PROGRAMMER'S [
GUIDE TO SCSI J§

t-__. ~ Covers:

* The SCSI-2 and SCSI-3 standards

* The Advanced SCSI Programming Interface (ASPI)
* Low-level programming with SCRIPTS™

CD-ROM includes sample code and specifications, the SCSI FAQ,
SCRIPTS™ support, and Linux SCSI documentation

The Programmer’s Guide
to SCSI

Brian Sawert

A
\A 4
ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts « Harlow, England « Menlo Park, California

Berkeley, California « Don Mills, Ontario Sydney
Bonn Amsterdam « Tokyo ¢« Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial capi-
tal letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information please contact:

Corporate, Government, and Special Sales Department
Addison Wesley Longman

One Jacob Way

Reading, Massachusetts 01867

Copyright © 1998 by Brian Sawert

Library of Congress Cataloging-in-Publication Data

Sawert, Brian
The programmer’s guide to SCSI/ Brian Sawert.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-18538-5
1. Microcomputers—Programming. 2. Computer interfaces. 3. SCSI
(Computer bus) I. Title.
QA76.6.529 1998
004.6'4—dc21 97-44773
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

ISBN: 0-201-18538-5

Text printed on acid-free paper
123456789—MA—0201009998
First printing, February 1998

This book is lovingly dedicated to my wife Mary.

Thank you for your endless encouragement and support.

Contents

Preface

Intended Audience

How This Book Is Organized
What You Will Need

Acknowledgments
About the Authors
Introduction
Chapter 1 An Overview of SCSI Technology
The SCSI Solution
SCSI-1
SCSI-1 Features
Intelligent Devices
Multitasking 110

Synchronous Data Transfer
Multiple Device Types on a Single Interface
The Birth of SCSI-2

Xiii
xiii
X1v

XV
Xvi

XVil

Xix

U T I O N NG N \C e

Vi

Contents

New Features in SCSI-2
Fast SCSI
Wide SCSI
Fast Wide SCSI
Queued 110 Processes
New Command Sets
Improved SCSI-1 Features
Data Parity Required
Message Support Required

Terminator Power Provided by Initiator

SCSI-3 on the Horizon
Fast-20 and Fast-40 SCSI
Serial SCSI Standards
Fibre Channel
Serial Standard Architecture
P1394
Layered Architecture
Plug and Play SCSI

Chapter 2 SCSI Fundamentals
SCSI Transactions: an Overview

Chapter 3 SCSI Phases
SCSI Phases

Bus Free
Arbitration
Selection
Reselection
Message Out
Command
Data In and Data Out
Status
Message In
Phase Sequence

Chapter 4 SCSI Messages
Message Types
The Identify Message
Extended Messages
Synchronous Data Transfer Request
Wide Data Transfer Request

0000 NN NI 9NN

Ptk
N — - O O O

15
15

17
18
18
18
19
19
19
20
20
21
21
22

23
24
24
25
25
26

Chapter 5

Chapter 6

Other Common Messages

No Operation

Abort

Bus Device Reset

Disconnect

Ignore Wide Residue

Queue Tag Messages
Simple Queue Tag
Head of Queue Tag
Ordered Queue Tag

SCSI Commands
Command Structure
Operation Codes
Logical Unit Number
Command Parameters
Control Field
Parameter Lists
Byte Order
Mandatory SCSI Commands
Test Unit Ready
Inquiry
Example: lomega Zip Drive
Optional Commands
Device Type—Specific Commands
Mode Select
Mode Sense
Mode Sense Data Format
Example: lomega Zip Drive
Reading and Writing
Read
Write
Other Commands

Status, Sense, and Errors
Status
Status Codes
Sense Data
Sense Key
Unit Attention
Additional Sense Codes
Example: lomega Zip Drive

Contents

27
27
28
28
28
28
29
29
29
30

3]
3]
32
32
32
32
33
33
33
34
34
37
38
39
39
40
41
42
44
45
45
46

47
48
48
49
51
52
52
52

vii

viii

Contents

Chapter 7

ASPI: The Advanced SCSI
Programming Interface
What Is ASPI?
Why Should I Use ASPI?
ASPI Concepts
Adapter and Device Addressing
Issuing SCSI Commands
Building the SCSI Request Block
Sending an SRB to the ASPI Manager
Waiting for an SRB to Complete
Processing Returned Status Information
Adapter-Specific Properties
Connecting to the ASPI Manager
ASPI Commands
Host Adapter Inquiry (SC HA INQUIRY)
Get Device Type (SC_GET _DEV _TYPE)
Execute SCSI Command
(SC_EXEC SCSI CMD)
Abort SRB (SC_ABORT SRB)
Reset SCSI Device (SC_RESET _DEV)

Rescan SCSI Bus (SC_RESCAN _SCSI _BUS)
Get/Set Timeouts (SC_GETSET _TIMEOUTS)

ASPI Error and Status Codes
ASPI SRB Status (SRB. Status)

SS PENDING
§§S COMP
SS_ERR
SS_INVALID CMD
SS INVALID HA
SS NO DEVICE
SS_INVALID SRB
SS_FAILED INIT
SS_ASPI IS BUSY
SS BUFFER TOO BIG
SS BUFFER ALIGN
SS_SECURITY VIOLATION
SS ABORTED
SS_ABORT FAIL
SS NO_ASPI
SS_ILLEGAL MODE
SS_MISMATCHED COMPONENTS
SS NO ADAPTERS

55
56
56
57
57
58
58
60
60
63
64
64
69
71
76

78
83
86
89
90
93
93
94
94
94
95
95
95
95
95
95
96
96
96
96
96
96
96
97
97

Chapter 8

Chapter 9

Contents

SS_INSUFFICIENT RESOURCES
Host Adapter Status (SRB_HaStat)

HASTAT OK

HASTAT SEL TO

HASTAT DO DU

HASTAT BUS FREE

HASTAT PHASE ERR

HASTAT TIMEOUT

HASTAT COMMAND TIMEOUT

HASTAT MESSAGE REJECT

HASTAT BUS RESET

HASTAT PARITY ERROR

HASTAT REQUEST SENSE FAILED
Target Device Status (SRB_TargStat)

Additional ASPI for Win32 Functions

Low-Level SCSI Programming
with SCRIPTS
Working with SCRIPTS
An Overview of SCRIPTS
SCRIPTS Instructions
Logical Operators and Conditional Tests
Embedding SCRIPTS in C Code
Changing Run-Time Parameters
Patching
Table Indirect Addressing
Detecting SCRIPTS Program Completion
Polling for Completion
Hardware Interrupt on Completion
Initialization and Housekeeping
PCI BIOS Functions
Initializing SCSI Control Registers
Sample Code
Generic SCRIPTS Code

SCSI Target-Mode Programming

Hardware

Handling SCSI Phases

Target-Mode API
Adapter Inquiry (TSPI_CMD_Adapterinfo)
Attach LUN (TSPI_CMD_AttachLUN)

97
97
97
97
98
98
98
99
99
99
99
99
99
99
100

103
103
104
105
107
107
109
109
110
112
113
113
114
114
118
119
120

127
128
129
136
139
141

Contents

Chapter 10

Chapter 11

Chapter 12

Detach LUN (TSPI_CMD_DetachLUN)
Get Event (TSPI_CMD_GetEvent)
Read Data From Host
(TSPI_CMD_ReadFromHost)
Write Data To Host
(TSPI_CMD_ WriteToHost)
Complete Command
(TSPI_CMD_CompleteCommand)
Send Message To Host
(TSPI_CMD_SendMessage)
Get Message From Host
(TSPI_CMD_GetMessage)
Disconnect (TSPI_CMD _Disconnect)
Reconnect (TSPI_CMD_Reconnect)
Connecting to the TSPI Manager
Using the TSPI Interface

SCSI Support under Windows
ASPI for Windows 3.x
ASPI for Win32 (Windows 95 and NT)
The Windows 95 and NT SCSI Model
Windows NT SCSI Pass-Through Interface
IOCTL SCSI_GET INQUIRY DATA
IOCTL _SCSI GET CAPABILITIES
IOCTL _SCSI GET ADDRESS
IOCTL _SCSI_RESCAN _BUS
IOCTL _SCSI PASS THROUGH and
IOCTL _SCSI_PASS THROUGH _DIRECT

Unix SCSI Implementations

A Brief Description of UNIX Device Drivers

Comparison of UNIX Implementations

The Linux SCSI Disk Driver

The Linux SCSI Pass-Through Driver
Example SCSI Pass-Through Application

Program
Summary
Acknowledgments

Troubleshooting and Common Mistakes
Start with a Clean Hardware Layer
SCSI Bus Termination

141
142

144

146

147

148

150
152
153
153
155

161
161
162
163
165
167
169
169
170

171

175
176
179
189
212

229
229
229

231
231
232

Chapter 13

Appendix A

Appendix B

SCSI Termination Power
Be Cautious with Cables
Don’t Take Documentation at Face Value
Watch Out for Platform Dependencies
SCSI Byte Order
ASPI Byte Order
Structure Alignment
Buffer Alignment
Debugging Tools
Interactive Command Utilities
Virtual Devices
SCSI Bus Analyzers
Keep a Record

Sample Application: SCSI Snooper
An Overview of the SCSI Snooper
The ASPI Class Library
The Scsilnterface Class
The ScsiDevice Class
The ScsiCmdBlock Class
Initializing the Scsilnterface Class
Executing a ScsiCmdBlock
Using the ASPI Class Library
Deriving SCSI Device Types
The SCSI Snooper Application Framework
SCSI Snooper Application Structure

Glossary of Acronyms

General Terms

SCSI-2 Definitions
SCSI-2 Protocols

SCSI-3 Definitions
SCSI-3 Architecture
SCSI-3 Command Sets
SCSI-3 Protocols

SCSI Software Interfaces

SCSI Resources
Books
Magazines and Journals

Contents

232
232
233
233
233
233
234
234
234
234
235
235
236

237
238
243
244
245
246
247
254
256
256
260
260

263
263
264
264
264
264
264
265
265

267
267
269

Xi

Xii

Contents

Appendix C

Appendix D

Index

Online Information
Web Sites
Usenet Newsgroups
Ftp Sites
Bulletin Board Systems
Manufacturer Contacts

Installing the Windows NT
ASPI32 Service

Companion CD-ROM Contents
Sample Code

SCRIPTS Sample Code

SCSI Snooper Application

TSPI Target-Mode SCSI Programming

Interface

SCSI Specifications
SCSI Frequently Asked Questions
Symbios SCRIPTS Support
Linux SCSI Documentation

269
269
271
271
271
272

273

275
275
275
276

276
276
276
276
277

279

Preface

In the years since the Small Computer Systems Interface (SCSI) first
appeared, it has gained wide acceptance as the interface standard for
high-performance computer peripherals. Once confined to mainframes
and high-end workstations, SCSI devices are now supported by most
desktop operating systems running on personal computers.

There is a reason for this near universal support. The SCSI standard
was designed as a high-performance interface to a wide range of devices
types. Disk drives, optical and tape drives, scanners, and printers all come
equipped with SCSI interfaces. As faster machines become more com-
mon, the demand for faster peripherals follows. SCSI technology offers a
way to meet this demand.

Though manufacturers and end users have embraced the Small Com-
puter Systems Interface, information about programming SCSI devices is
still scarce. This book attempts to fill that gap by describing SCSI from a
programmer’s point of view.

Intended Audience

This book is intended as a tutorial and a reference for programmers writ-
ing software to support SCSI peripherals. Whether you are writing low-
level code for a SCSI device driver or high-level code for an application,
you will find information you can use.

Xiii

Xiv

Preface

Maybe you have waded through the details of the ANSI specification
documents. Maybe you have tried to decipher another programmer’s
source code. There is no doubt that learning the fundamentals of SCSI
programming through trial and error can be a source of endless frustration.
Our goal is to plant a few guideposts to steer you in the right direction, so
as to flatten the learning curve for this complex but fascinating technology.

The presentation is slanted toward software development. Information
about signal characteristics, timing protocols, and hardware details only
appear when they directly relate to a programming task. We assume that if
you are reading this book, you’re more comfortable with a keyboard than
a soldering iron. We also assume some experience with C, C++, and
assembly language.

How This Book Is Organized

This book begins with an overview of SCSI. We describe the design phi-
losophy behind the standard, and how it has evolved to incorporate new
features and capabilities. We also describe variations of the SCSI standard
that offer faster transfers, wider data paths, or other features.

Anyone working with SCSI must understand some fundamental con-
cepts. How do SCSI devices communicate? How are commands executed
and data transferred? What roles do the initiator and the target play? We
address these questions by describing the SCSI transaction model. This
provides a foundation for a more detailed discussion of the elements of a
SCSI transaction.

Next we present a layered approach to SCSI programming, starting
with high-level programming interfaces. We explore the Advanced SCSI
Programming Interface (ASPI) under DOS and Windows, and ASPI32
extensions under Windows 95 and NT.

Windows NT offers its own built-in SCSI support. We explore how it
works by examining the Windows NT device model and how the ASPI
layer uses it.

Then we tackle more advanced material as we look at low-level pro-
gramming using common SCSI I/O processors and scripting languages
such as Symbios Logic’s SCRIPTS. We demonstrate both initiator and
target operations.

SCSI enjoys wide support on UNIX systems. Unfortunately, the specif-
ics of SCSI support differ greatly between UNIX implementations. The
UNIX chapter highlights SCSI support under different systems, then
focuses on SCSI under Linux. This platform is widely available, and open
enough to encourage experimentation.

Preface

Last of all, we develop a SCSI class library and use it to develop a
sample application under Windows. This should encourage you to use and
extend the library for your own projects.

The final chapter offers advice in troubleshooting and debugging.
Appendix B lists SCSI resources in print and electronic form.

What You Will Need

The sample code in this book was designed for portability. We developed
most of the code using Microsoft Visual C++. The SCRIPTS sample code
uses Borland’s C++ compiler and Turbo Assembler. Either should port
with little effort. The sample application uses Microsoft’s Foundation
Classes library, also available with other compilers. The Linux code uses
the compiler that comes with the operating system.

We recommend using an Iomega Zip drive as a test device for the sample
code. Some of the samples demonstrate disk drive operations. When testing
these, it’s nice to have something besides your system disk to work with.

Zip drives come in SCSI or parallel port versions. The parallel port
device uses an ASPI compatible driver.

The low-level code uses the Symbios Logic SCRIPTS compiler and
host adapters equipped with 53C8XX family processors. The compiler is
available from the Symbios Logic FTP site. The code should be compatible
with other adapters in the same family. If your host adapter uses a chip
from another manufacturer, you will not be able to use this code. If you
wish to contact Symbios Logic, refer to the manufacturer listing in
Appendix B.

The ASPI code will work with almost any host adapter that comes with
an ASPI compatible driver. For more advanced work, you may wish to
purchase the ASPI Developer’s Kit from Adaptec. To contact Adaptec,
refer to the manufacturer listing in Appendix B.

For any serious work with SCSI, you will need a copy of the ANSI
SCSI-2 specification document. Though we cover SCSI fundamentals in
this book, and probe the depths of some programming issues, we can’t
duplicate all the details that the specification covers. Consider this book a
supplement to the ANSI document, which is available from Global Engi-
neering Documents. You’ll find them listed in Appendix B.

XV

XVi

Preface

Acknowledgments

This book would not have been possible without contributions from many
people. Kathleen Tibbetts, formerly an editor at Addison-Wesley, had faith
in the project from the beginning.

Pamela Thompson at Earle Associates and Lauren Uddenberg at Sym-
bios Logic went above and beyond the call of duty to provide support and
information about Symbios products.

Thanks go to Mike Berhan and Dan Polfer of Adaptec for reviewing
the ASPI-related material. Thanks also to John Lohmeyer, chairman of
the T10 Technical Committee, for his comments and critiques of the
material covering the SCSI specifications.

Special thanks go to contributing authors Larry Martin and Gary Field.
Larry shares his invaluable programming experience in the chapters on
ASPI, Windows device support, and SCSI target mode. Gary, who main-
tains the SCSI FAQ for the comp.periphs.scsi newsgroup, shares his
considerable knowledge of UNIX support for SCSI in a chapter devoted
to the subject.

Most important, I wish to acknowledge the inspiration and encourage-
ment that my wife, Mary, provided throughout this project.

About the Authors

Brian Sawert

Brian Sawert earned his physics degree from Northern Arizona Univer-
sity. He has worked with the Small Computer Systems Interface for
several years, developing applications and drivers for SCSI devices rang-
ing from optical drives to scanners. His publications include articles for
Dr. Dobb’s Journal and Windows/DOS Developer's Journal. An article
entitled “The Advanced SCSI Programming Interface” explored SCSI
programming using ASPIL.

In real life Brian enjoys bike riding, collecting Jan and Dean records,
and spending time with his wife, Mary, and their two pugs, Poco and
Rocky.

Larry Martin

Larry Martin has been programming since the arrival of his first IBM PC
in 1982. He used that marvelous machine to pay his way through college
writing software for local businesses. Since then he has focused on the
hardware-software interface, especially in embedded systems. Larry has
been working with SCSI interfaces since his stint at Flagstaff Engineering
in the late 1980s, where he wrote device drivers for adapter cards, scan-
ners, and disk- and tape drives. He has also written target-mode code for

XVii

XViii

About the Authors

different SCSI peripherals, and has even written a few ASPI-compliant
drivers that make non-SCSI devices mimic their more popular counter-
parts. Larry’s current focus is the emerging IEEE 1394 “FireWire” Serial
Bus interface, and he is working with 3A International to develop 1394
test equipment that is useful to real-world programmers.

Larry’s hobbies include skiing, scuba diving, and turning red in the
face while cursing at inaccurate data sheets.

Gary Field

Gary Field has a computer science degree from Northeastern University
and has worked with device-level software since 1978. In 1985 he became
involved with SCSI at Wang Laboratories on MS-DOS platforms and
later led the development of an ANSI CAM subsystem for several UNIX
platforms. He has also maintained the usenet comp.periphs.scsi FAQ list
for several years. Since 1996 Gary has worked at Digital Equipment Cor-
poration in their UNIX I/O development group.

In his home life, he is a scout leader and in spare moments enjoys ham
radio, electronic tinkering, and photography, as well as camping, boating,
and fishing with his wife and son.

Introduction

Programming SCSI peripherals is as much an art as a science. Many of
the details are obscure or undocumented, forcing newcomers to learn the
craft the way other artists do—through oral tradition passed down by other
programmers. How do you handle a particular message? Why doesn’t a
certain command work the way you expect it to? Sometimes only a battle-
scarred veteran of SCSI programming can provide an answer.

For those of you who have never worked with SCSI before, we hope
this book can provide the same kind of advice and insight. You who have
already experienced the joy of programming SCSI devices may find new
information or a different slant on what you already know that can make
you a more effective programmer.

Newcomers may wish to ease into the material, starting with the chap-
ters that describe the SCSI specification and present an overview of how
SCSI works. If you already are familiar with SCSI, or just impatient, skip
ahead to chapters on specific topics like ASPI or SCRIPTS programming,
or SCSI under UNIX. This book is meant to be a working reference as
much as a textbook.

Once your appetite has been whetted, explore some of the other
resources listed in Appendix B. With the growing popularity of SCSI,
more information is available daily.

So ease in to the material or plunge in boldly, but enjoy the journey!

XiX

Chapter 1

An Overview of SCSI Technology

In the dark ages before SCSI, the world of computer peripherals was a
confusing place. In particular, small computers came equipped with a
bewildering assortment of interfaces and communications protocols for
disk drives, printers, and other devices. The ST506 and ESDI interfaces
fought for dominance in the disk drive market. Proprietary standards for
parallel and serial interfaces caused widespread compatibility problems.
Each new device introduced for the small computer market brought
another support challenge for software developers.

The SCSI Solution

The Small Computer System Interface (SCSI) was an attempt to create a
standard interface and communications protocol for computer peripher-
als. SCSI defined cabling requirements, electrical signal standards, a
transaction protocol, and a common command set. The ideal represented
by SCSI was that a single device interface could host a variety of periph-
erals from storage devices like disk- and tape drives to output devices like
printers. The specification was broad enough to encompass a wide range
of devices on the same bus, and also offered the prospect of device com-
patibility across different platforms and operating systems.

In practice, early SCSI devices failed to live up to this lofty ideal. In
areas where the specification was vague or loosely defined, manufacturers

SCSI-1

An Overview of SCSI Technology

interpreted it differently. Early SCSI devices had a reputation for working
only with certain host adapters. Combining different types or makes of
devices on the same bus was an exercise reserved for only the most stub-
born systems integrators with the time and expertise to make them work
together.

SCSI, also referred to as SCSI-1, was defined in the ANSI specification
X3.131-1986 in 1986. This document, over 200 pages long, outlined a
new interface on several levels. It spelled out cabling requirements and
connectors, and electrical requirements for signal voltages, timing, and
bus termination at the physical-transport level. Beyond the physical inter-
face specification, it outlined a communications protocol for SCSI
devices to employ. Last of all, it defined a set of mandatory and optional
device commands.

Figure 1-1 shows a graphic representation of the Small Computer Sys-
tem Interface.

The SCSI-1 specification did not define a programming interface. Later
standards for software layering, such as Adaptec’s Advanced SCSI Pro-
gramming Interface (ASPI) and the Common Access Method (CAM),

Application Layer

SCSI Command Layer

SCSI Protocol Layer

Physical Transport Layer

Figure 1-1. Elements of SCSI Specification

SCSI-1

arose to fill this gap (represented by the dotted box in Figure 1-1). As with
most de facto standards, the marketplace chose its favorite. CAM has
been updated for use with SCSI-3, but generally is ignored in favor of
ASPI in the PC market. CAM still finds support on many UNIX operating
systems.

Many of the problems that arose in implementing SCSI centered on the
physical and electrical components of the interface. Problems with cable
lengths and signal termination were common. Different manufacturers
used the same connector with different signal pinouts. In one case, Future
Domain and Apple Computer both used cables with DB25 connectors.
Because they were wired differently, using the wrong cable could damage
a SCSI device.

The SCSI-1 specification left room for ambiguity in its definition of
these layers. For instance, although the terminator power characteristics
were defined, there was no requirement for which device would provide
this. As a consequence, some SCSI host adapters supplied a TERMPWR
signal, while others did not. Problems would appear when neither a host
adapter nor any of the attached devices supplied terminator power.

Bus termination was a frequently misunderstood feature. Perhaps the
specification was vague, or perhaps readers simply misinterpreted it.
Whatever the reason, some of the most common questions in supporting
SCSI and troubleshooting SCSI installations dealt with termination of
devices in a SCSI chain.

At the command level, SCSI-1 left much open to interpretation. It
defined a minimal command set, declaring some commands mandatory,
some optional, and many vendor-specific. The mandatory commands
dealt with device identification, status and error reporting, and error
recovery. Most of the other commands fell under the optional or vendor-
specific categories. While this made it easy for manufacturers to imple-
ment SCSI in their devices, the lack of standard command sets for
different device types caused headaches for software developers. A pro-
grammer who wanted to support SCSI scanners in an application needed
to know the command set for each scanner. If he wanted to use any of the
optional commands, he had to know which devices supported them. SCSI
had simplified things for hardware designers, but programmers were still
waiting to see the benefits of a standard device interface.

The lack of a common command set wasn’t an oversight on the part of
the ANSI X3T9.2 committee. SCSI peripherals had appeared on the mar-
ket even before the specification was approved. This created some
pressure to declare the standard complete, rather than tie it up with further
revisions. An interim working group developed a Common Command Set

4 An Overview of SCSI Technology

(CCS), oriented toward disk drives. Command sets for many other classes
of SCSI devices would not appear until the SCSI-2 specification.

SCSI-1 Features

Though it had its shortcomings, the SCSI standard brought features to
small computers that were not available with other interfaces.

Intelligent Devices

Under the SCSI model, peripheral devices use intelligent onboard con-
trollers. This moves the burden of command processing from the system
processor to the device itself. Each device is responsible for error report-
ing and recovery. Commands for direct access devices, such as disk
drives, use logical block addressing. The devices themselves map logical
addresses to physical addresses, compensating for defective sectors or
unusual geometries. Compare this to the old ST506 interface under DOS,
which forced the operating system to keep track of bad sectors and could
support only a limited range of disk drive configurations.

Multitasking /O

SCSI-1 offered something new to small computers in its support for multi-
tasking I/O. The disconnect/reconnect feature, especially effective for
disk drive operations, gives devices the ability to disconnect from the bus
during long operations, reconnecting when they are ready to complete
them. When a disk drive receives a read request, it can disconnect while it
locates and reads the data. During this time the bus is free for other
devices or operations. When the device is ready to transfer its data, it
reconnects to the initiator and completes the operation. Coupled with a
multitasking operating system, this approach can drastically boost
throughput.

Synchronous Data Transfer

The default data transfer method under SCSI is asynchronous, which
relies on handshaking to acknowledge each byte transferred. This yields
transfer speeds of about 1.5MB per second over the 8-bit-wide SCSI bus.
SCSI-1 defined a synchronous transfer option that boosted the transfer
rate to nearly SMB per second. Perhaps slow by today’s standards, it rep-
resented an improvement over the prevailing technology.

New Features in SCSI-2

Multiple Device Types on a Single Interface

SCSI-1 defined an interface that supported up to eight devices in a chain
configuration. System designers using SCSI-1 could connect up to seven
peripherals to a single host adapter. In addition, these peripherals were not
restricted to a single device type. A unique feature of SCSlI is its ability to
support disk drives, tape drives, scanners, and other devices on a common
interface. In practice, this was difficult to achieve under SCSI-1 because
of device incompatibilities and other factors.

The Birth of SCSI-2

As innovative as SCSI-1 was, it had its limitations. The standard allowed
some exceptions in the way parity, messages. and commands were han-
dled. Manufacturers who took advantage of these exceptions often found
their products incompatible with others.

As with any standard in the computer industry, speed also was an issue.
An 8-bit standard seemed out of date once the industry embraced a 16-bit
architecture for personal computers. With the newer architecture, proces-
sor performance had also increased, so that even the SMB per second
synchronous transfer rates couldn’t keep up with the newer CPU speeds.

By the time the SCSI-1 standard became official, improvements
already had been proposed and implemented in the marketplace. These
improvements were incorporated in the standard that became SCSI-2. It is
important to note that devices billed as SCSI-2—compatible appeared
before an official SCSI-2 standard existed. Many incompatibilities can be
traced to these early implementations of unapproved features. As others
have found out when working with new standards, caveat implementor.

New Features in SCSI-2

The updated specification for SCSI-2 addressed some of the shortcomings
of SCSI-1, offered some improvements, and included some new features,
including the following.

Fast SCSI

SCSI-2 improved synchronous transfer speeds with an optional fast
transfer rate. This feature, known as Fast SCSI, raised the maximum syn-
chronous data rate to 10 million transfers per second. The stricter timing

An Overview of SCSI Technology

requirements that make Fast SCSI possible also place greater demands on
cabling and electrical requirements.

Two wiring alternatives have been available since the first SCSI speci-
fication. Single-ended wiring is intended for short runs, with a maximum
cable length of 6 meters. Differential SCSI is designed for longer hauls,
with a maximum length of 25 meters. In general, differential wiring pre-
serves signal integrity and timing better, and is a better choice for fast
transfer speeds. However, single-ended SCSI devices are more common
than differential.

Wide SCSI

SCSI-2 introduced options for a 16-bit- and a 32-bit-wide data bus. Wide
SCSI addressed the single byte transfer limitations of SCSI-1, instantly
doubling or quadrupling transfer speeds. With the Wide SCSI option
came new cable definitions to accommodate it. The old SCSI-1 cable was
designated the A cable. A second cable, the B cable, provides additional
signal lines that widen the data bus to 16 or 32 bits.

A consequence of having additional data lines is the ability to address
more devices. Theoretically, a 16-bit bus can support 16 devices, and a
32-bit bus can support 32. However, electrical and other factors limit the
actual number of devices a single bus can support. In practice, only 16-bit
Wide SCSI seems to have penetrated the market—few manufacturers
have implemented the 32-bit variation. This scarcity makes it safe to
assume that the term “Wide SCSI” generally refers to the 16-bit version.

Fast Wide SCSI

What happens when you combine Fast SCSI with Wide SCSI? The SCSI-2
specification defined a Fast Wide SCSI option, boasting transfer speeds of
20 or 40MB per second, depending on the bus width. The same cabling
restrictions apply as for Fast SCSI.

As is the case with Wide SCSI, 16-bit implementations of Fast Wide
SCSI abound, but 32-bit Fast Wide SCSI is more of a paper standard than
a working standard.

Queued I/0 Processes

SCSI-2 added an option for two types of I/O process queuing: untagged
and tagged. Untagged queuing permits a device to accept commands from
an initiator while executing I/O processes from another. Tagged queuing
gives targets the ability to accept a series of I/O processes from the same

Improved SCSI-1 Features

or different initiators. These are executed according to a queue manage-
ment algorithm, or in a specified order.

Queuing should not be confused with command linking, which was sup-
ported in SCSI-1. With command linking, several commands are executed
in sequence in a single I/O operation. A linked command sequence for a
disk drive might include a seek operation followed by a read command.
Linked commands are stored as a single entity in an I/O process queue.

New Command Sets

SCSI-2 defined command sets for devices that were not included in the
original specification. Support for CD-ROM drives, scanners, optical
media, medium changers, and communications devices were all spelled
out in the SCSI-2 document. All command sets were extended and
enhanced to reflect demand for more sophisticated featrues.

Improved SCSI-1 Features

Several years of experience with SCSI-1 had helped to expose both its
strengths and its shortcomings. With this experience to guide them, the
ANSI X3T9.2 task group proposed some incremental improvements in
the standard. Several new low-level requirements were put into place.

Data Parity Required
SCSI-2 required the use of data parity. It was optional under SCSI-1.

Message Support Required

SCSI-2 devices were required to support messages as part of the transac-
tion protocol. SCSI-1 made them optional, but the advanced features in
SCSI-2 required a means of negotiation between initiators and targets.

SCSI-2 uses the Identify message to negotiate disconnect rights
between an initiator and a target. Synchronous and wide data transfers,
queue operations, and other features are negotiated through messages
passed beween the initiator and target.

" Terminator Power Provided b y Initiator

SCSI-2 solved the issue of terminator power by mandating that the initia-
tor provide it. It also outlined a method of active termination that is more
effective than the passive termination scheme in common use.

8 An Overview of SCSI Technology

Overall, the new specification closed loopholes in the original, enforced
stricter compatibility requirements, and added support for newer devices
and features.

SCSI-3 on the Horizon

The SCSI specification is dynamic, changing to reflect the needs of newer
and faster computer peripherals. With SCSI-2 finalized in ANSI docu-
ment X3.131-1994 in 1994, work began on the next revision almost
immediately. Although the entire SCSI-3 specification has not yet been
approved, SCSI-3 features and SCSI-3 compatible hardware already has
appeared on the market.

Like the transition from SCSI-1 to SCSI-2, the dividing line between
SCSI-3 and SCSI-2 isn’t always clear. Some features of SCSI-3 seem to
be extensions of SCSI-2 features that didn’t emerge in time to become
part of the older standard. Other features are brand new approaches to
SCSI architecture that ensure the interface will be alive and healthy for
years to come. Once again, improvements have focused on increasing
transfer speeds, and also on extending the SCSI architecture. As with its
predecessor, much of SCSI-3 is designed to maintain hardware and soft-
ware compatibility with older standards.

Under SCSI-2, cabling was a confusing issue. Wide data paths were
provided by an additional data cable that supplied the extra signal lines
for 16-bit or 32-bit transfers. SCSI-3 proposes a single 16-bit cable for
Wide SCSI implementations. This unofficial SCSI-3 feature already has
been adopted by many peripheral manufacturers, and is much more com-
mon than the official SCSI-2 configuration.

Fast-20 and Fast-40 SCSI

SCSI-3 offers new Fast SCSI protocols. Fast-20, also known as Ultra
SCSI, boosts the synchronous transfer rate to 20MB per second for 8-bit
transfers, double the rate under SCSI-2. A Fast-40 protocol known as
Ultra2 SCSI quadruples the rate to 40MB per second. The option exists, as
in SCSI-2, to couple these fast protocols with a wide data bus. Wide Ultra
SCSI and Wide Ultra2 SCSI can achieve rates of 40 and 80MB per second
for 16-bit transfers. These higher rates require much tighter standards for
bus timing and electrical parameters to maintain signal integrity. As with
the older variety of Fast SCSI, they work more reliably using the differen-
tial SCSI alternative. In fact, Fast-40 requires the use of the new Low
Voltage Differential (LVD) option. Many devices now offer multimode

SCSI-3 on the Horizon

support that includes LVD, but to reach peak Fast-40 speeds requires that
all connected devices support LVD. An added benefit of this differential
option is that it can support more devices and longer cable lengths.

Table 1-1 compares the characteristics of the different parallel SCSI
standards.

Table 1-1. Parallel SCSI Standards

L5

Asynchronous SCSI

1.5MB/second 8 bits

Synchronous SCSI SMB/second 8 bits
Fast SCSI 10MB/second 8 bits
Wide-16 SCSI 10MB/second 16 bits
Wide-32 SCSI 20MB/second 32 bits
Fast Wide-16 SCSI 20MB/second 16 bits
Fast Wide-32 SCSI 40MB/second 32 bits
Fast-20 (Ultra SCSI) 20MB/second 8 bits
Fast-40 (Ultra2 SCSI) 40MB/second 8 bits
Wide Ultra SCSI 40MB/second 16 bits
Wide Ultra2 SCSI 80MB/second 16 bits

Serial SCSI Standards

Though the 80MB per second rate offered by Wide Ultra2 SCSI repre-
sents an eightfold increase over the old standard, it pales in comparison to
rates promised by a new set of standards defined in SCSI-3. Collectively,
they are called the Serial SCSI standards. Unlike the current SCSI stan-
dard, which is limited to a parallel data interface, these three standards
define different implementations of SCSI over a serial interface.

Several advantages of a serial architecture are apparent immediately.
As parallel data busses become wider, cabling becomes more complex
and unwieldy. In the worst case, a Wide SCSI installation would require a
50-pin and a 68-pin cable. The serial standards drastically reduce the
number of conductors needed.

Serial data transfer offers other advantages. Longer cable lengths are
possible with a serial connection. The cable length limit for a parallel
SCSI connection using the differential alternative is about 25 meters. By
comparison, the serial standards measure cable length over fiber optic
media in kilometers.

10

An Overview of SCSI Technology

Data integrity is improved, too. While the parallel interface relies on
parity checking and handshaking, the serial standards all use a Cyclic
Redundancy Check (CRC) to ensure reliable data transfers.

But the greatest improvement is in transfer speed. Draft specifications
quote speeds of 100MB per second, with extensions that may double or
quadruple that rate. Options for reserving bandwidth will increase the
effective throughput even further.

The Serial SCSI standards comprise three separate standards, each
with its own advantages: Fibre Channel, Serial Storage Architecture, and
P1394.

Fibre Channel

The Fibre Channel (FC) standard was designed for flexibility. Despite the
name, Fibre Channel supports both optical and copper media. Potentially,
Fibre Channel SCSI could share the same cable with a fiber optic LAN or
twisted pair telephone lines.

The protocol also defines different levels of service. Dedicated service
reserves the entire bandwidth of the connection for the connected SCSI
devices. A frame switched service level provides multiplexed service that
may be shared with other protocols. Another level provides multiplexed
service without confirming receipt of data packets.

Fibre Channel SCSI borrows many concepts from data networking. At
its most complex, the standard defines a Fibre Channel switched fabric
similar to a switched network, with simultaneously active connections.
This topology could theoretically support millions of devices. A simpler
topology call arbitrated loop allows up to 127 devices to communicate, two
at a time. Fibre Channel promises to be the speed demon of the serial pro-
tocols, offering full duplex transfer speeds of 100MB per second or greater.

Serial Standard Architecture

Serial Standard Architecture (SSA) grew out of an IBM serial SCSI stan-
dard. Designed for twisted pair copper wiring, a fiber optic implementa-
tion is also in the works. Its great advantage lies in its support for full
duplex communications and spatial reuse.

Like the Fibre Channel switched implementation, SSA permits multi-
ple simultaneous connections over the same media. This design removes
the limitation that only one initiator/target pair at a time can occupy the
data bus.

SCSI-3 on the Horizon

P1394

P1394 is more commonly known by its Apple implementation, FireWire.
Its design goals focused on simplicity and multimedia capabilities. It
offers an isochronous transfer mode that can reserve bandwidth for timing
sensitive transfers such as video or audio data. P1394 is not yet defined
for optical media.

Layered Architecture

With the addition of the Serial SCSI standards, the SCSI specification is
in danger of growing enormous and unwieldy. In this latest revision, the
X3T10 Committee decided to break the standard into smaller units.
Responsibility for some of the units passed to other committees, with the
result that entire standard should be approved more quickly than in the past.

The X3 Committee itself also underwent some changes, becoming the
National Committee for Information Technology Standards (NCITS).
With the change in its parent organization, the X3T10 Committee became
the T10 Technical Committee. Technically, NCITS and its committees are
not part of the ANSI organization, although they develop standards that
ANSI publishes.

The SCSI-3 standard adopts a layered model similar to the OSI model
used in data communications. This structure helps to separate the hardware
and software functions of the interface. Command sets and programming
interfaces will be similar across different architectures, simplifying the
programmer’s task of porting from one to another.

Figure 1-2 shows the architecture of the SCSI-3 standard.

The standard defines three layers. The command layer includes new
and extended command sets for SCSI devices. The protocol and physical
layers include a parallel protocol and physical layer analagous to the
SCSI-2 parallel model, and the new serial SCSI standards.

This model, called the SCSI-3 Architecture Model (SAM), defines not
only the physical implementation of SCSI but also the transport mecha-
nisms and protocols that accompany them. With all these new command
sets, transports, and protocols comes an alphabet soup of acronyms to
identify each one. A complete list appears in the Glossary in Appendix A.

Revisions to this model are already underway. SCSI Parallel Intercon-
nect-2 (SPI-2) will incorporate and replace the SCSI-3 Interlocked
Prototocol (SIP), SCSI-3 Parallel Interface (SPI), and SCSI-3 Fast-20
and Fast-40. The Serial Bus Protocol will be divided into the Serial Bus
Protocol-2 (SBP-2) and SCSI Transport via SBP-2 (STS). This change

11

12

An Overview of SCSI Technology

scsl-3 scsi-3 s scsi-3 scsi-3 scsi-3
Block Stream Changer Multimedia || Controller Enclosure
Commands | | Commands Commands Commands | | Commands Services
Command
Layer
SCSI-3
Primary
Commands
Protocol | scsi3 Serial Bus Fibre Serial
Layer Interlocked Protocol Channel Storage
Protocol Protocol Protocol
I | I I
Physical SCsl-3 Serlal
Transport | Parallel '1?;5 c:::::el Storage
Layer Interface Architecture

Figure 1-2. SCSI-3 Layered Architecture

allows for transport of non-SCSI command sets over IEEE 1394
hardware.

As mentioned earlier in this chapter, CAM offers access to the com-
mand sets, which are grouped by function. CAM has been updated for
SCSI-3 and is now called CAM-3. It has not received wide support in the
personal computer industry.

Plug and Play SCSI

With advances in PC architecture and operating systems, it was only a
matter of time before the SCSI industry turned to self-configuring periph-
erals. An annex to the SCSI-3 draft standard defines SCSI Configured
AutoMagically (SCAM). Host adapters using this protocol can dynami-
cally assign SCSI ID numbers to devices on system startup, while still
accommodating older SCSI hardware with fixed addresses. This feature is
a cornerstone of Plug and Play (PnP) SCSI, a standard put forward by
several SCSI manufacturers in conjunction with Microsoft.

SCSI-3 on the Horizon

Configuring SCSI devices manually, dealing with ID numbers, termi-
nation, and cabling requirements has long been considered an arcane
craft. PnP SCSI takes over those responsibilities, assigning ID numbers at
boot time through SCAM, and ensuring proper electrical termination and
signal timing as devices are added to or removed from the SCSI bus.

The PnP standard defines two levels of service: Level 1 for basic Plug
and Play operation, and Level 2 to support multiple initiators and ID
assignments for hot-swapped SCSI devices. Plug and Play SCSI host
adapters and peripherals are already on the market, though operating sys-
tem support for SCAM lags behind. Software that assigns drive letters or
boot devices based on a SCSI ID will have problems with devices that
change their addresses. Even Microsoft, an early champion of the SCAM
standard, has yet to built support for it into any operating system products.

13

Chapter 2

SCSI Fundamentals

All types of transactions, whether between humans or computer peripher-
als, rely on sets of rules or protocols to make them effective and efficient.
As an example of chaotic interactions among humans, picture the floor of
the New York Stock Exchange on a busy market day. At the other end of the
spectrum, a debate on the floor of the U.S. Senate might serve as a model
of orderly interactions, provided it’s not an election year.

What’s the difference? In the latter case, a strict set of rules guides the
participants. Participants ask to be recognized by a chairman, who grants
them permission to speak in turn. Parliamentary procedure and Robert’s
Rules of Order define the protocol for these transactions, just as the SCSI
specification defines a protocol for data exchange among SCSI devices.

Perhaps the analogy is strained, but it does illustrate that SCSI transac-
tions are orderly procedures with well-defined steps. Many programmers
are confused by their first exposure to SCSI protocol, when they are con-
fronted with complex phase diagrams. We’ll get to those later, but first
let’s cover the basics.

SCSI Transactions: an Ov_t_a_r__liew

When there is no activity on the SCSI bus, a bus-free condition exists. A
SCSI device acting as initiator may claim control of the bus through a pro-
cess called arbitration. It stakes its claim, checking for other devices also

15

16

SCSI Fundamentals

trying to gain control. If a device with a higher SCSI ID is competing for
the bus, it has precedence—the lower numbered device must try again later.

Once the initiator has control, a target is selected for a transaction. If
the target is present and ready to accept commands, it acknowledges its
selection.

While the connection between initiator and target exists, the target con-
trols the process by dictating transaction phases. In some instances, the
initiator may request a particular phase, but the target controls the bus sig-
nals that determine it.

A message phase follows selection. The initiator signals to request this
phase after selection, and the target responds. The messages that pass
between initiator and target identify the devices to each other and negoti-
ate parameters and ground rules for the transactions that follow.

Message phases may occur almost anywhere in the course of a SCSI
transaction. The protocol uses messages to report errors, command status,
and a variety of other information. It also uses them to send control
information.

With the messages out of the way, the transaction moves into the
command phase. This is where the initiator sends a block of data with
command instructions and parameters to the target. Another message
phase may follow if the target needs to report errors in the command block
format or parameters.

Often a command may take some time to execute. This may be the case
if the device has to rewind or reposition a mechanical element. If the initi-
ator and target have negotiated disconnect privileges, the target will break
the connection, freeing the initiator for other operations. When the target
is ready to resume, it connects again with the initiator in a reselection
phase. This is similar to the selection phase, with the target as the active
device instead of the initiator.

Depending on the command issued, a data phase follows. The com-
mand determines the direction of data flow, whether the initiator sends or
receives. The target sets the SCSI bus for transfer in the proper direction.

Messages may follow the data phase, but a status phase marks the end
of command execution. The status code indicates the outcome of the com-
mand. If errors occurred, the status code indicates whether extended
information, known as sense data, is available.

The final phase in a normal transaction is another message phase. The
target sends a message to the initiator, telling it the command is complete
and a status code has been sent. Once this message goes out, the target
releases the data bus, returning it to a bus-free condition.

This is a simplified overview of a transaction. In the next chapter, we’ll
dig into the details of the different phases.

Chapter 3

SCSI Phases

A target and initiator move through several phases over the course of a
SCSI transaction. How are these phases orchestrated, and what signals the
transitions between them?

A SCSI transaction is similar to a courting ritual. When one of the par-
ties in the relationship is ready to move on to the next phase, a signal is
sent to the other. Thankfully, phases and signals in SCSI transactions are
easier to decipher than their counterparts in human relations.

In a simple SCSI transaction, an initiator arbitrates for control of the
bus. Once it gains control, it selects a target device to communicate with.
The target responds, and the initiator exchanges messages with it to estab-
lish ground rules for the upcoming transaction. Disconnect privileges,
data transfer width, and synchronous transfer timing are negotiated
through messages. When these negotiations are complete, the initiator
may send commands to the target, and data transfer may take place. On
completion of a command, the target sends a status code to the initiator
indicating the outcome. More messages may follow before the bus is
released.

This process takes place in orderly transitions from one phase to
another. Although the initiator begins the process, it is the target that con-
trols the current bus phase. The initiator may request a change to a
particular phase, but the target determines the transitions from one to
another. What are these phases, and what do they represent?

17

18 SCSI Phases

SCSI Phases

The SCSI protocol defines eight distinct phases:

Bus Free phase
Arbitration phase
Selection phase
Reselection phase
Command phase
Data phase

Status phase
Message

S A Rl S

These phases don’t necessarily occur in the order listed above. As men-
tioned before, Message phases can occur almost anywhere. Support for
Reselection depends on whether a target device has disconnect privileges.
Data phases apply only to operations that transfer data.

Each of these phases is characterized by a different combination of sig-
nals on the SCSI bus, and a specific type of data exchanged. Six signals
on the SCSI bus determine the state it is in, and the type and direction of
data transfer. These signals are:

1. BSY (Busy)—a signal that indicates the bus is in use

2. SEL (Select)—a signal that indicates selection of a target or rese-
lection of an initiator

3. C/D (Control/Data)—a signal that indicates control or data
information

4. 1/O (Input/Output)—a signal that indicates direction of data trans-

fer relative to the initiator

MSG (Message)—a signal that indicates a Message phase

6. ATN (Attention)—a signal used by an initiator to request a Mes-
sage phase

(9,

Bus Free

In Bus Free phase, there is no activity on the bus. No I/O processes are
pending, no device has staked its claim, and the bus is up for grabs. None
of the signals listed above are active.

Arbitration

In Arbitration phase, an initiator negotiates for control of the bus. It
asserts the BSY signal, indicating that the bus is in use, and drives the

SCSI Phases

data line corresponding to its SCSI ID. For an 8-bit data bus, the data
lines are numbered DB(0) through DB(7). An initiator with ID 7 would
assert DB(7) true to stake its claim on the bus.

After a specified delay period, the initiator examines the bus to deter-
mine if another device is trying to claim it. How does it know? If another
data line corresponding to another device ID is asserted, that device also
is trying to gain control. The device with the highest ID wins the arbitra-
tion in that case. Generally, SCSI host adapters are assigned higher ID
numbers to assure their success in arbitration.

Once the initiator gains control of the bus, it signals the end of arbitra-
tion by asserting the SEL signal to move to the Selection phase.

Selection

The initiator selects a target by asserting the SEL signal while the BSY
signal is still true. It then asserts the data lines corresponding to its own
SCSI ID and the ID of the target it is selecting. The I/O signal is negated
to distinguish this phase from reselection.

The initiator also sets the ATN signal true to request a Message Out
phase following Selection. This step, optional under SCSI-1, became
mandatory with SCSI-2.

Last of all, the initiator releases the BSY signal.

The target determines that it is being selected when both the SEL sig-
nal and its ID bit are true, and the BSY and I/O signals are false. It
responds by setting the BSY signal true within a specified period of time.
The initiator then confirms its selection by releasing the SEL signal.

Reselection

If a target has disconnected from the bus while processing a command, it
reestablishes the connection by switching to Reselection phase. This is
the mirror image of Selection, but the target takes the active role in arbi-
tration and setting the bus signals instead of the initiator. In Reselection,
the target also asserts the I/O signal along with the SEL signal. The initia-
tor responds to reselection by asserting the BSY signal. Once the target
responds by also asserting the BSY signal and releasing the SEL line, the
initiator then releases the BSY signal, and the connection resumes.

Message Out

Because the initiator raised the ATN signal during Selection, the target
next changes to the Message Out phase. It does this by asserting the MSG

19

20

SCSI Phases

and C/D signals, and negating the I/O signal. Under SCSI-2 it became
mandatory for the Message Out phase to follow device selection.

Only a few messages are valid in this initial Message Out phase. Under
normal conditions, the initiator will send an Identify message. This
message establishes a connection between the initiator and a logical unit
within the target device. This connection is referred to as an I_T_L nexus.
In devices that support optional target routines instead of logical units, an
I_T_R nexus may be established. Support for target routines, although
present in SCSI-2, has been phased out in SCSI-3.

Other messages may follow the Identify message. Requests for
tagged queuing occur here, as well as synchronous or wide data transfer
requests.

Chapter 4 discusses SCSI messages in more depth.

Command

When the Message Out phase ends, the target moves to Command phase.
It signals this phase by raising the C/D line and negating the I/O and MSG
lines. This tells the initiator that the target is ready to receive a Command
Descriptor Block (CDB).

The size of the CDB varies according to which group the command
belongs to. The SCSI-2 specification defines eight different command
groups called, conveniently enough, Group O through Group 7. Com-
mands defined in the SCSI specification fall into Groups 0, 1, 2, and 5.
Groups 3 and 4 are reserved, and Groups 6 and 7 are set aside for vendor-
specific commands.

The group code tells the target how many bytes to expect in the CDB.
Once it has received the entire block, several things may happen.

If there is an error in the size or format of the CDB, the target may
switch to Message In phase to report the error. If the command requires
data transfer, the target changes to Data Out or Data In, depending on the
command issued. If no data transfer is required, the target changes to Status
phase and reports the outcome of the command by sending a status byte
to the initiator.

The sections below cover these three possibilities.

Data In and Data Out

If a SCSI command requires data transfer when it is ready to begin send-
ing or receiving data, the target participating in the transfer will set the
bus state to Data In or Data Out. In the simplest case, the target remains
connected to the initiator between the Command and Data phases. In

SCSI Phases

more complex cases, the target may disconnect, then reconnect with the
initiator when the data is ready. This requires that the initiator has granted
disconnect privileges in the Identify message it sent the target after
Selection.

For example, a disk drive may disconnect while it seeks and reads a
requested sector. This frees the initiator for other transactions while the
target is occupied.

The target signals Data phase by negating the C/D and MSG lines. It
raises or lowers the I/O line depending on the direction of data transfer
relative to the initiator. It asserts I/O to indicate a Data In phase, and
negates it for a Data Out phase.

In the asynchronous model the initiator and target pace their data transfer
with a series of REQ/ACK handshakes. If they negotiated a synchronous
transfer, the timing between data bytes and the number of REQ pulses that
can be sent in advance have already been established. In either case, the
number of REQ and ACK pulses must be equal.

Status

When the command and any associated data transfer are complete the tar-
get switches to Status phase. It asserts the C/D and I/O signals and
negates the MSG signal. A Status phase follows the completion of each
command unless it terminates abnormally. This occurs if a message
causes a process to abort, if a device resets or disconnects unexpectedly,
or if the bus resets.

The status code is a single byte that indicates the success or failure of a
command. It may show that a target is busy or reserved by another initia-
tor. It may indicate the success of an intermediate command in a series. It
may also alert the initiator that extended information known as sense data
is available.

Refer to Chapter 6, on status codes and sense data, for more detail.

Message In

The final phase in a SCSI transaction is the Message In phase. The target
asserts the C/D and MSG lines to signal a Message phase, and asserts the
I/O line to indicate that the message is inbound toward the initiator.

Most often, the target will send a Command Complete message to
show that it is done processing the command and has sent a status byte. It
may also send messages to indicate error conditions or to alert the initia-
tor before it disconnects from the bus while processing.

21

22 SCSI Phases

Phase Sequence

The flow from one phase to another is strictly defined, but can be com-
plex. The description above covered a typical transaction in somewhat
simplified form. In reality, once an initiator selects a target the phase
sequence can follow a number of paths

Figure 3-1 illustrates the possible transitions between phases.

Y
y Yy
Message Out
N W,
b
— 7 —
Reset Selection —» Command
_l — —]
3 ” ™y f_‘ ;\
[o Datalnor [*
Bus Free]—l Arbitration Data Out
F| ~ ~ e
¥ L
e —
Reselection Status |
N— \. J
X
k4
__f Ty
Message In
;Ti_.z

Figure 3-1. SCSI Phase Transitions

Chapter 4

SCSI Messages

SCSI transactions are complicated affairs. Designed into the SCSI proto-
col, however, is a messaging system that helps keep things on track. This
message system handles the details of interface management by providing
a mechanism for error reporting and recovery, negotiating data transfer
parameters, managing the process queue, and other functions.

Message phases can occur at almost any time after device selection. An
initiator sends an Identify message to a target to establish an I_T_L
nexus and indicate disconnect privileges. It may also send messages to
negotiate synchronous or wide data transfers. If the target supports tagged
queuing, an initiator sends messages to manage the queue.

A target may send a message to an initiator announcing its intent to
disconnect from the bus. It precedes this message with a message request-
ing that the initiator save pointers to the command, data, and status
information for the current process.

A target also informs an initiator of the outcome of a command using
messages. It may send a Command Complete message to tell the initiator
that a process is finished. Or it may send a Linked Command Complete
message to report that an intermediate command in a series of linked
commands has completed.

Both initiators and targets may indicate errors through messages. The
Message Reject message indicates that a preceding message is not
implemented or is not appropriate.

23

24 SCSI Messages
The target controls the state of the data bus, and can change to Message
In phase whenever it needs to send a message to the initiator. The initia-
tor, on the other hand, cannot force a Message Out phase when it needs to
communicate with the target. Instead, it raises the ATN signal to request
that the target change to Message Out phase.
Message Types

Most messages consist of only one or two bytes. Extended messages con-
tain three or more bytes, and may include arguments. The SCSI
specification makes support for some messages mandatory, and others
optional.

Table 4-1 lists the mandatory messages for initiators and targets.

Table 4-1. Mandatory SCSI Messages

Tl s

OOH Command Complete

Target and Initiator

05H Initiator Detected Error Targetand Initiator
06H Abort Target

07H Message Reject Target and Initiator
08H No Operation Target and Initiator
09H Message Parity Error Target and Initiator
0CH Bus Device Reset Target

80H - FFH Identify Target and Initiator

Message code 00H, Command Complete, is the workhorse of the SCSI
message set. Under normal conditions the target sends this message at the
conclusion of a SCSI transaction. Message codes 02H through 1FH are
single-byte messages. Message codes 20H through 2FH are 2-byte mes-
sages, with a single argument byte following the message code.

The Identify Message

The Identify message is a single byte, with bit encoded options.
Because it is a mandatory message, let’s examine it more closely.

The Identify message is sent by either an initiator or a target, usually
after the Selection phase. This message establishes an [_T_L or I_T_R

Extended Messages

Table 4-2. Identify Message

Identify DiscPriv LUNTAR Reserved LUNTRN

nexus by identifying a logical unit or target routine in the LUNTRN field. If
the LUNTAR bit is set, LUNTRN specifies a logical unit number. The Disc-
Priv bit indicates that the initiator has granted disconnect privileges to
the target. This bit is undefined when a target sends this message.

Extended Messages

A message code of 01H indicates an extended message. Table 4-3 shows
the general structure of an extended message.

Table 4-3. Extended Message

0 Extended message flag (01 H)

1 Extended message length (n)
2 Extended message code
3-(n+l) Optional arguments

The second byte of an extended message is the length of the extended
message code and any arguments. A value of 0 here indicates a length of
256 bytes.

Only three extended messages are defined under SCSI-2. Two of these,
Synchronous Data Transfer Request and Wide Data Transfer
Request, deserve a closer look.

Synchronous Data Transfer Request

The synchronous Data Transfer Request message is sent by an ini-
tiator or a target to negotiate timing for synchronous data transfer. Under
SCSI-2, the timing limits expanded to accommodate Fast SCSI.

Table 4-4 shows the structure of the Synchronous Data Transfer
Request message.

25

26

SCSI Messages

Table 4-4. Synchronous Data Transfer Request

Extended message flag (O1H)
Extended message length (03H)

Synchronous Data Transfer Request code (01 H)
Transfer period factor

REQ/ACK offset

AW~ O |

In setting up a synchronous transfer, two pieces of information are cru-
cia.]. The transfer period factor is one-fourth the value of the transfer
period. The transfer period is defined as the time between leading edges
of successive REQ pulses. This is the time, measured in nanoseconds, that
a data byte or word will remain on the bus.

A synchronous transfer permits the number of REQ pulses to lead the
number of ACK pulses by the number given in the REQ/ACK offset. Dur-
ing asynchronous transfer, single REQ and ACK pulses alternate as data
is sent. In synchronous transfer, a series of REQ pulses is acknowledged
with a corresponding series of ACK pulses. The number of REQ and ACK
pulses is equal, but the REQ pulse count may lead by the REQ/ACK off-
set before the ACK pulses are sent. This offset effectively determines the
size of the data block transferred during a synchronous burst. A value of 0
in this field is equivalent to asynchronous transfer. A value of FFH indi-
cates an unlimited offset.

The originating device sends the Synchronous Data Transfer
Request. If the responding device agrees to the parameters, it returns the
identical message. Otherwise, it will set the transfer period factor and
REQ/ACK offset to values it can support.

Either device is free to send a Message Reject message in response
to a synchronous request. In that case, the devices fall back to asynchro-
nous transfer. Once they have negotiated synchronous parameters, they
stay in effect until a device or bus reset, or until one of the participating
devices renegotiates.

Wide Data Transfer Request

With the advent of Wide SCSI came the wide Data Transfer Request
message. This message sets the transfer width for devices that support 16-bit
or 32-bit data paths.

Other Common Messages 27

Table 4-5 shows the structure of the Wide Data Transfer Request
message.

Table 4-5. Wide Data Transfer Request

) ¢

0 Extended message flag (01 H)
1 Extended message length (02H)
Wide Data Transfer Request code (03H)

4 Data transfer width exponent

The transfer width in bytes is equal to 2 raised to the transfer width
exponent. Exponent values of 0, 1, and 2 yield transfer widths of § bits,
16 bits, and 32 bits. As you may have guessed, values above 2 are not
defined.

The procedure for negotiating transfer width is the same as for syn-
chronous transfer negotiation. The originating device sends the message
with the exponent set to a value it supports. The responding device may
accept or reject that value. If negotiation fails, both devices fall back to
narrow 8-bit data transfer. The negotiated value stays in effect until a
device or bus reset, or until a renegotiation.

Other Common Messages

The SCSI specification defines other messages besides the Command
Complete, Identify, and Extended messages. The remainder fall into
I-byte and 2-byte message families. Message codes 02H through 1FH
correspond to |-byte messages. The 2-byte messages are numbered 20H
through 2FH.

We’ll cover the more useful or interesting of these in the rest of this
chapter. For a complete list, refer to the SCSI-2 specification document.

No Operation

A device may send a No Operation message (O8H) when a message is
required (but no other message is valid).

28

SCSI Messages

Abort

An initiator sends the Abort message (06H) to a target to clear any active
I/O processes for an I_T_L or I_T_R nexus. This does not affect pro-
cesses for other logical units or routines on the target.

Bus Device Reset

It’s tempting for programmers to send Bus Device Reset messages
(OCH) to clear error conditions, but this is a drastic measure. This message
tells a target to clear all I/O processes and forces a hard reset of the device.
It also creates a Unit Attention condition that must be dealt with.

Disconnect

A target needs a way to notify an initiator that it intends to disconnect
while an I/O process is underway. The Disconnect message (04H) pro-
vides that. An initiator can also send this message to instruct a target to
send a Disconnect message back.

A target may precede a Disconnect message with a Save Data
Pointers message (02H), instructing the initiator to save the current
data buffer offset. On reconnecting, a Restore Pointers message
(O3H) tells the initiator to resume data transfer from the previous offset.

Ignore Wide Residue

What happens in wide data transfers if an odd number of bytes is
requested? There is a 2-byte message that deals with this situation. A tar-
get sends the Ignore Wide Residue message to indicate how many
bytes in a wide data transfer to discard.

Table 4-6 shows the structure of this message.

Table 4-6. Ignore Wide Residue Message

0 Message code (23H)

Ignore count

The Ignore count tells how many bytes of the previous wide data
transfer to discard. Valid numbersare 1, 2, and 3. A target sends this mes-
sage immediately following a Data In phase.

Other Common Messages

Queue Tag Messages

If a device supports tagged queuing, it must support queue tag messages.
There are five messages for managing queue operations. Two of them,
abort Tag (ODH) and Clear Queue (OEH), are single-byte messages.
The Abort Tag message aborts the current I/O process without affecting
other processes in the queue. Clear Queue clears all queued I/O pro-
cesses and aborts the active process.

The other tag messages, Simple Queue Tag, Head of Queue Tag,
and Ordered Queue Tag, are 2-byte messages that tell a target how to
queue an I/O process for execution.

Table 4-7 shows the general structure of the 2-byte queue tag messages.

Table 4-7. Queue Tag Message

PR _ '_' I-.-.-t"mlfq.:”
0 Queue tag message code (20H - 22H)
Queue tag (00H - FFH)

The Queue tag field contains an identifier that establishes an I_T_L_Q
nexus. It uniquety identifies a process queued for a logical unit in a target.

An initiator sends a queue tag message to a target immediately follow-
ing an Identify message, in the same Message Out phase. The target
may reject this message if it does not support tagged queuing. A target
also may send this message when it reconnects to continue a tagged [/O
process.

Tagged command queuing should not be contused with linked com-
mands. Linked commands are executed as a single [/O process.

Queue tag messages come in three varieties.

Simple Queue Tag

A simple Queue Tag (20H) tells the target to execute a command
according to a preset queue management algorithm. Restrictions on queue
algorithms are specified in a command to the target device.

Head of Queue Tag

A Head of Queue Tag (21H) tells the target to place a command at the
head of its command queue. It has no effect on the active I/O process.

29

30

SCSI Messages

Ordered Queue Tag
The Ordered Queue Tag (22H) tells the target to execute a command in
the order received. This simply places it in the queue after any other pend-

ing commands.

Chapter 5

SCSI Commands

It used to be that the hardest part of supporting SCSI peripherals was find-
ing documentation on the command set supported by a particular device.
The SCSI-1 specification defined a minimal set of mandatory commands
for querying device information and reporting errors. Almost everything
else fell under the ominous category of “vendor-specific” commands.

The SCSI-2 specification does an admirable job of spelling out the
command sets supported by different classes and types of devices. The
increased length of the document over its predecessor is due largely to the
commands that it adds and the painstaking detail in which it describes
them. It may make the document cumbersome to work with, but having
standard command sets makes a programmer’s job much simpler.

This chapter gives an overview of SCSI command sets, how to use
them, and what kind of data they return. It does not attempt to condense in
a few pages what the SCSI document requires several hundred pages to
present. For a complete reference to command sets for different device
types, the SCSI specification is still the best place to turn.

Com_mand Structure

SCSI commands and parameters are packaged in structures called Comi-
mand Descriptor Blocks, or CDBs. As was the case with messages,
different command groups correspond to command descriptors of differ-
ent lengths. A Group 0 CDB is 6 bytes long. A CDB from Group 1 or 2 is

31

32

SCSI Commands

10 bytes long, and a Group 5 CDB occupies 12 bytes. The other groups
are reserved for future use, or vendor-specific commands.

Operation Codes

The first byte of a CDB contains an operation code that describes the
command. The 3 high bits of this code indicate the command group with
possible values ranging from O to 7. The lower 5 bits contain the com-
mand code.

Table 5-1 shows the structure of the operation code.

Table 5-1. Operation Code

Group code Command code

Logical Unit Number

The second field in a Command Descriptor Block contains a Logical Unit
Number (LUN) in the upper 3 bits. Depending on the command group,
the lower 5 bits may be reserved or contain part of the following field.

Table 5-2. Logical Unit Number

Logical Unit Number Reserved or other data

Command Parameters

The fields that follow the Logical Unit Number generally contain com-
mand parameters. They may contain logical block addresses for direct
access devices, transfer lengths for commands that transfer data, or other
values related to specific commands or device types.

Control Field

The last field in every command descriptor is the Control field. This
byte contains contains bit flags used in linked command operations. The
Link flag indicates whether this CDB is part of a linked series of com-
mands. The Flag bit determines the status code that the target returns on

Mandatory SCSI Commands 33

successful completion of a linked command. We’ll look more closely at
command linking later in this chapter.
Table 5-3 shows the structure of the Control field.

Table 5-3. Control Field

Vendor-specific Reserved Flag Link

Parameter Lists

Some commands require parameter lists to follow the Command Descrip-
tor Block. If this is the case, one of the parameter fields in the CDB may
indicate the length of the data to follow.

Byte Order

It is important to note that values in multibyte fields are specified in big-
endian order. That is, the most significant byte appears first, and the least
significant byte appears last. This causes some confusion for program-
mers on Intel platforms, where numbers are stored in little-endian order
with the lowest byte first.

Mandatory SCSI Commands

The SCSI specification defines both mandatory and optional commands
that apply to all devices. Each device type also has its own set of com-
mands, some mandatory, others optional. We’ll start by looking at the
commands that apply to all device types.

There are four mandatory commands that all devices must support.
Table 5-4 lists these commands.

Table 5-4. Mandatory SCSI Commands

00H Test Unit Ready
03H Request Sense
12H Inquiry

1DH Send Diagnostic

34

SCSI Commands

These commands all deal with device identification, status, and error
reporting. Many of the optional commands perform functions related to
device configuration and reporting.

Test Unit Ready

The simplest of the mandatory commands, Test Unit Ready, simply
reports whether a device is ready to execute commands. Table 5-5 shows
the CDB for this command.

Table 5-5. Test Unit Ready

0 Operation code (00H)

1 Logical Unit Number Reserved
2 Reserved

3 Reserved

4 Reserved

5 Control field

This is an uncomplicated command structure. The Control field is
laid out as described previously, though there is little use for the Link
field with this command.

Test Unit Ready returns a status code of Good if the device is ready.
It returns Check Condition if the device is not ready. In this case, sense
information is available with more details. Interpreting status and sense infor-
mation is an art in itself, which we explore in Chapter 6.

Inquiry

The Inquiry command causes a SCSI device to send information that
identifies its manufacturer, model information, and supported features.
The CDB for the Inquiry command looks like this.

Table 5-6. Inquiry

0 Operation code (12H)
Logical Unit Number Reserved EVPD

(Continued)

Mandatory SCSI Commands

Table 5-6. Inquiry (Continued)

Page code

Reserved

2

3

4 Allocation length
5 Control field

The EVPD flag tells the target device to return vital product data instead
of the standard inquiry information. The Page code field specifies which
vital product data to return. Support for the EVPD flag is optional. The
Allocation length tells the target how much space is allocated for the
returned data.

The information produced by a standard query command is returned in
the format shown in Table 5-7.

Table 5-7. Inquiry Data Structure

0 Peripheral qualifier Device type code

1 RMB | Device type modifier

2 ISO version ECMA version] ANSI approved version
3 AENC [TrmIOP| Reserved ’ Response data format

4 Additional data length

5 Reserved

6 Reserved

7 RelAdr ‘WBusBZ[WBuslG’ Sync ‘ Linked |Reserved|CmdQue! SftRe

8-15 | Vendor identification string

16-31 | Product identification string

32-35 | Product revision level string

36-55 | Vendor-specific information string
56-95 | Reserved
96—end | Vendor-specific data

The inquiry data contains valuable nuggets of information about a
device. To begin with, the Peripheral qualifier field tells whether

36

SCSI Commands

the device is actually connected to the logical unit queried. The Device
type field indicates the type of device at this address. The SCSI specifi-
cation lists several device type codes.

Table 5-8. Peripheral Device Type Codes

Code ~ Device Dgscriptitjii_-; i

0OOH Direct access device (disk drive)
OlH Sequential access device (tape drive)
02H Printer device

03H Processor device

04H Write-once device (WORM drive)
05H CD-ROM device

06H Scanner device

07H Optical memory device (optical disk drive)
08H Medium changer device (jukebox)
0AH-0BH Graphic prepress device

1FH Unknown device type

If there is no device connected to the specified target and LUN, the first
byte in the inquiry data is set to 07FH, corresponding to a peripheral quali-
fier of 03H and a device type of 01 FH.

The rRMB flag indicates whether this device supports removable media.
The device type modifier is only defined for backward compatibility
with the SCSI-1 specification.

The third byte contains information about this device’s compliance
with different standards. Probably the most useful of these is the ANSI
version field, which tells what version of the SCSI standard is supported.

The AENC and TrmIOP flags show support for asynchronous event
notification and the Terminate I/0 Process message. The Response
data format field indicates whether the inquiry data structure conforms
to SCSI-1, SCSI-2, or an intermediate standard. A value of 02H here indi-
cates conformance to SCSI-2.

The additional data length field tells how much data follows the
standard inquiry data header. Note that this shows how much data is avail-
able, nothow much actually was transferred.

Interesting things happen in byte number 7. A series of bit flags show
what capabilities this device supports. In order of appearance, they show

Mandatory SCSI Commands

support for relative addressing (RelAdr), 32-bit Wide SCSI (WBus32),
16-bit Wide SCSI (WBus16), synchronous data transfer (Sync), command
linking (Link), command queuing (CmdQue), and soft reset (SftRe).

The following three fields contain vendor and product information.
These are ASCII strings padded with blanks to the width of their fields.
The remaining fields are reserved or contain vendor-specific information.

Example: Iomega Zip Drive
Let’s look at an example of inquiry data returned by a peripheral device.
The device in question is an lomega Zip drive. This drive is a SCSI direct

access device with removable media. The data returned from an Inquiry
command is shown in Table 5-9.

lomega Zip Drive Inquiry Data

Peripheral qualifier (0) Device type code (0)

RMB (1)1 Device type moditier (0)

ISO version (0) ECMA version (0) ANSI approved version (2)

W

AENC | TrmIOP | Reserved Response data format (2)
(0) (0)

Additional data length (117)

Reserved

Reserved

Nl wv| A~

RelAdr | WBus32| WBusl 6| Sync Linked |[Reserved| CmdQue| SftRe
0) 0) 0) 0) 0) 0) 0)

8-15

Vendor identification string (“IOMEGA™)

16-31

Product identification string (“ZIP 100™)

32-35

Product revision level string (“N.38™)

36-55

Vendor-specific information string (“05/09/96)

56-95

Reserved

96—end

Vendor-specific data (“(c) Copyright IOMEGA 1995™)

The inquiry data shows that, indeed, this is a direct access device with
removable media. It conforms to the ANSI standard for SCSI-2, and the
data format also conforms to SCSI-2. It does not support 32-bit or 16-bit
Wide SCSI, synchronous data transfer, linked commands, or command
queuing.

37

38

SCSI Commands

The Vendor and Product identification fields confirm the make
and model, and the revision string reveals the product revision level. The
vendor-specific fields contain a manufacture date and a copyright notice.

An inquiry with the EVPD flag set and a page code of O0OH should
return a list of vital product information code pages the drive supports.
However, the command fails with error codes indicating an illegal
request. This device does not support the vital product data feature.

Optional Commands

Other commands defined for all device types are optional. Table 5-10 lists
these commands.

Table 5-10. Optional SCSI Commands

Copy
ICH Receive Diagnostic Results
39H Compare
3AH Copy and Verify
3BH Write Buffer
3CH Read Buffer
40H Change Definition
4CH Log Select
4DH Log Sense

The Copy, Copy and Verify, and Compare commands provide a
means to copy and compare data between logical units on a target device.
Parameters for these commands vary between device types, but specify
source and destination addresses and transfer lengths.

The Log Sense and Log Select commands provide a mechanism for
managing statistical information for target devices. The SCSI specifica-
tion defines page code parameters for logging threshold and cumulative
values, but does not dictate the type of data logged.

The Read Buffer and Write Buffer are used to test buffer memory
on a device. In addition to this diagnostic function, they can reveal how
much memory a particular device has.

Device Type-Specific Commands 39

The Change Definition command, where supported, permits an ini-
tiator to change the operating mode of a target. The initiator may request
that the target adopt a SCSI-1, SCSI-2, or Common Command Set defini-
tion for compatibility.

Device Type-Specific Commands

There are four commands defined for all devices, but support is manda-
tory only for certain types. The Mode Sense and Mode Select commands
come in 6-byte and 10-byte variations.

Table 5-11. Device Type-Specific SCSI Commands

15H Mode Select (6-byte)

IAH Mode Sense (6-byte)
55H Mode Select (10-byte)
5AH Mode Sense (10-byte)

These commands let an initiator read or set a wide range of device
parameters. Parameters are organized by pages, identified by page codes.
Many of the page codes are device-specific, while some pertain to common
SCSI parameters like disconnect control and command queue algorithms.

Mode Select

The Mode Select command lets an initiator set operational parameters
for a target or logical unit on a target. The CDB for the 6-byte Mode
Select command is shown in Table 5-12.

Table 5-12. Mode Select (6-byte)

A

0 Operation code (15H)
1 Logical Unit Number | PF | Reserved SP

Reserved

Reserved

2
3
4 Parameter list length
5 Control field

40

SCSI Commands

The Pr flag specifies the page format of the parameter list. This flag
should be set to indicate the pages conforming to the SCSI-2 specifica-
tion. Clearing this flag indicates that the page formats are vendor-specific
as in SCSI-1.

The sP flag requests that the target save pages to memory. The actual
pages saved vary, but can be queried through the Mode Sense command.

The Parameter list length specifies the total length of all the
mode pages and information that follows. We’ll examine the actual for-
mat of the returned data when we look at the Mode Sense command.

Mode Sense

The Mode Sense command requests information describing a target’s
operational parameters. This command can query default parameters, cur-
rent parameters, or those that can be changed using the Mode Select
command.

The CDB forthe 6-byte Mode Sense command is shown in Table 5-13.

Table 5-13. Mode Sense (6-byte)

0 Operation code (1AH)
1 Logical Unit Number |Reserved| DBD | Reserved
PC | Page code

Reserved

Allocation length
Control field

| AW

The DBD flag tells the target to disable block descriptors in the returned
data (block descriptors and data format are discussed below). The PC
value specifies the type of parameters requested. It ranges from O to 3 for
current values, changeable values, default values, and saved values.

Probably the most important field is the Page code. The value speci-
fies which set of parameters to return. A value of 3FH in this field
instructs the target to return all available mode pages.

What kind of information does Mode Sense return? The SCSI specifi-
cation defines mode pages for specific device types. For example, direct
access devices can return information on medium types and disk geometries,
caching parameters, error recovery, and a wide range of other operational
details.

Device Type—-Specific Commands

Mode Sense Data Format

Devices that return mode information in page format follow a data struc-
ture outlined in the SCSI document. A mode parameter header leads the
data, followed by block descriptors and mode pages. The header varies
with the 6-byte and 10-byte mode commands. The header for the 6-byte
Mode Sense command is shown below.

Table 5-14. Mode Parameter Header (6-byte)

0 Mode data length
1 Medium type

2 Device-specific parameter

3 Block descriptor length

The Mode data length gives the total length of the remaining data.
The Medium type code varies with device type, but generally describes
medium density or format. The Block descriptor length gives the
total length of the block descriptors that follow, at 8 bytes each.

Block descriptors give more specific information about the current or
default medium supported by a device.

Table 5-15. Mode Parameter Block Descriptor

0 Density code

1-3 | Number of blocks
4 Reserved

5-6 | Block length

Once again, the Density code varies among device types. The Num-
ber of blocks indicates how many blocks the length pertains to. It is set
to O if the block length applies to the entire medium.

A list of mode pages follows the block descriptors. Table 5-16 shows
the general layout of a mode page.

The Ps flag shows whether a mode page can be saved. The Page code
identifies the information returned. Some codes apply to all device types,

41

42

SCSI Commands

Table 5-16. Mode Page Format

0 BS Reserved| Page code

| Page length

2—-end | Mode parameters

while others are device-specific. The Page length is the length of the
mode parameters in the remainder of the page.

Example: Iomega Zip Drive

Let’s revisit the lomega Zip drive for a simple example of mode page
information. We’ll use the 6-byte Mode Sense command to query the
drive for default information, requesting all available mode pages. The
CDB looks like this:

Table 5-17. lomega Zip Drive Mode Sense

0 Operation code (1AH)

| Logical Unit Number (0) |Reserved| DBD | Reserved
(N

PC (2) | Page code (3FH)

Reserved

Allocation length

(O, SN BRVE N B NS

Control field

The command returns the data shown in Table 5-18.

Table 5-18. Zip Drive Mode Parameter Header

0 Mode data length (25H)
1 Medium type (0)

2 Device-specific parameter (0)

Block descriptor length (8)

Device Type-Specific Commands

What does it mean? The Data length tells us that 37 bytes follow.
The O in the Medium type field tells us the information is for the default
medium type. The block descriptor length tells us that a single 8-
byte block descriptor follows.

For the Zip drive, a direct access device, the device-specific parameter
consists of coded bit fields.

Table 5-19. Zip Drive Device-Specific Parameter

WP Reserved DPO/ Reserved
FUA

The wp flag indicates whether the medium is write-protected. The DpP0O/
FUA flag indicates whether the unit supports certain caching options for
read requests.

A block descriptor follows the header (Table 5-20).

Table 5-20. Zip Drive Block Descriptor

0 Density code (0)

1-3 | Number of blocks (0)
4 Reserved

5-6 | Block length (200H)

The Density code is not defined for direct access devices, so it con-
tains no useful information. Because the Number of blocks field is 0O,
we know that the information in this descriptor applies to all the remain-
ing blocks on the medium.

The Block length is 512 bytes, according to this descriptor. This
field appears in big-endian order, as 20H OOH in bytes 5 and 6. A common
pitfall in SCSI programming on Intel platforms is forgetting to correct
byte order when reading data fields.

Three mode pages follow the descriptor. The first is an error recovery
page (O1H), followed by a disconnect-reconnect page (02H) and a vendor-
specific page (2FH). Let’s look at the error recovery page.

43

44

SCSI Commands

Table 5-21. Zip Drive Error Recovery Mode Page

0 PS (0) |Reserved| Page code (01H)
1 Page length (6)

2 AWRE | ARRE | TB RC EER |PER |[DTE |DCR
(1 (1 (0) 0) (1 (0) 0) 0)

Read retry count (0)

Correction span (0)

Head offset count (0)

Data strobe offset count (0)

N | n| b~ W

Reserved

The Ps field value of O tells us this page cannot be saved in nonvolatile
memory. The Zip drive does not support saved pages, and a Mode Sense
query requesting saved pages will return an error.

The normal page length for error recovery data is 10 bytes. Here, the
length is only 6 bytes.

The third byte in this page contains an assortment of bit flags for
error recovery options. Automatic read and write reallocation
(AWRE and ARRE) is supported for defective data blocks. The Enable
Early Recovery (EER) flag indicates that the device will use the most
expedient error recovery method available. The other fields tell us that
this device does not report recovered errors, terminate a data phase when
an error occurs, or use error correction codes for recovery.

From a programmer’s perspective, this is important information.
Knowing how a device deals with errors drives the kinds of error handling
code you build into your software.

Reading and Writing

We’ll close this chapter with a look at the workhorse functions of the
SCSI command set—the Read and Write commands. These commands
vary with device type, so we’ll examine how to use them with direct
access devices.

As with other commands, Read and Write come in 6-byte and 10-byte
versions corresponding to their Group 0 and Group 2 implementations.
The 10-byte versions allow for larger numbers in addresses and transfer
lengths specified in the Command Descriptor Blocks. They also contain
extra fields that dictate cache handling and relative addressing.

Reading and Writing

Direct-access Read and Write commands are block oriented. They
begin at a logical block address, with transfer lengths given by a block
count. You need the block length as reported by Mode Sense or other
commands to determine the number of bytes in a data transfer.

Read

The 6-byte Read command has a simple structure. Its fields identify the
first logical block to read, and the number of blocks to transfer. Table 5-22
shows the CDB for the Read command.

Table 5-22. Read (6-byte)

0 Operation code (08H)

1 Logical unit number Logical block address

Logical block address (continued)

Logical block address (continued)

2
3
4 Transfer length
5 Control field

The Logical block address is spread across three fields, with the
Most Significant Byte (MSB) appearing first. Transfer length occupies
a single byte.

Write
The CDB for the Write command is nearly identical to that of the Read

command. Only the operation code is different.

Table 5-23. Write (6-byte)
- — ;

0 Operation code (OAH)
1 Logical unit number lLogical block address

Logical block address (continued)

Logical block address (continued)

2
3
4 Transfer length
5 Control field

45

46 SCSI Commands

Other Commands

We’ve barely touched on all the commands supported by the different
SCSI device types. The SCSI-2 specification document contains the com-
plete list for those who wish to experiment.

Chapter 6

Status, Sense, and Errors

In a perfect world, there would be no need to receive feedback from SCSI
devices. They always would be ready to communicate, every command
would execute successfully, and programming SCSI peripherals would be
a simple exercise. In reality, commands execute completely, partially, or
not at all. Devices wait patiently offline because they are out of paper, and
operations fail because a tape cartridge is write-protected. Even if every-
thing else works perfectly, errors in the SCSI bus may prevent commu-
nications.

The SCSI specification is a comprehensive document that deals with
many different types of devices. Each device type has its own collection
of things that can go wrong, of errors to report, of changes in conditions
that affect how the device responds to commands. If error handling under
SCSI seems complicated or confusing, this is why.

The authors of the SCSI document did an admirable job of unifying
support for different device types. They defined different levels of feed-
back in the specification. On a gross level, a status code reports the results
of commands sent to devices. On a finer level, a detailed set of sense
information pinpoints where errors occur.

47

48

Status

Status, Sense, and Errors

Every command phase that ends normally is followed by a status phase.
In the status phase, a target sends a single byte back to the initiator that
indicates the outcome of the command. Table 6-1 shows the structure of
the status byte.

Table 6-1. Status Byte

Reserved Status code Reserved

The status byte can be cumbersome to work with, since the lowest bit
isreserved. [t is easy to forget that the actual status code starts with bit num-
ber one.

Status Codes

Only nine status codes are defined under the SCSI-2 specification. All
others are reserved.

Table 6-2. Status Codes

OO0H Good

Ol1H Check Condition

02H Condition Met

04H Busy

08H Intermediate

0OAH Intermediate—Condition Met
OCH Reservation Conflict

1 1H Command Terminated

14H Queue Full

Targets return the Good status on successful completion of a command.
Some data search or prefetch commands return Condition Met instead.

Sense Data

The Busy status indicates that a device is engaged in another process
or otherwise unable to accept a command until later. Reservation
Conflict occurs when trying to access a device reserved by another ini-
tiator. If a device supports tagged command queuing, it may return Queue
Full to indicate that its command queue cannot accept any more entries.

Some of the status codes pertain to linked commands. Intermediate
and Intermediate—Condition Met are returned after each linked
command where Good or Condition Met would normally apply.

The most interesting status code is Check Condition. This code,
along with Command Terminated, indicates that a contingent allegiance
condition exists. A contingent allegiance condition occurs when a target
has extended error information, known as sense data, available. It pre-
serves this data until the initiator retrieves it or another action clears the
contingent allegiance condition. If the device can only maintain sense
data for a single initiator, it will return a Busy status to other devices that
attempt to access it.

Sense Data

Sense data contains detailed information about error conditions. It is orga-
nized into major categories called sense keys and subcategories called
additional sense codes (ASC) and additional sense code qualifiers
(ASCQ). The combination of these pices of data can convey finely
detailed information about error conditions.

Before interpreting these numbers, we must retrieve them. The
Request Sense command performs this function. Request Sense is a
mandatory command for all device types. Table 6-3 shows the CDB for
this command.

Table 6-3. Request Sense

Operation code (03H
Logical Unit Number Reserved

Reserved

Reserved

Allocation length

Tnlibh|lwWlo| —| O

Control field

49

50

Status, Sense, and Errors

The Allocation length tells the target how much sense data to
return.

The data returned by this command follows a form defined by the SCSI
specification. The form is the same for all devices, but some fields pertain
only to certain types. It is also legal for a target to use a vendor-specific
format for sense data.

Table 6-4. Sense Data Format

0 Valid | Error code (70H or 71H)
1 Segment number
2 Filemurk| EOM ‘ ILI ‘Rcscrvcd| Sense key

3-6 | Information

7 Additional sense length

8-11 | Command-specific information
12 | Additional sense code (ASC)
13 Additional sense code qualifier (ASCQ)
14 | Field replaceable unit code
15 SKSV | Sense key-specific

16—-17 | Sense key-specific (continued)

18--end | Additional sense data

This data conveys a plethora of information about errors that have
occurred. The valid bit indicates that the following data conforms to the
structure defined above. Only two Error codes are defined: 70H for
current errors, and 71H for deferred errors. Support for deferred errors is
optional. The segment number, Filemark, and End of Medium (EOM)
fields apply to specific commands or device types.

If the Incorrect Length Indicator (ILI) is set, the amount of data
a command requested did not match the amount available from the target.
The Information field contains the difference in blocks for direct
access or tape devices, or bytes for devices like scanners that are not
block oriented.

The Information field may contain different data depending on the
command or device type it pertains to. The same applies to the Command-
specific information field.

Sense Data

Sense Key

The sense Key reveals the broad category under which the reported error
falls. These categories report hardware errors, write protect errors, illegal
requests, and an assortment of other conditions. The SCSI specification
defines the following sense keys. Other values are reserved.

Table 6-5. Sense Keys

es

OO0H No Sense

OlH Recovered Error
02H Not Ready

03H Medium Error
04H Hardware Error
0SH Illegal Request
06H Unit Attention
07H Data Protect

08H Blank Check
09H Vendor-specific
0AH Copy Aborted
OBH Aborted Command
O0CH Equal

ODH Volume Overflow
OEH Miscompare

Some of these require further explanation. For instance, the I1legal
Request key indicates that a CDB contained an invalid field or para-
meter. If this occurs, the Sense Key Specific Value (SKSV) flag is set
in the sense data, and the sense key—specific fields contain pointers to the
offending values in the CDB or parameters. This information comes in
handy when debugging SCSI software.

For Recovered Error, Hardware Error, and Medium Error, the
sense key—specific field contains a retry count if the SKsV flag is set.

51

52

Table 6-6. lomega Zip Drive Sense Data

Status, Sense, and Errors

Unit Attention

The Unit Attention key applies when something occurs that may
change a device’s operating parameters. A reset or power cycle, a medium
change, or a change in mode parameters can all trigger a unit attention
condition. In this condition the device will only respond to Inquiry and
Request Sense commands, returning a Check Condition status for
other commands. In this state, only a Request Sense command will
clear the unit attention condition. If a contingent allegiance also exists,
any command from the initiator will clear the unit attention condition.

A device enters this state on power up, which means that the first
command issued may return a Check Condition status. This can be par-
ticularly troublesome for programmers unfamiliar with the ways of SCSI.

Additional Sense Codes

In many cases the sense key alone provides enough information for error
recovery. When it does not, the ASC and ASCQ provide the missing
details. The ASC gives additional information about the source of the
error, and the ASCQ gives more specific details. Together the ASC and
ASCQ pinpoint exactly what errors occur in SCSI operations. Some of
these errors apply only to particular device types.

The complete list of ASC and ASCQ assignments occupies several
pages of the SCSI document. A browse through this list will give you an
idea of the kinds of errors your software may need to handle.

Example: Iomega Zip Drive

Let’s look once again at the lomega Zip drive for an example of sense
data. We’ll force a Unit Attention condition by changing the disk, and
examine the result of a Request Sense command.

Valid Error code (70H)
0)
1 Segment number (0)
2 Filemark| EOM ILI Reserved | Sense key (06H)
0) 0) 0)
3-6 Information (0)

(Continued)

Sense Data

Table 6-6. lomega Zip Drive Sense Data (Continued)

7 Additional sense length (17)
8-11 | Command-specific information (0)
12 Additional sense code (ASC) (28H)
13 Additional sense code qualifier (ASCQ) (0)
14 Field replaceable unit code (0)
15 SKSV | Sense key-specific (0)
(0)
16-17 | Sense key—specific (continued) (0)
18—-end | Additional sense data (FFH, FEH, O1H, 02H, 1CH, 0, 0)

The sense key corresponds to Unit Attention, which is what we
would expect. The ASC and ASCQ point to a message, “Not ready to
ready transition, medium may have changed.” This indicates that a device
that was unavailable is now online, which is what we would expect.

Some curious things to note are that the valid flag is not set, and the
Additional sense data field seems to contain vendor-specific data.
This is a good reminder that not all SCSI devices conform completely to
the standard. When working with a particular device, information from
the manufacturer can be critical.

53

Chapter 7

ASPI: The Advanced SCSI
Programming Interface

In the early days of SCSI most software developers hard-coded support
for SCSI adapter cards directly into their applications. Adding support for
a new SCSI adapter or chipset was a tedious and error-prone task, typi-
cally undertaken by programmers whose primary focus was (properly) on
the application itself rather than on the SCSI interface code. Therefore
applications tended to require specific combinations of host adapter and
peripheral devices, often those matching the system of the programmer
responsible for the SCSI interface code. Because the code was tied so
closely to specific devices and adapters, constant maintenance upgrades
were required to keep pace with changing hardware.

The challenges involved in developing SCSI code generally break
down into two areas: generating the proper SCSI commands for the vari-
ous peripheral (target) devices, and interfacing with the SCSI host adapter
to send these commands to the devices. As described in Chapter 1, the

. first issue was addressed by the CCS and SCSI-2 improvements to the
SCSI standards. These improvements helped device manufacturers imple-
ment a common set of commands appropriate to the type of their device,
which in turn allowed programmers to write generic code for a given
device type and have a reasonable expectation that their code would work
with most other devices of that type. The second issue was addressed by
the definition of standard programming interfaces that pass commands to
devices, regardless of the particular host adapter being used. We’ll be

55

56

ASPI: The Advanced SCSI Programming Interface

describing one of the most popular of these interfaces for PC platforms,
the Advanced SCSI Programming Interface, in this chapter.

What Is ASPI?

The Advanced SCSI Programming Interface (ASPI) was developed by
Adaptec, a leading manufacturer of host adapter cards. Adaptec published
their Adaptec SCSI Programming Interface, renamed it, and encouraged
other manufacturers to support it. ASPI was defined and available on most
PC-based operating systems including DOS, Windows, OS/2, and Novell
Netware, and was immediately supported by Adaptec’s own popular line
of SCSI host adapters. As programmers began to embrace ASPI, most
other SCSI host adapter manufacturers introduced ASPI-compliant inter-
faces to their hardware, especially for the MS-DOS operating system.
ASPI soon became a standard for PC-based SCSI programming and
helped open the way to the widespread acceptance of SCSI devices on the
PC platforms.

ASPD’s success is due partly to its relative simplicity. It forgoes some
SCSI features, such as tagged queueing and asynchronous event notifica-
tion, in favor of a simpler interface model and easier implementation (as
do many peripherals and operating systems). In addition, ASPI is prima-
rily focused on the application viewpoint and handles only initiator, or
host adapter, requests. This means that ASPI can send commands to a
SCSI device, but it is not designed to deal with commands received from
another initiator (host adapter). Most PC-based applications are interested
in controlling peripheral devices, so the lack of this target mode support
hasn’t been a significant handicap for ASPL

Why Should | Use ASPI?

Let’s take a look at what ASPI actually does for a programmer. First, it
insulates you from the hardware interface of SCSI host adapters. In the-
ory (and largely in practice) you can write code using one ASPI manager
and host adapter, and that code will run with any other host adapter sup-
ported by a compliant ASPI manager. All of the hardware-specific
interface code is handled by the ASPI manager itself. Each different SCSI
host adapter design has a corresponding ASPI manager, often developed
by the manufacturer itself.

In addition to providing hardware independence, ASPI also provides a
great deal of operating system independence. Application programmers

ASPI Concepts

using ASPI typically don’t need to worry about interrupt handlers and
other operating system specific details related to device driver program-
ming. Page locking and swapping are still a concern under older operating
systems like Windows 3.1 or DOS, but much less a concern under Win-
dows 95 and NT. Aside from small details like this, ASPI interface itself is
quite consistent across all operating system platforms, though the imple-
mentation details differ. From an application programmer’s perspective
the major difference in ASPI under different operating systems is the
mechanism used to connect to the ASPI manager itself. On MS-DOS sys-
tems, for example, ASPI usually is implemented as a device driver loaded
via the CONFIG.SYS file, while under Windows ASPI is implemented as
a Dynamic Link Library (DLL). There are also small differences in the
alignment and order of fields within structures passed to the ASPI man-
ager on 16-bit versus 32-bit implementations. The examples that follow
use the ASPI for Win32 structures and definitions, which are used on
Windows 95 and Windows NT systems. If you are using ASPI on another
platform, make sure you are using the structure definitions appropriate for
that system.

ASPI Concepts

The next few sections describe some important ASPI concepts to explore
before looking at the ASPI commands and structures themselves. These
concepts include device addressing, issuing SCSI commands and waiting
for them to complete, and some adapter-specific details that you need to
know. While reading this you may get the impression that ASPI is much
more complicated than it really is. In practice, ASPI is very simple and
easy to use, and we’ll be providing plenty of examples and sample code
just a bit later. For now, you should note that an ASPI manager has one
main routine that you call to issue most ASPI commands. This routine
takes a pointer to a structure that contains all of the information necessary
to execute a given ASPI command. In the examples below this routine is
called SsendASPI32Command (), and we’ll show you how to use it a bit
later. Feel free to look ahead if you are curious about the commands or
structures.

The latest revisions of the ASPI specification have added other routines
to support Plug and Play SCSI and large buffers.

Adapter and Device Addressing

The SCSI specification identifies devices by a SCSI device ID, and by a
Logical Unit Number (LUN) that may identify a particular subunit on a

57

58

ASPI: The Advanced SCSI Programming Interface

device. Typical SCSI device IDs range from O to 7, and LUNSs also range
from O to 7. Given these two pieces of information, any unit or subunit on
a single SCSI bus can be uniquely identified. However, it is possible to
connect two or more different SCSI host adapters to a single system, so
the ASPI manager requires one more piece of information—the host
adapter number. It may help to think of a host adapter as an I/O channel,
since some host adapter cards can support more than a single channel.

Host adapters are numbered consecutively, starting at 0. The first (or
only) host adapter ID will be 0, the second will be 1, and so on. So under
ASPI, SCSI devices can be uniquely identified by a host adapter number,
a SCSI ID, and a logical unit number. Every ASPI command dealing with
a specific SCSI device contains these three pieces of information
(HA:ID:LUN).

Issuing SCSI Command's

Now that we can address a SCSI device we usually want to issue com-
mands making it do something useful. This involves four basic steps:
building the command, sending it to the ASPI manager, waiting for the
command to complete, and then interpreting any status or error codes
returned by the ASPI manager.

All ASPI commands use a data structure called a SCSI Request Block
(SRB). The first few fields of the SRB are common to all ASPI com-
mands, but the remaining fields depend on the specific command being
executed. Before sending the SRB to the ASPI manager, an application
must initialize the SRB with data appropriate to the command being
issued. After the SRB has completed it will contain any data and status
codes returned by the ASPI manager or the target device.

Building the SCSI Request Block

The first step required to issue an ASPI command is initializing the SRB
structure. For the most part, you simply fill in the required field values.
We’ll describe the fields later in this chapter, but right now let’s take a
quick look at a common example—sending a SCSI Inquiry command
to a target device. The first thing you must do is allocate an SRB and
specify which ASPI command it describes. We also allocate a small data
buffer to receive the inquiry data from the device.

SRB_ExecSCSICmd srb; // allocate the SRB
unsigned char buf[128]; // allocate data buffer
memset (&srb,0,sizeof(srb)); // clear all fields

srb.SRB_Cmd = SC_EXEC_SCSI_CMD; // specify ASPI command

ASPI Concepts

Next, you must provide the address of the SCSI device that will receive
the command. Assuming you know the host adapter number, SCSI ID,
and logical unit number of the device, this is straightforward:

srb.SRB_Hald = HostAdapterNumber;
srb.SRB_Target = TargetScsild;
srb.SRB_Lun = 0;

We also need to provide the SCSI Command Descriptor Block (CDB)
itself. For our example of an Inquiry command, this is done as follows:

srb.SRB_CDBLen = 6; // Inquiry cmd is 6 bytes
srb.SRB_CDBByte[0] = 0x12; // Inquiry cmd opcode
srb.SRB_CDBByte[1l] = 0; // LUN and page flags
srb.SRB_CDBByte[2] = 0; // Inquiry Page code
srb.SRB_CDBByte[3] = 0; // Reserved
srb.SRB_CDBByte[4] = sizeof(buf); // Allocation length
srb.SRB_CDBByte[5] = 0; // Control byte

Refer back to the description of the SCSI Inquiry command in Chap-
ter 5 for a description of this CDB.

Next, since the Inquiry command returns data to us, we must tell the
ASPI manager where to put the data. We also set the SRB_DATA 1IN flag
to tell the ASPI manager that we are expecting to receive data from the
device. If we were sending data to the device we would set the SRB_
DATA_OUT flag.

srb.SRB_BufLen = sizeof (buf); // buffer length
srb.SRB_BufPointer = buf; // address
srb.SRB_Flags |= SRB_DATA_ IN; // transfer direction

And finally we need to tell the ASPI manager how much sense data
should be returned to us in the event of a SCSI check condition. The
SRB_ExecSCSICmd structure contains a buffer for the sense data, but we
still need to specify its size. This can be tricky—bugs in both Windows 95
and NT limit the practical size of the sense buffer to 14 bytes. It’s com-
mon to use the defined value SENSE_LEN, which is set to 16 bytes.

srb.SRB_SenseLen = SENSE_LEN;

That’s it. We’re now ready to send the SRB to the ASPI manager. (If
you peeked ahead at the SRB definitions, you may have noticed that we
skipped the SRB_PostProc field. We’ll cover that a bit later.)

59

60

ASPI: The Advanced SCSI Programming Interface

Sending an SRB to the ASPI Manager

Once the SRB is properly initialized, you simply pass its address to the
ASPI manager, and the ASPI manager will handle all phases of the actual
SCSI command and data transfer. This is quite simple—you just call the
ASPI manager’s entry point, passing the address of the SRB as a
parameter:

SendASPICommand((LPSRB) &srb);

ASPI makes the actual execution of the command as simple as issuing
a function call. Well, almost that simple . . . in the interest of performance,
the ASPI manager usually just places the SRB in a queue and returns to
the caller immediately, before the command has even started. This allows
your application to prepare the next command while the last one is still
executing. The ASPI manager handles all of the details involved in exe-
cuting the command in the background, and then updates a status field in
the SRB when the command finally completes.

Waiting for an SRB to Complete

Since the ASPI manager may return before an SRB has been completed,
your application must not deallocate the SRB or rely on any returned data
until the SRB is finished. The simplest way to guarantee this is to simply
sit in a loop, waiting for the SRB_Status field to indicate that the SRB
has completed.

while (srb.SRB_Status == SS_PENDING) // while still pending
; // do nothing

Polling the status field is an inefficient way to wait for a command to
complete. Under MS-DOS this isn’t much of an issue because there is
only one application running at any given time. On a multitasking operat-
ing system, however, polling wastes CPU time that could be better spent
running other threads or applications. Fortunately ASPI provides another
method of waiting, called posting, which is simply a callback to a routine
that you specify in the SRB. When the ASPI manager finishes processing
the SRB it will call your routine, passing the address of the SRB on the
stack. This callback routine can inspect the SRB’s status fields, and possi-
bly execute another SRB immediately. The callback routine is called as
soon as possible after the SRB completes, even from within the ASPI
manager’s interrupt handler in some implementations. Because of this,
you should keep your callback routines short and simple. Also, because
the callback might occur at interrupt time, you should not use any operat-

ASPI Concepts

ing system services that aren’t completely reentrant. This means that your
callback routine is usually restricted to inspecting the just completed
SRB, and possibly sending a new SRB to the ASPI manager for process-
ing. This is an easy and efficient way to receive ASPI notifications, but
under Win32 it requires the ASPI manager to create a background thread
to manage the callback. There is another method you can use in this envi-
ronment that we’ll discuss later.

One common problem encountered when using callback routines
involves the calling convention used by the ASPI manager. The ASPI man-
agers for Windows 95 and Windows NT expect the callback routine to use
the standard CDECL calling convention, which equates to the __stdcall
calling convention for most Win32 compilers. Under Windows 3.x you
should use the FAR PASCAL convention, just like most 16-bit Windows
callbacks and entry points. Under MS-DOS things are a bit more compli-
cated. The ASPI manager pushes the address of the just completed SRB
onto the stack and then makes a FAR call to the callback routine, as
follows:

push [SrbOffset]

push [SrbSegment]

call dword ptr [SRB_PostProc]
add sp,4

push offset of SRB
push segment of SRB
call callback routine
clean up stack

e we ws o~

This corresponds to the C language calling convention used by most
MS-DOS compilers. However, the ASPI specification for MS-DOS also
requires that the callback routine preserves the values of all registers.
Therefore, a callback routine under MS-DOS might look like the
following:

CallbackRoutine:
push bp
mov bp, sp
pusha
push ds

push es
les bx, dword ptr [bp+6]

; Now ES:BX has the address of the SRB

pop es
pop ds
popa

pop bp

retf

61

62

ASPI: The Advanced SCSI Programming Interface

Fortunately, most MS-DOS C compilers have implemented extensions
allowing you to specify these requirements to the compiler automatically.
Check your compiler documentation for details, but most will support the
following:

void _ cdecl _ saveregs _ loadds CallbackRoutine(SRB _far *p)

{
}

If you are using another programming language, or if your compiler
doesn’t support these extensions, you can write a small assembly lan-
guage subroutine like the one above that simply translates the call into the
format required by your compiler.

With that behind us, let’s take a look at how you can use a callback rou-
tine under Windows 95 and NT. Our example will simply signal a Win32
EVENT object. This example is rather artificial, but it does show how to
set up a callback.

The first thing we need to do is create the event object and the callback
routine itself:

HANDLE EventHandle;

void CallbackRoutine(SRB *p)

{
SetEvent (Handle);

}

Let’s assume we’ve already initialized an SRB to execute a SCSI
Inquiry command as shown earlier, and simply fill in the missing pieces
and send it to the ASPI manager.

srb.PostProc = CallbackRoutine;

srb.Flags |= SRB_POSTING;

ResetEvent (EventHandle);

dwStatus = SendASPI32Command((LPSRB) &srb);

if (dwStatus == SS_PENDING)
WaitForSingleObject (EventHandle, INFINITE);

We use the Windows 95/NT WaitForSingleObject() service to block
our thread until the SRB completes. At that point the ASPI manager will
call our callback routine, which will in turn signal the event that our
thread is blocking on. The net result is the same as for polling, but we
haven’t wasted any processor time.

Callback routines are also very useful when controlling streaming
devices like tape drives and CD-ROM recorders, where the media is

ASPI Concepts

constantly moving and you must issue the next read or write command
within a very short period of time. If the next command is issued too late,
the tape drive will need to reposition (costing time), or the CD-ROM
recorder will run out of data to write (wasting the CD). One common
means of dealing with this is to prepare SRBs and place them in a queue
in the foreground, and then rely on a callback routine to send the next
pending SRB to the ASPI manager in the background, as soon as the pre-
vious command completes. This provides a simple but very useful form of
multitasking.

Callback routines can be intimidating and difficult to debug, so they
aren’t often used unless performance is a critical issue. Many applications
still simply poll for completion, wasting CPU time. To make things easier
for programmers, the ASPI implementations for Windows 95 and NT pro-
vide a third method for waiting, called Event Notification. Instead of
specifying the address of a callback routine, you can provide the handle of a
Win32 event object that will be signalled automatically when the com-
mand completes. After starting the SRB you can then simply wait for the
event, and your thread won’t hog CPU time. Modifying our example above:

srb.PostProc = EventHandle;

srb.Flags |= SRB_EVENT_NOTIFY;

ResetEvent (EventHandle);

dwStatus = SendASPI32Command((LPSRB) &srb);

if (dwStatus == SS_PENDING)
WaitForSingleObject (EventHandle, INFINITE);

Note that callback routines and event notification are mutually exclu-
sive. Never set both the SRB_EVENT NOTIFY and SRB_POSTING bits in
an SRB_Flags field. Given the choice between callbacks and event noti-
fication, the latter is simpler and more efficient.

Processing Returned Status Information

The final step in processing an SRB involves checking the returned status
fields. For SCSII/O commands, this can involve up to four separate fields:
SRB_Status, SRB_HaStat, SRB_TargStat, and the SRB_SenseArea
buffer. We describe the different values returned in these fields later in this
chapter, in the ASPI Error and Status Codes section. Right now you
should just remember that things can go wrong, and these fields will tell
you what happened.

Another thing to note is that if you use callback functions or event noti-
fication, the status field is not necessarily valid until the SRB has finished
executing. This means that you should not poll the status field for infor-
mation until the callback has executed or the event has triggered.

63

64

ASPI: The Advanced SCSI Programming Interface

Adapter-Specific Properties

The ASPI interface tries to manage most hardware-specific details for
you, but some cards have data buffer alignment or maximum transfer size
restrictions that must be accommodated by the application. For example,
many PC-based SCSI adapters can transfer a maximum of 65,536 bytes
of data with a single command. Applications must be able to recognize
this limitation and make sure they stay within it. Unfortunately, the origi-
nal ASPI specification did not provide a way to determine this
information for specific adapter cards. A February 1994 addendum to the
ASPI specification details a method of gathering hardware-specific infor-
mation, but you must take care to determine if a specific ASPI manager
supports this extension. The ASPI for Win32 specification (Windows 95
and Windows NT) redefines portions of the Host Adapter Unique field
for standard sets of adapter-specific information, which simplifies the
detection process but isn’t necessarily compatible with older ASPI man-
agers under other operating systems. See the description of the Host
Adapter Inquiry command for additional information.

Connecting to the ASPI Manager

As mentioned earlier, the actual implementation of the ASPI manager
varies between operating systems. MS-DOS and OS/2 ASPI managers are
implemented as device drivers, while Windows ASPI managers are imple-
mented as DLLs. Different Windows implementations may also use
additional components (VxDs or device drivers) to handle low-level oper-
ating system and hardware interface functions. For the most part, the
differences in the implementation are insignificant to the application pro-
grammer, except for the method of connecting to the ASPI manager. On
Windows systems you simply link your application to the ASPI man-
ager’s import library (WINASPLLIB or WNASPI32.LIB), and rely on the
Windows dynamic link mechanism to make the connection. For MS-DOS
and OS/2 systems you must open the device driver and issue an IOCTL
call to get the address of the ASPI manager’s entry point.

Don’t worry if this sounds complicated. It’s actually quite simple. On
16-bit Windows systems you can use the following code to connect to the
ASPI manager:

ASPI Concepts

Listing 7-1. Connecting to ASPI under 16-Bit Windows

WORD AspiStatus;
BYTE NumAdapters;

AspiStatus = GetASPISupportInfo();

switch (HIBYTE(AspiStatus))

{

case SS_COMP:
/* ASPI is properly initialized and running */
/* The low byte of the status contains the */
/* number of host adapters installed under */
/* ASPI. */
NumAdapters = LOBYTE(AspiStatus);
break;

case SS_ILLEGAL MODE:
/* ASPI is not supported on the currently running */

/* Windows mode (real, standard, or enhanced) */
NumAdapters = 0;
break;

case SS_OLD_MANAGER:
/* The installed MS-DOS ASPI manager does not */
/* support Windows. Some MS-DOS ASPI managers */
/* may be used under Windows, but many do not */
/* support Virtual DMA Services, or are other- */

/* wise incompatible with Windows. */
NumAdapters = 0;
break;

default:

/* Something is not right, so don't even try */
NumAdapters = 0;

The most common problem here is forgetting to link the WINASPLLIB
import library into your application, so the linker complains that it can’t
find the GetASPISupportInfo() routine. The process is similar for
32-bit Windows systems, except you link to the WNASPI32.LIB import
library, call the GetASPI32SupportInfo() routine, and you don’t have
to worry about compatible MS-DOS ASPI managers:

65

66 ASPI: The Advanced SCSI Programming Interface

Listing 7-2. Connecting to ASPI under 32-Bit Windows

DWORD AspiStatus;
BYTE NumAdapters;

AspiStatus = GetASPI32SupportInfo();

switch (HIBYTE(LOWORD (AspiStatus)))
{
case SS_COMP:
/* ASPI is properly initialized and running. */
/* The low byte of the status contains the */

/* number of host adapters installed. */
NumAdapters = LOBYTE(AspiStatus);
break;

default:

/* No ASPI manager is currently installed */
NumAdapters = 0;

These examples assume you are linking the WINASPLLIB or
WNASPI32.LIB import library to your application. If not, you can still
use the ASPI manager, but you must explicitly load it with the Wwindows
LoadLibrary () routine, and get the address of the GetASPISupport-
Info () routine with the GetProcAddress () routine. This process is a
bit more complicated, but it lets your program start even if the ASPI man-
ager isn’t installed, allowing you to provide the user with more specific
information than the standard Windows “couldn’t find a required DLL”
message. You can dynamically load the Win32 ASPI manager as shown

below:

Listing 7-3. Dynamically Loading ASPI under 16-Bit Windows

DWORD (*GetASPI32SupportInfo)(); /* ptr to function */
DWORD (*SendASPI32Command(LPSRB 1lpSrb); /* ptr to function */

HANDLE WnAspiHandle;
DWORD AspiStatus;
BYTE NumAdapters;

WnAspiHandle = LoadLibrary("WNASPI32.DLL");
if (WnAspiHandle)

(Continued)

ASPI Concepts

Listing 7-3. (Continued)

{
GetASPI32SupportInfo = GetProcAddress("GetASPI32SupportInfo");

SendASPI32Command = GetProcAddress ("SendASPI32Command") ;
if (GetASPI32SupportInfo && SendASPICommand)

{

AspiStatus = GetASPI32SupportInfo();

switch (HIBYTE (LOWORD (AspiStatus)))

{
case SS_COMP:
/* ASPI is initialized and running. */
/* The low byte of the status contains */
/* the number of host adapters. */
NumAdapters = LOBYTE (AspiStatus);
break;
default:
/* No ASPI manager is currently installed */
NumAdapters = 0;
}
}
else
{
/* Cannot retrieve address of */
/* GetASPI32SupportInfo() or */
/* SendASPI32Command(). The ASPI */
/* may not be properly installed. */
}
}
else
{
/* Cannot load WNASPI32.DLL */
/* make sure it is properly installed. */
}

On MS-DOS systems, you must first open the ASPI manager’s device
driver and get the address of the ASPI manager’s entry point. This is done
by the following code sample:

67

68 ASPI: The Advanced SCSI Programming Interface

Listing 7-4. Initializing ASPI under MS-DOS

.DATA
AspiEntryPoint DD 0 ; address of entry point
AspiHandle DW 0 ; file handle
AspiDriverName DB "SCSIMGRS",0 ; name of ASPI device
.CODE
GetAspiEntryPoint PROC
push ds save current data segment

mov ax,@DATA

mov ds,ax

lea dx,AspiDriverName
mov ax,3D00h

load local data segment

load offset of driver name
MS-DOS open file

— w4 ma

iny 21h
jc failed
mov [AspiHandle],ax ; save file handle

load file handle
address of buffer
length = 4 bytes
MS-DOS IOCTL read

mov bx, [AspiHandle]
lea dx,AspiEntryPoint
mov cx,4

mov ax,4402h

int 21h

jc failed

L T T TR

mov bx, [AspiHandle] ;: load file handle
mov ax,3E00h + MS-DOS close file

int 21h :
mov ax,word ptr [AspiEntryPoint] ; return the address
mov dx,word ptr [AspiEntryPoint+2] ; of ASPI entry point
pop ds
ret

failed:
mov ax,0 ; return NULL for error
mov dx,0
pop ds
ret

GetAspiEntryPoint ENDP

An application can then use the following sequence to connect to the
ASPI manager:

ASPI Commands

Listing 7-5. Connecting to ASPI under MS-DOS

BYTE NumAdapters;
WORD (FAR *SendASPICommand)(void FAR *pSrb); /* ptr to function */

SendASPICommand = GetAspiEntryPoint();
if (SendASPICommand)
{
SRB_HA Inquiry HostAdapterInfo;
memset(&HostAdapterInfo, 0, sizeof(HostAdapterInfo));
HostAdapterInfo.SRB_Cmd = SC_HA_ INQUIRY;
HostAdapterInfo.SRB_Hald = 0; /* first host adapter */
SendASPICommand((LPSRB) &HostAdapterInfo);
switch (HostAdapterInfo.SRB_Status)

{
NumAdapters = HostAdapterInfo.HA Count;
break;

default:

/* Something is wrong */
NumAdapters = 0;

}
else

{

/* ASPI manager is not installed */
NumAdapters = 0;

}

The MS-DOS example above actually uses the ASPI manager to exe-
cute a Host Adapter Inquiry command to retrieve the number of host
adapters installed. This was done to make the MS-DOS code mimic the
behavior of the Windows GetASPISupportInfo() routine, which
returns the number of host adapter installed (in the least significant byte
of the return value).

ASPI Commands

As mentioned above, all requests to an ASPI manager are routed through a
single SendASPICommand () function that takes a pointer to a generic
SCSI Request Block (SRB) as its only parameter. The first few fields in an
SRB are common to all ASPI commands. These fields include a command
code, a host adapter number, a status field, and a field for various control
flags. The remaining fields in an SRB are specific to the type of command,

69

70 ASPI: The Advanced SCSI Programming Interface

and contain information and values that are appropriate to that command.
The common SRB fields are:

BYTE SRB_Cmd;
BYTE SRB_Status;
BYTE SRB_HalId;
BYTE SRB_Flags;

DWORD SRB_Hdr_Rsvd;

/* Command specific fields follow */

The SRB_cCmd field defines the ASPI command, and the format of any
command-specific data. The SRB_status field returns the status of the
command, whether it is pending, completed, or encountered an error. The
possible values returned in the SRB_status field are described later in
the ASPI Error and Status Codes section. The SRB_Ha1Id field indicates
which host adapter will process the request, and the SRB_Flags field
contains any bit-flags that apply to the command.

The possible ASPI command values for the SRB_Cmd field are:

Table 7-1. ASPI Command Values

0 SC_HA INQUIRY

1 SC_GET_DEV_TYPE

2 SC_EXEC_SCSI_CMD

3 SC_ABORT_SRB

4 SC_RESET_DEV

5 SC_SET_HA INFO
(Not valid on Windows 95
or NT)

6 SC_GET_DISK_INFO

(Not valid on Windows NT)

Retrieve information on the installed host adapter
hardware, including the number of host adapters
installed.

Identify devices available on the SCSI bus.
Execute a SCSI I/O command.
Request that a pending SRB be aborted.

Sends a SCSI bus device reset to a particular
target.

Sets host adapter—specific information or operat-
ing parameters. (This command is specific to a
particular host adapter/ASPI manager combina-
tion, and is not typically issued by application
programmers.)

Retrieve information about a SCSI disk device’s
INT 13hdrive and geometry mappings. (This
command is available only under MS-DOS com-
patible operating systems that support the BIOS
Int 13h services for disk drives.)

(Continued)

ASPI| Commands

Table 7-1. ASPI Command Values (Continued)
Value Command ~ Description
7 SC_RESCAN_SCSI_BUS Rescan the SCSI bus attached to a given host

adapter. This causes the ASPI manager to note
any newly attached or removed devices and
update its internal tables accordingly. (This com-
mand is available only under the ASPI for Win32
implementation in Windows 95 and NT.)

SC_GETSET_TIMEOUTS Set or retrieve SCSI command timeout values for
a given target device. (This command is available
only under the ASPI for Win32 implementation
in Windows 95 and NT.)

The sC_HA INQUIRY and SC_GET DEV_TYPE commands are used to
obtain information about the installed host adapters and SCSI devices.
These are typically used to determine which devices are available on a
system. The sC_EXEC_scSI_cMD command is used for all SCSI transac-
tions, and is the most frequently used command. The SC_ABORT_SRB and
SC_RESET DEV commands are used when trying to recover from timeout
and error conditions. The SC_SET HA INFO and SC_GET_ DISK_ INFO
commands aren’t typically used by application programmers, so they
aren’t discussed further.

Host Adapter Inquiry (SC_HA_INQUIRY)

The Host Adapter Inquiry command is used to retrieve information
about an installed SCSI host adapter and the ASPI manager itself. Your
first few calls to the ASPI manager should be Host Adapter Inquiry
commands to determine the number of installed SCSI host adapters and
their capabilities. The adapter is specified by the 0-based number passed
in the SRB_Ha1Id field, and information is returned in the HA_* fields, as
described below:

Listing 7-6. Host Adapter Inquiry SRB

typedef struct {

BYTE
BYTE
BYTE
BYTE

SRB_Cmd; // command code = SC_HA INQUIRY
SRB_Status; // command status byte
SRB_Hald; // host adapter number (0 - N)

SRB_Flags; // request flags, should be 0
(Continued)

71

72 ASPI: The Advanced SCSI Programming Interface

Listing 7-6. (Continued)

DWORD SRB_Hdr_Rsvd; // reserved, must be 0

BYTE HA_Count; // total number of host adapters

BYTE HA SCSI_ID; // SCSI ID of the specified host adapter
BYTE HA_ManagerId[16]; // ASCII string describing ASPI manager

BYTE HA Identifier[16]; // ASCII string describing host adapter

BYTE HA_Unique[16]; // host adapter unique parameters

BYTE HA Rsvdl; // reserved

} SRB_HAInquiry;

The first Host Adapter Inquiry command you issue should specify
host adapter number (SRB_Hald) of 0. This will retrieve information
about the first SCSI host adapter, and it will also give you the total num-
ber of host adapters installed in the system. If there is more than one
adapter present, you can issue additional Host Adapter Inquiry com-
mands for the other host adapters.

Listing 7-7. Host Adapter Inquiry Call

SRB_HAInquiry HostAdapterInfo;
memset(&HostAdapterInfo, 0, sizeof(HostAdapterInfo));

HostAdapterInfo.SRB_Cmd = SC_HA_INQUIRY;
HostAdapterInfo.SRB_HaIld = 0; /* first host adapter */

SendASPICommand((LPSRB) &HostAdapterInfo);

switch (HostAdapterInfo.SRB_Status)

{

case SS_COMP:
/* ASPI manager is installed and running */
NumAdapters = HostAdapterInfo.HA_Count;
break;

default:
/* Something is wrong */
NumAdapters = 0;

Let’s take a closer look at the fields in this SRB structure:

ASPI Commands

Table 7-2. Host Adapter Inquiry Fields

SRB_Cmd

SRB_Status

SRB_HaId

SRB_Flags

SRB_Hdr_ Rsvd
HA Count

HA_SCSI_ID

ASPI Command Code

This field must contain SC_HA INQUIRY to retrieve the informa-
tion that follows.

ASPI Command Status

This field is used to hold the pending and completed ASPI com-
mand status. On return, this field will contain one of the following
values:

SS_coMP—completed without error
SS_INVALID_HA—invalid host adapter number

(Refer to the ASPI Error and Status Codes section for additional
information about this field.)

Host Adapter Index

This field specifies which installed host adapter will be queried by
this command. A value of 0 indicates the first installed host adapter,
1 is the second, and so forth. Some host adapters support multiple
SCSI busses, and in this case, the value specified by this field is
actually a logical bus index rather than a physical host adapter
index. If you specify an index that is out of range the SRB_Status
field will return an SS_INVALID_HA status code. You can deter-
mine the total number of host adapters available under the ASPI
manager by setting this field to 0 and looking at the value returned
in the HA_Count field.

ASPI Command Flags

No flags are valid for this command, and this field should be set to 0.

This field is reserved and should be set to 0.
Host Adapter Count

This field returns the total number of host adapters available under
the ASPI manager. Some host adapters support multiple SCSI bus-
ses, and in this case the value returned is actually the total number
of logical SCSI busses installed rather than the number of physical
host adapter cards. In most cases this distinction is unimportant,
since you can simply treat multiple SCSI busses on a single card as
if they were actually on separate cards.

Host Adapter SCSI ID
This field returns the SCSI ID of the specified host adapter.
(Continued)

73

74 ASPI: The Advanced SCSI Programming Interface

Table 7-2. Host Adapter Inquiry Fields (Continued)

ASPI Manager Identifier String
The ASPI manager returns an ASCII string in this field describing

the ASPI manager. Typically this string describes the developer of the
ASPI manager. (Note that this string may not be null terminated.)

HA ManagerId

HA Identifier Host Adapter Identifier String

This field returns an ASCII string describing the specified host
adapter. This string typically describes the adapter type or model
number. (Note that this string may not be null terminated.)

HA Unique Host Adapter Unique Parameters

This field returns a variety of information describing the specified
host adapter’s characteristics and requirements. See the text below
for additional information.

The HA Unique field was originally reserved for information specific
to a particular ASPI manager implementation. Under Windows 95 and
NT, portions of this field are used to return information about the capabil-
ities of the host adapter.

Table 7-3. Host Adapter Unique Parameters

1 | Buffer Alignment Mask

This value specifies the host adapter’s buffer alignment requirements.

0 =no alignment requirements
1 = word alignment

3 =dword alignment

7 = quadword alignment

and so forth. The alignment of the buffer can be checked by ANDing the buffer
address with this mask value. The buffer is properly aligned if the result is O.

You must make sure any data buffer that you send to the ASPI manager meets
this alignment.

(Continued)

ASPI Commands

Table 7-3. Host Adapter Unique Parameters (Continued)

Byte # Desgnp;hn A s e

2 Adapter Unique Flags
Bit O—reserved
Bit |—residual byte count reporting is supported
Bits 2-7—reserved
If bit | is set, the specified adapter supports residual byte count reporting. This
means that after a SCSI 1/O transfer (via the SC_EXEC_SCSI_CMD command)
the SRB_BufLen field can be updated to indicate the number of bytes remain-
ing in a transfer. This can be useful in buffer underrun situations, since you can
then determine how much data was actually transferred by the command. See
the SC_EXEC_SCSI_CMD description for additional information.

3 Maximum SCSI Targets Supported
This value indicates the maximum number of SCSI targets that are supported
by the given adapter. If this value is 0. you should assume that there are a maxi-
mum of 8 targets.

4-7 Maximum Transfer Length
This field specifies the maximum number of bytes that can be transferred by a
single SCSI I/O command on the specified adapter. Byte 7 is the most signifi-
cant byte.

8-15 Reserved

It is very important to use the HA_Unique information when it is avail-
able. Some host adapters and drivers have limitations on the maximum
amount of data that can be transferred with a single SCSI command, and
this limit is reflected in the Maximum Transfer Length field within the
HA Unique data. A 64K limitation is common on many PC-based host
adapters, and this limit may be further reduced by the operating system
you are using. Be aware that you may have to break up transfers into
smaller chunks to accommodate such limitations.

The Buffer Alignment Mask is becoming more important on newer
hardware platforms. In the never-ending quest for speed, many system
bus and host adapter designs use sophisticated schemes to improve data
transfer times when data is properly aligned. Many system memory
caches and busses are optimized for 64-bit, 128-bit. or even larger data
burst transfers. When your data buffers are aligned on these natural bus
size boundaries, transfers can be blazingly fast. However, data that is not
properly aligned often requires additional bus cycles to move across the
bus, slowing things down considerably.

75

76

ASPI: The Advanced SCSI Programming Interface

Get Device Type (SC_GET_DEV_TYPE)

The Get Device Type command is used to retrieve basic information
about a specific target device attached to a host adapter. The adapter is
specified by the 0-based number passed in the SRB_HaId field, the SCSI
ID of the target device is specified in the SRB_Target field, and the tar-
get device’s LUN is specified in the SRB_Lun field. If the specified
logical unit exists on the target, its device type identifier will be returned
in the SRB_DeviceType field. This command allows you to quickly
determine if a specific target device is available.

Listing 7-8. Get Device Type SRB

typedef struct {

BYTE SRB_Cmd; // command code = SC_GET DEV_TYPE
BYTE SRB_Status; // command status byte

BYTE SRB_HaId; // host adapter number

BYTE SRB_Flags; // request flags, should be 0

DWORD SRB_Hdr_Rsvd; // reserved, must be 0

BYTE SRB_Target; // SCSI ID of device (typically 0-7)
BYTE SRB_Lun; // Logical Unit Number of device
BYTE SRB_DeviceType; // returns the SCSI device type
BYTE SRB_Rsvdl; // reserved for alignment

} SRB_GDEVBlock;

You should use this command to determine whether a specific target/
LUN device exists. Most ASPI managers will scan the SCSI bus when
they are first loaded and save information about each device found on a
system. The Get Device Type command typically uses this saved infor-
mation, and doesn’t actually have to query the device again (possibly
timing out on target/LUN devices that aren’t attached). Applications can
issue the Get Device Type command in a loop, once for each adapter/
target/LUN combination possible, to build a list of devices attached to
your system.

Listing 7-9. Get Device Type Call

SRB_GDEVBlock srb;
int adapter, target;
for (adapter=0; adapter<NumAdapters; adapter++)

{

for (target=0; target<NumDevices; target++)
/* use NumDevices from Host Adapter Inquiry */

(Continued)

ASPI Commands

Listing 7-9. (Continued)

{

memset (&srb,0,sizoef(srb));

srb.SRB_Cmd = SC_GET DEV_TYPE;

srb.HaId = adapter;

srb.Target = target;

srb.Lun = 0;

SendASPI32Command((LPSRB)&srb);

if (srb.SRB_Status == SS_COMP)
{
/* We found a device, it's type is */
/* in the srb.SRB DeviceType field */

/* The device doesn't exist, or is */
/* not responding. */

Let’s look at the SRB fields for the SRB_GET DEV_TYPE command in
more detail:

Table 7-4. Get Device Type Field

SRB_Cmd ASPI Command Code

This field must contain SC_GET_DEV_TYPE to retrieve
the information that follows.

SRB_Status ASPI Command Status

This field is used to hold the pending and completed
ASPI command status. On return, this field will contain
one of the following values:

Ss_CoMP—without error
SS_INVALID_HA—host adapter number
SS_NO_DEVICE—device not installed

(Refer to the ASPI Error and Status Codes section for
additional information about this field.)

(Continued)

77

78

ASPI: The Advanced SCSI Programming Interface

Table 7-4. Ge

ds (Continued)

AE

t Device Type Fiel

Y

Description

SRB_HaId

SRB_Flags

SRB_Hdr Rsvd
SRB_Target

SRB_Lun

SRB_DeviceType

SRB_Rsvdl

Host Adapter Index

This field specifies which installed host adapter will be
queried by this command. A value of 0 indicates the
first installed host adapter, | is the second, and so forth.
See the description of the Host Adapter Inquiry
command for additional information.

ASPI Command Flags

No flags are valid for this command, and this field
should be set to 0.

This field is reserved and should be set to 0.
Target Device SCSI ID

This field specifies the SCSI ID of the device in ques-
tion. Typical values are 0-7. Some host adapters allow
more than eight target devices on a single bus, so be
sure to check the information returned by the Host
Adapter Inquiry command to determine the largest
possible value for this field on each host adapter.

Target Device Logical Unit Number

This field specifies the Logical Unit Number (LUN) of
the device in question. Some SCSI peripherals gang sev-
eral individual device units on a single SCSI ID. These
subunits are identified by their LUN and this field is
used to select one of them. If a device has only a single
logical unit, set this field to 0.

Device Type ID

This field returns the SCSI peripheral device type identi-
fier for the specified target/LUN. This value is usually
the same as the peripheral device type returned by the
SCSI Inquiry command. You may want to issue an
Inquiry command to be certain.

Reserved for alignment.
Set this field to 0.

Execute SCSICommand (SC_EXEC_SCSI_CMD)

The Execute SCSI Command command sends a SCSI I/O command to a
target device. You provide a SCSI Command Descriptor Block (CDB) and
a data buffer, and the ASPI manager will take care of the rest. All of the
complexity of the SCSI bus is hidden behind this one ASPI command.

ASPI Commands

Listing 7-10. Execute SCSI Command SRB

typedef struct {

BYTE
BYTE
BYTE
BYTE
DWORD
BYTE
BYTE
WORD
DWORD
BYTE
BYTE
BYTE
BYTE
BYTE

SRB_Cmd;
SRB_Status;
SRB_Hald;
SRB_Flags;
SRB_Hdr_Rsvd;
SRB Target;
SRB_Lun;
SRB_Rsvdl;
SRB_BuflLen;
*SRB_BufPointer;
SRB_SenseLen;
SRB_CDBLen;
SRB_HaStat;
SRB_TargStat;

// command code = SC_EXEC_SCSI_CMD

// command status byte

// host adapter number to query (0 - N)
// request flags, see below

// reserved, must be 0

// SCSI ID of target (typically 0 - 7)
// Logical Unit Number of device

// reserved for alignment

// Data buffer length

// Data buffer address

// Sense buffer length

// CDB length

// Host adapter status (returned)

// Target status (returned)

void(*SRB_PostProc) (LPSRB); // Post routine address

BYTE
BYTE
BYTE

SRB_Rsvd2[20];
SRB_CDBByte[16];

// reserved
// SCSI CDB

SRB_SenseArea[l16]; // Buffer for SCSI sense data
} SRB_ExecSCSICmd;

Let’s examine these fields in more detail:

Table 7-5. Execute SCSI Command Fields

SRB_Cmd

SRB_Status

ASPI Command Code

This field must contain SC_EXEC_SCSI_CMD to exe-
cute a SCSI'I/O command.

ASPI Command Status

This field is used to hold the pending and completed
ASPI command status. On return, this field will contain
one of the following values:

SS_PENDING—is still in progress
SS_CcOMP—without error
SS_INVALID HA—host adapter number
SS_ABORTED—was aborted
SS_ERR—completed with an error
(Continued)

79

80

ASPI: The Advanced SCSI Programming Interface

Table 7-5. Execute SCSI Command Fields (Continued)

SRB_Status
(Continued)

SRB_HaId

SRB_Flags

SRB_Hdr_ Rsvd
SRB_Target

SS_INVALID SRB—SRB field or flag is invalid
SS_INVALID PATH_ID—the targetID or LUN is
invalid

SS_BUFFER_TOO_BIG—the ASPI manager cannot
handle the specified data buffer length

SS_BUFFER_ALIGN—the ASPI manager cannot han-
dle the alignment of the specified data buffer address.

SS_SECURITY_ VIOLATION—the caller does not have
the necessary security privileges to execute the SCSI I/
O command on the specified device

(Refer to the ASPI Error and Status Codes section for
additional information about this field.)

Host Adapter Index

This field specifies which installed host adapter will be
accessed by this command. A value of 0 indicates the
first installed host adapter, 1 is the second, and so forth.
See the description of the Host Adapter Inquiry
command for additional information.

ASPI Command Flags

This field contains a set of bit flags that control the exe-
cution of this SRB. The flags valid for this command are:

SRB_DIR_IN
SRB_DIR_OUT

(For data transfer commands, either SRB_DIR 1IN or
SRB_DIR_OUT must be set.)

SRB_EVENT NOTIFY

SRB_POSTING
SRB_ENABLE_RESIDUAL_COUNT

This field is reserved and should be set to 0.
Target Device SCSI ID

This field specifies the SCSI ID of the device accessed
by this command. Typical values are 0—7. Some host
adapters allow more than eight target devices on a single
bus, so be sure to check the information returned by the
Host Adapter Inquiry command to determine the
largest possible value for this field on each host adapter.

(Continued)

SRB_LUN

SRB_Rsvdl

SRB_BufLen

SRB_BufPointer

SRB_SenselLen

Table 7-5. Execute SCSI Command Fields (Continued)

ASPI Commands

e e

mber
This field specifies the Logical Unit Number (LUN) of
the device accessed by this command. Some SCSI
peripherals gang several individual device units on a sin-
gle SCSIID. These subunits are identified by their LUN
and this field is used to select one of them. If a device
has only a single logical unit, set this field to O.

Target Device Logical Unit Nu

Reserved for alignment.

Set this field to O for compatibility with future ASPI
versions.

Data Buffer Length

Set this field to the size of the data buffer used for the
SCSI1/O command. For write commands, this is the
number of data bytes that will be sent to the target
device. For read commands, this is the maximum num-
ber of data bytes that will be read from the target
device. If the SCSI I/O command does not involve a
data transfer, set this field to 0. If residual byte count
reporting is supported and enabled, this field returns the
number of bytes NOT transferred by the SCSI I/O com-
mand. You can think of this field as a counter that is
decremented once for every data byte transferred to/
from the target device. If you try to read 100 bytes from
a target device but the device only returns 10 bytes, this
field will return with a value of 90 (if residual byte
count reporting is supported and enabled).

Data Buffer Pointer

Set this field to the address of the data buffer used for
the SCSI I/O command. For write commands, data
will be sent from this buffer to the target device. For
read commands, data will be sent from the target
device to this buffer.

Sense Data Length

Set this field to the size of the SRB_SenseArea field
available at the end of this structure. When a target
device generates a check condition status, the ASPI
manager automatically issues a Request Sense com-
mand and places the sense data in the SRB__
SenseArea field. Most applications simply set the size
to 14, with a 16-byte buffer allocated for alignment.

(Continued)

81

82 ASPI: The Advanced SCSI Programming Interface

Table 7-5. Execute SCSI Command Fields (Continued)

SRB_CDBLen CDB Length

Set this field to the size of the CDB contained in the
SRB_CDBByte][] field. This value will vary depending
on the SCSI I/O command being issued, but typical val-
ues are 6, 10, and 12. The ASPI manager sends this
many command bytes from the SRB_CDBByte][] field
to the target device during the command phase of a
SCSI transaction.

SRB_HaStat Host Adapter Status

This field returns a host adapter status value, which indi-
cates any error conditions encountered by the host
adapter during the execution of this SRB. Possible val-
ues are:

HASTAT_ OK
HASTAT_SEL_TO

HASTAT DO_DU

HASTAT BUS_FREE

HASTAT_ PHASE_ERR
HASTAT TIMEOUT
HASTAT_COMMAND_TIMEOUT
HASTAT MESSAGE_REJECT
HASTAT_BUS_RESET

HASTAT PARITY ERROR
HASTAT REQUEST SENSE_FAILED

(Refer to the ASPI Error and Status Codes section for
additional information.)

SRB_TargStat Target Status

This field returns the status value sent by the target
device at the end of a SCSI I/O command. The possible
values returned in this field are defined in the SCSI
specifications.

0x00 Good
0x02 Check Condition
0x04 Condition Met
0x08 Busy
(Continued)

ASP! Commands 83

SRB_TargStat 0x10 Intermediate
(Continued) 0x14 Intermediate—Condition Met

0x18 Reservation Conflict

0x22 Command Terminated

0x28 Task Set Full

0x30 Auto Contingent Allegiance Active

(Refer to the ASPI Error and Status Codes section for
additional information.)

SRB_PostProc Post Procedure

Set this field to the address of your post procedure if
you are using command posting, or to the handle of a
Win32 event semaphore if you are using event notifica-
tion. If you are using either of these, you must also set
the appropriate bit flag in the SRB_Flags field (SRB_
POSTING or SRB_EVENT_NOTIFICATION).

SRB_Rsvd2 Reserved; you should set this field to 0.
SRB_Rsvd3 Reserved; you should set this field to 0.
SRB_CDBByte Command Descriptor Block

This field contains the SCSI Command Descriptor
Block (CDB) which is sent to the target device during
the command phase of a SCSI transfer.

SRB_SenseArea Sense Data Buffer

When the target device returns a Check Condition
status, the ASPI manager automatically retrieves the
device’s sense data and places it in this field. The sense
data describes the error or exception that caused the
Check Condition status. Referto Chapter 6 for
additional information.

Abort SRB (SC_ABORT _SRB)

The Abort SRB command is used to abort a pending SRB. You might
need to use this if a command hasn’t completed within a reasonable
amount of time. Older versions of ASPI didn’t enforce or support time-
outs directly, but the latest Win32 implementations feature a Get/Set
Timeout function.

84 ASPI: The Advanced SCSI Programming Interface

The execution times of SCSI commands can vary widely. If you don’t
use the timeout function, your application is responsible for determining
when a command has taken too long to complete. When you decide that
enough is enough, you can issue the Abort SRBcommand to request that
the ASPI manager gracefully stop the command and release any resources
it may be using.

Listing 7-11. The SRB for the Abort SRB Command

typedef struct {

BYTE SRB_Cmd; // command code = SC_ABORT SRB
BYTE SRB_Status; // command status byte

BYTE SRB_HaId; // host adapter number

BYTE SRB_Flags; // request flags, should be 0
DWORD SRB_Hdr_Rsvd; // reserved, must be 0

void *SRB_ToAbort; // address of SRB to abort

} SRB_Abort;

The SRB_HaId field must be set to the same host adapter number as
specified in the SRB you wish to abort, and the SRB_ToAbort field must
point to that SRB. This command will always complete before the ASPI
manager returns to your application, although the SRB you are aborting
might not complete until later. If the original SRB is successfully aborted,
its SRB_Status field will eventually be set to SS_ABORTED. Note that
you must still wait for the original SRB to complete. Be very careful not
to deallocate or reuse it until its SRB_Status field is no longer Ss_
PENDING. Remember also that unless you are using polling, you should
not check this field until the command is complete.

Listing 7-12. Abort SRB Call

HANDLE EventHandle;
SRB_ExecSCSICmd OriginalSrb;

/* Assume OriginalSrb has already been initialized */
OriginalSrb.PostProc = EventHandle;
OriginalSrb.Flags |= SRB_EVENT NOTIFY;
ResetEvent (EventHandle)
SendASPI32Command((LPSRB)&0OriginalSrb);
if (WaitForSingleObject(EventHandle,timeout) == WAIT_TIMEOUT)
{
SRB_Abort AbortSrb;
AbortSrb.SRB_Cmd = SC_ABORT_SRB;
AbortSrb.SRB_Hald = OriginalSrb.SRB_Hald;
(Continued)

ASPI Commands

Listing 7-12. (Continued)

AbortSrb.Flags = 0;
AbortSrb.Hdr_Rsvd = 0;
AbortSrb.SRB_ToAbort = &0OriginalSrb;
SendASPI32Command((LPSRB) &AbortSrb);

if (AbortSrb.SRB_Status != SS_COMP)
{
/* Something is terribly wrong */
}
else
{
while (OriginalSrb.SRB_Status == SS_PENDING)
{

/* Wait for OriginalSrb to complete. */
/* You should have an additional */
/* timeout here as a fail-safe in */
/* case of catastrophic failure. */

}

Note that the above code is not guaranteed to work under Windows 95
and NT. Once a request has been passed to the miniport driver under these
platforms, it cannot be aborted.

Table 7-6. Abort SRB Fields

ASPI Coand Code

SRB_Cmd
This field must contain SC_ABORT_SRB to execute the Abort SRB
command.

SRB_Status ASPI Command Status

This field is used to hold the pending and completed ASPI command sta-
tus. On return, this field will contain one of the following values:

Ss_coMp—completed without error
SS_INVALID HA—invalid host adapter number
SS_INVALID_ SRB—an SRB field or flag is invalid

If this field returns SS_coMP, the ASPI manager will attempt to abort the
specified SRB. If any other value is returned the ASPI manager will not
attempt to abort the SRB.

(Continued)

86 ASPI: The Advanced SCSI Programming Interface

Table 7-6. Abort SRB Fields (Continued)

SRB_HaId Host Adapter Index

This field must contain the same host adapter number that was specified
in the SRB you wish to abort.
SRB_Flags ASPI Command Flags

No flags are valid for this command, and this field should be set to 0.
SRB_Hdr_Rsvd This field is reserved and should be set to 0.
SRB_ToAbort SRB To Abort

This field contains the address of the SRB you wish to abort. This
should be the same pointer passed to the SendASPI32Command () that
started the original SRB.

Reset SCSI Device (SC_RESET _DEV)

The Reset SCSI Device command is used to send a SCSI Bus Device
Reset message to a target device. This causes the target to abandon all
I/O processes that may be pending and reset all of its operating parame-
ters to their power-on values. Note that this command is specific to a
particular device, and does not involve strobing the SCSI bus RST signal.
Rather, the host adapter will try to send the Bus Device Reset message
via a normal SCSI bus transaction. This command doesn’t work properly
under Windows 95 and NT at this time, but is supported to maintain com-
patibility with other ASPI implementations.

Listing 7-13. Reset SCSI Device SRB

typedef struct {

BYTE SRB_Cmd; // command code = SC_RESET_ DEV
BYTE SRB_Status; // command status byte '
BYTE SRB_HaId; // host adapter number

BYTE SRB_Flags; // request flags, should be 0
DWORD SRB_Hdr_Rsvd; // reserved, must be 0

BYTE SRB_Target ;

BYTE SRB_Lun;

BYTE SRB_Rsvdl[12];

BYTE SRB_HaStat;

BYTE SRB_TargStat;

void (*SRB_PostProc) (LPSRB);

BYTE SRB_Rsvd2[36];

} SRB_BusDeviceReset;

ASPI Commands

Note that the fields are very similar to those in the SRB_Exec-
SCSICmd structure. They have the same meaning for the Reset SCSI
Device command as they do for Execute SCSI command. The ASPI
manager will typically queue this command and return an SS_PENDING
status. You must wait for the SRB to complete, and you can specify a call-
back routine or event handle just like you would for an Execute SCSI
Command sequence.

Listing 7-14. Reset SCSI Device Call

HANDLE EventHandle;

SRB_BusDeviceReset srb;

memset (&srb,0,sizeof(srb));

srb.SRB_Cmd = SC_RESET DEV;

srb.SRB_Hald = HostAdapterNumber;

srb.SRB_Target = TargetScsild;

srb.SRB_Lun = 0;

srb.PostProc = EventHandle;

srb.Flags = SRB_EVENT NOTIFY;

ResetEvent (EventHandle);

dwStatus = SendASPI32Command((LPSRB) &srb);

if (dwStatus == SS_PENDING)
WaitForSingleEvent (EventHandle, INFINITE) ;

Table 7-7. Reset SCSI

¥ i

Device Fields

r—— e ¥ AR S B

NV S ¥

I Cond e

SRB_Cmd
This field must contain SC_RESET_DEV to execute this command.
SRB_Status ASPI Command Status

This field is used to hold the pending and completed ASPI command
status. On return, this field will contain one of the following values:

SS_PENDING—request is still in progress
Ss_coMP—completed without error
S§S_INVALID_ HA—invalid host adapter number
SS_ABORTED—command was aborted
SS_ERR—command completed with an error

(Continued)

87

88 ASPI: The Advanced SCSI Programming Interface

Table 7-7. Reset SCSI Device Fields (Continued)

SRB_Status SS_INVALID_ SRB—an SRB field or flag is invalid
(Cont.) SS_INVALID PATH_ID—the target ID or LUN is invalid

(Refer to the ASPI Error and Status Codes section for additional infor-
mation about this field.)

SRB_HalId Host Adapter Index

This field specifies which installed host adapter will be accessed by this
command. A value of 0 indicates the first installed host adapter, 1 is the
second, and so forth. See the description of the Host Adapter
Inquiry command for additional information.

SRB_Flags ASPI Command Flags

This field contains a set of bit flags that control the execution of this
SRB. The valid flags for this field are:

SRB_EVENT_NOTIFY

SRB_POSTING
SRB_Hdr_Rsvd This field is reserved and should be set to 0.
SRB_Target Target Device SCSI ID

This field specifies the SCSI ID of the device to be reset by this
command.

SRB_Lun Target Device Logical Unit Number

This field is defined for this command, but it isn’t really used. SCSI Bus
Device Resets are performed on the target device itself, and encompass
all logical units on the device.

SRB_Rsvdl Reserved; you should set all bytes in this field to 0.
SRB_HaStat Host Adapter Status

This field returns a host adapter status value, which indicates any error
conditions encountered by the host adapter during the execution of this
SRB. (Refer to the ASPI Error and Status Codes section for additional
information.)

SRB_TargStat Target Status

This field returns the status value sent by the target device at the end of
a SCSI I/0O command. (Refer to the ASPI Error and Status Codes sec-
tion for additional information.)

(Continued)

ASPI Commands 89

Table 7-7. Reset SCSI Device Fields (Continued)

SRB_PostProc Post Procedure

Set this field to the address of your post procedure if you are using com-
mand posting, or to the handle of a Win32 event semaphore if you are
using event notification. If you are using either of these, you must also
set the appropriate bit flag in the SRB_Flags field (SRB_POSTING or
SRB_EVENT_NOTIFICATION)

SRB_Rsvd2 This field is reserved and should be set to 0.
SRB_Rsvd3 Reserved; you should set all bytes in this field to 0.

Rescan SCSI Bus (SC_RESCAN_SCSI_BUS)

The Rescan SCSI Bus command causes the ASPI manager to check the
specified host adapter’s SCSI bus for any changes. Newly attached
devices will be recognized and supported by the ASPI manager. This
command is available only under the ASPI for Win32 implementation in
Windows 95 and NT. Under Windows NT, the ASPI manager will detect
new devices, but will not remove existing targets if they are disabled or
exchanged. Under Windows 95, this command works with the plug and
play services to add or remove devices. Therefore devices may not appear
until several seconds after the rescan command is issued.

Listing 7-15. Rescan SCSI Bus SRB

typedef struct {

BYTE SRB_Cmd; // command code = SC_RESCAN_SCSI_BUS
BYTE SRB_Status; // command status byte

BYTE SRB_HaId; // host adapter number

BYTE SRB_Flags; // request flags, should be zero
DWORD SRB_Hdr_Rsvd; // reserved, must be zero

} SRB_RescanPort;

Listing 7-16. Rescan SCSI Bus Call

int adapter;
for (adapter=0; adapter<NumAdapters; adapter++)
{
SRB_Rescanport srb;
memset (&srb,0,sizeof (srb));
(Continued)

90 ASPI: The Advanced SCSI Programming Interface

Listing 7-16. (Continued)

srb.SRB_Cmd = SC_RESCAN_ SCSI BUS;

srb.SRB_Hald = adapter;

SendASPI32Command((LPSRB) &srb);

}
Sleep(10000L); // Wait 10 seconds for devices to appear
// Now we can use SC_GET DEVICE_TYPE to find any new devices

Table 7-8. Rescan SCSI Bus Fields

SRB_Cmd ASPI Command Code
This field must contain SC_RESCAN_SCSI_BUS to execute this command.
SRB_Status ASPI Command Status

This field is used to hold the pending and completed ASPI command status.
On return, this field will contain one of the following values:

SS_COMP—completed without error
SS_INVALID_ HA—invalid host adapter number
SS_INVALID_ SRB—an SRB field or flag is invalid

(Refer to the ASPI Error and Status Codes section for additional informa-
tion about this field.)

SRB_HaId HostAdapter Index

This field specifies which installed host adapter will be rescanned by this
command. A value of 0 indicates the first installed host adapter, 1 is the sec-
ond, and so forth. See the description of the Host Adapter Inquiry
command for additional information.

SRB_Flags ASPICommand Flags
No flags are defined for this command, and this field should be set to 0.

Get/Set Timeouts (SC_GETSET_TIMEOUTS)

The Get/Set Timeouts command allows you to set or retrieve timeout
values for SCSI commands sent to a particular device. This command is
available only under the ASPI for Win32 implementation in Windows 95
and NT. Timeouts are specified in one-half second increments, with a
maximum timeout value of 108000 (30 hours). The SRB_Flags field
determines whether you are getting or setting the timeout value.

ASPI Commands

Listing 7-17. Get/Set Timeouts SRB

typedef struct {

BYTE SRB_Cmd; // command code = SC_GETSET TIMEOUTS
BYTE SRB_Status; // command status byte

BYTE SRB_Hald; // host adapter number, or OxFF for all
BYTE SRB_Flags; // SRB DIR_IN or SRB_DIR_OUT

DWORD SRB_Hdr_Rsvd; // reserved, must be zero

BYTE SRB_Target; // target ID, or OxFF for all

BYTE SRB_Lun; // target LUN, or OxFF for all

DWORD SRB_Timeout // Timeout value, in 1/2 seconds

} SRB_GetSetTimeouts;

Listing 7-18. Get/Set Timeouts Call

SRB_GetSetTimeouts srb;

DWORD old_timeout = 0;

memset (&srb,0,sizeof(srb));
srb.SRB_Cmd = SC_GETSET_TIMEOUTS;
srb.SRB_Hald = HostAdapterNumber;
srb.SRB_Target = TargetScsild;
srb.SRB_Lun = 0;

srb.SRB_Flags = SRB_DIR_IN; // retrieve current timeout
SendASPI32Command((LPSRB)&srb);
if (srb.SRB_Status == SS_COMP)

old_timeout = SRB.Timeout;
srb.Flags = SRB_DIR_OUT; // set new timeout value
srb.SRB_Timeout = 10; // 5 seconds

SendASPI32Command ((LPSRB)&srb);

Timeouts are specific both to the device and the application. One appli-
cation can set different timeout values for different devices, and other
applications can set other timeouts for the same devices. Once a timeout
has been set, it applies to all subsequent SC_EXEC_SCSI_CMD commands
sent to the ASPI manager.

You must be very careful when setting a timeout value for your appli-
cation. When a SCSI command does timeout, the entire SCSI bus will be
reset. Note that this is a real SCSI bus reset via the RST signal, not just a
Reset Device message sent to the device. All pending SCSI commands
and SRBs on every device attached to that bus will be aborted, not just the
command that timed out. Therefore your timeouts should be long enough
to not occur during normal operation. Also note that your SCSI com-
mands can be interrupted by a timeout from another application’s SRB.

91

92 ASPI: The Advanced SCSI Programming Interface

Your application should be able to handle this condition, retrying the
operation as necessary.

et

Table 7-9. Get/Set Timeout Fields

ASPI Command Code

This field must contain SC_GETSET_TIMEOUTS to execute this
command.

SRB_Status ASPI Command Status

SRB_Cmd

This field is used to hold the pending and completed ASPI command sta-
tus. On return, this field will contain one of the following values:

SS_COMP—completed without error

SS_INVALID HA—invalid host adapter number
SS_INVALID_ SRB—an SRB field or flag is invalid
SS_INVALID PATH_ID—the target ID or LUN is invalid

(Refer to the ASPI Error and Status Codes section for additional infor-
mation about this field.)

SRB_HalId Host Adapter Index

This field specifies which installed host adapter will be rescanned by
this command. A value of O indicates the first installed host adapter, 1 is
the second, and so forth. You may also specify a special wildcard value
of OxFF to indicate that the timeout applies to the specified target/LUN
combination on all host adapters.

SRB_Flags ASPI Command Flags

This field specifies whether you are getting or setting the timeout value.
Use SRB_DIR_IN to retrieve the current timeout value for a given
device, or SRB_DIR_OUT to set a new timeout value. When setting a
timeout, the SRB_HaId, SRB_Target, and SRB_Lun fields may con-
tain wildcard values of OxFF, which indicate that the timeout applies to
all matching adapters, targets, or LUNSs, respectively.

SRB_Hdr_ Rsvd This field is reserved and should be set to 0.
SRB_Target Target Device SCSI ID

This field specifies the SCSI ID of the device that the timeout value
affects. If you are setting a timeout value, this field may be set to OxFF,
which indicates that the timeout applies to all SCSI devices with match-
ing adapter and LUN numbers.

(Continued)

ASPI Error and Status Codes

Table 7-9. Get/Set Timeout Fields (Continued)

Field

Description

SRB_Lun

Target Device Logical Unit Number

This field specifies the Logical Unit Number (LUN) of the device that
the timeout value affects. If you are setting a timeout value, this field
may be set to OxFF, which indicates that the timeout applies to all logi-
cal units on the device.

SRB_Timeout Timeout Value

This field returns or specifies the timeout value in one-half second incre-
ments. Its value can be 0—108000 (30 hours). A value of O is treated as a
special case indicating the maximum timeout available. For compatibil-
ity with older applications, the default setting is the maximum allowed.

ASPI Error and Status Codes

If you look closely at the SRB_ExecSCSICmd structure you will see
three separate status fields: SRB_Status, SRB_HaStat, and SRB_Targ-
Stat. Each of these contain status information pertaining to different
stages during the execution of a SCSI I/O command. SRB_Status indi-
cates the processing status of the SRB itself, including any errors in the
SRB structure, fields, or execution. SRB_HaStat returns the status from
the host adapter, describing any problems with the SCSI bus transfer.
SRB_TargStat is the status returned by the target device, and describes
any problems with the SCSI I/O command or its execution on the target
device.

ASPI SRB Status (SRB_Status)

SRB_Status contains the processing status of the SRB. The values
returned in this field are related to the processing of the SRB itself, and
generally are independent of the host adapter and target device. For exam-
ple, SRB_Status can indicate whether a command is still pending,
completed, aborted, or invalid. One value, ss_ERR, indicates that the host
adapter encountered a problem with a SCSI I[/O command sent to the
target device. In this case you must look at the SRB_HaStat and SRB_
TargStat fields to determine the cause of the error. If the SRB_Status
is sS_COMP, the values of SRB_HaStat and SRB_TargStat are not
guaranteed to be valid. Do not rely on them for information about com-
mands that complete normally.

93

94

ASPI: The Advanced SCSI Programming Interface

During the execution of an SRB, the SRB_Status field will contain a
value of SS_PENDING, indicating that the ASPI manager has not yet fin-
ished processing the SRB. When the SRB completes, the ASPI manager
will write the completion status of the SRB into this field. The value writ-
ten indicates whether the ASPI manager encountered any problems
pertaining to the SRB itself.

SS_PENDING

This value indicates that the SRB has not yet completed. This status value
is only returned for the SC_EXEC_SCSI_CMD and SC_RESET_DEV com-
mands, and indicates that the SRB has been queued or started, but has not
yet finished. Typically a host adapter will generate an interrupt when a
SCSII/O command completes, and the ASPI manager will trap that inter-
rupt to complete its processing. This includes updating any relevant return
fields in the SRB, and possibly retrieving SCSI sense data from the target
device. Then the ASPI manager will set the SRB_Status field to another
value indicating the completion status of the SRB.

SS_COMP

This value indicates that the SRB has completed without an error. You
should know that some ASPI managers and host adapter drivers don’t
consider a data buffer underrun an error when reading data from the target
device. This is because a data buffer underrun is a common condition
when working with certain device types. For example, when reading a
tape containing variable length blocks, you typically issue a SCSI read
command with a data buffer big enough to hold the largest block you
expect to encounter. If the actual tape block read is smaller, you may get a
data buffer underrun indication (HASTAT DO_DU) in the SRB_HaStatus
field, and you will certainly get a check condition indication in the SRB_
TargStat field. Again, these fields are not reliable for commands that
complete successfully. The officially sanctioned way to check for data
overruns and underruns it to enable residual byte reporting.

SS_ERR

This value indicates that the SRB had completed, but that an error or
exception condition was encountered. There are several possible causes
for this status being returned, and you must check the SRB_HaStat and
SRB_TargsStat fields to determine exactly what happened. Getting an
SS_ERR status for an SRB doesn’t necessarily mean that anything terrible
happened. It often means simply that the target device returned a check
condition status, which is a common indication for many device types.

ASPI Error and Status Ccdes

See the description of the SRB_TargStatus check condition value for
additional information.

SS_INVALID_CMD

This value is returned if the SRB_Cmd field contains a value that is not a
valid ASPI command. If you see this status code, you are almost certainly
not initializing the SRB correctly.

SS_INVALID HA

This value is returned if the SRB_HaId field indicates a nonexistent host
adapter number. Host adapters are numbered consecutively, starting with
0. You can determine the number of host adapters installed by issuing an
SC_HA INQUIRY command withthe SRB_HaId field set to 0. Upon return,
the HA_Count field will contain the number of host adapters available via
the ASPI manager.

SS_NO_DEVICE

This value indicates that the SCSI ID specified in the SRB_Target field
is not available on the host adapter’s SCSI bus. This typically means that
there is no target device at that SCSI ID number. Use the SC_GET _
DEVICE_TYPE command to determine whether a particular SCSI ID is
available on a given host adapter’s SCSI bus.

SS_INVALID_SRB

This value indicates that the SRB contains an invalid value in one or more
fields. If you see this status code, you should double-check your SRB ini-
tialization code. Setting mutually exclusive bit flags in the SRB_Flags
field is one common cause of this error.

SS_FAILED_INIT

This value is returned if the ASPI manager failed to initialize properly.
ASPI managers for some operating systems (Windows) will return this
error if they are unable to attach to an underlying device driver required
for proper operation. If you see this status code, you should check for
problems with your ASPI manager installation.

SS_ASPI_IS BUSY

This value is returned if the ASPI manager cannot accept the SRB for pro-
cessing. This can happen if you start a large number of SRB requests and
the ASPI manager runs out of space to queue them. Most applications
have only one or two pending SRB requests, so this rarely is a problem. If

95

96

ASPI: The Advanced SCSI Programming Interface

you see this status code, you should pace your requests. One possible
solution would be to maintain your own queue of SRB requests, and send
them to the ASPI manager only as others complete.

SS_BUFFER_TOO_BIG

This value indicates that the host adapter could not handle the SRB
because its data buffer was too large (SRB_BufLen). If you see this status
code, you should break your data transfers into smaller chunks.

SS_BUFFER_ALIGN

This value indicates that the data buffer address in the SRB_BufPointer
field was not properly aligned for the host adapter. Some host adapter
require data buffers to be aligned on certain hardware-imposed bound-
aries. If you see this status code, you should change the alignment of your
data buffer to the alignment value returned by the SC_HA INQUIRY
command.

SS_SECURITY_VIOLATION

This value indicates that you don’t have permission to access the specified
target device. This may happen if you try to issue commands to a SCSI
hard disk that is controlled by the operating system.

SS_ABORTED

This value indicates that the SRB was aborted before it was able to com-
plete normally. You may see this status if you issued an SC_ABORT_SRB
command to abort the SRB, or if the SRB was aborted due to a SCSI bus
reset. You should not rely on any other return fields, since they may not
have been updated before the command was aborted.

SS_ABORT_FAIL
This value indicates that a SC_ABORT SRB command failed.

SS_NO_ASPI

The ASPI Manager DLL is present, but it could not establish a link to a
required device driver or VxD. You should reinstall the ASPI manager.

SS_ILLEGAL_MODE

You are trying to run ASPI for Win32 from the Win32s environment,
which is not supported. You can only use the 16-bit ASPI for Windows
components under Windows 3.x.

ASPI Error and Status Codes

SS_MISMATCHED_COMPONENTS

The ASPI Manager DLL is present, but a required device driver or VxD
has a version number that doesn’t match. You should reinstall the ASPI
manager.

SS_ NO_ADAPTERS

This value can be returned by GetASPI32SupportInfo() if there are
no SCSI host adapters installed on a system. Older versions of ASPI
treated this as a fatal error and refused to load, but with Plug and Play it is
possible that a SCSI PCMCIA adapter may be inserted at a later time.

SS_INSUFFICIENT RESOURCES

This value indicates that the ASPI manager cannot allocate enough sys-
tem resources to initialize properly. This usually indicates that the system
is low on memory.

Host Adapter Status (SRB_HaStat)

The SRB_Hastat field returns the host adapter status. The SRB_HaStat
field is defined only for the SC_EXEC_SCSI_CMD and SC_RESET DEV
commands, since these are the only ASPI commands that actually use the
host adapter to manipulate the SCSI bus. The value returned in the SRB_
HaStat field tells you of any problems that occurred transferring a com-
mand or data to the target device. Problems here generally involve
hardware issues or timeouts.

HASTAT OK

This value indicates that the SCSI transaction completed normally. You
must still check the SRB_TargsStat field for possible target errors. The
HASTAT_OK value simply means that the SCSI bus transfer was success-
ful. The SRB_TargsStat field contains the status of the SCSI command
itself. For example, the host adapter will successfully transfer an invalid
CDB to a target device, but the target will then reject it. In this case the
SRB_HaStat field will contain HASTAT OK, but the SRB_TargStat
field will contain 0x02, indicating a check condition. Further examination
of the sense data will show the exact cause of the problem.

HASTAT _SEL_TO

This value indicates that the target device didn’t respond to a selection on
the SCSI bus. This usually means that there is no device at the specified
SCSI ID. It may also indicate a problem with the SCSI bus itself, such as

97

98

ASPI: The Advanced SCSI Programming Interface

missing or incorrect termination. In any case, there isn’t much you can do
about this from your application. If the device won’t respond to a selec-
tion, it can’t accept any SCSI commands, and you’re stuck. You can try
sending the ASPI manager a SC_RESET DEV command, but this typically
only sends a "device reset" message to the target device. Since the target
isn’t responding to the SCSI bus selection, it won’t get the reset message.
However, some ASPI managers will detect that a previously responding
device has disappeared, and may issue a SCSI bus reset (via the RST sig-
nal) in an attempt to get the wayward device back online.

HASTAT DO DU

This value indicates that the actual length of the SCSI data transfer was
larger than the length specified in the SRB_BufLen field. For example,
the CDB for a write command may specify a length of 1024 bytes, but
your data buffer length is 512 bytes. In this case, the target will ask the host
adapter to transfer all 1024 bytes, but the host adapter only has 512 bytes to
send. Most ASPI managers will alert you to this problem by returning
HASTAT_DO_DU in the SRB_HaStat field. If you detect this condition,
you should double-check your buffer length and CDB. You should also
check the SRB_TargsStat field, since there may have also been a check
condition status for the SCSI command.

HASTAT BUS_FREE

This value is returned if the target device unexpectedly disconnects from
the SCSI bus. This might be due to a cabling or signal problem, and is
most likely to occur during or just after selection. If the target encounters
a problem with the SCSI bus or phase changes, it will typically abort the
SCSI transaction and let go of the bus. This condition is detected by the
host adapter and reported with the HASTAT BUS_FREE status code. You
can retry the command in hopes that this is a transient problem, but if
you see the HASTAT BUS_FREE error frequently, you should check your
SCSI bus cabling and termination.

HASTAT_PHASE_ERR

This value is returned if the target device enters a SCSI bus phase that
wasn’t expected by the host adapter. This could be a transitory condition,
or it may indicate an incompatibility between the host adapter and the tar-
get device. SCSI-2 defines the allowable bus phase transitions, so this
shouldn’t be a problem with newer adapters and target devices.

ASPI Error and Status Codes

HASTAT_TIMEOUT

This value is returned if a transaction times out during processing. It indi-
cates a timeout while waiting for a bus transaction, which may be due to a
phase or protocol error. An ASPI manager or host adapter’s device driver
may implement their own timeout mechanism for SRBs, and this status
code is used to reflect the timeout condition.

HASTAT_COMMAND_TIMEOUT

This value is returned if a host adapter detects that an SRB has expired. It
may indicate a device error, or a phase or protocol error. This return value
differs from the HASTAT TIMEOUT value in that the HASTAT COMMAND _
TIMEOUT code usually indicates that the SCSI transaction has been
started, but did not complete within a given length of time.

HASTAT_MESSAGE_REJECT

This value indicates that the target sent a SCSI Message Reject mes-
sage code to the host adapter. This message code is sent to indicate that
the target could not accept a message code sent by the host adapter, or
that the message code is not implemented by the target. This status code
may indicate an incompatibility between the host adapter and the target
device.

HASTAT_BUS_RESET
This value indicates that a SCSI bus reset was detected.

HASTAT_PARITY_ERROR

This value is returned when a parity error is detected on the SCSI bus.
This means that the command or data transferred may be corrupt. As
usual, you should check your cabling and termination.

HASTAT_REQUEST_SENSE FAILED

This value indicates that the ASPI manager or host adapter couldn’t
retrieve the target device’s sense data after receiving a check condition
status from the target. If you see this condition, you should ignore any
data in the SRB_SenseArea]|] field in the SRB.

Target Device Status (SRB_TargStat)

The SRB_Targstat field contains the SCSI status value returned by the
target device during the final status phase of a SCSI command. These val-
ues are defined by the SCSI specification, rather than ASPI, but I’ll
discuss them here because they logically fit in with the other error and

99

100

ASPI: The Advanced SCSI Programming Interface

status codes described above. I'll only describe the values that are likely
to be returned by an ASPI manager. If you encounter a value not
described below, you should check the latest SCSI specification for
details.

Table 7-10. Target Device Status Codes

Value

: '%___gr:ibtion

0x00

0x02

0x08

0x18

Good

This value is returned when there are no errors or exceptional conditions that
require servicing.

Check Condition

This value indicates that an auto contingent allegiance condition has occurred. In
human terms, this means that something has happened that you should know
about. You can find out exactly what happened by inspecting the sense data. When
the ASPI manager detects a check condition, it will automatically retrieve the
sense data from the target device, and copy it to the SRB_SenseArea|] field in
the SRB. You should check the sense code, sense key, and the ASC/ASQ values in
the sense data to determine the cause of the check condition. Note that a check
condition isn’t necessarily an error, but it does indicate something you should
check.

Busy

This status value indicates that the target device (actually the logical unit) is busy
and cannot accept a command. This can happen if a previous SCSI command has
started but not yet completed on the device. You can periodically reissue the com-
mand until the target accepts it.

Reservation Conflict

This value is returned whenever the logical unit you tried to access has been
reserved by another initiator. This should only happen if there are multiple initia-
tors (host adapters) connected to the same SCSI bus. (SCSI defines the Reserve
and Release commands to obtain and release exclusive access to a logical unit.)
You should see this target status code only if another initiator has reserved the log-
ical unit.

Additional ASPI for Win32 Functions

The ASPI for Win32 specification has recently been revised to extend
support for large data buffers (greater than 64K) on a wider variety of host
adapters. The ASPI for Win32 specification has always allowed for large
data buffers, but many host adapters and drivers were not able to support

Additional ASPI for Win32 Functions

them due to special buffer alignment and paging restrictions. (With the
use of virtual memory and paging in Windows, user-allocated buffers
are often too fragmented for many host adapters to use.) The new
GetASPI32Buffer() and FreeASPI32Buffer() routines allow an
application to allocate a data buffer that meets all necessary requirements
for use by these host adapters. These routines are exported by the ASPI
for Win32 DLL in the same manner as the GetASPI32SupportInfo()
and SendASPI32Command () routines.

BOOL GetASPI32Buffer(ASPI32BUFF *p);
BOOL FreeASPI32Buffer(ASPI32BUFF *p);

They each take a pointer to a data structure that describes the allocated
data buffer.

Listing 7-19. ASPI32BUFF Structure

typedef struct {
LPBYTE AB_BufPointer;
DWORD AB_BuflLen;
DWORD AB_ZeroFill;
DWORD AB_Reserved;
} ASPI32BUFF;

// Pointer to allocated data buffer
// Length of data buffer (in bytes)
// if 1, buffer will be zero-filled
// Reserved, must be 0

When allocating a buffer you fill in the AB_BufLen and AB_Zero-
Fill fields, and pass the structure to the GetASPI32Buffer () routine.
When releasing the data buffer you fill in the AB_ BufPointer and AB_
BufLen fields with the values returned by the allocation, and pass the
structure to the FreeASPI32Buffer () routine.

There is a maximum buffer size of 512K. If the ASPI manager cannot
allocate the requested amount, it will return FALSE. You should assume
that this call may fail, and your application should be prepared to break
transfers down into smaller chunks.

The ASPI for Win32 specification has one final function—
TranslateASPI32Address ()—which translates SCSI device addresses
from Windows 95 DEVNODESs and ASPI adapter/unit/LUNs. This func-
tion is useful for determining the ASPI target address associated with Plug
and Play events.

BOOL TranslateASPI32Address(DWORD *aspi_ path, DWORD *devnode);

101

102

ASPI: The Advanced SCSI Programming Interface

The first parameter is a pointer to a DWORD representing the ASPI
device address. The least significant byte contains the LUN, the next byte
contains the SCSI ID, and the third byte contains the host adapter number.
Or in C terms, the expression ((adapter << 16) | (target << 8) |
lun). The second parameter is a pointer to a DWORD that contains the
Windows 95 DEVNODE ID that should be translated.

On return from the TranslateASPI32Address() routine, the
DWORD specified by the first parameter will be updated with the ASPI
address indicated by the Windows 95 DEVNODE ID. You can perform
the opposite translation by specifying a valid ASPI address for the first
parameter, and using a DEVNODE ID of zero for the second parameter.
In this case the Windows 95 DEVNODE ID corresponding to the given
ASPI address will be placed into the second parameter.

Chapter 8

Low-Level SCSI
Programming with
SCRIPTS

Programmers who worked with early SCSI protocol chips are fond of tell-
ing stories about how difficult it was. Like your grandfather’s tales of
trudging through blizzards to get to school, these stories illustrate the
hardships the teller encountered, struggling with assembly language,
manipulating registers and I/O ports, and building strict timing constraints
into the code. Thankfully, we’ve come a long way since then. The tools
now available for programming at the chip level make the old ones seem
as primitive as stone knives.

As SCSI protocol chips and I/O controllers become more sophisticated,
they also become easier to work with. Many have built-in processors,
scripting engines that are programmed with a high-level language to handle
the gritty details of SCSI protocol. In this chapter we’ll examine one of the
more popular and powerful of these, Symbios Logic’s SCRIPTS language.

Symbios Logic is the successor to NCR Microelectronics, a pioneer
maker of SCSI hardware. If you understand the fundamentals of the SCSI
protocol (which you should if you’ve read this far), reading a SCRIPTS
listing is simple.

Working with SCRIPTS

Programming at this low level is not appropriate for most application soft-
ware. It requires access to hardware ports and physical memory addresses.

103

104

Low-Level SCSI Programming with SCRIPTS

Most modern operating systems shield the hardware from poorly behaved
programs. Direct access is reserved for device drivers or code running
with greater privileges than normal applications.

The sample code we present in this chapter runs under DOS, which has
no such restrictions. This will better illustrate how to use SCRIPTS by
keeping system calls and overhead as simple as possible. If you're devel-
oping under Windows 95, you can boot up at a command prompt only, or
exit and restart in MS-DOS mode. The code will not work from a DOS
box within Windows.

When working with SCRIPTS you need to arm yourself with two
important tools: the Programming Guide and the Software Development
Kit (SDK) for your particular chipset. Both are available through Sym-
bios Logic distributors.

The Programming Guide contains extensive documentation on the
SCRIPTS language and the NASM compiler for SCRIPTS. It also lists
chip registers and their functions, feature sets and capabilities, and lots of
other information. The guide comes in different versions for different
chipsets, so make sure you have the right one for your hardware.

The SDK comes on a disk that accompanies the Programming Guide.
It consists of sample code, utilities, and the NASM compiler. The SDK is
also available on the Symbios Logic ftp site, along with more sample
code and utilities.

The sample code in this chapter uses utility routines found in the SDK.
The target hardware is a Symbios Logic SYM8251S SCSI host adapter.
This is a PCI adapter with Wide SCSI support. The code uses inline
80386 assembly code to access extended CPU registers for the PCI func-
tion calls. The SDK and the sample code require Borland C++ and Turbo
Assembler because they support this type of inline code. If you are using
a different compiler, you will need to break out the assembly code and
build it separately.

An Overview of SCRIPTS

The philosophy behind SCRIPTS is simple: start with a SCSI controller
core and support circuitry, then add a dedicated RISC processor for pro-
gramming capability; create a programming language with high-level
support for arbitration, phase management and comparison, interface con-
trol, and logical functions; and execute the compiled programs in the
SCRIPTS engine, shifting the processing burden from the CPU.

The SCRIPTS processor is dedicated to SCSI operations. It functions
independently of the operating system. This can be inconvenient when

An Overview of SCRIPTS

you need to pass it the address of a buffer. SCRIPTS deals only in physi-
cal memory addresses, rather than segmented or virtual addresses.

Symbios Logic provides the NASM compiler for SCRIPTS programs.
The output from this program is a file containing C language arrays of long
hexadecimal integers that represent SCRIPTS opcodes and constants. You
include the file as a header in your C source code, which declares the arrays
as global variables.

These arrays are small program units for SCSI operations. To execute
them, you simply pass them to the SCRIPTS engine by writing the physi-
cal address of the array to a register on the chip. Some of the more
advanced chips come equipped with onboard RAM for SCRIPTS storage.
These chips can execute a SCRIPTS program without the overhead of
fetching instructions from system memory.

SCRIPTS Instructions

The SCRIPTS language contains instructions for I/O, transfer of control,
memory moves, and other functions. The I/O functions deal with funda-
mental SCSI operations. For instance,

SELECT ATN scsi_id, REL(do_reselect)

selects the target encoded in scsi_id, raising the ATN flag to request a
Message Out phase afterward. If the initiator is selected or reselected by a
target, execution jumps to the relative address do_reselect. It’s a fairly
simple one-line command for a complex operation.

Move instructions are common. Messages, commands, status, and data
are all transferred between data buffers and the SCSI bus using some form
of move command.

MOVE 1, msg_buf, WHEN MSG_OUT
MOVE FROM cmd_buf, WHEN CMD
MOVE FROM msgin_buf, WHEN MSG_IN

In the first instruction, the processor waits until it detects Message Out
phase, then moves a single byte from msg_buf onto the SCSI bus. In the
second, the processor waits for Command phase, then reads a table entry
at cmd_buf for a byte count and buffer address. The last instruction waits
for Message In phase, reads from the SCSI bus, and stores the data at the
location pointed to by the table entry msgin_buf.

Some instructions transfer control to other parts of the script.

105

106

Low-Level SCSI Programming with SCRIPTS

JUMP REL(handle_phase)
JUMP send_cmd
CALL get_data WHEN DATA IN

The JUMP instructions transfer control to a specified location. The loca-
tion may be relative to the current instruction, or an absolute location. The
CALL instruction works as you might expect, executing a subroutine that
returns control to the next instruction. It also supports relative or absolute
addressing.

Some instructions perform specific SCSI operations.

SELECT FROM scsi_id, reselect_addr
WAIT RESELECT, select_addr

WAIT DISCONNECT

CLEAR ATN

The first instruction tries to select the device at scsi_id, jumping to
reselect_addr if it is first reselected by another device. The second
instruction is the opposite, telling the chip to wait for reselection, jumping
to select_addr if it is first selected by another device. The third instruc-
tion waits until the device disconnects from the SCSI bus. The last simply
clears the ATN flag.

Another set of instructions handles register operations.

LOAD SCNTL3 1, def_scntl3
STORE ISTAT 1, cur_istat
MOVE SCNTL3 | 0x08 TO SCNTL3
MOVE SWIDE TO SFBR

The LOAD and STORE instructions transfer data between registers and
memory locations. The first example loads the SCNTL3 register with a
single byte from def_sctnl3, while the second stores the contents of
ISTAT in the buffer at cur_istat.

The MOVE command is useful for operations that read, modify, and
write back the contents of a register. The third example illustrates setting
bit 3 in the SCNTLS3 register.

The last example illustrates a special case. Moves between registers are
only valid if one of the registers is SFBR, the SCSI First Byte Received
register. This register receives special treatment because of another pur-
pose it serves—data comparisons in conditional instructions operate
against the value stored in SFBR.

There are other variations of these register commands that move data,
manipulate bits, or perform mathematical operations. They provide the
only means to manipulate registers when a SCRIPTS program is running.

Embedding SCRIPTS in C Code 107

With a few exceptions, you cannot access the registers from your C code
during SCRIPTS execution.

Logical Operators and Conditional Tests

Most of the SCRIPTS instructions support logical tests of SCSI phase,
data, or other conditions.

JUMP address WHEN DATA_IN
JUMP address IF DATA_OUT

JUMP address IF ATN

JUMP address IF 0x01

JUMP address IF 0x0 MASK OXFF

The WHEN operator waits until the given condition is true, but the IF
operator performs an immediate comparison. You’ll usually use WHEN to
test for a SCSI phase. Conditions you can test for include SCSI phases,
flags, and data values. The data comparisons test the contents of the SFBR
register, which holds the first byte received in the most recent I/O opera-
tion. This may be a message byte, an opcode in a Command Descriptor
Block, or the first byte of a data block. The MASK operator lets you apply a
filter to the data before comparison.

We’ve used the JUMP operator to illustrate logical tests, but most of the
control instructions and many of the move instructions also support them.
For example:

MOVE FROM data_buf, WHEN DATA_IN
CALL address WHEN DATA OUT
INT err_bad_phase IF NOT MESSAGE_OUT

Embedding SCRIPTS in C Code

What happens after you’ve compiled your SCRIPTS code and created an
output file? Somehow, you have to tell the SCRIPTS engine to execute it,
and tell it where the code is.

The NASM output file contains a DWORD array with the compiled
SCRIPTS code. By default, it calls this array SCRIPT, and it looks some-
thing like this.

ULONG SCRIPT[] = {
(array of DWORD values...)

}i

108 Low-Level SCSI Programming with SCRIPTS

Executing this code is simple. The Symbios Logic chip has a DMA
SCRIPTS Pointer (DSP) register. When you set this register to the physi-
cal address of your SCRIPTS code, it begins execution. There’s only one
small catch—the address must be DWORD aligned.

That’s fairly easy to do in your C code. Just allocate a buffer slightly
larger than your SCRIPTS array, find the first DWORD aligned address in
the buffer, and copy the array to the new address.

Listing 8-1. SCRIPTS Code Alignment

DWORD *my_script; // pointer to script

DWORD *alloc_script(WORD size)

{
BYTE *ptr; // temporary pointer
WORD seg, off; // pointer parts
DWORD *newptr = NULL;

ptr = malloc(size + 4);

if (ptr) {
// allocated script memory
// DWORD align the buffer
seg = FP_SEG(ptr);
off = FP_OFF(ptr);
off += (4 - (off & 0x03));
newptr = (DWORD *) MK _FP(seg, off);
}

return newptr;

my_script = alloc_script(sizeof(SCRIPT));

if (my_script != NULL) {
// allocated script memory
// copy script array
memcpy (my_script, SCRIPT, sizeof(SCRIPT));

}

To pass this new address to the SCRIPTS engine, write to the DSP
register.

IOWrite32(io_base + DSP, getPhysAddr(my_script));

Embedding SCRIPTS in C Code

Changing Run-Time Parameters

SCRIPTS is a self-contained language. It runs on a dedicated processor
and the only access to system resources is through the memory bus and
the interrupt controller. You cannot pass arguments to a SCRIPTS routine,
or call it as you would a normal C function. Once a SCRIPTS program is
compiled it resides in memory, a discrete unit of code embedded in your
data segment. How do you communicate with it? How do you direct its
operation?

Patching

The output file that NASM generates contains, in addition to the compiled
SCRIPTS array, several other components. NASM also lists information
about absolute values, entry points, addresses, and other named elements.

For instance, you might declare and use a value called DATA_COUNT in
your SCRIPTS source file.

ABSOLUTE DATA COUNT = 6
The output file will contain something similar to the following.

#define A DATA COUNT 0x00000006L

ULONG A_DATA_COUNT Used[] = {
0x00000011L,
0x00000018L

}i

The array A _DATA_COUNT_Used lists the offsets into the compiled
SCRIPTS code where the value is actually used. To change it in the
SCRIPTS code, simply use the offsets as array indices. For example, to
change the value of DATA_COUNT from 6 to 10:

SCRIPT[A_DATA_COUNT Used[O0]]
SCRIPT[A_DATA_COUNT Used[1]]

10L;
10L;

This process is called patching. Besides changing absolute values, you
can change pointers to external buffers, relative addresses, and other public-
access elements.

The output file also lists entry points into your SCRIPTS code. If your
code contained the entry points TEST UNIT_READY, INQUIRY, and
RESET_ DEVICE, they would appear as follows.

109

110

Low-Level SCSI Programming with SCRIPTS

#define Ent TEST UNIT READY 0x00000110L
#define Ent_INQUIRY 0x00000192L
#define Ent RESET DEVICE 0x00000210L

When you tell the SCRIPTS processor where to begin execution, you
can pass the address of the SCRIPTS array plus the offset to the specific
routine.

Table Indirect Addressing

Patching is handy, but it can be cumbersome for making frequent
changes. Most of the Symbios Logic chips also support table indirect
operations. These chips provide an extra register that you set with the
address of a table in your C program. The table entries contain informa-
tion for device selection or data transfer operations.

These entries are actually structures that contain two DWORD elements.

typedef struct {
DWORD count;
DWORD address;
} table_entry;

For device selection, the count is an encoded value that holds SCSI
control parameters, timing factors for synchronous data transfer, and the
target device SCSI ID. The address is reserved and set to 0. For other
operations, the address points to a buffer in physical memory and the
count indicates the size of the buffer.

Table indirect operations can be tricky to work with, as they require
keeping two sets of books. Your SCRIPTS code holds a table declaration
and references to its entries. However, this does not actually generate any
code or allocate any memory. The table is just a placeholder, and the ref-
erences indicate offsets into the table.

The actual work is done in the C side of your code. You declare the
table again, making sure that the entries are identical and in the same
order as in the SCRIPTS code. You may also define some mnemonic val-
ues for indices into the table, corresponding to the names used in the
SCRIPTS code.

This is also where you actually allocate memory for the table and align
it on a DWORD boundary. Once you have the memory, you fill the table
with the desired values and set the table address in the proper register. The
code below shows the process from both the SCRIPTS side and the C side.

Listing 8-2. SCRIPTS Table Declaration

Embedding SCRIPTS in C Code

TABLE my_table \
select_info = 2?2,
cmd_buf = 22, \
msg_buf = 22, \
data buf = ?2?

Listing 8-3. C Table Declaration

typedef struct {
DWORD count;
DWORD address;
} table_entry;

table_entry *my_table;
BYTE command_buf([6];
BYTE message_buf([2];
BYTE data_buf[32];
BYTE targ_id;

#define TABLE SIZE 4

enum table offsets {
SELECT_INFO = 0,
CMD_BUF,
MSG_BUF,
DATA BUF

//

//
//
1/
//
1/

//

//

table entry definition

pointer to table
command buffer
message buffer
data buffer
target SCSI ID

number of table entries

table offsets

table_entry *alloc_table(WORD nentries)

{
BYTE *ptr;
WORD seg, off;

table_entry *newptr

//
//

NULL;

temporary pointer
pointer parts

ptr = malloc(nentries * sizeof(table_entry) + 4);

if (ptr) {

// allocated table memory
// DWORD align the buffer
seg = FP_SEG(ptr);
off = FP_OFF(ptr);
off += (4 - (off & 0x03));
newptr = (table_entry *) MK_FP(seg, off);

(Continued)

111

112 Low-Level SCSI Programming with SCRIPTS

Listing 8-3. (Continued)

return newptr;

my_table = alloc_table(TABLE_SIZE);

if (my_table != NULL) {

// allocated table memory

// £ill the table entries
my_ table[SELECT_INFO].count = (0x00000300L & targ_id) << 16;
my_table[SELECT_INFO].address = OL;

my_table[CMD_BUF].count = 6L;
my_table[CMD_BUF].address = getPhysAddr(command_buf);

my_table[MSG_BUF].count = 2L;
my_table[MSG_BUF].address = getPhysAddr(message_buf);

my_table[DATA BUF].count = 32L;
my_table[DATA BUF].address = getPhysAddr(data_buf);

To make the table available to the SCRIPTS code, set the Data Struc-
ture Address (DSA) register on the chip to the physical address of the
table.

IOWrite32(io_base + DSA, getPhysAddr(my_table));

With the flexibility of table indirect operation, you can simply change
addresses, byte counts, or target device information in your C code
instead of patching the SCRIPTS array. This makes it easy to reuse your
SCRIPTS code for different commands or functions.

Detecting SCRIPTS Program Completion

It’s nice to know when your SCRIPTS program has completed. There are
a few different ways to detect this, all of which focus on the ISTAT regis-
ter on the chip. This register contains information about interrupts that
occur during SCSI operations. Specifically, it tells you the source of the
interrupt.

You will normally end your SCRIPTS program with an INT instruc-
tion, which halts execution of the SCRIPTS code. It takes a value for an

Embedding SCRIPTS in C Code

argument, storing it in a register where you can retrieve it later. This lets
you return a value from your SCRIPTS code to your C program.

A SCSI error may also cause your SCRIPTS code to end abnormally.
An unexpected disconnect, a reset, or a phase mismatch may terminate
your program if it’s not prepared to handle these conditions.

The ISTAT register contains two important flags that direct you to fur-
ther information. The DM A Interrupt Pending (DIP) flag at bit O tells you
to check the DM A Status (DSTAT) register for the source of the interrupt.
Bit 2 of this register is set if the interrupt came from an INT instruction in
the SCRIPTS code. If this is the case, the DMA SCRIPTS Pointer Save
(DSPS) register holds the value returned by the INT instruction.

If the SCSI Interrupt Pending (SIP) flag at bit 1 is set, a SCSI error
caused the interrupt. Two other registers, SCSI Interrupt Status 0 and 1
(SISTO and SIST1) hold information about the error that occurred.

Many of these interrupt conditions may be masked through settings in
other registers. You must make sure that you test for valid conditions. You
also must be aware of which SCSI error conditions are fatal and which
are not.

Polling for Completion

The ISTAT register is unique in that you can access it from your C pro-
gram while your SCRIPTS code executes. By polling the register in a
loop you can detect when the SCRIPTS code completes by testing whether
bit 0 or 1 is set. This is the simplest to program, but it wastes CPU cycles to
constantly poll.

You may also poll the contents of a data buffer or status byte in your
C code to detect completion. This runs the risk of failing to detect when
the program stops because of a SCSI error.

Hardware Interrupt on Completion

A more elegant but more complex way to detect completion is through
hardware interrupts. If you enable them in the DM A Control (DCNTL)
register, the chip will generate an IRQ when an interrupt occurs. If you
are comfortable with writing hardware interrupt handlers, you may wish
to use this method. In your handler, check the same registers as described
above to determine the source of the interrupt.

The IRQ level used depends on how the chip is configured. If you are
using a PCI SCSI adapter, you can retrieve the IRQ level through pPCI
BIOS calls. Let’s look at how to do that as we discuss initializing and set-
ting up the chip.

113

114 Low-Level SCSI Programming with SCRIPTS

Initialization and Housekeeping

Before you can even think about running a SCRIPTS program, there are
housekeeping issues that demand your attention. You’ll want to interro-
gate the controller to find out how it’s configured and what features it
supports. You’ll need to reset the SCSI functions and choose reasonable
default values for the control registers.

PCI BIOS Functions

The SYM8251S host adapter is a PCI board based on the Symbios Logic
SYMS53C825 SCSI I/O controller chip. Using functions available through
the INT Ox1A and the PCI BIOS function (0xB1) ID you can locate
installed boards, and query and set their configurations. First, though, you
need to know if the machine your program is running on has a current PCI
BIOS installed.

Calling the PCI interrupt subfunction 0x01 returns the identification
string “ ICP” in the EDX register if a version 2 BIOS is present. Older
versions return the string in the CX:DX registers. To access the extended
register EDX requires 80386 instructions. Many C compilers don’t sup-
port these instructions in inline assembly code, so you may need to build
them in a separate assembly module. Listing 8-4 illustrates how to check
for the presence of a PCI BIOS.

Listing 8-4. Detecting PCI BIOS Version

WORD PCI_GetPCIBIOSVersion(pci_bios *ppcibios)

{

WORD r_ax, r_bx, r_cx, r_dx; // register variables
DWORD r_edx;

DWORD pci_sig; // PCI signature
WORD retval = PCI_NO_BIOS;
pci_sig = 0x20494350L; // " ICP" signature
// call PCI function to check for BIOS
r_ax = ((PCI_FUNCTION_ID << 8) | PCI_BIOS_PRESENT);
asm {

.386

mov ax, [r_ax]

int PCI_BIOS_INT

mov DWORD PTR [r_edx], edx
mov [r_dx], dx

mov [r_cx], cx

mov [r_bx], bx

mov [r_ax], ax

(Continued)

Initialization and Housekeeping

Listing 8-4. (Continued)

if (r_dx == LOWORD(pci_sig)) {
// PCI BIOS is present
if (r_cx == HIWORD(pci_sig) &&
(r_bx & 0xf£00) == 0x0100) {
// PCI BIOS version 1.x
retval = PCI_BIOS_REV_1X;
}
else if (r_edx == pci_sig) {
// PCI BIOS version 2.x
retval = PCI_BIOS_REV_2X;
}
else {
// unknown version
retval = PCI_UNKNOWN_BIOS;
}
if (ppcibios != NULL) {
// £ill BIOS info struct

ppcibios->access = (r_ax & O0xff);
ppcibios->version = r_bx;
ppcibios->lastbus = (r_cx & O0xff);

}
}

return retval;

Save the PCI BIOS information in a structure for later use. Though this
function provides information about the BIOS version and the number of
busses, its main purpose is to assure us that there is a PCI bus present on
this machine.

Subfunction 0x02 lets us search for a specific device on the PCI bus.
Each device is identified by a vendor ID, a device ID, and a device index.
In Listing 8-5 we use a structure to hold PCI device information. We set
the device ID for the 53C825 chip, which is 0x003. The Symbios Logic
vendor ID is 0x1000.

Listing 8-5. Locating a PCI Device

int PCI_FindDevice(pci_device *ppcidevice)
{
// struct REGPACK regs;
WORD r_ax, r_bx, r_cx, r_dx, r_si;
DWORD config;
int retval = 0;
(Continued)

115

116 Low-Level SCSI Programming with SCRIPTS

Listing 8-5. (Continued)

// make sure we have a PCI BIOS
if (PCI_GetPCIBIOSVersion(NULL) != PCI_NO_BIOS) {
// PCI BIOS is present
// call PCI function to find device
r_ax = ((PCI_FUNCTION_ID << 8) |
(PCI_FIND_DEVICE));
r cx = ppcidevice->dev_id;
r_dx = PCI_SYM_VENDOR_ID;
r si = ppcidevice->dev_index;
asm {
.386
mov ax, [r_ax]
mov cx, [r_cx]
mov dx, [r_dx]
mov si, [r_si]
int PCI_BIOS_INT
mov ax, 0
adc ax, 0
mov [r_bx], bx
mov [r_ax], ax

if (r_ax == 0) {
// carry bit is clear—call succeeded
// save device bus number

ppcidevice->bus_num = ((r_bx & O0xFF00) >> 8);
// save device number

ppcidevice->dev_num = (r_bx & O0x00FF);

// save device function

ppcidevice->function = (r_bx & 0x0007);

// get command register
ppcidevice->command =

(WORD) PCI_GetConfigRegister|(

ppcidevice, PCI_CONFIG_REG_CMD);
// get revision ID
ppcidevice->rev_id =

(BYTE) PCI_GetConfigRegister(

ppcidevice, PCI_CONFIG_REG_REVID);
// get subsystem and vendor ID
config = PCI_GetConfigRegister(

ppcidevice, PCI_CONFIG_REG_SUBV);
ppcidevice->sub_ven_id = (WORD) config;
ppcidevice->sub_id = (WORD) (config >> 16);
// get I/0 base address
config = PCI_GetConfigRegister(

ppcidevice, C8XX_CONFIG_REG_IOB);
ppcidevice->io_base = (config & OXFFFFFFFEL);

(Continued)

Initialization and Housekeeping

Listing 8-5. (Continued)

// get ROM base address

ppcidevice->rom _base = PCI_GetConfigRegister(
ppcidevice, PCI_CONFIG_REG_ROM);

// get interrupt number

config = PCI_GetConfigRegister (
ppcidevice, PCI_CONFIG_REG_INTL);

ppcidevice->intl = (BYTE) config;

retval = 1;

}
}

return retval;

If the function succeeds, it returns the location of the adapter by bus
number and device number. We use this to get further information from
the board. Revision and ID numbers, the I/O base address, and the inter-
rupt level used all are available through PCI queries.

The PCI_GetConfigRegister function uses subfunction 0xOA to
read configuration registers. Once again, we use a structure to pass and
return PCI device information. The of fset parameter points to a specific
register we wish to read.

Listing 8-6. Querying PCI Device Configuration

DWORD PCI_GetConfigRegister(pci_device *ppcidevice,

{

WORD offset)

WORD r_ax, r_bx, r di, r_dx, r_cx;
DWORD r_ecx;

WORD pci_version;

DWORD retval = 0L;

// get PCI version
pci_version = PCI_GetPCIBIOSVersion(NULL);
if (!(pci_version == PCI_NO_BIOS ||

retval == PCI_UNKNOWN_BIOS)) ({
// PCI BIOS present

// call PCI function to read register

r_ax = ((PCI_FUNCTION_ID << 8) |

(PCI_READ_CONFIG_DWORD));
(Continued)

117

118

Low-Level SCSI Programming with SCRIPTS

Listing 8-6. (Continued)

}

//

set bus number and device number to search

r_bx = ((ppcidevice->bus_num & 0xff) << 8) |

//

(ppcidevice->dev_num & O0xff);
set configuration register offset

r_di = offset;
asm {

.386

mov ax, [r_ax]

mov bx, [r_bx]

mov di, [r_di]

int PCI_BIOS_INT

mov DWORD PTR [r_ecx], ecx
mov [r_dx], dx

mov [r_cx], CcX

}
if (pci_version == PCI_BIOS_REV_1X) {
// PCI version 1.x
retval = r_dx;
retval = (retval << 16) | r_cx;
}
else if (pci_version == PCI_BIOS_REV_2X) {
// PCI version 2.x

}

retval = r_ecx;

return retval;

Depending on the PCI version, this function returns the requested
information in the ECX or CX:DX registers.

Now that we have the controller’s base I/O address, we can initialize
the control registers.

Initializing SCSI Control Registers

The control registers are set to hardware default values when the chip is
powered up. These usually are sufficient for most purposes. If your con-
troller board or your motherboard is equipped with a SCSI BIOS, it may
have changed some of the values on bootup. If you aren’t happy with
these settings, you are free to change them.

It is absolutely necessary to have the documentation for your controller
chip before you attempt to fine-tune the register settings. Many of the

Sample Code 119

settings are bit-encoded into the registers. Others pertain to features like
Wide SCSI or Fast-20 SCSI that your controller may not support. Pro-
ceeding without the documentation is like taking off on a cross-country
trip without a road map. You may get where you want to go, but it’s more
likely you’ll get lost somewhere along the way.

Sample Code

To illustrate how all these pieces fit together, let’s use them to build a sim-
ple utility. Starting with a SCRIPTS module to handle general SCSI
functions, we’ll add supporting C code to create a program that will query
the SCSI bus and print information about devices it finds. If it encounters
a direct access device, it will read and display the contents of the first
block.

This requires only a few SCSI functions. Test Unit Ready, Device
Inquiry, and Request Sense will apply to all devices. For direct access
devices, we’ll also use Read Capacity and Read (the 6-byte version).

The generic SCRIPTS module, GENSCSI.SS, handles selection, mes-
sage phases, and data phases. It also handles disconnect/reselect sequences.
For more advanced applications, you’ll need to flesh it out by addding sup-
port for synchronous or wide transfer negotiation. The sample code in the
Symbios Logic Software Developer’s Kit includes some examples of this.
For our purposes, we’ll omit those features to make the code easy to follow.

The C modules are broken up by functions. SPCI.C contains PCI BIOS
interface code. Initialization code for the 53C800 chip family is isolated in
S8XX.C. Actual implementation of standard SCSI functions is contained
in SSCSI.C. Utility functions reside in the SDK file GEN_TOOLS.C.

In the main module, SQUERY.C, we start by initializing the host adapter
using PCI calls. We gather configuration details about the host adapter,
information about the I/O port used, and support for Wide SCSI or Fast
SCSI. Wide SCSI support is important because it tells us how many devices
to look for.

Next we set up buffers for the SCRIPTS array and data buffers for the
SCSI calls. Message buffers, Command Descriptor Blocks, and data buff-
ers are allocated and aligned on DWORD boundaries. These are filled
with the proper values as we use them.

Finally, we search for devices that respond to a Test Unit Ready
command. Many of them may respond with a Unit Attention status, so
we need to retrieve sense data using the Request Sense command. You
should expect a Unit Attention condition the first time a device is
accessed after powering up. The code contains a retry loop for this

purpose.

120

Low-Level SCSI Programming with SCRIPTS

A Device Inquiry follows for any SCSI ID that responds to the Test
Unit Ready command. The program prints out the device type, identifi-
cation strings, and other parameters.

If it finds a direct access device, the program issues a Read Capacity
command. This reports the number and size of data blocks on the
medium. If you are using a removable media drive like the Iomega Zip
drive, this call will fail if there is no disk present. The first call after you
insert the medium will return sense data indicating that the medium has
changed. Again, we have to anticipate this condition and recover from it.

The final call for direct access devices reads the first block on the
medium and prints it out in both hexadecimal and ASCII. Block O on a
formatted Zip disk contains an Iomega signature in the first few bytes.

Generic SCRIPTS Code

The heart of our sample program is the SCRIPTS code contained in GEN-
SCSI.SS. Let’s examine it more closely.

We start by declaring the architecture for which we are compiling. In
this case, it’s the 53C825 chip.

e ————— set architecture for 53C825
ARCH 825

Next we declare some constants. These are values that the SCRIPTS
code will return to its parent program.

jmm————————— set constant values

ABSOLUTE err_cmd_complete = 0x00000000
ABSOLUTE err_not_msgout = 0x00000001
ABSOLUTE err_bad reselect = 0x00000002
ABSOLUTE err_bad_phase = 0x00000004

Now comes a critical part. We declare a table of buffers because we are
using table indirect addressing for our data transfers. It’s not really impor-
tant what we call it, because a SCRIPTS module can only contain a single
table.

Remember that simply declaring a table does not allocate memory for
it. That part is done in your supporting C code. In the example below, the
values that follow each table element are simply placeholders for debug-
ging information.

In SCRIPTS syntax, a table declaration is a single line of code fol-
lowed by a carriage return. We’ve used backslashes as line continuation
characters to separate the table elements and make the code more
readable.

Sample Code

jmm———————— set up table definitions
TABLE table0 \
scsi_id = ID {0x33, 0x00, 0x00, 0x00}, \
msgout_buf = {0x80, 0x00}, \
cmd_buf = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, \
stat_buf = 2?2, \
msgin_buf = 2 {22}, \
exmsgin_buf = 4 {22} \
datain_buf = 0x40 {2??}

Following the table declaration, we declare an entry point for the code,
and a name for the script. The script name will be used to name the
SCRIPTS array in the compiled code.

jmm———————— entry point for general SCSI script
ENTRY start_scsi

PROC GEN_SCRIPT:

Finally, we begin the actual code with a SELECT ATN instruction. Our
C code has already filled the scsi_id buffer with information about the
target we are selecting. If the host adapter is itself selected or reselected
during this step, execution will branch to the bad_reselect label.

jm————————— start SCSI target selection
start_scsi:

; select device from encoded SCSI ID
; set ATN for message out after select
SELECT ATN FROM scsi_id, REL(bad_reselect)

Because we set the ATN flag during selection, a Message Out phase fol-
lows. We’ll send the Identify message, telling the target whether it has
disconnect privileges. We set up the msgout_buf buffer in our C code.

jmm———————-— send identify message
; exit if not message out phase
INT err_not_msgout, WHEN NOT MSG_OUT

; send identify message
MOVE FROM msgout_buf, WHEN MSG_OUT
JUMP REL(handle_phase)

After sending the Identify message we jump to a phase handler
routine. This routine simply examines the bus phase and jumps to a corre-
sponding routine. Here it’s a Command phase that follows Message Out.

121

122

Low-Level SCSI Programming with SCRIPTS

e send SCSI command

; send command block to target
MOVE FROM cmd_buf, WHEN CMD
JUMP REL(handle_phase)

Once again, it’s back to the phase handler after the Command phase.
The command issued determines what happens next. For a command like
Test Unit Ready no data transfer takes place—we move directly to the
Status phase. In the example, we just read the status byte into a buffer.

e ———————- get SCSI status
get_status:

; read status byte from data bus
MOVE FROM stat_buf, WHEN STATUS
JUMP REL(handle_phase)

A Message In phase follows the Status phase. We read the message
byte and clear the ACK bit. If things went well, the message is Command
Complete, and we jump to our exit code. If we arrived here at some other
point in the command execution, we must handle other messages.

The other messages we check for are Disconnect and extended mes-
sages. If we detect a Disconnect message, we branch to a routine that
waits for a disconnect to occur. For extended messages, we read
another byte from the bus before jumping to the phase handler. Any other
messages are ignored.

jo————————— get SCSI message input
get_msgin:

; read message byte from data bus
MOVE FROM msgin_buf, WHEN MSG_IN
CLEAR ACK

; handle Command Complete message
JUMP REL(cmd_complete), IF 0x00

; handle Disconnect message
JUMP REL(wait_disconnect), IF 0x04

; handle extended message
JUMP REL(ext_msgin), IF 0x01
JUMP REL(handle_phase)

Sample Code

jmm——————— handle extended message
ext _msgin:

; read extended message from data bus
MOVE FROM exmsgin_buf, WHEN MSG_IN
CLEAR ACK

JUMP REL(handle_phase)

If we issued a command that reads or returns data, the phase handler
will dispatch us to the data input routine. The number of bytes to read and
the destination address are contained in data_buf. Once again, we set
this up in our C code.

The process would be similar for commands that send or write data to a
device. Data direction is determined by the command.

PR get data input
get_datain:

; read data from bus
MOVE FROM datain_buf, WHEN DATA IN
JUMP REL(handle_phase)

Here is the dispatch table we use to handle the different bus phases.
Unexpected phases exit with an error code.

e ——————— handle SCSI phases
handle_phase:

; jump to appropriate handler for phase
JUMP REL(get_status), WHEN STATUS

JUMP REL(get msgin), WHEN MSG_IN

JUMP REL(get_datain), WHEN DATA IN
JUMP REL(send_cmd), WHEN COMMAND

; unhandled phase

INT err_bad_phase

This is our normal exit handler, reached by a Command Complete
message. We expect a bus disconnect, so we clear the register bits that
generate an error on disconnect. When disconnect occurs, we return with
a success code.

e —————— SCSI command execution complete
cmd_complete:

; command complete - wait for disconnect
MOVE SCNTL2 & 0x7F to SCNTL2

123

124

Low-Level SCSI Programming with SCRIPTS

CLEAR ACK
WAIT DISCONNECT
INT err_cmd_complete

Selection or reselection errors come to this error handler. It simply
exits with an error code.

fm————————— handle invalid select or reselect
bad reselect:

; unhandled reselect
INT err bad _reselect

If we received a Disconnect message, we wait here for disconnect to
occur. Notice that we have cleared the bits that generate an error on dis-
connect. After disconnect, we clear any remaining data in the SCSI and
DMA registers, and wait for reselection. Once we are reselected, we wait
for an Identify message from the target and branch to the error handler.

This approach to the disconnect/reselect process is light on error
checking. For more robust applications, you’ll want to process the Save
Data Pointers message that precedes the Disconnect message, and
save other information to ensure that there are no gaps or overlaps in your
data transfers.

jmm———————— handle disconnect before reselect
wait disconnect:

MOVE SCNTL2 & O0x7F to SCNTL2
CLEAR ACK
WAIT DISCONNECT

; clear DMA and SCSI fifos
MOVE CTEST3 | 0x04 to CTEST3
MOVE STEST3 | 0x02 to STEST3

; wait for reselect
WAIT RESELECT REL(bad_reselect)

; expect identify message
MOVE FROM msgin_buf, WHEN MSG_IN
CLEAR ACK

; shortcut to update sync and wide options
SELECT FROM scsi_id, REL (handle_phase)

Sample Code

Examine the sample code and the SCRIPTS routines. Experiment with
it, adding handlers for other commands or messages.

The Symbios Logic ftp site is a good source for other examples, and
for the NASM compiler used to build the SCRIPTS code. After you work
with it, you’ll see how powerful SCRIPTS can be for low-level SCSI

development.

125

Chapter 9

SCSI Target-Mode
Programming

Most of this book discusses SCSI programming from the perspective of
using a host adapter to control peripheral devices. In this chapter things
are turned around and SCSI is looked at from a target peripheral’s point of
view. Target-mode SCSI programming has long been considered a spe-
cialty practiced by few outside the mass-storage industry. It conjures
visions of a lone programmer working late at night deep within the bow-
els of an R&D lab, taking nourishment from a bottle of Mountain Dew
dripping into an L. V. tube. Needless to say, this chapter isn’t written to
help these poor souls. Rather, we hope to give the rest of you a feel for the
“other side” of SCSI, along with some practical advice on how to turn
your PC into a SCSI target device.

From a programmer’s perspective a typical SCSI implementation con-
tains three distinct components: hardware, drivers (including ASPI), and
applications. The hardware component handles the physical portions of a
SCSI transaction, including bus arbitration, selection, and data transfer.
The driver component manages the hardware, responding to phase
changes, handling message bytes, and providing an interface to the appli-
cation. The application component gets the work done—working with
SCSI commands and orchestrating things at a higher level. I'll try to
break things up into these same categories as we discuss target-mode
SCSI programming.

When [first took on the task of writing a PC-based target-mode appli-
cation I hoped to find a software library or driver package that would help

127

128

SCSI Target-Mode Programming

manage the low-level details of the SCSI bus. What I really wanted was a
sort of “reverse-ASPI” driver; something that would simply hand me an
incoming CDB and data buffer and let me get on with the real work. I
wasn’t interested in SCSI bus phase changes, message bytes, and the
like—I just wanted to get the job done. I knew that the Common Access
Method (ANSI CAM) specification had provisions for target-mode SCSI
programming, but I wasn’t able to find a single PC-based SCSI adapter
that provided functional CAM drivers. In the end, I couldn’t find any
libraries or packages that helped with target-mode programming, and I
had to develop my own code from the hardware on up. Fortunately, I was
already familiar with SCSI host-mode programming and with the com-
mand sets of the devices I was trying to emulate. The SCSI-2 specification
is remarkably complete, and it did contain most of the information that I
really needed. These factors at least made the task manageable, but, boy,
what I'd have given for a bit of target-mode advice and a few samples.
The code and techniques presented in this chapter are provided with the
hope that I can save someone reading this from a similar frustration.

Hardware

Not all SCSI host adapters are suitable for target-mode programming.
Some cards are designed only for the SCSI initiator role and simply can-
not respond to a selection request from another initiator. Others contain
embedded firmware that is optimized for host-mode transactions at the
expense of target-mode support. In some cases you can download special
target-mode firmware to these cards, but in most cases you'’re out of luck.
But by far the biggest obstacle to target-mode programming on most
adapters is a lack of documentation. Very few PC SCSI card manufactur-
ers will admit that their cards are capable of supporting target-mode
operation, and even fewer have any documentation that tells how to
accomplish it. I've often found it necessary to select a SCSI chipset that
fits my needs directly from a semiconductor manufacturer, then work
backward to find a PC card that uses that particular chipset. This usually
leaves me without support from the card supplier, but at least I’ll have
access to the SCSI chipset documentation directly from the semiconduc-
tor manufacturer’s datasheets.

The SCSI chipset I'll be using for the examples below is the Symbios
Logic 53C400A. The 53C400A is an older, relatively low-end SCSI chip
that combines NCR’s 53C80E SCSI core with an ISA bus interface. I
selected it as our example because of its low-level programming interface
to the SCSI bus. The 53C400A provides a minimal amount of hardware

Handling SCSI Phases 129

support for SCSI bus arbitration, selection, and handshaking without hid-
ing too many of the details involved in SCSI transactions. This allows us
to learn about the SCSI bus in detail while still achieving reasonable
transfer rates for most applications.

Handling SCSI Phases

Before we proceed, let’s take a moment to review the different phases of a
SCSI transaction. This transaction begins with the bus arbitration and
selection phases, providing the means for an initiator to grab the SCSI bus
and establish a link to a particular target device. After selection, the target
device takes over the SCSI bus and controls the sequencing of the SCSI
bus phase changes. If the initiator asserts the ATN signal, the target will
enter the Message Out phase, reading message bytes from the initiator.
These messages typically specify the target LUN and disconnect privi-
leges, but other messages may be sent as well. After the message bytes
have been received and processed, the target will enter the Command
phase and supervise the transfer of the SCSI Command Descriptor Block
(CDB) from the host. Once this is finished, the target can begin process-
ing the command.

At this point the target may decide to disconnect from the SCSI bus if
it is performing a lengthy command (only if the Identify message gave
it permission to disconnect). This involves a Message In phase, in which
the target sends a Save Data Pointers message, a Disconnect mes-
sage, and then releases control of the SCSI bus by entering the bus-free
state. When the target is ready to reconnect it performs the bus arbitration
and reselection phases, sends an Identify message to indicate which
LUN is reconnecting, then continues with the data or status transfer. If a
SCSI bus parity error is encountered during a transfer, the target might
issue a Restore Data Pointers message to the host and restart the
data transmission. Finally, the target enters the Status phase and sends the
command status to the initiator to mark the end of the process, then
releases control of the SCSI bus by entering the bus-free state.

In the sample code below we’ll see how the 53C400A responds to a
selection and handles the various phases of a SCSI transaction. The code
below assumes the existence of a WriteReg() routine that writes values
into a 53C400A register, and a ReadReg () routine that reads the value
of a specified 53C400A register. The code uses register names and values
that are specific to the 53C400A, but you should be able to follow the
intent of the code from the comments. Of course, other SCSI chipsets will

130

SCSI Target-Mode Programming

require different low-level code sequences, but the sample code below
should help you by showing how to handle the various SCSI bus phases.

The first requirement is to initialize and enable the 53C400A. We do
this by resetting the chip, enabling target-mode operation (at the expense
of traditional host-mode operation), and clearing the interrupt state.

Listing 9-1. Chip Initialization

WriteReg(CR0,0x80); // Reset the 53C400A chip
WriteReg(MR,0x40); // Enable target-mode operation
WriteReg(SER,1 << ID); // Specify our target SCSI id
ReadReg(RIR); // Read/reset the SCSI interrupt
WriteReg(CRO,0x10); // Enable the SCSI interrupt

Now we simply wait for an interrupt telling us that the 53C400A has
been selected as the target by another host adapter. We’ll do this by poll-
ing just to keep things simple for this example, but most implementations
would install a real interrupt handler. Once we’ve detected an interrupt
we’ll check for exceptional conditions such as a bus reset or parity error.
If we’ve been selected as the target of a SCSI transaction we’ll also have
to figure out the SCSI ID of the initiator. Note that we double-check the
selection bits on the SCSI bus to make sure that we are the legitimate tar-
get of the selection. In the real world, false selections can occur because
of glitches on the data bus, or from quirks in the arbitration/selection han-
dling on some older host adapters. Once we’ve decided that we have been
properly selected, we’ll assert the BSY signal to notify the initiator that
we’ve taken control of the SCSI bus. The initiator should acknowledge
this by dropping the SEL signal. Most newer SCSI chipsets will handle
all of this for us automatically, but on the 53C400A we’ll see exactly what
needs to be done.

Listing 9-2. Responding to Selection

while (! (ReadReg(ISR) & IRQ))
// Wait for an interrupt

irq_cause = ReadReg(ISR); // save the interrupt source
ReadReg (RIR); // Reset 53C400A interrupt

(Continued)

Handling SCSI Phases

Listing 9-2. (Continued)

if (irq_cause & BUS_RESET) // Bus reset interrupt?
{
ProcessBusReset(); // handle it elsewhere
return;

}

if (irqg_cause & PARITY ERROR)

// Parity error?
{
ProcessParityError(); // handle it elsewhere
return;

}

// This must be a selection interrupt. Get the
// selection ID bits from the SCSI data bus and
// make sure our ID bit is set (we could have
// interrupted with an invalid selection due to
// a glitch on the SCSI bus).

selection_id = ReadReg(DATA);

if (!(selection_id & (1 << ID)))
{
// Our SCSI ID bit isn't set, so we aren't
// really selected! Ignore the selection.
return;

}

// Now determine the SCSI ID of the initiator
// by finding which other ID bit is set.

selection_id &= ~ID; // first clear our ID bit
for (initiator=0; initiator<8; initiator++)
{
if (selection_id & 1)
break;
selection_id >>= 1;
}

// We have a valid selection, assert BSY and wait
// for the host to drop the SEL signal to end the
// selection phase

WriteReg(ICR,BSY);
while (ReadReg(CSC) & SEL)

r

131

132

SCSI Target-Mode Programming

At this point we’ve completed the SCSI arbitration and selection
phases and, as the selected target, we have control of the SCSI bus. The
SCSI-2 specification now requires a Message Out phase with at least an
Identify message, but older SCSI-1 initiators may skip this stage. We’ll
examine the state of the ATN signal to determine whether the initiator has
any message bytes to send us. As you examine the code below, note that
we explicitly control the SCSI bus phase by setting and clearing the vari-
ous signals. You’ll also see that we strobe in each message byte
individually via the REQ and ACK signals. The 53C400A is capable of
automated transfers of 128-byte data blocks, but for smaller chunks we’re
on our own.

Listing 9-3. Message In Phase

while (ReadReg(ISR) & ATN)

// Host message waiting?

{

WriteReg(TCR,MSG|CD); // set MSG and C/D signals

1/

//
//

WriteReg(TCR,MSG|CD|REQ);

while (!ReadReg(ISR) & ACK)
// Wait for host to ACK,

r

msg_byte = ReadReg(DATA); //

WriteReg(TCR,MSG|CD);

if (msg_byte & 0x80)
{

to enter MSG OUT phase

Now also assert REQ to
request msg byte from host

so data is available

Read first message byte

// release REQ, leave MSG+CD

// Is it an Identify message?

// extract Identify information

ok_to_disconnect =

msg_byte & 0x40;

luntar = msg_byte & 0x20;
lun = msg_byte & 0x07;
}
else if ((msg_byte == 0x06) || (msg_byte == 0x0C))
{

// Bbort or Bus Device Reset message

WriteReg(TCR,0);
WriteReg(ICR,0);
return;

}

// release MSG
// release BSY

and CD lines
line

(Continued)

Handling SCSI Phases 133

Listing 9-3. (Continued)

else if ((msg_byte == 0x08))
{
// NOP, so just ignore it
}
else
{
// This sample won't handle any other message bytes
// so return a Message Reject back to the host

WriteReg(TCR,MSG|CD|10); // Enter MSG IN phase

WriteReg(DATA, 0x07); // MESSAGE REJECT

WriteReg(ICR,BSY|DB); // Turn on data bus

WriteReg(TCR,MSG|CD|IO|REQ); // Assert REQ

while (!ReadReg(ISR) & ACK) // Wait for host to ACK
’

WriteReg(TCR,MSG|CD|I0); // Release REQ

WriteReg(ICR,BSY); // Turn off data bus

}

That was a lot, and we only handled a few messages. Real-world
implementations typically handle several others, including the Synchro-
nous and Wide Data Transfer Request messages. [typically create
message I/O subroutines to clean up the code a bit, but for this example I
thought it best to show the bus phase changes up front.

After the Message Out phase (messages from the host to the target), a
target will enter the Command phase to collect the Command Descriptor
Block (CDB) from the host. This is pretty straightforward—the only com-
plexity rises from the need to interpret the first command byte to
determine the CDB length.

Listing 9-4. Command Phase

WriteReg(TCR,CD); // Select the COMMAND phase
WriteReg(TCR,CD|REQ); // Assert REQ signal
while (!ReadReg(ISR) & ACK) // Wait for host to ACK

cdb_byte[0] = ReadReg(DATA); // Get first byte of CDB
WriteReg(TCR,CD); // De-assert REQ
switch (cdb_byte[0] >> 5)
// Extract the command group code
// to determine the CDB length
(Continued)

134

SCSI Target-Mode Programming

Listing 9-4. (Continued)

{

case 0:

cdb_len = 6;
break;

case 1l:
case 2:

cdb_len = 10;
break;

case 5:

cdb _len = 12;
break;

default:
// Reserved or vendor-specific, treat as
// an error and force early termination

}

cdb_len = 0;

// Now read the remaining CDB bytes
for (i=1; i<cdb_len; i++)

{

WriteReg(TCR,CD|REQ); // Assert REQ
while (!ReadReg(ISR) & ACK) // Wait for host to ACK

cdb_byte[i] = ReadReg(DATA); // Get next CDB byte
WriteReg(TCR,CD); // Clear REQ

}

At this point we have a complete SCSI Command Descriptor Block
ready for processing. We know which LUN should receive the CDB
because of the Identify message received from the host. (If the message
came from a SCSI-1 initiator, we can either assume a LUN of 0, or retrieve
it from the upper three bits of cdb_byte[1]. This lack of an Identify mes-
sage was one of the many problems encountered with multiple LUNs
before the SCSI-2 standard.)

If the command requires additional data, we would enter a Data Out
phase (out of the host, in to our target), strobing each byte with the REQ/
ACK signals just as we did above. We may also send additional messages
to the host by entering a Message In phase (in to the host, out of the tar-
get) and strobing out the message data, just as we did with the Message
Reject message above. If the command required a significant delay
before the data was available, we might disconnect at this point and
reconnect when the data is ready. For our example, let’s assume that
we’ve received a standard Inquiry command.

Listing 9-5. Responding to Inquiry Command

Handling SCSI Phases

if (cdb_byte[0] == INQUIRY)
{

// Send back inquiry data. Assume the correct inquiry
// data is stored in the ing_byte[] array.

nbytes = cdb_byte[4]; //

if (nbytes > sizeof(ing_byte)) //
nbytes = sizeof(ing_byte); //

WriteReg(TCR,I0); //
WriteReg(ICR,BSY|DB); //

for (i=0; i<nbytes; i++)
{
WriteReg(DATA,ing_byte[i]); //
WriteReg(TCR,IO|REQ); //
while (!ReadReg(ISR) & ACK) //
WriteReg(TCR,IO); //
}

WriteReg(ICR,BSY); //
}

Get requested length

Truncate requested
length to actual

Select DATA IN phase

Turn on data bus

Write the next byte
Set the REQ line
Wait for host to ACK

Clear the REQ line

turn off data bus

At this point we should check for an active ATN signal from the host
indicating that it has additional message bytes to send. Real-world imple-
mentations should check for such messages between every phase change,
and also at the end of every data block during a data transfer. In our exam-
ple we’ll skip this check and proceed to the final step, sending the status
byte and the command complete message back to the host, and releasing

control of the SCSI bus.

Listing 9-6. Sending Status and Command Complete

status_byte = 0x00; // GOOD status
WriteReg(TCR,CD|IO); // Select STATUS phase
WriteReg(ICR,BSY|DB); // Turn on data bus
WriteReg(DATA,status_byte); // Send the status byte
WriteReg(TCR,CD|IO|REQ); // Set the REQ line

while (!ReadReg(ISR) & ACK) // Wait for host to ACK

7

(Continued)

135

136

SCSI Target-Mode Programming

Listing 9-6. (Continued)

WriteReg(TCR,CD|IO); // Clear the REQ line
WriteReg(TCR,MSG|CD|I0); // Enter MSG IN phase
WriteReg(DATA,COMMAND COMPLETE); // Send command complete
WriteReg(TCR,MSG|CD|IO|REQ); // Set the REQ line
while (!ReadReg(ISR) & ACK) // Wait for host to ACK
WriteReg(ICR,BSY); // Turn off data bus
WriteReg(TCR,0); // Release all SCSI lines
WriteReg(ICR,0); // to enter BUS FREE

As you’ve seen, managing the SCSI bus isn’t a trivial task. We’ve
examined a typical transaction, but haven’t really gone into any signifi-
cant detail regarding message and error handling. Also, we’ve been
working directly with the hardware. That gets pretty boring and is better
left to the chipset’s data sheet, especially since you’re likely to use a com-
pletely different SCSI adapter for your target-mode project. Rather than
continue with a long, drawn-out presentation of the details of S3C400A
programming, wouldn’t it be a better idea to hide this complexity behind
the sort of target-mode API that I hinted at earlier? For any of you who
might be interested in these low-level details, I refer you to the target-mode
source code included on the CD-ROM that accompanies this book.

Target-Mode API

Let’s start by considering the functional requirements for a target-mode
SCSI interface. First and foremost, it should be easy to understand and to
use, just like the ASPI interface is for host-mode programming. ASPI’s
biggest asset is its simplicity. It foregoes little-used SCSI features like
tagged queues and asynchronous event notification in favor of a simple,
easy to understand interface. Our target-mode interface should do the
same. Let’s not worry about every feature of SCSI target-mode program-
ming, but instead concentrate on those features we need to get the job
done. Also, a target-mode SCSI interface should insulate applications
from hardware-specific details. This should allow us to run the same
application with different implementations of the target-mode interface,
just like ASPI applications should run with any ASPI implementation.
Please note that I’'m not trying to create a standard interface specifica-
tion here—1I’ll just be describing an API that has worked well for me over
the past few years. I hope you will find it useful if you decide to write any

Target-Mode API

PC-based target-mode applications. You’ll find the complete source code
for a 53C400A TSPI driver included on the CD-ROM that accompanies
this book. Of course, you’ll probably want to use another SCSI chipset for
your target-mode application. If so, you’ll have to modify the TSPI driver to
work with your specific hardware. I've tried to keep the hardware-specific
code separate from the more general-purpose target-mode routines to make
this process easier.

I’ve arrived at this particular API by the notorious trial and error design
process. They provide a fairly complete and (I hope) easy to understand
routines that insulate applications from the details of the SCSI bus trans-
actions. The functional goals for the API include:

¢ pass full CDBs to the application for processing

® provide Read/Write routines that the application can call to transfer
data buffers

® handle SCSI message bytes transparently (as much as possible)

e provide for disconnect/reconnect sequences

® allow for multiple LUNs

Let’s jump right in by examining the core data structures and routines
that comprise the API, which I call the Target-mode SCSI Programming
Interface, or TSPI. (Pretty original, huh?) I’'ve modeled its interface along
the same lines as ASPI. The interface has a single entry point, tspi
SendCommand (), which is passed a pointer to a structure describing the
command. Since you’re already familiar with ASPI from Chapter 7, you
shouldn’t have much trouble with this interface.

I wanted to keep the application code as simple as possible, while pro-
viding enough flexibility to work with most existing host adapters. The
TSPI interface works very much like ASPI. It has a single entry point
called tspi_SendCommand(void *), which takes a pointer to a struc-
ture that contains all the information necessary to execute a given TSPI
command. We’ll see how to issue TSPI commands a bit later. Right now
let’s look at the command structures used to pass information across the
TSPI interface.

Listing 9-7. TSPI Command Structures

typedef struct TSPI_EVENT_s
// Holds incoming SCSI CDBs and bus events

{

unsigned char CommandCode; // Type of command
unsigned char Error; // Returns error status

(Continued)

137

138

Listing 9-7. (Continued)

SCSI Target-Mode Programming

short
char
char
char
char
long
char

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned char
unsigned char
} TSPI_EVENT;

Flags; //
AdapterIndex; //
InitiatorId; //
Lun; //
Reservedl[15]); //
Timeout; //
Reserved2([3]; //
CdbLength; //
CdbByte[16]; //

typedef struct TSPI_CMD_
// Generic TSPI cmd

{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned char
unsigned long
} TSPI_CMD;

char
char
short
char
char
char

CommandCode; //
Error; //
Flags; //
AdapterIndex; //
InitiatoriId; //
Lun; //
Reservedl[15]; //
Parm([6]; //

typedef struct TSPI_XFER s
// Data transfer cmd

{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
void *

unsigned long
unsigned long
} TSPI_XFER;

char
char
short
char
char
char
char
long

// Flags

#define TSPI_FLAG BusReset

#define TSPI_FLAG_DeviceReset
#define TSPI_FLAG_HostMsgWaiting
#define TSPI_FLAG_SaveDataPointers

CommandCode; //
Error; //
Flags; //
AdapterIndex; //
Initiatorid; //
Lun; //
Reservedl([15]; //
TransferLength; //
TransferAddress;//
ResidualLength; //
Reserved2([3]; //

TSPI_FLAG_XXXX
Adapter number

Who sent it

Our LUN

Reserved for API use
In milliseconds
Reserved (alignment)
Length of CDB

CDB data bytes

Type of command
Returns error status
TSPI_FLAG_XXXX
Adapter number

Host SCSI ID

Our LUN

Reserved for API use
Generic parameters

Type of command
Returns error status
TSPI_FLAG_XXXX
Adapter number

Host SCSI ID

Our LUN

Reserved for API use
Bytes to read/write
Data buffer address
Bytes NOT sent
Reserved (alignment)

0x0001
0x0002
0x0004
0x0008

(Continued)

Target-Mode API

Listing 9-7. (Continued)

// Command Codes

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TSPI_CMD_AdapterInfo
TSPI_CMD_AttachLUN
TSPI_CMD_DetachLUN
TSPI_CMD GetEvent
TSPI_CMD ReadFromHost
TSPI_CMD WriteToHost
TSPI_CMD_CompleteCommand
TSPI_CMD_SendMessage
TSPI_CMD_GetMessage
TSPI_CMD Disconnect
TSPI_CMD_ Reconnect

= W 0O N0 Ul & WK+ o

// Error Codes

#define
#define
#define
#define
#define
#define
#define
#define

TSPI_ERR_None
TSPI_ERR_InvalidCommand
TSPI_ERR_Busy
TSPI_ERR_InvalidAdapter
TSPI_ERR_InvalidTarget
TSPI_ERR_InvalidLUN
TSPI_ERR_LunNotAvailable
TSPI_ERR_Timeout

N oL e W N = O

You’ll note that the first few fields of each structure are identical. The
TSPI manager uses the CommandCode field to interpret the remaining
fields. The TSPI_EVENT structure is used to retrieve SCSI commands
and events as they arrive at the target. The TSPI_XFER structure is used
to manage the transfer of data buffers across the SCSI bus. Finally, the
TSPI_CMD structure is used to control the remaining portions of a SCSI
transaction, including disconnect/reconnect sequences and command
completion. The TSPI_CMD structure is also used to control the TSPI
interface itself. Let’s take a closer look at the TSPI commands.

Adapter Inquiry (TSPI_CMD_Adapterinfo)

This command is used to obtain information about a specific target-mode
adapter managed by the TSPI driver. To issue an adapter inquiry com-
mand you must set the CommandCode field to TSPI_CMD_AdapterInfo
and set the AdapterIndex field to the 0-based index of the target-mode
adapter you wish to query. If you specify an adapter that doesn’t exist, the

139

140 SCSI Target-Mode Programming

Error field will return TSPI_ERR_InvalidAdapter. Otherwise, the

Parm[] array will return information pertaining to that adapter.

On entry:

CommandCode TSPI_CMD_AdapterInfo

AdapterIndex 0-based adapter index

Flags Must be 0

On return:

Error Error code

Parm([0] Total number of target-mode adapters managed by the
TSPI manager

Parm[1] TSPI version number supported by this adapter, e.g.
0x00000104 (1.04)

Parm(2] Target adapter SCSI ID

Parm[3-5] Reserved for future use, currently return 0

Listing 9-8. TSPI Adapter Inquiry

TSPI_CMD info;
info.CommandCode = TSPI_CMD_AdapterInfo;
info.AdapterIndex = 0;
info.Flags = 0;
tspi_SendCommand(&info);
NumAdapters = info.Parm[0];
printf("%lu target-mode adapters available\n",
NumAdapters) ;
while (info.AdapterIndex < NumAdapters)
{
if (info.Error)
printf ("Adapter %lu, error %u\n",
info.AdapterIndex
info.Error);
else
printf("Adapter %1lu, ID=%lu version %lu.%02lu\n",
info.AdapterIndex,
info.Parm[2],
info.Parm[1l] >> 8,
info.Parm[1l] & OXFF);

info.AdapterIndex++;

}

Target-Mode AP/

This example also illustrates another TSPI behavior. All nonreserved
parameters are left alone, unless they are specifically documented as
returning a value. This can simplify the application code since it won’t
have to constantly reinitialize structures.

Attach LUN (TSPI_CMD_AttachLUN)

This command is used to notify the TSPI manager that your application
will handle SCSI commands for the specified LUN. You must do this
before issuing any other TSPI commands that use this LUN. If this com-
mand completes without an error your application should start issuing
TSPI_CMD_ GetEvent commands to retrieve incoming SCSI commands
and bus events.

On entry:

CommandCode TSPI_CMD AttachLUN
AdapterIndex Adapter to attach (0-n)
Lun LUN to attach (0-7)
Flags Must be 0

On return::

Error Error code

Listing 9-9. TSPI Attach LUN

TSPI_CMD attach;
attach.CommandCode = TSPI_CMD_AttachLUN;
attach.AdapterIndex = 0;
attach.Lun = 0;
attach.Flags = 0;
tspi_SendCommand(&attach);
if (!attach.Error)
printf("LUN %u is now enabled\n",attach.lun);

We’ll describe the callback routine in more detail later.

Detach LUN (TSPI_CMD_DetachLUN)

This command is used to notify the TSPI manager that your application
will no longer be responding to SCSI commands for the specified LUN.

141

142 SCSI Target-Mode Programming

You must issue this command to detach any previously attached LUNs
before your application terminates.

On entry:
CommandCode TSPI_CMD_DetachLUN
AdapterIndex Adapter to detach from, same as for
TSPI_CMD_AttachLUN
LUN LUN to attach from, same as for
TSPI_CMD_AttachLUN
Flags Must be 0
On return:
Error Error code
Listing 9-10. TSPI Detach LUN
TSPI_CMD attach; // used in original call to

// TSPI_CMD_AttachLUN
TSPI_CMD detach;
detach.CommandCode = TSPI_CMD_DetachLUN;
detach.AdapterIndex = attach.AdapterIndex;
detach.Lun = attach.Lun;
detach.Flags = 0;
tspi_SendCommand(&detach);
if (!detach.Error)
printf("LUN %u is now disabled\n",detach.Lun);

Get Event (TSPI_CMD_GetEvent)

This command is used to retrieve SCSI commands for execution. The
TSPI manager will buffer a single incoming command for each attached
LUN, and the application uses the TSPI_CMD_GetEvent command to
retrieve it. Most applications will sit in a loop waiting for events and then
processing them as they arrive. Note that you must use a TSPI_EVENT
structure with this command.

On entry:

CommandCode
AdapterIndex

Lun

Flags
Timeout

On return:

Error
Flags

CdbLength

cdbByte[]

Listing 9-11. TSPI Get Event

Target-Mode API

TSPI_CMD GetEvent

Adapter number, same as for TSPI_CMD_
AttachLUN

LUN, same as for TSPI_CMD_AttachLUN

Must be 0

Number of milliseconds to wait for an incoming
SCSI command or bus reset event. A value of 0
indicates that the command should return immedi-
ately if no command or event is pending.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
TSPI_FLAG BusReset will be set if the SCSI bus has
been reset. TSPI_FLAG_DeviceReset will be set if
the TSPI manager has received a Device Reset mes-
sage for the target. TSPI_FLAG_HostMsgWaiting
will be set if the initiator is asserting the ATN signal,
indicating that it has a message to send to us. If so, use
the TSPI_CMD_GetMessage command to get the
message.

Number of valid CDB bytes in the CdbByte[] array. A
value of 0 indicates that there is no CDB associated
with this event. This can happen if the TSPI_FLAG_
BusReset or TSPI_FLAG_DeviceReset flag bits are
set.

This array contains the SCSI Command Descriptor
Block received from the initiator. Its length is deter-
mined by the cdbLength field.

TSPI_CMD attach; // used in original call to
// TSPI_CMD AttachLUN

TSPI_EVENT event;
while (!quit)
{

event.CommandCode

= TSPI_CMD_GetEvent;

(Continued)

143

144

SCSI Target-Mode Programming

Listing 9-11. (Continued)

event.AdapterIndex = attach.AdapterIndex;
event.Lun = attach.Lun;

event.Timeout = 100; // 100 milliseconds
event.Flags = 0;

tspi_SendCommand(&event) ;

if (event.Error == TSPI_ERR_None)

{

if (event.Flags & TSPI_FLAG_BusReset)

printf("Bus reset detected\n");

if (event.Flags & TSPI_FLAG_DeviceReset)

printf("Device reset detected\n");

if (event.CdbLength > 0)

ProcessCdb(&event);

else}if (event.Error != TSPI_ERR_Timeout)
{
printf ("Error %u, quitting...\n",event.Error);
quit = 1;
}

Read Data From Host (TSPI_CMD_ ReadFromHost)

This command causes the TSPI manager to read a data buffer from the
initiator. This is required for commands that write data or parameters to
the target device (e.g., Write). The specified adapter will enter a Data
Out phase, and the specified number of bytes will be read from the initia-
tor and placed in the application’s data buffer. Note that you don’t have to
read the entire data buffer from the host at one time. You can break it into
as many transfers as you wish, issuing this command once for each chunk
of data you wish to read. Of course, larger chunks will generally lead to
better performance, so don’t make your buffers too small. Note also that
the structure passed to the tspi SendCommand() routine is a TSPI_XFER
structure rather than a TSPI_CMD structure.

On entry:

CommandCode TSPI_CMD_ReadFromHost

AdapterIndex Adapter number from the original TSPI_EVENT
structure

Initiatorld Initiator SCSI ID from the original TSPI_EVENT

structure

Target-Mode API

LUN LUN from the original TSPI_EVENT structure
Flags Must be 0

TransferLength Number of bytes to transfer

TransferAddress Pointer to the buffer that will receive the data

bytes from the host. This buffer must be large
enough to hold the number of bytes requested.

On return:
Error Error code
Flags The flag bits will be updated to indicate the current

status of the SCSI bus at the end of this command.
TSPI_FLAG BusReset Wwill be set if the SCSI bus
has been reset. TSPI_FLAG_HostMsgWaiting will
be set if the initiator is asserting the ATN signal,
indicating that it has a message to send to us. If so,
use the TSPI_CMD_GetMessage command to get
the message.

ResidualCount Number of requested data bytes NOT transferred.
This value is the requested transfer length minus the
number of bytes actually received. If the entire

requested transfer length was received, this field
will be 0.

Listing 9-12. TSPI Read Data From Host

TSPI_EVENT *event; // original incoming event structure
TSPI_XFER xfer; // our transfer structure
char block buf[512];
xfer.CommandCode = TSPI_CMD_ReadFromHost;
xfer.AdapterIndex = event->AdapterIndex;
xfer.InitiatorId = event->InitiatorId;
xfer.Lun = event->Lun;
xfer.Flags = 0;
xfer.TransferLength = sizeof(block_buf);
xfer.TransferAddress = &block_buf[0];
tspi_SendCommand(&xfer);
if (!xfer.Error)
printf("%lu bytes received\n",
xfer.TransferLength - xfer.ResidualCount);

145

146

SCSI Target-Mode Programming

Write Data To Host (TSPI_CMD_ WriteToHost)

This command causes the TSPI manager to send a data buffer to the initi-
ator. This is required for commands that read data or parameters from the
target device (e.g., Read). The specified adapter will enter a Data In
phase, and the specified number of bytes will be sent to the host from the
application’s data buffer. Note that you don’t have to send the entire data
buffer to the host at one time. You can break it into as many transfers as
you wish, issuing this command once for each chunk of data you wish to
send. Of course, larger chunks will generally lead to better performance,
so don’t make your buffers too small. Note that the structure passed to the
tspi_SendCommand() routine is a TSPI_XFER structure rather than a
TSPI_CMD structure.

On entry:

CommandCode
AdapterIndex

Initiatorld

LUN

Flags
TransferLength
TransferAddress

On return:

Error
Flags

ResidualCount

TSPI_CMD WriteToHost

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure
Must be 0
Number of bytes to transfer

Pointer to the buffer that contains the data bytes
that will be sent to the host.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
TSPI_FLAG BusReset will be set if the SCSI bus
has been reset. TSPI_FLAG_HostMsgWaiting will
be set if the initiator is asserting the ATN signal,
indicating that it has a message to send to us. If so,
use the TSPI_CMD_GetMessage command to get
the message.

Number of requested data bytes NOT transferred.
This value is the requested transfer length minus the
number of bytes actually sent. If the entire requested
transfer length was sent, this field will be 0.

Target-Mode API

Listing 9-13. TSPI Write Data To Host

TSPI_EVENT *event; // original incoming event structure
TSPI_XFER xfer; // our transfer structure

char

xfer.

xfer

xfer

block_buf[512];
CommandCode = TSPI_CMD_ WriteToHost;

.AdapterIndex = event->AdapterIndex;
xfer.

InitiatorId = event->InitiatorId;

.Lun = event->Lun;
xfer.
xfer.
xfer.
tspi_.

Flags = 0;

TransferLength = sizeof(block buf);
TransferAddress = &block_buf[0];
SendCommand (&xfer);

if (!xfer.Error)

printf("%lu bytes sent\n",

xfer.TransferLength - xfer.ResidualCount);

Complete Command (TSPI_CMD_CompleteCommand)

This command is used to signal the end of a SCSI command received via
the callback routine. It causes the TSPI manager to send the final STATUS
byte back to the initiator and disconnect from the SCSI bus. All SCSI com-
mands received via the callback routine must have a corresponding
TSPI_CMD_CompleteCommand command to terminate them. Once this
command is sent for a given TSPI_EVENT received via the callback rou-
tine you should not access any fields within that TSPI_EVENT structure,
since the TSPI manager may immediately reuse it for another command.
This shouldn’t be a practical restriction, since TSPI_CMD_Complete-
Command will be the last command issued for a given event.

On entry:

CommandCode TSPI_CMD_CompleteCommand

AdapterIndex Adapter number from the original TSPI_EVENT
structure

Initiatorld Initiator SCSI ID from the original TSPI_EVENT
structure

LUN LUN from the original TSPI_EVENT structure

Flags Must be 0

Parm[0] Status byte to send back to the initiator. This is typi-

cally one of the following:
0x00 — Good

147

148 SCSI Target-Mode Programming

0x02 — Check condition

0x08 — Busy

0x 18 — Reservation Conflict

0x22 — Command Terminated

Refer to the SCSI specification for a complete list

of possible status bytes.
On return:

Error Error code

Listing 9-14. TSPI Complete Command

TSPI_EVENT *event; // original incoming event structure
TSPI_CMD cmd;
cmd.CommandCode = TSPI_CMD_CompleteCommand;
cmd .AdapterIndex = event->AdapterIndex;
cmd.InitiatorId = event->InitiatorId;
cmd.Lun = event->Lun;
cmd.Flags = 0;
cmd.Parm[0] = 0x02; // Check condition
tspi_SendCommand(&cmd) ;
if (!cmd.Error)

printf(" Error %u\n",cmd.Error);

Send Message To Host (TSPI_CMD_SendMessage)

This command is used to send a message to the initiator. This command is
provided to allow the application to send an arbitrary SCSI message to the
host. It follows the same format as the TSPI_CMD_WriteToHost com-
mand, except that the data will be send during a Message In phase. Note
that the structure passed to the tspi_SendCommand() routine is a
TSPI_XFER structure rather than a TSPI_CMD structure.

On entry:

CommandCode TSPI_CMD_WriteToHost

AdapterIndex Adapter number from the original TSPI_EVENT
structure

Initiatorld Initiator SCSI ID from the original TSPI_EVENT

structure

Target-Mode API

LUN LUN from the original TSPI_EVENT structure
Flags Must be 0

TransferLength Number of message bytes to transfer
TransferAddress Pointer to the buffer that contains the message

bytes that will be sent to the host. The application
is responsible for the formatting of the message
bytes.

On return:

Error Error code

Flags The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
TSPI_FLAG_BusReset will be set if the SCSI bus
has been reset. TSPI_FLAG_HostMsgWaiting will
be set if the initiator is asserting the ATN signal,
indicating that it has a message to send to us (possi-
bly a Message Reject message). If so, use the
TSPI_CMD_GetMessage command to get the
message.

ResidualCount Number of requested message bytes NOT trans-
ferred. This value is the requested transfer length
minus the number of bytes actually sent. If the
entire requested transfer length was sent, this field
will be 0. Note that if the initiator requests a
MESSAGE OUT phase, this routine will terminate
early to allow for timely processing of the host’s
message. This field will indicate where in the mes-
sage buffer the host asserted ATN.

Listing 9-15. TSPI Send Message To Host

TSPI_EVENT *event; // originally passed to callback routine

TSPI_XFER xfer; // our transfer structure
char msg_buf([4];
msg_buf[0] = RESTORE_POINTERS; // restore saved pointers

xfer.CommandCode = TSPI_CMD_SendMessage;
xfer.AdapterIndex = event.AdapterIndex;
xfer.Initiatorld = event.InitiatorId;
xfer.Lun = event.Lun;
xfer.Flags = 0;
(Continued)

149

150 SCSI Target-Mode Programming

Listing 9-15. (Continued)

xfer.TransferLength = 1;
xfer.TransferAddress = &msg_buf[0];
tspi_SendCommand(é&xfer);
if (!xfer.Error)
printf("%lu bytes sent\n",
xfer.TransferLength - xfer.ResidualCount);

Get Message From Host (TSPI_CMD_GetMessage)

This command is used to get a message from the initiator. You might do
this if the TSPI_FLAG_HostMsgWaiting bit is set upon return from
another command. This indicates that the initiator has the ATN signal
asserted to request a Message Out phase. This command allows an appli-
cation to read that message. Note that messages arriving before the
command phase of a transaction will be automatically handled by the
TSPI manager. This includes nearly all of the message handling required
for most applications, including Identify messages, Synchronous and
Wide Negotiation, and the Bus Device Reset message. However, the
TSPI manager does not automatically handle messages that arrive during
or after the data transfer phases. These may include the Abort, Discon-
nect (from host), and Initiator Detected Error messages. Also, an
initiator may send a parity error message after a Data In transfer to indicate
an error in the data. The TSPI_FLAG_HostMsgWaiting bit indicates the
presence of such a message. If this bit is set you should issue a TSPI_CMD _
GetMessage command to read the message from the host. If it was a
Parity Error message, you might want to send a Restore Pointers
message and retry the transfer.

This command follows the same general format as the TSPI_CMD_
ReadFromHost command, except that the data will be send during a Mes-
sage In phase. Note that the structure passed to the tspi_SendCommand ()
routine is a TSPI_XFER structure rather than a TSPI_CMD structure.
Also note that more than one message may be read into your buffer if the
host sends multiple messages during a single Message Out phase.

On entry:
CommandCode TSPI_CMD_GetMessage
AdapterIndex Adapter number from the original TSPI_EVENT

structure

Initiatorld

LUN

Flags
TransferLength
TransferAddress

On return:

Error
Flags

ResidualCount

Target-Mode API

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure
Must be 0
Number of bytes to transfer

Pointer to the buffer that will receive the message
bytes from the host. This buffer must be large
enough to hold the number of bytes requested.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
TSPI_FLAG_BusReset Will be set if the SCSI bus
has been reset. TSPI_FLAG_HostMsgWaiting will
be set if the initiator is still asserting the ATN signal,
indicating that it has another message to send to us.

Number of requested data bytes NOT transferred.
This value is the requested transfer length minus the
number of bytes actually received. If the entire
requested transfer length was received, this field
will be 0. You should use this field to calculate how
many message bytes were actually received.

Listing 9-16. TSPI Get Message From Host

TSPI_EVENT *event; // originally passed to callback routine
TSPI_XFER xfer; // our transfer structure

char

xfer.

xfer

xfer.
xfer.

xfer

xfer.
tspi_.

msg_buf([16];

CommandCode = TSPI_CMD GetMessage;

.AdapterIndex = event.AdapterIndex;
xfer.

InitiatorId = event.InitiatorId;

Lun = event.Lun;
Flags = 0;

TransferAddress =

if (!xfer.Error)
ProcessMessageBytes(msg_buf,
xfer.TransferLength -

xfer.ResidualCount)

.TransferLength = sizeof(msg buf);
&msg_buf([(0];
SendCommand (&xfer) ;

151

152 SCSI Target-Mode Programming

Disconnect (TSPI_CMD _Disconnect)

This command causes the TSPI manager to send a disconnect message to
the initiator and then disconnect from the SCSI bus. This allows an appli-
cation to free the SCSI bus for other transactions while the application is
carrying out a lengthy operation. The application must issue a TSPI_CMD_
Reconnect command before sending any other commands to the TSPI

manager for that LUN.

On entry:

CommandCode TSPI_CMD_Disconnect

AdapterIndex Adapter number from the original TSPI_EVENT
structure

Initiatorld Initiator SCSI ID from the original TSPI_EVENT
structure

LUN LUN from the original TSPI_EVENT structure

Flags If the TSPI_CMD_saveDataPointer bit is set, the

TSPI manager will send a save Data Pointer
message to the initiator before disconnecting. This
flag is almost always set when you are breaking a
transfer up into smaller chunks.

On return:

Error Error code

Listing 9-17. TSPI Disconnect

TSPI_EVENT *event; // original incoming event structure
TSPI_CMD cmd;
cmd.CommandCode = TSPI_CMD_Disconnect;
cmd.AdapterIndex = event->AdapterIndex;
cmd.InitiatorId = event->InitiatorId;
cmd.Lun = event->Lun;
cmd.Flags = TSPI_FLAG_SaveDataPointer;
tspi_SendCommand(&cmd) ;
if (!cmd.Error)
printf(" Error %u\n",cmd.Error);

Connecting to the TSPl Manager

Reconnect (TSPI_CMD_Reconnect)

This command causes the TSPI manager to reselect an initiator to con-
tinue a SCSI transaction. See the TSPI_CMD_Disconnect command for
additional information.

On entry:

CommandCode TSPI_CMD Reconnect

AdapterIndex Adapter number from the original TSPI_EVENT
structure

Initiatorld Initiator SCSI ID from the original TSPI_EVENT
structure

LUN LUN from the original TSPI_EVENT structure

Flags Must be 0

On return:

Error Error code

Flags The TSPI_FLAG_HostMsgWaiting will be set if the initiator

is asserting the ATN signal, indicating that it has a message to
send to us. If so, use the TSPI_CMD_GetMessage command
to get the message from the host.

Listing 9-18. TSPI Reconnect

TSPI_EVENT *event; // original incoming event structure
TSPI_CMD cmd;
cmd.CommandCode = TSPI_CMD_Reconnect;
cmd.AdapterIndex = event->AdapterIndex;
cmd.InitiatorId = event->InitiatorId;
cmd.Lun = event->Lun;
cmd.Flags = 0;
tspi_SendCommand(&cmd) ;
if (!cmd.Error)
printf("Unable to reconnect, error %u\n",cmd.Error);

Connecting to the TSPl Manager

The TSPI interface was designed to exist in a separate executable from
the applications that use it. This typically would be a device driver or

153

154 SCSI Target-Mode Programming

Windows DLL (just like ASPI). For our MS-DOS example, we’ll connect
to it in very much the same way we connected to the ASPI manager. We’ll

open the TSPI manager’s

device driver and get the address of the TSPI

manager’s entry point. This is done by the following code sample:

Listing 9-19. Getting the TSPI Entry Point

.DATA
TspiEntryPoint DD 0
TspiHandle DW 0
AspiDriverName DB "TSPIMGRS$
.CODE
GetTspiEntryPoint PROC
push ds

mov ax,@DATA

mov ds,ax

lea dx, TspiDriverName
mov ax,3D00h

int 21h
jc failed
mov [TspiHandle], ax

mov bx, [TspiHandle]
lea dx,TspiEntryPoint
mov cx,4

mov ax,4402h

int 21h

jc failed

mov bx, [TspiHandle]
mov ax,3E00h
int 21h

address of entry point
file handle
,0 ; TSPI device name

~e e

; save current data segment
; load local data segment

; load offset of driver name
: MS-DOS open file

; save file handle

;: load file handle
; address of buffer
; length = 4 bytes
:+ MS-DOS IOCTL read

: load file handle
; MS-DOS close file

; return the address of the TSPI entry point
mov ax,word ptr [TspiEntryPoint]
mov dx,word ptr [TspiEntryPoint+2]

pop ds
ret

failed:

mov ax,0

mov dx,0

pop ds

ret
GetTspiEntryPoint ENDP

; return NULL on error

Using the TSPI Interface 155

An application can then use the following sequence to connect to the
TSPI manager:

Listing 9-20. Connecting to the TSPl Manager

BYTE NumAdapters;
VOID (FAR *tspi_SendCommand) (void FAR *p);

tspi_SendCommand = GetTspiEntryPoint();
if (tspi_SendCommand)
{
TSPI_CMD tspi_info;
memset(&tspi_info, 0, sizeof(tspi_info));
tspi_info.CommandCode = TSPI_CMD_AdapterInquiry;
tspi_info.AdapterIndex = 0;
tspi_SendCommand(&tspi_info);
if (tspi_info.Error)
{
// Something is wrong
NumAdapters = 0;
}
else
{
// TSPI manager is installed and running
NumAdapters = tspi_info.Parm(0];
}
}
else
{
// TSPI manager is not installed
NumAdapters = 0;
}

Using the TSPI Interface

Now that we’ve defined a target-mode SCSI interface for PCs, let’s look
at how you might use it from within a target-mode application. First you
should define the SCSI command set that your application will support. If
your application will be emulating a device type already defined by the
SCSI specification, this is easy—just grab the SCSI spec and implement
the command set defined for that device type. Maybe this won’t seem
easy when you look at the myriad of mode sense/select pages, buffering
and logging options, and other features. Try implementing a bare-bones

156

SCSI Target-Mode Programming

emulation at first, and then add features as required. If you’re writing
code for the initiator (host) side as well, you can often get away with a
minimal implementation of the command set.

If your application doesn’t match any of the defined SCSI device types,
you’ll have to define your own command set. This shouldn’t be too difficult,
as the command set probably will be dictated by the functionality you
require. You may want to place all of your operations in vendor-specific
commands, or you may be able to use variations of existing commands (i.e.,
read and write) to meet your specific needs. Whichever route you
choose, be sure to implement all of the mandatory SCSI commands so that
your application will be compatible with existing host adapters and soft-
ware. Also, be sure to set the most significant bit of the Peripheral
Qualifier field in your inquiry data. This marks your device type as
vendor-specific, and should keep other applications from trying to use it.

If you define your own vendor-unique commands, you should keep
them as “SCSI-like” as possible. For example, the opcode, LUN, and con-
trol byte fields are common to all current SCSI commands, so don’t
redefine them in your vendor-unique commands.

Also, keep your CDBs either 6, 10, or 12 bytes long, and use the exist-
ing command group codes if possible. Some host adapter drivers and
software won’t handle other lengths.

Your application should use standard sense keys and ASC/ASCQ
codes wherever possible. This will help eliminate confusion on the host
side, and some host applications can make retry and error recovery deci-
sions based on these values.

Be prepared to respond to an Inquiry or Test Unit Ready com-
mand at any time. This is important if your device supports commands
that can complete before the operation is actually finished. As an exam-
ple, check out the Rewind command for sequential access (tape) devices.
It contains an Immediate bit that, when set, instructs the device not to
wait for the rewind operation to finish before completing the SCSI
Rewind command. Then, the host might later issue a Test Unit Ready
command to determine if the rewind has actually finished. Since rewind
operations can take a great deal of time, this feature is often used by tape
applications. Note that with the TSPI manager you don’t have to worry
about additional SCSI commands arriving until the current SCSI com-
mand has completed. The warning above applies only to SCSI commands
that can complete early, but which may leave the device unable to accept
additional media access-type commands until some later time.

Let’s take a look at a simple target-mode application that implements a
few frequently used SCSI commands. As with the earlier examples, this

Using the TSPI Interface

code leaves out a few details, but you should be able to follow along.
Check out the companion CD-ROM for a more complete example.

Listing 9-21. TSPI Sample Application

#define SENSE_LEN 18
unsigned char SenseData[SENSE_LEN];

#define INQUIRY LEN 36
unsigned char InquiryData[INQUIRY LEN] =
{ your inquiry data here };

void (FAR *tspi_ SendCommand) (void FAR *p);

int main(int argc, char *argv[])

{
TSPI_CMD cmd;
TSPI_EVENT event;

tspi_SendCommand = GetTspiEntryPoint();

if (!tspi_SendCommand)
{
printf ("TSPI manager not installed\n");
return 3;

}

// Attach to LUN 0 on the Adapter 0
cmd.CommandCode = TSPI_CMD_AttachLUN;
cmd.Adapter = 0;
cmd.Lun = 0;
tspi_SendCommand(&cmd) ;
if (cmd.Error)

{

printf ("Error %u trying to attach LUN\n",

cmd.Error);
return 4;

}

SetSenseData(SKEY_NoSense, 0, 0);

while (!kbhit()) // Run until a key is pressed
{
event.CommandCode = TSPI_CMD GetEvent;
event.AdapterIndex = cmd.AdapterIndex;
event.Lun = cmd.Lun;

event.Timeout = 100; // 100 milliseconds
tspi_SendCommand(&event);
if (event.Error == TSPI_ERR_None)

(Continued)

157

158 SCSI Target-Mode Programming

Listing 9-21. (Continued)

{
if (event.Flags & TSPI_FLAG_BusReset)

printf("Bus reset detected\n");
if (event.Flags & TSPI_FLAG_DeviceReset)
printf("Device reset detected\n");
if (event.CdbLength > 0)
ProcessCdb(&event);

}
else if (event.Error != TSPI_ERR_Timeout)
{
printf("Error %u, quitting...\n",event.Error);
break;
}

}

// Detach from LUN before we exit
cmd.CommandCode = TSPI_CMD_DetachLUN;
cmd.Adapter = 0;

cmd.Lun = 0;

tspi_SendCommand(&cmd) ;

return 0;

}

void ProcessCdb(TSPI_EVENT *event)
{
int status;
TSPI_CMD cmd;

switch (event->CdbByte[0])

{

case TEST_UNIT_READY:
status = TestUnitReady(event);
break;

case INQUIRY:
status = Inquiry(event);
break;

case REQUEST_ SENSE:
status = RequestSense(event);
break;

default:
// Unsupported command
SetSenseData(SKEY_IllegalRequest,

ASC_InvalidCommandCode, 0);

status = CHECK_CONDITION;

(Continued)

Using the TSPI Interface

Listing 9-21. (Continued)

// Now we tell the TSPI manager that we're done,
// and send the status byte back to the initiator

cmd.CommandCode = TSPI_CMD_CompleteCommand;
cmd.AdapterIndex = event->AdapterIndex;
cmd.TargetId = event->TargetId;

cmd.Parm[0] = status;
tspi_SendCommand (&cmd) ;

}

void SetSenseData(int skey, int asc, int asq)

int

int

{

int i;

for (i=0; i<SENSE_LEN; i++)
SenseData[i] = 0;

SenseData[0] = 0x70; // Current error
SenseData[2] = skey & 0xOF; // Sense Key
SenseData[12] = asc; // Additional sense code
SenseData[l13] = asq; // Additional qualifier

}

TestUnitReady (TSPI_EVENT *event)
{

// Assume a global 'Ready' variable
// indicates our ready status

if (Ready)
return GOOD;
else
return CHECK_CONDITION;
}
RequestSense(TSPI_EVENT *event)
{

// Send sense data back to host
TSPI_XFER xfer;
xfer.CommandCode = TSPI_CMD_WriteToHost;
xfer.AdapterIndex = event->AdapterIndex;
xfer.InitiatorId = event->InitiatorId;
xfer.TargetId = event->TargetId;
xfer.Lun = event->Lun;
if (event->CdbByte[4] > SENSE_LEN)
xfer.TransferLength = SENSE_LEN;
else
xfer.TransferLength = event->CdbByte[4];
xfer.TransferAddress = &SenseData[0];
(Continued)

159

160 SCSI Target-Mode Programming

Listing 9-21. (Continued)

tspi_SendCommand(&xfer);
if (xfer.Error)

{
}

return GOOD;

}

int Inquiry(TSPI_EVENT *event)

{

if (event->CdbByte[l] & EVPD_BIT)
{
// We don't support vital page data in this
// example, so return a CHECK CONDITION
SetSenseData(SKEY_IllegalRequest,

ASC_InvalidFieldInCdb, 0)

return CHECK_CONDITION;
}

else
{

// Send standard inquiry data back to host
TSPI_XFER xfer;
xfer.CommandCode = TSPI_CMD_WriteToHost;
xfer.AdapterIndex = event->AdapterIndex;
xfer.InitiatorId = event->InitiatorId;
xfer.TargetId = event->TargetId;
xfer.Lun = event->Lun;
if (event->CdbByte[4] > INQUIRY_ LEN)
xfer.TransferLength = INQUIRY LEN;
else
xfer.TransferLength = event->CdbByte[4];
xfer.TransferAddress = &InquiryData[0];
tspi_SendCommand(&xfer);
return GOOD;

}

Chapter 10

SCSI Support under Windows

With the enormous installed base of computers running Microsoft Win-
dows, we’d be remiss if we didn’t spend some time discussing native SCSI
support under Windows. I’ll start by reminding you that ASPI managers
are available for each current version of Windows (3.x, 95, and NT). In an
ideal world, that would be enough said—you could write ASPI-compliant
code, and aside from a few initialization details, you wouldn’t have to
worry which operating system it ran on. Unfortunately, this is the real
world, and there are some additional requirements and restrictions you
should note when using ASPI under Windows. In this chapter we’ll take a
look at these requirements, and then move on to a look at how SCSI is
supported on the Windows 95 and NT operating systems.

ASPI for Windows 3.x

Windows 3.x is really a graphical operating environment that sits on top
of DOS. (I'll bet you haven’t heard that before!) For our purposes, the
important difference between Windows 3.x and the others is that Win-
dows 3.x still uses DOS for many of its services, and that DOS device
drivers (such as ASPI managers) can still be loaded and used. This is
important because although there is a true ASPI for Windows 3.x specifi-
cation (more about this later), not all SCSI adapter vendors provided the
Windows 3.x WinASPI drivers required to use it. Windows 3.x applications

161

162

SCSI Support under Windows

that had to run with all SCSI adapters were forced to bypass WinASPI
support, and instead use DOS Protected Mode Interface (DPMI) calls to
access the real-mode ASPI drivers directly. Unfortunately, this technique
still has some limitations. For example, any SRB and data buffers that you
pass to a real-mode ASPI manager must lie in real-mode addressable
memory below one megabyte. This often means that an application must
copy data buffers to and from the DOS addressable space. For a detailed
description of how to use DPMI services to access real-mode ASPI man-
agers, read Brian Sawert’s article “The Advanced SCSI Programming
Interface” in the March 1994 issue of Dr. Dobb’s Journal.

Adaptec eventually released an ASPI specification and drivers that sup-
port Windows 3.x applications. Their implementation still uses DOS
ASPI drivers, but it also has a Windows 3.x Virtual Device Driver (VxD)
and a DLL that applications can call directly from Windows 3.x applica-
tions. The VxD handles most of the enhanced-mode memory management
issues automatically, so applications don’t have to copy data buffers back
and forth from the DOS addressable memory space. Also, applications
that use WinASPI aren’t restricted to using that precious little bit of DOS
addressable memory available under Windows 3.x for SRBs and data
buffers. They can use the regular Windows GlobalAlloc() routine to
allocate memory above the one megabyte limit, and pass them directly to
the WinASPI manager. The only restriction is that an application must
page-lock the memory to prevent enhanced-mode Windows 3.x from
swapping it out to disk while the ASPI operation was in progress. This is
done by allocating memory with the GMEM_FIXED attribute, and then
calling GlobalPageLock() to lock it in place. If your application uses
ASPI posting (callbacks) you should also page-lock your code segment
and any data segments used by the post routine to keep them from being
moved or swapped out to disk.

ASPI for Win32 (Windows 95 and NT)

Windows 95 and NT both have SCSI support built right into the operating
system. This allows for a much more robust implementation of ASPI for
these systems. In particular, you no longer need to worry about page-locking
your code segments and data buffers. When necessary, these functions are
carried out by the SCSI drivers themselves. However, the ASPI for Win32
specification does make some changes that you need to note. First, the
layout of the SRB structure has changed a bit. Fields have been moved
around for better 32-bit alignment, and the SRB_CDBByte][] array is now
always 16 bytes long, and is followed by a new field that receives any

The Windows 95 and NT SCSI Model 163

returned sense data bytes. This means that you no longer have to take the
length of the CDB into account when looking at the sense data.

ASPI for Win32 (95 and NT) also provides a new method for notifying
your application that an SRB has completed, called Event Notification.
With this method, you provide the handle to a regular Win32 event object
that will be signaled when the SRB completes. After starting the SRB,
your application can call WwaitForSingleObject() to block until the
SRB completes. This frees up processor time that would otherwise be
wasted while your application polls for the SRB’s completion. Event
Notification is the preferred method for waiting for an SRB to complete
under Windows 95 and NT. It is even faster and more efficient than post-
ing, which requires the ASPI for Win32 manager to launch a separate
thread to monitor SRBs for completion. This is done because the post
routine cannot be run at interrupt time under Windows 95 and NT (like it
can under DOS). The extra thread provides a way for the ASPI for Win32
manager to simulate the callback to the post routine, but at the expense of
some additional system overhead.

The Windows 95 and NT SCSI Model

Both Windows 95 and NT contain a series of layered device drivers that
provide different levels of SCSI support. At the lowest level are hardware-
specific drivers that manage SCSI bus transaction. In the middle lies a
driver that provides a single, consistent interface to all of the SCSI adapt-
ers on the system. And at the top are class drivers that implement the
different personalities of the various SCSU device types. Although the
implementation details differ between the two operating systems, concep-
tually they provide very similar SCSI model.

At the lowest software level are SCSI miniport drivers that are respon-
sible for the direct control of a SCSI interface adapter. Miniport drivers
initialize SCSI adapters, transmit I/O requests to the hardware, handle
interrupts, and perform adapter-level error recovery and logging. In short,
miniport drivers are small, stripped-down SCSI I/O modules that hide the
hardware-specific details of a particular SCSI adapter. They provide
higher-level SCSI modules with a consistent low-level interface to differ-
ent SCSI adapters, regardless of the actual hardware interface.

As you can see from Figure 10-1, a SCSI miniport driver doesn’t have
to control a traditional SCSI adapter as long as it implements the defined
SCSI miniport interface. This allows peripheral vendors to use a different
bus interface to their hardware with a minimal amount of device driver
support. As long as they can make their interface look like SCSI at some

164

SCSI Support under Windows

Win32 Application Win32 Application

(ReadFile(), WriteFile()) (ASPI32 or other)
File System Driver . ASPI Manager
NT Pass-
: EEER RN RN Through
z - Interface
Disk Class CD-ROM : ASPI Driver (NT)
Driver Class Driver ASPI VXD (95)
SCSIPORT Driver
Adaptec 1540 ATAPI (EIDE) pomega 'f;‘:t
Miniport Driver Miniport Driver

Miniport Driver

Adaptec 1540
SCSI Adapter

Standard IDE
Interface

Parallel Port

Figure 10-1. Win32 SCSI Support Model

level, they can rely on the higher-level Windows drivers to do most of the
work required to control their device. For example, ATAPI devices have a
command set nearly identical to SCSI, but they communicate over an IDE
bus. The Windows ATAPI miniport driver accepts the low-level SCSI
commands and sends them out over the IDE bus. It hides the IDE-specific
features of the interface behind a SCSI shell. Similarly, lomega supplies a
miniport driver that mimics the SCSI interface over a parallel port to com-
municate with their Zip drives.

Sitting atop these miniport drivers is a mid-level driver called the
SCSIPORT driver. The SCSIPORT driver provides a single entry point
for all SCSI requests in the system. It initializes the various miniport driv-
ers in the system, converts system-specific SCSI I/O requests into standard
SCSI Command Descriptor Blocks (CDBs), and passes these requests
through to the appropriate miniport driver. Since hardware-specific details
are hidden by the miniport drivers, higher-level drivers can call the SCSI-
PORT driver to carry out any SCSI I/O operation without regard to the
actual hardware interface employed. Under Windows NT, applications

Windows NT SCSI Pass-Through Interface 165

can also send SCSI I/O requests directly to the SCSIPORT driver via the
DeviceIoControl() routine—more about this a bit later. Unfortu-
nately, Windows 95 doesn’t provide the same support for applications—
only VxDs and other system components can call the SCSIPORT driver.

The highest level of SCSI-specific support in the Windows layered
device driver model rests in the SCSI class drivers. Each class driver is
responsible for handling I/O requests for a particular type of SCSI device.
There are several standard SCSI class drivers shipped with Windows,
including those that handle disk drives, tape drives, and CD-ROM drives.
Each of these device types requires a significantly different high-level
interface, but can use the SCSIPORT driver to carry out the lower-level
SCSI1/O requests. For example, file system drivers will call upon the disk
class driver to carry out high-level, block-oriented I/O requests. The disk
class driver will convert the file system requests into a series of SCSI I/O
requests, which it will then pass along to the SCSIPORT driver. Tape
class drivers have a completely different high-level interface, one suited
to sequential access rather than block access, and they know about
tape-specific concepts such as filemarks and end-of-tape warnings. The
tape class driver converts these high-level tape requests into one or more
SCSI I/O requests, which are again passed along to the SCSIPORT driver.
The CD-ROM and scanner class drivers are similarly unique, each imple-
menting a different high-level interface, but calling on the SCSIPORT
driver to carry out SCSI I/O requests.

You might be asking where ASPI fits into this picture. The Windows
NT ASPI manager uses a custom device driver (ASPI32.SYS) to call
directly into the SCSIPORT driver. The Windows 95 implementation
makes calls into the APIX VxD, which then connects to the SCSIPORT
driver. In either case, the ASPI manager must be careful not to allow
applications direct access to certain devices used by the system. You cer-
tainly shouldn’t be able to issue commands to a SCSI hard drive while
Windows is trying to update the file system. The ASPI managers for Win-
dows 95 and NT deal with this by simply hiding these system-reserved
devices from your application. If you want access to these devices from
your application, you should use the standard file system services. If you
really want to muck about with a hard drive while it’s being used by Win-
dows, you’ll have to write your own device driver to manage it.

Windows NT SCSI Pass-Through Interface

Earlier I mentioned that applications could issue SCSI commands directly
to the SCSIPORT driver under Windows NT. This is accomplished via a
slightly documented mechanism called the SCSI Pass-Through Interface,

166

SCSI Support under Windows

or SPTI. Applications can issue various SCSI-specific IOCTL calls directly
to any SCSI class or port driver. That driver will then route the SCSI com-
mand through the chain of drivers, and eventually out to the device. If a
particular device has been claimed by a class driver, you must issue the
SCSI pass-through commands to that class driver rather than the SCSI
port driver. This restriction prevents applications from issuing commands
without the knowledge of the class drivers, and allows the class driver to
maintain control of the device state.

To use the SCSI pass-through interface you must first open the class or
port driver in charge of the device. Direct-access devices are usually
claimed by the file-system drivers, and you can open them via their drive
letter. Other devices are accessed by their class driver name. You can
access unclaimed devices directly through their SCSI adapter driver.
Examples of each of these device names appear below:

Device Name Examples

\\C: Hard drive C
\\D: CD-ROM drive D
\\Tape0: Tape drive 0
\\Scsi0: SCSI adapter 0
\\Scsi2: SCSI adapter 2

Opening the driver is as simple as opening a file:

Listing 10-1. Opening a Device Driver

handle
GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE WRITE,
NULL, OPEN_EXISTING, 0, NULL);

CreateFile("\\\\Scsi2:",

Once you’ve opened the device you can issue IOCTL calls to get the
inquiry data for any devices controlled by the driver, get the host adapter
capabilities, execute SCSI commands, or re-scan the SCSI bus to look for
new devices. The IOCTL codes and the structures that they use are
defined in various header files distributed with the Windows NT Device
Driver Kit (DDK). The required header files are:

e DEVIOCTL.H
¢ NTDDDISK.H
¢ NTDDSCSI.H

Windows NT SCSI Pass-Through Interface

The calls available via the SCSI pass-through interface are:

IOCTL_SCSI_GET_INQUIRY_DATA
IOCTL_SCSI_GET_CAPABILITIES
IOCTL_SCSI_GET_ADDRESS
IOCTL_SCSI_RESCAN_BUS
IOCTL_SCSI_PASS_THROUGH

e JOCTL_SCSI_PASS_THROUGH_DIRECT

@ © @

Let’s examine each of thesg in turn.

IOCTL_SCSI_GET INQUIRY DATA

This IOCTL command is used to retrieve information describing each
SCSI bus and device controlled by the driver. Let’s look at the structures
used to describe this information, and then at some sample code that
walks through the list of busses and devices.

Listing 10-2. SCSI Get Inquiry Data

typedef struct _SCSI_ADAPTER_BUS_INFO
{
UCHAR NumberOfBuses; // How many SCSI busses
SCSI_BUS_ DATA BusData[l]; // Array of data structures
} SCSI_ADAPTER BUS_INFO, *PSCSI_ADAPTER_BUS_INFO;

typedef struct _SCSI_BUS_DATA
{
UCHAR NumberOfLogicalUnits; // Logical devices
UCHAR InitiatorBusId; // SCSI adapter's ID
ULONG InquiryDataOffset; // Inquiry data buffer
}SCSI_BUS_DATA, *PSCSI_BUS_DATA;

typedef struct _SCSI_INQUIRY DATA
{

UCHAR PathId; // Which SCSI bus
UCHAR TargetId; // Which SCSI target
UCHAR Lun; // Which SCSI LUN
BOOLEAN DeviceClaimed; // Claimed by driver?
ULONG InquiryDataLength; // Inquiry data length
ULONG NextInquiryDataOffset;// Next LUN's data
UCHAR InquiryData[l]; // This LUN's data

}SCSI_INQUIRY_DATA, *PSCSI_INQUIRY_DATA;
(Continued)

167

168 SCSI Support under Windows

Listing 10-2. (Continued)

ULONG bus,n;
SCSI_ADAPTER_BUS_INFO *adapter;
char ing_buf[4096];
DeviceIoControl(device_handle, // from CreateFile()
IOCTL_SCSI_GET_INQUIRY DATA,
NULL, O,
&ing_buf, sizeof(ing_buf),
&n, NULL);

// Scan through the adapter inquiry data, printing out
// information for each BUS/TID/LUN encountered
adapter = (SCSI_ADAPTER_BUS_INFO *) ing_buf;
printf("Bus TID LUN Claimed Inquiry Datal\n");
printf("--- —=-= ——— e \n");
for (bus=0; bus<adapter->NumberOfBuses; bus++)
{
// Get offset to first logical unit's inquiry data
ULONG ing_offset =
adapter->BusData[bus].InquiryDataOffset;

while (ing_offset != 0) // end of list?
{
// Get pointer to the inquiry data
// within the returned buffer
SCSI_INQUIRY_ DATA *ing;
ing = (SCSI_INQUIRY DATA *) (inq_buf + inq offset);

// Print BUS/TID/LUN, and whether or not
// the device is claimed by a class driver.
printf("%3lu %3u %3u %s ",
bus, ing->TargetId, ing->Lun,
ing->DeviceClaimed ? " Yes " : " No ")

// Now print out the device's SCSI inquiry data
for (int i=0; i<8; i++)

printf("%02X ",ing->InquiryDatal[i]);
printf("%.28s\n",&ing->InquiryData[8]);

// Get offset to next logical unit's inquiry data
inqg_offset = ing->NextInquiryDataOffset;
}

Windows NT SCSI Pass-Through Interface 169

IOCTL_SCSI_GET_CAPABILITIES

This command is used to determine the capabilities and limitations of the
underlying SCSI adapter and miniport driver. This includes the maximum
transfer length allowed, how many pages that transfer may span, and the
alignment requirement for any data buffers passed to it.

Listing 10-3. SCSI Get Capabilities

typedef struct IO SCSI_CAPABILITIES
{
ULONG Length; // Length of this structure
ULONG MaximumTransferLength;// Maximum transfer length
ULONG MaximumPhysicalPages; // How many physical pages
// the transfer can span
ULONG SupportedAsynchronousEvents; // Async event allowed

ULONG AlignmentMask; // Alignment requirement
BOOLEAN TaggedQueuing; // Tagged queueing allowed
BOOLEAN AdapterScansDown; // Adapter scans BIOS

BOOLEAN AdapterUsesPio; // Adapter uses programmed I/O

// (as opposed to bus-master
// or DMA transfers)
} I0_SCSI_CAPABILITIES, *PIO_SCSI_CAPABILITIES;

IO_SCSI_CAPABILITIES caps;

DeviceIoControl(device_handle, // from CreateFile()
IOCTL_SCSI_GET_INQUIRY DATA,
NULL, O,
&caps, sizeof(caps),
&n, NULL);

You always should respect the transfer limits returned by this com-
mand. Larger transfers will fail, and may cause some versions of
Windows NT to crash. Since applications don’t have access to the physi-
cal page layout of their data buffers, you should limit your transfers to the
smaller of the MaximumTransferLength and the worst-case page layout
of your buffer, which is (MaximumPhysicalPages-1) * PAGE_SIZE.

IOCTL_SCSI_GET_ADDRESS

This command is used to return addressing information for a particular
device. Note that this command is valid only for class drivers. You can use

170 SCSI Support under Windows

this information to determine the SCSI adapter, bus, and target ID to
which a device is attached.

Listing 10-4. SCSI Get Address

typedef struct _SCSI_ADDRESS

{

ULONG Length; // Length of this structure
UCHAR PortNumber; // Which SCSI device controls
UCHAR PathlId; // Which bus it's on

UCHAR TargetId; // Its target ID

UCHAR Lun; // Its logical unit number

}SCSI_ADDRESS, *PSCSI_ADDRESS;
SCSI_ADDRESS addr;

DeviceIoControl(device_handle, // from CreateFile()
IOCTL_SCSI_GET_ADDRESS,
NULL, O,
&addr, sizeof(addr),
&n, NULL);

Note that the PathId, TargetId, and LUN fields are also returned by
the IOCTL SCSI__GET_INQUIRY_DATA command. The PortNumber
field can be used to create the device name for the port driver. For exam-
ple, a PortNumber of 2 would indicate that the device is controlled via
the “\\Scsi2” port driver.

IOCTL_SCSI_RESCAN_BUS

This command causes the driver to rescan its SCSI bus, looking for new
devices. It collects SCSI inquiry data for newly attached devices, while
preserving any class driver claims on existing devices.

Listing 10-5. SCSI Rescan Bus

DeviceIoControl(device_handle, // from CreateFile()
IOCTL_SCSI_RESCAN SCSI_BUS,
NULL, O,
NULL, O,
&n, NULL);

Windows NT SCSI Pass-Through Interface

An application can then reissue the IOCTL_SCSI_INQUIRY DATA
command to check for any new devices.

IOCTL_SCSI_PASS_THROUGH and
IOCTL_SCSI_PASS THROUGH _DIRECT

These commands are used to send SCSI commands to a target device. The
IOCTL_SCSI_PASS_THROUGH command uses a single structure for the
SRB and data buffer, while IOCTL_SCSI PASS_THROUGH_DIRECT
allows you to specify the address of a separate data buffer for I/O transfers.
The structures used by these commands are as follows:

Listing 10-6. SCSI Pass-Through

typedef struct _SCSI_PASS_THROUGH

{

USHORT Length;

UCHAR
UCHAR

UCHAR

UCHAR

UCHAR
UCHAR
UCHAR
ULONG
ULONG
ULONG
ULONG
UCHAR

} SCSI_PASS_THROUGH,

ScsiStatus;
PathId;

TargetId;
Lun;

CdbLength;
SenseInfolength;
Dataln;
DataTransferLength;
TimeOutValue;
DataBufferOffset;
SenseInfoOffset;
Cdb[16];

//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//

Length of this structure
Returned target status
Path ID

(from SCSI_INQUIRY_DATA)
Target ID

(from SCSI_INQUIRY_ DATA)
LUN

(from SCSI_INQUIRY_ DATA)
Length of SCSI CDB

Sense buffer length
Direction flag (see below)
Data bytes to transfer
timeout, in seconds
offset of data buffer
offset of sense buffer
CDB bytes

*PSCSI_PASS_THROUGH;

typedef struct _SCSI_PASS THROUGH DIRECT

{

USHORT Length;

UCHAR
UCHAR

UCHAR

UCHAR

UCHAR

ScsiStatus;
PathId;

TargetId;
Lun;

CdbLength;

//
//
//
//
//
//
/7
//
//

Length of this structure
Returned target status
Path ID

(from SCSI_INQUIRY_ DATA)
Target ID

(from SCSI_INQUIRY_ DATA)
LUN

(from SCSI_INQUIRY_ DATA)
Length of SCSI CDB

(Continued)

171

172 SCSI Support under Windows

Listing 10-6. (Continued)

UCHAR SenselInfolLength; // Sense buffer length

UCHAR Dataln; // Direction flag (see below)
ULONG DataTransferLength; // Data bytes to transfer
ULONG TimeOutValue; // timeout, in seconds

PVOID DataBuffer; // address of data buffer
ULONG SenseInfoOffset; // offset of sense buffer
UCHAR Cdb[16]; // CDB bytes

} SCSI_PASS_THROUGH_DIRECT, *PSCSI_PASS_THROUGH_DIRECT;

Note that these structures are almost identical, with the exception of
the DataBufferOffset and DataBuffer fields. The IOCTL SCSI_
PASS_THROUGH command expects the data buffer to be addressed as an
offset from the start of the SCSI_PASS_THROUGH structure, while the
IOCTL_SCSI_PASS_THROUGH_DIRECT command allows you to specify
a pointer that directly addresses the buffer. Also note that the Sense-
InfoOffset in each structure indicates an offset from the start of the
structure. Applications typically embed these structures within their own
data structures, like the following:

Listing 10-7. SCSI Pass-Through Request

typedef struct _NT SCSI_REQUEST
{
SCSI_PASS_THROUGH spt;
unsigned char sense[l6];
unsigned char data[l];
} NT_SCSI_REQUEST;

typedef struct _NT_SCSI_REQUEST_ DIRECT
{
SCSI_PASS_THROUGH DIRECT spt;
unsigned char sense[16];
} NT_SCSI_REQUEST_ DIRECT;

This allows you to use the of fsetof () macro to specify the offset of
the sense buffer (and the data buffer offset for the IOCTL_SCSI_PASS_
THROUGH command).

Windows NT SCSI Pass-Through Interface

Listing 10-8. SCSI Pass-Through Data Buffers

NT_SCSI_REQUEST sr;
sr.spt.SenseInfoOffset = offsetof (NT SCSI_REQUEST,sense);
sr.spt.DataBufferOffset = offsetof (NT_SCSI_REQUEST,data);

NT_SCSI_REQUEST_DIRECT srd;

char data_buffer([1024];

srd.spt.SenseInfoOffset = offsetof (NT_SCSI_REQUEST,sense);
srd.spt.DataBuffer = &data buffer([0];

The following example shows how you can use the IOCTL SCSI_
PASS_THROUGH_DIRECT command to implement a SCSI I/O routine.
Your application can use a similar routine to handle all of the I/O com-
mands for SCSI devices.

Listing 10-9. Using SCSI Pass-Through

int ScsiCommand(HANDLE device_handle,
SCSI_INQUIRY DATA *ing,
void *cdb_buf, unsigned cdblen,
void *data_buf, unsigned long dlen,
int direction,
void *sense_buf, unsigned slen,
long timeout)
{
NT_SCSI_REQUEST DIRECT a;
ULONG returned;

memset(&a,0,sizeof(a));
a.spt.Length = sizeof(a.spt);
a.spt.PathId = ing->PathId;
a.spt.Targetld = ing->TargetId;
a.spt.Lun = ing->Lun;
a.spt.CdbLength = cdblen;
a.spt.SenseInfoLength = sizeof(a.sense);
a.spt.DataIn = direction;
a.spt.DataTransferLength = dlen;
a.spt.TimeOutValue = timeout;
a.spt.DataBuffer = data_buf;
a.spt.SenseInfoOffset =

offsetof (NT_SCSI_REQUEST DIRECT,sense);
memcpy(a.spt.Cdb, cdb_buf, cdblen);

(Continued)

173

174 SCSI Support under Windows

Listing 10-9. (Continued)

if (!DeviceIoControl(h,
IOCTL_SCSI_PASS_THROUGH_DIRECT,
&a, sizeof(a), &a, sizeof(a),
&returned, NULL))

{
int x = GetLastError(); // See why it failed

if (sense_buf && slen)

memset (sense_buf,0,slen);
// clear sense area

return OXFF; // return error status

}

if (sense_buf && slen)
memcpy(sense_buf, a.sense,
(slen < sizeof(a.sense)) ? slen :
sizeof (a.sense));

return a.spt.ScsiStatus;

}

Chapter 11

Unix SCSI Implementations

The rest of this book covers how to write SCSI device drivers and applica-
tions in the ever-popular MS-DOS/Windows/Windows95/NT environment.
That seems to be the general trend these days, yet SCSI doesn’t really get
to shine in most platforms of that type. A personal desktop system with
one user clicking away at the keyboard, even a programmer doing soft-
ware development, only begins to tap the capabilities of a high-performance
SCSI I/O subsystem.

In server systems running UNIX, the multitasking abilities of SCSI are
put to real advantage. Since any number of users are requesting data from
multiple disks, CD-ROMs, etc., the single-minded nature of IDE would
not be well tolerated. Because of this, virtually all current servers have
SCSI I/0.

In the paragraph above, I mentioned systems running UNIX. UNIX is
not really one operating system anymore. Ever since U.C. Berkeley
started independent development from the AT&T version 7 code base,
UNIX has branched many times. A number of attempts at standardizing
UNIX systems has resulted in operating systems that are basically source
code compatible at the application programming interface level. However,
every UNIX kernel is completely unique inside! Unfortunately, this is the
domain of the UNIX device driver developer.

The various UNIX vendors never felt the need to be compatible below
the application level. Even when the PC vendors agreed on a standard
SCSI API, the UNIX vendors paid it no mind. That thinking is readily

175

176

Unix SCSI Implementations

apparent when one begins to write SCSI device drivers for more than one
UNIX platform. Each platform has its own entirely different SCSI API,
not to mention a whole different kernel architecture and set of kernel I/O
support functions.

This situation has provided employment for a large number of driver
writers since 1985 or so. After a while ANSI decided to create a standard
SCSI API specification called Common Access Method (CAM), but it
wasn’t really in a usable state until about 1991 or so. By then the UNIX
vendors were pretty much locked in to their proprietary APIs. Only Digi-
tal Equipment Corporation adopted CAM as their native UNIX SCSI API.

UNIX systems provide an application environment that is quite differ-
ent from the MS-DOS/Windows environment. User applications are not
allowed to directly access system hardware. In order to perform I/O an
application must make a system call, like “read,” for example. The O/S
will then decide which device driver is in control of the device from
which the data is to be read from and build a request asking that the
desired data be transferred into the user’s memory buffer.

Another method that is used by some special applications is for the O/S
to provide what is called a SCSI pass-through driver. In this case the
application builds its own SCSI commands and hands them to the pass-
through driver to be delivered to the device. Once the command com-
pletes the status is returned to the calling application. An example of this
type of application is a music CD playing utility.

Some UNIX systems have all the device drivers linked into one large
monolithic kernel file. When the system boots, the entire O/S image is
loaded into memory and executed. Other systems go through a dynamic
process during boot that loads only the drivers that are needed currently.
Other drivers can be loaded and unloaded as needed. This dynamic
approach is being used more and more since it conserves system resources.
It does, however, make the drivers themselves more complicated to write.

This chapter will not attempt to explain in detail how to write SCSI
drivers and applications for all UNIX platforms. To do that would take an
entire book for each O/S. I simply want to give the reader a glimpse of the
SCSI environment in the various UNIX variants. Then I’ll single out one
popular UNIX variant and give more detail on it.

A Brief Description of UNIX Device Drivers

In UNIX systems applications are protected from each other’s transgres-
sions by the kernel’s intervention. All I/O is done via system calls into the

A Brief Description of UNIX Device Drivers

UNIX kernel. A device driver is a program that runs at the kernel’s privi-
lege level that performs I/O to a particular type of I/O device. All UNIX
I/0 is made to look to the application like file I/O, even when the I/O is to
a hardware device like a terminal screen. There is a “special file” (also
called a device node) for each device that appears in the filesystem (usu-
ally in the /dev directory). These have names like /dev/tty0 for a terminal
or /dev/hdO for a hard disk. The names are made up by the driver writer,
but can be changed or have links made to them by the system administra-
tor. All these special files really do is store the “major and minor
numbers” for that device. The major number is used as an index into a
table of all the device drivers in the kernel and the minor number can be
used in any manner desired by the driver writer. It usually is used to spec-
ify which unit the I/O is to go to.

There are two main types of UNIX drivers, called block and character.
Block devices are used to access devices that are clearly block oriented
(like disks). Character devices are used for everything else.

Block drivers have three major entry points: Open, Close, and Strategy.
Character drivers have a few more: Open, Close, Read Write, and Ioctl.

Take a look at Figure 11-1 to understand how all the pieces fit together.

Drivers operate in two processor contexts: User and Kernel. When the
driver is opened by the user application and a data request is made, the
driver is acting as a privileged extension of the user application (User
context). Once the user’s request has been submitted to the device, the
application is put to sleep (blocked from further execution), until the
device interrupts the currently running process by causing the driver’s
interrupt handler to execute. The interrupt handler runs in kernel context.
It issues a wakeup call that will cause the application to resume execution
where it left off with the requested data in its buffer, where it was placed
either by the interrupt handler using polled I/O or by the device itself
using DMA. Modern UNIX drivers also need to be aware that their inter-
rupt handler may run on a different processor than the one running the
application program. This means that some form of locking must be done
on any structures or variables that are accessed by an instance of the
driver.

A driver’s strategy routine is actually called by the kemel’s file system
code when a user process asks for data using standard file I/O calls. The
data read this way is stored in the kernel’s “buffer cache” so that other
processes that need the same data can get it without another disk read
operation being done.

177

178 Unix SCSI Implementations

SCSI Application Programs Co mﬂ::gﬁ;‘:::‘:il ons Tape Backup Utllites
(xcmd, writecd, etc.) (cp, dd, etc.) (tar, cpio, etc.)
v] | | | | |
pace open ioctl oplen read oplen read
Kernel fdevicam filename idevitape
Space
Fllesystem
Device Switch Table
SCslI Tacket buf struct buf struct
Pass-through
Peripheral Driver Iocg Disk Driver Tape Driver Read
Drivers Routine Strategy Routine Routine
SCS! packet

(In some platforms this [Middte Level SCS! Transport (a.4., XPT)
layer is eliminated)

Low-Level Low-Level
Host Adapter Host Adapter
Driver Driver
S l
Adapter Cardl Adapter Card
Terminator Terminator

Figure 11-1. A Typical UNIX SCSI VO Subsystem

The specific kernel function names that perform all the housekeeping
operations involved in accomplishing the above mentioned data transfer
are different for each flavor of UNIX.

Comparison of UNIX Implementations

Comparison of UNIX Implementations

Here are some key points of the most popular UNIX variants in outline
form, which I hope will make it easy to compare them. The following
tables could also act as a guide in getting a driver writer started in devel-

179

oping drivers for the various platforms.

Table 11-1. AIX Version 4.1 Features

Platform
Kernel type

Kernel—memory

handling (allocate/free)

Kernel—data space
conversion

Kernel—process
blocking (sleeping)
Kernel—data
access locking

Kernel—other
functions

Kernel—other
structures

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Power RISC and Power PC architectures
Fully dynamic

xmattach(), xmalloc(), xmfree()

copyin(), copyout(), uiomove()

e_sleep(), wakeup()

locklI(), unlockl(), lock_alloc(), simple_lock_init(), unlock_
enable(), lock_free(), disable_lock(), i_enable(), i_disable()

fp_opendev(), fp_close(), fp_ioctl(), pincode(), unpincode(),
pinu(), unpinu(), errsave(), bzero(), uphysio(), devswadd(),
devswdel()

buf, sc_buf, sc_iocmd

/usr/include/sys/scsi.h, trcmacros.h, err_rec.h, errids.h, trchkid.h,
lock_alloc.h, cdrom.h, scdisk.h

devstrat(sc_buf)

drivernameconfig, drivernameopen, drivernameclose, driver-
nameread, drivernamewrite, drivernameioctl, drivernamestrategy

fd = openx(*“/dev/rcd0”, O_RDONLY, NULL,
SC_DIAGNOSTIC)

ioctl(fd, CDIOCMD or DKIOCMD, &sc_iocmd)

smit, Isdev, odme, odmadd, odmdelete, odmget, odmchange,
odmshow, trace, errpt, errclear, cfgmgr, installp

(Continued)

180 Unix SCSI Implementations

Table 11-1. AIX Version 4.1 Features (Continued)

Feature

Description

Driver support files
Error logging

Example driver
source

Debugging

Available driver
documentation

Comments

[etc/drivers/*, /etc/methods/*, /lib/kernex.exp
errsave(), errrpt

Under Ver 3.x, a few partial examples were included with the O/S
(in /usr/lpp/bos/samples/). Better examples are included on a dis-
kette in the IBM Device Driver manual mentioned below. Another
source of sample driver code is on IBM’s ftp site at
ftp://ftp.austin.ibm.com/pub/developer/aix/ddriver/writedd.tar.Z

A very primitive kernel debugger is included with the O/S. It
requires that a dumb terminal be attached to a serial port.

Kernel printf is active only with switch in the “service” position.

“Writing a Device Driver for AIX Version 3.2”
(IBM P/N GG24-3629-01)

“Writing a Device Driver for AIX Version 4.1”
(IBM P/N SC23-2593-03)

“Kernel Extensions and Device Support Programming Concepts”
(IBM P/N SC23-2611-03)

AIX drivers are more complicated than some because of the
required interaction with the ODM (Object Data Manager) data-
base for device information. All device topology and identification
information is stored in the ODM.

AIX SCSI adapter drivers need to realize that the sc_buf passed to
it may contain a list of transfers to be done, or only one. There is
more than one if the buf structure pointer in the sc_buf is not
NULL. An editor called odme, which could be used to edit the
ODM database directly, used to be supplied in version 3.x, but it
is no longer available in 4.x.

The “export” files in/lib show which functions are exported by
each module. It is useful to look in kernex.exp to determine the
exact names of kernel functions. If your driver will have any entry
points other than the standard ones, you must create one of these
export files for your driver too. This includes any of your symbols
you may want to find in the kernel debugger.

Comparison of UNIX Implementations

Table 11-2. HP-UX 10.x Features

~ Description

=
ot e -

Platform

Kernel type

Kernel—memory han-
dling (allocate/free)

Kernel—-data space
conversion

Kernel—process
blocking (sleeping)
Kernel--—data access
locking

Kernel—other
functions

Kernel-—other
structures

SIO—other functions

SIO—SCSI-related
header files

SIO—SCSI adapter
driver interface

WSIO--—data access
locking

WSIO—other
functions

WSIO—SCSI-related
header files

HP9000/8xx series PA-RISC architecture
Monolithic

Note: As of HP-UX 10.xx, HP-UX supports two different driver
subsystems: Workstation I/O (WSIO) and Server [/O (S10). Gener-
ally, WSIO drivers control devices on EISA, HSC, and some built-in
busses, while SIO drivers control HP-1O bus devices.

kmalloc(), kfree(). io_get_memy(), io_rel_mem()

copyin(), copyout(), bvtospace(), pvtospace(), minphys()

biowait(), get_sleep_lock(), sleep(), wakeup()

alloc_spinlock(), spinlock(), spinunlock()

physio(), timeout(), biodone(), bzero(), bcopy(). bcmp()

buf, sctl_io, iovec, uio

io_send(), io_get_tm(), io_get_frame(), io_port_info(), sio_get_pda()

/usr/include/sio/llio.h, sys/sio_drv.h

io_send(io_req)

A driver must “bind” to a Device Adapter Manager (DAM) for
each SCSI target it wants to control. No other driver can then be
bound to those devices.

scsi_lun_lock(), scsi_lun_unlock()

scsi_lun_open(), scsi_lun_close(), scsi_ioctl(), scsi_init_inquiry_
data(), scsi_read(), scsi_write(), scsi_enqueue(), scsi_dequeue(),
scsi_dequeue_bp(), scsi_cmd(), scsi_ddsw_init(), scsi_strategy(),
scsi_enqueue_cnt(), scsi_mode_sense(), scsi_mode_fix(), scsi_
mode_select(), scsi_wr_prot(), scsi_action(), scsi_sense_action(),
scsi_snooze(), scsi_sleep(), scsi_log_io()

/usr/include/sys/wsio.h, sys/scsi_ctl.h

(Continned)

181

182 Unix SCSI Implementations

WSIO—SCSI adapter
driver interface

SCSI-related header
files

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support files

Error logging
Debugging

Comments

Table 11-2. HP-UX 10.x Features (Continued)

scsi_start()
/usr/include/sys/scsi.h, scsi_meta.h
drivername (I/O message port server)

fd = open(**/dev/rdsk/c0t5d0”, ...)
ioctl(fd, SIOC_IO or SIOC_SET_CMD, &sctl)
Other IOCTL commands:

SIOC_INQUIRY, SIOC_EXCLUSIVE, SIOC_XSENSE, SIOC_IO,
SIOC_PRIORITY_MODE, SIOC_CMD_MODE, SIOC_SET_
CMD, SIOC_RETURN_STATUS, SIOC_GET_TGT_PARMS,
SIOC_GET_BUS_PARMS, SIOC_GET_LUN_LIMITS, SIOC_
SET_LUN_LIMITS, SIOC_GET_TGT_LIMITS, SIOC_SET_
TGT_LIMITS, SIOC_GET_BUS_LIMITS, SIOC_SET_BUS_
LIMITS, SIOC_RESET_DEYV, SIOC_RESET_BUS

swinstall, swremove, swpackage, ioscan, uxgen

/sbin/rc2.d/Sxxx and Kxxx scripts, /stand/system,
/usr/conf/master.d/drivername, /usr/conf/lib/driverlib.a

/var/adm/messages, dmesg

Source-level kernel debugger called ddb, which is based on dbx.
Requires a second machine on the same IP subnet.

Server type SCSI adapters use the ‘scsil’ (narrow) or ‘scsi3’
(wide) adapter drivers. Workstation type SCSI adapters use either
the ‘c700’ (narrow) or ‘c720’ (fast/wide) adapter drivers.

The driver being used by a SCSI adapter can be seen using the
command “ioscan -kf”.

Warning! Some HP PA RISC documentation shows bit O as the
MSB. There were major changes between HP-UX ver 9.x and
10.x. All kernel intersubsystem communication is done via
messages.

Platform
Kemel type

Kemnel--—data space
conversion

Kemnel—process
blocking (sleeping)

Kernel--—-data access
locking

Kemnel—other
functions

Kemel-—other
structures

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support files

Error logging
Example driver source

Debugging

Available driver
documentation

Comments

Table 11-3. SCO ODT 3 Features

Comparison of UNIX Implementations

Intel architecture based PCs
Monolithic

ktop(), ptok(), paddr(), vtop(), copyin(), copyout()
iowait(), sleep(), wakeup(), iodone()
spl6(), splx()

beopy(), printf(), delay(), major(), minor(), panic(), physio(),
suser(), signal(), timeout()

buf, scsi_io_req, scsi_dev_cfg, u
/usr/include/sys/scsi.h
scsi_ha_cfg[0](&scsi_io_req)

drxinit, drxopen, drxclose, drxread, drxwrite, drxioctl,
drxstrategy, drxstart, drxintr

fd = open(*“/dev/rcd0”, ...)
ioctl(fd, SCSIUSERCMD, &sc)

link_unix, custom

/etc/conf/cf.d/mscsi, mdevice, sdevice,
/etc/conf/pack.d/drxx/driver.o

cmn_err, /var/adm/messages
Comes with SCO Driver Book mentioned below.

An assembler-level kernel debugger is available from SCO for
developers.

Kettle, Peter and Steve Statler. Writing Device Drivers for SCO
UNIX: A Practical Approach. Reading, Massachusetts: Addison-
Wesley, 1993.

AT&T System V based. Evolved into Microsoft Xenix and around
1990 into SCO UNIX and Open Desktop.

183

184

Platform
Kemnel type

Kernel—memory han-
dling (allocate/free)

Kernel—data space
conversion

Kemnel—process
blocking (sleeping)

Kemnel—data access
locking

Kemnel—other
functions

Kemnel—other
structures

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support files

Error logging

Table 11-4. Solaris 2.5 Features

Unix SCSI Implementations

Sun SPARC architecture

Fully dynamic
scsi_alloc_consistent_buf(), scsi_free_consistent_buf(),
kmem_alloc(), kmem_zalloc(), kmem_free()

copyin(), copyout()

sleep(), wakeup(), biowait(), biodone(), bioerror(), cv_init, cv_wait(),
cv_wait_sig(), cv_signal(), cv_broadcast(), cv_destroy()

mutex_init(), mutex_enter, mutex_exit()

ddi_get_soft_state, ddi_soft_state_fini(), ddi_soft_state_zalloc(),
ddi_soft_state_free(), mod_remove(), mod_info(), ddi_getprop(),
ddi_get_parent(), ddi_get_instance(), ddi_get_driver_private(),
scsi_init_pkt(), ddi_create_minor_node(), ddi_remove_minor_
node(), ddi_get_name(), ddi_name_to_major(), ddi_report_dev(),
scsi_reset(), scsi_destroy_pkt(), scsi_probe(), scsi_unprobe(),
scsi_errmsg(), makecom_g0(), bzero(), bcopy(), physio(),
getrbuf(), freerbuf()

buf, uscsi_cmd, iovec, uio
/usr/include/sys/scsi/scsi.h
scsi_transport(scsi_pkt)

drivername_open, drivername_close, drivername_read,
drivername_ write, drivername_ioctl, drivername_strategy,
drivername_info, drivername_identify, drivername_probe,
drivername_attach, drivername_detach, _init, _fini, _info

fd=open(*“/dev/rdsk/c0t210s0”, ...)
ioctl(fd, USCSICMD, &uscsi_cmd)

add_drv, rem_drv, drvconfig, pkgmk, pkginfo, pkgtrans, pkgchk,
pkgadd, pkgrm, prtconf, sysdef

/usr/kernel/drv/driver.conf, /etc/devlink.tab, proto.drivername,
/etc/system, /etc/rc2/

/var/adm/messages
(Continued)

Comparison of UNIX Implementations

Table 11-4. Solaris 2.5 Features (Continued)

Example driver source

Debugging

Available driver
documentation

Comments

ftp://opcom.sun.ca/pub/drivers/svr4_sample_drivers.tar.Z

Assembler-level kernel debugger is built into the system boot
PROM and can be activated by booting with a command line
option. It can then be entered by typing “L1-A” or (“Stop-A”).
Another primitive debugger called “adb” is also provided.

http://www.sun.com/smcc/solaris-migration/docs/
Solaris 2.x DDK (Driver Development Kit)
“Writing Device Drivers” (Sun P/N 800-6502-06)

On SPARC systems, DMA goes through the memory manage-
ment hardware so scatter/gather isn’t necessary for transfers up to
16 MB.

Development is rather convenient since drivers can be loaded and
unloaded without rebooting.

Table 11-5. Digital UNIX (Formerly OSF/1) Ver. 4.x Features

Platform
Kemel type

Kemel—memory han-
dling (allocate/free)

Kernel—data space
conversion

Kemnel—process
blocking (sleeping)
Kernel-—data access
locking

Kemnel—other
functions

Kemel—other
structures

Digital Alpha architecture
Monolithic (but driver loading/unloading is possible)
contig_malloc(), contig_free(), MALLOC()

copyin(), copyout()

biodone(), iodone(), mpsleep(), sleep(), spldevhigh(), splx(),
wakeup()

lock_init(), lock_done(), lock_read(), lock_write(), lock_terminate()

physio(), devsw_add(), devsw_del(), devsw_get(), getnewbuf(),
brelse(), bzero(), major(), minor()

buf, uagt_struct, CCB_SCSIIO, CCB_GETDEV, CCB_PATHINQ,
etc.

(Continued)

185

186 Unix SCSI Implementations

Table 11-5. Digital UNIX (Formerly OSF/1) Ver. 4.x Features (Continued)

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support files
Error logging
Debugging

Available driver
documentation

Comments

/usr/include/io/cam/cam.h, scsi_all.h, scsi_cdbs.h, scsi_direct.h,
scsi_opcodes.h, uagt.h, dec_cam.h, xpt.h, scsi_status.h, buf.h,
ioctl.h

xpt_action(&ccb), xpt_ccb_alloc(), xpt_ccb_free()

drivername_open, drivername_close, drivername_read,
drivername_write, drivername_ioctl, drivername_strategy

fd=open(*“/dev/cam”, ...)
ioctl(fd, UAGT_CAM_IO, &uagt_struct)
uerf, /sbin/doconfig, /sbin/ddr_config, /usr/sbin/sysconfig

/etc/ddr.dbase, sysconfigtab, /sys/conf/hostname
cam_logger, /var/adm/messages, binary.errlog

dbx -k, dbx —remote, Ladebug (All are full source level
debuggers.)

Digital UNIX Device Driver Writing Manual Set
(DEC P/N QA-MTS5AH-GZ)

A large set of common routines for simplifying the sending and
receiving of CAM CCBs is available for use by SCSI peripheral
drivers. See the ccmn_xxxx routines in the CAM driver writer’s
manual (part of the document set above).

Table 11-6. Linux (Kernel Ver. 2.0.x) Features

Platform

Kernel type

Kernel—memory han-
dling (allocate/free)

Kernel—data space
conversion

Intel x86 architecture-based PCs, Digital Alpha architecture,
Sun SPARC architecture

Partially dynamic

kmalloc(), kfree(), free_pages(), scsi_init_malloc(), scsi_init_free(),
brelse()

put_user(), get_user(), verify_area(), memcpy_tofs(),
memcpy_fromfs()

(Continued)

Comparison of UNIX Implementations

Table 11-6. Linux (Kernel Ver. 2.0.x) Features (Continued)

Kernel—process
blocking (sleeping)

Kernel--—data access
locking

Kernel—other
functions

Kernel-—other
structures

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points (character
drivers)

Required driver entry
points (block drivers)

SCSI pass-through
interface (character
drivers)

SCSI pass-through
interface (block
drivers)

Driver support
commands

Driver support files

Error logging

Example driver source

sleep_on(), wake_up()

save_flags(), cli(), sti(), restore_flags()

printk(), panic(), memset(), suser(), init_module(), register_blkdev(),
unregister_blkdev(), register_chrdev(), unregister_chrdev(),
scsi_register_device(), scsi_register_host(), scsi_unregister_
device(), scsi_unregister_host(), scsi_register_module(), scsi_
unregister_module(), scsi_init(), scsi_done(), check_sense(), scsi_
abort(), scsi_reset(), scsi_build_commandblocks(), scsi_dev_init()

buf, Scsi_Cmnd, Scsi_Device_Template, drx_fops

/usr/src/linux/drivers/scsi/scsi.h, scsi_ioctl.h

scsi_do_cmd(SCpnt, cmd, buffer, bufflen, done_rtn, timeout,
retries)

drx_init, drx_open, drx_release, drx_finish, drx_attach, drx_
detach, drx_detect, drx_ioctl, drx_read, drx_write, do_drx_request

check_media_change, drx_revalidate

fd=open(*/dev/sg0”, ...)

write(fd, scsi_command, nbytes)

read(fd, scsi_results, nbytes)

fd = open(“/dev/scd0”, ...)

ioctl(fd, SCSI_IOCTL_SEND_COMMAND, buff)

make depend, make zlilo

/lib/modules/version/*, /usr/src/linux/kernel/drivers/*

logger(), syslog(), printk(), /etc/syslog.conf, /usr/sbin/syslogd,
/var/log/messages

/usr/src/linux/kernel/drivers/scsi/sd.*, st.*, sg.c
(Continued)

187

188 Unix SCSI Implementations

Table 11-6. Linux (Kernel Ver. 2.0.x) Features (Continued)

Feature Description

Debugging printk(), gdb, /proc/*
A handy feature of the /proc filesystem: “cat /proc/scsi/scsi” will
show all attached SCSI devices. There is also another “directory”
/proc/scsi/adaptername/. There are “files” in there (0, 1 ...) for
each SCSI bus’s parameters.

Available driver Beck, Michael. Linux Kernel Internals. Reading, Massachusetts:

documentation Addison-Wesley, 1996. See also documentation files that accom-

pany the Linux distribution: Linux Kernel Hacker's Guide (Mi-
chael K. Johnson); Writing Linux Device Drivers (Michael K.
Johnson); Linux SCSI HOWTO (Drew Eckhardt); Linux SCSI
Programming HOWTO (Heiko Ei Felt).

The Linux disk driver only has one interface, unlike most other
UNIX disk drivers that provide both a block and character inter-
face. It also has no strategy routine.

Linux is not derived from AT&T or BSD sources.

After comparing the kernel environments in the above UNIX platforms,
it should be apparent that to write UNIX drivers one needs to concentrate
on one platform at a time. Writing one that’s portable between multiple
platforms is almost unthinkable, given the current state of affairs. This may
change at some point. There are efforts afoot to standardize and modular-
ize UNIX drivers at two different levels. The Universal Device Interface
(UDI) is one such idea, and Intel’s 120 standard is another.

If the purpose of writing your first UNIX SCSI driver is to learn how
to do it, I can’t think of a better platform to start with than Linux. It pro-
vides a powerful yet inexpensive environment to learn the basics of UNIX
driver writing. Linux runs on just about any hardware. To get started, I'd
recommend buying one of the several CD-ROM install-based releases,
such as Slackware or Red Hat, for the Intel X86-based PC. For the more
adventurous, Linux can also be downloaded from the Internet from many
sites via ftp or http protocol. The Linux web site at http://www.linux.org
contains links to download sites for several different distributions.

Once you have a running Linux system, install the kernel sources (if
they weren’t installed with the rest of the O/S). In the /usr/src/linux/drivers
directory you’ll find the source code for all the drivers that have been
written for Linux. One of the best ways to learn how to write a driver is to
look at examples of working drivers. To get you started, I'm going to walk
you through the SCSI disk driver (sd.c), and the SCSI passthrough driver
(also referred to as the “SCSI Generic” driver) (sg.c).

Don your hip boots, and let’s get started.

The Linux SCSI Disk Driver

The Linux SCSI Disk Driver

I’'m just going to show each driver entry point routine in isolation from
the surrounding glue code that allows it to compile and links the driver
into the kernel.

The excerpts below are from the source files: /usr/src/linux/kernel/
drivers/scsi/sd.c, sd_ioctl.c, scsi.c, sd.h

Listing 11-1. Linux sd_open Routine

static int sd_open(struct inode * inode, struct file * filp)

{
int target;

target = DEVICE NR(inode->i_rdev);
if (target >= sd_template.dev_max || !rscsi disks[target].device)
return -ENXIO; /* No such device */

* Make sure that only one process can do a check_change_disk at
* one time. This is also used to lock out further access when the
* partition table is being reread.

while (rscsi_disks[target].device->busy)
barrier();

if(rscsi_disks[target].device->removable) {
check_disk_change(inode->i_rdev);

/*
* If the drive is empty, just let the open fail.
*/
if (!rscsi_disks[target].ready)
return -ENXIO;
/*

* Similarly, if the device has the write protect tab set,
* have the open fail if the user expects to be able to write
* to the thing.
*/
if ((rscsi_disks[target].write_prot) && (filp->f mode & 2))
return -EROFS;

(Continued)

189

190

Unix SCSI Implementations

Listing 11-1. (Continued)

/*
* See if we are requesting a nonexistent partition. Do this
* after checking for disk change.
*/
if(sd_sizes[MINOR(inode->i_rdev)] == 0)
return -ENXIO;

if(rscsi_disks[target].device->removable)
if(!rscsi_disks[target].device->access_count)
sd_ioctl(inode, NULL, SCSI_IOCTL_DOORLOCK, 0);

rscsi_disks[target].device->access_count++;

if (rscsi_disks[target].device->host->hostt->usage_count)
(*rscsi_disks[target].device->host->hostt->usage_count)++;

if(sd_template.usage_count) (*sd_template.usage_count)++;

return 0;

The sd_open routine gets two arguments as input: a pointer to an
inode structure and a pointer to a file structure. The first thing the routine
does is check that the device actually exists and has media in the drive.

The rscsi_disks[] array is used to keep track of all information
about each disk in the system. If all goes well the routine returns 0 meaning
success.

Listing 11-2. Linux sd_release Routine

static void sd_release(struct inode * inode, struct file * file)

{

int target;
fsync_dev(inode->i_rdev);

target = DEVICE_NR(inode->i_rdev);

rscsi_disks[target].device->access_count--;
if (rscsi_disks[target].device->host->hostt->usage_count)
(*rscsi_disks[target].device->host->hostt->usage_count)--;
if(sd_template.usage_count) (*sd_template.usage_count)--;
(Continued)

The Linux SCSI Disk Driver

Listing 11-2. (Continued)

if(rscsi_disks[target].device->removable) {
if(!rscsi_disks[target].device->access_count)
sd_ioctl(inode, NULL, SCSI_IOCTL_DOORUNLOCK, 0);

The sd_release routine gets two arguments as input: a pointer to an
inode structure and a pointer to a file structure. The routine doesn’t do
much except decrement some count variables and unlock the media in
removable media drives.

Listing 11-3. Linux sd_init Routine

/*

* The sd_init() function looks at all SCSI drives present,
* determines their size, and reads partition table entries
* for them.

*/

static int sd_registered = 0;

static int sd_init()
{

int i;
if (sd_template.dev_noticed == 0) return 0;

if(!sd_registered) {
if (register_blkdev(MAJOR_NR,"sd",&sd_fops)) ({
printk("Unable to get major %d for SCSI disk\n",
MAJOR_NR) ;
return 1;
}
sd_registered++;

}

/* We do not support attaching loadable devices yet. */
if(rscsi_disks) return 0;

sd_template.dev_max = sd_template.dev_noticed +
SD_EXTRA_DEVS;
(Continued)

191

192 Unix SCSI Implementations

Listing 11-3. (Continued)

rscsi_disks = (Scsi_Disk *)
scsi_init malloc(sd_template.dev_max *
sizeof (Scsi_Disk), GFP_ATOMIC);
memset(rscsi_disks, 0, sd_template.dev_max *
sizeof(Scsi_Disk));

sd_sizes = (int *)
scsi_init malloc((sd_template.dev_max << 4) *
sizeof(int), GFP_ATOMIC);
memset (sd_sizes, 0, (sd_template.dev_max << 4) * sizeof(int));

sd_blocksizes = (int *)
scsi_init malloc((sd_template.dev_max << 4) *
sizeof(int), GFP_ATOMIC);

sd_hardsizes = (int *)
scsi_init malloc((sd_template.dev_max << 4) *
sizeof(int), GFP_ATOMIC);

for(i=0;i<(sd_template.dev_max << 4);i++){
sd_blocksizes[i] = 1024;

sd_hardsizes[i] = 512;
}
blksize size[MAJOR NR] = sd_blocksizes;
hardsect_size[MAJOR_NR] = sd_hardsizes;

sd=(struct hd_struct *)
scsi_init _malloc((sd_template.dev_max<<4) *
sizeof(struct hd_struct), GFP_ATOMIC);

sd_gendisk.max_nr = sd_template.dev_max;
sd_gendisk.part = sd;

sd_gendisk.sizes = sd_sizes;
sd_gendisk.real_devices = (void *) rscsi_disks;
return 0;

The init routine gets no input arguments. It simply registers the driver
with the kernel, which gives it a place in the devswitch table. Then it allo-
cates space for the rscsi_disks[] array and a couple of other arrays
and initializes a few values in them.

The Linux SCSI Disk Driver

Listing 11-4. Linux sd_finish Routine

static void sd_finish()

int 1i;
blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;

sd_gendisk.next = gendisk_head;
gendisk_head = &sd_gendisk;

for (i = 0; i < sd_template.dev_max; ++i)
if (!rscsi_disks[i].capacity &&
rscsi_disks[i].device)
{
if (MODULE_FLAG &&
!rscsi_disks[i].has_part_table) {
sd_sizes[i << 4] = rscsi_disks[i].capacity;
/* revalidate does sd_init_onedisk via MAYBE_REINIT*/
revalidate_scsidisk(MKDEV(MAJOR_NR, i << 4), 0);
}
else
i=sd_init_onedisk(i);
rscsi_disks[i].has_part_table = 1;

}

/* If our host adapter is capable of scatter-gather,
* then we increase the read-ahead to 16 blocks (32 sectors).
* If not, we use a two block (4 sector) read ahead.
*/
if(rscsi_disks[0].device &&
rscsi_disks[0].device->host->sg_tablesize)
read_ahead[MAJOR_NR] = 120; /* 120 sector read-ahead */
else
read_ahead[MAJOR_NR] = 4; /* 4 sector read-ahead */

return;

The finish routine hooks the driver’s “request function” into the blk_
dev[] array, reads in the partition table and then initializes the host
adapter that the disks are attached to.

193

194 Unix SCSI Implementations

Listing 11-5. Linux sd_detect Routine

static int sd_detect(Scsi_Device * SDp){
if (SDp->type != TYPE DISK && SDp->type != TYPE_MOD)
return 0;

printk("Detected scsi %sdisk sd%c at ",
SDp->removable ? "removable " : "",
'a'+ (sd_template.dev_noticed++));
printk("scsi%d, channel %d, id %d, lun %d\n",
SDp->host->host_no, SDp->channel,
SDp->id, SDp->1lun);

return 1;

The detect routine simply checks to see if we have a hard disk or
Magneto Optical disk to use and prints a message during boot time.

Listing 11-6. Linux sd_attach Routine

static int sd_attach(Scsi_Device * SDp){
Scsi Disk * dpnt;
int i;

if (SDp->type != TYPE DISK && SDp->type != TYPE_MOD)
return 0;

if(sd_template.nr_dev >= sd_template.dev_max) {
SDp->attached--;
return 1;

}

for(dpnt = rscsi_disks, i=0; i<sd_template.dev_max;
i++, dpnt++)
if (!dpnt->device) break;

if(i >= sd_template.dev_max)
panic ("scsi_devices corrupt (sd)");

SDp->scsi_request_fn = do_sd_request;
rscsi_disks([i].device = SDp;
(Continued)

The Linux SCSI Disk Driver

Listing 11-6. (Continued)

rscsi_disks[i].has_part_table = 0;
sd_template.nr_dev++;
sd_gendisk.nr_real++;

return 0;

The attach routine checks again for the presence of a hard disk or
Magneto Optical disk and that we have not reached the maximum number
of drives that can be supported by this driver. It then checks through the
rscsi_disks[] array to make sure all disks have an entry in it. If there
are serious inconsistencies, the system panics. A few values in the rscsi_
disks[] array are initialized and the number of attached devices is
incremented.

Listing 11-7. Linux sd_detach Routine

static void sd_detach(Scsi_Device * SDp)

{

Scsi_Disk * dpnt;
int i;

int max_p;

int start;

for(dpnt = rscsi_disks, i=0; i<sd_template.dev_max;
i++, dpnt++)
if(dpnt->device == SDp) {

/* If we are disconnecting a disk driver,
* sync and invalidate everything */
max_p = sd_gendisk.max_p;
start = i << sd_gendisk.minor_shift;

for (i=max p - 1; i >=0 ; i--) {
int minor = start+i;
kdev_t devi = MKDEV(MAJOR_NR, minor);
sync_dev(devi);
invalidate_inodes (devi);
invalidate_buffers(devi);
sd_gendisk.part[minor].start_sect =
sd_gendisk.part[minor].nr_sects = 0;
sd_sizes[minor] = 0;

0;

(Continued)

195

196 Unix SCSI Implementations

Listing 11-7. (Continued)

}

return;

dpnt->has_part_table = 0;
dpnt->device = NULL;
dpnt->capacity = 0;
SDp->attached--;
sd_template.dev_noticed--;
sd_template.nr_dev--
sd_gendisk.nr_real--
return;

.
’
.
’

The sd_detach routine’s main task is to flush all unwritten data out to

the physical disk (specified by SDp), and then clear some variables to
indicate that the device is no longer available.

Listing 11-8. Linux revalidate_scsidisk Routine

#define DEVICE_BUSY rscsi_disks[target].device->busy
#define USAGE rscsi_disks[target].device->access_count
#define CAPACITY rscsi_disks[target].capacity

#define MAYBE REINIT sd_init_onedisk(target)

#define GENDISK_STRUCT sd_gendisk

* ok F X X X

This routine is called to flush all partitions and
partition tables for a changed scsi disk, and then
reread the new partition table. If we are revalidating
a disk because of a media change, then we enter with
usage ==
have usage == 1 (we need an open channel to use an ioctl :-),

If we are using an ioctl, we automatically

* so this is our limit.

*/

int revalidate_scsidisk(kdev_t dev, int maxusage)
int target;
struct gendisk * gdev;
unsigned long flags;
int max_p;
int start;

int i;

target
gdev =

DEVICE_NR(dev);

&GENDISK_STRUCT;

(Continued)

The Linux SCSI Disk Driver 197

Listing 11-8. (Continued)

save_flags(flags);

cli();

if (DEVICE BUSY || USAGE > maxusage) {
restore_flags(flags);
printk("Device busy for revalidation (usage=%d)\n",

USAGE) ;

return -EBUSY;

}

DEVICE_BUSY = 1;

restore_flags(flags);

gdev->max_p;
target << gdev->minor_shift;

max_p
start

for (i=max_p - 1; i >=0 ; i--) {
int minor = start+i;
kdev_t devi = MKDEV(MAJOR_NR, minor);
sync_dev(devi);
invalidate_inodes(devi);
invalidate_buffers(devi);
gdev->part[minor].start_sect =
gdev->part[minor].nr_sects = 0;
/*
* Reset the blocksize for everything so that we
* can read the partition table.
*/
blksize_size[MAJOR_NR][minor] = 1024;

0;

}

#ifdef MAYBE REINIT
MAYBE _REINIT;
#endif

gdev->part[start].nr_sects = CAPACITY;
resetup_one_dev(gdev, target);

DEVICE_BUSY = 0;
return 0;

If media has changed, invalidate all stored data for it and reread the
partition table, and so on. Note that where data structures are being modi-
fied, a cli() is done previous and a restore_flags() is done
afterwards. This is Linux’s data locking method that prevents another
instance of the driver from being able to corrupt the data.

198 Unix SCSI Implementations

Listing 11-9. Linux do_sd_request Routine

/*

* do_sd_request() is the request handler function for

* the sd driver. Its function in life is to take block

* device requests, and translate them into SCSI commands.

*/

static void do_sd_request (void)
{
Scsi_Cmnd * SCpnt = NULL;
Scsi_Device * SDev;
struct request * req = NULL;
unsigned long flags;
int flag = 0;

save_flags(flags);
while (1==1){

cli();

if (CURRENT != NULL &&
CURRENT->rq_status == RQ_ INACTIVE) {
restore_flags(flags);
return;

}

INIT SCSI_REQUEST;
SDhev = rscsi_disks[DEVICE_NR(CURRENT->rq dev)].device;

/*

* I am not sure where the best place to do this is.
* We need to hook in a place where we are likely to
* come if in user space.

*/
if(SDhev->was_reset)
{
/ *
* We need to relock the door, but we might
* be in an interrupt handler. Only do this
* from user space, since we do not want to
* sleep from an interrupt.
*/

if(SDev->removable && !intr_count)
{
scsi_ioctl(SDev, SCSI_IOCTL_DOORLOCK, 0);
/* scsi_ioctl may allow CURRENT to change,
(Continued)

The Linux SCSI Disk Driver

Listing 11-9. (Continued)

* so start over. */
SDev->was_reset = 0;
continue;

}
SDev->was_reset = 0;

}

/* We have to be careful here. allocate_device will get a
free pointer, but there is no guarantee that it is queueable.
In normal usage, we want to call this, because other types

of devices may have the host all tied up, and we want to make
sure that we have at least one request pending for this type
of device. We can also come through here while servicing an
interrupt, because of the need to start another command. If
we call allocate_device more than once, then the system can
wedge if the command is not queueable. The request_queueable
function is safe because it checks to make sure that the host
is able to take another command before it returns a pointer.

*/

if (flag++ == 0)
SCpnt = allocate_device(&CURRENT,
rscsi_disks[DEVICE_NR(CURRENT->q_dev)].device, 0);
else SCpnt = NULL;

/*

* The following restore_flags leads to latency problems.

* FIXME.

* Using a "sti()" gets rid of the latency problems but causes
* race conditions and crashes.

*/

restore_flags(flags);

/* This is a performance enhancement. We dig down into the
request list and try to find a queueable request (i.e., device
not busy, and host able to accept another command. If we find
one, then we queue it. This can make a big difference on systems
with more than one disk drive. We want to have the interrupts
off when monkeying with the request list, because otherwise the
kernel might try to slip a request in between somewhere.
*/
(Continued)

199

200

Unix SCSI Implementations

Listing 11-9. (Continued)

if (!sCpnt && sd_template.nr_dev > 1){

}

struct request *reql;
reql = NULL;
cli();
req = CURRENT;
while(req){
SCpnt = request_queueable(req,
rscsi_disks[DEVICE_NR(req->rq_dev)].device);
if(SCpnt) break;
reql = req;
req = reqg->next;

}
if (SCpnt && reqg->rq_status == RQ_INACTIVE) ({
if (req == CURRENT)
CURRENT = CURRENT->next;
else
reql->next = reg->next;
}

restore_flags(flags);

if (!SCpnt) return; /* Could not find anything to do */

/* Queue command */
requeue_sd_request (SCpnt);

/* While */

This routine is essentially the scheduler portion of the SCSI disk driver.

It decides whether the host adapter is ready for another command and
decides which command to do next. It then calls requeue_sd_
request () to build the actual command request.

Listing 11-10. Linux requeue_sd_request Routine

static void requeue_sd_request (Scsi_Cmnd * SCpnt)

{

int dev, devm, block, this_count;
unsigned char cmd[10];

int bounce_size, contiguous;

int max_sg;

struct buffer_head * bh, *bhp;
char * buff, *bounce_ buffer;

(Continued)

The Linux SCSI Disk Driver

Listing 11-10. (Continued)

repeat:
if(!scpnt || SCpnt->request.rq_status == RQ_INACTIVE) {
do_sd_request();
return;
}

devm = MINOR(SCpnt->request.rq_dev);
dev = DEVICE_NR(SCpnt->request.rq_dev);

block = SCpnt->request.sector;
this count = 0;

#ifdef DEBUG
printk("Doing sd request, dev = %d, block = %d\n",
devm, block);
#endif

if (devm >= (sd_template.dev_max << 4) ||
!rscsi_disks[dev].device ||
block + SCpnt->request.nr_sectors >
sd[devm].nr_sects)

{
SCpnt = end_scsi_request(SCpnt, 0,
SCpnt->request.nr_sectors);
goto repeat;
}

block += sd[devm].start_sect;

if (rscsi_disks[dev].device->changed)
{
/*
* quietly refuse to do anything to a changed
* disc until the changed bit has been reset
*/
SCpnt = end_scsi_request(SCpnt, O,
SCpnt->request.nr_sectors);
goto repeat;
}
ifdef DEBUG
printk("sd%c : real dev = /dev/sd%c, block = %d\n",
‘a' + devm, dev, block);

#endif
(Continued)

201

202 Unix SCSI Implementations

Listing 11-10. (Continued)

If we have a 1K hardware sector size, prevent access
to single 512 byte sectors. In theory we could handle
this—in fact the scsi cd-rom driver must be able to
handle this because we typically use 1K blocksizes,

and cd-roms typically have 2K hardware sectorsizes.

Of course, things are simpler with the cd-rom, since it
is read-only. For performance reasons, the filesystems
should be able to handle this and not force the scsi
disk driver to use bounce buffers for this.

L I S . T

*

*/
if (rscsi_disks[dev].sector_size == 1024)
if((block & 1) || (SCpnt->request.nr_sectors & 1)) {
printk("sd.c:Bad block number requested");
SCpnt = end_scsi_request(SCpnt, 0,
SCpnt->request.nr_sectors);
goto repeat;

}

switch (SCpnt->request.cmd)

{
case WRITE :

if (!rscsi_disks[dev].device->writeable)

{
SCpnt = end_scsi_request(SCpnt, 0,
SCpnt->request.nr_sectors);
goto repeat;
}
cmd[0] = WRITE_6;
break;
case READ
cmd[0] = READ_6;
break;
default :

panic ("Unknown sd command %d\n", SCpnt->request.cmd);

}
SCpnt->this _count = 0;

/* If the host adapter can deal with very large

* scatter-gather requests, it is a waste of time

* to cluster

*/
contiguous = (!CLUSTERABLE_DEVICE(SCpnt) ? 0 :1);
bounce_buffer = NULL;
bounce_size = (SCpnt->request.nr_sectors << 9);

(Continued)

The Linux SCSI Disk Driver

Listing 11-10. (Continued)

/* First see if we need a bounce buffer for this request.
* If we do, make sure that we can allocate a buffer.
* Do not waste space by allocating a bounce buffer if
* we are straddling the 16MB line
*/
if (contiguous && SCpnt->request.bh &&
((long) SCpnt->request.bh->b_data)
+ (SCpnt->request.nr_sectors << 9) - 1 >
ISA DMA THRESHOLD
&& SCpnt->host->unchecked_isa_dma) {
if(((long) SCpnt->request.bh->b_data) >
ISA_DMA_THRESHOLD)
bounce_buffer = (char *) scsi_malloc(bounce_size);
if(!bounce_buffer) contiguous = 0;
}

if (contiguous && SCpnt->request.bh &&
SCpnt->request.bh->b_reqgnext)
for(bh = SCpnt->request.bh, bhp = bh->b regnext;
bhp; bh = bhp, bhp = bhp->b_reqnext) ({
if (! CONTIGUOUS_BUFFERS(bh,bhp)) {
if (bounce_buffer)
scsi_free(bounce_buffer, bounce_size);
contiguous = 0;
break;
}

}
if (!SCpnt->request.bh || contiguous) {

/* case of page request (i.e., raw device),
* or unlinked buffer */

this_count = SCpnt->request.nr_sectors;

buff = SCpnt->request.buffer;
SCpnt->use_sg = 0;

} else if (SCpnt->host->sg_tablesize == 0 ||

(need_isa_buffer && dma_free sectors <= 10)) {

/* Case of host adapter that cannot scatter-gather.
We also come here if we are running low on DMA
buffer memory. We set a threshold higher than that
we would need for this request so we leave room
for other requests. Even though we would not need
it all, we need to be conservative, because if we
run low enough we have no choice but to panic.

L I I B B A

(Continued)

203

204 Unix SCSI Implementations

Listing 11-10. (Continued)

if (SCpnt->host->sg_tablesize != 0 &&
need isa buffer &&
dma_free_sectors <= 10)
printk("Warning: SCSI DMA buffer space running low.");
printk(" Using non scatter-gather I/0.\n");

this_count = SCpnt->request.current nr sectors;
buff = SCpnt->request.buffer;
SCpnt->use_sg = 0;

} else {

/* Scatter-gather capable host adapter */
struct scatterlist * sgpnt;

int count, this_count_max;

int counted;

bh = SCpnt->request.bh;
this_count = 0;
this_count max =
(rscsi_disks[dev].ten ? Oxffff : O0xff);
count = 0;
bhp = NULL;
while(bh) {
if ((this_count + (bh->b _size >> 9)) >
this_count_max) break;
if(!bhp || !CONTIGUOUS_BUFFERS (bhp,bh) ||
!CLUSTERABLE_DEVICE(SCpnt) ||
(SCpnt->host->unchecked_isa_dma &&
((unsigned long) bh->b_data-1) ==
ISA_DMA_THRESHOLD)) {
if (count < SCpnt->host->sg_tablesize)
count++;
else break;

}
this_count += (bh->b_size >> 9);
bhp = bh;

bh = bh->b_reqgnext;
}
#if O
if(SCpnt->host->unchecked_isa_dma &&
((unsigned int) SCpnt->request.bh->b _data-1) ==
ISA DMA_THRESHOLD) count--;
(Continued)

The Linux SCSI Disk Driver

Listing 11-10. (Continued)

#endif

SCpnt->use_sg = count; /* Number of chains */
/* scsi_malloc can only allocate in chunks of
* 512 bytes */
count = (SCpnt->use_sg *
sizeof (struct scatterlist) + 511) & ~511;

SCpnt->sglist_len = count;
max_sg = count / sizeof(struct scatterlist);
if(sCpnt->host->sg_tablesize < max_sg)
max_sg = SCpnt->host->sg_tablesize;
sgpnt = (struct scatterlist *) scsi_malloc(count);
if (!sgpnt) {
printk("Warning - running *really* short on DMA buffers\n");
SCpnt->use_sg = 0; /* No memory left - bail out */
this_count = SCpnt->request.current_nr_sectors;
buff = SCpnt->request.buffer;
} else {
memset (sgpnt, 0, count);
/* Zero so it is easy to fill, but only
* if memory is available */

buff = (char *) sgpnt;

counted = 0;

for(count = 0, bh = SCpnt->request.bh, bhp =
bh->b_reqgnext; count < SCpnt->use_sg && bh;
count++, bh = bhp) {

bhp = bh->b_reqnext;

if (!sgpnt[count].address) sgpnt[count].address =
bh->b_data;

sgpnt[count].length += bh->b _size;

counted += bh->b_size >> 9;

if (((long) sgpnt[count].address) +
sgpnt[count].length - 1 >
ISA DMA THRESHOLD &&
(SCpnt->host->unchecked_isa_dma) &&
!sgpnt[count].alt_address) ({
sgpnt[count].alt_address =
sgpnt[count].address;
/* We try to avoid exhausting the DMA
* pool, since it is easier to control
* usage here. In other places we might
* have a more pressing need, and we
* would be in trouble if we ran out */
(Continued)

205

206 Unix SCSI Implementations

Listing 11-10. (Continued)

if(dma_free_sectors <
(sgpnt[count].length >> 9) + 10) {

sgpnt[count].address = NULL;
} else {
sgpnt[count].address = (char *)

scsi_malloc(sgpnt[count].length);

}

/* 1If we start running low on DMA buffers,
* we abort the scatter-gather operation,
* and free all of the memory we have
* allocated. We want to ensure that all
*

scsi operations are able to do at least
* a nonscatter/gather operation */
if (sgpnt[count].address == NULL) {
/* Out of dma memory */
#if 0
printk("Warning: Running low on \
SCSI DMA buffers");
/* Try switching back to a non
* g-g operation. */
while(--count >= 0){
if(sgpnt[count].alt_address)
scsi_free(sgpnt[count].address,
sgpnt[count].length);
}
this_count =
SCpnt->request.current_nr_sectors;
buff = SCpnt->request.buffer;
SCpnt->use_sg = 0;
scsi_free(sgpnt, SCpnt->sglist_len);
#endif
SCpnt->use_sg = count;
this count = counted -=
bh->b_size >> 9;

break;
}

}

/* Only cluster buffers if we know that we
* can supply DMA buffers large enough to
* satisfy the request. Do not cluster a
* new request if this would mean that we
* suddenly need to start using DMA bounce
* buffers */

(Continued)

The Linux SCSI Disk Driver

Listing 11-10. (Continued)

if (bhp && CONTIGUOUS_BUFFERS (bh,bhp)
&& CLUSTERABLE_DEVICE(SCpnt)) {
char * tmp;

if (((long) sgpnt[count].address) +
sgpnt[count].length +
bhp->b _size - 1 > ISA DMA_ THRESHOLD &&
(SCpnt->host->unchecked_isa dma) &&
!sgpnt[count].alt_address) continue;

if (!sgpnt[count].alt_address)
{count--; continue;}
if (dma_free_sectors > 10)
tmp = (char *)
scsi_malloc(sgpnt[count].length +
bhp->b_size);
else {
tmp = NULL;
max_sg = SCpnt->use_sg;

}

if (tmp){
scsi_free(sgpnt[count].address,

sgpnt[count].length);

sgpnt[count].address = tmp;
count--;
continue;

}

/* 1f we are allowed another sg chain,
* then increment counter so we can insert
* it. Otherwise we will end up truncating */

if (SCpnt->use_sg < max_sg) SCpnt->use_sg++;
} /* contiguous buffers */
} /* for loop */

/* This is actually how many we are going to transfer */
this_count = counted;

if (count < SCpnt->use_sg || SCpnt->use_sg >
SCpnt->host->sg_tablesize){
bh = SCpnt->request.bh;
printk("Use sg, count %d %x %d\n",
SCpnt->use_sg, count, dma_free_sectors);
printk("maxsg = %x, counted = %d this_count = %d\n",
max_sg, counted, this_count);
(Continued)

207

208

Unix SCSI Implementations

Listing 11-10. (Continued)

}

while(bh) {
printk("[%p %1x] ", bh->b_data, bh->b_size);
bh = bh->b_regnext;
}
if(sCpnt->use_sg < 16)
for(count=0; count<SCpnt->use_sg; count++)
printk("{%d:%p %p %d} ", count,
sgpnt[count].address,
sgpnt[count].alt_address,
sgpnt[count].length);
panic("Ooops");

}

if (SCpnt->request.cmd == WRITE)
for(count=0; count<SCpnt->use_sg; count++)
if(sgpnt[count].alt_address)
memcpy (sgpnt[count].address,
sgpnt[count].alt_address,
sgpnt[count].length);
} /* Able to malloc sgpnt */
/* Host adapter capable of scatter-gather */

/* Now handle the possibility of DMA to addresses > 16Mb */

if(sCpnt->use_sg == 0){

if (((long) buff) + (this_count << 9) -1 >

ISA_DMA THRESHOLD &&

(SCpnt->host->unchecked isa_dma)) ({

if(bounce_buffer)
buff = bounce_buffer;

else
buff = (char *) scsi_malloc(this_count << 9);

if(buff == NULL) {

/* Try backing off a bit if we are low on mem*/
this_count = SCpnt->request.current_nr_sectors;
buff = (char *) scsi_malloc(this_count << 9);
if(!buff) panic("Ran out of DMA buffers.");

}

if (SCpnt->request.cmd == WRITE)
memcpy (buff, (char *)SCpnt->request.buffer,

this_count << 9);

(Continued)

The Linux SCSI Disk Driver 209

Listing 11-10. (Continued)

#ifdef DEBUG
printk("sd%c : %s %d/%d 512 byte.blocks.\n",
‘a' + devm,
(SCpnt->request.cmd == WRITE) ?
"writing" : "reading",
this_count, SCpnt->request.nr_sectors);

#endif
cmd[1l] = (SCpnt->lun << 5) & 0xe0;
if (rscsi_disks[dev].sector_size == 1024){
if (block & 1)
panic("sd.c:Bad block number requested");
if(this_count & 1)
panic("sd.c:Bad block number requested");
block = block >> 1;
this_count = this_count >> 1;
}
if (rscsi_disks[dev].sector_size == 256){
block = block << 1;
this_count = this count << 1;
}
if (((this_count > 0xff) || (block > Ox1fffff)) &&
rscsi_disks[dev].ten)
{
if (this_count > Oxffff)
this_count = Oxffff;
cmd[0] += READ 10 - READ_6 ;
cmd[2] = (unsigned char) (block >> 24) & Oxff;
cmd[3] = (unsigned char) (block >> 16) & Oxff;
cmd[4] = (unsigned char) (block >> 8) & O0xff;
cmd[5] = (unsigned char) block & Oxff;
cmd[6] = cmd[9] = 0;
cmd[7] = (unsigned char) (this_count >> 8) & O0xff;
cmd(8] = (unsigned char) this_count & O0xff;
}
else
{

if (this_count > O0xff)
this_count = O0xff;
(Continued)

210 Unix SCSI Implementations

Listing 11-10. (Continued)

cemd[1l] |= (unsigned char) ((block >> 16) & 0x1lf);
cmd[2] = (unsigned char) ((block >> 8) & Oxff);
cmd[3] = (unsigned char) block & O0xff;
cmd[4] = (unsigned char) this_count;
cmd[5] = 0;

}

/*

* We shouldn't disconnect in the middle of a sector,

* so with a dumb host adapter, it's safe to assume

* that we can at least transfer this many bytes between
* each connect/disconnect.

*/

SCpnt->transfersize = rscsi_disks[dev].sector_size;
SCpnt->underflow = this_count << 9;
scsi do cmd (SCpnt, (void *) cmd, buff,
this_count * rscsi_disks[dev].sector_size,
rw_intr,
(SCpnt->device->type == TYPE_DISK ?
SD_TIMEOUT : SD_MOD_TIMEOUT),
MAX RETRIES);

The requeue_sd_request() routine creates all the SCSI CDBs,
which then get sent to the appropriate low-level SCSI adapter driver.
Notice that the driver needs to worry about such things as the ISA bus’s
16MB address space and break up transfers that will cross it using bounce
buffers below that limit. The driver also is concerned with whether an
operation needs to be done using “scatter-gather.” This means that since
DMA transfers deal with physical memory addresses that don’t go
through the CPU’s memory management unit, areas of memory that are
logically contiguous may be physically separated in memory. This means
that the SCSI host adapter needs to be able to follow a linked list of mem-
ory segments while transferring the data. During read operations it
scatters the data physically into memory and during write operations it

gathers the data together into a single stream for the disk.

The Linux SCSI Disk Driver 211

Listing 11-11. Linux check_scsidisk_media_change Routine

static int check_scsidisk_media_change(kdev_t full dev){
int retval;
int target;
struct inode inode;
int flag = 0;

target = DEVICE_NR(full _dev);

if (target >= sd_template.dev_max ||
!rscsi_disks[target].device) ({
printk("SCSI disk request error: invalid device.\n");
return 0;

}

if(!rscsi_disks[target].device->removable) return 0;

inode.i_rdev = full dev;

/* This is all we really need here */

retval = sd_ioctl(&inode, NULL,
SCSI_IOCTL_TEST UNIT READY, 0);

if(retval){ /* Unable to test, unit probably not ready.
* This usually means there is no disc in
* the drive. Mark as changed, and we will
* figure it out later once the drive is
* available again. */

rscsi_disks[target].ready = 0;

rscsi_disks[target].device->changed = 1;

return 1;

/* This will force a flush, if called from
* check_disk_change */

* for removable scsi disk (FLOPTICAL) we have to

* recognise the presence of disk in the drive. This
* is kept in the Scsi_Disk struct and tested at open
*/

rscsi_disks[target].ready = 1;/* FLOPTICAL */
retval = rscsi_disks[target].device->changed;

if(!flag) rscsi_disks[target].device->changed = 0;
return retval;

212

Unix SCSI Implementations

This routine performs a Test Unit Ready command to see if the
media has been changed and marks a structure variable showing whether
it did.

The Linux SCSI Pass-Through Driver

A SCSI pass-through driver simply provides a way for an application pro-
gram to bypass some of the kernel’s protection mechanisms and send a
SCSI command to an attached device. Typically the pass-through driver is
used to work with less common devices that don’t have kernel resident
drivers. Examples of these would be scanners, CD recorders, media
changers (jukeboxes), etc.

Linux provides such a driver. It is called the SCSI generic driver (sg).
Let’s take a look at how it works. Each SCSI device that is actually
attached to the system’s host adapters is represented by a device special
file (also called a device node). These special files are named /dev/sga,
/dev/sgb, etc., to correspond with each of the SCSI devices that were
present when the system booted. For example, if you booted the system
with SCSI devices on host adapter 0 at IDs 1 and 3, the /dev/sga special
file would correspond with the device at ID 1 and the /dev/sgb device
would correspond with the device at ID 3.

Commands are sent to the devices by opening the proper device special
file and doing a write () system call. The results are obtained by doing a
read () system call. An error is indicated if the return value of the system
call is negative. “Sounds simple enough,” you say. Let’s see what the
pass-through driver does to create this interface for us.

Listing 11-12. Linux sg_ioctl Routine

[k kK ok ok ok ok ok ok sg.c *kkokkkokk /

static
static
static
static

struct

int sg_init(void);

int sg_attach(Scsi_Device *);
int sg_detect(Scsi_Device *);
void sg_detach(Scsi_Device *);

Scsi_Device_Template sg_template =

{NULL, NULL, "sg", NULL, Oxff,
SCSI_GENERIC_MAJOR, 0, 0, 0, O,
sg_detect, sg_init,

NULL, sg_attach, sg_detach};

(Continued)

The Linux SCSI Pass-Through Driver

Listing 11-12. (Continued)

$ifdef SG_BIG_BUFF

static char *big_buff = NULL;

/* wait for buffer available */
sstatic struct wait_queue *big wait;
static int big_inuse=0;

#endif

struct scsi_generic
{
Scsi Device *device;
int users; /* how many people have it open? */
/* wait for device to be available */
struct wait_queue *generic_wait;
/* wait for response */
struct wait_queue *read_wait;
/* wait for free buffer */
struct wait_queue *write wait;
/* current default value for device */
int timeout;
int buff len; /* length of current buffer */
char *buff; /* the buffer */
/* header of pending command */
struct sg_header header;
char exclude; /* opened for exclusive access */
char pending; /* don't accept writes now */
char complete; /* command complete allow a read */

}i

static struct scsi_generic *scsi_generics=NULL;
static void sg_free(char *buff,int size);

static int sg_ioctl(struct inode * inode,
struct file * file, unsigned int cmd_in,
unsigned long argq)

int result;

int dev = MINOR(inode->i_rdev);

if ((dev<0) || (dev>=sg_template.dev_max))
return -ENXIO;

switch(cmd_in)

{

case SG_SET TIMEOUT:
result = verify_ area(VERIFY_READ,

(const void *)arg, sizeof(long));
if (result) return result;
(Continued)

213

214 Unix SCSI Implementations

Listing 11-12. (Continued)

scsi_generics[dev].timeout=get user((int *) arg);
return 0;
case SG_GET TIMEOUT:
return scsi_generics[dev].timeout;
default:
return scsi_ioctl(scsi_generics[dev].device,
cmd_in, (void *) arg);

The ioctl routine simply allows the application to set and get the
timeout values.

Listing 11-13. Linux sg_open Routine

static int sg_open(struct inode * inode, struct file * filp)
{

int dev=MINOR(inode->i_rdev);

int flags=filp->f flags;

if (dev>=sg_template.dev_max ||
!scsi_generics[dev].device)
return -ENXIO;

if (O_RDWR!=(flags & O_ACCMODE))
return -EACCES;

/*

* If we want exclusive access, then wait until the

* device is not busy, and then set the flag to prevent
* anyone else from using it.

*/
if (flags & O_EXCL)
{
while(scsi_generics[dev].users)
{
if (flags & O_NONBLOCK)
return -EBUSY;
interruptible_sleep_on(
&scsi_generics[dev].generic_wait);
if (current->signal & ~current->blocked)
return -ERESTARTSYS;
}

(Continued)

The Linux SCSI Pass-Through Driver 215

Listing 11-13. (Continued)

scsi_generics[dev].exclude=1;

}
else
/ *
* Wait until nobody has an exclusive open on
* this device.
*/
while(scsi_generics([dev].exclude)
{
if (flags & O_NONBLOCK)
return -EBUSY;
interruptible_sleep_on(
&scsi_generics[dev].generic_wait);
if (current->signal & ~current->blocked)
return -ERESTARTSYS;
}
/*

* OK, we should have grabbed the device. Mark the
* thing so that other processes know that we have it,
* and initialize the state variables to known values.
*/
if (!scsi_generics([dev].users
&& scsi_generics[dev].pending
& scsi_generics[dev].complete)

{
if (scsi_generics([dev].buff != NULL)
sg_free(scsi_generics[dev].buff,
scsi_generics[dev].buff len);
scsi_generics[dev].buff=NULL;
scsi_generics[dev].pending=0;
}

if (!scsi_generics([dev].users)
scsi_generics([dev].timeout=SG_DEFAULT TIMEOUT;

if (scsi_generics[dev].device->host->hostt->usage_count)
(*scsi_generics[dev].

device->host->hostt->usage_count)++;

if(sg_template.usage_count)
(*sg_template.usage_count)++;

scsi_generics[dev].users++;

return 0;

Reserve the desired device for use by this application.

216 Unix SCSI Implementations

Listing 11-14. Linux sg_close Routine

static void sg_close(struct inode * inode, struct file * filp)
{
int dev=MINOR(inode->i_rdev);
scsi_generics[dev].users--;
if (scsi_generics[dev].device->host->hostt->usage_count)
(*scsi_generics[dev].
device->host->hostt->usage_count)--;
if(sg_template.usage_count) (*sg_template.usage_count)--;
scsi_generics[dev].exclude=0;
wake_up(&scsi_generics[dev].generic_wait);

The close routine just releases the device that was reserved by open.

Listing 11-15. Linux sg_malloc Routine

static char *sg _malloc(int size)
{
if (size<=4096)
return (char *) scsi_malloc(size);
#ifdef SG_BIG_BUFF
if (size<=SG_BIG_BUFF)

{
while(big_inuse)
{
interruptible_sleep on(&big_wait);
if (current->signal & ~current->blocked)
return NULL;
}
big_inuse=1;
return big_buff;
}
#endif

return NULL;

The malloc routine either allocates a fresh buffer if the request is
small, or the one large buffer if the request is larger than 4K.

The Linux SCSI Pass-Through Driver

Listing 11-16. Linux sg_free Routine

static void sg_free(char *buff,int size)
{
#ifdef SG_BIG BUFF

if (buff==big_buff)

{
big_inuse=0;
wake_up(&big_wait);
return;
}
#endif

scsi_free(buff,size);

The free routine releases whatever buffer was allocated by the
malloc routine.

Listing 11-17. Linux sg_read Routine

/*

* Read back the results of a previous command.

* We use the pending and complete semaphores to

* tell us whether the buffer is available for us

* and whether the command is actually done.

*/

static int sg_read(struct inode *inode,struct file *filp,
char *buf,int count)

{
int dev=MINOR(inode->i rdev);
int i;
unsigned long flags;
struct scsi_generic *device=&scsi_generics[dev];
if ((i=verify area(VERIFY_WRITE,buf,count)))

return i;

/ *
* Wait until the command is actually done.
*/

save_flags(flags);

cli();

while(!device->pending || !device->complete)

(Continued)

217

218

Unix SCSI Implementations

Listing 11-17. (Continued)

{
if (filp->f flags & O_NONBLOCK)
{
restore_flags(flags);
return -EAGAIN;
}
interruptible_sleep_on(&device->read wait);
if (current->signal & ~current->blocked)
{
restore_flags(flags);
return -ERESTARTSYS;
}
}

restore_flags(flags);

/*
* Now copy the result back to the user buffer.
*/
device->header.pack_len=device->header.reply len;

if (count>=sizeof(struct sg_header))

{
memcpy_tofs(buf, &device->header,
sizeof(struct sg_header));
buf+=sizeof(struct sg_header);
if (count>device->header.pack_len)
count=device->header.pack_len;
if (count > sizeof(struct sg_header)) {
memcpy_tofs(buf,device->buff,
count-sizeof(struct sg_header));
}
}
else
count= device->header.result==0 ? 0 : -EIO;
/*

* Clean up, and release the device so that
* we can send another
* command.
*/
sg_free(device->buff,device->buff len);
device->buff = NULL;
device->pending=0;
wake_up(&device->write wait);
return count;

The Linux SCSI Pass-Through Driver

The read routine first checks that the buffer the caller passed in is
writable by it. It then waits for the command to complete by checking bits
that get set by the command _done routine below. When the data is ready
it copies it out to user space using memcpy tofs (), frees up the buffer,
and wakes up anyone who’s waiting for a buffer.

Listing 11-18. Linux sg_command_done Routine

/*

* This function is called by the interrupt handler

* when we actually have a command that is complete.

* Change the flags to indicate that we have a result.

static void sg_command_done(Scsi_Cmnd * SCpnt)

{

int dev = MINOR(SCpnt->request.rq_dev);
struct scsi_generic *device = &scsi_generics[dev];
if (!device->pending)

{
printk("unexpected done for sg %d\n",dev);
SCpnt->request.rq_status = RQ_ INACTIVE;
return;

}

/ *

* See if the command completed normally, or whether
* something went
* wrong.
*/

memcpy (device->header.sense_buffer, SCpnt->sense buffer,

sizeof (SCpnt->sense_buffer));

switch (host_byte(SCpnt->result)) {

case DID_ OK:
device->header.result
break;

case DID NO_CONNECT:

case DID BUS_BUSY:

case DID TIME_OUT:
device->header.result = EBUSY;
break;

case DID BAD TARGET:

case DID_ABORT:

case DID PARITY:

case DID RESET:

case DID BAD INTR:
device->header.result
break;

0;

EIO;

(Continued)

219

220 Unix SCSI Implementations

Listing 11-18. (Continued)

case DID_ERROR:
/ *

* There really should be DID UNDERRUN and DID_ OVERRUN
error values, and a means for callers of scsi_do_cmd
to indicate whether an underrun or overrun should
signal an error. Until that can be implemented, this
kludge allows for returning useful error values
except in cases that return DID ERROR that might be

* due to an underrun.
*/
if (SCpnt->sense_ buffer[0] == 0 &&
status_byte(SCpnt->result) == GOOD)
device->header.result = 0;
else device->header.result = EIO;
break;

}

* Ok F X %

/ *
* Now wake up the process that is waiting for the
* result.
*/
device->complete=1;
SCpnt->request.rq_status = RQ_INACTIVE;
wake_up(&scsi_generics[dev].read wait);

The command_done routine gets control when an interrupt comes in
from the SCSI adapter signifying that it has finished a command (for bet-
ter or for worse). The routine saves away the sense data from the result
and checks for errors. It then wakes up the caller that sent this command
in the first place.

Listing 11-19. Linux sg_write Routine

static int sg_write(struct inode *inode,
struct file *filp,const char *buf,int count)
{
int bsize,size,amt,i;
unsigned char cmnd[MAX_COMMAND_ SIZE];
kdev_t devt = inode->i_rdev;
int dev = MINOR(devt);
struct scsi_generic * device=&scsi_generics[dev];
(Continued)

The Linux SCSI Pass-Through Driver 221

Listing 11-19. (Continued)

int input_size;
unsigned char opcode;
Scsi_Cmnd * SCpnt;

if ((i=verify_ area(VERIFY_READ,buf,count)))
return i;
/ *
* The minimum scsi command length is 6 bytes.
* If we get anything less than this, it is
* clearly bogus.
*/
if (count<(sizeof(struct sg_header) + 6))
return -EIO;

/*
* If we still have a result pending from a previous
* command, wait until the result has been read by the
* user before sending another command.
*/
while(device->pending)
{
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
#ifdef DEBUG
printk("sg _write: sleeping on pending request\n");

#endif
interruptible_sleep_on(&device->write_wait);
if (current->signal & ~current->blocked)
return -ERESTARTSYS;

}

/*

* Mark the device flags for the new state.

*/

device->pending=1;

device->complete=0;

memcpy_fromfs (&device->header,buf,
sizeof(struct sg_header));

device->header.pack_len=count;
buf+=sizeof(struct sg_header);

/*
* Now we need to grab the command itself from
* the user's buffer.
*/
(Continued)

222

Unix SCSI Implementations

Listing 11-19. (Continued)

opcode = get_user (buf);

size=COMMAND_SIZE(opcode);

if (opcode >= 0xc0 &&
device->header.twelve_byte) size = 12;

/*

* Determine buffer size.

*/
input_size = device->header.pack_len - size;
if(input_size > device->header.reply_ len)

{
bsize = input_size;
} else {
bsize = device->header.reply len;
}
/*

* Don't include the command header itself
* in the size.
*/
bsize-=sizeof(struct sg_header);
input_size-=sizeof(struct sg_header);

/*
* Verify that the user has actually passed
* enough bytes for this command.
*/
if(input_size < 0)
{
device->pending=0;
wake_up(&device->write wait);
return -EIO;

* Allocate a buffer that is large enough to hold the

* data that has been requested. Round up to an even

* number of sectors, since scsi_malloc allocates in

* chunks of 512 bytes.

*/
amt=bsize;

if (!bsize)

bsize++;
bsize=(bsize+511) & ~511;
(Continued)

The Linux SCSI Pass-Through Driver

Listing 11-19. (Continued)

/*
* If we cannot allocate the buffer, report
* an error.

*/

if ((bsize<0) || !(device->buff=
sg_malloc(device->buff len=bsize)))

{
device->pending=0;
wake_up(&device->write wait);
return -ENOMEM;

}

#ifdef DEBUG
printk("allocating device\n");

#endif

/*
* Grab a device pointer for the device we want to
* talk to. If we don't want to block, just return
* with the appropriate message.
*/
if (!(SCpnt=allocate_device(NULL,device->device,
! (£ilp->f flags & O_NONBLOCK))))

{
device->pending=0;
wake_up(&device->write wait);
sg_free(device->buff,device->buff_len);
device->buff = NULL;
return -EAGAIN;

}

#ifdef DEBUG
printk("device allocated\n");
#endif

SCpnt->request.rq_dev = devt;
SCpnt->request.rq_status = RQ_ACTIVE;
SCpnt->sense_buffer[0]=0;
SCpnt->cmd_len = size;

/*
* Now copy the SCSI command from the user's
* address space.
*/

memcpy fromfs(cmnd,buf,size);

buf+=size;
(Continued)

223

224 Unix SCSI Implementations

Listing 11-19. (Continued)

* If we are writing data, copy the data we are
* writing. The pack_len field also includes the
* length of the header and the command, so we need
* to subtract these off.
*/
if (input_size > 0) memcpy_fromfs(device->buff,
buf, input_size);

/ *
* Set the LUN field in the command structure.
*/
cmnd[1]= (cmnd[l] & 0x1f) | (device->device->lun<<5);

#ifdef DEBUG
printk("do cmd\n");
tendif

* Now pass the actual command down to the low-level

* driver. We do not do any more here—when the

* interrupt arrives, we will then do the post

* processing.

*/

scsi_do_cmd (SCpnt, (void *) cmnd,

(void *) device->buff,amt,
sg_command_done,device->timeout,SG_DEFAULT_ RETRIES);

#ifdef DEBUG
printk("done cmd\n");

#endif

return count;

The write routine is used to send commands to the SCSI device. It
waits for any in-progress commands to complete. Potential error condi-
tions are checked for. Allocate a buffer that’s big enough for the data
being transfered. The user’s command (and data if necessary) are copied
(memcpy_fromfs) from user space into the kernel and is executed by the
scsi_do_cmd routine.

The Linux SCSI Pass-Through Driver 225

Listing 11-20. Linux sg_select Routine

static int sg_select(struct inode *inode, struct file *file,
int sel_type, select_table * wait)

{
int dev=MINOR(inode->i_rdev);
int r = 0;
struct scsi_generic *device=&scsi_generics[dev];
if (sel_type == SEL_IN) {
if (device->pending && device->complete)
{
r =1;
} else {
select_wait(&scsi_generics[dev].read_wait, wait);
}
}
if (sel_type == SEL_OUT) {
if (!device->pending) {
r =1;
}
else
{
select_wait(&scsi_generics[dev].write_wait, wait);
}
}
return(r);
}
static struct file_operations sg_fops = {
NULL, /* lseek */
sg_read, /* read */
sg_write, /* write */
NULL, /* readdir */
sg_select, /* select */
sg_ioctl, /* ioctl */
NULL, /* mmap */
sg_open, /* open */
sg_close, /* release */
NULL /* fsync */

Check to see whether a write to the device would block.

226 Unix SCSI Implementations

Listing 11-21. Linux sg_detect Routine

static int sg_detect(Scsi_Device * SDp){

switch (SDp->type) {
case TYPE DISK:
case TYPE MOD:
case TYPE_ROM:
case TYPE WORM:
case TYPE TAPE: break;
default:
printk("Detected scsi generic sg%c at ");
printk("scsi%d, channel %d, id %d, lun %d\n",
'a'+sg_template.dev_noticed,
SDp->host->host_no, SDp->channel,
SDp->id, SDp->lun);
}
sg_template.dev_noticed++;
return 1;

Check the type of the device that was found and display a message for
the ones we don’t recognize.

Listing 11-22. Linux sg_init Routine

/* Driver initialization */
static int sg_init()

{

static int sg_registered = 0;
if (sg_template.dev_noticed == 0) return 0;

if(!sg_registered) {
if (register_chrdev(SCSI_GENERIC_MAJOR, "sg", &sg_fops))

{
printk("Unable to get major %d ",
SCSI_GENERIC_MAJOR);
printk("for generic SCSI device\n");
return 1;
}

sg_registered++;
}

/* If we already have been through here, return */
if(scsi_generics) return 0;
(Continued)

The Linux SCSI Pass-Through Driver

Listing 11-22. (Continued)

#ifdef DEBUG

printk("sg: Init generic device.\n");

#endif

#ifdef SG_BIG_BUFF

big_buff= (char *) scsi_init_malloc(SG_BIG_BUFF,
GFP_ATOMIC | GFP_DMA);

#endif

scsi_generics = (struct scsi_generic ¥*)
scsi_init malloc((sg_template.dev_noticed +
SG_EXTRA_DEVS) * sizeof(struct scsi_generic),
GFP_ATOMIC) ;
memset (scsi_generics, 0, (sg_template.dev_noticed +
SG_EXTRA DEVS) * sizeof(struct scsi_generic));

sg_template.dev_max = sg_template.dev_noticed +
SG_EXTRA_DEVS;
return 0;

Create special files for all the available devices. Allocate a transfer
buffer if necessary. Allocate enough space for the table of devices and a
couple of extras.

Listing 11-23. Linux sg_attach Routine

static int sg_attach(Scsi_Device * SDp)

{

struct scsi_generic * gpnt;
int i;

if(sg_template.nr_dev >= sg_template.dev_max)

{
SDp->attached--;

return 1;

}

for(gpnt = scsi_generics, i=0; i<sg_template.dev_max;
i++, gpnt++)
if(!gpnt->device) break;
(Continued)

227

228 Unix SCSI Implementations

Listing 11-23. (Continued)

if(i >= sg_template.dev_max)
panic ("scsi_devices corrupt (sg)");

scsi_generics[i].device=SDp;
scsi_generics[i].users=0;
scsi_generics[i].generic_wait=NULL;
scsi_generics[i].read wait=NULL;
scsi_generics[i].write_wait=NULL;
scsi_generics[i].buff=NULL;
scsi_generics[i].exclude=0;
scsi_generics[i].pending=0;
scsi_generics[i].timeout=SG_DEFAULT_ TIMEOUT;
sg_template.nr_dev++;
return 0;

}i

Initialize the array of available SCSI devices.

Listing 11-24. Linux sg_detach Routine

static void sg_detach(Scsi_Device * SDp)
{

struct scsi_generic * gpnt;

int i;

for(gpnt = scsi_generics, i=0; i<sg_template.dev_max;
i++, gpnt++)
if (gpnt->device == SDp) {
gpnt->device = NULL;
SDp->attached--;
sg_template.nr_dev--;
/*
* avoid associated device /dev/sg? being
* incremented each time module is
* inserted/removed , <dan@lectra.fr>

*/
sg_template.dev_noticed--;
return;

}
return;

Acknowledgments 229
Release all the devices.

Example SCSI Pass-Through Application Program

The companion CD-ROM contains an example of a SCSI pass-through
application in the Linux “SCSI Programming HOWTQO” document.

Summary

I know that what I’ve told you in this chapter isn’t enough to allow you to
go right out and write UNIX SCSI drivers. I do hope, though, that I've
sketched things out well enough to enable you to find and absorb the nec-
essary information. After having written drivers for each of the above
mentioned systems myself, I’ve found that jumping right in and writing a
simple driver initially is the best way to learn it. Reading only prepares
you to understand what you will encounter during the development
process.

Acknowledgments

I"d like to thank Linus Torwalds and his merry band of Linux developers
for producing such an impressive operating system platform for everyone
to enjoy. And, most especially, for making it and its source code freely
distributable.

Chapter 12

Troubleshooting and
Common Mistakes

By now you’ve probably concluded that SCSI represents a powerful tech-
nology, but you may be intimidated by its complexity. If you’re starting to
think that more can go wrong with SCSI than can go right, this chapter
may help put your mind at ease.

The mistakes programmers make when working with SCSI fall into a
few basic categories. Certain problems crop up frequently enough that it’s
easy to recognize them and head them off. Some simple troubleshooting
and debugging skills can save you hours of frustration.

Start with a Clean Hardware Layer

The most important thing you can do to minimize problems with SCSI is
to make sure your hardware is set up correctly. Some people think that
setting up a trouble-free SCSI system is a matter of trial and error. That’s
not the case. The rules for cable lengths, termination, and other compo-
nents of the physical layer are precise, if somewhat hard to interpret.

For a handy reference to troubleshooting your physical layer, you may
wish to refer to the “SCSI Game Rules,” posted once a month on the
comp.periphs.scsi newsgroup. This document is maintained by Gary
Field, who also maintains the SCSI FAQ on the same forum. It’s full of
tips to help you understand how the SCSI game is played and what hap-
pens when you break the rules.

231

232

Troubleshooting and Common Mistakes

SCSI Bus Termination

More mythology and misinformation surrounds the subject of bus termi-
nation than any other aspect of SCSI. The simple fact is that a properly
configured bus has exactly two terminators—no more, no less. The termi-
nators must be at the ends of the bus. Often this means the host adapter is
terminated, but that is not always the case. If you use both internal and
external devices, the host adapter may be in the middle of the chain and
should not be terminated. :

Often, people will advise terminating all attached devices, just to be
sure. This is bad advice—run fast and far from anyone who suggests that
you do this.

Passive termination is common, but active termination is the most
trouble-free. For higher transfer rates, termination becomes critical. That
is why Fast SCSI protocols require active termination to work properly.

SCSITermination Power

Termination power problems can be difficult to track down. The host
adapter is required to provide a TERMPWR signal. However, this rule
often is violated. Many parallel port SCSI adapters do not supply TERM-
PWR, relying instead on the attached peripheral to supply it. Some
peripheral devices will, but often they do not. For example, the Iomega
Zip drive does not supply TERMPWR, and does not work with many par-
allel port adapters.

If nothing provides terminator power you have serious trouble. If
you’re not sure if it’s within range, check with a voltmeter. It should be
between 4.25 and 5.25 volts on a properly terminated single-ended bus.

Be Cautious with Cables

The SCSI bus has much stricter electrical requirements than other inter-
faces. That’s why it pays to be fussy about the cables you use. Good SCSI
cables are properly shielded, have the correct impedance, and probably
cost more than you think they should. This is not the place to cut corners,
as a marginal cable can cost you more in the long run, causing intermit-
tent problems that are nearly impossible to isolate.

Be aware of cable lengths. The total length of a single-ended SCSI bus
should be no more than six meters. For cabling between devices, shorter
is better.

Watch Out for Platform Dependencies 233

And at the risk of stating the obvious, make sure both ends of your
cables are connected. A cable connected at only one end is a spawning
ground for electrical gremlins.

Don’t Take Documentation at Face Value

As you work with SCSI devices, you’ll find that often the manufacturer’s
documentation is only slightly more trustworthy than a supermarket tab-
loid. Often the documentation is written to design specifications that
changed several times before the final product reached the market.

Trust nothing you read. If the programmer’s specification claims that a
device returns a certain error code, test it by inducing the error condition
and checking how the device responds.

Be cautious with documentation that appears vague. Programmers tend
to be optimistic, interpreting ambiguous information in whatever way
makes the code easier to write. When in doubt seek out a second opinion,
preferably from a pessimist.

Watch Out for Platform Dependencies

SCSI Byte Order

Novice SCSI programmers often are careless about byte order in SCSI
commands. The rule is simple: values in SCSI Command Blocks are
always in big-endian order. The most significant byte leads, the least sig-
nificant byte follows.

Programmers working on Intel platforms generally are more used to
little-endian values where the least significant byte leads. Be aware that
you’ll have to do some bit-shifting or other operations to convert values
back and forth.

ASPI Byte Order

On the other hand, ASPI uses Intel order in its SCSI Request Blocks. This
makes sense, since ASPI was created for Intel platforms. It can make
things confusing, however, when you build a SCSI CDB with big-endian
numbers, then embed it in an ASPI SRB filled with little-endian values.

A little extra attention to bookkeeping can make things go more
smoothly. You may find it helpful to define macros for frequently used
conversions.

234

Troubleshooting and Common Mistakes

Structure Alignment

It’s a minor mistake, but often hard to catch. You’ve defined a structure in
your C code to hold a SCSI Command Descriptor Block. You fill it with
the proper values and send it to a device for execution, only to have sense
data come back informing you that you have an invalid parameter in the
CDB. What went wrong?

It’s possible your structure isn’t aligned properly. A SCSI CDB must
be aligned on byte boundaries. Many compilers align structures on word
or doubleword boundaries by default.

Check your compile options to make sure your byte-aligned structures
are preserved. Inspect the structures using a debugger to make sure they
look the way you expect them to.

Buffer Alignment

Buffer alignment is another potential problem. When working with ASPI,
always check the host adapter capabilities. The SC_HA_INQUIRY func-
tion returns a buffer alignment mask. This mask tells you how to align any
buffer pointers that you pass to the ASPI manager for this particular host.
Violate the requirements at your own peril.

SCRIPTS code also has strict rules for buffer alignment. Registers that
point to memory addresses hold DWORD values, so all buffers must fall
on a DWORD boundary.

The easiest way to comply with buffer alignment rules is to align all
buffers on DWORD boundaries. This will also satisfy more lenient
requirements for word or byte aligned buffers. The SCSI Snooper sample
application takes this approach by defining a utility class called Aligned-
Buffer. The AlignedBuffer class allocates memory and returns a pointer
aligned to the next doubleword boundary.

Debugging Tools

Debugging SCSI code can be a maddening experience. Too often it involves
sending a CDB to a device that is, in effect, a black box. The device may
perform as you expect, or it may surprise you with errors that you never
anticipated.

Interactive Command Utilities

If you can invest the time, it’s often worthwhile to build a utility that will
let you edit a CDB, pass it to a device, and examine the output. This lets

Debugging Tools

you work with a device and become familiar with it before you build any
production code.

There are many commercial and public domain tools that perform this
function. A tool called ASPIMenu is available from Western Digital, a
manufacturer of SCSI drives and controllers. It works through your
installed ASPI driver to let you interact with a SCSI device. You can
download ASPIMenu without charge from the Western Digital Web site at
www.wdc.com.

Virtual Devices

If you plan to work extensively with a particular device, it is sometimes
helpful to simulate it in software. Set up a second host adapter in your
test machine with a different SCSI ID, and connect it to the first host
adapter. With the proper software, this second adapter can mimic a SCSI
peripheral.

For developers writing target-mode software, this is often the only way
to test code before committing it to firmware. A poorly behaved applica-
tion is less likely to inflict damage on a simulated device than a real one.

Software that works with SCSI disk drives can be difficult to test safely.
Many of the examples in this book use an lomega Zip drive, which has
removable media that is easily replaced. An even better solution would be
to use a virtual disk drive. In the SCRIPTS sample code on the companion
CD-ROM, there is an application that demonstrates target mode program-
ming by building such a device. If you have a compatible Symbios Logic
host adapter, you may want to look at this code.

SCSI Bus Analyzers

The granddaddy of all SCSI debugging tools is the SCSI bus analyzer. A
bus analyzer can make errors painfully obvious. Illegal phase transitions
or dead signal lines show up readily.

Bus analyzers come in many forms, but the basic purpose is to display
a snapshot of the SCSI bus at any given time. A bus analyzer can show
you what phase the bus is in by examining the signal lines. It can display
raw data, or formatted Command Descriptor Blocks, depending on the
capabilities of a particular model. Many models measure signal voltages
and bus timing. Some have extensive capture and analysis capabilities
that will let you walk through a sequence of commands and data transfers.

If bus analyzers have a drawback, it’s that they are expensive. Most
units start at several thousand dollars, which can be difficult to justify for

235

236 Troubleshooting and Common Mistakes

small projects. However, if you plan to work extensively with SCSI, it’s
worth the investment.

Keep a Record

As you work with SCSI, you’ll probably have more suggestions of your
own to add to this list. As the SCSI specification evolves, so does the
potential for mistakes by programmers. To keep from repeating your mis-
takes, try keeping a notebook or journal. You’d be surprised how much you
can forget between projects if you don’t have something to refer back to.

Chapter 13

Sample Application: SCSI Snooper

Up until now, we’ve only shown snippets of sample code to illustrate
SCSI concepts. It’s time to put some of this information to use in building
a practical application.

Most programmers learning to use SCSI start by writing an inventory
program that locates and identifies attached to the bus. We’ll take this
approach further.

We’ll develop a C++ class library around ASPI calls that will include
definitions for a SCSI interface class and SCSI device classes. We’ll
derive classes for specific device types through inheritance from a generic
base class.

Then we’ll use this class library to build a SCSI inspector utility to
examine host adapters and peripherals attached to them. This is a 32-bit
Windows application that runs under Windows 95 and NT.

A word of preparation is in order for the Windows NT platform. The
ASPI32 service we use in this application is not part of the default NT
installation. Unless you have an application that installs it for you, you
will have to install it manually. For instructions on how to do this, refer to
Appendix C.

Because the application is written in Microsoft Visual C++, you’ll also
need the files MSVCRT40.DLL and MFC40.DLL. Chances are, they’re
on your system already. If not, copy them from the accompanying CD-ROM
into your system directory.

237

238

Sample Application: SCSI Snooper

An Overview of the SCSI Snooper

Let’s look at our sample application in action, then we’ll examine how it’s
constructed.

The application displays a window with icons representing SCSI host
adapters and attached peripherals. Clicking on the icons brings up infor-
mation provided by the ASPI manager and SCSI Inquiry commands.

SCSl Snooper RN

Figure 13-1. SCSI Snooper Opening Screen

The host adapter information screen displays information gleaned from
the ASPI driver. It shows the host adapter number, the name of the ASPI
manager, and a driver identification string.

You may see some surprises if you run this application on different
machines. Many manufacturers have adopted the ASPI model for device
drivers. Jomega, for example, uses an ASPI-compatible device driver for
the parallel port version of their Zip drive. Modern IDE devices may use
an ATAPI interface based on SCSI protocol, with ASPI-compatible driv-
ers. When we tested the software on an IBM ThinkPad equipped with an
ATAPI CD-ROM drive, the internal interface appeared on the list of ASPI
hosts adapters, identifying itself as “ESDI_506.”

Our example is from a Windows 95 machine equipped with Symbios
Logic SYMS53C825 and Adaptec 1522 host adapters. The Symbios adapter

An Overview of the SCSI Snooper

information screen shows that this is a Wide SCSI controller capable of
supporting 16 devices, with an assigned SCSI ID of 7.

Host Adapter Properties

Figure 13-2. Host Adapter Information Screen

Attached peripherals are treated as a pool of devices, regardless of
which host adapter they are connected to. A click on a device icon brings
up a basic information screen that displays the device address, type, and
identification. For the lomega Zip drive, it looks like Figure 13-3.

SCSI evice Ploprlies

Figure 13-3. lomega Zip Drive Basic Information

A click on the “More Info...” button brings up an advanced infor-
mation screen. This screen shows information about supported features,
attained through the Inquiry command.

239

240 Sample Application: SCSI Snooper

[Advanced Information

Figure 13-4. lomega Zip Drive Advanced Information

Let’s look at the same screens for a SCSI CD-ROM drive. The basic
information screen tells us it’s a Sony CD-ROM, set to SCSI ID 2.

‘ SCSI Device Properties

Figure 13-5. CD-ROM Drive Basic Information

Again, a click on “More Info...” brings up the advanced informa-
tion, which tells us that this device supports linked commands and
synchronous data transfer.

An Overview of the SCSI Snooper 241

| Advanced Information

Figure 13-6. CD-ROM Drive Advanced Information

Clicking the “Actions. . .” button on the device screen brings up a list
of device-specific actions we can perform. For all device types, you’ll see
the same basic actions: Test Unit Ready, Device Inquiry, and Read
Sense. Other actions differ depending on whether the peripheral device
type supports them or not. For instance, the Zip drive actions screen shows
a list that pertains to direct-access devices with removable media.

: elfrm CSI Command

Test Unit Ready
Device Inquity
Request Sense
Read Disk Capacity
Read Disk Sector
Lock/Unlock Disk

Figure 13-7. Zip Drive Actions

Commands for direct access include functions to read the disk capac-
ity, read a sector, and lock, unlock, or unload removable media. Selecting

242 Sample Application: SCSI Snooper

“Read Disk Sector” and clicking “Run” brings up a dialog box request-
ing a sector to read. The results of the command appear in the output box.

: Perform SS ommand

Figure 13-8. Zip Drive Read Sector Results

If the command fails, the output box contains error information and
any available sense data.

The actions screen for the CD-ROM is similar to that of the direct-
access device.

[Peitorm SCSI Command

| Test Unit Ready
| Device Inquiry

{Read CD-ROM Table of Contents
JLock/Unlock CD-ROM

Figure 13-9. CD-ROM Drive Actions

The ASPI Class Library 243

The user may choose to read the CD-ROM capacity, and lock, unlock,
or unload the CD-ROM. Instead of a command to read a disk sector, there
is a command to read the CD-ROM table of contents. This function dis-
plays track information in the output box.

§ Perform SCSI Command

Test Unit Ready
|| Device Inquiry
Request Sense
Read CD-ROM Capacit
Read CO-ROM of Contents

Lock/Unlock CD-ROM ;

Figure 13-10. CD-ROM Read Table of Contents Results

This version of the SCSI Snooper offers only extended functions for
direct-access devices and CD-ROM drives. Actions for other SCSI periph-
erals such as scanners and tape drives are limited to commands common
to all devices. However, it’s easy to add support for other device types—
we’ll show you how as we examine how the application works.

The ASPI Class Library

The foundation of the SCSI Snooper application is the ASPI class library.
This library creates a device interface class by applying principles we dis-
cussed in Chapter 7. It serves as a wrapper around basic ASPI functions
that constructs SCSI Request Blocks, passes them to the ASPI manager,
checks for completion, and maps errors.

Note that when we use the term “class,” we refer to a C++ class—not a
device class or other type of class associated with Windows programming.

244

List

Sample Application: SCSI Snooper

The Scsilnterface Class

The Scsilnterface class is the foundation of our class library. It provides a
mechanism for software to communicate with devices through the ASPI
manager. The Scsilnterface class contains an array of host adapter informa-
tion and a linked list of devices attached to the adapters. The list approach
lets us access a specific device without requiring us to know which adapter
hosts it.

Here is the definition for the Scsilnterface class.

ing 13-1. Scsilnterface Class Definition

cla

ss ScsiInterface {
public:

int AspiIsOpen;
unsigned NumAdapters;
unsigned NumDevices;

AdapterInfo *AdapterList;
ItemList ScsiDevList;

ScsiInterface();

ScsiInterface(int BuildDeviceList, int type=-1,
int scan_luns=0);

~ScsiInterface();

ScbError OpenAspilayer();
unsigned GetNumAdapters();

unsigned GetNumDevices();
ScsiDevice *GetDevice(unsigned i);

int BuildDeviceList(int type=-1, int scan_luns=0);
void ClearDeviceList();

ScbError RescanBus(int type=-1, int scan_luns=0);

ScbError AttachDevice(unsigned adapter, unsigned unit,
unsigned lun, int type=-1);
void RemoveDevice(unsigned adapter, unsigned unit,
unsigned 1lun);
(Continued)

The ASPI Class Library

Listing 13-1. (Continued)

ScsiDevice *FindDevice(char *name);
ScsiDevice *FindDevice(unsigned adapter, unsigned unit,
unsigned lun);

}i

An important element of the Scsilnterface class is the ScsiDevice-
List member. This is a linked list of objects describing the attached SCSI
devices. Class member functions help you manage this list or locate specific
list items by name or SCSI address.

We have defined a separate class for the objects in this list.

The ScsiDevice Class

The ScsiDevice class describes the attributes and characteristics of a SCSI
peripheral, as well as functions to interact with it. It’s a bit more compli-
cated than the Scsilnterface class. Here is its definition.

Listing 13-2. ScsiDevice Class Definition

class ScsiDevice

{
public:

int Adapter;

int Unit;

int Lun;

int Type;

char *RealName;

char *Name;

char *Revision;

unsigned int AnsiVersion;

unsigned int bRemovable;

unsigned int bwWide32;

unsigned int bWidelé6;

unsigned int bSync;

unsigned int bLinked;

unsigned int bQueue;

unsigned int bSoftReset;

long RetryOnScsiBusy; // milliseconds to wait

long RetryOnScsiError; // milliseconds to wait
(Continued)

245

246 Sample Application: SCSI Snooper

Listing 13-2. (Continued)

long RetryOnUnitAttention; // milliseconds to wait
long RetryOnTargetBusy; // milliseconds to wait
long RetryOnTargetNotReady; // milliseconds to wait

long RetryOnTargetBecomingReady; // milliseconds to wait

ScsiDevice();
~ScsiDevice();

char *GetName() { return Name; };

char *GetRealName() { return RealName; };

char *GetRevision() { return Revision; };

int GetAdapter() { return Adapter; };

int GetUnit() { return Unit; };

int GetLun() { return Lun; };

int GetType() { return Type; };

unsigned int GetAnsiVersion() { return AnsiVersion; };
unsigned int IsRemovable() { return bRemovable; };

unsigned int IsWide32() { return bwide32; };
unsigned int IsWidelé6() { return bwidel6; };
unsigned int IsSync() { return bSync; };
unsigned int IsLinked() { return bLinked; };
unsigned int IsQueue() { return bQueue; };
unsigned int IsSoftReset() { return bSoftReset; };
int SetName(char *name);

ScbError Init(unsigned adapter, unsigned unit, unsigned lun);

ScbError ExecuteScb(ScsiCmdBlock &scb, long timeout);

Y

The ScsiDevice class contains data members that store information
about device names, SCSI addresses, host adapters, and supported features.
Some of the class functions are defined inline to simply return these values.

The workhorse function of the ScsiDevice class is ExecuteScb. This
function handles the execution of SCSI commands through the ScsiCmd-
Block class.

The ScsiCmdBlock Class

The ScsiCmdBlock class is responsible for building ASPI SCSI Request
Blocks and passing them to the ASPI manager for execution.

The ASPI Class Library 247

Listing 13-3. ScsiCmdBlock Class Definition

class ScsiCmdBlock

{
public:

ScsiRequestBlock srb;
ScbError LastError;

ScsiCmdBlock();
~ScsiCmdBlock();

void Init(unsigned cmd, unsigned adapter=0,
unsigned target=0, unsigned lun=0);

// The following routines assume an SC_EXEC SCSI _CMD type command
void SetCdb(void *cdb, unsigned nbytes);

void GetSense(void *sense, unsigned maxbytes);

void SetDataBuffer(void *bufp, unsigned buflen);

ScbError Execute(long timeout = -1L);

Y

The Execute function passes a SCSI Request Block to the underlying
ASPI manager. Other class functions set data buffers for I/O operations
and retrieve sense data.

Initializing the Scsilnterface Class

Let’s look at these classes more closely to see how they work. We’ll start
with the second form of the Scsilnterface constructor function.

Scsilnterface(int BuildDeviceList, int type=-1, int scan_luns=0);

The arguments to this constructor let us tell it to scan the SCSI bus and
build a device list. We can also specify a specific device type to look for,
and whether to scan Logical Unit Numbers at each address. The default is
to report all device types, and only scan LUN 0. This constructor is simi-
lar to the default form, except that it calls the BuildDeviceList
member function. BuildDeviceList scans the host adapters for de-
vices, building a linked list of attached devices.

248 Sample Application: SCSI Snooper

Listing 13-4. Scsilnterface::BuildDeviceList Member Function

int ScsiInterface::BuildDevicelList(int type,int scan_luns)
{

unsigned adapter,unit,lun;

ScbError err;

if (!AspiIsOpen)
{
err = OpenAspilayer();
if (err)
return 0;

}

// paranoia
assert(NumAdapters <= MAX HOST_ ADAPTERS);

for (adapter=0; adapter<NumAdapters; adapter++)

{

ScsiCmdBlock scb;

scb.Init(SC_HA_ INQUIRY,adapter,0,0);

err = scb.Execute(3000);

if (!err)
{
unsigned host _unit = scb.srb.hai.HA SCSI_ID;
unsigned max_units = scb.srb.hai.HA Unique([3];
if (max_units == 0) // old ASPI managers?

max_units = 8;

// Save host adapter information
if (AdapterList)

{
char *s;
int 1i;

AdapterList[adapter].AdapterNum = adapter;
AdapterList[adapter].Scsild = host_unit;
AdapterList[adapter].MaxUnits = max_units;
AdapterList[adapter].Residual
scb.srb.hai.HA Unique([2];
AdapterList[adapter].Align =
((WORD) scb.srb.hai.HA Unique([0] |
(WORD) scb.srb.hai.HA Unique[l] << 16);

// Save adapter manager ID
s = AdapterList[adapter].ManagerId;
(Continued)

The ASPI Class Library

Listing 13-4. (Continued)

for (i=0; i<sizeof(scb.srb.hai.HA ManagerId); i++)
*s++ = scb.srb.hai.HA ManagerId[i];
*s = '\0';

// Trim trailing spaces
while (--s > AdapterList[adapter].ManagerId)
{
if (isascii(*s) && isspace(*s))
*s = '\0';
else
break;

}

// sSave adapter identifier
s = AdapterList[adapter].Identifier;

for (i=0; i<sizeof(scb.srb.hai.HA Identifier); i++)
*s++ = scb.srb.hai.HA_Identifier[i];
*s = '"\0';

// Trim trailing spaces
while (--s > AdapterList[adapter].Identifier)
{
if (isascii(*s) && isspace(*s))
*s = '\0';
else
break;

}

for (unit=0; unit<max_units; unit++)
{
if (unit != host_unit)
{
if (scan_luns)
{
for (lun=0; lun<8; lun++)
{
err = AttachDevice(adapter,unit,lun,type);
if (err)
break;

(Continued)

249

250 Sample Application: SCSI Snooper

Listing 13-4. (Continued)

else
{
lun = 0;
AttachDevice(adapter,unit,lun,type);
}

}

}

return NumDevices;

There isn’t much mystery to this function. It first checks to see if the
ASPI layer is open, calling an initialization function if needed. A side effect
of the initialization routine is that it records the number of host adapters
present.

The next part of the function loops through the adapters, collecting and
storing information about the adapters and attached devices. For each host
adapter, it checks all the possible SCSI addresses for active peripherals by
calling the AttachDevice routine. The AttachDevice function per-
foms the actual discovery. Listing 13-5 shows what it looks like.

Listing 13-5. Scsilnterface::AttachDevice Member Function

ScbError ScsilInterface::AttachDevice(unsigned adapter,
unsigned unit, unsigned lun, int type)
{
ScbError err;
ScsiCmdBlock scb;
ScsiDevice *dev;

if (!AspiIsOpen)
{
err = OpenAspilayer();
if (err)
return err;

}
(Continued)

The ASPI Class Library 251

Listing 13-5. (Continued)

// Make sure we don't already have it attached

if ((dev=FindDevice(adapter,unit,lun)) != NULL)
{
if ((type == -1) || (type == dev->GetType()))
return Err_ None;
else

return Err_NoDevice; // Wrong type

}

// See if device really exists by getting its device type
// This should cut down on init time
scb.Init(SC_GET_DEV_TYPE, adapter,unit,lun);
err = scb.Execute(1000L);
if (err)

return err;

if ((type != -1) && (type != scb.srb.gdt.SRB DeviceType))}
{
// Wrong type
return Err_NoDevice;

}

dev = new ScsiDevice;
if (!dev)
return Err OutOfMemory;

err = dev->Init(adapter,unit,lun);
if (err)

{

delete dev;

return err;

}

dev->SetName (dev->GetRealName());
if (!ScsiDevList.AddItem(dev))

{

delete dev;

return Err_OutOfMemory;

}

NumDevices++;
return Err_ None;

252

List

Sample Application: SCSI Snooper

AttachDevice first executes the ASPI SC_GET_DEV_TYPE function
to determine the device type attached at a specific SCSI ID and LUN. If
the ASPI call returns a valid device type, AttachDevice then calls the
ScsiDevice Init member function. The Init function executes a SCSI
Inquiry call, then stores device identification strings and capabilities for
future reference. Here is what it looks like.

ing 13-6. ScsiDevice::Init Member Function

ScbError ScsiDevice::Init(unsigned adapter, unsigned unit, unsigned lun)

{

ScbError err;
ScsiCmdBlock scb;
SCSI_Cdb_Inquiry t cdb;
SCSI_InquiryData_ t ing;

Adapter = adapter;
Unit = unit;
Lun = lun;

scb.Init(SC_EXEC_SCSI_CMD,Adapter,Unit,Lun);

memset (&cdb,0,sizeof(cdb));
cdb.CommandCode = SCSI_Cmd_Inquiry;
cdb.Lun = Lun;

cdb.Evpd = 0;

cdb.PageCode = 0;
cdb.AllocationLength = sizeof(ingqg);
scb.SetCdb(&cdb,6);

memset(&ing,0,sizeof(inqg));
scb.SetDataBuffer(&ing,sizeof(inqg));

{

long tmp = RetryOnScsiError;
err = ExecuteScb(scb,3000L);
RetryOnScsiError = tmp;

}

if (lerr)
{
Type = ing.DeviceType;
if (RealName)
free(RealName);
RealName = (char *) malloc(sizeof(ing.VendorId)+
sizeof (ing.ProductId)+2);
(Continued)

The ASPI Class Library

Listing 13-6. (Continued)

if

//
if

(RealName)

{

char *s = RealName;

int i;

for (i=0; i<sizeof(ing.VendorlId); i++)
*s++ = ing.VendorId[i];

// Trim trailing spaces

while (--s > RealName)

{
if (!(isascii(*s) && isspace(*s)))
break;
}
s++;
*s++ = ' '

for (i=0; i<sizeof(ing.ProductId); i++)
*s++ = ing.ProductId[i];
*s = '\0';
// Trim trailing spaces
while (--s > RealName)
{
if (isascii(*s) && isspace(*s))
*s = '\0';
else
break;
}
if (Name == NULL)
SetName (RealName) ;

}

Save revision string
(Revision)
free(Revision);

Revision = (char *)

malloc(sizeof (ing.ProductRevisionLevel+l));

if (Revision)

{
char *s = Revision;
int i;

for (i=0; i<sizeof(ing.ProductRevisionLevel); i++)
*s++ = ing.ProductRevisionLevel[i];
*s = '\0';

// Trim trailing spaces
while (--s > Revision)
(Continued)

253

254

Sample Application: SCSI Snooper

Listing 13-6. (Continued)

{

if (isascii(*s) && isspace(*s))
*s = '\0"';

else
break;

}

// save other properties

}

else

{

AnsiVersion = ing.AnsiVersion;
bRemovable = ing.RemovableMedia;
bWide32 = ing.WideBus32Support;

bwidelé6 ing.WideBusl6Support;

bSync = ing.SynchronousTransferSupport;
bLinked = ing.LinkedCommandSupport;
bQueue = inqg.CommandQueueSupport;
bSoftReset = ing.SoftResetSupport;

Type = O0x1F;

}

return err;

Look closely at this piece of code. It demonstrates how to build a SCSI
Command Descriptor Block, assign the CDB to an instance of a ScsiCmd-
Block, set the address of the data buffer, and pass the ScsiCmdBlock on
for execution. All SCSI calls in the ScsiDevice class follow this model.

Executing a ScsiCmdBlock

We’ve finally worked our way down to the actual ASPI function call. It
takes place in the ScsiCmdBlock class. The Execute member function
sets a few flags in the SCSI Request Block and passes it to the DoAspi-
Command function. DoAspiCommand is a static function, and is not a

member of the ScsiCmdBlock class.

The ASPI Class Library

Listing 13-7. DoAspiCommand Function

static int DoAspiCommand(ScsiRequestBlock *p, long timeout)

{
HANDLE hEvent;

long wait;
// get event handle
hEvent = p->io.SRB_PostProc;

// map timeout value
wait = (timeout == -1L) ? INFINITE : timeout;

ResetEvent (hEvent);

aspi_SendCommand(p);

if (p->io.SRB_Status == SS_PENDING)
{
if (WaitForSingleObject(hEvent, wait) == WAIT _OBJECT 0)
// event completed
{
ResetEvent (hEvent);
return 1;
}

time_t elapsed_time;
time t starttime = time(NULL);

while (p->io.SRB_Status == SS_PENDING)
{
elapsed_time = time(NULL) - starttime;
if (timeout != -1)
{
if (elapsed_time > (timeout/1000 + 1))
{
if (p->io.SRB_Cmd != SC_ABORT_SRB)

{
// Abort it now

SRB_Abort a;

memset (&a,0,sizeof(a));
a.SRB_Cmd = SC_ABORT_SRB;
a.SRB_HaId = p->io.SRB_Hald;
a.SRB_ToAbort = p;
aspi_SendCommand(&a);
starttime = time(NULL);

while (a.SRB_Status == SS_PENDING)

255

256 Sample Application: SCSI Snooper

Listing 13-7. (Continued)

{
if (time(NULL) > (starttime + 4))

{

// Something has gone horribly wrong.
// We can't even abort the command.
// Ignore the abort, and pretend the
// original command timed out.

break;

}
Sleep(10L);

}
}
// Aborted, return code
return 0;
}
}
if (elapsed_time > 2) // is this a long command?
Sleep(1000L); // if so, give the 0S more time
else
Sleep(10L); // else just give it a little

}
}

return 1;

The code should look familiar, as it is similar to the examples in Chap-
ter 7. We use event notification to detect when a command has completed,
and add some timeouts and other checks for paranoia.

Some of the constants and structures we use may be unfamiliar. They
are defined outside the classes we’ve examined, and appear separately in
the SCSIDEFS.H and ASPILH header files.

Using the ASPI Class Library

Now that you’ve seen the low-level workings of the ASPI class library,
we’ll show you how to use it in an application.

Deriving SCSI Device Types

A useful abstraction for working with SCSI peripherals is to define a
generic device type, and derive specialized devices from that. The generic

Using the ASPI Class Library 257

device supports common SCSI functions like Test Unit Ready, Read
Sense, Inquiry, and others that apply to all peripheral types. From this
base class, we can derive specialized classes for direct-access devices,
CD-ROM drives, and other devices.

This is the approach we take for the SCSI Snooper. We start with a
base class called ScsiBaseDevice. This class handles common functions
and error mapping. Its definition can be seen in Listing 13-8.

Listing 13-8. ScsiBaseDevice Class Definition

// Base class for derived SCSI device classes
class ScsiBaseDevice

{
public:

ScsiDevice *Device;

int IsOpen;

int LastError;

int SystemError;
int LastScsiError;

unsigned Adapter;
unsigned Unit;
unsigned Lun;

ScsiCmdBlock Scb; // all commands use this ScsiCmdBlock
MutexSemaphore ScbMutex;

union
{
SCSI_SenseData_t Sense;
unsigned char SenseBuffer[SENSE_LEN];

}i

ScsiDeviceAttributes t Attributes;
SCSI_InquiryData_t InquiryData;

ScsiBaseDevice();
~ScsiBaseDevice();

ScsiDevice *GetScsiDevice();

ScsiError_t Open(ScsiDevice *dev,
ScsiDeviceAttributes_t *attr=0);
ScsiError_t Close(void);
(Continued)

258 Sample Application: SCSI Snooper

Listing 13-8. (Continued)

ScsiError_t DoCommand(void *cdb, unsigned cdblen,
void *dbuf, unsigned long dbuflen, int dir,
long timeout);

int validResidualCount();
long GetResidualCount();
unsigned MapAscAsq();
ScsiError_t MapScsiError();

ScsiError_t WaitTilReady(long timeout = -1);

ScsiError t TestUnitReady();
ScsiError_t RequestSense(void *bufp, unsigned maxbytes);
ScsiError_t Inquiry(void *bufp, unsigned maxbytes,
int evpd=0, int page_code=0);
ScsiError_t ModeSelect(void *bufp, unsigned nbytes,
int pf=0, int sp=0);
ScsiError_t ModeSense(void *bufp, unsigned maxbytes,
int page_code=0, int pc=0, int dbd=0);

void QueryErrorString(ScsiError_t errcode, char *bufp,
unsigned maxbytes);

char *QueryMajorErrorString(ScsiError_t errcode);

}i

The Device member variable is a pointer to a ScsiDevice object from
our class library. This object must already exist, and is passed to the Scsi-
BaseDevice object through the Open function.

The higher level functions all call DoCcommand, which takes pointers to
a CDB and a data buffer as arguments. A simple example is the Inquiry
function, which executes a SCSI Inquiry command.

Listing 13-9. ScsiBaseDevice::Inquiry Member Function

ScsiError_t ScsiBaseDevice::Inquiry(void *bufp,
unsigned maxbytes, int evpd, int page_code)
{
SCSI_Cdb_Inquiry_ t cdb;
char buf[260];
(Continued)

Using the ASPI Class Library 259

Listing 13-9. (Continued)

memset (bufp, 0, maxbytes);
if (maxbytes > 255)

maxbytes = 255;
memset (&cdb,0,sizeof(cdb));
cdb.CommandCode = SCSI_Cmd_Inquiry;
cdb.Lun = Lun;
cdb.Evpd = evpd;
cdb.PageCode = page_code;
cdb.AllocationLength = O0XFF;

LastError = DoCommand(&cdb,6,buf,maxbytes,Scsi_Dir_ 1In,
Attributes.ShortTimeout);
memcpy (bufp,buf,maxbytes);

return LastError;

The approach here is simple: build a SCSI CDB and pass it to the
DoCommand function along with data buffer information. This makes add-
ing functions for other SCSI commands easy.

The ScsiDiskDevice class inherits the functionality of ScsiBaseDevice,
and adds support for other commands.

Listing 13-10. ScsiDiskDevice Class Definition

// SCSI direct access device class
class ScsiDiskDevice : public ScsiBaseDevice

{
public:

ScsiDiskDevice();
~ScsiDiskDevice();

ScsiError_t ReadCapacity(DWORD *blklast, DWORD *blksize);
ScsiError_t ReadSector (DWORD sectnum, void *bufp,
DWORD maxbytes, DWORD *bytesread = NULL);
ScsiError t LockUnlock(int fLock);
ScsiError_t Eject();

}i

260

Sample Application: SCSI Snooper

We’ve only added a few device type-specific functions here. The C++
inheritance mechanism makes functions in the ScsiBaseDevice class
available to ScsiDiskDevice objects.

It’s comforting to note that at higher levels of abstraction the code
becomes simpler.

The SCSI Snooper Application Framework

The SCSI Snooper uses the Microsoft Foundation Classes library to pro-
vide an application framework and the elements of the user interface.
Structurally, the Snooper program is a series of dialog boxes with controls
that invoke selected commands.

Much of the application code was generated by Microsoft’s Develop-
ment Studio, and is too bulky to reproduce here. However, it is included
on the companion CD-ROM. Feel free to study it, dissect it, and adapt it
for your own use.

You may use the included makefile to build the application or create a
Visual C++ project file. The ASPI class library files are in a separate sub-
directory. Make sure this subdirectory appears in the search path for
include files, or the compiler will be unable to locate the class library
header files.

SCSI Snooper Application Structure

The application class, CSnooperApp, contains a pointer to a Scsilnterface
object. The main dialog class, CSnooperDlg, uses this pointer to locate
host adapters and create icon buttons for them. The CSnooperD1g initial-
ization routine walks the device list, mapping it to an array. This array is
used to create and track device icon buttons by index number.

The adapter information dialog class is CAdapterDIlg. The CSnooper-
Dlg object passes it a pointer to the application’s Scsilnterface object,
which it uses to display information about the selected host adapter.

The device information dialog class is CDeviceDlg. It receives a
pointer to a ScsiDevice object from the CSnooperDlg object that calls it.
Through this pointer, it retrieves the device name and identification strings
for display.

The CMoreinfoDlg class is responsible for the extended information
dialog. It receives a pointer to a ScsiDevice object from the parent CDevice-
Dlg object. SCSI features appear as a series of boxes, which are checked
if the device supports them.

Using the ASPI Class Library

The CActionDlg class is more complex than the others. Using the
ScsiDevice object pointer it receives from its CDeviceDlg parent, it deter-
mines the SCSI peripheral device type and displays the appropriate
actions in a list box. On executing the actions, it displays error messages
or output in a text field.

Use the SCSI Snooper to examine devices. You may be surprised to see
that some devices do not respond as you expect them to. For instance,
Read Sense command issued after cycling power on a device should report
Unit Attention condition. However, some devices silently ignore it.

Use the application as a learning tool by extending it. Don’t be afraid
to experiment!

261

Appendix A

Glossary of Acronyms

General Terms

The world of SCSI is filled with strange terms and confus-
ing acronyms. This glossary lists some of the more common
acronyms and what they stand for.

ANSI

ASC

ASCQ

CDB

CRC

CCS

American National Standards Institute—organization re-
sponsible for maintaining and promoting industrial standards

Additional Sense Code—sense value that identifies the source
of a specific error condition

Additional Sense Code Qualifier—sense value that provides
details about a specific error condition

Command Descriptor Block—structure used to pass com-
mands and parameters to a SCSI device

Cyclic Redundancy Check—computed number used to
detect errors in data transfers

Common Command Set—standard command set for direct-
access devices

263

264 Glossary of Acronyms

DLL

LUN

LVD

SCAM

SCSI-2 Definitions

Dynamic Link Library—file containing shared code or data
used in Windows applications

Logical Unit Number—identifies a subunit on a target
device

Low Voltage Differential—a wiring alternative designed to
accommodate higher transfer speeds

SCSI Configured AutoMagically—defines a protocol for
Plug and Play SCSI configuration

PH1

S2p

TLI

SCSI-3 Definitions

SCSI-2 Protocols

SSA Physical Level 1—defines Serial Storage Architecture
physical layer

SSA SCSI-2 Protocol—defines SCSI-2 transport over Serial
Storage Architecture

SSA Transport Level 1—defines transport protocol over
Serial Storage Architecture physical layers

SAM
SAM-2

MMC

SBC

SCC

SCSI-3 Architecture

SCSI-3 Architecture Model

SCSI-3 Architecture Model, second generation

SCSI-3 Command Sets

Multi-Media Commands-—defines commands for multi-
media devices such as CD-ROMs

SCSI-3 Block Commands—defines commands for block-
oriented direct-access devices

SCSI-3 Controller Commands—defines commands for
RAID devices

SES

SMC

SPC

SSC

FCP

PH2

S3p

SBP

SBP-2

SIP
SPI
SPI-2

SSA
STS

TL2

SCSI Software Interfaces

SCSI-3 Enclosure Services—defines commands for
enclosures

SCSI-3 Medium Changer Commands—defines commands
for medium changers such as jukeboxes

SCSI-3 Primary Commands—defines basic commands for
all SCSI-3 devices

SCSI-3 Stream Commands—defines commands for stream-
oriented sequential-access devices

SCSI-3 Protocols

Fibre Channel Protocol—defines SCSI transport over the
Fibre Channel Interface

SSA Physical Level 2—defines Serial Storage Architecture
physical layer

SSA SCSI-3 Protocol—defines SCSI-3 transport over Serial
Storage Architecture

SCSI-3 Serial Bus Protocol—defines SCSI-3 transport over
the IEEE 1394 interface

Serial Bus Protocol, second generation—defines generic
transport over IEEE 1394 interface

SCSI-3 Interlocked Protocol
SCSI-3 Physical Interface

SCSI-3 Physical Interconnect-2—combines SPI, Fast-20,
and SIP

Serial Storage Architecture

SCSI Transport via SBP-2—defines SCSI-3 transport over
SBP-2

SSA Transport Level 2—defines transport protocol over
Serial Storage Architecture physical layers

SCSI Software Interfaces

ASPI

Advanced SCSI Programming Interface

265

266 Glossary of Acronyms

CAM - SCSI-2 Common Access Method
CAM-3 SCSI-3 Common Access Method
SRB SCSI Request Block—command structure used in ASPI

programming

Appendix B

Books

SCSI Resources

A wide range of information about SCSI is available—the trick is to find
it. This appendix lists sources of information in both print and electronic
form. Use it as a starting point for tracking down information. Keep in
mind though, that with the rapid growth of SCSI more information is
available daily.

Books about SCSI are scarce commodities. Most books on the topic focus
on SCSI hardware, rather than on programming SCSI devices. Some of
the books in this list are no longer in print, but are still available through
locator services or online bookstores.

ANSI SCSI-2 Standard

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112

(800) 854-7179

267

268 SCSI Resources

The SCSI Bus and IDE Interface: Protocols, Applications and
Programming
Friedhelm Schmidt

Addison Wesley Longman
ISBN 0-201-42284-0

The Indispensable PC Hardware Book: Your Hardware Questions
Answered, Second Edition

Hans-Peter Messmer

Addison Wesley Longman
ISBN 0-201-87697-3

The Book of SCSI
Peter M. Ridge

No Starch Press
ISBN 1-886411-02-6

The SCSI Encyclopedia

ENDL Publishing
14426 Black Walnut Ct.
Saratoga, CA 95090
(408) 867-6642

The SCSI Bench Reference

ENDL Publishing
14426 Black Walnut Ct.
Saratoga, CA 95090
(408) 867-6642

What Is SCSI? Understanding the Small Computer
Systems Interface

Prentice-Hall
ISBN 0-13-796855-8

In-Depth Exploration of SCSI

Solution Technology, SCSI Publications
P.O. Box 104

Boulder Creek, CA 95006

(408) 338-4285

Online Information 269

Magazines and Journals

“The Advanced SCSI Programming Interface”

Brian Sawert
Dr. Dobb’s Journal, March 1994, pages 154—158

“The SCSI Bus, Part 1”

L. Brett Glass
Byte Magazine, February 1990, pages 267-274

“The SCSI Bus, Part 2”

L. Brett Glass
Byte Magazine, March 1990, pages 291-298

“More Than Just Fast”

Rick Grehan
Byte Magazine, December 1990, pages 361-369

Online Information

The best sources for current information on proposed SCSI standards are
on the internet. Web sites offer interactive browsing of documents, FTP
sites contain current draft specifications. Here are some lists of useful
sites for SCSI programmers.

Web Sites

ANSI X3T10 Committee Home Page—http://www.symbios.com/x3t10/

This is the home page for the X3T10 working committee. Look for
current information about SCSI-3 standards here.

ANSI X3T10 Committee Drafts—http://www.symbios.com/x3t10/
drafts.htm

This link from the X3T10 home page holds the latest draft
documents.

SCSI-2 Specification (Draft X3T9.2 Rev 10L)—http://scitexdv.com/
SCSI2/

This site holds a hypertext version of the SCSI-2 draft specification.

270

SCSI! Resources

SCSI FAQ—nhttp://www.cis.ohio-state.edu/hypertext/fag/usenet/scsi-faq/
top.html

This site—maintained by Gary Field—contains archives of SCSI
Frequently Asked Questions from the comp.periphs.scsi newsgroup.

Adaptec Home Page—http://www.adaptec.com

This is the home page for Adaptec, a manufacturer of SCSI control-
lers and devices. With Adaptec’s acquisition of Trantor and Future
Domain, support for these devices are also here.

Adaptec Developer Information—http://www.adaptec.com/support/
dev.html

This site holds information for SCSI developers, including ASPI
information and documents.

Symbios Logic Home Page—nhttp://www.symbios.com

This is the home page for Symbios Logic, a manufacturer of SCSI
devices and controllers. Symbios grew from the NCR Microelectron-
ics Division, a pioneer in the SCSI industry. Symbios hosts the
X3T10 committee home page.

Symbios Logic Articles—http://www.symbios.com/articles/articles.htm
This page is a starting point for information relating to SCSI.

Ancot Corporation Home Page—nhttp://www.ancot.com/

Ancot, a manufacturer of SCSI devices and test equipment, hosts
technology discussions and pointers to other SCSI resources. They
offer a free booklet, The Basics of SCSI, that you can order online.

Western Digital Corporation Home Page—http://www.wdc.com/

Western Digital manufactures SCSI drives and host adapters. Their
web site contains useful benchmark programs, ASPI utilities, and
testing tools.

Linux Parallel Port Home Page—http://www.torque.net/linux-pp.html

For information about parallel port devices under Linux, this is the
place to go. It contains links to information about parallel port SCSI
adapters and the Jomega parallel port Zip drive.

Linux Documentation Project Home Page—http://sunsite.unc.edu/mdw/
linux.html

This is the home of the Linux Documentation Project, and is a good
resource for questions about Linux device drivers and SCSI support.

Online Information

Usenet Newsgroups

Newsgroups are great forums for discussing topics related to SCSI. Users
post questions and answers, and lively discussions usually follow.
comp.periphs.scsi—the definitive newsgroup for SCSI information

comp.sys.ibm.pc.hardware.chips—a newsgroup with a slant toward
SCSI controllers

comp.sys.ibm.pc.hardware .storage—good information about SCSI
drives and tape devices

comp.os.ms-windows.programmer.nt.kernel-mode—questions and
answers about SCSI support under Windows NT

comp.os.linux.hardware—questions and answers about SCSI
devices under Linux

Ftp Sites

1/0 Standards Committee Ftp Server—ftp.symbios.com/pub/standards/io/

This site, hosted by Symbios, holds draft standards, utilities, specifi-
cations, and working group proceedings. You’ll find documents
relating to SCSI-2, SCSI-3, Plug and Play SCSI, and an assortment of
other SCSI topics.

Tulane University SCSI Archive—ftp.cs.tulane.edu/pub/scsi/

This ftp site mirrors the contents of the SCSI BBS. Draft standards,
working papers, and other documents appear here.

Linux Ftp Sites
ftp://sunsite.unc.edu/pub/linux/
ftp://tsx-11.mit.edu/pub/linux/
ftp://ftp.redhat.com/pub/

These are popular sites for Linux distributions and documentation.

Bulletin Board Systems

SCSI BBS—(719) 574-0424

This is the definitive source for SCSI-related information, maintained
by members of the X3T10 working committee.

271

272

SCSI Resources

Manufacturer Contacts

This list gives contact information for manufacturers noted in the text.

Global Engineering Documents

15 Inverness Way East
Englewood, CO 80112
(800) 854-7179

Global Engineering publishes and distributes the ANSI SCSI-2 speci-
fication. The document runs over 400 pages of minute detail, but is

indispensible for serious development work.

Adaptec, Inc.

691 South Milpitas Boulevard
Milpitas, California 95035
(408) 945-8600

Adaptec manufactures SCSI controllers, host adapters, and other
devices. Contact their Developer Relations department to purchase

the ASPI Software Developer’s kit.

Symbios Logic
Western Sales Division

1731 Technology Drive, Suite 610
(408) 441-1080

Symbios manufactures SCSI controller chips, host adapters, and
other devices. They distribute the SCRIPTS compiler for low-level

programming of their products.

lomega Corporation

West Iomega Way
Roy, Utah 84067
(800) 778-1000

Iomega manufactures the popular Zip drive. Available in both SCSI
and parallel port versions, Zip drives come in handy for developing
and testing SCSI code. The parallel port model comes with an ASPI

compatible driver.

Appendix C

Installing the Windows
NT ASPI32 Service

The default Windows NT setup does not contain support for ASPI32.
Windows NT supports SCSI devices differently than Windows 95, so the
ASPI layer is not required. Unless you use an application that installs the
ASPI service for you, you’ll have to do it yourself.

If you have purchased the Adaptec EZ-SCSI software, it will install the
necessary libraries and drivers for you. The EZ-SCSI software is also
include in the ASPI Developer’s Kit.

If you don’t have the EZ-SCSI software, it’s not difficult to configure
the service manually. The required files are available on the Adaptec web
site at www.adaptec.com.

Download the Windows 32 ASPI drivers and DLLs from the Adaptec
web site. You may have to hunt around for them. There are four files
required for the Windows NT ASPI service.

ASPI32 Support Files

WNASPI32.DLL 32-bit ASPI manager
ASPI32.SYS ASPI kernel mode driver
WINASPI.DLL 16-bit ASPI manager

WOWPOST.EXE Support for callbacks in 16-bit applications

273

274

Installing the Windows NT ASPI32 Service

Copy WNASPI32.DLL to the \WINNT\SYSTEM32 directory. Copy
the ASPI32.SYS file to the \WINNT\SYSTEM32\DRIVERS directory.
The other files go in the \WINNT\SYSTEM directory to support 16-bit
applications.

Edit the registry to install the ASPI32.SYS driver. Run the registry
editor, and create a key under HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services called ASPI32. Add the following three
values under the new key. Note that they are all REGDWORD values.

ASPI32 Registry Entries

ErrorControl (REGDWORD) 1
Start (REGDWORD) 2
Type (REGDWORD) 1

Exit the registry editor and reboot your system.

When your machine has restarted, go to the Control Panel and click on
Devices. You’ll see ASPI32 listed among them. It’s configured to start
automatically when your system starts.

That’s it! Your NT system is now ready to support ASPI32 applications.

Appendix

Companion CD-ROM Contents

The CD-ROM that accompanies this book contains sample code, tools,
and documentation that you will find helpful as you explore SCSI further.
Keep in mind that SCSI is a rapidly evolving technology. Some of the
contents of the CD-ROM may be out of date by the time you read this.
Nevertheless, it’s convenient to have them at your fingertips.

Sample Code

The SCRIPTS sample code and the source code for the SCSI Snooper
application appear on the disk under the SampCode directory. You’ll find
the source code along with the compiled applications.

You’ll also find the source code for the TSPI target mode API library
under the SampCode directory.

SCRIPTS Sample Code

The SCRIPTS sample code contains the routines presented in the
SCRIPTS chapter. It contains a makefile for building the sample SCSI
inventory program. The makefile is compatible with Borlands’ make util-
ity, distributed with their C++ compiler. The makefile assumes you are
using Borland C++ and Turbo Assembler. You’ll need to modify it if you
are porting the code to another compiler.

275

276

Companion CD-ROM Contents

SCSI Snooper Application

The code for the SCSI Snooper application includes a makefile generated
by Microsoft’s Visual C++ development environment. You can use it as is,
or generate a project file from it. The compiled application and required
libraries appear in the Program subdirectory.

TSPI Target-Mode SCSI Programming Interface

The code for the TSPI target-mode programming interface appears in the
TSPI subdirectory. You’ll also find sample code from Chapter 9 here.

SCSI Specifications

The SCSI-1, SCSI-2, and SCSI-3 draft specifications appear under the
SCSI1Spec directory. The older specifications are plain text files and Adobe
Acrobat PDF files. The components of the SCSI-3 draft specification are
distributed as PDF and PostScript files. You’ll need Adobe’s Acrobat
Reader to view the PDF files. We have included that in the Acrobat
directory.

Keep in mind that many parts of the SCSI-3 specification are still under
revision. For the latest updates, check the TI0 Committee web site at
http://www.symbios.com/x3t10.

We also have included a hypertext version of the SCSI-2 specification.
This is Gary Bartlett’s HTML adaptation of the SCSI-2 drafts, as posted
on the web site at http://scitexdv.com/SCSI2. Point your browser to the
\SCSISpec\HTML\index.html file on the CD-ROM to view the material
offline. If you have installed the Adobe Acrobat Reader plugin, you can
also use your browser to view the SCSI-3 specification PDF files.

SCSI Frequently Asked Questions

No SCSI book would be complete without a copy of Gary Field’s SCSI

FAQ. You’ll find it in the SCSIFaq directory. This document is posted
monthly in the comp .periphs.scsi usenet newsgroup.

Symbios SCRIPTS Support

The Symbios subdirectory contains tools and sample code for working
with the SCRIPTS language. You’ll find the NASM compiler in the Tools
subdirectory, along with the NVPCI debugger.

Linux SCSI Documentation 277

The Sxxdev directory contains sample code that demonstrates using
SCRIPTS for SCSI initiator code. Other source files in this directory con-
tain utility routines you’ll want to use for your own software.

The 8xxtarg directory contains sample code that demonstrates using
SCRIPTS for target mode applications. The sample application creates a
virtual SCSI disk drive that can be useful for testing other applications.

Linux SCSI Documentation

Under the Linux directory on the CD-ROM, you’ll find the Linux
HOWTO documents for SCSI support and SCSI programming. The SCSI
programming HOWTO document contains an example application that
uses the Linux SCSI pass-through feature.

We have also included an archive of the kernel source code for version
2.0.30. You’ll need Gnu zip to unpack the tar file, or a Windows utility
like WinZip. The linux/drivers/scsi directory in the archive holds driver
source code for a variety of SCSI host adapters and the code for the SCSI
pass-through driver, sg.c. Other SCSI support files are found in the /inux/
includel/scsi directory of the archive.

Index

A cable, 6
AB_BufLen field, 101
AB_BufPointer field, 101
AB_ZeroFill field, 101
Abort message, 28
Abort SRB command, 83-86
Abort Tag message, 29
ACK signal
in Data phases, 21
for Synchronous Data Transfer Request
message, 26
in target mode programming, 132, 134
Actions in SCSI Snooper, 241
Adapter Inquiry command, 139-141
Adapter Unique Flags, 75
Adapters
addressing, 57-58
information about, 69, 71-75, 139-141,
238-239
specific properties of, 64
status of, 97-99
Additional sense code qualifiers (ASCQs),
52
Additional sense codes (ASCs), 52
Addresses

in ASPI, 57-59

for devices, 169-170

logical block, 45

in SCRIPTS, 110-112

Advanced Information screen, 239-241
Advanced SCSI Programming Interface

(ASPI), 55-56

adapter and device addressing in, 57-58

adapter specific properties in, 64

benefits of , 56-57

byte order in, 233

class library. See Class library for SCSI
Snooper

command steps in, 58-63

command summary for, 69-71

Host Adapter Status code in, 97-99

manager connections in, 64—69

SC_ABORT_SRB command in, 83-86

SC_EXEC_SCSI_CMD command in,
78-83

SC_GET_DEV_TYPE command in,
76-78

SC_GETSET_TIMEOUTS command in,
90-93

SC_HA_INQUIRY command in, 71-75

279

280 Index

Advanced SCSI Programming Interface
(ASPI) (cont.)
SC_RESCAN_SCSI_BUS command in,
89-90
SC_RESET_DEV command in, 86-89
SRB Status code in, 93-97
Target Device Status code in, 99—100
for Win32 functions, 100-102
for Windows 3.x, 161-162
for Windows 95 and NT, 162—-163
AECN flag, 36
AIX 4.1 UNIX, 179-180
Alignment
in buffers, 74-75, 234
in SCRIPTS, 108
in structures, 234
Allocation length for sense data, 50
Analyzers, bus, 235-236
APIX VxD, 165
Arbitrated loop topology, 10
Arbitration phase, 15-16, 18-19
Arrays
for SCRIPTS, 105
for Windows 95 and NT, 162-163
ARRE flag, 44
ASCQs (additional sense code qualifiers),
52
ASCs (additional sense codes), 52
ASPI. See Advanced SCSI Programming
Interface (ASPI)
ASPILH file, 256
ASPI32 service, 237, 273-274
ASPI32.SYS driver, 165, 273
ASPI32BUFEF structure, 101
ASPIMenu tool, 235
ATN (Attention) signal, 18
in Selection phase, 19
in target mode programming, 135
Attach LUN command, 141
attach routines in Linux, 194-195, 227-228
AttachDevice function, 250-252
AWRE flag, 44

B cable, 6
Big-endian byte order, 33, 233

BIOS, PCI, version of, 114-115
Block descriptors, 41
Block device drivers, 177
BSY (Busy) signal, 18

in Arbitration phase, 18-19

in Reselection phase, 19

in Selection phase, 19

in target mode programming, 130
Buffer Alignment Mask, 74-75
Buffers

alignment in, 74-75, 234

for SCRIPTS, 119-120

for SCSI Pass-Through, 172-173

testing, 38

for UNIX device drivers, 177

for Win32 functions, 100-101
BuildDeviceList function, 247-250
Bus

querying, 119-125

scanning for changes on, 89-90, 170-171

termination of, 3, 232
Bus analyzers, 235-236
Bus Device Reset message, 28, 86
Bus Free phase, 18
Busy status code, 49, 100
Byte order, 33, 233

C/D (Control/Data) signal, 18
in Data phases, 21
in Message In phase, 21
in Message Out phase, 20
in Status phase, 21
C language, SCRIPTS code embedded in,
107-113
Cables
problems with, 232-233
in SCSI-1, 3
in SCSI-3, 8
in serial SCSI standards, 9
CActionDlg class, 261
CALL instruction, 106
Callback routines
in ASPI, 60-62
in TSPI, 147-148
CAM (Common Access Method), 176

CAM-3, 12
Capabilities information, 36-37, 169
CCS (Common Command Set), 34
CDBs. See Command Descriptor Blocks
(CDBs)
CDECL calling convention, 61-62
CDeviceDlg class, 260-261
Change Definition command, 39
Character device drivers, 177
Check Condition status code, 49, 100
check_scsidisk_media_change routine,
211-212
Class drivers, 163, 165
Class library for SCSI Snooper, 243
AttachDevice function in, 250-252
BuildDeviceList function in, 247-250
DoAspiCommand function in, 254-256
Init function in, 252-254
ScsiCmdBlock class in, 246-247
ScsiDevice class in, 245-246
Scsilnterface class in, 244-245
using, 256-261
CLEAR instruction, 106
Clear Queue message, 29
Close entry point, 177
close routine, 216
CMoreinfoDIg class, 260
Command Complete message, 21
Command Descriptor Blocks (CDBs), 20,
31-32,59, 78
alignment in, 234
creating, 210
editing, 234-235
with miniport drivers, 164
in target mode programming, 133-134
command_done routine, 219-220
Command layer in SCSI-3, 11
Command phase, 16, 20, 133-136
Command Terminated status code, 49
Commands, 31
in ASPI, 58-63, 69-93
byte order of, 33, 233
device type specific, 39-44
linked, 7, 23
mandatory, 33-38

Index

optional, 38-39

for reading and writing, 4445, 119

in SCSI-1, 34

structure of, 31-33

in TSPI, 139, 156
Common Access Method (CAM), 176
Common Command Set (CCS), 34
comp.periphs.scsi newsgroup, 231
Companion CD-ROM, 275-277
Compare command, 38
Complete Command command, 147-148
Condition Met status code, 48—49
Conditional tests in SCRIPTS, 107
Configuration registers, SCRIPTS routine

for, 117-118

Connecting

to ASPI manager, 64—69

to TSPI manager, 153-155
Contingence alliance conditions, 49
Control fields, 32-33
Control registers, initializing, 118-119
Copy command, 38
Copy and Verify command, 38
Cost of cables, 232
CSnooperApp class, 260
Current errors with sense data, 50
Cyclic Redundancy Check (CRC), 10

Data In phase, 16, 20-21

Data integrity in serial SCSI standards, 10
Data lines in Arbitration phase, 19
Data Out phase, 16, 20-21, 134

Data parity in SCSI-2, 7

DBD flag, 40

DCNTL (DMA Control) register, 113
Debugging tools, 234-236

Dedicated services in FC standard, 10
Deferred errors with sense data, 50
Density code with sense data, 41
Dependencies, platform, 233-234
Deriving device types, 256-260
Detach LUN command, 141-142
detach routines in Linux, 195-196, 228
detect routine, 194, 226

Device Driver Kit (DDK), 166

281

282 Index

Device drivers

opening, 166

in UNIX implementations, 176-178

in Windows 3.x, 161-162

in Windows 95 and NT, 163-164
Device indexes, 115
Device Inquiry command, 119-120
Device nodes, 177, 212
Device types

commands for, 3944

deriving, 256-260

in Inquiry command, 36

obtaining, 76-78

resetting, 8689
DeviceloControl() routine, 165
Devices

addresses for, 57-58, 169-170

capabilities of, 36-37, 169

IDs for, 115

information about, 119-120

opening, 188-190, 214-215

precedence of, 16, 19

virtual, 235
DEVIOCTL.H file, 166
Differential wiring, 6
Digital UNIX, 185-186
DIP (DMA Interrupt Pending) flag, 113
Direct hardware access, 104
Disconnect command, 152
Disconnect message, 28, 152
Disconnect-reconnect mode page, 43
Disk class drivers, 165
DMA Control (DCNTL) register, 113
DMA Interrupt Pending (DIP) flag, 113
DMA SCRIPTS Pointer (DSP) register, 108
DMA SCRIPTS Pointer Save (DSPS) regis-

ter, 113

DMA Status (DSTAT) register, 113
do_sd_request routine, 198-200
DoAspiCommand function, 254-256
DoCommand function, 258-259
Documentation

for Linux, 277

problems with, 233

for target mode programming, 128

DPMI (DOS Protected Mode Interface), 162
DPO/FUA flag, 43
Drivers

opening, 166

in UNIX implementations, 176—178

in Windows 3.x, 161-162

in Windows 95 and NT, 163-164
DSP (DMA SCRIPTS Pointer) register, 108
DSPS (DMA SCRIPTS Pointer Save) regis-

ter, 113

DSTAT (DMA Status) register, 113
Dynamic driver loading, 176

Editing Command Descriptor Blocks,
234-235
EER flag, 44
Embedding SCRIPTS code in C, 107-113
End of Medium (EOM) field, 50
Entry points in TSPI, 153-155
Errors and status
Host Adapter Status, 97-99
with Mode Sense command, 44
with Request Sense command, 50
in SCRIPTS programs, 124
sense keys for, 51-53
SRB Status, 93-97
Target Device Status, 99-100
in TSPI, 139
Event Notification, 63, 163
EVENT objects, 62
Events in TSPI, 142-144
EVPD flag, 35, 38
Execute SCSI Command command, 78—83
Extended messages, 25

FAR PASCAL calling convention, 61
Fast SCSI, 5-6

Fast-20 SCSI, 8

Fast-40 SCSI, 8-9

Fast Wide SCSI, 6

Feedback, 47

Fibre Channel (FC) standard, 10
Field, Gary, 231, 276

53C400A chipset, 128-130
Filemark field, 50

finish routine, 193

FireWire standard, 11

Frame switched services, 10
free routine, 217

Free ASPI32Buffer() routine, 101
Frequently asked questions, 276

Generic driver in Linux, 212

GENSCSI.SS module, 119-125

Get Address command, 169-170

Get Capabilities command, 169

Get Device Type command, 76-78

Get Event command, 142—-144

Get Inquiry Data command, 167-168

Get Message From Host command,
150-151

Get/Set Timeouts command, 90-93

Get Timeout function, 83

GetASPI32Buffer() routine, 101

GetASPI32SupportInfo() routine, 65

GetASPISupportInfo() routine, 65-66, 69

GetProcAddress() routine, 66

GlobalAlloc() routine, 162

GlobalPagelock() routine, 162

Good status code, 48—-49, 100

Groups, command, 20, 31-32

HA_Count field, 73
HA_Identifier field, 74
HA_ManagerID field, 74
HA_SCSI_ID field, 73
HA_Unique field, 74-75
Handshaking in Data phases, 21
Hardware
in target mode programming, 128—129
troubleshooting, 231-233
Hardware Error sense key, 51
Hardware independence in ASPI, 56
Hardware-specific drivers, 163
Hardware-specific properties, 64
HASTAT_BUS_FREE status value, 98
HASTAT_BUS_RESET status value, 99
HASTAT_COMMAND_TIMEOUT status
value, 99
HASTAT_DO_DU status value, 98

Index

HASTAT_MESSAGE_REIJECT status
value, 99
HASTAT_OK status value, 97
HASTAT_PARITY_ERROR status value,
99
HASTAT_PHASE_ERR status value, 98
HASTAT_REQUEST_SENSE_FAILED
status value, 99
HASTAT_SEL_TO status value, 97-98
HASTAT_TIMEOUT status value, 99
Head of Queue Tag message, 29
Header files in SPTI, 166
Headers with Mode Sense command, 41
Host Adapter Inquiry command, 69, 71-75
Host Adapter Properties screen, 238-239
Host Adapter Status code, 97-99
Host Adapter Unique field, 64
Hosts
getting messages from, 150-151
reading data from, 144-145
sending messages to, 148—150
writing data to, 146-147
Housekeeping in SCRIPTS, 114-119
HP-UX 10.x UNIX, 181-182

I/O (Input/Output) signal, 18
in Data phases, 21
in Message In phase, 21
in Message Out phase, 20
in Reselection phase, 19
in Selection phase, 19
in Status phase, 21
I_T_L nexus, 20, 23
I_T_L_Q nexus, 29
I_T_R nexus, 20
120 standard, 188
Identify messages, 23-25
in Data phases, 21
in Message Out phase, 20
in SCSI-2, 7
in target mode programming, 134
IDs
device and vendor, 57-58
SCRIPTS routine for, 115
IF operator, 107

283

284 Index

Ignore Wide Residue message, 28
Illegal Request sense key, 51
Impedance for cables, 232
Incorrect Length Indicator (ILI), 50
Independence in ASPI, 56-57
Indirect addressing in SCRIPTS, 110-112
Init function in ScsiDevice, 252-254
init routine in Linux, 191-192, 226-227
Initializing
control registers, 118-119
53C400A chipset, 130
in SCRIPTS, 114-119
Scsilnterface class, 247-254
Initiator
arbitration by, 17-19
terminator power from, 7
Inquiry command, 34-38, 156
Inquiry() function
for ScsiBaseDevice, 258-259
in target mode programming, 160
Installing Windows NT ASPI32 service,
273-274
INT instruction, 113
Intelligent devices, 4
Interactive command utilities, 234-235
Intermediate status code, 49
Intermediate-Condition Met status code, 49
Interrupts
in 53C400A chipset initialization, 130
in SCRIPTS, 113
for UNIX device drivers, 177
IOCTL calls in SPTI, 166
Ioctl entry point, 177
ioctl routine, 212-214
IOCTL_SCSI_GET_ADDRESS command,
169-170
IOCTL_SCSI_GET_CAPABILITIES com-
mand, 169
IOCTL_SCSI_GET_INQUIRY_DATA
command, 167-168
IOCTL_SCSI_PASS_THROUGH com-
mand, 171-174
IOCTL_SCSI_PASS_THROUGH_
DIRECT command, 171-174

IOCTL_SCSI_RESCAN_BUS command,
170-171
Iomega Zip drive
actions screen for, 241
Inquiry command for, 37-38
miniport driver for, 164
Mode Sense command for, 42—-44
SCSI Device Properties screen for,
239-240
sense data for, 52-53
IOWrite32() function, 108
IRQ levels for SCRIPTS, 113
ISTAT register, 112-113

Journals in troubleshooting, 236
JUMP instruction, 106

Kernel files in UNIX, 176-177

Layered architecture in SCSI-3, 11-12
Length of cables, 232
Linked Command Complete message, 23
Linked commands, 7, 23
Linux UNIX
check_scsidisk_media_change routine
in, 211-212
disk driver in, 189-212
do_sd_request routine in, 198-200
documentation for, 277
features of, 186—188
requeue_sd_request routine in, 200-210
revalidate_scsidisk routine in, 196-197
SCSI pass-through in, 212-229
sd_attach routine in, 194-195
sd_detach routine in, 195-196
sd_detect routine in, 194
sd_finish routine in, 193
sd_init routine in, 191-192
sd_open routine in, 189-190
sd_release routine in, 190-191
sg_attach routine in, 227-228
sg_close routine in, 216
sg_command_done routine in, 219-220
sg_detach routine in, 228
sg_detect routine in, 226

sg_free routine in, 217
sg_init routine in, 226-227
sg_ioctl routine in, 212-214
sg_malloc routine in, 216
sg_open routine in, 214-215
sg_read routine in, 217-219
sg_select routine in, 225
sg_write routine in, 220-224
Little-endian byte order, 33, 233
LOAD instruction, 106
LoadLibrary() routine, 66
Locking with UNIX device drivers, 177
Log Select command, 38
Log Sense command, 38
Logical block addresses, 45
Logical operators in SCRIPTS, 107
Logical Unit Numbers (LUNSs), 32, 57-58,
141-142
Low-level programming. See SCRIPTS
language
Low Voltage Differential (LVD), 8-9

Major numbers for devices, 177
malloc routine, 216
Mandatory commands, 33-38
Mandatory messages, 24
MASK operator, 107
Maximum SCSI Targets Supported field, 75
Maximum Transfer Length field, 75
Medium Error sense key, 51
Medium type byte, 41
Message In phase, 16, 21, 132-133
Message Out phase, 16, 19-20
Message Reject message, 23, 26, 134
Messages, 23-24

common, 27-30

extended, 25

getting, 150-151

in SCSI-2, 7

sending, 148-150

Synchronous Data Transfer Request, 25—

26

in TSPI, 148-151, 153

types of, 24-25

Wide Data Transfer Request, 26-27

Index

MFC40.DLL file. 237
Miniport drivers, 163—164
Minor numbers for devices, 177
Mode data length byte, 41
Mode pages, 4042
Mode parameter headers, 41
Mode Select command, 3940
Mode Sense command, 40
data format for, 4142
for lomega Zip drive, 4244
Most Significant Byte (MSB) in logical
block addresses, 45
MOVE instruction, 105-106
MS-DOS, ASPI manager connections in,
67-69
MSG (Message) signal, 18
in Data phases, 21
in Message In phase, 21
in Message Out phase, 19-20
in Status phase, 21
MSVCRT40.DLL file, 237
Multiple device types in SCSI-1, 5
Multiplexed services in FC standard, 10
Multitasking I/O in SCSI-1, 4

NASM compiler, 104-105, 109, 276-277

National Committee for Information Tech-
nology Standards (NCITS), 11

No Operation message, 27

Notebooks in troubleshooting, 236

NTDDDISK.H file, 166

NTDDSCSILH file, 166

Open entry point, 177
open routine, 189-190, 214-215
Opening

device drivers, 166

devices, 188-190, 214-215
Operating system independence, 56-57
Operation codes, 32
Optional commands, 38-39
Ordered Queue Tag message, 29-30

P1394 standard, 11

285

286 Index

Page code field
in Inquiry command, 35
in Mode Sense command, 40
Page format, 40
Page length field, 42
Page locking
in ASPI, 57
in Windows, 162
Parameters
command, 32-33
in SCRIPTS, 109-112
Parity in SCSI-2, 7
Pass-through
in Linux, 212-229
in UNIX, 176
in Windows NT, 165-174
Pass Through command, 171-174
Pass-Through Interface, 165-174
Patching in SCRIPTS, 109-110
PCI BIOS functions in SCRIPTS, 114-118
PCI_FindDevice() function, 115-117
PCI_GetConfigRegister() function,
117-118
PCI_GetPCIBIOS Version() function,
114-115
Perform SCSI Command screen, 241-243
PF flag, 40
Phases, 16-18
Arbitration, 18-19
Bus Free, 18
Command, 20
Data In and Data Out, 20-21
Message In, 21
Message Out, 19-20
Reselection, 19
Selection, 19
sequence of, 22
Status, 21
in target mode programming, 129-136
Physical layer in SCSI-3, 11
Platforms
dependencies in, 233-234
UNIX, 176
Plug and Play (PnP), 12-13
Polling

with ASPI commands, 60
in 53C400A chipset initialization, 130
for SCRIPTS program completion, 113
Portability of UNIX device drivers, 188
Posting with ASPI commands, 60
Power for termination, 232
Precedence, device, 16, 19
Privilege levels, 177
ProcessCdb() function, 158-159
Product identification field, 38
Programming Guide, 104
Protocol layer in SCSI-3, 11
PS flag, 4142, 44

Querying bus, 89-90, 119-125, 170-171
Queue Full status code, 49

Queue tag messages, 29

Queued I/O processes, 67

Read commands, 4445, 119, 217-219
Read Buffer command, 38
Read Capacity command, 119-120
Read Data From Host command, 144-145
Read entry point, 177
Read Sense command, 119
Reading

command results, 217-219

commands for, 4445, 119

data in TSPI, 144-145
Reconnect command, 153
Records for troubleshooting, 236
Recovered Error sense key, 51
release routine, 190-191
REQ signal

in Data phases, 21

for Synchronous Data Transfer Request

message, 26

in target mode programming, 132, 134
Request Sense command, 49, 119
RequestSense() function, 159-160
requeue_sd_request routine, 200-210
Rescan Bus command, 170-171
Rescan SCSI Bus command, 89-90
Reselection errors in SCRIPTS, 124
Reselection phase, 19

Reservation Conflict status code, 49, 100
Reset SCSI Device command, 8689
Restore Pointers message, 28
revalidate_scsidisk routine, 196-197
Rewind command, 156

RMB flag, 36

RST signal, 91

Run-time parameters in SCRIPTS, 109-112

SAM (SCSI-3 Architecture Model), 11
Save Data Pointers message, 28
SBP-2 (Serial Bus Protocol-2), 11
SC_ABORT_SRB command, 83-86
SC_EXEC_SCSI_CMD command, 78-83,
91
SC_GET_DEV_TYPE command, 76-78
SC_GET_DISK_INFO command, 71
SC_GETSET_TIMEOUTS command,
90-93
SC_HA_INQUIRY command, 71-75, 234
SC_RESCAN_SCSI_BUS command, 89—
90
SC_RESET_DEV command, 86—89
SC_SET_HA_INFO command, 71
SCAM (SCSI Configured AutoMagically),
12-13
Scatter-gather operations, 210
SCO ODT 3 UNIX, 183
SCRIPT array, 107
SCRIPTS language, 103-105
buffer alignment in, 234
detecting program completion in, 112—
113
embedding in C code, 107-113
initialization and housekeeping in, 114—
119
instructions in, 105-107
logical operators and conditional tests in,
107
PCI BIOS functions in, 114—-118
run-time parameters in, 109-112
sample code for, 119-125, 275-276
for SCSI control registers, 118-119
table indirect addressing in, 110-112
tools for, 276277

Index

SCSI-1, 2-5
SCSI-2, 5-8
SCSI-3, 8
Fast-20 and Fast-40, 8-9
layered architecture in, 11-12
Plug and Play in, 12-13
serial standards in, 9-11
SCSI-3 Architecture Model (SAM), 11
SCSI-3 Interlocked Protocol (SIP), 11
SCSI-3 Parallel Interface (SPI), 11
SCSI bus analyzers, 235-236
SCSI Bus Device Reset message, 86
SCSI byte order, 233
SCSI Configured AutoMagically (SCAM),
12-13
SCSI control registers, initializing, 118-119
SCSI Device Properties screen, 239-240
scsi_do_cmd routine, 224
SCSI Game Rules, 231
SCSI Interrupt Pending (SIP) flag, 113
SCSI Interrupt Status 0 (SISTO) register,
113
SCSI Interrupt Status 1 (SIST1) register,
113
SCSI Parallel Interconnect-2 (SPI-2), 11
SCSI pass-through
in Linux, 212-229
in UNIX, 176
in Windows NT, 165-174
SCSI Pass-Through Interface (SPTI)
IOCTL_SCSI_GET_ADDRESS com-
mand in, 169—-170
IOCTL_SCSI_GET_CAPABILITIES
command in, 169
IOCTL_SCSI_GET_INQUIRY_DATA
command in, 167-168
IOCTL_SCSI_PASS_THROUGH com-
mand in, 171-174
IOCTL_SCSI_PASS_THROUGH_
DIRECT command in, 171-174
IOCTL_SCSI_RESCAN_BUS com-
mand in, 170-171
in Windows NT, 165-167
SCSI Request Blocks (SRBs)
for Abort SRB command, 83—-86

287

288 Index

SCSI Request Blocks (SRBs) (cont.)
building, 58-59
common fields in, 69-70
for Execute SCSI Command command,
78-83
for Get Device Type command, 76-78
for Get/Set Timeouts command, 90-93
for Host Adapter Inquiry command,
71-175
for Rescan SCSI Bus command, 89-90
for Reset SCSI Device command, 8689
returned status information from, 63
sending, 60
waiting for completion of, 60-63
for Windows 95 and NT, 162-163
SCSI Snooper application, 237
class library for. See Class library for
SCSI Snooper
code for, 276
framework for, 260
overview of, 238-243
structure of, 260-261
SCSI Transport via SBP-2 (STS), 11
ScsiBaseDevice class, 257-259
ScsiCmdBlock class, 246-247, 254-256
SCSIDEFS .H file, 256
ScsiDevice class, 245-246
ScsiDiskDevice class, 259-260
Scsilnterface class, 244-245, 247-254
SCSIPORT driver, 164-165
sd_attach routine, 194—-195
sd_detach routine, 195-196
sd_detect routine, 194
sd_finish routine, 193
sd_init routine, 191-192
sd_open routine, 189-190
sd_release routine, 190-191
Segment number field, 50
SEL (Select) signal, 18
in Reselection phase, 19
in Selection phase, 19
in target mode programming, 130
SELECT ATN command, 121
SELECT instruction in SCRIPTS, 105
select routine in Linux, 225

Selection errors in SCRIPTS, 124
Selection phase, 19, 130-132
Self-configuration in SCSI-3, 12-13
Send Message To Host command, 148-150
SendASPICommand command, 60, 69
Sending
messages in TSPI, 148-150
SRBs, 60
Sense data, 16, 49-53
Sense Key Specific Value (SKSV) flag, 51
Sense keys, 51-53
SENSE_LEN value, 59
Serial Bus Protocol-2 (SBP-2), 11
Serial SCSI standards, 9—-11
Serial Standard Architecture (SSA), 10
Set Timeout function, 83
SetSenseData() function, 159
SFBR (SCSI First Byte Received) register,
106
sg_attach routine, 227-228
sg_close routine, 216
sg_command_done routine, 219-220
sg_detach routine, 228
sg_detect routine, 226
sg_free routine, 217
sg_init routine, 226227
sg_ioctl routine, 212-214
sg_malloc routine, 216
sg_open routine, 214-215
sg_read routine, 217-219
sg_select routine, 225
sg_write routine, 220-224
Shielding for cables, 232
Signal termination in SCSI-1, 3
Signals
bus analyzers for, 235
in phases, 18
Simple Queue Tag message, 29
Single-ended wiring, 6
SIP (SCSI-3 Interlocked Protocol), 11
SIP (SCSI Interrupt Pending) flag, 113
SISTO (SCSI Interrupt Status 0) register,
113
SIST1 (SCSI Interrupt Status 1) register,
113

SKSV (Sense Key Specific Value) flag, 51
Software Development Kit (SDK), 104
Solaris 2.5 UNIX, 184-185
Sony CD-ROM, SCSI Device Properties
screen for, 240
SP flag
with Mode Select command, 40
with Mode Sense command, 43
Specifications, SCSI, 276
SPI (SCSI-3 Parallel Interface), 11
SPI-2 (SCSI Parallel Interconnect-2), 11
SQUERY.C module, 119
SRB_BufLen field, 81
SRB_BufPointer field, 81
SRB_CDBByte field, 83, 162—-163
SRB_CDBLen field, 82
SRB_Cmd field
for Abort SRB command, 85
for Execute SCSI Command command,
79
for Get Device Type command, 77
for Get/Set Timeouts command, 92
for Host Adapter Inquiry command, 73
for Rescan SCSI Bus command, 90
for Reset SCSI Device command, 87
in SRBs, 70
SRB_DATA_IN flag, 59
SRB_DATA_OUT flag, 59
SRB_DeviceType field, 76, 78
SRB_ExecSCSICmd structure, 59, 93-94
SRB_Flags field, 63
for Abort SRB command, 86
for Execute SCSI Command command,
80
for Get Device Type command, 78
for Get/Set Timeouts command, 90, 92
for Host Adapter Inquiry command, 73
for Rescan SCSI Bus command, 90
for Reset SCSI Device command, 88
in SRBs, 70
SRB_Hald field
for Abort SRB command, 84, 86
for Execute SCSI Command command,
80
for Get Device Type command, 76, 78

Index

for Get/Set Timeouts command, 92
for Host Adapter Inquiry command, 73
for Rescan SCSI Bus command, 90
for Reset SCSI Device command, 88
in SRBs, 70
SRB_HaStat field, 63
for Execute SCSI Command command,
82
for Reset SCSI Device command, 88
in SRB_ExecSCSICmd structure, 93, 97
SRB_Hdr_Rsvd field
for Abort SRB command, 86
for Execute SCSI Command command,
80
for Get Device Type command, 78
for Get/Set Timeouts command, 92
for Host Adapter Inquiry command, 73
for Reset SCSI Device command, 88
SRB_Lun field
for Execute SCSI Command command,
81
for Get Device Type command, 76, 78
for Get/Set Timeouts command, 93
for Reset SCSI Device command, 88
SRB_PostProc field
for Execute SCSI Command command,
83
for Reset SCSI Device command, 89
SRB_Rsvdl field
for Execute SCSI Command command,
81
for Get Device Type command, 78
for Reset SCSI Device command, 88
SRB_Rsvd2 field
for Execute SCSI Command command,
83
for Reset SCSI Device command, 89
SRB_Rsvd3 field
for Execute SCSI Command command,
83
for Reset SCSI Device command, 89
SRB_SenseArea field
for ASPI commands, 63
for Execute SCSI Command command,
83

289

290 Index

SRB_SenseLen field, 81
SRB Status code, 93-97
SRB_Status field, 60, 63
for Abort SRB command, 84-85
for Execute SCSI Command command,
79-80
for Get Device Type command, 77
for Get/Set Timeouts command, 92
for Host Adapter Inquiry command, 73
for Rescan SCSI Bus command, 90
for Reset SCSI Device command, 87—-88
in SRB_ExecSCSICmd structure, 93-94
in SRBs, 70
SRB_Target field
for Execute SCSI Command command,
80
for Get Device Type command, 76, 78
for Get/Set Timeouts command, 92
for Reset SCSI Device command, 88
SRB_TargStat field, 63
for Execute SCSI Command command,
82-83
for Reset SCSI Device command, 88
in SRB_ExecSCSICmd structure,
93,99
SRB_Timeout field, 93
SRB_ToAbort field, 84, 86
SRBs. See SCSI Request Blocks (SRBs)
SS_ABORT_FAIL status value, 96
SS_ABORTED status value, 96
SS_ASPI_IS_BUSY status value, 95-96
SS_BUFFER_ALIGN status value, 96
SS_BUFFER_TOO_BIG status value, 96
SS_COMP status value, 94
SS_ERR status value, 94-95
SS_FAILED_INIT status value, 95
SS_ILLEGAL_MODE status value, 96
SS_INSUFFICIENT_RESOURCES status
value, 97
SS_INVALID_CMD status value, 95
SS_INVALID_HA status value, 95
SS_INVALID_SRB status value, 95
SS_MISMATCHED_COMPONENTS sta-
tus value, 97
SS_NO_ADAPTERS status value, 97

SS_NO_ASPI status value, 96
SS_NO_DEVICE status value, 95
SS_PENDING status value, 94
SS_SECURITY_VIOLATION status
value, 96

Status and status codes, 4749

Host Adapter Status, 97-99

SRB Status, 93-97

Target Device Status, 99—100

in target mode programming, 135
Status phase, 21
__stdcall calling convention, 61
STORE instruction, 106
Strategy entry point, 177
Structures, alignment in, 234
STS (SCSI Transport via SBP-2), 11
subroutines in SCRIPTS, 106
SYM8251S host adapter, 114
Synchronous data transfer

in Fast-20 and Fast-40 SCSI, 8

in SCSI-1, 4

in SCSI-2, 5-6
Synchronous Data Transfer Request mes-

sage, 25-26, 133

System calls, 176

T10 Technical Committee, 11
Table indirect addressing, 110-112
Tables in SCRIPTS, 120-121
Tag messages, 29-30
Tagged I/O process queuing, 6—7
Tape class drivers, 165
Target Device Status code, 99-100
Target mode programming, 127-128
API for. See Target-mode SCSI Program-
ming Interface (TSPI)
hardware in, 128—-129
phases in, 129-136
Target-mode SCSI Programming Interface
(TSPI), 136-139
code for, 276
connecting to, 153-155
sample application, 157-160
TSPI_CMD_AdapterInfo command in,
139-141

TSPI_CMD_AttachLUN command
in,141
TSPI_CMD_CompleteCommand com-
mand in,147-148
TSPI_CMD_DetachLUN command
in,141-142
TSPI_CMD_Disconnect command
in,152
TSPI_CMD_GetEvent command in,
142-144
TSPI_CMD_GetMessage command
in,150-151
TSPI_CMD_ReadFromHost command
in,144-145
TSPI_CMD_Reconnect command in,153
TSPI_CMD_SendMessage command
in,148-150
TSPI_CMD_WriteToHost command
in,146-147
using, 155-157
Targets
messages from, 23
selection of, 16, 19
Termination
bus, 232
power for, 232
in SCSI-1, 3
Terminator power in SCSI-2, 7
TERMPWR signal, 232
Test Unit Ready command, 34, 119, 122,
156
TestUnitReady() function, 159
Timeouts
Abort SRB command for, 83—-86
setting and retrieving, 90-93
Timing, bus analyzers for, 235
Transactions, 15-16
Transfer period factor, 26
Transfer speed
in Fast-20 and Fast-40 SCSI, 8
in SCSI-1, 4
in SCSI-2, 5-6
in serial SCSI standards, 10
Translate ASPI32Address() routine,
101-102
TrmIOP flag, 36

Index

Troubleshooting
debugging tools for, 234-236
documentation errors, 233
hardware, 231-233
platform dependencies, 233-234
records for, 236
TSPI. See Target-mode SCSI Programming
Interface (TSPI)
TSPI_CMD_ structure, 138—-139
TSPI_CMD_AdapterInfo command,
139-141
TSPI_CMD_AttachLUN command, 141
TSPI_CMD_CompleteCommand com-
mand, 147-148
TSPI_CMD_DetachLUN command,
141-142
TSPI_CMD_Disconnect command, 152
TSPI_CMD_GetEvent command, 142-144
TSPI_CMD_GetMessage command,
150-151
TSPI_CMD_ReadFromHost command,
144-145
TSPI_CMD_Reconnect command, 153
TSPI_CMD_SendMessage command,
148-150
TSPI_CMD_WriteToHost command,
146-147
TSPI_EVENT_s structure, 137-139
tspi_SendCommand() routine, 137
TSPI_XFER_s structure, 138-139

UDI (Universal Device Interface), 188
Ultra SCSI, 8
Ultra2 SCSI, 8-9
Unit Attention sense key, 52
Universal Device Interface (UDI), 188
UNIX implementations, 175-176
AIX 4.1, 179-180
device drivers in, 176-178
Digital UNIX, 185-186
HP-UX 10.x, 181-182
Linux. See Linux UNIX
SCOODT3, 183
SCSI pass-through in, 212-229
Solaris 2.5, 184—185
Untagged I/O process queuing, 6

291

292 Index

User context for UNIX device drivers, 177

Valid bit with sense data, 50

Vendor field, 38

Vendor IDs, SCRIPTS routine for, 115
Virtual Device Drivers (VxDs), 162
Virtual devices, 235

Voltages, bus analyzers for, 235

WAIT instruction, 106

WaitForSingleObject() routine, 62, 163

WHEN operator, 107

Wide Data Transfer Request message,
26-27, 133

Wide SCSI, 6

Wide Ultra SCSI, 8

Wide Ultra2 SCSI, 8

Win32 functions, ASPI for, 100-102

WinASPI, 161-162

WINASPI.LIB file, 64—66

WINASPLSYS file, 273

Windows 3.x, 161-162

Windows 95

ASPI for, 64-67, 162—163

SCSI model for, 163—-165
Windows NT

ASPI for, 64-67, 162-163

ASPI32 service for, 273-274

SCSI model for, 163-165

SCSI Pass-Through Interface in, 165-174
Wiring alternatives, 6
WNASPI32.DLL file, 273-274
WNASPI32.LIB file, 64—66
WOWPOST.EXE file, 273
Write Buffer command, 38
Write command, 44-45
Write Data To Host command, 146-147
Write entry point, 177
write routine, 220-224
Writing

commands for, 44—45

data in TSPI, 146—147

X3 Committee, 11

National Committee on information Technology Standards,
T10 Committee on Small Computer Systems Interface

T10 operates under the National Committee on Information Technology
Standards (NCITS, see www.ncits.org)* and is responsible for Lower-
Level Interfaces. Its principal work is the Small Computer System Inter-
face (SCSI, including SCSI-2 and a family of SCSI-3 projects). Anyone
“directly and materially affected” is welcome to participate in T10.

(Essentially, this amounts to anyone interested in T10’s work.)

T10 is one of the Technical Committees of the National Committee on
Information Technology Standards (NCITS, pronounced “insights”).
NCITS is accredited by, and operates under rules that are approved by, the
American National Standards Institute (ANSI). These rules are designed
to insure that voluntary standards are developed by the consensus of
industry groups. NCITS develops Information Processing System stan-
dards, while ANSI approves the process under which they are developed

and publishes them.

The mission of NCITS is to produce market-driven, voluntary consen-

sus standards in the areas of:

® Multimedia (MPEG/JPEG)

® Intercommunication among computing devices and information sys-
tems (including the Information Infrastructure, SCSI-2 interfaces,

and Geographic Information Systems)

Storage media (hard drives, removable cartridges)
Database (including SQL3)

Security

Programming languages (such as C++)

® © © @

The world changes rapidly, and every day the role of information tech-
nology evolves, expanding into new areas and transforming the processes
of our lives: Communication, transportation, artistic expression, healthcare,
and other areas are all affected. Standards provide the platform from which
technological advances spring. Through participation in NCITS, industry
leaders and users alike have the opportunity to open new markets, dismantle
nontariff trade barriers, and build the basic structure of the Global Informa-

tion Infrastructure.

For further information please contact the NCITS Secretariat

(ncits @itic.nw.dc.us) at (202) 626-5739.

*From 1961 to 1996 NCITS operated under the name Accredited Standards Committee X 3, Informa-

tion Technology.

CD-ROM License Agreement Notice

Addison Wesley Longman warrants the enclosed disc to be free of defects
in materials and faulty workmanship under normal use for a period of
ninety days after purchase. If a defect is discovered in the disc during this
warranty period, a replacement disc can be obtained at no charge by send-
ing the defective disc, postage prepaid, with proof of purchase to:

Addison Wesley Longman, Inc.
Computer & Engineering Publishing Group
One Jacob Way
Reading, MA 01867

After the ninety-day period, a replacement will be sent upon receipt of the
defective disc and a check or money order for $10.00, payable to Addison
Wesley Longman, Inc.

Addison Wesley Longman makes no warranty or representation, either
express or implied, with respect to this software, its quality, performance,
merchantability, or fitness for a particular purpose. In no event will Addi-
son Wesley Longman, its distributors, or dealers be liable for direct,
indirect, special, incidental, or consequential damages arising out of the
use or inability to use the software. The exclusion of implied warranties is
not permitted in some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific legal rights. There
may be other rights that you may have that vary from state to state.

The contents of the CD-ROM are intended for personal use only. For
commercial use, please send email to harvey@newpath.com.

More information and updates are available at
http://www.awl.com/cseng/titles/0-201-18538-5/

System Requirements

The CD-ROM contains sample code and applications for DOS 3.3 or
higher, Windows 3.1, Windows 95 and NT, and Linux. The included
browser files will run on Netscape 2.02 or above or Internet Explorer 3.0
or above. Some of the SCSI-3 draft specification files are in Adobe Acro-
bat PDF format. The Acrobat reader runs on Windows 3.1, Windows 95
and NT, and Linux.

PC Prog

The Programmer’s Guide to SCSI offers a concise
tutorial and reference to the Small Computer
Systems Interface (SCSI), the standard interface
for high-performance computer peripherals.
Geared specifically for programmers who are
writing drivers or creating applications that
support SCSI devices, this book presents compre-
hensive SCSI hardware and software information
within the context of software development. It will
help you find your way through this complex
topic and ease your learning curve by providing
expert advice, tips, and techniques for more
effective SCSI programming,.

The Programmer’s Guide to SCSI covers
both high- and low-level programming topics.
Specifically, you will find coverage of:

e SCSIin general, including an explanation
of its design philosophy, evolution, and
transaction model
SCSI-2 features, including faster transfers,
wider data paths, and other specialized
capabilities
SCSI-3, including Fast-20 and Fast-40 SCSI,
serial SCSI, fibre channel, P1394, and plug-
and-play SCSI
The Advanced SCSI Programming Interface
(ASPI) and the ASPI32 extensions under .
Windows 95 and Windows NT
The Windows NT built-in SCSI Pass-Through
Interface

¢ Low-level programming using SCRIPTS™

e SCSI target mode programming

e SCSI support under different UNIX
implementations

e SCSI debugging and troubleshooting

http://www. awl.com/cseng/titles/0-201-18538-5/

Cover illustration by Tatsuhiko Shimada, Photonica

OText printed on recycled paper

+ APBISON-WESLEY

Addison-Wesley is an imprint

of Addison Wesley Longman, Inec.

In addition. this book develops an ASPI class
library and uses it to create a SCSI snooper appli-
cation under Windows. The librarv can also be
extended for use in your own projects.

The accompanying CB-ROM contains sample
code, SCSI specifications, the SCSI FAQ). SCRIPTS
support, and Linux SCSI documentation.

This book’s clear presentation of SI"SI
eliminates wading through densely packed
hardware documentation and lets you approach
the topic with better direction to gain a fuller
understanding.

Brian Sawert has worked with SCSI for
years, developing applications and drivers for
SCSI devices ranging from optical drives to
scanners. He has acquired vast experience with
SCSI devices at a range of companies. including
Lockheed Missiles and Space Company. Flagstaff
Engineering, Trantor Systems. Ltd.. and Laguna
Pata Systems. He has contributed articles on
SCSI and ASPI to Dr. Dobb’s Journal and
Windows/DOS Developer’s Journal.

With contributions by:

¢ Larry Martin on ASPI, Windows device
support, and SCSI target mode
® Gary Field on UNIX support for SCSI

System requirements: The CB-RODI contains
sample code and applications to run on DOS 3.3
or higher, Windows 3.1, Windows 95 and NT.
and Linux. The included browser files will

run on Netscape 2.02 or above or Internet
Explorer 3.0 or above. Some of the SCSI-3
draft specification files are in Adobe Acrobat
PDF format. The Acrobat reader runs on
Windows 3.1, Windows 95 and NT. and Linux.

X000FECWRL

The Programmer's Guide to SCS!
Used, Like New

r
A

TN VIO

INDS OL AdIN) S.d

Sawert

“

"'
Addison
Wesley

	Blank Page

