NEWS 3X/400’s

Desktop
Guide to
the S/36

By Mecl Beckman,
Gary Kratzer,

and Roger Pence

A Dijvision of
L) DUKE COMMUNICATIONS
INTERNATIONAL
DUKE
ES_S Loveland, Colorado

Library of Congress Cataloging-in-Publication Data

Beckman, Mel, 1955-
NEWS 3X/400’s Desktop Guide to the S/36 / by Mel Beckman, Gary Kratzer,
and Roger Pence. — 1st ed.
p. cm.
Includes index.
ISBN 0-9628743-5-3 : $99.00
1. IBM System/36 (Computer) I Kratzer, Gary, 1961-

IL. Pence, Roger, 1953- .III. Title. IV. Title: Desktop Guide to the S/36.
QA76.8.1107B43 1992
004. 1'45—dc20 92-34281

CIP

Copyright © 1992 by DUKE PRESS
[D DUKE COMMUNICATIONS INTERNATIONAL
Loveland, Colorado

PRESS

[DUKE

All rights reserved. No part of this book may be reproduced in any form by any elec-
tronic or mechanical means (including photocopying, recording, or information storage
and retrieval) without permission in writing from the publisher.

Duke Communications International reserves a compilation copyright on the software
contents of the $/36 Desktop Guide Diskettes, A compilation copyright is granted when
an organization collects the information in a lawful way, adds value to it, and offers it to
others. Separate copyrights are also held by the respective authors whose software is
included in this collection. This compilation copyright does not supersede individual
ownership rights to any of the software by its original authors. You have the right to
non-commercial private use of the software, but you do not have the right to resell, pub-
lish, or in any manner commercially exploit the software accompanying this book, or to
participate in such reproduction, sale, publication or exploitation by any other person.

It is the reader’s responsibility to ensure procedures and techniques used from this book
are accurate and appropriate for the user’s installation. No warranty is implied or
expressed.

This book was printed and bound in the United States of America.
First Edition: December 1992

ISBN 0-9628743-5-3

To Patricia, Michelle, and Susie

Acknowledgments

A whole slew of people helped bring this book to press. First and foremost
are our editors, Dave Bernard and Sharon Hamm, who read (and corrected)
every word of the manuscript. With three authors, their job was particularly
complex, requiring the untangling of contradictory opinions and the coordina-
tion of many, many little bits of text. Dave and Sharon are responsible for
melding the literary voices of three rarely coherent nerds into that of one
slightly dafty, articulate author. We thank them for sticking with us to the very
end. We also thank Chuck Lundgren for his sage advice on content and style,
and Mike Patton, who gave us encouragement and the assurance that at least
one person would buy the finished product. We greatly appreciate the ingenu-
ity of our favorite Hollander, Edwin Helmus, for authoring the SNAP utility
(included on the diskette).

Also instrumental to our success were Trish Frease, who provided
early assistance with writing a book over E-mail, and Lynn Riggs and Jan Cauf-
man who, with their trusty Macintoshes, formatted and typeset our text with
style and artistry. Thanks also to Robin Strelow for her user-friendly interior
and cover design of the book. For technical help we are indebted to Clark
Buch of Complete Hardware Services and Jay Brock of A-1 Computer Market-
ing; they took time from their busy schedules in the present to research
obscure S/36 hardware facts from the past. In addition, Ron Elliot and Wayne
Madden provided invaluable tips on AS/400 compatibility.

Three people beta tested the diskette and accompanying text: Chuck
Lundgren, Mike Derossier, and Joe Medeiros. They were our final quality
checks on the part of this book to which you will entrust your valuable
machine resources; their expertise, we feel, adds significantly to the value of
the whole product.

Finally, in any book of this scope and complexity mistakes are bound
to creep in. We only ask that you do not blame these on our esteemed
helpers. Any errors are solely due to us, the authors.

Mel Beckman
Ventura, California

Gary Kratzer
Mission Viejo, California

Roger Pence
Marion, Indiana

Table of Contents

ACKNOWIEAGIMENLSeoveveviiincaereririiee sttt e ss s bsssnasasasaes v
List of Figures
INUOAUCHON ...ovuvvieiiiiieiereccsnte ettt ass sttt se s bt ssstas e ssssnsssesensnens

Section | — System Internals e 1

Chapter 1: $/36 ArChIECIULEccceveererriireenreietese s sssas st sersenes 3
GENEAIOZYcovvvviereeiiiieeete sttt st sttt st s s e as et se s et basesesasanens
Main StOrage PIOCESSOTcccieivuerieeniiiriiesiistiieesese st ettt sesbssts st ssassae e sbesassnssbenasn
Control Storage Processor
Optional Processorsccceeusierernens
The Workstation Controller
Data Storage CONMIOWETccccovvivurieeiiinreieiniiieniriestsresere e sessstsit s eresssesssasssassenes
MLCA and ELCA Processors

IBM’s Multiple Processor Advantage
The Channel
Disk Drives

Chapter 2: S/36 MemOry ManagemeEnntccccveeereeurreesseessmssssssssessssssssessoseses 19
Main Memory Organization

Memory Conceptscoeeuee.

Fragmentationc.ccccvvevininncninecnninnnneneseseesenssnens

Solving Fragmentation

ViUl MEIMOTY ..oviiieiieriiiceeseeseastssseeastesesesese s sesesesessstssessssssssssesssssesesssesssseses

Page-in, Page-out MEChANiSIMSccccoveeuninereeisiniieieissisesse s sessssssesessssssssssssssenssessnans 26
PeCuliarities Of S/36 VMccocuvvveeiriinrinsisisnisstsssnsinssssstssssssssssssssssssssesisssssssssssssssssssssosses 28
SYStem QUEUE SPACEccccerviriverierrenerieieestieeisresstasieneessestssssessessessesssessessessssssssseassessneses 29
Chapter 3: Inside Disk Data Managementcccvuveerreeerneeernrscrnssesssssssssssssssees 33
Disk Mechanics

Data Filesccovvervrnrecnnencnenne
Organization and Operation
Primary and Overflow Index Areas

The StOrage INAEXcccoeveriririrrrieieieieeieeerest sttt ettt s ss st ss s ss e sesssass st sansanss
RIPPIE-DOWN AdAS ..ottt sessass et seseasse st s ssssssesesssssansnse
Adding GAPS ...ccovveeeieriiisteee ettt easren
Alternate Indices and DUPKEY Processing
KEYSOMUNGovviuiiiiiiiiiiieniitinteeets ettt et e r st saens

Section Il — Hardware Adviser 57
Chapter 4: S/36 Models and CONfigurationscccoeevveenrvenneeereseensneenesess 59
OVEIVIEW Of MOMEIS ..ottt sttt eetes e stees s teeseseeseessssesssessessssssssenssnsenes 60

Communications
Local Area Networks
Optical Storage
CONCIUSIONoviveiniiriiiieiineereeneneeresrersessessessssesssesessessons

Chapter 5: The Importance of Memory and Disk Space 77
Just Add MemOTIYc.covvevevicnirinineserensiniececnenes 77
Memory Configuration
Pricing MEMOIYccevvmninrirmnneiiininnisenns rree s 81
The Importance of Free Disk SPACEccccvirenenivenninmsisisnsronisininiessssessesissssssessses 83
System Work Areas
A Smarter Compress
Successful File Extends
Proper File PIACEMENLccccvvveerererirerennsiernnessnssnesesessesssassssassesens
Additional Spindles
Pricing Disk Divescccccoeurunne
Is the S/36 Worth Upgrading?
Avoid Third-Party Pitfallsc.ccereeirrencnrnnnersennrensensns

Chapter 6: Other Configuration Considerationsc.coovverveveverinnresererennees 91

MOdel D UPGIAdEcoceveeiiiinininisnnnseissesessnssansssssesesssssessssssssssssssssssssssssssssssssssssesssenes

Upgrading t0 @ 5360ccccovrevrererernenne

A Dedicated Development Machine

Communications Upgrade
NONSWIChEd NELWOLKccvriririireiriirisisinreesssnisisisssesescsnesesesasssssssssesssnesssnsones
Switched Network
Packet-Switched Network

Distributed Data Management

Section Il — External Program Calls

Chapter 7: How External Program Calls Work
IBM'S LIttle SECTELccoevriinirennsureerosessnsnsssssmsssessesssnsssssessenenes
128 MB of Memory, Virtually!
Primitive MOdUIEs ...
EPCs in ACHONcccooveriimrinvcsiscrnsnne,

The Program Invocation Stackcceeevereniseeerennnes
Coding EPCs: A Primerccovinsercrnnnenes

EPCs and Disk Files
A Practical Exampleccoceuen.

Reaping the Benefits of EPCscccuvcun.ee

Chapter 8: A Comparison of EPC Vendor Offerings
The CONLESLcceericiriicecceirisrniestesesesnine
Design and Coding Considerations

Run the GOOA RACE ..ot i bbb s
Testing and Production Considerations
The GRAVY oo e

B4 15 6 o OO
Product Informationccveiiviimnnin

Chapter 9: Implementing Modular RPG Applications
The Mysterious MOdulecccvviirvenei s
Activation and INVOCAUONc.ccvevrririireii s et
External Subprogram Deactivation
Local NaMESoovricriri e
Parameter Passing
Late BINdINGcoverrviririiiiieisiiesie e et b
Breaking it DOWcoceiiieereriseiss et s s s s st sesses s n s s sens s
Defining the Problem
Implementing the Modules
Change is No Problem

Section IV — Living With Disk Data Managementccoreeccnncscrisinesnan: 145

Chapter 10: Using DBLOCK and IBLOCK Effectivelycccornviiincnncne 147
Blocking Data RECOTASvecviicrieriririnreiseseree et ss st s s enas
Enabling Record BIOCKINGc.oveeimiriirientsinre e e

Sizing Data Buffersc.cccvvvernnnnne

Record Blocking Considerations
Index Blockingcccoevvnnireererennns
Sizing Index Bufferscccocevirnnenee
Index Blocking Considerations
Where BUTErs LIVEcccooiiirerrercercnriirccnrcce s csee e e s ssnaesssean s
Allocating Appropriate Buffer Sizes
Benchmarksccoovvevereninses s

Chapter 11: Prescriptions for Healthy DDM
Is There a Doctor in the HOUSE?ccoovvcreeineneniererersieenenens
Taking ACtionceeenierineenniincnnns

Keeping Storage Indexes Open
The Proof is in the Performance
Avoiding the Deadly Embrace
Who is the Culprit?c..ccoeoerveriernciinnes

A RAY Of LI oottt e s et s

Chapter 12: A Baker’s Dozen DDM Tips and Techniquesccoorrreeee 189
Consider alternate indexes as an alternative t0 #GSORTccccocvnererenvirininnn, 189
2. Consider replacing indexed files with sequential files
and alternate INAEXEScccoverrriinnnieii b s
3. Keep alternate indexes t0 a MINIMUIMccoceveirercniincnnnen v
4. Spindle placement is more important than file placement
5. Share if YOU MUSEccovvveireiieeci ettt er e bt rse s sas e sesas b nne

6. Do some of DDM's WOrk YOUTSEIfccocoeeereirmirencicieessseeesecesneene
7. Take the BYPass ... s ssns '
8. Avoid being underextended ..o
9. Change default file extend value easilyc.ccoevivienne

10. Don't pack ‘€M iccocvrivirininriiernrsnsisinen:
11. Reorganize files often — the easy way
12. Provide lots of disk space for KEYSORT
13. Put memory to work for system programs ..
Recapping the BaKer's DOZENovvirieinininesiereniiieneicseesesisesssssssesstsssssssssssssens

Section V — Performance Measurement and Tuning 205

Chapter 13: Using SMF
The Good Catch
The Quick Look
MSP/CSP US2E VAIUESc.oorvireiereirereirieieieeseeaese e se e essesessnasseesssssssasseses
Disk Usageccceererererennne
Disk Seeks > 1/3
User Area Disk Accesses (UADA)
Translated Calls/Loads Ratio
Communications Line Usage
The Art Of TUNINGovoviiiiiieriiiiiiisesietre ettt sese sttt eae s sissesas st ssesssssesessssssenses
SMF COOKDOOK ...ttt e sssas i
Problem 1: High Disk Usage
Problem 2: Unbalanced Disk Usage
Problem 3: High CSP Usage ...
Problem 4: High MSP USZEcccoeeurreerereervneiennereineneiessseisesesenssssssesess
Problem 5: Sudden, Unexplained Response Time Degradation
Problem 6: File and Index Blocking Don’t Seem to be
Helping Performance
What You Don’t Know Can Hurt You
REfErENCES ...cvvvvviiicrciicii et
SMF Summary Report Part 1: Summary Usage
SMF Summary Report Part 2: Summary System Event Counters

Chapter 14: DO You Need MOre MEMOLY?cccccevuerirerrensireissussssessssesssssssssssens
Where DOES it All GO?cccrieriiiririreiniieiiereeiciieniecs st s sssessaessssessane
The Warning SIZNScccceveeveeririneineiirininiesereseeseseesese st seseseesesessssssssssesssesssessressssans
MEMOTY MELETcvoviiriiiiiiniiiiiircstetisrcs st ss bbb bbb s bbb es s s sn bbb ees

Chapter 15: Cashing in On Extra Memory
How Cache Works
Starting Out with Cache
Counting CACKEcvoviiiiiririccceet ettt ss ettt sa s e ba s s sesessassnesasens
QUICK CACNIE ...ttt et st ass s bbb s sasne e snsesns
Dynamically Controlling Cache
Value-Added Cache

To Cache Of NO tO CaCh€ccoovvirirvriririiiiieiciciisttstesiessetse sttt sssestsssssnssesssenes

Chapter 16: Is Response Time Fast Enough?

Response-Time SpeedOmetercccovrrrrrerererereenesssenens
LoOKING fOr DAYcccovevririireiriieniiniririneseeeresettststessese ettt sesesesstssssssesessessens
Getting SSP Out of the Loop .
Section VI — Advanced Topics 261
Chapter 17: Harnessing the Power of Assembler Routinesc.ccc.ccceuucnee. 263
String Handling Functions
SUBR$F 265
SUBR$C 266
SUBR$X e 267
SUBRAT ... 268
SUBRBX 269
SUBRCS 269
SUBRUP ... 270
Library Manipulation Functions e 271
SUBRLD e 271
SUBRLR 274
SUBRSG 276
File Manipulation Functions 279
SUBRCO 280
SUBRFA 281
SUBRRN 286
System Management Functions 287
SUBRSY 288
SUBRUF 288
SUBRUL .. 289
SUBRUR .. 290
SUBRCT291
SUBRDT . 292
Device Control Functions 292
SUBRCPcooevieururenennanenns 293
SUBRDU 293
SUBREK 294
SUBRIN 295
SUBRMG 296
SUBRPC 296
SUBRPS 297
SUBRSX 298
SUBRWT......cccoeovreunee 298

RBRIDGcccoervmvenrinnnes e 299
Defining RLABLs

Making Your Call 299
Chapter 18: Profiling and Advanced Debuggingcccceceuvuveecernnnriscnccncn. 303
Profile of a Profiler

RPG X-Ray Machine ... scniincssssiscssissesessssessasssssssses 308

GOoing for the GOId ..ottt sere s ese b s neesreseenne
ReasonNable GOAlSccceervveriviriniiirinirerrsrerrrensesseereeseesseesseesesesssssessosssssasssesnessssnaes

Chapter 19: Achieving Upward Compatibility
First, 2 Word of Cautionccceeveverrnenrereveneersrensssesesassesssens
The TWO Productscccoeveeeveniinrercinisisesnnssnensnsssnesiennnns
The Implementation of Externally Described Files
RPG/400 File Operation Codes
Other RPG/400 Featuresccooverervercvenevecnene
Additional Tips for Upward Compatibility
Data File Usage on the §/36ccocoevrvvreneee.
Code to Avoid Decimal Data Errors
Assembler Subroutinescocovirienicninenens
The Final Analysis

..

Section Vil — Into the Future

Chapter 20: The AS/400 ...ttt tasessesetssssrsereseressenns
Three Audiencescccove..

S/36E Layercccoevrervrrnnens

Smoke and Mirrors
Building and Controlling the S/36E
The Programming ENVirONmentccovevvervresnrsnceses
Free Usability and Performance Improvements
Compatibility with the S/36
SiZiNg UP YOUTE AS/400cccvvviruererirerenresenenessesessseesssssssassesssessassesessesssssss sonssssssesenssns
Model Selectioncocc...

Configuring Memory
Configuring Disk
Making Sure
Allin Allorreecerceerereeereeaes

UNIBOL on the RS/6000: A Virtual $/36
Functions and Featurescc.c.......
MiSSIng LInKScerommerrrrerrersennes
$/36 Look and Feel
Migration Patterns
Passing Muster
User Recommended
Programming with UNIBOL

More than TOKEN SUPPOLLccviceriennirrscsisesicensereneesssesensessssiesssestscsssessssessassns
UP and COMUNGcvvvirverrirrierieerieseeeisenesseestonsesssssssssssessessassessassssssssssssesssssssesenes

Open RS/36: A Load'N'Go Alternative
Look and Feelccccomrvvencnnrcrenrcssernrorsesenenes
See How They Runccocricvenrncncreensenssceses
Testing, Testingcccooevrnrernnees
Load Member Compatibleccceeeoirererrrnrrcnennmncscensseesescrenssesssscsssessuessressessesses

What Doesn't it DO?coevriurnnen .
AIX: An Intense EXPerience?ocveivivnineninrisiesessssninisniens
The Magic Answer?
Product Information
Machine MIMUCTYccoviuniniinnnmniniiisesnniiisnisinsssssssasssssssesssasisssssessssssssssssssssess

AfTEIWOLd ... cveereieieiercesteseeeeseste s ssessesee e saestestesse et e s sssebesassassessensossessnsensssassen 375

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5a
Figure 1.5b
Figure 1.6

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18

Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23

SYSLEM/36 GENEAIOZYccovvveerreremirreiireiseesssiissesssssssssssssssessssssens
System/36 Multiple Processorscccoovueeueenreereneenne

Comparison of Features Among S/36 Models
Overview of 5/36 Internal Componentscceeeeererenens
Timeline for Single-Processor Task Switching
Timeline for S/36 Dual-Processor Task Switching
Run Length Limited Codes for Disk Error Correction

Main Storage CONLENLSc.ceceviinierininiiniiisreeiniisenenenssenenns
System/36 Real Storage Organization
How Memory Fragmentation Occurs
How the System/36 Solves Fragmentation
Example of Generating a Real Address From a

Translated Adressccoovvinriiieicncinniee e 25
Segmented and Demand Paging Comparisonc.ceceveevrvererrennens 27
System Queue Space Requirements for Common

Control BIOCKScceviviiininiiniiii it 31
Hard Disk ANAtOMYcocoveeeirerniimnineenircrcniisieeessi s sensseaes
Hard Disk Physical Units

Sectors and Trackscccoveeencne.

Heads, Sectors, and Cylinders
Comparison of Operating Parameters for Some

S/36 DiSK DIVESccocrerrrererrrresrsessesssssssssnessens

Index and Data Record Area of a Disk File

Records Fitting Evenly Within a Sector

Records Spanning @ SECLOLccvveeueereeerenireeseressisesesssnsessssssasesssnsenes
Logical Representation of a File INdeXccccoverurrererenrenieresnserenenens
Logical View of One Sector Full of Keysc.ccccecvvvnrcncrennnniinnnns 42
Primary and Overflow Index AT€asccccoeorurerererernereerneneesiserennes 43
Sequential Phone Book LOOK-UPcccceererereernrrenenesienninisinseenesensens 44
Phone Book Look-Up the Storage Index Wayc.ccccoevereevrurerenenneee 45
Keys Added to Index Area in Key Sequenceccocovveevevnreneninnns 46
Index Area with Overflow Addedccocoviviirinnreneniecreniiene 47
Index Area with Overflow Containing Many Entriescccc.oeuue. 47
Index Area Including Overflow with Gapscccecevvevenerenererennnnenes 48
Index Area Including Overflow with Gaps —

Big Bird Addedcooceriiniiic s 49
Index and Overflow Areas Fullccccoevmvnnevveeneennenae . 50
Overflow Area Requiring Total Ripple Down of Entries e 51
Fragment of Overflow Area That Support Duplicate Keys 53
Adding New Record to Overflow Area with Duplicate Keys 53
Formula to Calculate Disk Space Required for

Workfile KEYSORTccocouverevcneisuninnneenessisisisnsssesessssssessssssssssssssssaseses 55

http:Figure3.1S

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 5.1a
Figure 5.1b
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Figure 6.1
Figure 6.2

Figure 7.1a
Figure 7.1b
Figure 7.1c
Figure 7.2

Figure 7.3a
Figure 7.3b
Figure 7.4

Figure 8.1
Figure 8.2

Figure 8.3
Figure 8.4
Figure 8.5

Models and Features OVEIVIEWc.cccovvevivinirinerennnnecsinisissnerensiins
$/36 CPU Relative Computational Performance
Memory CONfIGUIAONScccevvveiierieninieennnreenreeessresisieesssnssesnssenees
Disk CONfIGUIAtionSccecevvveeireririririneernrereriecsesesesisensas e sesesesesns
Disk Drive CharacteristiCsccvmerrrsieninrienirincisnnnnnennesesnnnns
Workstation COnfIgurationscccccevveverietreereerereneesisnsisesenerensesens
Twinax Daisy-Chain Local Workstation Networkcoceeereerennee 67
Twisted-Pair Star Network TOPOIOZYcocerveriirirrerserenisisernesersennes 69
RWS Support Using Communications Lines and

Remote Workstation Controllerscocouvuvrvrirerereerincrninnnessencrcnnne
Communications Configurationsccceevreeeuerereeresenreresnerenesesesenns
S/36 LAN Interfacesccoeveenes
Token-Ring LAN Configurations
Optical Storage Configurationscceeeeereveriennieresereeenensesnssesenes

User Area of Memory Available without Cachecccceuernrurnenenee 78
User Area of Memory Available with Cachecoccoceivieirnenccnnns 78
More Memory Means More System Programs Resident 80
CNFIGSSP SCreen 17.0cccvvenirvninieinenriiireinesncstsiereinsesssaesensesees 81
Maximum Memory Per $/36 Modeloccocvvevninirininincnnernsisnsennens 81
Disk Spindle After COMPRESS FREEHIGH and

After COMPRESS FREELOWccccovtrimununerirnnnererenenenes

Disk Spindle After “Smart” COMPRESS
“Smart” COMPRESS for Spindle A1l
“Smart” COMPRESS for Spindles A1 and A2
Extended a File Once Successfully — But Not Again

Maximum Disk Capacity for $/36 Modelsc.ccouuremrrvcercercnrincinennce
Recommended Communications Adaptersc.cccoeererererrenrrrnenns 9%
Overview Of DDM OPErationscocveeeeerererrveesensreressssesesesesesessens 100

Job with Three Active Programs
EPC Program Invocation
Program Invocation Stackccccccceruiecnnene

Program Fragments with EPC Opcodescccoceuvvuerernrinvcrerererennens 115
OCL for Program File Sharingc.cccouvevverririreneernnirnseissnneeenens
RPG File Sharing Between Programs
Modular Application DeSignccccevrveereerrrerevereriieiesenesisnneessesennns

OCL for a Single File Used by Two Subprogramseceeeevnuce 125
RPG 111/2 and 400RPG Coding for Subprograms

PROGA and PROGB Referencing a Common Filecccccervunun. 126
IBM RPG Coding for Subprograms PROGA and

PROGB Referencing a Common Filecccovviiveereririnenieniinienens 127
Performance Test of 10,000 CALLS Passing 128

Bytes Of PArAmMELErScccoeeueererereniieiriineieneiererinnreseeesesessseesesesens 129
Using a Library List to Exercise Test Modules

in a Production ENVifONmMeNtccccveeuerniereeceerneernssesseesssnennens 131

http:Figure7.1c
http:Figure7.1a

Figure 9.1
Figure 9.2

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13
Figure 10.14

Figure 11.1
Figure 11.2a
Figure 11.2b
Figure 11.3a
Figure 11.3b
Figure 11.3¢
Figure 11.3d
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 12.1
Figure 12.2
Figure 12.3a
Figure 12.3b
Figure 12.4

Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5a
Figure 13.5b

Figure 14.1
Figure 14.2

Functional Decomposition of Appointment

Scheduling ApplICationcccccverrererieeenerneiereisrereenereeeneseesenens 139
Modules Required to Add “Reschedule an

Appointment” FUNCHONc.cocovverieininierinenseensereresnneesisssesesssessssssaes 142
Application Program with Unblocked Data Buffer
Application Program with 100-Record Block Data Buffer

A Minimum Disk Data Buffer for a File with 64-Byte Records 149
A Minimum Disk Data Buffer for a File with 56-Byte Records 150
The Data Buffer Shown in Figure 10.4 After Record 37 is Read 151
Enabling Record Blocking in RPG F-SPeccccoceveveurverirerenevnceenes

Specifying Record Blocking with the DBLOCK Keyword
DBLOCK Factors for Desired Data Buffer Sizes
One Sector Full of Keys
OCL Showing IBLOCK Keyword
IBLOCK Factors for Desired Index Buffer Size ..
18 K Program with Appended Buffers
26 K Program with Unappended Buffersccccovevuererereienninns
Status USEIS SCIEEMNcccevveriiiriecriieriniesieiinrereieesses et sae s saaseenes

Index DOCLOr REPOIL ... s
One Program Using One File
Two Programs Using One File
Procedure KEEPOPENcccooueenirennncnnnns
Procedure KOPENF

MRT Procedure KPOPEN2
MRT-NEP Program KPOPENc.ccocrvininiinvennieniensenessennensessnenionns
KEEPOPEN Performance Benchmarks
Diagram of a Deadly Embrace
An Algorithm Using the NITU Strategy
RPG Code Incorporating the NITU Strategy
SHOWUR SCIEENcovvivveririiriininiiiiniiesiieirseiinsesnsnsssssessssesenins

Changed Duplicate Key Value Causing Ripple-Down Add 192
Sequence of Events for an Extended File
REORGX Prompt Screen #1ccocevenenininenes

REORGX Prompt SCIreen #2cccoeveeerrivuercsronseneeresseneenenes
REORGX’s Syntax When Calling from a Procedure

Key SMF MEQSUTEMENLScccuevviririnnueiiniiiniiniininisiosisssissssienionne
File Placementc.ceeviveiininiiiiniiiinsc s esnns
Sample SNAP Utility Displayccococcevrerirnininnniiiniencsincicnens
I/O Counters SUMMALYcccveerrinerveirenremcerecreierens
File Access Counters by File from SMFPRINT ALL

File Access Counters by Task from SMFPRINT ALL

Main Storage CONLENLScoceviinienienenninrinienieieeninetse e siens 232
MemOTY MELET SCIEEMc.ccvevirverurererrectsnerirneneeissessessssessessesesnsesense 235

Xiv

Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6

Figure 15.7

Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4a
Figure 16.4b
Figure 16.4c
Figure 16.4d
Figure 16.4¢
Figure 16.5
Figure 16.6
Figure 16.7

Figure 17.1
Figure 17.2
Figure 17.3

Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8

Figure 19.1a
Figure 19.1b
Figure 19.2

Figure 19.3a
Figure 19.3b
Figure 19.3c
Figure 19.4a
Figure 19.4b
Figure 19.5a
Figure 19.5b
Figure 19.5¢

Figure 20.1

Disk Accesses with and without Cachecccocverivvrirreencncnnnns 238
How Disk Cache Takes Advantage of Localityc.ccccervrrrninencnes 239
SMF Summary System Event Counters for Cache Evaluation 242
CACHIQ DiSPIAYvoooorernersvesssssnssnnnns 244
CACHIQ Logfile Record FOIMAtccccervururirisinsnennisisisisesesssnsssenes 245
Sample Procedure to Automatically Change

Cache Configuration on a Predetermined Schedule 246
Sample Procedure to Automatically Change

Cache in Response to Changing Environmentcc.cceeerversnnens 246

Sample Detail Report from Utility RTIMERcoooevveniniiennsiranen
Sample Summary Report from Utility RTIMERcccccovvvinincncnnnnn
Typical All-in-One Order Entry Panelcccoovieiveniveceneneninceenns
Customer Name and Address Information Screen
Customer Credit History Screencccceveevenveinennnes

Ship-To Address SCrEENcccoeveveeenirerriiniinrciseie e sresns
Customer Line-Item Order SCreencccovieivrrirersssneseesesisssnnns
Summary Order Information Screencccccccvevenenene

Traditional Program Linkage Using OCL and LDA
Disk Overhead for Terminating/Initiating Task Sequence 258
Program Linkage Using External Program Callsccceceeverrunene. 259

Example of Coding an RLABL Definition Listcccorvueueuerererenenes
Example of Coding CALL Statements for RBRIDG
Sample COBOL Program Using RBRIDGc.cccovvuneeenirirenennnns

Sample Profiled Source Program LiSHNEcccoeunervenrrusesesienenennnns 305
OCL Showing //FILE Statement for P#SAMP Counter File 308
Execution-Time Cost Multipliers for Various RPG Operations 308
Sample Output from Utility RPGDUMP
Symbol Table Creation Prompt Screen
Sample Symbol Table Source Member
Example of RPG Code Using SUBRTD
RPG Dump Formatter Prompt SCreencccocevevvevenineeseneiveseerennnes

RPG Program Using Externally Described Files
Code Generated by 400RPGcccceveveruninreinrereesenessesssssnsessssssnnns
400RPG External File Description Member for BANK File
Using RPG II to Describe a Multipart Keycccoouerivenrvenenenennnne
Using a Data Structure to Describe a Multipart Key
Using KLIST to Assemble Fields of a Multipart Key
Indicator-Laden RPG II COdeccovueuememnerenesmnecrensssesesennens
400RPG Code Using AND/OR Operationscoeevveerersens
Sample S/36E PIOZIAMcoeerrerevessrereressssssssessesssesessssssens
Native Program Called by Program in Figure 19.5accccccvuueee.
Mapping Parameters with a Data Structureoceveveveeverererennnne

How S/36 Objects Relate to Their AS/400 Equivalents 342

Xxv

Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7

Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4

Figure 21.5
Figure A

Internal Organization of the S/36 Environmentcc.oceveveunnnnn 343
Equivalent $/36 and AS/400 Modelsccourvvrrrrernnrreessersansenens 347
AS/400 Memory Requirements Worksheetccoverreverervencreecnne 347
AS/400 Model Capacity Chart (MB)cccoouvimrncnncercernnnnenisrennen. 348
AS/400 Disk Requirements WOTKShE€Lccoveuververrrernnessisninnennes 349
IBM Program Product Space ReqUirementscccevvvevrenrereeerenenecs 349

Comparison of UNIBOL and Open RS/36 Features
Comparison of UNIBOL and Open RS/36 Facilities
UNIBOL Versus S/36 Performance Benchmarksc.coccvvrrnruncn.
Screen from UNIBOL's Programmer Interface

Environment (PIE)occcceeviurennrrinerstvemsrnsnensssssessesmssnassssssssssssseases
UNIBOL Pricing
$/36 Machine Language Instruction Set

Introduction

THE SYSTEM/36 IS DEAD! That, at least, was the claim made by a columnist
in the December 1986 System User magazine, when the S/36 was barely three
years old. Needless to say, the announcement was a little premature. Six vigor-
ous years later, more than 300,000 S/36’s are running worldwide — with new
CPUs still being sold by IBM and its resellers. As the S/36 closes out its tenth
year of profitable computing, nobody is yet quite sure when the system is
going to finally lie down and die. The AS/400, certainly a sexier and more
powerful machine, has somehow failed to pull cheerfully persistent S/36 users
away from what they see as a working, patd-for, business solution. This S/36
community seems determined to remain active for several more years.

This book was written for that still-thriving community. Whether you're
a system operator, programmer, MIS director, or consultant, if your job includes
managing a S/36, this book will help you. We call it the Desktop Guide because
it's designed to stay off the shelf and by your side — ready to provide solutions
to the kinds of problems that crop up regularly in an active S/36 shop. The
material is arranged logically into seven sections: system internals, hardware,
external program calls, disk data management, performance tuning, advanced
topics, and future directions. But because we expect you to access this book
randomly, like an indexed file, we've incorporated a number of special refer-
ence tools. First, a task guide (see “How to Use This Book™ provides a road
map to follow for visiting chapters of interest in common problem situations.
Second, performance notes in the margins highlight useful tips and techniques,
to let you get the “good stuff” by skimming. Third, embedded technical notes
amplify details that might otherwise get swept under the rug. Fourth and final-
ly, the index — an afterthought in some other books — has been prepared
with special attention to detail, to help you easily ferret out obscure facts.

However, we want to provide more than just an encyclopedia. To that
end, we've included a diskette chock-full of useful utilities that can make your
/36 life easier. These aren't just reruns of programs published in NEWS 3X/400
(all right, a few are reruns, but they’re good reruns!). Most of the utilities are
brand new, original tools appearing here for the first time. We created them to
fill in some of the remaining gaps left by IBM in its headlong dash to the
AS/400. A directory of these utilities, along with page references to the text
describing them, appears at the end of this section (see “How to Use the
Diskette”).

From the beginning, we tried to write a book that would answer as
many questions as possible, explain as much valuable detail as possible, and
avoid as much pablum as possible. We don't expect anybody to use every-
thing in this book; but if it solves some of your problems, we've succeeded.

Xvil

HOW TO USE THIS BOOK

“Would you tell me, please, which way I ought to go from bere?”
“That depends a good deal on where you want to get to,” said the Cat.
— Lewis Carroll
Alice’s Adventures in Wonderland

There are many ways to approach S/36 problems and solutions; likewise,
there are many ways to approach this book. Here are a few suggestions. If
you want to:

Make the machine run faster right now

Read Chapter 5, which will tell you to go buy as much memory as you can
stuff into your CPU. Then go to Chapter 4 to determine how much memory
that is for your model S/36 (Warning: you might find yourself upgrading mod-
els before you're done). You can’t make your machine faster without plenty of
memory; these chapters show you why.

Purchase hardware upgrades

Go directly to Chapter 4, the definitive catalog of S/36 hardware options. If
you weren't planning to buy memory, read Chapter 5. Before writing the
check for your upgrade, review the upgrade considerations in Chapter 6; you
could save a bundle.

Do serious performance tuning

Skip to Chapter 13, which explains the all-important prerequisite to perfor-
mance tuning, good measurements. If you haven’t thought twice about memo-
1y yet, read Chapters 14 and 5 next. If you're looking for program-level tuning,
study Chapter 3 to understand Disk Data Management, then read Chapters 11
and 12 for tips on reducing the disk bottleneck. Chapter 18 explains profiling,
which lets you analyze program performance at the source statement level.

Improve your software development environment

Check out Chapter 6, which enumerates ideas for making software develop-
ment more efficient through smarter use of hardware. Chapters 18 and 19 pro-
vide information about better development and debugging tools (and the
diskette includes some tools you can use right away). We're assuming that you
already have a good full-screen editor — either FSEDIT from IBM'’s POP prod-
uct or the Blue Iris editor from Iris Software (916-893-4747, $475). We consider
POP (Programmer/Operator Productivity Aid) an essential prerequisite tool —
it greatly assists system management and software development. If you don't
have it, get it (IBM program number 5799-BRJ, $500).

Xvill

Write better, faster programs

Read Chapter 7, an introduction to External Program Calls (EPC). EPC is the sin-
gle most important technology you can apply to application design today. With
it you can achieve subsecond response time with programs that are easier to
understand and maintain. If you're already using EPC, scan the comparison of
EPC products in Chapter 8 — you may decide to change EPC vendors. If you're
sold on EPC, but need a jump-start on modular design and implementation con-
cepts, check out Chapter 9, which presents a case study and rules to live by.

Get new programs up and running sooner

Chapter 18 explains how to shorten the most unpredictable phase of software
development: testing and debugging. Two tools included on diskette — a profil-
er and a dump debugger — help you ensure test coverage is complete and
track down elusive intermittent bugs. Don’t miss the “Golden Rules” of software
testing, a wealth of testing knowledge from acknowledged industry experts.

Do things beyond the ability of RPG and COBOL

Go directly to Chapter 17, a ready-to-roll library of assembly language subrou-
tines that open up areas of the S/36 you thought were IBM’s private property.
If you think that assembler routines are a bad move for portability reasons,
review the discussion on portability in this chapter and the rules for upward
compatibility in Chapter 19. It is possible to use assembler without painting
yourself into a comer. Special note to COBOL users. Be sure to read about the
COBOL Bridge at the end of Chapter 17 — it makes most RPG-oriented
assembler routines accessible to your COBOL programs.

Use CACHE effectively

Read Chapter 15 to get the definitive scoop on CACHE operation, including a
utility that lets you monitor CACHE performance without all the fuss and both-
er of learning SMF. You may need more memory to take advantage of
CACHE,; look at Chapters 5 and 14 to find out.

Improve disk performance

Look through Chapters 11 and 12 for specific procedures that reduce disk time
and space overhead. Chapter 10 explains blocking and how to use it to best
advantage without modifying your programs. Chapter 3 lays out Disk Data
Management theory you’ll need to really understand disk performance.

Improve response time

Read Chapter 16 carefully. It explains how to measure interactive response
time using a utility provided on diskette, so you’ll know when response time
has improved. The chapter goes on to show you where you can change

XIX

applications to reduce response time, and points out how External Program
Calls can be the big lever for speeding user interaction.

Make Disk Data Management sit up and bark

We mean, of course, wringing every drop of performance from DDM. To do
that, you must understand DDM internals intimately. Fortunately, it's not all
that hard, as you'll discover after reading Chapter 3. Chapters 10, 11, and 12
will then show you all the tricks, and a host of utilities on diskette will have
you leading DDM around by its, uh, node.

Do the right thing for future migration

Skip straight to Chapter 19, which gives important guidelines for making your
applications portable, whatever your future platform. You might be surprised
at what the real issues are (for example, you probably think assembler lan-
guage programs are a big problem, but they’re not).

Learn about future platform alternatives

The Big Question: Where do we go from here? Chapter 20 covers the AS/400
from a S/36 user’s perspective. It will give you some mental scaffolding to
understand what you're evaluating, and all the details you'll need to pick an
AS/400 of appropriate size and mass for your needs. Chapter 21 examines the
new midrange contender: the RS/6000. You'll read about the two primary
Unix migration alternatives and what pros and cons you should consider in
your decision.

Be a S/36 guru

It’s still fashionable. And not too difficult. Read Chapters 1 and 2 (which we
included to give our book intellectual heft), buy a pocket protector, and sign
on to NEWS 3X/400’s electronic bulletin board, NEWSLINK, every day.

HOW TO USE THE DISKETTE

The diskette packaged with this book contains source and object code for the
utilities and subroutines described in the text. We've divided the machine-
readable material into three libraries: DT36X contains ready-to-run object code
and procedures for all the standalone utilities; DT36R contains the R-modules
for assembly language subroutines; DT36S contains all non-assembly language
source code. The use of three separate libraries lets you install only as much
machine-readable code as you want to use. If you just want to use the stand-
alone utilities, install only the DT36X library; if you want to use assembly lan-
guage subroutines in your RPG or COBOL programs, install DT36R; if you
want to modify any of the utilities, install DT36S.

XX

To install a library, simply insert the Desktop Guide diskette into the
diskette slot (slot S1 if you have a magazine drive) and type the command:

RESTLIBR library

where library is DT36X, DT36R, or DT36S. SSP will then restore the library on
your hard drive. You can use any of the standalone utilities by making DT36X
your current library using the SLIB DT36X command. Then simply key in the
name of the utility you wish to run (e.g., MMETER). Alternatively, you could
copy the contents of DT36X to your #LIBRARY by typing:

LIBRLIBR DT36X,#LIBRARY,LIBR,ALL

Now the utilities will be available from any terminal no matter what library is
current.

To use the assembly language routines once you've loaded them,
specify DT36R for the subroutine library name parameter on the RPGC or
COBOLC statements. For RPGC this is parameter 16:

RPGC MYPROG,MYLIB,,.,.,..........DT36R
For COBOLC, you also specify DT36R in parameter 16:
COBOLC MYPROG,MyLIB,.............DT36R

Remember that for COBOL you must use the RBRIDGE routine to access
assembly language routines written for RPG (see Chapter 17, page 300, for an
explanation of the RBRIDGE routine).

To locate any of the utilities or subroutines described in the text, refer
to the following alphabetical library directories, which list the name and brief
description of the utilities or subroutines contained in each of the libraries and
provide a page number to tumn to for detailed usage instructions.

DISKETTE CONTENTS

Library DT36X: Executable Standalone Utilities

Name Page Description

CACHIQ 243 Displays real-time cache utilization and performance
statistics

FILEXIND 196 Changes or retrieves a file’s extend value without
re-creating or copying the file

INDEXDR 167 Index Doctor. Analyzes indexed files and alternate
indexes and prints a report describing index health

KEEPOPEN 173 Keeps large indexed files open to maintain the storage
index in main storage, speeding program initiation

XXI

Name
MMETER

PROFRPG
REORGX

RPGDUMP
RTIMER

SETCACHE

SHOWUR

SLOWKS

SNAP

234

304
198

308
249

245

181

199

219

Description

Displays real-time memory utilization statistics for the
entire system

Performs statement-count profiling on RPG program

Reorganizes a file and automatically re-creates all of its
alternate indexes

Prints formatted contents of an RPG dump file

Measures and reports response-time values for all
workstations

Dynamically changes cache values from evoked or
JOBQ jobs

Shows which programs are using records in a given
file, which records are being held for update, or which
records are waiting for another program to finish an
update

Reports whether or not a given keysort is being per-
formed using a disk work file (fast) or entirely in-
memory (slow) due to lack of available disk space

Displays real-time CPU and device usage statistics for
executing programs

Library DT36R: Assembly Language Subroutines

Name
RBRIDG
SUBR#D
SUBR$C
SUBR$F
SUBRS$S
SUBR$X
SUBRAT
SUBRBX
SUBRCO
SUBRCP
SUBRCQ
SUBRCS
SUBRCT

Page

300
308
265
265
234
267
268
269

293
243
269
291

Description

COBOL bridge to RPG assembler routines
Subroutine used internally by RPGDUMP utility
String concatenate

String search within a field

Subroutine used internally by MMETER utility
Substring extract from a field

String adjust: left, right or center

Convert between binary and hex

File close and open

Return cursor position for a WORKSTN file
Subroutine used internally by CACHIQ utility
Convert between upper and lower case
Change system time or date without IPL

XXl

Name

SUBRDT
SUBRDU
SUBREK
SUBRFA
SUBRLD
SUBRLN
SUBRLR
SUBRMG
SUBRRN
SUBRPC
SUBRPS
SUBRSG
SUBRSM
SUBRSX
SUBRSY
SUBRUF
SUBRUL
SUBRUP
SUBRUR
SUBRWT

292
293
294
281
271
295
274

296
297
276
219
298
288
288
289
270
290
298

Descripdon

Retrieve SYSTEM and SESSION date formats
Replace DUP key save area for a workstation
Dynamically enable or disable command keys
File access, full procedural

Library directory retrieval

PRINTER file current line number retrieval
Library member read by sector

Send an MSG message from within a program
File relative record number retrieve

Position the cursor for a WORKSTN file

Print the current screen

Library source member get

Subroutine used intemally by SNAP utility
Retumn the spool ID for a PRINTER file
System information retrieval

Retrieve users of a file

Retrieve users of a library

Pack or unpack a field

Retrieve records-in-use for a file

Wait for a specified time interval

Library DT36S: Source Code
Page Description

Name
CACHIQ
KEEPOPEN
MMETER
PROFRPG
REORGX
RPGDUMP
RTIMER
SHOWUR
SNAP

243
173
234
304
198
308
249
181
219

Cache IQ source code

KEEPOPEN source code

Memory Meter source code

Profiler source code

REORGX source code

RPG dump formatter source code

Response time measurement utility source code
SHOWUR source code

SNAP source code

System Internals

“Where shall I begin, please your Mafesty?” be asked. “Begin at the beginning,”
the King said, gravely, “and go on till you come 1o the end. then stop.”
—Lewis Carroll
Alice’s Adventures in Wonderland

nderstanding the inner workings of your computer isn’t essential to

running the machine any more than understanding engines is essen-

tial to driving a car. It's a sure thing, though, that at least a passing

familiarity with hardware and software architecture will help you in

the long run. If your immediate goal is to improve response time or
to write applications, you can safely skip the material in this section — noth-
ing here will make or break your ability to tune the system or write good
application programs. But if you want a good understanding of the fundamen-
tal mechanisms that underly the S/36, you'll find it right here.

Chapter 1 is the definitive description of S$/36 hardware architecture:
an under-the-covers look at CPU internals not found in any public IBM publi-
cation. Chapter 2 presents an equally detailed dissection of $/36 memory man-
agement that will serve you well as you dig through pages of SMF reports, hot
on the trail of improved performance. Chapter 3 unravels the mysteries of
Disk Data Management — the information pump through which all your
application’s data must pass — and dispels a good many old programmers’
tales in the process.

All of this material might be considered above and beyond the call of
duty for the average programmer. But then, you aren’'t average — you bought
this book, didn’t you?

c
o
=
©
0]
w

Chapter 1 Introduction to 3/36 Architecture 3

Chapter 1

Introduction to S/36 Architecture

Computers, like skyscrapers, are built from the basement up; sometimes it
takes years to reach the top floor. Most existing commercial computers have
risen slowly from established architectures, and the System/36 is no exception.
It stands on the foundation wrought by the IBM System/3, Systeny/32, and
System/34. But System/36 users should not fear that their trusted systems will
become lost in the rubble. An investigation of the history and architecture of the
Systen/36 reveals that System/36 reliability and cost efficiency ensure several
more years of life, despite the availability of newer systems such as the AS/400.

Examining the $/36’s inner pars reveals its evolution. Its unique par-
allel processors and modular components speak of several design phases.
There is much to learn. But interesting as this knowledge might be, of what
practical use is it? Why should anyone be interested in how a machine works
internally? Certainly the $/36 can be programmed and operated without such
detailed knowledge, just as a car can be driven without understanding what
goes on under the hood. However, for the driver, a knowledge of auto
mechanics comes in handy when comparison shopping for a new car or when
“tuning up” the old car. Knowing something about the inner workings of your
computer provides the same kind of benefit.

Understanding what happens under the computer’s covers is especial-
ly helpful when planning for the inevitable upgrade to a newer platform: you
can take steps today to make your applications more portable while retaining
good performance. And programmers who understand the basic operation of
a computer can design programs that take advantage of the computer archi-
tecture’s sirong points.

Genealogy

A discussion of present-day $/36 architecture must begin with a look at the
architecture of its predecessors. Figure 1.1 summarizes the hardware develop-
ments contributed by each generation in the §/36 ancestry.

The $/36 architectural line began in 1969 with the S$/3, one of the
first computers for small businesses. The $/3 was revolutionary in one sense:
it offered a fast commercial instruction set at a time when most computers
relied on a scientific instruction set. A computer’s instruction set consists of
the lowest level machine language orders it can carry out. “Add binary,” “load
register,” and “branch to address” exemplify machine language instructions.
The scientific machine instruction set used by most computers of that era

4 Desktop Guide to the S/36

Figure 1.1
System/36 Genealogy
Machine Major architectural contributions
System/3 * Commercial machine language instruction set, including:

multibyte, memory-to-memory instructions (up to 256 bytes per instruction);
variable-length decimal; and arithmetic no hardware multiply/divide
* Address Translation Register (ATR) technique for multitask memory management.

System/32 * Separate processor to handle I/O (Control Storage Processor)

* Microprogram emulation of System/3 processor (Main Storage Processor)
* Single program execution only

* 27 MB disk drive technology (Gulliver)

System/34 * Hardwired implementation of System/3 processor

* Task switching and address translation handled by CSP

* Significant operating system functions implemented as Supervisor Calls

* Scientific instruction set (for BASIC and FORTRAN) in microcode

* Four-line communication controller (MLCA) to handle polling and teleprocessing I/O
* 64 MB disk drive technology (Picollo)

System/36 * Faster main storage and control storage processors

* 8 MB real main storage addressability

* 192 K translated (region) main storage addressability

* 128 K control storage (double that of the System/34)

* Two-byte wide, bidirectional channel

* Improved overlap of CSP and MSP operation

* Fast task-switching hardware and multiple ATR groups

* Virtual memory management for system transient routines

* New MSP instructions for ease of programming

* W/S controller optional to reduce cost of entry level machines

* Word Processing Text Mode support for workstations

* Data Storage Controller to handle disk/tape/diskette data transfers
* Eight-line communication controller (ELCA) to handle polling and TP I/0O
* RLIYECC disk drive technology to eliminate write verifies

performed calculations on binary numbers in registers Chigh-speed, scratch-
pad memory). For scientific programs this type of instruction set provided
much needed speed. Programs computing Laplace transforms or orbital veloci-
ties ran like the wind.

Business programs, however, have little to do with binary numbers or
registers; they work instead with decimal numbers and variable length fields.
A traditional scientific instruction set was ill-equipped to deal with these fac-
tors because it was constantly converting commercial formats to binary for-
mats and vice versa. Consequently, payroll and inventory applications run on

Chapter 1 Introduction o S/36 Architecture 5

computers with a scientific instruction set used up much processing time on
data conversion and ran like glaciers.

In contrast to many of its contemporaries, the S/3 commercial instruc-
tion set could perform arithmetic operations directly on decimal numbers in
memory — no intermediary registers were necessary. It also could, in a single
instruction, manipulate a field of data up to 256 characters long (no more byte-
by-byte translation to binary). With the S/3’s multi-byte, memory-to-memory
instructions, S/3 programs did not spend much time converting data, and busi-
ness application performance improved.

The speed of the S/3 processor was carried over to the S/32 (some-
times called the “bionic desk” because it was an all-in-one unit), which was
introduced in 1973. With the S/32, IBM heralded a new hardware technology
that allowed two CPUs to function side-by-side in one machine.

One CPU, or processor, was a microprogrammed version of the S/3.
This processor wasn't as fast as a S/3, but it executed the same instruction set,
which meant IBM could reuse much previously developed system software.
The other processor, given the job of handling all contact with peripheral
devices and the outside world, was a real innovation. This second processor
ran its own dedicated program using its own dedicated memory. Although in
the early 1970s the S/32’s dual processors represented a hardware advance-
ment, this system was limited by its capacity to run only one program at a time.

Four years later, IBM announced the S/34, which continued the S/32
philosophy of using two processors. However, the microprogrammed proces-
sor was replaced by a much faster “hardwired” version. This processor, now
faster than the fastest S/3, could run multiple programs simultaneously. The
second processor, also a holdover from the S/32, took on the job of managing
memory and dispatching tasks for the hardwired processor. (IBM included in
this processor a scientific instruction set, emulated by microcode, which
allowed faster execution of BASIC and FORTRAN programs.) Local terminal
management was relegated to yet a third processor. A fourth processor was
available as an option to support outside communications — the first time a
processor was offered optionally. Extensive use was made of another develop-
ment, the ATOM (A Tiny Optimized Microprocessor), to directly control the
system printer and MICR (Magnetic Ink Character Recognition) devices.

These developments led to the S/36, which appeared in 1983. In many
ways, it is a radical departure from the S/34. For example, memory address-
ing was re-engineered for the first time since the S/3. The two main proces-
sors also were improved and the selection of optional processors expanded.

Internally, the S/36 supports several different processors. Figure 1.2
summarizes their names, functions, and characteristics. The Main Storage Pro-
cessor (MSP) is really a hardwired S/3 CPU with a few new instructions. The
Control Storage Processor (CSP) controls the overall operation of the entire

6 Desktop Guide to the S/36

Figure 1.2
System/36 Multiple Processors
Function of Internal Instruction Execution Address 'ﬁgﬂ
Processor Technology Set Speed in MIPS Space Time (ns)
Main Storage Enhanced
Processor MSP System/3 0.36 sMB 200
Control Storage CSP Regis!er-to- 16 128 K 200
Processor Register
Workstation CSPI Register-to- 16 128K 200
Controller Register
Data Storage CSPIl Regis!er-to- 16 128K 200
Controller Register
Eight-Line Register-to-
Comm Adapter CSP/I Register 16 128K 200
Printer ATOM Register-1o- 1.4 128K 200
Controller Register
Magnetic Ink .
Character atom | Fegstero 1.1 128K 200
o egister
Recognition
Local Area
Network PC/AT Intel 80286 1.2 640K 150

machine. It runs a dedicated program in its own memory (control storage)
which may be either 64 K or 128 K. A third kind of processor has the same
instruction set and organization as the CSP, but it is used as a dedicated con-
troller for certain input/output (I/0) operations. IBM has designated it the
CSP/I; one each is found in the Workstation Controller, Multi-Line Communi-
cations Adapter (MLCA), Eight-Line Communications Adapter (ELCA), and
Data Storage Controller. If a 3262 printer or Magnetic Character Reader is
attached to the system, ATOMs will control these devices. To better under-
stand the function of each of these processors, let’s first examine the two main
processors (MSP and CSP) and then discuss the optional processors.

Main Storage Processor

The S/36 Main Storage Processor (MSP) runs SSP programs and user applica-
tions through the S/3-based commercial (memory-to-memory) instruction set.
That is all the MSP does. It has no control over which programs are executed.
It has no direct contact with the outside world. (When the MSP must perform
1/0 operations, it submits a request to the CSP, which handles contact with

Chapter 1 Introduction to S/36 Architecture 7

the outside world.) And the MSP executes only .36 million instructions per
second (MIPS). This rate might seem slow when compared with other com-
puters, but because the MSP doesn't concern itself with I/O or task manage-
ment, it is free to concentrate on the job at hand. This freedom makes up for
the MSP’s apparent lack of horsepower.

The MSP in the current S/36 can address up to 8 MB of memory, or
main storage — seemingly small by today’s standards, where an average PS/2
might be configured with up to 16 MB. However, the S/36’s implementation of
virtual memory (VM) lets you run up to 128 MB of applications simultaneously.
Chapter 2 describes S/36 memory architecture, including VM, in detail.

Control Storage Processor

The Control Storage Processor (CSP) interfaces with peripheral devices, man-
ages MSP memory and swapping, and controls the execution of the MSP. The
CSP also provides special computational services to the MSP, including high-
level operating system operations such as queue management and intertask
communications. Through judicious task and memory management, the CSP
tries to keep the MSP operating at maximum efficiency. Because the CSP is not
working on business programs, it uses a more applicable register-to-register
instruction set, which allows the CSP, running at speeds of 1.3 to 1.9 MIPS, to
juggle many jobs at once. The services provided by the CSP simplify the pro-
gramming involved in.the SSP and take advantage of the four-fold speed
advantage CSP has over MSP for time-critical functions.

There are three versions of the S/36 CSP. Machines shipped before
October 1984 contain a Stage 1 CSP, which runs at 1.3 MIPS. Machines
shipped after October 1984, including all 5362 and 5364 processors, contain a
Stage 2 CSP, running at 1.6 MIPS. CPUs on the 5360 model D, and all 5363s,
use a Stage 3 CSP, running at 1.9 MIPS. On small machines the performance
difference between Stage 1 and Stage 2 processors is insignificant because the
CSP is rarely running at anywhere near its rated capacity. However, on large
5360s running many workstations or DisplayWrite/36 jobs, the CSP may be
fully utilized, and the Stage 3 processor improves performance significantly.

The S/36 CSP has a number of enhancements over the S/34 version.
In addition to being faster, the S/36 CSP processes more requests in parallel
with the MSP than did its predecessor. It also recognizes many new Supervi-
sor Call (SVC) instructions, which perform operating system functions for the
MSP. Included in these new SVC instructions is a “storage mapping” service,
which allows SSP programs (e.g., data management) easier access to buffers
in a user application.

The S/36 CSP also contains a larger control storage area than the S/34
CSP. Because the S/34 CSP contained only 64 K of control storage, control stor-
age programs that couldn't fit in this space were read in from disk as “transients”

8 Desktop Guide to the S/36

when required. The S/36 CSP can contain either 64 K or 128 K of control stor-
age. (The extra storage is used to contain Workstation Controller (WSC) code if
the WSC function is inboard, or to simply keep more CSP routines resident if
the WSC function is outboard.) In addition to the extra control storage, the S/36
CSP offers a new Virtual Address Facility in its memory management function.
This facility allows any number of MSP transients to run from the user area
instead of bottle-necking in a single transient area as they did on the S/34.

An interesting and useful service provided by the CSP is the Alter/
Display facility. When the MSP STOP button is pressed on the service panel, a
special menu appears at the system console. This menu allows a programmer
or service technician to examine and modify any location on disk, in main
storage, or in control storage. This kind of tool, when it is available at all on
single-processor machines, is usually implemented as a large and complex
control panel. The S/36’s “soft” control panel is much easier to use and pro-
vides a wider range of functions. For example, an Address Compare Stop fea-
ture can be used to stop the MSP when a certain disk or memory address is
referenced or changed to a specified value. The MSP is in a suspended state
while Alter/Display is being used; processing resumes at the point of interrup-
tion after exiting the Alter/Display menu. This capability is invaluable for
tracking down difficult system bugs.

Optional Processors

As options, you may install other processors that take care of additional tasks.
A Workstation Controller (WSC) processor deals with local workstation
input/output; a Data Storage Controller (DSC) processor mediates data trans-
fers between disk and slower devices such as diskette and tape; an MLCA
(Multi-Line Communications Adapter) or ELCA (Eight-line Communications
Adapter) processor handles polling and protocol for multiple communication
lines; a Local Area Network processor supports IBM’s Token-Ring LAN.

The Workstation Controller. An interesting difference between the
S/34 and the S/36 is in the workstation controller. Every S/34 had a dedicated
CSP/I with 32 K of control storage to poll workstations, process keystrokes
and handle field attributes like right-adjust, zero fill, and check digits. The
workstation expansion feature to support more than eight devices was simply
a memory expansion of the WSC to 64 K.

Not every S/36, however, has a dedicated WSC. On all 5364 models,
and on 5362 models without the workstation expansion feature, the WSC
function is performed “inboard” by the CSP. Because the CSP and WSC both
use identical processors, adding WSC tasks to the CSP’s workload wasn’t hard
to do, and it allowed IBM to produce machines with full S/36 functionality at a
lower price. (For a comparison of features among S/36 models, see Figure
1.3.) These models do not suffer a performance loss because the CSP has

Chapter 1 Introduction to $/36 Architecture 9

Flgure 1.3
Comparison of Features Among $/36 Models
, Data
Model Disk Access | Memory | Workstation Storage Comm
Configurations | Time Capacity | Controfler Controller | Diskette | Tape**
Controller
5364 | 40,80 MB 60 ms 1 MB NA NA PC 5.25° 6157
up fo 2 spindles (1 ine)
5363 | 68to425MB 3ms | 2MB NA Optional SLCA 525" | 6157
up 1o 2 spindies (2 lines)
5382 | 30tp 520 MB 3Bms | 2MB Optional NA SLCA, & 6157
up to 4 spindles MLCA
(4 lines)
5360 | 30101438MB | 35ms | 7MB Dedicated | Optional SLCA, 8 6157
up o 4 spindles (optional with tape MLCA, 8809
2nd avail) attachment | ELCA
{8 lines)
9402" | 160 to 640 MB 35ms 2MB NA Optional SLCA 5.25° 6187
up 1o 4 spindles (2 ines)
* Also known as the AS/400 mode! 9402, but actually is a S/36.
1BM marketed this machine for a short time as the AS/Entry.
** The 6157 tape drive is a streaming cartridge unit with 60 MB capacity.
The 8809 tape dnive is a reel-to-reel unit for mainframe data exchange.

enough additional capacity to easily take on the extra load. Larger 5362s and
all 5360s have an “outboard” WSC that relieves the CSP of handling more
extensive local networks.

Both the inboard and outboard WSC implementations support the
new “word processing mode” for local workstations. This mode adds such
functions as indentation, margin control, tab entry, and word wrap — func-
tions used by DisplayWrite/36 to provide a user interface better adapted for
word processing than the fixed-field format of data processing mode. Because
these features are under the direct control of a CSP or CSP/I, they have consis-
tently fast response time, regardless of the load on the MSP.

Remote devices, such as the 5251 Model 12 workstation and the 5294
control unit, also contain workstation controllers. In the 5251 Model 12, the
WSC program is fixed in Read Only Memory (ROM) and cannot be changed. It
is unable to support word processing mode. The 5294 does not contain a
fixed WSC program. Instead, the host $/36 downloads WSC microcode when
the 5294 goes on-line. Thus, word processing mode functions are available,
unlike remote WSC that have fixed micro code.

Data Storage Controller. The S/36 supports up to two tape drives —

10 Deskiop Guide to the S/36

something unavailable on the S/34. Tape drives are attached to the system
through the Data Storage Controller (DSC), which can autonomously transfer
files from disk to tape without the intervention of either the MSP or CSP. In
fact, the DSC also can mediate transfers between disk and diskette, diskette
and tape, or disk and disk.

When a S/36 does not have a DSC, data is transferred between
devices on an internal two-byte-wide path called the “channel.” This same
path is used for intercommunication between the MSP, CSP, and other proces-
sors. With all these devices competing for use of the channel, a sudden high-
volume transfer of data can result in a logjam of information, degrading sys-
tem performance significantly. The DSC operates “below” the channel,
communicating directly with the devices over its own private data path. This
capability reduces access contention on the main channel and eliminates the
degradation that normally occurs with large file transfers. The S/34 experi-
enced tremendous response-time degradation when transferring files between
diskette and disk, or disk and disk.

To operate efficiently, the DSC contains two 16 K buffers. 1t initially fills
both buffers; then, after one buffer is written to the output device, it starts refill-
ing it while the second buffer is being written. This double-buffering improves
the output transfer rate significantly and allows the tape drive to run in stream-
ing (high speed, nonstop) mode. When a DSC transfer is requested, the CSP
notifies the DSC where the source and destination files are and the DSC takes
over, interrupting the CSP only when a diskette or tape must be changed.

Because the DSC only relieves congestion on the main channel (it
doesn'’t actually move the data faster), no appreciable performance improve-
ment will be noticed unless the system is heavily loaded. The DSC can only
make response times more consistent. The DSC also is limited to performing
one device-to-device transfer at a time, If the DSC is engaged in a transfer and
the MSP requests another transfer, the second request will be queued until the
DSC is free. The one exception to this rule is if the DSC is processing a tape
transfer and a request for a diskette transfer is made. Because the tape transfer
could require a long time (especially if the operator doesn't change reels
when prompted), the diskette request is processed immediately using the
main I/O channel.

MLCA and ELCA Processors: A S/36 with one or two communications
lines (Single-Line Communications Adapter — SLCA) uses the CSP to poll the
lines, handle bottom-layer protocol, and buffer data transfers. One line pre-
sents no problem, but two lines can put an unwieldy burden on the CSP,
which is forced to drop everything it's doing to service the high-priority com-
munication interrupts. When more than two lines are installed, the MLCA
(now available only on the 5362) and ELCA processors do the dirty work.
These processors are essentially identical — the ELCA is more recent and the

Chapter 1 Introduction to S/36 Architecture 11

only product currently available on newer 5360s.

Because both communications processors are a dedicated CSP/I, they
support data rates much faster than the SLCA. They also assume the responsi-
bility for polling terminals, processing protocol messages, computing check-
sums, retransmitting buffers, and for the lower layers of SDLC protocol. A
machine with MLCA or ELCA installed will experience much less degradation
than a machine using SLCA.

Local Area Network Processor. The S/36 supports IBM’s Token-Ring
Local Area Network (LAN) through a specially attached PC/AT. The Token-
Ring network ports appear as communications lines 9 and 10, and the Token
Ring runs only at the 4 million bits per second (mbps) data rate; the 16 mbps
Token Ring isn’t supported.

IBM’s Multiple Processor Advantage

A computer architecture, such as the S/36’s, that uses multiple processors faces
a significant problem: how to use the processors efficiently. The goal is to get
some degree of parallel operation without unnecessarily holding up the exe-
cution of any one task. Traditional approaches to the problem treat all proces-
sors equally either by running separate application programs on each proces-
sor or by interleaving instruction execution among processors. IBM has taken
a different tack with the S/36 by assigning each processor a specific, dedicated
job and by designing for each a unique instruction set optimized for the tasks
at hand. Figure 1.4 diagrams the major components inside the $/36 and shows
how they are interconnected.

The usefulness of the multiprocessor architecture is demonstrated in
the analogy that single-processor computers suffer from the same problems as
single-engine airplanes: a shortage of options. When the engine quits on a sin-
gle-engine airplane, there are no options from which to choose. The important
decision has been made for you by the engine: the aircraft is going down. The
engine in a single-processor machine can stop, too, when an invalid instruc-
tion is encountered, or when a hardware error occurs. When such an event
happens, the computer often is headed in the same direction as the airplane.

The multiprocessor $/36, like a multi-engine aircraft, recovers some-
what more gracefully from serious system failures. If the MSP tries to do some-
thing crazy, the CSP gets control and executes an error-recovery procedure,
Often, the error-recovery program needs only to cancel the offending task
before resuming the work in progress. Sometimes even this step is not neces-
sary because the problem can be corrected while the MSP waits. For example,
if the MSP runs into a parity check (memory failure) in a main storage memory
card, the task is canceled and the 2 K page of memory is taken off-line to pro-
tect other tasks from the damaged memory. Likewise, if a disk sector is found
to be unusable, the CSP automatically assigns a spare from a special supply of

12 Desktop Guide to the S/36

Figure 1.4
Overview of S/36 Internal Components

MSP
Main —» Main Storage
Storage -~ Processor
\ CSP f ¢
Control —» Control Storage
Storage — Processor
A

I/0 Channel

A
PC/ATY ATOMi CSP/Ii ATOMi CSP/Ii CSP/Ii

1255 MICR Data Storage System Printer Workstation MLCAVELCA
(LAN Attach (CommlleD Conl!oller> (Controller) (Controlier (Controller)

L%c:hlﬂl‘\)rne(a Diskette Disk Line Local Communication

Printer WIS Ports Lines

Tape

extra disk sectors, then lets the MSP proceed as if nothing happened. The CSP
also keeps a detailed log — the Error Recovery Analysis Report (ERAP) — of
any problems it detects for later perusal by a customer engineer.

The interdependence between the CSP and the MSP is especially
important because during a typical processing day several programs compete
simultaneously for use of the MSP. Competition for the MSP means the CSP
must make many decisions about when to run which program. The process of
allowing a program (task) to run, then stopping it and starting up another pro-
gram, is called “task-switching.”

A typical task-switching scenario might proceed as follows: when the
MSP must perform some /O operation, it makes a request to the CSP via a
Supervisor Call instruction. The program that requested the I/O must now
wait. The CSP selects another program that is ready to run and starts it, then
schedules the 1/0O operation for the first task, thus “switching” the tasks. The
steps that take place when a task switch occurs bear examining because a

Chapter 1 Introduction to S/36 Architecture 13

major advantage of the S/36 over single-processor systems hinges on how
these steps are carried out.

Many computers, including the S/36, use an “I/O-driven” mechanism
for switching tasks. That is, when the execution of one task is interrupted to
perform an input/output operation, the machine switches to another task. This
switch makes sense because most I/O operations are quite slow when com-
pared with the speed of the processor. For example, a disk read requires
about 40 milliseconds; in the same amount of time the MSP could execute
nearly 15,000 instructions. Because the task that requested the I/O operation is
going to wait anyway, running another task in its stead overlaps the operation
of the processor and I/0.

However, task switching is not an instantaneous event. There is a gen-
eral sequence of events that must occur. First, the I/O operations that caused
the interruption must be dealt with: transferring the data and controlling the
device. Then the computer must determine which of several tasks should run
next and maintain the various queues used to make this decision. After a new
task has been selected, the environment of the old task (instruction pointer and
registers) must be stored. If the new task has been swapped out to disk, it must
be brought into memory. Finally, the environment for the new task must be
loaded and execution started at the point of previous interruption.

Figure 1.5a shows the timeline of events for a conventional single-
processor computer. Because only one processor is available, when an inter-
rupt occurs, everything else must stop while the task switch is done. If two
tasks are run together, chances are that the total amount of time to run them
will be longer than if the tasks were run one after the other: more time is
required to switch between tasks. When many tasks are running at the same
time, task switching can account for an appreciable portion of the total execu-
tion time. In fact, as the task load increases, a point eventually will be reached
where more time is used up doing task switches than running the tasks them-
selves. To the user, it appears as though system performance degrades rapidly,
out of proportion to the number of tasks. This situation is clearly unhealthy; in
most forms of accounting it is referred to as a net loss.

The same timeline for a S/36 is shown in Figure 1.5b. Here, when a
task switch must be made, only the CSP is interrupted — the MSP keeps run-
ning. The CSP then sets up everything for the task switch. It takes care of I/O
handling, determines which task will run next, swaps the task into storage if
necessary, and then switches tasks. All time-consuming operations are per-
formed in parallel by the CSP while the MSP continues to process user pro-
gram instructions. However, the S/36 contains special “fast task-switch” hard-
ware that allows it to save and load the MSP registers quickly, which, in turn,
makes the task switch nearly instantaneous.

The MSP is not involved in the details of shifting gears and loses little

14 Desktop Guide to the S/36

Figure 1.5a
Timeline for Single-Processor Task Switching

TIME -
User-program time
(productive)
Task-switching time
(unproductive)

Stop current task, process

/O, schedule new task,

save old task, load new task,

start new task,

Figure 1.5b
Timeline for S/36 Dual-Processor Task Switching

TIME »
User-program time
(productive) MSP
Task-switching time
(overapped) csP

Process VO, schedule /4

new task, load new task,

stop old task, save old task,

start new task.

time between tasks. Within the space of a few MSP instructions, the old task
is stopped and the new task is started. As new tasks are added, the MSP con-
centrates on running those tasks, and there are fewer abrupt changes in sys-
tem performance.

The Channel

The I/O Channel is the data path used by the MSP, CSP, other processors, and
peripheral devices to transfer data inside the machine. When a disk record is
read it is transferred byte by byte down the channel to main storage. The MSP
and CSP continue to run during this transfer, but the channel “steals” a cycle

Chapter 1 Infroduction to S/36 Architecture 15

from the MSP when it needs to access main storage. Other transfers work in a
similar manner. The S/34 channel was one byte wide, meaning that, for each
cycle, one byte could be transferred from one component to another inside
the machine. The S/36 channel is bidirectional and two bytes wide. It can
transfer two bytes at a time between components or one byte simultaneously
in each direction. Because the S/36 channel can transfer twice as much data as
the S/34 version, it “steals” only half as many cycles from the MSP, which
improves the performance of user programs and SSP functions. Generally, any
channel activity takes only half as long as it did on the S/34, greatly reducing
internal traffic congestion.

The S/36 channel is actually an intelligent device, not just a data bus.
It incorporates a primitive channel processor that executes a limited range of
instructions specifically geared to moving data on the bus. Although these
instructions are simple, it gives the channel some degree of autonomy: the
CSP can issue commands to the channel and then go do other work while the
commands are carried out.

Disk Drives

The hard disk technology used on the S/36 is a major advance over previous
devices. For this discussion, only the 10SR 200 MB drive will be examined. But
other disks (the 30/60 MB used in the 5362 and the 40/80 MB used in the
5364) are similar in operation. All S/36 disks use data encoding to increase
reliability and decrease access time.

To better understand S/36 disk drives, let’s again contrast the S/36
with the S/34. The S/34 Gulliver (27 MB) and Picollo (64 MB) devices required
that, after every write operation, the data be re-read to make sure it was
recorded correctly. While this step was handled automatically by the CSP, it
was time-consuming: after writing a record, the CSP had to wait for the disk to
spin around again to the starting point before the record could be re-read for
verification. Thus, write operations were more than twice as long as read
operations. Also, while the S/34 re-read technique provided a high level of
reliability when the data was written, it provided no recourse if the data was
damaged after writing (random damage). Experience with S/34 drives demon-
strated that the most common random disk error was a single-bit failure within
a byte. Double-bit errors within a byte also occurred but much less frequently.

The 10SR (STAR) uses a data encoding technique called Run Length
Limited (RLL) encoding, which eliminates the re-read requirement and
achieves reliability by detecting and correcting single- and double-bit errors at
read time. The S/36 technique recognizes that bad data could be put on the
disk at write time, but that most problems will be single-bit errors. On the
S/36, data is not written on disk as a series of fixed-length bytes, as it is on the
S/34. Instead, the bytes are encoded into variable-length bit strings containing

16 Desktop Guide to the S/36

Figure 1.6
Run Length Limited Codes for Disk Error Correction
Input bit string Resulting RLL code

10 0100

1 1000

000 000100

011 001000

010 100100

0010 00100100

0011 00001000

twice as many bits as originally input (Figure 1.6). Six Error Correcting Code
bytes are also written for each 256-byte sector. On a S/36, then, because infor-
mation is being stored redundantly, it is often possible to repair damaged
bytes at read time. When a record is read, the encoded data is decoded and
an error detection/correction algorithm executed on the result. The mathemat-
ics of the algorithm guarantee that any single or double-bit errors can be
detected, and that single-bit errors can be corrected. The net effect is that
records can be safely written to disk without re-reading for verification.

The Bottom Line

The S/36 is a prime example of building on pre-existing technology effective-
ly. Through extensions to an established architecture, it has the ability to coex-
ist in a distributed environment with other IBM midrange systems. The S/36’s
modular and general-purpose internal components let you effectively trade off
performance, capacity, and cost. The architecture of the S/36 proves that IBM
has acted to preserve the history of engineering, software development, manu-
facturing knowledge, and technical support invested in the S/36.

Chapter 1 Introduction to S/36 Architecture 17

Where to Learn More

An excellent overview of the System/36 can be found in the IBM technical bulletin S/36 Internals
(G361009). It outlines general concepts of both software and hardware architectures, provides a
lucid explanation of memory addressing, and presents details about MSP/CSP interfaces. This
volume is actually one of a series of six “Rochester Technical Bulletins™ — the other five cover
specific SSP topics:

* 5/36 8809 Tape Support (G360-1005)

* 5/36 Performance Monitoring and Tuning (G360-1006)

* S/36 Query/36 Design Guide (G360-1007)

* 5/36 Dala Dictionary System Design Guide (G360-1008)
* 5/36 Advanced Disk Dala Management (G360-1008)

Assembler language programmers will find the following two IBM volumes useful: Program-
ming with Assembler (SC21-7908) and Functions Reference Manual (SA21-9436). The first book is
provided as part of the IBM Basic Assembler Language program product and covers everything a
programmer would need to know 1o write simple assembler programs. A more complete description
of the machine, from the programmer’s perspective, is found in the Functions Reference Manual.
Machine addressing modes, instruction formats, and supervisor calls are examined in excruciating
detail. The programming characteristics of every device (disk, diskette, tape, printer, dispay, and
communications) also are set forth. Programmers who intend to write special subroutines that
access input/output devices directly will be interested in this level of detail.

Technical references useful to system programmers are contained in the trilogy:

* 5/36 Program Service Information (LY21-0590)
* 5/36 System Data Areas (LY21-0592)
* 5/36 Program Problem Diagnosis and Diagnoslic Aids (LY21-0593)

These books are available for a charge to any licensed user of SSP. Those who plan to do seri-
ous programming in assembler language should have these manuals; they cover debugging
facilities, SSP component operation, memory, and disk organization, and the formats of internal
SSP data areas.

The manual, IBM S/36 Control Storage Service Information (LY 31-0650), describes the
detailed operation of control storage processor programs. It explains how the CSP communi-
cates with and controls the MSP. The concepts are well illustrated, and an appendix contains
several step-by-step examples of CSP/MSP interaction.

For hardcore hardware details, turn to the S/36 Theory of Operation manual, which cov-
ers detailed internal computer operafions at a circuit board level. This manual is one of the large-
format customer engineering books shipped with every 5360 system unit. Smaller versions of the
S/36 (the 5362 and 5364) are not supplied with this manual.

Chapter 2 S/36 Memory Management 19

Chapter 2

S/36 Memory Management

You hear conflicting stories when people discuss how the System/36 manages
memory. Some people maintain that the System/36 is a swapping machine; oth-
ers say it's a virtual machine, Many data processing managers believe System/36
memory architecture is simply a copy of the System/34 with minor changes;
likewise, many programmers believe the System/36 limits tasks to 64 K
because the System/34 has this limitation. Misconceptions arise from the lack
of complete, understandable System/36 memory management information
available to busy DP managers and programmers.

Although understanding the low-level details of $/36 memory man-
agement isn't essential, it helps you determine whether you have enough
memory and whether you are using it effectively. And as you learn more
about $/36 memory and how the system manages it, you can design S/36 pro-
grams that use memory efficiently.

Main Memory Organization

To develop a picture of $/36 memory, look at a diagram of $/36 main memo-
ry (Figure 2.1). Main memory is organized as eight-bit bytes and varies in size
from 128 K to 7,168 K, depending on the machine model. Main memory con-
sists of hundreds of integrated circuit “chips” and represents one of the most
finite resources of the S/36. Figure 2.1 shows the three areas that comprise
the contents of main memory: the fixed nucleus, the variable nucleus, and
the user area.

The fixed nucleus, which occupies the first 4 K of main memory, con-
tains variables and data structures needed by all components of the $/36's
operating system, the System Support Program (SSP). The $/36's dual proces-
sors — the Main Storage Processor (MSP) and the Control Storage Processor
(CSP) — also use the fixed nucleus to communicate with each other. Because
the fixed nucleus is permanently set to the same size and content for all $/36
machines, a programmer or DP manager can do little to influence its effect on
performance. However, an assembler language programmer can use the data
stored in the fixed nucleus when writing special-purpose performance mea-
surement tools (see MMETER Utility, chapter 14.)

The variable nucleus includes the transient area, virtual page table,
resident routines, and system queue space. The transient area is 4 K of memo-
ry set aside for the very few SSP programs that must run in the variable nucle-
us. These programs are the task attach and detach, disk file open, diskette

20 Deskiop Guide to the 536

Performance Tip

The SSP automaticalty
queves up requests
for the transhent area,
but & high volume of
such requests can
slow performance
significantly by
causing many jobs to
walt for the translent
area. You can reduce
translent area
contentlon by
deslgning your
applications to
minimize new jobsieps
{e.g., by using external
program calls), thus
reducing the need for
task Initlation/
termination and file
open/close. Avolding
DDM sltuations thet
result In exceptions
also helps minimize
translent area
contention (see
Chapter 3).

Figure 2.1
Main Storage Contents

Fixed nueleus (4 K)

Variable nucleus: Transient area (4 K)
Virual Page Table (.25-8 K)
Resident routines (24-48 K)
System Queue Space (8 K + as required)

User Area: SSP programs
User programs
Task Workspaces

open, and disk data management exception routines, which run infrequently
enough so that contention for the transient area does not slow performance.
The virtual page table is used by the /36 virtual memory (VM) mechanism
(described later) to keep the system operating even when memory is over-
committed (i.e., when more programs are running than can fit in memory at
one time). Resident routines are a few special SSP programs (disk data man-
agement and frequently used parts of workstation data management) that, for
performance reasons, are always kept in main memory. Systern queue space
(5Q9) is a “pool” of memory set aside for dedicated use by SSP data structures
needed to control the system.

Technical Note

Only one system program at a time can run in the transient area. Because file open/close,
task attach/detach, and disk data management (DDM) exception handling all run in the
transient area, SSP must perform these functions serally. For example, while a task such
as // LOAD jobstep is being started, no files may be opened or closed. Similarly, when
DDM exceptions occur {e.g., update of a key) no files may be opened or closed, or tasks
initiated or terminated, until the exception is handled and the transient area becomes free.

The name “variable nucleus” implies the nature of this region: it varies
in size with the amount of work performed by the system. The first three com-
ponents of the variable nucleus don't actually change size while the machine

Chapter2 S/36 Memory Management 21

is running; the amount of memory they occupy depends on the hardware and
software configuration at IPL. Only the last area, system queue space (SQS),
ebbs and flows with the varying system load. Because the first three compo-
nents are “out of your hands,” nothing more need be said about their function.
On the other hand, your program design and scheduling do affect SQS, so a
detailed knowledge of the SQS helps you make decisions that improve overall
system performance. Later, we’ll look at characteristics of SQS that are impor-
tant from a performance standpoint.

The last, and usually largest, area of main memory is the user area.
User programs, most SSP programs, file buffers, screen formats, and other
objects reside here. One truism applied to computers in general, and the user
area in particular, is: “You can't have too much main memory.”

Effective memory management rests on your understanding of a few
fundamental concepts: real memory, translated memory, and virtual memory.
To grasp these ideas, let’s look at main memory from a different angle.

Memory Concepts
Figure 2.2 depicts the main memory address space for the S/36. Memory
addressing is the practice of assigning to each location of computer memory a

Performance Tip

Adding additional
memory often drasti-
cally reduces Interac-
tive response times,
making It the easlest
and cheapest way to
boost performance,
especlally given the
avallabliity of inex-

unique address, and using that address when referring to the contents of that pensive used memory
: . . . (see Chapter 5).
location. The S/36 follows the popular convention of dividing memory into
eight-bit bytes, each with a unique numeric address starting with zero. The
number of bytes that byte-addressable memory may contain depends on the
Figure 2.2
System/36 Real Storage Organization
Each page contains 2 K
Decimal Hex
Address Address
0 0 1 2 3 4 5 6 7 8 9 10 | 11] 12 | 13 [14 [15 [000000
32,768 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 [24 | 25 | 26 | 27 | 28 | 29 | 30 | - | 00B0OO
65,536 010000
99,304 018000
8,257,536 7E0000
8,290,304 7E8000
8,323,072 7F0000
8,355,840 4090 | 4091 [4092 | 4093 [4094 | 4095 7F8000

HAAnnnannnnaananaaanaanana

reserved for translated address

22 Desktop Guide to the 5/36

] Performance Tip

The 5360 Model D is
generally regarded as
having a 7 MB memory
limit. However, the real
address space of the
Modei D supports an
8th MB. See Chapter 5
for Information about
adding an 8th MB of
memory to your

5360 Model D.

size of the largest allowable address. On the S/36, a memory address is three
bytes long, or 24 bits. The first bit of every address is set aside for a special
purpose, leaving 23 bits to contain the address. The largest number that can
be represented by 23 binary bits is 8,388,607, so the S/36 can theoretically
have 8,388,608 bytes in its memory (remember, the first address is 0, not 1).
These locations, or bytes, of memory, each with its unique address, make up
real memory — all the memory that physically exists. The range of addresses,
from O through 8,388,607, is the real address space: the entire set of unique
memory locations available to the machine. The term real memory is used to
differentiate between memory that is available on the hardware and memory
that programs and programmers are led to believe is available (more on this
type of memory later in the discussion of virtual memory).

Fragmentation

When you try to apply the real memory viewpoint in a multitasking system,
problems arise, the worst of which is fragmentation. Figure 2.3 shows how
this problem develops.

In Figure 2.3a, a hypothetical computer with 128 K of memory is run-
ning four programs that consume a total of 124 K. After programs B and D fin-
ish running, they release their memory, leaving two 24 K “holes” in the 128 K
address space (Figure 2.3b). Later, the computer tries to run program E, which
requires 32 K of memory (Figure 2.3¢). Although a total of 48 K is available,
the program is unable to run because available memory is split into two 24 K
pieces. Program E must wait for either program A or C to end before it can
obtain enough unbroken, or contiguous, memory. Because the usable address
space is fragmented, program execution is delayed and perfectly good memo-
1y is wasted. Memory fragmentation worsens quickly in a busy computer sys-
tem, causing system performance to drop off dramatically.

Solving Fragmentation

One solution to fragmentation is allowing programs to run in noncontiguous
blocks of memory. The S/36 accomplishes this using addresses that do not
directly correspond to real memory addresses but must be translated by spe-
cial hardware into real addresses, hence the term translated addressing. Trans-
lated addresses appear to the executing program to represent contiguous
memory locations.

Here’s how address translation works. The S/36 groups bytes of real
memory into 2 K units called pages (as you saw in Figure 2.2), each with a
unique number from 0 to 4095. Figure 2.4 shows the program PROG A bro-
ken up into pages. Note that in main memory PROG A is not just fragmented
— its logical pages are out of order. The fourth logical page of PROGA physi-
cally appears before the first logical page. Before such a fragmented program

Chapier 2 5736 Memory Management 23

Figure 2.3
How Memory Fragmentation Occurs
Maln Storage Main Storage Main Storage
Program A ——- 32K Pm'éza;”‘ ngzm;“
Program E
ProgramC —— 9 48K 32 K—» 7| ProgramC
48K
ProglamD —f-» 20K S
Unused Memory —p-me 4% -1 | [
a b ¢
Flgure 2.4
How the System/36 Solves Fragmentation
Page
Frame # Main Storage
Addrass 0 2K
Translation) Apage 4 2K
Prog A Register Array) Frog A poy 2K
PageD | *+++0 | 0009 . Py
Page{ | =+« | 0008 4 | ProgApages 2K
Page2 |+« 22 | 0007 5| PogApages 2K
Paw 3 RN 3 wos 6 2K
Paged |+« -4 | 0001 7| Poghpage2 2K
Page$5 | +»r«+5 | 00U 6 | ProgApaget 2K
. 5 | ProgApage0 2K
: 10 2K
12 2K
30 | FFFF
13 2K
31 | FFFF A~

24 Deskiop Guide to the S/36

can run, a mechanism must rearrange the physical pages into their correct
logical order.

The S/36 contains a special array of hardware registers, called address
transiation registers (ATRs). While a program is executing, each ATR contains
the number of a real memory page occupied by the program. The program
“sees” these pages as contiguous because the program only uses translated
addresses to refer to the pages. Every time the program references a memory
location, address translation hardware uses the array of ATRs to generate the
correct real memory address for that location. A close look at the translation
process reveals some important details about $/36 memory management,

Figure 2.5 shows what happens during real address generation. The
translated address is three bytes long, but only the last two bytes contain
address information. The first byte is always set to “10000000,” where the
high-order “1” identifies this address to the MSP hardware as one requiring
translation. The seven bits following the “1” are ignored in a translated
address. The sixteen remaining address bits provide an address space of
65,536 bytes, or 64 K. (This limit of using only two bytes for address informa-
tion is the origin of the infamous 64 K region-size liritation.)

Because the last eleven bits of the translated address always fall with-
in the boundaries of one logical page (the largest number represented by
11 bits is 2,047), these eleven bits are copied directly into the corresponding
eleven bits of the generated real address.

The first five bits of the sixteen-bit translated address represent the
number of the ATR containing the real memory page frame address. In the
example, these bits contain “00101,” or five, causing ATR #5 to be selected.
Each ATR is sixteen bits long, but only twelve of those bits are used. Those
twelve bits are copied to bits 1 through 12 of the generated real address. Bit 0
of the generated real address is forced to a value of zero, which as previously
mentioned, designates a real address. This “generated” real address is the actu-
al location of the data in real memory.

The S/36 performs the address translation process automatically for
every machine instruction. When a machine instruction references several
translated addresses, each address is individually translated as it is needed. For
example, if the instruction resides in translated memory (as is usually the
case), the instruction address is translated just before the instruction is fetched.
If the instruction then references operands in translated memory, each
operand address is translated individually before the operand is used by the
instruction. Because the translation is carried out in hardware, the process
does not add significant time to program execution,

The S/36 address translation mechanism not only solves the memory
fragmentation problem, it also lets program pages reside in memory in any
order. In fact, the system can even change the page order in memory, provided

Chapter 2 S/36 Memory Management 25

Figure 2.5
Example of Generating a Real Address
From a Translated Address

Translated address
bit 0 » 23

|1|\o|o|o|o]o|o|o olo]t[o]1]1]1[o o|1]1|o|1|o|o|1/|

Bits 1-7 are ATR Array
always zero. Qfsecece.
They are unused. ;
3 Selected ATR
4
ey R P B E00C BB 0B
Bit 0 is always a 7|eccecee
“1" for translated Siiorerey always 0\ T+T;T+*+*+T+
LE N) = /
adesses. P STl olelofo[To[o Tl Tl
VA bit 0 » 23
. Generated real address

the ATR array for the moved pages is updated to reflect their new location. The
useful ability to change page order without affecting the programs involved
makes possible the next feature of S/36 memory management: virtual memory.

Virtual Memory

The fact that two levels of storage — primary and secondary — exist in most
computer systems points up an ongoing compromise in computer technology.
High-speed primary storage (such as the S/36’s solid-state main memory) is
too expensive and volatile for permanent data retention, so permanent infor-
mation is stored on less expensive, but slower, secondary storage (usually
disk). Primary storage contains only the data and programs the computer cur-
rently needs. However, the computer often works on several programs simul-
taneously — perhaps more than can fit in main memory at one time. When
the number of currently executing programs exceeds the capacity of main
memory, main memory is overcommitted. One way to handle overcommit-
ment is to hide the true size of main memory from programs, letting them
believe that there is much more memory than actually exists. The memory that
programs use during execution — but that may not actually be available on

26 Deskiop Guide to the S/36

the system — is called virtual memory (VM). The range of “imaginary”
addresses is the virtual address space.

There are two popular ways to implement VM: segmented paging and
demand paging. Figure 2.6 compares some features of segmented paging used
by the S/36 with demand paging used by the S/38 and the AS/400. As you can
see from the chart, neither technique is new. Both techniques originated in the
early sixties and both share three important characteristics: memory organiza-
tion, backup storage method, and address translation method. Both techniques
also make tradeoffs involving expense, performance, and efficiency.

Page-in, Page-out Mechanisms

With demand paging, programs can reference any location in the virtual
address space directly, although only some of the pages of the virtual address
space actually reside in real memory at any one time. When a program tries to
reference a location in a page not currently resident in real memory, special
hardware detects the condition and generates a page fault interrupt. The page
fault interrupt invokes a special operating system routine or hardware device
to locate the requested page on secondary storage and read it into real memo-
1y, a process called paging in.

As part of the page-in process, the page fault handler updates a table
used to generate real addresses during program execution — a process similar
to S/36 address translation. To make room for the page to be read in, the page
fault handler also may need to select a less important page in real memory
and write it to secondary storage, a process called paging out. Usually, the
paged-out page is chosen using an algorithm that finds the least-recently-used
page in real memory.

The term demand paging comes from the fact that paging is driven
by program references, or demands, to virtual memory. If a program never
asks to “see” any location on a particular page, the page is never brought into
real memory.

Segmented paging does not allow programs direct addressability to all
locations in the virtual address space. Instead, programs have access only to a
segment of virtual memory — 64 K in the case of the $/36. Instead of waiting
for a program to reference a location in a nonresident page, the operating sys-
tem keeps a list of pages currently being used by each executing program.
When control switches from one program to another, the operating system com-
pares the list of pages the next program requires with a list of pages currently in
real memory (the virtual page table). If any pages are missing, the operating sys-
tem retrieves them from secondary storage. If there are no free pages in real
memory, the operating system writes some least-recently-used pages to sec-
ondary memory to free up enough pages for the next program to run.

The primary advantage of segmented paging — inexpensive imple-

Chapter 2 S/36 Memory Management 27

Figure 2.6
Segmented and Demand Paging Comparison
Segmented paging (S/36) Demand paging (S/38 and AS/400)
First Implemented Burroughs B5000, 1961 Atlas, 1962

Memory organization | Fixed-length pages (2,048 bytes onthe Fixed-length pages (512 bytes on the
$/36) $/38; 4096 bytes on the AS/400)

Backing store Secondary disk storage Secondary disk storage

Address translation Dynamically with dedicated hardware. Dynamically with dedicated hardware.

Page-in mechanism Operating system knows program Hardware detects program request for
requirements and brings in required nonexistent page and generates a "page
pages before giving program control. fault” to bring page in before task

resumes execution.

Page-out mechanism | Pages for the lowest priority tasks are The least-recently-used page is written
written out until enough pages are avail- | out and used to satisfy the page fault
able for the program waiting for storage. request.

Real memory usage

All pages for which a program has
addressability must be in real storage
before the program can run, regardless
whether the program actually needs data
in those pages now.

Only pages actually referenced by a pro-
gram need be kept in real storage.
Unused pages eventually are moved fo
secondary storage, freeing real storage
for other programs.

Implementation

Mostly software. Address translation is
assisted by special hardware.

Mostly hardware. Page faults and content
management have special hardware
assistance. Address translation is per-
formed entirely in hardware.

Best features

Simplicity; lack of specialized hardware
makes implementation less expensive;
performance does not depend upon pro-
gram behavior.

Hardware implementation improves both
time and space efficiency; because only
referenced pages are resident, memory

utilization Is good.

Worst features

Lack of hardware assistance means
greater execution overhead; large pro-
grams tend to squander memory because
unneeded pages are kept resident.

Hardware implementation is expensive;
certain kinds of program behavior can
cause repeated paging, known as
“thrashing,” which degrades performance.

mentation — comes from the fact that less complex address translation hard-
ware is required. On the S$/36, the address translation mechanism already is in
place, making it easy to move pages in and out of real memory and rearrange
them when necessary.

However, the inexpensive implementation exacts a price in perfor-
mance. A/l the pages used by a program must be brought in before the pro-
gram can resume execution, so some pages probably are not needed, and are
wasted. Also, the special hardware used by demand paging to detect missing

28 Deskiop Guide fo the 5136

Performance Tip

Using extemal pro-
gram calls (EPC)
greatly reduces lask
Inttlation and Ale
open overheed,
Improving interactlve
response time.
Changlng your exist-
Ing applications o
use EPC rather than
OCL to interconnect
programs Is not very
difflculi, making EPCs
one of the bast tools
in your kit fer Improy-
Ing performance (see
Section lll).

pages usually is much faster than the softrware-implemented virtual page table
the 5/36 uses for segmented paging.

On the 5/36, this performance loss is mitigated 10 some extent,
because the CSP can perform VM management chores while the MSP is work-
ing on user programs. But segmented paging also imposes a restri.t'on on
programmers: programs cannot exceed the size of one segment. On the §/36,
the hardware-limited, 64 K segment size is uncomfortably small. Sotr.. systems
other than the $/36 use a segmented paging approach that allows a program
to use more than one segment, thus alleviating the $/36 restriction.

VM does, however, achieve its purpose. It theoretically can manage a
virtual address space of 128 MB — 16 times larger than the maximum real
address space of 8 MB. And it can manage this large virtual space efficienmly.
Many $/36 installations use external program calls to activate all of their fre-
quently run programs for each user ai the beginning of the day — hundreds
of simultaneously active program segments amounting to 20 MB or more of
VM. Because paging is much faster than reinitiating programs and recpening
files, this technique elimirates redundant program initiation, reduces file open
and close overhead, and improves response time dramatically.

Peculiarities of 5/36 VM

The §/36 VM mechanism has a few unusual, and potentially confusing, twists.
One common misconception is that the 64 K segment-size limitation, which
also limits program size, limits fask size. A sk can contain one or more pro-
grams, each of which can be up 1o 64 K and must be executed individually.
Because the number of programs that can .be conuained in a task on the 5/36
is unlimited, the size of a task is also unlimited (up to the size of virual
address space).

The $/36 contains a buili-in external program call mechanism that lets
one program invoke another separately compiled program, and then regain
control when the called program retums. In addition, any number of called
programs contained within a task may be simultaneocusly active. Active pro-
grams retain their internal state (values of variables and open files) from invo-
cation to invocation,

Another oddity of the §/36 virtual implementation is the concept of
workspaces, virtual segments that contain data instead of program code.
Workspaces hold data buffers, screen formats, and various system-related
tables and work areas, helping you get around the limitations of 64 K per pro-
gram. An example of a workspace familiar 1o RPG programmers is the disk file
workspace, which is created automatically when the 64 K segment for an RPG
program has no room for disk file physical I/O buffers.

When a program needs to access data in a workspace, it calis on the
operating system map facility, which gives the program addressability to the

Chapter 2 S/36 Memory Management 29

workspace by giving up some addressability to the program’s virtual segment.
Mapping, however, takes time and may result in paging activity, so the
increased flexibility gained using workspaces is purchased with reduced per-
formance.

A third unusual S/36 VM artifact is encountered only by installations
that use a large amount of VM. On the S/36 the secondary storage used for
paging is called the Task Work Area (TWA). The TWA is contained in a spe-
cial system file called #SYSTASK that must reside on drive Al.

Initially, the maximum size for #SYSTASK is 6553 blocks (16 MB).
This maximum is only about twice the maximum real memory size of 8 MB —
not a very efficient overcommitment ratio. When the TWA is full, the SSP auto-
matically extends the TWA by 400 blocks. When the TWA fills again, SSP dou-
bles the extension to 800 blocks. Each time the TWA fills up, the size of the
extension is doubled, allowing the TWA to grow to a very large size.

Unfortunately, each TWA extension requires contiguous space on
drive Al. Drive Al is also the default drive the system uses when allocating
new files and work areas, which results in disk space fragmentation that may
prevent the TWA from extending. Thus, the difficulty of obtaining disk space
for paging can result in a much lower virtual address space limit than the
128 MB architectural maximum, unless the user takes steps to force TWA
expansion before the Al disk space becomes fragmented.

System Queue Space

Now that you understand real, translated, and virtual memory, you can appre-
ciate the effort undertaken by the S/36 to administer memory usage efficiently.
Although address translation and segmented paging improve memory use by
effectively reusing a limited resource, not everything in real memory can be
moved about with abandon. Only objects in the user area accommodate this
manipulation. A certain amount of real memory — the fixed and variable
nuclei — must remain resident and can be accessed only through real
addressing.

All of the fixed nucleus and most of the variable nucleus is static
(unmoving) — beyond your control. As mentioned earlier, programming tech-
niques directly affect only one part of the variable nucleus: system queue
space. Knowing how your application design decisions impact SQS use helps
you make educated compromises between performance and simplicity.

SQS is an expandable “pool” of memory used by the SSP and the CSP
to hold dynamically allocated data structures, called control blocks, critical to
the operation of the system. Once a control block is created in SQS, it remains
resident in real memory at the same location until explicitly destroyed.
Because each control block must occupy contiguous memory locations, SQS
can become fragmented.

Performance Tip

One way to reduce TWA
expanslon problems Is
fo “pre-allocate” the
TWA by activating all
your programs In
advance — usually
immediately after IPL
(see Chapter 7).

30 Daskiop Guide to the 5736

Control blocks range in size from 16 bytes to 2,048 bytes, in 16-byte
increments. They can be categorized by their life spans: shon, medium, and
leng. A short-lived control block’s life span is only a few milliseconds, The SSP
creates short-lived control blocks for the duration of certain brief chores (e.g,,
a disk file operation) and destroys them when the chore is complete. Medium-
lived control blocks last a relatively long time — for the duration of a job, for
instance. Long-lived control blocks (usually created when the system is start-
ed) are the very few that become permanent until the next IPL.

The system keeps a modest reserve of SQS available (about 2000 to
4000 bytes) to satisfy most control block creation reguests quickly. When this
reserve is consumed, the system takes a 2 K page away from the user area
and adds it to SQS. (Because a control block cannot be larger than 2 K bytes,
the newly acquired page can be obtained from anywhere in real memory.)
The system continues to take 2 K pages from the user area as needed. When
more than about 4000 bytes accumulates in the SQS reserve area (due to con-
ol blocks being freed), the system retumns a 2 K page to the user area. Thus,
the logical “boundary” between SQS and the user area fluctuates constantly to
meet the needs of the system.

Of the three classes of control blocks, only one is of concem 1o you.
Short-lived control blocks have minimal impact on system performance, and
long-lived control blocks are beyond your control. Only medium-lived control
blocks have a controllable impact on system performance; most medium-lived
control blocks are a direct result of the kinds of programs you design. The
table in Figure 2.7 summarizes the space requirements for the most common
control blocks and the program activities that create them,

The table also will help you determine the amount of SQS a given
program or device needs to run. Computing the SQS requirements for an
entire job mix lets you estimate the total amount of real memory that will be
dedicated 1o SQS, and therefore will be unavailable in the user area. For
example, an interactive job with ten indexed files, a printed report, and five
subprograms requires 9,088 bytes of SQ3:

= 192 bytes for the workstation session control block

* 256 bytes for the job control block

* 96 bytes for the task control block

* 320 bytes for the active programs (64 bytes each)

= 06 bytes for one level of subprogram invocation

* 54 bytes for a disk file workspace

* (588 bytes for the opened print file

1,600 bytes for disk file VTOC entries (160 bytes each)

1,680 bytes for other file-related control block (file specification block, file
buffer block, disk buffer block, allocation queue element, record queue

Chapter 2 5/36 Memory Management 31

Figure 2.7
System Queue Space Requirements for Common Control Blocks
Total SQS
SSP entlty Control Block Bytes Used
Each local workstation session Terminal Unit Block (192 bytes) 192
Each printer Printer Unit Block (96 bytes) 9%
Each remote device RWS Device Unit Block (80 bytes) 80
Each job Job Control Block (256 bytes) 256
Each task Task Block (96 bytes) 96
Each active program or subprogram Program Block (64 bytes) 64
Each Invoked program or subprogram Request Block (64-2048 bytes) 96 (avg)
Each workspace Storage Block (64 bytes) ' 64
Each user of an opened file File Specification Block (64 bytes)
File Buffer Block (24 bytes) 104
Disk Butfer Block (16 bytes)
Additional overhead for first user
10 open a fl or se a fbrary Format-1, or VTOC entry (160 bytes) 160
Additional overhead for each user Allocation Queue Element (32 bytes) 48
of a shared file Record Queue Block (16 bytes)
Additional overhead for each user
of an indexed fil Index Control Block (16 bytes) 16
Each storage Indexed file storage index | Depends on the size of a storage index varies
(the storage for a file Is shared by all users of the file)
Each opened print file being spooled Printer Speclfication Block (64 bytes)
Spool File Descriptor (112 bytes) 668 (avg)
Spool intercept buffer (256-2048 bytes)
Each active spool writer Writer Descriptor Block (48 bytes)
Task Block (96 bytes) 1168 (avg)
Spool print buffer (256-2048 bytes)

block, and index control block) , and
* 4,096 bytes for storage indexes (estimated)

If you plan to run the program from nine workstations simultaneous-
ly, the additional eight workstations require 3,392 bytes of SQS each (the
VTOC control blocks and storage indexes are counted only for the first user),
resulting in a grand total of 36,224 bytes of SQS. Remember that SQS use
reduces the amount of memory available in the user area for virtual use, there-
by increasing the “swap rate” (level of paging activity), and possibly degrading

32 Desktop Guide to the S/36

system performance. If you run these programs on a $12 K system, you might
find installing another 256 K memory board a cost-effective way of maintain-
ing acceptable response time,

Considering all aspects of 5/36 memory management, you can see why
misconceptions abound. But the $/36 loses its mystique once you master the
secrets of its memory. You can use this knowledge to help plan future expan-
sion of your $/36 and to evaluate its place in the midrange system market. Care-
ful evaluation of memory requirements lets you predict the effect of additional
memory more accurately. And, of course, the better you understand your §/306,
the better you can take advantage of its features 10 improve performance.

Chapter 3 Inside Disk Data Management 33

Chapter 3
Inside Disk Data Management

Disk 1I/O is the most common performance bottleneck on the S/36. Unlike the
other major components of the S/36, disk 1/O is mechanical (it requires mov-
ing parts), making it the slowest thing on the system. So anytime you reduce
disk accesses, you increase performance.

Traditionally, disk I/O has been interpreted as reading and writing
application files. In fact, disk tuning the S/36 requires knowledge at both the
application and architectural levels. We will take an in-depth look at tech-
niques you can use at the application level to improve performance through
better disk I/O management in Section IV. In this chapter, we focus on the
architectural level. You can dramatically improve your applications’ perfor-
mance by learning just a little about the S/36’s disk data management (DDM)
architecture and the silent performance killers that lurk within. An understand-
ing of §/36 disk data management also will make many of the concepts to fol-
low later in this book more clear.

At the architectural level, your applications are often doing things
“behind the scenes” that cause extra disk I/O. In fact, many of these events
affect performance just as significantly as application data file operations do;
but they occur without warning or explicit symptom — other than a sluggish
system — that something is amiss. With an understanding of S/36 disk data
management architecture, you can avoid these additional low-level disk
accesses — many times with very few coding changes.

Many performance-enhancing opportunities exist at the architectural
level when you understand data files (organization, operation, and index
areas) and the Indexed Sequential Access Method — ISAM — (including stor-
age indexes, ripple-down add, alternate indices, DUPKEY processing, and
keysorting). But first, let’s review the basic concepts related to disk mechanics.

Disk Mechanics
Understanding disk mechanics gives you a better appreciation for the impor-
tance of minimizing disk I/O. An overview of S/36 disk hardware anatomy
shows ‘how disk access time — and therefore performance — is related to the
physical movement required to locate and transfer requested data from the disk.
A disk drive is generally not one disk at all, but rather several disks,
or platters, stacked on a spindle. Depending on the drive capacity, a S/36
spindle may have up to eight platters (Figure 3.1). A recording surface is on
each side of each platter except for the top one, where only the inward-facing

34 Desktop Guide to the $/36

Figure 3.1
Hard Disk Anatomy

Spindle
Platters
Access Arms

Read/Write
Heads

surface is used for data storage. The top surface holds a special set of “servo”
tracks that provide control signals used to position the read/write head for
each data-recordable surface (Figure 3.2). These heads transfer data to and
from the hard disk. On a drive with eight platters, there are 15 read/write
heads — two heads each for the lower seven platters and one servo head for
the top surface. Except for the diskette drive, the access arms and disk platters
are the only moving parts inside the S/36. The key to getting the most out of
your $/36 is to eliminate as much of this physical movement as possible. In
the time it takes the S/36 to perform one disk access, it can perform as many
as 35,000 machine instructions. Every time you eliminate disk I/O, you
increase performance.

Technical Note

In the time it takes the S/36 to perform one disk access, it can perform as many as 35,000
machine instructions! Every disk /O you eliminate improves performance.

Each platter's surface comprises concentric circles called tracks, and
each track is divided into segments called sectors (Figure 3.3). The number of
sectors in a track — and the number of tracks on a surface — depends on the
disk drive model. On the S/36, there are 256 bytes in each sector, which is the
smallest amount of disk storage that can be read or written in a single disk oper-
ation. The system addresses the disk by relative sector number, where the first
sector number is numbered 0, the next 1, and so on through all the tracks on all
drives. Any given vertical stack of like-numbered tracks is called a cylinder. Data

Actuator

Figure 3.2

Hard Disk Physical Units

Rotation

Spindle

Flgure 3.3

Sectors and Tracks

Sector

35 Dasoog Gude 1o te 536

Figure 1.4
Heads, Sectors, and Cylinders

v stored verticaily i these cyliogdeas (Fgpoe 343 5o tha like oomlered micks
within a grven oylinder conwain sequentally sored data, Stonng data in cylinders
muiimizes the amoum of sequential date thar can be repd withosn moving the
disk arm.

Technical Nate

Each drive is generaly made up of several platters, Platter surlaces arg divided inta con
canific areles cales fraces. Each Irask comprises many 256-byie size chunks called s8c-
bors. A sector is the smalles! smount of disk siorage the 336 can read of wrile in & single
diisk operation,

As an application programuner, vou're fameliae with high-level lan-
guage (HLL) file operaions such as read sequential, redd - randam - by Riny,
add, anid wpddale, Collectively, these application-level functions are culled

Chapter 3 Inside Disk Data Management 37

logical operations, because $/36 disk hardware can't directly execute them.
When an application program requests a logical file operation, DDM translates
it into one or more physical operations that are then directly executed by the
hardware. The S/36 supports three such operations: read, write and scan.

The read operation transfers one or more sectors from a given disk
address into a main memory buffer. Similarly, the write operation transfers one
or more sectors from a memory buffer to a specified disk address. The scan
operation, which is somewhat unusual in the world of commercial computer
systems, searches one or more sectors for a particular data pattern. By com-
bining these three physical disk operations in various ways, DDM can carry
out any HLL logical-file operation. Knowing how much time each physical
operation requires lets you estimate the time required for various logical oper-
ations. Knowing how DDM maps logical-file operations to physical operations
lets you predict situations where DDM performs poorly.

The mechanics of disk operation dictate three time factors to every
physical operation. First, the time required to move the access arm to the
cylinder containing the data. Second, the delay while the rotating disk brings
the requested sector under the read/write head. Third, the rate at which data
transfers between the disk and memory. These are called, respectively, seek
time, rotational delay, and data-transfer rate.

Seek time is the largest of these factors; it is proportional to the dis-
tance the access arm must move. However, a large part of the seek time is
spent just starting and stopping arm motion, so seek distance isn't as signifi-
cant as you might think. S/36 drives have average seek times ranging from 12
to 40 milliseconds (a millisecond (MS) is one-thousandth of a second). Aver-
age seek time is based on spanning one-third of the disk — some 400 cylin-
ders. But moving the access arm just one cylinder takes as much as 10 milli-
seconds, making seek distance a minor factor. Clearly, eliminating seeks —
not shortening seek distance — is the key to controlling seek time!

The second largest time factor is rotational delay, which averages
between 7 and 10 milliseconds for $/36 drives. Sector starting points are offset
between adjacent cylinders, so that reading sequentially across cylinders
doesn't require wasting one rotation because the next sector went by during
the seek operation. Average rotational delay is the time required for one half
of a disk revolution.

The smallest time factor is the data-transfer rate, which runs between
0.8 and 5.7 megabytes per second, depending on the drive model. Even on
slower drives, however, transferring a single sector takes only 0.2 milliseconds
— a tiny fraction of the total disk operation time. You could transfer 10 times
that amount and still only spend 2 milliseconds. The key point here is that the
quantity of data transferred in a physical operation has minimal effect on total
operation time.

38 Deskiop Guide fo the S/36

Performance Tip

All of the disk drives
avallable for the S/36
offer a range of data-
access times (18 to 50
milliseconds).
However, transfer
rates vary dramatically
from model to model.
The 21ED and the
10SR drives transfer
dataat 1.25 and 1.5
MB per second,
respectively; the 9332
disk drive transfers
data at 5.7 MB per
second — a four-fold
Improvement. For
applications that copy
lots of files, the 9332
will be noticeably
faster.

Figure 3.5

Comparison of Operating Parameters for Some S/36 Disk Drives
Drive Sectors | Tracks | #of | Average | Rotational| Transfer
Model | Capacity | /Track | /Cyl Cyls | Seek Time | Delay Rate
10SR | 200MB 100 14 572 25ms | 10.1 ms 1.2 MB/s
10SR | 359 MB 100 14 1024 25ms [10.1ms 1.2 MB/s
21ED 30MB 70 4 445 40 ms 9.5ms 0.9 MB/s
21ED 60 MB 70 4 888 35ms 9.5ms 0.9 MB/s
0065 40MB 32 7 733 40 ms 8.3 ms 0.6 MB/s
9332 200 MB 148 4 1349 19 ms 9.6 ms 5.7MB/s
9402 160 MB 48 14 946 12 ms 6.9 ms 0.8 MB/s

These timing factors reveal where most I/0 time is spent: moving the
disk arm. Knowing that the amount of data transferred won't significantly affect
I/O timing also gives you insight into data blocking performance: Sensible
blocking factors won't penalize you much in increased I/O time, even if the
I/O requests don't often fall within a block. Knowing the actual timing values
for different disk devices also helps you estimate data throughput times for var-
ious $/36 configurations. Figure 3.5 summarizes the timing factors for various
disk drive models. (Refer to Section IV for an in-depth discussion of blocking.)

You might think that DDM translates such HLL file operations as
READ and UPDATE directly into physical read and write operations. However,
as you've seen, the time taken by physical operations depends on locating the
data to be read or written and not on the amount of data transferred. Reading
or writing 10 or 20 sectors takes essentially the same amount of time as one
sector. So DDM uses memory buffers that can hold more data than a single
logical operation usually requires, eliminating the need for some physical
operations and improving performance.

HLL operations such as the RPG CHAIN for an indexed file actually
perform two functions and thus require more than one physical operation.
First, the record to be read must be located by searching an index; second, the
data in the record must be read into memory. The physical scan operation
helps greatly here. Rather than searching an index by reading chunks of it into
a buffer and then searching for the key in the buffer, the scan operation
searches the entire index for the requested key “on the fly,” stopping only
upon finding the target key or reaching the end of the index. The scan opera-
tion can read and compare fast enough to keep up with the disk’s rotation
speed, taking much less time than the read-into-buffer approach. The §/36
also uses the scan operation for other search functions, such as locating a file

Chapter 3 Inside Disk Data Management 39

Figure 3.6
Index and Data Record Area of a Disk File
FILE LABEL CUSTMAST
e~]

9 10 1 12 13 14 | 15 [)1'] 38 | 39 40 4 42

INDEX DATA FILE
SECTORS RECORD SECTORS

in the VTOC, locating a library member in a directory, and locating a screen
format in a screen format load member.

Data Files

With an understanding of physical disk organization and operation under your
belt, you're now ready to examine the logical organization and operation of
data files. You'll see that DDM leaves you many opportunities to capitalize on
your knowledge of disk operation to improve system performance.

Organization and Operation. The S/36 stores data files on disk in
contiguous sectors, using as many sectors as necessary to accommodate the
entire file, even if the file is empty or only partially full. Sequential and direct
files contain only a data area, and altemate index files contain only an index
area. Indexed files contain an index area and a data area, with the index area
preceding the files' data records. Alternate indexed files only have an index
area — which refers to the data area of the parent file. Physically, data files
are stored and accessed vertically in like-numbered tracks on a drive’s many
platters — via the drive’s cylinders. Logically, though, a data file is just a con-
tiguous group of sectors, without regard for track, cylinder, platter, or even
drive boundaries. Figure 3.6 shows the logical layout for an indexed file
named CUSTMAST. CUSTMAST has three index sectors (sectors 11, 12 and 13)
and 27 data sectors (sectors 14 through 40). Sector 41 is not part of CUST-
MAST and is available for the system to allocate for other disk storage.

Some operating systems support noncontiguous file storage. MS-DOS
and Unix, for example, dynamically allocate disk space as needed for a data file.
As records are added to a file, the disk space needed to accommodate new
records is automatically allocated and maintained. The S/36, however, requires
that data files be on disk in pre-allocated contiguous sectors. Therefore, the total
number of records that a $/36 data file can contain is always fixed — it must be
specified when the file is created. Even when using the EXTEND keyword with

40 Deskiop Guide to the 536

Figure 3.7
Records Fitting Evenly within a Sector
P 256-BYTE SECTOR _

b o | 3 | #
N

FOUR 64-BYTE RECORDS

o T

Figure 3.8
Records Spanning a Sector

256-BYTE SECTOR
] -

N Tt
TWO 96-BYTE RECORDS Lest 32 byles of this record
span secior boundary

h

the // FILE statement, a file is not actually extended when it gets full, but rather
is copied to another area on disk with a larger allocation.

SSP stores dama records making up a disk file in contiguous sectors on
disk. Dara records do span sector boundaries when necessary. As Figure 3.7
shows, record lengths that are submultiples of 256 fit exactly within a sector.
However, when the record length is not a submultiple of 256, data records
span sector boundaries. Figure 3.8 shows the sector layout for a file with 96
byte records. Here, two complete records and 64 bytes of another record are
stored in one sector. The last 32 bytes of the third record are stored in the
next sector. A 512-byte record length requires two contiguous sectors for each
record. Much has been written about S/36 record lengths and their impact on
performance. Because the $/36 can only read and write data in 256-byte
chunks, it is widely believed that S/36 data records should only be multiples
or submultiples of 256. As this chapter will later show, because of the $/30's
extremely fast data-transfer rate, data record length has little, if any, impact on
performance. Let your application dictate record size — not the myth that
records should always be submultiples or multiples of 256.

Chapter 3 Inside Disk Data Management 41

Figure 3.9
Logical Representation of a File Index

Key Relative

Value Record Number
AA0112345345 567
AA0123234835 131
AA0123555235 234
AA0132434063 455
AA0145567720 835
AA0157758385 521
AA0162476410 212
AA0169556693 134
AA0176345952 546

Technical Note

It's widely believed that data-file record length substantially affects performance. Given the
fast transfer rate of even the slowest S/36 drives, record length has little bearing on perfor-
mance. Let your application dictate record length — not the myth that records should
always be submultiples or multiples of 256.

Primary and Overflow Index Areas. Indexed files have an index area
on disk — an area that physically precedes the file’s data. The index contains
record keys and corresponding relative record numbers for each data record
(Figure 3.9). The relative record number is stored in the index as a 3-byte bina-
ry value. This pairing of key values and relative record numbers is used by
ISAM to randomly retrieve data records. When an indexed record is requested,
ISAM performs a key-value search in a similar fashion to look-up tables in RPG:
ISAM scans the index for the key; if the key is found, ISAM uses the key value’s
corresponding relative record number to retrieve the data record.

Like data file storage, keys are stored in contiguous sectors. Unlike
data records, though, keys and their corresponding relative record numbers do
not span sector boundaries. Figure 3.10 shows one sector of an indexed file
with 18-byte keys. Each index entry requires 18 bytes in the index for the key
value, plus 3 bytes for the corresponding relative record number, making the
total index entry length 21 bytes (the 18-byte key value plus the 3-byte RRN).
A 256-byte sector can contain 12 of these 21-byte index entries (12 x 21 =
252). Therefore, for each sector in the index, four bytes per sector are wasted.
Disk real estate is generally not at such a premium that you need to worry if

42 Desiiop Guilde to the §/36

Figure 3.10
Loglcal View of One Sector Full of Keys

Kay RRN Koy RRN Key RRN |

Key RRN Key RRN Key RRN [a”
Key RRN Key RRAN Key

Key RRN Key RRN Key

Twelve 18-byta kays (12 x 21 = 252) 4 bytes in sector wasted.

some (or even all) of your indexed files allow some of this waste. The impor-
tant thing to understand as you look at Figure 3.10 is that index entries are
stored in sectors — pairing key values with corresponding data relative record
numbpers — and that index entries do not span sector boundaries. (For more
on indexed files and their relationship to performance, see Chapter 10, “Using
DBLOCK and IBLOCK Effectively.”)

Technical Note

Alternate indices are made up entirely of an index area and do nat physically have any
data records in themn. The relative record numbers stored in an alternate index refer to
record locations in the parent file.

Every file index, for both parent and altemnate indices, has a primary
index area and an overflow Index area (Figure 3.11). The primary index area
contains index entries for the records in the file in ascending order by key.
The overflow area contalns index entries for records recently added 1o the file.
Entries stay in the overflow area undl the file is keysorted. As records are
added 10 2 file, new index entries are added to the index overflow area. In
mosy cases, as index entsies are added to the overflow area, disk data manage-
ment automatically keeps them ordered in key sequence.

There are, however, a couple of exceptions to disk data management
automatically keeping recently added index entries in key sequence. One exam-
ple is when a program is creating a new indexed file. Because no other pro-
gram can read records in a new file until the creating program closes the file,
disk data management knows it doesn't need to keep the overflow area in order

Chapter 3 Inside Disk Data Managemen 43

Flgure 3.11
Primary and Overflow Index Areas

PRAARY “hosx
INDEX'AREA AREA

and will simply append 1he new index entries, in arrival sequence, to the end of
the overflow area. DDM soris the keys into sequence afier the program ends.

Consider another case: adding records to an indexed or sequential file
that has an alternate index built over it, but the alternate is not currently open
as records are added to the parent file. In this case, disk data management cre-
ates a 256-byte buffer to remporarily store index-entry additions to the
unopened zlternate index file. Each time this 256-byte buffer gets full, its con-
tents are appended, in arrival sequence — not in key sequence — 10 the over-
flow area of the ahernate index. The overflow area must be in ascending key
sequence for ISAM to sequentially search the index, so the next program to
open this altemnate index with its “stale” overflow area must wait while disk
data management keysorts the overflow area. This process is called delayed
index maintenance. Delaying the ordering of keys in the overflow area dramat-
ically improves performance as records are being added to the file. However,
this performance increase must be paid for the next time the file is opened,
when disk data management wansparently keysorts the overflow area without
issuing any messages 1o the operator. If many records were added to the file,
the overflow keysort could take a long time, delaying program initiation.

The Storage Index

Recall that index entries are stored in sectors and that many sectors are stored
in a track (Figure 3.3). When an indexed file is first opened, if its index occw-
pies more than one track, the system creates a2 storage index in the system
queue space for that file if a storage index does not already exist. The storage
index is an in-memosy index to the disk tracks that comprise a disk file’s index
— a table contzining the beginning key value for each track and is corre-
sponding track number. As long as the file remains open by any job in the
system, the file's storage index will persist and is available to any application
that needs jt.

44 Deskiop Guide to the $/36

Page 71:

Hinkel-Holdem
fdsjrljkroij
fdsjrijkroij
fdsjrjkroif
fdsjrljkroj
fdsjrijkroij
felsjrijkcroij
fdsjrikroij
fdsjrjkroij
fdsjrljkroij

fdsjrjkroijckid xxocxxx | -

Figure 3.12

Page 72:

T

Hole-Hopkins

fdsirljkroiiclid xoc-xxom
fdsjrijkroijcfid xxx-xo0t
fdsjrijkroijcfid xox-xxxx

fdsjrjkroijcfid o000 |

fdsjrikroifclid xooc-xxxx
fdsjrijkroijcld xxx-x0x
folsjrikroichld xou-xxxx
fdsjrijkroijc§ld xxx-xxxx
fdsirijkroijofd xouo-xxxx
fdsjrijkroijckid xx-xxxx

Sequential Phone Book Look-Up

Page 73;

Page 74:

Howland-Hull
fdsjrijkroijgld xxx-ou
fdsjrijkroijdkld xoc-xxx
fdsjrijkroijdkld xo-xxx
fdsjrjkraijdkld xx-xxx
fdsjrijkroijdild xxx-xxx
fdsjrijkroijdild xox-xxx
fdsjnjkroijgkld xuxx-xxx
fesjrijkroidjdgld xocc-xxx
tdsjrijkroijgkld oo
fsjrjk rofjckld xooe-xxx
|

Hopper-Howell

fdsjrljkroijcfid xxx-oexx
fdsrijkrofjcyld xxx-xox
fsjrijkroijclld xooe-xx
fdsjrijkroiiclld xxx-xoxx
fdsjrikroijcild xxx-xxxx
fdsjrijkroijclld soo-xxxx
fdsjrijkroijcild xoo-xxxx
fds|rijkroijcyld xxx-xxxx
fdsjrijkroijcHld xxx-xxxx

Page 75:

Hults-Hutson

fdsjrijkroijchld xex-xxxx
fdsjrijkroijcild xex-xxxx
fdsjriikroijclid xx-xxxx
fdsjrfkreijefld xxx-xxxx
fdsjrijkroijc]id xxx-xxxx
fdsjrjkroijcld xxx-xxxx
Bob Hunter.. §74-3384
fdsjrljkroijekld oo-xxxx
fdsjrijkroijckld xoexxxx
fdsjrljkroijckld o300

[

Hutte-Hyman

fdsjrijkroijekid xox-xox
fdsjrjkroijckld wou-xo0
fdsjrljkroijckid xxoc-xxxx
fasjrjkroijckld xooc-xox
fdsjrjkroijckid xxx-x0x
fdsjrjkrofjckld xxx-xo00c
fasjrjkroijckid xxx-x¢xx
fdsjrjkrofjekld xxx-xxxx
fdsjrjkroijckid xxx-x00¢
fdsjrijkroijckid xxx-xxxx

I

The storage index is like the “finder” entries at the top of each page of
a telephone book. If you wanted to look up Bob Hunter’s phone number in the
phone book, you would not sequentially scan every page of the phone book
locking for Bob Hunter (Figure 3.12). Rather, you would scan across the top of
each page until you found the page with the Hunters on it. After finding this
page, you would sequentially scan it looking for Bob Hunter (Figure 3.13). Each
page of the telephone book is like a track full of index entries. By using the top
of each page as an index to the pages — like a storage index — you would
quickly zero in on the page with Bob Hunter on it.

5/36 indexed files use the 1ISAM method of retrievirig random records,
and ISAM’s storage index works much the same way as the above example.
To locate a given key in the index, disk data management first determines, by
searching the storage index, which disk track contains the key. Knowing this
track number limits the hardware scan for the key value 10 exactly one disk
track (like knowing which page number in the phone book Bob Hunter’s

Chapter 3 Inside Disk Data Managemeni 45

Figure 3.13

Phone Book Look-Up the Storage Index Way
Page 71: Page 72: Page 73:
Hinkel-Holdem et | Hole-Hopking — —=a Hopper-Howell
fdsjrjkroijckid xot-x000 fdsjrijkroijckid xx-x0x Idsjrjkroijckid xxx-x000t
fdsjrljkroijckld xot-xxx fdsjrjkroijck|d xxx-xouu fdsjrijkroijcidd xxx-x000
fdsjrijkroijckid xxox-x00¢ fdsjrjkroijckid xox-x00 fdsjrjkroijeidd xoe-xo
fsirlikroijckld xox-xxx fsjrjkroijckid xxx-xox fdsjrijkroijckid xooc-xxxx
fdsirljkroijckid xooe-xxx felsjrijkrodjckid xxx-x0x fdsjrijkroijckld xoo-xxxx
fdsjrljkroijckld x0e-xxx fdsjrjkroijckid xxx-xox fdsjrljkroijekld xot-xxx
fdsjrjkroiickld xxx-xxx | Idsjrjkroijckld soot-x00 fdsjrljkroijekld xoot-xxxx
fdsirljkroijckld xoe-xxx fdsjrjiroijckid xxx-xxox fdsjrljkroijckld xxx-xxxx
fdsjrjkeoijckld xoe-xxx Idsjrjkroijckid xxoc-xoox fdsjrijkroijckld xot-x0x
fdsjrijkroijckld xxx-xxx fdsirjkroijckld xxxc-xxxx fdsirljkroijckld xxox-xxxx
I | L
Page 74. Page 75: Page 76
Howland-Hull - | Hults-Hutson Hutte-Hyman
fdsjrjkroljckld xox-xxx fdsjrljkroijcld xxx-xx00¢ fsjrlikroljckld xo0t-xxxx
fdsjrljkroiickid xxx-xo¢ fdsirjkroijcYid xxx-xxx fudsjrljkrofjekld xxx-xxxx
fdsjrlikrofickid xxx-xotx fdsjrijkroljc]d xxx-000x fdsjrljkroijckid xxx-xxxx
fdsjrljkroiickld xxx-ox felsjrjkroijcyid xooc-ox fdsjrijkroijckld xot-x0000
fdsjrijkroijckid xoe-xxx fdsjrijkroijcid xoox-xo0c fdsjrijkroijckld xoot-xox
fdsirljkroijckid xxx-xxx fdsjrijkroijc¥d oo fdsjrjkroijckld xxx-x0x
fdsjrljiroijckld xoc-xxx Bob Hunter.. 674-3384 fdsjrijkroijckid xxx-x00
fdsjrljkroijekld xxox-xxx fdsjrijkroijckld xxx-x0x fdsjrljkroijckld xxx-xux
fdsirljkroijckld xoc-xxx tdsjrijkraijckid xo-000t fdsjrljkroijckld xxx-xx00x
fdsjrijkrofjckid xxx-xxx fdsjrijkroijckld xxx-x0x fdsjrljkroijckld xxot-xxxx
L [4

phone number is on). If a storage index doesn't exist for a file, either because
the index is oo small or because your OCL explicitly inhibited its creation, disk
data management must scan every track sequentially looking for the key entry.

Technical Note

The storage index is an index te the index — conlaining the beginning key value of each
track and its corresponding track number. For additional information on the storage index,
see Chapter 11.

The overflow area is never included in the storage index. So even if a
storage index is created for a file, it always takes longer to feich a record
whose index entry is in the overflow area, because only after searching the

46 Deskiop Guide to the S/36

Figure 3.14
Keys Added to Index Area in Key Sequence

BERT

ERNIE

PEE WEE
SKINNER
XYLOPHONE

ZONKER ——>»

prime index does DDM know to look in the overflow area. Thus, an extra
scan is required — to search the overflow area. If the overflow area spans sev-
eral tracks, the scan will take much longer then the prime index scan.

Ripple-Down Adds. S/36 indexed files require ongoing internal main-
tenance of the index overflow area to provide access to updated and new
records. Disk data management must maintain the index for files shared by
two or more programs. Note that even during those times when delayed index
maintenance is used (as in the case of adding records to a parent with a
closed alternate), the overflow area must be sorted before any other job can
use the indexed file.

Because of the importance of maintaining the overflow area in key
sequence, the S/36 goes through some pretty extensive gymnastics to maintain
this order. The worst of these gyrations is the ripple-down add technique that
DDM uses to keep keys in the overflow in ascending order. To see how these
index gymnastics affect performance, let's take a look at how records are
added to an indexed file on the S/36 and the heartbreak of ripple-down adds.

Let's start with understanding why the overflow index is necessary.
Figure 3.14 shows that for indexed files created using only presorted input (as
might have been the case years ago with presorted punched cards), the over-
flow area isn’t necessary. As long as records are being added in key sequence,
the keys fall nicely into the index area in ascending order.

However, what happens when the input records aren’t presorted? Fig-
ure 3.15 shows a situation where the key GROVER must be added to the
index, but the previous key added was ZONKER. Rather than try to move all
the primary area keys down to make room for GROVER, ISAM simply adds
the GROVER key to the end of the overflow area. Because disk data manage-
ment knows to look in the overflow area when it can't find a key entry in the
primary area, this works fine — without much impact on anything as long as

Chapter 3 Inside Disk Data Management 47

Flgure .15
index Area with Overflow Added

"BERT

S PRIMARY

PEE WEE NOEX

SKINNER

XYLOPHONE

ZONKER

GROVER ™ — OVERFLOW
INDEX

Flgure 3.16
Index Area with Overtlow Containing Many Entrles
[BERT
"ERNIE
PEE WEE PRIMARY
SKINNER
XYLOPHONE
ZONKER
BIGBIRD —»| GROVER S e OVERFLOW
R g D
- Many more keys'

the overflow area remains small. It will take disk data management a lintle
longer 1o realize GROVER'S key isn't in the primary area. Remember: It takes
an additional scan and seek 10 ferch a data record when its key entry is in the
overflow area; but what's a few milliseconds among friends?

Figure 3.16 starts 1o reveal the real problem. Look what happens
when you need to add BIG BIRD’s key 1o the index, when the file is opened
for keyed input as well as add. Because disk data management requires that
the overflow area be kept in key sequence for keyed input access, GROVER
must be moved down a notch to make room for BIG BIRD. Moving

48 Desktop Guide 1o the S/36

Flgure 3.17
Index Area Including Overflow with Gaps

XYLOPHONE PRIMARY
ZONKER INDEX
BIG BIRD — | GROVER
HARVEY —
OVERFLOW
INDEX
JAMES'
JONES

ZINC
ZONEY

GROVER’s index entry down one isn't that big of a deal, because the overflow
area is Chopefully) small. However, consider what would happen if there were
many keys, hundreds or thousands, to move. When BIG BIRD wants in, the
only solution seems to be moving many, perhaps hundreds or thousands, of
keys to make room for inserting BIG BIRD's key in the correct sequence.
Adding Gaps, DDM is stuck. It needs to add BIG BIRD to the index
but the cost of the numerous disk I/Os 10 “ripple-down” the high-value keys
to make room for BIG BIRD renders the ripple-down add strategy all bui
worthless. To solve the problem, DDM kludges something together called
index gaps. As index entries are added to the overflow area, empty sectors
(gaps) are left intermittenily between index entries. Figures 3.17 and 3.18
show that with gaps, adding BIG BIRD to the overflow area will only cause
the ripple down of two index entries. Usually there are enough evenly dis-
tributed gaps in an index to require moving only a few hundred keys or so.
Adding gaps to the overflow area seems like just the relief ripple-
down add needs. That is, until enough keys are added afier the last gap that
there isn't any room left at the bottom of the overflow area for new keys. In
Figure 3.19, ZEVON wants in; but because many gaps have previously been
inserted, there isn'1 a slot available between ZEVON's insertion point and the

http:Rgure3.17

Figure 3.18
Index Area Including Overtiow with Gaps — Big Bird Added

XYLOPHONE PRIMARY
ZONKER INDEX
BIG BIRD
OVERFLOW
(NDEX

end of the index. Now DDM is in real trouble. However, ISAM was engi-
neered not to fail, and it’s not going to. Here's what disk data management
does to let ZEVON in:

» Locks the file so that no other tasks using it can run,

e Calls KEYSORT 10 perform a special “degap” operation — collect-
ing zll the available gaps arxi moving them to the end of the over-
flow area.

= [ssues no other messages or other explicit wamings (disk data man-
agement isn’t all that proud of this mess). Your §/36 just “nods off”
for no apparent reason.

Hopefully, by the time the user calls Level One support wondering
why the §/36 went into a coma, the degap operation will have completed
and the 5/36 will be shaking its groggy head back 1o life. If Leve) One's
phone is busy and the impatient user re-IPLs the $/36, file rebuild will come
along and finish the job.

If you've ever had your §/36 simply take a little nap, especially late in
the afternoon, ZEVON wanted in. There isn't anything you can do about a
degapping delay once its happened, and you won't be told it's happening.

http:Agure3.18

50 Deskiop Guide to the 5/36

Figure 3.18
Index and Overtlow Areas Full
XYLOPHONE PRIMARY
ZONKER INDEX

"BIGER

OVERFLOW
INDEX

ZEVON ——» |

1

Your only option is to let your §/36 zen its way through degapping the index
— which might take a long, long time. Eventually, the index will be degapped
and your 5/36 will come out of its coma. But here's the really bad news, After
degapping the index and lefting ZEVON in, we're back where we started from.
Every record added for the rest of this job will require ripple-down adds for all
keys higher than the key being added. In Figure 3.20, AARDVARK is the next
key to be added. With all the gaps now collected at the end of the overflow
area, every index entry must be rippled down to let AARDVARK in. This ripple-
down will continue for every record left to be added. Just as the $/36 was start-
ing 10 shake off the effects of the degapping processing, the disk I/O required
10 ripple-down add the remaining index entries puts it right back into its coma.

Here are a few defensive things you can do to avoid index degapping:

e Substantially overallocate large indexed files that sustain frequent
index-add operations. For example, consider a 300,000 record file 1o
which 10,000 records are added daily, and which is currently
allocated at 400,000 records (enough for adding 10 days’ business,
afier which some records are removed from the file). Even though
you don’t think there will ever be more than 400,000 records in this
file, overallocating this file to 500,000 or even 600,000 records will

Figure 3.20
Overflow Area Requiring Total Ripple Down of Entries

XYLOPHONE PRIMARY
ZONKER
AARDVARK ——»I BIGBIRD. ~_
OVERFLOW
INDEX

permit more gaps in the overflow area, reducing the likelihood of
degapping ever becoming necessary. Keep in mind that for alternate
indices, updating a key field is really a delete followed by an add.

= Presort input files in key order before adding them 10 an indexed
file. This shifts some of the work that disk data management would
have had 10 do 10 #GSORT — and the results often are astounding,

¢ If your organizalion uses very large files and you have reason to
believe you're often the victim of index degapping, consider purchas-
ing or leasing ASNA's ACCELERS, a B-tree index implementation that
doesn't require key overflow areas and their resulting maintenance.

¢ KEYSORT vyour files often. A section later in this chapter discusses
KEYSORTing more thoroughly.

e Schedule processes that add many records to indexed files for late
at night, when the workload of ripple-down adds is less significant.

Allernate Indices and DUPKEY Processing. Allernate indices use primary
and overflow index areas, just as regular indexed files do. Therefore, altemate
indices are at risk 10 the same kinds of ripple-down and index-gapping prob-
lems as regular indexed files. Aliemate indices with duplicate keys are especially

http:Rgure3.20

52 Desktop Guide to the S/36

Performance Tip

Conslder substantlally
over-allocating the
size of Indexed flles to
which many records
are frequently added.

. Performance Tip

Avold duplicate keys
In altenate Indices.
Inserting a duplicate
key value In a long
serles of duplicate
keys could take
minutes to hours!

prone to the ripple-down nightmare. This problem is particularly pervasive
because alternate indices very often are likely to have duplicate keys. Consider
these possibilities for duplicate keys in an alternate index:

Zip code

Area code

Birthdate

Blanks in the key field (a perennial favorite)

When maintaining alternate indices with duplicate keys, disk data manage-
ment must insert new duplicate key values in RRN order. This point is signifi-
cant, because updating keys may result in key insertions in the middle of the
duplicate key string. Figure 3.21 shows a fragment of the index overflow area
of an alternate index that supports duplicate keys. Duplicate keys are sorted in
the overflow area by key value first, then by relative record number. As noted
earlier, this does not necessarily mean arrival sequence, because a previous
key value could have been changed to 46953, moving its index entry from
where it was 1o its current location with the other 46953 keys.

Disk data management doesn’t allow any gaps within a series of
duplicate keys. Therefore, adding a new duplicate key or changing an existing
key value to that of other existing duplicate keys will quite likely require the
rippling-down of many keys in the overflow index. Figure 3.22 shows a new
46953 record being added to the file. To keep the overflow index in order,
DDM must insert this index entry between keys 45953 rrn #3 and 46953 rrn
#67. This duplicate key is a zip-code field, and with many records in the file
with the same zip code, many keys will need to ripple down to make room
for the new key. Inserting a duplicate key value in a long string of duplicate
keys could take minutes to hours! And because altemate indices can allow key
updates, you can encounter this problem simply by changing a key value.

To avoid the problem, avoid duplicate keys. That's generally easier
said than done, because duplicate keys are so handy. But consider appending
a field or another part of a field to the key value to help make it unique. For
example, in the case of needing to create an alternate index over a zip-code
field, append the telephone number suffix to the zip code and index the file
on that value. Leave the file duplicate-key-capable for the rare time that two
customers living in the same zip code will have the same telephone suffix.
The likelihood of this file now containing duplicate keys is greatly diminished.

Keysorting. Now that you understand how important the index over-
flow area is to DDM performance, you can see how keeping indices sorted
helps reduce ISAM performance bottlenecks. Keysorting keeps the overflow
area of the index small because it merges index entries in the overflow area
with those in the primary index area. A large, unmerged overflow area
degrades random access, future record adds, and alternate-index maintenance.

Chapter 3 Inside Disk Data Management 53

Figure 3.21
Fragment of Overflow Aregl that Supports Duplicate Keys
Key RRN
46952 17
46952 131
46953 3
46953 67
46953 149
46953 177
46953 191
Many othier 46953 duplicate %
key values | . ’

Figure 3.22
Adding New Record to Ovlegrﬂow Area with Duplicate Keys

Key RRN
38621 17
38621 131
Key RRN 46953 3
| 46083 | 51 | 46953 67
46953 149
46953 177
46953 191

- Many other 46953 duplicale sz;z7

: keyvalues C :

The SSP invokes KEYSORT automatically during IPL, or when the
system operator enters a STOP SYSTEM, or when any of the SSP procedures
RESTORE, COPYDATA, TRANSFER and BLDINDEX are called. There also are
times when disk data management calls KEYSORT internally because it has
determined that an index’s overflow area needs sorting (after records have

http:Agure3.21

54 Deskiop Guide to the S/36

been added to an indexed, non-shared file, for example). And finally, the
KEYSORT procedure can be called explicitly from the command line or a
user-written procedure.

The problem with KEYSORT is that many times when it is called it
often does not really KEYSORT the file — it just acts like it does. KEYSORT
compares the number of records in the overflow area with the total number of
records in the file and will not really keysort the file if the ratio of new records
to total records is under a certain limit (about 7 percent). This means that for
large indexed files, a large number of index entries have to be in the overflow
area before a KEYSORT will really be performed. This applies no matter how
KEYSORT is initiated. Even at IPL time when the SSP says “Sorting keys for file
xxxxx,” it might not be.

Technical Note

Force a real keysort by using “KEYSORT filename,,, CHKDUP".

Fortunately, you can force a real keysort with the KEYSORT proce-
dure by calling KEYSORT with “KEYSORT filename,,, CHKDUP”. The CHKDUP
parameter forces KEYSORT to really keysort the file (so that it can find dupli-
cate keys). If the file contains duplicate keys (even if duplicates are allowed),
you will receive a duplicate key message that you can bypass by responding
with a 1 to the second message. As long as you reply with a 1 the file will
remain keysorted.

An important consideration with KEYSORT is having enough disk
space available. KEYSORT is just like #GSORT in that it uses both a disk work
area and main storage. More of either will speed KEYSORT up. However,
unlike #GSORT, KEYSORT is designed not to fail in the absence of enough
disk space for a work file. Therefore, there are two kinds of KEYSORT:

* A work-file keysort, used when enough disk space is available.
e An in-memory keysort, invoked when enough contiguous disk
workspace is not available for the keysort.

An in-memory keysort can take days When it happens, no messages are issued,;
your S/36 just nods off as it thinks itself into oblivion keysorting the index with-
out a disk work file. The only way out of an in-memory keysort is to IPL, bypass-
ing file rebuild; then clear off some disk space and re-IPL with file rebuild.

To avoid the in-memory keysort disaster, you should make sure your
system has enough disk space for the work-file keysort method when keysort-
ing large files. Use the formula in Figure 3.23 to determine the disk space

Chapter 3 Inside Disk Data Management 55

Figure 3.23
Formula to Calculate Disk Space Required for Workfile KEYSORT

(KEY LENGTH + 3) x # of records
2560

X 115% = blocks required

Example with 19-byte key length and 890,000 records in file:
(19 + 3) x 890,000

2560

X 1159% = 8795 blocks required

required for a given file. Use this formula with appropriate values from your
largest file to determine if your S/36 has enough disk space to perform the
much faster work-file KEYSORT.

Disk data management’s silent perfformance killers are lurking in your
S/36 right now, waiting for just the right time to bring it to its knees. This
chapter has exposed all the under-the-hood things you need to know about
disk data management and how to avoid those otherwise invisible assassins.
The tips and tools presented here should give you all you need to design and
modify your applications to work within the constraints and limitations of the
5/36’s disk data management system.

Pertormance Tip

Don’t assume there is
enough disk space on
your S/36 for work-
file KEYSORTSs. Use
the formula In Figure
3.23 to be sure. (Also
see the SLOWKS
Keysort Alert Utllity
In Chapter 12.)

Section Il

Hardware Adviser

“Parts is parts.”
—Fast food commercial

ne manager of a large S/36 installed base said “Keeping a System/36

alive and well today is one part inspiration, two parts perspiration,

and five parts telephone calls.” Sure, the S/36 is reliable, but when

you need to fix or upgrade your hardware, you quickly discover that

just finding out what’s available takes most of your time. Gone are
the days when you could call your friendly IBM SE and get quick answers to
configuration, capacity or performance questions. Gone are the days when
you could easily slide past management the cost of a hardware upgrade. Gone
are the days when your SE would drop by and take you out to lunch. Today
you have to scrounge for information, pay through the nose for consulting ser-
vices, beg for budget dollars, and buy your own lunch.

This section should make your life easier, at least in terms of access to
information and the cost of consulting fees. Think of it as your own personal
Systems-Engineer-In-A-Box. Chapter 4 is a catalog of S/36 models, memory
and disk capabilities, options, configuration charts, and forgotten hardware
lore. If IBM sold it, we list it and tell you what it’s good for. Chapter 5 covers
the two commodity items in the S/36 hardware market — memory and disk
— explaining how the S/36 uses them and how much of each you should
have. Reading this chapter probably will send you shopping for one or both.
And if the advice in these two chapters doesn’t keep you busy enough, Chap-
ter 6 is a gold mine of relevant information, from CPU upgrade tips to running
applications across two machines to getting cheap hardware maintenance.

Let this section be your in-house expert on keeping S5/36 hardware
alive and productive. You’re on your own for lunch.

j o
o
—
[&]
D
w

Chapter 4 S/36 Models and Configurations 59

Chapter 4

S/36 Models and Configurations

Although IBM still sells new System/36 hardware through its reseller channels,
you will be hard pressed to hear any IBMer recommend the S/36 as a solu-
tion. Understandably, IBM strives to migrate customers to the official S/36
“replacement,” the AS/400. However, moving to the AS/400 is anything but a
foregone conclusion for many S/36 users. The advent of Unix- and PC-based
solutions, and the high initial cost of migrating to the AS/400, have led most of
the S/36 installed base to wait and watch as alternative platforms mature. (See
Section VII, “Into the Future,” for more details about alternative successors to
the S/36). If you're among the waiting masses, you may continually face the
need to expand your existing system, or even to install additional systems.

Most S/36 systems have considerable room for expansion. According
to a survey by Elms Technical Communications, the average S/36 not already
migrating to another platform has 1.6 MB of memory (out of a possible 8 MB),
409 MB of disk (out of a possible 1,400 MB), 18 local devices (out of a possi-
ble 72), 2.5 remote devices (out of a possible 64), and 2.2 communications
lines (out of a possible 8). However, not all S/36 models accommodate the
maximum configuration values just quoted; thus not all users can expand their
existing systems. Further, IBM announced many capacity enhancements in
recent years but made little attempt to keep its installed base apprised of these
enhancements, leaving many users in the dark about expansion possibilities
that could help them extend the life of their system.

Deciding to upgrade and actually figuring out how to do it are two
different things. IBM doesn’t offer a single document explaining all the S/36
configuration and feature options — and getting verbal quotes from IBM
about upgrading an existing CPU, or (shudder) buying additional CPUs, isn’t
easy when the sales force is geared toward moving AS/400s. IBM’s latest prod-
uct information tools (e.g., the IBM Fax Information Service), don’t even men-
tion the S/36. Third-party vendors have better information, but many won't tell
you about options not in stock, or that the vendors themselves are not
equipped to install.

What S/36 users need is a concise, complete guide to S/36 hardware
options. This chapter provides that guide. Starting with an overview of avail-
able models and progressing through memory, disk, workstation, communica-
tions, and other features, this chapter gives you a recap of hardware options,
accompanied by “cheat sheets” useful for later reference. You may discover
that your system has room for additional memory and disk that can lead to

60 Deskiop Guide to the S/36

Figure 4.1
Models and Features Overview
Feature 5360 5362 5363 9402 5364
Main storage (min/max K) 128-8192 128-2048 | 1024-2048 1024-2048 256-1024
Disk capacity (min/max MB) 30-1438 30-660 65-1256 160-760 40-130
Diskette drive 8" (magazine’) | 8" 51/4" 51/4™ 5114
Tape drive 8809e* 6157e* 6157i 6157i* 6157¢*
(e = extemal, i = internal) 6157e*
Local workstatlons (basic/extended) | 6/36/72 6/28 16728 14728 6/16
Remote workstations (max) 64 64 16 64 16
Communications lines (max) 8 4 2 3 2
LAN attachments (4/16 tokenring) | 2 2 2 2 1
Other peripherals MICR nva Optical Disk | Optical Disk | wa
(* = optional)

improved performance. Or you might find that the S/36's little-known Token-
Ring LAN or optical storage capabilities can fill a technological gap in your
shop. Whatever your situation, if you have a $/36, this concise guide to hard-
ware options is essential reading before making an upgrade decision.

Overview of Models

Figure 4.1 itemizes various $/36 models and their respective maximum config-
urations. A brief look at the history of these models can help you put their
capabilities in perspective.

The Maytag-sized 5360, the big brother of the line, has unique fea-
tures. It is the only model that supports a diskette magazine drive (automatical-
ly processing up to 23 diskettes at one time), the 8809 (reel-to-reel) tape drive,
more than 2 MB of memory, or more than four communications lines. It's also
the only model that accommodates more than 28 local workstations. If you're
anticipating installing another $/36, and you need any of these capabilities, the
5360 is your only choice. On the other hand, the 5360 is the bulkiest and most
expensive $/36 to maintain and upgrade. Considering it has only modestly bet-
ter performance and disk capacity than its younger siblings, you should try
hard to live within the limitations of other models. Four 5360 variations — the
A, B, C and D models — represent increasing performance and capacity. The A
model was limited to 128 K memory and 60 MB of disk and is obsolete. The C
model was only available from IBM for a limited time to permit use of 358 MB
disk drives before the D model amrived. In the real world, you're likely only to
encounter B and D models. However, the performance and capacity differences

Chapter 4 S/36 Models and Configurations 61

between the B and D models — the D is twice as fast, has two times the disk,
and has four times the memory capacity — dictate considering only D models
for upgrades. Rather than buying a 5360 B, you're better off choosing a 5362 or
5363, which equal or exceed the B model's capacity and performance.

The deskside 5362, about the size of a two-drawer file cabinet, repre-
sents the best buy on today’s used market. The 5362 is the only model,
besides the 5360, that supports 8-inch diskettes and accommodates up to 64
remote workstations (the number of local workstations is limited to 28). It has
the same CPU performance and memory capacity as a 5360 B, but only half
the disk capacity. The 5362 also supports a UPS power connector, which
when connected to an Uninteruptable Power Supply (UPS), sends a console
message requesting shutdown when low battery power is detected. Where
disk capacity isn't critical, as in a dedicated development machine or commu-
nications hub, the 5362 can be ideal.

The desktop 5364 requires an attached PC/AT and special interface
hardware and, like the 5360 A models, is obsolete. Not only is the 5364 slow
and of limited capacity, but many users also report reliability problems. Don’t
consider putting one of these in service unless you receive it as a donation!

The most recent (and probably final) additions to the S/36 family are
the identically performing 5363 and 9402 “Y10” models. Both are deskside
units about half the width of the 5362, but with greatly increased performance
and disk capacity. The CPU, in fact, is identical in performance to the 5360 C
model. Both the 5363 and 9402 can have an internally integrated PC/AT (the
processor expansion feature) that accepts communications and LAN attachment
cards; this integrated PC makes these models better LAN platforms than the
5360. The only real differences between the 5363 and Y10 are in name and
packaging. IBM announced the 5363 first, then later re-released the machine
as the “AS/Entry” — officially claiming it as a member of the AS/400 family.
IBM subsequently announced the 9402 Y10, which is a S/36 in an AS/400 cab-
inet that you can upgrade to a genuine AS/400.

Although the 9402 Y10 is a S/36 through and through, it incorporates a
few AS/400 packaging features: the AS/400 cabinet and front panel; an optional
five-minute battery backup unit; a battery-backed, time-of-day clock; and
optional remote power-on via telephone. You can upgrade a Y10 to the
AS/400 9402 E04/E06, although the upgrade is currently impractically expensive
— you would be better off buying a used AS/400 9402 E06 and keeping the
Y10. The Y10 also limits you to a total of 760 MB of disk with a slower data
transfer rate than the 5363. This radical constraint on disk capacity, compared
to the 5363, implies that IBM wants to “encourage” Y10 owners to move on to
the AS/400. Unless you really need the unique Y10 features, or you have access
to a cheap Y10-to-AS/400 upgrade, avoid it in favor of the 5363, which sup-
ports nearly twice as much disk storage and provides better performance.

62 Desktop Guide to the S/36

Figure 4.2
S$/36 CPU Relative Computational Performance

Relative
Performance
CPU Model Factor
5364 1.0
5362 24
5363 25
5360 B 26
5360 D 43

When choosing a replacement CPU, remember that in most environ-
ments, disk, not CPU speed, constrains performance. Given the multiprocessor
nature of the S/36, it’s not always easy to determine relative performance differ-
ences between various models. Figure 4.2 shows average relative performance
comparisons for computational loads based on IBM tests using representative
business calculations, with the 5364 given a weight of 1.0. Keep in mind,
though, that a faster CPU won't improve performance much if disk accesses are
the constraining factor. Thus, even though a 5360 D CPU, with a relative rating
of 4.3, seems like it should be nearly twice as fast as the 2.5-rated 5363, in
practice the two perform alike because of the 5363's disk speed advantage.

No matter which model S/36 you have presently, don't rule out pur-
chasing a different CPU outright. It's often cheaper to buy and upgrade a used
late-model S/36 than it is to update a more obsolete model — and you would
still have the old machine for backup or other purposes. One interesting side
effect of the S/36’s ongoing popularity is that used 5363s often have a higher
residual value than equivalent early model AS/400s, even though the AS/400 is
newer and supposedly better!

Memory

If there is one thing you should learn from this book, it’s that you can never
put too much memory in your S/36. Because SSP automatically takes advantage
of additional memory to keep frequently used system programs resident, and
because you can use that memory — via cache, storage indexes, and resident
screen formats — to further improve performance, installing the maximum
memory your machine can handle is nearly always a good move. (For more
information about using memory effectively, see Chapter 5, “The Importance of
Memory and Disk Space.”)

Chapter 4 S5/36 Models and Configurations 63

Figure 4.3
Memory Configurations
Number of Cards
Memory card size 5360 5362 5363 9402 5364
128K 4 4 2
256 K 4 4
512K 4
1024 K 4 2 2 2 1
2048 K 4

How much memory you need to buy to fully configure your machine
depends upon how much you already have and how it's organized. S/36
memory comes as plug-in cards of various capacities, and each S/36 model
has a fixed number of card slots. To increase your machine’s memory, you
first may have to remove some or all of the existing memory cards (Figure 4.3
itemizes memory card capacities and counts for various S/36 models).

Only the 5360 lets you use lots of memory — up to 8 MB with third-
party enhancements — all other models are limited to 2 MB. The 5360 is also
the most confusing model in which to install memory — it accommodates five
different card sizes in four slots, and a given machine may have any combina-
tion of cards already installed. Because only four slots are available, you must
use four 2 MB cards to achieve the maximum 8 MB capacity. Any existing
cards of less than 2 MB capacity must be removed (you can sometimes obtain
credit for these from your memory supplier). Note that although IBM officially
supports only 7 MB (three 2 MB cards and one 1 MB card), the 5360 D
accommodates 8 MB with no problem. One third-party supplier (AI/GBT,
12450 Beatrice Street, Los Angeles, CA 90066, (800) 243-4433 or (310) 305-
8616) offers an 8 MB upgrade package that includes a software patch neces-
sary to satisfy IBM’s configuration program.

The 5362’s four slots work with 128 K, 256 K or 1 MB cards in any
combination, up to 2 MB. Only the 256 K and 1 MB cards have any residual
value, though, so you might consider keeping your old cards for an emergency;
if a memory card fails, you can get your machine up again, albeit running more
slowly, while you wait for replacement parts.

The 5364 has zero upgrade options — a short and sad story — and
another reason to avoid this model. The 5363/9402 duo accommodate a single
additional 1 MB memory card, bringing total memory to 2 MB.

64 Desklop Guide to the S/36

Technical Note

Only the 5360 D model supports more than 2 MB of memory. You may encounter some rare
C models that support exactly 2 MB. All other 5360 models limit main memory to 1.75 MB.

Disk

Depending on the model, the S/36 supports from one to four disk spindles
(Figure 4.4 lists the possible configurations). The number of configuration
options for each S/36 model is limited, and performance and other characteris-
tics of disk drives vary widely. Because disk is the most common performance
bottleneck on the S/36, you should evaluate disk drive characteristics carefully
when selecting a S/36 upgrade path.

The characteristics critical to disk drive performance are average seek
time and rotational delay, number of bytes per cylinder, and effective data
transfer rate. Average seek time and rotational delay determine the time
required to access data randomly; the number of bytes per cylinder and effec-
tive data transfer rate determine overall drive throughput. Figure 4.5 compares
these characteristics for the seven available disk drive models.

Of the available drives, the 5363 and 9402 models, ranging in capacity
from 67.5 MB to 314 MB, have the best random access performance. (The
model numbers for the disk drives supported by the S/36 5363 and 9402 are
the same as the machine model numbers.) Their combined seek times and
rotational delay yield an access time of less than 20 ms — about twice as fast
as the higher-capacity 10SR drive. For applications requiring frequent random-
record retrieval (e.g., interactive applications), choose the 5363 or 9402 CPUs
for their quick access. A 5363 with four 314 MB drives offers nearly as much
disk capacity (1256 MB) as the 5360 D (1436 MB), running at about half the
access time. This makes the 5363 a very good interactive application platform.
The 9402 supports less total disk (760 MB), with a slow data transfer rate (0.83
megabits per second), making it a less attractive candidate for interactive work.

For batch work, effective data transfer rate is a controlling characteristic
— it determines how quickly data can be read sequentially from the disk. Here
again the 5363 shines, with a data transfer rate second only to 9332 drives. The
9332 drives are something of an enigma: Available only on the 5362, they use
the ANSI Intelligent Peripheral Interface (IPI-3), which supports data transfer
rates of nearly 6 megabytes per second! While the 5362 processor can't always
sustain this high throughput, the 9332 shows markedly improved performance
when batch processing files. The 9332, a general-purpose, externally housed
drive, is also available on the AS/400 in 200 MB, 400 MB, and 600 MB capaci-
ties. The 5362 supports only the 200 MB and 400 MB models, however, and

Chapter 4 S5/36 Models and Configurations 65

Figure 4.4
Disk Configurations
Number of Spindles

Drlve model and capacity 5360 5362 5363 9402 5364

Maximum system capacity (MB} 1438 660 1256 760 130

Maximum internal spindles 4 2 4 4 2

Maximum external spindles 0 2 0 0 0

21ED 30MB 2 2

21ED 60MB 2 2

10SR 200 MB 4

| 10SR 359 MB 4

9332 200 MB (external only) 2

9332 400 MB (external only) 1

0665 40MB 1

0665 65MB 1

5363 65MB 4 4

5363 105MB 4 4

5363 314 MB 4 4

9402 160 MB 4 4

9402 200 MB 4 3

(*N/A it intemnal disk > 50MB)
Figure 4.5
Disk Drive Characteristics
Drive Model

Characterlstic 21ED 10SR 9332 [0.665 | 5363 | 5363 | 9402
Capacity (MB) 30.8/61.6 | 200.9/359.7 | 200 419 | 67.5106.2 | 314 160/200
Average seek time (miliiseconds) 35 25 195 40 30 12.5 12.5
Average rotational delay (ms) 9.52 10.1 96 833 | 81 695 | 695
Bytes per cylinder 69,632 | 351,232 151,552 | 57,344 | 116,480 | 257,280 | 172,032
Effective data transfer rate (MB/sec) | 0.941 1.18 57 0625 | 1.25 125 | 083

only permits attachment of the 400 MB unit when the internal 5362 disk doesn’t
exceed 60 MB. (For a time, IBM offered the 600 MB model for the 5362 as an
RPQ, but that RPQ since has been discontinued. You may find such machines
on the used market, though.)

66 Deskiop Guide to the S/36

The third critical characteristic — the number of bytes per cylinder —
can affect both batch and interactive processing. This figure represents the
number of bytes that can be read or written without moving the disk actuator
arm. For random access of indexed files, a high value means fewer disk seeks
to search an index. For batch processing, a high value means fewer disk seeks
during sequential processing. Of all the drives, the 5360’s 10SR has the largest
number of bytes per cylinder: 351,232. But the 5363’s 314 MB drive takes a
reasonably close second place, at 257,280 bytes per cylinder.

In general, the S/36 platform with the best balance of disk performance
and capacity is the 5363. The 5362 places second with its fast 9332 drives. All
other disk options represent old and slow technology best avoided by upgrading.

Workstations

You probably use your S/36 more for interactive than for batch work. A key
configuration point for various 5/36 models is workstation support — the
number of users supported by a given CPU model. For best performance,
you’re interested in local workstations: devices attached directly to your
machine via high-speed (1 megabit per second) twinax lines.

You connect twinax devices — either display stations or printers — to
the S/36 in daisy-chain fashion (“pass-through” in IBM-speak): Each device has
two connectors for a cable-in and cable-out (Figure 4.6). Each string of up to
seven devices attaches to a single S/36 twinax port. The total number of
devices each system supports depends upon both the number of ports and
the amount of workstation controller storage. All S/36 models come with a
base amount of workstation controller storage supporting a certain number of
devices; you increase that number by adding one or more workstation expan-
sion features. Figure 4.7 shows the number of local twinax ports available on
various S/36 models and the number of devices supported in base and expan-
sion configurations. One special feature — extended input fields — increases
the number of available input fields from 128 to 256, which lets 5250 terminals
emulate 3270 displays (which can have up to 256 input fields). However, the
extra input fields use up workstation controller storage, which reduces the
number of devices that can be supported (as reflected in Figure 4.7). You can
run twinax cable up to 5,000 feet, although the number of devices and splices
in a given line can reduce this distance considerably.

An alternative to twinax is unshielded twisted-pair cabling (UTP), which
uses lightweight, inexpensive, standard telephone wire. The primary advantage
of twinax cable is its high noise immunity, which it achieves by sending the data
signal down two wires simultaneously. One signal is the exact inverse of the
other signal, which produces a uniform, or balanced, magnetic field in the
cable. The balanced signal is less susceptible to corruption by stray external
electronic noise and internal signal reflections. The term “twinax” refers to the

Chapter 4 S/36 Models and Configurations 67

Figure 4.6
Workstation Configurations

Number of Poris/Devices

Workstatlon feature 5360 | 5362 | 5363 | 9402 | 5364
Basic (ports/devices) 6/6 4/6 4/6 4/6 1/6

with extended input fields feature 413 413 473 13
First WS expansion (ports/devices) 6/36 4/28 4/28 4/28 216

with extended input fields feature 6/18 4/18 4/18 4/18 219
Second WS expansion (ports/devices) | 12/72

with extended input fields feature 12/36

Figure 4.7

Twinax Daisy-Chain Local Workstation Network

Port 0 in | [out in | L out in |
Port 1 in | [out in | [out in |
Port n in | out in | | out in |

two center conductors, although the cable actually has a third ground conductor
in the form of a braided metal shield.

Twisted-pair wiring has only two conductors — a signal and a ground
— with minimal to no shielding. The single signal wire means the magnetic
field is unbalanced, it is more susceptible 10 noise, which effectively cuts the

68 Desktop Guide to the S/36

maximum run length to 1,000 feet or less. For many applications, though, this
is enough. Cheaper wiring and maintenance costs make twisted-pair an attrac-
tive alternative to twinax.

You attach twinax devices to a twisted-pair wiring system using balun
(baknced-to-unbalanced) connectors, which convert the balanced twinax sig-
nal into an unbalanced twisted-pair signal. Because twisted-pair cabling is
cheap and run lengths often short, you can forego twinax-style daisy chaining
and use a more convenient star network topology (Figure 4.8). In a star con-
figuration, each terminal connects to a central patch panel, which in turn con-
nects to the /36 twinax ports through baluns. The star topology lets you easi-
ly add new connections and reroute existing ones. It also lets you detect and
isolate bad connections without blocking other devices; in a twinax daisy
chain, all devices downstream from a failing device are forced offline.

Technical Note

Detailing the great variety of 5250 devices available is outside the realm of this book. Both
terminals and printers, with a wide range of features, are available from IBM and numerous
third-party manufacturers. When upgrading your 5250 network, you might consider using
PC or Macintosh 5250 emulation boards, which offer both text and windowed emulation of
multiple 5250 terminals, and add sophisticated features such as cut-and-paste, keyboard
macros, and spreadsheet data translation.

If you run out of local device capacity, or need to provide access to
remote users, you can attach additional devices via Remote Workstation Sup-
port (RWS). RWS uses communications lines to connect additional devices that
appear as 5250 terminals to SSP and your programs. One or more communica-
tions lines serves as an interface to a remote workstation controller, a device
that provides the same functions as the local workstation controller built into
the S/36 system unit (Figure 4.9). The remote controller can be located in the
same room as the S/36, or on the other side of the world, depending on the
kind of communications connection you use. In general, though, you’re limited
to data rates much slower than twinax’s 1 Mbps. Remote line speeds range
from 57.6 Kbps for local modem-eliminator connections to 38.4 Kbps for leased
lines and 19.2 Kbps for switched lines. The maximum speeds available, and
number of attached devices, depend on CPU model and the communications
adapter used. (For a description of various communications connections, see
the Communications section in this chapter).

Chapter 4 5/36 Models and Configurations 69

Figure 4.8
Twisted-Pair Star Network Topology
S/36
Port 0
Port 1 @
B balun
Figure 49
RWS Support Using Communications Lines
and Remote Workstation Controllers
S/36
o [t A [w W]
| |
comm network Remote
modem Workstati
o ~ [modem]— Wotn

70 Desktop Guide to the S/36

Technical Note

Although a detailed discussion of remote controllers is outside the scope of this book, you'll
find four basic types on the market. The first, and oldest, is the 5250 Model 12, a 5250
workstation containing a built-in remote controller, to which you can attach up to seven
additional 5250 terminals. The Model 12 controller has its microcode fixed in read-only
storage, and was developed before IBM added DisplayWrite word-processing functions
such as word-wrap and spell-check to 5250 support. Thus the Model 12 doesn't support
DW/36. The second-oldest remote controller is the 5294, a standalone equivalent to the
Model 12 that supports downloadable microcode and, thus, DW/36. The successor to the
5294, the 5394, supports up to 16 remote devices. Finally, the IBM PC supports individual
remote terminal emulation cards that let a PC emulate a remote workstation controller and
one or more 5250 terminals.

If you need to connect ASCII or 3270 (IBM mainframe) terminals to
your S/36, you'll need a protocol converter, which translates foreign-terminal
protocols to 5250 data stream commands. IBM offers two: the 5208 ASCII-5250
Prototcol Converter and the 5209 327X-Link Protocol Converter. Each protocol
converter lets you connect up to seven foreign terminals to a single twinax
port. The 5208 supports “dumb” ASCII terminals using VT-100 protocol; the
5209 attaches 327X terminals. With the 5208, you can even use dial-in
switched line connections to support remote access using asynchronous
modems and ASCII terminals or PCs emulating ASCII terminals. Similar devices
are available from several third-party manufacturers.

Communications
The S/36 supports a myriad of communications options through one or more
communications lines. The S/36 offers three different communications adapters:

¢ SLCA (Single-Line Communications Adapter)
* MLCA (Multi-Line Communications Adapter)
* ELCA (Eight-Line Communications Adapter)

These support up to two, four, or eight lines, respectively. Each adapter in
turn supports one of seven physical interfaces:

¢ EIA/CCITT (RS/232)

* DDSA (Digital Data Service Adapter)
*X.21 (synchronous leased and switched)
*X.25 (packet switched)

Chapter 4 S/36 Models and Configurations 71

Figure 4.10
Communications Configurations
Feature 5360 5362 5363 9402 5364
Single linelaggrogate max speeds (bps)
SLCA 9,600/9,600 9,600/19,200 | 19,200/64,000 | 19,200/64,000 | 9,600/9,600
MLCA 57,600/67,200 | 57,600/115,200
ELCA 19,200/170,000
Speed limits per line (blank=not avai)
EIA/CCITT adapter (SLCAMLCA) 9,600 9,600 19,200 19,200 9,600
EIA/CCITT adapter (ELCA) 19,200
DDSA adapter SLCA 9,600 9,600
DDSA adapter MLCA 56,000 56,000
DDSA adapter ELCA 56,000
X.21 adapter SLCA 9,600 9,600
X.21 adapter MLCA 9,600 19,200
X.21 adapter ELCA 19,200
X.25 SLCAMLCA 9,600 19,200 9,600 9,600
X.25 ELCA 19,200
V.35 SLCAMLCA 57,600 57,600 64,000 64,000
V.3SELCA 57,600
ASYNC 9,600 9,600 9,600 9,600 9,600
BCS 9,600 9,600 9,600 9,600 9,600

¢ V.35 (European switched)
¢ Asynchronous
* BSC (Bisync)

The line speeds available for each line depend on the kind of adapter and
physical interface used. SLCA has the slowest speeds because it shares the
native S/36 CSP as a communications controller. The MLCA and ELCA adapters
each have dedicated communications processors, and support much higher
transmission speeds. Each adapter supports a maximum aggregate line speed,
which is the sum of all the individual line speeds. Individual lines also have
maximum speeds. One line can usually run faster if no other lines are in use;
that speed is called the single line speed. Figure 4.10 summarizes communica-
tions line speeds for various combinations of adapters and physical interfaces.

Local Area Networks
IBM added Token-Ring LAN connectivity to the S/36 late in its life; and in fact
LAN support is one configuration option often overlooked even by veteran

72 Desktop Guide to the S/36

Figure 4.11
S/36 LAN Interfaces

S/36

Token-Ring

C.adptr Network

4

E 3-meter cable
H Second
: Token-Ring
PC/AT = Network
C-adptr | | TRNAII |

TRNAI |

S/36 users. Don't you overlook it: LAN access offers a sophisticated, high-
speed connection to other S/36s, AS/400s, S/370s, and PCs that could extend
the useful life of your S/36. The LAN moves data at either 4 or 16 megabits
per second between up to 260 attached systems, making it the widest band-
width connectivity option available for the S/36.

Figure 4.11 shows how you connect your S/36 to a Token-Ring LAN. In
every case, the actual LAN connection is provided by a Token-Ring Network
Adapter (TRNA) II card installed in a dedicated PC/AT (model 5170). You can
connect to a second LAN via a second TRNA card. $/36 5360 and 5362 CPUs
use an external PC/AT with 512 K of memory and no hard drive. A keyboard
and display, required for diagnostics but not for normal operations, are optional.
The PC connects to the S/36 through a high-speed channel adapter board con-
nected to a similar board in the S/36 via a special three-meter cable. The chan-
nel adapter provides direct memory-to-memory transfer between the PC and the
S/36, which is necessary to sustain the high LAN data rates. The 5363 and 9402
Y10 CPUs don't need an external PC/AT; instead, you use the internal PC/AT
which serves as the processor expansion interface. The 5364 uses the PC
attached as a console controller to hold the TRNA and channel adapter cards.

Chapter 4 S/36 Models and Configurations 73

Technical Note

5360 LAN support requires a Stage 2.1 or later processor. All other S/36 models contain
the correct processor for LAN attachment. LAN software requires SSP 5.1 or later.

The S/36 also needs special software to make the LAN connection
operational: the S/36 LAN Communications Program Product (5727-EP1 for the
5360/5362; 5727-EP6 for the 5363/5364/9402). This software lets you configure
either one or two LAN adapters as communications lines 9 and 10. Each LAN
supports up to 50 devices for the 5360/5362 CPUs, and up to 15 for
5363/5364/9402 CPUs. Connecting both TRNAs to one Token-Ring LAN dou-
bles the number of available devices for that network.

After installing the hardware and LAN Communications Program prod-
uct on the S/36, you configure LAN support via CNFIGSSP. When you activate
LAN support (via ENABLE for lines 9 and 10), SSP automatically downloads
LAN support code into the PC/AT, establishes a presence on the network, and
becomes ready to establish active sessions.

With S/36 LAN access enabled, you can establish several kinds of
Token-Ring connectivity (Figure 4.12 illustrates various LAN connection
options):

e PC Support Server functions: up to eight virtual disks, eight shared
folders, three virtual printers, and one file transfer session for each
LAN session.

e PC Support Workstation functions: up to five 5250 or 3278 emula-
tion sessions, one of which may be a printer session. (All worksta-
tion functions for all users run under a single LAN session for a
given 5/36.)

e Advanced Program-to-Program Communications (APPC) functions:
Distributed Data Management (DDM), Display Station Pass Through
(DSPT), Advanced Program-to-Program Network (APPN), File
Transfer, and the APPC Application Program Interface (API)

e S/370-specific services: SNA Upline Facility (SNUF), Multi-Station
Remote Job Entry (MSRJE), 3270 device emulation, Communications
and Service Management (CS&M).

Optical Storage

The S/36 has long been used to store and process accounting and other elec-
tronic business records, using magnetic hard disks for short-term storage of
current data and diskettes or tapes for long-term storage of historical data.
The advent of fast optical scanners has also made it possible to store paper

74 Deskiop Guide to the S/36

Figure 4.12
Token-Ring LAN Configurations
file O 5250 | | 5250 | | 5250
\ PC | DDM/PC
DDM /36
DSPT | Sm6
PC | PCS/36
3270
3270 S370 | Tﬂ‘:t'm','(‘g PC | APPCIPC
3270
PCS/36
PC | wsF
PC
Network Bridge S/36
APPC AS/400 | DSPT
Other LAN DDM
Comm Network
file VO

documents, such as letters, claim forms, invoices, and checks as digitally
encoded images. Such images, while quickly accessible by computer, require
considerable digital storage space — on the order of 50 K for a single 8- by
10-inch form. A textual customer file formerly requiring less than 10 K of disk
space could balloon to 1 MB or more once you start storing a digitized paper
trail. At $10 per megabyte, traditional magnetic disk storage is just too expen-
sive as a replacement for paper.

However, the cost per megabyte of optical storage — particularly
write-once-read-many (WORM) optical discs — runs less than $1 per
megabyte, making digitized record storage practical. Optical discs of the
WORM variety use a laser to permanently etch a digital bit pattern upon the
disc’s rotating surface. Each disc holds a gigabyte or more per side.

Chapter 4 S/36 Models and Configurations 75

The S/36 5363 lets you attach IBM’s 9247 Optical Storage drive
($20,000) via a special RPQ hardware adapter. The 9247 uses 12-inch optical
cartridges costing about $300 each, and holding 2 gigabytes (1 gigabyte per
side). The drive reads only one side at a time, requiring a “flip” operation to
change sides. With an average seek time of 150 milliseconds, you won’t mis-
take the 9247 for a hard disk drive. However, 150 milliseconds is certainly
much quicker than retrieving paper records manually from a wall full of file
cabinets. Once data has been located, the 9247 transfers it at a rate of 1.2
megabytes per second, equivalent to hard-disk transfer rates.

The 9247 is a single drive; for those really big data storage jobs, you
can use the 9246 Optical Library (about $200,000), a five-foot cube holding
128 gigabytes in 64 disc cartridges. The library also contains from two to four
9247 drives that operate simultaneously to provide reasonable access times for
multiple users.

The 5363 operates as a controller for the drives, while providing file
server facilities for attached PC workstations. You can use APPC via communi-
cations line or LAN to provide optical storage access to other host S/36s or
AS/400s. Two software packages provide basic optical storage access: Optical
Drive Support (5799-DAA) and Optical Library Support (5799-DAB). These
packages use S/36 Folder Management Services to organize objects on optical
discs, using S/36 hard disk storage as a “staging area.” An “object” can consist
of text, digitized images, documents, or sound files. Virtually any kind of data
file you can generate on the S/36, AS/400, or PC can become an optical stor-
age object. Your application programs interact with the optical storage subsys-
tem using ICF INTRA (for local programs) or APPC (for programs running on
a remote system). Figure 4.13 shows how application-requested documents
move from a permanent folder stored on optical disc to a working folder on
the 5363. The staging process lets you manipulate optical-based objects effi-
ciently. Because WORM storage can never be erased, you want to minimize
the number of WORM write operations; with staging, your application only
writes the document on the WORM when an updating session is completed.

Although the WORM contains all previous versions of a given folder
object, IBM'’s software only lets you access the most current version. The soft-
ware does, however, let you view an audit trail of versions for a given object.

Instead of writing your own application programs to provide image
processing services, you might consider IBM’s S/36 Workfolder Application
Facility, or the SAA Workfolder Application Facility for the AS/400. Both pro-
vide image scanning, cataloging, retrieving, and process-tracking capabilities
required for most office automation tasks.

Conclusion
The foregoing picture of S/36 hardware configurations should give you a good

76 Deskiop Guide to the S/36

Flgure 4.13
Optical Storage Configurations

USER 5363 Disk Oplical Volume
Working Foldar Media Folder
USER @ =2 —-ffoccunent]| ase Foder __
T =@|
DOCUMENT |t —S28Y. »[00CUMENT

USER

idea of the expansion options for your existing system. If you have a 5360 C
with many users, the first order of business should be upgrading to a D model
and 8 MB of memory. If you have one or more 5362s, make sure you have
2 MB of memory in each. Any time you increase memory, don't forge! to
make sure you're taking advantage of the memory (see Chapter 5 for memory
and disk management tips).

If you are unfortunate enough to have a 5364 or 5360 A model, bite
the buller now and replace it with 2 more capable 5362 or 5363. The 5360 A
models are 50 limited that even a 5362 will give you much bener performance,
as well as greatly improved upgrade oppormunities.

If you’re cusrently maxed-out on a 5363, and interactive performance
is inadequate, you might consider bringing in a 5360 D model, with the prima-
ry advantage of a four-fold memory capacity increase to 8 MB. But be careful
about disk selection: Upgrade 10 a machine with the same or more disk spin-
dles as your 5363, or you could see dramatically increased disk /O, thereby
dramatically decreasing performance.

Finally, avoid the 9402 Y10. ir's siren song of AS/400 upgradability is
deceptive, given the high cost of upgrading. And in the bargain, you'll be
locked into a slower, Jess expandable box.

http:Agure4.13

Chapter 5 The Importance of Memory and Disk Space 77

Chapter 5

The Importance of
Memory and Disk Space

Many S/36 users face a true dilemma: The S/36 is doing a good job meeting
current needs, but it won't live forever. Studies show that most $/36 users do
have room to grow — to upgrade and enhance their machines. But continual
improvements to the AS/400 and RS/6000 — and the emerging technologies
these hardware platforms support — make the choice of upgrading or migrat-
ing a difficult one at best.

What's a $/36 user to do? Does the life expectancy of the $/36 warrant
spending the money to upgrade? Is it reasonable to postpone migration for a
year or two, or is the pay-off better now?

For many shops, upgrading the S/36 is the wise interim strategy. 5/36
upgrades are inexpensive and easily attainable. They will help give you the
time you need to intelligently sort out your migration options. Think of $/36
upgrades as “cheap gas,” buying you time to let the migration alternatives
mature. For less than the cost of a new personal computer, you can upgrade
your S/36, adding memory and disk storage, and give your machine another
two or more years of life. And even if you choose not to migrate in the fore-
seeable future, these upgrades will help extend the life and performance of
your 5/36. (See “Is the S/36 Worth Upgrading?” page 88.)

Just Add Memory
The S/36 is a virtual memory machine — that is, it allows SSP to overcommit
real memory. When real memory is overcommitted, chunks of programs are
paged from real memory to virtual memory workspace (the Task Work Area) on
disk. This paging can dramatically impede performance. With more available
memory, more programs and data stay memory-resident; performance improves
because paging occurs less frequently and there are fewer disk accesses.

Your 5/36 should have as much memory as it can physically handle.
Don't rely on antiquated rules of thumb to determine the amount of memory
required per user. Put as much memory in your $/36 as possible — as soon as
possible. A flourishing third-party market offers very affordable memory
upgrade prices, and there simply is no better or less expensive way to quickly
and easily improve S/36 performance than to add memory.

Here are more reasons your S/36 should have as much memory as
possible:

The CACHE Faciltty. Using the S/36 CACHE facility efficiently requires

Performance Tip

Don'i waste time
{rying to performance
tune a memory-
constrained S/36.
Glven the low street
prices of S/36 memory
upgrades, adding
more memory to a
§/36 Is he cheapest,
easlest way to
Improve S/36
performance.

T8 Deskiop Guide to the 5/36

Figure 5.1a
User Area of Memory Avallable without CACHE
Disk
Disk Data Mgl | Variable Nucleus
User Area
Program using
Disk Data Mgt.
Figure 5.1b
sk User Area of Memory Available with CACHE
I
Cache Suppot Variable Nucleus
[
| Disk Data Mgt |
Program using User Area
Disk Data Mgt.

plenty of real memory. When CACHE is enabled, SSP allocates memory for it
from the variable nucleus area of memory — reducing the size of the user area
and leaving less real memory for your applications (Figures 5.1a and 5.1b).
Therefore, using CACHE on a memory-constrained $/36 is not likely to improve
performance. In fact, when used without enough real memory, CACHE-
induced memory swapping will probably degrade overall system performance.
Chapter 15 discusses the impact of CACHE on your system and provides you
with tools 1o determine whether or not CACHE is beneficial for your system.
Even if you don't explicitly use the $/36 CACHE facility, the $/36 auto-
matically uses all memory available to cache SSP routines. Many system pro-
grams are called to execute each task the S/36 performs. For example, a system
program named #CIRN is called just to process the OCL // RUN statement. As

http:Figure5.1b
http:Flgure5.1a

Chapter 5 The Importance of Memory and Disk Space 79

you can imagine, #CIRN is used by the system often. To avoid constantly reload-
ing SSP routines such as #CIRN, the SSP lets many users share the same copy of
the program in memory. However, depending on other real memory demands,
SSP routines can be bumped out of real memory. Each time the // RUN state-
ment is encountered in OCL and #CIRN has been displaced, SSP must reload
the program from disk. Figure 5.2 shows that with only 1 MB of real memory,
the number of SSP routines resident in memory is constrained, but with 3 MB
of memory, more SSP routines can be resident in real memory. SSP regularly
uses more than 200 routines, With enough memory, these routines can stay
resident, reducing disk I/O while improving overall system performance.

Accessing Screen Formats. Having plenty of memory also allows effi-
cient access to screen formats — by keeping frequently used formats resident.
Without memory-resident screen formats, SSP must read screen formats from
disk every time they’re displayed. By configuring your system using
CNFIGSSP’s screen 17.0 (Figure 5.3) to allow memory-resident screen formats,
the SSP will cache screen formats used by a program in a shared area of real
memory. Not only will perfformance improve for the one application, but
because multiple applications share this “pool” of memory-resident screen for-
mats, performance improves for all programs using workstation I/O.

Using EPCs. The S/36 has external program call (EPC) capability built
into its control storage processor. EPCs allow one program to call another, just
as they do on the AS/400. By taking advantage of the S/36’s virtual memory
facility, EPCs allow many programs to be associated with one task, letting you
write modular and more maintainable applications while circumventing the
S/36’s program size and file limit constraints. With EPCs, when real memory
becomes overcommitted, SSP pages infrequently called programs to disk.
Additional memory lets more called programs remain resident, improving per-
formance and reducing disk I/O. EPC capabilities are available from IBM and
from two third-party companies. If you have ongoing program development
on your $/36, you should consider using EPCs to reduce wasted disk I/O and
improve program portability. And, if you do use EPCs (as discussed in detail
in Section III), the more real memory you give your S5/36, the faster it will run.

Memory Configuration

Figure 5.4 shows the maximum memory each S/36 model supports. A stock
5360 Model D can support up to 7 MB of memory. However, because the
S/36 has an effective memory address of 23 bits (see Chapter 2, “S/36 Memo-
ry Management”), theoretically it can address up to 8,388,608 bytes of real
memory. One third-party memory provider, AI/GBT, provides an SSP patch
that lets the S/36 use that eighth megabyte of memory. The patch isn't need-
ed to make the S/36 address the eighth megabyte of memory — even with-
out the SSP patch the $/36 would “see” the additional memory and perform

Performance Tip

Use CNFIGSSP's
screen 17.0 (Figure
5.3) to enable
memory-resident
screen formats. This
will reduce the disk
accesses required to
load and display
screen formats for
your application
programs.

Performance Tip

Not all paging Is bad.
When paging replaces
more time-consuming
operations —as it
does when program
calls replace OCL

/I LOADS — response
time actually Improves.

80 Deskiop Guide fo the 5/36

Figure 5.2

1 MB of memory with a few system programs resident

3 MB of memery with many system programs resident

More Memory Means More System Programs Resident

System program

1

User program

Chapter 5 The Importance of Memory and Disk Space 81

Figure 5.3
CNFIGSSP Screen 17.0
//:;.0 CNFIGSSP - BASE SSP III SYSCNFIG H;\\\
1. Default forms ID o001

2. Specify how many lines you want
printed per page 201-112 066

3. Default library name

4. Do you want your display formats
to reside in main storage? Y.N Y

\\fmdS-Previous menu Cmd19-Cancel ‘//

Figure 5.4
Maximum Memory Per S/36 Model

5360 5360
Model Mod B Mod D 5362 5363 9402 5364

Memory capacity | 1.75MB | 8MB 2MB 2MB 2MB 1 MB

the necessary memory diagnostics at IPL time. However, the patch is neces-
sary to modify several CNFIGSSP screens that need to know the eighth
megabyte is available. This eighth megabyte of memory could very well be
just what's needed to extend the life of a currently maxed-out S/36.

5360 Model B users are limited to 1.75 MB of memory. For many S/36
5360 shops, the justification to upgrade to a Model D processor is not really
the more powerful processor, but rather the additional 6.25 MB of memory
capacity. If you have a memory-constrained 5360 Model B, consider upgrading
to a Model D simply for the additional memory.

Pricing Memory

When searching for memory upgrades for your $/36, you will find that third-
party vendors offer the best buy. IBM publishes $/36 memory upgrades in its
price lists, but the prices are not competitive with third-party memory prices.
IBM lists 1 MB of memory at $4,160; 2 MB lists for $8,330. Third-party vendors

Performance Tip

I you have a maxed-
out Model D 5360 with
7 MB of memory, be
aware that you can
add an elghth
megabyte of memory.
To find out how,
contact AVGBT, 12450
Beatrice Street, Los
Angeles, CA, 90065,
(800) 243-4433 or
(310) 305-8616.

82 Desktop Guide to the S/36

offer memory upgrades starting at about $500 for 1 MB and about $1,000 for
2 MB. In many cases, the memory from the third-party vendors won't be IBM-
brand memory — but it will do the job as effectively and reliably.

If you are concemed that you might lose IBM maintenance, don’t
worry. Buying third-party memory won't invalidate your IBM maintenance
contract. With proper notification, IBM will continue your maintenance con-
tract even if you have upgraded your machine with third-party equipment.
Any reputable vendor can supply you with the form letter you'll need to
inform IBM that you're upgrading your machine through a third party. Very
likely — though it doesn't always happen — an IBM engineer will visit your
shop shortly after this notification to “recertify” your machine for IBM mainte-
nance. Some of the money you saved buying third-party memory must be
spent to pay IBM for this visit. It's not a lot, but put $200 or so in your
upgrade budget to have your $/36 recertified. Or you can avoid the situation
altogether by using third-party maintenance services, which are discussed in
more detail in Chapter 6.

Technical Note

For a 5360 Model B processor to support up to 1.75 MB of real memory, it must have a
Stage 2.1 processor. Model Bs with a Stage 2.0 processor will support only 1 MB of mem-
ory. A Stage 2.1 processor upgrade sells for $500 or less from third-party vendors. You
can check your S/36's processor level by opening the control panel cover and reading the
embossed label in the lower right corner. It will say Stage 1, 2.0, 2.1, or 3.

If your third-party upgrades were performed using genuine IBM parts,
after recertification IBM will adjust your maintenance contract and IBM mainte-
nance will cover the new parts. However, if your machine was upgraded with
non-IBM parts, the recertification only confirms that the third-party parts are
causing no problems and that IBM maintenance will continue unchanged —
covering what you had but not the new parts. Generally, when you upgrade
your S/36 with non-IBM parts (currently, memory cards are the only non-IBM
add-on), you'll need to provide for maintenance on these parts through the ven-
dor. Be aware, also, that if you add non-IBM parts to your S/36, the unlikely,
but possible, circumstance exists for a few finger-pointing problems (“It’s their
memory card that’s causing the problem,” “No, it's their memory card”). Some
third-party memory vendors — for example, EMC* — provide a switch on the
front of their memory card that causes the card’s memory to be logically ignored
by the S/36 at IPL. By helping to diagnose the location of memory-related prob-
lems, this determines whether the EMC? board is part of the problem.

Chapter 5 The Importance of Memory and Disk Space 83

Technical Note

Even if your S/36 is under IBM maintenance, you can upgrade your machine using third-
party vendors.

The Importance of Free Disk Space

In addition to addressing your system’s memory capacity, you also need to
consider additional disk storage. The only mechanical part of the S/36 — the
disk drive — is the primary performance bottleneck, and the slowest compo-
nent on the S/36. Each disk access requires 35 milliseconds on average. In that
time, the CPU can perform up to 35,000 machine instructions. With abundant
memory, you can eliminate much performance-robbing disk I/O. But no mat-
ter how much memory you have, you cannot eliminate all disk I/O. What can
minimize the impact of disk I/O is plenty of disk space, which allows you to
tune and manage your system effectively. Here’s how system performance can
be improved with abundant disk storage:

System Work Areas. If you have enough disk, you can provide large
system work areas. The Task Work Area, for example, should be set to its
maximum amount of 6,553 blocks to avoid Task Work Area extents. In addi-
tion, if your system uses external program calls heavily, having TWA maxed
out to 6,553 blocks might not be enough — there should be enough disk
space available so that your system can create contiguous Task Work Area
extents (see Chapter 7). By allowing for a large spool file, free disk space also
helps avoid costly spool file extents.

A Smarter Compress. Typically, use of the COMPRESS procedure gathers
all free space within the user area of each spindle into one contiguous area at
the beginning or end of the spindle. Figure 5.5 shows the effects of COMPRESS
FREEHIGH and COMPRESS FREELOW to move all free disk space to ends of
the disk spindle. However, if you have enough disk space available, a much
better disk organization is shown in Figure 5.6. Here, free space has been col-
lected into two groups and allocated on either end of the spindle. The space
on the left, or “low,” end of the spindle is targeted as the high-activity area of
the spindle. Frequently used files will be extended or allocated here first, filling
up this space as the day goes on. Disk utilization of this area of disk requires
less disk arm movement and provides quicker access than the area at the high
end of the spindle. Less frequently used files — those whose disk accesses
happen less frequently — generally will go into the second free space.

The key to creating these two empty areas on disk is to use a large
“placeholder” file in conjunction with two calls to the COMPRESS procedure
(Figure 5.7). The Al spindle is compressed first, moving all available user

Figure 5.5
Disk Spindle After COMPRESS FREEHIGH

System and '
ALIBRARY User files \ Frea space

Disk Spindie After COMPRESS FREELOW

amemad | Feespas User files
Figure 5.6
Disk Spindle After “Smart” COMPRESS
%ﬁgﬂr}w Flae space User files f Fréo space.

space 10 the low end of the spindle (COMPRESS FREELOW). Before com-
pressing the spindle a second time, a 3,000-block file is created as a place-
holder. Then the second compress moves all available user space Qess the
size of the placeholder file) toward the high end of the spindle (COMPRESS
FREEHIGH). After completing the second compress, you delete the placehold-
er file, leaving 2 3,000-block area (7.6 MB) of “high-activity” disk space avail-
able near the low end of the spindle. The remainder of the disk space is avail-
able in a second afea at the high end of the spindle. Figure 5.8 shows a
variation of Figure 5.7, the procedure that produces the appropriate “holes” on
a two-spindle system. Keep these free areas on disk available by frequenily,
nightly perhaps, performing this “smart compress.”

Technical Nole

The “smart compress” technique applies only 1o systams with a lol of free disk space.
Given minimal free disk space, you could use a smaller “placehalder file. But on g disk-
constrained system, creating the two free areas of disk space per spindle increases the
charce that \hera won't be enough canliguous free disk space to perform file extends.

Successful File Fxtends. When an extend-capable file fills, SSP needs a
contiguous afea of disk space large enough 1o hold the newly extended file

Chapter 5 The Importance of Memory and Disk Space 85

Figure 5.7
“Smart” COMPRESS for Spindie A1

IF DATAF1-PLACEHLD DELETE PLACEHLD,F1
COMPRESS A1, FREELOW

BLDFILE PLACEHLD,S,BLOCKS,3000,256,A1
COMPRESS A1,FREEHIGH

DELETE PLACEHLD,F1

ure 5.8

Fig
“Smart” COMPRESS for Spindles A1 and A2

IF DATAF1-PLACEHLD DELETE PLACEHLD,F1
COMPRESS A1, FREELOW

BLDFILE PLACEHLD,S,BLOCKS,3000,256,AT
COMPRESS A1, FREEHIGH

DELETE PLACEHLD, F1

*

COMPRESS A2, FREEHIGH

BLDFILE PLACEHLD,S,BLOCKS,3000,256,A2
COMPRESS A2, FREELOW

DELETE PLACEHLD, F1

(the size of the original file plus the extend value). If this contiguous disk
space is not available, the file will not be extended; SSP issues a “file full”
message and terminates your application — requiring an unpleasant applica-
tion recovery process.

Files are extended by either the value specified with the EXTEND
value in the // FILE statement or by the default EXTEND value established
when the file was created. The EXTEND value in the OCL overrides the
default EXTEND value. Specify EXTEND values carefully. If the EXTEND value
is too small, file extends may occur more often than you want. Each time a file
extends, an EDF-Wait occurs and all applications currently using the file are
suspended until the extend operation finishes.

The extend operation will fail if there isn’t enough contiguous free
disk space to perform the extend, so don’'t make extend values arbitrarily
large. Consider a sequential file with 12,000 256-byte records with an EXTEND
value of 250 records. With 12,000 records, this file requires approximately
1,200 blocks of disk space. On a system with 1,500 blocks of contiguous disk
space, only the first extend would succeed. A second extend would fail
because not enough contiguous disk space is available (Figure 5.9). Note,
though, that with the original 1,500-block area, there would have been room
to extend the file by approximately 3,000 records.

http:PLACEHLD.F1

Flgure 5.9
Extended a File Once Successtully — But Not Agaln!

Belore File ¥#2 extend
Systemand |.py e File #2 | Other P
sUBRARY | AMBFBe | FR# | Cyp) | fies {?t) 4MBFre

Alter File #2 extenc by 250 records — no room for second extend!

Systemand |-, A MB Frea | OMF File #2
#L(BRARY 2MBFres.| Flle 41 S_-Ms_free 17(]

ies (32M84) |,

AM8 /
Free

Proper File Placement. Abundant disk space also lets you increase
performance by property placing files and libraries. To minimize disk seeks
across one spindle, flle location on one spindle is important; having available
disk space will allow you to place the most-used files near the spindle’s low
end — the end most quickly accessed. Even more important than the ability to
place files near the low end of 2 spindle is the ability to balance the place-
ment of all files across all spindles 10 minimize disk arm movement, When
creating a new file without a specific spindle specified, the system uses inter-
nal spindle-activity countess to place the file on the spindle with the lowest
acuvity. In the case of a two-spindle system, the Al spindle activity count will
almost cerainly be greater than the A2 spindle activity count because system
files are located on Al. The result may be a disproportionate number of new
files located on A2. An abundance of disk space lets you manage disk place-
ment of new files, thereby leveling the load on each spindle. Your goal should
be to have disk utilization for each spindle, as reported by SMF, within 10 per-
cent 10 15 percent of each other.

Addittional Spindles. Although adding disk space is important for
minimizing disk /O and improving system performance, having additional
disk spindles can really increase performance-tuning potential. The more
disk arms you have to perform disk 1/O, the more leverage you have to min-
imize disk arm motion. With multiple spindles, the disk arm is more likely to
stay in position, making subsequent disk accesses faster. For example, if you
have a two-spindle system, placing a parent file on one spindle and its alter-
nate index on the other will yield faster disk throughput than if both files
were on the same spindle, because the arm motion on two drives will be
less than that on one.

Chapter 5 The Importance of Memory and Disk Space 87

Figure 5.10
Maximum Disk Capacity for S/36 Models
Model 5360 5362 5363 9402 5364
Disk capacity 1438MB | 523MB | 1256MB | 1256MB | 130MB
Pricing Disk Drives

Generally, you'll want as much disk space in your S/36 as you can afford.
Figure 5.10 shows an overview of maximum disk capacity values for each 5/36
model (configuration details are discussed in Chapter 4). As they are with mem-
ory, IBM disk upgrade prices are high. Consider the cost of adding a second
200 MB drive to a Model B 5360 — a B23 to B24 upgrade. This upgrade is avail-
able from IBM at a current list price of $17,950. You can purchase refurbished
200 MB IBM drives from reputable third-party vendors for about $2,000 — a
major savings for any S/36 shop. In most cases, IBM prices probably render an
IBM disk upgrade a non-option. If yours is a true-blue, “No third party stuff
here!” shop, take a few minutes to re-evaluate that position. Reputable third-
party vendors offer an excellent way to increase the life of your S/36 (as a guide
to choosing a reputable vendor, see “Avoid Third-Party Pitfalls,” page 89).

As it is with memory upgrades, given proper notification and certifi-
cation, IBM is obliged to honor your maintenance contract when you install
third-party disk drives. Because only IBM disk drives are available for the
S/36 — even if a third-party vendor installs your disk upgrade — your 1BM
maintenance contract, once your machine is recertified, will cover the third-
party disk drives.

Eventually, most of the S/36s humming away happily right now will
run out of resources and need to be replaced with newer, bigger, and better
computers. Until then, upgrading your S/36 is a superb computing value and a
great way to extend your machine’s life and performance — thereby postpon-
ing your need to move to a new computer.

Although 1BM seems to have priced itself out of the S/36 upgrade
market, don't overlook third-party vendors’ potential role in upgrading your
S/36. Many third-party vendors can deliver the value and performance your
S/36 needs.

Performance Tip

When upgrading a
$/36, conslder lower-
capaclty drives to
achieve a higher
spindie count. Four
200 MB drives glive
you more flie
placement options
than two 200 MB
drives and one

358 MB drive.
Likewise, two 200 MB
drives offer more
options than one
358 MB drive.

http:Agure5.10

88 Deskiop Guide to the $/36

Is the S/36 Worth Upgrading?

When the AS/400 appeared in 1988, $/36 users everywhere were at once overwhelmed with
envy and “deja vu.” Nol long ago, it seemed, they had made passionate pitches to their CEQs
about the need to replace aging S/34s with 5/36s. With haunting memories, 5/36 users pulled
out the same arguments (“It's bigger, better, faster, easier, cheaper...”) to convince their CEOs of
the need for an AS/400. For many S/36 users, those arguments didn't sell as well the second
time around: The $/36 wasn't that old, it still had lots of life and — probably most impertant to the
CEO -— it wasn't fully depreciated.

Today, many 5/36 users are reconsidering the AS/400. Prices have come down and per-
formance has gone up. IBM seems to be delivering on its claims that the AS/400 S/36 enwiron-
ment is viable in its own right — not just as a migration crutch. Bul at least three reasons still
make the decision to migrate to an AS/400 a difficult one:

+ AS/400 price/performance ratios, while better than ever, could still be better. Dollar for dollar,
the lowly S/36 still delivers considerable bang for the buck — especially if your /36 is nearly
depraciated, is keeping your users happy, and is meeting your business needs.

» The AS/400 may be nearly haltway through its lifetime. Remember the anguish of buying a
5/36 midway though its life cycle and seeing the AS/400 announcements a year or fwo later?
While IBM inslsts the AS/400 will buck the typical midrange life cycle, many 5/36 users are
skeptical. There isn't a /36 user in the world who doesn't shudder at the thought of buying an
AS/400 today only to see the AS/500 (or whatever it will be called) announced in a year or two.
» The RS/6000 adds a new dimension of fear, uncertainty, and doubt to many 5/36 migration
plans. What is this new box with the funny sounding operating system? Wasn't Ming the Merci-
less from Unix? Not all that long ago most midrangers thought RS/6000 was a fuel additive, but
now most of us can at least speak conversationally about the PCSIX standard, interoperability,
and the coricept of an “open system.”

This isn't to suggest that you should keep your head in the sand. The AS/400 is more
than a supercharged 5/36. Not only doas the AS/400 do all the things the S/36 does, it also will
do many things the $/36 cannot — and IBM adds additional capabilities aimost monthly.

With an appreciation for the technological petential of the AS/400, however, the reality of
the situtation for all bin the maxed-out S/36 shops is that the longer migration can be deferred to
another platform, the better. While you squeeze extra mileage out of the $/36, AS/400 price/per-
formance ratios improve, the RS/6000 solidifies its pesition in the midrange market, and you
have more fime 1o identify the technological pivot points for your business through the end of the
century. For the near fulure, many S/36 users will find upgrading machine resources to be a
sound, logical invesiment.

Chapter 5 The Importance of Memory and Disk Space 89

Avoid Third-Party Pitfalls

However beneficial, using third-party parts to upgrade your S/36 isn't a task to be taken lightly.
The addition of third-party products adds previously non-existent variables to the S/36 reliability
equation. And you want to be certain that your S/36 won't take an unexpected afternoon off.

You can reduce the risk, and feel comfortable with the money saved, by carefully
researching third-party vendors before signing on the dotted line. Before you buy from a third-
party S/36 vendor:

+ Ask members of your local user group which third-party vendors in your area are particularly
good at providing customer service.

+ Ask the Better Business Bureau if any complaints have been registered against a vendor.

+ Ask for, and research, vendor-provided customer references.

+ Ask about warranties, guarantees, and maintenance contracts.

+ Ask about replacement parts, ongoing maintenance, and expected response time when prob-
lems occur.

« Ask for, and secure, your third-party vendor's help (before money exchanges hands) in get-
ting your upgraded S/36 “recertified” for IBM maintenance.

+ Ask your local IBM branch approximately how much you could expect to spend on machine
recertification after installing third-party upgrades.

Chapter 6 Other Configuration Considerations 91

Chapter 6
Other Configuration Considerations

Beyond memory and disk space options, you may want to consider one of the
following six ideas in your quest to keep your S/36 alive and useful:

e Upgrading your 5360 model B or C to a model D

e Upgrading your smaller S/36 to a 5360

e Setting up a dedicated program development machine

¢ Upgrading data communications to reduce CPU workloads

e Using Distributed Data Management (DDM) to expand disk capacity

» Turning to third-party service and support to reduce ongoing mainte-
nance costs

Model D Upgrade

As you learned in the previous chapter, the more memory your S/36 has, the
better. The 5362, 5363, and 9402 support up to 2 MB of memory and the
5364 supports up to 1 MB of memory — regardless of model designation. For
the 5360, though, the maximum amount of memory depends upon the
processor class.

IBM developed four different processor classes for the 5360 over its
lifetime, each offering better performance or memory capacity than its prede-
cessor. In IBM terminology, the four classes are called stages. You usually can
determine the stage level of a given 5360 CPU by looking for a label next to
the serial number tag on the lower right-hand corner of the raised CE panel
cover. The label contains the word “stage” followed by a number: 1.0, 2.0, 2.1,
or 3.0. Beware though: Some third-party installers fail to change this label after
upgrading (or downgrading) a CPU. Any competent IBM or third-party cus-
tomer engineer can verify the processor level by examining the installed
processor boards.

The Stage 1.0 or 2.0 processor addresses up to 1 MB of memory,
while the 2.1 processor addresses up to 1.75 MB. You'll find most 5360s in
the field already are upgraded to the Stage 2.1 processor to accommodate the
extra 0.75 MB. However, if your 5360 isn’t upgraded, third-party vendors can
install a Stage 2.1 upgrade very inexpensively. When coupled with the addi-
tional 0.75 MB of memory, the 2.1 upgrade is a cost-effective way to squeeze
more performance out of a 5360 Model B. You can let SSP automatically take
advantage of the additional memory, or allocate the memory to a specific
purpose, such as disk cache or memory-resident screen formats. Although
three-quarters of a megabyte doesn’t seem like much — especially when

92 Desktop Guide to the S/36

_ Performance Tip

If your /36
consistently reports
CSP or MSP
utilizations greater
than 60 percent,
your machine Is a
good candidate for a
Model D upgrade.

- Performance Tip

Even If your CSP and
MSP utliizations are
low, you should
conslder upgrading to
a Model D Iif SMF
reports high swap
rates. The vast
Increase In memory
capacity of the Model
D lets SSP keep
frequently accessed
application and system
programs memory
resldent, reducing disk
/O and improving
response time.

compared to memory capacities found in today’s PCs — you're almost dou-
bling the amount of memory SSP can devote to otherwise disk-intensive pro-
gram management,

For even more memory in the 5360, though, consider upgrading to a
Model D, which supports up to 8 MB — a 400 percent increase over the B and
C models. This additional memory often is reason enough for many 5360 users
to upgrade to a model D machine. In addition to addressing more memory, the
model D’s Main Storage Processor (MSP) and Control Storage Processor (CSP)
both are faster than those in other models. The MSP is twice as fast; the CSP is
88 percent faster than Stage 1.0 CPUs, and 50 percent faster than Stage 2.0.

On 5360s without a Stage 3.0 processor, and for which System Mea-
surement Facility (SMF) consistently reports CSP or MSP utilizations higher
than 60 percent, the Model D upgrade greatly improves performance by
reducing the CSP/MSP processing bottleneck.

While the fast Model D can eliminate the processor bottleneck, that
won't do you much good if you immediately run into a second bottleneck in
disk I/O. This is where the Model D’s higher memory capacity helps. Remem-
ber that SSP is designed to operate even with small amounts of main memory
— as little as 128 K. It accomplishes this feat by using disk space in place of
needed memory, swapping application and system programs for one task onto
disk when memory is needed to run some other task. The disk activity associ-
ated with swapping is a great performance robber, not only by delaying the
execution of programs waiting for memory, but by also using up disk I/O
capacity that would be better spent reading and writing your applications’ data
files. With 8 MB of memory at its disposal, SSP usually can keep everything it
needs memory restdent, reducing swapping to an insignificant amount. In fact,
you may find swapping eliminated with only 3 or 4 MB of additional capacity;
you can use any remaining memory to reduce application data file disk
accesses by setting up a disk cache. Section V, “Performance Measurement
and Tuning,” provides you with the tools you need to benchmark your system
and measure its resource utilization.

Model D upgrades are available both from IBM and third-party ven-
dors. However, once again, IBM prices itself out of the ballpark. The IBM list
price for a 5360 B23 to D24 upgrade, the result of which is a Model D 5360
with 2 MB of memory, is $9,910. On the street, from reliable third-party ven-
dors, the same Model D upgrade costs about $3,500 installed. Third-party
upgrades might use third-party memory, but the processors will be true-blue
parts. Require a lifetime warranty on the memory, and buy from a reputable
dealer, and your service will be equal to that of IBM’s.

Upgrading to a 5360
A Model D upgrade should be high on 5360 users’ wish lists, but what if you

Chapter 6 Other Configuration Considerations 93

have a smaller S/36? Other S/36 models cannot be upgraded to a full-fledged
Model D like the 5360 can, which leaves you but two options: Either trade up
to, or buy outright, a 5360 D model.

Even though some smaller S/36 models have processors approaching
Model D performance, they have memory ceilings of 1 or 2 megabytes, sub-
stantially less than the 5360’s 8 MB ceiling. Smaller machines also face smaller
disk capacities, with the largest of the little CPUs supporting only 85 percent
of the 5360’s 1,438 MB DASD maximum. Communications adapters on low-
end machines generally don’t contain their own processors, adding to CSP and
MSP workloads. The 5362 is the only small S/36 that supports the Multi-Line
Communications Adapter (MLCA) — the others only support the Single-Line
Communications Adapter (SLCA). None of the small S/36s support the Eight-
Line Communications Adapter (ELCA) offered on the 5360.

In addition to memory, disk space, and communications options, the
smaller S/36s also lack some of the additional processors of the 5360. The
5360, for example, has a Data Storage Controller (DSC) dedicated to ferrying
data to and from tape and diskettes. Without a DSC, tape and diskette data
transfer become the responsibility of the MSP and the CSP, resulting in
tremendous response-time degradation during save and restore operations.

A used Model D 5360, with 7 MB of memory and 400 MB of DASD,
costs about $8,000 — excluding the cost of licensing SSP. If you currently
have a 5362, you can legally move your current licensed copy of SSP to the
5360 (as long as you stop using it on the 5362). You need 5360-specific
microcode, and it should be provided by the dealer as part of the machine’s
maintenance package. However, the 5363 and 5364 versions of SSP are, by
design, incompatible with the 5360; you must purchase a second SSP license
for your new 5360, adding approximately $5,400 to the system cost.

The computing capabilities of the 5360 Model D over the smaller
models are substantial — see Chapter 4 for maximum model configurations —
and represent a good solution for 5362 shops hitting the resource ceiling but
still wanting to stay with the S/36. For 5363/64 shops, the 5360 upgrade option
is not quite as attractive because of extra SSP licensing fees. Still, for $15,000,
the 5360 Model D offers lots of computing horsepower and few migration
headaches; it could be a good solution for maxed-out 5363/64 shops needing
more computer power, but not yet ready for the AS/400 or RS/6000.

One final note if you consider upgrading to a 5360 from one of the
smaller models: Don’t underestimate the hidden costs of providing a place to
put the 5360. The 5360 is a big, hot, noisy beast requiring 220V power (in the
U.S.). It uses as much as eight times the power of any smaller model, and
requires lots of elbow room. It performs most reliably in an air-conditioned
room. Most shops won't be able to simply roll in a 5360 and plug it in where
the 5362 or 5363 used to sit. Carefully consider how much you will spend to

94 Desktop Guide to the S/36

prepare a site for your 5360 and to pay ongoing higher electrical power costs.

A Dedicated Development Machine

If you actively develop and maintain the software in your shop, consider
adding a second S/36 as a dedicated development machine. When a program-
mer (or worse, programmers) perform CPU-intensive source code editing,
compiling, and testing all day long (“Just one more compile and surely this
&A$%##*& program will work correctly!), the S/36 runs as though molasses
had been poured into the diskette slot. With a dedicated development
machine, your programmers enjoy snappy response time throughout the edit-
compile-test cycle and your users get back those stolen CPU disk, memory,
and processor cycles.

A used 5362, the most convenient upgrade option because it uses an
8-inch diskette for data exchange with the 5360, costs approximately $1,450
with 2 MB of memory and 120 MB of disk space. However, you must also
license a second copy of SSP from IBM at a cost of $5,400 (which includes the
SSP and the necessary programming utilities). This solution is costly; but if
your programmers constantly bring your production S/36 to its knees, it cer-
tainly is an option to consider.

SSP licensing costs are much lower on the 5363, and the overall pack-
age is much more compact than a 5362. However, the lack of an 8-inch
diskette drive rules out diskette data transfers between machines. A 5363, with
2 MB of memory and 120 MB of disk space, with SSP and utilities, costs about
$4,000 used. Except for the data-transfer wrinkle, the 5363 makes a good dedi-
cated developer’s box. To solve the data-transfer problem, consider using a car-
tridge tape drive, PC support to transfer files from machine to machine via PC
diskette, or communications features such as Distributed Data Management
(DDM) (see Section IV for more on DDM), or the file transfer subroutines (FTS)
included as a free component of the S/36’s base communications feature.

An optional, but extremely handy, software add-on to consider in a
two-machine environment is IBM’s Display Station Pass Through (DSPT) feature.
DSPT lets you sign on to a remote system using the 5250 terminals attached to
the local system. With DSPT, your programmers can sign on to the production
machine without leaving their development machine terminals. And because
DSPT is bidirectional, you also could sign on to the development machine from
any production system terminal (provided you have the proper security clear-
ances). Programmers can use DSPT to conveniently test production installations,
or to access software development tools from the production system.

If you plan to use communications, keep in mind that you must have
compatible communications interfaces (X.21, X.25, EIA, DDSA, or V.35) on
both CPUs (see Chapter 4, “S/36 Models and Configusations,” for details on
communications hardware), and that the kind of connection you set up may

Chapter 6 Other Configuration Considerations 95

limit line speed. For example, using the EIA interface and a synchronous EIA
modem eliminator (about $200 new) to directly connect two systems without
phone lines limits line speed to 9,600 bps on the 5362 and 19,200 bps on the
5363 and AS/Entry (9402 Y10). If both S/36s have V.35 interface, however,
you can use a synchronous V.35 modem eliminator (about $400 new) to run
at speeds as high as 64,000 bps. Although the V.35 modem eliminator costs
twice as much as the EIA version, you get four times the performance.

Here is another thought for providing your programmers a dedicated
programming box (this might smack as heresy to some S/36 users): Buy or
lease your S/36 programmers a small, used AS/400. A model E02, with 8 MB
of memory, 1 GB of disk space, a tape drive, a workstation controller, OS/400
and utilities, can be had for less than $12,000. Add a couple of used terminals
and you have a terrific two-programmer S/36 development box. If you suspect
that you will migrate to the AS/400 in the next year or two, providing your
programmers now with their own development AS/400 might be a wise
investment. Your S/36 will run faster minus program development and, per-
haps more importantly, your programmers can start getting their feet wet with
the AS/400. They can use the AS/400’s S/36 environment for S/36 develop-
ment and, in their spare time (what little programmers have — but they
always dig some up with a new computer around), they can start dabbling
with the AS/400 and its myriad array of bells and whistles. When migration
time finally arrives, you'll have a staff of programmers to whom the AS/400 is
no longer a stranger.

The 5364, the smallest S/36, could also be considered a programmer’s
box; but again, without an 8-inch diskette, it offers cumbersome data transfer
options. The 5364, which requires a PC as a console and to provide a soft
control panel (an old PC or XT clone works just fine), is available at give-away
prices from third-party vendors. You'll probably be able to find a 5364 in the
$200 to $500 range (like the 5363, the SSP and utilities are bundled with the
5364). Add the cost of an old PC or XT (which you can probably get just for
the asking in the right places), and you’ll have a S/36 for less than $1,000. It
won't be much of one, but it will be enough to use for minor program mainte-
nance. Keep in mind, however, the extremely slow performance of this
machine — it is the slowest S/36 model, bar none. You can't, for example,
effectively perform program development chores while simultaneously trans-
ferring files over a communications line.

Communications Upgrade

$/36 communications can be a notorious resource hog. If you use communica-
tions, don't overlook the burden it imposes on S/36 performance. The Single-
Line Communications Adapter (SLCA) uses the S/36's CSP to perform such
data-link chores as polling and protocol management; the communications

96 Desktop Guide to the S/36

Figure 6.1
Recommended Communications Adapters

Deciding factors:

I. How you use communications
A. Occasional dial-up, 1 or 2 lines
B. 1 or2lines connected all day
C. More than 2 lines connected all day

Il. The level of transaction activity
1. Occasional inquiry and/or light update
2. Regular inquiry and/or update
3. Intensive inquiry and/or update

Recommendations:
For Aor B1, a SLCA is adequate
For all other possible uses and levels of activity, choose either a MLCA or ELCA

processing required by the CSP can add up to 50 percent to its processing
load (reflected in CSP utilization on an SMF report). A S/36 already burdened
with application programs might be pushed into uselessness by the extra com-
munications processing overhead.

The Multi-Line Communications Adapter (MLCA) and the Eight-Line
Communications Adapter (ELCA) each contain a dedicated communications
processor that relieves the CSP of low-level data-link overhead. Installing an
MLCA or ELCA is actually like installing a dedicated CSP for communications
activity. Although the names of these two adapters imply that you must install
multiple lines, you actually can run either with just one line. In fact, most S/36
models can support higher data rates when using just one line at a time. Dur-
ing communications sessions with an MLCA or an ELCA, the S/36’s primary
CSP is needed only when received data is moved into program buffers. Figure
6.1 shows recommended adapters for specific communications activity. Third-
party communications adapters are readily available. Expect to pay approxi-
mately $850 to $1,000 for an MLCA and $1,500 to $2,000 for the ELCA from
third-party vendors.

Another consideration when upgrading communications facilities is the
interface — the electrical connection to your communications network. The
S/36 supports five different interfaces — EIA/CCITT, DDSA, X.21, X.25 and V.35
— and three different kinds of networks — nonswitched, switched, and packet.
For any two interconnected systems, the interfaces must match. Each interface
has its own type of cabling, and is designed for particular kinds of networks.

Chapter 6 Other Configuration Considerations 97

Following are the services provided by each kind of network:

Nonswitched network: A direct, continuous connection between two
or more machines. A nonswitched network can be as simple as two machines
in the same room connected via modem eliminator, or as complex as several
machines across the country connected by a single leased telephone line. The
first configuration is called point-to-point, and the second is called mulitipoint
or multidrop. The line speed supported by a given nonswitched network
depends on the noise characteristics. A pair of 25-foot shielded cables with a
modem eliminator has very good noise immunity, and thus accommodates the
highest line speeds. A short-distance, leased-line connection (e.g., between
two offices in the same telephone exchange), using short-haul modems, has
some noise, but can still usually support speeds as high as 38,400 bps. A long-
distance leased line (e.g., between two cities), using long-haul, leased-line
modems, has considerable noise and won't run faster than 19,200 bps without
special routing agreements between all the telephone companies involved.
Leased connections are also available from Digital Data Service (DDS)
providers; these connect systems directly to a separate digital network rather
than through modems over telephone wires. Finally, a custom analog service
available from some telephone companies, called 60-108 kHz group band cir-
cuits, supports speeds as high as 48,000 bps.

Switched network: Also called dial-up, switched networks use the
Public Switched Telephone Network (PSTN) — telephone companies’ switch-
ing system — to connect two computers. Switched networks offer only point-
to-point links: One system dials the other to establish a connection. The tele-
phone switching system determines the routing for the connection, so the
quality of the connection can vary considerably. Switched connections usually
only support speeds of 9,600 bps. Note that some modems now claim higher
speeds, but they usually accomplish this by compressing data in the sending
modem, transmitting it at 9,600 bps, and decompressing it again in the receiv-
ing modem. Depending on the nature of your data, you may not see much
actual increase in throughput beyond 9,600 bps. Compression algorithms in
such modems typically reduce data volume by 50 percent for plain ASCII text,
the reduction rate is less for binary data.

Packet-switched network: A packet-switched network is actually a
computer system (the packet switch) that receives data in variable-sized blocks
called packets, with each block containing the address of a destination system.
The packet switch sorts packets and routes them to their proper destination
system, which also must be connected to a packet switch in the same net-
work. Commercial packet-switching networks such as Telenet and Tymnet are
called Public Switched Data Networks (PSDNs). The PSDN lets you use one
physical communication line to communicate with many remote locations
simultaneously, by establishing separate virtual circuits to each partner with

98 Desktop Guide to the S/36

which you wish to communicate. You can connect to the packet-switching
system itself via dial-up connection or leased line, but you must have a packet
assembler/disassembler (PAD), either onboard the S/36 as X.25 software, or
outboard in an external X.25 controller.

Each interface provides different kinds of network options:

EIA/CITT: Also called RS-232, the electrical connection is a shielded
25-conductor cable using DB-25 connectors at each end. This is the most com-
mon kind of interface, connecting directly to most modems and modem elimi-
nators, For the 5/36, it also has the lowest line speed ceilings for most systems.
With EIA/CCITT, you can connect to leased and switched networks, but not
packet-switched networks without special X.25 external controllers. The EIA
interface also supports asynchronous and Binary Synchronous (BSC) connec-
tions. Asynch/bisynch software support is built into SSP’s free base communi-
cations feature.

DDSA: The Digital Data Service Adapter connects to commercial digi-
tal data services (DDS). The electrical connection is by special cable to a DDS-
provided Digital Service Unit (DSU). The commercial DDS provider guarantees
a certain line speed, and most support the highest available line speeds for
any S/36 (64,000 bps).

X.21: Electrically identical to EIA, X.21 provides for higher line speeds
when using S/36 MLCA or SLCA (19,200 vs. 9,600).

X.25: Electrically identical to EIA, X.25 also performs packed assem-
bly/disassembly (PAD) services for packet-switched networks. The S/36 sup-
ports an integrated PAD in software with its X.25 communications feature, or
you can use an external X.25 controller.

V.35: The electrical interface is a special 34-pin shielded cable and con-
nectors. Used on special wideband leased telephone lines (called 60-108 kHz
group band circuits), V.35 supports line speeds as high as 48,000 bps. With
data compression synchronous modems (or a V.35 modem eliminator for local
connections) you can achieve the highest S/36 data rates of 64,000 bps on a
single line.

When choosing the communications adapter, interface, and network
for your system, keep in mind the need to maintain compatibility at each node
in your network. To this end, you're better off using equipment from a single
manufacturer. For example, ensuring that the modems at each node are of the
same brand and model eliminates one source of incompatibility that could sti-
fle your efforts to get a network up and running,

Distributed Data Management

If your disk storage requirements go far beyond what a single S/36 can sup-
port, you might consider storing the data on a remote S/36, or even on a remote
AS/400, and accessing the data at the record level using IBM’s Distributed Data

Chapter 6 Other Configuration Considerations 99

Management (DDM) facility. With DDM, you could double the disk capacity of
your S/36 installation by simply adding another S/36 as a DDM server; or you
can obtain practically unlimited capacity by using an AS/400 or PC as the
DDM server. Everything costs something, however, and DDM is no exception.
The price you pay for this expansion path is in perfformance: Accessing data
stored remotely is slower than accessing locally stored data. How much slower
depends on the speed of the communication connection between your S/36
and the server machine. If you primarily need to keep massive quantities of
historical data online, DDM-based files offer much faster access than you can
get restoring tape or diskette archives. DDM also has some limitations on the
operations you can perform on remote files. You can almost do anything with
a DDM-based file that you can with a local file. You have to decide if the
undoable makes DDM unworkable for your installation. Because DDM runs
under APPC (advanced program-to-program communications) and APPN
(advanced program-to-program networking), it offers record-level access to
multiple systems simultaneously, if your network supports it. Just to expand
local disk capacity, however, you need only a simple point-to-point connec-
tion.
DDM supports the following functions:

¢ Record-level access by RPG, COBOL, BASIC, FORTRAN and Assembly
Language programs

e DFU, WSU, #GSORT access to data in remote files

* MSRJE for S/370 connectivity

¢ BLDFILE and BLDINDEX on the remote system

¢ DELETE and RENAME on the remote system

¢ CATALOG to list specific remote files

¢ LISTDATA and LISTFILE to display contents of remote files

* SAVE and RESTORE of remote files on local save/restore devices

¢ COBOL runtime sorting (SORT statement) of remote files

All of the forgoing capabilities apply only to data files. DDM doesn’t support
the following kinds of access:

e Access to libraries or folders on the remote system

e Work files for #GSORT and other utilities (e.g., RPGC)
e Date-differentiated files

» Query/36 access to remote files

* DisplayWrite/36 access to remote files or documents

e Streaming tape as a save/restore device

® SAVE ALL or RESTORE ALL for the remote system

Figure 6.2 presents an overview of how DDM works in a local disk-
expansion scenario. In DDM terminology, the system making DDM requests is

100 Desktop Guide to the 5136

Figure 6.2
Overview of DDM Operations
Source
System/36
User
Program VTOC
* Network Resource Directory
DDM : NRD Lngalél Location Rfangzlte
I * CUST | DDMSERV | BOCUST
ICF
APPC
64 Kbps)
V.35 modem eliminator
Target
l DDMSERV System/36
ICF :
APPC VT0C
vy ¢
.| DataFile
DDM -
e

called the source machine, and the machine containing remotely stored data is
the target machine. The example shows the two machines connected via a
V.35 64,000 bps nonswitched local network (modem eliminator). A special file

Chapter 6 Other Configuration Considerations 101

on the source system, called the Network Resource Directory (NRD), contains
a list of files stored on the target system. You use the EDITNRD procedure to
maintain this file, which lists the name of each file as it is used on the source
system, the name of the target system that contains the actual data, and the
name of the file as it is stored on the target system. Whenever a program or
SSP utility tries to access a file that can’t be found on the source system, DDM
looks for an entry for the file in the NRD. If one is found, DDM establishes
and maintains a connection to the target system, passing all data requests to
the target system to be satisfied. Except for speed, access to data on the target
system is completely transparent to programs on the source system. No
changes are necessary to OCL procedures or application source code.

As mentioned earlier, file access via DDM is slower than via local disk
data management. As a point of reference, consider that native, unblocked,
random indexed file reads on the S/36 occur at a rate of about 12 per second.
With a 64,000 bps connection, the fastest DDM rate is two per second. You
can improve this somewhat by using blocking, but DDM only performs block-
ing for unshared or read-only files. For shared or update-capable files, DDM
transfers one record at a time across the network. You might also improve
performance somewhat by using a Token-Ring connection. However, keep in
mind that only a small fraction of the apparent Token-Ring bandwidth is effec-
tively available for transaction throughput. Rather than the 250-fold speed
improvement you might expect on a 16 Mbps (megabit per second) Token-
Ring over a 64,000 bps V.35 connection, you'll probably see more like a 10-
fold improvement. Significantly faster, to be sure, but perhaps not enough
faster to justify the extra hardware costs in your situation.

Here are the general steps to follow for setting up DDM:

o First, determine the kind of communication connection you’ll use.
DDM works with everything from a local non-switched network using
a synchronous modem eliminator running at 9,600 bps to a cross-
country V.35 network using wideband analog modems. You can also
run DDM across a Token-Ring network. As with everything else in life,
faster costs more. You might want to start out with an inexpensive EIA
connection running at 9,600 or 19,200 bps and see if that provides
adequate performance. You can always buy more equipment later.

¢ Second, you’ll need DDM software installed on your local /36 and
whatever remote machine you choose as a DDM server. For the 5360
and 5362, order IBM program number 5727-SS1; for the 5363 and
5364, program number 5727-SS6. IBM'’s $/36 Distributed Data Man-
agement Guide (publication number SC21-8011) provides detailed
information about setting up and using DDM. You'll also need a com-
panion manual for whatever system is acting as DDM server (for the

102 Desktop Guide 1o the S/36

- Performance Tip

To get the best DDM
performance: Do not
run batch applications
agalnst DDM files
concurrently with
Interactive jobs.
Configure your APPC
subsystem under an
APPN network, even
for point-to-point,
because APPN uses a
faster protocol
exchange algorithm.
Use DBLOCK for
random-access, read-
only files where some
requests are also
sequentlal, but do not
block larger than 4 K,
and do not block purely
random retrievals. Use
JOB-YES to minimize
remote VTOC requests.
Ensure both systems
are at SSP Release 5.0
or higher, as earller
releases use a slower
DDM protocol. Avold
heavy local usage on
the target system (the
DDM server). Because
DDM has priority
permanently set to
LOW, local Jobs will
overwhelm DDM
support. Use REORG-
YES to Improve remote
build time for
COPYDATA.

AS/400, Communications: Distributed Services Network Administrators
Guide, SC21-9588; for the PC, Using Distributed Data Management for
the IBM Personal Computer, SC21-9643). The IBM S/38 and S/370 also
support DDM connections with the S/36, but neither is a viable disk
expansion alternative.

¢ Third, configure an APPC PEER subsystem under ICF. IBM’s ICF: Base
Subsystems Reference (publication #SC21-9530) explains this straight-
forward process.

¢ Fourth, after installing the equipment necessary for your chosen net-
work connection, enable the PEER subsystem to establish a live con-
nection between the two systems.

o Select the files you want to reside on the target system and create
entries for them in the NRD using IBM’s EDITNRD procedure.

DDM is now ready to run. You can move files to the target system
using IBM’s COPYDATA procedure. As long as the copy-to filename is listed as
a local name in the NRD, DDM will automatically create the file on the target
system and move the data records there. For alternate indices, you must build
the indexes rather than copy them. Just run the BLDINDEX command on the
source system, specifying the parent file resident on the target system and an
alternate index file name that exists in the NRD. DDM automatically builds the
index on the remote system without transferring any additional data.

Maintenance
In addition to using S/36 third-party vendors for hardware upgrades, don't over-
look using them to also provide S/36 hardware maintenance. There is an ample
supply of $/36 parts available, and many third-party S/36 maintenance providers
offer good value for your maintenance dollar. The money you save on S$/36
maintenance can be used to help finance memory and DASD upgrades.

Genenally, two types of S/36 maintenance agreements are available.
The most popular maintenance agreement type is a monthly maintenance con-
tract under which you pay a fixed monthly fee, regardless of service and parts
needed. The other is a time-and-materials maintenance contract under which
you pay a varying fee for parts and labor only when problems occur. With the
declining street value of used S$/36s, it might be worthwhile to keep a spare
$/36 in the closet and maintain your primary $/36 with a parts-and-labor main-
tenance contract. Maintenance of this sort is generally not for faint-of-heart,
mission-critical shops.

Because of the potential high cost of $/36 replacement parts, most
S/36 users shy away from a time-and-materials-type contract and opt for the
monthly maintenance agreement. For most shops, this type of agreemeni

Chapter 6 Other Configuration Considerations 103

offers the best protection. Monthly maintenance contracts are available for
protection during normal business hours; or, by paying a little extra, around-
the-clock coverage is also available.

IBM and third-party providers offer maintenance contracts of both
types. However, both often price time-and-materials contracts very high to
make the monthly contracts more appealing. Realistically, your maintenance
contract choices are generally reduced to using IBM or third-party providers for
monthly maintenance contracts. If you've been a true-blue diehard in the past,
turning your nose up at non-IBM parts and service, think again. Many third-
party maintenance providers are actually more attuned to their customers than
IBM is, and it's surprising how many ex-IBMers are employed by third-party
maintenance providers. Because many of these vendors make their livings sole-
ly, or at least primarily, by providing hardware maintenance, they have to be
very good at it. Third-party maintenance is almost always less than IBM mainte-
nance, with third-party contracts offering anywhere from a 20 percent to
50 percent savings over IBM maintenance prices. The abundance of available
S/36 parts, third-party maintenance vendors’ willingness to “bend over back-
wards” for your business, and IBM's increasing withdrawal from the $/36 all
add up to make third-party maintenance a workable and practical option.

Section lll

External Program Calls

“Everything new meets with resistance.”
—Russian Proverb

f there is a silver bullet for S/36 application programming, it is external
program calls (EPC). With EPC you can achieve subsecond response
time in your existing applications, circumvent the 64 K program size
barrier, and bring the powers of modular design and coding to bear on
application programming.

Unfortunately, although the S/36 operating system always has had
built-in support for EPC, the capability wasn’t available for RPG or COBOL
application programmers until well into the S/3G’s lifetime. An IBM COBOL
PRPQ (custom programming feature) and third-party RPG compiler products
were the first tools to make EPCs available, and thousands of sites took advan-
tage of these tools. Now IBM offers a limited form of RPG EPC for free to all
SSP licensees as part of the S/36 Value Added Software Package (VASP). The
result is that you're in the enviable position of having several EPC implementa-
tions from which to choose. Whatever your final decision, how you proceed
with EPC will have an impact on your short-term ability to take advantage of
the feature and your long-term ability to migrate to follow-on platforms.

Chapter 7 in this section tells you how EPC works and how to use it,
Chapter 8 gives you the rundown on the various EPC products available, and
Chapter 9 presents a tutorial on modular application design. With this materi-
al you can load your programming gun and shoot down old S/36 perfor-
mance limitations.

Chapter 7 How External Program Calls Work 107

Chapter 7
How External Program Calls Work

Suppose you had an opportunity to give your users subsecond response time
when they switch between applications. Suppose you could add new capabili-
ties to your applications with ease, chopping through your programming
backlog in half the time you're taking now. And suppose you could throw off
such S/36 restrictions as the 64 K region size and the 15 disk-file limit. Now
suppose you could do all these things with no additional hardware resources.

If you would jump at such a chance, you'll want to jump right into an
oft-ignored S/36 feature: the external program call (EPC). EPC lets you invoke
other programs from within your application without using OCL and provides
program-to-program communications without using the LDA. Called programs
can, in turn, call other programs without limit. And a called program can
return to its caller without going to end-of-job, so subsequent calls don’t
require the overhead of program initiation.

This amazing array of capabilities lets you write efficient, well-
structured, modular programs that are easier to maintain and enhance than
huge monolithic programs. Modular programming also clarifies application
design — “hiding” the way your program implements a solution (i.e., what the
textbooks call “process abstraction,” or deferring coding details) to let you
focus your attention on the program’s logical structure. And modular programs
perform better, too, because EPC circumvents the 64 K region limitation and
RPG'’s maximum of 15 disk files — even while adding more function. Learning
how to get EPC capability, how to code EPC statements in RPG, and how to
incorporate EPC features in your existing applications will get you on the path
to improved design, faster development, and better performance.

IBM’s Little Secret
EPC capabilities have been built into the SSP from the beginning. In fact, IBM
uses the feature in some of its own program products, such as SDA, Display-
Write, Query, and ODF. About five years ago, third-party programmers discov-
ered IBM'’s little secret and started selling products that made EPC accessible to
RPG programs. Two third-party vendors — Amalgamated Software of North
America and BPS Information Systems — provide RPG interfaces to EPC by
harnessing this 5/36 under-the-covers capability, not by employing any unreli-
able computing voodoo. In the fall of 1990, IBM finally released its own EPC
add-on to RPG, which now is built into SSP release 6.0.

Although each vendor has implemented a somewhat different set of

108 Deskiop Guide to the S/36

features and quirks (see Chapter 8, “A Comparison of EPC Vendor Offerings”),
all three products follow the basic RPG EPC syntax and operation rules IBM
established for the $/38 and continued on the AS/400. This means your EPC
programs are not only compatible with other S/36 EPC products, but also
upwardly compatible with the AS/400, which protects your programming
investment.

Third-party EPC products do have one drawback: They cost money.
Adding non-IBM EPC capability to your S/36 will cost you anywhere from $950
to $2,250; however, third-party EPCs provide a number of improvements over
IBM’s newer, but weaker, implementation. Read on and you'll find that using
even extra-cost third-party EPCs quickly provides a return on your investment.

128 MB of Memory, Virtually!
Using EPCs requires memory. Fortunately, like the S/38 and the AS/400, the
S/36 is a virtual memory (VM) machine. That is, when a task requires more
real memory than is currently available, SSP pages less-recently-used memory
“pages” to disk to free up the required real memory (see Chapter 2, “S/36
Memory Management,” for details about how virtual memory operates). The
Task Work Area (TWA), also called the #SYSTASK file, is where paged-out
memory is held until needed again. The SSP uses the TWA as a “backing
store,” quickly shuffling data between real and virtual memory as needed. The
size of the TWA thus determines the maximum amount of VM.

S/36 real memory capacities range from a maximum of 2 MB on
5363s to a maximum of 8 MB on the 5360 model D (see Chapter 4, “5/36
Models and Configurations,” for memory limits of various models). Logically,
however, the virtual memory ceiling on the S/36 is limited only by the maxi-
mum size of the TWA — which can be as much as 128 MB. This means that
you can have up to 128 MB of programs running at one time on a S/36 with
one megabyte or less real memory!

Technical Note

The maximum size you can configure for the TWA is 6,553 blocks, which yields about

16 MB of virtual memory. But this is only the “initial” size of the TWA. The first time the
TWA fills up (due to program requests for more virtual memory), SSP automatically extends
it by 400 blocks; the second time it fills, SSP extends the TWA again, but this time by 800
blocks; the third time, by 1600 blocks. The process repeats, with each extension doubling
in size up to 6,553 blocks. As many as 16 extensions can occur; depending on available
disk space, SSP can expand the TWA to a maximum of about 53,000 blocks (128 MB).

Chapter 7 How External Program Calls Work 109

Although the $/36 will let you use a great deal of VM with only a
small amount of working real memory, performance may suffer. Increasing the
quantity of real memory lets the S/36 keep more programs “paged in,” reduc-
ing swapping (disk activity) and thus improving performance. While a pro-
gram CALL requiring VM paging is fast, it isn't as fast as a real-memory CALL.
For example, a call to a program already resident in real memory can take as
little as 4 milliseconds (depending on whose EPC product you’re using), while
the same call to a program paged out to the TWA would take at least 35 milli-
seconds. Even with VM paging, EPCs are fast — but with enough real memo-
1y, they are very fast! And hey, a millisecond here, a millisecond there, pretty
soon you're talking real time! So to get the most out of EPC, consider adding
as much real memory as your machine supports (see Chapter 5, “The Impor-
tance of Memory and Disk Space”).

Primitive Modules

Before the days of EPC availability on the $/36, few techniques were available
to write efficient, modular programs. We attacked most large application
requirements with large, monolithic programs — maxed-out, 64 K, 15-file, do-
everything, interactive monsters. The kind that took half a box of green bar to
print and always had something wrong somewhere. A monster program like
this generally performed fast (at least it started out fast) and was easy to write
(at least it started out easy). But its logic was hard to comprehend, and it was
difficult to maintain, slow to initiate, and nearly impossible to enhance without
introducing bugs in unrelated parts of the program.

About the time we were all realizing the hopelessness of these mono-
lithic slabs of code, a few enterprising programmers introduced us to the tech-
nique of emulating EPCs by chaining programs together via the LDA. The
problem with this technique is that it is slow. Each emulated call requires the
complete initiation of the program — a slowwww process. It's amazing how
long two seconds can seem in an interactive environment. To combat the slow
initiation time between chained programs, a better technique was introduced
that chained single-user MRT-NEPs (Multiple Requester Terminal-Never Ending
Programs). This technique eliminates job-initiation time when chaining from
program to program. The technique, however, has serious limitations: It
doesn't provide communications between programs with formal parameters; it
requires lots of tricky, less-than-intuitive OCL and a little hoop-jumping to end
the programs; and (because MRT-NEPs are executed in a single-threaded fash-
ion) it can cause performance bottlenecks.

Exploiting the /COPY feature of RPG's autoreport facility is one other
way monolithic RPG programs can be broken into separate modules. This
method is faster than the LDA program-chaining technique, but it just hides
the fact that you are writing a monolithic program. None of the included mod-

Performance Tip

Make sure the SSP
has as much YM
backing store (TWA)
as possible. Use
CNFIGSSP to set your
TWA to 6,553 blocks.
Even If you aren't
using all of the TWA
space, the extra room
helps reduce TWA
fragmentatlon, which
can slow performance.
This small trade-off in
disk space will pay off
handsomely as you
learn to make EPC
work for you.

110 Desktop Guide to the S/36

ules has local variables or indicators, and communications between these
modules is the same as it is with any normal RPG subroutine — through glob-
al variables known throughout the program. The /COPY method works great
for small, simple tasks; but for any large task or function, it offers none of the
advantages of real EPCs.

With the EPC design alternative, multiple programs exist in a single
task. This approach offers quick program-transfer time; almost unlimited for-
mal parameter passing; private fields, indicators, and I/O areas for each pro-
gram; a way to circumvent the 64 K program size and file limits per program;
and a way to write code upwardly compatible with the S/38 and the AS/400.

EPCs in Action

EPC uses some special terminology to describe the relationships between exe-
cuting modules (programs); understanding this terminology can help you see
the power of EPCs as modular programming tools.

Normally, a S/36 RPG task consists of just one RPG program. With
EPCs, however, one task can consist of two, three, or 100 RPG programs. The
number of programs is limited only by the available VM. Each program in a
task has its own 64 K region. One program, called the main program, is the
controlling program for the entire task; it's the program started by the
// LOAD OCL statement. The main program can call, or invoke, other pro-
grams, called subprograms. Subprograms can also call other subprograms
(again, with no specific limit on the depth of calls), but the main program is
special. When a subprogram goes to end-of-job (EQ)), it does not affect other
subprograms; when the main program goes to EOJ, all subprograms are auto-
matically terminated. Figure 7.1a shows a task with three active programs
attached (each with its own 64 K region and a private copy of variables, indi-
cators, file buffers, record positions, and so forth).

Both the main program and subprograms have their own private data:
variables, indicators, open files, record positions, and I/O buffers. No program
can directly change another program’s private data. Thus setting on indicator
11 in one program has no effect on indicator 11 in any other program in the
task. Similarly, reading a particular record in a file doesn’t change the current
record position or buffer contents for any other program using the same file.
This concept of private data — also called #nformation biding — is central to
modular design, because it lets you ensure that modules only interact through
well-defined interfaces. With RPG EPC, modules interface by exchanging
parameters. But to understand how the parameter interface works, you must
first understand the program invocation process.

Figure 7.1b shows a typical EPC scenario with a main program,
PROGA, and two subprograms, PROGB and PROGC. Initially (Step 1), main
program PROGA runs by itself, and is considered the currently executing

Chapéer 7 How External Program Calls Work 114

Figure 7.1a
Job with Three Active Programs

Figurs 7.1b
EPC Program Invocation
— Job W5163844
Step 1
Step 2
Step 3
Step 4
Step 5

program. Then PROGA CALLs (invokes) subprogram PROGB (Step 2), caus-
ing SSP 10 actfvate PROGB by allocating memory, loading the program into
that memory, opening files, and initializing varables. PROGB then becomes
the currently executing program, while PROGA is active-but-suspended. The
same sequence repeals when PROGB invokes PROGC via a CALL (Step 3):
PROGB becomes active-but-suspended, and PROGC is activated and
becomes the currently executing program. At this point, two programs are

http:Flgure7.1b

112 Deskiop Guide to the S/36

invoked (PROGB and PROGC) and three programs are active (PROGA,
PROGB, and PROGC); but only one program is currently executing. In any
task, only one program at a time is ever the currently executing program —
all others are active-but-suspended.

Next, PROGC finishes its work and RETRNs to PROGB (Step 4);
PROGB resumes execution with the statement following the CALL. At this
point, PROGC is no longer invoked, and PROGB has regained its status as
currently executing program. However, PROGC doesn’t go to end of job and
disappear; instead, it becomes uninvoked and active but suspended —
parked in VM awaiting another call. All of its private data remains intact,
usable on the next call.

Finally, PROGB RETRNs to PROGA (Step 5), leaving PROGB unin-
voked and active-but-suspended. In this last state of affairs, PROGA is the cur-
rently executing program, while subprograms PROGB and PROGC are waiting
for another call.

Technical Note

One aspect of S/36 EPCs that isn't obvious from the example is how massive use of VM
impacts interactive application performance. It turns out that having a large number of
active subprograms doesn't necessarily slow response time. In fact, designed correctly,
modular applications have significantly better response time than do applications put
together with other techniques. That's because only one program in any given task is the
currently executing program. Programs that are active-but-suspended eventually get
paged out of real memory, where the only resource they consume is TWA space. Paging
such programs back into real memory when required takes only a few milliseconds — an
imperceptible amount of time for interactive modules.

You can make some interesting observations about the three pro-
grams at this point. First, subsequent calls to either PROGB or PROGC will be
faster than the initial call because the programs are already activated. Activation
of a subprogram takes from several seconds to a minute or more, while calling
an activated program takes only a few milliseconds. Second, since neither
PROGB or PROGC are currently invoked, they could be called later in a differ-
ent order (e.g. PROGA calls PROGC which calls PROGB). As long as an active
subprogram is uninvoked, any other program in the task can call it. Third,
because each active subprogram preserves its private data across invocations,
you can use subprograms as storage areas, expanding the amount of memory
available to a task. You could, for example, use a subprogram to provide
access to a large array, as long as the entire array fit inside the subprogram’s

Chapter 7 How External Program Calls Work 113

64 K region. Keep these three observations in mind — they'll come in handy
later when you begin to decompose a problem for implementation as a sct of
modular programs (see Chapter 9, “Implementing Modular RPG Applications,”
for details on modular decomposition).

The Program Invocation Stack

Before leaving the world of program invocations, one more concept needs
investigation. When programs begin calling each other willy-nilly, the SSP
needs some mechanism to keep track of which programs called which other
programs and in what order. That mechanism is the program tnvocation stack
(Figure 7.1¢c). As an analogy, think of how a cafeteria’s spring-loaded stack of
plates works, and you have a good picture of the program invocation stack’s
hehavior. The main program is like a single plate on the spring-loaded stacker.
Calling a subprogram is like putting a second plate on the stack — it “pushes
down” the main-program’s plate and the subprogram plate becomes the new
top of the stack. When a subprogram returns to its caller, its plate comes off
the stack. All the plates in the stack, then, represent invoked programs, and
the top plate of the stack is the currently executing program. Understanding
the program invocation stack is useful during debugging, because the set of
currently invoked programs gives you useful information about how your
application arrived at its current state. It also helps you keep in mind a limita-
tion of EPCs: No program can call any currently invoked program. In the plate
analogy, no program can call a program whose plate is already on the stack.
Such calls are called recursive because they can result in the same program
being called over and over. While recursive calls are useful in some esoteric
situations, they aren’t allowed with §/36 or AS/400 EPCs.

Figure 7.1c
Program Invocation Stack

Prog B Prog B Prog B

Prog A Prog A Prog A

114 Deskiop Gulde to the S/36

Cestormance Tip

SSP Intelligently
manages YM to
minimize peging for
frequently calied
programs. When many
programs compete for
resl memory, SSP
keeps a “popularity
count” for each
program and pages
out programs with the
lowest frequency of
use. This keeps the
most-frequently called
programs in real
memory, reducing YM
poging (disk accesses)
and keeping response

that don’t interact with
the user, but which are
caliod many times
(perhaps in a loop) will
stay in memory,

lnwvocation time to a
minimum. This makes
using modules to

tasks as tsbls-lookup
and file VO practical.

Note also that each task has its own invocation stack — the set of invoked
and active programs is private to each task, unlike MRT-NEPS,

Techmical Hote

On the S/36, program transfers from real memory can take anywhere from 4 1o 76 milli-
seconds, depending on whose EPC implementation you use. (On the S/38, program trans-
fers from real memory take less than 2 milliseconds and are even faster on the AS/400.)
To put those transfer times in perspective, one disk access on the $/36 takes 35 millisec-
onds. Even though /36 EPCs happen relatively quickly, evaluate carefully those tasks you
defer to subprograms. Avoid repeated calls to programs that perform trivial tasks.

Coding EPCs: A Primer
With a good grounding in program invocation theory, you're ready to learn
about the parameter interface and EPC coding. RPG has five new opcodes
supporting EPC:

® CALL: calls a specified program

* PARM: specifies a parameter for CALL or PLIST

e PLIST: specifies the entry point of a called program

e RETRN: retumns to the calling program

= FREE: deactivates an active but suspended program

The two program fragments in Figure 7.2 demonstrate the use of
these opcodes and also help illustrate the basic steps of EPC coding. First, you
specify the name of the subprogram to be called (PROGB in the example)
with either a quoted literal or a field name. The named field, if specified, must
contain the subprogram’s name, left-justified, optionally followed by a period
and the library name. For example,

MOVEL*BLANKS PRGLIB 16
MOVEL'PROGB.MY'PRGLIB
MOVE 'LIB' PRGLIB

CALL PRGLIB

calls PROGB in library MYLIB (field PRGLIB contains ‘PROGB.MYLIB’). The
library name defaults to the job step's current library (the library at the time of
// LOAD) if you omit it. To further enhance programming flexibility, EPCs are
late binding, the called program doesn't have to exist until runtime. Late bind-
ing lets you determine which program to call on the fly — a powerful feature.

Chapter 7 How Extemal Program Calis Work 115

Figure 7.2
Program Fragments with EPC Opcodes

. ... 1 2 3 4 6 6
C* Program A (PROGA)
C SETOF 202122
C Z-ADDb IVALA 50
(o Z-ADD7 IVALB 50
C Z-ADDO OVALC 50
C CALL 'PROGB'
C PARM IVALA
C PARM IVALB
c PARM OVALC
C* ovalc now contains 12, and 20, 21, & 22 are still off
C* Note: FREE use is shown but its use is not recommended
C FREE 'PROGB'
C* Program B (PROGB)
C *ENTRY PLIST
C PARM IA
c PARM 1B
C PARM (1]
C IA ADD 1B (1]
c SETON 202122
c RETRN

Second, you list the names of variables to be passed to the subpro-
gram. These variables, and these variables alone, communicate data to the
subprogram. The subprogram may change the contents of these variables
upon its return. In the example, PROGA has three PARM statements — speci-
fying the variables IVALA, IVALB, and OVALC — to be passed as arguments
to PROGB (in a calling program, PARM variables are called arguments; in a
called program, they are called parameters, to distinguish between the two
sides of the program interface).

PROGB's C-specs begin with the PLIST opcode (which always uses
the keyword *ENTRY in factor 1) to specify the entry point of the program.
PROGB lists three parameter variables — IA, IB, and OC — on individual
PARM statements. An important rule of parameter interfacing is that each
parameter’s length must match the length of the corresponding argument vari-
ables in the caller, with the same number of argument and parameter vari-
ables. The parameter names in the subprogram need not match the argument
names passed by the calling program; the names are irrelevant as long as the
parameter count and lengths correspond. In fact, a CALL doesn’t require any
parameters as long as the subprogram doesn't expect any.

116 Deskiop Guide (o the S/36

Performance Tip

After a maln program
ends, subprograms
ond In the reverse
order of activation. So
it the maln program
and any of the
subprograms modified
the LDA or the UPSI
switches, subprogram
changes to alther
override changes
made by the main
program. if you don't
want the LDA or LPSI
swhches changed by a
subprogram, consider
using the FREE
opcode to explicitly
end subprograms
before the main
program ends.

Technical Note

The "ENTRY PLIST tine does not have 1o be the first C-spec. When called the first time, a
subprogram always starts execution at the first C-spec. Subsequent calls, however, then
start execution at the location of the *ENTRY PLIST. Locating the *ENTRY PLIST later in
the C-specs lets you bypass one-time initialization of subsequent calls.

The $/36's EPC mechanism passes arguments to parameters by refer-
ence — that is, you think of the variables as referencing the same physical
memory locations. Changes made to any parameter values in a subprogram
are also made to the comesponding variables in the calling program. PROGB
in the example doesn't change the value of variables 1A or IB, but if it did,
those changes would be reflected in the corresponding variables IVALA and
IVALB in program A.

In PROGB, the RETRN opcode causes an immediate return to the call-
ing program. The return statement is logical, not structural — it can occur any
number of times in a subprogram, not just at the physical end of the calc
specs. This simplifies the coding of exception handling. For example, afier
detecting an error inside a nested series of IF statements, you could simply set
a retun code and execute the RETRN operation, eliminating the need for a
GOTO out of the body of the IF structure.

Following the execution of the example program illustrates EPC cod-
ing in action. PROGA is calling PROGB to add two numbers together and
return the result. First, PROGA sets off indicators 20-22, and sets IVALA to 5
and IVALB to 7. Next, PROGA calls PROGB, which is activated and receives
the contents of PROGA's IVALA, IVALB and OVALC arguments in its corre-
sponding IA, IB and OC parameters. PROGB adds 1A to IB, storing the result
in OC, sets indicators 20-22 on, and retums to PROGA, When PROGA resumes
execution, its variable OVALC contains the value 12 and IVALA and IVALB are
unchanged (because PROGB didn’t change the values of IA or IB). Even
though PROGB set on its copy of indicators 20, 21, and 22, those indicators
are still off in PROGA because each program has its own set of indicators and
other private data. If PROGB were to be called again, its indicators and private
data would have the same values they held at the RETRN point.

In Figure 7.2, after calling PROGB and then resuming execution,
PROGA executes 2 FREE statement. This unilaterally ends PROGB, forcing it to
EOJ. The next time PROGB is called, a fresh copy will be activated and all pri-
vate data reset to initial values. Although FREE explicitly deactivates a subpro-
gram, all subprograms automatically get deactivated when the main program
ends, so individual FREEs aren’t necessary. You should only use FREE when

http:OtderofactivaHon.So

Chapter 7 How Extemal Program Calls Work 117

you need a fresh copy of a subprogram, keeping in mind the additional over-
head for re-activating the subprogram. Another way to end a subprogram is by
setting an indicator LR in the subprogram before RETRNing. This has the same
effect as FREE, and for the same reasons, should only be done when circum-
stances require a fresh copy of the subprogram. Remember, the only signifi-
cant resource-activated subprograms consume is VM (space in the TWA). They
place no execution load on the system. Going out of your way to send sub-
programs to EOJ usually results in reduced performance.

Technical Note

Although the example treated |A and IB as input parameters, and OC as an output param-
eter, EPC makes no distinction — all parameters are both input and output. When design-
ing modular applications, you should use some naming convention (e.g. ‘I’ for input, ‘O’ for
output) to indicate which variables are intended for input and output. Keep in mind, though,
that EPCs don't enforce your convention (see Chapler 9, “Implementing Modular RPG
Applications,” for naming-convention ideas).

EPCs and Disk Files

The code fragments in Figures 7.3a and 7.3b illustrate how to code EPCs with
disk files. The OCL that calls the initial program must include a // FILE state-
ment for each file used in a subprogram. In a large interactive application with
lots of EPCs, it's not unusual to have many (30 or 40 or even more) // FILE
statements between the // LOAD and // RUN for the main program. (Remem-
ber, in OCL you don't have the file limit imposed by RPG. You are, however,
still limited to 15 disk files in any one RPG program.)

Figures 7.3a and 7.3b also illustrate what happens when two subpro-
grams share a file (program C and program D use the same physical file). Just
before calling program D, program C positions its file pointer to the fifth
record in MYFILE. Upon return from program D, which positioned its file
pointer to MYFILE's record number 10, program C is still positioned at its pre-
vious file position. This example illustrates the fact that each program has its
own private copy of file buffers and file record positions.

This illustration brings up a subtle, yet possibly troublesome, effect of
two subprograms sharing a file. The OCL in Figure 7.3a specifies that both log-
ical copies of MYFILE be opened for modification by owner or other user (via
the SHRMM keyword). PROGC'’s read of record 5 locks the record; PROGD
subsequently deciding to read record 5 would result in a deadly embrace —
PROGD would wait forever for PROGC to release the record. This problem

Performance Tip

See Chapter 17,
“Hamessing the
Power of Assembler
Routines,” for a tool
that can reduce or
eliminate the need for
many J/ FILE
statements In an

EPC jobstep.

118 Deskiop Guide to the 5736

Flgure 7.3a
OCL for Program File Sharing
// LOAD PROGC

// FILE NAME-MYFILEC, LABEL-MYFILE,DISP-SHRMM
// FILE NAME-MYFILED,LABEL-MYFILE,DISP-SHRMM

// RUN
Figure 7.3b
RPG File Sharing Between Programs
e .. T . 2 3 ... 4 L 8
F* Program C (PROGC)
FMYFILEC IC 128R DISK
IMYFILEC NS
I 1 128 DIREC
c b CHAINMYFILEC
c CALL 'PROGD'

F* Program D (PRDGD)
FMYFILED IC 128R DISK
IMYFILED NS

1 1 128 DIREC
c *ENTRY PLIST

c 10 CHAINMYFILED

c RETRN

isn't directly related to the use of EPCs; it could happen just as easily in pro-
grams that don't use them. Be aware of potential record-deadlock situations in
your applications, and code defensively to avoid them. (For more information
about record locks, see Chapter 18, “Profiling and Advanced Debugging™).

Technical Note

It two or more programs in a task reference the same file, the FILE statements must have
unique NAMEs (bul identical LABELs), with DISP set to compatible share levels. With
third-party EPCs, the requirement for unique NAME parameters on the // FILE stalement is
handled by special statements in the RPG source program that equate the unique names
with RPG intemal names (which are probably the same for all programs). IBM's EPC isn't
50 slick: You must code unique file names on the RPG F-, -, O- and C-specs as well,
greatly complicating program maintenance (see Chapter 8, “A Comparison of EPC Vendor
Offerings,” for details on IBM's coding complications).

http:F1gure7.3b

Chapter 7 How External Program Calls Work 119

A Practical Example ,

A simple, real-world example drives home the value of EPCs in application
design. Consider a typical order-entry program — one that provides for cus-
tomer search and selection, inventory-item search and selection, order-line
entry and edit, picking-ticket and invoice printing, and all necessary file updat-
ing. Using traditional techniques, this application would have been coded as
one monolithic program, hard to maintain, difficult to comprehend, and
impossible to enhance without unpleasant side effects.

Figure 7.4 shows what a small portion of a EPC modular might look
like. PROGA is the top-level program, performing some basic services. When
another service is required, customer selection for example, a CALL is made to
PROGB, which actually performs the customer search. PROGB in turn calls
PROGC to perform a service (perhaps to check the customer’s credit limit).
Based on a value returned from the CALL to PROGC, PROGB might immedi-
ately return to PROGA (f the customer were over the credit limit, for exam-
ple). If PROG gets the go-ahead from PROGC, PROGB calls PROGD to per-
form services and immediately returns to PROGA to start the process over
again. Note that program B has two exit points. Subprograms must have only
one *ENTRY statement but can have many RETRN statements. However, the
RETRN statements in your subprograms should be well documented; program
exits buried in obscure places make maintenance more difficult.

The modular approach has both programming and performance
advantages. Coding, compiling, testing and documenting small program mod-
ules proceeds much faster during development than the same cycle for other
approaches. And after the application is in production, the inevitable changes
and enhancements tend to affect only one or two modules at a time, isolating
other modules from “enhancement rash” — inadvertent bugs introduced by
maintenance coding. The performance advantage comes from reduced disk
I/O: Once all the subprograms are activated, transfers between them are
instantaneous, with no need for program initiation and termination. Not only
does this eliminate unnecessary disk 1/O, it leaves more I/O time available for
performing application-related work.

Reaping the Benefits of EPCs

Isolating important parts of an application in subprograms gives you, and your
users, some terrific benefits. In the old days, whenever you needed a customer-
search program, you coded it (usually from scratch) in every program. Now,
by writing a generic, flexible customer-search program, you have a process
that goes about its private way of letting the user select a customer and then
returning the primary key of the customer selected to the calling program.
The calling program doesn’t know how the search was implemented, nor
does it care. It just needs the customer’s primary key to continue its work. As

Performance Tip

In a batch application,
calling a subprogram
to perform a trivial
task could bring
performance to its
knees. Consider a
batch main program
that reads 100,000
records for update,
calling a small
subprogram once for
each of 10 fields In
every record. Those
10 CALLs, multiplied
by 100,000 records,
would add more than
an hour to the
processing time In the
best circumstances (4
milliseconds per call).
It’'s probably better to
code subroutines
entirely within the
application if the
overhead of the CALL
greatly exceeds the
subprogram’s actual
working time. (This
might even be the
time to drag /COPY
out of the closet and
use It to externalize
the coding. Just let
RPG Intemalize
everything as one
load member.)

Chapter 8 A Comparison of EPC Offerings 123

Chapter 8

A Comparison of
EPC Vendor Offerings

External Program Calls (EPC) is one $/36 feature on which IBM played catch-
up with third-party vendors. Although IBM built EPC capabilities into the S/36
operating system from the start, only IBM’s own programmers had access to
them. Eventually, as mentioned in Chapter 7, several independent software
vendors cracked the secret and offered EPC — via the CALL and PARM
opcodes — to RPG programmers. IBM enhanced its RPG compiler years later
to also support CALL, PARM, and related RPG extensions — all as a chargeable
PRPQ. Finally, as this book went to press, IBM had announced that RPG users
would get CALL/PARM for free as part of the basic compiler license.

Now, as an RPG application programmer, you have a selection of
programming environments offering EPC features. Choosing which product is
best for you requires weighing the relative merits of each, with an eye to ease
of use, performance, and future compatibility. Given IBM’s late entry into the
field, you might expect its “free” product to have one up on the early competi-
tors; however, that's not the case. With IBM’s EPC, you literally get what you
pay for. Whether that will be adequate for your needs is a question only you
can answer. This chapter gives you the facts upon which to base that answer.

The Contest

In addition to IBM’s standard RPG product, two other RPG development tools
— by independents Amalgamated Software of North America (ASNA) and
BPS, Inc. — offer EPC features: 400RPG and RPG II%, respectively. Both of
these products also add other RPG/400 language features in addition to
CALL/PARM: externally described files, multiple-occurrence data structures,
dynamic file open/close, the *IN indicator array, indicators as fields,
ANDxx/ORxx operation codes, and several miscellaneous advanced RPG
operations. While these additional features might influence your purchase
decision, here we examine only the EPC implementations. Because EPCs are
so powerful and so important to reliable, maintainable, and portable applica-
tion construction, you'll want to consider several important EPC-related factors
before you look at other issues.

The primary factor to examine is each product’s fidelity to IBM’s
established RPG language standard, RPG/400. You may need to migrate your
applications to the AS/400 at some future date, at which point you’ll be glad
you considered AS/400 compatibility now. Even if you don’t move to the

124 Desktop Guide to the S/36

AS/400, RPG products for other computer platforms, such as the RS/6000 and
PC, use RPG/400 as a touchstone for language compatibility.

Secondary factors to examine are usability and performance. Each
product has some subtle (and some not-so-subtle) restrictions that may tumn
into coding barriers for your application programmers. And even if your pro-
grammers find a given EPC product usable, the resulting applications might
not perform well enough. The time required to invoke a program thus
becomes an issue, and each EPC product performs differently in this regard.

Because these evaluation factors — compatibility, usability, and per-
formance — come up at every tumn when developing modular applications,
we examine the factors in the same order an application programmer is likely
to consider them: design, coding, and testing.

Design and Coding Considerations

Putting together a modular application means decomposing the problem into
well-defined tasks that can be isolated into separate modules and defining
interfaces for each module. For the most part, all three products let you use all
RPG commands and capabilities in called programs. There are limitations, how-
ever. None of the EPC implementations permits any program in an EPC task to
have overlays — not an onerous constraint, as one reason for modularizing
programs is to reduce program size. IBM adds a further restriction: It limits
each module’s size to 60 K — 4 K less than the maximum region size of 64 K.
IBM uses the last 4 K to map onto the caller's memory for copying to and from
the caller’s arguments. You'll want to keep this limitation in mind — especially
when incorporating existing RPG programs into a modular application design.

File I/O presents another design issue. Most modular applications share
a common set of files, using common file layouts to improve maintainability. To
this end, IBM’'s RPG/400 language standard supports common file description
through externally described files — file descriptions stored outside program
source code and copied in automatically at compile time. Both 400RPG and
RPG II% provide for external file descriptions compatible with RPG/400. IBM’s
S/36 EPC supports only the antique /COPY statement, which isn't compatible
with RPG/400, presenting a serious application development problem.

The problem arises because S/36 SSP requires each program in a task
using a common file to reference that file by a unigue name at execution time
— the name is specified via the NAME keyword on a // FILE statement. But at
compile time you want these programs to reference the common file by the
same name, so that the compiler can locate and copy in the description for the
common file (Figure 8.1). RPG 1I% and 400RPG let you have different compile-
time and execution-time names for each file. You code the compile-time name
as always: on the RPG F-spec. You code the unique execution-time name for
that file on an extension spec for each file. Figure 8.2 illustrates this coding

Chapter 8 A Comparison of EPC Offerings 125

Figure 8.1

OCL for a Single File Used by Two Subprograms

// LOAD MAINPG Main Program

// FILE NAME-CUSMASTA, LABEL-CUSMASTP,DISP-SHR For PROGA
// FILE NAME-CUSMASTB, LABEL-CUSMASTP,DISP-SHR For PROGB
// RUN

method for two programs, PROGA and PROGB, that both reference the same
file, CUSMAST. Both programs have 'CUSMAST' coded on the F-specs, while
PROGA has 'CUSMASTA' coded as the file’s execution-time name, and PROGB
has 'CUSMASTB' coded. The compiler uses the identical compile-time name to
locate the CUSMAST file description and copy it into the program. SSP uses the
unique execution-time names to associate each program with its corresponding
// FILE statement. Both // FILE statements then reference the same physical file
on disk, CUSMASTP. To later migrate programs using this notation to the
AS/400, you simply delete the F-spec extension lines.

In contrast, IBM's EPC requires a unique F-spec file name for each file
used by any program or subprogram. Figure 8.3 shows the previous coding
example using IBM’s native RPG. PROGA must use a different internal name
for file CUSMAST than PROGB on the RPG F-spec, I-spec, C-spec, and O-spec.
This effectively precludes extemal file descriptions using /COPY, or using any
other method, for that matter. This approach also creates a maintenance night-
mare, as copying code from separate programs that use the same file requires
changing the file name used in the code. If you later decide to move to the
AS/400 or another platform, you'll have to change all these file names again to
take advantage of external file descriptions in the new environment.

If you plan to use EPCs only to connect existing programs that don’t
share a large number of files (and that you won’t be maintaining much in the
future), this limitation to IBM’'s EPC may not be an obstacle. But for imple-
menting new modular designs, or for converting existing applications to mod-
ular ones, you'll likely find yourself frequently cursing IBM for this oversight.

A design issue related to file /O is workstation I/O. Programs access
the workstation device through a workstation file, and the workstation file
identifies the name of a screen format member containing screen formats for
use by the program. SSP has a limit of 255 screen formats for a given job, due
to the way screen formats are opened and cached in memory. RPG 1% and
400RPG let you keep your screen formats in separate screen-format load mem-
bers, as long as the total number of formats is less than 255. Any program can
use screen formats used by any other program in a task, so the screen format
names must also be unique between programs. With six-character program

Performance Tip

In additlon to /COPY,
both non-IBM EPC
products also support
AS/400-style
externally described
files. These are both
easler to use and
more powerful than
/COPY. Use them!

126 Desklop Guide to the S/36

FCUSMAST UD
F
1/COPY CUSMAST

E
1/COPY CUSMAST
C *ENTRY

CUSMAST E

00O 00

C *ENTRY
[
C
c
c
c
c
c
c
OCUSMAST £
0
0
0
L PPN ORI | RS S 20....
H
FCUSMAST UD

Figure 8.2

RPG ll% and 400RPG Coding for Subprograms
PROGA and PROGB Referencing a Common File

DISK
K OCLNAM CUSMASTA

PLIST
REAOQ CUSMAST

RETRN
CHGREC

K DCLNAM CUSMASTE

PLIST
CHAINCUSMAST

RETRN
NEWREC

names and eight-character screen-format names, you can meet this require-
ment by simply appending the program name with a two-digit sequence num-
ber to generate unique screen-format names.

IBM’s EPC, however, permits only one screen-format member, shared
by all programs. This becomes a design burden when integrating modules
from application systems that might reside in separate libraries — the single
screen-format module must reside in only one of those libraries. You can still
keep separate screen-format source members, but you must compile them all

Chapter 8 A Comparison of EPC Offerings 127

Figure 8.3
IBM RPG Coding for Subprograms PROGA and
PROGB Referencing a Common File

1...0... 10....:... 20....:...30....:... 40....:... 50....:... 60....:... 70....:.. 80
H PROGA
FCUSMASTAUD 128R DISK
ICUSMASTA
1
1
1 .

[« *ENTRY PLIST

C

C

C .

C READ CUSMASTA
C .

C

C .

C RETRN
OCUSMASTAE CHGREC
0

0

0

1T...0... 0. 20....:... 30....:... 40....:... 50....:... 60....:... 70....:.. BO
H PROGB
FCUSMASTBUD 12BR DISK
ICUSMASTB
1
1
1 .

C ®ENTRY PLIST

C

C

C .

C 1 CHAINCUSMASTB
C .

C

C .

C RETRN
OCUSMASTBE NEWREC
0 .

0

0

into a single Joad member using the SSP FORMAT procedure.

One final design consideration affects module interfaces. All three
products let you pass a number of variables as parameters, but IBM’s product
restricts you to a maximum of 15 parameters. This may seem like plenty; but
when you're in the thick of modular design, running into this limitation forces

128 Desktop Guide to the S/36

you to complicate interfaces by passing data structures that contain multiple
parameters. Not only does this make interfaces less clean, it eliminates the
advantage of length-checking provided by EPC at execution time. Changing
the data structure in one program but not another can result in parameter data
overlapping in a called program — a very difficult problem to track down.

Again, depending on how far you plan to “buy into” EPCs, this limita-
tion may or may not be significant to you. Both RPG 11’ and 400RPG make
the point moot: They allow passing any number of parameters.

Run the Good Race

Once your programs are up and running, you must deal with performance
issues. One fact that can affect performance is the time required to make a
subprogram call. Although all three EPC products use the same underlying
EPC mechanisms, each has a different way of handling program activation
and parameter passing, which causes considerable variance in the time
required for a CALL.

The importance of this factor in your situation depends on how you
use EPCs. If you plan to call a given subprogram iteratively, the work it per-
forms should justify the overhead of making the call. Every call requires a min-
imum amount of time — perhaps no more than the equivalent of two or three
RPG divide operations — to locate the activated subprogram and establish
addressability to it. More time may be required to page in the subprogram
from disk if it happens to be paged out. When the subprogram returns, re-
establishing execution in the caller requires additional time. Consequently,
repeated calls 1o a subprogram that performs some trivial computation (adding
two numbers, for example) makes no sense. Subprograms used in this manner
become a processor bottleneck unless the repetitions are few.

However, a module doesn't have to be complicated to be a good sub-
program. It is eminently practical to call a subprogram that accumulates statis-
tics in a 50 K array — thereby keeping data in high-speed real storage — rather
than storing the statistics in a disk file for use by a monolithic program that
must fit into a 64 K region. Another example is an alphabetic search function,
which several modules in an application might require. By implementing the
function once as a called module, you gain both the time and storage
economies of activating the module only once per user, and simplified applica-
tion maintenance. Generally, the decision about which functions to place in a
subprogram should be dictated first by design and then by performance. Merg-
ing modules that are the result of too-detailed decomposition is usually easier
than trying to continue decomposing the design of a system already in produc-
tion. But if your application design tends to favor encapsulating low-workload
functions (such as table lookup) that are frequently invoked, CALL overhead
may become a factor. One additional rule of thumb: For subprograms performing

Chapter 8 A Comparison of EPC Offerings 129

Figure 8.4
Performance Test of 10,000 CALLS Passing 128 Bytes of Parameters

Elapsed Time Time per Call

Vendor (Seconds) (Milliseconds)
IBM 960.0 95.0
ASNA 190.0 19.0
BPS 44.0 4.4

workstation I/O, CALL overhead is always inconsequential. Thus, dividing large
programs along workstation I/O boundaries is a good way to modularize an
existing program without introducing performance problems.

All three products use late binding when activating a program for the
first time. With late binding, the name of the program to be called is deter-
mined at execution time, rather than at compile time. Because late binding lets
you generate the called program name on the spot, you don’t have to recom-
pile calling programs after making changes to a called program. Thus, the pro-
cess of activating a program for the first time includes locating the program in
a library, loading it, initializing variables, and opening files. Each product
accomplishes this using IBM-supplied SSP library services; so it isn't surprising
that the time for program activation for all products is about the same: approx-
imately 100 milliseconds (one tenth of a second).

Once a program is activated, though, subsequent invocations are
much faster. How much faster varies with each product. Figure 8.4 shows the
elapsed time for each product making 10,000 calls to a do-nothing subpro-
gram, passing 128 bytes of parameter data (the tests were performed on a S/36
model D). The first call, which activated the subprogram, is not included in
the 10,000 count. IBM is the slowest contender, taking 950 seconds. This
works out to 95 milliseconds per CALL/RETRN sequence — a little more time
than that required for two disk operations. The similarity to disk I/O times isn’t
accidental: For every CALL/RETRN, IBM’s EPC performs disk /O related to the
work of passing parameters and changing addressability to the subprogram.

ASNA's 400RPG comes in second place, at 190 seconds, or 19 milli-
seconds per CALL. ASNA also performs disk I/O for every CALL. However,
because only a single disk read is being called, the disk arm tends to remain
stationary in this test; only disk I/O rotational delay and transfer time are con-
sumed. In real life, a frequently called subprogram might move the disk arm,
however, which would add seek time (12 to 25 milliseconds) to the overhead
for each CALL.

Fastest is RPG II’%, which ran the race in only 44 seconds, yielding a
per-CALL time of just 4.4 milliseconds. This is less than the time it takes RPG to

130 Desktop Guide to the S/36

perform a couple of DIV operations! RPG II}4 owes its speed to the use of a re-
entrant parameter-passing transient, which once loaded into memory never
needs to be reloaded. Thus, RPG II)4 performs no disk /O for most CALLs, so
disk arm placement (and the effect of subprogram I/O) has no effect on the
overhead for calling to and returning from the subprogram. However, the
amount of data transferred now has some effect on CALL time. Where IBM and
ASNA have uniform times for parameter lengths ranging from 128 to 1024 bytes,
BPS shows increased times for larger parameters. At 256 bytes, RPG 1% jumps to
7 milliseconds per call, but then only increases to 9 milliseconds for parameter
lengths up to 1024 bytes.

Testing and Production Considerations

Once you've designed and coded your modular programs, you need to test
them, and after ensuring they work properly, put them into production. Test-
ing usually proceeds in two phases: unit and integration. In unit testing you
exercise individual modules in isolation, using “scaffolding” code to provide
the minimum amount of ancillary structure necessary to provide input to, and
collect output from, a single module. Integration testing verifies correct inter-
action between modules in as close to “live” conditions as possible.

The AS/400 offers several features that help you with unit and integra-
tion tests. One is the ability to run subprograms as standalone programs, which
simplifies unit testing. When testing a module as a standalone program, you
supply parameter values via hardcoded values or temporary input files and col-
lect output parameters on printed listings or in temporary output files. The abil-
ity to test modules as standalone programs eliminates the need to build one-
time “main” programs that simply call the module to be tested, saving time
during unit testing. Both RPG II’4 and 400RPG let you run called modules as
standalone programs using // LOAD. IBM’s EPC doesn't. In fact, subprograms
must be coded with an ‘S’ in position 55 of the RPG H-spec to let the compiler
know that the *ENTRY PLIST and RETRN operations are legal. The compiler
then flags the program as non-executable (i.e., you can’t use // LOAD to
invoke the program). This limitation of IBM's EPC implementation rules out
standalone unit testing — you must instead write one-time programs whose
sole purpose is calling the subprogram under test.

Another AS/400 feature geared to testing modular programs is the
ltbrary list facility. A library list is a list of libraries to be searched to locate
called programs. When a CALL doesn't specify a library name (or specifies
*LIBL), the system looks in each library in the library list for the target program
until it finds the program. Each running job has its own private library list. The
library list facility simplifies testing modules under development alongside pro-
duction modules: You simply insert the name of the library containing your test
modules into the library list ahead of the production library names (Figure 8.5).

Chapter 8 A Comparison of EPC Offerings 131

Figure 8.5
Using a Library List to Exercise Test Modules
in a Production Environment

Normal Library List Production Modules

ARLIB ARPGO1

ARPGO2
ORDLIB ARPGO3
TRLIB

ORDPG1
BPLIB ORDPG2
ORDPG3

BPPG1
BPPG2
BPPG3

Library List with
Test Library Inserted Production Modules

ARLIB ARPGO1
ARPGO2

TESTLIB ———-l ARPGO3 Test Modules
ORDLIB ORDPG2

TRLIB ORDPG1 TRPG1

BPLIB ORDPG2 BPPG2 -
ORDPG3 (these override shaded modules)

BPPG1
BPPG2
BPPG3

The test library can contain procedures and programs that refer to test files,
while the production library contains procedures and programs operating on
production files. (On the AS/400, files, as well as programs, are contained in
libraries, extending the value of library lists even further). ASNA’s 400RPG is the
only EPC product that supports library lists. While it only supports this feature
for programs, and not for files, it still makes a valuable testing tool. Library lists
are useful in a production environment, too, as they let you use modules from
many different libraries within the same task.

132 Desktop Guide to the 5/36

The Gravy

As mentioned earlier, IBM’s RPG compiler offers CALL/PARM as its only
enhancement, completely missing such modular programming aids as exter-
nally described files and library lists. While you must pay for third-party EPC
products, you get a host of “gravy” features in the bargain. Beyond extras
mentioned at the beginning of this chapter, ASNA supports data areas, AS/400-
style DDS statements for external file descriptions, RPG/400 V2R1 enhance-
ments, and a facility for invoking S/36 procedures from inside an RPG pro-
gram. BPS also supports DDS, but lacks the other ASNA extras. It has a few
extras of its own, however: a macro facility (portable to the AS/400) that lets
you create your own RPG macro operations and an integrated symbolic
debugger. ASNA'’s product is significantly more expensive than BPS's, though,
so you'll have to weigh the value of its unique features carefully.

Wrap Up
One final issue needs examining if you plan to make your plug-and-play mod-
ules available for others to use. While all the EPC products are compatible at
the source-code level (due to their common RPG/400 heritage), none of them
— including IBM's — is compatible with any other at the object-code level.
Because of differences in parameter-passing techniques, you can't make, say,
an IBM EPC program call an ASNA 400RPG program. For in-house program-
mers with access to their source code, this isn't likely to matter. But for inde-
pendent software vendors wanting to incorporate EPC interfaces into their
products for the benefit of their customers, IBM’s third option simply compli-
cates an already complicated situation. Such vendors must either provide
source code for their products so that customers can recompile the programs
using the EPC environment of their choice, or they must provide separate
compiled versions of their products for each different EPC environment. Both
independent vendors let you freely distribute their runtime modules with your
product, which ensures that your customers can use your EPC-oriented prod-
uct even if they are not ASNA or BPS customers. With IBM, you must ensure
that your customers have installed release 6.0 of SSP (or PTF 3600 for SSP
release 5.1), which involves you in customer system software maintenance.
Whatever your needs, you now have enough information to make an
educated choice. IBM’s belated entry into the S/36 EPC arena gives you basic
EPC functions, but nothing else. You can use IBM’s EPC as an experimental
platform for investigating EPC use in your own applications. However, when
you start running into IBM's EPC limitations, you may want to consider either
ASNA'’s or BPS's offering; each provides much more function than IBM’s while
remaining compatible with the AS/400.

Chapter 8 A Comparison of EPC Offerings 133

Product Information

Amalgamated Software of North America (ASNA)
P.O. Box 1668

42011 Big Bear Boulevard

Big Bear Lake, CA 92315

(800) 321-2762 or (714) 866-9000

400 RPG — $2,250 (or optional $200/month rental)

BPS Information Services, Inc.
P.O. Box 9, Department N3
Marion, I1A 52302

(319) 377-7599

RPG 116 — $950

IBM
(contact your local IBM marketing representative)
SSP Release 6.1

Chapter 9 Implementing Modular RPG Applications 135

Chapter 9

Implementing Modular
RPG Applications

Chapter 7 described the advantages and mechanics of External Program Calls
(EPCs), and Chapter 8 presented the relative merits of various S/36 EPC prod-
ucts; but you've not yet seen how to build a modular application from the
ground up. The term “modular” in this context means a single application pro-
gram broken down, or “decomposed,” into small routines. In contrast with the
most common way $/36 users first take advantage of EPCs — to connect exist-
ing programs for improved response time, the goal of modular programming
is to produce programs that are easy to understand, debug and modify. One
immediate benefit of modular design, manageability, means you can shorten
development time by making each module a separate work assignment so that
parallel coding and testing can occur. Another immediate benefit, comprehen-
sibility, implies that because you can study the application one module at a
time, the whole application will be better understood and better designed. The
long-term benefit, flexibility, means you can change a module drastically with-
out having to change other modules.

This chapter describes the modular design process, first explaining a
few terms and concepts, then illustrating an example application design.

The Mysterious Module

The ideal software module should behave like a black box. That is, it should
accept input, process it, and produce output without requiring other modules
to know how the work was accomplished. Communication between modules
should take place through well-defined interfaces, while variables and algo-
rithms used by those modules remain hidden. The idea of concealing the
implementation of a module — that is, how the module works internally —
from the programs that call it is called information biding.

Why hide such details? Because a program that has access to the inter-
nals of another module can become dependent on those internals, complicat-
ing the process of changing the implementation at some future date. Informa-
tion hiding forces programs to interact at only one point: the module interface.
Traditional RPG subroutines, on the other hand, often interact at many points
— through variables, indicators, even file I/O. Coupling is a term used to
describe the degree to which modules interact with one another. Tight cou-
pling means the modules interact at many points; loose coupling means they
interact at only a few (preferably one) points. Tight coupling makes program

136 Desktop Guide to the S/36

debugging and maintenance harder because it increases the likelihood that a
change in one module will affect another module adversly. Loose coupling has
just the opposite effect: It tends to isolate the effect of changes to just the mod-
ule changed.

In RPG, the only way to implement loosely coupled modules is to use
separately compiled programs that interface with each other using EPCs. A main
program calls external subprograms to carry out the work of the application,
using only the CALL/PARM interface to communicate with the subprograms.

From the RPG programmer’s viewpoint, external subprograms serve
much the same function as internal subroutines: Both help you subdivide
application code into logically distinct, reusable units. But external subpro-
grams differ from internal subroutines in important respects, including the way
they are invoked, the scope they give to named variables, the way they com-
municate between modules, and the time at which the subprogram name is
bound to an address in memory. Here is a quick review of the differences
between external subprograms and internal subroutines.

Activation and Invocation. The first time an extemnal subprogram is
called, it is activated. Virtual storage is assigned, the program is loaded, vari-
ables are initialized, and files are opened. When the subprogram returmns to its
caller, it remains activated in virtual storage; all variables remain intact until the
next call, Each call, including the first, is referred to as an invocation. An invo-
cation ends when control returns to the caller, but the activation of the called
program persists. Internal subroutines are similar; They're activated (when the
main program starts up) and the contents of variables remain intact across
invocations. But the resemblance ends there.

External Subprogram Deactivation. At external subprogram deactiva-
tion, the subprogram’s files are closed and its virtual storage is released. Con-
sequently, if the deactivated subprogram is called again, it goes through the
complete activation process; variables are reinitialized and files are reopened
on the subsequent call. Internal subroutines don’t have the concept of deacti-
vation— except in the sense that they get “deactivated” when the main pro-
gram ends. This means that there is no way to get an internal subroutine back
to a “fresh” state without manually reinitializing its variables.

Local Names. In RPG, all tags, fields, indicators and file-access paths
have names. A name can be either local or global in scope. A name is consid-
ered local if it is known only to the program or subroutine in which it is
defined; it is considered global if it is known elsewhere. All names in an internal
subroutine are global with respect to the program; thus, a variable defined in
one subroutine is thereby defined for all subroutines and the main program. In
contrast, the names in an external subprogram are local with respect to the pro-
gram, which means they are inaccessible to other subprograms in the same task
or job step. When an external subprogram first is called, the fields, indicators,

Chapter9 Implementing Modular RPG Applications 137

and file access paths all have initial values; on subsequent calls these items
retain their values from the prior call, regardless of whether or not the internal
variable names are used in other subprograms.

Parameter Passing. Intemnal subroutines communicate with the main
program and other subroutines through global variables. However, because
external subprogram variables are local rather than global, subprograms use
parameter passing for intermodule communication. When an RPG program
calls a subprogram, it optionally passes data to the called program through the
PARM variables specified on the call. You can see that internal subroutines end
up, by definition, having tight coupling with the main program. External sub-
programs have loose coupling because variable names have local scope, and
the only interaction between modules is through the CALL/PARM interface.

Late Binding. When coding an EXSR statement to invoke an internal
subroutine, you must know the name of the subroutine, and the subroutine
must exist when you compile the main program. With external subprograms,
the calling program need not know the name of the subprogram until just
before making the call. This late binding of the program name to the invoca-
tion is much more flexible than early binding, where the subroutine name
must be known at compile time. Because late binding allows you to generate
the called program name on the spot, it is easy to implement table-driven
designs, or to call user-selected programs. For example, a menu program
might use a table relating menu options to program names. This table could
be conveniently stored outside the program, so that changes in the table don't
require recompilation of the program. Late binding also lets you compile and
test an application in smaller increments, and later, to change subprograms
without changing the main program.

Activation, deactivation, local names, parameter passing, and late
binding — these are the features that set external subprograms apart from
internal subroutines, making information hiding and loose coupling possible
in RPG. With these two capabilities in hand, you're ready to begin the modu-
lar design process called functional decomposition.

Breaking it Down

Traditional RPG program design involves breaking down a problem into logi-
cal programming steps, using a main program and a set of internal subroutines
to carry out these steps. This approach uses procedural design criteria (i.e., a
flow chart) to make each major step into a subroutine. However, following a
flow chart to break down, or decompose, a problem results in a procedural
decomposition, with each module dependent on the previous module. Tight
coupling results because internal subroutines have only global variables. Mod-
ular programming uses functional decomposition, in which you design mod-
ules to perform specific functions rather than steps in a procedure.

138 Deskiop Guide to the S/36

As a simple example, consider a program that reads records from a
file and prints a report. A procedural decomposition would use one subrou-
tine to read a data record, another to perform computations, a third to print
header lines, a fourth to print detail lines, and a fifth to print total lines. The
main program would call each subroutine in turn, in a loop, to produce the
report. A functional decomposition would use a module to read the file,
another to perform computations, and a third to print header, total, and detail
lines. The main program would call the print module, which would call the
read and compute modules as required to produce the report.

With the procedural design, changing the input data record requnres
changing the main program and all the subroutines, because each has access
to all the data. The functional design, however, requires changing only the
read module — the parameter interface to this module isolates other modules
from the input file changes.

This gives you a taste of the functional design process. Following the
steps for completely decomposing a real-world problem will give you the
information you need to do your own functional design.

Defining the Problem

Appointment scheduling for medical clinic patients is a problem well-suited to
modularization using external program calls. In this small application, a recep-
tionist collects information from a patient, Mary Jones, to schedule a future
clinic appointment. Before making an appointment, the receptionist needs
seven pieces of information: the patient’s name and identification number; the
reason for and duration of the appointment; the doctor Mary will see; and the
date and the time of the appointment.

The receptionist does not have this information at hand, but by inter-
acting with Mary, she can obtain the necessary data. The receptionist can get
the patient’s name directly from the patient, but because Mary probably
doesn’'t know her identification number, a search by name is necessary to
retrieve the patient ID number. Also, Mary might want to see a particular doc-
tor or might be willing to see any doctor who deals with the problem at hand,
so a search by doctor or appointment reason is necessary. Finally, the recep-
tionist must select the date and time of the appointment by considering both
Mary's and the doctor’s schedules.

To approach these data-collection problems, you first should decom-
pose the program so that individual modules (e.g., the search by name) can
be reimplemented in the future without affecting other modules. You also
should create simple interfaces between modules, revealing as little as possible
about the inner workings of the module. Finally, you should hide at least one
key design decision in each module to make your application more flexible.
You can decide which design decisions to hide in a module by determining

Chapter9 Implementing Modular RPG Applications 139

Figure 9.1
Functional Decomposition of Appointment Scheduling Application
Schedule a new
appointment
|
ID#
Reason
Duration
ID# Doctor Doctor
* * Reason Reason + Date Date + *
D# ID# Duration Duration Time Time Appt. #
a?ieetnt Select a reason Select a doctor, Record/Delete an
P D and duration date, and time appointment
ID# Doctor
* + * Reason + * + Date
Name Name ID# Duration (Limits) ~ (Limits) Time
Get Add Get scheduling Find the next slot
patient name patient limits for any Dr.

+ * (Limits) Date

Name 1D# or null Doctor Time
Find the next slot

Get ID for name for a single Dr.

which decisions are likely to change. Then you will be able to modify those
modules when necessary, without affecting the behavior of the modules. For
example, you might decide to hide the implementation of “finding a patient’s
name” in its own module and use only parameters to communicate with other
modules. Then if you change the method of finding a patient’s name (e.g., to
improve the performance of the application), you can freely change that
implementation without adversely affecting other modules in the system.

Implementing the Modules

Figure 9. 1 shows how to functionally decompose the appointment scheduling
problem into 11 externally called modules. Each box represents a module.
Above each box is a list of data items that specify input to and output from
each module. The top box represents the controlling module of the function

140 Desktop Guide to the S/36

being decomposed — scheduling a new appointment. The “Schedule a new
appointment” module is the “main” RPG program. It has input parameters that
can supply any known information (e.g., doctor’s name). The module takes
advantage of any information supplied by these parameters; when the infor-
mation is incomplete, the module calls one or more external modules to com-
plete the information.

When the main program calls the “Get patient ID” module, it passes
no parameters /o this module and receives only the patient ID parameter as
output from the module. The details of how the module accomplishes its task
are hidden from the caller. In this case, “Get patient ID” has been decom-
posed further into three subordinate modules: “Get patient name,” “Get ID for
name,” and “Add patient.” Each of these subordinate modules hides a design
decision that might change in the future.

The “Get patient name” module prompts the receptionist to enter the
patient’s name and returns the name in a parameter to be passed to other
modules. The method of prompting (.e., terminal or workstation I/O) is the
design decision hidden here.

The “Get ID for name” module accepts a patient name in an input
parameter, and returns the patient ID (or null if the system does not recognize
the patient) in an output parameter. This module might handle the problem of
resolving duplicate names by presenting the receptionist with a list of similar
names from which to choose. For example, the receptionist might input “jon”
instead of “Jones” and get in return the list of names beginning with the letters
“Jon” with their corresponding addresses. Thus, the receptionist could check
for correct spelling and compare addresses in the case of duplicate patient
names. The algorithm used to select similar names could change, so this mod-
ule hides the algorithm’s implementation.

When the “Get ID for name” module fails to identify the patient G.e.,
if the patient has never been to the clinic), it returns a value of “null” to the
caller. When the “Get patient ID” module receives a “null” from “Get ID for
name,” it calls the “Add patient” module to perform the new patient registra-
tion process: Assign an ID, record patient history, and return the new ID to
the module’s caller.

Once the “Get patient ID” module returns an ID to the main module,
the main module calls the “Select a reason and duration” module to perform
the next function. This new module has two output parameters: a phrase
describing the patient’s problem and the approximate time required to treat
the problem. This module hides the method used to generate these parame-
ters from the “Schedule a new appointment” module. The receptionist might
ask Mary for a reason or might inspect Mary’s history to determine some likely
reasons for her visit. The receptionist could display the history along with a list
of default reason selections. Once the receptionist knows the reason for the

Chapter 9 implementing Modular RPG Applications 141

visit, she might consult a table of ailment treatment times to determine the
appointment duration.

The main module next calls the routine to “Select a doctor, date, and
time.” This module requires a few more decisions. It accepts the reason for the
appointment and the appointment duration as input parameters. The recep-
tionist must find an empty time slot large enough to accommodate the
required treatment time for a doctor qualified to administer the treatment. To
complicate things, Mary might have her own scheduling limitations, such as
“only after three o’clock” or “before next Tuesday.” She might need to see a
particular doctor or might accept any doctor able to provide treatment. The
“Select a doctor, date, and time” module calls the “Get scheduling limits” mod-
ule to determine which of these limitations apply for the given patient. The
“Get scheduling limits” module receives three input parameters — the patient
ID, appointment reason, and duration — and returns one output parameter
that contains the limits.

The “Select a doctor, date, and time” module then calls the “Find the
next slot for any doctor” module, which accepts scheduling limits as input
parameters and calls the subordinate module “Find the next slot for a single
doctor” iteratively until the subordinate module locates a slot that satisfies
those limiting parameters. All these details are hidden from the main module;
it is satisfied to get a doctor, date, and time by any means.

Finally, the “Schedule a new appointment” module calls the “Record/
Delete an appointment” to record the appointment. This last module receives
as input parameters the entire set of collected data items: identification num-
ber, appointment reason and duration, doctor, date, and time. The module
records these items as a record in the appointment file, an entity known only
to this module. Then the module assigns an appointment number associated
with this record and passes the appointment number parameter back to the
calling module. The “Record/Delete an appointment” module hides the
method of storing an appointment from the “Schedule a new appointment”
module so that any future changes to appointment record storage will affect
only the “Record/Delete an appointment” module.

Because of this modular design, you can immediately reap the bene-
fits of modularization by external program calls. You gain comprehensibility
because you can understand the entire application by studying the individual
modules. In fact, at each level in the design, you do not need the details of
lower levels for overall comprehension. All of these modules are manageable
because their hidden design decisions and passed parameters make them self-
contained, with well-defined interfaces, resulting in loose coupling so you eas-
ily could assign each module to a separate programmer for implementation.
Loose coupling between modules increases flexibility, making the application
easier to modify; the modules are not dependent on each other and are not

142 Desktop Guide fo the 5/36

Figure 9.2
Modules Required to Add “Reschedule an Appointment” Function
Reschedule an
appointment
|
D# ID#
Reason Reason
Duration Duration
Doctor Doctor
* + Date + Date *
Name Appt. # Appt. # Time Appt. # Time Appt. #
Find an appt. by Gel appointment Record/Delete an Schedule a new
patient name attributes appointment appointment

tied to each other by necessity. When we propose some changes and estimate
the effort needed to implement the changes, you can see the actual flexibility
of the design.

Change Is No Problem

A likely change to any system is the addition of a new function to solve some
new problem. In a real clinic situation, patients do not run their lives on fixed
timetables, so they often want to change previously scheduled appointments.
Thus, when Mary Jones calls to change her appointment, the application
needs a new function to “Reschedule an appointment.” Figure 9.2 shows how
to functionally decompose this particular problem into modules. The top box
in the diagram represents the controlling module that needs to be created for
this new function.

Any of the parameters used to make the original appointment (e.g., rea-
son, duration, doctor, date, or time) could change, so the receptionist must
retrieve information about the old appointment. This requires knowing the
appointment number of the old appointment — information possibly not at the
patient’s fingertips. So a new module, “Find an appointment by patient name,” is
created to retrieve the appointment number parameter. The controlling module
passes the patient name to the “Find an appointment by patient name” module
and receives in return the old appointment number. (Note that the “Find an
appointment by patient name” module may use modules found in Figure 9.1 —
e.g., the “Get ID for patient name” module — or other modules.)

The “Get appointment attributes” module also must be created. This

Chapter 9 Implementing Modular RPG Applications 143

module receives the appointment number as input and retrieves appointment
parameters needed for rescheduling: ID, reason, duration, doctor, date, and time.

Once all the attribute information has been retrieved, there are two
possible ways to reschedule an appointment. You could change the attributes
of the existing appointment to coincide with the new appointment, or you
could delete the old appointment and retain the original parameters as defaults.
Changing the existing appointment is a complex solution because changing
appointment attributes may change the “limits” (e.g., limits of lab-related
appointments and patient’s and doctor’s schedules) of the appointment. In the
decomposition of the original problem, recording an appointment and deleting
an appointment were different procedures within the same module (i.e., the
“Record/Delete an appointment” module). Thus, this module can be used to
delete the old appointment and add the new appointment, eliminating the
need to create a more complicated module to change an appointment. The
“Reschedule an appointment” module calls the “Record/Delete an appoint-
ment” module, which at this point uses the appointment number as an input
parameter and removes the old appointment from storage. Note that the
“Record/Delete an appointment” module was used in the original decomposi-
tion at a level below the controlling “Schedule an appointment” module. In this
modification, it is used on the same level as the “Schedule an appointment”
module, reinforcing the flexibility of modular programming,

For the final step in the appointment rescheduling process, the control-
ling module calls the existing “Schedule a new appointment” module. When
the module is used to reschedule an appointment, it receives as input parame-
ters the original appointment attributes and returns as output parameters both
the changed and unchanged attributes. Usually only one or two attributes
change when rescheduling an appointment, so the receptionist can avoid re-
entering unchanged data because the module is passed the original attributes.

Adding this rescheduling function requires writing one new main con-
trolling module and three new subordinate modules. The “Schedule a new
appointment module” remains unchanged except to accept the old appoint-
ment attributes as input. This enhancement has very little impact on the rest of
the system because of the clean, decoupled modularization of the original
design. If this modular design were based on procedural criteria rather than
functional information-hiding criteria, many more lines of code would require
changing and testing.

The rescheduling change also results in new modules at a higher level
in the modularization hierarchy. What happens when you change a low-level
module? When the modules are loosely coupled as they are in this application,
very little happens. In the case of the fictional clinic, suppose you discover
that some medical procedures can be performed only at certain times of the
day. For example, suppose laboratory specimens are picked up at noon, so

144 Desktop Guide to the S/36

lab tests must be scheduled for the morning. You should change the applica-
tion in the “Get scheduling limits” module so you can apply scheduling restric-
tions to appointments that generate lab specimens. You also must change the
module’s internal logic to examine the reason for the appointment and, if the
reason is lab-related, to restrict time selection to mornings only.

The method and data structures used to implement this change to the
“Get scheduling limits” module have no maintenance impact on the rest of the
application, because reason and duration will still be passed to the module
and it still will pass back limits. Even the new modules for the rescheduling
enhancement take advantage of this functional change without the extra effort
of modifying other modules. Again, if you applied this change to a traditional
application designed with modules decomposed from flow charts, you could
expect changes in many more modules.

Clearly, you need to properly decompose a problem to accrue the
benefits of modularization. You cannot build modular programs when you use
tight coupling and do not hide design decisions. But if you do hide one key
design decision in each module, you make it easier to separate functions,
avoid the trap of decomposing according to traditional “processing steps,” and
consequently gain the benefits of modularization. External program calls pro-
vide a good path to implementing modular designs when you use well-
defined, stable interfaces, loose coupling, and information hiding.

Living With
Disk Data Management

“I can only assume that a ‘Do Not File’ document is filed in a ‘Do Not File’ file.”
—Senator Frank Church
Senate Intelligence Subcommittee Hearing
1975

ou use it. You fight it. You curse its lack of sophistication. S/36 Disk

Data Management (DDM) is perhaps the worst bane of every applica-

tion programmer. Yes, it’s easy to get DDM to do what you want; the

problem is getting DDM to do what you want quickly! DDM seems to
have a whim of steel — sometimes fast, sometimes slow, but never
either in any predictable fashion.

This section is a practical hands-on guide to making DDM perform
well. Chapter 10 explains the much maligned and misunderstood disk block-
ing feature of DDM, giving you definitive answers about why, where, when,
and how to use DBLOCK and IBLOCK. Chapter 11 explains a number of traps
lurking in DDM for the unwary programmer, and workarounds for each.
Chapter 12 presents a collection of tips and techniques that make DDM faster
in everyday operations.

Many unique utilities make their debut in this section; each utility also
is provided on the disk accompanying this book. A few of these are refine-
ments of previously published tools, but most are available here for the first
time. All will make the job of programming and administering your S/36 instal-
lation easier and more productive.

=
=
i~
S
@
o

Chapter 10 Using DBLOCK and IBLOCK Effectively 147

Chapter 10

Using DBLOCK
and IBLOCK Effectively

As we've mentioned often in this book, disk I/O is the largest single factor
affecting S/36 performance. Generally, the best and easiest way to improve
program response times is to reduce disk I/O. And one way to reduce disk
I/O from within your programs is to use record and index blocking effectively.
You must exercise care, however: As easy as it is to use blocking to improve
application performance, it's just as easy to use blocking to ruin application
performance. In this chapter, we'll look closely at record and index blocking,
how they work, when you should and shouldn’t use them, and how they
relate to each other.

Blocking Data Records

Record blocking does for disk records what an egg crate does for eggs. With-
out an egg crate, you can grab only one egg at time from your refrigerator.
However, if your eggs are stored in egg crates, you can grab 6, 12 or even 24
eggs at once — depending on the size of the egg crate. Think of record block-
ing as an “egg crate” for data records. With record blocking, the $/36 can
move more than one record at a time between your program and disk, there-
by reducing disk access and improving program performance.

More technically, record blocking is the technique of buffering multi-
ple records in memory for quick access by your programs. Each data file used
by a S/36 application has a data buffer associated with it. (Indexed files also
have an #ndex buffer, which is discussed later in this chapter.) When your
application requests a record, Disk Data Management (DDM) first puts the
record in this data buffer and then moves it from the buffer to your applica-
tion’s data fields. Your program can read only one record at a time, but the
system — transparently to your program — can put more than one record in
the data buffer at a time. With multiple-record buffering, or record blocking,
any record in the buffer is available to your application without performing
any disk I/O.

Figure 10.1 shows a 256-byte data buffer, containing only one record,
allocated by default for a file with a 256-byte record length. When PROGA
reads the first record in FILEA, the buffer will contain only that first record.
Each subsequent read will require an additional physical disk 1I/O operation —
DDM will move records from FILEA to PROGA through the buffer one record

148 Deskiop Guide to the S/36

Figure 10.1
Application Program with Unblocked Data Buffer

FILEA
<«—— 256 BYTES ——»

Z
ONE-RECORD DATA BUFFER PROGA

Figure 10.2
Application Program with 100-Record Block Data Buffer

FILEA

—— 256 BYTES ——>»

1
2

e A A A 1| PROGA

98
99
100

HUNDRED-RECORD DATA BUFFER

at a time. Figure 10.2 shows the data buffer allocated at 100 records. With this
large buffer, when PROGA reads the first record, DDM also puts the next 99
records in the buffer. No disk I/O is required as PROGA reads the next 99
records. Only when PROGA requests a record not in the buffer — record 101
in this example — will the buffer be refreshed with the next 100 records.

Chapter 10 Using DBLOCK and IBLOCK Effectively 149

Figure 10.3
A Minimum Disk Data Buffer for a File with 64-Byte Records

FILEA
«— 256 BYTES ——»

> #33 | #34 | #35 | #36
DATA BUFFER WITH FOUR

64-BYTE RECORDS

PROGA

Filling this 100-record data buffer will certainly take longer than filling
a one-record data buffer; but remember, at its slowest, the S/36 can transfer
1.2 MB of data per second from disk to main storage. To fill Figure 10.2’s 100-
record buffer using the slowest S/36 drive would take barely a second to
transfer the 100 records); to read 100 records singly from disk would take at
least 3.5 seconds! In this case, record blocking offers a five-to-one perfor-
mance improvement! The example just presented showed blocking for a
sequentially accessed file; other access methods may or may not fare well with
record blocking, as you will see later in the chapter.

Figures 10.1 and 10.2 imply that the default data buffer for an
unblocked file is one record. That is true for record lengths greater than
128 bytes. However, for record lengths of 128 bytes or less, DDM does a little
“built-in” blocking for you. Recall that a disk sector, 256 bytes, is the smallest
amount of disk storage the S/36 can read or write in a single disk operation.
Therefore, a data buffer is always a minimum of 256 bytes. For record lengths
of less than 256 bytes, that 256-byte buffer is filled with as many records as it
can hold. For example, if your application is reading 64-byte records without
using record blocking, each physical I/O actually puts four of the 64-byte
records in the data buffer. Figure 10.3 illustrates the situation: When record 33
is read, DDM also puts records 34, 35, and 36 in the data buffer — even if
your application hasn’t explicitly enabled record blocking. No disk I/O is
needed when your application reads records 34, 35, and 36. This is a tidy
example because a 64-byte record length is a submultiple of 256. Let’s take a
look at a less-tidy example.

As explained in Chapter 3, records can span sector boundaries. For

150 Desktop Guide to the 5/36

Flgure 10.4
A Minimum Disk Data Buffer for a File with 56-Byte Records

FILEA
- 256BYTES —
——» g3 | w4 [45 [936 [#7
DATA BUFFER WITH FOUR /

56-BYTE RECORDS AND
PARTIAL 5™ RECORD

PROGA

example, a sector might contain four full records and only pant of a fifth. Con-
sider a non-blocked application sequentially reading a file with 56-byte records.
As shown in Figure 10.4, the non-blocked disk buffer is still 256 bytes, but in
this case four complete records and the first 32 bytes of a fifth record are in the
buffer. The disk I/O that puts record 33 into the buffer will also put records 34,
35, 36 and the first 32 bytes of record 37 into the data buffer. DDM will make
the four whole records in the buffer available to your application without any
further /O, ignoring any partial record contents in the data buffer. When the
example application needs the partial record, a physical disk I/Q operation will
reread that record and refresh the buffer starting with that record. Figure 10.5
shows the data buffer afier the program has read record 37.

Many programmers tuning the 5/36 swear that record layouts must be
submuliiples or multiples of 256 (the size of one sector). These record sizes do
provide for the most optimum usage of data buffers, but with appropriate
record blocking and adequate memory, alternative record sizes don't signifi-
cantly degrade performance. In extreme cases, say a record length of
129 bytes instead of 128 bytes, the time to read an unblocked file will double.
If the record length were 128 bytes, two records would be read into the data
buffer with one disk I/0O operation — with a 129-byte record it will take one
disk /O operation per record (the partial 128 bytes will be wasted on every
read). However, a 3,072-byte data buffer (12 sectors) could hold 23 of the
129-byte records, or 24 of the 128-byte records. With the 5/36’s fast data trans-
fer rate, the time to fill that buffer is negligible. Effective record blocking
changes the 129-byte record’'s performance from 50 percent to 95 percent of
the “normal” record length’s performance.

Chapter 10 Using DBLOCK and IBLOCK Eftectively 151

Figure 10.5
The Data Butfer Shown in Figure 10.4 After Record 37 is Read

FILEA
~—— 256 BYTES ——»

—»1#37[#33|m|#40|m1

PROGA

Technical Note

Let your application needs dictate record length — not the myth that records should always
be even submultiples or mulliples of 256.

Enabling Record Blocking
For $/36 RPG applications, record blocking can be enabled in two ways:

¢ In columns 20-23 of the RPG F-spec (Figure 10.6). This method speci-
fies the number of bytes to allocate for the data buffer and should
always be a multiple of the record length. For example, if the record
length is 256 bytes, you should specify a value of 512, 1024, 1536,
2048, and so on.

e With the DBLOCK keyword of the OCL FILE statement. Unlike the F-
spec method, this method specifies the number of records to block,
not the total size of the buffer desired. Figure 10.7 shows how you
would use the DBLOCK keyword to block 10 records.

When you specify record blocking with the F-spec, the RPG program
must be recompiled to change the record blocking factor. The OCL DBLOCK
method is better because you can fine-tune record-blocking values without
recompiling, Not only is it easier to change the blocking factors in your OCL,
but it also provides more explicit control. DBLOCK lets you specify blocking
factors that yield data buffers of up to 44 K; the F-spec limits you to 9,999-byte

154 Desktop Guide to the 5/36

Performance Tip

See Chapter 13 for a
detalled discussion
about using SMF to

ensure that record
and Index blocking
are helping, not
hurting, performance.

Record Blocking Considerations
Before you enable record blocking, you should carefully consider several fac-
tors about the application. Among them are:

How s the file being read? If the file is a sequential or direct file
being read sequentially or is an indexed file being read consecutively, it’s
likely a good candidate for record blocking. For randomly accessed files,
you need to consider the “locality” of the records being accessed. Remem-
ber, the key to benefitting from record blocking is having the next record
your application needs in the buffer, waiting for memory-to-memory trans-
fer. When a file is processed randomly by key, say for an inquiry applica-
tion, and there is little chance the next record read will be in the file buffer,
blocking will hurt more than help. For indexed files that use mixed random
and indexed-sequential processing, blocking may be of substantial value if
the file is reasonably organized (i.e., the file has groups of records in key
sequence). For example, an order-inquiry application might randomly access
individual orders, but still find detail records for a given order in physical
key sequence. By blocking the detail file large enough to accommodate the
average number of detail records per order, the application can fetch all the
detail records in a single disk 1I/O.

Some benchmarks presented later in this chapter will show how dra-
matically record blocking for a recently organized indexed file can affect per-
formance. And Chapter 13, in its “cookbook” section, describes a method to
directly measure the effectiveness of blocking for specific applications.

Is the application reading the file also updating the file? Do circum-
stances exist where another application can update the file? Figure 10.2 showed
PROGA reading FILEA with a 100-record buffer. Imagine that PROGA just read
the first record in FILEA — therefore filling its buffer with 100 records. For the
next 99 records, PROGA is in turbo mode, zooming through the remaining
data. However, what happens if another program updates the contents of
record 39 just before PROGA is about to read it? PROGA now has a stale copy
of this record in its data buffer!

Never fear: DDM won't let PROGA read obsolete data. Whenever a
program updates a record in a shared file, DDM checks to see whether other
programs using that file have the changed record in their buffers (the check is
fast because DDM keeps a list of the disk address boundaries of all buffers in
use for a file). In the example, upon finding that PROGA'’s buffer contained
record 39, DDM would set a “dirty” flag on the buffer (technically called
“marking the buffer invalid”). The next time PROGA tries to read from that file,
DDM sees the dirty flag and refreshes the buffer’s contents from disk storage,
retrieving the updated record in the process. Because such collisions tend to

Chapter 10 Using DBLOCK and IBLOCK Effectively 155

be rare, the dirty-buffer mechanism usually doesn’t hurt performance with
interactive programs that use blocking.

The situation is different for batch programs. If both the other pro-
gram and PROGA are updating the file sequentially, the two programs could
find themselves in “lockstep,” requiring buffer refreshes with each read! The
potential performance improvement that record blocking offers could become
an enormous performance penalty in such situations. Avoid the batch stale-
buffer problem by not blocking files when more than one program is reading
sequentially for update.

Is the file opened for add or output-only? For sequential, direct, or
indexed output files, record blocking will be beneficial. Just as blocking helps
defer disk input operations, it can also defer disk output operations. With
buffered output, records are not written to disk until the buffer is full — and
the S/36’s fast transfer rate ensures that writing one large block is much faster
than writing many individual records. Even for indexed files with records
added out of key sequence, the records themselves still get written in arrival
order, so blocking the output file helps.

One especially good candidate for record blocking is reading
#GSORT addrout files. A 4 K buffer can hold more than 1,300 of an addrout’s
3-byte binary record addresses. When addrout files are appropriately blocked,
the performance improvement is significant. Other good candidates for record
blocking include:

¢ Random reads where the records cluster close together. For example,
all detail records associated with a picking ticket, indexed on a trans-
action number. In this case, the blocking factor should equal the aver-
age number of details associated with a picking ticket.

e Multiple records to be read and displayed interactively. For example,
invoice details from a sequential history file. In this case, the blocking
factor should be the same as the number of lines displayed interactively.

¢ Duplicate key processing. The blocking factor should be equal to the
average number of duplicate key values being processed.

Index Blocking

Index blocking lets your application keep many index entries in memory at
once, reducing disk I/O to the file’s index area. Chapter 3 discussed the
“lookup” nature of the S/36 random record retrieval system. Given a key
value, DDM first looks up that key value in a table (the index) to retrieve the
associated relative record number (RRN), and then uses that RRN to read the
data record. Index blocking loads multiple index entries into an index buffer

156 Desklop Guide to the 5/36

: Performance Tip

For small indexed
files it's possible to
use Index blocking to
put the entire file’s
Index In memory.
With this method,
random record
access from such a
flle could achleve
direct file-like
performance.

in the same way record blocking loads multiple records into a data buffer.

The resulting reduction in disk I/O to the index area helps in two
ways. First, overall system performance improves as a result of fewer total /O
operations. Second, application performance improves as a result of reduced
disk arm motion between the index and data areas for a particular file.
Because every indexed access is always followed by a data access, applica-
tions that don’t use blocking tend to suffer from a “see-saw” effect: move the
disk arm to the index area and read a key, move the arm to the data area and
read a record, move the arm back to the index area to read another key, and
so on. If enough keys can be kept in memory to reduce repeated returns to
the index area, the disk arm is more likely to be in position over the data area
for the next record operation. Because all index blocking concepts apply to
alternate indexes as well as to a file’s primary index, the disk arm might well
have to move a considerable distance from index to data.

Recall that index entries are stored in 256-byte sectors. Index entries
consist of the key value paired with a 3-byte RRN pointing to the associated data
record. The number of index entries per sector depends on the key length.
Unlike data records, however, index entries do not span sector boundaries. Let’s
take an example (Figure 10.9) where key values are 11 bytes long; therefore,
each index entry is 14 bytes long (11 bytes plus the 3-byte binary relative record
number). For 11-byte key values a sector holds 18 index entries. These 18 key
entries total 252 bytes; the remaining four bytes of the sector are empty.

When an application requests one of the keys in Figure 10.9’s sector,
DDM reads that entire sector into memory (because one sector is the least
amount of data the 5/36 can read at a time). Accessing any other key in that sec-
tor is done without disk I/O. By default, one sector full of keys is the minimum
your application program will read. But you can explicitly request that more
sectors be blocked. Unlike DBLOCK, IBLOCK can be specified only in OCL,
using the FILE statement’s IBLOCK keyword. Figure 10.10 shows the IBLOCK
keyword being used to block 72 keys, which would make four sectors of “mem-
ory resident” keys available to an application. Because a disk seek to the index
area is eliminated, random access to any record with a key in this buffer will
require half the time a random read normally takes. If the records were also
blocked, no disk I/O would be required to read the record. (Coordinating the
efforts of DBLOCK and IBLOCK are covered in more detail later in this chapter.)

Sizing Index Buffers

As with blocked records, the potential performance improvement offered by
blocking index entries comes at a cost. The memory available for index
buffers is limited; if you specify too much index buffering, disk I/O could
increase somewhere else and performance will suffer, not improve. Figuring
proper IBLOCK values would have been much easier if the IBLOCK parameter

Chagier 10 Using DBLOCK and 18LOCK Effectively 157

Figure 10.9
One Sector Full of Keys

Key RRN Key RRN Key RAN [. |
Key RRN Key RAN Key RRN|
Key RRN Key RRAN Key RRN

Key RRN Key RRN Key RRN| -
Key | RAN Key RRN Key RAN
Key RAN Key RAN Key RAN i

Eightean 11-byte keys (18 x 14 = 252) 4 bytes in secior wasted.

Flgure 10.10
OCL Showing IBLOCK Keyword

// LOAD PROGA
7/ FILE NAME-AFILE.DBLDCK-10,18LOCK-72
// RUR

accepted the number of bytes to block, instead of the number of keys. As it is,
to determine the size of the index buffer an IBLOCK specifies, you must:

= Calculate the number of index entries per sector
= Determine the number of sectors requested
 Multiply the number of sectors requested by 256

Let’s ook at an example using an IBLOCK value of 200 with a 16-byte
key. First, calculate the number of index entries per sector:

256/ (1643) = 13.47

There are 13 16-byte keys in a sector — the remainder is discarded. Nexz,
determine the number of index sectors requested by dividing the IBLOCK
value by the index entsies per sector:

200/13=15.38

That value, rounded to the next whole number, reveals that 16 sectors need to
be read to fill an index buffer with the IBLOCK number of keys specified. To

Figure 10.11
iBLOCK Factors for Desired Index Buffer Size

Find key length in left cowmn and desired IBLOCK factor in shaded area.
Destred IBLOCK buffer size in K

| Key Longth | Keys Per Sector 2K
{ 84 - - 251 ;
2 51
3 42 1680,
4 3% a0,
5 % JoB0
- % o
! 2 il _1000.
8 4 92 920
9 21 a4 . - B40
10 19 76 780
1 18 2 70
12 17 68 680
13 18 64 840
14 15 60 480 600
{5 14 56 112 24 448 560
16 13 52 104 208 418 520
17-18 12 48 - 96 192 384 480
18-20 11 44 B | 176 352 440
2122 10 .40) 180 320 400
2325 9 -3 72 144 | 288 360
%29 8 L2 64 8 | 2% 320
30-33 7 28 56 112 224 280
34-39 6 24 48 9% 192 240
4048 5 20 40 80 160 200
49-61 4 16 32 64 128 160
62-82 3 12 24 48 9% 120
83-120 2 8 16 32 64 80

determine the byte size of that index buffer, multiply the number of seciors to
read by 256:

18 X 256 = 4,096-byte buffer

Chapter 10 Using DBLOCK and IBLOCK Effectively 159

This reveals that using an IBLOCK value of 200 with a file with a 16-byte key
creates a 4 K index buffer.

You may agree that it would have been easier to specify the IBLOCK
value in bytes. You can avoid this math madness by using the chart shown in
Figure 10.11. This chart shows IBLOCK values for 1K, 2K, 4 K, 8 K, and 10 K
index buffers for files with any size key. To use the chart, look up the key
length in the left column and follow the row across for the IBLOCK value. For
example, to allocate a 4 K index buffer for a file with a 16-byte key length, the
IBLOCK should be 208. For a 27-byte key with a 2 K buffer, use IBLOCK-64.
And for a 33-byte key with an 8 K buffer, use IBLOCK-224. The number of
keys per sector is included in the table for informational purposes only. Use
this chart as a guideline — if main storage isn't available, or the total size of
record and index buffers for a given file exceeds 44 K, the system may allo-
cate less buffer space than you requested.

Technical Note

Use the table in Figure 10.11 to easily determine the IBLOCK value required to achieve a
certain index buffer size.

Index Blocking Considerations

Blocking index entries can also substantially decrease application response
time or batch program execution time. However, as with record blocking,
there are certain considerations to keep in mind. Among them are:

Is the file being read in key sequence — and bas the file been keysorted
recently? Recall from Chapter 3 that indexes, unlike the actual data
records, must be maintained in key sequence. If a file has recently had
a true KEYSORT performed on it (see Chapter 3 for more about a true
KEYSORT), its index will be free from overflow keys and performance
will be increased by blocking many index entries for a file read
sequentially by key. If a file has not had a true KEYSORT performed
on it recently, and if many index entries are in the overflow area,
index blocking is not likely to improve performance. Don't confuse
physical data record order with the index being in order. As long as
the index has been KEYSORTed recently (to purge index entries from
the overflow area), your application will benefit from index blocking.
It doesn’t make any difference whether or not the data file has been
reorganized recently into physical key sequence. Remember that index
blocking puts a chunk of index entries in memory; it doesn't affect

160 Desktop Guide to the S/36

IBLOCK’s performance if those index entries point to non-contiguous
RRN’s in the actual data file. Of importance to your application is that
the index entries, with their associated RRNs, are in memory. The
Index Doctor utility (Chapter 11) lets you directly determine the exis-
tence and size of an overflow area for a given file or alternate index.

Is your application randomly adding many keys to an index opened for
shared access? When records are added to shared indexed files or
alternate indexes, DDM maintains key values in the index overflow
area in key sequence. If your application is adding records in random
key sequence to a shared file, IBLOCK is not likely to improve perfor-
mance. However, if your application has exclusive use of the output
file, DDM will not attempt to keep the index overflow area in key
sequence; it will simply dump new keys at the end of the index buffer,
writing the buffer to the overflow index whenever it fills. In this case
blocked index entries — even in random order — may improve per-
formance. A subsequent KEYSORT (either explicitly or automatically
initiated by SSP when the next program opens the index) will clean up
the out-of-sort entries (see Chapter 3 for more on this topic). In this
case, set IBLOCK as high as you can or to the maximum number of
records being added. Don't forget about the “hidden” way keys are
added to an index — when updating a file having alternate indexes. If
you change part of a data record that happens to be an alternate-index
key, DDM deletes the old key and adds a new one to reflect the
changed data. For shared alternate indexes, IBLOCK will degrade per-
formance; for unshared alternates, IBLOCK can be a big help.

Can you block the entire file's index? For small files, you can often
achieve spectacular random access performance if you block the
entire file’s index. Consider an indexed salesperson file for a point-of-
sale application. For each invoice written, the salesperson file must be
read, but it will be read randomly because there is no way to predict
who wrote the next invoice. The entire index for a 250-record sales-
person file having a 4-byte key can be buffered in less than 2 K (250
x (4 + 3) = 1,750 bytes). Beware, though, that whenever a new
salesman record is added or has its key changed, the application’s
index buffer will need to be refreshed. Use this technique only with
files maintained infrequently.

Is your application reading sequentially by key an indexed file recently
organized in the same key sequence? If so, a combination of DBLOCK
and IBLOCK could really improve performance. A large index buffer
coupled with a large data buffer is a terrific combination when you

Chapter 10 Using DBLOCK and IBLOCK Effectively 161

expect that both index and data requests will occur in physical
sequence. Use DBLOCK and IBLOCK together carefully, though. If the
data file has not been organized in key sequence recently, the disk
thrashing required to continually refill the data buffer with the correct
records could severely reduce performance.

Where Buffers Live

Although DDM keeps buffers in memory, it doesn’t always keep them in the
same virtual region as your program. If all the space in your program’s 64 K
region is used up (by the program itself, for example), DDM puts the buffers in
a Task Work Space (TWS) that provides an additional file buffer space. But
because TWS-resident buffers aren’t part of the same address space as your pro-
gram, DDM must jump through some extra hoops to access them. The result is
slower record and key retrieval, and consequent blunting of blocking’s advan-
tages. The size of record and index buffers determines where DDM keeps them.

When a program initiates, DDM allocates data and index buffers
dynamically, in the order in which the files are listed in the F-specs of the RPG
program (not in the order in which they are listed in the OCL). DDM starts
placing buffers in memory immediately after the end of the program. As each
buffer is allocated, DDM checks to see if it will fit in the remaining memory
(up to the 64 K region size). If it won't, DDM creates the TWS and allocates
that buffer there. All subsequent buffers also end up in TWS. You can see that
the best-case scenario is for the application program and all its buffers to fit
within the 5/36’s notorious 64 K region size.

Figure 10.12 shows an 18 K program using two files. FILEA (opened
first) has a 10 K record blocking buffer and an 8 K index blocking buffer;
FILEB has an 8 K record blocking buffer. In this case, the total size of the pro-
gram and the buffers (44 K) fits within the 64 K maximum region size. These
buffers are called appended buffers because they are appended to the pro-
gram’s region. You get the best results with blocking when all buffers are
appended within the program’s region, as Figure 10.12 shows.

Figure 10.13 shows a 26 K program, using three files. In this case,
FILEA has a 12 K appended record blocking buffer and a 6 K appended index
blocking buffer; FILEB (specified second in the RPG program) has a 16 K
appended record blocking buffer. After opening FILEA and FILEB, the pro-
gram’s partition has used 60 K of its available 64 K. However, FILEC (specified
third in the RPG program, and opened last) has an 18 K record blocking
buffer, which won't fit in the remaining 4 K. DDM must create a TWS to hold
the oversized buffer. Using TWS will decrease performance significantly
because DDM must change addressability — a process called mapping — to
access the non-appended bufffers. If your program reads records alternately
from appended and unappended buffers, the extra overhead for mapping can

Petformance Tip

If the total size of an
RPG program and its
buffers exceeds 64 K,
you might Improve
performance by
opening sequentlally
processed files first
to place their buffers
within the program’s
64 K reglon. Do this
by listing the
sequential flles firstin
the RPG F-specs. It
your S/35 has plenty
of maln storage, the
Impact of randomly
processed files with
non-appended buffers
affects performance
less than sequentlally
processed files with
non-appended
buffers. Generally,
though, your goal
should be to have no
non-appended
buffers.

162 Deskiop Guide to the S/36

Figure 10.12
18 K Program with Appended Buffers

18 K PROGRAM
84K
R GRAM 10 K DBLOCK
REGION FLEA
8 K IBLOCK
8 K DBLOCK FILEB
20 K UNUSED

overcome completely any performance advantage gained by blocking. As a
general rule, if record or index blocking causes the creation of TWS buffers,
they are not worth the resulting disk activity and the related DBLOCK and/or
IBLOCK values should be reduced. You can see if a running program has
TWS buffers by checking the “BUFF" column on the STATUS USERS display.
Any entry in this column indicates TWS buffers,

If Figure 10.13's FILEB was a randomly accessed file and FILEC was a
sequentially accessed file, it might be possible to improve performance by
swapping the order in which those files are defined in the RPG program, This
would force FILEC's buffer to the program region and make FILEB's buffer the
one that goes into TWS. But rather than juggle file order to manage record
buffering, you probably will find it of more value to reduce all the DBLOCK
and IBLOCK factors involved to ensure that alf buffers are appended to the
program region.

Allocating Appropriate Buffer Slzes

As you can see, it's very important to allocate reasonable buffer sizes. Before
you start experimenting with DBLOCK and IBLOCK factors for a program,
determine the program’s existing, non-blocked memory utilization. To ensure
that the program is at record and index blocking ground-zero, remove any
record blocking values in columns 20-23 of the F-spec and recompile the pro-
gram. Also ensure that no DBLOCK or IBLOCK values currently exist in the
program’s OCL. With the non-blocked program running, use the STATUS

Chapter 10 Using DBLOCK and IBLOCK Effectively 163

Figure 10.13
26 K Program with Unappended Buffers

26 K PROGRAM

64K
PROGRAM —
REGION

12 K DBLOCK L RLEA

6 K IBLOCK

16 K DBLOCK — FILEB

4 K UNUSED

18 K DBLOCK — FILEC

UNAPPENDED BUFFER
IN TASK WORKSPACE

USERS (D U) control command from another workstation to determine the pro-
gram’s non-blocked, bare-bones memory utilization. A screen like the one
shown in Figure 10.14 will be displayed. On this screen, the third column from
the right, the RGN column, shows the program size. The PGM column, the sec-
ond from the left, shows the total of the program region and any appended
buffers. The last column on the right shows the amount of TWS allocated for
unappended buffers.

Let's assume we're performance tuning the program NEWKT7, called
by procedure POS1. In this case, the STATUS USERS screen shows that the
program uses a non-blocked 30 K program region size. This program has 34 K
for which record and index buffers can be allocated before any buffer is
assigned to TWS. Using the record and index buffer sizing information from
earlier in this chapter, you could now start to performance tune NEWTK7 by
specifying various DBLOCK and IBLOCK factors to allocate appropriately
sized buffers. Each time you make a change, run the program and check the
STATUS USERS screen again.

164 Desktop Guide to the S/36

Figure 10.14
Status Users Screen

Complete STATUS USERS
w4

JOB PROC PROGRAM STATUS ATTRIBUTES PRTY RGN PGM BUFF
W8192239 POS1 NEWTK7 Active SRT Norm 30K 30K —
W5132557 POS2 NEWTK7 Active SRT Norm 306K 62K —
W9313158 POS3 NEWTKZ Active SRT Norm 30K 42K

Unappended Buffer 4

Cmd7-End Cmd8-Help Cmd15-Update Cmd16-Restart Ro11-Page

JOBS
Control jobs and the job queue
. Display a specific job 6. Change processing priority
. Jobs on the job queue
. Stop a job
. Restart a stopped job 9. Prevent SSP-ICF jobs
. Cancel a job 10. Allow SSP-ICF jobs to start

NHEWN =

Ready for option number or command

COPR IBM Corp. 1983

The second line of Figure 10.14 shows POS2, a copy of procedure
POS1 with some blocking factors. In this case, 32 K of buffers have been allo-
cated, and because they fit within the program’s 64 K region, no appended
buffers are created. Notice how the PGM column for POS2 has increased to
62 K, the total of the 30 K program size and the 32 K of file buffers. The third
procedure, POS3, shows what happens when you get carried away. Here,
12 K of buffers did fit within the program region (as indicated by the PGM
size of 42 K), but 34 K of buffers did not and a non-appended buffer was cre-
ated in a TWS. Performance will almost certainly suffer for procedure POS3.
Keep a close eye on the STATUS USERS screen and try not to let any task
acquire appended buffers because DBLOCK and IBLOCK factors are too large.

Techqical Note

If you use external program calls from any vendor, beware that data buffers for called pro-
grams are allocated in Task Work Space and therefore always show on the
STATUS USERS screen in the BUFF column.

Chapter 10 Using DBLOCK and IBLOCK Effectively 165

Benchmarks

Here are a few benchmarks showing the upside (performance gains) as well
as the downside (performance degradation) possible with record blocking.
These tests were performed using a program needing a 34 K region and read-
ing a 5,000-record, 256-byte record-length file sequentially. In each case, the
tests were performed on a similarly burdened S/36:

DBLOCK-1 404 seconds
DBLOCK-50 30 seconds
DBLOCK-93 26 seconds
DBLOCK-100 356 seconds

Note the difference between 93 records and 100 records. Buffering 100
records required an unappended buffer and ruined performance.

To read an indexed, 5,000-record, 256-byte record-length file sequen-
tially by key:

DBLOCK-25 IBLOCK-100 619 seconds
After organizing the file:
DBLOCK-25 IBLOCK-100 33 seconds

Notice what a difference reorganizing the file made. Frequent file reorganiza-
tion and prudent use of DBLOCK and IBLOCK can really speed sequential,
by-key processing.

Technical Note

Use the DBLOCK keyword of the OCL FILE statement to enable record blocking — do not
use columns 20-23 of RPG's F-spec. DBLOCK doesn't require recompiling the program to
change blocking.

Mental Blocking

Proper record and index blocking can give you vastly improved performance;
improper blocking can destroy performance. The only way to know for sure
whether blocking is helping or hurting is to think through your blocking strat-
egy in light of the facts presented in this chapter — and then measure perfor-
mance (see Chapter 13) to confirm that you're getting expected results.
Achieving good results is a mental exercise, not a random act. Keep in mind
that blocking is most useful for standalone sequential batch accesses, and only
somewhat useful in heavy interactive or multibatch environments. You should

166 Desktop Guide to the S/36

explore disk caching (see Chapter 15) — a sort of system-wide blocking factor
— as an alternative when blocking individual programs doesn’t give you the
results you want.

Chapter 11 Prescriptions for Healthy DDM 167

Chapter 11

Prescriptions for Healthy DDM

As we've mentioned elsewhere in this book, Disk Data Management (DDM)
performance often leaves a lot to be desired. Previous chapters have
explained some of DDM’s crippling affects and warmed of their impact on per-
formance. In this chapter, we'll look at strategies and utilities you can use to
shore up some of DDM'’s weaknesses. You're not likely to need all the tips
and techniques presented in this chapter in any one application. Before you
jump in and start implementing anything shown here, it will help to have read
or at least skimmed some of the eatlier chapters that explain S/36 DDM and its
limitations. With just a brief understanding of DDM limitations, the tips and
strategies in this chapter will make more sense and be easier to implement.
When squeezing the most out of your $/36, the adage “the best defense
is a good offense” really applies to DDM. By knowing where DDM is weak, and
how to code around those weaknesses, you'll really ramp up performance. In
this chapter we present three tools to help you circumvent DDM weaknesses:
Index Doctor checks out indexed files for performance-robbing conditions;
KEEPOPEN holds storage indexes open to reduce program initiation time;
SHOWUR reveals deadly embraces that can shut down interactive applications.

Is There a Doctor in the House?
Chapter 3 covered extensively the detrimental effect that the S/36’s method of
random record access has on performance. There, we discussed the primary
and overflow areas of an indexed file, and we warmed you that how DDM
processes the index overflow area can sometimes impede performance drasti-
cally. To know what action to take to avoid DDM’s problems, you need a way
to diagnose an index’s general health., That's where Index Doctor comes in.
Index Doctor (included on the “Desktop Guide” diskette) is a utility that ana-
lyzes S/36 indexed files (parents and alternates) for deleted keys, duplicate
key strings, and index gaps. After diagnosing the index, Index Doctor prints a
report of its findings. Based on Index Doctor’s diagnosis, you'll know if a file
should be organized, keysorted, or perhaps even re-allocated to a larger size.
Running Index Doctor is a simple matter of calling procedure INDEXDR.
The procedure has four parameters, the first of which is required; the remain-
ing three are optional. The first parameter is the name of the file you want to
analyze. The second parameter is an optional file date. Index Doctor’s calling
sequence is:

INDEXDR file name,[file date], [Y/N],[Y/N]

170 Deskiop Guide to the S/36

remove the offending deleted keys.

After printing its primary index analysis, Index Doctor prints its over-
flow index analysis. Again, duplicate key strings are reported, as well as index
gaps. (Remember that index gaps are “holes” that DDM places in the overflow
to minimize the number of keys that must be moved down when a new key is
added. See Chapter 3 for a compete explanation of index gaps.) The index
gap detail line shows the relative key offset of the gap from the beginning of
the overflow (“Index gap at:”), the number of keys that can fit in the gap
(“Count:”), and the key immediately preceding the gap (“Key:).

Following the duplicate key and gap detail lines on the report are the
total dup key strings, total gap keys, and total keys in the overflow. Deletes
are omitted from the overflow index report because a deleted key in the over-
flow index is looked upon by DDM as a gap, and Index Doctor will report it
as such. This also means that deleted key locations in the overflow index can
be reused, whereas in the primary index they cannot because, as you may
recall, keys are never added to the primary index.

Technical Note

Force a real keysort by using “KEYSORT filename,,,CHKDUP".

Taking Action

Here are some things to notice and possible action steps to take after review-
ing an Index Doctor report. Most (but not all) of the following diagnoses are
taken from the sample report in Figure 11.1.

Diagnosis 1: There is only one key slot available in the last gap.
Adding a record with the key value “8070Y” won't cause a problem — a slot
is available for it. But then adding “8070Z” will cause a pre-emptive keysort to
degap the file. Subsequent record adds will cause the ripple-add effect.

Action: Force a real keysort on the file (KEYSORT filename,,,CHKDUP
— as discussed in Chapter 3), reorganize the file, or enlarge the file.

Diagnosis 2. At the most, there are only 31 key slots available in any
of the overflow gaps. If more than 31 records are added to the file with key
values greater than “8012L,” a pre-emptive keysort will be called to degap the
file and subsequent adds will be very slow.

Action: Force a real keysort on the file or reorganize it. Also consider
presorting input records to be added to this file in key sequence before
adding them.

Chapter 11 Prescriptions for Healthy DDM 171

Diagnosis 3: There are few key slots available in the last gap (in this
case, only one). This could indicate the file has not been allocated large enough.

Action: Consider reallocating the file with a larger size. This won't
guarantee more gaps after subsequent adds, but it will probably help.

Diagnosis 4. There are large duplicate key strings.

Action: If possible, the file and applications should be modified to
minimize the length of duplicate key strings. See Chapter 3 for a detailed dis-
cussion about the impact of duplicate keys and how to avoid them.

Diagnosis 5. When the “Keysort index” status is “yes,” it indicates that
the file may need to be keysorted. This is caused by many records being
added to the file, resulting in a large overflow index area.

Action: Perform a real keysort or organize the file. If you notice this
continually happening for a given file, consider performing a real keysort
every night for the offending file.

Diagnosis 6: The file contains deleted keys but is not currently
delete capable.

Action: Reorganize the file to remove deleted keys.

Diagnosis 7. The file contains duplicate keys but is not currently
duplicate-key-capable.

Action: Reorganize the file to remove the duplicate keys or use
COPYDATA to copy the file to a duplicate-key-capable file.

You don't need to use Index Doctor daily for every file, but consider
using it once or twice a month on your large indexed files, just as a “check-
up.” By taking the recommended action steps, you’'ll increase interactive
response time, reduce the time required for random indexed adds, and
decrease job initiation time.

Keeping Storage Indexes Open
For every indexed file your applications use, the system must scan each file’s
entire index and build a storage index. Recall from Chapter 3 that a storage
index is an index to the index. The storage index’s table of index values and
track numbers is used to narrow the index search down to the appropriate
track. With a storage index, the system scans only the appropriate track look-
ing for key values, which dramatically improves random record retrieval times.
However, using storage indexes has a cost: slower job initiation. For
each indexed file your application uses — not already opened by another pro-
gram — the system must scan the entire index to build a storage index. Building

172 Deskiop Guide to the S/36

storage indexes over and over again for the same large indexed files throughout
the day results in seemingly random delays in program initiation and erratic
response times. You can rectify this situation by forcing all frequently accessed
indexed files to remain open throughout the day.

Remember that DDM keeps storage indexes in the System Queue
Space — part of the non-swappable nucleus — and that all users of the file
share the same storage index. Figure 11.2a shows PROGA using FILEA. When
PROGA started, no other user was currently using FILEA and therefore there
was currently no storage index in memory for FILEA. PROGA'’s initiation
required that the storage index shown in Figure 11.2a be built. Figure 11.2b
shows that when PROGB (which also uses FILEA) initiates, it will share the
storage index created by PROGA'’s initiation. PROGB will initiate faster because
the storage index it needs is already in memory. You can see that no user actu-
ally “owns” a storage index. Only the first user must endure the delay, caused
when the storage index is built. The problem is that when the last program
using the file ends, DDM discards the storage index. Then the next program to
open the file must wait while DDM rebuilds a new storage index.

The trick, then, is to achieve persistent storage indexes by tricking oft-
used, large indexed files into remaining open all day long. For example, let’s
say you had three large files you'd like to keep open all day so their storage
indexes would persist for all users. One solution is 10 evoke a procedure like
the following:

// FILE NAME-APTRANS,DISP-SHRRM,JOB-YES
// FILE NAME-APVEND,DISP-SHRRM,JOB-YES
// FILE NAME-CUMASTER,DISP-SHRRM,JOB-YES
// WAIT INTERVAL-080000

One limitation is that this method will neither open the files nor cause the
storage indexes to be created. It will simply hold the files open for eight hours
after the first real application opens them. Job initiation for the first user of
each file will not be improved. A greater limitation is that this method can
only be stopped interactively from the system console. Should any other appli-
cation require exclusive use of any of these three files, operator intervention at
the system console is required.

Another way to keep files open is to write a customized MRT-NEP
program — a Multiple Requester Terminal program that has its Never-Ending-
Program attribute set — with F-specs and a dummy read operation for each file
you want to keep open all day. Unlike an ordinary Single-Requester-Terminal
(SRT) program, which is not capable of releasing the requesting display station,
a MRT-NEP program can release its requester and remain active. The MRT-NEP
does not tie up a workstation or cause the system to perform unnecessary pro-
cessing because once activated, the MRT-NEP remains in a suspended state.

Chapter 11 Prescriptions for Healthy DDM 173

Figure 11.2a

One Program Using One File

5| PROGA

| 5| PROGA

FILEA
FILEA
| 5| STORAGE
INDEX
Figure 11.2b
Two Programs Using One File
FILEA
FILEA
|, STORAGE
INDEX

PROGB

This method could be canceled from any workstation, but it requires recompil-
ing the program each time you need to modify the list of files you want kept
open. You're also limited to only 15 files per MRT program. To keep more than
15 files open would require additional MRT programs.

A better way to keep often-used indexed files open is with a combi-
nation of the two techniques. This method requires three short procedures
and one short MRT-NEP program. Figure 11.3a shows the main procedure,
KEEPOPEN. Initiating KEEPOPEN causes each referenced file to be opened
(and remain open) and their storage indexes to persist as long as necessary.
KEEPOPEN should include the following code for each file you want to keep

open:

// FILE NAME-filename,DISP-SHRRM,JOB-YES
KOPENF filename, [storage index size in K]

174 Deskiop Guide to the S/36

Figure 11.3a
Procedure KEEPOPEN

* Allocate specified files as JOB-YES and open the
* storage index for each one.
*

* Insert a pair of lines as shown for each file you
* to keep open all day long

// FILE NAME-APTRANS,DISP-SHRRM,JOB-YES
KOPENF APTRANS
*

// FILE NAME-APVEND,DISP-SHRRM,JOB-YES
KOPENF APVEND
*

// FILE NAME-CUMASTER,DISP-SHRRM,JOB-YES
KOPENF CUMASTER
*

KPOPEN2

Figure 11.3b
Procedure KOPENF

// LOAD $COPY

// FILE NAME-COPYIN,LABEL-?1?,DISP-SHRRM,STORINDX-?2'YES'?
// FILE NAME-COPYO,LABEL-COPYTEMP,RECORDS-1,RETAIN-S

// RUN

// COPYFILE OUTPUT-DISK

// SELECT KEY,FROM-'¢',TO-'¢’

// END

Figure 11.3c
MRT Procedure KPOPEN2

// LOAD KPOPEN
// RUN

The first line uses the // FILE statement’s JOB-YES parameter to enable the files
to stay open after KEEPOPEN ends and the second line calls procedure
KOPENF (Figure 11.3b). KOPENF uses $COPY to cause the specified file to be
opened and a storage index created for it. The cent-sign character is used as the
select key value because it is unlikely to be part of a character key and it cannot
be part of a packed key. Using $COPY to force the file open is necessary

Chapter 11 Prescriptions for Healthy DDM 175

Figure 11.3d
MRT-NEP Program KPOPEN

H KPOPEN
S R e e -+

F* | |
F* | INDICATOR USAGE |
F* |
F* | 91 Blank input record, used when starting the program |
F* | 02 Non-blank input record, used to cancel the program |
F* | |
A R -+
FSCREEN CP F 80 80 WORKSTN

F KFMTS *NONE

ISCREEN NS o1 1C

1 OR 02

IQ
[R e e e T T -+
C* | A non-blank input record causes the program to be cancelled. |
C* #ccccccccccccccccccccccccnrcccccccccmcenemncerccceneea— -+
c 02 SETON LR
Q% #ccccccccccccccccccccccercccccc s cccccccccccem e -+
0* | Release the requesting workstation. |
LA R e e e L L e T T T T T P -4+
OSCREEN DR (]

because the // FILE statement alone does not cause a storage index to be built.

After the// FILE statement and call to KOPENF for each file in KEEP-
OPEN, KEEPOPEN calls the MRT procedure KPOPEN2 (Figure 11.3c), which
uses the MRT-NEP program KPOPEN (Figure 11.3d). KEEPOPEN ends after
the call to KPOPEN2 but KPOPEN causes the job, and therefore the JOB-YES
attribute, to persist until KPOPEN ends. As long as the MRT-NEP program
KPOPEN is active, the files specified in KEEPOPEN remain open and their
storage indexes persist.

Now comes the tricky part. There might be times during the day
when an application needs exclusive use of a file being held open — say, to
reorganize the file. You need a graceful way to end the MRT-NEP program
KPOPEN from any workstation.

How do you end KPOPEN? By calling the KPOPEN2 procedure with
any parameter value. Any data following the procedure name that initiates a
MRT program can be read by that MRT program as its first input record. If
KPOPEN2 were called with KPOPEN2 NOW IS THE TIME, the characters
NOW IS THE TIME are passed to the KPOPEN program as the first input
record. This technique will be used to end the KPOPEN program on demand.
The scheme is simple: A blank first input record (a call to KPOPEN2 without
any parameters) starts the program, and a non-blank record (a subsequent call
to KPOPEN2 with any parameter value), ends the program. To end KPOPEN

176 Desktop Guide to the S/36

from any workstation or any other procedure, simply use the line “KPOPEN2
CANCEL". “CANCEL” gets passed as a non-blank record to MRT program
KPOPEN, causing it to end and the files being held open to close. Note that
any value would work; “CANCEL” is used to aid readability.

The primary file in program KPOPEN is a WORKSTN file. KPOPEN
does not read or write to the workstation file; all input for the workstation
program actually comes from data passed as the first input record by the MRT
procedure. The program always processes exactly one input record and
releases the requester after handling this input record. Because the program
never reads or writes to the workstation device, you don't need to define a
screen format member; thus, in the F-specs, you code a KFMTS continuation
line specifying *NONE.

Technical Note

To close all files being held open by the MRT program KPOPEN, end KPOPEN from any
workstation or any other procedure by calling procedure KPOPEN2 with a first parameter
value of CANCEL (KPOPEN2 CANCEL). This causes the MRT program KPOPEN, to end,
which closes all files that are specified in procedure KEEPOPEN to be closed and causes
their storage indexes to go away.

Because all existing references to files being kept open must allow
file sharing, you may have to change file dispositions in a few existing proce-
dures. If you have files that can't be shared, you can either modify the existing
FILE statement to allow sharing, or, if the application absolutely requires dedi-
cated use of a file, you can add the necessary OCL statements to cancel the
KEEPOPEN procedure before continuing (e.g., adding // IF ACTIVE KEEP-
OPEN KOPEN2 CANCEL). If you have many programs that do not allow file
sharing for large indexed files, you may need to make a lot of changes to your
FILE OCL statements. But the performance improvements this technique pro-
vides are worth the effort.

You can optionally override the SSP default storage index size by
specifying the maximum size of the storage index desired as the second para-
meter to the KOPENF procedure. For example,

KOPENF WILMA,16

would request a 16 K storage index for file WILMA. The maximum storage
index size must be a number from one through 16. Based on memory avail-
ability, the SSP will attempt to use this value to allocate that size storage index,

Chapter 11 Prescriptions for Healthy DDM 177

but the actual index created may be smaller if enough memory isn't available.
Unlike DBLOCK and IBLOCK record buffers, memory allocated for the storage
index is never placed in a task work space; rather, storage indexes are always
in the System Queue Space of the variable nucleus.

Technical Note

If you have one application that runs all day, that application might be doing what KEEP-
OPEN would do: hold your largest indexed files open — causing their storage indexes to
be available to all subsequent users. Typical applications like this include inquiries running
on dedicated workstations or point-of-sale programs that run all day. Although chances are
that no one application keeps all of your large indexed files open, examine which applica-
tions run all day and which files they keep open before implementing KEEPOPEN.

The Proof Is in the Performance

Figure 11.4 shows benchmark results of using KEEPOPEN on a dedicated
$/36 5360 Model D with a frequently used interactive program that references
a large indexed file (630,000 records) that has one alternate index. The pro-
gram also references other, smaller files. When not using the KEEPOPEN
technique, it takes about 22 seconds to initiate the interactive program on a
dedicated system; if the system is being used by other jobs, the program
takes approximately 47 seconds to initiate. With the KEFEPOPEN technique, it
takes less than two seconds to initiate the program on a dedicated system; on
a non-dedicated system, initiation time is less than three seconds. If all the
indexed files used by the program are already open, initiation time is less
than one second on a dedicated system, and less than two seconds on a non-
dedicated system.

Using KEEPOPEN saves 21 seconds on a dedicated system and 45
seconds on a typically loaded system. When you multiply the number of
large indexed files on your system by the number of times you open those
files each day, KEEPOPEN adds up to significant time savings with little pro-
gramming effort.

Avoiding the Deadly Embrace

Even with the deficiencies we've discussed throughout this book, $/36’s DDM
deserves a lot of credit. While it's true that DDM is occasionally much slower
than we'd like, it is very reliable, and it's easy to take that reliability for grant-
ed. Yet, as robust as DDM is, there are still times when a little defensive cod-
ing can avoid record contention problems. Consider two interactive programs

178 Desktop Guide to the S/36

Figure 11.4

KEEPOPEN Performance Benchmarks
Conditions Dedicated system Typically loaded system
No storage index in memory 22 seconds 47 seconds
Indexes for the two larges files <2 seconds <3 seconds
(>630,000 records) in memory
Indexes in memory for all files <1 second <2 seconds
used by the program

both reading the same two files for update. Figure 11.5 shows that program A
has read file Y's record Y1 for update and that program B has read file X’s
record X1 for update. Each application has that record currently locked for
update. After reading those records, program A attempts to read file X’s record
X1 for update, and shortly thereafter program B attempts to read file Y’s
record Y1 for update. Program A is waiting for record X1 and program B is
waiting on record Y1. In this case, program A and program B can’t proceed
because they are both waiting on records each other has locked.

A deadly embrace has occurred. Program A is waiting on program B
to release a record and program B is waiting on program A to release a
record. These record releases are contingent upon each other and will never
happen naturally. One of the two programs must die to resolve the conflict.
The problem is especially nefarious because the deadly embrace triggers no
messages or other explicit warnings — program A and program B just sit there
waiting on the end of time.

A less critical, though often just as annoying, offense is a one-way
embrace. Here, program A reads a record for update. That record is locked
awaiting operator input and, of course, while that record is locked, no other
applications can read it for update. If they try, they wait. Quietly. If the operator
at program A goes to lunch with the locked record on her screen, other applica-
tions that request that record for update must wait for the operator to get back
from lunch. Now, this isn’t deadly. A natural, albeit slow, conclusion is possible.
But with many operators pounding on the same files, the one-way embrace can
be very annoying. Forget lunch: Other applications can be brought to a screech-
ing halt if the operator simply walks away to check on an invoice.

Note also that avoiding the one-way embrace isn't just an operator
problem. Your code probably provides a “back-up” command key to back out
of an input screen that is updating a locked record. However, unless your
code explicitly unlocks the most recently read record for update, the potential

Chapter 11 Prescriptions for Healthy DDM 179

Figure 11.5
Diagram of a Deadly Embrace
FILE X FILEY
>

RECORD Y1 |«----- 1
:
]
i
Fo---- »{ RECORD X1 i
]]
: < | !
w w
\ ol o)
N NN N
T s| |s T
s s
i i
]]
, :
IR PROGRAM PROGRAM !
A B :
........ .

exists for a one-way embrace to persist, even if your operator thought she did
the right thing by backing out of the field input screen.

The traditional coding sequence that leads to a deadly or one-way
embrace looks something like:

Display screen to get key values
Read a record from file A
Read a record from file B
Display screen for new field values
If CMD-3 go to previous screen
Update file A
Update file B
Display previous screen

Not only is this code exposed to the deadly embrace, but even if the operator
cancels the second screen with CMD-3, this code leaves the records read for
update locked — exposing the one-way embrace. Those two records will stay

180 Desktop Guide to the S/36

locked until this program reads (and locks) other records or until the operator
ends the program.

Technical Note

Batch programs, though not totally immune, are unlikely to suffer from the deadly embrace.
It takes a pause, a program waiting on something, to cause a deadly embrace. A pause
such as one caused by a divide by zero or other such error could lead to a deadly
embrace, but it's unlikely. Generally, avoiding the deadly embrace is a strategy you need
only in your interactive programs.

The solution is simple and, as the programmer, it is your responsibili-
ty. You must write a/l your interactive programs with the No-Intention-To-
Update (NITU) strategy. With NITU, each time a record is read for update,
unless immediate updating will follow with no intervening wait on worksta-
tion I/O, the record is explicitly and immediately unlocked. Later, after your
program has collected the values to write to the record for update, the record
is reread and updated.

Figure 11.6 shows a coding algorithm that uses the NITU strategy to
avoid the deadly and one-way embrace. Using the NITU strategy, records are
always immediately updated or released after being read. Records are always
locked for as little time as possible. With the code in Figure 11.6, either record
embrace situation is impossible and the user is alerted to changes made by
other users.

Figure 11.7 shows the NITU algorithm written in RPG. Note that after
the fields for each update file are listed on the I-specs, as many 256-byte fields
(RPG’s character field limit) as necessary are also defined to define record con-
tents prior to update. The INIT subroutine uses the DEFN opcode to define
“holder” fields for these values and subroutines SVRECA and SVRECB are used
to save the contents of each record. After each record has been reread, the
VLRECA and VLRECB subroutines are used to determine whether changes
have occurred since this application last read either record. Your application
will determine the strategy required if the record has been modified. For some
applications, it might be OK to continue with file update anyway; for others,
you'll need to alert the operator and provide a way for the operator to re-enter
the field values.

Using the NITU strategy is bothersome because it requires more code
and more attention to detail than the sloppy, “embraceable” code does. How-
ever, if you take the time to implement the NITU strategy in your applications,
they will be more robust and free of potential record conflicts.

Chapter 11 Prescriptions for Healthy DDM 181

Figure 11.6
An Algorithm Using the NITU Strategy

Display screen J to get key values

Read a record from file A

Save contents of record

Release record

Read a record from file B

Save contents of record

Release record

Display screen K for new field values

If CMD-3 go to previous screen

Reread record from file A

If record value = saved record value
update file A

else
another user has changed record, alert user
endif

Reread record from file B

If record value = saved record value
update file B

else
another user has changed record, alert user

endif

Display previous screen

Who is the Culprit?

Agreeing with the need for the NITU strategy is one thing; re-engineering all
your applications to use it is another. You probably don't need to sit down
this weekend, slogging through all your interactive applications and convert-
ing them to the NITU strategy. But each time you modify or fix Gf your appli-
cations are like ours, a little bug spray is needed now and then) one of those
applications, consider adding NITU coding to them. In the meantime, you’ll
need help spotting the nefarious deadly and one-way embraces we talked
about. Utility SHOWUR is just what you need.

SHOWUR determines which records for a file are locked and which
job is responsible. By using SHOWUR, you can zero in on the “embracing” cul-
prit and force an end-of-job to the offending application. Without SHOWUR,
you're left with few clues as to what’s wrong, only that something is.

The utility comprises procedure SHOWUR, RPG program SHOWUR,
assembler routine SUBRUR, and screen format member SHOWURFM. (All of the
code is included on the “Desktop Guide” diskette.) To use the utility, simply key
in SHOWUR followed by the name of the file you're interested in. The resulting
screen (Figure 11.8) displays a list of jobs using the file, as well as other related

182 Deskiop Guide to the 5/36

I DU
H

FCRT co
FFILEA UC
FFILEB UC
-

IFILEA NS
1

1

1

1

1

1

1

1

1
1

IFILEB NS

[S

(s X o] OO0 &
.

OOO0OO0O0O0O00

Figure 11.7

RPG Code Incorporating the NITU Strategy

200
512
1024

FIRST

RNFA

WORKSTN
R 7Al 4 DISK
R11Al 1 DISK
1 1 AFLD1
3 4 AFLD2
5 7

AFLD3

510 510 AFLD22
511 512 AFLD23

®* Deofine fields to save record value:

1 256 RECA1
257 512 RECA2

1 4 BFLD1
5 9OBFLD2
9 11 BFLD3

10231023 BFLDA41
10241024 BDLF42

®* Define fields to save record value:

1 256 RECBI1
257 512 RECB2
513 768 RECB3
7691024 RECB4

IFNE °1°

EXSR INIT

MOVE ‘1° FIRST 1
END

®* Perform screen 1/0 that brings in key values used
®* to randomly read records from file A and file B:

EXCPT screen format
READ screen format

EXSR READFA Read file A record
IFEQ '@’ If record read
EXSR SVRECA save record value
EXCPT@RELA and release record
ELSE

...Do processing here for record
...from file A not found
END

Continued

Chapter 11 Prescriptions for Healthy DDM 183

Figure 11.7 Continued

S I

000200 3.

EXSR READFB

1FEQ ‘0’

EXSR SVRECB

EXCPT@RELB

ELSE

...Do processing here for
...from file B not found
END

RNFB

record

OoO0OO0O0O0O0O0

»

* Perform screen 1/0 to get new values for
* fields for rec A and rec B here.
EXCPT screen format
READ screen format
KC ...cancel working on this format
* Command key here canceling current work with the
* previously read records is OK because the records
* were released when they were read.

c
c
c

c EXSR UPDFA
c EXSR UPDFB
c .
c . program continues
*
-
»
B e e m e m - - === == === = -
* Read FILEA
B e e . —— - - - - === -
CSR READFA BEGSR
c keyval CHAINFILEA 55
C...55 MOVE *1° RNFA 1
C N55 MOVE ‘@' RNFA
C ENDSR
W e e e e e —. - — . — - —————— - ————— = -
* Read FILEB
B e m = - = m - = = ——— = == = —
CSR READFB BEGSR
c keyval CHAINFILEB 55
c 55 MOVE *'1° RNFB 1
C N55 MOVE '©° RNFB
c ENDSR
W o e e e m - - = - = = - - == = -
* Save contents of record A
B e e e mc e — - = - ————— = ———— -
CSR SVRECA BEGSR
c MOVE RECA1 HRECA1
c MOVE RECA2 HRECA2
c ENDSR
® e m e e e e mEmmcfem A mm e mem e mE————————————
* Save contents of record B
W e A e e e e e eree ;e _—— . ——————————————
CSR SVRECB BEGSR
c MOVE RECB1 HRECB1
c MOVE RECB2 HRECB2
c MOVE RECB3 HRECB3

.6 ..

T

Read file B record
If record read

save record value
and release record

Update file A record
Update file B record

Read file A record
Record not found
Record found

Read file B record
Record not found
Record fount

Continued

184 Deskiop Guide to the S/36

Figure 11.7 Continued

* Move screen fields
* then update record A

P I LI S < IR TR S SN . TR
[MOVE RECB4 HRECB4
c ENDSR

B o et cc e m e = e e .- - - - .- .- - .-

* Validate contents of record A

B et cc e ce e o - == - - - - - - .-
CSR VLRECA BEGSR

* Validate contents of record A
c MOVE '@’ RNVA 1
c RECA1 COMP HRECA1
C 55 RECA1 COMP HRECA2
C N55 MOVE ‘1° RNVA
c ENDSR

& e c e s srCLus T e E e E e —E .. .- -

* Validate contents of record B

B e e m e === ——— " = - .
CSR VLRECB BEGSR

* Validate contents of record B
c MOVE ‘©° RNVB 1
c RECA1 COMP HRECB1
C 655 RECA1 COMP HRECB2
C 55 RECA1 COMP HRECB3
C 65 RECA1 COMP HRECB4
C N55 MOVE °1° RNVB
c ENDSR

B o e c c e Ce" = - - " - = ———————— -

* Update FILEA

B e e - - - - - - - - .
CSR UPDFA BEGSR
c EXSR READFA
c RNFA IFEQ ‘0@’
c EXSR VLRECA
c RNVA IFEQ 'O°

to output fields here

EXCPT@UPDA
ELSE

EXCPT@RELA
EXSR BUFCHG

END
ELSE

* Unlikely, but possible that record was deleted
* since this program read the record, perform that
® error processing here

EXSR FILERR

BEGSR

EXSR READFB
IFEQ ‘@'
EXSR VLRECB

Record not valid
556 Equal
55 Equal

Record not valid
55 Equal
55 Equal
55 Equal
55 Equal

Reread file A

Record still there?
Record A still valid
Record not changed

Update record

Release record
Notify user

®* Notify user here that buffer has been changed since
* last read, then release record

Reread file B
Record still there?
Record B still valid

Continued

Chapter 11 Prescriptions for Healthy DDM 185

Figure 11.7 Continued

J I T T T U S D ST - DU SR
RNVB IFEQ ‘@’
REC IFEQ VOLDB Record not changed
* Move screen fields to output fields here
* then update record B

[Ne 4

* EXCPT@UPDB Update record
c ELSE
C EXCPT@RELB Release record
c EXSR BUFCHG Notify user
c END
c ELSE

* Unlikely, but possible that record was deleted

since this program read the record, perform that
* error processing here

c EXSR FILERR

¥ END

¥

CSR BUFCHG BEGSR

* Notify a user here that a record buffer was changed

* prior to update. Your application will determine

* exactly what strategy should be employed here.

* It might be 0K for the program to continue, or it might
* need to step back to allow the operator to re-enter the
* field values.

CSR FILERR BEGSR
* A record has been deleted since being read during current
* editing cycle. Abort processing here.

c ENDSR

CSR INIT BEGSR
* Define fields to hold record contents during update
* Buffer to hold record A contents

c *LIKE DEFN RECA1 HRECA1
¥ *LIKE DEFN RECA2 HRECA1
* Buffer to hold record B contents
c *LIKE DEFN RECB1 HRECB1
c *LIKE DEFN RECB2 HRECB2
c *LIKE DEFN RECB3 HRECB3
c *LIKE DEFN RECB4 HRECB4
c ENDSR
B e e hc e m - ———————————————————————————
ORECA E @RELA
* Note no output fields on release output operation
ORECA E @UPDA
0 new field values here
0 new field values here

-

Continued

186 Desktop Guide to the S/36

Figure 11.7 Continued

T B S P B O S S DAV S
ORECB E @RELB

* Note no output fields on release output operation

ORECB E @UPDB

0 new field values here
0 new field values here

Figure 11.8
SHOWUR Screen

e

Records in use for file CUSTMAST

“\\\

Job name
W2113118
W3103434
W4092251
w5103431
Y2103856

ssEndee

User
Fred
Wilma
Barney
Betty
Betty

\\jijI keys-page

ist Proc
LIBR#
CUSBAL
CUSBAL
CUSBAL
CUSBAL

Cur Proc
FLEDIT
CMAINT
CMAINT
CUPDAT
CDELET

Prog
FLEDIT
CMAINT
CMAINT
CUPDAT
CDELO1

Enter-update

RRN
00003241
00003241
00000200
00001565
00001565

Owned Waiting

Y

Y
Y

Y
Y

CMD7-End program A///

information. The Roll keys let you page through the entries. If no data is shown
on the screen, the specified file is either not on the system or not being used by
any tasks. After displaying its initial screen for the file you entered, you may also
change the name of the file to look for locks in other files.

Three columns in the display indicate where a record lock may exist.
Column RRN shows which of the file’s records a job has last read. If the job
has not released the record after reading it with intent to update, a “Y” will
appear in the OWNED column. If other jobs are trying to use the same record,
a “Y” appears in the WAITING column. In such instances, as illustrated by Fig-
ure 11.8, a record lock exists. Other applications must wait until the program
that caused the lock unlocks the record or until that application ends before
they can acquire it.

Chapter 11 Prescriptions for Healthy DOM 187

With the information provided by SHOWUR, you can take the appro-
priate action to unlock the locked record. If the lock was caused by a one-way
embrace at an operatorless workstation, unlocking the record is a simple mat-
ter of ending that application appropriately. If the lock was caused by a dead-
ly embrace, a little program triage is required. Only one of the applications
with a locked record can survive — the decision rests with you!

A Ray of Light

As we said at the beginning of this chapter, getting the most out of DDM
means understanding its limitations and working around its weaknesses. This
chapter has provided the ray of light you need to find DDM’s weaknesses on
your system and the tools and strategies you need to work around them.

We bit off a lot in this chapter. Don't worry about doing everything
discussed here at once. For starters, load Index Doctor and run it against a
couple of your large indexed files. With Index Doctor’s reports and Chapter
3’s DDM discussion, you should have a good handle on S/36 DDM and how it
works. Then use Index Doctor to diagnose all your large, heavily used
indexed files and take the appropriate action steps. You'll be amazed at the
results that just a little explicit keysorting or more frequent file reorganization
will bring. Then later, consider the other strategies mentioned in this chapter
and what their merits might be for your applications. With a tweak here and a
nudge there, S/36 DDM can actually work for you, not against you!

Chapter 12 A Baker's Dozen DDM Tips and Techniques 189

Chapter 12

A Baker’s Dozen DDM
Tips and Techniques

Chapter 11 provided you with four broad strategies for reigning Disk Data
Management’s (DDM'’s) choke hold on performance. In this chapter, which
closes our section on DDM, we'll cover a baker’s dozen tips and techniques to
further help you tweak and tune DDM'’s performance.

Before we dig in, there is perhaps a fourteenth tip — one you've
heard many times related to many subjects — we should discuss before we
get to the baker's dozen. That tip: Don't fix it if it ain't broke! In every case,
these tips and techniques provide ways for you to improve — sometimes
offensively and sometimes defensively — DDM performance on your S/36.
You probably have applications that don’t run as fast as they should — but
many of those probably run as fast as they need to. Before you roll up your
sleeves and start applying all these tips, diagnose your applications, and their
bottlenecks, and determine the overall effects of those bottlenecks on your
system. Know what’s broken before you start applying the fix. Use as many of
the baker’s dozen as you need, but “use ’em only where you need 'em.”

1. Consider alternate indexes as an alternative to #GSORT
For those times when you need to process an entire file in a specified sequence
in a batch process, consider using an alternate index instead of an ADDROUT
or TAGALONG sort. Creating an alternate index with the BLDINDEX procedure
or using an ADDROUT sort each take about the same amount of time. The
TAGALONG sort comes in dead last. For example, to sort a 17,000-record file
with a 320-byte record length and a 22-byte key took BLDINDEX 1:51,
ADDROUT 1:56, and TAGALONG a sluggardly 10:24.

Simply creating the access path isn’t the whole story, though. You
also must consider the time required to actually read the data. For the 17,000-
record file, it took 8:53 to read through the entire file via the alternate index,
14:12 via the ADDROUT file, and only 25 seconds via the TAGALONG sort
file. (In each case, a 16 K data or index buffer was used.) The total times,
then, to sort and process the file were:

BLDINDEX ADDROUT TAGALONG
Create alt index or sort file 1:51 1:56 10:24
Read data file 8:24 14:12 0:25
Total time 10:15 16:08 10:49

190 Desktop Guide to the S/36

. Performance Tip

For batch processing
a file In a speclfied
sequence, use a
TAGALONG sort i
you have abundant
disk space. It offers
the best comblination
of fiexibllity and
speed. If you often
process entire files In
a speclfied sequence,
conslider using an
alternate Index
Instead of #GSORT.
Here you'll get the
speed of the
TAGALONG (or
almost) without its
voraclous appetlte for
disk space.

The total performance using an alternate index edged out the TAGALONG as
the fastest way to read a file in a specified order. Each method, though, has
limitations that should not be overlooked. The ADDROUT, as you've seen, is
slow. The alternate index method works only for those times when you need
to process the entire file; you cannot create a conditional altemnate index (e.g,,
alternate indexes always include all the records in the file). For large files, the
TAGALONG method requires lots of free disk space. If you often process the
entire file in your batch file processing, use the alternate index method; if you
have lots of disk space and often need to conditionally include or omit records,
use the TAGALONG method — if you have the disk space it always offers
speed and flexibility. For disk-bound programmers who need to process just
part of a file, the slow ADDROUT method is sometimes the only alternative.

2. Consider replacing indexed files with sequential files and alternate indexes
Consider sequential files with alternate indexes instead of traditional indexed
files for your large files that require random access. Despite slight additional
overhead, used prudently the alternate index is the best way to handle indexed
files on the S/36. With alternate indexes, you gain key update ability. You can
also put the parent file on a different drive than the alternate and thereby
improve performance,

If the file must be reorganized, the “file” on which the COPYDATA pro-
cedure or $COPY program should run is the alterate index whose order, by
the definition of its key, most closely approximates the order in which the file is
most frequently accessed. The rule holds true regardless of whether or not mul-
tiple keys are defined for the file. A REORG would be specified, but the output
file would be sequential (S). The sequential file would be created in key
sequence order as determined by the alternate used to initiate the REORG. The
closer the relationship between a file’s most frequently used key order and that
file's physical record sequence, the faster that file can be processed.

After the file has been reorganized, the “disorganized” file must be
deleted. But before deleting the disorganized copy, you must delete its alter-
nate indexes. After all alternates and the disorganized parent have been delet-
ed, the newly organized parent may be renamed to the name of the original
and its alternate index (or indexes) may be rebuilt.

After the file reorganization, processing the parent sequentially by
“key” is very fast. There is no index being used to read the records, so you
don’t have to worry about providing buffer space (via IBLOCK) to index
blocking; simply use as large a DBLOCK value as possible. Remember,
though, to be prudent in the number of “permanent” alternates you maintain
over the parent sequential file. Too many, and the technique will probably
impede, not enhance, performance.

Chapter 12 A Baker's Dozen DDM Tips and Techniques 191

3. Keep alternate indexes to a minimum

At first, it might seem like this tip is in direct opposition to the first two. It's
not. Use alternate indexes where you need to — they are very handy and easy
to use — but only where you need to. Remember, keeping many unnecessary
alternate indexes on a file can slow interactive performance. When a batch
program adds records to a parent file while interactive programs are using an
alternate index (or indexes) built on that parent file, interactive response time
diminishes considerably. Remember, when records are added to a shared file,
DDM must keep the overflow areas in key sequence. The DDM shuffling of
the overflow of the opened alternate indexes will slow performance.

When records are added to a parent file and existing alternate indexes
are not opened by any program, index entries are written in arrival sequence to
the closed alternate index’s overflow area — with the assumption that a subse-
quent keysort will reorder the overflow area. This is referred to as “delayed
maintenance.” Relying on delayed maintenance makes record addition to the
closed alternate indexes fast, at least when compared to adding the records to
opened alternate indexes; but the next application needing these stale alternates
pays the price. That application will bide its time during initiation while DDM
furtively keysorts the previously unopened alternate index’s stale overflow area.

If possible, design your applications to build alternate indexes as
needed and then delete them as soon as possible. For heavy-duty batch adds,
you might even find that deleting and rebuilding an alternate index is faster
than enduring the DDM-called keysort required at job initiation to freshen a
stale overflow area.

As we've referred to elsewhere in this book, don't forget to minimize,
or eliminate entirely, duplicate keys. Adding many records with duplicate keys
will bring performance to its knees. See the tips in Chapter 3 for avoiding
duplicate keys. Remember also that when a key value is changed in an alter-
nate index, the effect is the same as adding a new duplicate key. Figure 12.1
shows a key value that has been changed to 46953. This key value is associat-
ed with relative record number 51. DDM must insert this new key in the over-
flow as though a new key were being added. The ripple-down add required
to add this “changed” key will impede performance.

4. Spindle placement is more important than file placement

Many S/36 performance tuners spend lots of time juggling the placement of files
on a disk to minimize the disk seeks greater than 1/3, as reported by SMF. It's
generally accepted that if 20 percent or 30 percent of your disk seeks are greater
than 1/3 of the maximum seek distance, performance suffers. It is true that the
less head movement, the better; but close file placement of related files is greatly
overrated. Most of the disk seek time is spent starting and stopping the disk arm
— the actual distance the disk arm moves is not really so important.

Performance Tip

Changing a duplicate
key value In an
altenate Index has
the same detrimental
effect as adding
duplicate keys. In
elther case, a ripple-
down add will most
likely be needed to
add the records,
dramatically affecting
performance. The
moral: Avold
duplicate keys In an
alternate Index.

182 Deskiop Guids fo the S/36

wre 12.1
Changed Duplicate Key \Flglue Causing Ripple-Down Add
Key RRN
38621 117
38621 131
Key RRN 48953 3
46953 | 51 |-» 46953 67
46953 149

Consider the following timings for a 200 MB 9332 drive:

Acceleration time 4.00 ms
Seek time .01 ms/cyl
Settling time 4.00 ms
Rotationa) delay 10.00 ms

which result in the following times:

Seck over entire disk (1349 cylinders) takes 31.5 ms
4+(1349°* 01)+4+10=315ms

Seek over 2/3 of disk (900 ¢ylinders) takes 27.0 ms
4+(900°.01)+4+10=27.0ms

Seek over 1/3 of disk (450 cylinders) takes 22.5 ms
4+(450°.01)+4+10=225ms

Seek of one track takes 18.1 ms
4+.1 +4+10=181ms

A seek over the entire disk takes 31.5 ms, yet 2 seek of just one track still
takes 18.1 ms! Performance is measured in milliseconds and 18.1 ms is indeed
better than 31.5 ms, but that is the most extreme example. In production envi-
sonments, the disk seek variations are more likely to hover in the middle of
the tirnings, where there just isn't much performance difference. So, yes, close
placement of related files saves time, but it doesn't save a lot of time,

Chapter 12 A Baker's Dozen DDM Tips and Technigues 193

What is far more important than file location on a single drive is file
placement on the appropriate drive. Your goal is to distribute file placement
evenly across all drives. If your system has more than one spindle, check to
make sure usage is balanced across all available spindles. No one drive usage
should deviate more than 10 percent from the other drives. For a drive to vary
more than that means it's doing more than its share of the work — and slow-
ing your performance. One or more inactive spindles is far more damaging to
performance than “incorrect” file placement across a single drive. Try to split
all files across all drives. For example, when you use alternate indexes, try to
group the alternates on one spindle and the parent on another. See Chapter
13 for specifics on using SMF to measure file placement and disk utilization.

Technical Note

Myth debunked: Close placement of related files on one spindle is greatly overrated! It is
far more important to spread file usage evenly across all spindles than it is to worry about
individual file location on a given spindle. Worry less about disk seeks greater than 1/3 and
more about balancing your disk utilization. No one drive’s utilization should deviate more
than 10 percent from the other drives’ utilization.

5. Share if you must

Another popular myth is that shared file disposition always negatively affects
random record retrieval. The theory goes that using the DISP-SHRxx keyword
automatically forces a reread of every blocked record on every READ or
CHAIN operation — so don’t DBLOCK a shared file. The truth is that the S/36
only rereads a block if another task updates a record currently contained in a
data buffer. DDM is smart enough to know dynamically when a buffer is out
of date and then, and only then, is a buffer refresh required — not simply
because the file is using the DISP-SHR keyword in its // FILE statement. For
those batch update-add programs that might occasionally share a file with an
on-line inquiry program, go ahead and share the files. The convenience of
having the inquiry program available probably overweighs the few times
when its use might cause DDM to refresh the batch program’s data buffer.

For a different reason, though, you might want to avoid sharing all
files all the time. We've previously discussed the performance impact of
adding random records to an indexed file. As you well know by now, when
the file is shared, DDM must keep the overflow area in key sequence. When
records largely out of key sequence are added to a shared indexed file, DDM
huffs and puffs to keep the overflow ordered. When you add a large number
of records to an unshared file, DDM simply squirts the new keys into the

Performance Tip

If your 5/36 has more
than one disk spindle,
create alternate
Indexes on a spindle
other than the one
where the parent file
Is located. During
access via altemate
Indexes, this will help
eliminate the
movement required
by the disk heads to
find Index entries and
records — thus
improving
performance.

194 Desktop Guide to the S/36

index overflow in arrival sequence — not in key sequence. In this case, the
record addition will be much faster, but the next person to use the index will
wait while DDM uses delayed maintenance to keysort the overflow in key
sequence. Consider adding random records to an unshared file, and then
immediately forcing a preemptive real keysort on the updated file (see Chap-
ter 3 for details about forcing a real keysort on a file).

6. Do some of DDM’s work yourself

Another way to get a leg up on DDM is for you to do a little of its work. We've
just discussed that by adding records to an unshared file, you defer, but don't
avoid, some of the DDM huffing and puffing required to maintain the index
overflow area. A way to avoid the huffing and puffing and to avoid delayed
overflow maintenance is to presort the input file in key sequence before
adding it to the indexed file. When the input file is in key sequence, keys are
added to the overflow in key sequence; ripple-down adds will not occur and
delayed maintenance is not required to maintain the overflow area. Presorting
the input file will be as fast as if random records were being added to an
unshared file without the penalty of delayed overflow maintenance.

Test results show that it takes 2:33 to add 1,000 random records to a
shared indexed file without presorting them. A BLDINDEX to create an alter-
nate index took 13 seconds (in effect, sorting the input file in key sequence)
and the RPG program to add the records took 19 seconds — for a total of 32
seconds. Almost five times as fast! And that’s for a relatively small number of
records. Notice that is a perfect time to use an alternate index over #GSORT
— no conditional inclusions or exclusions are required for the input file; just
don't forget to delete the alternate index after the records have been added.
The moral: When you can, presort input files in key sequence.

7. Take the bypass

When DDM attempts to add a record to a file, it scans the entire index (as
well as the overflow area) to see if the key to be added already exists in the
file. As more records are added to the file, this duplicate-key checking takes
longer and longer.

If duplicate keys are not a concern, perhaps because you know that
no duplicate keys will ever exist in the file (e.g., your program checks first
before adding the new record), you can speed the addition of many records to
an indexed file with the // FILE statement’s BYPASS-YES parameter. Specifying
YES for this parameter tells DDM not to check either index area (the primary
or overflow) for a possible duplicate key, and causes the record to be quickly
and directly added to the file. Note that for indexed files that are duplicate-
key-capable, DDM always bypasses duplicate-key checking, even if BYPASS-
NO is specified.

Chapter 12 A Baker's Dozen DDM Tips and Techniques 195

The larger a file becomes the longer duplicate-key checking takes.
Therefore, record-adding performance is often contingent on the size of the
file. Using BYPASS-YES for jobs that add lots of records to large indexed files
will make them perform more consistently. At the end of each month, it won't
take very much longer to add records to the file than it did at the beginning of
the month. Consider using BYPASS-YES when the output file is DISP-OLD or
when your application checks for duplicate keys before adding them. Perfor-
mance will increase substantially when BYPASS-YES is used when many
records are added to a large indexed file.

8. Avoid being underextended

As a way to avoid full files, the // FILE parameter EXTEND-x is a often a life-
saver. However, using too small an extend value (either with EXTEND-x or as
the default value when the file is built) often can wreak pure havoc with per-
formance.

For sequential, direct, and alternate index files, if enough disk space is
available immediately after the file to accommodate the extend, that disk
space will be used to extend the file. If enough disk space is not available, or
if the file is an indexed file, when a file is extended it is copied to another
place on disk that has been allocated storage based on the original file size
plus the extend value. For all practical purposes, plan defensively for all file
extends to require the entire file to be copied to another place on disk. The
problem occurs when too small an extend value is specified, causing several
extends to occur in one session.

Disk extends are annoying because they can take a long time to per-
form for a large file. But more importantly, without enough disk space and/or
with EXTEND values too small, file extend operations can fail — and that is
really annoying. Figure 12.2 illustrates the sequence of events that occurs
when a file is extended. You want to avoid having the first extend fill most of
your available contiguous disk space, leaving too little contiguous disk space
available for subsequent file extends. Consider a system with 16,000 free con-
tiguous blocks. When a file originally allocated at 8,000 blocks, with an extend
value of 100 blocks, becomes full, its extended size requires 8,100 of the
16,000 current free contiguous blocks. If that same file exceeds its allocation a
second time, there is not enough free contiguous disk space on your system
for it to extend again. Your application will experience an untimely demise.

There are a couple of lessons here. First, strive to always have plenty
of free disk space available. To the point, as we advocated in Chapter 3, of
perhaps buying more. And compress disk space often. Lots of fragmented
disk space is of little value. As much free contiguous disk space as possible
minimizes the chances of a file-extend operation failing. Second, review all
current extend values (either those specified when the file was created or

196 Desktop Guide to the S/36

Figure 12.2
Sequence of Events for an Extended File

If the file is non-indexed or an alternate index then
If additional space is available immediately after the file then
Extend the file by moving the end-of-file pointer
(extend in place)

Else
If a large enough contiguous area of disk space
is available for the extended file then
Copy the file with its new size to that area
of disk
Else
Issue file full message
Endif
Endif

Else
If a large enough contiguous area of disk space
is available for the extended file then
Copy the file with its new size to that area of
disk
Extend all associated alternates
Else
Issue file full messsage
Endif
Endif

those specified with the EXTEND-x parameter). Extend values should always
extend the file at least by as many records or blocks as can be added to the
file at one time. Note also that OCL EXTEND-x values override the default
extend value used when the file was created.

9. Change default file extend value easily

The S$/36 doesn’t provide any direct way to change a file’s default extend
value without copying the file — which, for large files, requires lots of free
disk space and takes a long time. Furthermore, there isn't an EXTEND parame-
ter provided for the COPYDATA statement, and the manuals don't tell you
how to change a file’s default extend value using IBM-supplied programs. By
making the default extend value hard to change, the S/36 locks you into man-
aging extend values with the // FILE statement’s EXTEND-x parameter.

To make it possible to quickly and easily change a file’s default extend
value, without copying the file, we have provided FILEXTND, a simple com-
mand-line utility to retrieve or directly change a file’s default extend value.
Remember that using the EXTEND-x keyword in OCL overrides the file’s default
extend value, so you can always temporarily override a file’s default extend value.
Use FILEXTND when you want to change the global default file extend value.

To retrieve a file’s extend value, use:

FILEXTND file name,GET

Chapter 12 A Baker's Dozen DDM Tips and Techniques 197

To change a file’s extend value, use:
FILEXTND file name,PUT,new extend value

If the specified file does not exist, no operation is performed and no
message is displayed. When FILEXTND gets a file’s extend value, it puts that
value in positions 1-8 of the user area of the Local Data Area. As a bonus, when
getting the file’s extend value, FILEXTND also puts the file allocation type
(R=records, B=blocks) in position 9, the number of records or blocks allocated
in positions 10-17, and the number of records used in positions 18-25.

To change a file’s extend value, use a 1- to 8-digit block or record
value that specifies the amount of additional space to use for the extension.
To remove a file’s default extend value, specify 0 (zero) as the new extend
value. With FILEXTND, your file extend strategy can now be managed in one
place, rather than sprinkled throughout many inconsistent EXTEND-x parame-
ters in several different procedures.

Technical Note

Although not documented anywhere, you can also change a file’s default extend value by
adding the // FILE statement's EXTEND parameter to $COPY’s COPYO file statement:
// FILE NAME-COPYQ,LABEL-label name,UNIT-F1,EXTEND-x

But remember, this requires disk space and time. It's much easier to change file extend
values with FILEXTND.

10. Don’t pack 'em in
The S/36 has native hardware instructions to perform zoned-decimal arith-
metic. However, to perform arithmetic on RPG or COBOL packed or binary
fields, additional processor-intensive routines are required to convert those
fields to zoned-decimal format. Usually, packed and binary representation is
used to save disk space; but as we've said before, you should have lots of disk
space. The S/36 can deal fastest with zoned-decimal numeric values — there
is no conversion necessary — with packed storage being second fastest and
binary the slowest.

Consider the following performance timings when a program reads a
10,000-record sequential file with 12 9-digit numbers in each record and then
provides a total of the 12 numbers for each record:

Zoned decimal 4:05
Packed 7:19
Binary 20:36

198 Deskiop Guide to the S/36

Packed storage almost doubles the time taken to process the file and binary
storage goes off the chart! For pure performance purposes, if you have the
disk space, design all your new applications with zoned-decimal storage.
Zoned storage is faster and it’s easier to use for conditional sorting. Consider
using packed or binary storage when records are infrequently read and disk
space is at a premium.

Technical Note

The AS/400 works fastest with packed data storage. its performance is impeded by zoned-
decimal storage. Conversion routines are required to transfer to memory data stored in
zoned-decimal and binary. If you are designing new applications on the S/36 that you think
are very likely to be migrated to the AS/400, consider the performance on each machine
before you make a final data storage decision for your new applications.

11. Reorganize files often — the easy way

We have mentioned many reasons in this book why you should reorganize
your indexed files frequently. However, with its orphan alternate indexes (quick
now, how many alternate indexes do you have on your systein, who are their
parents, and what are their key descriptions?) and the long list of parameters
that COPYDATA requires, the S/36 is certainly not reorganize-friendly.

To automate the process of reorganizing indexed files and rebuilding
all dependent alternate indexes, we have included REORGX on diskette, an
indexed file reorganization utility. REORGX will do everything that COPYDATA
does (reorganize a parent file in key sequence, resize a file, optionally remove
deleted records, and optionally include or exclude specific records). But
REORGX does considerably more than COPYDATA does (and it also does more
than RGZFILE in the IBM S/36 VASP package). REORGX's added features are:

e REORGX automatically deletes all dependent alternate indexes before
reorganizing the parent file and then automatically rebuilds them after
the reorganization. When REORGX initiates, it checks the VTOC to
see what dependent alternate indexes currently exist over the parent
— thus always deleting and rebuilding the alternate indexes that were
on disk just before reorganizing the parent.

In addition to letting you specify a preferred location for the parent
file, REORGX also lets you specify the preferred location of the alter-
nate indexes. If preferred locations are not specified, REORGX will
attempt to locate alternate indexes on a spindle other than the one
containing the parent file.

Chapter 12 A Baker's Dozen DDM Tips and Techniques 199

* REORGX provides a way to “grow” or “shrink” a parent as a percent
of its current allocation.

* REORGXs last extra feature is that in addition to including records by
specific positional character value (just as COPYDATA does), REGORX
allows from/to record selection by relative record number or key value.

Using REORGX is very much like using COPYDATA — just a little
more convenient. REORGX’s two prompt screens are shown in Figures 12.3a
and 12.3b. For most uses of REORGX, you’ll rarely use the second prompt
screen. Figure 12.4 shows REORGX's syntax when calling it from a procedure.
With REORGYX, it’s easy to maintain your system’s indexed files. Use REORGX
frequently on your indexed files to clean up index overflow areas, to remove
deleted records, and to resequence parent files in physical key sequence.

12. Provide lots of disk space for KEYSORT

Chapter 3 discussed how important it is for your S/36 to have plenty of disk
space. One of the major reasons you need lots of disk space is to minimize
the chances of KEYSORT performing an in-memory KEYSORT. Recall that
there are actually two kinds of KEYSORT:

» A work-file KEYSORT used when enough disk space is available
e An in-memory keysort, used when enough contiguous disk work-
space is not available for the KEYSORT’s work files

An in-memory keysort will take much longer than a work-file keysort.
In fact, literally, an in-memory keysort on a large file can take days! (See
Chapter 3 for a formula to use to ensure that your system has enough free
disk space to perform a work-file keysort on your largest file.) As if in-memory
keysorts weren't bothersome enough, they are also sneaky. You are not alert-
ed to the fact that one is taking place. When an in-memory keysort occurs,
your S/36 just sort of saunters its way through the in-memory keysort, bringing
performance to its knees along the way. Oh, you'll know something is wrong
— but you won't know what.

The only way out of an in-memory keysort is to IPL your machine —
in the middle of the offending keysort — bypassing file rebuild, clearing off
enough disk space, and IPLing a second time — this time with file rebuild. The
remedy is unnerving though, because you're never 100 percent sure what it is
you're trying to cure. The S/36 provides no explicit way to determine if an in-
memory keysort is taking place.

To solve the problem of how to detect an in-memory keysort, we've
provided the SLOWKS command-line utility. SLOWKS takes just a second to
run and returns a message indicating whether or not an in-memory keysort is
occurring. When you suspect an in-memory keysort is taking place, first end

200 Desktop Guide to the S/36

Figure 12.3a
REORGX Prompt Screen #1

/ REORGX Procedure Optional-* x

Reorganize an indexed file and rebuild related alternates
Name of file to be reorganized.

Creation date of file to be reorganized *
Name of new file to contain copied records

Reallocate unit or increase/decrease from current allocation. . *
BLOCKS, RECORDS, INCR, DECR

Size of file to be created or increase/decrease percent value . *
BLOCKS/RECORDS: 1-8000000 INCR/DECR: 1 to 100

Preferred parent disk location . . . A1,A2,A3,A4.block number -
Preferred alternates disk location . A1,A2,A3,A4,block number .
Type of file retentionTJ0 T

Reorganize sequentially by key and/or omit deleted records . .
NOREORG ,REORG NOREORG

\\\‘CMD 3-Previous Menu CMD 4-Put on job queue CMD 14-More options A///

Figure 12.3b
REORGX Prompt Screen #2

///’7 REORGX Procedure Optional-* ﬂ\\\

Include or omit selected records [INCLUDE,OMIT *
Starting position of comparison characters 1-4096 *
Condition for record selection EQ,NE,GE.GT.LE,LT -
Comparison characters ‘characters’
Select record. key or packed key. RECORD. KEY, PKY *
From value . .o
To value
Record length of new file 1-4096 .
Maximum number of records to copy *

\\\‘FMD 2-Page back CMD 4-Put on job queue A///

http:EQ.NE.GE.GT.LE.LT
http:Agure12.3a

Chapter 12 A Baker's Dozen DDM Tips and Techniques 201

Figure 12.4
REORGX’s Syntax When Calling from a Procedure

yymmdd RECORDS. records
INCR. incr value

REORGX old file name,|mmddyy| new file name. [, .
ddmmyy BLOCKS.blocks
DECR.decr velue

Al (parent)| .|A1 (elts)|.|T | [NOREORG|, |INCLUDE .Eositioi] EQ| .
A2 A2 J REORG OMIT NE
A3

A3 LT
.Y A4 LE
block no block no 6T

[‘characters] . [racord 1engt€| . Enaximu- recordﬂ

ngom] . I:rrom value]. [to valuo:|

PKY

normally all the active jobs you can (you won't be able to end the offending
job that caused the in-memory keysort). After narrowing the list of possible
offending jobs, type in:

SLOWKS jobname

for each remaining job. If one of the remaining jobs is being hung by an in-
memory keysort, SLOWKS will tell you. After confirming that a slow keysort is
running, perform the steps mentioned above to bail out of the slow keysort.
By telling you exactly what is happening, SLOWKS makes that first unnerving
IPL a little easier to perform.

13. Put memory to work for system programs
As programs and their associated data buffers need memory, the $/36 doles it
out in 2 K chunks called pages. The combined pages of memory used by a pro-
gram and its data buffers are referred to as the program’s region. The default
region size is 24 K and can be as large as 64 K. You can use the REGION OCL
statement to change the default region size used for a job, or you can use the
SET procedure to change the default region for an entire workstation session.
Increasing region size does nothing to improve the performance of
your user programs. You can only provide more memory to them to improve
performance through record and index blocking (see Chapter 11). However,

202 Deskiop Guide to the 5/36

Performance Tip

Specltying a
larger reglon slze
(with // REGION or
with the SET
procadure)
provides more
memory to
#GSORT and
$COPY to butfer
disk I'O. Think of
using a larger
reglon slze as a
way o Increase
the record
blocking factors
for these system
programs. The
reglon size doas
not atfect your
application
programs at all;
they can only be
gliven more
memory for disk
VO butfering with
explicit (vla
DBELOCK and
IBLOCK or the
program’s F-apac)
record or index
buttering (see
Chapter 11).

#GSORT and $COPY (the system programs used by COPYDATA, LISTDATA
and LISTFILE, SAVE and RESTORE, and SAVENRD) can be speeded up by
providing a larger region size to them. When a larger region size is available,
these programs use it to buffer disk 1/O.

Beware: Just as with record blocking for your application programs,
larger region sizes can result in performance-inhibiting disk swapping.
Remember, real memory is a finite resource and when a system program takes
advantage of a larger region size, it might be doing so at the expense of an
application program that also wants that memory. Generally, you should avoid
using the SET procedure to change the default region size to 64 K for an
entire session. It is much better to specify a larger region using the // REGION
statement in your procedures that use #GSORT or $COPY.

Although a larger region size can benefit #GSORT and $COPY, the
same cannot be said for all system programs. 5/36 users have long debated
whether or not a larger region size speeds up the COMPRESS procedure. It
does not. For a system program to use memory made available by a larger
region, the program must first make an explicit GET PAGE supervisor call to
enable that program to use the larger region’s additional memory. COMPRESS
does not perform the GET PAGE supervisor call and therefore does not take
advantage of the extra memory. Few other system programs are as disk inten-
sive as #GSORT and $COPY and are far less likely, even if they perform the
supervisor call, to have performance improved by a larger region size. If a sys-
tem program can't take advantage of a larger region, the // REGION statement
or the region as specified by the SET procedure is ignored.

Technical Note

Myth debunked| Record blocking {via DBLOCK) doesn't do anything to improve #GSORT
performance. Record blecking only works with file IO channeled through OOM and
#G3ORT bypasses DOM — using ils own internal VO routines. DBLOCK on a file state-
ment in #GSORT OCL won't hurt, but it won't help either. To buffer #GSORT as much as
possible, specily a 64 K region in the OCL that calls the #GSORT,

Recapping the Baker's Dozen
There you have it: 13 of our favorite tips and techniques for improving 5/36
DDM performance and avoiding its pitfalls, Here's a quick recap:

1. Use aliernate indexes as an alternate to #GSORT.

2. Consider replacing indexed files with sequential files and alternate
indexes.

Chapter 12 A Baker's Dozen DDM Tips and Techniques 203

3. Keep alternate indexes to a minimum.
4. Spindle placement is more important than file placement.
5, Share files prudently.

6. Presort input files in key sequence before adding them to indexed
files.

7. Bypass duplicate key sharing when you can.
8. Use large enough file EXTEND values.
9. Manage default file EXTEND values with FILEXTND.
10. Avoid packed and binary data storage.
11. User REORGX to reorganize your indexed files frequently.
12. Always have enough free disk space to avoid in-memory keysorts.
13. Use a 64 K region to improve #GSORT and $COPY performance.

We have spent a lot of time in this book harping on DDM perfor-
mance — and for good reason. Early on we mentioned that in the time it
takes for one disk I/O, as many as 35,000 machine instructions can be execut-
ed. Think about that. Where else on the S/36 can you performance tune with
a 35,000-to-one improvement ratio? OK, we're being a bit melodramatic, but
the reality is that your programs don’t expend much code specifying disk 1/O,
and they expend most of their t#fme performing it. As you prepare to tune your
S/36 for more years of faithful service, carefully consider all areas of disk I/O
— that’s where most of your problems lurk and performance lies untapped.

Performance
Measurement and Tuning

“You can observe a lot just by watching.”
—Yogt Bera

hey say a watched pot never boils. For $/36 managers, a different tru-
ism applies: An unwatched machine may boil, but it will never really
get cooking. The key to any performance improvement plan is careful
measurement and analysis of a few critical system variables.
Unfortunately, the extensive array of performance monitoring
figures spewed out of SSP gives you the sinking feeling that there’s just too
much to watch! The average System Measurement Facility printout for just a
few hours of operation can be hundreds of pages long. What S/36 analysts
need is a way to cut through the noise and get their hands on those few criti-
cal variables.

The chapters in this section provide plenty of ways, in the form of
tips, techniques, and tools. Chapter 13 reveals the secrets to getting and ana-
lyzing useful measurements with SMF, and includes a “cookbook” of recipes
for solving particular performance problems using SMF. Chapter 14 shows you
how to determine if you have enough memory hint: you don't), and how to
use more when you get it. Chapter 15 explains disk caching and provides
pointers on how to squeeze the most speed out of this SSP feature. Chapter 16
lets you put your finger on the one measurement all your users instinctively
feel: response time. After putting the information from this section into prac-
tice, you'll be “cook’n with gas.”

>
c
(@]
-
(&]
(<}
(7p)

Chapter 13 Using SMF 207

Chapter 13

Using SMF

Previous chapters point out how adequate disk and memory capacity are
essential for good S/36 performance. If you merely increased memory and
disk capacity, and then hoped for the best, you’d undoubtedly see improved
response times. You would not, however, be able to say just how much
improvement took place or whether or not your system used the additional
disk and memory as efficiently as possible. Getting those answers requires
careful measurements before and after the upgrade. Making those measure-
ments is the job of IBM’s System Measurement Facility (SMF) utility.
Unfortunately, using SMF can be a daunting task. SMF produces such
massive quantities of statistical output that many S/36 managers have come to
think of it as System Measurement Fiasco. Any programmer worth his or her
salt knows how to start and stop SMF, and how to print its reports. What is
missing from IBM’s documentation is a strategy for effectively running SMF
and evaluating its output. This chapter provides such a strategy. You'll learn
the secret to capturing useful SMF data, which key values to evaluate first, and
how to quickly identify and solve performance problems. You'll also have a
useful “cookbook” of procedures for using SMF in specific performance tuning
situations, along with useful suggestions on advanced applications of SMF.
While the chapter is not intended to give you the be-all, end-all explanation of
SMF’s nooks and crannies (see “References” at the end of the chapter for a list
of articles that provide such explanations), you'll get a jump-start on tuning
techniques with enough detail to handle most performance problems.

The Good Catch

Before you can evaluate SMF measurements, you must collect good data — a
job that sounds simple but is full of traps for the unwary. Merely running SMF
all day long and then printing out a 500-page report won't get you any closer
to understanding your system’s performance than will a divining rod or goat
entrails. Here are the keys to capturing an accurate batch of statistics and pro-
ducing useful reports:

Measure only during periods of uniform activity. SMF tracks averages,
which lose their validity if the workload changes dramatically over the course
of a single SMF run. Don't turn on SMF in the morning and let it run all day
(right through morning break, lunch, afternoon tea, evening batch runs and

208 Desktop Guide to the 5/36

backup with David Letterman). Long periods of inactivity (or fierce activity) dis-
tort SMF's averages and hide peak values that could reveal serious problems. A
better approach is to segment your day into different kinds of activity during
which system usage is constant, then choose one of those segments and moni-
tor it for several days. Watch out for such hidden wrenches as embedded back-
ups, diskette usage, and batch reports. If necessary, turn off SMF during these
interruptions and turn it on again afterward.

Use one-minute intervals. On the SMFSTART procedure, use the
default snapshot interval of one minute, which provides samples frequently
enough to be useful without incurring undue overhead. One-minute intervals
also let you more easily relate snapshot values to per-minute usage statistics.

Collect I/O and SEC data by task. The default for this SMFSTART para-
meter is ‘N’, so you must override it to ‘Y". I/O and System Event Counter sta-
tistics by task let you identify programs that might be “hogs” — using so much
of one or more resources that other programs can't get much time to run.
Although the extra data consumes a significant amount of disk space in the
SMF log file, you only use these files temporarily, so the cost in space
shouldn’t be a problem. With one-minute intervals, the extra CPU overhead
for this option is negligible.

Don’t collect data by file. User and system statistics for each file are
only useful when you are moving files around to balance disk usage, so don't
waste time and space collecting them (unless, of course, you're trying to bal-
ance your disks).

Enter the correct line speeds for communications. SMF can't determine
the line speed at which your communications lines are operating, because this
line speed usually is determined by the modem or other external equipment.
Entering the correct operating speed on SMFSTART is the only way you'll get
accurate line usage figures; so take the time to find out precisely the speed at
which your modems, DSUs, or other external equipment actually operate.

Use a meaningful logfile name. A meaningful, and consistent, naming
convention lets you quickly identify the correct file for a report once you begin
accumulating many SMF logs on disk. One strategy is to identify the time peri-
od of the snapshot in the name. SSP already keeps track of the date a file is
created — you can get the information from a CATALOG — so don't use up
valuable name space with a six-digit date. Starting time is a more useful bit of
information to capture in the file name. You might, for example, use a name of
the form Smddhhmm, where m is a one-letter month identifier (J, F, M, etc.),
dd is the day of the month, and hbmm is the start time of the snapshot.

Allocate plenty of file space. Make sure you specify a large enough log-
file size on SMFSTART to accommodate all the data you plan to collect. If the
file fills up, SMF stops itself, resulting in lost SMF collection data. You can esti-
mate the amount of data using the following space requirements per snapshot:

Chapter 13 Using SMF 209

1 sector per snapshot for system values

e 1 sector per three tasks

e 1 sector per two tasks when collecting by task

¢ 1 sector for every four comm lines when collecting communications
usage

* 1 sector for every four files when collecting by file

For example, a two-hour run at one-minute intervals would require 120 snap-
shots. If you average 12 tasks and 40 files per snapshot, and collect both task
and file statistics, you'll need 21 (1 + 4 + 6 + 10) sectors per snapshot, times
120, for a total of 2,520 sectors. Dividing that by 10 yields 252 disk blocks. In
this example, you should specify 300 to be safe. You can “shrinkwrap” the file
after the run by using COPYDATA, specifying a size just large enough to hold
the actual records.

Don'’t print whole reports. Usually you'll only need a handful of values
out of the thousands collected by SMF in a single run. Look at a two-page
summary report first to determine if you need detail information. Then save
paper and your local forest by using spool-viewing tools to examine the volu-
minous detail reports. Utilities such as IBM’s COPYPRT CRT, KSI's Queue-
View, or the VASP (Value Added Software Package) WRKSPF (Work With
Spool File) let you browse SMF reports online. You can get printkeys or small
excerpts of a report to capture hardcopy records. And don't forget that SMF-
PRINT lets you specify a time range for detail reports; use that feature if you
can isolate a problem to a small range of snapshots.

Following these guidelines will help you obtain accurate, useful mea-
surements. You'll need to make several SMF runs on different days to be sure
you've captured representative statistics and not just a fluke. The cardinal rule for
evaluating SMF output is never make tuning decisions based on one SMF run.

The Quick Look
Once you've captured a good series of SMF log files, you're ready to begin
analysis. You often can isolate performance problems with a “quick look” by
evaluating a few key measurements. Start with a summary report (See “SMF
Summary Report Part 1: Summary Usage,” page 226, and “SMF Summary
Report Part 2: Summary System Event Counters,” page 227) and look for high
values in these key areas. Ignore the peak measurements for now; it's the
average values that reveal performance problems. A high peak might repre-
sent a few seconds of heavy system load; a high average represents continu-
ous heavy loads.

Figure 13.1 lists key SMF measurements and the threshold values to
watch for. Your goal in the quick look approach is to identify a bottleneck in
one or more of the primary system resources (disk, memory, CPU). The figure

210 Desktop Guide to the 5/36

Figure 13.1
Key SMF Measurements
SMF Value Normal Range Take Action
MSP usage up to 60% >80%
CSP usage up to 65% >85%
Disk usage up to 60% >85%
Disk seeks > 1/3 up to 20% >30%
User Area Disk Accesses 100-200/min >400/min for 5360/62
>300/min for 5363/64

Translated calls/loads >5:1 ratio <21 ratio
Comm line usage 90% batch >95%

50% interactive >70%

shows normal ranges for seven key measurements, and “take action” thresholds
that signal performance problems. If your SMF reports show any of these mea-
sures higher than normal but lower than the action threshold, you may still
want to take steps to bring the values within normal range. Here are some tips
for evaluating the key measurements listed in Figure 13.1:

MSP/CSP Usage Values (“SMF Summary Report Part 1: Summary
Usage,” number 1). These numbers represent how much of the available
capacity you're using for the Main Storage Processor and Control Storage
Processor, respectively. You might be tempted to think that 100 percent usage
means you're getting the most out of your CPU, but in reality, values higher
than 60 to 65 percent usually mean that the CPU isn’t able to keep up with the
work load. Keep in mind that these are averages — you want to keep at least
20 percent (and preferably 40 percent) CPU capacity in reserve to handle fluc-
tuations in workload. If your measurements exceed the action threshold,
check for the following conditions:

e For high MSP usage, run SMFPRINT with ALL and look for one or
more programs consuming most of the CPU time. These programs
may require lower-level tuning or rescheduling. You also can lower
the priority on CPU “hogs” to reduce their impact on other jobs.

eFor high CSP usage, check to see if any FORTRAN, BASIC, or Busi-
ness Graphics Utility (BGU) programs are running. These all use the
S/36 Scientific Instruction Set (SIS), and consume a lot of CSP time.
Check also to see if the TRACE facility is running (using the D T com-
mand); TRACE might have inadvertently been left turned on after IBM

Chapter 13 Using SMF 211

or third-party software maintenance. The SSP reference manual
explains how to tum TRACE off. If you're running communications
without MLCA or ELCA, or have a 5362/5363 model without the local
Workstation Expansion Feature, the CSP is carrying the workload of
these optional processors. Upgrading your CPU with a communica-
tions or workstation processor will relieve this load. Finally, check
swapping rates on the SMF Summary report System Event Counters
page. The CSP performs swapping and other memory management
chores, so excessive swap rates (higher than 50 per minute) can over-
whelm the CSP. Additional memory is the best cure.

Disk Usage (“...Summary Usage,” number 2). As with CPU usage, disk
usage represents the percentage of available resource capacity in use — in this
case, the resource is access time. Just as with CPU usage, you want disk usage
well below 100 percent; a disk working at more than 60 percent capacity
means many programs are waiting in line for disk I/O completion. If your sys-
tem has more than one spindle, check to make sure usage is balanced across
all drives: No one drive should deviate more than 10 percent from its compan-
ions. One or more loafing drives is a common performance bottleneck, but
one easily corrected by moving files to balance disk accesses. The upcoming
cookbook section explains the procedure. Another solution is to add more
spindles and then perform disk balancing to spread out the workload. A per-
formance consideration sometimes overlooked when upgrading CPUs is main-
taining the same spindle count. For example, moving from a 5362 with two
internal 60 MB drives and two external 200 MB drives to a 5360D with two
359 MB drives may result in a drastic increase in response time, because two
disk actuators are trying to carry the same load formerly shared by four actua-
tors. A better-performing configuration would be four 200 MB drives, which
would provide even more disk capacity and would cost less. If you can't trace
unbalanced disk usage to file placement, and the overworked drive is Al,
check the swap rates shown on the SMF Summary report’s System Event
Counter page. The swap area is always kept on drive Al, so excessive swap-
ping (greater than 50 per minute) can overwork this drive. The cure, of course,
is more memory.

Disk Seeks > 1/3 (“SMF Summary Report Part 2: Summary System Event
Counters,” number 3). This measurement, in the I/O Counters section of the
SMF Summary Report, indicates the percentage of time each drive moves the
disk arm farther than one-third of the maximum seek distance. Although seek
distance isn’t the largest component of disk access time (simply moving the
arm has the highest cost), long seeks prevent SSP from effectively carrying out
its disk actuator scheduling algorithm. The result is inefficient disk usage, and

212 Desktop Guide to the S/36

slower access, even when usage rates are within the normal range. Careful file
placement can reduce the problem, but maintaining good placement is a diffi-
cult and time-consuming system management chore. A better solution is to
add more spindles to place frequently accessed files on separate drives, allow-
ing for simultaneous access with less actuator motion.

Technical Flote

How the CSP schedules disk /0. You might think that the S/36 honors disk I/O requests
on a first-come, first-serve basis. It doesn't; instead, it plans ahead and “schedules”
requests in a way that minimizes disk actuator motion. Because the disk is so much slower
than the CPU, disk requests often stack up when multiple programs are running. During a
single disk /O, lasting about 35 milliseconds, a dozen or more programs may attempt disk
operations. The CSP places these requests in queues — one for each spindle — maintain-
ing the queues in order by disk location. The CSP than removes entries from the queue to
process them in location order, which shortens seek distances and can even eliminate
seeks. The scheduling algorithm calls for the CSP to sweep across the disk first from low
to high locations, then from high to low, eliminating the need to seek back to the start of the
disk upon reaching one end. The algorithm also allows for multistep disk operations where
reordering could have an adverse impact on a particular application. For example, an
indexed random get requires two disk operations: one to locate the key in the index and
another to retrieve the data record. The disk arm lock feature lets disk data management
keep the arm from moving between the two operations; if the second operation isn't
requested in a certain amount of time, the arm lock expires and other requests get
processed. One of the SMF Summary I/O Counters, expired disk locks, records the num-
ber of times locks fail. Although this value is primarily of informational value, frequent lock
expirations are a sign of an overloaded MSP.

User Area Disk Accesses (UADA) (“...Summary System Event Counters,”
number 4). This value represents the number of disk accesses performed for
memory management purposes. Although it appears as a separate item on the
SMF report System Event Counters page, it's actually just the sum of Translated
Transfer Loads, Swaps In, and Swaps Out. UADA is a better measure of memory
usage than the Total Storage Commitment value from the Summary Usage
page. Storage Commitment indicates how much virtual memory (VM) is set
aside for use by various programs, but not whether those programs actually use
the memory. External Program Calls in particular can inflate the Storage Com-
mitment value while actually improving performance. UADA activity reflects
disk I/O required to keep the current set of executing pages in memory —

Chapter 13 Using SMF 213

regardless of how much VM is allocated. For example, a job that uses EPCs to
call 3,000 K of subprograms that it uses only infrequently would register a huge
overcommitment on a 1 MB system; a low UADA rate, however, would
demonstrate that the programs actually are not placing a load on the system,
but are only having their activations held open. If reported UADA exceeds the
action threshold for your model CPU, you should add more memory. If UADA
is very low, your existing memory is underutilized; you could start or increase
cache usage to take advantage of the otherwise wasted capacity.

Translated Calls/Loads Ratio (“.. Summary System Event Counters,”
number 5). Although you've already evaluated Translated Transfer (TT) Loads
as part of UADA, another aspect of this value can help you isolate particular
memory problems. Comparing the ratio of TT Loads to TT Calls reveals how
frequently CSP must push system programs out of memory to accommodate
other requests. When the ratio of loads to calls is 5:1 or greater, system pro-
grams are being reused directly in memory without loading, saving disk 1/Os.
If the ratio falls below 2:1, most system programs are being used only once
before they get knocked out of memory. The solution is to add more memory,
or upgrade to a CPU that accommodates more memory.

Technical Note

Unlike user programs, which are always swapped out to disk when their storage is needed,
most system programs can simply release their storage when necessary. System pro-
grams having re-entrant or refreshable member attributes (shown in a library directory list-
ing) have this property, because they do not store local program variables within the same
address space as the program object code. When memory for such a system program
must be taken, the CSP simply seizes it; later, if the system program is called again, the
CSP reloads it directly from the original library. This technique reduces disk I/O by eliminat-
ing swap-outs and #SYSTASK disk usage by not requiring a disk swap area,

Communications Line Usage (“...Summary Usage,” number 6). In con-
trast with other usage figures, higher is sometimes better where communica-
tions are concerned. Comm line usage represents how efficiently the external
data channel is being used, not how much available CPU communications
resources are being consumed. Because data communications is often many
times slower than even disk 1I/O, the overhead of pumping data in and out via
this path is minimal. For batch communications, you definitely want to see
usages above 90 percent, which shows you are using most of the external line
bandwidth. For remote workstations, you want to keep some line bandwidth
in reserve for heavy interactive use. When one user presses Enter on a remote

214 Desktop Guide to the S/36

workstation, the resulting message uses the entire line bandwidth. If two users
both press Enter simultaneously, the resulting messages must share the line,
reducing the effective throughput for each message by half. If you constantly
run interactive lines at more than 50 percent usage, users will see slow
response times due to line sharing.

A good fix for this problem is installing a Multiline Communications
Adapter (MLCA) or Eight-Line Communications Adapter (ELCA) and increasing
line speed. If you already have MLCA/ELCA and have high interactive usage,
consider splitting your work across two CPUs so that communications run on
one machine and batch work on another. A negative, and insidious, cause of
high line usages is comm retries. Most line protocols used on the S/36 incorpo-
rate error detection and correction; when a message is received corrupted, the
receiver requests retransmission, and the sender executes a retry operation.
Running on a marginal network can result in m