statement CONTINUE-YES, which keeps the spool file open, 
enables the header page to be concatenated with the query report. 

Figure 10-1 
Create Query user printout for distribution purposes - User/WS/Date/TimeProcedure 	 _•. *_. __ •.•_•• _•.•••••_._._-_. __ ._•. _-_. __ •••••••• _•.••.•••.••.••••_•••••.•.•••. 

I I LOCAL OFFSET -1, DATA-' ?USER?QQRYID II LOCAL OFFSET-9,DATA-'?WS?' 
II PRINTER CONTINUE-YES 
II LOAD QQRYID 

II RUN 


QRYRUN VNAME,ELEVLIBR,VENDDR,PRINTER, ,""" ,RECSEL,DETAIL 

1/ PRINTER CONTINUE-NO 

II LOCAL OFFSET-l,BLANK-l0 


Figure 10-2 4 B 
0001 H 064 B OQRYlD

Program 0002 FPRINTER 0 F 132 132 PRINTER
0003 F·······_·_*···_····_-_····_·········_··_·_*_··_·_·_··*********QQRYID 	 0004 F* 
0005 F* Wr,te User ID and Workstation and date and time to a printed file 
0006 F* Written by GEORGE APPLEGATE 2/90 
0007 F* 
0008 F* ............. it.it ........... ** .. it. it ........ it ...... it ** .......... ** ** .... ** .. +++:11 it ... *** it .... it 
0009 I UOS 
0010 I 1 8 UDSUSR 
0011 I 9 10 UDSWS 
0012 C TIME FLODAT 120 
0013 C MOVELFLDDAT UDSTIM 60 
0014 C Z-ADDFLDDAl UDSDAT 60 
0015 C SETON LR 
0016 OPRINTER T 304 LR 
0017 0 6 'QQRYID' 
0018 0 75 'REPORT USER INF8RMATION' 
0019 0 T LR'2 

0020 a 10 'USER: ' 
0021 0 UDSUSR 20 
0022 a 35 'WORKSTATION' 
0023 a UDSWS 38 



IDDU and Query/36 257 

0024 0 50 'DATE: 
0025 0 UDSDATY 59 
0026 0 70 'TIME: 
0027 0 UDSTIM 79' 

Running Query/36 on the Job Queue 
answered by Matthew Henry and Mark Rubinstein

QCan I run Query from the job queue? 

ATo put a query on the job queue, simply take the // IF jOBQ 
statements out of the QRYRUN procedure. Or you can enter 

QRYRUN, in which case the screen will show four data lines. Fill in 
"Name of Query to Run" and "Name of Library Containing Query," and 
then press CMD4. Your query will be placed on the ]OBQ. But one word of 
caution with this latter method: if after filling in the first two lines you 
press Enter instead ofCMD4, you'll get additional questions - but the 
CMD4 will no longer work. 

Deleting and Creating Files from Query/36 
answered by Matthew Henry and Mark Rubinstein

QHow do I control file deletion/creation from Query? 

AThere are a couple of ways to control file deletion/creation from Query. 
If you specify the deletion/creation option as "create a new file" and 

then set autoresponse to answer QRY1032 with option 2, your users won't 
even get the message saying that the file already exists and they have the 
option of replacing it. If you are putting this all into a procedure, it would 
look something like this: 

II RESPONSE MSG1032 
II NOHALT 1,JOB
II QRYRUN parameters
II IF ?CD?>OOOO code for file already existing
II RESPONSE QRY1032 (to restore message response values) 

where source member MSGI032 contains: 
QRY 
10322,1 

and source member QRYI032 contains: 
QRY 
1032 N 

You also can use resource security to secure all your master files as update 
default access. This ensures that the file can't even be deleted by accident. 



258 5/36 Power Tools 

Converting Date Formats in Query/36, Part 1 
by Mark Allen 

In BitStop, September 1986, Robert Hughes presented a technique that 
allows S/38 Query users to convert dates from MMDDYY format to YYM
MDD format. Mr. Hughes' technique will not work with Query/36 because 
Query/36 does not support a remainder function. However, the following 
three statements will accomplish the same conversion in Query/36 for field 
MDY in MMDDYY format: 

REM MDY/l00 
REMl = REM * 100 
YMD = REM + ((MDY - REM1) * 10000) 

Field REM must be defined as a six-position field with no decimals, 
and field REMI must be defined as an eight-position field with no deci
mals. The result field, YMD (also defined as six positions with no deci
mals), contains the date in YYMMDD format. As a specific example, let 
MDY equal 021086. REM is then equal to 0210 and REMI equals 021000. 
The subtraction within the inner set of parentheses in the third statement 
yields 86, which is multiplied by 10,000 and added to REM, yielding 
860210. 

Converting Dc:-te Formats in Query/36, Part 2 
by Rick Stanley 

The computations shown below illustrate another approach Query/36 users 
can take for converting dates from MMDDYY format to YYMMDD format. 
Field DATE contains a date in MMDDYY format, and field YYMMDD 
contains the date in YYMMDD format. Fields Date1 and Date3 are 
defined as twelve-position fields; Date2 and YYMMDD are defined as six
position fields. All fields are defined with no decimal positions. 

Datel DATE * 10000.01 
Date2 = Datel/l000000 
Date3 = Date2 * 1000000 
YYMMDD = Datel - Date3 

For example, if DATE equals 021086, Datel equals 210860210, Date 2 
equals 210, Date3 equals 210000000, and finally YYMMDD equals 860210. 

Creating RPG F-, 1-, and O-Specs 
from IDDU with Query/36 
answered by Matthew Henry 

QHOW can I access IDDU information to create file-, input-, and output
specifications for RPG II? 

http:10000.01


IDDU and Query/36 259 

ACommercial packages are available, but IBM provides a way to extract 
F - and I-specs from IDDD in its Work with Data Files facility. You can 

edit any IDDD-defined file with the Query Data Entry facility (e.g., the 
QRYDE procedure or an option on the IDDDDISK "Work with Files" 
menu). When you invoke QRYDE, the prompt screen tells you a program 
is being built. Many people don't realize that when using QRYDE, you can 
copy the programs that have been built to another library for future editing. 
When QRYDE builds its necessary DFU programs, it also builds a library 
called #QDwsLBn, where ws is the QRYDE session's workstation-ID, and 
n is 1 for the main session or 2 for an inquiry session. 

Library #QDwsLBn contains several items: the screen load module 
(#QDwsPGn), the DFU subroutine (#QDwsPGn), the DFU source specifi
cations (#QDwsDFn), the DFU screen source (#QDwsPGn), and - per
haps most useful- RPG F - and I-specs (#QDwsPRn). You can copy all of 
these to a user library and then use the F - and I-specs in any RPG program. 

To avoid later problems with QRYDE, make sure you do not delete the 
QRYDE library or any members in the library, and do not do anything with 
the library unless the QRYDE "Work with Data in a File" screen is displayed. 

Creating RPG F- and I-Specs from IDDU 
by Perry Gardai 

program by William H. Dixon 

Code on diskette: a Procedure IDDUXL 
RPG program IDDUXL 
Screen format member IDDUXLPM 

Remaining true to your philosophies of implementing end-user computing 
and increasing programmer productivity, you have encouraged the develop
ment of independent Interactive Data Definition Utility (IDDU) and 
Query/36 applications throughout your organization. Obviously, this 
approach helps relieve the MIS backlog - until a user wants IDDU 
database information that is simply too complicated for Query/36. 

Now you need an RPG application, and you are faced with the lack of 
standard RPG F -specs and I-specs to describe the files used in the 
Query/36 application. You could print the IDDU data dictionary and, from 
it, key in the RPG specifications. You could work your way through a series 
of cumbersome IBM-supplied routines to copy and modify the IDDU 
member (dodging error messages if your file uses more than 60 fields). Or, 
you could let utility IDDUXL do the translating. 

Prompt screen IDDUXLPM (Figure 10-3) provides the user interface 
into the utility. Utility IDDUXL, which comprises prompt screen format 
member IDDUXLPM (Figure 10-4), procedure IDDUXL (Figure 10-5), 
and RPG program IDDUXL (Figure 10-6), converts IDDU members to 



260 5/36 Power Tools 

Figure 10-3 

Prompt screen 

IDDUXLPM 


RPG F -specs and I-specs. Procedure IOOUXL controls the job flow, and 
program IOOUXL handles the actual translation process and creates the F 
and I source member file. 

IDDUXL PROCEDURE 

Translate JDDU specs into RPG F & I specs 

Enter name of data dictionary . #USERDCT 

Individual format name (blank for all) 

Enter name of member to create IDDUFI 

Enter name of library to contain member TEST 

Include file/format/field descriptions . Y,N N 

Cmd3-Previous menu Cmd4-Put on job queue Cmd9-Evoke 

GeHing Started 
To run the utility, you simply key in IOOUXL at a command line, and 
prompt screen IOOUXLPM appears. The prompt screen supplies proce
dure IOOUXL with the variable information it needs to perform the 
IOOU-to-RPG translation according to your requirements. The variable 
parameters are as follows: 

Parameter 1 	 Name of user dictionary containing the IOOU 
specifications. 

Parameter 2 	 Name of specific member to be converted to RPG 
specifications. This parameter is left blank if all members 
are to be converted. 

Parameter 3 Name of the new source member that will contain the 
converted specifications. 

Parameter 4 Name of the library to contain the new source member. 

Parameter 5 File, format, field descriptive information ~ include Y or N. 

The prompt screen contains predetermined defaults for parameters 1,3,4, 
and S, which you should change to suit your preferences. 

Proceeding 
Once you provide the variable information, procedure IOOUXL tests for 
requests for end of job (i.e., Command key 3 and Command key 7), checks 
each parameter for validity, and tests to see whether the remainder of the 



IDDU and Query/36 261 

procedure should be placed on the job queue or evoked. If procedure 
IOOUXL finds no end-of-job requests or parameter errors, it calls IBM 
procedure IOOUPRT to output the selected data dictionary to a spooled 
printer file named IOOUPRT, which is automatically put on hold because 
of the PRIORITY-O parameter. The $UASF utility then copies this spool 
file into data file ?WS?.IOOU. 

In preparation for the execution of program IOOUXL, procedure 
IOOUXL stores the name of the source member that will contain the con
verted specifications (parameter 3) into the LOA and tests parameter 5 to 

determine whether descriptive information is to be included, setting 
Switch 1 accordingly. Program IOOUXL then reads the ?WS?.IOOU data 
file and outputs RPG F- and I-specs into data file ?WS?TMPl. 

ReshuHling 
Program IOOUXL probably looks more complicated than it actually is. Keep in 
mind that the function of program IOOUXL is to read each record from the 
IOOU specifications, determine its function, and output the appropriate F - and 
I-specs into a source member data file. The apparent complexity of the program 
results from the fact that the IOOU specifications in data file ?WS?.IOOU are 
not in the proper order for the final production of RPG specifications. 

To keep track of the specifications' relative position, procedure 
IOOUXL creates work file ?WS?WRK, and program IOOUXL outputs a 
record to ?WS?WRK whose key and data fields indicate the relative posi
tion that input records from ?WS?.I00U should occupy in the RPG F and 
I source member. Once determined, program IOOUXL writes this infor
mation into ?WS?TMPl output file records. 

Procedure IDOUXL uses output file ?WS?TMPI as input to a COPY
DATA routine that organizes the file into the proper sequence, resulting in 
file ?WS?TMP2. The COpyDATA routine uses parameter 5 from the 
prompt screen to determine the record length of the source member to be 
produced. If parameter 5 is Y, meaning the descriptive information is to be 
included in the source member, the routine creates ?WS?TMP2 as a 120
character file. Otherwise, a 96-character file is created. 

The final step in the process is the execution of a TOLIBR procedure. 
This routine uses file ?WS?TMP2 to create the RPG specifications source 
member - with the name specified by parameter 3 of the prompt screen 
- in the library specified by parameter 4. 

If you're curious to see how program IDDU does its job, print a copy of 
IDDUPRT, temporarily change the work and sort files to permanent files, 
run the program, and compare the two files against the IDDUPRT printout. 

With utility IDDUXL, you can effectively use IODU databases in your 
mainstream RPG applications. All you need is an editor like SEU, OSU, or 
FSEDIT to include the new, IDDUXL-created F -specs and I-specs in the 
RPG programs your users require. 



262 5/36 Power Tools 

Figure 10-4 

Screen format 
member 
IDDUXLPM 

Figure 10-5 

Procedure 
IDDUXL 

1 4 
SPROMPT01 06YY CDGI 
D 16 133Y CIDDUXL PROCEDURE 
0 41 318Y CTranslate IODU specs inX 
Oto RPG & I specs 
0 63 6 2Y CEnter name of data dictX 
Dionary 

y0 a 667Y Y 
0 63 a 2Y CIndividual format name X 
O(blank for all) 
0 8 a67Y Y Y 
0 6310 2Y CEnter name of member taX 
0 create 
0 81067Y Y Y 
0 6312 2Y CEnter name of library tX 
00 contain member 
0 81267Y Y Y 
0 6314 2Y Clnclude fi le/format/fieX 
Old descriptions , Y,N 
0 11467Y YA Y 
D 1823 2Y CCmd3-Previous menu 
0 212325Y CCmd4-Put on job queue 
0 102351Y CCmd9-Evoke 
OERRMSG 5024 2Y Y 

•• PROCIO IOOUXL - TRANSLATE IOOU SPECS INTO RPG F & I SPECS 

**----------------------------------

// IF JOBQ-YES GOTO $RUN 
/1 IF EVOKED-YES GOTO $RUN 

II EVALUATE 71 '#USEROCT'? 73'IOOUFI'7 74'7SLlB?'7 ?5'N'7 
I I EVALUATE P6. 
II TAG $PMT 
11 PROMPT MEMBER-IOOUXLPM,FDRMAT-PRDMPT01 ,LENGTH-'8,a,8,a,1 ,50' 
II IF 7C07-2003 RETURN 
// IF 7CD7-2007 CANCEL 

II TAG $NOPMT 
II EVALUATE P6

/1 IF '?67 '- IF 717
EVALUATE P6-'Invalid data dictionary name - must not be blank 

/1 IF '76? '- IFF DATAF1-717 
EVALUATE P6-'Label entered does not ex; st 

II IF '767' - IF DATAF1-?17 IF LOAD-'#PTFLOG,717' 
EVALUATE P6-'Label entered is a library 

II IF '76?'- IF ?37
EVALUATE P6-'Member name must be entered 

II IF '76?'- IF 74?
EVALUATE P6-'Library name must be entered 

II IF '?6?'- IFF DATAF1-?47 
EVALUATE P6-' Label entered does not exist 

II IF '76?'- IF DATAF1-?47 IFF LOAD-'#PTFLOG,?47, 
EVALUATE P6-'Label entered is not a library 

II IF '76?'- IF SOURCE- '737, ?4?' 
EVALUATE P6-'Source member already exists 1 n specified 1 i brary 

I I IF '?67 '- IFF 757-Y IFF 75?-N 
EVALUATE P6-'Invalld response must be Y Dr N 

II IFF '767'- GOTD $PMT 

II IF ?CO?-2004 JDBQ 1 .. IDDUXL,71?,?27,737,747,?5? 
II IF ?CD?-2004 RETURN 
II IF ?CD?-2009 EVOKE IDDUXL 'ALL, 
II IF ?CO?-20D9 RETURN 

II • 'IDOUXL procedure is running' 
I I I NFOMSG NO 



IDDU and Query/36 263 

Figure 10-6 

Program 

IDDUXL 


// TAG SRUN 

// PRINTER PRIORITY-O,FORMSNO-7WS7XX,NAME-IDDUPRT 
IDDUPRT 71 '#USERDCT'7,ALL,FILE,72'ALL" 
" 
/ / LOAD $ UASF 
/ / RUN 
// SPOOL SPOOLID-F7WS7XX,NAME-7WS7,IDDU,RELCANS-CANCEL,RETAIN-J 
/ / END 
" 
// LOCAL OFFSET-l,DATA-'73?',BLANK-8 
" 
// IF 757-Y SWITCH 10000000 
// ELSE SWITCH 00000000 

/ / LOAD IDDUXL 
// FILE NAME-INPUT,LABEL-7WS?,IDDU,RETAIN-J 
// FILE NAME-OUTPUT,LABEL-7WS7.TMP1.RECORDS-l00,EXTEND-l00,RETAIN-J 
// FILE NAME-WRKFILE,LABEL-7WS7.WRK,8LOCKS-l00,EXTEND-l00,RETAIN-J 
/ / RUN 

// IF 757-Y EVALUATE P5-120 
// ELSE EVALUATE P5-96 
COPYDATA ?WS?, TMPl , . ?WS? .TMP2, .. ,J. REORG, , , , ,?57 , ,S 

TOLIBR ?WS?,TMP2,Fl" ,747 

1 , .. 2 3 4 5 6 7 .. .. . 8 
0001 H/TlTLE mDUXL - TRANSLATE IDDU SPECS INTO RPG F & SPECS 

0002 H 64 B 1 IDDUXL 

0003 F" 

0004 F" INDICATOR LIST ---- 
0005 F" Ul Include fi le/formet/field descriptions if on 
0006 F* 01 Line: "Short comment--- .. ." for files 
0007 F" 02 Line: ~Short comment--- .. ," for formats 
0008 F" 03 Line: Containing field information 
0009 F" 04 Line: "No record 10 codes have been defined for this format." 
0010 F" 05 Line: Containing record 10 codes 
0011 F" 90 General purpose indicator 
0012 F" 91 On if disk file; Off if communications file 
0013 F" 92 Dn if first line of record 10 code 
0014 F" 
0015 FINPUT IP 150 150 DISK 
0016 FOUTPUT 0 150 150 17AI 134 DISK U 
0017 FWRKFILE UF 16 16 12AI 1 DISK A 
0018 I" 
0019 IINPUT NS 12 CD 13 Ce 14 Cf 
0020 I AND 15 Ci 16 Cn 37 C
0021 I AND 38 C 
0022 I 39 46 FNAME 
0023 I" 
0024 I NS 12 CF 13 Ci 14 Cl 
0025 I 39 45 HYPE 
0026 I" 
0027 I NS 12 CM 13 Ca 14 Cx 
0028 I 39 42 FLENX 
0029 I" 
0030 I NS 01 12 CS 13 Ch 14 Co 
0031 I AND 15 Cr 16 Ct 38NC
0032 I 39 82 FDESC 
0033 I" 
0034 I NS 02 12 CS 13 Ch 14 Co 
0035 I AND 15 Cr 16 Ct 38 C
0036 I 42 85 RDESC 
0037 I" 
0038 I NS 03 40 C 41 CC 42 CH 
0039 I AND 43 CA 44 CR 45 C 
0040 I OR 40 C 41 CZ 42 CO 
0041 I AND 43 CN 44 CE 45 C 
0042 I OR 40 C 41 CP 42 CA 
0043 I AND 43 CC 44 CK 45 C 
0044 I OR 40 C 41 CB 42 CI 



264 S/36 Power Tools 

0045 I AND 43 CN 44 C 45 C 
0046 I 14 19 VNAME 
0047 I 25 280V8EG 
0048 I 33 360VLEN 
0049 I 38 38 VDEC 
0050 I 41 44 VTYPE 
0051 I 49 92 VDESC 
0052 I' 
0053 I NS 04 20 CN 21 Co 22 C 
0054 I AND 30 CI 31 CO 32 C 
0055 I NS 05 36 CE 37 CO 38 C 
0056 I OR 36 CN 37 CE 38 C 
0057 I OR 36 CZ 37 C 38 e 
0058 I OR 36 eN 37 ez 38 e 
0059 I OR 36 CD 37 C 38 C 
0060 I OR 36 CN 37 CO 38 e 
0061 I 12 14 ANOOR 
0062 I 18 23 VNAME 
0063 I 29 32 IDPOSX 
0064 I 36 37 IDTEST 
0065 I 45 45 IDVAL 
0066 I NS 
0067 I' 
0068 IWRKFILE NS 
0069 I 13 160V8EG 
0070 I' 
0071 I OS 
0072 I 4 ALPHA 
0073 I 10ALPHNl 
0074 I 4 ALPHTl 
0075 I 20ALPHN2 
0076 I 4 ALPHT2 
0077 I 30ALPHN3 
0078 I 4 4 ALPHT3 
0079 I 1 40ALPHN4 
0080 I' 
0081 I OS 
0082 I 12 KEY 
0083 I 40FNUM 
0084 I 60RNUM 
0085 I 12 VNAME 
0086 I' 
0087 I UDS 
0088 I 8 MEMBER 
0089 C' 
0090 C 01 EXSR SFILE 
0091 C 02 EXSR SFORMT 
0092 C 03 EXSR SFIELD 
0093 C 05 EXSR SlDCOD 
0094 C' 
0095 c*---------------------------------

0096 C' 
0097 C SFI LE BEGSR 
0098 C' 
0099 C' This subroutine performs the logic for the fi 1e records. 
0100 C' 
0101 C' Set on indicator 91 if this ;s a disk file (as opposed to a 
0102 C' communications fi 1e) . Only output records if ; t ; s a disk file. 
0103 C' 
0104 C FTYPE COMP 'DISK 91 
0105 C' 
0106 C' Convert the f i 1e length from a left-justified alpha r,eld to 
0107 C' a numeric field. 
0108 C' 
0109 C MOVE FLENX ALPHA 
0110 C EXSR SATON 
0111 C Z-ADONUMBER FLEN 40 
0112 C' 
0113 C' Increment the file number, and initialize the record number. 
0114 C' 
0115 C ADD 1 FNUM 
0116 C Z-ADDO RNUM 
0117 C' 
0118 C #FILE ENDSR 
0119 C' 



IDDU and Query/36 265 

0120 C·----------------- 
0121 C* 
0122 C SFORMT BEGSR 
0123 C* 
0124 C' This subroutine performs the logic for the format records. 
0125 C* NOTE - The record-type identification records (I-specs) are not 
0126 C' written to the output file until the record selection records 
0127 C* are processed. 
0128 C' 
0129 C' Increment the format number. and initialize the format record 
0130 C' selection line number. 
0131 C* 
0132 C ADD 1 RNUM 
0133 C Z-ADDO RNUMX 20 
0134 C* 

0135 C #FORMT ENDSR 

0136 

0137 

0138 C* 

0139 C SFIELD BEGSR 

0140 C* 

0141 C' This subroutine performs the logic for the field records. 

0142 C* 

0143 C' Determine variable type to be placed in column 43 of the input 

0144 C* specs (P, B or blank). If field is packed or binary, determine 

0145 C' actual number of characters taken in the record. 

0146 C' 

0147 C MOVE VTYP 

0148 C VTYPE IFEQ 'PACK' 

0149 C MOVE ' P' VTYP 

0150 C DIV 2 VLEN 

0151 C ADD 1 VLEN 

0152 C END 

0153 C* 

0154 C VTYPE I FEQ 'BIN 

0155 C MOVE 'B' VTYP 

0156 C VLEN IFLE 

0157 C Z-ADD2 VLEN 

0158 C ELSE 

0159 C Z-ADD4 VLEN 

0160 C END 

0161 C END 

0162 C' 

0163 C* Determine the ending position. 

0164 C' 

0165 C Z-ADDV8EG VEND 40 

0166 C ADD VLEN VEND 

0167 C SUB 1 VEND 

0168 C' 

0169 C' Increment the field number 

0170 C* 

0171 C ADD VNUM 40 

0172 C* 

0173 C* Add a record to the work file containing the field and its 

0174 C* beginning position. 

0175 C' 

0176 C KEY CHAINWRKFILE 90 

0177 C 90 EXCPT#WRKA 

0178 N90 EXCPT#WRKU 

0179 C' 

0180 C #FIELD ENOSR 

0181 C' 

0182 C*---------------

0183 C' 
0184 C SIDCOD BEGSR 
0185 C' 
0186 C* This subroutine performs the ID'code logic. 
0187 C' 
0188 C* Set on indicator 92 if this is a continuation line. 
0189 C' 
0190 C ANDOR COMP *BLANKS 92 
0191 C' 
0192 C* Convert the 10 position from a left-justified alpha field to 
0193 C* a numeric field. 
0194 C* 



266 5/36 Power Tools 

0195 C MOVE IDPOSX ALPHA 
0196 C EXSR $ATON 
0197 C Z-ADDNUMSER IOPOS 40 
0198 C' 
0199 C' Get the field's beginning position from the work file. and 
0200 C' determine the actual position of the test character. 
0201 C' 
0202 C KEY CHAINWRKFILE 90 
0203 C 90 Z-ADDO VSEG 
0204 C ADD VSEG IDPOS 
0205 C SUS 1 IDPOS 
0206 C' 
0207 C' Determine the test codes to place on the input spec based on 
0208 C' the codes in the IDDU printout (NZ & NO do not need conversion) 
0209 C' 
0210 C IDTEST IFEO 'EO' 
0211 C MOVE' C' IDTEST 
0212 C END 
0213 C' 
0214 C IDTEST IFEO 'NE' 
0215 C MOVE 'NC' IDTEST 
0216 C END 
0217 C' 
0218 C IDTEST IFEO 'z ' 
0219 C MOVE ' Z' IDTEST 
0220 C END 
0221 C· 
0222 C IDTEST IFEO 'D 
0223 C MOVE ' 0' IDTEST 
0224 C END 
0225 C" 
0226 C" Increment the format record selection line number. 
0227 C" 
0228 C ADD 1 RNUMX 
0229 C" 
0230 C HIDCOD ENDSR 
0231 C" 
0232 C"---------------------------------
0233 C' 
0234 C SATON 8EGSR 
0235 C" 
0236 C" This subroutine converts a left-justified alpha field into a 
0237 C' numeric field 
0238 C' 
0239 C ALPHTl I FEO 'BLANKS 
0240 C Z-ADDALPHNl NUMBER 40 
0241 C ELSE 
0242 C ALPHT2 IFEO "BLANKS 
0243 C Z-ADDALPHN2 NUMBER 
0244 C ELSE 
0245 C ALPHT3 IFEO 'BLANK 
0246 C Z-ADDALPHN3 NUMBER 
0247 C ELSE 
0248 C Z-ADDALPHN4 NUMBER 
0249 C END 
0250 C END 
0251 C END 
0252 C" 
0253 C HATON ENDSR 
0254 C' 
0255 C·---------------------------------
0256 C' 
0257 OOUTPUT 0 lP 
0258 0 23 'II COpy LIBRAflY-S,NAME-' 
0259 0 MEMBER 31 
0260 0 150 '0 0000 00 00 0000' 
0261 OOUTPUT 0 91 01 
0262 0 6 'F' 
0263 0 FNAME 14 
0264 0 16 , IP' 
0265 0 19 'F' 
0266 0 FLEN Z 23 
0267 0 FLEN Z 27 
0268 0 HYPE 46 
0269 0 Ul FDESC 118 



IDDU and Query/36 267 

0270 0 134 '1 ' 

0271 0 FNUM 139 
0272 0 142 '00' 
0273 0 145 '00' 
0274 0 150 '0000' 
0275 OOUTPUT D 91 03 
0276 0 6 'I' 
0277 0 VTYP 43 
0278 0 VBEG Z 47 
0279 0 VEND Z 51 
0280 0 VOEC 52 
0281 0 VNAME 58 
0282 0 Ul VOESC 118 
0283 0 134 '2 ' 
0284 0 FNUM 139 
0285 0 RNUM 142 
0286 0 145 '99' 
0287 0 VNUM 150 
0288 OOUTPUT D 91 04 
0289 0 'I' 
0290 0 FNAME 14 
0291 0 16 'NS' 
0292 0 RNUM 20 
0293 0 Ul ROESC 118 
0294 0 134 '2 ' 
0295 0 FNUM 139 
0296 0 RNUM 142 
0297 0 145 '01 ' 
0298 0 150 '0000' 
0299 OOUTPUT 0 91 05 
0300 0 6 'I' 
0301 0 92 FNAME 14 
0302 0 92 16 'NS' 
0303 0 92 RNUM 20 
0304 0 N92 ANOOR 16 
0305 0 JOPOS Z 24 
0306 0 JOTEST 26 
0307 0 JOVAL 27 
0308 0 Ul ROESC 118 
0309 0 134 '2 ' 
0310 0 FNUM 139 
0311 0 RNUM 142 
0312 0 RNUMX 145 
0313 0 150 '0000' 
0314 O' 
0315 OOUTPUT T LR 
0316 0 7 'II CEND' 
0317 0 150 '9 9999 99 99 9999' 
0318 O' 
0319 OWRKF I LE EADO #WRKA 
0320 0 KEY 12 
0321 0 VBEG 16 
0322 O' 
0323 OWRKFI LE #WRKU 
0324 0 VBEG 16 



268 5/36 Power Tools 

Creating IDDU File Definitions 
by Matthew Henry 

Creating IDDU file definitions using IBM's IDDU utility can be difficult 
and awkward. I have found an easy way to create IDDU file definitions, 
although at first my process may seem backwards. Start with IDDUDFN, 
and select file definitions. Then select the option to create a new file defini
tion. On the "Define a File Definition" screen, choose the option to select 
formats for a file. When the "Select and Sequence Formats for a File" screen 
appears, enter the name of the as yet nonexistent format definition in the for
mat definition name field. IDDU then displays a prompt indicating it cannot 
find the definition and asking you to press Enter to create it. 

Pressing Enter displays the format definition screen; pressing Enter on 
this screen then brings up the "Select and Sequence Fields for a Format" 
screen. With SSP Release 5.1, you can enter the key word ALL to create 
multiple field definitions. After you have created all the field definitions, 
press Enter enough times to go back through the format and file definition 
screens. The IDDU file description is created automatically, and the format 
definition is added to the file definition automatically. 

Defining 5/36 Filler Fields 
by Sarah E. McBride 

The help text under filler fields in section 4.1.3.2.4. oflDDU help text 
enlightened me on the subject of defining filler fields for my IDDU record 
formats. Filler fields are reserved or ignored space that is not shown to the 
user if the format definition is used during a query, remains in the field 
record's buffer, and has no name. You can use fillers to account for unused 
space in a record (i.e., space reserved for future expansion) or to hide cer
tain fields from Query/36 for security purposes. 

A filler field is represented on the SELECT AND SEQUENCE 
FIELDS FOR A FORMAT display by an asterisk in the NAME column of 
the field definition list (Figure 10-7). Use the Field definition name and 
the Sequence number prompts to add a filler field. Type a sequence num
ber that indicates where you want to place the filler field. Specify *nnnnn 
for the field definition name, where nnnnn is a number between 1 and 4095 
that indicates the number of positions to reserve. Then press ENTER. To 
remove a filler field, use the SEQ column. Type blanks over its sequence 
number field, and press ENTER. 



IDDU and Query/36 269 

Figure 10-7 SEa NAME BEGIN LENGTH 
FIELD1 1 7Select and ~g 8 5 <--- F;ller f;eld at pos;t;on 

sequencefields for 30 FIELD2 13 10 8 of format. 5 pos;t;ons 

a format display 
long 

Updating IDDU Definitions 
by JelfSilden 

Q	When I try to save changes to an IDDU definition for a file that is 
already linked, I get a halt with the message: 

'IDDU-0299: Definition cannot be saved' 

If I go into inquiry and try to unlink the file, I get the message: 

'IDDU-0402: Dictionary currently in use' 

even though I'm the user. How can I save the IDDU work when I discover, 
too late, that the file is linked? 

AThe error messages you mention prevent users from making changes 
that might affect another user's data. The next time you are unable to 

save IDDU revisions, try the procedure in the next paragraph while 
observing the following cautions. Although the technique below is quite 
reliable, you must be quick about it. Nobody else can be in the dictionary 
or the file while you are using the technique. Should you discover, 
however, that the dictionary is damaged because someone else "sneaked 
in" a dictionary change while you were using the technique, simply copy 
the dictionary's file definitions using the IDDU functions themselves. 

Now for the technique. Close the IDDU session by pressing the Atten
tion key, and select option 2 to cancel the job and close the files. Immedi
ately unlink the offending file, or files, and go right back into the IDDU 
session, directly to the field, format, or file definition you are trying to save. 
IDDU prompts you with a "Recover Interrupted Session" panel from 
which you should choose option 1 (Recover Session). After that, you are 
returned to the panel just before the save panel, and you now can ask 
IDDU to save your dictionary work. 



270 5/36 Power Tools 



Lbraries 


-CHAPTER 

11 




272 5/36 Power Tools 

Retrieving a Library's Users 
I7y Perry Garda; 

program I7y Matthew Henry 

The S/36 utility 
TESTUL 
determines which 
workstations or 
jobs are using a 
particular 
library andgives 
you a tool upon 
which to build 
new utilities. The 
TESTUL utility 
uses an assembly 
language 
subroutine to 
present you with 
a scrolling screen 
that shows 
individual 
library use. 

a Code on diskette: 


Procedure TESTUL 

RPG program TESTUL 
Assembler subroutine SUBRUL 

As a S/36 programmer, you know how frustrating it is to try to perform a CON
DENSE, or a library RENAME, or a library DELETE, only to be stymied by 
a system message such as "SYS-2582 library name - This library not con
densed, being used." Unfortunately, IBM provides no easy way to determine 
who is using a particular library - especially if the library is tied up by evoked 
jobs or jobs on the job queue. Although the IBM-supplied D U (display user 
status) operator command displays all the users of all your libraries, this infor
mation is disordered and can overwhelm you with detail. Thus, we present 
the S/36 TESTUL utility, which does provide an easy and effective method 
of determining library use from any terminal on the system. More important, 
TESTUL returns information about just the library you specify. 

The TESTUL utility consists of procedure TESTUL (Figure 11-1) 
and program TESTUL (Figure 11-2), which calls subroutine SUBRUL. 
F or ease of access, procedure TESTUL and program TESTUL should be 
stored in #LIBRARY. 

Using the TESTUL Utility 
To use the TESTUL utility, simply key in 

TESTUL libname 

where libname (parameter 1) is the name of the library to be checked for 
current users. Procedure TESTUL loads the library name into the LDA, 
beginning in position 247. The TESTUL utility uses LDA positions 201 
through 257 to avoid conflict with the LDA positions POP uses. Procedure 
TESTUL initializes to zero parameter 2, which serves as a loop counter, 
and loads it into the LDA starting in position 255. Then procedure TES
TUL calls program TESTUL, a one-cycle RPG program that calls SUB
RUL via the EXIT operation and three RLABL statements. The first 
RLABL statement contains the library name you specified. Subroutine 
SUBRUL retrieves information about one user of this library and stores the 
user information in data structure JOBDS, named in the third RLABL 
statement. (This data structure must be at least 46 bytes long to hold all the 
information SUBRUL returns. If the data structure is not long enough, 
SUBRUL will not return any data.) 



Figure 11·1 

Procedure 
TESTUL 

Libraries 273 

Because the specified library could have several users, SUBRUL allows 
repetitive calls to retrieve information about each of them. The second 
RLABL statement, JOB#, specifies the user for which SUBRUL should 
return information. Field JOB# contains 0 to return information about the 
first job using the specified library, 1 for the second job, 2 for the third job, 
and so on. After calling SUBRUL, program TESTUL copies the contents 
of the JOBOS data structure (information about a user of the library) into 
LOA positions 201 through 246 via the LJlNFO field, and procedure TES
TUL displays this user information on your workstation screen. Then pro
cedure TESTUL increments the counter, parameter 2, and repeats the 
process until position 209 of the LOA (corresponding to field jOBNAM in 
data structure JOBOS) is blank. This loop is repeated as often as jobs are 
found running from the specified library and results in a scrolling screen of 
messages that display all users of the specified library. 

When position 209 of the LOA is blank (i.e., no other jobs are using the 
specified library), the procedure performs a final test of parameter 2. If param
eter 2 is 0 at this time, no workstation or job is using the specified library, and 
a message is issued accordingly. (If parameter 2 is a value other than 0, no 
additional message is issued.) Procedure TESTUL then terminates. 

As with any user members stored in an IBM-supplied library (e.g., 
#RPGLIB or #LIBRARY), you should remember that subroutine SUB
RUL, program TESTUL, and procedure TESTUL will be removed from 
the system each time you install a new release of SSP. Therefore, you 
should keep a copy of all the components of this utility in your toolkit 
library so you can readily replace them after you install a new release. 

The TESTUL utility is an example of tool building using a core tool as 
a building block to create a new tool. The core tool, SUBRUL, could be 
implemented as a standalone assembler program, but it is implemented as 
a subroutine to incorporate into other tools. You can use this tool-building 
technique to build completely new tools or to use one tool in different 
ways. For instance, you could incorporate the TESTUL utility directly into 
the IBM-supplied CONDENSE procedure to show a list of jobs using a 
library before you get the SYS-2582 message. 

With the TESTUL utility, you can avoid the hassles of trying to figure 
out who is using the library that you want to use. And you also can use 
these concepts of tool building to enhance your programming efforts . 

• Find out who's using a library
II INFOMSG YES 
II LOCAL OFFSET·247,DATA·'?lR?' ,BLANK·8
II EVALUATE P2,3-0 
II • 'The following jobs are using library ?1? 
II TAG LOOP 
II LOCAL OFFSET·255,DATA·'?2" 
I I LOAD TESTUL 
I I RUN 
I I IF? L ' 209 , 1 '? - GOTO DON E 



274 5/36 Power Tools 

II * 'Job 7L'209,8'7, User ?L'201,8'7, Proe ?L'217,8'7, flunning ?L'233,8'?(?L'225,8'7)' 
I I EVALUATE P2, 3-727+1 
II GOTO LOOP 
II TAG DONE 
1/ IF 727-000 * '(nobody)' 
// PAUSE 

3 4 8
Figure 11-2 00001H 064 B TESTlfL 

00002 * 
Program 00003 *- This program tests SUBRUL by retrieving job information for a job 

00004 * us; ng a speei fi ed 1ibrary,TESTUL 00005 * 
000061 UDS 
000071 201 246 LJ INFO 
000081 247 254 Ll BNAM 
000091 255 2570JOB# 
00010lJOBDS DS 
00011 I 1 B USERID 
000121 9 16 JOBNAM 
000131 17 24 FSTPRC 
000141 25 32 CURPRC 
00015 I 33 40 PRGNAM 
000151 41 460JSTIME 
000161 46 JINFO 
00017C SETON LR 
0001BC EXIT SUBRUL 
00019C RLABL LlBNAM 
00020C RLABl JOB# 
00021 C RLABL JOBDS 
00022C MOVE JINFO LJ INFO 



Libraries 275 

Testing for Library Existence 
by Tom McLendon 

Have you ever wished for a conditional procedure expression to allow you to 
verify the existence of a library? Sure, you can use II IF DATAF1-libname, 
which will be true if a file by the specified name is on disk. But II IF 
DATAF1-libname doesn't verify that what is found is a library. 

I have found a simple way to check for the existence of a library. Because 
all libraries have a "hidden" load member - #PTFLOG (used to record any 
PTFs applied to the library) - you can use the OCL statement II IF 
LOAD-#PTFLOG,libname... to check for the existence of that member. 

Retrieving Library Directory Information 
by Gary T Kratzer 

a Code on diskette: 

RPG code SMPLD 
Assembler subroutine SUBRLD 

Assembler subroutine SUBRLD lets you read library directory entries from 
within an RPG program, which eliminates the need to run $MAINT and 
output directory entry data to a file every time you need to retrieve a direc
tory entry. Although subroutine SUBRLD does not represent a major 
breakthrough in the type of library and directory information you can 
retrieve, it does provide an easier and more flexible way to retrieve the 
information you need - when you need it. You can use subroutine SUB
RLD to retrieve library member information such as the member's 
attributes, the number of statements in a member, or the number of sectors 
the member occupies. In addition, you can use subroutine SUBRLD to 

retrieve information about an entire library, which could be helpful for 
tasks such as reallocating the size of a library. 

Using subroutine SUBRLD in an RPG program requires you to code an 
EXIT SUBRLD operation, which is followed by five required RLABL 
statements (Figure 11-3) that constitute the subroutine's parameters. 



276 5/36 Power Tools 

Depending on the parameters you use, you can use SUBRLD to 
retrieve directory information in a variety of ways. Subroutine SUBRLD's 
parameters are as follows: 

• LIBNAM (library name) - an eight-byte field that contains the library 
name (left justified) of the library in which the desired member resides. 

• MEMNAM (member name) - an eight-byte field that can contain the 
name (left justified) of the desired library member. In addition, MEM
NAM controls how the search of the directory entries takes place. For 
example, if MEMNAM contains a member name, the directory information 
for that member is returned. IfMEMNAM contains a partial name (a par
tial name is followed by an asterisk - e.g., SUBRe), the next directory 
entry that matches the partial name for th.e specified member type is 
returned. If MEMNAM contains eLIBR, SUBRLD retrieves general infor
mation about the entire library. (Note that the fields in the DIRDS (Direc
tory Data Structure) (described below) are different when you request 
information for an entire library.) If MEMNAM is blank, the next directory 
entry is read for the specified member type. 

• MEMTYP (member type) - a one-byte field that contains the member 
type of the desired library members. Specify 0 for object, P for procedure, 
R for subroutine, or S for source. 

• DIRDS - a data structure that contains either the directory entry or library 
information returned by subroutine SUBRLD. Depending on the type of 
information requested, DIRDS must be at least 70 to 80 bytes long. The 
DIRDS format for obtaining specific directory entries is shown in Figure 11-4a; 
the DIRDS format for obtaining information about the entire library is shown 
in Figure 11-4b. The fields contained within both the directory entry data 
structure and the library information data structure are listed in Figure 11-5. 

The fields in these two data structures that return hexadecimal values (e.g., 
LBBLIB (first sector of library) or LBELIB (last sector of library» are actually 
character fields. All attribute bytes are binary data except for attribute-byte five 
(subtype), which is returned in hex representation. You can use the TESTB 
(Test the Bit) instruction to find which bits are set in each attribute byte. 

Additional information about the fields in a library directory, as well as 
information about an entire library, can be found in System Data An-as 
(LY21-0S92). 

• RCODE (return code) - a one-byte field that contains the return codes, 
which are 0 for normal return, 1 for library not found, 2 for member not found 
or end of members (for partial/sequential searches), and 3 for data structure too 
small. Ifyou read directory entries sequentially or perform partial searches, 
SUBRLD returns a 2 in the RCODE field upon reaching the end of the library 
members list. You can repeat the search by simply calling SUBRLD again. 



Figure 11-3 

Colling sequence 
jorsubroutine 
SUBRLD 

Figure 11-4a 

Format oj 
DJRDSjora 
library member 

Figure 11-4b 

Format oj 
DJRDSjoran 
entire library 

Libraries 277 

Figure 11-6 contains a program that first sequentially reads all the 
directory entries in library TESTLIB and then retrieves information for 
the library. Ifyou think about it, there are probably many jobs that could be 
made easier by subroutine SUBRLD's ability to retrieve detailed informa
tion from within an RPG program. So the next time you need library or 
directory information, think subroutine SUBRLD. 

3 .. 5 
C EXIT SUBRLD 
C RLABL LIBNAM 8 Input 
C 
C 

RLABL 
RLABL 

MEMNAM 
MEMTYP 

8 
8 

Input 
Input 

C RLABL DIRDS 80 Output 
C RLABL RCODE 1 Ouput 

2 4 6 8 
IDIRDS OS 
I 1 1 DRTYPE 
I 2 9 DRNAME 
I 10 15 DRADDR 
I 16 18 DR#TXT 
I 19 22 DRLINK 

23 27 DR#STM 
28 31 DRSCA 
32 33 DRRLD 
34 36 DRCDRE 
37 37 DRATR1 
38 38 DRATR2 
39 39 DRATR3 
40 41 DRMRT 
42 43 DRREL 
44 46 DRTOTL 
47 47 DRATR4 
48 53 DRMOD 
54 59 DRDATE 
60 63 DRTIME 
64 65 DRATR5 
66 69 DRPTF@ 
70 70 DRATR6 

. ... 1 2 3 4 
IDIRDS DS 
I 6 LBFMT1 
I 7 11 LBLBSZ 
I 12 15 LBDRSZ 
I 16 21 LBUSEC 
I 22 27 LBASEC 
I 28 32 LBUDIR 
I 33 37 LBADI R 
I 38 43 LBBLIB 
I 44 49 LBELI B 
I 50 55 LBSDIR 
I 56 61 LBEDIR 
I 62 67 LSBMEM 

68 73 LBEMEM 
74 79 LBNMEM 
80 80 LBEXTN 



278 S/36 Power Tools 

Figure 11-5 

Thefields 
within the 
directory dutu 
entry strocture 
und the library 
information 
duta strocture 

DRTYPE Member type. (0, P, R, S) 

DRNAME Member name. 

DRADDR Disk address of member. (Hex) 

DR#TXT Number of text sectors. (types 0, R) 


Record length. (types P, S) 
DRLINK Link edit address. (Hex) 
DR#STM Number of statements in member. (types P, S) 
DRSCA Start control address, entry point. (Hex) 
DRRLD RLD displacement. (Hex) 
DRCORE Core required, in sectors. 
DRATRI Attribute byte 1. (Binary) 
DRATR2 Attribute byte 2. (Binary) 
DRATR3 Attribute byte 3. (Binary) 
DRMRT MRTMAX count. (type 0) 

If MRT proc, contains hex FE 
DRREL Release level. 
DRTOTL Total number of sectors in module. 
DRATR4 Attribute byte 4. (Binary) 
DRMOD Reference number. 
DRDATE Date member was changed/created. (YYMMDD) 
DRTIME Time member was changed/created. (HHMM) 
DRATRS Member subtype. (Hex) 
DRPTF@ Displacement of PTF table in member. (Hex) 
DRATR6 Attribute byte 6. (Binary) 

DIRDS for an entire library: 
LBFMTI Format-l address. (Hex) 

LBLBSZ Library size in blocks. 

LBDRSZ Directory size in sectors. 

LBUSEC Used member sectors. 

LBASEC Available member sectors. 

LBUDIR Used directory entries. 

LBADIR Available directory entries. 

LBBLIB First sector of library. (Hex) 

LBELIB Last sector of library. (Hex) 

LBBDIR First sector of directory. (Hex) 

LBEDIR Last sector of directory. (Hex) 

LBBMEM First sector of members. (Hex) 

LBEMEM Last sector of members. (Hex) 

LBNMEM Next available member sector. (Hex) 

LBEXTN Contains a Y if library extent exists. 




Libraries 279 

Figure 11-6 

Sample code that reads aI/library directory entries. (This code appears on diskette as member SMPLD.) 

1· 	 4 
I' 
I*- Data structure for individual member gets 
I' 
IDIRDS OS 
I 	 1 DRTYPE 
I 	 2 DRNAME 
I 	 10 15 DRADDR 

16 18 DR#TXT 
19 22 DRLINK 
23 27 DR#STM 
2B 31 DRSCA 
32 33 DRRLD 
34 36 DRCORE 
37 37 DRATR1 
38 38 DRATR2 

I 	 39 39 DRATR3 
I 	 40 41 DRMRT 
I 	 42 43 DRREL 
I 	 44 46 ORTOn 
I 	 47 47 DRATR4 
I 	 48 53 DRMOD 
I 	 54 59 DRDATE 
I 	 60 63 DRTI ME 
I 	 64 65 DRATR5 
I 	 66 69 DRPTF@ 
I 	 70 70 DRATR6 
I' 
1*- Data structure for entire library gets 
I' 
I LIBDS OS 
I 	 1 6 LBFMT1 
I 	 7 11 LBLBSZ 
I 	 12 15 LBDRSZ 

16 21 LBUSEC 
22 27 LBASEC 
28 32 LBUDIR 
33 37 LBADI R 

I 	 38 43 LBBLI B 
I 	 44 49 LBELIB 
I 	 50 55 LBBDIR 
I 	 56 61 LBEDIR 
I 	 62 67 LBBMEM 
I 	 68 73 LBEMEM 
I 	 74 79 LBNMEM 
I 	 80 80 LBEXTN 
C' 
C*- Read sequentially through all member types 
C' 
C 	 MOVE ·TESTLl B . LI BNAM 8 Set library name 
C 	 MOVE 'BLANKS MEMNAM 8 Blank name" sequential search 
C' 
C 	 MOVE '0' MEMTYP Object 
C 	 EXSR GETDI R 
C' 
C 	 MOVE · P' MEMTYP Proc 
C 	 EXSR GETDIR 
C' 
C 	 MOVE · R' MEMTYP Subroutine 
C 	 EXSR GETDIR 
C' 
C 	 MOVE 'S' MEMTYP Source 
C 	 EXSR GETDIR 
C' 
C*- Now get info for entire library 
C' 
C MOVE . 'L1BR 'MEMNAM Library request 
C EXIT SUBRLD 
C RLABL LI BNAM 
C RLABL MEMNAM 
C RLABL MEMTYP 



280 5/36 Power Tools 

C RLABL LIBDS 
C RLABL RCODE 
C' 
C*- Subroutine to read members until a "2" is returned in ReODE 
C' 
C GETDIR BEGSR 
C RCODE DOUEQ'2' 
C EXIT SlIBRLD 
C RLABL L1BNAM 
C RLABL MEMNAM 
C RLABL MEMTYP 
C RLABL DIRDS 
C RLABL RCODE 
C· 
c· (At this point OIRDS contains the directory info 
C· for the next member. Insert code as needed.) 
C· 
(; END 
C ENDSR 

;;'~!. 'R~;;cr6~b~IiR-;o'(j41?~SU8'lPi:hl~bi1:ah;#~lI~;;.. .... 'lit·'H ri,i,: k'7i 
,," BU.il<l.an ,!l)1PtYm'II\~9" i~. 8 S,~t\JNJfi 1~. wit.~tr!lco.cr$c.~.,4i{!t!::t9S.¥ eOEJ'Y ". 
I;!;J I ·t!JCJ>l\.iPF~~T-~1 •~TA1';flOO~9~fillvm~rg~i:$ M~t;~n,.cor:fl;;;?;f'iil:. ~i1;.. 

.•. It LOCAL oFFset·2o(l,·PATA- + ··.i... ··.. i .... ...."..'. •........... '. . ..... ..•. ·i·••· , 
i;Z'; 'D~J~ E4t?D9Q~~44.Q400!J9P1 ~OPPPPO!J9P06!l"PO!J9POO~OQgsj!OQppPOP"t~8!T.vi.· i;".i{ ~.:.!.?i1..'.·
.···N't'(lCAf'OFF'S'ET)Z13,DATA'.. .'-"h i ..•...•' • -< • ····i· ..., ....,"". 'H' 
, ••/0\1,41 2",31 OPlJoo.Ql\031l~30!J9PPOQoo.!J9P90011oPOQQOOP!lO·ii '.H ·.!ili: .- ..'.p.,.
,?i"I/'[OAD'IIAKMt!!1 .. ii';'. ii···.'..... .• l4 ... 'it'? .'Y' "i""" .. iAI. ... i··.,. . •. _... <';;i •.:·,:! 
'llft~ .1~~~E;~/jM~;~INt:!Y ·k~~E\-;i.MA~t{·~JtI~,;J ..ll!~fC~~ir;:EtT~~#-2~\4f 9;;:'" 

.~. Copy renllllledl!lembe.r to ts·,.Qetl ;brary . 

:i:'}~'~~~~~':~~~~Jo!A?UT ... ~AIif:'S;;h'l.; f •.;; \#i: ····1.;£;; 

;jJl~j."'~~YPRO~iib~~;F~~~;"$Mk~NT;:~Jlt~-R;;%-If~P~l.j~';!i;' if;"';::'; ·ii. 

".' .ft;:?1J~~h"~he{q~W~allRW: ~~Jiltjer~lb ~ti~erlf1Jhb,iilct .~~ .;)1' .!; A:.~;· i' (,:it 
/1 lOAl) $ FEF l>t.. . . .

"";}} I;RUNr .?:Pl'!, LH. 
)H()A'!3~8CSO!lilLo'bllpp ..•.. ..' '. 


i1.;n.E;; (I. 2.1~ .RSUll.'.RL.9+9.9......#R.Rikl.ll.:.. ).••! ..•...•....•:'!..,.

·j!!I.lA1'A" 0641( ollJI)00Q!VE20i!E2!l41l20I\fi3C4M 


flAT:,\ $6.0A . 

!!];bA1Ai 5a;a~. 


DATA HA2 
;:1\ ["ADA11\ 32;7'",
····DA1AD6i"0' 

·,)!IJAT;A··1 F2.1· 
!i.D·OA1'A·· FiI$O 


.. Dl\TA 6t1A 

.'i!,UA1tA,' F~f

•'IlATA 6C06PO 

3!'/JAT1C 335:1' 00' 

';;;'OA1')\ 524'5.00 
:tU!>ATA 43f>1l, 00.\>1 ~Q) 5f.l!of4Q;1~07
';;6. </,~:_ ':"~_ ;',',',:,0: ;:<;",~, ',. >: '_;'<, 

http:524'5.00
http:R.Rikl.ll
http:OPPPPO!J9P06!l"PO!J9POO~OQgsj!OQppPOP"t~8!T.vi
http:BU.il<l.an


Libraries 281 




282 5/36 Power Tools 

Listing Members Created or Modified 
Within Given Dat~ Range 
by Perry Gardai 

program by James HafT 

a Code on diskette: 


Procedure PRGLST 

RPG program PRGLST 

I'm sure you all know how easy it is to plunge into a project for a month or 
so, and then when the day of reckoning comes (when a status report to 
management is due), you scratch your head and wonder, "Now exactly 
what have I done for the past month?" While numerous evaluation forms 
and various other tools have been developed to aid in this type of assess
ment, most are very difficult to administer. The 8/36 PRGLST utility may 
be just what you are looking for to document the ongoing progress of DP 
development efforts within your organization. 

The PRGLST utility is a simple yet effective tool for listing the names of 
all library members that have been added to or changed within a specific 
library during a specified period of time. The listing (Figure 11-7) shows the 
member name, the type, the date and time a member was created or changed, 
and the number of changes. The utility produces the listing by manipulating a 
library directory listing produced by the $MAINT utility. The PRGLST util
ity prompts for the name of the library to be listed and then for the range of 
dates on which to report. After the operational parameters have been estab
lished, a $MAINT routine produces a library directory listing that is put on 
hold within the spooler automatically. Then, the $UASF utility transforms the 
directory listing into a disk file. Once in disk file format, the directory listing is 
sorted by library member name, within date, within library type sequence. 
Finally, an RPG program takes the sorted version of the disk file that contains 
the library directory and produces the report as seen in Figure 11-7. 

To use the PRGLST utility, key the procedure and program into either 
#LIBRARY or into your programmer's tool box library. Then key in 
PRGLST, and you are on your way. 

Rather than using a prompt screen, procedure;: PRGLST (Figure 11-8) . 
uses screen message statements and required substitutional parameters to 
establish all operational variables within the procedure. The first screen mes
sage asks the user to supply parameter 1 (?IR?), the name of the target library 
to be listed. The next two statements validate that 1:he response is indeed a 
library. If it is not, a message to that effect is issued, and the procedure is reset. 

After the target library has been established, the procedure establishes the 
date range for the report. The date is established in three parts, parameters 2, 
3, and 4. Parameter 2 (?2R?) is the year of the desired time period, and ifit is 



Libraries 283 

not supplied by the user, it defaults to 90. Parameter 3 (?3R?) is the month 
beginning the desired period; it defaults to January (i.e., 01) if the user does not 
supply an alternate value. Finally, parameter 4 (?4R?) is the month ending the 
period for the report. It defaults to 12, December, if not otherwise specified. 

At this point, all the operational parameters have been established, but 
before the real work can begin, the two work files that will be developed 
within the procedure, SPROG and PPROG, are deleted from disk if they 
should already exist. Next, the procedure calls the $MAINT utility, which 
outputs a copy of the target library's directory to file PPROG. 

File PPROG is then sorted into the proper predetermined sequence and 
includes only those library members that occur within the specified date 
ranges. Although the five $GSORT Include statements within the sort speci
fications may seem a bit complex at first, they are actually very straightfor
ward. The first two check to see that two slash (II) marks appear in each 
desired record. The slash marks are embedded with the member creation 
date in each data record and differentiate these records from other records 
within the file, such as the header and trailer records. The next three Include 
statements verify whether each record falls within the desired time period. 

The sort field specifications sequence the output file as follows. Position 
12 of each record contains the member type (e.g., 0 = Object, P = Proce
dure) and is the primary sequence field. The next three field specifications 
sequence the members in YYMMDD date order (field positions 22 through 
29). Field positions 1 through 8 contain the member name itself, which is 
the final sequence field. The final field specification designates that the 
output file SPROG is to contain the first 55 characters of the input file. 

Once sorted, file SPROG is passed to print program PRGLST (Figure 
11-9). The program is very straightforward. Indicator L1 designates a con
trol break on field TYPE. Using this indicator in the O-specs causes the 
listing to double-spru:;e between library types as they are printed. As each 
record of file SPROG is read, one line is printed. Each print line contains 
the library member name, the library type, the last date and time a member 
was changed, and the number of changes to date. 

The utility has one limitation with the user-specified year in parameter 
4. Because only one year is specified, the utility will not span year-end 
boundaries. Therefore, to produce a listing of program changes made from 
December 1985 through February 1986, you would have to run the utility 
twice. Each run would have to specify the appropriate year for the report. 

You also should be aware that the number of changes reported represents 
changes to date, not the number of changes since the last time the report was 
run against a specific library. '10 report the number of changes since the last 
time the procedure was run, you would have to reset the change counter to 
zero manually after the report is run. Conceptually, you could consider any 
library member with a change level of zero to be production ready. Any mem
ber with a change counter greater than zero, therefore, would represent the 



284 5/36 Power Tools 

Figure 11-7 

Sample listing of 
new and changed 
programs by 
utility PRGLST 

Figure 11-8 

Procedure 
PRGLST 

number of changes since the program was put into a production environment. 
For those of you responsible for tracking the progress of development 

ef(orts within your DP department, procedure PRGLST represents an 
effective and efficient tool for management reporting, programmer produc
tivity analysis, and project control. 

USEQTY 0 01/03/86 15.44 IS 
IVOI02 0 01/16/86 09.37 49 
RPGOBJ 0 01121/86 13.33 17 
AROI06 0 0112U86 14.04 4 
IVB020 0 02103/86 10.35 2 

USQTY p 01/06/86 15.23 60 
RSOO05 p 01128/86 16.04 4 
SORTCUST P 01/31186 11.46 9 

REPIOI R 01/10/86 13.20 I 

REPI34 R 01/10/86 13.50 I 

BLANK PRE R 01/16/86 10.90 2 

CHECKI R 01/24/86 16.30 I 


IVOIOZ S 01/16/86 08.59 49 

OE0054 S 01/21/86 13.25 17 

AROI06 S 01122186 14.02 4 

IVBOZO S OU03/86 10.29 2 


I I • 'L i bra ry Name' 

I I IFF LOAD-' #PTFLOG, ?1 R?' PAUSE '?1? Is not a Library' 

II IFF LOAD-'#PTFLOG,?lR?' RESET PRGLST 

// • 'Year, defaults to 90' 

/1 IF ?2R?- EVALUATE P2-'90' 

// • 'Starting Month, defaults to 01' 

I I IF ?3R?- EVALUATE P3-'Ol' 

I I • 'Endi ng Month , defaults to 12 ' 

// IF ?4R?- EVALUATE P4-'12' 

II IF DATAF1-SPROG DELETE PPROG,Fl 

// IF DATAF1-PPROG DELETE PPAOG, Fl 


1/ · LOAD $MAI NT 

/1 FILE NAME-INPUT,LABEL-PPROG,UNIT-Fl ,RETAIN-J 

/1 RUN 

II COpy TO-PRINT,FROM-?l?,PRTFILE-PPROG,NAME-ALL,LIBRARY-ALL,DISPLAV-DIRINFO 

II END 
· II LOAD #GSORT 
1/ FILE NAME-INPUT,LABEL-PPROG,RETAIN-S 
// FILE NAME-OUTPUT,LABEL-SPROG,UNIT-Fl ,RECORDS-?F'A,PPROG'? 
/1 RUN 

HSORTR 15A 3X 45 

I C 24 24EOCI 

lAC 27 27EOCI 

lAC 2B 29EQC?2? 

lAC 22 23GEC?3? 

lAC 22 23LEC?4? 

FNC 12 12 

FNC 2B 29 

FNC 22 23 

FNC 25 26 

FNC 1 8 

FDC 1 45 


// END · // LOCAL BLANK-'ALL 
II LOCAL OFFSET-l ,DATA-'?l?' 
// LOAD PRGLST 
II FILE NAME-SPROG,DBLOCK-50,RETAIN-S 
/1 RUN 



~ibraries 285 
.Figure 11-9 " 1 " , 3 ,'. 6 8 
0001 H 008 PRGLST 

Program 0002 
0003 

FSPROG IP 
FPRINTER 0 

F 45 45 
F 132 132 OF 

DISK 
PRINTER 

PRGLST 0004 
0005 

ISPROG 
I 

NS 01 
1 8 PROG 

0006 I 12 12 TYPE Ll 
0007 I 22 29 DATE 
0008 I 32 36 TIME 
0009 I 39 440CHANGS 
0010 ILDA UDS 
0011 I 8 LISR 
0012 OPRINTER H 101 lP 
0013 0 OR OF 
0014 0 6 'PRGLST' 
0015 0 60 'LISTING OF CHANGED PRDGR' 
0016 0 67 'AMS FOR' 
0017 0 LISR 76 
0018 0 UDATE Y 90 
0019 0 125 'PAGE' 
0020 0 PAGE Z 132 
0021 0 H 2 lP 
0022 0 OR OF 
0023 0 15 'PROGRAM' 
0024 0 20 'TYPE' 
0025 0 30 'DATE' 
0026 0 40 'TIME' 
0027 0 60 'CHANGES' 
0028 0 D 1 01 
0029 0 PROG 15 
0030 0 TYPE 20 
0031 0 DATE 30 
0032 0 TIME 40 
0033 0 CHANGSZ 50 
0034 0 T 1 Ll 
0035 0 132 ' 

Retrieving Source and Procedure Members 
from a Library 
by Gary T. Kratzer 

a
Code on diskette: 


RPG code SMPSG 
Assembler subroutine SUBRSG 

Back in the days of the S/3, IBM provided an assembler subroutine to read 
source and procedure members directly from a library into RPG programs. 
This subroutine came bundled with the RPG compiler, just as SUBR21, 
SUBR22, and others are provided today with the S/36. But when the S/34 was 
introduced, the subroutine for reading library members, for whatever reason, 
disappeared. Since that time, we have not had any method for reading source 
and procedure members directly from a library into RPG programs. 

Most programmers must read source and procedure members from a 
library at one time or another. Normally, you do this by using $MAINT to 
copy the member to a disk file and to read this file into an RPG program. 
Unfortunately, a few drawbacks to this method exist. One, the program 
must "look out" for the II COpy and II CEND delimiter statements that 
$MAINT places in the file. Two, if more than one member needs to be 



286 5/36 Power Tools 

read, you usually need a separate disk file for each one. And three, even if 
the entire member does not need to be read, $MAINT still must spend the 
time to copy every source statement into the disk file. 

The somewhat crude $MAINT method of reading library members 
does get the job done - but slowly and clumsily. Fortunately, there is a 
more efficient, convenient, and flexible way to read source and procedure 
members: use the Source Get feature of the library maintenance routines 
built into the SSP. But because access to these routines is not provided by 
high-level languages, you need an assembler language interface to perform 
the task. Such an interface is subroutine SUBRSG, which lets an RPG pro
gram read from any library any source or procedure member, even multiple 
library members simultaneously. 

To use subroutine SUBRSG in an RPG program, you must code an 
EXIT SUBRSG operation, which must be followed by either four or six 
RLABL statements, depending on the type of call you are making. The 
two types of calls - Open request and Get Next request - and their 
respective parameters are described below. 

The Open Request 
Before subroutine SUBRSG can read a library member, the member must be 
opened with an Open request. An Open operation first checks for the exis
tence of the specified library and whether the member is in that library. If the 
member is found, it is opened, and subroutine SUBRSG then can retrieve the 
member's text records with Get Next requests. The format of an Open request 
is shown in Figure 11-10, and the parameter descriptions are as follows: 

• OP - one-byte field that contains the operation to be performed. For an 
Open request, OP should contain the letter O. 

• LIBNAM - eight-byte field that contains the library name where the 
member resides. 

• MEMNAM - eight-byte field that contains the name of the member to 
open. 

• MEMTYP - one-byte field that contains the type of library member to 
open. Specify S for a source member or P for procedure. 

• PLIST - 39-byte field that, upon returning from subroutine SUBRSG, 
contains the parameter list that corresponds to the member you just 
opened. This parameter list is used as input to subroutine SUBRSG on all 
subsequent Get Next calls. You should never alter the contents of this 
field. Your only responsibility is to keep track of which parameter list goes 
with which library member. Also, because PLIST contains mostly binary 
data, you should not attempt to display it. 



libraries 287 

• RCODE - one-byte field that contains the re~urn code. The return 
codes for an Open request are: 

0- Open request successful. Okay to issue Get Next requests. 

1 - Library not found. 

2 - Member not found or corrupted member. 

The Get Next Request 
Once the member has been opened successfully, you may issue Get Next 
requests to read its text records from the library. The format of a Get Next 
is shown in Figure 11-11, and the parameters are as follows: 

• OP - one-byte field that contains the letter N for Get Next. If OP does 
not contain 0, N is assumed. 

• PUST - 39-byte field that contains the parameter list corresponding to 
the member you want to read. You should save the contents of PUST after 
every call to subroutine SUBRSG. 

• TEXT - 120-byte field that contains the next text record, left justified, 
from the requested member. 

• RCODE - one-byte field that contains the return code. The return 
codes for a Get Next request are: 

0- Successful Get operation. 

3 - End of member or corrupted member. 

Subroutine SUBRSG reads sequentially through members until you reach 
the end or you want to stop. There is no close operation. If at any time 
while reading a member you want to start over with the first record, simply 
issue another Open request before continuing to issue Get Next requests. 

You can use subroutine SUBRSG to access an unlimited number of 
library members simultaneously within the same program. To access sev
eral members at one time, save the contents of PLIST after opening each 
member. Then, when you want to read records from a particular member, 
supply the parameter list that corresponds to that member when you call 
subroutine SUBRSG on a Get Next request. Don't forget to save the con
tents of PUST after every call to subroutine SUBRSG because the param
eter list changes after each record is retrieved. An example of code that 
reads multiple members is shown in Figure 11-12. 



288 	 S/36 Power Tools 

Figure 11·10 

Calling sequence 
forSUBRSGfor 
an open request 

Figure 11·11 

Calling sequence 
forSUBRSGfor 
a get next request 

Figure 11·12 

Sample code that 
reads multiple 
members. (This 
code appears on 
diskette as 
member 
SMPSG.) 

C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

E' 
E 
E 

E' 
C' 
C 
C 
C' 

C'- Fi rst 

C' 

C 
C 
C 
C 

C' 
C 
C 
C 
C 
C' 
C*- Then 
C' 
C 
C 
C 
C 
C' 
C 
C 
C 
C 
C' 
C'- Read 
C' 
C 
C' 
C 
C 
C' 
C 
C 
C 
C 
C 
C' 
C 
C 
C' 
C 
C 
C 

3 4 
EXIT SUBRSG 
RLABL OP 1 
RLABL LlBNAM B 
RLABL MEMNAM B 
RLABL MEMTYP 1 
RLABL PLlST 39 
RLABL RCODE 1 

3 	 4 
EXIT SUBRSG 
RLABL OP 1 
RLABL PLlST 39 
RLABL TEXT 120 
RLABL RCODE 1 

PLST 5 39 
PROC 10120 
SRC 10120 

Z-ADD1 Z 
MOVE '0' OP 

open proc CUS001 in ARLlB 

MOVE 'ARLl B ' Ll BNAM 
MOVE 'P' MODTYP 
MOVE ' CUS001 'MODNAM 
MOVE 'BLANKS PUST 
EXSR OPEN 

RCODE 	 I FEQ '0' 
MOVE PUST PLST,Z 
ADD 1 Z 
END 

open source CUS001 in ARUB 

MOVE 'S' MOOTYP 
MOVE ' CUS001 'MODNAM 
MOVE 'BLANKS PUST 
EXSR OPEN 

RCODE 	 lFEQ 'a' 
MOVE PLlST PLST,Z 
ADD 1 Z 
END 

the first 	10 records from each member 

MOVE 'N' OP 

MOVE PLST, 1 PLlST 
Z-ADD1 X 

DO 10 X 
EXSR NEXT 
MOVE TEXT PROC,X 
MOVE PUST PLST,1 
END 

MOVE PLST,2 PLlST 
Z-ADD1 X 

DO 10 X 
EXSR NEXT 
MOVE TEXT SRC,X 

Input 

Input 

Input 

Input 
Output 
Output 

6 

Input 

Input/Output 

Output 

Output 


6 

Save area 	for 5 parm lists 
Proc save 	array 
Source save array 

In;t index 
Open request 

Library name 
Type • Proc 

Proc name 

Clear parm list 

Open the member 

If open successful 
Save parm 1 i st 
Bump index 

Type .. Source 

Source name 

Clear parm list 

Open the member 


If open successful 
Save parm list 
Bump index 

Get Next request 

Aestore proc parm 1i st 

Get next record 

Save text record 

Save parm 1 i st 


Restore source parm list 

Get next record 
Save text 	record 



Libraries 289 

C MOVE PLIST PLST,2 Save parm list 
C END 
C' 
C'- Call SUBRSG to open a member 
C' 
C OPEN BEGSR 
C EXIT SUBRSG 
C RLABL OP 
C RLABL LI BNAM 
C RLABL MODTYP 
C RLABL MODNAM 
C RLABL PLIST 
C RLABL RCODE 
C ENDSR 
C' 
C'- Call SUBRSG to get the next text record 
C' 
C NEXT BEGSR 
C EXIT SUBRSG 
C RLABL OP 
C RLABL PLIST 
C RLABL TEXT 
C RLABL RCODE 
C ENDSR 
C' 



290 S/36 Power Tools 

Retrieving Program Source 
by Mel Beckman 

Code on diskette: a Procedure TRYCMP 
RPG program TRYCMP 

When your S/36 program needs to read a library source member, you proba
bly use the tried and true technique of invoking the $MAINT utility to 
copy the source member into a file that your program then processes. Two 
drawbacks to this method are the extra time required to execute the 
$MAINT job step and the extra coding required to handle creation and 
deletion of a job-unique file. 

You can circumvent these drawbacks by taking advantage of a Iittle
known and poorly documented SSP facility: the II COMPILE statement. 
When placed between a II LOAD and II RUN statement for your program, 
the II COMPILE statement reads a specified source member into a 
RETAIN-J disk file named $SOURCE. When your program gains control, it 
simply reads %-byte source statements from the $SOURCE file. Figure lI
B shows sample OCL for invoking the II COMPILE function. Note that you 
must code a II FILE statement for th.., $SOURCE file, specifying RETAIN-J 
and an initial records allocation size (i.e., BLOCKS- or RECORDS-). You also 
should code an EXTEND parameter on the II FILE statement to prevent a 
"file is full" message if your initial allocation is too small. 

Figure 11-14 shows a sample program, TRYCMp, that reads source 
statements from a source member and prints them. For a program to work 
with the II COMPILE statement, you must set on the Source Required 
attribute bit in the program load member. 



Libraries 291 

II LOAD TRYCMPFigure 11-13 
II FILE NAME-SSOURCE,BLOCKS-10,EXTEND-25,RETAIN-J 
II COMPILE INLIB-#LIBRARY,SOURCE-TRYCMPProcedure II RUN 

TRYCMP 

Figure 11-14 H 64 
8 

TRYCMP 

Progam FSSOURCE 
FPRINT 

IPE 
a 

F 96 96 
F 132 132 

DISK 
PRINTER 

TRYCMP I SSOURCE 
I 

NS 01 
1 96 RECORD 

OPRINT D 01 
a RECORD 96 

Writing Source and Procedure Members 
to a Library 
by Gary T. Kratzer 

a
Code on diskette: 


RPG program TESTSW 
Assembler subroutine SUBRSW 

To complement subroutine SUBRSG, I now bring you subroutine 
SUBRSW, which writes source and procedure members to a library from an 
RPG program. Using subroutine SUBRSW is similar to using subroutine 
SUBRSG (both use the library maintenance routines built into the SSP), but 
because subroutine SUBRSW creates a library directory entry for the mem
ber you are writing, you need to pay close attention to what you're doing. 

To use subroutine SUBRSW in an RPG program, you must code an 
EXIT SUBRSW operation, which must be followed by either two or three 
RLABL statements, depending on the type of call you are making. The 
three types of calls - Open, Pui Next, and Close - and their respective 
parameters are described below. 

The Open Call 
Before you write a new source member, you must make an Open call to 
subroutine SUBRSW, specifying the directory information - member 
name, library name, and certain attributes - that you want. An Open call 
first checks for the existence of the specified library and then sets up the 
new library directory entry. Subroutine SUBRSW lets you either create 
new source and procedure members or overwrite existing ones. (If you 
choose to overwrite an existing member, the text lines you supply will com
pletely replace its contents. You cannot append statements to existing ones 
in a member.) The format of an Open call is shown in Figure 11-1Sa, and 
the three parameter descriptions are as follows: 

• OP - one-byte field that contains the operation to be performed. For an 
Open call, OP should contain the letter O. 



292 5/36 Power Tools 

• PUTDS - 42-byte data structure that contains detailed information 
about the member being written. The format of the PUTDS data structure 
is shown in Figure 11-15b, and a description of the 12 fields contained 
within it follows: 

LIBNAM - Library name to contain the member; left justified. 


MEMNAM - Name of the member being created or replaced; left justified. 


MEMTYP - Member type. S = source, P = procedure. 


RECLNG - Record length of the member. The record length may be 

from 40 to 120 bytes. 


MONUM - Modification reference number. 


MODATE - Modification date (ITMMDD). 


MOTIME - Modification time (HHMM). 


SUBTYP - Member SUbtype. 


LOG - If the member is a procedure and the procedure statements 

should not be logged to the history file, specify N. 


PDATA - If the member is a procedure and data should be passed to the 

program, specify Y (PDATA-YES). 


MRT - If the member is a procedure and should be created as a MRT 
procedure, specify Y. 

DUP - Ifa duplicate member is to be replaced without a warning message 
being issued, specify Y. 

You should pay close attention to field SUBTYP (i.e., member subtype), 
which identifies the module as a specific type (e.g., RPG, assembler, screen 
format), Subtypes are two-digit numbers; the subtype for RPG, for example, 
is 35. (For additional information on subtype codes and a list of the codes, see 
the LISTLIBR section in IBM's System Reference Manual (SC21-9020).) 

• RCODE - one-byte field that contains the return code. The return 
codes for an Open call are: 

0- Open call successful. Okay to issue Put Next calls. 

1 - Library not found. 


2 - Library Open failed (library may be corrupt). 




Libraries 293 

The Put Next Call 
After successfully opening the member, you make Put Next calls to write 
individual text records to the member. The format of a Put Next call is 
shown in Figure 11-16, and the three parameter descriptions are as follows: 

• OP - For a Put Next call, OP should contain the letter N. 

• TEXT - 120-byte field that contains the next text record to be written 
to the library. If the member's record length (as specified in RECLNG) is 
less than 120, you must left-justify the data in field TEXT. 

• RCODE - The return codes for a Put Next call are: 

0- Successful Put Next operation. 

3 - Library Put Next failed (library may be corrupt). 

4 - Library Put Next failed because library is full (you must either 
condense the library or allocate more space and then call SUBRSW again to 
try to write the member). 

The Close Call 
After writing the last text record to the member, you make a close call to 
subroutine SUBRSW, which closes the library and makes the newly created 
me'mber available to other users. The format of a Close call is shown in Fig
ure 11-17, and the two parameter descriptions are as follows: 

• OP - For a Close call, OP should contain the letter C. 

• RCODE - The return codes for a Close call are: 

0- Successful Close operation. 

4 - Library Close failed (library may be corrupt). 

Using Subroutine SUBRSW 
Figure 11-18 shows a short example program, TESTSW, that uses subrou
tine SUBRSW. Notice that program TESTSW sets the member subtype to 
40 (i.e., unspecified) and that the procedure statements should not be 
logged to the history file. 

Subroutine SUBRSW, with subroutine SUBRSG, can be particularly 
useful when you are writing an editor such as FSEDIT, SEU, or DSU. For 
example, subroutine SUBRSG can read a member to be edited into a work 
file, and it also can read in other members so you can include certain state
ments in the member you're editing. Then subroutine SUBRSW can save 
the changes by writing the new version back to the library. With these sub
routines, you can do all this reading and writing - without the hassle and 
clumsiness of returning to the calling procedure to invoke $MAINT every 
time you need to read or write a member. 



294 5/36 Power Tools 

Figure 11-lSa 

Calling sequence 
for subroutine 
SUBRSWforan 
open call 

Figure 11-lSb 

Format ofdata 
structure PUTDS 

Figure 11-16 

Calling sequence 
for subroutine 
SUBRSWfora 
put next call 

Figure 11-17 

Calling sequence 
for subroutine 
SUBRSWfora 
close call 

Figure 11-18 

Sample program 
TESTSW 

4 6 8 
C EXIT SUBRSW 
C RLABL OP Input 
C RLABL PUTDS Input 
C RLABL RCODE Output 

1 2 4 6 8 
IPUTDS DS 
I 1 8 Ll BNAM 
I 9 16 MEMNAM 
I 17 17 MEMTYP 

18 20 RECLNG 
21 26 MONUM 
27 32 MODATE 
33 36 MOTIME 
37 38 SUBTYP 
39 39 LOG 
40 40 PDATA 
41 41 MRT 
42 42 DUP 

3 4 
C EXIT SUBRSW 
c RLABL OP 1 Input 
C RLABL TEXT 120 Input 
C RLABL RCODE Output 

3 4 8 
C EXIT SUBRSW 
C RLABL OP Input 
C RLABL RCODE Output 

4 8 
0001 H 64 B TESTSW 
0002 E' 
0003 E TXT 7 80 Text 1 ines for member 
0004 I' 
0005 IPUTOS OS 
0006 [ 1 8 Ll BNAM 
0007 I 9 16 MEMNAM 
0008 I 17 17 MEMTYP 
0009 [ 18 200RECLNG 
0010 I 21 260MONUM 
0011 I 27 320MOOATE 
0012 [ 33 360MOTI ME 
0013 I 37 380SUBTYP 
0014 I 39 39 LOG 
0015 [ 40 40 POATA 
0016 I 41 41 MAT 
0017 
0018 

I 
[ . 42 42 OUP 

0019 I OS 
0020 [ 120TIMOAT 
0021 [ 60T! ME 
0022 I 40HHMM 
0023 I 1200ATE 



tibraries 295 

0024 100MMDD 
0025 I 11 120YY 
0026 C' 
0027 C'- Set attributes 
0028 C' 
0029 C 
0030 C 
0031 C' 

Z-ADD40 
MOVE 'N' 

SUBTYP 
LOG 

Subtype - Unspecified 
No history logging 

0032 C'- Set up the rest of PUTDS 
0033 C' 
0034 C MOVE '#LI BRARY' LI BNAM Library name 
0035 C MOVE 'TESTSW 'MEMNAM Member name 
0036 C 
0037 C 
0038 C 

MOVE 'P' 
Z-ADDBO 
Z-ADDl 

MEMTYP 
RECLNG 
MONUM 

Type - proe 
Record 1 ength 
Mod number 

0039 C TIME TIMDAT Get current time & date 
0040 C MOVELYY MODATE Mod date - YY 
0041 C MOVE MMDD MODATE Mod date MMDD 
0042 C Z-ADDHHMM MOTIME Mod time ~ HHMM 
0043 C' 
0044 C'- Open the member 
0045 C' 
0046 C MOVE '0' OP 
0047 C EXSR OPEN 
0048 C' 
0049 C*- Write the text records 
0050 C
0051 C MOVE 'N' OP 
0052 C DO 7 Z 10 
0053 C MOVELTXT,Z TEXT 120 
0054 C EXSR NEXT 
0055 C END 
0056 C' 
0057 C'- Close the member 
0058 C' 
0059 C MOVE 'c' OP 
0060 C EXSR CLOSE 
0061 C' 
0062 C END TAG 
0063 C SETON LR 
0064 C' 
0065 C'- Call SUBRSW to open a member 
0066 C' 
0067 C OPEN BEGSR 
0068 C EXIT SUBRSW 
0069 C RLABL OP 
0070 C RLABL PUTDS 
0071 C RLA8L RCODE 
0072 C ENDSA 
0073 C' 
0074 C'- Call 
0075 C' 

SUBRSW to put the next text record 

0076 C NEXT BEGSA 
0077 C EXIT SUBASW 
0078 C ALABL OP 
0079 C RLABL TEXT 
0080 C ALABL ReODE 
OOBl C ENOSA 
00B2 C' 
00B3 C'- Call SUBRSW to close the member 
0084 C' 
00B5 C CLOSE BEGSA 
0086 C EXIT SUBASW 
00B7 C RLABL OP 
0088 C RLABL RCODE 
0089 C ENDSR 
0090 C' 

- Dummy procedure to show SUBRSW works 

II LOAD TESTSW 
II FILE NAME-JUNKO,LABEL-?1?,DISP-SHR,DBLOCK-40 
II PRINTER NAME-PAINT,FORMSNO-TEST,DEVICE-P2 
II RUN 



296 5/36 Power Tools 



libraries 297 

Undeleting a Library Member 
by Joe Medieros 

After hours of frantic work, you've just finished a major program maintenance 
job on a large S/36 source member called OR1820. It's time to delete the 
work file from library WORK, but in your haste, you accidentally delete the 
good copy of the source member. What now? Rather than moving toward a 
high window, think about how the REMOVE procedure works and how it 
can be undone. 

When a library member is deleted, all that really happens is that certain 
bytes are reset in the library's directory. To prevent panic in situations such 
as the one described above, you should know that the member can be 
restored by setting those bytes to their original configuration. I will explain 
how the resetting can be done through a directory patch, but first I need to 
emphasize that the steps I provide have no safeguards. In the hands of a 
careless, inexperienced, or malicious person, directory byte manipulation 
can render your system useless. 

To "unremove" the source member in the opening example, you must 
find the starting sector of the library's directory by executing 

DUMP VTDC,CRT 

When the dump screen is displayed, roll up until you see the entry for the 
deleted member's library. The first sector of the directory appears in bytes 
33 through 36, which in our example would show 118E76. 

Then, with the above-mentioned caveat in mind, and with Service Aid 
authorization, key in 

PATCH F1 



298 5/36 Power Tools 

Figure 11-19 

Directory sector 
before patch 

S/36 PATC" DIS~ UTILITY WI 
SS'- Olle~77 P H•• adoci •• 1 

0030 000000E2 DGDSnFe rlFS4040 00001360 ., .• SORI8IS ... -. 
0040 00380000 00000000 00000400 0>200000 •........... ....... 
0030 00158608 06112435 00000080 13660000 ... of •••••••• .. " 
0060 00000000 0000E206 OSFIFBF2 F0404000 > •••••• SORIB20 • > 
0070 01586002 40000000 00000000 00040000 >. -. .......... .. 

Sector I. pttch.d 
C.dl·Hu:t .,ctor C_d2:-Pr."ieus ,.cto,. C.d1-End 

Figure 11-20 

Directory sector 
ajterpatch 

9136 PATCH DISK UTiL ITY WI 
85'- 0118E77 P M","tci •• 1 

0030 000000£2 06DSFIre rlr54040 00001360 " ••• SORI6IS ••• -" 
0040 00380000 00000000 00000400 OA2:00000 4o ••••••••••• ••••• 4o 

0050 00158608 06112435 00000080 13660000 ., of •••••• o••• ,. 
0060 00000000 0000£2D& DSFlrer2 r0404000 " •••••. BORI8l0 ." 
0010 01588002 40000000 00000000 0004F'F'H' ................. . 


Press the Enter key, and wait for the PATCH screen to appear. Enter th~ 
number for the first sector to be displayed. In this example, you would key 
in 118E76, as determined from the dump screen. After entering the num
ber for the sector to be displayed, press th~ Field Exit key and then the 
Enter key, leaving the default parameters as they are. Once the sector is 
displayed (Figure 11-19), look for the member that you "removed~' (in this 
case, SOR1820, because you removed the source member for program 
OR1820). If you don't find the member you are looking for in the displayed 
sector, use Command key 1 to view the next sector(s). 



Libraries 299 

Once you have found the entry that refers to the "removed" member, 
you can manipulate the appropriate bytes to "unremove" the member. (This 
is where extreme caution is necessary; you can manipulate any of the bytes in 
the directory, and an improper manipulation can cause severe problems.) 
There are 51 bytes in a member's entry, and the first entry is an E2 (the 51 
bytes occupy more than one line on the screen). Find the E2 entry on the 
line that contains the name of the member you "removed." Referring to the 
E2 as byte number one, count over to byte 25 (remember that each byte con
sists of two characters). For "removed" members, bytes 25 and 26 are filled 
with zeros, to indicate that the member no longer exists (see Figure 11-19). 
To restore the member, replace the zeros with hex FFs by keying FFs into 
both bytes 25 and 26 and then pressing the Enter key. (Figure 11-20 shows 
what the directory sector looks like after the FFs have been entered.) Move 
the cursor to the second field at the top of the PATCH screen, and key a P to 
indicate that the sector is to be patched. Press Enter. After the "SECTOR IS 
PATCHED" message appears, use Command key 7 to exit the PATCH pro
cedure. The "removed" member will be back in the library. 

Unfortunately, the number of sectors a member occupied cannot be deter
mined by looking at the directory after the member was removed. Keying hex 
FFs in bytes 25 and 26 will recover the entire member but may also include 
some extra lines. You will, therefore, need to edit out those extra lines. 

Editing the original source member with SEU may not work because 
certain attribute bytes (such as hex 22) in the extra lines could cause an 
"ERROR COMMUNICATING WITH DISPLAY STATION" message. 
You can use the EDIT function of POp, but if you don't have POp, you can 
use the following steps as a guide: 

• Create a new source member, say OR1821, by keying 

SEU OR1821,R"WORK 

• Use Command key 11 to "Include" member OR1820 from library 
WORK, starting at statement 1. 

• Roll up through the "included" source until you find the last good state
ment of program OR1820. This is the ending statement for your "Include." 
Key in this statement number, press Enter twice, and the statements are 
copied into the new member OR1821. 

• Remove the old member and use the CHNGEMEM command to change 
the member name from OR1281 to OR1280. 



300 5/36 Power Tools 

Re-creating Source from Message 
and Menu Obiect Members 
by Ron Elliott and Gary T. Kratzer 

program by William G. Strejc 

Code on diskette: a Procedures CRMSG, CRMENU 
RPG program CRSRC 
Screen format member CRSRCFM 

The RPG library, #RPGLIB, contains assembler subroutine SUBR23, 
which lets an RPG program retrieve a message from a user message mem
ber. Hidden in this subroutine is the "super" ability to convert object code 
to text. By using this capability, S/36 utility CRSRC can read the object 
code in a message member or menu and create the corresponding source 
code member. With utility CRSRC, you can reword a message your man
ager doesn't like or swap menu items 10 and 14, even if you don't have 
access to the original source member. What is more, you can modify a 
menu or message member in a software package supplied sans source or for 
which the original source code has disappeared. And, if "someone" erased 
the source, this utility could save a life. 

Utility CRSRC consists of two procedures, an RPG program, and a 
screen format member. Procedures CRMSG (to re-create message mem
bers) and CRMENU (to re-create menus) request input via prompt screens 
(Figures 11-21 and 11-22, respectively) and then call program CRSRC. The 
program calls subroutine SUBR23 and creates an output file for the text. 

Figure 11-21 

CRMSG prompt 
screen 

Create a Source Message Member From a Level 1 Object Module 

Message member name(same as object name) .. 

Library in which the object member resides. 

Record length for the source member .. 080 

Print the source member(Y or N). y 

Number of messages in the object member. 0500 

ENTER-Process the screen 
CMD 7-Cancel out of utility 



libraries 301 

Figure 11-22 

CRMENU 
prompt screen 

Create a Source Menu Message Member From a level 1 Object Module 

Menu message member name(same as menu name) .. 

library in which the object member resides, 

Record length for the source member. 120 

Print the source member(Y or N), .... Y 

Number of messages in the object member, 0024 

ENTER-Process the screen 
CMD 7-Cancel out of utility 

The procedures then use $COPY to copy the output file into a data file and 
$MAINT to convert the data file into a source member created in a user
designated library. Both procedures are similar, so we'll describe only how 
procedure CRMSG works. 

GeHing Started 
Procedure CRMSG (Figure 11-23) begins by displaying the prompt screen 
(S- and O-specs are included in screen format member CRSRCFM - Fig
ure 11-24). You specify five parameters: the name of the message member, 
the name of the library, the record length, an option to print the resulting 
source code, and the number of records the output file will contain. Make 
sure that this last entry (parameter 5) is at least as large as the highest num
bered message in the member. If in doubt, enter 9999 for the fifth parame
ter value; this choice will waste computer time but will ensure that all 
messages are retrieved. As shown on the bottom of the prompt screen, 
Command key 7 cancels the procedure. 

Upon return from the prompt screen, procedure CRMSG tests whether 
you entered a message member name in parameter 1. If not, the procedure 
is RESET. Next, if the value supplied for the number of messages (param
eter 5) is less than two, the default value of 100 is used. Procedure CRMSG 
then copies the member-name parameter and number-of-messages parame
ter into the LOA for subsequent use by the RPG program. The procedure 
sets switch 1 to print or not print the generated source member as specified 
in parameter 4 and switch 2 to indicat~ that CRMSG is the calling proce
dure (procedure CRMENU sets switch 3). The procedure next executes a 
II MEMBER statement to point to the specified message member in the 



302 5/36 Power Tools 

specified library (the default is the current library). Procedure CRMSG 
then loads program CRSRC (Figure 11-25). 

Building a $MAINT File 
Program CRSRC writes a II COpy statement, which is used by $MAINT; 
writes a header record, which is required in a message source member; calls 
subroutine SUBR23; writes the text to the output file; and writes a trailing 
II CENO record, also required by $MAINT. 

Program CRSRC begins by picking up the name of the message member 
from the LOA and then executing subroutine NAME. Subroutine NAME 
copies the message member name to an array, locates the first blank space in 
the array, and appends the literal ",1" or ",2", depending on the calling pro
cedure, for output to the message source member header record (message 
member header records must have the literal ",1" or ",2" following the mem
ber name). The header record also contains the literal MSG or MNU (which 
designates the member subtype), again depending on the switch setting. 

Now the program is ready to call subroutine SUBR23. Following the 
required EXIT statement are four RLABL statements that specify 
SUBR23's parameters. 

The first RLABL specifies a four-digit field that contains the sequence 
number for the message to be retrieved. Program CRSRC is designed to 
retrieve all the messages in a member; thus, field MNOI is initialized to 1, 
and subsequent passes through the program keep incrementing MNOI by 1 
until all messages have been retrieved. 

The second RLABL specifies an alphabetic field to receive the mes
sage. The third RLABL specifies a one-byte field that contains a 1 for first
level message members or a 2 for second-level message members. Because 
program CRSRC is designed for first-level messages, the field defined in 
the third RLABL contains a 1. 

The final RLABL defines a one-byte field for a return code provided by 
SUBR23. The return code will be a value of 0 to 5. In brief, a code of 0 or 1 
means the desired message was found, and the other return codes mean that 
it wasn't (for further information, see the description of SUBR23 in the S/36 
manual Programming with RPG /I). After the call to SUBR23, program 
CRSRC writes the message nu~ber and message text to disk file MSGOU'f. 

No input primary file is declared for program CRSRC, so the RPG 
cycle routes control back to the beginning of the detail calculations. The 
message number is incremented, and the retrieva.l and output processes are 
repeated until the message number is either greater than field RLIMIT 
(the number of messages you specified in the prompt screen) or the mes
sage number equals zero. If you specified 9999 for the number of messages, 
the four-byte field MNOI will equal zero on the 10,OOOth cycle and will set 
on indicator 50. In either case, the LR indicator comes on, the II CENO 
trailing record is output, and the program ends. 



Figure 11-23 

Procedure 
CRMSG 

Libraries 303 

Before leaving this program, note that the output to the printer file is 
conditioned on indicator U1. If you opt for printed output, you'll get not 
only a source listing, but also a printed result of each pass through subrou
tine SUBR23. As with the disk output, these lines of output are condi
tioned on the return code from the subroutine and show the message text 
as well as an informational message. 

Saving .the Source 
When control returns to procedure CRMSG, the $COPY utility copies the file 
just created (MSGOUT), yielding a new file with a reasonable record length 
(which you specify in the third parameter on procedure CRMSG's prompt 
screen - the default record length is 80 bytes). For instance, suppose you 
know that the maximum length for messages in a particular message member 
is 40 bytes. Program CRSRC defines the message text field with length 75 
bytes. Therefore, in this example, the creation of another copy of the output 
file saves 35 bytes per record in the final output file, an important considera
tion when you realize some system message members contain thousands of 
messages. The copy process also renames the file so that it now exists on the 
disk under the label specified as the first procedural parameter. 

Finally, the call to $MAINT in procedure CRMSG creates, from the 
disk file, a source member in the library specified by the second parameter. 
When procedure CRMSG is completed, the desired source for the speci
fied message member exists in the library you specified as parameter 2. You 
can then modify the messages as you see fit. 

Remember that program CRSRC can build a source member for 
menus, too. Simply call procedure CRMENU (Figure 11-26), which in turn 
displays the prompt screen similar to the one procedure CRTMSG dis
plays. As required for menu members, procedure CRMENU appends the 
literal ## to the first parameter value. 

With utility CRSRC, you can change message text and menu wordings 
and selections even if you do not have the source code - adding to your 
reputation as a "can do" programmer. 

CRMSG - CREATE A SOURCE MESSAGE MEMBER FROM AN 

OBJECT MESSAGE MEMBER. 


I I PROMPT MEMBER-CRSRCFM, FORMAT -WSS033A, START -1 , LENGTH - . B, 8,3,1 ,4 ' 
II IF ?CD?-2007 RETURN 
II IF ?11- RESET CRMSG 
II IF 2>?5? EVALUATE P5,4-0100
II LOCAL OFFSET-1 ,DATA-'?1?
II LOCAL OFFSET-9,DATA-'15? 
I I SW ITCH 010XXXXX 
II IF 14?-Y SWITCH 1XXXXXXX 
II MEMBER USER1-?1?LIBRARY-?2'?CLIB?'? 
II IF DATAF1-MSGOUT DELETE MSGOUT,F1 
II IF DATAF1-?1? DELETE ?1?,F1 
I I LOAD CRSRC 
II FILE NAME-MSGOUT,RECORDS-?5?,EXTENO-50 



304 5/36 Power Tools 

I I RUN 
I I LOAD $COPY 
II FILE NAME-COPYIN,LABEL-MSGOUT,RETAIN-S 
II FILE NAME-COPYO,LABEL-?l?RECORDS-?F·A.MSGOUT·? 
II RUN 
II COPYFILE OUTPUT-SAME.RECL-?3 80'? 
II END 
I I LOAD $MAI NT 
II FILE NAME-?l?UNIT-Fl 
II RUN 
II COPY FROM-DISK.TO-?2?RETAIN-P,FILE-?1? 
I I END 
II SWITCH OOOXXXXX 
II IF DATAF1-MSGOUT DELETE MSGOUT.Fl 
II IF DATAF1-?1? DELETE ?l?Fl 

Figure 11-24 1 4 
0001 SWSS033A 
0002 D 59 211Y (Create a Sou ree MessageXScreen format 0003 D Member From a Leve 1 Object Module 
0004 D 54 5 7Y CMessage membe r name (sarnXmember 
0005 De as object name) ...

CRSRCFM 0006 DMNAME 8 566Y Y Y Y 
0007 D 54 7 7Y CLibrary in which the obX 
0008 Dject member resides. 
0009 OLNAME 8 766Y Y Y Y 
0010 0 54 9 7Y CReeord length for the sX 
0011 Dource member. 
0012 ORLEN 3 966Y YN 8 Y Y C080 
0013 0 5411 7Y CPrint the source memberX 
0014 O(Y or N) . 
0015 OYORN 11166Y Y Y Y CY 
0016 0 5413 7Y CNumber of messages in tX 
0017 Ohe object member .. . 
0018 ORLlMIT 41366Y YN Z Y Y C0500 
0019 0 241519Y CENTER-Process the screeX 
0020 On 
0021 0 271619Y CCMO 7-Cancel out of utiX 
0022 01 Hy 
0023 0 4024 7Y Y CCopyright 1986 by W,lliX 
0024 Dam G. Streje Inc. 
0025 SWSS0338 
0026 0 64 2 7Y CCreate a Source Menu MeX 
0027 Dssage Member From a Leve 1 Object Module 
0028 0 54 5 7Y CMenu message member narnX 
0029 De(same as menu name). 
0030 OMNAME 8 566Y Y Y Y 
0031 0 54 7 7Y CLibrary in which the obX 
0032 Dject member resides. 
0033 OLNAME 8 766Y Y Y Y 
0034 0 54 9 7Y CRecord 1ength for the sX 
0035 Dource member . . 
0036 ORLEN 3 966Y YN Y Y e120 
0037 0 5411 7Y CPrint the source memberX 
0038 O(Y or N) .. 
0039 OYORN 11166Y Y Y Y CY 
0040 0 5413 7Y CNumber of messages in tX 
0041 Ohe object member . . 
0042 DRLlMIT 41366Y YN Z Y Y C0024 
0043 0 241519Y CENTER-Process the sereeX 
0044 On 
0045 0 271619Y CCMO 7-Cancel out of utiX 
0046 01 ity 
0047 0 4024 7Y Y CCopyright 1986 by WilliX 
0048 Dam G. Strejc Inc. 

8 

http:MSGOUT.Fl


0010 

0020 

0030 

0040 

0050 

0060 

Libraries 305 

Figure 11-25 

Program CRSRC 
4 

0001 64 CRSRC 
0002 F* * ............ * .... * * -* ........ * .... * ........ ** * * .... * * * * * * -* ..... * .. * .. ** ** 
0003 F' 
0004 F' PROG NAME: CRSRC 
0005 F' PROG DESC: CREATE A MESSAGE MEMBER OR MENU SOURCE 
0006 F' FILE FROM AN OBJECT MEM8ER 8. PRINT THE 
0007 F' MESSAGE OR MENU TEXT 
0008 F' AUTHOR: WILLIAM STREJC 
0009 F' 

FPRINT 0 132 132 PR INTER 
0011 FMSGOUT 0 F 120 120 DISK 
0012 E NA 10 1 MESSAGE MEMBER NAME ARRAY 
0013 UDS 
0014 I 8 MN MESSAGE MEMBER NAME, 
0015 I 120RLlMIT MESSAGE # LIMIT 
0016 C FIRST I FNE 'Y' 
0017 C Z-ADDl MLVL 10 
0018 C EXSR NAME 
0019 C EXCPTCOPYl OUTPUT COPY STATEMENT 

C EXCPTHEDl PRINT & OUTPUT HEADER RECORD 
0021 C MOVE 'Y' FIRST 
0022 C END 
0023 C ADD MNOl 40 
0024 C MNOl COMP RLIMIT 50 
0025 C N50 MNOl COMP 'ZEROS 50 
0026 C 50 SETON LR 
0027 C 50 EXCPTCENDl OUTPUT CEND STATEMENT, 
0028 C 50 GOTO END END OF READ AND DISPLAY LOOP, 
0029 C EX IT SUBR23 

C RLABL MNOl FOUR DIGIT FIELD 
0031 C RLABL MCMD 75 TEXT FOR THIS MESSAGE MEMBER 
0032 C RLABL MLVL MESSAGE LEVEL(l OR 2), 
0033 C RLABL MRCD 1 MESSAGE NUMBER(RETURN CODE) 
0034 C MOVE MCMD M75 75 
0035 C MRCD COMP '0' 10 MSG RETR I EVED, NO TRUNCATION, 
0036 C MRCD COMP '1 ' 11 MSG RETRIEVED, BUT TRUNCATED, 
0037 C MRCD COMP '2 ' 12 MSG NOT FOUND, 
0038 C MRCD COMP '3 ' 13 MSG LEVEL IS INVALID 
0039 C MRCD COMP '4 ' 14 INVALID MIC VALUE DIAGNOSED, 

C MRCD COMP '5 ' 15 MSG NOT FOUND OR LENGTH EXCEEDS 
0041 C' LEVEL-l MAXIMUM, 
0042 C N12 EXCPTPRNTl PRINT MSG 8. OUTPUT A RECORD, 
0043 C END TAG 
0044 C***************************************************** 

0045 C' SUBROUTINE NAME SET UP THE MEMBER NAME ARRAY 
0046 C NAME BEGSR 
0047 C MOVEAMN NA 
0048 C Z -ADDl M 20 
0049 C STAGl TAG 

C ADD M 
0051 C COMP 50 
0052 C N50 NA M COMP 50 
0053 C N50 GOTO STAGl 
0054 C U2 MOVEA' ,1 ' NA, M MESSAGE 
0055 C U3 MOVEA' ,2' NA,M MENU 
0056 C ENDSR 
0057 OPRINT 203 lP Ul 
0058 0 30 'MESSAGE LISTING AS OF' 
0059 0 UDATE Y 39 

0 'I P Ul 
0061 0 4 'L C' 
0062 0 1 P Ul 
0063 0 'V 0' 
0064 0 1 P Ul 
0065 0 4 'L E' 
0066 0 13 'MSG# ' 
0067 0 23 'TEXT FOR' 
0068 0 MN 32 
0069 0 Ul PRNTl 



306 5/36 Power Tools 

0070 0 MLVL 2 
0071 0 MRCD 4 
0072 0 MNOl 13 
0073 0 M75 90 
0074 0 10 1·32 'MSG FOUND. COMPLETE' 
0075 0 11 132 'MSG FOUND, TRUNCATED' 
0076 0 13 132 'MESSAGE LEVEL INVALID' 
0077 0 14 132 'INVALID MIC VALUE' 
0078 0 15 132 'LENGTH EXCEEDS LVL-l MAX' 
0079 OMSGOUT E HEDl 
0080 0 NA 10 
0081 0 PRNTl 
0082 0 MNOl 4 
0083 0 M75 80 
00B4 0 COPYl 
0085 0 24 'I I COpy LI BRARY -S, SUB-M' 
00B6 0 U2 32 'SG,NAME-' 
0087 0 U3 32 'NU.NAME-' 
OOBB 0 MN 40 
0089 0 CENDl 
0090 0 7 'II CEND' 

Figure 11-26 
CRMENU - CREATE A SOURCE MENU MESSAGE MEMBER FROM AN 

OBJECT MENU MESSAGE MEMBER.Procedure 
CRMENU II PROMPT MEMBER-CRSRCFM,FORMAT-WSS033B,START-l ,LENGTH-'B,B,3,1 ,4'

II IF 7CD7-2007 RETURN 
II IF 717- RESET CRMENU 
II IF 2>757 EVALUATE P5,4-0100 
I I LOCAL OFFSET -1 ,DATA-' 717## 
II LOCAL OFFSET-9,DATA-'757 
II SWITCH 001XXXXX 
II IF 747-Y SWITCH lXXXXXXX 
II MEMBER USERl-717##.LIBRARY-72'7CLIB7'7 
I I IF DATAF1-MSGOUT DELETE MSGOUT. Fl 
1/ IF DATAFl-71?## DELETE ?l?##,Fl
II LOAD CRSRC 
II FILE NAME-MSGOUT,RECORDS-757,EXTEND-50 
II RUN 
II LOAD SCOPY 
II FILE NAME-COPYIN,LABEL-MSGOUT,RETAIN-S 
II FILE NAME-COPYO,LABEL-717##,RECORDS-?F'A,MSGOUT'7 
I I RUN 
/1 COPYFILE OUTPUT-SAME,RECL-73'120'7 
II END 
II LOAD SMAINT 
II FILE NAME-71?##,UNIT-Fl 
II RUN 
II COpy FROM-DISK,TO-72?,RETAIN-P,FILE-71?## 
I I END 
II SWITCH OOOXXXXX 
II IF DATAF1-MSGOUT DELETE MSGOUT,Fl 
II IF DATAFl-717## DELETE 717##,Fl 

Re-creating Source from Format, Menu, 
and Message Obiect Members 
by Mel Beckman 

As a S/36 user, you may find a portion of the AS/400 migration aid (feature 
5272MGl) useful even if you aren't migrating to the AS/400, The S/36 half 
of the migration aid contains three procedure commands - FMT2SRC, 
MNU2SRC, and MSG2SRC - that convert S/36 format members, menu 
load members, and message load members, respectively, back into the 



Libraries 307 

source code used to create them originally. Each utility can convert either a 
single load member or all the load members in one library. 

You could use these utilities to recover lost source code for your own 
application load members or to extract the source code from program prod
ucts (either IBM or third-party vendors) that don't supply source for 
screens, menus, or messages. Once retrieved, you easily can modify the 
source code (with SDA or a text editor) and recompile it to create new load 
members customized for your own needs. If your third-party accounting 
package doesn't allow lowercase input of names and addresses, for exam
ple, you easily could retrieve, modify, and recompile the affected screen 
formats to permit lowercase entry. Non-English-speaking users likewise 
could translate screen formats, menus, and messages into their native lan
guages to make third-party applications user-hospitable. 

SeHing Library Member AHributes 
by Gary T Kratzer 

program by Mel Beckman 

a Code on diskette: 

Procedure ATRSET 
RPG program ATRSET 
Screen format member ATRSETFM 

Do you want to execute a program on your S/36 without the fear of other 
programs getting in the way? Do you want to restrict a particular program to 
run from the system console only? How about changing a library member's 
subtype so POP's auto-recognition feature prompts you for the correct com-

Figure 11·27 
Library Directory EntryParameter Attribute Set Utility 

prompt screen Module Name , SPLARC 
Module Type (O,R,P,S) . 0 
Libra ry Name GARY 

Cmd7-Cancel Enter-Proceed 



308 5/36 Power Tools 

piler after editing a program? These capabilities and more can be yours 
with utility ATRSET (library member attribute set utility). 

On-line utility ATRSET (see Figure 11-27 for the parameter prompt 
screen) lets you alter any library member's attributes or directory informa
tion, eliminating the need to write a unique or quick-and-dirty program 
each time you need to change an attribute. Library attributes are bits of 
information associated with a library member (i.e., object, subroutine, pro
cedure, or source) that influence the way SSP processes the library mem
ber. For example, the NOLOG attribute of procedure members tells SSP 
whether to log a procedure's statements to the history file. 

You create utility ATRSET by creating procedure ATRSET (Figure 
11-28) and by compiling program ATRSET (Figure 11-29) and screen for
mat member ATRSETFM (Figure 11-30). Call procedure ATRSET to 
activate the program; three parameters are required. If you don't key the 
parameters on the procedure line, the prompt screen requests them. The 
first parameter is the name of the module you want to change, the second 
parameter is the module type (i.e., 0 for Object, R for Subroutine, P for 
Procedure, S for Source), and the third parameter is the library in which the 
member resides. 

If the member you're chal)ging exists, it is copied via IBM's utility 
$MAINT to an eight-byte-record work file called MODFILE, which is 
defined as RETAIN-J. Although the entire member is copied to the work 
file, program ATRSET uses only the first seven records because they hold 
the directory information. Even though program ATRSET doesn't verify 
explicitly the existence of the member or library you specify, you will 
receive an error message if the member or library doesn't exist when 
$MAINT tries to copy it to the work file. 

After creating the work file, program ATRSET displays the member's 
first three attribute bytes (Figure 11-31); the corresponding bit status and a 
brief description accompany each attribute. Digit 1 indicates the bit is on, 
and 0 indicates it is off. If you want to change the attributes, simply key 1 
or 0 over the existing value. For a more detailed description of library 
attributes, see the IBM System Reference Manual (SC21-9020). 

Press Enter again to see attribute bytes four, five, and six on the screen 
(Figure 11-32). This screen is similar to the one described above except for 
one minor difference; instead of displaying the eight bits that can be set 
individually as in attribute bytes one, two, and three, attribute byte five 
specifies a two-digit member subtype assigned to the module. If you want 
to change the existing subtype, simply key over it the corresponding two
digit subtype you wish to assign the member. The valid subtypes and their 
values are provided on the screen. 

Press Enter again, and the screen in Figure 11-33 is displayed. This 
screen contains other miscellaneous fields that reside in the member's 
directory entry. These fields include the MRTMAX count (for O-modules), 



Figure 11-28 

Procedure 
ATRSET 

libraries 309 

release level, reference number, and date and time the member was last 
modified. You can change these values by keying over the existing data. 

Ifyou want to review your changes at any time during the process, press 
Command key 2 to scroll back through the entry screens. Press Enter to 

update the member and copy it back into the library. Ifyou decide you do not 
want to update the member, press Command key 7 to cancel the procedure. 

One application for utility ATRSET is particularly useful if you own a 
S/36 5363. Bit 2 (emulation member) in attribute 6 is on for all object and 
subroutine members; when you attempt to move the module to a different 
model S/36 (5360,5362, or 5364), you get an error message saying that the 
system cannot copy this member (i.e., error message SYS-2462: module name 
Cannot copy this member). IBM apparently does not want library members 
to be traded from the smaller, less expensive S/36 to the larger models; you 
can, however, transfer members to other machines safely. Simply use pro
gram ATRSET to turn the bit off. 

Another useful trick for those of you with any S/36 model is to set bit 0 
on in attribute byte 2 (dedicated module) of any load member. When this 
bit is on, the program can be run only if no other jobs are running on the 
system. Likewise, once your dedicated program is running, no other jobs 
may be initiated. This technique is quite handy for shops that have trouble 
keeping users off the system when dedication is required. 

By examining the various library attribute bits, I'm sure you can come 
up with many other uses for this utility. Forget about quick-and-dirty pro
grams each time you need to change a library member's attribute. Instead, 
clean up your act - pull utility ATRSET out of your programming arsenal 
to get the job done quickly but cleanly. 

* Systemj36 library member attribute set utility 

• Set defaults 
II EVALUATE P2-72'O'7 
II EVALUATE P3-73'7SLIB7'7 
• Check execution environment 
II IFF SECURITY-S RETURN Don't run lf not authorized 
II IF EVOKED-NO IF JOBQ-NO IFF 7471 'Attribute set uti11ty is runnlng' 
• If parm 1 missing, prompt for first three parms
II IF 7171 PROMPT MEMBER-ATRSETFM,FORMAT-ATRSETOO 
II IF 7CD7/2007 RETURN Quit on Cmd7 
* Set primary LDA values 
II LOCAL OFFSET-451,DATA-'?1" ,BLANK-B 
II LOCAL OFFSET-459,DATA-'72?' ,BLANK-l 
II LOCAL OFFSET-460,DATA-'?37' ,BLANK-8 
• Copy library member to a sector mode file 
I I LOAD SMAINT 
II FILE NAME-MODCOPY,BLOCKS-50,EXTEND-l00,RETAIN-J 
II RUN 
II COPY FROM-73?,LIBRARY-72?,TO-DISK,FILE-MODCOPY,NAME- 7 1? 
II END 
* Select batch or interactive mode 
II IF '4'1 SWITCH 01XXXXXX If parm 4 is misslng, then set interactive mode 
II ELSE SWITCH OOXXXXXX Otherwise set batch mode 
• Set up LDA parameters for batch mode 
II IF SWITCH2-1 GOTO NOTBATCH 
I I LOCAL OFFSET -46B, DATA-' ?4?' ,BLANK-B 
II LOCAL OFFSET-476,DATA-"5?' ,BLANK-B 



310 5/36 Power Tools 

Figure 11-29 

Program 
ATRSET 

II LOCAL OFFSET-484,OATA-'?6?' ,BLANK-8 
I I LOCAL OFFSET -492, OATA-'?7?' ,BLANK-8 
II LOCAL OFFSET-500,DATA-'?8?' ,BLANK-2 
II LOCAL OFFSET-502,DATA-'?9?' ,BLANK-8 
II TAG NOTBATCH 
* Run attribute set program 
I I LOAD ATRSET 
II FILE NAME-MODCOPY 
II RUN 
II IF SWITCH1-l RETURN If Cmd7 pressed in interactive mode, get out 
* Replace module in library 
I I LOAD $MAI NT 
II FILE NAME-MODCOPY 
II RUN 
II COpy FROM-DISK,FILE-MODCOPY,TO-?3?,RETAIN-R 
I I END 

". 4 B 
0001 H 014 ATRSET 
0002 F************************************************************************. 

0003 F" " 
0004 F" Copyright 19B4, 19B5 by Mel Beckman 
0005 F" 
0006 F" Name: ATRSET - System/36 Attribute Set Utility 
0007 F- Created: 12/01/83 
0008 F" Author: Mel Beckman 
0009 F" Version: 1.1 
0010 F
0011 
0012 F" 

0013 F" This program reads a $MAINT sector mode file containing a library 

0014 F" member and sets the attributes according to user instructions from 

0015 F- the LDA or workstation. 

0016 F" 

0017 F" Vl is set "ON if the user requests EOJ (CMD-7) anytime during 

0018 F" interactive mode. This tells the procedure to quit. 

0019 F
0020 F" V2 "ON selects interactive mode. Directory attributes are dis

0021 F" played and optionally updated by the user 

0022 F" 

0023 F" U2 ·OFF selects batch mode. Attribute byte changes are read from 

0024 F" the LDA and used to update the library file. 

0025 F" 

0026 F" After this program ends, $MAINT copies the sector mode file back to " 

0027 F" the originating library. 

0028 F" 

0029 
 F* * * * ...... * * ................................. * .......... * ............ * ••1......... * ................. .. 

0030 
0031 

F/EJECT 
FIilWORKSTNCD 64 WORKSTN V2 

0032 FMODCOPY VC BR DISK 
0033 E" 
0034 E" Array of 8-byte directory entry chunks 
0035 E* 
0036 E DIR 
0037 E" 
0038 E" Array containing attribute bi ts for one byte 
0039 E" 
0040 E A 8 
0041 E" 
0042 E" Arrays for converting to and from hex 
0043 E" 
0044 E DIG 16 VAL 
0045 E" 
0046 E" Ordinal bit value array, bits 0, 1, 2, 3, 4, 5, 6, 7 
0047 E" 
0048 E ORD 8 
0049 
0050 

I/EJECT 
I" 

0051 I· Screen 01 
0052 I" 
0053 IIilWORKSTN 1 CO 2 C1 
0054 I 3 10 MASK1 
0055 I 11 18 MASK2 
0056 I 19 26 MASK3 



libraries 311 

0057 I" 
0058 I" Screen 02 
0059 I" 
0060 I@WORKSTN 1 CO 2 C2 
0061 I 3 10 MASK4 
0062 I 11 12 MASK5 
0063 I 13 20 MASK6 
0064 I" 
0065 I" Screen 03 
0066 I" 
0067 I@WORKSTN 1 CO 2 C3 
0068 I 4 XMRT 
0069 6 XREL 
0070 12 XMOO 
0071 8 XMODl 
0072 10 XMOD2 
0073 I 11 12 XMOD3 
0074 I 13 18 XDATE 
0075 I 13 14 XDATEl 
0076 I 15 16 XDATE2 
0077 I 17 18 XOATE3 
0078 I 19 22 XTIME 
0079 I 19 20 XTIMEl 
0080 I 21 22 XTI ME2 
0081 I/EJECT 
0082 I" 
0083 1* Attribute byte record input 
0084 I" 

0085 IMOOCOPY 

0086 I 8 DIR,X 

0087 I" 

0088 I" Directory record data structure (only first 40 bytes are needed) 

0089 I' 

0090 I OS 

0091 I 1 48 DIR 

0092 I 20 20 ATTRl 

0093 21 21 ATTR2 

0094 22 22 ATTR3 

0095 23 23 MRT 

0096 24 24 REL 

0097 27 27 ATTR4 

0098 29 29 MODl 

0099 30 30 MOD2 

0100 31 31 MOD3 

0101 32 32 DATEl 

0102 33 33 DATE2 

0103 I 34 34 DATE3 

0104 I 35 35 TIMEl 

0105 I 36 36 TIME2 

0106 I 37 37 ATTR5 

0107 I 40 40 ATTR6 

0108 I" 

0109 I" Local data area contains bit and byte masks for batch mode 
0110 I" 
0111 I UDS 
0112 I 451 458 MOONAM 
0113 I 459 459 TYPE 
0114 I 460 467 LlBNAM 
0115 I 468 475 MASKl 
0116 I 476 483 MASK2 
0117 I 484 491 MASK3 
0118 I 492 499 MASK4 
0119 I 500 501 MASK5 
0120 I 502 509 MASK6 
0121 I/EJECT 
0122 C' 
0123 C' Initial ize hex conversion tables 
0124 C" 
0125 C BITOF '01234567 'XOO Constant X'OO' 
0126 C MOVE XOO VAL Clear hex values A 
0127 C BITON '7' VAL,2 X'Ol ' 
0128 C BITON'6' VAL,3 X'02' 
0129 C BITON' 67' VAL,4 X'03' 
0130 C BITON '5' VAL,5 and on. 
0131 C BITON'57' VAL,6 and on .. 
0132 C BITON' 56' VAL,7 ad nauseum 



312 5/36 Power Tools 

0133 BITON'567' VAL,8 
0134 BITON' 4' VAL,9 
0135 C BITON' 47' VAL,10 
0136 C BITON'46' VAL,ll 
0137 C BITON '467' VAL,12 
0138 C BITON' 45' VAL,13 
0139 C BITON' 457' VAL,14 
0140 C BITON'456' VAL,15 
0141 C BITON' 4567 . VAL,16 
0142 C" 
0143 C MOVEA' 01234567' DIG, 1 Hex digits from A·F 
0144 C MOVEA'89ABCDEF'DIG,9 
0145 C" 
0146 C MOVE XOO ORO Clear to X'OO' 
0147 C BITON '0' ORD,l Bit 0 
0148 C BITON'l ' ORD,2 1 
0149 C BITON'2' ORD,3 2 
0150 C BITON'3' ORD,4 3 
0151 C 8ITON'4' ORD,5 4 
0152 C BITON'5' ORD,6 5 
0153 C 8ITON '6' ORD,7 6 
0154 C BITON'7' ORD,8 
0155 C" 
0156 C" Define local variables 
0157 C" 
0158 C MOVE "BLANKS AnR 1 
0159 C MOVE "BLANKS BYTE 1 
0160 C MOVE "BLANKS X 20 
0161 C MOVE "BLANKS HEXDIG 2 
0162 C MOVE "BLANKS HEXl 1 
0163 C MOVE "BLANKS HEX2 
0164 C MOVE "BLANKS BITS 
0165 C MOVE "BLANKS HOLD8 
0166 C" 
0167 C" Output heading display if interactive mode 
0168 C" 
0169 C U2 SETON 01 Protect input flds 
0170 C U2 EXCPTSCRNOO 
0171 C" 
0172 C" Get the directory entry from the first six 8 byte records in MODCOPY 
0173 C" 
0174 C DO 6 x 20 Do 6 times 
0175 C x CHAINMODCOPY Get dir chunk 
0176 END SAVE INFO 
0177 C" 

0178 C" If U2 lS off, this is batch mode. Go directly to update logic 

0179 C" 
0180 C NU2 GOTO UPDATE 
0181 C(EJECT 
0182 C" 
0183 C" Interactive update of attributes 
0184 C" 
0185 C" Call the format routine to convert binary and hex to screen 
0186 C" representat; on. 
0187 C" Display the scr~ens. let the user update. 
0188 C" Fall through to the update routine to update the records. 
0189 C" 
0190 C" 

0191 C EXSR FORMAT Format for display 

0192 C" 

0193 C SHOWOl TAG 

0194 C EXCPTSCRNOl Show screen 

0195 C READ @WORKSTN 1111 Read it 

0196 C KG SETON Ul If EOJ, 
0197 C KG GOTO END Then quit 
0198 C" 
0199 C SHOW02 TAG 
0200 C EXCPTSCRN02 Show screen 2 
0201 C READ @WORKSTN 1111 Read it 
0202 C KB GOTO SHOWOl If backup, go back 
0203 C KG SETON Ul If EOJ, 
0204 C KG GOTO END Then quit 
0205 C" 
0206 C SHOW03 TAG 
0207 C EXCPTSCRN03 Show sc reen 3 
0208 C READ @WORKSTN 1111 Read it 



Libraries 313 

0209 C KB GOTO SHOW02 If backup, go back 
0210 C KG SETON Ul If EOJ, 
0211 C KG GOTO END Then quit 
0212 C/EJECT 
0213 C' 
0214 C" Update the attribute bits and bytes from the input bit and byte masks 
0215 C' 
0216 C UPDATE TAG 
0217 C" 
021B C MASK1 IFNE "BLANKS If mask not b1ank 
0219 C MOVEAMASKl A,l Get bitmask 
0220 C MOVE ATTR1 ATTR And attribute byte 
0221 C EXSR BITSET Set bits 
0222 C MOVE ATTR ATTRl Restore attribute 
0223 END End IF 
0224 C" 
0225 C MASK2 I FN E "BLANKS If mask not blank 
0226 C MOVEAMASK2 A,l Get bi tmask 
0227 C MOVE ATTR2 ATTR And attribute byte 
0228 C EXSR BITSET Set bits 
0229 C MOVE ATTR ATTR2 Restore attribute 
0230 C ENO End IF 
0231 C' 
0232 C MASK3 I FNE "8LANKS If mask not blank 
0233 C MOVEAMASK3 A,l Get bitmask 
0234 C MOVE ATTR3 ATTR And attribute byte 
0235 C EXSR BITSET Set bits 
0236 C MOVE ATTR ATTR3 Restore attribute 
0237 C END End IF 
0238 C" 
0239 C MASK4 IFNE 'BLANKS If mask not blank 
0240 C MOVEAMASK4 A,l Get bitmask 
0241 C MOVE ATTR4 ATTR And attribute byte 
0242 C EXSR BITSET Set bi ts 
0243 C MOVE ATTR ATTR4 Restore attr; bute 
0244 C END End IF 
0245 C" 
0246 C MASK5 IFNE "BLANKS If mask not blank 
0247 C MOVE MASK5 HEXDIG Get byte mask 
0248 C EXSR BYTSET Set byte 
0249 C MOVE BYTE ATTR5 Aestore byte 
0250 C END End IF 
0251 C" 
0252 C MASK6 IFNE "BLANKS If mask not blank 
0253 C MOVEAMASK6 A,l Get bitmask 
0254 C MOVE ATTR6 ATTR And attribute byte 
0255 C EXSR BITSET Set bits 
0256 C MOVE ATTR ATTR6 Restore attribute 
0257 C END End IF 
0258 C" 
0259 C XMRT IFNE 'BLANKS If mask not blank 
0260 C MOVE XMRT HEXDIG Get byte mask 
0261 C EXSR BYTSET Set byte 
0262 C MOVE 8YTE MRT Restore byte 
0263 C END End IF 
0264 C" 
0265 XREL IFNE "BLANKS If mask not blank 
0266 C MOVE XREL HEXDIG Get byte mask 
0267 C EXSR BYTSET Set byte 
0268 C MOVE BYTE REL Restore byte 
0269 C END End IF 
0270 C" 
0271 C XMOO IFNE "BLANKS If mask not blank 
0272 C MOVE XMODl HEXDIG Get byte mask 
0273 C EXSR BYTSET Set byte 
0274 C MOVE BYTE MOD1 Restore byte 
0275 C MOVE XMOD2 HEXDIG Get byte mask 
0276 C EXSR BYTSET Set byte 
0277 C MOVE BYTE MOD2 Restore byte 
0278 C MOVE XMOD3 HEXDIG Get byte mask 
0279 C EXSR BYTSET Set byte 
0280 C MOVE BYTE MOD3 Restore byte 
0281 END End IF 
0282 C' 
0283 C XDATE IFNE "BLANKS If mask not blank 
0284 C MOVE XDATEl HEXDIG Get byte mask 



314 5/36 Power Tools 

0285 C EXSR BYTSET Set byte 
0286 C MOVE BYTE DATE 1 Restore byte 
0287 C MOVE XDATE2 HEXDIG Get byte mask 
0288 C EXSR BYTSET Set byte 
0289 C MOVE BYTE DATE 2 Restore byte 
0290 C MOVE XDATE3 HEXDIG Get byte mask 
0291 C EXSR BYTSET Set byte 
0292 C MOVE BYTE DATE 3 Restore byte 
0293 C END End IF 
0294 C· 
0295 C XTIME I FNE 'BlANKS If mask not blank 
0296 C MOVE XTIMEl HEXDIG Get byte mask 
0297 C EXSR BYTSET Set byte 
0298 C MOVE BYTE TIMEl Restore byte 
0299 C MOVE XTIME2 HEXDIG Get byte mask 
0300 C EXSR BYTSET Set byte 
0301 C MOVE BYTE TIME2 Restore byte 
0302 C END End IF 
0303 C/EJECT 
0304 C· 
0305 C· Update the attribute records 
0306 C· 
0307 C DO X Do 6 times 
0308 C MOVE DIR.X HOlDB Save dir chunk 
0309 C x CHAINMODCOPY Get from file 
0310 C MOVE HOlD8 DIR.X Update the chunk 
0311 C EXCPTUPDREC Update the record 
0312 C END End IF 
0313 C/SPACE 
0314 C· 
0315 C· End of program 
0316 C· 
0317 C END TAG 
0318 C SETON lR FORCE EOJ 
0319 C/EJECT 
0320 C· 
0321 C· FORMAT routine. Convert directory fields to displayable form. 
0322 C· 
0323 C· Input- The directory records. 
0324 C· Output- Directory fields converted to displayable form. 
0325 C· 
0326 C· 
0327 C FORMAT BEGSR 
0328 C· 
0329 C MOVE ATTRl ATTR GET ATTRIBUTE BYTE 
0330 C EXSR BITSHO CAll BIT DISPLAY RO 
0331 C MOVEAA.l MASKl AND COPY OUT MASK 
0332 C· 
0333 C MOVE ATTR2 ATTR GET ATTRIBUTE BYTE 
0334 C EXSR BlTSHO CALL BIT DISPLAY RO 
0335 C MOVEAA.l MASK2 AND COPY OUT MASK 
0336 C· 
0337 C MOVE ATTR3 ATTR GET ATTRIBUTE BYTE 
0338 C EXSR BITSHO CALL BIT DISPLAY RO 
0339 C MOVEAA.l MASK3 AND COpy OUT MASK 
0340 C· 
0341 C MOVE ATTR4 ATTR GET ATTRIBUTE BYTE 
0342 C EXSR BITSHO CALL BIT DISPLAY RO 
0343 C MOVEAA.l MASK4 AND COPY OUT MASK 
0344 C· 
0345 C MOVE ATTR5 BYTE GET ATTRIBUTE BYTE 
0346 C EXSR BYTSHO CAll 81T DISPLAY RO 
0347 C MOVE HEXDIG MASK5 AND COpy OUT MASK 
0348 C· 
0349 C MOVE ATTR6 ATTR GET ATTRIBUTE BYTE 
0350 C EXSR BITSHO CALL 81T DISPLAY RO 
0351 C MOVEAA.l MASK6 AND COPY OUT MASK 
0352 C· 
0353 C MOVE MRT BYTE GET BYTE 
0354 C EXSR BYTSHO CALL BYTE DISPLAY R 
0355 C MOVE HEXDIG XMRT AND COPY OUT 2 HEX 
0356 C· 
0357 C MOVE REL BYTE GET BYTE 
0358 C EXSR BYTSHO CAll BYTE DISPLAY R 
0359 C MOVE HEXDIG XREL AND COPY OUT 2 HEX 
0360 C' 



Libraries 315 

0361 C MOVE MODl BYTE GET BYTE 
0362 C EXSR BYTSHO CALL BYTE DISPLAY 
0363 C MOVE HEXDIG XMOD1 AND COpy OUT 2 HEX 
0364 C MOVE MOD2 BYTE GET BYTE 
0365 C EXSR BYTSHO CALL BYTE DISPLAY 
0366 C MOVE HEXDIG XMOD2 AND COPY OUT 2 HEX 
0367 C MOVE MOD3 BYTE GET BYTE 
0368 C EXSR BYTSHO CALL BYTE DISPLAY 
0369 C MOVE HEXDIG XMOD3 AND COPY OUT 2 HEX 
0370 C· 
0371 C MOVE DATE 1 BYTE GET BYTE 
0372 C EXSR BYTSHO CALL BYTE DISPLAY 
0373 C MOVE HEXDIG XDATE1 AND COPY OUT 2 HEX 
0374 C MOVE DATE2 BYTE GET BYTE 
0375 C EXSR BYTSHO CALL BYTE DISPLAY 
0376 C MOVE HEXDIG XOATE2 AND COPY OUT 2 HEX 
0377 C MOVE DATE3 BYTE GET BYTE 
0378 C EXSR BYTSHO CALL BYTE DISPLAY 
0379 C MOVE HEXDIG XDATE3 AND COPY OUT 2 HEX 
0380 C' 
0381 C MOVE TIME1 BYTE GET BYTE 
0382 C EXSR BYTSHO CALL BYTE DISPLAY 
0383 C MOVE HEXDIG XTIME1 AND COpy OUT 2 HEX 
0384 C MOVE TIME2 BYTE GET BYTE 
0385 C EXSR BYTSHO CALL BYTE DISPLAY 
0386 C MOVE HEXDIG XTIME2 AND COPY OUT 2 HEX 
0387 C· 
0388 C ENDSR 
0389 C/EJECT 
0390 C· 
0391 C' 
0392 C' BITSET routine. Set attribute bit values. 
0393 C· 
0394 C· Input- A is an 8-byte array of mask characters. 
0395 C· 1 means seton. 0 means setoff, X means leave alone 
0396 C· ATTR is the one-byte field to be set with the mask 
0397 C· Output- ATTR is set according to the mask 
0398 C· 
0399 C BITSET BEGSR 
0400 C· 
0401 C DO X Do for B bits 
0402 C A.X IFEQ '0' If user set on 
0403 C BITOFORD, X ATTR Set bit on 
0404 C END End IF 
0405 C A.X IFEa '1' If user set off 
0406 C BITONORO.X ATTR Set bit off 
0407 C END End IF 
0408 C END End 00 
0409 C· 
0410 C ENDSR 
0411 C/EJECT 
0412 C· 
0413 C· BITSHO routine. Make attribute bits displayable. 
0414 C· 
0415 C· Input- ATTR Is the byte to be displayed. 
0416 C· Output- A Is an 8-byte array of mask characters. 
0417 C· 
0418 C BITSHO BEGSR 
0419 C· 
0420 C DO 8 X 00 for 8 bits 
0421 C TESTBORO,X ATTR 11 Test bi t 
0422 C 11 MOVE '1 ' A.X If on, mask-1 
0423 C N11 MOVE '0' A.X I f off. mask-O 
0424 C END End 00 
0425 C' 
0426 C ENDSR 
0427 C/EJECT 
0428 C· 
0429 C· BYTSET routine. Convert hex to binary. 
0430 C· 
0431 C· Converts literal hex values in the HEXOIG field to binary data 
0432 C· Characters are translated only if HEXDIG contents are not blank. 
0433 C· 
0434 C· Input- HEXDIG is a 2-character field containing the hex digits for 
0435 C· the byte. 
0436 C· Output- BYTE Is the byte. 

R 

R 

R 

R 

R 

R 

R 

R 



316 5/36 Power Tools 

0437 C' 
0438 C BYTSET BEGSR 
0439 C' 
0440 C HEXDIG IFNE 'BLANKS If not blank 
0441 C Z-ADD1 X 
0442 C MOVE HEXDIG HEX1 
0443 C HEX1 LOKUPDIG,X 1'1 Lookup r.h, digit 
0444 C N11 MOVE VAL, 1 HEX1 (I f bad, use 0) 
0445 C 11 MOVE VAL, X BYTE Store binary 
0446 C Z-ADD1 X 
0447 C MOVELHEXDIG HEX2 
044B C HEX2 LOKUPDIG,X 11 Lookup 1 . h. digit 
0449 C N11 MOVE VAL, 1 HEX2 (If bad, use 0) 
0450 C TESTB'4' VAL,X 11 Transfer 
0451 C 11 BITON'O' BYTE b i na ry 
0452 C TESTB'5' VAL,X 11 val ue 
0453 C 11 BITON '1 ' BYTE to 
0454 C TESTS'6' VAL,X 11 left 
0455 C 11 BITON' 2' BYTE hand 
0456 C TESTB' 7' VAL,X 11 nybb1e 
0457 C 11 BITON'3' BYTE 
0458 C END End IF 
0459 C' 
0460 C ENDSR 
0461 C/EJECT 
0462 C' 
0463 C' BYTSHO rout i ne. Convert binary to hex. 
0464 C' 
0465 C' Converts character in BYTE into hex digits in HEXDIG 
0466 C' 
0467 C' Input- BYTE Is the byte to be converted. 
046B C' Output- HEXD IG is a 2-character field containing the hex digits 
0469 C' 
0470 C BYTSHO BEGSR 
0471 C' 
0472 C MOVE SYTE BITS Get bi nary byte 
0473 C BITOF '0123' BITS Clear l,h, nybble 
0474 C Z-ADD1 X 
0475 C BITS LOKUPVAL, X 11 Lookup r,h, nybb 1 e 
0476 C MOVE DIG,X HEXDIG Store hex digit 
0477 C' 
047B C MOVE BYTE BITS Get binary byte 
0479 C BITOF'4567' BITS Shift l,h. nybble 
0480 C TESTS'O' BITS 11 into 
0481 C 11 BITON'4' BITS r, h, nybbl e 
0482 C TESTB'l' BITS 11 
0483 C 11 BITON' 5' BITS 
04B4 C TESTB' 2' BITS 11 
0485 C 11 BITON' 6' BITS 
0486 C TESTB'3' BITS 11 
0487 C 11 BITON'7' BITS 
0488 C BITOF '0123' 8 ITS 
0489 C Z-ADD1 X 
0490 C BITS LOKUPVAL,X 11 lookup 1, h, nybble 
0491 C MOVELDIG, X HEXDIG Store hex digit 
0492 C' 
0493 C ENDSR 
0494 C/EJECT 
0495 O' 
0496 0* Screen 0 
0497 O' 
0498 O@WORKSTNE SCRNOO 
0499 0 K8 'ATRSETOO' 
0500 0 MODNAM B 
0501 0 TYPE 9 
0502 0 LIBNAM 24 

0503 O' 

0504 O' Screen 1 

0505 O' 

0506 O@WORKSTNE SCRN01 

0507 0 K8 'ATRSET01 ' 

0508 0 MASK1 8 

0509 0 MASK2 16 

0510 0 MASK3 24 

0511 O' 

0512 O' Screen 2 




libraries 317 

0513 O' 

0514 O@jWORKSTNE SCRN02 

0515 0 K8 . ATRSET02' 

0516 a MASK4 8 

0517 a MASK5 10 

0518 a MASK6 18 

0519 O' 

0520 O' Screen 3 

0521 A· 

0522 O@WORKSTNE SCRN03 

0523 a K8 . ATRSET03' 

0524 0 XMRT 2 

0525 0 XREL 4 

0526 0 XMODl 6 

0527 0 XMOD2 8 

0528 a XMOD3 10 

0529 0 XDATEl 12 

0530 a XDATE2 14 

0531 a XDATE3 16 

0532 0 XTIMEl 18 

0533 a XTIME2 20 

0534 A· 

0535 O' Update directory records 

0536 O' 

0537 OMODCOPY UPDREC 

0538 0 DIR.X 


1Figure 11·30 6 
0001 SATRSETOO YY G 
0002 0 23 12SY CL; brary Di rectory EntryScreen format 0003 0 23 22SY C Attribute Set Utility 
0004 D 00610406Y CModule Name .Xmember 
0005 0

ATRSETFM 0006 OMOONAM 00080468Y Y 01 
0007 0 00610506Y CModule Type (O.R.P.S) .X 
OOOS 0 
0009 OMOOTYP 00010568Y YA 01 
0010 0 00070570Y Y Y Y 
0011 0 00610606Y CLibrary Name .X 
0012 0 
0013 OLIBNAM 000S066SY Y 01 
0014 0 7S24 3Y C x 
0015 0 Cmd7-Cancel Enter-Proceed 
0016 SATRSETOl OS17 YY G 
0017 ORECID 2 1 9Y Y Y Y COl 
001S 0 00150135Y Y CAt tribute By tel 
0019 0 002S0206Y CSSP attribute bit. ..X 
0020 O. 
0021 OBITl 00010235Y Y Y 01 y 
0022 DBIT2 00010237Y Y Y Y 
0023 OBIT3 00010239Y Y Y Y 
0024 OBIT4 00010241Y Y Y Y 
0025 OSIT5 00010243Y Y Y Y 
0026 OBIT6 00010245Y Y Y Y 
0027 OBIT7 00010247Y Y Y Y 
0028 OBITS 00010249Y Y Y Y 
0029 0 002S0251Y C. . .... Modu 1e has oveX 
0030 Orlays 
0031 0 00320306Y CO-Privileged. P-Nolog .. X 
0032 D. . . I 

0033 0 00070339Y CI ! I ! 
0034 0 00320347Y C! . . . .. PTF has beeX 
0035 On applied 
0036 D 00340406Y CNon-inquirable module .. X 
0037 D. . . ! 
0038 D 00030441 Y C! ! 
0039 D 00340445Y CI ... NonbaseX 
0040 0 SSP module 
0041 D 00360506Y CO-SFGR. P-POATA/yes .... X 
0042 O. . ! 
0043 0 00360543Y C! . .... SoX 
0044 Duree required 
0045 0 00150635Y Y CAttri bute 8yte2 



318 5/36 Power Tools 

0046 D 0028070SY CDedicated module .... X 
0047 D 
0048 DBITl 00010735Y Y Y Y 
0049 DBIT2 00010737Y Y Y Y 
0050 DBIT3 00010739Y Y Y Y 
0051 DBIT4 00010741Y Y Y Y 
0052 DBIT5 00010743Y Y Y Y 
0053 DB ITS 00010745Y Y Y Y 
0054 DBIT7 00010747Y Y Y Y 
0055 DBIT8 00010749Y Y Y Y 
005S D 00280751 Y C........ Module has WTG X 
0057 Dtable 
005B D 00n080SY CNever Ending Program ... X 
0059 D.. .1 
0060 D 00070B39Y C! 1 1 ! 
0061 D 00320847Y CI. . .. PrograrnX 
0062 D with UCS 
0063 D 00340906Y CModule has XREF fmt indX 
0064 Dex. . ! 
0065 D 00030941Y C! ! 
0066 D 00340945Y C1. . ..... ,PrograrnX 
0067 D has common 
0068 D 00361006Y CSecurity authority requX 
0069 Dired . ..... ! 
0070 D 00361043Y C! . ... CannoX 
0071 Dt use !! LOAD 
0072 
0073 

D 
D 

00151135Y 
00281206Y 

Y CAttribute Byte3 
CSWORK2 file required ... X 

0074 D... 
0075 OBln 00011235Y Y Y Y 
0076 OBIT2 00011237Y Y Y Y 
0077 DBlT3 00011239Y Y Y Y 
0078 OBIT4 00011241Y Y Y Y 
0079 OBITS 00011243Y Y Y Y 
0080 OBIT6 00011245Y y Y Y 
0081 OBln 00011247Y Y Y Y 
0082 08IT8 00011249Y Y Y Y 
0083 
0084 

0 
OT req 

002B1251Y C....... P-New copy of MRX 

0085 0 00321306Y CTask is non-swappable .. X 
0086 O. .. ! 
0087 0 00071339Y C1 ! ! J 
0088 0 00321347Y C! . .Cross-refX 
0089 Derencable 
0090 
0091 

D 0034140SY 
D. . ... ! 

CHigh-level dedication .. X 

0092 0 00031441Y C! ! 
0093 0 00341445Y C!. . .. Must be trX 
0094 Dan s fe red to 
0095 0 00361506Y CNeeds FORTRAN microcodeX 
0096 D. . .. 1 
0097 
0098 

0 00361543Y 
Oration record 

Cl. . ........ ConfiguX 

0099 0 7817 3Y X 
0100 D Cmd7-Cancel Enter-Next page 
0101 SATRSET02 OB17 YY BG 
0102 OREC I 0 00020109Y Y y Y C02 
0103 D 00150135Y Y CAttribute Byte4 
0104 0 00280206Y CNeeds BASIC microcode .. X 
0105 0 
0106 DBITl 00010235Y y Y Y 
0107 DBIT2 00010237Y Y Y Y 
0108 DBIT3 00010239Y Y Y Y 
0109 DBIT4 00010241Y Y Y Y 
0110 DBIT5 00010243Y Y Y Y 
0111 DB ITS 00010245Y Y Y Y 
0112 DBln 00010247Y Y Y Y 
0113 DBIT8 00010249Y Y Y Y 
0114 D 00290251 Y c...... One copy executioX 
0115 Dn on 1 y 
011S D 00320306Y CPad module (spaceholderX 
0117 D) ....... I 
0118 D 00070339Y C! ! ! ! 
0119 
0120 

D 00330347Y 
Dent member 

C!. .System TransiX 

0121 D 00340406Y CSUNGLOW program. .X 



libraries 319 

0122 D.. .. .• 1 
0123 0 00030441Y C! ! 
0124 0 00350445Y CI. . .. DOS load fX 
0125 Dormat member 
0126 0 00360506Y CIBM supplied program .. .X 
0127 O. . . . . . . ! 
012B 0 00370543Y CI.. ........... Resides iX 
0129 On a lib extent 
0130 0 00150635Y Y CAttribute Byte5 
0131 0 00280706Y CO2-Data 14-0FU 18-X 
0132 OPhone 
0133 0 00010741Y Y Y Y 
0134 0 00010743Y Y Y Y 
0135 0 00290751Y C33-COBOl 40-Unspec 58-X 
0136 OQuery 
0137 0 2808 6Y Cll-AutRsp 15-SFGR 19-X 
0138 OSort 
0139 0 290851Y C34-FORTRN 53-EdText 59-X 
0140 OCSP 
0141 0 2809 6Y C12-AutRpt 16-Menu 31 -X 
0142 OAsm 
0143 0 290951Y C35- RPG 54- FFText 5A-X 
0144 OQryEnt 
0145 0 2810 6Y C13-BASICP 17-Mesg 32-X 
0146 OMSIC 
0147 0 291051Y C36-WSU 55-HCText 5B-X 
0148 OOocSrv 
0149 0 00151135Y Y CAttribute Byte6 
0150 0 002812 6Y COynamically privileged .X 
0151 O. 
0152 OBITl 00011235Y Y Y Y 
0153 DBIT2 00011237Y Y Y Y 
0154 OBIT3 00011239Y Y Y Y 
01550BIT4 00011241Y Y Y Y 
0156 OBIT5 00011243Y Y Y Y 
0157 OBIT6 00011245Y Y Y Y 
0158 OBIT7 00011247Y Y Y Y 
0159 OBIT8 00011249Y Y Y Y 
0160 0 00291251Y C. X 
0161 O. 
0162 0 00321306Y COoes not need swap areaX 
0163 O. .. ! 
0164 0 00071339Y CI ! ! 
0165 0 00331347Y C! . . .. X 
0166 O. 
0167 0 00341406Y CEmulation member. ... X 
0168 D. . . . . . . . . . ! 
0169 0 00031441Y CI ! 
01700 00351445Y CI .. . ..... X 
0171 D. 
0172 00361506Y CHas memory resident oveX 
0173 Orlays. . • • • . • 1 
0174 0 00371543Y C! ... ... PC LAN miX 
0175 Dcrocode member 
0176 0 7717 4Y CCmd2-Page back X 
0177 0 Cmd7-Cancel Enter-Next page 
0178 SATRSET03 0817 YY BG 
0179 ORECIO 00020109Y Y Y Y C03 
0180 0 005202 6Y Y COescription X 
0181 0 
0182 0 00120259Y Y CValue 
0183 0 005203 6Y CO-MRTMAX count, P-x'FF'X 
0184 0 indicates MRT. 
0185 0 00020359Y Y Y 
0186 0 005204 6Y CRe lease 1evel , . .X 
0187 O.. 
0188 0 00020459Y Y Y 
0189 0 005205 6Y CReference number .. .... X 
0190 O. 
0191 0 00020559Y Y Y 
0192 0 00020562Y Y Y 
0193 0 00020565Y Y Y 
0194 
0195 

0 
Dnged. 

005206 6Y COate member created/chaX 

0196 0 00020659Y Y Y 
0197 0 00020662Y Y Y 



320 5/36 Power Tools 

Figure 11-31 

First three 
library attribute 
bytes 

Figure 11-32 

Second three 
library attribute 
bytes 

0198 00020665Y Y Y 
0199 005207 6Y CTime member created/chaX 
0200 Dnged. 
0201 D 00020759Y Y Y 
0202 D 00020762Y Y Y 
0203 0 7717 4Y CCfI'd2-Page back x 
0204 0 Cmd7-Cancel Ent e r - Update 

Library Directory Entry 
Attribute Set Utllity 

Module Name SPLARC 
Module Type (O.R.P.S) o 
Library Name GARY 

Attribute By tel 

SSP attribute bit. o 0000 00 Module has overlays 

O·Prwi leged. P-Nolog ! r r ! r ! PTF has been appl ied 

Non-;nquirable module .. .. ! ! ! ! ............... Nonbase SSP module 

O-SFGR. P-PDATA/yes .. ! !. .. Source required 


Attribute Byte2 

Dedicated module .. o 0 0 0 0 0 0 0 .. Module has WTG table 

Never Ending Program. ! ! r ! ! !. . ... Program with UCS 

Module has XREF fmt index. .! ! r ! .Program has commOn 

Security authority required. .! !. ... Cannot use / / LOAD 


Attnbute Byte3 

SWORK2 file required. o 0 0 0 0 0 0 0 . P-New copy of MRT req 

Task ;s non-swappable. ...... ! ! ! ! ! ! . . ... Cross-referencable 

High-level dedication. ! ! ! 1 .Must be transfered to 

Needs FORTRAN mi crocode. .... ! t. . ... Configuration record 


Cmd7 - Cance 1 Enter-Next page 

Librar~ Directory Entry 
Attribute Set Uti 1ity 

Module Name SPLARC 
Module Type (O.R.P.S) o 
Library Name GARY 

Attribute Byte4 
Needs BASIC microcode. o 0 000 0 0 .. One copy execution only 
Pad module (spaceholder). .. I ! ! I ! I, System Transient member 
SUNGLOW program. . . " .. ! ! ! 1. .... DDS load format member 
IBM supplied program. .. ! !. .Resides in a lib extent 

Attribute Byte5 
02-Data 14-DFU 18 Phone 3 1 33-COBIlL 40-Unspec 58-Query 
ll-AutRsp 15-SFGR 19-5ort 34-FORTRN 53-EdText 59-CSP 
12-AutRpt 16-Menu 31 -Asm 35-RPG 54-FFText 5A-QryEnt 
13-BASICP 17-Mesg 32-BASIC 36-WSU 55-HCText 5B-DocSrv 

Attribute Byte6 
Oynamlcally prlvileged 00000000 
Does not need swap area. ! ! ! ! ! !. 
Emulation member. ! ! ! ! 
Has memory resident overlays. .!! . . PC LAN mi crocode member 

Cmd2-Page back Cmd7-Cancel Enter-Next page 



Libraries 321 

Figure 11-33 

Miscellaneous 
library attributes Module Name 

Library Directory Entry 
Attribute Set Utility 

Module Type (O,R,P,S) 
Library Name 

SPLARC 
o 
GARY 

Description 
O-MRTMAX count, P-x'FF' indicates MRT 
Release level 
Reference number. 
Date member created/changed .. 
Time member created/changed. 

Value 
00 
51 
00 00 33 
88 08 25 
13 10 

Cmd2-Page back Cmd7-Cancel Enter-Update 

Keeping Help Text in Source Members 
by Mike Otey 

Have you ever wanted to keep on-line help the way POP does - in easily 
maintainable source members - but you couldn't because the S/36 can't 
read library members without using custom assembler routines? An easy 
way to keep on-line help is available through POP's own tutorial facility. 

By copying three load members - POPTUT, LIBR@TUT, and 
LIBR@F - from #POPLIB into your application library, you can easily cre
ate a procedure to display any source member with the built-in capability to 
scroll through the member using the Roll keys. As the example in Figure 
11-34 illustrates, you simply supply, starting in position 1 of the LOA, the 
source member name to be displayed and then execute POPTUT. The 
source member (in Figure 11-34, DOCOOOl) is displayed. Using this tech
nique, you can create and maintain on-line help text using FSEDIT, and 
you won't have to recompile screen formats to implement text changes. 

Figure 11-34 II LOCAL OFFSET -1 ,DATA- 'DOC0001 ' 
II LOAD POPTUT 

Using POPTUT II RUN 

to create on-line 
help text 



322 5/36 Power Tools 

Unlocking a BASIC Source Program 
by Mark E, Bonney 

Figure 11-35 

Procedure 
BASUNLto 
unlock a BASIC 
source program 

a Code on diskette: 


Procedure BASUNL 


To enforce source code security, S/36 BASIC offers you the option to 
LOCK library members before saving them to a library. The LOCK feature 
lets you change the source program by line number, but does not let you 
view a program listing. To list the program for major revisions, IBM sug
gests you make a copy of the program before LOCKing the production ver
sion of the program. IBM left out the ability to "unlock" a source member 
after the fact, but you can use the OCL in Figure 11-35 to unlock a BASIC 
source program (which BASIC stores in R-type library members) using 
IBM's $FEFIX program patch utility. 

If you run this procedure on a BASIC module that has never been 
locked, SSP issues message SYS-3330, "Check byte in DATA statement 
incorrect or missing." Taking option 2 to this message ends the procedure. 

// TAG ENTRY 

// IF 717/ • 'ENTER THE BASIC MODULE NAME TO UNLOCK' 

// IF 71R7-END CANCEL 

/1 TAG ENTRY2 

// IF 727/ • 'ENTER THE LIBRARY NAME OF THE BASIC MODULE TO UNLOCK' 

// IF 72R7-END CANCEL 

// IF DATAF1-72'7SLIB7'7 GOTO ENTRY3 

// • 'THE LIBRARY YOU REQUESTEO DOES NOT EXIST' 

// . " 

// GOTO ENTRY2 72F' '7 
// TAG ENTRY3 
1/ IF SUBR-'?17,727' GOTO ENTRY4 
II • 'THE BASIC MODULE YOU REQUESTED DOES NOT EXIST IN 727' 
/1 • " 
I I GOTO ENTRY1 71 F' '7 72F' '7 
II TAG ENTRY4 
II • " 
II • 'UNLOCKING BASIC MODULE' 
II LOAD SFEFIX 
I I RUN 
HDR 
PTG R? 17 , ,727 
DATA 00,oooe,01 
END 



Libraries 323 

Adding Members to and Compressing #LlBRARY 
answered by Mel Beckman 

a Code on diskette: 

Procedure LIB#DECR 
Message member LIB#2518 

Q	Is there a way to automatically increase #LIBRARY to add user 
members and then to decrease it to an optimum size in a procedure? 

ATo increase #LIBRARY, you must first run a COMPRESS FREELOW 
to make space available immediately following #LIBRARY on your 

disk. Then you can use the ALOCLIBR procedure to increase 
#LIBRARY's size to accommodate your new members. 

To decrease #LIBRARY to an optimum size, try the following solution: 

a. Create a source member: LIB#2518 

SYS 
2518 2.1 CANNOT REDUCE THIS LIBRARY TO GIVEN 
SIZE 

b. Create a procedure: LIB#DECR 

RESPONSE LIB#2518 SET AUTO-RESPONSE 
NOHALT 1.JOB 
II EVALUATE P1=5100 STARTING MINIMUM SIZE 
* 
II TAG LOOP 
II EVALUATE P1-?1?+100 KEEP INCREASING UNTIL SUCCESS 
* 
ALOCLIBR #LIBRARY.?17 
II IF 7CD7-3721 GOTO LOOP 

Of course, you can give the initial size and loop increment the value that 
suits your system best. 

Resizing #LlBRARY 
answered by Ron Mendel 

QI recently attempted to add an IBM program product to my S/36 
system configuration, only to be informed by SSP that not enough 

disk space was available to store the new software. I know there is room on 
the disk, but when I attempt to increase the size of #LIBRARY to store the 
program products, I cannot get the system to accept my change. What's my 
problem and how do I solve it? 



324 5/36 Power Tools 

AOn the S/36, SSP allocates space for #RPGLIB, the system security file, 
and other system files immediately following #LIBRARY on the low

address end of the disk. These system files occupy the physical locations on 
disk that SSP otherwise would allocate to #LIBRARY when you attempt to 
resize it. (SSP allocates space to files and libraries in contiguous blocks.) 
Therefore, any direct attempt to increase the size of #LIBRARY, the Task 
Work Area, or the system history file will meet with the difficulty you describe. 

Before you resize #LIBRARY, you need to move other files and libraries 
away from #LIBRARY, thereby freeing contiguous disk space so that you 
can increase your #LIBRARY allocation. On the S/36, this space can be 
freed with the COMPRESS procedure, specifying At as the first parameter 
and LOW (or FREELOW) as the second parameter, or by entering: 

II LOAD $FREE 
II RUN 
II COMPRESS DISK-A1,FREE-LOW 
II END 

The $FREE utility will move all disk objects except #LIBRARY to the high
address end of disk At and accumulate free space at the low-address end of 
the disk, thereby creating room for you to expand the size of #LIBRARY. 

Removing PTF Libraries 
answered by Mike Patton and Ed Girou 

QSeveral libraries were created during the installation of some PTFs on 
our S/36. Are these libraries useful by-products of the PTF 

installation, or can they be deleted? 

AThose libraries are PTF backup libraries, which serve no useful 
purpose unless you have a rogue PTF that you must remove. The PTF 

REMOVE procedure relies on the backup libraries to reverse the effect of a 
PTF application for any changed modules. Although you may never need 
these libraries, it's a good idea to SAVELIBR them before you delete them 
from your system. Then all you need do is restore them to remove one or 
more bad PTFs. If you need to remove a PTF and you delete the libraries 
without doing a SAVELIBR, however, you will have to reload the system 
library, reapply the PTFs, and then remove the ones causing problems. 



MAPles 

-CHAPTER 

12 




326 5/36 Power Tools 

Reducing Time and DiskeHes for MAPICS SAVE 
by B. Booth Deakins 

Diskette compression was an enhancement provided with Release 3.0 of 
the SSP on the S/36. However, during the file save function, MAPICS I 
and II do not take advantage of the diskette compress feature. You can add 
this feature to your SAVE procedure by changing a single line in the 
MAPICS procedure AMZPKC. You need to add the COMPRESS-YES 
parameter to line 42 (approximately) of the AMZPKC procedure so that it 
reads as it does in Figure 12-1. You will see a significant reduction in both 
the save time and number of diskettes used. 

Figure 12·1 

Modification to MAPICS AMZPKCprocedure 

II IF ?L'127,l'?/M COPYALL TO-Il ,GROUP-M,COMPRESS-YES 

Deleting MAPICS Backup DiskeHes 
by Roy Trimber 

Code on diskette: a Procedure DELMAP 

MAPICS file backups require that no one be signed on to the MAPICS 
library, AMALIB. This restriction either cuts into valuable user time if back
ups are performed during normal working hours or forces an operator or 
manager to work past quitting time if backup is postponed until after hours. 

One way to reduce the time involved is to choose not to delete old 
backup files from diskettes during your backup routine. Instead, at your 
convenience, use the procedure in Figure 12-2 to delete the old backup 
files. This procedure can be run at any time and does not interfere with 
other users on the system. Note that the procedure in Figure 12-2 bypasses 
MAPICS security, so you may want to build in your own security measures. 

1/ * 'Diskette magazine delete' 
II • 'Do you want to delete M2? (YIN)' 
II IF ?lR?1 IF ?l'N'?1Figure 12·2 I I LOAD $DELET 
II RUNProcedure II REMOVE UNiT-Il,LABEL-ALL,PACK-AMBACK,LOCATION-Ml.0l,ENDLOC-Ml.l0 

DELMAP II IF ?l?/Y REMOVE UNiT-Il,LABEL-ALL,PACK-AMBACK,LOCATION-M2,Ol,ENDLOC-M210 
II END 

http:UNiT-Il,LABEL-ALL,PACK-AMBACK,LOCATION-Ml.0l,ENDLOC-Ml.l0


MAPles 327 

Reorganizing MAPleS Files 
That Use Alternate Indexes 
by Perry Gardai 

program by Dale S. Walker 

a Code on diskette: 


Procedure AIUTIL 

RPG programs AIBLD, AIDSP, AIDEL 
Screen format member AIDSPFM 

It's 2 a.m., and you are tossing and turning. You left the office last night after 
starting a MAPICS reorg on your S/36, and you are hoping there will be no 
unplanned system halts requiring a MAPICS restore in the morning. But you 
keep having problems with the alternate indexes on your MAPICS parent 
files, and you are dreading any "surprise" that may be waiting at the office. 

You have probably found the Alternate Index (AI) functions valuable as an 
additional index to a data file that allows you to access a file by a different key. 
But Als can affect deletions and reorganizations of their parent files, especially 
when you have user-defined AI files attached to MAPICS master files. The 
MAPICS procedure AXZPZ8 does a good job of reorganizing the MAPICS 
parent files to free disk space occupied by deleted or inactive records; how
ever, it does not recognize the existence of AI files attached to the MAPICS 
parent file. If, during a MAPICS reorg, procedure AXZPZ8 tries to delete a 
MAPICS master file that has an AI file attached to it, the system will issue the 
system message SYS-1627, "Cannot Delete Physical File." The only recovery 
options provided are 2 (cancel and continue) and 3 (cancel). With either 
response, you probably will be forced into a master file restore, a time-con
suming chore. The AIUTIL utility solves this problem, and lets you sleep 
better, by selectively deleting your AI files before the reorg commences. 

AIUTIL is a utility composed of a series of system procedures and appli
cation programs that identify and selectively delete up to 10 AI files for each 
MAPICS parent file (few, if any, MAPICS parent files would have more than 
10 AI files). Procedure AIUTIL (Figure 12-3) is called from MAPICS proce
dure AXZPZ8 before the actual reorganization routines are executed and uses 
three programs to process AI files, allowing the reorg to progress unhampered. 

Program AIBLD (Figure 12-4) reads a disk file that contains a disk Vol
ume Table of Contents (VTOC) sequenced by name and creates the 
indexed file AIOUT?WS?, which contains the parent file name as the key, 
and up to 10 associated alternate index file names. 

Program AIDSP (Figure 12-5) displays each record from the file created 
by program AIBLD and gives you the option to delete the AI files associ
ated with the MAPICS parent file currently displayed. Program AIDEL 
(Figure 12-6) passes the records selected for deletion to the calling proce
dure via the LOA, at which point the records are deleted. 



328 5/36 Power Tools 

The process begins when MAPICS procedure AXZPZ8 calls procedure 
AXZPZ7, which renames the MAPICS control file from M.SYSCTL to 
M.SYSXXx. This name change puts the MAPleS application into a dedi
cated mode in preparation for the upcoming reorganization. Procedure 
AXZPZ8 then calls procedure AIUTIL.To accomplish this call, you should 
modify procedure AXZPZ8 with a single line of code immediately after the call 
to procedure AXZPZ7 (Figure 12-7). 

Procedure AIUTIL (Figure 12-3) first displays a formatted message 
that informs you the utility will search for all AI files attached to the 
MAPICS parent files. To allow AIUTIL to be executed more efficiently, 
the procedure sets the region size to 64 K via the II REGION statement. 

The next two sections of procedure AIUTIL, the $LABEL and the 
$UASF routines, create a disk file (CAT?WS?) of a catalog listing that will be 
read by program AIBLD. The $LABEL routine creates a catalog listing with 
the forms 10 of CTLG. The PRIORITY-O parameter on the II PRINTER 
statement puts the listing on hold in the spool file. Then $UASF copies the 
catalog listing into disk file CAT?WS? The RELCANS-CANCEL parame
ter on the COPYPRT statement removes spool entry CTLG from the spool 
file. The RETAIN-J parameter will remove disk file CAT?WS? from disk 
when the procedure terminates. The procedure then checks for the exis
tence of data file AIOUT?WS? If file AIOUT?WS? already exists on disk, 
the $DELET routine deletes it. If it does not exist, the procedure branches 
to the II TAG RUNBLD statement and program AIBLD is executed. 

Program AIBLD (Figure 12-4) reads catalog file CAT?WS? and outputs 
into file AIOUT?WS? one record for each MAPICS parent file name it 
finds. Each record contains the MAPICS parent file name as the key (posi
tions 2 through 9) and a data portion composed of a lO-element array. Each 
element of the array can contain the name of one AI file attached to a spe
cific MAPICS parent file. 

The I-specs for the catalog file (in this example, file CATIN) ensure only 
records from the catalog file that identify AI files will be used to build the 
new file. The data contained in file CATIN records includes the AI file 
name, defined as data field AIFILE, and the name of the parent file, defined 
as field SYSKEY. Within the MAPICS control file, only the last six characters 
of the file name are logged; therefore, the data field SYSKEY does not use 
the M. - the first two characters. Program AIBLD uses field SYSKEY to 
chain to MAPICS control file SYSCTL. If the chain fails (i.e., the file being 
processed is not a MAPICS master), indicator 90 is set on, the remainder of 
the C-specs are bypassed, and no records are added to file AIOUT?WS? 

If the chain is successful, then the parent file name just processed is 
indeed a MAPICS parent file, and the entire parent file name (all eight 
characters), now defined as data field PARENT, is used to chain to the 
AIO UT?WS? file. If the chain fails, the program sets on indicator 91, which 
means program AIBLD is processing this particular MAPICS parent file 

http:AIUTIL.To


MAPles 329 

and an associated AI file for the first time. Therefore, a record will be 
added to file AIOUT?WS? with the MAPICS parent file name as the key 
and the AI file name as the contents of the first element of array ARR. 

As each subsequent record is processed for this particular MAPICS par
ent file, the chain to file AIOUT?WS? will be successful (indicator 91 will 
be off). Under this condition, the program then will do a lookup to find the 
first blank element of array ARR. Once this is accomplished, the blank ele
ment is loaded with the AI name currently being processed and file 
AIOUT?WS? is updated with the current contents of array ARR. This pro
cess continues until the entire catalog is processed and control returns to 
procedure AIUTIL. If, at this point, file AIOUT?WS? does not contain any 
records, indicating that none of the MAPICS parent files currently have AI 
files attached, the procedure branches to TAG ENOAI, file AIOUT?WS? is 
deleted, and the procedure terminates. 

If file AIOUT?WS? does contain records, the procedure loads the LOA 
with the user 10 and the workstation 10 in preparation for the execution of 
program AIOSP (Figure 12-5). Program AIOSP displays each MAPICS 
master file and its associated AI files. You are given three processing 
options - Y, N, or Command key 24 - to indicate which action should be 
performed on each record of file AIOUT?WS? 

Program AIOSP begins by displaying one screen for each MAPICS par
ent file and all of its AI files (Figure 12-8a is ~isplay Screen AI01; Figure 
12-8b is the screen format member). If you enter Y into the OPTION field, 
the program sets on indicator 21 and writes character 0 to the status byte 
(position 1) of the AIOUT?WS? record. The presence of the character 0 in 
the first position indicates that all AI files associated with this particular 
MAPICS master file are to be deleted. If you enter N into field OPTION, 
the program sets on indicator 20, and the status byte is not updated with a 
O. After program AIOSP has processed each record in file AIOUT?WS?, 
the program terminates, and control returns once again to procedure AIU
TIL. If at any point during the execution of program AIOSP you press 
Command key 24 to cancel the selection program, the program writes the 
character C to position 424 of the LOA and sets on indicator LR. If a C is 
in position 424 of the LOA, the procedure branches to TAG ENDAI, 
deletes the file AIOUT?WS?, and terminates. 

The final sections of procedure AIUTIL are responsible for the actual 
deletion of the selected AI files and for printing an audit report. The dele
tion is completed by using program AIOEL (Figure 12-6), which processes 
one record from file AIOUT?WS? If the record is marked for deletion (the 
D in position 1), the program loads the LOA with the names of the AI files 
attached to that record and prints the corresponding audit report. Program 
AIOEL then terminates, and control returns to procedure AIUTIL. 

The $OELET routine checks the appropriate positions of the LDA 
and deletes the file name stored there. After the $OELET terminates, the 



330 5/36 Power Tools 

Figure 12·3 

Procedure 

AIUTIL 


procedure loops back up to program AIDEL and repeats the cycle until all 
the records from file AIOUT?WS? are processed. 

The last few executable lines of the procedure that follow the II TAG 
ENDAI statement delete file AIOUT?WS? Then the procedure ends, and 
control returns to the MAPICS master procedure AXZPZ8, at which time it 
can continue and reorganize the files. 

There are a few aspects to this procedure that may not be obvious and 
may require you to make extensive modifications. First, this procedure pro. 
cesses only original MAPICS parent files (M. files) that are logged in the 
MAPICS control file M.sYSCTL. Therefore, AIUTIL lets you delete only 
files that have a parent M.file and a SYSCTL record. Second, AIUTIL will 
accommodate only 10 AI files attached to anyone MAPICS parent file. If you 
have more than 10 AI files attached to anyone MAPICS parent file, you will 
have to modify this procedure. However, its logic and basic structure can be 
maintained. Finally, and perhaps most important, AIUTIL does not rebuild 
the deleted AI files. This situation could cause some serious problems if your 
existing applications do not check for the presence of required AI files and 
rebuild them before executing each application program that makes use of 
them. Ifyou have AI files that you use often, you may want to modify the util
ity to rebuild the AI files after a reorg. Otherwise, the procedure that uses the 
AI files should test for their existence and rebuild them when necessary. 

These limitations aside, AIUTIL has proved to be an invaluable tool in 
my MAPICS shop. I no longer lose sleep worrying about the results of the 
unattended MAPICS reorgs that are run every night. I know there won't be 
any unplanned system halts requiring a MAPICS restore waiting for me in 
the morning. 

* PROCEDURE NAME: AIUTIL (ALTERNATE INDEX CHECK UTILITY) 
• DATE COMPLETED: 08/86 DALE S. WALKER 
* CALLING PROCEDURE: AXZPZ8 (MAPICS FILE STATUS / REORGANIZE PROCEDURE) 
* FUNCTION: SEE END OF PRDCEDURE FOR FURTHER DOCUMENTATION. 

/ / * 
1/ • • NOW SEARCHING FOR ALTERNATE INDEX FILES APPENDED " 
/ I • TO YOUR MAPICS MASTER FILES 
II • PLEASE STAND 8Y 
I I • 
II * 
I I ' 

RUN A CATALOG BY NAME AND HOLD THE SPOOL FILE ENTRY, 

/ I REGION SIZE~64 
I I LOAD $lABEL 
I I PRINTER NAME~SSYSLIST.FOAMSNO~CTLG,PRIORITY~O 
I I RUN 
II DISPLAY LABEL~ALL,UNIT~F1 

II END 
I I REGION SIZE~24. 

COPY THE SPOOL FILE ENTRY TO DISK 

II LOAD SUASF 
I I RUN 



II 

MAPles 331 

SPOOL SPOOLID-FCTLG,NAME-CAT?WS?,RELCANS-CANCEL,RETAIN-J 
I I END 

BUILD A FILE THAT CONSISTS OF THE PARENT M.FlLE AS THE KEY, 
AND INCLUDE ALL OF ITS ASSOCIATED AI FILES. 

I I IFF DATAF1-AIDUT?WS? GOTO RUNBLD 
I I LOAD $DELET 
II RUN 
II SCRATCH LABEL-AIOUT?WS?,UNIT-F1 
II END 

I I TAG RUNBLD 
II LOAD AIBLD 
II FILE NAME-CATIN,LABEL-CAT?WS?,DBLOCK-40 
II FILE NAME-AIOUT,LABEL-AIOUT?WS?,DISP-NEW,RECORDS-25,EXTEND-15 
II IF DATAF1-M.SYSCTL FILE NAME-SYSCTL,LABEL-M.SYSCTL,DISP-SHRRM
II ELSE FILE NAME-SYSCTL,LABEL-M.SYSXXX,DISP SHRRM 
I I RUN 

CANCEL ONLY IF THERE WERE NO AI FILES ATTACHED TO AN M.FILE 

I I IF ?F'A,AIOUT?WS?'?IO GOTO ENDAI 

DISPLAY THE PARENT FILE ALONG WITH UP TO 10 OF ITS ASSOCIATEO 
AI FILES, AND ALLOW FOR AN OPTION TO DELETE THE AI FILES. 

I I LOCAL OFFSET-414,DATA-'?USER?' 

II LOCAL OFFSET-422,DATA-'?WS? ' 

I I LOAD AIDSP 

I I FILE NAME-AIOUT,LABEL-AIOUT?WS? 

I I RUN 


IF CK24 WAS ENTERED IN PGM-DSPAI. DO NOT DELETE ANY FILES. 

I I IF ?L'424,l'?/C GOTO ENDAI 

PRINT AN AUDIT REPORT LISTING THE AI FILES THAT WERE SELECTED 
FOR DELETION, AND PLUG THE LDA WITH THE FILE NAMES. 

I I TAG DELET 
I I LOCAL OFFSET-424, DATA-' ',BLANK-S9 
I I LOAD AIDEL 
II FILE NAME-AIOUT,LABEL-AIOUT?WS? 
I I PRINTER NAME-PRINTER,CONTINUE-YES 
I I RUN 

GO TO ENDAI IF THERE ARE NO MORE FILES TO DELETE 

I I IF ?L'424,l'?/C GOTO ENDAI 

DELETE THE SELECTED AI FILES AND LOOP TO RETRIEVE NEXT FILES 
TO BE DELETED. 

I I • 'NOW DELETING AI FILES FOR PARENT - ?L'425,S'?' 
II LOAD SOELET 
II RUN 
I I IFF 7L'433,S'?1 SCRATCH LABEL-?L'433,S'?,UNIT-Fl 
I I IFF ?L'441,S'?1 SCRATCH LABEL-?L'441 ,S'?,UNIT-F1 
II IFF ?L'449,S'?1 SCRATCH LABEL-?L'449,S'?,UNIT-Fl 
II IFF ?L'457,S'?1 SCRATCH LABEL-?L'457,S'?,UNIT-Fl 
I I IFF 7L'465,S'?1 SCRATCH LABEL-?L'465,S'?,UNIT-F1 
II IFF ?L'473,S'?1 SCRATCH LABEL-?L'473,S'7,UNIT-Fl 
II IFF ?L'4Bl,S'?1 SCRATCH LABEL-?L'4B1,S'?,UNIT-Fl 
I I IFF ?L'4B9,S'?1 SCRATCH LABEL-?L'4B9,S'?,UNIT-F1 
I I IFF ?L' 497. S'? I SCRATCH LABEL-?L'497,S'?UNIT-F1 
I I IFF ?L' 505, S'? I SCRATCH LABEL-?L'505,S'?,UNIT-Fl 
I I END 
II GOTO DELET 

DELETE THE AIOUT FILE AND RETURN 

II TAG ENDAI 
II LOAD SDELET 
II RUN 
II SCRATCH LABEL-AIOUT?WS?,UNIT-F1 



332 	 5/36 Power Tools 

II END 

II RETURN 


FUNCTION: 	 THIS PROCEDURE ALLOWS YOU TO PREVENT THE SYSTEM FROM ISSUING 
YOU THE ERROR MESSAGE, 'SYS-1627 CANNOT DELETE PHYSICAL 
FILE (FILENAME)', WHILE EXECUTING A MAPICS MASTER FILE 
REORGANIZATION, THIS ERROR CONDITION IS THE RESULT OF TRYING 
TO DELETE A FILE FROM DISK WHEN IT HAS ALTERNATE INDEX 
(AI) FI LES APPENDED TO IT, 
WHILE RUNNING THIS PROCEDURE, THE OPERATOR HAS THE OPTION 
TO DELETE AI FILES FOR ANY SELECTED MAPICS PARENT FILE, 
BEFORE CONTINUING WITH THE MAPICS MASTER FILE REORGANIZATION, 

LOA USAGE: 	 FROM TO USAGE 
414 421 USER 10 
422 423 WORKSTATION ID 
424 424 CANCEL/EOJ FLAG 
425 432 PARENT FILE NAME 
433 512 AI FILE NAMES 

* END OF AIUTIL 

Figure 12-4 

Program AlELD 

4 6 B 
AIBLD 

F* PROGRAM NAME' AISLD (BUILD THE AI FILE) 
F* DATE COMPLETED: B/86 DALE S. WALKER 
F* CALLING PROCEDURE' AIFILE 
F* FUNCTION: THIS PROGRAM READS A DISK FILE THAT CONTAINS A 
F* DISK VTOC (SEQUENCED BY NAME), AND CREATES AN 
F* INDEXED FILE THAT CONTAINS THE PARENT FILE NAME AS 
F* THE KEY, AND UP TO 10 OF ITS ASSOCIATED ALTERNATE 
F* INDEX FILE NAMES. 
F* 
F* NOTE: ONLY PARENT FILES THAT ARE MAPICS MASTER FILES 
F* WILL BE PROCESSED. ALL USER CREATED FILES THAT 
F* BELONG TO THE 'M.' FILE GROUP WILL NOT BE PROCESSED. 
FISPACEF--.*-------_ ..._.-.----.-. __ .._....... --_._ .. _._._-_.It_It_It_._.It. 


INDICATOR 	 USAGE AND DEFINITIONS * 
Fit * It It. it .. 1t1t •• 1t It ... 1t.1t" It *1t.:It It it ... * It 1t.:It".1t it it .It ... It .... it ... It. _. it. It it It ... It .... It It 
F* 01 THIS Al FILE HAS AN M.FILE FOR A PARENT * 
F* 30 SUCCESSFUL ARRAY LOOKUP FOR AN UNUSED ELEMENT 
F* 90 CHAIN ERROR INDICATOR FOR FILE - SYSCTL 
F* 91 CHAIN ERROR INDICATOR FOR FILE - AIOUTFIt.*.----------------_._._--_...... _-_ .... -.- ....._---Itlt._ .._. __ _ 
F/SPACE 2 
FCATIN IP 150 150 DISK 
FAIOUT UC 128 128R 8AI 2 DISK A 
FSYSCTL IC 128 128R 6AI 3 DISK 
E* THIS ARRAY WILL HOLD UP TO 10 ALTERNATE INDEX FILE NAMES 
E/SPACE 
E ARR 10 
1* CATIN INPUT FILE SPECIFICATIONS 
I/SPACE 
ICATIN NS 01 106 CM 107 C. 
I 11 1 B AIFILE 
I 106 113 PARENT 
I 108 113 SYSKEY 
I NS 
I/SPACE 2 
1* AIOUT INPUT FILE SPECIFICATIONS 
IISPACE 
IAIOUT NS 
I 2 9 PARNT 
I 10 89 ARR 
I/SPACE 2 
1* SYSCTL INPUT FILE SPECIFICATIONS 
I/SPACE 
ISYSCTL NS 1 CC 2 CD 

http:1t.:It".1t
http:It_It_It_._.It


MAPles 333 

I 2 RCDCD 
I 8 SCKEY 
I/SPACE 
I NS 
C N01 GOTO BYPASS NOT AN M. FILE FOR A PARENT - BYPASS 
C" 
C SYSKEY CHAINSYSCTL 90 CHECK IF PARENT IS A MAPICS FILE 
C 90 SETOF 01 NO H!T - BYPASS THIS RECORD 
C 90 GOTO BYPASS 
C" 
C PARENT CHAINAIOUT 91 GET PARENT'S 'AIOUT' RECORD 
C 91 GOTO BYPASS NO HIT - ADD A RECORD 
C Z-ADD1 X 20 INITIALIZE ARRAY SUBSCRIPT 
C "BLANKS LOKUPARR,X 30 GET AN UNUSED ARRAY ELEMENT 
C 30 MOVE AIFILE ARR,X PLUG THE ELEMENT W/THE FILE NAME 
C BYPASS TAG 
0" AIOUT FILE ADDITIONS 
O/SPACE 
OAIOUT DADO 01 91 
o PARENT 9 
o AIFILE 17 

O/SPACE 2 

0* AIOUT FILE UPDATES 

O/SPACE 

o o 01N91 

o ARR 89 

Figure 12-5 

Program AIDSP 

3 4 ., 5 6 ... 7 8 
AIDSP 

F* PROGRAM NAME: AIDSP (DISPLAY AI FILES) 
F* DATE COMPLETED: 8/86 DALE S. WALKER 
F* CALLING PROCEDURE: AIUTIL 
F* FUNCTION: THIS PROGRAM DISPLAYS THE PARENT FILE ALONG 
f* WITH UP TO 10 OF ITS ASSOCIATED AI FILES. THE 
F* OPERATOR THEN HAS THE OPTION TO SELECT THE AI 
F* FILES FOR DELETION. 
F/SPACE
F***···**············································· .......... . 

F* INDICATOR USAGE AND DEFINITIONS
F·**···***··**··***········**···**·············**····· ......••... 
F* KY OPERATOR HAS ENTERED CK24 TO CANCEL * 
F* LR LAST RECORD INDICATOR 
F* 01 ACTIVE PRIMARY INPUT RECORD 
F* 20 OPERATOR CHOSE NOT TO DELETE THE Al FILE(S) 
F* 21 OPERATOR CHOSE TO DELETE THE AI FILE(S) 
F* 90 SFGR ERROR INDICATOR - INVALID OPTION WAS ENTERED
F·**·***·**·············**····**··***············**···.. ** ••••••• 
F/SPACE 2 
FAIOUT UP 128 128 DISK 
FTU8E CD 128 WORKSTN 
1* AIOUT INPUT FILE SPECIFICATIONS 
I/SPACE 
IAIOUT NS 01 1 C 
I 1 1 ACREC 
I 2 9 PARENT 
I 10 89 ARR 
I NS 
I/SPACE 2 
1* TUBE INPUT FILE SPECIFICATIONS 
I/SPACE 
!TUBE NS 
I 1 OPTION 
I/SPACE 3 
1* LOCAL DATA AREA INPUT SPECIFICATIONS 
I/SPACE 
I UDS 
I 414 421 USER 
I 422 423 WSID 
I 424 424 CANCL 
C N01 GOTO BYPASS PRIMARY RECORD IS NOT ACTIVE 



334 5/36 Power Tools 

C EXCPTWRITE ISSUE SCRN FMT - AIOl 
C RDTUBE TAG 
C 90 SETOF 90 CLEAR SFGR ERROR INDICATOR 
C READ TUBE READ THE WORKSTATION FILE 
C KY SETON LR CK24 - IOOJ 
C KY MOVE 'C' CANCL 
C KY GOTO BYPASS 
C* 
C OPTION CaMP 'N' 20 N - DO NOT DELETE Al FILES 
C OPTION COMP 'Y' 21 Y - DELETE AI FILES 
C N20N21 SETON 90 ERROR CONDITION - INVALID OPTION 
C 90 EXCPTWRlTE ISSUE EF:ROR MSG 
C 90 GOTO RDTUBE GO AND RE-READ THE WORKSTATION FILE 
C* 
C BYPASS TAG 
0* WORKSTATION FILE OUTPUT SPECIFICATIONS 
O/SPACE 
0* RELEASE THE WORKSTATION ON CK24 
O/SPACE 
OTUBE DR KY 
O/SPACE 2 
0* SCREEN FORMAT - AIDl 
O/SPACE 
o WRITE 
o K4 'AIOl ' 
o UDATE Y 8 
o WSlD 10 
o PARENT 18 
o ARR 98 
o 90 123 'INVALID OPTION-TRY AGAIN' 
O/SPACE 2 
0* AIOUT FILE OUTPUT SPECIFICATIONS 
0* (FLAG THE PARENT TO HAVE ITS Al FILES DELETED) 
O/SPACE 
OAIOLIT 0 01 21NKY 
o 1 '0' 

Figure 12-6 

Program AIDEL 

3 .. 4 . 6 8 
1 AIDEL 

F* PROGRAM NAME: Al DEL (AI FILE DELETION SELECTION) 
F* DATE COMPLETED: 8/86 DALE S. WALKER 
F* CALLING PROCEDURE: AIUTIL 
F* FUNCTION: THIS PROGRAM READS THE AIOUT RECORDS THAT HAVE HAD 
F* THEIR AI FILES SELECTED FOR DELETION BY THE PROGRAM 
F* AIDSP. THE Al FILE NAMES ARE PASSED TO THE CALLING 
F* PROCEDURE VIA THE LOA AND DELETED. AN AUDIT REPORT 
F* IS PRINTED THAT CONTAINS A LISTING OF AI FILES THAT 
F* ARE TO BE DELETED. 
F/SPACE 2 
F* * **.* .. tI* ... **.* .......... **._ .** .. * ............. _.** .... tI* ..... * ...... ** .... ** ..... ** .. .. 

F* INDICATOR USAGE AND DEFINITIONS 
F*" .** _tl* ..... ** .. *. * .... * ** .. _** .... * ...... * .... II _ ...... _ ............ _.If ...... _........... .. 

F* LR LAST RECORD INDICATOR 
F* OF - PRINTER FILE OVERFLOW INDICATOR 
F* 01 - AIOUT PRIMARY INPUT RECORD - Al FILES ARE SEL. FOR DEL. 
F* 1 P PRINTER FILE FIRST PAGE INDICATOR 
F* 20 INDICATES 
F* 21 THAT 
F* 22 THE 
F* 23 ARRAY 
F* 24 ELEMENT 
F* 25 CONTAINS 
F* 26 AN 
F* 27 AI 
F* 28 FILE 
F* 29 NAME 
F" 30 - LR WAS SETON MANUALLY (N30 RPG SETON LR)F- ••••••• _•• _._-----_._._._._._._ •• _••••• _.-._-_ •••• _-If._._.... __ 
F/SPACE 

FAIOUT LIP 128 128 DISK 




MAPles 335 

FPRINTER 0 132 132 OF PRINTER 
E* THIS ARRAY WILL HOLD UP TO 10 ALTERNATE INDEX FILE NAMES 
E/SPACE 
E ARR 10 8 
1* AIOUT INPUT SPECIFICATIONS 
I/SPACE 
IAIOUT NS 01 1 CD 
I 1 ACREC 
I 9 PARENT 
I 10 89 ARR 
I NS 
I/SPACE 2 
1* LOCAL DATA AREA INPUT SPECIFICATIONS 
I/SPACE 
I UDS 
I 414 421 USERID 
I 422 423 WSIO 
I 424 424 CANCL 
I 425 432 PARENT 
I 433 512 ARR 
C TIME TME 60 CAPTURE THE SYS. TIME FOR HEADINGS 
C N01 GOTO BYPASS AI FILES NOT SELECTED FOR DELETION 
C ARR,1 COMP *BLANKS 20 CHECK IF THIS ELEMENT CONTAINS AN 
C ARR,2 COMP *BLANKS 21 AI FILE NAME (20-29) 
C ARR,3 COMP *BLANKS 22 
C ARR,4 COMP *BLANKS 23 
C ARR,5 COMP *BLANKS 24 
C ARR,6 COMP "BLANKS 25 
C ARR,7 COMP *BLANKS 26 
C ARR,B COMP *BLANKS 27 
C ARR,9 COMP "BLANKS 28 
C ARR,10 COMP *BLANKS 29 
C SETON LR30 SETON LR TO DELETE THESE FILES 
C BYPASS TAG 
CLRN30 MOVE 'C' CANCL EOF 
0* AIOUT FILE UPDATES 
O/SPACE 
0* FLAG THIS RECORD AS ALREADY BEING PROCESSED 
O/SPACE 
DAIOUT D 01 
o 1 ' , 

O/SPACE 3 
0* FILE DELETION AUDIT REPORT 
O/SPACE 
OPRINTER 0 2 01 
o 30 'ALTERNATE INDEX FILE' 
o 44 'CHECK UTI L1TY' 
o 54 'PAGE' 
o PAGE Z 59 
O/SPACE 
o o 3 01 
o 'DATE' 
o UDATE Y 17 
o 24 'TIME' 
o TME 33 
o 40 'USER' 
o USERID 49 
O/SPACE 
o o 2 01 
o 11 'PARENT FILE' 
o PARENT 20 
o 42 'HAS HAD THE FOLLOWING' 
o 59 'AI FILES DELETED' 
O/SPACE 
o D 1 01 20 
o ARR,1 25 
O/SPACE 
o D 1 01 21 
o ARR,2 25 
O/SPACE 
o D 1 01 22 
o ARR, 3 25 
O/SPACE 
o D 1 01 23 
o ARR,4 25 
O/SPACE 



336 	 5/36 Power Tools 

a 01 24 
a ARR,5 25 
O/SPACE 
a 01 25 
a ARR,6 25 
O/SPACE 
a 01 26 
a ARR,7 25 
O/SPACE 
a 01 27 
a ARR, B 25 
O/SPACE 
a D 01 2B 
a ARR,9 25 
OISPACE 
a D 01 29 
a ARR,10 25 

Figure 12-7 
AXZPZ8 HAS BEEN MODIFIED 

Modification to 
MAPleS 	 MODIFIED TO EXECUTE THE PROC - AIUTIL (ALTERNATE INDEX CHECK 

UTILITY) TO CHECK FOR, AND SELECTIVELY DELETE AI FILES THAT AREprocedure APPENDED TO MAPles MASTER FILES. 
AXZPZ8 

II IF DATAF1-?L'229, 1 '?,SYSCTL AXZPZ7 
II AIUTI L 
I I SW ITCH XXXXXXXO 
I I LOCAL OFFSET-214,DATA-'?4?' 

Figure 12-8a 

Screen prompt 00000000 ALTERNATE INDEX FILE CHECK UTILITY 

AIDSPFM 
00000000 	 has the following AI fil •• appended to it. 

If you are going to reorganize this fi I., delet. the a••oci.ted 
Al file<,) b.fore continuing with the ,..organization, or the 
reorganization procedure wi II erath and burn. 

A I 	 I L E S 

00000000 00000000 
00000000 00000000 
00000000 00000000 
00000000 00000000 
00000000 00000000 

Do you want to delat' th ••• fil ••? (Y.Y'" N.no) ••••• N 

0000000000000000000000000 	 CKZ4 TO CANCEL 

00 



Figure 12·8b 

Screen format 
member 
AIDSPFM 

MAPles 337 

6 
SAlOl 90 Y 
DDATE 8 2 3Y 
DFL0002 34 223Y CALTERNATE INDEX FILE CHX 
DECK UTILITY 
DWSID 2 276Y 
DPARENT 8 5 4Y Y 
DFL0005 42 513Y Chas the following AI fiX 
Dles appended to it. 
DFL0006 63613Y elf you are going to reoX 
Drganize th4s file, delete the assoclated 
DFL0007 60 713Y CAl file(s) before contiX 
Onuing with the reorganization, or the 
DFAOOOI 45 813Y Creorganization procedurX 
De wi 11 crash and burn 
DFL0009 161030Y Y CAl FILES 
DAll 81228Y 
DAI2 81240Y 
DAI3 8132BY 
DAI4 B1340Y 
DAI5 81428Y 
DAI6 81440Y 
DAI7 81528Y 
DAI8 81540Y 
DAI9 81628Y 
DAll0 81640Y 
DFL0025 5319 3Y CDo you want to delete tX 
Dhese fi 1 es? (Y=yes, N=na). 
DOPTION 11957Y YA 90 CN 
DERRMSG 2524 490 9090 
DFAOOOI 142466Y CCK24 TO CANCEL 

Canceling MAPICS' AMZOO Job Automatically 
answered by Gary T. Kratzer 

QBecause we use MAPICS II, a MRT·NEP security job (i.e., program 
AMZOO) is always running, making it impossible to run a 

COMPRESS unattended at night unless someone remembers to cancel the 
program manually before we leave. How can we cancel this MRT-NEP at a 
specified time each night so we can run a COMPRESS? 

AYou can call a MAPICS procedure to cancel the AMZOO security 
program, letting you successfully run your COMPRESS unattended. 

Just include the following OCL in your procedure: 

II LIBRARY NAME-AMALIB 
II MEMBER USER1-AMZ09 
AMZPOl Z,""'" ,BIN 

Using Autoresponse When Condensing AMALiB 
answered by Mike Patton 

QI have a procedure that performs many system and MAPICS activities 
in a nightly unattended mode, and I have an autoresponse to handle 

some of the error messages that may occur. In procedure SS0303 (keysort 
all index files), I have a statement to condense AMALIB. If this library is in 
use, the autoresponse answers the message with a 2 option. According to 



338 5/36 Power Tools 

the history report, this procedure is working correctly; however, the job is 
terminating with this 2 option. Why? 

AIt is likely that MAPICS is programmed to cancel a procedure if the 2 
option is taken in response to the error message you encountered. 

When the system autoresponds to the error, the return code (obtained via 
the ?CD? substitution expression in OCL) is set to 3721. This indicates 
that the controlled cancel option was specified, but not as an autoresponse. 
To solve your problem, you need to do one of the following: 1) don't 
condense AMALIB during the keysort procedure, 2) set your autoresponse 
level to 0 with one of the commands in Figure 1Z-9a, or 3) disable the 
automatic response for SYS-2S82 by creating response source member 
ALLOWERR (Figure 12-9b) in AMALIB and then executing the 
command in Figure 12-9c. The N in column 6 of Figure 12-9b specifies, in 
the system message member, that no autoresponse is allowed. 

Figure 12-9a 

Commands to set autoresponse to 0 

NOHALT 
NOHALT 
NOHALT 

0, JOB 
O,SESSION 
O,SYSTEM 

(to disable 
(to disable 
(to disable 

auto response 
autoresponse 
auto response 

for 
for 
for 

the 
the 
the 

job only) 
session only) 
entire system) 

Figure 12-9b 

Response source member ALLOW ERR 

SYS 
25B2 N 

Figure 12-9c 

Command to disable autoresponse for SYS-2S82 

RESPONSE ALLOWERR,AMALIB 



Performance 


-CHAPTER 

13 




340 S/36 Power Tools 

Managing 5/36 Performance - Part 1 
A Perspective 
by Debra Kahn 

Analyze your 
organization :r 
requirements 
andsystem 
resources uSing 
one MIS team's 
experience in 
S/36 
performance 
management. 
The analysis 
includes 
methodsfor 
determining 
users'system 
resource needs 
and a list of 11 
SMF counters 
for determining 
system resource 
use. 

a Code on diskette: 

Procedure NEWDISK 

How-to advice abounds for S/36 MIS managers interested in improving (or 
just maintaining) system performance. Most SUtch counsel takes the form of 
a performance management plan based on a complex system for "trending" 
or tracking system resource use. Such plans have obvious benefits; for exam
ple, they help MIS managers anticipate performance bottlenecks and plan 
accordingly. However, while most plans are presented with the admonition 
that they should be adapted to the needs of the individual organization, few 
plans outline methods for adapting the plan. This article will show you the 
techniques the MIS team used to tailor the plan to their organization. 

In February 1987, the Duke Communications International (DCI) MIS 
department expanded its 5360 hardware to handle the additional personnel 
and increased workload precipitated by company expansion. MIS person
nel Rebecca I..-angren and Bob Skowron upgraded the company's Model B 
to a Model D, enlarged system memory from 1 MB to 3 MB, and increased 
DASD from 400 MB to 750 MB. This added system spaciousness pre
sented Langren and Skowron with two problems as they tried to keep their 
system running smoothly: balancing active files, libraries, and folders across 
three disk drive spindles and adjusting cache sizes so that system memory 
could be used efficiently. 

To solve these problems, Langren and Skowron had to improve their 
disk and memory management techniques. Monitoring the organization's 
system resource requirements and use helped Langren and Skowron decide 
how best to implement their solutions - and their monitoring techniques 
can be used in virtually any S/36 shop. Because user needs and expecta
tions provide the context for interpreting system performance data, Lan
gren and Skowron began their analysis by "monitoring" their users. 

To gather the user perspective on performance, Langren and Skowron first 
adopted an active listening policy. Their goals were to keep on top of planned 
company and departmental expansions that could represent additional system 
workload, and to get a feel for general satisfaction with system throughput. 

As a means to these ends, they devised several formal and informal meth
ods for gathering and documenting company feedback. Informal conversa
tions with users helped MIS gain a general picture of areas of concern; a 
formal survey and in-house help line helped pinpoint specific concerns and 
problems and let the users know MIS cared about their opinions. (For guide
lines on what kind of information you should gather about your organization, 



Performance 341 

see "How Does Your Organization Define Performance?" on page 348.) 
Letting users know MIS cared was important to Langren and Skowron 

because they wanted to encourage users to become "performance-tuning 
allies." For example, by educating users about performance-killing prac
tices (e.g., one user using more than one workstation to run disk-intensive 
queries, and thereby overtaxing the disk), Langren and Skowron could cor
rect them before they became habits. They also hoped to gain broad-based 
user commitment for their performance-tuning efforts and to become 
familiar enough to the users to encourage continued user feedback. 

Skowron says that such communication efforts in general lessen the like
lihood that MIS managers operate in a "system-tuning blind." For example, 
monitoring user expectations helps MIS personnel avoid an attempt to gain 
subsecond response time when what users may really want is time to ponder 
before interacting with the next screen. Skowron warns against wasting MIS 
resources trying to accomplish something users don't want or need. 

Langren and Skowron's informal ways of gathering company perfor
mance expectations included attending department and management 
meetings, walking through departments, and manning an in-house user 
help line. By regularly attending department and management meetings, 
Langren and Skowron kept abreast of new projects and growth; they also 
received first-hand information about how resource-related problems affect 
productivity. Langren and Skowron walked through each department to 
observe how users work with the system and to give users face-to-face 
access to MIS for discussing system resource problems and concerns. The 
in-house help line achieves the goal of easy access to MIS more formally. 
Because the help line lets users communicate concerns quickly and easily, 
MIS can track day-to-day problems so they don't fall through the cracks. 

Langren and Skowron's most formal method of gauging user concerns, 
a semiannual MIS survey, had a twofold purpose: to obtain specific feed
back on performance areas that informal discussions had indicated were 
concerns, and to provide a basis for deciding how to expand or change cer
tain user support programs. 

Langren and Skowron hoped to use the survey to pinpoint potential bot
tlenecks, to see how their management of the expanded system resource 
affected end users, and to determine which direction future resource manage
ment should take. Langren and Skowron also wanted to collect input on other 
MIS-related activities (e.g., system education, problem resolution, and project 
planning) to gain a measurement of how well MIS was functioning as a 
department within the company. Finally, they hoped to present the survey 
results to top management as formal documentation of system resource needs. 



342 5/36 Power Tools 

Figure 13-1 

MIS survey 
To: All Staff 

FrOll: Hanaqeaent ot Information Services (Bob. Deb &Rebecca) 

Re: HIS Survey 

Date: Deceaber 10, 1987 


Please assist us in ilD.provinq our servic" to you by respondinq to 
the tollow1D1 survey quest1ons. 'Ie appreciate your thoughts aDd 
CODents on the tollowinq HIS areas in our coapany. 

Please rate the follovinq on a scale ot 1 - 4. EX or NA: 

1 • Unsatistactory 

2 • Averaqe 

3 .. Good 

4 • Excellent 

EX = Didn't know feature existed 

NA. Do not use feature 


Please Rate the Ayailability of 5/36 Resource~ 

Access to the S/36 tor interactive work 

The 5/36's interactive response ttae 

Access to the cOJapUter roea to pick up your printed reports 

Please evaluate the a.aunt ot tille you wait tor your printed 
reports to coae out on the tollowinq pr.inters: 

Pi - Fujitsu band printer 

PZ - GBT/GE dot matrix 

P3 - ISH letter quality 

P6 - Editorial Virtual at Trish Frease's Desk 

P7 - Editorial Virtual at Jeanne TatUlll'S Desk 

Although the multi page MIS survey investigated many areas, Langren 
and Skowron dedicated the first page to questions about system through
put, the basis on which users judge system performance. The questions on 
the first page of the survey (Figure 13-1) targeted three areas that poten
tially could affect users' perceptions of system throughput: system access, 
system output access, and system output speed. 

The first question on the survey focused on the system access area. For 
example, concerns about wait time for CRT access were expressed by person
nel in the marketing department (these personnel did not each have an indi
vidual CRT). The second question gauged satisfaction with interactive 



Performance 343 

throughput speed; it reflected directly on how well Langren and Skowron had 
tuned the system. The third question uncovered concerns about computer
room access and assured Langren and Skowron that location and availability 
(the system printers were located in the computer room, which was locked 
except during business hours) weren't clouding users' perceptions of how well 
the system actually delivered throughput. Finally, the questions about printer 
wait time helped Langren gauge satisfaction with current job queueing and 
print spooling methods and pinpoint where output might be resource-bound. 

'Ib guarantee that user responses to such questions would be well thought 
out, Langren visited each department to explain the purposes of the survey. 
She reinforced MIS concern for department problems and assured users that 
MIS would use the results of the survey to improve each department's work 
situation. Langren also found that, as a side benefit, introducing the survey to 
each department provided an informal forum for airing complaints. 

DCI's survey results showed that most users were satisfied with through
put and that problems were limited to specific departments. As predicted, in 
response to the survey's first question, the marketing department rated sys
tem access "unsatisfactory," but dissatisfaction seemed limited to that 
department. The circulation department's dissatisfaction with response times 
was also predictable because circulation does a lot of interactive work, some 
of which involves examining customer records interactively while a customer 
is on the phone. Finally, the survey showed that although access to the com
puter room was satisfactory, output bottlenecks existed at the company's let
ter-quality printer and the editorial department's two virtual printers. 

Initially, Langren and Skowron examined whether they could solve the 
problems users expressed in the survey by changing their resource manage
ment (although they realized immediately that solving the output problem 
might involve purchasing additional printers). To evaluate their present 
resource management, they began analyzing system use by tracking their 
System Measurement Facility (SMF) reports. Most IBM experts agree that 
regularly running SMF and "trending" or tracking the results are necessary 
components of good performance management. 

These IBM experts suggest that S/36 managers track 22 SMF counters: 
those that monitor the S/36's workhorses (the main storage processor
MSP - and control storage processor - CSP), the system's slowpoke stor
age facility (the disk), and the system scratchpad (memory). (For more 
information about these S/36 components, see "Counting on Good (S/36) 
Architecture" on page 349.) Langren and Skowron accepted this theoretical 
base; but because they had limited time to monitor the counters and had 
sufficient knowledge of S/36 architecture, they decided to track a practical 
set of SMF counters that provided significant system performance informa
tion and could be interpreted quickly and easily. 

Langren and Skowron chose 11 SMF counters that trace the performance 
impact of the processors, disk, and memory: MSP Utilization, CSP Utilization, 



344 5/36 Power Tools 

Task Work Area (TWA) Extents, Disk Seeks Greater Than 1/3, Disk Utiliza
tion, User Area Disk Activity, Storage Releases L3 and U, Cache Size, Cache 
Page Size, Cache Utilization, and Cache Hits and Misses. Langren also devel
oped an automated SMF procedure that simplified monitoring these counters. 
Each counter provides significant performance information in a key area. 

MSP Utilization and CSP Utilization 
The MSP and CSP summary counters reveal the utilization of these pro
cessors (by reporting the percent of time that the processors are not idle) 
and tell you whether the workloads are balanced between the two proces
sors. Balanced percentages for MSP and CSP use mean that processor loads 
are near optimum utilization. High levels of activity in either processor may 
adversely affect response time. 

TWA Extents 
The TWA is a system work space on disk, which is the slowest of the S/36 
system resources. When a user program is initiated, the CSP assigns a space 
in the TWA to hold a program when it is paged out of main storage. If the 
TWA size is insufficient, it remains extended until the next IPL. 

TWA extents usually are performance killers because they are not adja
cent to the originally configured TWA - they may be on the other side of 
the disk. Such placement means that performance is slowed by the slug
gish, mechanically dependent disk as it moves from TWA to TWA extent, 
seeking a program that has been paged to disk. 

To control TWA extents, Langren and Skowron try to IPL as soon as 
possible after an extent. They also increased the size of the TWA to accom
modate the company's increased use of IBM office products (i.e., Display
Write/36 and Query/36), which often cause TWA extents. 

Disk Seeks Greater Than 1/3 
The value "Disk Seeks GT 1/3" tells you during what percentage of the day's 
disk accesses the disk arm traversed more than 1/3 of the tracks. These kinds 
of disk accesses can be performance killers because of the time involved in 
positioning the disk arm (positioning the disk arm consumes 7S percent of 
disk access time). The farther the arm must move, the slower the access time 
and the greater the cost to system performance. Thus, this counter indicates 
how effectively files, libraries, and folders are placed on the disk spindles. 

Disk Utilization 
The Disk Utilization snapshot value reveals how long during the SMF 
interval each disk was busy. Langren and Skowron use this counter as a 
measurement of how well they have balanced workloads across their disk 



Performance 345 

spindles. A well-balanced workload should reflect nearly equal utilization 
percentages across the system spindles. 

User Area Disk Activity (UADA) 
The UADA counter (new with Release 5.1 of the SSP) is a summary value that 
reflects virtual paging activity to and from disk and reflects translated transfer 
(transient) loads (i.e., when SSP programs are invoked). The UADA represents 
the shuffiing ofsystem and user programs and block data between main mem
ory and disk when main storage is overcommitted. Most experts agree that the 
UADA counter is the best indicator of how efficiently main storage is being 
used. Langren and Skowron watch this counter closely because when it gets 
too high the system spends more time paging things in and out than working. 

Storage Releases L3 and L4 
Storage releases L3 and L4 are the best indicators of whether you are over
taxing main storage. Storage release levels (L1 - L4) indicate when one pro
gram has preempted another in memory. L1 and L2 storage releases, which 
indicate that the preemptor has a higher priority than the preempted, should 
not cause concern - but L3 and L4 storage releases should. 

An L3 storage release indicates that the priority of the program paged 
into main storage was only slightly greater or equal to the program that was 
paged out; an L4 storage release indicates that the program paged out had a 
higher priority than the program paged in. The L3 and L4 storage releases 
occur when main storage is so overloaded that the system is forced to pre
empt important programs just to make sure lower priority programs make 
some progress toward completion. 

Cache Size and Cache Page Size 
Cache Size is a measurement of the slice of memory you set aside for 
buffering data through S/36 Cache. Its value is greater than zero only when 
you have turned on S/36 Cache, and then it must be at least 64 K (maxi
mum value is no more than the size of the user area in main storage). Cache 
Page Size, another value you set when you engage S/36 Cache, is the smalI
est unit of data that S/36 Cache can bring into memory. Each cache page 
must be at least 1 K but not more than 16 K, and the ratio between cache 
page size and cache size must result in at least 32 pages of cache. 

These values affect performance when contention for memory space is 
great. If too much memory is alIotted to caching, the virtual page rate (the 
UADA) may increase enough to degrade system performance because user 
programs are contending for a smaller user area in memory. If too little memory 
is allotted to caching (or cache pages are too smalJ), then system performance 
may not gain the fuII benefit of cache's performance-enhancement capability 
because the data moved into memory is insufficient to minimize disk accesses. 



346 S/36 Power Tools 

Figure 13-2 

NEWDISK 
procedure 

Cache Utilization and Cache Hits and Misses 
Cache utilization is the percentage of cache reads that were found in mem
ory (i.e., data for which the system did not have to access the disk). It is cal
culated using the Cache Hits and Misses ratio. A cache hit occurs when the 
system finds a needed record in the cache. A cache miss occurs when the 
system does not find the record in the cache and must read the disk 
instead. Langren and Skowron monitor the cache utilization counter to 
measure cache's positive effects on system performance - using it as a 
yardstick to measure whether their cache sizes were set to gain the most 
performance benefit from the cache facility. 

Automated SMF Procedure 
Because SMF should be run on a regular basis before the counters are used 
to make performance management decisions, Langren created a procedure 
that runs SMF automatically. The procedure produces daily summary and 
detail reports (see Figure 13-2) and tailors the SMF snapshot-taking pro
cess to her needs. 

II TAG AGAIN 
SMFSTART 500.200 .. N.SMF.LOG ..... Y 
I I WAIT INTERVAL-001500 
SMFSTOP 
SMFPRINT ALL,Y,P5.SMF.LOG SEND TO P5 
II IF ?TIME?>171500 DELETE SMF LOG,F1 
II IF ?TIME?>171500 CANCEL OFF AT 5:15PM 
II GOTO AGAIN 
I I RETURN 

Procedure NEWDISK, designed at a time when Langren was tracking 
the need for additional DASD, uses the three SMF commands SMFSTART, 
SMFSTOp, and SMFPRINT to accumulate SMF information at IS-minute 
intervals during the day, print both summary and detail reports (indicated by 
the ALL on the SMFPRINT command) at 5:15 p.m., and then begin again. 
(For more information about these SMF commands, see Chapter 2 of the 
SMF Guide, SC2I-902s.) The procedure allowed her to accumulate informa
tion about how the system was being used throughout the workday (8 a.m. to 
5 p.m.), as well as follow her system's nighttime workload. 

Langren's plan proved to provide adequate measurements - despite 
some experts' recommendations for shorter intervals - because the system 
was in constant use during the nine-hour workday (during which there 
were no real peaks or lulls in interactive use) and because some batch work 
was done at night (which allowed her to compare daytime batch processing 
data to nighttime processing data). 



Performance 347 

Using the Information 
From the perspective she gained by regularly monitoring the 11 SMF 
counters, Langren began to address her organization's expressed concerns. 
She could address the circulation department's concerns about response 
times by continuing to improve disk and memory maintenance. By moni
toring some secondary SMF counters, she realized that the marketing 
department's problem with CRT access could be managed with job 
scheduling techniques and improved communication. The printer output 
problems could be similarly alleviated, but Langren and Skowron hope to 
purchase a second letter-quality printer eventually, so individual correspon
dence can be separated from batch-generated form letters. 

With the perspectives provided by ongoing organizational and system 
monitoring efforts, an MIS manager can make knowledgeable decisions 
about system performance management. Although IBM experts have pro
vided threshold values for S/36 resource use (see "S/36 SMF Threshold 
Values: A Thumbnail Guide" on page 351), the information must be tem
pered with knowledge of current system performance and expected system 
performance to properly apply performance-tuning techniques and make 
decisions about hardware upgrades. 

Sometimes the best performance technique is to ignore a threshold 
value and leave a system alone if it is performing to user satisfaction. If you 
anticipate an increase in system workload, begin planning for additional 
resource capacity. In DCI's case, Langren and Skowron needed an ongoing 
maintenance plan to keep carefully placed files and folders together and 
balanced across three disk spindles, and they needed some type of decision 
mechanism for maintaining efficient cache sizes. 

In parts 2 and 3 of "Managing S/36 Performance," you will see how 
Langren and Skowron used a file placement and disk balancing program to 
yield acceptable disk utilization levels and keep disk seeks greater than 1/3 
to a minimum and, in addition, managed file placement so that space for 
the growing files, libraries, and folders related to new projects could be 
anticipated. You will see how building a decision matrix for cache sizes 
helped them adjust memory to handle current workload efficiently and pro
vide a path for adjustment to additional workload. 

Although Langren and Skowron's specific placement of files on their 
spindles and their chosen values for cache sizes may not be universally appli
cable, the methods by which they approached these decisions, described in 
the next two parts in this series, can be applied in any S/36 shop. 



348 5/36 Power Tools 



Performance 349 




350 5/36 Power Tools 



Performance 351 




352 5/36 Power Tools 

".r;-" '/- "" , , ;';,; ',' /0''; -n,~ 

;;~~JI(Ylq~AreoI~nts" ......, ' .. ".,." ........... .......... u.;>,.>; {' "'1;;1;£; ;'ii;' i. 


:)y~u;shOtllcle9~sige~ i~cr~a~!ng .d1esize9!t:lie>ra~k.,;\V~rl);~p~;{1'YA.';;~~1 ;,; 
,~~eaEx(e~~sSbPW'UP.oll$lvf~stiTm~ry'J:eport~i,l~i~'fiQt~nuSu~l~..... . 

'fo·s~Veral:tillIeSjtl!.pl'evious;¥aluew~en:lnMQ(fice •. pr<lduct~f~t~.J~f 

.Dt(MiS,~~er~nnelincr~sed ~b~k~~~t /.... ..' l\fr0tJll~ZOp~1Q~k~ff

;bt<Faijse.o!t~¢90mpanY'sjnten~i~~~i~p. .ritetlnd~u.etY.:U$p>f 
 .I. 

f· f' 4Qyilsi~gC~FIO§SP an4,t~y~,p~r fql'mingan·I·Ptt.;,S~~ 

[{J#(1f/t~~Cl1~9052';}> ./ "'1 if 


~i"'.S~~~(Jteatetl1j~'li/~;:~~f, ;' 
··.D~causedi~k'i'cces~st~twa"e1'sem~retH~n:)I~~ft~e~~i~k~.~~<' 
.t~O)p~rforml:\ryce. this'sMF.summa~vatutlihould.tJ¢;~eR~':!lsb 
ro:~ccQmpU~6.this'objective,g~(J~1?·tig¢ib}!r;~disk.1sH\~t 

faq;~tI~rf~ri~s:EOi'~educe thedisnwc~ t~e .C, ·calatrnr'IDU, .. ~. 

:fr~e~rW'e:~e:vekalprescriptionsforplac~p .... ........... §;Qnll.·t1isk~;~l ...J) . 

'·;ip~{)ipqfa~ng.ft~espace on\:he.disk,to 'll.~~.~~pat;.. f1lek~rKJfo'9 

.fsr~k.9ist~~s:~a~i~crease rfietPlJfUpefjAoisa~IC;' 'ijbll/'" 

:'allPt4'lltJJ we*,e~tihedisJ{actel!l!es r'9fU 


,~",,''-'' ';'. : -' ,", ,"., "_ ','-, r;' ;._~"-, ,',;,.': ,-'-, _v'__~~<"\;;_ 

::,,~;~~~~ 



Performance 353 

Managing 5/36 Performance - Part 2 
A Streamlined Approach to 5/36 Disk Management 
by Debra Kahn 

Learn how to 
organize and 
maintain your 
disk space. 

a Code on diskette: 

Procedures VDSKTOA3, FLDCMPp, STMBPOl, STMBP02 
RPG program FLDCMP 

In general, Bob Skowron and Rebecca Langren's S/36 performance manage
ment goals for Duke Communication International {DCI) were the same as 
those of all S/36 MIS managers: to manage disk and memory resources effec
tively so the system performs satisfactorily and the MIS team can plan for 
and accommodate increased use. But as Langren and Skowron attempted to 
implement IBM's recommended methods of disk management, they began 
to encounter problems. This article describes how Langren and Skowron 



354 5/36 Power Tools 

handled these problems by improving recommended disk management prac
tices fOf object placement, free space location, and disk space balancing. 
Their solutions can be adapted for use in any S/36 shop. 

Langren and Skowron's initial disk-tuning activities centered on organizing 
files, folders, and libraries on individual disk spindles for better performance. 
As the previous article explained, the organization of objects on a spindle plays 
a crucial role in system performance becalJse it affects the amount of time the 
mechanically dependent disk arm takes to locate different objects. If objects 
on a disk spindle have been well placed, the disk arm will not have to travel far 
between requested objects, and disk accesses will not slow system perfor
mance significantly. If objects have not been well placed on the spindle, how
ever, the disk arm must traverse a greater distance between the objects it is 
seeking. When many such accesses are made in a small amount of time, the 
relatively slow nature of this type of disk access affects performance. 

This performance-degrading disk behavior i!. measured by the System 
Measurement Facility (SMF) counter Disk Seeks Greater Than 1/3. The 
counter indicates the number of disk accesses during which the disk arm 
had to traverse more than one-third of the disk tracks. Thus, one objective 
of careful disk space organization is to reduce or eliminate the disk seeks 
greater than one-third during the system's work day. 

Langren and Skowron encountered two problems as they initiated 
IBM's recommended methods of disk space organization on their individ
ual spindles. Langren and Skowron's first problem was inherent in their 
addition of a third disk spindle: the direction of disk compression on the 
second spindle in a three-spindle configuration is opposite from the direc
tion of disk compression on the second spindle in a two-spindle configura
tion. They questioned whether they should follow the manual's 
recommended change in disk organization for tht: second spindle. Second, 
Langren and Skowron's original experience with recommended disk space 
organization methods, as practiced on their two-spindle system, had shown 
that the recommended location of work space (free space) on disk spindles 
accomplished by simple disk compression methods tends to allow increases 
in disk seeks greater than one-third instead of controlling them. The two 
problems actually were interconnected; to understand them better, let's 
examine the recommended steps for object placement. 

IBM's Obiect Placement Scheme 
Both Chapter 4 of the S/36 Concepts and Programmer's Guide (SC21-7903) and 
IBMer Ken Willkomm present guidelines for the logical placement of data on 
a disk spindle based on its direction of compression and the resulting location 
of free space. The direction of compression for a panicular spindle is deter
mined by its position in a one-, two-, three-, or four-spindle system configura
tion (Figure 13-4). The direction of compression is opposite from the 
direction that the disk arm moves as it allocates space for a new file. 





356 5/36 Power Tools 

Figure 13-5 

IBM's 
recommended 
disk space 
organization 

When the system is told to allocate an object on a particular spindle, it 
searches for the first available, adequate space. As objects are created, 
deleted, reorganized, and extended, disk space on a spindle may become 
fragmented, leaving little contiguous free space for new objects. To help you 
free up space on a disk spindle, IBM has supplied the S/36 COMPRESS 
command. With this command, you can collect contiguous free space on a 
targeted disk and even initiate a process to organize objects on that disk. 

To aid in the process, the command's optional second parameter lets you 
specify the desired location for the area of contiguous free space (i.e., the 
highest block numbers or the lowest block numbers) on the spindle. Thus, 
the COMPRESS AI,FREELOW command collects the available free space 
at the lowest block numbers (the end at which the disk arm begins move
ment during file allocation) of spindle AI. If the second parameter is not 
used with the COMPRESS command, the system will collect the free space 
at the "high" end of spindle Al and at the "low" end of each of the subse
quent disks. (For more information about the COMPRESS command, see 
Chapter 4 of the S/36 System Reference manual (SC21-9020).) 

The free space location parameter of the COMPRESS command figures 
strategically in IBM's recommended procedures for arranging objects on a 
disk. In fact, the recommended procedure begins with a FREELOW com
press of spindle Al. This step frees space next to the system files and 
#LIBRARY (always located on the low end of spindle At). IBM then recom
mends that you move files, folders, and libraries into this free space by using 
the appropriate commands; the most frequently used files should be placed 
next to #LIBRARY. A second compress, this one with FREEHIGH specified, 
draws the files, folders, and libraries together and frees space at the high end 
of the disk. By applying these steps to AI, you move the most frequently used 
user files, folders, and libraries next to the frequently used system files and 
#LIBRARY; thus, the disk arm will not have to move far between the system 
objects and high-activity user objects, and disk seeks greater than one-third 
should be reduced. In addition, spindle Al will contain contiguous free space 
where new objects, as well as file and folder extents, may be placed. 

----- .. 

direction of 
allocation 

System & High Low Free 
#LlBRARY Activity Activity Space Al 

.... ----
direction of 

allocation 

Free High Low I 
L-_S_pa_c_e__~_______ __________________ ______-JA2A_c_ti_v_ity Ac_t_iv_it~y 



Performance 357 

The recommended procedure for freeing space and organizing objects 
on subsequent spindles is simpler because those spindles do not contain 
system objects. IBM first recommends that the COMPRESS command be 
used without the free space location parameter, thus creating free space at 
the low end of the disk. Then, files, folders, and libraries should be moved 
into the free space before executing another COMPRESS. These opera
tions result in the most frequently used objects on all spindles - except Al 
- always being located next to the available free space (see Figure 13-5 for 
a two-spindle system configuration). The benefits to this placement plan 
are simple execution and the allocation of new object, file, and folder 
extents (which often become most frequently used objects themselves) 
next to existing high-activity areas on spindles A2, A3, and A4. Thus, the 
placement reduces the distance the disk arm must travel from the most fre
quently used files to newly allocated files or extents. 

The Drawbacks to IBM's 
Obiect Placement Scheme 
Although IBM's recommended procedure considers and uses the direction 
of compression on a spindle, it neither considers how the resulting free 
space may be used nor considers the direction of arm movement across the 
spindle during object allocation. As a result of these oversights, the disk 
spindles can untune themselves quickly as extents and new objects are 
introduced, leading to performance degradation. 

To better understand the impact of these problems on system perfor
mance, let's examine a hypothetical situation involving file extents, new 
file and folder allocations, and file reorganizations on a recently compressed 
two-spindle system. When allocating a file, the system begins searching 
from the end of the preferred drive in the opposite direction of compres
sion. If it finds space that can hold the file being allocated, it puts the file 
there. If the system does not find space on the preferred drive, it searches 
the other drives for space to allocate the file (or the remainder of the file). 

To begin our hypothetical situation, suppose three of the high-activity 
files on spindle Al need extents, as is often the case. Because the disk has 
just been compressed, the system can find adequate, available space for the 
extents only in spindle At's free space. At this point, a possible perfor
mance problem is already apparent: a disk access of the extended files most 
likely will have to span more than one-third of the spindle tracks because 
the free space on spindle Al is located on the opposite side of the disk from 
where the original high-activity files are placed. 

Next, a user creates a new DisplayWrite/36 (DW/36) folder on spindle 
At. Under our hypothetical circumstances, the system's tendency to place 
the folder in the At free space can result in a disk seek greater than one-third 
during subsequent accesses to the folder. That is, the distance between the 



358 5/36 Power Tools 

Figure 13-6 

New disk space 
organization 

new DW/36 folder and a previously accessed DW/36 folder or DW/36 system 
file usually is greater than one-third the distance of the tracks. 

Finally, suppose a new, low-activity file has been allocated to spindle At. 
Again, the file is placed in the free space on AI. But as a result of the disk 
arm's direction of movement during file allocation and the location of the 
free space, the first available, adequate space for the file likely is after (i.e., 
to the right of) the high-activity file extents and the new DW/36 folder. 

Our hypothetical file allocation and earlier operations would result in the 
following jumbled organization for spindle Al (from low to high end): system 
files and library, high-activity files and folders, low-activity files and folders, 
three high-activity file extents, one new DW/36 folder, and one low-activity 
file. If we add to our hypothetical sequence a couple of reorganizations of 
high-activity files on spindle AI, these files' resulting shift to the free space 
intensifies the movement of our spindle's organization toward randomness. 

A similar jumble eventually would result on spindle A2 as low-activity 
files are extended and new, high-activity files are added. As a result, not 
only would the recommended disk organization of our two-spindle system 
quickly be thwarted, but disk seeks greater than one-third would gradually 
increase as the disk becomes disorganized. Only a disk compress and a 
time-consuming manual reorganization of objects on the spindles would 
restore order to the disks and good performance to the system. Any good 
disk management plan recommends frequent di~.k compresses, but follow
ing IBM's recommended plan for disk space organization requires unneces
sary diligence and labor. IBM's plan also requires a dedicated system 
because objects cannot be moved when they are in use. 

A BeHer Compr.ess 
A contributing factor to the inadequacy of IBM's recommended disk organi
zation plan is the COMPRESS command's free space location parameter, 
which allows for only one area of free space on a disk spindle. The IBM plan 
tries to overcome this limitation by recommending that high-activity files be 
placed next to this contiguous free space, but as you saw in 

----- .... 
direction of 
allocation 

System & Free High Low Free 
#LlBRARY Space Activity Activity Space Al 

~-----
direction of 

allocation 

Free Low High Free 
Space Activity Activity Space A2 



Performance 359 

our hypothectical case, such placement eventually can create disorder. To 
solve this problem, Skowron reasoned that S/36 disk spindles could be 
organized in a way similar to RAM (Random Access Memory) on a PS/2: by 
inserting free space between objects. 

Skowron's plan (shown in Figure 13-6 for a two-spindle system) places 
free space at both ends of each disk spindle and reverses the recommended 
organization of objects on all spindles except Ai. The plan not only allows 
more reasonably located object extents, but encourages the disk to self-tune 
during object allocation. These benefits accrue from consideration of one, 
the direction of disk arm movement during object extents and allocations, 
and two, the likely uses of free space on a spindle. Let's examine how 
Skowron's plan addresses these considerations by applying our hypothetical 
situation to a two-spindle system organized according to Skowron's plan. 

Skowron's plan first places one area of free space between the system 
files and the high-activity user objects on spindle At. Thus, when our 
hypothetical high-activity files extend, the extents likely will be placed in 
this free space because it is the first adequate, available space the disk arm 
will encounter as it searches for space for the extent. Because the distance 
between the high-activity files and their extents is minimal, this placement 
is more desirable than that provided by IBM's recommended disk space 
organization. Subsequent disk accesses of these files should not involve 
disk seeks greater than one-third of the disk tracks. 

When our hypothetical user creates his or her new DW/36 folder, it 
likely will be placed in the first free space also. Again, this placement is 
more desirable than that provided by the IBM plan because the distance 
between the DW/36 system files, the new DW/36 folder, and the other 
DW/36 folders is minimal. Subsequent use of the new DW/36 folder also 
should not result in disk seeks greater than one-third. Thus, the creation of 
free space at the low end of spindle A1 greatly enhances system perfor
mance by reducing disk arm movement (and thereby reducing access time) 
during certain types of disk accesses. As an added performance benefit, 
Skowron's plan for free space at the low end of spindle At places spool file 
extents next to the system files for easier access. 

Skowron's plan also creates free space at the high end of spindle At. 
This second free space works in tandem with the first to encourage the 
disk to tune itself. Self-tuning occurs because the second free space is used 
for new objects and extents only when the first free space has been used 
up. Because frequently used objects usually are extended or allocated first 
after disk compression, they stay in the high activity area on the spindle; 
similarly, the least-used object extents usually will go to the second free 
space. In addition, natural attrition of objects works with the disk organiza
tion and disk arm movement during allocation to keep the least-used 
objects at the high end of the disk. Holes created by deleting objects usu
ally are filled with objects of similar importance during allocation or are 



360 5/36 Power Tools 

Figure 13·7 

Thebeller 
compress. (This 
is procedure 
STMBPOlon 
diskette.) 

compressed out; thus, least-used objects usually drift toward the high end 
of spindle Al as a result of normal disk maintenance. 

Finally, Skowron's plan organizes subsequent spindles similarly to AI's 
organization: free space and high-activity files are located at the end of the 
disk where disk arm movement begins during file allocation. This organiza
tion is the reverse of IBM's recommended organization for these spindles. 
In addition to having the same advantage as IBM's organization - keeping 
high-activity file extents near the original files - this new organization for 
spindles A2, A3, and A4 has the same self-tuning advantage offered by the 
new organization of spindle AI. The spindle organization works with the 
system's allocation strategy to encourage self-tuning on the spindle if you 
follow simple maintenance practices. 

The maintenance tool that helps make Skowron's disk space organiza
tion plan successful is a "better compress." This method of disk spindle 
compression differs from the recommended method in that it builds a sec
ond 3,OOO-block free space in addition to the one created by compressing 
the disk. The key to the better compress is to execute a BLDFILE com
mand between alternate compresses of the spindle. (Figure 13-7 shows 
how this method can be applied to a two-spindle system.) To begin the bet
ter compress, execute the COMPRESS command to create free space at 
the end of the spindle that will contain high-activity objects. Then execute 
the BLDFILE command to create an empty 3,OOO-block file. The file 
retains free space after the second compress of the disk. Following a second 
compress of the spindle - this time in the opposite direction from the first 
compress - delete the empty file to create a second free space. 

• Compress Al & A2 with 3,000 blocks of workspace near #LIBRARY 
COMPRESS Al,FREELOW 
BLDFILE ##SPACE,S,BLOCKS,3000,256,A1 WORK FILE TO BE DELETED 
COMPRESS A1,FREEHIGH CREATE WORK SPACE 
DELETE ##SPACE,Fl. 
COMPRESS A2,FREEHIGH 

BLDFI LE ##SPACE, S, BLOCKS, 3000,256, A2 WORK FILE TO BE DELETED 
COMPRESS A2,FREELOW 
DELETE ##SPACE, Fl CREATE WORK SPACE 

During the first few applications of their "better compress," Skowron 
and Langren moved objects to the appropriate "high ..activity" and "Iow
activity" areas manually before they were satisfied they had the best organi
zation possible. The moves were accomplished between the first and 
second compresses of the spindle after the empty file had been built. To 
begin the move, they used the CATALOG procedure (with LOCATION 
specified for the fifth parameter) to obtain a listing of block number loca
tions and sizes for objects on each spindle. From this listing, they could 
determine a desirable order for the objects and pinpoint the changes needed 
in block number location (for more information about block number location 



Performance 361 

for disks, see Chapter 4 of the 8/36 Concepts and Programmer's Guide. 
They then began to move objects according to these determinations. 10 

move libraries, they used the ALOCLIBR command. Although designed to 
let users increase or decrease the size of a library, the ALOCLIBR command 
also can be used to change the location of a library. rib change a library's loca
tion, Langren and Skowron specified a small increase or decrease (e.g., one 
block) in library size, specifying the new block number location for the disk 
preference parameter (parameter 4). To move folders, they used the MOVE
FLDR command, indicating the block number preference in parameter 2. 

Moving files, however, required a bit more planning because on the S/36 
there is no ALLOCATE FILE or MOVE FILE command. The closest 
thing to either is the COPYDATA command. But because the COPYDATA 
command was created to duplicate data under a new file name (thus keeping 
the original data intact under the original file name), it does not let you 
remove a file from one location and place it in another. Therefore, Langren 
and Skowron used a three-step process for files. First, they renamed the orig
inal file using the RENAME command. Next, using the COPYDAT'A com
mand, they copied the renamed version of the file to the new block number 
location (specified for parameter five) under the original file name. Finally, 
they deleted the renamed version of the file using the DELETE command. 
Moving index files also involved removing and rebuilding alternate indexes. 

A MaHer of Imbalance 
After the initial manual reorganization of objects on the spindles, Langren and 
Skowron found that with continued use of the better compress, they did not 
need to rearrange objects on a particular disk very often. For the most part, 
the organization of objects on the spindles remained true to the original plan. 
However, they discovered that even with faithful use of the better compress, 
some imbalances (in the relative number of objects) between disk spindles 
occurred. Because unbalanced spindles can degrade system performance, the 
final problem that Langren and Skowron faced was devising a method of bal
ancing the workload across all spindles to work with the better compress. 

Imbalances among disk spindles in a multispindle system occur because 
the system always begins its search for space to allocate new objects on the 
least-used spindle when no spindle preference has been specified. Through 
an internal monitoring procedure, the system knows which spindles have 
had the most activity within the past operating hour. When a user creates a 
new object without specifying a spindle location, the system checks its spin
dle-activity figures and then attempts to allocate the object on the spindle 
with the lowest figure. In the case of a two-spindle system, the spindle with 
the least activity often is A2. (Because Al contains all the system files, its 
activity level can remain higher throughout the operating day.) As a'result, 
spindle A2 can become disproportionately filled with new objects. 



362 S/36 Power Tools 

Figure 13-8 

Procedure 
VDSKTOA3 

This imbalance can degrade system performance because as A2 
becomes filled, its disk seeks greater than one-third increase. So, one indi
cation of spindle imbalance could be a disproportionate increase in one 
spindle's disk seeks. Another SMF counter that Langren and Skowron 
monitor to evaluate spindle balance is the Disk Utilization counter. This 
counter gives the percentage of activity for a spindle during the snapshot 
period. Near-equal percentages for all spindles indicate a balanced system. 
(The SMF counter is different from the internal monitor the system uses 
for deciding where to allocate objects.) 

To rebalance spindles quickly, Langren and Skowron designed some auto
matic procedures for moving objects that they could use instead of the manual 
procedures described earlier. One procedure uses the RENAME, COPYDATA, 
and DELETE commands to copy files from the high-activity area of spindle 
A2 to the high-activity area of spindle At. Langren and Skowron included this 
procedure in their better compress after the initial compress of A2. 

They designed another procedure, VDSKTOA3 (Figure 13-8), to move 
direct files, large index or sequential files, and PC files to a new spindle auto
matically, via a SAVE to and RESTORE from tape (or diskette). The proce
dure can be executed via the job queue if the file name and new spindle 
location are supplied. (Otherwise, the procedure prompts the operator for 
these parameters.) When the procedure is run, it initializes the tape, saves 
the file to tape, renames the file on disk, restores the original file to disk, and 
deletes the renamed version. A message tells the operator that the file has 
been moved to the desired spindle. This procedure is a little kinder to the 
system than the COPYDATA sequence because it does not tie up two disk 
arms the way the COPYDATA sequence can when it is used with large files. 

// IF JOBQ-YES GOTO WORK 

// • 'Moves PCDISK/DISK File via Tape-l' , 

// • 'DO NOT USE THIS PROCEDURE IF FILE HAS ALTERNATIVE INDICES. 

// • 'Mount scratch tape on Tl, Volid-IBMIRD.' 

II * 'Enter the target drive location. A1, A2. or A3' 

/ / LOCATION OFFSET -1, DATA-' ?2R?' 

// • 'Enter the name of the PCDISK/FILE to be moved. 

// JOBQ 1,#LIBRARY.VDSKTOA3,?1R?,72? 


./ / RETURN 


TAPEINIT Tl ,SL, IBMIRO,CLEAR 

// WAIT INTERVAL-000010 REWIND TAPE 

SAY E ? I ? " , I BM I RD ,T1 

/ / WAIT INTERVAL-000030 REWIND TAPE 

RENAME 717 ,@@THE 

RESTORE ?1 7.", ,72?,Tl 

// IF DATAF1-?I? DELETE @@THE,Fl 

/1 MSG ?WS7. PCDISK/FILE '?1?' HAS BEEN MOVED TO ?2? 


Extents of large, high-activity files also can thwart the disk organization 
associated with the better compress. Langren and Skowron discovered that 
the 3,OOO-block space was not always large enough to contain extents of 
their large, high-activity files; the extents were going to the larger free 
space on the opposite side of the disk. This tendency has two disadvan



Figure 13·9 

Procedure for 
increasingfile 
size and 
reorganizingJile. 
(This is 
procedure 
STMBP020n 
diskette.) 

Performance 363 

tages: one, the disk seeks greater than one-third increase for that spindle; 
and two, the system "locks out" users from a file that is being extended 
and because large files take a long time to extend, users could be locked 
out for a relatively long time. 

To solve this glitch in their methodology and to improve file availability, 
Langren and Skowron designed a routine that would add more records to a 
specified file automatically each time it runs. The example routine shown in 
Figure 13-9 adds 1,000 records to the NEWSFILE file by evaluating param
eter 11 as the length of the file plus 1,000 records and then running the 
COPYDATA sequence. Langren and Skowron ran this routine nightly when 
they compressed the disk spindles, thereby avoiding performance-degrad
ing, large file extents during the work day. (Note: the COPYDATA state
ment in Figure 13-9 uses the REORG parameter to reorganize the index file 
in key-sequence order. This parameter is optional.) 

* Calculate new file slze - file + 1000 records 
1/ EVALUATE Pl0,7-?F'A.NEWSFILE'? 
1/ EVALUATE Pl1-?10?+1000 
* 
RENAME NEWFILE,OLDNEWS 
* 'REDRG' parameter in COPYDATA is optional 
COPYDATA OLDNEWS, ,NEWSFILE,RECRODS,?11?,A3, ,AEORG 
1/ IF DATAF1-NEWSFILE DELETE OLDNEWS,Fl 

As they became more comfortable with their disk management proce
dures, Langren and Skowron also began to practice some object-level man
agement to help improve disk performance. Their goals were to reduce 
disk seeks greater than one-third and to keep active data as concise as pos
sible. Their practices, listed below, can be used in any S/36 shop. 

• Reorganize index files in key-sequence order, so when a file is read in 
key order, program buffers (or S/36 Cache) can be used efficiently and the 
disk arm does not need to move back and forth across the file to locate 
records. 

• Process index files sequentially - when they are in key order - to avoid 
additional reads of the disk to access the index. 

• Delete unused files from the spindle or move them to a low-activity area, 
so active data is kept together and the disk arm does not move over unused 
data during disk accesses. 

• Purge unneeded records from master and history files. Again, unused 
data takes up space on the spindle and increases the likelihood of a disk 
seek greater than one-third occurring. 

• Avoid over-allocation of files and libraries. Over-allocation creates unused 
space on the spindle and increases distances between active data. 



364 5/36 Power Tools 

Figure 13-1Oa 

Procedure 
FLDCMPP 

Figure 13-10b 

Program 
FLDCMP 

• Keep source programs out of production libraries. Source programs are 
not needed in a production library (where object code is stored); they cre
ate a type of "unused space" in that location because the disk arm must 
move over them to find the next production object. 

One automated procedure that Langren and Skowron used to recover 
unused space in folders was Jeff Silden's FLDCMP (Figures 13-lOa and 
13-lOb). The FLDCMP procedure uses system utilities and a custom pro
gram to write and execute a CONDENSE command for each user-created 
DW/36 folder on the system. The procedure is equivalent to a "Condense 
All" for folders. (Extents and IBM-generated folders are not included.) 

As they put these concepts into practice, Langren and Skowron contin
ued to streamline and automate their disk management system. They ran the 
resulting routines nightly to keep their three-spindle system efficiently orga
nized. By automating their disk-tuning routines, Langren and Skowron also 
reduced the time the system was dedicated during the work day for manual 
reorganization of the spindles. Any S/36 shop can and should adopt similar 
practices, based on the recognition that the disk is the slowest component of 
a S/36 and therefore offers the most performance gain when kept well-tuned. 

To complete Langren and Skowron's recommendations for tuning your 
S/36, part 3 of "Managing S/36 Performance" will discuss system memory 
management and offer guidelines for setting S/36 Cache and organizing a 
nighttime job queue. 

•• Procedure name - F L D C M P P Sept 11, 1986 
Function - All OWj36 folders reorg'd to min. size & then bumped. 

// • 'FLDCMPP is running. Optimizing your Displaywrite folders!' 
// IF DATAF1-VTOC DElETE VTOC. Fl 
CATALOG ALL, Fl , , ,NAME, ,VTOC 
// LOCAL OFFSET-201.DATA-'050· • Amount to bump the folder for coming week 
// LOAD FLDCMP 
// FILE NAME-VTOC,RETAIN-S,DBLOCK-7F'A,VTOC'7 
// FILE NAME-FLORS,LABEL-7WS7,FLORS.BLOCKS-3,EXTENO-2,OBLOCK-96 
1/ RUN 
1/ LOAD $MINT 
II FILE NAME-7WS?FLDRS,RETAIN-S 
// RUN 
1/ COPY FROM-DISK,FILE-?WS?FLORS,TO-#LIBRARY,RETAIN-R 
// END 
CMPFLDR , • PROC CREATED BY FLDCMP 
•• End of Procedure - F L D C M P P 

2 3.. ... 4 .. 5 .. 6 ... 7 
0001 H/TITLE Creates Proc to Compress/Alloc all Folders • FLDCMP • 
0002 H 64 B FLOCMP 
0003 FVTOC IP F 132 132 DISK 
0004 FFLORS 0 F 80 80 DISK 
0005 •• Program Name - FLO C M P Sept 11, 1986 
0006 •• Function - Generates Del stream to compress all D~splaywrite 
0007 •• folders, and then ra-allocate at LOA-defined blocks over the minimum. 
0008 •• Operation - L3 break on name causes check if FLTYP is a folder. 
0009 •• If it is. we make sure it's not an OW-supplied one. If still 
0010 •• ok, get the folder name right justified and generate OCL lines 
0011 •• for a compressed save followed by ALOCFLDR. 
0012 E NAM 8 1 



Performance 365 

0013 FILD 8 
0014 Input Specifications 
0015 I" VTOC is the direct-to-disk output of a CATALOG by name. 
0016 I" the I-specs ONLY recognize records with an "F" in the "type" column 
0017 IVTOC NS 01 26 CF 
0018 I 1 8 NAME L3 
0019 I 1 1 NAMl 
0020 I 26 32 FLTYP 
0021 IVTOC NS 02 
0022 Loca 1 Data Area How much larger than minimum 
0023 UDS 
0024 201 2030BUMP 
0025 End of Input Specifications Start of Calculations 
0026 C 91 SETOF 91 For LOAD/RUN
0027 C 90 GOTO $NRML Only for 1st cycle
0028 C SETON 9091 
0029 Start of "regular processing" 
0030 C $NRML TAG 
0031 C SETOF 10 Every cycle
0032 C MOVE "BLANK FILD Clear leftovers 
0033 L3 deta; 1 is 1st record for a new VTOC name. Folders can 
0034 have multiple entries. 
0035 C L3 FLTYP IFEU 'FOLDER Only do folders 
0036 C L3 NAME IFNE 'WPDOCS But not IBM's 
0037 C L3 NAMl IFNE '#' 
003B C SETON 10 Enable output
0039 C MOVEANAME NAM 
0040 C Z-ADD8 I 10 
0041 Note usage here-"I" is length 1. Subtracting from 9 below 
0042 is appropriate. It gets the pointer bumped by 1 for the alignment. 
0043 C LOOP TAG We want to get the 
0044 C NAM,! COMP 'BLANKS 32-library name left
0045 C 32 SUB 1 31 justified. Scan 
0046 C 32 31 GOTO LOOP for rt-most char. 
0047 C 9 SUB I I Now, put into write 
0048 C MOVEANAME FI LD, I array.
0049 
0050 C END 
0051 C END 
0052 C END 
0053 OFLDRS D 91 
0054 0 23 '/ / COpy L1BRARY-P, NAME-' 
00550 39 'CMPFLDR,RETAIN-R' 
0056 0" Do ALOCFLDR MIN allows a fragmented folder to get equiv of CONDENSE 
0057 OFLDRS D L3 10 
0058 0 18 'ALOCFLDR 
0059 0 FI LD 17 
00600 21 'MIN' 
0061 0" Now do an ALOCFLDR INCR to up the amount of space, 
0062 OFLDRS D L3 10 
0063 0 18 'ALOCFLDR 
0064 0 FILD 17 
0065 0 23 'INCR, 
0066 0 BUMP 26 
0067 OFLDRS T LR 
0068 0 '// CEND' 
0069 "" End of Program - F L D C M P 



366 S/36 Power Tools 

Managing 5/36 Performance - Part 3 
Improving Performance by Merging Memory 
by Debra Kahn 

Maximize the 
performance of 
your company s 
8/36 by tuning 
cache sizes, 
settingjob 
queue 
priorities, and 
using nightjob 
queue 
procedures. 

a Code on diskette: 

Procedures JOBQl, JOBQ3, #SCHEDl, #SCHED2 
RPG programs JOBQ02, JOBQ03 

IBM supplies S/36 MIS managers with two resources for managing the sys
tem's internal memory: S/36 cache and the S/36 multistream job queue. You 
can control system throughput- and thus system performance - by adjust
ing cache values and setting job queue priorities based on your S/36 work load 
and job mix. In managing these two resources, Rebecca Langren and Bob 
Skowron, MIS staff for Duke Communications International (DCI), shared 
the goal of all MIS managers: increase system throughput to maximum effi
ciency while maintaining acceptable user response times. To that end, Lan
gren and Skowron devised rules for managing cache and the multistream job 
queue that you can adapt to your own performance management plan. 

Cache: Not Just Small Change 
S/36 cache lets you control multiple disk accesses systemwide by sharing data 
already in memory. This sharing can translate into faster throughput times by 
lessening the effect ofvirtual paging on data access. Properly used, cache can 
be the cornerstone of any S/36 memory management plan. But, if improperly 
used or used with too little available memory, cache can compound an already 
high virtual paging rate with many writes to disk from cache pages. 

Langren and Skowron were familiar with the benefits and drawbacks of 
implementing S/36 cache, but they needed criteria for deciding whether to 
implement the resource and when and how to modify it. IBM has spelled 
out some criteria, but those sources lack the comprehensive perspective 
Langren and Skowron needed to judge whether cache could help their sys
tem's performance and whether they had applied the resource effectively. 
So, they began to develop their own cache implementation criteria. The 
first step was to determine whether implementing cache would in fact help 
them meet their performance goal. To determine cache's usefulness on 
their system, Langren and Skowron applied two rules of thumb culled from 
reading and from talking with experts. 

The first rule was that caching works best when memory is not a con
straint and when the job mix includes consecutive processing of shared or 
unshared files or random processing of a heavily shared file. Because DCI's 
S/36 has plenty of memory and because much of the job mix centers on 
processing one large, heavily shared customer file, Langren and Skowron 



Performance 367 

suspected that implementing S/36 cache would help them use their mem
ory resource more efficiently. 

The second rule of thumb was that System Measurement Facility 
(SMF) User Area Disk Activity (UADA) counts of between 75 and 125 per 
minute mean the system is already using its memory resources produc
tivelyand that cache could help increase throughput. The UADA count 
reflects the amount of shuffling of system and user objects between main 
memory and disk (i.e., transient loads and virtual paging) when memory is 
overcommitted. In DCI's case, UADA counts were well within the accept
able range, and Langren and Skowron concluded that proper cache man
agement could yield measurable performance improvement. 

Planning for Cache EHiciency 
After determining that implementing S/36 cache would indeed help meet 
their performance goal, Langren and Skowron collected baseline data by 
recording several weeks of SMF data and by noting completion times for 
weekly and daily jobs. Langren and Skowron then devised an implementa
tion plan based on careful monitoring of cache-related SMF values. 

Effective cache management requires achieving optimum cache size by 
tuning two cache parameters: the amount of user area allocated to cache in 
main storage (at least 64 K) and the size of cache pages (1 K, 2 K, 4 K, 8 K, 
or 16 K). Furthermore, the ratio between these two numbers must allow 
the system to create at least 32 pages in cache. Langren and Skowron rec
ognized that they had to monitor SMF reports to determine when to mod
ify cache sizes and by how much. During previous planning efforts, 
Langren and Skowron had chosen two cache-related SMF counters to mon
itor in addition to UADA: cache utilization (i.e., the average and maximum 
percentage of cache reads found in memory) and cache hits and misses (i.e., 
the number of times the system found needed data in memory and the 
number of times the system did not). Minimum acceptable cache utiliza
tion is 40 percent, and the minimum ratio of cache hits to misses is 2: 1. 

Based on experience, Langren and Skowron then devised a decision 
flowchart. Their flowchart (Figure 13-11) is an effective performance man
agement tool you can use to help tune cache on your S/36. The flowchart 
helps you analyze cache efficiency by letting you use SMF values to evalu
ate memory usage. The flowchart also provides paths to follow for fine-tun
ing cache when memory performance lags. 

The flowchart's starting values for implementing cache are conserva
tive: one-fifth of your system's total memory size (specified for parameter 
two of the CACHE command) and a 4 K page size (specified for parameter 
three). After you start cache with these values, you should monitor your 
SMF counters for a sufficient length of time (several hours during each of 
your different computing environments - e.g., interactive day work and 
batch night work) to determine whether the values fall within acceptable 



368 5/36 Power Tools 

Figure 13-11 

The cache 
decision 
flowchart 

Cache 
1/5 Mem 
4K Page 

Run SMF 

Increase Page 
Size 1 

Increment 

Increase 
Cache Size 

10% 

Reduce 
Cache Size 

10% 

YES 

Reduce Page 

Size 1 


Increment 




Performance 369 

Figure 13-12 

Hom' records in a 
cache page affect 
utilization 

boundaries. Be sure to monitor during peak times to get the best feel for 
how well your system performs with cache. You also should determine 
whether interactive response time is acceptable. To do this, you can use the 
8/36 RMF (Response Time Measurement Facility) or informally monicor 
user satisfaction through surveys and "walkthroughs." 

If cache utilization, hit-co-miss ratio, and UADA fall within acceptable 
ranges (i.e., cache utilization of at least 40 percent, a hit-co-miss ratio of at 
least 2:1, and a UADA of75 to 90 pages per minute), and if response time is 
good, cache is helping your system, and you should notice some improve
ment in job completion times compared to baseline times collected before 
you implemented cache. But if your UADA, for instance, is creeping out of 
the "comfort zone" of 75 to 90 pages per minute, you should follow the 
flowchart to fine-tune your cache values. 

To help you make such adjustments, the flowchart contains three yes-no 
branches, each based on a different range of UADA values. Each branch asks 
you to examine your cache 8MF values further and suggests you alter cache 
sizes according to the results of that examination. (Remember, any time you 
alter cache sizes, you still must meet the 32-page minimum, so adjusting one 
value may mean adjusting the other also.) Each branch returns you CO the 
"run 8MF" instruction because you must monitor system performance con
tinuously to judge whether further changes in cache are necessary. 

The key to adjusting cache is co keep in mind both your cache utiliza
tion, which reflects what portion of cache storage is being used, and your 
hit-co-miss ratio, which reflects how effectively cache is keeping needed 
data in memory. Adjusting cache page size can improve your cache utiliza
tion percentage. But again, consider your job mix. If your system usually 
processes files that contain large records, increasing cache page size lets the 
system place more records into each page, thus increasing the likelihood 
that the system will locate a needed record in that cache page and improve 
cache utilization. The same is not true, however, for files with small 
records. Figure 13-12 illustrates this principle. 

2K - 100-byte records 95% 

11111111111111111111111111111111111111111111111111 

2K - 1 ,OOO-byte records 67% 

1 I 1 

8K - 1 OO-byte records 99% 

11111111111111111111111111111111111111111111111111111111111111111111111111(111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

8K- 1 ,OOO-byte records 89% 

I I 1 



370 5/36 Power Tools 

Increasing cache page size from 2 K to 8 K when your system processes 
IOO-byte records gains you only a 4 percent increase in cache utilization. 
But the same increase in page size gains you a 22 percent increase in cache 
utilization if your system processes I,OOO-byte records. 

Increasing cache size in addition to page size results in more records 
available in memory, thus increasing the likelihood of a cache hit and 
improving your hit-to-miss ratio. But too many cache pages can affect effi
ciency as much as too few. Because the system writes data from cache to 
disk as soon as the user program calls for a write operation, cache efficiency 
suffers when the system performs too many writes (and subsequent disk 
reads) in a short time to keep up with the demand for necessary data. 
Hence, the left and center branches of the flowchart instruct you to read
just page sizes to keep cache utilization within acceptable limits. 

Also remember that you can alter cache sizes to match your job mix. 
Langren and Skowron found that increasing cache page sizes each evening 
improved their system's handling of the regularly scheduled evening batch 
work, which called for very large sequential reads of the customer file. 

Working with Job Priorities 
Langren and Skowron's efforts to increase their system's throughput also 
focused on job scheduling techniques that enhance the S/36's multistream 
work capacity. The separate responsibilities of the Main Storage Processor 
(MSP) and the Control Storage Processor (CSP) and the existence of virtual 
storage in addition to real address space in the user area of memory mean that 
the S/36 can work on many user jobs at once, both interactive and batch. 
Common sense, however, dictates that you schedule large batch jobs and low
priority jobs so they do not interfere with high-priority interactive work. In 
addition, every company experiences times when, either to meet a deadline or 
a managerial objective, the system must work on one job before all others. By 
letting you assign priorities to jobs, the S/36 job queue gives you the means to 

schedule jobs and therefore the means to control your system's work stream. 
But S/36 operators, if they use the job queue at all, often don't know which 

priority they should assign to user jobs. Such uncertainty defeats the purpose of 
the job queue and can mean the system is struggling to accommodate more 
workload than it should. To understand how the S/36 job queue can help 
increase system throughput by controlling the work stream, let's review the 
basics of setting up the job queue and then examine two schemes that Lan
gren and Skowron devised - and that you can use - to enhance performance. 

To check the status and priority of any job in the job queue, you must 
examine the job queue status screen (Figure 13-13a). In addition to current 
status, this screen tells you how your job queue is set up. That is, it tells 
you the maximum number of jobs you've allowed to be run from the job 
queue ("Max Active Jobs") and how many jobs from each priority group 
can run at one time ("Max for PRTY"). 



Performance 371 

Flgur. 13·13a 

Job queue stotus 
screen 

Flgur. 13·13b 

JOBQUEUE 
command screen 

Flgur. 13·13c 

Job queue change 
maximum screen 

Complete JOB QUEUE STATUS 
Jobl in Queue: 0 of 100 JOBQ PRTY STOPPED : 0 

Max Active Jobl: 3 Max for PRTY 5:1 4:2 3:1 2:1 1:1 0:1 
PRIORITY 

POS JOBNAME PROC/DOC LIBR/FLDR USER STATUS JOBQ PROC 

SYS-5689 The job queue i. empty now 

Cmd7-End Clld8-Halp Clldl5-Upda te ClldI8-Ra.tart Roll-
Page 

JOBQUEUE 
Jobs on the job queue 

1. Dilplay Ipecific job(l) 8. Start the job queue 
2. Put a job on the queue 7. Stop the job queue 
3. Cancel a job 8. Change pOlition of a job 
4. Hold a job 9. Change procelling priority 
5. Releale a job 10. Change maxi mUll active jobl 
Ready for option number or com.and 

CHANGE COMMAND Optional-' 
Change maximum number of active job queue jobl 

Job queue or job queue priority .. . . JOBQ,O,1,2,3,4,5 JOBQ 

Number of job. . . ....... l' - 50 

Cmd3-Previous ..enu 



372 5/36 Power Tools 

Figure 13-14 

Examplejob 
queue priority 
assignments 

Langren and Skowron allow no more than three jobs to be run from the 
job queue at once, and only one per priority. The three-job maximum con
trasts starkly with the default SO-job maximum for the S/36 job queue, hut 
Langren and Skowron found that allowing more than three jobs to run con
currently severely degrades user response times. Few, if any, shops that do 
interactive work should operate with a job queue set at a SO-job maximum. 

To determine your maximum setting, experiment with different values 
and monitor how they affect user response times and SMF values. To 
change the maximum job total or the maximum number of jobs for a prior
ity, you must summon the job queue command screen (Figure 13-13b) by 
typing HELP JOBQUEUE from the system console. Then take option to 
and complete the appropriate parameters (Figure 13-13c). 

In addition to ensuring that user response times are not compromised 
by running too many jobs from the job queue at one time, Langren and 
Skowron wanted to ensure that scheduled jobs do not compete with one 
another or with emergency jobs. °lb meet this objective, they limited the 
number of jobs per priority to one and set up concrete criteria for each pri
ority. Their priority list (Figure 13-14) reflects a sensible approach to 
scheduling emergency requests - giving them the highest priority of 5 
and considers the company's system requirements. 

Priority 5 (Highest): Emergency requests 
Priority 4: Express work 

DW/36 letters 
Short batch jobs 

Priority 3: DMAS 
CMAS 
MAPICS 
Accounting applications 
Subscription fulfillment 

Priority 2: Large batch jobs 
DFU lists 
Data merge with DW/36 
Query/36 jobs 

Priority 1: Application development and maintenance 

Most of DCI's users occasionally print unique correspondence on com
pany letterhead using DisplayWrite/36. Langren and Skowron gave such 
letter-printing jobs the next-highest priority (4). Langren and Skowron also 
used priority four for short batch jobs needed to keep other work flowing. 
Langren and Skowron placed work to be done by IBM applications (DCI 
uses only DMAS) at priority three to avoid changing IBM's recommended 
job queue priority. In addition, Langren and Skowron gave a priority of 
three to accounting applications and subscription fulfillment tasks because 
these jobs are essential to the company's day-to-day operation. At priority 
two, Langren and Skowron placed large batch jobs, DFU lists, data merges, 



Figure 13·15a 

lOBQ} 
procedure to 
load nighttime 
job queue 

Performance 373 

and Query/36 work because these jobs require large amounts of resource 
and often are not crucial to daily operations. Finally, application develop
ment and application maintenance, which often has no specific deadline, 
are at the lowest priority. 

You can decide whether to construct your own priority criteria or adapt 
Langren and Skowron's by considering your company's system require
ments. As always, be sure to monitor SMF values and user satisfaction to 
ensure that your criteria are on the mark. In addition, you should secure 
support from management and users for your job queue scheme by explain
ing how your scheme furthers the company's business goals. Langren and 
Skowron took consideration of their company's system one step further and 
created a nighttime job queue and night work scheduler to accommodate 
additional user workload. 

Night Owls Need Work 
Del's nighttime job queue consists of a set of procedures and programs 
Langren and Skowron include in their daily work to facilitate job schedul
ing. Procedure JOBQl (Figure 13-1Sa) and program JOBQ02 (Figure 13
ISb) let users submit jobs to a "Night JOBQ" by placing those jobs' 
parameters in a special file during the day. Procedure JOBQl then evokes 
procedure JOBQ3 (Figure 13-1Sc) and program JOBQ03 (Figure 13-1Sd), 
which remain inactive until the nightly maintenance procedure completes 
its work, to read the file and then load and run the submitted jobs. By look
ing at the file's contents (using POP's file browse, for example), the system 
operator can easily review the list of jobs submitted to the nighttime job 
queue and make adjustments before leaving for the day. 

II LOCAL OFFSET-1 ,DATA-'71?' ,BLANK-256 
II LOCAL OFFSET-9,DATA-'?2?'
II LOCAL OFFSET-17,DATA-'?3 7 ' 
II LOCAL OFFSET-25,DATA-'74 7 ' 
II LOCAL OFFSET-33,DATA-'?5?'
II LOCAL OFFSET-41 ,DATA-'?6?' 
II LOCAL OFFSET-49,DATA-'?7?'
II LOCAL OFFSET-57,DATA-'?8?'
II LOCAL OFFSET-65,DATA-'?9?'
II LOCAL OFFSET-73,DATA-'?10?'
II LOCAL OFFSET-81 ,DATA-'711?'
II LOCAL OFFSET-89,DATA-'712 7 ' 
II LOCAL OFFSET-97,DATA-'713?'
II LOCAL OFFSET-105,DATA-'7147 ' 
II LOCAL OFFSET-113,DATA-'?157 ' 
II LOCAL OFFSET-121 ,DATA-'?16?'
II LOCAL OFFSET-129,DATA-'?17?'
II LOCAL OFFSET-137,DATA-'?18?'
II LOCAL OFFSET-145,DATA-'?19?'
II LOCAL OFFSET-153,DATA-'?20?'
II LOCAL OFFSET-161 ,DATA-'?21?'
II LOCAL OFFSET-169,DATA-'722 7 ' 
II LOCAL OFFSET-177,DATA-'723?'
II LOCAL OFFSET-185,DATA-'724?'
II LOCAL OFFSET-193,DATA-'?25 7 ' 



374 5/36 Power Tools 

Figure 13-15b 

Relatedprogram 
JOBQ02 

Figure 13-15c 

lOBQ3 
procedure to run 
nighttimejob 

I I LOCAL OFFSET -201, DATA-' 7267' 
II 	LOCAL OFFSET-209,DATA-'7277' 
II 	 LOCAL OFFSET-217,DATA-'72S7'
II 	LOCAL OFFSET-225,DATA-'7297, 
II 	 LOCAL OFFSET-233,DATA-'7307' 
II 	 LOCAL OFFSET-241 ,DATA-'7317' 

Keep workstn ID to notify user when task has completed in proc JOBQ3
II 	 LOCAL OFFSET-249,DATA-'7WS7' 

If you do not install the programs in #LIBRARY add the library name 
LOAD JOBQ02,library 

I I LOAD JOBQ02 

II FILE NAME-IN,LABEL-INPRC, 

II 	IF DATAF1-INPRC EXTEND-1 

II 	ELSE DISP-NEW,BLOCKS-4 
I I 	 RUN 

CHG To RETURN--will start JOBQ3 after nightly backup. 
II 	PAUSE 'This job has been submitted to the Night JOBQ. 
II RETURN 

If you do not install the programs in #LIBRARY add the library name 
II IFF ACTIVE-JOBQ3 EVOKE JOBQ3 

IFF ACTIVE-JOB03, library EVOKE JOBQ3, library 

2 3 4 	 7 
0001 H/TITLE UPDATE FILE INPRC WITH NITEQ PARMS 
0002 H 024 	 1 JOB002 
0003 FIN 0 F 256 256 DISK 	 A 
0004 I LDADS UDS 
0005 I 	 1 256 LDATA 
0006 C 	 MOVELLDATA RECORD256 
0007 C SETON 	 LR 
OOOB OIN LR 
0009 0 RECORD 256 
II IFF DATAF1-INPRC RETURN 
II TAG $START 

if you do not install the programs in #LIBRARY add the library name 
LOAD JOB003. library

II LOAD JOBQ03 
II FILE NAME-IN,LABEL-INPRC 
I I 	 RUN 
I I EVALUATE Pl-7L'1,S'7 P2-7L'9,S'7 P3-?L'17,S'7 P4-7L'25,S·7 

P5-?L'33,S'7 P6-7L'41,B'7 
I I EVALUATE P7-?L' 49. S' 7 PB-?L'57,B'7 P9-7L'65,S'7 P10=7L'73,S'7 

P11-?L'B1,B'? P12-?L' S9, S' 7 
II EVALUATE P13-?L'97,S'7 P14-7L'105,B'7 P15-7L'113.S· 7 P16-7L'121,B'7 

P17-?L'129,S'7 
II EVALUATE 	 P1S-7L'137,S'7 + 

P19-?L'145,B'7 + 
P20-7L' 153, S' 7 + 
P21-?L'161,S'7 + 
P22-?L'169,S'? + 
P23-7L'177.S'7 + 
P24-?L'lS5.S'7 + 
P25-?L' 193, S' 7 + 
P26-?L'201,S'7 + 
P27-?L'209,S'7 + 
P2B=?L'217,B'7 + 
P29-?L' 225, S' 7 
P30-7L'233,S'7 + 
P31 -?L' 241 ,S' 7 + 
P32-7L'249,2'7 

II LIBRARY NAME-717 
II 727 737. 747.757,767,777,7B7,797,710?711 7 . 7127,7137,7147,7157,7167,+ 

7177,71S7. 7197,7207,7217,7227.7237.7247 .7257,7267,7277,72S7,7297. 7307 

Send msg to submitter workstn to let user know work successfully completed.
II 	LIBRARY NAME-7CLIB7 
II 	MSG 7327.PROCEDURE 727 HAS COMPLETED ON THE NIGHT JOBQ.' 
I I IF DATAF1- INPRC GOTO SSTART 
I I RETURN 



Performance 375 

Figure 13·15d 

Relatedprogram 
JOBQ03 

Figure 13·16a 

#SCHEDI 
procedure to 
evoke night work 

Figure 13·16b 

#SCHED2 
procedure to ron 
night work 

234 5 6 .. 
0001 H/TITLE SET UP PREP TO RUN ACTIVE JOBS & TAG ONCE RUN IN FILE INPRC 
0002 H 034 JOBQ03 
0003 FIN UP F 256 256 DISK 
0004 liN NS 01 lNC
0005 I 1 256 RECORD 
0004 I NS 02 
0006 ILDADS UDS 
0007 I 256 LDATA 
0008 I 8 LIBR 
0009 I 16 PROC 
0010 I 17 24 PARMl 
0011 I 25 32 PARM2 
0012 C MOVE 'BLANKS LDATA 
0013 C 01 MOVELRECORD LDATA 
0014 C 01 SETON LR 
0015 C' 
0016 C NOl MOVEL'#LIBRARY'LIBR 
0017 C NOl MOVEL'DELETE 'PROC 
0018 C NOl MOVEL'INPRC 'PARMl 
0019 C NOl MOVEL'Fl 'PARM2 
0020 OIN D 01 
0021 0 1 '-' 

Shell-scheduling procedures help Langren and Skowron schedule jobs 
they need to run only on certain days of the week, Procedure #SCHE01 
(Figure 13-16a) simply records the day of the week by loading an LOA 
value and then evokes the procedure #SCHE02 (Figure 13-16b), which 
waits until 10 p.m. before commencing. Langren and Skowron use 
#SCHE02 to load all daily jobs that can run at night without operator assis
tance. After running the daily jobs, the procedure can evaluate the day-of
the-week value and run the appropriate jobs for that day. 

/ / IF SWITCH8-1 GOTO SKIP 
// IF ?2?/X' 'Invalld date. Please answer the question again: ' 
// • 'What day is it? (Enter MO,TU,WE.TH,FR,SA OR SU)' 
// IF ?lR?1 RESET #SCHEDl ,X 
// IF 71?/MO EVALUATE Pl-6 
// IF ?l?/TU EVALUATE Pl-5 
II IF ?l?/WE EVALUATE Pl-4 
II IF "?/TH EVALUATE Pl-3 
1/ IF ?l?/FR EVALUATE Pl-2 
II IF ?17/SA EVALUATE Pl-l 
1/ IF ?l'/SU EVALUATE Pl-7 
// IFF 71?>0 RESET #SCHEDl ,X 
// IF ?17>7 RESET #SCHEDl ,X 
II EVALUATE P2-' 
II TAG SKIP 
// EVOKE #SCHED2 ?1' 
II RETURN 

# AUTOMATIC SCHEDULE PROGRAM TO RUN DAILY WORK AT NIGHT WITHOUT 
# OPERATOR ASSISTANCE NEEDED. OPERATOR WILL NEED TO LET SYSTEM 
# KNOW WHAT DAY IT IS. THIS PROC CALLS #SCHED2. 
** ................ *** ** ...... * .... *** **- ................ ** ** ................... ** ........................ * * ** 


// REGION SIZE-2 
II SWITCH XXXXXXXl 
II WAIT TIME-220000 (1000 P.M.)
II REGION SIZE-54 
// EVALUATE Pl-717-1 
******************* DAILY JOBS BELOW 

******************* END DAILY JOBS 



376 5/36 Power Tools 

.*.**************** WEEKLY JOBS BELOW: 
II IF 717/5 MON010 -MONDAY ONLY 
II IF 717/4 TUE010 -TUESDAY ONLY 
II IF 717/3 WED010 -WEDNESDAY ONLY 
II IF 717/2 THU010 -THURSDAY ONLY 
II IF 717/1 FRI010 -FRIDAY ONLY 
II IF 717/0 SAT010 -SATUROAY ONLY 
II IF 717/0 EVALUATE P1-7 -SATURDAY ONLY 
******************* END WEEKLY JOBS 
II RESET #SCHED1 717 
****************************************************** •• ************ 
# PROCEDURE THAT IS PART OF THE AUTOMATIC DAILY RUN SYSTEM. THIS 
# PROCEDURE ACTUALLY CHECKS WHICH DAY WAS SELECTED BY THE OPERATOR 
# EARll ER AND THEN RUNS THE PROCEDURE AT SET TIME. 
******************************************************************** 

You can adapt the night queue and scheduling procedures to your shop 
by using the appropriate tasks and values. Be sure all tasks in the nighttime 
job queue and all daily night work can stand truly "operatorless" operation. 
That is, you must anticipate necessary operator responses and error mes
sages with the appropriate procedural language. Scheduling night jobs to 
increase overall system throughput is helpful only when they are com
pleted successfully! 

Good scheduling devices and appropriate job queue priorities can help 
you feed the system its tasks more efficiently and can increase overall MIS 
efficiency. But to these external devices, a good MIS manager always com
pares performance with organization requirements to understand how the 
system supports its users and the company goals. Only from this vantage 
point can you experiment with performance-tuning techniques. 

Evaluating Cache Performance with SMF 
by Ron Elliott 

program by Sven Johnson 

a Code on diskette: 

Procedure SMFP21 
RPG programs SMFP21, SMFP23 

Use this handy Performance is an issue that affects all computer installations. One of the 
utility to bring most powerful weapons that S/36 shops can employ in the battle for better 
all the cache performance is cache. Using cache is pointless, however, unless you mea
critical values sure results and tailor the cache parameters of buffer size and page size to 
from your system. The System Measurement Facility (SMF) is a powerful tool 
consecutive that gathers statistics on system performance, but the voluminous report it 
SM F snapshots produces makes it difficult to narrow in on the numbers relevant for cache 
together into analysis. Utility SMFP21 solves that problem by selecting important infor
one report. mation from SMF and presenting it in an easy-to-use, condensed format. 



Performance 377 

The Essentials of Cache and SMF 
If you are not familiar with the usage of either cache or SMF, you have some 
homework to do before you can benefit from utility SMFP21. Briefly, cache 
is a S/36 function that lets you allocate part of your main storage as a high
speed input/output buffer area that is shared systemwide. To balance the 
benefits of cache against possible disadvantages, you must choose the right 
values for cache page size and buffer size. The bigger the cache buffer, the 
more likely requested disk records are to be in the buffer; but if the cache 
area is too big, system performance suffers for lack of main storage. And if the 
total cache size or page size is too small, the time spent moving pages of data 
into the buffer from disk will negate the advantage of fast buffer retrieval. 

SMF is an IBM-supplied utility that takes snapshots of system activity at 
user-specified intervals. The utility contains four separate procedures: SMF
START to begin collection of snapshot data, SMFSTOP to end data collec
tion, SMFPRINT to print an SMF report, and SMFDATA to create a report 
data file. The average SMF detail report is many pages long, making it diffi
cult to locate the cache storage size, page size, utilization, and UADA (user 
area disk activity) data necessary to analyze your use of cache. Although SMF 
offers a summary report, that report doesn't reflect changes you've made to 
cache storage size and page size and still contains non pertinent information. 

Care and Feeding of Utility SMFP21 
Before you can use utility SMFP21, you must key in procedure SMFP21 
(Figure 13-17), program SMFP21 (Figure 13-18), and program SMFP23 (Fig
ure 13-19) and also prepare input data while running cache. You collect data 
using SMF procedures SMFSTART and SMFSTOP and later convert the 
collected data to the proper input format by running procedure SMFDATA. 

Depending on your desired results, the time periods and snapshot 
intervals you choose for running SMF data collection (SMFSTART and 
SMFSTOP) and the parameters you choose for cache can vary. Ifyour goal 
is to improve system efficiency during periods of peak activity, use a snap
shot interval of one to three minutes, and collect SMF data at times of peak 
system activity every day for up to 10 days. (Data from separate days accu
mulates in default file SMELOG or your named file as long as you con
tinue to use the same file name.) If you want to see how different cache 
sizes and page sizes affect performance, use the CACHE ALTER com
mand to vary those values while SMF is active. For example, you can begin 
with a small amount of storage allocated to cache and increase it a little 
every 10 minutes, varying the page size at the same time. If you want to tai
lor your use of cache to different activity levels during the day, run SMF for 
an entire work day while still systematically changing cache parameters. If 
you have previously established standard cache values for your system, you 
may want to collect only a brief period of peak activity for review purposes. 



378 5/36 Power Tools 

When you have enough SMF data, run procedure SMFDATA (use 
report option ALL and default report file SMEDATA) to convert the col
lected data to the SMEDATA format expected by program SMFP21. 

With procedure and program files in place and SMEDATA at ready, run 
procedure SMFP2I to create the cache analysis report (see Figure 13-20). 
This report lists the performance statistics for each snapshot interval on a 
single line. The last values on each line of data - Disk Cache Storage 
(DCS) and Cache Page Size (DCP) - are the cache parameters in use at 
the time of the snapshot. 

What Does It All Mean? 
Here are some quick tips on using the report: 

• The Main Storage Processor (MSP) value should be less than 60 percent. 

• The Control Storage Processor (CSP) value should be less than 6S per
cent. 

• Use of cache should decrease the percentage of time that each disk is 
used (shown under report headings AI, A2, A3, and A4). With or without 
cache; you should try to balance disk use evenly across the spindles on your 
system. 

• If User Area Disk Activity (UADA), which is the sum of Translated 
Transfer Loads (TTL) plus Swaps-in (SWI) plus Swaps-out (SWO), is 
greater than 300 per minute, your system is suffering from lack of main 
storage (you may have allocated too much to cache). Keeping UADA below 
200 swaps per minute is preferred. 

• The Storage Releases figures reflect how often programs with relatively 
high priorities had to release storage. Any non-zero numbers in these 
columns are another indicator of lack of main storage. 

• Disk Cache Hits (DCH) and Disk Cache Misses (DCM) indicate how 
often records sought by program reads were found or not found in the 
cache area. The ratio of hits to misses should be at least 2: 1. 

• The Disk Cache Utilization (DCU) column is the percentage of the disk 
cache read operations found in the disk cache. You should strive to make this 
value average 80 to 90 percent - and you never want it below 60 percent. 

The SMFP2I summary report gathers together all the critical SMF val
ues so that you can see how caching or various combinations of cache page 
and buffer sizes affect the MSp, CSP, disk usage values, swapping, and stor
age releases. With the "at a glance" analysis this report provides, you can 
find your optimum cache values easily. 



Performance 379 

Figure 13-17 

Procedure 
SMFP21 

Figure 13-18 

Program 
SMFP21 

CAP DIAGNOSIS S/36 CAP GEMINI BRA/SJ 

ANALYSIS WHEN CHANGING CACHE 

SELECT DATA FROM SMF-DATA PROGRAM SMFP21 
PR I NT REPORT PROGRAM SMFP23 

// IF DATAF1-Y.FILl DELETE Y.FILl ,Fl 

/ / LOAD SMFP21 
// FILE NAME-SMFDATA,LABEL-?l 'SMF,DATA'? 
// FILE NAME-SMFFIL1 ,LABEL-Y FIll ,RECORDS 5000,EXTEND-5000 
// RUN 

// LOAD SMFP23 
// FILE NAME-SMFFIL2,LABEL-Y.FILl ,RETAIN-S 
/ / RUN 

4 8 
04 Y SMFP21 

F******************************************************************* 

F* CAP DIAGNOSIS S/36 CAP GEMINI BRA/SJ 
F* 
F* PROGRAM NAME: SMFP21 
F* INPUT: SMFDATA SMF STANDARD REPORT FILE 
F* OUTPUT: SMFFILl SELECTED DATA CONCERNING 
F* MSP, CSP, DISKS, UADA, CACHE ETC 
F* 
FSMFDATA IP 800 80 DISK 
FSMFFILl 0 800 100 DISK 
1* 
I SMFDATA NS 01 1 CA 2 CA 3 CA 
1* IPL CONFIGURATION RECORD 
I 1 SMFRCD 
I 22 27 SMFDAT 
1* DEVICE USAGE RECORD ACA 

NS 01 1 CA 2 CC 3 CA 
1 3 SMFRCD 
4 12 STIME 

19 21 MSP 
22 24 CSP 
37 39 Al 
40 42 A2 
43 45 A3 
46 48 A4 

NS 01 1 CA 2 CC 3 C8 

1* DEVICE USAGE RATES RECORD B 

I 3 SMFRCD 

I 25 27 DCU 

I 28 32 DCS 

I 33 35 DCP 

I NS 01 1 CA 2 CK 3 CA 

1* SYSTEM EVENT AND I/O COUNTERS RECORD A 

I 1 3 SMFRCD 

I 24 28 TTL 


34 38 SWI 
39 43 SWO 
44 48 SWF 

NS 01 1 CA 2 CK 3 CC 

1* SYSTEM EVENT AND I/O COUNTERS RECORD C 

I 1 3 SMFRCD 

I 54 58 L30 

I 59 63 L3W 

I 64 68 L40 

I 69 73 L4W 

I NS 01 1 CA 2 CK 3 CD 

1* SYSTEM EVENT AND I/O COUNTERS RECORD D 

I 1 3 SMFRCD 

I 9 13 DCH 

I 14 lB DCM 




380 5/36 Power Tools 

Figure 13-19 

Program 
SMFP23 

NS 01 
3 SMFRCO 

1* 
C SMFRCO IFEQ 'AAA' 
C MOVE SMFDAT SMFDAX 6 
C END 
C* 
C SMFRCO IFEQ 'ACA' 
C MOVE STIME UTIME 9 
C MOVE MSP UMSP 3 
C MOVE CSP UCSP 3 
C MOVE A1 UA1 3 
C MOVE A2 UA2 3 
C MOVE A3 UA3 3 
C MOVE A4 UA4 3 
C END 
C* 
C SMFRCD IFEQ 'AC8' 
C MOVE OCU UDCU 3 
C MOVE DCS UOCS 5 
C MOVE OCP UDCP 3 
C END 
C* 
C SMFRCD IFEQ 'AKA' 
C MOVE TTL UTTL 
C MOVE SWI USWI 
C MOVE SWO USWO 
C MOVE SWF USWF 
C END 
C* 
C SMFRCO IFEQ 'AKC' 
C MOVE L30 UL30 5 
C MOVE L3W UL3W 5 
C MOVE L40 UL40 5 
C MOVE L4W UL4W 5 
C END 
C* 
C SMFRCD IFEQ 'AKD' 
C MOVE DCH UDCH 5 
C MOVE DCM UDCM 5 
C EXCPTOUTREC 
C END 
C* 
OSMFFIL1 OUTREC 
0 UTIME 8 9 
0 UMSP 8 12 
0 UCSP B 15 
0 UA1 B 18 
0 UA2 B 21 
0 UA3 8 24 
0 UA4 8 27 
0 UTTL 8 32 
0 USWI B 37 
0 USWO B 42 
0 USWF B 47 
0 UL30 8 52 
0 UL3W 8 57 
0 UL40 B 62 
0 UL4W B 67 
0 UOCH B 72 
0 UDCM B 77 
0 UDCU B 80 
0 UDCS B 85 
0 UDCP B 88 
0 SMFDAX 94 

.. , 2 3 .. 4 ... 5 ... 6 7 8 
04 Y SMFP23

F·····················································••••..••••••.• 
F* CAP DIAGNOSIS S/36 CAP GEMINI BRA/SJ 
F* 
F* PROGRAM NAME: SMFP23 
F* INPUT: SMFFI L2 SELECTED DATA FROM PROGRAM SMFP21 
F* OUTPUT: LlSTA REPORT CAP DIAGNOS REPORT NR 4 



Performance 381 

F* ANALYSIS WHEN CHANGING CACHE 
F* 
F* INDICATORS: 01 RECORD INDICATOR 
F* 66 WRITE HEADERS WITH SMF-LOG DATE 
F* L 1 WRITE TOTAL AND AVERAGE FIGURES 
F* 
FSMFFIL2 IP 1000 100 DISK 
FLISTA 0 132 OF PR INTER 
ISMFFIL2 NS 01 
I 1 60TIME 

10 120MSP 
13 150CSP 
16 180A1 
19 210A2 
22 240A3 
25 270A4 
28 320HC 
33 370SWI 
38 420SWO 
43 470SWF 
48 520L30 
53 570L3W 
58 620L40 
63 670L4W 
68 720DCH 
73 770DCM 
78 800DCU 
81 850DCS 
86 880DCP 
89 940SMFDATL1 

C* 
C* TO GET HEADRS WITH SMF-LOG DATE 
C* 
C OF SETOF 66 
C 66 GOTO CONT 
C EXCPTHDR 
C SETON 66 
C CONT TAG 
C* 
C* ADD TO GET TOTALS 
C· 
C MSP ADD MSPX MSPX 60 
C CSP ADO CSPX CSPX 60 
C A1 ADD A1X A1X 60 
C A2 ADD A2X A2X 60 
C A3 ADD A3X A3X 60 
C A4 ADD A4X A4X 60 
C HC ADD HCX HCX 60 
C SWI ADD SWIX SWIX 60 
C SWO ADD SWOX SWOX 60 
C SWF ADD SWFX SWFX 60 
C L30 ADD L30X L30X 60 

L3W ADD L3WX L3WX 60 
L40 ADD L40X L40X 60 
L4W ADD L4WX L4WX 60 

C DCH ADD DCHX DCHX 80 
C OCM ADO OCMX DCMX 80 
C DCU ADD DCUX Deux 60 
C DCS ADD DCSX DCSX 60 
e OCP ADD DCPX DCPX 60 
C X ADD 1 X 30 
C· 
C* DIVIDE TOTALS TO GET AVERAGE FIGURES 
C* 
CL 1 MSPX DIV X MSPY 30H 
CL 1 CSPX DIV X CSPY 30H 
CL 1 A1X DIV X A1Y 30H 
CL 1 A2X DIV X A2Y 30H 
CL 1 A3X DIV X A3Y 30H 
CL 1 A4X DIV X A4Y 30H 
CL 1 HCX DIV X HCY 60H 
CL1 SWIX DIV X SWIY 60H 
CL 1 SWOX DIV X SWOY 60H 
CL 1 SWFX DIV X SWFY 60H 
CL 1 L30X OIV X L30Y 60H 
CL 1 L3WX DIV X L3WY 60H 



382 5/36 Power Tools 

Cll l40X OIV X l40Y 60H 
Cll l4WX DIV X l4WY 60H 
Cll DCHX DIV X DCHY 80H 
Cll DCMX DIV X OCMY BOH 
Cll DCUX OIV X DCUY 30H 
Cll DCSX DIV X DCSY 40H 
CL1 DCPX DIV X DCPY 20H 
Cll SETON OF 
OLISTA 204 HOR 
a 20 'C A P G 
a 30 'E MIN! 
a 40 o I A G 
a 50 'N 0 S S 
a 60 '/ 3 6 
a 70 'REPORT OAT' 
a 71 'E' 
a UDATE 85 
a E 1 HDR 
a 20 'ANALYSIS 101' 
a 30 'HEN CHANGI' 
a 40 'NG CACHE 
a 50 REPORT ' 
a 60 'NR 4 
a 70 'SMF-lOG 0' 
a 75 'ATE 
a SMFOAT 85 
a E 1 HDR 
a 10 'MSP - MAIN' 
0 20 ' STOR PROC' 
a 30 CSP - CO' 
0 40 'NTR STOR P' 
0 50 'ROC TTL -' 
a 60 ' TRANSF lO' 
0 70 'ADS CAC' 
0 80 'HE DCH - H' 
0 90 ' ITS DCM -' 
0 100 ' MISSES 0' 
a 110 'CU - UTILI' 
0 120 'ZED 
0 E 2 HOR 
0 10 'SW! - SWAP' 
a 20 'S IN SWO ' 
0 30 ' SWAPS OU' 
a 40 'T SWF - S' 
a 50 'WAPS FORCE' 
0 60 '0 
a 80 DCS - C' 
0 90 'ACHE SIZE ' 
0 100 'DCP - CACH' 
0 110 'E PAGE SIZ' 
0 120 'E 
0 E 1 HDR 
0 10 
a 20 
a 30 DISK- ' 
0 40 
0 50 ' UAD' 
a 60 'A-
0 70 -S' 
0 80 'TORAGE REl' 
0 90 'EASES ' 
0 100 
0 110 '- CACHE -
0 120 
0 E 2 HDR 
0 10 TIME 
0 20 MSP CSP 
0 30 Al A2 
0 40 A3 A4 
0 50 TTL SW' 
0 60 'I SWO 
0 70 'SWF l3' 
0 80 '0 l3W 
0 90 'l40 l4W ' 
0 100 DCH 
0 110 DCM DCU' 



Performance 383 


0 120 OCS OCP 
0 0 N1P 
a TIME 8 

0 MSP 38 15 

0 CSP 38 19 

a A1 38 25 

a A2 38 29 

0 A3 38 33 

a A4 38 37 

a HC 38 45 

0 SWI 38 51 

a swa 38 57 

0 SWF 38 63 

0 L3a 38 71 

a L3W 38 77 

a L40 38 83 

0 L4W 38 89 

a OCH 38 98 

0 OCM 38 1 a6 
0 OCU 38 110 

a OCS 38 115 

0 OCP 38 119 

0 T 22 L1 
0 9 'TOTAL 
a HCX 38 45 

0 SWIX 38 51 

a swax 38 57 

0 SWFX 38 63 

0 L30X 38 71 

0 L3WX 38 77 

0 L40X 38 83 

0 L4WX 38 89 

0 DCHX 38 98 

0 DCMX 38 106 

0 T 2 L1 

a 'AVERAGE' 
0 MSPY 38 15 

0 CSPY 38 19 

a A1Y 38 25 

0 A2Y 38 29 

0 A3Y 38 33 

a A4Y 38 37 

0 HCY 38 45 

0 SWIY 38 51 

a sway 38 57 

0 SWFY 38 63 

0 L30Y 38 71 

0 L3WY 38 77 

0 L40Y 38 83 

0 L4WY 38 89 

0 DCHY 38 98 

0 OCMY 38 106 

0 OCUY 38 110 

a DCSY 38 115 

a oepy 38 119 


Continued 



384 5/36 Power Tools 

Figure 13-20 

Sample cache analysis report 

C A GEM I N I A NOS I 3 REPORT DATE 8-16-89 

ANALYSIS WHEN CHANGING CACHE REPORT NR 4 SMF-LOG OATE 89-08-04 
MSP - MAIN STOR PROC CSP - CONTR STOR PROC TTL - TRANSF LOAOS CACHE OCH - HITS DCM - MISSES DCU - UTILIZED 
SWI - SWAPS IN SWO - SWAPS OUT SWF - SWAPS FORCED DCS - CACHE SIZE OCP CACHE PAGE SIZE 
DISK-- UAOA -- -STORAGE RELEASES- CACHE -
TIME MSP CSP Al A2 A3 A4 TTL SWI SWO SWF L30 L3W L40 L4W DCH OCM OCU OCS DCP 
1523.17 12 24 14 3 0 71 43 12 o 0 o o o 355 97 79 1200 
15.2517 37 44 37 22 14 0 152 46 29 o 0 o o o 2187 543 80 1200 
15.27.17 20 41 20 10 66 0 71 17 o o o 586 310 55 1000 
1529.18 27 41 15 80 0 56 25 o 0 o o 1283 442 74 1000 
15.31.18 16 23 8 9 31 14 o 0 o o o 610 319 56 1000 4 
1533.18 24 31 11 14 10 78 19 21 o 0 o o 1305 349 79 1000 4 
15.35.18 27 30 11 16 31 27 5 o 0 o o 1478 576 72 1000 
15.37.18 8 16 6 0 40 11 o 0 o 336 159 68 1000 
1539.19 18 25 18 0 60 52 14 o 0 o o 730 341 68 1000 
15.41.19 26 44 19 16 92 57 24 11 o 0 o o 1181 610 66 1000 
15 43.19 44 55 44 16 67 0 195 89 37 o o o 1035 368 74 1000 
15 45.20 60 49 11 12 51 0 40 28 14 o 0 o o 1197 330 78 1000 
1547.20 56 55 12 6 53 74 36 22 o 0 o o o 878 376 70 1000 
15 49.20 71 49 21 12 27 0 60 44 o 0 o o o 866 383 69 1000 
1551.21 47 46 29 32 18 0 120 33 o 0 o o 1469 802 65 1000 
15 53 21 20 32 31 36 93 33 11 o 0 o o 1452 534 73 1000 
15.55.21 39 50 46 29 18 94 42 o 0 o o o 2103 935 69 1000 
1557.22 20 46 11 86 60 29 o 0 o Q 635 326 66 1000 
15.5922 31 48 13 18 60 0 81 43 13 o 0 o o 1376 682 67 1000 
16 01.22 17 40 8 8 55 0 86 24 1 o 0 o o 449 153 75 1000 
1603.22 27 44 9 13 92 0 57 28 10 o 0 o o o 1245 714 64 800 
1605.23 20 33 11 59 0 51 11 o o o o 341 287 54 800 
16.07.23 19 37 5 98 0 30 15 o o 0 o o o 692 451 61 800 
16 09 23 13 35 69 42 26 o 0 o 318 102 76 800 
1611.23 22 40 81 28 11 o 0 o o 891 621 59 800 
16.13.24 12 15 44 0 29 25 o 0 o 1845 371 83 1400 16 
16 15.24 21 29 27 15 0 214 21 6 o 0 o o 2237 151 94 1400 16 
16.17.24 14 25 62 15 0 160 18 o o 0 o o o 1448 122 92 1400 16 
16.19.25 10 22 62 12 106 o o 0 o o 1317 80 94 1400 16 
16 21 .25 10 21 55 14 0 125 13 o o 0 o (I 1223 93 93 1400 16 
1623.26 16 28 78 16 173 18 1 o 0 o o 1555 138 921400 16 
16.25.27 14 28 20 14 0 91 17 o o 0 o o 1577 225 88 1400 16 
16.27 27 9 22 11 87 9 o 0 o o C 1429 199 881400 16 
16.29.27 18 12 72 13 o 0 o 865 129 87 1200 
16.31.27 11 3 11 9 o 0 o 259 48 84 1200 
16.33.27 12 13 50 18 18 o 0 o 287 62 82 1200 
16.35 28 4 10 o 24 43 6 o 0 o o 190 28 87 1200 
16.37.28 14 35 44 11 o 0 o o 98 37 73 1200 
16 39 28 10 o 29 7 o 0 o o o 168 27 86 1200 8 
16.41.28 13 24 11 0 30 8 o 0 o o o 234 344 40 1200 8 
1643.28 16 3 29 26 o 0 o o o 131 67 66 1200 
1645.29 10 1 1 19 o o 0 o o o 93 21 82 1200 
1647.29 o 0 5 o o 0 o o o 29 83 1200 
16 49.29 o 26 o o 0 o o 65 23 74 1200 

o A GEM I N AGNOS SI REPORT DATE 8-16-89 

ANALYSIS WHEN CHANGING CACHE REPORT NR 4 SMF-LOG DATE 89-08-04 
MSP - MAIN STOR PROC CSP - CONTR STDR PROC TTL - TRANSF LOADS CACHE DCH - HITS DCM - MISSES DCU - UTILIZED 
SWI - SWAPS IN SWO - SWAPS OUT SWF - SWAPS FORCED DCS - CACHE SIZE DCP CACHE PAGE SIZE 
DISK-- UAOA -- -STORAGE RELEASES- CACHE 
TIME MSP CSP Al A2 A3 A4 TTL SWI SWD SWF L30 L3W L40 L4W DCH DCM OCU OCS OCP 

16.5930 29 81 0 16 27 o o o o o 114 10 92 1200 
17.01.30 16 34 29 0 3 2 o o o o o 315 468 40 1200 
17.0246 15 20 22 0 25 10 o o o o o 83 35 70 1200 

TOTAL 3230 1210 313 o o o o 41424 13808 

AVERAGE 25 28 17 10 30 56 21 o o o 714 238 77 1131 

http:17.01.30
http:16.41.28
http:16.37.28
http:16.33.27
http:16.31.27
http:16.29.27
http:16.25.27
http:16.19.25
http:16.17.24
http:16.13.24
http:16.07.23
http:15.55.21
http:15.41.19
http:15.37.18
http:15.35.18
http:15.31.18
http:15.27.17


Performance 385 

Monitoring Realtime Memory Usage 
by Gary T. Kratzer 

program by Mel Beckman 

Utility 
MMETER helps 
you monitor 8/36 
realtime memory 
use to improve 
performance. 

a 
Code on diskette: 


Procedure MMETER 
RPG program MMETER 
Assembler subroutine SUBR$S 
Screen format member MMETERFM 

Understanding your S/36's memory helps you manage it more effectively. 
This knowledge is far more useful if you can monitor it, keeping a close 
watch on how memory use affects system performance. It is helpful to know, 
for example, how program swapping affects memory use. Although the S/34 
reflects swapped programs on the STATUS USERS (D U) display, the S/36 
often swaps only certain pages of a program, which makes reflecting swaps 
on the D U display impractical. Nor does IBM supply S/36 swapping infor
mation through a utility. Virtual page use, additional information that helps 
you monitor memory, also is unavailable through an IBM-supplied utility. 

But the MMETER utility lifts the curtain that conceals your S/36's 
memory use. MMETER gives you a realtime account of how nucleus pages, 
user main and sub programs, system programs, and system works paces are 
using S/36 memory. 

MMETER's realtime memory account helps you track down intermit
tent memory-related performance problems that are hard to catch through 
the System Measurement Facility (SMF) report you already may use to 
monitor memory. For example, if you experience occasional drastic increases 
in response time at unpredictable intervals of days, or even weeks, you may 
not be able to establish a useful performance measurement with SMF. 

To check your system's "normal" memory use, use utility MMETER 
when system response time is good. You then can compare memory use during 
good response times to memory use during slow response times, easily deter
mining whether memory overcommitment is a possible source of trouble. 

To use the MMETER utility, simply key MMETER to display the 
S/36 Memory Meter screen shown in Figure 13-21. The information on the 
MMETER screen reflects how memory in your system currently is being 
used. To update the information shown, press Enter. To end MMETER, 
press Command key 7. 

The MMETER utility comprises RPG program MMETER (Figure 
13-22), screen format member MMETERFM (Figure 13-23), assembler 
subroutine SUBR$S, and procedure MMETER (Figure 13-24). (SUBR$S, 
used by program MMETER as an RPG SPECIAL file, gathers current 
memory information to provide realtime analysis of memory use each time 
you press Enter from the MMETER screen.) 



386 5/36 Power Tools 

Figure 13·24 

Sample 
System/36 Memory Meter 

MMETER 
display Total Currently 

Count camm; tted paged in 
Nucl eus pages .. 74 148K 29% 148K 28% 
User main programs. 12 508K 99% 92K 17% 
System programs. 195 448K 88% 60K 12% 
User sub programs .. 40 1 .280K 250% 204K 40% 
System works paces . 7 54K 11% 8K 2% 

TOTALS. 2.438K 476% 512K 100% 
(unused memory). OK 
(main storage size) 512K 

MMETER Headings 
At the top of the MMETER screen are three column headings, described 
below. 

Count is the number of programs, pages, or workspaces for the line item. 

Total committed refers to the total kilobytes and percentage of virtual (com
mitted) storage for each line item. 

Currently paged in refers to the kilobytes and percentage of real (main) mem
ory currently used by each line item. Note that the total committed memory 
(2,438 K, or 476 percent, in the example shown in Figure 13-24) considerably 
exceeds the amount of real memory physically installed on the machine - a 
prime example of the S/36's virtual memory management scheme at work. 

MMETER Line Items 
Utility MMETER displays information for five line items - nucleus pages, 
user main programs, system programs, user sub programs, and system 
works paces - that tell you how and where your system is using memory. 

Nucleus pages consist of the fixed and variable nucleus areas, which are used 
by the system and always reside in real (not virtual) storage. The amount of 
memory that nucleus pages consume changes as the system gives and takes 
pages to and from the user area. 

User main programs consist of all user application programs and SSP utilities 
(such as $MAINT, $COPY, compilers). 



Performance 387 

System programs are SSP programs called by other system programs to per
form repetitive tasks. They run transparently to the user (e.g., spool writers, 
the initiator, the command processor, system transients) and, as a result, are 
excluded from the 0 U display. 

User sub programs are of interest only to users of external program call facili
ties products that let you call other RPG programs (e.g., ASNA's RPG/III or 
BPS's RPG 2 1/2). Generally, "stock" S/36 application programs do not 
have sub programs, so the memory used by sub programs is not available 
through any IBM-supplied utility. 

System workspaces show the pages of memory the system uses for storing 
various tables (such as the active procedure list and active screen formats) 
and program buffers (such as those created when a program exceeds its 64 
K address space and must place file buffers into the task work area). 

MMETER's individual line items help you isolate the memory require
ment for user programs, called programs, or system activity. A high memory 
overcommitment for either the User main programs or User sub programs is 
due to the application workload directly under your control- reducing the 
workload will help even out response time peaks. Excessive overcommit
ment in the System workspaces line item usually results from heavy use of 
IBM Office Products like DisplayWrite/36 and Personal Services/36; these 
programs require a large amount of virtual memory for document manipula
tion. To improve performance, you must add more memory or reduce 
Office Product use for non peak hours. 

Overcommitment of memory to either the Nucleus pages or System pro
grams line items usually is caused by high SSP activity, either through a 
large volume of procedure interpretation or a large number of medium
lived System Queue space (SQS) items. If you don't add memory to relieve 
the high memory requirement, you probably will need to modify your pro
grams to reduce their dependency on SQS or procedure execution. 

MMETER Totals 
The Totals for the line items show the cumulative kilobytes and percentage 
of committed memory and the kilobytes and percentage of real memory 
currently being used by the system. As previously stated, the amount com
mitted can be many times the amount being used. 

Unused Memory is often zero kilobytes, but having no unused memory is 
not necessarily a cause for concern. It usually means that your installed 
memory is being used to its fullest potential, thereby providing maximum 
benefits in throughput and response times. 

However, if the total kilobytes and percentage of committed memory is 
consistently high, you might want to consider adding more memory to your 
machine. For example, if the normal total memory commitment for your sys



388 5/36 Power Tools 

tern is 230 percent, but it increases to 500 percent during slow response times, 
purchasing additional memory probably will help alleviate the problem. 

Using the MMETER utility regularly to monitor memory use gives you 
the inside scoop on whether and where memory constraints are contribut
ing to sagging response times. Because utility MMETER is interactive, 
you can invoke it at a moment's notice, and unlike SMF, MMETER lets 
you visually compare realtime memory use with current system activities. 

Figure 13-22 

Program MMETER 

4 6 
0001 026 B MMETER 
0002 F* System/36 Memory Meter. by Mel Beckman 
0003 FSYSINFO IP 256 SPECIAL SUBRSS 
0004 FWORKSTN CD 512 WORKSTN 
0005 IWORKSTN 
0006 ISYSINFO 
0007 I B 1 20lNV Inval id storage 
0006 I B 3 40UPUSED User programs used 
0009 I B 5 60UPOWND User programs owned 
0010 I B 7 80SPUSED System programs used 
0011 I B 9 100SPOWND System programs owned 
0012 I B 11 120SYSTEM System nucleus 
0013 I B 13 140FREE Unused storage 
0014 I B 15 160SWUSED System wori<spaces used 
0015 I B 17 180SWOWND System workspaces owne 
0016 I B 19 200TWUSED Task workspaces used 
0017 I B 21 22 OTWOWN 0 Task workspaces owned 
0016 I 8 23 240UPCNT User program count 
0019 I B 25 260SPCNT System program count 
0020 I 6 27 280SWCNT System workspace count 
0021 I 6 29 300TWCNT Task workspace count 
0022 C' Compute page counts for invalid, free and system pages 
0023 C INV DIV 2 INVCNT 40 
0024 C FREE DIV 2 FRECNT 40 
0025 C SYSTEM DIV 2 SYSCNT 40 
0026 C' Compute amount of storage actually used 
0027 C INV ADD SYSTEM TOTU 40 
0026 C ADD UPOWND TOTU 
0029 C ADD SPOWND TOTU 
0030 C ADD SWOWND TOTU 
0031 C ADD TWOWND TOTU 
0032 C* Compute total storage commitment 
0033 C INV ADD SYSTEM TOTC 40 
0034 C ADD UPUSED TOTC 
0035 C ADD SPUSED TOTC 
0036 C ADD SWUSED TOTC 
0037 C ADD TWUSED TOTC 
0036 C* Compute maln storage size 
0039 C TOTU ADD FREE MSS 40 
0040 C MOVELMSS MSSO 50 
0041 C' Compute ratios as percentage of main storage si ze 
0042 C SYSTEM DIV MSSO SQSPCT 43 Nucleus 
0043 C TOTU DIV MSSO TOTUPC 43 Tota 1 used 
0044 C TOTC DIV MSSO TOTCPC 43 Total commitment 
0045 C UPUSED DIV MSSO UPUPCT 43 User prag used 
0046 C UPOWND DIV MSSO UPOPCT 43 User prog owned 
0047 C SPUSED DIV MSSO SPUPCT 43 Sys prog used 
0048 C SPOWND DIV MSSO SPOPCT 43 Sys prog oIl/ned 
0049 C SWUSED DIV MSSO SWUPCT 43 Sys workspace used 
0050 C SWOWND DIV MSSO SWOPCT 43 Sys workspace owned 
0051 C TWUSED DIV MSSO TWUPCT 43 Task workspace used 
0052 C TWOWND DIV MSSO TWOPCT 43 Task workspace owned 
0053 C FREE DIV MSSO FREPCT 43 Unused storage 
0054 C' Display resu 1ts 
0055 C EXCPTSCREEN 



Performance 389 

0056 C 
0057 C KG 
0058 OWORKSTN 
0059 0 
0060 a 
0061 a 
0062 0 
0063 a 
0064 a 
0065 0 
0066 a 
0067 a 
0068 0 
0069 a 
0070 a 
0071 0 
0072 a 
0073 a 
0074 a 
0075 a 
0076 0 
0077 a 
0078 0 
0079 0 
0080 a 
0081 a 
0082 a 
0083 a 
0084 a 
0085 a 
0086 a 
0087 a 
0088 a 
0089 a 
0090 a 
0091 0 
0092 a 
0093 a 
0094 a 
0095 a 
0096 a 
0097 0 
0098 a 
0099 a 

Figure 13·23 

Screen formot 
member 
MMETERFM 

READ WORKSTN LRLR 
SETON LR 

SCREEN 
K8 'MMETEROl ' 
30 K % %' 

SYSCNTZ 4 
SYSTEMZ 10 
saSPCTZ 16 
SYSTEMZ 23 
saSPCTZ 29 

60 K % K %' 
UPCNT Z 34 
LJPUSEDZ 40 
UPUPCTZ 46 
UPOWNDZ 53 
UPOPCTZ 59 

90 K % K %' 
SPCNT Z 64 
SPUSEDZ 70 
SPUPCTZ 76 
SPOWNDZ 83 
SPOPCTZ 89 

120 K % %' 
TWCNT Z 94 
TWUSEDZ 100 
TWUPCTZ 106 
TWOWNDZ 113 
TWOPCTZ 119 

150 K % K %' 
SWCNT Z 124 
SWUSEDZ 130 
SWUPCTZ 136 
SWOWNOZ 143 
SWOPCTZ 149 

180 K % %' 
TDTC Z 160 
TOTCPCZ 166 
TOTU Z 173 
TOTUPCZ 179 

210 'K %' 
FREE 203 0' 
FREPCT 209 0' 

234 ' K' 
MSS Z 233 

. ,. 1 3 ... 4 ". .. , 6 7 .. 
SMMETEROl YY G 
DFLOOOl 22 118Y CSystem/36 Memory Meter 
DFAOOOl 5 434Y CTota 1 
DFAOO02 9 445Y CCurrently 
DFLOO02 5 524Y Y CCount 
DFLOO03 11 531Y Y C committed 
DFLOO04 11 544Y Y C paged in 
DFLOO05 22 6 2Y CNuc 1 eus pages .. 
DFLOO06 30 625Y 
DFLOO07 22 7 2Y CUser programs. 
DFLOO08 30 725Y 
DFLOO09 22 8 2Y CSystem programs,. 
DFL0010 30 825Y 
DFLOOll 22 9 2Y CTask workspaces .. 
DFLOO12 30 925Y 
DFLOO13 
DFLOO14 

2210 2Y 
301025Y 

CSystem workspaces .. 

DFLOO19 2212 2Y CTOTALS. 
DFL0020 301225Y 
DFAOOOl 22132Y C (unused memory) . 
DFLOO18 301325Y 
DFAOO02 
DFAOOOl 

2214 2Y 
301425Y 

C (main storage si2e) 



390 5/36 Power Tools 

• System/36 Memory Meter, by Mel BeckmanFigure 13-24 

II LOAO MMETER 
II RUNProcedure 

MMETER 



POP 


-CHAPTER 

14 




392 5/36 Power Tools 

Retrieving Library and Member 
Information in POP 
by Gary T. Kratzer 

program by Chuck Lundgren 

Utility LlBRI is 
a POP 
enhancementfor 
libraries and 
library members 
that gives you the 
speed and 
convenience ofthe 
file information 
opcode. 

a Code on diskette: 

Procedure LIBRI 
RPG program LIBRI 
Screen format member LIBRIFM 

I will make a bold guess that about 90 percent of S/36 shops with a program
ming staff or consultant have IBM's POP utility. POP is a much-used pro
grammer's tool for several reasons: it provides a full-screen editor and the 
capability to quickly display and browse multiple files, libraries, and diskette 
files, and it lets the programmer enhance POP by adding commands that can 
be called from the multiple display screens. Among POP's useful features are 
the one-character commands that you enter next to a desired item on a dis
play screen to execute a variety of functions on files, libraries, and diskettes. 

One such POP opcode is the FILE utility's I (information) opcode. 
FILEI is far easier and faster than running a CATALOG when you need file 
information. This opcode displays detailed information about a file such as 
its type, number of records used, record length, file key information, and 
disk address, and your information is displayed instantaneously at the work
station rather than placed on the print queue. Unfortunately, there is no 
equivalent "I" function for libraries or library members - until now. 

Utility LIBRI is a POP enhancement that is essentially a FILEI for 
library information. Normally, you must use the slow, inconvenient 
LISTLIBR procedure to retrieve library information and print or place it in 
a file. But by adding LIBRI to your supply of POP opcodes, you can 
instantly get the library information you need. 

Installing LlBRI in #POPLIB 
Programmers familiar with POP know that it comes with a LIBRI function 
that calls the SAVELIBR procedure. Ifyou plan to use our LIBRI, we rec
ommend you rename the existing POP LIBRI procedure (to LIBRQ, pos
sibly) because our naming convention is consistent with POP's FILEI 
operation - the I denotes "information." (If you decide not to rename the 
existing LIBRI, you must instead change the component names of our util
ity to LIBRx - x being the letter you choose for the opcode.) 

Utility LIBRI consists of RPG program LIBRI (Figure 14-1), screen 
format member LIBRIFM (Figure 14-2), and procedure LIBRI (Figure 14
3). Note that program LIBRI uses assembler subroutine SUBRLD. To 
install LIBRI, simply copy program and procedure LIBR and screen format 
member LIBRIFM into #POPLIB or #LIBRARY. 



POP 393 


Using LlBRI 
With utility LIBRI installed, you can place an I next to any library or 
library member on the POP libraries display to retrieve the detailed infor
mation shown on the screens in Figures 14-4a, 14-4b, and 14-4c. When you 
select a library, the Library Information screen in Figure 14-4a appears. 
This screen includes not only the library size and disk location, but also the 
total number of each type of library member (i.e., object, subroutine, proce
dure, and source). This information is not available on a LISTLIBR report. 
In addition, the screen displays the number of diskettes required to save 
the library in each of the four S/36 diskette formats. 

From the Library Information screen, you have three choices: press 
Enter for the same screen for the next library you have chosen; enter a new 
library name and press Enter; or press Command key 7 to return to the POP 
libraries display. If you enter a library name that doesn't exist, the Library 
Error screen in Figure 14-5a gives you the option to enter a valid library 
name or to press Command key 7 to return to the POP libraries display. 

Ifyou need information for an individual library member, place an I next 
to that member's name on POP's library members display. If you choose a 
source or procedure member, you see the screen in Figure 14-4b; select an 
object or subroutine, and you get the screen in Figure 14-4c. These screens 
are similar, but directory entry fields (such as "Link edit" and "RLD dis
placement") that don't apply to source members or procedures do not appear 
on the screen in Figure 14-4b. Both Member Information screens display the 
member's numeric subtype along with its literal description (e.g., subtype 35 
is RPG, subtype 40 is "unspecified"). The screens also display member 
attributes literally (e.g., SUNGLOW Program), rather than the list of 1s and 
Os in a LISTLIBR detail report. As in the case of the previous screens, you 
may press Enter to display the next member chosen, enter a new member 
type or library name and press Enter, or press Command key 7 to return to 
the POP libraries display. If you enter an invalid member or library name, the 
screen in Figure 14-5b lets you correct the error. 

How LlBRI Works 
pOP's three main programs, FILE, LIBR, and DKET, basically work the 
same way. They display up to 64 objects on a screen and let you operate on 
those objects either by entering a one-letter opcode next to any object or 
by pressing a command key. When you enter an opcode or press a com
mand key, these three programs decide whether they should execute the 
operation internally or have an external procedure execute it. Internal oper
ations are executed first, followed by external procedures. 

The FILE, LIBR, and DKET programs execute several opcodes and 
command keys internally, such as FILEI or the B opcodes that let you 
browse a file, library member, or diskette object. No matter which opcodes 
you enter on the display screen, all internal opcodes are processed as a 



394 5/36 Power Tools 

group with all intervening operations deferred. For some internal opera
tions, such as copying multiple members, POP groups together all like 
operations and displays them on a confirmation screen - which is why you 
can copy up to 64 members at once. 

For the externally executed commands, POP uses a clever naming 
scheme. Each command corresponds to a procedure with the name of the 
command formatted aaaax for opcodes or aaaaKYnn for command keys 
(where aaaa is FILE, LIBR, or DKET, x is the opcode, and nn is the com
mand key number). If you are looking at a file list and you press Command 
key 15, POP would, hypothetically, execute procedure FILEKY15 in 
#POPLIB. If you enter an E next to a library member, POP executes the 
LIBRE procedure, which runs POP's full-screen editor program. 

For externally executed commands, POP queues up to 12 commands for 
execution. This command list consists of 12 lO-byte elements stored in the 
LDA from location 51 through 170. For example, if you enter print com
mand P, restore command J, and delete command D for three libraries, POP 
executes the delete command internally and puts the print and restore com
mands in a list (Figure 14-6) to execute the following procedures: 

LIBRP LIBTEST.L.O 
LIBRJ #IDALIB.L.O 

If you decide to use utility LIBRI on a system without POP, you must write a 
procedure to store the correct values in the LDA, beginning with position 51. 

Emulating FILEI with UBRI 
LIBRI emulates the internally executed POP FILEI command (which, like 
other internal operations, runs before all external commands) by executing 
all library I operations together. LIBRI executes the first I ope ode (subrou
tine GETNX in Figure 14-1) and scans the command list for subsequent I 
codes (subroutine GETPC), checks for errors (subroutines CHKLB and 
CHKMR), executes the I opcodes (subroutine GETIN), and removes them 
by compressing the command list (subroutine FIRST). Given the command 
list in Figure 14-7, for example, LIBRI shows the information for libraries 
#IDALIB and FSLIB and then compresses the list as shown in Figure 14-8 
to prevent the I opcodes from being re-executed when the LIBR# proce
dure regains control. Thus, LIBRI has the same "look and feel" as FILEI 
and is also very efficient because program LIBRI does not have to be 
reloaded several times to process several enqueued requests. 

If, after using POp, you wondered how you ever got along without it, 
I'm sure you'll find yourself thinking the same thing again after trying util
ity LIBRI. It's that convenient, efficient, and natural to use. 



0010 

0020 

0030 

0040 

0050 

0060 

395 pop 

Figure 14-1 

Program LIBRI 

4 8 
0001 064 LI8RI 
0002 F************************************************************************* 

0003 F* PROGRAM NAME. LIBRI 
0004 F* DESCRIPTION. POP-like information screen for libraries and 
0005 F* library members. Modeled after POP's "I" opcode in the FILE 
0006 F* di spl ay. 
0007 F* PROGRAMMER .. Chuck Lundgren (Iris Software, Inc.) 
0008 F* (c) COPYRIGHT 1989 Iris Software, Inc. All Rights Reserved 
0009 F* DATE WRITTEN. June 1989 

F* 
0011 F************************************************************************* 

0012 FWORKSTN CD 520 WORKSTN 
0013 KFMTS LI 8RIFM 
0014 E************************************************************************* 

0015 PCL 12 10 POP command list 
0016 NCL 12 10 New POP command 1i st 
0017 MTYP 4 1 Member type 1 i st 
0018 MCNT 4 4 0 Member totals for 1 ib 
0019 STA 34 2 STD 28 Sub-type descriptions 

0021 
AT 
AL 

40 
11 

38 
38 

Attribute 
Attribute 

descriptions 
screen list 

0022 A8 5 1 Attribute byte array 
0023 8 8 1 Bit array 
0024 1************************************************************************* 
0025 1* Library name input 
0026 p 
0027 IWORKSTN 9 CO 
0028 8 INPLI8 
0029 1* 

1* Library member input 
0031 1* 
0032 I 18 Cl 
0033 I INPLl8 
0034 I 9 16 INPMBR 
0035 I 17 17 INPTYP 
0036 1*-----------------------------------
0037 1* Library directory data structure 
0038 1* 
0039 IMEMDS DS 

I 10 15 DRADDR 
0041 I 16 180DR#TXT 
0042 I 19 22 DRLINK 
0043 I 23 270DR#STM 
0044 I 28 31 DRSCA 
0045 I 32 33 DRRLD 
0046 34 360DRCORE 
0047 37 37 DRATRl 
0048 38 38 DRATR2 
0049 39 39 DRATR3 

40 410DRMRTN 
0051 40 41 DRMRTC 
0052 42 430DRREL 
0053 44 460DRTOTL 
0054 47 47 DRATR4 
0055 48 530DRMOD 
0056 54 590DRDATE 
0057 60 630DRTIME 
0058 64 65 DRATR5 
0059 66 69 DRPTF@ 

70 70 DRATR6 
0061 1*--------------------------- ----
0062 1* Library VTOC data structure 
0063 1* 
0064 I LI 8DS DS 
0065 I 6 LBFMTl 
0066 I 110L8LBSZ 
0067 I 12 150LBDRSZ 
0068 I 16 210L8USEC 
0069 I 22 270LBASEC 



396 5/36 Power Tools. 

0070 28 320LBUDIR 
0071 33 370LBADIR 
0072 3B 43 LBBLIB 
0073 44 49 LBELlB 
0074 50 55 LBBDIR 
0075 56 61 LBEDIR 
0076 62 67 LBBMEM 
0077 68 73 LBEMEM 
0078 74 79 LBNMEM 
0079 80 80 LBENXT 
OOBO 1*- ---------------------------------
00B1 I· Single element from POP command list. 
00B2 I· 
0083 I os 
0084 I 10 PELEM Command list element 
00B5 I 1 1 OPCOD POP operation code 
00B6 I 2 9 POPLI B Library name 
0087 I 2 9 POPMBR Member name 
OOBB I 10 10 POPTYP Object type 
00B9 1*-----------------------------------

0090 I· LOA containing the POP command list. 
0091 I· 
0092 I UOS 
0093 I 1 MBRLlB Member's library name 
0094 I 51 170 PCL POP's command list 
0095 C/EJECT 
0096 c*************************····****·*·******·********** •••••••• *** •••• * •••• 
0097 C· Main routine 
009B C· 
0099 C EXSR FIRST Do fi rst stuff. 
0100 C· 
0101 C END OOUEQ'Y' Do until end of job 
0102 C EXSR GETNX Do next command 
0103 C END End DO 
0104 C· 
0105 C MOVEANCL PCL New POP cmd list. 
0106 C SETON LR End of job 
0107 C· 
0108 C·-----------------------------------
0109 C· Do first time processing. 
0110 C· 
0111 C FIRST BEGSR 
0112 C· 
0113 C· Find location in POP command list containing this LIBRI. 
0114 C· 
0115 C DO 12 LP 20 Do up to 12 times 
0116 C MOVE PCL,LP PELEM Fetch list e1em. 
0117 C OPCOD IFEQ 'I' If it's "I" , 
011B C Z-ADDLP FIRST! 20 save location, 
0119 C Z-ADD12 LP and stop loop. 
0120 C END End IF 
0121 C END End DO 
0122 C· 
0123 C· Prevent subsequent LIBRI calls by removing them from POP's cmd, list. 
0124 C· 
0125 C FIRST! ADD 1 LP Next element. 
0126 C Z-ADDLP NP 20 Point to new list. 
0127 C LP DOWLE12 For each command. 
012B C MOVE PCL,LP PELEM Fetch list e1em. 
0129 C OPCOD IFNE 'I' If isn't "I", 
0130 C MOVE PELEM NCL NP put in new list 
0131 C ADD NP next new elem. 
0132 C ELSE Else 
0133 C OPCOD I FEQ If command 
0134 C MOVEL'O 'NCL,NP terminate wlO 
0135 C END End IF 
0136 C END End IF 
0137 C ADD LP next list elem. 
013B C END End DO 
0139 C· 
0140 C NP I FLE 12 If in range 
0141 C MOVEL'O 'NCL,NP terminate wiD 
0142 C END End IF 
0143 C· 
0144 C· Establish the initial command list position 
0145 C· 



POP 397 


0146 C Z-ADDFIRST! LP Point to first 
0147 C' 
0148 C' Initialize the bit compare array. 
0149 C' 
0150 C BITOF'01234567'XOO Set to X'OO', 
0151 C MOVE XOO B Clear bit array. 
0152 C BlTON '0' B,l Set up bit 
0153 C BlTON'l' B,2 compare array. 
0154 C BlTON' 2' B,3 
0155 C BITON'3' B,4 
0156 C BlTON' 4' B,5 
0157 C BlTON' 5' B,6 
0158 C BlTON' 6' B,7 
0159 C BITON'7' B,8 
0160 C' 
0161 C ENDSR 
0162 C' 
0163 C*----- ----------- ----------------

0164 C' Check for input errors library screen If found, re-input. 
0165 C' 
0166 C CHKLB BEGSR 
0167 C' 
0168 C ERROR DOLI EO' BLANK Do until no errors 
0169 C' 
0170 C EXIT SUBRLD Check lib exists 
0171 C RLABL INPLlB Library name 
0172 C RLABL INPMBR Always " 'L1BR" 
0173 C RLABL INPTYP Always "L" 
0174 C RLABL LlBDS Output 
0175 C RLABL RCODE Output 
0176 C' 
0177 C RCODE IFEO '1' If illegal Ilbr, 
0178 C MOVE 'Y' ERROR flag error, 
0179 C EXCPTLI BERR library prompt. 
0180 C READ WORKSTN 3030 read screen, 
0181 C KG MOVE 'BLANK ERROR If KG, clear er 
01 B2 C KG MOVE 'Y' END & set eoj 
0183 C ELSE Else no error 
0184 C EXSR SAVIN Save new i nf 
0185 C MOVE 'BLANK ERROR Clear errorflag 
0186 C END End IF 
0187 C' 
0188 C END End DO 
0189 C' 
0190 C ENDSR 
0191 C' 
0192 C*-- --------------------------------
0193 C' Check for input errors in member screen. If found, re-input. 
0194 C' 
0195 C CHKMR BEGSR 
0196 C' 
0197 C ERROR DOllEO'BLANK Do unt i 1 no errors 
019B C' 
0199 EXIT SlIBRLD Check mem exists 
0200 RLABL INPLIB Library name 
0201 RLABL INPMBR Member name 
0202 C RLABL INPTYP Type 
0203 C RLABL MEMOS Directory fields 
0204 C RLABL RCODE Return code 

0205 C' 

0206 C SETON 404142 Reset sern inds. 

0207 C RCODE COMP '1' 4040 Illegal 1 i brary? 

0208 C RCODE COMP '2 ' 4141 Illegal member? 
0209 INPTYP LOKUPMTYP 11 Chec k obj type 
0210 Nll SETOF 42 Fl a9 if error 
0211 C' 
0212 C RCODE IFGE '1' If errors 
0213 C MOVE 'Y' ERROR Fl ag error, 
0214 C EXCPTMEMERR Show mem error 
0215 C READ WORKSTN 3030 Read screen 
0216 C KG MOVE 'BLANK ERROR If KG, clear er 
0217 C KG MOVE 'Y' END & set eoj
0218 C ELSE Else no error 
0219 C EXSR SAVIN Save new inf 
0220 MOVE 'BLANK ERROR Cl ear errorfl a9 
0221 END End IF 



398 5/36 Power Tools 

0222 C· 
0223 C END End DO 
0224 C· 
0225 C CHKMRX ENDSR 
0226 C' 
0227 c*-----------------------------------
0228 C' Di spl ay and read screen. 
0229 C' 
0230 C DSPSC BEGSR 
0231 C' 
0232 C REQST I FEQ 'L1BRONLY' If 1 ibr request 
0233 C EXCPTLIB display library. 
0234 C ELSE Else 
0235 C SAVTYP COMP '0 ' 11 o module? 
0236 C N11 SAVTYP COMP 'R' 11 R module? 
0237 C 11 EXCPTMEMOR Y-display it. 
0238 C Nll EXCPTMEMSP N-disp. P or S. 
0239 C END End IF 
0240 C' 
0241 C READ WORKSTN 3030 Read screen 
0242 C KG MOVE 'Y' END If cancel, set eoj 
0243 C' 
0244 C ENDSR 
0245 C· 
0246 C' ---------------- ------------------
0247 C' Get and reformat library information. 
0248 C· 
0249 C GETLB BEGSR 
0250 C' 
0251 C· Reformat fi e 1 ds. 
0252 C' 
0253 C LBENXT I FEQ 'Y' If library extent 
0254 C MOVE 'YES' LI BEXT Yup 
0255 C ELSE El se 
0256 C MOVE NO' L18EXT Nope 
0257 C END End IF 
0258 C' 
0259 C' Compute the number of members for each member type in the library, 
0260 C· and compute how many di skettes it would take to save this 1 ibrary. 
0261 C' 
0262 C Z-ADD'ZEROS MCNT Clear member counts 
0263 C MOVE 'BLANKS MEMBER 8 Select next member 
0264 C Z-ADDl M 10 Process objects 1st 
0265 C' 
0266 C M DOWLE4 Count each mbr type 
0267 C MOVE MTYP,M TYPE Get member type 
0268 C MOVE RCODE Reset return code 
0269 C· 
0270 C RCODE DOUEQ' 2' Stop at last mbr 
0271 C EXIT SUBRLD Get mbr info 
0272 C RLABL INPLIB Library name 
0273 C RLABL MEMBER Next member 
0274 C RLABL TYPE Memb,er type 
0275 C RLABL MEMOS Output 
0276 C RLABL RCODE Retulrn code 
0277 C RCODE IFNE '2 . If not end 
0278 C ADD MCNT,M inert counter 
0279 C END End IF 
0280 C END End DO 
0281 C' 
0282 C ADD M Another' type 
0283 C END End DO 
0284 C' 
0285 C' Estimate approx. number of diskettes if library saved wi th SAVELlBR 
0286 C' 
0287 C LBADIR ADD LBUDIR LDTDIR 50 Total dir entries. 
0288 C LBUDI R DIV LDTDIR USDPCT 33H % director used. 
0289 C LBDRSZ MULT USDPCT TEMP84 84 Use di rectory 
0290 C Z-ADDTEMP84 LDUSEC 50 sectors. 
0291 C SUB LDUSEC TEMP84 11 If partial sector 
0292 C 11 ADD 1 LDUSEC assign it full set. 
0293 C' 
0294 C LDUSEC ADD LBUSEC LBTSEC 70 Total used sectors. 
0295 C' 
0296 C LBTSEC MULT 2 TEMP7 70 2 11 1 F1 sectors 
0297 C TEMP7 DIV 1924 DK1S1D 30 Sectors/1S1D dskt. 



POP 399 


0298 C MVR TEMP84 11 If partial diskette 
0299 C 11 ADD DK1S1D round up. 
0300 C' 
0301 C LBTSEC DIV 2 TEMP7 Fl 1 11 sectors 
0302 
0303 

C 
C 

TEMP7 DIV 
MVA 

592 DK2S1D 
TEMP84 

30 
11 

Sectors/2S1D dskt. 
If partial diskette 

0304 C 11 ADD DK2S1D round up 
0305 C' 
0306 
0307 
0308 

C 
C 
C 11 

LBTSEC DIV 
MVR 
ADD 

3848 DK1S2D 
TEMP84 
DK1S2D 

30 
11 

Sectors/1S2D dskt. 
If partial diskette 

round up. 
0309 C' 
0310 C LBTSEC DIV 4 TEMP7 Fl : 1 11 sectors 
0311 
0312 C 

TEMP7 DIV 
MVR 

1184 DK2S2D 
TEMP84 

30 
11 

Sectors/2S2D dskt. 
If partial diskette 

0313 C 11 ADD DK2S2D round up, 
0314 C' 
0315 C ENDSR 
0316 C' 
0317 C·--------------------------- -------- 
0318 C' Get and reformat member information. 

0319 C' 

0320 C GETMA BEGSR 

0321 C' 

0322 C' Get sub-type description 

0323 C' 

0324 C Z-ADDl TP 20 1st subtype desc 

0325 C DRATA5 LOKUPSTA. TP 11 Fi nd subtype desc. 

0326 C Nll Z-ADD34 TP Invalid subtype. 

0327 C MOVE STD.TP STDESC 28 Desc to screen 

0328 C' 

0329 C' Get descriptions for each attribute byte and put ; n screen array. 

0330 C· 

0331 C MOVE '8LANKS AL Blank out list. 

0332 C MOVE DRATR1 AB.l Set up attribute 

0333 C MOVE DRATR2 AB.2 byte array to 

0334 C MOVE DRATR3 AB,3 simplify 

0335 C MOVE DRATR4 AB,4 bit testing. 

0336 C MOVE DRATR6 AB,5 

0337 C Z-ADDl ALP 20 1st screen line. 

0338 C Z-ADD1 AP 10 1st attr byte. 

0339 C' 

0340 C AP DOWLE5 Look at each byte. 

0341 C Z-ADDl BP 10 1st bit in attr. 

0342 C· 

0343 C BP DOWLE8 Test each bit. 

0344 C SETOF 12 

0345 C TESTBB. BP AB.AP 12 Is it on? 

0346 C' 

0347 C 12 1 IFEQ Yes-Display it! 

0348 C AP SUB ATP 20 Calc. index 

0349 C MULT ATP into attr. 

0350 C ADD BP ATP desc array 

0351 C ALP IFLE 11 If on screen 

0352 C MOVE AT.ATP AL.ALP desc-:>oscrn. 

0353 C ADD 1 ALP bump line. 

0354 C END End IF 

0355 C END End IF 

0356 C' 

0357 C ADD BP Next bit 

0358 C END End DO 

0359 C' 

0360 C ADD AP Next attr byte 

0361 C END End DO 

0362 C' 

0363 C' For SSP releases 1 thru 5. DRREL contai ns 01 thru 05. 

0364 C· For SSP release 5 1. DAAEL contains 51. 

0365 C· Therefore. DRREL must be reformatted so that the releases go 

0366 C· from 1.0 thru 5.1. 

0367 C' 

0368 C DAREL IFGT 9 If rel . . 1 

0369 C DRREL DIV 10 DRRELA 21 move dec. left 

0370 C ELSE El se 

0371 C Z-ADDDRREL DRRELA add give it dec. 

0372 C END End IF 

0373 C· 




400 5/36 Power Tools 

0374 C· Adjust date field, 
0375 C' 
0376 C MULT 100,0001 OROATE YYMMOD - >MMODYY 
0377 C· 
0378 C' Compute program size for object or subroutine members, 
0379 C' 
0380 C INPTYP COMP '0' 11 If object or 
0381 C Nll INPTYP COMP 'R' 11 If subroutine, 
0382 C 11 DRCORE MULT 256 TEMP6 60 compute kbytes 
0383 C 11 TEMP6 DIV 1024 DRCORE H used 
0384 C* 
0385 C· Display MRT status for procedure. 
0386 C· 
0387 C INPTYP I FED ' P' If procedure 
0388 C SETOF 43 display MRT msg 
0389 C DRMRTC I FEO ' FF' If MRT 
0390 C MOVE 'Yes' MRT then flag 
0391 C ELSE El se 
0392 C MOVE 'No' MRT don't flag 
0393 C END End IF 
0394 C END End IF 
0395 C' 
0396 C INPTYP CaMP 'S' 43 If source. not MRT, 
0397 C' 
0398 C ENDSR 
0399 C* 
0400 C*------- ----------- ----------------- 
0401 C' If user just pressed Enter and dldn't enter new informatlon, get the 
0402 C' next LIBRI request from POP's command 1 i st, 
0403 C' 
0404 C GETNX BEGSR 
0405 C' 
0406 C· Check for new user input 
0407 C' 
040B C INPLIB CaMP SAVLI B 11 Library change? 
0409 C 11 INPMBR COMP SAVMBR 11 Member change? 
0410 C 11 INPTYP CDMP SAVTYP 11 Type change? 
0411 C Nll MOVE 'Y' NEWINF New info entered 
0412 C 11 MOVE 'N' NEWINF or not entered. 
0413 C' 
0414 C' Get either new user ; nput or next POP command, as appropriate 
0415 C· 
0416 C NEWINF IFEO 'Y' If new info 
0417 C EXSR SAVIN save it 
0418 C ELSE Else 
0419 C EXSR GETPC get POP command 
0420 C END End IF 
0421 C· 

0422 C' If not eoj, perform error check 

0423 C' 

0424 C END I FNE 'Y' If not eoj 
0425 C REQST CASEQ'LIBRONLY'CHKLB L; brary case 
0426 C CAS CHKMR Member case 
0427 C END End U$E 
0428 C END End IF 
0429 C' 
0430 C· If sti 11 not eoj. retr; eve lib or member info and display it 
0431 C' 
0432 C END IFNE 'Y' If not eoj 
0433 C REQST CASEQ'LIBRONLY'GETLB Do 1ib case 
0434 C CAS GET~R or mem case 
0435 C END End CASE 
0436 C EXSR DSPSC Display screen 
0437 C END End IF 
0438 C· 
0439 C ENDSR 
0440 C' 
0441 c*"---------- 
0442 C' Get the next "I" opcode from POP's command list. 
0443 C' End program when no more commands in list, 
0444 c· 
0445 C GETPC 8EGSR 
0446 C· 
0447 C MOVE 'BLANKS PELEM Clear elE~ment 

0448 C LP DOWLE12 Do wh; 1eel s rema, n 
0449 C MOVE PCL,LP PELEM Get list element 



pop 401 

0450 C opeOD ]FEQ 'I' If 'I' opcode 
0451 C GOTO GETPCl Then exit loop 
0452 C END End IF 
0453 C ADD LP Bump to next elt 
0454 C END End DO 
0455 C GETPCl TAG (loop exit point)

0456 C' 

0457 C LP ] FLE 12 If got one 

0458 C EXSR GETPE Get POP element. 

0459 C ADD 1 LP Bump to next elt 

0460 C ELSE Else 
0461 C MOVE 'Y' END Set eoj 

0462 C END End IF 

0463 C' 

0464 C GETPCX ENDSR 

0465 C' 

0466 C' 
0467 C' Get the values from a single POP command list element. 

0468 C' 

0469 C GETPE 8EGSR 

0470 C' 

0471 C' If called from library (not member} screen, only library information 

0472 C' will be displayed in all LIBRI operations. 

0473 C' 

0474 C POPTYP IFEQ 'L' If library request 

0475 C MOVE 'LI BRONLY' AEQST fl ag it 

0476 C MOVE ' • L! BA 'INPMBA then in;t for 

0477 C MOVE 'L' INPTYP SUBRLD fetch 

0478 C END End IF 

0479 C' 

0480 C' Set input fields accordingly 

0481 C' 

0482 C REQST IFEQ 'L!BRONLY' If library request 

0483 C MOVE POPL! B INPLIB make it new input 

0484 C ELSE Else member request 

0485 C MOVE MBRLl B INPLIB make it new input 

0486 e MOVE POPMBR INPMBR 

0487 C MOVE POPTYP INPTYP 

0488 C END End IF 

0489 e EXSA SAVIN Save input 

0490 C' 

0491 C ENDSR 

0492 C' 

0493 C'
0494 C' Save the input values for comparlson purposes 

0495 C' 

0496 C SAVIN BEGSA 

0497 C' 

049B C MOVE INPLIB SAVLI B Save library name 

0499 e MOVE INPMBR SAVMBR member, 

0500 C MOVE INPTYP SAVTYP and object type.

0501 C' 

0502 C ENDSA 

0503 C·----- - - - - - - - -- ------------

0504 C/EJ ECT 
0505 OWOAKSTN LIB 
0506 0 K8 LI BRARY 
0507 0 INPLI B 8 
0508 0 LBLBSZZ 13 
0509 0 LBBLI B 19 
0510 0 LBELIB 25 
0511 0 LI BEXT 2B 
0512 0 LBFMTl 34 
0513 0 LBDRSZZ 39 
0514 0 LBBDIA 45 
0515 0 LBUOIRZ 50 
0516 0 LBEDI R 56 
0517 0 LBADIRZ 61 
0518 0 LBUSECZ 67 
0519 0 LBBMEM 73 
0520 0 LBASECZ 79 
0521 0 LBEMEM 85 
0522 0 MCNT, 1 Z 89 
0523 0 LBNMEM 95 
0524 0 MCNT,2Z 99 
0525 0 MCNT,3Z 103 



402 5/36 Power Tools 

0526 0 
0527 0 
0528 0 
0529 0 
0530 0 
0531 O' 
0532 OWORKSTN 
0533 0 
0534 0 
0535 0 
0536 a 
0537 0 
0538 0 
0539 a 
0540 0 
0541 0 
0542 0 
0543 a 
0544 0 
0545 0 
0546 0 
0547 a 
0548 a 
0549 a 
0550 
0551 0 
0552 0 
0553 OWORKSTN 
0554 a 
0555 a 
0556 0 
0557 a 
0558 a 
0559 a 
0560 0 
0561 0 
0562 0 
0563 0 
0564 0 
0565 0 
0566 0 
0567 a 
0568 0 
0569 0 
0570 OWORKSTN 
0571 0 
0572 a 
0573 OWORKSTN 
0574 0 
0575 0 
0576 0 
0577 a 
** Member 
ORPS 

Member 
02 
11 
12 
13 
14 
15 
16 
17 
18 
19 
31 
32 
33 
34 
35 
H 

types 

sub-type descriptions 
Oata 

Auto response 
Auto report 

Basic procedures 
DFU 

Screen format 
Menu 

Message member 
Phone list 

Sort 
Assembler 

BASIC 
COBOL 

FORTRAN 
RPG 
~U 

37 Software distribution 
40 Unspeci fi ed 
41 Business Graphics chart 
42 Business Graphics data 
43 Business Graphics format 

MCNT,4Z 107 
DK1S1DZ 110 
DK2S1DZ 113 
DK1S2DZ 116 
DK2S2DZ 119 

MEMOR 
K8 'MEMBEROR' 

INPLIB 8 
INPMBR 16 
INPTYP 17 
DRATR5 19 
DRMOD Z 25 
STDESC 53 
DRDATE 61 /
DRTOTLZ 64 
DRTIME 69 
DR#TXTZ 74 
DRRELA 77 .0' 
DRCOREZ 80 
DRMRTNZ 82 
DRADDR 88 
DRLINK 92 
DRSCA 96 
DRRLD 98 
DRPTF@ 102 
AL 520 
MEMSP 

K8 'MEMBERSP' 
I NPLI B 8 
INPMBR 16 
INPTYP 17 
DRATR5 19 
DRMOD Z 25 
STDESe 53 
DRDATE 61 
DRTOTLZ 64 
DRTIME 69 
DR#STMZ 74 
DRRELA 77 .0' 
DR#TXTZ 80 
MRT 83 
DRADDR 89 
AL 507 
LIBERR 

K8 'LI BRERR 
INPLI B 8 
MEMERR 

K8 'MEMBERR ' 
I NPLI B B 
INPMBR 16 
INPTYP 17 

STA,STD element 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 



403 pop 

51 SSP-ICF configuration 22 

52 System configuration 23 

53 Edi tabl. text 24 

54 Free form text 25 

55 Hard copy text 26 

56X.25 pkt. switching link ctl 27 

57Communications &system mgmt 28 

58 Query 29 

59 Cross system product 30 

5A Query data entry 31 

58 Document library services 32 

5C Keys procedures 33 

FF Invalid sub-type specified 34 


Member attr. descriptions AD element 

SSP Attribute bit 1 

O-Privileged module I P-Don't log OCl 2 

Non-inquirable module 3 

O-SFGR format load I P-Proc. with data 4 

Sou rce requ ired 5 

Non base SSP modu 1. 6 

PTF has been applied 7 

Module has overlays 8 

Dedicated module 9 

Never ending program 10 

Module has OXRF fmt. index table 11 

Security authorization required 12 

Cannot load program with II lOAD 13 

Program has common 14 

Prog. with utility control stmts 15 

Module has OXRF WTG table 16 

SWORK2 f i 1e requ ired 17 

Do not swap this task 18 

High level of dedication 19 

Program needs FORTRAN micro-code 20 

Member ;s a configuration record 21 

Member must be transferred to 22 

Member cross-referencable 23 

New copy of MRT program required 24 

Program needs BASIC micro-code 25 

Pad module (spaceholder) 26 

SUNG lOW program 27 

IBM supplied program 28 

Resides in library extent 29 

DDS load format member 30 

System transient member 31 

One copy execution only 32 

Dynamically privileged 33 

Does not need swap area 34 

Emulation member 35 

Has memory resident overlays 36 

PC lAN mi crocode member 37 

Not a valid attribute bit 38 

Not velid attribute bit 39 

Not val id attribute bit 40 

; 

Figure 14-2 

Screen formut 
member 
L1BRIFM 

.. . ..... 2 

s····················································· ............•••


4 6 7 ... .. 8 


S' SCREEN NAME. L1BRIFM 
s' DESCRIPTION. LI BRI 
S· PROGRAMMER. Chuck Lundgren (Iris Software, Inc.) 
S· DATE WRITTEN. June 1989 
s· 
s· VERSION DATE FIX DESCRIPTION 
s· 
s····················································· .............. . 

SLIBRARY 97 YY Y G
5····················································· ..••..••••..... 
S· FORMAT NAME. LIBRARY 

S· PURPOSE ... Library information screen.

5·····················································•••..••••••.... 
D 4 1 2Y Clibr 
DlNAME 8 1 7Y Y Y Y 

Attr. byte Attr. bit 

1 0 

1 1 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

2 0 

2 1 

2 2 

2 3 

2 4 

2 5 

2 6 

2 7 

3 0 

3 1 

3 2 

3 3 

3 4 

3 5 

3 6 

3 7 

4 0 

4 1 

4 2 

4 3 

4 4 

4 5 

4 6 

4 7 

6 0 

6 1 

6 2 

6 3 

6 4 

6 5 

6 6 

6 7 




404 S/36 Power Tools 

178Y Y Y Y CO 
7 3 2Y CLI BRARY 

26 345Y CLIBRARY ADDRESSES (in hX 
Dex) 
o 4 4 4Y CS,ze 
DLBLBSZ 5 428Y Y 
o 434Y CBlocks 
o 12 447Y CFirst sector 
DLBBLI B 6 466Y Y 
o 11 547Y CLast sector 
DLBELI B 6 566Y Y 
DLI BEX 13 5 4Y CExtent active 
oEXTAVL 3 530Y Y 
DVTITLE 10 647Y VTOC ent ry 
DLBFMTl 6 666Y Y 
o 17 8 2Y CLIBRARY DIRECTORY 
o 36 845Y ClIBRARY DIRECTORY ADDREX 
DSSES (in hex) 
o 4 9 4Y CSize 
DLBDRSZ 5 928Y Y 
o 7 934Y CSectors 
o 12 947Y CFirst sector 
DLBBDIR 6 966Y Y 
o 1210 4Y CUsed entr; es 
DLBUDIR 51028Y Y 
o lllD47Y CLast sector 
DlBEDIR 61066Y Y 
o 1711 4Y CAvailable entries 
DlBADIR 51128Y Y 
o 15132Y CLII3RARY MEMBERS 
o 331345Y CLIBRARY MEMBER ADDRESSEX 
OS (in hex) 
o 414 4Y CUsed 
DlBUSEC 61427Y Y 
o 71434Y CSectors 
o 121447Y CFirst sector 
DLBBMEM 61466Y Y 
o 9154Y CAva; lable 
Dl8ASEC 61527Y Y 
o 71534Y CSectors 
o 111547Y CLa5t sector 
DLBEMEM 61566Y Y 
o 14164Y CObject members 
DDIRDB 41629Y Y 
o 181647Y CNext avail. sector 
DLBNMEM 61666Y Y 
o 1817 4Y CSubroutine members 
DDIRPC 41729Y Y 
o 1718 4Y CProcedure members 
DDIRSB 41829Y Y 
o 341845Y CNO. DISKETTES REO TO SX 
DAVE LIBRARY 
o 1419 4Y CSource members 
DDIRSC 41929Y Y 
o 201947Y C1S1D (128K) diskette 
DDK1S1D 31969Y Y 
o 202D47Y C2S1D (256K) diskette 
DDK2S1D 32D69Y Y 
o 2D2147Y C1S2D (512K) diskette 
DDK1S2D 32169Y Y 
D 202247Y C2S2D (1.2M) diskette 
DDK2S2D 32269Y Y 
DDK2S2D 6524 2Y Y CEnter new library name X 
Dar press Cmd-7 to return to library screen 
SMEMBERDR YY Y G 
s************··*************************************** ~************** 

S' FORMAT NAME. MEM8ERDR 

S' PURPOSE .. Object/Subroutine member information screen. 

S*****************************************************.************** 

o 4 1 2Y CLi br 
DLlBNAM 8 1 7Y Y Y Y 
D 6 116Y CMember 
DMBRNAM 8 123Y Y Y Y 
o 4 132Y CType 
DMBRTYP 137Y YA Y Y 
o 178Y Y Y Y C1 



405 pop 

D 3 2Y CMEMBER 
D 14 340Y CVERSION STATUS 
D 8 4 4Y CSub-type 
DMBRSUB 2 430Y Y 
0 16 442Y CReference number 
OORREL 6 461Y Y 
OSTOESC 28 5 4Y Y 
0 12 542Y COate changed 
OOROATE 8 559Y Y 
0 4 6 4Y CSize 
OORTOTL 3 629Y Y 
0 7 633Y CSectors 
0 12 642Y CTi me changed 
OORTIME 5 662Y Y 
0 12 7 4Y CText sectors 
OOR#STM 5 727Y Y 
0 7 733Y CSectors 
0 13 742Y CRelease 1 eve 1 
ODRREL 3 764Y Y 
0 12 8 4Y CProgram size 
DORCORE 3 829Y Y 
0 7 833Y CK bytes 
D 14 9 4Y CMRT max. count 
DDRMRT 2 930Y Y 
0 2511 2Y CMEMBER ADDRESSES (in heX 
Dx) 
0 101140Y CA TTR IBUTES 
D 1912 4Y CFirst member sector 
OMBRADR 61226Y Y 
0 913 4Y CL ink edi t 
ODRLINK 41328Y Y 
0 1114 4Y CEntry poi nt 
ODRSCA 41428Y Y 
0 1615 4Y CRLD displacement 
PORRlO 21530Y Y 
0 2216 4Y CPTF table displacement 
DDRPTF@ 41628Y Y 
DATR.l 381242Y Y 
DATR.2 381342Y Y 
OATR.3 381442Y Y 
OATR.4 381542Y Y 
OATR,5 381642Y Y 
OATR,6 381742Y Y 
OATR,7 381842Y Y 
OATR,8 381942Y Y 
OATR,9 382042Y Y 
OATR, 1 0 382142Y Y 
OATR,11 3B2242Y Y 
0 7424 2Y Y CEnter new library or meX 
Dmber name, or member type, or press Cmd-7 to return 
SMEMBERSP YY Y G 
$ ••• ** ••••••*****.****.** •••••• ******.** •• *** •• *** •••••• ******.*.***. 

S· FORMAT NAME ..... MEMBERSP 
S' PURPOSE. Source/Procedure member information screen.
5·····_···············_··························_----*** ..... *.*.* •• 
0 4 1 2Y CLibr 
OLI8NAM 8 1 7Y Y Y Y 
0 6 116Y CMember 
DMBRNAM 8 123Y Y Y Y 
D 4 132Y CType 
DMBRTYP 1 137Y YA Y Y 
0 1 178Y Y Y Y C1 
D 6 3 2Y CMEMBER 
0 14 340Y CVERSION STATUS 
0 
OMBRSUB 

8 4 4Y 
2 430Y Y 

CSub-type 

0 16 442Y CReference number 
ODRREL 6 461Y Y 
DSTDESC 28 5 4Y Y 
0 
OOROATE 

12 542Y 
8 559Y Y 

COate changed 

D 4 6 4Y CSize 
DORTOTL 3 629Y Y 
D 7 633Y CSectors 
0 
DORTlME 

12 642Y 
5 662Y Y 

CTime changed 



406 5/36 Power Tools 

0 10 7 4Y CStatements 
DDR#STM 5 727Y Y 
D 13 742Y CRel ease level 
DDRREl 3 764Y Y 
0 13 8 4Y CReeord length 
DMBRlTH 3 829Y Y 
D 11 9 4Y 43 CMRT Maximum 
DMRT 3 929Y Y 43 
0 2511 2Y CMEMBER ADDRESSES (i n heX 
Dx) 
D 101140Y CATTRI BUTES 
D 1912 4Y CFi r'st member sector 
DMBRADR 61226Y Y 
DATR.1 381242Y Y 
DATR.2 381342Y Y 
DATR.3 381442Y Y 
DATR.4 381542Y Y 
DATR.5 381642Y Y 
DATR.6 381742Y Y 
DATR.7 381842Y Y 
DATR.8 381942Y Y 
DATR.9 382042Y Y 
DATR.10 382142Y Y 
DATR.11 382242Y Y 
0 7424 2Y Y CEnter new library or meX 
Dmber name, or member type. or' press Cmd-7 to return 
SLIBRERR YY Y G 
s**************************************···*********·*·_ •••• _-_ •••••• 
S' FORMAT NAME .. LIBRERR 

S' PURPOSE .. Library error screen.

s*---*·····**··*-·-*_·*·· __ ·_·_··*·-*_·_-_···-· __ ·_···*************** 

47 1 2Y CUnable to find the follX 
Dowing library. NAME: 
DLIBNAM 8 152Y Y Y Y 
D 1 178Y Y Y Y CO 
D 70 4 2Y Y CEnte r new 1; brary name X 
Dar press Command 7 to return to library screen. 
SMEMBERR YY Y G
s·_·_·_--*--*·_-*--**-_··_**_···_*_·_---**----_·_···--*************** 
S' FORMAT NAME. MEMBERR 

S' PURPOSE .. Member error screen. 

5* ** ...... *. *** ........ *."""""".it.*" * .... * ... ** * * ...... *it. *_ it it * it ** * .. it it * •• * .... it .... *._ 

0 37 1 2Y 40 CUnable to find the follX 
Dow; ng library; 
DLI BNAM 8 152Y Y Y Y 
0 76 5 2Y Y CEnter new library, membX 
Der name or type, or Cmd-7 to return to library screen 
D 36 2 2Y 41 CUnalJle to find the follX 
Dowing member: 
DSMNAME 8 252Y Y Y Y 

0 5 344Y CTyp,,: 

DSOTYPE 1 352Y Y Y Y 

D 1 378Y Y Y Y C1 

0 7 242Y CMember: 

0 8 141Y Clibrary: 

0 34 3 2Y 42 CMember type must be O. X 

DR. P. or S: 


Procedu re: L1BRIFigure 14-3 Parameters: For library information: For member information: 
1 L; brary name Member nameProcedure 2 l 	 Member type (O.R.P. or S) 

Library nameLlBRI 	 3 o 

/ / lOAD LI SRI 

/ / RUN 


Note: Since #POPLIB already contains a LlBRI (save library) procedure, you 
should rename either it or the LIBRI (information) procedure before installing this 
procedure in #POPLIB. 



pop 407 

Figure 14·40 

Library 
information 
screen 

Figure 14·4b 

Source and 
procedure 
member 
information 
screen 

Libr #L1BRARY 

LIBRARY LIBRARY ADDRESSES (i n hex) 

Size 7171 Blocks First sector 003ADF 

Extent active NO Last sector 0152FC] 


VTOC entry 001AOF 

LIBRARY DIRECTORY 	 LI BRARY DIRECTORY ADDRESSES (i n 
hex) 

Si ze 768 Sectors First sector 003AEO 
Used entries 1918 Last sector 003DDE 
Available entries 1916 

LIBRARY MEMBERS 	 LIBRARY MEMBER ADDRESSES (i n 
hex) 

Used 66994 Sectors First sector 003DDF 
Available 3408 Sectors Last sector 0152C5 
Object members 1418 Next avail. sector 014576 
Subroutine members 9 
Procedure members 447 NO. DISKETTES REQ. TO SAVE 

LIBRARY 
Source members 44 	 lSlD (128K) diskette 71 

2S1D (256K) di skette 57 
1S2D (512K) di skette 18 
2S2D (1.2M) diskette 15 

Enter new library name or press Cmd~7 to return to library screen 

Libr POM Membe r LI BR I Type S 

MEMBER VERSION STATUS 
Sub-type 40 Reference number 4 

Unspec i fi ed Date changed 7/11/89 
Size 80 Sectors Time changed 15: 58 
Statements 650 Release level 5.1 
Record length 96 

MEMBER ADDRESSES (in hex) ATTRI8UTES 
First member sector 0269E6 SUNG LOW program 

Enter new library or member name, or member type, or press Cmd-7 to return 



408 5/36 Power Tools 

Figure 14-4c 

Object and 
subroutine 
member 
information 
screen 

Figure 14-5a 

Library error 
screen 

Llbr POM Member LIBRI Type 0 

MEMBER VERSION STATUS 

Sub-type 35 Reference number 4 


RPG Date changed 7/11/89 

Size 80 Sectors Time changed 15:59 

Text sectors 80 Sectors Release level 5.1 

Program size 20 K bytes 

MAT max. count 


MEMBER ADDRESSES (in hex) ATTRIBUTES 

First member sector 026A36 Privileged module 

Link edit 0000 SUNG LOW program 

Entry point 0000 

RLD displacement CA 

PTF table displacement 0000 


Enter new library or member name, or member type, or press Cmd-7 to return 

Unable to find the following 1 ibrary: NAME: JUNKO 

Enter new library name or press Command 7 to return to library screen. 



pop 409 

Figure 14-5b 

Library member 
error screetl 

Figure 14·6 

POP command 
list 

Figure 14-7 

Command list 
before 
compression 

51 

P 

61 

j 

51 

P 

61 

71 

81 

91 

K 

Unable to find the 

Enter new library, 
screen 

52 - 59 

LlBTEST 

62 - 69 

#1 DALI B 

52 - 59 

LlBTEST 

62 - 69 

#IDALIB 

72 -79 

#VDSKLIB 

82 - 89 

FSLlB 

92 - 99 

DFULIB 

Library: POM 
followlng member: Member: LIBRZ 

Type: 0 

member name or type, or Cmd-7 to return to library 

60 - LDA positions 

L Command 1 

70 

L Command 2 

60 - LDA positions 

L Command 1 - Already executed 

70 

L I Command 2 - Currently executing 

80 

L I Command 3 - Pending execution 

90 

L I Command 4 

100 

L Command 5 



410 S/36 Power Tools 

Figure 14·8 51 52 - 59 60 - LOA positions 
Compressed 
command list 

P L1BTEST L I Command 1  Already executed 

61 62 - 69 70 

#IOALIB L I Command 2  Already executed 

71 72 - 79 80 

J #VOSKLIB L I Command 3  Pending execution 

81 82 - 89 90 

K OFULIB L Command 4 

Editing in Two FSEDIT Sessions 
by Mark Lazarus and Abraham Notik a Code on diskette: 

Procedure code FSEDIT2S 

A typical solution to the problem of editing multiple sessions with FSEDIT 
(POP's editor) is to replace the #POPLIB FSEDIT procedure statement in 
Figure 14-9a with the lines of code in Figure 14-9b. The problem with this 
approach is that it doesn't cover all possible situations. Consider the follow
ing scenario: You start up session 1 and press the Attention key and select 
option 1 to run an inquiry session. You fire up session 2 and then Attention 
key/option 7 to get back to session 1. Now, if you press the Attention key, 
select option 3, and cancel session 1, and then try to start FSEDIT again, it 
bombs. This is because the session 1 work file is still on disk, and FSEDIT 
attempts to recover the still-active session 2 work file. 

A problem also occurs if you've exited session 1 and the terminal goes 
down or the edit session gets interrupted while session 2 is still active. 
When your system comes back up, FSEDIT creates the session 1 work file 
and ignores the fact that there is another session (session 2) to be recovered. 

An improved solution modifies the FSEDIT procedure by replacing 
the original statement (Figure 14-9a) with the lines of code in Figure 14-9 
c. This solution lets you toggle back and forth between the two editing ses
sions without running into problems. 

Figure 14·9a 

Original FSEDITprocedure statement 

II IF DATAF1-?10F·FS?L·214.4·??WS?'? FSEDRCVR -ALL 



pop 411 

II IF DATAF1-FS?L'214,4'??WS? EVALUATE P10=FI?L'214,4'??WS?Figure 14·9b II IFF DATAF1-FS?L'214,4'7?WS? EVALUATE P10-FS7L'214,4'??WS? 
II IF DATAF1-?10? FSEDRCVR "ALLA typical 

modification to 
the FSEDIT 
procedure 

Figure 14·9c 	 II EVALUATE P10-FI?L'214,4'??WS? 
II IF ?F'A,?10?'?=0 GOTO SKIP1 

An improved 	 II FILE NAME-710?,WAIT-NO
II IF ?CD7-0000 FSEDRCVR "ALL

modification to 764? 

the FSEDIT II TAG SKIP1 
II EVALUATE P10-FS?L'214,4'??WS?procedure II IF ?F'A,?107'?-0 GOTO SKIP2 
II FILE NAME-?10?,WAIT-NO
II IF ?CD7-0000 FSEDRCVR "ALL 
II TAG SKIP2 

?64? 


II FILE NAME-?10F'FS7L'214,4'7?WS?'?,WAIT-NO 
II IFF ?CD7=0000 EVALUATE P10-FI7L'214,4'77WS7 

Note: This code can be found in procedure FSEDIT2S on the diskette, 

Emulating RPGONL and COBOLONL in POP 
by Alvaro de Leon 

Code on diskette: a Procedures LIBRL, LIBR02 

An on-line programming system can accelerate the development of your 
programs because in an on-line programming environment, you can enter a 
new program (or make a number of changes in an existing program) and 
then compile it, view the error messages on the screen, do the necessary 
editing, and immediately compile the corrected version, The result is that 
your programs go into production more readily. 

The IBM-supplied procedures that support on-line development of 
COBOL and RPG programs are COBOLONL and RPGONL. These pro
cedures use the DSM (Diagnose Source Member) parameter in the S/36 
COBOLC and RPGC commands to record diagnostic messages in an easy
to-read format so you can use SEll to read and correct the errors, 

Because I prefer the full-screen editor (FSEDIT) of IBM's POP to SEll, 
I wrote two procedures, LIBRO and LIBRL, that alternate FSEDIT and the 
given language compiler help screens (see Figures 14-10 and 14-11, respec
tively). With these procedures saved in #LIBRARY, you can enter 0 to itera
tively edit/compile an RPG program or use L to iteratively edit/compile a 
COBOL program. When the program source code is satisfactory, you can exit 



412 5/36 Power Tools 

Figure 14-10 

Procedure 
LIBRO 

Figure 14-11 

Procedure 
LIBRL 

either procedure by pressing Command key 7 or Command key 19 from the 
edit screen and then Command key 3 from the compiler help screen. 

These procedures provide the functions of RPGONL and COBOLONL, 
with the added feature of full-screen editing, all in just four lines of code 
(compared with more than 260 lines in the RPGONL procedure and more 
than 420 lines in the COBOLONL procedure). 

II TAG INICIO 
FSEOIT 71?R,?L'1,8'? 
HELP RPGC ?17,?L'1,8'?,OSM,NOPRINT,NOXREF 
II IFF ?C07-2143 GOTO INICIO 

Note: This procedure is named LIBR02 on diskette. To use it in #POPLIB, you 
mllSt rename it to LIBRO. Anotherprocedure described in Transmitting Library 
Members via ODF/36 and POP,page 415, uses the name LIBRO, so ifyou lISe 
both procedures in #POPLIB, one ofthem must be renamed to use a POP opcode 
other than 0, 

I I TAG INICIO 
FSEDIT ?1?,R,?L'1,8'7 
HELP COBOLC ?1?,7L'1,8'7"OSM,NOPRINT,NOXREF 
II IFF 7C07-2143 GO TO INICIO 

Removing Diagnostics from RPG Programs 
by Manuel Humbertoa Code on diskette: 

Procedure LIBRM 

FSEDIT can't remove diagnostic messages from source code when you 
compile programs using the DSM (Diagnose Source Member) parameter 
on the RPGC procedure. However, you can delete these diagnostic mes
sages with utility LIBRM. 

To install the utility using POP, place LIBRM (Figure 14-2) in 
#LIBRARY or #POPLIB. To execute the utility, put an M at the left of the 
names of the source members from which you want to remove the DSM 
diagnostic message lines (i.e., lines containing ?? in [he first two positions). 
The LIBRM procedure then removes the diagnostic message lines from 
the selected source members. 

Figure 14-12 

Procedure 
LIBRM 

I I INFOMSG 
II IFF 
II IFF 
I I IF 
I I IF 

NO 

SOURCE-'717,?3?' 

SQURCE-'?17, ?3?' 

?2?
OATAF1 - LI BRM?WS? 


MSG ?WS?,No Source found ?1? 
RETURN 
EVALUATE P2-S 
DELETE LIBRM?WS?,F1 



POP 413 


/ / IF 
FAOMLJ BA 
COPYDATA 
TOll BR 
DELETE 
DELETE 

DATAF1-LIBA1?WS? DELETE LIBA1?WS?,F1 
? 1 ? ,S, LI BAM7WS? ,F1 , T, 100,? 3? , , , ,96 
L1BAM?WS?, ,LISA1 ?WS?, , '" ,OMIT, 1, EO, '7?' 
LIBA1'WS?,F1, ,AEPLACE,?3?", ,?1?,SOUACE 
LI BAM?WS? , F1 
LISR1 ?WS? , F1 

Blanking Out Columns 1-5 and 75-80 
in RPG Source with POP 
by Hermann Revilla Gutierrez 

Figure 14-13 

Procedure 
LIBRQ 

a Code on diskette: 

Procedure LIBRQ 

RPG program LIBRQ 

Screen format member LIBRQFM 


S/36 programmers usually serialize their source RPG II programs either by 
using options 3 or 4 of the last SEU prompt or by answering the Serialize 
Member option on the Source Replacement Options prompt on POP's edi
tor affirmatively. Some programmers also duplicate the program's name in 
columns 75 through 80. 

A serialized program is useful during development, but storing it per
manently wastes considerable disk space. The S/36 utility LIBRQ - con
sisting of procedure LIBRQ (Figure 14-13), program LIBRQ (Figure 14-14), 
and a display screen LIBRQFM (Figures 14-15a and 14-15b) - quickly 
deletes the serialization of a source member. 

To execute utility LIBRQ using POP, place the utility in #LIBRARY 
by specifying the source member in a given library. You can either key Q at 
the left of the name(s) of the program(s) from which you want to remove 
the serialization or place the utility in any user's library. The user can exe
cute the utility by running procedure LIBRQ. Procedure LIBRQ prompts 
you for the name, type, and library of the source member from which you 
want to delete the serialization. 

// IF '27/ EVALUATE P2-S 
// IF ?171 PROMPT MEMBEA-LIBAOFM,FOAMAT-A,LENGTH-'S,1,S',START-1 
/1 IF ?CD7/2007 AETUAN 
/1 IFF 7Z7/S RETURN 
II IF DATAF1-LIBR07WS' DELETE LIBRQ7WS',F1 
FAOMLI BA 71 A? ,SOURCE, LIBAQ7WS? , F1 ,T, SO, 73A? , , , ,120 
II • ' Ejecuci"n programa LIBRQ' 
1/ LOAD LI BRO 
II FILE NAME-LIBAO,LABEL-LIBRO'WS? 
I I AUN 
TOLIBR LIBRQ?WS7,F1, ,REPLACE,'3?", ,71',SOURCE 
DELETE LIBAO'WS?,F1 

Note: Anotherprocedure described in Putting a Job on the Job Queue from 
POp, page 430, uses the name LIBRQ, so ifyou use both procedures in #POPLlB, 
one ofthem must be renamedto use a POP opcode other than Q. 



414 5/36 Power Tools 

... 1 2 ..... 3 ... '" 4 '" .. , 5 6 ...... 7 .. BFigure 14-14 
H 002 B 1 LIBRa
F······**············································· ............ .
Program LIBRQ F' Program: LIBRa Written by: Ing. Hermann Revilla Gtz. 

F' 

F* This program ends the serialization of a source member 

F' previously serialized using either SEU or POP's editor. 

F'

F····················································· ........•..•. 

FLIBRO UP F3840 120 DISK 
IU8RO NS 01 lNC/ 
I AND INC? 
I 1 120 REGIST 
I 1 3 ASTER 
I 1 5 SERlE 
I 6 6 CAR 
I 75 80 NOMPRO 
I NS 02 C/ 
I OR C? 
I 1 120 REGIST 
C 01 30 EXSR UNO 
C 01N30 EXSR DOS 

C UNO 8EGSR 
C NOMPRO COMP NOMAUX 40 
C 40 MOVE 'BLANK NOMPRO 
C MOVE 'BLANK SERlE 
C ASTER COMP .•• LR 
C LR SETOF 0102 
C ENDSR 

C DOS BEGSR 
C CAR COMP 'H' 30 
C 30 MOVE NOMPRO NOMAUX 
C 30 MOVE 'BLANK SERlE 
C ENDSR 

OUBRO 0 01 
o OR 02 
o REGIST 120 
o 01 SERlE 5 
o 01 NOMPRO 80 

FISlure 14-15a 
DELETE SERIALIZATION PROGRAMPrompt screen 

LIBRQFM 
Member name 

Member type . S 

Library containing member 

Cmd 7 - CANCEL 



pop 415 

Figure 14·15b . .. 
SA 

1 . .. 2 .. 
0124 

.. . 3 
Y 

4 .. ... 5 6 ... 
G 

.. 7 8 

Screen format DFLOO01 
DOG RAM 

31 326Y Y COUlTER SERIALIZATION PRX 

member 
LlBRQFM 

DFLOO02 
D. 
DFLOOO3 

49 714Y 

8 764Y Y Y Y 

CMember Name ... X 

DFLOOO4 49 914Y CMember Type .X 
D. 
DFLOOO5 1 964Y Y Y Y 
DFLOOO6 491114Y CL,brary Name that contaX 
Dins the member 
DFLOO07 81164Y Y Y Y 
DFLOO08 232330Y C<Mdato 7> CANCEL 

Positioning LIBR to a Given Member 
by Garry A. Abbott 

a Code on diskette: 

Procedure POS 

POP is a great facility for browsing and editing library members but leaves 
a bit to be desired in positioning the display of particular members. POP's 
requirement that you use the? search command is especially a problem 
when you are using remote 5250 emulation on a Pc. 

To solve this problem, the procedure in Figure 14·16 substitutes three 
parameters into the LDA to cause POP to automatically bring up the member 
requested by parameter 2. Note that parameter 3 (member type) defaults to S . 

•• QUICK LIBR DISPLAY SET ON PARMSFigure 14·16 •• P1' LI 8RARY 

•• P2- MEM8ER NAME
Procedure POS •• P3- TYPE, S.P,O,R 
II LOCAL OFFSET-1,DATA-'?1 '?CLIS?'? 
II LOCAL OFFSET-27,DATA-'YYYY .J?3'S'?727 
II LIBRARY NAME-#POPLIB 
II LISR# 

TransmiHing Library Members 
via ODF/36 and POP 
by Mike Otey 

a Code on diskette: 

Procedures LIBRO, SENDODF 
RPG programs ODFPOp, ODFGET 
RPG code ODFSND, ODFMSG 
Screen format member ODFPOPFM 

ODF/36 is an IBM PRPQ that lets your S/36 transmit library members, files, 
job streams, and print spool files to remote systems using an APPC/APPN 
(Advanced Program-to-Program Communications/Advanced Peer-to-Peer Net
working) communications link. You can operate ODF/36 either in interactive 



416 5/36 Power Tools 

Figure 14·17 

Send Library 
Members 
Through 
Network screen 

mode, by filling out prompt screens, or in batch mode, by calling procedures 
with parameter lists. The batch capabilities ofODF let you use ODF/36 in a 
primarily unattended environment and in your own utility procedures. 

ODF/36's most useful feature is its ability to distribute application 
library maintenance from a central site to remote CPU locations by using 
the SENDLIBR procedure. The format of the ODF/36 SENDLIBR pro
cedure is similar to the standard SSP LIBRLIBR procedure. Figure 14-17 
illustrates the SENDLIBR procedure's interactive prompt screen. 
SENDLIBR is geared to work with individual library members, not arbi
trary groups of members, and thus can be somewhat cumbersome to use. 
The first ODF/36 network management tool you need to construct is one 
that automates SENDLIBR's operation. 

SEND LIBRARY MEMBERS THROUGH NETWORK 
Type choices. press Enter. 
ITEM CHOICE POSSIBLE CHOICES 
Member name ODFPOP Name. partial name, ALL 

If partial name, enter ALL. 
Member type SOURCE SOURCE, LOAD, PROC, L! BRARY , 

SUBR, PTF 
Library #POPLI B 
Format S36FMT S36FMT, DATA, PUNCH 
User OPERATOR 
Address PORTLAND 
Priority 50 1 - 99 
RSCS distribution code 
RSCS class A A-Z 

Acknowledgment NOACK NOACK, ACK 

Cmd3-Go back Cmd5-Add user list Cmd7-End 

An existing productivity tool that can help you improve the SENDLIBR 
user interface is IBM's POP utility. POP makes keying LIBRLIBR proce
dures obsolete, and it can do the same for ODF/36's SENDLIBR proce
dure. The "point and shoot" interface POP uses eliminates keying errors 
and lets you perform operations on arbitrary groups of objects as opposed to 
LIBRLIBR's - and SENDLIBR's - single-object orientation. By com
bining POP's library members interface and the batch mode ofODF/36, 
and by using the built-in user extendability, you can make two of IBM's 
most useful S/36 products complement one another. 

Creating a New POP Opcode 
The ODF/36 SENDLIBR procedure provides the engine to distribute the 
library members through the network, while POP provides a familiar and 
efficient user interface. To distribute library members to your remote sys



pop 417 

Figure 14-18 

ODFPOP LlBRO 
overview 

ODFPOP I.......f------I...I ODF.NUM 


ODF.MSG
ODF.SMDSENDODF 

ODFGET 

SENDPRT 

SENDLlBR 



418 5/36 Power Tools 

terns, you must add to the POP library members screen a new opcode that 
creates a connection between POP and OOF/36. 

Implementing a new POP opcode doesn't require modifying any of the 
IBM-supplied POP procedures. Thus, it is relatively easy to implement the 
POP-OOF/36 send library members utility. 

The first step in designing this send library members utility is to 
choose the new POP opcode. I chose 0 because it is an appropriate abbre
viation for OOF, it is easy to remember, and I didn't already have an 0 
function. Next, you must determine how this new opcode should work. To 
be consistent with the other POP opcodes, the utility should be able to per
form operations on multiple members and should have the ability to dis
play the selected members for confirmation first. Also, to make the most 
efficient use of the network, you should have the option to specify the dis
tribution start time in case you want to schedule maintenance during low 
network-traffic periods. For audit purposes, you should be able to generate 
both a printed record of the maintenance at the central and the remote 
locations and an on-line record of each transmission to a remote location. 
Last, to alert the operators at the remote sites that they have received a 
maintenance update, you should be able to send an optional operator mes
sage with the transmission. You can also use this message to provide any 
additional instructions for the remote system operators. 

The new 0 opcode consists of procedure LIBRO, workstation program 
OOFPOP and screen format member OOFPOPFM to display the library 
members selected for confirmation, file OOFSNO to contain the selected 
members and message, program OOFGET to read the selected members 
out of the file for transmission, and, finally, procedure SENOOOF to call 
the OOF/36 SENOLIBR and SENOPRT procedures to distribute the 
library members and their accompanying maintenance log and message. 
Figure 14-18 provides an overview of the system. 

pop UBR and LlBR# Procedures 
Before you can understand the POP utility in detail, you need to understand 
the POP LIBR and LIBR# procedures (Figures 14-19a and 14-19b, respec
tively), which drive the POP library members display. The LIBR procedure 
displays library member lists and calls the LIBR# procedure from the POP 
LIBR procedure every time you enter an opcode other than B, N, or Y on 
the POP library members screen. The POP LIBR program handles opcodes 
B, 0, N, and Y internally, but all other opcodes are passed into the LOA 
along with the associated member name and type (e.g., source, object). The 
LIBR# procedure is subsequently invoked and executes a command-han
dling procedure for each of the opcodes stored in [he LOA (Figure 14-19b). 

Procedure LIBR# follows a simple rule for determining the name of the 
procedure to execute for a given command: the name follows the form 
LIBRx, where LIBR is constant and x is the POP opcode. For example, 



pop 419 

Figure 14-19a 

POP'sLIBR 
procedure 

Figure 14-19b 

POP's LIBR# 
procedure 

Figure 14-20 

Procedure 
LIBRO 

procedure LIBR# processes an 0 opcode by executing a procedure named 
LIBRO. After procedure LIBR# processes the entire list of opcodes, it 
returns to the LIBR procedure to redisplay the library members list. 

II LOCAL DFFSET-l ,DATA-'?l '0" 

II LOCAL OFFSET-27,DATA-'YYYY .1 

II LOCAL OFFSET-51 ,BLANK-120 CLEAR LDA BEFORE EXECUTING LIBR# 

II RESET LIBR# 


II MEMBER USER1-LIBR## 

I I LOAD LI BR 

• A SWITCH TO CLEAR THE SWITCH INDICATORS AFTER EDITING 

I I SWITCH 00000000 

II RUN 

LIBRn'51 ,1 '? ?l'52,8'?,?L'60,1", ?l'1 ,B', 

LIBR?l'61,1 '? ?l'62,8'?, ?l'70,1 '?, ?l'1 ,8'? 

LIBAn'71 ,1 '? ?l'72,8'?,?L'80,1 '?,?l'1 ,8" 

1I BR? L '81 ,1 " ?L' 82,8" , ?l ' 90,1 '7 , ?l '1 ,8' ? 

LI BR?L' 91 ,1 '? ?L' 92,8' 7 , ?l ' 100,1 '? , ?l ' 1 ,8'? 

LI BR? L ' 1 01 ,1 '? ?l' 102,8' , , ? L' 11 0,1 '? , ? L ' 1 ,8' 7 

LI BR?L' 111 ,1 '? ?l' 112 ,8' 7 , ?l ' 120,1 '? , ? L ' 1 ,8'? 

LIBR?l'121 ,1" ?l'122,8'?,?l'130,1 '?,?L'l ,8'? 

LI BRn' 131 ,1 " ?l' 132,8'? , ?l' 140,1 '? , ? L' 1 ,8" 

LIBR?l'141 ,1 '7 ?l'142,8'?,?L'150,1 '?,7L'1 ,8" 

L1BR?l'151 ,1 '? ?l'152,8",?l'160,1 '?,?l'1 ,8'? 

L1BR?l'161 ,1 '? ?l'162,8'7,?L'170,1 ",?l'l ,8'? 

II DEALLDC UNIT-Il 

I I RESET llBR# 


I I LOAD ODFPOP 
II FILE NAME-DDFSND,LA8EL-DDF,SND,DISP-SHRMM 
II FILE NAME-ODFMSG,LABEL-DDF,MSG,DISP-SHRMM 
II FILE NAME-DDFSTAT,LABEL-ODF.NUM,DISP-SHRMM 
I I RUN 
I I IFF SWITCH8-1 EVOKE SENDDDF 

Note: Anotherprocedure described in Emulating RPGONL and COBOLONL 
in POP, page 411, uses the name LIBRO, so ifyou use both procedures in 
#POPLIB, one of them must be renamed to use a POP opcode other than O. Ifyou 
do rename LIBRO, you must also change line 133 in the ODFPOP program to 
reflect the change. For example, ifyou rename LIBRO to LIBRU, you must change 
line 133 to .. elFEQ • U ' ... 

For my new 0 opcode, I created procedure LIBRO (Figure 14-20) in 
#POPLIB. Each time I enter an 0 on the POP library members screen, the 
o opcode is joined with the literal "LIBR" to form a new procedure - the 
LIBRO procedure. Procedure LIBRO then simply calls the workstation 
program ODFPOP to display the selected members and conditionally 
evokes the SENDODF procedure, which sends the library members. 

Now two problems become evident: first, if we stick to our original 
design of sending up to 12 members at a time, we need a way to prevent 
the LIBRO procedure from being called multiple times; and second, we 
need a way to handle mixed opcodes on one screen. By using a combina
tion of logic within the ODFPOP program and an additional procedure 
(LIBR*), we can solve these problems. 



0001 
0002 

0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 

420 5/36 Power Tools 

*. 3 .. 4 8Figure 14·21a 
64 B ODFPOP 

F********************************************************************Program F* ... - ....... -PROGRAM DESCRIPTION·_···_·-·--·· 
ODFPOP F* 

F* THIS PROGRAM UPDATES THE FIELDS OF A MACHINE RECORD. 
F* 
F*" * .. .,. ** .. * * ** ***** * * .. .,. ...... ** * * ........ * * ** * ........ * ** * ...... ** * ...... ** ***** ........ ** * 

F*··-··_·····-MAINTENANCE SUMMARY···-
F* 
F* 04/13/89 . MJO PROGRAM WRITTEN 
F* 08/31/89 - MJO . MODIFIED FRO NEWS 3X/400 
F* * ...... ** ** .. * .... ** ** * .......... ** .. * ............ ***.,. ...... **** .......... ** '......... *** * .......... *** 

F*------- ···FILE DESCRIPTION·· --------- 
F* 
FWORKSTN CD 618 WORKSTN 
FODFSTAT UF 256 256 DISK 
FODFSND OF 32 32 4AI DISK A 
FODFMSG OF 512 512 4AI DISK A 
F* 
F******************************************************************** 

F*-··········· INDICATOR SUMMARY·· _....... . 
F* 
F********** INDICATORS *********** 

F* 

F* 01 INPUT SCREENl 

F* 

F* 97 READ WORKSTATION END OF FILE 

F* 

F********** COMMAND KEYS *********** 

F* 

F* KG - CMD 7 END PROGRAM 

F* 

F* 

1******************************************************************** 

I*·_·_··--····ARRAYS AND TABLES --------- 
E POP 12 POP CODE 
E OBJ 12 OBJECT NAME 
E TYP 12 OBJECT TYPE 
E MSG 12 40 MSG ARRAY 
E OT 12 10 CODE (1) ·OBJ (1 0) -TYP(l} 
1******************************************************************** 

I*-·····_·--··FILE SPECIFICATIONS··--····· 
1* 
1**************************** 

1* WORKSTATION SCREENS 

1* 
IWORKSTN NS 01 
1* FORMAT·ODF 
I 1 8 SYSTEM 
I 9 16 USER 
I 17 2200TIME 
I 23 30 OBJ, 1 
I 31 31 TYP.l 
I 32 71 MSG, 1 
I 72 790BJ,2 
I 80 80 TYP, 2 
I 81 120 MSG, 2 
I 121 128 OBJ, 3 
I 129 129 TYP,3 
I 130 169 MSG, 3 
I 170 177 OBJ, 4 
I 178 178 TYP.4 
I 179 218 MSG,4 
I 219 226 OBJ, 5 
I 227 227 TYP. 5 
I 228 267 MSG,5 
I 268 2750BJ.6 
I 276 276 TYP,6 
I 277 316 MSG.6 
I 317 3240BJ,7 

325 325 TYP.7 
326 365 MSG, 7 
366 373 OBJ, 8 



pop 421 

0075 374 374 TYP.S 
0076 375 414 MSG.8 
0077 415 422 08J. 9 
0078 423 423 TYP.9 
0079 424 463 MSG.9 
OOSO 464 471 OBJ.l0 
OOSl 472 472 TYP.l0 
00S2 473 512 MSG .10 
0083 513 520 OBJ. 11 
0084 521 521 TYP.ll 
0085 522 561 MSG.ll 
00S6 562 5690BJ.12 
00S7 570 570 TYP. 12 
OOSS 571 610 MSG. 12 
0089 F· 
0090 IODFSTAT NS 98 
0091 I 4000F# 
0092 I DS 
0093 I 5 12 OBJNAM 
0094 13 13 OBJTYP 
0095 14 1905DATE 
0096 20 250STIME 
0097 I· 
0098 I DS 
0099 I 12 SYSTEM 
0100 I 13 20 OBJLIB 
0101 I 21 260 MSG1 
0102 I 261 500 MSG2 
0103 I 501 508 USER 
0104 IOTDS DS 
0105 I 10 COT 
0106 I 1 C 
0107 I 9 0 
010S I 10 10 T 
0109 F· POP LDA SPECIFICATIONS 
0110 IPOPDS UDS 
0111 I 1 8 LIB 
0112 I 51 170 OT 
0113 I 301 30600TIME 
0114 I 307 3100HOLD40 
0115 r
0116 C·+--·------_········ __ ······_---_············ __ ······ .......•....... 

0117 C· - - - -- - - - - -CALCULATION SPEC I FICATIONS- - - - - -  - - -
0118 C· 
0119 C ONCE DO o ONCE 10 
0120 C· 
0121 C TIME STIME 60 SET UP INITIAL 
0122 C MOVE UDATE SDATE 60 VALUES 
0123 C MOVE '1' ON 1 
0124 C MOVE '0' OFF 1 
0125 C Z-ADDOOOOOO OTIME 
0126 C MOVEL'OPERATOR'USER 
0127 C SETOF US 
0128 C· 
0129 C Z-ADD01 Y 20 
0130 C DO 12 X 20 
0131 C OT.X IFNE ·SLANK 
0132 C MOVE OT.X COT 
0133 C C IFEQ '0' 
0134 C MOVE C POP. Y 
0135 C MOVE 0 08J,Y 
0136 C MOVE T TYP,Y 
0137 C ADD 01 Y 
0138 C MOVE ·SLANK OT,X 
0139 C MOVEL··· OT.X 
0140 C END 
0141 C· 
0142 C END 
0143 C END 
0144 C· 
0145 C EXCPTSl SHOW SCREEN FOR UP
0146 C· DATE 
0147 C END 
0148 C· 
0149 C···-------------------------*·* 

http:5690BJ.12


422 5/36 Power Tools 

0150 C· 
0151 C AEAD WOAKSTN 97 
0152 C· 
0153 C KG DO 
0154 SETON lAU8 
0155 GOTO END 
0156 END 
0157 C· 
0158 C 0000001 CHAINOOFSTAT 50 
0159 C Z-ADDODF# HOlD40 40 
0160 C HOlD40 ADD 1 ODF# 
0161 C Z-ADDODF# HOlD40 
0162 C EXCPTODFST 
0163 C· 
0164 C MOVE LIB OBJ LI B 
0165 C· 
0166 C DO 1,: X 20 
0167 C OBJ, x IFNE *BlANK 
0168 C MOVE OBJ, X OBJNAM 
0169 C MOVE TYP,X OBJTYP 
0170 C EXCPTODFSRC 
0171 C END 
0172 C END 
0173 C· 
0174 C MOVEAMSG,l MSGl 
0175 MOVEAMSG.7 MSG2 
0176 C· 
0177 C EXCPTODFTXT 
0178 SETON lA 
0179 C· 
0180 C· 
0181 C***-
0182 C· 
0183 C· 
0184 C END TAG 
0185 C* 
0186 C· 
0187 C***------------ 
0188 C* 
0189 C· 
0190 0"''''''' *** * ... * * *** * ... .., ......... .., ... * * ... * ... ** * * ** * * ............... .., ............... ** ** ... * * ... ** ...... * ........................ ** 

0191 O*----------FIlE OUTPUT SPECIFICATIONS---------- 
0192 O' 

0193 0********************

0194 O' WORKSTATION OUTPUT 
0195 0********************· 
0196 O' 
0197 OWORKSTN Sl 
0198 0 K8 'ODF 
0199 0 LIB 8 
0200 0 SYSTEM 16 
0201 0 USER 24 
0202 0 OTIME 30 
0203 0 OBJ .1 38 
0204 0 TYP.l 39 
0205 0 MSG.l 79 
0206 0 OBJ . 2 87 
0207 0 TYP.2 88 
0208 0 MSG.2 128 
0209 0 OBJ,3 136 
0210 0 TYP.3 137 
0211 0 MSG,3 177 
0212 0 OBJ,4 185 
0213 0 TYP.4 186 
0214 0 MSG.4 226 
0215 0 OBJ,5 234 
0216 0 TYP,5 235 
0217 0 MSG,5 275 
0218 0 OBJ,6 283 
0219 0 TYP.6 284 
0220 0 MSG.6 324 
0221 0 OBJ,7 332 
0222 0 TYP.7 333 
0223 0 MSG.7 373 
0224 0 OBJ,8 381 



423 pop 

0225 a TYP.8 382 
0226 a MSG.8 422 
0227 a OBJ.9 430 
0228 a TYP.9 431 
0229 0 MSG.9 471 
0230 a OBJ .10 479 
0231 0 TYP.l0 480 
0232 0 MSG.l0 520 
0233 0 OBJ .11 528 
0234 0 TYP.l1 529 
0235 a MSG.ll 569 
0236 0 OBJ.12 577 
0237 a TYP.12 578 
0238 0 MSG.12 618 
0239 0********************· 

0240 O' ODFSTAT FILE 
0241 0**"'''''''''''''''''''''''''''''''''' ** ... *** ... 
0242 O' 
0243 OODFSTAT E ODFST 
0244 0 ODF# 
0245 0***···*****····*****

0246 O' ODFSND FILE 
0247 0··*******·········**
0248 O' 
0249 OODFSND EADD ODFSRC 
0250 0 OOF# 4 
0251 0 OBJNAM 12 
0252 0 OBJTYP 13 
0253 0 SDATE 19 
0254 a STIME 25 
0255 0*····*************··· 

0256 O' ODFMSG FILE 
0257 0****·*·*·***····*···· 
0258 O' 
0259 OODFMSG EADO ODFTXT 
0260 a ODF# 4 
0261 0 SYSTEM 12 
0262 0 OBJLI B 20 
0263 a MSGl 260 
0264 a MSG2 500 
0265 0 USER 508 

Figure 14·21 b ... 1 
SODF 

2 
0124 Y 

4 ... 6 
G 

7 ... 

Screen format 0 
DE NETWORK 

32 225Y Y CSENO OBJECTS THROUGH THX 

member 
ODFPOPFM 

DliBRARY 
0 
OSYSTEM 

8 270Y 
18 4 6Y 

8 439Y Y 

Y 

Y 
CSystem (or blank) 

0 18 5 6Y CUser 10 (or List) 
OUSER 8 539Y Y Y 
0 26 6 6Y CTime to Send Members X 
0 
OOTIME 6 639Y YO Z Y 
0 69 8 6Y Y C X 
0 
OOBJl 810 6Y Y Y Y 
OTYPl 11024Y YA Y Y 
OOESl 401035Y Y Y 
OOBJ2 811 6Y Y Y Y 
DTYP2 11124Y YA Y Y 
DDES2 401135Y Y Y 
DDBJ3 812 6Y Y Y Y 
DTYP3 11224Y YA Y Y 
DDES3 401235Y Y Y 
OOBJ4 813 6Y Y Y Y 
OTYP4 11324Y YA Y Y 
DOES4 401335Y Y Y 
DOBJ5 814 6Y Y Y Y 
DTYP5 11424Y YA Y Y 
DOES5 401435Y Y Y 
OOBJ6 815 6Y Y Y Y 
OTYP6 11524Y YA Y Y 



424 5/36 Power Tools 

Figure 14·22 

Send Objects 
Through the 
Network screen 

DDES6 401535Y Y Y 

DOBJ7 816 6Y Y Y Y 

DTYP7 11624Y YA Y Y 

DDES7 401635Y Y Y 

DOBJ8 817 6Y Y Y Y 

DTYP8 11724Y YA Y Y 

DDES8 401735Y Y Y 

DOBJ9 818 6Y Y Y Y 

DTYP9 11824Y YA Y Y 

DDES9 401835Y Y Y 

DOBJ 1 0 819 6Y Y Y Y 

DTYP10 11924Y YA Y Y 

DDES10 401935Y Y Y 

DOBJll 820 6Y Y Y Y 

DTYPll 12024Y YA Y Y 

DDESll 402035Y Y Y 

DOBJ 12 821 6Y Y Y Y 

DTYP12 12124Y YA Y Y 

DDES12 402135Y Y Y 

0 923 6Y CMD 7-End 


Figure 14-21a shows the OOFPOP workstation program, and Figure 14
2tb shows the corresponding screen format member OOFPOPFM. Program 
OOFPOP first initializes some of the program variables and provides a default 
recipient of OPERATOR for our distributions. Next, program OOFPOP 
reads through the values that POP's LIBR procedure previously stored in the 
LOA. The OOFPOP program then loops through the array of 12 POP 
opcodes and their associated member names and types. When program OOF
POP finds an 0 opcode, it moves the associated member name and type into 
a new array to be displayed on the screen. The program then blanks out their 
former positions in the LOA and replaces the opcode 0 with an *. This sec
tion of code lets the utility deal with mixed opcodes and prevents the LIBRO 
procedure from being called more than once in a given execution of the 
LIBR# procedure. All the 0 opcodes are processed together, and all the asso
ciated data is cleared from the LOA so the LIBRO procedure is not evoked 

SEND OBJECTS THROUGH THE NETWORK 

#POPLI B 


System (or blank) PORTLAND 

User ID (or List) OPERATOR 

Time to Send Members 000000 


ODFGET s SENDING THE SOURCE MEMBERS FOR THE 
ODFPOP s POP-ODF UTI L1TY 
ODFPOPFM S 

CMD 7-End 



POP 425 


Figure 14-23a 

Record layout of 
ODFSNDfile 

Figure 14-23b 

Record layout of 
ODFMSGfile 

again. Because the LIBR# procedure is terminated at the first blank code, the 
• code keeps the LIBR# procedure from recalling the base POP LIBR proce
dure and effectively being terminated. When the LIBR# procedure finds the 
., it looks for a procedure named LIBR·. Because the LIBR· procedure is 
merely a placeholder, it consists only of a II RETURN statement. 

After reading the LOA array and filling the screen arrays, program 
ODFPOP outputs the screen (Figure 14-22). Pressing the Enter key opens 
the program, which chains to the direct file ODENUM to retrieve the last 
ODF transmission number used. The four-digit ODF transmission number 
provides a unique identification for each maintenance distribution. As soon 
as the ODF number is retrieved, it is incremented and written to file 
ODENUM. Next, the screen entries are written to disk. All the selected 
members and their types are written to the ODFSND file, while the mes
sage is written to the ODFMSG file. After the data has been written to the 
files, the program sets on LR, and control returns to the LIBRO procedure. 

1 3 ... 4 . 7 8 
0001 FODFSND IP F 32 32 4AI 1 DISK 
0002 F* 
0003 10DFSND NS 98 ODFSRC 
0004 I 1 4 ODF# 
0005 I 5 12 OBJNAM 
0006 I 13 13 OBJTYP 
0007 I 14 1905DATE 
0008 I 20 250STIME 

1 2 3 4 7 8 
0001 FODFMSG IP F 512 512 4AI 1 DISK 
0002 F* 
0003 10DFMSG NS 98 ODFTXT 
0004 I 1 4 ODF# 
0005 I 5 12 SYSTEM 
0006 I 13 20 OBJLIB 
0007 I 21 260 MSG1 
0008 I 261 500 MSG2 
0009 I 501 508 USER 

Figures 14-23a and 14-23b show the record layouts of the two files. 
Although I could have used one file with two arrays of 12 elements each for 
the object name and type, I chose to use two files. The two-file arrange
ment is more flexible than using one file with repeating data groups. In the 
future, I want to convert this utility to run from the Programming Develop
ment Manager (PDM) on the AS/400, and I don't want to be restricted to 
the 12-element limitation POP imposes. 

Procedure LIBRO then checks for external switch UB. Command key 7 
cancels the program and sets on external indicator UB to abort any subse
quent transmission. If you exited program ODFPOP using Command key 
7, indicator UB is set on, and procedure SENDODF is not evoked. If you 
exited program ODFPOP by pressing the Enter key, however, indicator UB 
is set off, and procedure SENDODF is evoked. 



426 5/36 Power Tools 

Figure 14-24 

Procedure 
SENDODF 

Figure 14-25 

Program 
ODFGET 

The SENDODF Procedure 
In the SENDODF procedure, the ODF services perform the actual distri
bution. As illustrated in Figure 14-24, the procedure checks the LDA in 
position 301 to determine whether a distribution time has been specified. 
If you entered a time, the procedure waits at the II WAIT statement until 
the specified time. Ifyou didn't enter a time, the procedure continues pro
cessing, and the object distribution begins immediately. The ODFGET 
program is called to retrieve the library member names stored in the ODF
SND file as well as the transmission message from the ODFMSG file. 

// IFF }L'301 ,6'?/000000 WAIT TlME-?L'301 ,6'? 
// LOAD ODFGET 
// FILE NAME-ODFSND,LABEL-ODF,SND,DISP-SHRRM 
// FILE NAME-ODFMSG,LABEL-ODF,MSG,DISP-SHRRM 
// PRINTER NAME-PRINTER,DEVICE-XP,FORMSNO-?L'307,4'?PRI0I1ITY-0 
// RUN 
II EVALUATE P10-}L'401 ,8'7 
I I EVALUATE P12-}L' 409,8' 7 
SENDPRT F7L'307,4'?,CANCEL,?107,7127"" ,ACK 
I I EVALUATE P52-52 
I I EVALUATE pso-eo 
II TAG LOOP 
1/ IF ?L'?527,8'?1 CANCEL 
II EVALUATE P22-'LIBRARY' 
/1 IF ?L'60,1 '7/0 EVALUATE P22-'LOAD' 
// IF ?L'SO,1 '?/S EVALUATE P22-'SOURCE' 
1/ IF ?L'SO,1 '7/P EVALUATE P22-'PROC' 
SENDLlBR ?L'?52?,8'?,?227,?L'1,8'?"?10?,?12?",,ACK 
II EVALUATE P52-?52?+10 
II EVALUATE P60-?60?+10 
II GOTO LOOP 

Program ODFGET (Figure 14-25) begins by setting up the initial val
ues used in the program. The LDA of procedure SENDODF passes the 
ODF transmission number into the ODF# field. Remember, the LDA of 
an evoked job is copied from the evoking procedure. In this case, the LDA 
used in the original LIBRO procedure is carried into the SENDODF pro
cedure and subsequently made available to program ODFGET. Next, pro
gram ODFGET retrieves the distribution data from the files and writes it 
to the LDA. The SYSTEM field is then checked for a blank entry. If the 
system entry is blank, the ODFGET program assumes that a list name is 
being used and moves the USER field that contains the list name into the 
DEST field, which contains the transmission destination. The report head
ing is then printed, and the ODF number gets the distribution members 
out of the ODFSND file, writes them back into the LDA, and prints them 
on the distribution report. 

2 '" ,,3 4,,,,,,5 , " '" 7 '" 8 
0001 H 64 ODFGET 
0002 F***************··*****··**********************************.********. 

0003 F*------------PROGRAM OESCRIPTION------------
0004 F* 

0005 F* THIS PROGRAM UPDATES THE FIELDS OF A MACHINE RECORD, 

0006 F* 

0007 F****************·***************************************.* •••• ****** 

0008 F*------------MAINTENANCE SUMMARY------------



0010 

0020 

0030 

0040 

0050 

0060 

0070 

0080 

POP 427 


0009 F* 
F* 04/13/89 - MJO PROGRAM WR ITTEN 

0011 F* 
0012 F******************************************************************** 

0013 F*-------------FILE DESCRIPTION------------ 
0014 F* 
0015 FODFSND IF 32 32L 4AI DISK 
0016 FODFMSG IF 512 512 4AI DISK 
0017 FPRINTER 0 132 132 OF PRINTER 
0018 FPRINTERI0 132 132 OA PRINTER 
0019 F* 

F***************·**************************************************** 

0021 F*------------INDICATOR SUMMARY-----
0022 F* 
0023 F********** INDICATORS *********** 

0024 F* 

0025 F* 01 INPUT SCREENl 

0026 F* 11 REUSABLE INDICATOR 

0027 F* 

0028 F* 97 READ WORKSTATION END OF FILE 

0029 F* 


r******************************************************************** 

0031 1*-- ---------ARRAYS AND TABLES 
0032 E POP 12 1 POP CODE 
0033 E OBJ 12 8 OBJECT NAME 
0034 TYP 12 1 OBJ ECT TYPE 
0035 MSG 12 40 MSG ARRAY 
0036 OT 12 10 CODE(l )-OBJ(10)-TYP(1) 
0037 1******************************************************************** 

0038 I*------------FILE SPECIFICATIONS------------ 
0039 j* 

IODFSND NS 98 
0041 I 4 ODF# 
0042 I 12 OBJNAM 
0043 13 130BJTYP 
0044 14 1905DATE 
0045 20 250STIME 
0046 F* 
0047 IODFMSG NS 98 
0048 I 1 4 ODF# 
0049 I 5 12 SYSTEM 

I 13 20 OBJLIB 
0051 I 21 260 MSGl 
0052 I 261 500 MSG2 
0053 I 501 508 USER 
0054 lOTOS OS 
0055 I 1 10 COT 
0056 1 1 C 
0057 2 9 OBJNAM 
0058 10 10 OBJTYP 
0059 F* POP LDA SPECIFICATIONS 

IPOPDS UDS 
0061 I 1 8 LIB 
0062 I 51 170 OT 
0063 301 30600TIME 
0064 307 3100HOLD40 
0065 401 408 USER 
0066 409 416 SYSTEM 
0067 1* 
0068 C******************************************************************** 

0069 C*----------CALCULATION SPECIFICATIONS---------- 
C* 

0071 C ONCE DO 0 ONCE 10 
0072 C MOVE . N' EOF 1 
0073 C MOVE . N' FOUND 
0074 C MOVE HOLD40 ODF# 
0075 C MOVE *BLANK OT 
0076 C TIME UTIME 60 
0077 C END 
0078 C* 
0079 C* 

C***-------------------------*** 
0081 C* 
0082 C ODF# CHAINODFMSG 11 
0083 C 11 MOVE 'yo EOF 
0084 C* 



428 5/36 Power Tools 

0085 C EOF IFNE 'Y' 
0086 C MOVEAMSGl MSG,l 
0087 C MOVEAMSG2 MSG,7 
0088 C' 
0089 C SYSTEM IFEQ ·BLANK 
0090 C MOVE USER DEST B 
0091 C ELSE 
0092 C MOVE SYSTEM DEST 
0093 C END 
0094 C· 
0095 C EXCPTPRTREC 
0096 C' 
0097 C Z-ADDOl X 20 
0098 C ODF# SETLLODFSND 
0099 C FOUND DOUEQ'N' 
0100 C ODF# READEODFSND 97 
0101 C N97 MOVE 'Y' FOUND 
0102 C 97 MOVE 'N' FOUND 
0103 C FOUND IFEQ 'Y' 
0104 C MOVE OBJNAM OBJ ,x 
0105 C MOVE OBJTYP TYP,X 
0106 C MOVE COT OT,X 
0107 C ADD 1 X 
0108 C END 
0109 C END 
0110 C DO 12 X 
0111 C EXCPTPRTDTL 
0112 C END 
0113 C END 
0114 C· 
0115 C SETON LR 
0116 C' 
0117 C· 
0118 C·**-------------------------*** 
0119 C· 
0120 C· 
0121 C END TAG 
0122 C· 
0123 C· 
0124 C·**-------------------------*** 
0125 C· 
0126 C·
0127 0**···********·····················******·····*****···•.••••••••••••• 
0128 O·----------FILE OUTPUT SPECIFICATIONS---------- 
0129 O· 
0130 0··**················· 
0131 O' PRINTER OUTPUT 
0132 0·**···***·**········· 
0133 O' 
0134 OPRINTER 102 PRTREC 
0135 0 ODF# 7 
0136 0 52 'ODF MAINTENANCE REQUEST' 
0137 0 70 'DATE: ' 
0138 0 UDATE Y 80 
0139 O' 
0140 0 PRTREC 
0141 0 DEST 47 
0142 0 70 'TIME: 
0143 0 UTIME BO 
0144 O' 
0145 0 PRTREC 
0146 0 70 'PAGE: ' 
0147 0 PAGE 80 
014B O' 
0149 0 PRTREC 
0150 0 LIB 10 
0151 O' 
0152 0 PRTDTL 
0153 0 OBJ ,x 10 
0154 0 TYP,X 20 
0155 0 MSG,X 70 
0156 0···***··············· 
0157 O' PRINTER OUTPUT 
015B 0**····*******········ 
0159 O' 

0160 OPRINTER1E 102 PRTREC 




pop 429 

0161 0 ODF# 7 
0162 0 52 'ODF MAINTENANCE REQUEST' 
0163 0 70 'DATE:' 
0164 0 UDATE Y 80 
0165 O' 
0166 0 E 1 PRTREC 
0167 0 DEST 47 
0168 0 70 'TIME:' 
0169 0 UTIME 80 
0170 O' 
0171 0 E 1 PRTREC 
0172 0 70 'PAGE: 
0173 0 PAGE 80 
0174 O' 
0175 0 E 2 PRTREC 
0176 0 LIB 10 
0177 O' 
0178 0 E 1 PRTDTL 
0179 0 OBJ,X 10 
0180 0 TYP,X 20 
0181 0 MSG,X 70 

After the ODFGET program has loaded the library member names 
back into the LDA, the SENDODF procedure resumes by loading parame
ters 10 and 12 with the user and remote location names that will receive the 
transmission. Then, the ODF/36 SENDPRT procedure is called to send to 
the remote location the print spool file with the forms number that matches 
the ODF distribution number. Depending on the values specified in the 
ODF defaults at the remote site, the print spool file is either printed or held 
in the arrived objects folder at the remote location. Next, parameters S2 and 
60 are loaded with the literal values of 52 and 60, respectively. Parameter 52 
indicates the beginning LDA location of the member name array, while 
parameter 60 indicates the beginning LDA position of the member type 
array. The parameter is then substituted into the position portion of an LDA 
substitution statement to construct a moving pointer. If the member name 
position indicated by the pointer is blank, the SENDODF procedure is can
celed. As long as the LDA position contains a value, the SENDODF proce
dure loops through the LDA array. Each loop executes the ODF/36 
SENDLIBR procedure; parameters S2 and 60 are each incremented by 10 
positions to provide pointers to the next possible LDA array locations. 

Armed with an understanding of how to implement the POP and 
ODF/36 interface, you can now see how to implement this utility as a 
whole. Figure 14-26 shows a sample POP library members display where, 
using the 0 opcode, I've selected all our program source members. The 
ODF/36 POP interface lets you view the objects selected. You can option
ally add members or make changes to the existing selections. Pressing 
Enter writes the screen data to the files and then evokes the SENDODF 
procedure to distribute the group of library members. 

Although I don't cover the technique in this article, you could also cus
tomize the screen headings of your POP library members display to reflect 
your new 0 opcode. POP provides the LIBRCUST procedure to assist you 
in customizing your implementation. You can find more information in the 
POP on-line tutorial. 



430 5/36 Power Tools 

Figure 14·26 
Libr #POPLIB Free sectors 1319/1606 of 5000 Free entries 47 of 244

Sample POP 	 Operation codes B:Browse S:SEU E:Edit D:Delete Y:Copy N:Rename 
P:Print F:SDA K:Backup J:Restore C:Compile X:Execute H:Historylibrary members 	 Command keys 1234:Column 5:Se1ect 6:Library 7:End 11 :Auto browse 

display 	 12 Condense 19:0ff HELP 

o ODFGET S 164 
o ODFMSG S 9 
o ODFPOP S 223 
o ODFPOPFM S 50 
o ODFSND S 8 

ODF/36 provides a flexible and reliable engine to perform the mainte
nance of your network. As delivered, the ODF/36 SENDLIBR procedure 
is primitive to operate, but by taking advantage of the user-extendable fea
tures found in both ODF/36 and POp, you can create an elegant and pow
erful tool to maintain the remote application libraries in your network. You 
can also adapt this utility to the POP files screen with slight modifications. 
All the concepts we discussed about the POP library members display are 
applicable to the POP files screen. 

Puffing a Job on the Job Queue from POP 
by Noaman Ajzal 

Code on diskette: a Procedure LIBRQ2 

To send a batch procedure directly from the POP library member display to 
the JOBQ, add the following LIBRQ procedure to #POPLIB: 

II LIBRARY NAME-737 
II JOBQ 3.737,717 

Then key the Q operation code next to any procedure name to place that 
procedure on the job queue. After the selected procedures have been 
enqueued, you can resume your work with the library members display. 



pop 431 

Note: Procedure LIBRQ is named LIBRQ2 on diskette. To use it in #POPLIB, you 
must rename it to LIBRQ. Anotherprocedure described in Blanking Out 
Columns 1-5 and 75-80 in RPG Source with POp, page 413, uses the name 
LIBRQ, so ifyou use both procedures in #POPLIB, one ofthem must be renamed to 
use a POP opcode other than Q. 

Evoking a Job from POP 
by Esteban Rivera andMatthew Henry 

Code on diskette: a
Procedure LIBRV 

IBM's POP truly is a productivity aid, but when you execute a procedure 
via the X operation, you have to wait until the procedure finishes executing 
before you can be productive again. Adding the following LIBRV proce
dure to #POPLIB can solve this problem: 

II LIBRARY NAME-?3? 
II EVOKE ?1? 

Procedure LIBRV adds to POP a new code, V, that allows you to EVOKE 
the selected procedure, leaving your terminal free for additional work. 
Note that procedure LIBRV changes the current library to the library name 
retrieved from positions 1 through 8 of the LOA and retrieves the proce
dure name from LOA positions 52 through 59, the positions POP normally 
assigns to these values. 

Improving POP's File Copy 
by Carl W Selley 

Two small changes to procedure FILEY in library #POPLIB will improve 
your S/36 POP file copy utility (Figure 14-27): 

• Inserting a II REGION SIZE-64 statement before the II LOAD $COPY 
statement improves runtime. 

• Adding the clause OISP-SHRRR to the FILE statement for the input 
file (COPYIN) lets you copy the input file while other users are reading it 
(but not updating the file). 

Figure 14·27 

Modification to 

* WILL COPY EVEN THOUGH OTHER JOBS ARE READING IT, 
II PROMPT FORMAT-FILEY,MEMBER-LIBR@PRO 73'717'7 
II IF 7CD7/2007 RETURN 
II LIBRARY NAME-O 

NOT IF THEY ARE UPDATING. 

procedure 
FILEY 

II MEMBER USER1-##MSG2 
I I REGION SIZE-64 
I I LOAD SCOPY 

< New 1 i ne 

II FILE NAME-COPYIN, 
*1 IFF 7271 DATE-727 
II LABEL-717,DISP-SHRRR < Modified line 



432 5/36 Power Tools 

II FILE NAME-COPYO,LABEL-737,DISP-NEW 
I I RUN 
II COPYFILE OUTPUT-DISK, 
II IF 7571 IFF ?4?/Y REORG-NO 
II IF 7571 IF ?4?/Y DELETE-SYSDEL,REORG-YES 
II IFF 7571 DELETE-'?67,757',REORG-YES 
I I END 

Renaming Single Files in POP 
by John Cirocco 

POP procedure 
command 
FILEN 
overcomes the 
shortcomings 
inherent in 
IBM~file 
RENAME 
procedure, 

Figure 14-28 

Sample prompt 
screen/or 
FILEN 

a Code on diskette: 

Procedure FILEN 

Screen format member FILENFM 


As many an experienced user has discovered, IBM's RENAME procedure 
leaves something to be desired, Before you can use the IBM procedure, you 
must know the exact spelling of the file to be renamed, as well as whether 
the new file name already is in use, And with the IBM procedure, you must 
type RENAME commands manually, POP users will find procedure com
mand FILEN a convenient alternative to the IBM RENAME procedure, 

Procedure command FILEN consists of procedure FILEN, a screen format 
member, and a prompt screen (Figure 14-28), With procedure FILEN (Figure 
14-29), the user renames a file on disk via the custom POP operation code N. 
(POP gives you a list of files; you designate the file to be changed with the N 
operation code; POP automatically moves the the designated file name to the 
new name slot,) Mter verifying that a label exists on disk for the file selected, 
procedure FILEN employs screen format member FILENFM (Figure 14-30) 
to produce the prompt screen, The prompt screen displays the current file 
label, as well as an input field where the user can enter a new file label name. 

FILENFM-FILEN File Rename Procedure 

Old File Name 

New File Name 

This file name already exists - press CMD/7 to Cancel 

or enter a new File name 


You must enter a fi 1e name 


Press ENTER To Rename File 

or 

Any Command Key to Cancel RENAME Procedure 



Figure 14·29 

Procedure 
FILEN 

pop 433 

With FILEN, you needn't remember the exact spelling of every file 
name in use on your system; you need only recognize the file name on 
POP's list of files. You also can use this list to ascertain the uniqueness of 
the new file name you are considering. Once you enter the new name, 
FILEN double-checks to ensure that the new name indeed is unique and 
that the new file name field was not inadvertently blank. If FILEN finds 
no problem, the name change is a/ail accompli. But if the new name already 
is in use or the field is blank, you receive an error message. In either error 
situation, you have the option of retrying or canceling. 

In addition to reducing reliance on human memory and eliminating 
error situations, FILEN expedites the name change process by reducing 
the amount of typing involved. IBM's RENAME procedure requires retyp
ing the entire file name; procedure command FILEN automatically places 
the name of the file selected for renaming into both the current and new 
name fields on the prompt screen, and the default for the new file name is 
the current label name. So with FILEN, you simply can elect to modify the 
old file name that automatically appears in the new file name slot. This 
approach is advantageous if the new file name differs only slightly from an 
existing file name - for example, if only the file group is to be changed or 
if only a dot is to be added or removed. 

So if file name changes in your shop take longer than you would like, or 
if the name change procedure all too often results in name duplication 
errors, give FILEN a try. 

11-10-87 JOHN W. CIROCCO 

EASTMAN KODAKIWWBIS 


Proe Name: FILEN 


•• MODIFICATION TO POP - NEW PROCEDURE - FILE RENAME WITH AUDITS 
•• Pl-FILE TO BE RENAMED (TAKEN FROM POP'S FILE SCREEN) 
•• P61-FILE TO BE RENAMED 
•• P62-NEW NAME OF FILE (DEFAULTS TO Pl FOR EASIER CHANGE) 
•• UPSI SWITCH 1 + 2 - NON-DISPLAY OF ERROR MESSAGES ON PROMPT SCREEN 
•• UPS I SWITCH 8 - SOUND ALARM ON ERROR 

II IFF DATAF1-?1? RETURN 
II EVALUATE P61-'?1?' 
II EVALUATE P62-'?1?' 
II SWITCH 11000000 
II INFOMSG NO 
II TAG TOP 
I I PROMPT MEMBER- FI LENFM. FORMAT - F I LEN. LENGTH - . 8.8' . START -61 ,UPSI - YES 
II IFF ?CD?IOOOO RETURN 
II SWITCH 11000000 
II IF ?62?1 SWITCH XOXXXXXl 
I I IF SWITCH8-1 GOTO TOP 
II IF DATAFl- 7 62? SWITCH OXXXXXXl 
II IF SWITCH8-1 GOTO TOP 
II RENAME ?61 7 .?62? 
I I INFOMSG YES 



434 5/36 Power Tools 

Figure 14·30 

Screen format 
member 
FILENFM 

" 2 3 ," " 4". 5 .. , '" 6 ,,' 7 
0001 s*******··***···******************··*****************·_._ •••••••••••• __ ••• 

0002 5'· 11-10-87 JOHN W, CIROCCO .. 
0003 5" EASTMAN KODAK/WWB I 5 
0004 5·· Proc Name: F I LEN 
0005 S·****········****··*****··············**********·····.........._--_ ..... . 

0006 S' 
0007 S" MODIFICATION TO 
0008 S" P61-FILE TO BE 
0009 S" P62-NEW NAME OF 
0010 S" INDICATOR 91 + 

0011 S" INDICATOR 98 
0012 S' 
0013 SFILEN 
0014 D 13 1 5Y 
0015 D 21 130Y 
0016 D 15 528Y 
0017 DPARA61 8 544Y 
0018 D 15 928Y 
0019 DPARA62 8 944Y 
0020 DERR91A 531114Y 

POP - SCREEN FORMAT - FILE RENAME 
RENAMEO 

FILE (DEFAULTS TO P61 FOR EASIER 
92 - NON-DISPLAY OF ERROR MESSAGES 
SOUND ALARM ON ERROR 

98YN Y 

Y 
YB Y Y 

Y 
YB Y Y 

91Y 
0021 Dexists - press CMDj7 to Cancel 
0022 DERR91B 251228Y 91Y 
0023 Dme 
0024 DERR92 261327Y 92Y 
0025 Dame 
0026 D 261627Y 
0027 Dile 
0028 D 21639Y 
0029 D 422019Y 
0030 Del RENAME Procedure 

WITH AUDITS 

CHANGE) 
ON PROMPT SCREEN 

CFILENFM-FILEN 
CFile Rename Procedure 
COld File Name -

CNew Fi 1 e Name -

CThis file name 

Cor enter a new 

CYou must enter 

CPress ENTER To 

Cor 
CAny Command Key 

already X 


File naX 


a file nX 


Rename FX 


to CancX 

Renaming and Copying Multiple Files in pop 

by Tim Hack 

Regular IBM 
procedures let 
you rename or 
copy only one 
file at a time. 
Butwith 
procedure 
commands 
FIIEQand 
FILES,you 
can EVOKE or 
place up to 12 
rename or copy 
requests on the 
JOBQata 
time. 

a Code on diskette: 


Procedures FILEQ, FQQ, FILES, FSQ, FILVPARM 

Screen format members FILEQQFM, FILESSFM 

When you rename a file, you often copy it. When you copy a file, you often 
rename it. With the IBM RENAME and COPYDATA procedures, you can 
rename or copy only one file at a time. With POP procedure commands 
FILEQ and FILES, though, you can copy or rename several files at once 
using prompt screens like those in Figures 14-31 and 14-32. 

Procedure command FILEQ lets you queue up to 12 files for renam
ing. If a particular rename function must be aborted because the new 
name is not unique, FILEQ returns a message to the user at runtime. 
FILEQ likewise returns a message to the user at runtime if a renaming 
function could not be attempted because the new file name field was inad
vertently blank. And procedure command FILEQ also accommodates 
date-differentiated files. Its primary advantage, though, is the ability to 
EVOKE a "batch" of renames or to place the batch on the JOBQ. 

Procedure command FILES, which invokes the COPYDATA proce
dure, is similar to FILEQ and, in fact, includes all FILEQ benefits. Partic
ularly useful when you must copy many files for testing, procedure 
command FILES is easier and faster than keying in 12 II EVOKE COPY
DATA statements with the DUP key. 



pop 435 

Figure 14-31 

Sample prompt 
screen/or 
FILEQ 

Figure 14-32 

Sample prompt 
screen/or 
FILES 

FILEQQAA QUICK RENAME UTILITY USING POP FILE UTILITY 

Old File Name/Date 

00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 
00000000 000000 

New File 

----> 00000000 
----> 00000000 
----> 00000000 
----> 00000000 
----> 00000000 
----> 00000000 
----> 00000000 
----> 00000000 
- - - - > 00000000 
----> 00000000 
----> 00000000 
----> 00000000 

Press <ENTER> to RUN Request CMD 5 to EVOKE 
Request 
CMD 4 to JOBQ Request CMD 7 to CANCEL 
Request 

FILESSAA QUICK FILE COPY UTILITY USING POP FILE UTILITY 

Copy From Copy To 
Fi le Name Date File Name 

00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 
00000000 000000 - - - - > 00000000 
00000000 000000 ----> 00000000 
00000000 000000 ----> 00000000 

NOTE: If 1) Copy To File Name already EXISTS on disk 2) Copy To File Name 
is 
BLANK 3) Copy To File Name is the same as Copy From File Name 
4) Copy From File Name does NOT exist then file will NOT be copied. 

Press <ENTER> to RUN Request CMD 5 to EVOKE 
Request 
CMD 4 to JOBQ Request CMD 7 to CANCEL 
Request 

Procedure command FILEQ consists of a procedure and a screen for
mat member. Screen format member FILEQQFM (Figure 14-33) produces 
prompt screen FILEQQAA (Figure 14-31). Procedure FILEQ (Figure 14
34) is used if the job is being EVOKEd or run from the terminal; procedure 
FQQ (Figure 14-35) is used if the job is being run from the 10BQ. 

Utility FILES similarly consists of a procedure and screen format mem
ber. Screen format member FILESSFM (Figure 14-36) produces prompt 
screen FILESSAA (Figure 14-32). Procedure FILES (Figure 14-37) is used 
if the job is being EVOKEd or run from the terminal; procedure FSQ (Fig-

Name 



436 5/36 Power Tools 

Figure 14-33 

Screen format 
member 
FILEQQFM 

ure 14-38) is used if the job is being run from the JOBQ. To access each 
subsequent parameter (i.e., each subsequent file for renaming or copying), 
both procedure command FILEQ and procedure command FILES call the 
same subprocedure: FILVPARM (Figure 14-39). 

The Q and S opcodes can be used in conjunction with each other 
(within one group of opcode requests) and with all standard POP file 
opcodes. The queuing maximum of 12 is based on POP's own file opcode 
limitation. 

FILEQ and FILES accumulate all their respective requests (each file 
selected by a Q or S opcode) and display the collected file names and dates 
on a single screen. An input field next to each file name lets you enter out
put file names. The initial Q or S screen defaults each output file name to 
the original input file name with null fill capability (to allow keyboard 
insert), thereby letting the user alter input file names quickly to new out
put file names. 

The standard LOA positions (001-200) used to hold the file name and 
date information within POP are used but not altered by these opcodes. 
LOA positions 507 through 511 are reserved to control the execution of the 
FILEQ opcode, and LOA positions 502 through 506 are reserved to control 
the execution of the FILES opcode. These reserved LOA positions cannot 
be used for any other purpose while POP is in use in FILE mode. If 
abnormal termination of POP's FILE mode occurs during FILEQ or 
FILES execution, you should clear LOA positions 507 through 511 or 502 
through 506 respectively to reset control and allow future use of these 
opcodes during the current workstation session. 

Both display screens FILEQQAA and FILESSAA provide CANCEL, 
EVOKE, JOBQ, and LOCAL RUN execution modes for the queued 
requests. If the JOBQ or EVOKE options are selected (via a command 
key) and if opcode execution fails, an informational message is sent to the 
requesting user about failure on a file-by-file basis. 

The FILEQ and FILES procedure commands save a tremendous 
amount of time in shops that copy and rename large numbers of files. 

1 .. . . .. 2 3 . 4 ... . 6 ... . .. 7 ... 8 
1 SFILEQQAA Y Y OEG 
2 0 8 2 3Y CFILEQQAA 
3 0 43 220Y Y CQUICK RENAME UTILITY usx 
4 DING POP FILE UTILITY 
5 0 18 5lay Y Y COld File Name/Date 
6 0 13 546Y Y Y CNew File Name 
7 OFILIOl 8 720Y Y Y Y 61 
8 DDATEOl 6 nlY Y Y Y 51 
9 0 8 739Y Y 51 C----> 

10 DF! LOOl 8 748Y Y N 51Y 51 
" OFILlO2 a S20Y Y Y 52 
12 00ATE02 6 S31Y Y Y 52 
13 0 8 B39Y 52 c----> 
14 OFILOO2 8 848Y Y N 52 52 
150FILI03 8 920Y Y Y Y 53 
16 00ATE03 6 931Y Y Y Y 53 
170 8 939Y Y 63 c,..---> 



pop 437 

Figure 14-34 

Procedure 
F/LEQ 

18 DFILOO3 8 948Y Y N 53Y 53 
19 OF I LlO4 81020Y Y Y 54 
20 DOATE04 61031Y Y Y 54 
21 0 81039Y 54 c----> 
22 OFIL004 81048Y Y N 54 54 
23 OFILl05 81120Y Y Y Y 55 
24 ODATE05 61131Y Y Y Y 55 
25 0 81139Y Y 55 c----> 
26 OFIL005 81148Y Y 55Y 55 
27 OFIlI06 81220Y Y Y 56 
28 OOATE06 61231Y Y Y 56 
29 0 81239Y 56 C----> 
30 OFI L006 81248Y Y N 56 56 
31 OFILl07 81320Y Y Y Y 57 
32 OOATE07 61331Y Y Y Y 57 
33 0 81339Y Y 57 c----> 
34 OFI L007 81348Y Y N 57Y 57 
35 OFIlI08 81420Y Y Y 58 
36 OOATE08 61431Y Y Y 58 
37 0 81439Y 58 c----> 
38 OFILOO8 81448Y Y 58 58 
39 OFIU09 81520Y Y Y Y 59 
40 OOATE09 61531Y Y Y Y 59 
41 0 81539Y Y 59 c----> 
42 DFIL009 81548Y Y 59Y 59 
43 DFIU10 81620Y Y Y 60 
44 oDATE 1 0 61631Y y Y 60 
45 0 81639Y 60 c----> 
46 OFIL010 81648Y Y N 60 60 
47 OFIlIll 81720Y Y Y Y 61 
48 OOATEll 61731Y Y Y Y 61 
49 0 81739Y Y 61 c----> 
50DFILOll 81748Y Y N 61Y 61 
51 OFI1I12 81820Y Y Y 62 
52 DDATE12 61831Y Y Y 62 
53 0 81839Y 62 c----> 
54 OFIL012 81848Y Y Y 62 62 
55 0 2823 2Y Y CPress <ENTER> to RUN ReX 
56 Dquest 
57 
58 
59 

0 
0 
0 

222356Y 
2124 2Y 
232456Y Y 

CCMO 
CCMO 
CCMD 

5 
4 
7 

to 
to 
to 

EVOKE Request 
JOBQ Request 
CANCEL Request 

03-25-88 TIM A. HACK 
EASTMAN KOOAK/WWBIS 
Proc Name: FILEQ 

II IF EVOKED-YES GOTO EVOKRUN 
II IFF ?L'511,l'?/Q GOTO lSTPAS 

I I EVALUATE P45, 2-?L' 509,2' 7+1 
II LOCAL OFFSET-509,OATA-'745?' SAVE CURRENT FILE REQUEST COUNT 
II IF ?L'507,2'?I?L'509,2'? LOCAL OFFSET-507,OATA-' 
I I RETURN 

II TAG lSTPAS 

INITIALIZE VALUES FOR VARIABLE PARM LOADING 

II IF ?L'511,l'?/Q GOTO SKIP90 
II LOCAL OFFSET-507,DATA-'OOOO' ZERO OUT LOA CTRL COUNTS AT 1ST PASS 
II EVALUATE P44,2-00 
II EVALUATE P40,3-021 
II EVALUATE P41,2-00 
II EVALUATE P51-'X' P52-'X' P53-'X' P54-'X' P55-'X' P56-'X' 
II EVALUATE P57-'X' P5B-'X' P59-'X' P60-'X' P61-'X' P62-'X' 
II EVALUATE P64-'Q' 

CALL PROC TO ASSIGN VALUES TO VARIABLE PARMS 

II INCLUDE FILVPARM "ALL 
II LOCAL OFFSET-507,DATA-'?447' SAVE HOW MANY FILEQ REQUESTS FOUND 



438 5/36 Power Tools 

// LOCAL OFFSET-511 ,DATA-'Q' ONE TIME PROCESS CONTROL UPDATE TO LDA 
// EVALUATE P45, 2-?L' 509,2' ?+1 INCREMENT NTH PASS FOR FILEQ COUNTER 
// LOCAL OFFSET-509,DATA-'?45?' SAVE NTH PASS FOR FILES COUNTER 

PROMPT SCREEN LOAD FOR ENTERING OUTPUT RENAME FILE NAMES 

// PROMPT MEMBER-FILEQQFM,FORMAT-FILEQQAA, 
// LENGTH-'8,6,B,B,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8' 
// IF ?CD?j2007 IF ?L'507,2'?/?L'509,2'? LOCAL OFFSET-507,DATA-' 
1/ IF ?CD7/2007 RETURN 

// EVALUATE P50-" 
1/ IF ?CD?/2004 EVALUATE P50-J 
// IF ?CD? /2005 EVALUATE P50-E 
// IF ?50?/E EVOKE F I LEQ •ALL 
/ I IF 750? IE IF ?L' 507,2'? /?L' 509,2' 7 LOCAL OFFSET -507, DATA-' 
/1 IF ?50?/E RETURN 

/1 IFF ?507/J GOTO EVOKRUN 
II IFF PROC-'FQQ,?CLIB7' GOTO EVOKRUN 

SETUP TO RUN FROM JOBO IF JOBO PROC EXISTS, ONLY PASS OUTPUT FILE PARMS. 

/1 JOBQ .FQQ,?037,?06?,?09?,?12??15?,?18?,?21?,?24?,?27?,?30?,?33??36? 
1/ IF ?50?IJ IF ?L'507,2'?I?L'509,2'? LOCAL OFFSET-507,DATA-' 
I I IF? 50? I J RETURN 

REQUEST LOOP ROUTINE FOR EVOKED REQUEST 

1/ TAG EVOKRUN 
// IF EVOKED-NO INFOMSG NO 

II EVALUATE P48,2-04 

// IF? 50? I J IFF JOBQ-YES GOTO LOOPRN 
/1 TAG RELOAD 
/1 LOAD SRENAM 
I I RUN 

RENAME ALL FILES WITH SRENAM CALL USING VARIABLE PARM LOADING 

1/ TAG LOOPRN 
// EVALUATE CD-OOOO 
/1 EVALUATE P48-?487-1 
II EVALUATE P49-?48?/3 
/ I IF ?49?>?L'507,2'? GOTO ENDRNM 

LOAD VARIABLE PARM TO P39 WITH FILE NAME OUTPUT FOR SRENAM 
LOAD VARIABLE PARM TO P38 WITH FILE NAME INPUT DATE FOR SRENAM 
LOAD VARIABLE PARM TO P37 WITH FILE NAME INPUT FOR SRENAM 

1/ EVALUATE P39-??4B?? 

1/ EVALUATE P48-?4B?-1 

1/ EVALUATE P3B,6-??4877 

II EVALUATE P4B-?4B? -1 

// EVALUATE P37-7748?? 


II IFF ?39? I IF DATAF1-?39? EVALUATE CD-2030 
1/ IFF ?38?1 IFF ?3771 IFF DATAF1-'?37?,?38?' EVALUATE CD-2030 
I I IF ?38 7 1 IFF ?37?1 IFF DATAF1-?377 EVALUATE CD-2030 
/ I IF ?CD7-2030 END 
// IFF ?50?/E GOTO NOEVMSG 
// IF ?CD?-2030 MSG ?USER? , FILE NAMED ?37? NOT RENAMED TO ?39? DURING EVOKED EXECUTE. 

II TAG NOEVMSG 
/1 IF ?CD?-2030 GOTO NORENM 

// IFF ?38?/ IF DATAF1-'?37?,?38?' IFF DATAF1-?39?+ 
RENAME LABEL-?37?,NEWLABEL-?39?,DATE-?38? 

II IF ?38?1 IF DATAF1-?37? IFF DATAF1-?39?+ 
RENAME LABEL-?37?,NEWLABEL-?39? 

1/ TAG NORENM 
/1 EVALUATE P4B-?48?+6 
II IF ?CD?-2030 GOTO RELOAD 



pop 439 

/ / GOTO LOOPRN 
// TAG ENDRNM 
// END 

// IF ?L'507,2'?/?L'509,2'? LOCAL OFFSET-507,DATA-' 
// IF EVOKED-NO INFOMSG YES 
/ / RETURN 

GROUP RENAME UTILITY USING POP FILE UTILITY 

USES "POP" DISPLAY FI LES UTI LITY WITH NEW "0" CHARACTER AS OP CODE, 

FILES REOUESTED FOR "0" RENAME WILL BE DISPLAYED ON PROMPT SCREEN 

WITH THE OLD FILE NAME & DATE & NEW FILE NAME (DEFAULTS TO OLD NAME). 

NEW FILE NAME FIELD IS THE ONLY FIELD ALLOWED FOR INPUT BY USER. 

MAXIMUM OF 12 FI LES (ONE SET) MAY BE SETUP AT ONE TIME FOR "0" RENAME." 


RECOVERY ~OTE: 	 I F USER INTERRUPTS/CANCELS "0" RENAME REOUESTS, THEN 

LOA POSITIONS 507 THRU 511 SHOULD BE SET TO BLANKS TO 

CONTINUE TO ALLOW USE OF ~UICK RENAME UTILITY. THESE 

POSITIONS ARE USED TO CONTROL ONE SET OF "0" RENAMES. 


LOA NOTE: 	 DO NOT RE-USE LDA POSITION 502 THRU 506 ALREADY USED 
FOR FILES CONTROL. NEED TO KEEP POSITION 502 THRU 506 
INTACT FOR LIFE OF FILE SET REOUEST WITHIN POP. 

PROCEDURES CALLED: 

FILVPARM - INITIAL LOAD FILE/DATE INPUT & FILE OUTPUT TO VARIABLE PARM** 

FOO - JOBO RUN OF THIS PROCESS IF REOUESTED DURING PROMPT 


PARAMETER 	 DEFINITIONS: 

POl - P36 FILE NAME AND DATE PARAMETERS USED IN SRENAM PROCESS. 

POl P12 REUSED AS NEW FILE NAME OUTPUT PARMS PASSED TO JOBO CALL, 

P37 WORKING PARM FOR SRENAM FILE NAME INPUT. 

P38 WORKING' PARM FOR SRENAM FILE NAME INPUT DATE. 

P39 WORKING PARM FOR SRENAM FILE NAME OUTPUT, 

P40 OP CODE POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P41 NTH PARM CONTAINING INPUT FILE NAME. 

P42 NTH PARM CONTAINING INPUT FILE DATE. 

P43 NTH PARM CONTAINING NEW OUTPUT FILE NAME. 

P44 COUNTER FOR TOTAL NUMBER OF CURR FILE REOUEST THAT ARE "0". 

P45 NTH PASS FOR "0" RENAME REOUEST WITHIN ONE FI LE SET. 

P46 FILE NAME POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P47 FILE DATE POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P4B WORKING PARM TO CONTROL SRENAM PARM VARIABLE PARM LOADING. 

P49 WORKING PARM TO CONTROL SRENAM LOOPING. 

P50 MEMORY FOR REOUEST FOR JOBO OR EVOKED JOBS. 

P51 P63 ATTRIBUTE CONTROL PARMS USED IN SCREEN PROMPT. 

P64 PROCESS CONTROL CHARACTER PASSED TO LOAD VARIABLE PARM PROC. 


LOA USAGE: 

021 200 CURRENTLY USED BY FILE# PROC WITHIN POP AND ACCESSED HERE. 

507 508 STORES TOTAL NUMBfR OF "0" RENAME REOUEST FOR ONE FILE SET. 

509 510 NTH PASS WITHIN ONE FILE SET FOR "0" RENAME REOUEST. 

511 511 "0" RENAME PROMPT & SRENAM EXECUTION CONTROL. 


ALL "0" REOUESTS ARE IDENTIFIED AND SETUP FOR EXECUTION 
DURING FIRST "0" REOUEST FOUND IN FILE SET. ALL OTHER 
ATTEMPTS TO RUN "0" REOUEST WITHIN ONE FILE SET WILL NOT 
EXECUTE PROMPT & SRENAM SINCE LOA 511 IS SET TO "0" AFTER 
FIRST PASS THRU "0" REOUEST IN ONE FILE SET. AFTER ALL 
"0" REOUESTS HAVE PASSED LOA 507 THRU 511 IS BLANKED OUT. 

END OF FILEO PROCEDURE 

Note: Anotherprocedure described in Improving and Adding Operations in 
POp, page 449, uses the nome FILEQ, so ifyou use both procedures in #POPLlB, 
one ofthem must be renamed to use a POP opcode other than Q. 



440 5/36 Power Tools 

Figure 14-35 

Procedure FQQ 
03-24-88 TIM A. HACK 

EASTMAN KODAK/WWBIS 
Proe Name: FQQ (JOBQ REQUEST FROM FILEQ) 

REPOSITION NEW OUTPUT FILE NAMES PASSED AS PARM 01 - 12 TO ORIGINAL PARMS 
II EVALUATE P41,2-12 INITIAL INCOMING PARM 10 SET TO 12 
II EVALUATE P43,2-00 

II TAG REPOS 
I I EVALUATE P43, 2-?41 ?"3 REPOSITION INCOMING PARM VALUE TO THIS PARM 
II IFF 7741771 EVALUATE P?43?-??41?? 
I I ELSE EVALUATE P?43?-" 
II EVALUATE P41-?41?-1 COUNTDOWN NEXT INCOMING PARM TO REPOS 
II IF ?41?>00 GOTO REPOS 

INITIALIZE VALUES FOR VARIABLE PARM LOADING IN FILVPARM PROC, 

II LOCAL OFFSET-507,DATA-'OOOO' ZERO OUT LOA CTRL COUNTS AT 1ST PASS 
II EVALUATE P44,2-00 
I I EVALUATE P40, 3-021 
II EVALUATE P41,2-00 
II EVALUATE P64-'Q' 

CALL PROC TO ASSIGN VALUES TO VARIABLE PARMS 

II INCLUDE FILVPARM "ALL 

II LOCAL OFFSET-507,DATA-'?44?' SAVE HOW MANY FILES REQUESTS FOUNO 

II EVALUATE P48,2-04 

II TAG RELOAD 
II LOAD SRENAM 
I I RUN 

RENAME ALL FILES WITH SRENAM CALL USING VARIABLE PARM LOADING 

II TAG LOOPRN 
II EVALUATE CD-OOOO 
II EVALUATE P48-?48?-1 
II EVALUATE P49-?487/3
II IF ?49?>?L'507,2'7 GOTO ENDRNM 

LOAD VARIABLE PARM TO P39 WITH FILE NAME OUTPUT FOR SRENAM 
.. TO P38 WITH FILE NAME INPUT DATE FOR SRENAM 
.. TO P37 WITH FILE NAME INPUT FOR SRENAM 

II EVALUATE P39-??48?? 

I I EVALUATE P48-?487-1 
II EVALUATE P38,6-?74877 

II EVALUATE P48-?487-1 
II EVALUATE P37-?74877 
II IFF 73971 IF DATAFl-739? 
II IFF ?38?1 IFF ?37?1 
II IF ?38?1 IFF ?37?1 
II IF ?CD?-2030 

IFF 
IFF 

DATAF1-'?37??387' 
DATAFl -? 37? 

END 

EVALUATE 
EVALUATE 
EVALUATE 

CD-2030 
CD-Z030 
CD-2030 

II IF ?CD7-2030 MSG ?USER?, FILE NAMED 737? NOT RENAMED TO 739 7 DURING JOBQ EXECUTION. 
II IF ?CD?-2030 GOTO NORENM 

II IFF 73871 IF DATAF1-'7377,?38?' IFF DATAF1-?39?< 
RENAME LABEL-?37?,NEWLABEL-?39?,DATE-?387

II IF ?38?1 IF DATAFl-737? IFF DATAFl-739?< 
RENAME LABEL -7377 ,NEWLABEL-? 397 

II TAG NORENM 
II EVALUATE P48-?48?+6 
II IF ?CD7-2030 GOTO RELOAD 
I I GOTO LOOPRN 
II TAG ENDRNM 
II END 



pop 441 


/ / RETURN.__ .•••••......................•.....................•...............•..... 

MULTIPLE FILEQ RENAME USING POP FILE UTILITY JOBQ REQUEST 

THIS IS JOBQ PROC EXECUTED IF FILEQ USES JOBQ COMMAND KEY REQUEST. 
SEE FILEQ PROC FOR MORE COMPLETE DESCRIPTION. 

PARAMETER DEFINITIONS: 

SEE FILEQ PROC DOCUMENTATION FOR PARM DEFINITIONS. 

LDA USAGE: 

SEE FILEQ PROC DOCUMENTATION FOR LDA MAPPING FOR THIS ENTIRE FUNCTION ...................••......._............•...........•..........•........... 

•• END OF FQQ PROCEDURE 

Figure 14-36 ... 1 ... 3 ... 4 .. ... 5 ... ... 7 .. , ... B 
1 SFILESSAA Y Y DEG 
2 D 8 1 3Y CFILESSAA 
3 0 46 120Y Y CQUICK FILE COPY UTI LI TYX

member 4 DUSING POP FILE UTI LITY 
5 DFAOO06 9 320Y Y CCopy From 

Screen format 

FILESSFM 6 DFAOO03 7 348Y Y CCopy To 
7 0 9 420Y Y Y CFile Name 
8 DFAOO02 4 431Y Y Y COate 
9 0 9 448Y Y Y CFile Name 

10 DFILl01 8 620Y Y Y Y 51 

11 DDATE01 6 631Y Y Y Y 51 

12 0 8 639Y Y 51 C----> 

13 DFIL001 8 648Y Y N 51Y 51 

14 DFI 1I02 8 720Y Y Y 52 

15 DDATE02 6 731Y Y Y 52 

16 0 8 739Y 52 c----> 

17 DFIL002 8 748Y Y 52 52 

18 DFILI03 8 820Y Y Y Y 53 

19 DDATE03 6 831Y Y Y Y 53 

20 0 8 839Y Y 53 C----> 

21 OFIL003 8 848Y Y N 53Y 53 

22 DFI 1I04 8 920Y Y Y 54 

23 DDATE04 6 931Y Y Y 64 

24 0 8 939Y 54 c----> 

25 DFIL004 8 948Y Y N 54 54 

26DFILl05 81020Y Y Y Y 55 

27 DDATE05 61031Y Y Y Y 55 

28 0 81039Y Y 55 c----> 

29 DFIL005 81048Y Y 55Y 55 

30DFILI06 81120Y Y Y 56 

31 OOATE06 61131Y Y Y 56 

32 D 81139Y 56 c----> 

33 DFIL006 81148Y Y N 56 56 

34 OFIlI07 81220Y Y Y Y 57 

35 OOATE07 61231Y Y Y Y 57 

36 D 81239Y Y 57 C----> 

37 OFI LOO7 81248Y Y N 57Y 57 

38 OFILl08 81320Y Y Y 58 

39 DDATE08 61331Y Y Y 58 

40 0 81339Y 58 c----> 

41 DFIL008 81348Y Y N 58 58 

42 DFILl09 81420Y Y Y Y 59 

43 DDATE09 61431Y Y Y Y 59 

44 D 81439Y Y 59 C----> 

45 DFILD09 81448Y Y N 59Y 59 

46 OFIlIl0 81520Y Y Y 60 

47 DDATE10 61531Y Y Y 60 

48 0 81539Y 60 C----> 

49 DFIL010 81548Y Y 60 60 

50DFILl11 81620Y Y Y Y 61 

51 DDATE11 61631Y Y Y Y 61 

52 0 81639Y Y 61 c----> 

53DFIL011 81648Y Y 61Y 61 




442 5/36 Power Tools 

54 DFILl12 81nOY Y Y 62 
55 DDATE12 61731 Y Y Y 62 
56 0 81739Y 62 c~---> 

57 DFIL012 81748Y Y Y 62 62 
58 0 519 4Y Y CNOTE: 
59 0 2281910Y CI f 1) Copy To Fi 1e NameX 

60 0 already EXISTS on disk 2) Copy To File Name is BLANK 3) Copy TX 
61 Do File Name ;s the same as Copy From Fi 1e Name 4) Copy FX 
62 Drom File Name does NOT exi st then file will NOT be copied. 
63 0 2823 2Y Y CPress <ENTER> to RUN ReX 
64 Dquest 
65 0 222356Y CCMD 5 to EVOKE Request 
66 0 2124 2Y CCMD 4 to J08Q Request 
67 0 232456Y Y CCMD 7 to CANCEL Request 

Figure 14-37 

Procedure FILES 

03-12-88 TIM A. HACK 
EASTMAN KODAK/WWBIS 
Proc Name: FILES 

II IF EVOKED-YES GOTO EVOKRUN 
II IFF ?L'506,1'?/S GOTO lSTPAS 

II EVALUATE P45,2-?L'504,2 '?+1 
II LOCAL OFFSET-504,DATA-'?45?' SAVE CURRENT FILE REQUEST COUNT 
I I IF ?L' 502 , 2 ' ? /? L ' 504, 2 ' ? LOCAL OFFSET-502,DATA-' 
II RETURN 

II TAG lSTPAS 

INITIALIZE VALUES FOR VARIABLE PARM LOADING 

II LOCAL OFFSET-502,OATA-'0000' ZERO OUT LOA CTRL COUNTS AT 1ST PASS 
II EVALUATE P44,2-00 
I I EVALUATE P40, 3-021 
II EVALUATE P41,2-00 
II EVALUATE P51-'X' P52-'X' P53-'X' P54"X' P55-'X' P56-'X' 
II EVALUATE P57-'X' P58-'X' P59-'X' P60"X' P61-'X' P62-'X' 
II EVALUATE P64-'S' 

CALL PROC TO ASSIGN VALUES TO VARIABLE PARMS 

II INCLUDE FILVPARM "ALL 

II LOCAL OFFSET-502,DATA-'?44?' SAVE HOW MANY FILES REQUESTS FOUND 
II LOCAL OFFSET-506,DATA-'S' ONE TIME PROCESS CONTROL UPDATE TO LOA 
I I EVALUATE P45, 2-?L' 504,2' ?+1 INCREMENT NTH PASS FOR FILES COUNTER 
II LOCAL OFFSET-504,DATA-'?45?' SAVE NTH PASS FOR FILES COUNTER 

PROMPT SCREEN LOAD FOR ENTERING OUTPUT COPY FILE NAMES 

II PROMPT MEMBER-FILESSFM,FORMAT-FILESSAA, 

II LENGTH-'8,6.8,8,6,8,8,6,8,8.6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8,8,6,8' 

II IF ?CO?/2007 IF ?L'502,2'?I?L'504,2'? LOCAL OFFSET-502,DATA-' 

II IF ?CD?/2007 RETURN 


II EVALUATE P50-' , 

I I IF ?CD? 12004 EVALUATE P50-J 

I I IF ?CD?/2005 EVALUATE P50-E 

I I IF ?50?/E EVOKE FILES "ALL 

II IF ?50?/E IF ?L'502,2'?I?L'504,2'? LOCAL OFFSET -!502, DATA- ' 

II IF ?50?/E RETURN 


II IFF ?50?/J GOTO EVOKRUN 

II IFF PROC-'FSQ,?CLIB?' GOTO EVOKRUN 


SETUP TO RUN FROM JOBQ IF JOBQ PROC EXISTS. ONLY PASS OUTPUT FILE PARMS. 

II JOBQ ,FSQ,?03?,?06?,?09?,?l2?,?15?,?18?,?21?,?24?,?27?,?30?.733?,?36? 
II IF ?50?/J IF ?L'502,2'?/?l'504,2'? LOCAL OFFSET-502,OATA-' 



pop 443 
II IF 750?/J 	 RETURN 

II TAG EVOKRUN INITIAL PLACEMENT FOR EVOKED PROC 
I I IF EVOKED-NO INFOMSG NO 

COPY ALL QUEUED FILES FOR COPY WITH SCOPY CALL WITH VARIABLE PARM LOADING 

II EVALUATE P4B,2-04 

I I TAG LOOPCP 
II EVALUATE CD-OOOO 
II EVALUATE P48-74B?-1 
I I EVALUATE P49-7487/3 
II IF 7497>7L'502,2'7 GOTO ENDCPY 

LOAD VARIABLE PARM TO P39 WITH FILE NAME OUTPUT FOR SCOPY 

LOAD VARIABLE PARM TO P38 WITH FILE NAME INPUT DATE FOR SCOPY 

LOAD VARIABLE PARM TO P37 WITH FILE NAME INPUT FOR SCOPY 


I I EVALUATE P39-7748?? 
I I EVALUATE P4B-7487-1 
I I EVALUATE P38,6-7?48?? 
I I EVALUATE P48-7487-1 
I I EVALUATE P37-??4B?? 

II IFF ?39?1 IF DATAF1 -? 39? EVALUATE CD-2030 
II IFF 738?1 IFF 737?1 IFF DATAF1-'?377,738?' EVALUATE CD-2030 
II IF ?38?1 IFF ?37?1 IFF DATAF1-?37? EVALUATE CD-2030 
II IFF 750?/E GOTO NOEVMSG 
II IF 7CD?-2030 MSG 7USER?, FILE NAMED ?37? WAS NOT COPIED TO ?397 DURING EVOKED EXECUTION, 
II TAG NOEVMSG 
I I IF ?CD?-2030 GOTO NOCOPY 

I I REGION SIZE-64 
II LOAD SCOPY 
II IF 7387> 	 FILE NAME-COPYIN,LABEL-7377,DATE-?38? 
II ELSE 	 FILE NAME-COPYIN,LABEL-737? 
II FILE NAME-COPYO,LABEL-?39? 
II RUN 
II COPYFILE OUTPUT-SAME 
I I END 
II TAG NOCOPY 

II EVALUATE P48-?487+6 
I I GOTO LOOPCP 
II TAG ENDCPY 

II IF ?L'502,2'?I?L'504,2'? LOCAL OFFSET-502,DATA-' 
I I I F EVOKED-NO INFOMSG YES 
I I RETURN 

MULTIPLE FILES 	 COPY USING POP FILE UTILITY 

USES "POP" DISPLAY FILES UTILITY WITH NEW "5" CHARACTER AS OPCODE. 

FILES REQUESTED FOR "s" COpy WILL BE DISPLAYED ON PROMPT SCREEN WITH 

THE OLD FILE NAME & DATE & NEW FILE NAME (DEFAULTS TO OLD NAME). 

NEW FILE NAME FIELD IS THE ONLY FIELD ALLOWED FOR INPUT BY USER. 

MAXIMUM OF 12 FILES (ONE SET) MAY BE SET UP AT ONE TIME FOR "s" COPY. 


RECOVERY NOTE: 	 IF USER INTERRUPTSICANCELS "S" RENAME REQUESTS, THEN 

LOA POSITIONS 502 THRU 506 SHOULD BE SET TO BLANKS TO 

CONTINUE TO ALLOW USE OF MULTI-COPY UTILITY. THESE 

POSITIONS ARE USED TO CONTROL ONE SET OF "5" COPIES. 


LOA NOTE: 	 DO NOT RE-USE LOA POSITION 507 THRU 511 ALREADY USED 

FOR FILEQ CONTROL, NEED TO KEEP POSITION 507 THRU 511 

INTACT FOR LIFE OF FILE SET REQUEST WITHIN POP. 


PROCEDURES CALLED: 

FILVPARM - INITIAL LOAD FILEIDATE INPUT & FILE OUTPUT TO VARIABLE PARM** 

FSQ - JOBQ RUN OF THIS PROCESS IF REQUESTED DURING PROMPT 


PARAMETER 	 DEFINITIONS: 



444 5/36 Power Tools 

P01 P36 FILE NAME AND DATE PARMS USED IN SCOPY PROCESS. 

P01 P12 REUSED AS NEW FILE NAME OUTPUT PARMS PASSED TO JOBQ CALL. 

P37 WORKING PARM FOR $COPY FILE NAME INPUT. 

P3B - WORKING PARM FOR SCOPY FILE NAME INPUT DATE. 

P39 WORKING PARM FOR SCDPY FILE NAME OUTPUT. 

P40 - OP CODE POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P41 - NTH PARM CONTAINING INPUT FILE NAME. 

P42 - NTH PARM CONTAINING INPUT FILE DATE. 

P43 - NTH PARM CONTAINING NEW OUTPUT FILE NAME. 

P44 " COUNTER FOR TOTAL NUMBER OF CURR FILE REQUEST THAT ARE "S". 

P45 - NTH PASS FOR "S" COpy REQUEST WITHIN ONE FILE SET. 

P46 - FILE NAME POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P47 - FILE DATE POSITION IN LOA WHICH IS LOADED BY POP UTILITY. 

P48 WORKING PARM TO CONTROL $COPY VARIABLE PARM LOADING. 

P49 WORKING PARM TO CONTROL SCOPY LOOPING. 

P50 MEMORY FOR REQUEST FOR JOBQ OR EVOKED JOBS. 

P51 P63 ATTRIBUTE CONTROL PARMS USED FOR SCREEN PROMPT. 

P64 PROCESS CONTROL CHARACTER PASSED TO LOAD VARIABLE PARM PROC. 


LOA USAGE: 


021 - 200 CURRENTLY USED BY FILE# PROC WITHIN POP AND ACCESSED HERE. 

502 503 STORES TOTAL NUMBER OF ·S" COPY REQUEST FOR ONE FILE SET. 

504 505 NTH PASS WITHIN ONE FILE SET FOR ·S" COpy REQUEST. 

506 506 "S" COpy PROMPT III SCOPY EXECUTION CONTROL. 


ALL ·S" REQUESTS ARE IDENTIFIED AND SETUP FOR EXECUnON 
DURING FIRST "S· REQUEST FOUND IN FILE SET. ALL OTHER 
ATTEMPTS TO RUN ·S· REQUEST WITHIN ONE FILE SET WILL NOT 
EXECUTE PROMPT & SCOPY SINCE LOA 506 IS SET TO "S" AFTER 
FIRST PASS THRU "S" REQUEST IN ONE FILE SET. AFTER ALL 
·S" REQUESTS HAVE PASSED LOA 502 THRU 506 IS BLANKED OUT. 

"" END OF FILES PROCEDURE 

Figure 14-38 

Procedure FSQ 

03-22-88 TIM A. HACK 
EASTMAN KODAK/WWBIS 
Proe Name: FSQ (JOBQ REQUEST FROM FILES)••••.•.••••••••••.•........••••••..•..••..••••••••••....................... 


REPOSITION NEW OUTPUT FILE NAMES PASSED AS PARM 01 - 12 TO ORIGINAL PARMS 

II EVALUATE P41.2-12 INITIAL INCOMING PARM 10 SET TO 12 
II EVALUATE P43.2-00 

II TAG REPOS 
II EVALUATE P43.2-1417"3 REPOSITION INCOMING PARM VALUE TO THIS PARM 
II IFF 1141111 EVALUATE P?43?-?1411? 
I I ELSE EVALUATE P?431-" 
II EVALUATE P41-1411-1 COUNTDOWN NEXT INCOMING PAFtM TO REPOS 
II IF 1411>00 GOTO REPOS 

INITIALIZE VALUES FOR VARIABLE PARM LOADING IN FILVPARM PROC. 

II LOCAL OFFSET-502.DATA-·OOOO· ZERO OUT LOA CTRL COUNTS AT 1ST PASS 
II EVALUATE P44.2-00 
II EVALUATE P40.3-021 
II EVALUATE P41.2-00 
II EVALUATE P64-'S' 

CALL PROC TO ASSIGN VALUES TO VARIABLE PARMS 

II INCLUDE FILVPARM "ALL 

1/ LOCAL OFFSET -502. DATA-' ?441' SAVE HOW MANY FILES REQUESTS FOUND 



pop 445 

Flgu.... 14-39 

Procedure 
FILVPARM 

COpy ALL QUEUEO FILES FOR COPY WITH $COPY CALL WITH VARIABLE PARM LOAOING 

II EVALUATE P48,2-04 

II TAG LOOPCP 
II EVALUATE CO-OOOO 
II EVALUATE P48-7487-1 
II EVALUATE P49-?487/3
II IF ?497>7L'502,2'7 GOTO ENOCPY 

LOAO VARIABLE PARM TO P39 WITH FILE NAME OUTPUT FOR $COPY 

P38 WITH FILE NAME INPUT OATE FOR $COPY 


.. P37 WITH FILE NAME INPUT FOR $COPY 


II EVALUATE P39-??48?7 

II EVALUATE P48-7487-1 
II EvALUATE P38,6-7?48?? 

II EVALUATE P48-?487-1 
II EVALUATE P37-??4877 
II IFF 739?1 IF OATAF1-739? EVALUATE CO-2030 
II IFF 73B71 IFF ?3771 IFF OATAF1-'7377,738?' EVALUATE CO-2030 
II IF ?3871 IFF 737?1 IFF OATAF1-737? EVALUATE CO-2030 
II IF ?C07-2030 MSG 7USER?, FILE NAMEO 7377 WAS NOT COPIED TO 739? DURING JOBQ EXECUTION. 
II IF ?CO?-2030 GOTO NOCOPY 

PERFORM $COPY WITH VARIABLE LOAOEO PARMS 37, 38 AND 39, 

II REGION SIZE-54 
II LOAD $COPY 
II IF 7387> FILE NAME-COPYIN,LABEL-7377,OATE-?387 

I I ELSE FILE NAME-COPYIN,LABEL-?37? 

II FILE NAME-COPYO,LASEL-739? 

II RUN 

II COPYFILE OUTPUT-SAME 

I I ENO 

II TAG NOCOPY 


II EVALUATE P48-74S?+6 

II GOTO LOOPCP 

II TAG ENOCPY 


I I RETURN 
........................................................................... 

MULTIPLE FILES COPY USING POP FILE UTILITY JOSQ REQUEST 

THIS IS JOSQ PROC EXECUTEO IF FILES USES JOSQ COMMANO KEY REQUEST. 

SEE FILES PROC FOR MORE COMPLETE OESCRIPTION, 


PARAMETER OEFINITIONS: 

SEE FILES PROC DOCUMENTATION FOR PARM DEFINITIONS. 

LOA USAGE: 

SEE FILES PROC DOCUMENTATION FOR LDA MAPPING FOR THIS ENTIRE FUNCTION. 

•• ENO OF FSQ PROCEDURE 

03-13-86 TIM A. HACK 
EASTMAN KOOAK/WWBIS 
Proc Name: FILVPARM

•••••••••••••••••• ** ••••••••••••••••••• ** •••••••••••••••••••••••••••••••••• 

II TAG LOOP10 
1/ IF 7l'?40?,1'?1?64? EVALUATE P44,2-?447+1 

// ELSE GOTO SKIP10 

I I EVALUATE P63-?447+50 




446 5/36 Power Tools 

I I EVALUATE P7637-' , 
BEGINNING; 

FILE REQUEST IN LOA 21 WITH INCREMENT TO NEXT POP FILE REQUEST - 15 
- FILE NAME IN LOA 22 IS 1 GREATER THAN ASSOCIATED FILE LOA REQUEST 
- FILE DATE IN LOA 30 IS 9 GREATER THAN ASSOCIATED FILE LOA REQUEST 

II EVALUATE P41-7417+1 
II 
II 

EVALUATE P42,2-7411+1 
EVALUATE P43,2-1411+2 

SETUP INPUT FILE DATE PARM 10 
SETUP OUTPUT FILE NAME PARM 10 

I I EVALUATE P46, 3-1401+1 
II EVALUATE P47,3-1407+9 

SETUP LOA START POSITION FOR FI LE NAME 
SETUP LOA START POSITION FOR FILE DATE 

II 
II 
I I 

EVALUATE P1411-1L'?467,8'7 
IFF 1L'1471,6'11 
ELSE 

ASSIGN INPUT FILE NAME TO NTH 
EVALUATE P742?, 6'-?L' 1477 ,6' 7 
EVALUATE P1427-" 

PARM-P41 

II 
II 

IF 1143171 
EVALUATE P41-1411+2 

EVALUATE P7437-n' 1467,8' 7 

II TAG SKIP10 
II 
II 

EVALUATE P40,3-1401+15 
IF 187>7401 GOTO LOOP10 

I I RETURN 'ALL THANKS JWC FOR 'ALL PARM ON RETURN 

" SEE FILES/FILEQ PROC FOR MORE COMPLETE DESCRIPTION, 

PARAMETER DEFINTIONS: 

SEE ABOVE PROC DOCUMENTATION FOR PARM DEFINITIONS. 

LOA USAGE: 

SEE ABOVE PROC DOCUMENTATION FOR LOA MAPPING FOR THIS FUNCTION. 

" END OF FILVPARM PROCEDURE 

Improving POP's File Delete 
by Martin Bell a	Code on diskette: 

Procedure FILEZ 

POP has a new S/36 operand - Z for ZAP - to delete a file from the 
FILE screen without having to go through the confirmation step required 
by operand D. Using Z is significantly faster than using D, especially when 
you have to delete several files. 

To use Z, simply create procedure FILEZ (Figure 14-40). The POP 
tutorial explains how the FILE screen's header can be edited to include Z 
and its description. 

, pop FILEZ: 	 Zap a file with no confirmationFigure 14-40 
II LOAD $OELET 
II RUNProcedure II SCRATCH LABEL-117,

FILEZ II IFF 7211 DATE-727, 
I I UNIT-F1 
II END 



pop 447 

Improving File and Library Save in POP 
answered by JeffSilden 

Figure 14-41 

Modifications 
to procedure 
LIBRK 

Figure 14-42 

Modijications 
to procedure 
FILEK 

QWhen our shop uses the Library facility of IBM's POP to FROMLIBR 
library members onto diskette, we use a volume 10 other than 

IBMIRD. Consequently, we must always rekey the shop's standard 
diskette volume 10 in place of the IBM "standard" - and we are tired of 
it! Similarly, we use POP's File facility to save files onto diskettes, and 
every time we use the K option to save a file, We must key the diskette 
volume 10. Isn't there some way we can make our standard the default? 

AYour frustrations with POP can be cleared up fairly easily. To make 
your shop's standard volume 10 the default for the Library facility, 

change line 12 of procedure LIBRK in #POPLIB as shown in Figure 14-41. 
In the figure, I have used BACKUP as the standard volume 10; however, 
you can change IBMIRD to any valid six-character value. 

For your file saves to diskette through POP's option K, you might want 
to add the parameter shown in Figure 14-42 to line 3 of procedure FILEK 
in #POPLIB. This change causes your six-character volume 10 number to 
be displayed automatically each time you use the File facility to save a file 
onto diskette. As with the change to procedure LIBRK, you can use any 
six-character value in place of the word BACKUP. 

II IF 737/0 GOTO LIBRARY 
II IF 7171 RETURN 

II IFF 7C17>4 GOTO NOPERIOD CAN'T BE NAME.ALL IF NOT LONGER THAN 4 
I I LOCAL DATA-' 71?' , OFFSET -301 PUT NAME AT 301 IN LDA 
II EVALUATE P62-?C1?-4 LENGTH OF POSSIBLE PARTIAL NAME 
II EVALUATE P63-301+?62? STARTING POINT OF POSSIBLE' .ALL' 
II IF ?L'?63?, ,4'7-' .ALL' EVALUATE P1-?L'301 ,?62?'? P63-ALL IS' .ALL' THERE7 
• IF SO, P1-PARTIAL NAME AND P63-'ALL' 
I I TAG NOPERIOD 
II IF ?2?/L EVALUATE P2-LIBRARY 
•• EVALUATE P7-?3? P3-?1? P4-I1 P5-999 P6-IBMIRD <--- ORIGINAL CODE 
II EVALUATE P7-?3? P3-?1? P4-I1 P5-999 P6-BACKUP <--- NEW CODE 
II IF ?3?-ALL EVALUATE P3-" FILE NAME ALL NOT ALLOWED 
II IF ?6?/ALL HELP FROMLIBR ?1?,?63?,?2?,?37,?4?,?5?,?6?,?7?,7B?,?9?,?10?,+ 

?11?,?127 PARTIAL NAME.ALL WAS SPECIFIED 
II ELSE HELP FROMLIBR 71?1,?2?,?3?,?4?,?5?,?6?,?7?,?8?,?9?,?10?,?11?,?12?,?1 3? 
II IF ?CD?-1991 RETURN 
II IF ?CD?-2143 RETURN 
LI8RPARM ,,?L'201, 100'? 
II EVALUATE P5-ADD P50-'·' COMMENT OUT ALL FROM LIBR'S 
I I TAG 1 

II LIBRARY NAME-O 
I I MEMBER USER1-##MSG2 
HELP SAVE ?17, .?2?,BACKUP «-- MODIFIED CODE 



448 5/36 Power Tools 

Restricting POP's File Display with a File Mask 

by Carl W. Selley a Code on diskette: 

Procedure FILEB 

POP procedure FILEB gives you a quick POP file group display restricted 
to a specified group. Once you've placed procedure (Figure 14-43) in 
#LIBRARY, you can use this tool by entering FILEB and the name of the 
file group you want displayed; the file group name can be in any of the fol
lowing formats: 

FILEB ABC 

FILEB ABC, 

FILEB .ABC 

FILEB ,ABC, 


This brings up the POP display limited to the group you specified. To 
redefine the group, use POP's Command key 5 option . 

• FILEB - Restrict POP display to the group specified in Pl,Figure 14-43 II LOCAL OFFSET-l,BLANK-8,DATA-'?1?' 

1/ LOCAL OFFSET -9, DATA- ' , I 
Procedure 1/ LI BRARY NAME -#POPLI B 

II RESET FILE#
F/LEB 

Browsing Spool Files with POP 
by Bret B. Myrick, Sr.a	Code on diskette: 


Procedure DSP 


Using the COPYPRT procedure to look at a spool 10 can be tiresome 
because of COPYPRT's limited paging, character search, and positioning 
techniques. If you have POp, however, I can help you with a better method 
for viewing spool entries. 

Procedure DSP (Figure 14-44) uses the $UASF utility just like COPYPRT, 
but the similarity ends there. After copying the spool entry to a disk file, 
the procedure calls the File procedure in #POPLIB. Now you have all the 
Roll key, paging, and character search operations you have when you 
browse a disk file with POP. 

When it's time to end procedure DSP, type XZ at the top of the 
browse screen to execute procedure FILEZ (see Improving POP's File 
Delete, page 446.) 



POP 449 


Figure 14·44 
• Turn off the INFOMSG and ensure that there is a SPOOL ID or CANCEL .•Procedure DSP *----------------------------------------------------------------------* 

in#LIBRARY 	 II INFOMSG NO 
II IF ?lR?' CANCEL 
*------------------------------------------------------------------------* 
* Delete any SPOOL ID that may already exist for this workstation. 

II IF DATAF1-SPOOL.?WS? DELETE SPOOL ?WS?,Fl 

• Load SUASF and convert the SPOOL ENTRY to a disk file. 

II LOAD SUASF 

I I RUN 

II SPOOL SPOOLID-?l?,NAME-SPOOL.?WS? 

I I END 


---**---------------
• Run the FILE procedure in #POPLIB. 

II LIBRARY NAME-#POPLIB 

FI LE SPOOL. ?WS? 


Improving and Adding Operations in POP 
by Matthew Henry 

Code on diskette: a Procedures FILEE, FILEL, FILEQ2, FILEU, FILEKY6, 
LIBRA, LlRCOMp, LlBRKY8 

I have added several opcodes and command keys to POP to help me be 
more productive while accomplishing some of the small tasks I must per
form daily. Several of the following POP procedure commands help me do 
up to 12 things at once. 

• FILEE - changes the current E operation code from DFU edits to Query 
Data Entry Facility (QRYDE) edits. To use FILEE, you must configure 
Query/36 on your system, and the file to edit must be linked to an IDDU def
inition. Using QRYDE instead of DFU for file edits saves library space 
because you do not have to keep any DFU library members. 

II QRYDE ?1?,?2? 
II RETURN 
* CALLS QUERY/36 DATA ENTRY FACILITY 
* MUST HAVE QUERY/36 INSTALLED ON THE SYSTEM 

Note: Since #POPLIB already contains a FILEE (call DFU) procedure, you 
should rename either it or the FILEE (call Query) procedure before installing this 
procedure in #POPLIB. 

• FILEL -links files to IDDU definitions. You must configure IDDU on 
your system and have a file definition for the file to be linked. Accessing 
IDDULINK from POP lets you perform up to 12 links at one time and 
does not require the file name to be rekeyed. 



450 5/36 Power Tools 

II HELP IDDULINK.LINK.?1?MASTER.,?2?
I I RETURN 
* POP CODE FOR LINKING TO IDDU DEFINITION 

• FILEQ - displays a file through Query/36 with IDDU field headers. 
You must configure Query/36 on your system and the file to view must be 
linked to an IDDU file definition. Query/36 file displays show the prede
fined headings for all the fields and display binary and packed fields in the 
IDDU formatted form (e.g., slashes for dates, colons for time, and commas 
in the right place). 

II QRYRUN .. 717.DISPLAY 
II RETURN 
* DISPLAYS A FILE WITH IDDU HEADINGS 
* MUST HAVE QUERY/36 ON THE SYSTEM 

Note: This procedure is named FILEQ2 on diskette. To use it in #POPLIB, you 
must rename it to FILEQ. Anotherprocedure described in Renaming and Copy
ing Multiple Files in POp, page 434, uses the nome FILEQ, so ifyou use both 
procedures in #POPLIB, one ofthem must be renamea'to use a POP opcode other 
than Q. 

• FILEU - unlinks files from their IDDU file definition. You must config
ure IDDU on your system, and the files must be linked to an IDDU file defi
nition. You can accomplish 12 unlinks at a time by unlinking files with POP. 
FILEU complements the operation of the E, L, and Q codes. 

II IDDULINK UNLINK. 717 
II RETURN 

• FILEKY6 - switches to POP's library facility from the file facility using 
Command key 6. Command key 6 saves you time by letting you access the 
POP library display directly without having to return to a menu. 

POPPR.#LIBRARY .LIBR.3 
II RETURN 
* PROMPTS FOR LIBRARY FOR POP LISTING 

• LIBRA - reallocates a library using SSP's ALOCLIBR procedure. The 
A code can be used only from POP's full library display (option 1 on the . 
POP menu). By using the A code, you can reallocate up to 12 libraries at a 
time. It, along with the following C code, complements the library man
agement functions of POP. 

II IFF 737/0 RETURN 
II HELP ALOCLIBR 71? 
II RETURN 
* POP CODE FOR ALLOCATING LIBRARY 

• LIBRCOMP - condenses a library from POP's LIBR display using 
SSP's CONDENSE procedure. Add these statements to the beginning of 



pop 451 

the existing POP LIBRC procedure. With LIBRC, you can condense up to 
12 libraries at a time without rekeying the name each time. 

// IFF 737/0 GOTO COMPILE 

// * 'Condensing ?17 library.' 

// CONDENSE 717 

// RETURN 

// TAG COMPILE 


• LIBRKY8 - switches to POP's file facility from the library facility using 
Command key 8. Command key 8 along with Command key 6 (Le., 
FILEKY6) make it easy to switch back and forth between POP's file and 
library facilities without having to exit to a menu. 

FI LE .#POPLIB 

or 


// INCLUDE FILE,#POPLIB 

You must save these procedures whenever you install a new release of 
POP or apply a PTF that patches one of the changed procedures. And it is 
a good idea to make a backup of the entire #POPLIB library. 



452 5/36 Power Tools 



Printers 


-CHAPTER 

15 




454 5/36 Power Tools 

Opening and Closing Printer Files in RPG 

answered by Mike Patton and Gory T. Krotzer 

Code on diskette: a Assembler subroutines SUBROp, SUBRCL 

QWhile using an order entry program, I want to print a form without 
ending the program and to share the same printer among multiple 

terminals. When I use the DEFER-NO option on the II PRINTER 
statement in my OCL, one terminal locks up the printer. I don't want to 
convert my order entry program to a MRT because I use substitution 
parameters in my OCL. Is there a method to close the print file and reopen 
it within my RPG II program or some other method that lets multiple 
terminals on the S/36 share the same printer? 

A One solution is using an assembler subroutine to open and close the print 

file. The following code shows the calling sequence for subroutines 


SUBROP and SUBRCL that let an RPG program open and close a file at will: 


C 	 EXIT SUBROP (or SUBRCL) 
RLABL FLNAME 8 (contains the file name) 

Make sure you reopen the printer file before output is attempted or the job 
ends - or the RPG program will generate an error. 



Printers 455 




456 5/36 Power Tools 

Retrieving the Spool ID 
by Mel Beckman a	Code on diskette: 

Procedure TESTSX 
RPG program TESTSX 
Assembler subroutine SUBRSX 

Often it is useful for a program to know the spool 10 for a printer file it cre
ates. For example, suppose that after a certain report program runs, you 
want the spooled printout copied automatically to a disk file for later perusal 
at a workstation. A common method would be to specify a unique forms 
number on the 1/ PRINTER statement, and then use the Fxxxx option of 
COPYPRT to copy the spool file for that specific forms number. However, if 
you later decide to print the spool entry, you will have to deal with a forms 
change message. Worse, if other spool entries have the same forms number 
(perhaps from a previous run), those spool entries also will be copied. 

Clearly, a better method would be to obtain the spool 10 for the 
desired print file while the program is running. The program then could 
pass the spool 10 (SPxxxx) to a procedure via the LOA, and a COPYPRT 
could be issued for that specific spool 10. 

lt turns out that the spool 10 value is available to any program via the 
$INFO supervisor call. A simple assembler language subroutine can make 
$INFO retrieve the spool 10 and pass the result back to the RPG program. 

To use the new subroutine, code the following three statements into 
your RPG program where you want to retrieve a spool 10: 

c MOVE 'REPORT 'SPOOl# 8 
c EXIT SUBRSX 
c RlABl SPOOl# 

The first statement moves the name of the printer file (from positions 7 
through 14 of the F-specs) into the eight-character, dual-purpose field 
SPOOL#. The second and third statements exit to subroutine SUBRSX, 
which returns the spool 10 to the leftmost six characters of SPOOU. When 
the program ends, it should store the SPOOL# field in the LOA so that the 
calling procedure can reference it via an LOA substitution expression. 

If you need the spool 10 for several printer files, include in your program 
everywhere you need them the three statements shown above. Because you 
specify the printer file name in the first statement, spool IDs can be returned 



Printers 457 

for any of several printer files that the program might contain. 
Figures 15-1a and 15-1 b show a complete sample program and procedure 

illustrating the technique. Note that the II PRINTER statement specifies 
PRIORITY-O to hold the printout on the spool queue. IfPRIORITY-O is not 
used and the spool entry starts printing, the COPYPRT procedure will fail. 

Complete documentation for $INFO is contained in the S/36 Program
ming with Assembler manual. 

", 4 8Figure 15-1 a 
014 TESTSX 

Sample program F" 
F" Program to demonstrate the use of SUBRSX 

TESTSX F" 
FREPORT 0 132 PRINTER 
I" 
I" When the program ends, the LDA will contain the spool-ID, 
I" 
I UDS 
I B SPOOL# 
C" 
C" Retrieve the spool-JD for our printer file, named 'REPORT', 
C" 
C MOVE 'REPORT 'SPOOL# B 
C EXIT SUBRSX 
C RLABL 
C" 
C SETON LR 
0" 
0* These output specs simply print a line on the report. 
0" 
OREPORT T LR 
o 11 'SPOOL-ID IS' 
o SPOOL# 20 

Figure 15-1 b 
** This procedure demonstrates the use of SUBRSX 

Sample 
II LOAD TESTX

procedure II PRINTER NAME-REPORT,PRIORITY-O 
II RUNTESTSX 
"" The spool entry produced by TESTX is now held on the print queue, 
** and the LOA contains the spool-IO in pOSitions 1-6. Use an LOA 
** substitution parameter to make COPYPRT copy the specific entry we want. 

II IF DATAF1-SPDATA DELETE SPDATA,F1 

COPYPRT ?L'l ,6'?,SPDATA 




458 5/36 Power Tools 

ReseHing Page Numbers 
answered by Ron Mendel 

Qwe print a report that summarizes the weekly sales activity for each of 
our sales representatives. As the report is printed now, the pages are' 

numbered consecutively from the beginning of the report. We would like 
to begin renumbering the pages each time the sales representative changes. 
Is there a way to do this in RPG II? 

AIn RPG II, you use the special pagination word PAGE in positions 32 
through 37 of the O-specs to cause automatic numbering of pages. If you 

condition PAGE on an output indicator, when the indicator is on, the PAGE 
field is reset to zero, and 1 is added to the field before it is printed. 

Figure 15-2 shows an example of conditioning PAGE on an L3 control 
break. When L3 is on, pagination begins again at 1. If there is overflow and 
L3 is not on, the PAGE field is not reset to zero; instead, 1 is added to it 
before it is printed. 

F or further information, see the Special Words section of the Output 
Specifications chapter in the S/36 RPG II Reference Manual. 



Printers 459 

.. . 2 3 . . 4 .. . 5 .. 6 . . . .. BFigure 15-2 
0 D 201 L3 

0 OR 201 OV
Sample O-specs 0 SMNAME 30 

to begin 0 75 'PAGE' 
0 L3 	 PAGE 80

renumbering 
pages 

Numbering 	Pages 
by Richard Comstock 

When using the RPG page-number fields PAGE through PAGE7 to num
ber pages on a report, it helps to understand how the fields function with a 
conditioning indicator. If the conditioning indicator is off, 1 is added to the 
page number value before it is printed. (Turning off the conditioning indi
cator does not prevent printing of the values of the page-number fields.) If 
the indicator is on, the page number is reset to 1. 

This 8/36 technique is useful when you need to reset page numbers 
(e.g., each salesman's or division's data is to begin with page 1). 

Forcing Printer Overflow
by Paul Sherrill 

The RPG program cycle simplifies production of standard reports, but 
sometimes you need to take control from the cycle and put it in the hands 
of the programmer. For example, you might want to control the printing of 
heading lines by using the EXCPT operation. 

The partial program shown in Figure 15-3 causes exception time out
put (header) by executing an EXCPT operation. The report heading is 
printed when the overflow indicator is set on and "fetch overflow" is speci
fied with an F in column 16. The desired spacing is specified in the header 
specification; the Os in columns 17 and 18 prevent any additional line skips. 
Because the overflow indicator is set on in the calculation specifications, 
the exception line causes the header to print at the top of each new page . 

... 2 4 ... 5 ... 6 .. 8Figure 15-3 	 c· 
c·Forcing printer c· 

SETON OFoverflow with an 
C 	 EXCPTHEADER 

EXCPT 	 C SETOF OF 
c· 
c· 

C· 

OREPORT H 2301 OF 

0 NAME 15 

0 ADDR1 50 

0 EFOO HEADER 

O' 

O' 

O' 




460 5/36 Power Tools 

Printing Boldface 
answered by Ron Mendel 

QIs there some way we can print boldface on a printer that does not 
have a special double strike or boldface code? We have a vendor report 

in which we want to boldface the line containing the vendor name so it 
stands out from the rest 'Of the information. 

AIn a report produced by an RPG program, to print an output line 
boldface, you need to use two almost identical O-specs for the same 

line of output. In the first line, include a zero in position 18 (space after 
print) to tell the printer to space zero lines after printing. In the second 0
specs, use 1,2, or 3 in position 18, depending on how far you want the 
printer to space after the boldface line. Figure 15-4 shows O-specs that print 
VNAME boldface and then space two lines before printing anything else. 

Figure 15-4 . 3 . ... 4 .. . .. 5 .. . .. 6 . 7 . . .. 8 
0 D 0 L3 

Sample O-specs 0 VNAME 30 
0 D 2 L3

to print boldface 0 VNAME 30 

Printing Report Lines Using Arrays 
by James H. Hamby 

I have a method of using a compile time array to reduce the number of cod
ing lines needed in O-specs. Normally, you would have to code the head
ings for a report as shown in Figure 15-5. Each column heading must be 
defined in a separate O-spec. Ifyou use extensive headings, this practice 
can mean many O-specs. 

However, if you use a compile time array (Figure 15-6), you can print 
the entire heading with only one line of code by referring to the heading 
the same way you would to a group of numbers in an array. You need an 
extension specification to describe your array, and at the end of your pro
gram - in the array - you need your heading line. 

If you use compile time arrays to print headings, adjustments or correc
tions can be made quickly and easily. Once you have your array typed in, 
you can print any line of the array as many times as needed by referring to 
its line number. Think how easy it would be to print whole lines of under
lining or asterisks to spruce up your reports. 

The maximum length of a compile time array that uses alphanumeric infor
mation is 96 characters. Thus, if you need to use the full 132 characters for your 
report headings, you simply use two arrays, halving the heading information. 

If you don't want to compile your program again after changing your 
array, you might consider using a pre-execution time array. 



Printers 461 

.. 1 ...... 2 ...... 3 .. 4 ...... 5 ...... 6 7 ... 8Figure 15-5 
OPRINT H 306 OANL2 
o OR L2Coding O-specs o 8 'DATE' 

for (J ne(Jding o 18 'ACCOUNT' 
o 28 'N A M E' 
o 46 'BALANCE' 

... 2 ... 3 ...... 4 ... 5 .... 6 ...... 7 ..... 8Figure 15-6 
E J 1 1 50 

Coding (In (JTT(JY 
for (J ne(Jding 

OPRINT H 306 OANL2 
o OR L2 J .1 50 
o 

DATE ACCOUNT N A M E BALANCE 

Printing Lines and Dashes 
by Debor(Jn A, K(Jcerek 

To print a line of dashes (or asterisks or double lines) across 132 columns, I 
use the method illustrated in Figure 15-7, In the E-specs, I define an array 
of 132 elements, In the C-specs, during the first pass, I move a dash, or 
whatever character is required, into this array. In the O-specs, all I need to 
reference is array DASH to print dashes across the 132 columns. 

I also use this method to print single and double lines for column totals 
as illustrated in Figure 15-8. This method is especially helpful because if 
the program requires single lines at one level (e.g., section totals) and dou
ble lines at another (e.g., grand tota!), all you have to do is move either a 
dash or an equal sign into the array at the appropriate level break, 

... 1 ...... 2 ... 3 ...... 4 ...... 5 ...... 6 ... 7 ...... 8Figure 15-7 
E' ARRAY DASH - PRINTS LINE OF 132 DASHES 
E DASH 132 1Print (J line of E'· 

132 d(Jsnes CO. 
C" FIRST PASS OPERATIONS 
C 81 SETOF 80 1ST PASS 
COMPLETE 
C N81 SETON 8081 FIRST PASS 
C' 
C 80 MOVE '-' DASH 
C" 
0" HEADING OUTPUT 
0" 
OPRINT H 11 80 
o OR Ll DASH 132 

Figure 15-8 

Print single underscore or double underscore (Jt control bre(Jks 

1 ...... 2 ... 3 ...... 4 ...... 5 ... 6 ... 7 ... 8 
E' ARRAY ULINE - PRINTS COLUMN TOTAL UNDERLINES 
E ULINE 9 1 
c·*· 



462 5/36 Power Tools 

C 80 MOVE '-' ULINE 
C" 
Cll MOVE '-' ULINE 
c·· 
0" PRINT COLUMN UNDERLINES 

OPRINT T 1 II 

o ULINE 51 
o ULINE 61 
o ULINE 71 
o ULINE 81 
o ULINE 91 
o UlINE 101 
o ULINE 111 
o ULINE 121 
o ULINE 131 

Printing a Sample Report from O-Specs 
by Perry Gardai 

program by Ernie Malaga 

a Code on diskette: 

Procedures @RPTSMPL, REPTSMPL 
RPG programs SMPLA@, SHRTAR 
Screen format member REPTSMPL 

There are times when you need a sample printout of, say, your gross payroll 
report - or a sample of a report generated by any S/36 program that con
tains a file specification that defines a printer file. One or two pages from a 
live run of the program would suffice, but running a live program might 
expose sensitive data or update the files while producing a printout or just 
take too long to print. Wouldn't it be great to have a utility that produces a 
mockup of the printout similar to the way SOA's option 8 prints a sample 
display? REPTSMPL is such a utility. 

Screen format member REPTSMPL, procedures REPTSMPL and 
@RPTSMPL, and program SMPLA@ constitute utility REPTSMPL. 
Briefly, procedure @RPTSMPL creates a data file to hold the generated 
source code of any RPG II program that contains up to eight printer files. 
Next, program SMPLA@ creates program SMPLB@ from the generated 
RPG source code by using the entire output specifications as the output for 
program SMPLB@. Finally, program SMPLB@ produces the sample 
reports. That's it. The few intermediate steps involved in getting from the 
original RPG program to the report are detailed below. 

GeHing Started 
Type in REPTSMPL to bring up the prompt screen (Figure 15-9; see Figure 
15-10 for the screen format member) and start master procedure 
REPTSMPL (Figure 15-11). Enter the name of your source program and the 
name of the library in which the source program is stored, and then set up to 
six internal indicators that may influence conditional printing. Conditional 
printing refers to an a-specs field conditioned by specific indicator settings. 



Printers 463 

Figure 15-9 

Prompt screen for 
procedure 
REPTSMPL 

REPTSMPL PROCEDURE: PRINT A REPORT SAMPLE. 

ENTER THE FOLLOWING INFORMATION: 

1. NAME OF PRINTING PROGRAM: 000000 

2. NAME OF LIBRARY CONTAINING PROGRAM: 00000000 

3. INDICATORS TO BE SETON: 00 00 00 00 00 00 

These settings must be on for the associated fields to print when the original 
program is executed as well as when the sample is produced by utility 
REPTSMPL. In our example program SHRTAR (Figure 15-12), indicators 
12, 14, and SO condition output fields and must be specified in the prompt 
screen if the related data fields are to be printed in the sample report. 

The next several lines of procedure REPTSMPL edit and validate data 
entered into the prompt screen. The procedure issues appropriate error 
messages and redisplays the prompt screen if it detects any errors. Error 
messages indicate, for example, whether a library name is missing or the 
library is not in the VTOC. When the data passes muster, procedure 
REPTSMPL loads the LOA with the prompt screen values and submits 
procedure @RPTSMPL (Figure 15-13) to the job queue. It is in procedure 
@RPTSMPL that the real work begins. 

What Happens in Procedure @RPTSMPL 
The job flow of procedure @RPTSMPL begins with the first $MAINT routine, 
which creates data file SMPL1?WS? on disk. Program SMPLA@(Figure 15-14) 
reads SMPL1?WS? to identify specific data elements such as the printer file 
name, array names, input field names, fields defined in the C-specs, and all the 
printer file O-specs. As program SMPLA@ processes each specification type, it 
branches to the appropriate subroutine to manipulate the data and then outputs 
to file SMPL2?WS? specific information relating to the data fields and O-specs. 

Data file SMPL2?WS? contains RPG program SMPLB@ (Figure IS
IS). Using the second $MAINT utility, procedure@RPTSMPL moves the 
data file version of program SMPLB@ from file SMPL2?WS? into a tempo
rary library called WORKLIBR - which you can create if it doesn't exist 
- to avoid disturbing any active user libraries. After that, the RPGC utility 
compiles program SMPLB@. If the compile fails, the appropriate message 
is displayed, and source program SMPLB@is listed and removed from 
WORKLIBR. If SMPLB@ compiles successfully, however, it is executed, 
and a sample version of the original report is printed (Figure 15-16). 
Finally, the procedure ends after removing both the object and source 
members of program SMPLB@ from WORKLIBR. 



464 5/36 Power Tools 

The F -spec from program SHRTAR is the printer output file for program 
SMPLB@. Likewise, all of the data fields identified from the E-, 1-, and C
specs of program SHRTAR are defined in the C-specs of program SMPLB@. 
Program SMPLB@ uses arrays ALLX and ALL9 to move Xs into alphameric 
fields and 9s into numeric fields. Therefore, when the output section of pro
gram SMPLB@ is executed, the original data fields used in program 
SHRTAR are filled with the correct data representation characters, namely Xs 
and 9s. Then, all numeric fields defined in the C-specs of program SMPLB@ 
are Z-SUBed into themselves to ensure that negative signs will be printed. 

Except for a few minor exceptions, the entin= printer output section 
from program SHRTAR is copied into program SMPLB@. The exceptions 
include output lines defined in the original program as header, detail, or 
total lines; these lines change to exception lines without an exception 
name. Exception names also are dropped for exception output that was 
specified in the original program. In addition, fields associated with field
conditioning indicators in the output of the original program are included in 
the output of program SMPLB@ only if the associated field-conditioning 
indicator was specified on the prompt screen. 

Umitations of Utility REPTSMPL 
Before using utility REPTSMPL, you should be aware of several special 
considerations. First, utility REPTSMPL works only with printouts pro
duced by RPG programs. Therefore, you cannot use it to create sample 
printouts of printed output produced by DFU or Query/36. Second, utility 
REPTSMPL cannot work with object members; the original source mem
ber of the program must be resident on the disk. Third, if the original 
report-producing program contains a WORKSTN file, REPTSMPL may 
produce unpredictable results because of the presence of alphameric names 
such as ·STATUS in the from and to columns of the (lNFDS) I-specifica
tions. Also, the reserved names (e.g., UDATE, UYEAR, UMONTH, 
UDAY, PAGE, and PAGE 1 through PAGE 7) are used as is if found in the 
O-specs of the original program. Thus, the actual values rather than the 
appropriate character representations are printed in the sample report (e.g., 
UDATE will print as the actual session date rather than 99/99/99). In addi
tion, entire arrays printed without an index reference in the original pro
gram are treated as a single field equal to the length of one element of the 
original array. Therefore, when printed in the sample report, the field (sin
gle array element) is positioned properly as the last element of the original 
array. And finally, utility REPTSMPL does not verify that the original pro
gram is coded properly. For example, if a binary field is assigned an invalid 
length (such as eight bytes), REPTSMPL won't question it. As a result, the 
8-byte "binary" field is treated as an unpacked 8··byte numeric field. 

With utility REPTSMPL, you can quickly ge:nerate a sample of any 
printout produced by an RPG program. With just a few special considera



Printers 465 

tions to keep in mind, utility REPTSMPL can become a valuable addition 
to your data processing tool box, 

Figure 15-10 

Screen format 
member 
REPTSMPL 

Figure 15-11 

Procedure 
REPTSMPL 

1 
SENTER Y YY Y G 
0 43 2Y CREPTSMPL PROCEDURE· PRX 
DINT A REPORT SAMPLE 
0 32 5 2Y CENTER THE FOLLOWING INFX 
DORMATION: 
0 28 2Y C1. NAME OF PRINTING PROX 
DGRAM: 
DPRGM 6 741Y Y Y Y 
0 38 9 2Y C2. NAME OF LIBRARY CONTX 
DAINING PROGRAM: 
DLlBR 8 941Y Y Y Y 
0 2611 2Y C3. INDICATORS TO BE SETX 
DON: 
DIND 21141Y Y Y Y 
DIND 21146Y Y Y Y 
DIND 21151Y Y Y Y 
DIND 21156Y Y Y Y 
DIND 21161Y Y Y Y 
DIND 21166Y Y Y Y 
0 4823 2Y CPRESS ENTER TO SUBMIT TX 
DO JOSQ OR CM07 TO CANCEL 
DMSG 7524 2Y Y Y 

PROC-REPTSMPL. PRINT A REPORT SAMPLE. 

Parameter and LDA usage 


Parm LOA 001-006 Name of original RPG-II program to be sampled, 

Parm LOA 007-014 Name of library containing the program. 

Parm LOA 015-016 First RPG indlcator to be SETON. 

Parm 4 LOA 017-018 Second RPG indicator to be SETON. 

Parm 5 LOA 019 -020 Third RPG indicator to be SETON 

Parm 6 LOA 021-022 Fourth RPG indicator to be SETON. 

Parm 7 LOA 023-024 Fifth RPG indicator to be SETON. 

Parm 8 LOA 025-026 - Sixth RPG indicator to be SETON 

Parm 9 Reserved for error messages. 


II TAG AGAIN 
II PROMPT MEMBER-REPTSMPL,FORMAT-ENTER,LENGTH-'6, ,2,2,2,2,2,2,75' 
II IF ?CD?-2007 RETURN 

Check input accuracy.
II IFF '?1?'- GOTO P1A 
II EVALUATE P9-'NAME OF PRINTING PROGRAM IS MISSING.' 
II GOTO AGAIN 
I I TAG P1 A 
II IFF '?2?'= GOTO P2A 
II EVALUATE P9-'NAME OF LIBRARY IS MISSING 
II GOTO AGAIN 
II TAG P2A 
II IF DATAF1-?2? GOTO P2B 
I I EVALUATE P9-' LI BRARY NOT FOUND I N THE VTOC. ' 
II GOTO AGAIN 
II TAG P2B 
II IF SOURCE-'?1?,?2?' GOTO P1P2 

II EVALUATE P9-'SOURCE PROGRAM NOT FOUND IN SPECIFIED LIBRARY.' 

II GOTO AGAIN 

II TAG P1P2 

II LOCAL BLANK-30,DATA-'?1?' 


All parameters pass the tests. Place their values in the LOA. 
I I LOCAL OFFSET -7, DATA-' ?2?' 
II LOCAL OFFSET-15,DATA-'?3?' 
II LOCAL OFFSET-17,DATA-'?4?'
II LOCAL OFFSET-19,OATA-'?5?' 
II LOCAL OFFSET-21,OATA-'?6?' 



466 5/36 Power Tools 

II LOCAL OFFSET-23,DATA-'17?' 

I I LOCAL OFFSET -25, DATA-' 181' 


Submit ~RPTSMPL to the Job Queue. 
II JOBQ ,~RPTSMPL 

Figure 15-12 

Program SHRTAR 

.. 1 .. 2 ... 
H 
FSORTED IR 3 3IT 
FISHORT IP 200 200R I 
FCONTROL IC 200 200R31AI 
FSHRTAR 0 132 132 OA 
FIDATEA 0 40 40 
FIDATEB IC 40 40R 
E SORTED ISHORT 
LSHRTAR 66FL 570L 
II SHORT NS 01 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
ICONTROL NS 
I 
I 
I !DATEB NS 
I 
I 
I 
I 
I 
I 
I UDS 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
C N03 TIME 

4 5 ... 6 7 ... 8 
SHRTAR 

EDISK 
DISK 

1 DISK 
LPRINTER 

DISK A 
DISK 

2 16 PART# L1 
17 17 WHSE# L1 

110 112 PLANN L1 
18 230DUEDT 
24 24 PROD 
25 25 ORTYP 
25 31 ORDER 
32 61 DESCR 
62 76 PARNT# 
77 106 PDESC 

107 107 TYPE 
108 109 CLASS 

P 110 .1120PLANR 
113 137 CNAME 
138 138 PRTY 
139 140 UMEAS 
141 142 STAT 
143 152 REF# 
153 158 CJOB# 

P 159 1620QBO 
P 163 1660QOH 
P 167 1700QOOM 
P 171 1740QOOP 
P 175 1780ALLOC 
P 179 1820SAFTY 

32 370LBDTE 
38 430LBTME 

INVALID DATES FILE 
1 40!DPGE 
5 19 IDPRT 

20 20 IDWHS 
21 250IDPLN 
26 310IDDTE 
32 38 !DORD 

7 SEQ 
10 REBLD 

11 25 PART1 
26 40 PART2 
41 41 WHSE1 
42 42 WHSE2 
43 44 CLASS1 
45 46 CLASS2 
47 47 TYPE1 
48 48 TYPE2 
49 530PLAN1 
54 580PLAN2 
61 110 SUBTTL 

SYS 120 



Printers 467 

C N03 SYS DIV 1000000 SYSTME 60 
C N03 MVR SYSDTE 60 
C N03 MOVE ·BLANK KISDB 31 
C N03 MOVEL'C' KISDB 
C N03 KISDB CHAINCONTROL 90 
C N03 EXCPTHEADER 
C N03 SETON 03 
C OA EXCPTHEADER 
C L 1 SETOF 50 
C L 1 aOH COMP 0 50 
C L 1 EXCPTNEW 
C L 1 Z-ADDaOH REM 70 
C L 1 Z-ADDO FLAG 10 
C ORTYP COMP 'c' 11 
C ORTYP COMP 'M' 12 
C ORTYP COMP 'P' 13 
C PROD COMP 'P' 14 
C PRTY COMP ·BLANK 15 
C 11 SUB aBO REM 
C 12 14 ADD aBO REM 
C 12N14 SUB aBO REM 
C 13 ADD aBO REM 
C Z-ADDDUEDT YMD 60 
C EXSR YMDMDY 
C REM COMP 0000000 50 
C 50 Z-ADDl FLAG 
C EXCPTLINE 
C EXSA CKDATE 
CLl EXSA TEST 
CLA EXSR WRTEOJ 
C· 
C TEST BEGSR 
C FLAG COMP 1 50 
C 50 ADD 1 SHORT 50 
C ENDSA 
C· 
C WATEOJ BEGSA 
C EXCPTEOJ 
C I DATES I FGT 'ZEAO 
C EXSR IDLIST 
C END 
C ENDSR 
C· 
C YMDMDY BEGSR 
C YMD MULT .0001 MMMMMl 20 
C MMMMMl MULT 10000 MMMMM2 60 
C YMD SUB MMMMM2 MDY 60 
C MULT 100 MDY 
C ADD MMMMMl MDY 
C ENDSA 
c· 
C CKDATE BEGSR 
C MDY DIV 10000 MM 20 
C MVR DDYY 40 
C DDYY DIV 100 DO 20 
C MVA YY 20 
C Z-ADDSYSDTE SYSYY 20 
C SYSYY SUB YY DIFFYY 20 
C DIFFYY I FLT 'ZERO 
C Z-SUBDIFFYY DIFFYY 
C END 
C MM I FGE 01 
C MM IFLE 12 
C DO I FGE 01 
C DO IFLE 31 
C 01 FFYY IFLE 09 
C GOTO RTNCK 
C END 
C END 
C END 
C END 
C END 
C Z-ADDPAGE IDPGE 40 
C EXCPTERRDTE 
C ADD 0000001 I DATES 70 



468 5/36 Power Tools 

C RTNCK EN'IlSR 

C' 

C IDLIST BEGSR LIST INVALID DATES FOUND 

C fXCPTI DHDR 

C Z-ADDOOOOOOl RRN 70 

C IDLOOP TAG 


C Nl0 OA EXCPTIDHDR 


0 114 'REPTSHRT - PAGE' 


a 14 'NEW DATABASE 

a REBLD lB 

a SUBTTL B4 

a 101 'BUILT: 

a LBDTE 110 '0 / / 

a LBTME 119 '0 


0 119 -----------
a E 1 NEW 

a 17 ' COMPONENT WH' 

a 29 'DESCR IPTI ON' 

a 64 ' PLANR T CL UM' 

0 86 ' SAFETY ALLOCATED' 

a 108 'ORDER 1M) ORDER IP) , 

a 119 'ON HAND' 

a a NEW 


a E 1 NEW 


a 50 128 'NEG' 


C RRN CHAINIDATEB 10 


C Nl0 EXCPTIDREC 

C Nl0 AtlO 0000001 RRN 

C Nl0 GOTO IDLOOP 

C EXCPTIDBTM 

C ENDSR 

OSHRTAR E 104 HEADER 

a SYSDTEY B 

a SYSTME lB '0 

a 66 ' ITEM SHORTAGE REPORT BY' 

a SEa 74 


a PAGE 3 119 

0 E 2 HEADER 


0 EF 1 NEW 

a 24 -----------

a 'PLACE 4B 

0 'PLACE 72 

a 'PLACE 96 


0 PART# 15 

a PLANR 55 


a PART# 15 

a WHSE# 17 

a DESCR 48 

0 PLANR 55 

a TYPE 58 

a CLASS 61 

a UMEAS 64 

a SAFTY J 76 

a ALLOC J 87 

a aOOM J 98 

a aoop J 109 

0 aOH J 120 


0 E 1 NEW 

0 22 ' OROER ITEM/REF#' 

a 54 'WH OESCRIPTION/CUSTOMER' 

a 86 'REa OATE DUE DATE' 

0 108 'REa QTY RECEIPTS' 

a 119 'REMAINING' 

a EF 1 LINE 

0 STAT 2 

a 12 14 15 3 

a PRTY 4 

a ORDER 12 

0 11 CNAME 59 

a 11 MDY Y 75 

a 11 aBO J 98 

0 12 14 REF# 23 

0 12 14 CJOB# 40 

a 12 14 MDY Y 86 

a 12 14 aBO J 109 




Printers 469 

0 12N14 PARNTH 28 
0 12N14 WHSEH 32 
0 12N14 POESC 64 
0 12N14 MOY Y 75 
0 12N14 aBO J 98 
0 13 MOY Y B6 
a 13 aBO J 109 
0 REM J 120 
0 50 129 'SHORT' 
0 ERRDTE 
0 88 ' •• INVALID DATE ABOVE •• , 
0 EF EOJ 
0 24 -----------
0 ·PLACE 48 
0 ·PLACE 72 
0 ·PLACE 96 
0 119 -----------
0 EOJ 
0 SHORT 1 6 
a 18 'ITEMS SHORT' 
0 E 306 EOJ 
0 24 'REPORT LIMITS. OPTIONS: ' 
a E 22 EOJ 
a 24 'FROM' 
a 42 'TO' 
a E 1 EOJ 
a 12 'PART NUMBERS' 
a PART1 35 
a PART2 55 
a E 1 EOJ 
a 10 'WAREHOUSES' 
a WHSE1 21 
a WHSE2 41 
a E 1 EOJ 
a 11 'CLASS CODES' 
a CLASS1 22 
0 CLASS2 42 
a EOJ 
a 10 'TYPE CODES' 
a TYPE1 21 
a TYPE2 41 
0 E 3 EOJ 
a B 'PLANNERS' 
a PLAN1 25 
a PlAN2 45 
a E 106 IDHDR INVALID DATE HEADER 
a SYSDTEY 8 
0 SYSTME 18 '0 
a 66 ' ITEM SHORTAGE REPORT BY' 
a SEa 74 
a 114 'REPTSHRT - PAGE' 
a PAGE 3 119 
a E 2 IOHDR 
a 14 'NEW DATABASE -
a REBlD 1B 
0 SUBTTL 84 
a 101 'BUILT: ' 
0 
0 

LBDTE 
LBTME 

110 '0 
119 '0 

/ I 

0 JDHDR 
0 70 ' ••• INVALID DATES **.' 
0 IDHDR 
a 48 'PAGE PART NUMBER' 
0 78 'WHH PLANNER ORDER H' 
0 87 'DATE' 
0 E 1 IDREC 
a IDPGE 34 
0 IDPRT 52 
a IDWHS 57 
a IDPLN 67 
a !DORD 78 
0 !DDTE Y 89 
a E 11 IDBTM 
a !DATES1 9 
a 30 'INVALID DATES FOUND.' 



470 5/36 Power Tools 

OIOATEA ERRDTE 

Figure 15-13 

Procedure 
@RPTSMPL 

0 JOPGE 4 
0 PART# 19 
0 WHSE# 20 
0 PLANR 25 
0 MDY 31 
0 ORDER 38 

PROC-@RPTSMPL. 

Copy the original source program into a DISK file, SMPL1?ws? 
II LOAD $MAINT 
II FILE NAME-SMPL1?WS?,UNIT-F1 ,RECORDS-256,EXTEND-128 
I I RUN 
II COPY FROM-?L'7,8'?,TO-DISK,FILE-SMPL1?WS?,NAME-?L'1 ,6'?,LIBRARY-S,RECL-80 
I I END 

Build a DISK file, SMPL2?ws?, containing the generated source program.
II LOAD SMPLA@
II FILE NAME-ORIG,LABEL-SMPL1?WS?,RETAIN-S
II FILE NAME-SMPL,LABEL-SMPL2?WS?,RECORDS-256,EXTEND-128 
II RUN 

The WORKLIBR library is required so that user libraries aren't disturbed. 
If not found, build it. 

II IFF DATAF1-WORKLIBR BLDLIBR WORKLIBR,30,15
II CONDENSE WORKLIBR 

Copy the SMPL2?ws? file into a source member, SMPLB@.
II LOAD $MAINT 
II FILE NAME-SMPL2?WS?,UNIT-F1 ,RETAIN-S 
II RUN 
I I COPY TO-WORKLI BR, FROM- DISK, FI LE-SMPL2?WS? ,NAME-SMPLB@, LI BRARY-S 
I I END 

Compile the generated source program.
II RPGC SMPLB@,WORKLIBR, ,NOPRINT 

If compile was unsuccessful, issue a MSG and print the g'enerated source. 
Then, remove it from WORKLIBR. 
Else, GOTO OK. 

II IF LOAD-'SMPLB@,WORKLIBR' GOTO OK 
II MSG ?WS? ,REPTSMPL ABORTED. GENERATED SOURCE HAS LOGIC ERROR. 

II MSG ?WS?,SEE PRINTOUT OF GENERATED SOURCE MEMBER. 

II LOAD $MAINT 

I I RUN 

II COPY NAME-SMPLB@,LIBRARY-S,FROM-WORKLIBR,TO-PRINT
II DELETE NAME-SMPLB@,LIBRARY-ALL,LIBRNAME-WORKLIBR
II COMPRESS LIBRNAME-WORKLIBR 
I I END 
II RETURN 
II TAG OK 

Load and run the compiled printing program. This prints the sample. 
II LOAD SMPLB@,WORKLIBR 
II RUN 

Remove both source and object (generated) members from WORKLIBR and 
condense them. The original RPG-II source member is, of course, unaffected. 

II LOAD $MAINT 
I I RUN 
II DELETE NAME-SMPLB@,LIBRARY-ALL,LIBRNAME-WORKLIBR 
II COMPRESS LIBRNAME-WORKLIBR 
I I END 



Printers 471 

Figure 15-14 

Program SMPLA@ 

1 ...... 2 ...... 3 4 ... 5.. ... 6 ... 7 .. 8 
SMPLAfj 

FORIG IPE F8000 80 DISK 

FSMPL 0 F8000 80 DISK 

F*INDICATOR USAGE: 

F*01-07: RECORD IDENTIFYING INDICATORS FOR THE INPUT FILE. 

F*09: FIRST-RECORD PROCESSING. 

F*10-11: LOKUP OP-CODE SUCCESSFUL. 

F*50: FIRST C-SPEC. USED TO BUILD E-SPECS RIGHT BEFORE IT. 

F*51: FIRST O-SPEC. USED TO BUILD THE LAST C-SPECS RIGHT BEFORE IT. 

F*LR: END OF PROGRAM. 


FN 8 8 PRINTER FILE NAMES 
OK 6 2 VALID INDICATORS 
IND 3 3 INDICATORS FOUND IN O-SPECS 
W6 6 1 WORK ARRAY FOR FIELD NAMES 
015 4 4 1 VALID VALUES FOR O-SPEC COL#15 

JORIG 
I 

NS 01 6 CH 7NC* 1NC/ 
1 2 STARS 

H-SPEC 

I 6 6 SPEC 
I 18 18 H1818 CURRENCY SYMBOL 
I 19 19 H1919 DATE FORMAT 
I 20 20 H2020 DATE EDIT 
I 21 21 H2121 INVERTED PRINT 
I 
I 

NS 02 6 CF 7NC* 1NC/ 
1 2 STARS 

F-SPEC 

I 6 6 SPEC 
I 7 14 F0714 FILE NAME 
I 24 27 F2427 RECORD LENGTH 
I 33 34 F3334 OVERFLOW INDICATOR 
I 40 46 F4046 DEVICE 
I 
I 

NS 03 6 CE 7NC* 1NC/ 
1 2 STARS 

E-SPEC 

I 6 6 SPEC 
I 27 32 E2732 ARRAY NAME 
I 40 420E4042 LENGTH OF ELEMENT 
I 44 44 E4444 DECIMAL POSITIONS 
I 46 51 E4651 ARRAY NAME 
I 52 540E5254 LENGTH OF ELEMENT 
I 56 56 E5656 DECIMAL POSITIONS 
I 
I 

NS 04 6 CI 7NC* 1NC/ 
1 2 STARS 

I-SPEC 

I 6 6 SPEC 
I 
I 

43 
44 

43 14343 
47014447 

PACK/BINARY 
FROM POSITION 

I 48 51014851 TO POSITION 
I 52 52 15252 DECIMAL POSITIONS 
I 53 58 15358 FIELD NAME 
I 
I 

NS 05 6 CC 7NC* 1NC/ 
1 2 STARS 

C-SPEC 

I 6 6 SPEC 
I 43 48 C4348 RESULT FIELD NAME 
I 49 510C4951 FIELD LENGTH 
I 52 52 C5252 DECIMAL POSITIONS 
I 
I 

NS 06 6 CO 7NC* 1NC/ 
1 2 STARS 

O-SPEC 

I 6 6 SPEC 
I 7 14 00714 FILE NAME 
I 
I 

15 
16 

15 01515 
16 01616 

TYPE OF LINE (H,D,T,E) 

I 17 17 01717 SPACE BEFORE 
I 18 18 01818 SPACE AFTER 
I 19 20 01920 SKIP BEFORE 
I 21 22 02122 SKI P AFTER 
I 23 31 IND 
I 32 37 03237 FIELD/EXCPT NAME 



472 5/36 Power Tools 

38 38 03838 EDIT CODE 
40 43 04043 FIELD NAME 
45 70 04570 CONSTANT/EDIT WORD 

NS 07 ANYTHING ELSE 
STARS 
SPEC 

UDS 
1 PRGM ORIGINAL PROGRAM 
7 14 L1BR ORIGINAL LIBRARY 

15 26 OK INDICATORS TO SETON 

C'BUILD A .. // COpy NAME-SMPLBi/,L1BRARY-S" AS THE FIRST RECORD OF 
C'OUR OUTPUT FILE, THIS IS REQUIRED BY SMAINT IN ORDER TO COpy 
C'THE DISK FILE INTO A LIBRARY MEMBER, 
C N09 EXCPTFIRST 
C N09 SETON 09 
C'IF ...... FOUND IN COLUMNS 1-2 ANYTIME, COMPILE-TIME DATA FOLLOWS 
C'IN THE ORIGINAL PROGRAM. STOP PROCESSING. 
C STARS COMP ' •• ' LR 
C LR GOTO END 
C'BRANCH TO AN APPROPRIATE SUBROUTINE ACCORDING TO THE SPECIFICATION 
C"TYPE, SINCE EACH SPECIFICATION REQUIRES DIFFERENT PROCESSING. 
C SPEC CASEQ'H' HSPEC 
C SPEC CASEQ'F' FSPEC 
C SPEC CASEQ'E' ESPEC 
C SPEC CASEQ'I' ISPEC 
C SPEC CASEQ'C' CSPEC 
C SPEC CASEQ'O' OSPEC 
C END 
C END TAG 
C"BUILD A "// CEND" RECORD AS THE LAST RECORD OF THE OUTPUT FILE. 
C'THIS IS REQUIRED BY SMAINT. 
CLR EXCPTLAST 
C" 
C HSPEC BEGSR COPY THE ORIGINAL H-SPEC 
C EXCPTWRTH 
C Z-ADD01 20 PRINTER FILE COUNTER INITIALIZED 
C ENDSR 
C' 
C FSPEC BEGSR 
C F4046 IFEQ 'PRINTER' PROCESS ONLY IF PRINTER FILE USED 
C I IFLE 08 ... AND WHILE 1.-8 
C MOVE F0714 FN,I PUT FILENAME IN ARRAY ELEMENT 
C EXCPTWRTF BUILD THE F-SPEC 
C ADD 01 
C END 
C END 
C ENDSR 
C" 
C ESPEC BEGSR 
C MOVE E2732 FLDNM 6 ASSUME FIELDNAME - ARRAYNAME 
C Z-ADDE4042 FLEN 30 FIELDLENGTH - ELEMENTLENGTH 
C MOVE E4444 DECIM 1 
C MOVE 'N' TYPE 1 NOT PACKED, NOT BINARY 
C EXSR BLDC BUILD A C-SPEC 
C MOVE E4651 FLDNM SECONDARY ARRAY (SAME PROCESSING) 
C Z-ADDE5254 FLEN 
C MOVE E5656 DECIM 
C MOVE 'N' TYPE 
C EXSR BLDC 
C ENDSR 
C" 
C ISPEC BEGSR 
C MOVE 14343 TYPE UNPACKED/PACKED/BINARY 
C 14851 SUB 14447 FLEN CALCULATE FIELD LENGTH 
C ADD 001 FLEN 
C MOVE 15252 DECIM 
C MOVE 15358 FLDNM 
C EXSR BLDC BUILD A C .. SPEC 
C ENDSR 
C" 
C CSPEC BEGSR 
C MOVE 'N' TYPE FOR EACH RESULTING FIELD", 
C Z-ADDC4951 FLEN 
C MOVE C5252 DECIM 



Printers 473 

C MOVE C4348 FLDNM 
C EXSR BLOC ... BUILD A C-SPEC 
C ENDSR 
C" 
C OSPEC BEGSR 
C N51 EXSR LASTC BUILD THE LAST C-SPECS 
C N5l SETON 51 IF FIRST O-SPEC FOUND. 
C 00714 I FNE "BLANK IF FILENAME NOT BLANK. 
C 00714 IFNE . A' · .. AND NOT AN "AND" LINE. 
C 00714 I FNE . O' · .. AND NOT AN "OR" LINE. 
C MOVE 00714 CURRFN S ... MOVE FILENAME TO "CURRENT FILE" 
C END 
C END 
C END 
C 01515 LOKUP015 11 
C 11 MOVE 'E' 01515 MAKE IT AN EXCEPTION OUTPUT LINE 
C 01515 I FNE "SLANK 
C MOVE "BLANK 03237 ERASE EXCPT NAME 
C END 
C Z-ADDO ERROR 10 SEE IF INDICATORS MATCH THOSE 
C 01 DO 03 I SELECTED BY THE USER, 
C MOVE IND. I INDIC 
C INDIC IFNE "BLANK 
C INDIC LOKUPOK 12 
C N12 ADD 1 ERROR 
C END 
C END 
C ERROR IFEQ 0 IF INDICATORS MATCH. 
C CURRFN LOKUPFN 10 ... AND FILENAME IS PRINTER FILE ... 
C 10 EXCPTWRTO · .. THEN SUI LD THE O-SPEC 
C END 
C ENDSR 
C" 
C BLOC BEGSR 
C N50 EXCPTCl BUILD E-SPECS AND DO-LOOPS IF NO 
C N50 SETON 50 C-SPECS WERE BUILT YET. 
C FLEN IFGT 000 PROCESS ONLY IF FIELD LENGTH> 0 
C FLDNM I FNE "BLANK ... AND IF FIELD NAME ISN'T BLANK 
C TYPE I FEQ 'P' IF PACKED, RECALCULATE FIELD LENGTH 
C MULT 002 FLEN AS DOUBLE THE ORIGINAL. .. 
C SUB 001 FLEN .. MINUS 1. 
C ELSE 
C TYPE IFEQ 'B' IF BINARY, RECALCULATE FIELD LENGTH 
C FLEN IFEQ 002 IF 2. MAKE IT4 
C Z-ADD004 FLEN 
C ELSE 
C FLEN I FEQ 004 IF 4, MAKE IT9 
C Z-ADD009 FLEN 
C END 
C END 
C END 
C END 
C MOVEAFLDNM we REMOVE ARRAY COMMA & INDEX 
C 1 DO 6 J 10 IF FOUND ANYWHERE WITHIN THE 
C W6,J IFEQ FIELD NAME. 
C J DO 6 JJ 10 
C MOVE W6,JJ 
C END 
C END 
C END 
C MOVEAW6 FLDNM 
C DECIM IFEQ "BLANK IF ALPHAMERIC FIELD 
C EXCPTWRTCX · .. USE THE ALLX ARRAY 
C ELSE 
C EXCPTWRTC9 IF NUMERIC, USE THE ALL9 ARRAY. 
C END 
C END 
C END 
C ENDSR 
C" 
C LASTC BEGSR 
C 01 DO 06 GENERATE A SETON C-SPEC FOR EACH 
C OK,I IFNE "BLANK INDICATOR SELECTED BY USER 
C EXCPTSETON 
C END 
C END 



474 5/36 Power Tools 

GENERATE EXCPTC EXCPTClR 
C ENDSR 

OSMPl FIRST 
0 
0 
0 WRTH 
0 
a H1818 
0 H1919 
0 H2020 
0 H2121 
0 
0 WRTF 
0 
0 F0714 
0 
a F2427 
0 F2427 
a F3334 
0 
0 C1 
0 
a 
a C1 
a 
a 
0 C1 
a 
0 
0 
a 
0 C1 
0 
0 
0 
a 
0 C1 
a 
0 
0 C1 
0 
0 
0 
a 
0 C1 
0 
0 
0 
0 
0 C1 
0 
0 
0 WRTCX 
0 
0 
0 FlDNM 
a FlEN 
0 WRTC9 
0 
a 
a FlON~ 
0 FlEN 
a OECIM 
0 WRTC9 
0 
0 
a FlDNM 
0 FlDNM 
a SETON 
0 
a 
0 OK, I 
0 ClR 
a 

& SETON-lR LINES, 

FORCE NEGATIVE SIGN 

24 
29 

6 
18 
19 
20 
21 
80 

6 
14 
19 
23 
27 
34 
46 

6 
42 

6 
42 

6 
20 
35 
52 

6 
31 
35 
48 

6 
30 

6 
20 
35 
43 

6 
31 
35 
48 

6 
30 

6 
36 
48 
51 

6 
36 
48 
51 
52 

6 
32 
38 
48 

6 
32 
55 

6 

'II COPY NAME-SMPlB@,lIBR' 
'ARY-S' 

'H' 

'SMPl8@' 

'F' 

'a F' 

'PRINTER' 


'E' 

'AllX 256 1 ' 


'E' 

'All9 15 l' 


'C' 

'001 ' 

'DO 256' 

'I 30' 


'C' 

'MOVE' 

"'X'" 
'AllX,I' 


'C' 

'END' 


'C' 

'001 ' 

'DO 015' 

'I' 


'C' 

'MOVE' 

'"9''' 

'All9, I' 


'C' 

'END' 


'C' 

'MOVEAAllX' 


'C' 

'MOVEAAll9' 


'C' 

'Z-SU8' 


'C' 

' SETON' 


'C' 




Printers 475 

0 32 'EXCPT' 

0 CLR 

0 6 'c' 

0 32 'SETON' 

0 55 'LR' 

0 WRTO 

0 6 '0' 

0 00714 14 

0 01515 15 

0 01616 16 

0 01717 17 

0 01818 18 

0 01920 20 

0 02122 22 

0 IND 31 

0 03237 37 

a 03838 38 

0 04043 43 

0 04570 70 

0 LAST 

a 6 '0' 

0 20. 'E 150' 

0 LAST 

a 6 '0' 

0 43 '21 ' 
a 45 
a 67 END OF SAMPLE ••• '" 
0 LAST 
0 6 '0' 
0 18 'E l' 


a LAST 

a 6 'a' 

0 43 '17 ' 

a 45 

a LIBR 53 

0 PRGM 60 

a 61 

a LAST 

0 'II CEND' 


015 

DEHT 


3 4 ... 5 8Figure 15-15 H SMPLB@ 
FSHRTAR 0. F 132 132 o.A PRINTERProgram E ALLX 256 1 

SMPLB@ E ALL9 15 1 
e 00.1 DO 256 I 30. 
C MOVE 'X' ALLX, I 
C END 
C 0.0.1 DO 0.15 
e MOVE '9' ALL9, I 
C END 
C Mo.VEAALLX PART# 0.15 
C MOVEAALLX WHSE/f 0.0.1 
e MOVEAALLX PLANN 003 
e MOVEAALL9 DUEDT 00.60 
C Z-SUBDUEDT DUEDT 
C MOVEAALLX PROD 00.1 
C MOVEAALLX ORTYP 0.0.1 
e MOVEAALLX ORDER 0.0.7 
C MOVEAALLX DESCR 0.30 
C MOVEAALLX PARNT#015 
e MOVEAALLX PDEse 0.30. 
e MCVEAALLX TYPE 0.0.1 
C MOVEAALLX CLASS 00.2 
C MOVEAALL9 PLANR 0.050 
C Z-SUBPLANR PLANR 
e MOVEAALLX CNAME 025 
C MOVEAALLX PRTY 00.1 
C MOVEAALLX UMEAS 002 
C MOVEAALLX STAT 002 
e MCVEAALLX REF# 010 



476 5/36 Power Tools 

C 
C 
C 
C 
e 
C 
C 
C 
e 
C 
C 
C 
C 
C 
C 
C 
C 
e 
C 
C 
C 
C 
C 
e 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
e 
e 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
e 
C 
C 
C 
C 
e 
C 
C 
C 
C 
C 
C 
e 
e 
C 
C 
C 
C 
C 
e 
e 
C 

MOVEAALLX CJOB# 006 
MOVEAALL9 QBO 0070 
Z-SUBOBO QBO 
MOVEAALL9 QOH 0070 
Z-SUBQOH QOH 
MOVEAALL9 QOOM 0070 
Z-SUBQOOM QOOM 
MOVEAALL9 QOOP 0070 
Z-SUBQOOP QOOP 
MOVEAALL9 ALLOe 0070 
Z-SUBALLOC ALLOe 
MOVEAALL9 SAFTY 0070 
Z-SUBSAFTY SAFTY 
MOVEAALL9 LBOTE 0060 
Z-SUBLBOTE LBOTE 
MOVEAALL9 LBTME 0060 
Z-SUBLBTME LBTME 
MOVEAALL9 IOPGE 0040 
Z-SUBIOPGE IDPGE 
MOVEAALLX IDPRT 015 
MOVEAALLX IDWHS 001 
MOVEAALL9 IOPLN 0050 
Z-SUBIOPLN IOPLN 
MOVEAALL9 IDOTE 0060 
Z-SUBIOOTE IDOTE 
MOVEAALLX IDORO 007 
MOVEAALLX SEQ 007 
MOVEAALLX REBLO 003 
MOVEAALLX PART1 015 
MOVEAALLX PART2 015 
MOVEAALLX WHSE1 001 
MOVEAALLX WHSE2 001 
MOVEAALLX CLASS1002 
MOVEAALLX CLASS2002 
MOVEAALLX TYPE1 001 
MOVEAALLX TYPE2 001 
MOVEAALL9 PLAN1 0050 
Z-SUBPLAN1 PLAN1 
MOVEAALL9 PLAN2 0050 
Z-SUBPLAN2 PLAN2 
MOVEAALLX SUBTTL050 
MOVEAALL9 SYS 0120 
Z-SUBSYS SYS 
MOVEAALL9 SYSTME0060 
Z-SUBSYSTME SYSTME 
MOVEAALL9 SYSOTE0060 
Z-SUBSYSOTE SYSOTE 
MOVEAALLX KISOB 031 
MOVEAALL9 REM 0070 
Z-SUBREM REM 
MOVEAALL9 FLAG 0010 
Z-SUBFLAG FLAG 
MOVEAALL9 YMO 0060 
Z-SUBYMO YMO 
MOVEAALL9 SHORT 0050 
Z-SUBSHORT SHORT 
MOVEAALL9 MMMMM10020 
Z-SUBMMMMM1 MMMMM1 
MOVEAALL9 MMMMM20060 
Z-SUBMMMMM2 MMMMM2 
MOVEAALL9 MOY 0060 
Z-SUBMDY MOY 
MOVEAALL9 MM 0020 
Z-SUBMM MM 
MOVEAALL9 OOYY 0040 
Z-SUBDDYY DDYY 
MOVEAALL9 DO 0020 
Z-SUBDD DO 
MOVEAALL9 yy 0020 
Z-SUBYY YY 
MOVEAALL9 SYSYY 0020 
Z-SUBSYSVY SYSYY 
MOVEAALL9 01 FFYYOO20 
Z-SUBOIFFYY OIFFYY 
MOVEAALL9 IOPGE 0040 



Printers 477 

C Z-SUBIDPGE IDPGE 
C MOVEAALL9 IOATESOO70 
C Z-SUBIDATES IDATES 
C MOVEAALL9 RRN 0070 
C Z-SUBRRN RRN 
C SETON 12 
C SETON 14 
C SETON 50 
C EXCPT 
C SETON LR 
OSHRTAR E 104 
0 SYSDTEY 8 
0 SYSTME 18 '0 
0 66 ' ITEM SHORTAGE REPORT BY' 
0 SEa 74 
0 114 'REPTSHRT - PAGE' 
0 PAGE 119 
0 E 2 
0 14 'NEW DATABASE 
0 REBLD 18 
0 SUBTTL 84 
0 101 '\IUILT: ' 
0 
0 

LBDTE 
LBTME 

110 '0 
119 '0 

/ / 

0 EF 1 
0 24 ----_._--._
0 ·PLACE 48 
0 ·PLACE 72 
0 'PLACE 96 
0 1111 ... __ .. _--.- .. -
0 E 1 
0 17 . COMPONENT WH' 
0 29 'DESCRIPTION' 
0 84 'PLANR T CL UM' 
0 86 'SAFETY ALLOCATED' 
0 
0 

108 'OROER (I'll 
119 'ON HAND' 

ORDER (P)' 

0 0 
0 PART# 1& 
0 PLANR 56 
0 E 1 
0 PART# 15 
0 WHSE# 17 
0 DESCR 48 
0 PLANR 55 
0 TYPE 58 
0 CLASS 61 
0 UMEAS 64 
0 SAFTY J 76 
0 ALLOC J 87 
0 0001'1 J 98 
0 QOOP J 109 
0 QOH J 120 
0 50 128 'NEG' 
0 E 1 
0 22 'ORDER ITEM/REF# ' 
0 
0 

54 
88 

'WH 
'REO 

DESCRIPTION/CUSTOMER' 
DATE DUE DATE' 

0 108 'REQ aTY RECEIPTS' 
0 119 'REMAINING' 
0 EF 1 
0 STAT 2 
0 PRTY 4 
0 ORDER 12 
0 12 14 REF# 23 
0 12 14 CJOB# 40 
0 12 14 MDY Y 86 
0 12 14 QBO J 109 
0 12N14 PARNT# 28 
0 12N14 WHSE# 32 
0 12N14 PDESC 64 
0 12N14 "'DY Y 75 
0 12N14 QBO 98 
0 RE'" 120 
0 50 129 'SHORT' 



478 5/36 Power Tools 

0 E 1 
0 88 ' •• INVALID DATE ABOVE 
0 EF 
0 24 

~w __________ 

0 'PLACE 48 
0 'PLACE 72 
0 'PLACE 96 
0 119 -----------
0 
0 SHORT 1 6 
0 18 · ITEMS SHORT' 
0 306 
0 24 'REPORT LIMITS & OPTIONS:' 
0 22 
0 24 · FROM' 
0 42 'TO' 
0 E 1 
0 12 'PART NUMBERS' 
0 PART1 35 
0 PART2 55 
0 E 1 
0 10 'WAREHOUSES' 
0 WHSE1 21 
0 WHSE2 41 
0 E 1 
0 11 'CLASS CODES' 
0 CLASS1 22 
0 CLASS2 42 
0 E 1 
0 10 'TYPE CODES' 
0 TYPE1 21 
0 TYPE2 41 
0 E 3 
0 8 'PLANNERS' 
0 PLAN1 25 
0 PLAN2 45 
0 E 106 
0 SYSDTEY 8 
0 SYSTME 18 '0 
0 
0 SEa 

66 
74 

· ITEM SHORTA(iE REPORT BY' 

0 114 'REPTSHRT - PAGE' 
0 PAGE 119 
0 E 2 
0 14 'NEW DATABASE· 
0 REBLD 18 
0 SUBTTL 84 
0 101 · BUILT:' 
0 
0 

LBDTE 
LBTME 

110 
119 

'0 
'0 

/ / 

0 
0 70 .••• INVALID DATES 
0 
0 48 'PAGE PART NUMBER' 
0 78 'WH# PLANNER ORDER #' 
0 87 · DATE' 
0 E 1 
0 IDPGE 34 
0 IDPRT 52 
0 IDWHS 57 
0 IDPLN 67 
0 100RD 78 
0 IODTE y 89 
0 11 
0 IDATES1 9 
0 30 · INVALID DATES FOUND,' 
0 150 
0 21 ,*** END OF SAMPLE 
0 
0 17 'CODELIBR SHRTAR' 



Printers 479 

Figure 15-16 

Sample ofon item shottage repott 

99/99/99 99: 99: 99 ITEM SHORTAGE REPORT BY XXXXXXX REPTSHRT - PAGE 
NEW DATABASE • XXX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BUILT: 99/99/9999:99:99 

COMPONENT WH OESCRIPTION PLANR T CL UM SAFETY ALLOCATED OROER (M) OROER (P) ON HAND 
xxxxxxxxxxxxxxx. 9999A 
XXXXXXXXXXXXXXX X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 9999R X XX XX 9.999.999- 9.999.999- 9.999.999- 9.999.999- 9.999.999- NEG 

ORDER ITEM/REF# WH DESCRIPTION/CUSTOMER REO DATE DUE DATE REa aTY RECEIPTS REMAINING 
XX X XXXXXXX XXXXXXXXXX XXXXXX 99/99/99 9.999.999- 9.999.999- SHORT 

•• INVALID DATE ABOVE •• 

99.999 ITEMS SHORT 

REPORT LIMITS & OPTIONS: 
FROM TO 

PART NUMBERS XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX 
WAREHOUSES x 
CLASS CODES xx xx 
TYPE CODES X X 
PLANNERS 9999R 9999R 

••• INVALID DATES ••• 

PAGE PART NUMBER WH# PLANNER ORDER # DATE 
9999 XXXXXXXXXXXXXXX X 9999R xxxxxxx 99/99/99 

9.999.999 INVALID DATES FOUND. 
••• END OF SAMPLE ••• 

CODElIBR SHRTAR 

Printing Tips for Hold, Halt, Align 
by Jerry Itihoff 

I have found that many users and programmers forget some of the simple 
points they learned early in their computing experience. With that in mind, 
I offer three printing tips. 

If you have any print jobs that you would like to hold and print later, 
use the PRINTER OeL statement. If you specify PRIORITY-O, your 
entry will be placed on the spool file with a priority of 1, but it will be held. 
Such an entry is printed when a RELEASE control command specifically 
indicates that it is to be printed. 

If any of your programs halt after printing a line that contains an 
unprintable character, place a 1 in position 45 of the H-spec of the program 
that produces the report. (Don't forget to recompile the program after the 
change is made.) Then, when an unprintable character is encountered, it is 
replaced with a blank, but no program halt occurs. Please note that, 
because the unprintable character is not printed, your output will be incor
rect. Make certain your operators know to find the blank and fill it in man
ually with the appropriate character. 

To make forms alignment easier, place a 1 in position 41 of the H -spec 
of the program that produces the report. If a 1 is specified, the system 



480 5/36 Power Tools 

prints the first line of output and issues a message. You then can either 
realign the forms and select the option to try printing the line again, or you 
can select the option to continue printing if the forms are aligned. This 
forms specification is valid for spooled or unspooled output, but it works 
only if the output is conditioned by 1 P (first page indicator). 

Controlling the Spool File with OCL 
answered by John Froele' 

QI need an OCL procedure to run system console commands such as 
HOLD and RELEASE. The OCL procedure should also allow us to 

start a spool writer. Can it be done? 

A	Yes and no. With the advent of SSP Release 5.1, four commands that 
previously could be run only from the system console were added to OCL: 

II CANCEL 
II CHANGE 
II START 
II STOP 

These new OCL statements apply only to the spool writer. They do not 
allow for the manipulation of the job queue or currently running jobs. The 
statements also have no provision for holding and releasing spooled entries. 
Still, the new commands are a welcome addition to OCL. 

Prompting for Report Parameters 
by Joe Medeiros 

Code on diskette: a Procedure REPORT 
Screen format member REPORTFM 

Once in a while, S/36 users probably ask you if it would be possible (and they 
know it is) to get an extra copy of a certain report. Obligingly, you change the 
number of copies specified in the reporting procedure's PRINTER state
ment, but before long, those same users no longer want extra copies. 

Because of such users, I wrote procedure REPORT (Figure 15-17) and 
designed its accompanying prompt screen (see Figure 15-18 for screen for
mat member REPORTFM). I call procedure REPORT from another proce
dure (see Figure 19 for a sample calling procedure). Procedure REPORT 
formats the system time and date for the display and then prompts the user 
for the number of copies and the printer to be used, and asks whether the 
report should be held on the spool file (i.e., PRIORITY = 0) and whether 
the job should be evoked. After the user answers the prompts, the proce
dure edits the input for errors. If no errors are found, all the parameters are 



Figure 15-1 7 

Procedure 
REPORT 

Figure 15-18 

Screen format 
member 
REPORTFM 

Figure 15-19 

Sample calling 
procedure 

Printers 481 

passed to the calling procedure, and the parameters for the number of 
copies, printer 10, and the spooled output's priority are used in the II 
PRINTER statement. 

Note that I use the LIBRARY parameter when I call procedure 
REPORT and in the II PROMPT statement so that I can store this utility 
in only one library - TOOLBOX. 

II LOCAL OFFSET-400,DATA-'?DATU7TIME7'
II EVALUATE P1='?L'406,2'7:7L'408,2'??L'410,2'?' 
II EVALUATE P2='?L'400,2'?I?L'402,2'?I?L'404,2'?' 
I I TAG PROMPT 
II PROMPT MEMBER-REPORTFM,FORMAT-REPORT01 ,LIBRARY-TOOLBOX,LENGTH-'8,8,2,2,1 ,1 .40' 
II IF ?CD?=2007 CANCEL 
II IF ?03?-00 GOTO PROMPT 707F' Invalid number of copies. '1 
I I IFF ?04?-P1 IFF 704?-P2 GOTO PROMPT ?07F' Invalid printer selected. '7 
II IFF 7057-Y IFF 705?-N GOTO PROMPT ?07F' Hold report. Y or N ?'? 
II IFF ?06?-Y IFF ?06?-N GOTO PROMPT 707F' Evoke this job. Y or N ?'7 
II IF ?057-Y EVALUATE P05-' 0' 
I I ELSE EVALUATE P05-'1' 
I I RETURN 'ALL 

* POl = Time This procedure can be used 
, P02 - Date to set up any report; look 
* P03 - Number of copies out for the parameters used 
* P04 - Printer to be used and the LOA positions used 
, P05 - PI ace report on ho I d (Y-N) 
, P06 - Evoke this job (Y-N) 
* P07 = Error message 

2 3 4 7 
0001 SREPORT01 0124 YY G 
0002 DTIME 8010201 Y Y 
0003 D 240129Y Y CREPORT OPTIONS SELECTIOX 
0004 DN 
0005 DDATE 8017202 Y Y 
0006 D 270426Y CNumber of copies. .X 
0007 D. 
0008 DCOPIES 2045403 YD Zy Y Y 01 
0009 D 270626Y CPrinter to be used. .X 
0010 D. 
0011 DPRINTER 2065404 Y Y Y P2 
0012 D 270826Y CPlace report on hold. .. X 
0013 D. 
0014 DHOLD 1085505 YA Y Y 
0015 D 271026Y CEvoke this job. . .X 
0016 D. 
0017 DEVOKE 1105506 YA Y Y 
0018 DMSG 40192107 07 
0019 D 202302Y Y C' Cmd-7 Cancel Job ' 

ORD001 - List customer master file 

II IF EVOKED-NO IF JOBQ-NO REPORT,TOOLBOX
II IF EVOKED-ND IF JDBQ-NO IF ?6?-Y EVOKE ORD001 'ALL 
II IF EVOKED-NO IF JOBQ-NO IF ?6?-Y RETURN 

I I LOAD ORD001 
II FILE NAME-CUSTMSTR,LABEL-OR,CUSTM,DISP-SHR 
II PRINTER NAME-ORD001 ,COPIES-?3'1 '?,DEVICE-?4'P1 '? ,PRIORITY-75'1 '? 
I I RUN 



482 5/36 Power Tools 

Changing LPI, CPI, arid LPP 
After Reports Are Created 
by Joe Madeiros 

Does the following scenario sound familiar? Your job has finally run suc
cessfully. The report has been placed on the print spool file. Just as you 
begin to relax a bit, you realize that the lines-per··form, lines-per-inch, or 
characters-per-inch printer control data are incorrect. Don't panic. You don't 
have to rerun the job; all you have to do is modify the appropriate fields in 
the data file header record. Simply use COPYPRT to copy the spool file to 
a data file, change the data file via your favorite file editor or with a file 
update program, use COPYPRT to copy the updated file back to the print 
spool file, and delete the old entry. 

For example, I recently needed to change the lines per form from 20 to 
30. On the spool file header record, lines per form appears as a binary value 
in record positions 74 and 75, so I updated this field to binary 0001 1110 
(the binary equivalent of the decimal number 30). The same idea applies to 
the lines-per-inch and characters-per-inch values, which appear in positions 
84 and 85, respectively. 

Another printer control "trick" is to create one spool file entry for the 
reports produced by individual procedures within a job. That way you can 
keep track of a given job's output more easily, and if multiple copies are 
being printed, the multiple copies will be collated. Generally, each individ
ual procedure produces its own spool file entry, but you can "run them 
together" by specifying 

II PRINTER CONTINUE-YES 

in the first calling procedure. To avoid possible conflicts, you may not want 
to use this CONTINUE statement if the individual procedures have their 
own PRINTER statements. 

Changing CPI After a Report Is Created 
by Roger Washburn 

a 
Code on diskette: 


Procedure PRINT198 

Many S/36 users still like to print an occasional DFU listing wider than 132 
characters. And some programmers like to code RPG II printouts wider 
than 132 but forget to change the OCL printer statement to CPI-15. With 
Release 5.0, users could respond to the SYS-6151 message and temporarily 
change the session CPI to 15 to print the listing. With Release 5.1, how
ever, no message is generated to the user. The job terminates normally 



Printers 483 

without any error messages except for the SYS-6303 message (i.e., system 
error occurred while using printer xx) the system console receives; unfortu
nately, the available responses to the message do not include a print option. 

After some thought and discussion, I came up with procedure 
PRINT198 to print the "locked up" listing and to clear it from the print 
spool (see Figure 15-20). Whenever the SYS-6303 message hits the system 
console (or sub-console), take an option 0 to put the print job on hold. 
Then key in 

PRINT198 SPxxxx 

and the printout will be generated through COPYPRT. 

Figure 15-20 	 II IF 7171 • 'Enter Spool-ID to be printed'
II IF DATAF1-?1??WS? DELETE ?1??WS?,F1 
COPYPRT ?lR?,?l??WS?,CANCELProcedure II PRINTER CONTINUE-YES,CPI-15

PRINT198 	 COPYPRT NOCOPY,71??WS?, ,PRINT 
II PRINTER CONTINUE-YES,CPI-10 
DELETE 71??WS?,Fl 

SeHing CPI and FONT for a Printer File 
by George Applegate 

We have a 5225 printer and a 4224 printer attached to our S/36. The 5225 
requires a CPI parameter on the PRINTER statement, while the 4224 
requires a FONT parameter. Unfortunately, I have some reports that I 
sometimes want to print on both printers, and SSP will not allow both the 
FONT and CPI parameters on the same PRINTER statement. 

I've solved this problem by using the FORMS and PRINTER state
ments together to allow the report to be printed on either device: 

II FORMS CPI-15 
II LOAD PROG 
II PRINTER NAME-PRINT.FONT-DF 
II RUN 
II FORMS CPI-l0 

Processing COPYPRT Files from a Program 
answered by Ron Elliot and Mike Patton 

QIs there any way that a S/36 program can access the spool 10 for a 
printer file (or files) that it creates? Also, is it possible to access the 

number of pages in a printer file? I would like to code procedures that 
COPYPRT automatically certain printer files and then print only the first 
or last page of the report. 

AA program cannot access the spool files that it creates (until someone 
creates a patch to do so), but the next step in the procedure can. To 



484 5/36 Power Tools 

avoid having to specify the spool ID (which would be unknown), place a /I 
PRINTER statement in the procedure, specifying some unique FORM8No. 
The value so specified can then become the first parameter of a subsequent 
COPYPRT statement. So, your procedure would look like this: 

II LOAD 

II PRINTER NAME-PRINT,FORMSNO-WXYZ,PRIOR1TY-O 
II RUN 
COPYPRT FWXYZ,XXXX,CANCEL 

Then disk file XXXX will contain the spooled print data. File XXXX has an 
informational record as the first record of the file, coded with an H (for 
header) in column 1. This H record contains the number of pages for the print 
in positions 65 and 66. (This value is represented as a binary number, and the 
program that processes it will have to be coded accordingly.) Hence, after the 
COPYPRT, you can run a program to process the file in any desired fashion. 

There will be one H record for each spool entry that is COPYPRTed. 
The format of pertinent data in this record is as follows: 

Position Contents 
4-9 Spool 10 

12-19 First level procedure name 

22-29 Jobname (WSHHMMSS) 
42-49 Printer file name 
52-53 Printer 10 
56-59 Form number 
65-66 Number of pages in this print file (BINARy) 
69-72 Total number of records in this entry (BINARy) 
74-75 Lines per page value (BINARY) 

For all other records in the file, the data is as follows: 
1-2 Page number within this print file (BINARY) 
3-4 Line number on which to print (within this page) (BINARY) 
5-8 Record number within this print file (BINARy) 
lIon Print data 

Suppressing PRINT Key Output 
answered by Mike Patton 

QIs there a way to cancel the PRINT key function on the 8/36 so that, 
when users hit the darn thing by accident (as they so often do), no 

action takes place? IBM suggests we turn the printer off, but that solution 
prevents the printing of desired reports. 



Printers 485 

AOn the S/36, you can disable the PRINT key during the execution of a 
program by adding the following OCL statement to the procedure that 

calls that program: 

II WORKSTN UNIT-?WS?,PRINT-NO 

For those cases in which no program is running, disabling the print key is a 
bit more problematic. I would not suggest that you turn your printer off. 
Instead, you can configure a "ghost" printer on your system (i.e" one that 
does not physically exist) and then use the PRINTKEY procedure to direct 
all PRINT key output to this nonexistent printer. For example: 

PRINTKEY PO 

would direct PRINT key output to a previously configured but nonexistent 
printer PO. This step eliminates unwanted paper, although PRINT key 
output continues to occupy spool file space on disk. Remember to delete 
all spool file entries for printer PO periodically. 

ReseHing Forms Types for Printing After IPL 
by Mel Beckman 

program by Jorge Rodriquez 

a
Code on diskette: 


Procedure PRINTS 
RPG program PRINTS 
Message members MSG1404, MSG1404N 

To give S/36 users increased access to their computer systems, DP man
agers typically schedule daily dedicated operations during nonprime-time 
hours. A common practice involves backing up files at the end of the work 
day and then performing an IPL that runs time-consuming keysorts. Once 
the IPL has begun, the system operator can go home for the evening. After 
the IPL is completed, the system is ready for unattended use by the late 
evening crowd or early morning "power users." 

Yet this practice can lead to problems in shops that permanently assign 
different form types to individual printers. During IPL, the system "forgets" 
which forms are installed on each printer, and a forms-change message 
appears at the system console the first time a user tries to print something. If 
the system console is signed off because the system operator has gone home, 
the unhappy user is unable to sign on to the console and answer the message. 
The user consequently cannot get the needed printout until the start of the 
next workday. Fortunately, a combination of common programming tech
niques can automatically re-initialize your printers after every IPL. 



486 5/36 Power Tools 

Figure 15-21 

Program 
PRINTS 

The RPG program PRINTS (Figure 15-21) contains multiple print files 
that combine with procedure PRINTS (Figure 15-22) to access SSP's 
autoresponse capability. Just call procedure PRINTS from your S/36 
#STRTUP2 procedure. Procedure PRINTS first runs the IBM-supplied 
RESPONSE procedure to install an autorespons,e value of 1 for the forms
change message, SYS-1404 (Figure 15-23). A II NOHALT statement must 
follow the RESPONSE procedure immediately to enable autoresponse of 
system console messages. 

Next, procedure PRINTS loads and runs program PRINTS. In the pro
cedure, code a II PRINTER statement for each printer you want to set up, 
with the NAME parameter set to PRINTl, PRINT2, and so forth. In addi
tion, set the FORMSNO parameter to the desired forms name. Finally, 
code a II SWITCH statement to turn on the UPS I switch that corresponds 
to each printer file (e.g., switch 1 for file PRINT1). 

The program PRINTS is set up to contain eight print files, conditioned on 
UPSI switches Ul through U8. Ifyou have more than eight printers, you sim
ply execute the PRINTS program again. When program PRINTS is run, it 
outputs one blank line to each print file for which the associated UPSI switch 
is set. The spool file thus contains a blank one-page "report" for each printer. 

As the SSP initiates spool writers to print these reports, it sends forms
change messages (SYS-1404) to the system console. These messages are 
answered automatically using the autoresponse value of 1, designated ear
lier by the RESPONSE procedure. After each printer prints a blank page, 
the printer is ready for use without operator intervention. 

After program PRINTS has done its job, procedure PRINTS is called 
again to execute a II NOHALT statement. At this time, it also executes the 
RESPONSE procedure to return message handli.ng for SYS-1404 to the 
operator (Figure 15-24). The automatic response is thereby inactive at 
times when manual response might be desirable. 

With the PRINTS utility, you can be sure that forms-change messages 
won't "gum up the works" when you're running your S/36 in unattended 
mode. In addition, PRINTS can be used to set the FONT number for 5219 
printers. You also may find the technique of combining an RPG program 
with SSP's autoresponse capability useful for controlling other unattended 
operations in your never-ending quest for efficient system use . 

... 1 3 . . .. 4 . .. 5 . . .. 6 . 
0001 H 
0002 FPR I NTl 0 132 132 PRINTER Ul 
0003 FPR I NT2 0 132 132 PRINTER U2 
0004 FPRINT3 0 132 132 PRINTER U3 
0005 FPRINT4 0 132 132 PRINTER U4 
0006 FPRINT5 0 132 132 PRINTER U5 
0007 FPR I NT6 0 132 132 PRINTER U6 
0008 FPRINT7 0 132 132 PRINTER U7 
0009 FPR I NT8 0 132 132 PRINTER U8 
0010 C SETON LR 
0011 OPR I NTl D Ul 

http:handli.ng


Printers 487 

0012 OPR INT2 D U2 
0013 OPR INT3 D U3 
0014 OPRINT4 D U4 
0015 OPR INT5 D U5 
0016 OPR INT6 D U6 
0017 OPR INT7 D U7 
0018 OPRINT8 D U8 

RESPONSE MSG1404,#LIBRARYFigure 15-22 
I I NOHALT 2, SYSTEM 
I I LOAD PRINTSProcedure II PRINTER NAME-PRINT1,DEVICE-Pl,FORMSNO-INVC 

PRINTS II PRINTER NAME-PRINT2,DEVICE-P2,FORMSNO-PAYR 
II PRINTER NAME-PRINT3,OEVICE-P3,FORMSNO-BILL 
II PRINTER NAME-PRINT4,OEVICE-P4, FORMSNO-STOK 
II PRINTER NAME-PRINT5,DEVICE-P5,FORMSNO-QUOT 
II SWITCH 11111000 
II RUN 
II NOHALT O,SYSTEM 
RESPONSE MSG1404N,#LIBRARY 

Figure 15-23 

Autoresponse source member MSG1404 

SYS 
1404 1.2 On pri nter xx change to forms number xxxx 

Figure 15-24 

Autoresponse source member MSG1404N 

SYS 
1404 N Return the response control back to the system operator 

Automatically Responding to SYS-6300 Message 
answered by Mike Patton 

QWe always spool our printer output, but we don't always have the printer 
turned on. Consequently, some of our jobs halt and wait for an operator 

to respond to the system message SYS-6300, "Printer XX and the system are 
not communicating." Is there a way to respond automatically to this message? 

A In the January 1986 version of the S/36 System Messages manual (SC21
7938-3), the message SYS-6300 has a severity level of 5, which 

indicates that no autoresponse is allowed. However, because you spool your 
output and because you know the cause of the problem, you can change 
the severity level of this message by creating the following source member 
(let's call it N06300) and placing it in #LIBRARY: 

SYS 



488 5/36 Power Tools 

6300 2,1 

Member N06300 operates on SYS (system) errors, specifically 6300, and 
specifies that option 2 should be taken automatically when the error occurs. 
In addition, member N06300 specifies that the severity level of message 
SYS-6300 is to be treated as 1 rather than 5. 

After you create member N06300, you need to take two steps. First enter 

RESPONSE N06300,#LIBRARY 

to effect the change to the message member. Then, enter 

NOHALT 1 ,SYSTEM 

to enable autoresponse for severity 1 (informational message) level errors. 

If for some reason you decide to return message member N06300 to its 
original state, you need to change the second line of member N06300 to 

6300 N,5 

which will disable automatic response and reset the severity level to 5 as soon 
as you again run the RESPONSE procedure to update the message member. 

Executing Spool Commands 
During High System Usage 
answered by Mike Patton andJeffSilden 

QWe are having a problem with our spool file. We have a S/36 Model 
D2A with 2 MB of memory and 758 MB of disk. Our spool file is set 

at segments of 10 blocks and a size of 1,330 blocks. When we try to start, 
stop, or move spool file entries during our peak times, we receive system 
message 5852, "Unable to perform cmd now. Try again later." We had this 
problem before we upgraded to a Model D, and the upgrade has not 
alleviated the problem. I cannot find an explanation of a spool file interlock 
in any of my documentation. Please offer your comments. 

A The situation described occurs when any "critical resource" is enqueued 
by one application without being de queued in a reasonable amount of 

time. The spool file resource is considered one of those "critical system 
resources." System programs that require access to such a resource are 
programmed to "gracefully exit" using system error message 5852 so they won't 
otherwise have to wait on what might be a never-ending enqueue request. In 
your particular case, you could be keying the start, stop, or move commands at 
the precise moment when the system is also manipulating spool entries. 
Alternately, there may be programs installed and running on your system that 
manipulate the spool file (e.g., any of the printer passthrough products). 



Printers 489 

Another option is to reduce the spool file segment size. If a spool file 
segment is requested and, for whatever reason, is filled slowly, this might 
cause an interlock. Shops that print very large reports might set a large 
spool segment size, but for most shops, it can be set quite small. 

Operation of the Spool File Interlock 
answered by Mel Beckman, Mike Patton, andJeffrey Pisarczyk 

QOn occasion, I receive either system message SYS-4906 "Unable to 
perform OCL statement now" or system message SYS-S8S2 "Unable 

to perform command now" on my S/36. 
The message occurs when I want to use the spool file and a lot of items 

are in it - it's not full, though. The SYS-4906 message is particularly bad 
because the procedure continues after the message is displayed. The mes
sage guide says that "the spool file interlock is not obtainable," which 
means nothing to me. What is the spool file interlock? And can I stop these 
messages from occurring? 

ASpace in the spool file is allocated in groups of sectors (called 
segments) instead of records (as in regular data files) and is assigned 

and released as reports are generated and printed or canceled. The spooling 
manager program, which is part of the SSp, maintains pointers of the "in 
use" and "available sector" chains. The logic for accessing/releasing disk 
space is tricky because multiple jobs could be concurrently allocating 
space. The spool file interlock allows multiple concurrent updates of the 
spool structure by serializing allocation and deallocation requests. Typically, 
if an area of a spool is busy, the SSP waits and retries after a couple of 
seconds. If the SSP must wait for an extended time, it sends the file 
interlock message, which means that another job is keeping the spool file 
busy and delaying other requests. File interlock messages usually occur 
when you write numerous new spool entries or when a third-party program 
improperly handles the spool interlock. Continuing entries aren't much of a 
load because the interlock is used only for new segments. 

You shouldn't see a spool file interlock message regularly unless point
ers within your spool file are damaged, your system is extremely over
loaded, or you are using a third-party spool manipulation program that does 
not function properly (i.e., locks the spool file queue header for more than 
a short time). If none of these is the cause and you continue to receive the 
messages, report the problem to IBM. 



490 S/36 Power Tools 

Explanation of Spool File Size and Extents 
answered by Mel Beckman and Mark Rubinstein 

QI just installed PTF 3700 and PTF 3704. Everything seems fine 
except for one problem: my spool file is configured for 4,500 blocks, 

but when I display the spool file status, it shows 27,000 blocks available, 
which is six times larger than configured. The catalog and the configuration 
each show 4,500 blocks, and the blocks available calculation works okay 
when I count down from 27,000. What's going on? 

A The S/36 allows up to six extents of the spool file, which is why the 
print spool file is six times the number of blocks you specified in the 

configuration (i.e., 6 x 4,500 = 27,000). When the first extent fills up, another 
is created automatically on a different part of the disk; spool extents don't 
need to be contiguous. The 0 P command always shows you how many 
potential blocks you have, even if there isn't enough space for them all. 

Printing on a Remote Printer 
answered by Chuck Balsly and Broce Hobbs 

QI want to print RPG reports and OW/36 documents as unattended 
remote operations. The remote location needs to be a standalone 

printer attached to an asynchronous modem with no PC or terminal 
attached. How can I do this? 

AOn the remote end, as long as the printer supplies a DTR (Data 
Terminal Ready) and uses X-on and X-off flow control protocol signals 

to prevent printer buffer overflow, a printer connected to a modem without 
a PC or terminal attached should work just fine. Find a protocol converter, 
such as PERLE GSD's model PDS350/294, that has autodial print control 
and initiates dial-out to remote printers under the control of a simple 
command line at the beginning of the spool file. 

Transferring a Spool File Between a S/36 
and an AS/400 
answered by NEWS 3X/400 Staff 

QI have a S/36 that communicates with an AS/400. Is it possible to take 
the spool file from a S/36 and print it on an AS/400 without using 

Object Distribution Facility (ODF)? 

A Yes. Use the COPYPRT command on the S/36 to copy the spool file to a 
data file, and send the data file to the AS/400. You do not need to write a 

program on the AS/400 to interpret the printer control codes in the 
COPYPRT file because the COPYPRT procedure and program in the AS/400 



Printers 491 

S/36 EE function just like their counterpatts on the S/36. You can reprint a 
previously created COPYPRT file by using the following S/36 EE command: 

COPYPRT NOCOPY,filename, ,PRINT 

The S/36 can produce only one type of spool file format when copying 
(using COPYPRT) to a data file. The AS/400, on the other hand, has multiple 
formats, including the same format as the S/36 in the CPYSPLF (Copy Spool 
File) command (using the keyword option CTLCHAR(;;S36FMT». This lets 
you move AS/400 printouts back to the S/36 for printing, if you want. Also, on 
the AS/400, if you use the parameter CTLCHAR(;;FCFC) in the initial CPYS
PLF command, you can copy the spool file data (that has been copied to a data 
file with the CPYSPLF command) back into an AS/400 printer output queue. 

Programming with IPDS 
by Michael Ingram 

a Code on diskette: 

Procedure LTHDl$OO 
RPG program IPDSO$02 
Source members LETHDFIL, LOGO 

Thousands of midrange system users are choosing Intelligent Printer Data 
Stream (IPDS) printers for their ability to produce and merge text and 
graphics in a variety of commercial applications. IPDS is also one of the 
cornerstones of IBM's SAA architecture and can function as a top layer 
printer protocol for BASIC, RPG, COBOL, Assembler, PL/I, and other 
SAA structured-programming languages. Ultimately, according to IBM, no 
other printer protocol will be supported in the SAA environment. Few 
users, however, are able to reap the full benefits of this versatile page
description protocol because application software that can exercise the full 
power of IPDS does not yet exist. 

At present, unless you want to develop complicated custom programs, 
you must select from a limited number of commercial applications that use 
IPDS commands for producing and merging text and graphics. S/36 users, 
for example, can use the IPDS Advanced Functions PRPQ, IBM's IPDS 
interface software, to print bar codes and graphics with most IPDS printers. 
S/38 and AS/400 shops can use IBM's Graphical Data Display Manager 
(GDDM), Business Graphics Utility (BGU), or Presentation Graphics Rou
tines (PGR) for IPDS graphics, charts, and text merge functions. 

None of these applications, however, lets you go beyond the high-level 
commands they provide to take advantage of the IPDS printer's ability to 
provide local storage for reusable page elements. Using the printer's memory 
for storage of consistent elements eliminates the need for repeated down
loading between pages or documents. For instance, with current software, 
you can't store forms overlays, scaled images, and signatures in an IPDS 



492 5/36 Power Tools 

printer and merge these consistent elements with different fonts in a single 
document. Nor does current software let you tie together different applica
tions such as RPG II text, OisplayWrite graphics, and GOOM pie charts. 

To accomplish these tasks, you must exercise the printer's full IPOS 
capabilities by using data streams to send low-level (i.e., printer-specific, 
user-developed) commands. This anicle briefly c!xamines the IPOS proto
col and then describes how you can send a basic data stream using RPG II 
on the S/36 to create letterhead text and a logo. 

IPDS Protocol 
IPOS controls a printer on the basis of pages rather than paragraphs or 
lines. In addition to producing and merging text, images, graphics, and bar 
codes, IPOS manages downloaded resources (e.g., fonts, overlays, and page 
segments), controls device functions (e.g., duplexing, media bin selection, 
and output finishing), and handles exception functions (which include 
more than 200 possible errors ranging from invalid commands and data to 
invalid position on page). 

By shifting much of the processing from the host to the printer, IPOS 
offers a less CPU-intensive means for producing high-volume graphics and 
bar codes than Advanced Printer Function (APF), BGU, and Magnum 
QMS boards. 

IBM refers to IPOS printers as state machines, meaning that commands 
are defined within operating states that correspond to the element being 
printed. IBM recognizes nine IPDS states: 

• Home: the initial operating state to which the printer returns at the end 
of each loaded page, page segment, coded font, or overlay 

• Block: four states - 10 Image, 1M Image, Graphics, and Bar Code - in 
which the printer establishes the initial processing conditions for a block of 
data 

• Page: the state that prints a logical page 

• Overlay: the state that handles the storage of overlay data in the printer 

• Page Segment: the state that allows storage of page segment data in the 
printer 

• Any: a state for "Execute Order Any State" commands (e.g., exception 
handling control and print quality control) that can be received in any 
IPOS operating state 

As the printer builds a page image in memory, it moves from state to 
state, storing graphics, fonts, and overlays until it receives a "page" com
mand, which closes the page and returns the printer to home state. The host 
normally controls these states through a sequence of low-level command 



Printers 493 

streams. However, to send the low-level commands necessary to merge text 
with graphics, create an overlay, or change a font, you must issue commands 
to force the printer to return to a specific state such as home. 

IPDS Architecture 
The IPDS architecture consists of a device-control set of control commands 
and eight functional areas, or towers, each containing a set of IPDS com
mands for a major printer capability. The device-control set encompasses 
all IPDS commands that set up a page, communicate device controls, and 
manage printer acknowledgment protocol. The eight towers include: 

• Text: commands required to present text information on a page, a page 
segment, or an overlay 

• 1M Image: commands required to present raster image data (raster images 
are rectangular arrays of print data consisting of picture elements (PELS), 
where each PEL consists of one dot) 

• 10 Image: commands required to present additional raster image data 
functions, such as those controlling image compression and scaling 

• Graphics: commands and orders (i.e., subcommands) required to present 
vector graphics 

• Bar code: commands and data controls required to present machine-read
able bar code 

• Page Segments and Overlays (two towers): commands required to store 
and present constructs containing text, graphics, image, and bar-code infor
mation 

• Loaded Font: commands required to load and delete font information 

To claim IPDS support, IBM says a product must implement all com
mands in the device-control set (i.e., those concerned with error reporting 
:Jnd acknowledgment of commands), at least one subset of the eight towers, 
and all required commands, orders, and controls for each supported tower 
or subset. For more information about IPDS protocol and architecture, see 
Further Reading, page 500. 

Communicating with an IPDS Printer 
When you send a regular SNA Character String (SCS) job to an IPDS 
printer, the spool writer examines the device configuration and converts 
the SCS command format to an IPDS command format before sending it to 
the printer. Figure 15-25 summarizes the available methods and tools for 
accessing specific functions of IPDS from a S/36 host. 



494 5/36 Power Tools 

Figure 15-25 

S/36 IPDS 
interfaces 

Application IPDS Options 

1. Business Create bar charts, pie charts, line charts, surface charts, 
Graphics Utilities scatter diagrams, Venn diagrams, text only diagrams, and 

histograms. 

2. 	DisplayWrite/36 Merge text and graphics, such as charts and diagrams from 
Graphics and BGU, on a single printed page using the INCLGRPH 
Text merge command. 

3. 	High-level Print typical text listings and ()pplications from S/36 
languages (HLLs) Assembler, BASIC, COBOL, and RPG II. 

4. 	Intermixing IPDS Send most IPDS commands to the printer using the IPDS 
data streams Advanced Functions PRPQ transparent features. 
with HLLs 

5. IPDS Advanced Print text, graphics, and bar codes selecting: LPI, font, text, 
Functions PRPQ bold, print quality, color, filled areas,graphics segments, 

character size, and character orientation. Draw circles, 
lines, and filled areas. Select filled area patterns, line type, 
line width, and page position. Print bar codes: MSI, UPCA, 
UPCE, UPC2, UPC5, EAN5, EAN8, EAN13, EAN2 add on, 
EAN5 add on, 2 of 5 Industrial, 2 of 5 Matrix, 2 of 5 
Interleaved, and 3 of 9 codes. 

For the S/36, the IPDS Advanced Functions PRPQ (PRPQ number 
P84094 for S/36 models 5360 or 5362 and PRPQ number P84095 for the 
5363 or 5364) lets you select printer options such as CPI, LPI, font, and 
color and lets you print graphics and bar codes. In addition, you can use this 
PRPQ to intersperse printer command streams and data within a high-level 
language application. You must use the data stream if your printer supports 
a particular function (e.g., some text attributes or overlays) that is not avail
able in the high-level language. 

The IPDS command streams you send to an IPDS printer using the 
Advanced Functions PRPQ are embedded within a standard group of ini
tialization commands from the host system. Ifyou need to override any of 
the standard set of commands, you must send that particular command with 
the parameter(s) desired. You can send any command streams that are sup
ported by your IPDS printer, except for those that request an acknowledg
ment (e.g., the Sense Type and Model command). In this case, the printer 
would return the information requested, but the application would not be 
able to handle the data, and you may encounter unpredictable results. 

The IPDS Advanced Functions PRPQ does not include documentation 
to explain how to write and send IPDS commands to generate sophisti
cated commercial output, such as routines for in-house publishing or color 



Printers 495 

printing or programs that let you vary elements of reports or forms by cus
tomer. To access these printer capabilities, you must use the IPOS trans
parent data stream function of the PRPQ to send command data streams 
that are similar to PC printer control codes used to change character density 
or font. These data streams consist of printer commands such as Write Text 
or Begin Page and data that is specific to each command. 

IPDS Command Structure 
You use hexadecimal notation to represent values in an IPOS low-level 
command. The structure of a typical IPOS command data stream is: 

FORMAT BYTE 
Llll 0-1 (byte count) 
D6xx 2-3 (command) 
FF .4 (Flag) 
CCCC 5-6 (Correlation ID) 
Data 7-n 

Byte count refers to the two bytes that indicate the total number of bytes in 
the command stream. Next, hex 06 is followed by a command identifier 
(xx). The first bit of the flag byte indicates whether a response is required 
from the printer for the particular command. If the first flag bit is turned 
on, the printer must respond either positively or negatively. If the second 
bit is turned on, a correlation 10 is present. The correlation 10 is an 
optional two-byte identifier for identification of a particular command in a 
sequence of commands. Finally, the data can include parameters, subcom
mands, orders, data fields, and operands for specific commands. 

To select near-letter-quality print (NLQ), for example, the IPOS com
mand (without the optional correlation 10) is: 0008063300F800FE. 
(Remember, all values placed in the command data stream are in hex nota
tion). 0008 indicates the command string is eight bytes long; 0633 identi
fies an "Execute Order Any State" command; the 00 flag means no 
acknowledgment is required from the printer and a correlation 10 is not 
included; and F800FE is data consisting of the Print Quality Control 
(PQC) order and PQC order data to select NLQ. 

Creating IPDS LeHerhead 
Now that you're equipped with some understanding of IPOS and its com
mand data streams, let's look at how you actually send a data stream to cre
ate a letterhead that combines graphics with nonstandard text. 

A typical letterhead consists of a solid or shaded logo and nonstandard text 
that often is printed in double-wide, bold, or italicized text. Although a S/36 
host does not support italic and double-wide text attributes, I use the letter
head in Figure 15-26 to demonstrate how you can use printer data streams to 
select these attributes and also produce the arc segment of the filled area. 



496 S/36 Power Tools 

Figure 15-26 

Sample 
letterhead 

LeHerhead Text 

CASEY·S 

Bakery 

Supp~ie:s 

The text attributes of the letterhead require a LFE (Load Font Equiva
lence) command to the printer that specifies double-wide, italicized print 
and bolding (the equivalence or E portion of the: LFE command). Data 
streams specify the text to be printed - Casey's Bakery Supplies, in this 
example - as well as the line positioning and spacing within the line of 
printed text. Other commands used to print the text of this letterhead are: 

• Exception Handling Control: to control error reporting 

• Set Media Size: to specify the page size 

• Load Page Position: to position the current print location on the page 

• Load Page Descriptor: to specify printing attributes of the page 

• Print Quality Control: to specify the print quality of printed text (to print 
the Courier font (OOOB) specified in the LFE command, the print quality 
must be NLQ or DP Text) 

• Begin Page: to switch from Home State to Page State 

• Write Text: to send a Set Character Attributes subcommand to select the 
local font 10 to be used when printing text 

The IPDS Reference manual (S544-3417) - but not the IPDS Advanced 
Functions PRPQ manual- provides general information to determine 
appropriate commands. Because each printer is different, you should also 
refer to the Printer Product and Programming Description Manual for the spe
cific product you are using. 

LeHerhead Graphics 
For the graphics segment of the letterhead, I chose high-level commands 
from the Advanced Functions PRPQ to select the print position, to draw 
lines, and to define the graphics window on the page (Figure 15-27). The 
positioning is designed for ll-inch-by-14-inch paper. 

The arc requires data streams that the S/36 host does not normally sup
port. To make coding IPDS commands easier, I use a "script" contained in 



Printers 497 

Figure 15·27 

Positioning the 
logo in the 
graphics window 

Figure 15·28 

Graphics source 
member LOGO 

(2.5,27 ~ (3,3).-----.
(2,1.87 

CASEY'S 

Bakery 

Supplies
~ 

(2,1.13) / 

~ (1.5,1) L(2.37,1.13) 

V (3,0)
"'-(0,0) 

a source member to drive a general-purpose program that generates IPDS 
calls based on the scripted instructions. The source member in Figure 15
28 contains the PRPQ high-level commands and, because a high-level com
mand was not available from the PRPQ, a graphics transparent command to 

print the arc using a data stream order (Fillet at Current Position, line 14). 
You format a source record as follows: 

T FFFFFFFFOOOOOOOOPPPP ... PPP 

The first position specifies the subroutine type (SUBTYP) and is either T, 
G, or B for text, graphics, or bar codes, respectively. These subroutines, 
provided by the IPDS Advanced Functions PRPQ, are available in RPG, 
COBOL, and Assembler versions. The graphics and bar code subroutines 
can be used only with IPDS printers. 

3 4 5 7 
G IPDSPRPQBEGSEG 0.00.0.00.3.00.3.00 Select graphics window 
G I PDSPRPQPOS IT! ONl .50.2.00 Draw square 
GIPDSPRPOLINE 1.50.1.00 
G IPDSPRPOLINE 2.50.1 00 
G IPDSPRPOLINE 2 50.2.00 
G IPDSPRPOUNE 1.50.2.00 
G IPDSPRPOPOSITION2 00.1 13 Draw filled region 'C' 
G IPDSPRPQCOLOR BLUE 
G JPDSPRPQPATTYPE 16 

http:1.50.2.00
http:1.50.1.00
http:0.00.0.00.3.00.3.00
http:L(2.37,1.13


498 5/36 Power Tools 

G IPDSPRPQBEGAREA 
G IPDSPRPQLINE 2.37.1.13 
G IPDSPRPQLINE 2.37,1.B7 
G IPDSPRPQLINE 2.00,1.B7 
G IPDSPRPQIGTRANS B508065B08700B40065B 
G IPDSPRPQENDAREA 
G IPDSPRPQENDSEG End graph;cs w;ndow 

Following SUBTIP is an eight-byte field (FE..) containing the printer 
output file name (in Figure 15-28, IPDSPRPQ). Positions 11 through 18 are 
an eight-byte option field (00...) where you specify selected IPDS Advanced 
Functions PRPQ text, graphics, or bar-code options (for example, the LINE 
option in Figure 15-28). Parameters for the options are contained in an eighty
byte field (PP...) consisting of EBCDIC IPDS commands or orders. 

Once the Casey's Bakery Supplies logo printed out as expected, I put the 
printer in buffer dump mode to record the actual commands sent to the 
printer to produce the graphics logo. (The printer buffer dump or packet 
dump mode of an IPDS printer is extremely useful in identifying what data 
sueams the printer received and can help you determine what a typical 
sequence ofcommands is like.) The resulting commands from the S/36 host 
required to print the logo are a single Write Graphics Control command, two 
Write Graphics commands, and an End command. I merged these graphics 
commands with text commands as data streams to print the entire letterhead. 

Printing It All Together 
To merge the sample letterhead's text and graphics, I created S/36 proce
dure LTHD1$00 (Figure 15-29), RPG II program IPDSO$02 (Figure 15
30), and, using SEU, S/36 source member LETHDFIL (Figure 15-31) that 
contains IPDS command streams for use with any of the currently available 
IPDS midrange printers listed in Figure 15-32 or with any future IPDS
compatible printers. 

Procedure LTHD1$OO uses the S/36 FROMLIBR procedure to copy 
the source member (LETHDFIL) to a sequential disk file (IPDSINP), to 
specify the output file (IPDSPRPQ), and to load and run the RPG pro
gram. In using procedure FROMLIBR, you must ensure that the record 
length (98) matches the size of the record specified for both the RPG input 
file and the source member that contains the data streams and that the 
name of the disk file (lPDSINP) matches the name or label specified as 
the input file in the RPG program. 

RPG II Program IPDSO$02 
Program IPDSO$02 reads disk file IPDSINP using a CHAIN command 
with a counter (X) to access records and processes them using S/36 RPG 
subroutines SUBRSO (Text or Printer Options), SUBR51 (Graphics), or 
SUBR52 (Bar Codes). (This example uses only SUBR50.) 

http:2.00,1.B7
http:2.37,1.B7
http:2.37.1.13


Printers 499 

You format the record the same way as the letterhead graphics source 
member. Following the 80-byte parameter field is a two-byte RTCODE 
field (returned by the subroutine) that specifies whether the subroutine 
was executed or an error occurred. The return codes - which are character, 
not hex - are listed in Figure 15-33. 

You can include error-reporting or recovery in the RPG program based 
upon the return code. That is, if an error is returned by the return code, a 
message specific to the error can be posted. In the case of this program, any 
record encountered with an invalid field results in nothing being sent to 
the printer. Therefore, you can write comments throughout the input file 
and not affect the printed output. 

The RPG program processes each record in the input disk file and 
checks the option field with each pass. When the option field read is equal 
to END, the RPG program turns on the last record indicator and terminates. 
The only output specification in the RPG program contains the printer out
put file name and ejects to page 1, line 1 before printing any data. 

Source Member LETHDFIL 
You format source member LETHDFIL exactly as previous records. The 
data in each line of the source member consists of the subroutine type, out
put file name, option, and parameter. The output file name must always 
match the output file name specified in the procedure and RPG program, 
in this case IPDSPRPQ. The option field is always IHTRANS (to send 
IPDS home state command data streams) except for the last record, which 
is set to END. The parameter field consists of the hex IPDS command 
streams; for example, parameter field OOOAD63300F600E00002 (Figure 15
31, line 6) consists of the data stream for the Error Handling Control sub
command of the Execute Order Any State (XOA) command. (Refer to the 
IBM product-specific Printer Product and Programming Description Manual 
for information on each command.) 

We have looked at a procedure and program that lets you combine 
graphics and nonstandard text using IPDS command streams. You could 
construct others that let you develop overlays, business reports, and form 
letters in which elements vary by customer or that use data streams for 
color printing, AIAG labels, or in-house publishing. Future articles will 
help you with these functions. Learning to communicate with your IPDS 
printer enables you to make better use of its local storage capacity and its 
power to incorporate print elements from different applications. 



500 5/36 Power Tools 

Figure 15-29 

Procedure 
LTHDl$OO 

Figure 15-30 

Program 
IPDSO$02 

THIS IS A PROCEOURE TO CALL INDIVIDUAL RPG OBJECTS TO CREATE 
AN OUTPUT FILE FOR THE IPDS PRINTER: GRAPHICS - CREATE A 
LETTERHEAD FORM USING PRPQ COMMANDS AND DATA STREAMS. 

1. 	 A SOURCE MEMBER CONTAINING THE IPDS PARAMETERS FOR 
SUBROUTINE 50 & 51 (RPG GRAPHICSITEXT ROUTINES). 
SEE SOURCE MEMBER: LETHDFIL 

2. 	 THIS PROCEDURE COPIES THE ABOVE SOURCE MEMBER 
(LETHDFIL) TEMPORARILY TO THE SYSTEM DISK. THE 
TEMPORARY FILE IS USED TO PASS THE PARAMETERS TO 
THE SUBROUTINE USED. WITH AN RPG INPUT STATEMENT 
SEE FILE NAMED: IPDSINP 

3. 	 THE IPDS COMMANDS ARE MERGED WITH THE DATA OUTPUT IN 
AN OUTPUT FILE TO BE PRINTED. THIS IS DONE WHEN THE 
RPG PROGRAM IS CALLED. SEE APG SOURCE MEMBER: 
I PDSOS02 

4. 	 THE ABOVE RPG PROGRAM WILL CREATE 1 OUTPUT FILE TO BE 
SPOOLED TO THE PRINTER. SEE OUTPUT FILE ON THE SPOOL 
WRITER: IPDSPRPQ. 

FROMLIBR LETHDFIL.SOURCE.IPDSINP.Fl.J.175 ..... 98 
II PRINTER NAME-IPDSPRPQ.PRIORITY-5 
II FILE NAME-IPDSINP 
II LOAD IPDSOS02 
II RUN 

* . 4 6 B 
0001 IPDSO 
0002 F*******************************·*·*********************** •••• * •••• ** 
0003 F* PROGRAM WHICH USES THE IPDS ADVANCED FUNCTIONS PRPa. THIS 
0004 F* PROGRAM WILL ALLOW THE PROGRAMMER TO MERGE THE BAR CODES. * 
0005 F* GRAPHICS. AND TEXT OPTIONS OF THE PRPa INTO A SINGLE 
0006 F* PRINT JOB. 
0007 F* 
0008 F* THE INPUT SOURCE FILE MUST SPECIFY THE SUBROUTINE USED 
0009 F* (50. 51. OR 52). THE PRINTER OUTPUT FILE NAME. THE 
0010 F* IPDS OPTION USED. AND THE ASSOCIATED PARAMETER VALUE. 
0011 F* 
0012 F* THIS SOURCE CODE WI LL CREATE A LETTERHEAD \/ITH A 
0013 F* PREDEFINED LOGO. THE LOGO CAN BE PRINTED ON THE PAPER 
0014 F* TO BE USED TO PRINT ADDITIONAL TEXT. THIS EXAMPLE IS 
0015 F* FOR EDUCATIONAL PURPOSES ONLY AND DOES NOT REFLECT A 
0016 F* REAL APPLICATION. THE IPDS DATA STREAMS ARE CREATED 
0017 F* FROM THE SOURCE FILE: LETHDFIL. 
0018 F* 
0019 F* WRITIEN BY: M. INGRAM 



Printers 501 

0020 F' DATE: 12/02/88 
0021 F' PROJ ECT DDCC 6524 I PDS PR INTER 
0022 F****·****·******·········************·**····**·······***** •••••••• ** 

0023 F**·· 

0024 F···· OUTPUT FILE FOR THIS PROGRAM IS IPDSPRPQ 

0025 F···· 

0026 FIPDSPRPQO 132 PRINTER 

0027 F*********··*********·*·*·*··*******************···***** ••• ************* 

0028 F···· TEMPORARY DISK FILE (F1) USED FOR INPUT TO THIS PROGRAM IS: 
0029 F···· IPDSINP. THE FILE CONTAINS THE SUBROUTINE USED (SUBTYP), 
0030 F···· THE FILE NAME (FNAME), THE OPTION USED (OPTION) AND THE 
0031 F···· PARAMETER VALUE (PARM) FOR IPDS ADVANCE FUNCTIONS PRPQ. 
0032 F*·"'''' 
0033 FIPDSINP IF 98 DISK 
0034 1··**·*****·*****·······**·***·******········*************•••••••••••• ** 
0035 I···· INPUT A RECORD AND CHECK FOR A VALID FNAME, OPTION, AND PARM 
0036 I···· THE RETURN CODE (RTCODE) SPECIFIES WHETHER THE SUBROUTINE 
0037 I···· EXECUTES PROPERLY OR NOT. 
0038 1**** 
0039 IIPDSINP NS 
0040 I 1 1 SUBTYP 
0041 I 3 10 FNAME 
0042 I 11 18 OPT! ON 
0043 I 19 9B PARM 
0044 C START TAG 
0045 C Z-ADD1 X 30 
0046 C LOOP TAG 
0047 C X CHAINIPDSINP 91 
0048 C X ADD 1 X 
0049 C SUBTYP COMP 'T' 20 
0050 C SUBTYP COMP 'G' 21 
0051 C SUBTYP CaMP 'B' 22 
0052 C 20 EXIT SUBR50 
0053 C RLABL FNAME B 
0054 C RLABL OPTION 8 
0055 C RLABL PARM BO 
0056 C RLABL RTCODE 
0057 C 21 EXIT SUBR51 
0058 C RLABL FNAME B 
0059 C RLABL OPTION B 
0060 C RLABL PARM 80 
0061 C RLABL RTCODE 2 
0062 C 22 EXIT SUBR52 
0063 C RLABL FNAME 8 
0064 C RLABL OPTION 8 
0065 C RLABL PARM 80 
0066 C RLABL RTCODE 2 
0067 C OPTION COMP 'END 92 
0068 C N92 GOTO LOOP 
0069 C SETON LR 
0070 C END TAG 
0071 OIPDSPRPQD 01 lP 

Figure 15·31 

Source member 

LETHDFIL 


FORMAT OF SOURCE MEMBER IS: 
T FILENAMEOPTION PARAMETER__________________ 

• ERROR HANDLING CONTROL 
TAKE ALTERNATE EXCEPTION ACTION 


T IPDSPRPQIHTRANS OOOAD63300F600E00002 


• LOAD FONT EQUIVALENCES FOR TEXT STYLES • 
LOCAL FONT 10 • lB 
DOUBLE WIDE, ITALI CS, BOLO, 0 DEGREES, 10 CPI COURI ER, US CHAR SET 

T IPDSPRPQI HTRANS 0015D63FOOl BOOl B000000000025000B0000008BOO 

• SET MEDIA SIZE • 

PAGE SIZE - B 5 x 11 INCHES 


T IPDSPRPQIHTRANS OOOED68F0017000038402FD03DEO 




502 5/36 Power Tools 

• LOAD PAGE POSITION • 
SET CURRENT PRINT POSITION 

T IPDSPRPQIHTRANS 000FD6600000000400000004000000 

• LOAD PAGE DESCRIPTOR' 
USE LOCAL FONT 10 - 1B 

T IPDSPRPQIHTRANS 003006CF0000003840384000002F0000003DE000200000000000000000 
T IPOSPRPQIHTRANS 00002DOOOOOOOOOOOOOOFFFFOOOOFFFF1 BOOOO 

• XOA: PRINT QUALITY CONTROL' 
TEXT QUALITY - NLQ 

T IPDSPRPQIHTRANS 0008D63300F800FE 

• BEGIN PAGE' 

T IPOSPRPQIHTRANS 000906AFOOOOOOOOOO 


• WRITE TEXT USING NEW LOCAL FONT • 
USE LOCAL FONT #lB 

T IPDSPRPQIHTRANS 000A0620002B0303F01B 

• PRINT THE TEXT FOR THE RIGHT SIDE OF THE LOGO • 
SET CORRECT POSITION - BEGIN NEW LINES 

T IPDSPRPQIHTRANS 00100620002B0302D82BD302D82B0302082B[l302D82B0302D82BD30208 
T I PDSPRPQ IHTRANS 00090620002BD30208 

'CASEY'S BAKERY SUPPLIES' 
T IPDSPRPQIHTRANS 0022D62000404040404040404040 
T IPOSPRPQIHTRANS 4040404040C3C1E2C5E870E22B0302D82BD302D8 
T IPDSPRPQIHTRANS 0022D62000404040404040404040 
T IPOSPRPQIHTRANS 4040404040C281928599A8402B0302DB2BD302D8 
T IPDSPRPQIHTRANS 001BD62D00404040404040404040 
T IPDSPRPQIHTRANS 4040404040E2A49797938985A2 

• 	 ORAW LOGO USING GRAPHICS DATA STREAMS 
WRITE GRAPHICS CONTROL: 

GRAPHICS AREA POSITION CONTROL 
T IPDSPRPQIHTRANS 003C068400000BAC6BOOOOOOOOOOOOAOOO 

GRAPHIC OUTPUT CONTROL 
T IPOSPRPQIHTRANS 10A66800384010E010E0100000000000 

GRAPHIC DATA DESCRIPTOR 
T IPOSPRPQIHTRANS 1CA6BB00003B403B4000000000000010D410D40000000000000000 

WRITE GRAPHICS: 
T IPDSPRPQIHTRANS 0030068500700C000000000000002A00000000210408700B40 
T IPDSPRPQIHTRANS 8104087005A081040E1005A081040El00B40810408700B 
T IPDSPRPQIHTRANS 4021040B40065A260200012810 

WR ITE GRAPH ICS 
T IPDSPRPQIHTRANS 0033D68500700C0000000000060020000000006B4081040D5206 
T IPDSPRPQIHTRANS 5A810400520A8281040B400A828508065BOB700B40065B6000 

END GRAPHICS SEGMENT 
T IPDSPRPQIHTRANS 0005065000 

• SET HOME STATE • 
T IPOSPRPQIHTRANS 0005D69700 

• END JOB 
T IPDSPRPQEND 



Printers 503 

Figure 15-32 

Midrange printers thot support IPDS 

Vendor 

Decision Data 
Computer Corp. 

IBM 

Interface Systems 
Inc. 

Memorex-Telex 

Figure 15-33 

Return codes 

Model Type 

6524-61 Matrix 

6524-41 Matrix 

3812-2 Electrophotographic 

3816-2 Electrophotographic 

4224-101 Matrix 

4224-102 Matrix 


4224-1E2 Matrix 


4224-1C2 Matrix 


7224 Matrix 

1224 Matrix 

4 models 


40 - normal completion 
41 - the option field was invalid 
42 - the parameter field was invalid 
43 - an I/O error was detected 
44 - the file name field was invalid 

Speed Price 

400 CPS $ 4,950 
standard memory 

400 CPS $ 5,300 
expanded memory 

12 PPM $ 9,490 

24 PPM $18,495 

200 CPS $ 4,200 
standard memory 

400 CPS $ 6,000 
standard memory 

400 CPS $ 6,500 
expanded memory 

400 CPS color $ 6,700 
expanded memory 

200/400 CPS Not 
Available 

200/400 CPS $ 4,200 to 
6,700 



504 5/36 Power Tools 



Programming 


-CHAPTER 

16 




506 5/36 Power Tools 

Debugging RPG Program Dump Files 

by Mel Beckman 

Learn how to 
isolate bugs by 
producing and 
analyzing 
dump files. 

Most S/36 programmers are familiar with IBM's stock-in-trade RPG debug
ging tool- the DEBUG statement. Most programmers also know how inad
equate this tool is for real-world problem-solving b(:cause it displays only 
fields explicitly named on the DEBUG statement. Third-party interactive 
debugging aids improve the state of the art considerably, but these share a 
common fault with the DEBUG statement: you first must compile the pro
gram to run specifically in "debug" mode before doing any debugging, and 
then you must recompile it to take out the debugging when you are through. 

Unfortunately, bugs don't always give you the kind of advance warning 
you need to isolate a failing program, edit it to insert debugging statements, 
recompile it, and try to re-create the original problem. Intermittent bugs 
are especially irksome: if you must leave debugging code in a suspect pro
gram until the bug reappears, you hinder performance and generate reams 
of unnecessary debugging output you'll later have to analyze. And if the 
problem is occurring at a remote site, your troubles become even more 
complicated. There must be a better way. 

There is. The S/36, like most computers, is able to copy (Le., dump) 
the contents of main storage to a file on disk for later analysis by a program
mer. These files, called dump files, contain everything you need to track 
down many problems: the status of all indicators, the contents of variables, 
and the current instruction being executed. The symbol table in your RPG 
compile listing lets you determine the values of crucial variables and indi
cators from the dump file. While strictly a quick and dirty debugging tool, 
dumps are useful because they let you perform a thorough "postmortem" 
analysis of a failing program. 

The dump facility is built into the S/36 and can be invoked at any time 
for any program - you don't need to add anything to your system to use it. 
And because dumps are stored in files on disk, they can be copied to 
diskette at a remote site and sent to your central programming site, giving 
you an important long-distance problem-solving tool. Learning how to pro
duce and analyze dump files adds another weapon to your debugging arse
nal and gives you a better idea of what's happening inside your machine. 

To become a proficient dump debugger you must learn how to produce 
a dump file, how to use IBM's DUMP procedure to examine a dump, and 
how to use the dump information to isolate bugs in your programs. 

Getting a Dump 
There are three ways to get a main storage dump of your program: 

1. Respond with option 0 to any system message that allows option 3. 



Programming 507 

2. Use the D option on a CANCEL command (e.g., CANCEL WI082345,D). 

3. Run the IBM SETDUMP procedure. 

The first two methods terminate your program after the dump is taken. 
This shouldn't be a problem because you're using dumps to debug particu
larly thorny problems that probably stop your program anyway. The third 
method, the SETDUMP procedure, lets your program continue execution 
after the dump, but using that method lies outside the scope of this article. 
Procedure SETDUMP is an advanced tool requiring more knowledge of 
RPG internals than this article covers. 

An RPG array index error is a typical problem you might decide to 
debug with a dump. An error is generated when the array index value is 
negative, zero, or greater than the defined maximum. While RPG is quick 
to point out which array you've slighted, it doesn't tell you what index 
value provoked the error. A dump file reveals this secret to you. Figure 16
1 shows a small sample program, SAMPLE, that causes an array index error 
when it runs. The array index error causes the message: 

RPG-9014 Options (0 23) 
Index error in array DAY . . . 

The message allows option 3, which means you can optionally request a dump 
by selecting option D. The D option results in a series of additional messages: 

SYS-0016 

Storage dump has been requested 

SYS-1875 

Task dump in progress to disk W1111858 

SYS-1879 Options (01) 

#DUMP.xx - Task dump taken to this file 


You should answer message SYS-1879 with option O. Selecting option 1 
prompts you for a diskette for saving the dump and failing program mod
ules - something you would do normally only for remote sites that need to 
.send the dump to you for analysis. 

The system stores dumps on disk in files named #DUMP.nn, where nn is a 
two-digit number from 00 through 99. You can keep up to 100 such dump files 
on disk at one time (not a good idea if disk space is limited), and you can copy, 
rename, delete, save, or restore them just as you would any other disk file. 

The IBM Dump Utility 
After you obtain a dump file on disk, you can examine it using IBM's dump 
utility. (If your system has password security, to use the dump utility your user 
ID must have IBM Service Aid authority, which you can set using the 
SECEDIT procedure.) You invoke the dump utility using procedure DUMP: 

DUMP MAIN,CRT,F1 ,#DUMP.nn 



508 S/36 Power Tools 

The first parameter, MAIN, tells the dump utility you want to examine 
a main storage dump file. The second parameter, CRT, indicates you want 
to browse the file interactively (you could optionally specify PRINTER to 
get a printed copy of the dump file). The third parameter is F 1 for dump 
files on disk, or 11 for dump files on diskette (usually your dumps will be 
on disk). The last parameter is the name of the dump file you want to 
examine. If you omit this parameter, procedure DUMP displays informa
tion about the most recent dump file on disk and lets you browse among 
any other dump files on the same device (disk or diskette). If you want to 
browse the most recent dump file on disk interactively (the usual case), 
enter this abbeviated command: 

DUMP ,CRT 

Procedure DUMP then shows a status display for the dump file you 
selected (Figure 16-2). 

The summary screen shows several important pieces of information 
that help you identify the dump you want to examine: the name of the 
dump file, the reason the dump was taken (usually "Storage dump has 
been requested"), the date and time the dump was taken, and the name of 
the procedure and program contained in the dump. (For dumps from 
remote sites, the SSP and microcode release levels might help you detect 
release compatibility problems.) Other values on this screen won't be used 
in simple RPG dump analysis. The bottom of the summary screen lists the 
command keys you can press for further action. If you didn't specify a par
ticular dump file, you can use the Roll or Enter keys to page through all the 
dumps available. When you've determined that the dump file displayed is 
the one you want to examine, press Command key I, and the contents of 
the dump file will appear (Figure 16-3). 

The dump contents screen consists of three heading lines, containing 
much information you can ignore, followed by 256 bytes of dump data dis
played in both hexadecimal and EBCDIC format. The rightmost column of 
the screen shows the EBCDIC translation ofthe 16 bytes on each line listed 
on the left side of the screen in hex. Each line of data is preceded by its 
beginning hex memory address. For example, the last line of data in Figure 
16-3 begins at hex address OOOOFO in memory and contains the hex bytes 
D6C640C9C2D4 that correspond to the EBCDIC characters OF IBM. Again, 
the bottom line of the screen lists the available command keys. You can use 
the Roll or Enter keys to page through dump data 256 bytes at a time. 

Procedure DUMP positions the cursor at the address field for the first 
data line, which is the only place you need to enter data for RPG debug
ging. The address field is six digits long, but the cursor is positioned at the 
third digit because the two leftmost digits usually stay set to 00. Immedi
ately following the address field is a one-character storage option field that 
selects the kind of storage to be viewed. The only option you're interested 



Programming 509 

in for RPG program debugging is X (for translated storage), although M (for 
real main storage) sometimes shows up on the initial display. (Procedure 
DUMP automatically sets this option for you as required, but if you key 
over it accidentally, reset it to x.) 

Geffing to the Top 
The initial dump contents screen reflects the state of the job at the time 
the dump occurs. You'll probably need to look at an earlier state of the job 
because when the dump occurs, your job may actually be executing an SSP 
subprogram instead of your RPG program. An RPG program calls many 
SSP subprograms to perform tasks such as disk file operations, workstation 
input/output, and message display. In fact, when you obtain a dump by 
answering a system message with option D, your job is executing the sys
tem message subprogram when the dump occurs. Because each of these 
subprograms has its own 64 K region, or address space, the address informa
tion you use (from the symbol table in your RPG compile listing) to exam
ine your RPG program is valid only when you're displaying data for your 
RPG program's address space. Furthermore, IBM subprograms themselves 
can call, or invoke, other IBM subprograms. Each such call increases the 
number of invocation levels through which you must backtrack to locate . 
your RPG program's address space. Fortunately, procedure DUMP pro
vides a command key that lets you quickly navigate to the top invocation 
level that contains your RPG program's region. 

Each time you press Command key 5 (labeled scan at the bottom of the 
screen), procedure DUMP "backs up" one invocation level. When the invo
cation level changes, the numbers to the right of the RB and SB captions in 
the display heading change; if neither of these numbers changes after press
ing Command key 5, you're at the top invocation level and the region for 
your RPG program is displayed. Thus, to display your RPG program region, 
simply keep pressing Command key 5 until neither the RB or SB numbers 
change. The address field (where the cursor is positioned) will read 
OOOOOOx. Figure 16-4 shows the dump display of SAMPLE's RPG region. 

Inside RPG 
The Reserved Object Communication Area (ROCA) ia a data area reserved 
for the first 256 bytes of every RPG program. ROCA contains internal work 
areas and constants used by your program as well as a few other items of 
interest. Annotations on Figure 16-4 point out those values useful for debug
ging: the contents of the pre'defined field UDATE, the date and time the 
program was compiled, and the indicator array. You should match the compile 
date and time from the dump with that printed on the compile listing you 
use to debug the dump to verify that you're working with the right listing. 

The indicator array contains one bit for every RPG indicator and sev
eral bits for RPG internal switches used for cycle control. You can decode 



510 5/36 Power Tools 

this array using the table in Figure 16-5. Each line in the table represents 
one byte in the indicator array; the displacement into ROCA is the address 
of the byte. The indicators contained in a particular byte are listed on each 
line under the column heading for the hex value re:presenting that bit. To 
decode the table values and find out which indicators were on when the 
dump occurred, translate the hex value to binary. Note which bits are on 
(i.e., have a value of 1). Next, match up the bit pattern with the table 
columns in Figure 16-5. For example, in the dump of ROCA for program 
SAMPLE (Figure 16-4), the indicator byte at hex address C3 is 60, which is 
01100000 in binary. The second and third digits are 1, so you use the corre
sponding second and third columns, 40 and 20 respectively, in the indicator 
table in Figure 16-5. You can see the line for address C3 shows that indica
tor LO is in the 40 column and that indicator LR is in the 20 column. 
Therefore, these indicators were on when the dump occurred. 

The Heart of the MaHer 
Much of your sleuthing through a dump tracking down bugs consists of 
examining the values of variables that point a finger at your problem. For 
this task, you must refer to the symbol table portion of the RPG compile 
listing for your program, the section entitled EXECUTION TIME 
TABLES AND ARRAYS and FIELD NAMES USED. Figure 16-6 shows 
the symbol table for program SAMPLE. 

The first section of the symbol table lists all the tables and arrays in your 
program along with their defined entry lengths and the number of entries. 
The column headed T/A DISP gives the hex address of the rightmost byte 
of the first element in each table or array. You can use this address to look 
directly at the contents of the array in the dump. In the example, the array 
DAY starts at hex address OlOF. If the address you want to examine isn't cur
rently on the screen, you can page to it, or you can enter it in the address 
field and press Enter. Procedure DUMP then displays the 256 bytes starting 
at the given address. Figure 16-7 shows the 256 bytes of program SAMPLE 
starting at hex address 0100, and it is annotated to show where the array 
DAY is located. Remember that the rightmost byte of the first element of 
array DAY is at 01 OF. The other elements follow contiguously (as usuaI" in an 
array), as shown in the blocked-off hex and EBCDIC sections of the display. 

The second section of the symbol table lists every field, its length, and 
its memory address. Refer again to Figure 16-6 and note that field X is 
located at address 0137, and field TODAY is located at address 0139. As 
with arrays, these addresses point to the rightmost byte of the field (except 
for data structure names, which point to the leftmost byte of the entire data 
structure). Figure 16-7 shows that the value offield X is 21 and the value of 
field TODAY is 38. 

By looking at the value of X (which is used as an index to array DAY), 
you Clln see the problem with program SAMPLE. Field X is set to 21, but 



Programming 511 

array DAY contains only 20 elements. Looking at the source listing for 
SAMPLE (Figure 16-1) reveals that the ADD statement in line 13 is the 
only statement where array DAY is referenced and indicator LR is on (as 
you determined by examining the indicator array). Line 13, therefore, is 
the cause of the array index error message. Further inspection reveals that 
the DO loop that automatically increments X from 1 through 20 exits with 
the value 21 in X - one higher than you expected. Now that you've iso
lated the bug, you can change the code to eliminate it. 

Many intermittent bugs can be tracked down in just this manner - by 
looking at the state of variables and indicators to narrow down the range of 
suspect code. 

Array Index Errors in Particular 
Finding the array index error problem in program SAMPLE was easy 
because you had to look at only one index variable. But what if an array 
index error occurs for an array that is indexed with many different vari
ables? Which of the indexes caused the problem? 

A characteristic of RPG internals can answer this question quickly. 
When an array index "error occurs, the contents of the Instruction Address 
Register (lAR) point very near to the address of the offending variable 
index. The value of the IAR appears to the right of the caption IAR in the 
screen heading; it is 8002C2 in the dump for program SAMPLE (Figure 16
7). For RPG dump debugging, you can disregard the 80 in 8002C2. The 
address you want is 02C2; type it in the address field, press Enter, and the 
screen shown in Figure 16-8 appears. The third and fourth bytes on the 
first data line may be the address of the variable index causing the problem 
- in this case 0137 - but you won't know until you check the symbol 
table. Referring to the symbol table for program SAMPLE (Figure 16-6), 
you can see that 0137 is the address of X, which is indeed the errant index. 
If 0137 were not found in the symbol table, by definition the error occurred 
on a MOVEA operation (a conclusion based on knowledge of how the RPG 
internal routine for the MOVE A operation sets up array indexes), and the 
address of the variable index is in the 10th and 11 th bytes. 

Even in a large program, once you've identified the variable index caus
ing an array index error, it's easy to isolate which occurrence of that variable 
index is the culprit by checking the contents of nearby variables. Because a 
dump reveals the value of all variables and indicators, this task is straight
forward in contrast to the old approach where you insert DEBUG state
ments everywhere the variable index is used, recompile the program, and 
go through possibly complicated maneuvers to reproduce the problem. 

GeHing in Deeper 
You can extract even more information from a dump when armed with 
additional information about the internal structure of an RPG program. 



512 5/36 Power Tools 

One source for this - still available from IBM - is the System/34 RPG 
Logic Manual (LY21-0S6S). Although this volume ostensibly covers only the 
S/34, the internals of an RPG program on a S/36 are nearly identical. For 
more details on the dump utility and on procedure SETDUMP (which lets 
you dump a running job without terminating it), look in the IBM System/36 
Program Problem Diagnosis and Diagnostic Aids (SY21-0S93-S). This pUblica
tion also discusses the IBM Dump File Analysis utility (a standard compo
nent of SSP), which you can use to get an overview of all jobs running on 
the system at the time a dump was taken - especially useful for analyzing 
dumps from remote sites. 

While dumps aren't a cure-all for your debugging woes, they have their 
place on the S/36. When you must track down intermittent errors after they 
appear, knowing the basics of dump file analysis can keep you out of the 
dumps. 

8 
0001 H SAMPLE 
0002 H* 

Figure 16·1 

Program 
0003 H* Sample program for RPG dump debugging

SAMPLE 0004 H* 
0005 E DAY 20 2 0 
0006 C DO 20 X 20 
0007 C MOVE UDAY TODAY 20 
0008 C ADD X TODAY 
0009 C MOVE TODAY DAY.X 
0010 C END 
0011 C* 
0012 C SETON LR 
0013 C ADD 30 DAY.X 

Figure 16·2 

Dumpfile S/36 MAIN STORAGE DUMP W1 

summary #DUMP.03 Task dump file 	 1 OF 4 
display 	 Storage dump has been requested 

Date 88/04/18 Time 11.28.27 
SSP Re 1 05 Mod 01 
MCODE Rel 05 Mod 10 
TB 02C560 JCB 008D50 RB 02BF20 MIC 0016 
XRl 02BF60 XR2 02BF70 IAA 8011 E9 ARA 00F4 
WR4 03DO WR5 0000 WA6 OOEO WR7 8001 
PMSR OA04 OP F40104 ACE 000000 DIR 80 
Procedure LI BRX Program SAMPLE 

Cmdl-Select this dump file Cmd4-De1ete this dump file Enter-Page 
Cmd7-End Ao 11 - Page 

http:11.28.27


Programming 513 

Figure 16-3 

Dump contents #DUMP.03 S/36 MAIN STORAGE DUMP Wl 
TS 02C560 RS 028F20 IAR 8011 E9 XRl 028F60 WR4 03DO WR5 0000 PMSR OA04 

screen S8 000000 ARR 00F4 XR2 028F70 WR6 OOEO WR7 8001 DIR 80 

ADOR 00 04 08 OC 
OOOOOOM 00000000 00000000 00000000 00000000 
000010 00000000 00000000 00000000 00000000 
000020 00019EOO 00000000 00000000 00000000 ,000030 00000000 00000000 00000000 00000000 * 
000040 00000000 00000000 00000000 00000000 
000050 00000000 00000000 00000000 00000000 
000060 00000000 00000000 00000000 00000000 ,000070 00000000 00000000 00000000 00000000 

000080 00000000 00000000 00000000 00000000 

000090 00000000 00000000 00000000 00000000 . . . . . . . . . . . . . . * 

OOOOAO F5F7F2F7 60E2E2Fl 4040C350 40C30607 *5727-SS1 (C) COP* 

000080 E809C9C7 C8E340C9 C20440C3 06090740 'YRIGHT IBM CORP * 

OOOOCO Fl F9F8F3 6840Fl F9 F8F640D3 C9C3C505 '1983. 1986 LICEN* 

000000 E2C5C440 04C1E3C5 09C9Cl03 40604007 'SED MATERIAL P* 

OOOOEO D9D6C7D9 C1D44007 090607C5 D9E3E840 'ROGRAM PROPERTY * 

OOOOFO 06C640C9 C2044040 40404040 40404040 'OF IBM 


Cmdl-Restart Cmd3-0ump fi le status Cmd5-Scan Cmd7-End Roll-Page 

Figure 16-4 
*OUMP.03 S/36 MAIN STORAGE DUMPDumpofRPG 
TB 02C560 RB 01MOO IAR 8002C2 XR1 800000 WR4 0300 WR5 0000 PMSR 1F02reserved object 

communication SB 014240 ARR 00F4 XR2 8000B4 WR6 OOEO WR7 8001 OIR 80 

area 
ADOR 00 04 08 OC 

OOOOOOX C2FOFOFO FOFOFOFO FOFOFOFO FOFOFOFO *BOOOOOOOOOOOOOOO* 

000010 FlOOOOOO 00008008 00000500 00300000 *1 ................ * 


000020 00000000 00000017 00000000 00000000 ................ 

000030 00000000 00008000 24808007 000400SE .......... ' .... ,. * 


000040 38010080 00008000 0000001C 00000000 ................ 


000050 80080000 05001C30 00000000 00000000 " .............. 

000060 00170000 00000000 00000000 00000000 ................ 

000070 80002480 8008003E 7B7B04E2 *..... UMSGRP .... * 

000080 

000090 

OOOOAO 

OOOOBO C08701AE 0000C309 

OOOOCO 00010000 

000000 00000000 * ............ 5 .... '/< 


OOOOEO 00000000 00000000 00000000 00000000 ................ 

OOOOFO 000000C4 C1E84040 40010221 010F005E *... OAY . * 

Cmdl-Restart Cmd3-Dump file status CmdS-Scan Cmd7-End Roll-Page 

00000000 ................ 
00000000 ............... 

............ 



514 	 S/36 Power Tools 

Figure 16-5 

RPGll 
indicator table 

Figure 16-6 

RPG compiler 
symbol table 
listing 

Hex Byte Mask 

Displocement 

in.o ROCA 	 80 40 20 10 08 04 02 01 

C2 H4 H3 H2 H1 - Mr(lnt.) MR (Ex.) 1P 
C3 II LO LR H9 H8 H7 H6 HS 
C4 L9 L8 L7 L6 LS L4 L3 L2 
CS U1 U2 U3 U4 US U6 U7 U8 
C6 KH KG KF KE KD KC KB KA 
C7 KQ KP KN KM KL KK KJ KI 
C8 KY KX KW KV KU KT KS KR 
C9 07 06 05 04 03 02 01 
CA 15 14 13 12 11 10 09 08 
CB 23 22 21 20 19 18 17 16 
CC 31 30 29 28 27 26 25 24 
CD 39 38 37 36 35 34 33 32 
CE 47 46 45 44 43 42 41 40 
CF 55 54 53 52 51 50 49 48 
DO 63 62 61 60 59 58 57 56 
01 71 70 69 68 67 66 65 64 
02 79 78 77 76 75 74 73 72 
03 87 86 85 84 83 82 81 80 
04 95 94 93 92 91 90 89 88 
05 - - - - 99 98 97 96 
06 OV Ex. OG Ex. OF Ex. OE Ex. 00 Ex. OC Ex. OB Ex. OA Ex. 
07 OV 1st Int. OG lst Int. OF lst Int. OE 1st Int. 00 1st Int. OC 1st Int. OB 1st Int. OA 1st Int. 
08 OV 2nd Int. OG 2nd Int. OF 2nd Int. OE 2nd Int. 00 2nd Int. OC 2nd Int. OB 2nd Int. OA 2nd Int. 
09 Total cycle Control Overflow EOF on Close has "RESERVED 

switch 	 fields being look·ohead been 

processed processed entered 


Note: For each overflow indicator there are two internal indicators. The first internal indicator inqicates that 
overflow has occurred; the second indicator indicates that the overflow output code has been fetched. 

Ex. = External Int. = Internal 

Saurce: IBM 

EXECUTION TIME TABLES AND ARRAYS 

STMT# TABLE/ DEC ENTRY NUMBER OF OTT T/A 
DEFINED ARRAY pas LENGTH ENTRIES DISP DISP 
0001 DAY a 002 00020 0100 010F· 

FIELD NAMES USED 
STMT# NAME DEC LNG DISP 

0003 UDAY 0 0002 00A5 
0002 X 0 0002 0137 
0003 TODAY 0 0002 0139 



Programming 515 

Figure 16-1 
iDUMP.03 	 S/36 MAIN STORAGE DUMPRPG region 

starting at TB 02C560 RB 01AAOO IAR B002C2 XRl BOOOOO 00 PMSR IF02 
First element of DAY

hexadecimal SB 014240 ARR 00F4 XR2 BOOOB4 	 array (right-hand byte) DrR BO 
at hex oddress OIOE

address 0100 
ADDR 00 04 OB OC 

000100X 010F0135 010FOO02 C4ClEB40 4040~ * ... _.... DAY §* 
000110 F2F 

000120 F2F 

000130 F3F 

000140 

000150 04F40104 

000160 E20236F2 BI04F401 

000170 0179F401 040FF287 

OOOlBO BC5FlBDA DAF40104 

000190 7AOIC27A 40C37501 

0001AO 3CFOO139 OC2A013B 

OOOlBO C27B9FC3 7BFFC47A 40C37820 C3COIOOl "BtCiO: C.C{ ..... * 

OOOlCO C77BB009 F29004CO B702EA7A B009COB7 *GR2. {g. : R {g ..... " 

000100 02EA0410 0137013A 44EllOOl 3747Ell0 ................ 

0001EO 013CCOB4 02100401 013900A5 06010139 * .. {d ....... v .... * 

0001FO 0137COB7 022BOI0l 01370102 00040101 * . . {g ............ * 

Cmd1-Restart Cmd3-Dump file status Cmd5-Scan Cmd7-End Roll-Page 

http:iDUMP.03


516 5/36 Power Tools 

Figure 16·8 

Locating the 
errant array 

WItOUMP.OO 
index variable 

5538 WR5 0000 PMSR IF02 

OOEO WR7 8001 OIR 80 

TB 02E9CO XRl 800000 WR4 

ARR 00F4 8000B4 WR6 

2. See if the address 3. If not, the error was 
in 3rd & 4th bytes is on a MOVEA, and the 
in the symbol table. symbol address is in the 

AOOR 00 10th &11th bytes. 

0~02C2~ 141c101371 951COI02 2~F075~2 FF351002 11 •••• n ....••...•. * 

000202 390007C2 0202EOF4 01040FF2 87048004 * ... B•. \4 ... 2g •.. * 

0002E2 00C5F401 04040000 7820C3CO 1002057B '.E4 ...... Ci .. Nt.' 

0002F2 FF077BFF 087A02C2 7804C2F2 10037B02 'NQ: .B.B2 .. f .... ' 

000302 C2C08701 02FFCI05 C3C54004 CIC905E3 'Big.K.ANCE MAINT' 

000312 C505CI05 C3C54004 CIC905E3 C505CI05 'ENANCE MAINTENAN' 

000322 C3C54004 CIC905E3 C505CI05 C3C54004 'CE MAINTENANCE M' 

000332 CIC905E3 C505CI05 C3C54004 CIC905E3 'AINTENANCE MAINT' 

000342 C5D5CI05 C3C54004 CIC905E3 C505CI05 'ENANCE MAINTENAN' 

000352 C3C54004 CIC905E3 C505CI05 C3C54004 'CE MAINTENANCE M' 

000362 CIC905E3 C505CI05 C3C54004 CIC905E3 'AINTENANCE MAl NT' 

000372 C505CI05 C3C54004 CIC905E3 C505CI05 'ENANCE MAINTENAN* 

000382 C3C54004 CIC905E3 C505CI05 C3C54004 *CE MAINTENANCE M' 

000392 CIC905E3 C505CI05 C3C54004 CIC905E3 'AINTENANCE MAINT' 

0003A2 C505CI05 C3C54004 CIC905E3 C505CI05 *ENANCE MAINTENAN' 

0003B2 C3C54004 CIC905E3 C505CID5 C3C54004 'CE MAINTENANCE M* 

Cmdl-Restart Cmd3-Dump file status CmdS-Scan Cmd7-End Roll-Page 

Debugging RPG Programs Using Conditional DEBUG 
by Robert Griffiths 

RPG DEBUG for the S/36 is certainly a useful, if verbose, tool. The func
tion prints a status report for every program cycle, producing a potentially 
lengthy printout for long programs. But to find a bug, you probably don't 
need to examine every program cycle. The following procedure lets you 
avoid this information overload by making Command key 21 a toggle to 
turn the debug capability on or off. For example, you may want to turn the 
debug capability off during execution of those parts of a program you do 
not need to examine for bugs. Simply add the following lines to the proce
dure that calls the debug program: 

I I * ' Debug? (YIN-default N)' 
II IF ?R?=Y SWITCH XXXXXXX1 
II ELSE SWITCH XXXXXXXO 

http:tOUMP.OO


Programming 517 

1b make the procedure work in your program, you need to code a 1 in 
column 15 of the H-spec and include an F -spec for the debug print file. 
Then place the following line in the C-specs: 

NU8 SETON 88 

KV ADO 5 OEBUG 10 88 


Debugging RPG Programs Using DEBUG Files 
by John E. King 

If you're a real programmer, you probably wouldn't admit to using the 
DEBUG facility. But perhaps "somebody you know" finds it quite useful 
for tracking developmental problems. Perhaps this "somebody" would find 
it handier to route the DEBUG output to disk, where it could be displayed 
on a screen, than to wait for DEBUG output to print. The following steps 
route the DEBUG output to disk: 

1. Place a 1 in column 15 of the H-spec to enable DEBUG. (After the pro
gram is working, simply remove the 1 to disable DEBUG.) 

2. Include an F-spec for the DEBUG file, specifying an 0 in column 15, a 
record length of 132 bytes in columns 24 through 27, DISK in columns 40 
through 43, and an A in column 66. 

3. Use the BLDFILE procedure to create the DEBUG output file. 

4. Code a II FILE statement in the procedure to reference the DEBUG 
file. (Use DISP-OLD to overwrite an existing file.) 

5. Compile and execute the problem program. 

At any appropriate point, you may interrupt the program. Use LIST
DATA (or POP's browser) to view the contents of the DEBUG disk file. 
This technique is particularly useful when deVeloping interactive programs 
because it gives you the option to view immediately the result of each cycle 
through the program. 

Profiling an RPG Program 
by Mel Beckman 

Code on diskette:a Procedures PROFRPG, PROFPRT 
RPG programs PROFLl, PROFL2, PROFL3 

What would you say if I offered you a S/36 programming tool that could 
show you where RPG program tune-ups are needed and how thoroughly 
programs have been tested? Well, such a tool, called a program profiler, is 
available and can be yours for a small investment of three to four ho~rs of 
your time. A profiler can save you hundreds of programming hours that you 



518 5/36 Power Tools 

might otherwise spend tuning your programs or chasing bugs that should 
have been caught during testing. Written entirely in RPG and requiring no 
assembler code or patches, a profiler can be used on any S/36 with an RPG 
compiler. With only a few minor modifications, you can migrate a profiler to 
the AS/400. And even if you're a non-RPG shop, you can use this profiler as 
a model to build a profiler for your language of choice. So read on for the 
inside scoop on the science of profiling, how to build a profiler, and how to 
put the profiler to work for you. 

Profile of a Profiler 
Profilers are a stock-in-trade programming tool; several different profiling 
techniques have evolved over time. Some profilers require special hard
ware and super-accurate timers. Some use interrupts at random intervals to 
inspect the programs and build statistical maps that show where interrupts 
occur most frequently. Each profiling technique has advantages and disad
vantages. Hardware profilers yield high accuracy, but require expensive 
equipment. Statistical profilers, which require no special hardware, produce 
accurate results over long runs, but are inaccurate for short execution times 
or for interactive transactions. 

The profiler I describe here uses a technique called statement count
ing, which is the easiest profiling technique to implement and provides 
accurate reporting regardless of the execution time. The profiler works by 
counting the number of times each program source statement is executed. 
An example of a source listing produced by the profiler appears in Figure 
16-9. Only C-specs are executed in RPG, so the profiler prints only the cal
culation part of the code. The leftmost number on each statement shows 
the number of times the statement is executed during a test run. State
ments executed most frequently are probably the ones consuming the most 
time, while statements that aren't executed at all during a test program run 
aren't tested and therefore flag inadequacies in your test data. 

The profiled program used in this example is program FSMOCL. I pro
duced the sample profile shown in Figure 16-9 by running program FSMOCL 
against a batch of test data that attempts to exercise every part of the code. 

Inspect Figure 16-9, and you can see that the parts of the program exe
cuted most frequently are the "interpreter loop" (lines 47 through 54), the 
GETSYM routine (lines 62 through 70), and the DO routine (lines 76 
through 83). The next busiest part of the program is the SC routine (lines 87 
through 92). Clearly, any optimizing that reduces the number of times these 
statements are executed has the best chance of speeding up the program. 

Some RPG statements, such as comments and END statements, are 
not actually executed and thus have no statement counts. However, one 
statement in program FSMOCL that should be counted, but isn't, is the 
MOVE instruction on line 68, which, according to Ithe comments, is exe
cuted when the program senses an "end-of-line" condition. That this line 



Programming 519 

is never executed indicates that the test data is incomplete - it never 
includes an end-of-line case. This example illustrates well the profiler's 
value in measuring test coverage. Without the profiler, this test data flaw 
might not be discovered until the program fails in a production environ
ment, which is the very disaster you try to avoid by testing programs! 

Running the RPG Profiler 
The RPG profiler consists oftwo procedures, PROFRPG and PROFPRT, 
and three programs, PROFLl, PROFL2, and PROFL3. You use the profiler 
in a three-step process. In the first step, you run procedure PROFRPG: 

PROFRPG program,library 

where program is the name of the source program being profiled, and 
library is the name of the library containing the program. This step inserts 
extra RPG statements - called instrumentation code - into the RPG pro
gram being tested, creating a new version of the source program. 

In step two, you compile the newly "instrumented" source program 
and then run the resulting object program in its normal environment. Dur
ing execution, the instrumentation code collects statement execution 
counts that are written into a data file when the program ends. In step 
three, you run procedure PROFPRT to print the profiled source listing: 

PROFPRT program,library 

where once again, program is the name of the profiled program, and library 
is the name of the library containing the program. 

Profiling Mechanics 
Before you can examine the profiler's procedures and programs in detail, 
you must understand how the profiler inserts instrumentation code into a 
profiled program. Program SAMP (Figure 16-10a) shows the RPG source 
code for a simple program without instrumentation statements. Figure 16
lOb shows program SAMP after the profiler adds the instrumentation state
ments. For identification when printing the profile report, the profiler 
marks the added statements with #+ in positions 4 and 5. 

The first instrumentation line is an F -spec instructing the file to con
tain statement execution counts. This file's name is P#pppppp, where 
pppppp is the program name. The next instrumentation line is an E-spec 
that defines an array of statement execution counts. (The name of the array 
is #; the name must be only one character long so it can fit in the result 
field of subsequent ADD instructions with four-character index values.) 
This array contains one six-digit element for each statement being counted. 
Notice that the file name from the F -spec also appears in positions 19 
through 26 of the E-spec. This combination of F -spec and E-spec uses a 
convenient feature of RPG called end-of job atTay output, which automati



520 5/36 Power Tools 

cally writes the contents of the profile array (#) at the end of the job to file 
P#SAMP without requiring O-specs for file P#SAMP. 

The remaining instrumentation statements consist of one ADD instruc
tion for every counted statement. Each ADD instruction increments a par
ticular element in array #. The profiler places each ADD instruction so it is 
executed whenever its associated source statement is executed. Some 
source statements, such as comments and END (among others), are never 
executed and therefore aren't counted with instrumentation ADD state
ments. The profiler also uses positions 93 through 96 of the original source 
statement to store the corresponding array element number, which is used 
to retrieve the correct execution count for each original source statement 
when the profile listing is printed. 

You need not worry about the extra time and memory (i.e., overhead) 
used by the instrumentation code, except in programs approaching a 64 K 
compiled size (obtained from the end of the compilation listing). Execution 
overhead isn't important because the profiler's results are unaffected by the 
time consumed by instrumentation code, and you don't leave instrumenta
tion code in production programs. Memory overhead is 12 bytes per 
counted instruction - six for the array element, and six for the single 
machine instruction generated by an ADD to a literal array element. The 
P#pppppp output file requires a fixed overhead of about 1 K. A program 
containing 1,000 executable C-specs increases in size by only 13 K. 

How It Works 
Profiling requires three steps: inserting instrumentation code, compiling 
and running the profiled program, and printing the profiled source listing. 
Procedure PROFRPG (Figure 16-11) carries out the first step of profiling 
- inserting instrumentation code - by calling two RPG programs. Pro
gram PROFL1 (Figure 16-12) reads the original source program and inserts 
most of the instrumentation code. Because program PROFL1 makes only 
one pass over the original source code and doesn't know how many state
ment counters it needs until the end of that pass, it can't specify the num
ber of elements in the # array E-spec when it inserts that statement. So, in 
the LOA, program PROFL1 stores the number of elements needed, and 
Program PROFL2 (Figure 16-13) retrieves that value and inserts it into the 
E-spec. The last step in procedure PROFRPG copies the instrumented 
source member back into the source library under a new name with the 
form P$pppppp, where pppppp is the original program name. It is this new 
source member you must compile to get an instrumented object program. 

Program PROFL1 uses an unusual technique to read the original 
source program. Procedure PROFRPG (Figure 16-11) contains a II COM 
PILE statement between the II LOAD PROFLl and II FILE NAME
$SOURCE statements. The program uses the II COMPILE statement to 
automatically copy a specified library source membl;:r into a job file named 



Programming 521 

$SOURCE. You indicate the member name and library being copied with 
the SOURCE and INLIB parameters of the II COMPILE statement. This 
technique eliminates the extra step of calling $MAINT to copy a source 
member to a disk file for processing by an RPG program. 

The $SOURCE file contains 96-byte records. Unlike a $MAINT-gener
ated file, however, the $SOURCE files do not contain II COpy and II CEND 
statements to delimit the source member. Instead, $SOURCE marks the end 
of the file with a record containing f* in positions 1 and 2. You must set pro
gram PROFLl's Source Required attribute in the compiled object member 
for the II COMPILE statement to work. You do this by compiling the program 
with the OCL statements shown in Figure 16-14. The RPGC procedure's 
NOLINK and OBJECT parameters generate an intermediate R-module for 
program PROFLl instead of an automatically "linked" O-module from RPG. 
The OLINK (overlay linkage editor) procedure then performs the link edit 
step to produce an O-module (line 2 of Figure 16-14). The SRQ parameter of 
the OLINK procedure sets the Source Required attribute in the resulting 0
module, thus enabling the II COMPILE statement. 

You must carry out the second profiling step - compiling and running the 
profiled program - manually. The profiler can't compile the target program 
automatically because the program may require special values (such as MRT
MAX) on the RPGC compile procedure; only you know the OCL and execu
tion environment your program requires. When you compile the instrumented 
source program, remember that although the source member name (P$pppppp) 
differs from your original program name, the object program name is the same, 
and the instrumented object program replaces any existing version in the target 
library. To run your instrumented program, you must insert a II FILE state
ment for the P#pppppp file (which contains statement counts). Figure 16-15 
shows the II FILE statement added to the sample program's OCL. You can 
leave this statement in your OCL even after removing instrumentation 
because SSP ignores it if your program doesn't actually open the file. 

Procedure PROFPRT (Figure 16-16) carries out the last profiling step 
- printing the profiled source listing. It calls program PROFL3 (Figure 
16-17) to merge the statement counts from the P#pppppp data file with the 
instrumented source code contained in member P$pppppp. Program 
PROFL3 uses the II COMPILE statement technique to read the instru
mented source member, so be sure to compile program PROFL3 using the 
OCL in Figure 16-18 to set the Source Required attribute. 

Count the Cost 
Using a statement-counting profiler for performance tuning requires you to 
remember that all RPG statements aren't executed in the same amount of 
time. In particular, I/O operations take much longer than arithmetic opera
tions. As a rule of thumb, you can use the table in Figure 16-19 to estimate 
the execution-time cost of various RPG statements. Arithmetic operations, 



522 5/36 Power Tools 

such as ADD and SUB, and structural operations, such as COMp, DO, IF, 
and GOTO, are executed fastest because they run directly on the hardware 
in the S/36. Other arithmetic operations, such as MULT, DIV, and SQRT, 
are executed more slowly because the S/36 lacks multiply and divide hard
ware instructions, causing these operations to be carried out by subroutines. 
I/O operations are executed the most slowly because they must wait for the 
mechanical motion of devices such as disk arms and operator fingers. By 
using the factors in Figure 16-19, you can weight your profile statistics to 
give you a true measure of the time consumed by each statement. 

Now Make the Profiler Work for You 
You won't reap the benefits from useful tools such as this profiler unless 
you use them, so make this tool work for you by requiring its use in your 
shop. You should profile all of your regression (i.e., stored data) tests to 
ensure that the test data adequately exercises the code. You might even 
add a feature to the profile print program to flag executable lines that aren't 
executed. Also, before spending money on more memory or a faster CPU, 
profile your slowest applications to see if some simple coding changes 
won't ease your processing bottleneck. And keep a low profile. 

1 	 ...... 2 .. ... 4 . .. 5 .. 8Figure 16·9 	 6 .. 
0027 C· 

0028 c· Define local variables
Sample profiled 0029 c· 

365 0030 C MOVE 'ZEROS N 30 Next char indexsource program 
365 0031 C 	 MOVE "ZEROS S 30 Saved char index 
365 0032 C MOVE 'ZEROS STATE 30 Machine state 
365 0033 C MOVE 'ZEROS X 30 Column index 
365 0034 C MOVE 'BLANKS SYM 6 Input symbo 1 
365 0035 C MOVE "BLANKS ACTION 2 Action code 
365 0036 C MOVE "BLANKS KIND B Ki nd of name 

0037 c· 

0038 c· Initialization 

0039 c· 


365 0040 C Z-ADDl STATE Set initial state 
365 0041 C EXSR RD Read a line 

1 	 0042 C LR Z-ADDO STATE Quit if no input 
0043 c· 
0044 c· Interpreter loop 
0045 c· 

365 0046 C STATE DOWN EO Whi 1 e STATE-O 
27755 0047 C EXSR GETSYM Get next symbol 
27755 0048 C Z-ADDl X Initialize lookup 
27755 0049 C SYM LOKUPCOL. X 11 Lookup co 1umn 
154700050 C Nl1 Z-ADD7 X (Default is other) 
27755 0051 C MOVEASTT.STATE ROW.l Extract table row 
27755 0052 C MOVELROW.X STATE Set new state 
27755 0053 C MOVE ROW.X ACTION Save action code 
27755 0054 C EXSA DO Perform the action 

0055 C END 	 End DO 

0056 C" 

0057 C· Aoutine to get the next symbol 

0058 C" 


listing 

0059 C* Returns the next one-character symbol in the input line. 

0060 C* or 'eol' if the end of the line is encountered 

0061 C" 


27755 0062 C GETSYM BEGSR 
27755 0063 C MOVE • BLANKS SYM Clear symbol field 
27755 0064 C ADD 1 N Bump to next chr 
27755 0065 C N IFLE 120 If not end-of-line 
27755 0066 C MOVE INP. N SYM Save the symbol 



Programming 523 
0067 C ELSE Else it's e.o.l. 
0068 C MOVE 'eol ' SYM So return 'eol' 
0069 C END End IF 

27755 	0070 C ENDSR 
0071 C" 
0072 C" Routine to do the specified action 
0073 C' 
0074 C" Input: ACTION contains the action code to execute 
0075 C' 

27755 	0076 C DO BEGSR Depending on ACTION 
0077 C ACTION CASEO' sc' SC Save character 
0078 C ACTION CASEO' pi' PI Print identifier 
0079 C ACTION CASEO'pk' PK Pr-j nt keyword 
0080 C ACTION CASEO'pp' PP Print parameter 
0081 C ACTION CASEO'rd' RD Read next 1; ne 
00B2 C END End CAS 

27755 	0083 C ENDSR 
0084 C' 
00B5 C" Rout; ne to save symbol 
0086 C' 

16016 00B7 C SC BEGSR 
16016 0088 C S IFLT 120 If STR not full 
16016 0089 C ADD 1 S Bump to next chr 
16016 0090 C MOVE SYM STR,S Save symbol 

0091 C END 	 End IF 
16016 	0092 C ENDSR 

0093 C" 
0094 C" Routine to print identifier 
0095 C' 

364 0096 C PI BEGSR 
364 0097 C MOVE Ident: 'KIND Set kind 
364 0098 C EXCPTOLINE Pri nt kind and name 
364 0099 C MOVE 'ZEROS S Reset STR index 
364 0100 C MOVE "BLANKS STR Cl ear STR array 
364 0101 C ENDSR 

0102 C" 

0103 C" Routine to print keyword 

0104 C' 


1183 0105 C PK BEGSA 
11 B3 0106 C MOVE 'Keyword: 'KIND Set kind 
1183 0107 C EXCPTOLlNE Print kind and name 
1183 0108 C MOVE 'ZEROS S Reset STR index 
1183 0109 C MOVE "BLANKS STR Cl ear STR array 
1183 0110 C ENDSR 

0111 C' 

0112 C" Routine to print parameter 

0113 C' 


1456 0114 C PP BEGSR 
1456 0115 C MOVE Param: 'KIND Set kind 
1456 0116 C EXCPTOLINE Print ki nd and name 
1456 0117 C MOVE "ZEROS S Reset STR index 
1456 011 B C MOVE "BLANKS STR Clear STR array 
1456 0119 C ENDSR 

0120 C" 

0121 C" Routine to read next 1i oe 

0122 C' 

729 0123 C RD BEGSR 
729 0124 C MOVE "ZEROS N Reset INP index 
729 0125 C MOVE • BLANKS INP Cl ear INP array 
729 0126 C READ INPUT LR Read next record 
728 0127 C NLR EXCPTI LINE Print input line 
729 012B C 	 ENDSR 



524 5/36 Power Tools 

Figure 16-1Oa 

Program SAMP 
without 
instromentation 
statements 

Figure 16-10b 

Program SAMP 
after insertion of 
instromentation 
statements 

Figure 16-11 

Procedure 
PROFRPG 

4 
0001 SAMP 
0002 F* 
0003 F* A small sample program ill ust rat; ng the use of the profiler 
0004 F* 
0005 FPRINT 0 132 PRINTER 
0006 C* 
0007 C* Compute the resu 1t of compound interest on $21 over 200 years at 5% 
0008 C* 
0009 C Z-ADD21 PRIN 92 Principle is $21 
0010 C DO 200 For 200 years 
0011 C MULT 1.05 PRIN Compound interest 
0012 C END End DO 
0013 C* 
0014 C SETON LR 
0015 OPRINT T LR 
0016 0 24 'The result 1 s 
0017 0 PRIN J 34 

* 1 .. 4 .. 

0001 SAMP 

0002 F* 

0003 F* A sma 11 sample program illustrating the use of the profiler 

0004 F* 

0005 FPRINT a 132 PRINTER 


#+FP#SAMP 0 6 DISK 
#+E P#SAMP # 4 6 0 

0006 C* 
0007 C* Compute the result of compound interest on $21 over 200 years at 5% 
0008 C* 

#+C ADD 1 #.0001 
0009 C Z-ADD21 PRIN 92 Principle is $21 
0001 

#+C ADD 1 #.0002 
0010 C DO 200 For 200 years 
0002 

#+C ADD #.0003 
0011 C MULT .05 PRIN Compound interest 
0003 
0012 END End DO 
0013 C* 

#+C ADD 1 #.0004 
0014 C SETON LR 
0004 
0015 OPRINT T LR 
0016 0 24 'The result 18 

0017 0 PRIN 34 

• Preprocess an RPG program to insert profiling code 

* Parameter 1: Program name (six characters or less) 
2: Source library name 

II * 'PROFRPG procedure is running' 
/! LOCAL OFFSET-201.DATA-·?1?· .BLANK-l0 

* Read the RPG source program and insert profiling code. producing file NEWSRC 

/! LOAD PROFLl 
II COMPILE SOURCE-717.INLIB-?27 
II FILE NAME-$SOURCE.RETAIN-J.BLOCKS-50.EXTEND-l00 
II FILE NAME-SRCOUT.RETAIN-J.LABEL-NEWSRC.RECORDS-l00.EXTEND 500 
I I RUN 
* 
* Plug number of elements into E-spec for '#' array 
* 
I I LOAD PROFL2 
II FILE NAME-SRCIN.LABEL-NEWSRC.RETAIN-J 



Programming 525 

II RUN 

Figure 16-12 

Program 
PROFLl 

• Copy the instrumented source member from file NEWSRC back to the library 

II LOAD SMAINT 
II FILE NAME-NEWSRC.RETAIN-J 
I I RUN 
II COPY FROM-DISK.FILE-NEWSRC.TO-727.RETAIN-R 
1/ END 

2 ...... 3 4 ... 6 8 
0001 064 B PROFL 1 
0002 F" 
0003 F* RPG profiler phase 1: create new source member with profiling code 
0004 F" Written by Mel Beckman 
0005 F' 
0006 F" NOTE: This program reads a library source member using the 
0007 F" II COMPILE OCL statement to create a SSOURCE file containing 
0008 F" the member. For this technique to work properly. you must 
0009 F' set the "source required" attribute in the compiled load 
0010 F" member for PROFL1. You do this by compiling and linking the 
0011 F* program in separate steps. using the following OCL: 
0012 F" 
0013 F" RPGC PROFL1.library .......... NOHALT.REPLACE.NOLlNK.OBJECT (ten commas) 

0014 F" OLINK PROFL1.library.PROFL1.library.SRQ ... #RPGLIB 
0015 F" 
0016 FSSOURCE 10 F9600 96 DISK 
0017 FSRCOUT 0 F9600 96 DISK 
0018 E* 
0019 E" SRCIN text array 
0020 E* 
0021 E TXT 96 
0022 I" 
0023 I' Source input file 
0024 I" 
0025 ISSOURCE 
0026 I 96 TXT 
0027 I" 
0028 I" LDA contains the program name end element count 
0029 I' 
0030 I UDS 
0031 I 201 206 PROGNM 
0032 I 207 2100CNTR# 
0033 C/EJECT 
0034 C· 
0035 C" Defi ne internal variables 
0036 C" 
0037 C MOVE 'BLANKS ANOR 
0038 C MOVE "BLANKS COONE 1 
0039 C MOVE "BLANKS CNTR# 40 
0040 C MOVE "BLANKS EDONE 1 
0041 C MOVE "BLANKS EOF 1 
0042 C MOVE 'BLANKS FACT2 B 
0043 C MOVE "BLANKS FDONE 1 
0044 C MOVE 'BLANKS HAVEC 1 
0045 C MOVE 'BLANKS HAVEST 2 
0046 C MOVE "BLANKS INSB4 1 
0047 C MOVE "BLANKS ISTUFF 11 
0048 C MOVE 'BLANKS OP2 2 
0049 C MOVE "BLANKS OP3 3 
0050 C MOVE "BLANKS OP5 5 
0051 C MOVE "BLANKS STAR2 2 
0052 C MOVE "BLANKS SLASHA 3 
0053 C" 
0054 C· Output the II COpy statement with a source member name of P$xxxxxx 
0055 C· and read the fi rst source statement 
0056 C" 
0057 C EXCPTPUTCPY Put II COPY 
0058 C EXSR GETSRC Get 1st source stmt 
0059 C" 
0060 C· Flush source statements until F-spec for P# file is inserted 
0061 C" 

0062 C FDONE DOUEQ'Y' Unt i 1 Fspec done 




526 5/36 Power Tools 

0063 C' 
0064 C TXT,6 COMP 'E' 11 If we've 
0065 C Nll TXT,a CaMP , L' 11 reached 
0066 C Nll TXT,a COMP 'T' 11 the 
0067 C Nll TXT,a CaMP 'I' 11 Fspec 
0068 C Nll TXT,6 COMP 'C' 11 insertion 
0069 C Nll TXT,6 COMP '0' 11 point 
0070 C 11 MOVE 'Y' FDONE Set fl ag 
0071 C' 
0072 C FDONE IFEQ 'Y' If Fspec goes here 
0073 C EXCPTFSPEC Insert it 
0074 C ELSE El se 
0075 C EXCPTPUTSAC Put source line 
0076 C EX SA GETSRC Get next sou rce 
0077 C MOVE EOF FDONE Flag early EOF 
0078 C END End IF 
0079 C' 
0060 C END End DO 
0081 C/EJECT 
0062 C' 
0083 C* Flush source statements until E-spec for # array is inserted 
0084 C' 
0085 C EDONE DOUEQ'Y' Until Espec done 
0086 C' 
0087 C TXT,6 COMP 'L' 11 If we've 
0088 C Nll TXT,6 COMP 'T' 11 reached 
0089 C Nll TXT,6 COMP 'I' 1"1 the 
0090 C Nll TXT,6 COMP 'C' 11 Espec 
0091 C Nll TXT,a COMP '0' 1'1 insertion point 
0092 C 11 MOVE 'Y' EDONE Set flag 
0093 C' 
0094 C EDONE IFEQ 'Y' If Espec goes here 
0095 C EXCPTESPEC Insert it 
0096 C ELSE Else 
0097 C EXCPTPUTSRC Put sou rce 1i no 
0098 C EXSA GETSAC Get next source 
0099 C MOVE EOF EDONE Fl a9 early EOF 
0100 C END End IF 
0101 C' 
0102 C END End DO 
0103 C' 
0104 C* Pass remaining statements, inserting counters as required 
0105 C' 
0106 C COONE DOUEQ'Y' Until Cspec done 
0107 C EXSR QUALe Qual i fy the stmt 
0108 C' 
0109 C HAVEC I FEQ 'Y' If qualified Cspec 
0110 C EXSR INSATC Insert counter 
0111 C ELSE Else 
0112 C EXCPTPUTSAC Put source line 
0113 C END End IF 
0114 C' 
0115 C EXSR GETSRC Get next source 
0116 C MOVE EOF CDONE Flag EOF 
0117 C' 
0118 C END End DO 
0119 C' 
0120 C' Emit ., and II CEND 
0121 C' 
0122 C MOVE '8LANKS TXT 
0123 C MOVEA'" ' TXT,l 
0124 C EXCPTPUTSRC 
0125 C MOVEA'II CEND' TXT,l 
0126 C EXCPTPUTSAC 
0127 C' 
0128 C' End of job 
0129 C' 
0130 C SETON LR 
0131 C/EJECT 
0132 C' 
0133 C* Qualify a specification to see if it's a candidate for profiling 
0134 C' 

0135 C QUALC BEGSR 

0136 C' 

0137 C MOVE 'BLANK HAVEC Clear flag 

0138 C MOVEATXT,l STAA2 Extract ** 




Programming 527 

0139 C MOVEATXT.7 ANOA Extract ANOR 
0140 C MOVEATXT.28 OP2 Extract part op 
0141 C MOVEATXT.28 OP3 Extract part ap 
0142 C MOVEATXT,28 OP5 Extract whole ap 
0143 C MOVEATXT,33 FACT2 Extract factor 2 
0144 C' 
0145 C STAR2 IFEQ If C.T. table hit 
0146 C MOVE 'Y' HAVEST Set flag 
0147 C END End IF 
0148 C' 
0149 C TXT.6 COMP 'C' 11 If C-spec 
0150 C 11 HAVEST COMP 'Y' 1111 & not in tables 
0151 C 11 TXT.7 COMP 1111 & not a comment 
0152 C 11 TXT.28 COMP 1111 & not a no-op 
0153 C 11 ANOR COMP 'AN' 1111 & not an AN 
0154 C 11 ANOR COMP 'OR' 1111 & not on OR 
0155 C 11 OP5 COMP 'ELSE 1111 & not an ELSE 
0156 C 11 OP5 COMP 'END 1111 & not an END 
0157 C 11 OP3 COMP 'CAS' 1111 & not a CASxx 
0158 C 11 OP3 COMP 'AND' 1111 & not an ANDxx 
0159 C 11 OP2 COMP 'OR' 1111 & not an ORxx 
0160 C 11 OP5 COMP 'RLABL' 1111 & not RLABL 
0161 C 11 OP5 COMP 'PARM ' 1111 & not PARM 
0162 C 11 OP5 COMP , PLIST' 1111 & not PLIST 
0163 C 11 OP5 COMP . KLIST' 1111 & not KLIST 
0164 C 11 OP5 COMP 'KFLD' 1111 & not KFLD 
0165 C 11 MOVE 'Y' HAVEC Set flag 
0166 C· 
0167 C ENDSR 
0168 C/EJECT 
0169 C· 
0170 C' Insert a C-spec counter statement, either before or after the original 
0171 C' 
0172 C INSRTC BEGSR 
0173 C' 
0174 C MOVE 'Y' INSB4 Assume 'before' 
0175 C MOVEATXT,28 OP5 Extract whole ap 
0176 C OP5 COMP 'TAG 11 If TAG 
0177 C Nl1 OP5 COMP 'BEGSR' 11 or BEGSR 
0178 C 11 MOVE 'N' INSB4 Set for 'after' 
0179 C· 
0180 C MOVEATXT,7 ISTUFF Save indicatr stuff 
0181 C ADD 1 CNTR# Bump counter number 
0182 C MOVEACNTR# TXT.93 Append CNTR# to src 
0183 C' 
0184 C INSB4 IFEQ 'Y' If insert 'before' 
0185 C EXCPTCSPEC Output C-spec 
0186 C EXCPTPUTSRC Put source record 
0187 C ELSE Else insert 'after' 
0188 C EXCPTPUTSRC Put source record 
0189 C EXCPTCSPEC Output C-spec 
0190 C END End IF 
0191 C' 
0192 C ENDSR 
0193 C/EJECT 
0194 C' 
0195 C' Get a source statement from $SOURCE 
0196 C· Set EOF when /* encountered 
0197 C· 
0198 C GETSRC BEGSR 
0199 C' 
0200 C READ $SOURCE Read source 
0201 C· 
0202 C MOVEA' TXT,93 Clear pos 93-96 
0203 C MOVEATXT ,1 SLASHA 
0204 C SLASHA IFEQ 'I' If I' 
0205 C MOVE 'Y' EOF Set EOF 
0206 C END End IF 
0207 C· 
0208 C ENDSR 
0210 O/EJECT 
0211 O' 
0212 O' Put a II copy line 
0213 O' 
0214 OSRCOUT PUTCPY 
0215 a 23 'II COpy LIBRARY-S.NAME-' 

http:MOVEATXT.28
http:MOVEATXT.28


528 5/36 Power Tools 

0216 0 25 'P$ , 
0217 0 PROGNM 31 
0218 0" 
0219 0" Put a source line 
0220 O' 
0221 0 PUTSRC 
0222 0 TXT 96 
0223 0" 
0224 O' Fspec for P#xxxxxx fil e 
0225 0" 
0226 0 FSPEC 
0227 0 8 '#+FP#' 
0228 0 PROGNM 14 
0229 0 27 '0 6' 
0230 0 43 'DISK' 
0231 O' 
0232 0" Espec for # array 
0233 o· 
0234 0 ESPEC 
0235 0 6 '#+E' 
0236 0 20 'PH' 
0237 0 PROGNM 26 
0238 0 44 '# 6 0' 
0239 0" 
0240 0" Cspec for a counter statement 
0241 O' 
0242 0 CSPEC 
0243 0 6 '#+C' 
0244 0 ISTUFF 17 
0245 0 44 ' AOO #' ' 
0246 0 CNTR# 48 

Figure 16-13 4 .. , 6 ... 8 
0001 064 PROFl2 
0002 F"Program 
0003 F" RPG Profiler phase 2: set e1 ement count in E spec for # array

PROFL2 0004 F' Written by Mel Beckman 
0005 F' 
0006 FSRCIN UP F9600 96 DISK 
0007 I' 
0008 1* Source input file 
0009 j" 

0010 ISRCIN 
0011 I 6 SEARCH 
0012 I' 
0013 I" lOA contains e1 ement count 
0014 I" 
0015 I UOS 
0016 I 207 2100CNTR# 
0017 C" 
0018 C' When E-spec encountered. update ; t 
0019 C' 
0020 C SEAACH COMP #+E' LA 
0021 OSACIN D lA 
0022 0 CNTR# Z 39 

Figure 16-14 

OCL statements to set Source Required attribute 

RPGC PROFll, 1 i bra ry , , . , ,NOHAl T, REPLACE, NOLI NK, OBJ ECT (ten commas) 
OLINK PROFll.1ibrary,PAOFll,library,SAQ" ,#APGLlB 



Programming 529 

Figure 16-15 

OCL for executingprogram SAMP 

I I LOAD SAMP 
II FILE NAME-P#SAMP,RECORDS 100,EXTEND-l00 
II RUN 

Figure 16-16 
* Print a profiled RPG source listing 

Procedure 
* Parameter 1· Program name (six characters or less)

PROFPRT 2: Library name 

/ / * . PROFPRT procedu re is runni ng'
II LOCAL OFFSET-201 ,DATA-'?l?' ,BLANK 
II LOCAL OFFSET-207,DATA-'?2?' ,BLANK-8
II LOCAL OFFSET-215,DATA-'?TIME?' ,BLANK-6 (For 1st page headings) 
I I LOAD PROFL3 
II COMPILE SOURCE-P$?1?,INLIB-?2? 
II FILE NAME-SSOURCE,RETAIN-J,BLOCKS-50,EXTEND-l00
II FILE NAME-PROFIN,LABEL-P#?l? 
II RUN 

Figure 16-17 4 6 8 
0001 064 PROFL3 
0002 F"Program 
0003 F* RPG Profiler phase 3: print source listing merged with profile stats 

PROFL3 0004 F* Written by Mel Beckman 
0005 F' 
0006 F' NOTE: This program reads a library source member using the 
0007 F' II COMPILE OCL statement to create a $SOURCE file containlng 
0008 F' the member. For this technique to work properly, you must 
0009 F' set the "source required" attribute in the compiled load 
0010 F" member for PROFL1. You do thlS by compiling and linking the 
0011 F" program in separate steps, using the following Del: 
0012 F" 
0013 F" RPGC PROFL3, library"""", ,NOHALT,REPLACE,NOLINK,OBJECT (ten commas) 
0014 F' OLINK PROFL3, library,PROFL3, library,SRO" ,#RPGLIB 
0015 F' 
0016 FSSOURCE IPE F9600 96 DISK 
0017 FPROFIN ID F9600 6 DISK 
0018 FPRINT 0 F 132 OF PRINTER 
0019 I' 
0020 1* Source input file 
0021 I" 
0022 I$SOURCE 
0023 I 92 TEXT 
0024 I 2 SLASH2 
0025 I 6 TYPE 
0026 I 5 HPLUS 
0027 I 6 TYPE 
0028 I 7 12 EJECT 
0029 I 93 96 CNTR# 
0030 I' 
0031 J* Profile input file 
0032 I" 
0033 IPROFIN 
0034 I 60COUNT 
0035 I" 
0036 1* LOA contains the program name, library name, and time of day 
0037 I" 
0038 I UDS 
0039 I 201 206 PROGNM 
0040 I 207 214 LIBRNM 
0041 I 215 2200UTIME 
0042 C' 
0043 C' If tables encountered, quit 
0044 C" 



530 5/36 Power Tools 

0045 C SLASH2 COMP ' •• ' LlR 
0046 C LR GOTO END 
0047 C' 
0048 C' Only print original C-spec lines 
0049 C' 
0050 C SETOF 01 Clear output i nd 
0051 C TYPE IFEQ 'C' If a Cspec 
0052 C SLASH2 IFNE 'II' & not II 
0053 C #PLUS IFNE '#+' & not #+ 
0054 C EJECT IFNE '/EJECT' If not EJECT 
0055 C SETON 01 Set output ind 
0056 C Z-ADDO PCOUNT 60 Cl ear prt fl d 
0057 C ELSE El sa no count 
0058 C 11 SETON OF Set overflow ind 
0059 C END End IF 
0060 C CNTR# IFNE "8LANKS If counted 
0061 C READ PROFIN Get the counter 
0062 C Z-ADDCOUNT PCOUNT 60 Copy to prt fl d 
0063 C END End IF 
0064 C END End IF 
0065 C END End IF 
0065AC SETON 11 
0066 C END End IF 
0067 C' 
0068 C' End of job 
0069 C' 
0070 C END TAG 
0071 OPRINT H 103 lP 
0072 0 OR 103 OF 
0073 0 UDATE Y 8 
0074 0 61 'RPG Execut i on Profile' 
0075 0 96 'Page' 
0076 0 PAGE Z 100 
0077 OPRINT H 1 P 
0078 0 OR OF 
0079 0 UTIME 8 
0080 0 32 'Program: xxxxxx' 
0081 0 PROGNM 32 
0082 0 84 'Library: xxxxxxxx 
0083 0 LI8RNM 84 
0084 OPRINT D 01 
0085 0 PCOUNTZ 6 
0086 0 TEXT 99 

Figure 16-18 

OCL for compilation 

RPGC PROFL3, library"""", ,NOHALT,REPLACE,NOLINK,OBJECT (ten commas) 
OLINK PROFL3,library,PROFL3,library,SRQ" ,#RPGLI8 



Programming 531 

Figure 16-19 

Execution-time 
cost multipliers 
for various RPG 
operations 

RPG Operation 

Indexed disk I/O 

Nonindexed disk I/O 

Divide 

Mul~ply 

External program call 

Array variable index 

Array/table lookup 

Other operations 

milliseconds 

100.000 

Cost 
multiplier 

25,000 

35.000 8,750 

10.000 2,500 

5.000 1,250 

3.000 750 

1.000 250 

0.500 125 

0.004 

Naming the Compile Usting with the Program Name 

by Robert Barber 

Figure 16-20 

Procedure 
COMPILE 

a Code on diskette: 


Procedures COMPILE, COMPILEC 


I frequently compile several programs at one time, and it is confusing to do 

a 0 P and see simply RPGC next to each entry in the spool file. To dispel 

the confusion of a congested spool, I wrote procedures COMPILE and 

COMPILEC (Figures 16-20 and 16-21, respectively). These two proce

dures create a spool entry with the same name, prefixed with a $, as the 

program being compiled. Thus, I can discern with one glance at the spool 

file the status of each program being compiled. Procedure COMPILE 

requires two parameters - program name and library name. 


1/ IF 7"17- ... , Enter program to compile' 
II IF 727- ... , Enter source library name' 
// LOCAL OFFSET-l.BLANK-B,DATA-'71R7' 
// LOCAL OFFSET-9,BLANK-B,DATA-'72R7' 
LIBRLIBR 727, ,P,COMPILEC,$7L'l ,7'7,REPLACE 
/1 EVOKE $7L'1 .7'7 "ALL 



532 5/36 Power Tools 

Figure 16·21 

Procedure COMP/LEC 

RPGC ?L', ,B'?,?L'9,B'?" ,XREF" ,?L'9,B'?", ,+ 

HALT", ,?L'9,B'?,NOGEN 
REMOVE $?L'" 77 , p, 7 L '9, B'? 

Using Indicators Properly in RPG Programs 
by Carson A. Soule 

a
Code on diskette: 


RPG programs RPGIN1, RPGIN3, RPGIN5 

As you've read articles in NEWS 3X/400's fundamentals series or studied 
the RPG manual, you've surely seen discussions about indicators. Indica
tors, unique to the RPG programming language, evolved from plugboard 
concepts used when RPG was first developed more than 25 years ago. A 
plugboard was programmed using wire jumpers that connected various 
parts of the computer so signals could be passed, 

RPG's indicators replaced the wires with two character symbols - elec
tronic switches you set on or off. You use indicators to store the result of a 
test, such as a comparison (the indicator is set), and then to condition the 
execution of the program (the indicator is used). Depending on the type of 
test for which it is set, an indicator often is thought of as actually indicating 
the tested condition. In a particular program, indicator 01 may indicate that 
an employee record was read, and indicator 50 may indicate that earnings 
were under the FICA limit; however, in a different program, different 
"meanings" may be assigned to these indicators. Also, some indicators are 
predefined to test a particular condition; for example, indicator OF is used to 
test for overflow. As well as replacing the wires of their mechanical predeces
sor, the plugboard, indicators filled another role-saving program space. 
When indicators were first used, the entire computer had only 4 K of mem
ory, so programs had to be as short as possible. As late as 1975, RPG programs 
typically were only 8 K to 12 K. Indicators occupied only one bit of memory 
each; they made it possible to fit many instructions into a small program. 

Indicators also fit the concept of the RPG cycle. Since the program was 
divided into separate steps-file, input, calculation, and output-a means 
of communicating between the steps was imperative. Indicators were ideal 
for this purpose. The creative use of indicators coupled with the RPG cycle 
resulted in small, efficient programs. 

Indicators still use only one bit of memory on the S/36. But with today's 
larger computers and larger programs, programmers don't need to conserve 
bits the way they used to. And the efficiency once gained with indicators 
too often becomes confusion and clutter in present RPG II programs. 



Programming 533 

With traditional indicator use, each time you encounter an indicator 
while reading a program, you must determine its meaning. Because an indi
cator's scope is global and may carry over from cycle to cycle, you may have 
to hunt through the entire program - or even trace the program's execu
tion - to find out what the indicator means. Avoiding conflicting indicator 
use when changing code is difficult, and because the meaning of an indica
tor might depend on code or events far from the point where it is used, 
reusing indicators becomes dangerous. 

Often, whether an indicator is on or off depends on something that hap
pened several cycles ago. Complicated combinations of result and condition 
indicators create invalid code structures and make even a few lines of code 
difficult to prove correct. Making small changes to a program's indicators 
could create major errors in unmodified code, the causes of which would be 
difficult to pinpoint. Not surprisingly, tracing the flow of execution to find a 
bug is time-consuming, if not impossible. Misused indicators, then, produce 
unclear programs without locality (i.e., limiting the indicator use to a small 
area of the program), and they can result in poorly structured programs. 

However, indicators cannot be completely avoided; they are essential to 
the RPG language. They are the only way to test the results of an I/O opera
tion (chain, read, printer overflow) and to communicate attribute and com
mand key information with screens (SFGR programs). In some cases, 
indicators are the only efficient way to communicate between calculations 
and printer output. Indicators also can help you take advantage of the RPG 
cycle in simple report programs, as indicators were designed to do. The 
solution is not to abolish indicators, but to use them sparingly and in the 
least damaging way. Proper indicator use is a key to better RPG II programs. 

To demonstrate common indicator misuse and alternatives to using indi
cators, let's compare a program that uses indicators traditionally (Figure 16
22) to a program that uses indicators sparingly (Figure 16-23). You will see as 
we examine the programs closely that a significant difference between the 
traditional coding in Figure 16-22 and the more structured coding in Figure 
16-23 is that the indicators in Figure 16-23 are not used to communicate 
between I-specs, C-specs, and O-specs. Limiting indicator use to C-specs 
makes the second program clearer. You don't need to search for where an 
indicator is set on or off or puzzle over its meaning. 

Figure 16-22's traditionally coded RPG program for a simple file-to-print 
report (developed expressly for demonstrating some common indicator-use 
errors) uses the RPG cycle and a wide range of indicators. The I-spec indica
tors (01, 02,19,21, and Ll) are the program's first problem. These indicators 
are scattered throughout the program, far from the code where they were 
defined; thus, you must remember their meaning to understand the program. 

In the C-specs, all the 80 indicators are difficult to understand. Indicator 
85 is used on line 16, but is not defined until line 28. Line 32 contains both 
indicators 81 and 82, creating a compound IF that is difficult to follow. 



534 5/36 Power Tools 

Whether indicators 83 or 84 (lines 33 through 36) will work correctly if the 
code is executed more than once is extremely unclear. Line 28 combines 
indicators 85 and 86 to create a simulated 1P (first page) function that carries 
over into the O-specs, which are equally difficult to understand because the 
time line includes five different indicators (lines 43 through 49) to control 
output. And the last record total (line 66) pulls indicator 45 out of thin air. 

Figure 16-22 is just a small example program; imagine this indicator 
misuse in a program of 2,000 to 3,000 lines! It's easy to see how you can run 
out of indicators - and patience. Debugging or modifying such a program 
is an esoteric art of questionable effectiveness. 

Figure 16-23 shows an alternative method of coding the program we 
saw in Figure 16-22. Unnecessary indicators are omitted; the program uses 
only LR and OF indicators. The program still uses the RPG cycle, 
although minimally, and takes advantage of the overflow and last record 
facilities in RPG. The code in Figure 16-23 takes about the same amount 
of time to write as the code in Figure 16-22 and is dramatically easier to 
debug, modify, and reuse a.s the basis for new programs. 

The coding in Figure 16-23 removes all the indicators from the I-specs 
and moves the corresponding functions into the C··specs; moving a test 
close to the C-specs that depend on it makes a program easier to under
stand. Not only does this coding simplify indicator use, it eliminates cus
tomizing the I-specs, which in turn lets you copy them from a standard 
definition without modification. The O-specs also are devoid of indicators; 
the corresponding function is moved to named exception output lines. 

In the C-specs, the simulated 1P combination of indicators 85 and 86 
(Figure 16-22, lines 16,28,29, and 37) is replaced with the field WFST 
(Figure 16-23, lines 54 and 56). Isolating the time reformatting function 
code in a separate subroutine (Figure 16-23, FMTTIM, lines 62 through 
68) facilitates the function's reuse. Indicators 81 and 82 (Figure 16-22, lines 
32, 33, 34,48, and 49) are replaced with the field WAPM (Figure 16-23, 
lines 64, 69, and 87). The indicators that were used only in the C-specs and 
the GOTOs are replaced with IF/ELSE statements. 

The advantages of the coding in Figure 16-23 are not restricted to the 
elimination of indicators; the coding also improves the structure of the pro
gram. Eliminating communication indicators in I-specs and O-specs 
improves the program's locality because individual sections or'code are 
more complete and independent of other parts of the program. All the 
information needed to understand a section of code is in that section of 
code, which lets you separate the logic from the function of the program. 
This separation is most evident in the reusable structured subroutines of 
the program in Figure 16-23. 

Indicators were designed in simpler times, so some of the problems 
they were designed to solve no longer exist. Today" the poor program struc
tures created by misusing indicators may be hazardous to your program



Programming 535 

ming health. But you can avoid the dangers of indicators by restricting their 
use to those situations in which they are necessary. Judicious indicator use, 
in conjunction with structured programming techniques, helps you create 
more powerful, palatable RPG programs. 



536 5/36 Power Tools 



Programming 537 

'" 3 4 , " 5 8 
00001 H RPGINl 
00002H* TRADITIONAL RPGII PROGRAM 

Figure 16-22 

Traditional 00003H' PURPOSE: PRINT ALL POSITIVE CHECKS AND VOIDS, 
indicator use 	 00004H' SPACE 8ETWEEN EMPLOYEES 

00005H" TOTAL ALL PRINTED LINES (SU8TRACTING VOIDS) 
00006H' PRINT 'ERROR' IF THE TOTAL IS NEGATIVE 
00007FDATAIN IP 128 DISK 
00008FPRINTER 0 F 132 OF PRINTER 
00009IDATAIN NS 01 1 CC 
000101 OR 02 1 CV 
00011 I 1 1 ARC 
000121 2 60AEMP L 1 
000131 7 36 AEMPNM 
000141 37 442AERNYR 21 
000151 NS 19 
00016C N19N85 EXSR TIME TIME AND 1 P 
00017C" 
00018C NOl GOTO VOID 
00019C 21 ADD AERNYR WERNYR 92 45 TOTAL EARNINGS 
00020C" 
00021 C VOID TAG 
00022C N02 GOTO END 
00023C 21 SliB AERNYR WERNYR REMOVE VOIDS 
00024C' 
00025C END TAG 
00026C" GET TIME AND SIMULATE lP OUTPUT 
00027C TIME BEGSR BEGIN 
00028C 86 SETON 85 2ND TIME THRU 
00029C 85 GOTO EXITTM SKIP CALCS 
00030C TIME WTIM 60 HRS, MIN, SEC 
00031C MOVELWTIM WHRM 40 HRS, MIN 
00032C WHRM COMP 1200 828182AM OR PM 
00033C 81 WHRM COMP 0100 83 MIDNIGNT-1AM 
00034C 82 WHRM COMP 1300 84 84PAST 1 PM 
00035C 83 ADD 1200 WHRM IF MIDNIGHT 
00036C 84 SUB 1200 WHRM IF PAST 1 PM 
00037C N86 SETON 86 1ST TIME ONLY 
0003BC EXITTM ENDSR END 



538 5/36 Power Tools 

000390PRINTER H 104 lP 

000400 OR OF 

000410 36 'REPORT TITLE' 

000420" 

000430 0 2 86N85 

000440 OR OF 

000450 4 'DATE' 

000460 UDATE Y 14 

000470 20 'TIME' 

000480 81 WHRM 30 &AM' 

000490 82 WHRM 30 &PM' 

000500 56 'PAGE' 

000510 PAGE Z 60 

000520" 

000530 o 10 L 1 

000540 AEMP Z 5 

000550 AEMPNM 37 

000560" 

000570 D 01 21 

000580 OR 02 21 

000590 AERNYRJ 53 

000600 60 'CHECK' 

000610 02 60 'VOID ' 

000620" 

000630 T 12 LR 

000640 WERNYRJ 53 

000650 60 'ERROR' 

000660 45 60 'TOTAL' 

000670" 


Figure 16·23 	 4 7 .. 8 
00001H RPGIN3 
00002H" INDICATOR FREE RPG II PROGRAMReduced 00003H" PURPOSE: PRINT ALL POSITIVE CHECKS AND VOIDS. 

indicator use 	 00004H" SPACE BETWEEN EMPLOYEES 
00005H" TOTAL ALL PRINTED LINES (SUBTRACTING VOIDS) 
00006H" PRINT 'ERROR' IF THE TOTAL IS NEGATIVE 
00007FDATAIN IP 128 DISK 
00008FPRINTER 0 132 OF PRINTER 
00009IDATAIN NS 
000101 1 ARC 
000111 60AEMP 
000121 7 36 AEMPNM 
000131 37 442AERNYR 
00014C WINZ IFEQ ' , IF FIRST TIME 
00015C EXSR FMTTIM FORMAT TIME 
00016C Z-SUB99999 WEMP INZ EMP L BREAK 
00017C MOVE 'Y' WINZ NOT FIRST TIME 
00018C END END IF FIRST TIME 
00019C" 
00020C ARC IFEQ 'C' IF CHECK RCD 
00021 C EXSR PRTHDG PRINT HEADINGS 
00022C EXSR PRTEMP PR INT EMPLOYEE 
00023C AERNYR IFGT 0 IF EARN I NG>O 
00024C ADD AERNYR WERNYR 92 TOTAL EARNINGS 
00025C EXCPTRPTCHK PRINT CHECK 
00026C END END IF EARNINGS 
00027C END END IF CHECK 
00028C" 
00029C ARC I FEQ 'V' I F VOID RCD 
00030C EXSR PRTHDG PRINT HEADINGS 
00031 C EXSR PRTEMP PRINT EMPLOYEE 
00032C AERNYR IFGT 0 IF EARNING>O 
00033C SUB AERNYR WERNYR REMOVE VOIDS 
00034C EXCPTRPTVOD PRINT VOID 
00035C END END IF EARNINGS 
00036C END END IF VOID 
00037C" 
00038CLR WERNYR IFGE 0 IF TOTAL->O 
00039CLR EXCPTRPTLR PRINT LR 
00040CLR ELSE END IF TOTAL 
00041CLR EXCPTRPTERR PR I NT LR ERROR 
00042CLR END END IF TOTAL 



Programming 539 

00043C' 
00044C' PRINT EMPLOYEE ON NEW EMPLOYEE NUMBER 
00045C PRTEMP 8EGSR PRINT EMPLOYEE 
00046C AEMP IFNE WEMP IF NEW EMPLOYEE 
00047C EXCPTRPTEMP PRINT EMPLOYEE LINE 
00048C Z-ADDAEMP WEMP 50 SAVE NEW EMP# 
00049C END END I F NEW EMP 
00050C ENDSR END PRT EMP 
00051C' 
00052C' PRINT HEADINGS ON FIRST PAGE AND OVERFLOW 
00053C PRTHDG BEGSR PRINT HEADINGS 
00054C WFST IFEQ ' IF FIRST TIME 
00055C EXCPTRPTHDG PRINT HEADING 
00056C MOVE 'N' WFST NOT FIRST TIME 
00057C ELSE ELSE NOT FIRST 
OD058C OF EXCPTRPTHDG PRINT HEADING 
00059C END END IF FIRST 
00060C ENDSR END PRINT HDG 
00061C' 
00062C' RETRIEVE AND FORMAT THE TIME 
00063C FMTTIM BEGSR FORMAT TIME 
00064C MOVE 'AM' WAPM 2 ASSUME AM 
00065C TIME WTIM 60 RETRIEVE TIME 
00066C MOVELWTIM WHRM 40 HOURS & MINUTES 
00067C WHRM I FGE 1200 IF >- NOON 
00068C WHRM IFLT 2400 AND < MIDNIGHT 
00069C MOVE 'PM' WAPM THEN PM 
00070C END END IF NOON 
00071C END END IF MIDNT 
00072C WHRM I FGE 1300 IF >- 1 :OOPM 
00073C SUB 1200 WHRM ADJUST HOURS 
00074C END END IF PM 
00075C WHRM IFLT 0100 IF < 1 :OOAM 
00076C ADD 1200 WHRM ADJUST HOLIRS 
ooonc END END IF PM 
00078C ENDSR END FMT TI M 
000790PRINTER 104 RPTHDG 
000800 50 'REPORT TITLE' 
000810' 
000820 RPTHDG 
000830 4 'DATE' 
000840 UDATE Y 14 
000850 20 'TIME' 
000860 WHRM 27 ' 0: 
000870 WAPM 30 
000880 56 'PAGE' 
000890 PAGE Z 60 
000900' 
000910 E 10 RPTEMP 
000920 AEMP Z 5 
000930 AEMPNM 37 
000940' 
000950 E 1 RPTCHK 
000960 AERNYRJ 53 
000970 60 'CHECK' 
000980' 
000990 E 1 RPTVOD 
001000 AERNYRJ 53 
001010 59 'VOID' 
001020' 
001030 E 12 RPTLR 
001040 WERNYRJ 53 
001050 60 'TOTAL' 
001060' 
001070 E 12 RPTERR 
001080 WERNYRJ 53 
001090 60 'ERROR' 
001100' 



540 5/36 Power Tools 

Figure 16-24 

Better 
indicator use 

* , 6 
00001 H RPGIN5 
00002H* S/36 INTElliGENT INDICATOR RPGII PROGRAM 
00003H" PURPOSE: PRINT All POSITIVE CHECKS AND VOIDS, 
00004H' SPACE BETWEEN EMPLOYEES 
00005H" TOTAL All PRINTED LINES (SUBTRACTING VOIIJS) 
00006H* PRINT 'ERROR' IF THE TOTAL IS NEGATIVE 
00007FDATAIN IP F 128 DISK 
00008FPRINTER 0 F 132 OF PRINTER 
000091DATAIN NS 01 1 CC 
000101 OR 02 1 CV 
00011 I 1 1 ARC 
000121 2 60AEMP L 1 
000131 7 36 AEMPNM 
000141 37 442AERNYR 
000151 NS 19 
00016C EXSR PRTHDG PRINT HEADINGS 
00017C 01 EXSR PRCCHK PROCESS CHECK RECORD 
00018C 02 EXSR PRCVOD PROCESS VOID RECORD 
00019C" 
00020ClR WERNYR COMP 0 34 341 F TOTAl->O lR ELSE ERROR 
00021 C* 
00022C" PROCESS CHECK RECORD 
00023C PRCCHK BEGSR PROCESS CHECK 
00024C AERNYR IFGT 0 IF EARNING>O 
00025C ADD AERNYR WERNYR 92 TOTAL EARN I NGS 
00026C SETON 32 PRINT CHECK 
00027C ELSE ELSE 
00028C SETOF 32 NO PRINT 
00029C END END IF 
00030C ENDSR END PROCESS CHK 
00031C" 
OOOnC" PROCESS VOID RECORD 
00033C PRCVOD BEGSR PROCESS VOID 
00034C AERNYR I FGT 0 IF EARNING>O 
00035C SUB AERNYR WERNYR REMOVE VOIDS 
00036C SETON 33 PRINT VOID 
00037C ELSE ELSE 
00038C SETOF 33 ELSE NO PRINT 
00039C END END IF 
00040C ENDSR END PROCESS VOID 
00041 C" 
00042C* PRINT HEADINGS ON FIRST PAGE AND OVERFLOW 
00043C PRTHDG BEGSR PRINT HEADINGS 
00044C WFST IFEO ' , IF FIRST TIME 
00045C EXSR FMTTIM FORMAT TIME 
00046C MOVE 'N' WFST NOT FIRST TIME 
00047C SETON 30 PRINT HEADING 
00048C ELSE ELSE 
00049C SETOF 30 ELSE NOPRINT 
00050C END END IF 
00051 C ENDSR END PRINT HDG 
00052C" 
00053C" RETRIEVE AND FORMAT THE TIME 
00054C FMTTIM BEGSR FORMAT TIME 
00055C MOVE 'AM' WAPM 2 ASSUME AM 
00056C TIME WTIM 60 RETRI EVE TIME 
00057C MOVElWTIM WHRM 40 HOURS & MINUTES 
00058C WHRM IFGE 1200 IF >- NOON 
00059C WHRM IFlT 2400 AND < MIDNIGHT 
00060C MOVE 'PM' WAPM THEN PM 
00061 C END END IF NOON 
00062C END END IF MIDNT 
00063C WHRM IFGE 1300 IF >- 1 OOPM 
00064C SUB 1200 WHRM ADJUST HOURS 
00065C END END I F PM 
00066C WHRM IFlT 0100 IF < 1: OOAM 
00067C ADD 1200 WHRM ADJUST HOURS 
00068C END END IF PM 
00069C ENDSR eND FMT TIM 
000700PR INTER D 104 30 
000710 OR OF 
000720 50 'REPORT TITLE' 
000730" 
000740 o 30 
000750 OR OF 



Programming 541 

000760 4 'DATE' 
000770 UDATE Y 14 
000780 20 'TIME' 
000790 WHRM 27 ' 0: 
000800 WAPM 30 
000810 56 'PAGE' 
000820 PAGE Z 60 
000830· 
000840 D 10 L1 
000850 AEMP Z 5 
000860 AEMPNM 37 
000870· 
000880 D 1 01 32 
000890 AERNYRJ 53 
000900 60 'CHECK' 
000910· 
000920 D 1 02 33 
000930 AERNYRJ 53 
000940 59 'VOID' 
000950· 
000960 T 12 LR 34 
000970 WERNYRJ 53 
000980 60 'TOTAL' 
000990· 
001000 T 12 LRN34 
001010 WERNYRJ 53 
001020 60 'ERROR' 
001030· 

Saving and Restoring Indicators, Part 1 
by John Field 

Importing large blocks of code or subroutines into existing RPG source can 
result in the multiple use of indicators, which can cause debugging 
headaches when you try to make sure that setting an indicator on or off in 
one part of the program does not affect another part of the same program 
adversely. Subroutines SAVINO and RSTINO (Figure 16-25) can elimi
nate this housekeeping problem. 

The concept of using subroutines SAVINO and RSTINO is simple. 
Before a program executes a subroutine or block of code that might use 
existing indicators, the current values of these indicators are saved, and 
then the indicators are initialized (SETOF). After the subroutine or block 
of code has been executed, the indicators are reset to their previous values. 

In the example, assume that a subroutine (SUBOOl) is imported into an 
existing program. The imported subroutine uses i!1dicators 01, 02, 03, 15, 16, 
50,51, 70, and 71. (To determine which indicators a subroutine uses, copy the 
subroutine into a separate RPG source member and then run the S/36 RPGC 
procedure and check the indicator summary.) To save the existing program's 
indicators, subroutine SAVINO is executed immediately before subroutine 
SUB001 is executed. To restore the indicators to their original values, subrou
tine RSTINO is executed immediately after subroutine SUBOOI. As far as the 
rest of the program is concerned, the indicator values remain unchanged. 

The same technique can be used if you import a block of code into an 
existing program. Simply execute subroutine SAVINO before the block of 
code, and execute subroutine RSTINO after the block of code. This 



542 5/36 Power Tools 

method has saved me hours of debugging time when I have been working 
with large, complicated programs. 

Figure 16-25 

Subroutines 
SAVINDand 
RSTIND 

... 1 2 ... . .. 3 4 ... 5 ..... 6 .. 7 8 
c*-----
C EXSR SAVINO 
C EXSR SUB001 
C EXSR RSTIND 
c*------------

C' SUBROUTINE: SAVINO 
C' SAVES CURRENT VALUES OF INDICATORS AND 
C' SETS THESE INDICATORS OFF 
C' 
C SAVINO BEGSR 
C MOVE 0 IN01 10 
C MOVE 0 IN02 10 
C MOVE 0 IN03 10 
C MOVE 0 IN15 10 
C MOVE 0 IN16 10 
C MOVE 0 IN50 10 
C MOVE 0 IN51 10 
C MOVE 0 IN70 10 
C MOVE 0 IN71 10 
C 01 MOVE 1 IN01 
C 02 MOVE 1 IN02 
C 03 MOVE 1 IN03 
C 15 MOVE 1 IN15 
C 16 MOVE 1 IN16 
C 50 MOVE 1 IN50 
C 51 MOVE 1 IN51 
C 70 MOVE 1 IN70 
C 71 MOVE 1 IN71 
C SETOF 010203 
C SETOF 151650 
C SETOF 517071 
C ENDSR 
c· 
C' 
C' SUBROUTINE: RSTIND 
C' INDICATORS ARE RESET TO ·THEIR ORIGINAL 
c· VALUES 
c· 
C' 
C RSTIND BEGSR 
C IN01 COMP 1 01 
C IN02 COMP 1 02 
C IN03 COMP 1 03 
C IN15 COMP 1 15 
C IN16 COMP 1 16 
C IN50 COMP 1 50 
C IN51 COMP 1 51 
C IN70 COMP 1 70 
C IN71 COMP 1 71 
C ENDSR 
C' 

Saving and Restoring Indicators, Part 2 
by Ron Elliott 

SavingandRestoring Indicators, Pari} (page 541) demonstrates a technique for 
saving and subsequently restoring the status of RPG indicators. In Figure 16-26, 
I present an alternative method that accomplishes the same thing with a marked 



Programming 543 

reduction in the length of the source program, the amount of main storage 
required, and the number of library sectors required for the object program. 

John's program uses the MOVE and COMP operations and a one-byte 
field to retain the status of each indicator, The technique illustrated in Fig
ure 16-26 uses the BITON, BITOF, and TESTB operations, which allow 
the use of only one bit per indicator, 

In Figure 16-26, one BITOF operation initializes the status of all eight 
bits in the one-byte variable INOS, (If you need to initialize more than eight 
bits, you need to use multiple BITOF operations.) After the bits are initial
ized, multiple BITON operations set on bits in variable INOS, according to 
the status of the indicators, Thus, bit 0 is set on if indicator 01 is on, bit 1 is 
set on if indicator 02 is on, and so on through the necessary indicators. 

Then, as in John's technique, all the indicators are set off preparatory to 
the execution of an imported subroutine or block of code, After the 
imported code is executed, multiple TESTB operations restore the status 
of the original indicators depending on the bit settings in field INOS, 

Figure 16-26 
. 

c 
1 .. ... 2 ...... 3 ...... 4 .. 

BITOF'01234567'INOS 
5 ...... 

1 
6 ...... 7 ...... 8 

Technique for c 
C 

01 
02 

BITON'O' 
BITON'l' 

INOS 
INOS 

saving and 
restoring 
indicators 

c 
C 
c 
c 
C 

03 
15 
16 
50 
51 

BITON' 2' 
BITON'3' 
BlTON' 4' 
BITON'5' 
BITON'S' 

INOS 
INOS 
INOS 
INOS 
INOS 

C 70 BITON'7 ' INOS 
C SETOF 010203 
C SETOF 151650 
C SETOF 5170 
c· 
C· Execute imported subroutine or block of code 
c· 
C TESTB' 0' INOS 01 
C TESTB '1 . INOS 02 
C TESTB'2' INOS 03 
C TESTB'3' INOS 15 
C TESTB'4' INOS 16 
C TESTB' 5' INOS 50 
C TESTB'S' INOS 51 
C TESTB'7' INOS 70 

Reversing the Value of an Indicator 
of an UnknoW'n Status 
by Ron Elliott 

RPG programmers often want to reverse the unknown status of an indica
tor, That is, if ineicator 10 is on, they want to set it off; but if it is off, they 
want to set it on. The first impulse is to code: 

N10 SETON 10 
10 SETOF 10 



544 5/36 Power Tools 

But, like so many impulses, this is not a good idea. The first line will set 
the indicator on if it is off, but then the second line will just set it back off 
again. Reversing the sequence of these two lines doesn't help either - the 
other way results in 10 always being on. 

There are a number of ways to solve this problem, but one of the easi
est involves using an additional indicator. The sequence 

SETON 11 
10 SETOF 1011 
11 SETON 10 

will produce the desired result with a minimum of fuss. 

Checking an Indicator in an IF Statement 
by Wells Cooner 

How many times have you wanted the ability on the S/36 to check the sta
tus of an indicator with an IF statement so you could execute a section of 
code without having to put the indicator on each line of code? On the S/38, 
you can use an indicator in an IF statement by specifying the field *INxx 
(where xx is the indicator to be tested) as one of the compare fields. To sim
ulate the same function on the S/36, consider the code in Figure 16-27. 

To understand how this example works, remember two things. First, an IF 
statement can be conditioned by an indicator. If the indicator is on, the IF con
dition is checked. If the indicator is not on, the IF statement and all the code 
that would be executed by the IF statement is bypassed. Second, it is always 
true that a blank is equal to a blank. Therefore, in Figure 16-27, if indicator 98 
is on, the code after the IF statement is executed. If indicator 98 is off, the 
code is bypassed. If you want to check multiple indicators, you can add the 
appropriate OR statements or add IF statements within the same group. 

.. .. 2 3 .. 4 . .. 6. ... 7 ... 8Figure16-27 c CHAINDATAFILE 98 
C 98 IFEQ ' ,Checking an C 'E'MOVE ERROR 
C GOTO TAG ENDindicator in an 
C END 

IF statement. C MOVE 'E' ERROR 
C GOTO TAG END 

Nesting IF Statements 
answered by Ron Elliott 

QI've successfully written RPG II structured programs. The results I 
get from the code in Figure 16-28, however, puzzle me, and the RPG 

manual offers no help. The code is supposed to direct a program to perform 
the THEN clause (lines 14 and 15) when all IF conditions are met. When 



Programming 545 

Figure 16-28 

Incorrect nesting 
ofIF statements 
for cumulative 
effect 

any of the stated conditions fail, the program should perform the ELSE 
clause (lines 17 and 18). But sometimes my program doesn't perform either 
the THEN or the ELSE clause. Why not? 

AYour programs perform neither clause because your code is incorrect. In 
any language, an ELSE statement refers to the most recent IF preceding 

it. To relate the multiple IF conditions tested by your series of nested IF 
statements to the THEN and ELSE statements, you need an AND statement, 
which is an RPG III language feature that does not exist in RPG II. 

In the code in Figure 16-28, the THEN clause is executed when all the 
stated conditions are met. However, the ELSE clause is executed only 
when the last IF statement (line 13) fails. Should any of the IFs before the 
last one fail, your program bypasses both the THEN and the ELSE clauses. 

You can solve your problem in one of two ways. One way is to change 
the nested IF statements to COMP statements with chained indicators to 
create an "and" relationship between conditions (Figure 16-29). The other 
way is to use the code shown in Figure 16-30, which causes the THEN 
clause to be executed as it is in Figure 16-29 (i.e., when all conditions are 
met). The ELSE clause's execution criteria in Figure 16-30, however, is 
slightly different from that in Figure 16-29. Instead of the ELSE clause 
being executed only when the last condition fails, the ELSE clause is now 
executed when the THEN clause does not happen. 

4 6 B 
0001 C***************************************************** ********************* 

0002 C' SUB-ROUTINE "ACCUM," WHICH ADDS RECORD'S SALES INTO "TOTSLS" 
0003 C' ONLY WHEN SEVERAL CONDITIONS ARE MET. IF NOT MET, ADD 
0004 C' RECORD'S SALES INTO "BADSLS." 
0005 C***************************************************** ********************* 

0006 CSR ACCUM BEGSR 
0007 CSR MOVE 'XXXX' CHECK 4 
OOOB CSR HAREA IFGE AREAFM 
0009 CSR HAREA IFLE AREATO 
0010 CSR HTERR I FGE TERRFM 
0011 CSR HTERR IFLE TERRTO 
0012 CSR HTYPE IFGE TYPEFM 
0013 CSR HTYPE IFLE TYPETO 
0014 CSR TOTSLS ADD RECSLS TOTSLS 72 
0015 CSR MOVE 'GOOD' CHECK 
0016 CSR ELSE 
0017 CSR ADD PECSLS BADSLS 72 
001B CSR MOVE 'BADX' CHECK 
0019 CSR END 
0020 CSR END 
0021 CSR END 
0022 CSR END 
0023 CSR END 
0024 CSR END 
0025 C' BADSLS 
0026 CSR 'CHECK' DEBUGPRINTER CHECK 
0027 CSR ENDSR 



546 5/36 Power Tools 

3 4 .. , 5 6 .. , 8Figure 16-29 2 " 
HAREA COMP AREAFM 11 11 

11 HAREA COMP AREATO 1111Replacing 11 HTERR CaMP TERRFM 11 11 
nested IF 11 HTERR CaMP TERRTP 1111 

11 HTYPE CaMP TYPEFM 11 11 
statements with 11 HTYPE CaMP TYPETO 1111 

11 ADD RECSLS TOTSLSCOMP N11 ADD RECSLS BADSLS 
statements and 
chained 
conditions 

Figure 16-30 ' ' 

0001 C 
.. , 3 .. 

MOVE 'XXXX' 
4 

CHECK 
5 
4 

..,6 7 .. , 8 

Linking the 
execution ofthe 

0002 C 
0003 C 
0004 C 

HAREA 
HAREA 
HTERR 

IFGE AREAFM 
IFLE AREAtO 
IFGE TERRFM 

ELSE clause 0005 
0006 

C 
C 

HTERR 
HTYPE 

IFLE TERRTP 
I FGE TYPEFM 

with the THEN 
clause 

0007 C 
0008 C 
0009 C 

HTYPE IFLE TYPETO 
ADD RECSLS 
MOVE 'GOOD' 

TOTSLS 
CHECK 

72 

0010 C END 
0011 C END 
0012 C END 
0013 C END 
0014 C END 
0015 C END 
0016 C CHECK IFNE 'GOOD' 
0017 C ADD RECSLS BADSLS 72 
0018 C MOVE 'BADX' CHECK 
0019 C END 

Printing Action Diagrams for Structured Verbs 
by Gary T. Kratzer 

program by Steve Cranmer 

a Code on diskette: 

Procedure NEST 
RPG program NEST 
Screen format member NESTFM 

Using the RPG structured operations IF/ELSE, DO, DOUxx (do until), 
DOWxx (do while), and CAS can be a mixed blessing. On one hand, the 
structured verbs can dramatically reduce indicator use and improve program 
readability. On the other hand, structured verbs can easily create a mass of 
spaghetti code faster than you can say "top-down programming." At best, 
spaghetti code can make reading a program a laborious task; matching a 
structured operation with its associated END statement is difficult because 
you can "nest" your logic to essentially an infinite number of levels. This 
process can be especially painful if the program you are attempting to debug 
is not your own or is one you haven't looked at for a while. 



Programming 547 

Figure 16-31 

NESTprompt 
screen 

To make life in the structured programming world a little easier, we 
offer utility NEST, which can produce action diagrams up to 16 nesting 
levels deep for structured verbs. The resulting action diagrams can be 
inserted directly into your RPG program, printed as a report, or both. To 
create the NEST utility, first create procedure NEST, compile program 
NEST, and compile screen format member NESTFM. 

A prompt screen appears (Figure 16-31; see Figure 16-32 for screen for
mat member NESTFM) to request the required input parameters when 
you call procedure NEST (Figure 16-33). The first parameter is the pro
gram to be diagrammed, the second is the library in which the program 
resides, the third indicates whether you want a printed copy of the dia
grammed source, and the fourth indicates whether you want the original 
source program updated with the action diagrams. To cancel the procedure 
from the prompt screen, press Command key 3. 

Diagram Conditional RPG Statements 

Enter the source member name 

Enter the library name of the member 

Print diagrammed copy of program.(Y,N) . - - - - - Y 

Update source program directly (Y,N) 

Cmd3-Exit 

After you supply all the parameters, press Enter, and the program to be 
diagrammed is copied via the $MAINT utility to a 96-byte work file named 
?WS?NESTWK. Then, program NEST is loaded to perform the actual dia
gramming. 

Program NEST (Figure 16-34) reads the work file and looks for the IF, 
ELSE, CAS, DO, DOUxx, DOWxx, and END operations. When it finds 
one of these operations, program NEST increments or decrements a 
counter that indicates the current nest level and places action diagram sym
bols on that line in the appropriate position based on the level. The action 
diagrams occupy positions 80 through 96 of the source statement line. Each 
time program NEST inserts a diagram symbol into a line, it updates the 
work file if you requested that the source be updated. Be aware that pro



548 5/36 Po-':"er Tools 

Figure 16-32 

Screen format 
member 
NESTFM 

Figure 16-33 

Procedure 
NEST 

gram NEST does not check for existing comments in positions 80 through 
96 before inserting the diagram symbols. If program NEST encounters an 
ELSE statement, it places a left arrow symbol «) on that line as an addi
tional aid to spotting those statements. 

When program NEST finishes processing the target program, if you 
requested that your source be updated with the action diagrams, procedure 
NEST calls $MAINT again to replace the existing program in the library with 
the updated version from the ?WS?NEST work file. Also, if you requested a 
printout of the source, program NEST sends it to the spool queue. For a sam
ple of the action diagrams program NEST produces, take a closer look at pro
gram NEST itself in Figure 16-34. Notice that columns 80 through 96 contain 
the action diagrams for the structured operations used in the program. 

Program NEST diagrams a maximum of 16 levels, which should suffice for 
almost any well-structured program, but you could make some minor modifica
tions to increase the nest level. Another useful feature you could add would be 
to diagram GOTO and TAG statements because these are related statements. 
So the next time spaghetti code tries to ruin your debugging efforts, pull utility 
NEST out of your programming arsenal and get the job done right. 

1 ...... 2 ... 6 ... 7 
0001 SNEST 124 YY Y C 
0002 D 34 422Y Y Y CDiagram Conditional RPGX 
0003 D Statements 
0004 D 49 713Y CEnter the source memberX 
0005 D name ... 
0006 DSCRFMT S 763Y Y Y Y Y 
0007 D 49 913Y CEnter the library name X 
OOOS Dof the member ........... . 
0009 DLIBNAM S 963Y Y Y Y 
0010 0 491113Y CPrint diagrammed copy oX 
0011 Of program (Y,N) ......... . 
0012 DPRINT 11163Y Y Y Y 
0013 D 491313Y CUpdate source program dX 
0014 Directly (Y,N) ........ . 
0015 DUPDATE 11363Y Y Y Y 
0016 D 14234Y CCmd3-Exit 

II EVALUATE P3-'Y' P4-'N' 
II IF 727- EVALUATE P2-7CLIB7 
II IF 717- PROMPT MEMBER-NESTFM,FORMAT-NE5T,LENGTH-'S,S,l ,1' 
II IF 7CD7-2003 RETURN 
II IF 737-N IF 747-N RETURN 

II • '717,727 now being diagrammed'
II LOCAL OFFSET-l,BLANK-1S,DATA-'?1?'
II LOCAL OFFSET-9,DATA-'72?'
II LOCAL OFFSET-17,OATA-'737747' 
II LOAD $MAINT 
II FILE NAME-7WS7NESTWK.RECORDS-l000.EXTEND-l00 
I I RUN. 
I I COPY OM IT - SYSTEM, NAME- 717 , LI BRARY -5, FROM-? 27 ,TO- 0ISK. FILE - 7WS7NESTWK, RECL-96 
I I END 

II LOAD NEST 
II FILE NAME-NESTWK,LABEL-7WS7NESTWK 
I I RUN 



Figure 16-34 

Program NEST 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 

Programming 549 

// IF ?4?=N GOTO END 
/ / LOAD $MAINT 
// FILE NAME-?WS?NESTWK,RETAIN S 
/ / RUN 
// COpy NAME-?1?,LIBRARY-S,FROM-DISK,TO-?2?,FILE-?WS?NESTWK,RETAIN-R 
/ / END 
/ / TAG END 
// IF DATAF1-?WS?NESTWK DELETE ?WS?NESTWK,Fl 

PROCEDURE NEST 
** AUTHORS STEPHEN C. CRANMER INDUSTRIAL TRAINING SYSTEMS, MARLTON, NJ 
** COMMENTS DIAGRAM CONDITIONAL RPG STATEMENTS 

1 ... 4 . .. 6 .. , 8 
64 B NEST 

F**------------
F*" PROGRAM I D NEST 
F*" AUTHOR STEPHEN C. CRANMER INDUSTRIAL TRAINING SYSTEMS 
F"* COMMENTS SET DIAGRAMS ON STRUCTURED CONDITIONAL CODE 
F"" DIAGRAMS UP TO 16 NESTED LEVELS 
F"" ASSUMES STRUCTURED OPERATORS ARE MATCHED PROPERLY 
F*" AND PROGRAM WILL COMPILE SUCCESSFULLY 
F** - OPTIONS FROM THE LOA TO PRINT AND/OR UPDATE SOURCE 
F"" INDICATORS OF - PAGE OVERFLOW 
F** 
F** NEST PROGRAM WORK FILE 
FNESTWK UP F9600 96 DISK 
F"" PRINTER FILE IF PRINT-YES 
FPRINTER 0 F 132 132 20F PRINTER 
E RH 3 85 HEADINGS FOR PRINTOUT 
E LVL 16 16 NESTED LEVEL SYMBOLS 
E CL 16 1 CURRENT LINE 
INESTWK 
I 96 STMT RPG STATEMENT 
I 7 $MAINT $MAINT CONTROLS 
I 3 BEGTAB TABLE/ARRAY STARTED 
I 6 SPEC SPEC TYPE 
I 7 7 ASTRSK TEST FOR COMMENT 
I 28 29 I F#DO TEST FOR IF, DO 
I 28 30 CAS TEST FOR CASXX 
I 28 32 OPER TEST FOR ELSE, END 
1*" DATA STRUCTURE FOR SYSTEM TIME/DATE 
I DS 
I 120SYSDS SYSTEM TIME/DATE 
I 40SYSHM SYSTEM HOUR/MIN 
I 120SYSMDY SYSTEM MM/DD/YY 
1** LOCAL DATA AREA TO PICK UP OPTIONS 

UDS 
8 MEMBER MEMBER NAME 

16 FRMLBR FROM LIBRARY 
17 17 PRINT PRINT Y,N 
18 18 UPDATE UPDATE Y,N 

C**--- ----------
C"" FIRST CYCLE PROCESSING 
C FIRST IFEQ *BLANK FIRST CYCLE? 
C MOVE 'N' FIRST 1 FIRST CYCLE FLAG 
C Z-ADD16 C 20 COLUMN MARKER 
C MOVEA"BLANKS CL BLANK CURRENT LINE 
C MOVE *BLANKS OUT 16 BLANK OUTPUT AREA 
C"" 
C PRINT I FEQ 'Y' PRINT-YES? --------+1 
C TIME SYSDS SYSTEM TIME/DATE II 
C MOVE 'H' PRIOR TEST FOR SPEC CHANGE II 
C MOVE 'N' TAFLAG TABLE/ARRAY FLAG II 
C EXCPTHDNGS PRINT HEADINGS PG-l II 
C END ----------+1 
C"" I 
C END 



550 5/36 Power Tools 

0055 C·· 
0056 C·· PROCESS CALC SPECS ONLY 
0057 C 'SPEC I FEQ 'c' CALC SPEC? 
0058 C" 
0059 C" CLEAN OUT '<' CODE FROM PREVIOUS ELSE LI NE 
0060 C ELSFLG IFEQ 'Y' ELSE-SEGMENT ACTIVE' ------------ -+1 
0061 C MOVE ELSFLG 1 RESET FLI\G II 
0062 C C IFGT 'ZERD LESS THAN 16 LEVELS -------------+11 
0063 C MOVE CL, C BLANK OUT '<' 111 
0064 C END -------------+11 
0065 C END --------------+1 
0066 C" I 
0067 C ASTRSK I FNE NON-COMMENT? ----------+1 
0068 C" II 
0069 C" MOVE CONTINUATION LINE TO OUTPUT AS DEFAULT 11 
0070 C MOVEACL OUT SET DEFAULT OUTPUT 11 
0071 C" 1 
0072 C" PROCESS END OF CONDITIONAL SEGMENT, MOVING RIGHT ONE COLUMN 1 
0073 C OPER IFEQ 'END END STATEMENT? ----------- -+ I 
0074 C MOVE CASFLG BLANK CA,;E FLAG 1 
0075 C ADD 1 C MOVE RIGHT I 
0076 C C IFGT 'ZERD LESS THAN 16 LEVELS ------------+1 1 
0077 C MOVEALVL, C OUT FI LL OUTPUT AREA 11 I 
0078 C MOVE CL,C BLANK POSITION 11 1 
0079 C END ------------+ I I 
0080 C END -----------+ I 
0081 C" 1 
0082 C" PROCESS ELSE STATEMENT WITH '< MARKER 1 
0083 C OPER IFEQ 'ELSE ELSE STATEMENT? -------------+ 11 
0084 C C IFGT 'ZERO LESS THAN 16 LEVE LS ----+111 
0085 C MOVE 'Y' ELSFLG SET ELSE-FLAG 1111 
0086 C MOVE '<' CL,C SET SYMBOL 1111 
0087 C MOVEACL OUT FILL OUTPUT AREA 1111 
0088 C END ------------+ 111 
0089 C END -------------+11 
0090 C·· 11 
0091 C" PROCESS FIRST CASE STATEMENT IN A SERIES, MOVING LEFT ONE COLUMN 11 
0092 C CAS IFEQ 'CAS' CASXX STATEMENT -------------+1 I 
0093 C CASFLG I FEQ NOT ALREADY ACTIVE ------------+111 
0094 C MOVE 'Y' CASFLG 1 SET CASE FLAG 1111 
0095 C EXSR NXTLVL 1111 
0096 C END -----------+111 
0097 C END -----------+1 I 
0098 C" 11 
0099 C" PROCESS IF/DO STATEMENTS, MOVING LEFT ONE COLUMN 11 
0100 C IF#DO CASEQ'IF' NXTLVL IFXX STATEMENT ----+11 
0101 C IF#DO CASEQ'DO' NXTLVL DOXXX STATEMENT 111 
0102 C END -------------+11 
0103 C" 11 
0104 C" PROCESS CALC COMMENT STATEMENTS WITH CURRENT LINE 11 
0105 C ELSE < 11 
0106 C MOVEACL OUT FILL OUTPUT AREA II 
0107 C END --------------+1 
0108 C" 1 
0109 C" UPDATE ALL CALC SPECS WITH CURRENT LINE IF UPDATE-YES 1 

0110 C UPDATE IFEQ 'Y' UPDATE SOURCE? --------------+1 
0111 C EXCPTUPDREC UPDATE SOURCE MEMBER 11 
0112 C END --------------+1 
0113 C" 1 
0114 C END 
0115 C" 
0116 C" PRINT SOURCE PROGRAM IF PRINT-YES 
0117 C PRINT IFEQ 'Y' PRINT SOURCE? 
0118 C $MAINT IFNE 'II COPY' NOT CONTROL SPEC ---------- -+1 
0119 C $MAINT IFNE 'II CEND' NOT CONTROL SPEC -------+11 
0120 C OF EXCPTHDNGS PRINT HEADINGS 111 
0121 C" 111 
0122 C" CHECK FOR CHANGE IN TYPE OF SPEC FOR DOUBLE SPACING 111 
0123 C SPEC IFNE PRIOR NEW SPEC TYPE? ------------+111 
0124 C TAFLAG I FEQ 'N' TABLES NOT STARTED -----------+1111 
0125 C EXCPTSKIP PRINT BLAI~K LINE 11111 
0126 C END -----------+1111 
0127 C END ------------+111 
0128 C MOVE SPEC PRIOR SET FOR NEXT RECORD 111 
0129 C" 111 
0130 C" SET FLAG FOR COMPILE TIME TABLEIARRAY START (STOP DOUBLE SPACING) 111 



Programming 551 

C 
C 

BEGTAB IFEO 
MOVE 'Y' TAFLAG 

TABLE/ARRAY 
TABLE/ARRAY 

START 
FLAG 

------------+1 I I 
1111 

C END ------------+111 
c·· III 
C·· PRINT NEST SYMBOLS ONLY ON CALC SPECS III 
C SPEC IFEO 'C' CALC SPEC? ------------+111 
C 
C 

EXCPTPRNEST 
ELSE 

PRINT STMT W/NEST . 1111 
< I II I 

C EXCPTPRSTMT PRINT STMT ALONE 1111 
C END -+ I I I 
C" III 
C -------------+11 
C --------------+ I 
C 

SET COLUMN LEVEL 

LEFT ONE COLUMN FOR NEXT NESTED LEVEL 
LESS THAN 16 LEVELS 

CL.C MARK CONT. LI NE 
OUT FILL OUTPUT AREA 

C 	 MOVE LEFT 

96 

WITH NESTED SYMBOLS IF PRINT-YES 
HDNGS 
RH .1 85 
MEMBER 40 
SYSMDYY 57 
SYSHM 64 
PAGE 80 

E 2 	 HDNGS 
RH.2 85 
FRMLBR 40 

HDNGS 
RH.3 85 

PRNEST 
STMT 96 
OUT 96 

E 1 	 PRSTMT 
STMT 96 

SKIP 

XXX XXX XX XX/XX/XX HH:MM PAGEOOOO 
XXXXXXXX 

... 6 ... ,+, ... 7 .... + .••. 8 



552 5/36 Power Tools 

Overhead in External Program Calls 
answered by Mel Beckman 

QI use ASNA's RPG/III product to call programs from within other 
programs. I would like to move field editing from internal subroutines 

to separately compiled, external programs, but I am concerned about the 
negative effect this change might have on my system's interactive response 
time. Is this concern legitimate? If so, do you know of any other way to 
create a library of commonly used functions so they don't have to be 
compiled into each program? 

AAs long as you don't iteratively call an external RPG program (i.e., in a 
loop), the time required to carry out the call has little effect on 

interactive response time. The time required to call an external program is 
usually under 20 milliseconds. For example, let's say a single interactive 
transaction requires 10 external program calls to do quick calculations, such 
as date conversions or table lookups. The respons,e time for that transaction 
would be 200 milliseconds (i.e., two-tenths of a second) slower than if the 
routines had been coded in-line in the RPG program with EXSR/BEGSR. 

On the AS/400, calls take less than one millisecond, so they degrade 
response time even less than they do on the S/36. External-program-call 
products that are faster than ASNA's are available if you need them; I 
believe BPS publishes a CALL time of only one or two milliseconds for 
repetitive calls to the same module for its RPG 2 1/2 CALL/PARM. 

Ifa given module isn't called for a while, or if your system is badly 
overloaded, that module may be paged out to disk, in which case a program 
call takes an additional 30 to 50 milliseconds to pa,ge the module into mem
ory (regardless of the size of the module). But small modules called on 
every transaction most likely remain resident. 

Using External Program Calls in COBOL/36 
by Lou Forlini 

QDo you know of a product (or method) that lets COBOL programs on 
the S/36 do external program calls (similar to ASNA's RPG III and BPS' 

RPG 2 1/2 CALL/PARM capability)? The calIed programs must exist outside 
of the calIing program's 64 K region, not inside it as IBM S/36 COBOL does, 
and the number of programs to be calIed can't be limited to just one. 

AIBM has a COBOL Dynamic-Call PRPQ that lets you calI, chain, and 
cancel external COBOL programs (only). The program number is 

5799-CFJ for the 5360/62 and 5799-PBJ for the 5363/64. The PRPQ works 
pretty much as you would expect, except that you need to set up a 
parameter list that includes the length of the data you are passing. 



Programming 553 

Using ICF-INTRA to Implement 
External Program Calls 
by George Biernadski 

a Code on diskette: 


Procedures ICMAIN, ICCALL 

RPG programs ICMAIN, ICCALL 


Well, your company's budget has been completed, and once again, no 
money was allocated for a programming language with CALLIPARM fea
tures for your S/36 - what to do? Try the next best thing: CALLIPARM on 
the S/36 using the Interactive Communications Feature Intra Subsystem 
(ICF-INTRA). My step-by-step instructions and code will have you up and 
calling in no time. With three simple configuration screens, you can create 
an ICF subsystem capable of doing external program calls. After learning 
how to set up and enable a subsystem to carry out your instructions, you'll 
learn how to build workstation programs, how to set up calling and called 
programs, and how to adapt calling and called programs for your own appli
cations. Finally, you'll see how to use a built-in IBM facility to trace data 
and commands between your external programs. 

The ICF-INTRA facility lets you communicate between programs on the 
same S/36. Interprogram communications revolve around ICF sessions; a ses
sion is a pipeline through which you can send and receive information after 
establishing communications with another program through a workstation file. 
You can have up to 260 user-acquired sessions within aprogram and thus can 
communicate with more than one external program at a time. For example, 
you could use one external program to handle date manipulation, another to 
calculate amortization, and another to format a person's name. Making each of 
these subroutines an external program eliminates the headache of recompiling 
all the programs that use these routines when you have to change some code. 
Because the calIed programs are loaded at execution time, you need recom
pile only the external program. And, using this technique, you can build true 
modular systems that are easy to maintain and enhance. You can use this arti
cle's programs for the same functions between two different machines 
using ICF-PEER or ICF-APPC. 

Ho~ to Configure ICF-INTRA 
1b use the ICF-INTRA facility on the S/36, you need IBM's Base Commu
nications feature 6001, Release 5.1 (Release 5.0 contains too many bugs). If 
you don't have it, you can order it free. After installing feature 6001, you 
must configure the ICF-INTRA subsystem. You may want to create a sepa
rate library for all your ICF-INTRA programs and configurations. I use a 
library called $S36ICF that contains the ICF configuration and the two 
sample programs used in this article, ICMAIN and ICCALL. In this exam



554 5/36 Power Tools 

pie, ICMAIN, the main program, establishes a session, sends and receives 
data, and controls execution. ICCALL, the called program, contains a sim
ple routine that increments by one the numeric parameter being sent. You 
can model your own ICF-INTRA models on this simple framework to 
build useful systems. 

To configure the ICF-INTRA subsystem, enter CNFIGICF, and the 
screen in Figure 16-35a appears. Enter INTRA in the Configuration mem
ber name field, $S36ICF (or your own library name) in the Library name 
field, and select option 1 (Create new member). The next screen (Figure 
16-35b) asks you what type of subsystem to configure; enter 1 for INTRA. 
Finally, the third screen (Figure 16-35c) prompts you for the remote loca
tion name; I use INTRA for consistency. The final step is to enable the 
subsystem to carry out your instructions by using the command 

ENABLE INTRA.$S36ICF 

You disable the subsystem when your ICF-INTRA programs are done for 
the day by using the command 

DISABLE INTRA 

Coding ICF-INTRA Workstation Files 
With an ICF-INTRA subsystem configured, you're ready for the next step: 
adding ICF workstation file code to your RPG programs because ICF-INTRA 
uses workstation files to pass data between two programs. Even if your pro
grams aren't "proper" workstation programs (i.e., use no interactive screen for
mats), you must still code an F -spec to describe a workstation file in each 
ICF-INTRA program. Be sure the record length is large enough to accommo
date the largest data stream you expect to exchange between the two pro
grams, plus four extra bytes to contain the data stream length. My example 
programs use a workstation record length of 256 bytes (even though the length 
of my data stream is considerably less - the extra space makes adding fields 
easier later on), although you can use any value between four and 4,096. 

You also must code a number of F -spec continuation lines - KID, 
KFMTS, KNUM, KINFDS, and KINFSR - to further describe the work
station file to the INTRA subsystem. Both the calling and the called pro
grams require similar continuation lines; the only difference is the KNUM 
line, which isn't used in the called program unless the called program is 
compiled as a multiple requester terminal (MRT) program. 

For continuation line KID (Figure 16-36, line 10), use a field name to 
which you are accustomed for the workstation ID; my program examples 
use WSID. Workstation IDs contain two characters; the first character is 
alphabetical, and the second character is alphanumeric.To set up an ICF 
session, you also need a two-character symbolic session ID; however, the 
first character is numeric, and the second character is alphabetical. In my 
examples, 1A is the ICF session ID used in both thl~ procedure of the call



Programming 555 

ing program and its source code. The statement II SESSION LOCATION
INTRA,SYMID-1A sets up an ICF session for communications. If you 
want several programs to communicate simultaneously, you need a separate 
session OCL statement with a unique symbolic 10 for each program. 

In my examples, I use "'NONE for continuation line KFMTS (line 11) 
because this example does not use screen formats; however, if you write an 
on-line workstation program, you need screen formats and can eliminate 
this continuation line. 

Continuation line KNUM (line 12) tells the program how many devices are 
attached; my example specifies two, one for the workstation of the calling pro
gram and one for the ICF session. If you are calling more than one program, 
the KNUM value should reflect the number of called programs plus one. 
Remember, you don't need the KNUM continuation line in the called program. 

Continuation line KINFDS (line 13) specifies the workstation INFDS 
in my examples. If you have written workstation programs, you probably 
have used the Information Data Structure (lNFDS) to check for error con
ditions or to see whether a function key was pressed. ICF uses the INFDS 
to send return codes to report on the success of the last attempted opera
tion. The return code is found in positions 23 to 26 of the INFDS and is 
alphanumeric. These return codes are the same ones displayed on the 
ICFDEBUG screen under the MAJ/MIN heading. 

Return codes are broken into two parts: the first two characters are the 
major code, and the last two characters are the minor code. Major codes 00 
through 03 indicate success, 04 indicates a problem, and 08 through 34 
indicate miscellaneous program errors that cause program halts. The minor 
code further identifies the return code. 

Actions for specific codes are handled in the exception processing sub
routine, INFSR, as specified on the workstation continuation line. In my 
examples, KINSFR is INFSR (line 14), although the subroutine can be 
called anything as long as you uphold naming conventions. Note that my 
INFSR routines (Figure 16-36, lines 84 through 86) do not contain calcula
tion lines - if a program is operating smoothly and you don't attempt to 
get too fancy with it, there's no reason to worry about handling exception 
and error conditions; however, to print the return code and each program 
cycle, you may want to insert DEBUG statements for use during testing. 

Finally, if you want to use IDDU-defined formats, use the KCFILE 
continuation option with the name of an IDDU file definition - my exam
ples do not use IDDU format. 

The Main Calling Program - ICMAIN 
Program ICMAIN (see Figure 16-37 for procedure ICMAIN) establishes the 
ICF session, calls the external program, passes one parameter, receives the 
processed parameter, terminates the external program, and ends the ICF ses
sion. Let's look specifically at how program ICMAIN performs these tasks. 



556 5/36 Power Tools 

From the F-specs we move to the I-specs ofICMAIN. The external pro
gram returns data with a record-identifying code placed in the first two posi
tions of the data stream. The returned data appears as an input field on line 
16; any number of input fields can be returned. My example subprogram 
sends back only one record format (identified by the record type $1). In your 
programs, each returned record format should be identified by a unique 
record type. Because of the four bytes containing the data stream length, the 
beginning and ending positions of the fields are four bytes less than they are 
on the O-spec-defined data stream. You also must use a dummy record type 
line (line 17) for the initial workstation read. Lines 18 through 20 define the 
INFDS that holds the return code for each ICF operation. 

Lines 21 through 23 consist of three subroutine calls that set up the 
communications pipeline by establishing a session, sending and receiving 
data, and terminating the program. 

The first subroutine, ICACQ (lines 31 through 46), performs a dummy 
workstation read to retrieve the workstation 10, establishes a session with an 
ACQ operation, and follows with an EXCPT operation that uses the EVOK 
exception records (lines 87 through 93) to issue the ICF command $$EVOK 
that starts the called program. Because each ICF session has a unique symbolic 
10 (lA in my example), you should save the actual workstation 10 in case you 
need it later. Because each session requires logical IDs and because worksta
tion IDs are also logical IDs, lA is moved into the WSID field to acquire the 
ICF session. If there is an execution error, the program halts and displays an 
error message. ICF operation code $$EVOK starts called program ICCALL 
(see lines 88 to 93 for the evoke parameter list). The NEXT operation code 
(line 41) forces input from the device described by WSID (lA) and performs a 
read to ensure that the programs are communicating. As with the initial work
station read, no data is received because no data was sent by program ICCALL. 
Finally, the WSID field is restored with the real workstation 10 (line 44). 

Notice that the WSID field is saved and restored constantly; should 
your program processing also include a display station in addition to an ICF 
session, you must put the proper device 10 into the WSID field before per
forming workstation output to the physical workstation device. Because the 
example programs do not use a display station, you could eliminate the 
save and restore operations on lines 44,54,61, and 70. 

Subroutine ICCARE (lines 52 through 63) actually sends and receives 
data. Because you are sending data using the ICF session, workstation 10 
lA is moved into the WSID field before EXCPT is issued (see the SEND 
parameter list, lines 95 through 99). Then, the NEXT operation code, fol
lowed by a workstation READ, retrieves the data (which has the $1 record 
type) sent back through the workstation input field $PARM. After complet
ing this portion of the processing, the program restores the WSID field. 

The session termination subroutine, ICTERM (lines 68 through 79), 
begins by resetting the ICF session 10 again. It then uses an EXCPT oper



Programming 557 

ation to send an end of transaction (EOT) ICF command to tell the external 
program to detach and terminate. Finally, it uses an EXCPT operation to 
send an end-of-session ICF command to terminate the ICF session; should 
you need it again, you must acquire the session with an ACQ operation. 

Let's take a closer look at the various "parameter lists" that appear as 
exception output in the O-specs. The EVOK parameter list begins with 
$$EVOK (line 88), which starts up an external procedure that contains the 
load/run statements to start the program. When using ICF, the screen for
mat name becomes the ICF command name. Byte assignments following 
use of the $$EVOK command are: 

1 - 8: name of program (procedure) to activate 

9 - 16: password (if security is active) 

17 - 24: user ID (it's a good idea to always use one) 

25 - 32: library of program (or procedure) to activate 

33 - 52: blank 

53 - 56: 0000 (data stream length ofzero) 

Should you want to send data when you start the called program, set 
bytes 53 through 56 to equal the data stream length. Bytes 57 and up can 
contain output data that will be received during the initial workstation read 
of the called program; you must set the program data and the include state
ments on the called procedure to yes (Y). 

The output data stream format (lines 95 through 99) begins with a 
$$SEND ICF command; a maximum of 4,092 bytes is allowed. Bytes 1 
through 4 indicate the total length of the output data stream (not including 
these four bytes); bytes 5 through N (where N is any number equal to or 
less than 4,096) contain the output data stream. Remember that the ending 
positions of the O-spec data stream are four higher than the corresponding 
I-spec positions; the first four bytes (i.e., the data stream length) are not 
received as data by the called program. 

The SENDET parameter list operation (lines 101 through 103) ends 
the link to the external program. The EOT sends code 0308 to the INFDS 
in the called program where INFSR processes the code and terminates the 
program. Unless you are sending data with the $$SENDET operation 
code, place 0000 in bytes 1 through 4 for the output data stream length. 

Finally, the EOS parameter list (line 105) ends the ICF session. The 
ICF command is $$EOS. 

Called Program - ICCALL 
Program ICCALL (Figure 16-38), the externally called program, is much sim
pler and less involved than program ICMAIN (see Figure 16-39 for procedure 



558 5/36 Power Tools 

ICCALL). Program ICMAIN handles much of the overhead; consequently, 
program ICCALL is relatively simple to code. In addition, you don't have to 
worry about acquiring a session or saving and restoring the workstation ID. 
Finally, if you will be receiving data with the initial workstation read, remem
ber to save procedure ICCALL with the Include Program Data attribute set 
to yes (Y). As with the main program, a line-by-line description follows. 

Lines 15 through 17 contain input code in addition to a dummy record ID 
line for the initial workstation read. Notice that ICMAIN O-specs define the 
record ID ($1), ending in position 6, but program ICCALL receives the record 
ID, ending in position 2. This difference occurs because of the four-byte data 
stream length, which isn't transmitted as data to the: called program. 

The INFDS (lines 18 through 22) contains the return code generated by 
ICF and is broken into two parts; the first two positions are the major return 
code, and the last two positions are the minor return code. Your concern is with 
the minor return code; when it has a value of 08, you know the $$SENDET 
ICF operation code was sent and that you should terminate the program. 

Lines 23 through 32 contain processing code. When data is actually 
received, the subroutine processes the particular record type. Any processing 
can go here; for example, you could manipulate dates, calculate amortization, 
or, in the case of my example, increment the received parameter by one. 

The INFSR subroutine (lines 37 through 41) checks for a minor return code 
of 08, which signals you to terminate the program. The *DETC used as Factor 
2 of the ENDSR operation tells the program to resume execution at line 23 
(the beginning of detail calculations) after finishing the INFSR subroutine. 

Code for the output data stream is found in lines 42 through 49. The 
first output record acknowledges to ICMAIN tha1: the called program is 
indeed running by sending a data stream of one blank. This record is pro
cessed by the READ operation on line 42 of program ICMAIN. The sec
ond output record contains the processed data to be sent back to the calling 
program. The output ending positions are four higher than the input posi
tion in program ICMAIN, due once again to the output data stream length 
in output positions 1 through 4. This record is processed by the READ 
statement on line 59 of program ICMAIN. 

Rules for Program Modification 
To adapt ICMAIN and ICCALL for your own applications, you must 
change the program name, the iriput and output data streams, and the 
actual information processing logic. In these place:s, you can add and 
change as much code as you want - everything else should remain consis
tent from program to program. As an alternative to having many programs, 
each with its own routine, you can group routines into one or a few pro
grams. Use different record types so you can distinguish easily between 
routines you are calling within the same program. 



Programming 559 

Figure 16-35a 

Configuration 
member 
definition 

Use of ICFDEBUG 
ICFDEBUG is analagous to a trace table, a handy utility, supplied by IBM for 
tracing data and commands sent to and from ICF programs. Enter ICFDEBUG 
ON to activate ICFDEBUG, and enter ICFDEBUG OFF to deactivate it. 
Reset or blank out by entering ICFDEBUG ON. You can view the trace table 
by entering ICFDEBUG CRT before entering ICFDEBUG OFF. Figure 16
40 shows what a typical page looks like; in fact, it traces the I/O of my sample 
programs. Figure 16-40 also includes explanations of the headings. 

Now you have the information you need to install ICF-INTRA to call 
external programs - can you think of anything else your S/36 might 
receive that's free and as useful? ICF in itself is interesting, and it's benefi
cial in instances where modular code should be used; I hope this article has 
illuminated some of its facets. 

For additional information on ICF, you can refer to Interactive Communi
cations Feature (SC21-9533-0) and the Interactive Communications Feature: 
Guide and Examples (SC21-7911-3). 

1.0 SSP-ICF CONFIGURATIQN MEMBER DEFINITION 

1. Configuration member name INTRA 

2. Library name $S36ICF 

3. Select one of the following: 
1. Create new member 
2. Edit existing member 
3. Create new member from existing member 
4. Remove a member 
5. Review a member 

Option .. 1 -5 1 

Cmd7-End Cmd19-Cancel 

Help text available throughout CNFIGICF by pressing the Help key 



560 5/36 Power Tools 

Figure 16-35b 

Configuration 2.0 SSP-ICF CONFIGURATION MEMBER TYPE INTRA 

member type 
Select one of the following options: 

1. Intra 
2. BSC 
3. SNA 
4. Async 
5. PC Support/36 

Option: 1 

Cmd3-Previous display 
Cmd7-End 

Cmd5-Restart 
Cmd19-Cancel 

CNFIGICF 
COPR IBM Corp. 1986 

Figure 16-35c 

Subsystem 
member 
definition 

220 
Wl 

1. Remote 

SUBSYSTEM MEMBER 

location name 

DEFINITION INTRA 

INTRA 

Cmd5-Restart CNFIGICF Cmd7 - End 
Cmd19-Cancel COPR IBM Corp. 1986 

Figure 16-36 

Program ICMAIN 
1 ... 3 4 .. 5 ... 6 8 

0001 P 64 B ICMAIN 
0002 F* 
0003 F* NAME ICMAIN 
0004 F* 
0005 F* 

DATE
AUTHOR

6/01/88 
GEORGE A BIERNADSKI, COPYRIGHT (C) 1988 

0006 F* 
0007 F* FUNCTION ICF MAIN PROGRAM 
0008 F* 
0009 FWSICMAINCD 256 WORKSTN 
0010 F KID WSID 



Programming 561 

0011 KFMTS 'NONE 
0012 KNUM 2 
0013 KINFDS INFDS 
0014 KINFSR INFSR 
0015 IWSICMAINWS 1 C$ 2 Cl 
0016 I 
0017 I WS 
0018 IINFDS DS 
0019 I 
0020 I 23 
0021 C EXSR ICACQ 
0022 C EXSR ICCARE 
0023 C EXSR ICTERM 
0024 C' 
0025 C****************************************** 

0026 C' ICACQ INITIAL PROCESSING 
0027 C' 
0028 C' ACQUIRE ICF SESSION 
0029 C' CALL EXTERNAL PROGRAM 
0030 C***************************************··· 

0031 CSR ICACQ BEGSR 
0032 C' 
0033 READ WSICMAIN 
0034 C MOVELWSID SAVEID 
0035 C MOVEL'IA' WSID 
0036 C' 
0037 C WSID ACQ WSICMAIN 
0038 C' 
0039 C EXCPTEVOK 
0040 C' 
0041 C WSID NEXT WSICMAIN 
0042 C READ WSICMAIN 
0043 C' 
0044 C MOVELSAVEID WSID 
0045 C' 
0046 C ENDSR 
0047 C' 
0048 C*" *** ............ *** ...... *'** .* •••• """"""".it ... * ** 

0049 C' ICCARE - CALL PROGRAM WITH OATA 
0050 C' - RECEIVE PROCESSED DATA 
0051 C****************···***···***************** 

0052 CSR ICCARE BEGSR 
0053 C' 
0054 C MOVEL'lA' WSID 
0055 C' 
0056 C EXCPTSEND 
0057 C' 
0058 C WSID NEXT WSICMAIN 
0059 READ WSICMAIN 
0060 C' 
0061 C MOVELSAVEID WSID 
0062 C' 
0063 C ENDSR 
0064 C' 
0065 C****···**********··········******·******·· 
0066 C' ICTERM TERMINATE PROCESSING 
0067 C*******··****··*******·*·····************* 

0068 CSR ICTERM BEGSR 
0069 C' 
0070 C MOVEL'lA' WSlD 
0071 C' 
0072 C EXCPTSENDET 
0073 C' 
0074 C EXCPTEOS 
0075 C' 
0076 C MOVELSAVEID WSlD 
0077 C SETON 
0078 C' 
0079 C ENOSR 
0080 C' 
0081 C**··****************************··******** 

0082 C' INFSR - RETURN CODE PROCESSING 
0083 C**··***·*·**********··******************** 

0084 CSR INFSR 8EGSR 
0085 C' 

70SPARM 

26 RECODE 

LR 

• RETURN RECORD TYPE 
• PROCESS DATA 
• INITIAL READ 
• RETURN CODE STRUC 
• STATUS STATUS 
• MAJOR CODE 

• INITIAL PROCESSING 
• MAIN PROCESSING 
• TERMINATE PROCESSING 

• INITIAL READ 
• SAVE WORKSTATION ID 
• SESSION SYMBOLIC ID 

• ACQUIRE SESSION 

• '$$EVOK 'START PROGRAM 

• GET NEXT INPUT FROM SESSION 
• READ SESSION/ACKNOWLEDGE START 

• RESTORE SAVE ID 

• 'S$SEND 'SEND DATA 

• GET NEXT INPUT FROM SESSION 
• READ SESSION 

• '$ $SENDET' END OF TRANSACTI ON 

• 'S S EOS END OF SESSION 

• RESTORE WORKSTATION ID 



562 5/36 Power Tools 

00B6 C ENDSR 
00B7 OWSICMAINE EVOK 
00B8 0 KB 'SSEVOK 
00B9 0 B ' ICCALL 
0090 0 16 
0091 0 24 'USERID 
0092 0 32 'SS361CF 
0093 0 56 '0000' 
0094 0" 
0095 0 SEND 
0096 0 KB '$$SEND 
0097 0 4 '0007' 
0098 0 6 '$1 ' 
0099 0 11 '00001 ' 
0100 0" 
0101 0 SENDET 
0102 0 KB ' $$SENDET' 
0103 0 4 '0000' 
0104 0 EOS 
0105 0 KB ' $SEOS 

Figure 16-37 

Colling procedure ICMAIN 

II LOAD ICMAIN 
II SESSION LOCATION-INTRA,SYMID-1A 
II RUN 

Figure 16-38 

Program ICCALL 

1 .,. 2 ... 3 .. 4 5 ... 
0001 H P 64 B 
0002 F" 
0003 F" NAME- ICCALL 
0004 F" DATE- 6/01/BB 
0005 F" AUTHOR- GEORGE A BIERNADSKI, COPYRIGHT (C) 19BB 
0006 F" 
0007 F" FUNCTION- ICF CALL PROGRAM 
0008 F" 
0009 FWSICCALLCP F 256 WORKSTN 
0010 F KID 
0011 F KFMTS 
0012 F KINFDS 
0013 F KINFSR 
0014 IWSICCALLWS C 
0015 I WS 01 CS 2 C1 
0016 I 2 $RECID 
0017 I 70SPARM 
0018 IINFDS OS 
0019 I • STATUS STATUS 
0020 I 23 26 RECODE 
0021 I 23 24 MACODE 
0022 I 25 26 MICODE 
0023 C 01 NLR EXSR SUBR01 
0024 C" 
0025 c***··*******************···******···**···* 

0026 C" SUBR01 - PROCESS 'S1' RECORD TYPE " 
0027 C****········**···············***·········· 
002B CSA SUBR01 BEGSR 
0029 C" 
0030 C ADD 1 SPARM 
0031 C" 
0032 C ENDSR 

" CALL PROGRAM 

" PROGRAM NAME 
" PASSWORD 
" USER JD 
" PROGRAM LI 8RARY 

" SEND DATA 

" RECORD TYPE 
" DATA 

" TERMINATE CALL PROG 

" TERMINATE SESSION 

6 ... .. .B 
ICCALL 

WSID 
"NONE 
INFDS 
INFSFI 

• INITIAL READ 
" DATA RECORD TYPE 
• RECORD TYPE 
" INPUT DATA 
• RETURN CODE STRUC 

• RETURN CODE 
" MAJOR CODE 
" MINOR CODE 

" PROCESS RECORD 

" PROCESS DATA 



Programming 563 

0033 C' 

0034 c· * * ** * * * .. -II * * -li.* * -II -II -II -II ... * * * * * -II -II * -II -II * * ** * * .. -II -II"
-II 

0035 C, INFSR RETURN CODE PROCESSING 
0036 C* -II * * -II * * -II •• * * -II * * -II -II * -II * ** -II * * * -II * * -II * * * -II -II -II -II * * * * * 
0037 CSR INFSR BEGSR 
0038 C' 
0039 C MICODE COMP 'OS' LR' END OF TRANSACTION 
0040 C' 
0041 C ENDSR' 'DETC' 
0042 OWSICCALLD N01NLR , ACKNOWLEDGE START 
0043 0 KS '$$SEND 
0044 0 4 '0001 ' 
0045 0 0'1 NLR , SEND BACK DATA 
0046 0 K8 '$SSEND 
0047 0 4 '0007 ' 
0048 0 SRECID 6 , RECORD TYPE 
0049 0 $PARM 11 , PROCESSED DATA 

Figure 16-39 

Calling procedure ICCALL 

1/ LOAD ICCALL 

II RUN 


Figure 16-40 

Facility ICFDEBUG andheading explanations 

JOB NAME PROC NAME PROG NAME LOC NAME FORMAT NAME SYM 10 MAJ/MIN OPERATION CODE DATA LENGTH DATA 
Wl143415 ICMAIN ICMAIN INTRA lAI 0000 ACQ 
Wl143415 ICMAIN ICMAIN INTRA $$EVOK lA/ 0001 EVI 0000 
01143420 ICCALL ICCALL INTRA $$SEND 01/lA 0101 PTI 0001 
Wl143415 ICMAIN ICMAIN INTRA lAIOl 0000 GET 0001 
W1143415 ICMAIN ICMAIN INTRA $$SEND lAIOl 0001 PTI 0007 $100001 
01143420 ICCALL ICCALL INTRA 01/1A 0000 ACI 0007 $100001 
01143420 ICCALL ICCALL INTRA $$SEND 01/1A 0001 PTI 0007 $100002 
W1143415 [CMAIN ICMAIN INTRA lA/Ol 0000 GET 0007 $100002 
Wl143415 ICMAIN ICMAIN INTRA $$SENDET lAI 0000 PEX 0000 
01143420 ICCALL ICCALL INTRA 011 030S ACI 0000 
Wl143415 ICMAIN ICMAIN $$EOS lA 0000 EOS 

JOB NAME same as on 'status users console command 
PROe NAME procedure that is active 
PROG NAME - program that generated the operation and data 
LOC NAME - ICF-INTRA system being used 
FORMAT NAME - ICF operation code 
SYM 10 session id (source/target) 
MAJjMIN - return code found in INFDS data structure after each operation 
OP CODE - operation code that is performed 
ACQ acquire 
EVI evoke then invite 
PTI put the invite 
ACI - accept input 
GET RPG 'READ' operation 
PEX end of transaction 
EOS end of session 
DATA data stream that was transmitted (excluding the first four bytes which are the header) 



564 5/36 Power Tools 

Using Dynamically Privileged RPG Subroutines 
by Mel Beckman and Bob Schuettea	Code on diskette: 

Assembler subroutines SUBRDP, SUBRNP 

QWe recently purchased several S/36 assembly language subroutines 
from two different vendors. The routines work fine - as long as we 

use them in separate programs. When we try to use routines from both 
vendors in the same program, however, the program halts with the system 
message, "Privileged Operation Attempted In Nonprivileged Mode." One 
vendor explained that his routines run "dynamically privileged," making 
them incompatible with subroutines that run "continuously privileged." 
We really want to combine the power of both vendors' routines in a single 
program. Is the vendor's explanation valid? Can anything be done to make 
the two vendors' products compatible? 

AYour vendor's explanation is valid. The S/36 supports two "privileged" 
modes, continuous and dynamic. In continuously privileged mode, the 

entire program can always access IBr..l's privileged machine instructions. This 
is a somewhat dangerous situation because bug-ridden code that inadvertently 
executes a privileged instruction can crash the entire system. To reduce this 
danger, a program can use dynamically privileged mode and access privileged 
instructions only when needed. In dynamically privileged mode, there is 
consequently much less chance that the program will be privileged when a 
bug is encountered. The bug then has much less effect on the system. 

If you mix continuously and dynamically privileged subroutines in the 
same program, a problem arises. When the dynamically privileged subrou
tine is called, it turns off privileged mode before returning to the main pro
gram. When the main program subsequently calls a continuously privileged 
subroutine and privileged mode has been turned off, the subroutine fails 
when it attempts a privileged operation, yielding the message you receive. 

The solution is to turn privileged mode back on just before calling the 
continuously privileged subroutine. You should also turn privileged mode 
off again to retain the protection provided by dynamically privileged mode. 
Two assembler subroutines, SUBRDP and SUBRNP, turn privileged mode 
on and off respectively. 

You should call SUBRDP just before calling the continuously privi
leged routine and then call SUBRNP immediately afterward. (See Figure 
16-41 for an example of using the two subroutines.) SUBRDP and SUB
RNP can be used in programs that don't call dynamically privileged sub
routines to obtain the protection of dynamically privileged mode with 
continuously privileged subroutines. 



Programming 565 

4Figure 16-41 c EXIT SUBRDP Priv mode on 
c·Example ofusing c 	 EXIT SUBR## Ca 11 cont. 

RLABL SERIAL 6 prived routineSUBRDPand c 

SUBRNP c 
c· 

EXIT SUBRNP Priv mode off 



566 5/36 Power Tools 

Using RPG Assembly Language Subroutines 
in COBOL Programs 
by Mel Beckman 

Use assembly 
language 
subroutine 
RBRIDG to let 
your COBOL 
programs access 
RPG assembly 
language 
subroutines. 

a Code on diskette: 

Assembler subroutine RBRIDG 

COBOL program TBRIDG 


At last count, more than 230 assembly language subroutines existed in the 
S/36 marketplace. These routines provide access to machine and operating 
system capabilities not directly accessible through high-level languages 
(HLLs), frequently making the impossible possible for many applications. 

Alas, if your HLL of choice is COBOL, you're constrained to using a 
mere two dozen of these technical gems because most of the routines inter
face with RPG only. The inscrutable IBM chose long ago to use different 
assembler subroutine linkage conventions for RPG and COBOL, making 
each camp's routines inaccessible to the other. 

Until now. Assembly language subroutine RBRIDG lets you build a 
bridge between your COBOL program and most, if not all, existing RPG 
assembler routines. Using RBRIDG is simply a matter of defining, in your 
COBOL program's WORKING-STORAGE section, the RLABL parame
ters expected by any RPG assembler subroutines you want to use. Then, 
before calling the routine itself, you just make a call to RBRIDG to build a 
bridge to the desired routine. 



Programming 567 

Figure16-42 

Example of 
coding an 
RLABL 
definition list 

Defining RLABLs 
Subroutine RBRIDG interfaces with any assembler routine that you can call 
via the RPG EXIT operation, as long as the routine doesn't require indica
tor or array parameters. (COBOL has no RPG-like indicator area or array 
definitions.) To use subroutine RBRIDG in a COBOL program, you must 
first build, in the WORKING-STORAGE section, an RLABL definition list 
for each subroutine you plan to call (see Figure 16-42 for an example of cod
ing an RLABL definition list). In the Ol-level data description entry, code a 
name for the definition list; later, you'll pass this name to RBRIDG. Each 
RLABL the target subroutine uses has a corresponding RLABL definition 
within this Ol-level item. Each definition consists of three data items: type, 
length, and the data field itself. The type item is a one-character variable 
containing F for RPG field RLABLs and 0 for RPG data structure 
RLABLs. The length item is a two-byte COMP-4 (binary) variable contain
ing the length of the RLABL field. The data field item represents the RPG 
field or data structure - it contains data being exchanged with the target 
subroutine - and is the only data description item you must name 
uniquely. All other items can have the name FILLER. 

You can code as many RLABL definition entries as you like. After the 
last entry, code a one-byte FILLER with a value of E to mark the end of 
the definition list. 

Making Your Call 
With an RLABL definition list, using RBRIDG to call an RPG assembler 
subroutine is simple (see Figure 16-43 for an example). Just code a CALL 
to subroutine RBRIDG, specifying the name of the RLABL definition list 
in the USING clause. Immediately follow this CALL with a CALL to the 
target subroutine, without a USING clause. Note that you can't code any 
statements between the two CALLs. If subroutine RBRIDG detects a 
statement between the two CALL statements or an error in the RLABL 
definition list (e.g., the length item doesn't match the actual data field 
length), it halts with an error message. Figure 16-44 gives a sample 
COBOL program that calls the RPG assembler subroutine SUBRLD to 
read a library directory and print it. 

Now that you've got a bridge-making tool, you can start crossing the river 
to all those great RPG assembler routines you've done without for so long. 

WORKING-STORAGE SECTION, 

* 	 RLABL definition list for three ALABLs: 

RLABL FIELD1 A ten-byte field 

RLABL FIELD2 A one-byte field 

RLABL DSTRUC A 300-byte data structure 


01 SUBRXX- RLABLS 
05 FI LLER, 

10 FILLER PIC A VALUE 'F', 
10 FILLER PIC 9999 COMP-4 VALUE 10 



568 5/36 Power Tools 

10 	 SUBRXX-FIELDl PIC A(10). 
05 	 FILLER. 

10 FILLER PIC A VALUE 'F'. 
10 FILLER PIC 9999 COMP-4 VALUE 1. 
10 SUBRXX-FIELD2 PIC A(l), 

05 	 FI LLER. 
10 FILLER PIC A VALUE 'D'. 
10 FILLER PIC 9999 COMP-4 VALUE 300. 
10 SUBRXX-DSTRUC PIC A(300). 

05 	 FILLER PIC A VALUE 'E', 

Figure 16-43 

Example ofcoding CALL statements for RBRIDG 

CALL 'RBRIDG' USING SUBRXX-RLABLS. 
CALL 'SUBRXX' , 

Figure 16-44 
This is a sample COBOL program that tests theSample COBOL RBRIDG (RPG Assembler Subroutine ·Bridge). 

program using 
RBRIDG PROCESS MAP,OFFSET 

IDENTIFICATION DIVISION. 

PROGRAM-ID. TBRIDG. 

AUTHOR. MEL BECKMAN. 

INSTALLATION. BECKMAN SOFTWARE ENGINEERING. 

DATE-WRITTEN. 22 FEBRUARY 1990. 

SECURITY. NONE. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. IBM-S36. 

OBJ ECT -COMPUTER. IBM- S36. 

SPECIAL-NAMES. 


SYSTEM-CONSOLE IS CONSOLE. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

* SUBRLD RLABL parameters: 

RLABL LIBNAM S Input 
RLABL MEMNAM S Input 
RLABL MEMTYP 1 Input 
RLABL DI RDS SO Output 
RLABL RCODE 1 Output 

01 	 SUBRLD-RLABLS. 
05 	 FILLER. 

10 FILLER PIC A VALUE 'F' . 
10 FILLER PIC 9999 COMP-4 VALUE S. 
10 SUBRLD- LI BNAM PIC A(S). 

05 	 FI LLER. 
10 FILLER PIC A VALUE 'F' . 
10 FILLER PIC 9999 COMP-4 VALUE S. 
10 SUBRLD-MEMNAM PIC A(S) . 

05 	 FILLER. 
10 FILLER PIC A VALUE 'F' . 
10 FILLER PIC 9999 COMP-4 VALUE 1. 
10 SUBRLD-MEMTYP PIC A(l) . 

05 	 FILLER. 
10 FILLER PIC A VALUE 'D' . 
10 FILLER PIC 9999 COMP-4 VALUE SO. 
10 SUBRLD-DIRDS PIC A(SO). 

05 	 FILLER. 
10 FILLER PIC A VALUE 'F' . 
10 FI LLER PIC 9999 COMP-4 VALUE 1. 



Programming 569 

10 SUBRLD-RCODE PIC A(l). 
05 FILLER PIC A VALUE . E' . 

PROCEDURE DIVISION. 

* Print all source member directory entries 

MAINLINE. 

MOVE 'NEWS3438' TO SUBRLD-LIBNAM. 

MOVE TO SUBRLD-MEMNAM. 

MOVE 'S' TO SUBRLD-MEMTYP. 

MOVE '0' TO SUBRLD-RCODE. 


PERFORM PRINT-DIR-ENTRY 

UNTIL SUBRLD-RCODE IS NOT EQUAL TO '0' . 


• Get out of Dodge. 

EX IT-PROGRAM. 

DISPLAy···· Test of TBRIDG completed 

STOP RUN. 


* Print a directory entry 

PRINT-DIR-ENTRY. 

CALL 'RBRIDG' USING SUBRLD-RLABLS. 

CALL ·SUBRLD·. 

DISPLAY SUBRLD-DIRDS. 




570 5/36 Power Tools 

Retrieving the DTF Control Block in COBOL Programs 

by Bob French 

Code on diskette: a COBOL programs GTDTF1, GTDTF2 

The S/36 COBOL compiler includes a neat and easy method for retrieving 
the Define the File (DTF) control block for a given file. DTFs provide the 
interface between programs and the SSP's data management support and 
contain useful information, such as the relative record number of the last 
record processed or the cursor position for a workstation file. It is similar to 

the file information feedback area on the S/38 and AS/400. 
To retrieve the DTF for a file, first define a WORKING-STORAGE 

data structure (DTF-LIST) 160 bytes long (Figure 16-45). Next, code a 
CALL statement to a separate COBOL subroutine (Figure 16-46), passing 
the name of the file and the DTF-LIST structure. The COBOL subrou
tine receives as its first parameter the DTF for the file name you passed to 
it. It then moves this DTF to the second parameter and returns. Your call
ing program resumes control with the requested file's DTF control block in 
DTF-LIST. As a result, you can redefine selected subfields within DTF
LIST to retrieve information of interest. 

The example shows how to extract the cursor position (row and col
umn) from a workstation file. The cursor row and column numbers are 
stored as two one-byte binary values in positions 55 and 56 of the DTE 
Moving these values individually to COMP-4 variables converts them from 
binary to decimal. For a description of the DTF control block for any type 
of file, see the S/36 .System Data Areas Manual (LY21-0592). 

Figure 16-45 

Code to retrieve the DTF control block. (This code is contained in member GTDTFI on diskette.) 

• Source code required for calling program. 

WORKING-STORAGE SECTION. 



Programming 571 

DTF list contains system data area values based on the file 

01 DTF-L1ST. 
05 FI LLER PIC X(54). 
05 loiS-ROW PIC X. 
05 loiS-COL PIC X. 
05 FILLER PIC X(104). 

01 CONVERT-TO-DECIMAL. 
05 ROW-COLI PIC XX. 
05 ROW-COL2 REDEFINES ROW-COL1 . 

10 FILLER PIC X. 
10 ROW-COL3 PIC X. 

05 ROW-COL4 REDEFINES ROW-COL1 . 
10 ROW-COL PIC S99 COMP-4. 

01 ROW-COLUMN. 
05 ROW PIC 99. 
05 COLUMN PI C 99. 

PROCEDURE DIVISION. 
READ SCREEN-FILE. 
CALL 'GETDTF' USING SCREEN FILE, DTF-L1ST. 
Convert Row & Column from binary to zoned decimal. 
MOVE LOW-VALUES TO ROW-COL1. 

MOVE WS-ROW TO ROW-COL3. 

MOVE ROW-COL TO ROW. 

MOVE LOW-VALUES TO ROW-COLI 

MOVE loiS-COL TO ROW-COL3. 

MOVE ROW-COL TO COLUMN. 


Figure 16-46 

Subroutine GETDTF to retrieve a DTF. (This code is contained in member GTDTF2 on diskette.) 

* Source code required for called program (subroutine) 
Program Name ~ GETDTF 

LINKAGE SECTION. 
01 DTF -AREA PIC X(160) 
01 DTF-RETURN-AREA PIC X(160). 

PROCEDURE DIVISION USING DTF-AREA, DTF-RETURN-AREA. 
OOO-MAINLINECONTROL 

MOVE DTF-AREA TO DTF-RETURN-AREA. 
EX IT PROGRAM. 

Searching for Strings 
by Gary T Kratzer andMel Beckman 

Code on diskette: a Assembler subroutine SUBR$F 

Most methods of string handling in RPG leave much to be desired. With 
RPG's lack of varied data types and the manipulation capabilities found in 
most other languages, RPG programmers usually resort to the only sensible 
method available: arrays. And although RPG arrays are fairly convenient to 
use, in terms of performance, they are hopelessly slow. Whenever you ref



572 S/36 Power Tools 

erence an RPG array with a variable subscript (e.g., ARR,X), hundreds of 
machine instructions may have to be executed, which dramatically 
increases a program's overall execution time. 

In this article, we focus our attention on string handling problems by 
providing assembler subroutines to perform common string operations that 
we, as programmers, face nearly everyday. Don't hesitate to implement 
these assembler subroutines just because compatibility with other 
machines (e.g., the AS/400) may be an issue; you can easily rewrite these 
routines in any language because nothing about them is "smoke and mir
rors." The first subroutine we present is SUBR$F, which performs a high
speed string search on fields up to 256 bytes long. 

To use subroutine SUBR$F in an RPG program, you must code an 
EXIT SUBR$F operation, which must be followed by six RLABL state
ments, a detailed description of which follows: 

C EXIT SUBRSF 
C RLABL FUNC 1 
C RLABL RESLT 30 
C RLABL ARGMNT 
C RLABL TARGET 
C RLABL LEFTP 30 
C RLABL RIGHTP 30 

• FUNC - a one-byte field that contains a code indicating the type of 
search you want to perform. An I meanS "initial search"; use this code 
every time you want to change the search arguments. An R means "repeat 
previous search"; use this code to repeat the search using the same argu
ments you used previously but with different data in the target field. A 
repeat search is much faster than an initial search because all the initializa
tion code in SUBR$F is not executed. 

• RESLT - a three-digit field that will contain the leftmost position of the 
search string in the target field if a match is found, zero if the string is not 
found, and negative 1 if you made a coding error in the search parameters 
(e.g., ARGMNT larger than TARGET, LEFTP greater than RIGHTP). 

• ARGMNT - a field (a data structure is not allowed) up to 256 bytes long 
that contains the search argument. The argument ends with the first blank 
character unless you enclose the entire argument in single quotation marks. 
For example, to search for the string NOW IS, which contains an embed
ded blank, you would pass 'NOW IS' in the argument field. If you enclose 
the argument in double quotation marks, both upper- and lowercase charac
ters in the target string will match. Thus, if the argument field contains 
"NOW IS", subroutine SUBR$F will find a match with Now Is, now is, or 
any other combination of upper/lowercase. In this kind of search, the argu
ment characters must be all uppercase. 



Programming 573 

• TARGET - a field (a data structure is not allowed) up to 256 bytes long 
that contains the characters to search through. 

• LEFTP and RIGHTP - three-digit fields that specify the leftmost and 
rightmost margin positions that will restrict the search in the target string. If 
LEFTP is zero, the value 1 is assumed. If RIGHTP is zero, the search string 
must start at position LEFTP in the target string to match the argument; 
this "anchored" search is much faster than a general search because only one 
compare needs to be performed rather than testing all possible positions. 

Using subroutine SUBR$F can greatly increase program performance 
where string searches are used. A common program function in which sub
routine SUBR$F would be useful is sequentially reading a disk file and 
searching for a given substring in certain "free form" fields, such as names 
or addresses, within each record . 

. Re-creating Subroutine.5UBR$F 
Ifyou don't have assembler subroutine SUBR$F, you can Ie-create it with procedure 

MKSUBR$F(youdon't need IBM's Assembler Language Program Product to install 

SUBR$F). Y6u)nust have first compiled program MAKMEM (see Transmitting S/36 

Object Code, page 38) to run MKSUBR$F. You need to run MKSUBR$F onlyonee to ere

. ate the SUBR$F subroutine. 

// * 'Re-creatinllR-module SUBRSFin library#RPGLlB 

'Build an empty member in a $MAINT file with the correct directory entry

II lOCAL OFFSEl-ZOl ,DATA-'00000135, Number of SMAINT records 

1/ LOCAL OFFSET ,209 ,DATA - + 

'09E2E4C2D95BC6404000000800000000000060000000009900Q4200000003889' 

If LOCAL OHSET,273,DATA-+ 

'111609573100000080564400000000000000000000000000' 

II LOAD MAKMEM 

1/ FlLENAME-BINARY.LABEL-$MAINT.RETAIN-J,BLOCKS-25.EXTEND-25 

II.RUN 

• Copy renamed l1t&lI)ber to target library 

II LOAD SMAINT 

II FILE NAME-SMfliNT,RETAIN-S 

1/ RUN 

1/ COpy FROM-DISK. FILE-$MAINT, RETAIN-R, TO-#APGLlB 

I I END 

.. Patch the newSU8RSF member to insert object code 
/ I LOAD SFEFIX 
II RUN 
HIlR38AA SUBR$OOOQO 

.. PTf CEB8.RSU8MI'. 99 .. #RPGLI B 
DATA ·3844 00 QOOO.E20BE2E4C2D95BC60014E6026200000000000000000000QbOOOO000000000000 
DATA C30B 0000200000000000000000000000000000000000000000000000000000000000000000 • 
DATA OCEE 00 0040E32D15133408171 E340117163402171A3501171 E750202BDD900C08116250FOl .0 
DATA 46EA 000060 173517350FOl173B173B0702174717471COO00000028292!>231Fl0190fOB0703" 
DATA 7cao 00 0080 E32H5421735061C011739081COl1737080F01173717351C00173B091COll7.3F 
DATA 0313 00 OOAOOBl C011730080FOl173D173BOD001735173BC0002D2B2725201 816121.008.0601· 
DATA B07D 00 OQcO E.33215758416FB75020E.7501119D020000C08416FB350117397D4000F2010F37 
DATA eBC7 00. OOEO 0117203F011735Fl0211 COB716FB3C401741350217379000312D29221 1:141 002 
.DATA 11 CCOO 0100E33215A800000QF201283D021735F282217D7000F281067D7FOOF201151COOj 1.' 
DATA 4809 00 0120 41 000E01173717200FOI173917203F0217353501171E75·00312D292723.211C{J9' 

ConfiJiiJiJ . 

http:E32H5421735061C011739081COl1737080F01173717351C00173B091COll7.3F


7.~()R?n1,r.~1 

00,01 EO 1 FOC02174717443D7F1741 F281 '. . 
00 02Q\).E32F166717300C001740173BOF0017401736F2Q2043CD017400CO0166717350C 

"'.' '" "'C.cc 000220 01166616671 C00165FOOBOOOOOF201 07600000000024201 1':1 A18140DOB070501 
000240E3301698F2818D.E202010620174717233FOl 1740Fl0211)FZa771350117373502 
00 0260 17300C001740173BOF0017401735F202043C001(4000302827Z321 10190FOB09 
00 02aOE33116CAl COOl6AB002C001730003A40113030Q01730F20r1;'E340217330C0017 
00 02AO.3017353F011730F28239D20101E202012COOl11CF003A002F22H1C1811000803 
0002j:p'€:33116 FC401 6CF7 OOOOOF 1a11 C35021'13335011737 E2020106?01 747172 33 F01 
OOonOl 17471747F28709F287060C02000029·27 

50M 00 0300 E . 7470E01171 E1 
B600 00 0320 FOFOOl 
9206 00 0340 
3CAA 00 0360 

DATA CD06 00 .0380 
DATA C1D7 00 03AO 
DATA EFAB 00 03CO 
DATA 307C 00 O:i.EO 
J!NIl fiD3 

574 5/36 Power Tools 

726F284060C02.17.331729~~ie~4411i~\\' 
73B002E2A2'8:21'tF1-'R'rg"~Ff30COAO~(c, ->i'::~~ 

R71F7!'it'!?110C021733172C27021733008002 
aHl51 E1814120B01 

'>~17?~,nCCi" 73Bl720F102183C00173BF187 
1737.350ZD02D26222CJ1912100COA0301 

Generating Random Numbers 
by Teresa Elms 

Code on diskette: a RPG subroutine RANDOM 

Many business applications require that a programmer have access to a com
puter-generated sequence of pseudorandom numbers. For example, decision 
support systems that use mathematical models include probabilistic elements 
that can be simulated by pseudorandum number sequences to draw repre
sentative samples. And applications programmers use pseudorandom number 
sequences as test data to exercise the modules of a new application. 

Unfortunately, RPG includes no built-in random number generator to pro
duce pseudorandom number sequences, RPG differs in this regard from other 
high-level languages such as FORTRAN and BASIC, which, on most sys
tems, include a predefined random number function in a subroutine library. 
Forced to code their own routines, RPG programmers turn to adhoc methods 
with little theoretical support - for example, dividing the system date and 
time by a large prime number to generate an irrational fraction that is then 
treated as a random number. Or they adopt algorithms like Von Neumann's 
center-squares method, in which a number is squared and the center digits are 
extracted as the random value. But the number sequences produced by these 
methods repeat themselves quickly or contain undesirable number patterns. 

A more effective random number algorithm is the subtractive method 
described by Donald Knuth in his book Seminumerical Algorithms (page 



Programming 575 

171). Knuth's subtractive method generates a large quantity of unique 
numbers before repeating itself. Furthermore, the generated number 
sequences pass common statistical tests for randomness. 

The RPG subroutine RANDOM (Figure 16-47) implements Knuth's 
subtractive method using three modules of code. The nested subroutine 
RND#1 (lines 36 through 61) initializes random number array R# the first 
time the RANDOM subroutine is called by an application program. Nested 
subroutine RND#2 (lines 68 through 88) then uses the values in array R# to 
calculate 55 numbers of a pseudorandom sequence. RND#2 stores those 
numbers in array R#, replacing the previous values; these 55 numbers 
become the basis for calculating the next 55 numbers in the sequence 
when RND#2 is called again. The subroutine mainline (lines 21 through 
29) determines when to execute RND#1 and RND#2 as it performs its pri
mary function: to select one random number from array R# and return it to 
the calling program in the field RANDUM. The random value is expressed 
as a nine-digit decimal fraction between zero and one. 

Let's look at each module in more detail. For the subtractive method to 
generate a sequence of numbers with the random properties we want, the 
first 55 numbers in the sequence must be chosen properly. Subroutine 
RND#1 performs this task by initializing a 55-element array (R#) with the 
sequence defined by: 

Xn+l = Xn-1 - Xn 

where Xn represents the nth number in the sequence. Restated in English, 
each number in the sequence is obtained by taking the difference of the 
preceding two numbers. This initial number sequence shares some of the 
properties of the well-known Fibonacci sequence (i.e., the sequence 
1,1,2,3,5,8,13,21,34,55,... ), in which each new number is the sum of the pre
ceding two numbers. The first two values in the sequence - the "seed" 
values on which the first subtraction is performed - are the integer 1 and 
the first nine digits of the system time and date (line 39). If the difference 
calculated by RND#1 is negative, the routine adds 109 to the nine-digit 
result, which converts the negative number to a positive number expressed 
in ten's complement forms (line 50). 

Notice that these initial values are not loaded sequentially into the array; 
therefore, the array indexes do not correspond to any element's ordinal posi
tion in the number sequence. RND#1 multiplies the loop counter (R2#) by 
21 and then divides it by 55 and obtains the remainder to calculate the next 
array index to use (lines 45 through 47). Multiplying the array index by 21 
scatters the initial values throughout the array. The division/remainder cal
culation ensures that the resulting array index falls in the numerical range of 
one to 54 - the allowable range for a 55-element array. And because 21 is 
relatively prime to 55, the calculated index is never zero. 



576 5/36 Power Tools 

Once RND#1 initializes array R# with a Fibonacci-like number 
sequence, it makes three calls to the calculation subroutine RND#2, which 
contains the guts of the algorithm. RND#2 treats the values in array R# as 
55 values in a pseudorandom number sequence. From those values, RND#2 
calculates the next 55 values in the sequence. The new values overwrite the 
previous values in the array to become the basis for subsequent calculations 
when RND#2 is called again. Three passes through RND#2 "warm up" the 
generator; that is, any initial nonrandomness is removed before the first 
value is returned by the RANDOM routine to the application program. 

Using Knuth's subtractive method, RND#2 generates the sequence 
defined by: 

Xn = (Xn-55 - Xn-24) mod m 

where n is greater than 55, and the modulus m equals 109. (In modulo divi
sion, the dividend is divided by the modulus m and the remainder, not the 
quotient, is the result. In RPG, the "Move Remainder" or MVR operation 
extracts this figure.) In other words, the equation computes the nth number 
in the sequence by subtracting the 24th number preceding it from the 55th 
number preceding it in the sequence. Because the previous 55 numbers 
must be known to calculate the current number in the sequence, RAN
DOM computes random numbers 55 at a time. The constants 24 and 55 are 
not chosen arbitrarily; they are special values that guarantee many unique 
numbers will be generated before the sequence repeats itself. 

To follow the implementation of this equation in RND#2, remember 
that the array index values are not equivalent to the corresponding array ele
ment's ordinal position in the random number sequence. The indexes do not 
even reflect the relative ordinal position of the array elements at all times 
because RND#2 overwrites the elements individually. Thus, when RND#2 
begins executing for the first time, array indexes one through 55 represent 
the first through 55th numbers in the random number sequence; but RND#2 
overwrites the first element with the 56th number calculated, then the sec
ond element with the 57th number, and so on. Halfway through execution of 
RND#2, the 25th array element contains the 80th random number calcu
lated, but the 26th array element still holds the 26th random number. 

The loops in RND#2 use this fact to select array elements for subtrac
tion. Notice that the expression: 

Xn-55 - Xn-24 

computes the difference between number pairs offset in the random num
ber sequence by 31 positions. Similarly, the loop coded in lines 69 through 
77 fills the first 24 elements of array R# with the differences between num
ber pairs that are separated in the array by 31 positions. 

The loop coded in lines 79 through 87 then inverts the order of the 
subtraction and computes the difference between number pairs separated 



Programming 577 

in the array by 24 positions. The switch is not as crazy as it looks because 
the subtrahend uses values computed in the previous loop. Consequently, 
the subtractions in the second loop also compute the difference between 
numbers separated in the random sequence by 31 positions. For entries in 
array positions 49 through 55, the second loop uses values calculated earlier 
in the loop, which, again, are separated by 31 positions in the pseudoran
dom number sequence. 

Performing control functions for the RND#1 and RND#2 routines is 
the RANDOM subroutine mainline. The mainline calls RND#1 the first 
time an application program executes the RANDOM routine. The first 
pass through the routine is identified by a zero value in the execution count 
field R1#. The execution count field identifies the random number from 
array R# to be returned to the calling application program by the RAN
DOM mainline. Each call to RANDOM increments the counter. When 55 
values have been used by the calling program, the mainline executes 
RND#2 to generate the next 55 numbers in the sequence. 

Implementation 
The subroutine RANDOM can be used in any RPG program on the S/36 if 
five conditions are met. First, the calling program must define array R# in the 
extension specifications with 55 elements of 10 bytes (and zero decimal posi
tions) each. Second, the calling program must not change the values in array 
R# or the value of the execution counter Rl#. Third, the calling program 
should save the values of indicators 95 and 96, if used, because these values 
are changed by RANDOM. Founh, the calling program should save the val
ues of any fields whose names are duplicated within the routine. Fifth, before 
including RANDOM in a program, check for duplicate tag and subroutine 
names. (Appropriate naming conventions and indicator usage conventions can 
prevent conflicts between application programs and utility subroutines.) 

RANDOM can be modified to generate pseudorandom numbers larger 
than nine digits. The length of the array elements in R# and the lengths of 
fields RND03#, RND04#, RND05#, and RND08# must accommodate the 
number of digits in the generated random number. Ifn digits are used, lines 
SO, 73, and 83 must substitute a field name for the constant 1,000,000,000 and 
the initialization routine RND#1 should set the value of that field to lOn. In 
line 28, the constant .000000001 must be replaced with another field name, 
and subroutine RND#1 should set the value of that field to 10-n. 

According to Knuth, the subtractive method of random number genera
tion produces better results than most popular generators embedded in lan
guages like BASIC and FORTRAN. The subtractive algorithm described 
here can be implemented in any high-level language on almost any machine 
because it uses only integer arithmetic between _109 and +109. The hean of 
the algorithm relies on addition and subtraction rather than much slower 
multiplication and division operations, making it quite fast as well. 



578 5/36 Power Tools 

But no random number algorithm is perfect. Critical applications 
should produce similar output using at least two sources of random num
bers before you accept the results. 

Figure 16-47 

RPG 
subroutines 
RANDOM, 
RND#l,ond 
RND#2 

1 ... 4 6 .. 
0001 c································_---_················............... 

0002 c· 
0003 c· RANDOM NUMBER GENERATOR. Subroutine returns nine-digit random 
0004 C· number expressed as decimal fraction between zero and one 
0005 C· in field RNDNUM. Based on subtractive method of Knuth. 
0006 C· 'Seminumarical Algorithms.' 1981. pp. 170-173. Arr·ay R# must be 
0007 C· defined in extension specifications with 55 elements of ten 
0008 C· bytes and zero decimal positions each. 
0009 C· 
0010 C· AUTHOR - Terasa Elms 
0011 C· DATE WRITTEN - 1/28/85 
0012 C· DATE REVISED 
0013 C· 
0014 C·**·················································t' ............... 

0015 C· 
0016 C· Mainline. Call initial ization routine on fi rst execut; on of 
0017 C· rout i ne. Return next random number from array R# to calling 
0018 C· program. Call calculation routine when all 55 random numbe rs 
0019 C· have been used. 
0020 C· 
0021 C RANDOM 8EGSR 
0022 C R1# COMP 0 951ST CALL 
0023 C 95 EXSR RND#l INIT ROUTINE 
0024 C ADO 1 Rl# 20 INCREMENT COUNT 
0025 C Rl# COMP 55 95 ALL VALUES USED 
0026 C 96 EXSR RND#2 CALC ROUTI N E 
0027 C 95 Z-ADDl R1# RESET COUNT 
0028 C R#.Rl# MULT .000000001RNDNUM 99 CONVERT TO DEC 
0029 C ENDSR 
0030 C· 
0031 C·------------------------------------------------------------------ 
0032 C· 
0033 C· Initialize random number array with Fibonacci-like sequence. 
0034 C· Send is system date and time. 
0035 C· 
0036 C RND#l BEGSR 
0037 C Z-ADD55 Rl# FORCE CALC RTN 
0038 C TIME RND02# 120 GET TIME lit DATE 
0039 C MOVELRND02# RND03# 90 9-DIGIT SEED 
0040 C Z-ADDRND03# R#.55 LOAD ARRAY ELEM 
0041 C Z-ADDRN003# RND04# 100 SAVE PRIOR VAL 
0042 C Z-ADD1 RND05# 100 INIT CURRENT VAL 
0043 C Z-ADD1 R2# 20 INIT LOOP COUNT 
0044 C RNDLP1 TAG 
0045 C R2# MULT 21 RND06# 40 SPREAD VALUES 
0046 C RND06# DIV 55 RND07# 20 THRU ARRAY 
0047 C MVR R3# 20 REMAINDER 1-54 
0048 C Z-ADDRND05# R#. R3# LOAD ARRAY ELEM 
0049 C RND04# SUB RND05# RND05# 96 CALC NEW VALUE 
0050 C 96 ADO 1000000000RND05# MAKE VALUE POS 
0051 C Z-ADDR#.R3# RND04# SAVE PRIOR VAL 
0052 C ADD 1 R2# INCR LOOP COUNT 
0053 C R2# COMP 54 9696FILL 54 ELEM'S 
0054 C 96 GOTD RNDLPl 
0055 C· 
0056 C· Warm up the generator. 
0057 C· 
0058 C EXSR RND#2 
0059 C EXSR RND#2 
0060 C EXSR RND#2 
0061 C ENDSR 
0062 C· 
0063 C·------------------------------------------------------------------ 
0064 C· 
0065 C· Resets random numbar array with next 55 numbers of a pseudo
0066 C· random sequence. 
0067 C· 

http:Z-ADDR#.R3


Programming 579 

0068 C RND#2 BEGSR 
0069 C Z-ADD1 R2# LOW ARRAY INDEX 
0070 C RNDLP2 TAG 
0071 C R2# ADD 31 R3# HIGH ARR INDEX 
0072 C R#R2# SUS R.R3# RNDOB# 100 96 CALC NEW VALUE 
0073 C 96 ADD 1000000000RNDOB# MAKE VALUE POS 
0074 C Z-ADDRNDOB# R#.R2# LOAD ARRAY ELEM 
0075 C ADD 1 R2# INCR ARY INDEX 
0076 C COMP 24 96961ST 24 ELEMENTS 
0077 C 96 GOTO RNDLP2 
0078 C' 
0079 C Z-ADD25 R2# HIGH ARRAY INDEX 
OOBO C RNDLP3 TAG 
00B1 C R2# SUB 24 R3# 20 LOW ARRAY INDEX 
00B2 C R#. R2# SUB R#. R3# RND08# 96 CALC NEW VALUE 
0083 C 96 ADD 1000000000RND08# MAKE VALUE POS 
0084 C Z-ADDRND08# R#.R2# LOAD ARRAY ELEM 
0085 C ADD 1 R2# INCR ARY INDEX 
00B6 C R2# COMP 55 9696LAST 31 ELEM'S 
0087 C 96 GOTO RNDLP3 
0088 C ENDSR 
0089 C' 
0090 C" * * * .... * .... * ...... * * ...... * .... * .... * ...... * * * .......... * * * ........ * ................ * ...... * * ...... * ...... * * .. 


Sorting Packed Dates in Files 
by George Applegate 

a
Code on diskette: 


Procedure PACKOATE 

Ifyou produce reports showing monthly transactions from a file with 
packed dates, you are familiar with the problems that the packed date field 
causes. The fact that the date field contains two digits per byte with a sign 
on the end precludes using the normal #GSORT selection criteria when 
selecting records by month, year, or day rather than by the full date. 

The S/36 procedure PACKOATE (Figure 16-48) uses the LOA and 
parameters 63 and 64 to solve the packed-date problem. Procedure PACK
DATE stores the comparison date in the LOA (in positions 101 through 
106). Procedure PACKOATE then inspects the second digit ofthe month 
value (position 102) and substitutes a comparison value for the #GSORT 
selection criteria. If the input month is 08, for example, the value 79 goes 
into LOA positions 111 and 112. The following sort specifications (which 
assume the transaction date to be in positions 296 through 299 of each 
input record) test each record to see whether the first digit of the transac
tion month equals the desired input value (0 or 1). The next two IF state
ments write the record if the transaction month's second digit is greater 
than the value from LOA position 111 (7 in the example) and less than the 
value from LOA position 112 (9 in the example). 

Procedure PACKOATE continues to loop, repeating the logic for the 
day and year values, ending up with the comparison values for the day in 
LOA positions 113 and 114 and for the year in LOA positions 115 and 116. 

Keep in mind this routine depends on the arrangement of the packed date 



580 5/36 Power Tools 

Figure 16-48 

Procedure 
PACKDATE 

in the input file. If the date on an input record were, say, 082286, the packed 
field would contain 00/82/28/6F in bytes 296 through 299. The statement 

I D 296 296 

in the sort picks up the digit portion (the rightmost half) of the first byte, 
which is the first digit of the month. The statement 

lAP 297 297 

instlUcts the sort to inspect the first half of the second byte of the packed field, 
which is the second digit of the month value. Using the comparison values pre
viously stored in the LOA, the sort performs the desired record selection. 

Although this procedure demonstrates how to include the day value, it 
initially was designed to select records on month and year without regard 
for the day. If you want to omit the day comparison, PACKOATE can be 
made more efficient by omitting the lines marked with the word "day."" 

•• **** •• ** •••••••••••• *** •••••••••••••••••••••••••••••••••• * •• ** •••• *** ••••••• 
This procedure allows the user to sort packed dates and include selected 

month, day and year. Developed primarily for including selected month 

and year for month end reports 


** •••••• ** •••• * ••••• *** •••••••••••••••• ***** •• ** •• ********** ••••• ***** ••••• * •• 
II LOCAL OFFSET-1 ,BLANK-"ALL 
II * 'Enter desired month end date when "Enter Missing Parameter" appears' 
II DATE ?1 R? 

II LOCAL OFFSET-101 ,DATA- '?DATE? 


Set the LDA positions to fill through use of parameters 63 & 64 
First time through, position for month 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * ••• ** ••••••• **.* 

II EVALUATE P63, 3-102 P64,3-111 

II TAG LDABEG 

II IF ?L'763?,1'?/0 LOCAL OFFSET -?64?, DATA-' l' 

II IF ?L'?63?,1'?/1 LOCAL OFFSET-?64?,DATA-'02' 

II IF ?L'?63?,1'?/2 LOCAL OFFSET-?64?,DATA-'13' 

II IF ?L'?63?,1 '?/3 LOCAL OFFSET-?64?DATA-'24' 

II IF ?L'?63?,1 '?/4 LOCAL OFFSET- 7 64?,DATA-'35' 

II IF ?L'?63?,1 '7/5 LOCAL OFFSET- 7 64?,DATA-'46' 

II IF ?L'?63?,1'?/6 LOCAL OFFSET-?64?,DATA-'57' 

1/ IF ?L'?63?,1'?/7 LOCAL OFFSET-?64?,OATA-'68' 

1/ IF ?L'?63?,1'?/8 LOCAL OFFSET-?64?,DATA-'79' 

/I IF 7L'?63?,1 '?/9 LOCAL OFFSET-?64?,DATA-'8 ' 


If all three (month/day/year are done. get out. otherwise add 2 to each 
parm (63 & 64) and go through LDA step again 

.**********.** ••• **.** •• * •• *** •• * •• * •• *.* ••••• **.****. ***.~.*.**.********** •• * 

II IF ?637/106 GOTO LDAEND 
II EVALUATE P63,3-?63?'2 P64,3-?647'2 
I I GOTO LDABEG 
II TAG LDAEND 
II IF DATAF1-S0RTFILE DELETE SORTFILE,F1 
II LOAD #GSORT 
II FILE NAME-INPUT,LABEL-MAINFILE,DISP-SHR 
II FILE NAME-OUTPUT,LABEL-SORTFILE,RECORDS-?F'A,MAINFILE'?,RETAIN-J 
II RUN 

HSORTR 15A 3X 300 N N 
/I I D 296 296EQC?L' 101 ,1 '? Month 1 st digit 
/I IFF? L' 111 ,1 '7 I lAP 297 297GTC?L' 111 l' 7 Month 2nd digit 
II IFF ?L'112,1 '71 lAP 297 297LTC?L'112,1 '7 Month 2nd digit 
II lAD 297 297E0C7L'103,1 '? Day 1st digit 
II IFF ?L'113,1'?1 lAP 298 298GTC?L'113,1 '? Day 2nd di git 
II IFF ?L'114.1 '?I lAP 298 298LTC?L'114,1 '? Day 2nd di git 
I I lAD 298 298EOC?L' 105,1 '? Year 1st digi t 
I I IFF ?L' 115,1 '? I lAP 299 299GTC?L '115,1 '? Year 2nd di git 



Programming 581 

II IFF ?L'l16,l'?1 lAP 299 299LTC?L'l16,l'? Vear - 2nd digit 
FND 298 298 Vear - 1st digit 
FNZ 299 299 Vear - 2nd digit 
FNC 296 298 Monthlday 
FNC 7 11 Control field 
FDC 1 256 Data fields 
Foe 257 300 Data fields 

II END 

II LOCAL OFFSET-l ,BLANK-'ALL 


.*. If you desire all records for a select month/year, regardless of day, 
*** simply omit lines 43-45 {day specifications. or place a ".,. after the 
*** "I" so the day specifications are "r*D" and "I-P" and "I*P" (43-45)
•• ** •••••••••••••••••••• * •••••••••••••••• *** ••••••• *** ••• ** •••• **** ••••••• ** •• 

Processing DUP Keys in RPG 
by John Bowers 

Code on diskette: a RPG code OUPCHR 

A previously published Technical Corner explained the technique for allow
ing workstation operators to use the OUP key for duplicating an entire input 
field in an interactive RPG II program, While duplicating an entire field is 
useful, I have run across several applications that require character-by-char
acter duplication, Let's say that a S/36 RPG data entry program for the 
accounting department requires a 12-character account number, but the 
accounting clerks would like to key in only those positions of the account 
number that have changed since the previous transaction. This user request 
can be satisfied by enabling the OUP key in the program's screen format 

. and by incorporating the C-specs in Figure 16-49 into your RPG program. 
Suppose you want to allow the OUP key to be used when inputting 

values into a field called SCRIN. The OUP key is enabled by coding a Y in 
column 34 in the screen format source member line that defines field 
SCRIN, To process the OUP key, the C-specs in Figure 16-49 use two 
arrays, SAY and INP. When the data entry program is first called, the initial 
value of field SCRIN is saved in array SAV, 

To recognize the OUP key character, the C-specs define a field con
taining a hex FC (the OUP key character for numeric fields). The C-specs 
use the BITOF and BITON operations to put a hex FC into field HEXFC. 
First, all the bits in field HEXFC are set off; then, the first six bits in that 
field are set on. (Field HEXFC will be used in a comparison later in the C
specs.) Next, array INP is filled with the characters from field SCRIN, and 
each element of array INP is checked for the OUP key character. If a OUP 
key character is found in any position, the appropriate array element is sub
stituted from array SAY. If a OUP key character is not found (i.e., a new 
value was entered), array SAY is updated to reflect the change. When all 
the elements of array INP have been processed, the value in array INP is 
moved back into field SCRIN for use by the data entry program. 



582 5/36 Power Tools 

Ifyou were to implement this logic in a data entry program, users would 
need to key in only those digits in an account number that have changed 
since the last transaction. The DUP key capability would reduce the chances 
of error when there are multiple transactions under the same account number 
or when there are standard portions of the account numbers. 

If you want to allow DUP key capability in other fields, you could 
incorporate these C-specs into a subroutine that would be called as needed. 
Just be sure that the field length (FLOLNG) is as long as the longest field 
and that you reset array SAY accordingly. To make the subroutine more 
general, you may want to make field SCRIN an alphanumeric field as well. 
In that case, instead of using the BITOF and BITON operations to build a 
hex FC, you would use them to build a hex 1C, thi:': DUP key character for 
alphanumeric characters. (The bit configuration for hex lC is 00011100.) 

Figure 16-49 
C 

2 ,,' , 3 . .. , 4 
8ITOF'01234567'HEXFC 

. 6 .. ' ... 7 , .. , 8 

CodeforDUP C BITON'012345' HEXFC 

key processing. 
(This code 
appears in 

C 
c 
C Y 

MOVEASCRIN 
Z-ADDl 
DDWLE 

INP 
Y 
FLDLNG 

20 

member 
DUPCHRon 

C 
C 
C 

INP,Y IFEQ HEXFC 
MOVE SAV,Y 
ELSE 

INP,Y 

diskette.) c 
C 

MOVE INP,Y 
END 

SAV,Y 

C ADD 1 Y 
C END 
C MOVEAINP SCRIN 

Redisplaying User Procedure Parameters 
Using the DUP Key 
by Gary T. Kratzer 

a Code on diskette: 

Procedure DUPTST 
RPG program DUPKEY 
Screen format member DUPTSTFM 
Assembler subroutine SUBRDU 

Utility DUPKEY provides a solution to a small, but nagging, problem that 
has mystified S/36 programmers: how to get the Dup key to redisplay 
parameters for non-IBM procedures. Here's the situation. A user keys a 
procedure name and presses the Help key (or enters the word HELP and 
the procedure name - e.g., HELP BLDLIBR). On the Help screen, the 
user then enters the procedure parameters. After the procedure is exe
cuted, the user can press the Dup key to redisplay the procedure name and 
parameters - if they were entered on an IBM Help screen. Unfortunately, 



Figure 16-50 

DUPTST 
prompt screen 

Programming 583 

if the procedure was a non-IBM procedure, pressing the Dup key displays 
only the procedure name, not the parameters that the programmer might 
have prompted for via the /I PROMPT statement. 

IBM procedures invoked via HELP are controlled by the Help Proces
sor (i.e., IBM program $HELP in #LIBRARY), which is responsible for 
updating each workstation's Dup key save area, a disk sector maintained in 
the Workstation Work Area of the Task Work Area. Utility DUPKEY per
forms this same update but lets the user specify when and with what data 
to update the Dup key save area (up to 120 bytes in length). 

The DUPKEY utility is actually an assembler subroutine with a tiny 
RPG program as its driver. I generally shy away from standalone assembler 
programs for utility functions because a subroutine with a driver program is 
more flexible in fitting a particular situation. You can either use utility 
DUPKEY's driver or write your own to suit your needs. 

Program DUPKEY's only function is to read the Dup key text from the 
SYSIN buffer via IBM's SUBR01 and then to call assembler subroutine 
SUBRDU to write the text to the Workstation Dup key save area. 

DUPKEYDemo 
When you run procedure DUPTST, a prompt screen (Figure 16-50; see Fig
ure 16-51 for screen format member DUPTSTFM) is displayed that requests 
four parameters of varying lengths. Key some data into each parameter, and 
then press Enter or Command key 4 to send the job to the job queue. The 
procedure (Figure 16-52) saves the system return code (?CD?) in parameter 
64 for later testing to determine whether Command key 4 was pressed. (The 
return code must be saved because program DUPKEY, which procedure 
DUPTST will load, resets the return code to zeros.) Next, procedure 
DUPTST loads program DUPKEY with the procedure name and associated 
parameters coded as the first SYSIN line following the /I RUN statement. 

DUPTST test prompt screen 

Parameter 1 11111 

Parameter 2 2222222222 

Parameter 3 333333333333333 

Parameter 4 44444444444444444444 

CMD4-Put on job queue Press enter to con
tinue 



584 5/36 Power Tools 

After running program OUPKEY (Figure 16-53), procedure OUPTST 
tests parameter 64 to see whether you requested job queuing. If so, proce
dure OUPTST is placed on the job queue, and a PAUSE message is dis
played at the system console that indicates procedure OUPTST is 
completed. When the procedure ends, you press the Oup key at the com
mand line and then press Enter. The procedure name and the parameters 
you entered are now displayed (Figure 16-54). 

Customizing DUPKEY 
As I said, you do not need to use program OUPKEY; you could write your 
own program that invokes subroutine SUBROU to perform the update in 
any manner you prefer, with any data you prefer. Note, however, that when 
you call subroutine SUBROU, you must supply two RLABL statements 
after the EXIT operation. The first RLABL statement must be a 120-byte 
field (no data structures allowed) that contains the data for updating the 
Oup key save area. This 120-byte limit exists because that's the number of 
bytes the command line for a workstation occupies. 

The second RLABL statement is a return code that indicates whether 
the update is successful. There are only two possible return codes: 0 if the 
update is successful and 1 if the update is not successful because the job is 
not running at a workstation (subroutine SUBROU does not attempt to 
locate the Workstation Work Area for jobs running in batch mode). 

That's all there is to it. Now, with a simple addition, your procedures 
can behave like IBM procedures. 

Figure 16-51 1 	 6 ... 
SSCREEN01 YY Y DG 
D 25 329Y CDUPTST test prompt screXScreen format 
Den 

member D 11 7 2Y CParameter 1 
DPARMl 5 71501 Y Y Y

DUPTSTFM 	 D 11 9 2Y CParameter 2 
DPARM2 10 91502 Y Y y 
0 1111 2Y CParameter 3 
DPARM3 15111503 Y Y Y 
D 1113 2Y CParameter 4 
DPARM4 20131504 Y Y Y 
D 2124 2Y CCMD4-Put on job queue 
0 232457Y CPress enter to continue 

Figure 16-52 II IF JOBQ-YES GOTO JOBO · I I PROMPT MEMBER-DUPTSTFM, FORMAT -SCREEN01 .START -1 , LENGTH- '5,10,15,20'Procedure II EVALUATE P64.4-?CD? 
DUPTST · II LOAD DUPKEY 


II RUN 

DUPTST 71??27,?37,?4? 

II END 

II IF 764?-2004 JOBO ,DUPTST.?1?,?2??3?,?4? 
II RETURN · II TAG JOBO 

II PAUSE 'DUPTST has successfully completed' 




Programming 585 

Figure 16-53 

Program 
DUPKEY 

Figure 16-54 

Screen with 
displayed 
parameters 

4 ... 5 ... 8 
H 64 DUPKEY 
FINPUT lD 120 120 SPECIAL SUBR01 
IINPUT 
I 1 120 DUP 
C READ INPUT 50 
C EXIT SUBRDU 

RLABL DUP 
c RLABL RCODE 1 
C READ INPUT 50 
C SETON LR 

COMMAND 
W2 

Cmd3-Previous menu Cmd5-Main help menu Home-Sign on menu 
Ready for command or procedure 
DUPTST 11111.2222222222.333333333333333 44444444444444444444 

(c) 1984 IBM 
Corp, 



586 5/36 Power Tools 

Running Procedures in Parallel 
by Ed Froste 

Code on diskette: a Procedure WAlTON 

Have you ever thought you could reduce execution time by executing two or 
more job steps at once? You can use the EVOKE OCL statement, but it's diffi
cult to use the output of the EVOKEd procedure in subsequent job steps. Pro
cedure WAlTON in Figure 16-55 lets you start two or more procedures at once 
and then "wait on" those procedures so you can subsequently use their output. 

Figure 16-56 shows how you might use procedure WAlTON. Let's say 
you have three steps (SORTM1, SORTAl, and SORTTl) that you want to 
execute at the same time. Place two of those steps (SORTM1 and SORTAl) 
in separate procedures, and EVOKE those two procedures from the main 
procedure. After you have EVOKEd those two procedures, execute the first 
step in the main procedure (SORTTl) and then call the WAlTON proce
dure twice - once to "wait on" SORTM1 and once to "wait on" SORTAl. 
Procedure WAlTON returns control to the mai.n procedure when the 
EVOKEd procedures are done, and their aggregate output can be used in 
the next job step (UPDATE). As Figure 16-56 illustrates, procedure 
WAlTON can be used more than once, so you can EVOKE several proce
dures and "wait on" each. I managed to cut execution time almost in half 
when I used the procedure in Figure 16-56 instead of a standard procedure 
that first did the SORTM1, then the SORTA1, and so on. 



Programming 587 

• WAlTON Proe - form WAlTON Proe-nameFigure 16-55 II TAG A 
II IFF ACTIVE-?1? GOTO EXProcedure II WAIT INTERVAL-000200 

WAlTON 	 II GOTO A 
II TAG EX 
II RETURN 

Figure 16-56 	 II •. Start of Job stream' 
II EVOKE SORTM1 
II EVOKE SORTA1Sample use of 
SORTT1 

procedure WAlTON SORTM1 
WAlTON SORTA1WAlTON 	 UPDATE 
II EVOKE REPORT1 
II EVOKE REPORT2 

REPORT3 

WAlTON REPORT1 

WA ITON REPORT2 

PRINTX 

CLNUP 

II •. End of Job stream' 


Explanation of SUBR95 
answered by Mike Patton 

QWhat is the on-line Inquiry subroutine SUBR95, and how do you use 
it? It appears to be called in a program if the user takes menu option 4 

at the Inquiry screen. Is this correct? 

AWhen an RPG program calls SUBR95, the subroutine tests to 
determine whether the "Inquiry latch" has been set by the user. The 

user sets the Inquiry latch when he or she takes option 4 - "Set inquiry 
condition for program" - at the Inquiry menu. 

Subroutine SUBR95 is not called automatically when a user selects option 
4. Instead, you must code an explicit call to SUBR95 in your program when
ever you want to test for this condition. The format for calling SUBR95 is 

EXIT SUBR95 
RLABL INxx 

where xx is any indicator you wish. When SUBR95 returns control to the 
calling RPG program, the indicator referenced in the RLABL statement 
turns on if the operator has selected Inquiry option 4 since the last time the 
subroutine was called; otherwise, the indicator turns off. 

The SUBR95 subroutine is useful when your program performs a time
consuming operation such as searching a disk file. By periodically testing 
for the Inquiry latch, you can give the user a way of escape; that is, you can 
let the user cancel the long-running operation without canceling the entire pro
gram, simply by taking Inquiry option 4. 

You should not call SUBR95 too frequently because it consumes process
ing resources. For example, when searching a disk file, you might call SUBR95 
after processing every looth record to minimize the overhead due to SUBR95. 



588 5/36 Power Tools 

Flagging NEPs to Go to End-of-Job 
answered by JeffSilden 

Figure 16-57 

Partial MAPleS 
program AMZOO 

Qwe need the ability to cancel all NEPs (Never-Ending Programs), 
compress the disk, and power off the machine without operator 

intervention. Is there a way to identify and cancel all NEPs? 

AThere is no system function to seek out and destroy NEPs, but you 
can use a technique that involves creating a "flag" that instructs the 

NEP to set on an LR indicator and go to end-of-job. The system operator 
can have a procedure that calls the NEP with this flag. The MAPICS NEp, 
AMZOO, uses this technique. The procedure call 

AMZPOl ......... N 

ends MAPIC's NEP within about one-half second, without operator 
involvement. 

Figure 16-57 shows the RPG code AMZOO uses to gain operator control 
of the MAPICS NEP. The calling procedure passes the input parameters to 
the program as "workstation" input data by setting the procedure attribute 
for "program data in include statement." (See the SSP Reference Manual 
(SC21-9020), pages 2 through 10, for more information on this attribute.) 
Lines 75 through 84 of Figure 16-57 illustrate the coding for the input data. 
The C-spec on line 190 sets on indicator LR if the field PDMOD (the 10th 
parameter) is equal to N. The next C-spec line branches to the end of the 
detail calculations if indicator LR is on. 

.. 1 . . 2 4 ... . .. 6 
0058 FWORKSTN CP F 87 WORKSTN 
0059 F KNUM 02 
0060 F KSAVDS DSAVE 
0061 F KID WRKID 
00611F KIND 99 
0073 IWORKSTN NS 11 1 CZ 2 CY 3 CX 
0074 I 4 7 PWORD 
0075 I NS 12 2 C, 
0076 I 1 1 PAPCD 
0077 I 3 6 PMENU 
0078 I 8 12 PLOGS 
0079 I 14 150PFNUM 
0080 I 17 17 PDMOD 
008421 33 33 POECD 
0085 I NS 29 
0188 C' TEST FOR SHUTDOWN 
0189 C' 
0189 C POMOO COMP 'S' 48 
0189AC POMOD COMP 'X' 52 
0190 C POMOO COMP 'N' LR 
0191 C LR GOTO END 
0192 C SHTON 20 



Programming 589 

SeHing IILog OCL" Procedure AHributes 
by Dan Stephens 

QI recently installed a canned software package on my 5360. The 
majority of the procedures in the package have the "Log OCL 

statements" attribute set to Y. Is there any way - short of editing every 
procedure - to change this attribute for all the procedures in the library? 

AFrom the POP library names screen (type LIBR, and press Enter), 
place the operation code H next to the library name. You are then 

prompted to select logging to be on or off. You can also do the same for 
individual procedures from the library member names display. 

SSP Procedure Messages 
by Alvaro de Leon 

The following is typical of the messages displayed when a series of SSP 
procedures are run in sequence: 

• COPYDATA procedure executing 

• DELETE procedure executing 

• RENAME procedure executing 

But sometimes you need to be able to see at a glance the file name or 
other parameters the executing procedure is using. If you alter one line of 
your SSP procedures, you can add more informative messages to them. 
Most SSP procedures contain the following lines: 

II 	IF EVOKED-NO 
IF JOBQ-NO*nnnn 

where nnnn is the message identification code for the message correspond
ing to the procedure. If you change the nnnn portion of this statement to 

procname?l?, ?2?, ... ,?n? 

where procname is the name of the procedure and the substitutional expres
sions are the procedure parameters, you can display the following messages 
in an example session: 

* COPYDATA PAYMAST .. PAYMASTN ..... REORG.OMIT.l .EQ .. * ..... . 
* DELETE PAYMAST. Fl ..... . 
* RENAME PAYMASTN.PAYMAST, 

The new messages also appear on the history file - an advantage when 
you are tracing problems. 

Note that to use this technique, you must modify every SSP procedure 



590 5/36 Power Tools 

from which you need more complete information. Because a new release of 
the SSP will replace your modified procedures, b,e sure to maintain docu
mentation so you'll know which procedures to modify in the new release. 

Displaying Error Messages 
Without Message Members 
by Larry N. Forrister 

a 
Code on diskette: 


Procedure ERROR 

I have found a way to display messages without placing the message text in 
a message load member. This lets me conveniently issue impromptu mes
sages with operator options from my procedures. I call procedure ERROR 
(Figure 16-58), passing these two parameters: 

ERROR 03, 'Select 0 to continue; 3 to cancel job,' 

Parameter 1 specifies any of the standard options (i.e., 0,1,2, or 3); you 
must specify at least one option, Parameter 2 is the message text, which 
must be enclosed in single quotation marks if it contains embedded blanks. 
Only the first 72 out of a maximum 75 message characters are displayed. 

Following a call to procedure ERROR, the operator's response to the 
message can be tested with the ?CD? substitution expression in an IF 
statement, Responses 0, 1, and 2 correspond to the ?CD? values 1010, 1011, 
and 1012 respectively. Response 3 causes an immediate job cancel. 

Figure 16·58 	 II LIBRARY NAME-O 
II LOAD sepPE 
I I RUN 
II ERR ALPHA-SYS,MIC-1366,CONTROL-717,VARIN-'72?'

ERROR 	 I I END 

Procedure 

Using SSP's ERR Procedure to Display 
User Messages 
answered by Bob Tipton 

QUser confusion about the right response to take to a message abounds in 
our S/36 shop. This situation is due in part to our use of the II PAUSE 

statement, We use the PAUSE statement to alert users to situations such as 
conflicting jobs running or the need to insert a diskette in a particular slot. 
The PAUSE statement forces a user to respond to the message with a zero 
(0), and then, depending on the reason the message was sent to the user, the 
procedure continues or is canceled, as appropriate. 



Programming 591 

Unfortunately, users have become accustomed to taking the zero option 
to II PAUSE statements and consequently take the zero option to other, 
unexpected messages like DUPLICATE KEY FOUND. Is there a way I 
can cause a message to be sent to the user with options other than zero 
(like option 3) for messages that indicate a terminal situation (e.g., a con
flicting job running)? 

AA perfect solution to your problem exists, and this solution will present 
a consistent format for all messages (your messages and system 

messages) sent to users. The IBM-supplied S/36 ERR procedure, in 
combination with a user-defined, level-one message member, gives you the 
capability of sending messages to users with options 0, 1,2, or 3. 

To use procedure ERR, you first must create a message member. This 
level one message member can be called anything meaningful to you 
something like USERMSG for all user messages or APMSG for accounts 
payable specific messages. Key the message member following the exam
ple in Figure 16-S9a. 

After you have keyed in the message member, use the CREATE pro
cedure to create a message member load member. For the message mem
ber in Figure 16-S9a, you would use the following CREATE statement: 

CREATE USERMSG.REPLACE. library name 

To use the message member in Figure 16-S9a to display messages to your 
users, you must key the statements in Figure 16-S9b into your procedures. 
Then, the message in Figure 16-S9c will be displayed to your users when a 
conflicting job is running. 

If you want to add variable data to your messages to help describe the 
message (e.g., if you want to add the name of the conflicting job to the 
message in Figure 16-S9a), follow the example in Figure 16-S9d. When 
procedure ERR interprets the message in Figure 16-S9d, the pound signs 
are replaced with the job name specified in the third parameter, and the 
message in Figure 16-Sge is displayed. 

Procedure ERR lets your procedures display messages and issue 
options in the same way the system procedures display messages and issue 
options. Thus, if you use procedure ERR, your users will see consistency in 
all messages, and they will no longer simply take the zero option because 
that is the way they always have done it. 

Figure 16-59a 

Sample message member 

USERMSG.l 
0001 There is conflicting job running 

0002 Insert diskette ABC into slot 1 


nnnn the last message in the message member 



592 5/36 Power Tools 

Figure 16·59b 

Sample II MEMBER statement to use in procedures 

II MEMBER USER1-USERMSG,LIBRARY-library name 

ERR 0001,3 

Figure 16·59c 

Sample displayed message 

USER-OOOl ( 3) 


There is a conflicting job running 


Figure 16·59d 

Variable data added to a message 

USERMSG,l 
0001 Job ######## is running now and conflicts with yours 

II MEMBER USER'-USERMSG,L1BRARY-libr"ry name 

ERR 0001 ,3,job name 

Figure 16-59. 

Sample displayed message with variable data 

USER-OOOl ( 3) 


Job job name is running now and conflicts with yours 




Security 


-CHAPTER 

17 




594 5/36 Power Tools 

Using S/36 Security 

by Matthew Henry 

Your S/36 probably contains most information essential to running your 
organization: accounting figures, payroll statistics, sales and production his
tory, inventory records, and - if you use the office management features of 
SSP - most of your intra-office memos, letters, and scheduling. Losing 
this critical asset because of equipment failure or other calamity would be 
disastrous, so naturally you protect the information on your system by fol
lowing a strict backup procedure. 

However, backing up your data doesn't protect against a loss that can be 
just as devastating: undiscovered disclosure or alteration of sensitive corpo
rate records. Such a loss is often insidious; you may not discover the dam
age until it's too late to repair - if you discover the damage at all. To help 
you protect your corporate data from unauthorized access, the S/36 incorpo
rates a three-level security system: user ID, password, and resource. Each 
level provides a layer of protection, and each requires effort on your part to 
implement and manage. 

It's a well-known fact that no computer security system provides absolute 
protection. But, by investigating the strengths and weaknesses of S/36 secu
rity options, you can choose the features that provide the level of protection 
you need and that guard against common pitfalls that might leave your system 
open to compromise. To understand how S/36 security works, you need to 
learn about its major components: user IDs, user profiles, passwords, security 
classes, and authorities. This article describes these components and shows 
you how they work together to provide the three levels of S/36 security. 

User IDs 
From a user's standpoint, S/36 security begins with the sign-on screen (Fig
ure 17-1). To gain access to the system at this lowest level of security, a user 
simply enters an eight-character name, called a user ID, on the sign-on 
screen. Along with the user ID, the user can optionally specify a menu 
name, library name, or procedure to use after sign-on. The user ID, which 
provides SSP with a handle for keeping track of users' work on the system, 
can be any combination of alphameric characters, as long as the first charac
ter is a letter, digit, or $, @, or #. Embedded commas and blanks aren't per
mitted. The SSP accepts any user ID that follows these rules, gives the 
user immediate access to the system, and logs the date and time of sign-on 
as well as various actions the user takes during a session. Thus, the first 
level of S/36 security provides only an audit trail of user activity; it doesn't 
control which users may access the system. 



Security 595 

Figure 17·1 

Sign-on screen 

Figure 17·2 

User profile 
screen (user I D 
security level) 

SIGN ON WI 
Optiona 1-* 

Use rID SMITH 

Password 

User menu 

Library 

Procedure 

Help-Assistance for sign on 

COPYRIGHT 1985 IBM Corporation. 

SECEDIT USERID WI 
Optional-* 

Edit the user profiles In the user identification file 

Mode' Browse or Update Key 1n changes and press Enter 

User 10 SMITH 

Default user menu PAYMEN 

Default 51gn-on procedure TIMECARD 

Defaul t 1 i brary PAYROLL 

Beginning help menu MAIN 

Comment PAYROLL CLERK 

Roll keys-Page Cmd2 Scan Cmd3-Restart 

Cmd4-Aemove Cmd 5 Add mod e Cmd7-End 


COPR IBM Corp.1985 


At the level of user 10 security, a user profile is optional. You use it to 
store user preferences, purely as a convenience for the user. To create this 
record for each user, you use the SECEDIT procedure to set default values 
for the menu name, library name, and procedure (Figure 17-2). If the user 
leaves these fields blank on the sign-on screen, the SSP substitutes the 
default values from the user profile. Because at this security level any user
entered values override the defaults, the user profile is not a security feature. 



596 S/36 Power Tools 

Figure 17-3 

Activate 
password 
security screen 

In addition to default values for the sign-on screen fields, the user profile 
lets you specify the beginning help menu for the user. The beginning help 
menu appears immediately after sign-on (unless you've already specified a 
default user menu) and whenever the user requests system help by pressing 
Command key 6. Users can change their beginning help menu in the user 
profile by pressing Command key 23 while displaying any help menu. 

PassW"ord Security 
Although user profiles are an optional convenience under user 10 security, 
they are required for the other two levels of security, one of which is pass
word security. With password security, you assign each user 10 a corre
sponding four-character password. On the sign-on screen, the user keys 
both the user 10 and password. The password (which does not appear on 
the screen when typed) must match the value stored in the user profile or 
else the user is denied access. 

SECDEF Activate password security W1 

Type any changes and press the Enter key to schedule 
password security to be activated at the next IPL. 

Master security officer user ID GEORGIA 

Master security officer password WR3F 

Override user 10 GEORGIA 

Override password WR3F 

Maximum invalid sign-on attempts 25 03 

Start password date checking to 
require users to change passwords? Y,N Y 


Press the Enter key to schedule password security to be activated. 


Cmd3-Display previous menu Cmd7-End COPR IBM Corp, 1985 

Before you can assign passwords, you must activate password security 
by running the SECDEF USERID,ACTPW procedure, which brings up 
the Activate password security screen (Figure 17-3). You must assign one 
user 10 to be the Master Security Officer (MSO) for your installation. The 
MSO has universal access to everything in the system, so be sure to guard 
this user 10 and password carefully. You must also choose an override user 
ID and password, which can be the same as the MSO user 10 and pass
word. The override user 10 and password lets you sign on to the system if 
the security files are damaged or destroyed. 

To activate password security, you also specify the maximum number of 
sign-on attempts permitted and whether you want to use password date 



Security 597 

Figure 17-4 

User profile 
screen (password 
security level) 

checking, which I describe later. The maximum number of sign-on 
attempts limits the number of consecutive times a user can enter an invalid 
user 10 or password. Each invalid attempt is logged with a message to the 
console operator, and after the maximum number of attempts, the worksta
tion is varied off-line, requiring console or system operator intervention. 

PassW'ord User Profiles 
With password security active, the user profile looks different (Figure 17
4). You now must specify a password, security classification, service aid 
authority, and optional badge number. The password must be a full four 
characters long and can consist of any characters except embedded blanks. 
You may choose to assign passwords centrally or let users choose their own 
passwords. Because passwords are the linchpin of your security system, you 
should carefully choose your strategy for managing them. Later, we'll dis
cuss the factors you need to consider when deciding on a password policy. 

The security classification lets you limit the general powers of various 
users. There are five security classes: Master Security Officer (M), Security 
Officer (S), System Operator (0), Subconsole Operator (C), and Display 
Station Operator (D). You're free to put as many users as you like in each of 
the classes, although each user can be a member of only one classification. 
You established the MSO when you activated password security. 

The S classification lets you deputize other users to manage security 
functions, such as creating and revoking user IDs, assigning passwords, and 
changing user authority - but not changing the MSO or other S-class user 
profiles. S-class users can also sign on at the system console and execute sys
tem operator commands, such as those controlling jobs, devices, and spool-

SECEDIT USERID W1 
Optional-* 

Edit the user profiles in the user identification file 

Mode: Browse or Update - Key in changes and press Enter 

User ID SMITH 
Password 
Security classification M.S.O.C.D M 
Service aid authority? Y.N Y 

Badge number 00000000-99999999 
Comment . M.I.S. DEPT. HEAD 

Ro 11 keys-Page Cmd2-Scan Cmd3-Restart 
Cmd4-Remove Cmd5-Add mode Cmd6-Show passwords 
Cmd7-End emd9-Additional information 

COPR IBM Corp.19B7 



598 5/36 Power Tools 

Figure 17-5 

User profile 
screen 
(additional 
parameters) 

ing. The 0 classification excludes all security functions, but lets the user 
perform the system operator functions previously described. C-class users 
can access subconsoles and enter spooling and device commands associated 
with their assigned subconsole, but they can't sign on to the system console 
or use job control commands. D-class users can run their own applications. 
Users in any class can list their own security information (except password), 
change their password, or secure their own files, folders, or libraries. 

Service aid authority lets a user run low-level maintenance procedures 
that could compromise security (i.e., the DUMp, PATCH, DFA, and PTF 
procedures). Because a sophisticated user could employ these tools to sub
vert the security system, either by gaining access to passwords or by modify
ing IBM modules that control security, you should take care in granting this 
privilege. Generally, only the MSO and System Operators need this capabil
ity so they can collect information when reporting SSP problems to IBM. 

SECEDIT USERID W5 
Optional-* 

Edit the user profiles in the user identification file 

User ID: SUBBY 

Default user menu 
Menu mandatory? Y,N 

Default sign-on procedure 
Procedure mandatory? Y,N 

Default library 
Beginning help menu MAIN 
Allow user to create folders? Y,N Y 

Maximum folder size in blocks 4-65535 , NOMAX NOMAX 

Comment M.I.S. DEPT. HEAD 


Roll keys-Page Cmd2-Scan Cmd3-Restart 
Cmd5-Add mode Cmd7 - End Cmd10-Previous information 

COPR I BM Corp. 19B7 

Badge security, activated at the same time as password security, 
requires terminals with a magnetic strip reader to scan a badge before a 
user can gain access to the system. Thus, badge security can provide addi
tional security in remote locations. 

Pressing Command key 9 on the user profile screen displays a screen of 
additional parameters (Figure 17-5). You're already f:lmiliar with the default 
user menu, sign-on procedure, library, and beginning help menu values. 
Under password security, however, you can prevent user overrides of the 
menu and procedure defaults by specifying mandatory menus and mandatory 
procedures. With mandatory menu control, a user can select only from the 
menu options you provide; the user can't enter adhoc procedure commands 
and can't access the system help facility to prompt for and to run commands. 



Security 599 

The final user-profile parameters keep users from creating document 
folders or limit the size of folders they create. This feature, added in SSP 
Release 5.1, keeps users from inadvertently using up disk space by unin
tentional folder creation. 

Pass""ord Security Strategies 
A chain always breaks at the weakest link. For S/36 security, that link is the 
password. Unless passwords are kept secret, you are secure only in your 
mind. Passwords can be compromised in one of two ways: a user indvertently 
or deliberately discloses the password, or an interloper guesses the password. 
You can reduce the chance of accidental disclosure by requiring that pass
words be memorized - never written down. The policy should also prohibit 
users exchanging passwords or signing on with another's user 10. 

To reduce the chance that someone might guess a password, you should 
choose password character combinations at random. The combination should 
include both numeric digits and special characters and should not follow a 
pattern (such as inverted phone number digits) or use mnemonic tricks (such 
as companies that require an employee's password to be his or her mother's 
maiden name). X3$R is much harder to guess than FRED or MARY, but it is 
also, unfortunately, much harder to remember; you have your work cut out 
for you enforcing the no-written-password policy when using such passwords. 

However, the risk of using less reliable passwords is considerable. If 
you follow a pattern and the pattern is disclosed, all your passwords are 
compromised in one blow. Similarly, mnemonic passwords are among the 
first that an intruder will try in a guessing attack. You should also regularly 
check for user ID/password combinations programmers commonly use dur
ing testing, such as GUEST, TEST, USER, and the like. These are high 
up on the list of candidates for a guessing attack. 

One strategy you might consider is letting users assign their own pass
words with the PASSWORD procedure. When users run the PASSWORD 
procedure, the system prompts them for their current password and then 
prompts for the new password twice as verification. Encourage users to 
change their passwords at regular intervals so if a password is compromised, 
the duration of its value to an intruder is limited. You can still review user
selected passwords to cull poor choices. And if a user forgets a password, 
you can change the password to a new, known value by signing on as the 
MSO. Letting users choose their own passwords reduces your password 
management workload and gives users an opportunity to select passwords 
that are not obvious, but are still easy for them to remember. 

Password date checking, mentioned previously, is a useful password 
security feature that lets you enforce mandatory password changes at regu
lar intervals. You specify the number of days before a password expires and, 
optionally, the number of days in advance to warn the user of impending 
expiration. The user receives the warning at each sign-on and can use the 



600 5/36 Power Tools 

PASSWORD procedure to change passwords at any time. If the user 
doesn't change the password by the expiration date, the password becomes 
invalid, and a security officer must intervene to change it. 

Protecting Resources 
In addition to user 10 security and password security, the S/36 provides 
resource security to protect files, libraries, folders, directories, and special 
resources by controlling access to them individually. You should use 
resource security when mandatory menu security isn't practical (e.g., when 
users need to execute SSP procedure commands). Be aware, however, that 
resource security exacts a significant cost - in both management effort and 
system performance. You activate resource security by running the 
SECDEF RESOURCE,CREATE and SECDEF RESOURCE,ACTRES 
procedures, which create the resource security file and set resource security 
to begin at the next IPL. The resource security file contains the security 
profiles for each object you want to protect. 

Resource security is built on six access levels: owner, change, update, 
read, run, and none. For files and libraries, you assign each secured resource 
a default access level. Then you define each user who is to have a different 
access level than the default level (Figure 17-6). For folders, you establish 
authorization lists to define user access (Figures 17-7 and 17-8). In addition 
to securing files, libraries, and folders, you can secure groups of each. For 
example, you could set up a resource group called ADM. You then could 
secure a library named ADM.LIB, a file named ADM.MST, and a folder 
named ADM. FLO with one group resource record. 

When someone attempts unauthorized access to a secured resource, an 
information message is sent to the system console as well as to the user. 
The message indicates which resource could not be accessed. When you 
define a resource record, you can specify that the system log every access to 
the system history file, whether successful or unsuccessful. Then you can 
periodically analyze the history file to collect resource use statistics. 

Securing Files 
Resource security lets you secure any type of data file and alternate indexes. 
Access levels for files include five of the six available levels (file security 
lacks the run-access level). Assigning owner access to a user 10 lets that user 
create, rename, or delete the file and also read, write, update, or delete 
records in the file. Change access lets the assigned user create or delete the 
file as well as read, write, update, or delete records. Update access gives 
access only to individual records; the user cannot delete, rename, or create 
the file. Read access limits the user to viewing the file's records, and an 
access level of none prevents any kind of access to the file or its records. 

You secure an alternate index differently than you do a file. To create an 
alternate index over a physical file, the user must have at least read access to 



Security 601 

the parent. The resource record for the alternate index must have the parent 
file listed as the parent resource. Ifyou assign a user a higher access level to an 
alternate index than to the parent, it is possible, depending on the program, 
for the user to gain a higher level of access to the parent file than you want. 

Securing Libraries 
You can secure entire libraries, including the system library (#LIBRARY), 
but you cannot define a separate level of security for each type or kind of 
library member. Ifyou assign the owner-access level to a library, you allow a 
user complete control over the library. The user may create, rename, or 
delete the library as well as create, change, run, list, remove, or copy any 
member of the library. Update access prevents the user from renaming the 
library but lets the user create, change, run, list, remove, or copy any mem
ber in the library. Read access lets the user view any member; run access lets 
the user access the library member for running only - not for viewing. Only 
security officers can secure system library #LIBRARY. Although you cannot 
prevent a user from running members in the system library, you can control 
editing, copying, displaying, and deleting members. 

Securing Folders 
Using resource security, you can secure folders for DisplayWrite/36 (docu
ments), Personal Services/36 (mail and mail logs), and IDDU data dictio
naries. In addition to entire folders, you can secure individual 
subdirectories and documents and PC Support/36 virtual disks. However, 
resource security for folders is different from file and library security; you 
use authorization lists for folders, subdirectories, and folder members. 

An authorization list includes a group of user IDs and their assigned 
access level. In addition to the required primary authorization list, you are 
allowed an override list. Before you can access a folder, the system goes 
through a security check routine. First, the system checks the resource file 
to determine whether the folder or directory is secured. If so, the system 
next scans the override authorization lists for a name match. If your user 10 
and access level are high enough to perform the required open and subse
quent action, access to that folder or directory is granted. If the system does 
not find an override authorization list, the system checks the resource file 
to see whether the folder is part of a group. If no override authorization list 
or group match is found, the system then searches the primary authoriza
tion list. If a match is found and your access level is high enough, you get 
access to the folder. If a primary authorization list is not found, the system 
uses the default folder access level. 

Only document or text folder members can have individual security; 
however, you must secure the folder or directory first. After access to the 
folder or directory is cleared, the individual document is checked for secu
rity and access levels. 



602 5/36 Power Tools 

Owner access for a folder lets the user change or remove security; 
rename the folder; add, change, or remove security information for folder 
members or directories; create or remove the folder or directory; and read 
or change any information in any member of the folder. Change access lets 
the user change or remove security for folder members owned by the user, 
secure any folder member not already secured, create folder members, 
delete or create the folder or directory, remove folder members assigned to 
the user as update, and read or change information in any folder member. 

Update access lets a user change or remove security information for 
members owned by the user, secure any member not already secured, cre
ate a new folder member, remove any member assigned to the user, and 
read and change any information in members of the folder or directory. 
Read access lets users read folder members and copy information from the 
member if their user 10 has read access for the entire folder or directory. 
Run access applies to PC shared folders and permits a PC user to run a file 
contained in the secured folder or directory. 

Be careful when securing individual documents in a DisplayWrite folder. 
For example, if you assign the person responsible for backing up folders an 
access of none, an error occurs when the system tries to back up that document. 

Resource Security Overhead 
To implement and maintain resource security may require a significant 
management effort. Moreover, resource security adds significant processing 
overhead to all your jobs. Whenever a program is initiated that uses secured 
resources such as files and libraries, the resource security file must be 
searched to see whether the user is allowed access. Each resource check 
requires at least two disk accesses. Whether this processing overhead will 
degrade your interactive response times depends on the type of programs 
you run. For batch jobs, the time required for resource security checks is 
usually insignificant because batch jobs infrequently initiate new programs. 
On the other hand, interactive jobs may perform frequent program initia
tions as the user moves from function to function. If an interactive program 
processes many files, the time required for resource checking may slow ini
tiation perceptibly, resulting in degraded response times. 

MRT programs that remain active between requesters are an exception 
because the security check is performed only once -- when the first 
requester initiates the program. Subsequent requesters won't go through 
the security check because the MRT job is already active. Thus, another 
security consideration is controlling access to MRT programs separately 
from securing the MRT programs' resources. You can either control access 
to the library containing the MRT program or use mandatory menus to pre
vent direct user execution of MRT procedures. If you don't provide this 
extra control, an unauthorized user could become a requester on a MRT 
program that accesses sensitive files, compromising your security. 



Security 603 

Figure 17-6 

File and library SEC EDIT RESOURCE W1 

security-access Edit the resource security file 

level screen Mode: Add Key in requested information and press Enter or Cmd6 

Optional-* 
Resource name PAYMAST 

Special resource type. A,G,S 

Default access O,C,U,R,E,N 

Parent resource name 

Is the parent resource a group resource record? . y, N N 
Log successful accesses? Y,N N 

Ro 11 keys - Page Cmd2-Scan Cmd3-Restart 
Cmd5 Add mode Cmd6-Display user records Cmd7-End 

COPR IBM Corp. 1985 

Figure 17-7 

Folder security 
screen SECURE A FOLDER 

Type choices, press Enter. 
ITEM CHOICE POSSIBLE CHOICES 
Folder name PAYMEMOS 
Default access N Q=Owner 

C~Change 

U~Update R~Read 

N=None 
Primary authorization list PAYDEPT Name of 1 ist 
Override authorization list MASTER Name of 1; st 
Log successful accesses? 2 1 =Yes 2~No 

Cmd3~Go back Cmd7~End 

Cmd9=Work with primary authorization list 
Cmd10=Work with override author1zation list 

COPR I BM Corp 
1986 



604 5/36 Power Tools 

Figure 17·8 

Authorization 
list screen 

Don't Miss a Step 
We have reviewed the security steps you can take to control all levels of access 
to the S/36. These measures protect against carelessness as well as intentional 
damage. For example, when you specify the update-access level for all master 
files, the files cannot be deleted without changing the resource security 
record. This measure can prevent unwanted deletion of important files. 

Resource security is also appropriate in a development environment. 
Limit access to development files and libraries to programmers, and restrict 
user authority to change production programs. Likc;:wise, keep program
mers from accessing production modules to prevem them from inadver
tently destroying production files and altering production programs. 

Many people have never used any type of security on their S/36 except 
for user IDs. They are missing many opportunities to protect a significant 
investment - their software programs and data. 

CREATE AN AUTHORIZATION LIST 

Authorization list: PAYDEPT 


Type user ID, press Enter to position list. 
ITEM CHOICE POSSIBLE CHOICES 
Position list to Starting character(s) 

LIST OF USER IDS All 
Type user ID and access level (O-Owner C-Change U-Update A-Read E-Run 
N-None) . 

USER ID ACCESS USER ID ACCESS USER I D ACCESS USER ID 
ACCESS 


SMITH 0 GRANT E 

JOHNSON C HENIG E 

LLOYD U WILSON E 

SAWYER R DORSETT N 

SWANSON COMPTON N 

DONNALY FRIEND N 

BECKMAN 

THOMPSON 

FIELDS 

GAITHER 


Cmd3-Go back Cmd7-End Roll-Page COPR IBM 

Corp.1986 




Security 605 

Preventing a User from Signing 
On to Multiple Workstations 
IlJ F.R. Helmus 

S/36 utility 
ONEUID 
discourages the 
sharing 0/ user 
IDs andprevents 
users/rom 
signing on to 
more than one 
terminal with the 
same user ID. 
Thus, utility 
ONEUJD helps 
w,ith security and 
lets you more 
accurately 
determine who s 
doing what on the 
system. 

Figure 17-9 

Procedure 
LOGIN 

a Code on diskette: 

Procedures LOGIN, ONEUIO 

RPG program ONEUIO 

Message member ONEUIOM 


To implement utility ONEUIO, you must install assembler subroutine 
SUBRUL (Retrieving a Librarys Users, page 272), which displays the users 
of a specific library. You must also modify the SECEOIT USERIO proce
dure to specify a mandatory sign-on procedure for each user you don't want 
to sign on to more than one terminal. The OCL in the sign-on procedure 
(procedure LOGIN in Figure 17-9) contains the name of the library in 
which you store utility ONEUIO - in my case, TOOLKIT. 

Utility ONEUIO consists of procedure ONEUIO (Figure 17-10), RPG 
program ONEUIO (Figure 17-11), and message member ONEUIOM (Fig
ure 17-12). The program requires a compile-time array with all libraries on 
disk. When a user signs on, the program checks all users in all libraries. If it 
finds a user 10 that matches the one just entered, and if the user 10 it 
finds is not signed on to the same terminal or not running from the job 
queue, external switch U1 is set on and control returns to procedure 
ONEUIO. The procedure then displays an error message and ends the ses
sion. However, if the user invokes inquiry mode before program ONEUIO 
is completed, procedure ONEUIO cannot end the session. In this case, the 
procedure displays a message at the system console alerting the operator 
that the user is signed on to two terminals. 

II ATTR INQUIRY-NO. CANCEL-NO * No Cancel or Inqui ry 

Procedurename 	 LOGIN 

Function 	 Specify some action for each user who's 

signing on. 


Note 	 With SECEDIT USERID, you must specify this· 

procedure as a mandatory log-in procedure * 

to prevent users from bypassing this 

procedure with the Attn key. 


Creationdate 	 23/01/'89 

II ONEUID.TOOLKIT ?USER? 



606 5/36 Power Tools 

Figure 17·10 

Procedure 
ONEUlD 

Figure 17·11 

Program 
ONEUID 

Procedurename 	 ONEUID (One User~ ID) 

Call format 	 ONEUID User-ID (e.g. ONEUID ?USER?) 

Function 	 Prevent users from signing on to More than .. 
one terminal. 

Creat i ondate 23/01/'89 
Last rev is i on date 23101 I' 89 

Author: E.R.Helmus 	 Public Domain Software 1989 

II ATTR INQUIRY-NO,CANCEL NO ... No Cancel or Inquiry 
II LIBRARY NAME~TOOLKIT 
II MEMBER USER1~ONEUIDM 

II LOCAL OFFSET~201,BLANK-10 
II LOCAL OFFSET-201,DATA-'?1R'OOOl'?' .. Pass User-Id to ~Jrogram via LOA 
II LOCAL OFFSET-209,DATA~'?WS?' ... Pass WS-Id to prc)gram V18 LDA 

Program ONEUID turns on Switch U1 if the user ;s already signed on 

II LOAD ONEUID 
I I RUN 
II IF SWITCH1-0 RETURN ... If not already s',gned on, return 

I I ERR 0002,2.'? L' 201 ,10'? ' ... Display Error message 

If the terminal is not 1n inquiry-mode, sign terminal off; else. 
display message at system-console. 

II IF INQUIRY-NO OFF 

II ELSE ** 'Userid ?L'201,8'? is already Signed on at Terminal ?L'209,2'?' 


4 	 8 
ONEUID 

H* * ........................................ * •• - **iIi.iIi** ......................... ** ..... * .......................................................... iIi ........ * .... 
H* Name ONEUID IBM S/36 Utitity 
H* 
H* Function This program prevents users from signing on to • 
H* more than one terminal 
H* It checks the users in a list of libraries 
H* specified in the compile time array @L 
H* If the specified user lS already active on 
H* another terminal, the external switch Ul wi 11 
H* be set on, and procedure ONEUI[) shall display 
H* an Error-message and slgns the terminal off 
H* If the terminal is in inquiry-mode, a message 
H* will be sent to the system-con~~ole 
H* 
H* Adjust To adjust this program to your own environment,* 
H* just add your library names to the compile 
H* time array at the and of the listing and 
H* put the new number of libraries in the E-Specs.* 
H* 
H· Note Before compiling this program, be sure you 
H* have already installed assembler subroutine 
H* SUBRUL, NEWS 34/3B, August '87. (Thanks, Matt')* 
H* 
H* Bugs If a user signs on at more than one terminal 
H* simultaneously. no sign-on will succeed! 
H* 
H* 
H* Author E.R.Helmus - Public Domain Software 
H* 
H· Creat;ondate 23 Januari 1989 
H· Last revision date: 23 Januari 1989 
H••••••****** ••• *...............*•••• *.*............. * •••• 
t- •••••••••••••••• -It 

E· Array @L with all library names 
E••••••*. ***. *........ *••••••••• **••••** ............. *.*.* t •••• *••••••• '* •• * * 




Security 607 

@L 20 
1*********************************************************************** 

I" Datastructure JOBDS with information of jobs (used by SUBRUL) 

I" 

I" Pos 8 User- Id 

I" 16 Job name 

I" 10 Workstation-Id of Job 

I" 41 46 Jobqueue time (000000 if not Jobqueue) 

1*********************************************************************** 

IJOBDS os 
I 1 8 USEAID 
I 9 16 JOBNAM 
I 9 10 WS 
I 41 460JQTIME 
1***************************************************************.******* 

I" Local Data Area with User-Id and WS-Id to check 
1*********************************************************************** 

UDS 
201 208 UID 
209 210 WSID 

C*********************************************************************** 

c· Main Line 
C*********************************************************************** 

SETOF U1 
C" 
C UID IFNE "BLANKS If 10 specified 
C EXSA SCHECK Check 1; brar; es 
C END End 
C" 
C SETON lA 
C*********************************************************************** 

C" Subroutine SCHECK, check all Libraries for the User-IO 
C*********************************************************************** 

SCHECK BEGSA 
C" 
C DO 20 30 Do for each library 
C" 
C MOVE 'N' NOUSEA 1 Not more users 
C MOVE @l,l UBNAM 8 1 st 1 i bnam 
C Z-ADDO X 30 Seqence :- zero 
C" 
C EXSA SUB Check lib 
C" 
C END End Do until 
C ENDSA 
C*********************************************************************** 

C* Subroutine SLIB, search all users for a library 
C*********************************************************************** 

C SUB BEGSA 
C" 
C NOUSEA DOUEQ'Y' Do until no users 
C" 
C EXIT SUBAUl Call SliBRUL 
C AlABl UBNAM 
C ALABL X 
C ALABl JOBDS 
C" 
C USEAIO IFEQ UID If user active 
C WS IFNE WSIO If other term. 
C JQTIME IFEQ "ZEAO I f not Jobq 
C" 
C SETON Ul 
C MOVE 'Y' NOUSEA 
C MOVE WS WSIO Save WS- ID 
C Z-ADD20 l Jumpout DO 
C END End If 
C END End If 
C" 
C ELSE Else 
C JOBNAM [FEQ 'BLANKS If EOl 
C MOVE 'Y' NOUSEA 
C END End If 
C END End If 
C ADD x Set sequence up 
C END End Do unti 1 



612 5/36 Power Tools 

Displaying the VTOC Graphically 
by Gary T Kratzer 

program by Mel Beckman 

Monitor your 
file, library, 
andfolder 
allocations 
with utility 
VGRAPH's 
bargraphs. 

a
Code on diskette: 


Procedure VGRAPH 
RPG program VGRAPH 
Screen format member VG RAPHFM 
Assembler subroutine SUBRVR 

Not long ago, in a computer room far, far away, there was a S/34. Although it 
was very powerful, it had a mere 256 MB of disk storage. Programmers and 
data processing managers everywhere fought a difficult battle to conserve 
quickly decreasing disk space. Then, just when all hope seemed lost, a 
redeemer appeared: the S/36. This new system boasted more disk space than 
they could possibly ever need. But with no way to track disk use, they con
tinued to misallocate (too often over-allocate) space for files, libraries, and 
folders. Too soon they were back in the boss's office, begging for more disk. 

You probably have learned, as they did, that winning the "space battle" 
often depends not on more disk space, but less wasted disk space. A simple 
solution for monitoring system disk use is VGRAPH, a utility composed of 
RPG program VGRAPH, procedure VGRAPH, screen format member 
VGRAPHFM, and assembler subroutine SUBRVR. The VGRAPH utility 
displays file, library, and folder allocations in an easy-to-read, bar-graph for
mat. You can access three types of information from this bar-graph screen: the 
percent of system space individual file, library, and folder allocations con
sume, the percent of allocated space each uses, and the percent of allocated 
space each has still available. You can see from the percent of system space 
used which files, libraries, and folders have the most space allocated. You 
then can look at all or selected items' allocated space and decide whether the 
allocations are appropriate. Using this information, you can increase or 
decrease file, library, and folder allocations to distribute disk space correctly. 

The VGRAPH utility consists of program VGRAPH (Figure 18-1), 
screen format member VGRAPHFM (Figure 18-2), and procedure 
VGRAPH (Figure 18-3). 

To use the VGRAPH utility, key in: 

VGRAPH filename.altindex (Y or N) .. SORT/NOSORT 

where: 

• filename is either the complete or partial name of the VTOC entry you 
want displayed 

• altindex is Y (display alternate indexes for the first file matchingfilename) 
or N (do not display alternate indexes) 



System 613 

• SORT/NOSORT specifies whether you want the entries sorted by name 
before they are displayed. 

All of these parameters are optional. If you leave the first parameter blank, 
the system displays all VTOC entries. (This can be changed after 
VGRAPH is loaded, as explained later in this article.) Specify the second 
parameter only if you specified the first parameter. 

After you load utility VG RAPH, the system displays a screen (see Fig
ure 18-4) with columns showing the filename, file type (I=indexed, 
X=alternate index, S=sequential, D=direct, L=library, F =folder), number of 
records used, and number of records available. The bar graph on this screen 
represents the percentage of total system disk space occupied by all or 
specified VTOC entries. Using command keys, you can modify the bar 
graph to show to what extent file, library, and folder allocations are being 
used. The capacity of your system (in megabytes) is displayed in the upper 
right-hand corner of the screen. There are 16 VTOC entries shown per 
screen; use the Roll keys to page through the entries. (Note: The bar graph 
is displayed using reverse-image screen attributes, which won't print when 
you press the Print key. Before requesting a screen print, press Command 
key 11 to fill the bars with printable characters. After printing, press Com
mand key 12 to remove the printable characters. 

If you want to restrict the display to particular files, libraries, or folders, use 
Command key 5 to display a selection prompt screen. (Figure 18-5 shows an 
example selection prompt screen.) Specify the VTOC entries whose alloca
tions you want to examine by entering a complete or partial name in the NAME 
field, or leave the NAME field blank to display all entries. You can then select 
the type of entries you want displayed. The list of file types is self-explanatory 
(the default entry is Y; enter N for each type you do not want displayed). Press 
Command key 10 to display any alternate indexes associated with the file 
names you selected. To return to the bar graph screen, press the Enter key. 

The bar-graph screen displayed initially (and redisplayed at any point 
with Command key 1) shows the percent of system space each selected file, 
library, or folder occupies, thereby clearly indicating which ones use the most 
space on your system. The highest value on the bar graph's reference scale 
reflects the highest percentage of disk space that one file, library, or folder 
occupies on the system. In Figure 18-4, the scale's highest value, 4 percent, is 
the highest percentage one file, library, or folder occupies on the system. 

Two other bar-graph formats supply the rest of the information you need 
to monitor potential over- or under-allocation. When you use Command key 
2, the bar graph shows you how much of a file, library, or folder's allocated 
space is being used. Using Command key 3, you can see the percent of space 
available. Together with the system-space percentage Command key 1 dis
plays, you can effectively reallocate disk space to benefit system storage. 

To locate over-allocations, use Command key 5 to select files, libraries, 
and folders. Then press Command key 3 to display available allocated 



614 S/36 Power Tools 

space. Long bars on the graph indicate a significant amount of unused 
space, and you may want to decrease the allocation. Your space "savings" 
will be most significant with those entries (identified via the system-space 
bar graph) that occupy a large percent of system space. To find files, 
libraries, and folders with insufficient space, use Command key 5 to select 
files, libraries, and folders and Command key 2 to display the percentage of 
allocated space used. In this case, long bars on the graph indicate items that 
may need more space. Correcting both under- and over-allocations leads to 
more efficient disk use. 

The VGRAPH utility is a useful programming weapon in your fight to 
allocate disk space more efficiently. Running VGRAPH regularly can help 
control wasted disk space - and help you win the "space battle." 

Figure 18·1 

Program VGRAPH 

8 
0001 H 064 VGRAPH 
0002 F* 
0003 F* Display an interactive bar graph of the disk VTOC 
0004 F* By Mel Beckman, 09/01/87 
0005 F* 
0006 F@WORKSTNCD F 1898 WORKSTN 
0007 F KINFDS INFDS 
0008 FREPORT 0 132 OF PR INTER 
0009 E* 
0010 E* Screen arrays 
0011 E* 
0012 E L8 1100 12 File label 
0013 E TP 1100 1 File type 
0014 E RL 1100 4 0 Record length 
0015 E RA 1100 8 0 Records allocated 
0016 E RU 1100 8 0 Records used 
0017 E CP 1100 8 0 Record capacity 
0018 E* 
0019 E* Dataset type selection mask arrays 
0020 E* 
0021 E SEL 8 1 SYN 
0022 E* 
0023 E* Bar graph arrays 
0024 E* 
0025 E LIN 16 80 Bar graph elements 
0026 E BAR 51 1 Work array 
0027 E* 
0028 E* Sea 1e messages 
0029 E* 
0030 E MSG 5 50 
0031 E* 
0032 E* Zero blanking work area 
0033 E* 
0034 E ZERO 8 1 
0035 I/E,IECT 
0036 1* 
0037 1* Bar graph screen 
0038 1* 
0039 I@WORKSTN 1 Cl 
0040 I 40SCALE 
0041 1* 
0042 1* Dataset selection screen 
0043 1* 
0044 I 1 C2 
0045 I 2 9 NAME 
0046 I 10 17 SYN 
0047 I/EJECT 
0048 1* 



System 615 

0049 I- SUBRVR is a routine to read the disk VTOC. 
0050 I
0051 I
0052 I" To read the VTOC: 
0053 I" 
0054 I- EXIT SUBRVR 
0055 I- RLABL NAME 
0056 I- RLABL VTOCDS 
0057 I" 
0058 I" 
0059 1* NAME: Contains the name of the file VTOC entry to read: 
0060 I- If NAME is blank, then the next VTOC entry is read. 
0061 I" If NAME conta,ns a file name, the VTOC entry for that file 
0062 I- is read. (e.g. ARFILE) 
0063 I If NAME contalns a partial file name, the next VTOC entry 
0064 I" matching the partial name is read. A partial name is 
0065 I" followed by an asterisk. (e g. AR") 
0066 I- After reading a parent file, passlng the keyword *ALTS in 
0067 I- the name field will cause alternates for the parent to 
0068 I" be retrieved on subsequent calls. 
0069 I- After reading to the end of the VTOC, a blank VTOC entry 
0070 I" is returned. The next read will start at the beginning of 
0071 I- the VTOC again (or at the pOint specified by the NAME field). 
0072 I- The keyword ·CONFIG passed in the name parameter returns 
0073 1* some system configuration information in the VTOCDS. 
0074 I
0075 I" VTOCDS. A data structure to contain the returned VTOC data. 
0076 l This must be the name of a data structure to receive 
oon I- information about the file (record length. record count. etc). 
0078 I" It must be at least 126 bytes long. 
0079 I
0080 1* System configuration information returned from SUBRVR 
0081 I" 
0082 I" From To Name Description 
0083 I- 1 2 CNREL SSP release level 
0084 I" 3 4 CNMOD SSP modification level 
0085 I" 5 21 CNBITS Configuration bits 
0086 I- (SCADSSPF through SCADCFGF, all 
0087 I- documented in SSP Data Areas) 
0088 I- 22 22 CPU# System model 
0089 I- 1-5364, 2'5360 3-5362 
0090 I- 23 28 CNDISK Disk capacity (in MB with two decimals) 
0091 I" 
0092 ICFIGDS os 
0093 I 1 20CNREL 
0094 I 3 40CNMOD 
0095 I 5 21 CNBITS 
0096 I 22 22 CPU# 
0097 I 23 282CNDISK 
0098 I
0099 I- VTOC data read via SUBRVR 
0100 I' 
0101 I- From To Name Description 
0102 I- 1 1 FFORG File organization 
0103 I- l'Indexed f,le S'Sequential file 
0104 I" X~Alternate index LzLibrary 
0105 I- F·Folder D-Direct file 
0106 I- 2 FFLDAT Latest date i ndi cator (' *') 
0107 I- 3 10 FFLABL Fi 1e label 
0108 I- 11 16 FFCRDT Creation date 
0109 I- 17 17 FFTYPE Fl1e type 
0110 I- 18 18 FFSPIN Spindle number 
0111 1* 19 20 FFFLAG SSP fl ags 
0112 I" 21 26 FFATTR SSP attr,butes 
0113 1" 27 32 FFBLOK Block location 
0114 I- 33 40 FFRUSD Number of records used (if lib. #blocks) 
0115 l* 41 44 FFRECL Record length 
0116 I" 45 52 FFALOC Number of records or blocks alloc'd 
0117 I" 53 53 FFRORB 'R'· records allocated, 'B' • blocks 
0118 I' 54 56 FFKEYL Key length (for single part keys) 
0119 I' 57 60 FFKEYP Key position (for Single part keys) 
0120 I- 61 68 FFCAPY File capacity 1n records 
0121 I" 69 76 FFXTND Extend value 
0122 I- 98 100 FFKYL 1 Key length 1 (for multi-part keys) 
0123 I- 101 104 FFKYPl Key position 1 
0124 I" 105 107 FFKYL2 Key length 2 



616 5/36 Power Tools 

0125 I* 108 111 FFKYP2 Key positlOn 2 
0126 I" 112 114 FFKYL3 Key 1ength 3 
0127 I' 115 118 FFKYP3 Key pes; ticn 3 
0128 I" 119 126 FFPARN Name of parent file 
0129 I" 
0130 IVTOCDS DS 
0131 I 1 1 FFORG 
0132 I 2 2 FFLDAT 
0133 I 3 10 FFLABL 
0134 I 33 400FFRUSD 
0135 I 41 440FFRECL 
0136 I 53 53 FFRORB 
0137 I 45 520FFALOC 
0138 I 61 680FFCAPY 
0139 I 126 126 DUMMY 
0140 I/EJECT 
0141 I' 
0142 I' Bar data structure 
0143 I" 
0144 I OS 
0145 I 1 80 BARDS 
0146 I 1 8 BLABL 
0147 I 10 10 BTYPE 
0148 I 11 18 BRUSED 
0149 I 19 26 BRAVL 
0150 I 28 28 BREV 
0151 I 29 79 BBAR 
0152 I/SPACE 
0153 I* 
0154 I" Zero blanking workarea 
0155 I' 
0156 I DS 
0157 I 8 ZERO 
0158 I 8 ZER08 
0159 I/SPACE 
0160 I" 
0161 I" Local data area conta i ns initial selection parameters 
0162 I' 
0163 I UDS 
0164 I 207 214 NAME 
0165 I 215 215 ALTFLG 
0166 I 216 223 SYN 
0167 I/SPACE 
0168 I' 
0169 I" INFOS data structure 
0170 I' 
0171 IINFDS OS 
0172 I "STATUS STATUS 
0173 I/EJECT 
0174 C' 
0175 C' Initialization 
0176 C' 
0177 C' Get the system configuration 
0178 C' Compute system disk capacity in blocks 
0179 C' Setup initial mode as "Percent of System" 
0180 C' Create various constants 
0181 C' 
0182 C MOVE '"CONFIG 'VNAME 8 Specify config get 
0183 C EXIT SUBRVR Read configuration 
0184 C RLABL VNAME 
0185 C RLABL CFIGDS 
0186 C" 
0187 C CNDISK MULT 1000000 WORK15 150 Compute 
0188 C WORK15 DIV 2560 SYSSIZ 60 system size. blocks 
0189 C MOVE 'A' MODE 1 Set defau It mode 
0190 C MOVE MSG,1 MESSAG and default message 
0191 C' 
0192 C MOVEA'SDIXLFR?'SEL,l Initial ize typel ist 
0193 C" 
0194 C BITOF' 01234567' HEXOO Bui ld hex constants 
0195 C MOVE HEXOO HEX20 
0196 C MOVE HEXOO HEX23 
0197 C MOVE HEXOO HEX31 
0198 C 8ITON'2' HEX20 Normal field 
0199 C BITON' 267' HEX23 Rev Img High Int 
0200 C BITON' 237' HEX31 Rev Img Col Sep 



System 617 

event loop 

EOJ 	 OOUEO'Y' 

EXSR RDVTOC 

SORTAlS 

EXSR SHOW 

END 


SETON 	 lR 

the VTOC into subfile arrays 

RDVTOC BEGSR 

MOVEl' 99999999' lB 

ADJUST BEGSR 

FFORG I FEO 'l' 
Z-ADDFFALOC FFCAPY 

If library 
FFCAPY-FFALOC 

END 

FFORG IFEO ' F' If folder 
Z-ADDFFAlOC FFRUSD FFRUSD-FFAlOC 
Z-ADDFFAlOC FFCAPY FFCAPY-FFALOC 
END 



618 S/36 Power Tools 

0277 C FFORG TFEO 'x' I f a Hernate 
0278 C Z-ADDFFALOC FFRUSD FFRUSD-FFALOC 
0279 C Z-ADDFFALOC FFCAPY FFCAPY-FFALOC 
0280 C Z-ADD2560 FFRECL FFRECL-2560 
0281 C END 
0282 C' 
0283 C FFCAPY MULT FFRECL WORK15 150 Compute maximum 
0284 C WORK15 DIV 2560 WORK15 file size for 
0285 C ADD 1 WORK15 autosca 1; ng 
0286 C WDRK15 IFGT MAXSIZ 
0287 C Z-ADDWORK15 MAXSIZ 60 
0288 C END 
0289 C' 
0290 C ENDSR 
0291 C/EJECT 
0292 C' 
0293 C' Display VTOC graph interactively 
0294 C' 
0295 C SHOW BEGSR 
0296 C' 
0297 C* If mode A. compute autoscale factor, 
0298 C' else use 100% scale. 
0299 C' 
0300 C MODE IFEO 'A' 
0301 C MAXSIZ DIV SYSSIZ WORK 
0302 C WORK MULT 100 AUTOSC 30 11 
0303 C 11 Z-ADDl AUTOSC 
0304 C Z-ADDAUTOSC SCALE 
0305 C ELSE 
0306 C Z-ADD100 SCALE 
0307 C END 
0308 C' 
0309 C' Loop to display screenfuls 
0310 C' 
0311 C Z-ADDl X 30 Reset starting line 
0312 C EOJ DOUEO 'Y" Do unti 1 EOJ 
0313 C' 
0314 C SCALE IFNE DLDSCL If sca 1e changed 
0315 C Z-ADDSCALE OLDSCL 30 Then save old val 
0316 C EXSR SCALE and make new one 
0317 C END 
0318 C' 
0319 C EXSR PAGE Go build page 
0320 C EXCPTSCRNl Display it 
0321 C READ @WORKSTN 1111 Read the screen 
0322 C' 
0323 C' (Cmd6 to print all entries selected, added 05/10/88, ODS) 
0324 C KF EXSR PRINT If Cmd6, print all 
0325 C' 
0326 C KE GOTO SELECT If Cmd5, do Select 
0327 C' 
0328 C KG MOVE 'Y' EOJ If Cmd7, set EOJ 
0329 C KK MOVE '0' PFILL If Cmdll , set fill 
0330 C KL MOVE PFILL If Cmd12, clr fill 
0331 C' 
0332 C KA MOVE 'A' MODE If Cmdl 
0333 C KA MOVE MSG. 1 MESSAG 50 % of system used 
0334 C KA Z-ADDAUTOSC SCALE use auto sea 1e 
0335 C' 
0336 C KB MOVE'S' MODE If Cmd2 
0337 C KB MOVE MSG,2 MESSAG 50 % of records used 
0338 C KB Z-ADD100 SCALE fo,'ce 100% scale 
0339 C' 
0340 C KC MOVE 'c' MODE If Cmd3 
0341 C KC MOVE MSG,3 MESSAG 50 %of records avl 
0342 C KC Z-ADD100 SCALE for'ce 100% sca I e 
0343 C' 
0344 C STATUS IFEO 01122 If roll-up 
0345 C ADD 16 X then bump pointer 
0346 C x IFGE V if X overflows 
0347 C Z-ADDl X then wrap around 
0348 C END End IF 
0349 C END End IF 
0350 C' 
0351 C STATUS IFEO 01123 If r'oll-down 
0352 C SUB 16 1212 Then unbump X 



System 619 

0353 C 12 V SliB 16 X 1212 Adjust underflowTRY WRAPPING 
0354 C 12 Z-ADD1 X If STILL too low THEN STAY PAGE-1 
0355 C END End IF 
0356 C· 
0357 C END End DO JUST REDISPLAY 
0358 C GOTO ENDSHW JUST REDISPLAY 
0359 C· 
0360 C· Process dataset type s91 ect; on screen 
0361 C' 
0362 C SELECT TAG 
0363 C EXCPTSCRN2 Show select screen 
0364 C READ @WORKSTN 1111 Read screen 
0365 C KG MOVE 'Y' EOJ If Cmd7, set EOJ 
0366 C KJ MOVE 'Y' ALTFLG If "show alts" 
0367 C NKJ MOVE ALTFLG If not "show alts" 
0368 C· 
0369 C ENDSHW ENDSR 
0370 C/EJECT 
0371 C· 
0372 C· Print full listing 
0373 C· 
0374 C PRINT 8EGSR 
0375 C· 
0376 C TIME TIME 60 Get time of day 
0377 C Z-AOOl Y Set to 1 i ne 1 
0378 C MOVE '0' PFILL Set fi 11 character 
0379 C EXCPTHEAD Print header 
0380 C· 
0381 C DO V W Do V times 
0382 C EXSR BAR Build bar 
0383 C OF EXCPTFOOT If ov, prnt footer 
0384 C OF EXCPTHEAD and header 
0385 C EXCPTLINE Print 1 i ne 
0386 C END End DO 
0387 C' 
0388 C EXCPTFOOT Print footer 
0389 C MOVE PFILL Reset fill char 
0390 C' 
0391 C ENOSR 
0392 C/EJ ECT 
0393 C' 
0394 C' 8uild a new scale 
0395 C' 
0396 C SCALE 8EGSR 
0397 C' 
0398 C SCALE IFEQ 0 If scale too small 
0399 C Z-ADD001 SCALE Reset it 
0400 C END End IF 
0401 C SCALE IFGT 100 If scale too 1a rge 
0402 C Z-AOD100 SCALE Reset ; t 
0403 C END End IF 
0404 C SCALE IFGE 100 If scale ;s 100 
0405 C MOVE MSG,4 SCL 50 Then use default 
0406 C GOTO SCAEND and scram 
0407 C END 
0408 C' 
0409 C MOVE MSG,5 8AR Set bar 
0410 C SCALE DIV 50 WORK 85 Computer interval 
0411 C WORK MULT 5 INT 52 
0412 C Z-AODO VAL Save it 
0413 C' 
0414 C 4 DO 49 S 30 Do 
0415 C ADD INT VAL 52 Computer value 
0416 C MOVE VAL ALPHA4 4 Make alpha 
0417 C MOVELALPHA4 ALPHA2 2 
0418 C MOVE ALPHA2 ALPHA1 1 
0419 C' 
0420 C VAL COMP 10 11 IF LT 10 
0421 C 11 MOVE ALPHA1 BAR, S THEN MOVE ONE 01 
0422 C MOVEAALPHA2 BAR,S ELSE MOVE TWO DI 
0423 C' 
0424 C END 
0425 C' 
0426 C MOVEABAR, SCL COPY SCALE 
0427 C SCAENO ENDSR 



620 5/36 Power Tools 

0428 C/EJECT 
0429 C· 
0430 C· 8ui 1 d a bar graph page 
0431 C' 
0432 C PAGE BEGSR 
0433 C MOVE 'BLANKS LIN Clear bar array 
0434 C Z-ADDX W 40 Set starting point 
0435 C' 
0436 C DO 16 Y 20 Do 16 times 
0437 C W IFLE V If not end of array 
0438 C EXSR BAR Go build bar 
0439 C ADD 1 W Bump label index 
0440 C END End IF 
0441 C END End Dil 
0442 C' 
0443 C PAGEND ENDSR 
0444 C/EJ ECT 
0445 C' 
0446 C' Bui ld a bar 
0447 C' 
0448 C BAR BEGSR 
0449 C' 
0450 C' Bui ld basic bar data structure 
0451 C' 
0452 C MOVE 'BLANKS BARDS Clear bar DS 
0453 C MOVELLB, W BLABL Insert label 
0454 C MOVE LB, W Z 40 (extract l ndex) 
0455 C MOVE TP,Z BTYPE Insert type 
0456 C MOVE RU,Z ZER08 Zero blank 
0457 C EXSR ZEROBL records used 
0458 C MOVE ZER08 BRUSED and "Insert it 
0459 C CP ,Z SUB RU,Z RAVL 80 Compute rees avail 
0460 C MOVE RAVL ZER08 Zero blank 
0461 C EXSR ZEROBL records ava; 1 
0462 C MOVE ZEROa BRAVL and . nsert 
0463 C' 
0464 C' Set bar attribute to rev; mg for odd bars, revimg+colsep for even ba rs 
0465 C' 
0466 C MOVE Y ONE Set bar attribute: 
0467 C TESTB'7' ONE 11 Ched: even/odd 
0468 C 11 MOVE HEX23 BREV If odd, revlmg 
0469 C Nll MOVE HEX31 BREV If even, +co 1sep 
0470 C' 
0471 C' Compute length of bar 
0472 C' 
0473 C MODE I FEQ 'A' If mode A 
0474 C CP,Z MULT RL,Z WORK15 150 Figure blockslze 
0475 C WORK15 DIV 2560 WORK15 of dataset 
0476 C ADD WORK15 anel compute 
0477 C WORK15 DIV SYSSIZ WORK per"cent of system 
0478 C ELSE EI so 
0479 C MODE IFEQ 'B' If mode B 
0480 C RU,Z DIV CP,Z WORK 85 compute % used 
0481 C ELSE EI se 
0482 C MODE IFEQ 'c' If mode C 
0483 C RAVL DIV CP,Z WORK compute % ava; 1 
0484 C END End IF 
0485 C END End IF 
0486 C END End IF 
0487 C· 
0488 C' Reduce percentage to array index 
0489 C' 
0490 C WORK MULT 100 WORK Contrain to 
0491 C 100 DIV SCALE FACTOR 85 range of seale 
0492 C WORK MULT FACTOR P 30H and reduce 
0493 C DIV 2 P H to an index 1 to 51 
0494 C ADD 1 P 1111 If zero or negative 
0495 C 11 Z-ADDl contra;n to 1 
0496 C P COMP 51 11 If > 51 
0497 C 11 Z-ADD51 constrain to 51 
0498 C' 
0499 C' Set length of bar by inserting screen attr; butes 
0500 C' 
0501 C MOVE PFILL BAR Clear with fillchar 
0502 C MOVEA'BLANKS BAR,P Clear end of bar 
0503 C MOVE HEX20 BAR, P Set end of bar 



System 621 

0504 C MOVEABAR,1 BBAR Insert in OS 
0505 C MOVE BARDS LIN, Y Put OS on screen 
0506 C' 
0507 C ENDSR 
0508 C/ EJ ECT 
0509 C' 
0510 C* Blank leading zeros in array ZERO 
0511 C' 
0512 C ZEROBL BEGSR 
0513 C 1 DO 8 Q 20 For each digit 
0514 C ZERO,Q IFEQ '0' If zero 
0515 C MOVE 'BLANK ZERO, Q Bl ank it 
0516 C ELSE Else 
0517 C Z-ADD8 Q Force exit 
0518 C END End IF 
0519 C END End DO 
0520 C ENDSR 
0521 C/EJECT 
0522 O' 
0523 0* Bar graph screen 
0524 O' 
0525 O@WORKSTNE SCRN1 
0526 0 K8 'SCREEN01 ' 
0527 0 SCALE 3 
0528 0 CNO I SK3 10 
0529 0 MESSAG 60 
0530 0 SCL 110 
0531 0 LIN 1390 
0532 0 SCL 1439 
0533 O' 
0534 0* Selection screen 
0535 O' 
0536 0 SCRN2 
0537 0 K8 'SCREEN02 ' 
0538 0 NAME 8 
0539 0 SYN 16 
0540 O' 
0541 O' Pri nt fu 11 graph 1 i st i ng 
0542 O' 
0543 OREPORT 105 HEAD 
0544 0 'Date: 
0545 0 UDATE Y 14 
0546 0 48 'VTOC Bar Graph Listing' 
0547 0 57 'Time: 
0548 0 TIME 66 
0549 0 78 'Capacity 
0550 0 HEAD 
0551 0 'Scale: 
0552 0 SCALE 12 
0553 0 14 '%' 
0554 0 CNDISK2 76 
0555 0 79 'MB' 
0556 0 HEAD 
0557 0 28 'Records or Blocks' 
0558 0 MESSAG 78 
0559 0 HEAD 
0560 0 10 'Filename T' 
0561 0 18 'Used' 
0562 0 26 'Ava; l' 
0563 0 SCL 78 
0564 O' 
0565 0 LI NE 
0566 0 LIN,1 80 
0567 O· 
0568 0 FOOT 
0569 0 SCL 80 
** Scale Messages 

Percent of System 
Percent Used 

Percent Available 
, , ,10, , .20 ... 30, , ,40, , ,50. , .60. 70 ... 80, .. 90 .. 100 



622 5/36 Power Tools 

Figure 18-2 

Screen format 
member 
VGRAPHFM 

0001 

0002 

0007 
0007 
0007 

0003 
0004 

0007 
0009 
0010 

0001 

0007 

1 2 4 7 
SSCREENOl 00 YY 23ABCEFGKL 
DFAOOOl 1 1 5Y Y Y Y C1 
DFAOO01 22 1 7Y C 
D 00220130Y Y Y cvroc BAR GRAPH DISPLAY 
DFAOO02 17 153Y C 
DFAOO01 9 171Y CCapac i ty. 
DFAOO02 00060202Y CSoale: 
DSCALE 00030209Y YN Y 
DFAOO04 00010213Y C% 
DFAOO01 55 215Y C X 
0 
DFAOO03 271Y 
DFAOO02 279Y CMB 
DFAOO02 3 2Y C 
DFAOO01 17 312Y CR+~cords or Blocks 

00500330Y 
0 0008 4 2Y Y CF i 1ename 
DFAOO05 1 411Y Y CT 
DFAOO04 413Y Y C Used 
DFAOO03 7 421Y Y C Avai 1 
0 00500430Y 
0 12790502Y 
DSCALE 00502130Y 
DFAOO02 24022 1 Y CCmd1- % of system X 
0 Cmd2- % used X 
D Cmd5- Select files Cmdl1 - Fi 11 for printCmd3- % aX 
Dvailable Ro 11 Keys- paging Cmd12- Turn off fill 
SSCREEN02 YY GJ 
DFAOO01 1 1 5Y Y Y Y C2 
DFAOO01 53 121Y Y CS" 1ect data sets to dispX 
Dlay. Press ENTER to continue. 
DFAOO02 00060202Y C Name: 
DFAOO01 8 2 9Y Y Y 
DFAOO02 42 339Y CYou can blank out NAME X 
Dto select all, 
DFAOO04 42 439Y Cor enter a name ( e . g. AX 
DRFILE) or partial 
DFAOO05 42 539Y Cname (e.g. AR* ) to seleX 
Oct a subset. Press 
DFAOO06 42 639Y CCmd10 to see alternatesX 
D for one parent. 
DFAOO01 33 7 2Y CD splay Sequential fi 1eX 
Os? 
DFAOO09 1 736Y YA Y 
DFAOO02 33 8 2Y CO· splay Direct files? X 
D. 
DFA0010 1 836Y YA Y 
DFAOO03 33 9 2Y CD' splay Indexed files?X 
D . 
DFA0011 1 936Y YA Y 
DFAOO04 3310 2Y CD~splay Alternate indexX 
Des? . 
DFAOO12 11036Y YA Y 
DFAOO05 3311 2Y CDisplay Libraries? .X 
D. 
DFAOO13 11136Y YA Y 
DFAOO06 3312 2Y CDisplay Folders? ..... X 
D 
DFAOO14 11236Y YA Y 
DFAOO07 3313 2Y CDisplay Remote fi 1es? .X 
D 
DFAOO15 11336Y YA Y 
DFAOO08 3314 2Y CDisplay other datasets?X 
D. 
DFAOO16 11436Y YA Y 
DFAOO01 16023 1Y C Cmd10-Display alternX 
Dates for specified parent X 
0 



System 623 

Figure 18·3 

Procedure 
VGRAPH 

Figure 18·4 

VTOCbar 
graph display 

* Display VTOC bar graph 

Paramter 1: 	 Name or partial name to display. If blank. the entire VTDe 

is shown. 


2: 'yo '" show alternates for the file matching parml. 

3: 	 'YYYYYYYY' is the type selectlOn mask, as follows: 
\\\\\\\\_ Y·show unknown file types 
\\\\\\\_ Y'show remote files 
\\\\\\_ Y'show folders 
\\\\\_ Y·show libraries 
\\\\_ V-show alternate indices 
\\\_ 	V-show indexed files 
\\_ Y'show direct files 

\_ V-show sequential fi les 
This 	parameter defaults to 'YYYYYYYY' which shows everything. 
Use this parm to create "canned" VGRAPH praes for special cases. 

4: 'NOSORT' 	 means don't sort alphabetically 

* Examples: 
VGRAPH CUSMAST,Y (shows CUSMAST and all of its alternates) 

VGRAPH TEST*,NNNNYNNN (shows libraries named TESTxxxx) 

VGRAPH (shows everything) 


II IF ?4?/NOSORT SWITCH 10000000 
I I ELSE SWITCH 00000000 
II LOCAL OFFSET-207, OATA- '717' ,BLANK-8 Name or partial name 
II LOCAL OFFSET-215,DATA-'?2?' ,BLANK-1 'Y' to show alternates for parent 
II LOCAL OFFSET-216,DATA-'?3'YYYYYYYY'?' ,BLANK-8 Type selection mask 
II LOAD VGRAPH 
II RUN 

VTOC BAR GRAPH DISPLAY Capacity: 
Scale: 004 % 60.02 MB 

Records or Blocks Percent of System 
Fi 1 ename T Used Avai 1 . 00. .. 00 . . . 01. .. 01 ... 02 .. .02 ... 02 . .. 03 ... 03. . .04 
JUNK1 I 921 2508 !!!! ! 
JUNK2 I 921 2508 !! ! ! ! 
MACROS L 30 70 II!!! I 
MELS3438 L 267 233 ! ! ! ! ! ! ! ! ! 1 ! ! ! ! ! 1! !! ! ! ! ! ! ! ! ! 
MELTOOLS L 63 37 !!!!! ! 
MEL2LIBR L 530 282 !!!! !l!!!!!!!!!!! I!!!!!!!!!!!!!!!!!!!!!!!!!! 
NAMEADDR S 12 107 ! 
NAMEPHON S 12 20 
NEWS3438 L 292 208 ! !! ! ! ! ! J I ! ! ! ! ! ! ! ! ! ! ! ! ! I! ! ! 
NTECH010 L 254 346 ! ! ! ! I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! 
PAOTOTYP L 59 241 ! ! ! ! ! ! ! ! ! ! !! ! II 
SPOOOO S 762 6 I! 
SPOOOOX S 255 1 
SPOOOS S 107 12 
SPOO09 S 105 14 
SPOOll S 77 S 

. . 00. .00 . . . 01 . . . 01 . . 02. . . 02 . . .02 . . 03 . .. 03 . .. 04 
Cmdl- % of system 
Cmd2 - % used Cmd5- Select files Cmd11- Fi 11 for print 
Cmd3- % available Roll Keys- paging Cmd12- Turn off fill 



624 5/36 Power Tools 

Figure 18- 5 
Select data sets to display. Press ENTER to continue. 

Name:Selection screen 
You can blank out NAME to select all, 
or enter a name (e.g. ARFILE) or partial 
name (e.g. ARO) to select a subset. 

Press 
Cmdl0 to see alternates for one parent 

Display Sequential files? Y 
Display Direct files? Y 
Display Indexed flles 7 . Y 
Display Alternate indexes? Y 
Display Libraries? Y 
Display Folders? Y 
Display Remote fi les? Y 
Display other datasets? Y 

Cmdl0-Display alternates for specified parent 



System 625 

OATABoIIOOOOOEO }168031 B71 Co8715563D701 B5CCOS21656C20118CBCtO~~!11 FOOa4302C2a~~ 
.oI\TA FCB800 0100E33314Al00071866189CF20122BCOOOOBC01010C07186F189178801Bf2100D1C 
DATA 92EA 00 01200718770BAC011A09AF010909f28753BC02000D071866189f0033311E14120503 

..•..• OATA&.CllB 00:ot40 E3341406F2B147BC04000D07186I1t86FF281$BOC071S·illf)866BcOi008C071118 
<OATA8119 OOoi&O 91t201185H20ZQA7D5COOF2811QaC(l00000!l.20101 E~02<.V17D0020ic141 zQ~6• 

. 	 DATA 98se 00 0180E33615000000Fl01l6C202181FBC000170nCOOF201038A0401C20118CB84Al05 
DATA 40Cl 00 01AO 5F7F7F7FF401040B7D0002f201000C07186F1891AF010909BC0001002F2D1808 
DATA· 4.830 OO<OlCO E3341542C0871588C2011 8CB70B002F2013A78M1BF290MO()07tllff/>18 /ii 
DATA77i:9 oo~tt;;{) nC202181 F2C1D185A1DtleOOOOBco0619cot()9~4F401q4!)P1CO{)f"~19 &1·' 
[lATA can 000200.£331 157407187708QCl D183C186A3502lS5ESC077Dlll77CZi\toOOOC2A 
QATA 90Cl 00 0220 8001 OE01156A1881 C0870000340817E!13501185EC202002FZ!!2321120D09070Z· . 
DATAF.E4 OO.0~40 £33a15AD18CBiif707D7()6C0909080(10102704000F202o~7C4BOI)(l201017D0000 

.>.i. OATAOOD7 00021>0 F1 01123501 t86E!i7050FOF68020A'6&B030Bl&6B020Cn6/l()30Ih~80200Z~1 
.: DATA 2SEO00 OZM E33A15E80E176S030F176C0111197AF0116C0113186coin 4:za6C031 Bl F6cOO19 

DAtA ABlE 00 02A0206C004C556C07545f671A6060680255606S03566011802576168035861680200 
.'. DATAJABD 00{)~COE33\1161 F6962Jl&035A6268025B636!)035C6.36B0250646&Q,3S(6';680.;!5F6S6~O~ 
.;.·.......•.• OATA.c64J38 OO:..Q2,ep 606f>4t(l7701B917CD934B8803FF~90037CC2~4Z\:021 Blll:~38DO:t2,a00000032':l2 
., [)ATA·5~Bl 00 0300 E33416541894F284052C02181 E29C08717E!!4C051 Fl e7E!C02181E38BOQ801¥2 

DATA 6887 00 0320012ABD5C03F20124C20118AB6C0215297B070FF401.4075010FO0271612000801 
DATA .7B7A 00,0340 £332.16871 COll8l EOClFOZ181 €OSl EOl1S1 j:;lC3501165EF08717EE4C0727jJ.I? F 
OATI\.&262 00·0860 SC)Q80.2F201108P5C03F201 0A4C0627t87E4se02.71884~CO0312Cl~161 20iJOSOS 
DATA >"C05 000380 .E33016B801181E3E3COO181CCOB71 7EE4COS:tB187F2C02Hl1 E413B601 81 CBOO8 

.OATA A7F4 00 03AO 02F2010A4C032B18892C02181E2CC08717EE4C0733000020.28241914100B0702 
[JATA f8es 00G3Ca E33.116EA187FB.D0802F201 054C0633187EBDQ042F281}F.2COOlS1E420F01'.81D 

';'. DATA.ZI\El 00:0:$1:0 181DC08717EE4C0237187F2C01181E443CO·Ol'8tCC087002F2A26211D1 B1BGC!)) 
. DATA.56118 00.Af40.0 E331.17.1 e17 Ee4c033B187f46303818S5571238372C021stE4FC08717EE4C07411 

DATA 1FA5 00 0420 187F2C02181 E52C08717EE4C074B187FBB801 BF2909f002B26211 01813060601 
OATA 23BE 00 0440E3301740BD0057F2812F2C00181 E570FOll810181DC08717EE4C0263187F2COl 
DATA l)iCl mH)460 18H593C00181CC08717EE4C0367187F46306718850030~B2622t[)19141OOE01I 
DATA 63F6 00.04110 E331t7}F57126763SDOdE;AF2812F2C00181E5AOF01181!l.t.B1DCOJ)t17EE4t(lZlJA 
DATA C41 E 00 04AO 187F2C01181E5C3C00181CC08717EE4C036E187F4630002F2A2621101814120[) 
DATA AA74 00 04CO. E33017B06E188557126E6A8D005DF2812F2C00181 E600FOllslD18l OC08717EE. 
DATA~aoo oomu;o 4Cq271187F2C01181 E5F3C00181 CC08717££4C03750 :!l17l5cl 
DATA,CD25 00·0500 E337i7E8187F41lS075188557127571100000F28120C 
OATAEBdB 00057:0 20096C0000007DC900F2010978S013F290037CE700C 
DATA 6D1FOO 0540 E32F181803E5C4E2C93408181A0707187F187F3C18181B0607187F187FOE0218 
DATA C3F8000.5~0· fE181EF220043A01187F3F011 81 BC00117FGC0870 
OATA4192 00(1~1I0 £302\''.18000000000000000000000000000000000 
DATA 406A.00051\0 00006000000000000000000000000000000000000 
DATA 814400 05CO· E3001867000000000000000OO000000000000000OOOO000 060000 0000000000 
DATA·.0311l 00..• .o6fO· OOOOOOOOOOOOOOOOOOOOOOOOOOOo()Ooooaoooooooo 000000 
DATA3Efi9 000600 E33813S8000AQlOOF1 F~F2F5F6F04040404Q404040 E~4040 
QATA95C9 00 il620405tC3D6D6C6t9C7400008000001l00C9C600000000 . .... oCioOoo 
DATA 5A74 00 0640.E31118CA1953000QOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00000000000 

g~i~g~~: gg.. . g~~~~~g~g~~~ggg~gggg=gggo~ooo . 
DA TA<cE35 00' 0000000000000000000'0000000000000000000000000 
DATA ASA 1 00 06CO 615COOOOoooooooooooooooooooooooooooooooooooooooooooooooo00000000 
DATi\ ..q.7EOO O~~o 000.0000000000000000000000000000000000000000900000000000000000009 
END~}.ij05 . .. .... 	 . ... .... . 

Displaying Free Disk Space 
by Gary 1.' Kratzer 

program bv Chuck Lundgren 

a Code on diskette: 

Procedures VTOCFR, VTOCCM 
RPG programs VTOCFR, VTOCCM 
Screen format member VTOCFRFM 
Assembler subroutine SUBRFS 

The task of managing your disk space is a laborious one at best. 'rhe FILE 
and LIBR displays included in IBM's POP are great for showing what files 

http:DATAF.E4


626 5/36 Power Tools 

Figure 18-6 
VTOC Free disk blocks: 6299 of 32098 Free VTOC entries: 229 of 360 

FREE screen 
organized by Command keys 1 :One column/disk 5:A11 disks 7:End 8:Location 

12: Compressdisk 
A1 - 040 Mb A2 - 040 Mb 
Location Blocks Location Blocks 

8285 17 17723 388 
8328 29 18113 48 
9754 50 19635 200 

12146 854 19935 100 
13584 700 21012 50 
15074 460 21486 200 
15949 478 21705 250 

22925 550 
23558 600 
24390 30 
24500 50 
26047 307 

• 26467 	 160 
26827 132 
26970 250 
27735 60 

Figure 18-7 
VTOC Free disk blocks: 6299 of 32098 Free VTOC entries: 229 of 360FREE screen 

organized by 
Command keys 1 :One column/disk 5:All disks 7:End 8:Location 9:Size 

location 12:Compress 

All Disks 
Location Blocks Location Blocks 

8285 17 24390 30 
8328 29 24500 50 
9754 50 26047 307 

12146 854 26467 160 
13584 700 26827 132 
15074 460 26970 250 
15949 478 27735 60 
17723 388 
18113 48 
19635 200 
19935 100 
21012 50 
21486 200 
21705 250 

22925 550 

23558 600 

and libraries exist and how much space they occupy. But·to see where your 
free disk space is, you must run a CATALOG and inspect the bottom portion 
of the printout. While this route isn't a bad way to go, it offers only one 
option for viewing the data. Wouldn't it be nice if POP also displayed free 
disk space on the screen so you wouldn't have to resort to the CATALOG 
option? Utility VTOCFR performs this function, and you can easily integrate 
it into your POP environment so that its operation appears seamless. 
VTOCFR is a utility that lists your disks' free space in a POP-like format 



System 627 

(see Figures 18-6 and 18-7 for two versions of the FREE screen), with an 
additional option to run a "smarr" COMPRESS in a variety of different ways. 

The VTOCFR utility consists of RPG programs VTOCFR (Figure 18-8) 
and VTOCCM (Figure 18-9), screen format member VTOCFRFM (Figure 
18-10), and procedures VTOCFR (Figure 18-11) and VTOCCM (Figure 18-12). 

Procedure VTOCFR 
When you call the VTOCFR procedure, you can specify up to three 
optional parameters. The first parameter determines which screen, FREE 
or COMPRESS, you want to see first. The second parameter determines 
how you want the free space displayed. Specify ONE to see the free space 
for each disk in separate columns, or ALL to display the free space contin
uously in all columns. (Note that the second parameter applies only if 
parameter 1 is FREE.) You use parameter 3 to specify whether to display 
the free space by LOCATION or SIZE. (Note that SIZE is valid only if 
you specify ALL in parameter 2.) 

When calling procedure VTOCFR, simply type in the parameters you 
want to specify. Ifyou enter no parameters, the defaults are FREE, ALL, 
and LOCATION, respectively. After you press Enter, either the FREE 
screen or the COMPRESS screen is displayed. 

The FREE Screen 
Notice that the "look and feel" of the FREE screen is similar to POP's 
FILE display. The top line displays the number of free disk blocks and 
free VTOC entries in relation to the total number existing of each. Farther 
down the screen are columns of 16 entries each that display the free space 
beginning-block locations and the total number of blocks at each location. 

Specifying FREE, ONE, and LOCATION for your initial parameters 
displays a FREE screen like the one in Figure 18-6. If you choose FREE, 
ALL, and LOCATION as the initial parameters, a screen like Figure 18-7 
is the result. By pressing the command keys listed near the top of the 
FREE screen, you can view the free disk space in one of three ways. First, 
you can press Command key 1 to display information about each disk sepa
rately. This option (Figure 18-6) displays free space for spindle Ai in col
umn 1, A2 in column 2, and so on. If more than 16 "holes" exist for each 
disk, press Enter to display additional entries. Note that in this mode, the 
columns scroll in unison by spindle. In other words, in our example figure, 
spindle Ai has only seven holes, while A2 has at least 16 holes. If you press 
Enter, you see up to 16 more entries for A2, but the first column is blank 
because the screen has already displayed all e~tries for At. 

You can also display the free disk space in two other ways - as a con
tinuous list arranged by location, or as one arranged by size. To do this, you 
press Command key S. A screen like that shown in Figure 18-7 appears, 
listing free space according to location. To view the free space by size, you 



628 5/36 Power Tools 

Figure 18-8 

Program 

VTOCFR 


press Command key 9. These two options disregard which spindle the free 
space resides on; rather, they treat all spindles as one disk and display the 
entries in the format you have requested. 

COMPRESS Options 
In addition to displaying the free space with utility VTOCFR, you have the 
option of running a compress of your disks. You can do this either by specify
ing COMPRESS for parameter 1 when you call procedure VTOCFR or by 
pressing Command key 12 on the FREE screen. Procedure VTOCFR then 
calls procedure VTOCCM, which displays the VTOCFR COMPRESS 
screen (Figure 18-13). The first prompt asks whether you want to perform a 
COMPRESS ALL or to compress each disk individually. If you choose ALL, 
the procedure either invokes or ]OBQs a COMPRESS ALL, depending on 
whether you pressed Enter or Command key 4. A COMPRESS ALL com
presses the disks differently, depending on how many spindles you have. 
(Refer to the System Reference manual (SC21-9020) for more detailed informa
tion.) If you specify EACH in response to the first prompt, you must then 
press Enter and indicate, according to further prompts, which disks you want 
compressed and where the free space should be collected (FREEHIGH or 
FREELOW). You are prompted only for the disks installed on your machine. 
For instance, if you have just two spindles, you will be prompted for A1 and 
A2 only. Once you've made your decision, press Enter to perform the COM
PRESS immediately, or press Command key 4 to ]OBQ it. 

Easy POP Integration 
You can easily integrate utility VTOCFR directly into POP by modifying two 
procedures in #POPLIB. In both the FILE@ and LIBR@ procedures, look for 
the word COMPRESS, and replace it with VTOCFR. Then copy the 
VTOCFR modules to #POPLIB. Now, utility VTOCFR can help you quickly 
spot where your free space exists: whenever you're viewing the POP FILE or 
LIBR list displays, you can press Command key 12 to invoke VTOCFR 
(instead of COMPRESS). You can then make an informed decision about 
whether a compress is really necessary and, if so, how to perform it. So throw 
away those catalog listings, and put utility VTOCFR to work for you! 

... 2 4 5 ... B 
064 B 1 VTOCFR 

F*·****************·*********************·*·*********·******.***.******* •• 
F* PROGRAM NAME ..... VTOCFR 
F* DESCRIPTION..... POP-like display of free spacI on all disks. 
F* PROGRAMMER ....... Chuck Lundgren (IriS Software. Inc.) 

F* (c) COPYRIGHT 1990 Iris Software. Inc .. All Rights Reserved 
F* DATE WRITTEN ..... January 1990 
F* 
F* N40 Display message on screen: "No more than xxx free blocks. 
F* 41 Highlight "1 :One column/disk" on screen. 
F* 42 Highlight "5:All disks" on screen. 
F* 43 Highlight "8:Location" on screen. 
F* 44 Highlight "9:Size" on screen. 
F* N47 Display disk name for A2. 
F* N4B Display disk name for A3. 



System 629 

F' N49 Display disk name for A4. 

F' N50 Display N9:Size" on screen 

F* N57 Display column heading for d sk A2. 

F* N58 Display column heading for d sk A3. 

F' N59 Display column heading for d sk A4. 

F' 

F' VERSION DATE FIX DESCRIPTION 

F·--------------------------------- 

F************·*****·**··**··········**················**...•.• *•• ** ••••••• 
FWORKSTN CD 820 WDAKSTN 
F KFMTS VTOCFRFM
E·····**········**····················***·············................** •• 


M8K 11 6 OAMMB 3 0 Dsk model-Blocks & Mb 
DSS 5 6 Start sect. disk adr. 

E' DSS,1 - Not used 
E' DSS,2 Disk A2 
E' DSS,3 Disk A3 
E* DSS,4 Di sk A4 
E' DSS,5 Always zero 
E' (Stops loop) 
E DEB 4 6 OA End block address. 
E DMB 4 3 0 Disk sizes in Mb. 
E HEX 16 16 DEC 2 0 Hex/decimal cony. 
E HEXV 6 Hex digits. 
E' 
E' Note: If you increase the no, of elements in ADSZ, 0 and SZIX, then 
E' you need to set FREMAX to the new no. of elements in subr. FIRST. 
E' 
E ADSZ 500 12 Addr/size by address. 
E 0 500 1 0 Disk by address. 
E' Corresponds to each 
E' element in ADSZ. 
E SZIX 500 10 0 Size/index by size. 
E' 1-6 Size. 
E' 8-10 ADSZ pointer. 
E DP 4 4 0 Disk pointer in D. 
E SCAD 64 6 0 Screen block addrs. 
E SCSZ 64 6 0 Screen block sizes. 
I"''''''''''''' .* .............. * ........................... *-_ ................................................. * ........................ *.* ........................... * ...... 
IWORKSTN 1 C1 
I' 
r*----------------------------------- 
I OS 
I 1 10 DSSZIX 
I 1 60DSSIZE 
I 7 100DSINDX 

OS 
1 11 COLHED 
6 80DSA1MB 

1*- - -- - ---- -- - - - -- - -- -- - - - - - - -- -- - - - - 
I UDS 
I 171 178 OPER 
I 179 181 SHOW 
I 182 189 SORT 
I 214 2140DT 

C' 
C EXSR FIRST Do first time. 
C END DOWNE'Y' Do while not eoj 
C EXSR DSPF Disp. free blocks 
C END End DO 
C SETON LR 
C' 
c*----------------------------------- 
C' Calculate size of each disk. 
C' 
C CALDS BEGSR 
C' 
C Z-ADDO BEGBLK 60 A1 start is zero. 
C Z-ADD999999 DEB Set high for LOKUP. 
C' 
C DO 4 L Do for each disk 
C L ADD 1 J Point to next dsk 
C DSS,J I FNE '000000' If not last disk 
C MOVEADSS,J HEXV Save for conv. 
C EXSR HX2DC Hex->decimal. 



630 5/36 Power Tools 

C DECVAL DIV 10 ENDBLK 80 Sectors->blocks 
C ENDBLK SUB 8EGBLK DSKSIZ 60 Disk size. 
C END8LK SUB 1 DEB.L Save end block 
C Z-ADDENDBLK BEGBLK Next disk. 
C ELSE Else last disk 
C BTTL SUB BEGBLK DSKSIZ Disk size, 
C 
C BTTL 

ADD 
ADD 

BBEG 
BBEG 

DSKSIZ 
DEB.L 

Adj. 
Save 

w/beg.blk. 
end block. 

C Z-ADDL DT 10 Save tt 1. dsks. 
C END End IF 
C· 
C Z-ADD1 K 20 Reset index. 
C DSKSIZ LOKUPMBK.K 2020 Find disk model 
C 20 Z-ADDMMB.K OMB.L Get disk size. 
C· 
C DSS.J IFEQ '000000' If last disk 
C 
C 

Z-ADD4 
END 

Stop loop. 
End j F 

C END End DO 
C' 
C ENDSR 
C' 
c*--- -------------- 
C' Display free blocks and read screen. 
C' 
C DRF BEGSR 
C' 
C· If last screenful of blocks was displayed. fetch it over again. 
c· 

c LASTSC IFEQ .y' If last screen 

c MOVE 'Y' UPDTSC update It. 

c END End IF 

C· 

c· If cmd key pressed, or this is the first time through, or the 
C* last screenful of blocks ;s currently displayed, then get and process 
C* Format-55. 
C' 

C UPDTSC IFEQ 'Y' I f update request 

C EXSR GETF5 Get F5s. 

C EXSR SETAR Setup arrays. 

C ADSZ.1 IFEQ 'BLANK If no free blocks 

C Z-ADDO FREBLK 40 flag it 

C ELSE El se 

C EXSR SRTAR sort a rrays 

C END End IF 

C END End IF 

C· 

C' Display a screenful of free blocks. then read screen. 

C' 

C MOVE 'N' LASTSC Assume not 1ast sen 

C SHOW IFEQ 'ALL' If Cmd5: Show a11 

C EXSR DSPF5 display a screen. 

C ELSE Else Cmdl '1 dsk/col 

C EXSR DSPFI display a screen. 

C END End IF 

C· 

C EXCPTFREE Display and 

C READ WORKSTN 3030 read the screen. 

C MOVE . N' UPOTSC Reset update flag. 

C' 

C ENDSR 

C· 

C*-----------------------------------

C* Display screen showing all free system blocks. 

c· 

C DSPF BEGSR 

C EXSR DRF 01 sp 1 ay; read sen 

C KA EXSR FOI Display 1 eol/dsk 

C KE EXSR F05 Display all disks 

C KG EXSR F07 End job. 

C KH EXSR FOB Sort by 1oeat i on. 

C KI EXSR FOg Sort by s; ze. 

C KL EXSR F12 Compress. 

C ENDSR 

C· 

c*--------------------------



System 631 

C' Display a screenful 
C' 
C DSPF1 
C' 
C 
C 
C' 
C 1 
C DP.DN 
C DN 
C 
C 
c· 
c 
c 
C 
C DN 
C 
C 
c· 
c BC 
c 
C 
c 
c 
c 
C 
c 
C 
C' 
C 
C 
C 
c· 
C 
c 
C 
C' 
C 
c· 
c*--------

C' Display a screenful 
C· 
C DSPF5 
C' 
C 
C 
C 
C 
C' 
C 
C' 
C SORT BY 
C 
C 
C 
C 
C AP 
C 
C 
C 
C 
C 
C 
C 
C· 
C BC 
C 
C 
C 
C 
C 
C 
C· 
C 
c· 

of free blocks 

SEGSR 

Z-ADDO 
Z-ADDO 

DO 4 
IFGT 0 
SUB 
MULT 16 
ADD 

DO 16 
Z-ADDDP.DN 
Z-ADDD.AP 
IFEQ DNUM 
MOVELADSZ.AP 
MOVE ADSZ.AP 

IFEQ FREBLK 
Z-ADD16 
Z-ADD4 
MOVE 'Y' 
ELSE 
ADD 
ADD 
ADD 
END 

ELSE 
Z-ADD16 
END 

END 
END 
END 

ENDSR 

of free blocks 

BEGSR 

SETON 
SETOF 
Z-ADDO 
Z-ADDO 

DO 64 

IFEQ 'L' 
MOVELADSZ.BC 
MOVE ADSZ.BC 
ELSE 
MOVE SZIX.BC 
IFEQ 0 
Z-ADD64 
MOVE 'y' 
ELSE 
MOVELADSZ.AP 
MOVELSZIX.BC 
END 
END 

IFEQ FREBLK 
Z-ADD64 
MOVE 'Y' 
ELSE 
ADD 
END 
END 

ENDSR 

in Cmd1 :One column/disk mode. 

SCAD 
SCSZ 

Clear 
and 

screen addr. 
size arrays. 

DN 

S 
S 
S 

10 Do for each disk 
If disk has blks 

Point to top 
row of 
the column. 

AP 
DNUM 

SCAD.S 
SCSZ.S 

40 

10 

Do for @ row 
Get blk ptr. 
Get disk no. 
If disk match 

get address 
and size. 

L 
DN 
LASTSC 

S 
DP.DN 
BC 

If last blk 
end both 
loops. & 
last sen. 

Else 
Inc. ptr. 
Inc. ptr. 
Inc. ctr. 

End IF 

Else 
no more 

End IF 
row 

End DO 
End IF 

End DO 

in Cmd5:Show all mode. 

474849 Turn off disk names 
575859 Turn on col. hdgs. 

SCAD Clear screen addr. 
SCSZ and size arrays. 

20 Do for each pas. 

If sort by loco 
SCAD.S fetch address 
SCSZ.S and size. 

Else size sort 
AP 40 Get index. 

If no more 
S end loop 
LASTSC & last sern 

Else 
SCAD.S get address 
SCSZ.S and size. 

End IF 
End IF 

If last block 
S end loop 
LASTSC & last scrn. 

Else 
BC next-block. 

End IF 
End DO 

http:MOVELSZIX.BC
http:MOVELADSZ.AP
http:MOVELADSZ.BC
http:MOVELADSZ.AP
http:Z-ADDD.AP
http:Z-ADDDP.DN


632 5/36 Power Tools 

c*-----------------------------------
C· Free blocks screen: Cmd1 - display one disk in each column, 

C· 

C F01 BEGSR 

C MOVE 'ONE' SHOW Show one disk/col. 

C MOVEL'A1 - COLHED Build column sub

C MOVE' Mb' COLHED heading for disk 

C Z-ADDDMB,1 DSA1MB no, 1, 

C MOVE 'Y' UPDTSC Update the screen, 

C SETON 414350 HI Cmd1/S:INH. Cmd9 

C SETOF 42 Dim Cmd5, 

C ENDSR 

C· 

C* - -- -- - - - - --_.- - - - - ---- - - - - -- - - - - - -- -
C· Free blocks screen: Cmd5 - display all disks beginning in column 1. 

C· 

C F05 BEGSR 

C MOVE 'ALL' SHOW Show all di sks 

C MOVEL'All ' COLHED then note ; t on 

C MOVE 'Disks COLHED sc reen. 

C MOVE 'Y' UPOTSC Update the screen, 

C SETON 42 Highlight Cmd5, 

C SETOF 41 50 Oi m Cmd5 8. dsp Cmd9 

C SORTBY COMP 'L' 444443 HI Cmde or Cmd9. 

C ENDSR 

C· 

c*-----------------------------------
C* Free blocks screen: Cmd7 - exit the program. 
C· 
C F07 BEGSR 
C MOVE 'Y' END End of job 
C ENDSR 
C· 
C*-----------------------------------
C· Free blocks screen: CmdS - select sort by location, 

C· 

C FOS BEGSR 

C SETOF 44 Dim Cmd9, 

C SETON 43 Highlight CmdS, 

C MOVE 'Y' UPOTSC Update screen. 

C MOVE 'L' SORTBY Sort by location, 

C ENOSR 


c*-------------------
C· Free blocks screen: Cmd9 - select sort by size, 

C· 

C F09 BEGSR 

C SHOW IFEQ 'ALL' If Cmd5: Show all 

C SETOF 43 Dim CmdS, 

C SETON 44 Highl ight Cmd9, 

C MOVE'S' SORTBY sort by size, 

C MOVE 'Y' UPDTSC update screen, 

C END End IF 

C ENOSR 


c*-----------------------------------
C· Free blocks screen: Cmd12 compress the disk. 
C· 

C F12 BEGSR 

C MOVE 'Y' END End of job 

C MOVE 'COMPRESS'OPER Select compress. 

C ENDSR 

C·

C·------
C· Initialize variables. 
C· 
C FIRST BEGSR 
C Z-AD0500 FREMAX 40 Max, free blocks, 
C EXSR GETF5 Get Format-5s. 
C EXSR CALDS Calc. disk sizes. 
C 
C 
C 

OPER 
SHOW 

I FEQ 'FREE 
CASEQ'ONE' 
CAS 

F01 
F05 

If display space 
Fake press Cmd1 

, , ,Cmd5 
C END End CASE 
C 
C 

SORT CASEQ'LOCATION'FOS 
CAS F09 

Fake press Cmd8 
, , ,Cmd9 



System 633 

C END End CASE 

C ELSE Else compress 

C EXSR F12 Fake press Cmd12 

C END End IF 

C ENDSR 

C' 

C*-------------------- -------------- 
C' Get the Format-55. 

C' 

C GETF5 BEGSR 

C MOVE '000000' DSS,5 Initial ize. 

C EXIT SUBRF5 Get free space, 

C RLABL ADSZ Block addr/size. 

C RLABL BTTL 60 Total blocks. 

C RLABL BBEG 60 Beg. user blocks. 

C RLABL DSS,2 A2 start sector. 

C RLABL DSS,3 A3 start sector. 

C RLABL DSS,4 A4 start sector. 

C RLABL VTTL 40 Total VTOC entries. 

C RLABL VUSD 40 Used VTOC entries. 

C ALABL RET 10 Return code. 

C RET COMP 3 4040 Enough array space? 

C' 

C EXSA MSKDS Mask unused disks. 

C VTTL SUB VUSD VAVL 40 Avai 1. VTOC entri es 

C ENDSR N-Display message. 

C" 

c*----------------------------------- 
C· Convert hex to decimal. 

C" 

C HX2DC BEGSR 

C Z-ADD1 DIGM BO Digit multiplier. 

C Z-ADDO DECVAL BO Decimal equivalent. 

C Z-ADDS H 10 Point to LS digit. 

C DOWGE1 Do for @hex digit. 

C Z-ADD1 01 20 Reset digit indx. 

C HEXV,H LOKUPHEX,DI 20 Get dec. val ue. 

C DEC,DI MULT DIGM TEMP80 80 Actua 1 val ue. 

C ADD TEMP80 DECVAL Accumulate. 

C MULT 16 DIGM Bump multiplier. 

C SUB 1 H Next digit. 

C END End DO. 

C ENDSR 

C" 

C*-----------------------------------
C· Mask unused disk from display on screens. 

C" 

C MSKDS BEGSR 

C DSS,2 COMP '000000' 47 No A2 disk info. 

C DSS,2 COMP '000000' 57 No A2 col, heading, 

C DSS,3 COMP '000000' 48 ",A3. 

C DSS,3 COMP '000000' 58 ",A3, 

C DSS,4 COMP '000000' 49 ",A4, 

C DSS,4 COMP '000000' 59 ",A4, 

C ENDSR 

C' 

C*-----------------------------------
C· Set up arrays containing sizes and disk numbers for each free block. 

C" 

C SETAR BEGSR 

C" 

C Z-ADDFREMAX FREBLK 40 Assume max. blks, 

C MOVE "BLANKS SZIX Clear size/index. 

C Z-ADDO 0 Clear disk #. 

C Z-ADDO BAVL 60 Clear free blks. 

C Z-ADD1 Point to first. 

C" 

C J DOUEQFREMAX 00 for all blocks 

C ADSZ,J IFNE "BLANKS If valid block 

C MOVELADSZ,J AOOR 60 Get address. 

C MOVE ADSZ,J OSSIZE Get size. 

C ADD DSSIZE BAVL Accumu 1 a te. 

C" 

C SHOW IFEQ 'ONE' If1 dsk/col, 

C Z-AOOl Reset disk# 

C ADDR LOKUPDEB,L 20 20 Get disk #' 




634 5/36 Power Tools 

C Z-ADDL D,J Save disk#. 

C END End IF 

C' 

C SDATBY IFEQ 'S' If size sort 

C Z-ADDJ DSINDX ASDZ index, 

C MOVE DSSZlX SZIX,J Save e1em. 

C END End IF 

C· 

C ADD Next block. 

C' 

C ELSE Else last block 

C SUB 1 FAEBLK save # blocks 

C Z-ADDFAEMAX J and end loop. 

C END End IF 

C END End DO 

C· 

C ENDSA 

C' 

c*---- ------------------------------
C* Sort free blocks in the sequence reqLested by user. 

C· 

C SATAA BEGSR 

C' 

C' Sort by size (if Cmd9:Size is selected) ... 

C' 

C SORTBY IFEQ 'S' If sort by size 

C SORTASZlX then sort ; t. 

C END End IF 

C' 

C Z-ADDl BC 40 Reset block cntr. 

C' 

C' .and set painters to 1st free block on each disk (if Cmdl selected). 

C' 

C SHOW IFEQ 'ONE' If 1 disk/column 

C Z-ADDO DP reset po; nters. 

C DO 4 DN Do for @disk. 

C Z-ADDl J 40 Reset ptr. 

C DN LOKUPD, J 20 Find 1st blk. 

C 20 Z-ADDJ DP,DN Point to it. 

C END End DO 

C END End IF 

C' 

C ENDSR 

0*-- ---------------------------
OWORKSTN FREE 
o K8 'VTOCFR01' 
o BAVL Z 6 
o 9 'of' 
o BTH Z 16 
o VAVL Z 20 
o 23 'of' 
o VTTL Z 28 

a FREMAXZ 32 

o COLHED 43 
o DMB,2 46 
o DMB,3 49 
o DMB,4 52 

a SCAD 436 

o SCSZ 820 

MBK MMB Disk Model Array index 

12049 30 21ED-A2 1 

16374 40 HD53 2 

24098 60 21ED-A3 3 

26390 65 0667 4 

41496105 0669 5 

78204200 10SR-l 6 

78236200 9332-All 7 


122811315 ???7 8 
140218358 10SR-2 9 
156472400 9332-A12 10 
999999999 None 11 
.* DEB 

•• HEX/DEC 
000101202303404505606707808909Al0Bl1C12D13E14F15 



System 635 
2 ..... 3 ..... 4 ... 7 ...... 8Figure 18-9 

064 B VTOCCM 

Program 
VTOCCM 

F***********··************************************************************ 

F* PROGRAM NAME. VTOCCM 

F* DESCRI PTION. Smart compress prompt screen. VTOCCM uses 

F* information from VTOCFR to know how many disks there are on the S/36. 

F* PROGRAMMER. Chuck Lundgren (I ri s Software. Inc.) 

F* (c) COPYRIGHT 1990 Iris Software. Inc. - All Rights Reserved 

F* DATE WRITTEN. January 1990 

F* 

F* 45 Compress each disk individually (protect ALL/EACH field on screen). 

F* N46 Display COMPRESS prompts for disk A1. 

F* N47 Display COMPRESS and column heading for disk A2. 

F* N48 Display COMPRESS and column heading for disk A3. 

F* N49 Display COMPRESS and column heading for disk A4. 

F* 51 Error for ALL/EACH compress parameter. 

F* 52 Error for A1 compress parameters. 

F* 53 Error for A2 compress parameters. 

F* 54 Error for A3 compress parameters. 

F* 55 Error for A4 compress parameters. 

F* 56 Position cursor on disk A1 in compress prompt screen. 

F* 

F* VERSION DATE FIX DESCRIPTION 

F* -------------------------------------
F************************···****···****·***··********* ******~**.* •• * •• *••• 
FWORKSTN CD 820 WORKSTN 

KFMTS VTOCFRFM 
E········****·················**···········**···***··********************* 

SCD 4 1 Screen compress YIN. 
SLH 4 4 Screen FREELOW/HIGH. 
COLH 5 Compress YIN & LOW/HI 
CMD 60 Command key line. 

1*****************************······*··******·*****************•••• ** •••• * 

IWORKSTN 1 C2 
I 5 SALLEA 
I 6 SCD.1 
I 10 SLH,1 
I 11 11 SCD,2 
I 12 15 SLH, 2 
I 16 16 SCD. 3 
I 17 20 SLH.3 
I 21 21 SCD,4 
I 22 25 SLH.4 
1*----------------------------------- 
I UDS 
I 190 193 ALLEA 
I 194 213 CDLH 
I 214 2140DT 
I 215 215 ACTION 
C*·********·**·*****************************·***************************** 

C* 

C EXSR FIRST Do first time. 

C END DOUEQ·Y· Do until eoj 

C CPRMPT CASEQ·1· DSPC1 Display 1st half. 

C CAS DSPC2 Display 2nd half. 

C END End CASE 

C END End DO 

C SETON LR 

C* 

C*-----------------------------------

C* Compress screen: Cmd2 - page back. 
C* 

C C02 BEGSR 

C MOVE ·1· CPRMPT Display prompt 1. 

C ENDSR 

C* 

C*---------- ------------------------
C* ~ompress screen: Cmd4 - put on job queue. 

C* 

C C04 BEGSR 

C MOVE .J. ACTION Put on jobqueue. 

C ENDSR 

C* 

C*-----------------------------------

C* Compress screen: Cmd7 - cancel compress. 

C* 



636 5/36 Power Tools 

C C07 BEGSR 

C MOVE 'Y' END End program. 

C MOVE 'E' ACTION End proc/no compr. 

C ENDSR 

C' 

c*----- -----------------------------
C· Compress screen: Enter pressed - save compress parameters. 
C' 

C CSAV BEGSR 

C MOVE SALLEA ALLEA Save ALL/EACH parm, 

C MOVELSCD CDLH Save compress parm. 

C MOVE SLH CDLH Save LO/HI parms. 

C MOVE 'Y' END End program. 

C MOVE 'C' ACTION Do compress. 

C ENDSR 

C' 

C*--------------------
C· Display 1st prompt for compressing all or individual disks. 
C' 

C DSPC1 BEGSR 

C SETOF 45 56 Unprot. & unpos. 

C SETON 464748 Protect fields. 

C SETON 49 

C MOVE CMD. 1 CMDLIN 60 Get cmd key line. 

C ERROR DOUEO'BLANK Do until no error 

C MOVE ' ERROR Assume no error. 

C EXCPTCOMP Display prompt. 

C READ WORKSTN 3030 Read screen. 

C KG EXSR C07 Canee 1 compress. 

C' 

C END IFNE 'Y' If not cancelled 

C SALLEA lFEO 'ALL I f camp ress a11 

C EXSR CSAV Save parms. 

C KD EXSR C04 Put on jobq. 

C END End IF 

C' 

C SALLEA IFEO 'EACH' If select disks 

C MOVE '2 ' CPRMPT select disks 

C END End IF 

C' 

C SALLEA COMP 'ALL' 5151 Not 'ALL' 

C 51 SALLEA COMP 'EACH' 5151 and not 'EACH' 

C 51 MOVE 'Y' ERROR 

C END End IF 

C END End DO 

C ENDSR 

C' 

C*-----------------------------------
C' Display 2nd prompt for selecting disks to compress 

C' 

C DSPC2 BEGSR 

C SETON 45 56 Pro.; pas. cursor. 

C SETOF 46 Unprotect A1 prmpt. 

C EXSR MSKDS Mask unused disks. 

C MOVE CMD,2 CMDLIN 60 Get cmd key line. 

C ERROR DOLI EO' BLANK Do until no error 

C MOVE ' ERROR Assume no error. 

C EXCPTCOMP Display prompt. 

C READ WORKSTN 3030 Read screen. 

C KB EXSR CO2 Previous prompt. 

C KG EXSR C07 Cancel compress 

C' 

C NKB END IFNE 'Y' If not Cmd2 or 7 

C MOVE DSKSEL 1 Assume none.
. N' 
C 1 DO DT L 10 Do for riI disk 
C SCD,L IFEO 'Y' If selected 
C MOVE 'Y' DSKSEL note it 
C END End IF 
C END End DO 
C DSKSEL IFEO 'N' If no selection 
C EXSR C07 treat as Cmd7 
C END End IF 
C END End IF 
C' 
C NKB END IFNE 'Y' If not Cmd2 or 7 
C DO DT Do for riI disk 



System 637 

C SCD,L COMP 'Y' 2020 Not 'Y', 

C 20 SCD,L COMP 'N' 2020 not 'N' 

C SLH, L COMP 'LOW 2121 not' LOW', 8. 

C 21 SLH, L COMP 'HIGH' 2121 not 'HIGH', 

c' 

C 20 
COR 21 DO 1 Do for error 
C MOVE 'Y' ERROR Flag error 
C COMP 52 for A1. 
C COMP 53 ... A2. 
C COMP 54 ... A3. 
C COMP 4 55 ... A4. 
C Z-ADDDT End loop. 
C END End DO 
C END End DO 
C' 
C ERROR I FEQ 'BLANK If no errors 
C EXSR CSAV Save parms. 
C KD EXSR C04 Put on jobq. 
C END End IF 
C END End IF 
C END End DO 
C ENDSR 
C' 
c*-----------------------------------
C* Initialize variables. 

C' 

C FIRST BEGSR 

C MOVE ALLEA SALLEA Set ALL/EACH parm. 

C MOVELCDLH SCD Set Y/N parms. 

C MOVE CDLH SLH Set LO/HI parms. 

C MOVE '1' CPRMPT Display prompt 1. 

C ENDSR 

C· 

c*-----------------------------------
C* Mask unused disk from display on screens. 

C· 

C MSKDS BEGSR 

C DT COMP 2 47 No A2 disk prompt. 

C DT COMP 3 4B ... A3. 

C DT COMP 4 49 ... A4. 

C ENDSR 

0*-----------------------------------
OWORKSTN E COMP 
o K8 'COMPRESS' 
o SALLEA 4 
o SCD ,1 5 
o SLH,1 9 
o SCD,2 10 
o SLH,2 14 
o SCD,3 15 
o SLH,3 19 
o SCD,4 20 
o SLH,4 24 
o CMDLlN 84 


CMD 

Cmd4-Put on job queue Cmd7-Cancel compress 
Cmd2-Page back Cmd4-Put on job queue Cmd7-Cancel compress 

Figure 18-10 .. 4 
S******************************************************************** 

8 

Screen format S' SCREEN NAME. 
S' DESCRI PTION. 

VTOCFRFM 
VTOCFR screens 

member 
VTOCFRFM 

S' PROGRAMMER. 
S' (c) COPYRIGHT 
S' DATE WRITTEN .. 

Chuck Lundgren (I ri s Software, Inc.) 
1990 Iris Software, Inc. - All Rights Reserved 

J anua ry 1990 
S' 
S' VERSION DATE FIX DESCRIPTION 
S* --- ---- -----------------------
S******************************************************************** 

SVTOCFR01 NYN AEGHIL 
S******************************************************************** 
S' FORMAT NAME. VTOCFR01 



638 5/36 Power Tools 

S· PURPOSE. Free block display screen. 
s·*·********************************************·***··*************** 

0 4 1 2Y Y 
0 1 1 8Y Y Y Y 
0 17 113Y 
08AVTL 16 131 Y 
0 18 149Y 
OVAVTL 12 168Y 
0 12 213Y 40 
OFREMAX 4 226Y 40 
0 44 231Y 40 
Olayed by this program 
0 12 4 2Y 
0 17 417Y 41 
0 11 436Y 42 
0 5 449Y 
0 10 456Y 43 
0 6 468Y 44 50 
0 11 516Y 
OSUBHEO 11 7 2Y 
0 4 722Y 47 
0 2 731Y 47 
OOMB.2 3 727Y 47 
0 4 742Y 48 
0 2 751Y 48 
OOMB.3 3 747Y 48 
0 4 762Y 49 
0 2 771Y 49 
OOMB.4 3 767Y 49 
0 8 8 2Y Y 
0 6 811Y Y 
0 8 822Y 57 Y 
0 6 831Y 57 Y 
0 8 842Y 58 Y 
0 6 851Y 58 Y 
0 8 862Y 58 Y 
0 6 871Y 59 Y 
OS CAD • 1 6 9 3Y Y 
OSCAO.2 610 3Y Y 
OSCAO.3 611 3Y Y 
OSCAO.4 612 3Y Y 
OSCAO.5 613 3Y Y 
OSCAO.6 614 3Y Y 
OSCAO.7 615 3Y Y 
OS CAD . 8 616 3Y Y 
OSCAO.9 617 3Y Y 
OSCAO. 1 0 618 3Y Y 
OSCAO.ll 619 3Y Y 
OSCAO.12 620 3Y Y 
OSCAO.13 621 3Y Y 
OSCAO.14 622 3Y Y 
OSCAO.15 623 3Y Y 
OSCAO.16 624 3Y Y 
OSCAO.17 6 923Y Y 
OSCAO.18 61023Y Y 
OSCAO.19 61123Y Y 
OSCAO.20 61223Y Y 
OSCAO.21 61323Y Y 
OSCAO.22 61423Y Y 
OSCAO.23 61523Y Y 
OSCAO.24 61623Y Y 
OSCAO.25 61723Y Y 
OSCAO.26 61823Y Y 
OSCAO.27 61923Y Y 
OSCAO.28 62023Y Y 
OSCAO.29 62123Y Y 
OSCAO.30 62223Y Y 
OSCAO.31 62323Y Y 
OSCAO.32 62423Y Y 
OSCAO.33 6 943Y Y 
OSCAO.34 61043Y Y 
OSCAO.35 61143Y Y 
OSCAO.36 61243Y Y 
OSCAO.37 61343Y Y 
OSCAO.38 61443Y Y 
OScAo.39 61543Y Y 

CVTOC 
Cl 
CFree disk blocks 

CFree VTOC entries: 

CNo more than 

Cf'ee blocks can be dlSPX 

CCommand keys 
Cl :One column/disk 
C5:All disks 
C7: End 
C8:Location 
C9: Si ze 
C12: Compress 

CAl 
CMb 

CA3 
CM, 

CM 
CMb 

CLocat i on 
CBlocks 
CLocation 
CBlocks 
CLocation 
CBlocks 
CLocation 
CBlocks 



System 639 

DSCAD.40 61643Y Y 
DSCAD.41 61743Y Y 
DSCAD.42. 61843Y Y 
DSCAD.43 61943Y Y 
DSCAD.44 62043Y Y 
DSCAD.45 62143Y Y 
DSCAD.46 62243Y Y 
DSCAD.47 62343Y Y 
DSCAD.48 62443Y Y 
DSCAD.49 6 963Y Y 
DSCAD.50 61063Y Y 
DSCAD.51 61163Y Y 
DSCAD.52 61263Y Y 
DSCAD.53 61363Y Y 
DSCAD.54 61463Y Y 
DSCAD.55 61563Y Y 
DSCAD.56 61663Y Y 
DSCAD.57 61763Y Y 
DSCAD.58 61863Y Y 
DSCAD.59 61963Y Y 
DSCAD.60 62063Y Y 
DSCAD.61 62163Y Y 
DSCAD.62 62263Y Y 
DSCAD.63 62363Y Y 
DSCAD.64 62463Y Y 
DSCSZ.l 6 911Y Y 
DSCSZ.2 61011Y Y 
DSCSZ.3 61111Y Y 
DSCSZ.4 61211Y Y 
DSCSZ.5 61311Y Y 
DSCSZ.6 61411Y Y 
DSCSZ.7 61511Y Y 
DSCSZ.8 61611Y Y 
DSCSZ.9 61711Y Y 
DSCSZ.l0 61811 Y Y 
DSCSZ.ll 61911Y Y 
DSCSZ.12 62011Y Y 
DSCSZ.13 62111Y Y 
DSCSZ.14 62211Y Y 
DSCSZ .15 62311Y Y 
DSCSZ.16 62411Y Y 
DSCSZ.17 6 931Y Y 
DSCSZ.18 61031Y Y 
DSCSZ.19 61131Y Y 
DSCSZ.20 61231Y Y 
DSCSZ.21 61331Y Y 
DSCSZ.22 61431Y Y 
DSCSZ.23 61531Y Y 
DSCSZ.24 61631Y Y 
DSCSZ.25 61731Y Y 
DSCSZ.26 61831Y Y 
DSCSZ.27 61931Y Y 
DSCSZ.28 62031 Y Y 
DSCSZ.29 62131Y Y 
DSCSZ.30 62231Y Y 
DSCSZ.31 62331Y Y 
DSCSZ.32 62431Y Y 
DSCSZ.33 6 951Y Y 
DSCSZ.34 61051Y Y 
DSCSZ.35 61151Y Y 
DSCSZ.36 61251Y Y 
DSCSZ.37 61351Y Y 
DSCSZ.38 61451Y Y 
DSCSZ.39 61551Y Y 
DSCSZ.40 61651Y Y 
DSCSZ.41 61751Y Y 
DSCSZ.42 61851Y Y 
DSCSZ.43 61951Y Y 
DSCSZ.44 62051Y Y 
DSCSZ.45 62151Y Y 
DSCSZ.46 62251Y Y 
DSCSZ.47 62351Y Y 
DSCSZ.48 62451Y Y 
DSCSZ.49 6 971Y Y 
DSCSZ.50 61071Y Y 
DSCSZ.51 61171Y Y 



640 5/36 Power Tools 

DSCSZ,52 61271Y Y 
DSCSZ,53 61371Y Y 
DSCSZ,54 61471Y Y 
DSCSZ,55 61571Y Y 
DSCSZ,56 61671Y Y 
DSCSZ,57 61771Y Y 
DSCSZ,58 61871 Y Y 
DSCSZ,59 61971 Y Y 
DSCSZ,60 62071 Y Y 
DSCSZ,61 62171Y Y 
DSCSZ,62 62271Y Y 
DSCSZ,63 62371 Y Y 
DSCSZ,64 62471 Y Y 
SCOMPRESS NYN Y BOGs··_ .. "''''''' ............... _...................................................... "' .. "' ........ -- .. "'-_ ............... .. 

S' FORMAT NAME COMPRESS 

S' PURPOSE. Compress request screen.

s····_·_··_··---_·_-----_·_··*----_·_--_·_······_····-.************** 
0 26 127Y Y CCompress All or Some DiX 
Dsks 
0 161Y Y Y Y C2 
0 64 3 2Y CCOMPRESS ALL or compresX 
Os each dlsk individually ALL, EACH 
DSALLEA 4 367Y YA 45 51 Y 
0 64 5 2Y 46 CCompress disk A1 X 
D. Y,N 
DSCD, 567Y YA 56 46 4652 Y 
0 64 6 2Y 46 CLOccltion for A1 free spX 
Dace LOW,HIGH 
DSLH ,I 667Y YA 4!l 4652 Y 
0 64 8 2Y 47 CCompress disk A2 X 
D. Y,N 
DSCD, 1 867Y YA 53 47 4753 Y 
0 64 9 2Y 47 CLOcelt; on for A2 free spX 
Dace LOW,HIGH 
OSLH,2 4 967Y YA 47 4753 Y 
0 6411 2Y 48 CCompress disk A3 
D. Y,N 
OSCD,3 11167Y YA 54 48 4854 Y 
0 6412 2Y 48 CLoc8tion for A3 free spX 
Dace LOW,HIGH 
OSLH ,3 41267Y YA 4B 4854 Y 
0 6414 2Y 49 CCompress disk A4 X 
D. Y,N 
DSCD,4 11467Y YA 55 49 4955 Y 
0 6415 2Y 49 CLocation for A4 free spX 
Dace LOW,HIGH 
OSLH ,4 41567Y YA 49 4955 Y 
0 6024 2Y 

Figure 1 8-11 
Procedure: VTOCFR 
Parameters:Procedure 1 FREE Display free blocks screen 

VTOCFR COMPRESS Display compress request screen. 
ONE Show free blocks for each disk in a separate column. 
ALL Show free blocks for all disks in all columns. 
LOCATION Sort free blocks by location. 
SIZE Sort free blocks by size (not avai 1. for "ONE" parameter) 

I I LOCAL OFFSET-171,BLANK-41 

I I 
 IF ? 1? = EVALUATE PI ~ 'FREE' 
II IF 727 ~ EVALUATE P2·'ALL' 
II IF 737- EVALUATE P3-' LOCATION , 
II IFF 717· 'FREE' IFF 71?-'COMPRESS' GOTO BOMB 
I I IFF 727- 'ONE' IFF ?2?-'ALL' GOTO BOMB 
I I IFF 73?- 'SIZE' IFF ?3?-' LOCATION' GOTO BOMB 
I I IF 727-'ONE' IFF ?3?-'LOCATION' GOTO BOMB 
II LOCAL OFFSET-171.DATA-'?1?' 
II LOCAL OFFSET-179,DATA-'?2?' 
II LOCAL OFFSET-1B2,OATA-'?3?' 
I I LOCAL OFFSET-190,OATA-'EACH' Default for compress. 
I I LOCAL OFFSET-194,OATA.- 'YHIGH' Default for Al COMPRESS 



System 641 

Figure 18-1 2 

Procedure 
VTOCCM 

Figure 18-13 

COMPRESS 
screen 

II LOCAL OFFSET~199,OATA~'YLOW ' A2 COMPRESS 
II LOCAL OFFSET~204,OATA~'YHIGH' A3 COMPRESS 
II LOCAL OF FSET ~ 209 ,OATA~ 'YLOW A4 COMPRESS 

I I LOAO VTOCFR 
I I RUN 

I I IFF ?L'171,8'7='COMPRESS' RETURN 

I I LOAO VTOCCM 
I I RUN 

I I IF 7L'215,1 '7-'E' RETURN 

II IF ?L' 190,4' 7 = 'ALL IF ?L' 215,1 ' -' J ' JOBQ ,COMPRESS,ALL 

II IF ?L' 190,4' 7 = 'ALL IF ?L' 215,1 ' =' C' COMPRESS ALL 

II IF 7L'190,4'7='EACH' IF ?L' 215,1 ' =' J ' JOBQ ,VTOCCM 

II IF 7L'190,4'7='EACH' IF ?L' 215,1 ' =' C' VTOCCM 

I I RETURN 


II TAG BOMB 

II PAUSE 'Illegal parameter in VTOCFR' 


Procedure: VTOCCM 

I I IF L'l 94,1 ' 7 = 'Y' COMPRESS Al ,FREE L'195,4' 
I I IF L'199,1 '7='Y' IF 7L'214,1 '7>'1' COMPRESS A2,FREE L'200,4' 
II IF L'204,1 '7-'Y' IF 7L'214,1 '7>'2' COMPRESS A3,FREE L' 205,4' 
II IF L ' 209 , 1 '7 = 'Y' IF ?L'214,1 '7>'3' COMPRESS A4,FREE L'210,4' 

Compress Allor Some Disks 

COMPRESS ALL or compress each disk individually ALL,EACH EACH 

Compress disk A1 Y,N Y 
Location for A1 free space LOW,HIGH HIGH 

Compress disk A2 Y,N Y 
Location for A2 free space LOW,HIGH LOW 

Cmd4-Put on job queue Cmd7-Cancel compress 



642 5/36 Power Tools 



System 643 

Differences Between Actual Disk Space 
and CATALOG Listing 
answered by NEWS 3X/400 Staff 

QAfter adding up all my program products, user libraries, and data files, 
I found 2,500 blocks unaccounted for. Does the system eat up this 

much space for diagnostic purposes? 

AThe system uses about 650 blocks (depending on the size ofyour system) 
that do not show up in the VTOC. All scratch or work files also do not 

appear in the VTOC listing. We recommend you run a compress and then run 
a CATALOG by location to get an accurate block count. And instead of 
running a CATALOG, you could run subroutine VTOCFR (Displaying Free 
Disk Space, page 625), which lets you see how much free space you have. 

Retrieving a File's or Library's Users 
by Perry Gardai 

program by Matthew Henry 

a
Code on diskette: 


Procedure TESTU 
RPG program TESTU 
Screen format member TESTUFM 

Often in the day-to-day operation of a S/36 data processing shop, an opera
tor may need to know whether a particular library or file is in use. This is 
especially true when dedicated procedures such as RENAME, DELETE, 
or CONDENSE need to be performed. While IBM provides some identifi
cation data via various console operations, the data is not library- or file-spe
cific and is often awkward to access, making it difficult to determine which 
users are tying up the library or file in question. 

Two utilities appearing elsewhere in this book, TESTUL and 
TESTUF, offer procedurally driven methods to discover the library or file 
users. This utility, TESTU, offers an interactive, well-formatted, user
friendly utility that displays the same library and file usage information. 
Before we examine how on-line program TESTU is constructed, let's first 
review its predecessors to see what makes TESTU another useful imple
mentation of the basic techniques put forth in the previous articles. 

The information requested by TESTUL and TESTUF is presented to 



644 5/36 Power Tools 

the user via OCL message statements. These statements, embedded within a 
loop, call a program that accesses an assembler subroutine (SUBRUL or SUB
RUF) via the EXIT operation and then loads the information into the LOA. 
The LOA data is substituted into the OCL message statement, and the mes
sage is displayed on the screen while statements within the loop test a counter 
for EOJ. The cycle is repeated as often as there are jobs or workstations using 
the target library or file. While such procedurally driven implementations are 
useful for batch applications, they have some inherent constraints. 

Functions such as creating column headings on the screen, rolling back 
and forth through the data, and changing from one target library or file to 
another prove difficult if not impossible. A second drawback is simply exe
cution speed. The time required to initiate the program that accesses the 
modified subroutine and to translate and execute all of the OCL state
ments in the loop is far more than that required by an on-line progra,m. 

Unlike the unformatted data the OCL implemf:ntation presents, 
TESTU provides column headings that organize the various data elements 
retrieved by the subroutines. Program TESTU offers other advantages too. 
The Roll key function allows the operator to review entries that might have 
rolled off the screen in the OCL versions. Also, Command key 1 takes the 
operator back to the first screen to select another library or file to review. 
And once program TESTU is loaded and running, Ithe screen response is 
almost instantaneous, a vast improvement over the comparatively slow 
screen messages issued by the procedural versions. 

Using the TESTU Utility 
To create program TESTU, the two assembler subroutines - SUBRUL 
and SUBRUF - must be stored in #RPGLIB. (See Retrieving a Library's 
Users (page 272) and Retrieving a File's Users (page 205) for how to create the 
SUBRUL and SUBRUF subroutines.) Once the subroutines are created and 
stored, any RPG program can access them, and the information returned by 
the subroutines can be used in the same way as data from a file; these sub
routines are the fundamental building blocks of program TESTU. 

To run the TESTU procedure (Figure 18-14), simply key in TESTU. 
With the exception of the section of code that accesses the external subrou
tines, the program that TESTU calls is a straightforward two-screen pro
gram that uses Roll key and Command key logic (see Figure 18-15 for the 
screen format member specifications). The NAME screen (Figure 18-16) 
prompts the operator to supply the name of the target library or file and to 
designate with the letter L or F which it is. The status screen (Figure 18
17) contains the library or file usage data along with appropriate headings, 
column titles, and command key instructions. 

Now let's look at the program itself (Figure 18-18). The initialization sec
tion accepts the library or file name and designation (L or F) from the LOA 
on the first cycle, thus enabling the NAME screen to be bypassed. The pro



Figure 18-14 

Procedure 
TESTU 

Figure 18-15 

SFGR 
specifications 
TESTUFMjor 
NAME and 
STATUS screens 

System 645 

gram performs some minor edits and then drops into a OOUEQ loop. 
Within the loop, the designation F or L is established, and the appro

priate external subroutine is accessed via the EXIT command. The three 
RLABL statements provide the data for the library or file name, the index 
x (a counter), and the data structure named JOBOS. Once the program 
knows the name of the library or file in question, the index x counts each 
job using that library or file. The JOBOS data structure is subdivided into 
various data fields that are subsequently moved to the corresponding 
screen data fields. Next, the screen data fields are redefined as the data 
field SCREEN in a data structure, and SCREEN is moved to the current 
element of the OT array in preparation for output. This loop is repeated 
either until there are no more users and user information for the assembler 
subroutine to retrieve or a maximum of 20 times (the maximum number of 
lines reserved on the STATUS screen). If there are more than 20 entries, 
the program performs a Roll key procedure to scroll from page to page. 

Before the STATUS screen is output, the OT array is sorted in descending 
sequence via the SORTA command. The sort causes any blank entries read by 
the external subroutine to be sorted at the end of the list, thus eliminating 
blank lines on the screen when it is displayed. At the end of the calculations, 
subroutine SUBINF controls the Roll key functions enabled on the STATUS 
screen. Finally, Command key 1 returns the operator to the NAME screen to 
select another library or file for inspection. Command key 7 ends the program. 

Remember, the next time a user ties up a library or file you need for a 
dedicated system function, the TESTU utility provides a fast, easy, and 
efficient method for identifying the culprit. 

II LOCAL OFFSET-1,DATA-'?1?',BLANK-9 
II IF ?2?1 IF LOAD-'#PTFLOG,?1?' EVALUATE P2-L 
II LOCAL OFFSET-9,DATA-'?2?' 
II LOAD TESTU 
I I RUN 

1 2 4 
SNAME 00 NN Y 12345 
DFLOO01 37 3 2Y Y C. . .X 
D, . 
DFAOOO1 1 4 2Y Y C: 
DFAOO01 1 4 4Y Y Y Y CP 
DFAOOO2 31 4 6Y C x 
0 
DFAOOO2 1 438Y Y c: 
DFLOOO2 1 5 2Y Y C: 
DFLOOO3 
D: 

24 5 4Y CEnter fl1e/llbrary nameX 

DFLOOO4 8 529Y YB Y N 
DFLOOO5 1 538Y Y C: 
DFAOOO3 1 6 2Y Y c: 
DFAOOO2 33 6 4Y C x 
0 
DFAOOO4 1 638Y Y c: 
DFAOOO5 1 7 2Y Y c: 
DFAOOO1 33 7 4Y CEnter L for library or X 
D 
DFAOOO6 1 738Y Y c: 
DFAOOO7 1 8 2Y Y c: 
DFAOO02 24 8 4Y C F for file x 



646 5/36 Power Tools 

Figure 18-16 

Screen prompt 
for library orfile 
nome 

Figure 18-17 

Screen displaying 
user information 

Figure 18-18 

Program TESTU 

D. 

DFA0003 1 829Y YA Y N 

DFA0004 6 831Y C 

DFA0008 1 838Y Y c: 

DFA0009 1 9 2Y Y C: 

DFAOOll 33 9 4Y C x 

D 
DFA0010 1 938Y Y C: 
DFA0002 110 2Y Y C: 
DFAOOOl 3310 4Y Y 
DFA0003 11038Y Y C: 
DFL0006 3711 2Y Y C: .. PRESS ENTER TO ACCX 
DEPT NAME ... 
SSTATUS NY AG15 
DFAOOOl 9 121Y CUsers for 
DFA0002 4 131Y 
DFA0002 8 136Y 
DFA0003 76 2 lY y CJob Proc ProgrX 
Dam User Initial Start time Share 
DFA0003 1600 3 lY 
DFL0023 7023 2Y Y 
DFL0024 7924 2Y CCmdl-New fi1e/1brary X 
DCmd7-End program Roll-Page Enter-Update 

Enter file/library name: EDITPROF 

Enter for library or 
for file 

··Enter a name 
: .... PRESS ENTER TO ACCEPT NAME ..... . 

Users for file EDITPROF 
Job Proc Program User Ini ti a1 Start time Share 
W9101354 FSEDIT FSED2 RALPH FSEDIT 10:23am SHRMM 
W8101354 FSEDIT FSE02 GARRISON SSRNEW 10:10am SHRMM 
W7101354 FSEDIT FSED2 MONTE FSEDIT 12 :07pm SHRMM 
W6101354 FSEDIT FSED2 OBERG PROBLOG 11: 15am SHRMM 
W5101354 FILE# FILE PENNY FILE 12: 12pm SHRRM 
W4101354 FSEDIT FSED2 MERLE FSEDIT 09:35am SHRMM 
W3101354 FSEDPF FSEDPF GARY LIBR 10:03am SHRRM 
W2101354 FSEDIT FSED2 REBECCA FSEDIT 09:21am SHRMM 
Wll01354 FSEDIT FSED2 MEL FSEDIT 10: 13am SHRMM 
WB101354 FSSTAT FSSTAT ZIMMER FSDIAG 08:01am SHRRM 
WA101354 FSEDIT FSED2 INGRID SSRUPD 09: 18am SHRMM 

·-End of 1 i st 
Cmdl-New file/library Cmd7 - End prog ram Roll-Page Enter-Update 

4 ...... 5 6 ... 7 .. 8 
0001 064 8 TESTU 
0002 F***·······················*················**········.•........... 
0003 F* Program: TESTU Written by: Matthew P. Henry 
0004 F* Thanks to Mel Beckman 



0005 

0010 

0015 

0020 

0025 

0030 

0035 

0040 

0045 

0050 

0055 

0060 

0065 

0070 

0075 

System 647 

F* This program prompts for a library or file and displays a list * 
0006 F* of all programs and users using that library or file. 
0007 F* Comments: The report On the screen is sorted in descending 
0008 F* order. This is done for simplicity; otherwise, all 
0009 F* the blank entries would be first. You can take the 

F* SORTA operation out if it is confusing. I like it 
0011 F' because I can follow through a list of all the 
0012 F* te rm ina 1s. 
0013 F****************************************************************** 

0014 F* 
F* Flags: (1-0N, a-OFF) 

0016 F* FIRST - ON initialization completed 
0017 F* RPT • ON repeat of list cycle 
0018 F* OFF prompt for new name 
0019 F* LSTEND - ON end of list reached 

F* NONE - ON no programs or users for specified name 
0021 F* 

0022 F* Command keys: 

0023 F* KA - CMOl Request to enter new name/type 

0024 F* KG - CM07 Request to end program 


F* 
0026 F****************************************************************** 

0027 FWORKSTN CP 2000 WORKSTN 
0028 F KINFDS EXCPDS 
0029 F KIN FSR SUBINF 

E SHR 10 10 5 
0031 E MSG 1 4 70 
0032 E OT 20 80 0 
0033 E AJT 4 1 
0034 E SJT 7 

IWORKSTN NS CP 
0036 I 2 9 FILNAM 
0037 I 10 10 TYPE 
0035 I NS 
0038 IJOBOS os 
0039 I 1 8 USERID 

I 9 16 JOBNAM 
0041 9 10 JWS 
0042 I 11 160JT 
0043 I 17 24 FSTPRC 
0044 I 25 32 CURPRC 

I 33 40 PRGNAM 
0046 I 41 460JSTIME 
0047 I 1 46 JINFO 
0048 I 47 470SHRLVL 
0049 IEXCPDS DS 

I 'STATUS STATUS 
0051 I 23 260RCODE 
0052 I os 
0053 I 80 SCREEN 
0054 I 1 8 SJOBNA 

I 10 17 SCURPR 
0056 I 19 26 SPRGNA 
0057 I 28 35 SUSERI 
0058 I 37 44 SFSTPR 
0059 I 46 52 SJT 

I 54 55 JDFLAG 
0061 I 58 62 SHRTXT 
0062 I os 
0063 I NULL 
0064 I NULL1 

I NULL2 
0066 I UOS 
0067 I 8 LDAFIL 
0068 I 9 LOATYP 
0069 C* 

C* Initialization 
0071 C* 

0072 C FIRST IFED ' , 

0073 C BITOF'01234567'NULLl 

0074 C BITOF'01234567'NULL2 


C LOAFIL I FED 'BLANKS 
0076 C MOVE 1 APT 10 
0077 C ELSE 
0078 C MOVE LDAFIL FILNAM 
0079 C MOVE LDATYP TYPE 



648 S/36 Power Tools 

0080 C Z-ADDO X 30 
0081 C END 
0082 C MOVE FIRST 
0083 C END 
0084 C* 
0085 C" Main section 
0086 C" 
0087 C MOVE *BLANKS ERROR 70 
0088 C KA MOVE 0 RPT 10 
0089 C NKA MOVE 1 RPT 
0090 C FILNAM IFEQ *BLANKS 
0091 C MOVEAMSG,3 ERROR 
0092 C MOVE 0 RPT 
0093 C END 
0094 C RPT IFEQ 0 
0095 C Z-ADDO X 30 
0096 C END 
0097 C TYPE I FEQ * BLANKS 
0098 C MOVE 'F' TYPE 
0099 C END 
0100 C NKG RPT I FEQ 1 
0101 C Z-ADDl Y 30 
0102 C MOVE X HOLD 30 
0103 C MOVEA*BLANKS OT 
0104 C JOBNAM DOUEQ*BLANKS 
0105 C Z-ADDO NONE 10 
0106 C TYPE IFEQ 'F' 
0107 C MOVE 'f; 1e' STYPE 4 
0108 C EXIT SUBRUF 
0109 C RLABL FI LNAM 
0110 C RLABL X 
0111 C RLABL JOBDS 
0112 C SHRLVL ADD 1 SL 20 
0113 C MOVE SHR,SL SHRTXT 5 
0114 C ELSE 
0115 C MOVE '1; br' STYPE 4 
0116 C EXIT SUBRUL 
0117 C RLABL FI LNAM 
0118 C RLABL X 
0119 C RLABL JOBDS 
0120 C END 
0121 C JOBNAM I FNE "BLANKS 
0122 C USER ID IFEQ "BLANKS 
0123 C MOVEL'MRT JOB' SUSERI 
0124 C ELSE 
0125 C JWS I FEQ NULL 
0126 C MOVE '?? ' JWS 
0127 MOVE 'HELP KEY' CURPRC 
0128 END 
0129 MOVE USERID SUSER] 
0130 C END 
0131 C MOVE JOBNAM SJOBNA 
0132 C MOVE FSTPRC SFSTPR 
0133 C MOVE CURPRC SCURPR 
0134 C MOVE PRGNAM SPRGNA 
0135 C JSTIME IFNE "ZEROS 
0136 C MOVE JSTIME JT 
0137 C MOVE 'JQ' JQFLAG 
0138 C ELSE 
0139 C MOVE' JQFLAG 
0140 C END 
0141 C JT IFGT 115959 
0142 C MOVEA'pm' SJT,6 
0143 C ELSE 
0144 C MOVEA'am' SJT,6 
0145 C END 
0146 C JT I FGE 130000 
0147 C SUB 120000 JT 
0148 C ELSE 
0149 C JT IFLT 010000 
0150 C ADD 120000 JT 
0151 C END 
0152 C END 
0153 C MOVEAJT AJT 
0154 C MOVEAAJT,l SJT,l 
0155 C MOVEAAJT,2 SJT,2 



System 649 

0156 C MOVEA' : ' SJT,3 
0157 C MOVEAAJT,3 SJT,4 
0158 C MOVEAAJT,4 SJT,5 
0159 C MOVEASCREEN OT,Y 
0160 C MOVE 0 LSTEND 10 
0161 C ELSE 
0162 C"-> TEST FOR END OF LIST 
0163 C X IFEQ 0 
0164 C MOVE 1 NONE 10 
0165 C MOVE 1 LSTEND 10 
0166 C TYPE IFEQ ' F' 
0167 C MOVEAMSG ,1 ERROR 
0168 C ELSE 
0169 C MOVEAMSG, ERROR 
0170 C END 
0171 C ELSE 
0172 C MOVE 1 LSTEND 10 
0173 C MOVEAMSG,4 ERROR 
0174 C END 
0175 C END 
0176 C*-> INCREMENT POINTERS 
0177 C ADD X 
0178 C ADD 1 Y 
0179 C Y IFGT 20 
0180 C MOVE "BLANKS JOBNAM 
0181 C END 
0182 C END 
0183 C"-> END OF DOUNTIL 
0184 C MOVE HOLD X 
0185 C NONE IFEQ 0 
0186 C SORTAOT 
0187 C END 
0188 C EXCPTL I ST 
0189 C ELSE 
0190 C EXCPTPROMPT 
0191 C END 
0192 C"-> END OF IF 
0193 C KG SETON LR 
0194 C" 
0195 C* Subroutine to control roll-up and roll-down 
0196 C* 
0197 CSR SUBINF BEGSR 
0198 C SETOF KA 
0199 C MOVE 1 RPT 
0200 C STATUS IFEQ 01122 
0201 C LSTEND I FEQ 0 
0202 C ADD 20 X 
0203 C END 
0204 C ELSE 
0205 C STATUS IFEQ 01123 
0206 C MOVE 0 LSTEND 
0207 C SUB 20 X 
0208 C END 
0209 C END 
0210 C X IFLT 0 
0211 C Z-ADDO X 
0212 C END 
0213 CSR ENDSR' "DETC' 
0214 OWORKSTN LIST 
02150 K8 'STATUS 
0216 0 STYPE 4 
0217 0 FI LNAM 12 
0218 0 OT 1612 
0219 0 ERROR 1682 
0220 OWORKSTN PROMPT 
0221 0 K8 'NAME 
0222 0 FI LNAM 8 
0223 0 TYPE 9 
0224 0 ERROR 79 
** Share levels 
SHRRMSHRRRSHRMRNOSHR SHRMM 
** Messages 
**File currently not in use, Cmd1 to enter another name 
·*Library currently not 1n use, Cmdl to enter another name 
·*Enter a name 
*·End of list 



650 5/36 Power Tools 

Explanation of the Job Queue 
answered by Mike Patton 

Figure 18·19 

Job queue status 
display 

Qour company recently upgraded from a S/36 5362 to a full-sized 5360 on 
which the SSP was loaded before we took delivt:ry. Since the upgrade, 

every job we place on the job queue is released immc~diately to the user area 
for execution - something that did not happen on the 5362. Is there a 
command or procedure we can use to make the job queue work properly? 

AIt is possible that your jobs are being released immediately from the job 
queue because the maximum number of active job-queue jobs (Max 

Active Jobs on the job queue status display, Figure 18-19) is set to a larger 
number. Alternatively, you may be using an excessively high value for the 
maximum number of active job-queue jobs at a particular priority level 
(Max for PRTY on the job queue status display). To find out whether this is 
the case, enter 0 J at the system console to display the job queue status. 

Notice the settings for Max Active Jobs and Max for PRTY in Figure 
18-19. In this example, a maximum of five jobs from the job queue may be 
active at one time. Of these five active jobs, a maximum of one job each 
may be active with priority levels 5, 4, 3, 2, or 1. On,e job with priority level 
oalso is allowed, but jobs placed on the job queue with priority 0 are not 
executed automatically; they must be released for execution by the opera
tor with the "s J,jobname" command. For this reason, they are not counted 
in the maximum number of active job-queue jobs. 

To change these values, take option 10 on the JOBQUEUE menu of 
the job queue status display. You may then select the JOBQ option to limit 
the total number of active jobs, or you may select an individual job priority 

Complete JOB QUEUE STATUS W5 
Jobs in Queue: 0 of 100 JOSQ PRTY STOPPED : 0 

Max Active Jobs: 5 Max for PRTY 5:1 4:1 3:1 2:1 1:1 0:1 
PRIORITY 

POS JOSNAME PROC/DOC LI BR/FLDR USER STATUS JOSQ PROC 

SYS-5689 The job Queue is empty now 

Cmd7-End Cmd8-Help Cmd15-Update Cmd16-Re'start Roll-Page 

JOBQUEUE 

Jobs on the job queue 


1. Display specific job(s) 
2. Put a job on the queue 
3. Cancel a job 
4. Hold a job 
5. Release a job 

Ready for option number or command 

COPR ISM Corp. 1986 



System 651 

level for which you want to adjust the maximum number of active jobs. 
Valid maximums range from 0 to 50. Once you set a maximum value, it 
remains effective until you change it with the G J (Change Job Queue) 
command or with JOBQUEUE menu option 10 - or until the job queue is 
rebuilt by the system. 

Manipulating the Job Queue 
by Lisa A. Hendricks 

Although moving a job from one priority to another normally is a five-step 
process, you can accomplish the same operation with much less effort. 
First, stop the JOBQ. Then place one job on the JOBQ for each priority 
from 1 through 5, hold all five of the jobs, and restart the JOBQ. The five 
"dummy" jobs sit in the JOBQ until you remove them. Finally, when a 
user places a job in the JOBQ, simply move his or her job to the position 
after the held "dummy" job that has the appropriate priority. 

You also can speed DisplayWrite printing time by assigning a maximum 
of four jobs to priority 2 in the JOBQ. By reserving priority 2 for Display
Write, you eliminate the conflicts that arise when RPG programs and Dis
playWrite jobs run concurrently froni priority 2. 

Executing an OCL Statement on the Job Queue 
by Mel Beckman 

Code on diskette: a Procedures JII, JOCL 
RPG program JOCL 

Many times I'd like to put an OCL statement on the job queue. For exam
ple, I might want to send myself a message, via the II MSG statement, when 
the jobs currently on the queue finish. Or I might want to hold up the queue 
until a certain time using the II WAIT statement. Or when I put a large stack 
of jobs on the queue at night, I might like to execute a II POWER OFF 
statement as the last step. 

Unfortunately, the JOBQ command lets you place only procedures on 
the job queue - not OCL statements. You can overcome this restriction, 
however, by using the RPG program and pair of procedures shown in Fig
ures 18-20, 18-21, and 18-22. Placing the two procedures and the compiled 
RPG program in #LIBRARY lets you put any OCL statement on the job 
queue simply by preceding the II statement with a j. For example, to put a 
II MSG statement on the job queue, key: 

J// MSG MEL,JOB HAS FINISHED 



652 5/36 Power Tools 

This statement invokes the JII procedure (Figure 18-20), passing the OCL 
statement to be queued on the procedure parameter line. Procedure JII 
must have the program data attribute set (you set this attribute from the 
end-of-job screen in source editors such as FSEDIT, DSU, and SEU). Pro
cedure JII runs RPG program JOCL (Figure 18-21), which reads a worksta
tion file to retrieve the procedure command line, copy it, and put it in the 
LDA. Because of the program data attribute of procedure JII, the first work
station read operation performed by program JOCL gets the procedure 
command line as data, which it then stores in LDA positions 393 through 
512 (to avoid conflicts with utilities such as POP). 

Next, procedure JII puts procedure JOCL (Figure 18-22) on the job 
queue. When procedure JOCL runs, it "inherits" the LDA (which contains 
the OCL statement image) from procedure JII. Procedure JOCL substi
tutes LDA positions 393 through 512 into a statement starting with II, and 
the system interprets the resulting statement as an OCL statement. 

Although I use JII for only MSG, WAIT, and POWER OCL statements, 
you also could use it for CANCEL, CHANGE, EVOKE, START, STOp, 
and VARY statements. 

Figure 18-20 	 I I lOAD JOCl 
I I RUN 
I I JOBQ ,JOClProcedure JII 

3, ... 4 6, , .. 7 .. 8Figure 18-21 
0001 H JOCl 
0002 F*Program JOCL 0003 F* Copy the procedure command line into the lOA 
0004 F* 
0005 FWORKSTN CP F 120 WORKSTN 
0006 F KFMTS 'NONE 
0007 F KID WSID 
0008 IWORKSTN 
0009 I 1 120 OCl 
0010 I UDS 
0011 I 393 512 lOA 
0012 C SETON lR 
0013 C MOVE OCl lOA 
0014 OWORKSTN 0 lRNlR 
0015 0 K5 'DUMMY' 

Figure 18-22 

Procedure JOCL 
II ?L'393,120'? 

Changing Procedures Already Enqueued 
on the Job Queue 
answered by Matthew Henry 

Qsuppose I bring up a procedure member, make a change, save it, and 
then submit it to be executed on the job queue. If after submitting it 

to be executed, I go back into the member, make another change, and save 



System 653 

it before the first procedure starts to be executed, which version will 
actually be executed? From my testing, it appears the second version (or 
the one most recently updated) would be executed. 

On a mainframe, a job submitted to be executed will "carry along" a 
copy of the JCL. If I subsequently change the JCL, or cancel the edit, the 
submitted version is executed exactly as I submitted it. The S/36 appears 
to submit only the library member name, and whatever is in the member at 
that time is what will be executed. Why? Exactly what does the S/36 do 
when it executes a job from the job queue? 

A A job run from the job queue is started just like a job run from a 
terminal. The only things "carried" with the job are a copy of the 

terminal's local data area, switches, and session configuration information 
because making a copy of the entire OCL for a batch job would require 
additional storage on the S/36. The operating system reads the OCL 
procedure when the time comes to execute it. Thus, a procedure placed on 
the job queue but which has not started executing could be held and 
modified (just by changing the procedure within the library) before it is run. 

Displaying and Updating of the LDA 
and UPSI Switches 
by John E. King, III 

a Code on diskette: 

Procedure LOA 
Screen format member LOAFM 

BitStop has featured several S/36 LOA display procedures in the past, but pro
cedure LOA (Figure 18-23) goes a little further than the others by allowing you 
to use Command key 1 to toggle between the system LOA and the user LOA. 

Procedure LOA uses the S/36 EVALUATE statements to retrieve the 
LOA data 100 bytes at a time and assign the data to parameters 3 through 8. 
The procedure then sets parameters 9 through 16 to 0 or 1, depending on the 
UPS I switch settings. The LOA data and UPSI switch settings are displayed 
via the parameters on a prompt screen (Figure 18-24 shows the prompt 
screen, and Figure 18-25 shows the S- and O-specs). Command key 2 serves 
as a toggle to show you two screens, one with the system LOA and the UPSI 
switch settings, the other with the user LOA and the UPSI switch settings. 
The facility also lets you update the LOA data or the UPSI switch settings. 

Figure 18-23 	 • PROGRAM DISPLAYS THE LOCAL DATA AREA 
II EVALUATE P1-?WS? P2-'USER 

Procedure LDA 	 I I TAG TOP 
II LOCAL AREA-?2? 
II EVALUATE P3-'?L'1 ,100'?' P4-'?L'101,100'?' P5-'?L'201,100'?' P6-'?L'301,100'?' 
II EVALUATE P7-'?L'401,100'7' PS-'?L'501, 12'?' 



654 5/36 Power Tools 

II IF SWITCH1-0 EVALUATE P9-0 
II ELSE EVALUATE P9-1 
II IF SWITCH2-0 EVALUATE Pl0-0 
II ELSE EVALUATE Pl0-1 
II IF SWITCH3-0 EVALUATE Pll-0 
II ELSE EVALUATE Pll-l 
II IF SWITCH4-0 EVALUATE P12-0 
I I ELSE EVALUATE P12-1 
I I IF SWITCH5-0 EVALUATE P13-0 
I I ELSE EVALUATE P13-1 
I I IF SWITCH6-0 EVALUATE P14-0 
I I ELSE EVALUATE P14-1 
II IF SWITCH7-0 EVALUATE P15-0 
I I ELSE EVALUATE P15-1 
II IF SWITCH8-0 EVALUATE P16-0 
II ELSE EVALUATE P16-1 
II PROMPT MEMBER-LOAFM,FORMAT-SCREEN01,LENGTH- '2,6,100,100,100,100,100,12,+ 

1,1,1,1,1,1,1,1' 

II IF ?C07/2007 RETURN 

I I LOCAL OFFSET -1 ,AREA-?2?, DATA-' ?3?' ,BLANK-*ALL 
II LOCAL OFFSET-l0l ,AREA-?2?,DATA-'?4?'
I I LOCAL OFFSET-201 ,AREA-?2? ,DATA- '?5?' 
II LOCAL OFFSET-301,AREA-?2?,DATA-'?67' 
II LOCAL OFFSET-401,AREA-?2?,DATA-'?7?' 
II LOCAL OFFSET-501,AREA-?27,DATA-'?B?' 
II IF 797/0 SWITCH OXXXXXXX 
I I ELSE SWITCH 1XXXXXXX 
II IF 7107/0 SWITCH XOXXXXXX 
II ELSE SWITCH X1XXXXXX 
II IF ?117/0 SWITCH XXOXXXXX 
II ELSE SWITCH XX1XXXXX 
II IF 7127/0 SWITCH XXXOXXXX 
II ELSE SWITCH XXX1XXXX 
II IF 7137/0 SWITCH XXXXOXXX 
II ELSE SWITCH XXXX1XXX 
II IF ?14?10 SWITCH XXXXXOXX 
II ELSE SWITCH XXXXX1XX 
II IF ?15?10 SWITCH XXXXXXOX 
II ELSE SWITCH XXXXXX1X 
II IF 7167/0 SWITCH XXXXXXXO 
I I ELSE SWITCH XXXXXXXl 
II IF 7C07/2001 IF 72?/USER EVALUATE P2-SYSTEM 
II ELSE IF ?27/SYSTEM EVALUATE P2-'USER 
II IF ?C07/2001 GOTO TOP 

Figure 18-24 

LOCAL DATA AREA: WORKSTATION 00Prompt screen for 
000000 

procedure LDA 0--------1---------2---------3---------4---------5 
12345678901234567890123456789012345678901234567890 

1 150 00000000000000000000000000000000000000000000000000 
51 100 00000000000000000000000000000000000000000000000000 

101 150 00000000000000000000000000000000000000000000000000 
151 200 00000000000000000000000000000000000000000000000000 
201 250 00000000000000000000000000000000000000000000000000 
251 - 300 00000000000000000000000000000000000000000000000000 
301 350 00000000000000000000000000000000000000000000000000 
351 - 400 00000000000000000000000000000000000000000000000000 
401 - 450 00000000000000000000000000000000000000000000000000 
451 500 00000000000000000000000000000000000000000000000000 
50<. 512 000000000000 

12345678901234567890213456789012345678901234567890 
0--------1---------2---------3---------4---------5 

S WIT C H E S 
1 345 6 7 8 
o o 000 000 

CMO 1 - USERISYSTEM 
CMD 7 - CANCEL IMMEOIATELY 



System 655 

8... 2 ... 4 ... 5Figure 18·25 
00070SSCREENOl 0124 Y AG 
000900 0028 224Y CLOCAL DATA AREA: WORKSTXSFGR 

DATION 

specifications 00110DWSID 0002 254Y Y Y Y 
DUORS 6 336Y Y Y Y Y

lorLDA 0 50 416Y co·· -1-·_·-2-·X 
0-··-3- ··-4-···-5prompt screen 0 50 516Y C12345678901234567890123X 
D456789012345678901234567890 
D 9 6 2Y C 1 50 

00160DLlNEl 50 616Y YB Y 
0 9 7 2Y C 51 100 

00210DLlNE2 50 716Y YB Y 
D 9 8 2Y Cl0l 150 

002600LlNE3 50 816Y YB Y 
0 9 9 2Y C151 200 

003100LlNE4 50 916Y YB Y 
D 910 2Y C201 250 

501016Y Y Y 
0 911 2Y C251 300 
D 501116Y Y Y 
D 912 2Y C301 350 
D 501216Y Y Y 
0 913 2Y C351 - 400 
D 501316Y Y Y 
D 914 2Y C401 450 
0 501416Y Y Y 
0 915 2Y C451 500 
D 501516Y Y Y 
D 916 2Y C501 - 512 
0 121616Y Y Y 
0 501716Y C12345678901234567890123X 
D456789012345678901234567890 
D 501816Y CO···-l-·-·-2--X 
0-··-3-···-4-···-5 
0 152034Y CS WIT C H E S 
D 292126Y Cl 2 3 4 6 X 
o 7 8 
DSWITl 12226Y YN Z Y Y 
OSWIT2 12230Y YN Z Y 
DSWIT3 12234Y YN Z Y 
OSWIT4 12238Y YN Z Y 
OSWIT5 12242Y YN Z Y 
OSWIT6 12246Y YN Z Y 
DSWITl 12250Y YN Z Y 
DSWIT8 12254Y YN Z Y 
0 402340Y Y Y CCMO 1 • USER/SYSTEM X 
0 
0 402440Y Y Y CCMO 7 - CANCEL IMMEDIATX 
OELY 

Saving and Restoring the LDA and UPSI Switches 
by Mel Beckman 

Code on diskette: a
Procedures PUSHLOA, POP LOA 
RPG programs PSHLOA, POP LOA 

When trying to integrate different applications, I often discover that con
flicting LOA and UPSI switch usage causes unpredictable failures. For 
example, Package A might use certain LOA positions for one purpose, 
while Package B uses the same positions for a completely different pur
pose. The packages might run fine separately, but when combined through 
a common procedure, neither package works right. 



656 5/36 Power Tools 

Figure 18-26 

Program 
PSHLDA 

My solution - a pair of utilities, PUSHLDA and POPLDA - saves 
and restores the contents of the LOA and UPSI switches on a stack in a last
in, first-out (LIFO) fashion. Calling procedure PUSHLDA "pushes" the 
contents of the LOA and switches onto the stack, while calling procedure 
POPLDA "pops" them off the stack. Using a stack as a save area lets you 
save and restore the LOA and switch contents reliably, even in nested pro
cedures. And because the stack is stored in a RETAIN-J disk file, which is 
unique for every job, you can be certain each job has its own private stack. 

Programs PSHLDA and POPLDA (Figures 18-26 and 18-27, respectively) 
both use the direct file LDASTACK, which contains 100 5l2-byte records. 
The first 99 records make up the LOA stack. The last record - a control 
record - records the current depth of the stack in positions land 2 and the 
stack of UPS I switch values in positions 256-354. The eight UPSI switches are 
represented as eight bits in a single byte; the UPS I stack is a 99-byte array. 

Procedures PUSHLDA and POPLDA (Figures 18-28 and 18-29, respec
tively) each load a corresponding program - PSHLDA or POPLDA - and 
reference the LDASTACK file with a II FILE statement. The II FILE 
statement defines file LDASTACK as RETAIN-J with RECORDS-lOO. 
The first time PUSHLDA is called in a job, SSP automatically creates the 
LDASTACK file as a direct file. Subsequent calls in the same job to 
PUSHLDA and POPLDA use this same file. 

When program PSHLDA runs, it retrieves the control record to get the 
stack depth counter and UPSI array, increments the stack depth counter, and 
saves the contents of the LOA in the direct file record to which the stack 
depth counter is pointing. It then converts the UPS I switches to bit-values in 
a byte, stores the byte in the UPSI array, and rewrites the control record to 
update the stack depth counter and UPSI array in the LDASTACK file. 

When program POPLDA runs, it reverses the process: it reads the con
trol record, decrements the stack depth counter, and updates the control 
record. It then reads the record to which the stack depth counter is pointing 
(before decrementing) to restore the contents of the LOA. Finally, program 
POPLDA uses the UPSI switch byte to restore the UPS I switch values. 

When using procedures PUSHLDA and POPLDA, keep in mind that you 
always must perform push and pop operations in tandem. Ifyou call PUSHLDA 
in a procedure without a later call to POPLDA, the stack will be out of synch 
with other procedures, resulting in interference between procedures. 

.. . ... 3. . .. 4 ... 5. . .. 6 7 .. . .. 8 
0001 H PSHLDA 
0002 F* 
0003 F* Push the LOA and UPSI swi tches onto the LOA stack 
0004 F* 
0005 FLDASTACKUC F 512R DISK 
0006 E UPSI 99 1 
0007 ILDASTACK 
0008 I 1 256 DATAA 
0009 I 257 512 DATAB 



System 657 

0010 UDS 
0011 ] 1 256 LDAA 
0012 ] 257 512 LDAB 
0013 C 100 CHA]NLDASTACK Get control record 
0014 C MOVELDATAA 20 Extract stack 1eve 1 
0015 C MOVEADATAB UPS] ,1 Extract UPSI stack 
0016 C ADD L Bump stack level 
0017 C* 
0018 C CHA]NLDASTACK Get stack record 
0019 C EXCPTLDA Update ; t 
0020 C* 
0021 C BlTOF '01234567 ' UBYTE Collect UPS] bits 
0022 C Ul BlTON '0' UBYTE 
0023 C U2 BlTON' 1 ' UBYTE 
0024 C U3 BlTON'2' UBYTE 
0025 C U4 SlTON' 3' USYTE 
0026 C U5 SlTON' 4' USYTE 
0027 C U6 SlTON' 5' USYTE 
002S C U7 SlTON'6' USYTE 
0029 C U8 SITON' 7' USYTE 
0030 C MOVE USYTE UPS], L 
0031 C* 
0032 C 100 CHAINLOASTACK Get control record 
0033 C EXCPTCTRL Update ; t 
0034 C SETON LR E.O J. 
0035 OLOASTACKE LOA 
0036 0 LOAA 256 
0037 0 LOAS 512 
0038 0 CTRL 
0039 0 L 2 
0040 0 UPS] 355 

Figure 18-27 8 
0001 POPLOA 
0002 F* 

0003 F* Pop the LOA and UPSI switches off of the LOA stack


Program 
POPLDA 0004 F* 

0005 FLOASTACKUC 512R DISK 
0006 E UPSI 99 1 
0007 I LOASTACK 
0008 ] 1 256 OATAA 
0009 257 512 DATAB 
0010 UOS 
0011 ] 1 256 LDAA 
0012 ] 257 512 LOAS 
0013 C 100 CHAINLOASTACK Get control record 
0014 C MOVELOATAA L 20 Extract stack level 
0015 C MOVEAOATAB UPSI ,1 Extract UPSI stack 
0016 C SUS 1 N 20 New stack level 
0017 C EXCPTCTRL Update control rec 
0018 C* 
0019 C CHA]NLDASTACK Get stack record 
0020 C MOVE DATAA LOAA Move to LOA 
0021 C MOVE OATAB LDAB 
0022 C* 
0023 C MOVE UPS], UBYTE Get UPSI bits 
0024 C TESTB'O' UBYTE Ul Set UPSI sWltches 
0025 C TESTB '1 ' UBYTE U2 
0026 C TESTB'2' UBYTE U3 
0027 C TESTB'3' UBYTE U4 
0028 C TESTB' 4' USYTE U5 
0029 C TESTB' 5' UBYTE U6 
0030 C TESTS'6' USYTE U7 
0031 C TESTS'7' USYTE U8 
0032 C* 
0033 C SETON LR E.O J. 
0034 OLDASTACKE CTRL 
0035 0 N 



658 5/36 Power Tools 

• Push the LOA and UPSI switches onto the LOA stackFigure 18-28 I I LOAD PSH LOA 

II FILE NAME-LDASTACK,RECORDS-l00,RETAIN-J
Procedure II RUN 

PUSHLDA 

Figure 18-29 	 • Pop the LOA and UPSI switches off of the LOA stack 
II LOAD POPLDA 
II FILE NAME-LDASTACK,RECORDS-100,RETAIN-JProcedure II RUN

POPLDA 

Granting Console Capability to Any Workstation 
by Mel Beckman 

Code on diskette: a Procedures GOLEM, ROLEM 
Assembly language programs GOLEM, ROLEM 

To properly manage access to your S/36 resources, you need to weigh the 
user's "need to know" against the user's potential for causing damage. 
Thus, SSP restricts nonconsole workstation operators from viewing and 
changing spool and job queue entries for other users and restricts access to 
active jobs and to certain console commands. At the same time, SSP pro
vides a way to grant console operational capabilitks to a workstation other 
than the system console: the System Service Device (SSD). The System 
Service Device is allowed access to the same commands as the system con
sole, except for the ASSIGN, STOP SYSTEM, and VARY commands. The 
system console operator can give SSD privileges to only one workstation at 
a time by using the START SERVICE command. 

However, in certain situations, you may want more than one user to 
have SSD status or you may want to give users SSID status without bother
ing the system operator. The following pair of small assembly language pro
grams do just that. 

The first program, GOLEM (Grant Operational Liberty for Everything 
Meaningful), turns on SSD privileges, and the second, ROLEM (Revoke 
Operational Liberty for Everything Meaningful), turns them off. In addition, 
GOLEM sets the CONSOLE GIVE flag for a workstation, allowing it to 
acquire the console unilaterally via the CONSOLE TAKE command <with
out the system operator issuing a CONSOLE GIVE command manually). 

The procedures in Figures 18-30 and 18-31 run GOLEM and ROLEM, 
respectively. Security officer authority is required to run the MKGOLEM pro
cedure, and Service Aids authority is required to run GOLEM or ROLEM. 

• Grant Operational Liberty for Everything Meaningful Figure 18-30 II LOAD GOLEM 

I I RUN
Procedure 

GOLEM 



System 659 

• Revoke Operational Liberty for Everything MeaningfulFigure 18·31 
1/ LOAD ROLEM 
I I RUNProcedure 

ROLEM 

Running CACHE from Other Than 
the System Console 
by GOT}' T Kratzer 

Code on diskette: a Procedures CADD, CREM 

On the S/36, the SSP lets you run the CACHE procedure only from the 
system console. Also, you cannot run CACHE from the lOBQ or EVOKE 
it, even if the initiating workstation is the system console. This restriction 
is often inconvenient, especially when you dial into your S/36 from a 



660 5/36 Power Tools 

remote site (such as your home) to perform "housekeeping" and you can
not, or don't wish to, acquire the system console. 

The Cache patch (developed under SSP Release 5.1, PTF level 3705) 
lets you EVOKE the CACHE procedure or execute it from any workstation 
or the 10BQ. The patch may be applied to earlie:r or subsequent PTF lev
els if message SYS-3330 - "Checkbyte in data statement incorrect or miss
ing" - does not occur when you attempt to apply it. Figures 18-32 and 
18-33 contain the data to apply and remove the patch, respectively. 

Figure 18-32 

Patch to addfunctions to CACHE. (This procedure appears as procedure CADD on diskette.) 

1/ LOAD $FEFIX 

1/ RUN 

HDR 

PTF O#SVCMG, ,#LIBRARY 

DATA 75,0213, F20014 

END 


Figure 1 8-33 

Code to remove patch. (This procedure appears as procedure CREM on diskette.) 

II LDAD $FEFIX 
/ I RUN 
HDR 
PTF O#SVCMG, ,#LIBRARY 
DATA F2,0213,75A104 

END 


Explanation of Task Work Area (#SYSTASK File) 
answered by Mel Beckman 

QI would appreciate some comments on the S/36 Task Work Area 
(TWA) when using ASNA's RPG III or BPS's RPG II 1/2. I am working 

on a system with many subprograms, and my total used storage approaches 
800 K. My understanding is that the unused programs are "swapped out" to 
TWA until needed. However, if 10 people are using the system, is the 
potential amount of "swapped out" programs 8 MB? Does this start creating 
problems for the TWA as far as the size of the TVIA is concerned? 

AYour assumptions are all correct: unused programs are paged out 
(swapped out) to the TWA (#SYSTASK file) by the S/36 virtual storage 

mechanism. Thus, you need a TWA large enough to hold all your activated 
programs for all users. I suspect you're using the "menu program" approach 
to hold the activations open for your most frequently used programs. This 
is an excellent technique and results in very good response time and much 
less CPU resource utilization because fewer initiations and terminations 
occur; you do, however, pay a price in disk space that must be reserved to 
hold the activated programs. 



System 661 

And that's where the S/36 has a slight wrinkle. Although IBM embed
ded the external program call mechanism into S/36 microcode, IBM never 
expected customers to figure that out and start using it. Thus, they never 
thought that the TWA would need to be very large, and they set the 
configurable limit at 6,553 blocks (about 16 MB). If you don't need more 
than 16 MB, setting the TWA size in your configuration to the maximum 
value will work fine. You should probably do a COMPRESS FREEFLOW 
and an IPL to get the TWA created adjacent to #LIBRARY - that will 
improve performance a bit. 

But what if you need more than 16 MB? When the TWA fills up, SSP 
tries to expand it in noncontiguous extents using the following algorithm: 
the first extent is 400 blocks; the second 800; the third 1,600; the fourth 
3,200; and so on. Unfortunately, it's hard to keep that much free space in 
one place on the disk when your system has been running for a few hours. 

The trick is to "pre-activate" all of your programs at the start of the day 
so the TWA gets expanded before disk space becomes fragmented. You do 
this by planting a special "initialization" code in the parameter list for your 
called programs (i.e., the mainline applications that your menu program 
calls). Your menu program, when it first starts up, then calls each subpro
gram in turn (passing the initialization code). Upon seeing the initialization 
code, the subprograms return to the driver program immediately, without 
performing any I/O. Thus, the subprograms get activated (e.g., loaded and 
files opened) and have the TWA space allocated before any disk fragmen
tation occurs. Subsequent calls to your application programs are very fast 
because they remain activated and resident in virtual storage. 

Explanation of SMF's Swap-in Counter 
answered by Mike Patton 

QThe other day I was using SMF to investigate the performance of our 
S/36, and I found a very strange thing. During one part of the day, our 

S/36 was running only one job, which took 64 K of our available 454 K. The 
strange thing was that during this same period the swap-in counter on the SMF 
report showed 20 swaps per minute. I don't get it! How can a 64 K program 
swap in and out 20 times a minute when there is plenty of memory available? 

ASwapping an entire program in and out of memory (due to limited 
available memory) is only one reason the swap-in counter is 

incremented. Many of the internal system routines the S/36 uses to 
perform tasks (such as diskette data compression) are not part of the 
memory resident system supervisor. They are called transient routines, and 
when your program needs one of them, it is loaded from the system library, 
and the swap-in counter is incremented by one. The swap-in counter also is 
incremented for the "pseudo" swap that occurs when your program is first 



662 5/36 Power Tools 

loaded into memory. Therefore, the twenty swaps per minute that you 
registered with your 64 K program does not indicate that the program was 
being swapped in and out that many times. 

Improving on the DATAFl Conditional Statement 
by Ron Elliott 

program by Matthew Henry 

a Code on diskette: 


Procedure WHICH 

RPG program WHICH 


When you want to access your S/36 disk Volume Table of Contents 
(VTOC), assembly language subroutine SUBRVR (Displaying the VTOC 
Graphically, page 612) is quite useful. Utility WHICH, however, goes one 
step beyond to make full use of subroutine SUBRVR. Program WHICH 
accepts an object name from any calling procedure and employs subroutine 
SUBRVR to return a wealth of useful VTOC information that the calling 
procedure can interrogate and act upon. 

If the object is a data file, program WHICH tells you the file organization 
(indexed, sequential, or direct), the record length, and the key data for 
indexed files. You can use this information when a procedure prompts you for 
a file name used in program processing. You also can use program WHICH to 
verify that the user-supplied file name does exist and that the record length 
and key data are as expected before the program starts to process data. Tradi
tionally, the II IF DATAFl-object name statement alerts the user that the 
object, but not its type, exists. Program WHICH, however, tells you what the 
specific object type is (i.e., file, folder, or library). In addition, program 
WHICH works well with IDDU/QUERY functions to determine whether the 
specified file is linked to IDDll. Finally, the VTOC data returned by program 
WHICH comes in handy for deleting parent files with alternate indexes and 
for getting at the key data for indexed files with a minimum of fuss. 

HoW' Program WHICH Works 
Utility WHICH consists of procedure WHICH (Figure 18-34), program 
WHICH (Figure 18-35), and subroutine SUBRVR. You call program 
WHICH by calling procedure WHICH and specifying the object name for 
which you want information as the first parameter. Program WHICH passes 
the object name to the assembler subroutine through the VTOCDS data 
structure. The vmc data obtained by the subroutine then is returned to 
VTOCDS from subroutine SUBRVR. Next, program WHICH begins to 
examine the data structure and sets up UPSI swiltches and LOA fields 
based upon the VTOCDS contents. 



Figure 18-34 

Procedure 
WHICH 

System 663 

If field FFORG (file organization) is blank, external indicator U1 is set 
on to signal procedure WHICH that the given object does not exist in the 
VTOC. If the given object does exist, program WHICH uses a series of 
CAS commands to execute internal subroutines that set other UPS I 
switches that define what kind of object the given item is. The comments 
in lines 15 through 24 of Figure 18-35 describe the external indicators that 
pass information to the procedure. Note that the program uses a TESTB 
(test bits) instruction to examine the second byte of the returned SSP 
attributes (FFATB2) to set on indicator U8 if the object file is currently 
linked to IDDU. If indicator U8 is on in your procedure, it helps you avoid 
an error message resulting from an attempt to link an already linked file. 

Lines 100 through 158 move data file information into the LOA data 
structure. After line 158 is executed, the UDS data structure contains 
detailed file information as described by the program comments. Note that 
program WHICH moves the literal MULT to the field labeled LDKEYP if 
an indexed file has a multipart key. The partial key lengths and positions 
are moved into the fields labeled LDKYLI (partial key length 1), LDKYP1 
(partial key position 1), and so on. If the indexed file doesn't have a multi
part key, these fields remain blank. 

Fields LDPARN, LDALTS, and LDXTND, the last three items in the 
data structure, are quite valuable. If the given object is an alternate index, 
field LDPARN contains the parent file name. If the given object is a parent 
file, field LDALTS contains PARENT to indicate the existence of alter
nate indexes. Because a parent file cannot be deleted until all alternate 
indexes are deleted, this parameter saves time identifying parent files. 

Because program WHICH uses the UPSI switches and places data into 
the LDA, the data it retrieves is available for subsequent processing in the 
calling procedure. Therefore, you can code your procedure to return a mes
sage to the operator, replace an existing EXTEND parameter (armed for a 
record-adding program), delete an alternate index before attempting to 
delete a parent file, skip over a link to IDDU if the file is already linked, 
ensure that a subsequent program is coded with the proper key informa
tion, or whatever else you need to find out in advance of processing. 

As you can see, program WHICH is quite useful just the way it is pre
sented here, but with modifications such as those mentioned above, you 
can build in many functions for your own environment. Whatever its use, 
program WHICH can tell you which, what, and when, but, being a com
puter function, it can't tell you why. 

I I SW ITCH 00000000 
II LOCAL OFFSET-l.BLANK-54.AREA-USER 
II LOAD WHICH 
I I RUN 
NAME-?lR? 
I I RETURN 

Name: WHICH 



664 	 5/36 Power Tools 

Purpose: Report information from the VTOC on the NAl1E 
* Parameters: Pl - VTOC label 

Figure 18-35 

Program 
WHICH 

Switches: 	Ul - Label does not exist in the VTOC 
U2 - Indexed file 
U3 - Sequential file 
U4 - Direct fi 1 e 
U5 - Library 
U6 - Folder 
U7 - Alternate index fi 1 e 
U8 - Linked to an IOOU definition 

LOA: 	 001-004 - Record length for a file 
005-010 - Creation date of label 
011-013 - Key length (- total length if multi-part index) 
014-017 - Key position (- MULT if multi-part index) 
018-020 - Key length 1 for multi-part indexes 
021-024 - Key position 1 
025-027 - Key length 2 
028-031 - Key position 2 
032-034 - Key length 3 
035-038 - Key position 3 
039-046 - Parent file name if alternate index 
047-054 - Extend value for a file 
055-060 - PARENT if file is a parent file (alternates attached) 

1 .. . .. 2 4 ... 5 ... 6 
0001 H*****············································**·· ............ . 
0002 H* Program: WHICH Written by: Matthew P. Henry 
0003 H* SU8RVR suppl ied by I~el Beckmen 
0004 H* This program accepts a resource name from the calling procedure· 
0005 H* and sets on USPI switches indicating what type the resource is. 
0006 H* 
0007 H* The record length and creation date are returned in the LOA 
0008 H* The key lengths and positions are also returned in the LOA 
0009 H* This program tests only for local files. No r~mote files are 
0010 H* dealt with. It also will work only on a System/36. 
0011 H*----------------------------------------------------------------* 
0012 H* Indicators 
0013 H* None 
0014 H·····***·································*******************••• *** 
0015 H* UPSI Switches . 

0016 H* Ul On -Label doesn't exist on the system 
0017 H* Off-Label does exist 
0018 H* U2 On -Label is an indexed file 
0019 H* U3 - On -Label is a sequential file 
0020 H* U4 On -Label is a direct fi le 
0021 H* U5 - On -Label is a library 
0022 H* U6 On -Label is a folder 
0023 H* U7 - On - Labe 1 is an alternate indexed fi le 
0024 H* U8 - On -File is 1 inked to IOOU 
0025 H*----------------------------------------------------------------* 
0026 H* LOA data: 
0027 H* 001-004- Record length for a file 
0028 H* 005-010- Creation date 
0029 H* 011-013- Key length (- total length if multi-part index) 
0030 H* 014-017- Key position (- MULT if multi-part index) 
0031 H* 018-020- Key length 1 for multi-part indexes 
0032 H* 021-024- Key position 1 
0033 H* 025-027- Key length 2 
0034 H* 028-031- Key position 
0035 H* 032-034- Key length 3 
0036 H* 035-038- Key position 3 
0037 H* 039-046- Parent file name if alternate index 
0038 H* 047-054- Extend value for a file 
0039 H* 055-060- PARENT if file is a parent file (Alts attached) 
0040 H**************·······················*·*·*·****··***** •••••*•••••• 
0041 H 64 WHICH 
0042 FINFOFILEID 120 120 SPECIAL SU8R01 
0043 IINFOFILENS 
0044 I 6 13 LA8EL 
0045 IVTOCOS OS 
0046 I FFORG 



System 665 

0047 I 3 10 FFLABL 
0048 I 11 16 FFCRDT 
0049 I 20 20 FFIXFG 
0050 I 22 22 FFATB2 
0051 I 41 44 FFRECL 
0052 I 54 56 FFKEYL 
0053 I 57 60 FFKEYP 
0054 I 69 76 FFXTND 
0055 I 89 96 FFIDDU 
0056 I 98 100 FFKYL1 
0057 I 101 104 FFKYPl 
0058 I 105 107 FFKYL2 
0059 I 108 111 FFKYP2 
0060 I 112 114 FFKYL3 
0061 I 115 118 FFKYP3 
0062 I 119 126 FFPARN 
0063 I OS 
0064 I 1 60YYMMDD 
0065 I 1 20YY 
0066 I 3 80MMDDYY 
0067 I 7 80YY2 
0068 I UDS 
0069 I 1 4 LDRECL 
0070 I 5 10 LDCRDT 
0071 I 11 13 LDKEYL 
0072 I 14 17 LDKEYP 
0073 I 18 20 LDKYLl 
0074 I 21 24 LDKYPl 
0075 I 25 27 LDKYL2 
0076 I 28 31 LDKYP2 
0077 I 32 34 LDKYL3 
0078 I 35 38 LDKYP3 
0079 I 39 46 LDPARN 
0080 I 47 54 LDXTND 
0081 I 55 60 LDALTS 
0082 C READ INFOFILE Get info from proc. 
0083 C EXIT SUBRVR Call subroutine 
0084 C RLABL LABEL 
0085 C RLABL VTOCDS 
0086 C FFORG IFLE ' File exist? 
0087 C SETON Ul 
0088 C ELSE 
0089 C FFORG CASEO'I' SIDX Indexed 
0090 C FFORG CASEO'S' SSEO Sequent i a1 
0091 C FFORG CASEO'D' SDIR Direct 
0092 C FFORG CASEO'L' SLIB Library 
0093 C FFORG CASEO'F' SFLD Folder 
0094 C FFORG CASEO'X' SALT Alternate index 
0095 C END 
0096 C END 
0097 C' 
0098 C TESTB'6' FFATB2 U8 IDDU linked? 
0099 C' 
0100 C NUl DO Do is file exist 
0101 C NU5NU6 DO Do if file 
0102 C MOVE FFRECL LDRECL Move reel to LOA 
0103 C END 
0104 C MOVE FFCRDT YYMMDD Move creation 
0105 C MOVE YY YY2 date to LOA in 
0106 C MOVE MMDDYY LDCRDT MMDDYY format 
0107 C 
0108 C 
0109 C 
0110 C 

FFKEYP 
MOVE 
IFGT 
MOVE 
ELSE 

FFKEYL 
'4096' 
'MULT' 

LDKEYL 

LDKEYP 

Key 1 ength 
Key 1ength > max record 1ength 
Must be multi part 

0111 C MOVE FFKEYP LDKEYP Key position 
0112 C END 
0113 C 
0114 C 

MOVE 
MOVE 

FFKYL 1 
FFKYPl 

LDKYL 1 
LDKYPl 

Mu It i-key 1 ength 1 
position 1 

0115 C 
0116 C 
0117 C 
0118 C 
0119 C 
0120 C 

MOVE 
MOVE 
MOVE 
MOVE 
MOVE 
MOVE 

FFKYL2 
FFKYP2 
FFKYL3 
FFKYP3 
FFPARN 
FFXTND 

LDKYL2 
LDKYP2 
LDKYL3 
LDKYP3 
LDPARN 
LDXTND 

key length 2 
position 2 

key length 3 
position 3 

Alternate's parent 
Fi 1e extend value 

0121 C TESTB'l ' FFIXFG 10Test Index flag 



666 5/36 Power Tools 

0122 C 10 MOVE 'PARENT' LDAL TS 
0123 C Nl0 MOVE ' LDAL TS 
0124 C END 
0125 C SETON LR End program 
0126 C****************************************************************** 

0127 C' SUBROUTI NES 
0128 C****************************************************************** 

0129 C' Indexed fi le 
0130 C SIDX BEGSR 
0131 C SETON U2 
0132 C ENDSR 
0133 C' 
0134 C' Sequential file 
0135 C SSEQ BEGSR 
0136 C SETON U3 
0137 C ENDSR 
0138 C' 
0139 C' Direct/relative file 
0140 C SDIR BEGSR 
0141 C SETON U4 
0142 C ENDSR 
0143 C' 
0144 C' Library 
0145 C SLl8 8EGSR 
0146 C SETON U5 
0147 C ENDSR 
0148 C' 
0149 C' Folder 
0150 C SFLD 8EGSR 
0151 C SETON U6 
0152 C ENDSR 
0153 C' 
0154 C* Alternate indexed file 
0155 C SALT 8EGSR 
0156 C SETON U7 
0157 C ENDSR 
0158 C' 

Sending a Message to the Console 
by Michaell. Ranks 

a Code on diskette: 

Assembler subroutine SUBRFD 

If you're running a NEP (Never-Ending Program) and want to bring a condi
tion that has arisen to the attention of the system operator, it would be handy 
to be able to do so from within that program. The subroutine SUBRFD 
makes such communication possible by sending messages to the system con
sole from within an executing RPG program. 

Subroutine SUBRFD sends a 75-character message to the console 
whenever it is called. To call the subroutine from an RPG program, code 
the following anywhere your program logic might encounter a condition the 
system operator needs to be alerted to: 

C EXIT SUBRFD 
C RLABL CONFLD 75 

The field name in the RLABL statement contains the message you want 
displayed on the console. It must be an alphabetiic field (not an array or 
array element) exactly 75 characters long. I use a table to store the mes



System 667 

sages and put the time and date at the end of each message. Then I move 
the data to the field before executing the subroutine. 

Creating Console Messages That Survive an IPL 
answered by Georgia Agallianos 

QWe run unattended utilities on our S/36 at night and would like to send 
messages to the console that the procedures were run successfully or 

aborted. When we IPL each morning, messages sent to the console are 
erased if we use II MSG or II" statements. Ifwe use the II U statement, we 
can't IPL the system. How can we leave messages for a console operator 
(there are several operators) that will allow and survive an IPL? 



668 5/36 Power Tools 

AThe system won't let you retain messages sent to a specific 
workstation if an IPL has occurred since the message was sent. You 

can, however, send a message to a specific user ID and have it survive an 
IPL. This method is possible only if the targeted user is not signed on to 
the system at the time the message is sent. If the user is signed on, the 
message is displayed when the OFF command is executed. You could 
create a "dummy" user ID for this purpose, and, after IPLing, have the 
system operator sign on with this ID to check for messages. 

OutpuHing to SYSLIST Device 
answered by Mike Patton 

a Code on diskette: 

Assembler subroutine SUBRSY 

QIS there a way on the S/36, from within RPG II, to access the device
independent SYSLIST function? 

ASeveral commercially available routines perform the function you 
desire. I also wrote one such routine that is in the COMMON Graffiti 

library in public domain. To access this routine from an RPG program, 
simply code the following C-specs: 

C EXIT SUBRSY 
C RLABL DATA 132 

Note in these specifications that DATA (the name I have arbitrarily chosen 
for the field) has a defined length of between 1 and 132, the latter being 
the maximum SYSLIST output record size. 



System 669 

Using Autoresponse for Specific Messages 
answered by Gary T. Kratzer 

QI am using a protocol converter to set up a S/36 remote inquiry system 
that will be used at night when the S/36 is unattended. I need a way to 

avoid "hanging" sessions until morning if a call is abnormally disconnected. 
Unfortunately, message SYS-7300 (Display Station Not Communicating with 
System) has a severity level of S, so autoresponse is not available. If not 
answered, the interrupted session holds open the inquiry files and halts my 
automated "night" routine. Is there a way around this problem? 

AYou can change the severity level, as well as the autoresponse value, 
for any message. First, you must create an autoresponse source 

member. The format of the response specification statement is: 

MIC response, severity level (comment) 

Valid responses are 0, 1,2,3, and D (dump); valid severity levels are 1, 2,3,4, 
and S. Assuming you want to answer the SYS-7300 message with option 2 
(when it's available), your autoresponse member could look something like this: 

SYS 
7300 2,1 Display station not communicating 

This code assigns default option 2 and severity level 1 to the message. 
Note that only messages with a severity level equal to or less than the 
severity level (specified with the // NOHALT statement) for the system, 
session, or your job are answered automatically. For more information, see 
chapter 14 in the 8/36 Concepts and Programmer's Guide (SC21-9019). 



670 5/36 Power Tools 

Displaying System Error Message Te,xt 
by Victor 1. ~tgata 

a Code on diskette: 

Procedure SYSERR 

I frequently receive calls from S/36 users who have a system error with 
options, and either the users are not reading the text of the message com
pletely, or they don't know what the available options do. To give the users 
additional help with less input from me, I created procedure SYSERR: 

II MEMBER USER1-##MSG1 ,USER2-##MSG4,LIBRARY-#LIBRARY 
II ERR ?1R? 

This procedure accesses the IBM levelland level 2 message members to dis
play the text of a system message. The user can press the Enter key to display 
available additional help text that explains the options. This procedure is most 
helpful with spool-related messages. To invoke the: procedure, key: 

SYSERR nnnn 

where nnnn is the four-digit error number. If you omit the nnnn, the proce
dure prompts "Enter missing parameter." 

Retrieving the CPU Serial Number 
by Mel Beckman 

Code on diskette: a Assembler subroutine SUBR## 

An assembler language subroutine that reads the S/36 machine serial num
ber is a useful routine because it lets RPG programmers write programs 
that run only on machines with certain serial numbers, thus affording pro
tection against software theft. Subroutine SUBR## provides this capability. 

To use subroutine SUBR##, code the two statements below into your 
RPG program wherever you want to check the serial number: 

c EXIT SUBR## 
c RLABL SERIAL 6 

When these two statements are executed, the machine serial number will 
be placed in field SERIAL, which must be six characters long. The RPG 
program then can test SERIAL against a predetermined constant to ascer
tain whether the program should run on the system from which the serial 
number was retrieved. 



System 671 

Incidentally, the memory location of the serial number (000898 hex) has 
been documented by IBM in the S/36 System Data Areas manual. The 
machine serial number is set at the factory. If a programmer expects his soft
ware to run on machines outside the United States, I recommend that only 
the rightmost five digits of the serial number be used. I have discovered that 
the first digit is sometimes blank for machines outside the United States. 

Determining the System Date Format 
answered by Mel Beckman 

a Code on diskette: 


Assembler subroutine SUBRDF 


Q	Our programs run in several different countries that use different 
conventions for the date format. We need a way to determine the 



672 5/36 Power Tools 

system date format (MDY or DMY) within an RPG program so that we can 
make our programs country-independent without recompiling them. Do 
you have any suggestions? 

A S/36 SSP allows a user to retrieve the system date format by using the 
$INFO assembly language macro. A small assembly language 

subroutine, SUBRDF, is used to allow RPG programs to make this request. 
To call SUBRDf;~ use the following code: 

EXIT SUBRDF 

RLABL DATFMT 


The RLABL is a one-character field that is set to M if the date format is 
MDY, D for DMY, and Y for YMD. Note that SUBRDF returns the date 
format for the current session. If a SET command is issued to change the 
format, the value from the SET command is returned. 

Re-creati,..g Subrolltine o:JuDII....r 

1/ LOAD 
/1 FILE 
II RUN ....... . ... . 
• Copy renamed member to target.)ibi'lIfy
// LOAD st+AINT .' .. . . 

91'lFII-E tiAME - $MA INT .IIETAIN~ 
iXl;'.6IJ~·.·.. .•.... r ...i 

i((.fjt}pJ FROM-DlSK.FIl~~ ..... ..... ETAIN-R . 
•t.t.gtlir·..< ••.... " 

ii';}»atch.tlie new SUBRD.Fi.Hllllber;(~o insert
J/.lOAI.) $FEF!X···· .• 

1/ RUN 
HDR 3850 SUBRDOOOOO 
PTF lB5ERSU6f10F .~B •. #RPGUB 

DATA 74C3 000000 i~2!O~gBgE:2~~g:~~gl~~~~~~~:~~:~~:g~1~:~?~~~~g~::g5g~~DATA FOSS 00 0020 
.oATI\.C40DOO 0040 
OATA43FC 00 0060 
01\1'1\{1"52D.00 0080 

00 OOAO 
J oO.ooeo 

ic 00 ODED 
IJ'!l73 



System 673 

Retrieving the System Date in a Procedure 
answered by Matthew Henry and Gary 1: Kratzer 

QI want to create a procedure that waits until a particular time to evoke a 
communications job. I'm using a II WAIT statement with a maximum 

value of 24 hours and a counter for X number of days. The problem is that at 
2400 hours, the system date is updated, but the session and program dates 
are not. The ?OATE? OCL substitution value returns only the session date, 
not the system date. How can I retrieve the system date in my procedure? 

AYou can write a simple RPG program to retrieve the system date using 
the TIME operation code and then store the resulting system date in 

the LOA where your procedure can access it. Refer to Programming with 
RPG II (SC21-9006) for more details. 

ReseHing the System Time Without IPL 
by Michael K. Maenhout 

a
Code on diskette: 


Procedure SYSTM 
Assembly language program SYSTM 

It is possible to reset the system time on the S/36 without having to IPL! A 
patch can create program SYSTM, which sets the system time with a value 
retrieved from positions one through six of the local data area. Procedure 
SYSTM (Figure 18-36) can be used to run program SYSTM to reset the 
time of day. 

The assembly language source program (Figure 18-37) also is given for 
those who want to know how SYSTM works internally. The control storage 
transient scheduler SVC (X'SO') is documented in the Functions Reference Man
ual (SA21-9436) as capable of returning the system time when calling tran
sient 10 X'OA' (interval timer master). Although the documentation indicates 
only how to retrieve the time using an in-line parameter ofX'40', the system 
time can be set by using an in-line parameter ofX'OO'. The change from X'40' 
to X'OO' lets a privileged program set the system time from the timer request 
block (TRB) instead of having the system time returned to the TRB. 

Testing shows that II WAIT statements still operate correctly using 
either the INTERVAL or TIME option. 

I I • 'THE CURRENT TIME IS ?TIME? 'Figure18·36 II • 'ENTER THE NEW SYSTEM TIME IN THE FORM: HHMMSS 
I I EVALUATE Pl, 6-000000?R?Procedure II LOCAL OFFSET-l ,DATA-'?l?' 
I I LOAD SYSTM 
I I RUN 
II PAUSE 'TIME HAS BEEN SET TO '?TIME?' 
I I RETURN 

SYSTM 



674 5/36 Power Tools 

Figure 18-37 
• SYSTM :M. MAENHOUT 
• RESETS THE SYSTEM TIME.Program 

SY.SIM XR2 EOU 
SVCCXNT 	 EOU X' 50' 
SYSTM 	 START X'1800' 

$INFO PLIST-LOA MOVE LDA BYTES 1-6 TO ZTIME 
MVC TIMOAT (1) . FUNC TIME IS DECIMAL 
LA TIMOAT XR2 POINT TO TIMER REO. BLOCK 
SVC SVCCXNT.OO CONTROL STORAGE XIENT 
DC XL3'OAOOOO' TIME SET OPTION 

EOJ 	 EOU 
sEOJ 

FUNC DC XL1 '08' 
TIMOAT $TRB V-ALL 

SINFO 
LOA SINFO GET-LOCUSER,BUFFER-ZTIME,LEN-6,OFFSET-1 

ZTIME 	 EOU TIMDAT+$TRBTIME-5 
END 

;YQtid~~fit~ajfassernbler routi 
SYSTM (you~?n't needIBM'sAssembler Language 
SYSTM). To rup MKSYSTM,you must be signed on 
tem must be dedicated. 

Changing Session Dates When System Date 
Was Changed Without IPLing 
answered by Matthew Henry and Mike Patton 

QYour procedure to change the system date without re-IPLing was 
invaluable. I noticed, however, that if our system is not shut down or 

IPLed over a 24-hour period, the system date rolls correctly but the session 
date does not. For example, if I IPL the system on Monday morning, the 
session date matches the system date, and all files created that date have 

http:SVCCXNT.OO


System 675 

the correct File Created date. But on Tuesday, the session date still reflects 
Monday's date, and files created from that workstation retain Monday's file 
creation date. Why? And what can be done to correct the dates? 

AThe session date changes only when the session ends or a II DATE 
statement is executed. A session ends only when you sign off. If you 

want the actual system date to appear on reports and such, make the result 
field in the TIME opcode 12 bytes long. The TIME operation within RPG 
will return the system date as opposed to the session date if the first six 
bytes contain the time and the last six bytes contain the system date. 

Another solution to your problem is simply to sign off the console CRT 
each day. Alternatively, you could write a program to retrieve the system 
date and place it in the LOA. Place the statement II DATE ?L'I,6'? after 
the II RUN statement for the program that retrieved the date (assuming the 
date was stored beginning in LOA position 1). 

Necessity of IPLs 
answered by Mel Beckman 

QI read with interest a Technical Corner answer that described how to 
change the system date on a S/36 without performing an IPL. I would 

like to know whether there is a similar solution for changing the system 
time. We are running an on-line system that must be available 24 hours a 
day, seven days a week, so we do not IPL every day. It would be nice not to 
take the system down for an IPL when we change to daylight savings time 
in the spring or to standard time in the fall. 

AChanging the system time requires an assembler subroutine that 
converts the time of day to system timer units elapsed since midnight. 

(System timer units are expressed in binary as multiples of 8.192 
milliseconds; few people can do the conversion in their heads.) Ifyou don't 
have the BAL assembler (and most people don't), you're out of luck. 

Worse, if you did succeed in changing the system time without an IPL, 
you would cause the system to do all sorts of abnormal things. The abnor
malities occur because several system functions rely on timer queue ele
ments (TQEs) to delay their execution for an appropriate interval, after 
which they "wake up," perform their functions, and "go back to sleep." 
The ERAP routine, for example, wakes up every six minutes to post vari
ous system event counters, and the midnight date change routine wakes up 
at system midnight to change the system date. These routines wait for a 
specific value of the system time counter to trigger their execution, so if 
you advance the system time beyond the expected value, the execution of 
these routines may be delayed up to 24 hours longer than desired. The 
results are unpredictable and messy. Your jobs may (choose one): (1) be 
executed normally, (2) "hang" indefinitely, or (3) die a miserable death. 



676 5/36 Power Tools 

Your question brings up another issue as well. Apparently, you are perform
ing an IPL only twice a year, which is not nearly often enough; once a month 
would be better. During IPL, the S/36 performs a number ofdiagnostic tests 
that ensure the reliability of system operation. It also applies Program Tempo
rary Fixes (PTFs) that you may have loaded to correct SSP bugs or improve 
system performance, and it reorganizes file indexes (which also improves per
formance). Regular IPLs are absolutely necessary to keep your S/36 healthy. 

Running PTF Procedure LDMARES 
answered by Jeffrey Pisarczyk 

QSoon after I installed PTF 3700 on my S/36, a colleague asked me 
whether I ran procedure LDMARES while applying the PTE I have 

never heard of procedure LDMARES - what is it? Am I going to 
encounter problems because I didn't use it? 

A ln PTF levels 3700 and up, the SSP's $MARES module is loaded as 
part of the PTF process. If this module can't find enough room for 

itself in #LIBRARY, it overwrites anything in its way, which means you 
may lose part of your SSP. Including procedure LDMARES in your PTF 
installation stops $MARES from overwriting your #LIBRARY. The new 
steps for PTF levels 3700 and above are: 

• Do a PTF COPY,ALL of your 3XOO PTFs 

• Run procedure LDMARES by keying in LDMARES and letting the 
procedure do the work 

• IPL the system 

• Run PTF APPLY 

These steps are outlined in the PTFNEWS library supplied with your 
PTF diskettes. 

You mayor may not encounter problems because you didn't use proce
dure LDMARES. Not using it could cause task dumps with SRC-0090 
codes, and messages such as "SYS-ZS99: IBM load module has invalid 
table" and "SYS-38Z0: Invalid data found in procedure being processed." 
Beyond these indications, because $MARES writes over anything in its 
way, the symptom list could contain just about any problem. In short, if 
your system exhibits abnormal behavior, look at $MARES first. 

To determine whether $MARES is your problem, run a PTF 
LIST"CRT. If you find four or more consecutive asterisks in the PTF log, 
you have some kind of PTF-based problem brewing. 

To correct the problem, you must either reload your SSP from a reliable 
backup developed before you installed the PTF, or you can reinstall 



System 677 

Release 5.1 of your SSP from the PID diskettes. Then install the PTF and 
run procedure LDMARES. If you don't experience any SSP problems, you 
should be able to bypass the reload and simply reinstall the PTF(s). 

Upgrading to a New 5/36 
answered by Rick Graham, Gary T. Kratzer, and Dan Stephens 

Question: We plan to upgrade from a S/36 5362 C02 to a 5360 025 and 
have already received permission from IBM to transfer our software 

licenses. What is the best way to actually move our code? For example, we 
have some customized members in #LIBRARY. Could we actually back up 
#LIBRARY from the C02, IPL the new system from diskette, and load 
#LIBRARY on the new system? Then, could we back up all the other 
libraries (including both IBM's and our own) and restore them? Or should 
we just bring up the whole system from scratch? 

AFirst, build an empty save library on your 5362, and then do a 
LIBRLIBR from #LIBRARY to copy all user members and changed 

IBM members to the save library. Back up your entire 5362. On your new 
system, do a complete rebuild/reload using the PID diskettes; then restore 
all user libraries, files, and so on. Next, LIBRLIBR the user members from 
the save library back to #LIBRARY (or use POP to copy them back over so 
you don't have to dedicate the system). Finally, apply PTFs. 

Although the IPL-from-diskette scenario you mentioned would probably 
work okay, we don't think it would save you much time, and there may be dan
ger in bypassing the CNFIGSSP reload procedure. Why risk doing it wrong 
and then having to do it right afterward, instead of doing it right the first time? 

All in all, it is better in the long run to bring up the new system from 
scratch. You can do it while you continue to run on your present system, and 
you won't have to "pull the plug" until you are sure that everything is all right. 



678 S/36 Power Tools 



Tapes 


-CHAPTER 

19 




680 S/36 Power Tools 

Deciphering the Tape Header Label Format 
answered by Matthew Henry 

QI am trying to find the layout of the user labels on a tape created by a 
SAVE operation to allow data interchange from another system. IBM's 

System Data Areas (LY21-0592) says the labels contain portions of the 
EMBEDDED Fl. I'm at a loss when it comes to finding a detailed 
breakdown of the header label. Any suggestions? 

AOne solution to your question might be the S/36 command called 
TAPECOPY, which translates S/36 files into a generic format on tape 

in either ASCII or EBCDIC. Another place to look for the answer to your 
question is the COPYT macro under "Tape User Labels Layout" in System 
Data Areas. Program $COPY (run by SAVE) stores the entire user format-l 
(VTOC entry) in two 80-byte parts and is detailed in "User Format-I" in 
System Data Areas. 

Tape label records are always 80 bytes long and are commonly referred to 
as headers. The embedded format-I, which is 128 bytes long, is divided 
between two tape header label records. The first 68 bytes are placed in the first 
tape label (HDRl) starting at offset X'C', and the remaining 60 bytes are 
placed in the second tape label (HDR2) starting at offset X'5'. Information in 
System Data An'os shows how the $COpy program assembles the information. 

Reading Tapes with Nonstandard 
or Missing Labels 
answered by Mel Beckman 

Q	Is it possible for the S/36 (SSP Release 5.1) to read unlabeled tapes or 
tapes using nonstandard labels on the 8809 tape drive? 

A You can read non labeled tapes on the S/36 using the TAPECOPY 
procedure, specifying NONLABEL for parameter number 9. With 

nonlabeled tapes, though, you must write a separate program to extract 
logical records from the physical tape blocks - TAPECOPY creates a file 
with one record per tape block. 

You also can use nonstandard labels on the S/36 to a limited extent (i.e., 
nonstandard labels are ignored). On a tape with nonstandard labels, the sys
tem reads only the first file on the tape (i.e., from the first tape mark to the 
second tape mark). With the S/36 TAPECOPY features, though, you can 
tell the system to treat tapes with nonstandard labels as nonlabeled tapes 
- by specifying either BYPASS or BLP in parameter 9. By bypassing label 
processing on tapes with nonstandard labels, you have access to the data 
stored in all files on the tape. 



Tapes 681 

Preventing Tape Rewind When 
Saving Individual Items 
by Alex Barish a	Code on diskette: 


Procedure LOOPSAVE 


On the S/36, when you individually copy several items to tape, the tape 
rewinds at the end of each command (e.g., at the end of a FROMLIBR, 
SAVE, or TAPECOPY command), despite the use of the LEAVE parame
ter. For normal backups, the rewind presents no problem because all the 
necessary commands can be coded within the same procedure, and the 
tape will not rewind until the initial procedure is completed. 

To eliminate the rewind problem when you are saving individual items 
not included in your normal backup routine, I offer procedure LOOPSAVE 
(Figure 19-1). Procedure LOOPSAVE encloses in a loop a HELP OCL 
statement that prompts you for the desired SSP backup command (e.g., 
SAVE, FROMLIBR, TAPECOPY). Because procedure LOOPSAVE does 
not end until you enter END (instead of HELP) as the first parameter, the 
tape does not rewind after each command. 

Figure 19-1 II' THIS PROCEDURE ALLOWS THE LEAVE PARAMETER TO BE USED FOR A TAPE' 
II • ' JOB (MULTIPLE TAPE JOBS WITHIN ONE JOB NUMBER).' 

Procedure II • ' NORMALLY THE TAPE IS REWOUND FOR EACH NEW JOB. THIS PROCEDURE' 
II • ' ALLOWS YOU TO RUN A FEW JOBS (JOB STEPS) WITHIN THIS PROCEDURE.'

LOOPSAVE II • ' EFFECTIVELY, THE SYSTEM WILL TREAT THIS PROCEDURE AS A SINGLE' 
II • ' JOB. 	 HENCE ALLOWING THE LEAVE PARAMETER. 
II TAG AGAIN 
II IF ?1R7-END RETURN 
II IF 71R?-HELP GOTO HELP 

? 1 R? 

I I EVALUATE P1-" 

II GOTO AGAIN 


II TAG HELP 
II HELP ?2R? 
I I EVALUATE 	 P1-" 
II EVALUATE 	 P2-" 
II GOTO AGAIN 

IPLing from Tape 
answered by Matt Drage 

QGiven the ability of the S/36 (5360) to back up #LIBRARY to tape, 
will the system perform an initial program load (lPL) from tape when 

a MODE SELECT: F (MSIPL from diskette) is keyed at the system 
control panel? If so, how does the system know that the IPL should be 
from tape and not diskette? 



682 5/36 Power Tools 

AIf the S/36 has a tape drive configured, the tape drive is the primary 
external IPL device. When you perform a "reload" MSIPL, the reload 

will be from tape if the Control Storage Processor (CSP) finds a tape loaded 
and ready in the tape drive. (On a 5360, initiate a MSIPL reload with 
"Mode Select F"; on a 5362, use "Function Select 2" instead.) If the CSP 
does not find a tape, the reload will be from diskette. You can use either the 
8809 reel-to-reel drive Of the 6157 cartridge drive for an external IPL. You 
must use the SAVELIBR #LIBRARY procedure to create the tape from 
which you will reload. 



Workstations 


-CHAPTER 

20 




684 5/36 Power Tools 

Retrieving Cursor Position in Demand 
or Primary Workstation Files 
answered by Mike Patton 

a Code on diskette: 

Assembler subroutine SUBRCP 

QIn a previous BitStop, you published a way to retrieve the screen 
cursor position in an RPG program via an assembler subroutine. The 

routine accessed the workstation as a demand file. Is there a way to retrieve 
the cursor position when accessing the workstation as a primary file? 

AThe assembly language subroutine SUBRCP retrieves the position of 
the screen cursor during the most recent workstation operation. It 

should be coded as follows: 

C EXIT SUBRCP 
C RLABL ROW 30 
C RLABL COLUMN 30 

The routine works with demand files or primary filleS on the S/36. Note 
that the RPG EXIT operation that calls the routine need not occur imme
diately following a READ operation when the workstation file is a demand 
file. You can condition the EXIT operation however you wish. 





Workstations 685 

Reading Screen When Roll Key Pressed 
answered by Gary T. Kratzer 

a Code on diskette: 


Assembler subroutine SUBRRR 


QOn our S/36, we use programs with WORKSTN (workstation) files. 

When the Roll keys are pressed, RPG bypasses the move field logic 


and no fields are changed. I would like to know if there is a way to get the 

system to accept data changes when function keys are pressed. Note: 

IBM's POP works that way when you edit members. 


A I, too, faced the annoying limitation of the data from input-capable fields 

not being returned to the program when a Roll key was pressed. However, 


I discovered that the hardware actually does return input data to the program 

buffer. But the S/36 RPG object program fails to move the buffer into the input 

record fields. Whether this is by design or oversight is academic. A very simple 

assembler language subroutine can make things right. 


To use the subroutine, code an EXIT SUBRRR statement immediately 

after each workstation READ operation for which you want Roll key data 

returned: 


c READ WORKSTN 1111 
c EXIT SUBRRR 

It is important that you don't condition either the READ or EXIT operation 
with any indicators in positions 9 through 17 and that no statements come 
between the READ and EXIT statements. After a READ operation, SUB
RRR will check to see whether any function keys were pressed. If they were, 
the workstation field move routine, which is already part of your program, is 
called to move data from the workstation input buffer into your fields. 



686 S/36 Power Tools 

Enabling Function and Command Keys Dynamically 
by Mel Beckman 

Code on diskette: a Assembler subroutine SUBREK 

Often in a S/36 interactive RPG program, you need to restrict the set of 
command and function keys available to the user. The usual way to do this 
is by compiling, in advance, separate screen format members, each with a 
unique combination of command and function keys enabled on the $SFGR 
S-spec. But because you don't always know which keys you want to be 
valid until your application is running, you need a way to enable command 
and function keys dynamically. 

Assembly language subroutine SUBREK provides this ability. You specify 
which command and function keys are to be enabled by passing a four-byte 
"bit mask" field to SUBREK in an RLABL statement ('If in Figure 20-1). Use 
the RPG BITON and BITOF operations to set the appropriate bits in the 
four-byte field using a data structure ('B' in Figure 20-1) to redefine each byte. 

The meanings of each bit are shown in Figure 20-2. 



Workstations 687 

Figure 20-1 
'B' 

2 
DS 

4 

Example ofusing 4 MASK 
1 MASK1 

SUBREK 2 MASK2 
3 MASK3 

4 4 MASK4 

'A' BITOF'01234567'MASK1 Clear all bits 
C BITOF'01234567'MASK2 
C BITOF'01234567'MASK3 
C BITOF'01234567'MASK4 
C· 
C BITON '046' MASK1 Set ckeys 1, 5, 
C BITON' 7 MASK3 Set ckey 24 
C EXIT SUBREK Enabl e keys 
C RLABL MASK 

Figure 20-2 

Bit values for 
fteldMASK 

Byte 1, bit 0 
bit 1 : 
bit 2' 
bi t 3 
bit 4: 

enable 
enable 
enable 
enable 
enable 

command 
command 
command 
command 
command 

key 
key 
key 
key 
key 

4 
5 

bit 5' enable command key 6 
bit 6' enab 1 e command key 7 
bit 7: enable command key 8 

Byte 2, bi t 0' enable command key 9 
bi t 1 enab 1e command key 10 
blt 2 : enable command key 11 
bit 3 enab 1 e command key 12 
bi t 4 enable command key 13 
bi t 5 : enable command key 14 
bit 6 : enable command key 15 
bit 7' enab 1 e command key 16 

Byte 3, blt 0: enable command key 17 
bit l' enab 1 e command key 1B 
bit 2 enab 1 e command key 19 
bit 3 : enable command key 20 
bit 4' enable command key 21 
bit 5 : enable command key 22 
bit 6: enable command key 23 
bit 7' enable command key 24 

Byte 4, bit 0 pass back print key 
bit 1 : pass bac k roll-up key 
bit 2' pass back roll--down key 
bi t 3 pass back clear key 
bit 4: pass back help key 
bit 5' pass bac k record backspace key 
bit 6' unused 
bi t 7: unused 



688 5/36 Power Tools 

Reading Under Format 
by Perry Gardai 

Code on diskette: a Procedures LONGPROC, PROMPTl, PROMPT, PROMRUF 

While browsing through S/36 manuals, you may have run across a few vague 
references to an RPG II programming technique called RUF (Read Under 
Format), which appears to be of some benefit to interactive programs. Being 
the curious creatures we data processing people are, such references spark our 
imaginations; however, trying to track down any consolidated information on 
RUF is difficult. The manuals give us a sentence here and a paragraph there 
but never really tell us under what conditions RUF might be used. After 
doing some research on the subject, I have discovered that by using RUF, you 
can not only get tough with RPG II programs that are slow to initiate but also 
transfer prompt-screen data between two or more related programs. 

RUF essentially allows a screen to be displayed and used before the on
line program that processes the data from the screen becomes resident in 
memory. As soon as the screen is displayed, users can enter data or use any 
other function the screen allows. They do not have to wait for the system to 
go through housekeeping routines associated with loading the program that 
processes the screen. The RUF technique can be implemented within a 

. procedure by using the II PROMPT statement or within an on-line RPG 
program by using external switches. When using RUF with II PROMPT, 
you can save some operator time if, in the procedure that loads the on-line 
program, numerous OCL statements precede the actual program call or if a 



Workstations 689 

program is slow to initiate. When using RUF within an on-line RPG pro
gram, you can output a screen, exit the program, return control to the calling 
procedure, and load another program to process the screen, all while the 
operator continues to enter data on the screen. This second implementation 
of RUF is known as "program switching." 

This article will examine both uses of RUE I assume that the reader is 
familiar with the use of the II PROMPT statement, SDA, and on-line pro
gramming techniques. 

Passing Prompt-Screen Data 
to an On-line Program 
When associated with the II PROMPT statement, the RUF technique nor
mally is used to display the first screen processed by an on-line program. To 
specify that input from the screen is to be used as program data, the pro
grammer codes the PDATA-YES parameter of the II PROMPT statement. 
Usually, the II PROMPT statement is separated from the on-line program's 
II LOAD statement by several intervening OCL statements. 

To illustrate, assume that a procedure, evoked from a menu option, con
tains many OCL statements before it loads an on-line program that processes 
four screens, as in the case of example procedure LONGPROC (Figure 20
3). Further assume that the first screen used by the program is a typical front
end screen that prompts for an account number or name and an action code 
(e.g., add, change, or delete). By displaying this screen (e.g., SCREENl of 
the II PROMPT statement in Figure 20-3) before the program is called by 
the procedure, the operator can make preliminary selections while the system 
processes the OCL between the II PROMPT and the II LOAD statement. 

When the program is loaded, the system knows that a screen has been dis
played that will contain data to be passed to the on-line program (i.e., the 
PDATA-YES parameter has been specified to the II PROMPT statement), so 
the system waits for the user to press Enter before it begins processing the pro
gram. Although the system may not have processed the procedure's II LOAD 
statement by the time the Enter key is pressed, the time elapsed between 
when the user chose the menu option associated with procedure LONGPROC 
and when the system displayed SCREENl is minimal. 

To further illustrate how RUF works with II PROMPT, let's examine 
two procedures - one without RUF (Figure 20-4) and one with RUF (Fig
ure 20-5) - that attempt to accomplish the same goal. Each example uses a 
II PROMPT statement to display a screen to which the operator inputs a 
range of accounts to be listed by an on-line program. Assume that a prompt 
screen has been developed that prompts the operator for the first and last 
account numbers to be listed. 

On the S/36, the traditional approach to locate records within the speci
fied range is to pass the entries from the prompt screen to a selective sort in 
the form of substitutional parameters (Figure 20-4). The sort then extracts 



690 5/36 Power Tools 

the needed records from the input file (AP.APPRO) and sends then to an 
output file (APAPPROS). The output file is then passed to a simple print 
program (PROMPl) that lists the accounts. 

The alternative to this method is the use of the RUF technique (Figure 
20-5). As in the traditional method, the prompt screen is displayed with all of 
the default values preloaded into the appropriate parameters via II EVALU 
ATE statements. But unlike the traditional approach, the PDATA-YES param
eter is used with the II PROMPT statement so the prompt screen data is 
passed to the on-line program (PROMPT) instead of to substitutional parame
ters within the procedure. The program then edits the data input from the 
screen (via a workstation file) and uses sequential-with in-limits processing to 
extract the desired records from file AP.APPRO. Again, as soon as the prompt 
screen is displayed, the operator can enter the required data, even though the 
II LOAD statement for on-line program PROMPT has not been executed. 

One of the major advantages to the technique demonstrated in Figure 20-5 
is that the on-line program that processes the prompt screen can edit the 
screen values much more extensively than is possible with OeL statements. 
For instance, from within on-line program PROMPT (i.e., the program loaded 
by the procedure in Figure 20-5), account numbers can be validated against 
the account master file via a chain operation. If edit errors are detected, pro
gram PROMPT can redisplay the prompt screen and, by using standard field 
attributes such as reverse image and cursor positioning, draw the operator's 
attention to the errors. On this point, Figure 20-5's approach is certainly prefer
able if the data being entered by the operator is at all operationally sensitive. 

A second advantage is performance. Because the technique shown in 
Figure 20-5 eliminates the need for a selective sort, it is more efficient than 
the technique shown in Figure 20-4; the selective sort in Figure 20-4 would 
have to process the entire file before the print program is executed. By 
using limits processing in the on-line program and II PROMPT's PDATA
YES parameter in the calling procedure, the technique in Figure 20-5 pro
cesses only these records that fall within the specified range of account 
numbers - not the entire file. If you are using a large file and need to pro
cess only a few records, the RUF technique combined with sequential
within-limits processing can dramatically improve throughput. 

When applying the RUF technique via the II PROMPT statement to 
an on-line program, you should note that execution of the program varies 
somewhat from that of a standard on-line program. When the II LOAD 
statement for a standard on-line program is executed, SSP determines the 
absence of an existing screen format member and passes a blank screen to 
the program. The programmer, in turn, must allow for the program to pro
cess this blank screen by testing for a "catch-all" screen indicator (uncondi
tional indicator attached to the Workstation Input Specification) during the 
first processing cycle. When the program reaches output time during the 
first cycle, the first program screen - conditioned by an indicator set on 



Workstations 691 

when the blank screen was tested - is displayed. 
When a 1/ LOAD statement for a program is executed after RUF is imple

mented, Workstation Data Management determines that a screen format is 
already active. Therefore, the blank screen is not passed to the program. 
Rather, the first processing cycle is suspended until the operator presses Enter 
or in some other manner transmits input to the program (e.g., use of command 
or function keys). Between the time the prompt screen is initially displayed 
and the time the operator transmits input, the system continues to execute 
the OeL statements, load the on-line program, and perform all housekeeping 
functions required to run the program. When the operator presses Enter or 
otherwise transmits input, the first processing cycle is executed. From this 
point on, the program works like any other on-line program. 

Does calling a screen from a procedure and then loading an on-line pro
gram (i.e., using the RUF technique) have any functional advantage over first 
loading the on-line program and then outputting the screen? Frankly, the 
answer depends on your application code and the complexity of your proce
dures. Because the on-line program associated with RUF works like any other 
on-line program once the operator presses Enter for the first time, all of the 
inherent advantages of an on-line program are in place. The advantage you 
gain by calling the screen from the procedure instead of the on-line program is 
the ability to display the screen format before the on-line program is loaded. 
In many applications, the RUF technique may eliminate lag time between 
when your users select a menu option and when they can begin to enter data. 

Program S""itching 
The second major use of the RUF technique allows for program switching, 
the passing of data between two or more interactive programs from within 
the same procedure. Program switching is accomplished in part by display
ing a screen format from within an active on-line program that subsequently 
will be used as the first input screen to another program. Such a technique 
might be necessary to circumvent the 64 K program size limitation imposed 
by SSP or to allow a smooth transition between two related programs, such 
as a master file maintenance program and its related inquiry program. 

To illustrate, assume you have written a 62 K on-line interactive pro
gram that uses 10 screens and 13 files. A month or two later, because of 
user requirements, an additional screen and file must be added to the 
already large program. Now, because you included the extra screen and file, 
the program won't compile in 64 K - even with overlays. 

What are the alternatives? You could tell the users that it can't be done. 
You could do some bit counting of the operation codes to make the program 
more efficient. You could remove all the editing you have programmed in 
so carefully. Or you can split the program. The only acceptable alternative 
is to split the program into two logical parts that operate as one. 

Nearly every program has some point that logically separates one set of 



692 5/36 Power Tools 

screens from the rest. For example, a program that maintains both header 
and line item functions could be divided logically between the two func
tion types. The trick is to split the program in such a way that the users are 
not aware they are using two programs instead of one. Therein lies the 
beauty of the RUF technique. 

Assume that the 62 K program mentioned earlier has been divided into 
two unique programs - PROGRAMA and PROGRAMB - and a procedure, 
PROMRUF, which contains both programs calls in the proper sequence of 
execution (Figure 20-6). That is, PROGRAMA is always the entry point for 
the two programs. It contains the bulk of the code and may well be a stand
alone program. PROGRAMB, on the other hand, is the program to which 
PROGRAMA always switches when it reaches a certain point or requires a 
certain function be performed. PROGRAMB contains the screens that are 
logically separate but still need to be accessible by PROGRAMA. The struc
ture of the procedure allows both programs to be executed in a circular fashion 
- that is, exit PROGRAMA, enter PROGRAMB, and vice versa. 

To let the procedure know which program in the loop is to be activated, 
each program sets on an external switch at the time it is exited with the intent of 
entering the other program. If the user requests a normal EOJ (End of Job) exit, 
the switch is not set and the procedure ends. Ifcontrol is to be transferred to the 
second program, the switch is set on, the program is exited, and control returns 
to the procedure, which evaluates the switch and activates the second program. 

F or the transition from one program to the other to be manageable, each 
program must "know" what to expect as input during its first processing 
cycle. The easiest way to establish this control is to use the same screen to 
enter PROGRAMB that you use to exit PROGRAMA and to use the same 
screen to exit PROGRAMB that you use to re-enter PROGRAMA. 
Granted, this methodology causes some redundant screen format members 
and, at times, redundant maintenance, but from a programmer's point of 
view, it allows for easy control of the transfer of data between programs. You 
can ensure that your duplicate screen formats are identical in every way by 
using the include function of SEU (Command key 11) while in SDA. 

Visually, the program structures may look like the structure in Figure 20
7. In this example, after Enter has been pressed on screen PRAS4 in PRO
GRAMA, an UPSI switch is set, screen PRBSI is displayed, and 
PROGRAMA goes to end of job. Control of processing is then returned to 
the procedure, which reads the switch settings and determines that PRO
GRAMB is to be activated. While this determination is being made, the user 
is still able to enter data into screen PRBSI just as ifPROGRAMA were still 
active. By the time the user presses Enter on screen PRBS1, PROGRAMB 
is active and reads the screen as input for its first full processing cycle. This 
fact implies that the SSP does not pass a blank screen to PROGRAMB, nor 
is there a blank screen indicator in the I-specs for PROGRAMB. 

The return from PROGRAMB to PROGRAMA is identical in nature 



Workstations 693 

(Figure 20-7). When Enter is pressed on screen PRBS4, a different switch 
is set (in this case, switch 2), screen PRASS is displayed, and PROGRAMB 
goes to EOJ. Again, control is passed to the procedure while the operator is 
entering data on screen PRASS. The procedure evaluates the current UPS I 
switch setting and determines that PROGRAMA is to be reactivated. 
When the user presses Enter, the screen 10 for screen PRSAS is read into 
the program, the corresponding input indicator is set on, and processing 
continues as if PROGRAMA had always been active. 

This technique can also be used to transfer back and forth between two 
related standalone programs, such as a file maintenance program and an 
inquiry program. By using the LOA to pass information about the key to the 
next program, either program can be entered at a point other than the initial 
record selection screen. As an example, assume both the payroll master file 
maintenance program and the inquiry program have an initial entry screen 
that asks for an employee's social security number as the key to the file. 

Regardless of which program the user initially enters, the key for the 
subsequent work has been established. At some predetermined juncture in 
each program, transfer to the companion program can be requested (nor
mally, by a command key), at which time the current record's key is loaded 
into the LOA, and the program goes to EO}. Because the key to the cur
rent data record is already known, there is no need to redisplay the initial 
entry screen associated with either program. Rather, by reading the screen 
10 from the prior program, reading in the key value stored in the LOA, and 
chaining to the appropriate data record, a detailed data screen can be dis
played when the transfer is requested. This implementation of the RUF 
technique saves users from having to exit the first program and then take 
another menu option to enter the second one. 

One last point needs to be made about the RUF technique. When you 
must pass a great deal of data between two programs, you can use the RUF 
technique in conjunction with one of two other methods. The first and easiest 
is to use the LOA. If the programs are SRT (Single Requester Terminal) pro
grams, the LOA will be read automatically during the first input cycle and writ
ten out at EO}. If the programs are MRT (Multiple Requester Terminal) 
programs, IBM external subroutines SUB20 and SUB21 must be used to read 
the LOA and set and read the external UPSI switches. Ifmore data must be 
passed between the programs than will fit in the LOA, a second method is to 
output the data to a file the key to which is the workstation 10 of the worksta
tion being released from the program. On the first cycle of the program being 
entered, simply use the workstation 10, captured by the KWSIO continuation 
line of the workstation F -spec, and chain to the record to retrieve the data. 

So, are these the types of applications IBM envisioned for RUF? Who 
knows? What I do know is that these techniques do work, do save time, 
and can be the answer to some rather sticky technical problems. So, don't 
let performance BYTE you. Just RUF back. 



694 5/36 Power Tools 

Figure 20-3 

Sample 
procedure 
LONGPROC 

Figure 20-4 

Sample 
procedure 
PROMPTI 

LONGPROC. THIS IS A SYSTEM/36 PROCEDURE THAT USES THE READ UNDER FORMAT 

'RUF' TECHNIQUE FOR PASSING DATA FROM A PROMPT SCREEN TO A 

MULTI-SCREEN WORKSTATION PROGRAM. 


SET DEFAULTS IN THE SCREEN HEADING BEFORE PROMPT SCREEN IS DISPLAYED 
2. 	 DISPLAY PROMPT SCREEN WITH DEFAULTS 
3. 	 BUILD ALL NECESSARY FILES AND DO OTHER REQUIRED OCL. 
4. 	 LOAD AND RUN THE WORKSTATION PROGRAM, 

I I EVALUATE P1 - '1 ' 	 SET SCREEN INPUTIOUTPUT 10 
I I 	 IF ?TIME?>120000 EVALUATE P2-?TIME?PM SET TIME TO AM OR PM 
II ELSE EVALUATE P2-?TIME?AM 
II EVALUATE P3-' ?USER?' P4-' 7WS?' SET HEADING DEFAULTS 
II EVALUATE P5=01 ,2 P6=' l' P7-' l' SET FROM ACCOUNT DEFAULTS 
II EVALUATE P8-99 P9=99 P10=9999 SET TO ACCOUNT DEFAULTS 

I I 	 PROMPT MEMBER LONGPRFM, FORMAT -SCREEN1 , LENGTH- '1 ,8, ,2,2,2,4,2,2.4,40' 
PDATA-YES DISPLAY PROMPT AND PASS DATA TO PROGRAM 

NOHALT 3,JOB THE OCL FROM THIS POINT ON IS 
II ALOCATE UNIT-I1 SIMPLY FOR THE SAKE OF 
II IF DATAF1-TRANSACT SAVE TRANSACT DEMONSTRATION, TO ILLUSTRATE 
II DEALLOC UNIT-I1 A SIGNIFICANT TIME LAG BETWEEN 

THE TIME THE PROMPT SCREEN IS 
II IF DATAF1-AUDLST7WS7 DELETE AUDLST7WS7,F1 EXECUTED AND THE TIME THE 
II IF DATAF1-TRANSACT DELETE TRAANSACT,F1 PROGRAM THAT PROCESSES THE 
BLDFILE AUDLST7WS7,S,RECORDS,1000,12B PROMPT SCREEN IS ACTUALLY 
BLDFILE TRANSACT, ,RECORDS,1000 LOADED I~TO MEMORY. 
II IFF DATAF1-ALPINDX BLDINDEX ALPINDX,12,24,APMASTER 

II ATTR CANCEL-NO,INQUIRY-NO,MRTMAX-05,PRIORITY-MEDIUM 

I I LOAD LONGPR LOAD MULl-SCREEN ON-LINE 
II FILE NAME-APAPPRO,LABEL-AP.APPRO,DISP-SHR PROGRAM 10 PROCESS PROMPT 
II FILE NAME-APMASTER,DISP-SHR SCREEN A~ID CONTINUE ON WITH 
II FILE NAME-AUDLST.LABEL-AUDLST7WS7,DISP-SHR REST OF NORMAL ON-LINE 
II FILE NAME-TRANSACT,DISP-SHR PROCESSING SEQUENCE 
I I RUN 

PROMPT1. 	 THIS IS A SYSTEM/36 PROCEDURE THAT USES A PFIOMPT SCREEN TO PASS 

DATA TO A SORT, WHICH IN TURN LOADS A PROGR!,M TO PRINT A 

REPORT FROM THE SORTED DATA 


1 SET DEFAULTS IN THE SCREEN HEADING BEFORE PROMPT SCREEN IS DISPLAYED 

2 DISPLAY PROMPT SCREEN WITH DEFAULTS AND TEST FOR CMDn. 

3. 	 EDIT THE PROMPT SCREEN ENTRIES. IF THE EDITS FAIL, SET SWITCHES TO 


HIGHLIGHT AND POSITION CURSOR AND REDISPLAY PROMPT. 

4. I F EDITS ARE GOOD, THEN CALL THE SORT TO SELECT TIlE RANGE OF ACCOUNTS 

5 RUN THE PROGRAM TO PRINT THE REPORT 


I I EVALUATE P1 - ' 1 ' SET SCREEN INPUTIOUTPUT 10 
II IF ?TIME?>120000 EVALUATE P2-?TIME7PM SET TIME TO AMIPM 
I I ELSE EVALUATE P2-?TIME?AM 
I I EVALUATE P3-' ?USER?' P4-' ?WS?' SET HEADING DEFAULTS 
I I EVALUATE P5=01, 2 P6=' l' P7=' 1 ' SET FROM ACCOUNT DEFAULTS 
I I EVALUATE PB-99 P9=99 P10=9999 SET TO ACCOUNT DEFAULTS 

II TAG AGAIN 	 REDISPLAY PROMPT ON ERROR 

I I PROMPT MEMBER PROMPTPM, FORMAT -SCREEN1 , LENGTH- '1 ,8, ,2,2,2,4,2,2,4,40' ,+ 


UPSI -YES OUTPUT PHOMPT SCREEN 

II IF ?CD7/2007 CANCEL IF CMD/7 CANCEL THIS JOB
. 
I I SW ITCH 00000000 SET ALL I,RROR CONTROLS OFF 
II IF ?571 SWITCH 10000000 VALIDATE EACH ENTRY TO INSURE 
II IF 7671 SWITCH X1000000 IT IS NOT BLANK. IF AN ENTRY 
II IF 7771 SWITCH XX100000 I S BLANK, SET RELATED SWITCH 
II IF 78?1 SWITCH XXX10000 TO POSITION CURSOR AND HIGHLIGHT 
Ii IF 7971 SWITCH XXXX1000 THE FIELD 
II IF 71071 SWITCH XXXXX100 



Figure 20-5 

Sample 
procedure 
PROMPT 

Figure 20-6 

Sample 
procedure 
PRON.RUF 

Workstations 695 

II IF SWITCH-OOOOOOOO GOTO OK IFF ANY ERRORS THEN PROCEDE 
// ELSE EVALUATE Pll-'l OR MORE ERRORS, CORRECT AND REENTER' 
// GOTO AGAIN 

// TAG OK 

/ / LOAD #GSORT EXECUTE SORT TO INCLUDE ONLY 
// FILE NAME-INPUT,LABEL-AP.APPRO THE RANGE OF ACCOUNTS REQUESTED 
// FILE NAME-OUTPUT,LABEL-APAPPROS,RECORDS-?F'A,AP.APPRO'?,RETAIN-J 
/ / RUN 

HSORTA 8A N 

I C 2 9GEC?5??6??77 FROM ACCOUNT NUMBER PARAMATERS 

lAC 2 9LEC?8??9??10? TO ACCOUNT NUMBER PARAMATERS 

FNC 2 9 FULL ACCOUNT NUMBER 


./ / 	 END 

/ / LOAD PROMPl LOAD PRINT PROGRAM TO PRINT 
// FILE NAME-APAPPRO,LABEL AP.APPRO,DISP-SHR SORTED VERSION OF FILE. 
// FILE NAME-APAPPROS 
// RUN 

PROMPT. THIS IS A SYSTEM/36 PROCEDURE THAT USES THE READ UNDER FORMAT 
'RUF' TECHNIQUE FOR PASSING DATA FROM A PROMPT SCREEN TO A 
WORKSTATION PROGRAM. 

1. SET DEFAULTS IN THE SCREEN HEADING BEFORE PROMPT SCREEN IS DISPLAYED 
2. DISPLAY PROMPT SCREEN WITH DEFAULTS 
3. LOAD WORKSTATION PROGRAM TO PROCESS PROMPT SCREEN. 

// 	EVALUATE Pl-'l' SET SCREEN INPUT/OUTPUT ID 
/ / IF ?TIME?>120000 EVALUATE P2-?TIME?PM SET TIME TO AM OR PM 
/ / ELSE EVALUATE P2-?TIME?AM 
/ / EVALUATE P3·'?USER?' P4-'?WS?' SET HEADING DEFAULTS 
/ / EVALUATE P5-01, 2 P6-' l' P7-' 1 ' SET FROM ACCOUNT DEFAULTS 
/ / EVALUATE PB-99 P9-99 Pl0-9999 SET TO ACCOUNT DEFAULTS 

/ / 	 PROMPT MEMBER-PROMPTPM, FORMAT -SCREENl ,LENGTH - '1 ,B, ,2,2,2,4,2,2,4,40' ,. 
PDATA-YES DISPLAY PROMPT AND PASS DATA TO PROGRAM 

// LOAD PROMPT LOAD ON-LINE PROGRAM 
// FILE NAME-APAPPRO,LABEL-AP.APPRO,DISP-SHR PROCESS PROMPT SCREEN. 
/ / RUN 

PROMRUF. THIS IS A SYSTEM/36 PROCEDURE THAT USES THE READ UNDER FORMAT 

'RUF' TECHNIQUE FOR PASSING DATA FROM ONE ON-LINE INTERACTIVE 

PROGRAM TO ANOTHER. 


1. SET OFF ALL SWITCHES 
2. CALL PROGRAMA 

3 IF SWITCH ONE IS ON, THEN CALL PROBRAMB 


/ / 	 TAG AGAIN RESTART PROGRAMA 

/ / 	 SW ITC H 00000000 SET ALL SWITCHES OFF 

/ / LOAD PROGRAMA LOAD AND RUN PROGRAM A 
// FILE NAME-??????? 
// RUN. 
/ / 	 IF SWITCH1-0 GOTO OUT IF SWITCH 1 IS OFF THEN EOJ 

/ / LOAD PROGRAMB ELSE LOAD AND RUN PROGRAM B 
// FILE NAME -7???? 
/ / RUN 

/ / 	 IF SWITCH2-1 GOTO AGAIN IF SWITCH 2 IS ON THEN RESTART PROGRAM A 

/ I 	 TAG OUT 



696 5/36 Power Tools 

Figure 20-7 	 PROGRAMA PROGRAMS 
Screen Names 	 Screen INames

Exit and entry 
PRASl PRBSl

screens/or PRAS2 PRBS2 
PROGRAMA PRAS3 PRBS3 

PRAS4 ROGRAMA _ PRBS4and PRSSl ~____~S~Wi~~~h~b~ac~k~~~P~~~~-----PRAS5 
PROGRAMB 	 PRAS5. 

PRAS6 

Creating Externally Described Workstation Files 
by Gary Barrett 

program by Rick Koenig 

a
Code on diskette: 


Procedure SFGRIO 
RPG program SFGRIO 
Screen format member SFGRIOFM 
Message member SFGRIOMI 

Many S/36 programmers use externally described disk files (i.e., disk file 
formats described outside the RPG program) to improve the consistency of 
field and file names, simplify documentation, and ease program mainte
nance. Externally described files are supported on the S/36 by the auto
report /COPY function, which inserts externally maintained S-specs into an 
RPG program before compilation. 

But programmers find it difficult to use this capability for workstation files. 
A major deterrent is the lack of any simple method to create RPG I-specs and 
O-specs from the display format specifications compiled by $SFGR. The key 
benefits of external file definition depend on the use of a central "data dictio
nary" that provides a single source for format changes. But it is impossible to 
use just one source member for each screen format on the S/36 because of the 
way RPG screen I/O works with Workstation Data Management (WSDM). 

WSDM uses the S- and D-specs compiled by $SFGR to create the physi
cal layout of your displays and then merges that format with data from the 
workstation file buffer used by your RPG program under the control of your 
RPG 1- and O-specs. Thus, at least two source members - the $SFGR screen 
format source member and the RPG source member - must be compiled for 
each workstation screen. IBM provides no easy way to link them together. 

Granted, Screen Design Aid (SDA) provides an option to create a 
"skeleton" RPG program from screen format specifications. But the output 
from SDA is not in a format that can be used for externally described I/O 
without a considerable amount of work with SEU. And if the display 
changes, as frequently happens in interactive programs, the task of inte



Workstations 697 

grating the format changes into the RPG program usually is difficult and 
subject to error. The difficulty increases if input fields from displays have 
decimal values defined or if output data is edited to improve its appear
ance, such as with zero suppression. 

The S/36 utility SFGRIO provides a more effective, easy-to-use alter
native that fully supports externally described workstation screens. The 
utility processes your screen format S- and D-specs to generate the RPG l
and O-specs needed to manipulate that screen in your program. It creates 
separate input and output source members in the library you specify. These 
source members are accessible by using auto-report's leOpy function or by 
using the Include function of SEU. 

Use of auto-report allows changes in the screen format source member 
to be reflected automatically in the RPG program simply by recompiling 
the program. In addition, the SFGRIO utility supports features SDA does 
not, including output field editing, the ability to combine array elements 
into a single array or multiple fields into a single field, and the ability to 
specify the number of decimal positions for a numeric input field. 

SFGRIO uses the same S-specs as $SFGR, but accepts a modified 0
spec format. The modified D-spec allows you to edit output fields in one of 
two ways: you can specify an edit code in either position 25 (normally the 
WSI edit field) or position 81 of the D-spec, or you can specify an edit work 
(following RPG conventions) by enclosing it within apostrophes beginning 
in position 81 of the D-spec. Note that the use of most edit codes or words 
on numeric fields that are both input and output may create programming 
problems, so the program will halt if an edit code other than Z is used for 
an I/O field. The operator then can choose to continue or cancel the pro
grams. Also note that the length of the display format statements must be 
96 or 120 to use column 81; this can be specified during SEU initiation. 

The modified D-spec also supports combining array elements or multi
ple fields. You may frequently encounter several fields defined in the screen 
format member's D-specs that you want to use as elements of an array in an 
RPG program. In which case, you want to define one field name in the RPG 
program that encompasses all the fields in the D-specs that make up that 
array. The SFGRIO utility allows that to be done by coding each of those 
fields except the last one as @ followed by five blanks. These fields do not 
have 1- or O-specs generated for them, but their lengths are accumulated into 
the length of the last field in the array, which has the same name as the array. 

The utility also accepts a modification of the $SFGR D-spec that 
allows you to define, in column 24, the number of decimal positions for a 
numeric input field. The utility ignores column 24 if column 23 contains 
anything other than a Y. Further, the program assumes zero decimal places 
for defined numeric fields that have no entry in column 24. Note that if you 
use column 24 for decimal specification, you will be unable to condition 
numeric output on an indicator. 



698 5/36 Power Tools 

Figure 20-8a 

Procedure 
SFGRIO prompt 
screen 

Using Utility SFGRIO 
To execute utility SFGRIO, call procedure SFGRIO from a command 
screen. This procedure displays a prompt screen (Figure 20-8a) that lets 
you enter parameters that tell procedure SFGRIO where to get its input 
and what to do with its output. (The screen format member for the prompt 
screen is shown in Figure 20-8b) 

SFGRIO Procedure 

Creates input/output source members from display format specifications. 

INPUT 

Display format source member name (-FM suffix). 

Library name where display format exists 


OUTPUT 

Output library name (where I/O modules will be placed) 

Supply default field names if missing (Y.N) 

Halt before replacing duplicate source members? (Y,N) 

Suppress Output End Positions? (Y,N) 


Command 7 - End Job, No Generation 

Figure 20-9 shows modified S- and D-specs used as input to SFGRIO. 
For example, lines 19 and 29 contain edit words starting in positions 81; 
lines 5 and 17 contain an edit code in position 25. Lines 11 through 13 and 
26 through 29 define two arrays. The first two parameters tell procedure 
SFGRIO (Figure 20-10) the screen format source member name and the 
name of the library in which it resides. 

Parameter 3 specifies the library name where the generated RPG l
and O-specs are to be placed. You may want to set up a separate library 
to contain all your generated 1- and O-specs so that there is never a con
flict between the names procedure SFGRIO assigns to the RPG 1- and 0
spec source members and any production library members you have. 

Parameter 4 allows you to specify that procedure SFGRIO should assign 
default field names if you have not included them in the D-specs. Ifyou answer 
Y to this prompt, and procedure SFGRIO encounters a missing field name on 
the D-specs, the procedure assigns a field name of the form SFxxxx, where xxxx 
is a sequential number between 0001 and 9999. You can see that the default 
field names assigned to the generated RPG 1- and 0- specs are not very mean-
ingful. Because the utility uses these field names in thl~ input and output RPG 
statements it creates, it is best if you provide meaningful field names. 

Parameter 5 allows you to request a halt before replacing a duplicate 



Workstations 699 

source member should a conflict arise between the source member name 
generated by SFGRIO and a source member already residing in the library 
you have specified for the output. 

Parameter 6 allows you to suppress generation of the ending character 
position of the output fields by answering Y to this prompt. If you don't 
suppress this calculation, the program calculates the end position based on 
the field length specified in the D-spec. 

For certain of these parameters, procedure SFGRIO sets defaults. 
Parameter 2, the source member library name, is initially set to the current 
library. Parameters 4,5, and 6 are initially set to N. These defaults, which 
will appear on the prompt screen with the default values, can be overridden 
at the point of input. 

After you have entered the necessary parameters, procedure SFGRIO 
issues an error message from message member SFGRIOM1 (Figure 20-11) 
if a parameter was entered incorrectly. This message member must be com
piled as a level-one member (using the CREATE procedure) into the same 
library in which you have placed procedure SFGRIO and its associated pro
gram and screen member. 

Upon successful validation of the input parameters, procedure 
SFGRIO uses the $MAINT utility to create a work file (?WS?WORK) 
from the source member specified in parameter 1. Procedure SFGRID 
then loads program SFGRIO (Figure 20-12), which reads the work file and 
generates two output files, IMEMBER and OMEMBER. These output 
files will contain the generated RPG input and output statements. 

Program SFGRIO processes file ?WS?WORK as an input sequential 
file. The program looks specifically for S- and D-specs. The program con
sists of two subroutines - SSPEC and DSPEC - that do all of the work. 
Subroutine SSPEC is called when an S-spec is read from file ?WS?WORK 
and subroutine DSPEC is called when a D-spec is read from file 
?WS?WORK. All other records in the input file are ignored. 

Subroutine SSPEC 
Subroutine SSPEC (Figure 20-12, lines 75 through 100) generates the neces
sary information expected by $MAINT in output files IMEMBER and 
OMEMBER. Therefore, one of subroutine SSPEC's functions is to output 
the II COpy and II CEND records at the appropriate times in the output 
cycle. Subroutine SSPEC builds source member names for input and output 
by reading the format name in positions 7 through 14 of the S-spec record and 
then appending that name with an I for the input source member name and 
with a 0 for the output source member. The I and the 0 are left justified if 
the format name includes fewer than eight characters. If the format name is 
eight characters, the I and 0 are used in place of the eighth character. The 
name created in this manner is used as the object of the name parameter in 
the II COpy statement written to files IMEMBER and OMEMBER. 



700 5/36 Power Tools 

Subroutine SSPEC also writes a comment line as the first record after 
the II COpy record. This comment line provides valuable documentation 
information; it describes the format member from which the 1- and O-specs 
are being created, the format member name, the library reference number 
for that source member, and the creation date and time. 

Finally, subroutine SSPEC writes a record to file OMEMBER that contains 
the K8 keyword in positions 42 and 43 of the record, followed by the screen 
format name enclosed in apostrophes in positions 46 through 54 of the record. 
The format name is always left justified and padded with blank characters. 

Subroutine DSPEC 
Subroutine DSPEC (Figure 20-12, lines 107 through 222), which processes 
D-specs read from ?WS.WORK, is constructed in three sections. The first 
section (lines 107 through 123) handles screen constants within the D-specs 
that have no associated RPG 1- or O-specs. The other two sections (lines 
125 through 222) handle generation of field 1- and O-specs to files IMEM
BER and OMEMBER, respectively, for D-specs that specify input and/or 
output fields to be passed to or received from an associated RPG program. 

Subroutine DSPEC first checks the D-spec for the presence of screen 
constants in positions 57 through 79. If a constant exists, the subroutine 
sets up a counter to provide for continuation of the constant onto the next 
D-spec. Constants are ignored in the 1- and O-spec generation process. If 
no constants exist, the subroutine next checks to see whether the field is an 
input field, an output field, or both, and sets on indicators 20 and 21 for 
input and output fields, respectively. 

Next, subroutine DSPEC checks the field name for @. If this is the field 
name, the field is defined to the program as a combined field. This means 
the field length is to be accumulated into a total field length and included in 
the input and/or output length calculation of the first valid field that follows. 
If the field name is not @, it is treated as a standard input/output field. 

For input fields, subroutine DSPEC computes the staiting and ending 
position of the field in the input buffer and, if it is a numeric field, deter
mines the number of decimal positions. Subroutine DSPEC compensates 
for the extra digit defined on the D-spec for signed numeric fields. Subrou
tine DSPEC also supplies the field name if that is missing. Finally, subrou
tine DSPEC writes a record to file IMEMBER describing the input field in 
RPG I-spec input format, using EXCPT name output. 

For an output field, subroutine DSPEC first determines whether it is a 
message type output field and, if so, whether the message is sent from the 
program or from a message member or is a constant in the D-spec. If the 
output is a constant or from a message member (identified by a MIC num
ber), no further processing is necessary. If the output message is generated 
by the associated RPG program, its output length will be set automatically 
to six characters, regardless of the field length specified in the D-spec. 



Workstations 701 

When program SGFRIO finishes processing all S- and D-specs in file 
?WS?WORK, it returns control to procedure SFGRIO. (At this point, each 
source member in files IMEMBER and OMEMBER is bracketed by a 
II COpy statement and a II CEND statement so that files IMEMBER and 
OMEMBER look as expected by the $MAINT utility.) Procedure SFGRIO 
then uses the $MAINT utility a second time to create source members in 
the library specified for each I/O member created in files IMEMBER and 
OMEMBER, respectively. The source members created in this manner are 
now available for inclusion in the appropriate RPG programs. 

The auto-report copy function provides an excellent way to include 
source members in your RPG programs. For example, Figure 20-13 is a 
sample RPG program that uses the ICOPY auto-report statement (lines 11 
and 26) to include the sample source members shown in Figures 20-14a 
and 20-14b. Notice in Figures 20-14a and 20-14b that file and record identi
fication entries do not exist for either input or output source members. You 
need to supply these in your RPG program, as you normally would. 

As you implement the SFGRIO utility, be aware that the use of some 
of the techniques described will result in warning errors when the format 
member is compiled. But these warning errors do not affect the usability of 
the load member produced by the compilation. 

0001 S· .. 1 .... : .... 2. .3 .. : .... 4 .. : .... 5. .. 6 .. 7. . .8 
0002 SSFGRIO Y G 
0003 D 16 132Y Y CSFGRIO Procedure 

Figure 20-8b 

Screen formot 0004 D 71 3 4Y CCreates input/output soX 
member 0005 Durce members from display format specifications. 

0006 D 5 5 4Y Y CI NPUTSFGRIOFM 	 0007 D 60 7 4Y CDisplay format source mX 
0008 Dember name (-FM suffix) .... 
0009 DPARAMl 8 76501 YB 91 Y 91 Y 
0010 D 60 8 4Y CLibrary name where dispX 
0011 Dlay format exists 
0012 DPARAM2 8 86502 Y 92 Y 92 Y 
0013 D 6104Y Y COUTPUT 
0014 D 60124Y COutput l'lbrary name (whX 
0015 Dere 110 modules will be placed) 
0016 DPARAM3 8126503 Y 93 Y 93 Y 
0017 D 6013 4Y CSupply default field naX 
0018 Dmes if missing (Y.N) 
0019 DPARAM4 1136504 Y 94 Y 94 Y o 
0020 DPAD04 71367Y Y Y Y 
0021 D 6014 4Y CHalt before replacing dX 
0022 Duplicate source members? (Y.N) 
0023 DPARAM5 1146505 Y 95 Y 95 Y o 
0024 DPAD05 71467Y Y Y Y 
0025 D 6015 4Y CSupress Output End PosiX 
0026 Dt ions? (Y.N) .... . . . . . . . . . . . . . . . . . 
0027 DPARAM6 1156506 Y 96 Y 96 Y o 
0028 DPAD06 71567Y Y Y Y 
0029 DMSGMIC 7522 407 97 M 
0030 0 342423Y CCommand 7 - End Job, NoX 
0031 o Generation 



702 5/36 Power Tools 

Figure 20-9 

Modified S- and D-specs for the SFGRIO utility 

0001 S· .. 1. ... 2 .. 3. . . . 4 ........ 5. .... 6 . . .... 7 .. .8 
0002 SSFTESTA Y G 
0003 DSCRTYP 1 1 4Y Y Y Y CA 
0004 D 15 126Y CAccount Inquiry 
0005 DUDATE 8 159Y Y 
0006 D 66 3 4Y CThis allows inquiry intX 
0007 Do any of the active accounts on the system 
0008 D 8 5 7Y CAccount# 
0009 DACCTNO 6 516Y Y Y Y 
0010 D 7 524Y CThru Dt 
0011 D@ 2 532Y YN 
0012 D@ 2 535Y YN 
0013 DTHRUDT 2 538Y YN 
0014 D 4 542Y CName 
0015 DACTNAM 25 547Y 
0016 D 15 7 7Y CCurrent Balance 
0017 DACTBAL 13 723Y 
0018 D 1 B 740Y CLast Activity Date 
0019 DLACTDT 8 759Y I I 0' 
0020 D 27 9 7Y CPrevious Quarterly 8alaX 
0021 Dnces 
0022 D 1110 7Y Clst Quarter 
0023 D 111022Y C2nd Quarter 
0024 D 111037Y C3rd Quarter 
0025 D 111052Y C4th Quarter 
0026 D@ 1311 7Y 
0027 D@ 13l122Y 
0028 D@ 131137Y 
0029 DOTR 131152Y O. 
0030 D 152326Y CCmd 7 End Job 

Figure 20-10 

Procedure SFGRIO 

• PROCEDURE - SFGRIO 
• FUNCTION - CREATE DISPLAY FORMAT liD SOURCE MEMBERS 

• PARAMETER SUMMARY 
• PARAM 1 SCREEN FORMAT MEMBER NAME 
• PARAM 2 SCREEN FORMAT LIBRARY NAME 
• PARAM 3 LI BRARY NAME FOR GENERATED 110 MODULES 
• PARAM 4 SUPPLY DEFAULT FIELD NAMES- Y,N 
• PARAM 5 HALT ON REPLACE OPTION- Y,N 
• PARAM 6 SUPRESS OUTPUT END LOCATIONS - Y,N 
• PARAM 7 MESSAGE MIC FOR ERRORS 
• PARAM 8 DUMMY RESPONSE PARAM 

• 	 LOA USAGE 
1-6 DEFAULT FIELD NAME (SF####) 
5-6 NUMBER OF DEFAULT FIELD NAMES GENERATED (AT EOJ) 
7-7 INPUT MEMBER NAME SUFFIX (DEFAULT IS 'I') 
8-8 OUTPUT MEMBER NAME SUFFIX (DEFAULT IS '0') 

• EXTERNAL SWITCH USAGE 
• Ul - SUPRESS INPUT FIELD LOCATIONS IN PROGRAM 
• U8 - AT LEAST ONE liD EDIT OTHER THAN 'z' WAS FOUND 
• NOTE - SWITCHES U1-U8 ARE MAPPED TO 91-98 INITIALLY FOR VALIDATION PURPOSES. 

• SET DEFAULT PARAMETER VALUES 
II SWITCH 00000000 72'?CLlB?'? ?4'N'? 75'N'? ?6'N'? 77'9999Ul'7 
II MEMBER USER1-SFGRIOMl 
II TAG START 
II PROMPT MEMBER-SFGRIOFM,FORMAT-SFGRIO,UPSI-YES 
II SWITCH 00000000 77F' '7 
II IF 7CD?/2007 RETURN 
• PERFORM PARAMETER VALIDATION 
II IF 7171 SWITCH 1XXXXX1X 77'0100Ul '? , SCR NAME MISSING 



II FILE NAME-LIBRFILE,LABEL-7WS?WORK,RECORDS-1000,RETAIN-J,EXTEND-500 
II RUN 
II COPY FROM-72?,TO-DISK,FILE-LIBRFILE,RECL-120,NAME-717,LIBRARY-S,BASIC-YES,SVATTR-YES 
I I END 

I I LOAD SFGRIO 
II FILE NAME-LIBRFILE,LABEL-?WS?WORK 
II FILE NAME-IMEMBER,RECORDS-1000,RETAIN-J,EXTEND-500 
II FILE NAME-OMEMBER,RECORDS-1000,RETAIN-J,EXTEND-500 
I I RUN 

* IF DEFAULT FIELD NAMES SUPPLIED AND PARAM 4 WAS 'N' - ISSUE MSG & RETURN 
II IFF ?L'3,4'?10000 IF ?4?/N IF ?SR'9000'7/?S? RETURN 
• IF DEFAULT FIELD NAMES SUPPLIED AND PARAM 4 WAS 'Y' - DISPLAY # & CONTINUE 
II IFF ?L'3,4'?10000 IF ?47/Y • '7L'3,4'? DEFAULT FIELD NAMES WERE SUPPLIED BY SFGRIO' · • PROMPT FOR CONTINUE OPTION IF SWITCH S IS ON. SEE AESSAGE MIC 9001. 
II IF SWITCHS-1 IFF 7R'9001 '?/Y RETURN 

II • '1/0 MEMBERS BEING COPIED TO LIBRARY 73?' 
II LOAD SMAINT 
II FILE NAME-IMEMBER,UNIT-F1 
II FILE NAME-OMEMBER,UNIT-F1 
II RUN 
II COPY TO-?3?,FROM-DISK,FILE-IMEMBER,RETAIN-?57 
II COpy TO-?3?,FROM-DISK,FILE-OMEMBER,RETAIN-?57 
I I END 

SFGRIOM1 ,1 
* PARAMETER VALIDATION MESSAGES 

0100 DISPLAY FORMAT SOURCE MEMBER NAME MISSING; MUST BE SPECIFIED 


Figure 20-11 

Parameter 
validation 
messages from 
message member 
SFGRIOMI 

II IF 72?1 
II IFF 72?1 
I I IFF 72? I 
II IF ?711 
II IF 13?1 
II IFF 7371 
II IFF ?3?1 
II IFF ?4?/Y 
II IFF ?57/Y 
II IFF 76?/Y 

IFF DATAF1-?2? 

IFF LOAD-'#PTFLOG,?2?' 

IFF SOURCE-'?1?,?2?' 


IFF DATAF1-?3? 

IFF LOAD-'#PTFLOG,?3?' 

IFF ?4?/N 

IFF ?5?/N 

IFF ?6?/N 


SWITCH X1XXXX1X ?7'0200U1 '? 
·SWITCH X1XXXX1X ?7'0201U1'? 

SWITCH X1XXXX1X ?7'0202U1'? 
SWITCH 1XXXXX1X ?7'0101U1'? 
SWITCH XX1XXX1X ?7'0300U1 '7 
SWITCH XX1XXX1X ?7'0301U1 '? 
SWITCH XX1XXX1X ?7'0302U1 '7 
SWITCH XXX1XX1X ?7'0400U1 '? 
SWITCH XXXX1X1X ?7'0500U1 '7 
SWITCH XXXXX11X ?7'0600U1 '? 

* IF PARAM 7 IS NOT NULL (OR SWITCH 7 ON) REPROMPT WITH ERRORS 
II IFF ?7?1 GOTO START 
*----- EXECUTE ---- 
II * 'SFGRIO PROCEDURE EXECUTING' 
II * 'CREATING ?1? 1/0 MEMBERS FROM ?2?, OUTPUT TO ?3? .. ' 
II DEFAULT NAMES-?4? HALT BEFORE REPLACE-?5? SUPRESS END 
II LOCAL OFFSET-1 ,DATA-'SFOOOOIO ' 

II SWITCH 00000000 , ?SF' '? MAKE SURE 
· • CONVERT PARAM 5 FROM YIN TO RETENTION CODE PIR 

II IF ?5?/Y SWITCH XXXXXXXX ?5F'P'? 

II IF ?5?/N SWITCH XXXXXXXX ?5F'R'? 

* 

PARAMS IS NULL 

• IF PARAM 6 IS y, SET SWITCH 1 ON TO SUPRESS OUTPUT POSITIONS 
II IF ?6?/Y SWITCH 1XXXXXXX 
* 
* EXECUTE $MAINT COPY 
II LOAD $MAINT 

0101 DISPLAY FORMAT SOURCE MEMBER NAME IS NOT IN THE INPUT 
0200 INPUT LIBRARY NAME MISSING; THIS IS REQUIRED 
0201 INPUT LIBRARY NAME SPECIFIED DOES NOT EXIST ON THE 
0202 INPUT LIBRARY NAME SPECIFIED IS NOT A LIBRARY 
0300 OUTPUT LIBRARY NAME IS MISSING; THIS IS REQUIRED 
0301 OUTPUT LIBRARY NAME SPECIFIED DOES NOT EXIST ON THE 
0302 OUTPUT LIBRARY NAME SPECIFIED 
0400 DEFAULT-FIELD-NAMES OPTION IS BLANK 
0500 HALT-BEFORE-REPLACE OPTION IS BLANK 
0600 OUTPUT-END-POSITION OPTION IS BLANK 
* MESSAGES FOR THE PROCEDURE 
9000 MISSING FIELD NAMES FOUND, DEFAULTS NOT 
9001 AN 1/0 FI ELD FOUND WITH EDIT CODE OTHER 
9999 

IS NOT A LIBRARY 
OR INVALID 
OR INVALID 
OR INVALID 

SELECTED; 
THAN "Z"; 

Workstations 703 
LIBR NAME MISSING 
LISR NAME NOT ON DISK 
P2 NOT A LIBR 
P1/SCR NAME NOT IN LIBR 
P3 MISSING 
P3 NOT ON DISK 
P3 NOT A LIBR 
P4 NOT YIN 
P5 NOT YIN 
P6 NOT YIN 

POS-?6?' 

(MUST BE 
(MUST BE 
(MUST BE 

LIBRARY 


DISK 


DISK 

Y OR N) 
Y OR N) 
Y OR N) 

PRESS ENTER TO CANCEL. 
CONTINUE? (y, N) 



704 5/36 Power Tools 

Figure 20-12 

Program SFGRIO 
4 8 

0001 064 1 SFGRIO 
0002 H* THIS PROGRAM CREATES RPG 'I' AND '0' SPECIFICATIONS FROM 
0003 H* DISPLAY FORMAT'S' AND '0' SPECIFICATIONS. 
0004 H* 
0005 H* INDICATOR USAGE SUMMARY 
0006 H* 01 S SPECIFICATION INPUT 
0007 H* 02 D SPECIFICATION INPUT 
0008 H* 03 II COpy STATEMENT FROM $MAINT 
0009 H* 04 INPUT CATCH-ALL 
0010 H* 20 D-FIELD IS INPUT TYPE 
0011 H* 21 D-FIELD IS OUTPUT TYPE 
0012 H* 40 GENERAL USE TO CONTROL LOGIC 
0013 H* 90 SUPRESS 'II CEND' ON FIRST S-SPEC 
0014 H* U1 SUPRESS OUTPUT END POSITION IF ON 
0015 H* U8 1/0 EDIT OTHER THAN 'Z': ISSUE WARNING 
0016 H* 
0017 FLlBRFILEIPE F1200 120 DISK 
0018 FIMEMBER 0 F 960 96 DISK 
0019 FOMEMBER 0 F 960 96 DISK 
0020 E SF 8 1 -SCR FMT NAME 
0021 ILlBRFILENS 01 CS 7NC* 
0022 1* S-SPEC 
0023 I 14 SFMT 
0024 I 14 SF 
0025 I NS 02 6 CD 7NC* 
0026 1* D-SPEC 
0027 I 7 12 DNAM NAME 
0028 I 15 180DLEN LENGTH 
0029 I 23 23 DOUT OUTPUT 
0030 I 24 24 DDEC #DECIMALS 
0031 I 25 25 DEDC EDIT CODE 
0032 I 26 26 DINP INPUT TYPE 
0033 I 27 27 DTYP DATA TYPE 
0034 I 56 56 DCON CONST/MSG FLAG 
0035 I 57 79 DATA CONSTANT/MIC 
0036 I 81 81 EDIT ALT EDIT CODE 
0037 I 81 106 WORD EDIT WORD 
0038 I NS 03 1 CI 2 CI 4 CC 
0039 I 24 66 MEMB 
0040 1* CATCH-ALL FOR OTHER RECORD TYPES 
0041 I NS 04 
0042 I/SPACE 
0043 I DS 
0044 1* THIS DATA STRUCTURE CONTAINS MISCELLANEOUS VARIABLES 
0045 I 1 48 LOC 
0046 I 40ISTART 
0047 I 5 80IEND 
0048 I 9 1200END 
0049 I 13 160INUM 
0050 I 17 2000NUM 
0051 I 21 240FSIZE 
0052 I 25 280IADD 
0053 I 29 3200ADD 
0054 I 33 40 SFMTI 
0055 I 41 48 SFMTO 
0056 I OS 
0057 I SF 
0058 I SFDS 
0059 IISPACE 
0060 I UDS 
0061 I 1 6 SFXXXX DEFAULT FLO NAME 
0062 I 5 60XXXX NAME COUNTER 
0063 I 7 7 ISUFFX INPUT SUFFIX 
0064 I 8 8 OSUFFX OUTPUT SUFFIX 
0065 C* CALCULATION MAINLINE 
0066 C* 
0067 C 01 EXSR SSPEC 
0068 C 02 EXSR DSPEC 
0069 C* 
0070 CLR EXCPTCEND -ADD II CEND 



Workstations 705 

0071 C' 
0072 C' 
0073 C SSPEC BEGSR , SSPEC • 
0074 C' 
0075 C 90 EXCPTCEND -ADD / / CEND 
0076 C N90 SETON 90 -ONE TIME SWITCH 
0077 C' 
0078 C MOVE 'BLANK LOC -CLEAR VARIABLES 
0079 C' CREATE I/O MEMBER NAMES FROM FORMAT NAME AND SUFFIXES 
0080 C Z-ADDl X 10 
0081 C' 
0082 C 'BLANK LOKUPSF,X 40-FIRST BLANK 
0083 C N40 Z-ADD8 X -OVERRIDE LAST BYTE 
0084 C MOVE ISUFFX SF ,X -INPUT SUFFIX 
0085 C MOVE SFOS SFMTI -MAKE INPUT NAME 
0086 C MOVE OSUFFX SF,X -OUTPUT SUFFIX 
0087 C MOVE SFDS SFMTO -MAKE OUTPUT NAME 
0088 C' 
0089 C' OUTPUT IMEMBER HEADER RECORDS 
0090 C EXCPTICOPY -// COPY (I) 
0091 C INUM ADD 1 INUM -INPUT LINE# 
0092 C EXCPTICOMM -I' COMMENT 
0093 C' OUTPUT OMEMBER HEADER RECORDS 
0094 C EXCPTOCOPY -// COpy (0) 
0095 C ONUM ADD 1 ONUM -OUTPUT LI NE# 
0096 C EXCPTOCOMM -0' COMMENT 
0097 C ONUM ADD 1 ONUM -OUTPUT LI NE# 

0098 C EXCPTCIFORM -K8 'FORMATNM' 

0099 C' 

0100 C ENDSR 

0101 C' 

0102 C' 

0103 C DSPEC BEGSR 

0104 C' 

0105 C' 

0106 C' CHECK FOR PENDING CONSTANT 

0107 C FSIZE COMP 'ZERO 40 -PENDING LARGE CONSTANT 

0108 C 40 FSIZE SUB 73 FSIZE -SUBTRACT ANOTHER 73 

0109 C 40 GOTO DSPEC9 -EXIT 

0110 C' 

0111 C FSIZE SUB FSIZE FSIZE -CLEAR IT 

0112 C' 

0113 C' CHECK FOR MISSING CONSTANT CODE 

0114 C DATA COMP 'BLANK 40 -IF CONSTANT DATA 

0115 C 40 DCON COMP 'BLANK 4O-AND 'C' IS MISSING 

0116 C 40 MOVE 'C' DCON -THEN ADD IT 

0117 C' 

0118 C' IF CONSTANT AND SIZE IS OVER 23, SET UP 

0119 C' THE FSIZE FIELD TO HANDLE IT. 

0120 C DCON COMP 'c' 4O-CONSTANT 

0121 C 40 OLEN COMP 23 40 -OVER ONE LINE 

0122 C 40 DLEN SUB 23 FSIZE -AMT LEFT 

0123 C 40 GOTO DSPEC9 

0124 C' 

0125 C' SET I/O INDICATORS: 20-INPUT 21-0UTPUT 

0126 C DINP COMP 'Y' 20-INPUT IF EQ 

0127 C DOUT COMP 'Y' 21 21-OUTPUT IF Y OR GREATER 

0128 C' 20 AND 21 ARE THE ONLY IND. USED WITHOUT RESETTING PRIOR TO USE 

0129 C' 

0130 C' IF NAME IS '@', ROLL IN ADDERS AND EXIT 

0131 C DNAM COMP '@ 40-ROLL UP FLO NAME 

0132 C 20 40 IADD ADO DLEN IADD -I NCR INPUT LENGTH 

0133 C 21 40 OADD ADD DLEN OADD -INCR OUTPUT LENGTH 

0134 C 40 GOTO DSPEC9 -EXIT 

0135 C' 

0136 C' PROCESS INPUT DATA; IF NO INPUT, SKIP TO OUTPUT 

0137 C N20 GOTO DSPEC5 

0138 C' 

0139 C' SET DECIMAL FIELD 

0140 C DOUT COMP 'Y' 4040 -IF NOT OUTPUT 

0141 C 40 MOVE 'BLANK DDEC -FORCE BLANK 

0142 C' ADJUST FIELD LENGTH FOR SIGNED NUMERICS 

0143 C OTYP COMP 'S' 40-IF SIGNED NUM 

0144 C 40 OLEN SUB 1 DLEN -LENGTH-1 

0145 C' IF NUMERIC AND NO #DECIMALS, SET DEFAULT 




706 5/36 Power Tools 

0146 C DTYP COMP 's' 40-IF SIGNED NUM 
0147 C N40 DTYP COMP 'D' 40-0R DEC IMAL 
0148 C N40 DTYP COMP 'N' 40-0R NUMERIC 
0149 C 40 DDEC COMP 'SLANK 40-AND NO DEC. SIZE 
0150 C 40 MOVE 'a' DDEC -ASSUME ZERO 
0151 C' 
0152 C' SET INPUT START/END POSITIONS 
0153 C lEND ADD 1 ISTART 
0154 C lEND ADD DLEN lEND 
0155 C lEND ADD IADD lEND 
0156 C Z-ADD'ZERO IADD 
0157 C INUM ADD 1 INUM 
0158 C' 
0159 C' SUPPLY FIELD NAME IF MISSING 
0160 C DNAM COMP 'BLANK 40-NO NAME 
0161 C 40 XXXX ADD 1 XXXX -I NCR COUNTER 
0162 C 40 MOVE SFXXXX DNAM -SUPPLY DEFAULT 
0163 C' WR ITE RECORD TO FILE 'IMEMBER' 
0164 C EXCPTIDATA -WRITE INPUT DATA 
0165 C' 
0166 C DSPEC5 TAG 
0167 C' 
0168 C' IF NO OUTPUT, EXIT (IND. 21 • OUTPUT, SET PREVIOUSLY) 
0169 C N21 GOTO DSPEC9 -EXIT 
0170 C' 
0171 C' IF OUTPUT CONSTANT, EXIT 
0172 C DCON COMP 'C' 40-CONSTANT 
0173 C 40 GOTO DSPEC9 -EXIT 
0174 C' 
0175 C' IF NOT A MSG FIELD, SKIP MIC PROCESSING 
0176 C DCON COMP 'M' 4Q-MSG/MIC FLAG 
0177 C N40 GOTO DSPEC6 -NO, SKIP 
0178 C' 
0179 C' IF MIC IS GIVEN, NO OUTPUT NEEDED; EXIT 
0180 C DATA COMP 'BLANK 40 -MSG MIC PRESENT. 
0181 C 40 GOTO DSPEC9 -SO EXIT 
0182 C' 
0183 C' IF MSG-TYPE AND NO MIC, IT IS PROGRAM-SUPPLIED. 
0184 C' REGARDLESS OF D-SPEC LENGTH, OUTPUT BUFFER SIZE IS 6 
0185 C Z-ADD6 DLEN -SET LENGTH TO 6 
0186 C' 
0187 C DSPEC6 TAG 
0188 C' 
0189 C' I F EDIT CODE IS BLANK, SKIP TO OUTPUT 
0190 C DEDC COMP 'BLANK 40 -EDIT CODE PRESENT 
0191 C 40 EDIT COMP 'BLANK 40-& COL. Bl BLANK 
0192 C 40 MOVE 'BLANK WORD -CLEAR EDIT WORD 
0193 C 40 GOTO DSPECS -NO EDIT CD/WORD
0194 C' 
0195 C' IF EDIT IS NOT QUOTE, ASSUME EDIT CODE 
0196 C EDIT COMP 40-APOSTROPHE 
0197 C N40 MOVE EDIT DEDC -MAKE IT AN EDIT CODE 
0198 C N40 MOVE 'BLANK WORD -CLEAR 'WORD' 
0199 C' 
0200 C' IF 20 (INPUT) AND EDIT CODE SPECIFIED, OTHER THAN Z, 
0201 C' PLACE A FLAG IN THE LDA TO WARN OPERATOR. 
0202 C 20 EOIT COMP 'BLANK 40 -NON-BLANK 
0203 C 20 40 EDIT COMP 'z' 4040 -AND NOT 'Z' 
0204 C 20 40 SETON UB -INPUT/NOT Z-ISSUE WARNING 
0205 C' 
0206 C' 
0207 C DSPECS TAG 
020S C' 
0209 C' SET OUTPUT END POSITION 
0210 C OEND ADD OLEN OENO 
0211 C OEND ADD OADD OEND 
0212 C Z-ADO'ZERO OADD 
0213 C ONUM ADD 1 ONUM 
0214 C' 
0215 C' SUPPLY FIELD NAME IF MISSING 
0216 C DNAM COMP 'BLANK 40-NO NAME 
0217 C 40 XXXX ADD 1 XXXX -I NCR COUNTER 
021S C 40 MOVE SFXXXX DNAM -SUPPLY DEFAULT 
0219 C' WR ITE RECORD TO FILE 'OMEMBER' 
0220 C EXCPTODATA -WRITE OUTPUT DATA 



Workstations 101 
0221 C* 
0222 C DSPEC9 ENDSR 
0223 C* 
0224 0* -------------------- 
0225 OIMEMBER IeOPY 
0226 0 23 'II COPY LIBRARY-S,NAME-' 
0227 0 SFMTI 31 
0228 0* -  -------------------- 
0229 OIMEMBER ICOMM 
0230 0 INUM 4 
0231 0 26 '1* INPUT FOR FORMAT' 
0232 0 SFMT 34 
0233 0 47 'FROM MEM8ER ' 
0234 0 MEMB 91 
0235 0* ------------------------- 
0236 OIMEMBER IDATA 
0237 0 INUM 4 
0238 0 6 'I' 
0239 0 ISTARTZ 47 
0240 0 lEND Z 51 
0241 0 DDEC 52 
0242 0 DNAM 58 
0243 0* ------------------------- 
0244 OIMEMBER E CEND 
0245 0 7 'I I CEND' 
0246 0* ------------------------- 
0247 OOMEMBER E OCOPY 
0248 0 23 'II COpy LIBRARY-S ,NAME-' 
0249 0 SFMTO 31 
0250 0* ------------------------- 
0251 OOMEMBER OCOMM 
0252 0 ONUM 4 
0253 0 26 '0* OUTPUT FOR FORMAT ' 
0254 0 SFMT 34 
0255 0 47 'FROM MEMBER 
0256 0 MEMB 91 
0257 0* ---------------  -------- 
0258 OOMEMBER OFORM 
0259 0 ONUM 4 
0260 0 6 '0' 
0261 0 54 'K8 
0262 0 SFMT 53 
0263 0* ------------------------- 
0264 OOMEMBER OOATA 
0265 0 ONUM 4 
0266 0 6 '0' 
0267 0 DNAM 37 
0268 0 DEDC 38 
0269 0 NUl OEND Z 43 
0270 0 WORD 70 
0271 0* ------------------------- 
0272 OOMEMBER CEND 
0273 0 'II CENO' 

*. 	 .. , 4 6 7 8Figure 20-13 	 0001 
0002 064 1 01 SFTESTSample 0003 H* SFTEST IS A SIMPLE WORKSTATION PROGRAM WHICH DEMONSTRATES 

program using 0004 H* THE USE OF THE SFGRIO PROGRAM & PROCEDURE. 
0005 FWORKSTN CP F 1920 WORKSTN 

auto-report 0006 F KID WS 
0007 F 	 KFMTS SFTESTFM 
0008 FACCTMASTIC F 256 256R06AI 1 DISK 
0009 E QTR 492 QUARTERLY BALANCES 
0010 IWORKSTN NS 01 1 CA 
0011 I/COPY DEMOLIBR,SFTESTAI 
0012 IWORKSTN NS 02 
0013 1* CATCH-ALL 
0014 IACCTMASTNS 
0015 I 	 2 7 ACCTNO 
0016 	 8 130THRUDT 
0017 	 14 38 ACTNAM 



708 5/36 Power Tools 

0018 I 39 472ACTBAL 
0019 I 48 530LACTDT 
0020 I 54 89 OTR 
0021 C 02 GOTO ENDDET 
0022 C 01NKG ACCTNO CHAINACCTMAST 
0023 C 01 KG SETON LR 
0024 C ENOOET TAG 
0025 OWORKSTN D NLR 
0026 O/COPY DEMOLIBR.SFTESTAO 

Figure 20-14a 

I-specs generated by SFGRIO 

' ... .'1 ..... 2 ...... 3 ... ... 4 ...... 5 ... 6 ... 7 ...... 8 
0001 I' INPUT FOR FORMAT SFTESTA FROM MEMBER SFTESTFM.REF-0000ll.DATE-84/09/30.TIME-l046 
0002 I 1 1 SCRTYP 
0003 I 2 7 ACCTNO 
0004 I 8 130THRUDT 

Figure 2O-14b 

O-specs generated by SFGRIO 

... 1 ...... 2 3 ... 4· ...... 5 ...... 6 ...... 7 ...... 8 
0001 O· OUTPUT FOR FORMAT SFTESTA FROM MEMBER SFTESTFM. REF-OOOOll . DATE-84/09/30. TIME-l 046 
0002 0 K8 'SFTESTA . 
0003 0 UDATE Y 8 
0004 0 ACCTNO 14 
0005 0 THRUDT 20 
0006 0 ACTNAM 45 
0007 0 ACTBALJ 58 
0008 0 LACTDT 66 / O· 
0009 0 OTR 118 O. 

Creating 5/36 Help Screens on a PC 
by John W. Warns 

Code on diskette: a Procedure HPMAKE 
RPG program HPMAKE 

Traditionally, the production of help screens has been the responsibility of 
the programmer, but letting programmers control this user service has not 
always met with sterling success. Programmers sometimes produce help 
screens that are too technical in nature or that fail to address all user needs. 
Frequently, the best way to compensate for these shortcomings is to let 
users enhance existing on-line help text themselves. 

Until now, this has meant training users in such utilities as SOA or devot
ing valuable programming time to the translation of user definitions into S
and O-specs (either manually or through SOA). But there is another way to 
accomplish this task. Why not let users create and maintain help screens on 
their PCs within the confines of their favorite word processing program? You 



Workstations 709 

can then merge the user's help information with the current help database. 
The ability to set up help text this way has been available since we 

have had the ability to connect the S/36 and the PC through emulation. 
The process is straightforward: 

1. Create a predefined shell document for the users' use with their word 
processing package. 

2. Convert the shell document (after the user has entered help text) to a 
file portable to the S/36 (such as a standard ASCII text file). 

3. Transfer this file to a S/36 virtual disk. 

4. Convert the virtual disk file to a S/36 file via PC Support/36. 

5. Run program HPMAKE, which creates a file of S-and D-specs. 

6. Copy this file to a source member. 

7. Compile the screens using the S/36 FORMAT command. 

The Shell Document 
The successful implementation of this procedure depends on the creation 
of a stable, predictable user-input shell document. The help screen in Fig
ure 20-15 (constructed in WordPerfect) illustrates points you should con
sider when creating your shell document: 

1. The shell document begins with the word Screen in positions 4 through 
9 of the document. When program HPMAKE finds this word in these posi
tions, it attempts to process subsequent lines of help text. 

2. The eight-character help screen name appears in columns 18 through 25. 
The first six characters of the name (the first time it is encountered) define 
the source member name. You can instruct program HPMAKE to append a 
suffix to the help screen load member's name. Remember that the eight-char
acter help screen title eventually becomes the help format name (i.e., S-spec 
name); therefore, it must adhere to $SFGR help-format naming conventions 
(Le., the name must be eight characters long, begin with an alphabetic charac
ter, and end in two numeric digits between 00 and 99). Remember, too, that 
you must reference these help screen format names in your applications pro
gram's screen format member H-specs. 

3. Each line of help text begins with a two-digit line number in positions 1 
and 2. The help text itself must be in positions 5 through 82. Lines without 
a two-digit line number are ignored. 

You can use these ignored lines as design guides for the user in preparing 
the help screens. For example, borders on the top, bottom, and sides lend spa
tial guidance to the user when designing the screen. Note that I've defined 
only 23 lines and 78 characters on the sample shell document. You may design 



710 5/36 Power Tools 

your form with 24 lines and 80 characters, but if you do so, don't forget that 
position 1 of line 1 must remain blank (this position is reserved by the SSP). 

You may string together any number of copies of this shell document 
(each with a different name suffix) to create the variety of screens usually 
needed to provide documentation for any single program. 

The Export 
After the user composes the help text in the shell document, you are ready to 

transfer the document to the S/36 and convert it; for your purposes, you need 
to create a standard ASCII text file. Almost all word processing applications 
provide the capability to export material in this way. In WordPerfect, you run 
the convert utility, which prompts you for the name of the file to be con
verted and the new name of the converted file. Next, you select option 1, 
WordPerfect to another format, and then you select option 7, ASCII text file. 

The Transfer 
The device that logically connects your PC and the S/36 is the virtual disk, 
which is actually a direct file located on the S/36 hard drive. Almost all existing 
DOS commands may be used with a virtual disk. You can copy your ASCII 
help text file from the PC to the virtual disk using the DOS copy command. 

To copy the virtual disk file to a S/36 file, use PC Support/36's PCU 
(Personal Computer Utility) procedure, which lets you perform a number 
of related tasks, including creating a virtual disk, copying S/36 source code 
and/or procedures, and copying data files to and from a virtual disk. 

You must provide a number of parameters to copy a virtual disk file on the 
S/36; of these, the one that is not obvious is the record length for the new file. 
This variable depends on how you created the user's shell document. The 
example provided (Figure 20-15) has a record length of 84 characters, so you 
enter 84 into this parameter. After completing this task, you will have a copy 
of the PC ASCII file on your S/36 as a standard EBCDIC sequential file. 

The Conversion 
Program HPMAKE (Figure 20-16) converts the file you transferred from the 
PC into a $MAINT file containing S- and D-specs (Figure 20-17). You can 
use the TOLIBR procedure to copy this file into a library source member. 

Program HPMAKE generates three basic types of screen specifications 
from the input text file: S-specs, D-specs, and D-spec continuation lines. 
The array SPEC contains the "prototypes" of these statements, as well as 
the // COpy and // CEND statements required in a $MAINT file. 

Every time program HPMAKE encounters a screen header line, it out
puts an S-spec. Subsequent lines having a line number in the range 01 to 
24 get output as D-specs and D-spec continuation lines. 

You can automate the entire process on the S/36 side with the proce
dure shown in Figure 20-18. This procedure first clears the two work files 



Workstations 711 

HELPS and SDSPECS from the disk. Then the file HELPS.SDF (a 
generic file I pass all help screens to) is accessed from the virtual disk 
(named PCV) and copied to the S/36 as a file called HELPS. Next, pro
gram HPMAKE converts the shell document to a file called SDSPECS. 
The last statement copies the file SDSPECS to the default library. 

The PC side may also be automated with the .BAT file shown in Fig
ure 20-19, which assigns the virtual disk and copies the extracted file (using 
a generic name that matches on both sides). 

Letting users enhance their on-line help facilities reduces your applica
tion maintenance effort and can help draw users into a deeper understand
ing of their applications, all of which puts users closer to controlling their 
data processing destiny. 

Figura 20-15 

HLP1XTO1 screen 

4 

Screen Name HLPTXTOl 

1 2 3 4 5 6 7 
123456789012345678901234567890123456789012345678901234567890123456789012345678 

01 HELP SCREEN CREATION DEMO SCREEN 
02 
03 
04 
05 
06 To be. or not to be: that is the question: 
07 Whether 'tis nobler in the mind to suffer 
08 The slings and arrows of outrageous fortune. 
09 Or to take arms against a sea of troubles. 
10 And by opposing end them? To die: to sleep; 
11 No more; and. by a sleep to say we end 
12 The heart-ache and the thousand natural Shocks 
13 That flesh is heir to. 'tis a consummation 
14 Devoutly to be wish'd. To die, to sleep; 
15 To sleep: perchance to dream: ay, there's the rub; 
16 
17 
18 HAMLET Act 3 Scene 1 
19 William Shakespeare 
20 
21 
22 
23 PLEASE PRESS THE ENTER KEY TO RETURN TO PROCESSING 

123456789012345678901234567890123456789012345678901234567890123456789012345678 
1 2 3 4 5 6 7 

Figure 20-16 

Program HPMAKE 
3 4 ... 6 8 

0001 H 64 HPMAKE 
0002 F······*********···**·****···***·*****················*** •• * ••••• 
0003 F* WRIDEN 8Y: J. W. WARNS 
0004 F·······**················*************************************** 
0005 F**************************************************************** 
0006 F* PRO G RAM DES C RIP T ION 
0007 F********************************·******************************* 



0010 

0020 

0030 

0040 

0050 

0060 

0070 

0080 

712 5/36 Power Tools 

0008 F* 
0009 F* CONVERT TEXT FOR HELP SCREENS INTO S & 0 SPECIFICATIONS 

F* 
0011 F*******************··***************************************************** 

0012 F* I N 0 I CAT 0 R SUM MAR Y 
0013 F*------------------------------- - ------------------------------------ 
0014 F* 
0015 F******·***************········*****·**·······***··**·*.**.*.************** 

0016 FjSPACE 
0017 FHELPS IPE 84 84 DISK 
0018 FSDSPECS 0 80 80 DISK A 
0019 EjSPACE 2 

E**************************************************************** 

0021 E* E X C E P T ION S P E C I F I CAT ION S 
0022 E**************************************************************** 

0023 E SPEC 5 80 
0024 IjSPACE 2 
0025 1***********************···***************·********************** 

0026 1* I N PUT S P E C I F I CAT ION S 
0027 1**************************************************************** 

0028 IHELPS NS 
0029 I 1 20HLINE LINE NUMBER 

I 4 9 HSCRN 'SCREEN' 
0031 I 5 27 HLN23 FIRST 23 CHARACTERS 
0032 I 18 25 HSCNAM SCREEN NAME 
0033 I 28 82 HLN55 LAST 55 CHARACTERS 
0034 IjSPACE 
0035 I OS 
0036 I 80 SLINE S LINE 
0037 I 14 SNAME FORMAT NAME 
0038 IjSPACE 
0039 I DS 

I 1 80 DLINE1 o LINE #1 
0041 I 19 200DLNNR LINE NUM8ER z 
0042 I 57 79 DPT1 TEXT LI NE PART 
0043 IjSPACE 
0044 I OS 
0045 I 80 DLlNE2 o LINE #2 
0046 I 61 DPT2 TEXT LI NE PART 2 
0047 IjSPACE 
0048 I DS 
0049 I 1 80 FLINE FIRST LINE IN FILE 

I 24 29 ONAME SOURCE NAME FOR COPY 
0051 IjSPACE 
0052 I OS 
0053 I 80 LLINE LAST LINE IN FILE 
0054 CjSPACE 2 
0055 C· MAL I N E •••••• *** ••••••••••••**.************.******* ••• **. 
0056 CjSPACE 

0057 C* 

0058 C* PERFORM HOUSEKEEPING FUNCTIONS 

0059 C* 


C HKFLG IFEQ *8LANKS 
0061 C EXSR INIT 
0062 C END 
0063 CjSPACE 
0064 C* 
0065 C* TEST FOR WORD SCREEN (INDICATES NEW OR FIRST LINE OF SCREEN) 
0066 C* 
0067 CjSPACE 
0068 C CKFLG IFEQ 'N' 
0069 CjSPACE 

C HSCRN IFEQ 'Screen' 
0071 C MOVE 'Y' SCFLG 
0072 C END 
0073 CjSPACE 
0074 C HSCRN I FEQ 'SCREEN' 
0075 C MOVE 'y' SCFLG 
0076 C END 
0077 CjSPACE 
0078 C END 
0079 CjSPACE 

C SCFLG IFEQ 'y' 
0081 C' 
0082 C' PLACE FULL NAME FOR "S" SPECIFICATIONS AND FIRST 6 CHARACTERS 



Workstations 713 

0083 C' FOR SOURCE NAME FOR TOLIBR 
0084 C' 
0085 C MOVE HSCNAM SNAME 
0086 C' 
0087 C' WRITE FIRST LINE OF FILE 
0088 C' 
0089 C FLFLG I FEQ 'N' 
0090 C MOVELHSCNAM ONAME 
0091 C EXCPTFIRST 
0092 C MOVE 'V' FLFLG 
0093 C END 
0094 C' 
0095 C' WRITE "S" SPECIFICATION 
0096 C' 
0097 C EXCPTASLI NE ASLINE 
0098 C MOVE 'Y' CKFLG 
0099 C MOVE 'N' SCFLG 
0100 C GOTO END 
0101 C END 
0102 C/SPACE 
0103 C' 
0104 C' SPLIT EACH LINE INTO A "D" SPECIFICATION AND 
0105 C' A CONTINUATION SPECIFICATION 
0106 C' 
0107 C HLI NE IFGT 00 
0108 C HLINE IFLT 24 
0109 C HLiNE ADD DLNNR 
0110 C MOVE HLN23 DPT1 
0111 C MOVE HLN55 DPT2 
0112 C EXCPTADLIN1 ADLlN1 
0113 C EXCPTADLIN2 - ADLlN2 
0114 C HLiNE IFEQ 23 
0115 C MOVE 'N' CKFLG 
0116 C END 
0117 C END 
0118 C END 
0119 C/SPACE 
0120 C END TAG END 
0121 C/SPACE 
0122 C' 
0123 C' OUTPUT LAST LINE IN FILE FOR TOLIBR 
0124 C' 
0125 CLR EXCPTLAST 
0126 c*************************************************··************* 

0127 C' SUB R 0 UTI N E S 
0128 C**************************************************************** 

0129 C INIT BEGSR END 
0130 C' 
0131 C' PREPARE OUTPUT LINES 
0132 C' 
0133 C MOVELSPEC, 1 SLINE 
0134 C MOVELSPEC,2 DLI NE1 
0135 C MOVELSPEC, 3 DLI NE2 
0136 C MOVELSPEC,4 FLiNE 
0137 C MOVELSPEC, 5 LLiNE 
0138 C MOVE 'N' HKFLG 
0139 C MOVE 'N' FLFLG 
0140 C MOVE 'N' SCFLG 
0141 C MOVE 'N' CKFLG 
0142 C ENDSR END 
0143 O/SPACE 
0144 0**************************************************************** 

0145 O' 0 U T PUT S P E C I F I CAT ION S 
0146 0**************************************************************** 

0147 O/SPACE 
0148 OSDSPECS EADD FIRST 
0149 0 FLiNE 80 
0150 OSDSPECS EADD ASLINE 
0151 0 SLiNE 80 
0152 O/SPACE 
0153 OSDSPECS EADD ADLI N1 
0154 0 DLlNE1 80 
0155 O/SPACE 
0156 OSDSPECS EADD ADLI N2 
0157 0 DLI NEZ 80 



714 5/36 Power Tools 

0158 O/SPACE 
0159 OSOSPECS 
0160 0 

EADD LAST 
LLINE 80 

S 
D 
D 

II COPY 
II CEND 

0124 
78 02Y 

LIBRARY-S.NAME

C x 

Figure 20-17 . .. . .. 1 . .. ... 2 ... ... 3 4 ... 5 ... 6 ... 7 ... 8 
II COPY LI8RARY-S.NAME-HLPTXT 

SHLPTXTOl 0124S- and D-Specs 
D 780202Y C X 
D HELP SCREEN CREATION DEMO SCREEN 
D 780302Y C X 
D 
0 780402Y C X 
0 
D 780502Y C X 
D 
0 780602Y C X 
0 
D 780702Y C To X 
Obe. or not to be: that is the question: 
D 780802Y C WheX 
Other 'tis nobler in the mind to suffer 
0 780902Y C TheX 
o slings and arrows of outrageous fortune. 

D 781002Y C Or X 

Oto take arms aga; nst a sea of troubles. 

D 781102Y C AndX 

o by opposing end them? To die: to sleep; 
0 781202Y C No X 
Omore; and. by a sleep to say we end 
D 781302Y C TheX 
D heart-ache and the thousand natural shocks 
D 781402Y C ThaX 

oDt flesh is heir to. tis a consummat i on 
0 781502Y C DevX 
Doutly to be wish·d. To die. to sleep; 
0 781602Y C To X 
Osleep: perchance to dream: ay, there's the rub; 
0 781702Y C X 
D 
0 781802Y C X 
D 
D 781902Y C X 
0 HAMLET Act 3 Scene 1 
D 782002Y C X 
0 William Shakespeare 
0 782102Y C X 
0 
0 782202Y C X 
D 
D 782302Y C X 
0 
D 782402Y C PLEASE PREX 
DSS THE ENTER KEY TO RETURN TO PROCESSING 

II CEND 

Figure 20-18 	 II IF DATAF1-SDSPECS DELETE SDSPECS.Fl 
II IF DATAF1-HELPS DELETE HELPS.Fl 
pcu VIRTDISK.OISKFILE.HELPS.SDF.PCV .. HELPS.CREATE.l00.84Procedure II LOAD HPMAKE

HPMAKE 	 II FILE NAME-HELPS. LABEL-HELPS 
II FILE NAME-SDSPECS.LABEL-SDSPECS.RECORDS-l00 
II RUN 
TOLIBR SDSPECS.Fl .. REPLACE . .... . LIBRARY 

http:SDSPECS.Fl
http:HELPS.CREATE.l00.84
http:HELPS.Fl
http:SDSPECS.Fl


Workstations 715 

STAATATAFigure 20-19 
CFGVOSK 

COPY HELPS.SOF F:
Sample STOPATA 

.BAT/ile 

Customizing Screen AHributes in Menus 
by Preston Sights 

Code on diskette: a Procedure CRTMENU 
Screen format member SAMPLE 
Message member SAMPLE## 

My first boss once explained to me, "First impressions are critical. The 
president of the company doesn't see the fancy programming technique 
that saves five lines of code - he sees the reports and screens. That is his 
perception of your work." The first thing anyone sees of your work design 
is the menus, so developing easy-to-read and aesthetically pleasing menus 
is an important part of your job as a programmer. 

Unfortunately, the standard tool used to create menus, the Screen 
Design Aid (SOA) menu facility, does not support color or screen attributes 
such as highlighting, underlining, or reverse image for menus. These 
screen attributes can contribute greatly to the legibility and aesthetic 
appeal of a menu and, in fact, are used effectively on all of your application 
screens. So why exclude them from use in menus? You don't have to. And 
you need not go through SOA twice - once through the menu facility and 
once through the display format facility - to create attractive menus. By 
following a few simple rules of composition, you can bypass the restrictions 
of SOA's menu facility and create S/36 menus - in one pass - that have 
all the design flexibility of an application screen. 

To create working menus without SOA's help, you need to understand 
the anatomy of a menu. A compiled menu consists of two different load 
members - a message load member and a screen format load member. 
The message load member stores the compiled procedure, command, or 
OCL statements to be invoked by the corresponding menu option num
bers. The screen format load member contains the compiled S- and 0
specs that define the screen's appearance. You use the CREATE procedure 
to compile the message load member from the message source member, 
and you use the FORMAT procedure to compile the screen format load 
member from the screen format source member. 

You can begin menu creation by using SEU or POP to develop the mes
sage source member containing the statements that will be invoked by 
each menu option. These statements are written into a message source 
member in a predefined format (Figure 20-20). The first line of the mes



716 5/36 Power Tools 

sage source member identifies the load member name to be created. This 
name must be the menu name followed by ##. The first line of the mes
sage member also specifies the maximum length of the text for each mes
sage (i.e., the length of the statements to be invoked by the menu). You 
should specify a 2, which indicates that the message text can be up to 225 
characters long. However, because these messages are going to be inter
preted by the command processor, you are actually limited to 120 charac
ters (the limit allowed by the command processor) for each message. 

Each subsequent line in the message member defines the procedure 
call, OCL statement, or operator command associated with each menu 
option. Each line consists of a four-digit menu item number (from 0001 to 
0024) followed by a space and the statement text. This menu item number 
also acts as a MIC (message identification code) for retrieval of the com
mand from the message member. 

Note that the default record length of source members created by SEU 
is 96 bytes. If you expect to have statements longer than 96 bytes, you 
should specify a longer record length when saving the source member from 
the editor. If you have a longer statement that you want to continue onto 
the next source line, you should repeat the menu item number on the next 
line. (Figure 20-20 shows an example of this technique.) The total length 
for the statement text still must be 120 characters or less. 

After you complete the message source member, you must create the 
screen format source member, which contains the S- and D-specs that define 
the layout of the screen. (Figure 20-21 shows a sample menu screen and Fig
ure 20-22 shows the corresponding screen format source member.) The name 
of the screen format source member must be the same as the menu name. 

You can code the S- and D-specs directly using a source editor such as 
SEU or FSEDIT, or you can use SDA to create the menu screen just as you 
would any application screen. The SSP requires that the screen have a few 
fields of predefined length and type in the following order: 

• A two-byte OUTPUT ONLY field must be defined to be used by the 
SSP for the workstation 10. 

• An INPUT/OUTPUT field of the same size and position as the com
mand input line on standard system menus must be included. For the S/36, 
the command line is one 120-byte field starting in position 3 on line 22. 
The 120-byte input field on the S/36 menus should be specified with a 
"normal" attribute (hexadecimal 20 in position 2 on line 22) to work with 
PC Support/36. You should enable the dup key for this field on the S/36. 

• Line 24 (on the S/36) or line 22 (on the S/34) must be left blank because 
the SSP writes time, date, and other messages in this location. 

• A CONSTANT (output) field, specified as nondisplay if indicator 05 is 
on, must show the workstation inquiry status. If another job has been sus



Workstations 717 

pended by the use of the ATIN key, this field will become visible. The 
standard text for this field is "CMDI-Resume job." 

In addition to the above fields, 8/36 menus should specify null fill (Y in 
position 27 of the 8-spec). They also should enable the Roll keys and Com
mand key 3 (Y in positions 28 and 37 and 56C in positions 64 through 66). 
Deviating from these minimum coding requirements may cause unpre
dictable results when the menu is executed. The actual menu text that you 
create has no restrictions except that you can use only constant fields. You 
may use any screen attributes you like. 

Once the source members for the message and screen format member 
have been created, you need to compile them to produce the load members 
required for menu execution. Procedure CRTMENU (Figure 20-23) 
prompts for the menu name and runs both the CREATE procedure and 
the FORMAT procedure with the correct parameters (menu and library 
names). Your menu is then available for execution or maintenance. 

This simple technique allows you to create menus that will be easy to read 
and that will meet your existing application screen standards. Menus developed 
with this method will help you make that "first impression" a favorable one. 

Figure 20·20 

Message member SAMPLE## 

SAMPLE##.2. 
S/36 Sample Menu Message Member 

0001 PCTRAN 
PARMl .PARM2.PARM3.PARM4.PARM5.PARM6.PARM6.PARM7.PARM8.PARM9.PARM10.PARMll.PARM12.PARM13.PA 
0001 RM14.PARM15.PARM16.PARM17 
0002 PCTRAN RENAME 
0003 PCTRAN DELETE 
0004 PCTRAN TESTFILE 
0008 PCTRAN XLT36FIL 
0009 PCTRAN XLT36PRT 
0010 PCTRAN XLTPCFIL 
0011 PCTRAN XLTPCPRT 
0013 PCTRAN FILETOPC 
0014 PCTRAN LIBRTOPC 
0015 PCTRAN PRNTTOPC 
0016 PCTRAN FILEFRPC 
0017 PCTRAN L1BRFRPC 
001B PCTRAN PRNTFRPC 
0020 PCTRAN EDITABLE 
0021 PCTRAN COMPILE 
0024 OFF 



718 5/36 Power Tools 

Figure 20-21 

Sample menu 

.Figure 20-22 

Screen format 
member 
SAMPLE 

Menu - SAMPLE Emulator Transfer Utility S/36 Workstation ID - 00 
COPYRIGHT (e) 1985,1986 Software Systems Inc, 

PC Functions Transfer Functions 

1, Allocate New PC File 13. S/36 Fil e PC Fi 1 e 

2, Rename PC F; 1e 14, S/36 libr Member PC F i 1 e 

3, De 1ete PC F i 1 e 15, S/36 Print Item PC Pri nt Fi 1 e 

4. Test for Existence of PC File 16, PC File S/36 File 
5, 17. PC Fi 1 e S/36 Libr Member 
6, 18, PC Pri nt File S/36 Print Item 
7. 19, 

Translation Functions Translation Tables 
8. S/36 File PC File 20, Edit Translation Table 
9, S/36 Print Item PC Print File 21, Compile Text Translation File 

10 PC File S/36 File 22, 
11. PC Print File S/36 Print Item 23. 
12, 24. Sign-Off 

Press 'CMD' Then '1' to Return to Program on Hold 
Enter Menu Item Number of Program to Execute 

1 2 4 

SSAMPLE 124 Y Y A 

D 6 2Y CMenu 
DMENU 6 1 9Y Y CSAMPLE 

D 30 125Y Y CEmul ator Transfer Ut iIi X 

Dty S/36 

D 16 162Y CWorkstation ID 
DWSID 2 179Y Y 

D 45 218Y Y CCOPYRIGHT (e) 1985,1986X 

D Software Systems Inc, 

D 33 4 5Y Y C PC Funct ions X 

D 

D 33 444Y Y C Transfer FunctioX 

Dns 

D 36 5 2Y Cl. Allocate New PC Fi 1eX 

D 

D 37 540Y C13, S/36 File ->X 

D PC Fi 1 e 

D 36 6 2Y C2, Rename PC Fi Ie X 

D 

D 37 640Y C14. S/36 Libr Member ->X 

D PC File 

D 36 7 2Y C3. Delete PC File X 

D 

D 38 740Y C15, S/36 Print Item ->X 

D PC Print File 

D 36 8 2Y C4. Test for Existence oX 

Df PC File 

D 37 840Y C16, PC Fi Ie ->X 

D S/36 Fi Ie 

D 2 9 2Y C5, 

D 40 940Y C17, PC Fi Ie ->X 

D S/36 Libr Member 

D 210 2Y C6, 

D 391040Y C18, PC Print Fi Ie ->X 

D S/36 Print Item 

D 211 2Y C7. 

D 31140Y C19. 

D 3213 5Y Y C Translation FunctX 

Dions 

D 341444Y Y C Translation TaX 

Dbles 

D 3614 lY 8, S/36 File -> X 

DPC F; 1e 

D 381440Y C20, Edit Translation TaX 




Workstations 719 

Dble 
D 36151Y C 9. S/36 Print Item -> X 
DPC Print File 
D 381540Y C21, Compile Text TranslX 
Dation File 
D 3616 1Y Cl0 PC Fi le -> X 
DS/36 Fi 1e 
D 31640Y C22, 
D 3817 lY Cll, PC Pri nt Fi 1e -> X 
DS/36 Print Item 
D 31740Y C23. 
D 318 lY e12. 
D 121840Y C24. Sign-Off 
D 1320 3Y 05Y C Press 'CMDX 
D' Then' l' to Return to Program on Hold 
o 4421 3Y CEnter Menu Item Number X 
Dof Program to Execute 
OINPUT 12022 3 Y Y Y 

Figure 20-23 
CREATE MENU USING MESSAGE MEMBER AND SCREEN FORMAT AS SOURCE 

Procedure II IF 7171 • 'ENTER THE MENU NAME TO BE COMPILED -' 
CRTMENU II IF 71R?1 CANCEL 

II IF 7271 • 'DEFAULT LIBRARY OF ?2'?CLIB?'? USED'. 
CREATE 117##,REPLACE,?2?. 
FORMAT CREATE,?1?,?2?,?1?,?2?,1 ,REPLACE,HALT,NOPRINT 

Changing the Console Screen Format 
answered by Matthew Henry and Jeff Pisarczyk 

Code on diskette: a Procedures CPYFCPF, CPYFCPF2 
Screen format member FCPF 

Qwe have a 3197 display station defined as a system console for three 
systems: one S/38 and two S/36s. The display station is connected 

locally to the S/38 and to the S/36s via IBM's Display Station Pass through 
(DSPT). Our problem is identifying from which of the two S/36s we are 
operating; the system console screen does not provide a system name or 
other unique identifier. Displaying the physical location or serial number of 
each machine would save us time and effort. Is it possible to patch some SSP 
object to change the text SYSTEM CONSOLE at the top of the screen? 

ATo change the text at the top of the screen, you must change module 
##FCPF in #LIBRARY, but be forewarned, we don't recommend 

changing the text because the system console display is in the same load 
module as the IPL screen. A mistake while changing the system console 
screen could lead to a system that cannot be IPLed. In addition, any 
changes you make to IBM screens are reset when you install a new SSP 
release or when you apply a load module PTF to load module ##FCPF. 
However, if you do decide to change the console display, follow these steps: 



720 5/36 Power Tools 

Figure 20-24 

Procedure 
CPYFCPF 

Figure 20-25 

$SFGR source 
statements 
(FCPF )for 
console screen 
format 

• Create a temporary library (called WORKOl) to contain a working copy of 
load module ##FCPF. 

• Use procedure CPYFCPF in Figure 20-24 to make two copies of the 
#LIBRARY load module ##FCPF in library WORKOI. The first copy keeps 
the same name as the original and serves as your backup copy. The second 
copy is named ##FCPF2 and is the copy to which you apply the changes. 

• Create a new source member (called FCPF) in library WORKOl, and 
enter the $SFGR source statements exactly as shown in Figure 20-25; 
these statements define the original system console format. 

• Change the value of the constant to a unique identifier in either line 2 or 
line 4 of source member FCPF. Do not change the length of the constants or 
the screen positions of any of the other information because you don't want 
to make any changes that would affect the input/output buffer positions. 

• Apply the screen format changes in source member FCPF by using the 
FORMAT UPDATE procedure shown in Figure 20-26. 

• You can verify that the changes to load module ##FCPF2 are correct by 
displaying the changed format with the SDA view option. 

• After you verify the changes, use procedure CPYFCPF2 in Figure 20-27 
to copy object member ##FCPF2 from library WORKOI to ##FCPF in 
library #LIBRARY. 

• After dedicating your system, IPL the system to activate your changes. 

• Save library WORKOI to diskette should load module ##FCPF be 
replaced in a new version of SSP or in a PTF. 

I I LOAD $MAINT 
I I RUN 
I I COPY TO-WORK01 , FROM -#L1 BRARY, NAME -##FCPF , LI BRARY-O 
I I COpy TO-WORK01 , FROM-#L1 BRARY, NAME -##FCPF, LI BRARY-O, NEWNAME -##FCPF2 
II END 

1 .. ... 2 ... 4 . ... 6 .. 
0001 S#$CPCON 06 
0002 D 00100102Y CSYSTEM 
0003 0 00060159Y Y 05 C SUB 
0004 D 00100166Y Y CCONSOLE 
0005 D 00020179Y 
0006 D 0002210204 
0007 D 0075210601 
0008 D 0002220203 
0009 D 0075220602 
0010 D 00602306 YO Y 
0011 0 00602406 YO Y 



Workstations 721 

Figure 20-26 

FORMAT UPDATE procedure 
FORMAT UPDATE. ##FCPF. #LIBRARY. FCPF. WORKOl ... HALT. NOPAI NT 

Figure 20-27 

Procedure CPYFCPF2 
II LOAD $MAINT 
II RUN 
II COPY FROM-WORKOl .TO-#LIBRARY.LIBRARY-O.NAME-##FCPF2.NEWNAME-##FCPF.AETAIN-R 
II END 

Using 5250 Terminals in Data Mode 
by Mel Beckman 

QCan you suggest a way to set up a 5251 workstation as an output-only 
monitor? I want to hang the displays from the walls in two rooms. One 

display will show useful, general-interest information, and the other will 
show priority information. A timer is necessary to update the displays 
periodically. I want to use the displays without attached keyboards, but I 
don't know how to sign on and start the job without a keyboard. I want to 
control the programs running at these displays from the system console, 
rather than initiate the programs from each workstation. This type of 
display is similar to the departure/arrival display at airports. 

A Data Mode is an oft-ignored workstation mode that allows a program to 
acquire and work with the terminal without the user invoking the program. 

Contrast this mode with a command display station that requires a user to 
initiate jobs. You must configure Data Mode individually for each workstation 
that uses it byentering display type D. You can use a MRT-NEP program and 
$$TIMER to drive several displays with "airline tables" or similar output-only 
data. Or, you could use a separate single-requester terminal (SRT) program for 
each display station, using $$TIMER to delay between screen updates. 

A $$TIMER value of five seconds would give adequate update fre
quency and put very little load on the system. 

The sign-on requirement is a harder question. You still have to sign on at 
data-mode display stations, but only the user ID and password entry fields 
appear on the screen. After the sign-on, the data-mode display "waits" for a 
program to acquire it. If you want to minimize keying, you can make the user 
ID and password all X's (i.e., XXXXXXXX and XXXX). The user would 
have to press only the X key until auto-repeat filled the fields and then press 
ENTER to sign on. Your programs can start automatically at IPL and wait for 
their respective displays to become available before acquiring them. 



722 5/36 Power Tools 

Canceling Continuously Updating, 
Display-Only Programs 
answered by Mel Beckman, Mike Patton, and Kenneth Sims 

QOn our S/36, we run an interactive RPG II program that continuously 
displays an updated screen. Unfortunately, the only way the user can 

stop the job is by pressing the Attention key and selecting option 4 (set 
inquiry condition for program) via IBM's SUBR95. For performance 
reasons, we want to avoid using SUBR95, so we need to know whether it is 
possible, within the program, to intercept a key pressed by the user, similar 
to the interception you can perform using BASIC's INKEY$ instruction. 

A Actually, a program that "interacts" with the user when the Attention 
key is pressed is not an interactive application but is a display 

application. However, try the following method to solve your problem: 
design a program that uses the $$TIMER function and specify a suitable 
period for timer expiration, such as 000001 (or 1 second). Output the 
screen, including any variable information, followed by an output of the 
$$TIMER format, which contains the time period for which the timer is to 
be set. Then read the workstation file. If the user has not pressed the Enter 
key or any of the command (function) keys, the ·STATUS subfield in the 
INFDS informational data structure for the workstation will contain 1331, 
which signals timer expiration. If ·STATUS does not contain 1331, your 
program will know that something (such as end-of-job) should occur. 
Otherwise, simply update the information to be displayed on the screen 
and redisplay the screen, followed by another output operation using the 
$$TIMER format. This cycle lets the user end the program by pressing the 
Enter key or any other command key you allow. 

If you do not want to install ICF for $$TIMER, use SUBR95 as you 
have been doing. You are correct to avoid calling SUBR95 frequently, how
ever, because it calls a system transient to check the flag. 

Clearing the Last Screen Format 
When Using $$TIMER 
by Darryn Lee 

Many S/36 programmers are frustrated by the last screen format that remains 
on the screen when using $$TIMER. You can save the problem by using 
the OFF OCL command, but if you want to exit the program without sign
ing off the system, the last format screen remains until you press ENTER. 

After much work and searching, I solved the problem with only one 
line of code. The line of code must be added to the procedure between the 
II LOAD and II RUN statements; the source code does not change: 



Workstations 723 

II LOAD XXX 

II WORKSTN UNIT-?WS?RESTORE-YES 

II RUN 

Diacritic Mode Explained 
answered by Jeff Silden 

QI have a question about the use of the Grave Accent key. I know that 
the Command Key/Upper Shift and the Grave Accent key (the first 

key on the top row located to the right of the Cmd key) will reverse the 
display image, but the Command Key/Error Reset and the Grave Accent 
key put the display in a diacritic mode. I found this out when one of our 
users came to me because her screen was "funny." I got out of diacritic 
mode by powering off the display, but was curious when I could find no 
real explanation of the Grave Accent key. What are its uses? 

AOn the S/36, diacritic mode enables you to place a diacritic mark above 
or below a character to indicate a different phonetic value, often 

needed in languages other than English. You can enter only those diacritic 
marks that appear on one of the diacritic keys on the keyboard. The 
diacritics available for the 5251 include the' (grave accent), the' (acute 
accent), the" (diaresis), and the c; (cedilla). 

To enter a diacritic above a character, enter diacratic mode, press the 
diacritic key, and then press the character. If the diacritic key and the char
acter key form a valid combination, the cursor moves to the next position; if 
not, an error code (0029) is displayed. 

The allowable characters for each diacritic mark follow: grave accent 
(A,E,I,O,U), acute accent (A,E,I,O,U), tilde (A,N,O), circumflex (A,E,I,O,U), 
diaresis (A,E,I,O,U, and y as a lowercase character only), and cedilla (C). 

If only a diacritic mark is to be entered, press the diacritic mark and 
then the spacebar on the typewriter-like keyboard. 

Diacritic mode is not directly enabled on the S/34. On the S/34, you 
need additional microcode specific to your geographical location. The S/36, 
on the other hand, is a "world class" computer. The support for diacritics is 
included in the workstation controller microcode. It is enabled by selecting 
the Multinational Character Set option during system installation/release 
update/microcode configuration. Diacritic mode applies only to the one 
character following the press of the grave accent. Thus, instead of powering 
off the terminal, you could have escaped the diacritic mode by simply 
pressing the Error Reset key or by pressing the space bar and then 



724 5/36 Power Tools 

backspacing over the created diacritic. Last, just because you can display 
the diacritics, it doesn't mean you can print them. 

Entering Special Characters on a Workstation 
by JeffSilden 

QOn my 5362, I have found the hexadecimal function helpful when 
creating some of the special characters supported by the 3197 terminal 

that are also printed on the 3812 Pageprinter (e.g., fractions, slashed zeros, 
and so on), yet the hex key function on the 3197 isn't shown on the 5251 and 
5291 terminal keyboards. I've also had trouble getting the hex key function 
to work on some of my clients' S/36s. Am I doing something wrong? 

AAs you noted, the hex key function lets you access more characters than 
those shown on your terminal keyboard. When using the 3180, 3196, and 

3197 terminals, you select the hex function and then key a two-character 
value in the range ofX'40' to X'FF' that corresponds to the desired hex code 
(values below X'40' are reserved for use by the workstation controller). You 
gain access to the hex key function on the 5251 and 5291 terminals by 
pressing the CMD key and then the Grave Accent key (to the left of the 
number 1 key) before keying the hex character you want. 

But the terminal device is only half the story. The S/3X to which your 
terminal is connected must have a workstation controller that supports the 
hex functions. All AS/400s and S/36 models 5362, 5363, and 5364 support 
the hex key function, as do 5360s with the workstation expansion feature. 
5360s that do not have the workstation expansion feature don't support the 
hex key function. It appears that the client machines with which you've 
experienced trouble are 5360s without the workstation expansion feature. 

DiHerences Between 5251 and 5291 Character Sets 
by Matthew Henry and Jeff Silden 

QWhYon a 5251 terminal do the keystrokes Command Accent B7 
produce the character 1/4, while the same combination of keystrokes 

produces a blank on the 5291 terminal? 

AThe 5291 does not display the same hex characters as a 5251. As a 
result, screens created on the 5251 with these special characters may 

appear differently on the 5291. To see what characters a terminal is capable 
of displaying, you can run the TESTREQ procedure from any command 
display. Select option 1 from the main menu, and then select option 2 to 
show all displayable characters for your terminal. 



Workstations 725 

Toggling Cursor Sizes on 5291 and 5292 
Workstations 
answered by Me! Beckman 

QI've connected some IBM 5291/2 terminals to my S/36. The cursor is a 
rectangle like a one position zone in reverse image. It is really hard to 

tell where the cursor is when it stays on a one-position input field with 
reverse image attribute; the cursor is virtually invisible! How can I change 
the cursor to an underline cursor like on an IBM 5251 screen? 

ATo toggle the cursor between its rectangular block and underscore 
forms, press and hold down the Command key and press the Error 

Reset key. The 5292 Color Display Station can also display the cursor in 
either block or underline form. To choose or change its form, first enter the 
Select Option mode by pressing and holding the Command key and 
pressing the Error Reset key (a blue indicator will appear on the status line 
above the word Select). Next, press Numeric Key 1 and make your cursor 
choice. Numeric Key 2 in Select Option mode allows you to choose 
between blinking or nonblinking cursor action. After an option is selected 
or changed, press the Error Reset key to return to normal operation. 

Fixing a 3197-D ROM Bug 
answered by Me! Beckman 

QWhen we configure our 3197 -D terminals with two sessions, using the 
"jump" key also shifts the Command key. Although the Caps Lock 

indicator is not on, pressing a Shift key resets the shifted Command key. 
Any solutions? 

AYour problem is caused by a 3197 microcode bug. Your CE has a fix for 
this bug - new ROMs that contain relatively bug-free microcode 

and because IBM feels the bug is the result of a manufacturing defect, the 
microcode is free even if your machine is out of warranty or not under 
maintenance. 

Some CEs aren't very good at looking up problems on RETAIN or 
HONE - IBM's error-reporting and inquiry systems; I've had several CEs 
tell me there was no such fix even after I showed them the IBM letter to 
CEs announcing the fix! So be persistent, don't take "no" for an answer, 
and be sure that they upgrade all of your machines on site. You don't have 
to take your machines in for this fix even if you're under the carry-in main
tenance plan because IBM does this upgrade on site. 



726 5/36 Power Tools 



A.,pendixA 


5/36 Power Tools Program and Procedure Cross-Reference 
Note: When copying certain programs from diskette, you will encounter the message 

SYS-2594 Trying to copy privileged module. 
Answer this message with option 0; however, if you are not signed on as a security officer, 
option 0 won't be available. In that case, take option 3, sign off and sign on again as a security 
officer, and copy the programs to disk. 

Name Member Type Cha.....r Page 	 Description 

IPDSO$02 RPG program IS 500 	 Prints a sample letterhead to show IPDS functions. Called by 
L THDI$OO. Requires assembler subroutine SUBR50, 
SUBR51, and SUBR52 (IPDS Advanced Functions PRPQ). 

#0 Screen format member 6 142 	 Screen format for menu #0. 

#0## Menu member 6 142 	 Menu that lets you return to your application library after 
quitting DisplayWrite/36. Called by TEXTDOC. Uses screen 
format member #0. 

#QRYEXT RPGcode 7 166 F- and I-specs for file #QRYEXT. 

#SCHEDI Procedure 13 375 Evokes daily job stream. Calls procedure #SCHED2. 

#SCHED2 Procedure 13 375 Runs a daily job stream at a specific time of day. Called by 
#SCHEDI. 

@DATA Assembler subroutine 3 66 Special device file that lets you use 0- and I-specs to convert 
or format fields without performing disk I/O. 

@DTEI RPG subroutine 3 59 Converts Gregorian date to Julian date. 

@DTE2 RPG subroutine 3 59 Converts Julian date to Gregorian date. 

@DTLY RPG subroutine 3 59 Determines if a year is a leap year. 

@RPTSMPL Procedure IS 470 Prints a sample report from an RPG program's O-specs. Called 
by REPTSMPL. Calls SMPLA@ . Generates an RPG 
program, SMPLB@, that actually prints the sample report. 

ACTIVE Assembler program 13 Returns the number of active jobs via the ?CD? substitution 
parameter. 

AIBLD RPG program 12 332 Reads disk VTOC and builds extract file containing parent 
and alternate index files. Called by AIUTIL. 

AIDEL RPG program 12 334 Passes the names of alternate files to the LDA for deletion. 
Called by AIUTIL. 

AIDSP RPG program 12 333 	 Prompts you to confirm reorganization of MAPICS files with 
alternate indexes. Called by AITUTIL. Uses screen format 
member AIDSPFM. 

AIDSPFM Screen format member 12 337 Screen format for program AIBSP. 

AIUTIL Procedure 12 330 Reorganizes MAPICS files that use alternate indexes. Calls 
programs AIBLD, AIDSP, and AIDEL. 

ATRSET Procedure 11 309 Sets library member attributes. Calls program ATRSET. Uses 
screen format member ATRSET. 



728 5/36 Power Tools 

Name Member Type 

ATRSET RPG program 

ATRSETFM Screen format member 

BASUNL Procedure 

C24T012 Procedure 

C24T012A RPG subroutine 

C24T012B RPG subroutine 

C24T012C RPG subroutine 

CADD Procedure 

CASDWMFM Screen format member 

CASDWM Procedure 

CASDWM RPG program 

CMPDAY Procedure 

CMPDAY RPGcode 

COMPILE Procedure 

COMPILEC Procedure 

CPYFCPF Procedure 

CPYFCPF2 Procedure 

CREM Procedure 

CRMENU Procedure 

CRMSG Procedure 

CRSRC RPG program 

CRSRCFM Screen format member 

CRTEFL Procedure 

CRTMENU Procedure 

CTRTXT RPGcode 

DEL Procedure 

DELMAP Procedure 

DOGRP Procedure 

DOGRP RPG program 

Cha....r 

11 

11 

11 

3 

3 

3 

3 

18 

6 

6 

6 

3 

3 

16 

16 

20 

20 

18 

11 

11 

11 

11 

8 

20 

3 

8 

12 

7 

7 

Page 

310 

317 

322 

55 

52 

53 

54 

660 

125 

125 

126 

62 

63 

531 

532 

720 

721 

660 

306 

303 

305 

304 

223 

719 

66 

242 

326 

180 

180 

Description 

Sets library member attributes. Called by A TRSET. 


Prompt screen for procedure ATRSET. 


Unlocks a BASIC source program. 


Converts the system time from 24-hour to 12-hour format. 


Converts the system time from 24-hour to 12-hour format. 


Converts the system time from 24-hour to 12-hour format. 


Converts the system time from 24-hour to 12-hour format. 


Patches the CACHE program O#SVCMG to allow the CACHE 

procedure to be run from other than the system console. 


Prompt screen for procedure CASDWM. 


Merges spool document with a DisplayWrite/36 document. 

Calls program CASDWM. Uses screen format member 

CASDWFM. 


Merges spool document with a DisplayWrite/36 document. 

Called by CASDWM. 


Converts the day of week for the system date. 


Converts the day of week for a given date. 


Copies procedure COMPILEC and gives it the same name as 

the program it compiles (preceded by $). 


The RPG compile procedure copied and given the same name 

as the program it compiles (preceded by $). When RPGC runs, 

the compile listing will show the name of the program in the 

spool status display. 


Copies IBM load module ##FCPF to work library. 


Copies IBM load module ##FCPF back to #LIBRARY. 


Patches the CACHE program O#SVCMG to disallow the 

CACHE procedure to be mn from other than the system console. 


Re-creates a source member from a menu object member. Calls 

program CRSRC. Uses screen format member CRSRCFM. 


Re-creates a source member from a message object member. 

Calls program CRSRC. Uses screen format member 

CRSRCFM. 


Re-creates source from message and menu object members. 

Called by CRMENU and CRMSG. 


Prompt screens for procedures CRMENU and CRMSG. 


Creates an empty test file using the file specifications of the 

production file. 


Creates a menu from a message member and screen format 

member. 


Centers a line of text. 


Deletes multiple files. 


Deletes MAPICS backup diskettes. 


Prints vertical lines between structured opcodes and indents 

them. Calls program DOGRP. Uses screen format member 

DOGRPFM. 


Prints vertical lines between structured opcodes and indents 

them. Called by DOGRP. 




Cross-ReFerence 729 

Name Member Type Chapter Page Description 

DOGRPFM Screen format member 7 179 Prompt screen for procedure DOGRP. 

DSP Procedure 14 449 Browses a spool file with POP's file browse. 

DUPCHR RPG code 16 582 Performs character-by-character duplication in an input field 
when DUP key pressed. 

DUPKEY RPG program 16 585 Tests assembler subroutine SUBRDU. Called by DUPTST. 

DUPTST Procedure 16 584 Tests assembler subroutine SUBRDU. Calls program 
DUPKEY. Uses screen format member DUPTSTFM. 

DUPTSTFM Screen format member 16 584 Prompt screen for procedure DUPTST. 

ERROR Procedure 16 590 Displays error message and prompts for 0, 1,2, or 3 option. 

FCPF Screen format member 20 720 Applies changes to the console screen format member. 

FILEB Procedure 14 448 Restricts POP's FILE display with a file mask. Copy to 
#UBRARY. 

FILEE Procedure 14 449 Edits a file using Query Data Entry Facility. Copy to 
#POPUB. Note that #POPUB already contains a procedure 
named FILEE, so if you use both procedures in #POPUB, 
one of them must be renamed to use a POP opcode other than 
E. 

FILEKY6 Procedure 14 450 Switches to LIBR display. Copy to #POPUB. 

FILEL Procedure 14 449 Links a file to its IDDU definition. Copy to #POPUB. 

FILEN Procedure 14 433 Renames a single file in POP. Uses screen format member 
FILENFM. Copy to #POPUB. 

FILENM Screen format member 14 434 Prompt screen for procedure FILEN. Copy to #POPLIB. 

FILEQ Procedure 14 437 Renames multiple files in POP. Calls procedures FQQ and 
FILVPARM. Uses screen format member FILEQQFM. Copy 
to #POPUB. Note that another procedure is named FILEQ 
(FILEQ2 on diskette), so if you use both procedures in 
#POPUB, one of them must he renamed to use a POP opcode 
other than Q. 

FILEQ2 Procedure 14 450 Displays a file through Query/36 with IDDU field headers. Copy 
to #POPUB and rename to FILEQ. Note that another procedure 
is named FILEQ, so if you use both procedures in #POPLIB, one 
of them must be renamed to use a POP opcode other than Q. 

FILEQQFM Screen format member 14 436 Prompt screen for procedure FILEQ. Copy to #POPUB. 

FILES Procedure 14 442 Copies multiple files in POP. Calls procedures FSQ and 
FILVPARM. Uses screen format member FILESSFM. Copy 
to#POPUB. 

FILESSFM Screen format member 14 441 Prompt screen for procedure FILES. Copy to #POPLIB. 

FILEU Procedure 14 450 Unlinks a file from its IDDU definition. Copy to #POPUB. 

FILEZ Procedure 14 446 Deletes a file without confirmation. Copy to #POPLIB. 

FILVPARM Procedure 14 445 Retrieves the next file name for renaming or copying. Called 
by FILEQ and FILES. Copy to #POPLIB. 

FINDLAST RPGcode 8 214 Finds the last record number in a file. 

FLDCMP RPG program 13 364 Creates procedure to condense DisplayWrite/36 folders. 

FLDCMPP Procedure 13 364 Condenses DisplayWrite/36 folders. 

FLEDIT Procedure 8 201 Edits file records. Calls program FLEDIT. 

FLEDIT RPG program 8 195 Edits file records. Called by FLEDIT. Requires assembler 
subroutine SUBRFA. 

FLEDITFM Screen format member 8 200 Screen formats for program FLEDIT. 



730 5/36 Power Tools 

Name Member Type Chapter Page 

FOLDMK Procedure 9 251 

FOLDMK RPG program 9 248 

FOLDMKFM Screen format member 9 250 

FOLDMKMG Message member 9 251 

FQQ Procedure 14 440 

FSEDITZS Procedure 14 411 

FSQ Procedure 14 444 

FTSPRC Procedure 2 26 

FTSPRG RPG program 2 27 

FTSPRGFM Screen format member 2 28 

GEOPK Procedure 7 192 

GEOPK RPG program 192 

GOLEM Assembler program 18 659 

GOLEM Procedure 18 659 

GTDTFI COBOL program 16 570 

GTDTF2 COBOL program 16 571 

HISTCOPY Procedure 8 243 

HPMAKE Procedure 20 714 

HPMAKE RPG program 20 711 

ICCALL Procedure 16 563 

ICCALL RPG program 16 562 

ICMAIN Procedure 16 562 

ICMAIN RPG program 16 560 

IDDUXL Procedure 10 262 

IDDUXL RPG program 10 263 

IDDUXLPM Screen format member 10 262 

JI/ Procedure 18 652 

Description 

Runs any SSP procedure on a group of selected folders. Calls 

program FOLDMK. 


Builds a procedure to run an SSP procedure on selected 

folders. Called by FOLDMK. Requires assembler subroutine 

SUBRVR. 


Prompt screens for procedure FOLDMK. 


Message member for procedure FOLDMK. 


Renames a file. Called from FILEQ. Copy to #POPLIB. 


Allows two edit sessions in POP's FSEDIT. Insert this code 

into FSEDIT in #POPLIB as instructed in the article. 


Copies a file. Called from FILES. Copy to#POPLIB. 


Transmits or receives entire data files or library members 

to/from a remote S/36. Calls program FTSPRG. Uses screen 

format member FTSPRGFM. 


Transmits or receives entire data files or library members 

to/from a remote S/36. Called by FTSPRC. Requires 

assembler subroutine SUBRF2 (part of IBM's Base 

Communications). 


Prompt screen for procedure FTSPRC. 


Saves a spooled document to a source member. Calls program 

GEOPK. 


Saves a spooled document to a source member. Called by 

GEOPK. 


Grants console capability to any workstation. Called by 

GOLEM. 


Grants console capability to any workstation. Calls program 

GOLEM. 


Retrieves cursor position. 


Retrieves the DTF control block. 


Saves history file to file HIST.n. 


Converts S/36 help screens created on a PC to S- and D-specs. 

Calls program HPMAKE. 


Converts S/36 help screens created on a PC to S- and D-specs. 

Called by HPMAKE. 


Sample ICF-INTRA program that increments a passed 

parameter. Calls program ICCALL. 


Sample ICF-INTRA program that increments a passed 

parameter. Called by ICCALL. 


Sample ICF-INTRA program that initiates a session, sends and 

receives data, and controls execution. Calls program ICMAIN. 


Sample ICF-INTRA program that initiates a session, sends 

and receives data, and controls execution. Called by ICMAIN. 


Creates RPG F- and I-specs from IDDU. Calls program 

IDDUXL. Uses screen format member IDDUXLPM. 


Creates RPG F - and I-specs from IDDU. Called from 

procedure IDDUXL. 


Prompt for procedure IDDUXL. 


Puts a single OCL statement on the job queue. This 




Cross-Reference 731 

Name Member Type Chapter Page Descriptian 

procedure must have the program data attribute set. Calls 
procedure 10CL and program 10CL. 

10BQ02 RPG program 13 374 Adds a job to a list of jobs to be run at a given time. Called by 
10BQ!. 

10BQ03 RPG program 13 375 Retrieves a job for execution from the list of jobs created by 
procedure 10BQ!. Called by 10BQ2. 

10BQ1 Procedure 13 373 Adds a job to a list of jobs to be run at a given time. Calls 
program 10BQ02. 

10BQ3 Procedure 13 374 Executes jobs in the list of jobs created by procedure 10BQ1. 
Calls program 10BQ03. 

JOCL Procedure 18 652 Executes the OCL command stored in the LOA. Called by JI/. 
JOCL RPG program 18 652 Reads procedure command line and stores it in the LOA. 

Called by JI/. 
KEEPOPEN Procedure 8 231 Keeps large indexed files open. Substitute your indexed file 

names and specifications in this procedure's FILE statements. 

KPOPEN RPG program 8 231 MRT program used to keep large indexed files open. 
Substitute your indexed file names and specifications in this 
program's F-specs. 

LOA Procedure 18 653 ~isplays and allows updating of the LOA and switches. Uses 
screen format member LOAFM. 

LOAFM Screen format member 18 654 Prompt screen for procedure LOA. 

LETHDFIL Source member 15 SOl IPDS specifications for a sample letterhead. Used by 
procedure LTH01$00. 

LlB#2518 Message member 11 323 Message member for procedure LlB#OECR. 

LlB#OECR Procedure 11 323 Increases the size of #LIBRARY. 

LIBBAK Procedure 8 Saves one or all user libraries. Calls program LIBBAK. Uses 
screen format member LlBBAKFM and message member 
LIBMSG. 

LIBBAK RPG program 10 Creates a library backup procedure. Called by LIBBAK. 

LlBBAKFM Screen format member 7 Prompt screen for procedure LlBBAK. 

LlBMSG Message member 10 Message member for procedure LlBBAK. 

LlBR* Procedure 14 425 Placeholder used by LIBRO procedure. Copy to #POPLIB. 

LIBRA Procedure 14 450 Reallocates a library using ALOCLIBR. Copy to #POPLIB. 

LlBRCOMP Procedure 14 450 Condenses a library using the C opcode in LIBR. Insert at the 
beginning of POP's LlBRC procedure. 

LlBRI Procedure 14 406 Retrieves library and member information in POP. Calls 
program LlBRI. Copy to #POPLIB. Note that #POPLIB 
already contains a procedure named LlBRI, so if you use both 
procedures in #POPLIB, one of them must be renamed to use 
a POP opcode other than I. 

LlBRI RPG program 14 395 Retrieves library and member information in POP. Called by 
LIBRI. Uses screen format member LlBRIFM. Requires 
assembler subroutine SUBRLO. Copy to #POPLIB. 

LIBRIFM Screen format member 14 403 Screens for program LIBRI. Copy to #POPLIB. 

LlBRKY8 Procedure 14 451 Switches to FILE display. Copy to #POPLIB. 

LIBRL Procedure 14 412 Emulates COBOLONL in POP, calling FSEDIT instead of 
SEU. Copy to #POPLIB. 

LIBRM Procedure 14 412 Removes diagnostics from RPG programs in POP. Copy to 
#POPLIB. 



732 5/36 Power Tools 

Description 

Transmits library members via ODF/36 and POP. Calls 
program ODFPOP and procedure SENDODF. Copy to 
#POPLIB. Note that another procedure is named LIBRO 
(LIBR02 on diskette), so if you use both procedures in 
#POPLIB, one of them must be renamed (0 use a POP opcode 
other than O. 

Emulates RPGONL in POP, calling FSEDIT instead of SEU. 
Copy (0 #POPLIB and rename (0 LIBRO. Note that another 
procedure is named LIBRO, so if you use both procedures in 
#POPLIB, one of them must be renamed (0 use a POP opcode 
other than O. 

Blanks out columns 1-5 and 75-80 in RPG source in POP. Calls 
program LIBRQ. lYses screen format member LIBRQFM. 
Copy to #POPLIB. Note that another procedure is named 
LIBRQ (LIBRQ2 on diskette), so if you use both procedures 
in #POPLIB, one of them must be renamed (0 use a POP 
opcode other than Q. 

Blanks out columns 1-5 and 75-80 in RPG source in POP. 
Called by LIBRQ. Copy (0 #POPLIB. 

Puts a job on the job queue from POP. Copy (0 #POPLIB and 
rename (0 LIBRQ. Note that another procedure is named 
LIBRQ, so if you use both procedures in #POPLIB, one of 
them must be renamed (0 use a POP opcode other than Q. 

Prompt screen for procedure LIBRQ. Copy (0 #POPLIB. 

Evokes a job from POP. 

Prevents you from signing on to more than one workstation. 
Calls procedure ONEUID. Use SECEDIT to make this the 
mandatory log-in procedure for each user. Change library name 
TOOLKIT (0 the library in which you store procedure 
ONEUID. 

IPDS specifications for a sample logo. 

Demonstrates read under format technique for passing data 
from prompt screen (0 a multiscreen workstation program. 

Executes an SSP backup command without rewinding the 
tape. 

Prints a sample letterhead to show IPDS functions. Calls 
program IPDSO$OZ. Uses graphic source member 
LETHDFIL. 

Generates a $FEFIX procedure (0 re-create a given 0- or R-
module. Calls program MAKE$F. Uses screen format member 
MAKE$F. 

Generates a $FEFIX procedure to re-create a given 0- or R-
module. Called by MAKE$F. Requires assembler subroutine 
SUBRCS. 

Prompt screen for procedure MAKE$F. 

Creates an empty $MAINT file with a directory entry. Called 
by an MKxxxxxx procedure (where xxxxxx is the name of the 
0- or R-module). MKxxxxxx procedures are created by 
procedure MAKE$F. 

Prints a map of the LOA usage in a library and cross-reference 
reports of the LOA and RPG programs. Calls programs 
MPLD1, MPLDZ, and MPLD3. 

Name Member Type 

LIBRO Procedure 

LIBR02 Procedure 

LIBRQ Procedure 

LIBRQ RPG program 

LIBRQ2 Procedure 

LIBRQFM Screen format member 

LIBRV Procedure 

LOGIN Procedure 

LOGO Source member 

LONGPROC Procedure 

LOOPSAVE Procedure 

LTHD1$00 Procedure 

MAKE$F Procedure 

MAKE$F RPG program 

MAKE$FFM Screen format member 

MAKMEM RPG program 

MAPLDA Procedure 

Chapter Page 

14 419 

14 412 

14 413 

14 

14 

414 

430 

14 

14 

17 

415 

431 

605 

15 

20 

19 

19 

2 

2 

2 

2 

497 

694 

681 

500 

33 

33 

32 

38 

7 171 



Cross-Reference 733 

Name Member Type Chapter Page Description 

MCOM Procedure 4 75 Jobstream to edit menu command text and compile it (avoids 
having to use SDA to change command text). . 

MMETER Procedure 13 390 Displays realtime memory usage. Calls program MMETER. 

MMETER RPG program 13 388 Displays realtime memory usage. Called by MMETER. Uses 
screen format member MMETERFM. Requires assembler 
subroutine SUBR$S. 

MMETERFM Screen format member 13 389 Screen format used by program MMETER. 

MPLDI RPG program 7 171 Prints a map of the LOA usage in a library. Called by 
MAPLDA. 

MPLD2 RPG program 7 174 Prints LOA usage by field name. Called by MAPLDA. 

MPLD3 RPG program 7 175 Prints LOA usage by field starting position. Called by MAPLDA. 

MSGI404 Message member IS 487 Message member used by procedure PRINTS. 

MSGI404N Message member IS 487 Message member used by procedure PRINTS. 

NEGLFT RPGcode 3 60 Adds a sign to negative numbers one position to the left of the 
leftmost digit. 

NEST Procedure 16 548 Prints action diagrams for structured verbs in an RPG program. 
Calls program NEST. Uses screen format member NESTFM. 

NEST RPG program 16 549 Prints action diagrams for structured verbs in an RPG program. 
Called by NEST. 

NESTFM Screen format member 16 548 Prompt screen for procedure NEST. 

NEWDISK Procedure 13 346 Automatically runs SMF at specified time. 

NUMCKI RPGcode 3 57 Tests a field for all numeric values. 

NUMCK2 RPGcode 3 58 Tests a field for all numeric values. 

ODFGET RPG program 14 426 Sets up object transmission and prints reports. Called. by 
SENDODF. Copy to #POPLIB. 

ODFMSG RPG code 14 425 F- and I-specs for file ODFMSG, which is used by programs 
ODFGET and ODFPOP. 

ODFPOP RPG program 14 420 Displays Send Objects Through the Network screen. Called 
by LIBRO. Uses screen format member ODFPOPFM. Copy 
to#POPLIB. 

ODFPOPFM Screen format member 14 423 Screen format for program ODFPOP. Copy to #POPLIB. 

ODFSND RPGcode 14 425 F- and I-specs for file ODFSND, which is used by programs 
ODFGET and ODFPOP. 

ONEUID Procedure 17 606 Prevents user from signing on to more than one workstation. 
Called by ONEUID. Calls program ONEUID. Uses message 
member ONEUIDM. 

ONEUID RPG program 17 606 Tests to see whether user has signed on to more than one 
workstation. 

ONEUIDM Message member 17 608 Message member for procedure ONEUID. 

PACKDATE Procedure 16 580 Example of sorting a file containing packed dates. 

POPLDA Procedure 18 658 Retrieves saved LOA and UPSI switches from a stack. Calls 
program POPLDA. 

POPLDA RPG program 18 657 Retrieves saved LOA and UPSI switches from a stack. Called 
byPOPLDA. 

POS Procedure 14 415 Positions the multimember LIBR display to a given member. 

PRGLST Procedure 11 284 Lists members created or modified within given date range. 
Calls program PRGLST. 



734 5/36 Power Tools 

De8criptlon 

Lists members created or modified within given date range. 

Called by PRGLST. 


Changes CPI after a report is created. 


Resets forms types for printing after IPL. Calls program 

PRINTS. Uses message members MSGI404 and MSGI404N. 


Resets forms types for printing after IPL. Called by PRINTS. 


Creates a new source member with profiling code. Note: the 

"source required" attribute must be set for the object member 

of this program. Called by PROFRPG. 


Sets number of elements in E-spec for # array (used to count 

statement executions). Called by PROFRPG. 


Prints source program listing merged with its profile data. 

Called by PROFPRT. 


Prints source program listing merged with its profile data. Calls 

program PROFL3. 


Inserts code into an RPG program to profile it. Calls programs 

PROFLI and PROFL2. 


Demonstrates read under format technique for passing data 

from prompt screen to a sort. 


Demonstrates read under format technique for passing data 

from prompt screen to a workstation program. 


Demonstrates read under format technique for passing data 

from a workstation program to another. 


Saves the LDA and UPSI switches on a stack. Called by 

PUSHLDA. 


Saves the LDA and UPS I switches on a stack. Calls program 

PSHLDA. 


Prints an enhanced query report header page. Calls program 

QQRYID. 


Prints an enhanced query report header page. Called by 

QQRYID. 


Produces extract file of the queries contained in up to 8 

libraries. Calls program QRYXRF. Uses screen format member 

QRYXRFFM. Note: change the value "foldername" in the last 

line of the procedure to the folder containing the IDDU 

definition for the extract file. 


Produces extract file of the queries contained in up to 8 

libraries. Called by QRYXRF. Uses assembler subroutines 

SUBRLD and SUBRLR. 


Prompt screen for procedure QRYXRF. 


Generates a random number. 


Calls RPG assembler subroutine from COBOL. Used in 

program TBRIDG. 


Receives a diskette from another S/36 via BSC. Calls program 

RECVDK. 


Receives a diskette from another S/36 via BSC. Requires 

assembler subroutine SUBRDK. Called by RECVDK. 


Name Member Type 

PRGLST RPG program 

PRINTI98 Procedure 

PRINTS Procedure 

PRINTS RPG program 

PROFLl RPG program 

PROFL2 RPG program 

PROFL3 RPG program 

PROFPRT Procedure 

PROFRPG Procedure 

PROMPTI Procedure 

PROMPT Procedure 

PROMRUF Procedure 

PSHLDA RPG program 

PUSHLDA Procedure 

QQRYID Procedure 

QQRYID RPG program 

QRYXRF Procedure 

QRYXRF RPG program 

QRYXRFFM Screen format member 7 161 

RANDOM RPG subroutine 16 578 

RBRIDGE Assembler subroutine 16 569 

RECVDK Procedure 5 89 

RECVDK RPG program 5 87 

Chapter Page 

II 285 

15 483 

15 487 

15 486 

16 525 

16 528 

16 529 

16 529 

16 524 

20 694 

20 695 

20 695 

18 656 

18 658 

10 256 

10 256 

7 164 

7 162 



Cross-Reference 735 

Name Member Type Chapter Page Description 

REORG Procedure 8 237 Generates a procedure (named REORG2) that deletes 
alternate indexes, reorganizes files, and rebuilds alternate 
indexes. Calls program REORG and procedure REORG2 
(after it is generated). 

REORG RPG program 8 238 Generates a procedure that deletes alternate indexes, reorganizes 
files, and rebuilds alternate indexes. Called by REORG. 

REORGI Procedure 8 240 Reorganizes a file. Called by REORGI (which is generated 
each time procedure REORG is run). 

REPORT Procedure 15 481 Prompts for report parameters. Uses screen format member 
REPORTFM. 

REPORTFM Screen format member 15 481 Prompt screen for procedure REPORT. 

REPTSMPL Screen format member 15 465 Prompt screen for procedure REPTSMPL. 

REPTSMPL Procedure 15 465 Accepts parameters to print a sample report from an RPG 
program's O-specs. Calls procedure@RPTSMPL. Uses screen 
format member REPTSMPL. 

RESTFILE Procedure 3 Restores a file to disk using a new name. Uses screen format 
member RESTFLFM. 

RESTFLFM Screen format member 5 Prompt screen for procedure RESTFILE. 

ROLEM Assembler program 18 659 Revokes console capability for a workstation. Called by ROLEM. 

ROLEM Procedure 18 658 Revokes console capability for a workstation. Calls program 
ROLEM. 

RPGINI RPG program 16 537 Sample program to show traditional indicator use. 

RPGIN3 RPG program 16 538 Sample program to show reduced indicator use. 

RPGIN5 RPG program 16 540 Sample program to show better indicator use. 

SAMPLE Screen format member 20 718 Sample screen format used to show how to customize screen 
attributes in menus. 

SAMPLE## Message member 20 717 Sample message member used to show how to customize 
screen attributes in menus. 

SENDDK Procedure 5 88 Sends a diskette to another S/36 via BSC. Calls program 
SENDDK. 

SENDDK RPG program 5 85 Sends a diskette to another S/36 via BSC. Requires assembler 
subroutine SUBRDK. Called by SENDDK. 

SENDODF Procedure 14 426 Transmits library members via ODF/36. Called by LIBRO. 
Calls program ODFGET. Copy to #POPUB. 

SETDEL Assembler program 8 242 Makes a file delete-capable. Called by SETDEL. 

SETDEL Procedure 8 241 Makes a file delete-capable. Calls program SETDEL. 

SEUMOD Procedure 4 72 Tests for existing member in #LIBRARY before saving it to 
the specified library. Uses screen format member 
SEUMODFM. Insert this code into IBM's #SEU procedure in 
#SEULIB library. 

SEUMODFM Screen format member 4 73 Prompt screen for procedure SEUMOD. Copy to library 
#SEULIB. 

SFGRIO Procedure 20 702 Creates externally described workstation files. Calls program 
SFGRIO. Uses screen format member SFGRIOFM and 
message member SFGRIOMI. 

SFGRIO RPG program 20 704 Creates externally described workstation files. Called by 
program SFGRIO. 

SFGRIOFM Screen format member 20 701 Prompt screen for procedure SFGRIO. 



736 5/36 Power Tools 

Name Member Type 

SFGRIOMI Message member 

SHOWUR Procedure 

SHOWUR RPG program 

SHOWURFM Screen format member 

SHRTAR RPG program 

SMFP21 Procedure 

SMFP2l RPG program 

SMFP23 RPG program 

SMPLA@ RPG program 

SMPLD RPG code 

SMPSG RPG code 

SPACE Procedure 

SPACE RPG program 

STKORGI4 Procedure 

STMBPOI Procedure 

STMBP02 Procedure 

SUBR## Assembler subroutine 

SUBR$F Assembler subroutine 

SUBR$S Assembler subroutine 

SUBRAT Assembler subroutine 

SUBRCL Assembler subroutine 

SUBRCP Assembler subroutine 

SUBRCS Assembler subroutine 

SUBRCS Assembler subroutine 

SUBRDF Assembler subroutine 

SUBRDK Assembler subroutine 

SUBRDP Assembler subroutine 

SUBRDU Assembler subroutine 

SUBREK Assembler subroutine 

SUBRF5 Assembler subroutine 

SUBRFA Assembler subroutine 

SlJBRFD Assembler subroutine 

Chapter Page 

20 

8 

8 

8 

15 

13 

13 

13 

15 

II 

II 

5 

5 

8 

13 

13 

18 

16 

13 

3 

15 

20 

2 

3 

18 

5 

16 

16 

20 

18 

8 

18 

703 

213 

210 

212 

466 

379 

379 

380 

471 

279 

288 

104 

105 

235 

360 

363 

671 

573 

390 

69 

455 

684 

40 

70 

672 

89 

565 

585 

687 

642 

203 

667 

DeKrlptian 

Message member for procedure SFGRIO. 


Displays all locked records. Calls program SHOWUR. 


Displays all locked records. Called by SHOWUR. Requires 

assembler subroutine SUBRUR. 


Screen format for program SHOWUR. 


Sample program used to show operation of procedure 

REPTSMPL. 


Analyzes SMF data and prints a cache analysis report. Calls 

programs SMFP2l and SMFP23. 


Extracts data from SMF.DATA file. Called by SMFP21. 


Prints a cache analysis report. Called by SMFP21. 


Creates a program that prints a sample report from a program's 

O-specs. 


Sample code to read library directories. Requires assembler 

subroutine SUBRLD. 


Sample code to retrieve source and procedure members. 

Requires assembler subroutine SUBRSG. 


Retrieves available space and volume ID for a diskette. Calls 

program SPACE. 


Retrieves available space and volume ID for a diskette. Called 

by SPACE. 


Runs a dedicated COPYDATA for a file to remove deleted 

records. Substitute the file name and tailor the COPYDATA 

for your file. 


Improves disk compress by making room for work files. 


Increases file size and reorganizes file. Note: replace 

NEWSFILE with the name of your file, and adjust the value 

for parameter 11 to what's appropriate for your file. 


Retrieves the CPU serial number. 


Searches for a string. 


Special file that retrieves current memory usage information. 

Used in program MMETER. 


Centers or left- or right-justifies a string. 


Closes a printer file. 


Retrieves cursor position. 


Computes checksum. Used in program MAKE$F. 


Converts a string between lowercase and uppercase. 


Retrieves the system date format. 


Reads and writes one or more diskette sectors. lJ sed in 

programs RECVDK and SENDDK. 


Turns on privileged mode. 


Stores text in workstation's Dup key save area. Used in 

program DUPKEY. 


Enables function and command keys dynamically. 


Retrieves Format-5s. Used in program VTOCFR. 


Accesses files dynamically. Used in program FLEDIT. 


Sends a message to the system console. 




Cross-Reference 737 

Name MambarType Chapter Page Description 

SUBRLD Assembler subroutine 11 280 Retrieves library directory information. Used in programs 
QRYXRF, LIBRI, and SMPLD. 

SUBRLR Assembler subroutine 7 168 Reads library member sectors. Used in program QRYXRF. 

SUBRNP Assembler subroutine 16 565 Turns off privileged mode. 

SUBROP Assembler subroutine 15 454 Opens a printer file. 

SUBRRR Assembler subroutine 20 685 Reads workstation input fields when Roll key pressed. 

SUBRSG Assembler subroutine 11 289 Retrieves source and procedure members from a library. Used 
in program SMPSG. 

SUBRSW Assembler subroutine 11 296 Writes source or procedure members to a library. 

SUBRSX Assembler subroutine 15 458 Retrieves the spool 10 for a printer file. Used in program 
TESTSX. 

SUBRSY Assembler subroutine 18 668 Outputs to SYSLIST device. 

SUBRUF Assembler subroutine 8 207 Retrieves the user job information for each job accessing a 
given file. Used in programs TESTUF and TESTU. 

SUBRUL Assembler subroutine 11 274 Retrieves a library's users. Used in programs ONElJID, 
TESTU, and TESTUL. 

SUBRUR Assembler subroutine 8 213 Retrieves the RRN and user job information for each job 
accessing a given file. Used in program SHOWUR. 

SUBRVR Assembler subroutine 18 624 Retrieves VTOC entries. Used in programs FOLDMK and 
VGRAPH. 

SYSERR Procedure 18 670 Displays error message text for a given system error number. 

SYSTM Assembler program 18 674 Resets the system time without IPLing. Called by SYSTM. 

SYSTM Procedure 18 673 Resets the system time without IPLing. Calls program 
SYSTM. 

TBRIDG COBOL program 16 568 Tests assembler subroutine RBRIDG. 

TESTSW RPG program 11 294 Writes a test procedure into a library. Requires assembler 
subroutine SUBRSW. 

TESTSX Procedure 15 457 Tests assembler subroutine SUBRSX. Calls program 
TESTSX. 

TESTSX RPG program 15 457 Tests assembler subroutine SUBRSX. Called by TESTSX. 
Requires assembler subroutine SUBRSX. 

TESTU Procedure 18 645 Retrieves a file's or library's users. Calls program TESTU. 

TESTU RPG program 18 646 Retrieves a file's or library's users. Called by TESTU. Uses 
screen format member TESTUFM. Requires assembler 
subroutines SUBRUF and SUBRUL. 

TESTUF Procedure 8 207 Retrieves a file's users. Calls program TESTUF. 

TESTUF RPG program 8 207 Retrieves a file's users. Called by TESTUF. Requires 
assembler subroutine SUBRUF. 

TESTUFM Screen format member 18 645 Screen formats for program TESTU. 

TESTUL Procedure 11 273 Retrieves a library's users. Calls program TESTUL. 

TESTUL RPG program 11 274 Retrieves a library's users. Called by TESTUL. 

TEXTDOC Procedure 6 141 Transfers a user from their application library to #LIBRARY, 
automatically. Calls menu #0 (screen format #0 and menu 
member #0##). Copy this procedure to your user library (not 
#LIBRARY!). 

TRYCMP Procedure 11 291 Retrieves program source from a library. Calls program 
TRYCMP. 



738 5/36 Power Tools 

Name Member Type Chapter Page 

TRYCMP RPG program II 291 

UTERASE Procedure 8 222 

UTLIBI RPG program 7 187 

UTLIB2 RPG program 7 188 

UTLIB3 RPG program 7 189 

UTLLIBFM Screen format member 7 190 

UTLLIB Procedure 7 185 

VALDAY Procedure 3 55 

VDSKTOA3 Procedure 13 362 

VGRAPH Procedure 18 623 

VGRAPH RPG program 18 614 

VGRAPHFM Screen format member 18 622 

VTOCCM Procedure 18 641 

VTOCCM RPG program 18 635 

VTOCFR Procedure 18 640 

VTOCFR RPG program 18 628 

VTOCFRFM Screen format member 18 637 

WAlTON Procedure 16 587 

WHICH Procedure 18 663 

WHICH RPG program 18 664 

XREF Procedure 7 149 

XREFOI RPG program 7 lSI 

XREF02 RPG program 7 ISS 

XREF03 RPG program 7 156 

XREF04 RPG program 7 157 

XREF05 RPG program 7 158 

Description 

Retrieves program source from a library. Called by TRYCMP. 


Erases all records in a file. 


Builds empty TOLIBR file for copy into source and target 

libraries. Called by UTLLIB. 


Compares two library directories. Called by UTLLIB. 


Prints a report showing duplicate or outdated members in two 

libraries. Called by procedure UTLLIB. 


Prompt screen for procedure UTLLIB. 


Prints a report showing duplicate or outdated members in two 

libraries. Calls programs UTLIBI, UTLIB2, and UTLIB3. 

Uses screen format member UTLIBFM. 


Validates the day portion of the date. Note that this procedure 

uses prompt member TDATE, format SCRNOI, which you 

must provide. 


Moves files to other disk spindles via tape. 


Displays the VTOC graphically. Calls program VGRAPH. 


Displays the VTOC graphically. Called by VGRAPH. 

Requires assembler subroutine SUBRVR. 


Screens used by program VGRAPH. 


Compresses disks individually. 


Prompt program for procedure VTOCCM. Uses screen format 

member VTOCFRFM. 


Displays free disk space. Calls program VTOCFR and 

procedure VTOCCM. 


Displays free disk space. Called by VTOCFR. Uses screen 

format member VTOCFRFM. Requires assembler subroutine 

SUBRF5. 


Screen formats for programs VTOCCM and VTOCFR. 


Loops until a given procedure is found to be not running. 


Improves on the DATAFI Conditional Statement 


Improves on the DATAFI Conditional Statement 


Prints four cross-reference reports: File Label by Program, 

Program by File Label, Program by Procedure, and File Label 

by Procedure. Calls programs XREFOI through XREF05. 


Creates extract file for cross-reference reports. Called by 

XREF. 


Prints cross-reference report File Label by Program. Called by 

XREF. 


Prints cross-reference report Program by File Label. Called by 

XREF. 


Prints cross-reference report File Label by Procedure. Called 

byXREF. 


Prints cross-reference report Program by Procedure. Called by 

XREF. 




Index 


Special Characters 
$FEFIX patch utility, 29,33,322 
$$TIMER 


canceling display-only programs with $$TIMER, 722 

clearing last screen format when using $$TIMER, 722 

used with data mode workstations, 721 


#DUMP file (see dump files; debugging RPG programs; 
DUMP procedure; Dump File Analysis utility) 

#GSORT (see also sort files) 

compared with alternate indexes, 218 

differences between addrout (SORTA) and tagalong 


(SORTR) sorts, 217 

sorting a file in place using DISP-OLD, 218 

sorting packed dates, 579 


#LIBRARY 

adding members to, 323 

assigning as default library for DisplayWrite/36, 141 

compressing, 323 

preventing overwriting during PTF installation, 676-677 

resizing, 323 

saving to tape, 12 

transferring to another system, 677 


#SYSTASK file (see task work area) 

A 
action diagrams, 546-548 

address output files (see sort files; #GSORT) 

alternate index files 


compared with #GSORT, 218 

differences between processing indexed files and 


sequential files with alternate indexes, 225 

file reorganization, 236, 327 

improving performance, 218 

processing in COBOL programs, 232 

reorganizing MAPICS files with alternate indexes, 327 

saving and restoring, 2, 14 


APPC (Advanced Program-to-Program Communications), 

21,45,415 


APPN (Advanced Peer-to-Peer Networking), 22, 25, 27-29, 

415 


architecture, 349 


array 

index errors, 507, 511 

processing, 67 


assembler subroutines 
dynamically privileged, 320, 403, 564 


auto-report, 402, 696 

autoresponse 


severity level 5, 487 -488, 669 


B 
backing up (see a/so diskettes; tapes; restoring) 


alternate index files, 2, 14 

at night or in the morning, 14 

file groups, 2, 14 

files, 2, 6-7,14-15,90,92,95,243,326,362,447 

libraries, 6-9, 12,93,246,324,393,447,449,677,682 

preventing tape rewind, 681 


BASIC programs 
unlocking source, 322 


block length, 233 

BSC (Binary Synchronous Communications) 


terminating BSC jobs automatically, 42 

transmi tting diskette sectors, 84 


BSCEL (Binary Synchronous Communications 

Equivalence Link), 21, 42 


c 
cache (see a/so performance) 


evaluating, 376 

running from other than system console, 659 

using, 366 


CALL/PARM (see COBOL programs; RPG programs) 

CATALOG procedure (seeVTOC) 

centering strings (see strings) 

character 


hexadecimal, 724 

unprintable, 479 


COBOL programs 

external program calls, 552 

processing alternate indexes, 232 

retrieving program source, 290 

retrieving the DTF control block, 570 




740 5/36 Power Tools 

using RPG assembly subroutines, 566 

command keys 


dynamically enabling, 686 

communications (see (J/so APPC; APPN; BSC; BSCEL; 


DDM; FTS; ICF; remote devices; remote 5250 

emulation; PCs) 


autodial console messages, 41 

improving response time in multipoint network, 48 

maximum data rates, 47 

sending secured objects, 608 


comparing 

library directories, 183,698,701 


compress 

canceling AMZOO for dedicated system, 337 

ensuring dedicated system, 12 

improving, 626, 628 

used to aid object placement on disk, 354, 357 


compression algorithm, 15 

computing day ofweek (see dates) 

console (see system console) 

converting 8-inch to 5 lI4-inch diskettes, 105 

converting dates 


day of week, 62 

formats, 61, 258 

Gregorian, 58-59 

Julian, 58-59 


converting fields without I/O (see fields) 

converting strings between lowercase and uppercase (see 


strings) 

converting times, 52-55, 675 

COpy function 


used with externally described workstation files, 697 

COPYPRT procedure 


file layout, 483 

merging repons with a DW/36 document, 121 

saving repon as source member, 191 

transferring to an AS/400, 490 


CPU (see system) 

cross-referencing 


files, sequenced by 

file label/procedures, 144 

file labeVprograms, 144 

procedure/programs, 144 

program/file labels, 144 


queries, 159 

CSP (control storage processor; see (J/so performance), 15, 


343,349,351,370,378,682 


D 
dates (see also convening dates; edit codes) 


changing session dates, 674 

computing day of week, 62-63 


sorting packed dates, 579 

system date 


determining format, 671-672 

retrieving in procedure, 673 


validating, 55, 58 

debugging RPG programs 


conditional debugging, 516 

profiling an RPG program, 517 

using debug files, 517 

using dump files, 506 

using the DEBUG operation, 506 


DDM (Disk Data Management), 233-234 

DDM (Distributed Data Management), 20-21, 24 

DELETE procedure, 90, 218,589 

DFU (Data File Utiliry) 


zone conversions, correcting, 45-46 

reports, printing compressed (15 CPl), 74 

reports, printing multiple copies, 74 


DIAL/3X,44 

Diskette Exchange Utility, 105 

diskettes 


available space, retrieving, 104 

capacities, 2, 16-17, 80,91 

convening 8-inch to 5 lI4-inch, 105 

deleted files, retrieving, 89 

deleting MAPICS backup diskette files, 326 

reading sectors directly, 78 

repairing, 103 

restoring from, 2-3,92, 103,362, 677 

saving to, 2, 6-9, 17,94-95,99, 101,243,326,362,393, 


681,720 

transmitting over communications line, 78, 83-84 

volume 10, retrieving, 104,447 

writing sectots directly, 78 


disks 

differences between actual disk space and CATALOG 


listing, 643 

displaying free space, 625 

displaying object allocations graphically, 612-614 


DisplayWrite/36 

assigning #LlBRARY as default, 141 

integrating with application programs, 132 

merging with another DW/36 document, 110, 120 

merging with file data, 111 

merging with printed output, 121 

merging with Query/36, 111-113, 123 

working with data field instructions, 113, 117, 120, 131

132 

documenting (see (J/so cross-referencing) 


LOA usage, 169 

RPG structured opcodes, 176, 546-548 


DSPT (Display Station Passthrough), 45-46, 719 




Index 741 

Dump File Analysis utility, 512 

dump files (see also debugging RPG programs; DUMP 


procedure; Dump File Analysis utility) 

explanation of, 224 


DUMP procedure, 506-510 

Dup key 


processing, 581 

redisplaying procedure parameters, 582 


E 
edit codes 


adding left-hand negative signs, 59 

formatting fields without I/O, 6S 

overriding date edit code, 60 


editing a file, 194-195, 449 

editing library members 


emulating RPGONL and COBOLONL in POP, 411 

using more than two FSEDIT sessions, 410 


emulation (see local 5250 emulation; remote 5250 emulation) 

ERR procedure, 590-591 

external program calls (see COBOL programs; RPG 


programs) 


F 
fields (see a/so edit codes) 


converting fields without I/O, 65 

formatting fields without I/O, 65 

testing for numeric values, 56-57 


file groups 

restoring, 2 

saving, 2, 14 


files (see also index files; alternate index files; sort files; 

records; dump files; history files) 


access using Special Allocate, 194-195 

accessing dynamically, 194 

calculating index file size, 224 

copying multiple files with POP, 434 

counting records with same partial keys, 215 

creating with Query/36, 257 

cross-reference, sequenced by 


file label/procedutes, 144 

file label/programs, 144 

program/file labels, 144 


delete-capable, making, 241 

deleting multiple files, 242 

deleting with Query/36, 257 

diskette, recovering deleted files, 89 

displaying allocations graphically, 612-614 

displaying record locks, 208 

editing, 194-195, 449 

ensuring a dedicated file, 235 


extends 

calculating extend values, 221 

EDF-Wait, 220 

explanation of, 219 

reducing, 221 


finding last record number, 214 

identifying in procedures, 662 

improving POP's file copy, 431 

improving POP's file delete, 446 

improving POP's file save, 447 

making delete-capable, 241 

merging with a DW/36 document, 111 

moving to another disk spindle, 361 

operations requiring a dedicated file, 205, 235 

order saved to tape, 14 

output using DISP-OLD, 218 

preventing deletion with security, 609 

processing indexed files and sequential files with 


alternate indexes, 225 

processing large indexed files, 225 

renaming multiple files with POP, 434 

renaming single files with POP, 432 

reorganizing, 236 

resetting the number of records to zero, 218 

resizing, 221, 323 

restoring using a new name, 3, 5 

restoring, 2-3, 5, 14,90,92, 103-104,677 

retrieving the DTF control block in COBOL, 570 

retrieving users, 205, 644 

saving compressed MAPICS files, 326 

saving, 2, 14-15,90,92,243,362 

securing, 600 

sorting packed dates, 579 

transferring between PC and S/36, 45 


folders 

condensing, 246, 364 

displaying allocations graphically, 612-614 

identifying in procedures, 662 

maintaining, 246 

reducing size, 253 

securing, 601 


formatting dates (see converting dates) 

formatting fields (see fields) 

FORMS statement, 483 

FSEDIT 


emulating RPGONL and COBOLONL in POP, 411 

using more than two FSEDIT sessions, 410 


FTS (File Transfer Subroutine) 

used to transmit files and library members, 20, 23 




742 5/36 Power Tools 

.. 

help 

creating help screens on PCs, 708 

keeping help text in source members, 321 


history files 

saving, 243 


IlDIAG procedure, 103 

ICF (Interactive Communications Feature; see also FTS; 


$$TIMER) 

implementing external program calls, 553 

retrieving the DTF control block in COBOL, 570 

screen formats in ICF programs, 41 

screen formats in ICF programs, 41 

sorting packed dates, 579 


ICF-INTRA (see ICF) 

!DDU 

calling from POP, 449 

defining a COPYPRT file, 122-123,261,263 

defining a merge file for DW/36, Ill, 123 


IDOU definitions 

creating F -,1-, and O-specs with Query/36, 258 

creating F - and I -specs, 258-259 

creating, 268 

filler fields, 268 

linking and unlinking, 269 

updating, 269 


indexed files 

adding records, 214, 226 

calculating size, 224 

counting records with same partial keys, 215 

differences with processing sequential files with 


alternate indexes, 225 

keeping large indexed files open, 227 

keysorting during IPL, 233 

processing large indexed files, 225 


indicators 

proper usage, 532 

reversing value of unknown status, 543 

saving and restoring, 541-543 

checking in an IF statement, 544 


INIT procedure, 90 

inquiry, option 4 


testing for in RPG, 587 

IPDS (Intelligent Printer Data Stream) 


architecture, 493 

commands, 493-495, 498-499 

printer, 491-494, 497-501 

programming, 491 

protocol, 492-493 


IPL 

changing session dates, 674 

IPLing from tape, 681 

necessity, 675 

resetting forms ID after IPL, 485 

resetting system time without IPL, 673 


J 
job queue 


changing a procedure while it's on job queue, 652 

executing an OCL statement, 651 

explanation, 650 

job scheduling, 347-348, 370, 373 

manipulating, 651 

putting a job on the job queue from POP, 430 

running Query/36, 257 


jobs 

canceling NEPs (never-ending programs), 588 

evoking a job from POP, 431 

finding the number of active jobs, 12 

putting a job on the job queue from POP, 430 

running in parallel, 586 

scheduling, 347-348, 370, 373 


justifying strings (see strings) 


L 
LDA (Local Data Area) 


cross-reference, sequenced by 

field name/program, 169 

field starting position/program, 169 


displaying, 653 

documenting LDA usage, 169 

restoring, 655 

saving, 655 

updating, 653 


libraries (see also #LIBRARY; library members) 

condensing library from POP, 450 

detecting duplicate members in two libraries, 183 

directories 


changing, 308-309 

comparing, 183 

listing members created or modified within date 


range, 282 

retrieving, 275 


displaying allocations graphically, 612-614 

improving POP's library save, 447 

moving to another disk spindle, 361 

preventing deletion with security, 609 

PTF, removing, 324 

restoring, 8-9,12,677 

retrieving library information from POP, 392 




Index 743 

retrieving sectors, 160, 168 


retrieving users, 272, 605, 644 

saving report as source member, 191 

saving, 6-7, 9, 12 

securing, 601 


library members (see also #LIBRARY; libraries; BASIC 

programs; COBOL programs; RPG programs) 


changing member attributes, 307 

help text, keeping in source members, 321 

preventing member naming conflicts, 72 


re-creating menu source from object, 300 

re-creating message source from object, 300 

retrieving member information from POP, 392 

retrieving program source, 290 

retrieving source and procedure members, 285 

transmitting members via ODF/36, 415 

transmitting 0- and R-modules, 29 

transmitting using FTS, 20 

undeleting a member, 297 

writing source and procedure members, 291 


local 5250 emulation, 106, 142 

Local Data Area (see LDA) 


M 
MAPICS 


canceling AMZOO, 337 

compressing files for diskette backup, 326 


condensing MvIALIB, 337 

deleting backup diskette files, 326 

how AMZOO cancels, 588 

reorganizing files with alternate indexes, 327 


menus 

changing just command text, 75 

changing screen attributes, 715 


messages (see also autoresponse) 


displaying system error message text, 670 

sending to system console, 666 


modem 

adding to 5363, 46 

communicating between PC and S/36, 44 


MSP (main storage processor; see also performance), 343, 

349,351,370,378 


o 
ODF (Object Distribution Facility) 


transmitting library members with POP, 415 


p 
PATCH procedure 


used in retrieving deleted diskette files, 89 

used in retrieving deleted library members, 297 


PC Support/36, 43, 45, 142,601,709-710,716 


PCs 

communicating remotely, 44 

creating S/36 help screens, 708 

transferring files to S/36, 45 


performance (see also cache; SMF) 

BLDINDEX performance, 218 

blocking records, 233 

cache, evaluating, 376 

cache, using, 366 

defining, 341, 348 

differences between processing addrout (SORTA) and 


tagalong (SORTR) sorts, 217 

differences between processing indexed files and 


sequential files with alternate indexes, 225 

improving disk performance, 363 

keeping large indexed files open, 227 

MIS survey, 341-342 

monitoring memory usage, 385 


placing objects on disk, 354, 357 

processing large indexed files, 225 


POP (Programmer and Operator Productivity Aid) 

blanking out columns 1-5 and 75-80 in RPG source, 


413 

browsing spool files with POP, 448 

calling FILE from LIBR, 451 

calling LIBR from FILE, 450 

condensing a library, 450 

copying multiple files, 434 

displaying disk free space, 625 

displaying file with Query, 450 

editing a file using Query Data Entry Facility, 449 

editing using more than two FSEDIT sessions, 410 

emulating RPGONL and COBOLONL in POP, 411 

evoking a job, 431 

FILE command key 


6: Calls LIBR from FILE, 450 

12: Displays free space and allows improved 


compress, 625 

FILE opcodes 


E: edits a file using Query Data Entry Facility, 449 

K: improves POP's file save, 447 

L: links a file to IDDU definition, 449 

'\I: renames single files, 432 

Q: displays file with Query, 450 

Q: renames multiple files, 434 

S: copies multiple files, 434 

U: unlinks a file from IDDU definition, 450 

Y: improves file copy, 431 

Z: improves file delete, 446 


improving POP's file copy, 431 

improving POP's file delete, 446 




744 5/36 Power Tools 

improving POP's file save, 447 

improving POP's library save, 447 

LIBR command key 

6: Calls LIBR from FILE, 451 

12: ~isplays free space and allows improved 


compress, 625 

LIBR opcodes 


A: reallocates library with ALOCLIBR, 450 

C: condenses library, 450 

I: retrieves library and member information, 392 

K: improves POP's library save, 447 

L: emulates COBOLONL for use with FSEDIT, 


411 

0: emulates RPGONL for use with FSEDIT, 411 

0: transmits members via OOF/36, 415 

Q: blanks out columns 1-5 and 75-80 of RPG 


source, 413 

Q: puts job on job queue, 430 

V: evokes a job, 431 


linking a file to roou definition, 449 

positioning LIBR to a given member, 415 

proced ure, setting logging attributes, 589 

putting a job on the job queue, 430 

reallocating library with ALOCLIBR, 450 

renaming multiple files, 434 

renaming single files, 432 

restricting POP's file display, 448 

retrieving Ii brary information, 392 

retrieving library member information, 391-392 

transmitting members via OOF/36, 415 

unlinking a file from IOOU definition, 450 

using tutorial facility to access any source member, 321 


Print key 

suppressing output, 484 


print screens 

saving as source member, 191 

suppressing output, 484 


PRINTER statement, 74, 454, 456-457, 480-484, 486 

printing (see airo spool file; IPOS) 


boldface, 460 

browsing spool files with POP, 448 

changing CPI (characters-per-inch), 482 

changing LPI (lines-per-inch), 482 

changing LPP (lines-per-page), 482 

compile listings with the program name, 531-532 

controlling with OCL, 480 

OFU reports, compressed (15 CPl), 74 

OFU reports, multiple copies, 74 

executing spool commands during high system usage, 


488 

forcing overflow, 459 

forms alignment, 479 


halting on unprintable character, 479 

holding reports, 479 

lines and dashes, 461 

merging reports with a OW/36 document, 121 

opening and closing printer files, 454 

page numbers 


resetting, 458 

numbering, 459 


prompting for report parameters, 480 

Query/36 enhanced report header, 256 

remote printer, 490 

report lines using arrays, 460 

resetting forms 10 after IPL, 485 

retrieving the spool 10, 456 

sample report from O-specs, 462 

saving report as source member, 191 

suppressing Print key output, 484 


procedures 

changing a procedure while it's on job queue, 652 

cross-reference, sequenced by 


file label/procedures, 144 

procedure/programs, 144 


displaying error messages 

without message members, 590 

using SSP's ERR procedure, 590 


improving OATAFI conditional statement, 662 

inhibiting SSP procedure messages, 589 

passing prompt screen data to interactive program, 688 

redisplaying procedure parameters, 582 

retrieving from library, 285 

retrieving system date, 673 

running in parallel, 586 

setting logging attributes, 589 


profiling programs, 517 

programs (see COBOL programs; RPG programs) 

protocol converter 


remote printing, 490 

PRPQ (Programming Request for Price Quotation) 


COBOL dynamic-call, 552 

IPOS Advanced Functions PRPQ, 491, 494, 496-498, 


500 

OOF/36,415 


PTF (program temporary fix) 

LOMARES procedure, 676-677 

preventing overwriting of#LIBRARY during PTF 


installation, 676-677 

removing PTF libraries, 324 


Q 
Query/36 


calling from POP, 449 

creating F- and I-specs from IOOU, 258 




Index 745 

cross-referencing queries, 159 

files, creating or deleting, 257 

merging with a DW/36 document, 111-113, 123 

printing enhanced repon header, 256 


R 
random numbers, 574 

records 


blocking, 233 

displaying locks, 208 

editing, 194-195,449 

finding last record number, 214 


recovery 

deleted diskette files, 89 


remote devices 

attaching more than 64 remote devices on a loca: line, 46 

attaching with twinax, 44 

varying off or on devices on a single line, 42 


remote 5250 emulation, 44,415 
restoring (see also backing up; diskettes; tapes) 


alternate index files, 2 

file groups, 2 

files, 1-3, 14, 362 

libraries, 12,677 


RPG programs (see debugging RPG programs; indicators) 

action diagrams, 546-548 

blanking out columns 1-5 and 75-80,413 

canceling NEPs (never-ending programs), 588 


creating F-, 1-, and O-specs from IDDU with Query/36, 
258 


creating F- and I-specs from IDDU, 258-259 

cross-reference, sequenced by 


file label/programs, 144 

LOA field name/program, 169 

LOA field staning position/program, 169 

proced ure/programs, 144 

program/file labels, 144 


debugging (see debugging RPG programs) 
documenting RPG structured opcodes 


action diagrams, 546-548 

indented listing, 176 


Dup keys, processing, 581 

execution time of statements, 521, 531 

external program calls 


effect on task work area, 660 

overhead, 552 

using ICF-INTRA, 553 


IF statements 

checking an indicator, 544 

nesting, 544 


internal structure, 511 


naming the compile listing with the program name, 
531-532 


passing data between interactive programs, 688 

profiling, 517 

random numbers, 574 

retrieving program source, 290 

stri ng searches, 571 

using dynamically privileged subroutines, 564 


RPG 2 1/2 (see RPG programs; external program calls) 

RPG III (see RPG programs; external program calls) 

RUF (read under format), 688 


5 

SAA,491 

saving (see backing up; restoring; diskettes; tapes) 

SDA (Screen Design Aid) 


bypassing to change menu command text, 75 

SECEDIT procedure, 594 

securiry 


files, 600 

folders, 601 

libraries, 601 

overhead, 602 

password,23, 25,507,596-600, 609 

preventing a user from signing on to multiple 


workstations, 605 

preventing file deletion, 609 

preventing library deletion, 609 

sending secured objects, 608 

signing on when default user library and menu deleted, 


609 

SETDUMP procedure, 507 

SEU (Source Entry Utiliry) 


preventing membf-r naming conflicts, 72 

SMF (System Measurement Facility; see also performance) 


counters 

cache hits and misses, 344, 346, 353, 367 

cache page size, 344-345, 353, 369-370, 377-378, 


384 

cache size, 344-345, 352-353, 367, 370, 377, 384 

cache utilization, 344, 346, 353, 367, 369-370, 378 

CSP utilization, 343-344, 351 

disk seeks greater than 1/3, 344, 347, 352, 354 

disk utilization, 344, 347, 352, 362 

MSP utilization, 343-344, 351 

recommended values, 347, 351 

storage releases L3 and L4, 344-345, 353 

Swap-in, 344-345, 351-353, 367, 369, 377-379, 384, 


661 

TWA extents, 344, 352 

user area disk activiry, 344-345, 351-353, 367, 369, 


377-379,384 



746 5/36 Power Tools 

evaluating cache, 376 

software tools, 78 

sort files 


allocating sort output files, 216 

reducing work file size, 216 

sorting a file in place using DISP-OLD, 218 


soning (see#GSORT; son files) 

spool file (see also printing) 


browsing spool files with POP, 448 

controlling with OCL, 480 

executing spool commands during high system usage, 


488 

operation of the spool file interlock, 489 

resetting forms ID after IPL, 485 

retrieving the spool ID, 456 

spool file extents, 359, 490 

spool file size, 490 

transferring to an AS/400, 490 


strings 

centering, 66-68 

convening between lowercase and uppercase, 67-68 

justifying, 67 

searching, 571 


SUBR95,587 

switches (see UPS I switches) 

SYSLIST device 


outputting to, 668 

system 


changing session dates, 674 

resetting system time without IPL, 673 

retrieving CPU serial number, 670 

retrieving system date in procedure, 673 

system date format, 671-672 


system console (see a/so workstations) 

changing screen format, 719-720 

granting console capability to any workstation, 658 

running cache from other than system console, 659 

sending a message to the system console, 666 


system error messages 

SYS-0016 (Storage dump has been requested), 507 

SYS-1367 (File [file labelJ has at least one duplicate 


key... ) ,226 

SYS-1404 (On printer [printer IDJ, change to forms 


number [forms numberJ ... ), 486 

SYS-1627 (Cannot delete remote physical file [file 


labeIJ ... ), 327, 332 

SYS-1875 (Task dump in progress to disk), 507 

SYS-1879 (#DUMP.xx- Task dump taken to this 


file ... ),507 

SYS-2401 (Cannot save the system library on tape ... ), 12 

SYS-2462 ([member nameJ- Cannot copy this 


member... ),309 


SYS-2582 ([library nameJ- This library not 

condensed, being used ... ), 272-273, 338 


SYS-2594 (Trying to copy privileged module ...), 727 

SYS-2599 ([module nameJ- This IBM load module 


has invalid table ...), 676 

SYS-3330 (Check byte in DATA statement incorrect or 


missing), 322, 660 

SYS-3820 (Invalid data found in procedure being 


processed), 676 

SYS-4906 (Unable to perform OCL statement now), 489 

SYS-5465 (Screen format used by program not found), 41 

SYS-5852 (Unable to perform command now. Try again 


later),489 

SYS-6J51 (Printer file [printer IDl has invalid 


RECL/CPl/FONT), 482 

SYS-6300 (Printer [printer IDJ and the system are not 


communicating),487-488 

SYS-6303 (Program error occurred while using printer 


[printer IDD, 483 

SYS-7300 (Display sm [display station IDJ not 


communicating with system ... ), 669 

SYS-8605 (Line [line numberl- Call successful to 


[number calledD, 41-42 

System/36 


upgrading, 677 


T 
tapes 


capacities, 16-17 

IPLing from tape, 681 

label 


deciphering format, 680 

reading nonstandard or missing, 680 


ordering of files using SAVE ALL, 14 

preventing tape rewind, 681 

restoring from, 2-3, 5,12,14,362 

saving#LIBRARY,12 


task work area 

explanation, 660 

extents, 344, 352 

saving to, 2, 7,12,14-15,362,680-682 


testing for numeric values, 56-57 

testing programs (see RPG programs; debugging RPG 


programs) 

text (see strings) 

TEXTDOC procedure 


merging DW/36 documents, 117-119,125 

times (see also converting times) 


resetting system time without IPL, 673 

tool building, 78 

transferring files (see files) 

transferring library members (see library members) 




v 

Index 747 

TWA (see task work area; performance) 

u 
UADA (user area disk activity; see performance) 
UPSI switches 


displaying, 653 

restoring, 655 

saving, 655 

updating, 653 


VTOC (volume table of contents; see also disk; diskettes) 
differences between actual disk space and CATALOG 

listing, 643 

displaying allocations graphically, 612-614 

displaying free space, 626, 628 


w 
workstations (see also remote devices; remote 5250 


emulation; system console) 

changing menu screen attributes, 715 

changing system console screen format, 719-720 

character sets, difference between 5251 and 5291, 724 

clearing last screen format when using $$TIMER, 722 

command keys, enabling, 686 

creating help screens on PCs, 708 

cursor sizes, toggling, 725 

data mode 


canceling, 722 

using, 721 


diacritic mode explained, 723 

externally described workstation files, 696 

function keys, enabling, 686 

granting console capability, 658 

locking because of record locks, 209 

making a System Service Device, 658 

output-only (see data mode) 


preventing a user from signing on to multiple 

workstations, 605 


read under format, 688 

reading screens 


under format, 688 

when Roll key pressed, 685 


retrieving cursor position, 684 

retrieving the DTF control block in COBOL, 570 

Roll keys, reading screen when pressing, 685 

running cache, 659 

signing on when default user library and menu deleted, 


609 

special characters, entering, 724 


Numerics 
3180 workstation, 724 

3196 workstation, 724 

3197 -D workstation 


3197,719,724-725 
ROM bug fix, 725 


3812 workstation, 500, 724 

4224 printer, 483, 500 

5208 protocol converter, 44-45 

5225 printer, 483 

5250 workstation, 721 

5251-11 


data mode, 721 

differences between 5291 character set, 724 


5251-12,44 

5291 workstation 


cursor size, toggling, 725 

differences between 5251 character set, 724 


5292 workstation 

cursor size, toggling, 725 


5363 CPU 

adding asynchronous modem, 46 


8809 tape drive, 680, 682 





