
NE\VS 3x/40o's

Desktop

Guide to

the S/36

By :\It:! Beckman,
GaD Kratzer,
and }{ogl'r Pl'BCl'

A Division of
DUD COMMUNICAnONS
INTERNATiONAl

Loveland, Colorado

Library ofCongress CataIoging-in-Publication Data

Beckman, Mel, 1955­
NEWS 3XJ400's Desktop Guide to the S/36 1 by Mel Beckman, Gary Kratzer,

and Roger Pence. - 1st ed.
p. cm.

Includes index.

ISBN 0-9628743-5-3 : $99.00

l. IBM Systeml36 (Computer) I. Kratzer, Gary, 1961­

II. Pence, Roger, 1953- . III. Title. N. Title: Desktop Guide to the S/36.

QA76.8.1107B43 1992

004. l'45-dc20 92-34281

eIP

Copyright © 1992 by DUKE PRESS
DUKE COMMUNICATIONS INTERNATIONAL
Loveland, Colorado

All rights reserved. No part of this book may be reproduced in any form by any elec­
tronic or mechanical means (including photocopying, recording, or information storage
and retrieval) without permission in writing from the publisher.

Duke Communications International reserves a compilation copyright on the software
contents of the S/36 Desktop Guide Diskettes. A compilation copyright is granted when
an organization collects the information in a lawful way, adds value to it, and offers it to
others. Separate copyrights are also held by the respective authors whose software is
included in this collection. This compilation copyright does not supersede individual
ownership rights to any ofthe software by its original authors. You have the right to
non-commercial private use ofthe software, but you do not have the right to resell, pub­
lish, or in any manner commercially exploit the software accompanying this book, or to
participate in such reproduction, sale, publication or exploitation by any other person.

It is the reader's responsibility to ensure procedures and techniques used from this book
are accurate and appropriate for the user's installation. No warranty is implied or
expressed

This book was printed and bound in the United States ofAmerica.
First Edition: December 1992

ISBN 0-9628743-5-3

To Patricia, Michelle, and Susie

Acknowledgments
A whole slew of people helped bring this book to press. First and foremost
are our editors, Dave Bernard and Sharon Hamm, who read (and corrected)
every word of the manuscript. With three authors, their job was particularly
complex, requiring the untangling of contradictory opinions and the coordina­
tion of many, many little bits of text. Dave and Sharon are responsible for
melding the literary voices of three rarely coherent nerds into that of one
slightly daffy, articulate author. We thank them for sticking with us to the very
end. We also thank Chuck Lundgren for his sage advice on content and style,
and Mike Patton, who gave us encouragement and the assurance that at least
one person would buy the finished product. We greatly appreciate the ingenu­
ity of our favorite Hollander, Edwin Helmus, for authoring the SNAP utility
(included on the diskette).

Also instrumental to our success were Trish Frease, who proVided
early assistance with writing a book over E-mail, and Lynn Riggs and Jan Cauf­
man who, with their trusty Macintoshes, formatted and typeset our text with
style and artistry. Thanks also to Robin Strelow for her user-friendly interior
and cover design of the book. For technical help we are indebted to Clark
Buch of Complete Hardware Services and Jay Brock of A-I Computer Market­
ing; they took time from their busy schedules in the present to research
obscure S/36 hardware facts from the past. In addition, Ron Elliot and Wayne
Madden provided invaluable tips on AS/400 compatibility.

Three people beta tested the diskette and accompanying text: Chuck
Lundgren, Mike Derossier, and Joe Medeiros. They were our final quality
checks on the part of this book to which you will entrust your valuable
machine resources; their expertise, we feel, adds significantly to the value of
the whole product.

Finally, in any book of this scope and complexity mistakes are bound
to creep in. We only ask that you do not blame these on our esteemed
helpers. Any errors are solely due to us, the authors.

Me/Beckman
Ventura, California

Gary Kratzer
Mission Viejo, California

Roger Pence
Marion, Indiana

Table of Contents

Acknowledgments .. IV

List of Figures .. XII

Introduction .. XVII

Section 1-System Internals ... 1

Chapter 1: S/36 Architecture .. 3

Genealogy ... 3

Main Storage Processor ... 6

Control Storage Processor ... 7

Optional Processors ... 8

The Workstation Controller ... 8

Data Storage Controller ... 9

MLCA and ELCA Processors ... 10

Local Area Network Processor 11

IBM's Multiple Processor Advantage .. 11

The Channel ... 14

Disk Drives ... 15

The Bottom Line .. 16

Where to Learn More ... 17

Chapter 2: s/36 MelJlory ManagelJlent ... 19

Main Memory Organization .. 19

Memory Concepts .. 21

Fragmentation ... 22

Solving Fragmentation ... 22

Virtual Memory ... 25

Page-in, Page-out Mechanisms ... 26

Peculiarities of S/36 VM ... 28

System Queue Space ... 29

Chapter 3: Inside Disk Data Management ... 33

Disk Mechanics .. 33

Data Files , ... 39

Organization and Operation ... 39

Primary and Overflow Index Areas .. 41

The Storage Index .. 43

Ripple-Down Adds ... 46

Adding Gaps ... 48

Alternate Indices and DUPKEY Processing ... 51

Keysorting ... 52

Section 11- Hardware Adviser ... 57

Chapter 4: s/36 Models and Configurations ... 59

Overview of Models .. 60

v

Memory ... 62

Disk ... 64

Workstations .. : 66

Communications .. 70

Local Area Networks .. 71

Optical Storage ... 73

Conclusion .. 75

Chapter 5: The Importance ofMemory and Disk Space .. 77

Just Add Memory ... 77

Memory Configuration ... 79

Pricing Memory .. 81

The Importance of Free Disk Space ... 83

System Work Areas .. 83

A Smarter Compress .. 83

Successful File Extends .. 84

Proper File Placement .. 86

Additional Spindles .. 86

Pricing Disk Drives .. 87

Is the S/36 Worth Upgrading? ... 88

Avoid Third-Party Pitfa1ls ... 89

Chapter 6: Other Conftguration ConsfderatJons .. 91

Model D Upgrade ..91

Upgrading to a 5360 .. 92

A Dedicated Development Machine ... 94

Communications Upgrade ... 95

Nonswitched Network ... 97

Switched Network .. 97

Packet-Switched Network ... 97

Distributed Data Management .. 98

Maintenance ... 102

Section 111- External Program Calls ... 105

Chapter 7: How External Program CaDs Work ... 107

IBM's Little Secret ... 107

128 MB of Memory, Virtua1ly! ... 108

Primitive Modules .. 109

EPCs in Action .. 110

The Program Invocation Stack .. 113

: A Primer .. 114
Coding EPCs
EPCs and Disk Files ... 117

A Practical Example ... 119

Reaping the Benefits of EPCs .. 119

Chapter 8s A Comparison ofEPC Vendor 0fJerlnp .. 123

The Contest ... 123

Design and Coding Considerations .. 124

VI

Run the Good Race .. 128

Testing and Production Considerations ... 130

The Gravy ... 132

Wrap Up ... 132

Product Infonnation 133

Chapter 9: Jmp1ementJng Modular RPG Applications .. 135

The Mysterious Module ... 135

Activation and Invocation 136

External Subprogram Deactivation 136

Local Names ... 136

Parameter Passing ... , 137

Late Binding .. 137

Breaking it Down ... 137

Defining the Problem .. 138

Implementing the Modules ... 139

Change is No Problem ... 142

Section IV - Living With Disk Data Management .. 145

Chapter 10: Using DBL<>CK and mL<XX Eft'ectively ... 147

Blocking Data Records .. 147

Enabling Record Blocking ... 151

Sizing Data Buffers ... 152

Record Blocking Considerations ... 154

Index Blocking ... 155

Sizing Index Buffers ... 156

Index Blocking Considerations ... 159

Where Buffers live ... 161

Allocating Appropriate Buffer Sizes .. 162

Benchmarks .. 165

Mental Blocking ... 165

Chapter 11: Prescriptions for Healthy DDM ... 167

Is There a Doctor in the House? ... 167

Taking Action ... 170

Keeping Storage Indexes Open .. 171

The Proof is in the Perfonnance ... 177

Avoiding the Deadly Embrace .. 177

Who is the Culprit? ... 181

A Ray of light ... 187

Chapter 12: A Baker's Dozen DDM Tips and Techniques 189

1. 	 Consider alternate indexes as an alternative to #GSORT 189

2. 	 Consider replacing indexed mes with sequential mes

and alternate indexes 190

3. 	 Keep alternate indexes to a minimum ... 191

4. 	 Spindle placement is more important than me placement 191

5. 	 Share if you must ... 193

VII

6. Do some of DDM's work yourself ... 194

7. Take the bypass ... 194

8. Avoid being underextended ... 195

9. Change default file extend value easily ... 196

10. Don't pack 'em in .. 197

11. Reorganize files often - the easy way ... 198

12. Provide lots of disk space for KEYSORT ... 199

13. Put memory to work for system programs ... 201

Recapping the Baker's Dozen ... 202

Section V - Performance Measurement and Tuning .. 205

Chapter 13: 1Jsing SMF ... 207

The Good Catch ... 207

The Quick Look ... 209

MSP/CSP Usage Values .. 210

Disk Usage .. 211

Disk Seeks> 1/3 .. 211

User Area Disk Accesses (UADA) ... 212

Translated Calls/Loads Ratio ... 213

Communications line Usage ... 213

The Art of Tuning .. 215

SMF Cookbook ... 215

Problem 1: High Disk Usage .. 215

Problem 2: Unbalanced Disk Usage .. 216

Problem 3: High CSP Usage ... 217

Problem 4: High MSP Usage .. 218

Problem 5: Sudden, Unexplained Response Time Degradation 220

Problem 6: File and Index Blocking Don't Seem to be

Helping Performance .. 225

What You Don't Know can Hurt You ... 225

References ... 226

SMF Summary Report Part 1: Summary Usage .. 226

SMF Summary Report Part 2: Summary System Event Counters 227

Chapter 14: Do You Need More Memory? ... 231

Where Does it All Go? ... 231

The Warning Signs ... 233

Memory Meter .. 234

Chapter 15: cashing in On Extra Memory .. 237

How Cache Works ... 237

Starting Out with Cache ... 240

Counting Cache .. 241

Quick Cache ... 243

Dynamically Controlling Cache .. 245

Value-Added Cache ... 247

To Cache or Not to Cache ... 247

VIII

Chapter 16: Is Response Time Fast l!noughi' .. 249

Response-Time Speedometer .. 249

Looking for Delay .. 251

Getting SSP Out of the Loop ... 257

Section VI- Advanced Topics .. 261

Chapter 17: Harnessing the Power ofAssembler Routines 263

String Handling Functions ... 264

SUBR$F .. 265

SUBR$C .. 266

SUBR$X .. 267

SUBRAT ... 268

SUBRBX ... 269

SUBRCS .. 269

SUBRUP ... 270

Library Manipulation Functions .. 271

SUBRLD ... 271

SUBRLR .. 274

SUBRSG ... 276

File Manipulation Functions .. 279

SUBRCO .. 280

SUBRFA ... 281

SUBRRN ... 286

System Management Functions ... 287

SUBRSY .. 288

SUBRUF ... 288

SUBRUL ... 289

SUBRUR ... 290

SUBRCf ... 291

SUBRDT ... 292

Device Control Functions .. 292

SUBRCP ... 293

SUBRDU .. 293

SUBREK ... 294

SUBRLN ... 295

SUBRMG .. 296

SUBRPC ... 296

SUBRPS .. 297

SUBRSX .. 298

SUBRWf...298

RBRIDG ... 299

Defining RIABLs .. 299

Making Your Call ... 299

Chapter 18: Profiling and Advanced Debugging .. 303

Profile of a Profller ... 303

RPG X-Ray Machine ... 308

IX

Going for the Gold .. 313

Reasonable Goals ... 318

Cbapter 19: AI::hieving Upward Compatibility .. 321

First, a Word of Caution .. 321

The Two Products .. 323

The Implementation of Externa1ly Described Files ... 324

RPG/400 File Operation Codes ... 328

Other RPG/400 Features .. 330

Additional Tips for Upward Compatibility ... 332

Data File Usage on the s/36 .. 332

Code to Avoid Decimal Data Errors ... 332

Assembler Subroutines .. 333

The Final Analysis .. 335

Section VII-Into the Future ... 337

Cbapter 20: The AS/4OO ... 339

Three Audiences .. 339

S/36E Layer ... 340

Smoke and Mirrors ... 341

Building and Controlling the S/36E .. 343

The Programming Environment .. 344

Free Usability and Performance Improvements .. 344

Compatibility with the S/36 ... 345

Sizing up Your AS/400 .. 345

Model Selection .. 346

Configuring Memory .. 347

Configuring Disk .. 348

Making Sure .. 350

All in All .. 351

Cbapter 21: The Unix Alternatives .. 353

UNIBOL on the RS/6000: A Virtual S/36 .. 353

Functions and Features .. 353

Missing Links ... 354

S/36 Look and Feel ... 354

Migration Patterns ... 356

Passing Muster .. 356

User Recommended ... 358

Programming with UNIBOL ... 358

More than Token Support .. 361

Up and Coming ... 362

Open RS/36: A Load'N'Go Alternative ... 362

Look and Feel ... 364

See How They Run ... 365

Testing, Testing ... 366

Load Member Compatible .. 367

x

What Doesn't it Do? .. 367

A1X: An Intense Experience? .. 368

The Magic Answer? ... 369

Product Infonnation ... 370

Machine Mimicry ... 371

Afterword375

Index ..3n

XI

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5&
Figure 1.Sb
Figure 1.6

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure2.S

Figure 2.6
Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure3.S

Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure3.1S
Figure 3.16
Figure 3.17
Figure 3.18

Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23

Systern/36 Genealogy , .. 4

Systern/36 Multiple Processors .. 6

Comparison of Features Among S/36 Models 9

Overview of S/36 Internal Components ... 12

Timeline for Single-Processor Task Switching 14

Timeline for S/36 Dual-Processor Task Switching 14

Run Length Limited Codes for Disk Error Correction 16

Main Storage Contents .. 20

Systern/36 Real Storage Organization ... 21

How Memory Fragmentation Occurs .. 23

How the Systern/36 Solves Fragmentation ... 23

Example of Generating a Real Address From a

Translated Address ... 25

Segmented and Demand Paging Comparison 27

System Queue Space Requirements for Common

Control Blocks .. 31

Hard Disk Anatomy .. 34

Hard Disk Physical Units .. 35

Sectors and Tracks .. 35

Heads, Sectors, and Cylinders ... 36

Comparison of Operating Parameters for Some

S/36 Disk Drives ... 38

Index and Data Record Area of a Disk File 39

Records Fitting Evenly Within a Sector ... 40

Records Spanning a Sector ... 40

Logical Representation of a File Index .. 41

Logical View of One Sector Full of Keys .. 42

Primary and Overflow Index Areas ... 43

Sequential Phone Book Look-Up .. 44

Phone Book Look-Up the Storage Index Way 45

Keys Added to Index Area in Key Sequence 46

Index Area with Overflow Added ... 47

Index Area with Overflow Containing Many Entries 47

Index Area Including Overflow with Gaps .. 48

Index Area Including Overflow with Gaps ­
Big Bird Added ... 49

Index and Overflow Areas Full ... 50

Overflow Area Requiring Total Ripple Down of Entries 51

Fragment of Overflow Area That Support Duplicate Keys 53

Adding New Record to Overflow Area with Duplicate Keys 53

Formula to Calculate Disk Space Required for

Workftle KEYSORT ... 55

XII

http:Figure3.1S

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure4.S
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 5.1a
Figure 5.1b
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7
Figure 5.S
Figure 5.9
Figure 5.10

Figure 6.1
Figure 6.2

Figure7.1a
Figure 7.1b
Figure7.1c
Figure 7.2
Figure 7.3a
Figure 7.3b
Figure 7.4

Figure S.l
FigureS.2

FigureS.3

FigureS.4

FigureS.5

Models and Features Overview ... 60

s/36 CPU Relative Computational Performance 62

Memory Configurations .. 63

Disk Configurations .. 65

Disk Drive Characteristics .. 65

Workstation Configurations ... 67

Twinax Daisy-Chain Local Workstation Network 67

Twisted-Pair Star Network Topology .. 69

RWS Support Using Conununications Lines and

Remote Workstation Controllers .. 69

Conununications Configurations ... 71

S/36 LAN Interfaces .. 72

Token-Ring LAN Configurations .. 74

Optical Storage Configurations .. 76

User Area of Memory Available without Cache 78

User Area of Memory Available with Cache 78

More Memory Means More System Programs Resident 80

CNFlGSSP Screen 17.0 .. 81

Maximum Memory Per s/36 Model .. 81

Disk Spindle After COMPRESS FREEHIGH and

After COMPRESS FREELOW .. 84

Disk Spindle After "Smart" COMPRESS ... 84

"Smart" COMPRESS for Spindle AI ... 85

"Smart" COMPRESS for Spindles Al and A2 85

Extended a File Once Successfully - But Not Again 86

Maximum Disk Capacity for S/36 Models .. 87

Recommended Communications Adapters ... 96

Overview of DDM Operations .. 100

Job with Three Active Programs .. 111

EPC Program Invocation 111

Program Invocation Stack .. 113

Program Fragments with EPC Opcodes .. 115

OCL for Program File Sharing .. 118

RPG File Sharing Between Programs .. 118

Modular Application Design .. 120

OCL for a Single File Used by Two Subprograms 125

RPG IJI/2 and 400RPG Coding for Subprograms

PROGA and PROGB Referencing a Conunon File 126

IBM RPG Coding for Subprograms PROGA and

PROGB ReferenCing a Common File .. 127

Performance Test of 10,000 CALLS Passing 128

Bytes of Parameters .. 129

Using a Library List to Exercise Test Modules

in a Production Environment ... 131

XIII

http:Figure7.1c
http:Figure7.1a

Figure 9.1

Figure 9.2

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 10.11
Figure 10.12
Figure 10.13
Figure 10.14

Figure 11.1
Figure 11.2a
Figure 11.2b
Figure 11.3a
Figure 11.3b
Figure 11.3<:
Figure 11.3d
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8

Figure 12.1
Figure 12.2
Figure 12.3a
Figure 12.3b
Figure 12.4

Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5a
Figure 13.5b

Figure 14.1
Figure 14.2

Functional Decomposition of Appointment

Scheduling Application .. 139

Modules Required to Add "Reschedule an

Appointment" Function 142

Application Program with Unblocked Data Buffer 148

Application Program with 100-Record Block Data Buffer 148

A Minimum Disk Data Buffer for a File with 64-Byte Records 149

A Minimum Disk Data Buffer for a File with 56-Byte Records 150

The Data Buffer Shown in Figure 10.4 After Record 37 is Read 151

Enabling Record Blocking in RPG F-Spec .. 152

Specifying Record Blocking with the DBLOCK Keyword 152

DBLOCK Factors for Desired Data Buffer Sizes 153

One Sector Full of Keys ... 157

OCL Showing ffiLOCK Keyword ... 157

ffiLOCK Factors for Desired Index Buffer Size 158

18 K Program with Appended Buffers .. 162

26 K Program with Unappended Buffers ... 163

Status Users Screen ... 164

Index Doctor Report ... 169

One Program Using One File 173

Two Programs Using One File .. 173

Procedure KEEPOPEN ...174

Procedure KOPENF .. 174

MRT Procedure KPOPEN2 ... 174

MRT-NEP Program KPOPEN ...175

KEEPOPEN Performance Benchmarks ... 178

Diagram of a Deadly Embrace .. 179

An Algorithm Using the NITU Strategy 181

RPG Code Incorporating the NITU Strategy182

SHOWUR Screen .. 186

Changed Duplicate Key Value Causing Ripple-Down Add 192

Sequence of Events for an Extended File ... 196

REORGX Prompt Screen #1 ... 200

REORGX Prompt Screen #2 ... 200

REORGX's Syntax When Calling from a Procedure 201

Key SMF Measurements ... 210

File Placement ... 217

Sample SNAP Utility Display .. 219

VO Counters Summary .. 221

File Access Counters by File from SMFPRINT ALL 223

File Access Counters by Task from SMFPRINT ALL 223

Main Storage Contents .. 232

Memory Meter Screen .. 235

XIV

Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6

Figure 15.7

Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4a
Figure 16.4b
Figure 16.4c
Figure 16.4cl
Figure 16.4e
Figure 16.5
Figure 16.6
Figure 16.7

Figure 17.1
Figure 17.2
Figure 17.3

Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8

Figure 19.1a
Figure 19.1b
Figure 19.2
Figure 19.3a
Figure 19.3b
Figure 19.3<:
Figure 19.4a
Figure 19.4b
Figure 19.5a
Figure 19.5b
Figure 19.5c

Figure 20.1

Disk Accesses with and without Cache .. 238

How Disk Cache Takes Advantage of Locality 239

SMF Summary System Event Counters for Cache Evaluation 242

CACHIQ Display ... 244

CACHIQ Logflle Record Format .. 245

Sample Procedure to Automatically Change

Cache Configuration on a Predetermined Schedule 246

Sample Procedure to Automatically Change

Cache in Response to Changing Environment 246

Sample Detail Report from Utility RTIMER 251

Sample Summary Report from Utility RTIMER 252

Typical All-in-One Order Entry Panel ... 254

Customer Name and Address Information Screen 254

Customer Credit History Screen ... 255

Ship-To Address Screen ... 255

Customer tine-Item Order Screen ... 256

Summary Order Information Screen ... 256

Traditional Program linkage Using OCL and IDA 258

Disk Overhead for Terminatingiinitiating Task Sequence 258

Program linkage Using External Program Calls 259

Example of Coding an RLABL DefInition List 300

Example of Coding CALL Statements for RBRIDG 300

Sample COBOL Program Using RBRIDG ... 301

Sample Profiled Source Program Listing ... 305

OCL Showing / /FILE Statement for P#SAMP Counter File 308

Execution-Time Cost Multipliers for Various RPG Operations 308

Sample Output from Utility RPGDUMP .. 310

Symbol Table Creation Prompt Screen ... 311

Sample Symbol Table Source Member ... 311

Example of RPG Code Using SUBRTD ... 312

RPG Dump Formatter Prompt Screen ... 312

RPG Program Using Externally Described Files 325

Code Generated by 400RPG .. 326

400RPG External File Description Member for BANK File 328

Using RPG II to Describe a Multipart Key .. 329

Using a Data Structure to Describe a Multipart Key 329

Using KLIST to Assemble Fields of a Multipart Key 329

Indicator-Laden RPG II Code ... 331

400RPG Code Using AND/OR Operations 331

Sample S/36E Program ... 334

Native Program Called by Program in Figure 19.5a 334

Mapping Parameters with a Data Structure 334

How S/36 Objects Relate to Their AS/400 Equivalents 342

xv

Figure 20.2
PJgure20.3
Figure 20.4
Figure20.S
Figure 20.6
Figure 20.7

Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4

Figure21.S
Figure A

Internal Organization of the s/36 Environment 343

Equivalent S/36 and AS/400 Models ... 347

AS/400 Memory Requirements Worksheet 347

AS/400 Model Capacity Chart (MB) .. 348

AS/400 Disk Requirements Worksheet ... 349

mM Program Product Space Requirements 349

Comparison of UNIBOL and Open RS/36 Features 355

Comparison of UNIBOL and Open RS/36 Facilities 357

UNIBOL Versus s/36 Penonnance Benchmarks 359

Screen from UNIBOL's Programmer Interface

Environment (PIE) .. 360

UNIBOL Pricing .. 363

S/36 Machine Language Instruction Set .. 372

XVI

Introduction

THE SYSTEM/36 IS DEAD! That, at least, was the claim made by a columnist
in the December 1986 System User magazine, when the S/36 was barely three
years old. Needless to say, the announcement was a little premature. Six vigor­
ous years later, more than 300,000 S/36's are running worldwide - with new
CPUs still being sold by IBM and its resellers. As the S/36 closes out its tenth
year of profitable computing, nobody is yet quite sure when the system is
going to fmally lie down and die. The AS/400, certainly a sexier and more
powerful machine, has somehow failed to pull cheerfully persistent S/36 users
away from what they see as a working, patd-for, business solution. This s/36
community seems determined to remain active for several more years.

This book was written for that still-thriving community. Whether you're
a system operator, programmer, MIS director, or consultant, if your job includes
managing a S/36, this book will help you. We call it the Desktop Guide because
it's designed to stay off the shelf and by your side - ready to provide solutions
to the kinds of problems that crop up regularly in an active S/36 shop. The
material is arranged logically into seven sections: system internals, hardware,
external program calls, disk data management, performance tuning, advanced
topics, and future directions. But because we expect you to access this book
randomly, like an indexed me, we've incorporated a number of special refer­
ence tools. First, a task guide (see "How to Use This Book") provides a road
map to follow for visiting chapters of interest in common problem situations.
Second, performance notes in the margins highlight useful tips and techniques,
to let you get the "good stuff" by skimming. Third, embedded technical notes
amplify details that might otherwise get swept under the rug. Fourth and final­
ly, the index - an afterthought in some other books - has been prepared
with special attention to detail, to help you easily ferret out obscure facts.

However, we want to provide more than just an encyclopedia. To that
end, we've included a diskette chock-full of useful utilities that can make your
S/36 life easier. These aren't just reruns of programs published in NEWS 3)(/400
(all right, a few are reruns, but they're good reruns!). Most of the utilities are
brand new, original tools appearing here for the first time. We created them to
fill in some of the remaining gaps left by IBM in its headlong dash to the
AS/400. A directory of these utilities, along with page references to the text
describing them, appears at the end of this section (see "How to Use the
Diskette").

From the beginning, we tried to write a book that would answer as
many questions as possible, explain as much valuable detail as possible, and
avoid as much pablum as possible. We don't expect anybody to use every­
thing in this book; but if it solves some of yourproblems, we've succeeded.

XVII

HOW TO USE THIS BOOK

"Wouldyou tell me, please, which way I ought to go from here?"
"That depends a good deal on whereyou want to get to, "said the Cat.

- Lewis Carroll
Alice's Adventures In Wonderland

There are many ways to approach S/36 problems and solutiOns; likewise,
there are many ways to approach this book. Here are a few suggestions. If
you want to:

Make the machine run faster right now
Read Chapter 5, which will tell you to go buy as much memory as you can
stuff into your Cpu. Then go to Chapter 4 to determine how much memory
that is for your model S/36 (Warning: you might fmd yourself upgrading mod­
els before you're done). You can't make your machine faster without plenty of
memory; these chapters show you why.

Purchase hardware upgrades
Go directly to Chapter 4, the defmitive catalog of S/36 hardware options. If
you weren't planning to buy memory, read Chapter 5. Before writing the
check for your upgrade, review the upgrade considerations in Chapter 6; you
could save a bundle.

Do serious performance tuning
Skip to Chapter 13, which explains the all-important prerequisite to perfor­
mance tuning, good measurements. If you haven't thought twice about memo­
ry yet, read Chapters 14 and 5 next. If you're looking for program-level tuning,
study Chapter 3 to understand Disk Data Management, then read Chapters 11
and 12 for tips on redUCing the disk bottleneck. Chapter 18 explains profiling,
which lets you analyze program performance at the source statement level.

Improve your software development environment
Check out Chapter 6, which enumerates ideas for making software develop­
ment more efficient through smarter use of hardware. Chapters 18 and 19 pro­
vide information about better development and debugging tools (and the
diskette includes some tools you can use right away). We're assuming that you
already have a good full-screen editor - either FSEDIT from IBM's POP prod­
uct or the Blue Iris editor from Iris Software (916-893-4747, $475). We consider
POP (Programmer/Operator Productivity Aid) an essential prerequisite tool­
it greatly assists system management and software development. If you don't
have it, get it (IBM program number 5799-BRJ, $5(0).

XVIII

Write better, faster programs
Read Chapter 7, an introduction to External Program Calls CEPC). EPC is the sin­
gle most important technology you can apply to application design today. With
it you can achieve subsecond response time with programs that are easier to
understand and maintain. If you're already using EPC, scan the comparison of
EPC products in Chapter 8 - you may decide to change EPC vendors. If you're
sold on EPC, but need a jump-start on modular design and implementation con­
cepts, check out Chapter 9, which presents a case study and rules to live by.

Get new programs up and running sooner
Chapter 18 explains how to shorten the most unpredictable phase of software
development: testing and debugging. Two tools included on diskette - a profll­
er and a dump debugger - help you ensure test coverage is complete and
track down elusive intermittent bugs. Don't miss the "Golden Rules" of software
testing, a wealth of testing knowledge from acknowledged industry experts.

Do things beyond the ability of RPG and COBOL
Go directly to Chapter 17, a ready-to-rolllibrary of assembly language subrou­
tines that open up areas of the S/36 you thought were IBM's private property.
If you think that assembler routines are a bad move for portability reasons,
review the discussion on portability in this chapter and the rules for upward
compatibility in Chapter 19. It is possible to use assembler without painting
yourself into a comer. Special note to COBOL users: Be sure to read about the
COBOL Bridge at the end of Chapter 17 - it makes most RPG-oriented
assembler routines accessible to your COBOL programs.

Use CACHE effectively
Read Chapter 15 to get the definitive scoop on CACHE operation, including a
utility that lets you monitor CACHE performance without all the fuss and both­
er of learning SMF. You may need more memory to take advantage of
CACHE; look at Chapters 5 and 14 to find out.

Improve disk performance
Look through Chapters 11 and 12 for specific procedures that reduce disk time
and space overhead. Chapter 10 explains blocking and how to use it to best
advantage without modifying your programs. Chapter 3 lays out Disk Data
Management theory you'll need to really understand disk performance.

Improve response time
Read Chapter 16 carefully. It explains how to measure interactive response
time using a utility provided on diskette, so you'll know when response time
has improved. The chapter goes on to show you where you can change

XIX

applications to reduce response time, and points out how External Program
Calls can be the big lever for speeding user interaction.

Make Disk Data Management sit up and bark
We mean, of course, wringing every drop of perfonnance from DDM. To do
that, you must understand DDM internals intimately. Fortunately, it's not all
that hard, as you'll discover after reading Chapter 3. Chapters 10, 11, and 12
will then show you all the tricks, and a host of utilities on diskette will have
you leading DDM around by its, uh, node.

Do the right thing for future migration
Skip straight to Chapter 19, which gives important guidelines for making your
applications portable, whatever your future platform. You might be surprised
at what the real issues are (for example, you probably think assembler lan­
guage programs are a big problem, but they're not).

Learn about future platform alternatives
The Big Question: Where do we go from here? Chapter 20 covers the AS/400
from a S/36 user's perspective. It will give you some mental scaffolding to
understand what you're evaluating, and all the details you'll need to pick an
AS/400 of appropriate size and mass for your needs. Chapter 21 examines the
new midrange contender: the RS/6000. You'll read about the two primary
Unix migration alternatives and what pros and cons you should consider in
your decision.

Be aS/36 guru
It's still fashionable. And not too difficult. Read Chapters 1 and 2 (which we
included to give our book intellectual heft), buy a pocket protector, and sign
on to NEWS 3X1400's electronic bulletin board, NEWSLINK, every day.

HOW TO USE THE DISKETTE

The diskette packaged with this book contains source and object code for the
utilities and subroutines described in the text. We've divided the machine­
readable material into three libraries: DT36x contains ready-to-run object code
and procedures for all the standalone utilities; DT36R contains the R-modules
for assembly language subroutines; DT36S contains all non-assembly language
source code. The use of three separate libraries lets you install only as much
machine-readable code as you want to use. If you just want to use the stand­
alone utilities, install only the DT36x library; if you want to use assembly lan­
guage subroutines in your RPG or COBOL programs, install DT36R; if you
want to modify any of the utilities, install DT36S.

xx

To install a library, simply insert the Desktop Guide diskette into the
diskette slot (slot S1 if you have a magazine drive) and type the command:

RESTLI BR library

where library is DT36x, DT36R, or DT36s. SSP will then restore the library on
your hard drive. You can use any of the standalone utilities by making DT36x
your current library using the SLI B DT36X command. Then simply key in the
name of the utility you wish to run (e.g., MMETER). Altematively, you could
copy the contents of DT36x to your #UBRARY by typing:

LIBRLIBR DT36X.#LIBRARY.LIBR.ALL

Now the utilities will be available from any terminal no matter what library is
current.

To use the assembly language routines once you've loaded them,
specify DT36R for the subroutine library name parameter on the RPGC or
COBOLC statements. For RPGC this is parameter 16:

RPGC MYPROG.MYLIB DT36R

For COBOLC, you also specify DT36R in parameter 16:

COBOlC MYPROG.MYLIB DT36R

Remember that for COBOL you must use the RBRIDGE routine to access
assembly language routines written for RPG (see Chapter 17, page 300, for an
explanation of the RBRIDGE routine).

To locate any of the utilities or subroutines described in the text, refer
to the following alphabetical library directories, which list the name and brief
description of the utilities or subroutines contained in each of the libraries and
provide a page number to tum to for detailed usage instructions.

DISKETTE CONTENTS

Library DT36x: Executable Standalone Utilities

Name Page Description

CACHIQ 243 Displays real-time cache utilization and performance
statistics

FILEX1ND 196 Changes or retrieves a me's extend value without
re-creating or copying the file

INDEXDR

KEEPOPEN

167

173

Index Doctor. Analyzes indexed mes and alternate
indexes and prints a report describing index health

Keeps large indexed mes open to maintain the storage
index in main storage, speeding program initiation

XXI

Name Page Descripdon

MMETER 234

PROFRPG 304
REORGX 198

RPGDUMP 308
RTIMER 249

SETCACHE 245

SHOWUR 181

SLOWKS 199

SNAP 219

Displays real-time memory utilization statistics for the
entire system

Perfoons statement-count proming on RPG program

Reorganizes a me and automatically re-creates all of its
alternate indexes

Prints fonnatted contents of an RPG dump me

Measures and reports response-time values for all
workstations

Dynamically changes cache values from evoked or
]OBQ jobs

Shows which programs are using records in a given
me, which records are being held for update, or which
records are waiting for another program to fmish an
update

Reports whether or not a given keysort is being per­
fonned using a disk work me (fast) or entirely in­
memory (slow) due to lack of available disk space

Displays real-time CPU and device usage statistics for
executing programs

Library DT36R: Assembly Language Subroutines
Name Page Descripdon
RBRIDG 300 COBOL bridge to RPG assembler routines

SUBR#D 308 Subroutine used internally by RPGDUMP utility

SUBR$C 265 String concatenate

SUBR$F 265 String search within a field

SUBR$S 234 Subroutine used internally by MMETER utility

SUBR$X 267 Substring extract from a field

SUBRAT 268 String adjust: left, right or center

SUBRBX 269 Convert between binary and hex

SUBRCO 280 File close and open

SUBRCP 293 Return cursor position for a WORKSTN me

SUBRCQ 243 Subroutine used internally by CACHIQ utility

SUBRCS 269 Convert between upper and lower case

SUBRCT 291 Change system time or date without IPL

XXII

Name Page Description

SUBRDT 292 Retrieve SYSTEM and SESSION date fonnats

SUBRDU 293 Replace DUP key save area for a workstation

SUBREK 294 Dynamically enable or disable command keys

SUBRFA 281 File access, full procedural

SUBRLD 271 library directory retrieval

SUBRLN 295 PRlNfER me current line number retrieval

SUBRLR 274 Library member read by sector

SUBRMG 296 Send an MSG message from within a program

SUBRRN 286 File relative record number retrieve

SUBRPC 296 Position the cursor for a WORKSTN me

SUBRPS 297 Print the current screen

SUBRSG 276 Library source member get

SUBRSM 219 Subroutine used internally by SNAP utility

SUBRSX 298 Return the spool ID for a PRlNfER me

SUBRSY 288 System information retrieval

SUBRUF 288 Retrieve users of a me

SUBRUL 289 Retrieve users of a library

SUBRUP 270 Pack or unpack a field

SUBRUR 290 Retrieve records-in-use for a me

SUBRWI' 298 Wait for a specified time interval

Library DT36S: Source Code
Name Page

CACHIQ 243
KEEPOPEN 173
MMETER 234
PROFRPG 304
REORGX 198
RPGDUMP 308
RTIMER 249
SHOWUR 181
SNAP 219

Description

Cache IQ source code

KEEPOPEN source code

Memory Meter source code

Promer source code

REORGX source code

RPG dump fonnatter source code

Response time measurement utility source code

SHOWUR source code

SNAP source code

XXIU

Section I

System Internals

"Wben? shall I begin, please yourMajesty?" he asked. "Begin at the beginning, "
the King said, gravely, "and go on till you come to the end: then stop. "

-Lewis Carroll
Alice's Adventures in Wonderland

Understanding the iimer workings of your computer isn't essential to
running the machine any more than understanding engines is essen­
tial to driving a car. It's a sure thing, though, that at least a passing
familiarity with hardware and software architecture will help you in
the long run. If your immediate goal is to improve response time or

to write applications, you can safely skip the material in this section - noth­
ing here will make or break your ability to tune the system or write good
application programs. But if you want a good understanding of the fundamen­
tal mechanisms that underly the S/36, you'll find it right here.

Chapter 1 is the defmitive description of S/36 hardware architecture:
an under-the-covers look at CPU internals not found in any public IBM publi­
cation. Chapter 2 presents an equally detailed dissection of S/36 memory man­
agement that will serve you well as you dig through pages of SMF reports, hot
on the trail of improved performance. Chapter 3 unravels the mysteries of
Disk Data Management - the information pump through which all your
application's data must pass - and dispels a good many old programmers'
tales in the process.

All of this material might be considered above and beyond the call of
duty for the average programmer. But then, you aren't average - you bought
this book, didn't you?

Chapter 1 Introduction to S/36 Architecture 3

Chapter 1

Introduction to 5/36 Architecture
Computers, like skyscrapers, are built from the basement up; sometimes it
takes years to reach the top floor. Most existing commercial computers have
risen slowly from established architectures, and the Systernl36 is no exception.
It stands on the foundation wrought by the IBM Systernl3, Systernl32, and
Systernl34. But Systernl36 users should not fear that their trusted systems will
become lost in the rubble. An investigation of the history and architecture of the
Systernl36 reveals that Systernl36 reliability and cost efficiency ensure several
more years of life, despite the availability of newer systems such as the AS/400.

Examining the S/36's inner parts reveals its evolution. Its unique par­
allel processors and modular components speak of several design phases.
There is much to learn. But interesting as this knowledge might be, of what
practical use is it? Why should anyone be interested in how a machine works
internally? Certainly the S/36 can be programmed and operated without such
detailed knowledge, just as a car can be driven without understanding what
goes on under the hood. However, for the driver, a knowledge of auto
mechanics comes in handy when comparison shopping for a new car or when
"tuning up" the old car. Knowing something about the inner workings of your
computer provides the same kind of benefit.

Understanding what happens under the computer's covers is especial­
ly helpful when planning for the inevitable upgrade to a newer platform: you
can take steps today to make your applications more portable while retaining
good performance. And programmers who understand the basic operation of
a computer can design programs that take advantage of the computer archi­
tecture's strong points.

Genealogy
A discussion of present-day S/36 architecture must begin with a look at the
architecture of its predecessors. Figure 1.1 summarizes the hardware develop­
ments contributed by each generation in the S/36 ancestry.

The S/36 architectural line began in 1969 with the S/3, one of the
first computers for small businesses. The S/3 was revolutionary in one sense:
it offered a fast commercial instruction set at a time when most computers
relied on a scientific instruction set. A computer's instruction set consists of
the lowest level machine language orders it can carry out. "Add binary," "load
register," and "branch to address" exemplify machine language instructions.
The scientific machine instruction set used by most computers of that era

4 Desktop Guide to the S/36

Figure 1.1
System/36 Genealogy

Machine Major architectural contributions

System13 • Commercial machine language instruction set, including:
multibyte, memory-to-memory instructions (up to 256 bytes per instruction);
variable-length decimal; and arithmetic no hardware multiply/divide

• Address Translation Register (ATR) technique for muRnask memory management.

Systeml32 • Separate processor to handle 110 (Control Storage Processor)
• Microprogram emulation of Systeml3 processor (Main Storage Processor)
• Single program execution only
• 27 MB disk drive technology (Gulliver)

Systeml34 • Hardwired implementation of System13 processor
• Task swnching and address translation handled by CSP
• Significant operating system functions implemented as Supervisor Calls
• Scientific instruction set (for BASIC and FORTRAN) in microcode
• Four-line communication controller (MLCA) to handle polling and teleprocessing I/O
• 64 MB disk drive technology (Picollo)

Systeml36 • Faster main storage and control storage processors
• 8 MB real main storage addressability
·192 K translated (region) main storage addressability
·128 K control storage (double that ofthe Systeml34)
• Two-byte wide, bidirectional channel
• Improved overlap of CSP and MSP operation
• Fast task-swnching hardware and multiple ATR groups
• Virtual memory management for system transient routines
• New MSP instructions for ease of programming
• W/S controller optional to reduce cost of entry level machines
• Word Processing Text Mode support for workstations
• Data Storage Controller to handle disk/tape/diskette data transfers
• Eight-line communication controller (ELCA) to handle polling and TP I/O
• RLUECC disk drive technology to eliminate write verifies

performed calculations on binary numbers in registers (high-speed, scratch­
pad memory). For scientific programs this type of instruction set provided
much needed speed. Programs computing Laplace transforms or orbital veloci­
ties ran like the wind.

Business programs, however, have little to do with binary numbers or
registers; they work instead with decimal numbers and variable length fields.
A traditional scientific instruction set was ill-eqUipped to deal with these fac­
tors because it was constantly converting commercial formats to binary for­
mats and vice versa. Consequently, payroll and inventory applications run on

Chapter 1 Introduction to 8136 ArchHecture 5

computers with a scientific instruction set used up much processing time on
data conversion and ran like glaciers.

In contrast to many of its contemporaries, the S/3 commercial instruc­
tion set could perform arithmetic operations directly on decimal numbers in
memory - no intermediary registers were necessary. It also could, in a single
instruction, manipulate a field of data up to 256 characters long (no more byte­
by-byte translation to binary). With the S/3's multi-byte, memory-to-memory
instructions, S/3 programs did not spend much time converting data, and busi­
ness application performance improved.

The speed of the S/3 processor was carried over to the S/32 (some­
times called the "bionic desk" because it was an all-in-one unit), which was
introduced in 1973. With the S/32, IBM heralded a new hardware technology
that allowed two CPUs to function side-by-side in one machine.

One CPU, or processor, was a microprogrammed version of the S/3.
This processor wasn't as fast as a S/3, but it executed the same instruction set,
which meant IBM could reuse much previously developed system software.
The other processor, given the job of handling all contact with peripheral
devices and the outside world, was a real innovation. This second processor
ran its own dedicated program using its own dedicated memory. Although in
the early 1970s the S/32's dual processors represented a hardware advance­
ment, this system was limited by its capacity to run only one program at a time.

Four years later, IBM announced the S/34, which continued the S/32
philosophy of using two processors. However, the microprogrammed proces­
sor was replaced by a much faster "hardwired" version. This processor, now
faster than the fastest S/3, could run mUltiple programs simultaneously. The
second processor, also a holdover from the S/32, took on the job of managing
memory and dispatching tasks for the hardwired processor. (IBM included in
this processor a scientific instruction set, emulated by microcode, which
allowed faster execution of BASIC and FORTRAN programs.) Local terminal
management was relegated to yet a third processor. A fourth processor was
available as an option to support outside communications - the first time a
processor was offered optionally. Extensive use was made of another develop­
ment, the ATOM (A Tiny Optimized Microprocessor), to directly control the
system printer and MICR (Magnetic Ink Character Recognition) devices.

These developments led to the S/36, which appeared in 1983. In many
ways, it is a radical departure from the S/34. For example, memory address­
ing was re-engineered for the first time since the S/3. The two main proces­
sors also were improved and the selection of optional processors expanded.

Internally, the S/36 supports several different processors. Figure 1.2
summarizes their names, functions, and characteristics. The Main Storage Pro­
cessor (MSP) is really a hardwired S/3 CPU with a few new instructions. The
Control Storage Processor (CSP) controls the overall operation of the entire

6 Desktop Guide to the S!36

Figure 1.2
System/3S Multiple Processors

Function of
Processor

Internal
Technology

Instruction
Set

Execution
Speed in MIPS

Address
Space

Memory
Access

Time (ns)

Main Storage
Processor

MSP Enhanced
System!3

0.36 8MB 200

Control Storage
Processor

CSP Register-to-
Register

1.6 128 K 200

Workstation
Controller

CSPII Register-to-
Register

1.6 128 K 200

Data Storage
Controller

CSPII Register-to-
Register

1.6 128 K 200

Eight-Line
Comm Adapter

CSPII Register-to-
Register

1.6 128 K 200

Printer
Controller

ATOM Register-to-
Register

1.1 128 K 200

Magnetic Ink
Character

Recognition
ATOM

Register-to-
Register 1.1 128 K 200

Local Area
Network PC!AT Intel 80286 1.2 640 K 150

machine. It runs a dedicated program in its own memory (control storage)
which may be either 64 K or 128 K. A third kind of processor has the same
instruction set and organization as the CSP, but it is used as a dedicated con­
troller for certain input/output (I/O) operations. IBM has designated it the
CSP/I; one each is found in the Workstation Controller, Multi-Line Communi­
cations Adapter (MLCA), Eight-Line Communications Adapter (ELCA), and
Data Storage Controller. If a 3262 printer or Magnetic Character Reader is
attached to the system, ATOMs will control these devices. To better under­
stand the function of each of these processors, let's first examine the two main
processors (MSP and CSP) and then discuss the optional processors.

Main Storage Processor
The S/36 Main Storage Processor (MSP) runs SSP programs and user applica­
tions through the S/3-based commercial (memory-to-memory) instruction set.
That is all the MSP does. It has no control over which programs are executed.
It has no direct contact with the outside world. (When the MSP must perform
I/O operations, it submits a request to the CSP, which handles contact with

Chapter 1 Introduction to S/36 Architecture 7

the outside world.) And the MSP executes only .36 million instructions per
second (MIPS). This rate might seem slow when compared with other com­
puters, but because the MSP doesn't concern itself with I/O or task manage­
ment, it is free to concentrate on the job at hand. This freedom makes up for
the MSP's apparent lack of horsepower.

The MSP in the current S/36 can address up to 8 MB of memory, or
main storage - seemingly small by today's standards, where an average PS/2
might be configured with up to 16 MB. However, the S/36's implementation of
virtual memory (VM) lets you run up to 128 MB of applications simultaneously.
Chapter 2 describes S/36 memory architecture, including VM, in detail.

Control Storage Processor
The Control Storage Processor (CSP) interfaces with peripheral devices, man­
ages MSP memory and swapping, and controls the execution of the MSP. The
CSP also provides special computational services to the MSP, including high­
level operating system operations such as queue management and intertask
communications. Through judicious task and memory management, the CSP
tries to keep the MSP operating at maximum efficiency. Because the CSP is not
working on business programs, it uses a more applicable register-to-register
instruction set, which allows the CSP, running at speeds of 1.3 to 1.9 MIPS, to
juggle many jobs at once. The services provided by the CSP simplify the pro­
gramming involved in. the SSP and take advantage of the four-fold speed
advantage CSP has over MSP for time-critical functions.

There are three versions of the S/36 CSP. Machines shipped before
October 1984 contain a Stage 1 CSP, which runs at 1.3 MIPS. Machines
shipped after October 1984, including all 5362 and 5364 processors, contain a
Stage 2 CSP, running at 1.6 MIPS. CPUs on the 5360 model D, and all 5363s,
use a Stage 3 CSP, running at 1.9 MIPS. On small machines the performance
difference between Stage 1 and Stage 2 processors is insignificant because the
CSP is rarely running at anywhere near its rated capacity. However, on large
5360s running many workstations or DisplayWrite/36 jobs, the CSP may be
fully utilized, and the Stage 3 processor improves performance significantly.

The S/36 CSP has a number of enhancements over the S/34 version.
In addition to being faster, the S/36 CSP processes more requests in parallel
with the MSP than did its predecessor. It also recognizes many new Supervi­
sor Call (SVC) instructions, which perform operating system functions for the
MSP. Included in these new SVC instructions is a "storage mapping" service,
which allows SSP programs (e.g., data management) easier access to buffers
in a user application.

The S/36 CSP also contains a larger control storage area than the S/34
CSP. Because the S/34 CSP contained only 64 K of control storage, control stor­
age programs that couldn't fit in this space were read in from disk as "transients"

8 Desktop Guide to the S/36

when required. The S/36 CSP can contain either 64 K or 128 K of control stor­
age. ('The extra storage is used to contain Workstation Controller (WSC) code if
the WSC function is inroard, or to simply keep more CSP routines resident if
the WSC function is outroard.) In addition to the extra control storage, the S/36
CSP offers a new Virtual Address Facility in its memory management function.
This facility allows any number of MSP transients to run from the user area
instead of rottle-necking in a single transient area as they did on the S/34.

An interesting and useful service prOVided by the CSP is the Alter/
Display facility. When the MSP STOP bunon is pressed on the service panel, a
special menu appears at the system console. This menu allows a programmer
or service technician to examine and modify any location on disk, in main
storage, or in control storage. This kind of tool, when it is available at all on
Single-processor machines, is usually implemented as a large and complex
control panel. The S/36's "soft" control panel is much easier to use and pro­
vides a wider range of functions. For example, an Address Compare Stop fea­
ture can be used to stop the MSP when a certain disk or memory address is
referenced or changed to a specified value. The MSP is in a suspended state
while Alter/Display is being used; processing resumes at the point of interrup­
tion after exiting the Alter/Display menu. This capability is invaluable for
tracking down difficult system bugs.

Optional Processors
As options, you may install other processors that take care of additional tasks.
A Workstation Controller (WSC) processor deals with local workstation
input/output; a Data Storage Controller (DSC) processor mediates data trans­
fers between disk and slower devices such as diskette and tape; an MLCA
(Multi-Line Communications Adapter) or ELCA (Eight-line Communications
Adapter) processor handles polling and protocol for multiple communication
lines; a Local Area Network processor supports IBM's Token-Ring LAN.

The Workstation Controller. An interesting difference between the
S/34 and the S/36 is in the workstation controller. Every S/34 had a dedicated
CSP/I with 32 K of control storage to poll workstations, process keystrokes
and handle field attributes like right-adjust, zero fill, and check digits. The
workstation expansion feature to support more than eight devices was simply
a memory expansion of the WSC to 64 K.

Not every S/36, however, has a dedicated WSC. On all 5364 models,
and on 5362 models without the workstation expansion feature, the WSC
function is performed "inboard" by the CSP. Because the CSP and WSC both
use identical processors, adding WSC tasks to the CSP's workload wasn't hard
to do, and it allowed IBM to produce machines with full S/36 functionality at a
lower price. (For a comparison of features among S/36 models, see Figure
1.3.) These models do not suffer a performance loss because the CSP has

Chapter 1 Introduction to S/36 Architecture 9

Figure 1.3
Comparison of Features Among 5/36 Models

Data
Model

Disk
Configurations

Access
lime

Memory
Capacity

Workstation
ControAer

Storage
Controner

CQmm
Controller Diskette Tape··

5364 4O,SOMB 60ms 1MB NlA NlA PC 5.25" 6157
up to 2spindles (line)

5363 68to425MB 35ms 2MB NlA Optional SLCA 5.25" $157
up to 2spindles (2 fines)

5362 301Cl~MB 35ms 2MB Optional NlA SLCA, 8" 6157
up to 4spindles MLCA

(4 lines)

5360 30 to 1438 MB 35ms 7MB DecfICated Optional SLCA, S" 6157
up to 4spindles (optional with tape MLCA, aaoe

2ndavaH) attachment ELCA
(Sline5)

9402· 160 to 640 MB 35ms 2MB NlA Optional SLCA 5.25" 6157
u to 4 s indiesp p 2&nes

• 	Also known as the AS/400 model 9402, but actually is aS/36.
IBM marketed this machine for ashort time as !hI! AS/Entry.

•• The 6157 tape drive is astreaming cartridge unit with 60 MB capacity.
The 8809 tape drive is areel·to-reel unit for mainframe data exchange.

enough additional capacity to easily take on the extra load. Larger 5362s and
all 5360s have an "outboard" WSC that relieves the CSP of handling more
extensive local networks.

Both the inboard and outboard WSC implementations support the
new "word processing mode" for local workstations. This mode adds such
functions as indentation, margin control, tab entry, and word wrap - func­
tions used by DisplayWrite/36 to provide a user interface better adapted for
word processing than the fIXed-field format of data processing mode. Because
these features are under the direct control of a CSP or CSP/I, they have consis­
tently fast response time, regardless of the load on the MSP.

Remote devices, such as the 5251 Model 12 workstation and the 5294
control unit, also contain workstation controllers. In the 5251 Model 12, the
WSC program is fIXed in Read Only Memory (ROM) and cannot be changed. It
is unable to support word processing mode. The 5294 does not contain a
fIXed WSC program. Instead, the host 5/36 downloads WSC microcode when
the 5294 goes on-line. Thus, word processing mode functions are available,
unlike remote W5C that have fIXed micro code.

Data Storage Controller. The 5/36 supports up to two tape drives ­

10 Desktop Guide to the S/36

something unavailable on the S/34. Tape drives are attached to the system
through the Data Storage Controller (DSC), which can autonomously transfer
fIles from disk to tape without the intervention of either the MSP or CSP. In
fact, the DSC also can mediate transfers between disk and diskette, diskette
and tape, or disk and disk.

When a S/36 does not have a DSC, data is transferred between
devices on an internal two-byte-wide path called the "channel." This same
path is used for intercommunication between the MSP, CSP, and other proces­
sors. With all these devices competing for use of the channel, a sudden high­
volume transfer of data can result in a logjam of information, degrading sys­
tem performance significantly. The DSC operates "below" the channel,
communicating directly with the devices over its own private data path. This
capability reduces access contention on the main channel and eliminates the
degradation that normally occurs with large fIle transfers. The S/34 experi­
enced tremendous response-time degradation when transferring fIles between
diskette and disk, or disk and disk.

To operate efficiently, the DSC contains two 16 K buffers. It initially fills
both buffers; then, after one buffer is written to the output device, it starts refill­
ing it while the second buffer is being written. This double-buffering improves
the output transfer rate significantly and allows the tape drive to run in stream­
ing (high speed, nonstop) mode. When a DSC transfer is requested, the CSP
notifies the DSC where the source and destination ftles are and the DSC takes
over, interrupting the CSP only when a diskette or tape must be changed.

Because the DSC only relieves congestion on the main channel (it
doesn't actually move the data faster), no appreciable performance improve­
ment will be noticed unless the system is heavily loaded. The DSC can only
make response times more consistent. The DSC also is limited to performing
one device-to-device transfer at a time. If the DSC is engaged in a transfer and
the MSP requests another transfer, the second request will be queued until the
DSC is free. The one exception to this rule is if the DSC is processing a tape
transfer and a request for a diskette transfer is made. Because the tape transfer
could require a long time (especially if the operator doesn't change reels
when prompted), the diskette request is processed immediately using the
main VO channel.

MLCA and ELCA Processors: A S/36 with one or two communications
lines (Single-Line Communications Adapter - SLCA) uses the CSP to poll the
lines, handle bottom-layer protocol, and buffer data transfers. One line pre­
sents no problem, but two lines can put an unWieldy burden on the CSP,
which is forced to drop everything it's doing to service the high-priority com­
munication interrupts. When more than two lines are installed, the MLCA
(now available only on the 5362) and ELCA processors do the dirty work.
These processors are essentially identical - the ELCA is more recent and the

Chapter 1 Introduction to S/36 Archttecture 11

only product currently available on newer 5360s.
Because both communications processors are a dedicated CSP/1, they

support data rates much faster than the SLCA. They also assume the responsi­
bility for polling terminals, processing protocol messages, computing check­
sums, retransmitting buffers, and for the lower layers of SDLC protocol. A
machine with MLCA or ELCA installed will experience much less degradation
than a machine using SLCA.

Local Area Network Processor: The S/36 supports IBM's Token-Ring
Local Area Network (LAN) through a specially attached PC/AT. The Token­
Ring network ports appear as communications lines 9 and 10, and the Token
Ring runs only at the 4 million bits per second (mbps) data rate; the 16 mbps
Token Ring isn't supported.

IBM's Multiple Processor Advantage
A computer architecture, such as the S/36's, that uses multiple processors faces
a significant problem: how to use the processors efficiently. The goal is to get
some degree of parallel operation without unnecessarily holding up the exe­
cution of anyone task. Traditional approaches to the problem treat all proces­
sors equally either by running separate application programs on each proces­
sor or by interleaving instruction execution among processors. IBM has taken
a different tack with the S/36 by assigning each processor a specific, dedicated
job and by designing for each a unique instruction set optimized for the tasks
at hand. Figure 1.4 diagrams the major components inside the S/36 and shows
how they are interconnected.

The usefulness of the multiprocessor architecture is demonstrated in
the analogy that single-processor computers suffer from the same problems as
single-engine airplanes: a shortage of options. When the engine quits on a sin­
gle-engine airplane, there are no options from which to choose. The important
decision has been made for you by the engine: the aircraft is going down. The
engine in a single-processor machine can stop, too, when an invalid instruc­
tion is encountered, or when a hardware error occurs. When such an event
happens, the computer often is headed in the same direction as the airplane.

The multiprocessor S/36, like a multi-engine aircraft, recovers some­
what more gracefully from serious system failures. If the MSP tries to do some­
thing crazy, the CSP gets control and executes an error-recovery procedure.
Often, the error-recovery program needs only to cancel the offending task
before resuming the work in progress. Sometimes even this step is not neces­
sary because the problem can be corrected while the MSP waits. For example,
if the MSP runs into a parity check (memory failure) in a main storage memory
card, the task is canceled and the 2 K page of memory is taken off-line to pro­
tect other tasks from the damaged memory. Likewise, if a disk sector is found
to be unusable, the CSP automatically assigns a spare from a special supply of

12 Desktop Guide to the S/36

Figure 1.4
Overview of S/36 Internal Components

Main

Storage

Control

Storage

MSP

Main Storage
Processor

Control Storage
Processor

1/0 Channel

PC/AT ATOM CSP/I ATOM CSP/I CSP/I

extra disk sectors, then lets the MSP proceed as if nothing happened. The CSP
also keeps a detailed log - the Error Recovety Analysis Report (ERAP) - of
any problems it detects for later perusal by a customer engineer.

The interdependence between the CSP and the MSP is especially
important because during a typical processing day several programs compete
simultaneously for use of the MSP. Competition for the MSP means the CSP
must make many decisions about when to run which program. The process of
allowing a program (task) to run, then stopping it and starting up another pro­
gram, is called "task-switching."

A typical task-switching scenario might proceed as follows: when the
MSP must perform some I/O operation, it makes a request to the CSP via a
Supervisor Call instruction. The program that requested the I/O must now
wait. The CSP selects another program that is ready to run and starts it, then
schedules the I/O operation for the fIrst task, thus "switching" the tasks. The
steps that take place when a task switch occurs bear examining because a

Chapter 1 Introduction to S/36 Archttecture 13

major advantage of the S/36 over single-processor systems hinges on how
these steps are carried out.

Many computers, including the S/36, use an "I/O-driven" mechanism
for switching tasks. That is, when the execution of one task is interrupted to
perform an input/output operation, the machine switches to another task. This
switch makes sense because most I/O operations are quite slow when com­
pared with the speed of the processor. For example, a disk read requires
about 40 milliseconds; in the same amount of time the MSP could execute
nearly 15,000 instructions. Because the task that requested the I/O operation is
going to wait anyway, running another task in its stead overlaps the operation
of the processor and I/O.

However, task switching is not an instantaneous event. There is a gen­
eral sequence of events that must occur. First, the I/O operations that caused
the interruption must be dealt with: transferring the data and controlling the
device. Then the computer must determine which of several tasks should run
next and maintain the various queues used to make this decision. After a new
task has been selected, the environment of the old task (instruction pointer and
registers) must be stored. If the new task has been swapped out to disk, it must
be brought into memory. Finally, the environment for the new task must be
loaded and execution started at the point of previous interruption.

Figure 1.5a shows the tirneline of events for a conventional single­
processor computer. Because only one processor is available, when an inter­
rupt occurs, everything else must stop while the task switch is done. If two
tasks are run together, chances are that the total amount of time to run them
will be longer than if the tasks were run one after the other: more time is
required to switch between tasks. When many tasks are running at the same
time, task switching can account for an appreciable portion of the total execu­
tion time. In fact, as the task load increases, a point eventually will be reached
where more time is used up doing task switches than running the tasks them­
selves. To the user, it appears as though system performance degrades rapidly,
out of proportion to the number of tasks. This situation is clearly unhealthy; in
most forms of accounting it is referred to as a net loss.

The same tirneline for a S/36 is shown in Figure 1.5b. Here, when a
task switch must be made, only the CSP is interrupted - the MSP keeps run­
ning. The CSP then sets up everything for the task switch. It takes care of I/O
handling, determines which task will run next, swaps the task into storage if
necessary, and then switches tasks. All time-consuming operations are per­
formed in parallel by the CSP while the MSP continues to process user pro­
gram instructions. However, the S/36 contains special "fast task-switch" hard­
ware that allows it to save and load the MSP registers qUickly, which, in tum,
makes the task switch nearly instantaneous.

The MSP is not involved in the details of shifting gears and loses little

14 Desktop Guide to the S/36

Figure 1.58

Timeline for Single-Processor Task Switching

TIME

User-program time

(productive)

Task-switching time

(unproductive)

Stop current task, process '"

VO, schedule new task, /

save old task, load new task,

start new task.

Figure 1.Sb

Timeline for S/36 Dual-Processor Task Switching

TIME

User-program time MSP(productive)

Task-switching time CSP(overlapped)

Process VO, schedule

new task, load new task,
 I
stop old task, save old task,

start new task.

time between tasks. Within the space of a few MSP instructions, the old task
is stopped and the new task is started. As new tasks are added, the MSP con­
centrates on running those tasks, and there are fewer abrupt changes in sys­
tem performance.

The Channel
The VO Channel is the data path used by the MSP, CSP, other processors, and
peripheral devices to transfer data inside the machine. When a disk record is
read it is transferred byte by byte down the channel to main storage. The MSP
and CSP continue to run during this transfer, but the channel "steals" a cycle

Chapter 1 Introduction to SI36 Architecture 15

from the MSP when it needs to access main storage. Other transfers work in a
similar manner. The S/34 channel was one byte wide, meaning that, for each
cycle, one byte could be transferred from one component to another inside
the machine. The S/36 channel is bidirectional and two bytes wide. It can
transfer two bytes at a time between components or one byte Simultaneously
in each direction. Because the S/36 channel can transfer twice as much data as
the S/34 version, it "steals" only half as many cycles from the MSP, which
improves the performance of user programs and SSP functions. Generally, any
channel activity takes only half as long as it did on the S/34, greatly reducing
internal traffic congestion.

The S/36 channel is actually an intelligent device, not just a data bus.
It incorporates a primitive channel processor that executes a limited range of
instructions specifically geared to moving data on the bus. Although these
instructions are simple, it gives the channel some degree of autonomy: the
CSP can issue commands to the channel and then go do other work while the
commands are carried out.

Disk Drives
The hard disk technology used on the S/36 is a major advance over previous
devices. For this discussion, only the 10SR 200 MB drive will be examined. But
other disks (the 30/60 MB used in the 5362 and the 40/80 MB used in the
5364) are similar in operation. All S/36 disks use data encoding to increase
reliability and decrease access time.

To better understand S/36 disk drives, let's again contrast the S/36
with the S/34. The S/34 Gulliver (27 MB) and Picollo (64 MB) devices required
that, after every write operation, the data be re-read to make sure it was
recorded correctly. While this step was handled automatically by the CSP, it
was time-consuming: after writing a record, the CSP had to wait for the disk to
spin around again to the starting point before the record could be re-read for
verification. Thus, write operations were more than twice as long as read
operations. Also, while the S/34 re-read technique provided a high level of
reliability when the data was written, it provided no recourse if the data was
damaged after writing (random damage). Experience with S/34 drives demon­
strated that the most common random disk error was a single-bit failure within
a byte. Double-bit errors within a byte also occurred but much less frequently.

The 10SR (STAR) uses a data encoding technique called Run Length
Limited (RLL) encoding, which eliminates the re-read requirement and
achieves reliability by detecting and correcting single- and double-bit errors at
read time. The S/36 technique recognizes that bad data could be put on the
disk at write time, but that most problems will be single-bit errors. On the
S/36, data is not written on disk as a series of fIXed-length bytes, as it is on the
S/34. Instead, the bytes are encoded into variable-length bit strings containing

16 Desktop Guide to the S/36

Figure 1.6

Run Length Limited Codes for Disk Error Correction

Input bit string Resulting RLL code
10 0100
11 1000
000 000100
011 001000
010 100100
0010 00100100
0011 00001000

twice as many bits as originally input (Figure 1.6). Six Error Correcting Code
bytes are also written for each 256-byte sector. On a S/36, then, because infor­
mation is being stored redundantly, it is often possible to repair damaged
bytes at read time. When a record is read, the encoded data is decoded and
an error detection/correction algorithm executed on the result. The mathemat­
ics of the algorithm guarantee that any single or double-bit errors can be
detected, and that Single-bit errors can be corrected. The net effect is that
records can be safely written to disk without re-reading for verification.

The Bottom Line
The S/36 is a prime example of building on pre-existing technology effective­
ly. Through extensions to an established architecture, it has the ability to coex­
ist in a distributed environment with other IBM midrange systems. The S/36's
modular and general-purpose internal components let you effectively trade off
performance, capacity, and cost. The architecture of the S/36 proves that IBM
has acted to preserve the history of engineering, software development, manu­
facturing knowledge, and technical support invested in the S/36.

Chapter 1 Introduction to S/36 Architecture 17

Where to Learn More

An excellent ovelView of the Systern/36 can be found in the IBM technical bulletin Sl36Intema/s
(G361 009). It outlines general concepts of both software and hardware arch~ectures, provides a
lucid explanation of memory addressing, and presents details about MSP/CSP interfaces. This
volume is actually one of aseries of six "Rochester Technical Bulletins' - the other five cover
specific SSP topics:

• S/36 8809 Tape Support (G360-1005)
• 8/36 Performance Monitoring and Tuning (G360-1 006)
• S/36 Query/36 Design Guide (G360-1 007)
• S/36 Data Dictionary System Design Guide (G360-1 008)
• 8/36 Advanced Disk Data Management (G360-1 OOS)

Assembler language programmers will find the following two IBM volumes useful: Program­
ming with Assembler (SC21-7908) and Functions Reference Manual (SA21-9436). The first book is
provided as part of the IBM Basic Assembler Language program product and covers everything a
programmer would need to know to write simple assembler programs. Amore complete description
of the machine, from the programmer's perspective, is found in the Functions Reference Manual.
Machine addressing modes, instruction formats, and supelVisor calls are examined in excruciating
detail. The programming characteristics of every device (disk, diskette, tape, printer, display, and
communications) also are set forth. Programmers who intend to wr~e special subroutines that
access input/output devices directly will be interested in this level of detail.

Technical references useful to system programmers are contained in the trilogy:

• S/36 Program Service Information (LY21-0590)
• 8/36 System Data Areas (LY21-0592)
• 8/36 Program Problem Diagnosis and Diagnostic Aids (LY21-0593)

These books are available for acharge to any licensed user of SSP. Those who plan to do seri­
ous programming in assembler language should have these manuals; they cover debugging
facilities, SSP component operation, memory, and disk organization, and the formats of internal
SSP data areas.

The manual, IBM 8/36 Control Storage Service Information (LY31-0650), describes the
detailed operation of control storage processor programs. It explains how the CSP communi­
cates with and controls the MSP. The concepts are well illustrated, and an appendix contains
several step-by-step examples of CSP/MSP interaction.

For hardcore hardware details, turn to the S/36 Theory of Operation manual, which cov­
ers detailed internal computer operations at acircu~ board level. This manual is one of the large­
format customer engineering books shipped with every 5360 system unit. Smaller versions of the
S/36 (the 5362 and 5364) are not supplied with this manual.

Chapter 2 SI36 Memory Management 19

Chapter 2

8/36 Memory Management
You hear conflicting stories when people discuss how the Systeml36 manages
memory. Some people maintain that the Systeml36 is a swapping machine; oth­
ers say it's a virtual machine. Many data processing managers believe Systeml36
memory architecture is simply a copy of the Systeml34 with minor changes;
likewise, many programmers believe the Systeml36 limits tasks to 64 K
because the Systeml34 has this limitation. Misconceptions arise from the lack
of complete, understandable Systeml36 memory management information
available to busy DP managers and programmers.

Although understanding the low-level details of S/36 memory man­
agement isn't essential, it helps you determine whether you have enough
memory and whether you are using it effectively. And as you learn more
about S/36 memory and how the system manages it, you can design S/36 pro­
grams that use memory efficiently.

Main Memory Organization
To develop a picture of S/36 memory, look at a diagram of S/36 main memo­
ry (Figure 2.n. Main memory is organized as eight-bit bytes and varies in size
from 128 K to 7,168 K, depending on the machine model. Main memory con­
sists of hundreds of integrated circuit "chips" and represents one of the most
finite resources of the S/36. Figure 2.1 shows the three areas that comprise
the contents of main memory: the fixed nucleus, the variable nucleus, and
the user area.

The ftxed nucleus, which occupies the first 4 K of main memory, con­
tains variables and data structures needed by all components of the S/36's
operating system, the System Support Program (SSP). The S/36's dual proces­
sors - the Main Storage Processor (MSP) and the Control Storage Processor
(CSP) - also use the fixed nucleus to communicate with each other. Because
the fixed nucleus is permanently set to the same size and content for all S/36
machines, a programmer or DP manager can do little to influence its effect on
performance. However, an assembler language programmer can use the data
stored in the fixed nucleus when writing special-purpose performance mea­
surement tools (see MMETER Utility, chapter 14.)

The variable nucleus includes the transient area, virtual page table,
resident routines, and system queue space. The transient area is 4 K of memo­
ry set aside for the very few SSP programs that must run in the variable nucle­
us. These programs are the task attach and detach, disk file open, diskette

20 Desktop Guide to the S136

Performance Tip

The SSP automatically
queues up requests

for the transient area,
but ahigh volume of

such requests can
slow performance

significantly by
causing many jobs to
waH for the transient
area. You can reduce

transient area
contention by

designing your
applications to

minimize new Jobsteps
(e.g., by using external

program calls),lhus
reducing lhe need for

task Inltlatlonl
termination and file

openlclose. Avoiding
DDM situations that
result In exceptions
also helps minimize

transient area
contention (see

Chapter 3).

Figure 2.1
Main Storage Contents

Fixed nucleus (4 K)

Variable nucleus: Transient area (4 K)
Virtual Page Table (.25-8 K)
Resident routines (24-48 K)
System Queue Space (8 K+ as required)

User Area: 	 SSP programs

User programs

Task Workspaces

open, and disk data management exception routines, which run infrequently
enough so that contention for the transient area does not slow performance.
The virtual page table is used by the S/36 virtual memory (VM) mechanism
(described later) to keep the system operating even when memory is over­
committed (Le., when more programs are running than can fit in memory at
one time). Resident routines are a few special SSP programs (disk data man­
agement and frequently used parts of workstation data management) that, for
performance reasons, are always kept in main memory. System queue space
(SQS) is a "pool" of memory set aside for dedicated use by SSP data structures
needed to control the system.

Technical Note

Only one system program at atime can run in the transient area. Because file open/close,
task attach/detach, and disk data management (DDM) exception handling all run in the
transient area, SSP must perform these functions serially. For example, while atask such
as /I LOAD jobstep is being started, no files may be opened or closed. Similarly, when
DDM exceptions occur (e.g., update of akey) no files may be opened or closed, or tasks
initiated or terminated, until the exception is handled and the transient area becomes free.

The name "variable nucleus" implies the nature of this region: it varies
in size with the amount of work performed by the system. The first three com­
ponents of the variable nucleus don't actually change size while the machine

Chapter 2 8/36 Memory Management 21

is running; the amount of memory they occupy depends on the hardware and
software configuration at IPL. Only the last area, system queue space (SQS) ,
ebbs and flows with the varying system load. Because the first three compo­
nents are "out of your hands," nothing more need be said about their function.
On the other hand, your program design and scheduling do affect SQS, so a
detailed knowledge of the SQS helps you make decisions that improve overall
system performance. Later, we'll look at characteristics of SQS that are impor­
tant from a performance standpoint.

The last, and usually largest, area of main memory is the user area.
Performance TipUser programs, most SSP programs, file buffers, screen formats, and other

objects reside here. One truism applied to computers in general, and the user
area in particular, is: "You can't have too much main memory." Adding additional

memory often drasti­Effective memory management rests on your understanding of a few
cally reduces Interac­fundamental concepts: real memory, translated memory, and virtual memory.
tive response times,

To grasp these ideas, let's look at main memory from a different angle. making It the easiest
and cheapest way to

Memory Concepts boost performance,
Figure 2.2 depicts the main memory address space for the S/36. Memory especially given the

availability of Inex­addressing is the practice of assigning to each location of computer memory a
pensive used memoryunique address, and using that address when referring to the contents of that
(see Chapter 5).

location. The S/36 follows the popular convention of dividing memory into
eight-bit bytes, each with a unique numeric address starting with zero. The
number of bytes that byte-addressable memory may contain depends on the

Figure 2.2

System/36 Real Storage Organization

Each page contains 2 K
Decimal Hex
Address Address1,\

o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 000000
32,768 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ... 008000
~~ ~~

OO~ ~~

/~/~/~V~V~V~ V~ /~

lEE fPfPCPfPGtIJ:I1I:IJ21 is

10111

reserved for translated address

22 Desktop Guide to the S/36

Performance Tip

The 5360 Model 0 Is
generally regarded as

hiving a7 MB memory
limit. However, the real

address space of the
Model 0 supports an

8th MB. See Chapter 5
for Information about

adding an 8th MB of
memory to your

5360 Model D.

size of the largest allowable address. On the S/36, a memory address is three
bytes long, or 24 bits. The first bit of every address is set aside for a special
purpose, leaving 23 bits to contain the address. The largest number that can
be represented by 23 binary bits is 8,388,607, so the S/36 can theoretically
have 8,388,608 bytes in its memory (remember, the first address is 0, not 1).
These locations, or bytes, of memory, each with its unique address, make up
real memory - all the memory that physically exists. The range of addresses,
from 0 through 8,388,607, is the real address space: the entire set of unique
memory locations available to the machine. The term real memory is used to
differentiate between memory that is available on the hardware and memory
that programs and programmers are led to believe is available (more on this
type of memory later in the discussion of virtual memory).

Fragmentation
When you try to apply the real memory viewpoint in a multitasking system,
problems arise, the worst of which is fragmentation. Figure 2.3 shows how
this problem develops.

In Figure 2.3a, a hypothetical computer with 128 K of memory is run­
ning four programs that consume a total of 124 K. After programs Band D fin­
ish running, they release their memory, leaving two 24 K "holes" in the 128 K
address space (Figure 2.3b). Later, the computer tries to run program E, which
requires 32 K of memory (Figure 2.3c). Although a total of 48 K is available,
the program is unable to run because available memory is split into two 24 K
pieces. Program E must wait for either program A or C to end before it can
obtain enough unbroken, or contiguous, memory. Because the usable address
space is fragmented, program execution is delayed and perfectly good memo­
ry is wasted. Memory fragmentation worsens quickly in a busy computer sys­
tem, causing system performance to drop off dramatically.

Solving Fragmentation
One solution to fragmentation is allowing programs to run in noncontiguous
blocks of memory. The S/36 accomplishes this using addresses that do not
directly correspond to real memory addresses but must be translated by spe­
cial hardware into real addresses, hence the term translated addressing. Trans­
lated addresses appear to the executing program to represent contiguous
memory locations.

Here's how address translation works. The S/36 groups bytes of real
memory into 2 K units called pages (as you saw in Figure 2.2), each with a
unique number from 0 to 4095. Figure 2.4 shows the program PROG A bro­
ken up into pages. Note that in main memory PROG A is not just fragmented
- its logical pages are out of order. The fourth logical page of PROGA physi­
cally appears before the first logical page. Before such a fragmented program

Chapter 2 SI36 Memory Management 23

Rgure2.3
How Memory Fragmentation Occurs

Main Storage Main Storage Main Storage

Program A 32K A A

Program B 24K

Program E
ProgramC 48K 32 K---"? Program C

48K

Program 0

Unused Memory

a b c

Figure 2.4

How the System/3S Solves Fragmentation

Page
Frame # Main Storage

0 2KAddress
Translation Prog Apage 4 2K

ProgA Register Array
2 2K

PageD • ••• ·0 0009
3 2K

Page 1 • •••• 1 0008
4 Prog Apage 5 2K

Page 2 • ••• ·2 0007
5 Prog Apage 3 2K

Page 3 • ••• ·3 0005
6 2K

Page 4 • ••• ·4 0001
7 Prog Apage 2 2K

Page 5 • ••• ·5 0004
8 Prog Apage 1 2K

9 Prog Apage 0 2K

10 2K

11 2K

12 2K

13 2K ~~ 31 FFFF
~

24 Desktop Guide to the SJ36

can run, a mechanism must rearrange the physical pages into their correct
logical order.

The S/36 contains a special array of hardware registers, called address
translation registers (ATRs). While a program is executing, each A TR contains
the number of a real memory page occupied by the program. The program
"sees" these pages as contiguous because the program only uses translated
addresses to refer to the pages. Every time the program references a memory
location, address translation hardware uses the array of ATRs to generate the
correct real memory address for that location. A close look at the translation
process reveals some important details about S/36 memory management.

Figute 2.5 shows what happens during real address generation. The
translated address is three bytes long, but only the last two bytes contain
address information. The first byte is always set to "10000000," where the
high--order "1" identifies this address to the MSP hardware as one requiring
translation. The seven bits following the "1" are ignored in a translated
address. The sixteen remaining address bits prOVide an address space of
65,536 bytes, or 64 K. ('Ibis limit of using only two bytes for address informa­
tion is the origin of the infamous 64 K region-size limitation.)

Because the last eleven bits of the translated address always fall With­
in the boundaries of one logical page (the largest number represented by
11 bits is 2,047), these eleven bits are copied directly into the corresponding
eleven bits of the generated real address.

The first five bits of the sixteen-bit translated address represent the
number of the ATR containing the real memory page frame address. In the
example, these bits contain "00101," or five, causing ATR #5 to be selected.
Each A TR is sixteen bits long, but only twelve of those bits are used. Those
twelve bits are copied to bits 1 through 12 of the generated real address. Bit 0
of the generated real address is forced to a value of zero, which as preViously
mentioned, designates a real address. This "generated" real address is the actu­
allocation of the data in real memory.

The S/36 performs the address translation process automatically for
every machine instruction. When a machine instruction references several
translated addresses, each address is individually translated as it is needed. For
example, if the instruction resides in translated memory (as is usually the
case), the instruction address is translated just before the instruction is fetched.
If the instruction then references operands in translated memory, each
operand address is translated individually before the operand is used by the
instruction. Because the translation is carried out in hardware, the process
does not add Significant time to program execution.

The S/36 address translation mechanism not only solves the memory
fragmentation problem, it also lets program pages reside in memory in any
order. In fact, the system can even change the page order in memory, provided

Chapter 2 8136 Memory Management 25

Figure 2.5

Example of Generating a Real Address

From aTranslated Address

Translated address

Bit 0is always a 7 •••••••

"1" for translated a1-"";";"----1
9 •••••••
addresses. 10 •••••••

11 •••••••
12

bitO -----------.~ 23
Generated real address

bit 0

always zero.
They are unused.

o •••••••
1 •••••••
2 •••••••
3 •••••••

~ 23

4 •••••••
5 •••••••
6 •••••••

•••••••

Selected ATR

the AlR array for the moved pages is updated to reflect their new location. The
useful ability to change page order without affecting the programs involved
makes possible the next feature of S/36 memory management: virtual memory.

Virtual Memory
The fact that two levels of storage - primary and secondary - exist in most
computer systems points up an ongoing compromise in computer technology.
High-speed primary storage (such as the S/36's solid-state main memory) is
too expensive and volatile for permanent data retention, so permanent infor­
mation is stored on less expensive, but slower, secondary storage (usually
disk). Primary storage contains only the data and programs the computer cur­
rently needs. However, the computer often works on several programs simul­
taneously - perhaps more than can fit in main memory at one time. When
the number of currently executing programs exceeds the capacity of main
memory, main memory is overcommitted. One way to handle overcommit­
ment is to hide the true size of main memory from programs, letting them
believe that there is much more memory than actually exists. The memory that
programs use during execution - but that may not actually be available on

26 Desktop Guide to the S/36

the system - is called virtual memory (VM). The range of "imaginary"
addresses is the virtual address space.

There are two popular ways to implement VM: segmented paging and
demand paging. Figure 2.6 compares some features of segmented paging used
by the S/36 with demand paging used by the S/38 and the AS/400. As you can
see from the chart, neither technique is new. Both techniques originated in the
early sixties and both share three important characteristics: memory organiza­
tion, backup storage method, and address translation method. Both techniques
also make tradeoffs involving expense, performance, and efficiency.

Page-in, Page-out Mechanisms
With demand paging, programs can reference any location in the virtual
address space directly, although only some of the pages of the virtual address
space actually reside in real memory at anyone time. When a program tries to
reference a location in a page not currently resident in real memory, special
hardware detects the condition and generates a page fault interrupt. The page
fault interrupt invokes a special operating system routine or hardware device
to locate the requested page on secondary storage and read it into real memo­
ry, a process called paging in.

As part of the page-in process, the page fault handler updates a table
used to generate real addresses during program execution - a process similar
to S/36 address translation. To make room for the page to be read in, the page
fault handler also may need to select a less important page in real memory
and write it to secondary storage, a process called paging out. Usually, the
paged-out page is chosen using an algOrithm that finds the least-recently-used
page in real memory.

The term demand paging comes from the fact that paging is driven
by program references, or demands, to virtual memory. If a program never
asks to "see" any location on a particular page, the page is never brought into
real memory.

Segmented paging does not allow programs direct addressability to all
locations in the virtual address space. Instead, programs have access only to a
segment of virtual memory - 64 K in the case of the S/36. Instead of waiting
for a program to reference a location in a nonresident page, the operating sys­
tem keeps a list of pages currently being used by each executing program.
When control switches from one program to another, the operating system com­
pares the list of pages the next program requires with a list of pages currently in
real memory (the virtual page table). If any pages are missing, the operating sys­
tem retrieves them from secondary storage. If there are no free pages in real
memory, the operating system writes some least-recently-used pages to sec­
ondary memory to free up enough pages for the next program to run.

The primary advantage of segmented paging - inexpensive imple­

Chapter 2 S/36 Memory Management 27

Figure 2.6
Segmented and Demand Paging Comparison

Segmented paging (5136)

First Implemented Burroughs B5000, 1961

Memory organization Fixed-length pages (2,D48 bytes on the
5/36)

Backing store Secondary disk storage

Address translation Dynamically with dedicated hardware.

Page-In mechanism Operating system knows program
requirements and brings in required
pages before giving program control.

Page-out mechanism Pages for the lowest priority tasks are
written out until enough pages are avail­
able for the program waiting for storage.

Real memory usage All pages for which aprogram has
addressability must be in real storage
before the program can run, regardless
whether the program actually needs data
in those pages now.

Implementation Mostly software. Address translation is
assisted by special hardware.

Best features Simplicity; lack of specialized hardware
makes implementation less expensive;
performance does not depend upon pro·
gram behavior.

Worst features Lack of hardware assistance means
greater execution overhead; large pro­
grams tend to squander memory because
unneeded pages are kept resident.

Demand paging (S/38 and AS/400)

Atlas, 1962

Rxed·length pages (512 bytes on the
SI38; 4096 bytes on the AS/400)

Secondary disk storage

Dynamically with dedicated hardware.

Hardware detects program request for
nonexistent page and generates a 'page
fault" to bring page in before task
resumes execution.

The least-recently·used page is written
out and used to satisfy the page fauR
request.

Only pages actually referenced by apro­
gram need be kept In real storage.
Unused pages eventually are moved to
secondary storage, freeing real storage
for other programs.

Mostly hardware. Page fauRs and content
management have special hardware
assistance. Address translation is per­
formed entirely in hardware.

Hardware implementation improves both
time and space efficiency; because only
referenced pages are resident, memory
utilization is good.

Hardware implementation is expensive;
certain kinds of program behavior can
cause repeated paging, known as
"thrashing; which degrades performance.

mentation - comes from the fact that less complex address translation hard­
ware is required. On the S/36, the address translation mechanism already is in
place, making it easy to move pages in and out of real memory and rearrange
them when necessary.

However, the inexpensive implementation exacts a price in perfor­
mance. All the pages used by a program must be brought in before the pro­
gram can resume execution, so some pages probably are not needed, and are
wasted. Also, the special hardware used by demand paging to detect missing

28 Desktop Guide to the S/36

Performance Tip

Using external pro­
gram calls (EPC)

greatly reduces task
Initiation and file
open overhead,

Improving Interactive
response time.

Changing your exist-
Ing applications to

use EPC rather than
OCl to Interconnect
programs Is not very

dlfflcuH, making EPCs
one of the best tools

In your kH for Improv­
Ing performance (see

Section III).

pages usually is much faster than the software-implemented virtual page table
the S/36 uses for segmented paging.

On the S/36, this performance loss is mitigated to some extent,
because the CSP can perform VM management chores while the MSP is work­
ing on user programs. But segmented paging also imposes a restri.;~20n on
programmers: programs cannot exceed the size of one segment. On the S/36,
the hardware-limited, 64 K segment size is uncomfortably small. Sorr.. systems
other than the S/36 use a segmented paging approach that allows a program
to use more than one segment, thus alleviating the S/36 restriction.

VM does, however, achieve its purpose. It theoretically can manage a
virtual address space of 128 MB - 16 times larger than the maximum real
address space of 8 MB. And it can manage this large virtual space efficiently.
Many S/36 installations use external program calls to activate all of their fre­
quently run programs for each user at the beginning of the day - hundreds
of Simultaneously active program segments amounting to 20 MB or more of
VM. Because paging is much faster than reinitiating programs and reopening
files, this technique eliminates redundant program initiation, reduces file open
and close overhead, and improves response time dramatically.

Peculiarities of S/36 VM
The S/36 VM mechanism has a few unusual, and potentially confusing, twists.
One common misconception is that the 64 K segment-size limitation, which
also limits program size, limits task size. A task can contain one or more pro­
grams, each of which can be up to 64 K and must be executed indiVidually.
Because the number of programs that can be contained in a task on the S/36
is unlimited, the size of a task is also unlimited (up to the size of virtual
address space).

The S/36 contains a built-in external program call mechanism that lets
one program invoke another separately compiled program, and then regain
control when the called program returns. In addition, any number of called
programs contained within a task may be simultaneously active. Active pro­
grams retain their internal state (values of variables and open files) from invo­
cation to invocation.

Another oddity of the S/36 virtual implementation is the concept of
workspaces, virtual segments that contain data instead of program code.
Workspaces hold data buffers, screen formats, and various system-related
tables and work areas, helping you get around the limitations of 64 K per pro­
gram. An example of a workspace familiar to RPG programmers is the disk file
workspace, which is created automatically when the 64 K segment for an RPG
program has no room for disk file physical I/O buffers.

When a program needs to access data in a workspace, it calls on the
operating system map facility, which gives the program addressability to the

Chapter 2 S/36 Memory Management 29

workspace by giving up some addressability to the program's virtual segment.
Mapping, however, takes time and may result in paging activity, so the
increased flexibility gained using workspaces is purchased with reduced per­
formance.

A third unusual S/36 VM artifact is encountered only by installations
that use a large amount of VM. On the S/36 the secondary storage used for
paging is called the Task Work Area (TWA). The TWA is contained in a spe­
cial system file called #SYSTASK that must reside on drive AI.

Initially, the maximum size for #SYSTASK is 6553 blocks (16 MB).
This maximum is only about twice the maximum real memory size of 8 MB ­
not a very efficient overcommitment ratio. When the TWA is full, the SSP auto­
matically extends the TWA by 400 blocks. When the TWA fills again, SSP dou­
bles the extension to 800 blocks. Each time the TWA fills up, the size of the
extension is doubled, allowing the TWA to grow to a very large size.

Unfortunately, each TWA extension requires contiguous space on
drive AI. Drive Al is also the default drive the system uses when allocating
new files and work areas, which results in disk space fragmentation that may
prevent the TWA from extending. Thus, the difficulty of obtaining disk space
for paging can result in a much lower virtual address space limit than the
128 MB architectural maximum, unless the user takes steps to force TWA
expansion before the Al disk space becomes fragmented.

System Queue Space
Now that you understand real, translated, and virtual memory, you can appre­
ciate the effort undertaken by the S/36 to administer memory usage efficiently.
Although address translation and segmented paging improve memory use by
effectively reusing a limited resource, not everything in real memory can be
moved about with abandon. Only objects in the user area accommodate this
manipulation. A certain amount of real memory - the fixed and variable
nuclei - must remain resident and can be accessed only through real
addressing.

All of the fixed nucleus and most of the variable nucleus is static
(unmoving) - beyond your control. As mentioned earlier, programming tech­
niques directly affect only one part of the variable nucleus: system queue
space. Knowing how your application design decisions impact SQS use helps
you make educated compromises between performance and simplicity.

SQS is an expandable "pool" of memory used by the SSP and the CSP
to hold dynamically allocated data structures, called control blocks, critical to
the operation of the system. Once a control block is created in SQS, it remains
resident in real memory at the same location until explicitly destroyed.
Because each control block must occupy contiguous memory locations, SQS
can become fragmented.

Performance Tip

One way to reduce TWA
expansion problems Is
to "pre-allocate" the
TWA by activating all
your programs In
advance - usually
Immediately after IPL
(see Chapter 7).

30 Desktop Guide to the S/36

Control blocks range in size from 16 bytes to 2,048 bytes, in 16-byte
increments. They can be categorized by their life spans: short, medium, and
long. A short-lived control block's life span is only a few milliseconds. The SSP
creates short-lived control blocks for the duration of certain brief chores (e.g.,
a disk fIle operation) and destroys them when the chore is complete. Medium­
lived control blocks last a relatively long time - for the duration of a job, for
instance. Long-lived control blocks (usually created when the system is start­
ed) are the very few that become permanent until the next IPL.

The system keeps a modest reserve of SQS available (about 2000 to
4000 bytes) to satisfy most control block creation requests quickly. When this
reserve is consumed, the system takes a 2 K page away from the user area
and adds it to SQS. (Because a control block cannot be larger than 2 K bytes,
the newly acquired page can be obtained from anywhere in real memory.)
The system continues to take 2 K pages from the user area as needed. When
more than about 4000 bytes accumulates in the SQS reserve area (due to con­
trol blocks being freed), the system returns a 2 K page to the user area. Thus,
the logical "boundary" between SQS and the user area fluctuates constantly to
meet the needs of the system.

Of the three classes of control blocks, only one is of concern to you.
Short-lived control blocks have minimal impact on system performance, and
long-lived control blocks are beyond your control. Only medium-lived control
blocks have a controllable impact on system performance; most medium-lived
control blocks are a direct result of the kinds of programs you design. The
table in Figure 2.7 summarizes the space requirements for the most common
control blocks and the program activities that create them.

The table also will help you determine the amount of SQS a given
program or device needs to run. Computing the SQS requirements for an
entire job mix lets you estimate the total amount of real memory that will be
dedicated to SQS, and therefore will be unavailable in the user area. For
example, an interactive job with ten indexed fIles, a printed report, and five
subprograms requires 9,088 bytes of SQS:

-192 bytes for the workstation session control block
- 256 bytes for the job control block
- 96 bytes for the task control block
e 320 bytes for the active programs (64 bytes each)
- 96 bytes for one level of subprogram invocation
e 64 bytes for a disk fIle workspace
e 688 bytes for the opened print fIle
e1,600 bytes for disk fIle VTOC entries (160 bytes each)
e1,680 bytes for other fIle-related control block (fIle specification block, fIle

buffer block, disk buffer block, allocation queue element, record queue

Chapter 2 8136 Memory Management 31

Figure 2.7
System Queue Space Requirements for Common Control Blocks

SSP entity

Each local workstation session

Each printer

Each remote device

Each job

Each task

Each active program or subprogram

Each Invoked program or subprogram

Each workspace

Each user of an opened file

Additional overhead for first user
to open afile or use alibrary

Additional overhead for each user
of ashared file

AddItional overhead for each user
of an indexed file

Each storage indexed file storage index

Each opened print file being spooled

Each active spool writer

TotalSQS
Control Block BytesUsecI

Terminal Unit Block (192 bytes) 192

Printer Unit Block (96 bytes) 96

RWS Device Unit Block (80 bytes) 80

Job Control Block (256 bytes) 256

Task Block (96 bytes) 96

Program Block (64 bytes) 64

Request Block (64-2048 bytes) 96 (avg)

Storage Block (64 bytes) 64

File Specification Block (64 bytes)
File Buffer Block (24 bytes) 104
Disk Buffer Block (16 bytes)

Format-1 ,or VTOC entry (160 bytes) 160

Allocation Queue Element (32 bytes)
Record Queue Block (16 bytes)

48

Index Control Block (16 bytes) 16

Depends on the size of astorage index
(the storage for afile is shared by all users of the file)

varies

Printer Specification Block (64 bytes)
Spool File Descriptor (112 bytes) 688 (avg)
Spool intercept buffer (256-2048 bytes)

Writer Descriptor Block (48 bytes)
Task Block (96 bytes) 1168 (avg)
Spool print buffer (256-2048 bytes)

block, and index control block) , and
• 4,096 bytes for storage indexes (estimated)

If you plan to run the program from nine workstations simultaneous­
ly, the additional eight workstations require 3,392 bytes of SQS each (the
vroc control blocks and storage indexes are counted only for the first user),
resulting in a grand total of 36,224 bytes of SQS. Remember that SQS use
reduces the amount of memory available in the user area for virtual use, there­
by increasing the "swap rate" Oevel of paging activity), and possibly degrading

32 Desktop Guide 10 the S/36

system perfonnance. If you run these programs on a 512 K system, you might
find installing another 256 K memory board a cost-effective way of maintain­
ing acceptable response time.

Considering all aspects of S/36 memory management, you can see why
misconceptions abound. But the S/36 loses its mystique once you master the
secrets of its memory. You can use this knowledge to help plan future expan­
sion of your S/36 and to evaluate its place in the midrange system market. Care­
ful evaluation of memory requirements lets you predict the effect of additional
memory more accurately. And, of course, the better you understand your S/36,
the better you can take advantage of its features to improve performance.

Chapter 3 Inside Disk Data Management 33

Chapter 3

Inside Disk Data Management
Disk I/O is the most common perfonnance bottleneck on the S/36. Unlike the
other major components of the S/36, disk I/O is mechanical (it requires mov­
ing parts), making it the slowest thing on the system. So anytime you reduce
disk accesses, you increase perfonnance.

Traditionally, disk I/O has been interpreted as reading and writing
application files. In fact, disk tuning the S/36 requires knowledge at both the
application and architectural levels. We will take an in-depth look at tech­
niques you can use at the application level to improve performance through
better disk I/O management in Section IV. In this chapter, we focus on the
architectural level. You can dramatically improve your applications' perfor­
mance by learning just a little about the S/36's disk data management (DDM)
architecture and the silent perfonnance killers that lurk within. An understand­
ing of S/36 disk data management also will make many of the concepts to fol­
low later in this book more clear.

At the architectural level, your applications are often doing things
"behind the scenes" that cause extra disk I/O. In fact, many of these events
affect perfonnance just as significantly as application data file operations do;
but they occur without warning or explicit symptom - other than a sluggish
system - that something is amiss. With an understanding of S/36 disk data
management architecture, you can avoid these additional low-level disk
accesses - many times with very few coding changes.

Many perfonnance-enhancing opportunities exist at the architectural
level when you understand data files (organization, operation, and index
areas) and the Indexed Sequential Access Method - ISAM - (including stor­
age indexes, ripple-down add, alternate indices, DUPKEY processing, and
keysorting). But first, let's review the basic concepts related to disk mechanics.

Disk Mechanics
Understanding disk mechanics gives you a better appreciation for the impor­
tance of minimizing disk I/O. An overview of S/36 disk hardware anatomy
shows how disk access time - and therefore performance - is related to the
physical movement required to locate and transfer requested data from the disk.

A disk drive is generally not one disk at all, but rather several disks,
or platters, stacked on a spindle. Depending on the drive capacity, a S/36
spindle may have up to eight platters (Figure 3.1). A recording surface is on
each side of each platter except for the top one, where only the inward-facing

34 Desktop Guide to the S/36

Figure 3.1
Hard Disk Anatomy

Platters
Access Arms

surface is used for data storage. The top surface holds a special set of "selVO"
tracks that provide control signals used to position the read/write head for
each data-recordable surface (Figure 3.2). These heads transfer data to and
from the hard disk. On a drive with eight platters, there are 15 read/write
heads - two heads each for the lower seven platters and one selVO head for
the top surface. Except for the diskette drive, the access arms and disk platters
are the only moving parts inside the S/36. The key to getting the most out of
your S/36 is to eliminate as much of this physical movement as possible. In
the time it takes the S/36 to perform one disk access, it can perform as many
as 35,000 machine instructions. Every time you eliminate disk I/O, you
increase performance.

Technical Note

In the time it takes the 5136 to perform one disk access, it can perform as many as 35,000
machine instructions! Every disk 110 you eliminate improves performance.

Each platter's surface comprises concentric circles called tracks, and
each track is divided into segments called sectors (Figure 3.3). The number of
sectors in a track - and the number of tracks on a surface - depends on the
disk drive model. On the S/36, there are 256 bytes in each sector, which is the
smallest amount of disk storage that can be read or written in a single disk oper­
ation. The system addresses the disk by relative sector number, where the first
sector number is numbered 0, the next 1, and so on through all the tracks on all
drives. Any given vertical stack of like-numbered tracks is called a cylinder. Data

Chapter 3 Inside Disk Data Management 35

Figure 3.2
Hard Disk Physical Units

Rotation

Head Assembly

One
Sector

I I

Disk I I

Platter /

/
/

/

" " :. " ... "

Spindle

Figure 3.3
Sectors and Tracks

Sector

36 Desktop Guide to the S/36

Figure 3.4
Heads, Sectors, and Cylinders

Track

is stored vertically in these cylinders (Figure 3.4), so that like-numbered tracks
within a given cylinder contain sequentially stored data. Storing data in cylinders
maximizes the amount of sequential data that can be read without moving the
disk ann.

Technical Note

Each drive is generally made up of several platters. Platter surfaces are divided into con­
centric circles called tracks. Each track comprises many 2S6-byte size chunks called sec­
tors. Asector is the smallest amount of disk storage the 5/36 can read or write in asingle
disk operation.

As an application programmer, you're familiar with high-level lan­
guage (HLL) file operations such as read-sequential, read-random-by-key,
add, and update. Collectively, these application-level functions are called

Chapter 3 Inside Disk Data Management 37

logical operations, because S/36 disk hardware can't directly execute them.
When an application program requests a logical file operation, DDM translates
it into one or more physical operations that are then directly executed by the
hardware. The S/36 supports three such operations: read, write and scan.

The read operation transfers one or more sectors from a given disk
address into a main memory buffer. Similarly, the write operation transfers one
or more sectors from a memory buffer to a specified disk address. The scan
operation, which is somewhat unusual in the world of commercial computer
systems, searches one or more sectors for a particular data pattern. By com­
bining these three physical disk operations in various ways, DDM can carry
out any HLL logical-file operation. Knowing how much time each physical
operation requires lets you estimate the time required for various logical oper­
ations. Knowing how DDM maps logical-file operations to physical operations
lets you predict situations where DDM performs poorly.

The mechanics of disk operation dictate three time factors to every
physical operation. First, the time required to move the access arm to the
cylinder containing the data. Second, the delay while the rotating disk brings
the requested sector under the read/write head. Third, the rate at which data
transfers between the disk and memory. These are called, respectively, seek
time, rotational delay, and data-transfer rate.

Seek time is the largest of these factors; it is proportional to the dis­
tance the access arm must move. However, a large part of the seek time is
spent just starting and stopping arm motion, so seek distance isn't as signifi­
cant as you might think. S/36 drives have average seek times ranging from 12
to 40 milliseconds (a millisecond (MS) is one-thousandth of a second). Aver­
age seek time is based on spanning one-third of the disk - some 400 cylin­
ders. But moving the access arm just one cylinder takes as much as 10 milli­
seconds, making seek distance a minor factor. Clearly, eliminating seeks ­
not shortening seek dis~ance - is the key to controlling seek time!

The second largest time factor is rotational delay, which averages
between 7 and 10 milliseconds for S/36 drives. Sector starting points are offset
between adjacent cylinders, so that reading sequentially across cylinders
doesn't require wasting one rotation because the next sector went by during
the seek operation. Average rotational delay is the time required for one half
of a disk revolution.

The smallest time factor is the data-transfer rate, which runs between
0.8 and 5.7 megabytes per second, depending on the drive model. Even on
slower drives, however, transferring a single sector takes only 0.2 milliseconds
- a tiny fraction of the total disk operation time. You could transfer 10 times
that amount and still only spend 2 milliseconds. The key point here is that the
quantity of data transferred in a physical operation has minimal effect on total
operation time.

38 Desktop Guide to the 5/36

Performance Tip

All of the disk drives
available for the S/36
offer a range of data·

access times (18 to 50
milliseconds).

However, transfer
rates vary dramatically

from model to model.
The 21 ED and the

10SR drives transfer
data at 1.25 and 1.5

MB per second,
respectively; the 9332

disk drive transfers
data at 5.7 MB per

second - afour·fold
Improvement. For

applications that copy
lots of flies, the 9332

will be noticeably
faster.

Flgure3.S

Comparison of Operating Parameters for Some S/36 Disk Drives

Drive Sectors Tracks #of Average Rotational Transfer
Model Capacity !Track ICyl Cyls Seek Time Delay Rate

105R 200MB 100 14 572 25ms 10.1 ms 1.2 MB/s
105R 359MB 100 14 1024 25ms 10.1 ms 1.2 MB/s
21ED 30MB 70 4 445 40ms 9.5ms 0.9 MB/s
21ED 60MB 70 4 888 35 ms 9.5ms 0.9 MBls
0065 40MB 32 7 733 40ms 8.3 ms 0.6 MB/s
9332 200MB 148 4 1349 19ms 9.6ms 5.7 MB/s
9402 160 MB 48 14 946 12ms 6.9 ms 0.8 MB/s

These timing factors reveal where most I/O time is spent: moving the
disk arm. Knowing that the amount of data transferred won't significantly affect
I/O timing also gives you insight into data blockihg performance: Sensible
blocking factors won't penalize you much in increased I/O time, even if the
I/O requests don't often fall within a block. Knowing the actual timing values
for different disk devices also helps you estimate data throughput times for var­
ious S/36 configuratiOns. Figure 3.5 summarizes the timing factors for various
disk drive models. (Refer to Section IV for an in-depth discussion of blocking.)

You might think that DDM translates such HLL file operations as
READ and UPDATE directly into physical read and write operations. However,
as you've seen, the time taken by physical operations depends on locating the
data to be read or written and not on the amount of data transferred. Reading
or writing 10 or 20 sectors takes essentially the same amount of time as one
sector. So DDM uses memory buffers that can hold more data than a single
logical operation usually requires, eliminating the need for some physical
operations and improving performance.

HLL operations such as the RPG CHAIN for an indexed file actually
perform two functions and thus require more than one physical operation.
First, the record to be read must be located by searching an index; second, the
data in the record must be read into memory. The physical scan operation
helps greatly here. Rather than searching an index by reading chunks of it into
a buffer and then searching for the key in the buffer, the scan operation
searches the entire index for the requested key "on the fly," stopping only
upon finding the target key or reaching the end of the index. The scan opera­
tion can read and compare fast enough to keep up with the disk's rotation
speed, taking much less time than the read-into-buffer approach. The S/36
also uses the scan operation for other search functions, such as locating a file

Chapter 3 Inside Disk Data Management 39

Figure 3.6
Index and Data Record Area of aDisk File

F1LELABELCUSTMAST

INDEX DATA FILE
SECTORS RECORD SECTORS

in the vroc, locating a library member in a directory, and locating a screen
fonnat in a screen fonnat load member.

Data Files
With an understanding of physical disk organization and operation under your
belt, you're now ready to examine the logical organization and operation of
data meso You'll see that DDM leaves you many opportunities to capitalize on
your knowledge of disk operation to improve system performance.

Organization and Operation. The S/36 stores data mes on disk in
contiguous sectors, using as many sectors as necessary to accommodate the
entire me, even if the me is empty or only partially full. Sequential and direct
ftles contain only a data area, and alternate index files contain only an index
area. Indexed flIes contain an index area and a data area, with the index area
preceding the flIes' data records. Alternate indexed mes only have an index
area - which refers to the data area of the parent file. Physically, data mes
are stored and accessed vertically in like-numbered tracks on a drive's many
platters - via the drive's cylinders. Logically, though, a data me is just a con­
tiguous group of sectors, without regard for track, cylinder, platter, or even
drive boundaries. Figure 3.6 shows the logical layout for an indexed flIe
named CUSTMAST. CUSTMAST has three index sectors (sectors 11, 12 and 13)
and 27 data sectors (sectors 14 through 40). Sector 41 is not part of CUST­
MAST and is available for the system to allocate for other disk storage.

Some operating systems support noncontiguous me storage. MS-DOS
and Unix, for example, dynamically allocate disk space as needed for a data me.
As records are added to a file, the disk space needed to accommodate new
records is automatically allocated and maintained. The S/36, however, requires
that data files be on disk in pre-allocated contiguous sectors. Therefore, the total
number of records that a S/36 data me can contain is always fIxed - it must be
specifIed when the file is created. Even when using the EXTEND keyword with

40 Desktop Guide to the S/36

Rgure3.7
Records Fitting Evenly within aSector

256-BYTE SECTOR

FOUR 64-BYTE RECORDS

figure 3.8
Records Spanning aSector

256-BYTE SECTOR

TWO 96-BYTE RECORDS Last 32 bytes of this record
span sector boundary

the / / FILE statement, a me is not actually extended when it gets full, but rather
is copied to another area on disk with a larger allocation.

SSP stores data records making up a disk file in contiguous sectors on
disk. Data records do span sector boundaries when necessary. As Figure 3.7
shows, record lengths that are submultiples of 256 fit exactly within a sector.
However, when the record length is not a submultiple of 256, data records
span sector boundaries. Figure 3.8 shows the sector layout for a me with 96­
byte records. Here, two complete records and 64 bytes of another record are
stored in one sector. The last 32 bytes of the third record are stored in the
next sector. A 512-byte record length requires two contiguous sectors for each
record. Much has been written about S/36 record lengths and their impact on
performance. Because the S/36 can only read and write data in 256-byte
chunks, it is widely believed that s/36 data records should only be multiples
or submultiples of 256. As this chapter will later show, because of the S/36's
extremely fast data-transfer rate, data record length has little, if any, impact on
performance. Let your application dictate record size - not the myth that
records should always be submultiples or multiples of 256.

Chapter 3 Inside Disk Data Management 41

Figure 3.9
Logical Representation of aFile Index

Key Relative
Value Record Number

AA0112345345 567
AA0123234835 131
AA0123555235 234
AA0132434063 455
AA0145567720 835
AA0157758385 521
AA0162476410 212
AA0169556693 134
AA0176345952 546

Technical Note

It's widely believed that data-file record length substantially affects performance. Given the
fast transfer rate of even the slowest 8/36 drives, record length has little bearing on perfor­
mance. Let your application dictate record length - not the myth that records should
always be submultiples or multiples of 256.

Primary and Overflow Index Areas. Indexed fIles have an index area
on disk - an area that physically precedes the fIle's data. 1he index contains
record keys and corresponding relative record numbers for each data record
(Figure 3.9), 1he relative record number is stored in the index as a 3-byte bina­
ry value. 1his pairing of key values and relative record numbers is used by
ISAM to randomly retrieve data records. When an indexed record is requested,
ISAM perfonns a key-value search in a similar fashion to look-up tables in RPG:
ISAM scans the index for the key; if the key is found, ISAM uses the key value's
corresponding relative record number to retrieve the data record.

Like data fIle storage, keys are stored in contiguous sectors. Unlike
data records, though, keys and their corresponding relative record numbers do
not span sector boundaries. Figure 3.10 shows one sector of an indexed file
with IS-byte keys. Each index entry requires 18 bytes in the index for the key
value, plus 3 bytes for the corresponding relative record number, making the
total index entry length 21 bytes (the 18-byte key value plus the 3-byte RRN).
A 256-byte sector can contain 12 of these 21-byte index entries (12 x 21 =

252). 1herefore, for each sector in the index, four bytes per sector are wasted.
Disk real estate is generally not at such a premium that you need to worry if

42 Desktop Guide to the S/36

figure 3.10

Logical View of One Sector Full of Keys

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Twelve 1B-byte keys (12x 21 =252) 4bytes in sector wasted.

some (or even all) of your indexed mes allow some of this waste. The impor­
tant thing to understand as you look at Figure 3.10 is that index entries are
stored in sectors - pairing key values with corresponding data relative record
numbers - and that index entries do not span sector boundaries. (For more
on indexed mes and their relationship to performance, see Chapter 10, "Using
DBLOCK and IBLOCK Effectively.")

Technical Note

Alternate indices are made up entirely of an index area and do not physically have any
data records in them. The relative record numbers stored in an atternate index refer to
record locations in the parent file.

Every me index, for both parent and alternate indices, has a primary
index area and an overflow index area (Figure 3.11). The primary index area
contains index entries for the records in the file in ascending order by key.
The overflow area contains index entries for records recently added to the file.
Entries stay in the overflow area until the me is keysorted. As records are
added to a me, new index entries are added to the index overflow area. In
most cases, as index entries are added to the overflow area, disk data manage­
ment automatically keeps them ordered in key sequence.

There are, however, a couple of exceptions to disk data management
automatically keeping recently added index entries in key sequence. One exam­
ple is when a program is creating a new indexed me. Because no other pro­
gram can read records in a new file until the creating program closes the me,
disk data management knows it doesn'(ileed to keep the overflow area in order

Chapter 3 Inside Disk Data Management 43

Figure 3.11

Primary and Overflow Index Areas

OVERFLOW
INDEX
AREA

and will simply append the new index entries, in arrival sequence, to the end of
the overt1ow area. DDM sorts the keys into sequence after the program ends.

Consider another case: adding records to an indexed or sequential file
that has an alternate index built over it, but the alternate is not currently open
as records are added to the parent file. In this case, disk data management cre­
ates a 256-byte buffer to temporarily store index-entry additions to the
unopened alternate index file. Each time this 256-byte buffer gets full, its con­
tents are appended, in arrival sequence - not in key sequence - to the over­
flow area of the alternate index. The overt1ow area must be in ascending key
sequence for ISAM to sequentially search the index, so the next program to
open this alternate index with its "stale" overflow area must wait while disk
data management keysorts the overflow area. This process is called delayed
index maintenance. Delaying the ordering of keys in the overt1ow area dramat­
ically improves performance as records are being added to the file. However,
this performance increase must be paid for the next time the file is opened,
when disk data management transparently keysorts the overflow area without
issuing any messages to the operator. If many records were added to the file,
the overt1ow keysort could take a long time, delaying program initiation.

The Storage Index
Recall that index entries are stored in sectors and that many sectors are stored
in a track (Figure 3.3). When an indexed me is first opened, if its index occu­
pies more than one track, the system creates a storage index in the system
queue space for that file if a storage index does not already exist. The storage
index is an in-memory index to the disk tracks that comprise a disk file's index
- a table containing the beginning key value for each track and its corre­
sponding track number. Ali long as the me remains open by any job in the
system, the file's storage index will persist and is available to any application
that needs it.

• •

44 Desktop Guide to the SfJ6

Figure 3.12
Sequential Phone Book Look-Up

Page 71: Page 72: Page 73:

Hinkel-Holdem ~ Hole-Hopkins Hopper-Howell r
fdsjrljkroij(Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc Id xxx-xxxx L
fdsjrljkro~~ Id xxx-xxx

+ fdsjrljkroijc Id xxx-xxxx r+ fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij(~d xxx-xxx fdsjrljkroijc d xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc d xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij(Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij(Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc dxxx-xxxx fdsjrljkroijc Id xxx-xxxx
fdsjrljkroijc Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijc d xxx-xxxx./

Page 74. Page 75. Page 76.

Howland-Hull Hults-Hutson Hutte-Hyman
fdsjrljkroij Id xxx-xxx fdsjrljkroijckld xxx-xxxx+ fdsirlikrO)d ro-"""fdsjrljkroij Id xxx-xxx fdsjrljkroijc Id xxx-xxxx fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc Id XXX-XXXX) fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Id xxx-xxx fdsjrljkroijc Id XXX_XXXXi fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Id xxx-xxx •.•.•. fdsjrljkroijc Id xxx-xxxx fdsjrljkroijckld xxx-xxxx

Idxxx-xxx •.•.•..fdsjrljkroij fdsjrljkroij dxxx-xxxx fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Id xxx-xxx Bob Hunter.. 674-3384 fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Idxxx-xxx •••.•. fdsjrljkroijckld xxx-xxxx fdsjrljkroijckld xxx-xxxx
fdsjrljkroij Id xxx-xxx) fdsjrljkroijckld xxx-xxxx fdsjrljkroijckld xxx-xxxx ••••.•
fdsjrljkroij Id xxx-xxx fdsjrljkroijckJd xxx-xxxx fdsjrljkroijckld xxx-XXXX(

•
The storage index is like the "finder" entries at the top of each page of

a telephone book. If you wanted to look up Bob Hunter's phone number in the
phone book, you would not sequentially scan every page of the phone book
looking for Bob Hunter (Figure 3.12). Rather, you would scan across the top of
each page until you found the page with the Hunters on it. After fmding this
page, you would sequentially scan it looking for Bob Hunter (Figure 3.13), Each
page of the telephone book is like a track full of index entries. By using the top
of each page as an index to the pages - like a storage index - you would
quickly zero in on the page with Bob Hunter on it.

S/36 indexed flIes use the ISAM method of retrieving random records,
and ISAM's storage index works much the same way as the above example.
To locate a given key in the index, disk data management first determines, by
searching the storage index, which disk track contains the key. Knowing this
track number limits the hardware scan for the key value to exactly one disk
track (like knowing which page number in the phone book Bob Hunter's

Chapter 3 Inside Disk Data Management 45

Figure 3.13
Phone Book Look-Up the Storage Index Way

Page 71:

Hinkel·Holdem
fdsjrtjkroijckld xxx-xxx I
fdsjrljkroijckJd xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrtjkroijckld xxx-xxx }
fdsjrtjkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrtjkroijckld xxx-xxx .••••••
fdsjrtjkroijckld xxx-xxx

Page 74:
Howland-Hull
fdsjrtjkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrljkroijckJd xxx-xxx I•...
fdsjrtjkroijckld xxx-xxx I
fdsjrtjkroijckld xxx-xxx
fdsjrtjkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrljkroijckld xxx-xxx
fdsjrtjkroijckld xxx-xxx Ii

Page 72:

Hole-Hopkins
fdsjrtjkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckJd xxx-xxxxy
fdsjrtjkroijckld xxx-xxxx
fdsjrtjkroijckld xxx-xxxx
fdsjrtjkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx<
fdsjrljkroijckld xxx-xxxx .••••••
fdsjrtjkroijckld xxx-xxxx}
fdsjrtjkroijckld xxx-xxxx

Page 75:
Hults-Hutson
fdsjrljcroT xxx-""",,'

....

fdsjrljkroijc Id xxx-xxxx •.....
fdsjrljkroijc Id xxx-xxxx
fdsjrljkroijc Id XXX-XXXX)

fdsjrljkroijc Id xxx-xxxx <
fdsjrtjkroijc dxxx-xxxx
Bob Hunter.. 674-3384 1
fdsjrljkroijckld xxx-xxxx I
fdsjrljkroijckld xxx-xxxx
fdsjrtjkroijckld xxx-xxxx

Page 73:

Hopper-Howell
fdsjrljkroijckld xxx-xxxx I.
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx Ii
fdsjrljkroijckJd xxx-xxxx I
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx It
fdsjrljkroijckld xxx-xxxx 1<
fdsjrtjkroijckld xxx-xxxx Ii
fdsjrljkroijckJd xxx-xxxx
fdsjrljkroijckJd xxx-xxxx I.••••

Page 76:
.",Hutle-Hyman

fdsjrljkroijckJd xxx-xxxx
fdsjrljkroijckJd xxx-xxxx
fdsjrljkroijckld xxx-xxxx
fdsjrtjkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx }
fdsjrljkroijckJd xxx-xxxx
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckld xxx-xxxx
fdsjrljkroijckJd xxx-xxxx

phone number is on). If a storage index doesn't exist for a me, either because
the index is too small or because your OCL explicitly inhibited its creation, disk
data management must scan every track sequentially looking for the key entry.

Technical Note

The storage index is an index to the index - containing the beginning key value of each
track and its corresponding track number. For additional information on the storage index,
see Chapter 11.

The overflow area is never included in the storage index. So even if a
storage index is created for a file, it always takes longer to fetch a record
whose index entry is in the overflow area, because only after searching the

46 Desktop Guide to the Sl36

figure 3.14
Keys Added to Index Area in Key Sequence

BERT
ERNIE
PEEWEE
SKINNER
XYLOPHONE

ZONKER •

prime index does DDM know to look in the overflow area. Thus, an extra
scan is required - to search the overflow area. If the overflow area spans sev­
eral tracks, the scan will take much longer then the prime index scan.

Ripple-Down Adds. 5/36 indexed files require ongoing internal main­
tenance of the index overflow area to provide access to updated and new
records. Disk data management must maintain the index for files shared by
two or more programs. Note that even during those times when delayed index
maintenance is used (as in the case of adding records to a parent with a
closed alternate), the overflow area must be sorted before any other job can
use the indexed file.

Because of the importance of maintaining the overflow area in key
sequence, the 5/36 goes through some pretty extensive gymnastics to maintain
this order. The worst of these gyrations is the rlpple-down add technique that
DDM uses to keep keys in the overflow in ascending order. To see how these
index gymnastics affect performance, let's take a look at how records are
added to an indexed file on the 5/36 and the heartbreak of ripple-down adds.

Let's start with understanding why the overflow index is necessary.
Figure 3.14 shows that for indexed files created using only presorted input (as
might have been the case years ago with presorted punched cards), the over­
flow area isn't necessary. As long as records are being added in key sequence,
the keys fall nicely into the index area in ascending order.

However, what happens when the input records aren't presorted? Fig­
ure 3.15 shows a situation where the key GROVER must be added to the
index, but the previous key added was ZONKER. Rather than try to move all
the primary area keys down to make room for GROVER, I5AM simply adds
the GROVER key to the end of the overflow area. Because disk data manage­
ment knows to look in the overflow area when it can't find a key entry in the
primary area, this works fme - without much impact on anything as long as

Chapter 3 Inside Disk Data Management 47

Figure 3.15
Index Area with Overflow Added

PRIMARY

INDEX

OVERFLOW

INDEX

Figure 3.16
Index Area with Overflow Containing Many Entries

BIG BIRD --'-1

PRIMARY
INDEX

OVERFLOW
INDEX

the overflow area remains small. It will take disk data management a little
longer to realize GROVER'S key isn't in the primary area. Remember: It takes
an additional scan and seek to fetch a data record when its key entry is in the
overflow area; but what's a few milliseconds among friends?

Figure 3.16 starts to reveal the real problem. Look what happens
when you need to add BIG BIRD's key to the index, when the file is opened
for keyed input as well as add. Because disk data management requires that
the overflow area be kept in key sequence for keyed input access, GROVER
must be moved down a notch to make room for BIG BIRD. Moving

48 Desktop Guide to the S/36

Rgure3.17
Index Area Including Overflow with Gaps

PRIMARY
INDEX

BIG BIRD •

OVERFLOW
INDEX

GROVER's index entry down one isn't that big of a deal, because the overflow
area is (hopefully) small. However, consider what would happen if there were
many keys, hundreds or thousands, to move. When BIG BIRD wants in, the
only solution seems to be moving many, perhaps hundreds or thousands, of
keys to make room for inserting BIG BIRD's key in the correct sequence.

Adding Gaps. DDM is stuck. It needs to add BIG BIRD to the index
but the cost of the numerous disk VOs to "ripple-down" the high-value keys
to make room for BIG BIRD renders the ripple-down add strategy all but
worthless. To solve the problem, DDM kludges something together called
index gaps. As index entries are added to the overflow area, empty sectors
(gaps) are left intermittently between index entries. Figures 3.17 and 3.18
show that with gaps, adding BIG BIRD to the overflow area will only cause
the ripple down of two index entries. Usually there are enough evenly dis­
tributed gaps in an index to require moving only a few hundred keys or so.

Adding gaps to the overflow area seems like just the relief ripple­
down add needs. That is, until enough keys are added after the last gap that
there isn't any room left at the bottom of the overflow area for new keys. In
Figure 3.19, ZEVON wants in; but because many gaps have previously been
inserted, there isn't a slot available between ZEVON's insertion point and the

http:Rgure3.17

Chapter 3 Inside Disk Data Management 49

Agure3.18
Index Area Including Overflow with Gaps - Big Bird Added

PRIMARY

INDEX

OVERFLOW

INDEX

end of the index. Now DDM is in real trouble. However, ISAM was engi­
neered not to fail, and it's not going to. Here's what disk data management
does to let ZEVON in:

e Locks the me so that no other tasks using it can run.
e. Calls KEYSORT to perform a special "degap" operation - collect­

ing all the available gaps and moving them to the end of the over­
flow area.

• Issues no other messages or other explicit warnings (disk data man­
agement isn't all that proud of this mess). Your S/36 just "nods off'
for no apparent reason.

Hopefully, by the time the user calls Level One support wondering
why the S/36 went into a coma, the degap operation will have completed
and the S/36 will be shaking its groggy head back to life. If Level One's
phone is busy and the impatient user re-IPLs the S/36, me rebuild will come
along and fmish the job.

If you've ever had your S/36 simply take a little nap, especially late in
the afternoon, ZEVON wanted in. There isn't anything you can do about a
degapping delay once its happened, and you won't be told it's happening.

http:Agure3.18

50 Desktop Guide to the SI36

figure 3.19

Index and Overflow Areas Full

ZEVON --I~

PRIMARY

INDEX

OVERFLOW

INDEX

Your only option is to let your S/36 zen its way through degapping the index
- which might take a long, long time. Eventually, the index will be degapped
and your S/36 will come out of its coma. But here's the really bad news. After
degapping the index and letting ZEVON in, we're back where we started from.
Every record added for the rest of this job will require ripple-down adds for all
keys higher than the key being added. In Figure 3.20, AARDVARK is the next
key to be added. With all the gaps now collected at the end of the overflow
area, every index entry must be rippled down to let AARDVARK in. This ripple­
down will continue for every record left to be added. Just as the S/36 was start­
ing to shake off the effects of the degapping processing, the disk I/O required
to ripple-down add the remaining index entries puts it right back into its coma.

Here are a few defensive things you can do to avoid index degapping:

• Substantially overallocate large 	indexed mes that sustain frequent
index-add operations. For example, consider a 300,000 record me to
which 10,000 records are added daily, and which is currently
allocated at 400,000 records (enough for adding 10 days' business,
after which some records are removed from the me). Even though
you don't think there will ever be more than 400,000 records in this
me, overallocating this me to 500,000 or even 600,000 records will

Chapter 3 Inside Disk Data Management 51

Rgure3.20
Overflow Area Requiring Total Ripple Down of Entries

AARDVARK

PRIMARY
INDEX

OVERFLOW
INDEX

pennit more gaps in the overflow area, reducing the likelihood of
degapping ever becoming necessruy. Keep in mind that for alternate
indices, updating a key field is really a delete followed by an add.

• Presort input files in key order before adding them to 	an indexed
file. This shifts some of the work that disk data management would
have had to do to #GSORT - and the results often are astounding.

• If your organization uses very large files 	and you have reason to
believe you're often the victim of index degapping, consider purchas­
ing or leasing ASNA's ACCELERS, a B-tree index implementation that
doesn't require key overflow areas and their resulting maintenance.

• 	KEYSORT your files often. A section later in this chapter discusses
KEYSORTing more thoroughly.

• Schedule processes that add many records to indexed files for late
at night, when the workload of ripple-down adds is less significant.

Alternate Indices and DUPKEY Processing. Alternate indices use primary
and overflow index areas, just as regular indexed flIes do. Therefore, alternate
indices are at risk to the same kinds of ripple-down and index-gapping prob­
lems as regular indexed flIes. Alternate indices with duplicate keys are especially

http:Rgure3.20

52 Desktop Guide to the S/36

Performance Tip

Consider substantially
over-allocating the

size of Indexed files to
which many records

are frequently added.

Performance Tip

Avoid duplicate keys
In alternate Indices.

Inserting aduplicate
key value In along
series of duplicate

keys could take
minutes to hoursI

prone to the ripple-down nightmare. This problem is particularly pervasive
because alternate indices very often are likely to have duplicate keys. Consider
these possibilities for duplicate keys in an alternate index:

Zip code

Area code

Birthdate

Blanks in the key field (a perennial favorite)

When maintaining alternate indices with duplicate keys, disk data manage­
ment must insert new duplicate key values in RRN order. This point is signifi­
cant, because updating keys may result in key insertions in the middle of the
duplicate key string. Figure 3.21 shows a fragment of the index overflow area
of an alternate index that supports duplicate keys. Duplicate keys are sorted in
the overflow area by key value first, then by relative record number. As noted
earlier, this does not necessarily mean arrival sequence, because a previous
key value could have been changed to 46953, moving its index entry from
where it was to its current location with the other 46953 keys.

Disk data management doesn't allow any gaps within a series of
duplicate keys. Therefore, adding a new duplicate key or changing an existing
key value to that of other existing duplicate keys will quite likely require the
rippling-down of many keys in the overflow index. Figure 3.22 shows a new
46953 record being added to the me. To keep the overflow index in order,
DDM must insert this index entry between keys 45953 rrn #3 and 46953 rrn
#67. This duplicate key is a Zip-code field; and with many records in the file
with the same zip code, many keys will need to ripple down to make room
for the new key. Inserting a duplicate key value in a long string of duplicate
keys could take minutes to hours! And because alternate indices can allow key
updates, you can encounter this problem simply by changing a key value.

To avoid the problem, avoid duplicate keys. That's generally easier
said than done, because duplicate keys are so handy. But consider appending
a field or another part of a field to the key value to help make it unique. For
example, in the case of needing to create an alternate index over a zip-code
field, append the telephone number sufftx to the zip code and index the file
on that value. Leave the me duplicate-key-capable for the rare time that two
customers living in the same zip code will have the same telephone suffix.
The likelihood of this me now containing duplicate keys is greatly diminished.

Keysol1ing. Now that you understand how important the index over­
flow area is to DDM performance, you can see how keeping indices sorted
helps reduce ISAM performance bottlenecks. Keysorting keeps the overflow
area of the index small because it merges index entries in the overflow area
with those in the primary index area. A large, unmerged overflow area
degrades random access, future record adds, and alternate-index maintenance.

Chapter 3 Inside Disk Data Management 53

Agure3.21
Fragment of Overflow Area that Supports Duplicate Keys

Key RRN

117

46952 131

46953

67

46953 149

46953 177

Figure 3.22
Adding New Record to Overflow Area with Duplicate Keys

Key RRN

38621 117

Key RRN
46953 51 67

46953 149

46953 177

The SSP invokes KEYSORT automatically during IPL, or when the
system operator enters a STOP SYSTEM, or when any of the SSP procedures
RESTORE, COPYDATA, TRANSFER and BLDINDEX are called. There also are
times when disk data management calls KEYSORT internally because it has
determined that an index's overflow area needs sorting (after records have

http:Agure3.21

54 .Desktop Guide to the S/36

been added to an indexed, non-shared file, for example). And finally, the
KEYSORT procedure can be called explicitly from the command line or a
user-written procedure.

The problem with KEYSORT is that many times when it is called it
often does not really KEYSORT the file - it just acts like it does. KEYSORT
compares the number of records in the overflow area with the total number of
records in the file and will not really keysort the file if the ratio of new records
to total records is under a certain limit (about 7 percent). This means that for
large indexed files, a large number of index entries have to be in the overflow
area before a KEYSORT will really be performed. This applies no matter how
KEYSORT is initiated. Even at IPL time when the SSP says "Sorting keys for file
xxxxx," it might not be.

Technical Note

Force a real keysort by using "KEYSORT filename",CHKDUP".

Fortunately, you can force a real keysort with the KEYSORT proce­
dure by calling KEYSORT with "KEYSORT filename",CHKDUP". The CHKDUP
parameter forces KEYSORT to really keysort the file (so that it can find dupli­
cate keys). If the file contains duplicate keys (even if duplicates are allowed),
you will receive a duplicate key message that you can bypass by responding
with a 1 to the second message. As long as you reply wjth a 1 the file will
remain keysorted.

An important consideration with KEYSORT is having enough disk
space available. KEYSORT is just like #GSORT in that it uses both a disk work
area and main storage. More of either will speed KEYSORT up. However,
unlike #GSORT, KEYSORT is designed not to fail in the absence of enough
disk space for a work me. Therefore, there are two kinds of KEYSORT:

• A work-me keysort, used when enough disk space is available.
• An in-memory keysort, invoked 	when enough contiguous disk

workspace is not available for the keysort.

An in-memory keysort can take day~ When it happens, no messages are issued;
your S/36 just nods off as it thinks itself into oblivion keysorting the index with­
out a disk work me. The only way out of an in-memory keysort is to IPL, bypass­
ing file rebuild; then clear off some disk space and re-IPL with file rebuild.

To avoid the in-memory keysort disaster, you should make sure your
system has enough disk space for the work-file keysort method when keysort­
ing large meso Use the formula in Figure 3.23 to determine the disk space

Chapter 3 Inside Disk Data Management 55

Figure 3.23
Formula to Calculate Disk Space Required for Workfile KEYSORT

(KEY LENGTH +3) x# of records
 X 115% = blocks required

2560

Example with 19-byte key length and 890,000 records in file:

(19 +3) x890,000 X 115% =8795 blocks required
2560

required for a given file. Use this fonnula with appropriate values from your
largest me to determine if your S/36 has enough disk space to perfonn the
much faster work-file KEYSORT.

Disk data management's silent performance killers are lurking in your
S/36 right now, waiting for just the right time to bring it to its knees. This
chapter has exposed all the under-the-hood things you need to know about
disk data management and how to avoid those otherwise invisible assassins.
The tips and tools presented here should give you all you need to design and
modify your applications to work within the constraints and limitations of the
S/36's disk data management system.

Performance Tip

Don't assume there Is
enough disk space on
your 8136 for work·
file KEYSORTs. Use
the formula In Agure
3.23 to be sure. (AlSO
see the SLOWKS
Keysort Alert Utility
In Chapter 12.)

Section II

Hardware Adviser

"Parts isparts. "
-Fastfood commercial

ne manager of a large S/36 installed base said "Keeping a Systeml36
alive and well today is one part inspiration, two parts perspiration, ~ and five parts telephone calls.» Sure, the S/36 is reliable, but when•
you need to fix or upgrade your hardware, you qUickly discover that
just finding out what's available takes most of your time. Gone are

the days when you could call your friendly IBM SE and get quick answers to
configuration, capacity or performance questions. Gone are the days when
you could easily slide past management the cost of a hardware upgrade. Gone
are the days when your SE would drop by and take you out to lunch. Today
you have to scrounge for information, pay through the nose for consulting ser­
vices, beg for budget dollars, and buy your own lunch.

This section should make your life easier, at least in terms of access to
information and the cost of consulting fees. Think of it as your own personal
Systems-Engineer-In-A-Box. Chapter 4 is a catalog of S/36 models, memory
and disk capabilities, options, configuration charts, and forgotten hardware
lore. If IBM sold it, we list it and tell you what it's good for. Chapter 5 covers
the two commodity items in the S/36 hardware market - memory and disk
- explaining how the S/36 uses them and how much of each you should
have. Reading this chapter probably will send you shopping for one or both.
And if the advice in these two chapters doesn't keep you busy enough, Chap­
ter 6 is a gold mine of relevant information, from CPU upgrade tips to running
applications across two machines to getting cheap hardware maintenance.

Let this section be your in-house expert on keeping S/36 hardware
alive and productive. You're on your own for lunch.

Chapter 4 8/36 Models and Configurations 59

Chapter 4

5/36 Models and Configurations
Although IBM still sells new System/36 hardware through its reseller channels,
you will be hard pressed to hear any IBMer recommend the S/36 as a solu­
tion. Understandably, IBM strives to migrate customers to the official S/36
"replacement," the AS/400. However, moving to the AS/400 is anything but a
foregone conclusion for many S/36 users. The advent of Unix- and PC-based
solutions, and the high initial cost of migrating to the AS/400, have led most of
the S/36 installed base to wait and watch as alternative platfonns mature. (See
Section VII, "Into the Future," for more details about alternative successors to
the S/36). If you're among the waiting masses, you may continually face the
need to expand your existing system, or even to install additional systems.

Most S/36 systems have considerable room for expansion. According
to a survey by Elms Technical Communications, the average S/36 not already
migrating to another platfonn has 1.6 MB of memory (out of a possible 8 MB),
409 MB of disk (out of a possible 1,400 MB), 18 local devices (out of a possi­
ble 72), 2.5 remote devices (out of a possible 64), and 2.2 communications
lines (out of a possible 8). However, not all S/36 models accommodate the
maximum configuration values just quoted; thus not all users can expand their
existing systems. Further, IBM announced many capacity enhancements in
recent years but made little attempt to keep its installed base apprised of these
enhancements, leaving many users in the dark about expansion possibilities
that could help them extend the life of their system.

Deciding to upgrade and actually figuring out how to do it are two
different things. IBM doesn't offer a single document explaining all the S/36
configuration and feature options - and getting verbal quotes from IBM
about upgrading an existing CPU, or (shudder) buying additional CPUs, isn't
easy when the sales force is geared toward moving AS/400s. IBM's latest prod­
uct information tools (e.g., the IBM Fax Infonnation Service), don't even men­
tion the S/36. Third-party vendors have better information, but many won't tell
you about options not in stock, or that the vendors themselves are not
equipped to install.

What S/36 users need is a concise, complete guide to S/36 hardware
options. This chapter proVides that guide. Starting with an overview of avail­
able models and progressing through memory, disk, workstation, communica­
tions, and other features, this chapter gives you a recap of hardware options,
accompanied by "cheat sheets" useful for later reference. You may discover
that your system has room for additional memory and disk that can lead to

60 Desktop Guide to the 8/36

Figure 4.1
Models and Features Overview

Feature 5360 5362 5363 9402 5364
Main storage (miIVmax K) 128-8192 128-2048 1024-2048 1024-2048 256-1024

Disk capacity (miIVmax MB) 30-1438 30-660 65-1256 160-760 40-130

Diskette drive 8' (magazine') 8' 51/4' 51/4" 51/4'

Tape drive 880ge" 6157e" 6157i 6157i" 6157e"
(e =extemal, i =internal) 6157e"

Local workstations (basic/extended) 6136172 6/28 16/28 14128 6116
Remote workstations (max) 64 64 16 64 16

Communications lines (max) 8 4 2 3 2
LAN attachments (4/16 token ring) 2 2 2 2 1
Other peripherals MICR IVa Optical Disk Optical Disk IVa

(' = optional)

improved performance. Or you might find that the S/36's little-known Token­
Ring IAN or optical storage capabilities can fill a technological gap in your
shop. Whatever your situation, if you have a S/36, this concise guide to hard­
ware options is essential reading before making an upgrade decision.

Overview of Models
Figure 4.1 itemizes various S/36 models and their respective maximum config­
urations. A btief look at the history of these models can help you put their
capabilities in perspective.

The Maytag-sized 5360, the big brother of the line, has unique fea­
tures. It is the only model that supports a diskette magazine drive (automatical­
ly processing up to 23 diskettes at one time), the 8809 (reel-ta-reel) tape drive,
more than 2 MB of memory, or more than four communications lines. It's also
the only model that accommodates more than 28 local workstations. If you're
anticipating installing another S/36, and you need any of these capabilities, the
5360 is your only choice. On the other hand, the 5360 is the bulkiest and most
expensive S/36 to maintain and upgrade. Considering it has only modestly bet­
ter performance and disk capacity than its younger siblings, you should try
hard to live within the limitations of other models. Four 5360 variations - the
A, B, C and D models - represent increasing performance and capacity. The A
model was limited to 128 K memory and 60 MB of disk and is obsolete. The C
model was only available from IBM for a limited time to permit use of 358 MB
disk drives before the D model arrived. In the real world, you're likely only to
encounter Band D models. However, the performance and capacity differences

Chapter 4 S/36 Models and Configurations 61

between the Band D models - the D is twice as fast, has two times the disk,
and has four times the memoty capacity - dictate considering only D models
for upgrades. Rather than buying a 5360 B, you're better off chOOSing a 5362 or
5363, which equal or exceed the B model's capacity and performance.

The deskside 5362, about the size of a two-drawer file cabinet, repre­
sents the best buy on today's used market. The 5362 is the only model,
besides the 5360, that supports 8-inch diskettes and accommodates up to 64
remote workstations (the number of local workstations is limited to 28). It has
the same CPU performance and memoty capacity as a 5360 B, but only half
the disk capacity. The 5362 also supports a UPS power connector, which
when connected to an Uninteruptable Power Supply (UPS), sends a console
message requesting shutdown when low battety power is detected. Where
disk capacity isn't critical, as in a dedicated development machine or commu­
nications hub, the 5362 can be ideal.

The desktop 5364 requires an attached PC/AT and special interface
hardware and, like the 5360 A models, is obsolete. Not only is the 5364 slow
and of limited capacity, but many users also report reliability problems. Don't
consider putting one of these in service unless you receive it as a donation!

The most recent (and probably final) additions to the S/36 family are
the identically performing 5363 and 9402 "YIO" models. Both are deskside
units about half the width of the 5362, but with greatly increased performance
and disk capacity. The CPU, in fact, is identical in performance to the 5360 C
model. Both the 5363 and 9402 can have an internally integrated PC/AT (the
processor expansion feature) that accepts communications and LAN attachment
cards; this integrated PC makes these models better LAN platforms than the
5360. The only real differences between the 5363 and YlO are in name and
packaging. IBM announced the 5363 first, then later re-released the machine
as the "AS/Entty" - officially claiming it as a member of the AS/400 family.
IBM subsequently announced the 9402 YIO, which is a S/36 in an AS/400 cab­
inet that you can upgrade to a genuine AS/400.

Although the 9402 YIO is a S/36 through and through, it incorporates a
few AS/400 packaging features: the AS/400 cabinet and front panel; an optional
five-minute battety backup unit; a battety-backed, time-of-day clock; and
optional remote power-on via telephone. You can upgrade a YIO to the
AS/400 9402 E04/E06, although the upgrade is currently impractically expensive
- you would be better off buying a used AS/400 9402 E06 and keeping the
YIO. The YlO also limits you to a total of 760 MB of disk with a slower data
transfer rate than the 5363. This radical constraint on disk capacity, compared
to the 5363, implies that IBM wants to "encourage" YIO owners to move on to
the AS/400. Unless you really need the unique YlO features, or you have access
to a cheap YlO-to-AS/400 upgrade, avoid it in favor of the 5363, which sup­
ports nearly twice as much disk storage and proVides better performance.

62 Desktop Guide to the S/36

Rgure4.2
S/36 CPU Relative Computational Performance

Relative
Performance

CPU Model Factor
5364 1.0
5362 2.4
5363 2.5
53608 2.6
5360 D 4.3

When choosing a replacement CPU, remember that in most environ­
ments, disk, not CPU speed, constrains performance. Given the multiprocessor
nature of the S/36, it's not always easy to determine relative performance differ­
ences between various models. Figure 4.2 shows average relative performance
comparisons for computational loads based on IBM tests using representative
business calculations, with the 5364 given a weight of 1.0. Keep in mind,
though, that a faster CPU won't improve performance much if disk accesses are
the constraining factor. Thus, even though a 5360 D CPU, with a relative rating
of 4.3, seems like it should be nearly twice as fast as the 2.5-rated 5363, in
practice the two perform alike because of the 5363's disk speed advantage.

No matter which model S/36 you have presently, don't rule out pur­
chasing a different CPU outright. It's often cheaper to buy and upgrade a used
late-model S/36 than it is to update a more obsolete model - and you would
still have the old machine for backup or other purposes. One interesting side
effect of the S/36's ongoing popularity is that used 5363s often have a higher
residual value than equivalent early model AS/400s, even though the AS/400 is
newer and supposedly better!

Memory
If there is one thing you should learn from this book, it's that you can never
put too much memory in your S/36. Because SSP automatically takes advantage
of additional memory to keep frequently used system programs resident, and
because you can use that memory - via cache, storage indexes, and resident
screen formats - to further improve performance, installing the maximum
memory your machine can handle is nearly always a good move. (For more
information about using memory effectively, see Chapter 5, "The Importance of
Memory and Disk Space.")

Chapter 4 8/36 Models and Configurations 63

Figure 4.3
Memory Configurations

Number of Cards
Memory card size 5360 5362 5363 9402 5364

128K 4 4 2
256K 4 4
512K 4

1024 K 4 2 2 2 1
2048K 4

How much memory you need to buy to fully configure your machine
depends upon how much you already have and how it's organized. S/36
memory comes as plug-in cards of various capacities, and each S/36 model
has a fIXed number of card slots. To increase your machine's memory, you
first may have to remove some or all of the existing memory cards (Figure 4.3
itemizes memory card capacities and counts for various S/36 models).

Only the 5360 lets you use lots of memory - up to 8 MB with third­
party enhancements - all other models are limited to 2 MB. The 5360 is also
the most confusing model in which to install memory - it accommodates five
different card sizes in four slots, and a given machine may have any combina­
tion of cards already installed. Because only four slots are available, you must
use four 2 MB cards to achieve the maximum 8 MB capacity. Any existing
cards of less than 2 MB capacity must be removed (you can sometimes obtain
credit for these from your memory supplier). Note that although IBM officially
supports only 7 MB (three 2 MB cards and one 1 MB card), the 5360 D
accommodates 8 MB with no problem. One third-party supplier (AI/GBT,
12450 Beatrice Street, Los Angeles, CA 90066, (800) 243-4433 or (310) 305­
8616) offers an 8 MB upgrade package that includes a software patch neces­
sary to satisfy IBM's configuration program.

The 5362's four slots work with 128 K, 256 K or 1 MB cards in any
combination, up to 2 MB. Only the 256 K and 1 MB cards have any residual
value, though, so you might consider keeping your old cards for an emergency;
if a memory card fails, you can get your machine up again, albeit running more
slowly, while you wait for replacement parts.

The 5364 has zero upgrade options - a short and sad story - and
another reason to avoid this model. The 5363/9402 duo accommodate a single
additional 1 MB memory card, bringing total memory to 2 MB.

64 Desktop Guide to the S/36

Technical Note

Only the 5360 0 model supports more than 2MB of memory. You may encounter some rare
Cmodels that support exactly 2MB. All other 5360 models limit main memory to 1.75 MB.

Disk
Depending on the model, the S/36 supports from one to four disk spindles
(Figure 4.4 lists the possible configurations). The number of configuration
options for each S/36 model is limited, and performance and other characteris­
tics of disk drives vary widely. Because disk is the most common performance
bottleneck on the S/36, you should evaluate disk drive characteristics carefully
when selecting a S/36 upgrade path.

The characteristics critical to disk drive performance are average seek
time and rotational delay, number of bytes per cylinder, and effective data
transfer rate. Average seek time and rotational delay determine the time
required to access data randomly; the number of bytes per cylinder and effec­
tive data transfer rate determine overall drive throughput. Figure 4.5 compares
these characteristics for the seven available disk drive models.

Of the available drives, the 5363 and 9402 models, ranging in capacity
from 67.5 MB to 314 MB, have the best random access performance. (The
model numbers for the disk drives supported by the S/36 5363 and 9402 are
the same as the machine model numbers.) Their combined seek times and
rotational delay yield an access time of less than 20 rns - about twice as fast
as the higher-capacity 10SR drive. For applications requiring frequent random­
record retrieval (e.g., interactive applications), choose the 5363 or 9402 CPUs
for their quick access. A 5363 with four 314 MB drives offers nearly as much
disk capacity (1256 MB) as the 5360 D (1436 MB), running at about half the
access time. This makes the 5363 a very good interactive application platform.
The 9402 supports less total disk (760 MB), with a slow data transfer rate (0.83
megabits per second), making it a less attractive candidate for interactive work.

For batch work, effective data transfer rate is a controlling characteristic
- it determines how quickly data can be read sequentially from the disk. Here
again the 5363 shines, with a data transfer rate second only to 9332 drives. The
9332 drives are something of an enigma: Available only on the 5362, they use
the ANSI Intelligent Peripheral Interface (IPI-3), which supports data transfer
rates of nearly 6 megabytes per second! While the 5362 processor can't always
sustain this high throughput, the 9332 shows markedly improved performance
when batch processing meso The 9332, a general-purpose, externally housed
drive, is also available on the AS/400 in 200 MB, 400 MB, and 600 MB capaci­
ties. The 5362 supports only the 200 MB and 400 MB models, however, and

Chapter 4 S/36 Models and Configurations 65

Rgure4.4
Disk Configurations

Number of Spindles
Drive model and capacity 5360 5362 5363 9402 5364
Maximum system capacity (MB) 1438 660 1256 760 130
Maximum internal spindles 4 2 4 4 2
Maximum external spindles 0 2 0 0 0
21ED 30MB 2 2
21ED 60MB 2 2
10SR 200 MB 4
10SR 359 MB 4
9332 200 MB (external only) 2
9332 400 MB (external only) l'
0665 40MB 1
0665 65MB 1
5363 65MB 4 4
5363 105 MB 4 4
5363 314 MB 4 4
9402 160 MB 4 4
9402 200 MB 4 3

('NlA Hintemai disk> 60MB)

Figure 4.5

Disk Drive Characteristics

Drive Model
Characteristic 21ED 10SR 9332 0.665 5363 5363 9402
Capacity (MB) 30.8161.6 200.9/359.7 200 41.9 67.5/106.2 314 160/200
Average seek time (milliseconds) 35 25 19.5 40 30 12.5 12.5
Average rotational delay (ms) 9.52 10.1 9.6 8.33 8.1 6.95 6.95
Bytes per cylinder 69,632 351,232 151,552 57,344 116,480 257,280 172,032
Effective data transfer rate (MB/sec) 0.941 1.18 5.7 0.625 1.25 1.25 0.83

only pennits attachment of the 400 MB unit when the internal 5362 disk doesn't
exceed 60 MB. (For a time, IBM offered the 600 MB model for the 5362 as an
RPQ, but that RPQ since has been discontinued. You may find such machines
on the used market, though.)

66 Desktop Guide to the 8/36

The third critical characteristic - the number of bytes per cylinder ­
can affect both batch and interactive processing. This figure represents the
number of bytes that can be read or written without moving the disk actuator
arm. For random access of indexed mes, a high value means fewer disk seeks
to search an index. For batch processing, a high value means fewer disk seeks
during sequential processing. Of all the drives, the 5360's 10SR has the largest
number of bytes per cylinder: 351,232. But the 5363's 314 MB drive takes a
reasonably close second place, at 257,280 bytes per cylinder.

In general, the S/36 platform with the best balance of disk performance
and capacity is the 5363. The 5362 places second with its fast 9332 drives. All
other disk options represent old and slow technology best avoided by upgrading.

Workstations
You probably use your S/36 more for interactive than for batch work. A key
configuration point for various S/36 models is workstation support - the
number of users supported by a given CPU model. For best performance,
you're interested in local workstations: devices attached directly to your
machine via high-speed (1 megabit per second) twinax lines.

You connect twinax devices - either display stations or printers - to
the S/36 in daisy-chain fashion ("pass-through" in IBM-speak): Each device has
two connectors for a cable-in and cable-out (Figure 4.6). Each string of up to
seven devices attaches to a single S/36 twinax port. The total number of
devices each system supports depends upon both the number of ports and
the amount of workstation controller storage. All S/36 models come with a
base amount of workstation controller storage supporting a certain number of
devices; you increase that number by adding one or more workstation expan­
sion features. Figure 4.7 shows the number of local twinax ports available on
various S/36 models and the number of devices supported in base and expan­
sion configurations. One special feature - extended input fields - increases
the number of available input fields from 128 to 256, which lets 5250 terminals
emulate 3270 displays (which can have up to 256 input fields). However, the
extra input fields use up workstation controller storage, which reduces the
number of devices that can be supported (as reflected in Figure 4.7). You can
run twinax cable up to 5,000 feet, although the number of devices and splices
in a given line can reduce this distance considerably.

An alternative to twinax is unshielded twisted-pair cabling (DIP), which
uses lightweight, inexpensive, standard telephone wire. The primary advantage
of twinax cable is its high noise immunity, which it achieves by sending the data
signal down two wires Simultaneously. One signal is the exact inverse of the
other signal, which produces a uniform, or balanced, magnetic field in the
cable. The balanced signal is less susceptible to corruption by stray external
electronic noise and internal signal reflections. The term "twinax" refers to the

Chapter 4 S/36 Models and Configurations 67

Figure 4.6
Workstation Configurations

Number of Ports/Devlces
Workstation feature 5360 5362 5363 9402 5364

Basic (ports/devices) 6/6 416 416 4/6 116
with extended input fields feature 4/3 413 413 1/3

First WS expansion (ports/devices) 6/36 4128 4128 4/28 2116
with extended input fields feature 6118 4118 4118 4/18 219

Second WS expansion (ports/devices) 12172
with extended input fields feature 12/36

Agure4.7

Twinax Daisy-Chain Local Workstation Network

S/36

8 8 ... U
Port 0 in I lout in I out

............. ~

... U8 8
in I lout in I out

Port 1 ~

· ·
•

8 8 ••• ~6
in I lout in I out in

...........
Port n

two center conductors, although the cable actually has a third ground conductor
in the form of a braided metal shield.

Twisted-pair wiring has only two conductors - a signal and a ground
- with minimal to no shielding. The single signal wire means the magnetic
field is unbalanced; it is more susceptible to noise, which effectively cuts the

68 Desktop Guide to the S136

maximum run length to 1,000 feet or less. For many applications, though, this
is enough. Cheaper wiring and maintenance costs make twisted-pair an attrac­
tive alternative to twinax.

You attach twinax devices to a twisted-pair wiring system using balun
(baanced-to-unbalanced) connectors, which convert the balanced twinax sig­
nal into an unbalanced twisted-pair signal. Because twisted-pair cabling is
cheap and run lengths often short, you can forego twinax-style daisy chaining
and use a more convenient star network topology (Figure 4.8). In a star con­
figuration, each terminal connects to a central patch panel, which in tum con­
nects to the S/36 twinax ports through baluns. The star topology lets you easi­
ly add new connections and reroute existing ones. It also lets you detect and
isolate bad connections without blocking other devices; in a twinax daisy
chain, all devices downstream from a failing device are forced offline.

Technical Note

Detailing the great variety of 5250 devices available is outside the realm of this book. Both
terminals and printers, with awide range of features, are available from IBM and numerous
third-party manufacturers. When upgrading your 5250 network, you might consider using
PC or Macintosh 5250 emulation boards, which offer both text and windowed emulation of
multiple 5250 terminals, and add sophisticated features such as cut-and-paste, keyboard
macros, and spreadsheet data translation.

If you run out of local device capacity, or need to provide access to
remote users, you can attach additional devices via Remote Workstation Sup­
port (RWS). RWS uses communications lines to connect additional devices that
appear as 5250 terminals to SSP and your programs. One or more communica­
tions lines serves as an interface to a remote workstation controller, a device
that proVides the same functions as the local workstation controller built into
the S/36 system unit (Figure 4.9). The remote controller can be located in the
same room as the S/36, or on the other side of the world, depending on the
kind of communications connection you use. In general, though, you're limited
to data rates much slower than twinax's 1 Mbps. Remote line speeds range
from 57.6 Kbps for local modem-eliminator connections to 38.4 Kbps for leased
lines and 19.2 Kbps for switched lines. The maximum speeds available, and
number of attached devices, depend on CPU model and the communications
adapter used. (For a deSCription of various communications connections, see
the Communications section in this chapter).

Chapter 4 8/36 Models and Configurations 69

8
8
o

Figure 4.8
Twisted-Pair Star Network Topology

8/36

Port 0 ...-.........

Port 1 !----.__---'

8 8
Port n !--.-__--' 08 8

_ balun

Figure 4.9
RWS Support Using Communications Lines

and Remote Workstation Controllers

8/36

8 0) ... p
10ut in lout in ~
 - .. -

I
Remotecomm network

modem r- Workstationcomm
Hmodem Controlleradapter

70 Desktop Guide to the S/36

Technical Note

Although adetailed discussion of remote controllers is outside the scope of this book, you'll
find four basic types on the market. The first, and oldest, is the 5250 Model 12, a5250
workstation containing abuilt-in remote controller, to which you can attach up to seven
additional 5250 terminals. The Model 12 controller has its microcode fixed in read-only
storage, and was developed before IBM added DisplayWrite word-processing functions
such as word-wrap and spell-check to 5250 support. Thus the Model 12 doesn't support
DW/36. The second-oldest remote controller is the 5294, astandalone equivalent to the
Model 12 that supports downloadable microcode and, thus, DW/36. The successor to the
5294, the 5394, supports up to 16 remote devices. Finally, the IBM PC supports individual
remote terminal emulation cards that let aPC emulate aremote workstation controller and
one or more 5250 terminals.

If you need to connect ASCII or 3270 (IBM mainframe) terminals to
your S/36, you'll need a protocol converler, which translates foreign-terminal
protocols to 5250 data stream commands. IBM offers two: the 5208 ASCII-5250
Prototcol Converter and the 5209 327X-Link Protocol Converter. Each protocol
converter lets you connect up to seven foreign terminals to a single twinax
port. The 5208 supports "dumb" ASCII terminals using Vf-l00 protocol; the
5209 attaches 327X terminals. With the 5208, you can even use dial-in
switched line connections to support remote access using asynchronous
modems and ASCII terminals or PCs emulating ASCII terminals. Similar devices
are available from several third-party manufacturers.

Communications
The S/36 supports a myriad of communications options through one or more
communications lines. The S/36 offers three different communications adapters:

• SLCA (Single-Line Communications Adapter)
• MLCA (Multi-Line Communications Adapter)
• ELCA (Eight-Line Communications Adapter)

These support up to two, four, or eight lines, respectively. Each adapter in
turn supports one of seven physical interfaces:

• EIA!CCITI (RS/232)
• DDSA (Digital Data Service Adapter)
• X.21 (synchronous leased and switched)
• X.25 (packet switched)

Chapter 4 8/36 Models and Configurations 71

Figure 4.10
Communications Configurations

Feature 5360 5362 5363 9402 5364
Single line/aggregate max speeds (bps)

SLCA 9,60019,600 9,600119,200 19,200164,000 19,200/64,000 9,60019,600

MLCA 57,600167,200 57,6001115,200

ELCA 19,2001170,000

Speed limits per IiIe (bIank-not &VaiQ

EWCCm adapter (SLCAlMLCA) 9,600 9,600 19,200 19,200 9,600

EWCCm adapter (ELCA) 19,200

DDSA adapter $lCA 9,600 9,600

DDSA adapter MLCA 56,000 56,000

DDSA adapter ELCA 56,000

X.21 adapter SLCA 9,600 9,600

X.21 adapter MLCA 9,600 19,200

X.21 adapter ELCA 19,200

X.25 SLCAlMLCA 9,600 19,200 9,600 9,600

X.25ELCA 19,200

V.35 SLCAlMLCA 57,600 57,600 64,000 64,000

V.35ELCA 57,600

ASYNC 9,600 9,600 9,600 9,600 9,600

BCS 9,600 9,600 9,600 9,600 9,600

• V.35 (European switched)

• Asynchronous
• BSC (Bisync)

The line speeds available for each line depend on the kind of adapter and
physical interrace used. SLCA has the slowest speeds because it shares the
native S/36 CSP as a communications controller. The MLCA and ELCA adapters
each have dedicated communications processors, and support much higher
transmission speeds. Each adapter supports a maximum aggregate line speed,
which is the sum of all the individual line speeds. Individual lines also have
maximum speeds. One line can usually run faster if no other lines are in use;
that speed is called the single line speed. Figure 4.10 summarizes communica­
tions line speeds for various combinations of adapters and physical interraces.

Local Area Networks
IBM added Token-Ring LAN connectivity to the S/36 late in its life; and in fact
LAN support is one configuration option often overlooked even by veteran

72 Desktop Guide to the S/36

Figure 4.11

5/36 LAN Interfaces

S/36

b;J
· · · · :: 3-meler cable · · · · · PCIAT ·•

C-acIptr

S/36 users. Don't you overlook it: LAN access offers a sophisticated, high­
speed connection to other S/36s, AS/400s, S/370s, and PCs that could extend
the useful life of your S/36. The LAN moves data at either 4 or 16 megabits
per second between up to 260 attached systems, making it the widest band­
width connectivity option available for the S/36.

Figure 4.11 shows how you connect your S/36 to a Token-Ring LAN. In
every case, the actual LAN connection is provided by a Token-Ring Network
Adapter (TRNA) II card installed in a dedicated PC/AT (model 5170). You can
connect to a second LAN via a second TRNA card. S/36 5360 and 5362 CPUs
use an external PC/AT with 512 K of memory and no hard drive. A keyboard
and display, required for diagnostics but not for normal operations, are optional.
The PC connects to the S/36 through a high-speed channel adapter board con­
nected to a similar board in the S/36 via a special three-meter cable. The chan­
nel adapter proVides direct memory-ta-memory transfer between the PC and the
S/36, which is necessary to sustain the high LAN data rates. The 5363 and 9402
Y10 CPUs don't need an external PC/AT; instead, you use the internal PC/AT
which serves as the processor expansion interface. The 5364 uses the PC
attached as a console controller to hold the TRNA and channel adapter cards.

Chapter 4 S/36 Models and Configurations 73

Technical Nole

5360 LAN support requires aStage 2.1 or later processor. All other S/36 models contain
the correct processor for LAN attachment. LAN software requires SSP 5.1 or later.

The S/36 also needs special software to make the LAN connection
operational: the S/36 LAN Communications Program Product C5727-EPI for the
5360/5362; 5727-EP6 for the 5363/536419402). This software lets you configure
either one or two LAN adapters as communications lines 9 and 10. Each LAN
supports up to 50 devices for the 5360/5362 CPUs, and up to 15 for
5363/5364/9402 CPUs. Connecting both TRNAs to one Token-Ring LAN dou­
bles the number of available devices for that network.

After installing the hardware and LAN Communications Program prod­
uct on the S/36, you configure LAN support via CNFIGSSP. When you activate
LAN support (via ENABLE for lines 9 and 10), SSP automatically downloads
LAN support code into the PC/AT, establishes a presence on the network, and
becomes ready to establish active sessions.

With S/36 LAN access enabled, you can establish several kinds of
Token-Ring connectivity (Figure 4.12 illustrates various LAN connection
options):

• 	PC Support Server functions: up to eight virtual disks, eight shared
folders, three virtual printers, and one me transfer session for each
LAN session.

• 	PC Support Workstation functions: up to five 5250 or 3278 emula­
tion sessions, one of which may be a printer session. (All worksta­
tion functions for all users run under a single LAN session for a
given S/36.)

• Advanced Program-to-Program Communications 	(APPC) functions:
Distributed Data Management (DDM), Display Station Pass Through
(DSPT), Advanced ~rogram-to-Program Network (APPN), File
Transfer, and the APPC Application Program Interface (API)

• S/370-specific services: 	SNA Upline Facility (SNUF), Multi-Station
Remote Job Entry (MSRJE), 3270 device emulation, Communications
and Service Management (CS&M).

Optical Storage
The S/36 has long been used to store and process accounting and other elec­
tronic business records, using magnetic hard disks for short -term storage of
current data and diskettes or tapes for long-term storage of historical data.
The advent of fast optical scanners has also made it possible to store paper

74 Desktop Guide to the S/36

figure 4.12
Token-Ring LAN Configurations

Token-Ring
Network

Network Bridge

~r~

APPC/PC

PCS/36
WSF

documents, such as letters, claim forms, invoices, and checks as digitally
encoded images. Such images, while quickly accessible by computer, require
considerable digital storage space - on the order of 50 K for a single 8- by
10-inch form. A textual customer me formerly requiring less than 10 K of disk
space could balloon to 1 MB or more once you start storing a digitized paper
trail. At $10 per megabyte, traditional magnetic disk storage is just too expen­
sive as a replacement for paper.

However, the cost per megabyte of optical storage - particularly
write-once-read-many (WORM) optical discs - runs less than $1 per
megabyte, making digitized record storage practical. Optical discs of the
WORM variety use a laser to permanently etch a digital bit pattern upon the
disc's rotating surface. Each disc holds a gigabyte or more per side.

Chapter 4 S/36 Models and Configurations 75

The S/36 5363 lets you attach IBM's 9247 Optical Storage drive
($20,000) via a special RPQ hardware adapter. The 9247 uses 12-inch optical
cartridges costing about $300 each, and holding 2 gigabytes (1 gigabyte per
side). The drive reads only one side at a time, requiring a "flip" operation to
change sides. With an average seek time of 150 milliseconds, you won't mis­
take the 9247 for a hard disk drive. However, 150 milliseconds is certainly
much quicker than retrieving paper records manually from a wall full of file
cabinets. Once data has been located, the 9247 transfers it at a rate of 1.2
megabytes per second, equivalent to hard-disk transfer rates.

The 9247 is a single drive; for those really big data storage jobs, you
can use the 9246 Optical Library (about $200,000), a five-foot cube holding
128 gigabytes in 64 disc cartridges. The library also contains from two to four
9247 drives that operate Simultaneously to provide reasonable access times for
multiple users.

The 5363 operates as a controller for the drives, while providing file
server facilities for attached PC workstations. You can use APPC via communi­
cations line or LAN to provide optical storage access to other host S/36s or
AS/400s. Two software packages provide basic optical storage access: Optical
Drive Support (5799-DAA) and Optical Library Support (5799-DAB). These
packages use S/36 Folder Management Services to organize objects on optical
discs, using S/36 hard disk storage as a "staging area." An "object" can consist
of text, digitized images, documents, or sound files. Virtually any kind of data
file you can generate on the S/36, AS/400, or PC can become an optical stor­
age object. Your application programs interact with the optical storage subsys­
tem using ICF INTRA (for local programs) or APPC (for programs running on
a remote system). Figure 4.13 shows how application-requested documents
move from a permanent folder stored on optical disc to a working folder on
the 5363. The staging process lets you manipulate optical-based objects effi­
ciently. Because WORM storage can never be erased, you want to minimize
the number of WORM write operations; with staging, your application only
writes the document on the WORM when an updating session is completed.

Although the WORM contains all previous versions of a given folder
object, IBM's software only lets you access the most current version. The soft­
ware does, however, let you view an audit trail of versions for a given object.

Instead of writing your own application programs to provide image
processing services, you might consider IBM's S/36 Workfolder Application

Facility, or the SAA Workfolder Application Facility for the AS/400. Both pro­

. vide image scanning, cataloging, retrieving, and process-tracking capabilities

required for most office automation tasks.

Conclusion
The foregoing picture of S/36 hardware configuratiOns should give you a good

76 Desktop Guide to the 5/36

Agure4.13
Optical Storage Configurations

~ 5363 Disk Optical Volume

Working Folder Media Folder

USER
DOCUMENT /'C

Ii
DOCUMENT ~

Copy

Copy

""-: DOCUMENT II Media Folder

DOCUMENT

USER
DOCUMENT

i

;': DOCUMENT:.

Copy

Copy
Media Folder

"':'<1 DOCUMENT n
DOCUMENT

~

idea of the expansion options for your existing system. If you have a 5360 C
with many users, the frrst order of business should be upgrading to a D model
and 8 MB of memory. If you have one or more 5362s, make sure you have
2 MB of memory in each. Any time you increase memory, don't forget to
make sure you're taking advantage of the memory (see Chapter 5 for memory
and disk management tips).

If you are unfortunate enough to have a 5364 or 5360 A model, bite
the bullet now and replace it with a more capable 5362 or 5363. The 5360 A
models are so limited that even a 5362 will give you much better performance,
as well as greatly improved upgrade opportunities.

If you're currently maxed-out on a 5363, and interactive performance
is inadequate, you might consider bringing in a 5360 D model, with the prima­
ry advantage of a four-fold memory capacity increase to 8 MB. But be careful
about disk selection: Upgrade to a machine with the same or more disk spin­
dles as your 5363, or you could see dramatically increased disk 110, thereby
dramatically decreasing performance.

Finally, avoid the 9402 YlO. It's siren song of AS/400 upgradability is
deceptive, given the high cost of upgrading. And in the bargain, you'll be
locked into a slower, less expandable box.

http:Agure4.13

Chapter 5 The Importance of Memory and Disk Space n

Chapter 5

The Importance of
Memory and Disk Space
Many S/36 users face a true dilemma: The S/36 is doing a good job meeting
current needs, but it won't live forever. Studies show that most S/36 users do
have room to grow - to upgrade and enhance their machines. But continual
improvements to the AS/400 and RS/6000 - and the emerging technologies
these hardware platforms support - make the choice of upgrading or migrat­
ing a difficult one at best.

What's a S/36 user to do? Does the life expectancy of the S/36 warrant
spending the money to upgrade? Is it reasonable to postpone migration for a
year or two, or is the pay-off better now?

For many shops, upgrading the S/36 is the wise interim strategy. S/36
upgrades are inexpensive and easily attainable. They will help give you the
time you need to intelligently sort out your migration options. Think of S/36
upgrades as "cheap gas," buying you time to let the migration alternatives
mature. For less than the cost of a new personal computer, you can upgrade
your S/36, adding memory and disk storage, and give your machine another
two or more years of life. And even if you choose not to migrate in the fore­
seeable future, these upgrades will help extend the life and performance of
your S/36. (See "Is the S/36 Worth Upgrading?" page 88.)

Just Add Memory
The s/36 is a virtual memory machine - that is, it allows SSP to overcommit
real memory. When real memory is overcommitted, chunks of programs are
paged from real memory to virtual memory workspace (the Task Work Area) on
disk. This 'paging can dramatically impede performance. With more available
memory, more programs and data stay memory-resident; performance improves
because paging occurs less frequently and there are fewer disk accesses.

Your s/36 should have as much memory as it can physically handle.
Don't rely on antiquated rules of thumb to determine the amount of memory
required per user. Put as much memory in your S/36 as possible - as soon as
possible. A flourishing third-party market offers very affordable memory
upgrade prices, and there simply is no better or less expensive way to quickly
and easily improve S/36 performance than to add memory.

Here are more reasons your S/36 should have as much memory as
possible:

The CACHE FaCility. Using the S/36 CACHE facility efficiently requires

Performance Tip

Don't waste time
trying to performance
tune amemory·
constrained S/36.
Given the low street
prices of S/36 memory
upgrades, adding
more memory to a
S/36 Is the cheapest,
easiest way to
Improve S/36
performance.

78 Desktop Guide to the 81'36

Flgure5.1a
User Area of Memory Available without CACHE

Disk

Disk Data Mgt. Variable Nucleus

User Area
Program using
Disk Data Mgt.

Figure5.1b

User Area of Memory Available with CACHE

Disk

Variable Nucleus

plenty of real memoty. When CACHE is enabled, SSP allocates memoty for it
from the variable nucleus area of memoty - reducing the size of the user area
and leaving less real memoty for your applications (Figures S.la and S.lb).
1herefore, using CACHE on a memoty-constrained S/36 is not likely to improve
performance. In fact, when used without enough real memory, CACHE­
induced memoty swapping will probably degrade overall system performance.
Chapter 15 discusses the impact of CACHE on your system and provides you
with tools to determine whether or not CACHE is beneficial for your system.

Even if you don't explicitly use the S/36 CACHE facility, the S/36 auto­
matically uses all memoty available to cache SSP routines. Many system pro­
grams are called to execute each task the S/36 performs. For example, a system
program named #CIRN is called just to process the OCL / / RUN statement. As

Program using

Disk Data Mgt.

http:Figure5.1b
http:Flgure5.1a

Chapter 5 The Importance of Memory and Disk Space 79

you can imagine, #CIRN is used by the system often. To avoid constantly reload­
ing SSP routines such as #CIRN, the SSP lets many users share the same copy of
the program in memory. However, depending on other real memory demands,
SSP routines can be bumped out of real memory. Each time the / / RUN state­
ment is encountered in OCL and #CIRN has been displaced, SSP must reload
the program from disk. Figure 5.2 shows that with only 1 MB of real memory,
the number of SSP routines resident in memory is constrained, but with 3 MB
of memory, more SSP routines can be resident in real memory. SSP regularly
uses more than 200 routines. With enough memory, these routines can stay
resident, reducing disk I/O while improving overall system performance.

Accessing Screen Fonnats. Having plenty of memory also allows effi­
cient access to screen formats - by keeping frequently used formats resident.
Without memory-resident screen formats, SSP must read screen formats from
disk every time they're displayed. By configuring your system using
CNFIGSSP's screen 17.0 (Figure 5.3) to allow memory-resident screen formats,
the SSP will cache screen formats used by a program in a shared area of real
memory. Not only will performance improve for the one application, but
because multiple applications share this "pool" of memory-resident screen for­
mats, performance improves for all programs using workstation I/O.

Using EPCs. The S/36 has external program call (EPC) capability built
into its control storage processor. EPCs allow one program to call another, just
as they do on the AS/400. By taking advantage of the S/36's virtual memory
facility, EPCs allow many programs to be associated with one task, letting you
write modular and more maintainable applications while circumventing the
S/36's program size and me limit constraints. With EPCs, when real memory
becomes overcommitted, SSP pages infrequently called programs to disk.
Additional memory lets more called programs remain resident, improving per­
formance and reducing disk I/O. EPC capabilities are available from IBM and
from two third-party companies. If you have ongoing program development
on your S/36, you should consider using EPCs to reduce wasted disk I/O and
improve program portability. And, if you do use EPCs (as discussed in detail
in Section III), the more real memory you give your S/36, the faster it will run.

Memory Configuration
Figure 5.4 shows the maximum memory each S/36 model supports. A stock
5360 Model D can support up to 7 MB of memory. However, because the
S/36 has an effective memory address of 23 bits (see Chapter 2, "S/36 Memo­
ry Management"), theoretically it can address up to 8,388,608 bytes of real
memory. One third-party memory provider, AI/GBT, provides an SSP patch
that lets the S/36 use that eighth megabyte of memory. The patch isn't need­
ed to make the S/36 address the eighth megabyte of memory - even with­
out the SSP patch the S/36 would "see" the additional memory and perform

Performance Tip

Use CNFIGSSP's
screen 17.0 (Rgure
5.3) to enable
memory-resident
screen formats. This
will reduce the disk
accesses required to
load and display
scresn formats for
your application
progrems.

Performance Tip

Not all paging Is bad.
When paging replaces
more tlme-consumlng
operallons - as It
does when program
calls replace OCL
/I LOADs - response
time actually Improves.

,

80 Desktop Guide to the S/36

FIgure 5.2

More Memory Means More System Programs Resident

-System program

1MB of memory with afew system programs resident User program

3 MB of memory with many system programs resident

Chapter 5 The Importance of Memory and Disk Space 81

Figure 5.3

CNFIGSSP Screen 17.0

17.0 CNFIGSSP - BASE SSP III 	 SYSCNFIG Ml

1. 	Default forms ID 0001

2. 	Specify how many lines you want

printed per page . . . 001-112 066

3. 	 Default library name

4. 	Do you want your display formats

to reside in main storage? Y.N Y

Cmd3-Previous menu Cmd19-Cancel

Figure 5.4

Maximum Memory Per S/36 Model

5360 5360
Model ModB ModO 5362 5363 9402 5364

Memory capacity 1.75 MB 8MB 2MB 2MB 2MB 1MB

the necessary memory diagnostics at IPL time. However, the patch is neces­
sary to modify several CNFIGSSP screens that need to know the eighth
megabyte is available. This eighth megabyte of memory could very well be
just what's needed to extend the life of a currently maxed-out S/36.

5360 Model B users are limited to 1.75 MB of memory. For many S/36
5360 shops, the justification to upgrade to a Model D processor is not really
the more powerful processor, but rather the additional 6.25 MB of memory
capacity. If you have a memory-constrained 5360 Model B, consider upgrading
to a Model D simply for the additional memory.

Pricing Memory
When searching for memory upgrades for your S/36, you will fmd that third­
party vendors offer the best buy. IBM publishes S/36 memory upgrades in its
price lists, but the prices are not competitive with third-party memory prices.
IBM lists 1 MB of memory at $4,160; 2 MB lists for $8,330. Third-party vendors

Performance Tip

Hyou have amaxed­
out Model D5360 with
7 MB of memory, be
aware that you can
add an eighth
megabyte of memory.
To find out how,
contact AI/GBT, 12450
Beatrice Street, Los
Angeles, CA, 90066,
(BOO) 243-4433 or
(310) 305-8616.

82 Desktop Guide to the 5/36

offer memory upgrades starting at about $500 for 1 MB and about $1,000 for
2 MB. In many cases, the memory from the third-party vendors won't be IBM­
brand memory - but it will do the job as effectively and reliably.

If you are concerned that you might lose IBM maintenance, don't
worry. Buying third-party memory won't invalidate your IBM maintenance
contract. With proper notification, IBM will continue your maintenance con­
tract even if you have upgraded your machine with third-party equipment.
Any reputable vendor can supply you with the form letter you'll need to
inform IBM that you're upgrading your machine through a third party. Very
likely - though it doesn't always happen - an IBM engineer will visit your
shop shortly after this notification to "recertify" your machine for IBM mainte­
nance. Some of the money you saved buying third-party memory must be
spent to pay IBM for this visit. It's not a lot, but put $200 or so in your
upgrade budget to have your S/36 recertified. Or you can avoid the situation
altogether by using third-party maintenance services, which are discussed in
more detail in Chapter 6.

Technical Note

For a5360 Model Bprocessor to support up to 1.75 MB of real memory, it must have a
Stage 2.1 processor. Model Bs with aStage 2.0 processor will support only 1MB of mem­
ory. AStage 2.1 processor upgrade sells for $500 or less from third-party vendors. You
can check your S/36's processor level by opening the control panel cover and reading the
embossed label in the lower right corner. It will say Stage 1, 2.0, 2.1, or 3.

If your third-party upgrades were performed using genuine IBM parts,
after recertification IBM will adjust your maintenance contract and IBM mainte­
nance will cover the new parts. However, if your machine was upgraded with
non-IBM parts, the recertification only confmns that the third-party parts are
causing no problems and that IBM maintenance will continue unchanged ­
covering what you had but not the new parts. Generally, when you upgrade
your S/36 with non-IBM parts (currently, memory cards are the only non-IBM
add-on), you'll need to provide for maintenance on these parts through the ven­
dor. Be aware, also, that if you add non-IBM parts to your S/36, the unlikely,
but possible, circumstance exists for a few fmger-pointing problems ("It's their
memory card that's causing the problem," "No, it's their memory card"). Some
third-party memory vendors - for example, EMC - provide a switch on the
front of their memory card that causes the card's memory to be logically ignored
by the S/36 at IPL. By helping to diagnose the location of memory-related prob­
lems, this determines whether the EMC2 board is part of the problem.

Chapter 5 The Importance of Memory and Disk Space 83

Technical Note

Even if your 8/36 is under IBM maintenance, you can upgrade your machine using third­
party vendors.

The Importance of Free Disk Space
In addition to addressing your system's memory capacity, you also need to
consider additional disk storage. The only mechanical part of the S/36 - the
disk drive - is the primary performance bottleneck, and the slowest compo­
nent on the S/36. Each disk access requires 35 milliseconds on average. In that
time, the CPU can perform up to 35,000 machine instructions. With abundant
memory, you can eliminate much performance-robbing disk I/O. But no mat­
ter how much memory you have, you cannot eliminate all disk I/O. What can
minimize the impact of disk I/O is plenty of disk space, which allows you to
tune and manage your system effectively. Here's how system performance can
be improved with abundant disk storage:

System Wom Areas. If you have enough disk, you can provide large
system work areas. The Task Work Area, for example, should be set to its
maximum amount of 6,553 blocks to avoid Task Work Area extents. In addi­
tion, if your system uses external program calls heavily, having 1WA maxed
out to 6,553 blocks might not be enough - there should be enough disk
space available so that your system can create contiguous Task Work Area
extents (see Chapter 7). By allowing for a large spool fIle, free disk space also
helps avoid costly spool fIle extents.

A Smarter Compress. Typically, use of the COMPRESS procedure gathers
all free space within the user area of each spindle into one contiguous area at
the beginning or end of the spindle. Figure 5.5 shows the effects of COMPRESS
FREEHIGH and COMPRESS FREELOW to move all free disk space to ends of
the disk spindle. However, if you have enough disk space available, a much
better disk organization is shown in Figure 5.6. Here, free space has been col­
lected into two groups and allocated on either end of the spindle. The space
on the left, or "low," end of the spindle is targeted as the high-activity area of
the spindle. Frequently used fIles will be extended or allocated here nrst, filling
up this space as the day goes on. Disk utilization of this area of disk requires
less disk arm movement and provides quicker access than the area at the high
end of the spindle. Less frequently used fIles - those whose disk accesses
happen less frequently - generally will go into the second free space.

The key to creating these two empty areas on disk is to use a large
"placeholder" fIle in conjunction with two calls to the COMPRESS procedure
(Figure 5.7). The Al spindle is compressed nrst, moving all available user

84 Desktop Guide to the S/36

Figure 5.5

Disk Spindle After COMPRESS FREEHIGH

System and User files#LlBRARY ·····..·... ·.· ..·..·......·...·.·.·.~fee ..sp~!
Disk Spindle After COMPRESS FREELOW

System and User files#LlBRARY

Figure 5.6

Disk Spindle After "Smart" COMPRESS

System and User files#LlBRARY

space to the low end of the spindle (COMPRESS FREELOW). Before com­
pressing the spindle a second time, a 3,OOO-block file is created as a place­
holder. Then the second compress moves all available user space (less the
size of the placeholder file) toward the high end of the spindle (COMPRESS
FREEHlGH). After completing the second compress, you delete the placehold­
er file, leaving a 3,OOO-block area 0.6 MB) of "high-activity" disk space avail­
able near the low end of the spindle. The remainder of the disk space is avail­
able in a second area at the high end of the spindle. Figure 5.8 shows a
variation of Figure 5.7, the procedure that produces the appropriate "holes" on
a two-spindle system. Keep these free areas on disk available by frequently,
nightly perhaps, performing this "smart compress."

Technical Note

The ·smart compress· technique applies only to systems with a lot of free disk space.
Given minimal free disk space, you could use asmaller ·placeholder" file. But on adisk­
constrained system, creating the two free areas of disk space per spindle increases the
chance that there won't be enough contiguous free disk space to perform file extends.

Successful File Extends. When an extend-capable file fills, SSP needs a
contiguous area of disk space large enough to hold the newly extended file

Chapter 5 The Importance of Memory and Disk Space 85

Figure 5.7

"Smart" COMPRESS for Spindle A 1

IF DATAF1-PLACEHLD DELETE PLACEHLD.F1
COMPRESS A1,FREELOW
BLDFILE PLACEHLD,S,BLOCKS,3000,256,A1
COMPRESS A1,FREEHIGH
DELETE PLACEHLD,F1

Agure5.8

"Smart" COMPRESS for Spindles A 1 and A2

IF DATAF1-PLACEHLD DELETE PLACEHLD,F1
COMPRESS A1,FREELOW
BLDFILE PLACEHLD,S,BLOCKS,3000,256,A1
COMPRESS A1,FREEHIGH
DELETE PLACEHLD,F1
*
COMPRESS A2,FREEHIGH
BLDFILE PLACEHLD,S,BLOCKS,3000,256,A2
COMPRESS A2,FREELOW
DELETE PLACEHLD,F1

(the size of the original file plus the extend value). If this contiguous disk
space is not available, the file will not be extended; SSP issues a "file full"
message and tenninates your application - requiring an unpleasant applica­
tion recovery process.

Files are extended by either the value specified with the EXTEND
value in the / / FILE statement or by the default EXTEND value established
when the file was created. The EXTEND value in the OCL overrides the
default EXTEND value. Specify EXTEND values carefully. If the EXTEND value
is too small, me extends may occur more often than you want. Each time a file
extends, an EDF-Wait occurs and all applications currently using the file are
suspended until the extend operation fmishes.

The extend operation will fail if there isn't enough contiguous free
disk space to perform the extend, so don't make extend values arbitrarily
large. Consider a sequential file with 12,000 256-byte records with an EXTEND
value of 250 records. With 12,000 records, this file requires approximately
1,200 blocks of disk space. On a system with 1,500 blocks of contiguous disk
space, only the first extend would succeed. A second extend would fail
because not enough contiguous disk space is available (Figure 5.9). Note,
though, that with the original 1,500-block area, there would have been room
to extend the file by approximately 3,000 records.

http:PLACEHLD.F1

86 Desktop Guide 10 the SfJ6

Figure 5.9
Extended aFile Once Successfully - But Not Againl

Before Rle #2 extend

System and LI•.•.·.•.•.• ·.··.•.·..•.• 4iMBFf~e •.•.•.••.••.•.·.•. ...•••.•.••..•..1LJ#~LI~BRA~RY~_llll~~l~~J;:J 'l _ ...'t""...,
After Rle #2 extend by 250 records ­ no room for second extend!

System and Other#LlBRARY files

Proper File Placement. Abundant disk space also lets you increase
performance by properly placing files and libraries. To minimize disk seeks
across one spindle, file location on one spindle is important; having available
disk space will allow you to place the most-used files near the spindle's low
end - the end most quickly accessed. Even more important than the ability to
place files near the low end of a spindle is the ability to balance the place­
ment of all files across all spindles to minimize disk arm movement. When
creating a new file without a specific spindle specified, the system uses inter­
nal spindle-activity counters to place the file on the spindle with the lowest
activity. In the case of a two-spindle system, the Al spindle activity count will
almost certainly be greater than the A2 spindle activity count because system
files are located on AI. The result may be a disproportionate number of new
files located on A2. An abundance of disk space lets you manage disk place­
ment of new files, thereby leveling the load on each spindle. Your goal should
be to have disk utilization for each spindle, as reported by SMF, within 10 per­
cent to 15 percent of each other.

Additional Spindles. Although adding disk space is important for
minimizing disk I/O and improving system performance, haVing additional
disk spindles can really increase performance-tuning potential. The more
disk arms you have to perform disk I/O, the more leverage you have to min­
imize disk arm motion. With multiple spindles, the disk arm is more likely to
stay in position, making subsequent disk accesses faster. For example, if you
have a two-spindle system, placing a parent file on one spindle and its alter­
nate index on the other will yield faster disk throughput than if both files
were on the same spindle, because the arm motion on two drives will be
less than that on one.

Chapter 5 The Importance of Memory and Disk Space 87

Agure5.10
Maximum Disk Capacity for S/36 Models

Model 5360 5362 5363 9402 5364

Disk capacity 1438 MB 523MB 1256MB 1256 MB 130 MB

Pricing Disk Drives
Generally, you'll want as much disk space in your S/36 as you can afford.
Figure 5.10 shows an ovelView of maximum disk capacity values for each S/36
model (configuration details are discussed in Chapter 4). As they are with mem­
ory, IBM disk upgrade prices are high. Consider the cost of adding a second
200 MB drive to a Model B 5360 - a B23 to B24 upgrade. This upgrade is avail­
able from mM at a current list price of $17,950. You can purchase refurbished
200 MB IBM drives from reputable third-party vendors for about $2,000 - a
major savings for any S/36 shop. In most cases, mM prices probably render an
mM disk upgrade a non-option. If yours is a true-blue, "No third party stuff
here!" shop, take a few minutes to re-evaluate that position. Reputable third­
party vendors offer an excellent way to increase the life of your S/36 (as a guide
to chOOSing a reputable vendor, see "Avoid Third-Party Pitfalls," page 89).

As it is with memory upgrades, given proper notification and certifi­
cation, mM is obliged to honor your maintenance contract when you install
third-party disk drives. Because only IBM disk drives are available for the
S/36 - even if a third-party vendor installs your disk upgrade - your IBM
maintenance contract, once your machine is recertified, will cover the third­
party disk drives.

Eventually, most of the S/36s humming away happily right now will
run out of resources and need to be replaced with newer, bigger, and better
computers. Until then, upgrading your S/36 is a superb computing value and a
great way to extend your machine's life and performance - thereby postpon­
ing your need to move to a new computer.

Although IBM seems to have priced itself out of the S/36 upgrade
market, don't overlook third-party vendors' potential role in upgrading your
S/36. Many third-party vendors can deliver the value and performance your
S/36 needs.

Performance Tip

When upgrading a
SI36, consider lower­
capacity drives to
achlev. ahigher
spindle count. Four
200 MB drives give
you more file
placement options
than two 200 MB
drives and one
358 MB drive.
Ukewlse, two 200 MB
drives offer more
options than one
358 MB drive.

http:Agure5.10

88 Desktop Guide to the 8/36

Is the S/36 Worth Upgrading?

When the A8/400 appeared in 1988, 8/36 users everywhere were at once overwhelmed with
envy and "deja vu." Not long ago, it seemed, they had made passionate pitches to their CEOs
about the need to replace aging Sl34s with 8/36s. With haunting memories, 8/36 users pulled
out the same arguments ("It's bigger, better, faster, easier, cheaper...) to convince their CEOs of
the need for an ASl400. For many 8/36 users, those arguments didn't sell as well the second
time around: The 8/36 wasn't that old, it still had lots of life and - probably most important to the
CEO - it wasn't fully depreciated.

Today, many 8/36 users are reconsidering the A8/400. Prices have come down and per­
formance has gone up. IBM seems to be delivering on its claims that the A8/400 8/36 environ­
ment is viable in its own right - not just as amigration crutch. But at least three reasons still
make the decision to migrate to an AS/400 adifficuit one:

• A8/400 price/performance ratios, while better than ever, could still be better. Dollar for dollar,
the lowly 8136 still delivers considerable bang for the buck - especially if your 8/36 is nearly
depreciated, is keeping your users happy, and is meeting your business needs.
• The ASl400 may be nearly halfway through its lifetime. Remember the anguish of buying a
8136 midway though its life cycle and seeing the ASl400 announcements ayear or two later?
While IBM insists the A8/400 will buck the typical midrange life cycle, many 8/36 users are
skeptical. There isn't a8/36 user in the world who doesn't shudder at the thought of buying an
AS/400 today only to see the ASISOO (or whatever it will be called) announced in ayear or two.
• The RSl6000 adds anew dimension of fear, uncertainty, and doubt to many 8/36 migration
plans. What is this new box with the funny sounding operating system? Wasn't Ming the Merci­
less from Unix? Not all that long ago most midrangers thought R8/6000 was afuel additive, but
now most of us can at least speak conversationally about the P081X standard, interoperability,
and the concept of an ·open system."

This isn't to suggest that you should keep your head in the sand. The A8/400 is more
than asupercharged 8/36. Not only does the A8/400 do all the things the 8/36 does, it also will
do many things the S/36 cannot - and IBM adds additional capabilities almost monthly.

With an appreciation for the technological potential of the ASl400, however, the reality of
the situtation for all but the maxed-out 8/36 shops is that the longer migration can be deferred to
another platform, the better. While you squeeze extra mileage out of the 8/36, ASl400 price/per­
formance ratios improve, the RS/6000 solidifies its position in the midrange market, and you
have more time to identify the technological pivot points for your business through the end of the
century. For the near Mure, many 8/36 users will find upgrading machine resources to be a
sound, logical investment.

Chapter 5 The Importance of Memory and Disk Space 89

Avoid Third-Party Pitfalls

However beneficial, using third-party parts to upgrade your S/36 isn't atask to be taken lightly.
The addition of third-party products adds previously non-existent variables to the 8/36 reliability
equation. And you want to be certain that your S/36 won't take an unexpected afternoon off.

You can reduce the risk, and feel comfortable with the money saved, by carefully
researching third-party vendors before signing on the dotted line. Before you buy from athird­
party S/36 vendor:

• Ask members of your local user group which third-party vendors in your area are particularty
good at providing customer service.
• Ask the Better Business Bureau if any complaints have been registered against avendor.
• Ask for, and research, vendor-provided customer references.
• Ask about warranties, guarantees, and maintenance contracts.
• Ask about replacement parts, ongoing maintenance, and expected response time when prob­
lemsoccur.
• Ask for, and secure, your third-party vendor's help (before money exchanges hands) in get­
ting your upgraded S/36 "recertffied" for IBM maintenance.
• Ask your local IBM branch approximately how much you could expect to spend on machine
recertification after installing third-party upgrades.

Chapter 6 Other Configuration Considerations 91

Chapter 6

Other Configuration Considerations
Beyond memory and disk space options, you may want to consider one of the
following six ideas in your quest to keep your S/36 alive and useful:

• Upgrading your 5360 model B or C to a model D
• Upgrading your smaller S/36 to a 5360
• Setting up a dedicated program development machine
• Upgrading data communications to reduce CPU workloads
• Using Distributed Data Management (DDM) to expand disk capacity
• Turning to third-party service and support to reduce ongoing mainte­

nance costs

Model 0 Upgrade
As you learned in the previous chapter, the more memory your S/36 has, the
better. The 5362, 5363, and 9402 support up to 2 MB of memory and the
5364 supports up to 1 MB of memory - regardless of model designation. For
the 5360, though, the maximum amount of memory depends upon the
processor class.

IBM developed four different processor classes for the 5360 over its
lifetime, each offering better performance or memory capacity than its prede­
cessor. In IBM terminology, the four classes are called stages. You usually can
determine the stage level of a given 5360 CPU by looking for a label next to
the serial number tag on the lower right-hand comer of the raised CE panel
cover. The label contains the word "stage" followed by a number: 1.0, 2.0, 2.1,
or 3.0. Beware though: Some third-party installers fail to change this label after
upgrading (or downgrading) a cpu. Any competent IBM or third-party cus­
tomer engineer can verify the processor level by examining the installed
processor boards.

The Stage 1.0 or 2.0 processor addresses up to 1 MB of memory,
while the 2.1 processor addresses up to 1.75 MB. You'll fmd most 5360s in
the field already are upgraded to the Stage 2.1 processor to accommodate the
extra 0.75 MB. However, if your 5360 isn't upgraded, third-party vendors can
install a Stage 2.1 upgrade very inexpensively. When coupled with the addi­
tional 0.75 MB of memory, the 2.1 upgrade is a cost-effective way to squeeze
more performance out of a 5360 Model B. You can let SSP automatically take
advantage of the additional memory, or allocate the memory to a specific
purpose, such as disk cache or memory-resident screen formats. Although
three-quarters of a megabyte doesn't seem like much - especially when

92 Desktop Guide to the S/36

Performance Tip

Hyour S/36
consistently reports

CSPor MSP
utilizations greater

than 60 percent,
your machine is a

good candidate for a
Model 0 upgrade.

Performance Tip

Even if your CSP and
MSP utilizations are

low, you should
consider upgrading to

aModel 0 H SMF
reports high swap

rates. The vast
increase In memory

capacity of the Model
olets SSP keep

frequently accessed
application and system

programs memory
resident, reducing disk

110 and improving
response time.

compared to memory capacities found in today's PCs - you're almost dou­
bling the amount of memory SSP can devote to othelWise disk-intensive pro­
gram management.

For even more memory in the 5360, though, consider upgrading to a
Model D, which supports up to 8 MB - a 400 percent increase over the Band
C models. This additional memory often is reason enough for many 5360 users
to upgrade to a model D machine. In addition to addreSSing more memory, the
model D's Main Storage Processor (MSP) and Control Storage Processor (CSP)
both are faster than those in other models. The MSP is twice as fast; the CSP is
88 percent faster than Stage 1.0 CPUs, and 50 percent faster than Stage 2.0.

On 5360s without a Stage 3.0 processor, and for which System Mea­
surement Facility (SMF) consistently reports CSP or MSP utilizations higher
than 60 percent, the Model D upgrade greatly improves performance by
reducing the CSP/MSP processing bottleneck.

While the fast Model D can eliminate the processor bottleneck, that
won't do you much good if you immediately run into a second bottleneck in
disk I/O. This is where the Model D's higher memory capacity helps. Remem­
ber that SSP is designed to operate even with small amounts of main memory
- as little as 128 K. It accomplishes this feat by using disk space in place of
needed memory, swapping application and system programs for one task onto
disk when memory is needed to run some other task. The disk activity associ­
ated with swapping is a great performance robber, not only by delaying the
execution of programs waiting for memory, but by also using up disk I/O
capacity that would be better spent reading and writing your applications' data
meso With 8 MB of memory at its disposal, SSP usually can keep everything it
needs memory resident, reducing swapping to an insignificant amount. In fact,
you may find swapping eliminated with only 3 or 4 MB of additional capacity;
you can use any remaining memory to reduce application data file disk
accesses by setting up a disk cache. Section V, "Performance Measurement
and Tuning," provides you with the tools you need to benchmark your system
and measure its resource utilization.

Model D upgrades are available both from IBM and third-party ven­
dors. However, once again, IBM prices itself out of the ballpark. The IBM list
price for a 5360 B23 to D24 upgrade, the result of which is a Model D 5360
with 2 MB of memory, is $9,910. On the street, from reliable third-party ven­
dors, the same Model D upgrade costs about $3,500 installed. Third-party
upgrades might use third-party memory, but the processors will be true-blue
parts. Require a lifetime warranty on the memory, and buy from a reputable
dealer, and your service will be equal to that of IBM's.

Upgrading to a5360
A Model D upgrade should be high on 5360 users' wish lists, but what if you

Chapter 6 Other Configuration Considerations 93

have a smaller S/36? Other S/36 models cannot be upgraded to a full-fledged
Model D like the 5360 can, which leaves you but two options: Either trade up
to, or buy outright, a 5360 D model.

Even though some smaller S/36 models have processors approaching
Model D performance, they have memory ceilings of 1 or 2 megabytes, sub­
stantially less than the 5360's 8 MB ceiling. Smaller machines also face smaller
disk capacities, with the largest of the little CPUs supporting only 85 percent
of the 5360's 1,438 MB DASD maximum. Communications adapters on low­
end machines generally don't contain their own processors, adding to CSP and
MSP workloads. The 5362 is the only small S/36 that supports the Multi-Line
Communications Adapter (MLCA) - the others only support the Single-Line
Communications Adapter (SLCA). None of the small S/36s support the Eight­
Line Communications Adapter (ELCA) offered on the 5360.

In addition to memory, disk space, and communications options, the
smaller S/36s also lack some of the additional processors of the 5360. The
5360, for example, has a Data Storage Controller (DSC) dedicated to ferrying
data to and from tape and diskettes. Without a DSC, tape and diskette data
transfer become the responsibility of the MSP and the CSP, resulting in
tremendous response-time degradation during save and restore operations.

A used Model D 5360, with 7 MB of memory and 400 MB of DASD,
costs about $8,000 - excluding the cost of licensing SSP. If you currently
have a 5362, you can legally move your current licensed copy of SSP to the
5360 (as long as you stop using it on the 5362). You need 5360-specific
microcode, and it should be provided by the dealer as part of the machine's
maintenance package. However, the 5363 and 5364 versions of SSP are, by
design, incompatible with the 5360; you must purchase a second SSP license
for your new 5360, adding approximately $5,400 to the system cost.

The computing capabilities of the 5360 Model D over the smaller
models are substantial - see Chapter 4 for maximum model configurations ­
and represent a good solution for 5362 shops hitting the resource ceiling but
still wanting to stay with the S/36. For 5363/64 shops, the 5360 upgrade option
is not quite as attractive because of extra SSP licenSing fees. Still, for $15,000,
the 5360 Model D offers lots of computing horsepower and few migration
headaches; it could be a good solution for maxed-out 5363/64 shops needing
more computer power, but not yet ready for the AS/400 or RS/60oo.

One final note if you consider upgrading to a 5360 from one of the
smaller models: Don't underestimate the hidden costs of providing a place to
put the 5360. The 5360 is a big, hot, noisy beast requiring 220V power (in the
U.S.). It uses as much as eight times the power of any smaller model, and
requires lots of elbow room. It performs most reliably in an air-conditioned
room. Most shops won't be able to simply roll in a 5360 and plug it in where
the 5362 or 5363 used to sit. Carefully consider how much you will spend to

94 Desktop Guide to the 8136

prepare a site for your 5360 and to pay ongoing higher electrical power costs.

ADedicated Development Machine
If you actively develop and maintain the software in your shop, consider
adding a second S/36 as a dedicated development machine. When a program­
mer (or worse, programmers) perform CPU-intensive source code editing,
compiling, and testing aU day long ("Just one more compile and surely this
&1\$0/0##*& program will work correctly!"), the S/36 runs as though molasses
had been poured into the diskette slot. With a dedicated development
machine, your programmers enjoy snappy response time throughout the edit­
compile-test cycle and your users get back those stolen CPU disk, memory,
and processor cycles.

A used 5362, the most convenient upgrade option because it uses an
8-inch diskette for data exchange with the 5360, costs approximately $1,450
with 2 MB of memory and 120 MB of disk space. However, you must also
license a second copy of SSP from IBM at a cost of $5,400 (which includes the
SSP and the necessary programming utilities). This solution is costly; but if
your programmers constantly bring your production S/36 to its knees, it cer­
tainly is an option to consider.

SSP licensing costs are much lower on the 5363, and the overall pack­
age is much more compact than a 5362. However, the lack of an 8-inch
diskette drive rules out diskette data transfers between machines. A 5363, with
2 MB of memory and 120 MB of disk space, with SSP and utilities, costs about
$4,000 used. Except for the data-transfer wrinkle, the 5363 makes a good dedi­
cated developer's box. To solve the data-transfer problem, consider using a car­
tridge tape drive, PC support to transfer mes from machine to machine via PC
diskette, or communications features such as Distributed Data Management
(DDM) (see Section N for more on DDM), or the me transfer subroutines (FTS)
included as a free component of the S/36's base communications feature.

An optional, but extremely handy, software add-on to consider in a
two-machine environment is mM's Display Station Pass Through (DSP1) feature.
DSPT lets you sign on to a remote system using the 5250 terminals attached to
the local system. With DSPT, your programmers can sign on to the production
machine without leaving their development machine terminals. And because
DSPT is bidirectional, you also could sign on to the development machine from
any production system terminal (provided you have the proper security clear­
ances). Programmers can use DSPT to conveniently test production installations,
or to access software development tools from the production system.

If you plan to use communications, keep in mind that you must have
compatible communications interfaces ex.21, X.25, EIA, DDSA, or V.35) on
both CPUs (see Chapter 4, "S/36 Models and Configurations," for details on
communications hardware), and that the kind of connection you set up may

Chapter 6 Other Configuration Considerations 95

limit line speed. For example, using the EIA interface and a synchronous EIA
modem eliminator (about $200 new) to directly connect two systems without
phone lines limits line speed to 9,600 bps on the 5362 and 19,200 bps on the
5363 and AS/Entry (9402 Y10). If both S/36s have V.35 interface, however,
you can use a synchronous V.35 modem eliminator (about $400 new) to run
at speeds as high as 64,000 bps. Although the V.35 modem eliminator costs
twice as much as the EIA version, you get four times the performance.

Here is another thought for prOViding your programmers a dedicated
programming box (this might smack as heresy to some S/36 users): Buy or
lease your S/36 programmers a small, used AS/400. A model E02, with 8 MB
of memory, 1 GB of disk space, a tape drive, a workstation controller, OS/400
and utilities, can be had for less than $12,000. Add a couple of used terminals
and you have a terrific two-programmer S/36 development box. If you suspect
that you will migrate to the AS/400 in the next year or two, providing your
programmers now with their own development AS/400 might be a wise
investment. Your S/36 will run faster minus program development and, per­
haps more importantly, your programmers can start getting their feet wet with
the AS/400. They can use the AS/400's S/36 environment for S/36 develop­
ment and, in their spare time (what little programmers have - but they
always dig some up with a new computer around), they can start dabbling
with the AS/400 and its myriad array of bells and whistles. When migration
time finally arrives, you'll have a staff of programmers to whom the AS/400 is
no longer a stranger.

The 5364, the smallest S/36, could also be considered a programmer's
box; but again, without an B-inch diskette, it offers cumbersome data transfer
options. The 5364, which requires a PC as a console and to provide a soft
control panel (an old PC or XT clone works just fme), is available at give-away
prices from third-party vendors. You'll probably be able to find a 5364 in the
$200 to $500 range (like the 5363, the SSP and utilities are bundled with the
5364). Add the cost of an old PC or XT (which you can probably get just for
the asking in the right places), and you'll have a S/36 for less than $1,000. It
won't be much of one, but it will be enough to use for minor program mainte­
nance. Keep in mind, however, the extremely slow performance of this
machine - it is the slowest S/36 model, bar none. You can't, for example,
effectively perform program development chores while Simultaneously trans­
ferring files over a communications line.

Communications Upgrade
S/36 communications can be a notorious resource hog. If you use communica­
tions, don't overlook the burden it imposes on S/36 performance. The Single­
Line Communications Adapter (SLCA) uses the S/36's CSP to perform such
data-link chores as polling and protocol management; the communications

96 Desktop Guide to the 8/36

Figure 6.1
Recommended Communications Adapters

Deciding factors:

I. How you use communications
A. Occasional dial·up, 1or 2 lines
B. 1or 2lines connected all day
C. More than 2lines connected all day

II. The level of transaction activity
1. Occasional inquiry and/or light update
2. Regular inquiry and/or update
3. Intensive inquiry and/or update

Recommendations:
For Aor B1, a8LCA is adequate
For all other possible uses and levels of activity, choose either aMLCA or ELCA

processing required by the CSP can add up to 50 percent to its processing
load (reflected in CSP utilization on an SMF report). A S/36 already burdened
with application programs might be pushed into uselessness by the extra com­
munications processing overhead.

The Multi-Line Communications Adapter (MLCA) and the Eight-Line
Communications Adapter (ELCA) each contain a dedicated communications
processor that relieves the CSP of low-level data-link overhead. Installing an
MLCA or ELCA is actually like installing a dedicated CSP for communications
activity. Although the names of these two adapters imply that you must install
multiple lines, you actually can run either with just one line. In fact, most S/36
models can support higher data rates when using just one line at a time. Dur­
ing communications sessions with an MLCA or an ELCA, the S/36's primary
CSP is needed only when received data is moved into program buffers. Figure
6.1 shows recommended adapters for specific communications activity. Third­
party communications adapters are readily available. Expect to pay approxi­
mately $850 to $1,000 for an MLCA and $1,500 to $2,000 for the ELCA from
third-party vendors.

Another consideration when upgrading communications facilities is the
interface - the electrical connection to your communications network. The
S/36 supports five different interfaces - EWCCITI, DDSA, X.21, X.25 and Y.35
- and three different kinds of networks - nonswitched, switched, and packet.
For any two interconnected systems, the interfaces must match. Each interface
has its own type of cabling, and is designed for particular kinds of networks.

Chapter 6 Other Configuration Considerations 97

Following are the setvices provided by each kind of network:
Nonswitched network: A direct, continuous connection between two

or more machines. A nonswitched network can be as simple as two machines
in the same room connected via modem eliminator, or as complex as several
machines across the country connected by a single leased telephone line. The
first configuration is called point-to-point, and the second is called multipoint
or multidrop. The line speed supported by a given nonswitched network
depends on the noise characteristics. A pair of 25-foot shielded cables with a
modem eliminator has very good noise inununity, and thus acconunodates the
highest line speeds. A short-distance, leased-line connection (e.g., between
two offices in the same telephone exchange), using short-haul modems, has
some noise, but can still usually support speeds as high as 38,400 bps. A long­
distance leased line (e.g., between two cities), using long-haul, leased-line
modems, has considerable noise and won't run faster than 19,200 bps without
special routing agreements between all the telephone companies involved.
Leased connections are also available from Digital Data Service (DDS)
proViders; these connect systems directly to a separate digital network rather
than through modems over telephone wires. Finally, a custom analog service
available from some telephone companies, called 60-108 kHz group band cir­
cuits, supports speeds as high as 48,000 bps.

Switched network: Also called dial-up, switched networks use the
Public Switched Telephone Network (PSTN) - telephone companies' switch­
ing system - to connect two computers. Switched networks offer only point­
to-point links: One system dials the other to establish a connection. The tele­
phone switching system determines the routing for the connection, so the
quality of the connection can vary considerably. Switched connections usually
only support speeds of 9,600 bps. Note that some modems now claim higher
speeds, but they usually accomplish this by compressing data in the sending
modem, transmitting it at 9,600 bps, and decompressing it again in the receiv­
ing modem. Depending on the nature of your data, you may not see much
actual increase in throughput beyond 9,600 bps. Compression algorithms in
such modems typically reduce data volume by 50 percent for plain ASCII text;
the reduction rate is less for binary data.

Packet-switched network: A packet-switched network is actually a
computer system (the packet switch) that receives data in variable-sized blocks
called packets, with each block containing the address of a destination system.
The packet switch sorts packets and routes them to their proper destination
system, which also must be connected to a packet switch in the same net­
work. Conunercial packet-switching networks such as Telenet and Tymnet are
called Public Switched Data Networks (PSDNs). The PSDN lets you use one
physical communication line to communicate with many remote locations
simultaneously, by establishing separate virtual circuits to each partner with

98 Desktop Guide to the SI36

which you wish to communicate. You can connect to the packet-switching
system itself via dial-up connection or leased line, but you must have a packet
assembler/disassembler (PAD), either onboard the S/36 as X.25 software, or
outboard in an external X.25 controller.

Each interface provides different kinds of network options:
EIA!cnT: Also called RS-232, the electrical connection is a shielded

25-conductor cable using DB-25 connectors at each end. This is the most com­
mon kind of interface, connecting directly to most modems and modem elimi­
nators. For the S/36, it also has the lowest line speed ceilings for most systems.
With EWCCITT, you can connect to leased and switched networks, but not
packet-switched networks without special X.25 external controllers. lhe EIA
interface also supports asynchronous and Binary Synchronous (BSC) connec­
tions. Asynchlbisynch software support is built into SSP's free base communi­
cations feature.

DDSA: The Digital Data Service Adapter connects to commercial digi­
tal data services (DDS). lhe electrical connection is by special cable to a DDS­
provided Digital Service Unit (DSU). lhe commercial DDS provider guarantees
a certain line speed, and most support the highest available line speeds for
any S/36 (64,000 bps).

X.21: Electrically identical to EIA, X.2I provides for higher line speeds
when using S/36 MLCA or SLCA 09,200 vs. 9,600).

X.25: Electrically identical to EIA, X.25 also performs packed assem­
bly/disassembly (PAD) services for packet-switched networks. lhe S/36 sup­
ports an integrated PAD in software with its X.25 communications feature, or
you can use an external X.25 controller.

V.35: lhe electrical interface is a special 34-pin shielded cable and con­
nectors. Used on special wideband leased telephone lines (called 60-108 kHz
group band circuits), V.35 supports line speeds as high as 48,000 bps. With
data compression synchronous modems (or a V.35 modem eliminator for local
connections) you can achieve the highest S/36 data rates of 64,000 bps on a
single line.

When chOOSing the communications adapter, interface, and network
for your system, keep in mind the need to maintain compatibility at each node
in your network. To this end, you're better off using equipment from a Single
manufacturer. For example, ensuring that the modems at each node are of the
same brand and model eliminates one source of incompatibility that could sti­
fle your efforts to get a network up and running.

Distributed Data Management
If your disk storage requirements go far beyond what a single S/36 can sup­
port, you might consider storing the data on a remote S/36, or even on a remote
AS/400, and accessing the data at the record level using IBM's Distributed Data

Chapter 6 Other Configuration Considerations 99

Management (DDM) facility. With DDM, you could double the disk capacity of
your S/36 installation by simply adding another S/36 as a DDM server; or you
can obtain practically unlimited capacity by using an AS/400 or PC as the
DDM server. Everything costs something, however, and DDM is no exception.
The price you pay for this expansion path is in performance: Accessing data
stored remotely is slower than accessing locally stored data. How much slower
depends on the speed of the communication connection between your S/36
and the server machine. If you primarily need to keep massive quantities of
historical data online, DDM-based files offer much faster access than you can
get restoring tape or diskette archives. DDM also has some limitations on the
operations you can perform on remote meso You can almost do anything with
a DDM-based file that you can with a local flIe. You have to decide if the
undoable makes DDM unworkable for your installation. Because DDM runs
under APPC (advanced program-to-program communications) and APPN
(advanced program-to-program networking), it offers record-level access to
multiple systems Simultaneously, if your network supports it. Just to expand
local disk capacity, however, you need only a simple point-to-point connec­
tion.

DDM supports the following functions:

• Record-level access by RPG, COBOL, BASIC, FORTRAN and Assembly
Language programs

• DFU, WSU, #GSORT access to data in remote files
• MSRJE for S/370 connectivity
• BLDFILE and BLDINDEX on the remote system
• DELETE and RENAME on the remote system
• CATALOG to list specific remote mes
• USTDATA and USTFILE to display contents of remote flIes
• SAVE and RESTORE of remote mes on local save/restore devices
• COBOL runtime sorting (SORT statement) of remote files

All of the forgoing capabilities apply only to data files. DDM doesn't support
the following kinds of access:

• Access to libraries or folders on the remote system
• Work files for #GSORT and other utilities (e.g., RPGC)
• Date-differentiated flIes
• Query /36 access to remote files
• DisplayWrite/36 access to remote files or documents
• Streaming tape as a save/restore device
• SAVE ALL or RESTORE ALL for the remote system

Figure 6.2 presents an overview of how DDM works in a local disk­
expansion scena110. In DDM terminology, the system making DDM requests is

--

100 Desktop Guide to the S136

Figure 6.2
Overview of DDM Operations

Source
System/36

User r:: ::

•
Program, VTOC

Network Resource Directory

Local RemoteDDM ~ LocationLabel LabelNRD~
CUST DDMSERV BOCUST• ICF

,
APPC

164 KbpsV.35 modem eliminatorI
Target

Ir DDMSERV Systelnl36

h -..,

ICF -­
APPC VTOC

"­

Data File•DDM

,
I... •

"- -­

called the source machine, and the machine containing remotely stored data is
the target machine. The example shows the two machines connected via a
V.35 64,000 bps nonswitched local network (modem eliminator). A special me

Chapter 6 Other Configuration Considerations 101

on the source system, called the Network Resource Directory (NRD), contains
a list of files stored on the target system. You use the EDI1NRD procedure to
maintain this file, which lists the name of each file as it is used on the source
system, the name of the target system that contains the actual data, and the
name of the file as it is stored on the target system. Whenever a program or
SSP utility tries to access a file that can't be found on the source system, DDM
looks for an entry for the file in the NRD. If one is found, DDM establishes
and maintains a connection to the target system, passing all data requests to
the target system to be satisfied. Except for speed, access to data on the target
system is completely transparent to programs on the source system. No
changes are necessary to OCL procedures or application source code.

As mentioned earlier, file access via DDM is slower than via local disk
data management. As a point of reference, consider that native, unblocked,
random indexed me reads on the S/36 occur at a rate of about 12 per second.
With a 64,000 bps connection, the fastest DDM rate is two per second. You
can improve this somewhat by using blocking, but DDM only performs block­
ing for unshared or read-only meso For shared or update-capable mes, DDM
transfers one record at a time across the network. You might also improve
performance somewhat by using a Token-Ring connection. However, keep in
mind that only a small fraction of the apparent Token-Ring bandwidth is effec­
tively available for transaction throughput. Rather than the 250-fold speed
improvement you might expect on a 16 Mbps (megabit per second) Token­
Ring over a 64,000 bps V.35 connection, you'll probably see more like a 10­
fold improvement. Significantly faster, to be sure, but perhaps not enough
faster to justify the extra hardware costs in your situation.

Here are the general steps to follow for setting up DDM:

• First, determine the kind of communication connection you'll use.
DDM works with everything from a local non-switched network using
a synchronous modem eliminator running at 9,600 bps to a cross­
country V.35 network using wideband analog modems. You can also
run DDM across a Token-Ring network. As with everything else in life,
faster costs more. You might want to start out with an inexpensive EIA
connection running at 9,600 or 19,200 bps and see if that provides
adequate performance. You can always buy more equipment later.

• Second, you'll need DDM software installed on your local S/36 and
whatever remote machine you choose as a DDM server. For the 5360
and 5362, order IBM program number 5727-SS1; for the 5363 and
5364, program number 5727-SS6. IBM's 5136Distributed Data Man­
agement Guide (publication number SC21-S01l) provides detailed
information about setting up and using DDM. You'll also need a com­
panion manual for whatever system is acting as DDM server (for the

102 Desktop Guide to the 8/36

Performance Tip

To get the best DOli
performance: Do not

run batch applications
against DOli files
concurrently wHh

Interactive Jobs.
Configure your APPC
subsystem under an
APPN network, even

for polnt-to-polnt,
because APPN uses a

faster protocol­
exchange algorithm.

Use DBLOCK for
rando~ccess,~

only files where some
requests are also

sequential, but do not
block larger than 4K,

and do not block purely
random retrievals. Use
JOB-YES to minimize

remote VTOC requests.
Ensure both systems

are at SSP Release 5.0
or higher, as earlier

releases use aslower
DOli protocol. Avoid
heavy local usage on
the target system (the
DDM server). Because

DDM has priority
permanently set to

LOW, local Jobs will
overwhelm DOli

support. Use REORG­
YES to Improve remote

build time for
COPYDATA.

AS/400, Communications: Dtstrlbuted Services Network Administrators
Guide, SC21-9588; for the PC, Using Dtstrlbuted Data Managementfor
the IBM Personal Computer, SC21-%43). The IBM S/38 and S/370 also
support DDM connections with the S/36, but neither is a viable disk
expansion alternative.

• Third, configure an APPC PEER subsystem under ICF. IBM's ICF: Base
Subsystems REiferenceCpublication #SC21-9530) explains this straight­
forward process.

• Fourth, after installing the equipment necessary for your chosen net­
work connection, enable the PEER subsystem to establish a live con­
nection between the two systems.

• Select the ftles you want to reside on the target system and create
entries for them in the NRD using IBM's EDITNRD procedure.

DDM is now ready to run. You can move ftles to the target system
using IBM's COPYDATA procedure. As long as the copy-to ftlename is listed as
a local name in the NRD, DDM will automatically create the me on the target
system and move the data records there. For alternate indices, you must build
the indexes rather than copy them. Just run the BLDINDEX command on the
source system, specifying the parent me resident on the target system and an
alternate index ftle name that exists in the NRD. DDM automatically builds the
index on the remote system without transferring any additional data.

Maintenance
In addition to using S/36 third-party vendors for hardware upgrades, don't over­
look using them to also provide S/36 hardware maintenance. There is an ample
supply of S/36 parts available, and many third-party S/36 maintenance providers
offer good value for your maintenance dollar. The money you save on S/36
maintenance can be used to help fInance memory and DASD upgrades.

Generally, two types of S/36 maintenance agreements are available.
The most popular maintenance agreement type is a monthly maintenance con­
tract under which you pay a fIxed monthly fee, regardless of service and parts
needed. The other is a time-and-materials maintenance contract under which
you pay a varying fee for parts and labor only when problems occur. With the
declining street value of used S/36s, it might be worthwhile to keep a spare
S/36 in the closet and maintain your primary S/36 with a parts-and-Iabor main­
tenance contract. Maintenance of this sort is generally not for faint-of-heart,
mission-critical shops.

Because of the potential high cost of S/36 replacement parts, most
S/36 users shy away from a time-and-materials-type contract and opt for the
monthly maintenance agreement. For most shops, this type of agreement

Chapter 6 Other Configuration Considerations 103

offers the best protection. Monthly maintenance contracts are available for
protection during normal business hours; or, by paying a little extra, around­
the-clock coverage is also available.

IBM and third-party providers offer maintenance contracts of both
types. However, both often price time-and-materials contracts very high to
make the monthly contracts more appealing. Realistically, your maintenance
contract choices are generally reduced to using IBM or third-party providers for
monthly maintenance contracts. If you've been a true-blue diehard in the past,
turning your nose up at non-IBM parts and service, think again. Many third­
party maintenance providers are actually more attuned to their customers than
IBM is, and it's surprising how many ex-IBMers are employed by third-party
maintenance providers. Because many of these vendors make their livings sole­
ly, or at least primarily, by proViding hardware maintenance, they have to be
very good at it. Third-party maintenance is almost always less than IBM mainte­
nance, with third-party contracts offering anywhere from a 20 percent to
50 percent savings over IBM maintenance prices. The abundance of available
S/36 parts, third-party maintenance vendors' willingness to "bend over back­
wards" for your business, and IBM's increasing withdrawal from the S/36 all
add up to make third-party maintenance a workable and practical option.

Section III

External Program Calls

"Everything new meets with resistance. "
-Russian Proverb

I f there is a silver bullet fO.r S/36 application programming, it is external
program calls CEPC). With EPC you can achieve subsecond response
time in your existing applications, circumvent the 64 K program size
barrier, and bring the powers of modular design and coding to bear on
application programming.

Unfortunately, although the S/36 operating system always has had
built-in support for EPC, the capability wasn't available for RPG or COBOL
application programmers until well into the S/36's lifetime. An IBM COBOL
PRPQ (custom programming feature) and third-party RPG compiler products
were the fIrst tools to make EPCs available, and thousands of sites took advan­
tage of these tools. Now IBM offers a limited form of RPG EPC for free to all
SSP licensees as part of the S/36 Value Added Software Package (VASP). The
result is that you're in the enviable position of having several EPC implementa­
tions from which to choose. Whatever your fInal decision, how you proceed
with EPC will have an impact on your short-term ability to take advantage of
the feature and your long-term ability to migrate to follow-on platforms.

Chapter 7 in this section tells you how EPC works and how to use it,
Chapter 8 gives you the rundown on the various EPC products available, and
Chapter 9 presents a tutorial on modular application design. With this materi­
al you can load your programming gun and shoot down old S/36 perfor­
mance limitations.

Chapter 7 How ExtemaI Program cans Work 107

Chapter 7

How External Program Calls Work
Suppose you had an opportunity to give your users subsecond response time
when they switch between applications. Suppose you could add new capabili­
ties to your applications with ease, chopping through your programming
backlog in half the time you're taking now. And suppose you could throw off
such S/36 restrictions as the 64 K region size and the 15 disk-ftle limit. Now
suppose you could do all these things with no additional hardware resource~.

If you would jump at such a chance, you'll want to jump right into an
oft-ignored S/36 feature: the external program call CEPC). EPC lets you invoke
other programs from within your application without using OCL and provides
program-to-program communications without using the IDA. Called programs
can, in tum, call other programs without limit. And a called program can
return to its caller without going to end-of-job, so subsequent calls dOll't
require the overhead of program initiation.

This amazing array of capabilities lets you write efficient, well­
structured, modular programs that are easier to maintain and enhance than
huge monolithic programs. Modular programming also clarifies application
design - "hiding" the way your program implements a solution (i.e., what the
textbooks call "process abstraction," or deferring coding details) to let you
focus your attention on the program's logical structure. And modular programs
perform better, too, because EPC circumvents the 64 K region limitation and
RPG's maximum of 15 disk fIles - even while adding more function. Learning
how to get EPC capability, how to code EPC statements in RPG, and how to
incorporate EPC features in your existing applications will get you on the path
to improved design, faster development, and better performance.

IBM's Little Secret
EPC capabilities have been built into the SSP from the beginning. In fact, IBM
uses the feature in some of its own program products, such as SDA, Display­
Write, Query, and ODF. About five years ago, third-party programmers discov­
ered IBM's little secret and started selling products that made EPC accessible to
RPG programs. Two third-party vendors - Amalgamated Software of North
America and BPS Information Systems - provide RPG interfaces to EPC by
harnessing this S/36 under-the-covers capability, not by employing any unreli­
able computing voodoo. In the fall of 1990, IBM fmally released its own EPC
add-on to RPG, which now is built into SSP release 6.0.

Although each vendor has implemented a somewhat different set of

108 Desktop Guide to the SI36

features and quirks (see Chapter 8, "A Comparison of EPC Vendor Offerings"),
all three products follow the basic RPG EPC syntax and operation rules IBM
established for the S/38 and continued on the AS/400. This means your EPC
programs are not only compatible with other S/36 EPC products, but also
upwardly compatible with the AS/400, which protects your programming
investment.

Third-party EPC products do have one drawback: They cost money.
Adding non-IBM EPC capability to your S/36 will cost you anywhere from $950
to $2,250; however, third-party EPCs provide a number of improvements over
IBM's newer, but weaker, implementation. Read on and you'll fmd that using
even extra-cost third-party EPCs quickly provides a return on your investment.

128 MB of Memory, Virtuallyl
Using EPCs requires memory. Fortunately, like the S/38 and the AS/400, the
S/36 is a virtual memory (VM) machine. That is, when a task requires more
real memory than is currently available, SSP pages less-recently-used memory
"pages" to disk to free up the required real memory (see Chapter 2, "S/36
Memory Management," for details about how virtual memory operates). The
Task Work Area (lWA), also called the #SYSTASK me, is where paged-out
memory is held until needed again. The SSP uses the lWA as a "backing
store," quickly shuffling data between real and virtual memory as needed. The
size of the lWA thus determines the maximum amount of VM.

S/36 real memory capacities range from a maximum of 2 MB on
5363s to a maximum of 8 MB on the 5360 model D (see Chapter 4, "S/36
Models and Configurations," for memory limits of various models). Logically,
however, the virtual memory ceiling on the s/36 is limited only by the maxi­
mum size of the lWA - which can be as much as 128 MB. This means that
you can have up to 128 MB of programs running at one time on a S/36 with
one megabyte or less real memory!

Technical Note

The maximum size you can configure for the TWA is 6,553 blocks, which yields about
16 MB of virtual memory. But this is only the "initial" size of the TWA. The first time the
TWA fills up (due to program requests for more virtual memory), SSP automatically extends
it by 400 blocks; the second time it fills, SSP extends the TWA again, but this time by 800
blocks; the third time, by 1600 blocks. The process repeats, with each extension doubling
in size up to 6,553 blocks. As many as 16 extensions can occur; depending on available
disk space, SSP can expand the TWA to amaximum of about 53,000 blocks (128 MB).

Chapter 7 How External Program Calls Work 109

Although the S/36 will let you use a great deal of VM with only a
small amount of working real memory, performance may suffer. Increasing the
quantity of real memory lets the S/36 keep more programs "paged in," reduc­
ing swapping (disk activity) and thus improving performance. While a pro­
gram CALL requiring VM paging is fast, it isn't as fast as a real-memory CALL.
For example, a call to a program already resident in real memory can take as
little as 4 milliseconds (depending on whose EPC product you're using), while
the same call to a program paged out to the 1WA would take at least 35 milli­
seconds. Even with VM paging, EPCs are fast - but with enough real memo­
ry, they are very fast! And hey, a millisecond here, a millisecond there, pretty
soon you're talking real time! So to get the most out of EPC, consider adding
as much real memory as your machine supports (see Chapter 5, "The Impor­
tance of Memory and Disk Space").

Primitive Modules
Before the days of EPC availability on the s/36, few techniques were available
to write efficient, modular programs. We attacked most large application
requirements with large, monolithic programs - maxed-out, 64 K, I5-file, do­
everything, interactive monsters. The kind that took half a box of green bar to
print and always had something wrong somewhere. A monster program like
this generally performed fast (at least it started out fast) and was easy to write
(at least it started out easy). But its logic was hard to comprehend, and it was
difficult to maintain, slow to initiate, and nearly impossible to enhance without
introducing bugs in unrelated parts of the program.

About the time we were all realizing the hopelessness of these mono­
lithic slabs of code, a few enterprising programmers introduced us to the tech­
nique of emulating EPCs by chaining programs together via the IDA. The
problem with this technique is that it is slow. Each emulated call requires the
complete initiation of the program - a slowwww process. It's amazing how
long two seconds can seem in an interactive environment. To combat the slow
initiation time between chained programs, a better technique was introduced
that chained single-user MRT-NEPs (Multiple Requester Terminal-Never Ending
Programs). This technique eliminates job-initiation time when chaining from
program to program. The technique, however, has serious limitations: It
doesn't provide communications between programs with formal parameters; it
requires lots of tricky, less-than-intuitive OCL and a little hoop-jumping to end
the programs; and (because MRT-NEPs are executed in a Single-threaded fash­
ion) it can cause performance bottlenecks.

Exploiting the /COPY feature of RPG's autoreport facility is one other
way monolithic RPG programs can be broken into separate modules. This
method is faster than the LDA program-chaining technique, but it just hides
the fact that you are writing a monolithic program. None of the included mod-

Performance Tip

Make sure the SSP
has as much VII
backing store (TWA)
as possible. Use
CNFIGSSP to set your
TWA to 6,553 blocks.
Even Hyou aren't
using all of the TWA
space, the extra room
helps reduce TWA
fragmentallon, which
can slow performance.
this small trade-off In
disk space will pay off
handsomely as you
learn to make EPC
work for you.

110 Desktop Guide to the SI36

ules has local variables or indicators, and communications between these
modules is the same as it is with any nonnal RPG subroutine - through glob­
al variables known throughout the program. The ICOPY method works great
for small, simple tasks; but for any large task or function, it offers none of the
advantages of real EPCs.

With the EPC design alternative, multiple programs exist in a single
task. This approach offers quick program-transfer time; almost unlimited for­
mal parameter passing; private fields, indicators, and I/O areas for each pro­
gram; a way to circumvent the 64 K program size and me limits per program;
and a way to write code upwardly compatible with the S/38 and the AS/400.

EPCs In Action
EPC uses some special terminology to describe the relationships between exe­
cuting modules (programs); understanding this terminology can help you see
the power of EPCs as modular programming tools.

Nonnally, a S/36 RPG task consists of just one RPG program. With
EPCs, however, one task can consist of two, three, or 100 RPG programs. The
number of programs is limited only by the available VM. Each program in a
task has its own 64 K region. One program, called the main program, is the
controlling program for the entire task; it's the program started by the
I I LOAD OCL statement. The main program can call, or invoke, other pro­
grams, called subprograms. Subprograms can also call other subprograms
(again, with no specific limit on the depth of calls), but the main program is
special. When a subprogram goes to end-of-job (EO}), it does not affect other
subprograms; when the main program goes to EO], all subprograms are auto­
matically terminated. Figure 7.1a shows a task with three active programs
attached (each with its own 64 K region and a private copy of variables, indi­
cators, me buffers, record positions, and so forth).

Both the main program and subprograms have their own private data:
variables, indicators, open mes, record positions, and I/O buffers. No program
can directly change another program's private data. Thus setting on indicator
11 in one program has no effect on indicator 11 in any other program in the
task. Similarly, reading a particular record in a me doesn't change the current
record position or buffer contents for any other program using the same me.
This concept of private data - also called information biding - is central to
modular deSign, because it lets you ensure that modules only interact through
well-defined interfaces. With RPG EPC, modules interface by exchanging
parameters. But to understand how the parameter interface works, you must
flfSt understand the program invocation process.

Figure 7.1b shows a typical EPC scenario with a main program,
PROGA, and two subprograms, PROGB and PROGC. Initially (Step 1), main
program PROGA runs by itself, and is considered the currently executing

ChIpter 7 How External Program Calls Work 111

Figure 7.18
Job with Three Active Programs

Flgure7.1b
EPC Program Invocation

JobWS163844---------------,

Step 1

CALL
Step 2

Step 3

Step 4

RETRN
StepS

program. Then PROGA CALLs (invokes) subprogram PROGB (Step 2), caus­
ing SSP to activate PROGB by allocating memory, loading the program into
that memory, opening mes, and initializing variables. PROGB then becomes
the currently executing program, while PROGA is active-but-suspended. The
same sequence repeats when PROGB invokes PROGC via a CALL (Step 3):
PROGB becomes active-but-suspended, and PROGC is activated and
becomes the currently executing program. At this point, two programs are

http:Flgure7.1b

112 Desktop Guide to the S/36

invoked (PROGB and PROGC) and three programs are active (PROGA,
PROGB, and PROGC); but only one program is currently executing. In. any
task, only one program at a time is ever the currently executing program ­
all others are active-but-suspended.

Next, PROGC finishes its work and RETRNs to PROGB (Step 4);
PROGB resumes execution with the statement following the CALL. At this
point, PROGC is no longer invoked, and PROGB has regained its status as
currently executing program. However, PROGC doesn't go to end of job and
disappear; instead, it becomes uninvoked and active but suspended ­
parked in VM awaiting another call. All of its private data remains intact,
usable on the next call.

Finally, PROGB RETRNs to PROGA (Step 5), leaving PROGB unin­
voked and active-but-suspended. In this last state of affairs, PROGA is the cur­
rently executing program, while subprograms PROGB and PROGC are waiting
for another call.

Technical Note

One aspect of S/36 EPCs that isn't obvious from the example is how massive use of VM
impacts interactive application performance. It turns out that having a large number of
active subprograms doesn't necessarily slow response time. In fact, designed correctly,
modular applications have significantly better response time than do applications put
together with other techniques. That's because only one program in any given task is the
currently executing program. Programs that are active-but-suspended eventually get
paged out of real memory, where the only resource they consume is TWA space. Paging
such programs back into real memory when required takes only a few milliseconds - an
imperceptible amount of time for interactive modules.

You can make some interesting observations about the three pro­
grams at this point. First, subsequent calls to either PROGB or PROGC will be
faster than the initial call because the programs are already activated. Activation
of a subprogram takes from several seconds to a minute or more, while calling
an activated program takes only a few milliseconds. Second, since neither
PROGB or PROGC are currently invoked, they could be called later in a differ­
ent order (e.g. PROGA calls PROGC which calls PROGB). As long as an active
subprogram is uninvoked, any other program in the task can call it. Third,
because each active subprogram preserves its private data across invocations,
you can use subprograms as storage areas, expanding the amount of memory
available to a task. You could, for example, use a subprogram to provide
access to a large array, as long as the entire array fit inside the subprogram's

Chapter 7 How External Program Calls Work 113

64 K region. Keep these three observations in mind - they'll come in handy
later when you begin to decompose a problem for implementation as a set of
modular programs (see Chapter 9, "Implementing Modular RPG Applications,"
for details on modular decomposition).

The Program Invocation Stack
Before leaving the world of program invocations, one more concept needs
investigation. When programs begin calling each other willy-nilly, the SSP
needs some mechanism to keep track of which programs called which other
programs and in what order. That mechanism is the program invocation stack
(Figure 7.1c). As an analogy, think of how a cafeteria's spring-loaded stack of
plates works, and you have a good picture of the program invocation stack's
behavior. l11e main program is like a single plate on the spring-loaded stacker.
Calling a subprogram is like putting a second plate on the stack - it "pushes
down" the main-program's plate and the subprogram plate becomes the new
top of the stack. When a subprogram returns to its caller, its plate comes off
the stack. All the plates in the stack, then, represent invoked programs, and
the top plate of the stack is the currently executing program. Understanding
the program invocation stack is useful during debugging, because the set of
currently invoked programs gives you useful information about how your
application arrived at its current state. It also helps you keep in mind a limita­
tion of EPCs: No program can call any currently invoked program. In the plate
analogy, no program can call a program whose plate is already on the stack.
Such calls are called recursive because they can result in the same program
being called over and over. While recursive calls are useful in some esoteric
Situations, they aren't allowed with S/36 or AS/400 EPCs.

Figure 7.1c

Program Invocation Stack

Prog A

114 Desktop Guide to the SI36

SSP Intelligently
IIIIIIIgtI VII to

minimize paging fer
Irtquenlly ClIIId

programa. When many
progrIIIII competI for

rill memory, SSP
kelps I "popullrlly

count" for tICh
program and,..

out programs WIth the
lowest frequency 01
..... ThIs kelps the

1IIOII.frequentIy CIIIId
programs In rill

memory. reducing VII
paging (dilt ICCIIIIS)
and keeping response
limes Ihort. Programt
that don't InIIrICt with
the _. but which III

CIIIed many tImII
(perhIpt In I loop) will

Illy In 1IIIlIICII'Y.
keeping progI'IIIl

invocation tImI to I
minimum. ThIs ...

UIIng moduIet to
tncIpIUIIte such

Iuks • tIbIHookup
and flit ItO pnICtIcaI.

Note also that each task has its own invocation stack - the set of invoked
and active programs is private to each task, unlike MRT-NEPS.

TrchnlCill tJote

On the 8136, program transfers from real memory can take anywhere from 4to 76 milli­
seconds, depending on whose EPC implementation you use. (On the S/38, program trans­
fers from real memory take less than 2milHseconds and are even faster on the ASJ400.)
To put those transfer times in perspective, one disk access on the 8/36 takes 35 millisec­
onds. Even though S/36 EPCs happen relatively quickly, evaluate carefully those tasks you
defer to subprograms. Avoid repeated calls to programs that perform trivial tasks.

Coding EPCs: APrimer
With a good grounding in program invocation theory, you're ready to learn
about the parameter interface and EPC coding. RPG has five new opcodes
supporting EPC:

• CAll: calls a specified program

• PARM: specifies a parameter for CAll or pusr
• PUST: specifies the entry point of a called program

• RETRN: returns to the calling program

• FREE: deactivates an active but suspended program

The two program fragments in Figure 7.2 demonstrate the use of
these opcodes and also help illustrate the basic steps of EPC coding. First, you
specify the name of the subprogram to be caned (PROGB in the example)
with either a quoted literal or a field name. The named field, if specified, must
contain the subprogram's name, left-justified, optionally followed by a period
and the library name. For example,

MOVEL*BLANKS PRGLIB 16

MOVEL'PROGB.MY'PRGLIB

MOVE 'LIB' PRGLIB

CALL PRGLIB

calls PROGB in library MYIlB (field PRGUB contains 'PROGB.MYIlB'). The
library name defaults to the job step's current library (the library at the time of
II LOAD) if you omit it. To further enhance programming flexibility, EPCs are
late blndtng, the called program doesn't have to exist until runtime. Late bind­
ing lets you detennine which program to call on the fly - a powerful feature.

Chapter 7 How External Program CaJIs Wor1t 115

figure 7.2
Program Fragments with EPC Opcodes

• ... 1 2 3 4 5 6

C* Program A (PRDGA)
C SETDF 202122
C Z-ADD5 IVALA 50
C Z-ADD7 IVALB 50
C Z-ADD0 OVALC 50
C CAll 'PROGB'
C PARM IVALA
C PARM IVALB
C PARM OVAlC
C* ovalc now contains 12. and 20. 21. & 22 are still off
C* Note: FREE use is shown but its use is not recommended
C FREE 'PROGB'

C*
C

Program B (PROGB)
*ENTRY PLIST

C PARM IA
C PARM IB
C PARM DC
C IA ADD IB OC
C SETON 202122
C RETRN

Second, you list the names of variables to be passed to the subpro­
gram. These variables, and these variables alone, communicate data to the
subprogram. The subprogram may change the contents of these variables
upon its return. In the example, PROGA has three PARM statements - speci­
fying the variables IVALA, IVALB, and OVALC - to be passed as arguments
to PROGB (in a calling program, PARM variables are called arguments; in a
called program, they are called parameters, to distinguish between the two
sides of the program interface).

PROGB's C-specs begin with the PUST opcode (which always uses
the keyword -ENTRY in factor 1) to specify the entry point of the program.
PROGB lists three parameter variables - lA, IB, and OC - on individual
PARM statements. An important rule of parameter interfacing is that each
parameter's length must match the length of the corresponding argument vari­
ables in the caller, with the same number of argument and parameter vari­
ables. The parameter names in the subprogram need not match the argument
names passed by the calling program; the names are irrelevant as long as the
parameter count and lengths correspond. In fact, a CAll. doesn't require any
parameters as long as the subprogram doesn't expect any.

116 Desktop Guide to the S/36

Performance Tip

After amain program
ends, subprograms

end In the reverse
OtderofactivaHon.So

If the main program
and any of the

subprograms modified
the LDA or the UPSI

swHches, subprogram
changes to eHher
override changes
made by the main

program. If you don't
want the LDA or UPSI

swHches changed by a
subprogram, consider

using the FREE
opcode to explicitly

end subprograms
before the main
program ends.

Technical Note

The tENTRY PLiST line does not have to be the first C-spec. When called the first time, a
subprogram always starts execution at the first C-spec. Subsequent calls, however, then
start execution at the location of the tENTRY PLiST. Locating the tENTRY PLiST later in
the C-specs lets you bypass one-time initialization of subsequent calls.

The S/36's EPC mechanism passes arguments to parameters by refer­
ence - that is, you think of the variables as referenCing the same physical
memory locations. Changes made to any parameter values in a subprogram
are also made to the corresponding variables in the calling program. PROGB
in the example doesn't change the value. of variables IA or IB, but if it did,
those changes would be reflected in the corresponding variables IVALA and
IVALB in program A.

In PROGB, the RETRN opcode causes an immediate return to the call­
ing program. The return statement is logical, not structural - it can occur any
number of times in a subprogram, not just at the physical end of the calc
specs. This simplifies the coding of exception handling. For example, after
detecting an error inside a nested series of IF statements, you could simply set
a return code and execute the RETRN operation, eliminating the need for a
GOTO out of the body of the IF structure.

Following the execution of the example program illustrates EPC cod­
ing in action. PROGA is calling PROGB to add two numbers together and
return the result. First, PROGA sets off indicators 20-22, and sets IVALA to 5
and IVALB to 7. Next, PROGA calls PROGB, which is activated and receives
the contents of PROGA's IVALA, IVALB and OV ALC arguments in its corre­
sponding IA, IB and OC parameters. PROGB adds IA to IB, storing the result
in OC, sets indicators 20-22 on, and returns to PROGA. When PROGA resumes
execution, its variable OVALC contains the value 12 and IVALA and IVALB are
unchanged (because PROGB didn't change the values of IA or IB). Even
though PROGB set on its copy of indicators 20, 21, and 22, those indicators
are still off in PROGA because each program has its own set of indicators and
other private data. If PROGB were to be called again, its indicators and private
data would have the same values they held at the RETRN point.

In Figure 7.2, after calling PROGB and then resuming execution,
PROGA executes a FREE statement. This unilaterally ends PROGB, forcing it to
EO]. The next time PROGB is called, a fresh copy will be activated and all pri­
vate data reset to initial values. Although FREE explicitly deactivates a subpro­
gram, all subprograms automatically get deactivated when the main program
ends, so individual FREEs aren't necessary. You should only use FREE when

http:OtderofactivaHon.So

Chapter7 How External Program Calls Work 117

you need a fresh copy of a subprogra~, keeping in mind the additional over­
head for re-activating the subprogram. Another way to end a subprogram is by
setting an indicator LR in the subprogram before RETRNing. lllis has the same
effect as FREE, and for the same reasons, should only be done when circum­
stances require a fresh copy of the subprogram. Remember, the only signifi­
cant resource-activated subprograms consume is VM (space in the 1WA). llley
place no execution load on the system. Going out of your way to send sub­
programs to EOJ usually results in reduced performance.

Technical Note

Although the example treated IA and IB as input parameters, and OC as an output param­
eter, EPC makes no distinction - all parameters are both input and output. When design­
ing modular applications, you should use some naming convention (e.g. 'I' for input, '0' for
output) to indicate which variables are intended for input and output. Keep in mind, though,
that EPCs don't enforce your convention (see Chapter 9, "Implementing Modular RPG
Applications,· for naming-convention ideas).

EPCs and Disk Files
llle code fragments in Figures 7.3a and 7.3b illustrate how to code EPCs with
disk fIles. llle OCL that calls the initial program must include a / / FILE state­
ment for each fIle used in a subprogram. In a large interactive application with
lots of EPCs, it's not unusual to have many (30 or 40 or even more) / / FILE
statements between the / / LOAD and / / RUN for the main program. (Remem­
ber, in OCL you don't have the fIle limit imposed by RPG. You are, however,
still limited to 15 disk fIles in anyone RPG program.)

Figures 7.3a and 7.3b also illustrate what happens when two subpro­
grams share a file (program C and program D use the same physical fIle). Just
before calling program D, program C positions its file pointer to the fIfth
record in MYFILE. Upon return from program D, which positioned its file
pointer to MYFILE's record number 10, program C is still positioned at its pre­
vious file position. 1bis example illustrates the fact that each program has its
own private copy of file buffers and file record positions.

This illustration brings up a subtle, yet possibly troublesome, effect of
two subprograms sharing a fIle. llle OCL in Figure 7.3a specilles that both log­
ical copies of MYFILE be opened for modillcation by owner or other user (via
the SHRMM keyword). PROGC's read of record 5 locks the record; PROGD
subsequently deciding to read record 5 would result in a deadly embrace ­
PROGD would wait forever for PROGC to release the record. This problem

Performance Tip

See Chapter 17,
"Harnessing the
Power of Assembler
Routines," for a tool
that can reduce or
eliminate the need for
many IIRLE
statements In an
EPC jobstep.

118 Desktop Guide to the SI36

figure 7.38
oel for Program File Sharing

II LOAD PROGC
II FILE NAME-MYFILEC.LABEL-MYFILE.DISP-SHRMM
II FILE NAME-MYFILED.LABEL-MYFILE.DISP-SHRMM
II RUN

F1gure7.3b
RPG File Sharing Between Programs

* . .. 1 2• 3 4 ... 5 6

F* Program C (PROGC)
FMYFILEC IC 128R DISK
IMYFILEC NS
I 1 128 DIREC
C 5 CHAINMYFILEC
C CALL 'PROGD'

F* Program D (PROGD)
FMYFILED IC 128R DISK
IMYFILED NS
I 1 128 DIREC
C -ENTRY PLIST
C 10 CHAINMYFILED
C RETRN

isn't directly related to the use of EPCsj it could happen just as easily in pro­
grams that don't use them. Be aware of potential record-deadlock situations in
your applications, and code defensively to avoid them. (For more information
about record locks, see Chapter 18, "Proming and Advanced Debugging").

Technical Note

If two or more programs in atask reference the same file, the FILE statements must have
unique NAMEs (but identical LABElS), wnh DISP set to compatible share levels. With
third-party EPCs, the requirement for unique NAME parameters on the /I FILE statement is
handled by special statements in the RPG source program that equate the unique names
with RPG intemal names (which are probably the same for all programs). IBM's EPC isn't
so slick: You must code unique file names on the RPG F-, 1-, 0- and C-specs as well,
greatly complicating program maintenance (see Chapter 8, aA Comparison of EPC Vendor
Offerings," for details on IBM's coding complications).

http:F1gure7.3b

Chapter 7 How External Program Calls Work 119

APractical Example .
A simple, real-world example drives home the value of EPCs in application
design. Consider a typical order-entry program - one that provides for cus­
tomer search and selection, inventory-item search and selection, order-line
entry and edit, picking-ticket and invoice printing, and all necessary me updat­
ing. Using traditional techniques, this application would have been coded as
one monolithic program, hard to maintain, difficult to comprehend, and
impossible to enhance without unpleasant side effects.

Figure 7.4 shows what a small portion of a EPC modular might look
like. PROGA is the top-level program, performing some basic services. When
another service is required, customer selection for example, a CALL is made to
PROGB, which actually performs the customer search. PROGB in tum calls
PROGC to perform a service (perhaps to check the customer's credit limit).
Based on a value returned from the CALL to PROGC, PROGB might immedi­
ately retum to PROGA (if the customer were over the credit limit, for exam­
ple). If PROG gets the go-ahead from PROGC, PROGB calls PROGD to per­
form services and immediately returns to PROGA to start the process over
again. Note that program B has two exit points. Subprograms must have only
one *ENfRY statement but can have many RETRN statements. However, the
RETRN statements in your subprograms should be well documented; program
exits buried in obscure places make maintenance more difficult.

The modular approach has both programming and performance
advantages. Coding, compiling, testing and documenting small program mod­
ules proceeds much faster during development than the same cycle for other
approaches. And after the application is in production, the inevitable changes
and enhancements tend to affect only one or two modules at a time, isolating
other modules from "enhancement rash" - inadvertent bugs introduced by
maintenance coding. The performance advantage comes from reduced disk
I/O: Once all the subprograms are activated, transfers between them are
instantaneous, with no need for program initiation and termination. Not only
does this eliminate unnecessary disk I/O, it leaves more I/O time available for
performing application-related work.

Reaping the Benefits of EPCs
Isolating important parts of an application in subprograms gives you, and your
users, some terrific benefits. In the old days, whenever you needed a customer­
search program, you coded it (usually from scratch) in every program. Now,
by writing a generic, flexible customer-search program, you have a process
that goes about its private way of letting the user select a customer and then
returning the primary key of the customer selected to the calling program.
The calling program doesn't know how the search was implemented, nor
does it care. It just needs the customer's primary key to continue its work. As

Perforrnance TIp

In a batch application,
calling. subprogram
to perform atrivial
task could bring
performanca to Its
knees. Consider a
batch main program
that raacIs 100,000
recorda for updata,
calling a small
subprogram onca for
each of 10 fields In
every record. Those
10 CALla, multiplied
by 100,000 recorda,
would add IIlOI8 than
an hour to the
processing time In the
bestclrcumatancas (4
milliseconds per caiQ.
H's probably better to
code subroutines
enUrely within the
application Hthe
overhead of the CALL
greatly exceeds the
subprogram's actual
wortlng time. (ThIs
might even be the
time to drag ICOPY
out of the closet and
use Hto externalize
the coding. Just lit
RPG Internalize
everything IIone
load member.)

Chapter 8 AComparison of EPC Offerings 123

Chapter 8

AComparison of
EPC Vendor Offerings
External Program Calls (EPC) is one S/36 feature on which IBM played catch­
up with third-party vendors. Although IBM built EPC capabilities into the S/36
operating system from the start, only IBM's own programmers had access to
them. Eventually, as mentioned in Chapter 7, several independent software
vendors cracked the secret and offered EPC - via the CALL and PARM
opcodes - to RPG programmers. IBM enhanced its RPG compiler years later
to also support CAll, P ARM, and related RPG extensions - all as a chargeable
PRPQ. Finally, as this book went to press, IBM had announced that RPG users
would get CAIlIPARM for free as part of the basic compiler license.

Now, as an RPG application programmer, you have a selection of
programming environments offering EPC features. Choosing which product is
best for you requires weighing the relative merits of each, with an eye to ease
of use, performance, and future compatibility. Given IBM's late entry into the
field, you might expect its "free" product to have one up on the early competi­
tors; however, that's not the case. With IBM's EPC, you literally get what you
pay for. Whether that will be adequate for your needs is a question only you
can answer. This chapter gives you the facts upon which to base that answer.

The Contest
In addition to IBM's standard RPG product, two other RPG development tools
- by independents Amalgamated Software of North America (ASNA) and
BPS, Inc. - offer EPC features: 400RPG and RPG II~, respectively. Both of
these products also add other RPG/400 language features in addition to
CALl/PARM: externally described files, multiple-occurrence data structures,
dynamic file open/close, the -IN indicator array, indicators as fields,
ANDxx/OIqx operation codes, and several miscellaneous advanced RPG
operations. While these additional features might influence your purchase
decision, here we examine only the EPC implementations. Because EPCs are
so powerful and so important to reliable, maintainable, and portable applica­
tion construction, you'll want to consider several important EPC-related factors
before you look at other issues.

The primary factor to examine is each product's fidelity to IBM's
established RPG language standard, RPG/400. You may need to migrate your
applications to the AS/400 at some future date, at which point you'll be glad
you considered AS/400 compatibility now. Even if you don't move to the

124 Desktop Guide to the S/36

AS/400, RPG products for other computer platfonns, such as the RS/6000 and
PC, use RPG/400 as a touchstone for language compatibility.

Secondary factors to examine are usability and performance. Each
product has some subtle (and some not-so-subtle) restrictions that may tum
into coding barriers for your application programmers. And even if your pro­
grammers find a given EPC product usable, the resulting applications might
not perform well enough. The time required to invoke a program thus
becomes an issue, and each EPC product perfonns differently in this regard.

Because these evaluation factors - compatibility, usability, and per­
formance - come up at every tum when developing modular applications,
we examine the factors in the same order an application programmer is likely
to consider them: design, coding, and testing.

Design and Coding Considerations
Putting together a modular application means decomposing the problem into
well-defined tasks that can be isolated into separate modules and defining
interfaces for each module. For the most part, all three products let you use all
RPG commands and capabilities in called programs. There are limitations, how­
ever. None of the EPC implementations permits any program in an EPC task to
have overlays - not an onerous constraint, as one reason for modularizing
programs is to reduce program size. IBM adds a further restriction: It limits
each module's size to 60 K - 4 K less than the maximum region size of 64 K.
IBM uses the last 4 K to map onto the caller's memory for copying to and from
the caller's arguments. You'll want to keep this limitation in mind - especially
when incorporating existing RPG programs into a modular application deSign.

File I/O presents another design issue. Most modular applications share
a common set of flies, using common me layouts to improve maintainability. To
this end, IBM's RPG/400 language standard supports common me description
through externally described flles - me descriptions stored outside program
source code and copied in automatically at compile time. Both 400RPG and
RPG II~ provide for external me descriptions compatible with RPG/400. IBM's
S/36 EPC supports only the antique ICOPY statement, which isn't compatible
with RPG/400, presenting a serious application development problem.

The problem arises because S/36 SSP requires each program in a task
using a common me to reference that me by a unique name at execution time
- the name is specified via the NAME keyword on a I I FILE statement. But at
compile time you want these programs to reference the common me by the
same name, so that the compiler can locate and copy in the description for the
common me (Figure 8.1). RPG II~ and 400RPG let you have different compile­
time and execution-time names for each me. You code the compile-time name
as always: on the RPG F-spec. You code the unique execution-time name for
that me on an extension spec for each me. Figure 8.2 illustrates this coding

Chapter 8 A Comparison of EPC Offerings 125

Figure 8.1
OCL for aSingle File Used by Two Subprograms

II LOAD MAINPG Main Program
II FILE NAME-CUSMASTA.LABEL-CUSMASTP.DISP-SHR For PROGA
II FILE NAME-CUSMASTB.LABEL-CUSMASTP.DISP-SHR For PROGB
II RUN

method for two programs, PROGA and PROGB, that both reference the same
me, CUSMAST. Both programs have 'CUSMAST' coded on the F-specs, while
PROGA has 'CUSMASTA' coded as the me's execution-time name, and PROGB
has 'CUSMASTB' coded. The compiler uses the identical compile-time name to
locate the CUSMAST me description and copy it into the program. SSP uses the
unique execution-time names to associate each program with its corresponding
I I FILE statement. Both I I FILE statements then reference the same physical me
on disk, CUSMASTP. To later migrate programs using this notation to the
AS/400, you simply delete the F-spec extension lines.

In contrast, IBM's EPC requires a unique F-spec file name for each me
used by any program or subprogram. Figure 8.3 shows the previous coding
example using IBM's native RPG. PROGA must use a different internal name
for file CUSMAST than PROGB on the RPG F-spec, I-spec, C-spec, and O-spec.
This effectively precludes external me descriptions using ICOPY, or using any
other method, for that matter. This approach also creates a maintenance night­
mare, as copying code from separate programs that use the same me requires
changing the me name used in the code. If you later decide to move to the
AS/400 or another platform, you'll have to change all these me names again to
take advantage of external me descriptions in the new environment.

If you plan to use EPCs only to connect existing programs that don't
share a large number of mes (and that you won't be maintaining much in the
future), this limitation to IBM's EPC may not be an obstacle. But for imple­
menting new modular designs, or for converting existing applications to mod­
ular ones, you'll likely fmd yourself frequently cursing IBM for this oversight.

A design issue related to file I/O is workstation I/O. Programs access
the workstation device through a workstation file, and the workstation file
identifies the name of a screen format member containing screen formats for
use by the program. SSP has a limit of 255 screen formats for a given job, due
to the way screen formats are opened and cached in memory. RPG II~ and
400RPG let you keep your screen formats in separate screen-format load mem­
bers, as long as the total number of formats is less than 255. Any program can
use screen formats used by any other program in a task, so the screen format
names must also be unique between programs. With six-character program

Performance Tip

In addition to ICOPY,
both non-lBM EPC
products also support
ASl4OO-sty1e
externally described
files. These are both
easier to use and
more powerful than
/cOPY. Use theml

126 Desktop Guide to the SI36

figure 8.2
RPG 11% and 400RPG Coding for Subprograms

PROGA and PROGB Referencing aCommon File

1 ... : ... 10 : ... 20 : ... 30 : ... 40 : ... 50 : ... 60 : ... 70 : .. 80

H PROGA
FCUSMAST UD 128R DISK
F K DCLNAM CUSMASTA
I/COPY CUSMAST
C *ENTRY PLIST
C
C
C
C READ CUSMAST

C

C
C

C RETRN

OCUSMAST E CHGREC

o

o

o

1 ... : ... 10 : ... 20 : ... 30 : ... 40 : ... 50 : ... 60 : ... 70 : .. 80
H PROGB
FCUSMAST UD 128R DISK
F K OCLNAM CUSMASTB
I/COPY CUSMAST
C *ENTRY PLIST
C
C

C

C CHAINCUSMAST

C

C

C
C RETRN

OCUSMAST E NEWREC

o

o

o

names and eight-character screen-format names, you can meet this require­
ment by simply appending the program name with a two-digit sequence num­
ber to generate unique screen-format names.

IBM's EPC, however, permits only one screen-format member, shared
by all programs. This becomes a design burden when integrating modules
from application systems that might reside in separate libraries - the single
screen-format module must reside in only one of those libraries. You can still
keep separate screen-format source members, but you must compile them all

Chapter 8 A Comparison of EPC Offerings 121

Figure 8.3
IBM RPG Coding for Subprograms PROGA and

PROGB Referencing aCommon File

1 ... : ... 10 : ... 20 : ... 30 : ... 40 : ... 50 : ... 80 : ... 70 : .. 80

H ~~

FCUSMASTAUD 128R DISK
ICUSMASTA

I
C *ENTRY PLIST

C

C
C

C READ CUSMASTA

C

C

C

C RETRN

OCUSMASTAE CHGREC

o

o
o

1 ... : ... 10 : ... 20 : ... 30 : ... 40 : ... 50 : ... 60 : ... 70 : .. 80
H PROGB
FCUSMASTBUD 12BR DISK
ICUSMASTB
I

I

I

C *ENTRY PLIST

C

C

C

C CHAINCUSMASTB

C

C

C

C RETRN

OCUSMASTBE NEWREC

o

o

o

into a single load member using the SSP FORMAT procedure.
One final design consideration affects module interfaces. All three

products let you pass a number of variables as parameters, but IBM's product
restlicts you to a maximum of 15 parameters. This may seem like plenty; but
when you're in the thick of modular design, running into this limitation forces

128 Desktop Guide to the 5136

you to complicate interfaces by passing data structures that contain multiple
parameters. Not only does this make interfaces less clean, it eliminates the
advantage of length-checking provided by EPC at execution time. Changing
the data structure in one program but not another can result in parameter data
overlapping in a called program - a very difficult problem to track down.

Again, depending on how far you plan to "buy into" EPCs, this limita­
tion mayor may not be significant to you. Both RPG I1~ and 400RPG make
the point moot: They allow passing any number of parameters.

Run the Good Race
Once your programs are up and running, you must deal with performance
issues. One fact that can affect performance is the time required to make a
subprogram call. Although all three EPC products use the same underlying
EPC mechanisms, each has a different way of handling program activation
and parameter passing, which causes considerable variance in the time
required for a CALL.

The importance of this factor in your situation depends on how you
use EPCs. If you plan to call a given subprogram iteratively, the work it per­
forms should justify the overhead of making the call. Every call requires a min­
imum amount of time - perhaps no more than the equivalent of two or three
RPG divide operations - to locate the activated subprogram and establish
addressability to it. More time may be required to page in the subprogram
from disk if it happens to be paged out. When the subprogram returns, re­
establishing execution in the caller requires additional time. Consequently,
repeated calls to a subprogram that performs some trivial computation (adding
two numbers, for example) makes no sense. Subprograms used in this manner
become a processor bottleneck unless the repetitions are few.

However, a module doesn't have to be complicated to be a good sub­
program. It is eminently practical to call a subprogram that accumulates statis­
tics in a 50 K array - thereby keeping data in high-speed real storage - rather
than storing the statistics in a disk me for use by a monolithic program that
must fit into a 64 K region. Another example is an alphabetic search function,
which several modules in an application might require. By implementing the
function once as a called module, you gain both the time and storage
economies of activating the module only once per user, and simplified applica­
tion maintenance. Generally, the decision about which functions to place in a
subprogram should be dictated first by design and then by performance. Merg­
ing modules that are the result of too-detailed decomposition is usually easier
than trying to continue decomposing the design of a system already in produc­
tion. But if your application design tends to favor encapsulating low-workload
functions (such as table lookup) that are frequently invoked, CALL overhead
may become a factor. One additional rule of thumb: For subprograms performing

Chapter S A Comparison of EPC Offerings 129

FlgureS.4
Performance Test of 10,000 CALLS Passing 128 Bytes of Parameters

Vendor
Elapsed Time

(Seconds)
Time
(Mil

per Call
liseconds)

IBM
ASNA
BPS

950.0
190.0
44.0

95.0
19.0
4.4

workstation VO, CALL overhead is always inconsequential. Thus, dividing large
programs along workstation VO boundaries is a good way to modularize an
existing program without introducing performance problems.

All three products use late binding when activating a program for the
nrst time. With late binding, the name of the program to be called is deter­
mined at execution time, rather than at compile time. Because late binding lets
you generate the called program name on the spot, you don't have to recom­
pile calling programs after making changes to a called program. Thus, the pro­
cess of activating a program for the nrst time includes locating the program in
a library, loading it, initializing variables, and opening files. Each product
accomplishes this using IBM-supplied SSP library services; so it isn't surprising
that the time for program activation for all products is about the same: approx­
imately 100 milliseconds (one tenth of a second).

Once a program is activated, though, subsequent invocations are
much faster. How much faster varies with each product. Figure 8.4 shows the
elapsed time for each product making 10,000 calls to a do-nothing subpro­
gram, passing 128 bytes of parameter data (the tests were performed on a S/36
model D). The nrst call, which activated the subprogram, is not included in
the 10,000 count. IBM is the slowest contender, taking 950 seconds. This
works out to 95 milliseconds per CALIJRETRN sequence - a little more time
than that required for two disk operations. The similarity to disk VO times isn't
accidental: For every CALIJRETRN, IBM's EPC performs disk VO related to the
work of passing parameters and changing addressability to the subprogram.

ASNA's 400RPG comes in second place, at 190 seconds, or 19 milli­
seconds per CALL. ASNA also performs disk I/O for every CALL. However,
because only a Single disk read is being called, the disk arm tends to remain
stationary in this test; only disk VO rotational delay and transfer time are con­
sumed. In real life, a frequently called subprogram might move the disk arm,
however, which would add seek time (12 to 25 milliseconds) to the overhead
for each CALL.

Fastest is RPG II~, which ran the race in only 44 seconds, yielding a
per-CALL time of just 4.4 milliseconds. This is less than the time it takes RPG to

130 Desktop Guide to the SI36

petfonn a couple of DIY operations! RPG II~ owes its speed to the use of a re­
entrant parameter-passing transient, which once loaded into memory never
needs to be reloaded. Thus, RPG II~ perl'orms no disk I/O for most CALLs, so
disk ann placement (and the effect of subprogram I/O) has no effect on the
overhead for calling to and returning from the subprogram. However, the
amount of data transferred now has some effect on CAll time. Where IBM and
ASNA have unifonn times for parameter lengths ranging from 128 to 1024 bytes,
BPS shows increased times for larger parameters. At 256 bytes, RPG II ~ jumps to
7 milliseconds per call, but then only increases to 9 milliseconds for parameter
lengths up to 1024 bytes.

Testing and Production Considerations
Once you've designed and coded your modular programs, you need to test
them, and after ensuring they work properly, put them into production. Test­
ing usually proceeds in two phases: unit and integration. In unit testing you
exercise individual modules in isolation, using "scaffolding" code to provide
the minimum amount of ancillary structure necessary to provide input to, and
collect output from, a single module. Integration testing verifies correct inter­
action between modules in as close to "live" conditions as possible.

The AS/400 offers several features that help you with unit and integra­
tion tests. One is the ability to run subprograms as standalone programs, which
simplifies unit testing. When testing a module as a standalone program, you
supply parameter values via hardcoded values or temporary input files and col­
lect output parameters on printed listings or in temporary output files. The abil­
ity to test modules as standalone programs eliminates the need to build one­
time "main" programs that Simply call the module to be tested, saving time
during unit testing. Both RPG II ~ and 400RPG let you run called modules as
standalone programs using / / LOAD. IBM's EPC doesn't. In fact, subprograms
must be coded with an'S' in position 55 of the RPG H-spec to let the compiler
know that the -ENTRY PLIST and RETRN operations are legal. The compiler
then flags the program as non-executable (Le., you can't use / / LOAD to
invoke the program). This limitation of IBM's EPC implementation rules out
standalone unit testing - you must instead write one-time programs whose
sole purpose is calling the subprogram under test.

Another AS/400 feature geared to testing modular programs is the
ltbrary list facility. A library list is a list of libraries to be searched to locate
called programs. When a CAll doesn't specify a library name (or specifies
-LIBL), the system looks in each library in the library list for the target program
until it fmds the program. Each running job has its own private library list. The
library list facility Simplifies testing modules under development alongside pro­
duction modules: You Simply insert the name of the library containing your test
modules into the library list ahead of the production library names (Figure 8.5).

Chapter 8 AComparison of EPC Offerings 131

Flgure8.S
Using aLibrary List to Exercise Test Modules

in aProduction Environment

Normal Library List Production Modules

ARLIB ARPG01

OROLIB
ARPG02
ARPG03

TRLIB r-- ­

BPLIB f-­ -
OROPGl
ORDPG2
ORDPG3

TRPGl

BPPGl
- BPPG2

BPPG3

Library List with
Test Library Inserted Production Modules

ARPG01
ARPG02

ARLIB

TESTLIB Test ModulesARPG03
ORDLIB ORDPG2

TRPGlTRLIB ORDPGl
BPPG2R
ORDPG2BPLIB r­

ORDPG3 (these overrideshaded modules)

---i TRPGl

BPPGl
BPPG2
BPPG3

The test library can contain procedures and programs that refer to test files,
while the production library contains procedures and programs operating on
production flIes. (On the AS/400, files, as well as programs, are contained in
libraries, extending the value of library lists even further). ASNA's 400RPG is the
only EPC product that supports library lists. While it only supports this feature
for programs, and not for flIes, it still makes a valuable testing tool. Library lists
are useful in a production environment, too, as they let you use modules from
many different libraries within the same task.

132 Desktop Guide to the S/36

The Gravy
As mentioned earlier, IBM's RPG compiler offers CALIjPARM as its only
enhancement, completely missing such modular programming aids as exter­
nally described mes and library lists. While you must pay for third-party EPC
products, you get a host of "gravy" features in the bargain. Beyond extras
mentioned at the beginning of this chapter, ASNA supports data areas, AS/400­
style DDS statements for external me descriptions, RPG/400 V2Rl enhance­
ments, and a facility for invoking S/36 procedures from inside an RPG pro­
gram. BPS also supports DDS, but lacks the other ASNA extras. It has a few
extras of its own, however: a macro facility (portable to the AS/400) that lets
you create your own RPG macro operations and an integrated symbolic
debugger. ASNA's product is significandy more expensive than BPS's, though,
so you'll have to weigh the value of its unique features carefully.

Wrap Up
One final issue needs examining if you plan to make your plug-and-play mod­
ules available for others to use. While all the EPC products are compatible at
the source-code level (due to their common RPG/400 heritage), none of them
- including IBM's - is compatible with any other at the object-code level.
Because of differences in parameter-passing techniques, you can't make, say,
an IBM EPC program call an ASNA 400RPG program. For in-house program­
mers with access to their source code, this isn't likely to matter. But for inde­
pendent software vendors wanting to incorporate EPC interfaces into their
products for the benefit of their customers, IBM's third option simply compli­
cates an already complicated situation. Such vendors must either provide
source code for their products so that customers can recompile the programs
using the EPC environment of their choice, or they must provide separate
compiled versions of their products for each different EPC environment. Both
independent vendors let you freely distribute their runtime modules with your
product, which ensures that your customers can use your EPC-oriented prod­
uct even if they are not ASNA or BPS customers. With IBM, you must ensure
that your customers have installed release 6.0 of SSP (or PTF 3600 for SSP
release 5.1), which involves you in customer system software maintenance.

Whatever your needs, you now have enough information to make an
educated choice. IBM's belated entry into the S/36 EPC arena gives you basic
EPC functions, but nothing else. You can use IBM's EPC as an experimental
platform for investigating EPC use in your own applications. However, when
you start running into IBM's EPC limitations, you may want to consider either
ASNA's or BPS's offering; each provides much more function than IBM's while
remaining compatible with the AS/400.

Chapter 8 A Comparison of EPC Offerings 133

Product Information

Amalgamated Software of North America (ASNA)
P.O. Box 1668
42011 Big Bear Boulevard
Big Bear Lake, CA 92315
(800) 321-2762 or (714) 866-9000
400 RPG - $2,250 (or optional $200lmonth rental)

BPS Information Services, Inc.
P.O. Box 9, Department N3
Marion, IA 52302
(319) 377-7599
RPG II~ - $950

IBM
(contact your local IBM marketing representative)
SSP Release 6.1

Chapter 9 Implementing Modular RPG Applications 135

Chapter 9

Implementing Modular
RPG Applications
Chapter 7 described the advantages and mechanics of External Program Calls
(EPCs), and Chapter 8 presented the relative merits of various S/36 EPC prod­
ucts; but you've not yet seen how to build a modular application from the
ground up. The term "modular" in this context means a single application pro­
gram broken down, or "decomposed,» into small routines. In contrast with the
most common way S/36 users first take advantage of EPCs - to connect exist­
ing programs for improved response time, the goal of modular programming
is to produce programs that are easy to understand, debug and modify. One
immediate benefit of modular design, manageability, means you can shorten
development time by making each module a separate work assignment so that
parallel coding and testing can occur. Another immediate benefit, comprehen­
sibility, implies that because you can study the application one module at a
time, the whole application will be better understood and better designed. The
long-term benefit, flexibility, means you can change a module drastically with­
out having to change other modules.

This chapter describes the modular design process, first explaining a
few terms and concepts, then illustrating an example application design.

The Mysterious Module
The ideal software module should behave like a black box. That is, it should
accept input, process it, and produce output without requiring other modules
to know how the work was accomplished. Communication between modules
should take place through well-defined interfaces, while variables and algo­
rithms used by those modules remain hidden. The idea of concealing the
implementation of a module - that is, how the module works internally ­
from the programs that call it is called information biding.

Why hide such details? Because a program that has access to the inter­
nals of another module can become dependent on those internals, complicat­
ing the process of changing the implementation at some future date. Informa­
tion hiding forces programs to interact at only one point: the module interface.
Traditional RPG subroutines, on the other hand, often interact at many points
- through variables, indicators, even file I/O. Coupling is a term used to
describe the degree to which modules interact with one another. Tight cou­
pling means the modules interact at many points; loose coupling means they
interact at only a few (preferably one) points. Tight coupling makes program

136 Desktop Guide to the SI36

debugging and maintenance harder because it increases the likelihood that a
change in one module will affect another module adversly. Loose coupling has
just the opposite effect: It tends to isolate the effect of changes to just the mod­
ule changed.

In RPG, the only way to implement loosely coupled modules is to use
separately compiled programs that interface with each other using EPCs. A main
program calls external subprograms to carry out the work of the application,
using only the CALIJPARM interface to communicate with the subprograms.

From the RPG programmer's viewpoint, external subprograms serve
much the same function as internal subroutines: Both help you subdivide
application code into logically distinct, reusable units. But external subpro­
grams differ from internal subroutines in important respects, including the way
they are invoked, the scope they give to named variables, the way they com­
municate between modules, and the time at which the subprogram name is
bound to an address in memory. Here is a quick review of the differences
between external subprograms and internal subroutines.

Activation and Invocation. The first time an external subprogram is
called, it is activated: Virtual storage is assigned, the program is loaded, vari­
ables are initialized, and files are opened. When the subprogram returns to its
caller, it remains activated in virtual storage; all variables remain intact until the
next call. Each call, including the first, is referred to as an invocation. An invo­
cation ends when control returns to the caller, but the activation of the called
program persists. Internal subroutines are similar: They're activated (when the
main program starts up) and the contents of variables remain intact across
invocations. But the resemblance ends there.

External Subprogram Deactivation. At external subprogram deactiva­
tion, the subprogram's files are closed and its virtual storage is released. Con­
sequently, if the deactivated subprogram is called again, it goes through the
complete activation process; variables are reinitialized and files are reopened
on the subsequent call. Internal subroutines don't have the concept of deacti­
vation- except in the sense that they get "deactivated" when the main pro­
gram ends. This means that there is no way to get an internal subroutine back
to a "fresh" state without manually reinitializing its variables.

Local Names. In RPG, all tags, fields, indicators and file-access paths
have names. A name can be either local or global in scope. A name is consid­
ered local if it is known only to the program or subroutine in which it is
defmed; it is considered global if it is known elsewhere. All names in an internal
subroutine are global with respect to the program; thus, a variable defmed in
one subroutine is thereby defined for all subroutines and the main program. In
contrast, the names in an external subprogram are local with respect to the pro­
gram, which means they are inaccessible to other subprograms in the same task
or job step. When an external subprogram first is called, the fields, indicators,

Chapter 9 Implementing Modular RPG Applications 137

and file access paths all have initial values; on subsequent calls these items
retain their values from the prior call, regardless of whether or not the internal
variable names are used in other subprograms.

Parameter Passing. Internal subroutines communicate with the main
program and other subroutines through global variables. However, because
external subprogram variables are local rather than global, subprograms use
parameter passing for intermodule communication. When an RPG program
calls a subprogram, it optionally passes data to the called program through the
PARM variables specified on the call. You can see that internal subroutines end
up, by definition, having tight coupling with the main program. External sub­
programs have loose coupling because variable names have local scope, and
the only interaction between modules is through the CALIjPARM interface.

Late Binding. When coding an EXSR statement to invoke an internal
subroutine, you must know the name of the subroutine, and the subroutine
must exist when you compile the main program. With external subprograms,
the calling program need not know the name of the subprogram until just
before making the call. This late binding of the program name to the invoca­
tion is much more flexible than early binding, where the subroutine name
must be known at compile time. Because late binding allows you to generate
the called program name on the spot, it is easy to implement table-driven
designs, or to call user-selected programs. For example, a menu program
might use a table relating menu options to program names. This table could
be conveniently stored outside the program, so that changes in the table don't
require recompilation of the program. Late binding also lets you compile and
test an application in smaller increments, and later, to change subprograms
without changing the main program.

Activation, deactivation, local names, parameter passing, and late
binding - these are the features that set external subprograms apart from
internal subroutines, making information hiding and loose coupling possible
in RPG. With these two capabilities in hand, you're ready to begin the modu­
lar design process called functional decomposition.

Breaking it Down
Traditional RPG program design involves breaking down a problem into logi­
cal programming steps, using a main program and a set of internal subroutines
to carry out these steps. This approach uses procedural design criteria (Le., a
flow chart) to make each major step into a subroutine. However, follOWing a
flow chart to break down, or decompose, a problem results in a procedural
decomposition, with each module dependent on the previous module. Tight
coupling results because internal subroutines have only global variables. Mod­
ular programming uses functional decomposition, in which you design mod­
ules to perform specific functions rather than steps in a procedure.

138 Desktop Guide to the SI36

As a simple example, consider a program that reads records from a
file and prints a report. A procedural decomposition would use one subrou­
tine to read a data record, another to perform computations, a third to print
header lines, a fourth to print detail lines, and a ftfth to print total lines. The
main program would call each subroutine in turn, in a loop, to produce the
report. A functional decomposition would use a module to read the file,
another to perform computations, and a third to print header, total, and detail
lines. The main program would call the print module, which would call the
read and compute modules as required to produce the report.

With the procedural design, changing the input data record requires
changing the main program and all the subroutines, because each has access
to all the data. The functional design, however, requires changing only the
read module - the parameter interface to this module isolates other modules
from the input me changes.

This gives you a taste of the functional design process. Following the
steps for completely decomposing a real-world problem will give you the
information you need to do your own functional design.

Defining the Problem
Appointment scheduling for medical clinic patients is a problem well-suited to
modularization using external program calls. In this small application, a recep­
tionist collects information from a patient, Mary Jones, to schedule a future
clinic appointment. Before making an appointment, the receptionist needs
seven pieces of information: the patient's name and identification number; the
reason for and duration of the appointment; the doctor Mary will see; and the
date and the time of the appointment.

The receptionist does not have this information at hand, but by inter­
acting with Mary, she can obtain the necessary data. The receptionist can get
the patient's name directly from the patient, but because Mary probably
doesn't know her identification number, a search by name is necessary to
retrieve the patient ID number. Also, Mary might want to see a particular doc­
tor or might be willing to see any doctor who deals with the problem at hand,
so a search by doctor or appointment reason is necessary. Finally, the recep­
tionist must select the date and time of the appointment by considering both
Mary's and the doctor's schedules.

To approach these data-collection problems, you first should decom­
pose the program so that individual modules (e.g., the search by name) can
be reimplemented in the future without affecting other modules. You also
should create simple interfaces between modules, revealing as little as possible
about the inner workings of the module. Finally, you should hide at least one
key design decision in each module to make your application more flexible.
You can decide which design decisions to hide in a module by determining

Chapter 9 Implementing Modular RPG Applications 139

Figure 9.1

Functional Decomposition of Appointment Scheduling Application

Schedule anew
appointment

10#
Reason
Duration

10# Doctor Doctor
tReason Reason. t Date Date ~

t 10# ID#~ Duration Duration Time Time t Appt.#

Get Select a reason Select adoctor, Record/Delete anpatient and duration date, and time appointment10

10# Doctor
Reason ~ ~ t Date

I t Name Name ~It 10# Duration t (Limits) (Limits) Time

Get Add Get scheduling Find the next slot

patient name patient limits for any Dr.

(Limns) ~ t DateName~ t ID# or null Doctor Time

Find the next slotGet 10 for name for asingle Dr.

which decisions are likely to change. Then you will be able to modify those
modules when necessary, without affecting the behavior of the modules. For
example, you might decide to hide the implementation of "fmding a patient's
name" in its own module and use only parameters to communicate with other
modules. Then if you change the method of finding a patient's name (e.g., to
improve the performance of the application), you can freely change that
implementation without adversely affecting other modules in the system.

Implementing the Modules
Figure 9. 1 shows how to functionally decompose the appointment scheduling
problem into 11 externally called modules. Each box represents a module.
Above each box is a list of data items that specify input to and output from
each module. The top box represents the controlling module of the function

140 Desktop Guide to the S136

being decomposed - scheduling a new appointment. The "Schedule a new
appointment" module is the "main" RPG program. It has input parameters that
can supply any known information (e.g., doctor's name). The module takes
advantage of any information supplied by these parameters; when the infor­
mation is incomplete, the module calls one or more external modules to com­
plete the information.

When the main program calls the "Get patient 10" module, it passes
no parameters to this module and receives only the patient ID parameter as
output from the module. The details of how the module accomplishes its task
are hidden from the caller. In this case, "Get patient ID" has been decom­
posed further into three subordinate modules: "Get patient name," "Get ID for
name," and "Add patient." Each of these subordinate modules hides a design
decision that might change in the future.

The "Get patient name" module prompts the receptionist to enter the
patient's name and returns the name in a parameter to be passed to other
modules. The method of prompting (i.e., terminal or workstation I/O) is the
design decision hidden here.

The "Get ID for name" module accepts a patient name in an input
parameter, and returns the patient ID (or null if the system does not recognize
the patient) in an output parameter. This module might handle the problem of
resolving duplicate names by presenting the receptionist with a list of similar
names from which to choose. For example, the receptionist might input ':Jon"
instead of ':Jones" and get in return the list of names beginning with the letters
':Jon" with their corresponding addresses. Thus, the receptionist could check
for correct spelling and compare addresses in the case of duplicate patient
names. The algorithm used to select similar names could change, so this mod­
ule hides the algorithm's implementation.

When the "Get 10 for name" module fails to identify the patient (i.e.,
if the patient has never been to the clinic), it returns a value of "null" to the
caller. When the "Get patient ID" module receives a "null" from "Get ID for
name," it calls the "Add patient" module to perform the new patient registra­
tion process: Assign an ID, record patient history, and return the new ID to
the module's caller.

Once the "Get patient ID" module returns an ID to the main module,
the main module calls the "Select a reason and duration" module to perform
the next function. This new module has two output parameters: a phrase
describing the patient's problem and the approximate time required to treat
the problem. This module hides the method used to generate these parame­
ters from the "Schedule a new appointment" module. The receptionist might
ask Mary for a reason or might inspect Mary's history to determine some likely
reasons for her visit. The receptionist could display the history along with a list
of default reason selections. Once the receptionist knows the reason for the

Chapter 9 Implementing Modular RPG Applications 141

visit, she might consult a table of ailment treatment times to determine the
appointment duration.

The main module next calls the routine to "Select a doctor, date, and
time." This module requires a few more decisions. It accepts the reason for the
appointment and the appointment duration as input parameters. The recep­
tionist must find an empty time slot large enough to accommodate the
required treatment time for a doctor qualified to administer the treatment. To
complicate things, Mary might have her own scheduling limitations, such as
"only after three o'clock" or "before next Tuesday." She might need to see a
particular doctor or might accept any doctor able to provide treatment. The
"Select a doctor, date, and time" module calls the "Get scheduling limits" mod­
ule to determine which of these limitations apply for the given patient. The
"Get scheduling limits" module receives three input parameters - the patient
ID, appointment reason, and duration - and returns one output parameter
that contains the limits.

The "Select a doctor, date, and time" module then calls the "Find the
next slot for any doctor" module, which accepts scheduling limits as input
parameters and calls the subordinate module "Find the next slot for a single
doctor" iteratively until the subordinate module locates a slot that satisfies
those limiting parameters. All these details are hidden from the main module;
it is satisfied to get a doctor, date, and time by any means.

Finally, the "Schedule a new appointment" module calls the "Record/
Delete an appointment" to record the appointment. This last module receives
as input parameters the entire set of collected data items: identification num­
ber, appointment reason and duration, doctor, date, and time. The module
records these items as a record in the appointment me, an entity known only
to this module. Then the module assigns an appointment number associated
with this record and passes the appointment number parameter back to the
calling module. The "Record/Delete an appointment" module hides the
method of storing an appointment from the "Schedule a new appointment"
module so that any future changes to appointment record storage will affect
only the "Record/Delete an appointment" module.

Because of this modular deSign, you can immediately reap the bene­
fits of modularization by external program calls. You gain comprehensibility
because you can understand the entire application by studying the individual
modules. In fact, at each level in the design, you do not need the details of
lower levels for overall comprehension. All of these modules are manageable
because their hidden design decisions and passed parameters make them self­
contained, with well-defined interfaces, resulting in loose coupling so you eas­
ily could assign each module to a separate programmer for implementation.
Loose coupling between modules increases fleXibility, making the application
easier to modify; the modules are not dependent on each other and are not

142 Desktop Guide to the SI36

FIgure 9.2

Modules Required to Add "Reschedule an Appointment" Function

Reschedule an
appointment

IDI 10#
Reason Reason
Duration Duration
Doctor Doctor

Name tAppt.# Appt. •• tDaleTime Appt. ••
Date •
Time t Appt.#

Rnd an appt. by Get appointment Record/Delete an Schedule a new
patient name attributes appointment appointment

tied to each other by necessity. When we propose some changes and estimate
the effort needed to implement the changes, you can see the actual flexibility
of the design.

Change Is No Problem
A likely change to any system is the addition of a new function to solve some
new problem. In a real clinic situation, patients do not run their lives on fIxed
timetables, so they often want to change previously scheduled appointments.
Thus, when Mary Jones calls to change her appointment, the application
needs a new function to "Reschedule an appointment." Figure 9.2 shows how
to functionally decompose this particular problem into modules. The top box
in the diagram represents the controlling module that needs to be created for
this new function.

Any of the parameters used to make the original appointment (e.g., rea­
son, duration, doctor, date, or time) could change, so the receptionist must
retrieve information about the old appointment. This requires knowing the
appointment number of the old appointment - information possibly not at the
patient's fmgertips. So a new module, "Find an appointment by patient name," is
created to retrieve the appointment number parameter. The controlling module
passes the patient name to the "Find an appointment by patient name" module
and receives in return the old appointment number. (Note that the "Find an
appointment by patient name" module may use modules found in Figure 9.1 ­
e.g., the "Get ID for patient name" module - or other modules.)

The "Get appointment attributes" module also must be created. This

Chapter 9 Implementing Modular RPG Applications 143

module receives the appointment number as input and retrieves appointment
parameters needed for rescheduling: ID, reason, duration, doctor, date, and time.

Once all the attribute information has been retrieved, there are two
possible ways to reschedule an appointment. You could change the attributes
of the existing appointment to coincide with the new appointment, or you
could delete the old appointment and retain the original parameters as defaults.
Changing the existing appointment is a complex solution because changing
appointment attributes may change the "limits" (e.g., limits of lab-related
appointments and patient's and doctor's schedules) of the appointment. In the
decomposition of the original problem, recording an appointment and deleting
an appointment were different procedures within the same module (i.e., the
"RecordlDelete an appointment" module). Thus, this module can be used to
delete the old appointment and add the new appointment, eliminating the
need to create a more complicated module to change an appointment. The
"Reschedule an appointment" module calls the "RecordlDelete an appoint­
ment" module, which at this point uses the appointment number as an input
parameter and removes the old appointment from storage. Note that the
"Record/Delete an appointment" module was used in the original decomposi­
tion at a level below the controlling "Schedule an appointment" module. In this
modification, it is used on the same level as the "Schedule an appointment"
module, reinforcing the flexibility of modular programming.

For the fmal step in the appointment rescheduling process, the control­
ling module calls the existing "Schedule a new appointment" module. When
the module is used to reschedule an appointment, it receives as input parame­
ters the original appointment attributes and returns as output parameters both
the changed and unchanged attributes. Usually only one or two attributes
change when rescheduling an appointment, so the receptionist can avoid re­
entering unchanged data because the module is passed the original attributes.

Adding this rescheduling function requires writing one new main con­
trolling module and three new subordinate modules. The "Schedule a new
appointment module" remains unchanged except to accept the old appoint­
ment attributes as input. This enhancement has very little impact on the rest of
the system because of the clean, decoupled modularization of the original
design. If this modular design were based on procedural criteria rather than
functional information-hiding criteria, many more lines of code would require
changing and testing.

The rescheduling change also results in new modules at a higher level
in the modularization hierarchy. What happens when you change a low-level
module? When the modules are loosely coupled as they are in this application,
very little happens. In the case of the fictional clinic, suppose you discover
that some medical procedures can be performed only at certain times of the
day. For example, suppose laboratory specimens are picked up at noon, so

144 Desktop Guide to the S/36

lab tests must be scheduled for the morning. You should change the applica­
tion in the "Get scheduling limits" module so you can apply scheduling restric­
tions to appointments that generate lab specimens. You also must change the
module's internal logic to examine the reason for the appointment and, if the
reason is lab-related, to restrict time selection to mornings only.

The method and data structures used to implement this change to the
"Get scheduling limits" module have no maintenance impact on the rest of the
application, because reason and duration will still be passed to the module
and it still will pass back limits. Even the new modules for the rescheduling
enhancement take advantage of this functional change without the extra effort
of modifying other modules. Again, if you applied this change to a traditional
application designed with modules decomposed from flow charts, you could
expect changes in many more modules.

Clearly, you need to properly decompose a problem to accrue the
benefits of modularization. You cannot build modular programs when you use
tight coupling and do not hide design decisions. But if you do hide one key
design decision in each module, you make it easier to separate functions,
avoid the trap of decomposing according to traditional "processing steps," and
consequently gain the benefits of modularization. External program calls pro­
vide a good path to implementing modular designs when you use well­
defined, stable interfaces, loose coupling, and information hiding.

Section IV

Living With
Disk Data Management

'1 can only assume that a 'Do Not File' document isftled in a 'Do Not File'ftle."
-SenatorFrank Church

Senate Intelltgence Subcommittee Hearing
1975

aou use it. You fight it. You curse its lack of sophistication. S/36 Disk
Data Management (DDM) is perhaps the worst bane of evety applica­
tion programmer. Yes, it's easy to get DDM to do what you want; the
problem is getting DDM to do what you want quickly! DDM seems to
have a whim of steel - sometimes fast, sometimes slow, but never

either in any predictable fashion.
This section is a practical hands-on guide to making DDM perform

well. Chapter 10 explains the much maligned and misunderstood disk block­
ing feature of DDM, giving you defmitive answers about why, where, when,
and how to use DBLOCK and mLOCK. Chapter 11 explains a number of traps
lurking in DDM for the unwaty programmer, and workarounds for each.
Chapter 12 presents a collection of tips and techniques that make DDM faster
in everyday operations.

Many unique utilities make their debut in this section; each utility also
is provided on the disk accompanying this book. A few of these are refme­
ments of previously published tools, but most are available here for the ftrSt
time. All will make the job of programming and administering your S/36 instal­
lation easier and more productive.

Chapter 10 Using DBLOCK and IBLOCK Effectively 147

Chapter 10

Using DBLOCK
and IBLOCK Effectively
As we've mentioned often in this book, disk vo is the largest single factor
affecting S/36 performance. Generally, the best and easiest way to improve
program response times is to reduce disk VO. And one way to reduce disk
VO from within your programs is to use record and index blocking effectively.
You must exercise care, however: As easy as it is to use blocking to improve
application performance, it's just as easy to use blocking to ruin application
performance. In this chapter, we'll look closely at record and index blocking,
how they work, when you should and shouldn't use them, and how they
relate to each other.

Blocking Data Records
Record blocking does for disk records what an egg crate does for eggs. With­
out an egg crate, you can grab only one egg at time from your refrigerator.
However, if your eggs are stored in egg crates, you can grab 6, 12 or even 24
eggs at once - depending on the size of the egg crate. Think of record block­
ing as an "egg crate" for data records. With record blocking, the S/36 can
move more than one record at a time between your program and disk, there­
by reducing disk access and improving program performance.

More technically, record blocking is the technique of buffering multi­
ple records in memory for quick access by your programs. Each data file used
by a S/36 application has a data buffer associated with it. (Indexed files also
have an index buffer, which is discussed later in this chapter.) When your
application requests a record, Disk Data Management (DDM) first puts the
record in this data buffer and then moves it from the buffer to your applica­
tion's data fields. Your program can read only one record at a time, but the
system - transparently to your program - can put more than one record in
the data buffer at a time. With multiple-record buffering, or record blocking,
any record in the buffer is available to your application without performing
any disk VO.

Figure 10.1 shows a 256-byte data buffer, containing only one record,
allocated by default for a file with a 256-byte record length. When PROGA
reads the first record in FILEA, the buffer will contain only that frrst record.
Each subsequent read will require an additional pbysical disk VO operation ­
DDM will move records from FILEA to PROGA through the buffer one record

148 Desktop Guide to the S/36

Rgure 10.1
Application Program with Unblocked Data Buffer

FILEA

ONE-RECORD DATA BUFFER

Rgure 10.2
Application Program with 1DO-Record Block Data Buffer

FILEA

.......1--- 256 BYTES ---J"~

PROGA

HUNDRED-RECORD DATA BUFFER

at a time. Figure 10.2 shows the data buffer allocated at 100 records. With this
large buffer, when PROGA reads the flfSt record, DDM also puts the next 99
records in the buffer. No disk VO is required as PROGA reads the next 99
records. Only when PROGA requests a record not in the buffer - record 101
in this example - will the buffer be refreshed with the next 100 records.

Chapter 10 Using DBLOCK and IBLOCK Effectively 149

Rgure 10.3
AMinimum Disk Data Buffer for aFile with 64-Byte Records

.......1--- 256 BYTES ---I~

#33

Filling this 100-record data buffer will certainly take longer than ftlling
a one-record data buffer; but remember, at its slowest, the S/36 can transfer
1.2 MB of data per second from disk to main storage. To fill Figure 10.2's 100­
record buffer using the slowest S/36 drive would take barely a second to
transfer the 100 records); to read 100 records singly from disk would take at
least 3.5 seconds! In this case, record blocking offers a five-to-one perfor­
mance improvement! The example just presented showed blocking for a
sequentially accessed file; other access methods mayor may not fare well with
record blocking, as you will see later in the chapter.

Figures 10.1 and 10.2 imply that the default data buffer for an
unblocked ftle is one record. That is true for record lengths greater than
128 bytes. However, for record lengths of 128 bytes or less, DDM does a little
"built-in" blocking for you. Recall that a disk sector, 256 bytes, is the smallest
amount of disk storage the S/36 can read or write in a single disk operation.
Therefore, a data buffer is always a minimum of 256 bytes. For record lengths
of less than 256 bytes, that 256-byte buffer is filled with as many records as it
can hold. For example, if your application is reading 64-byte records without
using record blocking, each physical I/O actually puts four of the 64-byte
records in the data buffer. Figure 10.3 illustrates the situation: When record 33
is read, DDM also puts records 34, 35, and 36 in the data buffer - even if
your application hasn't explicitly enabled record blocking. No disk I/O is
needed when your application reads records 34, 35, and 36. This is a tidy
example because a 64-byte record length is a submultiple of 256. Let's take a
look at a less-tidy example.

As explained in Chapter 3, records can span sector boundaries. For

150 Desktop Guide to the S/36

Figure 10.4
AMinimum Disk Data Buffer for aFile with 56-Byte Records

FILEA

...

#33

DATA BUFFER WITH FOUR
56-BYTE RECORDS AND
PARTIAL 5TH RECORD

example, a sector might contain four full records and only part of a ftfth. Con­
sider a non-blocked application sequentially reading a me with 56-byte records.
As shown in Figure 10.4, the non-blocked disk buffer is still 256 bytes, but in
this case four complete records and the ftrst 32 bytes of a ftfth record are in the
buffer. The disk VO that puts record 33 into the buffer will also put records 34,
35, 36 and the ftrst 32 bytes of record 37 into the data buffer. DDM will make
the four whole records in the buffer available to your application without any
further VO, ignoring any partial record contents in the data buffer. When the
example application needs the partial record, a physical disk VO operation will
reread that record and refresh the buffer starting with that record. Figure 10.5
shows the data buffer after the program has read record 37.

Many programmers tuning the S/36 swear that record layouts must be
submultiples or multiples of 256 (the size of one sector). These record sizes do
provide for the most optimum usage of data buffers, but with appropriate
record blocking and adequate memory, alternative record sizes don't signift­
cantly degrade performance. In extreme cases, say a record length of
129 bytes instead of 128 bytes, the time to read an unblocked me will double.
If the record length were 128 bytes, two records would be read into the data
buffer with one disk VO operation - with a 129-byte record it will take one
disk VO operation per record (the partial 128 bytes will be wasted on every
read). However, a 3,072-byte data buffer (12 sectors) could hold 23 of the
129-byte records, or 24 of the 128-byte records. With the S/36's fast data trans­
fer rate, the time to fill that buffer is negligible. Effective record blocking
changes the 129-byte record's performance from 50 percent to 95 percent of
the "normal" record length's performance.

Chapter 10 Using DBLOCK and (BLOCK Effectively 151

Figure 10.5
The Data Buffer Shown In Figure 10.4 After Record 37 is Read

FILEA

~ 256 BYTES •

Technical Note

Let your application needs dictate record length - not the myth that records should always
be even submuniples or mu~iples of 256.

Enabling Record Blocking
For S/36 RPG applications, record blocking can be enabled in two ways:

• In columns 20-23 of the RPG F-spec (Figure 10.6). This method speci­
fies the number of bytes to allocate for the data buffer and should
always be a multiple of the record length. For example, if the record
length is 256 bytes, you should specify a value of 512, 1024, 1536,
2048, and so on.

• With the DBLOCK keyword of the OCL FILE statement. Unlike the F­
spec method, this method specifies the number of records to block,
not the total size of the buffer desired. Figure 10.7 shows how you
would use the DBLOCK keyword to block 10 records.

When you specify record blocking with the F-spec, the RPG program
must be recompiled to change the record blocking factor. The OCL DBLOCK
method is better because you can fine-tune record-blocking values without
recompiling. Not only is it easier to change the blocking factors in your OCL,
but it also provides more explicit control. DBLOCK lets you specify blocking
factors that yield data buffers of up to 44 K; the F-spec limits you to 9,999-byte

154 Desktop Guide to the SI36

Performance TIp

See Chapter 13 for a
detailed discussion
about using SMF to
ensure that record
and Index blocking

are helping, not
hurting, performance.

Record Blocking Considerations
Before you enable record blocking, you should carefully consider several fac­
tors about the application. Among them are:

How is the file being read? If the me is a sequential or direct me
being read sequentially or is an indexed me being read consecutively, it's
likely a good candidate for record blocking. For randomly accessed mes,
you need to consider the "locality" of the records being accessed. Remem­
ber, the key to benefitting from record blocking is having the next record
your application needs in the buffer, waiting for memory-to-memory trans­
fer. When a me is processed randomly by key, say for an inquiry applica­
tion, and there is little chance the next record read will be in the me buffer,
blocking will hurt more than help. For indexed mes that use mixed random
and indexed-sequential processing, blocking may be of substantial value if
the me is reasonably organized (i.e., the me has groups of records in key
sequence). For example, an order-inquiry application might randomly access
individual orders, but still find detail records for a given order in physical
key sequence. By blocking the detail me large enough to accommodate the
average number of detail records per order, the application can fetch all the
detail records in a single disk VO.

Some benchmarks presented later in this chapter will show how dra­
matically record blocking for a recently organized indexed me can affect per­
formance. And Chapter 13, in its "cookbook" section, describes a method to
directly measure the effectiveness of blocking for specific applications.

Is the application reading the file also updating the file? Do circum­
stances exist where another appltcatton can update the file? Figure 10.2 showed
PROGA reading FILEA with a l00-record buffer. Imagine that PROGA just read
the fust record in FILEA - therefore filling its buffer with 100 records. For the
next 99 records, PROGA is in turbo mode, zooming through the remaining
data. However, what happens if another program updates the contents of
record 39 just before PROGA is about to read it? PROGA now has a stale copy
of this record in its data buffer!

Never fear: DDM won't let PROGA read obsolete data. Whenever a
program updates a record in a shared me, DDM checks to see whether other
programs using that me have the changed record in their buffers (the check is
fast because DDM keeps a list of the disk address boundaries of all buffers in
use for a me). In the example, upon fmding that PROGA's buffer contained
record 39, DDM would set a "dirty" flag on the buffer (technically called
"marking the buffer invalid"). The next time PROGA tries to read from that me,
DDM sees the dirty flag and refreshes the buffer's contents from disk storage,
retrieving the updated record in the process. Because such collisions tend to

Chapter 10 Using DBLOCK and IBLOCK Effectively 155

be rare, the dirty-buffer mechanism usually doesn't hurt performance with
interactive programs that use blocking.

The situation is different for batch programs. If both the other pro­
gram and PROGA are updating the file sequentially, the two programs could
fmd themselves in "lockstep," requiring buffer refreshes with each read! The
potential performance improvement that record blocking offers could become
an enormous performance penalty in such situations. Avoid the batch stale­
buffer problem by not blocking files when more than one program is reading
sequentially for update.

Is the file opened for add or output-only? For sequential, direct, or
indexed output files, record blocking will be beneficial. Just as blocking helps
defer disk input operations, it can also defer disk output operations. With
buffered output, records are not written to disk until the buffer is full - and
the S/36's fast transfer rate ensures that writing one large block is much faster
than writing many individual records. Even for indexed files with records
added out of key sequence, the records themselves still get written in arrival
order, so blocking the output file helps.

One especially good candidate for record blocking is reading
#GSORT addrout files. A 4 K buffer can hold more than 1,300 of an addrout's
3-byte binary record addresses. When addrout files are appropriately blocked,
the performance improvement is Significant. Other good candidates for record
blocking include:

• Random reads where the records cluster close together. For example,
all detail records associated with a picking ticket, indexed on a trans­
action number. In this case, the blocking factor should equal the aver­
age number of details associated with a picking ticket.

• Multiple records to be read and displayed interactively. For example,
invoice details from a sequential history file. In this case, the blocking
factor should be the same as the number of lines displayed interactively.

• Duplicate key processing. The blocking factor should be equal to the
average number of duplicate key values being processed.

Index Blocking
Index blocking lets your application keep many index entries in memory at
once, reducing disk I/O to the file's index area. Chapter 3 discussed the
"lookup" nature of the S/36 random record retrieval system. Given a key
value, DDM fIrst looks up that key value in a table (the index) to retrieve the
associated relative record number (RRN), and then uses that RRN to read the
data record. Index blocking loads multiple index entries into an index buffer

156 Desktop Guide to the SJ36

Performance Tip

For small Indexed
flies H's possible to

use Index bIocIdng to
put the entire file's

Index In memory.
WHh this method,

random record
access from such a

file could achieve
dlract file-like
performance.

in the same way record blocking loads multiple records into a data buffer.
The resulting reduction in disk I/O to the index area helps in two

ways. First, overall system performance improves as a result of fewer total I/O
operations. Second, application performance improves as a result of reduced
disk arm motion between the index and data areas for a particular file.
Because every indexed access is always followed by a data access, applica­
tions that don't use blocking tend to suffer from a "see-saw" effect: move the
disk arm to the index area and read a key, move the arm to the data area and
read a record, move the arm back to the index area to read another key, and
so on. If enough keys can be kept in memory to reduce repeated returns to
the index area, the disk arm is more likely to be in position over the data area
for the next record operation. Because all index blocking concepts apply to
alternate indexes as well as to a file's primary index, the disk arm might well
have to move a considerable distance from index to data.

Recall that index entries are stored in 256-byte sectors. Index entlies
consist of the key value paired with a 3-byte RRN pointing to the associated data
record. The number of index entries per sector depends on the key length.
Unlike data records, however, index entries do not span sector boundaries. Let's
take an example (Figure 10.9) where key values are 11 bytes long; therefore,
each index entry is 14 bytes long (11 bytes plus the 3-byte binary relative record
number)' For 11-byte key values a sector holds 18 index entries. These 18 key
entries total 252 bytes; the remaining four bytes of the sector are empty.

When an application requests one of the keys in Figure 10.9's sector,
DDM reads that entire sector into memory (because one sector is the least
amount of data the s/36 can read at a time). Accessing any other key in that sec­
tor is done without disk I/O. By default, one sector full of keys is the minimum
your application program will read. But you can explicitly request that more
sectors be blocked. Unlike DBLOCK, !BLOCK can be specified only in OCL,
using the FILE statement's !BLOCK keyword. Figure 10.10 shows the !BLOCK
keyword being used to block 72 keys, which would make four sectors of "mem­
ory resident" keys available to an application. Because a disk seek to the index
area is eliminated, random access to any record with a key in this buffer will
require half the time a random read normally takes. If the records were also
blocked, no disk I/O would be required to read the record. (Coordinating the
efforts of DBLOCK and !BLOCK are covered in more detail later in this chapter.)

Sizing Index Buffers
As with blocked records, the potential performance improvement offered by
blocking index entries comes at a cost. The memory available for index
buffers is limited; if you specify too much index buffering, disk I/O could
increase somewhere else and performance will suffer, not improve. Figuring
proper !BLOCK values would have been much easier if the !BLOCK parameter

Chapter 10 Using DBLOCK and IBLOCK Effectively 157

FIgure 10.9
One Sector Full of Keys

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Key RRN Key RRN Key RRN

Eighteen 11·byte keys (18 x 14 =252) 4bytes in sector wasted.

Figure 10.10
OCL Showing IBLOCK Keyword

II LOAD PROGA

II FILE NAME-AFILE.DBLOCK-10.IBLOCK-72

II RUN

accepted the number of bytes to block, instead of the number of keys. As it is,
to determine the size of the index buffer an IBLOCK specifies, you must:

• Calculate the number of index entries per sector
• Determine the number of sectors requested
• Multiply the number of sectors requested by 256

Let's look at an example using an IBLOCK value of 200 with a 16-byte
key. First, calculate the number of index entries per sector:

2561 (16 + 3) =13.47

There are 13 16-byte keys in a sector - the remainder is discarded. Next,
determine the number of index sectors requested by dividing the IBLOCK
value by the index entries per sector:

200113 = 15.38

That value, rounded to the next whole number, reveals that 16 sectors need to
be read to fIll an index buffer with the IBLOCK number of keys specified. To

158 Desktop Guide to the SI36

Figure 10.11
IBLOCK Factors for Desired Index Buffer Size

Find key length in left column and desired IBLOCK factor in shaded area.

Desired IBLOCK buffer size in K

detennine the byte size of that index buffer, multiply the number of sectors to
read by 256:

16 X256 = 4,096-byte buffer

Chapter 10 Using DBLOCK and IBLOCK Effectively 159

This reveals that using an IBLOCK value of 200 with a me with a 16-byte key
creates a 4 K index buffer.

You may agree that it would have been easier to specify the IBLOCK
value in bytes. You can avoid this math madness by using the chart shown in
Figure 10.11. 1bis chart shows IBLOCK values for 1 K, 2 K, 4 K, 8 K, and 10 K
index buffers for ftles with any size key. To use the chart, look up the key
length in the left column and follow the row across for the IBLOCK value. For
example, to allocate a 4 K index buffer for a me with a 16-byte key length, the
IBLOCK should be 208. For a 27·byte key with a 2 K buffer, use IBLOCK-64.
And for a 33-byte key with an 8 K buffer, use IBLOCK-224. The number of
keys per sector is included in the table for informational purposes only. Use
this chart as a guideline - if main storage isn't available, or the total size of
record and index buffers for a given file exceeds 44 K, the system may allo­
cate less buffer space than you requested.

Technical Note

Use the table in Figure 10.11 to easily determine the IBLOCK value required to achieve a
certain index buffer size.

Index Blocking Considerations
Blocking index entries can also substantially decrease application response
time or batch program execution time. However, as with record blocking,
there are certain considerations to keep in mind. Among them are:

Is the file being read in key sequence - and has thefile been keysorted
recently? Recall from Chapter 3 that indexes, unlike the actual data
records, must be maintained in key sequence. If a ftle has recently had
a true KEYSORT performed on it (see Chapter 3 for more about a true
KEYSORD, its index will be free from overflow keys and performance
will be increased by blocking many index entries for a file read
sequentially by key. If a me has not had a true KEYSORT performed
on it recently, and if many index entries are in the overflow area,
index blocking is not likely to improve performance. Don't confuse
physical data record order with the index being in order. As long as
the index has been KEYSORTed recently (to purge index entries from
the overflow area), your application will benefit from index blocking.
It doesn't make any difference whether or not the data me has been
reorganized recently into physical key sequence. Remember that index
blocking puts a chunk of index entries in memory; it doesn't affect

160 Desktop Guide to the SI36

!BLOCK's performance if those index entries point to non-contiguous
RRN's in the actual data me. Of importance to your application is that
the index entries, with their associated RRNs, are in memory. The
Index Doctor utility (Chapter 11) lets you directly determine the exis­
tence and size of an overflow area for a given me or alternate index.

Is your application randomly adding many keys to an index openedfor
shared access? When records are added to shared indexed files or
alternate indexes, DDM maintains key values in the index overflow
area in key sequence. If your application is adding records in random
key sequence to a shared me, !BLOCK is not likely to improve perfor­
mance. However, if your application has exclusive use of the output
me, DDM will not attempt to keep the index overflow area in key
sequence; it wUl simply dump new keys at the end of the index buffer,
writing the buffer to the overflow index whenever it fills. In this case
blocked index entries - even in random order - may improve per­
formance. A subsequent KEYSORT (either explicitly or automatically
initiated by SSP when the next program opens the index) will clean up
the out-of-sort entries (see Chapter 3 for more on this topic). In this
case, set !BLOCK as high as you can or to the maximum number of
records being added. Don't forget about the "hidden" way keys are
added to an index - when updating a me having alternate indexes. If
you change part of a data record that happens to be an alternate-index
key, DDM deletes the old key and adds a new one to reflect the
changed data. For shared alternate indexes, !BLOCK will degrade per­
formance; for unshared alternates, !BLOCK can be a big help.

Can you block the entire file's index? For small files, you can often
achieve spectacular random access performance if you block the
entire file's index. Consider an indexed salesperson me for a pOint-of­
sale application. For each invoice written, the salesperson me must be
read, but it will be read randomly because there is no way to predict
who wrote the next invoice. The entire index for a 250-record sales­
person me having a 4-byte key can be buffered in less than 2 K (250
x (4 + 3) = 1,750 bytes). Beware, though, that whenever a new
salesman record is added or has its key changed, the application's
index buffer will need to be refreshed. Use this technique only with
mes maintained infrequently.

Is your application reading sequentially by key an indexedfile recently
organized in the same key sequence? If so, a combination of DBLOCK
and !BLOCK could really improve performance. A large index buffer
coupled with a large data buffer is a terrific combination when you

Chapter 10 Using DBLOCK and IBLOCK Effectively 161

expect that both index and data requests will occur in physical
sequence. Use DBLOCK and IBLOCK together carefully, though. If the
data me has not been organized in key sequence recently, the disk
thrashing required to continually reml the data buffer with the correct
records could severely reduce performance.

Where Buffers Live
Although DDM keeps buffers in memory, it doesn't always keep them in the
same virtual region as your program. If all the space in your program's 64 K
region is used up (by the program itself, for example), DDM puts the buffers in
a Task Work Space (7WS) that provides an additional me buffer space. But
because lWS-resident buffers aren't part of the same address space as your pro­
gram, DDM must jump through some extra hoops to access them. The result is
slower record and key retrieval, and consequent blunting of blocking's advan­
tages. The size of record and index buffers determines where DDM keeps them.

When a program initiates, DDM allocates data and index buffers
dynamically, in the order in which the mes are listed in the F-specs of the RPG
program (not in the order in which they are listed in the OCL). DDM starts
plaCing buffers in memory immediately after the end of the program. As each
buffer is allocated, DDM checks to see if it will fit in the remaining memory
(up to the 64 K region size). If it won't, DDM creates the lWS and allocates
that buffer there. All subsequent buffers also end up in lWS. You can see that
the best-case scenario is for the application program and all its buffers to fit
within the S/36's notorious 64 K region size.

Figure 10.12 shows an 18 K program using two meso FILEA (opened
first) has a 10 K record blocking buffer and an 8 K index blocking buffer;
FILEB has an 8 K record blocking buffer. In this case, the total size of the pro­
gram and the buffers (44 K) fits within the 64 K maximum region size. These
buffers are called appended buffers because they are appended to the pro­
gram's region. You get the best results with blocking when all buffers are
appended within the program's region, as Figure 10.12 shows.

Figure 10.13 shows a 26 K program, using three meso In this case,
FILEA has a 12 K appended record blocking buffer and a 6 K appended index
blocking buffer; FILEB (specified second in the RPG program) has a 16 K
appended record blocking buffer. After opening FILEA and FILEB, the pro­
gram's partition has used 60 K of its available 64 K. However, FILEC (specified
third in the RPG program, and opened last) has an 18 K record blocking
buffer, which won't fit in the remaining 4 K. DDM must create a lWS to hold
the oversized buffer. Using lWS will decrease performance Significantly
because DDM must change addressability - a process called mapping - to
access the non-appended bufffers. If your program reads records alternately
from appended and unappended buffers, the extra overhead for mapping can

Performance Tip

Hthe total size of an
RPG program and Its
buffers exceeds 64 K,
you mIght Improve
performance by
opening sequentially
processed fIles first
to place theIr buffers
wHhln the program's
64 Kregion. Do this
by listIng the
sequential flies first In
the RPG F-specs. H
your S/36 has plenty
of main storage, the
Impact of randomly
processed files wHh
non-appended buffers
affects performance
less than sequentially
processed mes with
non-appended
buffers. Generally,
though, your goal
should be to have no
non-appended
buffers.

162 Desktop Guide to the SI36

figure 10.12

18 KProgram with Appended Buffers

18K PROGRAM

64K 10K DBLOCKPROGRAM FILE A
REGION

8KIBLOCK

8KDBLOCK FILEB

20K UNUSED

overcome completely any performance advantage gained by blocking. As a
general rule, if record or index blocking causes the creation of 1WS buffers,
they are not worth the resulting disk activity and the related DBLOCK and/or
IBLOCK values should be reduced. You can see if a running program has
1WS buffers by checking the "BUFF" column on the STATIJS USERS display.
Any entry in this column indicates 1WS buffers.

If Figure 1O.13's FlLEB was a randomly accessed me and FlLEC was a
sequentially accessed me, it might be possible to improve performance by
swapping the order in which those files are defmed in the RPG program. This
would force FlLEC's buffer to the program region and make FILEB's buffer the
one that goes into 1WS. But rather than juggle file order to manage record
buffering, you probably will fmd it of more value to reduce all the DBLOCK
and IBLOCK factors involved to ensure that all buffers are appended to the
program region.

Allocating Appropriate Buffer Sizes
As you can see, it's very important to allocate reasonable buffer sizes. Before
you start experimenting with DBLOCK and IBLOCK factors for a program,
determine the program's existing, non-blocked memory utilization. To ensure
that the program is at record and index blocking ground-zero, remove any
record blocking values in columns 20-23 of the F-spec and recompile the pro­
gram. Also ensure that no DBLOCK or IBLOCK values currently exist in the
program's OCL. With the non-blocked program running, use the STATIJS

Chapter 10 Using DBLOCK and IBLOCK Effectively 163

Figure 10.13
26 KProgram with Unappended Buffers

26 KPROGRAM

64K
PROGRAM
REGION

12KDBLOCK
FILE A

6KIBLOCK

16KDBLOCK FILEB

4K UNUSED

118K~ I}RLEC

UNAPPENDED BUFFER
IN TASK WORKSPACE

USERS CD U) control command from another workstation to determine the pro­
gram's non-blocked, bare-bones memory utilization. A screen like the one
shown in Figure 10.14 will be displayed. On this screen, the third column from
the right, the RGN column, shows the program size. The PGM column, the sec­
ond from the left, shows the total of the program region and any appended
buffers. The last column on the right shows the amount of 1WS allocated for
unappended buffers.

Let's assume we're performance tuning the program NEWK17, called
by procedure POSt. In this case, the STATUS USERS screen shows that the
program uses a non-blocked 30 K program region size. This program has 34 K
for which record and index buffers can be allocated before any buffer is
assigned to 1WS. Using the record and index buffer sizing information from
earlier in this chapter, you could now start to performance tune NEWfK7 by
specifying various DBLOCK and IBLOCK factors to allocate appropriately
sized buffers. Each time you make a change, run the program and check the
STATUS USERS screen again.

164 Desktop Guide to the S/36

Rgure 10.14

Status Users Screen

Complete STATUS USERS
W4

JOB PROC PROGRAM STATUS ATTRIBUTES PRTY RGN PGM BUFF
W8192239 POS1 NEWTK7 Active SRT Norm 30K 30K
W5132557 POS2 NEWTK7 Active SRT Norm 30K 62K
W9313158 POS3 NEWTK7 Active SRT Norm 30K 42K @>

Unappended Buffer ~

Cmd7-End Cmd8-Help Cmd15-Update Cmd16-Restart Ro ll-Page

JOBS

Control jobs and the job queue

1. Display a specific job 6. Change processing priority
2. Jobs on the job queue
3. Stop a job
4. Restart a stopped job 9. Prevent SSP-ICF jobs
5. Cancel a job 10. Allow SSP-ICF jobs to start

Ready for option number or command

COPR IBM Corp. 1983

The second line of Figure 10.14 shows POS2, a copy of procedure
POS1 with some blocking factors. In this case, 32 K of buffers have been allo­
cated, and because they fit within the program's 64 K region, no appended
buffers are created. Notice how the PGM column for POS2 has increased to
62 K, the total of the 30 K program size and the 32 K of file buffers. The third
procedure, POS3, shows what happens when you get carried away. Here,
12 K of buffers did fit within the program region (as indicated by the PGM
size of 42 K), but 34 K of buffers did not and a non-appended buffer was cre­
ated in a 1WS. Performance will almost certainly suffer for procedure POS3.
Keep a close eye on the STATUS USERS screen and try not to let any task
acquire appended buffers because DBLOCK and IBLOCK factors are too large.

Technical Note

If you use external program calls from any vendor, beware that data buffers for called pro­
grams are allocated in Task Work Space and therefore always show on the
STATUS USERS screen in the BUFF column.

Chapter 10 Using DBLOCK and IBLOCK Effectively 165

Benchmarks
Here are a few benchmarks showing the upside (perfonnance gains) as well
as the downside (performance degradation) possible with record blocking.
These tests were performed using a program needing a 34 K region and read­
ing a 5,OOO-record, 256-byte record-length me sequentially. In each case, the
tests were performed on a similarly burdened S/36:

DBLOCK-l 404 seconds

DBLOCK-50 30 seconds

DBLOCK-93 26 seconds

DBLOCK-IOO 356 seconds

Note the difference between 93 records and 100 records. Buffering 100
records required an unappended buffer and ruined performance.

To read an indexed, 5,OOO-record, 256-byte record-length me sequen­
tially by key:

DBLOCK-25 IBLOCK-IOO 619 seconds

After organizing the me:

DBLOCK-25 IBLOCK-IOO 33 seconds

Notice what a difference reorganizing the me made. Frequent me reorganiza­
tion and prudent use of DBLOCK and IBLOCK can really speed sequential,
by-key processing.

Technical Note

Use the DBLOCK keyword of the OCL FILE statement to enable record blocking - do not
use columns 20-23 of RPG's F-spec. DBLOCK doesn't require recompiling the program to
change blocking.

Mental Blocking
Proper record and index blocking can give you vastly improved perfonnance;
improper blocking can destroy performance. The only way to know for sure
whether blocking is helping or hurting is to think through your blocking strat­
egy in light of the facts presented in this chapter - and then measure perfor­
mance (see Chapter 13) to confirm that you're getting expected results.
Achieving good results is a mental exercise, not a random act. Keep in mind
that blocking is most useful for standalone sequential batch accesses, and only
somewhat useful in heavy interactive or multibatch environments. You should

166 Desktop Guide to the SI36

explore disk caching (see Chapter 15) - a sort of system-wide blocking factor
- as an alternative when blocking individual programs doesn't give you the
results you want.

Chapter 11 Prescriptions for Healthy DDM 167

Chapter 11

Prescriptions for Healthy DDM
As we've mentioned elsewhere in this book, Disk Data Management (DDM)
performance often leaves a lot to be desired. Previous chapters have
explained some of DDM's crippling affects and warned of their impact on per­
formance. In this chapter, we'll look at strategies and utilities you can use to
shore up some of DDM's weaknesses. You're not likely to need all the tips
and techniques presented in this chapter in anyone application. Before you
jump in and start implementing anything shown here, it will help to have read
or at least skimmed some of the earlier chapters that explain S/36 DDM and its
limitations. With just a brief understanding of DDM limitations, the tips and
strategies in this chapter will make more sense and be easier to implement.

When squeezing the most out of your S/36, the adage "the best defense
is a good offense" really applies to DDM. By knowing where DDM is weak, and
how to code around those weaknesses, you'll really ramp up performance. In
this chapter we present three tools to help you circumvent DDM weaknesses:
Index Doctor checks out indexed files for performance-robbing conditions;
KEEPOPEN holds storage indexes open to reduce program initiation time;
SHOWUR reveals deadly embraces that can shut down interactive applications.

Is There aDoctor In the House?
Chapter 3 covered extenSively the detrimental effect that the S/36's method of
random record access has on performance. There, we discussed the primary
and overflow areas of an indexed file, and we warned you that how DDM
processes the index overflow area can sometimes impede performance drasti­
cally. To know what action to take to avoid DDM's problems, you need a way
to diagnose an index's general health. That's where Index Doctor comes in.
Index Doctor (included on the "Desktop Guide" diskette) is a utility that ana­
lyzes 5/36 indexed files (parents and alternates) for deleted keys, duplicate
key strings, and index gaps. After diagnosing the index, Index Doctor prints a
report of its fmdings. Based on Index Doctor's diagnosis, you'll know if a file
should be organized, keysorted, or perhaps even re-allocated to a larger size.

Running Index Doctor is a Simple matter of calling procedure INDEXDR.
The procedure has four parameters, the first of which is required; the remain­
ing three are optional. The ftrst parameter is the name of the file you want to
analyze. The second parameter is an optional file date. Index Doctor's calling
sequence is:

INDEXDR file name, [file date),[Y/N) ,[YIN)

170 Desktop Guide to the srJ6

remove the offending deleted keys.
After printing its primary index analysis, Index Doctor prints ·its over­

flow index analysis. Again, duplicate key strings are reported, as well as index
gaps. (Remember that index gaps are "holes" that DDM places in the overflow
to minimize the number of keys that must be moved down when a new key is
added. See Chapter 3 for a compete explanation of index gaps.) The index
gap detail line shows the relative key offset of the gap from the beginning of
the overflow ("Index gap at:"), the number of keys that can fit in the gap
("Count:"), and the key immediately preceding the gap ("Key:").

Following the duplicate key and gap detail lines on the report are the
total dup key strings, total gap keys, and total keys in the overflow. Deletes
are omitted from the overflow index report because a deleted key in the over­
flow index is looked upon by DDM as a gap, and Index Doctor will report it
as such. This also means that deleted key locations in the overflow index can
be reused, whereas in the primary index they cannot because, as you may
recall, keys are never added to the primary index.

Technical Note

Force a real keysort by using "KEYSORT filename",CHKDUP".

Taking Action
Here are some things to notice and possible action steps to take after review­
ing an Index Doctor report. Most (but not all) of the follOwing diagnoses are
taken from the sample report in Figure 11.1.

Diagnosis 1: There is only one key slot available in the last gap.
Adding a record with the key value "8070Y" won't cause a problem - a slot
is available for it. But then adding "8070Z" will cause a pre-emptive keysort to
degap the me. Subsequent record adds will cause the ripple-add effect.

Action: Force a real keysort on the me (KEYSORT filename",CHKDUP
- as discussed in Chapter 3), reorganize the me, or enlarge the file.

Diagnosis 2: At the most, there are only 31 key slots available in any
of the overflow gaps. If more than 31 records are added to the me with key
values greater than "8012L," a pre-emptive keysort will be called to degap the
me and subsequent adds will be very slow.

Action: Force a real keysort on the me or reorganize it. Also consider
presorting input records to be added to this file in key sequence before
adding them.

Chapter 11 Prescriptions for Healthy DDM 171

Diagnosis 3: There are few key slots available in the last gap (in this
case, only one). This could indicate the me has not been allocated large enough.

Action: Consider reallocating the file with a larger size. This won't
guarantee more gaps after subsequent adds, but it will probably help.

Diagnosis 4: There are large duplicate key strings.
Action: If possible, the me and applications should be modified to

minimize the length of duplicate key strings. See Chapter 3 for a detailed dis­
cussion about the impact of duplicate keys and how to avoid them.

Diagnosis 5: When the "Keysort index" status is "yes," it indicates that
the me may need to be keysorted. This is caused by many records being
added to the me, resulting in a large overflow index area.

Action: Perform a real keysort or organize the file. If you notice this
continually happening for a given file, consider performing a real keysort
every night for the offending me.

Diagnosis 6: The file contains deleted keys but is not currently
delete capable.

Action: Reorganize the file to remove deleted keys.

Diagnosis 7: The file contains duplicate keys but is not currently
duplicate-key-capable.

Action: Reorganize the file to remove the duplicate keys or use
COPYDATA to copy the me to a duplicate-key-capable me.

You don't need to use Index Doctor daily for every me, but consider
using it once or twice a month on your large indexed mes, just as a "check­
up." By taking the recommended action steps, you'll increase interactive
response time, reduce the time required for random indexed adds, and
decrease job initiation time.

Keeping Storage Indexes Open
For every indexed me your applications use, the system must scan each me's
entire index and build a storage index. Recall from Chapter 3 that a storage
index is an index to the index. The storage index's table of index values and
track numbers is used to narrow the index search down to the appropriate
track. With a storage index, the system scans only the appropriate track look­
ing for key values, which dramatically improves random record retrieval times.

However, using storage indexes has a cost: slower job initiation. For
each indexed me your application uses - not already opened by another pro­
gram - the system must scan the entire index to build a storage index. Building

172 Desktop Guide to the S/36

storage indexes over and over again for the same large indexed flles throughout
the day results in seemingly random delays in program initiation and erratic
response times. You can rectify this situation by forcing all frequently accessed
indexed flles to remain open throughout the day.

Remember that DDM keeps storage indexes in the System Queue
Space - part of the non-swappable nucleus - and that aU users of the flle
share the same storage index. Figure ll.2a shows PROGA using FILEA. When
PROGA started, no other user was currently using FILEA and therefore there
was currently no storage index in memory for FILEA. PROGA's initiation
required that the storage index shown in Figure ll.2a be built. Figure 11.2b
shows that when PROGB (which also uses FILEA) initiates, it will share the
storage index created by PROGA's initiation. PROGB will initiate faster because
the storage index it needs is already in memory. You can see that no user actu­
ally "owns" a storage index. Only the ftrst user must endure the delay, caused
when the storage index is built. The problem is that when the last program
using the flle ends, DDM discards the storage index. Then the next program to
open the flle must wait while DDM rebuilds a new storage index.

The trick, then, is to achieve persistent storage indexes by tricking oft­
used, large indexed flles into remaining open aU day long. For example, let's
say you had three large flles you'd like to keep open all day so their storage
indexes would persist for all users. One solution is to evoke a procedure like
the following:

II FILE NAME-APTRANS,DISP-SHRRM,JOB-YES

II FILE NAME-APVEND,DISP-SHRRM,JOB-YES

II FILE NAME-CUMASTER,DISP-SHRRM,JOB-YES

II WAIT INTERVAL-080000

One limitation is that this method will neither open the flles nor cause the
storage indexes to be created. It will Simply hold the flles open for eight hours
after the ftrst real application opens them. Job initiation for the ftrst user of
each me will not be improved. A greater limitation is that this method can
only be stopped interactively from the system console. Should any other appli­
cation require exclusive use of any of these three flles, operator intervention at
the system console is required.

Another way to keep flles open is to write a customized MRT-NEP
program - a Multiple Requester Terminal program that has its Never-Ending­
Program attribute set - with F-specs and a dummy read operation for each flle
you want to keep open all day. Unlike an ordinary Single-Requester-Terminal
(SRi) program, which is not capable of releasing the requesting display station,
a MRT-NEP program can release its requester and remain active. The MRT-NEP
does not tie up a workstation or cause the system to perfonn unnecessary pro­
cessing because once activated, the MRT-NEP remains in a suspended state.

Chapter 11 Prescriptions for Healthy DDM 173

Figure 11.28
One Program Using One File

FILEA

FILEA
STORAGE PROGA

INDEX

Figure 11.2b

Two Programs Using One File

'- ­ -1FILEA
PROGA

I FILEA
STORAGE

INDEX

- PROGB

This method could be canceled from any workstation, but it requires recompil­
ing the program each time you need to modify the list of mes you want kept
open. You're also limited to only 15 mes per MRT program. To keep more than
15 flles open would require additional MRT programs.

A better way to keep often-used indexed flles open is with a combi­
nation of the two techniques. This method requires three short procedures
and one short MRT-NEP program. Figure 11.3a shows the main procedure,
KEEPOPEN. Initiating KEEPOPEN causes each referenced me to be opened
(and remain open) and their storage indexes to persist as long as necessary.
KEEPOPEN should include the following code for each me you want to keep
open:

II FILE NAME-filename,DISP-SHRRM,JOB-YES

KOPENF filename, [storage index size in K]

174 Desktop Guide to the S/36

Figure 11.38

Procedure KEEPOPEN

*--­
* Allocate specified files as JOB-YES and open the
* storage index for each one.
*--­
* Insert a pair of lines as shown for each file you
* to keep open all day long

*

II FILE NAME-APTRANS,DISP-SHRRM,JOB-YES
KOPENF APTRANS
*
II FILE NAME-APVEND,DISP-SHRRM,JOB-YES
KOPENF APVEND
*
II FILE NAME-CUMASTER,DISP-SHRRM,JOB-YES
KOPENF CUMASTER
•
KPOPEN2

Figure 11.3b

Procedure KOPENF

II LOAD $COPY
II FILE NAME-COPYIN,LABEL-?1?,DISP-SHRRM,STORINDX-?2'YES'?
II FILE NAME-COPYO,LABEL-COPYTEMP,RECORDS-1,RETAIN-S
II RUN
II COPYFILE OUTPUT-DISK
II SELECT KEY,FROM-'¢',TO-'¢'
II END

Figure 11.3c

MRT Procedure KPOPEN2

I I LOAD KPOPEN
II RUN

The ftrst line uses the / / FILE statement's JOB-YES parameter to enable the mes
to stay open after KEEPOPEN ends and the second line calls procedure
KOPENF (Figure 1l.3b). KOPENF uses $COPY to cause the specifIed me to be
opened and a storage index created for it. The cent-sign character is used as the
select key value because it is unlikely to be part of a character key and it cannot
be part of a packed key. Using $COPY to force the me open is necessary

Chapter 11 Prescriptions for Healthy DDM 175

Figure 11.3d
MRT·NEP Program KPOPEN

H KPOPEN
F* +-- -+
F*

F* I N 0 I CAT 0 R USA G E

F*

F* 01 Blank input record. used when starting the program

F* 02 Non-blank input record. used to cancel the program

F*

F* +-- -+
FSCREEN CP F B0 B0 WORKSTN
F KFMTS *NONE
1SCREEN NS 01 1 C
I OR 02
1*
c· +-- -+

C* I A non-blank input record causes the program to be cancelled. I
C· +-- -+
C 02 SETON LR
O· +-- -+

0* I Release the requesting workstation.
O· +-- -+

OSCREEN DR 01

because the I I FILE statement alone does not cause a storage index to be built.
After thel I FILE statement and call to KOPENF for each me in KEEP­

OPEN, KEEPOPEN calls the MRT procedure KPOPEN2 (Figure 1l.3c), which
uses the MRT-NEP program KPOPEN (Figure 11.3d). KEEPOPEN ends after
the call to KPOPEN2 but KPOPEN causes the job, and therefore the JOB-YES
attribute, to persist until KPOPEN ends. As long as the MRT-NEP program
KPOPEN is active, the mes specified in KEEPOPEN remain open and their
storage indexes persist.

Now comes the tricky part. There might be times during the day
when an application needs exclusive use of a me being held open - say, to
reorganize the me. You need a graceful way to end the MRT-NEP program
KPOPEN from any workstation.

How do you end KPOPEN? By calling the KPOPEN2 procedure with
any parameter value. Any data following the procedure name that initiates a
MRT program can be read by that MRT program as its first input record. If
KPOPEN2 were called with KPOPEN2 NOW IS THE TIME, the characters
NOW IS THE TIME are passed to the KPOPEN program as the first input
record. This technique will be used to end the KPOPEN program on demand.
The scheme is Simple: A blank first input record (a call to KPOPEN2 without
any parameters) starts the program, and a non-blank record (a subsequent call
to KPOPEN2 with any parameter value), ends the program. To end KPOPEN

176 Desktop Guide to the S/36

from any workstation or any other procedure, simply use the line "KPOPEN2
CANCEL". "CANCEL" gets passed as a non-blank record to MRT program
KPOPEN, causing it to end and the mes being held open to close. Note that
any value would work; "CANCEL" is used to aid readability.

The primary me in program KPOPEN is a WORKSTN me. KPOPEN
does not read or write to the workstation me; all input for the workstation
program actually comes from data passed as the ftrst input record by the MRT
procedure. The program always processes exactly one input record and
releases the requester after handling this input record. Because the program
never reads or writes to the workstation device, you don't need to defme a
screen format member; thus, in the F-specs, you code a KFMTS continuation
line specifying -NONE.

Technical Note

To close all files being held open by the MRT program KPOPEN, end KPOPEN from any
workstation or any other procedure by calling procedure KPOPEN2 with afirst parameter
value of CANCEL (KPOPEN2 CANCEL). This causes the MRT program KPOPEN, to end,
which closes all files that are specified in procedure KEEPOPEN to be closed and causes
their storage indexes to go away.

Because all existing references to mes being kept open must allow
me sharing, you may have to change me dispositions in a few existing proce­
dures. If you have mes that can't be shared, you can either modify the existing
FILE statement to allow sharing, or, if the application absolutely requires dedi­
cated use of a me, you can add the necessary OCL statements to cancel the
KEEPOPEN procedure before continuing (e.g., adding II IF ACTIVE KEEP­
OPEN KOPEN2 CANCEL). If you have many programs that do not allow me
sharing for large indexed mes, you may need to make a lot of changes to your
FILE OCL statements. But the performance improvements this technique pro­
vides are worth the effort.

You can optionally override the SSP default storage index size by
specifying the maximum size of the storage index desired as the second para­
meter to the KOPENF procedure. For example,

KOPENF WI LMA. 16

would request a 16 K storage index for me WILMA. The maximum storage
index size must be a number from one through 16. Based on memory avail­
ability, the SSP will attempt to use this value to allocate that size storage index,

Chapter 11 Prescriptions for Healthy DDM 1n

but the actual index created may ~ smaller if enough memory isn't available.
Unlike DBLOCK and IBLOCK record buffers, memory allocated for the storage
index is never placed in a task work space; rather, storage indexes are always
in the System Queue Space of the variable nucleus.

Technical Nole

If you have one application that runs all day, that application might be doing what KEEP­
OPEN would do: hold your largest indexed files open - causing their storage indexes to
be available to all subsequent users. Typical applications like this include inquiries running
on dedicated workstations or point-of-sale programs that run all day. Although chances are
that no one application keeps all of your large indexed files open, examine which applica­
tions run all day and which files they keep open before implementing KEEPOPEN.

The Proof is in the Performance
Figure 11.4 shows benchmark results of using KEEPOPEN on a dedicated
S/36 5360 Model D with a frequently used interactive program that references
a large indexed file (630,000 records) that has one alternate index. The pro­
gram also references other, smaller files. When not using the KEEPOPEN
technique, it takes about 22 seconds to initiate the interactive program on a
dedicated system; if the system is being used by other jobs, the program
takes approximately 47 seconds to initiate. With the KEEPOPEN technique, it
takes less than two seconds to initiate the program on a dedicated system; on
a non-dedicated system, initiation time is less than three seconds. If all the
indexed files used by the program are already open, initiation time is less
than one second on a dedicated system, and less than two seconds on a non­
dedicated system.

Using KEEPOPEN saves 21 seconds on a dedicated system and 45
seconds on a typically loaded system. When you multiply the number of
large indexed files on your system by the number of times you open those
files each day, KEEPOPEN adds up to Significant time savings with little pro­
gramming effort.

Avoiding the Deadly Embrace
Even with the deficiencies we've discussed throughout this book, S/36's DDM
deserves a lot of credit. While it's true that DDM is occaSionally much slower
than we'd like, it is very reliable, and it's easy to take that reliability for grant­
ed. Yet, as robust as DDM is, there are still times when a little defensive cod­
ing can avoid record contention problems. Consider two interactive programs

178 Desktop Guide to the SJ36

figure 11.4
KEEPOPEN Performance Benchmarks

Conditions Dedicated system Typically loaded system

No storage index in memory 22 seconds 47 seconds

Indexes for the two larges files <2 seconds <3 seconds
(>630,000 records) in memory

Indexes in memory for all files < 1 second <2 seconds
used by the program

both reading the same two mes for update. Figure 11.5 shows that program A
has read me Y's record YI for update and that program B has read me X's
record Xl for update. Each application has that record currently locked for
update. After reading those records, program A attempts to read me X's record
Xl for update, and shortly thereafter program B attempts to read file Y's
record YI for update. Program A is waiting for record Xl and program B is
waiting on record YI. In this case, program A and program B can't proceed
because they are both waiting on records each other has locked.

A deadly embrace has occurred. Program A is waiting on program B
to release a record and program B is waiting on program A to release a
record. These record releases are contingent upon each other and will never
happen naturally. One of the two programs must die to resolve the conflict.
The problem is especially nefarious because the deadly embrace triggers no
messages or other explicit warnings - program A and program B just sit there
waiting on the end of time.

A less critical, though often just as annoying, offense is a one-way
embrace. Here, program A reads a record for update. That record is locked
awaiting operator input and, of course, while that record is locked, no other
applications can read it for update. If they try, they wait. Quietly. If the operator
at program A goes to lunch with the locked record on her screen, other applica­
tions that request that record for update must wait for the operator to get back
from lunch. Now, this isn't deadly. A natural, albeit slow, conclusion is possible.
But with many operators pounding on the same flIes, the one-way embrace can
be very annoying. Forget lunch: Other applications can be brought to a screech­
ing halt if the operator Simply walks away to check on an invoice.

Note also that avoiding the one-way embrace isn't just an operator
problem. Your code probably provides a "back-upn command key to back out
of an input screen that is updating a locked record. However, unless your
code explicitly unlocks the most recently read record for update, the potential

Chapter 11 Prescriptions for Healthy DDM 179

Rgure 11.5
Diagram of aDeadly Embrace

FILE X FILEY

r----­
I
I

-----,
I
I
I
I
I
I
I
I
I
I

o o
W W

S Srn N N rn
I I
I I
I I
I I
IL _____ _ I

PROGRAM PROGRAM I
I

A B I
I

_______ J

exists for a one-way embrace to persist, even if your operator thought she did
the right thing by backing out of the field input screen.

The traditional coding sequence that leads to a deadly or one-way
embrace looks something like:

Display screen to get key values

Read a record from file A

Read a record from file B

Display screen for new field values

If CMD-3 go to previous screen

Update file A

Update file B

Display previous screen

Not only is this code exposed to the deadly embrace, but even if the operator
cancels the second screen with CMD-3, this code leaves the records read for
update locked - exposing the one-way embrace. Those two records will stay

180 Desktop Guide to the S/36

locked until this program reads (and locks) other records or until the operator
ends the program.

Technical Note

Batch programs, though not totally immune, are unlikely to suffer from the deadly embrace.
It takes apause, aprogram waiting on something, to cause adeadly embrace. Apause
such as one caused by adivide by zero or other such error could lead to adeadly
embrace, but it's unlikely. Generally, avoiding the deadly embrace is astrategy you need
only in your interactive programs.

The solution is simple and, as the programmer, it is your responsibili­
ty. You must write all your interactive programs with the No-Intention-To­
Update (NITU) strategy. With NITU, each time a record is read for update,
unless immediate updating will follow with no intervening wait on worksta­
tion VO, the record is explicitly and immediately unlocked. later, after your
program has collected the values to write to the record for update, the record
is reread and updated.

Figure 11.6 shows a coding algorithm that uses the NITU strategy to
avoid the deadly and one-way embrace. Using the NITU strategy, records are
always immediately updated or released after being read. Records are always
locked for as little time as possible. With the code in Figure 11.6, either record
embrace situation is impossible and the user is alerted to changes made by
other users.

Figure 11.7 shows the NITU algorithm written in RPG. Note that after
the fields for each update file are listed on the I-specs, as many 256-byte fields
(RPG's character field limit) as necessary are also defined to defme record con­
tents prior to update. The INIT subroutine uses the DEFN opcode to define
"holder" fields for these values and subroutines SVRECA and SVRECB are used
to save the contents of each record. After each record has been reread, the
VLRECA and VLRECB subroutines are used to determine whether changes
have occurred since this application last read either record. Your application
will determine the strategy required if the record has been modified. For some
applications, it might be OK to continue with me update anyway; for others,
you'll need to alert the operator and provide a way for the operator to re-enter
the field values.

Using the NITU strategy is bothersome because it requires more code
and more attention to detail than the sloppy, "embraceable" code does. How­
ever, if you take the time to implement the NITU strategy in your applications,
they will be more robust and free of potential record conflicts.

Chapter 11 Prescriptions for Healthy DDM 181

Figure 11.6

An Algorithm Using the NITU Strategy

Display screen J to get key values

Read a record from file A

Save contents of record

Release record

Read a record from file B

Save contents of record

Release record

Display screen K for new field values

If CMD-3 go to previous screen

Reread record from file A

If record value - saved record value

update fil e A
else

another user has changed record. alert user
endif

Reread record from file B

If record value - saved record value

update file B

else

another user has changed record. alert user
endif
Display previous screen

Who is the Culprit?
Agreeing with the need for the NITIJ strategy is one thing; re-engineering all
your applications to use it is another. You probably don't need to sit down
this weekend, slogging through all your interactive applications and convert­
ing them to the NITIJ strategy. But each time you modify or ftx (if your appli­
cations are like ours, a little bug spray is needed now and then) one of those
applications, consider adding NITIJ coding to them. In the meantime, you'll
need help spotting the nefarious deadly and one-way embraces we talked
about. Utility SHOWUR is just what you need.

SHOWUR determines which records for a me are locked and which
job is responsible. By using SHOWUR, you can zero in on the "embracing" cul­
prit and force an end-of-job to the offending application. Without SHOWUR,
you're left with few clues as to what's wrong, only that something is.

The utility comprises procedure SHOWUR, RPG program SHOWUR,
assembler routine SUBRUR, and screen format member SHOWURFM. (All of the
code is included on the "Desktop Guide" diskette.) To use the utility, Simply key
in SHOWUR followed by the name of the me you're interested in. The resulting
screen (Figure 11.8) displays a list of jobs using the me, as well as other related

1&2 Desktop Guide to the SI36

Agure 11.7
RPG Code Incorporating the NITU Strategy

.... 1 + 2 + ••.• 3 + 4 + .•.• 5 + ••.• 6 + ••.. 7

H
FCRT CD 200 WORKSTN
FFILEA UC 512R 7AI 4 DISK
FFILEB UC 1024R11 AI 1 DISK
•

IFILEA NS
I 1 1 AFLD1
I 3 4 AFLD2
I 5 7 AFLD3
I
I
I
I 510 510 AFLD22
I 511 512 AFLD23
• Define fields to save record value:

1 256 RECA1
257 512 RECA2

IFILEB NS
I 1 4 BFLD1
I 5 90BFLD2
I 9 11 BFL03
I
I
I
I 10231023 BFLD41
I 10241024 BDLF42
• Define fields to save record value:

1 256 RECB1
257 512 RECB2
513 768 RECB3
7691024 RECB4

C FIRST IFNE '1'
C EXSR INIT
C MOVE '1' FIRST
C END
•
• Perform screen 110 that brings in key values used
• to randomly read records from file A and file B:

C EXCPT screen format
C READ screen format
•

C EXSR READ FA Read file A record
C RNFA IFEQ '0' If record read
C EXSR SVRECA save record value
C EXCPT@RELA and release record
C ELSE
C ... 00 processing here for record
C ... from file A not found
C END

Continued

Chapter 11 Prescriptions for Healthy DDM 183

Figure 11.7Continued

.... 1 + 2 + 3 + 4 + 5 + B.... + ••.. 7

*
C EXSR READFB Read file B record
C RNFB IFEC '0' If record read
C EXSR SVRECB save record value
C EXCPTiRELB and release record
C ELSE
C ... 00 processing here for record
C " .from file B not found
C END

* Perform screen I/O to get new values for
* fields for rec A and rec B here ...

C EXCPT screen format
C READ screen format
C KC ... cance1 working on this format
* Command key here canceling current work with the
* previously read records is OK because the records
* were released when they were read.

C EXSR UPDFA Update file A record
C EXSR UPDFB Update file B record
C
C program continues

*--------------------------------------­
* Read FILEA
*--------------------------------------­

CSR READFA BEGSR
C keyva1 CHAINFILEA 55 Read file A record
C... 55 MOVE '1' RNFA Record not found
C N55 MOVE '0' RNFA Record found
C ENDSR
*--------------------------------------­
* Read FILEB
*.-------------------------------------­

CSR READFB BEGSR
C keyva1 CHAINFILEB 55 Read file B record
C 55 MOVE '1' RNFB Record not found
C N55 MOVE '0' RNFB Record fount
C ENDSR
*--------------------------------------­
* Save contents of record A
*--------------------------------------­

CSR SVRECA BEGSR
C MOVE RECAl HRECAl
C MOVE RECA2 HRECA2
C ENDSR
*--------------------------------------­
* Save contents of record B
*--------------------------------------­

CSR SVRECB BEGSR
C MOVE RECBl HRECBl
C MOVE RECB2 HRECB2
C MOVE RECB3 HRECB3

Continued

184 Desktop Guide to the S/36

Figure 11. 7 Continued

.... 1 ...• + •••• 2 ..•. + ..••3 + .•.• 4 + •••• 5 + .•.• 6 •..• + .•.. 7
C MOVe RECB4 HRECB4
C ENDSR
*--------------------------------------­
• Validate contents of record A
*--------------------------------------­

CSR VLRECA BEGSR
• Validate contents of record A

C MOVE '0' RNVA Record not valid
C RECAl COMP HRECAl 55 Equal
C 55 RECAl COMP HRECA2 66 Equal
C N56 MOVE '1' RNVA
C ENDSR
*--------------------------------------­
• Validate contents of record B
*--------------------------------------­

CSR VLRECB BEGSR
• Validate contents of record B

C MOVE '0' RNVB Record not valid
C RECAl COMP HREC81 55 Equal
C 55 RECAl COMP HRECB2 55 Equal
C 55 RECAl COMP HRECB3 55 Equal
C 55 RECAl COMP HRECB4 55 Equal
C N55 MOVE '1' RNVB
C ENDSR
*--------------------------------------­
• Update FILEA
*--------------------------------------­

CSR UPDFA BEGSR
C EXSR READFA Reread file A
C RNFA IFEO '0' Record still there?
C EXSR VLRECA Record A still valid
C RNVA IFEO '0' Record not changed

• Move screen fields to output fields here
• then update record A

EXCPT@UPDA Update record
C ELSE
C EXCPT@RELA Release record
C EXSR BUFCHG Notify user

• Notify user here that buffer has been changed since
• last read, then release record

C END
C aSE

• Unlikely. but possible that record was deleted
• since this program read the record, perform that
• error processing here

C EXSR FILERR
C END
C ENDSR
*--------------------------------------­
• Update FILEB
*--------------------------------------­

CSR UPDFB BEGSR
C EXSR READFB Reread file B
C RNFB IFEO '0' Record still there?
C EXSR VLRECB Record B still valid

Continued

Chapter 11 Prescriptions for HeaHhy DDM 185

Figure 11.7 Continued

.... 1 + •••• 2 + .•.. 3 + ...• 4 + 5 + ..•. 6 + ...• 7

C RNVB IFEQ '0'

C REC I FEQ VOLDB Record not changed

• Move screen fields to output fields here
• then update record B
• EXCPT~UPDB Update record

C E~E
C EXCPTiRELB Release record
C EXSR BUFCHG Notify user
C END
C ELSE

• Unlikely, but possible that record was deleted
• since this program read the record. perform that
• error processing here

C EXSR FILERR
C END
C ENDSR
*--------------------------------------­
• Perform buffer-changed error
*--------------------------------------­

CSR BUFCHG BEGSR
• Notify a user here that a record buffer was changed
• prior to update. Your application will determine
• exactly what strategy should be employed here.
• It might be OK for the program to continue. or it might
• need to step back to allow the operator to re-enter the
• field values.

C ENDSR
*--------------------------------------­
• Perform file error

CSR FILERR BEGSR
• A record has been deleted since being read during current
• editing cycle. Abort processing here.

C ENDSR
*--------------------------------------­
• Program initialization
*.-------------------------------------­

CSR INlT BEGSR
• Define fields to hold record contents during update
• Buffer to hold record A contents

C ·LIKE DEFN RECAl HRECAl
C ·LIKE DEFN RECA2 HRECAl

• Buffer to hold record B contents
C ·LIKE DEFN RECBl HRECBl
C ·LIKE DEFN RECB2 HRECB2
C ·LIKE DEFN RECB3 HRECB3
C ·LIKE DEFN RECB4 HRECB4
C ENDSR
*--------------------------------------­

ORECA E ~RELA
• Note no output fields on release output operation

ORECA E ~UPDA
0 new field values here
0 new field values here

Continued

186 Desktop Guide to the 8/36

Figure 11.7 Continued

.... 1•.... 2•.... 3•.... 4 ' 5•.... 6•.... 7
ORECB E f)RELB

• Note no output fields on release output operation
DRECB E f)UPDB
o new field values here
o new field values here

Figure 11.8

SHOWUR Screen

Records in use for file CUSTHAST

Job name
W2113118

User
Fred

1st Proe
L1BR#

Cur Proe
FLEOIT

Prog
FLEDIT

RRN Owned
00003241 Y

Waiting

W3103434 Wilma CUSBAL CHAINT CHAINT 00003241 Y
W4092251 Barney CUSBAL CHAINT CHAINT 00000200 Y
W5103431 Betty CUSBAL CUPDAT CUPDAT 00001565 Y
Y2103856 Betty CUSBAL COELET CDEL01 00001565 Y

··End··
Ro 11 keys-page Enter-update CHD7-End program

infonnation. The Roll keys let you page through the entries. If no data is shown
on the screen, the specified me is either not on the system or not being used by
any tasks. After displaying its initial screen for the me you entered, you may also
change the name of the me to look for locks in other meso

Three columns in the display indicate where a record lock may exist.
Column RRN shows which of the me's records a job has last read. If the job
has not released the record after reading it with intent to update, a "Y" will
appear in the OWNED column. If other jobs are trying to use the same record,
a "Y" appears in the WAITING column. In such instances, as illustrated by Fig­
ure 11.8, a record lock exists. Other applications must wait until the program
that caused the lock unlocks the record or until that application ends before
they can acquire it.

Chapter 11 Prescriptions for HeaHhy OOM 187

With the information provided by 5HOWUR, you can take the appro­
priate action to unlock the locked record. If the lock was caused by a one-way
embrace at an operatorless workstation, unlocking the record is a simple mat­
ter of ending that application appropriately. If the lock was caused by a dead­
ly embrace, a little program triage is required. Only one of the applications
with a locked record can survive - the decision rests with you!

ARay of Light
As we said at the beginning of this chapter, getting the most out of DDM
means understanding its limitations and working around its weaknesses. This
chapter has provided the ray of light you need to find DDM's weaknesses on
your system and the tools and strategies you need to work around them.

We bit off a lot in this chapter. Don't worry about doing everything
discussed here at once. For starters, load Index Doctor and run it against a
couple of your large indexed files. With Index Doctor's reports and Chapter
3's DDM discussion, you should have a good handle on 5/36 DDM and how it
works. Then use Index Doctor to diagnose all your large, heavily used
indexed files and take the appropriate action steps. You'll be amazed at the
results that just a little explicit keysorting or more frequent file reorganization
will bring. Then later, consider the other strategies mentioned in this chapter
and what their merits might be for your applications. With a tweak here and a
nudge there, 5/36 DDM can actually work for you, not against you!

Chapter 12 ABaker's Dozen DDM Tips and Techniques 189

Chapter 12

ABaker's Dozen DDM

Tips and Techniques

Chapter 11 provided you with four broad strategies for reigning Disk Data
Management's (DDM's) choke hold on performance. In this chapter, which
closes our section on DDM, we'll cover a baker's dozen tips and techniques to
further help you tweak and tune DDM's performance.

Before we dig in, there is perhaps a fourteenth tip - one you've
heard many times related to many subjects - we should discuss before we
get to the baker's dozen. That tip: Don't ftx it if it ain't broke! In every case,
these tips and techniques provide ways for you to improve - sometimes
offensively and sometimes defensively - DDM performance on your S/36.
You probably have applications that don't run as fast as they should - but
many of those probably run as fast as they need to. Before you roll up your
sleeves and start applying all these tips, diagnose your applications, and their
bottlenecks, and determine the overall effects of those bottlenecks on your
system. Know what's broken before you start applying the ftx. Use as many of
the baker's dozen as you need, but "use 'em only where you need 'em."

1. Consider alternate indexes as an alternative to #GSORT
For those times when you need to process an entire me in a specifted sequence
in a batch process, consider using an alternate index instead of an ADDROur
or TAGALONG sort. Creating an alternate index with the BLDINDEX procedure
or using an ADDROur sort each take about the same amount of time. The
TAGALONG sort comes in dead last. For example, to sort a 17,OOO-record me
with a 320-byte record length and a 22-byte key took BLDINDEX 1:51,
ADDROur 1:56, and TAGALONG a sluggardly 10:24.

Simply creating the access path isn't the whole story, though. You
also must consider the time required to actually read the data. For the 17,000­
record me, it took 8:53 to read through the entire me via the alternate index,
14:12 via the ADDROur me, and only 25 seconds via the TAGALONG sort
me. (In each case, a 16 K data or index buffer was used.) The total times,
then, to sort and process the me were:

BLDINDEX ADDROur TAGALONG
Create alt index or sort me 1:51 1:56 10:24
Read data me 8:24 14:12 0:25
Total time 10:15 16:08 10:49

190 Desktop Guide to the 8136

Performance Tip

For batch processing
afile In aspecified

sequence, use a
TAGALONG sort H

you have abundant
disk space. Hoffers

the best combination
of flexibility and

speed. Hyou often
process entire files In
aspecHIed sequence,

consider using an
aHernate Index

Instead of IGSORT.
Here you'll get the

speed of the
TAGALONG (or

almost) without Hs
voracious appetite for

disk space.

The total perfonnance using an alternate index edged out the TAGALONG as
the fastest way to read a me in a specified order. Each method, though, has
limitations that should not be overlooked. The ADDROur, as you've seen, is
slow. The alternate index method works only for those times when you need
to process the entire me; you cannot create a conditional alternate index (e.g.,
alternate indexes always include all the records in the me). For large mes, the
TAGALONG method requires lots of free disk space. If you often process the
entire me in your batch me processing, use the alternate index method; if you
have lots of disk space and often need to conditionally include or omit records,
use the TAGALONG method - if you have the disk space it always offers
speed and flexibility. For disk-bound programmers who need to process just
part of a me, the slow ADDROur method is sometimes the only alternative.

2. Consider replacing indexed files with sequential files and alternate indexes
Consider sequential mes with alternate indexes instead of traditional indexed
mes for your large mes that require random access. Despite slight additional
overhead, used prudently the alternate index is the best way to handle indexed
mes on the S/36. With alternate indexes, you gain key update ability. You can
also put the parent file on a different drive than the alternate and thereby
improve perfonnance.

If the me must be reorganized, the "me" on which the COPYDATA pro­
cedure or $COPY program should run is the alternate index whose order, by
the definition of its key, most closely approximates the order in which the me is
most frequently accessed. The rule holds true regardless of whether or not mul­
tiple keys are defined for the file. A REORG would be specified, but the output
file would be sequential (S). The sequential file would be created in key
sequence order as determined by the alternate used to initiate the REORG. The
closer the relationship between a file's most frequently used key order and that
me's physical record sequence, the faster that me can be processed.

After the me has been reorganized, the "disorganized" file must be
deleted. But before deleting the disorganized copy, you must delete its alter­
nate indexes. After all alternates and the disorganized parent have been delet­
ed, the newly organized parent may be renamed to the name of the original
and its alternate index (or indexes) may be rebuilt.

After the file reorganization, processing the parent sequentially by
"key" is very fast. There is no index being used to read the records, so you
don't have to worry about proViding buffer space (via IBLOCK) to index
blocking; simply use as large a DBLOCK value as possible. Remember,
though, to be prudent in the number of "pennanent" alternates you maintain
over the parent sequential me. Too many, and the technique will probably
impede, not enhance, performance.

Chapter 12 ABake(s Dozen DDM Tips and Techniques 191

3. Keep alternate indexes to aminimum
At first, it might seem like this tip is in direct opposition to the first two. It's
not. Use alternate indexes where you need to - they are very handy and easy
to use - but only where you need to. Remember, keeping many unnecessary
alternate indexes on a file can slow interactive performance. When a batch
program adds records to a parent file while interactive programs are using an
alternate index (or indexes) built on that parent file, interactive response time
diminishes considerably. Remember, when records are added to a shared file,
DDM must keep the overflow areas in key sequence. The DDM shuffling of
the overflow of the opened alternate indexes will slow performance.

When records are added to a parent file and existing alternate indexes
are not opened by any program, index entries are written in arrival sequence to
the closed alternate index's overflow area - with the assumption that a subse­
quent keysort will reorder the overflow area. This is referred to as "delayed
maintenance." Relying on delayed maintenance makes record addition to the
closed alternate indexes fast, at least when compared to adding the records to
opened alternate indexes; but the next application needing these stale alternates
pays the price. That application will bide its time during initiation while DDM
furtively keysorts the previously unopened alternate index's stale overflow area.

If possible, design your applications to build alternate indexes as
needed and then delete them as soon as possible. For heavy-duty batch adds,
you might even find that deleting and rebuilding an alternate index is faster
than endUring the DDM-called keysort required at job initiation to freshen a
stale overflow area.

As we've referred to elsewhere in this book, don't forget to minimize,
or eliminate entirely, duplicate keys. Adding many records with duplicate keys
will bring performance to its knees. See the tips in Chapter 3 for avoiding
duplicate keys. Remember also that when a key value is changed in an alter­
nate index, the effect is the same as adding a new duplicate key. Figure 12.1
shows a key value that has been changed to 46953. This key value is associat­
ed with relative record number 51. DDM must insert this new key in the over­
flow as though a new key were being added. The ripple-down add required
to add this "changed" key will impede performance.

4. Spindle placement Is more important than file placement
Many S/36 performance tuners spend lots of time juggling the placement of mes
on a disk to minimize the disk seeks greater than 113, as reported by SMF. It's
generally accepted that if 20 percent or 30 percent of your disk seeks are greater
than 113 of the maximum seek distance, performance suffers. It is true that the
less head movement, the better; but close me placement of related mes is greatly
overrated. Most of the disk seek time is spent starting and stopping the disk arm
- the actual distance the disk arm moves is not really so important.

Performance Tip

Changing aduplicate
key value In an
alternate Index has
the same detrimental
effect as adding
duplicate keys. In
either case, aripple­
down add will most
likely be needed to
add the records,
dramatically affecting
performance. The
moral: Avoid
duplicate keys In an
aHemate Index.

192 Desktop Guide to the S/36

Figure 12.1
Changed Duplicate Key Value Causing Ripple-Down Add

Key RRN

38621

38621 131

Consider the following timings for a 200 MB 9332 drive:

Acceleration time 4.00 ms
Seek time .01 ms/cyl
Settling time 4.00ms
Rotational delay 10.00 ms

which result in the following times:

Seek over entire disk (1349 cylinders) takes 31.5 ms
4 + (1349 • .01) + 4 + 10 = 31.5 ms

Seek over 2/3 of disk (900 cylinders) takes 27.0 ms
4 + (900· .01) + 4 + 10 = 27.0 ms

Seek over 1/3 of disk (450 cylinders) takes 22.5 ms
4 + (450· .01) + 4 + 10 = 22.5 ms

Seek of one track takes IS. 1 ms
4 +.1 + 4 + 10 = 1S.1 ms

A seek over the entire disk takes 31.5 ms, yet a seek of just one track still
takes 1S.1 ms! Performance is measured in milliseconds and 1S.1 ms is indeed
better than 31.5 ms, but that is the most extreme example. In production envi­
ronments, the disk seek variations are more likely to hover in the middle of
the timings, where there just isn't much performance difference. So, yes, close
placement of related flles saves time, but it doesn't save a lot of time.

Chapter 12 ABaker's Dozen DDM TIps and Techniques 193

What is far more important than file location on a single drive is file
placement on the appropriate drive. Your goal is to distribute file placement
evenly across all drives. If your system has more than one spindle, check to
make sure usage is balanced across all available spindles. No one drive usage
should deviate more than 10 percent from the other drives. For a drive to vary
more than that means it's doing more than its share of the work - and slow­
ing your performance. One or more inactive spindles is far more damaging to
performance than "incorrect" file placement across a single drive. Try to split
all files across all drives. For example, when you use alternate indexes, try to
group the alternates on one spindle and the parent on another. See Chapter
13 for specifics on using SMF to measure file placement and disk utilization.

Technical Nole

Myth debunked: Close placement of related files on one spindle is greatly overrated! It is
far more important to spread file usage evenly across all spindles than it is to worry about
individual file location on agiven spindle. Worry less about disk seeks greater than 1/3 and
more about balancing your disk utilization. No one drive's utilization should deviate more
than 10 percent from the other drives' utilization.

5. Share if you must
Another popular myth is that shared file disposition always negatively affects
random record retrieval. The theory goes that using the DISP-SHRxx keyword
automatically forces a reread of every blocked record on every READ or
CHAIN operation - so don't DBLOCK a shared file. The truth is that the S/36
only rereads a block if another task updates a record currently contained in a
data butTer. DDM is smart enough to know dynamically when a buffer is out
of date and then, and only then, is a buffer refresh required - not simply
because the file is using the DISP-SHR keyword in its / / FILE statement. For
those batch update-add programs that might occasionally share a file with an
on-line inquiry program, go ahead and share the files. The convenience of
having the inquiry program available probably overweighs the few times
when its use might cause DDM to refresh the batch program's data buffer.

For a different reason, though, you might want to avoid sharing all
files all the time. We've previously discussed the performance impact of
adding random records to an indexed file. As you well know by now, when
the file is shared, DDM must keep the overflow area in key sequence. When
records largely out of key sequence are added to a shared indexed file, DDM
huffs and puffs to keep the overflow ordered. When you add a large number
of records to an unshared file, DDM simply squirts the new keys into the

Performance Tip

Hyour 5/36 has more
than one disk spindle,
create alternate
Indexes on aspindle
other than the one
where the parent file
Is located. During
access via alternate
Indexes, this will help
eliminate the
movement required
by the disk heads to
find Index entries and
records - thus
Improving
performance.

194 Desktop Guide to the S/36

index overflow in arrival sequence - not in key sequence. In this case, the
record addition will be much faster, but the next person to use the index will
wait while DDM uses delayed maintenance to keysort the overflow in key
sequence. Consider adding random records to an unshared file, and then
immediately forcing a preemptive real keysort on the updated me (see Chap­
ter 3 for details about forcing a real keysort on a me).

6. Do some of DDM's work yourself
Another way to get a leg up on DDM is for you to do a little of its work. We've
just discussed that by adding records to an unshared me, you defer, but don't
avoid, some of the DDM huffmg and puffmg required to maintain the index
overflow area. A way to avoid the huffing and puffmg and to avoid delayed
overflow maintenance is to presort the input file in key sequence before
adding it to the indexed me. When the input me is in key sequence, keys are
added to the overflow in key sequence; ripple-down adds will not occur and
delayed maintenance is not required to maintain the overflow area. Presorting
the input file will be as fast as if random records were being added to an
unshared file without the penalty of delayed overflow maintenance.

Test results show that it takes 2:33 to add 1,000 random records to a
shared indexed file without presorting them. A BLDINDEX to create an alter­
nate index took 13 seconds (in effect, sorting the input me in key sequence)
and the RPG program to add the records took 19 seconds - for a total of 32
seconds. Almost five times as fast! And that's for a relatively small number of
records. Notice that is a perfect time to use an alternate index over #GSORT
- no conditional inclusions or exclusions are required for the input file; just
don't forget to delete the alternate index after the records have been added.
The moral: When you can, presort input files in key sequence.

7. Take the bypass
When DDM attempts to add a record to a me, it scans the entire index (as
well as the overflow area) to see if the key to be added already exists in the
HIe. As more records are added to the me, this duplicate-key checking takes
longer and longer.

If duplicate keys are not a concern, perhaps because you know that
no duplicate keys will ever exist in the file (e.g., your program checks first
before adding the new record), you can speed the addition of many records to
an indexed file with the 1/ FILE statement's BYPASS-YES parameter. Specifying
YES for this parameter tells DDM not to check either index area (the primary
or overflow) for a possible duplicate key, and causes the record to be quickly
and directly added to the HIe. Note that for indexed files that are duplicate­
key-capable, DDM always bypasses duplicate-key checking, even if BYPASS­
NO is specified.

Chapter 12 ABake(s Dozen DDM Tips and Techniques 195

The larger a file becomes the longer duplicate-key checking takes.
Therefore, record-adding performance is often contingent on the size of the
me. Using BYPASS-YES for jobs that add lots of records to large indexed mes
will make them perfonn more consistently. At the end of each month, it won't
take very much longer to add records to 'the me than it did at the beginning of
the month. Consider using BYPASS-YES when the output file is DISP-OLD or
when your application checks for duplicate keys before adding them. Perfor­
mance will increase substantially when BYPASS-YES is used when many
records are added to a large indexed file.

8. Avoid being underextended

As a way to avoid full mes, the / / FILE parameter EXTEND-x is a often a life­

saver. However, using too small an extend value (either with EXTEND-x or as

the default value when the me is built) often can wreak pure havoc with per­

fonnance.

For sequential, direct, and alternate index files, if enough disk space is
available immediately after the file to accommodate the extend, that disk
space will be used to extend the file. If enough disk space is not available, or
if the me is an indexed file, when a me is extended it is copied to another
place on disk that has been allocated storage based on the Original file size
plus the extend value. For all practical purposes, plan defensively for all file
extends to require the entire file to be copied to another place on disk. The
problem occurs when too small an extend value is specified, causing several
extends to occur in one session.

Disk extends are annoying because they can take a long time to per­
fonn for a large file. But more importantly, without enough disk space and/or
with EXTEND values too small, file extend operations can fail - and that is
really annoying. Figure 12.2 illustrates the sequence of events that occurs
when a file is extended. You want to avoid having the first extend fill most of
your available contiguous disk space, leaving too little contiguous disk space
available for subsequent me extends. Consider a system with 16,000 free con­
tiguous blocks. When a file originally allocated at 8,000 blocks, with an extend
value of 100 blocks, becomes full, its extended size requires 8,100 of the
16,000 current free contiguous blocks. If that same file exceeds its allocation a
second time, there is not enough free contiguous disk space on your system
for it to extend again. Your application will experience an untimely demise.

There are a couple of lessons here. First, strive to always have plenty
of free disk space available. To the point, as we advocated in Chapter 3, of
perhaps buying more. And compress disk space often. Lots of fragmented
disk space is of little value. As much free contiguous disk space as possible
minimizes the chances of a file-extend operation failing. Second, review all
current extend values (either those specified when the file was created or

196 Desktop Guide to the S136

Rgure12.2
Sequence of Events for an Extended File

If the file is non-indexed or an alternate index then
If additional space is available immediately after the file then

Extend the file by moving the end-of-file pointer
(extend in place)

Else
If a large enough contiguous area of disk space
is available for the extended file then

Copy the file with its new size to that area
of disk

Else
Issue file full message

Endif
Endif

Else
If a large enough contiguous area of disk space
is available for the extended file then

Copy the file with its new size to that area of
disk
Extend all associated alternates

Else
Issue file full messsage

Endif
Endif

those specified with the EXTEND-x parameter). Extend values should always
extend the file at least by as many records or blocks as can be added to the
file at one time. Note also that OCL EXTEND-x values override the default
extend value used when the file was created.

9. Change default file extend value easily
The S/36 doesn't provide any direct way to change a file's default extend
value without copying the file - which, for large files, requires lots of free
disk space and takes a long time. Furthermore, there isn't an EXTEND parame­
ter provided for the COPYDATA statement, and the manuals don't tell you
how to change a me's default extend value using IBM-supplied programs. By
making the default extend value hard to change, the S/36 locks you into man­
aging extend values with the / / flLE statement's EXTEND-x parameter.

To make it possible to qUickly and easily change a me's default extend
value, without copying the me, we have provided FlLEXTND, a simple com­
mand-line utility to retrieve or directly change a me's default extend value.
Remember that using the EXTEND-x keyword in OCL overrides the me's default
extend value, so you can always temporarily override a me's default extend value.
Use flLEXTND when you want to change the global default me extend value.

To retrieve a file's extend value, use:

FILEXTND file name.GET

Chapter 12 ABake(s Dozen DDM Tips and Techniques 197

To change a file's extend value, use:

FILEXTND file name,PUT,new extend value

If the specified me does not exist, no operation is petformed and no
message is displayed. When FILEXfND gets a me's extend value, it puts that
value in positions 1-8 of the user area of the Local Data Area. As a bonus, when
getting the file's extend value, FILEXTND also puts the file allocation type
(R=records, B=blocks) in position 9, the number of records or blocks allocated
in positions 10-17, and the number of records used in positions 18-25.

To change a me's extend value, use a 1- to 8-digit block or record
value that specifies the amount of additional space to use for the extension.
To remove a file's default extend value, specify 0 (zero) as the new extend
value. With FILEXTND, your me extend strategy can now be managed in one
place, rather than sprinkled throughout many inconsistent EXTEND-x parame­
ters in several different procedures.

Technical Note

Although not documented anywhere, you can also change afile's default extend value by
adding the 1/ FILE statement's EXTEND parameter to $COPY's COPYO file statement:
II FILE NAME-COPYO,LABEL-label name,UNIT-F1,EXTEND-x

But remember, this requires disk space and time. It's much easier to change file extend
values with FILEXTND.

10. Don't pack 'em in
The S/36 has native hardware instructions to petform zoned-decimal arith­
metic. However, to petform arithmetic on RPG or COBOL packed or binary
fields, additional processor-intensive routines are required to convert those
fields to zoned-decimal format. Usually, packed and binary representation is
used to save disk space; but as we've said before, you should have lots of disk
space. The S/36 can deal fastest with zoned-decimal numeric values - there
is no conversion necessary - with packed storage being second fastest and
binary the slowest.

Consider the following petformance timings when a program reads a
10,OOO-record sequential file with 12 9-digit numbers in each record and then
provides a total of the 12 numbers for each record:

Zoned decimal 4:05
Packed 7:19
Binary 20:36

198 Desktop Guide to the S/36

Packed storage almost doubles the time taken to process the me and binary
storage goes off the chart! For pure performance purposes, if you have the
disk space, design all your new applications with zoned-decimal storage.
Zoned storage is faster and it's easier to use for conditional sorting. Consider
using packed or binary storage when records are infrequently read and disk
space is at a premium.

Technical Note

The ASl400 works fastest with packed data storage. Its performance is impeded by zoned­
decimal storage. Conversion routines are required to transfer to memory data stored in
zoned-decimal and binary. If you are designing new applications on the 8/36 that you think
are very likely to be migrated to the ASl400, consider the performance on each machine
before you make afinal data storage decision for your new applications.

11. Reorganize files often - the easy way
We have mentioned many reasons in this book why you should reorganize
your indexed mes frequently. However, with its orphan alternate indexes (quick
now, how many alternate indexes do you have on your system, who are their
parents, and what are their key deScriptions?) and the long list of parameters
that COPYDATA requires, the S/36 is certainly not reorganize-friendly.

To automate the process of reorganizing indexed mes and rebuilding
all dependent alternate indexes, we have included REORGX on diskette, an
indexed me reorganization utility. REORGX will do everything that COPYDATA
does (reorganize a parent me in key sequence, resize a me, optionally remove
deleted records, and optionally include or exclude specific records). But
REORGX does considerably more than COPYDATA does (and it also does more
than RGZFILE in the IBM S/36 VASP package). REORGX's added features are:

• 	REORGX automatically deletes all dependent alternate indexes before
reorganizing the parent me and then automatically rebuilds them after
the reorganization. When REORGX initiates, it checks the vroc to
see what dependent alternate indexes currently exist over the parent
- thus always deleting and rebuilding the alternate indexes that were
on disk just before reorganizing the parent.

• In addition to letting you specify a preferred location for the parent
me, REORGX also lets you specify the preferred location of the alter­
nate indexes. If preferred locations are not specified, REORGX will
attempt to locate alternate indexes on a spindle other than the one
containing the parent me.

Chapter 12 ABaker's Dozen DDM TIps and Techniques 199

• 	REORGX provides a way to "grow" or "shrink" a parent as a percent
of its current allocation .

• 	REORGX's last extra feature is that in addition to including records by
specific positional character value (just as COPYDATA does), REGORX
allows from/to record selection by relative record number or key value.

Using REORGX is very much like using COPYDATA - just a little
more convenient. REORGX's two prompt screens are shown in Figures 12.3a
and 12.3b. For most uses of REORGX, you'll rarely use the second prompt
screen. Figure 12.4 shows REORGX's syntax when calling it from a procedure.
With REORGX, it's easy to maintain your system's indexed files. Use REORGX
frequently on your indexed files to clean up index overflow areas, to remove
deleted records, and to resequence parent files in physical key sequence.

12. Provide lots of disk space for KEYSORT
Chapter 3 discussed how important it is for your S/36 to have plenty of disk
space. One of the major reasons you need lots of disk space is to minimize
the chances of KEYSORT performing an in-memory KEYSORT. Recall that
there are actually two kinds of KEYSORT:

• A work-file KEYSORT used when enough disk space is available
• An in-memory keysort, used 	when enough contiguous disk work­

space is not available for the KEYSORT's work files

An in-memory keysort will take much longer than a work-file keysort.
In fact, literally, an in-memory keysort on a large file can take days! (See
Chapter 3 for a formula to use to ensure that your system has enough free
disk space to perform a work-file keysort on your largest file.) As if in-memory
keysorts weren't bothersome enough, they are also sneaky. You are not alert­
ed to the fact that one is taking place. When an in-memory keysort occurs,
your S/36 just sort of saunters its way through the in-memory keysort, bringing
performance to its knees along the way. Oh, you'll know something is wrong
- but you won't know what.

The only way out of an in-memory keysort is to IPL your machine ­
in the middle of the offending keysort - bypassing me rebuild, clearing off
enough disk space, and IPLing a second time - this time with file rebuild. The
remedy is unnerving though, because you're never 100 percent sure what it is
you're trying to cure. The S/36 provides no explicit way to determine if an in­
memory keysort is taking place.

To solve the problem of how to detect an in-memory keysort, we've
provided the SLOWKS command-line utility. SLOWKS takes just a second to
run and returns a message indicating whether or not an in-memory keysort is
occurring. When you suspect an in-memory keysort is taking place, fIrst end

200 Desktop Guide to the S/36

Agure12.3a

REORGX Prompt Screen #1

REORGX Procedure Optional-"
Reorganize an indexed file and rebuild related alternates

Nalle of file to be reorganized.....

Creation date of file to be reorganized

Name of new file to contain copied records

Reallocate unit or increase/decrease froM current allocation.
BLOCKS. RECORDS. INCR. DECR

Size of file to be created or increase/decrease percent value.
BLOCKS/RECORDS: 1-8000000 lNCR/DECR: 1 to 100

Preferred parent disk location . Al.A2.A3.A4.block nUllber
Preferred alternates disk location Al.A2.A3.A4.block number

Type of file retention T.J T

Reorganize sequentially by key and/or omit deleted records
NOREORG.REORG NOREORG

CHD 3-Previous Henu CHD 4-Put on job queue CHD 14-Hore options

Figure 12.3b

REORGX Prompt Screen #2

REORGX Procedure Dptional-*

Include or omit selected records INCLUDE.OHIT

Starting position of comparison characters 1-4096

Condition for record selection EQ.NE.GE.GT.LE.LT

Comparison characters 'characters'

Select record. key or packed key. RECORD. KEY. PKY
From value
To value

Record length of new file 1-4096

Maximum number of records to copy

CHD 2-Page back CHD 4-Put on job queue

http:EQ.NE.GE.GT.LE.LT
http:Agure12.3a

Chapter 12 ABaker's Dozen ODM Tips and Techniques 201

figure 12.4

REORGX's Syntax When calling from aProcedure

REORGX old file name·IT·ddY~ new file name. I' I .
dd.... yy BLOCKS.blocks
yymmdd RECOROS.records

INCR.incr value
OEeR.decr value

[1(parentl' [1 (altsl' rT].INOREORGl. [iNCLUDE]. ~OSit;on]~~
A2 A2 L! ~EORG J ~MIT J N~
~ ~ U

A4 A4 LE

block no block no GT

GE

[characters]. ~ecord lengt~. ~aXimum record~

~~~ORD] . ~rom value]. [to valu~ 
[fKY J 

normally all the active jobs you can (you won't be able to end the offending 
job that caused the in-memory keysort). After narrowing the list of possible 
offending jobs, type in: 

SLOWKS jobname 

for each remaining job. If one of the remaining jobs is being hung by an in­
memory keysort, SLOWKS will tell you. After confIrming that a slow keysort is 
running, perform the steps mentioned above to bail out of the slow keysort. 
By telling you exactly what is happening, SLOWKS makes that fIrst unnerving 
IPL a little easier to perform. 

13. Put memory to work for system programs 
As programs and their associated data buffers need memory, the S/36 doles it 
out in 2 K chunks called pages. The combined pages of memory used by a pro­
gram and its data buffers are referred to as the program's region. The default 
region size is 24 K and can be as large as 64 K. You can use the REGION OCL 
statement to change the default region size used for a job, or you ~n use the 
SET procedure to change the default region for an entire workstation session. 

Increasing region size does nothing to improve the performance of 
your user programs. You can only provide more memory to them to improve 
performance through record and index blockirIg (see Chapter 11). However, 



202 Desktop Guide to the 8/36 

Performance Tip 

Specifying a 
larger region size 

(with /I REGION or 
wHh the SET 

procedure) 
provides more 

memory to 
IGSORTand 

$COPY to buffer 
disk I/O. Think of 

using alarger 
region size as a 
way to Increase 

the record 
blocking factors 
for these system 

programs. The 
region size does 

not affect your 
application 

programs at all; 
they can only be 

given more 
memory for disk 

I/O buffering wHh 
expllcH (via 

DBLOCKand 
IBLOCK or the 

program's F-spec) 
record or Index 

buffering (see 
Chapter 11). 

#GSORT and $COPY (the system programs used by COPYDATA, LISIDATA 
and LISTFlLE, SAVE and RESTORE, and SAVENRD) can be speeded up by 
proViding a larger region size to them. When a larger region size is available, 
these programs use it to buffer disk I/O. 

Beware: Just as with record blocking for your application programs, 
larger region sizes can result in performance-inhibiting disk swapping. 
Remember, real memory is a fmite resource and when a system program takes 
advantage of a larger region size, it might be doing so at the expense of an 
application program that also wants that memory. Generally, you should avoid 
using the SET procedure to change the default region size to 64 K for an 
entire session. It is much better to specify a larger region using the I I REGION 
statement in your procedures that use #GSORT or $COPY. 

Although a larger region size can benefit #GSORT and $COPY, the 
same cannot be said for all system programs. S/36 users have long debated 
whether or not a larger region size speeds up the COMPRESS procedure. It 
does not. For a system program to use memory made available by a larger 
region, the program must first make an explicit GET PAGE supervisor call to 
enable that program to use the larger region's additional memory. COMPRESS 
does not perform the GET PAGE supervisor call and therefore does not take 
advantage of the extra memory. Few other system programs are as disk inten­
sive as #GSORT and $COPY and are far less likely, even if they perform the 
supervisor call, to have performance improved by a larger region size. If a sys­
tem program can't take advantage of a larger region, the II REGION statement 
or the region as specified by the SET procedure is ignored. 

Technical Note 

Myth debunkedI Record blocking (via DBLOCK) doesn't do anything to improve #GSORT 
performance. Record blocking only works with file 1/0 channeled through DDM and 
#GSORT bypasses DDM - using its own intemalllO routines. DBLOCK on afile state­
ment in #GSORT OCL won't hurt, but it won't help either. To buffer #GSORT as much as 
possible, specify a64 Kregion in the OCL that calls the #GSORT. 

Recapping the Baker's Dozen 
There you have it: 13 of our favorite tips and techniques for improving S/36 
DDM performance and avoiding its pitfalls. Here's a quick recap: 

1. Use alternate indexes as an alternate to #GSORT. 

2. Consider replacing indexed files with sequential files and alternate 
indexes. 



Chapter 12 ABake(s Dozen DDM Tips and Techniques 203 

3. Keep alternate indexes to a minimum. 

4. Spindle placement is more important than file placement. 

5, Share files prudently. 

6. 	Presort input files in key sequence before adding them to indexed 
files. 

7. Bypass duplicate key sharing when you can. 

8. Use large enough file EXTEND values. 

9. Manage default file EXTEND values with FILEXIND. 

10. Avoid packed and binary data storage. 

11. User REORGX to reorganize your indexed files frequently. 

12. Always have enough free disk space to avoid in-memory keysorts; 

13. Use a 64 K region to improve #GSORT and $COPY perfonnance. 

We have spent a lot of time in this book harping on DDM perfor­
mance - and for good reason. Early on we mentioned that in the time it 
takes for one disk I/O, as many as 35,000 machine instructions can be execut­
ed. Think about that. Where else on the S/36 can you perfonnance tune with 
a 35,OOO-to-one improvement ratio? OK, we're being a bit melodramatic, but 
the reality is that your programs don't expend much code specifying disk I/O, 
and they expend most of their time perfonning it. As you prepare to tune your 
s/36 for more years of faithful service, carefully consider all areas of disk I/O 
- that's where most of your problems lurk and perfonnance lies untapped. 





Section V 

Performance 
Measurement and Tuning 

"You can obseroe a lotjust by watching. " 
-YoglBera 

T hey say a watched pot never boils. For S/36 managers, a different tru­

ism applies: An unwatched machine may boil, but it will never really 
get cooking. The key to any performance improvement plan is careful 
measurement and analysis of a few critical system variables. 

Unfortunately, the extensive array of performance monitoring 
figures spewed out of SSP gives you the sinking feeling that there's just too 
much to watch! The average System Measurement Facility printout for just a 
few hours of operation can be hundreds of pages long. What s/36 analysts 
need is a way to cut through the noise and get their hands on those few criti­
cal variables. 

The chapters in this section provide plenty of ways, in the form of 
tips, techniques, and tools. Chapter 13 reveals the secrets to getting and ana­
lyzing useful measurements with SMF, and includes a "cookbook" of recipes 
for solVing particular performance problems using SMF. Chapter 14 shows you 
how to determine if you have enough memory (hint: you don't), and how to 
use more when you get it. Chapter 15 explainS disk caching and provides 
pointers on how to squeeze the most speed out of this SSP feature. Chapter 16 
lets you put your fmger on the one measurement all your users instinctively 
feel: response time. After putting the information from this section into prac­
tice, you'll be "cook'n with gas." 





Chapter 13 Using SMF 207 

Chapter 13 

Using SMF 


Previous chapters point out how adequate disk and memory capacity are 
essential for good S/36 performance. If you merely increased memory and 
disk capacity, and then hoped for the best, you'd undoubtedly see improved 
response times. You would not, however, be able to say just how much 
improvement took place or whether or not your system used the additional 
disk and memory as efficiently as possible. Getting those answers requires 
careful measurements before and after the upgrade. Making those measure­
ments is the job of IBM's System Measurement Facility (SMF) utility. 

Unfortunately, using SMF can be a daunting task. SMF produces such 
massive quantities of statistical output that many S/36 managers have come to 
think of it as System Measurement Fiasco. Any programmer worth his or her 
salt knows how to start and stop SMF, and how to print its reports. What is 
missing from IBM's documentation is a strategy for effectively running SMF 
and evaluating its output. This chapter provides such a strategy. You'll learn 
the secret to capturing useful SMF data, which key values to evaluate first, and 
how to quickly identify and solve performance problems. You'll also have a 
useful "cookbook" of procedures for using SMF in specific performance tuning 
situations, along with useful suggestions on advanced applications of SMF. 
While the chapter is not intended to give you the be-all, end-all explanation of 
SMF's nooks and crannies (see "References" at the end of the chapter for a list 
of articles that provide such explanations), you'll get a jump-start on tuning 
techniques with enough detail to handle most performance problems. 

The Good Catch 
Before you can evaluate SMF measurements, you must collect good data - a 
job that sounds simple but is full of traps for the unwary. Merely running SMF 
all day long and then printing out a 500-page report won't get you any closer 
to understanding your system's performance than will a divining rod or goat 
entrails. Here are the keys to capturing an accurate batch of statistics and pro­
ducing useful reports: 

Measure only during periods of uniform activity. SMF tracks averages, 
which lose their validity if the workload changes dramatically over the course 
of a single SMF run. Don't tum on SMF in the morning and let it run all day 
(right through morning break, lunch, afternoon tea, evening batch runs and 



208 Desktop Guide to the S/36 

backup with David Lettennan). Long periods of inactivity (or fierce activity) dis­
tort SMF's averages and hide peak values that could reveal serious problems. A 
better approach is to segment your day into different kinds of activity during 
which system usage is constant, then choose one of those segments and moni­
tor it for several days. Watch out for such hidden wrenches as embedded back­
ups, diskette usage, and batch reports. If necessary, tum off SMF during these 
interruptions and tum it on again afterward. 

Use one-minute intervals. On the SMFSTART procedure, use the 
default snapshot interval of one minute, which provides samples frequently 
enough to be useful without incurring undue overhead. One-minute intervals 
also let you more easily relate snapshot values to per-minute usage statistics. 

Collect I/O and SEC data by task. The default for this SMFSTART para­
meter is 'N', so you must override it to 'Y'. I/O and System Event Counter sta­
tistics by task let you identify programs that might be "hogs" - using so much 
of one or more resources that other programs can't get much time to run. 
Although the extra data consumes a Significant amount of disk space in the 
SMF log file, you only use these files temporarily, so the cost in space 
shouldn't be a problem. With one-minute intervals, the extra CPU overhead 
for this option is negligible. 

Don't collect data by file. User and system statistics for each file are 
only useful when you are moving files around to balance disk usage, so don't 
waste time and space collecting them (unless, of course, you're trying to bal­
ance your disks). 

Enter the correct line speeds for communications. SMF can't determine 
the line speed at which your communications lines are operating, because this 
line speed usually is determined by the modem or other external equipment. 
Entering the correct operating speed on SMFSTART is the only way you'll get 
accurate line usage figures; so take the time to find out precisely the speed at 
which your modems, DSUs, or other external equipment actually operate. 

Use a meaningfullogfile name. A meaningful, and consistent, naming 
convention lets you qUickly identify the correct file for a report once you begin 
accumulating many SMF logs on disk. One strategy is to identify the time peri­
od of the snapshot in the name. SSP already keeps track of the date a file is 
created - you can get the information from a CATALOG - so don't use up 
valuable name space with a six-digit date. Starting time is a more useful bit of 
information to capture in the me name. You might, for example, use a name of 
the form Smddhhmm, where m is a one-letter month identifier 0, F, M, etc.), 
dd is the day of the month, and hhmm is the start time of the snapshot. 

Allocateplenty offile space. Make sure you specify a large enough log­
file size on SMFSTART to accommodate all the data you plan to collect. If the 
file fills up, SMF stops itself, resulting in lost SMF collection data. You can esti­
mate the amount of data using the following space requirements per snapshot: 



Chapter 13 Using SMF 209 

• 1 sector per snapshot for system values 
• 1 sector per three tasks 
• 1 sector per two tasks when collecting by task 
• 1 sector for every four comm lines 	when collecting communications 

usage 
• 1 sector for every four files when collecting by file 

For example, a two-hour run at one-minute intervals would require 120 snap­
shots. If you average 12 tasks and 40 files per snapshot, and collect both task 
and file statistics, you'll need 21 (1 + 4 + 6 + 10) sectors per snapshot, times 
120, for a total of 2,520 sectors. Dividing that by 10 yields 252 disk blocks. In 
this example, you should specify 300 to be safe. You can "shrinkwrap" the file 
after the run by using COPYDATA, specifying a size just large enough to hold 
the actual records. 

Don'tprint whole reports. Usually you'll only need a handful of values 
out of the thousands collected by SMF in a single run. Look at a two-page 
summary report ftrst to detennine if you need detail information. Then save 
paper and your local forest by using spool-viewing tools to examine the volu­
minous detail reports. Utilities such as IBM's COPYPRT CRT, KSI's Queue­
View, or the VASP (Value Added Software Package) WRKSPF (Work With 
Spool File) let you browse SMF reports online. You can get printkeys or small 
excerpts of a report to capture hardcopy records. And don't forget that SMF­
PRINT lets you specify a time range for detail reports; use that feature if you 
can isolate a problem to a small range of snapshots. 

Following these guidelines will help you obtain accurate, useful mea­
surements. You'll need to make several SMF runs on different days to be sure 
you've captured representative statistics and not just a fluke. The cardinal rule for 
evaluating SMF output is never make tuning decisions based on one SMF ron. 

The Quick Look 
Once you've captured a good series of SMF log fUes, you're ready to begin 
analysis. You often can isolate performance problems with a "quick look" by 
evaluating a few key measurements. Start with a summary report (See "SMF 
Summary Report Part 1: Summary Usage," page 226, and "SMF Summary 
Report Part 2: Summary System Event Counters," page 227) and look for high 
values in these key areas. Ignore the peak measurements for now; it's the 
average values that reveal performance problems. A high peak might repre­
sent a few seconds of heavy system load; a high average represents continu­
ous heavy loads. 

Figure 13.1 lists key SMF measurements and the threshold values to 
watch for. Your goal in the quick look approach is to identify a bottleneck in 
one or more of the primary system resources (disk, memory, CPU). The ftgure 



210 Desktop Guide to the S/36 

Figure 13.1 

Key SMF Measurements 


SMFValue 	 Normal Range Take Action 
MSPusage up to 60% >80% 
CSPusage 	 up to 65% >85% 
Disk usage 	 up to 60% >85% 
Disk seeks> 1/3 up to 20% >30% 
User Area Disk Accesses 1()()"2oo/min >4oo/min for 5360/62 

>300/min for 5363/64 
Translated calls/loads >5:1 ratio <2:1 ratio 
Comm line usage 90% batch >95% 

50% interactive >70% 

shows nonnal ranges for seven key measurements, and "take action" thresholds 
that signal perfonnance problems. If your SMF reports show any of these mea­
sures higher than nonnal but lower than the action threshold, you may still 
want to take steps to bring the values within normal range. Here are some tips 
for evaluating the key measurements listed in Figure 13.1: 

MSP/CSP Usage Values ("SMF Summary Report Part 1: Summary 
Usage," number 1). These numbers represent how much of the available 
capacity you're using for the Main Storage Processor and Control Storage 
Processor, respectively. You might be tempted to think that 100 percent usage 
means you're getting the most out of your CPU, but in reality, values higher 
than 60 to 65 percent usually mean that the CPU isn't able to keep up with the 
work load. Keep in mind that these are averages - you want to keep at least 
20 percent (and preferably 40 percent) CPU capacity in reserve to handle fluc­
tuations in workload. If your measurements exceed the action threshold, 
check for the following conditions: 

• For high 	MSP usage, run SMFPRINf with AIl. and look for one or 
more programs consuming most of the CPU time. These programs 
may require lower-level tuning or rescheduling. You also can lower 
the priority on CPU "hogs" to reduce their impact on other jobs. 

• For high 	CSP usage, check to see if any FORTRAN, BASIC, or Busi­
ness Graphics Utility (BGU) programs are running. These all use the 
S/36 Scientific Instruction Set (SIS), and consume a lot of CSP time. 
Check also to see if the TRACE facility is running (using the D T com­
mand); TRACE might have inadvertently been left turned on after IBM 



Chapter 13 Using SMF 211 

or third-party software maintenance. The SSP reference manual 
explains how to turn TRACE off. If you're running communications 
without MLCA or ELCA, or have a 536215363 model without the local 
Workstation Expansion Feature, the CSP is canying the workload of 
these optional processors. Upgrading your CPU with a communica­
tions or workstation processor will relieve this load. Finally, check 
swapping rates on the SMF Summary report System Event Counters 
page. The CSP performs swapping and other memory management 
chores, so excessive swap rates (higher than 50 per minute) can over­
whelm the CSP. Additional memory is the best cure. 

Disk Usage ("...Summary Usage, " number 2). As with CPU usage, disk 
usage represents the percentage of available resource capacity in use - in this 
case, the resource is access time. Just as with CPU usage, you want disk usage 
well below 100 percent; a disk working at more than 60 percent capacity 
means many programs are waiting in line for disk VO completion. If your sys­
tem has more than one spindle, check to make sure usage is balanced across 
all drives: No one drive should deviate more than 10 percent from its compan­
ions. One or more loafmg drives is a common performance bottleneck, but 
one easily corrected by moving files to balance disk accesses. The upcoming 
cookbook section explains the procedure. Another solution is to add more 
spindles and then perform disk balancing to spread out the workload. A per­
formance consideration sometimes overlooked when upgrading CPUs is main­
taining the same spindle count. For example, moving from a 5362 with two 
internal 60 MB drives and two external 200 MB drives to a 5360D with two 
359 MB drives may result in a drastic increase in response time, because two 
disk actuators are trying to carry the same load formerly shared by four actua­
tors. A better-performing configuration would be four 200 MB drives, which 
would provide even more disk capacity and would cost less. If you can't trace 
unbalanced disk usage to file placement, and the overworked drive is AI, 
check the swap rates shown on the SMF Summary report's System Event 
Counter page. The swap area is always kept on drive AI, so excessive swap­
ping (greater than 50 per minute) can overwork this drive. The cure, of course, 
is more memory. 

Disk Seeks > 1/3 ("SMF Summary Report Part 2: Summary System Event 
Counters," number 3). This measurement, in the VO Counters section of the 
SMF Summary Report, indicates the percentage of time each drive moves the 
disk arm farther than one-third of the maximum seek distance. Although seek 
distance isn't the largest component of disk access time (Simply moving the 
arm has the highest cost), long seeks prevent SSP from effectively carrying out 
its disk actuator scheduling algorithm. The result is inefficient disk usage, and 



212 Desk10p Guide to the S/36 

slower access, even when usage rates are within the nonnal range. Careful file 
placement can reduce the problem, but maintaining good placement is a diffi­
cult and time-consuming system management chore. A better solution is to 
add more spindles to place frequently accessed files on separate drives, allow­
ing for simultaneous access with less actuator motion. 

Technical Note 

How the CSP schedules disk 110. You might think that the S/36 honors disk I/O requests 
on afirst-come, first-serve basis. It doesn't; instead, it plans ahead and ·schedules· 
requests in away that minimizes disk actuator motion. Because the disk is so much slower 
than the CPU, disk requests often stack up when multiple programs are running. During a 
single disk I/O, lasting about 35 milliseconds, adozen or more programs may attempt disk 
operations. The CSP places these requests in queues - one for each spindle - maintain­
ing the queues in order by disk location. The CSP than removes entries from the queue to 
process them in location order. which shortens seek distances and can even eliminate 
seeks. The scheduling algorithm calls for the CSP to sweep across the disk first from low 
to high locations, then from high to low, eliminating the need to seek back to the start of the 
disk upon reaching one end. The algorithm also allows for multistep disk operations where 
reordering could have an adverse impact on aparticular application. For example, an 
indexed random get requires two disk operations: one to locate the key in the index and 
another to retrieve the data record. The disk arm lock feature lets disk data management 
keep the arm from moving between the two operations; if the second operation isn't 
requested in acertain amount of time, the arm lock expires and other requests get 
processed. One of the SMF Summary VO Counters, expired disk locks, records the num­
ber of times locks fail. Although this value is primarily of informational value, frequent lock 
expirations are asign of an overloaded MSP. 

User Area DIsk Access-es (UADA) (u...Summary System Event Counters, .. 
number 4). This value represents the number of disk accesses performed for 
memory management purposes. Although it appears as a separate item on the 
SMF report System Event Counters page. it's actually just the sum of Translated 
Transfer Loads, Swaps In. and Swaps Out. UADA is a better measure of memory 
usage than the Total Storage Commitment value from the Summary Usage 
page. Storage Commitment indicates how much virtual memory (VM) is set 
aside for use by various programs. but not whether those programs actually use 
the memory. External Program Calls in particular can inflate the Storage Com­
mitment value while actually improving performance. UADA activity reflects 
disk I/O required to keep the current set of executing pages in memory ­



Chapter 13 Using SMF 213 

regardless of how much VM is allocated. For example, a job that uses EPCs to 
call 3,000 K of subprograms that it uses only infrequently would register a huge 
overcommitment on a 1 MB system; a low UADA rate, however, would 
demonstrate that the programs actually are not placing a load on the system, 
but are only having their activations held open. If reported UADA exceeds the 
action threshold for your model CPU, you should add more memory. If UADA 
is very low, your existing memory is underutilized; you could start or increase 
cache usage to take advantage of the otherwise wasted capacity. 

Translated Calls/Loads Ratio (".. .Summary System Event Counters, " 
number 5). Although you've already evaluated Translated Transfer (m Loads 
as part of UADA, another aspect of this value can help you isolate particular 
memory problems. Comparing the ratio of IT Loads to IT Calls reveals how 
frequently CSP must push system programs out of memory to accommodate 
other requests. When the ratio of loads to calls is 5:1 or greater, system pro­
grams are being reused directly in memory without loading, saving disk l/Os. 
If the ratio falls below 2:1, most system programs are being used only once 
before they get knocked out of memory. The solution is to add more memory, 
or upgrade to a CPU that accommodates more memory. 

Technical Note 

Unlike user programs, which are always swapped out to disk when their storage is needed, 
most system programs can simply release their storage when necessary. System pro­
grams having re-entrantor refreshable member attributes (shown in a library directory list­
ing) have this property, because they do not store local program variables within the same 
address space as the program object code. When memory for such asystem program 
must be taken, the CSP simply seizes it; later, if the system program is called again, the 
CSP reloads it directly from the original library. This technique reduces disk 1/0 by eliminat­
ing swap-outs and #SYSTASK disk usage by nol requiring adisk swap area. 

Communications Line Usage (" ... Summary Usage, " number 6). In con­
trast with other usage figures, higher is sometimes better where communica­
tions are concerned. Comm line usage represents how efficiently the external 
data channel is being used, not how much available CPU communications 
resources are being consumed. Because data communications is often many 
times slower than even disk I/O, the overhead of pumping data in and out via 
this path is minimal. For batch communications, you definitely want to see 
usages above 90 percent, which shows you are using most of the external line 
bandwidth. For remote workstations, you want to keep some line bandwidth 
in reserve for heavy interactive use. When one user presses Enter on a remote 



214 DeSktop Guide to the Sl36 

workstation, the resulting message uses the entire line bandwidth. If two users 
both press Enter simultaneously, the resulting messages must share the line, 
reducing the effective throughput for each message by half. If you constantly 
run interactive lines at more than 50 percent usage, users will see slow 
response times due to line sharing. 

A good fIX for this problem is installing a Multiline Communications 
Adapter (MLCA) or Eight-Line Communications Adapter (ELCA) and increasing 
line speed. If you already have MLCAiELCA and have high interactive usage, 
consider splitting your work across two CPUs so that communications run on 
one machine and batch work on another. A negative, and insidious, cause of 
high line usages is comm retries. Most line protocols used on the S/36 incorpo­
rate error detection and correction; when a message is received corrupted, the 
receiver requests retransmission, and the sender executes a retry operation. 
Running on a marginal network can result in many retries, effectively using up 
the available bandwidth and showing high usage rates. You should periodically 
review the Communication Line Error rates on the Summary Usage page. Line 
conditions can vary over time, and a regular review can help you catch line 
quality problems early. Here are a few other comm management tips: 

• If you're running SNA with batch file transfer or APPC, and line usage 
is low, increase the pacing count (also called window size) in the 
communications configuration (using the SETCOMM procedure). The 
pacing count specifies how many messages can be "in the pipeline" 
before SNA must wait for an acknowledgment. With good line quali­
ty, you should be able to use the highest pacing value available. 
Beware, though: A large pacing value on a low-quality line will 
increase the number of retries, degrading performance while appear­
ing to increase usage. Verify that line errors don't rise significantly 
after upping the pace value. 

• When running creaky, old BSC applications (using RPG T-specs), con­
sider that short record lengths degrade performance because each 
record must be acknowledged. Use blocking in such programs (on 
the BSCA F-spec) to improve line efficiency. Better yet, update the 
program code to use APPC; you'll see vastly improved throughput, 
better reliability, and less need for operator intervention. 

• Interactive programs running from remote workstations should avoid 
outputting a series of small screens, because a great deal of line over­
head accompanies every workstation PUT operation. For example, 
programs that use the Starting Line Number (SLNO) feature of work­
station data management to output detail lines one at a time should 
be rewritten to use internal arrays and a single workstation PUT. 

• Sometimes redUCing line speed improves performance. A line experi­



Chapter 13 Using SMF 215 

encing many errors at a particular speed might well run error-free at a 
lower speed, particularly if the modem uses a different modulation 
(analog signaling) technique at lower speeds. For example, if a 
9,600 bps line experiences a 50 percent error rate, it actually has its effi­
ciency cut by a factor of four; dropping to a 4,800 bps speed error-free 
would move data twice as quickly as the "flaky" 9,600 bps line did. 

The Art of Tuning 
Successfully tuning a S/36 requires scrupulous adherence to a few basic rules. 
Those rules are: 

1. Make several SMF runs before changing anything. 
2. Change only one variable at a time. 
3. Repeat measurements after every change, under the same conditions. 
4. Compare expected and actual results and keep records of your progress. 

If you stick with those rules, you'll make steady progress toward improved 
performance. Break the rules and you'll quickly lose your way, with no point 
of reference against which to evaluate your progress. Under such conditions, 
the best you can hope for is unappreciated improvement; but you might just 
as easily make things much worse. 

Beyond these simple rules, good tuning becomes more art than sci­
ence. The next section attempts to capture the experience and knowledge of 
many S/36 gurus for particular tuning situations where the procedures to fol­
low aren't obvious. Keep careful notes and expect to make your own contri­
butions to this body of expertise. As an adjunct to SMF, you may want to use 
the CACHIQ (cache performance monitor), RTIMER (response time monitor), 
MMETER (memory meter) and SNAP (SMF snapshot display) utilities discussed 
elsewhere in this book. 

SMF Cookbook 
Each of the following six tuning "recipes" focuses on a particular problem and 
its solution. As with other recipes, you may need to add salt or sugar to taste. 
The only rules are the basic tenets outlined above - beyond that, whatever 
works, works! 

Problem 1: High disk usage 
If you've read much of the other material in this book, you know that disk I/O 
is most often the performance bottleneck in any S/36. The easiest way to 
reduce disk I/O is to add more memory - SSP automatically takes advantage 
of whatever extra memory you install to keep reducing swapping and keep 
more system programs resident. This only goes so far, however: You may add 
so much memory that SSP's automatic usage doesn't use it all. Fortunately, you 



218 Desktop Guide to the SI36 

can explicitly take advantage of additional memory with several techniques. 
All you need to do is make careful measurements while putting the techniques 
into play and you'll deduce a combination that works well in your environ­
ment. The procedure is: 

1. Run SMF under various conditions to establish baseline values for 
your installation. Disk usage rates greater than 60 percent indicate a 
disk bottleneck. 

2. Install as much additional memory as your model can accommodate 
(used memory boards are inexpensive). 

3. Run SMF again under the same conditions as the baseline runs and 
note changes in all six primary SMF measures. You should see either 
no change or a reduction in MSP usage, a reduction in CSP usage and 
disk usage (particularly for drive Al), and lower UADA values. The 
translated callslloads ratio should increase to 5:1 or better. 

4. If your SMF reports show the improvements outlined above, and your 
UADA is very low Oess than 50 per minute), you can take the follow­
ing steps to better use the additional memory. Remember to take one 
step at a time and collect follow-up SMF measurements. 

5. If you run mUltiple copies of the same interactive applications, turn 
on Memory Resident Screen Formats (MRSF) via IBM's CNFIGSSP pro­
cedure. MRSF caches screen formats the first time any job accesses 
them, so that jobs accessing the same formats later avoid rereading 
them from disk. 

6. If you run concurrent batch and interactive jobs, use the CACHE pro­
cedure to activate disk caching. Disk cache mayor may not work well 
with your job mix. The only way to know for sure is to try it. (See 
Chapter 15, "Caching in on Extra Memory," for detailed instructions). 

7. If your interactive applications consist of many programs intercon­
nected by OCL statements and LDA communication, convert the 
applications to use External Program Calls (EPCs) instead. EPCs elimi­
nate all the disk VO associated with OCL processing, job initialization 
and termination, and IDA access. (See Chapters 7 and 8 for discus­
sions on using EPCs). 

Problem 2: Unbalanced disk usage 
Ifyou have one or more "loafmg" drives - indicated by uneven disk usage fig­
ures - then moving fIles around to even out the workload could buy back 
considerable performance. IBM recommends a particular general me organiza­
tion for various spindle configurations. Whether the configuration ends up 
being the best for your installation, it's a good place to begin if you've done no 



Chapter 13 Using SMF 217 

Rgure 13.2 
File Placement 

1,2,4 3 
Drives Drives 

System 
files 

Most-used 
files, libraries, 
and folders 

Least-used 
files, libraries, 

and folders 

Free 
space 

2 

Free 
space 

Most-used 
files, libraries, 

and folders 

Least-used 
files, libraries, 

and folders 

3 

Least-used 
files, libraries, 
and folders 

Most-used 
files, libraries, 
and folders 

Free 
space 

2 

4 

Free 
space 

Most-used 
files, libraries, 

and folders 

Least-used 
files, libraries, 

and folders 3 

HIe placement so far. Figure 13.2 depicts ffiM's recommendations. Each box rep­
resents a spindle, with divisions inside each box indicating the relative positions 
of various kinds of data. Read down the left side if you have 1, 2, or 4 spindles 
and the right side if you have 3 spindles. ffiM's SMFGutde(SC21-9025), Chapter 
4, explains how to physically move HIes, libraries, and folders to a particular 
drive. Identify your most-used disk objects via the SMF START option to collect 
I/O counters by file. After you've used those procedures to organize your disk 
into IBM's general plan, follow these steps to fme-tune your placement: 

1. Run SMF and check to see if usage across drives has improved. 

2. If drive Al still has more usage than any other drive, ensure that you 
are not experiencing a memory bottleneck (see Problem 1). Attempt­
ing to tune a memory-constrained machine is a waste of time. Abnor­
mal UADA or translated load/call ratios indicate memory constraints. 

3. If a drive other than Al shows excessive usage, use SMF's data collec­
tion by file to locate the most-used file, library or folder on that drive 
and move it to the least-used drive. 

Problem 3: Higb CSP usage 
Assuming you are not running FORTRAN, BASIC or BGU programs, which 
unavoidably stress the CSP, the main causes for high CSP usage are excessive 

Performance Tip 

See Chapter 5for an 
alternate method of 
file placement using 
the "smart" 
COMPRESS strategy. 



218 Desktop Guide to the S/36 

swapping or insufficient aUxiliary hardware. To reduce swapping, add memory. 
If you're already maxed-out on memory on a smaller CPU, you should consider 
upgrading to the 5360 model D. If swapping isn't excessive, the problem may 
be that your model CPU is trying to use the CSP for too many chores that could 
be performed by auxiliary processors. Follow these steps to see what hardware 
could reduce the CSP's load: 

1. On 536215363 models, a workstation expansion feature provides a sep­
arate workstation controller to perform polling, validity checking, and 
keystroke processing for local workstations (a separate workstation 
controller is standard equipment on 536Os). You can tell whether or not 
you have the workstation expansion installed by checking the Work­
station Controller usage item on the Summary Usage page; if the feature 
is not installed, the value will read zero. To see if the workstation 
expansion feature can reduce CSP usage, check the Local Display Sta­
tion Ops and Local Printer Ops values on the Summary I/O Counters 
page. If the combined counts are greater than 25 per minute, then the 
CSP is spending Significant time on workstation I/O. Adding the work­
station expansion feature can reduce CSP usage by up to 15 percent. 

2. Models 5360 and 5362 support the Data Storage Controller (DSC) - an 
add-on processor that independently moderates data transfers between 
disk and memory, and between disk and tape. For both machines, the 
DSC comes as part of the reel-ta-reel or cartridge tape drive attachment. 
To see if adding a DSC will reduce CSP usage, check the Disk Usage 
figures on the Summary Usage page. If any spindle shows usage 
greater than 25 percent, the CSP is spending Significant time on disk 
data transfers, and adding a DSC can reduce CSP usage as much as 
15 percent. Further, if you use streaming tape for backup, the DSC will 
greatly reduce response time degradation that normally occurs during 
tape I/O, letting you run backups concurrently with interactive jobs. 

3. Models 5360 and 5362 also support MLCA (and on the 5360, ELCA) 
communications processors. Without these processors, the CSP must 
perform data link and polling chores. If you use any kind of data 
communications, either of these processors can reduce CSP usage by 
up to 10 percent. 

Problem 4: High MSP usage 
The MSP processes user programs (e.g., RPG applications) as well as SSP utili­
ties (e.g., $MAINT, $COPy). High MSP usage usually stems from one or two 
programs performing intensive computations. To reduce MSP usage, you must 
identify the computationally intensive programs and modify them if possible. 
Use SMF's option to collect MSP usage by program to pick out the top MSP 



Chapter 13 Using SMF 219 

Figure 13.3 
Sample SNAP Utility Display 

SHF SNAPSHOT SPY CURRENT TASKS 
----OISK----­ PRT WS 

JOBNAME 1ST PROC PROGRAM MSP(S) READ SCAN WRITE OPS OPS 
SYS TASK CMD-PR .00 

Wl120122 GLB022 GLB022 9.72 40 55 
Wl120123 GLB030 GLB030 10.88 41 57 
Wl120124 GLB040 GLB040 10.64 45 63 
Wl120125 GLB044 GLB044 12.02 18 61 
Wl120126 GLB060 GLB060 11.19 9 50 
W3120158 STS STS 6.27 
W5120247 LIBR# TESTCa 2.46 
W2120549 LIBR# MMETER .00 
W2121310 LOADI LOADI 27.46 110 
Wl122153 SYS TASK SMF .02 
Wl122140 SNAP SNAP 6.70 28 

"END" 

Roll-Page Cmdl-Current/Termi nated tasks Cmd10-Next screen Clld7 -End 

contenders. The SNAP utility (Figure 13.3, included on diskette) lets you dis­
play MSP and other usage values instantaneously without running SMF. (Sim­
ply run the SNAP procedure with no parameters to view usage statistics for all 
tasks). Keep in mind that SNAP does not display averages; but when identify­
ing MSP "hogs," instantaneous readings work just as well as SMF averages. 
Once you've identified high-MSP-usage programs, go through the following 
checklist to isolate and replace the computationally intensive code: 

1. Does an RPG program use binary fields or arrays, or a COBOL pro­
gram COMPUTATIONAL-3 (binary) data? Binary-to-decimal conver­
sion on input and decimal-to-binary conversion on output make 
intensive use of the MSP. Usually, binary representation is used to 
save disk space; but with the cost of disk drives so low you're proba­
bly better off rewriting programs and changing file layouts to use 
zoned-decimal rather than binary, even though zoned representation 
uses twice as much space. 

2. Does an RPG program use packed fields or arrays, or a COBOL 
program COMPUTATIONAL-2 (packed) data? While not as MSP­
intensive as binary conversion, packed data conversion can consume 
a lot of MSP time, especially where packed arrays are concerned. As 
with binary data, the solution is to change file layouts and applica­
tions to use zoned rather than packed format. 



220 Desktop Guide to the 8/36 

3. If the program works with character strings, does it use single-byte­
element arrays, variable array indexes, and the LOKUP and MOYEA 
operations to perform string operations? RPG array handling with vari­
able array elements is notoriously expensive in MSP usage, because a 
subroutine is called to incrementally locate the array entry based on 
the index variable. This represents hundreds of machine instructions 
per character processed! You can rewrite string handling to use 
assembler subroutines for concatenation, substring, searching and 
other chores (see Chapter 17, "Harnessing the Power of Assembler 
Routines"), or you can use the string handling operations built into 
ASNA's 400/RPG compiler. Either method is portable to the AS/400, 
which supports string operations in the native RPG compiler. 

4. Does an RPG program use the SORTA operation? SORTA must be used 
with care, as it uses an algorithm having "quadratic" execution time 
(i.e., execution time increases as the square of the number of elements 
to be sorted). A common oversight is using SORTA on a large array that 
only "uses" a few elements. Regardless of the number of elements into 
which the RPG program actually stores data, SORTA sorts the entire 
array. If the sort is ascending, usually all high-order elements containing 
blanks will end up being sorted to the beginning of the array. You can 
eliminate this MSP hog by limiting SORTA to small arrays Oess than 100 
elements). For larger arrays, an indexed me, or a sequential me with an 
alternate index, will be less MSP-intensive than SORTA. 

Problem 5: Sudden, unexplained response time degradation 

Occasionally you may have noticed intermittent incidents of extremely poor 

response time that can't be explained by increased workload. Some users see 

such symptoms only a few times in a month, but degradation can occur sever­

al times per day in severe cases. The phenomenon has several possible caus­

es, and you can use SMF's reporting capabilities, along with other utilities pro­

vided with this book (SNAP, SHOWUR, INDEXDR, SLOWKS), to track down 

the culplit. Follow these steps to determine the causes in your situation: 


1. At the first report of degraded response time, run SNAP and look for 
one or more tasks having higher MSP or I/O usage than other tasks. 
This step helps rule out run-away or hog programs that might be sat­
urating the MSP without your knowledge. If you do fmd a particular 
program that seems to have excessive MSP or VO, check that pro­
gram's SNAP measurements again once response time returns to nor­
mal. If several iterations of this testing show that poor response time 
correlates with high resource usage by this program, then you have a 
hog program on your hands. The text under Problem 4 explains how 



Chapter 13 Using SMF 221 

Figure 13.4 
1/0 Counters Summary 

----- SUM MAR Y S Y S T E MEV E N T 

MAIN STORAGE TRANSIENT CALLS 
TRANSLATED TRANSFER CALLS 

DISK 1 READ OPS 
DISK 1 WRITE OPS 
DISK 1 SCAN OPS 
DISK 1 SEEK OPS 
DISK 2 TOTAL OPS 
DISK 2 READ OPS 
DISK 2 WRITE OPS 
DISK 2 SCAN OPS 
DISK 2 SEEK OPS 
DISK 3 TOTAL OPS 
DISK 3 READ OPS 
DISK 3 WRITE OPS 
DISK 3 SCAN OPS 
DISK 3 SEEK OPS 
DISK 4 TOTAL OPS 
DISK 4 READ OPS 
DISK 4 WRITE OPS 
DISK 4 SCAN OPS 
DISK 4 SEEK OPS 
DISKETTE 1 READ OPS 
DISKETTE 2D READ OPS 
DISKETTE 1 WRITE OPS 
DISKETTE 2D WRITE OPS 
DISKETTE SEEK OPS 

TAPE READ 8YTES 
TAPE 1 WRITE BYTES 
TAPE 1 REWIND OPS 
TAPE 1 HITCHBACK OPS 
TAPE 2 READ BYTES 
TAPE 2 WRITE BYTES 
TAPE 2 REWIND OPS 
TAPE 2 HITCHBACK OPS 

C 0 U N T E R S ----- ­

TIME 
PER 

TOTAL MINUTE 
63 3.1 

2969 146.8 

3521 174.0 
278 13.7 

5147 254.4 
8074 399.1 
2003 96.3 
1202 48.0 

101 7.1 
700 33.8 

0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 
0 0.0 

o K 0.0 K 
o K 0.0 K 
0 0.0 
0 0.0 
o K 0.0 K 
o K 0.0 K 
0 0.0 
0 0.0 

MAXIMUM 

23 


569 


355 
87 

296 
649 
442 
201 

62 
104 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

o K 
o K 
0 
0 
o K 
o K 
0 
0 

MAXIMUM 
OCCURRED 

12.02.19.358 
12.02.19.358 

12.02.19.358 
12.02.19.358 
12.03.19.864 
12.02.19.358 
12.02.19.358 
12.02.19.358 
12.02.19.358 
12.02.19.358 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 

00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 



222 Desktop Guide to the S/36 

to improve performance for such programs. 

2. If a single program isn't responsible for the problem, run SMF during a 
period of slow response time (you may need to leave SMF running 
"pre-emptively" throughout the day if slow response periods are unpre­
dictable). Obtain a summary report for the time period of the problem. 

3. In the summary report, I/O counters section (Figure 13.4), look for 
high values for a particular disk drive, or for diskette or tape I/O 
counts. Uneven disk usage for a particular drive indicates one me is 
probably having an abnormally high number of reads or writes; you'll 
need to get an All report to track down the problem me (see step 4). 
Any diskette or tape I/O during interactive operations can have a 
severe impact on response time if you don't have a DSC installed. If 
you see disk or tape activity, but no DSC usage on the Device Usage 
Rates page, then you don't have a DSC installed (only the 5362 and 
5360 support the DSC). You must either reschedule the diskette or 
tape I/O, or upgrade to a DSC-equipped CPU. 

4. If a particular disk drive has much higher I/O than its companions, 
obtain an All report, which displays access counters for each me and 
identifies the drive containing the me (Figure 13.5a). Find the file (or 
mes) on the problem drive having the highest disk activity. Then exam­
ine the Task Status page (Figure 13.5b), checking the disk I/O counters 
for the problem drive on each program that accesses the problem meso 
One or two programs probably account for the majority of accesses. 

5. Now you must determine if the excessive I/O for the problem pro­
grams identified in step 4 are related to program logic, access con­
flicts, or DDM maintenance actions. The cause could be a high vol­
ume of record accesses on the part of your program, record-waits due 
to conflicting batch jobs, or the result of DDM invoking a slow index 
maintenance function. 

6. If the cause is a high volume of record accesses, SMF's File Access 
Counters for the problem me will show high numbers in the GET, 
UPDATE, DELETE or ADD operations. You should examine the pro­
gram's logic to see under what conditions it can perform excessive 
file operations. Profiling the program (see Chapter 18, "Profiling and 
Advanced Debugging") is one way to empirically identify the problem 
section of code. You may discover a coding error that results in 
superfluous disk I/O, in which case repairing the bug should fIX the 
problem. Otherwise, you will have to change the program's design to 
reduce disk I/O. 



Chapter 13 Using SMF 223 

Agure 13.58 

File Access Counters by File from SMFPRINT ALL 


--------------------------------- USE R F I LEA C C E S S C 0 U N T E R S --------------------------------- ­

FILE OATE FILE FILE BLOCK DISK --DATA--- ----INOEX----- REC --GET--- -UPDATE- -DELETE- --AOO--­
LABEL CREATED JOBNAME TYPE ORG LOC LENGTH LOC REAO WRTE READ SCAN WRTE WTS LOG PHYS LOG PHYS LOG PHYS LOG PHYS 
IllBtRAN9Z/09It2· ......... lfi:ililZ$6lsi4\A1 1010{·· ... 1'1 4470:01498348:0.) 0< ..\\..... 1'1 o 0 
GLBMAST 92/09/12 R 10377 101 Al 5 0 0 5 0 0 220 10 0 0 0 0 o 0 
GLBTBL 92/09/12 R 18055 17 Al 1 0 0 0 0 0 1 0 0 0 0 o 0 
GLBDETL 92/09/12 R 84202 90 A2 88 0 0 50 0 0 300 138 0 0 0 0 o 0 
GLBFORM 92/09/12 R 88540 33 A2 12 0 0 12 0 0 66 24 0 0 0 0 o 0 

Agure 13.5b 
File Access Counters by Task from SMFPRINT ALL 

T ASK S TAT U S --------------------------------------- ­

MSP -----OISK 1------ -----DISK 2------ -----DISK 3------ -----DISK 4-----­
JOB 	 PROC/TYPE USAGE READ SCAN WRITE READ SCAN WRITE READ SCAN WRITE READ SCAN WRITE 

CMD-PR 0% 0 0 0 0 0 0 0 0 0 0 0 0 
SYS ERR 0% 0 0 0 0 0 0 0 0 0 0 0 0 

W2120116 SMF 0% 0 0 1 0 0 0 0 0 0 0 0 0 
4 Wl120912 STS 5% 0 0 0 0 0 0 0 0 0 0 0 0 
5 W3120158 STS 3% 0 0 0 0 0 0 0 0 0 0 0 0 
6 W2120549 L1BR# 0% 0 0 0 0 0 0 0 0 0 0 0 0 

II 1/1\ 	 ,\1/1 .t:·,.·~))··· ··,O/··'···\•••0 II 
8 WS120247 L1BR# 2% 0 0 0 0 0 0 0 0 0 0 0 0 
9 Wl120123 GLB030 8% 20 28 0 0 0 0 0 0 0 0 0 0 

10 Wl120126 GLB060 10% 5 25 0 0 0 0 0 0 0 0 0 0 
11 Wl120124 GLB040 8% 21 29 0 0 0 0 0 0 0 0 0 0 
12 Wl120125 GLB044 10% 8 28 0 0 0 0 0 0 0 0 0 0 
13 W1120122 GLB022 8% 18 25 0 100 62 0 0 0 0 0 0 0 
14 W2121310 LDADl 10% 0 23 0 0 0 0 0 0 0 0 0 0 

7. The second cause leads to a large number in the Record Waits (REe 
wrs) column of the File Access Counters for the problem me. Record 
waits occur when one or more programs try to read a record for 
update and another program already owns the record. Concurrently 
running two or more batch programs that both update the same me 
can result in a "lockstep" phenomenon, in which none of the pro­
grams actually encounter a "deadly embrace" (permanent lockout), but 
each program attempts to access the same records for update at about 
the same time (Chapter 11 proVides a detailed discussion about avoid­
ing the deadly embrace). DDM forces the programs to read and 
update the records serially, resulting in the high Record Wait count. 
DDM's internal record-lock resolution algorithm uses considerable disk 
and MSP resources, so a high number of waits affects overall system 



224 Desktop Guide to the S/36 

perfonnance. The solution is to run the programs separately. 

8. The last cause - DDM index maintenance - is particularly tricky to 
isolate. Four situations exist where DDM can perform excessive disk 
VO without prior warning, and no SMF values are of any help identi­
fying the culprit. (Chapter 3, "Inside Disk Data Management," pro­
vides additional information on each of these situations). 

In the first situation, a program opens a me that previously 
had delayed index maintenance - keys were added to the overflow 
but not sorted. DDM must sort the overflow area before giving the 
program control, a process that can take several minutes for a few 
thousand added keys. The solution is to keysort mes manually when 
possible to avoid unexpected program initiation delays. The INDEXDR 
utility (Chapter 11) lets you identify such meso 

The second situation occurs when a program updates a 
parent me record that updates a key in one of the alternates defined 
over the parent. If the changed key value has a large number of 
duplicates already in the index, DDM must move many keys to insert 
the new key in RRN sequence within the duplicate key string. The 
most common example of this is changing an alternate-index key 
field to blanks. If hundreds or thousands of duplicate keys with the 
same value exist, the insert operation can take from minutes to hours 
to complete. The solution is to avoid generating long strings of dupli­
cate keys in alternate indexes. 

The third situation results when DDM tries to insert a key in 
an index that has gaps in it, but there are no gaps left between the 
insertion point and the end of the index. The index is not really full, so 
DDM can't return "me full" to the application. DDM is forced to per­
form a "degapping operation" in which all the index entries in the 
overflow area are rewritten to collect free space at the end of the 
index. To accomplish this in a timely manner, DDM suspends the 
operation of all other programs using the me until the degapping is 
completed. Degapping usually takes only a few seconds to a few min­
utes, even for large mes; during that time, however, the system can 
appear to be "hung." The solution is to allocate large indexed files 
with at least 10 percent "breathing room" to reduce the chance that 
embedded gaps get used up. 

The fourth situation occurs during keysort, when SSP can't 
find enough disk space for a sort work area. In this situation, SSP 
reverts to an "in-memory" keysort that needs no sort workfile. Unfortu­
nately, an in-memory keysort is both MSP-intensive and extremely 
inefficient - it can take days to complete. The SLOWKS utility 



Chapter 13 Using SMF 225 

provided with this book will identify an in-memory keysort. See 
Chapter 12 for details about using SLOWKS to solve this problem. 

Problem 6: File and index blocking don't seem to be helping peiformance 
Chapter 10 explains how to use DBLOCK and IBLOCK to improve individual 
program performance. To be sure that you're using effective blocking factors, 
though, you should measure program I/O usage and overall system I/O usage 
before and after each blocking change. The following procedure shows how 
this is done: 

1. Before setting any blocking factors, run SMF to collect statistics by 
task and file while the program is executing over a known dataset 
with no blocking specified. The easiest way to do this is to use 
IBLOCK-1 and DBLOCK-1 for the file in question. Don't try to mea­
sure blocking effectiveness for more than one file at a time, and do 
not let other programs use the file during your test (you may leave 
the file as DISP-SHR, though). 

2. Record the logical and physical counts from the User File Access 
Counters page for the file in question. These are the counts under the 
GET, UPDATE, DELETE and ADD column headings. Also record the 
physical I/O counters for each disk drive for the program in question. 

3. Set DBLOCK and IBLOCK to factors determined by the guidelines in 
Chapter 10. Then rerun the SMF collection and tests, taking care to 
use exactly the same input data with no other programs using the file 
under test. 

4. Compare the statistics resulting from your second test run with the 
baseline values you collected in step 1. The number of logical file 
operations should remain the same, while the total physical operation 
counts decline. The total number of disk operations for the program 
should also decline. If the total physical file operations remain the 
same, then this program isn't a good candidate for blocking. If the 
physical file operations counts decline, but total disk operations for 
the program goes up, blocking is causing increased disk I/O in some 
other aspect of the program's operation (Chapter 10 delineates the 
cases where this occurs). You should repeat steps 3 and 4 every time 
you try a different set of IBLOCK and DBLOCK values. 

What You Don't Know Can Hurt You 
If there's anyone truism to learn from this chapter, it's that you can't tune a 
system in the dark. Achieving good performance requires planned, accurate 



226 Desktop Guide to the S/36 

measurements and informed analysis. The procedures outlined here let you 
cut through the complexity of SMF and make effective tuning decisions. 

References 
Willkomm, Kenneth 1. ''Taking Your System's Measure," NEWS3X1400, 

December, 1990. 
--. "Check and Balance," NEWS 3X1400, January, 1991. 
--. "Time to Worry?" NEWS 3X1400, February, 1991. 
--. "Secondary Considerations," NEWS 3X1400, March, 1991. 
--. "Up Close and Down the Road," NEWS 3Xl400, April, 1991. 
--. "Beyond SMF," NEWS 3X1400, May, 1991. 
--. "Tips for Top Performance," NEWS 3X1400, June 1991. 

SMF Summary Report Part 1: Summary Usage 

---------------------- SUM MAR Y USA G E ------------------- ­
AVERAGE MAXIMUM TIME MAXIMUM OCCURRED 

WORKSTATION CONTROLLER QUEUE. 0 % 0 % 00.00.00.000 
WORKSTATION CONTROLLER 0 % 0 % 00.00.00.000 
WORKSTATION CONTROLLER 2 QUEUE 0 % 0 % 00.00.00.000 
WORKSTATION CONTROLLER 2 0 % 0 % 00.00.00.000 
PC PROCESSOR 0 % 0" 00.00.00.000 
DATA STORAGE CONTROLLER 0" 0 % 00.00.00.000 

... . ...... . ..... - ............. ""., - _._,. 

.. " •• % 
NOT ACTIVE/COLLECTED 

COMMUNICATION LINE 2 ERRORS 
COMMUNICATION LINE 3 ERRORS 
COMMUNICATION LINE 4 ERRORS 
COMMUNICATION LINE 5 ERRORS 
COMMUNICATION LINE 6 ERRORS 
COMMUNICATION LINE 7 ERRORS 
COMMUNICATION LINE 8 ERRORS 
TASK WORK AREA 
DISK CACHE 
ASSIGN/FREE SPACE 
TOTAL STORAGE COMMITMENT 
ACTIVE STORAGE COMMITMENT 
ACTUAL STORAGE COMMITMENT 

•• % •• % .. " .. " 
.. " •• % .. " .. " 
.. " •• % .. " •• % 
24 %23 " 

o " o " 80 %74 " 
37 %23 " 

87 % 91 " 
37 %23 " 

NOT ACTIVE/COLLECTED 
NOT ACTIVE/COLLECTED 
NOT ACTIVE/COLLECTED
NOT ACTIVE/COLLECTED 
NOT ACTIVE/COLLECTED
NOT ACTIVE/COLLECTED 
NOT ACTIVE/COLLECTED 
12.13.24.131 
00.00.00.000 
12.04.20.411 
12.21.27.090 
12.13.24.131 
12.21.27.090 



Chapter 13 Using SMF 227 

SMF Summary Report Part 2: 
Summary System Event Counters 

------- SUM MAR Y S Y S T 

MAIN STORAGE TRANSIENT CALLS 
~TRANStA'tEUTRANsFEacAt;t;St 

ASYNCHRONOUS TRANSFER CALLS 

MAIN STORAGE TRANSIENT LOADS 


MAIN STORAGE LOADER REQUESTS 
SWAPS IN 
SWAPS OUT 
SWAPS OUT. FORCED 
TASK WORK AREA READ OPS 
TASK WORK AREA WRITE OPS 
MAIN STORAGE CLEAR OPS 
CONTROL STORAGE TRANSIENT CALLS 
CONTROL STORAGE TRANSIENT LOADS 
CONTROL STORAGE LOADER REQUESTS 
SPOOL SEGMENTS ALLOCATED 
SPOOL ENTRIES ALLOCATED 
SPOOL EXTENTS ALLOCATED 
GENERAL WAITS 
DISK RECORD WAITS 
TASK WORK AREA EXTENTS 
J08 INITIATIONS 
J08 STEP INITIATIONS 
MRT ATTACHES 
MRT LOADS 
J08 TERMINATIONS 
J08 STEP TERMINATIONS 
ABNORMAL TERMINATIONS 
DISK LOCKS SATISFIED 
DISK LOCKS EXPIRED 
ASSIGN/FREE EXTENSIONS 
ASSIGN/FREE REDUCTIONS 
PREEMPTIVE TASK DISPATCHES 
RESOURCE TIMEOUTS 
MAIN STORAGE PROCESSOR TIMEOUTS 
WKSTN BUFFER READ RETRIES 
L-1 STORAGE RELEASES W/O SWAP 
L-1 STORAGE RELEASES W/ SWAP 
L-2 STORAGE RELEASES W/O SWAP 
L-2 STORAGE RELEASES W/ SWAP 
L-3 STORAGE RELEASES WIO SWAP 
L-3 STORAGE RELEASES W/ SWAP 
L-4 STORAGE RELEASES W/O SWAP 
L-4 STORAGE RELEASES W/ SWAP 
MEMORY RESIDENT OVERLAY LOADS 
MEMORY RESIDENT OVERLAY MAPS 
DISK CACHE HITS 
DISK CACHE MISSES 

$)UsElfAat;APIsKACnVITY 

E M EVE N T C 0 U N T E R S ------­
TIME 

PER MAXIMUM 
TOTAL MINUTE MAXIMUM OCCURRED 

63 3.1 23 1 2 .02.19.358 
i2969',,·146dF ·························56lk)···tZt02M913..5!t

71 3.5 
28 1 .4 

<$TRANStAJ.l~Q.TR4.flsF"gR·.· ••·tPAp$ ••.• ·········· ··········································60 ··········3••;.0 
29 1 .4 

110 5.4 
o 0 . 0 
o 0.0 

121 6.0 
124 6.1 
113 5.6 

2474 	 122.3 
393 19 .4 

o 0.0 
o 0.0 
o 0.0 
o 0 . 0 

425 21.0 
o 0.0 
o 0.0 

12 0.6 
22 1 .1 
o 0.0 
o 0.0 
9 0.4 
3 0.1 
6 0.3 

1610 79.6 
3338 165.0 

14 0.7 
6 0.3 

200431 	 9907.6 
1954 96.6 
2058 101. 7 

3 0.1 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 
o 0.0 

14 
9 

i~Z •• 
9 

12 
0 
0 

39 
49 
46 

646 
53 
0 
0 
0 
0 

154 
0 
0 
3 
8 
0 
0 
2 
1 
2 

103 
176 

6 
2 

11877 
129 
124 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

12.02.19.358 
12.02.19.358 

··.···'.~}~zM:l*;a~a.·· 
12.02.19.358 
12.02.19.358 
00 .00 .00 . 000 
00 .00 .00 . 000 
12.02.19.358 
12.02.19.358 
12.02.19.358 
12.02.19.358 
12.02.19 . 358 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00 .00 . 00 . 000 
12.12.23.797 
00.00.00.000 
00.00.00.000 
12.06.21.374 
12.02.19.358 
00.00.00.000 
00.00.00.000 
12.06.21.374 
12.02.19.358 
12.09.22.541 
12.03.19.864 
12.03.19.864 
12.02.19.358 
12.07.21.790 
12.19.26.430 
12.03.19.864 
12.19.26.430 
12.02.19.358 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 
00.00.00.000 

1708.434/(·· 12;1!l2i49;;U,S 

Con#nued 

http:12.02.19


228 Desktop Guide to the 8136 

SMF Summary Report Part 2: 

Summary System Event Counters (continued) 


------- SUM MAR Y S Y S T E M E V E N T C 0 U N T E R S ------­

NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
NOT USED 
DISK 1 TOTAL OPS 
DISK 1 READ OPS 
DISK 1 WRITE OPS 
DISK 1 SCAN OPS 
DISK 1 SEEK OPS 
DISK 2 TOTAL OPS 
DISK 2 READ OPS 
DISK 2 WRITE OPS 
DISK 2 SCAN OPS 
DISK 2 SEEK OPS 
DISK 3 TOTAL OPS 
DISK 3 READ OPS 
DISK 3 WRITE OPS 
DISK 3 SCAN OPS 
DISK 3 SEEK OPS 
DISK 4 TOTAL OPS 
DISK 4 READ OPS 
DISK 4 WRITE OPS 
DISK 4 SCAN OPS 
DISK 4 SEEK OPS 
DISKETTE 1 READ OPS 
DISKETTE 2D READ OPS 
DISKETTE 1 WRITE OPS 
DISKETTE 2D WRITE OPS 
DISKETTE SEEK OPS 
72MD AUTO LOADER REQUESTS 
DISKETTE HEAD CONTACT REVS 
LOCAL DISPLAY STATION OPS 
LOCAL PRINTER OPS 
REMOTE DISPLAY STATION OPS 
REMOTE PRINTER OPS 
3262 PRINTER OPS 
1255 MICR OPS 
TAPE 1 READ 8YTES 
TAPE 1 WRITE BYTES 
TAPE 1 REWIND OPS 
TAPE 1 HITCHBACK OPS 
TAPE 2 READ BYTES 

TOTAL 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8946 
3521 

278 
5147 
8074 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

956 
0 
0 
0 
0 
0 

o K 
o K 

0 
0 

o K 

TIME 
PER MAXIMUM 

MINUTE MAXIMUM OCCURRED 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 

442.2 704 12.02. 19.358 
174.0 355 1 2 . 02 . 1 9. 358 
13.7 87 1 2 . 02 . 1 9 . 358 

254.4 296 1 2 . 03 . 1 9 . 864 
399.1 649 1 2 . 02 . 1 9 . 358 

0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 

47.3 73 12.06.21.374 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 K o K 00.00.00.000 
0.0 K o K 00.00.00.000 
0.0 0 00.00.00.000 
0.0 0 00.00.00.000 
0.0 K o K 00.00.00.000 

Continued 



Chapter 13 Using SMF 229 

SMF Summary Report Part 2: 

Summary System Event Counters (continued) 


------- SUM MAR Y S Y S T E MEV E N T C 0 U N T E R S ------­
TIME 

PER MAXIMUM 
TOTAL MINUTE MAXIMUM OCCURREO 

TAPE 2 WRITE BYTES 0 K 0.0 K 0 K 00.00.00.000 
TAPE 2 REWINO OPS 0 0.0 0 00.00.00.000 
TAPE 2 TCH .0 0 

li.illr~lt.fif_.

OISK 1 AVERAGE SEEK LENGTH 153 CYL **** 294 CYL 12.02.19.35B 
OISK 2 AVERAGE SEEK LENGTH 0 CYL 0 CYL 00.00.00.000 
OISK 3 AVERAGE SEEK LENGTH 0 CYL 0 CYL 00.00.00.000 
OISK 4 AVERAGE SEEK LENGTH 0 CYL 0 CYL 00.00.00.000 





Chapter 14 Do You Need More Memory 231 

Chapter 14 

Do You Need More Memory? 
We've already advocated that adding memory is the cheapest, easiest way to 
improve perfonnance on the S/36. However, it's unwise to blindly believe that 
adding more memory will solve all your performance problems. It's also 
unwise to install memory to alleviate problems that can be solved by a little 
application tuning. What you really need is a memory dipstick - something 
to conftnn your sense that your S/36 is a quart low on memory. 

There may be times when your application memory requirements 
simply exceed all the real memory available - causing perfonnance-robbing 
memory swapping. This may be due to improper record blocking, programs 
that are too large, or improper job scheduling. Understanding exactly how the 
S/36 uses memory and detennining whether or not your system has enough 
memory are daunting tasks. But with a basic knowledge of how the S/36 uses 
memory, you'll be in a position to evaluate when it needs more memory and 
how to make the best use of that additional memory. Think of this chapter as 
your memory dipstick. 

Where Does it All Go? 
Before deciding whether or not you need more memory, let's briefly review 
Chapter 2's discussion of how S/36 memory is organized. If you'll recall, the 
S/36's main memory is lOgically organized into three distinct areas (Figure 14.1). 
First, the fixed nucleus, which occupies the ftrst 4 K of main memory, contains 
variables and data structures needed by the SSP and CSP. Next, the variable 
nucleus contains the transient area, virtual page table, frequently used memory­
resident SSP routines such as Disk Data Management and Workstation Data 
Management, and System Queue Space. Finally, the user area, the largest of the 
three, contains user programs, non-resident SSP programs, me buffers, screen 
fonnats, and other various temporary system and user objects. If you didn't get a 
ftnn understanding of main memory organization the first time through, now 
would be a good time to review Chapter 2 before you continue. 

Let's look next at some specific instances where memory can be 
chewed up in a big way. One likely culprit is the cache. Although caching 
can yield dramatic perfonnance beneftts, it can also impede perfonnance just 
as substantially if too much memory is allocated to the cache. When the 
cache is overallocated, the system wastes a lot of time maintaining "stale" 
cache pages; overallocation also increases User Area Disk Activity (more on 
this in a minute). It's easy to overallocate memory to cache, but fortunately 
you can use a number of methods to determine whether or not you're getting 

Performance Tip 

Cache can yield 
performance 
Improvements. But 
beware that allocating 
memory to cache 
reduces memory 
available for user 
programs. See 
Chapter 15 for a 
detailed explanation 
of using cache 
effectively. 



232 Desktop Guide to the S/36 

Figure 14.1 
Main Storage Contents 

Fixed nucleus (4K) 

Variable nucleus: Transient area (4K) 
Virtual Page Table (.2S-8K) 
Resident routines (24-48K) 
System Queue Space (8K +as required) 

User Area: SSP programs 
User programs 
Task Workspaces 

the most "bang for your byte" from cache. Refer to Chapter 15 for detailed 
information about using cache effectively. 

IBM's office products, such as DisplayWrite/36 (DW/36) , Query/36 
and Personal Services/36 all consume a large amount of virtual memory (VM). 
Especially DW/36, which assigns a large amount of VM for each concurrent 
user. As you already know, the S/36 can commit almost unlimited amounts of 
memory using the built-in virtual paging mechanism. But this can also degrade 
performance. If not enough real memory is available, the system will constantly 
page programs, system transients, and buffers in and out of real memory, sig­
nificantly increasing disk activity. For this reason, you should keep concurrent 
office product users to a minimum if at all possible to avoid costly memory 
overcommitments. 

As you read in Section III, External Program Calls (EPCs) can also chew 
up a lot of VM. Although subprograms are only paged in when they're called, if 
more real memory is available, these subprograms, and the system transients 
that call them, stand a better chance of staying in memory longer, rather than 
constantly being paged in and out to real memory. 

Another potential VM problem only affects users of ASNA's ACCELER8 
product. Since ACCELER8 uses a B-tree method of indexing, it keeps "nodes" 
of index entries in each fIle's index area. When these files are opened by your 
programs, the system ignores the IBLOCK value in the II FILE OCL statement, 
and instead allocates its own fIXed-length index block buffer to hold the "root" 
node. The problem is that ACCELER8's fixed-length buffer is 2 K for every 
indexed file or alternate in your program. And this buffer is assigned regardless 
of whether or not there's any IBLOCK value in the OCL. This means that a 



Chapter 14 Do You Need More Memory 233 

program that once ran in, say, 50 K with no Task Work Space (1WS) buffers 
may now run in 60 K with 10 K of 1WS buffers. (See Chapters 3 and 10 for 
more information on 1WS buffers.) Just as with DW/36 and EPCs, 1WS buffers 
can cause paging, thus degrading performance. The 1WS problem may very 
well outweigh the performance gains you may see with ACCELER8j so one 
solution would be to purchase additional memory, take a better look at those 
programs that are going into 1WS, and either make them more modular or 
decrease their DBLOCK values. 

Other likely culprits for eating up memory are your own application 
programs. Inefficient use of DBLOCK or IBLOCK can cause your programs to 
be much larger than they might normally need to be. Refer to Chapter 10 for a 
complete look at using DBLOCK and IBLOCK effectively. 

Finally, and probably most obviously, if your system has a large number 
of online users and batch jobs, it's a natural assumption that all those programs 
are going to take up memory. Especially if you have several programmers at 
work who generally use dual~session displays or PCs with emulation cards. Each 
programmer can easily be running several jobs at once such as compiles, edits, 
test programs, debug sessions, and so on. If this gets to be a problem, it's proba­
bly time to consider getting the programmers a s/36 of their own. (See Chapter 6 
for a complete discussion on suggested "programmer" machines.) 

The Warning Signs 
A few red flags should not be overlooked - they may indicate your system 
needs more memory. First, response time will be sluggish. If response times 
increase and decrease as the day wears on, this may well be a sign of memory 
overcommitment. Second, batch processing will be slow. Just as with interac­
tive response times, if you fmd batch jobs are taking longer than usual, this is 
another red flag. Next, Task Work Area (1WA) extent messages may appear at 
the system console. If this starts happening frequently, you should either inves~ 
tigate your usage of DW /36 jobs or EPCs, or pick up the phone and start call­
ing hardware brokers for a S/36 memory quote. 

Finally, pay close attention to certain values on your SMF reports. 
Specifically, if the value for the User Area Disk Activity (UADA) is larger than 
normal, this is one of the surest signs that the system needs more memory. 
UADA is really the sum of Translated Transfer Loads, Swaps In, and Swaps 
Out. If this number exceeds the action threshold for your system, there's a 
problem. Another SMF value to pay close attention to is the Translated Trans~ 
fer Loads~t~Calls ratio. This value reflects the number of times the CSP had to 
kick system programs out of memory to make room for something else. If this 
ratio is 2: 1 or less, systems programs are only being used once, or not at all, 
before they get kicked out of memory. The solution is to add more memory. 
Refer to Chapter 13 for a complete discussion on the meanings of these 

Performance Tip 

If you experience 
Task Work Area 
extent messages, 
before you do 
anything else, use 
CNFlGSSP to ensure 
that TWA Is set to Hs 
maximum of 6553 
blocks. See Chapter 7 
for more about the 
suggested size of 
TWA. 



234 Desktop Guide to the S/36 

Performance Tip 

MMETER reports 
actual main storage 
size, not configured 

main storage size. Use 
MMETER after 

additional memory is 
installed to verify 

proper installation. 

important values and detailed instructions for getting the most from SMF and 
its reports. 

Memory Meter 
In addition to using SMF, we've included a handy interactive memory monitor­
ing utility on the "Desktop Guide" diskette called MMETER. MMETER gives a 
real-time account of how nucleus pages, user main and subprograms, system 
programs, and system workspaces are using your system's memory. MMETER's 
real-time memory account helps you track down intermittent memory-related 
performance problems that are sometimes difficult to spot through SMF 
reports. For example, if you experience occasional drastic increases in 
response time at unpredictable intervals of days, or even weeks, you may not 
be able to establish a useful measurement with SMF. To check your system's 
"normal" memory use, use MMETER when system response time is good. You 
then can compare memory use during good response times to memory use 
during slow response times, easily determining if memory overcommitment is 
a possible source of trouble. 

To invoke MMETER, key the procedure name MMETER and the 
screen shown in Figure 14.2 appears. To update the screen, press Enter; to 
exit, press Command Key 7. Let's examine the MMETER screen in detail. 

At the top of the screen are three column headings. Count is the num­
ber of programs, pages, or workspaces for the line item; Total committed refers 
to the total kilobytes and percentage of virtual storage for each line item; and 
Currently paged in refers to the kilobytes and percentage of real memory cur­
rently used by each line item. Note that Total committed can considerably 
exceed the total amount of real memory physically installed on the machine ­
a prime example of the S/36's virtual memory management scheme at work. 

The five detailed line items are defined as follows: Nucleus pages con­
sist of the fixed and variable nucleus areas, which are used by the system and 
always reside in real storage. The amount of memory that nucleus pages con­
sume changes as the system gives and takes pages to and from the user area. 

User programs consist of all user application programs and SSP utilities 
such as $MAINf, $COPY, or compilers. System programs are SSP programs 
(e.g., spool writers, the initiator, the command processor, system transients) 
called by other system programs to perform repetitive tasks. They run trans­
parent to the user, and as a result, are excluded from the D U display. The 
fourth line item, Task workspaces, is of interest only to those using External 
Program Calls. Generally, "stock" S/36 application programs do not have any 
subprograms, and determining the memory used by subprograms is not possi­
ble through any IBM-supplied utility. 

The last line item is System workspaces, pages of memory the system 
uses for storing various tables, such as the active procedure list, active screen 



Chapter 14 Do You Need More Memory 235 

Figure 14.2 
Memory Meter Screen 

System/36 Memory Meter 

Nucleus pages ........ . 
User programs ........ . 
System programs ...... . 
Task workspaces ...... . 
System workspaces .... . 

TOTALS ............... . 
(unused memory) ... . 
(main storage size) 

Count 
74 
12 

195 
40 

7 

Total 
committed 

148K 29% 
508K 99% 
448K 88% 

1280K 250% 
54K 11% 

2.438K 476% 

Currently 
paged in 

148K 
92K 
60K 

204K 
8K 

28% 
17% 
12% 
40% 

2% 

512K 
0K 

512K 

100% 

fonnats, and program buffers like those created when a program exceeds its 
64 K address space and must place file buffers into the 1WA. 

MMETER's individual line items help you isolate the memory require­
ment for user programs, called programs, or system activity. A high memory 
overcommitment for either the User programs or Task Workspaces is due to 
the application workload directly under your control - reducing the work­
load will help even out response-time peaks. Excessive overcommitment in 
the System workspaces line item usually results from heavy use of IBM Office 
products such as DW/36. To improve perfonnance, either you must add more 
memory or schedule heavy Office product use for off-peak hours. Overcom­
mitment of memory to the Nucleus pages or System programs line item usual­
ly is caused by high SSP activity, either through a large volume of procedure 
interpretation, or a large number of medium-lived System Queue Space items. 
If you don't add memory to relieve the high memory requirement, you proba­
bly need to modify your programs to reduce their dependency on SQS or pro­
cedure execution. 

The totals for the line items show the cumulative kilobytes and per­
centage of committed memory and the kilobytes and percentage of real mem­
ory currently being used by the system. As previously stated, the amount com­
mitted can be many times the amount used. Also, the total unused memory is 
often 0 K; but having no used memory is not necessarily cause for concern. It 
usually means that your installed memory is being used to its fullest potential, 
thereby providing maximum benefits in throughput and response times. 

However, if the total number of kilobytes is conSistently high, you 
might want to consider adding more memory to your machine. For example, 



236 Desktop Guide to the SI36 

if the nonnal total memory commitment for your system is 230 percent, but it 
increases to 500 percent during slow response times, purchasing additional 
memory will probably help alleviate the problem. 



Chapter 15 Caching in on Extra Memory 237 

Chapter 15 

Caching in on Extra Memory 
Although SSP automatically takes advantage of extra memory to improve per­
formance, it can only go so far on its own. As you've read in other chapters, 
you can direct SSP to use additional memory for specific purposes, such as 
memory-resident screen formats, data and index blocking, and external pro­
gram calls. Even with these added uses, however, it's possible to leave memo­
ry a-wasting, particularly on 5360 machines with more than 2 MB of memory. 
When memory is not being used to its fullest, it's a good time to consider turn­
ing on S/36 disk cache, which can put otherwise-unused memory to work 
redUCing clock-killing disk I/O operations. In this chapter you'll learn how 
disk cache works and under what conditions it improves performance. You'll 
also learn how to monitor cache performance with a clever utility called 
CACHIQ, and how to automatically change the cache configuration to accom­
modate changing workloads. 

How Cache Works 
The disk cache is a buffer in main storage that stands between the disk drives 
and your program's data buffers (Figure 15.n. With disk cache enabled, 
instead of reading data straight into a program's storage, SSP reads the data 
into the cache and then copies the data into the program buffer. Later, if 
another program needs that same data, SSP can simply copy it from the cache, 
saving the time of a disk read operation. Each disk read request satisfied by 
copying from the cache is called a cache hit. Whenever a disk read can't be 
found in the cache, the data is read from disk into the cache, displacing previ­
ously read data; this is called a cache miss. A cache hit is about 10 times faster 
than a cache miss. Although a read from disk under cache takes longer than if 
cache weren't turned on, just one cache hit makes up for that extra time in 
spades, resulting in improved performance. If no other program ever needs 
the cached data, however, the extra work of caching is wasted and perfor­
mance suffers. Unlike blocked records, which are owned by an application, 
cached data is shared by all users - no one application owns the cache. 

A phenomenon called locality makes caching effective. The idea of 
locality comes from the observation that disk accesses tend to be clustered, so 
that once a location is referenced, it's likely that nearby locations will be refer­
enced in the near future. By looking at how cache runs under the covers, you 
can see how it takes advantage of the locality effect. 

SSP organizes the disk cache as a group of fixed-size chunks called 



238 Desktop Guide to the SI36 

figure 15.1 
Disk Accesses with and without Cache 

Main Memory 

Program 

DiskWithout cache 

CacheI
I 

r---­
I 

L.-_...I...-__---'+-~~~~~~!- -- ___J 
I 

pages. A page can be as small as 1 K or as large as 16 K, but all pages within 
the cache have the same size. Figure 15.2 shows an 800 K disk cache having 
4 K pages. In this example, two programs are running, PROGA and PROGB. 
When PROGA reads a 256-byte record from disk, SSP actually reads a whole 
page - 4 K - into the cache, and then copies the fIrst 256 bytes from that 
page into PROGA. Because of the fast transfer rate of S/36 disks, reading 4 K 
of data requires only a little more time than reading 256 bytes. If PROGB then 
reads a different 256-byte record that happens to fall within the 4 K chunk 
previously stored in the cache, a cache hit occurs and SSP saves a disk I/O. If 
PROGB reads data not in the cache, a new 4 K page gets cached in addition 
to the 4 K already cached, increasing the probability that a future read can be 
satisfied by the cache. Each cached page represents a locale that stays in mem­
ory waiting for a hit. Unlike blocking, which contains only one physically con­
tiguous chunk of data, the cache contains multiple locales, each holding data 
from a different disk location. Combined with the locality effect, multiple 
pages improve the probability of a cache hit. The example'S 800 K cache 
holds 200 pages, each a separate locale. 

Each cache miss results in a new locale being read into a cache page. 
SSP tracks the number of hits and misses for each page and how recently each 
page was accessed. Once all the pages are occupied, SSP decides via a least­
recently-used algorithm which pages get overwritten to hold new locales. In 
this way, SSP ensures that pages only retain locales haVing a proven track 
record of hits vs. misses. 



• • • • • • • • • 

Chapter 15 Caching in on Extra Memory 239 

Rgure15.2 
How Disk Cache Takes Advantage of Locality 

Main Memory 

1st read (cache miss) 
---------- 2nd read (cache hh) 

,--P.....ROGA=BU",ffFer,,---, 17; 1.................... 3rd read (cache miss) 


1st 2nd 3rd 

4K 

DiskSOOK 
Cache 

4K 

4K 

4K 

4K 

The S/36 disk cache uses a technique called write-through to ensure 
that the cache always reflects the actual contents of disk. Whenever a program 
writes to disk, if the data written is partially or completely contained in the 
cache, SSP ftrst updates the cache before performing the write operation. If 
other programs read data from the same locale before the write operation 
completes, they get the data from cache, avoiding a wait for the disk while 
still maintaining data consistency. If the data written to disk isn't contained in 
the cache, then nothing unusual happens - the data goes straight to disk 
without involving the cache. 

Caching is fundamentally different from blocking. A block buffer 
holds a single locale with the intent that a single program will read all or most 
of the data in the buffer. Caching holds many locales with the intent that a few 
locales will be able to satisfy many read requests - possibly spread over sev­
eral programs. Blocking improves both read and write performance, while 
cache improves performance only for disk reads. Popular myth holds that 



240 Desktop Guide to the S/36 

blocking and cache are mutually exclusive performance tools - that you 
should not use blocking with cache enabled. In reality, though, the two com­
plement each other - blocking can improve performance for individual appli­
cations while cache provides overall improvement. Systematic planning and 
careful measurement are the keys to optimizing performance with either tool. 

Starting Out with Cache 
No magic formula exists that tells you when cache will help and how to con­
figure it to best advantage. The only sure path to success with cache is 
through experimentation. To conduct useful experiments that yield results you 
can use, you must know how to control cache, how to measure its perfor­
mance, and how to evaluate those measurements for your environment. 

You start, stop, and change cache with the CACHE procedure, which 
has the following syntax: 

CAC H E command,size,pagesize 

where command is START to turn cache on, STOP to turn it off, or ALTER to 
change the cache configuration. The size parameter specifies how much real 
memory to set aside for the cache; pagesize sets the size of each page (from 
1 K to 16 K). As a general rule, use 1/4 the size of installed memory as a start­
ing point for cache size. For example, on a 2 MB system, you could start with 
a cache size of 512 K. 

Choose a page size that results in at least 32 cache pages if your total 
installed memory is 2 MB or less. For larger memory sizes, the number of 
pages should be at least 1/64th of the memory size. On a 5 MB system, for 
instance, the cache should have at least 80 (5,120/64) pages; if you use 8 K 
pages, that means a cache of at least 640 K. You may end up using far more 
or far less memory for cache after you've done some performance tracking; 
until then, these guidelines give you a good starting point. 

Before experimenting with cache, it's a good idea to obtain baseline 
SMF measurements as described in Chapter 13. You should record the value 
of User Area Disk Activity (UADA) under each set of working conditions for 
which you plan to use cache. For example, if you have a period during the 
day that is primarily interactive activity, make an SMF run to establish baseline 
values for that period. If later in the day you perform batch work alongSide 
the interactive, consider that a separate period and establish a baseline for it, 
too. After you have collected these baseline measurements, you can enable 
cache to see whether performance improves. 

You should activate cache before starting the programs you want to 
evaluate, then initiate the programs, and fmally run SMFSTART to activate SMF. 
Follow the guidelines in Chapter 13 for setting SMF parameters. By starting SMF 
last, you avoid tainting your measurements with one-time initialization activity. 



Chapter 15 Caching in on Extra Memory 241 

SMF delivers quite a lot of infonnation that you don't need to evaluate cache 
perfonnance, so you may want to 'use the CACHIQ utility, described later in 
this chapter, in place of SMF. CACHIQ provides a real-time display of cache 
perfonnance as well as accumulated averages; it also stores its measurements in 
a disk me that you can save for later analysis. 

Note that IBM's CACHE procedure cannot run via / / EVOKE or 
/ / JOBQ - you must run it on the command side of the console workstation. 
The SETCACHE utility, described later, gets around this problem, making it 
much easier for you to automate cache start-up and tailoring. Note also that 
every time you change the cache configuration using CACHE ALTER, SSP 
completely empties and reconstructs the cache buffer. Changing the cache too 
frequently (more often than every few minutes) can degrade perfonnance and 
pollute your measurements. 

After you've completed a measurement period with cache, run 
SMFSTOP. Whether or not you stop cache or your applications is up to you. 
If performance seems perceptibly better, you might as well leave cache 
turned on until the next measurement period. 

Counting Cache 
Once you've collected cache statistics for one measurement period, you should 
analyze them before making further test runs. Run an SMFPRINT SUMMARY 
report; the items to examine appear under Summary System Event Counters 
(Figure 15.3): Disk Cache Hits, Disk Cache Misses, and User Area Disk Activity 
(UADA). 

The primary measure of cache efficiency is the hits-ta-misses ratio, 
which you must compute by dividing the Cache Hits by the sum of Cache Hits 
and Cache Misses. In the sample report, the hit/miss ratio for 755 hits to 250 
misses is .7512, which translates to an efficiency value of 75.12 percent. An 
efficiency under 50 percent indicates that more time is being spent managing 
cache than is gained in increased perfonnance. Anything above 50 percent is 
good - the higher the better. 

However, simply achieving a high cache efficiency doesn't mean your 
overall performance is any better. When you activate cache, SSP takes mem­
ory away from the user area to accommodate the cache buffer. This could 
cause increased paging activity, as reflected in the UADA value. Your objective 
is to maximize cache efficiency by experimenting with various combinations 
of cache size and page size, without increasing UADA Significantly. This is 
where your baseline UADA measurement is important: If the UADA count per 
minute increases by an amount greater than the cache hits per minute, then 
cache is costing you more than it's saving, even though you might be seeing 
high cache efficiency. Cache hits per minute represents the number of disk 
operations cache is saving; if the increase in UADA per minute exceeds this, 



242 Desktop Guide to the SI36 

figure 15.3 

SMF Summary System Event Counters for Cache Evaluation 


-------------­ SUM MAR Y SYSTEM 
TOTAL 

EVE N T 
PER MINUTE 

C 0 U N T E R S -------------­
MAXIMUM TIME MAXIMUM OCCU 

MAIN STORAGE TRANSIENT CALLS. 63 3.1 23 12.02.19.368 
TRANSLATED TRANSFER CA~l~ . . 2969 146.8 569 12.02.19.358 
ASYNCHRONOUS TRANSFER CALLS . 71 3.6 14 12.02.19.358 
MAIN STORAGE TRANSIENT LOADS. 28 1.4 9 12.02.19.358 
TRANSLATED TRANSFER LOADS . . 60 3.0 22 12.02.19.358 
MAIN STORAGE LOADER REQUESTS.

• 
29 1.4 9 12.02.19.368 

you're on sinking sand. Try reducing the size of the cache by 50 percent and 
rerunning your tests. 

If you get low to medium cache efficiency (51 percent to 75 percent), 
and VADA has shown little or no increase, try enlarging the cache by 50 per­
cent and rerunning your tests. The unchanging VADA indicates that the cache 
hasn't yet encroached on the working set of virtual pages. You also should try 
increasing the cache page size after making a test run with the larger cache. 
Low efficiency may be due to the locale not being large enough to accommo­
date the size of an access cluster on your system. 

After each test run and evaluation, continue changing cache size or 
page size by 50 percent. That value isn't accidental: It takes you· through the 
shortest number of tests to find an optimal value for the conditions you're test­
ing. You're actually performing a binary search, cutting the difference by half 
on each iteration between your current settings and the optimal ones. Suppose 
you start out with a cache size of 1 MB on a 4 MB system. After the first pass, 
if performance decreases, you'll reduce the 1 MB cache size by 50 percent to 
500 K; on the second pass, if performance increases, you'll increase the cache 
to 750 K (500 K plus 50 percent of 500 10; on the next pass, if performance 
decreases, you'll decrease the cache to 625 K 050 K minus 50 percent of 
250 K); and on the last pass you may reduce the cache to 562 K (625 K minus 
50 percent of 125 K). On that last pass you'll fmd that performance worsens 
and decide that 625 K is optimal. Once you've settled on an optimal cache 
size, follow the same process to determine page size. 



Chapter 15 Caching in on Extra MeIllOlY 243 

If you're lucky enough to see high cache efficiency without increased 
VADA on your first run, congratulate yourself on being a shrewd judge of num­
bers. Then run some confrrming tests to bracket your selections, varying both 
cache size and page size by 10 percent above and below the original settings. 

Quick Cache 
Running these tests using SMF quickly becomes tedious, because you need to 
name and manage mes, generate reports, and perform efficiency calculations. 
To make the task easier, we created the CACHIQ utility, which displays the 
current and per-minute values for cache hits, cache misses, and VADA 
(CACHIQ is included on the "Desktop Guide" diskette). CACHIQ also com­
putes cache efficiency using the hit/miss ratio. You don't need to run any 
reports or perform any calculations, and you see the results in real time. 
CACHIQ also logs the information to a summary me as a permanent record for 
later analysis, should you need that capability. The only caveat for using 
CACHIQ is that you can't run SMF at the same time, because CACHIQ reads 
and resets the same system event counters as SMF. 

The syntax for the CACHIQ procedure is: 

CACH I Q snapinterval,snapcount,dtsplaY,logfile 

where snapinteroal is the time interval between snapshots in hhmmss format 
(the default is 000100, or one minute); snapcount is the number of snapshots 
to take (the default of 0 indicates that snapshots are taken until the operator 
terminates the utility); dtsplay is ·NODISPLAY if you don't want to view results 
on the screen in real time, ·DISPLAY if you do (the default is ·DISPLAY); and 
logfile is the name of a me to which log records should be written (if logfile is 
blank, no log records are written). 

If you run CACHIQ with no parameters, the utility displays cache sta­
tistics in real time at one-minute intervals until you terminate it by taking Sys­
Req option number 4 (set inquiry latch). Figure 15.4 shows how CACHIQ's dis­
play looks. Note that the current snapshot interval must expire before CACHIQ 
"sees" the termination request and quits. Ending CACHIQ with SysReq option 3 
(cancel job) is no problem as long as you aren't logging snapshots. If you don't 
want CACHIQ to automatically display at fIXed intervals, specify 0 (zero) for 
snapinteroal; CACHIQ will update its display each time you press ENTER. 

The parameters on CACHIQ let you use it in a batch environment to 
collect statistics without tying up a display station; for example, by using 
I I EVOKE to start CACHIQ as an independent job. For instance, you could run: 

II EVOKE CACHIQ 000500,144,*NODISPLAY,IQLOG 

to create an independent task that runs CACHIQ for 12 hours (144 five-minute 
snapshots) and writes each snapshot to a file named IQLOG. Figure 15.5 



244 Desktop Guide to the SJ36 

Figure 15.4 

CACHIQ Display 


CACHE IQ Logfile: IQFILE 
Cache Status Monitor 

Cache active: y 

SMF active: N 
Total cache size: 300K 

Cache page size: 4K Per Minute 
Cache hits: 1540 620.4 

Cache misses: 411 52.7 
Efficiency: 78.9% 92.1% 

UADA: 19 16.4 

Snapshot interval: 1 :00 
Current snapshot: 22:11:58 Count: 129 

Start time: 20:02:53 Of: 500 
Elapsed time: 2:09:05 Rel1laining: 371 

Press ATTN and take option 4 to interrupt 

describes the 10gfIle record fonnat. To stop CACHIQ under these conditions, 
enter a STOP SYSTEM command, which CACHIQ will recognize and obey after 
the current snapshot interval expires. Alternatively, you can use the CANCEL 
console command to kill the CACHIQ job (but use option 2 if you want to 
keep the log fIle). 

In addition to the log fIle, CACHIQ always outputs the values of its 
last snapshot into the system IDA, in the same format as the 10gfIle record, 
starting in system LDA position 1. Thus, incorporating the following into your 
cache control procedure: 

CACHIQ 000100,1 ,*NODISPLAY 

causes CACHIQ to wait for one minute, then take a snapshot and quit, leaVing 
the snapshot results in the system IDA. To access the system IDA via OCL, 
insert / / LOCAL AREA-SYSTEM into your procedure; all IDA references after 
this statement will be to the system IDA. Your procedure or a program you 
write could evaluate the snapshot results and then compute new (presumably 
better) cache parameters. 

When using CACHIQ interactively, keep in mind that its per-minute 
rates are computed over the time period that CACHIQ runs. To reset 
CACHIQ's per-minute counters, simply end and restart it. CACHIQ is much 
easier to use than SMF when you only need to examine cache management 
system event counters. 



Chapter 15 Caching in on Extra Memory 245 

Figure 15.5 
CACHIQ Logfile Record Format 

Record length is 64 bytes: 

Start End Dec 
Pos Pos Pos Description 

1 1 Cache active (Y or N) 
2 2 SMF active (Y or N) 
3 6 0 Cache size (K) 
7 8 0 Cache page size (K) 
9 13 0 Cache hits 

14 18 1 Cache hits per min 
19 23 0 Cache misses 
24 28 1 Cache misses per min 
29 33 1 Cache efficiency (%) 
34 38 1 Cache efficiency per min (%) 
39 43 0 UADA 
44 48 1 UADA per minute 
49 54 0 Snapshot interval 
55 60 0 Last snapshot time 
61 66 0 Start time 
67 72 0 Elapsed time 
73 77 0 Number of snapshots taken 

Dynamically Controlling Cache 
You probably will find that a single cache configuration doesn't meet the 
needs of all your working environments. One set of cache values might work 
well for morning processing, but running a few parallel batch jobs over lunch 
(with few active interactive users) might require a much larger cache. A third 
cache configuration might work well for afternoon mixed interactive and 
batch processing, and yet a fourth for evening processing. 

IBM's requirement that the CACHE procedure be run interactively 
from the console means you must have somebody manually enter the com­
mands for each change. We've developed a handy utility that gets around this 
problem nicely. SETCACHE (provided on diskette) is a procedure and pro­
gram that accepts the same parameters as IBM's CACHE procedure, but that 
can be run in batch mode via II ]OBQ or II EVOKE. Using SETCACHE you 
can create a cache-control procedure like the one shown in Figure 15.6 that 
automatically changes the cache at fixed times of day. 

If you're more ambitious, you might devise an algorithm to automati­
cally compute new cache configuration values to adapt to a changing system 
workload. You could use CACHIQ to take a cache performance snapshot and 
then invoke a program to read the snapshot values from the LDA and make a 
cache change determination based on cache efficiency and UADA trends. Fig­
ure 15.7 illustrates such a procedure, although the program XCACHE, which 



246 Desktop Guide to the SI36 

Figure 15.6 
Sample Procedure to Automatically Change 


Cache Configuration on aPredetermined Schedule 


• Automatice Cache Scheduler 

SETCACHE START,4,300

II WAIT TIME-120000 At noon, change to big cache for multibatch 

SETCACHE ALTER,B,1024

II WAIT TIME-130000 At 1 :00pm, change to medium cache for mixed jobs 

SETCACHE ALTER,2,600

II WAIT TIME-1B3000 At 6:30pm, change to huge cache for single batch 

SETCACHE ALTER,16,204B

II WAIT TIME-235959 At midnight, turn cache off for backup 

SETCACHE STOP 


Figure 15.7 

Sample Procedure to Automatically Change 


Cache in Response to Changing Environment 


• Automatic Cache Controller
• 
II LOCAL AREA-SYSTEM 
II LOCAL OFFSET-l ,BLANK-256
• 
• Repeat this loop indefinitely 
* 
II TAG LOOP · • Get a cache performance snapshot into the LOA every five minutes
• 
CACHIQ 000500,1 ,*NODISPLAY· • Run XCACHE to evaluate the snapshot from the LOA 
• (LOA also used to hold trend data)
• 
II LOAD XCACHE 
II RUN 
* 
• If XCACHE decided to change the cache config, carry out the change
• 
II IF ?L'201 ,5'/ALTER SETCACHE ALTER ?L'211,4'?,?L'215,2'? · 
• Repeat
• 
II GOTO LOOP 

makes the cache configuration decision, is left as an exercise for the reader. 
(Such a program must take into account your specific operating conditions; 
hence, a general-purpose solution isn't recommended.) 



Chapter 15 Caching in on Extra Memory 247 

Value-Added Cache 
In the fall of 1992, IBM released its Vahle Added Software Package (VASP) for 
the S/36. V ASP is free to any S/36 user holding a legal SSP license. V ASP adds 
a fourth parameter to the CACHE procedure (which SETCACHE also supports) 
to enable or disable caching for disk scan operations. Specifying SCAN 
enables caching of scans; NOSCAN (the default) disables them. SSP performs 
disk scans when searching an index for an indexed random read (e.g., an RPG 
CHAIN operation). Before VASP, cache would always cache scan operations 
that read more than a single sector of disk. In practice, this turned out to 
increase the number of cache misses, because scans seldom started at the 
same sector in an index. With VASP's CACHE modifications, scans are by 
default no longer cached. If you're having trouble getting acceptable cache 
efficiency, your problem could be scan-induced cache misses. Installing V ASP 
will change the cache to not include scan operations, and it will enable the 
SCAN/NOSCAN parameter on both the CACHE and SETCACHE procedures. 

To Cache or Not to Cache 
While the most certain method for fmding out if cache will help system perfor­
mance is to try it out, there are some truisms to consider when selecting work 
environments for each measurement period. Generally, cache is most effective 
on systems having underutilized memory, many dataftle disk accesses, a high 
read-to-write ratio, and shared files with a moderate amount of sequential 
access. Given those requirements, you might think that a single program run­
ning on a dedicated system accessing a few files randomly couldn't take 
advantage of cache. Even in this situation, though, cache can bring huge per­
formance benefits if the application exhibits locality with a large percentage of 
its disk accesses. For example, if the program randomly retrieved a small num­
ber of frequently used inventory records widely scattered in a master file, 
cache would capture the most frequently accessed records and eliminate disk 
I/O whenever the program needed them. Business programs often exhibit this 
kind of behavior; but experimentation is important because it's not always 
easy to identify such programs by inspection. 

When you first use cache, you might be discouraged by seeing high 
cache efficiency but correspondingly high increases in UADA, negating the 
value of cache. All is not lost, however - this is an indication that cache 
would be helpful if you could add more memory. Memory is one of the 
cheapest commodities in S/36 upgrading; you should seriously consider 
adding as much memory as your model CPU can accommodate. If cache still 
shows high efficiency with unacceptable UADA, and you're running on a 
smaller S/36 model, consider upgrading to a 5360 D model, which supports 
up to 8 MB of memory (see Chapter 5, "The Importance of Memory and Disk 
Space," for information on adding extra memory). 



248 Desktop Guide to the S/36 

A few situations warrant turning cache off. One of these is a dedicat­
ed batch program perfonning purely sequential processing. Such a program 
never will take advantage of cache, because it never processes the same 
record twice. In fact, any number of concurrently running, sequential batch 
jobs that don't share files won't be helped by cache. Cache will, in fact, greatly 
degrade performance due to the overhead of constantly refilling cache pages. 
If the programs update records, the degradation will be even worse! 

Cache also is not useful when you are performing backup operations 
or device-to-device copies (which usually take place on a dedicated machine). 
Cache slows these operations because the files can't be shared and won't 
exhibit any locality. An exception to this scenario is when the system is reor­
ganizing a file that is extremely out of key sequence; in this case, cache can 
help if dusters of ascending keys exist throughout the file. Without cache, the 
$COPY utility must physically read each record randomly by key as the keys 
appear in the index ($COPY does not use blocking when performing a reorg). 
With cache, however, each physical read operation brings in the locale imme­
diately follOWing the record. If that record is the start of a cluster of records 
containing ascending keys, subsequent physical reads will be satisfied from 
the cache, reducing disk VO. If you run dedicated reorganizes on large files 
(e.g., during the night) and find the reorgs don't finish in the allotted time, try 
using a large cache with the page size set to contain as many records as typi­
cally occur in a duster of ascending keys. 

No matter what your job mix, chances are that cache - given ade­
quate memory - can improve performance for certain processing scenarios. 
Your job is to identify those scenarios, perform systematic cache experiments 
to determine which cache configuratiOns give the best performance advantage, 
and then automate management of your cache to use the right cache configu­
ration at the right time. Don't make the mistake of ignoring cache, however, 
or of trying to use cache on a memory-constrained system. Spend a little 
money to maximize your memory, then let cache take a load off your system. 



Chapter 16 Is Response Time Fast Enough 249 

Chapter 16 

Is Response Time Fast Enough? 
Users tend to have a narrow view of system perfonnance. While you may be 
tickled pink to achieve low UADA counts, improved memory utilization, and 
balanced disk drives, users care about one thing only: response time. There are 
good reasons for user concern over response time. First, of course, is the frus­
tration of waiting for the computer when trying to get work done. But more 
importantly, human interface studies have shown that when a computer takes 
too long to respond to user actions, the users in tum take longer to respond 
when the computer fmally does react. For character-based computer dialogs ­
the category into which s/36 interactive programs fall - when response time is 
longer than a second or so, user attention begins to wander. The end result is a 
steeply worsening user productivity culVe. 

Subsecond response time thus is a goal worth pursuing. Although 
achieving subsecond response time might seem hopelessly impossible, there is 
much you can do to achieve this goal. This chapter will show you the ropes, 
explaining how to measure response time, what application design pitfalls to 
avoid, and how to harness external program calls (EPC) to dramatically cut 
processing time. 

Response-Time Speedometer 
As Chapter 13's discussion on SMF points out, any kind of perfonnance tuning 
requires careful measurements before, during, and after the tuning process. 
Because the objective of perfonnance tuning is to make the machine faster, 
one of the most important measurements is the response time of interactive 
applications. Unfortunately, this is one measurement that the stock s/36 doesn't 
provide automatically. Sure, you can use a stopwatch and clipboard to log 
response time measurements, but besides being just plain inconvenient, this 
manual technique isn't very accurate. Further, Simultaneously recording the 
response times of many workstations requires an army of obselVers. 

IBM does offer a product for sale - the Response Time Measurement 
Facility (RMF) - that collects and reports S/36 response time values automati­
cally. But the utility is expensive and difficult to use. It turns out, though, that 
IBM already supplies the basic tools necessary to measure workstation 
response times. Utility RTIMER, supplied on the diskette with this book, takes 
advantage of those built-in tools to collect, analyze, and report response-time 
perfonnance figures. Armed with these objective measurements, you can direct­
ly evaluate the effectiveness of your system tuning efforts. Even better, RTIMER 
lets you give users concrete proof when your tuning efforts payoff. 



250 Desktop Guide to the SI36 

Performance Tip 

User complaints 
about response-time 

degradation are often 
based on subJective, 

not obJective, 
measurements. When 
users complain about 
poor response times, 

use RTIMER to get 
the real story. 

RTIMER takes advantage of an undocumented feature built into SSP to 
cause it to collect response times and log them to disk, similar to the way SMF 
collects various performance values and logs. them to disk. SSP measures 
response time as the interval from when the user presses ENTER (or some other 
function key) to when the program next outputs a display screen. RTIMER's 
reporting component - analogous to the SMFPRINT component of SMF ­
then analyzes the logged measurements and prints a report. 

Using RTIMER is a four-step operation. First, you start up response­
time collection via the RTIMER procedure: 

RTIMER START,blocks 

where blocks is the number of blocks to allocate for the data collection file. 
Each block holds about 80 response-time entries. If you omit this parameter, 
RTIMER uses a default of 10. Next, you run the mix of interactive applications 
you're interested in evaluating. Be sure to process enough transactions to 
accumulate a significant number of measurements (several dozen for each 
screen format you're evaluating), and then stop response-time collection: 

RTIMER STOP 

Finally, you run procedure RTIMEP to analyze the collected statistics and print 
a report. The report details every application-related workstation event (Figure 
16.1) unless you specify NODETAIL in procedure parameter one, which 
results in a summary-line-only report (Figure 16.2). The detail report shows 
the clock time of each workstation transaction (input followed by output) and 
the response time. The summary report shows only total transaction counts 
and response-time averages. Both reports are sorted by program name, screen 
format name, and workstation ID, and show response-time averages by work­
station and screen format. Both reports also show a fmal, overall response­
time average. RTIMEP sorts first by program name in case some formats are 
shared among several programs or in case screen format names are not 
unique among programs. Sorting by screen format name and workstation ID 
lets you spot, and possibly factor out, performance differences among work­
stations. For example, workstations accessing remotely stored files via DDM 
will have long response times due to delays accessing records over a commu­
nications network. Another point to consider when reading the report is that 
format names identify the format displayed at the start of each workstation 
operation. Thus, program initiation - the transition from menu to first screen 
- doesn't falsely bias averages for any given screen format. This also means, 
however, that you must take care when evaluating response times if your 
application design methodology results in frequent program initiations. 
RTIMER may not show these program initiation delays; be assured, however, 
that your users experience them nonetheless! 



-- - -- ---- - - - -
11.69 

Chapter 16 Is Response Time Fast Enough 251 

Figure 16.1 
Sample Detail Report from Utility RTIMER 

2/20/91 Response Time Analysis Page 2 


Prog Format WS Job Name Time R-time WS Cnt WS Avg FM Cnt FM Avg 

MEL MTMT79 Wl 1910213 17:50:26 11.69 11.69 

MEL QVUB02 W2 2910213 17:50:32 1 .11 1 .11 1 .11 


QVUBRS QVUBX060 W2 W2172508 17:53:10 4.94 4.94 4.94 

QVUBRS QVUBX132 Wl Wl173149 17:55:49 7.83 

QVUBRS QVUBX132 Wl Wl173149 17:56:21 2.58 

QVUBRS QVUBX132 Wl Wl173149 17:56:57 .45 3 3.62 

QVUBRS QVUBX132 W2 W2172508 17:50:47 .52 

QVUBRS QVUBX132 W2 W2172508 17:53:12 .06 2 .29 5 2.28 


QVUBRS QVUB02 W1 Wl173149 17:56:04 1.50 

QVUBRS QVUB02 W1 Wl173149 17:56:07 .95 

QVUBRS QVUB02 W1 Wl173149 17: 56: 11 2.03 

QVUBRS QVUB02 W1 Wl173149 17:56:14 3.47 4 1.98 

QVUBRS QVUB02 W2 W2172508 17:50:34 .72 

QVUBRS QVUB02 W2 W2172508 17:52:13 .58 

QVUBRS QVUB02 W2 W2172508 17:52:14 .52 

QVUBRS QVUB02 W2 W2172508 17:52:35 .62 

QVUBRS QVUB02 W2 W2172508 17: 53: 13 .52 

QVUBRS QVUB02 W2 W2172508 17: 53 :15 .55 

QVUBRS QVUB02 W2 W2172508 17:53:28 .52 

QVUBRS QVUB02 W2 W2172508 17:53:28 .52 

QVUBRS QVUB02 W2 W2172508 17:53:29 .55 

QVUBRS QVUB02 W2 W2172508 17:53:29 .55 

QVUBRS QVUB02 W2 W2172508 17:53:32 .52 

QVUBRS QVUB02 W2 W2172508 17:53:32 .52 

QVUBRS QVUB02 W2 W2172508 17:53:34 .52 

QVUBRS QVUB02 W2 W2172508 17:53:34 .52 14 .55 18 .87 


QVUBRS QVUB03 W1 Wl173149 17:56:53 1.21 

QVUBRS QVUB03 Wl Wl173149 17 :56: 56 .65 

QVUBRS QVUB03 W1 Wl173149 17:57:00 1.04 3 .

QVUBRS QVUB03 W2 W2172508 17:54:59 1.08 


96 

QVUBRS QVUB03 W2 W2172508 17:50:42 1 .14 

QVUBRS QVUB03 W2 W2172508 17:50:45 .65 


QVUBRS aVUB03 W2 W2172508 17:54:59 1.08 4 .98 7 .97 


Overall Average: 73 1.94 

Looking for Delay 
With an objective tool for measuring response time, you're ready to look for 
application problems that could be causing slow response times. There are 
two major areas to examine: application design and program implementation. 

Keep in mind that one of your goals in achieving subsecond response 
time is to avoid having users become inattentive between transactions. If each 
press of the Enter key currently sends the computer off on a five- or to-sec­
ond processing mission, you might consider breaking the transaction into 



252 Desktop Guide to the 5136 

figure 16.2 

Sample Summary Report from Utility RTIMER 


2/20/91 Response Time Analysis Page 

Prog Forlllat WS Job Nallle Tillie A-time WS Cnt WS Avg FM Cnt FM Avg 
-- -- ­ - -­ - - - -
FSE02 COpy W1 .72 .72 

FSE02 MTMTLC79 W2 2 .99 2 .99 

FSE02 MTMT79 W1 18 1.16 
FSE02 MTMT79 W2 9 2.28 27 1. 53 

FSE03 MTMT79 W1 3 .94 3 .94 

FSE04 SOPTIONS W1 2 3.57 2 3.57 

MEL MTMT79 W1 11.69 11 .69 

MEL QVU802 W2 1. 11 1 .11 

QVUBRS QVUBX080 W2 4.94 4.94 

QVUBRS QVUBX132 W1 3 3.62 
QVUBAS QVUBX132 W2 2 .29 5 2.28 

smaller steps to reduce the elapsed time between system responses. There are 
no medals given in the Programmer's Hall of Fame for cramming the most 
data into a single screen. Spreading the details of a transaction across several 
screens has the added advantage of reducing the amount of information users 
must digest at one time. 

If you break a transaction at natural pause points for the user, you'll 
not only achieve faster response times, you'll take better advantage of the 
"think" time during which the computer is normally idle. For example, a user 
transcribing data from a multipage input document has natural pause points 
when turning pages; your application should take advantage of those pauses 
by making the data entry for each page a separate screen. As a more concrete 
example, consider a telephone-driven order-entry process, with phone opera­
tors interactively developing orders based on conversation with customers. The 
operator!customer dialog has natural pauses (e.g., when the operator must ask 
the customer for the next item) during which the system could be processing 
previous input. If the order-entry application forces the operator to key an 
entire order on one screen before pressing Enter, the resulting delay to close 
out the order could be quite long. During this time, conversation usually turns 
to the incompetence of the data processing technical staff. If, on the other 
hand, the operator had been pressing Enter after each order item, by the time 
the order is fmished little additional processing remains, letting the operator give 
the order total to the customer and end the transaction. 



Chapter 16 Is Response Time Fast Enough 253 

This kind of application design requires careful attention to exception 
conditions. The user must, for example, be able to back up to a previous step 
in the input process at any time - forcing the user to start over is bad user­
interface technique. You also should strive to provide continuity from screen 
to screen, carrying some information over from previous screens. In the order­
entry example, you should display previously entered items and let the user 
make changes as required. Infrequently used data items shouldn't clutter up 
the screen; instead, let the user call up exception screens to enter or access 
these items. Consider using pop-up overlays for such screens; such overlays 
let the user maintain a point of reference during the exception procedure. 

Figure 16.3 shows an all-in-one order-entry screen in which the user 
enters an entire order before sending it to the system. The screen is complex 
and requires complex navigation. It displays every conceivable bit of data asso­
ciated with an order: customer name, bill-to and ship-to addresses, credit status, 
special instructions, order history, discount rates, tax and payment terms, line 
items, and notes for each line item. Figures 16.4a through 16.4e show one way 
this single screen could be divided into several interactive steps. In step (a), the 
user deals only with customer name and address information. If the operator 
must check the client's credit history, pressing a command key calls up the 
appropriate information in a pop-up overlay (step b), which can take advan­
tage of additional screen space to present data more clearly. In step (c), the 
operator enters the ship-to address if it differs from the bill-to address; the 
operator can use a similar exception procedure to enter special instructions or 
review discount rates. When entering line items (d), only basic customer identi­
fiers are carried over from the previous screen; the operator usually does not 
need to refer to address or other information during item entry, so that data can 
safely be dropped. Note, however, that the operator can quickly back up to the 
previous screen via a standard command key. During item entry, the operator 
presses ENfER after each item; prior items appear above and the input area 
moves down the screen as each item is processed. Item notes only occupy a 
line if the operator enters them, so most items take only one line - not two 
lines as in the original screen - further redUCing screen clutter. Data about 
each item not normally reqUired during order entry (e.g., stock date) is elimi­
nated; the operator can call it up via a command key if necessary. After ending 
the order, an overlay screen (e) presents summary information the operator 
needs to confirm the order with the customer. 

The revised application design performs less processing with each 
step, letting the operator get feedback more frequently and keeping response 
times down. The new design is also easier to use, and easier to modify when 
the time comes for those inevitable enhancements. This example should give 
you some ideas for improving the interfaces of your own applications as a 
means to achieving subsecond response time. 



254 Desktop Guide to the SI36 

Agure 16.3 

Typical AII-In-One Order Entry Panel 


Cust#: 015788 Ship-to: Clark's Printing 
Name: Clark's Printing Attn: Journeyman 

Bill-to: 101 Gregory Drive 400 Heidelberg Road 
Ventura, CA 93003 Ventura, CA 93003 

Phone: 805 647-3125 Credit: OK lims: 1003/1500 
Rating: G AvPy: 30 

Sp inst: Discounts: 5.5% 7.1% 11.0% 
Tax: 6.25% 

Terms: Net 30 Last order: 10/15/92 Amt: 650 
Ba1 due: 300.00 Age: 30 days YTD sales: $ 2250 

Itemli Des!<ril1tion Units Qtll QOH 810 StockDt Unit Pr Total 
14039 Engraving, plate Ea 10 878 0 06/15/92 33.40 334.00 
notes: 

14042 Cards, detailed Ea 890 9250 0 06/19/92 1.00 890.00 
notes: 

14044 Stock ink green Drum 550 0 05/01/92 423.90 423.90 
notes: 

14052 Rack mounts 3- Ea 100 9132 0 07/03/92 3.99 399.00 
notes: Don't use glass__ 

14054 Stock ink red Drum 0 03/30/92 480.22 480.22 
notes: 

Press enter when finished. Roll keys to scroll Ck7: End job Ck9: Cancel 

Agure 16.48 
Customer Name and Address Information Screen 

Cust#: 015788 
Name: Clark's Printing 

Bill-to: 101 Gregory Drive 
Ventura, CA 93003 

Phone: 805 647-3125 

Ck3: Back Ck4: Ship-to Ck5: Credit Ck6: Discounts 
Ck7: End job Ck8: Special Inst Ck9: Cancel 



Chapter 16 Is Response Time Fast Enough 255 

Figure 16Ab 
Customer Credit History Screen 

Cust#: 015788 ----------Credit Information---------- ­
Name: Clark's Printing Credit allowed. Yes 

Bill-to: 101 Gregory Drive Max credit line $ 1500 
Ventura, CA 93003 Available credit line $ 1003 

Phone: 805 647-3125 
Rati ng . . . . . 
Average pay_ent in . 

G (good) 
30 days 

-----------Financial 
Ba1 ance due 

History---------- ­
$ 300 
30 days 

Last order $ 550 
10/15/92 

YTD sales $ 2250 

Ck3: Back Ck4: Ship-to Ck5: Credit Ck6: Discounts 
Ck7: End job Ck8: Special Inst Ck9: C~ncel 

figure 16.4c 
Ship·To Address Screen 

Cust#: 015788 
Name: Clark's Printing 

Bill-to: 101 Gregory Drive 
Ventura, CA 93003 

Phone: 805 647-3125 

Ship-to: 	Clark's Printing 
Attn: Journeyman 
400 Heidelberg Road 
Ventura, CA 93003 

Ck3: Back Ck4: Ship-to Ck5: Credit Ck6: Discounts 
Ck7: End job Ck8: Special Inst Ck9: Cancel 



-----

256 Desktop Guide to the S/36 

Figure 16.4d 

Customer Line-Item Order Screen 


Cust#: 015788 Clark's Printing 

Item/i Descrilltion Units Ot~ gOH 8LO Unit Price Total 
14039 Engraving, plate Ea 10 878 0 33.40 334.00 
14042 Cards, detail ed Ea 890 9250 0 1.00 890.00 
14044 Stock ink green Drum 1 550 0 423.90 423.90 
14052 Rack mounts 3" Ea 100 9132 0 3.99 399.00 

notes: don't use glass 
14054 Stock ink red Drum 0 480.22 480.22 

notes: 

Ck3: Back Ck7: End job Ck8: Item Detail Ck9: Cancel 
Roll: Scroll items Ck10: End order 

Agure 16.4e 
Summary Order Information Screen 

Cust#: 015788 Clark's Printing 

Item/i Descrilltion Units Oty OOH BLO Unit Price Total 
14039 
14042 
14044 
14052 

Engraving, plate Ea 10 878 0 33.40 
Cards, detailed Ea 890 9250 0 1.00 
Stock ink gr··········································
Rack mounts" Order Completed " 

334.00 
890.00 
423.90 
399.00 

notes: don't use g" 
14054 Stock ink reO Subtotal . . . . . . . 2527.12 480.22 

Tax ( 6.25%) 
Shipping . . . . . . . . 

157.95 
55.00 

Total due . . . . . . . 2740.07 

..•••..••..•.••..•.....•..•....•••....••.• 

Ck3: Back Ck7: End job Ck9: Cancel Ck10: Accept order 



Chapter 16 Is Response Time Fast Enough 257 

Getting SSP Out of the Loop 
Modifying program design to reduce the amount of application work done in 
each interactive step is one way to improve response time. Another way is by 
reducing the amount of system work performed when linking between pro­
grams. Most S/36 applications consist of several programs, with control being 
passed from program to program depending on user actions. For example, 
when a user needs an alphabetic search function from within an order-entry 
program, the order-entry program passes control to a separate interactive 
alpha-search program, along with the user's search argument. When the alpha­
search program finishes, it passes control back to the order-entry program, 
along with the results of the search. 

Traditional S/36 application design uses OCL statements to pass con­
trol between programs and the Local Data Area (IDA) to exchange data argu­
ments. Figure 16.5 illustrates the process. OCL statements within a procedure 
load and run program MAIN, which opens the files it uses and begins process­
ing. Later, when MAIN needs to invoke program ALPHA, it stores the search 
argument in the LDA and terminates, closing its files and returning control to 
the procedure. The procedure then loads and runs program ALPHA, which 
opens its own files and uses the argument passed in the LDA to carry out the 
search. When the search is completed, ALPHA stores the search result in the 
LDA and terminates in tum, closing files and returning control to the proce­
dure, which then can reload program MAIN (and reopen files), which exe­
cutes logic to pick up the returned search result from the IDA and resume 
control at the previous point. 

Whew! The traditional OCL-based program linkage clearly is convo­
luted. Worse, though, it's expensive in terms of response time; because OCL 
processing, program initiation, termination, and LDA access all result in time­
consuming disk accesses. Figure 16.6 shows the number of disk operations 
required for each step in the process of invoking a program using this tech­
nique. The total number of operations depends upon the number of files used 
in each application, but even the best-case scenario, with one file in each pro­
gram, results in 17 disk accesses - more than a half-second of overhead. A 
more realistic situation, with a half-dozen files in each program, consumes 
nearly 50 disk accesses and a second and a half of overhead. Even if the pro­
grams themselves run in zero time (not likely), subsecond response time is 
obviously out of the question. 

S/36 programmers, though, are an ingenious lot; over the years 
they've cooked up a number of clever techniques - read-under-format work­
station I/O, Multiple Requester Terminals (MRTs), and Never-Ending Programs 
(NEPs) to name a few - to reduce this overhead. Unfortunately, while these 
improvements do reduce the invocation overhead, they make coding even 
more convoluted than before. 



258 Desktop Guide to the SI36 

Rgure 16.5 
Traditional Program Linkage Using OCL and LDA 

MAIN ALPHA
LDA LDA LDA 

parameters ~ ... -~ parameters ~... -~ parameters 

SETON LR SETON LR 

OCL OCL 

II LOAD MAIN II LOAD ALPHA 
II FILE. .-- ----. II FILE. - I- ­~ 
II FILE. II FILE. 
II RUN II RUN 

Rgure 16.6 

Disk Overhead for Terminating/Initiating Task Sequence 


Number of 
Description DiskOps 

Terminate existing task 
Close files 2per file 
Save LDA 1 
Release swap area 2 

Initiate new task 
Read OCL statements 2 
Locate new program in library directory 2 
Create swap area 1 
Load new program 1 
Restore LOA 1 
Allocate files 1per file 
Open files 2per file 
Locate screen format member 2 

A much better solution is the use of external program calls (EPCs) to 
invoke programs. EPC improves invocation performance in three ways. First, it 
eliminates OCL processing (except for the main program); second, it passes 
parameters privately via memory-to-memory transfers, bypassing the disk­
based LDA; third, it lets multiple programs remain active within a job step, 
greatly reducing the need to constantly initiate and terminate programs. 

Figure 16.7 illustrates the process for the previous example. Program 



Chapter 16 Is Response Time Fast Enough 259 

Rgure 16.7 
Program Linkage Using External Program Calls 

MAIN ALPHA 
oel 
II LOAD MAIN CALL ALPHA parameters -'" *ENTRY PLIST 
II FILE. 
II FI LEo ~ 

...- parameters RETRN 
II RUN 

MAIN is still loaded via OCL statements, and still requires the overhead of open­
ing ftles in preparation for processing. However, when MAIN invokes program 
ALPHA, it does so via an RPG CALL statement, which loads ALPHA without 
first closing terminating main, and without processing any OCL statements. The 
overhead of closing ftles and OCL termination is saved. ALPHA begins execu­
tion by opening its mes, as before, but receives the search argument without 
accessing the disk-based LDA, saving that VO. When ALPHA finishes its work, 
it returns control to MAIN via an RPG RETRN statement, passing the search 
result back as a memory-based parameter. Program ALPHA doesn't terminate, 
though, but simply enters a suspended state while MAIN resumes execution 
where it left off, without being reloaded and without reopening its meso 

The story isn't over yet, though. The first call to ALPHA using EPCs 
required only a few disk VOs where the OCL-based method required many. 
But subsequent EPC calls to ALPHA will require no disk accesses at all! When 
MAIN calls ALPHA after the first time, ALPHA simply wakes up from its sus­
pended state; when ALPHA returns, it "sleeps" again while MAIN wakes up. No 
OCL interpretation, program initiation or termination, or me opens and closes 
need be done. If neither program is paged out to disk, the invocation can be as 
fast as 4 milliseconds - a fraction of the time of a 35-millisecond disk access. 

EPC clearly is the path to subsecond response time. For the full story 
on understanding and using EPC, tum to the chapters in Section III (External 
Program Calls). You'll have to expend some effort redesigning and reworking 
your existing applications, but the effort will payoff handsomely in improved 
response time and better user productivity. 

Performance Tip 

For even better use of 
EPC to eliminate 
program Initiations 
and terminations, 
consider replacing 
menus with programs 
that display the menu 
screens and then use 
CALL to Invoke 
requested 
applications. Then, 
when the user exits 
an application, use 
RETRN to return 
control to the menu 
program. This way, 
applications will 
remain active and 
appear with zero 
delay when the user 
next requests them 
from the menu 
program. 





Section VI 

Advanced Topics 

"For every problem there is one solution which is simple, neat, and wrong. " 
-H.L. Mencken 

I BM is always touting the improved programmer productivity possible 
with its current midrange contender, the AS/400. And indeed, compared 
with the S/36 as shipped by IBM, the AS/400 is a markedly superior 
machine. The AS/400 provides advanced file operations, better system 
access from high-level languages such as RPG, and source-level debug­

ging and performance tools, to name just a few of its niftier features. 
Fortunately, you don't have to settle for a machine the way IBM shrink­

wraps it. A whole host of free-use and commercial add-ons bring many of the 
AS/400's advantages to the lowly S/36. Commercial add-ons, such as third-party 
RPG compilers and EPC products, are discussed elsewhere in this book. This 
section focuses on things you can use immediately, without spending any more 
money or getting anybody's permission. All of the enhancements described are 
contained in their entirety on the diskette accompanying this book. 

Chapter 17 presents more than two dozen powerful assembler lan­
guage routines that provide string handling, file manipulation, and system-level 
access similar to that available on the AS/400. This chapter also gives you the 
straight scoop on how these routines affect the future migratability of your pro­
grams. Chapter 18 shows you how two tools - a dump debugger and a code 
profiler - can help you perform source-level program debugging and tuning. 
Chapter 19 is a handbook for making your applications more portable to future 
platforms; topics include externally described mes, careful RPG coding prac­
tices, sensible me design. 

If you've got a tough coding problem and think the AS/400 is your 
only way of escape, check out this section. The S/36 might surprise you. 



264 Desktop Guide to the S/36 

• System management 
• Device control 

It's important to keep in mind the following rules and conventions when using 
these or any other assembler subroutines: 

• All the subroutines in this chapter have been written to be called from 
RPG. However, unless otherwise specified in the "Notes" section, COBOL pro­
grams may also call these subroutines by using a "blidge" routine, also includ­
ed, called RBRIDG (see "RBRIDG," the last section in this chapter.) 

• When calling an assembler subroutine, you must specify all the 
RLABLs defined in the calling sequence, whether or not your program needs 
them for a particular function. The reason for this is that an RLABL does not 
generate executable instructions, but rather a length and offset to the corre­
sponding parameter within the program. When the subroutine returns control 
to your program, it must "jump around" the parameters, and there is no way 
for the subroutine to dynamically tell how many parameters exist. 

• All RLABLs should be field names unless the parameter definition 
explicitly specifies that a given RLABL should be an array or Data Stmcture 
(DS). In the case of a DS, be sure the name you specify is the name in posi­
tions 7-12 of the I-spec line that defines the DS, and not just a subfield that 
redefines the entire DS. 

• RLABLs can be named anything you want. They don't have to match 
the names in the calling sequence, because they are referenced by address, not 
by name. 

• A question mark (?) in the length area of an RLABL defmition denotes 
that the field can be a variable length, depending on the operation to be per­
formed. If a question mark is not present, the RLABL must be the length :,peci­
fied in the calling sequence. 

• Many of these subroutines require that the MSP be in "privileged 
mode" when they are called. All subroutines that require privileged mode 
have an attribute set in their library directory entry that ensures privileged 
mode is on when your program is run. This attribute should not be modified, 
or a task dump will occur when the subroutine is called. 

STRING HANDLING FUNCTIONS 
Of all the subroutines in this chapter, the seven that follow stand the best 
chance of migrating to the AS/400, RS/6000, or any other computer, for that 
matter. This is because none of them have any machine dependencies. Every 
computer language supports some kind of string handling capabilities. Even 
RPG/400 now supports a wide range of string operations such as CAT, SCAN, 
and SUBST. 

These string-handling subroutines can enhance the performance of 



Chapter 17 Harnessing the Power of Assembler Subroutines 265 

any RPG program by virtually eliminating the need for variable index array 
processing, which is the most common, and most likely the only, means of 
getting the job done in RPG. Because variable index array processing often 
involves hundreds of machine cycles, any kind of searching or modification of 
an array causes unnecessary seconds, or even minutes, to be wasted. By using 
an assembler subroutine, you can usually eliminate the arrays entirely and 
have the subroutine work directly on the field you want to manipulate or 
search, thereby dramatically increasing performance. 

SUBRSF 

Descrlpdon 

Locates an arbitrary substring within a target string. 


Calling sequence 
.••. + .•. 10 .... + ... 20 .... + .•• 30 .... + ••• 40 .... + ... 50 .... + ••• 60 .... + ••• 70 .... 

C EXIT SUBR$F Used for 
C RLABL OP 1 Input 
C RLABL RESULT 30 Output 
C RLABL ARGHNT 7 Input 
C RLABL TARGET 7 Input 
C RLABL LEFTP 30 Input 
C RLABL RIGHTP 30 Input 

Parameter definition 

OP A I-byte field that contains the operation to perform. 
I - Initial search 
R = Repeat search 

RESULT 	 A 3-byte numeric field that will contain the leftmost position of the 
search string in the target field if a match was found, 0 if the string 
was not found, and -1 if you made a coding error in the search 
parameters (e.g., ARGMNT larger than TARGET; LEFTP greater than 
RIGHTP). 

ARGMNT 	 A field up to 256 bytes long that contains the search argument. The 
argument ends with the first blank character unless you enclose the 
actual search argument in single quotation marks. If you enclose the 
argument in double quotation marks, both upper and lower case 
characters in the target string will match (Le., case is ignored). 

TARGET A field up to 256 bytes long that contains the target string to search. 

LEFTP A 3-byte numeric field that specifies the leftmost poSition in TARGET 
to be considered in the search. If LEFTP is zero, the value 1 is 
assumed. 



266 Desktop Guide to the S/36 

R I GHTP 	 A 3-byte numeric field that specifies the rightmost position in TAR­
GET to be considered in the search. If RIGHTP is zero, the search 
string must start at position LEFfP in the target string to match the 
argument; this is called an "anchored" search and is much fa~;ter 
than a general search, because only one compare needs to be per­
formed rather than a test of all possible positions. 

Notes 
• An initial search is used every time you want to change the search ar:gu­

ments. A repeat search is used to repeat a search using the same argllment 
you used previously but with different data in the target field. A repeat 
search is much faster than an initial search because all the initialization code 
in SUBR$F is not executed. 

SUBRSC 

Description 
Concatenate a variable number of fields. 

Calling sequence 
.••. + ..• 10 .... + .•• 20 .... + ... 30 .... + ... 40 .... + •.• 50 .... + ••• 60 .... + ... 70 .... 

C EXIT SUBRSC Used for 
C RLABL 
C RLABL 
C RLABL 
C RLABL 
C RLABL 

OUTFLO 
INFLD1 
INFLD2 
INFLDn 
OUTFLD 

? 
? 

? 

Output 
Input 
Input 
Input 
Output 

Par.underdefir.rltion 

OUfFLD A field up to 256 bytes long that will contain the concatenated con­
tents of all the INFLDn fields. This parameter must again be speci­
fied as the last RIABL to "bracket" the variable number of input 
fields for SUBR$C. 

INFLDn 	 A variable number of fields up to 256 bytes long that contains the 
text to be concatenated. 

Notes 
• To insert a blank between fields, place an empty field in the output string 

where the blank should occur. To insert more than one blank, you must place 
multiple blank fields in the output string (i.e., one blank field per blanl.). 

• The contents of the output string is not initialized to blanks before concate­
nation. 



Chapter 17 Harnessing the Power of Assembler Subroutines 267 

SUBRSX 

Description 

Extracts an arbitrary substring within a target string, 


Calling sequence 
, . , , + , , .10, , , ,+ , , ,20, , , ,+ , , ,30, , , , + , , ,40, , , , + , , ,50, , , ,+ .. ,60, , , , + , , ,70, , , , 

C EXIT SUBR$X Used for 
C RLABL 
C RLABL 
C RLABL 
C RLABL 
C RLABL 
C RLABL 

FRMPOS 
TOPOS 
LEN 
SOURCE 
TARGET 
RCODE 

30 
30 
30 
? 
? 
1 

Input 
Input 
Input 
Input 
Output 
Output 

Parameter definition 

FRMPOS 	 A 3-byte numeric field that contains the leftmost position of the 
string to copy from SOURCE (1 through 256 are allowed), 

TOPOS 	 A 3-byte numeric field that contains the leftmost position indicating 
where to copy the substring into TARGET (1 through 256 are 
allowed), 

LEN 	 A 3-byte numeric field that contains the number of bytes to copy (1 
through 256 are allowed), 

SOURCE A field up to 256 bytes long that contains the string to copy, 

TARGET A field up to 256 bytes long that will contain the copied substring, 
Note that this field is not cleared prior to copying the substring from 
SOURCE, All positions not affected by the copy will remain intact. 

RCODE A I-byte field to contain the return code, 
D = Normal return 
1 = FRMPOS, TOPOS or LEN value is not from 1 to 256 
2 = FRMPOSrrOpos plus LEN is invalid 

Notes 
• This subroutine can be used in conjunction with SUBR$F to fmd and extract a 

substring, Simply use the same source string and position returned by SUBR$F 
in RESULT as input to field FRMPOS in SUBR$X (see the following example), 

Example 
.... + .. , 10, , . ,+ , . ,20, , , ,+ , , , 30, , .. + , , ,40, , .. + .. , 50, , , , + , , . 60, , , , + , , , 70, , . , 

C MOVE 'I' FUNC Initial search 
C MOVE 'FIND ME' ARGMNT Search argument 
C EXIT SUBR$F Perform the search 
C RLABL FUNC 1 
C RLABL FRMPOS 30 
C RLABL ARGMNT 7 



268 Desktop Guide to the 5/36 

..•. + ••• 10 .... + ... 20 .... + ... 30 .... + .•. 40 .... + ••• 50 .... + ••• 60 .... + ... 70 .... 

e RLABL TARGET256 
e RLABL LEFTP 30 
e RLABL RIGHTP 30 
e* 
e FRMPOS IFGT 0 If argument fc·und 
e Z-ADD1 TOPOS Set "to· posi1ion 
e Z-ADD7 LEN Set length to copy 
e EXIT SUBRSX Extract substr'ing 
e RLABL FRMPOS 30 
e RLABL TOPOS 30 
e RLABL LEN 30 
e RLABL TARGET 
e RLABL SUBSTR256 
e RLABL ReODE 
e ReODE IFEQ '0' If okay return 
e 
e . Do something with the substring 
e 
e END 
e END 

SUBRAT 

Description 
Left-, right-, or center-adjust text within a field. 


Calling sequence 

.... + .•• 10 .... + •.• 20 .... + ••• 30 .... + ••• 40 .... + ... 50 .... + •.• 60 .... + ••• 70 .... 


e 
e 
e 
e 

EXIT SUBRAT 
RLABL 
RLABL 
RLABL 

OP 
TEXT 
ReODE 

1 
? 

Used for 
Input 
Input/Output 
Output 

Parameter definition 

oP A I-byte field that contains the operation to perform. 
L = Left-adjust text 
R = Right-adjust text 
C = Center text 

TEXT A field up to 256 bytes long that contains the text to be adjusted. 

ReODE A I-byte field to contain the return code. 
0= Normal return 
1 = Invalid operation 

Notes 

• When centering text, if the text cannot be exactly centered, there will be an 
extra blank on the right end of the field. For example, if you attempt to cen­
ter the string "NOW IS 1HE TIME" (Le., 15 bytes) in a 20-byte field, there 
will be two blanks on the left and three on the right. 



Chapter 17 Harnessing the Power of Assembler Subroutines 269 

SUBRBX 

Description 
Convert binary to hex or hex to binary. For example, if converting from binary 
to hex, a 2-byte binary value of X'I234' will be converted to a 4-byte value of 
X'F1F2F3F4'. 

Calling sequence 
••.. + •.. 10 .... + •.. 20 .... + •.. 30 .... + ••• 40 .... + ... 50 .... + •.. 60 .... + ••• 70 .... 

C EXIT SUBRBX Used for 
C 
C 
C 
C 

RLABL 
RLABL 
RLABL 
RLABL 

OP 
BIN 
HEX 
RCOOE 

1 
7 
7 

Input 
Input/Output 
Input/Output 
Output 

Parameter definition 

OP A I-byte field that contains the operation to perform. 
1 = Convert binary to hex 
2 = Convert hex to binary 

BIN A field up to 128 bytes long that contains the binary input or result. 

HEX A field up to 256 bytes long that contains the hex input or result. 
1bis field should be exactly twice as long as BIN. 

ReODE A I-byte field to contain the return code. 
0= Normal return 
1 = Invalid operation 
2 = Field BIN is longer than 128 bytes 
3 = Field HEX is not twice the length of BIN 

Notes 

• If converting from binary to hex, BIN should contain the binary input and 
HEX will contain the hex result. If converting from hex to binary, HEX con­
tains the input and BIN will contain the result. 

SUBRCS 

Description 
Convert text from upper case to lower case or lower case to upper case. 

Calling sequence 
..•• + ••• 10 .... + ••. 20 .... + ••. 30 .... + •.• 40 .... + ••• 50 .... + ••• 60 .... + ... 70 .... 

C EXIT SUBRCS Used for 
C RLABL OP 1 Input 
C RLABL TEXT 7 Input/Output 
C RLABL RCOOE Output 



270 Desktop Guide to the S/36 

Parameter definition 

OP A I-byte field that contains the operation to perform. 
L = Convert upper case to lower case 
U - Convert lower case to upper case 

TEXT A field up to 256 bytes long that contains the text to be convelted. 

RCODE A I-byte field to contain the return code. 
D = Normal return 
1 = Invalid operation 

SUBRUP 

Description 
Unpack or pack a field. 

Calling sequence 
.••• + ... 10 .... + ..• 20 .... + .•. 30 .... + ..• 40 .... + .•• 50 .... + ••• 60 .... + •.• 70 .... 

e 
e 
e 
e 
e 

EXIT SUBRUP 
RLABL 
RLABL 
RLABL 
RLABL 

OP 
INPUT 
OUTPUT 
ReODE 

1 
? 

Used for 
Input 
Input 
Output 
Output 

Parameter definition 

OP A I-byte field that contains the operation to perform. 
1 = Unpack 
2 = Pack 

I NPUT A field up to 15 bytes long that contains the packed or unpacked 
input. 

OUTPUT A field up to 15 bytes long that will contain the packed or unpacked 
output. 

RCODE A I-byte field to contain the return code. 
D = Normal return 
1 = Invalid operation 

Notes 

-1his routine performs signed unpacking/packing, such as that used in RPG 
programs. 

- It is the caller's responsibility to ensure the output field is large enough to 
contain the resulting data. 



Chapter 17 Harnessing the Power of Assembler Subroutines 271 

LIBRARY MANIPULATION FUNCTIONS 
The library function subroutines give you access to libraries and library mem­
bers. The ftrst two - SUBRLD and SUBRLR - provide the same capabilities as 
USlUBR procedure calls, except that with USlUBR the output must be placed 
in an intermediate disk ftle. SUBRSG is especially useful because it provides 
simultaneous access to an unlimited number of source or procedure members. 
These routines are especially useful for bUilding software development tools 
because of their fast access to libraries and library members. 

SUBRLD 

Description 
Return information about an individual library member (i.e., the directory 
entry) or an entire library. 

Calling sequence 
.••• + .•• 10 .... + ... 20 .... + .•• 30 .... + •.• 40 .... + •.. 50 .... + ••• 60 .... + .•. 70 .... 

C EXIT SUBRLD Used for 
C 
C 
e 
e 
e 

RLABL 
RLABL 
RLABL 
RLABL 
RLABL 

LIBNAM 
MEMNAM 
MEMTYP 
DIRDS 
ReODE 

8 
8 
1 

Input 
Input 
Input 
Output 
Output 

Parameter definition 

LI BNAM 	 An 8-byte fteld that contains the library name where the member 
resides. 

MEMNAM 	 An 8-byte fteld that contains the member name. 
• If MEMNAM is blank, the next directory entry is read. 
• If MEMNAM contains a member name, the directory informa­

tion for that member is returned. 
• If MEMNAM contains a partial member name, the directory 

information for the next member matching the partial name is 
returned. A partial name is followed by an asterisk. (e.g., SUBR*) 

• If MEMNAM contains *UBR, information about the entire 
library is returned. 

MEMTYP A I-byte fteld that contains the member type. If MEMNAM contains 
*UBR, the value in this fteld is ignored. 

0= Object 
P ... Procedure 
R = Subroutine 
S = Source 



272 Desktop Guide to the S/36 

01 ROS 	 A data structure that contains the directory infonnation returned. The 
fonnat of the data structure and the field definitions for individual 
members are as follows: 

..•• + ••• 10 .... + .•• 20 .... + .•• 30 .... + ... 40 .... + ... 50 .... + ... 60 .... + ••. 70 .... 

IDIRDS DS 
1 1 DRTYPE 
2 9 DRNAHE 

10 15 DRADDR 
16 18 DR#TXT 
19 22 DRUNK 
23 27 DR#STH 
28 31 DRSCA 
32 33 DRRLD 
34 36 DRCORE 
37 37 DRATR1 
38 38 DRATR2 
39 39 DRATR3 
40 41 DRHRT 
42 43 DRREL 
44 46 DRTOTL 
47 47 DRATR4 
48 53 DRHOD 
54 59 DRDATE 
60 63 DRTlHE 
64 65 DRATR5 
66 69 DRPTF@ 
70 70 DRATR6 

ORTYPE Member type 
ORNAME Member name 
ORAOOR 	 Disk address of member 
OR#TXT Number of text sectors - types 0 and R 

Record length -- types Sand P 
DRUNK Link edit address 
OR#STM Number of statements in member - types Sand P 
ORSCA Start control address, entry point 
ORRLO RLD displacement 
ORCORE Core required, in sectors 
ORATRl Attribute byte 1 
ORATR 2 Attribute byte 2 
ORATR3 Attribute byte 3 
ORMRT MRTMAX count -- type 0 

MRT proc - type P (will be hex FF) 
ORREL 	 Release level 
ORTOTL 	 Total number of sectors in module 
ORATR4 	 Attribute byte 4 
ORMOO 	 Reference number 



Chapter 17 Harnessing the Power of Assembler Subroutines 273 

DRDATE Date member was changed/created CYYMMDD) 
DRTIME Time member was changed/created CHHMM) 
DRATR5 Attribute byte 5, module subtype 
DRPTF@ Displacement of PTF table 
DRATR6 Attribute byte 6 

The format of the data structure and the field definitions for the entire library 
C·UBR in MEMNAM) is as follows: 

.... + ... 10 .... + ... 20 .... + ..• 30 .... + •.. 40 .... + .•. 50 .... + •.• 60 .... + .•. 70 .... 

IDIRDS DS 
I 6 LBFMT1 
I 7 11 LBLBSZ 
I 12 15 LBDRSZ 

16 21 LBUSEC 
22 27 LBASEC 
28 32 LBUDIR 
33 37 LBADIR 
38 43 LBBLlB 
44 49 LBELlB 
50 55 LBBDIR 
56 61 LBEDI R 
62 67 LBBMEM 
68 73 LBEMEM 
74 79 LBNMEM 
80 80 LBEXTN 

LBFMT1 Format-I address 
LB LBSZ Library size in blocks 
LBDRSZ Directory size in sectors 
LBUSEC Used member sectors 
LBASEC Available member sectors 
LBUDI R Used directory entries 
LBAD I R Available directory entries 
LB BLI B First sector of library 
LB ELI B Last sector of library 
LBBDI R First sector of directory 
LBEDIR Last sector of directory 
LBBMEM First sector of members 
LBEMEM Last sector of members 
LBNMEM Next available member sector 
LBEXTN Contains a Y if a library extent exists 

ReODE A I-byte field to contain the return code. 
o= Normal return 
1 = Library not found 
2 ;; Member not found or end of members 
3 = DIRDS data structure too small 



274 Desktop Guide to the S/36 

Example 
•••• + ••. 1 0 .... + ••• 20 .... + .•• 30 .... + .•• 40 .... + ..• 50 .... + ••• 60 .... + ... 70 .... 

C' 
C'-- Read sequentially through all member types 
C' 
C MOVE 'TESTUB 'UBNAM B Set library name 
C MOVE 'BLANKS MEMNAM 8 Sequential search 
C' 
C MOVE '0' MEMTYP Object 
C EXSR GETDIR 
C' 
C MOVE 'P' MEMTYP Proc 
C EXSR GETDIR 
C' 
C MOVE 'R' MEMTYP Subroutine 
C EXSR GETDIR 
C' 
C MOVE 'S' MEMTYP Source 
C EXSR GETDIR 
C' 
C'-- Now get info for entire library 
C' 
C MOVE '"LlBR 'MEMNAM Library request 
C EXIT SUBRLD 
C RLABL UBNAM 
C RLABL MEMNAM 
C RLABL MEMTYP 
C RLABL LlBDS 
C RLABL RCODE 
C' 
C'-- Subroutine to read members until a "2" is returned in RCODE 
C' 
C GETDIR BEGSR 
C RCODE DOUEO'2' 
C EXIT SUBRLD 
C RLABL UBNAM 
C RLABL MEMNAM 
C RLABL MEMTYP 
C RLABL DIRDS 
C RLABL RCODE 
C' (At this point DIRDS contains the di rectory info 
C' for the next member. Insert code as needed.) 
C END 
C ENDSR 

SUBRLR 

Descripdon 
Read individual library members in sector mode. 



Chapter 17 Harnessing the Power of Assembler Subroutines 275 

CalIJng sequence 
This subroutine requires two different calling sequences, one to open the 
library member (the Open call) and another to read the sequential sectors (the 
Get Next call). 

The calling sequence for an Open call is: 

.... + ... 10 .... + ••. 20 .... + ••• 30 .... + •.. 40 .... + ..• 50 .... + ... 60 .... + •.. 70 .... 

e EXIT SUBRLR Used for 
e 
e 
e 
e 
e 

RLABL 
RLABL 
RLABL 
RLABL 
RLABL 

OP 
LIBNAM 
MEMNAM 
MEMTYP 
ReODE 

1 
8 
8 

Input 
Input 
Input 
Input 
Output 

Parameter definition 

OP 	 A I-byte field that contains the operation to perform (0 for Open 
request). 

L I BNAM 	 An 8-byte field that contains the library name where the member 
resides. 

MEMNAM An 8-byte field that contains the member name. 

MEMTYP A I-byte field that contains the member type. 
0= Object 
P = Procedure 
R = Subroutine 
S = Source 

RCODE 	 A I-byte field to contain the return code. For an Open request, 
return codes are: 

0= Member found in library, OK to issue Get Next requests 
1 = Library not found 
2 .. Member not found 

CaUing sequence 

The calling sequence for Get Next calls is: 


.... + •.. 10.... + ..• 20 .... + ... 30 .... + •.. 40 .... + ... 50 .... + .•• 60 .... + .•. 70 .... 

e EXIT SUBRLR Used for 
e RLABL OP 1 Input 
e RLABL BUFF 256 Output 
e RLABL ReODE Output 

Parameter definition 

OP 	 A I-byte field that contains the operation to perform (N for Get Next 
request). 

BUFF 	 A 256-byte field to contain the member sector data. 



276 Desktop Guide to the SI36 

ReODE 	 A I-byte field to contain the return code. For a Get Next reque5t, 
return codes are: 

o = Nonnal return 
3 = End of member 

Notes 

• On Get Next requests when a 3 is returned in ReODE, this indicates that the 
last sector in the member has just been returned in BUFF. Please be aware 
that this is different from reading records from a me in an RPG program, 
where the LR indicator does not come on until a subsequent read is attempt­
ed after reading the last record. 

SUBRSG 

Description 

Read source or procedure members from a library in record mode. 


Calling sequence 
This subroutine requires two different calling sequences. One to open the 
library member (the Open call) and another to read the text records (th(~ Get 
Next call). 

The calling sequence for an Open call is: 

.... ' ... 10 ....•... 20 .... ' ... 30 .... ' ... 40 .... ' ... 50 ....•... 60 .... ' ... 70 .... 

C EXIT SUBRSG Used for 
C RLABL OP 1 Input 
C RLABL UBNAM B Input 
C RLABL MEMTYP 1 Input 
C RLABL MEMNAM B Input 
C RLABL PUST 39 Input/Output 
C RLABL ReODE 1 Output 

Parameter definition 

oP A I-byte field that contains the operation to perfonn (0 for Open 
request). 

LI BNAM An 8-byte field that contains the library name where the member 
resides. 

MEMTYP A I-byte field that contains the member type. 
P = Procedure 
S = Source 

MEMNAM An 8-byte field that contains the member name. 

PLI ST A 39-byte field to contain the source get parameter list. This i~, 
returned by SUBRSG to the user after each call. It is the user's 



Chapter 17 Harnessing the Power of Assembler Subroutines 277 

responsibility to keep track of each PUST for the associated module. 
This field is used as input for subsequent Get Next calls and should 
not be modified by the user. 

RCODE 	 A I-byte field to contain the return code. For an Open request, 
return codes are: 

o"" Member found in library, OK to issue Get Next requests 
1 = library not found 
2 =Member not found or bad member 

Camog sequence 

The calling sequence for Get Next calls is: 


•..• + ••• 10 .... + .•. 20 .... + ..• 30 .... + •.• 40 .... + ••. 50 .... + ••. 60 .... + ... 70 .... 

e 
e 
e 
e 
e 

EXIT SUBRSG 
RLABL 
RLABL 
RLAB.L 
RLABL 

OP 
PLIST 
TEXT 
ReODE 

39 
120 

1 

Used for 
Input 
Input/Output 
Output 
Output 

Parameter definition 

OP 	 A I-byte field that contains the operation to perform (N for Get Next 
request). 

PLIST 	 A 39-byte field that contains the source get parameter list. This field 
is updated after every call. 

TEXT 	 A I20-byte field to contain the text record. 

RCODE 	 A I-byte field to contain the return code. For a Get Next request, 
return codes are: 

o = Normal return, source line will be in TEXT 
3 = End of me or bad member 

Notes 

• On Get Next requests when a 3 is returned in ReODE, this indicates that the 
last record in the member has just been returned in TEXT. Please be aware 
that this is different from reading records from a me in an RPG program, 
where the LR indicator does not come on until a subsequent read is attempt­
ed after reading the last record. 

• SUBRSG may be used to read an unlimited number of library members 
Simultaneously. After an Open request, save the contents of PUST. Then 
when you want to read the text from a certain member, use the saved PLIST 
that corresponds with that member. Remember to resave the contents of 
PUST after every call (see the follOwing example). 



278 Desktop Guide to the S/36 

Example 
.•.. + ... 10 .... + ... 

E* 

E 

E 

E 

E* 

C* 

C 

C 

C* 

C*-­

C* 

C 

C 

C 
C 
C 
C* 
C 
C 
C 
C 
C* 
C*-­
C* 
C 
C 
C 
C 
C* 
C 
C 
C 
C 
C* 
C*-­
C* 
C 
C* 
C 
C 
C* 
C 
C 
C 
C 
C 
C* 
C 
C 
C* 
C 
C 
C 

20 .... + .•• 30 .... + ..• 40 .... + ... 50 .... + .•• 60 .... + ... 70 .... 

First open proc 

RCODE 

Then open source 

RCODE 

PLST 5 39 
PROC 10120 
SRC 10120 

Z-ADD1 Z 
MOVE '0' OP 

CUS001 in ARLIB 

MOVE 'ARLIB ' LIBNAM 
MOVE 'P' MODTYP 
MOVE 'CUS001 'MODNAM 
MOVE *BLANKS PLIST 
EXSR OPEN 

IFEO '0' 
MOVE PLIST PLST,Z 
ADD Z 
END 

CUS001 in ARLIB 

MOVE 'S' 
MOVE 'CUS001 
MOVE *BLANKS 
EXSR OPEN 

IFEO '0' 
MOVE PLIST 
ADD 
END 

Read the first 10 records from 

MOVE 'N' 

MOVE PLST,1 
Z-ADD1 

DO 10 
EXSR NEXT 
MOVE TEXT 
MOVE PLIST 
END 

MOVE PLST,2 
Z-ADD1 

DO 10 
EXSR NEXT 
MOVE TEXT 

MODTYP 
'MODNAM 
PLIST 

PLST,Z 
Z 

each member 

OP 

PLIST 
X 

X 

PROC,X 
PLST,1 

PLIST 
X 

X 

SRC,X 

Save up to 5 pli~ts 
Proc save array 
Source save arraJ 

Init index 
Open request 

Library name 
Type - Proc 
Proc name 
Clear parm li:;t 
Open the memb'l r 

If open successful 
Save parm list 
Bump index 

Type - Source 
Source name 
Clear parm li:;t 
Open the memb'lr 

If open successful 
Save pa rm Ii:; t 
Bump index 

Get Next requllst 

Proc plist 

Get next recol-d 
Save text record 
Save parm list 

Source plist 

Get next recol-d 
Save text record 



Chapter 17 Harnessing the Power of Assembler Subroutines 279 

..•. + ... 10 .... + ... 20 .... + ... 30 .... + ... 40 .... + .•• 50 .... + ..• 60 .... + ..• 70 .... 

C HOVE PUST PLST.2 Save parm li st 
C END 
C· 
C*-- Call SUBRSG to open a member 
C* 
C OPEN BEGSR 
C EXIT SUBRSG 
C RLABL OP 
C RLABL UBNAH 
C RLABL HODTYP 
C RLABL HOONAH 
C RLABL PLIST 
C RLABL RCODE 
C ENDSR 
C· 
C*-­ Call SUBRSG to get the next text record 
C* 
C NEXT BEGSR 
C EXIT SUBRSG 
C RLABL OP 
C RLABL PLIST 
C RLABL TEXT 
C RLABL RCODE 
C ENDSR 
C* 

FILE MANIPULATION FUNCTIONS 
A significant limitation of S/36 RPG is the inability to dynamically access files. 
RPG automatically opens files at program initiation and automatically closes 
them at tennination. RPG requires that you know the record length and other 
file attributes at compile time. RPG makes no provision for retrieving me infor­
mation dynamically or determining your absolute position within a file. And 
fmally, RPG locks you out of some useful file operations supported by S/36 
Disk Data Management. 

The three routines in this section address these problems. The first, 
SUBRCO, lets you close and reopen files dynamically. If you've ever wanted 
to reread a sequential file after reaching EOF, you've felt the need for dynamic 
open/close. When applied to printer files, SUBRCO lets you release accumu­
lated spooled output for printing without ending the program. 

The second, SUBRFA, is really a "Swiss anny knife" of file manipula­
tion tools. It lets you open any file regardless of record length or other file 
attributes, retrieve those attributes from the S/36 vroc, and create new files, 
all without requiring RPG F-specs or S/36 II FILE OCL statements. SUBRFA 
also lets you circumvent RPG's IS-file limit. These capabilities make SUBRFA 
ideal for custom file-manipulation tools, such as file editors, that must support 
late binding and dynamic file access. You also can use SUBRFA to perfonn a 
number of record-level I/O operations that RPG doesn't support, such as read­
ing deleted records or reading the last record of a file. 



280 Desktop Guide to the SI36 

Finally, SUBRRN gives you the ability to retrieve the physical relative 
record number (RRN) for the current record in any me, regardless of access 
method and whether or not the me is accessed via an alternate index. Com­
bined with SUBRFA, SUBRRN lets you perform efficient me I/O by bypassing 
indexes when necessary. 

You can put your future-compatibility fears aside when using these 
routines - all of them have easily reproduced counterparts on both the 
AS/400 and RS/6000 follow-on platforms. RPG/400 OPEN and CLOSE opcodes 
provide the same capability as SUBRCO, and execution-time me support pro­
vides the dynamic me access you get with SUBRFA. RPG/400 also Sllpports 
the me feedback information provided by SUBRFA and SUBRRN. When you 
migrate to a new platform, you can encapsulate these functions in HLL pro­
grams having the same names - SUBRCO, SUBRFA and SUBRRN - ~.s these 
assembler routines, and possibly avoid even the need to make source code 
changes to your application programs. 

SUBReo 

Description 

Close or reopen a me. 


Calling sequence 
•..• + ••• 10 .... + ••• 20 .... + ••• 30 .... + ••• 40 .... + ••• 50 .... + ••• 60 .... + .•. 70 .. 

C 
C 
C 
C 

EXIT SUBRCO 
RLABL 
RLABL 
RLABL 

OP 
FILNAM 
RCODE 

1 
8 
1 

Used for 
Input 
Input 
Output 

Parameter definition 

oP A I-byte field that contains the operation to perform. 
C - Close the me 
o - Open the me 
B - Close then reopen the file 

F I LNAM An 8-byte field that contains the me name. 

ReODE A I-byte field to contain the return code. 
o - Normal return 
I - File not found 

Notes 

• This subroutine is especially useful for closing and reopening PRINTER meso 
When a PRINfER me is closed, its spool me entry is released and anotJler 
created upon reopening it. 



Chapter 17 Harnessing the Power of Assembler Subroutines 281 

• This subroutine cannot be called from COBOL. 
• If you close a file, be sure to reopen it before end of job or a system error 

message will result. 
• The name specified in FILNAM should be the me's name in the RPG F-spec. 

SUBRFA 

Description 
Full procedural access to any disk file. 

Calling sequence 
This subroutine requires three different calling sequences: one to open/create 
the file, one to access the me, and one to close the file. 

The calling sequence for an Open/Create call is: 

• .•• + •.• 10 .... + .•• 20 .... + •.. 30 .... + ..• 40 .... + ••. 50 .... + ... 60 .... + ••• 70 .... 

C EXIT SUBRFA Used for 
C RLABL OP 6 Input/Output 
C RLABL DTF 128 Output 
C RLABL NAME 8 Input 
C RLABL PARMS 4 Input 
C RLABL FEEDBK 20 Output 
C RLABL DATE 6 Input 
C RLABL BLDDS 20 Input 

Parameter definition 

OP A 6-byte field that contains ·OPEN, left-justified. This field may also 
contain a return code if errors during open were detected. 

#DTFE = DTF field is not 128 bytes 
#NOTC = File open attempted but me in DTF not closed 
##nnnn = If the return code contains ##nnnn (where nnnn is 

four digits), an error occurred during Special Allocate. In this 
case, the four digits are a MIC, which can be found by access­
ing the system message member ##MSG1 or by looking it up 
in the System Messages manual (SC21-7938). 

DTF A 12S-byte field to contain the me's DTF. This field is used on sub­
sequent Access/Close calls and should not be modified. 

NAM E An 8-byte field that contains the me to be opened. 

PARMS A 4-byte field that contains the open parameters: xyyz 
x = Type of processing (I=Input, O=Ouput, U=Update) 
yy = Share level (RR, RM, MM, MR, NO=No sharing, NW=New file) 
z = Miscellaneous option (K=Keyed access, D=Retum deleted 

records) 



282 Desktop Guide to the 5136 

FEEDBK 	 The file information feedback data structure. This must be the name 
of a data structure to receive information about the file after it is 
opened. The format of the data structure, and the field defmitions, 
are as follows: 

.•.. + ••• 10 .... + •.. 20 .... + ... 30 .... + ... 40 .... + ... 50 .... + •.• 60 .... + ..• 70 .... 

I FEEOBK 
I 

OS 
1 
9 

13 

8 
12 
20 

FFRUSO 
FFRECL 
FFCAPY 

FFRUSD Number of records used 
FFRECL 
FFCAPY 

Record length 
File capacity in records 

DATE 	 A 6-byte field that contains the file date in YYMMDD format. If no 
date is specified, the file with the latest date will be opened. 

BLDDS 	 The new file build data structure. This must be the name of a data 
structure that contains information about the new file to be built if 
"NW" was specified in the PARMS parameter. Note: The DATE 
RIABL, if non-zero and non-blank, is used to set the date of the 
resulting file. The format of the data structure and the field defini­
tions is as follows: 

...• + ... 10.... + ... 20 .... + .•. 30 .... + ... 40 .... + ... 50 .... + ••. 60 .... + •.. 70 .... 

IBLOOS OS 
1 1 BLTYPE 
2 2 BLRCBL 
3 10 BLCAPY 

11 14 BLRECL 
15 18 BLKEYS 
19 21 BLKEYL 
22 22 BLDELC 
23 23 BLDUPA 
24 31 BLXTND 

BLTYPE Type of file (D,I,S) 
BLRCBL Size is in records or blocks (R,B) 
BLCAPY Size of me to be created 
BLRECL Record length 
BLKEYS Starting position of key if indexed 
BLKEYL Length of key if indexed 
BLDELC Delete capable? (Y,N) 
BLDUPA Dup keys allowed? (Y,N) 
BLXTND Default extend value 



Chapter 17 Harnessing the Power of Assembler Subroutines 283 

Calling 8eCluence 
The calling sequence for an Access call is: 
.•.. + ... 10 .... + ... 20 .... + ..• 30 .... + ••. 40 .... + ... 50 .... + ... 60 .... + ... 70 .... 

C EXIT SUBRFA Used for 
C RLABL 
C RLABL 
C RLABL 
C RLABL 

OP 
DTF 
RECORD 
KEY 

6 
128 

? 

Input/Output 
Input/Output 
Input/Output 
Input 

or 
C RLABL RRN 80 Input 

Parameter definition 

OP 	 A 6-byte field that contains the operation code, left-justified. This 
field may also contain a return code if an error occurred. The valid 
operation codes and possible return codes are as follows: 

Operation codes for indexed files. 
-GETA Get a record by key above the key specified (SETGT 

and READ) 
-GETD Get next duplicate key (READE) 
-GETE Get a record by key equal or above 
-GETK 	 Get a record by key (CHAIN by key) 

Operation codes for non-indexed files. 
-ADDR Add by RRN 
-DELR Delete by RRN 
-FEOD Force end of data - chops off file at current record 
-GETR Get a record by RRN (CHAIN by RRN) 
-UPDR Update by RRN 

Operation codes for any file type. 
-ADD Add a record to the end of a file 
-DEL Delete a record 
-GETC Get current record 
-GETF Get the first record 
-GElN Get the next record 
-GETL Get the last record 
-GETP Get the previous record 
-REL Release a record 
-SBOF Set beginning of file - positions file pointer to first record 
-SEOF Set end of file - positions file pointer past last record 
-UPD Update the last record read 

Possible return codes. 
#41 Permanent I/O error 
#42 End or beginning of file 



284 Desktop Guide to the S/36 

#43 Invalid operation code 
#44 Record not found 
#45 Record update attempted before input 
#48 Invalid relative record number 
#49 Invalid data record 
#50 Update key error 
#53 Duplicate relative record number 
#60 Duplicate key 
#61 Duplicate key in another index 
#62 Key out of sequence 
#63 Invalid key length 
#70 File is full 
#75 Undefined access type 
#99 File not opened 
#BADOP Bad operation code 
#ADDRS DTF address is greater than key field address 
#RLERR Record length of me opened exceeds RPG record buffer 

DTF A 128-byte field that contains the DTF of the file to be accessed. 

RECORD A field or data structure to contain the record. This field should be 
equal to or greater than the record length. 

KEY A field containing the key for indexed processing, 

or, 

RRN An 8-byte numeric field that contains the relative record number for 
random processing. 

Important note. For indexed me operations, the DTF field must be 
physically defmed before the key field. If not, a return code of 
#ADDRS will result. 

Calling sequence 
The calling sequence for a Close call is: 
..•. + •.. 10 .... + •.. 20 .... + ... 30 .... + .•. 40 .... + •.• 50 .... + ••• 60 .... + ..• 70 ... 

c EXIT SUBRFA Us'ad for 
c RLABL OP 6 Input 
c RLABL DTF 128 Input/Output 

Parameter definition 

OP A 6-byte field that contains ·CLOSE. 

DTF A 128-byte field that contains the DTF of the me to be closed. 



Chapter 17 Harnessing the Power of Assembler Subroutines 285 

Example 
•••• + •.. 10 .... + .•• 20 .... + •.. 30 .... + ... 40 .... + ... 50 .... + ... 60 .... + ... 70 .... 

1* 

1*-- File feedback data structure 

1* 

IFEEDBK os 

I 1 B FFRUSD 


9 12 FFRECL 
13 20 ~FCAPY 


1* 

1*-- New file build data structure 

1* 

IBLDDS OS 

I 1 1 BLTYPE 

I 2 2 BLRCBL 

I 3 10 BlCAPY 


11 14 BlRECL 
15 18 BLKEYS 
19 21 BLKEYL 
22 22 BLDELC 
23 23 BLDUPA 
24 31 BlXTND 

C* 
C*-- Open file TESTFL for input, DISP-SHRRR, keyed access 
C* 
C MOVE '*OPEN ' OP Set op code 
C MOVE 'TESTFL NAME File name 
C MOVE ' IRRK' PARMS Open parms 
C EXSR OPEN Open the file 
C OP IFNE '*OPEN If error. 
C EXSR ERROR Do error stuff 
C END 
C* 
C*-­ Read sequentially by key through the whole file 
C* 
C MOVE '*GETA OP Set op code 
C OP DOUEQ'#42 Until EOF 
C EXSR READ Read next record 
C OP COMP '*GETA 50 If other 
C N50 OP COMP '#42 50 than EOF, 
C N50 EXSR ERROR Do error stuff 
C 
C* (At this point RECBUF contains the next 
C* record. Insert code as needed.) 
C 
C END 
C END 
C* 
C*-- Close file TESTFL 
C* 
C MOVE '*CLOSE' OP Set op code 
C EXSR CLOSE Close the file 
C* 
C*-- Open calling sequence 
C* 



286 Desktop Guide to the S/36 

.••. + •.• 10 .... + .•. 20 .... + .•. 30 .... + •.. 40 .... + ... 50 .... + ... 60 .... + •.. 70 .... 

C OPEN BEGSR 
C EXIT SUBRFA 
C RLABL OP 6 
C RLABL OTF 12B 
C RLABL NAME B 
C RLABL PARMS 4 
C RLABL FEEDBK 
C RLABL DATE 60 
C RLABL BLDDS 
C ENDSR 
C" 
C"-- Access calling sequence 
C 
C READ BEGSR 
C EXIT SUBRFA 
C RLABL OP 
C RLABL DTF 
C RLABL RECBUF 64 
C RLABL KEY 10 
C" 
C"-- Close call i ng sequence 
C" 
C CLOSE BEGSR 
C EXIT SUBRFA 
C RLABL OP 
C RLABL DTF 
C" 

S!.!BRRN 

Description 

Return the relative record number of the last record read or added to a file. 


Calling sequence 
.... + ... 10 .... + ... 20 .... + ••• 30 .... + .•• 40 .... + .. ,50 .... + ... 60 .... + •.• 70 .... 

C EXIT SUBRRN Used for 
C RLABL FILNAM Input 
C RLABL RRN B0 Output 
C RLABL RCODE Output 

Parameter definition 

FI LNAM An 8-byte field that contains the fIle name. 


RRN An 8-byte numeric field that will contain the RRN. 


ReODE A I-byte field to contain the return code. 

0= Normal return 
1 = File not found 



Chapter 17 Harnessing the Power of Assembler Subroutines 287 

Notes 

• This subroutine must be called once for each requested file before attempt­
ing to return any RRNs. This is because a bit must be set on in the file's D1F 
(Defme-the-file) by this routine to alert Data Management that RRNs are to 
be returned to the user (see the following example). 

• The name specified in FILNAM should be the file's name in the RPG F-spec. 

Example 
••.. + ••• 10 .... + ... 20 .... + ••. 30 .... + •.. 40 .... + ••• 50 .... + ••• 60 .... + .•• 70 .... 

FJUNKO IF F 10 10 10AI 1 DISK A 
IJUNKO NS 
I 1 10 DATA 
C MOVE 'JUNKO 'FILE 8 Set file name 
C EXIT SUBRRN Enable RRN returns 
C RLABL FILE 
C RLABL RRN 8 
C RLABL RCODE 
C' 
C KEY CHAIN JUNKO 50 Chain to file 
C EXIT SUBRRN Retrieve RRN read 
C RLABL FILE 
C RLABL RRN 
C RLABL RCODE 

SYSTEM MANAGEMEMENT FUNCTIONS 
Keeping daily S/36 operations running smoothly often requires automating var­
ious system management functions that otherwise would consume a great deal 
of manual labor. IBM hasn't been very helpful, however, in giving you pro­
gram-level access to the information you need to write your own system man­
agement tools. The half-dozen routines in this section give you that access. 

SUBRSY returns the S/36 release and modification level, PTF level, 
and serial number - all vital statistics if you must maintain the system soft­
ware for several S/36 installations. Getting this information manually requires 
running several programs and making a slew of navigations through compli­
cated prompt screens. With SUBRSY, you can easily track the state of system 
software on each s/36 you manage. 

A trio of routines - SUBRUF, SUBRUL, and SUBRUR - give you 
real-time status on how files and libraries are used on your system. SUBRUF 
returns a list of users for a particular file, SUBRUL the users for a library, and 
SUBRUR the users of records within a file. All of this information is indispensi­
ble when tracking down file, library, or record interlock problems. 

The last two functions deal with system time and date. SUBRCf lets 
you change the system time without IPLing your system - a capability you'll 
dearly love twice a year if your time zone goes on daylight savings time, 



288 Desktop Guide to the S/36 

SUBRDT returns the date formats currently set for the system and :;ession 
dates - essential to know if you want your software to run correctly in the 
global marketplace. 

Because these routines depend upon SSP internal data structures, you 
most likely won't be able to port them to the AS/400 or RS/6000. However, 
equivalent capabilities often are available through native application program 
interfaces (APIs) documented by IBM or the platform vendor. 

SUBRSY 

Description 

Return the S/36 release and modification level, PTF level, and serial number. 


Calling sequence 
.••. + ... 10 .... + ... 20 .... + ... 30 .... + .•• 40 .... + ... 50 .... + ••• 60 .... + ..• 70 .. 

c EXIT SUBRSY Used for 
c RLABL RELMOD 40 Output 
c RLABL PTFLVL 40 Output 
c RLABL SER# 60 Output 

Parameter definition 

RELMOD A 4-byte numeric field that will contain the release and modiflcation 
level. 

PTFLVL A 4-byte numeric field that will contain the current PTF level. 

SER# A 6-byte numeric field that will contain the serial number. 

SUBRUF 

Description 

Find jobs using a specified file and return attribute information for each job. 


Calling sequence 
•.•. + ... 10 .... + ..• 20 .... + •.. 30 .... + ..• 40 .... + ... 50 .... + ••• 60 .... + ... 70 .... 

c 
c 
c 
c 

EXIT SUBRUF 
RLABL 
RLABL 
RLABL 

FI LNAM 
JOB# 
JOBDS 

B 
30 

Used for 
Input 
Input 
Output 

Parameter definition 

FI LNAM An 8-byte field that contains the file name to check. 

JOB# A 3-byte numeric field that contains the relative job number in case 
there are several. To inquire on all jobs using the file, call SUBRUF 



Chapter 17 Harnessing the Power of Assembler Subroutines 289 

continuously, incrementing JOB# until no more jobs are found (see 
SUBRUL example). 

J OBDS 	 A 47-byte data structure that will contain information about the job 
using the file. If this data structure is not at least 47 bytes long, no 
operation is performed. When the end of the job chain is reached, 
all fields in the data structure will contain blanks. The format of the 
data structure and the field defmitions are as follows: 

•••• + ••• 10.... + •.. 20 .... + ... 30 .... + .•. 40 .... + ..• 50 .... + ••• 60 .... + .•• 70 .... 

IJOBOS OS 
I 8 USERID 
I 9 16 JOBNAM 
I 17 24 FSTPRC 
I 25 32 CURPRC 
I 33 40 PRGNAM 
I 41 46 JSTIME 

47 47 SHRLVL 

USERID User id 
JOBNAM Job name 
FSTPRC First level procedure name 
CURPRC Current level procedure name 
PRGNAM Program name 
J ST I ME Job start time if running from the JOBQ 
SHRLVL Share level (DISP-SHRxx value, O=RM, l=RR, 2=MR, 3=NO, 

9=MM) 

SUBRUL 

Description 
Find jobs using a specified library and return attribute information for each job. 

Calling sequence 
...• + ... 10 .... + ... 20 .... + ... 30 .... + .•• 40 .... + ... 50 .... + ... 60 .... + .•. 70 .... 

C EXIT SUBRUL Used for 
C RLABL Ll8NAM 8 Input 
C RLABL JOB# 30 Input 
C RLABL JOBOS Output 

Parameter definition 

LI BNAM An 8-byte field that contains the library name to check. 

JOB# A 3-byte numeric field that contains the relative job number in case 
there are several. To inquire on all jobs using the library, call SUBRUL 
continuously, incrementing JOB# until no more jobs are found. 

JOBDS A 46-byte data structure that will contain information about the job 



290 Desktop Guide to the S/36 

using the library. If this data structure is not at least 46 bytes long, 
no operation is perfonned. When the end of the job chain is 
reached, all fields in the data structure will contain blanks. The for­
mat of the data structure and the field definitions are as follows: 

.••• + •.• 10 .... + ••• 20 .... + ... 30 .... + ... 40 .... + ••• 50 .... + .•. 60 .... + ... 70 .. 

IJOBDS OS 
I 8 USERID 

9 16 JOBNAM 
17 24 FSTPRC 
25 32 CURPRC 
33 40 PRGNAM 
41 46 JSTIME 

USERID User id 
JOBNAM Job name 
FSTPRC First level procedure name 
CURPRC Current level procedure name 
PRGNAM Program name 
J STI M E Job start time if running from the JOBQ 

Example 
...• + , , ,10. , , . + • , .20 .... + ... 30 .... + ... 40 .... + ..• 50 .... + ••. 60. , .. + •.. 70 .. 

C MOVE 'TESTLIB . L1BNAM Set library name 
C Z-ADD1 JOBH Init index 
C USERID DOUEO "BLANKS DOU no more jobs 
C EXIT SUBRUL 
C RLABL L1BNAM 8 
C RLABL JOBH 30 
C RLABL JOBDS 
C· (At this point JOBDS contains the job info 
C· for the next job, Insert code as needed.) 
C ADD 1 JOBH Inc rement JOBi~ 
C END 

SUBRUR 

Description 
Find which records are being used for a specified me and return the relative 
record number and attribute information for each job, 

Calling sequence 
, , .. + ... 10 ... , + , . ,20, . , . + ••• 30 .... + ••• 40 .... + •.• 50 .... + .•. 60, , . , + ••• 70 .... 

C EXIT SUBRUR Used for 
C RLABL FILNAM 8 Input 
C RLABL JOBH 30 Input 
C RLABL JOBDS Output 



Chapter 17 Harnessing the Power of Assembler Subroutines 291 

Parameter definition 

FI LNAM An 8-byte field that contains the me name to check. 

JOB# A 3-byte numeric field that contains the relative job number in case 
there are several. To inquire on all jobs using the me, call SUBRUR 
continuously, incrementingJOB# until no more jobs are found (see 
SUBRUL example). 

JOBDS A 49-byte data structure that will contain information about the job 
using the me. If this data structure is not at least 49 bytes long, no 
operation is performed. When the end of the job chain is reached, 
all fields in the data structure will contain blanks. The format of the 
data structure and the field definitions are as follows: 

.••. + ••. 10 .... + •.• 20 .... + ••• 30 .... + ... 40 .... + ..• 50 .... + .•. 60 .... + ..• 70 .... 

IJOBOS OS 
I 1 8 USERID 
I 9 16 JOBNAM 
I 17 24 FSTPRC 

25 32 CURPRC 
33 40 PRGNAM 
41 46 RRN 
49 49 FLAGS 

USERID User id 
JOBNAM Job name 
FSTPRC First level procedure name 
CURPRC Current level procedure name 
PRGNAM Program name 
RRN Relative record number 
FLAGS Flags byte 

Bit 3 = Disallow locking same record under this task 
Bit 4 .. File is being closed 
Bit 5 = Wait if locked 
Bit 6 = Record owned 
Bit 7 = Waiting for record 

SUBRCT 

Description 
Change the system time or date without having to perform an IPL. 

CalUng sequence 
..•. + ••. 10 .... + .•• 20 .... + .•• 30 .... + ... 40 .... + .•. 50 .... + •.. 60.... + ..• 70 .... 

C EXIT SUBRCT Used for 
C RLABL TIME 60 Input 
C RLABL DATE 60 Input 



292 Desktop Guide to the S/36 

Parameter definition 

TIME A 6-byte numeric field that contains the new system time in the for­
mat HHMMSS. If this field is blank, the time is not changed. 

DATE A 6-byte numeric field that contains the new system date in the for­
mat VYMMDD. If this field is blank, the date is not changed. 

Notes 

• This routine will only change the SYSTEM date; all SESSION and PROGRAM 
dates will remain the same. To update the SESSION and PROGRAM dates, 
end all programs and sign off all terminals, then sign back on. 

SUBRDT 

Description 

Return the SYSTEM and SESSION date formats. 


Calling sequence 
.... + ... 10 .... + •.. 20 .... + •.• 30 .... + •.. 40 .... + •.• 50 .... + .•. 60 .... + .•• 70 .... 

c 
.C 

C 

EXIT SUBRDT 
RLABL 
RLABL 

SYSFMT 
SESFMT 

3 
3 

Used for 
Output 
Output 

Parameter definition 

SYSFMT A 3-byte field that will contain the SYSTEM date format. 

SESFMT A 3-byte field that will contain the SESSION date format. The data 
returned in both fields will be in the format: 
YMD = Year, month, day 
MDY -= Month, day, year 
DMY -= Day, month, year 

DEVICE CONTROL FUNCTIONS 
IBM built all kinds of nifty features into its workstation and printer devices and 
data management facilities. Unfortunately, RPG doesn't let you get at many of 
these features on the S/36 (although the capabilities are available on the 
AS/400 and RS/6000). The nine routines in this section let you directly access 
workstation, printer, spool, and timer functions that you can use to make your 
applications both easier to use and more functional. Most of these capa.bilities 
are available on the AS/400 and RS/6000, although you may have to make 
source code changes to achieve the same results. 



Chapter 17 Harnessing the Power of Assembler Subroutines 293 

SUBRCP 

Description 
Return the current row and column position of the cursor for a WORKSTN file. 

Calling sequence 
..•• + ••. 10 .... + ... 20 .... + ... 30 .... + ... 40 .... + ..• 50 .... + .•• 60 .... + ••. 70 .... 

C 
C 
C 

EXIT SUBRCP 
RLABL 
RLABL 

ROW 
COL 

30 
30 

Used for 
Output 
Output 

Parameter definition 

ROW A 3-byte numeric field that will contain the current cursor row position. 

COL A 3-byte numeric field that will contain the current cursor column 
position. 

Notes 

• The WORKSTN file may be defmed as either Combined Demand (CD) or 
Combined Primal]' (CP). 

SUBRDU 

Description 
This subroutine is used to replace whatever is in the DUP key save area for 
the current workstation. The DUP key save area is used to store the last com­
mand entered from the keyboard. Normally, the system updates this area as it 
sees fit; however, you can override its contents using this subroutine. 

Calling sequence 
•••• + •.. 10 .... + ... 20 .... + ..• 30 .... + .•• 40 .... + ••• 50 .... + ••• 60 .... + •.• 70 .... 

C EXIT SUBRDU Used for 
C RLABL DUP 12.0 Input 
C RLABL RCODE Output 

Parameter definition 

DUP A 120-byte field that contains the data to be placed in the DUP key 
save area. 

ReaDE A I-byte field to contain the return code. 
o= Normal return 
1 = Job not running from a workstation 

Notes 

• When this routine completes, pressing the DUP key at the command line 
will display the updated contents of the save area. 



294 Desktop Guide to the S/36 

SUBREK 


Description 
Dynamically enable or disable command keys and enable or disable data to 
be returned with function keys. 

Calling sequence 
••.. + .•• 10 .... + •.• 20 .... + •.. 30 .... + .•. 40 .... + ... 50 .... + ... 60 .... + ... 70 .... 

c EXIT SUBREK Used for 
c RLABL MASK 4 Input 

Parameter definition 

MASK A 4-byte field containing a mask for enabling or disabling command 
keys. If the bit is on, the command key is enabled; if the bit is off, 
the command key is disabled. 

Byte 1 
bit 0: enable Cmd1 
bit 1: enable Cmd2 
bit 2: enable Cmd3 
bit 3: enable Cmd4 
bit 4: enable CmdS 
bit 5: enable Cmd6 
bit 6: enable Cmd7 
bit 7: enable Cmd8 
Byte 2 
bit 0: enable Cmd9 
bit 1: enable CmdlO 
bit 2: enable Cmd11 
bit 3: enable Cmd12 
bit 4: enable Cmd13 
bit 5: enable Cmd14 
bit 6: enable Cmd1S 
bit 7: enable Cmd16 
Byte 3 
bit 0: enable Cmd17 
bit 1: enable Cmd18 
bit 2: enable Cmd19 
bit 3: enable Cmd20 
bit 4: enable Cmd21 
bit 5: enable Cmd22 
bit 6: enable Cmd23 
bit 7: enable Cmd24 



Chapter 17 Hamessing the Power of Assembler Subroutines 295 

Byte 4 
bit 0: pass back print key 
bit 1: pass back roll-up 
bit 2: pass back roll-down 
bit 3: pass back clear 
bit 4: pass back help 
bit 5: pass back record-backspace 
bit 6: return data with function keys 
bit 7: unused 

Notes 

-The WORKS1N file may be defined as either Combined Demand (CD) or 
Combined Primary (CP). 

Example 

..•• + ... 10 .... + .•. 20 .... + •.. 30 .... + .•. 40 .... + ... 50 .... + ... 60 .... + •.. 70 .... 


os 
4 MASK 
1 MASK1 

2 2 MASK2 
3 3 MASK3 
3 4 MASK4 

C* 
C BITOF'01234567' HEX00 1 Build binary 0 
C MOVE HEX00 MASK1 Clear 
C MOVE HEX00 MASK2 all 
C MOVE HEX00 MASK3 command 
C MOVE HEX00 MASK4 keys 
C BITON'026' MASK1 Enable 1,3,7 
C BITON'2 ' MASK3 and 19 
C EXIT SUBREK 
C RLABL MASK 

SUBRLN 

Description 

Return the current line number for a PRINTER file. 


Calling sequence 

•••• + ... 10 .... + •.• 20 .... + ••. 30 .... + •.• 40 .... + ..• 50 .... + ... 60 .... + ••. 70 .... 


C EXIT SUBRLN Used for 
C RLABL FILNAM 8 Input 
C RLABL LlNE# 30 Output 
C RLABL RCODE 1 Output 



296 Desktop Guide to the S/36 

Parameter definition 

F I LNAM 	 An 8-byte field that contains the file name. 

LIN E# A 3-byte numeric field that will contain the current line numbe:r for 
the specified printer file. 

RCODE A I-byte field to contain the return code. 
o= Normal return 

1 = File not found 


SUBRMG 

Description 

Execute the MSG command, just as if it were being entered from the key·· 

board. 


Calling sequence 
..•. + .•• 10 .... + ..• 20 .... + .•• 30 .... + ..•40 .... + ••• 50 .... + ••• 60 .... + •.• 70 .... 

e EXIT SUBRMG 	 Used for 
e 	 RLABL INPUT 117 Input 
e 	 RLABL Mle 40 Output 

Parameter definition 

I NPUT 	 A 117-byte field that contains the MSG command as it would bt:~ 
entered from the keyboard. For example, to send a message to 
workstation W2, INPUf should look like this: 

MSG W2,lHIS IS lHE MESSAGE TO BE SENT 

MIC A 4-byte numeric field that will contain the MIC if errors occurred. 
The MIC will be a SYS message MIC, and can be looked up in the 
IBM System Messages manual CSC21-7938) or accessed using system 
message member ##MSG1. 

Notes 

• The command in INPUf should be left justified. 

SUBRPC 

Description 

Enable/disable override cursor positioning, or position the cursor. 




Chapter 17 Harnessing the Power of Assembler SubroutiAeS 'J:97 

Calling sequence 
••.. + •.. 10.... + •.. 20 •..• + •.• 30 .... + ••. 40•... + •.• 50 •..• + •.. 60 ...• + .•. 70 ..•. 

c 
c 
C 
C 
C 

EXIT SUBRPC 
RLABL 
RLABI. 
RLABL 
RLABL 

OP 
ROW 
COL 
RCODE 

1 
20 
30 
1 

Used for 
Input 
Input 
Input 
Output 

Parameter definition 

oP A I-byte field that contains the operation to perfonn. 
1 = Enable override cursor positioning. When this option is 

used, the cursor will remain where it last was displayed. 
2 • Override current cursor row and column positions. 'Ihe cur­

sor will be positioned according to the values in ROW 
and/or COL. To leave the row or column unchanged, place 
zeros in the field. 

3 os Revert to standard cursor positiOning. Standard cursor posi­
tioning will be used, according to the screen format member. 

ROW A 2-byte numeric field that contains the desired cursor row position 
when using OP code 2. 

COL A 3-byte numeric field that contains the desired cursor column posi­
tion when using OP code 2. 

RCODE A I-byte field to contain the return code. 
o :a Normal return 
1 = Invalid operation 

Notes 

• Use subroutine SUBRCP to return the current cursor position. 

SUBRPS 

Description 

Print the current screen displayed through a WORKSTN file. 


Calling sequence 
•..• + ••• 10.... + ••• 20 ...• + ••. 30 .... + •.. 40 •... + ••• 50 .... + ••• 60 .... + ••• 70 ..•• 

c EXIT SUBRPS 

Parameter definition 
None. 



298 Desktop Guide to the SI36 

Notes 

.1bis subroutine provides the functional equivalent of the PRINT key opera­
tion. It can be used to Plint the current screen when the PRINT key i~; being 
used for another purpose. 

SUBRSX 

Description 
Return the spool spool ID created for the specified PRINTER me. 

CalUng sequence 
.... + ... 10.... + •.. 20 .... + .•. 30 .... + .•• 40 .... + ... 50 .... + ... 60 .... + ... 70 .... 

c 
c 
c 

EXIT SUBRSX 
RLABL 
RLABL 

FILNAM 
SPID 

8 
6 

Used for 
Input 
Output 

Parameter definition 

F I LNAM An 8-byte field that contains the requested me. 

SPID A 6-byte field that will contain the spool ID in the fonnat SPnnnn. 
If no spool ID was returned, SPID will contain NOFIND. 

SUBRWT 

Description 
Place a program in a wait state for the specified time interval. 

CalUng sequence 
.••. + ... 10 .... + ..• 20 .... + .•. 30 .... + .•. 40 .... + ••. 50 .... + ... 60 .... + ... 70 .... 

c EXIT SUBRWT Used for 
c RLABL HHMMSS 60 Input 

Parameter definition 

HHMMSS 	 A 6-byte numeric field that contains the hours, minutes, and seconds 
to wait. 

Notes 

• This subroutine is the functional eqUivalent of the WAIT OCL statement. 

• While the program is suspended, it is not looping, but uses the built-in timer 
mechanism of the system, and requires no machine resources during this 
period. 



Chapter 17 Harnessing the Power of Assembler Subroutines 299 

RBRIDG 
At last count, more than 230 assembly language subroutines existed in the 
S/36 marketplace. These routines provide access to machine and operating 
system capabilities not directly accessible through high-level languages (HLLs), 
frequently making the impossible possible for many applications. 

Alas, if your HLL of choice is COBOL, you're constrained to use a 
mere two dozen of these technical gems, because most of the routines only 
interface with RPG. The inscrutable IBM chose long ago to use different 
assembler subroutine linkage conventions for RPG and COBOL, making each 
camp's routines inaccessible to the other - until now. 

Assembly language subroutine RBRIDG lets you "build a bridge" 
between your COBOL program and most, if not all, existing RPG assembler 
routines. Using RBRIDG is simply a matter of defining, in your COBOL pro­
gram's WORKING STORAGE section, the RLABL parameters expected by any 
RPG assembler subroutines you want to use. Then, before calling the routine 
itself, you just make a call to RBRIDG to build a bridge to the desired routine. 

Defining RLABLs 
Subroutine RBRIDG interfaces with any assembler routine that you can call via 
the RPG EXIT operation, as long as the routine doesn't require indicator or 
array parameters. (COBOL has no RPG-like indicator area or array defmitions.) 
To use subroutine RBRIDG in a COBOL program, you must fIrst build, in the 
WORKING STORAGE section, an RLABL defInition list for each subroutine you 
plan to call (see Figure 17.1 for an example of coding an RLABL defmition 
list). In the 01-level data description entry, code a name for the defmition list; 
later, you'll pass this name to RBRIDG. Each RLABL the target subroutine uses 
has a corresponding RLABL defInition within this 01-level item. Each definition 
consists of three data items: type, length, and the data fIeld itself. The type 
item is a one-character variable containing 'F' for RPG field RIABLs and 'D' for 
RPG data structure RLABLs. 

The length item is a 2-byte COMP-4 (binary) variable containing the 
length of the RIABL field. The data fIeld item represents the RPG field or data 
structure - it contains data being exchanged with the target subroutine ­
and is the only data description item you must name uniquely. All other items 
can have the name FILLER. 

You can code as many RLABL defInition entries as you like. After the 
last entry, code a I-byte FILLER with a value of 'E' to mark the end of the defi­
nition list. 

Making Your Call 
With an RIABL defInition list, using RBRIDG to call an RPG assembler subrou­
tine is Simple (see Figure 17.2 for an example). Just code a CALL to subroutine 



300 Desktop Guide to the SI36 

Figure 17.1 
Example of Coding an RLABL Definition List 

WORKING-STORAGE SECTION . 

• RLABL definition list for three RLABLs: 
RLABL FIEL01 A 10-byte field 
RLABL FIELD2 A 1-byte field 
RLABL DSTRUC A 300-byte data structure 

01 SUBRXX-RLABLS. 
05 FILLER. 

10 FILLER PIC A VALUE' F'. 
10 FILLER PIC 9999 COMP-4 VALUE 10. 
10 SUBRXX-FIELD1 PIC A(10). 

05 FILLER. 
10 FILLER PIC A VALUE 'F'. 
10 FILLER PIC 9999 COMP-4 VALUE 1. 
10 SUBRXX-FIELD2 PICA(1). 

05 FILLER. 
10 FILLER PIC A VALUE 'D'. 
10 FILLER PIC 9999 COMP-4 VALUE 300. 
10 SUBRXX-DSTRUC PIC A(300). 

05 FILLER PIC A VALUE 'E'. 

Figure 17.2 

Example of Coding CALL Statements for RBRIDG 


CALL 'RBRIDG' USING SUBRXX-RLABLS. 
CALL .SUBRXX' . 

RBRIDG, specifying the name of the RLABL definition list in the USING 
clause. Irrunediately follow this CALL with a CALL to the target subroutine, 
without a USING clause. Note that you can't code any statements between 
the two CAlls. If subroutine RBRIDG detects a statement between the two 
CALL statements or an error in the RLABL definition list (e.g., the lenglh item 
doesn't match the actual data field length), it halts with an error message. Fig­
ure 17.3 gives a sample COBOL program that calls the RPG assembler sub­
routine SUBRLD to read a library directory and print it. 



Chapter 17 Harnessing the Power of Assembler Subroutines 301 

Agure 17.3 
Sample COBOL Program Using RBRIDG 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••**••••••• 

* * 
This is a sample COBOL program that tests the 
RBRIDG (RPG Assembler Subroutine Bridge) . 

•••••••••••••••••••••• * •••••••••••••• ********** ••••••••••••••••••• 

PROCESS MAP.OFFSET 

IDENTI F I CATION DIVISION. 

PROGRAM-ID. TBRIDG. 

AUTHOR. MEL BECKMAN. 

INSTALLATION. BECKMAN SOFTWARE ENGINEERING. 

DATE-WRITTEN. 22 FEBRUARY 1990. 

SECURITY. NONE. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. IBM-S36. 

OBJECT-COMPUTER. IBM-S36. 

SPECIAL-NAMES. 


SYSTEM-CONSOLE IS CONSOLE. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 


* SUBRLD 	 RLABL parameters: 

* 	 RLABL LIBNAM 8 Input 
RLABL MEMNAM 8 Input 

* 	 RLABL MEMTYP 1 Input 
RLABL DIRDS 80 Output 

* 	 RLABL RCODE Output 

01 	 SUBRLD-RLABLS. 
05 	 FILLER. 

10 FILLER PIC A VALUE 'F'. 
10 FILLER PIC 9999 COMP-4 VALUE 8. 
10 SUBRLD-LIBNAM PIC A(8). 

05 	 FILLER. 
10 FILLER PICA VALUE'F'. 
10 FILLER PIC 9999 COMP-4 VALUE 8. 
10 	 SUBRLD-MEMNAM PIC A(8).

05 	 FILLER. 
10 FILLER PIC A VALUE 'F'. 
10 FILLER PIC 9999 COMP-4 VALUE 1. 
10 SUBRLD-MEMTYP PIC A(l). 

05 	 FILLER. 
10 FILLER PIC A VALUE 'D'. 
10 FILLER PIC 9999 COMP-4 VALUE 80. 
10 SUBRLD-DIRDS PIC A(80).

05 FILLER. 
10 FILLER PIC A VALUE 'F'. 

Continued 



302 Desktop Guide to the S/36 

Figure 173 Continued 

10 FILLER PIC 9999 COMP-4 VALUE 1. 
10 SUBRLD-RCODE PIC A(1). 

05 FILLER PIC A VALUE ·E·. 
PROCEDURE DIVISION. 

• 
• Print all source member directory entries 

MAINLINE. 

MOVE 'NEWS3X TO SUBRLD-LIBNAM. 

MOVE TO SUBRLD-MEMNAM. 

MOVE 'S' TO SUBRLD-MEMTYP. 

MOVE '0' TO SUBRLD-RCODE. 


PERFORM PRINT-DIR-ENTRY 
UNTIL SUBRLD-RCODE IS NOT EaUAL TO '0'. 

• Get out of Dodge. 

EXIT-PROGRAM. 

DISPLAy···· Test of TBRIDG completed 

STOP RUN. 


• Print a directory entry
• 

PRINT-DIR-ENTRY. 

CALL 'RBRIDG' USING SUBRLD-RLABLS. 

CALL .SUBRLD' . 

DISPLAY SUBRLD-DIRDS. 




Chapter 18 Profiling and Advanced Debugging 303 

Chapter 18 

Profiling and Advanced Debugging 
Where software is concerned, different people have different defmitions for 
quality. To a programmer, quality means code that doesn't break after 5:00 PM 
or on weekends. To a manager, it means programs written so clearly that a 
new programming staff can be brought up to speed on a moment's notice. 
Users insist that quality is achieved only when programs run both quickly and 
correctly. And to the company controller, quality means software delivered on 
time without emergency loans or federal bailouts. 

No matter whose defmition you use, the path to quality is a narrow 
one. This chapter proVides directions to that path, and advice on how to stay 
on it. First, you'll see how a simple development tool, called a promer, lets 
you analyze source programs for both efficiency and reliability. The diskette 
accompanying this book includes a fully functional promer for RPG. Next, we 
present a powerful debugging aid that helps you troubleshoot the worst sort 
of programming error: the intermittent bug. A single annoying bug can make 
even the best software look junky to users, but catching such bugs red-handed 
often seems impossible. This tool, included on diskette, lets you capture evi­
dence at the scene of the crime. Finally, the collected wisdom of several expe­
rienced software sages reminds you of the fundamental processes behind 
achieving quality software. It's easy to forget the basiCS; these gurus capture 
the essence of quality in a series of memorable quotations. 

Profile of aProfiler 
When tuning your machine at the system level, you treat programs as black 
boxes, generalizing their behavior in terms of transactions per hour or 
megabytes per minute. Eventually, though, you must look at programs on a 
smaller scale. One tool that makes this task easier, called a program proftler, 
reveals where your programs spend their time, where you should optimize 
those programs, and how thoroughly they've been tested. Proftling will save 
you hundreds of programming hours you might otherwise spend tuning code 
or chaSing bugs that should have been caught during testing. 

The promer described here is strictly for RPG, but the concepts apply 
to any language. Because the promer is written in RPG, with only a few minor 
modifications you can migrate it to the AS/400. And even if you're a non-RPG 
shop, you can use this promer as a model for building a promer for your lan­
guage of choice. 

Promers are a stock-in-trade programming tool; several different proftl­
ing techniques have evolved over time. Some promers require special hardware 



304 Desktop Guide to the 5/36 

and super-accurate timers. Some use interrupts to inspect a program at random 
intelVals and build a statistical map showing where the interrupts occurred 
most frequently. Each proflling technique has strengths and weaknesses. Hard­
ware profllers yield high accuracy but have a high cost. Statistical profllus give 
accurate results over long runs, but are inaccurate for the short runs or interac­
tive transactions. 

The profller described here uses a technique called statement count­
ing, which is the easiest technique to implement and provides accurate report­
ing regardless of execution time. The profller works by counting the number 
of times each program source statement is executed. An example of a source 
listing produced by the profiler appears in Figure 18.1. Only C-specifications 
are executed in RPG, so the profller prints only the calculation part of the 
code. The leftmost number on each statement shows the number of times the 
statement is executed during a test run. Statements that are executed most fre­
quently are probably the ones consuming the most time, while statements that 
aren't executed at all during a test program run aren't tested and therefore flag 
inadequacies in your test data. 

Inspect Figure 18.1, and you can see that the parts of the program 
executed most frequently are the "intetpreter loop" Gines 47 through 5-*), the 
GETSYM routine Gines 62 through 70), and the 00 routine Gines 76 through 
83). The next busiest part of the program is the SC routine Gines 87 through 
92). Clearly, any optimizing that reduces the number of times these statements 
are executed has the best chance of speeding up the program. 

Some RPG statements, such as comments and END statements, are not 
actually executed and thus have no statement counts. However, one statement 
in the example program that should be counted, but isn't, is the MOVE instruc­
tion on line 68, which, according to the comments, is executed when the pro­
gram senses an "end-of-line" condition. That this line is never executed indi­
cates that the test data is incomplete - it never includes an "end-of-line" case. 
This example illustrates well the profller's value in measuring test coverage. 
Without the profiler, this test data flaw might not be discovered until the pro­
gram fails in a production environment, which is the very disaster you try to 
avoid by testing in the first place! 

The RPG profller consists of two procedures, PROFRPG and PROF­
PRT. You use the profiler in a three-step process. In the first step, you nm the 
PROFRPG procedure to insert extra RPG statements, called instrnmentation 
code, into the RPG program under test, creating a new version of the source 
program: 

PRO FRPG program, library 

Where program is the name of the source program to be profiled, and library 
is the name of the library containing the program. PROFRPG stores the instru­



Chapter 18 Profiling and Advanced Debugging 305 

Rgure18.1 
Sample Profiled Source Program Listing 

DO BEGSR 
ACTION CASEO'sc' 
ACTION CASEO' pi' 
ACTION CASEO'pk' 
ACTION CASEO'pp' 
ACTION CASEQ'rd' 

END 
ENDSR 

Routine to save symbol 

SC BEGSR 

SC 
PI 
PK 
pp 
RD 

Depending on ACTION 
Save character 
Print identifier 
Print keyword 
Print parameter 
Read next line 

End CAS 

Continued 



306 Desktop Guide to the SI36 

FIgure 18.1 Continued 

16016 0088 C 5 IFLT 120 
16016 0089 C ADD 1 S 
18016 0090 C 

0091 C 
MOVE 
END 

SYM STR,S 

18016 0092 C ENDSR 
0093 C· 
0094 C' Routine to print identifier 
0095 C· 

364 0096 C PI BEGSR 
364 0097 C MOVE' Ident:'KIND 
364 0098 C EXCPTOLINE 
384 0099 C MOVE ·ZEROS S 
364 0100 C HOVE ·BLANKS STR 
364 0101 C ENDSR 

0102 C' 

0103 C· Routine to print keyword 

0104 C· 


1183 0105 C PK BEGSR 
1183 0106 C MOVE 'Keyword:'KINO 
1183 0107 C EXCPTOLlNE 
1183 0108 C MOVE ·ZEROS S 
1183 0109 C MOVE ·BLANKS STR 
1183 0110 C ENDSR 

0111 C· 

0112 C' Routine to print parameter 

0113 C' 


1456 0114 C PP BEGSR 
1458 0115 C MOVE' Param:'KIND 
1456 0116 C EXCPTOLlNE 
1456 0117 C MOVE ·ZEROS 5 
1456 0118 C MOVE ·8LANKS STR 
1456 0119 C ENOSR 

0120 C' 

0121 C· Routine to read next line 

0122 C' 


729 0123 C RO BEGSR 
729 0124 C MOVE ·ZEROS N 
729 0125 C MOVE ·8LANKS INP 
729 0128 C READ INPUT 
728 0127 C NLR EXCPTILINE 
729 0128 C ENDSR 

If STR not full 
8ump to next chr 
Save symbol 

End IF 

Set kind 
Pri nt kind and name 
Reset STR index 
Clear STR array 

Set kind 
Print kind and name 
Reset STR index 
Clear STR array 

Set kind 
Print kind and name 
Reset STR index 
Clear STR array 

Reset INP index 
Clear INP array 

LR Read next record 
Print input line 

mented version of your source program in a source library member named 
"P$program" in the same library as your original source Oines of instrumenta­
tion code are marked with "#+" in statement positions four and five), In step 
two, you compile the newly "instrumented" source program, and then nm the 
resulting object program in its normal environment. During execution the 
instrumentation code collects statement execution counts; when the program 
ends, these counts are written into a data me, The third, and fmal, step is to 
run the PROFPRT procedure to print the promed source listing: 

PROFPRT program,ltbrary 

Where once again program is the name of the promed program, and ltbrary is 
the name of the library containing the program, 

You need not worry about the "overhead," or extra time and memo­
ry, used by the instrumentation code except in programs approaching a 64 K 



Chapter 18 Profiling and Advanced Debugging 307 

compiled size (obtained from the end of the compilation listing). Execution 
time overhead isn't important, because the proftle results are unaffected by the 
time consumed by instrumentation code (and you won't leave instrumentation 
code in production programs). The memory overhead is 12 bytes per counted 
instruction - six for the counter, and six for the single machine instruction 
that increments the counter. In addition, your program size will increase about 
1 K to accommodate the proftle data ftle. A program containing 1,000 exe­
cutable C-specs will only increase in size by 13 K. 

You must carry out the second proftling step - compiling and run­
ning the proftled program - manually. The proftler can't automatically com­
pile the target program because the program may require special values (such 
as MRTMAX) on the RPGC compile procedure. And only you know the OCL 
and execution environment required for your program to run. When you com­
pile the instrumented source program, remember that although the source 
member name (P$program) differs from your original program name, the 
object program name is the same, and the instrumented object program will 
replace any existing version in the target library. In order to run your instru­
mented program, you must insert a / / FILE statement for a ftle named P#pro­
gram, which will contain statement counts. Figure 18.2 shows the / / FILE 
statement added to the OCL for the sample program. You can leave this state­
ment in your OCL even after removing instrumentation because SSP will 
ignore it if your program doesn't actually open the ftle. 

Using a statement counting proftler for performance tuning requires 
that you keep in mind that all RPG statements don't execute in the same 
amount of time. In particular, I/O operations take much longer than arithmetic 
operations. As a rule of thumb, you can estimate the "cost" in execution time of 
various RPG statements using the table in Figure 18.3. Arithmetic operations 
such as ADD and SUB, and structural operations such as COMP, DO, IF and 
GOTO, run directly on the hardware in the S/36, and are thus fastest. Other 
arithmetic operations, such as MULT, DIY, and SQRT, are carried out more 
slowly, by compiler-provided runtime routines, because the S/36 lacks multiply 
and divide hardware instructions. I/O operations are the slowest because they 
must wait for the mechanical motion of devices such as disk arms and operator 
fIngers. By using the factors in Figure 18.3, you can weight your proftle statis­
tics to give you a true measure of the time consumed by each statement. 

You won't reap the benefIts from useful tools such as this profiler 
unless you use them. So decide to make this tool work for you by requiring its 
use in your shop. All of your regression (i.e., stored data) tests should be pro­
ftled to ensure that the test data adequately exercises the code. You might even 
add a feature to the proftle print program to flag executable lines that don't get 
executed (the diskette includes complete source code for the profiler). And 
before spending money on more memory or a faster CPU, proftle your slowest 



308 Desktop Guide to the SI36 

Rgure 18.2 
OCl Showing /I FilE Statement for P#SAMP Counter File 

II LOAD SAMP 
II FILE NAME-PHSAMP.RECORDS-1000.EXTEND-1000 
II RUN 

Rgure18.3 
Execution-Time Cost Multipliers for Various RPG Operations 

Cost 

RPG Operation milliseconds multipliel' 

Indexed disk va 100.000 25,00(1 
Nonindexed disk va 35.000 8,75C 
Divide 10.000 2,500 
MuHiply 5.000 1,250 
External program call 3.000 750 
Array variable index 1.000 250 
Arrayllable lookup 0.500 125 
Other operations 0.004 1 

applications to see if some simple coding changes won't ease your processing 
bottleneck. 

RPG X-Ray Machine 
Compared to the AS/400, IBM has largely shortchanged s/36 RPG programmers 
when it comes to debugging tools. The AS/400 has programmable breakpoints, 
dynamic variable display, the DUMP operation, formatted dump printout>, and 
the RPG DEBUG statement. The S/36 has the RPG DEBUG statement. 

To be sure, some third-party debuggers for the S/36 offer capabilities 
as good as, and sometimes better than, those of the AS/400. But such third­
party tools share a common limitation with the DEBUG statement: You fIrst 
must compile the program to run specifically in "debug" mode before doing 
any debugging, and then you must recompile it without "debug" mode when 
you are through. Unfortunately, bugs don't always give you the kind of 
advance warning you need to isolate a failing program, recompile it with 
debugging statements, and try to re-create the original problem. And some pro­
gram failures don't lend themselves to interactive debugging, because you don't 
know which variables to inspect - you need to see all the program's indica­
tors and variables. 



Chapter 18 Profiling and Advanced Debugging 309 

AS/400 programmers use a formatted dump to track down the cause of 
such intermittent bugs right where they happen. The formatted dump lists 
every RPG variable by name, along with its value at the time of the dump - a 
kind of "X-ray" picture of the entire program's internal state. The AS/400 pro­
grammer can request a dump in response to any program error message, or 
generate periodic "snapshot" dumps from within a program via the RPG DUMP 
statement. And because the formatted dump is actually a ftle, it can be sent 
from a remote site to a central programming site, giving AS/400 programmers 
an important long-distance problem-solving tool. 

The S/36 also offers a built-in dump mechanism. But S/36 dumps are 
unformatted; to use them for debugging, you must manually look up the value 
of each variable by referring to hexadecimal addresses in the RPG compile list­
ing - a tedious and error-prone proposition. Further, dumping a S/36 RPG 
program is a one-shot operation that terminates the program; S/36 RPG has no 
DUMP statement for making snapshot dumps. 

To help overcome some of these S/36 debugging limitations, we've 
produced a utility called RPGDUMP to give you a formatted listing of an RPG 
dump me, showing the value of every indicator, field, array, and data struc­
ture. An assembly language subroutine, SUBRTD, provides the equivalent of 
RPG/400's DUMP statement, letting you make any number of snapshot dumps 
during a program's execution. Learning how these tools work and how to use 
them will put you on an equal footing with AS/400 RPGers. 

Figure 18.4 illustrates the report output by utility RPGDUMP. The 
heading identifies the program dumped and the dump me used, including the 
program compile date and time - important for verifying which version of 
your RPG program was dumped. The heading also names a source member 
(the 'SymTable:' tag) that contains the symbol table, or list of variable names 
and addresses, for the RPG program. The RPGDUMP utility automatically cre­
ates the symbol table source member, as you'll see shortly. 

After the headings, the report lists each RPG indicator that was on 
when the dump occurred, followed by the name, attributes (type and length) 
and value of each variable (field, data structure, or array), up to 100 bytes per 
line. Valiables longer than 100 bytes have continuation lines (preceded by a 
colon). For arrays, the attributes column shows the number of elements and 
the element length. By default, array data appears as a contiguous string; you 
can optionally print the elements one per line, in which case the array ele­
ment number precedes the colon on each line. 

The first step to using utility RPGDUMP is to create a symbol table 
source member containing the names and memory addresses of all the variables 
in your RPG program. You need do this only once after you've compiled your 
program; thereafter you can use the same source member to format any number 
of dumps for that particular program. Running procedure RPGSYM brings up 

Performance Tip 

The 5136 doesn't 
natively provide 
source-level 
debugging 
capabilities, but here 
are two vendors 
whose products 
provide such 
capabllRles for 
SI36 RPG: 

RPG AID, CYBRA 
Corporation, One 
Riverdale Avenue, 
Riverdale, NY 10463, 
(212) 601·7100 or 
(BOO) 292·7288. 

RPGD Interactive 
Source Debugger for 
SI36 RPG, BPS 
Infonnatlon Services, 
Inc., PO Box 9, 
Marlon, IA 52302, 
(319) 3n·7599. 



310 Desktop Guide to the S/36 

Figure 18.4 
Sample Output from Utility RPGDUMP 

11/20/90 
MIC-0016 

Main 
Main 

Proc: 
Prog: 

aVUM01 
aVUMEL 

RPG Formatted Dump 
SymTable: S$QVUMEL 

Dump 
Dump 

File: 
Date: 

#DUMP.08 
90/11/15 

Page 1 

Compiled: 90/11/15 13:00 Library: aVUDEV Inv Level: 02 of 03 

Name Attributes Data 10 20 30 40 50 60 70 80 90 100 

Indicators: L0 U8 01 02 
CLlNE# F 0063.0 
COL# F 3.0 001 
COL#R F 3.0 131 
COLON F 1 
CPAGE# F 6.0 000001 

PFOATA F 128 0022 CMPLR MEL $PRINTDMW21258520001P1 d 

Y F 8.0 00000025 
Z F 8.0 00000000 
INFDS D 32 00000 35640000000000 
JOBDS D 50 MEL W2131226aVU QVU# 0000000020001066 
MSG A 5i 36 1: Inval id command 

2:* ... End of Spool File· .. * 
3:No room to keep additional lines 
4:V 4.90 Copyright 1990 by Mel Beckman 
5:Spool 10 not available 

QUE A 10i 80 1: 1 SP0016 RPGC W2113444 MEL $PRINTDM P1 0001 12 
2: 2 SP0020 CMPLR W1120556 MEL $PRINTDM P1 0001 13 
3: 3 SP0021 OMPFMT W2120601 MEL PRINT P1 0001 1 
4: 4 SP0022 CMPLR W2125852 MEL $PRINTDM P1 0001 105 
5:" .. • End of Spool Queue ..... 
6: 

7 : 
8: 
9: 

10: 
SCL A 256@ 1 1 :-+--10--+--20--+--30--+--40--+--50--+--60--+--70--+--80-- -+--'90--+-100 

:-+-110--+-120--+-1 30--+-140--+-1 50--+-160--+-170--+-1 B0-- +-190--+-200 
:-+-210--+-220--+-230--+-240--+-250--+­

the symbol table creation prompt screen (Figure 18.5). Here you enter the name 
or forms number of the spool me containing the RPG compile listing for the 
program in question, followed by the name of the RPG program and the library 
where you want the symbol table stored. The name of the symbol table source 
member is always the name of your program preceded by 'S$', so you can store 
the symbol table in the same library containing your RPG source member. Sym­
bol table source members do not occupy very much library space, so you may 
want to incorporate the RPGSYM procedure into your RPG compile procedure 
to automatically generate a new symbol table whenever an RPG program is 
compiled. Figure 18.6 shows an example symbol table source member. 

Step two in using RPGDUMP is getting a task dump of your program. 
There are four ways to do this: 

1. Respond with option liD" to any system message that allows option ";)". 
2. Use the liD" option on a CANCEL command (e.g., CANCEL WI082345,D). 



Chapter 18 ProfiHng and Advanced Debugging 311 

Figure.18.5 
Symbol Table Creation Prompt Screen 

RPGSYM PROCEDURE 

Extracts the symbol table from an RPG compile listing 
and stores it in a source member for use by DMPFMT. 

Spool 10 (SPxxxx) or forms number (Fxxxx) 

of RPG compile listing to process 


Name of RPG source program . . . . . . . . . . . . . . . . . 

(RPGSYM stores the symbol table in a member named S$xxxxxx) 


Name of library to contain symbol table source member .... 

Cmd7-Cancel Cmd4-Put on job queue 

Figure 18.6 
Sample Symbol Table Source Member 

1... : ... 10 .... : ... 20 .... : ... 30 
F ATIME 0002 0 0000 00971 
F BTIME 0006 0 0000 00811 
F CTIME 0009 0 0000 00511 
F WORD 0008 0000 00990 
o TASKOS 0090 0000 01520 
D TIMEDS 4060 0000 03001 
A TBLA 0015 0008 02522 
A TBlB 0015 0008 02630 
A TBlC 0015 0008 028B0 

3. Run the IBM SETDUMP procedure. 
4. Use assembly language subroutine SUBRID in your RPG program. 

The frrst two methods terminate your program after the dump is taken. The 
third method, the SETDUMP procedure, lets your RPG program continue exe­
cution after the dump, but using that method requires knowledge of RPG 
internals that lies outside the scope of this chapter. The fourth method, using 
subroutine SUBRID (included on the "Desktop Guide" diskette), lets you take 
"snapshot" dumps without terminating your RPG program. 

Figure 18.7 shows how to use subroutine SUBRID. Following the EXIT 
SUBRID statement, a single RIABL statement identifres a I-byte flag variable. If 
the flag variable contains '0' your program keeps running after the dump; if it 



312 Desktop Guide to the SI36 

Rgure 18.7 

Example of RPG Code Using SUBRTD 


c MOVE '1/1' OUFLAG Don't terMinate ta:;k 
c EXIT SUBRTO Take a dump 
c RLABL OUFLAG 

figure 18.8 

RPG Dump Formatter Prompt Screen 


RPGDMP PROCEDURE 

Prints a formatted list of indicator, field. OS and 
array values frolll a task dump of an RPG program. 

Dump file nallle (,DUMP.xx) ................ . 


Nallle of RPG source program . . . . . . . . . . . . . . , . 
(to locate symbol table source member created by RPGSYM) 

Name of library containing the sYlllbo1 table sourCe member 

Print array elements on individual lines? . N 

Invocation level to dump (01-main program) 01 

Cmd7-Cance1 Cmd4-Put on job queue 

contains '1' your program terminates. Be careful when using SUBRTD; placing 
it in an infInite loop will generate a continuous series of dumps! 'Ole remit of 
any of these four techniques is a dump me on disk. 'Ole name of the dump 
me is #DUMP.nn, where nn is automatically incremented from 00 to 99. If you 
already have dump mes on disk. the system automatically skips the sequence 
numbers already in use. If you want to have more than 100 dump mes on disk 
at one time, you can rename some mes with names that don't end in .nn. 

'Ole third, and final, step to using RPGDUMP is generating the format­
ted dump listing. Running RPGDMP displays a prompt screen (Figure 18.8) 
that asks for the dump fIle name, the program name, the library containing the 
symbol table source member, and whether or not you want array elements 
printed on separate lines. Formatted dumps for small programs require only a 
few seconds; larger programs may require a minute or more. 

With RPGDUMP, you have a utility comparable to the dump debugging 



Chapter 18 Profiling and Advanced Debugging 313 

tools AS/400 programmers use. Combine that with a good third-party interactive 
debugger and you're on your way to achieving the same level of debugging 
productivity IBM provides on the AS/400. 

Going for the Gold 
Unfortunately, most of us programmers learned what we know about software 
testing at the school of hard knocks - at the cost of more than a few "flaky" 
programs haunting our professional past. And although we now acknowledge 
the need to test our software, we suffer from the mistaken notion that testing 
and debugging are the same thing. Although often performed together, testing 
and debugging are two quite different processes. While they share a common 
goal - to produce programs that work - the tasks involved differ in purpose 
and method. The purpose of testing is to reveal bugs; the purpose of debug­
ging is to locate their causes and repair the damage. Testing is planned before 
it is performed; debugging is an impromptu activity. Testing usually does not 
require much detailed knowledge about a program's design; debugging is 
impossible without such knowledge. Testing takes a programmer methodically 
along a preordained path; debugging takes a programmer through the outer 
limits of intuition, experimentation, and blind luck. Finally, you test before you 
debug, for the results of testing drive the debugging process. 

It's never too late to start testing the right way, by learning from 
those who have already gained experience. If you plan for thorough, intelli­
gent testing, you can reduce greatly the time spent in wild and woolly debug­
ging. In that spirit, we present a collection of "Golden Rules" - wise tips and 
techniques about software testing culled from recognized experts in computer 
science. 

Testing can show the presence ofbugs, but not their absence. 
- Edsger W. Dijkstra 

University ofTexas 

This is not an easy truth for most programmers to accept, but embracing it is 
essential to enlightened testing. How many times have you heard someone 
say "That's the last bug"? Of course, what they meant was "That's the last 
known bug." The program almost certainly contains other bugs waiting to be 
discovered. Even if there are no more bugs, no amount of testing can prove 
this fact positively because testing a program is not like testing a mechanical 
device for which all the parameters to be measured are known and limited in 
number. The number of permutations of input and output for even simple 
programs quickly becomes too large to evaluate systematically. The goal of 
testing is simply to reveal bugs so that they may be reduced to an acceptable 



314 Desktop Guide to the 8/36 

level. There is no such thing as "exhaustive" software testing - except f.)r the 
most trivial problems. 

Once you get over the hope for vindication through testing, it is :l sim­
ple leap of faith to a slightly more cynical corollary to this rule: All non··trivial 
programs have bugs. 

There can be no testing without specifications ofintentions. 
- Borts Betzer 

Data Systems Analysts, Inc. 

What is a bug? Simply put, a bug is program behavior that does not meet 
design specifications. This definition presumes that design specifications exist 
and that they were written before the program. With no specificatiom, any 
kind of program behavior could be correct. You may suspect that a report 
shOWing a 10-million-dollar net loss for your employer is wrong, but W],thout 
specifications, who can know for sure? 

Worse than no specification is the de facto specification cooked up 
after the program is running. ''The program does this, so let's put that in the 
specification" is heard all too frequently in programming circles. Most program­
mers have a strong impulse to start coding immediately, as soon as they see 
partial solutions to a problem. But this kind of enthusiasm usually overlooks 
design considerations that may indicate a completely different approach. Often, 
after a flurry of coding activity and impressive results, you must throw out the 
entire coding effort because it doesn't solve the whole problem. When the 
desire to write wild code begins to overtake you, remember the words of Roy 
Carlston of the University of Wisconsin: "The sooner you start to code, the 
longer the program will take to write." 

Good testing works best on good code andgood design. 
- Borts Betzer 

Data Systems Analyst.5; Inc. 

Good design and good coding are defensive activities, nipping bugs in the 
bud before they have a chance to develop complicated symptoms. On the 
other hand, bad design and coding are often so riddled with errors that even 
the best techniques may not fmd most of them. In such cases, rewriting the 
offensive code may be cheaper than trying to make it work. A combination of 
good design, good coding, and good testing yields a synergistic result: The 
sum is greater than the parts. It's obViously easier to plan tests when the 
design objectives are clearly spelled out. And tracking down the inevitable 
bugs revealed through testing is much easier if the code is well-structured and 



Chapter 18 Profiling and Advanced Debugging 315 

readable. 1he effort put into laying a solid foundation pays off in painless, 
rapid testing and debugging. 

It takes three times the effort to find andfix bugs in a system test. It takes 10 
times the effort to find andfix bugs in thefield than when done in a system test. 
There/ore, insist on unit tests by the developer. 

- Larry Bernstein 
Bell Communications Research 

"Units" are the individual programs and routines that are later combined into a 
complete system. 1he kinds of tests performed on units, structural tests, are 
tied closely to internal details such as programming style, source languages, 
error-handling, and coding. For example, a test that follows a certain path 
through the code is structural, and a test that verifies the correct input, pro­
cessing, and output of the unit is also structural. 

1he person in the best position to design structural tests for your pro­
grams is a programmer - not you, but someone you work with. Having a col­
league design structural tests has two advantages: Someone with a fresh view­
point is more likely to see bugs in your code, and the second walkthrough 
familiarizes another team member with code he or she may have to support 
later. And, of course, eventually you will fmd yourself wearing the structural 
testing hat for someone else's unit because part of your job as software engineer 
entails the ability to design and execute proper structural tests. 

While designing structural tests for a unit, you should make note of 
input data that exercised each logic path. 1hen use this collection of inputs to 
develop a test strategy. Don't forget to profile the source code, using a state­
ment-counting profiler such as the RPG profiler described earlier in this chap­
ter. Profiling lets you easily spot program code not exercised by your test. If it 
isn't exercised, it isn't tested! 

It behooves you to be diligent in unit testing because later, during the 
system test when all units are exercised as an integrated whole, your "public" 
bugs will surface for all to see. 

Insist on a system test by an antagonistic third party. 
- Boris Beizer 

Data Systems Analysts, Inc. 

System testing is a specialized kind of testing applied to the interfaces between 
units. 1he system test assumes that each unit is performing close to design spec­
ifications. Beginning the system test too early - when units contain many struc­
tural errors - is a waste of time. However, the system test does not have to 
wait until all units are ready; it can begin as soon as two units that communicate 



316 Desktop Guide to the SJ36 

with each other have passed unit tests. Performing this kind of "incremental" 
system testing effectively overlaps development and testing and can reveal 
design flaws before they become too firmly entrenched in code. 

You should avoid wearing both programmer and system-tester hats on 
the same project. You have such a detailed knowledge of system internals that 
you almost certainly can't design unbiased tests. "Oh, yeah, I remember that 
routine. That's so simple it has to work; no need to exercise it unduly." An 
objective third party with no detailed knowledge of the underlying co:le will 
be suspicious of everything and much more likely to produce competent tests. 
If the third party has it in for you, the tests will be exceptionally thorough, 
resulting in a very clean system that increases your renown as a fir:;t-class 
programmer. 

Of course, not every programmer has the luxury of an independent 
testing laboratory. If you must do your own system testing, get away from the 
project for a while to reduce the likelihood of your making unwarranted 
assumptions. And it can't hurt to get any kind of second opinion, even from a 
user. The best system testers are often not programmers. 

Regression testing cuts test interoa/s in half. 
- Larry Bernstein 

Bell Communications Research 

Regression testing is the practice of saving test input data and resulting output 
for reuse during future test sessions. After the flfSt wave of testing is finished 
and bug reports are shipped off to the programmers, a second wave is neces­
sary to verify that the programmers actually fixed the bugs and did not intro­
duce others. In fact, it's likely you'll repeat the cycle of testing and debugging 
many times before the system is accepted. Saving the input makes subsequent 
test runs easier to reproduce, and saving the expected output greatly simplifies 
the post-test analysis. Next year, when you make program changes to imple­
ment user-requested enhancements, much of your test data will still be useful 
for validating the new version. 

Regression testing of batch programs is straightforward: Save the input 
and output ftIes and simply rerun the programs against the saved ftIes to repeat 
a test run. Interactive programs, however, are more difficult to test consistently. 
Some operating systems provide scripting tools that let you save a "transcript" 
of an interactive session that you can play back during subsequent test fJns to 
simulate the actions of a human operator. Unfortunately, S/36 SSP doesn't have 
such a tool, forcing you to maintain manual scripts from which to produce 
repeat performances. You might consider recording such scripts using pc­
based session recording with a 5250 terminal emulator, which at least lets you 
automate playback for a single user. Even though they're tedious to prepare, 



Chapter 18 Profiling and Advanced Debugging 317 

don't underestimate the importance of such scripts. Unless the interactive dia­
logues are simple, you will not be able to reproduce the same input and output 
consistently for each session without scripts, resulting in inconsistent testing. 

Test the documentation while you test the system. 
- Donald Knuth 

Stanford University 

Of course, you wrote the documentation as part of the design process, didn't 
you? The time to make sure that the documentation and system behavior 
agree is during the system test. Even a perfectly functioning system loses cred­
ibility with users if the manual says one thing and the programs do another. A 

third party perfonning system tests will fmd it convenient to pass judgment on 
the documentation at the same time to ensure a harmonious package is deliv­
ered to the end users. 

Another point about documentation: Be sure the person testing it is a 
potential user. A programmer reviewing another programmer's operating 
instructions written for a non-technical user is likely to pass over documenta­
tion omissions the intended user would spot right away. Conversely, a non­
programmer reviewing a programmer's technical manual might return a liter­
ary work of art that is a technical nightmare. And despite the best intentions, 
experience shows that documentation is seldom revisited once a system is put 
into successful operation. The system test is probably the last opportunity 
you'll have to debug the manuals thoroughly. 

A program should WORK . 
- Brian Kernighan and Pj. Plauger 

Bell Labs 

Testing is important because programs should work - not just in the obvious 
cases, or in those cases you expect to encounter, but all the time. A program 
should survive assaults from bad data, frenzied operators, and malicious hack­
ers. No programmer claiming to be a pro should invoke the magiC chant 
"garbage in, garbage out"; this is just an excuse for a program that does not 
perform adequate checks on its input. Programs should be tested especially 
well near the edges, or boundary conditions, for reasonable behavior. Does 
your sort work with two elements? How about none? Does your program with 
a capacity to process 999 items behave sanely when presented with the thou­
sandth item? Such boundary tests are among those most neglected by pro­
grammers yet the first to be breached by innocent users. 

During the design and coding processes, you as a programmer intro­
duce error-checks to proVide early warning of data problems. If the error-check 



318 Desktop Guide to the S/36 

was important enough to code, it's important enough to test. An essential part 
of the unit test is an exercise of every error trap in your program, especially the 
ones that say "This should never happen" in the comments. If an error trap is 
not tested, how can you rely on it to work in the heat of battle? Making a pro­
gram work is obviously more difficult than making it run, but working pro­
grams handle all the little details that affect overall system quality. 

Make it workflrst be/ore you make it work/ast. 
- Brian Kernighan and Pj. Plauger 

BeflLabs 

Resist the urge to be clever, especially at the expense of clarity and reliability. A 
program that produces the right answer slowly is much more useful than one 
that produces the wrong answer quickly. Once everything is in good working 
order, you can take the time for intelligent performance tuning, which first 
requires a measurement of the entire application system to see where optimiza­
tion will payoff. Shortening a loop from 10 seconds to 10 milliseconds 
enhances nothing but your ego if the loop is encountered only once a day. 
Note that there is nothing wrong with using efficient techniques if you don't 
have to give up readability, maintainability, or reliability. 

There is nothing magical about testing and test design that immunizes testers 
against bugs. 

- Boris Betzer 
Data Systems Analysts, Inc. 

Tests are rigorous procedures with prepared inputs, expected outputs, and for­
mal procedures. Often you must write special programs to generate test data 
and validate results. It's not unusual for the number of lines of test cede to 
exceed the number of lines of production code! Code is code, and code used in 
diagnostic tools is as likely to contain bugs as any other. At least in the early 
stages of testing, an incorrect test result may be due to test-program bugs as 
often as it is to bugs in the programs being tested. Even test data used in regres­
sion testing may contain latent bugs that jump out at unexpected times, forcing 
you to revise your previous opinions of the tests. Therefore, everything that 
applies to testing in general applies in a recursive sort of way to programs that 
aid the testing process. 

Reasonable Goals 
After 30 years of software development, nobody can yet say how much tuning, 
testing, and debugging is "enough.» Because no amount of testing can prove the 
absence of bugs, and no amount of tuning can assure optimal performance, 



Chapter 18 Profiling and Advanced Debugging 319 

you can only hope to make a convincing demonstration. What constitutes a 
convincing demonstration depends on the intended application of the system. 
A reliability level of 95 percent is perhaps adequate for software running on a 
home computer. But even 99.999 percent is not high enough for software 
controlling Star Wars systems if the one failure in 1,000 trials results in the 
end of life as we know it. 

You must select goals reasonable for your programs. Once you've 
established those goals, you can use the wisdom contained in this chapter to 
measure program performance, locate and fIx bugs, and systematically test 
against known standards - and you will have a better chance of producing 
quality software. 





Chapter 19 Achieving Upward Compatibility 321 

Chapter 19 

Achieving Upward Compatibility 
Nothing lasts forever, not even the S/36. Sooner or later most of us will 
migrate to a machine that is source code-compatible with the S/36. That 
machine might be the AS/400, it might be the RS/6000 running sophisticated 
S/36 emulation software, or it might be a machine we don't yet know about. 
As S/36 users and application developers, we face the challenge of writing 
new S/36 applications that will port easily to our next platform. This chapter is 
about creating those S/36 applications with an assumption that the software 
will probably spend its golden years on another machine. 

With that in mind, and if you have ongoing application development, 
we strongly advocate using either ASNA's 400RPG or BPS's RPG III/z to add 
RPG/400-like capabilities to your RPG II code. By providing such features as 
externally described files, enhanced external program calls, additional RPG 
operation codes, and other RPG/400 language enhancements, ASNA's 400RPG 
and BPS's RPG II1/z provide the needed leverage to write better and more 
maintainable RPG applications. 

In this chapter, we will discuss these two packages and explain why 
you should use one of them, and we will suggest coding practices you should 
follow - especially if some day you plan to migrate your S/36 applications to 
anAS/400. 

FIRST, AWORD OF CAUTION 
Before we discuss the bells and whistles offered by ASNA's 400RPG or BPS's 
RPG 111/2, note that we do not encourage willy-nilly use of either of these 
products without regard for the future of your code. Such an approach could 
cause you enormous headaches because, with either of these products, it's 
possible to write "hybrid" RPG programs on your S/36 that won't compile in 
either the S/36 environment (S/36E) or the AS/400 native environment without 
considerable modification. 

Another potential problem is that S/36 RPG II programs that use 
RPG/400 features will not be compatible with the AS/400's RPG II-compatible 
compiler, which is used to compile S/36 RPG II programs for use in the 
S/36E. If you use 400RPG or RPG Ill/2 to develop S/36 applications, this 
incompatibility commits you to using the native RPG/400 compiler when you 
move to the AS/400. Fortunately, the AS/400 supports "mixed mode" applica­
tions. That is, programs compiled with RPG/400, a substantially enhanced 
version of RPG, can be called from the s/36 environment. For example, if 
FRED is a program compiled with RPG/400 and stored in library BARNEY, 



322 Desktop Guide to the SI36 

you could use the following OCL from the S/36E to load and run tha: native 
program from the S/36E: 

II LOAD FRED,BARNEY 
II RUN 

Technical Note 

The AS/400 comes with two RPG compilers: RPGl400, the native RPG compiler, and the 
S/36 RPG II-compatible compiler, used to compile migrated stock 8/36 RPG II pronrams to 
run in the S/36E. Programs compiled with RPGl400, asubstantially enhanced version of 
RPG, also can run in the S/36E. 

Although using 400RPG or RPG 111/2 features in your S/36 RPG code 
will require you to use the native RPG/400 compiler, you would not be forced 
to migrate immediately to the native environment. You can take your time 
learning about CL, the AS/400's messaging system, or any of the other features 
offered by the native environment. 

If you know the rules for AS/400 native programming and understand 
the required me design, the use of 400RPG or RPG 111/2 will give you more 
programming features on your S/36 and a leg up on native AS/400 features 
when you move to the AS/400. Our advice: Use 400RPG or RPG 111/2 to devel­
op new S/36 applications, but do so with at least a passing knowledge of 
what the RPG and database requirements are in the AS/400's native eJllviron­
ment. Get copies of the ASl400 RPG User Guide (SC09-1348),the RPG Refer­
ence(SC09-1349), and the Database Guide (SC41-9659) for your S/36 shop so 
you'll know what's portable and what isn't. You can buy these manuals, or if 
you're lucky and know a shop with an AS/400, you can talk them out of their 
old manuals. The basic programming guidelines you're interested in won't 
change much from release to release and the older manuals will probably do 
the job for you. It also would be helpful for you to have a copy of IBM's Red­
book, Sl36 to ASl400 Application Migration (GG24-3250). 

Technical Nole 

When you move to an AS/400, the choice of S/36E or native environment does not have to 
be an either/or decision. With attention to detail, programs developed using 400RPG or 
RPG 111/2 features can be migrated straight to the AS/400 native environment. The~ will 
compile with few changes and you will still be able to work with S/36 RPG II-only programs 
that you migrate to the S/36E. To make migration easier, consider keeping RPG II-only 



Chapter 19 Achieving Upward Compatibility 323 

code and code using 400RPG or RPG 111/2 features in separate libraries. The RPG II-only 
libraries will migrate to the S/36E and the libraries with enhanced code will migrate to the 
native environment. 

Technical Note 

The S/36 UnixlAIX environments, most notably Open RS/36 by Universal and Unibol by 
ICS Computing Group, don't impose the same restrictions on their S/36 environments that 
the AS/400 does. Open RS/36 and Unibol's S/36 environments support most of the 
RPGl400 enhancements offered by ASNA's 400RPG and many by BPS's RPG 111/2. 

The Two Products 
Section III stressed the importance of external program calls (EPCs), offered 
detailed comparisons of the EPC features offered by 400RPG and RPG Illh, 
and noted that EPCs also are available in IBM's Value-Added Software Pack­
age (VASP) for the S/36. VASP, which is available free to all registered S/36 
SSP users, is certainly worthwhile - you should get it as soon as possible ­
but its EPC implementation does not render 400RPG and RPG 111/2 obsolete. 
Not only do they both provide a better EPC implementation than V ASP does, 
but they both are packed with many other valuable features. 

While 400RPG and RPG Illh both offer many of the same features, 
400RPG and RPG IIl/2 look and feel more like distant cousins than siblings. By 
dovetailing itself into your system's RPGC procedure, ASNA's 400RPG inte­
grates well with your S/36 to the point of seeming nearly invisible. Originally 
named RPG/III, 400RPG was initially a relatively straightforward implementa­
tion of RPG III from the S/38 for the S/36, with its primary features being EPCs 
and externally described files. With the advent of the AS/400, 400RPG has 
enriched its feature set and, in addition to proViding an enhanced RPG lan­
guage for the S/36, has positioned itself as a S/36-to-AS/400 conversion aid. 

RPG IPh is a worthy competitor to 400RPG, but it has an entirely dif­
ferent personality. RPG IPh has the look and feel of having been developed 
late at night by an obsessed programmer. Its manual almost comes with its 
own Dorito fingerprints and Jolt Cola rings. EscheWing tight integration and 
user transparency, RPG IPh goes its own way, implementing many of its fea­
tures through a main menu and throwing in a handful of interesting program­
mer goodies (e.g., code-generating macros and cross-referenCing utilities.) 

Those of you who swear by true-blue products and shiver at the 
notion of installing a third-party compiler on your S/36 can relax. Neither 
400RPG nor RPG IIlh are actually compilers; instead, they are source code 
preprocessors. You write your code with RPG/400 syntax and these products 



324 Desktop Guide to the 5136 

massage that code, sometimes merging it with an assembler subroutine or 
two, and then submit that source code to your true-blue RPG II compiler. 
The translated code is discarded after being used by your RPG II compiler. 
By default, the compiler listing prints the source code you wrote, not the 
translated code the preprocessors created. 400RPG and RPG Illh both 
include methods of printing generated code. Seeing the preprocessed code 
is a handy way to see how the products do their magic; but beyond this 
point of interest, you'll generally want your original code printed on your 
compiler listings. 

The implementations of 400RPG and RPG IIl/2 are very similar. 
Because of this, we chose one of the products - 400RPG - to serve as our 
primary example of how the two products work. For a pre- and post­
processed example, compare Figures 19.1a and 19.1b. Figure 19.1a is a com­
plete RPG program that uses externally described files and some other 
RPG/400 features. Figure 19.1b is the code generated by 400RPG that will be 
submitted to the S/36 RPG II compiler. As mentioned earlier, unless you 
specifically ask to see it, the post -processed code is generally hidden from you 
- you'll never modify it with SED or save it in a library. The original code as 
shown in Figure 19.1a is what you work with. We'll take a closer look at the 
code in these figures later. 

Because both of these products add a preprocessing step, they add a 
slight amount of time to the compiling process. However, the time added is 
minimal and barely noticeable. As mentioned, 400RPG is invoked automatically 
by your RPGC procedure. RPG 111/2 can be called either from its main menu or 
invoked with a procedure call. 

The Implementation of Externally Described Files 
Both 400RPG and RPG 111/2 address a major limitation of S/36 RPG II by pro­
viding externally described files for the s/36. With RPG II on the S/36, all data 
files are program-described (i.e., all data file descriptions are internally bound 
to programs). As many different deSCriptions of your data files exist as you 
have programs using them. Any changes you make to data file layouts require 
finding all programs that reference that me and changing those programs ­
one at a time- a slow, laborious, error-prone process. 

Very few programs use every field in a file, so it probably takes sever­
al programs just to form a complete description of a data file. With ~L little 
luck, all the programs you've found that describe a file describe that file con­
sistently - with a little less luck you'll spend a couple of days with POP scan­
ning through source members trying to deterrnine~hat field really ends in 
which position. 

In the AS/400 native environment, as well as on the S/38, data files are 
externally described (for the record, AS/400 data files can also be program­



Chapter 19 Achieving Upward Compatibility 325 

Figure 19.18 
RPG Program Using Externally Described Files 

1 H 064 EXTFIL 
2 FJRL IP E DISK 
3 FBANK UF E K DISK A 
4 I#JRL 
5 I 
6 .. JJACCTL3 

7 C #BAKEY KLIST 
8 C KFLD JJSTOR 
9 C KFLD JJACCT 

10 C KFLD JJDEPT 
11 C KFLD JJLOC 
12 C ·LIKE DEFN BABAL VTOTAL 
13 C 
14 .. L3 Z-ADD0 VTOTAL 

15 C 
16 .. ADD JJAMT VTOTAL 

17 CL3 
18 .. EXSRWRTBNK 

19 CSR WRTBNK BEGSR 
20 C Z-ADDJJSTOR BASTOR 
21 C Z-ADDVTOTAL BABAL 
22 C 
23 C Fi 11 other BANK fields as needed 
24 C 
25 C #BAKEY CHAINBANK 55 
26 C N55 UPDAT#BANK 
27 C 55 WRITE#BANK 
28 C ENDSR 

described, but that is very rarely done in the native environment). With exter­
nally described files, data file descriptions are stored in only one place and 
never in any programs. All programs simply reference the external file 
description at compilation time. 

Externally described files ensure that your data is program-indepen­
dent (i.e., your data files don't depend on programs to describe them) File 
modifications such as changing the key position, field lengths or record 
lengths do not require modifying the programs that use that data. After chang­
ing the external file description, the dependent programs need only be recom­
piled. Externally described files also ensure that files are referenced the same 
way in every program, that field names are the same in every program and 
that you have, in one place, a comprehensive description of the file. 

Both 400RPG and RPG 1Il/2 offer a couple of ways to create external 
file descriptions and both products vary a bit in their implementation, but the 
results are the same: program-independent external file descriptions for your 
S/36. RPG 111/2 uses the most proprietary method of describing files externally. 
It uses a source member that is a variation of RPG's F- and I-specs. These 
members can be created manually with SEU or they can be created from 



326 Desktop Guide to the 8136 

FIgure 19.1b 
Code Generated by 400RPG 

H 064 
FJRL IP F 72 DISK 
FBANK UF F 128 9AI 01 DISK 
IJRL NS 01 
I 1 
I 3 
I 8 
I 10 
I 14 
I 15 
I 17 
I 22 
I 24 
I 25 
I 28 
I 30 
I 36 
I 41 
I 42 
I P 67 
I 72 
IBANK NS 01 
I 1 
I 3 
I 7 
I 8 
I 10 
I 34 
I 58 
C EXIT SUBR3V 
C EXIT SUBR3M 
C -LIKE DEFN BABAL VTOTAL 
C L3 Z-ADD0 VTOTAL 
** 

C ADD JJAMT VTOTAL 
CL3 EXSR WRTBNK 

CSR WRTBNK BEGSR 
C Z-ADDJJSTOR BASTOR 
C Z-ADDVTOTAL BABAL 
C 
C Fill other BANK fields as needed 
C 
C HBAKEY CHAINBANK 
C EXIT SUBR3A 
C RLABL HBAKEY 
C RLABL JJSTOR 
C RLABL JJACCT 
C RLABL JJDEPT 
C RLABL JJLOC 
C RLABL IN00 
C N55 EXCPTH$E001 
C 55 EXCPTH$E002 

EXTFIL 

A 

20JJYEAR 

70JJJENO 

90JJSTOR 


130JJACCTL3 
140JJDEPT 
160JJLOC 
21 JJOB 
230JJFOLI 
24 JJTYP 
27 JJSRC 
290JJPER 
350JJDATE 
400JJCHEK 
41 JJCODE 
66 JJDESC 
712JJAMT 
72 JJPOST 

20BASTOR 

60BAACCT 

70BADEPT 

90BALOC 


33 BANAME 
57 BADDR 
672BABAL 

55 

9 

Continued 



Chapter 19 Achieving Upward Compatibility 327 

Figure 19.1b Continued 

C 
OBANK ADD 
o 
o 
o 
o 
o 
o 
o 
OBANK 
o 
o 
o 
o 
o 
o 
o 

ENDSR 
#SE002 
BASTOR 
BAACCT 
BADEPT 
BALOC 
BANAME 
BADDR 
BABAL 
#SE001 
BASTOR 
BAACCT 
BADEPT 
BALOC 
BANAME 
BADDR 
BABAL 

2 
6 
7 
9 

33 
57 
67 

2 
6 
7 
9 

33 
57 
67 

IDDU or an existing RPG program's F- and I-specs. RPG 111/2 includes utilities 
to translate RPG programs written on the S/36 using its externally described 
files to RPG/400-compatible native RPG programs. 

400RPG uses a less proprietary method of providing externally 
described mes on the S/36. It uses an almost completely RPG II-compatible F­
and I-spec source member to describe a me. The only variation from RPG's F­
and I-spec syntax is that on the record-level I-spec, a record-format name must 
be coded in columns 53-58. This record name will be used by RPG I/O opera­
tions. Multiple record-format files require a different record name for each format. 

Figure 19.2 shows the 400RPG external file description member for 
the BANK file. It is from this member that file attributes such as record length, 
key length and position, as well as field names and positions, are known by 
the RPG program. BANK has a single record fonnat named #BANK. Note that 
for program clarity (this is not a rule imposed by 400RPG), all of BANK's fields 
start with "BA," and that no other fields will ever start with "BA." This field 
name scheme ensures that when you see a field starting with "BA," you'll 
know it belongs to the BANK file. 

Any 400RPG program can reference the BANK external file deSCrip­
tion by using a BANK F-spec as shown in line 3 of Figure 19.1a. The "En in the 
F-spec's column 19 tells 400RPG that the BANK file is externally described and 
the optional "K" in column 31 tells the program the BANK file is being read by 
key. Record lengths and key positions are not entered in a program's F-spec 
for externally described files. These values will be read from the external 
description. The file type and designation (columns 15 and 16), the mode of 
processing (column 28), and the me addition value (column 66) are coded as 
required in each program. 



328 Desktop Guide to the SI36 

Figure 19.2 
400RPG External File Description Member for BANK File 

FBANK IP 128 128 9AI 01 DISK 
IBANK NS 01 #BANK 
I 1 20BASTOR 
I 3 60BAACCT 
I 7 70BADEPT 
I 8 90BALOC 
I 10 33 BANAME 
I 34 57 BADDR 
I 5B 672BABAL 

Field oven'ides, to specify such things as control breaks and changing 
externally described field names, are achieved easily with a couple of extra 
I-specs in the program. Lines 4 and 5 of Figure 19.1a specify an overriding 
control break for the externally described me JRL by referencing a record for­
mat name being overridden and a field name. Except for field overrides like 
this, no other input specs are required in the RPG program. Note that there 
are no other I-specs in Figure 19.1a. You'll also notice that there are no output 
specs coded. 400RPG puts the input specs from the external description Cafter 
recording any field overrides) into the RPG program and also uses them to 
create output specs. 

Technical Note 

On your 8/36, programs using externally described files as provided by 400RPG or 
RPG 111/2 will coexist nicely with RPG II programs that don't use externally described 
files. You can start using externally described files on your 8/36 gradually, describing a 
couple of your most-used files and then working your way slowly into externally describing 
all your files. 

RPG/400 FILE OPERATION CODES 
To perform me I/O for externally described mes, both 400RPG and RPG Illh 
use three RPG/400 operation codes: WRITE, which adds a new record to a 
file; UPDAT, which updates an existing record in a file; and DELET, which 
deletes a record from a delete-capable me. The operation codes are imple­
mented in the same fashion by 400RPG and RPG IP/2, 

Figure 19.1a shows the WRITE and UPDAT operation codes in action 
as records are added or updated to the BANK me, depending on the results of 



Chapter 19 Achieving Upward Compa1l)ilty 329 

figure 19.38 
Using RPG II to Describe aMuHipart Key 

lJRL NS 01 
I 1 20JJSTOR 
I 3 60JJACCT 
I 7 70JJDEPT 
I 8 90JJLOC 
I 1 9 HBAKEY 
I 10 10 JJTYPE 

Figure 19.3b 
Using aData Structure to Describe aMuHipart Key 

DS 
1 20JJSTOR 
3 60JJACCT 
7 70,JJDEPT 
8 90JJLOC 
1 9 IBAKEY 

Figure 19.3c 
Using KLiST to Assemble fields of aMuHlpart Key 

C HBAKEY KLIST 
C KFLD JJSTOR 
C KFLD JJACCT 
C KFLD JJDEPT 
C KFLD JJLOC 

the CHAIN operation ccx:le. One side benefit of the WRITE operation ccx:le is 
that it initializes any numeric fields (including packed and binary fields) to zero 
that have not already been initialized in your program. (Your CFO will appreci­
ate the fact that no more pay checks will be written for $404040.400 

To describe multipart keys, RPG/400 uses the KUST operation code, 
which is supported by 400RPG and RPG IIlIz. Methods used by RPG II to 
describe a multipart key, such as redefining fields on the input specs (Figure 
19.3a) or using a data structure (Figure 19.3b), are not used by RPG/400. Fig­
ure 19.3c shows KUST and how it is used to "assemble" the fields of a multi­
part key. Note that neither 400RPG nor RPG/400 allow using the KUST value 



330 Desktop Guide to the S/36 

for anything other than file operations. If you need to assemble its value for 
other reasons, you'll need to use a data structure or MOVE/MOVEL. 

Technical Note 

DDS, which stands for Data Description Specifications, performs acombination of F-, 1-, So, 
and D-spec responsibilities for the AS/400. The AS/400 uses DDS to describe da~l files, 
printer files, and workstation files. By providing DDS support, 400RPG offers RPG/400 com­
patibility with externally described files that RPG 111/2 does not. 400RPG's DDS support 
allows you to use AS/400-compatible DDS to externally describe your data files, and also 
includes support for alternate indexes and for field reference files (which provide amethod 
of further reducing the redundancy required to define each field in afile). 

Line 12 in Figure 19.1a reveals another subtle advantage of using 
externally described files. Here, RPG Irs DEFN operation is used to declare 
the size of field vrOTAL to be the same as field BABAL in the BANK file. By 
using the DEFN operation, the size of field vrOTAL is not hardwired in the 
program. With each compilation, it will adjust itself to the size of BANK's 
BABAL field. If the size of field BABAL were ever changed in BANK's ·external 
description, using DEFN ensures that field vrOTAL will always be large 
enough. In addition to data files, 400RPG and RPG Illh also allow externally 
described workstation fIles and externally described data structures. RPG IIlh 
also supports externally described printer files. 

Using externally described files with S/36 RPG II is perhaps the most 
significant step you can take to improve the quality of your S/36 source code. 
Externally described flies, make your programs shorter, more concise and 
more readable. This is theway programs are written on the AS/400. By learn­
ing how to use externally described flies now on the S/36, you will find that 
you have shortened the learning curve when you migrate to a future platform. 

Other RPGl400 Features 
Although gaining the capability of externally described flies and enhanced 
EPCs are the primary reasons to use 400RPG or RPG 111/2, both products also 
offer other valuable features as well. For example, both support RPG/400's 
AND/OR operation codes. Take a look at the indicator-laden RPG II I::ode in 
Figure 19.4a. Here, an action is to be performed if a customer's balance is 
equal to or greater thart her credit limit or if her balance is equal to or greater 
than her high balance and if her balance is greater than $500. Figufie 19.4b 
shows how much cleaner the credit limit test is using AND/OR operations. 



Chapter 19 Achieving Upward Compatibility 331 

Figure 19.48 
Indicator-Laden RPG II Code 

C SETOF 56 
C BAL COMP LIMIT 55 55 
C N55 BAL COMP HIBAL 56 56 
C 55 BAL COMP 500 55 
C 55 · .. do somethi ng 
C 55 ..• do something 
C 55 · .. do something 

Figure 19.4b 
400RPG Code Using ANDIOR Operations 

c BAL IFGE CLIMI 
C BAL ORGE HIBAL 
C BAL ANDGT500 
C · .. do something 
C · .. do somethi ng 
C ... do something 
C ENDIF 

Both 400RPG and RPG IIl/z also support the RPG/400-compatible 
*IN,xx array and *INxx fields to reference indicator values as variables. The 
*IN,xx array is a 99-character array of I-byte alphanumeric characters. The 
value of each element corresponds to the corresponding indicator. If the array 
element has a value of '1', that element's corresponding indicator is set on; if 
its value is '0', the indicator is set off. For example, the following line of code: 

c MOVE '1' *IN,55 

causes indicator 55 to be set on. The *INxx field works in much the same fash­
ion as the *IN,xx array except, as you would probably expect, you can't use 
the *INxx field with array operations. 

Referencing indicators as variables can result in some abysmal RPG. 
Quick now, what does this line of code do: 

c MOVEA'010011' *IN,50 

This code sets off indicators 50, 52, and 53, and sets on 51, 54, and 
55. Is that clear or what? For some reason, some RPG/400 programmers think 
this is better coding practice than using a few SETON and SETOF statements. 
However, used sparingly and commented clearly, you will fmd good uses for 



332 Desktop Guide to the 8136 

referencing indicators as fields, especially when you need to toggle indicators 
that control workstation display attributes. 

RPG400 and RPG 111/2 have many more tricks up their sleeve than 
we've discussed. Check them out. As we said earlier, ifyou have ongoing pro­
gram development on your S/36 and if you're willing to roll up your sleeves 
and learn a little about the AS/400, you need one of these products. 

ADDITIONAL TIPS FOR UPWARD COMPATIBILITY 
Regardless of which language strategy you're using on the S/36 - straight 
RPG II or RPG II with 400RPG or RPG IP/2 - you should consider several 
other things as you develop new applications. The following tips apply pri­
marily if your migration platform will be the AS/400, but most have some 
merit if you plan a move to a Unix S/36 environment. 

Data File Usage on the S/36 
When you venture outside the S/36E on the AS/400, you'll find that the rules 
of file usage change considerably from the old RPG II-S/36 days. RPG/400 
doesn't support direct or chained access methods (a "D" or "C" in column 16). 
In both cases, the AS/400 native environment expects full procedural files 
instead (an "F" in column 16). For any new application development on the 
S/36, use full procedural files wherever you can. You won't miss any features 
by using full procedural mes on your S/36, and programs with full procedural 
mes will migrate more easily to the native AS/400 environment. 

It's common for me layouts on the S/36 to include many record types 
per me. For example, when designing an order-entry system for the S/36, it is 
common S/36 practice to put both order header and order detail records in 
the same me. Using a record ID code somewhere in the file, the RPG program 
knows which record it is working with. Multiple record-type files are not 
directly supported on the AS/400. Design all your new S/36 applications to 
use only one record type per me. 

Code to Avoid Decimal Data Errors 
The S/36 uses a zoned-decimal format for internal representation of numeric 
data. When reading in zoned decimal format, the S/36 uses only the digit por­
tion of each byte to determine its numeric value. Therefore, any alphanumeric 
character can be read as a numeric value - for example, x40 (a blank) has the 
numeric value of zero (xFO), xCI ("An) has the numeric value of one (xFl), 
and so on. ('This is why, on the S/36, after moving a 5-byte blank character 
field into a 5-byte numeric field, the numeric field has a zero value.) However, 
the AS/400 native environment is different. It uses a packed format for internal 
representation of numeric data. With this packed format, both the zone and 



Chapter 19 Achieving Upward Compatibility 333 

digit values are used to detennine the value of a byte. Therefore, in the AS/4oo 
native environment, the numeric value of a blank (x40), is 40, not zero. 

The difference in data representation often manifests itself in decimal 
data errors. One place decimal data errors commonly occur is when a S/36E 
program calls an AS/4oo native program. For example, take a look at the small 
S/36E program in Figure 19.5a and the native program it calls in Figure 19.5b. 
This should work: The number of parameters being passed match and their 
attributes match. But it won't. The native program expects numeric data in 
packed format and when the S/36E program sends it zoned decimal numeric 
values, a run-time error occurs. You can avoid this problem by mapping the 
parameters that the native program receives to alpha characters with a data 
structure, as shown in Figure 19.5c. Here, the native program accepts the 
alphanumeric values passed to it without error, and the data structures per­
form the necessaty implicit data conversion. 

If you use external program calls on the S/36, and you plan to port 
that code to the AS/400 native environment, consider always passing parame­
ters as character values and having your programs convert the values to 
numeric when necessaty. This practice will avoid lots of annoying run-time 
decimal data errors on the AS/400. 

Assembler Subroutines 
Whatever your language strategy, using assembler routines in your code can 
bring migration to another platform to a grinding halt. However, the AS/4oo 
and the Unix S/36 environments - which are probably your primaty migra­
tion targets - have provided work-arounds for many assembler routines. 

In fact, in many cases the problem solved by the assembler subrou­
tine on the S/36 is solved natively and all you'll need to do with your code is 
remove or change the reference to the subroutine. For example, RPG/400 
natively proVides the ability to open and close printer fdes, to determine the 
cursor position, to manipulate strings, and to directly read and write source 
code members. 

In other cases, alternatives to assembler routines can be coded in 
other high-level languages. For example, in 4ooRPG, ASNA provides a CKDT 
operation code that determines whether a date value is valid. In the 400RPG 
manual, ASNA provides the same routine ported to CL (the AS/400's Com­
mand Language) for use on the AS/400. This CL routine can be called just 
like the CKDT assembler routine and returns the same result. The Unix alter­
natives also proVide many canned subroutine replacements and document 
the interface between their RPG compilers and native high-level languages 
such as C. 

Don't shy away from assembler subroutines for your S/36 RPG if they 
provide a needed solution for you. But document their use well so that when 



334 Desktop Guide to the SI36 

Flg1l'l19.5a 
Sample S/36E Program 

H* AS/400 S/36 EE RPG II program 
H 064 
I UDS 
I 1 60VAL3 
C Z-ADD12 VAL1 60 
C Z-ADD26 VAL2 60 
C Z-ADD0 VAL3 60 
C CALL 'PGM5B' 
C PARH VAL1 
C PARH VAL2 
C PARH VAL3 
C* VAL3 should now equal 3B 
C SETON LR 

F1g11'119.5b 
Native Program Called by Program In Figure 19.58 

C* AS/400 native RPG/400 program 
C *ENTRY PLIST 
C PARH NUH1 60 
C PARH NUH2 60 
C PARH NUH3 60 
C NUH1 ADD NUH2 NUH3 
C RETRN 

Figure 19.5c 
Mapping Parameters with aData Structure 

C* AS/400 native RPG/400 program 
IALPHA1 DS 
I 60NUH1 
IALPHA2 DS 
I 60NUH2 
IALPHA3 DS 
I 60NUH3 
C *ENTRY PLIST 
C PARH ALPHA1 
C PARH ALPHA2 
C PARH ALPHA3 
C NUH1 ADD NUH2 NUH3 
C RETRN 

http:F1g11'119.5b
http:Flg1l'l19.5a


Chapter 19 Achieving Upward Compatl)ility 335 

migration time comes, translating the subroutine is a planned activity, not a 
late-night emergency. 

THE FINAL ANALYSIS 
Even though the S/36E is improved from its early days on the AS/400, its com­
piler still offers the limited feature set of the RPG II compiler on the s/36. To 
take advantage of many of the advanced features and capabilities of the 
AS/400 and of RPG/400, you'll want to port many of your programs to the 
native environment quickly. Features such as new string manipulation opera­
tion codes, more informative me information data structures, and submes (the 
AS/400 technique of displaying scrolling lists) are only possible with RPG/400 
and the native environment on the AS/400. 

If you have ongoing program development on the S/36, and if you 
plan to someday migrate those programs to the AS/400, you have two choices: 

1. Continue to code in straight RPG II (including EPC as provided by 
VASP) on your S/36. When you migrate to the AS/400, move to the 
S/36E first and then move one program at a time to the native envi­
ronment to truly take advantage of the AS/400. If you follow this 
approach, you need to do little defensive programming on the S/36. 
Perhaps the best advice is to start getting your data me descriptions 
in order and to standardize me definitions from one program to 
the other. 

2. Use 400RPG or RPG Ill/z on your s/36 now, which will give you 
many RPG/400-like features today. When you move to the AS/400, 
compile your programs using the RPG/400 compiler but run in the 
S/36E.1be challenge of moving to the AS/400 will be a little tougher 
but your programs will be more maintainable and include more mod­
em features and functions during their S/36 lifecycle. 1bis strategy, 
assuming you do a little AS/400 homework, will also make the richer 
features of the AS/400's native compiler available to you sooner. 

If you contemplate migrating to Unix-based S/36 environments such 
as Universal's Open RS/36 or JCS's Unibol, you will need to take fewer, if any, 
defensive migration steps on your S/36 if you stick with stock RPG II or with 
ASNA's 400RPG. Open RS/36 and Unibol both provide good compatibility 
with most of ASNA's extensions and their S/36 environment. At the time of this 
writing, RPG Ill/z's more proprietary method of externally describing mes may 
be a bit of a migration barrier to Open RS/36 or Unibol. However, third-party 
compatibilities are updated frequently, so check with the respective vendors 
for up-to-the-minute compatibility claims. 

As you know by now, we strongly advocate using the RPG/400 
features offered S/36 users by ASNA's 400RPG or BPS's RPG IIl/z. If you're 



336 Desktop Guide to the S/36 

willing to apply a little elbow grease, the functions and features they offer are 
well worthwhile. If you expect something for nothing, you're in for a migra­
tion migraine. 



I 

Section VII 

Into the Future 

D 
"/ canna do anything with the engines, Captain." 
"Well do something Scotty- we can't stay berejoreverl" 

-Star Trek 

t's true, as much as 8/,36 managers would like to think otherwise: We 
can't stay on the 8/36 forever. Eventually continued operation and main­
tenance will just become too expensive to justify. But should you be 
making your migration decision today? Do the available 8/36 replace­
ments really have enough to offer you to pay the Pied Piper of migration 

or conversion? 
While we can't foresee the future, we can give you advice about the 

present. This section gives you unbiased information about the two main 
migration options viable for most 8/36 sites: AS/400 and RS/6000. Both arenas 
change monthly, though, so its virtually certain that some of the facts present­
ed here will be out of date by the time you read them. You should read these 
two chapters with an eye toward understanding the fundamental differences 
between these wildly different operating systems. Chapter 20 is a kind of trav­
elogue for 8/36 users contemplating a move to the AS/400. You'llieam nitty­
gritty details about life on the '400 in the 8/36 environment and get an 
overview of AS/400 features. In Chapter 21 you'll see how Unix changes itself, 
chameleon-like, to appear more like a 8/36 than even the AS/400. You'll also 
get a good assessment of major offerings for Unix migration to the RS/6000. 

Nothing in this section will make the migration decision for you. But 
combining the facts you collect here with a watchful eye on new develop­
ments will at least help make your decision an informed one. 



----------



Chapter 20 The ASl400 339 

Chapter 20 

The AS/400 
For S/36 users, the AS/400 was once thought to be everything they had ever 
wished for. The allure of lickety-split performance, easy migration, and a 
familiar S/36 environment made the AS/400 seem too good to be true. Alas, as 
pioneering S/36 users who migrated to the AS/4OO learned, early promises 
about the new system often were too good to be true. Many of the first 
machines were woefully under-configured and the AS/4OO's S/36 environment 
simply wasn't as fast or as compatible as it needed to be. 

With the advent of the AS/4OO models D and E, however, and with 
more appropriate sizing, the system's capabilities as a S/36 alternative are 
much improved; and price and performance will only continue to improve. 
We are still proponents of the S/36 and feel that if you have no compelling 
reason to migrate to the AS/4OO, don't; but some of you have - or will have 
- such reasons. In addition to its increased capacities (more memory, more 
disk, and more users), other valid reasons to migrate to the AS/400 include: 

• Vastly broader and improved cooperative processing options. IBM, as 
well as the third-party market, have made PC connectivity to the 
AS/400 much better than it is on the S/36. 

• Broader assortment of computer languages, much-improved (over the 
S/36) application development environment, and database and query 
support. 

• Many more communications options, including non-IBM protocols 
such as TCP/IP and OSI. 

However, if you want your AS/400 to be more than a pricey S/36, 
you'll do well to fmd out how the AS/400 carries off its feat of impersonation 
and what advanced AS/400 features you should consider learning first. And 
because one important feature of the AS/4OO is its ability to coexist with exist­
ing S/36 software development, you'll want to understand how this coexis­
tence works. 

Three Audiences 
IBM designed the AS/400 to serve the needs of three kinds of S/36 users. First 
are users who want to move to the AS/400 permanently. IBM's comprehensive 
migration tools simplify this move, and the S/36 environment on the AS/4OO 
lets you run your S/36 applications as they are today so you can take your time 
learning about native AS/400 capabilities. As an alternative to migrating your 



340 Desktop Guide to the S/36 

S/36 applications to the AS/400's S/36 environment, you can conve:rt your 
applications to native AS/400 code using IBM's programming tools or third­
party migration packages. 

Second are users who must continue to live with an installed base of 
S/36s after the AS/400 arrives. IBM proVides programming tools that let you shift 
software development to the AS/400 and distribution tools that let yOUI easily 
maintain software at remote S/36 sites. AS/400 debugging and development 
tools will boost programmer productivity while still maintaining source code that 
compiles and runs on a S/36. 

Third are users, such as software houses, who want to add the AS/400 
as a hardware platform for application packages developed and sold primarily 
for the S/36. These users can continue to develop software on the SI:~6 and 
can use batch migration to maintain the current release of their products on 
the AS/400. Because IBM has retained the S/36, in the form of the AS/400 
Model YlO, as its entry-level machine, many horizontal business applications 
such as accounting and payroll fall into this category. 

All three user audiences depend on a common function within 
AS/400: the s/36 Environment (S/36E). A look at what the S/36E is and how it 
does its job can help you decide which user audience you want to join. 

S/36E Layer 
The S/36E is a superset of AS/400 capabilities. Not only does the S/36E sup­
port most S/36 facilities, but all OS/400 commands and objects are accessible 
at any time. Instead of emulating the S/36 at the cost of excluding AS/400 fea­
tures, IBM built the S/36E as a layer on top of OS/400. An important benefit of 
this approach is that programs within the S/36E run nearly as quickly as jobs 
running in the native environment. The extra processing done by the primary 
component of the S/36E layer - the S/36 OCL Reader/Interpreter - h~ls only 
a modest affect on performance. 

The S/36 OCL Reader/Interpreter (RI) accepts operator commands, 
executes OCL statements and procedures, performs error and message han­
dling, and invokes other components of the S/36E. Any OS/400 commands 
encountered by the RI are passed to OS/400 for processing. Thus, a S/36 pro­
grammer can intermix S/36 and OS/400 commands and program invocations 
within a S/36 procedure. (CL commands that don't call IBM or user-written 
programs, such as the structured commands IF or ELSE, aren't allowed in S/36 
procedures because these commands can run only when they are compiled 
by the CL compiler.) 

The RI carries out S/36 commands in one of three ways. TIlle frrst 
approach uses specialized S/36E programs to perform tasks similar to S/36 
commands and procedures - for example, the S/36 STATUS SESSION (D) 
command displays screens nearly identical to those displayed on the S/36. The 



Chapter 20 The AS/400 341 

second approach simply maps S/36 commands and parameters to correspond­
ing OS/4OO commands that perform the same function. For example, the S/36 
STATUS PRT (D P) command maps to the OS/4oo Work with Spooled Files 
(WRKSPLF) command, which displays screens similar enough to S/36 screens 
that an operator can qUickly adapt to the differences. The third approach deals 
with S/36 procedures and commands that the RI doesn't support directly, by 
redirecting the user to an appropriate OS/400 command. For example, the 
CHANGE PRT (G P) command displays instructions for moving one printout 
after another and then automatically invokes the OS/4OO WRKSPLF command. 

For the few S/36 functions that are meaningless on the AS/4oo, the RI 
performs syntax checking on the command or OCL statements (to ensure 
compatibility with the S/36) but takes no action. For example, the AS/400 
architecture doesn't require contiguous disk space for ftles and libraries, so 
$FREE utility control statements are simply checked for syntax and ignored. 

In the S/36E, the RI displays messages in the same format the S/36 
uses, with options 0 through 3 and H for reprompting. Most messages have the 
same message identification codes (MICs) and auto-response values as their 
S/36 counterparts. You still can set auto-response values for your own applica­
tion-driven messages, but not for system messages - a minor restriction easily 
offset by the additional flexibility OS/4oo provides in message handling. For 
example, the RI improves on S/36 message handling by putting the entire con­
tents of the S/36 message manual at your fmgertips whenever an operator mes­
sage is issued. Impromptu messages sent via the S/36 MSG command and 
/ / MSG OCL statement are presented in the same way as on the S/36: A mes­
sage light cues the user that messages are waiting to be displayed. However, 
you can optionally take advantage of OS/4oo's break message delivery, which 
interrupts the current application to display messages as soon as they are sent. 
Similarly, you can use the AS/4oo's decentralized system console facility to view 
and respond to console messages from any workstation with proper authoriza­
tion - defmitely an improvement over the S/36 system console bottleneck. 

Smoke and Mirrors 
OS/4oo objects support familiar s/36 objects such as #UBRARY and menus. To 
appreciate where S/36 ftles and libraries fit into the AS/400 scheme, you must 
first understand a few important differences between OS/400 and SSP. The first 
difference is that libraries contain all objects (e.g., ftles, programs, folders, docu­
ments) on the AS/400. Contrast this with the S/36, where libraries contain only 
library members, folders contain documents, and ftles and folders are separate 
entities from libraries. The difference is important because it is the key to 
OS/400's object access scheme. The second difference is that database ftles can 
have multiple members, just as S/36 libraries have multiple members. AS/400 
ftle members, however, look just like regular data ftles with fixed-length records. 



342 Desktop Guide to the S/36 

FIgure 20.1 
How 8/36 Objects Relate to Their A8/400 Equivalents 

System136 AS/400 
Object Insidea... Object Inside a... .­
library #lIBRARY - libraries #lIBRARY and OSSP -
Data file - Physical file library OS36F 

Alternate index - logical file library OS36F 

Ubrary - Ubrary -
load member... 

Compiled program library Program library 
Screen format library Display file library 
Message member library Message file library 

Subroutine member library Program library 
Source member library Source file member source file OS36SRC 
Procedure member library Source file member source file OS36PRC 

Virtual disk - Shared folder library 
Folder - Folder IibraryODOC 

Documents folder Documents library ODOC 
Data dictionary folder Data dictionary and aset of files library 

With those two differences in mind, look at the table of equivalent 
S/36 and OS/400 objects in Figure 20.1. Notice that source and procedure 
members are stored as members of the mes QS36SRC and QS36PRC, respec­
tively. Source me members are not stored in compressed form, as they are on 
the S/36. Instead, they are stored as fixed-length records in database file mem­
bers. While this takes up more storage than the S/36 approach, you can read 
and write AS/400 source me members directly in any high-level language (HLL) 
program - a tremendous advantage over the S/36 $MAINT utility support. 
Also notice that all S/36 data mes and alternate indices are kept in library 
QS36F. This approach ensures that all S/36 programs have global access to all 
S/36 mes - an important feature for maintaining S/36 compatibility. 

Figure 20.2 shows the organization of the OS/400 objects that make up 
the S/36 execution environment. The contents of the S/36's #LIBRARY -- IBM 
and user programs - are split between two OS/400 libraries. The OS/400 
#LIBRARY contains only user programs and procedures from the S/36 
#LlBRARY, while a new library, QSSP, contains the IBM-supplied programs that 
control the S/36E. Many S/36 users proVide global access to certain applications 
by depending on the S/36 to search #LIBRARY after searching the current user 
library. Unfortunately, installing SSP updates often destroys or interferes with 



Chapter 20 The ASi400 343 

FJgure20.2 
Internal Organization of the S/36 Environment 

library user library#LlBRARY library I 
QSSP 

user library(contains user I 
members from (IBM objects that support 

SI36 #LlBRARY) the S136 environment) user library 
r-IQS36SRC FILE I 

• S36System 
library ­

library Definition IQS36PRC FILE IQDOCObjectQS36F 

(contains user(contains physical folders andand logical files) documents) 

user members in #UBRARY unless the user takes care to remove these mem­
bers fIrst. By separating IBM-supplied objects from user objects, the AS/400 
lets you have your cake and eat it too: #UBRARY is still searched after the cur­
rent user library, but IBM can update QSSP by replacing it without affecting 
user members. 

Building and Controlling the S/36E 
The AS/400 automatically creates the necessary objects to support the S/36E 
when you start the S/36 subsystem for the first time. One important object that 
describes the users and configuration of the S/36E is the S/36E definition 
object, which has an object type of ·S36. OS/400 initially creates the ·S36 
object with default values that satisfy the needs of most S/36 users. However, 
you can modify the default values at any time to change the behavior of your 
S/36E. And when you start the S/36 subsystem, you can optionally use one of 
a number of ·S36 environment defmition objects you've created to support 
several different S/36Es. 

When the AS/400 automatically creates the S/36E defmition object, it 
adds the set of hardware devices currently configured for the AS/400 native 
system to the device configuration for the S/36E. When new devices are added 
to the AS/400 configuration (by simply attaching the devices and turning them 
on), the ·s36 object is updated automatically, letting you begin using new ter­
minals and printers immediately, without a manual reconfigure and IPL. 

The ·S36 object contains a copy of the AS/400 hardware configura­
tion for two reasons. One is to support S/36 individual session parameters 



344 Desktop Guide to the SI36 

(e.g., default menu and local printer 10) that don't exist in AS/400 user profiles 
- these S/36 parameters are stored by workstation 10, not by user m. The 
other reason is to automatically translate lO-character AS/400 device names 
into tWo-character s/36 device lOs. 5/36 applications that use the OCl. substi­
tution parameter ?WS? or ·the RPG F-spec extension keyword KWSIO expect a 
two-character 10, not a lO-character name. For example, an application might 
create a unique temporary file using the construction ?WSrrEMPFL, which 
results in an eight-character me name if?WS? is only two characters jiong. A 
lO-character value for ?WS? would yield a 16-character name, and the ~Ipplica­
tion would fail when it tried to use the large name in an OCL statement. 

The Programming Environment 
As a programmer, you'U find quite a few changes between S/36 and AS/400 
program development environments. Most of these changes are improve­
l1lents. For example, SEU on the AS/400 is a program editor nearly identical to 
DSU on the S/36. SEU, hOWeVer, adds interactive prompting and diagnosis for 
CL commands. It also lets you split the screen to edit two source members 
Simultaneously or to edit a source member while viewing a compile listing 
directly from the spool fde (without fl1"St performing a COPYPR'O. These two 
features address two common bottlenecks in on-line coding: the need to look 
up command language formats in manuals and the need to handle paper list­
ings during program development. 

The AS/400 equivalent of the S/36 Programmer and Operator Produc· 
tivity Aid (POP) is the Program Development Manager (PDM). PDM presents 
on the screen a list of objects from a library. Next to each object is a command 
fteld that you use to perform AS/400 operations on the object. PDM also folds 
the object text feature from the S/38 into the development environment. 
Object text is a one-line comment attached to every object in the system. 
However, on the S/38, the object text lines are difficult to maintain and incon­
venient to view. PDM eliminates these S/38 troubles by displaying the object 
text with each object name on the screen, which is one of the reasom PDM 
displays are single ..column. While POP purists may be put off initially by 
PDM's lack of multicolumn displays, the many improvements on POP's facili­
ties will quickly win purists ()ver. 

Users can customize PDM just as they can customize POP. PDM's 
two-character mnemonic operation codes, in contrast to POP's single-ch~lracter 
codes, greatly expand the number of mnemonic operations. And PDM lets 
each programmer have a private coUection of customized PDM operations in 
addition to the global set available to all users. 

Free Usability and Performance Improvements 
Applications that run irt the S/36E are free from a number of restrictions 



Chapter 20 The AS/400 345 

imposed by the S/36. For example, the maximum number of open mes increas­
es to 50 for RPG programs, and the limit on arrays has been removed. The 
64 K program size limitation also disappears - AS/400 programs can contain 
up to a megabyte in the instruction stream alone, not counting program vari­
ables. Programs that run in the S/36E also can take advantage of AS/400 data­
base support stich as data integrity checking, logical views over multiple physi­
cal mes, and recovery functions such as journaling and commitment control. 

Compatibility with the S/36 
One of IBM's goals with OS/400 is to provide a platform for developing source 
code that runs on both the AS/400 (in the S/36E) and on the S/36. RPG/400, 
the RPG compiler for all OS/400 environments, supports a S/36 compatibility 
option that lets you specify that a particular program will be run on a S/36. 

RPG/400 issues warning messages when compiling such programs if 
they violate S/36 constraints, such as file or array limits. These programs are 
likely to compile and run successfully on the S/36 if you pay attention to the 
warning messages. However, the S/36 compatibility option is not an iron-clad 
guarantee that your programs will run on the S/36, even if no warning mes­
sages appear. A few S/36 constraints, such as the 64 K program size limit and 
alternate index key limitation, can be checked only by compiling the program 
on a S/36. Nevertheless, the RPG/400 compatibility option, combined with 
extensive syntax checking provided by the RI for S/36-0nly OCL and com­
mands, provides enough coexistence support to make the AS/400 a good soft­
ware development platform for S/36 hardware. 

A few significant RPG/400 operation codes that the S/36 compatibili­
ty option lets pass as S/36 compatible are CALL, PARM, RETRN, and PLlST­
the operations that support external program calls. Because S/36 SSP Release 
6.0 and several non-IBM products provide external program call capability on 
the S/36, IBM apparently thought it prudent not to flag such programs as 
incompatible. 

Sizing Up Your AS/400 
Once you've weighed the pros and cons and decided to move up to an 
AS/400, dozens of questions arise. Which AS/400 model will meet your cur­
rent needs but still allow growth? How much disk and memory is necessary to 
fit your existing applications and data mes? What resources do such OS/400­
unique products as SQV400 and OfficeVision require? 

Welcome to the wonderful world of system sizing. Come up with 
wrong answers to one or more of the above questions and you buy yourself a 
pack of trouble. For example, selecting the wrong one of the AS/400's three 
families might leave your organization with no CPU growth path. Purchasing 
too little memory could result in a system much slower than the S/36 to which 



346 Desktop Guide to the S/36 

your users are accustomed. Purchasing too much disk wastes money that 
might be better spent on additional software or peripherals. Fortunately, others 
have trod this way before you, resulting in a treasure trove of information 
about accurately sizing your new AS/400. Follow a few basic guidelines 
(derived from the experience of hundreds of S/36-to-AS/400 migrations) and 
you'll stay on the narrow path, out of the thickets of disaster. 

Sizing an AS/400 consists of three steps: frrst, evaluating your infor­
mation systems' current and future requirements; second, selecting an Mi/400 
model that meets your current needs but accommodates anticipated growth; 
and third, configuring appropriate amounts of disk and memory to achieve 
performance equal to your S/36's performance. 

To evaluate your current information system requirements, you'll 
need to determine the size of your existing data mes and libraries, the aVf~rage 
number of active users, and the kind of work each user does. You can classify 
user work as transaction- or word processing-oriented. For example, you 
would classify an order entry clerk as transaction-oriented, and a DW/36 user 
as word processing-oriented. Some users may fall into both categories, in 
which case you should count them as two users - especially if these lJsers 
work with two interactive jobs running simultaneously, or run batch jobs in 
the background while doing interactive work. 

Evaluating future information system requirements requires that you 
look at the historical growth of your data mes and number of users and deter­
mine if that trend will continue, increase, or slow down. With your current 
and future system requirements in hand, you're ready to select an AS/400 
model to accommodate those requirements. 

Model Selection 
You can make an initial model selection based on the model of your current 
S/36, and then modify that selection to match other considerations. Figure 20.3 
shows corresponding s/36 and AS/400 models based on IBM recommendations 
and reports from customers. These represent starting points for your selection, 
based on whether you need a growth configuration to accommodate future 
expansion or a static configuration for unchanging "turnkey" operations. 

For growth configurations, you must also factor into your model deci­
sion the growth capabilities of the three AS/400 hardware families. IBM offers 
field upgrades within a family, but to cross family boundaries you must pur­
chase an entirely new cpu. The low-end (9402) family consists of the EOx 
models - E02, E04, and E06j the mid-size (9404) family covers the range: EIO 
through E25; the high-end family (9406) is the E35 and above. If you fmd your 
initial selection in the upper end of a family (i.e., E06 or E25), you should con­
sider chOOSing a model from the next-higher family. Keep in mind that l:here 
is some overlap between the mid-size and high-end families: An E25 CPU is 



Chapter 20 The ASl400 347 

Figure 20.3 

Equivalent S/36 and AS/400 Models 


AS/400 Model 

SI36 Model Growth Static 

5364 single user 9402 E02 9402 E02 
5364 multiuser 9402 E04 9402 E02 
5363 9404 E10 9402 E04 
ASlEntry (Y10) 9404E20 9404 E10 
5362 9404E20 9404 E10 
5360-C 9404 E25 9404 E20 
5360-D 9406 E45 9404 E25 

Figure 20.4 

AS/400 Memory Requirements Worksheet 


AS/400 Model Base Memory 
E02 - E20 8MB 
E25 - E45 16MB 
E50 32MB 
E60 - E90 64MB 

Additional Memory 

Models 940219404 

Native Users x .3 MB or S/36E Users x.5 MB 


+Office Users x.8 MB = Total Additional Memory 

or 


Model 9406 

Native Users x.4 MB or S/36EE Users x.7 MB 


+Office Users x1.0 MB =Total Additional Memory 

Total Memory = + =____ MB 
Base Memory Total 

Additional 
Memory 

30 percent faster than an E35. You should probably choose an E45 if future 
growth will push you out of the mid-size family. 

Configuring Memory 
While each AS/400 ships with a certain amount of memory - called "base" 
memory - already installed, chances are that you'll need to add more. Figure 



348 Desktop Guide to the S/36 

Figure 20.5 
AS/400 Model Capacity Chart (MB) 

Base Configuration Maximum Configuratiorl 
CPUrnodel Memory Disk Memory Dlsle 

E02 S SOO 16 2,000 
E04 S SOO 16 4,000 
E06 S SOO 20 4,000 
E10 S SOO 32 11,900 
E20 S SOO 40 11,900 
E25 16 SOO 64 15,SOO 
E35 S 1,2S0 72 2S,700 
E45 16 1,2S0 SO 2S,700 
E50 32 1,2S0 12S 49,200 
E60 64 1,2S0 192 76,700 
E70 64 1,2S0 256 76,700 
ESO 64 1,2S0 384 124,700 
E90 64 1,280 512 124,700 

20.4 depicts a worksheet for estimating AS/400 memory requirements. Use the 
table at the top of the worksheet to fmd the base memory for the model you 
are considering. 

Use the second part of the worksheet to detennme the per-user memo­
ry value for the 940219404 family or the 9406 family. Add base memory installed 
and total additional memory to fmd your estimated total memory requirements. 

The worksheet's "native users" category is useful only if you plan to 
convert your applications to native mode (using application redesign) rather 
than run in the S/36E. If you migrate rather than convert, your users pIObably 
fall into the "S/36E" category. Existing DW/36 users, or Office/400 users if you're 
planning to use office automation for the first time, count as "Office" users. 

Note that the high-end family has larger per-user memory requirements 
than the low-end families, indicated by increased per-user values on the chart. 
Be sure to use values from the column corresponding to your model number. 

You should use this worksheet twice: once to compute your irnmedi­
ate memory requirements, and a second time to compute your future memory 
requirements. Then check the AS/400 capacity chart (Figure 20.5) to see if 
your chosen model can accommodate your future memory requirements. If it 
can't, you should step up to a larger model. 

Configuring Disk 
The AS/400 uses disk storage much more liberally than does the S/3,6. The 
operating system and program product software alone occupy from 200 MB to 



Chapter 20 The AS/400 349 

Figure 20.6 
AS/400 Disk Requirements Worksheet 

1. Reserve for OS/400 and IBM program products ___ MB 
2. Data files (1.2 xS/36 usage) ___MB 

3. Source code (3.6 xS/36 usage) ___MB 

4. Object code (7.0 xS/36 usage) ___MB 

5. Folder contents (2.0 x S/36 usage) ___ MB 

6. Mail logs (1.0 x S/36 usage) ___MB 

7. Data dictionaries (1.0 xS/36 usage) ___MB 

Total disk storage required: ___MB 
at 60% utilization: +0.6 
Total disk storage to configure: ___MB 

Figure 20.7 
IBM Program Product Space Requirements 

Product Space (MB) Product Space (MB) 

9402/9404 Base System 186.0 Pascal 4.7 

9406 Base System 204.0 C/400 9.5 

QGPL &QUSRSYS Libraries 15.0 Application Development Tools 15.0 

S/36 Environment 12.0 Performance Tools 8.0 

Help Text and Tutorials 10.6 SQU400 1.0 

S/36 Migration Aid 6.5 Communications 3.6 

RPGl36 &RPGl400 4.1 OfficeVisionl400 17.0 

COBOU36 &COBOU400 6.4 Query/400 2.5 

BASIC 2.5 PC Support 20.0 

PU1 2.1 Online Information 22.0 

FORTRAN 2.0 Online Education 5.0 

500 MB! You must take care as you determine AS/400 disk requirements to 
avoid running out of disk space before you even get started. 

Figure 20.6 is a worksheet for estimating AS/400 disk requirements. 
The first item represents disk overhead for OS/400, utilities, compilers and 



350 Desktop Guide to the SI36 

other IBM software products. Determining the value for this entry is simple: 
Just add up the allowances given in Figure 20.7 for the IBM software you'll be 
installing. First select the base system value of 186 MB or 204 MB, depending 
on the model family, then add in other allowances as required. 

The second worksheet item reserves disk space for your data files ­
which take up 20 percent more space on the AS/400 than they did on the s/36. 
Similarly, source code and object code on the AS/400 require more space, by 
factors of 3.6 and 7.0, respectively (items 3 and 4). OS/400 uses ordinary ftxed­
length data mes for source libraries, rather than compressing text as the S/36 
does. AS/400 object programs are larger to include debugging infonnation, 
although you can cut this overhead in half by removing observability, a process 
which deletes debugging tables from program objects. Finally, DW/36 docu­
ment folders require twice as much room on the AS/400 (item 5), but Office/36 
mail logs and data dictionaries retain their Original size (items 6 and 7). 

Totaling the worksheet yields the amount of disk storage you'll need 
to get up and running on the AS/400. However, using this ftgure as-is would 
leave you with no free disk space. IBM recommends an initial disk utilization 
of 60 percent, to allow room for OS/400 working areas and short-term growth. 
Dividing your disk total by .6 meets that goal. As with memory calculations, 
you should run through the worksheet a second time to determine future disk 
requirements. Then check the capacity chart (Figure 20.5) to verify that your 
chosen model is sufficiently upgradable. 

Making Sure 
The rules of thumb presented in these worksheets will accurately predict 
model, disk, and memory requirements for typical S/36 migrations. But the 
operative word here is "typical." If your S/36 installation has any of the follow­
ing unique requirements, you might need to do further research: 

• Minimum acceptable interactive response times 

• Heavy batch processing along side interactive use 

• High system availability 

To ensure a particular response time, you'll need to perform a 
detailed analysis of user workload, transaction composition, and program 
organization. Heavy batch processing requires special OS/400 conftguration 
parameters and additional memory. High availability (i.e., minimizing down­
time) may require AS/400 reliability features such as joumaling, checksum pro­
tection, disk mirroring, or RAID (Redundant Array of Inexpensive Disks) tech­
nology, which increase disk requirements. 

IBM can help you research these advanced requirements using the 
AS/400 MDLSYS (Model System) tool, a sophisticated performance simulation 



Chapter 20 The AS/400 351 

model available through your local branch office. To use MDLSYS, you specify 
your proposed system configuration, transaction volumes and rates, transac­
tion complexity, and performance objectives. MDLSYS uses these specifica­
tions to run a simulation predicting response time, disk performance, and 
transaction throughput, and even makes upgrade recommendations. Once 
you've installed your AS/400, you can run MDLSYS yourself to project future 
hardware requirements and performance if you purchase OS/400's perfor­
mance measurement tools. 

Using the gUidelines presented here, you can configure an AS/400 
with good performance and sufficient expandability without overspending. All 
that remains is the move itself. 

Allin All 
For S/36 users, these are times that offer an unusual number of choices. Careful­
ly consider the AS/400 as your migration platform of choice, but don't discount 
that Unix! AIX s/36 work-alike environments. Remember, too that the AS/400 is 
approaching the downhill side of its lifecycle curve. 

For many S/36 users, though, the AS/400 may well be an offer you 
can't refuse. Relatively easy migration, improved programmer productivity and a 
more unified development platform, and coexistence with existing S/36 applica­
tions all add up to an attractive migration alternative. 



--------------------------------



Chapter 21 The Unix Alternatives 353 

Chapter 21 

The Unix Alternatives 
By reporting hands-on experience with each of the two Unix-based systems 
(UNIBOL and Open RS/36), this chapter gives you a solid overview of what 
each product's capabilities and limitations are, and why each might be a viable 
migration path from the S/36. 

UNIBOL ON THE RS/6000: AVIRTUAL S/36 
Software Ireland's Unix-based S/36 emulation product, UNIBOL, was first 
released in 1987. It has matured much since then into a comprehensive clone 
of the S/36 environment, and is offered for more than 18 Unix platforms, 
including AT&T, TI Honeywell, HP, Data General, NCR, the Rs/6000, and 
even PCs running SCO Unix. UNIBOL currently has more than 500 U.S. instal­
lations, with more than half of them using UNIBOL on the RS/6000. UNIBOL 
is marketed for the RS/6000 and PC-based SCO Unix platforms by the Atlanta­
based UNIBOL, Inc. 

Functions and Features 
UNIBOL's comprehensive emulation of the s/36 environment includes most ma­
jor functions and facilities you'd expect. Among the major features of UNIBOL: 

Disk Data Management. UNIBOL fully emulates the s/36's DDM facili­
ties. A B-tree facility provides keyed record access, replicating the S/36 indexed 
sequential access method (ISAM) - but eliminating its needs for the overflow 
index area and KEYSORTs. Disk-me data retains its EBCDIC format under UNI­
BOL on the RS/6000, providing full support for packed and binary fields, as 
well as complete compatibility with the S/36 collating sequence for correct sort­
ing. After migration, mes also retain attributes such as share disposition, delete­
capable status, and retain status. 

Workstation Data Management. UNIBOL's S/36 Workstation Data 
Management emulation supports all screen attributes, including reverse image, 
high intensity, and blink. Because of a feature specific to AIX, the RS/6000's 
implementation of Unix, UNIBOL currently provides S/36-style multiple-session 
support only on the RS/6000. When running UNIBOL with other Unix imple­
mentations, multiple sessions are implemented through a third-party window­
ing tool. UNIBOL, Inc., is currently evaluating the best way to offer consistent 
multiple-session support across all Unix platforms. 

OCl and Utility-Control Commands. UNIBOL replicates the S/36 OCL 
command processor, including support for conditional and substitutional 
expressions. UNIBOL also supports most SSP operator-control commands, 



354 Desktop Guide to the SI36 

including CANCEL, CHANGE, MENU, MSG, START, and STATUS. However, 
UNIBOL doesn't support some OCL expressions and statements simply 
because they're unnecessary. For example, UNIBOL provides dynamic: me siz­
ing with UNIBOL, eliminating the need to explicitly size a me using the OCL 
FILE statement RECORDS parameter. To migrate code developed with UNI­
BOL on the RS/6000 to the S/36, UNIBOL ignores the RECORDS parameter 
rather than issuing a message or causing an error. 

Additional Features. Additional S/36-supported features include JOBQ 
and Evoke support, history logging, inquiry mode, console and subconsole 
emulation, a S/36-compatible print spooler, a fully compatible implementation 
of #GSORT, a POP replacement, RPG and COBOL languages with 
SRT/MRTINEP support, source-level debugging, and support for S/36 utilities 
such as DFU, COPYPRT, BLDINDEX, and SDA. See Figures 21.1 and 21.2 for 
more information on UNIBOL's feature and facility support. 

Missing Links 
Although UNIBOL supports a substantial portion of the S/36 feature Sl~t, some 
users may miss a few important features - such as security and communica­
tions. UNIBOL does provide resource and password security, but not as an 
emulated S/36 service. Rather, security is performed directly under Unix, 
requiring you to be familiar with Unix to implement and maintain it. As for 
communications, remote workstation support is a simple matter of using a PC 
that emulates a 3151 ASCII workstation. But for more advanced communica­
tions features (APPC, APPN, SNA, and BSC), UNIBOL leaves you in tile lurch. 
UNIBOL, Inc., plans support for such communications features ill future 
releases, but that support isn't available now. Company officials also say IDDU 
and other office products will be supported in the future. 

UNIBOL emulates the S/36 SSP as an additional operating-system 
layer running on top of Unix. It's easy to use UNIBOL without knowing any 
Unix, but system operators or administrators will need at least a passing famil­
iarity with Unix. In addition to resource security, UNIBOL requires direct Unix 
access for system backup. 

UNIBOL doesn't directly support 5250 devices, which means replac­
ing all your 5250 devices with ASCII devices and learning the ergonomics of 
those devices. For cost and training reasons, some S/36 users would like the 
option of attaching their 5250 devices directly to the RS/6000. Direct attach­
ment, however, is an option available on UNIBOL only through third-party 
ASCII-ta-EBCDIC converters. 

SJ36 Look and Feel 
UNIBOL provides a very capable implementation of the S/36 operaltor envi­
ronment. It closely emulates S/36 menus, operator commands, and utilities. In 



• • 

• • • • 

• • 
• • • • 

• • 
• • • • 

Rgure21.1 
Comparison of UNIBOL and Open RS136 Features 

Feature 
Object code compatibility 

Converts RPG to C 

Converts COBOl to C 

Converts OCL to C 

Runs SI36 native RPG compiler 


Runs SI36 native COBOL compiler 

Runs SI36 native utilities 

Diskette data interchange 

Tape data interchange 

Twinaxial data interchange 


Data files retain EBCDIC characteristics 
OCL interpreter 
RPG III language features 
Full-screen editor 
Source-level debugger 

X-Windows support 

Relational database support 

Access to native Unix facilities 

Unix access to 8136 data files 

ASCII terminal support 


Twinaxial terminal support 

Ethemet connectivity support 

X-Windows terminal suppon 

Multiple sessions per terminal 

Common SI36 assembler routines 


• sl4lPOl1ed • planned ... unsupported 
Noles: 

1. DFU. SEU. SOA. 
2. SAVEUBR. SAVE. and FROMLlBR formats. 
3. hi COBOl. and RPG load members (ASNA-. BPS.. and IBIkompa1I)Ie). 
4. RPG-to-C transIaIor suppor1s ASNA. BPS. and IBM EPC syntax. 
5. Other RPG III feature support Is Identical to BPS RPG 2112. 

OpenRS136 UNIBOL 

...• 

...• ... 	 ... 

.1 	
...• 
...• 
... 13 

... 	 ... 

• 
• 2 • 

.14 

.3.4.5 .17.6 • 

.7 .7 

.8 .16 

• 	 .14.18 

.9 .14 

.10.11.12 .12.15 

6. FSEDIT-compatible. RPG-sensltlve. muIIIIeveI undo/redo. cuVpaste buffeIs. multimember dng. user macros. 
7. Native Unix utiII1ies are accessible from OCL procedures. RPG and COBOL may CAll native Cprograms. 
8. Shared access through !Ired calls to SI36 da1abase server; unshared access through C irrterface routines. 
9. Up to 7 SI36 sessions per1erminal. with 16 logical screens per session. 

10. 	Many SI36 assenilIer routines will nII'as Is.' Assembly language macros supported: $ALOC. SCLOS. SEOJ. $GETD. $PlITD. SPUTP. 
$LOG. $INFO. $OPEN. $RIT. $SIT. $TOO. $WAIT. $WSIO. t1xed-dsk VO. and dired IGSORT access. 

11. 	RPG assembly language routines available lor IIHary dIrec10Iy getJput.1IHary member getlpu!. JOBO and EVOKE. LDMJPSI access. 
and program walt sta1e. 

12. Standard IBM assembler routines SUBROI. SUBR20. SUBR21. SUBR23. and SUBR95. 
13. SeMces pmvided by UNIBOI.. 
14. Supports 15 sessions per 1erminaI on the RSJ6000; requires thlrdilaJIY procU:Is lor ~ session support under other Unix versions. 
15. ReIum CUISOr posIIIon on screen. open and close files. 
16. VIa supplied C1nIeIface. 
17. Supports aI ASNA and BPS eldensions.lncludlng ASNA's CAll PROCEDURE. 
18. AIIhough UNIBOI. doesn' directly provide service. twinaxial support Is avaIabIe 1hrough IhIrd-parIy products. 



356 Desktop Guide to the S/36 

fact, if not for the RS/6000's increased speed over the S/36, UNIBOL could 
easily fool a casual user into thinking it is a S/36. 

Besides the machine's sheer speed, other little clues - such as differ­
ent message numbers and text - conflfffi you aren't really on a S/36. Another 
hint is that some utility prompts don't provide all S/36-supported parameters. 
But then, not all are necessary. BLDFILE, for example, doesn't prompt for the 
size of the file to create because UNIBOL manages that dynamically on the 
RS/6000. For S/36 users - who would certainly be comfortable using UJ~IBOL 
almost immediately - UNIBOL well represents the look and feel of the 5/36. 

Migration Patterns 
For S/36 users migrating to the RS/6000, UNIBOL, Inc., offers an optioruill $800 
Migration Toolkit, a menu-driven migration aid running on a S/36 and attached 
RS/6000. For migration, you generally attach the RS/6000 directly to a S/36 via 
an Andrew Alliance board in the RS/6000, although you can also attach the sys­
tems via an Ethernet or Token-Ring connection. To ease migration headaches, 
the company also offers its customers migration assistance. In addition, UNIBOL, 
Inc., is developing a way to use tape drives as the exchange medium and 
expects to implement a tape-drive migration option soon. 

Migrating a test suite of programs (the same ones used to test Open 
RS/36) was a simple point-and-shoot affair using the Migration Toolkit. Unlike 
Universal Software's Open RS/36, UNIBOL isn't load-member compatible. 
Therefore, load members aren't migrated and must be recompiled on the 
RS/6000 using UNIBOL's compilers. The Migration Toolkit automates tht: com­
piling process and re-creates all necessary load members, including RPG and 
COBOL members, message members, and screen formats. In addition, the 
migration utility scans all source and procedure members looking for unsup­
ported features, which it describes in a migration report. 

Passing Muster 
UNIBOL compiled a test suite of RPG programs very quickly - so quickly it 
was almost unbelievable. A 900-line program compiled in five seconds. That's 
not a typo - five seconds! Although the suite wasn't exhaustive, it did include 
batch processing, using #GSORT in several ways, some complex and condition­
al OCL, interactive RPG programs (some including external program calls and 
other ASNA-specific features, with which UNIBOL is compatible), and a couple 
of RPG file-update programs. UNIBOL compiled all the test programs and ran 
them without a hitch - quickly producing accurate results. Early tests revealed 
problems with an interactive program that directly manipulated the 5250 data 
stream, but subsequent tests revealed that glitch has been cleared up. 

Software Ireland and UNIBOL, Inc., say UNIBOL has undergone rigor­
ous testing over the years, stressing that what UNIBOL supports, it supports 



• • • • • • 

• • • • 

• • 

• • • • • • 
• • 

• • 
• • • • 

Figure 21.2 
Comparison of UNIBOL and Open RS/36 Facilities 

5136 Facility 
RPG language 

COBOL language 

BASIC language 

External program calls 

Externally described files 


OCL, menus 

Evoke, job queue, spooling 

Password, resource security 

Base SSP utilities (e.g., $COPY, $LABEL) 

Optional SSP utilHies (e.g., DFU, GSORT) 


Screen-format generation ($SFGR, SDA) 

Low-level workstation support (screen orders) 

FSEDIT equivalent (full-screen edHor) 

POP equivalent 

Procedure prompting 


Procedure control expressions 

Diskette OCL notation (S1-53, M1.xx, M2.xx) 

Tape OCL notation (TC, Tl, T2) 

Operator control commands 

SSP utilHy control statements 


S/36 message handling 

System-level help 

Application-level help 

IDDU 

Query 


Other offICe products 

Communications (e.g., BSC, SNA, ICF, APPC, APPN) 


• supported • planned • unsupported 

Noles: 

Open RSJ36 UNIBOL 

.1 .1 

.2 .2 

.3 .3.15 

.4 • 

• 
.5.6 

•• 

.7 •.7 •.8 .13.9 .9 


.10 • 

.11 • 

.12 .14 

.16 .16 

1. Compatible with ASNA. BPS. and IBM SSP Release 6.0 EPC.lncluding ASNA CALL-procechn support. 
2. External ~ns lor files. wort<stations. and printers. and associated RPG III opcodes (UPDAT. WRITE. EXFMT). 
3. Standard SI36 password security; Unix resource security. 
4. Includes ciagnostic support lor 'nonfooctionaI" utilities such as $DDST and $FREE. 
5. 	Enhanced $SFGR allows cursor movement In I).spec Instead of row/column order. This function is portable back to SI36 hardware via 

screen format load member. 
6. IBM's SI36 SDA product runs. SDAl4QO.compatilIe screen des9I aid under development. 
7. SUpported by $MAINT and $COPY; support by other utHlties planned. 
8. Except ASSIGN. MODE. POWER. and VARY. 
9. For example. II COPY lor $MAINT and II COPVFILE lor $COPY. 

10. Message descriptions and responses correspond to IBM messages. 
11. User menus and procedures supported by HELP command and $HELP utility. 
12. Application 50 and O-spec help SI4JI)OIIed. 
13. Except ASSIGN. CONSOLE. POWER. PRTY. REPLY. and VARY. 
14. limited Implementation via H-specs. 
15. SecurIty seMce currently provided only at the Unix level. 
16. Both vendors have third-party query products avaHable. 



358 Desktop Guide to the S/36 

with integrity and reliability. Software Ireland uses a validation suite of hun­
dreds of programs, including testing programs and many production··quality 
application modules, that takes fives days to run. UNIBOL programmelrs have 
completely automated the test suite's interactive portions, which are per­
formed at strategic intervals during program testing to ensure new features 
haven't introduced new bugs. Beware, though, that while exhaustive testing 
can prove the existence of bugs, it doesn't prove the absence of bugs. The 
S/36 has had almost 10 years' experience and countless programs run on it to 
prove its reliability. If you migrate to a S/36 work-alike environment that 
claims source-code compatibility, don't assume anything. Migrate defensively 
and test everything carefully and explicitly. 

User Recommended 
UNIBOL is a mature product with many users who generally speak hi.ghly of 
its quality and S/36 compatibility. UNIBOL customers - referred by UNIBOL, 
Inc. - gave the product high marks in interviews about their migration and 
support experiences. One user said he had migrated more than 2,000 interac­
tive programs without problem, and another reported migrating more than 
2,800 sorts and 5,000 programs, trouble free. 

When compared to a dedicated model B23 S/36, a dedicated RS/6000 
proved to be anywhere from four to six times as fast in the test suite results. 
Some UNIBOL users even reported speeds of up to 12 times as fast, but per­
formance figures vary widely, depending on the test (see Figure 21.3). For 
example, the S/36 is notoriously slow at adding records out of key order to a 
shared, indexed me. Test 2 in Figure 21.3 shows UNIBOL's timing advantage 
over the S/36 running one copy of this test on the dedicated systems. As proof 
of the superiority of UNIBOL's B-Tree keyed-access method over the S/36's 
ISAM, consider the following example. When three copies of Test 2 were 
evoked, UNIBOL completed the job in two minutes, 16 seconds, while the 
S/36 plodded along for almost six hours! This test exploits a S/36 handicap 
and shouldn't be used as a general rule of thumb; but again, it shows UNI­
BOL's speed advantage over the S/36. Although some evoked jobs were used 
to test concurrent performance, such simple tests don't really show how UNI­
BOL and the RS/6000 perform in heavily used, multiuser environments. UNI­
BOL users, however, have reported satisfaction with the product's multiple­
user performance. 

Programming with UNIBOL 
The UNIBOL programming environment is a bit of a disappointment. To a 
user, UNIBOL presents itself well as a virtual S/36 and could fool many S/36 
operators if they tried to identify which machine was at their fmgertips. But 
UNIBOL couldn't fool a programmer for long. UNIBOL doesn't provide a 



Chapter 21 The Unix Alternatives 359 

figure 21.3 

UNIBOL Versus 8/36 Performance Benchmarks 


Test 	 UNIBOL 5136 

1 Create 10,OOO-record indexed file (Records added in key order) :31 3:48 
2 Add 10,000 records to an existing, empty indexed file :57 47:07 

(Records added in reverse key sequence) 
3 	Read 30,000 records from an indexed file :37 2:24 
4 	#GSORT 30,ooo-record, 256-byte record length file (Tagalong sort) 1:26 4:17 

• 	 AU tests performed with afile with 2S6-byte record length and a16-byte key. 
o 	 UNIBOL tests performed on adedicated model 320 27.5 mlps RS/6000 with 16 MB of memory 


and two 320 MB IBM drives. 

o 	 SI36 tests performed on adedicated B23 SI36 with 768 Kof memory. 
o 	 Because of the tests' random nature, blocking wasn't used with the 8136 tests. 
o 	 All tests were performed with shared files on both platforms. 

direct POP replacement but rather a Programmer Interface Environment (PIE) 
- a cross between the S/36's POP and the AS/400's PDM Oeaning heavily on 
the PDM Side), with a pinch of Unix thrown in. Figure 21.4 shows a screen of 
PIE's POP FILE function equivalent. Note the Unix me structure reference in 
the upper left corner (jus r /s36/news3x). While it doesn't do everything like 
POP does it, UNIBOL's PIE offers most library and me features that POP does. 

PIE's SEU editor is particularly frustrating. A virtual clone of the old, 
line-oriented SEU that was state of the art on the S/36 (circa 1983), UNIBOL's 
SEU doesn't offer full-screen editing in the S/36 environment. But even worse, 
SEU (tested under UNIBOL's release 4.0) contains a few bugs that can bring it 
crashing down around unsuspecting users. More than once, an intermittent 
error suddenly ended an editing session - a couple of times taking code with 
it. When pressed about editor quality, the UNIBOL, Inc., staff suggested a user 
could toggle over to the Unix side and use VI, an old-fashioned, Unix full­
screen editor, or use FEU, their customized version of VI integrated into PIE. 
For experienced Unix users, that might be valid adVice; but to S/36 users look­
ing for a POP replacement, it's not a reasonable alternative. For a system that 
so faithfully replicates the S/36 environment, UNIBOL desperately needs a reli­
able, full-screen editor in its PIE environment. 

Despite the lack of FSEDIT and occasional keyboard lapses (PIE 
sometimes insists on CMD-3 where the S/36 uses CMD-7), you'U qUickly ­
probably within 30 minutes - be competent with PIE's basic functions. Com­
piler support is integrated into PIE, as it is in POP or PDM, and Simply putting 
a 14 next to the source code name and pressing Enter compiles the program 
- and compiles it in a hurry. Dialing into an RS/6000 running UNIBOL from a 



360 Desktop Guide to the S/36 

Rgure21A 
Screen from UNIBOL's Programmer Interface Environment (PIE) 

Objects "All Type "HEH Total 76 Sort Nalle 
Directory /usr/s36/news3x 

Li brary TEST3X 
Co,u,and 

Cmd Keys 3:Exit 5:Refresh 7:Uplevel l0:log Henu 11 :Show log l2:Select 
l3:Sizes l4:Status l5:Basic l6:Sort Size l7:Sort Name 24:Hore 

Options: 2-Seu 3-Copy 4-Delete 
a-Status l0-FEU/vi l4-Compile 

Opt Object Type Opt Object 
AlDHSG HSG DODATE 

6-Display 6-Print 
l6-Run l7-SDA 
Type Opt Object 
OCl HEX2 

7-Rename 

Type 
RPG 

AlSHSG HlH DODATE RlH HEXTSTl RlH 
ARRl RlH DODATE RPG HEXTSTl RPG 
ARRl RPG DOW RlH HEXTST2 RlH 
CAL1 RlH DOW RPG HEXTST2 RPG 
CAll RPG DOWl OCl HEXTST3 RlH 
CAll FH-OlD SSH DOW2 OCl HEXTST3 RPG 
CAllFH SlH DOW3 OCl HARHTD OCl 
CAll FH SSH GETCST RlH HARHTD RlH 
CAlSHORT RPG GETCST RPG HARHTD RPG 
CUSTB RPG GSORTX Oel HINRPG RlH 
DAILY RPG HEX2 Oel HINRPG RPG 
OElNHX Oel HEX2 RlH HKRP RlH 

37 Hore ... 

PC using a 2400 baud modem, and even with the slowww screen refresh rates 
at 2400, the speed of UNIBOL on the RS/6000 made us almost as productive 
on UNIBOL from a remote terminal as we would have been on a local S/36. 
Not only the compile times, but the speed in general of developing a program 
on UNIBOL is terrific. From viewing spool ftles to executing programs, UNI­
BOL is fast. Despite its lacking modern editing features, PIE's line-oriented 
SEU provides fast loading and saving of source and procedure members. 

Writing and testing programs requires frequent use of the print ~ipool­
er and COPYPRT utilities, and UNIBOL doesn't let you down here. The UNI­
BOL print spooler exhibits an impressive level of S/36 emulation. Its faithful 
implementation works just as you'd expect, with all the features and capabili­
ties of the S/36 print spooler. COPYPRT also makes you feel at home and, 
except for a few keyboard anomalies, works exactly as it should. 

It's also frustrating to program on UNIBOL's virtual S/36 without using 
what have become integral, third-party S/36 development tools. Without them, 
you're quickly reminded you're not on a s/36 anymore. Most of these tools 
probably never will be available under UNIBOL because of licensing, market­
ing, or technical complications. If the Unix S/36 work-alikes capture a wide 
market share, someone will make a killing providing third-party, Unix-based 
RPG and S/36-like development tools for them. 

Perhaps the most frustrating thing about UNIBOL's programming 
environment, though, is not what it offers, but what it doesn't. By delivering 



Chapter 21 The Unix Alternatives 361 

the product with such comprehensive replication of the s/36 environment, the 
programmers who wrote UNIBOL demonstrated they are a sharp bunch. Sure­
ly they could deliver a Borland Integrated Development Environment or a 
Microsoft Programmer's Workbench type of environment for RPG and the 
S/36. Given UNIBOL's fast compile times, full-featured debugger, and accessi­
bility to Unix's low-level environment, developing an impressive programpUng 
environment should be a snap for the Irish programmers. 

More than Token Support 
UNIBOL's RPG compiler doesn't create native RS/6000 executable files, but 
rather compiles a source member to an intermediate tokenized (or com­
pressed) member. At runtime, UNIBOL directly executes this tokenized mem­
ber in conjunction with a large, re-entrant runtime library of support functions. 
Part of the reason the compiler runs so fast, then, is that rather than creating a 
freestanding load member, it actually creates a tokenized member for use with 
the runtime library. Some people might think this partially interpreted 
approach would diminish response times, but performance numbers in Figure 
21.3 prove otherwise. 

Benchmarks aside, the interpreted nature of UNIBOL's RPG compiler 
isn't native in the truest sense. So in response to users who think they need 
native applications, Software Ireland currently has an RPG-to-C translator in 
beta test. The perception that native is better, however, isn't necessarily true. 
Tests show very little performance difference between executing the binary 
member created with C and executing the tokenized member created with 
UNIBOL's RPG compiler. The translator's biggest advantage will be its ability 
to let you embed C in your RPG. 

UNIBOL's RPG compiler supports MRT and NEP programs; CON­
SOLE, KEYBORD, CRT, and SPECIAL files; RPG/400 features such as external 
program calls and externally described files, as well as ASNA 400RPG and BPS 
RPG II~ RPG/400-like extensions; unlimited program size (one test program 
contained a 1,OOO,OOO-character array); and an unlimited number of program 
files. UNIBOL also provides a full-featured debugger that controls program 
execution and lets you set breakpOints to examine variables and indicators. 

Many s/36 users migrating to the AS/400 know the anguish of trying to 
implement S/36 assembler routines on the AS/400. UNIBOL, recognizing the 
problem, supports several popular assembler subroutines available on the S/36. 
Current subroutine support includes the ability to determine cursor position on 
the screen, work with printer files, and read and write in ASCII format (remem­
ber, S/36 files retain their EBCDIC format under UNIBOL). UNIBOL also pro­
vides a subroutine interface - requiring C know-how - with necessary infor­
mation about implementing your own subroutines. So if your applications use 
some S/36 subroutines currently unsupported on UNIBOL, this subroutine 



362 Desktop Guide to the SJ36 

interface can ease your assembler-induced migration distress. In addition, UNI­
BOL supports COBOL with the RS/6000 Microfocus COBOL compiler. 

Up and Coming 
Software Ireland has big plans for UNIBOL. Besides promising continued 
enhancements and additions to UNIBOL's S/36 features and facilities :;upport, 
Software Ireland pledges to add features and functionality to UNIBOL. A 
graphical user interface (GUI) environment, providing a GUI to existing RPG 
applications, already is in the testing stages. These GUI features - provided 
by a PC running Windows 3.0 attached to the RS/6000 via TCP/IP and either 
an Ethernet or Token-Ring connection - don't require any program changes. 
This GUI product promises to offer some of the sophisticated cooperative pro­
cessing power available on several new AS/400 products. Software Ireland 
also promises embedded C and SQL support for its RPG compiler and trans­
parent access to third-party Unix database products such as Oracle, Informix, 
Sybase, and Ingres. 

If those features aren't enough, Software Ireland also promise!; a 1993 
release of UNIBOIJ400, which will support native AS/400 applications on 
Unix platforms. UNIBOL, Inc., pointing to the number of different LNIBOL­
supported platforms, stresses that its product is a multiplatform - not a sin­
gle-platform - solution. Users can run UNIBOL on high-end RS/6000s as well 
as on low-priced PCS. The typical UNIBOL customer may be a maxed-out S/36 
shop; but UNIBOL, Inc., also notes that many of its customers are successful 
software houses with good, vertical S/36 packages. These software vendors, 
witnessing an increasing open-systems awareness in their marketplaces, see 
UNIBOL as another way to win customers. 

Figure 21.5 shows UNIBOL licenSing fees, including RPG/400 support 
(which includes support for ASNA and BPS S/36 preprocessors). If you don't 
need RPG/400 support, UNIBOL is also available without it, as shown in the 
right column of Figure 21.5. UNIBOL charges 15 percent of product licensing 
fees for annual support. 

OPEN RS/36: ALOAD 'N' GO ALTERNATIVE 
Open RS/36 is an interesting S/36 work-alike, with a special spin on s/;S6 emu­
lation: It is S/36 load member compatible. That's right - no compiling neces­
sary. You move your S/36 load members to the RS/6000, and they run! Sound 
too good to be true? It's not. It works. In our tests, it ran previously compiled 
load members from a S/36 without a hitch. You'll get a more detailed look at 
Open RS/36's Load Member Processor (LMP) at the end of this chapter. 

Open RS/36 also offers a complete S/36 environment, including a run­
time system with all the features necessary to emulate the S/36 environment 
and process S/36 load members. The runtime shell achieves such a high 



Chapter 21 The Unix AHernatives 363 

Agure 21.5 

UNIBOL Pricing 


No. UNIBOL with RPGl400 UNIBOL with RPGII 

Users Runtime Developer Runtime Developer 


2- $1,660 $3,300 $1,550 $3,090 
4- 2,160 4,340 1,980 3,980 
6- 2,770 5,570 2,510 5,040 
8 3,390 6,800 3,040 6,100 

12 4,220 8,430 3,740 7,490 
16 5,040 10,110 4,450 8,910 
20 5,660 11,070 4,980 9,730 
24 6,270 11,940 5,500 10,460 
28 6,900 12,770 6,030 11,170 
32 7,500 13,520 6,560 11,810 
40 8,660 15,140 7,550 13,200 
48 9,790 16,640 8,530 14,500 
56 10,940 18,060 9,520 15,710 
64 12,100 18,770 10,510 16,300 
96 17,060 24,750 14,770 21,420 

128 20,620 27,870 17,820 24,080 
129+ 29,170 36,460 25,150 31,440 

• Note: 2-, 4-, and 6-user licenses are available only for 386- and 486-based syserns. The developer package 

includes all compilers and other resources to create programs, screen formats, etc. 


degree of compatibility with the S/36 that you can even use the S/36 Dis­
played Messages Guide to help diagnose Open RS/36 messages! 

The Load Member Processor is a part of Open RS/36's basic shell. For 
program development, you use the native S/36-licensed RPG compiler. Univer­
sal adds a POP clone, including Iris Software's FSEDIT-compatible Blue Iris edi­
tor, and other program-development tools such as a screen-format compiler 
($SFGR) and #GSORT. An additional development system that includes a native 
RPG compiler will be made available later. This native compiler would provide 
the advanced features necessary to exploit the Rs/6000 environment. This 
development system would be a superset of the S/36 programming environ­
ment, with RPG/400-like extensions (e.g., externally described files and 
CALVPARM). Also included would be a source-level debugger that provides 
breakpoints, variable inspectors, and other features you'd expect from a high­
end debugger. Universal has plans to enhance its development environment 
even further with a graphical user interface (GUI) for RPG programs, support 
for Unix XWindows, and an interface to third-party relational databases. Figures 
21.1 and 21.2 summarize the features and facilities available in Open RS/36. 



364 Desktop Guide to the S/36 

Look and Feel 
When you sit at the keyboard of an RS/6000 running Open RS/36, you feel 
you are at the keyboard of a S/36. The level of compatibility is uncanny. 
Among the key things Open RS/36 offers: 

An ocr processor. The OCL processor furnished is completely com­
patible with the S/36, providing most of the commands you are used to and 
supporting conditional and substitution expressions. The processor also sup­
ports standard S/36 session, job, and job-step contexts. 

Most utilities and procedures. Open RS/36 supports $MAINT, $COPY, 
$SFGR, DELETE, RENAME, COPYPRT, Data File Utility (DFU) , and Screen 
Design Aid (SDA), as well as many other S/36 utilities and procedures. Some 
S/36 facilities - KEYSORT, for example - become obsolete under Open 
RS/36 (more on this in a moment). Also implemented are most operator con­
trol commands for managing jobs, print spooling, the job queue, and user 
access. A replacement for CNFlGSSP provides the specific features needed to 
configure the RS/6000 for its role as a S/36 work-alike. 

Disk Data Management. Open RS/36 provides complete support for 
the S/36 DDM environment, including the vroc structure. The work-alike 
uses a B-tree indexing mechanism to emulate the S/36's indexed sequential 
access method (I5AM). The B-tree me system eliminates the need for keysorts; 
thus, the KEYSORT procedure is ignored whenever it is encountered in OCL. 
Note, though, the difference between being ignored and unsupported. The 
people at Universal Software consider two-way compatibility important. They 
envision some users or developers mixing RS/6000s and S/36s in an organiza­
tion. Using the S/36 as the lowest common denominator, you can write code 
on the RS/6000 with the RS/6000 as the intended execution platform; or you 
can download that same code to the 5/36 and, without changes, execute it 
there. Any code included for compliance with the S/36 but not needed by the 
RS/6000 (such as KEYSORT) is ignored when you use the code on the 
RS/6000. And Open RS/36 stores data mes in EBCDIC on the RS/6000 (normal­
ly an ASCII-based machine), so data representation - including packed and 
binary fields - is identical to that on the S/36. Open RS/36 also supports all 
5/36 me types, including alternate indexes. Source and procedure members 
are stored in ASCII, letting you use native Unix text-processing tools (e.g., text 
compare) as development aids. 

#GSORT. Universal's product implements a native, syntactically com­
patible version of #GSORT, achieving functional equivalence with the s/.~6. All 
three S/36 sort types (regular, summary, and ADDROUI) are supported. And 
because Open RS/36 stores all file data in EBCDIC, the data collating 
sequence is identical to that of the S/36. 

Workstation Data Management. Open RS/36 provides support for all 
5250 data stream I/O operations, including user-defmed data streams 'written 



Chapter 21 The Unix A~ernatives 365 

directly to the workstation me. An impressive claim. To prove that it worked, 
we used a load member that perfonned binary-level 5250 workstation I/O. The 
program ran successfully - manipulating the workstation data stream on the 
fly. Workstation data management also fully supports all workstation display 
attributes (e.g., reverse image, high-intensity, blink). In addition, Open RS/36 
sports seven sessions per tenninal, with hot-key between sessions. Later plans 
call for a session-to-session messaging system so that RPG programs running in 
different sessions can talk to each other and can start jobs in other sessions. 

RS/6000s generally require ASCII workstations and printers. But Uni­
versal has a twinaxial adapter available that lets you attach S/36 5250 worksta­
tions and printers to the RS/6000. This accommodation is important not only 
because of the fmancial investment these devices represent, but also because of 
the ergonomic cost of changing user hardware. Did you ever try to fmd the 
Print key on a PC emulating a 5250 tenninal on the s/36? By supporting twinax 
5250 devices, Universal hopes to help you avoid such "learning bumps." 

POP. A superset of POP - called Open POP/36 - does everything 
IBM's POP does and more. Open RS/36's version of POP includes an 
enhanced version of the aforementioned Blue Iris full-screen editor that fol­
lows FSEDIT user interface conventions and adds multiple-level undo and 
redo, user-defined keystroke macros, multimember editing, clipboard copy 
and paste, and many other editing goodies long missing from the s/36. 

Load Member Processor. Last, and best, is the Load Member Processor 
mentioned earlier. For a detailed look at this unique Open RS/36 feature, see 
"Machine Mimicry," page 371. 

See How They Run 
To test Open RS/36, we migrated several S/36 load members. These load 
members included interactive workstation applications, batch report-writing 
jobs (complete with OCL), and three or four #GSORTS. Data fIles and the test 
library were loaded onto Universal's S/36 and then migrated electronically to 
the RS/6000. Migration is achieved via Andrew's RS/6000 Alliance 5250 emula­
tion board and software, which make the RS/6000 look like a cluster of 5250 
tenninals to the S/36. The Alliance board transfers data at about 60 MB per 
hour. At $4,000, though, the Andrew board is a pricey migration method for 
low-end systems. Universal also supports the S/36 tape cartridge as a migra­
tion medium, using SAVE, SAVELIBR, and FROMLIBR formats. 

When transferred, fIles retain all their attributes (e.g., delete-capable, 
extend value). The migration tool first loads libraries and files onto the 
RS/6000 and then automatically builds alternate indexes. The library came 
across in the same condition as it had been in on the S/36; Open POP/36 
showed the same library list IBM's POP had. 

The first test, a simple batch report job, correctly printed a report. The 



366 Desktop Guide to the SI36 

migration-to-running path was pretty easy - no recompilation or compatibili­
ty checking; our load member Simply ran and produced correct results. 'The 
speed with which the batch job was executed, while not blindingly f~lst, was 
certainly acceptable. Although no formal timing benchmarks were performed, 
the RS/6000 seemed to perform in the same class as the 8/36. 

The next test, an interactive program, encountered some minor glitch­
es with conditional screen attributes, but the program ran and produced the 
output as expected. The real problem was with the screen-refresh rate, which 
at 9,600 bps was still too slow. The S/36 really spoils you with its high-speed 
screen refreshes. Universal has since corrected the screen refresh tirnes and 
also noted that users can trade cost for speed by using higher bandwidth ter­
minal connections - up to 38,400 bps. 

Next up was a large ADDROUT sort with a few conditional lines of 
OCL. Original sort test times were disappointing, but Open RS/j6 sort 
throughput is now reported to be approximately twice that of the S/:'6. The 
original sort problem certainly wasn't the end of the world, but it had a sober­
ing effect. We wanted Open RS/36 to work - its promise is so great (and, to 
its credit, even though the sort was slow, it did perform correctly). After the 
sort test, we became a little less naive, a little harder to impress. 

Last, a S/36 load member was tested that used ASNA's external pro­
gram calls. This load member didn't execute properly at fIrst. It was discov­
ered that the load member had been created three or four years ago, using an 
older version of ASNA's RPG/Il1. That old load member didn't have the same 
characteristics as those compiled under newer versions. It wasn't a critical 
error, and in short order the engineers had tweaked the LMP to interpret the 
program. This experience illustrates the level of precision required to success­
fully emulate a S/36. 

Testing, Testing 
The LMP accounts for much of Open RS/36's fidelity with the 8/36. Consider 
the RPG trick of accepting input with the function keys (by using the READ 
opcode without any indicators), or of embedding screen attribute hexadecimal 
characters in a user-defmed workstation output stream. Open RS/36 is so com­
patible with the S/36 - Universal calls it "bug-level compatible" - that things 
such as these work implicitly. Although the overall performance of the test 
programs was a bit disappointing, Universal claimed not to have yet tweaked 
Open RS/36 to maximize performance. 8ince our testing, Universal saY5 it has 
improved response times considerably with just a little tuning. 

While speed remains to be proven, Open RS/36's S/36 compatibility 
seems assured. Universal's engineers displayed the test suite of programs and 
procedures they used to ensure that Open RS/36 is truly compatible with the 
8/36. The thorough testing was an impressive achievement. During their testing, 



Chapter 21 The Unix AJtematives 367 

Universal turned up an interesting number of things that don't quite work the 
way the ffiM manuals say. Not big things, mind you, but when you're reverse­
engineering load member compatibility, a little thing can make the difference. 

Load Member Compatible 
Because Open RS/36 is load member compatible, take a second to consider 
the implications. The s/36 RPG II compiler is a load member, isn't it? There­
fore, you can run it under Open RS/36 on the RS/6000. In fact, you can com­
pile a program on the RS/6000 using the IBM compiler, migrate the created 
load member back to the S/36, and execute the program. Universal Software 
makes no claims about the legality of running your ffiM RPG compiler under 
Open RS/36, just as VCR salespeople make no claims about the legal implica­
tions of using a VCR. You are responsible for ensuring compliance with ffiM's 
licensing terms. However, Universal reports that at least one Open RS/36 cus­
tomer has received written authorization from IBM to transfer the S/36 RPG 
compiler to an RS/6000, with the stipulation that the compiler be removed 
from the S/36 within 90 days. Universal does make the point that you don't 
need any S/36 SSP products to run its system; the whole thing can run using 
Open RS/36 code exclusively. 

There's a bit of a rub here, though. If you migrate your load members 
to the RS/6000 and expect never to change them, everything is fme. When 
you need to modify a program, though, you have two choices: You can com­
pile the source program using Open RS/36's native RPG compiler, or you can 
compile using your true-Blue copy of the S/36 RPG compiler. By compiling 
your code with the Open RS/36 native RPG compiler, you risk losing the S/36 
fidelity that Universal worked so hard to achieve with its Load Member Pro­
cessor. That's because now you're executing native Rs/6000 code. But by 
moving your S/36 RPG compiler to the Rs/6000 and using it to compile your 
code - generating a true s/36 load member - you risk losing some perfor­
mance, and you must live within ffiM's RPG feature set. 

What Doesn't It Do? 
Lest you think Open RS/36 can walk on water, here are some things it does 
not do. It doesn't offer remote workstation support (RWS), at least as we 
know it on the S/36. You can achieve Simple remote workstation attachment 
with ASCII workstations and asynchronous modems, but high-level SNA/lCF 
facilities such as Advanced Program-ta-Program Communications (APPC) and 
Advanced Peer-to-Peer Networking (APPN) aren't supported; you'll have to 
recode applications that use ICF. Query, office products, and IDDU aren't sup­
ported either. (There is, though, talk of providing a DisplayWrite/36-ta-Unix 
WordPerfect document conversion at some time in the future.) Password secu­
rity is implemented in the emulated s/36 environment, but resource security 



368 Desktop Guide to the S/36 

for libraries and mes follows Unix rules. 
Universal makes no apologies for what Open RS/36 doesn't do.· The 

company has a clear vision of the S/36 users it would like as Release 1.0 cus­
tomers, and it intends this fIrst release of Open RS/36 to appeal to those cus­
tomers. Universal is initially targeting S/36 users with an immediate need to 
upgrade resources (perhaps because of reaching S/36 DASD or workstation 
limits). Universal says that when an unsupported feature (communications or 
Query, for example) proves to be a marketing roadblock, support for that fea­
ture will be re-evaluated. 

Scheduled for delivery in the fIrst release of Open RS/36, but not avail­
able during this product evaluation, were implementations of the S/36 print 
spooler, JOBQ, EVOKE, SDA, DFU, and tape and diskette management emula­
tion. Some were nearly ready during testing, but we can't say we saw them and 
no documentation was available. However, since this evaluation, all of the major 
pieces are in place in RS/36 version 1.2 and are being shipped to customers. 

The price for the basic Open RS/36 operating environment starts at 
$2,500 for a fIve-user license for the Model 220 RS/6000. For larger machines, 
Open RS/36 is $4,000 for a 10-user license. Additional users can be added to 
either license for $400 per user. The fInal price for the development environ­
ment has yet to be announced. 

When pressed about comparative performance figures, Universal 
equivocated a bit. But assuming everything that needs "optimizing for speed" 
will receive the appropriate attention, think along the lines of an Rs/6ooo 
model 340H providing six to 15 times the performance of a S/36 B24. These 
fIgures are based primarily on Universal's disk I/O tests, but Universal also 
claims that total user throughput will far exceed that of the S/36. 

AIX: An Intense Experience? 
The RS/6000, being an "open system," represents an important step for the 
IBM midrange. The naysayers (you know who you are) say it's ludicrous to 
assume a S/36 user will be willing to spend the time and effort to leam AIX, 
the RS/6000's version of Unix, to make an environment such as Open RS/36 
work. Universal admits that some knowledge of AIX will be required by sys­
tem operators and programmers, but none by users. And it's Universal'~: posi­
tion that learning the bit of Unix Open RS/36 requires is less difficult by an 
order of magnitude than learning enough OS/400 to use the AS/400's S/36E. 
Universal believes it has made migration from a s/36 to Open RS/36 easier 
than going from the S/36 to an AS/400. 

AIX/Unix also makes the solution interesting because Open RS/:;6 is a 
Unix generic program, not RS/6OOo-dependent. Therefore, Universal could run 
Open RS/36 on, say, a MIPS Unix machine or a 386 PC running Santa Cruz 
Operation Unix. The possibilities are truly amazing, especially when you factor 



Chapter 21 The Unix Atternatives 369 

in the enonnous amount of S/36 code currently in the marketplace. Not only 
does an RS/6000 S/36 work-alike offer S/36 users asylum from the AS/4oo, but 
it also offers any sellers of S/36 code a new place to sell it. Regardless of the 
fact that it works and looks like a S/36, Open RS/36 might just become a com­
puting solution in its own right. 

The Magic Answer? 
It is just too soon to say how well S/36 users will embrace S/36 work-alike 
platforms on the RS/6000 generally, and Open RS/36 in particular. Buying 
what amounts to a complete operating system from a third-party vendor to 
run on your IBM machine requires an enonnous amount of faith in that ven­
dor. For whatever it does or does not offer, IBM is likely to support OS/4OO 
for a long time. Can the same be said for a relatively small newcomer? At what 
price "openness"? 

IBM Rochester has lately been talking a lot about your "total cost of 
ownership," as well as positioning the AS/400 as a "full-range" machine. As 
you review your options, Rochester wants you to count education, migration, 
and support costs, as well as the costs of adding "emerging technology" solu­
tions to your system. If you consider an RS/6000 as a midrange alternative for 
your business, don't discount these peripheral issues. They are very real and 
bear serious consideration. 

The United States Department of Agriculture (USDA) Kansas City 
Management Office recently undertook an extensive study to determine the 
viability of Open RS/36 as a replacement for its aging network of 3,000 s/36s. 
Reports indicate the USDA is impressed with what it's seen. The Department is 
one of IBM's largest S/36 accounts, and its opinion is not taken lightly in 
Rochester. The USDA reportedly looked extensively at moving its S/36 appli­
cations to the AS/4oo and decided it needed to evaluate less-expensive alter­
natives. Regardless of how well the AS/4oo plays in Peoria, it will be interest­
ing to see how the RS/6000 and Open RS/36 play in Kansas City. 



370 Desktop Guide to the SI36 

Product Information 

UN/BOL 
UNIBOL, Inc. 
1800 Sandy Plains Parkway 
Marietta, GA 30066 
(404) 424-5345 
Price: See Rgure 21.5 

OpenRS/36 
Universal Software 
4400 MacArthur Boulevard 
Fifth Floor 
Newport Beach, CA 92660 
(714) 851-8021 
Price: $400 per user - minimum license: 10 users 



Chapter 21 The Unix Alternatives 371 

Machine Mimicry 

In the world of S/36 work-alike platforms, Open RS/36 has one unique feature that simplifies 
achieving close compatibility with the S/36: the Load Member Processor (LMP). In contrast to 
other work-alike approaches, which require recompilation of RPG source code using aforeign 
platform compiler, the LMP actually simulates the execution of the S/36 CPU. S/36 executable 
programs exist as library load members, and a load member is nothing more than astring of 
machine instructions. The LMP interprets the machine instructions contained in the load mem­
ber, carrying out the same low-level adds, compares, and branches that the S/36 Main Storage 
Processor executes. If the simulation of S/36 hardware is accurate, emulated programs behave 
just as they do on the 8/36, right down to the smallest nuance. 

The Payoff 
Directly executing compiled RPG programs brings several benefits. First, ~ eliminates the chore 
of recompilation, reducing migration to the task of moving data and programs from the S/36 to 
the RS/6000. Second, problems arising from differences in data representation disappear 
because there are no such differences. Although the RS/6000 is an ASCII machine, the LMP­
interpreted RPG object programs can work directly on S/36 EBCDIC, packed, and binary data 
without performing conversions. The LMP, then, provides compatibility better even thanlhe 
AS/400's S/36-compatible RPG compiler, which has problems with S/36-style packed and zoned 
data. Third, programs having hidden dependencies on S/36 RPG idiosyncrasies - such as the 
status of indicators at various points in the RPG cycle - don't fail as they would in atranslation 
environment. That's because the internal state of the RPG program - ~ variables, ind"lCators, 
and even instruction opcodes - is b~-for-bit identical wnh the same program running on areal 
S/36. And once you've accomplished the feat of object-code interpretation for RPG programs, 
making nwork for COBOL, FORTRAN, and even assembly language object programs is trivial. 

This ability to execute S/36 object code also eliminates the need to precisely replicate the 
behavior of the S/36 RPG compiler. Other vendors must write from scratch an RPG compiler 
functionally equivalent to IBM's - adaunting task given the quirks and complexnies buried in 
S/36 RPG. Open RS/36 can simply run IBM's own RPG compiler, which, after all, is aset of S/36 
machine-language load members. This same benefit falls to other IBM software products, such 
as the COBOL compiler, Data File Utility (DFU), and Screen Design Aid (SDA), and even to 
third-party products such as ASNA's 400RPG and BPS's RPG lilt 
Under the Covers 

While machine simulation makes for apurer reproduction of the S/36, actually building a 
usable machine-instruction interpreter is an inexact and tedious task. The science of software 
machine simulation is not new - the IBM S/360 sported asoftware emulator for ~ predecessor, 
the IBM 1401. In modern times, software emulators such as SoftPC simulate the IBM PC on 
Macintosh, Next, and R8/6000 computers. These emulators are so good that even the PC-DOS 
operating system doesn't know n's running in emulation: Using such asimulator, you can run 



372 Desktop Guide to the SI36 

Machine Mimicry (con/Ir7L,ed J 

FJgureA 
S/36 Machine language Instruction Set 

Opcode Description Opcode Description 

ALC Add Logical Characters MVI Move Immediate 
ALI Add Logical Immediate SBF Set Bits Off Masked 
A Add to Register SBN Set Bits On Masked 
AZ Add Zoned Decimal SRC Shift Right Character 
BC Branch on Condition ST Store Register 
CLC Compare Logical Character S Subtract from Register 
CLI Compare Logical Immediate SLC Subtract Logical Character 
ED Edit SLI Subtract Logical Immediate 
ITC Insert and Test Character SZ Subtract Zoned Decimal 
JC Jump on Condition SVC Supervisor Call 
LA Load Address TBF Test Bits Off Masked 
LPMR Load Program Mode Register TBN Test Bits On Masked 
L Load Register XFER Transfer 
MVC Move Character ZAZ Zero and Add Zoned 
MVX Move Hexadecimal Character 

Microsoft Windows in awindow on aMacintosh or Next. However, both the 1401 and the PC are 
single-processor machines, running single-user operating systems. The S/36, in contrast, is a 
multiprocessor machine wnh amultiuser, multnasking operating system. Although n's theoretical­
ly possible to build a S/36 emulator so detailed that you could run all of SSP transparently, Uni­
versal chose another path - one that achieves acceptable results with much less effort. 

Instead of emulating the entire S/36 machine - which consists of at least two processors 
(the Main Storage Processor and the Control Storage Processor) and IBM-proprietary microcode 
- the LMP limits nself to simulating just the MSP. The Sl36 MSP understands only 29 basic 
opcodes (FlQure A), all but one of which the LMP can interpret with the same preciSion as true­
Blue hardware. But that single exception - the Supervisor Call opcode - is adoozy. Where the 
other opcodes confine themselves to pushing bits and bytes around in memory, the Supervisor 
Call (SVC) provides several hundred special-purpose functions, including disk and workstation 
VO, exception handling, data communications, and task management. Of these hundreds of 
functions, compiled RPG and COBOL programs use about 30, the RPG and COBOL compilers 
use another dozen, and SSP utilities such as OFU and SOA require an additional half dozen. By 
emulating this subset of about 50 common SVC functions, the LMP is able to execute the vast 
majority of S/36 object programs. 

Many of the remaining SVC functions support SSP services such as print spooling, job 
queue, task management, OCL interpretation, and command processing. The LMP does not 



Chapter 21 The Unix A1ternaUves 373 

provide these functions; they're emulated by other components of Open RS136's Enhanced Com­
patibility Environment (ECE). But then Open RS/36 doesn't require IBM's SSP, or any other IBM 
software, to run S/36 applications - eliminating one sticky licensing issue. The IBM program 
products that the LMP can run are inexpensive, and they're necessary only for continued LMP­
compatible software development. Even if users end up having to repurchase these products 
from IBM (rather than simply transferring the licenses from their old Sl36s), the increased cost is 
negligible. 

However, every silver lining has adark cloud. The down side of Universal's limned SVC 
support is that some IBM program products you might like to move to the RS/6000 won't fly once 
they get there. In particular, IDDU, Query, DisplayWme/36, and the entire sune of S/36 communi­
cations facilHies (e.g., BSC, SNA, and ICF) won't run on the LMP. Universal may getlDDU and 
Query running by modifying the LMP to support afew additional SVC functions, but DW/36, as 
well as ICF and ns ilk, are deeply intertwined with CSP services and complex data structures 
embedded in the SSP itself. DW/36, for example, relies on the CSP to provide word processing 
funcUons for 5250 terminals. Simiiarly,lCF depends on amuHnude of SSP internal tables and 
queues. The complexity of, and scant IBM documentation on, such dependencies means that 
these products may never make their way to the RS/6000 - or to any other platform. 

How Good Is Good Enough? 
Of course, the success of the LMP hinges on how closely nmimics the S/36 MSP. Just as 
machine language emulation leverages compatibilny for awhole range of S/36 software, even a 
tiny flaw in that emulation could cause equally wide-ranging problems. To validate the LMP, Uni­
versal's engineers used regression testing. Rrst, they wrote asune of test programs to exercise 
each S/36 machine instruction in all its variations. Each test program used its subject instruction 
to transform aset of test data in various ways. Then the memory image resuHing from these 
transformations was stored as adump file and moved to the Rs/6000, where the engineers ran 
the test program again. After each test, special debugging components of the LMP compared the 
simulated S/36 memory image wnh the image obtained from the real S/36. Any difference meant 
adeviation from the S/36's operation and required achange to the LMP. After executing hun­
dreds of such tests, Universal claims close to 100 percent compliance with S/36 basic machine 
instructions and the LMP's SVC subset. Universal's engineers say they also found afew minor 
differences in the way various S/36 models interpret some instructions, showing that even IBM 
finds room for interpretation in ns hardware specifICations. 

Universal also reports that after the migration of more than athousand RPG and COBOL 
application programs, only two instances of LMP interpretation failure occurred. Both were cases 
of undocumented machine instruction behavior. 

Such attention to detail is laudable, but S/36 applications consist of more than load mem­
bers alone. Menu, screen format, procedure, and data management behavior also affect appli­



374 Desktop Guide to the S/36 

Machine Mimicry (cof'Mued) 

cations. How closely an entire Open RS/36-based application matches the S/36 depends on the 
fidelity of these emulated facilnies as well as the lMP's. As our preliminary experience shows, 
not everything is perfect in this larger arena. But Universal is using similar regression testing 
techniques to validate Open RS/36's disk and workstation data management, OCl, menu, and 
screen format support. 

How Fast Is Fast Enough? 
Machine simulation takes ns toll on performance. For each emulated S/36 machine instruction, 
the lMP must execute 100 or more RSl6000 machine instructions. The RSl6000 can execute 
100 to 200 of these in the time the S136 executes one instruction, resuning in instruction emula­
tion being performed wnh speed roughly equivalent to native 8136 execution times. 

However, the business-class programs making up the majority of 8136 applications don't 
use the CPU much, instead spending most of their time waning for disk 110. RS/6000 disk data 
management is about 10 times faster than that on the 8136, due both to faster disk hardware and 
to the efficient B-tree indexing mechanism Open RS/36 uses. Overall, according to Universal, 
applications should run several times more quickly than they do on the Sl36. Our preliminary 
benchmarks bear this out in some cases, but not in others. Sorting, for example, was several 
times slower under Open RS/36. Universal, for ns part, contends that the final, fully tweaked ver­
sions of the lMP and ECE will meet ns performance goals. By recompiling the lMP using IBM's 
new optimizing Ccompiler, Universal hopes to improve S/36 instruction execution times by afac­
tor of two or three, while an enhanced ECE data management component should make sorting 
and other batch processing much faster. Clearly, users want all the speed they can get, and 
many will look dimly on a·compatible" machine that doesn't offer throughput significantly better 
than what the S136 provides. If Universal can achieve the performance levels nclaims, users 
should be happy with Open RS136 performance. 



Afterword 

"It is not best to swap horses while crossing the river. " 

-Abraham Lincoln 

A reader having experience with the AS/400 might be tempted to chastise us 
for recommending the S/36 as a going proposition. "Are they living in the 
past?" you might ask. "Don't they know that the AS/400 is light years beyond 
the S/36?" The answer is that we do know about the AS/400's advantages, 
having used the machine extensively since its inception. But we also have 
experience on other platforms: Macintosh, Unix, OS/2 and Windows. Yes, the 
S/36 is old technology: character-based interfaces, batch processing, procedur­
al languages. But so is the AS/400, with its own character-based interface, 
batch orientation, and limited suite of procedural languages. New technology 
- graphic user interfaces, modeless interaction, and object-oriented program­
ming - are where the real improvements in application design and productiv­
ity are to be had. Although some minor additions to the AS/400 bring a taste 
of these technologies, we see little hope that the AS/400 will ever embrace 
them in earnest. 

With its same~old, same-old approach, the AS/400 offers potential 
S/36 migratees only a small return on their investment. That's not to say that 
for a few S/36 users, the AS/400 isn't a good migration box today. For S/36 
users needing better cooperative processing, improved database support, a 
wider range of programming languages, or more communications options, the 
AS/400 could be the box for you today. However, for the large majority of 
S/36 users, we think S/36 migration options with the portent of graphical user 
interfaces, object-oriented programming, vastly increased response times, and 
less dependence on IBM's proprietary architectures are worth waiting for. 
Thus, we say, if you don't have to move, don't. Wait for the good stuff. In the 
meantime, your S/36 is paid for and still running day-ta-day business opera­
tions software such as order processing, billing, and payroll - in. short, most 
of what you need right now. We feel strongly the S/36 is a reasonable place to 
stand your ground until the dust settles. 





Index 377 

Index 


A 
IGSOlIT, presenting, 51 


addrout fIles, 155 

alternative to, 189 

DBLOCK and, 202 

Open RS/36 and, 364 

region size and, 202 


#UBRARY, 341 

user programs, 342 


#SYSTASK, 29, lOS 

maximum size of, 29 

See also Task Work Area ('IWA) 


$COPY program, 190, 218 

region size and, 202 


$MAINf,218 

'36 object type, 343 

'EN1RY, 115, 119, 130 


PUST,116 
'IN 

array, 331 

fields,331 


'UBI., 130 

64K region, 128 

400RPG, 123, 321 


code generated by, 326-327 

code using AND/OR operations, 331 

coding for subprograms, 126 

compiling programs and, 321 

explained, 323 

external file descriptions and, 

325-328 

fIle names and, 124 

implementation of, 324 

library lists and, 131 

opcodes, 345 

preprocessing step, 324 

program invocation time, 129 

running called modules with, 130 

screen formats, 125 

UNIBOL and, 361 

SeealsoRPG 

5250 network, 68 

UNIBOL and, 354 


5360,6Q.61 

communications configuration for, 

7l 

disk capacity for, 87 

disk drives, 64-65 

rmding stage level of, 91 


memory 

address space of, 22 

configuration, 63 

maximum, 81 


model D upgrade, 91-92 

relative performance factor, 62 

upgrading to, 92-94 

variations, 6Q.61 


5362,61 

communications configuration for, 

7l 

disk capacity for, 87 

disk drives, 64-65 

memory 


configuration, 63 

maximum, 81 


relative performance factor, 62 

5363,61 


communications configuration for, 

7l 

disk capacity for, 87 

disk drives, 64, 65 

memory 


configuration, 63 

maximum, 81 


relative performance factor, 62 

5364,61 


communications configuration for, 

71 

disk capacity for, 87 

disk drives, 64-65 

memory 


configuration, 63 

maximum, 81 


as programmer's box, 95 

relative performance factor, 62 


9402 YI0, 61 

communications configuration for, 

7l 

disk capacity for, 87 

disk drives, 64, 65 

memory 


configuration, 63 

maximum, 81 


/COPY 

feature, 109, 110 

statement, 124, 125 


/ / FILE statements, 117, 118 

execution-time fIle names and, 125 


ACCELER8, 51 

Index Doctor and, 168 

lWS problem and, 232 


Activation, 136 

Address Compare Stop feature, 8 

Address space. See Memory address 

space 

Address translation, 24 


registers (ATRs), 24 

ADDROur sort, 189-190 


time required for, 189 

Advanced program-to-program commu­

nications (APPC), 99, 367 

Advanced program-to-program net­

working (APPN), 99, 367 

AIIGBT,79 

AlX,323,353,~369 
Alternate indexes, 33, 51-52, 189 


changing duplicate key values in, 

191 

changing key field in, 224 

disk spindles and, 193 

duplicate keys in, 52 

key update ability, 190 

minimizing use of, 191 

overllow area, 191 

replacing indexed fIles with, 190 

See also Index 


Amalgamated Software of North Ameri­
ca (ASNA), 107, 123 


400RPG, 321, 323 

CKDT opcode, 333 


Andrew Alliance board, 356, 365 

ANSI Intelligent Peripheral Interface 

QPI-3),64 

Appended buffers, 161 

Appointment scheduling application, 

138-142 

Architecture 


DDM,33 

memory, 19-25 

multiprocessor, 11-14 

single-processor, 11, 14 

virtual memory, 25-29 


AS/400,3,59, 77, lOS 

9402,61 

advantages, 88 

audiences built for, 339-440 

compilers, 321-322 


http:5360,6Q.61


378 Desktop Guide to the S/36 

RPG/400, 322 

5/36 RPG ll-compatible, 322 


configuring disk for, 348-350 

debugging tools, 308 

demand paging, 27 

disk requirements, 349 


worksheet, 349 

environments, 321 


native, 321 

S/36E,321 

externally described mes and, 324­
328 

me manipulation function, 280 

growth configuration, 346 

language compatibility, 123-124 

library list facility, 130-131 

MDlSYS,350-351 

memory requirement, 347-348 


worksheet, 347 

models 


9402,346 

9404,346 

9406,346 

capacity chart (MB), 348 

eqUivalent S/36, 347 

selection of, 346-347 


packed data storage and, 198 

PDM, 359 

profiler and, 303 

reasons for migrating to, 339 

reliability features, 350 

S/36 

comparison, 6 

compatibility, 345 


Sizing up, 345-346 

static configuration, 346 

string handling functions, 264 

system management functions, 288 

upgrading to, 95, 322 


ASl400 RPG User Guide, 322 

Assembly language subroutines, 1~ 


in COBOL, 360 

upward compatibility of, 332 

SUBR$C, 266 

SUBR$F, 265-266 

SUBR$X, 267-268 

SUBRAT,268 

SUBRBX, 269 

SUBRCO, 280-281 

SUBRCP,293 

SUBRCS, 269-270 

SUBRcr, 291-292 

SUBRDT,292 

SUBRDU,293 

SUBREx, 294-295 

SUBRFA, 281-286 


SUBRLD, 271-274 

SUBRLN, 295-296 

SUBRLR, 274-276 

SUBRMG,296 

SUBRPC,296-297 

SUBRPS, 297-298 

SUBRRN, 286-287 

SUBRSG, 27(r279 

SUBRSx, 298 

SUBRSY,288 

SUBRlD,309 

SUBRUF,288-289 

SUBRUL, 289-290 

SUBRUP,270 

SUBRUR, 290-291 

SUBRWT, 298 

See also Subroutines 


ATOM,5 
Auto-response values, 341 


B 
Balun (balanced-to-unbalanced) con­
nectors, 68 

BASIC programs, 210 

Binary fields, 219 

Binary storage, 198 

Binary-to-decimal conversion, 219 

Binding 


early, 137 

late, 114, 129, 137 


BLDINDEX procedure, 189 

time required for, 189 


Blocking, 147 

built-in, 149 

cache vs., 239-240 

data records, 147-151 


benchmarks, 165 

considerations, 154-155 

enabling, 151-152 

locality of, 154 


index, 147, 155-156 

considerations, 159-161 

entire,160 

me reorganization and, 190 


strategy, 165 

Blue Iris editor, 363 

BPS Infonnation Services, 107, 123 


RPG 111/2, 321 

Buffers 


allocating sizes for, 162-164 

appended, 161 

exceeding 64K, 161 

index, 147, 155-156 


sizing, 15fr159 

non-appended, 161 

lWA,233 


lWA-resident, 161 

See also Data buffers 


Business Graphics Utility (BGU), 210 

BYPASS-YES, 169, 194-195 


when to use, 194-195 


C 
Cabling 

twinax,66 
unshielded twisted-pair, 6(r68 

Cache 

allocating memory to, 231 

backup operations and, 248 

blocking vs., 239-240 

changing 


configuration, 246 

in response to changing environ­

ment, 246 


counting, 241-243 

disk,237 


locality and, 239 

disk access with/without, 238 

dynamically controlled, 245-246 

explained,237-240 

hit, 237 

locales, 238 

locality, 238-239 

miss, 237, 238 

pages, 238 


locality effect and, 238 

page size, 240 

quick, 243-244 

situations for turning off, 248 

size, 242 

starting out with, 240-241 

use decision, 247-248 

value-added, 247 

write-through, 239 

See also CAOUQ utility; Memory 


CACHE Facility, 77-78 

CACHE procedure, 216, 240 


syntax, 240 

VASP modifications, 247 


CAOUQ utility, 243 

display, 244 

log me, 243, 244 

logfde record format, 245 

resetting counters, 244 

stopping, 244 

suggested use, 215 

syntax for, 243 

See also Cache 


CALL opcode, 114, 123 

speeding up, 119 


CANCEL command, 310 

CATALOG listing, 168 




Index 379 

CHANGE PRT (G P) command, 341 

CHKDUP,54 

CKDT opcode, 333 

CL 


commands, 340 

SEU and, 344 


compiler, 340 

CNFlGSSP,73 


procedure, 216 

for screen fonnats, 79 


screen 17.0, 81 

COBOL 


progrnmming, 299 

RPG assembler subroutine bridge, 

299 

sample program using RBRlDG, 301­
302 

WORKING SfORAGE section, 299 


COBOL fields, 219 

COMPUTATIONAL-2, 219 

COMPUTATIONAL-3,219 


Communications adapters, 10-11, 70-71, 

93 


ELCA, 70, 93 

MLCA, 70, 93 

physical interfaces for, 70-71 

prices for, % 

recommended, % 

SLCA, 70, 93, 95-% 

upgrnding, % 


Communications line usage, 213-215 

COMPRESS procedure, 83, 202 


smart,83,84,85 

Control blocks, 29-30 


SQS requirements for, 31 

vroc,30-31 


Controllers, 8-10 

Control storage, 7-8 

Control Storage Processor (CSP), 5-6, 

7-8 


characteristics of, 6 

control storage, 7-8 

disk I/O scheduling, 212 

fIXed nucleus and, 19 

functions of, 7 

high usage, 217-218 

machines using, 7 

Model D, 92 

task switching and, 13-14 

usage measurement, 210 

See also Main Storage Processor 


(MSP) 

COPYDATA procedure, 102, 169, 190 

COPYPRT, 360 

COPYPRT CRT utility, 209 

Coupling, 135 


CSP/I,6 

D 
Data buffers, 147 


44K limit, 153 

appended, 152 

for called programs, 164 

DBLOCK factors for, 153 

default, 149 

dirty flags on, 154 

function of, 147 

optimum usage of, ISO 

sizing, 152-154 

See also Index buffers, Buffers 


Data Description Specifications (DDS), 

330 

Data mes, 39-43 


index areas, 41-43 

organization/operation of, 39-41 

usage on Sl36, 332 


Data records, 39-40 

blocking, 147-151 


benchmarks, 165 

considerations, 154-155 

enabling, 151-152 

See also DBLOCK; RPG F-spec 


fonnat name, 327 

ISAM and, 41 

length of, 41 

memory and, 152 

NITU (no intention to update), 

180-181 

RRN (relative record number), 280 

sector placement of, 40 

speeding addition of, 194-195 

unlocking, 186 


Data Storage ControUer (DSC), 93 

processor, 6, 8, 9-10 


operation of, 10 

Data-transfer rate, 37 

Date-<lifferentiated mes, 168 

DBLOCK, 102, 177 


in checking blocking performance, 

225 

factors for data buffer sizes, 153 

!BLOCK combination With, 160-161 

memory and, 233 

values after me reorganization, 190 

See also !BLOCK 


DBLOCK keyword, 151 

enabling record blocking With, 152 

See also Blocking 


Deadly embrace, 117, 178 

batch programs and, 180 

coding sequence to avoid, 181 

coding sequence leading to, 179 


diagrnm of, 179 

"lockstep" phenomenon, 223 

SHOWUR utility and, 181, 186 

See also One-way embrace 


Debuggers, 308 

BPS,320 

Cybra,32O 

UNIBOL, 361 


Debugging, 308 

source-level, 309 

testing and, 313 


Debug mode, 308 

DEBUG statement, 308 

Decimal data errors, 332 


code to avoid, 332-333 

Decimal-ta-binary conversion, 219 

Decomposition 


functional, 137-138 

procedural, 137-138 


DEFN operation, 330 

Degap operation, 49, 224 

Delayed index maintenance, 43 

DELET opcode, 328 

Device control assembler subroutines, 

292-298 


SUBRCP, 293 

SUBRDU,293 

SUBREX, 294-295 

SUBRLN, 295-296 

SUBRMG,296 

SUBRPC, 296-297 

SUBRPS, 297-298 

SUBRSX, 298 

SUBRWf,298 


Digital Data Service (DDS), 97 

adapter (DDSA), 98 

statements, 132 


Digital Service Unit (DSU), 98 

Disk accesses, 257 

Disk data management (DDM), 33 


architecture, 33 

built-in blocking, 149 

called keysort, 191 

disk lock arm feature and, 212 

index maintenance, 224 

logical-me operations, 37 

minimizing weaknesses of, 167-187 


Disk drives, 15-16 

9332,64 

bytes per cylinder of, 66 

characteristics of, 65 

configurations of, 65 

data-access time of, 38 

disk space, 83-86 

operating parameters of, 38 

perfonnance of, 61, 64 




380 Desktop Guide to the S136 

pricing, 87 

See also Hard disk; spindle 


Disk VO, 33 

buffering, 202 

CSP scheduling of, 212 

decreasing, 152, 156 


by adding memory, 215 

disks and, 33-39 

disk spindles and, 86 

eliminating, 34 

logical, 150 

performance, 203 

physical, 147, 148, 150 

See also VO 


Disks 

access time of, 64 

capacity of, 87 

extends, 195 

understanding mechanics of, 33-39 

usage of, 211 


high, 215-216 

unbalanced, 216-217 


See also Hard disk 

Display Station Pass Through (DSPT), 

94 

DisplayWrite/36, 9, 232 

DisplayWrite/36-to-Unix WordPerfect 

document conversion, 367 

Distributed Data Management (DDM), 

94,98-102 


functions not supported by, 99 

functions supported by, 99 

guidelines for best performance, 102 

more information on, 101-102 

operation overview, 100 

setting up, 101-102 


Documentation, program, 317 

Double-bit errors, 16 

DSU,344 

o T command, 210 

Dump file, 312 

DUMP operation, 308, 309 

Dumps 


formatted, 309, 312 

listing of, 312 

·snapshot," 309, 311 


DUPKEY processing, 33, 51-52 

Duplicate keys, 168 


changing values in altemate indexes, 

191 

in Index Doctor report, 170 

ripple-<lown add and, 192 


E 
EDl1NRD procedure, 101 

EIA/C\TT (RS-232) interface, 98 


ELCA (Eight-Line Communications 
Adapter),8, 10-11,70,93 


aggregate line speed, 71 

prices for, 96 

as remedy for line sharing, 214 

upgrading to, 96 


Elms Technical Communications, 59 

Error Recovery Analysis Report (ERAP), 

12 

Ethernet connection, 356 

EXTEND keyword, 195 

EXTEND value, 85, 195 


default, 85, 195 

override, 85 


Extemally described field names, 328 

Extemally described fties, 124, 324 


AS/400 data files and, 324-325 

implementation of, 324-328 

with RPG II, 328 

RPG program using, 325 


External program calls (EPC), 28, 79, 

323 


15 disk files limitation and, 107 

64K region limitation and, 107 

benefits, 119-121 

capabilities, 107 

coding, 114-117 

with disk files, 117-118 

disk VO and, 216 

late binding, 114 

memory and, 108-109 

modularization by, 141 

opcodes, 114, 115 

products compared 


4OORPG,123 

IBM,l23 

RPG IJI/2, 123 


program invocation, 111, 258 

program linkage using, 259 


for program-to-program commu­

nication, 107 


recursive, 113 

response time and, 249 

RPG/400 operation codes and, 345 

RPG interfaces for, 107 

vendor offering comparison, 123-133 

virtual memory and, 232 

See also Programs 


Extemal subprogram deactivation, 136 


F 
Field overrides, 328 

Fields 


binary,219 

COBOL, 219 

packed,219 


Field types 

binary, 197 

packed,197 

zoned decimal, 197 


File Access Counters, 222 

by ftie, 223 

by task, 223 

Record waits column, 223 


File extends, 84-85 

File VO, 124 

File manipulation assembler subrou­

tines, 279-287 


SUBRCO, 280-281 

SUBRFA,281-286 

SUBRRN,286-287 


Files 

addrout, 155 

data, 39-43 

date-dilTerentiated, 168 

dump, 312 

extend, 195-196 


changing, value, 197 

default value, 197 

retrieving, value, 196 

sequence of events for, 196 


extemally described, 124, 324 

implementation of, 324-328 

with S/36 RPG II, 330 


full prooedwal, 332 

index, 41 

multiple record-type, 332 

names of, 124 


at compile time, 124 

execution-time, 124 


operation codes for, 328-330 

placeholder, 83, 84 

placement of, 86, 193 


IBM's recommendations for, 217 

on appropriate drive, 193 


randomly accessed, 154 

reorganizing, 190 

spool,83 

unblocked, reading, 150 

unshared, 193-194 


File sharing 

program, OCL for, 118 

RPG, between programs, 118 


File storage, 39 

File Transfer Subroutines (FrS), 94 

FILEXTND utility, 196 


uses for, 196-197 

Fixed nucleus, 19, 232 

Formatted dump, 309 

FORTRAN programs, 210 

Fragmentation, 22 


causation, 23 




Index 381 

solving, 22-25 

FREELOW,83 

FREEIllGH, 83 

FREE opcode, 114, 116 

Functional decomposition, 137 


example, 138 


G 
Growth configuration, 346 


H 
Hard disk 


anatomy iIIusttation, 34 

cylinder, 34 


iIIusttated, 36 

data access time, 38 

physical units, 35 

planers, 33, 34 

read/write heads, 34 


illustrated, 36 

sectors, 34 


illustrated, 35, 36 

record placement in, 40 


spindle, 34 

tracks, 34 


iIIusttated, 35 

servo, 34 


See also Disk drives 

High disk usage, 215-216 


I 

IBLOCK, 156, 177 


in checking blocking performance, 

225 

DBLOCK combination with, 160-161 

example, 157-159 

factors for index buffer size, 158 

keyword,l56 

memory and, 233 

values, 156 


determining, 158, 159 

See also DBLOCK 


IBM Fax Information Service, 59 

IBM maintenance, 82 


contracts, 103 

recertification, 82 


IDDU specs, 327 

Index 


alternate, 189 

changing duplicate key value in, 

191 

changing key field in, 224 

disk spindles and, 193 

minimizing use of, 191 

overflow area, 191 

replacing indexed flies with, 190 


blocking, 147, 155-156 

considerations, 159-161 

entire, 160 

factor, 152 

file reorganization and, 190 

function of, 155 

for small flies, 156 


buffer, 147, 155-156 

IBLOCK factors for, size, 158 

sizing, 156-159 


degapping, avoiding, 50-51 

delayed, maintenance, 43 

entries, 42, 156 

gaps, 48-51 


defined, 170 

degap operation and, 49 

in Index Doctor report, 170 


keys, 41-42 

added to index area, 46 

duplicate, 51-52, 168 

problem of adding randomly, 160 

updating, 52 


maintenance, 224 

overflow, 46, 167, 170 

storage, 43-55 


keeping open, 171-177 

track, 44, 171 

variable, array processing, 265 

See also Index Doctor 


Index areas, 39 

iIIusttated, 39 

Index Doctor and, 167 

keys added to, 46 

overflow, 41-43, 46-48, 167 


added,47 

containing many entries, 47 

duplicate keys and, 53 

full,50 

with gaps, 48-49 

total ripple-<lown of entries, 51 


primary, 41-43, 167 

Index Doctor, 167 


ACCELERB users and, 168 

actions after report, 170-171 

date-differentiated files and, 168 

frequency of using, 171 

running, 167 

sample report, 169 

using, 186 

See also Index 


INDEXDR procedure, 167, 220, 224 

Indexed Sequential Access Method 

(iSAM), 33, 353, 364 


retrieving data records and, 41 

storage index, 44 


Information hiding, 110, 135 


reasons for, 135 

Instruction set, 3 


commercial, 5 

memory-to-memory, 6 

register-to-register, 7 

scientifIC, 3-4 


Instructions, Supervisor Call (SVC), 7 

Instrumentation code, 304 


overhead, 306-307 

Interfaces, 96 


DDSA, 98 

EWcrrr (RS-232), 98 

module, 124-128 

V.35,98 

X21,98 

X.25,98 


I/O 

counters, 222 


summary, 221 

file, 124 

workstation, 125, 129 

See also Disk I/O 


I/O Channel, 14-15 

cycle steal and, 14-15 


J 
JOB-YES, 102, 175 


K 
KEEPOPEN procedure, 173-174 


defined, 174 

performance, 177 


benchmarks, 178 

Keys. See Index, keys 

KEYSORT, 49, 51, 53-55 


disk space for, 199-201 

forcing, 54 


real, 170 

index blocking and, 159 

in-memory, 199 


identifying, 224-225 

invoking, 53-54 

problems With, 54 

two kinds of, 199 

workflle,55 


Keysorting, 33, 52-55 

in-memory, 54 

work-file, 54 


KFMfS continuation line, 176· 
KIlST opcode, 329 


to assemble fields of multipart key, 

329 


L 
Late binding, 114, 129, 137 

LOA, 107, 109 




382 Desktop Guide to the 5136 

Ubraries 

QS36PRC, 343 

QS36SRC, 342 

QSSP, 343 


Ubrary list, 130 

for exercising modules, 131 

facility, 130-131 


Ubrary manipulation assembler subrou­
tines, 271-279 


SUBRLD,271-274 

SUBRLR, 274-276 

SUBRSG, 276-279 


Load Member Processor (LMP), 362­
363,365,371-374 

Local Area Network (LAN), 71-73 


configurlng,support,73 

processor, 11 

S/36, Communications Program 

Product, 73 

5/36, interfaces, 72 

Token-Ring, 60 


configurations, 74 

connectivity options, 73 


Local Data Area (IDA), 257 

program linkage using, 258 


Locality effect, 237 

disk cache and, 239 

multiple pages and, 238 


"lockstep' phenomenon, 223 

Logme, 243 


record format, 245 

Logical operations, 36-37 

LOKUP operation, 220 


M 
Main memory, See Memory 


variable nucleus, 19-21 

See also Memory 


Main programs, 110 

invocation by, 110 


Main Storage Processor (MSP), 5, 6-7 

characteristics of, 6 

fIXed nucleus and, 19 

high usage, 218-220 

Model D, 92 

privileged mode, 264 

task switching and, 13-14 

usage measurement, 210 

See also Control Storage Processor 

(CSP) 


Map, 28-29 

Mapping, 161 


parameters with data structure, 334 

Memory 


adding additional, 21, 77-79 

procedure for, 216 


allocating, to Cache, 231 

ASl400,347-348 

capacity per model, 81 

contiguous, 22 

data record blocking and, 152 

DBLOCK!IBLOCK and, 233 

eighth megabyte of, 79-81 

EPCs and, 108-109 

fragmentation, 22-25 

IBM's Office products and, 232 

main 


fIXed nucleus, 19 

organization of, 19-21 

overcommitted, 25 

user area, 21 


management, 19-32 

MMETER (memory meter), 215, 234 

model configurations, 63 

non-blocked utilization of, 162 

non-contiguous, 22 

overhead, 306-307 

pages, 22 

pricing, 81-83 

real, 21-22, 77-78 


EPC and, 108-109 

requirements, 231-236 

screen format access and, 79 

system program residents and, 80 

for system programs, 201-202 

third-party, 79 

translated, 21, 22 

upgrading, 63 


cost of, 77 

user, available without CACHE, 78 

variable nucleus area of, 78 

virtual, 7, 25-26 


ACCELERS and, 232 

EPCs and, 108-109, 232 

S/36, 26-27, 79 


See also Cache 
Memory address space 


of 5360 Model D, 22 

64K limit, 24 

main,21-22 

MSP,6,7 

real,22 


generation example, 25 

virtual,26 

See also Memory 


Memory Resident Screen Formats 

(MRSF),216 

Message identification codes (MICs), 

341 

MICR,5 

Microcode, 5 

MIPS, 7 


MLCA (Multi-Line Communications 
Adapter), 8, 10-11,70,93 


aggregate line speed, 71 

prices for, 96 

as remedy for line sharing, 214 

upgrading to, 96 


MMETER (memory meter), 215, 234 

screen, 235 


Model System Tool (MDLSYS), 350-351 

Modular applications, 124 


implementing, 135-144 

hiding, 135 


Modular design, 135 

Modular interface, 124-128 


creating, 138 

Modularization, 141 


decomposing and, 144 

Modules 


communication between, 135 

implementing, procedure for, 

139-142 

interaction of, 135-136 

merging, 128 


MOVEA operation, 220 

MRT-NEP program, 109, 172 


for keeping storage index open, 172 

KPOPEN, 175-176 


MS-DOS, me storage and, 39 

MSG OCL statement, 341 

Multipart keys, 329 


using data structure to describe, 329 

using KUST to assemble fields of, 

329 

using RPG II to describe, 329 


Multiple Requester Tenninals (MRTs), 

257 

UNIBOL and, 361 


Multiprocessor architecture, 11-14 

advantages of, 11-12 

single-processor vs., 11 

task switching in, 13 

timeline for, 14 


N 
Network Resource Directory (NRD), 

101 

Networks 


LAN,l1 

nonswitched, 97 

packet-switched, 97-98 

switched, 97 

Token-Ring, 11 

DDMand,101 


Never-Ending Programs (NEPs), 257 

UNIBOL and, 361 


No-Intention-To-Update (NITU) strategy, 




Index 383 

180-181 

RPG code using, 182-186 


Non-switched network, 97 

multipoint (multidrop), 97 

point-to-point, 97 


Nucleus pages, 234 


o 
Objects, IBM-supplied, 343 

OCL 

program, 257 

program linkage using, 258 

Reader/lnterpreter 00, 340 


One-way embrace, 178 

avoiding, 178-179 

coding sequence leading to, 179 

SHOWUR utility and, 181, 186 

See also Deadly embrace 


Open RSl36, 263, 353 

lPGSOJIT and, 364 

APPC and, 367 

APPN and, 367 

disk data management, 364 

environment, 323 

LMP, 362-363, 365, 371-374 

load member compatible, 367 

OCL processor, 364 

POP and, 365 

pricing, 368 

product information, 370 

RPG compiler, 367 

RWSand,367 

SNA/ICF and, 367 

testing, 365-367 

UNIBOL 


facilities comparison, 357 

features comparison, 355 


utilities and procedures, 364 

workstation data management, 

364-365 

See also UNIBOL; Unix 


Operations 

logical, 36-37 

physical, 37 


Optical storage, 73-75 

conflgurations, 76 

costs, 74-75 


05/400 

break message delivery, 341 

commands, 340 

in message handling, 341 


P 

Packed data conversion, 219 

Packed fields, 219 

Packed storage, 198 


Packet assembler/disassembler (PAD), 

98 


services, 98 

Packet-switched network, 97-98 

Pages, 22, 238 

Paging, 26-28 


assets of, 79 

demand,26 


comparison, 27 

in,26 

out, 26 

segmented, 26 


advantages of, 26-27 

comparison, 27 


1WA buffers and, 233 

VM,109 

Parameter interl'ace, 110 

variables, 115 


Parameter passing, 137 

PARM opcode, 114, 123 

PATCH procedure, 169 

PC/AT,61 


internally integrated, 61 

Perl'ormance tuning, 249 


statement counting profiler for, 307 

Personal Servicesl36, 232 

Physical operations, 37 


read, 37 

scan,37 

time factors, 37 

write, 37 


Placeholder me, 83-84 

PUST opcode, 114, 115 

Procedural decompostion, 137 


example, 138 

Processors, 5 


classes (stages) of, 91-92 

Control Storage (CSP), 5-6,7-8 

Data Storage ControUer (DSC), 6, 8, 

9-10 

RCA, 8, 10-11 

expansion feature, 61 

Local Area Network (LAN), 11 

Main Storage (MSP), 5, 6 

MLCA, 8, 10-11 

Workstation Controller (WSC), 6, 8-9 


Proftled source program listing, sample, 

305-306 

Proftler,303 


explained, 304 

procedures, 304 

statement counting, 307 

See also Statement counting 


Proftling, 303 

PROFPKI' procedure, 304 


running, 306 


PROFRPG procedure, 304 

Program Development Manager (PDM), 

344 


customizing, 344 

Programmer and Operator Productivity 

Aid (POP), 344 


customizing, 344 

Open POP/36, 365 

PIE and, 359 


Programmer Interface Environment 

(PIE),359 


POP PILE function, 359, 360 

SEU editor, 359 


Program proftler. See profiler 

Programs 

activating, 111, 128 

for first time, 129 


active-but-suspended, 111 

bundled sets of, 120 

currently executing, 110-111 

documentation, 317 

entry point, 115 

initial call, 112 

invocation of, 110, 128 

invocation stack, 113-114 

late binding, 114 

main,110 

parameters and, 110 

quality assurance, 317-319 

SSP memory management and, 114 

subprograms, 110 

See also External program calls 

(EPC) 


P~ocolconverters, 70 

Public Switched Telephone Network 

(PSTN),97 


Q 
QS36PRC library, 342 

QS36RC library, 342 

QSSP library, 343 

Query/36, 232 

QueueView utility, 209 


R 
RAlD (Redundant Array of Inexpensive 

Disks),35O 

RBRIDG routine, 264 


COBOL program using, 301-302 

using, m 


Read-Under-Format (RUF) workstation 

VO,257 
Read/write heads, 34 

Records. See Data records 


contention, 178 

locking, 100 




384 Desktop Guide to the S/36 

speeding, addition of, 194-195 

unlocking, 186 


Record Waits, 223 

Recursive calls, 113 

Re-entrant attribute, 213 

Refreshable attribute, 213 

Region size, 202 

Regression testing, 316 

Relative record number (RRN), 155 

Remote workstation controller, 68 


5250 Model 12, 70 

5294,70 

5394,70 


Remote Workstation Support (RWS), 68 

Open RS/36 and, 367 

using communication lines, 69 


REORGX utility, 198 

calling from a procedure syntax, 201 

features, 198-199 

prompt screens, 200 

using, 199 


REORG-YES, 102 

ResJX>nse time, 249-259 


human interface and, 249 

starting, collection, 250 

subsecond, 253 

tuning, 251-253 

example, 253-256 

user complaints, 250 


Response Time Measurement Facility 

(RMF),249 

RETRN opcode, 114, 116, 119, 130 

RGZFILE,l98 

Ripple-down adds, 33, 46-48, 191 


changed duplicate key value and, 

192 


RlABL,264 

coding CALL statements for, 300 

Data Structure (DS) and, 264 

defming, 299 

definition list, 299 


coding for, 300 

field length, 299 

naming, 300 

using, 299-300 

variable parameter length, 264 


Rotational delay, 37 

RPG/400, 123 


AND/OR opcodes, 331 

CAT operation, 264 

CLOSE operation, 280 

me operation codes, 328-332 


DELET,328 

KLISf,329 

UPDAT,328 

WRITE,328 


multipart keys and, 329 

OPEN operation, 280 

SCAN operation, 264 

SUBST operation, 264 

See alro RPG 111/2 


RPG 

autoreJX>rt facility, 109 

OIAIN,38 

coding 


for subprograms, 127 

using Nl11J strategy, 82-86 


compiler, 132 

Open RSl36, 367 

UNlBOL,361 


DEBUG statement, 308 

development tools, 123 

dump fonnatter, 308 

me sharing, 118 

internal names, 118 

operations 


ADD,YJ7 

CALL, 114, 123 

COMP, YJ7 

DELET,328 

DN, YJ7 

DO, YJ7 

execution cost multipliers for, 

308 

FREE, 114, 116 

GOTO,YJ7 

IF, YJ7 

KLISf,329 

LOKUP,220 

MOVEA, 220 

MULT, YJ7 

PARM, 114, 123 

PUSf, 114, 115 

RETRN,114, 116, 119, 130 

SORTA,220 

SQRT, YJ7 

SUB, YJ7 

UPDAT,328 

WRITE,328 


programs, 110 

See alro Programs 


See alro 400RPG; RPGIII/z 

RPGAID,309 

RPGD Interactive Source Debugger, 309 

RPGDUMP utility, 309 


getting program task dump with, 

310-311 

sample output from, 310 


RPG F-spec, 151 

enabling record blocking with, 152 

See alro blocking 


RPG III/z, 123, 321 


coding for subprograms, 126 

compared to 4OORPG, 323 

compiling programs and, 321 

external file descriptions and, 

325-327 

me names and, 124 

implementation of, 324 

preprocessing step, 324 

program invocation time, 129-130 

running called modules with, 130 

screen formats, 125 

UNlBOL and, 361 

SeealroRPG 


RPGIIII. See 400RPG 

RPG Reference, 322 

RPGSYM procedure, 309-310 

RPG-to-C translator, 361 

RS/6000, 77, 88 


device control functions, 292 

me manipulation function, 280 

language compatibility, 124 

migration to, 356 

string handling functions, 264 

subroutines and, 263 

system management functions, 288 

UNlBOL on, 353-362 


RTIMER utility, 215, 249-250 

detail reJX>rt, 251 

summary report, 252 

using, 250 


Run Length Limited (Rll) encoding, 15 

codes for, 16 


Runtime library, 361 


S 

S/36E, 321, 339 


internal organization, 343 

layer, 340-341 

sample, program, 334 


£136 to AS'400 Application Migration, 
322 

Scan operation, 3S-39 

Scientific Instruction Set (SIS), 210 

seo Unix, 353 

Screen formats, 125-126 


accessing, 79 

memory-resident, 79 


Seek 

distance, 37 

time,37 


SETCACHE utility, 245 

SETCOMM procedure, 214 

SETDUMP procedure, 311 

SET procedure, 202 

SEU, 344 


PIE, editor, 359 




Index 385 

SHOWUR 

screen, 186, 187 

utility, 181-186, 220 


Single-bit errors, 16 

Single-processor architecture, 11 


timeline for task-switching, 14 

Single-Requester-Tenninal (SRT), 172 

SLCA (Single-Line Communications 

Adapter), 10, 70, 93, 95-96 

SLOWKS utility, 199, 220 


in-memory keysort and, 224-225 

using,201 


Smart compress, 84 

for Al and A2 spindles, 85 

for Al spindle, 85 

disk spindle after, 84 


SMF log file, 208 

key measurements, 209-210 


Communications line usage, 210, 

213-215 

CSP usage, 210 

Disk seeks > 1/3, 210, 211-212 

Disk usage, 210, 211 

list of, 210 

MSP usage, 210 

Translated calls/loads, 210, 213 

UADA, 210, 212-213 


name, 208 

size, 208-209 

See also System Measurement Facili­

ty (SMF) 


SMFSTART procedure, 208, 240 

SMF Summary Report, 209 


Device Usage Rates page, 222 

VO counters section, 222 

Part 1: Summary Usage, 226 

Part 2: Summary System Event 


Counters, 227-229 

RTlMER utility sample, 252 

swapping rates on, 211 

System Event Counters page, 211, 

212 


for cache evaluation, 242 

Task Status page, 222 


SMPRlNT procedure, 210, 241 

summary report, 241 


Snapshot dumps, 309 

SUBRTD for, 311 

See also Dumps 


SNAP (SMF snapshot delay), 215, 220 

for displaying usage values, 219 

sample, utility display, 219 


Software Ireland, 356-358 

Software testing, 313 

SORTA operation, 220 

Sort file types 


ADDROUT, 189 

TAGALONG,I89-190 


Source member, 309 

Spindle, 83 


additional, 86 

compression, 84 

placement, 191-193 

two-spindle system, 86 

See also Disk drives; Hard disk 


Spool file, 83 

extents, 83 


Star network topology, 68 

twisted pair, 69 


Starting Line Number (SLNO) feature, 

214 

Statement counting, 304 

Staticconfiguratlon,346 

STATUS PRT (0 P) command, 341 

STATUS SESSION (D) command, 340 

STATUS USERS (0 U) command, 162­
163 

STOP SYSTEM, 53 

Storage 


primary,25 

secondary, 25 


Storage index, 33, 43-55 

defined, 43-44 

ISAM,44 

keeping, open, 171-177 


with KEEP OPEN procedure, 

173-174 

with MRT-NEP program, 172 


specifying maximum size of, 176 

table of index values, 171 

track numbers, 171 

See also Index 


String handling assembler subroutines, 

264-270 


SUBR$C, 266 

SUBR$F, 265-266 

SUBR$X, 267-268 

SUBRAT,268 

SUBRBX,269 

SUBRCS, 269-270 

SUBRUP,270 


Structural tests, 315 

Subprograms, 110 


activation of, 111, 128, 1.36 

for first time, 129 


active-but-suspended, 111 

entry point, 115 

explicit deactivation of, 116 

extemal, deactivation, 136 

initial call, 112 

invocation of, 110, 128, 136 

invocation stack, 113-114 


late binding, 114 

parameters and, 110 

variables and, 115 

See also Programs 


SUBR$C,266 

SUBR$F, 265-266 

SUBR$X, 267-268 

SUBRAT,268 

SUBRBX, 269 

SUBRCO, 280-281 

SUBRCP,293 

SUBRCS, 269-270 

SUBRCf,291-292 

SUBRDT,292 

SUBRDU,293 

SUBREX, 294-295 

SUBRFA,281-286 

SUBRLD,271-274 

SUBRLN,295-296 

SUBRLR, 274-276 

SUBRMG,296 

Subroutines, 108 


categories of, 263-264 

COBOL, 299 

device control, 292-298 

file manipulation, 279-287 

library manipulation, 271-279 

string handling, 254-270 

system management, 287-292 


privileged mode requirement, 264 

RBRIDG and, 264 

RLABLs and, 264 

UNIBOL and, 361 

using, 333-335 

See also specific subroutines 

SUBRPC,296-297 

SUBRPS, 297-298 

SUBRRN, 286-287 

SUBRSG, 276-279 

SUBRSx, 298 

SUBRSY,288 

SUBRTD,309 


RPG code using, 312 

for snapshot dumps, 311 


SUBRUF, 288-289 

SUBRUL, 289-290 

SUBRUP,270 

SUBRUR, 290-291 

SUBRWf,298 

Swapping, 211 

Swaps In, 212 

Swaps Out, 212 

Switched network, 97 

Symbol table, 309 


creation prompt screen, 310, 311 

Symbol table source member, 309 




386 Desktop Guide to the S/36 

sample, 311 

System!3, 3-5 

Systeml32, 4, 5 

System!34, 4, 5 


memory and, 19 

Systeml36 


15 disk-file limit, 107 

64K region size, 107 

architectural contributions, 4 

AS/400 vs., 88 


objects, 342 

built-in dump mechanism, 309 

dara file usage on, 331-332 

debugging tools, 308 

environment, 321, 339 

genealogy, ~ 

internal components overview, 12 

LAN Communications Program 

Product, 73 

learning more about, 17 

machine language instruction set, 

372 

models 


feature comparison, 9 

memory configurations, 63 

overview, 6().62 

See also specifIC mcdeJs 

OCL Reader/!nterpreter (0), 340 

tuning, 215 

upgrading, 59, n, 91-94 


costs or, 93-94, 95 

Workfolder Application Fadlity, 75 

See also S/36E 

Systeml38, 108 

demand paging, 27 

externally described flies and, 324 


System Event Counter (SEC), 208 

System management assembler subrou­

tines, 1E7-292 


SUBRCf, 291-292 

SUBRDT,292 

SUBRSY,288 

SUBRUF, 288-289 

SUBRUL, 289-290 

SUBRUR, 290-291 


System Measurement Facility (SMP), 92 

activating, 240 

averages, 207-208 

CACHIQ and, 215 

capturing useful dara, 207-209 

evaluating output, 209 

expired disk lock counter, 212 

File Access Counters, 222 

line speed and, 208 

MMETER and, 215 

printout, 5 


references, 226 

reports 


derail, 209, 251 

memory use and, 233 

summary, 209, 211, 212, 222, 

226-229, 252 


RTIMER and, 215 

SNAP and, 215 

tuning "recipes," 215-225 


file/index blocking not helpful, 

225 

high CSP usage, 217-218 

high disk usage, 215-216 

high MSP usage, 218-220 

response time degradation, 220­
225 

unbalanced disk usage, 216-217 


using, 207-229 

values, 233 

See also SMF log me 


System programs, 234 

System queue space (SQS), 21, 29-32, 

231 


requirements for control blocks, 31 

storage indexes and, 172 


System sizing, 345-346 

System Support Program (SSP), 19-20 


extending TWA with, 108 

FORMAT procedure, 127 

operator control commands, 353-354 


System work areas, 83 

System workspaces, 234·235 


T 
TAGALONG sort, 189 


disk space and, 190 

time required for, 189 


Tape drives 

6157,60 

8809 (reel-ta-reel), 60 


Task 

size limiration, 28 

terminating/initiating, sequence, 258 


Task-switching, 12-13 

"fast !aSk-switch" hardware, 13 

for multiprocessor computer, 13-14 

steps for, 13-14 


Task Work Area (TWA), 29, 108,233 

buffers, 161, 233 


paging and, 233 

expansion, 29 

extent messages, 233 

maximum size or, 108 

overcommitted memory and, n 

pre-allocating, 29 

See also ISYSTASK 


Task Work Spaces (TWS), 234 

Testing 


debugging and, 313 

regression, 316 

software, 313 

structural,315 


ThIrd-party 

EPC products, 108 

maintenance, 82, 102-103 


contracts, 103 

memory, 79 


prices, 81-82 

pitfalJs, 89 

upgrades, 82 

vendors, 82-83 


Token-Ring 

connection, 356 

LAN,60 


configurations, 74 

network,ll 


DDM and, 101 

Token-Ring Network Adapter (TRNA), 

72 

TRACE fadlity, 210 


turning off, 211 

Transient area, 20 

Translated addressing, 22 

Translated Transfer Calls, 213 

Translated Transfer Loads, 212 


comparing to 1T Calls, 213 

Tree Doctor, 168 

Tuning, 215 


rules for, 215 

Twinax 


daisy-chain local workstation 

network,67 

defined, 66-67 

lines,66 


U 
Unbalanced disk usage, 216-217 

UNlBOL, 263, 353 


5250 devices and, 354 

assembler subroutines and, 361 

B-tree facility, 353 

debugger, 361 

disk dara management, 353 

dynamic fde sizing, 354 

environment, 323 

features, 354 

Migration Toolkit, 356 

OCL and utility-control commands, 

353-354 

Open RS/36 


facilities comparison, 357 

feature comparison, 355 




Index 387 

operator control commands and, 
353-354 

pricing, 363 

print spooler, 360 

product information, 370 

programming With, 358-361 

RPG compiler, 361 


supported files, programs, fea­

tures, 361 


5/36 benchmarks vs., 359 

security 


password,354 

resource, 354 


workstation data management, 353 

See also Open RSl36; Unix 


UNIBOL, Inc., 353-354 

Universal Software. See Open RS/36 

Unix,353 


AIX environments, 323, 353 

file storage and, 39 

Open RS/36, 323, 353, 362-369 

sea, 353 

UNIBOL, 323, 353-362 


Unshielded twisted-pair (lITl') cabling, 

66.Q8 


UPDAT opcode, 328 

User Area Disk Access (UADA), 212-213 


cache use and, 240, 241-242 

high values, 233 

overallocating and, 231 

response time and, 249 

Swaps In, 212 

Swaps Out, 212 

TT Loads, 212 


V 

V.35 interface, 98 

Value Added Package Software (VASP), 

3, 198 


CACHE modifications, 247 

RPG JJI/2 and 400RPG and, 323 

WRKSPF utility, 209 


Variable index array processing, 265 

Variable nucleus, 19-21, 232 


components of, 20 

Variables 


global,110 

local, 109-110 

passed to subprogram, 115 


Virtual address space, 26 

Virtual memory (VM), 7, 25-26, 79 


ACCELERS and, 232 

EPC use and, 108-109, 232 

paging, 109 

s/36 peculiarities, 28-29 

task size and, 28 


See also Workspaces 

Vrrtual page table, 20 


W 
Workspaces, 28 


disk me, 28 

Workstation controller slorage, 66 

Workstation Conlroller (WSC) 


code, 8 

processor, 6, 8-9 


Workstation Data Management, 231 

Workstation expansion features, 66 

Workstations, 66-70 


5250,70 

configurations of, 67 

I/O, 125, 129 

local, 66.Q8 

remote, 68-70 

remOle, conlroller, 68 


Write-once-read-many (WORM) optical 

disks, 74, 75 

WRITE opcode, 328 

WRKSPLF command, 341 


X 

X.21 interface, 98 

X.25, interface, 98 

XCACHE program, 245 


Z 
Zoned decimal format, 332-333 

Zoned storage, 198 






Also published by NEWS 3X/400 

Also Published by NEWS 3X1400 

AS/400 POWER TOOLS 
Edited by Dan Riehl, a NEWS 3X1400 technical editor 

This one easy-to-use source unlocks the secrets of time-saving shortcuts, gives you solu­
tions and tips from the experts. Edited for professionals, all the best AS/400 tips and tech­
niques are conveniently organized, indexed, and cross-referenced, with diskette contain­
ing all programming code in your choice of format. Tape or cartridge optional extra. 
713 pages, 24 chapters, 7"x9", $129. 


CONTENTS: HLL Tips • The OPNQRYF Command • String Manipulation • Display Files 

• Data Files • Data Areas • Data Queues • Messages • Graphics • Debugging • Documenta­
tion • System Configuration • Group Jobs • Managing Output Queues • Working with Objects 
• Change Management • Managing Resources • Disaster Recovery • Security • Job Account­
ing. PC Support· OfficeVisionl400· Communications· System Programming. Appendices 

C FOR RPG PROGRAMMERS 
By Jennifer Hamilton, NEWS 3X1400 author 

Expand your RPG knowledge to include the currently demanded C programming skills. 
Because this book is written from the perspective of an RPG programmer, you can easily 
adapt to C without returning to the basics. C for RPG Programmers includes side-by­
side coding examples written in both C and RPG to aid comprehension and understand­
ing, clear identification of unique C constructs, and a comparison of RPG opcodes to 
equivalent C concepts. Also, both the novice and experienced C programmer will bene­
fit from the many tips and examples covering the use of C/400. 
250 pages, 23 chapters, 7"x9", $69 

CONTENTS: Overview • Data Types • Expressions • Statements • Arrays • Structures & 
Unions • Functions, Scope, and Storage Class • Separate Compilation and Linkage • Para­
meter Passing • Pointers • Pointer Arithmetic • Using Pointers • The Preprocessor • Type 
Conversions and Definitions • Stream lIO • Error Handling • Dynamic Storage Allocation 
• Recursion • Programming Style • The Extended Program Model • Interlanguage Calls 
• Cl400 File lIO • System Cl400 

COMMON-SENSE C 
Advice and Warnings for C and C++ Programmers 
by Paul Conte, a NEWS 3X1400 technical editor 

C is not a programming language without risks. Even C experts rely on careful program­
ming, lint filters, and good debuggers to handle problems common to C. This book helps 
prevent such problems by showing how C programmers get themselves into trouble. 
The author draws on more than 15 years of experience to help you avoid C's pitfalls. 
And he suggests how to manage C and c++ application development. 



Desktop Guide to the S/36 

96 pages, 9 chapters, 7"x9", $24.95 
Contents: Preface • Introduction • Common Mistakes and How to Avoid Them. Foolproof 
Statement and Comment Syntax • Hassle-Free Arrays and Strings. Simplified Variable Dec­
larations • Practical Pointers • Macros and Miscellaneous Pitfalls • C++ • Managing C and 
C++ Development· Bibliography· Index· Appendix (C Coding Suggestions) 

IMPLEMENTING AS/400 SECURITY 
By Wayne Madden, a NEWS 3X1400 technical editor 

All of the hard work you put into your MIS operation is endangered if system security is 
substandard or outdated. But everything you need is here to achieve or upgrade security 
of your AS/400 without struggling for hours searching through manuals and wondering if 
you have all the bases covered. Expert Wayne Madden shares his know-how, makes rec­
ommendations, and leads you through all the necessary steps in one easy-to-read volume. 
Security implementation utilities are included on accompanying 3-112" PC diskette. 
286 pages, 13 chapters, 7"x9", $99. 


CONTENTS: Security at the System Level • The Facts About User Profiles • Object Autho­

rization • Database Security • Network Security • Evaluating Your Current Strategy • Estab­

lishing and Controlling System Access • Building Object and Role Authorizations • Security 

Implementation Examples • Is Your Strategy Working? • Status Auditing • Event Auditing 

• Appendices, References, Figures and Tables 

LOCAL AREA NETWORKS: 

A Guide for Midrange Decision Makers 

Edited by Teresa Elms, CDP, president ofElms Information Services Group 

This easy-to-read book contains everything you need to know to make the right deci­
sion on LANS in the fast-changing connectivity market. Includes product evaluations 
with competitive strengths and weaknesses and 5-year forecast. Provides decision sup­
port for installing a LAN and direction on LAN strategy. Numerous charts and tables 
show current data on LAN products and market information. Here's vital information 
not available anywhere else that could save you weeks of research time and thousands 
of dollars. LAN Glossary included while supply lasts. 
169 pages, 10 chapters, 8-1I2"xll", $99. 

CONTENTS: Executive Summary • Local Area Networks: An Introduction • LAN Tech­

nologies • LAN Implementations: ARCNet, Ethernet and Token Ring • Managing LANS in 

a Midrange Environment • LANS Versus Multiuser Minicomputers • Five-Year Forecast: 

Analysis of LAN Trends in the Midrange Industry • The ASI400 Token-Ring LAN • Novell 

Netware • LANtastic from Artisoft • Further Reading 


S/36 POWER TOOLS 
Edited by Chuck Lundgren, a NEWS 3X1400 technical editor 

Five years' worth of articles, tips, and programs published in NEWS 3X/400 from 1986 
to October 1990, including more than 280 programs and procedures. Extensively cross­



Also published by NEWS 3X1400 

referenced for fast and easy problem-solving, and complete with diskette containing all 
the programming code. Winner of an Award of Achievement from the Society of Tech­
nical Communications, 1992. 
747 pages, 20 chapters, 7"x9", $89. 
CONTENTS: Backup and Restore· Communications. Data Conversion, Edits, and Valida­
tion • DFU, SDA, and SEU. Diskettes • DisplayWrite • Documentation • Files • Folders 
• IDDU and Query/36 • Libraries • MAPlCS • Performance • POP • Printers • Program­
ming • Security • System • Tapes. Workstations • Appendix 

THE STARTER KIT FOR THE AS/400: 
18 Fundamental Concepts 
by Wayne Madden, a NEWS 3X1400 technical editor 

Here is an indispensable guide for novice to intermediate programmers and system 
operators. It takes the intimidation factor out of getting started on the AS/400. Written 
in friendly and understandable yet concise language, it's great as an easy-to-use train­
ing tool. Also a perfect way to fill in the knowledge gap if you've learned on the job 
without essential background. Response to this long-needed book has been tremen­
dous - don't be without it if you're training or just getting started with the AS/400. 
Begins with a step-by-step guide to setting up an AS/400. Introduces AS/400 concepts 
including file structure, handling output queues, OS/400 commands, using file over­
rides, and the ins-and-outs of AS/400 work management. 
220 pages, 18 chapters, 7x9", $89. 

CONTENTS: List of Figures. Introduction. Before the Power is On • That Important First 
Session • Access Made Easy • Public Authorities • Print Files and Job Logs • Understanding 
Output Queues • Defining a Subsystem • Where Jobs Come From • Demystifying Routing 
• File Structures • File Ove"ides • Logical Files • File Sharing • OSl400 Commands • CL 
Programming. OPNQRYF Fundamentals. Keeping Up with the Past. OSl400 Data Areas 
• Bibliography • Index 

FOR MORE INFORMATION 

OR TO PLACE AN ORDER, CONTACT: 


NEWS3X1400 
Duke Communications International 


221 E. 29th Street 

Loveland, CO 60539 


(800) 621-1544 

(303) 663-4700 


Fax: (303) 667-2321 





