
Salon.com Technology wysiwyg:/ I 13 7 /http://www.salon.com/tech/fsp/outline/index.html

Searct1 About Salor

salon.com

1 ~· 11

Search

@) All of
Salon.com

Q Only
Technology

l2Ki
Directory

Hot Topics
Hackers
Computer Games
E-Books
Media Borg
Napster
Andrew Leonard
Censorship
Neal Stephenson
Artificial
Intelligence

Articles by date
Al! of Salon.com
By department

Arts &
Entertainment
- The Movie Page
Books
Comics
Life
News
People
Politics
Sex
► Tech & Business

P; O!C(J

Audio

Letters
Columnists
Corrections

Salon Premium
- Downloads
Salon Plus
Salon Gear
Personals

Table Talk
[Free, spirited

>> FREE SOFTWARE

Complete book outline

Warning to readers: This outline is subject to
change at any time. In fact, the outline you are
currently reading is not the original outline
posted at the launch of the Free Software
Project. After the first month, I became
frustrated with the delays inherent in waiting
until I had complete, 10 to 15,000 word-long
chapters before posting them. So I have now
broken down the original chapter divisions into
shorter chunks. I'm hoping that this will
accelerate the process of writing and uploading
each section.

Ideally, this will also increase flexibility. The
story of free software is ongoing, and as events
warrant I would like to incorporate coverage of
them into the main narrative. So if for
example, a Linux company goes bankrupt, it
might then be appropriate to cover that in the
context of a section on the perils of going
public as a free software enterprise. Or, as is
the case with the current (April 20th, 2000)
installment, if circumstances allow me to travel
to Finland I can then write about the
experience, even though Finland wasn't
originally scheduled to be covered until
Chapter 6, as part of the introduction to Linux
and Linus Torvalds.

It is most unlikely that this will be the last
change in plans. The order of the chapters may
be changed, new chapters may be added,
sections may be moved from one chapter to
another. I'm also always interested in
suggestions as to what should be covered that
isn't mentioned here. I consider this outline a
plan of action, but I doubt that it will map
perfectly to the final product.

If you're curious you can still look at the old
outline.
--Andrew Leonard

.Chapter i: BooUim~

!SALON GEAR-+!

T-shirts, mugs and mousepads. : . ; :

Punks and acoustic guitars.

::;alon Pius; Announcements, special
Salon books.

■ Olympus MP3 Player/Voice
Combo.

11/11/01 ')·0,PM

Salon.com Technology

') of 11

[Free, spirited
Salon forums]

War for fun and
profit Can a
military action
boost a sagging
economy?

Snoop dreams
Does
anti-terrorism
mean the end of
civil liberties?

Posts of the week

TheWeU
[Pioneering
members-only
discussions]

Selling to suckers
"Antiques
Roadshow" meets
Judge Judy.

Sound Off
E-mail Salon
Send us a Letter
to the Editor
Today's letters

Downloads
Get Salon.com on
your PDA

wysiwyg:/ / 13 7 /http://www.salon.com/tech/fsp/ outline/index.html

This introductory chapter examines some of
the potential starting points for the story of free
software, ranging as far back as the 11th
century and as recently as the summer of 1999.
The main goal of this chapter is to give readers
a sense of just how broad and far-reaching the
implications of free software are. The global
economy, free speech and censorship,
intellectual property, the rise and fall of
monopoly power, the history of the Net -- these
are just some of the issues that will be explored
in future chapters. This chapter is meant to be
comprehensible to people who aren't experts in
software or computer technology; later
chapters will delve deeper. (This section of the
outline is unchanged from the original
version).

Chapter 2: Free speech and free software

Part I:

What do free speech and free software have in
common? Much has been made by computer
historians of the intersection between the
counterculture of the Bay Area and the early
history of the personal computer. One story
that hasn't been told very often is the role the
computer science department at Berkeley
played in the growth of the Internet, the spread
of Unix and the eventual blossoming of free
software.

Not everyone at UC Berkeley was a Free
Speech Movement veteran or anti-Vietnam
War protester, of course. Prodigal programmer
Bill Joy didn't pay too much attention to
politics in the mid-'70s -- he was too busy
rewriting AT&T Unix from top to bottom, and
redistributing his changes as the Berkeley
Software Distribution, or BSD. BSD became
very popular with academics and Internet
geeks all over the world, and once Joy's team
added networking capabilities to it, BSD
evolved into the lingua franca of the Internet.

I will argue that the contribution Berkeley
made to networking, Unix and the Net can be
seen as just as important as the contribution
Berkeley made to radical politics in the 1970s.
And indeed, for some of the Berkeley
researchers, getting the Net to the people was
the biggest contribution to the idea of free
speech that they could make.

Part II:

11/11/01 2:05 PM

Salon.com Technology

~ nf 11

wysiwyg:// 13 7 /http://www.salon.com/tech/fsp/ outline/index.html

Bill Joy and the other BSD hackers were
working in the context of Unix. Linux, too, is
in the Unix family tree. Is there something
different about Unix that encourages
cooperation? Or is there something different
about Unix that attracts idiosyncratic
independent minded cusses? I'd answer both
questions in affirmative. In a technical sense,
Unix is all about networking, that's why it has
flourished on the Net and has helped the Net
flourish. But there's also a culture to Unix that
sets it and its related languages and programs
apart. Unix is different from Windows in
profound cultural ways, just as the MacOS is
different from Windows, in quite different, but
equally profound ways.

What does it mean to say that Unix has a
culture. Part II of Chapter 1 will be The Free
Software Project's first stab at exploring the
culture inherent in various strains of code. Perl,
for example, attracts a certain type of hacker -­
I'd like to know why and how? How much
credit can we give to Unix's original creators?
And how does Unix differ from the culture of
Linux?

Chapter 3: The saint of free software:
Richard Stallman goes it alone.

More than any other single person, Richard
Stallman is responsible for incubating both the
idea and the reality of free software. He has
been profiled countless times, including once
by myself, so I'd like to approach the chapter
on him from two directions.

Part I: Richard Stallman -- virus or prophet?

Even as the Internet was gaining momentum
and the Berkeley researchers were pumping out
new versions of Unix, back on the East Coast
the "hacker ethic" was under concerted assault.
Although MIT is widely credited as the
birthplace of hacker culture, by the early 1980s
it was beginning to look more like a graveyard.
No one felt the chill more than Richard
Stallman, who watched in dismay as one
colleague after another left the ivory tower to
work in the private sector. No longer was he
allowed to share the benefits of their work; no
longer was software considered the property of
all. Now, everything was proprietary.

Today, the Free Software Foundation that
Stallman founded in 1984 is credited as the
single most important force in resisting the

11/11/01 2:05 PM

Salon.com Technology

J. l"\f 11

wysiwyg:// 13 7 /http ://www.salon.com/tech/fsp/ outline/index .html

advance of proprietary-only software. During
hacking's darkest hour, Stallman kept the light
of free software freedom aflame, persevering
bullheadedly against all odds in his project to
write free software that everyone could use.
Without the tools that he created, the
development of Linux and countless other free
software programs would have been
extraordinarily difficult.

Stallman has an opinion on everything, and the
current high profile of free software has given
him a bigger pulpit from which to declaim
from than ever before. Patents, the Microsoft
trial, free manuals, copyright, in this section I'll
give a comprehensive a look at both the person
and the ideas. But I'll do it from a specific
angle -- is Richard Stallman a human virus.
His GPL license has been criticized as an
anti-capitalist virus. What about the person
himself. What kind of effect is he having?

Part II: Becoming the virus

Both parts of Chapter 3 will be written using
only free software. This will require some
learning on my part, and probably won't be as
comfortable for me as if I used a proprietary
editor. But for Stallman, comfort isn't the
issue. Morality is. Some people just feel better
using free software. The psychology of the
users of free software is as important as the
technical construction of that software.

Why do programmers love free software? Why
does Linux command such ferocious fandom?
The reasons go beyond just the rewards of
creating or working with efficient, bug-free
software and don't necessarily dovetail with
political or moral motivations.

Writer Ellen Ullman calls it the "close to the
machine" factor. With free software, you can
get your hands dirty, you can fix problems as
they arise, and you have the sense that your
computer's innards are accessible to you. While
this isn't always attractive to everyone -- most
average computer users don't really want to
muck around with a computer's insides -- it
does have a potent appeal to some people who
don't consider themselves programmers.

With free software, everyone can become a
programmer -- or at the very least a member of
a greater programming community. As one
learns how to configure a free software
program on one's own computer, one naturally

11/11/01 2:05 PM

Salon.com Technology

5 of 11

wysiwyg:/ / 13 7 /http ://www.salon.com/tech/fsp/ outline/index.html

turns to the community for help and hints, and
in the process oflearning, becomes a member
of that community who can help others.

There is a psychological attraction to free
software. There is a poetry to code, an
exhilaration that comes from successful
programming, no matter how trivial. Free
software programming allows the purest kind
of programming satisfaction -- to an almost
spiritual degree. This chapter will examine the
psychological motivations fueling free
software excitement, and will also give the
author a chance to detail his own personal
journey into the world of free software. Part II
will be a plunge into that psychology from a
user's perspective.

Chapter 4: The Internet and Free Software

P~ I: Duct tape for the Net: A Perl beyond
pnce

The Internet's growth from a government
project that linked university research centers
together into one of the most important
organisms of society at the close of the 20th
century has been told many times. What hasn't
been previously recounted, however, is the role
that free software hackers played in the
Internet's evolution. Chapter IV will show how
the Internet and the free software movement
are linked together in a positively reinforcing
feedback loop: The hackers improve the Net,
and the Net enhances the quality of hacker
productivity.

One entry point for telling this part of the story
is Larry Wall, the creator of the programming
language Perl. There would be no Yahoo
without Larry Wall -- and no Amazon either,
not to mention a million other Web sites. Perl
is to the World Wide Web as mortar is to a
building made out of bricks. It is the glue
language, the thing that stitches everything
together. It has made possible a whole new
generation of Web-based businesses.

That alone would be enough reason to pay
attention to Wall. But that was hardly his first
major achievement. In the early 80s, Wall also
wrote a little program called "patch." It didn't
do much, and wasn't very complicated. Its
main purpose was to allow programmers to
upgrade their versions of much larger
programs without having to get a whole brand
new copy of the program delivered over the

11/11/01 2:05 PM

Salon.com Technology

6 of 11

wysiwyg:/ I 13 7 /http://www.salon.com/tech/fsp/ outline/index.html

Net -- an ordeal that could cost time and
money back in the old, low-bandwidth days of
the Net. Patch turned out to have huge
consequences for the Internet. With patch,
programmers could make their own changes to
programs and distribute them quickly and
efficiently across the Net. Patch made possible
the style of collaborative software development
that later resulted in the success stories of
Linux, Apache, Perl and the rest of the free
software pantheon.

Part II: The Web and Free Software

The second section of Chapter 4 will focus on
how free software tools have made the new era
of Web-based businesses possible. But it will
also begin to take a more critical look at some
aspects of free software culture. For example,
there's the problem of the "benevolent
dictatorship" model that most free software
projects operate under. Despite the "organized
anarchy" that prevails in Net-based free
software projects, the most successful usually
have one central charismatic leader who makes
ultimate decisions. The "community" must
support those decisions for them to be
effective, but without a strong leader, free
software projects often founder. What does this
say about the scalability of free software
business models -- or their long-term stability?

Chapter 5: Guns, free software and
libertarians

Part I: Eric Raymond

Chronologically, chapter 5 takes the story of
free software from Stallman's lonely isolation
to the mass movement that is dominating press
headlines in the late '90s. Eric Raymond, the
self-described "technopagan libertarian" and
leading spokesman for free software, is the
central focus of the chapter. Raymond, the
author of several books and numerous
influential articles, is also the premier
anthropologist and folk historian of hacker
culture. Chapter 5 will continue the exploration
of the hacker psyche, with particular emphasis
on the libertarian component.

Part II: The politics of software

A consideration of libertarianism is essential to
the discussion of free software. Libertarian
culture has always thrived on the Net, and the
economic model of free software -- which

11/11/01 2:05 PM

Salon.com Technology

7 of 11

wysiwyg:/ I 13 7 /http ://www.salon.com/tech/fsp/ outline/index.html

emphasizes grassroots independence -- is
psychologically attractive to libertarians. But
the "free software movement" is often accused
of being a thinly disguised left-wing attack on
business. And indeed, a significant number of
the software developers who work on free
software projects live outside of the United
States and are motivated by suspicion and
distrust of American-style capitalism.

Chapter 6: The rise of the penguin: Linux
and the plot for world domination

Part I: The Lore-masters of Finland.

The story of Linux starts in Finland, where an
undergraduate at the University of Helsinki
first started fooling around with ideas for his
own operating system. I will be visiting
Finland at the end of March, so this chapter
will start there as well. Finland is enormously
technologically advanced for a country its size,
and Finnish programmers have played a role in
the Internet's development that long predates
the rise of Linux. Part II: Linus Torvalds and
the creation of Linux.

How did it happen? Who is Linus Torvalds?
What does he think? How is he different from
the other free software hackers. The second
section will trace the rise of Linux to its current
incarnation as one of the most exciting stories
in the computing world today. How did this
happen? Linux is the biggest story in free
software, the linchpin of the entire movement.
In chronological terms, Linux completes the
journey that began at Bell Labs.

Chapter 7: The rise, (and fall?) of the New
Linux Economy

Part I: IPO madness!

1999 was the year the stock market went crazy
of Linux.

Part II: IPO despair!

2000 was the year the stock market suddenly
hated Linux.

These two sections, together, will try to
untangle the stormy ups and downs of the
market's infatuation and then, subsequently,
disgust for Linux. What can we learn about
how the stock market, Silicon Valley, Wall
Street and the technology industry are feeding

11/11/01 2:05 PM

Salon.com Technology

8 of 11

wysiwyg:/ I l 3 7 /http:/ /www.salon.com/tech/fsp/ outline/index.html

off each other from the experience of Linux? Is
it even possible that Linux can be
commercialized. What are the venture
capitalists thinking?

Even long-time advocates of free software
were stunned by the events of 1999. Suddenly,
as viewed by the investment community,
venture capitalists and day-traders, Linux
achieved the same buzzword status as earlier
concepts like "push" and portals. Companies
like Red Hat and VA Linux had huge initial
public offerings, giving them stock valuations
high enough to purchase other companies, hire
scores of programmers, and begin to subsidize
the creation of even more free software on a
hitherto unprecedented scale.

Is this just another example of dot-com hype
gone mad? Is Wall Street being homswoggled?
Or is something deeper happening -- is the free
market recognizing the lasting value of free
software? Chapter 11 will examine the
intersection of the so-called New Economy
with the economy of free software, and explore
the problems that may arise when the desires
of shareholders in publicly traded companies
clash with the fiercely held community values
of free software hackers.

Chapter 8: Death to Microsoft

Part I: Microsoft vs. The Gift Economy

The central conflict in the free software saga
can be summed up as a showdown between the
status quo of Silicon Valley-style capitalism
and the new information economy of the Net.

Free software developers operate in a kind of
"gift economy." This, of course, is not how
Microsoft -- or most other software or
computer hardware producing corporations -­
plays the game. Instead, it seeks to guard its
intellectual property, or, if a competitor
appears on the scene, purchase it. Patent
applications, non-disclosure agreements,
license agreements: the structure of
techno-capitalism is built on the control of
information.

The success of the free software movement
offers hope that there may be new strategies
possible for propelling a productive economy
-- strategies that don't depend on enforcing
artificial limitations on how people are allowed
to cooperate or share information. It's possible

l l/11/01 2:05 PM

Salon.com Technology

9 of 11

wysiwyg:/ / 13 7 /http:/ /www.salon.com/tech/fsp/ outline/index.html

that this new model may only work in the
realm of software, but there may also be
applications in other arenas of social endeavor
-- one of the sub-themes of this book will be to
look for those other arenas.

Will free software topple Microsoft? What
does Bill Gates really think about Linux? How
will Microsoft attempt to co-opt the
movement? Gates has successfully
reengineered Microsoft at least once, turning
the company around on a dime to "embrace
and extend" the Internet. Can he do the same
with free software?

A consideration of Microsoft will lead to the
wider question of what free software will mean
for the entire software industry. In a growing
number of cases, free software programs are
qualitatively better than their proprietary
commercial alternatives -- faster and smarter as
well as, obviously, cheaper. Linux has a
surging reputation for stability and reliability
that many advocates swear puts Microsoft to
shame. Apache, a Web server program that
operates Web sites, is by far the most popular
product of its kind. Through the release of their
source code to the general public, free software
programs benefit from unparalleled "peer
review" -- from having thousands upon
thousands of programmers hammer on the
code, fix bugs and test it under every possible
condition. Software today is becoming
unthinkably huge and complex -- Windows
NT, Microsoft's industrial-strength operating
system, is reputed to consist of a whopping 35
million lines of code. In this era, the distributed
resources of the entire Internet constitute the
only environment large enough to adequately
test all the possible mishaps that might befall
so complex a computer program.

Part II: Free software, monopolies, and
government action.

The pragmatic benefits offered by free
software constitute the biggest threat to
Microsoft. How will Bill Gates and co. adapt?

Finally, this chapter will also attempt to place
free software in the context of
government-business interaction. Since one of
the starting points of free software was
government restrictions placed on AT&T, and
one of the current focal points of free software
is Microsoft, it will be useful, in this
politically-minded chapter, to consider how

11/11/01 2:05 PM

Salon.com Technology

10 of 11

wysiwyg:/ / 13 7 /http:/ /www.salon.com/tech/fsp/ outline/index.html

monopoly power and government interaction
can intersect with and affect the world of
software.

(N.B.: As of April, the last three chapters do
not yet lend themselves to modularization. But
that could well change!)

Chapter 9: Free to be, you and me

MP3. DVD. Copyrights, patents, and software
piracy: No issue in the current world of
software is more divisive, more hotly
contested, and more unsettled than the question
of ownership of code -- not just in terms of
software, but in terms of entertainment and
media. It's not an accident that some of the
most vocal fans of free software are also busy
trading MP3s or reverse engineering
encryption protections for DVD players. Music
and moves are software, today, and the Internet
is, at the very least, the most effective
distribution vehicle for such software ever
invented.

Push is coming to shove here, and no one
knows how the story will play out. Will the
defenders of intellectual property be able to
hold off the barbarians of the Net? Or will new
technological realities force accommodation?
Even as corporations race to patent anything
and everything they can, and pour hundreds of
millions of dollars into defending copyright
and attacking software "piracy," the Net is
forcing new business models and new ways of
thinking on the entire world.

Chapter 10: Free software bootstrapping
the world

One can argue that every dollar Microsoft
spends attacking software piracy in the third
world is a dollar of advertising for Linux and
free software. Already, countries like India and
China are taking a close look at Linux; it's
cheap, it's not tied exclusively to an American
corporation and it can be adapted to fit every
local need. Free software is a great
bootstrapping tool for countries short on
resources.

One of the most intriguing points about this is
that free software is in large part the product of
the most privileged classes of the First World.
Programmers, by and large, are paid so well
that they can afford to take on hobbies like free
software projects in their spare time. And in

11/11/01 2:05 PM

Salon.com Technology

11 of 11

wysiwyg:/ /13 7 /http://www.salon.com/tech/fsp/outline/index.html

doing so, they are creating an infrastructure of
tools that the whole world can and will benefit
from.

Epilogue: The greatest gift

Even if Microsoft isn't toppled by free
software, even if Linux doesn't displace
Windows 2000 and even if the fundamental
dynamics of the information market economy
are not completely transformed by the free
software movement, the possibility that we
have been offered a different path to take is
valuable in its own right. The Internet
encourages people to work together, if not for
profit, then for fun. In the new gift economy,
that might be the greatest gift of all.

Read Andrew Leonard's book-in- ro ress on Linux and o en source -- and ost our comments.

Salon Search About Salon Table Talk Advertise in Salon l,w<,-,tor Relations

Arts & Entertainment I Books I Comics I Life I News I F co pie
Politics I Sex I Tech & Business and---~----- I Audio

Letters I Columnists I Salon Plus I Salon Gear

Reproduction of material from any Salon pages without written permission is strictly prohibited
Copyright 2001 Salon.com

Salon, 22 4th Street, 16th Floor, San Francisco, CA 94103
Telephone 415 645-9200 I Fax 415 645-9204

E-mail I Salon.com Privacv Policy I Terms of Scrv •. •.

11/11/01 2:05 PM

Salon.com tech I Chapter I: Boot Time wysiwyg://147/http://www.salon.com ... 3/06/chapter_one_part_l/print.html

1 of 4

Search About Salon Table Talk Newsletters Advertise in Salon Investor Relations

To print this page, select "Print" from the File menu of your browser

Chapter 1: Boot Time

Part 1: Linus Torvalds at the Villa Montalvo

By Andrew Leonard

March os, 2000 I Nestled in the foothills of the Santa Cruz Mountains, gazing out across the western edge
of Silicon Valley, the Villa Montalvo is a grandiose reminder of a different age. Built as a country home
at the tum of the 19th century by three-time San Francisco Mayor James Duval Phelan, the Villa sprawls
majestically across a landscape that once sprouted apricots, cherries and prunes but today is more likely
to nurse Internet start-ups and computer-chip design companies. Saratoga, the small town presided over
by the villa, has managed better than most to resist the relentless high-tech mall-ification of the valley,
but the imaginary smell of silicon -- a smell of money, progress and greed -- still hangs in the air.

Phelan, the son of a gold rush-era liquor wholesaler who grew up to hate both Prohibition and the
invasion of California by Japanese immigrants, decreed in his will that the Villa Montalvo should be
dedicated to the "support and encouragement of music, art, literature and architecture." Quite the
Renaissance legacy -- though one wonders if he could have dreamed that one day his home would also
host glamorous press conferences trumpeting new computer gizmos.

Possibly. Phelan was a man of some imagination. He chose the name Montalvo as homage to the 16th
century Spanish writer Garcia Ordonez de Montalvo, who coined the name 11 California" in his otherwise
eminently forgettable novel "Sergas ofEsplandian." And since for so much of the 20th century,
California has for better or worse represented the future -- of technology, culture, entertainment and even
capitalism itself -- what better place to contemplate the cutting edge of Silicon Valley than in a villa
dedicated to the man who first dreamed up the state's name?

So perhaps the half-eagle, half-lion stone griffins that guard the narrow winding road up to the Villa
Montalvo were not too surprised to see, one rainy morning in January 2000, a horde of journalists,
analysts, chip designers, money men and high-tech industry flacks invade their peaceful territory. For
this was no ordinary press conference; this was the ultimate Silicon Valley dog-and-pony show. A
company named Transmeta -- notorious, on the one hand, for being the most secretive start-up in the
valley, and on the other, for employing one of the world's most famous programmers, Linus Torvalds: -­
was about to raise the curtain on its tomorrow land product. The next little piece of the mythological
Californian future was at hand. Who would dare miss it?

Certainly not me. Like everyone else, I wanted to finally get some answers about what Transmeta was
up to. But like most people there, I also wanted to catch a glimpse ofTorvalds. In that new universe
where the Net, the software industry and the media are colliding, Torvalds is increasingly regarded as a
hero of sorts -- a knight in digital armor jousting with the grasping ogres that currently lord it over the
high-tech marketplace. Never mind that in real life Torvalds is a staunch pragmatist, a person who
displays zero inclination for engaging in crusades or otherwise quixotic adventures. That's immaterial:
Torvalds is the primary author of Linux,'.'~. a software program that is the core of a free operating
system.:

An operating system -- such as Unix,~ the Mac OS and, of course, Microsoft Windows -- is the heart and

11/11/01 1:47 PM

Salon.com tech I Chapter 1: Boot Time wysiwyg://14 7 /http:/ /www.salon.com ... 3/06/chapter _ one _part_ I/print.html

2 of4

soul of a computer. The phenomenal recent market successes of Linux-based operating systems, which
are posing the first real threat to Microsoft's software hegemony in a decade, have thrust Torvalds into
the position of being the antithesis to Microsoft chairman Bill Gates.~ While Microsoft charges what the
market will bear for access to its software, Torvalds gives his code away. And somehow, it works.
Indeed, in a seeming paradox, vast fortunes are being generated by corporations specializing in
packaging and supporting so-called "free software".'.:_ or "open-source software,11~ software defined by
one fundamental commandment: that the source code.'.1'._ to a program, variously referred to as the
underlying blueprints, or recipe, for that program, be freely available to the general public.

To the uninitiated, free software sounds like a joke, a late-night psychic friends TV come-on or, at best,
a fad for geeks and nerds who have nothing better to do than play with computer code all night long. But
to a growing number of technology watchers, free software means much, much more: Its success points
toward a possible future in which the simple act of sharing constitutes the bedrock of a new strain of
capitalism. By early 2000, talk of initial public offerings, billion-dollar market capitalizations and
venture-capitalist shenanigans had become increasingly common wherever free-software hackers hung
out. A healthy and growing number of computing cognoscenti were even arguing that, in a truly free
market, free software would inevitably dominate.

Together with thousands of other programmers scattered across the world, Torvalds is demonstrating the
astonishing potential of what can be achieved when volunteers collaborate with each other via the
Internet, sharing code across corporate, geographic, cultural and linguistic boundary lines. As a
byproduct, Torvalds can lay claim to what is quite possibly the fastest growing cult of personality in the
world of technology. For Transmeta, the public relations benefits alone are well worth his salary; just by
being his employer, Transmeta ensures that some of the most keen eyes on the Net will obsess over the
company's every move.

But what about the pack of photographers, the satellite trucks from CNN and ABC, the audience
members calling their editors or their friends with live updates at every break in the action? Would they
have come clamoring to Saratoga if not to contemplate Torvalds in the flesh? Perhaps not -- even with
the lure of valet parking and a fancy lunch.

And yet there certainly was plenty of real meat to chew on at this particular chip demo. After years of
hard work and an estimated $100 million or so, Transmeta had cooked up two tiny microprocessor:.
chips, dubbed "Crusoe," that may well usher in a new era of ubiquitous, low-cost, mobile computing. On
display at the left edge of the stage was an array of gadgets that any self-respecting early adopter would
have a difficult time not slavering over, including a "Web slate" designed to be an ultra-portable
interface to the Net and a laptop with battery staying power three or four times the current norm.

So not only was this a gathering that demanded attendance, but it also unabashedly encouraged an
exuberant display of high-tech fetishism. The case for mobile computing did not need to be made to this
wannabe cyborg audience. Hardly a visitor came near who was not equipped with at least one cellphone,
personal digital assistant, digital camera and/or wireless modem-equipped laptop.

I was no exception. Splayed out across my lap, as I sat in the small theater where Transmeta execs,
grinning from ear to ear, declaimed upon their unique "code morphing"~~ software and the astonishingly
low power consumption of their chips, lay my own cherished gadget, a brand-spanking-new Sony Y,\in
laptop computer of which I was inordinately proud.

It wasn't just the sleek, burnished design or the feather-like weight that pleased me about my laptop. My
laptop made me happy because, in microcosm, it exemplified some of the changes sweeping through the
software industry that were personified, on a much larger scale, by Transmeta's products and Torvalds'
code. When I bought the machine, it came installed with Windows 98. But with surprisingly little
trouble, I was able to transform it into a "dual-boot" system~ Depending upon my whim, I could choose
which operating system the computer loaded, or "booted up, II: first -- in this case, Windows 98 or
Hat Linux 6.1.

Dual-booting is not for everyone. It's a geeky thing. Most people don't need two operating systems on

ll/ll/01 1:47 PM

Salon.com tech I Chapter 1: Boot Time wysiwyg:/ /14 7 /http:/ /www.salon.com ... 3/06/chapter _ one _part_ I/print.html

3 of4

their computers. But for me, it represented the possibility of choice in a dangerously monopolistic
environment. The vast majority of computer users accept, without much demurral, that if they purchase a
personal computer it will most likely come pre-installed with Windows (let's put aside, for the moment,
the question of the Macintosh minority). Microsoft's control over that opening screen gives the company
great power, as has been demonstrated in the Microsoft antitrust trial. By taking control of the boot-up
sequence, I was rejecting Microsoft's claim to preeminence on my computer and reducing it to just
another contender. It was up to me ifl wanted the slick ease-of-use of Windows or the powerful
flexibility of a Linux-based operating system -- if I wanted to be comforted by supposedly idiot-proof
proprietary software that held my hand, or teased with the uncertainties of the free-software way of life.

Transmeta was also pursuing a dual-boot strategy. The company was placing its bets, or chips, as it
were, on two operating systems: One chip was designed to work with Windows, the other one with
Linux-based operating systems. To demonstrate this strategy graphically, Torvalds and another
Transmeta employee, Dave Taylor, trotted out to battle each other in a networked bout of the exquisitely
violent first-person shooter! video game Q1,1~}~i;_Lll_ Taylor fought from a Crusoe-powered computer
running Windows, while Torvalds wielded his weapons on a Crusoe-powered computer running Linux.

The showdown launched a photographic frenzy, as the assembled corps of camera-toting journalists
surged toward the stage. Valley veterans must have been shaking their heads. Transmeta, a proud
aspirant to the glorious chip-making heritage of the valley, was showing off chips that it believed could
change the world, just as, much earlier, Intel's microprocessor chip had set the stage for the personal
computer explosion. But the real excitement of the day was the sight of a jeans-wearing, sandal-clad
young man attempting, without any success at all, to avoid being blown to bits by his opponent, who
was sporting leather pants and tails.

Torvalds died, early and often, to the amused dismay of his fans. But it wasn't really his fault, nor, as he
was quick to claim, could his pathetic showing be blamed on defects in Linux. Taylor, his opponent, was
one of the original authors of Quake; heaven only knew how many hours he had logged hunting down
foes in garish labyrinths that he had helped to create.

A 10-minute break followed Torvalds' unseemly demise. As I typed in some notes, a ponytailed man
sitting beside me gave me some friendly grief for using a Microsoft product, Word, to write about Linus
Torvalds. A fair criticism, I conceded. But I was planning to file my copy directly from the Villa
Montalvo, I told him, and I wasn't going to take any chances with my still feeble Linux mastery when
operating under a tight deadline in competition with every other technology reporter in Northern
California.

As the break wore on, it occurred to me that this was a golden opportunity to ask for advice. My amiable
critic was a reasonably well-known Linux advocate for one of the more high-profile Linux companies. I
had been having a slight problem with the .,· .. ec:.:: ... ,, ... ,,,. , ,_,0_,,.1_,2_.,,_0 _, __ ~--" on my laptop; maybe he could help.

The problem was a silly little thing. After powering on, the laptop presented me with a "boot prompt": If
I typed in "dos," Windows 98 started up; if "linux," then Linux. But ifl didn't type anything, the
machine defaulted to Linux in just three seconds. I wanted it to wait longer. Theoretically, a small
change to a simple configuration file should have solved the problem.

Theoretically. Life with Linux is one long learning curve, and for some reason I couldn't get it to work.
But my Linux guru friend beside me smiled with the confidence of a veteran power user. "I can fix that,"
he assured me. "Want me to take a look?"

Sure, I said, and handed him my machine. His fingers flew across the keyboard, making changes faster
than I could process. Then he handed it back to me, still running Linux. I had to reboot to start Windows
so I could continue taking notes. But my computer wouldn't let me boot back into Windows. Something
was wrong.

For a moment I suspected sabotage. I complained. My companion was embarrassed. His fingers flew
again. And suddenly the machine would not boot, period. No Windows, no Linux, no nothing. A classic

11/11/011:47PM

Salon.com tech I Chapter 1: Boot Titne wysiwyg:/ / 14 7 /http:/ /www.salon.com .. .3/06/chapter _ one _part_ I/print.html

4 of4

example of how a little freedom can be a dangerous thing. Microsoft Windows attempts, not always
successfully, to hide its inner workings from you, the better to prevent you from amputating your own
head; in Linux, self-mutilation is a snap.

I had to drive back to San Francisco to write my story. As I fought my way through a Pacific storm
pummeling the coastal mountain range, I mulled over how best to start the piece. For a moment I even
contemplated mentioning my boot-up misadventures.

Booting up, is, of course, a great place to start. The term is derived from the word bootstrap -- as in, to
pull yourself up by your own bootstraps. The boot-up sequence is the first set of orders a computer
receives upon awakening. Those orders initiate other orders -- other programs -- which in turn bring the
computer to full possession of its senses.

The whole free-software movement, I realized, is itself a tremendously successful bootstrapping project.
Starting with the simplest of objects -- the ones and zeroes that are the basic building blocks of code -­
programmers have hacked together increasingly elaborate structures: programming languages, operating
systems, the Internet itself.

I put aside the question of how best to introduce a hurriedly written account of a press conference. I
decided that ifl could just find the initial boot-up moment for the whole story of free software -- a story
to which I'd been devoting my reporting career -- the rest of the narrative would no doubt unfold in
logically pleasing order, like a row of falling dominoes or a sequence of coded subroutines!_ snapping
efficiently into action.

But that raised the obvious question: Just where should I look for free software's original boot-up
moment?

Sound Off
Send us a Letter to the Editor

Salon Search About Salon Table Talk Newsletters Advertise in Sa101· Investor Relations

Arts & Entertainment I Books I Business I Comics I Health I Mothe1 s Who H1ink I News
People I Politics I Sex I Technology and The Free Softwa1 <:' PrclJect

Letters I Columnists I Salon Plus I Salon Shop

Reproduction of material from any Salon pages without written permission is strictly prohibited
Copyright© 2000 Salon.com

Salon, 22 4th Street, 16th Floor, San Francisco, CA 94103
Telephone 415 645-9200 I Fax 415 645-9204

E-mail I Salon.com Privacy Poi1cy

ll/ll/Ol l:47PM

Salon Free Software Project I Chapter one: Boot time http:/ /www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html

1 of 10

' '

the be$t bo,:,ksto!e you'll ever reod

f!owe .s.com CLICK HERE
1/iJlt t/1(), · 4 "l!Jee,h to lind your happy ploce

To print this page, select "Print" from the File menu of your browser

salon.com > Free Software Project March 6, 2000
URL:
l,ttp://www.saion.corn/tech/f:,p/2Cl00/0:;/(l6/cr,,:ipter cne · : : 2

Chapter one: Boot time

Part 2: Starting points

Near the close of the 11th century, an Italian jurist named
~~~··-···'·'···" founded a school of law in the town of Bologna. 
We are told by Odofredus, a 13th century professor of 
Roman law, that Imerius was the first "to pass on his 
research through his teaching." This assertion may be 
questionable -- no doubt there have been countless other 
scholars who taught what they had learned, long before 
lmerius. (Aristotle and Confucius, to pick just two, spring 
to mind.) But the contention is intriguing. A central tenet 
of open-source faith is the belief that source code is an 
intellectual good that should be shared with as wide an 
audience as possible. 

Free software is free speech. 1?jJJ)gy, a programmer~ 
extraordinaire who co-founded the computer workstation 
manufacturer Sun Microsystems, suggests that that belief 
is an outgrowth of the academic tradition of sharing 
research results with others. And that tradition, he 
observes, is at least 1,000 years old, going back to the 
founding of what is generally considered to be the first 
modem European university -- Imerius's University of 

University researchers, from computing's earliest days, 
have long spearheaded research and development in both 
computer hardware and software, so it should come as 
little surprise that academic customs influence how some 
of them view their work. But did free software really 
begin at Bologna, nearly a millenium before the invention 
of the computer? 

Not, certainly, in any literal sense. And yet it is still 
worthwhile to think about free software in the context of 
nearly 1,000 years of intellectual curiosity and academic 
freedom. To many programmers, code is a means of 
expression; a form of speech; a way of seeing, 
understanding and interacting with the world. To put into 
place proprietary restraints restricting that speech is a 
repugnant act of censorship. Sharing source code is not 
just a way of creating software -- it is a way of life, a 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http:/ /www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

2 of 10 

passion and a faith. 

But free software is also fundamentally a software 
development methodology. As such, it owes much of its 
vigor to the efforts of programmers constantly looking for 
more effective ways of getting their work done. The drive 
for efficiency is no recent development in the software 
world, either. From the very beginning of the commercial 
computing era, programmers have realized that working 
together -- even across corporate lines -- makes eminently 
good sense. 

In December 1952, IBM rolled out its first commercially 
sold electronic computer, the 701 -- also known by the 
quaint name "the Defense Calculator," since nearly every 
one of the 19 701s manufactured was rented out (for a 
pricey $15,000 a month) either to the United States 
Defense Department or to aerospace companies living off 
of Defense largesse. 

Writing software for the 701 was a slow, painful process, 
made even more difficult by the lack of programming 
tools that today's hackers take for granted. The most 
pressing need was for a "compiler"! -- a program that 
would translate other software programs into instructions 
that the 701 could understand. Each company that rented a 
701 needed a compiler, but writing one from scratch 
would be a time consuming and expensive task. 

There had to be a better way. A group of West Coast 
aerospace companies -- pillars of the Cold War economy 
like Lockheed, Douglas and North American Aviation -­
joined together to pool their resources. Thus was born 
PACT -- the Project for the Advancement of Coding 
Techniques. Possibly the first example of programmers 
who worked for directly competing companies sharing 
source code, PACT set an example that today's 
open-source start-ups are vigorously imitating. 

"All parties concerned recognized that the days of'going 
it alone' had to end," recalls Irwin Greenwald, a 
programmer who worked at the RAND Corporation think 
tank, which was actively involved in facilitating the 
collaboration. "It was too expensive both in dollars and 
time to completion." 

Greenwald's memory is that the urge to collaborate came 
from technical staff at the separate companies who then 
sold management on the idea. If so, this is a point worth 
noting: Programmers know that one of the best ways to 
write code is to collaborate, and if that means sharing 
notes with your competitors, so be it. The point is to get 
the job done. As another participant in the project, Wesley 
S. Melahn, reported at the time, "The first few months of 
experience seem to indicate that the co-operating 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http ://www.salon.com/tech/fsp/2000/03/06/ chapter_ one _part_ 2/print.html 

3 of 10 

computer groups will be hansomely repaid for the small 
investment in PACT I by the savings in coding and 
machine time. Perhaps the greatest dividends will come 
from the demonstration that co-operative undertakings by 
groups with diversified interests can succeed and can 
speed up the development of the art of machine 
computation." 

Never mind all that hifalutin stuff about academic 
freedom and code as "expression"; sharing source code is 
simply a technically superior strategy for software 
development. The true roots of free software can be traced 
back to the bald desire of the military-industrial complex 
to operate more efficiently. 

PACT was a conscious attempt to solve programming 
problems that ended up providing a template for 
open-source business cooperation. But as we search for 
the wellsprings of free software, it's important to realize 
that software evolution is buffeted by the winds of fortune 
as much as it is planned by programmers. Accidents will 
happen. 

In 1956, for example, the United States federal 
government enjoined AT&T to abide by the terms of a 
consent decree that forbade the government-regulated 
monopoly from entering non-telephony markets such as 
computing -- and, even more importantly, required AT&T 
to license its patents. So, a little less than two decades 
later, when Dennis Ritchie.':'._ and Ken Thompson~' 
invented the Unix operating system, AT&T lawyers, 
mindful of the consent decree, initially prohibited AT&T 
from commercializing the software. As a result, the source 
code to Unix was made available to universities and 
research laboratories at a nominal fee. 

Ken Thompson had received his Ph.D. from the 
University of California at Berkeley, and in 1975 he took 
a year's sabbatical there. Later that same year, Bill Joy 
arrived as a graduate student. The combination of 
Thompson, Joy and cheap access to the Unix source code 
led to an explosion of creativity every bit as radical and 
world-changing as the political explosion that Berkeley 
helped unleash in the '60s. Joy and a team of talented 
programmers rewrote and enhanced Unix and 
redistributed their changes to other Unix enthusiasts, who, 
in tum, often contributed their own new features and 
improvements -- modeling, in striking fashion, the 
strategy of open-source software development that is 
embodied today by Linux and other free-software 
projects. 

The Berkeley programmers also added the networking 
capabilities to Unix that made it the ideal lingua franca for 
the Arpanet,.':'.. the Internet's predecessor -- a feat that held 

11/11/0l l:49PM 



Salon Free Software Project I Chapter one: Boot time http://www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

4 "f 10 

immense implications for the software industry and the 
evolution of the Internet. To this day, the most vigorous 
arena for free-software/open-source development occurs 
in the friendly ecological habitat of Unix. Linux is a clone 
of Unix, and many other free-software mainstays are most 
comfortable in a Unix/Linux environment. A generation 
of programmers have grown up with the ability, if they 
cared to, to upgrade Unix as they see fit. Through doing 
so, they created a flourishing culture indigenous to the 
Net. 

Did the consent decree of 1956, then, kick off open 
source? Is it the tap root supporting free software's mighty 
flowering? Maybe. According to Ritchie, "the consent 
decree, to the extent that it prevented AT&T from 
thinking at all about a Unix business, certainly influenced 
the licensing and distribution policy, which most likely 
would have been more closed without the restriction." At 
the very least, writes Peter Salus, author of "A Quarter 
Century of Unix," "the decree resulted in a much more 
rapid dissemination of technology than would otherwise 
have been possible." 

But before we get too excited about the potential for 
government intervention to aid the growth of the 
free-software industry, it must be recalled that the 
consequences of the consent decree were entirely 
unintended. At the time, in fact, the decree was widely 
viewed as a painless slap on the wrist that implied "no 
real injury" to AT&T. Certainly, in 1956, very few people 
foresaw that the eventual linking of computers together 
via telecommunication networks would become one of the 
defining technology advances of the 20th century. 

The consent decree was one kind of accident, albeit on a 
huge scale involving the classic thrust/counterthrust of 
government and business interaction. But accidents on a 
much smaller scale have also exerted profound influences. 
Consider, for example, the case of the printer paper jam. 

In 1979, the hackers who populated M.l.T's Artificial 
Intelligence Laboratory received a laser printer. Not just 
any laser printer, but a Dover laser printer from Xerox -­
the very first laser printer, one of the results of the 
groundbreaking research conducted at the Xerox PARC 
laboratories in Palo Alto. 

The Dover was a big clunky thing that had a tendency, as 
is common with printers, to get fouled up with paper jams 
and other mechanical problems. But not to worry. With a 
previous printer, the M.I.T. hackers had done what they 
did best: hacked the printer's software so that if it ran out 
of paper or jammed, a message would leap across the 
Lab's computer network announcing the fact. And 
somebody would get up and load in some new paper, or 

11/11/01 I :49 PM 



Salon Free Software Project I Chapter one: Boot time http://www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

5 of 10 

unjam the printer. 

Now that they had their spiffy new laser printer, the 
hackers saw no reason why they shouldn't incorporate 
their modifications in the software of the Dover, too. But 
they didn't have the source code to the printer's software. 
As Richard Stallman,~ one of the lab's preeminent 
hackers, recalls, Xerox would not give the Lab a copy. He 
couldn't see it, couldn't fix it, couldn't upgrade it. 

In 1984, Stallman, a legendary and controversial figure in 
the programming world, founded the .. __ , __ 0,_"···"''·.::c,.c:c, .. , .. 
Foundation, an institution dedicated to promoting the 
notion that source code should be freely available. The 
incident with the Xerox printer, Stallman remembers, was 
one catalyst that launched him along his path. 

"At the time, I hadn't reached the conclusion that non-free 
software is unethical -- I just observed it was a pain in the 
neck," recalls Stallman. "If they had offered us a copy 
with a copyright notice on it, and said we couldn't 
republish it, at the time I might have been content with the 
arrangement. I might even have signed a nondisclosure 
agreement for the source code, for all I can tell today. It 
was after later reflection that I concluded nondisclosure 
agreements were wrong on principle." 

Principle. Richard Stallman is a controversial figure in the 
programmer community. He is stubborn and unyielding -­
tact is not one of the weapons in his formidable arsenal. 
He's been called a communist and a crank, and some of 
the more business-oriented open-source entrepreneurs 
probably wish that the man would simply shut up and go 
away. In person, Stallman's long flowing hair, his steely 
green-eyed gaze and his tendency to take strong moral 
positions and hold them with unmovable tenacity make 
him seem more like an Old Testament prophet than a 
technological visionary. But his influence is undeniable 
and his contributions are enormous. 

Richard Stallman represents the ideological core of the 
free-software movement. His moral fervor for sharing 
source code is what drives many programmers forward. 
More than any other person, Stallman is responsible for 
promulgating the notion that free software is more than 
just a technique -- it is an ethical imperative. 

In what has to be one of the most ironic twists in the path 
to free software's origins, it can be argued that Microsoft's 
blistering campaign to win the so-called Web browser 
wars in the late '90s had the entirely unexpected result of 
boosting the free-software movement out of the recesses 
of the Net into the glare of public view. Microsoft's not 
inconsequential role in the free-software movement is all 
the more tantalizing when one considers that Bill Gates, 

11/11/01 1 :49 PM 



Salon Free Software Project I Chapter one: Boot time http://www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

6 oflO 

as a young man of 19, personally played an instrumental 
role in turning the production of software into a 
proprietary profit center. 

In January 1998, Netscape, the company that kick-started 
the Web explosion with the release of its Netscape 
Navigator Web browser, announced its plans to join the 
free-software movement by declaring that it would release 
the source code to Netscape Navigator. Executives at 
Netscape declared that their thinking had been influenced 
in part by the online publication of a seminal pap,·1 
describing the logistics of the open source software 
development methodology written by hacker Eric 
Raymond. But there were more factors driving the 
decision than simply some fortuitous Web surfing. 
Netscape had been battered by Microsoft, and the trade 
press portrayed the move as both a last gasp of 
desperation and a sign that free software was a force to be 
reckoned with. The Netscape announcement marked a sea 
change in how the technology press covered free 
software: Hitherto it had been either ignored, 
marginalized or treated as a fading remnant of long gone 
days of hacker idealism; now, suddenly, reporters began 
paying attention to the growth of Linux-based operating 
systems. 

Prior to Netscape's move, most software companies 
generally kept their source code private from all outsiders. 
After Netscape, the free-software gold rush began, and 
company after company rushed to announce their support 
for Linux and other open source success stories. 

The Netscape announcement was more than a brilliant 
public relations move. Although we don't yet know the 
results of the experiment -- the open source version of 
Netscape Navigator is still not ready for public 
consumption -- Netscape's action illuminated the broader 
lines of a fundamental conflict for mastery of the software 
marketplace: one between proprietary control, represented 
by the centralized, monopolistic Microsoft, and 
decentralized freedom, represented by the near-anarchic 
open source movement. Anti-Microsoft sentiment plays a 
key role in energizing some authors of free software, 
particularly those in Europe or Asia who wish to avoid 
dependence on what they see as a rapacious American 
corporation. 

The battle is far from over -- indeed, it has hardly even 
begun in earnest. But Microsoft itself, through its 
ceaseless efforts to dominate new markets, is responsible 
in part for setting off the hostilities, for fanning the flames 
of free-software passion. 

If Netscape's 1998 announcement attracted the attention 
of the technology sector, then in 1999 Red Hat grabbed 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http://www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

7 oflO 

the whole world by the throat with its successful stock 
market debut. And while it might seem peculiar to 
consider a point in time as recent as the summer of 1999 a 
potential starting point for the free-software story, the 
watershed importance of the Red Hat public offering is 
undeniable. At the end of the first day of trading, Red Hat, 
a company with barely $10 million in revenue and no 
profits that specialized in assembling and distributing 
packages of free software, was worth $8 billion. And Wall 
Street suddenly started paying attention to free software. 

The frenzy to buy shares in free software's premier brand 
name marked the moment when free software went from a 
programmer fad to a "new economy" phenomenon. 
Dot-com madness and open-source software proved to be 
fast friends; in the year since, a long line of Linux-related 
startups has gone public or announced plans to do so. One 
of those companies, VA Linux, even stunned itself with 
the highest first-day trading bounce in 
initial-public-offering history. Free software had become 
an economic tidal wave. Before Red Hat, debates about 
the future of free software tended to be arcane online 
exchanges of programmer jargon. After Red Hat, every 
twist and tum in the open source world would become 
front page news. 

The Red Hat IPO is the flagship example of how a 
movement built largely by volunteers is becoming a 
significant force in the global economy. It also epitomizes 
the bizarre world of the techno-economy at the tum of the 
21st century -- a world where buzzwords can tum into 
billion-dollar market capitalizations at the flip of a 
day-trader's switch, and free software is Big Business. 

But would either Red Hat's IPO or Netscape's bold 
decision to release its source code ever have happened had 
it not been for a young Finnish programmer with hacker 
chops and a Net connection? 

On Oct. 5, 1991, Linus Torvalds, then a 21-year-old 
undergraduate at the University of Helsinki in Finland, 
posted a message to "comp.os.minix" -- an online bulletin 
board accessible via the Internet. A few geeks noticed the 
post. Some even responded by sending e-mail to 
Torvalds. But it is safe to say that no one recognized the 
moment as an epochal event in the history of computing. 
While not quite a backwater, neither was "comp.os.minix" 
a gathering place for the rich and powerful. The forum 
was just an online hangout for devotees of an 
experimental computer operating system known as 
Minix.: 

Do you pine for the nice days of 
minix-1.1, when men were men and wrote 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http:/ /www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

8 of 10 

their own device drivers?"._ Are you 
without a nice project and just dying 
to cut your teeth on a OS you can try 
to modify for your needs? Are you 
finding it frustrating when everything 
works on minix? No more all-nighters 
to get a nifty program working? Then 
this post might be just for you:-) 

Torvalds aimed his message at curious hackers in search 
of a new challenge; he called the code he was working on 
"a program for hackers written by a hacker." In his world, 
the term hacker implied respect -- definitely not to be 
confused with the slur mistakenly employed by the 
popular media to describe criminals intent on breaking 
into computer systems. A hacker, in the historically 
accurate sense of the word, is a programmer who enjoys 
writing code, solving problems, taking things apart to see 
how they work and fixing them if they are broken. 
Hackers are creative, unconventional and generally 
unwilling to pay lip service to any particular party line. 

Above all, hackers are a restless breed. While they may 
jump at the chance to inspect or install some new 
agglomeration of code, they will also speedily become 
disenchanted if the code doesn't do what they want -- if it 
lacks some desirable feature or suffers from a debilitating 
bug. 

So it was with Torvalds. He had initially enjoyed 
installing Minix on his home computer and testing its 
capabilities. But he soon became dissatisfied. He 
disagreed with some of the design choices made by 
Minix's creator, Andrew Tanenbaum,.: a professor of 
computer science who specialized in research on 
operating systems. Ultimately, he thought he could do 
better. 

As a rule, hackers are generously endowed with strong 
egos, and Torvalds is no exception. But even as judged by 
hacker standards, for a 21-year-old undergraduate to 
embark on the mission of writing his own operating 
system qualified as hubristic. Operating systems are 
enormously complex software programs -- the single most 
essential piece of software on a computer. Without an 
operating system, a computer is a pile of useless silicon, 
metal, and plastic: like a house without electricity, 
plumbing or heat. 

However, Torvalds didn't actually need to write an entire 
operating system. Return, for a moment, to Torvalds' 
1991 post to comp.os.minix. Take a close look at the 
digital infrastructure that made it possible: It positively 
reeked of free software. Comp.os.minix was a 
"newsgroup" on the online bulletin-board system 
"Usenet_':'_ News." Usenet News was (and is) an excellent 
example of the free software development model. Starting 
in the early '80s, programmers seeking an efficient way to 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http:/ /www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

9 of 10 

share information on a vast number of different topics 
crafted the system together during their spare time -­
without any thought of financial gain. They made their 
source code public, so generations of future programmers 
were free to add their own improvements. 

Similarly, when Torvalds and the respondents to his post 
exchanged private e-mail, their notes were routed across 
the Internet by another program, · * that was also 
free software -- and that, to this day, is responsible for 
moving a hefty majority of the world's e-mail across the 
Internet. Even more significantly, the tools that Torvalds 
used to get his code up and running -- the compilers and 
debuggers_! that are to a programmer what lathes and 
radial arm saws are to a carpenter -- were themselves 
explicit products of the !,?_Q/,,Jnized wing of the free 
software movement. Their creation had been 
masterminded, subsidized and, in large part, authored by 
members of the Free Software Foundation led by Richard 
Stallman -- an institution whose explict goal was to create 
a completely free operating system. 

The story of free software, it turns out, is the story of the 
Net itself. Not only have programmers working in the 
tradition of free software been the primary architects of 
the guts of the Net, but as the Net has grown, it in tum 
increasingly facilitated the kind of large-scale 
collaboration -- across company lines and national 
boundaries, time zones and war zones -- that makes ever 
more complex and ambitious free software projects 
possible. 

So Torvalds wasn't operating in a vacuum when he 
announced he had put some code on a publicly accessible 
computer. When Torvalds made his post, nearly all of the 
key pieces of the free software puzzle -- an infrastructure 
that would allow programmers to hack to their heart's 
content without ever having to taint their hard drives with 
the stain of proprietary software -- were already in place. 
Torvalds just finished the job by providing the last piece 
of the puzzle. 

Torvalds focused his efforts on the creation of an 
operating system "kernel." A kernel,~ in programmer 
lingo, is the core of an operating system, the all-essential 
code that ensures that the different parts of a computer can 
successfully communicate with each other. In 1991, the 
Free Software Foundation had yet to complete its own 
kernel. Torvalds' Linux kernel completed the circle. 

For that achievement alone, a world of programmers is 
fanatically grateful. But sheer coding skill can only 
explain part ofTorvalds' achievement. The secret to 
Torvalds' success lies not just in his ability to string ones 
and zeros together in imaginative and effective ways. 
More than any other single programmer before him, 
Torvalds exploited the Net's facility for bringing people 

11/11/01 1:49 PM 



Salon Free Software Project I Chapter one: Boot time http://www.salon.com/tech/fsp/2000/03/06/chapter _ one _part_ 2/print.html 

10 of 10 

together. Using e-mail and Usenet, he nurtured a 
worldwide community of freely collaborating 
programmers. The universe of software engineering is an 
environment where egos tend to run rampant and patience 
for fools is in short supply; Torvalds' ability to welcome 
newcomers into the fold soon became a Linux calling card 
-- and provided volatile fuel for future growth. As 
Torvalds noted later, "The power of Linux is as much 
about the community of cooperation behind it as the code 
itself." 

A paper jam, a post to Usenet, a consent decree in 1956; 
an intellectual tradition dating back centuries combined 
with the common sense of programmers eager to solve 
problems and a moral imperative to share; the threat of 
Microsoft domination and the lure of dot-corn profits -­
tracing the roots of the free software movement back 
through these conflicting and competing motivations and 
historical accidents is like navigating a particularly twisty 
Borgesian labyrinth. There is no single boot-up moment. 

But that's as it should be. The free software movement is 
anarchic and decentralized, rife with internal 
contradictions, competing ideologies, dissension and 
sometimes disarray. That may, to some observers, seem a 
weakness. But it is also a profound strength. 
salon.com I March 6, 2000 

Salon I Search I Archives I Contact Us I Table Talk I Ao , nfo 

Arts & Entertainment I Books I Comics I Life I News I ;', )p!e 
Politics I Sex I Tech & Business I Audio 

The Free Software Project I The Movie Page 
Letters I Columnists I Saion Plus 

Copyright© 2000 Salon.com All rights reserved. 

11/11/01 l :49 PM 



Salon Free Software Project I Chapter l: Boot Time wysiwyg://l 55/http:/ /www.salon.com ... 3/06/chapter _ one _part _3/print.html 

l of8 

*" 'Wk:~¾ intel Introducing the Intel® Personal Audio Player 3000 • ""I 
Your music. Your player, Your way! ' , , ! 

> 1 "» . -.::(f~' 
q Ji, -;)t 

To print this page, select "Print" from the File menu of your browser 

salon.com > Free Software Project March 6, 2000 
URL: 
http://www.salon.com/tech/fsp/7000/03/061ci1apter on,: :.i ,t 3 

Chapter 1: Boot Time 

Part 3: The Bamboo Forest 

One spring day in 1997, two elderly Chinese women 
appeared at the front door of my house in the flatlands of 
Berkeley, Calif. Their English was minimal, but I speak 
some Chinese, and after a few false starts I grasped that 
the women were seeking permission to harvest my 
bamboo grove. Bamboo shoots, best picked just before 
they begin to poke their insistent heads up through the 
earth, are a delicacy in Chinese cuisine. My bamboo 
grove, which lined one fence of my back yard, separating 
my house from a neighboring three-story apartment 
building, was just beginning to sprout. 

I acceded to their request, but grudgingly. I was new to 
the neighborhood -- it was my first spring in my new 
home -- and I wanted more bamboo. not less. The bamboo 
had been planted by a previous owner who wanted a 
barricade blocking his view of the apartment building; I 
was of the opinion that there was still plenty left that 
could benefit from obscurement. I told the women they 
could pick just a few shoots. But I felt selfish, and the 
quizzical look in their eyes, as if they couldn't 
comprehend how anyone could be stupid enough not to 
want their bamboo harvested, failed to improve my 
spirits. 

The rainy season faltered two months early that spring, 
and the bamboo shoots that escaped the clutches of the 
scavengers withered and died. I felt sorry for the poor 
bamboo, so obviously unfit to flourish in the harsh Bay 
Area climate. I watered the rest of the grove throughout 
the summer, and idly wondered whether I should dose the 
bamboo with a mass treatment of fertilizer. 

But the bamboo spirits had just been biding their time. 
The next winter, one of the wettest El Nifio deluges of the 
entire century pummeled California. One day, when the 
torrent paused to grab a breath, I strolled through the yard 
and noted, with a sense of surprise quickly graduating to 
alarm, that 50 or 60 new shoots had erupted out of the 

11/11/01 1:50 PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg://l55/http://www.salon.com .. .3/06/chapter_one_part_3/print.html 

2 of8 

moist earth, some as far as 6 feet away from the main 
thicket. Most of them were an inch and a half to 2 inches 
in diameter at the base, significantly thicker than the 
average already-existing full-grown stalks, or "culms." 
Two weeks later, I was shocked to see that a wicker chair 
left sitting near the grove had suddenly been hoisted 
several feet in the air by a fast-moving culm. After a few 
more days had passed I looked again: The culms were 
growing at a rate of several feet a week. 

"It is a most impressive sight to see the new sprouts of a 
bamboo grove, shooting spike-like out of the ground like 
Cadmus' crop of dragon's teeth," wrote one 
bamboo-fascinated Westerner who lived in China around 
the tum of the 19th century. I could not agree more -­
especially after I learned that bamboo grows to its full 
height (in this case, 30 feet) in a single season. (One 
species has even been clocked at 4 7 .6 inches of growth in 
a single 24-hour period.) I suddenly wanted to call my 
Chinese visitors back. The bamboo, in the space of a few 
weeks, had transformed itself from a pleasing, decorative 
and useful adornment into an invading army. 

The metaphor was more apt than I knew. Bamboo falls 
under a subclass of grasses that display "rhizome" 
reproductive habits; they are plants that propagate 
primarily through their root structure, rather than by seed 
or pollen. There are two main types of bamboo: clumping 
bamboo, which stays close to home, and so-called running 
bamboo, which botanists describe with no apparent sense 
of humor as "rampantly invasive." 

My bamboo was running bamboo. The main patch sent 
rhizome roots 1 inch thick in diameter shooting out in 
every direction, each capable oflaunching new culms 
every few inches. A bamboo patch has no central tap root 
to decapitate, and any shred of rhizome left undemolished 
can relaunch the entire patch. No wonder Li Khan, the 
13th century author of one of China's greatest treatises on 
bamboo, tells us that the proper word to describe the 
extending rhizomes of the running bamboo is xingbian -­
"on the march." 

My running bamboo was advancing on the foundation of 
my home. The prospect of rhizomes ripping my basement 
apart did not thrill me. I was even less delighted to 
overhear the neighbors discussing my bamboo. The 
rhizomes had penetrated the fence between us, scooted 
under 4 feet of concrete and started sending troops of 
sprouts up through cracks in their pavement. 

Shortly after discovering how quickly the bamboo was 
spreading, I retrieved a spade from my basement and 
began to dig at the base of one of the culms. But before I 
reached the rhizome I stumbled into a spaghettilike 
intertwining network of much smaller roots, or rootlets, 
that originated in the culm and also radiated out from the 

11/11/01 1:50 PM 



Salon Free Software Project I Chapter I: Boot Time wysiwyg://l55/http://www.salon.com ... 3/06/chapter_one_part_3/print.html 

3 of8 

rhizomes. Together, the rhizomes and rootlets were 
replacing the uppermost foot of topsoil in that part of the 
garden with a woody, impenetrable mass easily capable of 
denting my spade. 

I paused in reflection. The wind ruffled the bamboo leaves 
-- a gentle rustle that in Chinese culture has long been 
considered an indicator of elegance and gracious living 
but to me seemed a most sinister susurrus. Still, even as 
my fear began to mount, I found it difficult not to admire 
the ornery, gnarly survival of the bamboo. Praised 
throughout millenniums in Asia for combining strength 
with flexibility, bamboo is clearly one of nature's great 
achievements. If I had known then what I now know -­
that a bamboo grove was one of the only living things to 
survive the atomic blast on Hiroshima, or that a bamboo 
forest is considered one of the safest places to be in an 
earthquake (because the interlocking rhizomes hold the 
ground together) -- I would no doubt have quailed at the 
prospect of ever overcoming the graceful intruder. But at 
the time, I was just impressed with how tough the plant 
was. 

I considered a backhoe. I contemplated poison. I 
wondered about dynamite. But the first option struck me 
as unmanly and the second as ecologically unwise. The 
third would have delighted my children but probably not 
helped my property's value. So at the advice of a friend, 
who, not coincidentally, is the editor of this book, I 
obtained a mattock: a heavy-duty peasant implement of 
destruction, a combination of ax and pick, designed for 
breaking up inhospitable terrain. The mattock is an 
altogether pleasing tool, and it sliced right through the 
bamboo roots -- not quite like a knife through butter, but 
still with undeniable confidence. 

I enjoyed swinging the mattock. I am a technology 
reporter for an online magazine, which means most of my 
waking life is spent sitting in front of my computer 
writing words meant to be read by other people sitting in 
front of their computers. The virtual life is deficient in 
visceral fulfillment; after pushing e-mail back and forth 
all week, the prospect of repeatedly hurling a heavy chunk 
of iron and fiberglass into the dirt offered welcome 
satisfaction. As I raised the mattock over my back and let 
it fall with a sweet thwack into the bamboo, I fell into a 
nearly unthinking rhythm -- hoist the mattock, let it fall, 
hoist, fall, hoist, fall. Every so often I would grab a 4-foot 
crowbar and crack another section of rhizome out of the 
ground, lifting the grotesquely beautiful twisted mass of 
roots on high to flaunt at my family, as ifI had just snared 
a 20-pound bass or brought down a charging 12-point stag 
with a bow and arrow. 

But try as I might, I found myself unable to sever my 
workaday life from my backyard labor. In between hoists, 
my thoughts swung back to the cornerstones of my daily 

11/11/01 1:50 PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg://l55/http://www.salon.com .. .3/06/chapter_one_part_3/print.html 

4 of8 

reporting. For two years, my attention had increasingly 
gravitated toward one particular set of stories: the 
free-software movement. The story of free software, it 
seemed to me, set forth a grand narrative about 
technology that put the entire world of computing into 
sharp, intriguing focus. 

As far as I was concerned, thumping away at my runaway 
running bamboo, the story of the free-software movement 
was equal parts political revolution, cultural upheaval and 
economic tidal wave. It was the most interesting and most 
important narrative to be told in the computing universe. 
My editors at Salon.corn agreed with me, their enthusiasm 
fueled by the circulation figures our traffic tabulating 
software registered whenever I wrote an article on the 
topic. For nearly two years they had been encouraging me 
to follow the story, to attempt to answer the many 
questions that rippled off free software's wake. How was 
it possible that free-software projects could battle 
Microsoft and Netscape for market share? How could a 
ragtag band of hackers dotted across the world -- from 
Finland to Fremont, Calif. -- be collaborating with such 
efficiency? What did the concept of free software mean 
for the protection of intellectual property? And what 
would happen when the big guns of corporate capitalism 
finally trained their sights on this upstart? Could free 
software actually win in the long run? Or would Microsoft 
annihilate it, as it had demolished so many opponents 
before? 

My editors weren't the only people paying attention. As I 
labored away in my garden and at my computer, mighty 
Microsoft was casting its Sauron-like eye upon these 
meddlesome hacker hobbits. Microsoft is an arrogant 
company, but it is not stupid. Several influential 
Microsoft executives were justly alarmed at the fast 
growth of a competitor that might possibly, in the long 
run, be even more dangerous to Microsoft's stock price 
and quarterly profits than the trustbusting Department of 
Justice, or any gaggle of Bill Gates-hating Silicon Valley 
CEOs. 

The free-software movement poses a unique challenge to 
Microsoft. Microsoft's traditional strategy, when faced by 
a threat from another company, is simple: Buy out, crush 
or subvert the enemy. Yet even though there are a 
smattering of corporations boasting particularly high 
profiles in the free-software world, there is no single 
company that symbolizes or controls the movement. The 
code itself is common property, the product of a 
collaborative effort midwifed by the Internet. Microsoft 
would be able to squash free software about as easily at it 
could squelch the Net itself. 

One particular morning I swung my mattock at yet 
another square inch of gleaming rhizome. Thwack. I 
stared with despair at how little progress I had made after 

11/11/01 l :50 PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg:// l 55/http://www.salon.com ... 3/06/chapter _ one _part_3/print.html 

5 of8 

several hours of backbreaking work. Theoretically, this 
was fun, a relaxing change of pace. But I was really 
getting next to nowhere, and I had to face the fact that if I 
didn't uproot every last square inch, some tiny rhizome 
splinter would start it all up again. That roiling mass of 
roots -- the woody rhizome, the slender rootlets -- all 
twisted together in incredible complexity ... how dared I 
imagine I could defeat it? Who did I think I was -­
Microsoft? 

Rhizome power. How obvious could a metaphor be? My 
bamboo offered me a clear and simple demonstration of 
just what kind of foe Microsoft and the rest of the 
proprietary-software world faced from the free-software 
challenge. 

The Internet is a rhizome: It has no central trunk, no main 
axis, no single point of entry or exit. It spreads 
everywhere, connects everything. The Internet even does 
Mother Nature one better: It's a superrhizome. Bamboo 
roots interlock and intertwine, but they don't actually 
interconnect; if you sever one rhizome, you create two 
distinct patches. But the Internet is built on the principle 
of multiply redundant interconnection. There's always 
another way through, another "workaround," as 
programmers like to say. 

Recall Torvalds' "community of cooperation." That 
community is a social reflection of the power unleashed 
by the Net -- the fuel for unquenchable grass-roots 
excitement. It makes sense, even if the Oxford English 
Dictionary tells us that the original meaning of "grass 
roots" refers only to the lowest, or most fundamental, 
level of a thing. Rhizomes, after all, are grass roots; they 
are the interconnecting substrate that stitches an endless 
prairie into one living organism. They emblematize the 
lack of bureaucratic hierarchy that makes a successful 
grass-roots campaign an unstoppable phenomenon. 

I am far from the first person to have latched onto the 
grass-roots potential of the Internet's rhizomelike 
characteristics. Activists of every political and ideological 
persuasion are wont to seize upon the Net, imagining it 
the perfect organizational tool for energizing 
do-it-yourself campaigns. Whether the cause is Tibetan 
independence, the right to keep and bear arms, pro-choice 
or pro-life fanaticism makes no difference. Only the 
willfully blind fail to recognize how fast e-mail and the 
Net can transmit information and rally the faithful. 

Even if the Net's early pioneers didn't label it with botanic 
precision, they knew what they were seeing. As John 
Gilmore,: a well-known programmer, "cypherpunkl!~~ and 
free-software advocate has often been quoted as saying: 
"The Internet interprets censorship as damage and routes 
around it." The description sums up more than just the 
resilience of modem telecommunication networks -- it's a 

ll/ll/011:50PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg://155/http://www.salon.com ... 3/06/chapter_one__part_3/print.html 

6 of8 

dandy summary of how a rhizome survives in a hostile 
environment. 

Libertarians like Gilmore have long viewed the Net's 
decentralization as a welcome refuge from Big 
Government control. As they zip their most private, 
confidential information from hidden node to hidden node 
in cryptographically encoded sheaths, they imagine that 
they may elude the heavy hand of the tax man or the 
censor. Their version of rhizome liberation is escapist in a 
most practical sense. But they aren't the only people 
placing their bets for transcendent change on the Internet. 
Philosophers, idealists and visionaries of all stripes 
employ the Net as a magic mirror to reflect the object of 
their most ardent desire. 

The libertarians crave escape, while other revolutionaries 
cry for rebellion. For some philosophers the metaphor of 
the rhizome seduces with a promise to discombobulate all 
normal power relations and dynamics, to enable 
"resistance" to the status quo, however that status quo is 
defined. For their online-savvy disciples, the Internet is an 
attractive embodiment of such theory. Unmappable, 
inchoate, ever changing, ever growing, contemptuous of 
geographical borders or legal restrictions -- what better 
home could there be than the Net for a myriad of 
"temporary autonomous zones," "pirate oases" welcoming 
dissidents of every description? 

There's just one nagging problem. A close review of the 
Net's impact on society doesn't automatically prove that 
the Net is actually accomplishing significant political or 
social change, despite its obvious potential for enabling 
grass-roots campaigns. One reason, of course, is that the 
tool has no inherent bias -- anyone can use it. If, for 
example, both Republicans and Democrats take to the Net 
in a U.S. Senate election, the net advantage to either side, 
so to speak, is negligible, a wash. Virtual organizing 
doesn't always alleviate flesh-and-blood oppression. What 
difference has e-mail yet made to religious freedom in 
China? 

But the Net is making a difference in the arena of 
software development. And, unlikely as it may seem, 
there is a connection between the arcane intricacies of 
how best to write complex, powerful code and the 
question of whether the Net will or can change society for 
the vast nonprogramming majority. 

Free software is the leading edge of what is to come, the 
first product of the indigenous culture of cyberspace. That 
shouldn't be a surprise. Programmers built the Net and 
were its first inhabitants; naturally, they would be the first 
to understand how to most fully exploit its potential. What 
is really eye-opening, however, is how different the 
culture that those programmers created online is from the 
culture that dominates the offline world. One can even 

11/11/01 1:50 PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg:/ / 155/http:/ /www.salon.com .. .3/06/chapter _ one _part _3/print.html 

7 of8 

argue that this new programmer culture -- the culture of 
free software, the so-called gift economy -- has grown up 
in resistance to the standard operating procedures of the 
technoeconomy. 

The "gift economy" is a phrase originally coined by the 
French anthropologist Marcel Mauss to describe certain 
practices of exchange he observed in tribal peoples of 
America's Northwest and the Southeast Pacific. In a 
gift-economy society, people volunteer their services or 
goods to others and in tum benefit from similar volunteer 
efforts. For example, the Chinook Indians regularly held 
"potlatch" gatherings in which all participants contributed 
their own offerings -- the ancestor to today's potlucks. By 
giving to others, you expressed your own status and also 
incurred in the recipients of your gifts a reciprocal 
obligation. Many years later, digital anthropologists 
seeking to explain how the Internet grew in its early years 
began to use the "gift economy" phrase to describe how 
programmers contributed their own software tools to the 
Net community without expecting direct recompense, but 
nonetheless, by their own example, encouraging others to 
also give freely. 

Microsoft does not operate according to the gift economy, 
nor do most icons of modem capitalism. The gift 
economy is an oddity, a culture in which ways ofliving 
that, to put it bluntly, simply feel good pay off. The gift 
economy, based on sharing, collaboration and openness, 
is only now translating into an economic windfall, and 
none of it could have happened without the spread of 
internationally linked computer networks. One lesson of 
free software is that highly complex projects can be 
undertaken on an essentially volunteer basis, if there is an 
infrastructure available that seamlessly enables tapping 
the resources and abilities of a large enough group. 

The Linux explosion is the gift economy's greatest single 
success, save for, of course, the Internet itself. Linux has 
proved that certain truths heretofore held self-evident 
about how to become commercially successful don't 
necessarily hold water. To succeed, you don't need brute 
force, a $100 million-dollar marketing campaign or a 
ruthless determination to own or crush any competitor. 
Even more fundamentally, you don't necessarily need to 
spend money to make money. 

We live in a world where software increasingly underlies 
every aspect of human existence. Good software is a 
necessary tool for survival. Linux, and a vast toolbox of 
other useful items provided to the world by the 
free-software movement, can be used to build efficient 
organizations, run companies, allocate resources and, 
wherever there is a bootstrapping need, fill it. Whether 
they know it or not, the free-software programmers are 
helping to change the way the world does business, by 
empowering the little and afflicting the big. 

11/11/01 1:50 PM 



Salon Free Software Project I Chapter 1: Boot Time wysiwyg://l 5 5/http://www.salon.com ... 3/06/chapter _ one _part _3/print.html 

8 of8 

I had contemplated, in general terms, the free-ranging 
nature of the Internet's infrastructure many times before, 
but until that moment when I stood, leaning on my 
mattock, staring into the heart of the rhizome, I hadn't 
made the connection between the Internet's fundamental 
characteristics and the vigor of free software. Free 
software programs are the shoots springing up from the 
Internet's multitudinous nodes. Wherever there is a crack 
in the software industry's pavement, they'll squeeze 
through and grow like mad. Chop one off, and a hundred 
more will spring up -- just like bamboo shoots after a 
spring rain. And like bamboo, the Net's decentralized 
structure makes it resistant to nuclear devastation and to 
the digital equivalents of poison or rampaging backhoes. 

Chinese poets have long compared the snapping cracks of 
fast-growing new bamboo shoots to the sound of thunder 
and lightning. In the 11th century, Ou-yang Hsiu wrote: 

As startling thunder cracks a maddening whip, 
So their misty sheaths unfold from patterned stem. 
Humble of heart, they yet tower high themselves. 

As I swung my mattock with renewed energy, excited by 
the insight proffered me by the bamboo, that startling 
thunder cracked its maddening whip on my own reporter's 
soul. How high would free software tower? 
salon.com I March 6, 2000 

Salon I Search I Archives I Contact Us I Table Taik I t', 1 •• n!u 

Arts & Entertainment I Books I Comics I Lrfe I Newc• I i 1 • 1pie 
Politics I Sex I Tech & Business I .Audio 

The Free Software Project: I The Movie Paoe 
Letters I Columnists I Salon Plus 

Copyright© 2000 Salon.com All rights reserved. 

11/11/01 1:50 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

l of 18 

To print this page, select "Print" from the File menu of your browser 

salon.com > Free Software Proied May 16, 2000 
URL: 
htt:,1 ://www .saion .coni/tech/f<_;p{)000/05/16/ct1;Jpt:er 2 p3-, '- Qne 

BSD Unix: Power to the people, from 
the code 

How Berkeley hackers built the Net's most fabled free 
operating system on the ashes of the '60s -- and then lost 
the lead to Linux. 

BY ANDREW LEONARD 

By the time Bill Joy arrived in Berkeley, Calif., in 1975 to 
attend graduate school, the fabled capital of leftist 
radicalism was a bit ragged around the edges. If the 
21-year-old programming wunderkind had glanced at the 
headlines blasting out of the local alternative weeklies, he 
might have wondered just what kind of insane mess he 
had gotten himself into. In San Francisco, Patty Hearst 
was on trial for a bank robbery committed while the 
newspaper heiress was toting machine guns for the 
Symbionese Liberation Army. In Oakland, the Weather 
Underground botched a bombing of a Defense 
Department building. Even the reliable bugaboo of CIA 
recruitment on the University of California's Berkeley 
campus failed to generate more than a token protest. 

Berkeley was burned out, its radical energy wasting away 
in infantile terrorism, conspiracy theorizing and drug 
overdoses. The Free Speech Movement that had 
galvanized the university in the '60s belonged to another 
geological age. Ken Thompson, co-creator of the Unix 
operating system, graduated from Berkeley in 1966 with a 
degree in electrical engineering. He returned to the 
university from Bell Labs for a sabbatical in 1975. But the 
campus on which he had once walked to class through 
clouds of tear gas had changed. That year, says 
Thompson, Berkeley "had turned into the most politically 
apathetic place I'd seen." 

But it was the right place for Joy. "He never looked at 
those [alternative] papers," says John Gage, a close friend 
of Joy's during the Berkeley years and later at Sun 
Microsystems, a company co-founded by Joy. Today, Joy 
calls himself a "staunch Democrat" and has recently 
carved out a new niche as a techno-skeptical ,c...c..,.-,-.. ,. ·''-'-···'--'-" 
but in the '70s he was, by his own description, "not an 
activist." Joy chose to attend UC-Berkeley instead of 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

2 of 18 

Stanford or MIT not because he was attracted by its 
politics or countercultural reputation but because the 
computer science department's hardware was so obsolete 
that he figured he'd have no choice but to confine his 
research efforts to studying computing theory -- which 
was exactly what he wanted to do. 

But theory turned out not to be Joy's forte. He started 
hacking code and never stopped. "His goal was to build 
something that worked, " recalls Gage. And so he did. 
During his seven years at Berkeley, Joy and a few other 
graduate students and staff researchers spearheaded an 
intensive software development effort that culminated, 
most famously, in a radically improved version of 
AT &T's Unix, known simply as Berkeley Unix or, more 
commonly, as BSD,.':'. for Berkeley Software Distribution. 

Talk about your killer apps! Berkeley Unix worked so 
well that DARPA: chose it to be the preferred "universal 
computing environment" linking together Arpanet'' 
research nodes, thus setting in place an essential piece of 
infrastructure for the later growth of the Internet. An 
entire generation of computer scientists cut their teeth on 
Berkeley Unix. Without it, the Net might well have 
evolved into a shape similar to what it is today, but with 
it, the Net exploded. 

How did the small group of Berkeley programmers pull 
off such a feat? Well, for one thing, there was Joy, a 
programmer around whom legends accrue like so many 
iron filings stuck to a magnet. He could read at age 3, play 
chess at 4 and, during his oral exams, invented a "sorting 
algorithm"_~ on the fly that so stunned his examiners, one 
of them later compared the experience to "Jesus 
confounding his elders." 

But too much focus on Joy, a favorite target for business 
magazine hagi(®JWbY, obscures the larger picture. 
Berkeley's most important contribution was not software; 
it was the way Berkeley created software. At Berkeley, a 
small core group -- never more than four people at any 
one time -- coordinated the contributions of an 
ever-growing network of far-flung, mostly volunteer 
programmers into progressive releases of steadily 
improving software. In so doing, they codified a template 
for what is now referred to as the "open-source software 
development methodology." Put more simply, the 
Berkeley hackers set up a system for creating free 
software. 

BSD itself wasn't originally free software. Joy sold it, 
with the University of California's blessing, at a nominal 
cost only to people or institutions that had already 
purchased licenses permitting them access to the source 
code of AT&T Unix (although, in practice, Joy's efforts to 
verify whether would-be buyers really did own licenses 
may not have been overly vigorous). But in spirit, 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

3 of 18 

Berkeley Unix was indeed free: As Dennis Ritchie, 
Thompson's collaborator in creating Unix, observes, 
anyone who wanted to hack on Unix usually had access to 
the source code, one way or another. And if those hackers 
sent their modifications to Berkeley, and they were 
deemed good enough, they became part of a code base 
maintained by programmers who wanted nothing more 
than for their software to be widely used, for as low a cost 
as possible. 

Berkeley Unix has morphed through multiple phase shifts 
since its inception some 20 years ago, from the 
Joy-dominated era of the late '70s and early '80s to the 
more collaborative period that began after Joy's departure 
to Sun in 1982. But in the early '90s, after a bitter 
confrontation with AT&T, BSD finally did bc1:1)1nc 
"freely redistributable," and descendants of BSD -- led by 
FreeBSD,!_ but also including OpenBSD~ and NetBSD_~ 
-- are vigorous participants in the contemporary battle for 
operating-system supremacy. Yahoo, arguably the world's 
busiest Web site, runs on FreeBSD. And yet, despite its 
proud heritage, BSD's current status doesn't quite match 
up to its early fame. A victim of schisms within its own 
developer community, bruised by the battle with AT&T 
and wounded by the defection of Joy to Sun, BSD is 
currently a small player, especially as compared with 
Linux. Linux-based operating systems have seized the 
public imagination. 

BSD patriots argue that the battle is far from over, that 
BSD is technically superior and will therefore win in the 
end. That's for the future to determine. What's 
indisputable is BSD's contribution in the past. Even if, by 
1975, Berkeley's Free Speech Movement was a relic 
belonging to a fast-fading generation, on the fourth floor 
of Evans Hall, where Joy shared an office, the 
free-software movement was just beginning. 

The connection between the two movements is clear, if 
not direct. By demonstrating the power of cooperative 
software development, and by strengthening the software 
backbone of the Internet so it could further nurture such 
development, BSD helped enable the creation of a 
medium that will do more to spread free speech than 
anything hitherto constructed. Power to the people, from 
the code. 

Many nice, upper-middle-class Berkeley backyards boast 
a redwood patio, possibly a hot tub, perhaps a vegetable 
garden complete with thriving rosemary bushes and 
marauding raccoons. Bob Fabry's backyard has a radio 
tower that wouldn't look out of place at a major Air Force 
base. Capable of telescoping upward to a height of 100 
feet, and built mostly by Fabry himself -- the hub that 
rotates the antenna was scavenged from a 1940s airplane 
propeller -- the radio tower looms beside Fabry's home 
like a not-so-miniature Eiffel Tower. One look at it and 

11/11/01 1:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

4 of 18 

you realize you are in the presence of a very dedicated 
geek. 

Fabry takes his ham radio "hobby" seriously. He once 
even helped organize a trip to the uninhabited wilderness 
of Heard Island, about 1,000 miles north of Antarctica, 
just to set up a ham radio station for a few days so 
amateur-radio enthusiasts all over the world could enjoy 
the pleasure of exchanging radio signals with the faraway 
station. 

But Fabry's most impressive achievement scales far 
beyond his tower or his expeditions. He is the Berkeley 
computer science professor who orchestrated the creation 
of Berkeley Unix. Not that he wrote a lot of code -- that 
honor belonged primarily to Joy and the other members of 
Fabry's Computer Science Research Group, an all-star 
band of programmers whose roster included names like 
Sam Leffler, Kirk McKusick, Mike Karels and Keith 
Bostic. But while Joy and others were hacking for 36 
hours at a stretch, improving file systems,~ networking 
performance, memory utilization and a hundred other 
arcane but crucial elements of Unix, Fabry was running 
interference -- maneuvering through the formidable 
bureaucracies of the University of California and AT&T, 
dealing with departmental politics and backbiting and, 
most important, writing the grant proposals that brought a 
steady flood of DARPA money into Berkeley. 

Fabry was personally responsible for bringing Unix to 
Berkeley. His reasons were simple, and offer an early 
example of the pragmatist bent that has characterized 
BSD development ever since. 

Unix was cheap. AT&T had been forced to practically 
give it away for free by government order. But Unix was 
also, fundamentally, a hack designed to work on cheap 
hardware. Back in 1969, Thompson wanted to get a 
computer game called Space Travel working on a castoff 
PDP-7. So what did he do? He wrote an entire operating 
system that made it possible. Kind of like using a nuclear 
missile to hammer a nail -- but then that's often standard 
operating procedure for obsessed hackers. 

Fabry was entranced by Unix's affordability, along with 
the ease with which it could be adapted to different 
computer hardware. In addition to his academic research 
focus on operating systems, he was involved in setting up 
computing resources for the UC-Berkeley student body. 
In the mid-'70s, this could be an expensive proposition. 
Typically, operating systems that would allow multiple 
users of a mainframe.'.:'._ to work at individual terminals 
were designed only for extremely expensive computers. 
The costs per user could easily reach $50,000 a terminal, 
which made such systems impractical for pedagogic 
purposes. But Unix, used in combination with a relatively 
inexpensive PDP-l l from DEC, ended up costing closer 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.htm1 

5 of 18 

to $5,000 "per seat." 

Even better, a $99 license fee bought you access to the 
Unix source code -- to the blueprints, the magic recipe, 
the key that unlocked all hidden mysteries. For 
researchers, teachers and students, this was priceless. 
Researchers working on cutting-edge operating system 
technology could experiment with already existing source 
code and modify it for their needs; students who wanted 
to learn how an operating system really worked could find 
out by getting their hands dirty with the code. Duane 
Adams, the DARPA contract "monitor" who administered 
the Berkeley Unix contracts, notes that the availability of 
source code was an explicit reason why DARPA chose 
Berkeley Unix instead of contending aspirants like 
DEC's.'.". VMS.: Never mind that VMS had been designed 
from the bottom up for the DEC VAX computers that 
were the most popular hardware for Arpanet nodes; VMS 
was a closed, proprietary system. You couldn't get in and 
muck about, so it just wasn't attractive to researchers. 

DARPA was also recognizing reality. Prominent 
researchers, hungering for the magnetic tapes carrying 
Berkeley's latest distributions like so many desperate 
junkies, demanded that DARPA adopt Berkeley Unix 
because that's what they were already using. 

"What was driving DARPA," says Fabry, "was that 
almost all of their contractors were telling them that they 
were running Berkeley Unix and it was superior to 
anything else available." 

As one popular explanation has it, Unix's source code 
became widely available through a lucky accident -- as an 
unanticipated consequence of the consent decree that 
forbade AT&T from commercializing its 
non-telephony-related inventions. But that's only a part of 
the story. Unix was always more than just a bit player in a 
showdown between the world's largest government and 
the world's biggest corporation. Unix was, at least in the 
mind's eye of scientists like Fabry, "a thing of beauty." 
And from the very beginning, Unix benefited from a 
communal vibe that spread directly from its creators, 
Ritchie and Thompson. 

Fabry recalls grasping the hidden wonders of Unix one 
week in 1975 when Thompson conducted a "reading" of 
Unix over several successive nights. 

"The first meeting of the West Coast Unix User's Group 
had about 12 or 15 people," recalls Fabry, a mild man, 
now 60 years old, who clearly delights in his 25-year-old 
memories. "We all sat around in Cory Hall and Ken 
Thompson read code with us. We went through the 
kernel~ line by line in a series of evening meetings; he 
just explained what everything did ... It was wonderful." 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

6 of 18 

The reading of the code: Thompson's primeval act of 
deconstruction was an initiation into the Unix cabala, a 
ritual passing down of code lore. Fabry may have brought 
the first physical manifestation of Unix to Berkeley, but 
Thompson's reading embedded it in Berkeley's soul. Eric 
Allman,!'" who was later to write sendmail,: the 
open-source-software mail transport program that still 
shuttles the vast majority oflnternet mail across the Net, 
was an undergraduate at Berkeley when he attended the 
readings. He still has his marked-up "listings," reams of 
cheap, flimsy computer paper with notes scribbled on 
them, detailing the obscurities of the C programming 
language and other Unix arcana. 

"The really bizarre thing is that Ken Thompson did a free 
tutorial on Unix kernel internals," recalls Allman, "and 
everyone fit into a rather tiny room." Today, you'd need to 
rent a ballroom. 

Fabry marched against the Vietnam War while he was a 
graduate student in Chicago, and notes proudly that in his 
entire 12-year tenure at Berkeley he never once wore a tie. 
But although some historians have later described the 
Berkeley hackers as freedom fighters -- especially in the 
context of their battle with AT&T (which came well after 
Fabry had retired) -- neither Fabry nor the hackers 
themselves saw what they were doing in such explicit 
ideological terms. But when I ask Fabry if there was ever 
a moment when the goal crystallized in his head that 
software should be free, he turns the question around: 

"Where did it come from that code should cost money? I 
think that's the fair question," says Fabry. In the mid-'70s, 
most programmers had grown up in an era where software 
was usually included with hardware and not considered a 
separate revenue source or proprietary intellectual 
property. Joy saw his work on Unix as research, to be 
shared with the rest of the academic research community 
the same way professors had been sharing the fruits of 
their labors for thousands of years. Ritchie and Thompson 
wanted their software to be used -- they did everything in 
their power to help the Berkeley programmers fix bugs 
and make improvements. 

None of them saw himself as a crusader. But a trickle of 
idealism still occasionally leaked out. 

"I think the spirit in which we were putting this all 
together was much the spirit that was picked up later by 
the Free Software Foundation and the various people who 
were trying to build 'software for the people,"' says Fabry. 
"The idea is that there is no duplication cost for software, 
so it ought to be basically free, and we were all working 
together to try to produce this ideal system that we would 
all love to have, and love to be able to use ourselves. That 
was the goal of a lot of people, and of course that was the 
original goal of Ken Thompson and Dennis Ritchie in 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.htm1 

7 of 18 

starting Unix." 

Fabry retired at age 43, tired of the DARPA treadmill and 
eager to focus his energy on his ham-radio tinkering. But 
Berkeley Unix's record of success still thrills him. 

"Berkeley Unix was clearly the most successful university 
software project that has ever gone on," says Fabry in a 
rare moment of assertiveness, before backtracking 
slightly. "I don't know, I haven't been keeping up since 
1983 and maybe there's been something since then, but I 
believe that that was true at the time. We had literally 
thousands and thousands of installations, and a whole 
generation of computer science students all around the 
world grew up on Berkeley Unix. It set a standard for 
operating systems that people are still having trouble 
doing better than. It was also the first efficient networking 
solution; for years it was the only game in town, the basis 
of Internet development. It really was one of the things 
that the people who made the Internet what it is today 
built on. There were battles that had been solved that 
didn't have to be solved again in order to do whatever new 
part that they wanted to do." 

"Bill codes like a demon." -- John Gage 

"His code was ugly." -- Kirk McKusick 

"Bill Joy was a fabulous marketer." -- Eric Allman 

"Bill was superb. He was the epitome of what one would 
like to see in a graduate student. -- Bob Fabry 

"He had an infectious enthusiasm about him, where he 
would just get the people around him to do stuff. And he 
had an incredible drive to get his software out so that 
other people would use it." -- Kirk McKusick 

"Berkeley Unix was the work of many talented 
developers. Bill Joy's particular genius was in integrating 
the work of these many contributors from many different 
organizations." -- Rob Gurwitz 

"Bill's really smart." -- Sam Leffler 

Gage's eyes twinkle as he recalls one of his favorite Bill 
Joy stories. The scene, he says, is in a boardroom high up 
in a building overlooking Washington, D.C. The time is 
the early 1980s. In attendance are some representatives 
from DARPA, some employees ofBBN_'i'._ (a Boston 
company that received the original DARPA contract to 
build the Arpanet) and a few Berkeley hackers, including 
Joy. 

At issue was an annoying problem that had been 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

8 of 18 

bothering DARPA. DARPA had given Berkeley a major 
contract to enhance Unix so that it would be suitable for 
DARPA's network of research sites. It had also decided 
that Berkeley Unix should incorporate TCP/IP,._: a 
specification for how Arpanet machines would 
interconnect. Devised by Vinton Cerf and Bob Kahn, 
TCP/IP (Transmission Control Protocol/Internet Protocol) 
was -- and still is today -- the basic method by which 
computers talk to each other across the Internet. 

But DARPA had given BBN the contract to implement 
the TCP/IP protocol,.': to write the all-important TCP/IP 
"stack.".'.:.' Joy had been instructed to plug BBN's stack into 
Berkeley Unix. But Joy refused to do so. In his opinion, 
BBN's TCP/IP wasn't good enough. So he wrote his own 
high-performance TCP/IP stack. 

As Gage tells it, "BBN had a big contract to implement 
TCP/IP, but their stuff didn't work, and Joy's grad student 
stuff worked. So they had this big meeting and this grad 
student in a T-shirt shows up, and they said, 'How did you 
do this?' And Bill said, 'It's very simple -- you read the 
protocol and write the code."' 

"That really frosted the BBN guys." 

Well, sure. In programming lingo, a flat statement like 
"Read the protocol and write the code" is, to borrow some 
modem slang, a major dis. But did Joy really say the 
words? And did BBN's code really not work? 

No and no, says Rob Gurwitz, the BBN programmer who 
wrote BBN's implementation of TCP/IP. Gurwitz says he 
was at all the DARPA steering committee meetings that 
handled TCP/IP matters during that era, and he doesn't 
remember ever hearing Joy make such a statement. 
Gurwitz, who says he worked closely with Joy and Sam 
Leffler on the integration of TCP/IP into Berkeley Unix, 
also says Joy's version of TCP/IP was not a direct 
replacement for BBN's code. Joy's stack was designed to 
maximize perfrirrnance over local area networks that had 
wide bandwidth connectivity -- like an Ethernet_'~ network 
designed to serve an entire university campus, for 
example. Gurwitz's version was built to operate on the 
much narrower 56Kbps telecommunication lines that 
made up the Arpanet's backbone. 

Nonetheless, the Berkeley hackers were (and are) 
convinced that their implementation was superior, and 
they continued to resist all attempts by DARPA to force 
them to include the BBN version in Berkeley Unix, even 
though, according to Gurwitz, several DARPA sites 
continued to use BBN's version for years. As is the case 
with most programming disputes, the deeper one delves 
into the TCP/IP spat, the more "Rashomon"~likc the 
search for truth becomes. 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

9 of 18 

So why is the squabble important? For at least three 
reasons. 

First, the incorporation of TCP/IP into Berkeley Unix can 
be, and often is, singled out as the most important 
innovation that made the Internet function efficiently. Joy 
and other Computer Science Research Group_: veterans 
argue that their version of TCP/IP was crucial, because 
only it was technically good enough to satisfy researchers 
who wanted to communicate with each other and get work 
done on their local networks as well as on the Internet. 

The TCP /IP stack, one could argue, was the original 
Promethean gift of fire to the mortals of the Net. And 
when the Internet suddenly boomed in the '90s, Berkeley 
Unix scaled up right along with it -- a testament, says 
Kirk McKusick, to the quality of its design. To this day, 
BSD advocates contend that the networking performance 
of BSD, which can still be traced all the way back to Joy's 
TCP/IP code, outclasses the best that Linux-based 
operating systems can do. 

Second, the TCP/IP stack played a deciding role in 
settling the legal battle between AT&T and the University 
of California. The breakup of the AT&T monopoly in 
1984 finally permitted AT&T to commercialize Unix. For 
years, as Unix became the preferred language of the Net 
and academia, AT&T had steadily increased licensing 
fees from the original $99 all the way up to $250,000. But 
AT&T wasn't the only interested party. In the early '90s, 
BSDi,~ a spinoff of Berkeley's CSRG, started selling its 
own version of Berkeley Unix, and the University of 
California had been selling its version for years. In 1992 
AT&T sued both the University of California and BSDi, 
claiming that BSD Unix included proprietary AT&T 
code. 

Unfortunately for AT&T, the version of Unix that the 
company was then pushing, System 5, turned out to 
incorporate large chunks of code originally written by 
BSD hackers -- including the TCP/IP stack. Berkeley 
released all its code under an extraordinarily liberal 
license -- basically, users could do anything they wanted 
with BSD code as long as they retained the University of 
California copyright. But AT&T had stripped the UC 
copyrights and begun marketing the software as its own. 
Hackers like McKusick were peeved. 

"We had written this code and they were claiming it was 
theirs," says McKusick, "and that they had the rights to it, 
and we just flat out didn't believe it. And it pissed us off 
that they were basically taking our work, that they hadn't 
paid a penny for, but that they had made money off of 
because of all the damn licenses that they had sold, and 
they were now trying to claim it was theirs." 

The University of California's lawyers seized upon the 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

10 of 18 

opening, countersuing AT&T for copyright violation. 
After the requisite legal scurrying, the two sides came to a 
settlement, the terms of which both sides are forbidden to 
comment on. That settlement, along with a concerted 
effort by BSD hackers to rid their code of any AT&T 
"taint," freed the operating system of its last proprietary 
vestiges. 

Third, even if Joy did not piss off his fellow programmers 
by saying "Read the protocol and write the code," no one 
who knows him well will deny that it is the kind of thing 
he could easily have said. Joy's colleagues and professors 
are unanimous in describing him as a fundamentally nice 
guy. But like so many great hackers, Joy is also almost 
unconsciously arrogant. And that arrogance has been, 
historically, a key part of the BSD legend. As a general 
rule, programmers tend to have a high opinion of 
themselves. And as a class, Unix programmers are well 
known for demonstrating their own special blend of 
high-priest orneriness. But BSD Unix hackers, with some 
notable exceptions, are especially virulent in their 
self-assuredness. They aren't wrong very often, and when 
they are, convincing them of that fact requires several 
armies and quite a bit of heavy artillery. Indeed, the 
easiest explanation for why BSD hackers watch in dismay 
while Linux-based operating systems sweep the world is 
that, for years, subsections of the BSD community have 
been endlessly imitating the mulishness that marked Joy's 
original reluctance to compromise on TCP /IP. 

Of course, if anyone ever had a right to be arrogant, it 
would be Bill Joy. When the University of California 
received new computer terminals advanced enough to 
allow a cursor to be mapped to a particular point on the 
screen, Joy promptly, and speedily, wrote a text editor, 
vi,~ that took advantage of the new capabilities. Vi is still 
widely used today, standard equipment on nearly all Unix 
installations. 

If the compiler Joy was using didn't satisfy him, he wrote 
a new one. If the backspace key didn't work correctly in 
Unix, he rewrote the source code. And so on. 

"Bill's very good at taking something," says McKusick, 
"saying, 'OK, this is what I have, this is where I want to 
get to, what's the shortest path from here to there?' His 
code was ugly, unmaintainable, incomprehensible, but by 
golly it only took him two weeks to do an incredible 
amount of functionality. Someone asked me once to 
compare myself to Bill Joy, and I said, "You know, there's 
really nothing that Bill's done that I couldn't have done, 
but what Bill did in a year would take me 10."' 

"He was just very good at reading a large body of code 
and wrapping his mind around it," recalls Fabry. "So he 
could do major reorganizations of code in a single 
weekend. I saw him do major reorganizations of the 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/l6/chapter_2_part_one/print.html 

11 ofl8 

kernel several different times. In the beginning it took him 
just a few days, while later on it might take him a month. 
It was wonderful." 

Joy called me once on his cellphone. It was Feb. 14, and 
he was in a grocery store in Monterey, Calif., stocking up 
on food before heading over to the annual TED 
(Technology, Entertainment, and Design) conference. 
Never one to waste a spare second, he decided to combine 
two chores -- my questions about his Berkeley days and 
his own need for sustenance. The result gave me a close 
glimpse at one of Joy's more famous qualities -- his ability 
to multitask. While answering a question from me, he 
would simultaneously talk to the cashier or a counter 
person without skipping a beat. In the middle of a 
sentence, out would pop the words "fruit salad" or "yogurt 
with raisins." 

Like Unix itself, famous for its ability to perform 
simultaneous tasks, Joy could allocate portions of his 
brain to separate jobs at the same time, without appearing 
to shortchange any of them. 

I learned later that his performance wasn't as 
awe-inspiring as I first thought. Joy, I was told, decides 
what he thinks about something and then rarely changes 
his mind; instead, he stores away his thoughts on the 
subject and is able to regurgitate them on demand, 
without wasting any fresh brain cells. 

People who've worked with Joy say his ability to 
compartmentalize made him difficult to deal with on 
occasion. The stories of shouted arguments ringing 
through the hallways of Berkeley's computer science 
department are legion. But Joy's stubborn 
single-mindedness also made him an excellent leader. 
Berkeley Unix thrived in large part because Joy held his 
code to the highest possible standard and refused to 
compromise. Leffler, Joy's second-in-command for most 
of the heavy lifting involved in pushing out the first 
versions of Berkeley Unix, says he and Joy had a 
responsibility not to compromise. The U.S. Department of 
Defense was paying for BSD, and its prospective users 
encompassed the cream of the computing-science crop. 

Intriguingly, Joy doesn't subscribe to the fundamental 
credo of the Linux movement -- the belief that the 
strength of open-source software is its ability to tap the 
energy and enthusiasm of a vast network of volunteer 
programmers. Linux is built on an egalitarian ethic: 
Perhaps not every programmer will write great code, but 
together, all those eyeballs and all those 
keyboard-pounding fingers will incrementally make their 
way toward greatness. 

But Joy doesn't believe that having more programmers 
equals better code. 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

12 of 18 

"Most people are bad programmers," says Joy. "The 
honest truth is that having a lot of people staring at the 
code does not find the really nasty bugs. The really nasty 
bugs are found by a couple of really smart people who 
just kill themselves. Most people looking at the code 
won't see anything ... You can't have thousands of people 
contributing and achieve a high standard." 

Joy even disputes the commonly held conception that 
BSD set the model for demonstrating how a large 
software project could be built via contributions by a 
widely distributed network of programmers. 

"Almost no fixes came in from anywhere else," says Joy, 
referring to Berkeley Unix. "In fact, most of the stuff I got 
back was not that great. Remember, there wasn't a real 
swift network at that time. In later years you got stuff 
back, but I didn't get much stuff back during that time that 
I was doing." 

Joy may be overstating the case. Leffler and McKusick, 
while conceding that 90 percent of outside contributions 
did not meet Berkeley's standards, state authoritatively 
that significant portions of BSD code came from outside 
Berkeley. And after Joy's 1982 geparture to Sun, the 
percentage of outside contributions began to rise, in 
tandem with the rise of the Net. Joy may be overreacting 
against the new generation of open-source hackers, many 
of whom frequently fail to acknowledge ( or even be aware 
of) Joy's contributions to the software ecology that 
underlies the entire free-software movement. Joy says that 
when he boots: Red Hat Linux, he sees boot-up messages 
scroll by that he personally wrote 20 years earlier. Joy 
would much rather talk about his current passions, Sun's 
Java and Jini, and when he's asked about Linux, he 
sometimes lets traces of annoyance slip through. Who are 
these punk hackers, some of whom weren't even alive the 
first time Joy rewrote the Unix kernel? 

"Ifl had to rewrite Unix from scratch, I could do it in a 
summer, easily," says Joy. "And it would be much better. 
A much, much better job. The ideas are old." 

But if an increase in the number of programmers doesn't 
ensure an increase in the quality of code, then why do 
Linux-based operating systems dominate the market 
today? And if Joy rejected most contributions from 
outside Berkeley, why does BSD enjoy a reputation for 
pioneering the model for collaborative open-source 
software development? 

"BSD was Bill Joy, initially," says McKusick. "He did the 
distributions and talked about them and pushed them out. 
He would give talks, and, inevitably, at the end of the talk 
he would say, 'And if you have any cool stuff, come talk 
to me."' 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter _ 2 _part_ one/print.html 

13 of 18 

But, Eric Allman hastens to interject, Joy did not invent 
the concept of freely redistributing software at Berkeley. 
That "seemed to be an ethos that permeated Berkeley in 
general," recalls Allman, who had worked in the early '70s 
on a database project called INGRES that was widely 
redistributed. And after Joy was gone, that ethos, says 
Allman, continued. 

It is a gorgeous spring Sunday in March. McKusick, 
Allman and I are sitting around an outdoor table in the 
backyard of "Chez Oxford," the north Berkeley cottage 
that Allman and McKusick have lived in for nearly 20 
years. The first warm sun after a month of nearly 
continual rain is beaming down upon us, combining 
happily with a stream of selections from Chez Oxford's 
copious wine cellar. 

Allman and McKusick can use some relaxing. Allman's 
company, Sendmail, is in the midst of a hectic round of 
financing and has just released a major upgrade. 
McKusick, meanwhile, has sent the entire BSD 
community into a tizzy by orchestrating a merger between 
BSDi, a spinoff from the CSRG that sells a proprietary 
version of BSD, and Walnut Creek CD-ROM, the largest 
distributor of the FreeBSD distribution. Plans are even 
afoot for the migration of some code from BSDi's 
proprietary BSD/OS into the completely free FreeBSD. 
Interpretations of the merger's significance vary wildly. 
To some, it's a concession that BSDi's proprietary 
offerings are making no headway against the Linux 
onslaught. To others, the merger is a hopeful sign that the 
days of BSD splintering are over: The community is 
re-forming again, readying itself for a new round of 
sparring with other operating-system upstarts. 

If Joy was the heart of BSD, then McKusick is its soul, 
the keeper of the Berkeley Unix flame. After Joy's 1982 
departure, Leffler lingered around Berkeley long enough 
to complete the delivery of BSD 4.2 to DARPA, and then 
also left academia for the more lucrative embrace of 
Lucasfilm and, later, Silicon Graphics. McKusick, who 
had until then been juggling his dissertation with various 
BSD tasks that Joy talked him into doing, picked up the 
rems. 

To this day, McKusick says proudly, he is one of the only 
original BSD developers who subscribes to developer 
mailing lists for all the major BSD spinoff distributions. 
Every night at 2 a.m., one of his computers downloads 
that day's modifications ofFreeBSD and recompiles the 
system, keeping him excruciatingly up to date. If anyone 
can claim a comprehensive perspective on BSD's 
evolution over time, it is McKusick. 

Like his fellow BSD coders, McKusick disavows 
revolutionary fervor or Berkeley radical ambitions. 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

14 of 18 

"The contribution that we made, ultimately," says 
McKusick, "was in developing a model for doing 
open-source software ... We figured out how you could 
take a small group of people and coordinate a software 
project where you have several hundred people working 
on it." 

McKusick outlines an organizational model that grew up 
in the wake of the departure of Joy and Leffler. At the 
center, there is a "core group" -- a set of programmers 
who control access to the code, by granting or revoking 
the right to modify or "commit" new code to the code 
base. Spreading out from them are the "committers" who 
have that right. Extending out beyond the committers are 
the general community of developers who submit 
changes, bug reports and fixes to the committers. Most of 
today's high-profile open-source projects, such as the 
Apache Web server and the GNU project, use a similar 
form of organization. Linux is the major exception. There 
is no core for Linux -- just Linus Torvalds, followed by a 
tier of trusted "lieutenants." 

"The committers," says McKusick, "were a group of 
people we trusted to commit stuff that were responsible 
for things. The notion was that you didn't have all these 
autocratic controls ... Now, you could have snuck in and 
committed something to the kernel, some kind of trapdoor 
even. I won't say we wouldn't have been none the wiser, 
because we did in fact keep close tabs on what was going 
on in the kernel, but we didn't need to tell people not to do 
that; we didn't have to administratively keep them from 
doing things they shouldn't be doing. We had set up a 
culture as well as a structure." 

Still, 90 percent of the contributions were thrown away; 
the rest, as McKusick likes to say, "were peed upon to 
make them smell like Berkeley. 

"The trick is that ultimately you find that small nugget of 
people who are the really good ones, and that's why we 
have this whole hierarchy, that's why we still have a 
hierarchy today," says McKusick. "Yes, there are 
thousands of developers, most of whom honestly couldn't 
paint themselves out of a wet paper bag if their life 
depended on it ... But you still give them a place; you 
don't just dismiss them." 

The circle has widened constantly, McKusick notes. 
Today, FreeBSD has a core of 16, surrounded by nearly 
180 committers and thousands of developers. Even so, 
FreeBSD is dwarfed by the development community 
contributing to Linux-based operating systems. Which 
raises the obvious question, one that McKusick has heard 
hundreds of times over in recent years: How did 
Linux-based operating systems overtake BSD? 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.htm1 

15 of 18 

There are some obvious answers. In the early '90s, as the 
power of personal computers grew steadily, many Unix 
aficionados began seeking a way to run Unix on their 
PCs. There were two contenders at the time, 386BSD, a 
version of BSD created by William and Lynne Jolitz for 
computers built around Intel "x86" microchips, and 
Linux-based operating systems. But the AT&T suit, 
combined with the slow pace of development on 386BSD, 
placed the whole BSD effort under a cloud. No one knew 
if AT&T would succeed in quashing BSD altogether. 
Linux, in combination with the GNU utilities, was 
protected by the ironclad GNU General Public License -­
all the code was free and always would be free. 

By the time the AT&T suit was resolved, the snowball 
ride to Linux was underway. And the future development 
of BSD after 386BSD did little to persuade hackers to 
change their minds. Developers dissatisfied with the pace 
at which 386BSD incorporated new patches split off and 
founded FreeBSD and NetBSD in 1993. Not long after, an 
internal dispute within the NetBSD core resulted in the 
spawning ofOpenBSD. Meanwhile, McKusick and other 
members of the CSRG founded BSDi. 

McKusick shrugs off the widely held perception that the 
BSD community is irreparably shattered. In addition to 
the just-merged FreeBSD and BSDi, he declares, there are 
only two other major distributions of BSD, each of which 
has its own particular focus. NetBSD specializes in 
porting BSD to different computer architectures. 
OpenBSD concentrates on security issues. 

And how many Linux distributions are there? asks 
McKusick, rolling his eyes. Fifteen, 20? 

I point out that all the Linux distributions share the same 
kernel, which is overseen by the strong, and generally 
impartial, centralizing presence ofTorvalds. BSD has no 
center. 

McKusick looks a little wistful. 

"This is somewhat egotistical," he says. "But I believe 
that had I been willing to act as the figurehead ... I could 
have kept the community from splitting. I had basically 
been in that position for 10 years, maybe 15, and I had 
really felt that the time had come to pass the mantle on to 
other people. I had a certain view of the way things ought 
to be done, and at some point you want to get new blood. 
Honestly, what I really thought was going to happen was, 
I knew that things would explode and there would be a lot 
of different [distributions], and I figured most of them 
would die off, and one would become the evident new 
one. And in some ways that really has happened. I mean 
FreeBSD has, at least by seats, 80 percent of the market, 
and the other two are interesting, but they are really out in 
the noise." 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/l6/chapter_2_part_one/print.html 

16 of 18 

Depending too much on a centrally unifying force, 
suggests McKusick, isn't necessarily a strength. "What 
happens when Linus Torvalds either dies, gets tired or 
otherwise steps away from it all? It's a huge weight. He's 
done, in my mind, a terrible job of building something 
that lives beyond him. If I got hit by a bus, BSD wouldn't 
really be affected a lot." 

As proof of his assertion, he notes that Torvalds does not 
rely on a source code control software~ program to 
administer changes to the Linux kernel. Instead, Torvalds 
reviews each major patch by plugging it into his own 
development system. But what happens if something goes 
wrong? How do you roll back to before the changes? 
Where is the institutional memory, as embodied by 
software, that will keep a project going when the original 
leader leaves? 

When I e-mailed Torvalds after this discussion for a 
response, he dismissed the problem. 

"The purely technical side of keeping track of the sources 
can be handled by source control packages," says 
Torvalds, "but at least, in my opinion, they actually tend 
to favor the approach of 'Let's put this in now; if it turns 
out to be a mistake, we can always revert it because we 
have source control.' And of course, nobody ever actually 
does clean up anything. Or hardly ever. So I think the real 
problem in computer science is to have quality control 
before it even hits the distribution, and so far there isn't 
any other package than the human brain that can do that 
job." 

Torvalds' answer is interesting, if only because the 
confidence that it reveals echoes the strength of Joy's 
belief in his own abilities. Perhaps Linux will not be able 
to develop BSD-like organizational structures until after 
Torvalds leaves the scene. 

Ultimately, the disagreements over organizational strategy 
between the BSD and Linux camps are petty when 
compared with the similarities. As McKusick is quick to 
stress, "The important thing is to be open source, not 
whether Linux or BSD wins out." 

And in that context, one can indeed see BSD, from the 
Joy era through the McKusick era and beyond, as part of a 
continuum feeding energy and enthusiasm into the current 
Linux upswing. Even during the earliest days, Joy, as 
McKusick notes, wanted other people to contribute "cool 
things." Ever since then, the trend line has been one in 
which the circle of contributors has widened steadily. 
BSD demonstrated how to bring people into the process -­
by making them part of the process and by giving them 
credit for their contributions. As Keith Bostic,*, the leader 
of the drive to create a version of BSD that included no 

11/ll/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

17 of 18 

proprietary AT&T code at all, likes to say, "There is no 
end to the world of good you can do by giving people 
credit." 

Because what happens? You end up creating tools that 
everyone can use to be even more productive, to create 
even-greater structures that encourage collaboration, 
which in turn unlock even more creativity. That's the 
essence of free software, and it goes beyond what kind of 
license protects the software, or whether source control 
software is employed, or even how arrogant the top 
developers might be. By opening up the code, Berkeley 
widened the pool of software possibility. 

Gage_! didn't contribute to the code in Berkeley Unix, but 
he spent plenty of time hanging around the computer 
rooms in Evans Hall, gabbing with Joy and pondering the 
political implications of the computer revolution. Gage, a 
mathematical statistics graduate student at Berkeley, was 
also a hippie radical from way back -- involved in both 
the Free Speech Movement and the antiwar protests. He 
was a delegate for Bobby Kennedy at the Democratic 
Convention in 1968 and deputy press secretary for 
presidential candidate George McGovern in 1972. 

After three hours in Gage's favorite Berkeley coffee shop 
exploring what the Internet means for individual liberty 
and what role Berkeley Unix played in catalyzing the 
Internet's growth, Gage rolls his memories back to 
perhaps the single most-famous moment in Berkeley's 
history of activism. 

He starts quoting the speech Mario Savio gave on the 
steps of the administration building overlooking Sproul 
Plaza. He hunches over the table, his eyes blazing with a 
sudden visceral intensity: 

"'There is a time when the operation of the machine 
becomes so odious,"' declaims Gage, "'makes you so sick 
at heart, that you can't take part; you can't even passively 
take part, and you've got to put your bodies upon the gears 
and upon the wheels, upon the levers, upon all the 
apparatus, and you've got to make it stop. And you've got 
to indicate to the people who run it, to the people who 
own it, that unless you're free, the machine will be 
prevented from working at all!"' 

Gage grins. Berkeley Unix, he proposes, offered a 
different way forward from the painful agony of hurling 
oneself into the operation of a demonic crankshaft. 
Berkeley Unix, with its source code available to all who 
wanted it, was the "gears and levers" of the machine. By 
promoting access to the source code, to the inner 
workings of that machine, the free-software/open-source 
movement empowered people to place their hands on the 

11/11/011:51 PM 



Salon Free Software Project I BSD ... Power to the people, from the cchttp://www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html 

18 of 18 

gears and levers, to take control of their computers, their 
Internet, their entire technological infrastructure. 

"The open-source movement is a free speech movement," 
says Gage. "Source code looks like poetry, but it's also a 
machine -- words that do. Unix opens up the discourse in 
the machinery because the words in Unix literally cause 
action, and those actions will cause other actions." 

Savio is dead. The Free Speech Movement is 
half-forgotten. Few, if any, of its participants would have 
predicted at the time that a network of computers might 
prove to be free speech's greatest friend and best weapon. 
Indeed, Savio's "machine" was in part a metaphor for 
what he saw as the dehumanization inherent in 
information technology: The University of California was 
IBM, the students were punch cards, both literally and 
figuratively, fed into the machine, not to be folded, 
spindled or mutilated. 

The Berkeley Unix hackers, by helping to unleash the 
power of the Internet, rehumanized the "machine." Those 
"words that do" instigated connectivity and provoked 
communication. Somewhere, Savio is smiling. 
salon.com I May 16, 2000 

About the writer 
Andrew Leonard is a senior 
writer for Salon Technology 
and author of Salon's Free 
Software Project, an online 
book-in-progress exploring the 
history and culture of the free 
software movement. 

Salon I Searct1 I Archives I Contact Us I Table Talk I A( info 

Arts & Enterta;nrnent I Books I Comics I Lite I r~ew,; I r ,,J'.,? 
Politics I Sex I Tech & Business I Audio 

The Free Software Project I The Movie Page 
Letters I Columnists I Salon Plus 

Copyright© 2000 Salon.com All rights reserved. 

11/11/011:51 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://l 6 l/http://www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

l of 12 

th• be$t bookstor• you'll •ver read 

com CLICK HERE 
1J. l11Jei!:t to find your hoppy plo<:e 

Search About Salon Table Talk Newsletters Advertise in Saioi, f • 2stor Relations 

To print this page, select "Print" from the File menu of your browser 

Do-it-yourself giant brains! 

From punch cards to Linux, hackers love to tinker and share. Even Bill Gates can't stop them. 

By Andrew Leonard 

Jun. 22, 2000 I Godless Russians and Communist film directors weren't the only bogeymen who gave 
Cold War-era Los Angeles the heebie-jeebies. In the early '50s, the Los Angeles Police Department 
confronted a truly destabilizing threat: pinball. 

City authorities, considering pinball machines to be implements of vice and corruption, would break 
them up for spare parts, consigning the debris to bins in the police department's electronics shop at 
downtown's Lincoln Jail. Among the parts stockpiled at the jail were heaps of solenoids -­
electromagnetic coils used for initiating pinball plunger and bumper action. 

Solenoids are really, really good at facilitating on/off flip-flops, mechanically opening and closing 
circuits depending upon the flow of electric current. During World War II the solenoids were a vital 
military resource material. But afterwards, they sat unused -- until a couple of teenaged proto-hackers 
named Phil Cramer and Bill Fletcher came along. 

Cramer and Fletcher knew just what to do with leftover solenoids. They would be perfect for 
constructing Giant Brains! 

Like many other aspiring electronics geeks in the immediate postwar era, Cramer and Fletcher's 
imaginations had been enticed by a book published in 1949 called "Giant Brains, or Machines That 
Think." Written by Edmund C. Berkeley, an in the then-infant field of computing, "Giant Brains" 
was both a primer and a manifesto. 

In language that managed the delicate trick of being exquisitely clear and uncompromisingly 
evangelistic, Berkeley described how a computer works, step by step, instruction by instruction. 
Employing numerous diagrams, and painstakingly explaining every underlying concept (like "binary" or 
"register" or "input/output") as if it had never been explained before, Berkeley demonstrated how it was 
possible to move digital information from one "place" to another -- and how a set of on/off switches, if 
wired correctly, could perform operations on that information, handling such extraordinary feats as the 
addition of two plus two. 

In 1952, Berkeley walked the walk. He built his own computer, Simon, considered by some historians to 
be the first "personal computer," and documented the process in a series of 13 articles for Radio 
Electronics magazine. Cramer and Fletcher, demonstrating a cavalier attitude towards proprietary 
information that would become a calling card for do-it-yourself hackers in generations to come, ripped 
the pages of schematics right out of copies of the magazines at their local library. (As Cramer noted 
shamefacedly, 50 years later, "We had no duplicators in those days!") 

Fletcher had a contact within the police department who let them rummage through the bins of 
electronics. Following Berkeley's instructions, the two teenagers built a simple solenoid relay-driven 
computer. It didn't work exactly as planned, but it did something, and that was enough. Enough to get 
Cramer's father, an accountant, to give the youngsters $50 to buy more parts. Enough to encourage them 

ll/ll/Ol l:52PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ / 161 /http://www.salon.com ... 6/22/ chapter _2 _part_ two/print.html 

2 of 12 

to try again, to build another simple machine that did work. Enough, in the case of Phil Cramer, to 
launch him into a life spent tending Giant Brains, a career of computer programming that continues to 
this day. 

Dig under the surface of your average computer geek and you will find a person in love with the idea of 
having a Giant Brain of one's own to play with. As computer scientist Dick Karpinski observes, 
computers, or to be precise, the act of programming computers, "is the only way to have socially 
acceptable slaves." 

Over the decades, the opportunity to harness the power of a computer to one's own selfish purposes, 
whatever those may be, has proven irresistibly seductive. From the '50s kids who gravitated inexorably 
to IBM mainframes to the Homebrew Computer Club tinkerers who built the first personal computers in 
the '70s to the Linux hackers exchanging tips and tricks in their user's groups in the '90s, the underlying 
passion is identical: It is a whole lot of fun to be the master of a Giant Brain, down to the very last binary 
one or zero. 

And anything that hinders that mastery is resented. Abhorred. Reviled. Detested. It is no accident that 
the hacker of the '50s and '60s despised IBM while his counterpart in the '80s and '90s denounced 
Microsoft. They got in the way! The love affair that so many programmers have with free software isn't 
reducible to mere respect for an efficient software development methodology. It is also an expression of 
the programmer's age-old craving to be in intimate control of every aspect of the machine -- and 
unwillingness to allow any barriers to block the Source. 

Of course, when programmers like Cramer got started, there was no real difference between hardware 
and software. It was all just stuff that made the machine go. You might be inputting instructions by 
floppy disk, or magnetic tape, or 2...unch cards, or paper tape, or even by wiring plugs together -- the 
medium simply didn't matter: The point was to get the machine to work. 

Hackers have always understood this -- and indeed, in the earliest days, there was little need to worry 
about any separation. Hardware came with software, and you fiddled with both until you got the 
machine to do what you wanted it to do. But over the decades since the '50s the growth of the 
commercial software industry, combined with the increasing complexity of software, has worked to 
divide programmers from the object of their passions. As programmers began to be consigned to smaller 
and smaller pieces of a larger and larger pie, the job became less and less fun. And when a 19-year-old 
Bill Gates appeared on the scene in the mid-'70s, admonishing the Homebrew hackers to stop "stealing" 
his BASIC programming language, the end of hacker happiness seemed nigh. 

But true hackers don't let little things like monopolies or near-infinite complexity stop them. As their 
first line of defense, they have always sought strength in numbers. In the '50s, programmers like Phil 
Cramer joined a powerful IBM computer user's "club" called SHARE, determined to pool their 
resources in order to get their machines working better -- and make IBM dance to their tune. In the '70s, 
the Homebrew hackers likewise came together, in garages and living rooms, to share their expertise and 
code in the service of their new, desk-sized, power-to-the-people machines. And from the '90s right on 
through to a new century, free software hackers have also flocked to one another. The 
programmer-computer relationship may be an inescapably solitary interaction, but the fight for control 
over every last bit of digital and silicon granularity requires collective effort. 

The free software movement has often been described as being by hackers, for hackers, with the rest of 
us just lucky beneficiaries of the byproduct of hacker obsessions. Even as the free software movement 
has been organized and corporatized, at root it's still the same as it ever was -- a movement fueled by 
tinkerers who are constitutionally unable to allow anything to stand between them and their machines. 

It doesn't matter whether the tools of their trade are piles of solenoids or ;1pylefled compiler and 
debugger programs. Hackers will stop at nothing in their drive to play with their Giant Brains. If that 
means that along the way they'll build the Internet, unleash the personal computer industry and topple 
Microsoft, well, so be it: They just want to have fun. 

ll/ll/Ol l:52PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://161/http://www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

3 of 12 

The year was 1950. Barry Gordon sat at a desk, a mechanical Friden calculator to his left, punching 
numbers. He wasn't alone. The "math section" at the Mutual of New York insurance company included 
rows of similar desks, all featuring Fridens, clerks and actuarial tables. The job was mind-numbing: 
Punch a number into the Friden. Multiply it with a number from the actuarial table, read out the result, 
write it down and multiply it by another number. Over and over and over again. 

"I get called in by my boss, one day," says Gordon, a fast-talking New Yorker who grins as he starts into 
a story he has obviously told many times before. "He was the head of the math section, and he says, 'We 
have a new IBM 604 electronic calculator, and we'd like one of the actuarial students to learn how to use 
it. What do you think?' I said, 'Sounds terrific!' I didn't know what the hell he was talking about -- I'm 23 
years old, on my first job -- but I said it sounded great." 

Just by studying the manual, Gordon mastered the essentials of the 604 well enough that he was able to 
fix it when it malfunctioned a couple of weeks later, even without ever having previously laid eyes on 
the machine. Within days, he was transferred into the "tabulating division." He felt blessed. 

"We used to sit in the math section," says Gordon, "churning out rates and forfeiture values and 
dividends and whatnot, and now I'd come across this fabulous electronic machine that does stuff 
miraculously at lightning speeds, and I'm thinking, I'm in on a revolution! I'm going to free mankind 
from the drudgery of sitting at calculators!" 

There was just one little problem. After setting up the 604 to do whatever particular operation was 
required, the machine would spit out "reams and reams" of punch cards that in tum would be fed into the 
"tabulator" which would then promptly produce printouts of neat columns of numbers. But only 
numbers -- there were no headings, no indications of what the numbers referred to. The tabulator could 
only handle numbers. To make the information "camera-ready" for later copying and distribution, those 
headings had to be added. 

"So one day I'm wondering, where do those headings come from?" says Gordon. "And one evening, on a 
break during overtime, I go down to the math section where all the people had been freed from the 
drudgery of hitting the calculators. And they are sitting there, cutting and pasting headings on the pages 
to make camera-ready copy! And I thought, this is what I have freed them for? There is something 
terribly wrong with this whole system! At that point I almost quit computing to do something else." 

Mort Bernstein's living room explodes into laughter. Barry Gordon is sharing his story with a roomful of 
aged programmers -- veterans of the industry who all started out in the early '50s. The breadth of 
experience shared by the nine men and one woman gathered together in this Santa Monica suburb is 
impressive. They have literally seen it all. 

Today, they trade tips on avoiding Microsoft Outlook viruses, or dual-booting their personal computers 
with Linux. But their experiences are grounded in the biggest of "big iron" -- cumbersome IBM 
mainframes like the 701 "Defense Calculator" and its successor, the 704. Most were employed by 
Southern California aerospace companies or think tanks: RAND, Lockheed, Douglas, North American 
Aviation. Notwithstanding Gordon's insurance tales, these programmers were accustomed to solving 
problems of slightly more significance than, say, handling Web site traffic or calculating life 
expectancies. Irwin Greenwald simulated the H-bomb explosion on Eniwetok at RAND, for example, 
while Westinghouse's Frank Engel modeled the possible deadly malfunction of a Nautilus submarine 
nuclear reactor. 

Some, like Phil Cramer, are still working -- he runs a company that specializes in software for auto 
dealerships. Others, like Frank Wagner, the patriarch at this meeting, have been retired for several 
decades. Still others, like the host, Mort Bernstein, amuse themselves with hobbies: Bernstein is trying 
to program an "emulator" for RAND's Johnnia('. computer on his PC, but is finding it to be quite a task. 
Not only does he have to emulate the Johnniac's processor, but he also has to emulate the punch cards 
that fed it, and the punch card reader, and so on. 

The youngest doesn't look a day over 65, but that isn't slowing anyone down. Jokes, anecdotes about 

11/11/01 1 :52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://161/http:/ /www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

4 of 12 

long-forgotten computers and disputes about ancient programming lore zing back and forth. They 
delight in insulting each other, their long-dead colleagues, and most of all, IBM. Programmers of any 
age appreciate the art of the deftly delivered sarcastic jab, or, in the parlance of these coders, the 
"cut-down." When Gordon recalls a going-away party at IBM for a manager who appears to have been 
spectacularly nondescript, and quotes the parting toast "John, your departure will fill the void that was 
created when you first got here," the laughter is hardly polite -- it's an uproar. 

The occasion is a reunion for former members of SHARE, an IBM user's club. Founded in 1955, 
SHARE may have been the first official computer user's group ever. Certainly, for a time, it was one of 
the most powerful. 

SHARE was an outgrowth of an earlier collaboration between Southern California aerospace companies 
called PACT -- the Project for the Advancement of Coding Technologies. P ACT's goal was to write a 
compiler for the 701, IBM's first commercial digital computer. SHARE started out as a proactive 
measure to prepare for the arrival of the 704. Although the name predated a later reverse-engineered 
acronym -- "The Society to Help Alleviate Redundant Engineering" -- from the very beginning SHARE 
aimed to save individual programmers from the sorry fate of writing basic code for essential tools that 
had already been written by someone else. 

"We wanted to do something about this silly business of everybody programming their own square root 
routine," recalls Wagner, who managed programmers at the Mustang fighter plane manufacturer North 
American Aviation. The 704, which filled a large, specially built room with its card punch, card reader, 
printer, CRT, magnetic tape reels, magnetic drum, magnetic core storage, central processing unit and 
operator console ( each of which was a separate machine), was not only hard to use, but also didn't come 
equipped with much in the way of pre-installed "software." Instead, the 704 arrived with a 103-page 
"Principles of Operation" manual, an assembler and some very basic utility programs, such as a single 
punch card "bootstrap loader" to get the machine started. 

These huge mainframes were more than welcome to the aerospace companies -- they were essential. In 
the tense days of the Korean War, the pressure was on the defense industry to keep up with every move 
made by the Soviets and Communist Chinese. But, as Wagner recalls, it was getting harder and harder to 
tote up the necessary numbers involved in high-tech aeronautic design. "We were drowning in 
arithmetic," says Wagner, a genial, albeit occasionally sharp-tongued man treated by the other 
programmers with a mixture of respect and friendly deference. "Whenever an aircraft design changed, 
you had to go way back and start all over again." 

Cooperation, for the purpose of the elimination of "redundant" effort, was the order of the day. The 
companies didn't share all their software -- they kept their structural analysis programs to themselves. 
But they did share the tools that they used to build such programs. Such cooperation only made sense to 
programmers who hated wasting their time, and who, according to Gordon, "tended not to be company 
loyal or commercially oriented." 

"They were loyal to their profession," says Wagner. 

And their drinking buddies. Certainly, as an example of programmer pragmatism prefiguring such 
open-source standbys as the ~<\pache Web server, or Linux itself, by decades, SHARE is historically 
noteworthy. But SHARE wasn't just about saving money and time -- it was also about having fun with 
your community. Going to SHARE meetings was a blast, and not least because every night there was an 
open bar "SCIDS" meeting: The "SHARE Committee for Imbibers, Drinkers and Sots." SCIDS was 
where the action was, where the "technical" people gathered to lubricate themselves on alcohol and 
algorithms. As John Backus, the principal author of IBM's Fortran programming language, noted during 
a 1980 commemoration marking 25 years of SHARE, "There were two principal pleasures of SHARE: 
Blasting IBM -- giving them hell for fouling up and not giving them what they wanted -- and the second 
activity, known as SCIDS." 

Programmers labor under a stereotype that maligns them as anti-social shut-ins. But while it is true that 
the act of programming is solitary toil, programmers are also intensely social. It's hardly an exaggeration 

ll/ll/Ol l:52PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ /161/http:/ /www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

5 of 12 

to suggest that the Internet was built mainly so that programmers would have a place where they could 
get together and chat about their favorite science fiction novels; but before the Internet, you had to 
gather at conventions, or conferences. That's where you shared notes with your colleagues, that's where 
you learned your craft and honed your programming chops. That's where you figured out how to fix your 
Giant Brains. 

Because even if building your own Giant Brain is fun, it sure isn't easy. It's hard work, and you're going 
to need help. And you're not going to care if the guy you're knocking back whiskeys with, discussing the 
finer points of !TIEtrix inversion, works for your competitor. The point is to get the machine to function 
properly, to get the buzz that comes from observing the translation of your will -- your computer 
program -- into action. 

These early programmers were insatiably curious tinkerers and inventors eager to dissect every function 
of their machines, and to learn every clever workaround or deft coding maneuver that would help them 
get their job done. The advent of proprietary code that could not be tinkered with, could not be taken 
apart and reconfigured like a bunch of Lego blocks, was extraordinarily annoying. When they started to 
hack, whether as teenagers wiring together solenoids, or as defense contractors responsible for fending 
off the Russkis, hardware and software were both just means to an end. Often, in order to change the 
programming in one of the early computers or tabulating machines, you had to rewire the dam thing 
yourself. Typically, this was done by means of a ~ug board" -- a panel much like the telephone 
operator's switchboard with which Lily Tomlin once wrought havoc. If you wanted to change the 
sequence of operations, you pulled out a plug connecting a wire to another point and plugged it in 
somewhere else. 

It was only later, as software became increasingly less physical, that it was even possible to obstruct 
programmers from handy access to digital innards. And for the first decade or so after the introduction of 
the commercially sold computer, few people even realized why that would be advantageous. 

"There was no economic value in software," notes Bernstein. "No one recognized software as an 
economic entity at the time." 

IBM's domination of the computer market partially explained the failure to see software as a revenue 
generator. IBM was opposed to selling anything. Its business model was based on leasing hardware. 
Leasing made it easier to plan for the future and calculate ongoing revenues. Hardware, software, 
support personnel -- it was all leased, all bundled together in one monthly package. The inclusion of the 
software was a carefully thought-out strategic measure that locked customers into IBM. If you used IBM 
hardware, then you used the software that came with it. And if you spent thousands of hours mastering 
that software, then when it came time to renew your lease, you stayed with IBM -- why on earth would 
you want to invest thousands more hours getting up to speed on someone else's software, even if new 
hardware from another vendor might be technically superior? 

Bundled software didn't automatically mean bundled source code -- which was one reason that a group 
like SHARE was necessary. In addition to providing a means for IBM users to share the code that they 
wrote individually, SHARE was also an important lobbying tool for getting IBM to make changes, add 
features and otherwise respond to customer concerns. Especially during the early years, SHARE's 
membership represented a majority of IBM's most important customers. When it complained, IBM 
listened. It was a user's "club," explains Frank Wagner -- in the sense of the "club" being a large stick 
useful for beating IBM about the head with. 

During their reunion, the SHARE programmers talked about IBM in precisely the same way that hackers 
today rail against Microsoft. IBM was the eight-gazillion-pound gorilla. IBM pioneered fJ)D and the 
practice of .'.'._Y-aporware, •~ forced bad technology down customer's throats and got away with it all because 
it owned the market. Even the SHARE members who at one time worked for IBM -- such as Gordon, 
who put in 25 years at Big Blue, and Bernstein, who did a consulting stint there -- joined the IBM 
derision. IBM got in the hackers' way. 

But in one of the great unpredictable ironies embedded in the history of software, IBM's decision to stop 

11/ll/01 l:52PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ /l 6 l/http://www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

6 of 12 

bundling its software with its hardware turned out to be the catalyst that really launched the commercial 
software industry -- and made proprietary control of source code start making sense to the corporate 
computing world. In 1969, says Mort Bernstein, as the Department of Justice began to prepare its 
epochal antitrust suit against IBM, IBM decided to engage in some proactive defensive maneuvers. By 
unbundling IBM's software offerings, and charging for them separately, IBM hoped to avoid the 
accusation that it was unfairly leveraging its monopoly control of the market for mainframes. 

And in a flash, the commercial software industry was born. 

"There was no software industry to speak of until that moment, and then it began to burgeon," says 
Bernstein. 

IBM's act of unbundling presents an intriguing contradiction. Opening up competition undoubtedly 
contributed to faster growth and greater opportunity for companies looking to make a profit in the world 
of computing, with a consequent increase in the number of jobs for programmers. But individual 
programmers ended up becoming further divorced from the hands-on finagling with bits and bytes that 
made their jobs fun. Not only were they denied access to the source code of commercial programs, but 
their own responsibilities were steadily being curtailed. 

Fun, for programmers, was on the run. As programming tasks became larger, employing thousands of 
programmers at a time, programming duties became more and more tightly segmented and regimented. 

"Programming went from an individual craft to a 'professional' activity that had to be managed," says 
Bernstein. "As computing became a fundamental necessity in every aspect of commerce and industry, 
more needs arose. Programmers were asked to provide reasonably precise estimates of the time and 
resources that would be needed for each development. Based on this, budgets and schedules were 
produced. Management expected the result to match the estimates within reason. This is a real sea 
change, from a freewheeling craft performed by 'artistes' to a tightly managed activity supposedly 
performed by 'professionals."' 

To some observers, the changes in the industry could be placed in the broader, and more suspicious, 
context of the move to "scientifically manage" office work of all kinds. Following principles established 
by Frederick Winslow Taylor, an inventor who influenced the creation of assembly-line manufacturing, 
management began treating programmers as if they were the plugs to be moved around the plug boards, 
rather than creative visionaries with minds of their own. As Joan Greenbaum, a former IBM 
programmer, writes in "Windows on the Workplace": 

"The first step that management took to gain control over the programming workforce was to 
divide the conceptual work of programming from the more physical tasks of computer 
operations. Although this division was put into effect in the aerospace industry in the 
mid- l 950s and subsequently used by companies that had defense contracts, it wasn't until the 
mid-1960s that it spread elsewhere. By 1965, when IBM began installing the general-purpose 
System 360, both the more expensive hardware (a large mainframe computer) and the easier to 
use software (an operating system that could be controlled through commands rather than 
operators working switches), gave upper and middle managers room to begin enforcing the 
separation of programming from operations. Operators were to stay in the 'machine room' 
tending the computer, while programmers were to sit upstairs and write the instructions. Those 
of us in the field at the time remember feeling that a firm division of labor had been introduced 
almost overnight." 

Proprietary code. Tight divisions oflabor. An end to the freedom and fun of the golden age. By the late 
'70s, things had become pretty bleak for the corporate programmer. 

But help was on the way. 

"Then the PC came along and the ball game changed again," says Bernstein. "Who has to account for the 
time they use on their PC? No one! It's an appliance on my desk that is of the same nature as my 

11/11/01 1:52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://l6l/http://www.salon.com ... 6/22/chapter_2_part_two/print.html 

7 of 12 

telephone. And the world of the programmer had come full circle. The PC is what makes the 
open-source community as freewheeling as it is. Linux and open source could never exist in the world of 
tightly controlled corporate computing." 

It is not every day that you meet someone who has an antique rubidium atomic clock ticking away the 
minutes in his study. What's even more unusual is when the clock -- a fairly large timepiece, about the 
size of an electric dishwasher -- doesn't even stand out. Among the old DEC minicomputers, t~letyp~ 
machines and obsolete tape 4.rive..§ that line the walls of Bob Lash's back room, the atomic clock, which 
was once a fixture at California's Vandenberg Airforce Base and is practically indestructible, is almost 
an afterthought. Compared to the home-made computer that Lash built while going to high school in the 
'70s in Palo Alto, it is hardly remarkable at all. 

Bob Lash enjoys the honor of being one of the youngest attendees at the first meeting of the legendary 
Homebrew Computer Club in Gordon French's garage on March 5th, 1975. That alone is testament to 
some sublime geekiness. Silicon Valley's Homebrew Computer Club is a staple in the annals of 
computing history. Two of the best books about the history of the personal computer, Steven Levy's 
"Hackers" and "Fire in the Valley," by Paul Freiberger and Michael Swaine, devote hundreds of pages to 
Homebrew. Steven Wozniak, co-founder of Apple, is a Homebrew alumnus, as is Lee Felsenstein, the 
designer of two earl, and beloved personal computers, the Sol and the Osborne. The role of the 
Homebrew hackers in creating the personal computer, in delivering the power of a Giant Brain to you 
and me, is difficult to overestimate. 

But Bob Lash's study takes personal geekiness to new heights. The study could be mistaken for a 
museum of computing, although it is actually anything but. The oscilloscope, soldering iron and bins of 
electronic parts offer a clue. These relics, the DEC PDP-11/23 and PDP-8/I, are in working order. This 
room is a living shrine, proof that Lash, a programmer who is very much alive in the present -- his 
luxurious home in the hills above Redwood City was paid for largely by the sale of a Web chat software 
company that he and another Home brew alumnus founded -- hasn't lost sight of his past. 

Some of the artifacts in this room are part of an attempt to re-create Lash's very first encounter with a 
computer, when he was only 6 years old. He was taking part in an experiment at Stanford aimed at 
studying the teaching of mathematics to young children. After one of the sessions, he was allowed a 
peek into a nearby machine room -- "Basically, a room full of cabinets, with a console filled with 
blinking white lights, and there was a tape drive with a pair of reels sitting on it: a DEC tape drive. It 
made a huge impact on me. There was a fellow there and he pointed to a key on a console and told me to 
push it, so I did, and when I did, suddenly a pair of reels started spinning. The thought that you could hit 
a key on the console and then make something else happen, that you could control something remotely 
by a computer, was to me an entirely new idea." 

I observe to Lash that it is not uncommon for 6-year-olds to be confronted with "entirely new ideas." He 
smiles, but it is nonetheless clear that the encounter was life-transforming. Right next to Lash, as he 
speaks, sits a DEC tape drive, not quite the same model as the one he encountered as a youth, but close 
enough. The teletype machine connected to the PDP-8/I is also nearly identical to the one he recalls. 
More, perhaps, than any programmer I have ever encountered, Lash has concentrated his intellect and his 
skills on capturing the reality of his own human-computer interaction. Barring cyborg surgery, he is a 
man who has gotten as ~iQ1iJ: to the machine as possible. 

And like his fellow Homebrew hackers, he's convinced that everyone should share the joy. In his study 
there are also four personal computers. One old 486 IBM clone runs Linux and is hosting a Web server. 
It is also connected to the teletype machine that feeds instructions to the PDP-8/I. Once Lash straightens 
all the bugs out, Web surfers will be able to run their own old PDP code on Lash's machine, if they still 
have any, or test out any new code that they might want to take for a spin. 

But why would anyone want to do that? The PDP-8/I was popular in its time, but compared to today's 
computers, it's a joke -- a three-year-old personal computer is about a thousand times as powerful. Sure, 
it looks cool. with its flashing lights and switches and knobs, but it's not really what one would call a 
high-powered productivity tool. 

11/11/011:52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ /161 /http:/ /www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

8 of 12 

But Lash has his reasons: "What I'd like to do is give younger programmers the chance to get some 
hands-on experience at communing with the machine at its deepest level," he says calmly. "With today's 
processors you really don't have a feeling for what's going on inside, they're like black boxes. But in a 
machine like the [PDP] 8 everything that is happening inside is shown on the indicator lamps, all the 
r._egister12 are displayed and you can actually get right down to the register level and understand what's 
really happening step by step. Nowadays there is almost no ability for people to do that any more. 
They've lost touch with that." 

Right down to the register level -- the places within a computer's central processing unit where 
individual bits of information ( or the location of those bits of information) are stored. Berkeley's "Giant 
Brains" book laid out the workings of the computing machine; Lash wants to make those workings 
transparent to a Web-enabled public. The benefit, he argues, is better software. 

"I think that programmers who can see what is happening all the way through down to the deepest levels 
of the machine have the best understanding of what's really happening," says Lash, "and that has a big 
influence on how they think about what they are going to do and how they are going to do it. In this age 
of code bloat and inefficient systems and sluggish Windows machines that are shimmying and shaking 
and smoking, I think that if today's programmers had a better understanding of what's happening under 
the hood they could and would build more efficient systems." 

But again, it's not just about creating technically superior software, it's also about connecting to the fun 
that's at the heart of the computing experience. 

"I think having an appreciation and an understanding of what's happening is helpful, but even more 
important than professional benefits, I think that for young programmers, it fires up a sense of 
enthusiasm and wonder for what they're doing. It isn't just a dull boring job -- 'Let's crank out another 
application because we have a deadline.' It's really a miracle when you see what happens, and it's a 
wonder. A kind of spark and spirit can be of enormous benefit to the work that you are trying to 
accomplish. I guess it's more about motivation than any real technical point." 

Lash recalls attending Homebrew meetings with exactly the same mixture of nostalgia and glee that the 
SHARE programmers remembered experiencing at their SCIDS meetings. His desire to understand his 
computers, and his belief that everyone would benefit from a similar understanding, is also directly 
connected to the explicit free software ideology that has sprung up in computing in more recent years. 
Lash is a believer in Linux-based operating systems -- as is his I I-year-old son Elliot, who, when he 
isn't playing Starcraft, is running a Linux-based operating system called · .. ,:.::. .... , .. ,.,, .... , .. ,.,,,_,_" 

For Lash, who reverently shows me a loose-leaf binder filled with hundreds of pages of all the lines of 
code he wrote two decades ago for his home-made computer, the code is the machine. 

Most of the Homebrew hackers felt the same way. Which might just explain why they got their dander 
up when Bill Gates wrote them a nasty letter in 1976. 

On February 3, 1976, less than a year after the founding of the Homebrew Computer Club, a 19-year-old 
named Bill Gates, who titled himself General Partner of a then little-known company called 
"Micro-Soft," wrote a §£fe9sj titled "An Open Letter to Hobbyists." 

Bill Gates and his partner Paul Allen had written a version of the BA_S_h programming language for one 
of the first mass-produced personal computers, the Altair. Without it, there wasn't a whole lot that you 
could do with an Altair. But to Gates' dismay, he had discovered that less than 10 percent of all Altair 
owners were paying for a copy of his BASIC -- instead, hackers were making their own copies and 
giving them away. To Gates, this was outright thievery. 

"As the majority of hobbyists must be aware," wrote Gates, "most of you steal your software. Hardware 
must be paid for, but software is something to share. Who cares if the people who worked on it get 
paid?" 

11/11/011:52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ I l 6 l /http://www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

9 of 12 

"Who can afford to do professional work for nothing?" continued Gates. "What hobbyist can put three 
man years into programming, finding all bugs, documenting his product and distribute for free? The fact 
is, no one besides us has invested a lot of money in hobby software ... Most directly, the thing you do is 
theft." 

Like the Homebrew Computer Club, Gates' letter is an indelible icon of computer history. For some, it 
marks the birth of a billionaire, outlining in bald terms the psychology of one of the most successful 
businessmen of the 20th century. For others, it foretold the death of the hacker dream that information 
should be free. And to still others, it marks the line drawn in the sand between the world of free software 
and the empire of Microsoft. Want to know why so many hackers despise Microsoft? Read the letter. 

But didn't Gates have a reason to be angry? Weren't the Homebrew hobbyists stealing BASIC? Well, in 
a sense, sure. 

"We would say 'bring back more copies than you took,"' recalls Lee Felsenstein, remembering 
Homebrew Club meetings held in the Stanford Linear Accelerator Center (SLAC) auditorium. "Altair 
BASIC showed up first as a paper tape that had been ripped off or liberated in late '75 and was being 
passed around or copied -- a teletype could copy it. Sometimes I would hold up the black board pointer 
and say 'put them here,' and people would skewer their rolls of tape on the pointer." 

I meet Lee Felsenstein, designer of the Sol and Osborne personal computers, in a nearly unfurnished 
office in Palo Alto which he is using as a temporary work space while he looks for a new job. Just a few 
weeks earlier, his previous employer, the Paul Allen-funded lnkrval Rc'.:r 1n:h think tank, closed its 
doors. While he negotiates a purchase involving his credit card information on his cellphone, I examine 
the only part of the room that shows signs of life. On a large workbench stretching along one wall are 
the tools of his inventor's trade: a fancy digital oscilloscope, a heat gun, a power supply, and trays upon 
trays of silicon chips: the basic building blocks of the modem computer. 

By now I have read "Giant Brains" and have learned the basics of how information can be moved from 
register to register, and what kind of operations can be enacted on that information. At Bob Lash's home, 
I have had the chance to examine both his homemade computer and the reams of code he wrote to make 
that computer work. Now, I'm looking at a more contemporary version of the same concept, the 
silicon-based chips that embody those operations. And I am realizing: hardware, software, chips, wires -­
for me too, it is becoming difficult to make any clear distinctions. And as I probe Felsenstein's memory 
of the letter from Bill Gates, I begin to see exactly why the Homebrew hackers got so mad at being 
called thieves even as they blithely admitted that they were copying someone else's copyrighted 
software. 

Did F elsenstein remember the moment he read that letter? 

He rolls his eyes. 

"Yes, absolutely," says Felsenstein. "I read it aloud from the floor of the Homebrew Computer Club. To 
great derision. I read it to the multitudes assembled in the SLAC auditorium. Everybody thought that 
was hilarious, and they were damned if they were going to send them $500." 

Felsenstein draws a detailed picture of the moment. The SLAC auditorium holds 275 people, he says, 
but it was only about two-thirds full. 

"The people involved were not at the top of any stratum," says F elsenstein. "They were second string 
and below ... They were people who wanted desperately to have access to computers. The majority of 
them worked in the electronics industry in Silicon Valley, and some in the computer industry, but they 
were not permitted access to computers at their work." 

So when MITS, a company in Albuquerque, New Mexico, announced the arrival of the Altair, one of the 
very first inexpensive personal computers, they jumped at the chance to buy it. And then were almost 

11/11/01 1 :52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://l6l/http://www.salon.com ... 6/22/chapter_2_part_two/print.html 

10 of 12 

immediately disappointed. The Altair was little more than a box of parts that barely worked. For one 
thing, it came with no devices for getting information into and out of it, which meant that the Homebrew 
hackers were faced with quite a bit of extra tinkering, at extra cost. 

"At the time when the Altair personal computer was being delivered it was found to be difficult to get it 
running," says Felsenstein. "It was poorly designed in several ways. And once you finally got an Altair 
hooked up together, it didn't do anything." 

"The machine is not complete until the software defines what it is doing," says Felsenstein. "I view 
software as another component of the system. Our view of this was, this is like the last part of the 
machine that everybody sweated bullets to not only buy but to learn how to put it together and so forth, 
and what the hell, what business do they have trying to jack us up for another $500? This makes the 
thing go and I want to make it go ... It seemed like a kind of a bait-and-switch at the time to say 'You can 
buy a computer for $297 but oh, sorry, all you get is a bunch of parts that don't give you any 1/0 
[input/output] and oh, sorry, once you get that set up at great cost to yourself you don't get any software 
that lets you do anything but you can pay more for that." 

"We didn't really know who Bill Gates was," continues Felsenstein. "He seemed to be involved with 
MITS. He started out as a MITS employee ... As far as we could tell that's all that he was. Somebody 
had come along with a BASIC and attached themselves to MITS and said 'Now we can really clean up 
because these bozos don't realize they need software for their boxes."' 

"And then he comes in with this letter," says Felsenstein, "saying 'we haven't gotten the kind of money 
we wanted and you guys are all crooks -- most hobbyists steal their software.' Well, you know, for 
people who were out about ten times what they thought they were going to be out when they answered 
the ad for the Altair, the concept of thievery is a little different. [We said] 'You guys in effect stole our 
money, and now you want another $500? I'm sorry, we want our computers to work.' The general feeling 
was, let them ask nicely, don't call us crooks to begin with, we see who the real crooks are." 

The letter, says Felsenstein, drew a line that could never be erased. Once and for all, Bill Gates declared 
that he was not a hacker -- that, on the contrary, hackers were his enemy. 

"The oppositional stance kind of presaged everything else," says Felsenstein. "We wanted somebody to 
say, 'Look, I am one of you and here is what is going on.' He removed himself from our society and our 
culture with that letter and with his subsequent actions." 

I ask Felsenstein ifhe recalls the reaction of the Homebrew audience the moment he read the line "most 
of you steal your software." 

"There was much hooting," says Felsenstein. "We had a good time laughing at that letter. And as I like 
to say now, what a shame that Bill Gates didn't get his money. He could have been a contender." 

Pandemonium reigns at the Four Seas Restaurant in San Francisco's Chinatown on the evening of June 
15, 1999. The line to get in stretches down the stairs from the second floor, out the front door, and spills 
onto the sidewalk. The buzz of conversation is half-anxious, half-excited -- it's as if the assembled crowd 
is waiting to see some hot new band, but isn't sure that there's enough room for everybody. 

They haven't come for the food. They have come to attend, of all things, a Bay Area Linux User's Group 
[BALUG] meeting. Of course, it's not your average BALUG event. While the meetings have become 
steadily more crowded over the past few years, in close correspondence to the rise in popularity of 
Linux-based operating systems, they aren't usually this kind of a madhouse. But tonight, Linus Torvalds 
has come to speak, and in June of 1999 in San Francisco, that means a major techno-cultural media 
event is at hand. 

By the spring of 1999, Linux fever is reaching hitherto unimaginable heights. One distributor of 
Linux-based operating systems, Red Hat, has just filed to go public, and others are soon to follow. 
Everyone is in love with Linux -- Wall Street, the press, the pundits. On this particular evening, 400 

11/11/011:52PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg:/ I 161/http://www.salon.com ... 6/22/ chapter_ 2 _part_ two/print.html 

11 of 12 

people will stuff themselves into the Four Seas Restaurant, in part to hear Torvalds, but also to celebrate 
their own great good fortune. Programming is fun again, and free software is a big reason why. 

It's actually kind of a shame that Torvalds' appearance has skewed the BALUG meeting from its normal, 
less media-friendly fare. These meetings follow directly in the tradition of both the Homebrew 
Computer Club and even the SHARE IBM user's club -- although few, if any, of the attendees have ever 
heard of SHARE. It's time to get together, drink some beer, chow some middling Chinese food, and talk 
shop. Figure out how to get your system working, how to get your giant brain tuned and optimized the 
way you want it, without any taint of proprietary software obscuring the machine's inner mysteries. At 
closely related "installfests" organized by various LU Gs, you can even bring your computer and get 
experts to walk you through the often torturous process of getting a free software operating system 
running correctly on it. 

This is the kind of forum in which Torvalds excels, where he can engage in his favorite interactive 
question-and-answer format with technically knowledgeable people. I have seen him speak to crowds 
numbering 20,000 and higher and field reporter's queries at press conferences with aplomb, but he is 
most comfortable when being asked detailed questions about arcane aspects of software and hardware. 
Torvalds has a way of being both self-deprecating and utterly sure of himself that works well with 
audiences. When he jokes that "I am basically lazy" or that "if I don't understand something, I think it is 
bad," he gets a big laugh, but no one underestimates him. 

Sitting at one of the big round tables that dot the banquet floor, listening to a smattering of hackers 
exchange jokes and chatter about the various Linux happenings of the day, I'm impressed at the general 
sense of good feeling that flows through the room. People are happy to be here. They're happy to be 
talking about obscure matters of symmetric multiprocessing performance and source control 
management. They're especially happy to be doing what they do, which, more and more, means hacking 
on Linux-based operating systems. A year later, when I hear Lee Felsenstein muse about what makes 
open-source software fun, I immediately think back to the night at the Four Seas. 

"The open-source movement is a direct descendant of the Homebrew Computing Club," says 
F elsenstein, "motivated by the same things -- that very seductive goal of creating what never has been 
before, and doing it in a sharing community where coercion is absent and the joy and the beauty of the 
creativity is manifest in everyone. It's very, very powerful." 

It's the same fun that is recalled by SHARE programmers when they reminisce about SCIDS meetings. 
But there's one big difference. 

Torvalds gets one of his biggest laughs of the night when he makes a glancing reference to the 
commercialization of Linux. Referring to Linux hackers, he says, "They can laugh at the stupid company 
who will pay them for what they would do [anyway] for free." 

Few audiences could be more receptive to his quip than the hackers assembled in front of him. The 
evening is being sponsored by two companies, VA Linux and Linuxcare, which have for the past six 
months been hiring every member of any Linux User's Group they can get their hands on. Not many of 
the hackers may have imagined when they first started coming to the meetings that their hobby would 
suddenly make them highly sought-after professionals, but that's certainly the case now. Linux hackers 
are hot. Who can afford to do professional work for nothing? Right now, a good many companies are 
trying to figure out new answers to that exact question. 

The fun is back in programming. The industry has indeed come full circle. Once again, hackers are being 
paid to do just what they want to do -- only this time around, everything they produce is made freely 
available to the general public. 

In June of 1999, or June of 2000, for that matter, it's impossible to say how long this hacker-blessed 
happenstance will continue. Perhaps the present period is a new golden age of hacking doomed to 
decline or morph into some less blissful stage. And of course, not all jobs at Linux-related companies are 
ideal, nor is there any certainty that giving software away will wrest control of the computing industry 

11/11/01 1:52 PM 



Salon.com Technology I Do-it-yourself giant brains! wysiwyg://l 6 l/http://www.salon.com ... 6/22/chapter _ 2 _part_ two/print.html 

12 of 12 

from Microsoft. But for the hackers twiddling their chopsticks, happily continuing a cherished tradition 
of community and mutual self-help, such quibbling about what has not yet come to pass is a waste of 
time. 

"There are a great many things that all of us could do much better if we could only apply what the wisest 
ofus knows," wrote Edmund C. Berkeley in "Giant Brains, or Machines That Think." His point was an 
argument for the worth of the computer as a concentration of human knowledge made available to all 
humans. But it also can be taken to represent the value of the people who create those computers, who 
work together to share their wisdom. All ofus could do much better, he seems to be implying, ifwe are 
given the freedom to SHARE. 

Read Chapter One of the Free Software Project 

Join the discussion on this chapter 

Sound Off 
Send us a Letter to the Editor 

Salon Search About Salon Table Talk Newsletters Advertise 1n Sc1L,: Tnvestor Relat,ons 

Arts & Entertainment I Books I Business I Con1ic:s I Health I ~,1otl11: v::,:, Think I New:; 
People I Politics I Sex I Technology and The Free, Softv,- ;,, ciect 

Letters I Columnists I Salon Plue; I Salon Sb,:. 

Reproduction of material from any Salon pages without written permission is strictly prohibited 
Copyright 2001 Salon.com 

Salon, 22 4th Street, 16th Floor, San Francisco, CA 94103 
Telephone 415 645-9200 I Fax 415 645-9204 

E-mail I Salon.com Privacv Pc,licv 

11/11/01 1:52 PM 



Salon Free Software Project I Finland -- the open-~urce society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

1 of 14 

f,I the be,t bookstt>te you'll ever reod ~ 

~owe ,s.com· CLICK HERE 
1/'istt ti~ O; 'BtPkS- to find your happy place 

To print this page, select "Print" from the File menu of your browser 

salon.com > Free Software Proiect April 20, 2000 
URL: http://www.salon.com/tech/fsp/2000/04/20/chapter ,1x part 1 

Finland -- the open-source society 

In the icy, cellphone-mad birthplace of Linux, networks 
rule. It's a matter of survival. 

BY ANDREW LEONARD 

Author's Note: Writing an online book presents some 
unique challenges -- and opportunities. With this 
installment, I decided to break with boring linear order 
and go straight to the first half of Chapter 6, rather than 
the expected Chapter 2. Why? Because three weeks ago I 
spent a week in Finland, the birthplace of Linux, and I 
wanted to write about it before the memories faded. And if 
I write it, why wait to publish it? 

Back in the summer of 1993, I went to Finland for all my 
software needs. I never questioned why. I just knew that if 
I wanted a free copy ofTetris, or an image, iev,-c, for 
looking atjpegs~ of Madonna, or an application that 
would make Chinese characters readable in my e-mail, I 
headed to Finland -- or rather, to the Internet address 
"nic.funet.fi." It was just another one of the lovable 
eccentricities of the old Internet. For some reason, one of 
the world's largest repositories of freely redistributable 
software could be found in a small Northern European 
country previously most famous for sauna baths and 
Sibelius. 

Today, Finland is famous for other reasons -- notably, for 
being the original home of both Nokia, the world's largest 
and most profitable manufacturer of mobile phones, and 
Linus Torvalds, the creator of Linux. Finland is also now 
widely hailed as one of the most "wired" nations on the 
planet (as judged by mobile phone and Internet usage). 
Once known mostly for exports of pulp and paper 
products from its vast forests, Finland now enjoys the 
unexpected honor of being acclaimed throughout Europe 
as a role model for the so-called Information Society. 

Nokia receives the lion's share of the credit. An 
aggressive, fast-growing, fully global company that 
makes Microsoft look like an old fuddy-duddy, Nokia is 
hiring new employees at the rate of 1,000 per month. The 
company so dominates the economy of Finland that a 
sudden drop in its stock price sends jitters through the 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http:/ /www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

2 ofl4 

entire nation. But which came first, the Nokia chicken or 
the Finnish egg? Is Nokia the reason that 
glued-to-their-phones Finns often seem like some strange 
new cyborg beast -- homo mobilis telefonicus? Or does 
the much-touted Finnish openness to new technology 
explain Nokia's surge to the forefront of the global 
economy? 

Finland's love affair with high technology runs deep. The 
closer you look, the less remarkable it seems that a 
21-year-old undergraduate at the University of Helsinki 
cooked up some code that ended up throwing the entire 
software industry into turmoil. For Linux is far from 
Finland's only contribution to Internet culture: To an 
extent way out of proportion to its size, Finland has 
bequeathed unto the Net a valuable and culturally rich set 
of essential tools. 

In addition to the software library at nic.funet.fi, there is 
also the much beloved, albeit now somewhat archaic, 
Internet Relay Chat, or IRC! -- one of the first popular 
open-source programs to enable real-time online 
conversations between globally dispersed Internet users. 
There's also ssh,!. a program hugely popular with hackers 
and geeks that helps ensure secure online transmission of 
data. And, perhaps most notoriously, there's that Net icon 
of the early '90s, Johan Helsingius'~ "anon.penet.fi" 
anonymous remailer.'."._ -- a tool that, until the Church of 
Scientology convinced Finnish authorities to 
allowed the paranoid or privacy-conscious to post to 
newsgroups and send mail in complete, cryptographically 
protected anonymity. These contributions, and even Linux 
itself, may be just a drop in the bucket of the hundreds of 
thousands of software programs hackers have uploaded to 
the Net. But the Finns' predilection for creating such tools 
reveals an acute understanding of the nature of a 
networked, open-source society. 

Finland's contributions to the Net pose a conundrum. 
When Finns asked me why I had come to their 
out-of-the-way nation, I gave them two reasons. The first 
was obvious -- I had come to dig up background 
information on Linus Torvalds. So I visited the university 
where he first started hacking on Linux. I talked with 
people who had studied under Torvalds' maternal 
grandfather, a well-known professor of statistics, and who 
were used to watching his father, a television reporter, 
deliver dispatches from the war in Chechnya. I even hung 
out in the neighborhood bar his mother is known to 
frequent. 

And everywhere I went, people were eager to gossip. Did 
I know what his mother said about Linus' love life in last 
Saturday's afternoon newspaper? Was I aware that his 
parents had been members of the Communist Party? What 
did I think about the fact that in the late '60s his student 
radical father, Nils Torvalds, had infuriated his other 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six __part_ I/print.html 

3 of 14 

grandfather, a conservative newspaper editor, by posing 
on the cover of a magazine holding a machine gun? And 
could I please tell them how much Linus was worth? A 
hundred million? A billion? 

But Linus wasn't the whole story. I also sought the answer 
to a question I must have been subconsciously mulling 
over ever since I waited for that first software program 
from 10,000 miles away to creep across my 2400 baud 
modem in 1993. Why Finland? In the 21st century, there's 
hardly a nation in the world that doesn't want to be a role 
model for the information society. What made Finland so 
special? Was it an accident of history, the luck of the 
draw, or some more complex intersection of cultural 
evolution and the activist will of an entire people? More 
to the point, was it possible that the deep structure of 
Finnish civilization encourages an open-source way of 
life? 

Harri K. Salminen points at a nondescript PC half hidden 
under a rack of shelves, practically invisible in a room full 
of much larger computers. It's possible, says Salminen, 
pursing his lips in a geekily confident way that suggests 
total familiarity with the millions of dollars of hardware 
surrounding him, that the hard drive on this computer 
served the files I downloaded from nic.funet.fi seven 
years earlier. It's not much to look at now -- it isn't even 
connected to the Net. Instead, an impressive array of 
state-of-the-art SOI Crays and DEC Alphas hum 
contentedly. In a high-tech country, this, the central server 
headquarters of the Center for Scientific Computing, is 
one of the highest-tech rooms -- the root node of the 
Finnish Internet. 

It's also the room in which Linux was first made available 
to the general public, which makes it one of the original 
source points for open source -- and as close as you can 
get to a holy shrine for free software. For years, says 
Salminen, the demand from outside Finland for 
downloads of free software from nic.funet.fi required the 
imposition of bandwidth transfer "speed limits" to keep 
the network usable for Finns. As I strolled among the 
computers, half-listening to Salminen, the chief 
"coordinator" for nic.funet.fi, I could almost see the 
world-spanning network, an infinitely tangled spider web 
of connectivity, spiraling out from this one node, 
delivering one of the Net's most infectious packages of 
software to countless other nodes. I wondered what a 
real-time look at the scrolling log files of nic.funet.fi 
might have revealed back in August 1991, as hackers 
from all over the globe arrived, downloaded, left, and then 
used Linux and all the other free software tools that make 
up a Linux-based operating system to build their own 
nodes from which to spread the digital word. A room full 
of computers is hardly a romantic sight, but here, at 
Linux's original launching point, I felt as physically close 
to the soul of the Internet as I had ever been. 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

4 of 14 

Salminen seemed bemused at my sincere intensity. A 
Jypica1 Finn and a typical geek -- fluent in six languages, 
an expert in C: and Perl: programming -- he chewed over 
my questions as ifhe wasn't quite sure they were worth 
asking. He had no problem providing the nuts and bolts of 
the history of the Internet in Finland: In 1988 Salminen 
was personally in charge of setting up the link between 
the FUNET network and the NSFNET backbone of the 
Internet, in conjunction with four other Scandinavian 
nations He could tell me exactly who had first uploaded 
Linux to nic.funet.fi -- a student named -~·'-"'"-·•'·• i: --
and on what date commercial sales of Internet connections 
began in Finland -- 1993. 

But why was Finland so wired? Why had Finns made so 
many contributions to the Internet? Why was the country 
so gaga over all forms of telecommunication -- beginning 
with the phone? 

There is no single answer. But there are some telling data 
points. First, the Finnish infatuation with the telephone is 
no new phenomenon, no mere byproduct of Nokia's 
dramatic rise to prominence. Finns have been crazy about 
phones from practically the first moment they could get 
their hands on them. In 1896, Mrs. Alex-Tweedie, an 
English travel writer, noted that "Finland is full of 
phones." Angel Ganivet, the Spanish consul in Finland in 
1896-97, observed that phones were almost as common as 
kitchenware, and devoted an entire chapter of his book on 
Finland to the "excessive" interest Finns had in 
technology. It also has become an inordinately popular 
national obsession (at least among the telecom-literate 
people I interviewed) to mention at least once a day how 
there were more than 800 separate telephone companies in 
the country during the 1920s and '30s. 

Finland is a sparsely settled country -- a little over 5 
million people are sprinkled across a land mass 1,000 
kilometers long from north to south. An attraction to 
phones is therefore an understandable outgrowth of local 
geography. But a historical misstep by the Russian tsar 
also played a crucial role. During the 19th century Finland 
was an "autonomous Grand Duchy" under the rule of the 
Russian Empire. (Prior to that, for seven centuries Finland 
had been ruled by its neighbor, Sweden.) Finland's 
multitude of phone companies was a legacy of the Tsar's 
decision to declare the telegraph a militarily essential 
device -- and the telephone, on the other hand, little more 
than a toy. 

Wary of the possibility that the Tsar might change his 
mind, the Finnish government chose to grant licenses to 
operate telephone companies to all applicants -- in marked 
contrast to the practice of most other nations, who ensured 
that telephone operation was a tightly controlled state 
monopoly. The reasoning of the Finnish government was 

11/11/01 1 :55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I /print.html 

5 of 14 

as follows: It would be much easier for the tsar to renege 
on his decision if all he had to do was simply close down 
or otherwise take control of one state enterprise, rather 
than hunt down hundreds of independent companies. 

When you have 800 telephone companies in a country 
that, in the 1920s, only had a population of 2 million to 3 
million people, you are forced to become expert in 
interconnection technologies. As a result, Finns 
understand networking. 

I was reminded of this constantly during my week in 
Helsinki, in both small ways and large. The Ministry of 
Foreign Affairs, which was helping to coordinate my 
visit, ( and which paid for my airfare to Finland) gave 
everyone I interviewed a copy of my schedule, so 
everyone knew who I had talked to already and who I 
would be talking to next -- they even used me as a conduit 
for messages between each other. I was absorbed into 
their network as effortlessly as a well-configured Web 
server handles a newly arrived connection request. 

In Finland, the mobile phone has evolved into much more 
than just a symbol of Nokia's corporate power -- it is now 
a vehicle for the etiquette of personal encounters. 
Examining a new acquaintance's phone -- for new 
features, for style or just for the heck of it -- is as natural 
as shaking hands. 

And provision of cutting-edge wireless services isn't just 
future hype, it's a cornerstone of the national economy. 
Near the end of my stay, I had dinner with Jarkko 
Oikarinen,~ the inventor of IRC. He told me that that very 
day he had decided to quit his job as a programmer in the 
University of Oulu's medical school in favor of joining a 
startup to work on wireless applications for mobile 
phones. I hardly blinked. Join the crowd, Jarkko. The 
question, in Finland, isn't "who is doing the interesting 
work in wireless networking?" but rather "who isn't?" 

So that most telling stat about Finland -- 5 million people, 
4 million mobile phones -- begins to make sense. But 
what about the Net? Where's the built-in connection to 
programming? 

Salminen shrugs. It's the long winter, he says. Finland's 
the northernmost country in Europe -- nearly a third of the 
nation is within the Arctic Circle. There's just not much 
else to do besides hack. 

In Finland, all roads lead to winter. There are, in fact, no 
fewer than three winters in Finland: autumn winter, high 
winter and spring winter. I arrived in Helsinki at the end 
of March, smack in the middle of spring winter. During 
the week I visited, the temperature rarely rose above 
freezing; the bays and inlets that snake into and through 
Helsinki were clogged with ice, and remnants of high 

11/11/01 I :55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

6 of 14 

winter snow still survived in parks and by the sides of 
roads. But it was sunny, and people were cheerful -­
because in Finland, when the temperature gets as high as 
freezing, spring is at hand. 

Finns dote on their winter; it is built in to the national 
psyche, a point of both pride and misery. Not for nothing 
is Finland the world leader in naval ice-breaking 
technology. Finns will sniff, slightly annoyed, if you dare 
even to question whether their winter really is appreciably 
worse than that of their Scandinavian neighbors. Most 
Swedes and Danes live further south, they note, while 
Norway's long coastline is warmed by the Gulf Stream. 
It's no accident that Finland invented the sauna -- keeping 
warm is a national pastime. 

Winter, says Risto Linturi,_ explains everything about 
Finland. 

Linturi is Finland's leading candidate for national digital 
visionary, though at first listen he doesn't sound much like 
the smooth snake-oil salesmen that pass for digital 
evangelists in the West. Instead, he creaks like a glacier, 
ponderously, crunching granite outcrops of speech into 
gravel as he moves forward, contemplating each newly 
spoken word as if it were some kind of bizarre mutation. 
Formerly the chief technology strategist for the Helsinki 
Telephone Company, Linturi is currently a venture 
capitalist whose company provides modest seed capital 
for high tech start-ups in Finland. 

But a visionary he is: A voracious reader of science 
fiction (his favorite author is Robert Heinlein), he lives in 
a high tech "smart house" whose doors and appliances he 
can control with his mobile phone. 

"As long as we have been living in Finland," says Linturi, 
"we have been very interested in staying alive. And that is 
way more high tech than anyone today can realize." 

Linturi says that the key to surviving Finland's long, dark 
winter is the efficient optimization of information. How 
many cows do you intend to keep alive through the long 
dark months? At what point do you kill the cows you 
won't keep alive in order to maximize your remaining 
food stocks? How will you then keep the meat from 
spoiling? How much time do you devote to chopping 
wood? What are the most energy efficient techniques for 
insulation and cooking? 

Finland was no home to Vikings, observes Linturi, raging 
across the rest of Europe in search of easy plunder. Death 
came not from war, but from winter. 

"You did not get killed because you could not defend 
yourself," says Linturi. "You got killed because you could 
not supply yourself." 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/ chapter_ six_part _ 1/print.html 

7 of 14 

As proof, Linturi points to Finnish folk tales. In the 
Kalevala, a compendium of myths and legends assembled 
by budding Finnish nationalists in the 19th century, you 
find no helmeted Valkyries or hammer-swinging Thunder 
Gods. Instead, Finnish folk tales, asserts Linturi, revere 
the "lore master." The protagonists of the Kalevala are 
Ilmarinen, the smith, and Vainamoinen, the lore singer. 
The antagonist is Louhi, the black witch of the North. 

"All of these heroes [ and villains] are characters whose 
main capability is information -- storing or utilizing 
information," says Linturi. "To survive through the winter 
in a country like Finland, you don't need heroes and you 
don't need power. You need information. You need lore." 

The image of the lore master instantly conjures up a 
vision quite at home in the world of programming -- that 
bearded, long-haired, Unix guru who is equally 
comfortable in the midst of reams of C code or a game of 
"Dungeons & Dragons." Programming is all about lore, 
and all about optimization. Indeed, one of the criticisms of 
Linux and other open-source/free software programs is 
that they do not represent innovation, i.e. the creation of 
something wholly new, but merely optimization, the 
tuning of something old. 

But there's another, more significant correspondence 
between the survival lore of ancient Finns and the nature 
of information in the digital era. Survival lore doesn't 
automatically lend itself to a proprietary model of 
information acquisition. In other words, unlike warrior 
lore, survival lore does not diminish in value if other 
people acquire it. You might want to keep a better design 
for a longbow or sword to yourself or your clan, hoping to 
gain an arms-race advantage over your competitors. But 
you gain relatively little by keeping to yourself a better 
food preparation technique or algorithm: for calculating 
the proper ratio of wood-chopping to hay-gathering to 
livestock-slaughtering. Quite the contrary: If you share 
your winter survival optimization techniques with others, 
they may well be more likely to share their information 
with you. 

Not for nothing has Finland been dubbed "a nation of 
cooperators." The term is not always interpreted favorably 
-- centuries of existence as a buffer state between East and 
West have forced Finland to always watch its step, 
particularly in the Cold War era, when conservative 
Americans dismissed Finland as a Soviet lackey, while 
the equally suspicious Russians glared at every Finnish 
gesture of accommodation with the capitalist world. In 
such a historical context, Finns have excelled politically at 
offending no one, or "kissing both asses," as one young 
hacker put it. But cooperation does not automatically 
imply quisling-style collaboration. A talent for 
cooperation is also an implicit recognition that in 

11/11/01 1:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

8 of 14 

numbers, there is strength -- that collective action can 
achieve mighty things. 

The same sense of cooperation feeds into Finland's pride 
at being a successful welfare state, although in this it is 
not significantly different from other Scandinavian 
nations. But the fact that Finns are generally willing to 
pay the high taxes necessary to provide free child care, 
health care and schooling (through the university level) 
certainly hasn't hurt the development of a high technology 
infrastructure. Torvalds himself notes that Finland simply 
isn't as cut-throatishly competitive a society as the United 
States -- there's more of a sense that everyone benefits 
from a comprehensive safety net. 

"You must visit Marshall Mannerheim's grave," Marja 
Erola told me. Erola, a program manager at TEKES, the 
National Technology Agency of the Finnish government, 
gazed at me with a quintessentially Finnish stare, at once 
direct and earnest. "It will help you to understand Finnish 
society." 

I followed her advice. My last day in Helsinki, as the sun 
was setting and the ice that had thawed during the day 
was just beginning to harden again, I walked from my 
hotel across the peninsula straddled by Helsinki to the 
western side, adjoining the Gulf of Finland. There, amid 
stately rows of fir and birch, a large graveyard stretches 
along the shoreline. It is a cemetery intended to be visited 
and very much alive -- more a park than a place of death. 
As I strolled along the manicured graves, contemplating 
the Finnish and Swedish family names, I spotted couples 
walking hand in hand, or staring out at the sea. 

At the western-most edge the cemetery opens up into a 
broad field, broken up by arcing lines of graves. Each 
grave is marked by a I-foot-square marble plaque lying 
flat on the ground. The graves are for soldiers who died in 
World War II fighting the Soviets. It's a bleak and bloody 
reminder of the last century. 

In the center of a field stands the tomb of r-'-Q_,_I. 
Mannerheim, aka Marshall Mannerheim, the general who 
led the wartime defense of Finland. Elected president of 
Finland shortly after the war, Mannerheim is considered 
one of Finland's greatest heroes. His tomb, amid the men 
he led, is much larger than those of his soldiers, but the 
only real difference is in scale: it too, is another flat, 
square, solid block of marble. 

Marja Erola told me that Mannerheim's insistence on 
being buried among his men was both proof and symbol 
of what she termed the relative "lack of hierarchy" in 
Finnish society. It's a cultural trait the Finns are 
inordinately proud of. Finland is a phenomenally 
homogeneous nation, both in terms of ethnicity and class; 
the only significant minority is Swedish-speaking Finns, 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

9 of 14 

who comprise about 6 percent of the population (and 
whose number include Linus Torvalds -- although as one 
Finnish free software hacker told me, "He's still a good 
guy, even ifhe is a Swedish-speaker"). 

The absence of hierarchy is partially explained by the 
legacy of Swedish rule -- for centuries the Swedes 
provided most of what passed for an aristocracy, while the 
Finns were nearly all one class of quasi-peasants. Another 
explanation points to the individualist ethic of those 
Finnish peasants -- the Ostrobothnian lumberjack, for 
example, carving his livelihood out of the forest, owing 
fealty to no lord, is an icon of independence. 

Whatever its origin, a disrespect for hierarchical divisions 
has now been enshrined as a Finnish value. And no 
Finnish entity demonstrates the power of that trait better 
than Nokia, the company with the nicest coat racks in all 
of Helsinki. 

Imagine a country where all the new buildings built in the 
previous year are offices for one corporation; where all 
the computer science graduates are hired to work at that 
same corporation, and where half the gross national 
product is produced by that one corporation. That's only a 
slightly exaggerated vision of the role played by Nokia in 
Finland. 

Not all Finns are overjoyed by Nokia's overwhelming 
presence in Finnish life. Nokia's corporate motto is 
"connecting people." But to entrepreneurs unable to hire 
quality engineering talent for their own firms, and 
computer science department chairs worried about the fact 
that all their students are focusing on research areas 
related to wireless communications, the more accurate 
slogan is "collecting people." And to employees who 
work ever-longer hours, struggling to maintain a 
competitive edge against fearsome rivals like Motorola, 
Ericsson and Siemens, the bitter joke is that Nokia is 
actually in the business of "disconnecting families." 

It's tough to stay ahead in the global economy; long hours 
are part of the price. But Nokia executives are convinced 
that their company has other advantages. One of the 
cherished tropes ofNokian corporate folklore is the idea 
that any lower-level employee can pull out his or her 
mobile phone and dial up the boss, all the way up to the 
CEO. If the CEO doesn't answer, no problem: you are 
then empowered to make your own decisions, to act upon 
your own initiative. This corporate mind-set is codified in 
Nokia's own internal communication practices. At Nokia, 
says Erkki Ormala, a director of technology policy, "We 
don't ask who is your boss, we ask to whom you are 
reporting." 

Ormala is my last interview in Helsinki, in a plush 
conference room at Nokia House, Nokia's 4-year-old 

11/11/01 1:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter_ six _part_ 1/print.html 

10 of 14 

headquarters, a dazzlingly blue building coated in a sheath 
of sparkling glass. Finland is good at meetings -- I've been 
in a great many conference rooms during my week and 
I've almost always been impressed. The coffee is always 
fresh, a variety of pastries and sweet breads are invariably 
laid out on the table, the lightest of taps on an intercom 
button summons help near-instantaneously. But Nokia 
was in a class by itself: The plate glass windows looking 
out at the bay offer the most sublime view, the catered 
lunch is the tastiest, the electronic conferencing 
equipment is the most state-of-the-art. 

Nokia House even has the nicest coat racks! In Finland, 
spacious coat racks are an integral part of the architecture 
of every building I visit. At larger corporations, they 
occupy a considerable amount of real estate adjoining the 
reception area. Finnish design esthetics are famous for 
pleasingly matching up form and function -- by the time I 
hang up my coat at Nokia, I'm not surprised to notice that 
the coat hangers are the coolest I've ever seen -- angled 
bars of steel that wouldn't look out of place as 
construction elements in a nuclear power plant. 

Like his company's coat hangers, Ormala's presentation is 
flawless. He has a ready, polished answer to every 
question except one: When I ask him whether Nokia's 
emphasis on open standards for communications 
technologies is an example of a more progressive 
approach to flourishing in today's global information 
economy than Microsoft's strategy of controlling 
standards, he quickly pleads no comment. In today's 
world, Microsoft and Nokia are both competitors and 
cooperators. In Finland, the Internet is already integral to 
every new model mobile phone -- the software that runs 
that Net-to-phone interface will be the battleground of the 
next generation of operating systems and wireless 
hardware. 

Listening to Ormala field my questions in an English that 
is more precise than my own, it's easy to see how Nokia 
has made such huge strides over the past half decade. But 
when Ormala quantifies some of his company's growth, 
telling me that the corporation is hiring 1,000 employees a 
month, that the average age of all Nokia's employees is a 
little over 30, and their average tenure with the company 
is just under three years, I boggle. Ormala himself has 
only been with the company for a year, after stints in the 
Finnish government and as chairman of an OECD 
working group on innovation and technology. 

How is it possible for a company hiring 1,000 
20-somethings a month to even pretend to itself that it is 
effectively managing its own growth? Nokia, I say to 
Ormala, sounds like a runaway train. But Ormala just 
smiles. 

"Necessity has created the need to learn how to integrate 

11/11/01 I :55 PM 



Salon Free Software Project I Finland -- the open-source society http ://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I /print.html 

11 of 14 

people," says Ormala. "I was integrated in a process 
where I learned to know the organization and the 
organization learned to know me." 

There is no better way to compete in a fast-moving, global 
economy than by decentralizing operations and depending 
on local initiative. Nokia, says Ormala, is better suited 
than most companies to succeed in this economy because 
of its anti-hierarchical culture. One of the reasons Nokia is 
growing so fast, he suggests, is precisely because of that 
decentralization -- more than half of Nokia's employees 
work outside of Finland, responding to local conditions as 
they see fit. 

As I listen to Ormala, I am struck by the similarities 
between Nokia and Linux. Although both have a clear 
center, Nokia's CEO Jonna Ollila and Linux's Linus, both 
also depend on subordinates to be able to solve their own 
problems -- apply their own patches, as it were, to the 
bugs that tum up in their everyday activities. Both are 
fundamentally global enterprises, taking advantage of 
advanced telecommunication structures to create new 
ways of doing business -- or creating code. And both 
operate according to values that may well be rooted in the 
deep structure of Finnish culture. 

Lack of rigid hierarchy, respect for the value of shared 
information, an openness to new technology: what do all 
these qualities have in common? They nicely complement 
the task of flourishing in a networked environment. 
Ultimately, it doesn't matter whether Finnish folk tales or 
Swedish rule or long winters really constitute some kind 
of deep cultural programming. Finns aren't automatons, 
required by their history to act in specific ways. What is 
indisputable is that Finns have convinced themselves that 
they like to play with new gadgets and distrust 
hierarchies. And that becomes a self-fulfilling prophecy. 
In a world where new things tumble out one after another 
in an ever-accelerating rush, having convinced yourself 
that you thrive on newness is an amazing tactical 
advantage. 

Of course, all these qualities require one more magic 
ingredient to make them meld perfectly together -­
self-confidence. And intriguingly, although from my 
perspective Finland seemed to be overflowing with 
confidence, many Finns told me that the country had 
actually long suffered from a serious self-esteem problem. 

In Helsinki, Russia is never far away, physically or 
psychologically. The apartment building in which Linus 
Torvalds grew up is on a street named St. Petersburg -­
that Russian city founded by Peter the Great was once 
(before WW II) only about 25 kilometers distant from the 
southeastern border of Finland. The old Russian embassy, 
a huge, classically designed building with an imposing 
stone-carved hammer-and-sickle presiding over all who 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http:/ /www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

12 of 14 

come near, is just a few blocks away. 

Torvalds' own parents were both members of the Finnish 
Communist Party. It's one of the amusing paradoxes of 
free software: Linus Torvalds, a paragon of pragmatism, 
currently working in the heart of Silicon Valley for a 
highly capitalized start-up that epitomizes the way 
business is done in the free market global economy, grew 
up in atmosphere drenched in socialist practice and 
rhetoric. 

Neither of Torvalds' parents are communists any longer; 
both are journalists, his father for television and radio, his 
mother as a translator. And it certainly wasn't out of the 
ordinary for upper-middle class Finns to be communists 
in the 1960s. At the time, at least as far as the West was 
concerned, Finland was clearly part of the Soviet sphere 
of influence; in Finland itself, there was always a nagging 
worry as to whether the country would be the next 
Hungary or Czechoslovakia -- doomed to watch Soviet 
tanks roll through the capital city. Finns, who as far back 
as the 19th century had a reputation for stoic resignation, 
kept quiet and worried about their image. 

Risto Linturi likes to tell a joke -- "A Finn, a Russian, and 
an American go to the zoo, and see a huge elephant. The 
American thinks, 'I could sell this elephant for a lot of 
money.' The Russian thinks, 'This elephant could feed a 
lot of people.' But the Finn wonders, 'What does the 
elephant think about me?"' 

By the end of my stay in Finland, the Finns were asking 
me as many questions as I asked them. I got the feeling, 
sometimes, that I was the elephant. They would rather 
know what I thought about them than explain themselves 
to me. But when I told them that the country struck me as 
a pretty happy place, that everyone was exuding 
self-confidence from every pore, they acted surprised. 
Hannu Puttonen, a filmmaker working on a documentary 
about Linux, was positively perplexed -- Finland, he said, 
has always seen itself as the "sad country." Even the very 
first page of the Kalevala refers to the Finnish homeland 
as "the luckless lands of the North." 

Perhaps my impressions were skewed, he suggested, by 
my selection of interview subjects among the movers and 
shakers in Finland's information society. Nokia scientists 
and computer programmers were bound to be complacent, 
given their current success. But the country still has an 
unemployment rate of almost 10 percent, noted Puttonen, 
and memories of a deep recession at the beginning of the 
1990s are still sharp. 

That recession was caused, in large part, by the end of the 
Cold War and the breakup of the Soviet Union, which 
until the early 1990s accounted for 25 percent of Finland's 
exports. Ever since then, Finland appears to be exhaling a 

11/11/011:55 PM 



Salon Free Software Project I Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I /print.html 

13 of 14 

huge sigh of relief -- relief that may be easier to see from 
the outside looking in. 

Mato Valtonen is an aging rocker who now runs a 
company called WAPit, which specializes in wireless 
application services for mobile phones. Until quite 
recently, Valtonen was the lead singer and front man for 
the Leningrad Cowboys, a Finnish rock band with a 
reputation for punk/postmodern troublemaking. In 1993, 
Valtonen recalled, the Leningrad Cowboys hired Russia's 
Red Army Choir to go on tour with them, performing 
American pop songs. At an outdoor concert in central 
Helsinki, where 200,000 people attempted to force 
themselves into a space that could fit only 70,000, one 
could hear, says Valtonen, the sound of Finland relaxing. 
The sight of the Red Army Choir singing Lynyrd 
Skynyrd's "Sweet Home Alabama" suggested that Russian 
tanks were no longer threatening the border. 

Two years later, Finland beat Sweden in the ice hockey 
world championships. (Remember 1980 -- when the 
Americans beat the Soviets during the Lake Placid 
Olympics? Multiply that by about a thousand orders of 
magnitude. Sweden ruled Finland for 700 years! Naked 
men were dancing on top of police cars in downtown 
Helsinki!) Esa Tihala, director of e-business at ICL, a 
one-time computer manufacturer moving rapidly into 
Web-only e-commerce solutions, cited that moment as 
another psychological breakthrough point. "We never had 
won anything, before," said Tihala, his face glowing. "We 
didn't think we could win anything." 

But now Finland is winning everything. Red Army 
Choirs, ice hockey champions, mobile phone 
megacorporations and open source avatars -- Finland's 
psyche is in pretty good shape. Of course, the global 
economy is nothing if not fickle. When stock prices drop 
on the NASDAQ exchange, stock markets all over the 
world react in kind, not excepting Finland. 

But Finland in the 21st century is far from luckless. In 
today's world, you've got to find your niche, your one 
thing that you do better than anyone else. Finland's niche 
turns out to be the network. Not a bad gig, if you can get 
it. 

And not a bad way to explain the power of Linux, either. 
When Linus Torvalds stands up in front of tens of 
thousands of people at a major computer industry 
convention, he projects an aura of untouchable 
self-confidence and yet at the same time an eminently 
approachable openness. And why shouldn't he? He hails 
from a nation of cooperators who revere the power of 
information -- oflore -- in their myths and legends, who 
seem to be born knowing how to take advantage of the 
unique potential of the network. He comes from a land 
where open-source attitudes are as natural as the frozen 

11/11/01 I :55 PM 



Salon Free Software Project\ Finland -- the open-source society http://www.salon.com/tech/fsp/2000/04/20/chapter _ six _part_ I/print.html 

14 of 14 

lakes and endless Arctic nights. 

The people who do best in a networked world have a great 
deal in common with the people who devote themselves 
to open-source software: they distrust rigid hierarchies, 
they thrive on shared information and they are eager to try 
new things -- new methodologies, new software, new 
gadgets, new ways of doing business. It turns out to be no 
mystery, after all, that something like Linux and someone 
like Linus Torvalds have emerged from the "sad country" 
of the North. It was an inevitability. 
salon.com I April 20, 2000 

Salon I Search I Archives I Contact Us I Table Talk I Au nfu 

Arts & Entertainment I Books I Comics I Life I News I h :;pie 
Politics I Sex I Tech &. Business I Audio 

The Free Software Project I Tt1e Movie Page 
Letters I Columnists I Salon Plus 

Copyright © 2000 Salon.com All rights reserved. 

ll/ll/Ol l:55PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg:/ I l 67 /http:/ /www.salon.com ... 9/12/chapter _ 7 _part_ one/print.html 

1 of 11 

Search About Salon Table Talk Newsletters Advertise ,n Salon i<";estor Relations 

To print this page, select "Print" from the File menu of your browser 

Chapter 7, part 1 

r n 
When open-source developers and IBM took gambles on each other, free software showed it can flourish 
in the heartland of corporate computing. 

By Andrew Leonard 

Sept. 12, 2000 I The kitchen is the receptionist at Collab.net, a software start-up in the South of Market 
neighborhood of San Francisco. No one is present to greet an inquisitive visitor walking through the 
open door on the fourth floor of a nondescript building -- just stacked cases of Snapple fruit juice and 
giant bags of pretzels; a refrigerator and a sink; a coffee machine and a water dispenser. 

The ambience screams of youthful coder necessities. On top of the refrigerator, huge boxes of Trix and 
Cap'n Crunch line up like crates of ammunition. Next to the sink sits a large jar ofTwizzlers. From the 
large, open room stretching beyond the kitchen, a seductive slither of spooky trance music pulses -­
inviting, and yet at the same time a little intimidating. People who work in this kind of environment are 
almost too cool. 

A few concessions are made to the sensitivities of the less hip -- the potential investors or clients from 
the old world of computing who might drop by, looking to dump a million bucks here or there. Along 
one wall stands a free-standing rack packed with hundreds of issues of business/high tech magazines -­
The Industry Standard, Business 2.0, Red Herring, Fortune. 

The magazines may not make good marketing material right now. Collab.net, the brainchild of 
open-source star Brian Behlendorf,: aims to make a business out of, he says, "distilling the principles of 
open source." But at least half of the covers of these new-economy bibles are screaming dire, boldface 
warnings about the current dot-com meltdown, including Wall Street's sharp tum away from 
Linux-related stocks in the spring and summer. 

It's a good thing the office tunes are soothing, because jangled nerves are suddenly everywhere in that 

11/11/01 1 :56 PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://l67/http://www.salon.com ... 9/l2/chapter_7_part_one/print.html 

2 of 11 

strange land where free software and dot-com start-ups mix. In the summer of 1999, Red Hat's IPO, 
occurring right in the middle of a packed Linux World convention, sent attendees into a dither of delight. 
But in mid-August, no less an authority than the New York Times takes advantage of another 
Linux World convention to declaim about how Wall Street is souring on Linux. 

The Gray Lady is a bit late to the story -- the trade press has been hooting about declining valuations 
since early in the spring, and competitors have long become adept at using the stock price declines of 
companies like Red Hat and VA Linux as evidence that the open-source upstarts don't pose a threat to 
established, proprietary software enterprises. Critics of free software are also muttering about continuing 
delays pushing back the release of the next version of Linux, and the failure of Netscape's Mozilla 
project to release a usable browser. 

But the Times may also be a bit overeager: Barely one week after August's Linux World, Linux 
companies like Caldera and VA Linux handily beat analyst estimates and watch their stock prices surge. 
Linux investors suddenly rejoice. 

And yet, those who take heart in a one-day surge are just as guilty of overeagerness. Both cynics and 
Pollyannas are like marks suckered into a New York huckster's game of three-card monte. While they 
busily stare, striving to follow the movements of the dealer's hand, they never notice that Times Square 
around them is meanwhile being transformed from pimp heaven into Disneyland. Sure, companies in the 
business of selling Linux may have questionable prospects -- but the open-source revolution is still in 
full effect, rebuilding the software industry from top to bottom, forcing everyone to adapt. 

Corporations involved in the software industry are exploring open-source software, some with the 
enthusiasm ofbodysurfers losing themselves in the roaring surf, others with the timidity of diffident 
waders in a lagoon full of sharks. They are by no means unified in their approach as an industry sector, 
or even internally within a single company. But there are executives and engineers at all of these 
companies who believe that an extraordinarily clear business case can be made for open-source software: 
Figure out how to make it your friend, before it starts dancing on your grave. 

To see this process in action, you don't need to look further than the computer industry's venerable giant, 
IBM -- which has become perhaps the best corporate friend open-source software has ever had. 

The morning of Dec. 16, 1999, started out as it usually did for Linas Vepstas. Warming himself against 
the Austin, Texas, winter cold seeping through his drafty, unheated house, he settled down to read his 
e-mail and drink his coffee. Sometimes the ritual was a relaxing way to ease into the day; other times, 
the caffeine and the messages would combine to get him bouncing off the walls. Like most hackers, 
Vepstas lived his life via e-mail -- his main hobby, at the moment, involved coordinating a major Linux 
project via online communiques with an international band of similarly dedicated coders. 

But his e-mail on this winter morning was neither soothing nor invigorating. It was paralyzing. In just a 
few lines, all the work he had done for the last year and a half evaporated. 

The message came from Alan Cox,_~_ a man widely considered to be the second most influential hacker in 
the Linux community, after Linus Torvalds. From his home in Swansea, Wales, Cox -- his independent 
contractor's salary paid by Red Hat -- fulfilled an extraordinarily important role as maintainer of the 
Linux kernel._: While Torvalds was off working on the next version, Cox spent much of his time 
consolidating bug fixes and patches to older versions -- keeping the kernel up to date and secure, 
extending its ability to interface with new kinds of hardware. 

The message read as follows: 

They finally delivered code. A decent-looking SMP kernel, console and some networking 
stuff. Glibc, gee, binutils, gdb patches. 

The kernel stuff is in 2.2.14pre14. I'll forward you the other patches if you want. 

ll/ll/Ol l:56PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://l67/http://www.salon.com ... 9/l2/chapter_7_part_one/print.html 

3 of 11 

Alan 

"They" meant IBM. And the "code" was a package of extensions and patches to the Linux kernel and 
other associated free programs, created by a team ofIBM programmers in Boblingen, Germany, near 
Stuttgart. The additions made it possible to run Linux-based operating systems on IBM's top-of-the-line 
mainframe computer, the System 390. 

Vepstas stared at the message from Cox in shock. 

I tried to read a few more e-mails," he says, "but found I couldn't concentrate. I bit my lip, I bit my 
tongue. I'd long ago learned the lesson of regretting one's words, and wasn't about to regress. A 
measured response would come later." 

Vepstas was irritated for several reasons. He had heard rumors about the Boblingen "skunk works,"_~ but 
nothing definitive, nothing as impossible to ignore as the actual delivery of code. He felt he should have 
been better informed. At the very least, he thought he deserved first notice of IBM's official efforts. 

For the better part of two years, Vepstas and a small cadre of programmers had been writing their own 
version of Linux capable of running on the 390. The project was called Bigfoot, and it had attracted a 
fair amount of admiring -- even if somewhat perplexed -- attention from the Linux community. 
Mainframes were "big iron," the biggest, most powerful and expensive computers available this side of a 
supercomputer -- the kind of computers that a bank or an airline would use to run its operations. 

Once upon a time, mainframes had ruled the computer roost. But toward the close of the 20th century, 
mainframes had lost some of their grand allure. During the '90s, the network came of age, and 
scampering, decentralized agglomerations of PCs made lumbering mainframes seem like evolutionary 
losers. Heck, all you needed was a cheap PC, a Linux-based operating system and the Apache Web 
server, and you could host your own Web site, right? 

Right, and wrong. By the end of the '90s, mainframes, much to the surprise of some observers, were 
back in favor. Only now they were being called "servers." The reasons for their comeback? Running 
Web sites had become big business for many companies, including a significant portion of IBM's 
traditional Fortune 500 customers. The pure processing power and ironclad reliability of the monster 
mainframe was once again beginning to look attractive, as the Web increasingly became part of an 
infrastructure channeling massive quantities of mission-critical data in torrents that would drown even 
the mightiest of PCs. 

Vepstas wasn't particularly interested in the resurgence of the mainframe market; he wanted to hone his 
technical chops. To get Linux to run on a killer machine like the 390 would be a nice hack indeed -- he 
would have to write his own compiler and assembler and master the tricky job of porting an entire kernel 
to a new hardware architecture. As Vepstas notes, the 390 had "a fabled, legendary status as a computer 
design, and I figured it was damned high time I learned it." 

But Linux had originally been designed to run on cheap Intel PC hardware. And the 390 already had two 
different proprietary-to-IBM operating systems designed just for it, considered by many IBM engineers 
to be the culmination of decades of the best work of IBM research and development talent. Getting 
Linux to run on an IBM mainframe was not only technically challenging, but also seemingly pointless -­
like using a cheap, tinny transistor radio as the sound system in your brand new BMW. 

As it turned out, IBM had very good reasons for wanting Linux running smoothly on the 390 -- as well 
as for keeping the project quiet while it was still incomplete. But on the morning of Dec. 16, nothing 
could have prevented Vepstas' shock from quickly turning to anger. As he to the Linux/390 
mailing list on Dec. 18, after IBM announced to the world what it had demonstrated to Cox two days 
earlier: 

"I personally have spent many evenings and weekends working on this project, without pay, for just the 
glory of it," wrote Vepstas. "Although I cannot speak for others, others have also invested their time. I 

11/11/01 1:56 PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://167 /http://www.salon.com ... 9/12/chapter _ 7 _part_ one/print.html 

4 of 11 

am not happy; I take IBM's actions to be a personal affront." 

Eight months later, Vepstas has let his grudges subside -- he's immersed in a new project, GNUCash, a 
free personal-finance management program. He's moved on. But at the time, Vepstas could be excused 
for feeling slighted. One of the motivating forces fueling free software hackers is the reputation game -­
the better the hack, the more cred you get in your community. But by obliterating his project, IBM had 
eviscerated his chance for such cred. His own background as a programmer who had worked for IBM for 
10 years made the blow hit especially hard. 

Hurt feelings were only one part of Vepstas' discontent. Of larger concern was the fundamental 
contradiction between a "skunk works" project -- carried out in secrecy, not only from the rest of the 
world, but also from the rest of IBM -- and the basic philosophy of open-source software. Ideally, 
open-source software involves the coordination of large numbers of programmers, thus reducing 
unnecessary duplication of work and improving the chances for peer review. Even more fundamentally, 
open source is open: Everyone gets to look at the code. But IBM's programmers had done their work in 
private. Was the company attempting to gain the advantages of Linux without allowing the collective 
participation essential to a smoothly functioning (and ideologically correct) open-source effort? 

"Without conversations and communications, development cannot be coordinated," Vepstas declared to 
the list. "We could have gotten more done, been further along. Due to bad management decisions within 
IBM, time was wasted and money was wasted. I believe that these bad decisions were made because the 
managers do not understand the open-source development process. This is why I write this screed." 

"Lack of transparency and secretive development leads to other problems besides just wasted and 
duplicated effort," continued Vepstas. "It directly harms the open-source community, and directly harms 
the corporate image and credibility ofIBM. I have a four-year-old son who has recently learned the 
phrase 'trust me.' He says 'trust me,' and then, minutes later, is doing something bad again. We are trying 
to reason with him: 'You know that is a bad thing to do. Why did you do it? Next time, think before you 
act. Do the right thing. If you always do the right thing, then we can trust you.' (Unfortunately, the only 
effect this has had is that he's stopped saying 'trust me.')" 

Perhaps the most incongruous aspect of Vepstas' unfortunate experience with IBM was its context. IBM 
boasts a reputation for playing by open-source rules that surpasses that of any other major computing 
corporation. Even Richard Stallman, a man utterly unafraid of castigating the high and mighty, has little 
negative to say about Big Blue. Indeed, the eyebrow-raising announcement, in the summer of 1998, that 
IBM was basing its WebSphere family of e-business products on the Apache Web server program did 
more to create a relationship between the world of open source and the established corporate software 
industry than any other single act. 

Today, IBM executives like to portray the Linux-for- the-390 effort as part of a coherent strategy aimed 
at coming to grips with vast changes overtaking the software landscape, changes it saw coming way 
back in 1998. As Bill Zeitler, the general manager of the Enterprise Servers division, declaims -- "It is in 
IBM's strategic interest to work as closely with the open source community as we can ... This is not a fad 
-- this is a profound disruptive change in the way that software will be developed and deployed." So 
Linux for the 390 is not only the crown jewel in a current initiative to support Linux on every level of 
IBM hardware, from Thinkpads to mainframes, but is also the logical conclusion to a three-year journey 
of rapprochement with the world of free software. 

The truth is a little more complicated. 

The story of how IBM made friends with free software hackers, from the early days when it dipped its 
toes into the Apache Project to its current headfirst plunge into Linux, is not the story of a carefully 
executed strategy. It is instead a tale of contingency, luck, a few committed engineers and a few canny 
executives. Its twists and turns hinge on the results of combating agendas, political maneuvering and 
software ambition. At its most mundane, it is a story that hints at how the battle for dominance over new 
software markets will be waged over the next few years. At its most metaphysical, it is a story that 
illuminates the contradictions inherent in the very concept of a "corporation." 

11/11/01 1 :56 PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg:/ / 167 /http://www.salon.com ... 9/l 2/chapter _ 7 _part_ one/print.html 

5 of 11 

It's all too easy to see a company like IBM, or Sun, or even Microsoft, in the terms of the legal fiction 
that is represented by the word "corporation," to anthropomorphize it as a "body" and give it attributes -­
evil, good, brilliant, stupid, spunky, lumbering. But the modem corporation is far too fragmented and 
balkanized to personify in such simple, unitary terms. 

The 390 Project provides a perfect example. The engineers responsible, a group of young Germans, 
wanted to, in the words of team leader Boas Betzler, "do something totally strange. We were just a group 
of techies that wanted to find out how smart we were." 

"In the beginning, we really did not think about how big an impact we could make," says Betzler. "We 
always wanted to demonstrate the power and capability of the mainframe and then give it to someone 
who would know Linux and see the machine and use it and say 'Wow, that's a really big Linux."' 

A higher tier of engineers, those who defended the project in turf wars within IBM ( or hid knowledge of 
it from competing factions), saw a chance to make a strategic move that would help boost 390 sales -- by 
ensuring that the 390 would be a platform comfortable with the vast array of Unix/Linux applications 
available. Even further up, executives jockeying their way up the corporate ladder placed bets on Linux 
as a means of gaining advantage in the never-ending political warfare that exists in any large company. 
And at the top, even CEO Lou Gerstner played a role, determined that if IBM was going to support open 
source, it wouldn't do so in a halfhearted manner. 

Even Linas Vepstas, after his initial rage had subsided, acknowledges that IBM's internal politics made it 
impossible to allow the Burblingen team to interact with the wider open-source software community. 

"I think many people don't realize how much the social dynamics inside oflarge companies [such as 
IBM] resemble that of the open-source community," says Vepstas. "It's just that within large 
corporations the cooperation and the bickering are hidden from public view. The Linux/390 guys within 
IBM were stepping on all sorts of land mines internally." 

The huge importance of the 390 mainframe within IBM -- both symbolically and strategically -- ensured 
that the executives with the most knowledge about Betzler's activities kept them quiet. But at just about 
the same time Betzler got started -- the spring of 1998 -- other groups at IBM were reaching out to the 
open-source world with open arms. 

On the comer of Third Street and Bryant, in the South of Market neighborhood of San Francisco, there is 
a restaurant known as the Big Tomato. Its real name is Vine e Cucina, but the local clientele are too busy 
programming or otherwise online-obsessed to be bothered with its actual name, and just refer to it by the 
unavoidable sign out front. 

In 1998, the Big Tomato enjoyed a fortuitous propinquity to one of the world's most thriving physical 
nodes oflntemet culture and business. Countless Web-related start-ups clustered in the buildings nearby. 
Organic Online, the high-end Web production studio that employed open-source star Brian Behlendorf 
as its chief technical officer, was just a few feet away. So were the offices of Wired magazine, for which 
Behlendorf, at the tender age of 19, had brought Wired's online adjunct, HotWired, onto the Net. 
Behlendorf still hasn't strayed far -- Collab.net, his current startup, is just another long block away. 

So when people came to visit Behlendorf in his own neighborhood, there was a good chance that the Big 
Tomato was where they would end up -- which explains why one spring evening in 1998, he had dinner 
there with two representatives of IBM, James Barry and Yen-ping Shan. 

In retrospect, the meeting was a dramatic turning point, the moment when the old world and new world 
of computing met to shake hands. At the time, though, unless you were a very close follower of the 
nascent open-source scene, you might have been excused for wondering what reason Big Blue could 
have for setting up a powwow with a ponytailed 24-year-old who split his time between Organic Online 
and rave DJing. 

ll/ll/01 l:56PM 



Salon.corn Technology I How Big Blue fell for Linux wysiwyg:/ /167 /http://www.salon.com ... 9/l 2/chapter _ 7 _part_ one/print.html 

6 of 11 

By that summer, Linux-based operating systems had already attracted a huge following, and earlier that 
spring Netscape had made the dramatic announcement that it would be releasing the source code to its 
Navigator Web browser. But the traditional corporate world, at least from a managerial standpoint, still 
didn't seem to know what to make of this hacker frenzy. Software engineers everywhere were already 
gung-ho, but the suits were a step or two behind. 

James Barry and Yen-ping Shan weren't your ordinary IBM suits, however. Barry, the product manager 
for WebSphere, a set of closely related e-business programs, was a jeans-in-the-office kind of guy, and 
had been employed by IBM for little more than a year. Shan, IBM's chief architect for e-business tools, 
came from an engineering background. The two men were complementary halves to the same coin. 
Barry was a gregarious and jovial 43-year-old who in 1998 already had years of experience in online 
affairs, dating back to a bulletin board he had operated in Boulder, Colo., in the early '90s. He recalls, 
"Shan was the technical guy who knew a lot about marketing, while I was the marketing guy who knew 
a lot about the technology." 

Both men were certain of one thing: It was in IBM's interest to support the Apache Web server, a 
program developed by a loose group of volunteer programmers led by -- or, more accurately, 
coordinated by -- Brian Behlendorf. But just getting as far as this meeting had required mastering an 
internecine political process at IBM that defied ordinary mortal comprehension. Engineers at IBM had 
been fans of Apache since at least 1996, when it was used as the Web server platform underlying IBM's 
Web-based front end to the Atlanta Summer Olympic Games. But IBM also owned Lotus software, 
which had its own Web server program: Domino Go. IBM software executives kept squashing 
engineering's Apache enthusiasm, tracing their mandate all the way back to the CEO, Lou Gerstner. 
You've got to eat your own dog food; if IBM had a Web server product, it should be pushing that 
product and using it for its own servers. 

The only problem was, practically no one besides IBM itself was using Domino Go, which made it 
rather unwise to rely on the program as a first step for penetrating other Internet software markets. For 
months, Barry and Shan had been working to persuade IBM of Apache's strategic advantage. 

First, Apache was what people were using. Shortly after Barry had been hired, initially as a consultant to 
evaluate IBM's "middlewarell~ offerings, he had lectured IBM managers on the fact that Apache was the 
most popular Web server program on the Internet -- and the single most widely used piece of software 
for the hosting of Web sites. Even in the Fortune 500, IBM's home territory, more companies were 
running their Web sites on Apache than on Domino Go. (Though, to be fair, some of those high-profile 
corporate sites, such as those belonging to Nike and Levi's, were actually being hosted by Organic 
Online.) 

Second, although Apache dominated the statistics for publicly accessible Web servers, owning more 
than 50 percent of a hotly contested market, Microsoft's share was also growing steadily. And again, that 
growth was occurring in the well-heeled market sector that IBM most lusted after. Apache owned the 
low end of the market, but Microsoft was gunning for where the money was. If IBM wanted to prevent 
Microsoft from claiming yet another software market, it needed to join forces with Apache. 

Third, since so many sites were using Apache, a vast amount of software tools had been created that 
would work with Apache. And since Apache was both open-source and conformed as closely as possible 
to all public Internet standards, it was easy to adapt those tools to different software platforms. 
According to Barry, if IBM came up with a set of software services that worked on top of Domino Go, it 
took a good deal of code rewriting to get that software to work with either Apache or Microsoft's IIS 
Web server. By making Domino Go the center of IBM's strategy, it was, in effect, handcuffing itself. 

For a year and a half-- much of which, say his friends, was spent in the air traveling from IBM office to 
IBM office -- Barry pushed the open-source strategic imperative to anyone who would listen. If IBM 
was interested in fending off Microsoft, if it cared at all about creating the widest possible pool of 
customers for all the fancy e-business services that IBM wanted to offer its customers, then it must get 
with the real program -- the open-source program, the Apache program. 

11/11/01 1 :56 PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://l67/http://www.salon.com ... 9/12/chapter_7_part_one/print.html 

7 of 11 

There was just one niggling problem, even after Barry and Shan finally won over higher levels of IBM 
management: IBM wanted Apache, but did Apache want IBM? 

Certainly, Brian Behlendorfwas cautious. He describes his own state of mind at The Big Tomato that 
night as "guardedly thrilled." Behlendorf is not by nature a suspicious man, but he was wary. He might 
still have appeared to be a wet-behind-the-ears Internet hacker, but he knew IBM. His parents had 
actually met each other while they both worked at IBM -- if anyone had grown up steeped in the culture 
of the computing industry's most dominant enterprise, it was Behlendorf. IBM had a way of swallowing 
its collaborators, of overwhelming smaller companies with its phalanxes of sales shock troops and 
mind-numbing invasions of managers. As a representative of not just the Apache Group, but all of 
emergent Net culture, Behlendorf couldn't help being restrained in the face of outreach from one of the 
world's biggest corporations. 

Behlendorf did not "run" Apache. No one did. Instead, he helped coordinate the efforts of a group of 
programmers, all of whom for one reason or another needed a good Web server program to help them 
carry out their day job or hobby, to improve the existing publicly available Web server technology. The 
original base of code came from the University of Illinois, developed by the same team of programmers 
that had created Mosaic. 

But those programmers had moved on en masse to Netscape, which -- at the time of Apache's emergence 
in the mid-'90s -- was developing, slowly, its own high-priced, proprietary Web server. Meanwhile, as 
the Web expanded at phenomenal speed, there was a drastic need for improvements to the existing freely 
available Web server code. All across the Net, webmasters were hacking their own patches_'i: to the code, 
quick fixes that would help them respond to their daily needs. Finally, a group of these programmers got 
together, collated all the patches and created "a patchy server" -- Apache. 

Behlendorf s influence came through his calming presence on Apache-related mailing lists, as the 
systems administrator for the Apache Web site and as the maintainer of the Apache "source tree!!~ -- the 
code base for Apache to which the core group of some 20 programmers had access. His interest always 
was, and still is, to devise technological means of enhancing collaboration. Lacking the ideology of a 
Stallman, or the programming skills of a Linus Torvalds (he is quick to say of himself, with a 
self-deprecating smile, that "I am not a very good programmer"), his motivation has always been to 
create things that work, that get the job done. 

Apache got the job done. It wasn't necessarily the best Web server, the fastest, the most powerful or the 
most secure. But it was still the most widely used, in large part because it handled, simply and 
effectively (and freely), the tasks that most people needed handling. 

Of course, IBM had a different set of motivations -- generating revenue being chief among them. So 
when James Barry told Brian Behlendorfthat IBM wanted to use Apache as part of its own family of 
e-business products, and that it wanted to start contributing to the Apache project, Behlendorfs first 
reaction, recalls Barry, was defensive. The Apache group did not want a giant corporation to come in 
suddenly and take over. Yen-ping Shan hastened to sooth him. 

"I told him," recalls Shan, "that we are going to play by your rules, because we believe that your 
structure and practice actually works." 

Shan added that IBM's support could only strengthen Apache. "There are multiple ways IBM is going to 
help," Shan remembers saying, "not just technologically but as an endorsement that will solidify Apache 
in the IT [information technology] world. IBM will announce enterprise-level support." 

Fine. If IBM was going to play by Apache's rules, then that's what it would have to do to win the Apache 
group's support. To do that would require something a bit more substantive than taking Behlendorf out 
to dinner. 

It would require code. 

ll/ll/Ol l:56PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg:/ /167 /http:/ /www.salon.com ... 9/12/chapter _ 7 _part_ one/print.html 

8 of 11 

IBM had to become a contributor. And it would have to prove itself the way any Apache contributor did, 
by submitting patches that were accepted by the core as valuable improvements to the Apache code base. 
And it had to do so in a sensitive way. Behlendorf did not want to see hundreds of patches appearing 
from scores of IBM engineers. He didn't want IBM to suddenly dominate the open discourse of existing 
Apache programmers. If IBM wanted one of its employees to become a member of the Apache core 
(which Barry and Shan's boss had set forth as an essential requirement before greenlighting their mission 
to Apache), then that employee would have to earn his or her way there like anybody else, by merit, 
through the quality of his or her hacking. 

Barry and Shan agreed. It wouldn't be easy. The very concept of an IBM employee contributing code to 
a project that wasn't owned by IBM raised hackles on legions of IBM lawyers. Traditional software 
industry policy held that an employer owned everything an employee did, even to the extent of idle 
thoughts the employee might linger over while showering in the comfort of home. There was also the 
sticky question of patents -- what if a contribution of code from an IBM engineer included concepts or 
techniques that had been patented by IBM -- what would happen to those patents if they became part of 
the public domain? What about liability issues? 

Barry recalls with a pained grimace the months of meetings that had to be undergone in order to work 
out such issues. But, credit must be given to IBM's legal team. The issues were worked out. A single 
programmer, Bill Stoddard, was given the job of being the connection between IBM and Apache -- if 
any of IBM's programmers came up with a patch, Stoddard reviewed it first, and then he personally 
submitted to the Apache group. 

And in the Apache group, good code always won the day. Stoddard's contributions were accepted. IBM 
was accepted. IBM endorsed Apache, and gave open source an entree into the land of the suits. And 
Apache endorsed IBM, proving that hackers could work with the biz guys. The announcement of the 
agreement generated some 1,000 media stories -- which, more than any other fact, Barry recalls with a 
rueful grin, sealed the deal for upper management. That kind of positive press was by definition a 
successful strategic move. 

Today, all three representatives at that meeting have moved on to new jobs. Yen-ping Shan is the chief 
technical officer at the largest payments-processing firm in the United States. Brian Behlendorf is CTO 
of Collab.net. And James Barry works a desk about 30 feet from Behlendorf. He is now Collab.net's vice 
president of strategic development. 

The summer and fall of 1998 saw one open-source-related announcement after another from Big Blue. 
IBM joined the Apache Project in June. In mid-July, two researchers named David Shields and Philippe 
Charles announced the release of a version of their JIKES Java compiler for Linux. By September they 
had open-sourced JIKES. At the same time, a Toronto researcher named Gary Valentin had completed 
his own skunk works project, porting IBM's db2 database software to Linux. Meanwhile, that spring, 
Boas Betzler and his Burblingen cohorts had begun work on their 390 port. 

But there was still no companywide strategy. In various comers of the IBM empire, individual 
researchers like Shields or strategists like Barry (who met and became friends through an open-source 
mailing list started by Barry for IBM employees) were doing their own thing, but as a company, IBM 
was hardly united. Shields does recall one key meeting of the IBM Academy of Technology, a grouping 
of 300 of IBM's most distinguished scientists in October 1998, at which both he and Barry spoke, as 
crucial. The Academy declared Linux to be an "earthquake" (as it had earlier declared Unix and the 
Internet) and petitioned Lou Gerstner to review their findings. 

But even though Gerstner formed a task force to study Linux, the struggle over policy at lower levels 
still raged without cohesion. Barry recalls how plans to write a version ofWebSphere 3.0 for Linux were 
spiked by an IBM executive who gave a speech at IBM's research lab in Raleigh, North Carolina, 
declaring that Linux was "going nowhere." That executive, he notes now, without hiding his satisfaction, 
is currently in charge of an IBM division devoted to Linux. 

The task force recommendations, says Barry, were watered down and "milquetoasted." IBM seemed lost 

ll/11/0l 1:56PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://l67/http://www.salon.com ... 9/l2/chapter_7_part_one/print.html 

9 of 11 

at sea. 

Then came the morning of Dec. 14, 1998. 

That day, John Markoff, the lead technology reporter for the New York Times, wrote a short piece 
entitled "Sharing Software, IBM to Release Mail Program Blueprint." In it, Markoff detailed how IBM 
was planning to release a mail program called Secure Mailer, developed by a programmer named Wietse 
Venema, as open source. What the article didn't say was that the program had been something that 
Venema had created before joining IBM, that it had always been open source, and that IBM was only 
now acknowledging that Venema could keep working on it as an open-source project. 

But that didn't matter. All that counted was that IBM CEO Lou Gerstner read the article, and, according 
to legend, immediately became apoplectic. As far as he knew, IBM already had a mail program -- it was 
part of the Lotus Notes package. And if IBM was endorsing open-source software as a worthwhile 
strategy, then Gerstner wanted to know about it. 

James Barry says that Gerstner didn't care one way or another about open source as a software 
methodology. Barry says that Gerstner frequently liked to note, "I am not a technologist." What he cared 
about was strategy. Did IBM have an open-source strategy? And if so, what was it? 

Gerstner started making phone calls. First he called his chief of software, who called his subordinate, 
who in tum called his. The conference call kept expanding, until it made its way down to the research 
director who managed Venema. By the end of day, Gerstner had his answer. There was no clear strategy. 
Or at least there hadn't been up to that point. 

"There was that one morning in December of 1998, and by that afternoon the open-source strategy had 
jumped into the runway," says Dan Frye, IBM's program director for open source and Linux. "We talked 
to everyone in the industry. The answer we came back with was that open source was good for us." 

As a result, Linux got the green light. The skunks could come out of the woodwork. 

Of course, it still wasn't easy. 

"Internally, the battles were amazing, and you could understand why," says Jeff Nick, chief architect for 
the System 390. "A lot of the [IBM] technical community was very incredulous about this. You grow up 
in an OS/390 [the operating system designed for the 390] community, and there is great passion and 
pride in the heritage of OS/390 and the integration of its capabilities into the hardware platform. To 
suggest that there is a value proposition for running an open-source, not controlled, Unix platform on our 
hardware, and to propose that Unix applications might be better suited for running on Linux on the 390, 
than on OS/390. I was almost seen in my own technical community, particularly in the system 390 
design council, as antichrist. There were multiple painful meetings with my technical peers across IBM 
on the OS/390 platform. They were saying, you must be out of your mind, why would you want to do 
this, we need to protect the OS/390 environment." 

"It was a huge risk," says Nick. "And the reason we were ultimately successful was that we could show 
that by supporting middle-tier Unix applications that are collaborative in a distributed environment with 
the 390 back end and by running that entire heterogeneous workload on our platform, we would actually 
in the end be providing a bigger platform for our customers than we would if we forced everything to be 
on OS/390. There's a huge risk in that statement, but we are banking on the power of open source." 

Huh? Just what exactly is Nick trying to communicate here, in that mix oftechno-jargon? 

In essence, pretty much the same thing that James Barry and Yen-ping Shan were saying when they 
pushed Apache. There is a whole world of people using Linux-based operating systems and the vast 
ecology of programs that run on those operating systems right now. An enormous amount of work is 
being done using a set of tools that have a Unix heritage and are currently at home on Linux-based 
systems. 

ll/ll/Ol l:56PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://167 /http://www.salon.com ... 9/ 12/chapter _ 7 _part_ one/print.html 

10 of 11 

The Linux generation is in some ways the heart and soul of the Net, and its numbers, according to Nick, 
are surging. An entire generation of programmers has adopted Linux. It doesn't matter whether they are 
doing this because they hate Microsoft, or think Linux-based systems are technically superior, or just 
like to hack on free software. The fact is, it's happening. Market share for Linux-based operating systems 
-- and mind share for Linux among developers -- is continuing to rise. 

By ensuring that Linux will run on the 390, IBM would ensure that its mainframes would be an 
attractive environment for all those programmers and system administrators to work in. A bank could 
use its mainframe to handle its massive data-processing needs, and at the same time allow its 
Linux-skilled programmers to do whatever they needed to do -- in particular, to make use of all the 
middle-tier software applications that have been developed to get things done in an open, Internet 
environment. By expanding the possibilities, IBM would be able to expand its own market penetration. 

The break with tradition represented by IBM's decision to open up the mainframe to non-IBM software 
is hard to overstate. For decades, IBM banked on selling customers the entire "vertical" package. From 
the hardware to the software to the support, it was all Big Blue, all the way. But now, by acknowledging 
that it made strategic sense to -- paraphrasing Chairman Mao -- let a hundred software programs bloom 
on the mainframe, IBM was signaling that it knew it could no longer call the shots in the mainframe 
marketplace. 

Again, it just doesn't matter, from this perspective, whether Linux-based operating systems might 
actually be technically inferior to their Windows NT or Sun Solaris competitors in certain aspects. I 
asked Nick why, if it made so much sense to try and take advantage of all those people with Linux skills, 
wouldn't it also be prudent to attempt the same with NT, and gain access to that huge world as well? 

"It would be great if you could do that," says Nick. "But the difference is that because Linux is open 
source, which allows it to be worked on by a large collaborative set of developers, it has also been built 
to be platform agnostic. It's got what we call horizontal layering of function, so you can easily port the 
OS to multiple machine architectures and platforms. This is not true of NT and this is not true of most 
Unixes -- where each operating system has grown up tied to its machine architecture. " 

In other words, Linux, even if it may have started out as a hack to run Unix on a cheap Intel processor, 
has since evolved into the ultimate protean operating system. Over the years, its functions have been 
streamlined and compartmentalized to the point where it has become relatively easy to adapt it to 
different systems. 

As such, Linux-based operating systems (as well as BSD operating systems, although they represent a 
much smaller percentage of the current OS marketplace) are the true heirs of what one programmer once 
immortalized as the "worse is better" paradigm. 

In the 1980s, a programmer named Dick Gabriel wrote a paper about the programming language C++ 
and the operating system Unix called "Worse is Better." His argument was that simple systems that get 
most of the job done are better at surviving, over the long run, than complex systems designed to do 
everything perfectly. Complex systems are hard to adapt to new situations, and can break down easily. 
Simple systems can be fixed quickly, and mutate even faster. 

Today, Gabriel is the main open-source evangelist at Sun Microsystems, and C++ and Unix are the 
building blocks out of which the Internet has been constructed. Linux is just the newest all-purpose 
building material. 

There's a "virtuous cycle" here that feeds voraciously on itself. As Linux is ported to an ever-increasing 
number of hardware platforms, an ever-increasing number of programmers gain the opportunity to work 
on code that benefits everyone. Which in tum makes Linux-based systems even more attractive. 

And that's the business case for open source. At first listen, "worse is better" sounds like Orwellian 
doublespeak, a phrase designed more to confuse than enlighten. But in practice, "worse is better" is an 

ll/ll/Ol l:56PM 



Salon.com Technology I How Big Blue fell for Linux wysiwyg://167 /http://www.salon.com ... 9/12/chapter _ 7 _part_ one/print.html 

11 of 11 

actual evolutionary success strategy -- and nothing exemplifies its principles better than open source. 

Read Chapter One of the Free Software Project 

Join the discussion on this chapter 

Next installment: The Sun also rises on open-source software -- how Sun Microsystems, with a little 
help from Co/lab.net, is learning from its mistakes and joining the world of open source. 

About the writer 
Andrew Leonard is a senior 
writer for Salon Technology 
and author of Salon's EI£s: 
Software Proicct..,. an online 
book-in-progress exploring the 
history and culture of the free 
software movement. 

Sound Off 
Send us a Letter to the Editor 

Salon Search About Salon Table Talk Newsletters Advertise in Salon lnvestor Relations 

Arts & Entertainment I Books I Comics I Mothers Who Think I News 
People I Politics I Sex I Tech & Business and The Free Software Project 

Letters I Columnists I Salon Plus I Salon Shop 

Reproduction of material from any Salon pages without written permission is strictly prohibited 
Copyright 2001 Salon.com 

Salon, 22 4th Street, 16th Floor, San Francisco, CA 94103 
Telephone 415 645-9200 I Fax 415 645-9204 

E-mail I Salon.com Privacy Policy 

11/11/01 1:56 PM 




