DEC OSF/1

Guide to Realtime Programming

Order Number: AA-PJUVA-TE
January 1992

Product Version: DEC OSF/1 Version 1.0 or higher

This guide describes how to use POSIX 1003.4 Draft 10 (P1003.4/D10)
functions and interprocess communication functions to write realtime
applications that run on DEC OSF/1 systems. This guide is intended for
experienced application programmers.

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, January 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this
document.

Any software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license. No responsibility is assumed for the use or
reliability of software or equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1992.

All rights reserved.
Printed in U.S.A.

The Reader’'s Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CDA, DDIF, DDIS, DEC,
DECnet, DECstation, DECsystem, DEC OSF/1, DECUS, DECwindows, DTIF, MASSBUS,
MicroVAX, PrintServer 40, Q-bus, ReGIS, ULTRIX, ULTRIX Mail Connection, ULTRIX
Worksystem Software, UNIBUS, VAX DOCUMENT, VT, XUI, and the DIGITAL logo.

The following are third-party trademarks:

X Window System, Version 11 and its derivations (X, X11, X Version) are trademarks of the
Massachusetts Institute of Technology.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the U.S. and other
countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of
the Open Software Foundation, Inc.

PosTScrIPT® and Adobe are registered trademarks of Adobe Systems Incorporated.
X/Open is a trademark of the X/Open Company, Ltd. in the U.K and other countries.

System V and AT&T are registered trademarks of American Telephone & Telegraph Company in
the U.S and other countries.

BSD is a trademark of University of California, Berkeley.
NFS is a trademark of Sun Microsystems, Inc.
ML-S1690

This document is available on CDROM

This document was prepared with VAX DOCUMENT, Version 1.2.

Contents

About This GUide

1

Introduction to Realtime Programming

11
1.2
1.2.1
1211
1.2.1.2
1.2.1.3
122
123
1.2.4
1.25
1.2.6
127
13
131
1.3.2
1.3.3
134
14
14.1
1.4.2
143
14.4

Realtime Overview
DEC OSF/1 Realtime System Capabilities
The Value of a Preemptive Kernel
Nonpreemptive Kernel
Preemptive Kernel
Comparing Latency,
Fixed-Priority Scheduling Policies
Realtime Clocks and Timers
Memory Locking
Asynchronous /O
Interprocess Communication
Realtime Needs and System Features
Process Synchronization.
Waiting for a Specified Time
Waiting for Semaphores o
Waiting for Communication
Waiting for Other Processes
Standards. e
Including Common Definition Files
Compiling with the Realtime Library
Compiling with the Asynchronous I/O Library............
Defining the POSIX Environment

Digital Internal Use Only

Xi

L
F NN

il

A
[e =
COWOVNONONRWNRPROO®O~N®UG G A

il
NRPRRPRRPREPRRRRR

2 Process Scheduling and Priorities

3 Clocks

21
211
2.1.2
2.13
2.2
221
22.2
2.2.3
2231
2.2.3.2
2.3
231
2.3.2
2.3.3
2.4
24.1
24.2
243
24.4
25

3.1
3.1.1
3.1.2
3.1.3
3.14
3.2
3.3
331
3.3.2
3.3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7

Process Scheduling.
Process States
The Scheduler
Scheduling Interfaces.

Scheduling Policies
The Natureof the Work
Timesharing Scheduling.
Fixed-Priority Scheduling

First-in First-out Scheduling
Round-Robin Scheduling

Process Priorities
Priorities for the nice Interface
Priorities for the Realtime Interface
Configuring Realtime Priorities

Scheduling Functions
Determining Limits
Retrieving the Priority and Scheduling Policy
Setting the Priority and Scheduling Policy
Yielding to Another Process

Priority and Policy Example

and Timers

Clock FUNCLIONS
Retrieving System Time
Settingthe Clock
Managing Clock Drift.
Converting Time Values

Types of TiImers

Data Structures Associated with Timing Facilities
Using the timespec Data Structure
Using the itimerspec Data Structure
Using the sigevent Data Structure.

Resolution of the System Clock and Timers

Timersand Signals

Timer FUNCLIONS
Creating TIMErs e
Setting Timer Values
Retrieving Timer Values
Disabling Timers

High-Resolution Sleep

Digital Internal Use Only

NNNITJI\JI\)N

NN
UL
e

WNOOWOWOOODUITANNPEPOOOOKLOOO WNN

NN RN N RN N
NNNRPRPRPRRRRR

oowwwcl;ooooooow

© P
|

w
|

|
PRRPRRPRRPRRRERR

OO, WNPOOOOOOMONOO OIS, WN

OOOOCAJ(.IAJ(JO(AJ

3.8

Clocks and Timers

4 Memory Locking

4.1
4.2

4.3
43.1
43.1.1
43.1.2
4.3.2
4.4

Example........

Memory Management

Allocating Memory

P1003.4/D10 Memory-Locking and Unlocking Functions
Locking Memory
Locking a Specified Region.

Locking an

Entire Process Space

Unlocking Memory

Memory-Locking E

xample

5 Asynchronous Input and Output

6

5.1

51.1
512
5.1.3
5.14
5.2

521
522
5.2.3
5.24
5.3

Data Structures Associated with Asynchronous /O

Identifying the

Location

Setting the Priority
Specifyinga Signal.

Establishing a

Handle

Asynchronous I/O Functions
Readingand Writing,
Using List-Directed Input/Qutput
Determining Status i

Canceling and

Suspending l/O

Asynchronous I/O Example

Interprocess Communication Overview

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.4

IPC and Process Synchronization.
System V IPC OVerviewot
System V IPC Permission Structure
Creating IPCChannels
Controlling IPC Channels

Removing IPC
The ftok Function

Channels

Digital Internal Use Only

3-16

|
QO OWOUITRABRA,WWNDN

U'IU'IUI(ﬂU'I(IJ'IU'I(.TI(ﬂU'I

T
=

O)CD@?’CDCDCD
O© O©ooouUwrk

7 Messages

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
7.3

Data Structures Associated with Messages
Establishing Message Permissions.
Establishing Message Structure.

The Message Interface
Creating and Opening a Message Queue
Sending and Receiving Messages
Controlling and Removing a Message Queue

Message Queue Example

8 Shared Memory

8.1
8.11
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3

Data Structures Associated with Shared Memory
Establishing Shared Memory Permissions
Controlling Shared Memory

The Shared Memory Interface
Creating and Opening Shared Memory
Attaching and Detaching Shared Memory
Locking Shared Memory
Removing Shared Memory

Shared Memory and Semaphores.

9 Semaphores

vi

9.1
9.11
9.1.2
9.2

9.3

9.4
94.1
9.4.2
94.21
9.4.2.2
9.4.23
9.4.3
9.4.3.1
9.4.3.2
9.4.4
9.5

Data Structures Associated with Semaphores
Establishing Semaphore Operation Permissions
Tracking Semaphore Activity

Binary and Counting Semaphores

Semaphoresas EventFlags

The Semaphore Interface
Creating and Opening Semaphores
Controlling Semaphores

Using SETALL to Initialize Semaphores

Using SETVAL to Initialize Semaphores
Initializing Binary and Counting Semaphores

Using Semaphore Operations.
Reserving a Semaphore
Releasing a Semaphore
Removing Semaphores
Semaphore Example

Digital Internal Use Only

NN N NN
O~NOADALO®WR

00 00 00 00 00 0O 00 0

P
= |
COWO~NORAWNEPR

@@@?@@@@
O©OoO~NOOUTWWN

|
=
=

@@@«I:n@@@
N N e el ol e o
NN O WN

10 Pipes

10.1 RegularPipes......................

10.11
10.1.2
10.1.3

Creatinga Pipe

Redirecting stdin, stdout, stderr to Pipes.

Creating Pipes with popen

10.2 Named Pipes

11 Signals

11.1 P1003.4/D10 Realtime Signals
11.2 The Signal Interface.
11.2.1 Sending Signals
11.2.2 Blocking Signals.
11.2.3 Managing Signals
11.2.3.1 Using the sigaction Function
11.2.3.2 Using the signal Function
11.2.3.3 Using Signal Handlers
11.2.3.4 Using the sigsetops Primitives . . .

A DEC OSF/1 Realtime Functional Summary

Index

Examples

2-1
2-2
3-1
3-2
4-1
4-2
4-3
5-1
7-1
8-1
82
9-1
9-2
9-3

Initializing Priority and Scheduling Policy Fields
Using Priority and Scheduling Functions.
Returning Time e
USINg TIMEIS . . .ot e e e e
Allocating Additional Memory
Aligning and Locking a Memory Segment
Using the Memory-Locking Functions
Using Asynchronous I/O.
Using Message QUEUESttt
Creating Shared Memory
Attaching Shared Memory
Using Semaphoresas EventFlags

Initializing Semaphores with SETALL
Initializing Semaphores with SETVAL

Digital Internal Use Only

2-21
2-23

34
3-17

4-8
4-13
5-11
7-8
8-6
8-8

9-11
9-13

Vii

94

9-5

10-1
11-1
11-2
11-3
11-4

Figures

1-1
1-2
2-1
2-2
2-3
2-4
2-5
4-1
4-2
5-1
7-1
8-1
8-2
9-1
10-1
10-2
11-1

Tables

viii

11
2-1
2-2
2-3
2-4
3-1
3-2

Reserving Binary Semaphores 9-15

Using Semaphores and Shared Memory 9-18
Creating a Child Processand a Pipe 10-4
Sending Signals Between Processes 11-5
Using the alarm Function 11-10
Handling Signals 11-11
Sending a Signal to Another Process 11-13
Nonpreemptive Kernel 1-6
Preemptive Kernel 1-7
Process States 2-3
Order of Execution 2-4
Process Events 2-6
Preemption—Finishinga Quantum 2-13
Priority Ranges for the nice and Realtime Interfaces. 2-16
Memory Allocation with mlock 4-11
Memory Allocation with mlockall 4-12
Representation of Asynchronous 1/0O Data Structures 5-8
Representation of Message Data Structures 7-2
Representation of Shared Memory Data Structures. 8-2
Two Processes Using Shared Memory 8-5
Representation of Semaphore Data Structures 9-4
One-Way Pipe e e 10-3
Two-Way Pipe. 10-5
Signal Mask that Blocks Two Signals 11-6
Realtime Needs Summary 1-12
Process States 2-2
Priority Ranges for the nice Interface 2-14
Priority Ranges for the DEC OSF/1 Realtime Interface 2-15
P1003.4/D10 Process Scheduling Functions 2-18
Clock FUNCLIONS e e 3-3
Date and Time Conversion Functions 3-6

Digital Internal Use Only

3-4
3-5
4-1
5-1

6-2
6-3

7-2
8-1
8-2
9-1

111
11-2
A-1

Values Used in Setting Timers. 3-9

Resolution Functions for Timing Facilities. 3-11
Timer FUNCLIONS e 3-12
Memory-Locking Functions 4-7
Asynchronous I/O Functions 5-5
IPC FUNCLIONS e 6-4
Flags Used in IPC get Functions 6-7
Flags Used in IPC ctl Functions 6-8
Message Functions 7-4
Message Command Control Flags 7-7
Shared Memory Command Control Flags 8-3
Shared Memory Functions 84
Semaphore Functions. 9-8
Semaphore Command Control Flags 9-10
Signal Control Functions 11-3
The sigsetops Primitive Functions 11-14
Summary of Functions, A-1

Digital Internal Use Only

About This Guide

This guide is designed for programmers who are using DEC OSF/1 compilers.
Users may be writing new realtime applications or they may be porting
existing realtime applications from other systems.

Purpose of this Guide

This guide explains how to use POSIX 1003.4 Draft 10 (P1003.4/D10) functions
in combination with other system and library functions to write realtime
applications. This manual does not attempt to teach programmers how to
write applications.

The audience for this manual is the application programmer or system
engineer who is already familiar with the C programming language. The
audience using realtime features is expected to have experience with UNIX
operating systems. They also should have experience with UNIX program
development tools.

This manual does not present function syntax or reference information. The
online reference pages present syntax and explanations of these functions.

Structure of this Guide

This manual consists of eleven chapters and one appendix, organized as
follows:

= Chapter 1, Introduction to Realtime Programming, describes the realtime
functionality supported by the DEC OSF/1 operating system.

= Chapter 2, Process Scheduling and Priorities, describes use of the
P1003.4/D10 functions to determine and set priority for processes in your
application. This chapter also describes the priority scheduling policies
provided by the DEC OSF/1 operating system.

= Chapter 3, Clocks and Timers, describes use of the P1003.4/D10 functions
for constructing and using high-resolution clocks and timers.

Xi

Chapter 4, Memory Locking, describes the use of P1003.4/D10 functions for
locking and unlocking memory.

Chapter 5, Asynchronous Input and Output, describes the use of P1003.4
/D10 functions for asynchronous input and output.

Chapter 6, Interprocess Communication Overview, provides a general
introduction to Interprocess Communication (IPC) and in particular, an
overview of System V IPC.

Chapter 7, Messages, describes the creation and use of message queues for
interprocess communication and synchronization in realtime applications.

Chapter 8, Shared Memory, describes the creation and use of shared
memory areas for interprocess communication.

Chapter 9, Semaphores, describes the creation and use of semaphores
for interprocess synchronization. An example illustrates how to use
semaphores and shared memory in combination.

Chapter 10, Pipes, describes the creation and use of pipes and named pipes
for interprocess communication.

Chapter 11, Signals, describes the creation and use of POSIX 1003.1 signals
for interprocess communication. This chapter also discusses asynchronous
signals used for some P1003.4/D10 functions.

Appendix A, DEC OSF/1 Realtime Functional Summary, provides a table of
commands and functions useful for realtime application development.

Related Documents

The following documents are relevant to writing realtime applications:

Xii

OSF/1 Application Programmer’s Guide

POSIX Conformance Document

The C Programming Language by Kernighan and Ritchie
Guide to Developing International Software

Online Reference Pages

To view online reference pages for the P1003.4/D10 functions, use the man or
whatis commands, described in Section 4.

Using the man Command

System commands and library functions (including P1003.4/D10 functions)
have no printed reference material. Instead, the information is shipped on the
system software kit and can be accessed through the man command. The man
command provides online displays of the reference pages. You can use options
to direct the man command to display online summaries of specific reference
pages, to use special formatting when preparing the reference page for viewing
or printing, and to search alternate reference page directories for specified
reference pages.

Use the man command to access the online reference pages for the P1003.4/D10
functions discussed in this manual. If you need help on using the man
command, use the following command:

man man

If you do not specify an option, the man command formats and displays one or
more specified reference pages. If multiple reference pages match a specified
name, only the first matching reference page is displayed. If there are multiple
matches in one section for a specified name, the matching page in the first
alphabetically occurring subsection is displayed.

Conventions

The following conventions are used in this manual:

Convention Meaning

% The default user prompt is the user’s system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to represent
this prompt.

A number sign is the default superuser prompt.

>> The console subsystem prompt is two right angle brackets. On a

CPUnn>> system with more than one central processing unit (CPU) the prompt

displays two numbers: the number of the CPU, and the number of the
processor slot containing the board for that CPU.

user input This bold typeface is used in interactive examples to indicate typed
user input.

system In text, this typeface indicates the exact name of a command, option,

output partition, pathname, directory, or file. This typeface is used in

interactive examples to indicate system output. It is also used in
code examples and other screen displays.

Xiii

Xiv

Convention

Meaning

variable

UPPERCASE
lowercase

cat(1)

This typeface indicates variable information, such as user-supplied
information in commands, syntax, or example text.

Horizontal ellipsis indicates that the preceding item can be repeated
one or more times. It is used in syntax descriptions and function
definitions.

Vertical ellipsis indicates that a portion of an example that would
normally be present is not shown.

The system differentiates between lowercase and uppercase
characters. Literal strings that appear in text, examples, syntax
descriptions, and function definitions must be typed exactly as shown.

Cross-references to the online reference pages include the appropriate
section number in parentheses. For example, a reference to cat(1)
indicates that you can find the material on the cat command in
Section 1 of the online reference pages.

1

Introduction to Realtime Programming

A realtime application is one in which the system’s timely and predictable
response to external events is critical. To accomplish this, a realtime system
provides features for efficient interprocess communication and synchronization,
a fast interrupt response, fast input and output (1/0), and an efficient
memory-locking scheme.

This chapter includes the following sections:

= Realtime Overview, Section 1.1

=« Realtime System Capabilities, Section 1.2

= Realtime Process Synchronization, Section 1.3

< Standards, Section 1.4

1.1 Realtime Overview

A realtime system recognizes and responds to asynchronous external events
within a predictable amount of time, and may process and store large amounts
of data. Realtime applications provide an action or an answer to an external
event in a timely and predictable manner. Failure to provide the action

or answer within the predicted amount of time can lead to catastrophic
consequences. An unpredictable realtime application can result in loss of data,
loss of deadlines, or loss of plant production. Examples of realtime applications
include process control, factory automation robotics, vehicle simulation,
scientific data acquisition, image processing, built-in test equipment, music or
voice synthesis, and analysis of high energy physics.

While typical realtime applications require high speed, they cover a wide
range of time dependencies. A “timely and predictable manner” has a different
definition in each application. What may be fast in one application may

be slow or late in another. For example, an experimenter in high energy
physics needs to collect data in microseconds while a meterologist monitoring
the environment might need to collect data in intervals of several minutes.
However, both applications need a predictable and reliable response time.

Introduction to Realtime Programming 1-1

Realtime application designers code to handle the requirements of response
time and data throughput appropriate for the realtime application. Not all
realtime applications require a fast response time, nor do all process large
guantities of data. The term “realtime” does not necessarily imply high
speed. An environmental monitoring application is a realtime application
that may not imply high speed. It might require that readings of wind speed
and direction and environmental pollutants be taken at 10-minute intervals.
Though this is not a demanding realtime requirement, if a reading were
missed, it would be impossible to recover lost data.

Realtime applications are classified as either hard realtime or soft realtime.
Hard realtime applications require very fast response within a predetermined
amount of time for the application to function properly. If response time fails
to meet the specified deadline, the application fails. An example of a hard
realtime application is a missile guidance control system where a late response
to a needed correction might lead to disaster.

Soft realtime applications also require a very fast response time, but the
application does not fail if a deadline is missed. Soft realtime applications
sometimes process large amounts of data. An example of a soft realtime
application is an airline reservation system where an occasional delay is
tolerable.

Often, realtime applications must respond within a specified time to events
generated by equipment. For example, in a car’s automatic braking system,

a realtime application must sense that one or more wheels are locked and,
within a very small window of time, signal for the appropriate wheel brakes to
release momentarily and to correct the condition that caused them to lock.

Most realtime applications require high 1/O throughput and fast response
time to asynchronous external events. The ability to process and store large
amounts of data is the key metric for data collection applications. Realtime
applications that require high 1/0 throughput rely on continuous processing of
large amounts of data. The primary requirement of such an application is to
acquire a number of data points equally spaced in time.

High data throughput requirements are typically found in signal-processing
applications such as:

= Sonar and radar analysis
e Telemetry
= Vibration analysis

= Speech analysis

1-2 Introduction to Realtime Programming

e Music synthesis

Likewise, a continuous stream of data points must be acquired for many
of the qualitative and quantitative methods used in the following types of
applications:

e Gas and liquid chromatography
= Mass spectrometry

= Automatic titration

= Colorimetry

For some applications, the throughput requirements on any single channel
are modest. However, an application may need to handle multiple data
channels simultaneously, resulting in a high aggregate throughput. Realtime
applications, such as medical diagnosis systems, need a response time of
around 1 second while simultaneously handling data from, perhaps, ten
external sources.

Although high 1/0 throughput may be important for realtime control
systems, another key metric is the speed at which the application responds
to asynchronous external events and its ability to schedule and provide
communication between multiple tasks. Realtime applications must capture
input parameters, perform decision-making operations, and compute updated
output parameters within a given time frame.

Some realtime applications, such as flight simulation programs, require a
response time of microseconds while simultaneously handling data from a
large number of external sources. The application might acquire several
hundred input parameters from the cockpit controls; compute updated position,
orientation, and speed parameters; and then send several hundred output
parameters to the cockpit console and a visual display subsystem.

The key to realtime is the application’s ability to react to interrupts within
a short period of time. All specified conditions and data must be handled
correctly within a predetermined amount of time. This means that the
application must respond to an interrupt regardless of what the lower-
priority task may be doing at the time of the interrupt. Although response
time requirements may vary, realtime features provide efficient interrupt
handling and high data throughput to meet the requirements of time-critical
applications.

Introduction to Realtime Programming 1-3

1.2 DEC OSF/1 Realtime System Capabilities

The DEC OSF/1 operating system supports facilities to enhance the
performance of realtime applications. DEC OSF/1 realtime facilities make

it possible for the operating system to guarantee that the realtime application
has access to resources whenever it needs them and for as long as it needs
them. That is, the realtime applications running on the DEC OSF/1 operating
system can respond to external events regardless of the impact on other
executing tasks or processes.

The realtime applications written to run on the DEC OSF/1 operating system
make use of and rely on the following system capabilities:

< A preemptive kernel

= Fixed-priority scheduling policies
= Realtime clocks and timers

e Memory locking

= Asynchronous 1/O

= Process communication facilities

All of these realtime facilities work together to form the DEC OSF/1 realtime
environment. In addition, realtime applications make full use of process
synchronization techniques and facilties, as summarized in Section 1.3.

1.2.1 The Value of a Preemptive Kernel

1-4

A realtime environment must be able to respond to an event within a bounded
(generally quite short) period of time. A preemptive kernel guarantees that

a higher-priority process can quickly interrupt a lower-priority process,
regardless of whether the low-priority process is in user or kernel mode.
Whenever a higher-priority process becomes runnable, a preemption is
requested, which causes the higher-priority process to displace the running,
lower-priority process. A preemptive kernel guarantees a deterministic
response to realtime events by providing the ability to respond to realtime
requests.

Every realtime application interacts with the operating system in two modes:
user mode and kernel mode. User mode processes allow the application user
to interact with the application. User mode processes call utilities, library
functions, and other user applications.

In kernel mode, the application accesses and interacts with the operating
system. During execution, a user process often calls system functions,
switching the context from user to kernel mode.

Introduction to Realtime Programming

The amount of time it takes for a higher-priority process to displace a
lower-priority process is referred to as Process Preemption Latency. In a
realtime environment, the primary concern of application designers is the
Maximum Process Preemption Latency that can occur at runtime. Designers
must understand system timing contraints before designing time-critical
applications.

1.2.1.1 Nonpreemptive Kernel

By definition a nonpreemptive kernel, such as the standard UNIX kernel, does
not allow a user process to preempt a process executing in kernel mode. Once
a running process issues a system call and enters kernel mode, preemptive
context switches are disabled until the system call is completed. Although
there are voluntary context switches, a system call may take an arbitrarily
long time to execute without voluntarily giving up the processor. During

that time, the process that has made the system call may be holding up the
execution of a higher-priority, runnable, realtime process.

The Maximum Process Preemption Latency for a nonpreemptive kernel is the
maximum amount of time it can take for the running process to switch out of
kernel mode back into user mode and then be preempted by a higher-priority
process. Under these conditions it is not unusual for worst-case preemption to
take seconds, which is clearly unacceptable for many realtime applications.

1.2.1.2 Preemptive Kernel

A preemptive kernel, such as the DEC OSF/1 realtime kernel, allows the
operating system to respond as quickly as possible to a process preemption
request. The DEC OSF/1 kernel can break out of kernel mode to honor the
preemption request.

A preemptive kernel supports the concept of process synchronization, while
maintaining data integrity, with the ability to respond quickly to interrupts.
The kernel employs mechanisms to protect the integrity of kernel data
structures and defines the restrictions on where the kernel cannot preempt
execution.

The Maximum Process Preemption Latency for a preemptive kernel is exactly
the amount of time required to preserve system and data integrity and preempt
the running process. Under these conditions it is not unusual for worst-case
preemption to take milliseconds.

Introduction to Realtime Programming 1-5

1.2.1.3 Comparing Latency
Figure 1-1 and Figure 1-2 illustrate the Process Preemption Latency that can
be expected from a nonpreemptive kernel and a preemptive kernel. In both
figures, a higher-priority, realtime process makes a preemption request, but
the amount of elapsed time until the request is honored depends on the kernel.
Latency is represented as the shaded area.

Figure 1-1 Nonpreemptive Kernel

User Kernel User
Mode Mode Mode

T
' |
Running Process

|
I Higher-Priority
. /?}¢ Latency - Process Runs
Preemption

Request

Preemption
Honored
MLO-007312

Figure 1-1 shows the expected latency of a nonpreemptive kernel. In this
situation, the currently running process moves back and forth between

user and kernel mode as it executes. The realtime process advances to the
beginning of the priority process list, but cannot preempt the running process
while it runs in kernel mode. The realtime process must wait until the running
process either finishes executing or changes back to user mode before the
realtime process is allowed to preempt the running process. The latency in this
situation could be as long as seconds.

Figure 1-2 shows the expected latency of a preemptive kernel. In this situation
the running process is quickly preempted and the realtime process takes its
place on the run queue. With a preemptive kernel, latency is minimized and
can be measured in terms of milliseconds.

1-6 Introduction to Realtime Programming

Figure 1-2 Preemptive Kernel

Preemption
Request

-
R'uhning Process
| L

Higher-Priority

Process Runs
Latency

Preemption
Honored
MLO-007313

1.2.2 Fixed-Priority Scheduling Policies

The scheduler determines how CPU resources are allocated to executing
processes. Each process has a priority that associates the process with a run
queue. Each process starts out with an initial priority that can change as
the application executes depending on the algorithm used by the scheduler or
application requirements.

The algorithm or set of rules that governs how the scheduler selects runnable
processes, how processes are queued, and how much time each process is given
to run is called a scheduling policy. Scheduling policies work in conjunction
with priority levels. Generally speaking, the higher a process’s priority, the
more frequently the process is allowed to execute. But the scheduling policy
may determine how long the process executes. The realtime application
designer balances the nature of the work performed by the process with
process’s priority and scheduling policy to control use of system resources.

If realtime is installed on your system, the DEC OSF/1 operating system
supports two distinctly different scheduling interfaces: the nice interface and
the realtime interface. The nice interface provides functions for managing
nonrealtime applications running at nonrealtime priority level. The nice
interface uses the timesharing scheduling policy, which allows the scheduler to
dynamically adjust priority levels of a process.

The DEC OSF/1 realtime interface supports a nonrealtime, timesharing
scheduling policy and two fixed-priority, preemptive scheduling policies for
realtime applications. Under the timesharing scheduling policy, process
priorities are automatically adjusted by the scheduler. Under the fixed-
priority scheduling policies, the scheduler will never automatically change the

Introduction to Realtime Programming 1-7

1-8

priority of a process. Instead, the application designer determines when it is
appropriate for a process to change priorities.

The realtime interface provides a number of functions to allow the realtime
application designer to control process execution. In addition, realtime
scheduling policies are attached to individual processes, giving the application
designer control over individual processes.

POSIX scheduling policies have overlapping priority ranges: The highest
priority range is reserved for realtime applications, the middle priority range
is used by the operating system, and the lowest priority range is used for
nonprivileged user processes. Realtime priority ranges loosely map to the nice
priority range, but provide a wider range of priorities for a realtime process.

Not all realtime processes need to run in the realtime priority range.

When using the realtime interface, each process starts execution under

the timesharing scheduling policy with an associated timesharing priority. The
application designer determines which processes are time-critical and under
what circumstances processes should run at an elevated priority level. The
application designer calls the P1003.4/D10 functions to set the appropriate
priority and scheduling policy.

Under the first-in first-out (SCHED_FIFO) scheduling policy, a running process
continues to execute if there are no other higher-priority processes. Under

the control of the user, a running process can raise its priority to avoid being
preempted by another process. Therefore, a high-priority, realtime process
running under the first-in first-out scheduling policy can use system resources
as long as necessary to finish realtime tasks.

Under the round-robin (SCHED_RR) scheduling policy, the highest-priority
process runs until either its alloted time (quantum) is complete or the process
is preempted by another, higher-priority process. A process continues to
execute as long as the waiting processes are at a lower-priority. Therefore,
high priority processes running under the round-robin scheduling policy can
share the processor with other time-critical processes.

When a process raises its priority and preempts a running process, the
scheduler saves the runtime context of the preempted process so that context
can be restored once the process is allowed to run again. The preempted
process remains in a runnable state even though it was preempted.

For information on using the priority and scheduling policy functions, refer to
Chapter 2.

Introduction to Realtime Programming

1.2.3 Realtime Clocks and Timers

The DEC OSF/1 systemwide clock, CLOCK_REALTIME!, provides the timing
base for per-process timers and is the primary source for timer synchronization.
This clock maintains user and system time as well as the current time and
date. The resolution of the CLOCK_REALTIME clock is such that it provides
the basic mechanism to support realtime per-process timers and high resolution
sleep.

Clock and timer functions allow you to retrieve and set the systemwide clock,
retreive and correct for clock drift rate, suspend execution for a period of time,
provide high resolution timers, and use asynchronous signal notification.

Timers in realtime applications must be able to respond quickly to
asynchronous external events. Timers often schedule tasks and events in time
increments considerably smaller than the traditional one-second timeframe.
Because the CLOCK_REALTIME clock and realtime timers use seconds and
nanoseconds as the basis for time intervals, the resolution for the system
clock, realtime timers, and the nanosleep function has a fine granularity. For
example, in a robotic data acquisition application, information retrieval and
recalculation operations may need to be completed within a 4 milliseconds
timeframe. Timers are created to fire every 4 milliseconds to trigger the
collection of another round of data. On expiration, a timer sends a signal to
the calling process.

Realtime timers must be flexible enough to allow the application to set timers
based on either absolute or relative time. Furthermore, timers must be able to
fire as a one-shot or periodic timer. The application creates timers in advance,
but specifies timer characteristics when the timer is set.

Realtime applications must be able to establish and manipulate timers based
on the needs of the application. Some applications may require only one or
two timers; others may require multiple timers within a single process. The
P1003.4/D10 timing facilities support multiple per-process timers up to a
system-defined limit. Each timer is created and armed independently, which
means that the application designer controls the action of each and every
timer.

For information on using the clock and timer functions, refer to Chapter 3.

! CLOCK_REALTIME is the TIME-OF-DAY clock for DEC OSF/1

Introduction to Realtime Programming 1-9

1.2.4 Memory Locking

A realtime application cannot afford long latencies in the execution of critical
code. In a virtual memory system, a process may have part of its address space
paged in and out of memory in response to system demands for critical space.
A realtime application needs a mechanism to guarantee that time-critical
processes are locked into memory and not subjected to memory management
appropriate only for timesharing applications.

Memory locking is one of the primary tools available to the DEC OSF/1
realtime application designer to reduce latency. Without locking time-critical
processes into memory, the latency introduced by paging would introduce
involuntary and unpredictable time delays at runtime.

The P1003.4/D10 memory-locking functions allow the application designer to
lock process address space into memory. The application can lock in not only
the current address space, but also any future address space the process may
use during execution.

For information on using the memory-locking functions, refer to Chapter 4.

1.2.5 Asynchronous I/O

1-10

DEC OSF/1 asynchronous 1/O allows the calling process to immediately
regain control of execution once an I/O operation is queued. This capability
is desirable in many different applications ranging from graphics and file
servers to dedicated realtime data acquisition and control systems. Without
asynchronous 1/0O the process waits while 1/0 completes before continuing
execution. With asynchronous 1/0 once an 1/O request is queued, control

is immediately returned to the calling process. The process immediately
continues execution, thus overlapping tasks.

Many realtime applications need this ability to overlap application processing
and 1/O operations. Often, one process simultaneously performs multiple 1/0
functions while other processes continue execution. For example, a process
can queue data for output without blocking (waiting for 1/O completion).
Applications need to gather large quantities of data from multiple channels
within a short, bounded period of time. In such a situation, blocking 1/0 may
work at cross purposes with application timing constraints. Asynchronous 1/0
performs nonblocking 1/0, allowing simultaneous reads and writes, which frees
processes for additional processing.

Notification of asynchronous 1/0O completion is optional. If you choose

to use signal notification, the signal is specified in the aiocb structure,
thereby eliminating the need to call the signal function and providing faster
interprocess communication.

Introduction to Realtime Programming

For information on using the asynchronous 1/O functions, refer to Chapter 5.

1.2.6 Interprocess Communication

DEC OSF/1 interprocess communication facilities allow the application
designer to synchonize independently executing processes by passing data
within an application. Processes can pursue their own tasks until they
must synchronize with other processes at some predetermined point. When
they reach that point, they wait for some form of communication to occur.
Interprocess communication can take any of the following forms:

< Messages, Chapter 7

Messages consist of user-defined structures that specify the length and type

of message as well as carry the message text.

= Shared memory, Chapter 8

Shared memory is the fastest form of interprocess communication. As soon
as one process writes data to the shared memory area, it is available by
other processes using the same shared memory.

= Semaphores, Chapter 9

Semaphores are most commonly used to control access to system resources,
such as shared memory regions. Semaphores can be either binary or
counting semaphores.

e Pipes, Chapter 10
Pipes are used to transfer small amounts of data among related processes.

= Named pipes, Chapter 10

Named pipes are like pipes, except that named pipes use file descriptors.
Named pipes can communicate with only small numbers of unrelated
processes.

e Signals, Chapter 11

Signals provide a means to communicate to a large number of processes,
but communication is limited to a signal number. Signals for timer
expiration and asynchronous 1/0O use a data structure, making signal
delivery asynchronous, fast, and reliable.

Some forms of interprocess communication are traditionally supplied by
the operating system and some are specifically modified for use in realtime
functions. All allow a user- or kernel-level process to communicate with a
user-level process. Interprocess communication facilities are used to notify
processes that an event has occurred or to trigger the process to respond to

Introduction to Realtime Programming 1-11

an application-defined occurrence. Such occurrences can be asynchronous 1/0
completion, timer expiration, data arrival, or some other user-defined event.

In a realtime environment it is often necessary to reduce the time interval
required for process communication. It is not always sufficient to simply verify
that communication has taken place. A delay in interprocess communication
can affect overall performance of the realtime application. To provide rapid
signal communication on timer expiration and asynchronous 1/0O completion,
these functions send signals via a sigevent structure rather than through the
traditional nonrealtime signal mechanism. The application designer controls
which signals are sent and establishes signal handlers appropriate for the

event.

For information on using asynchronous signals for interprocess communication,

refer to Chapter 11.

1.2.7 Realtime Needs and System Features

Table 1-1 summarizes the common realtime needs and the features or
capabilities available through the P1003.4/D10 functions and the DEC OSF/1
operating system. The realtime needs, in the left column of the table, are
ordered according to their requirement for fast system performance.

Table 1-1 Realtime Needs Summary

Realtime Need

Realtime Feature

Change the availability of a process for
scheduling

Keep critical code or data highly
accessible

Perform an operation while another
operation is in progress

Perform 1/0O quickly or for special
purposes

Share code or data between processes

Synchronize access to resources shared
between cooperating processes

Introduction to Realtime Programming

Use the scheduler functions to set the
scheduling policy and priority of the process

Use the memory locking functions to lock
the process address space into memory

Create a child process or separate thread

Use asynchronous 1/0
Use asynchronous 1/0

Use shared libraries
Use shared memory

Use binary or counting semaphores

(continued on next page)

Table 1-1 (Cont.) Realtime Needs Summary

Realtime Need Realtime Feature

Communicate between processes Use messages, semaphores, shared memory,
signals, pipes, and names pipes

Synchronize a process with a time Set and arm per-process timers

schedule

Synchronize a process with an external Use signals

event or program
Use semaphores

Cause the process to sleep and to awaken
when needed

1.3 Process Synchronization

Use of synchronization techniques and restricting access to resources can
ensure that critical and noncritical tasks execute at appropriate times with
the necessary resources available. Concurrently executing processes require
special mechanisms to coordinate their interactions with other processes and
their access to shared resources. In addition, processes may need to execute at
specified intervals.

Realtime applications synchronize process execution through the following
techniques:

= Waiting for a specified time
= Waiting for semaphores

< Waiting for communication
= Waiting for other processes

The basic mechanism of process synchronization is waiting. A process must
synchronize its actions with the arrival of an absolute or relative time, or until
a set of conditions is satisfied. Waiting is necessary when one process requires
another process to complete a certain action, such as releasing a shared system
resource, or allowing a specified amount of time to elapse, before processing
can continue.

The point at which the continued execution of a process depends on the state
of certain conditions is called the “synchronization point.” Synchronization
points represent intersections in the execution paths of otherwise independent
processes, where the actions of one process depend on the actions of another
process.

Introduction to Realtime Programming 1-13

The application designer identifies synchronization points between
processes and selects the functions best suited to implement the required
synchronization.

The application designer identifies resources such as message queues and
shared memory that the application will use. Failure to control access to
critical resources can result in performance bottlenecks or inconsistent data.
For example, the transaction processing application of a national ticket agency
must be prepared to simultaneously process purchases from sites around

the country. Ticket sales are transactions recorded in a central database.
Each transaction must be completed as either rejected or confirmed before
the application performs further updates to the database. The application
performs the following synchronization operations:

= Restricts access to the database
= Provides a reasonable response time
= Ensures against overbookings

Processes compete for access to the database. In doing so, some processes must
wait for either a confirmation or rejection of a transaction.

1.3.1 Waiting for a Specified Time

1-14

A process can postpone execution for a specified period of time or until a
specified time and date. This synchronization technique allows processes

to work periodically and to carry out tasks on a regular basis. To postpone
execution for a specified period of time, use one of the following two methods:

= The sleep functions
e Per-process timers

The sleep function has a granularity of seconds while the nanosleep function
uses nanoseconds. The granularity of the nanosleep function may make it
more suitable for realtime applications. For example, a vehicle simulator
application may rely on retrieval and recalculation operations that are
completed every 5 milliseconds. The application requires a number of per-
process timers armed with repetition intervals that allow the application to
retrieve and process information within the 5 millisecond deadline.

Realtime clocks and timers allow an application to synchronize and coordinate
activities according to a predefined schedule. Such a schedule might require
repeated execution of one or more processes at specific time intervals or only
once. A timer is set (armed) by specifying an initial start time value and an
interval time value. Realtime timing facilties provide applications with the

Introduction to Realtime Programming

ability to use relative or absolute time and to schedule events on a one-shot or
periodic basis.

1.3.2 Waiting for Semaphores

The semaphore gives a process a way to synchronize its access to a resource
shared with other processes, most commonly, shared memory. A semaphore
is a kernel data structure, shared by two or more processes, that enforces
either exclusive or metered access to the shared resource. Exclusive access
means that only one process can access the resource at a time; metered access
means that up to a specified number of processes can access the resource
simultaneously. Exclusive access is achieved through the use of binary
semaphores.

The semaphore takes its name from the signaling system railroads developed to
prevent more than one train from using the same length of track, a technique
that enforces exclusive access to the shared resource of the railroad track. A
train waiting to enter the protected section of track waits until the semaphore
shows that the track is clear, at which time the train enters the track and
sets the semaphore to show the track is in use. Another train approaching the
protected track while the first train is using it waits for the signal to show that
the track is clear. When the first train leaves the shared section of track, it
resets the semaphore to show that the track is clear.

The sempahore protection scheme works only if all the trains using the shared
resource cooperate by waiting for the semaphore when the track is busy and
resetting the semaphore when they have finished using the track. If a train
enters a track marked busy without waiting for the signal that it is clear, a
collision can occur. Conversely, if a train exiting the track fails to signal that
the track is clear, other trains will think the track is in use and refrain from
using it.

The same is true for processes synchronizing their actions through the use of
semaphores and shared memory. To gain access to the resource protected by
the semaphore, cooperating processes must lock and unlock the semaphore. A
calling process must check the state of the semaphore before performing a task.
If the semaphore is locked, the process is blocked and waits for the semaphore
to become unlocked. Binary semaphores restrict access to a shared resource by
allowing access to only one process at a time.

An application can protect the following resources with semaphores:

= Global variables, such as file variables, pointers, counters, and data
structures. Synchronizing access to these variables means preventing
simultaneous access, which also prevents one process from reading
information while another process is writing it.

Introduction to Realtime Programming 1-15

< Hardware resources, such as disk and tape drives. Hardware resources
require controlled access for the same reasons as global variables; that is,
simultaneous access could result in corrupted data.

= The kernel. A binary semaphore can allow processes to alternate execution
by limiting access to the kernel on an alternating basis.

For information on using shared memory and semaphores, refer to Chapter 8
and Chapter 9.

1.3.3 Waiting for Communication

Typically, communication between processes is used to trigger process execution
so the flow of execution follows the logical flow of the application design. As
the application designer maps out the program algorithm, dependencies

are identified for each step in the program. Information concerning the
status of each dependency is communicated to the relevant processes so that
appropriate action can be taken. Processes synchronize their execution by
waiting for something to happen; that is, by waiting for communication that
an event occurred or a task was completed. The meaning and purpose of the
communication are established by the application designer.

Interprocess communication facilitates application control over the following:
= When and how a process executes

= The sequence of execution of processes

= How resources are allocated to service the requests from the processes

Section 1.2.6 introduces the forms of interprocess communication available
to the realtime application designer. For further information on using
interprocess communication facilities, refer to Chapters 6 through 10.

1.3.4 Waiting for Other Processes

1-16

Waiting for other processes means waiting until the process has terminated.
To postpone execution while waiting for other processes, a parent process can
wait for a child process or thread to terminate. A child process or a thread

is created by the waiting process. Often, the child process needs to complete
some task before the waiting parent process can continue. In such a situation,
the actions of the parent and child processes are sometimes synchronized in
the following way:

= The parent process creates the child process.
= The parent process synchronizes with the child.

= The child process executes until it terminates.

Introduction to Realtime Programming

< The termination of the child process signals the parent process.
= The parent process resumes execution.

When a process calls the fork function, it creates a child process and executes
an exact copy of the parent process. The child process begins execution at
the instruction after the call to the fork function. Typically, the child process
immediately issues a call to one of the exec functions, which in turn executes
a new process image. The child process exits when it terminates normally and
the parent process continues executing at the point where it left off. The child
process can load an image from disk, or some other source, and schedule it to
run.

The parent process can continue execution in parallel with the child process.
However, if child processes are used as a form of process synchronization, the
parent process can use other synchronization mechanisms such as semaphores
and signals while the child process executes.

For information on using semaphores and signals, refer to Chapter 9 and
Chapter 11.

1.4 Standards

A number of standards apply to application designers working in the UNIX
environment. Primary among these are:

= ANSI
= |SO

= POSIX
= SVID

The purpose of standards is to enhance the portability of programs and
applications; that is, to create code that is independent of the hardware or even
the operating system on which the application runs. Standards allow users

to move between systems without major retraining. In addition, standards
introduce internationalization concepts as part of application portability.

ANSI standards apply to programming languages, networks and
communication protocols, character coding, and database systems.

ISO, POSIX, and SVID standards apply to the operating system. For the most
part, these standards apply to applications coded in the C language. These
standards are not mutually exclusive; the DEC OSF/1 realtime environment
uses a complement of these standards.

Introduction to Realtime Programming 1-17

Additional information on POSIX standards is contained in the IEEE Standard
Portable Operating System Interface for Computer Environments manuals,
published by the Institute of Electrical and Electronics Engineers, Inc.

1.4.1 Including Common Definition Files

Common definition files, sometimes called include or header files, let you share
common information between source files in an application. These files usually
define known constants, declare routine and data types, define data structures,
or declare function prototypes such as library functions or system services.
Common definition files typically have a .h suffix.

To specify an include file in your source code, use the #include directive
in column 1. For example, to include the header file for the P1003.4/D10
memory-locking functions, you must include the mlock.h header file as follows:

#include <mlock.h>

The C macro preprocessor searches for the file only in the default directory,
/usr/include. You can specify a pathname for the file in the #include
directive. The following example specifies that the sem.h header file be
included from the /usr/include/sys directory.

#include <sys/sem.h>

You can also use the -Idir option on the compile command to specify additional
pathnames to be searched by the C preprocessor. Note that if you specify
multiple -I directives on the compile command, the files are processed in the
order in which they appear on the compile command.

When the include file name is in quotes, the C preprocessor searches first in
the directory where the source file resides, followed by the specified directory
pathname dir, then the standard directory /usr/include. When the include
file name is in angle brackets, the C preprocessor searches first in the specified
pathname and then the /usr/include directory.

1.4.2 Compiling with the Realtime Library

1-18

You must explicitly load the required realtime runtime libraries when you
compile realtime applications. Specify the -1rt option on the command line.
The rt specification is an abbreviation of the realtime library name.

To find the realtime library, the 1d linker expands the command specification
by replacing the -1 with 1ib and adding the specified rt characters and the .a
suffix. Since the linker searches default directories in an attempt to locate the
realtime archive library, you must specify the pathname.

Introduction to Realtime Programming

To specify the realtime archive library, include the pathname of the library as
part of the command syntax. The linker searches libraries in the order that
you specify. The following example specifies that 1ibrt.a is to be included
from the /usr/ccs/1ib directory.

cc myprogram.c /usr/ccs/lib/librt.a

The -L switch forces the linker to search in the directory specified on the -L
switch first; then the other directories associated with the driver command are
used. You could specify the full library pathname as follows:

cc myprogram.c -L/usr/ccs/lib -lrt
By default all global symbols are exported from the archive library.

Most drivers allow you to view the passes of the driver program and the
libraries being searched by specifying the -v option on the compile command.

To link an application against the realtime library, you must specify the library
path. The -L switch specifies the pathname as an additional search directory
for unresolved global references. The realtime library is kept in /usr/ccs/lib.

The realtime library uses the 1ibc.a library. When you compile an application,
the libc.a library is automatically pulled into the compilation.

On the link command, however, you must include the 1ibc.a library. Since
files are processed in the order in which they appear on the link command
line, 1ibc.a must appear on after librt.a. For example, you would link an
application with the realtime library, 1ibrt.a, as follows:

1d myprogram.o -L/usr/ccs/lib -lrt -lc

The -L switch ensures that the linker will find the archive version of the
library first. The -1 switch directs the linker to search the path for archive
libraries.

1.4.3 Compiling with the Asynchronous I/O Library

When you compile an application that uses asynchronous 1/O, include the
necessary libraries on the command line. The following example shows the
specification required if your application uses asynchronous 1/0.

cc -non shared -D POSIX 4SOURCE myprogram.c -laio -lpthreads -lbsd -lmach -lc r

Introduction to Realtime Programming 1-19

1.4.4 Defining the POSIX Environment

1-20

When you write applications that use POSIX functions, you must compile
your application in the POSIX programming environment by using one of two
methods. One method is to set a preprocessor symbol before you issue the
compile command. The other method is to set the preprocessor symbol on the
compiler command line.

The steps below set the preprocessor symbol in the source code:

1. Define the POSIX_4SOURCE preprocessor symbol by either creating
a local header file that defines the symbol or by including the symbol
directly in your source file. The purpose of the definition is to control
the visibility of named constants and identifiers. When you define the
_POSIX_4SOURCE symbol, the POSIX _SOURCE symbol is automatically
defined.

Define the _POSIX_4SOURCE symbol if you are writing conforming
realtime POSIX applications. The following example shows a local header
file that defines the POSIX 4SOURCE preprocessor symbol:

#define POSIX 4SOURCE 1

2. Include the local header file in your source application as the first #include
directive in your source code. Be sure to include the local header file in
each source file for your application.

3. Compile you application.

To use realtime functionality, you must define the _POSIX_4SOURCE symbol.
When the POSIX_4SOURCE symbol is defined, the preprocessor includes the
conforming header information for both POSIX 1003.1 and P1003.4/D10 in
your program object.

Another method is to set the preprocessor symbol on the compile command
line, using the -D option. This switch triggers nested ifdefs in the include
files located in /usr/include and enables definitions that pertain to the POSIX
standard. Using this switch ensures that the required definitions will be
present. Note that you must include the <standards.h> header file in your
source code. The following example uses -D option to define _POSIX_4SOURCE
symbol.

cc -D POSIX 4SOURCE myprogram.c

In this example, the -D option defines the _POSIX_4SOURCE symbol to the
value of 1. This definition is in effect only during the execution of the cc
command. For more information on the -D option, see the reference page for
the cc command.

Introduction to Realtime Programming

If your application fails to compile, you may need to check your programming
environment to make sure that the realtime kit is installed on your system.
The lack of the realtime kit and its function library will cause your program to

fail.

Introduction to Realtime Programming 1-21

2

Process Scheduling and Priorities

The ability to control scheduling is an important requirement for realtime
application designers. Control over scheduling takes two forms: controlling
how the scheduler selects processes to run, and controlling the priority of a
process.

The scheduling policy determines how the scheduler selects runnable processes,
how processes are queued for execution, and how much time each process is
given to run.

Scheduling policies work in conjunction with priority levels. A global priority
range applies to all scheduling policies, but each policy has an associated
priority range. The nature of the work performed by the processes helps
determine the scheduling policy and priority best suited for the application’s
needs.

Realtime applications must be able to control process priorities in order to
service external events in a timely and predictable manner. DEC OSF/1
P1003.4/D10 realtime facilities provide for a higher priority range as well as
a choice of scheduling policies for greater control over application execution.
Realtime functions allow processes to change both scheduling policies and
priorities depending on application needs. At runtime, the combination of
these realtime features gives the user control over system resources.

This chapter includes the following sections:
= Process Scheduling, Section 2.1

= Scheduling Policies, Section 2.2

= Process Priorities, Section 2.3

= Scheduling Functions, Section 2.4

= Priority and Policy Example, Section 2.5

Process Scheduling and Priorities 2-1

2.1 Process Scheduling

Applications are often divided into a number of programs. Each program
might run concurrently with one or more others; each program might run
conditionally; or one of the programs might execute noncritical code while the
others run critical code.

Each program is in turn composed of processes and threads. These processes
can be detached or subprocesses, depending on application needs. Each process
has a priority: That is, each process table entry contains a priority field used
in process scheduling.

2.1.1 Process States

At runtime processes exist in various states: running, runnable, or waiting.
When a process is created, it is immediately ready to run (runnable). The
movement of a process from the runnable to the running state is controlled
by the scheduler. The scheduler maintains a list of runnable processes at
each priority level. When a process in the runnable state gains control of the
processor and begins to execute, it is in the running state. Depending on the
scheduling policy and priority of the running process, the process may return
to the runnable state, be preempted, or wait. Table 2—-1 describes these three
process states.

Table 2-1 Process States

State Description
Running The process has control of the processor and is executing code.
Runnable The process is in memory, eligible to run, but is not running. A

runnable process waits in the queue with other runnable processes
until the running process gives up control of the processor. At that
time, the highest-priority runnable process will enter the running
state.

Waiting The process has given up eligibility to run until a condition or set of
conditions is satisfied. A process may be waiting for a signal from
another process, a wakeup call, a timer expiration, 1/O completion, or
any number of other events to occur.

During program execution, a process or thread may undergo many transitions
from one state to another. All processes that compete with other processes to
run on a single processor will move at least between the runnable and running
states. To enter the running state, a process must first be in memory and in
the runnable state. When it leaves the running state, a process may enter into
either of the two other states, runnable or waiting.

2—-2 Process Scheduling and Priorities

Unless processes are locked into memory, they may be paged out to make room
for another process. To guard against unwanted paging, realtime applications
should use the P1003.4/D10 memory-locking functions, as described in
Chapter 4.

Figure 2-1 displays the possible states of processes and represents with arrows
the various state changes.

Figure 2-1 Process States

Runnable
Scheduler Process Event
Chooses Occurs
a Process
to Run Process Yields
or is Preempted
/
Running Waiting
Process Process
Process Waits
for Event

MLO-007314

The process in the running state is designated as the current process. If a
process is running, it has control of the kernel and is executing. However, if
the process is in the runnable or waiting state, the process could be preempted
before it runs.

A runnable process is one that is eligible to be selected to run. Runnable
processes reside on the process list.

A waiting process awaits satisfaction of one or more wait conditions, such as a
timeout, sleep, or the completion of some action.

2.1.2 The Scheduler

The primary function of the scheduler is to make scheduling decisions for the
kernel. The scheduler makes certain that the highest-priority runnable process
executes. The scheduler also maintains the kernel's scheduling database,
representing the state of the system, in a consistent and accurate state. For
example, the scheduler keeps process lists, which are priority-ordered queues
of runnable processes in correct order. Whether selecting a runnable process to

Process Scheduling and Priorities 2-3

run or removing a process from the run queue, the scheduler applies a common
set of selection criteria.

The scheduler determines which of a number of runnable processes is executed
at any particular moment. The scheduler keeps track of the set of runnable
processes and selects the highest-priority process to run.

Runnable processes are organized into process lists, or queues. The scheduler
imposes order on the execution of the process list by placing the process that
should run next at the beginning of the list, while the process that should wait
the longest to run is placed at the end of the list. Generally speaking, the order
of execution is on a first-in first-out (FIFO) basis. When a process becomes
runnable, it takes it's position at the end of the process list for its priority.

Figure 2-2 illustrates the general principles of process scheduling.

Figure 2—2 Order of Execution

Runnable Processes

Before Priority Change After Priority Change
Priority Priority
30 ®B—E—/~0 30 B—E—"0O—™0F
14 14
13 O—E—"C0WO——/O0 13 O—E—"C0W——™O0

MLO-007315

Processes A, B, and C are in the process list for the highest priority used in
this illustration. Process A is at the beginning of the process list for priority 30.
That means that Process A executes first, then processes B and C, respectively.
When there are no more processes remaining in the process list for priority 30,
the scheduler looks to the next lowest priority, finds process D at the beginning
of the process list, and executes process D.

2—-4 Process Scheduling and Priorities

When a process changes priority, it goes to the end of the process list for its
new priority. Figure 2-2 shows process F changing priority from 15 to 30. At
priority 15 process F is at the end of the process list. When process F changes
to priority 30, the process goes to the end of the process list for priority 30. At
priority 30 process F is queued to execute after process C, but before process D.

The scheduling policy determines the length of execution for a process. The
priority of a process, combined with the scheduling policy, determines how the
process is scheduled. In a timesharing environment the scheduler recalculates
the priority of a process after a process executes and periodically readjusts the
priority of every eligible process. With a fixed-priority scheduling policy, the
priority is not modified by the scheduler.

Processes are rescheduled when one of the following events occurs:
= The running process enters the runnable or waiting state.

= A higher-priority process becomes runnable.

= A process changes scheduling policy.

When one of these events occurs, the scheduler reexamines the current
scheduling scheme to determine which other process is promoted to the
running state. The scheduler considers only processes in the runnable state
and makes its choice depending on the priority and scheduling policy specified
for the runnable processes. When a process whose priority is higher than that
of the currently running process becomes runnable, the scheduler preempts the
lower-priority process, returning it to the runnable state. Then the scheduler
promotes the higher-priority process to the running state. This method is
called “preemptive priority scheduling” and gives the user an effective way

to schedule time-critical processes. Between processes of equal priority, the
scheduler chooses on the basis of the specified scheduling policy.

Figure 2-3 illustrates how processes can change from the running state to
the runnable state within the queue for a single priority. In this illustration,
processes move in and out of the running state as they are preempted by a
higher-priority process, a process finishes its quantum, or a process changees
priority.

As processes are selected to run or move from the end to the beginning of the
process list, the scheduler continually updates the kernel database and the
process list for each priority.

Process Scheduling and Priorities 2-5

Figure 2-3 Process Events

Event

Reaction

The Running
Process Is:

The Runnable Processes Are:

reaches beginning of
the queue and starts
its quantum

moves to running

is a higher priority,
becomes runnable, and
preempts G

preempted - goes to
the beginning of the
queue

yields or enters
waiting state

runs again to finish
its quantum

finishes its quantum

goes to the end of the
queue

moves to running

is a higher priority,
becomes runnable, and
preempts H

preempted - goes to
the beginning of the
queue

raises priority of K

changes priority
goes to the end of the
queue

H—O—0—W©

2.1.3 Scheduling Interfaces

MLO-007316

The DEC OSF/1 operating system provides two separate, but related interfaces
to scheduling policies: one that supports the default, timesharing scheduling
policy (the nice scheduling interface) and one that supports the scheduling

2-6 Process Scheduling and Priorities

policies defined by the P1003.4/D10 standard (the realtime scheduling
interface). These interfaces use different priority ranges and are managed
through different function calls. The nice interface allows you to set process
priority while the realtime interface allows you to set both the process priority
and the scheduling policy.

The default scheduling interface is the nice interface, which has the following
characteristics:

= Supports only the timesharing scheduling policy

= Supports priorities in the 20 through —20 range

e Uses a default priority of 0

= Uses lower priority numbers to represent higher priority

= Provides relative priorities that can be changed by the scheduler

= Supports relative priority changes by the user through a call to the nice,
renice, or setpriority functions

The realtime interface provides support for multiple scheduling policies,
including the timesharing scheduling policy. You can change the scheduling
policy and priority of a process running under any P1003.4/D10 scheduling
policy. The realtime interface has the following characteristics:

e Supports the timesharing, first-in first-out (FIFO) and round-robin
scheduling policies

= Supports priorities in the 0 through 63 range

e Uses a default priority of 19

= Supports absolute, fixed priorities

= Uses a higher priority number to represent a higher priority

= Supports absolute priority changes by the user through a call to one of the
P1003.4/D10 functions, sched set sched param or sched setscheduler

= Supports scheduling policy changes by the user through a call to the
sched setscheduler function

Priorities are changed by the scheduler only if you select the timesharing
scheduling policy. Note that you can use only the nice, renice, or setpriority
functions to change the priority of a process if the process is running under the
timesharing scheduling policy. If the realtime interface is used to change the
scheduling policy of a process to first-in first-out or round-robin, the process is
no longer affected by the nice, renice, or setpriority functions.

Process Scheduling and Priorities 2-7

The nice interface logically divides priorities into two ranges, nonprivileged
user and system. While these ranges reflect the nature of the work commonly
associated with the priorities within a range, there is no clear distinction
between the ranges. For example, system processing can be done in the
nonprivileged user priority range.

The realtime interface divides the priority range in a similar way, but also
provides absolute control over scheduling. The application designer can
determine the priorities of other processes and precisely set the priority of each
realtime process, to better determine when processes will run relative to one
another. This way, the scheduler can guarantee that a critical process will

run whenever it is needed, for as long as it is needed. Time-critical realtime
processes must be able to run at a very high priority, but must also be able to
yield execution to other realtime processes in a deterministic manner.

The realtime interface allows you to alter the scheduling policy, which gives
you more control over when processes execute by more precisely defining
how individual processes are scheduled to run relative to one another.
P1003.4/D10 scheduling policies include two fixed-priority scheduling policies
and the standard timesharing policy. You can use the timesharing policy
for nonrealtime applications but will want to use either of the fixed-priority
policies for realtime applications.

Regardless of the scheduling interface, the scheduler uses the same method to
determine which process runs next: the process at the beginning of the highest
priority process list.

2.2 Scheduling Policies

Whether or not a timesharing process runs is often determined not by the
needs of the application, but by the scheduler’s algorithm. The scheduler
determines the order in which processes execute and sometimes forces
resource-intensive processes to yield to other processes.

Other users’ activities on the system at that time affect scheduling. Whether
or not a realtime process yields to another process can be based on a quantum
or the scheduling policy.

2.2.1 The Nature of the Work

Scheduling policies are designed to give you flexibility and control in
determining how work is performed so that you can balance the nature of
the work with the behavior of the process. Essentially, there are three broad
categories of work:

= Timesharing Processing

2-8 Process Scheduling and Priorities

Used for interactive and noninteractive applications with no critical time
limits but a need for reasonable response time and high throughput.

= System Processing

Performs work on behalf of the system, such as paging, networking, and
accessing files. The responsiveness of system processing impacts the
responsiveness of the whole system.

= Realtime Processing

Used for critical work that must be completed within a certain time period,
such as data collection or device control. The nature of realtime processing
often means that missing a deadline makes the data invalid or causes
damage.

To control scheduling policies you must use the P1003.4/D10 realtime
scheduling functions and select an appropriate scheduling policy for your
process. DEC OSF/1 P1003.4/D10 scheduling policies are set only through a
call to the sched setscheduler function. The sched setscheduler function
recognizes the scheduling policies by keywords beginning with SCHED _ as
follows:

e SCHED_OTHER, Timesharing scheduling
= SCHED_FIFO, First-in first-out scheduling
e SCHED_RR, Round-robin scheduling

All three scheduling policies have overlapping priority ranges to allow for
maximum flexibility in scheduling. When selecting a priority and scheduling
policy for a realtime process, consider the nature of the work performed by the
process. Regardless of the scheduling policy, the scheduler selects the process
at the beginning of the highest-priority, nonempty process list to become a
running process.

2.2.2 Timesharing Scheduling

The P1003.4/D10 timesharing scheduling policy, SCHED OTHER, allows
realtime applications to return to a nonrealtime scheduling policy. In
timesharing scheduling, a process starts with an initial priority that either
the user or the scheduler can change. Timesharing processes run until the
scheduler recalculates process priority, based on the system load, the length of
time the process has been running, or the value of nice. Section 2.3.1 describes
timesharing priorities changes in more detail.

Process Scheduling and Priorities 2-9

Under the timesharing scheduling policy, the scheduler enforces a quantum.
Processes are allowed to run until they are preempted, yield to another process,
or finish their quantum. If no higher-priority processes are waiting to run, the
executing process is allowed to continue. However, while a process is running,
the scheduler changes the process’s priority. Over time, it is likely that a
higher-priority process will exist because the scheduler adjusts priority. If a
process is preempted or yields to another process, it goes to the end of the
process list for the new priority.

2.2.3 Fixed-Priority Scheduling

With a fixed-priority scheduling policy, the scheduler does not adjust process
priorities. If the application designer sets a process at priority 30, it will
always be queued to the priority 30 process list, unless the application or the
user explicitly changes the priority.

As with all scheduling policies, fixed-priority scheduling is based on the
priorities of all runnable processes. If a process waiting on the process list
has a higher priority than the running process, then the running process is
preempted for the higher-priority process. However, the two fixed-priority
scheduling policies (SCHED_FIFO and SCHED_RR) allow greater control over
the length of time a process waits to run.

Fixed-priority scheduling relies on the application designer or user to manage
the efficiency of process priorities relative to system workloads. For example,
you may have a process that must be allowed to finish executing, regardless
of other activities. In this case, you may elect to increase the priority of your
process and use the first-in first-out scheduling policy, which guarantees that
a process will never be placed at the end of the process list if it is preempted.
In addition, the process’s priority will never be adjusted and it will never be
moved to another process list. With fixed-priority scheduling policies, you
must explicitly set priorities by calling either the sched set sched param or
sched setscheduler function. Thus, realtime processes using fixed-priority
scheduling policies are free to yield execution resources to each other in an
application-dependent manner.

If you are using a fixed-priority scheduling policy and you call the nice or
renice function to adjust priorities, the function returns without changing the
priorities.

2-10 Process Scheduling and Priorities

2.2.3.1 First-in First-out Scheduling
The first-in first-out scheduling policy, SCHED_FIFO gives maximum control
to the application. This scheduling policy does not enforce a quantum. Rather,
each process runs to completion or until it blocks or voluntarily yields to
another process at the same priority.

Processes scheduled under the first-in first-out scheduling policy are chosen
from a process priority list that is ordered according to the amount of time its
processes have been on the list without being executed. Under this scheduling
policy, the process at the beginning of the highest-priority, nonempty process
list is executed first. The next process moves to the beginning of the list and is
executed next. Thus execution continues until that priority list is empty. Then
the process at the beginning of the next highest-priority, nonempty process list
is selected and execution continues. A process runs until execution finishes or
the process is preempted by a higher-priority process.

The process at the beginning of a process list has waited at that priority the
longest amount of time, while the process at the end of the list has waited the
shortest amount of time. Whenever a process becomes runnable, it is placed
on the end of a process list and waits until the processes in front of it have
executed. When a process is placed in an empty high-priority process list, the
process will preempt a lower-priority running process.

If an application changes the priority of a process, the process is removed from
its list and placed at the end of the new priority process list.

The following rules determine how runnable processes are queued for execution
using the first-in first-out scheduling policy:

< When a process is preempted, it goes to the beginning of the process list for
its priority.

= When a blocked process becomes runnable, it goes to the end of the process
list for its priority.

< When a running process changes the priority or scheduling policy of
another process, the changed process goes to the end of the new priority
process list.

= When a process voluntarily yields to another process, it goes to the end of
the process list for its priority.

The first-in first-out scheduling policy is well suited for the realtime
environment because it is deterministic. That is, processes with the highest
priority always run, and among processes with equal priorities, the process
that has been runnable for the longest period of time is executed first. You can
achieve complex scheduling by altering process priorities.

Process Scheduling and Priorities 2-11

2.2.3.2 Round-Robin Scheduling

The round-robin scheduling policy, SCHED_RR, is a logical extension of the
first-in first-out scheduling policy. A process running under the round-robin
scheduling policy is subject to the same rules as a process running under the
fixed-priority scheduling policy, but a quantum is imposed on the running
process. When a process finishes its quantum, it goes to the end of the process
list for its priority.

Processes under the round-robin scheduling policy may be preempted by a
higher-priority process before the quantum has expired. A preempted process
goes to the beginning of its priority process list and completes the previously
unexpired portion of its quantum when the process resumes execution. This
ensures that a preempted process regains control as soon as possible.

Figure 2—4 shows process scheduling using a quantum. One portion of the
figure shows the running process, the other portion of the figure shows what
happens to running processes over time. Process G is removed from the
beginning of the process list, placed in the run queue, and begins execution.
Process B, a higher priority process, enters the runnable state while process

G is running. The scheduler preempts process G to execute process B. Since
process G had more time left in its quantum, the scheduler returns process G
to the beginning of the process list, keeps track of the amount of time left in
process G's quantum, and executes process B. When process B finishes, process
G is again moved into the run queue and finishes its quantum. Process H, next
in the process list, executes last.

Round-robin scheduling is designed to provide a facility for implementing
time-slice algorithms. You can use the concept of a quantum in combi-
nation with process priorities to facilitate time-slicing. You can use the
sched get rr interval function to retrieve information concerning the
guantum used in round-robin scheduling.

2.3 Process Priorities

All applications are given an initial priority, either implicitly by the operating
system or explicitly by the user. If you fail to specify a priority for a process,
the kernel assigns the process an initial priority.

You can specify and manage a process’s priority using either nice or
P1003.4/D10 functions. The nice functions are useful for managing priorities
for nonrealtime, timesharing applications. However, realtime priorities are
higher than the nice priorities and make use of the P1003.4/D10 scheduling

2-12 Process Scheduling and Priorities

Figure 2-4 Preemption—Finishing a Quantum

Priority

High
Process B
Executes

Process B
Process G Resumes
Process G 2
Preempted Process G Completes,
/ Process H Executes
————— a
Process G _: Process G | Process H
1 3 4
Low <«— Time ——>»
Process List
1 2 3 4

. . . .

. . . .

MLO-007317

policies. Realtime priorities can be managed only by using the associated
P1003.4/D10 functions.

In general, process scheduling is based on the concept that tasks can be
prioritized, either by the user or by the scheduler. Each process table entry
contains a priority field used in process scheduling. Conceptually, each priority
level consists of a process list. The process list is ordered with the process that
should run first at the beginning of the list and the process that should run
last at the end of the list. Since a single processor can execute only one process
at a time, the scheduler selects the first process at the beginning of the highest
priority, nonempty process list for execution.

Process Scheduling and Priorities 2-13

Priority levels are organized in ranges. The nonprivileged user application
runs in the same range as most applications using the timesharing scheduling
policy. Most users need not concern themselves with priority ranges above
this range. Privileged applications (system or realtime) use higher priorities
than nonprivileged user applications. In some instances, realtime and system
processes can share priorities, but most realtime applications will run in a
priority range that is higher than the system range.

2.3.1 Priorities for the nice Interface

The nice interface priorities are divided into two ranges: the higher range is
reserved for the operating system, and the lower range is for nonprivileged
user processes. With the nice interface, priorities range from 20 through —20,
where 20 is the lowest priority. Nonprivileged user processes typically run in
the 20 through 0 range. Many system processes run in the range 0 through
—20 (or higher). Table 2—2 shows the ranges nice interface priority ranges.

Table 2-2 Priority Ranges for the nice Interface

Range Priority Level
Nonprivileged user 20 through 0
System 0 through -20

A numerically low value implies a high priority level. For example, a process
with a priority of 5 has a lower priority than a process with a priority of 0.
Similarly, a system process with a priority of -5 has a lower priority than a
process with a priority of —15. System processes can run at nonprivileged user
priorities, but a user process can only increase its priority into the system
range if the owner of the user process has superuser privileges.

Processes start at the default base priority for a nonprivileged user process (0).
Since the only scheduling policy supported by the nice interface is timesharing,
the priority of a process changes during execution. That is, the nice parameter
represents the highest priority possible for a process. As the process runs, the
scheduler adds offsets to the initial priority, adjusting the process’s priority
downward from or upward toward the initial priority. However, the priority
will not exceed (be numerically lower than) the nice value.

The nice interface supports relative priority changes by the user through a call
to the nice, renice, or set priority functions. Interactive users can specify
a base priority at the start of application execution using the nice command.
The renice command allows users to interactively change the priority of a
running process. An application can read a process’s priority by calling the
getpriority function. Then the application can change a process’s priority by

2-14 Process Scheduling and Priorities

calling the setpriority function. These functions are useful for nonrealtime
applications but do not affect processes running under one of the P1003.4/D10
fixed-priority scheduling policies, described in Section 2.2.

Refer to the reference pages for more information on the getpriority,
setpriority, nice, and renice functions.

2.3.2 Priorities for the Realtime Interface

Realtime interface priorities are divided into three ranges: with the highest
range reserved for realtime, the middle range used by the operating system,
and the low range used for nonprivileged user processes. DEC OSF/1 realtime
priorities loosely map to the nice priority range, but provide a wider range of
priorities. Processes using the P1003.4/D10 scheduling policies must also use
the DEC OSF/1 realtime interface priority scheme. Table 2—-3 shows the DEC
OSF/1 realtime priority ranges.

Table 2-3 Priority Ranges for the DEC OSF/1 Realtime Interface

Range Priority Level

Nonprivileged user SCHED_PRIO_USER_MIN through SCHED_PRIO_USER_
MAX

System SCHED_PRIO_SYSTEM_MIN through SCHED_PRIO_
SYSTEM_MAX

Realtime SCHED_PRIO_RT_MIN through SCHED_PRIO_RT_MAX

Realtime interface priority levels are the inverse of the nice priority levels; a
numerically high value implies a high priority level. A realtime process with a
priority of 32 has a higher priority than system processes, but a lower priority
than another realtime process with a priority of 45. Realtime and system
processes can run at nonprivileged user priorities, but a nonprivileged user
process cannot increase its priority into the system or realtime range without
superuser privileges.

The default initial priority for processes using realtime priorities is 19. The
default scheduling policy is timesharing.

Figure 2-5 illustrates the relationship between these two priority interfaces.

Note that hardware interrupts have a higher priority than realtime processes
and therefore preempt realtime processes.

Process Scheduling and Priorities 2-15

Figure 2-5 Priority Ranges for the nice and Realtime Interfaces

T

Privileged
User

nice
Interface

Realtime
Interface

63

32

31

30

-20, -19

29

-18

26

System Default ——

25

24

-3, -2

20

Realtime
Priorities

System
Priorities

High

Priority

Nonprivileged
User

'

-1,0,1

l«— User Default ———

19

2,3

18

19, 20

2.3.3 Configuring Realtime Priorities

You should assign realtime priorities according to the critical nature of the
work the processes perform. Some applications may not need to have all
processes running in the realtime priority range. Applications that run

in a realtime range for long periods of time may prevent the system from
performing necessary services, which could cause network and device timeouts

2-16 Process Scheduling and Priorities

User
Priorities

Low
Priority

MLO-007318

or data overruns. Some processes perform adequately if they run under a fixed-
priority scheduling policy at priority 19. Only critical processes running under
a fixed-priority scheduling policy should run with priorities in the realtime
range, 32 through 63.

Although P1003.4/D10 functions let you change the scheduling policy while
your application is running, it is better to select a scheduling policy during
application initialization than to change the scheduling policy while the
application executes. However, you may find it necessary to adjust priorities
within a scheduling policy as the application executes.

It is recommended that all realtime applications provide a way to configure
priorities at runtime. You can configure priorities using the following methods:

1. Providing a default priority within the realtime priority range by calling
the sched get priority max and sched get priority min functions

2. Using an .rc initialization file, which override the default priority, or using
environment variables, which override the default priority

3. Adjusting priority during initialization by calling the sched set sched param
function

Each process should have a default base priority appropriate for the kind of
work it performs and each process should provide a configuration mechanism
for changing that base priority. To simplify system management, make the
hardcoded default equal to the highest priority used by the application. At
initialization, the application should set its process priorities by subtracting
from the base priority. Use the constants given in the <sched.h> header file as
a guide for establishing your default priorities.

The <sched.h> header file provides the following constants that may be useful
in determining the optimum default priority:

SCHED_PRIO_USER_MIN
SCHED_PRIO_USER_MAX
SCHED_PRIO_SYSTEM_MIN
SCHED_PRIO_SYSTEM_MAX
SCHED_PRIO_RT_MIN
SCHED_PRIO_RT_MAX

These values are the current values for default priorities. When coding your
application, use the constants rather than numerical values. The resulting
application will be easier to maintain should default values change in the
future.

Process Scheduling and Priorities 2-17

Debug your application in the nonprivileged user priority range before running
the application in the realtime range. If a realtime process is running at

a level higher than kernel processes and the realtime process goes into an
infinite loop, you must reboot the system to stop process execution.

Although priority levels for DEC OSF/1 system priorities can be adjusted
using the nice or renice functions, these functions have a ceiling that is
below the realtime priority range. To adjust realtime priorities, use the
sched get sched param and sched set sched param P1003.4/D10 functions,
discussed in Section 2.4.3. You should only adjust process priorities for your
own application. Adjusting system process priorities could cause unexpected
side effects.

2.4 Scheduling Functions

Realtime processes must be able to select dynamically the most appropriate
priority level and scheduling policy. A realtime application often modifies the
scheduling policy and priority of a process, performs some function, and returns
to its previous priority. Realtime processes must also be able to yield system
resources to each other in response to specified conditions. Eight P1003.4/D10
functions, as summarized in Table 2—4 satisfy these realtime requirements.
Refer to the reference pages for a complete description of these functions.

Table 2-4 P1003.4/D10 Process Scheduling Functions

Function Description

sched getscheduler Returns the scheduling policy of a specified process

sched get sched param Returns the scheduling priority of a specified
process

sched get priority max Returns the maximum priority allowed for a
scheduling policy

sched get priority min Returns the minimum priority allowed for a
scheduling policy

sched get rr interval Returns the quantum allowed for the round-robin
scheduling policy

sched setscheduler Sets the scheduling policy and priority of a specified
process

sched set sched param Sets the scheduling priority of a specified process

sched yield Yields execution to another process

All the preceding functions, with the exception of the sched yield function,
require a process ID, parameter, (pid). In all the P1003.4/D10 priority and

2-18 Process Scheduling and Priorities

scheduling functions, a pid value of zero indicates that the function call refers
to the calling process. Use zero in these calls to eliminate using the getpid or
getppid functions.

The priority and scheduling policy of a process are inherited across a fork or
exec system call.

You must have superuser privileges to change the priority or scheduling policy
of a process. Changing the priority or scheduling policy of a process causes the
process to be queued to the end of the process list for its new priority.

2.4.1 Determining Limits

Three functions allow you to determine scheduling policy parameter limits.
The sched get priority max and sched get priority min functions return
the appropriate maximum or minimum priority permitted by the scheduling
policy. These functions can be used with any of the P1003.4/D10 scheduling
policies, first-in first-out, round-robin, or timesharing. You must specify one of
the following keywords when using these functions:

- SCHED_FIFO
- SCHED_RR
- SCHED_OTHER

The sched get_rr_interval function returns the current quantum for process
execution under the round-robin scheduling policy.

2.4.2 Retrieving the Priority and Scheduling Policy

Two functions return the priority and scheduling policy for realtime processes,
sched get sched param and sched getscheduler, respectively. You do

not need special privileges to use these functions, but you need superuser
privileges to set both priority and scheduling policy.

If the pid is zero for either functions, the value returned is the priority or
scheduling policy for the calling process. The values returned by a call to

the sched getscheduler function indicate whether the scheduling policy is
SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

Process Scheduling and Priorities 2-19

2.4.3 Setting the Priority and Scheduling Policy

Use the sched get sched param function to determine the initial priority

of a process; use the sched set sched param function to establish a new
priority. Adjusting priority levels in response to predicted system loads and
other external factors allows the system administrator or application user
greater control over system resources. When used in conjunction with the
first-in first-out scheduling policy, the sched set sched param function allows
a critical process to run as soon as it is runnable, for as long as it needs to run.
This occurs because the process preempts other lower-priority processes. This
can be important in situations where scheduling a process must be as precise
as possible.

The sched set sched param function takes two parameters. The pid
parameter specifies the process to change. If the pid parameter is zero,
priority is set for the calling process. The param parameter specifies the new
priority level. The specified priority level must be within the inclusive range
for the minimum and maximum values for the scheduling policy selected for
the process.

The sched setscheduler function sets both the scheduling policy and priority
of a process. Three parameters are required for the sched setscheduler
function: pid, policy, and param. If the pid parameter is zero, the scheduling
policy and priority will be set for the calling process. The policy parameter
identifies whether the scheduling policy is to be set to SCHED_FIFO, SCHED _
RR, or SCHED_OTHER. The param parameter indicates the priority level to
be set and must be within the range for the the indicated scheduling policy.

Notification of a completed priority change may be delayed if the calling
process has been preempted. The calling process is notified when it is again
scheduled to run.

If you are designing portable applications (POSIX strictly conforming
applications), be careful not to assume that the priority field is the only
field in the sched param structure. All the fields in a sched param structure
should be initialized before the structure is passed as the param argument
to the sched set sched param or sched setscheduler. Example 2-1 shows
how a process can initialize the fields using only constructs provided by the
P1003.4/D10 standard.

2-20 Process Scheduling and Priorities

Example 2-1 |Initializing Priority and Scheduling Policy Fields

/* Change to the SCHED FIFO policy and the highest priority, then */
/* lowest priority, then back to the original policy and priority. */

#include <sched.h>

#define CHECK(sts,msg) \
if (sts == -1) \
perror (msg) ; \
exit(-1); \

main ()

{

struct sched param param;

int my pid = 0;

int old policy, old priority;
int sts;

int low priority, high priority;

/* Get parameters to use later. Do this now */
/* avoid overhead during time-critical phases.*/

high priority = sched get priority max(SCHED FIFO);
CHECK (high priority, "sched get priority max");
low priority = sched get priority min(SCHED FIFO);
CHECK (low_priority, "sched get priority min");

/* Save the old policy for when it’'s restored. */

old policy = sched getscheduler (my pid);
CHECK (0ld_policy, "sched getscheduler");

/* Get all fields of the param structure. This is where */
/* fields other than priority get filled in. */

sts = sched get sched param(my pid, ¶m);
CHECK (sts, "sched get sched param");

/* Keep track of the old priority. */
old priority = param.priority;

/* Change to SCHED FIFO, highest priority. The param */
/* fields other than priority get used here. */

param.priority = high priority;
sts = sched setscheduler(my pid, SCHED FIFO, ¶m);
CHECK (sts, "sched setscheduler") ;

/* Change to SCHED FIFO, lowest priority. The param */
/* fields other than priority get used here, too. */

(continued on next page)

Process Scheduling and Priorities 2-21

Example 2-1 (Cont.) Initializing Priority and Scheduling Policy Fields

param.priority = low priority;
sts = sched set sched param(my pid, ¶m);
CHECK (sts, "sched set sched param");

/* Restore original policy, parameters. Again, other */
/* param fields are used here. */
param.priority = old priority;
sts = sched setscheduler(my pid, old policy, ¶m);
CHECK (sts, "sched setscheduler 2");

exit (0);

A process is allowed to change the priority of another process only if the target
process runs on the same node as the calling process and at least one of the
following conditions is true:

< The calling process is a privileged process with a real or effective UID of
ZEero.

= Either the real user UID or the effective user UID of the calling process is
equal to either the real user UID or the saved-set user UID of the target
process.

= Either the real group GID or the effective group GID of the calling process
is equal to either the real group ID or the saved-set group GID of the target
process, and the calling process has group privilege.

Before changing the priority of another process, determine which UID is
running the application. Use the getuid system call to determine the real UID
associated with a process.

2.4.4 Yielding to Another Process

Use the sched yield function to control how processes at the same priority
access kernel resources. Sometimes, in the interest of cooperation, it is
important that a running process give up the kernel to another process at the
same priority level. You can force processes to cooperate by resetting priorities,
but this requires multiple function calls.

The sched_yield function causes the scheduler to look for another process

to run and forces the caller to return to the runnable state. The process that
calls the sched yield function resumes execution after all runnable processes
of equal priority have been scheduled to run. If there are no other runnable
processes at that priority, the caller continues to run. The sched yield
function causes the process to yield for one cycle through the process list. That
is, after a call to sched yield, the target process goes to the end of its priority

2-22 Process Scheduling and Priorities

process list. If another process of equal priority is created after the call to
sched yield, the new process is queued up after the yielding process.

The sched_yield function is most useful when used with the first-in first-out
scheduling policy. Since the round-robin scheduling policy imposes a quantum
on the amount of time a process runs, there is less need to use sched yield.
The round-robin quantum regulates the use of system resources through time-
slicing. The sched yield function is also useful when a process does not have
permission to set its priority but still needs to yield execution.

2.5 Priority and Policy Example

Example 2—2 determines the amount of time in a round-robin quantum, saves
the current scheduling parameters, and sets a realtime priority. Using the
round-robin scheduling policy, the example loops through a test until a call to
the sched yield function causes the process to yield.

Example 2-2 Using Priority and Scheduling Functions

#include <timers.h>

#include <time.h>

#include <sched.h>

#define LOOP_MAX 10000000

#define CHECK STAT(stat, msg) \
if (stat == -1) \
{ perror (msg) ; \

exit(-1); \

main()

struct sched param my param;

int my pid = 0;
int old priority, old policy;
int stat;

struct timespec rr interval;
int try cnt, loop_cnt, tmp _nbr = 0;

/* Determine the round-robin quantum */

stat = sched get rr interval (&rr interval);

CHECK STAT (stat, "sched get rr interval);

printf ("Round-robin quantum is %lu seconds, %1d nanoseconds\n",
rr interval.tv sec, rr interval.tv nsec);

/* Save the current scheduling parameters */

(continued on next page)

Process Scheduling and Priorities 2-23

Example 2-2 (Cont.) Using Priority and Scheduling Functions

old policy = sched getscheduler (my pid);

stat = sched get sched param(my pid, &my param);
CHECK STAT (stat, "sched get sched param - save old priority");
old priority = my param.priority;

/* Set a realtime priority and round-robin */
/* scheduling policy */

my param.priority = SCHED PRIO RT MIN;
stat = sched setscheduler (my pid, SCHED RR, &my param);
CHECK STAT (stat, "sched setscheduler - set rr priority");

/* Try the test */
for (try cnt = 0; try cnt < 10; try cnt++)
/* Perform some CPU-intensive operationg */

{for(loop cnt = 0; loop cnt > LOOP MAX; loop cnt++)

tmp_nbr+=loop cnt;
tmp _nbr-=loop cnt;

printf ("Completed test %d\n",try cnt);
sched yield();

/* Lower priority and restore policy */

my param.priority = old priority;
stat = sched setscheduler(my pid, old policy, &my param);
CHECK STAT (stat, "sched setscheduler - to old priority");

2-24 Process Scheduling and Priorities

3

Clocks and Timers

Realtime applications must be able to operate on data within strict timing
constraints in order to schedule application or system events. Timing
requirements can be in response to either the need for high system throughput
or fast response time. Applications requiring high throughput may process
large amounts of data and use a continuous stream of data points equally
spaced in time. For example, electrocardiogram research uses a continuous
stream of data for qualitative and quantitative analysis.

Applications requiring a fast response to asynchronous external events

must capture data as it comes in and perform decision-making operations

or generate new output data within a given time frame. For example, flight
simulator applications may acquire several hundred input parameters from
the cockpit controls and visual display subsystem with calculations completed
within a 5 millisecond time frame.

DEC OSF/1 P1003.4/D10 timing facilities allow applications to use
relative or absolute time and to schedule events on a one-shot or periodic
basis. Applications can create multiple timers for each process, up to a
system-defined maximum number of timers.

This chapter includes the following sections:

e The Systemwide Clock, Section 3.1

= Types of Timers, Section 3.2

= Data Structures Associated with Timing Facilities, Section 3.3
= Resolution of the System Clock and Timers, Section 3.4

< Signals and Timers, Section 3.5

= Timer Functions, Section 3.6

< High-Resolution Sleep, Section 3.7

e Clocks and Timers Example, Section 3.8

Clocks and Timers 3-1

The correctness of realtime applications often depends on satisfying timing
constraints. A systemwide clock is the primary source for synchronization and
high-resolution timers to support realtime requirements for scheduling events.
The P1003.4/D10 timing functions perform the following tasks:

= Set a systemwide clock, obtain the current value of the clock, and fine tune
the accuracy of the system time.

= Set per-process timers and use asynchronous signals on timer expiration

= Retrieve the resolution and maximum values for the systemwide clock and
per-process timers

= Permit the calling thread or process to suspend execution for a period of
time or until a signal is delivered

Timing facilities are most useful when combined with other synchronization
techniques. This chapter concentrates primarily on those functions associated
with setting system time and creating high-resolution timers.

Although non-POSIX functions are available for creating timers, application
programmers striving for standards conformance, portability, multiple
per-process timers, and flexibility in using timers should use the P1003.4/D10
timing facilties described in this chapter.

3.1 Clock Functions

The supported time-of-day clock is the CLOCK_REALTIME clock, defined in
the <timers.h> header file. The CLOCK_REALTIME clock is a systemwide
clock, visible to all processes running on the system. If all processes could read
the clock at the same time, each process would see the same value.

The CLOCK_REALTIME clock measures the amount of time elapsed since
00:00:00:00 January 1, 1970 Greenwich Mean Time (GMT), otherwise known
as the Epoch. The CLOCK_REALTIME clock uses nanoseconds as its lowest
level of granularity.

Table 3-1 lists P1003.4/D10 timing functions for the specified clock.

3-2 Clocks and Timers

Table 3—-1 Clock Functions

Function Description

clock getres Returns the resolution and maximum value of the
specified clock

clock gettime Returns the current value for the specified clock

clock gettimedrift Returns the value of the clock drift rate as set by the most
recent call to clock settimedrift

clock settime Sets the specified clock to the specified value

clock settimedrift Sets the drift rate for the specified clock, in parts per

billion (nanoseconds), to the specified value

Currently the only clock type supported is the CLOCK_REALTIME clock.
Therefore, you use the name CLOCK_REALTIME as the clock_id argument in
all P1003.4/D10 clock functions.

The values returned by the clock gettime function can be used to determine
values for the creation of realtime timers. Setting the clock or changing the
drift rate for one application will not affect the expiration interval of armed
timers.

The clock _getres function returns the maximum possible value that can be
used in the clock settime function to set the current system time. However,
you cannot set the resolution of the specified clock.

3.1.1 Retrieving System Time

Both the time and clock gettime functions return the value of the systemwide
clock as the number of elapsed seconds since the Epoch. The timespec data
structure (used for the clock gettime function) also contains a member to hold
the value of the number of elapsed nanoseconds not comprising a full second.

Example 3-1 shows the difference between the time as returned by the time
and clock gettime functions.

Clocks and Timers 3-3

Example 3-1 Returning Time
#include <timers.h>
#include <time.h>

main ()

{

struct timespec tp;
/* Call time */

printf("time returns %d seconds\n", time((long *) 0));
/* Call clock gettime */

clock gettime (CLOCK REALTIME, &tp);
printf ("clock gettime returns:\n");
printf ("$d seconds and %d nanoseconds\n", tp.tv_sec, tp.tv nsec);

Example 3-1 returns 876764530 seconds from the time function and returns
876764530 seconds and 0000674633 nanoseconds from the clock gettime
function.

The time function returns a long integer containing the number of seconds that
have elapsed since the Epoch. The clock gettime function passes a pointer

to the timespec structure and assigns the values contained in the tv_sec and
tv_nsec members to the tp.tv_sec and tp.tv_nsec variables.

If you plan to write the current time to a device or file, you may want to change
the time format returned by the clock gettime function. See Section 3.1.4 for
information on converting the time format.

3.1.2 Setting the Clock

The clock settime function lets you set the time for the specified clock.

If you have an application that monitors time over the network use the
clock settime function to synchronize with other systems. However, under
normal circumstances you would not need to call the clock settime function.

Note that armed timers (pending execution) associated with the clock may be
affected by resetting the systemwide clock. If timers are pending execution,
use the clock settimedrift function to adjust the clock slowly. Armed timers
are not affected by the clock settimedrift function.

You must have superuser privileges to use the clock settime and
clock settimedrift functions.

3-4 Clocks and Timers

3.1.3 Managing Clock Drift

As a form of interval timer, the CLOCK_REALTIME clock responds to
interrupts with every clock tick. A counter associated with clock interrupts
causes the clock time to deviate slightly over time. This deviation, or variance,
can be either positive or negative. Applications using high-resolution timers
may want to use the P1003.4/D10 clock drift functions to maintain the integrity
of the clock.

The initial drift rate for any clock is zero, but over time, it may vary by
intervals centered around zero. The clock gains time if the clock drift rate

is positive; the clock loses time if the clock drift rate is negative. The
P1003.4/D10 clock drift functions provide a way to slow down or speed up

a clock while ensuring that time, as measured by the specified clock, is a
monotonically increasing quantity. For example, if you need to set a clock back
in time, use a negative drift to slow down the clock gradually until it converges
to the correct value. Applications and timers that rely on the clock will suffer
minimal impact from changes to the time base.

Use the clock settimedrift function to fine tune the clock slowly by setting
the clock’s drift rate. Pending timeouts are not effected by applied drifts to
the system clock. Nor is the drift reflected in the resolution of the system
clock. Note that you need superuser privileges to use the clock settimedrift
function. The clock gettimedrift function returns the value of the clock drift
rate as set by the most recent call to the clock settimedrift function.

The following example calls the clock settimedrift function to set the
clock drift rate to 1000 nanoseconds and prints out the previous drift rate
for the clock as returned by the clock settimedrift function. A call to the
clock gettimedrift function checks the new drift rate.

#include <timers.h>
#define SUCCESS 0

main () {

int clock id = CLOCK REALTIME;
int ppb = 1000;

int oppb;

if (clock_settimedrift (clock id, ppb, &oppb) == SUCCESS)
printf ("previous ppb is %d\n", oppb);

if (clock gettimedrift (clock id, &oppb) == SUCCESS)
printf ("current ppb is %d\n",oppb) ;

Note that the clock drift functions should not be used in conjunction with
Distributed Time Services (DTS).

Clocks and Timers 3-5

3.1.4 Converting Time Values

Clock and timer functions use the number of seconds and nanoseconds since
the Epoch. Although this method is precise and suitable for the machine, it is
not meaningful for application users. If your application outputs or receives
time information from users, you will want to convert time data into a more
readable format.

If you use the time or clock gettime function to retrieve system time, the
input and return values are expressed in elapsed seconds since the Epoch.
Your application should define the format for both user input and output and
then convert these time values for use by the program. Applications can store
the converted time values for future use.

The C language provides a number of functions to convert and store time in
both a tm structure and an ASCII format. When you pass the time in seconds
to these functions, some functions return a pointer to a tm structure, while
others return an ascii string. Some functions also correct for time zones and
daylight saving time. To select the most appropriate time conversion function
for your application, refer to the reference pages for each of these functions.

Note that these C routines use seconds as the smallest unit of time. Table 3-2
lists the date and time conversion functions.

Table 3—2 Date and Time Conversion Functions

C Function Description
asctime Converts a broken-down time into a 26-character string
ctime Converts a time in seconds since the Epoch to an ASCII string in the

form generated by asctime

difftime Computes the difference between two calendar times (timel-time0O) and
returns the difference expressed in seconds

gmtime Converts a calendar time into a broken-down time, expressed as GMT
localtime Converts a time in seconds since the Epoch into a broken-down time

mktime Converts the broken-down local time in the tm structure pointed to by
timeptr into a calendar time value with the same encoding as that of
the values returned by time

tzset Sets the external variable tzname, which contains current timezone
names

The converted time values for the functions listed in Table 3-2 are placed in a
time structure (tm) defined in the <time.h> header file, as follows:

3-6 Clocks and Timers

struct tm {

int tm sec, /* Time in seconds (0-59) */
tm_min, /* Time in minutes (0-59) */
tm_hour, /* Time in hours (0-23) */
tm_mday, /* Day of the month (1 to 31) */

tm mon, /* Month (0 to 11) */
tm_year, /* Year (last 2 digits) */

tm wday, /* Day of the week (Sunday=0) */
tm_yday, /* Day of the year (0 to 365) */

tm isdst; /* Daylight savings time (always 0) */

long tm gmtoff; /* Offset from GMT in seconds */

}i

3.2 Types of Timers

Two types of timers are provided to support realtime timing facilities: one-shot
and periodic timers. Timers can be set up to expire only once (one-shot) or

on a repetitive (periodic) schedule. A one-shot timer is armed with an initial
expiration time, expires only once, and then is disarmed. A periodic timer
expires, and then reloads the repetition interval, rearming the timer.

Both types of timers are armed with an initial expiration value, but whether or
not the timer expires only once or periodically depends on the value specified
for the timer interval. If the interval is zero, the timer expires only once. If
the interval is specified as a value other than zero, then the timer expires
repetitively. After the initial expiration time, the repetition interval is loaded
again and the timer continues.

The initial expiration value can be relative to the current time or an absolute
time value. A relative timer has an initial expiration time based on the
amount of time elapsed, such as 30 seconds from the start of the application
or 0.5 seconds from the last timer expiration. An absolute timer has a specific
initial expiration value.

Absolute and relative timers are often used in combination. You can use an
absolute timer to determine when the timer first expires, and set subsequent
timer expiration relative to the first expiration. For example, an application
may need to collect data between midnight and 3:00 A.M. Data collection
during this three hour period may be staged in 12 minute intervals. In this
case, absolute timers are used to start and stop the data collection processes at
midnight and 3:00 A.M. Relative timers are used to initiate data collection in
12 second intervals.

The values specified in the arguments to the timer settime function determine
whether the timer is a one-shot or periodic and absolute or relative timer.
Refer to Section 3.6.2 for more information on the timer settime function.

Clocks and Timers 3-7

3.3 Data Structures Associated with Timing Facilities

The <time.h> header file contains structures for manipulating clock and timer
constructs. The timespec and itimerspec data structures in <timers.h> are
used in many of the P1003.4/D10 realtime clock and timer functions. The
timespec data structure contains members for both second and nanosecond
values. This data structure sets up a single time value and is used by many
P1003.4/D10 functions that accept or return time value specifications. The
itimerspec data structure contains two timespec data structures. This data
structure sets up an initial timer and repetition value used by P1003.4/D10
per-process timer functions.

The <signal.h> header file contains a sigevent structure for specifying the
signal number to be sent on timer expiration.
3.3.1 Using the timespec Data Structure

The timespec data structure consists of two members, tv_sec and tv_nsec and
takes the following form:

typdef struct timespec(

time t tv_sec; /* Seconds */
long tv nsec; /* Nanoseconds */
Jtimespec;

The tv_nsec member is valid only if its value is greater than zero and less
than the number of nanoseconds in a second. The total possible time interval
described by the timespec structure is tv_sec * 10% + tv_nsecs—1 nanoseconds.
(The total possible time interval is limited by the maximum resolution of the
specified clock.)

The timespec structure is used in P1003.4/D10 functions to return and set the
specified clock and to return the resolution of clocks, timers, and nanosleep.

3.3.2 Using the itimerspec Data Structure

The itimerspec data structure consists of two timespec structures and takes
the following form:

typdef struct itimerspec(
struct timespec it interval; /* Timer period */
struct timespec it value; /* Timer expiration */
}itimerspec;

The two timespec structures specify an interval value and an initial expiration
value, both of which are used in all timer functions related to setting up timers.
The values specified for the member structures identify the timer as one-shot
or periodic. Table 3—-3 summarizes the ways that values for the two members
of the itimerspec structure are used to characterize timers.

3-8 Clocks and Timers

Table 3-3 Values Used in Setting Timers

Member Value Description Function

it_value Nonzero Expiration value Sets up an absolute or
relative timer

it_value Zero No expiration value Disarms a timer

it_interval Nonzero Interval reload value Sets up a periodic timer

it_interval Zero No reload value Sets up a one-shot timer

The it_value specifies the initial amount of time before the timer expires. A
nonzero value for the it_value member indicates the amount of time until the
first time the timer expires. A zero value for the it_value member disarms the
timer.

Once the timer is called and has expired for the first time, the it_interval
member specifies the interval after which the timer will expire again. That

is, the value of the it_interval member is reloaded when the timer expires

and timing continues. A nonzero value for the it_interval member specifies

a periodic timer. A zero value for the it_interval member causes the timer to
expire only once. Afterward the it_value member is set to zero and the timer is
disarmed.

For example, to arm a timer to execute only once, 5.25 seconds from now,
specify the following values for the members of the itimerspec structure:

mytimer.it value.tv sec = 5;
mytimer.it value.tv_nsec = 250000000;
mytimer.it interval.tv sec = 0;
mytimer.it interval.tv nsec = 0;

The following example arms a timer to execute 15 seconds from now and then
at 0.5 second intervals.

mytimer.it value.tv nsec =
mytimer.it interval.tv_sec = 0;
mytimer.it interval.tv nsec = 500000000;

mytimer.it value.tv sec = 15;
OI

In the preceding examples, the timer is armed relative to the current time. To
set up a timer with an absolute initial expiration time, such as 10:00 A.M.,
convert the absolute initial expiration value (in seconds and nanoseconds) to
the correct offset from the current time.

Clocks and Timers 3-9

Because the value of the tv_nsec member is expressed in nanoseconds, it
may be somewhat cumbersome. To simplify specifying values for the tv_nsec
member, define a symbolic constant.

#define NSECS PER SEC 1000000000;
mytimer.it_value.tv_nsec = NSECS_PER SEC/4;

Or, use an assignment statement, such as this:
mytimer.it value.tv nsec = 1000000000/4;

See Section 3.6 for more information on relative and absolute timers.

3.3.3 Using the sigevent Data Structure

The sigevent structure delivers the signal on timer expiration. The evp
argument of the timer create function points to a sigevent structure, which
contains the signal number of the signal to be sent upon expiration of each
timer.

The sigevent structure is defined in the <signal.h> header file and contains
the following members:

void *sevt value; /* Not currently supported - specify as NULL */
signal t sevt signo; /* Signal sent on timer expiration */

The sevt_value member is an application-defined value to be passed to the
signal-catching function at the time of signal delivery. This member is used in
P1003.4/D10 Realtime Signals, which are not currently supported. Specify a
value of NULL for this member.

The sevt_signo member specifies the signal number to be sent on expiration of
the timer.

3.4 Resolution of the System Clock and Timers

DEC OSF/1 provides three P1003.4/D10 functions that return the resolution
values for the system clock, user-specified timers, and the nanosleep function.
These resolution functions return the minimum number of seconds and
nanoseconds supported by the specified clock.

In addition, the resolution functions return the maximum values allowed
for setting the clock, timers, or the nanosleep function. Table 3—4 lists the
resolution functions for P1003.4/D10 timing facilities.

3-10 Clocks and Timers

Table 3-4 Resolution Functions for Timing Facilities

Function Description

clock getres Returns the resolution and maximum value of the specified
clock

nanosleep getres Returns the resolution and maximum value supported by
nanosleep

timer getres Returns the resolution and maximum value of an absolute or

relative timer

The following example calls the clock getres function to determine clock
resolution and the maximum value for the clock.

#include <malloc.h>
#include <timers.h>

main()

struct timespec clock resolution;
struct timespec clock max value;
int stat;

stat = clock getres(CLOCK_REALTIME, &clock resolution, &clock max value) ;

printf ("Clock resolution is %d seconds, %d nanoseconds\n",
clock resolution.tv sec, clock resolution.tv nsec);

printf ("The maximum time value is %d seconds, %d nanoseconds\n",
clock max value.tv_sec, clock max value.tv nsec);

3.5 Timers and Signals

You create a timer with the timer create function, which is associated with
a sigevent structure. When using timers, you set the timers with an initial
expiration value and an interval value for when you want the timer to expire.
When the timer expires, the kernel sends the specified signal to the process
that called the timer. Therefore, you should set up a signal handler to catch
the signal once it is sent to the calling process.

To use signals with timers, include the following steps into your application:
1. Create and declare a signal handler.

2. Set the sigevent structure to specify the signal you want sent on timer
expiration.

3. Establish a signal handler.

Clocks and Timers 3-11

4. Create the timer.

If identical signals are delivered from multiple timers, the signals are
compressed into a single signal. Therefore, if you have multiple timers, you
may want to specify a different signal for each timer. Refer to Chapter 11 for
more information on signals and signal handling.

3.6 Timer Functions

Clocks and timers allow an application to synchronize and coordinate activities
according to a user-defined schedule. DEC OSF/1 P1003.4/D10 timers have
the ability to issue periodic timer requests initiated by a single call from the
application. You can have more than one outstanding timer interval on the
same timer type in order to trigger different functions.

Table 3-5 lists the P1003.4/D10 timing functions available for realtime
applications.

Table 3-5 Timer Functions

Function Definition

timer create Returns a unique timer ID used in subsequent calls to
identify a timer based on the systemwide clock

timer delete Removes a previously allocated, specified timer

timer getres Returns the resolution and maximum value of the specified
clock

timer gettime Returns the amount of time before the specified timer is due

to expire and the repetition value

timer settime Sets the value of the specified timer either to an offset from
the current clock setting or to an absolute value

The value returned by the timer getres function depends on whether the
timer is an absolute or relative timer and may not be the same as the value
returned by the clock getres function.

Note that timers do not have global I1Ds, which means that they are not
inherited by a child process after a call to the fork or exec system calls. You
cannot arm a timer, call the exec system call, and have the exec image receive
the signal.

3-12 Clocks and Timers

3.6.1 Creating Timers

The timer create function allocates a timer, returns a timer 1D, and points to
a sigevent structure. The timer ID is unique within the calling process and
exists for the life of that timer. The timer ID does not exist until it is returned
by the timer create function. The timer is not armed until you make a call to
the timer settime function, which sets the values for the specified timer.

The timer functions perform a series of tasks necessary for setting up timers.
To create a timer, you must set up appropriate data structures, call the timers,
and set up a signal handler to catch the signal when the timer expires. To use
timers in a realtime application, follow these steps:

1. Include <timers.h> and <signal.h> in the application source file.

2. Declare the variable names for your itimerspec data structure to specify
interval and expiration values.

3. Establish a sigevent structure containing the signal to be passed to
the process on timer expiration. (P1003.4/D10 Realtime Signals are not
supported in this release, so specify NULL as the value of the data member
of the sigevent structure.)

4. Set up a signal handler in the calling process to catch the signal when the
timer expires.

5. Call the timer create function to create a timer and associate it with the
specified clock. Specify a signal to be delivered when the timer expires.

6. Initialize the itimerspec data structure with the required values.

7. Call the timer_settime function to initialize and activate the timer as
either an absolute or relative timer.

8. Call the timer delete function when you want to remove the timer.

The maximum number of per-process timers (TIMER_MAX) is defined in the
<limits.h> header file.

The timer create function also takes an evp argument, which is a pointer
to a sigevent structure. This structure defines the signal to be sent to the
calling process when the timer expires. You can either use the default signal,
SIGALRM, or you can specify a particular signal.

Clocks and Timers 3-13

3.6.2 Setting Timer Values

The timer settime function determines whether the timer is an absolute or
relative timer. This function sets the initial expiration value for the timer as
well as the interval time used to reload the timer once it has reached the initial
expiration value. The arguments for the timer settime function perform the
following functions:

1.
2.

The timerid argument identifies the timer.

The abstime argument determines whether the timer behaves as an
absolute or relative timer.

The abstime argument determines whether a timer will function as an
absolute or relative timer. If the abstime argument is a nonzero value, the
timer is treated as an absolute timer; if the abstime argument is zero, the
timer is treated as a relative timer.

The value argument determines the initial expiration value and repetition
value for the timer.

The it_value member of the value argument establishes the initial
expiration time.

If it is an absolute timer, the timer settime function interprets the
next expiration value as equal to the difference between the absolute
time specified by the it_value member of the value argument and the
current value of the specified clock. The timer then expires when the
clock reaches the value specified by the it_value member of the value
argument.

If it is a relative timer, the timer settime function interprets the
next expiration value as equal to the interval specified by the it_value
member of the value argument. The timer will expire in it_value
seconds and nanoseconds from when the call was made. After a timer
is started as an absolute or relative timer, its behavior is driven by
whether it is a one-shot or periodic timer.

The it_value member of the value argument can disable a timer.

To disable a periodic timer, call the timer and specify the value of zero
for the it_value member.

The it_interval member of the value argument establishes the repetition
value.

The timer interval is specified as the value of the it_interval member
of the itimerspec structure in the value argument. This value
determines whether the timer functions as a one-shot or periodic
timer.

3-14 Clocks and Timers

After a one-shot timer expires, the expiration value (it_value member)
is set to zero. This indicates no next expiration value is specified, which
disarms the timer.

A periodic timer is armed with an initial expiration value and a
repetition interval. When the initial expiration time is encountered, it
is then loaded again with the repetition interval and the timer starts
again. This continues until the application exits. To arm a periodic
timer, set the it_value member of the value argument to the desired
expiration value and set the it_interval member of the value argument
to the desired repetition interval.

4. The ovalue argument stores the timer expiration values returned by the
timer gettime function. If the timer is not armed, the ovalue is equal to
zero. If you displace an active timer, the ovalue will contain the amount of
time remaining in the interval.

Note that if you call the timer settime function and pass a nonzero value to
the it_interval member of the value argument, you can effectively change the
timer from a one-shot to a periodic timer. You cannot call the timer settime
function to reset or disarm a timer that is pending execution.

3.6.3 Retrieving Timer Values

The timer gettime function returns two values: the amount of time before the
timer expires and the repetition value set by the last call to the timer settime
function. If the timer is disarmed, a call to the timer with the timer gettime
function returns a zero for the value of the it_value member. To arm the timer
again, call the timer settime function for that timer ID and specify a new
expiration value for the timer. When the timer is called again, it is rearmed.

The timer getres function returns the resolution and the maximum value
of the specified timer. The resolution of absolute and relative timers may be
different. Also, timer resolution may be different from clock resolution.

3.6.4 Disabling Timers

Once a one-shot timer expires, the timer is disarmed, but the timer ID is still
valid. The timer ID is still current and can be rearmed with a call to the
timer settime function. To remove the timer ID and disable the timer, use the
timer delete function. Note that if you delete a timer that is still armed no
signal will be sent.

Clocks and Timers 3-15

3.7 High-Resolution Sleep

To suspend process execution temporarily using the P1003.4/D10 timer
interface, call the nanosleep function. The nanosleep function suspends
execution for a specified number of nanoseconds, providing a high-resolution
sleep. A call to the nanosleep function suspends execution until either the
specified time interval expires or a signal is delivered to the calling process.

Only the calling thread sleeps with a call to the nanosleep function. In a
threaded environment, other threads within the process continue to execute.

The nanosleep function has no effect on the delivery or blockage of signals.
The action of the signal must be to invoke a signal-catching function or to

terminate the process. When a process is awakened prematurely, the rmtp
argument contains the amount of time remaining in the interval minus the
amount of time the process actually slept.

The nanosleep getres function returns the nanosleep resolution as well as
the maximum value supported by the nanosleep function.

3.8 Clocks and Timers Example

Example 3—2 demonstrates the use of P1003.4/D10 realtime timers. The
program creates both absolute and relative timers. The example demonstrates
concepts using multiple signal types to distinguish between timer expirations.
The program loops continuously until the program is terminated by a Ctrl/C
from the user.

3-16 Clocks and Timers

Example 3—-2 Using Timers

/* The following program demonstrates the use P1003.4/D10 */
/* Realtime Timers in conjunction with POSIX 1003.1 Signals. */
/* The program creates a set of timers and then blocks */
/* waiting for either timer expiration or program termination*/
/* via SIGINT. */

#include <sys/types.h>
#include <sys/limits.h>
#include <sys/time.h>
#include <sys/signal.h>
#include <timers.h>
#include <sys/errno.h>

/* Constants and Macros */

#define NULL 0
#define SUCCESS 0
#define FAILURE -1
#define TRUE 1
#define FALSE 0
#define ABS 1
#define REL 0
#define TIMERS 3

#define MIN(x,y) (((x) < (y)) ? (x) : (y))

sig handler();
void timeaddval () ;
struct sigaction sig act;

/* Control structure for timer examples */

struct timer definitions {

int type; /* Bbsolute or Relative Timer */
struct sigevent evp; /* Event structure */
struct itimerspec timeout; /* Timer interval */

]

/* Initialize timer definitions array for use in example as follows: */
/* { type, { sevt value, sevt signo }, { it iteration, it value } }*/

struct timer definitions timer values[TIMERS] = {
ABS, {NULL,SIGALRM}, {0,0, 10,5} },
ABS, {NULL,SIGUSR1}, {0,1000000, 5,30000} },
REL, {NULL,SIGUSR2}, {0,0, 0,500000} }

]

timer t timerid[TIMERS];
int timers_available; /* number of timers available */
/* This program demonstrates the use of P1003.4/D10 timers */

(continued on next page)

Clocks and Timers 3-17

Example 3-2 (Cont.) Using Timers

void timer example ()
int status, 1i;
int clock_id = CLOCK_REALTIME;
struct timespec current time;
struct timeval time;

/* 1Initialize the sigaction structure for the handler. */

sig_act.sa_handler = (void *)sig handler;
sig act.sa flags = 0;
sigemptyset (&sig_act.sa mask) ;

/* Determine if it’'s possible to create TIMERS timers. */
/* If not, create TIMER MAX timers. */

timers available = MIN(TIMER MAX,TIMERS) ;

/* Create "timer available" timers, using a unique signal */
/* type to denote the timers expiration. Then initialize */
/* a signal handler to handle timer expiration for the timer.*/

for (i = 0; 1 < timers available; i++) {
timerid[i] = timer create(clock id, &timer values[i].evp);
if (timerid[i] == FAILURE) {
perror ("Failed to create timer: ");
exit (FAILURE) ;

sigaction(timer values[i].evp.sevt signo, &sig act, 0);

/* Establish a handler to catch crtl-c and use it for exiting. */

sigaction(SIGINT, &sig act, 0); /* Catch Ctrl-C */
/* Queue the following Timers: (see timer values structure */
/* for details) */

/* 1. An absolute one-shot timer (Notification via SIGALRM).*/
/* 2. An absolute periodic timer. (Notification via SIGUSR1).*/
/* 3. A relative one shot timer. (Notification via SIGUSR2).*/

/* The number of TIMERS queued depends on timers available */

(continued on next page)

3-18 Clocks and Timers

Example 3-2 (Cont.) Using Timers

for (1 = 0; i < timers available; i++) {
if (timer values[i].type == ABS) {
status = clock gettime (CLOCK REALTIME, ¤t_ time);
timeaddval (&timer values[i].timeout.it value,
¤t time);

status = timer settime(timerid[i], timer values[i].type,
&timer values[i].timeout, NULL);

if (status == FAILURE) {
perror ("timer settime failed: ");

exit (FAILURE) ;

J

/* Loop forever. The application will exit in the signal */
/* handler when a SIGINT is issued (Ctrl/C will do this). */

for(;;) pause();

/* Handle timer expiration or program termination. */

sig handler (signo)
int signo;

int i, status;

switch (signo) {

case SIGALRM: /* SIGARLM notifications, do required processing*/
break;

case SIGUSR1: /* SIGUSR1 notifications, do required processing*/
break;

case SIGUSR2: /* SIGUSR2 notifications, do required processing*/
break;

case SIGINT:
for (i = 0; i < timers available; i++) /* Delete timers */

status = timer delete(timerid[i]);

exit (1); /* Exit if Ctrl/C is issued */

return;

/* Add two timevalues: tl = tl + t2 */

(continued on next page)

Clocks and Timers 3-19

Example 3-2 (Cont.) Using Timers

void timeaddval (t1, t2)
struct timespec *tl, *t2;

{

tl->tv_sec += t2->tv_sec;

tl->tv_nsec += t2->tv nsec;

if (tl->tv nsec < 0) {
tl->tv_sec--;
§1—>tv_nsec += 10000000;

if (tl->tv nsec >= 1000000) {
tl->tv_sec++;
tl->tv_nsec -= 10000000;

main ()

timer example();

3-20 Clocks and Timers

A

Memory Locking

Memory management facilities ensure that processes have effective and
equitable access to memory resources. The operating system maps and controls
the relationship between physical memory and the virtual address space of

a process. These activities are, for the most part, transparent to you and
controlled by the operating system. However, for many realtime applications
you may need to make more efficient use of system resources by explicitly
controlling virtual memory usage.

Memory locking is one way to ensure that a process stays in primary memory
and is exempt from paging. In a realtime environment, a system must be
able to guarantee that it will lock a process in memory to reduce latency for
data access, instruction fetches, buffer passing between processes, and so
forth. Locking a process’s address space in memory helps ensure that the
application’s response time satisfies realtime requirements. As a general rule,
time-critical processes should be locked into memory.

This chapter covers the following sections:

= Memory Management, Section 4.1

< Memory Areas, Section 4.2

= Memory-Locking and Unlocking Functions, Section 4.3
= Memory-Locking Example, Section 4.4

Note that memory locking controls access to system resources, while shared
memory and semaphores are used to synchronize the order in which multiple
processes use resources. Refer to Chapter 8 and Chapter 9 for information on
using shared memory and semaphores.

Memory Locking 4-1

4.1 Memory Management

In a multiprogramming environment, it is essential for the operating system to
share available memory effectively among the processes. Memory management
policies are directly related to the amount of memory required to execute
those processes. Memory management algorithms are designed to optimize the
number of runnable processes in primary memory while avoiding conflicts that
adversely affect system performance. If a process is to remain in memory, the
kernel must allocate adequate units of memory. If only part of a process needs
to be in primary memory at any given time, then memory management can
work together with the process scheduler to make optimal use of resources.

Virtual address space is divided into fixed-sized units, called pages. Each
process is usually composed of a number of pages, which are independently
moved in and out of primary memory as a process executes. Normally, a subset
of a process’s pages resides in primary memory when the process is executing.

Since the amount of primary memory available is finite, paging is often done
at the expense of some pages; to move pages in, others must be moved out. If
the page that is going to be replaced is modified during execution, that page
is written into a paging file on disk. This page is brought back into primary
memory as needed, again replacing a current page. Execution is delayed while
the kernel retrieves the needed page.

Paging is generally transparent to the process. However, if the process is very
large or if pages are frequently being paged in and out, the system overhead
required for paging may decrease process efficiency. The amount of paging can
be decreased by increasing the size of physical memory or by locking the pages
into memory.

For realtime applications, having adequate memory is more important than for
nonrealtime applications. Realtime applications must ensure that processes
are locked into memory and that there is an adequate amount of memory
available for both realtime processes and the system. Latency due to paging is
often unacceptable for critical realtime tasks.

4.2 Allocating Memory

In a timesharing environment, the goal is to share all resources equally while
at the same time not using more memory than is absolutely necessary. In

a realtime environment the goal is to reduce latency and emphasize process
performance, even if it is at the expense of less critical processes. As a result,
realtime applications usually lock realtime processes into memory.

4-2 Memory Locking

Memory-locking functions provide explicit control over memory allocation for
realtime processes. These functions give the user complete control over paging
to help guarantee response time.

The application may explicitly extend its virtual memory on request by calling
one of the memory management functions. The malloc, calloc, and alloca
functions provide a way to allocate additional memory. The malloc function
maintains a list of free blocks, according to size, and then calls the sbrk
function to get more memory from the system when there is no suitable space
free. The calloc function allocates space for an array with a specified number
of elements and initializes the space to zeros. The alloca function allocates
the specified number of bytes in the caller’s stack frame. This stack space is
automatically freed when the function that called the alloca function returns
to the caller.

Once some space has been allocated, you can call the mallinfo function to
determine the optimum parameter settings for these functions.

The sbrk function adds bytes to the data segment and returns a pointer to the
new area. If the maximum size of the data segment is exceeded or there is a
temporary lack of space, an error is returned. To reduce the number of errors,
use the sysconf function first to determine limits defined for the data segment.

The sbrk function can also be used to determine the amount of data or text
space used by a process during execution or to change the size of the space.
Call sbrk (0) at the beginning of execution and then again at the end of
execution. The difference between the two returned values is equal to the
amount of space used by the process. The following example returns the initial
value of init_pointer:

init pointer = sbrk(0);

Also use the sbrk call to extend the amount of memory associated with a
specific process. The following example changes the size of the memory area by
incr number of bytes and returns the new end of the area:

addr = sbrk(incr);

end result caddr_t addr;

int incr;

If you use sbrk to change the space allocated for your process, first use the
sysconf function to determine the correct argument value to the sbrk function.

The getrlimit function may be used to determine the maximum possible size
of the data segment. You can use the setrlimit function to set resources.
Using the setrlimit function, it is not possible to set the break beyond the
value returned from a call to the getrlimit function. However, DEC OSF/1
provides the mmap function, which allows the use of discontiguous memory

Memory Locking 4-3

areas. The mmap function creates a new mapped file or shared memory region.
Using the mmap function, references to areas above the break may be legitimate
memory references which will not produce memory violations.

Since the sbrk function is not a POSIX function, you may want to refer to the
online reference pages for the calloc, alloca, and mmap functions to determine
which method is best for your application.

Example 4-1 uses the getrlimit, malloc, sbrk, and sysconf functions to
allocate additional memory.

Example 4-1 Allocating Additional Memory
#include <sys/resource.h> /* for getrlimit function */

#include <time.h> /* for getrlimit function */
#include <malloc.h> /* for malloc function */
#include <unistd.h> /* for sysconf function */

#define NULL 0
#define MEM_CHUNK_PAGES 8192
#define CHECK STAT (stat, msg)
if (stat == -1)
perror (msg) ;
exit (-1);

—

long page_size;

char *additional space;
struct rlimit data limit;
long data pages;

void show data limits()

int stat;
int data free;
int cur data break;

/* Find the maximum allowable size of the data segment */

stat = getrlimit (RLIMIT, &data limit);

CHECK STAT (stat, "Get limit for data size");

data_free = data_limit.rlim max - data limit.rlim cur;
printf ("\n Data Size limit from getrlimit \

\n maximum limit is 0x%8.8x bytes \
\n current limit is 0x%8.8x bytes \
\n can still use 0x%8.8x bytes \n",

data limit.rlim max, data limit.rlim cur, data free);

/* Find out how many pages are allowed in the data segment */

(continued on next page)

4-4 Memory Locking

Example 4-1 (Cont.) Allocating Additional Memory

data pages = data limit.rlim.cur / page size;
printf ("Pages in data segment 0x%8.8x \n",data pages) ;

/* Return the current data segment break */

cur_data break = sbrk(0);
printf ("Data breaks at address 0x%8.8x \n", cur_data break);

void allocate memory()

int mem chunk bytes;
/* Allocate additional data space */

mem_chunk bytes = MEM CHUNK PAGES * page size;

printf ("\n Allocate 0x%8.8x pages of memory", MEM CHUNK PAGES);
printf ("\n Allocate 0x%8.8x bytes of memory \n", mem chunk bytes);
additional space = (char *) malloc(mem chunk bytes);

printf ("Address of memory is 0x%8.8x \n", additional space);

void grow data_ segment ()

int stat;
int more pages;

printf ("Not enough space in data segment \n");
printf ("Increase using setrlimit \n");

more pages = MEM CHUNK PAGES - data_pages;
data_pages = data pages + more pages + 16;

data limir.rlim cur = data pages * page size;
stat = setrlimit (RLIMIT DATA, &data limit);
CHECK_STAT (stat, "Set new limit for data size");

main ()

{
/* Use sysconf to get page size */

page size = sysconf(SC PAGE SIZE);
printf ("Page size is 0x%4.4x bytes \n", page size);

show data limits();
allocate memory () ;

(continued on next page)

Memory Locking 4-5

Example 4-1 (Cont.) Allocating Additional Memory

if additional space == NULL) {
grow_data_segment () ;
show_data limits();
allocate_memory () ;

4.3 P1003.4/D10 Memory-Locking and Unlocking Functions

Realtime application developers should consider memory locking as a required
part of program initialization. Many realtime applications remain locked for
the duration of execution, but some may want to lock and unlock memory as
the application runs. DEC OSF/1 P1003.4/D10 memory-locking functions let
you lock the entire process at the time of the function call and throughout the
life of the application, or to selectively lock and unlock as needed.

Two P1003.4/D10 functions allow you to lock memory, which makes the process
memory or segments of the process immune to paging. The mlock function lets
you lock an address range into memory, and the mlockall function lets you lock
all of a process’s memory (both current and future). You can remove memory
locks with corresponding calls to the munlock and munlockall functions.

DEC OSF/1 P1003.4/D10 memory-locking functions offer the following
advantages:

= Portability
= Ability to preallocate and lock memory space
= Ability to lock memory with fewer function calls

Realtime applications often need to lock the entire process for the life of the
application. Memory-locking functions globally track which regions are locked
and which are not. If the data or text segment of a process is shared, then
locked data or text is locked for all sharing processes.

Table 4-1 lists the P1003.4/D10 memory functions.

4-6 Memory Locking

Table 4-1 Memory-Locking Functions

Function Description

mlockall Locks a process's address space

munlockall Unlocks a process’s address space

mlock Locks a specified region of a process’'s address space
munlock Unlocks a specified region of a process’s address space

The P1003.4/D10 memory functions support locking the entire address space
or a selected range of one or more pages. The address must be on a page
boundary and all pages mapped by the specified range are locked. Therefore,
you must determine how far the return address is from a page boundary and
align it before making a call to the mlock function.

Use the sysconf (_SC PAGE SIZE) function to determine the page size. The
size of a page can vary from system to system. To ensure portability, call
the sysconf function as part of your application or profile when writing
applications that use the memory-locking functions. The <mlock.h> header
file defines the maximum amount of memory that can be locked. Use the
getrlimit function to determine the amount of total memory.

Example 4-2 allocates data space, determines page size, determines if the new
memory is aligned, then locks and unlocks the new segment into memory.

Memory Locking 4-7

Example 4-2 Aligning and Locking a Memory Segment

#include <unistd.h> /* for sysconf function * /
#include <malloc.h> /* for malloc function */
#include <mlock.h> /* for memory locking functions */

#define NEW SEGMENT SIZE 65536

#define CHECK STAT (stat,msg) \
if (stat == -1 \
perror (msg) ; \

exit (-1); \

char *additional space;

lock memory (mem addr, mem size)
char *mem addr, int mem size;

int stat;

long page_size;

int page offset;

long mem lock addr, mem lock size;

page size = sysconf(SC PAGE SIZE);

/* Determine if memory is on page boundary */

)

page offset = (long)mem addr % page size;
printf ("Distance from page boundary is 0x%4.4x bytes \n",
page_offset) ;

mem lock addr = (long)mem addr - page offset;

mem lock size = mem size + page offset;

printf ("Start memory lock at address 0x%8.8x \n",
mem_lock addr);

/* Lock new segment into memory */

stat = mlock(mem lock addr, mem lock size);
CHECK STAT (stat, "mlock part of memory");

/* Unlock segment from memory */

stat = munlock (mem lock addr, mem lock size);
CHECK_STAT (stat, "munlock part of memory");

main ()

/* Allocate bytes of data */

additional space = (char *) malloc(NEW SEGMENT SIZE);
printf ("Address of data to lock is 0x%8.8x \n",additional space);

(continued on next page)

4-8 Memory Locking

Example 4-2 (Cont.) Aligning and Locking a Memory Segment
lock memory(additional space, NEW SEGMENT SIZE);

Exercise caution when you lock memory; if your processes require a large
amount of memory and your application locks memory as it executes, your
application may take resources away from other processes. In addition, you
could attempt to lock more virtual pages than can be contained in physical
memory.

Note that the memory-locking functions should not be used in conjunction with
Distributed Time Services (DTS). You need superuser privileges to use the
P1003.4/D10 memory-locking functions.

4.3.1 Locking Memory

Memory locking applies to a process’s address space. Only the pages mapped
into a process’s address space can be locked into memory. When the process
exits, pages are removed from the process’s address space and the locks are
removed. Shared memory may be mapped into more than one address space,
and multiple locks may be set on pages within these address mappings.
Memory locking applies to any shared libraries that the application is linked
against. Therefore, all such locks must be removed before the shared pages are
unlocked.

Two P1003.4/D10 functions, mlock and mlockall, are used to lock memory. The
mlock function allows the calling process to lock a selected region of address
space used by a process. The mlockall function causes all of a process’s
address space to be locked. Locked memory remains locked until either the
process exits or the application calls the corresponding munlock or munlockall
function.

Memory locks are not inherited across a fork and all memory locks associated
with a process are unlocked on a call to the exec function or when the process
terminates.

For most realtime applications the following control flow minimizes program
complexity and achieves greater determinism by locking the entire address into
memory.

1. Perform non-realtime tasks, such as open files or allocate memory
2. Lock the address space of the process calling mlockall function

3. Perform realtime tasks

Memory Locking 4-9

4. Release resources and exit

4.3.1.1 Locking a Specified Region

The mlock function locks a preallocated specified region. The address and size
arguments of the mlock function determine the boundaries of the preallocated

region. On a successful call to the mlock function, the specified region becomes
locked. Memory is locked by the system according to system-defined pages. If

the address and size arguments specify an area smaller than a page, the kernel
rounds up the amount of locked memory to the next page. The mlock function

locks all pages containing any part of the requested range, which can result in
locked addresses below and above the requested range.

Repeated calls to mlock could request more physical memory than is available,
subsequent processes must wait for locked memory to become available.
Preallocating and locking regions is recommended for realtime applications.
Realtime applications often cannot tolerate the latency introduced when a
process must wait for lockable space to become available.

If the process requests more locked memory than will ever be available in the
system, an error is returned.

Figure 4-1 illustrates memory allocation before and after a call to the mlock
function. Prior to the call to the mlock function, buffer space in the data area
is not locked and is therefore subject to paging. After the call to the mlock
function the buffer space cannot be paged out of memory.

4.3.1.2 Locking an Entire Process Space

The mlockall function locks all of the pages mapped by a process’s address
space. On a successful call to mlockall, the specified process becomes locked
and memory resident. The mlockall function takes two flags, MCL_CURRENT
and MCL_FUTURE, which determine whether the pages mapped are those
currently used by the process or if any pages mapped in the future are to be
locked. You must specify at least one flag for the mlockall function to lock
pages. If you specify both flags, the address space to be locked is constructed
from the logical OR of the two flags.

If you specify MCL_CURRENT only, all currently mapped pages of the process’s
address space are memory resident and locked. Subsequent growth in any

of the specified region is not locked into memory. If you specify the MCL_
FUTURE flag, all future pages are locked in memory. If you specify both MCL_
CURRENT and MCL_FUTURE, then the current pages are locked and the size
of the locked process or segment grows as the process’s address space grows

4-10 Memory Locking

Figure 4-1 Memory Allocation with mlock

Stack Stack

Heap Heap

Data Data

} char buffer [1024]; char buffer [1024];

Text Text

(Code) (Code)

Before mlock After mlock (buffer, 1024);

Call Call

I:' = Pageable

I:' = Locked in physical memory (not pageable)
MLO-007319

when the process executes. Subsequent growth is automatically locked into
memory.

Figure 4-2 shows memory allocation before and after a call to the mlockall
function. Prior to the call to the mlockall function, space is not locked and

is therefore subject to paging. After a call to the mlockall function, which
specifies the MCL_CURRENT and MCL_FUTURE flags, all memory used by
the process both currently and in the future is locked into memory. The call to
the malloc function increases the amount of memory locked for the process.

Memory Locking 4-11

Figure 4-2 Memory Allocation with mlockall

Stack Stack Stack
Heap Heap Heap
Data Data Data
Text Text Text
(Code) (Code) (Code)
Before mlockall After mlockall After malloc
Call Call Call

I:' = Pageable

I:' = Locked in physical memory (not pageable)
MLO-007320

4.3.2 Unlocking Memory

Locked space is automatically unlocked when the application exits, but you
can also explicitly unlock space. The munlock function unlocks the specified
address range regardless of the number of times the mlock function was called.
In other words, you can lock address ranges over multiple calls to the mlock
function but remove the locks with a single call to the munlock function. Space
locked with a call to the mlock function must be unlocked with a corresponding
call to the munlock function.

The munlockall function unlocks all pages mapped by a call to the mlockall
function, even if the MCL_FUTURE flag was specified on the call to the
mlockall function. After the call to the munlockall function, the MCL _
FUTURE flag is canceled. Additional locking can be accomplished only with
another call to a memory-locking function, such as mlockall with the MCL_
CURRENT flag.

4-12 Memory Locking

4.4 Memory-Locking Example

Example 4-3 demonstrates how to use all options allowed in the memory-
locking functions. The example locks and unlocks memory, allocates additional
memory, and uses the current and future capabilities of the mlockall function.

Example 4-3 Using the Memory-Locking Functions
/* This program demonstrates how to use the P1003.4/D10 */
/* memory-locking functions.*/

#include <errno.hs>

#include <stdio.h>

#include <sys/types.h>

#include <mlock.h> /* memory locking definitions */

main()

{

char *allocated buffer;
char buffer[32768];
unsigned int size;
int pages, status;

/* Lock the array buffer[] into memory */

if (mlock (buffer, sizeof (buffer)))
printf ("mlock error %d \n", errno);

/* Unlock the array buffer[] */

if (munlock (buffer, sizeof (buffer)))
printf ("munlock error %d \n", errno);

/* Lock the process’s CURRENT address space */

if (mlockall (MCL_CURRENT))
printf ("mlockall CURRENT error %d \n", errno);

/* Allocate some memory -- This memory is pageable */
/* unless it is explicilty locked. Free the memory */

allocated buffer = (char *)malloc (sizeof (buffer));
free (allocated buffer);

/* Unlock the entire address space of the process */

if (munlockall())
printf ("munlockall error %d \n", errno);

/* Lock the process’s CURRENT address space and */
/* automatically lock any new memory that is allocated */

(continued on next page)

Memory Locking 4-13

Example 4-3 (Cont.) Using the Memory-Locking Functions

if (mlockall (MCL FUTURE))
printf ("mlockall FUTURE error %d \n", errno);

/* Allocate some memory -- This memory is NOT pageable
/* unless it is explicilty unlocked. Free the memory

allocated buffer = (char *)malloc (sizeof (buffer));
free (allocated buffer);

/* Unlock the entire process address space */

if (munlockall())
printf ("munlockall error %d \n", errno);

4-14 Memory Locking

5

Asynchronous Input and Output

Your program can handle input/output (1/O) operations on a file in one of

two ways: synchronously or asynchronously. When operating synchronously,
the process calling the 1/0 request is blocked until the 1/O operation is
complete and regains control of execution only when the request is completely
satisfied. When operating asynchronously, the process calling the 1/0 request
immediately regains control of execution once the I/O operation is queued

to the device. When the 1/O operation is completed (either successfully or
unsuccessfully), the calling process can be notified of the event by a signal.

Using asynchronous 1I/O can increase the throughput of a process because
the process continues execution while the system completes the final steps of
the 1/0 operation. Asynchronous 1/0O allows you to overlap process execution
and 1/O operations. This overlapping allows one process to perform several
separate simultaneous 1/O operations while the calling process continues
application processing.

This chapter includes the following sections:

= Data Structures Associated with Asynchronous 1/0O, Section 5.1
= Asynchronous 1/0O Functions, Section 5.2

< Asynchronous I/0 Example, Section 5.3

Asynchronous 1/0 is most commonly used in realtime applications requiring
high-speed or high-volume data collection or low priority journaling functions.
Compute-intensive processes can use asynchronous 1/O instead of polling for
completion or blocking. For example, an application may collect intermittent
data from multiple channels. Because the data arrives asynchronously, that
is, when it is available rather than according to a set schedule, the receiving
process must queue up the data to be read and immediately be free to receive
the next data transmission. Another application may require such a high
volume of reads, writes, and computations that it becomes practical to queue
up a list of 1/O operations and continue processing while the 1/O requests are

Asynchronous Input and Output 5-1

being serviced. Applications can perform multiple 1/O operations to multiple
devices while making a minimum number of function calls. The P1003.4/D10
asynchronous 1/0 functions are designed to help meet these realtime needs.

You can perform asynchronous 1/O operations using any open file descriptor,
including named pipes and sockets.

5.1 Data Structures Associated with Asynchronous 1/O

Many of the asynchronous 1/O functions use the asynchronous 1/0O control block
(aiocb). This control block contains asynchronous operation information, such
as the initial point for the read operation, the number of bytes to be read,

the priority of the 1/O operation, the number of the signal sent on completion,
and status information. The control block contains information similar to

that required for a read or write function, but additionally contains members
specific to asynchronous 1/0 operations. The aiocb structure contains the
following members:

int aio whence; /* Initial position of file pointer */
off t aio offset; /* Number of bytes in the offset */
volatile char *aio buf; /* Character pointer to information */
size t aio nbytes; /* Number of bytes */
int alo regprio; /* Priority of I/O operation * /
struct sigevent aio event; /* Number of the signal to be sent */
int aio_flag; /* I/0 completion status flag * /
aiochandle t aio handle; /* Identifies the I/O operation */

Note that you cannot reuse the aiocb structure while an asynchronous 1/0
request is pending. To determine if the aiocb is in use, use the aio_return
and aio error functions.

5.1.1 Identifying the Location

The aio_whence, aio_offset, and aio_nbytes members provide information about
the starting point and length of the data to be read or written. The aio_buf
and aio_nbytes members provide information about where the information is
located in memory.

The aio_whence and aio_offset members of the aiocb structure provide the
asynchronous 1/0 functions with the same information that would be supplied
to the lseek function. That is, asynchronous 1/O functions perform an implied
call to the 1seek function. You do not have to call the 1seek function to reset
the offset for an open file.

Note, however, that the behavior of the implied 1seek function is different
from an explicit call. A subsequent unsuccessful call to the read or write
function does not advance the pointer; the file offset remains unchanged. An
unsuccessful call to an aio read or aio write function can change the pointer.

5-2 Asynchronous Input and Output

5.1.2 Setting the Priority

The aio_reqprio member specifies a priority for the asynchronous 1/O operation.
The priority assigned to each 1/O request is an indication of the preferred
order of execution relative to other 1/0 requests made by a single process.
Numerically higher values indicate higher priority requests.

Specifying priority on an asynchronous I/O request is a way to order the
execution of a series of 1/0 requests issued from a single process. This
prioritizing is independent of process scheduling and has no effect on the
priority of the calling process.

The value of the aio_regprio member must be within the range AIO_PRIO_MIN
and AIO_PRIO_MAX (the minimum and maximum value for the aio_

regprio member). You can specify a default priority by using the value
AIO_PRIO_DFL.

Higher priority requests are submitted before lower priority requests.
Asynchronous 1/O requests issued at the same priority are executed on a
first-in/first-out basis.

5.1.3 Specifying a Signal
You can send a signal on completion of every read and write operation,
regardless of whether the operation is issued from a call to the aio read,
alo write, or lio listio function. In addition, you can send a signal on
completion of the 1io listio function. See Chapter 11 for more information
on signals and signal handling.

The aio_event member refers to a sigevent structure, which contains the
signal number of the signal to be sent upon completion of the asynchronous
I/0 request. The sigevent structure is defined in the signal.h header file and
contains the following members:

void *sevt value; /* Not currently supported - specify as NULL */
signal t sevt signo; /* Signal sent on I/O completion */

The sevt_value member is an application-defined value to be passed to the
signal-catching function at the time of signal delivery. This member is used in
P1003.4/D10 Realtime Signals, which are not currently supported. Specify a
value of NULL for this member.

The sevt_signo member specifies the signal number to be sent on completion
of the operation. The aio_flag member indicates whether or not a signal will
be sent to the calling process when the operation completes. You can enable
signals by setting the AIO_EVENT bit in the aio_flag member to 1. In this
case, no signal is sent, but the error status and return status for the operation

Asynchronous Input and Output 5-3

are set appropriately and can be retreived using the aio error and aio_return
functions.

Note that the sigevent structure is used for both asynchronous 1/0 and
per-process timers.

Instead of specifying a signal, you can poll for 1/O completion when you expect
the 1/0 operation to be complete.

5.1.4 Establishing a Handle

All 1/O has a return value and an error status associated with each operation.
Synchronous 1/O return values are returned only when the 1/0 completes and
the error status is posted to errno. Asynchronous 1I/O returns a value when
the operation is successfully queued for servicing, then the asynchronous 1/0
function itself has an associated return value and error status.

Return values for the 1/0 request are posted to errno, but the return values for
completion are posted to the aio_error and aio_return functions. To retrieve
these statuses, asynchronous 1/O functions have a handle associated with each
1/0 request. The application can use the handle to poll for completion during
and after the 1/O operation. Use the aio error and aio return functions to
retreive status and return values for 1/O completion.

The aio_handle member of the aiocb structure is set when the 1/0O operation
is first submitted. The handle is a unique identifier for the submitted 1/0
operation and is used for retrieving the error and return status of the
asynchronous 1/O operation.

The aio_handle member of the aiocb structure is used to track whether the
1/0O operation was queued and the status of the operation. The AIO_EVENT
bit in the aio_flag member indicates whether or not a signal will be sent to the
calling process when the operation completes. If the AIO_EVENT bit is zero,
no signal is posted when the 1/O operation completes, but error and return
status are still set.

5.2 Asynchronous I/O Functions

The asynchronous 1/O functions combine a number of tasks normally performed
by the user during synchronous 1/O operations. Normally, the application calls
the 1seek function, performs the 1/O operation, and then either polls for status
or calls the signal function to notify the calling process.

Asynchronous 1/O functions provide the following capabilities:
= Both regular and special files can handle 1/0O requests.

= One file descriptor can handle multiple read and write operations.

5-4 Asynchronous Input and Output

= 1/O operations can be prioritized.

< Multiple read and write operations can be issued to multiple open file
descriptors.

= Both sequential and random access devices can handle 1/O requests.
e Queued I/O requests can be canceled.
= The porocess can be suspended to wait for 1/0O completion.

= 1/O requests can be tracked: when the request is queued, in progress, and
completed.

Table 5-1 lists the functions for performing and managing asynchronous 1/O
operations. Refer to the online reference pages for a complete description of
these functions.

Table 5-1 Asynchronous I/O Functions

Function Description

alo cancel Cancels one or more requests pending against the file descriptor
alo error Returns the error status of a specified operation

aio read Queues a read request on the specified file descriptor
alo_return Returns the status of an operation

alo suspend Suspends the calling process until at least one of the specified
requests has completed

alo write Queues a write request to the specified file descriptor

lio listio Initiates a list of requests

5.2.1 Reading and Writing

Asynchronous and synchronous 1/O operations are logically parallel operations.
The asynchronous function calls aio read and aio_write perform the same
1/0 operations as the read and write functions. However, the aio _read or
aio write function returns control to the calling process once the the 1/0 is
queued rather than waiting for the 1/O operation to complete. For example,
when reading data from a file synchronously, the application regains control
only after all the data is read. Execution of the calling process is delayed until
the read operation is complete. Note that interactions between asynchronous
reads and writes with synchronous reads and writes can yield unpredictable
results.

Asynchronous Input and Output 5-5

On the other hand, when reading data from a file asynchronously, the calling
process regains control right after the call is issued, before the read-and-return
cycle is complete. The aio read function returns once the read request is
initiated or queued for delivery, even if delivery is delayed. The calling process
can use the time normally required to transfer data to execute some other task.

A typical application using asynchronous I/O includes the following steps:
1. Create and fill the asynchronous 1/0 control block (aiocb).

2. Call the open function to open a specified file and get a file descriptor for
that file. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate. 1

3. If you use signals, establish a signal handler to catch the signal returned
on completion of the asynchronous 1/O operation.

4. Call the aio_read or aio_write function to request asynchronous 1/O
operations.

5. Call aio_suspend if your application needs to wait for the 1/0 operations to
complete.

6. Call the aio_error and aio_return functions to retrieve status
information.

7. Call the close function to close the file. The close function waits for all
asynchronous 1/0 to complete before closing the file.

On a call to either the exit or fork function, the status of outstanding
asynchronous 1/O operations is undefined. If you plan to use asynchronous
1/0 operations in a child process, call the exec function before you call the 1/0
functions.

5.2.2 Using List-Directed Input/Output

The lio listio function takes as an argument an array of pointers to 1/0
control block structures, which allows the calling process to initiate a list of 1/0
requests. Therefore, you can submit multiple operations as a single function
call.

You can control whether the 1io listio function returns once the list of
operations has been queued or after the operations have been completed. The
mode argument controls when the lio listio function returns and can have
any one of the following three values:

e LIO_ASYNC, queues the operation, returns, and signals when the
operation is complete.

! Do not use the select system call with asynchronous 1/O, the results are undefined.

5-6 Asynchronous Input and Output

< LIO_NOWAIT, queues the operation, returns, but does not signal when the
operation is complete.

< LIO_WAIT, queues the operation, suspends the calling process until the
operation is complete, and does not signal when the operation is complete.

The list argument is a pointer to a list-directed 1/0 control block (1iocb)
structure. The liocb structure is defined in the <aio.h> header file and
contains the following members:

int lio _opcode;

int lio_fildes;

struct aiocbh lio aiocb;

The lio_opcode member defines the 1/O operation to be performed, the lio_fildes
member identifies the file descriptor, and the aiocb structure is contained in
an lio_aiocb structure. The combination of these members makes it possible
to specify individual read and write operations as if they had been submitted
individually. The values contained in the 1io aiocb structure are the same
as those found in aiocb structures used for aio read and aio_write function
calls. Each read or write operation in list-directed asynchronous 1/0 has its
own status, return value, signal, and associated handle.

Figure 5-1 illustrates how the asynchronous 1/O data structures relate to each
other.

You can prioritize execution of the elements in list-directed asynchronous 1/0.
Refer to Section 5.1.2 for more information on prioritizing asynchronous 1/0
operations initiated by a single process.

The lio_opcode member specifies the operation to be performed. The three
operations (LIO_READ, LIO WRITE, and LIO_NOP) work very much like

the aio read, aio write, and aio cancel functions. The LIO_READ and
LIO_WRITE operations submit a read and write request as if it had been
submitted with a call to an aio_read or aio_write function with the fildes
argument equal to the lio_fildes argument. The LIO_NOP operation causes the
aiocb structure to be ignored.

To submit list-directed asynchronous read or write operations, use the

lio listio function. As with other asynchronous 1/O functions, you must
first establish the aiocb control block structures for the individual read and
write operations. The information contained in this structure is used during
the operations and is then updated when the operation completes. To use list-
directed asynchronous 1/O in your application, you may use the following steps:

Asynchronous Input and Output 5-7

Figure 5-1 Representation of Asynchronous I/O Data Structures

aiocb
liocb
aiocb
list
aiocb
liocbp[o]
liocbp[1]
° t“““>’ file descriptor
liocbp [n]
> liocb
aiocb
aiocb

t“““” file descriptor

MLO-007321

1. Create and fill the list-directed control blocks, 1io aiocb and liocb.

2. Call the open function to open the specified files and get file descriptors
for the files. After a call to the open function, the file pointer is set to the
beginning of the file. Select flags as appropriate.

3. If you use signals, establish signal handlers to catch the signals returned
on completion of individual operations and upon completion of the
lio_listio function.

4. Call the lio _listio function. If your application uses signals, specify
LIO_ASYNC on the 1io_listio function.

5. Call the close function to close the files. The close function waits for all
1/0 to complete before closing the file.

5-8 Asynchronous Input and Output

As with other asynchronous 1/0O operations, any open function that returns a
file descriptor is appropriate. On a call to either the exit or fork function,
the status of outstanding asynchronous 1/O operations is undefined.

5.2.3 Determining Status

Asynchronous 1I/O requires status values when the operation is successfully
queued for servicing. In addition, asynchronous 1/O requires return and
status values when the operation is complete. The status requirements for
asynchronous 1/0 are more complex than the functionality provided by the
errno function, so status retrieval for asynchronous 1/O is accomplished
through the aio_error and aio_return functions.

Each 1/0O operation has a handle associated with it to allow the calling process
to determine the status of each queued operation. The handle is used when
asynchronous 1/0O status functions are called to return the error status or the
return status associated with a specific asynchronous 1/0 request. The calling
process can use the handle to poll for completion of a specific operation. For
example, you cannot reuse the aiocb structure while an asynchronous 1/O
request is pending. However, you can use the aio return and aio error
functions to determine if the aiocb is in use.

The aio_error and aio_return functions take only the handle argument.
These functions use the handle to retrieve the error status or return values for
the operation identified by the handle argument. If the operation completes
successfully, the aio error function returns a 0 and the aio return function
returns the number of bytes that were transferred.

If the operation has not yet completed when the call is made to the aio_error
and aio_return functions, the value returned is EINPROG, to indicate that
the operation is in progress.

If you use list-directed asynchronous 1/0, each asynchronous 1/O operation in
the list has a unique handle.

5.2.4 Canceling and Suspending I/O

Sometimes there is a need to suspend or cancel an asynchronous 1/O operation
once it has been issued. For example, there may be outstanding requests
when a process exits, particularly if the application uses slow devices, such as
terminals.

The aio_cancel function cancels one or more outstanding 1/O requests against
a specified file descriptor. The aiocbp argument points to an aiocb control
block for a specified file descriptor. If the operation is successfully canceled, the
error status indicates success, but there is no event notification to the calling

Asynchronous Input and Output 5-9

process. If, for some reason, the operation cannot be canceled, then normal
completion and notification takes place.

The aio_cancel function can return any one of the following values:

< AIO_ALLDONE indicates that none of the requested operations could
be canceled because they had already completed when the call to the
aio cancel function was made.

< AIO_CANCELED indicates that all requested operations were canceled.

= AIO_NOTCANCELED indicates that some of the requested operations
could not be canceled because they were in progress when the call to the
aio cancel function was made.

In the event that the asychronous I/O operation is terminated with an error or
the operation is canceled by a call to the aio_cancel function, the pointer is
advanced.

If the value of AIO_NOTCANCELED is returned, call the aio error function
and check the status of the individual operations to determine which ones were
canceled and which ones could not be canceled.

The aio_suspend function lets you suspend the calling process until at least
one of the asynchronous 1/0 operations referenced by the aiocbp argument has
completed. You can also use the aio suspend function to suspend the calling
process until a signal interrupts the function. If the operation has completed
when the call to the aio_suspend function was made, the function returns
without suspending the calling process. Your application must already have
initiated an 1/0 request with a call to a aio_read, aio write, or lio listio
function prior to an attempt to suspend the asynchronous 1I/0O request with a
call to the aio_suspend function.

5.3 Asynchronous I/O Example

Example 5-1 establishes reads and writes data from buffers. First, the
example defines input and output files, one with readonly permission and

one with writeonly permission. Then, the program opens the buffers for
reading and writing and initializes the aiocb structure for asynchronous write
operations. Asynchronous 1/O is used to write to the buffer, but a regular read
operation reads from the buffer. The aio_error and aio_return functions
check the status of the write operations.

5-10 Asynchronous Input and Output

Example 5-1 Using Asynchronous I/O

#include
#include
#include
#include
#include
#include

<sys/types.h>
<gys/file.h>
<errno.h>
<unistd.h>
<malloc.h>
<aio.h>

#define BUF CNT 2 /* Number of buffers */

main (int

int

argc, char **argv)

f1,£2,rec_cnt=0;

typedef char *buf p;

buf p buf [BUF_CNT] ;
struct aiocb a write;
size t xfer size;

int buf index,total=0;

/*
1f(

if(

{

1f(

{

/*

Check the arguments */

argc < 3)

printf ("\nusage: input-file output-file buffer-size(kb)");
exit(0);

(fl=open(argv[1],0 RDONLY)) == -1)

perror (argv[1]);
exit (errno) ;

(f2=open(argv[2],0 WRONLY|O_CREAT,0777)) == -1)

perror (argv([2]);
exit (errno) ;

Convert buffer size to kB */

xfer size = atol(argv([3])*1024;
/* Allocate the buffers */
for(buf index=0; buf index < BUF CNT; buf index++)

buf [buf index] = (buf p)malloc(xfer size);
buf index=0;
/* Initialize AIOCB for write */
a write.aio offset=0; /* Always write from */
a_write.aio whence=SEEK CUR; /* Current position */

(continued on next page)

Asynchronous Input and Output 5-11

Example 5-1 (Cont.) Using Asynchronous I/O
/* Copy the file */
while(f1 != -1)

int buf len;
/* Read the next buffer */

buf len = read(f1, buf[buf index], xfer size);
if(rec cnt) /* For all but the first write */

/* Wait for completion of the previous write */

if(aio_error(a write.aio handle)== EINPROG)

{

struct aiocb *wait list;
wait list= &a write;
aio suspend(1, &wait list);

}

/* Update the total */

total += aio_return(a write.aio handle);

/* Check for end of file */

if(buf len <= 0)
break;

/* Set the buffer information and issue the write */

a_write.aio nbytes = buf len;
a_write.aio buf = buf[buf index];
aio write(f2, &a write);

/* Update record count and position to the next buffer */
rec_cnt++;
buf index *= 1;

/* Close the files */

close (f1);
close(f2);
printf ("Copied: %d records\n",rec cnt);

5-12 Asynchronous Input and Output

6

Interprocess Communication Overview

Interprocess communication (IPC) is the exchange of information between

two or more processes. In single-process programming, modules within a
single process communicate using global variables and function calls, with
data passing between the functions and the callers. When programming using
separate processes, with images in separate address spaces, you need to use
additional communication mechanisms. A number of facilities are provided for
interprocess communication, including messages, shared memory, semaphores,
pipes, and signals.

This chapter includes the following sections:

e IPC and Process Synchronization, Section 6.1

e System V IPC Overview, Section 6.2

= System V IPC Permission Structure, Section 6.3

< The ftok Function, Section 6.4

6.1 IPC and Process Synchronization

Interprocess communication is a way of transfering data between cooperating
processes within an application. Processes can pursue their own tasks until
they must synchronize with other processes at some predetermined point

in their execution. When they reach that point, they wait for some form of
interprocess communication. IPC can take any of the following forms:

= Messages

e Shared Memory
< Semaphores

< Pipes

< Named Pipes

< Signals

Interprocess Communication Overview 6-1

6-2

Some forms of IPC are traditionally supplied by the operating system and
some are specifically modified for use in realtime functions. All allow a user-
or kernel-level process to communicate with a user-level process. IPC facilities
are used to notify processes that an event has occurred or to trigger a process’s
response to an application-defined occurrence, such as asynchronous 1/0
completion, timer expiration, data arrival, or some other user-defined event.

Messages, shared memory, and semaphores are collectively known as System
V IPC. They are high-speed, reliable data transfer facilities commonly used to
synchronize process execution.

Use of synchronization techniques and restricting access to resources can
ensure that critical and noncritical tasks execute at appropriate times with
the necessary resources available. Concurrently executing processes require
special mechanisms to coordinate their interactions with other processes and
their access to shared resources. In addition, processes may need to execute at
specified intervals.

Realtime applications synchronize process execution through the following
techniques:

= Waiting for a specified time
= Waiting for semaphores

< Waiting for communication
= Waiting for other processes

The basic mechanism of process synchronization is waiting. A process must
synchronize its actions with the arrival of an absolute or relative time, or until
a set of conditions is satisfied. Waiting is necessary when one process requires
another process to complete a certain action, such as releasing a shared system
resource, or allowing a specified amount of time to elapse, before processing
can continue.

The point at which the continued execution of a process depends on the state
of certain conditions is called the “synchronization point.” Synchronization
points represent intersections in the execution paths of otherwise independent
processes, where the actions of one process depend on the actions of another
process. The application designer identifies synchronization points between
processes and selects the functions best suited to implement the required
synchronization.

Interprocess Communication Overview

In a realtime environment it is often necessary to reduce the time interval
required for process communication. It is not always sufficient to simply verify
that communication has taken place. A delay in interprocess communication
can affect the overall performance of the realtime application. To provide rapid
signal communication on timer expiration and asynchronous 1/0 completion,
these functions send signals via a sigevent structure rather than through the
traditional signal mechanism. The application designer identifies resources
such as message queues and shared memory that the application will use.
Failure to control access to critical resources can result in performance
bottlenecks or inconsistent data.

6.2 System V IPC Overview

The System V IPC facilities were designed to work together, share common
properties, and overcome many of the limitations of other forms of interprocess
communication.

The three IPC facilities work together but offer distinctly different forms of
interprocess communication. The following list summarizes the characteristics
of each IPC facility:

= Message operations allow the process to send, receive, and control a
message queue.

Message queues work by exchanging data in buffers, which means

any number of other processes, whether or not they are related, can
communicate. If a process has all the access rights, it can send or receive
messages through the queue. The receiving process can select incoming
messages of a specified type.

= Shared memory operations allow the process to attach, detach, and lock
shared memory segments into physical memory.

Shared memory allows processes to share parts of their virtual address
space, which means that processes communicate quickly, without having
to copy information. Processes having the right ID and permission can
access the same memory. Shared memory can also be locked into physical
memory, which provides optimal communication conditions for realtime
processes.

= Semaphore operations allow the process to get, release, increment, and
decrement both binary and counting semaphores.

Semaphores offer processes a way to synchronize their operations, most
commonly to synchronize access to shared memory.

Interprocess Communication Overview 6-3

6-4

Table 6-1 lists the functions used to create, open, and manipulate IPC facilities
in an application.

Table 6-1 IPC Functions

Messages Shared Memory Semaphores Description

<sys/msg.h> <sys/shm.h> <sys/sem.h> Header files

msgget shmget semget Open or create IPC
channel

msgctl shmctl semctl IPC control
operations

msgsnd shmat Semop Specific IPC
operations

msgrcv shmdt Specific IPC
operations

System V IPC facilities are systemwide to allow different processes to
communicate, whether or not they are contained within the same application.
For this reason, access to IPC channels is controlled in much the same way
as access to files, through IPC identifiers. Every process that shares an
appropriate identifier (IPC ID) and has the right permission can use the
facilities provided for messages, shared memory, and semaphores.

The general approach to using any of the System V IPC facilties is as follows:
1. Begin code execution at a nonrealtime priority level.

2. Call the ftok function to get a unique key identifier, based on the path and
id argiments passed to the ftok function. Use the key in subsequent calls
to IPC get functions.

3. Include code to remove the IPC facilities and associated data structures if
the process is aborted.

4. Call the IPC get function to create an IPC channel and associate it with
the data structures. (If an IPC object already exists, it is opened.) The get
function returns a unique identifier. Use this identifier in subsequent calls
to IPC functions.

The IPC get functions initialize IPC data structures with access and
permission information.

5. Optionally, if using shared memory, allocate the semaphore that will be
used to control access to the shared memory region.

Interprocess Communication Overview

6. If necessary, use the ctl functions to control access or to unlink the IPC
channels.

7. For shared memory, lock memory regions as needed.
8. Set realtime priorities and scheduling policies as needed.
9. Execute realtime work.

10. Remove the IPC channel when the process exits or it is no longer needed.
If you do not remove the IPC channel with the ctl function, use the ipcrm
function.

You can use the ipcs command to retrieve information about the status of IPC
facilities. The ipcs command displays information on currently active message
queues, shared memory, and semaphores. Since the kernel keeps track of

IPC facilities dynamically, the information returned from the ipcs command
changes as IPC facilities are used.

Options on the ipcs command give you access to all IPC information contained
in the IPC data structures. You can request all information or you can specify
selective information, such as the process ID (PID) of the last process to send a
message, the maximum number of bytes allowed for messages in the message
queue, the number of processes attached to a shared memory segment, or the
time the last semaphore operation was completed on the set.

See the online reference pages for syntax information about the ipcs command
and each of the System V IPC functions. Note that the msgsnd and msgrcv
functions are included in the reference pages under the more general name,
msgop. The shmat and shmdt functions are included under the more general
name, shmop.

6.3 System V IPC Permission Structure

Each IPC facility uses a basic IPC structure (ipc_perm) to define access
permissions. The owner process issues the call to the get function to allocate
the IPC entities associated with the data structure. All other processes that
use the IPC entity must access it by using the IPC ID, so that no additional
structures are initialized. The ipc_perm structure is similar to that maintained
for files; it contains members for the effective user ID (UID), effective group ID
(GID), access groups, and a key to manage the creation of IPC channels.

Messages, shared memory, and semaphores all use an ipc_perm data structure.
The ipc_perm structure is defined in the <sys/ipc.h> header file and has the
following form:

Interprocess Communication Overview 6-5

struct ipc perm {

ushort uid; /* Owner’s ID * /
ushort gid; /* Owner’s group ID */
ushort cuid; /* Creator’s UID * /
ushort cgid; /* Creator’'s group ID */
ushort mode; /* Access mode * /
ushort seq; /* Sequence number */
key t key; /* Key * /

}i

The ipc_perm structure, used in combination with individual IPC permission
structures, provides IPC facilities with the following common properties:

< They all maintain a table describing the instances of the IPC facility usage.
= Each entry into the table is identified by a user-specified key.

= They all use a call to a get function to create new table entries or open
existing ones.

e They all use a permission structure based on IDs.
= The parameters to IPC calls require a key and flags.

= They all use the same algorithm to find the index into the table from the
descriptor.

« They all maintain status information including the time, date, and process
ID (PID) of the last access.

6.3.1 Creating IPC Channels

6-6

Before you can use an IPC channel, you must create the channel or open an
existing one. The get functions for each of the IPC facilities perform this task.
The three IPC get functions (msgget, shmget, and semget) require at least the
key and flag parameters. Both shared memory and semaphore get function
calls use additional parameters to establish the size of the shared memory or
the number of semaphores.

The value of the key argument on the get function call determines how the IPC
channel is established. If the key is not already in use, the function returns

a new IPC ID. If the key is in use, the existing IPC ID is returned. If the

key is specified as 0 (to indicate IPC_PRIVATE), a unique, exclusive IPC ID

is returned. Specifying IPC_PRIVATE for the key parameter is usually done
when you plan to share an IPC ID among related processes.

The key and the IPC ID are directly related — processes sharing the same key
will also share the same IPC ID. You can use the ftok function to create a key.
This method allows processes to share an IPC channel in a client and server
relationship. See Section 6.4 for more information on using the ftok function.

Interprocess Communication Overview

The flag parameter accepts combinations of flags and a permissions number.
The combinations of these elements determine whether a calling process has
permission and the nature of that permission.

The kernel checks the mode bits to determine if the caller has permission for
the requested operation. If IPC_PRIVATE is specified, only the owner and
related processes can access the IPC channel. If the calling process is not the
owner and is not in the group, then the mode bits must be set for world access
before permission is granted. In addition, the appropriate access bits must be
set before an operation is performed. That is, to perform a read operation the
read bit must be set.

Table 6—2 shows the flags used by the IPC get functions.

Table 6-2 Flags Used in IPC get Functions

Flag Description

IPC_CREAT Creates a new entry for the specified key or returns the
entry if it already exists.

IPC_EXCL Creates a new entry for the specified key if one does not
exist. The call fails if the specified key already exists. This
flag must be used with the IPC_CREAT flag.

IPC_NOWAIT Returns an error if the request must wait.

Whenever you create a new IPC channel with one of the get functions, the
ipc perm data structure is initialized. Fields are initialized for owner and
creator IDs (UID and CUID), user and group IDs (UID and GID), and mode.
The IPC_CREAT flag returns a unique IPC ID or returns the existing entry, if
one already exists. The IPC_EXCL flag must be used in conjunction with the
IPC_CREAT flag. This combination guarantees that a new channel is created,
but does not guarantee exclusive access to the IPC channel. When you use
the IPC_PRIVATE key, it is not necessary to use either the IPC_CREAT or
IPC_EXCL flags.

For example, if you want to create a shared memory segment of 1024 bytes
and make certain that only the owner has read and write permission, use the
following function call:

shm id = shmget (IPC PRIVATE, 1024, 0600);

The unique IPC ID created by the call to the shmget function is stored in the
variable shm_id.

Child processes inherit the IPC ID if the call to fork is done after the call to
IPC get.

Interprocess Communication Overview 6-7

When processes are unrelated, you must call an IPC get function from each
process with which you want to communicate. In addition, each process must
use the same key parameter. Since the IPC_PRIVATE key returns a unique
IPC ID, you may not want to use it in this situation. Instead, you may find it
easier to use the IPC_CREAT and, possibly, IPC_EXCL flags.

If the process has superuser privileges, it is always allowed access. Any
process can specify a flag argument of zero to bypass permission problems with
the mode bits, as long as an access channel exists.

The IPC_CREAT flag either creates a new IPC ID or returns the existing IPC
ID. If you want the call to fail if an IPC ID already exists, use the IPC_EXCL
flag. See the intro reference page and reference pages for the individual IPC
functions for more information.

6.3.2 Controlling IPC Channels

6-8

The IPC ctl functions control access to existing IPC channels and unlink
the IPC channels. The flags used in the ctl functions can be used to alter
permissions and remove IPC channels along with all of the associated data
structures.

The parameters for IPC ctl functions include the cmmd parameter. The cmd
parameter specifies a control operation that can be performed on the data
contained in a data structure that describes the facility created with a call to
one of the IPC get functions. Calls to IPC ctl functions can specify changes to
the owner IDs (UID).

Table 6-3 shows the flags used in all IPC ctl functions to retrieve and
manipulate data structure members.

Table 6-3 Flags Used in IPC ctl Functions

Flag Description

IPC_RMID Removes an existing IPC channel and deletes the associated
data structure

IPC_SET Copies a user-specified structure to the IPC data structure

IPC_STAT Copies the IPC data structure to a user-specified structure

The kernel maintains data structures for the IPC facilities but the user can
modify some members of these data structures. The owner of an IPC facility
can change the user ID (UID), group ID (GID), and the mode. Other members
can be modified only by a process with superuser privileges or by the owner.

Interprocess Communication Overview

To modify a member of a data structure, use one of the IPC ctl functions with
the IPC_STAT flag to get the current values. Because IPC data structures
are kept in the kernel, you need to specify a local buffer as the location to
where the structure is copied. Access the data structure in this buffer and
set the members you want to change. Then use the IPC ctl functions with
the IPC_SET flag to change the original data structure. The IPC_SET flag
overwrites the original data structure with the new information.

Note that for all IPC facilities, you must either be the owner or have superuser
privileges to use the IPC_SET or IPC_RMID flag.

6.3.3 Removing IPC Channels

The last step in interprocess communication is to remove an IPC facility.

IPC facilities are not automatically removed once an application exits; they
continue to exist unless explicitly removed by the application. The fact that an
IPC channel remains accessible can be helpful when processes exit at different
times, but when the entire application is done, you should call one of the ctl
functions and pass the IPC_RMID flag to it. For example, to remove a shared
memory segment, make the following function call:

shmetl (shm_id, IPC RMID, 0);
This call removes both the IPC ID and the associated data structure.

If you do not remove the IPC facilities while your application executes, you
can remove the IPC ID with the ipcrm command. You can choose to remove
the identifier as returned by a call to one of the IPC get functions, or you can
choose to remove the key. The ipcrm command removes the identifier and
deletes the data structure and queue associated with the IPC facility.

6.4 The ftok Function

All IPC facilities require the user to supply a key to be used by the msgget,
shmget, and semget functions. One method for forming a key is to use the ftok
function. This function returns a key based on two parameters, path and id.
The returned key is subsequently used by the IPC get functions.

Client and server processes must first agree on a single path to be used as an
interprocess communication channel between them. This path could be the
name of a common data file or the path of the server daemon, as long as the
pathname is for an existing file and is accessible to the process. You must have
read permission on the file and execute permission on the directories of the
entire pathname before you can use the ftok function. The application then
calls the ftok function to convert the path into an interprocess communication
key.

Interprocess Communication Overview 6-9

The id argument is a character that uniquely identifies the project. The
following example returns a key that can be used in other IPC functions.

keyofmine = ftok ("/usr/users/examplel", 'X');

If unrelated processes create the IPC facility or if multiple IPC channels are
required, then these processes should use the same path and id arguments to
the ftok function. You can also use the ftok function to help your application
overcome synchronization problems. If you are not certain which process will
create the IPC ID, or if you think the creating process may execute earlier
than the other communicating processes, call the ftok function. The following
example calls the semget function to create a set of three semaphores that can
be read only by the owner:

sem id = semget (ftok ("/usr/users/example2", 'X'), 3, IPC CREAT|0600);

Using the following function call, other processes in the group could
communicate using the same ID.

sem_id = semget (ftok ("/usr/users/example2", 'X'), 3, 0660);

On the other hand, if the other processes will be using the IPC channel and
the first process fails to create the IPC ID, then subsequent calls to that
channel will fail. If the IPC ID does not exist at the time of the call and
the IPC_CREAT flag is not specified, then there is no corresponding IPC ID.
The following function call overcomes this potential problem by using the
IPC_EXCL flag in addition to the IPC_CREAT flag:

sem id = semget (ftok ("/usr/users/example2", 'X’'), 3, IPC_CREAT|IPC_EXCL|0600);

Using these flags together ensures that an IPC key is created in the event that
none previously existed.

6-10 Interprocess Communication Overview

v

Messages

Message queues are user-defined data structures that specify the length and
type of message and carry the message text. Essentially, message queues are
linked lists that are accessed by sending and receiving processes, allowing
flexibility and control over interprocess communication. Message queues use
data structures to store multiple messages that can be accessed by multiple
processes, read in any order, prioritized according to application needs, and
periodically polled for specific content.

Applications that contain multiple processes sharing message queues use
named spaces as a way to connect communication between cooperating
processes.

This chapter includes the following sections:
< Data Structures Associated with Messages, Section 7.1
< The Message Interface, Section 7.2

= Message Queue Example, Section 7.3

7.1 Data Structures Associated with Messages

The ipc_perm structure is the basic permission structure for all System V IPC.
Messages use the ipc_perm structure as well as other structures tailored to
message queues. Message structures are defined in the <sys/msg.h> header
file.

A call to the msgget function creates the message queue identifier, msqid.
Each message queue identifier has an associated message queue and a data
structure. This data structure is called msqid_ds and takes the following form:

Messages 7-1

#include <sy
#include <sy

struct msqgid
struct
struct
struct
ushort
ushort
ushort
ushort
ushort
time t
time t
time t

bi

s/types.h>
s/ipc.h>

_ds {

ipc_perm msg perm; /* Operation permission structure

msg *msg_first;
msg *msg_last;
msg_cbytes;
msg_qgnum;
msg_gbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/*

Pointer to first message on queue
Pointer to last message on queue
Current number of bytes on queue
Number of messages on queue

Maximum number of bytes on queue

Pid of last msgsnd operation

Pid of last msgrcv operation

Last msgsnd time - seconds since Epoch
Last msgrcv time - seconds since Epoch
Last change time - seconds since Epoch

The msqid ds data structure holds information such as the number of

messages on the queue, the number of bytes on the queue, the PID of the

process that sent or received the last message, and timestamps for activities.

The msg_perm structure is contained in an ipc_perm structure. Figure 7-1

shows how message structures relate to each other.

Figure 7-1 Representation of Message Data Structures

msgid ds

| g g B R

A A A
data Idatal Idatal

MLO-007322

The <msg.h> header file contains information concerning message size,
the system-wide maximum number of queued messages, and other limits

pertaining to message queues.

7-2 Messages

7.1.1 Establishing Message Permissions

Processes can use message queues to read or write messages as long as the
processes have permission. The IPC message facility uses a msg_perm structure
to determine permission. The msg perm structure is an ipc_perm structure, but
uses only information specific to messages. The msg_perm structure contains
the following members:

ushort cuid; /* Creator user ID */
ushort cgid; /* Creator group ID */
ushort uid; /* Owner’s user ID */
ushort gid; /* Owner’s group ID */
ushort mode /* Read/write (or alter) permission */
u_short seq; /* Slot usage sequence number */
key t key; /* Key */

In the msgop and msgctl functions check permission needed to use message
queues. Permission is interpreted as follows:

00400 Read by user

00200 Write (or alter) by user

00060 Read, Write (or alter) by group
00006 Read, Write (or alter) by others

Read and write (or alter) permissions are granted to a process if the ID for
the calling process matches one or more combinations of permissions or if the
effective user ID (UID) of the process is superuser. Access permissions are
similar to those used for files. If you do not specify access for IDs other than
the owner process, only the owner and superusers will be able to access the
structure.

7.1.2 Establishing Message Structure

A call to msgsnd or msgrcv sends or receives a message from the associated
queue. The msgp parameter for these functions points to a structure containing
the message. The kernel does not interpret the content of messages. You can
customize messages by defining your own structure. This structure takes the
following form:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct msgbuf {
long mtype; /* Message type */
char mtext []; /* Message data */

]

Messages 7-3

The mtype member for a send operation can only be zero or a positive integer.
The mtype member for a receive operation can only be zero or negative. This
member can be used by the receiving process for message selection. The mtext
member is any form of data (text or binary).

7.2 The Message Interface

The message interface is a set of structures and data that allows you to send
messages to a message queue. The message queue is a linked list that serves
as a holding place for messages being sent to and received by processes sharing
the message queue. You can specify a message type or prioritize messages
based on the message type.

This section discusses the functions used to create, control, and remove the
message queue and messages in the queue. Table 7-1 lists the functions that
allow you to create and control messages.

Table 7-1 Message Functions

Function Description

msgget Creates or returns a message queue identifier for use in
other message functions

msgctl Provides control for message operations and has options to
return and set message descriptor parameters and remove
the descriptor

msgsnd Sends a message to the queue associated with the message
gueue identifier

msgrcv Reads a message from the queue associated with the
message queue identifier and places it in a user-defined
structure

7.2.1 Creating and Opening a Message Queue

To set up a message queue, first create a new message queue or open an
existing queue using the msgget function. To determine which course of action
is taken, the kernel searches the array of message queues to determine if a
message queue indentifier already exists with the specified key. If there is no
entry, the kernel allocates a new message queue structure, initializes it, and
returns the identifier. If one already exists, then the msgget function checks
permissions.

7-4 Messages

If your application consists of related processes, you may want to use the
IPC_PRIVATE key on the function as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

msq_id = msgget (IPC_PRIVATE, 0660);

This call creates a new message queue with read and write permission for the
owner and group. If you call the msgget function before calling fork to create
child processes, the IPC channel and permissions are inherited by the child
process, thus enabling all related processes to communicate with one another.
Read and write permissions for messages allow the process to receive (read)
messages and send (write) messages.

If your application consists of unrelated processes, you may need to use the
ftok function to establish a key based on other criteria. Other unrelated
processes that will communicate through the message queue will have to call
the msgget function to get the message queue identifier.

msq_id = msgget (ftok ("/usr/users/example3", 'X’), IPC CREAT|0600);

This call creates a new message queue, but the ftok call returns a key based
on the Zusr/users/example3 pathname and the character X. As other processes
call the msgget function, msq_id is returned for them to use in other message
calls.

7.2.2 Sending and Receiving Messages

Once a message queue is open, you can send messages to another process with
the msgsnd function. The msgsnd function takes four parameters, including:
the message queue identifier, a pointer to a message structure, the size of the
data, and action to take if the kernel runs out of buffer space. The kernel
checks operation permissions, length of the message, the status of the message
queue, and the message flag. If all kernel checks are successful, the message is
added to the list of message headers on the message queue.

The message flag parameter is either 0 or IPC_NOWAIT. If you specify msgflg
of 0, then the sending process sleeps if the message cannot be sent to the
specified queue. If the queue is full, the msgsnd function will sleep until other
messages have been removed from the queue and space is available. If the
process is specified as IPC_NOWAIT, the msgsnd function returns immediately
with an error status.

The following example attempts to write a message, but if the message queue
is full it returns an error status without blocking the process.

msgsnd (msq_id, mymessage, messagesize, IPC NOWAIT);

Messages 7-5

Once a message has been placed on a queue, you can retrieve the message
with a call to the msgrcv function. The msgrcv function takes five parameters,
including: the message queue identifier, a pointer to a message structure, the
size of the data, the type of message the user wants to read, and action to take
if the kernel runs out of buffer space.

As with the msgsnd function, the kernel checks operation permissions. If the
requested message type is 0, the first message on the linked list is read. Then
the kernel checks for processes waiting to send messages and queues them as
space becomes available. If the message size is greater than that allowed for a
single message segment, the kernel truncates the message.

Specify the message flag parameter as either 0 or IPC_NOWAIT. If you specify
a msgflg of 0, then the receiving process sleeps if there is no message of the
specified type on the queue. If you specify the IPC_NOWAIT flag, the process
returns immediately with an error status.

A process can control the type of messages it receives by setting the msgtyp
parameter. This parameter allows the receiving process to prioritize messages
on a specified queue or to conserve queue identifiers. The msgtyp parameter
specifies the type of requested message as follows:

= If msgtyp is equal to O, the first message in the queue is received.
« If msgtyp is greater than 0, the first message of type msgtyp is received.

= If msgtyp is less than O, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

If you assign lower message types to messages of higher importance, you can
receive the most important messages first. If you assign higher message types
to less important messages, you can delay delivery of the messages as more
important events are executed.

The following example reads a message without blocking, that is, the process
looks to the queue for messages to read and does not sleep:

count = msgrcv (msq_id, mymessage, messagesize, pid, IPC NOWAIT);

The return value, count, is the number of bytes returned to the user. The pid
is used as the message type.

Prioritizing messages also lets you multiplex messages or use a single message
queue as if it were multiple message queues. If one process is the server for
several client processes, the server can receive messages of one type while the
clients receive messages of another type.

7-6 Messages

7.2.3 Controlling and Removing a Message Queue

The msgctl function allows you to query or set the status of the message queue
identifier, msqid. This function also removes a message queue.

The cmd argument can take one of three command control flags, which
determine what action is taken by the msgctl function. Table 7-2 describes
the command control flags.

Table 7-2 Message Command Control Flags

Command Description

IPC_RMID Removes a message queue identifier and the associated message queue
and data structure

IPC_SET Sets the user and group IDs (UID and GID), operation mode values,
and the size of the message queue

IPC_STAT Returns the status information in the associated data structure for a
specified message queue identifier and copies it into a user-specified
buffer

These control flags allow you to control messages by performing the following
functions:

= Return all message structure member values and status in user memory
= Change operation permissions
< Remove messages, message queues, and their associated data structures

Note that to use the IPC_SET and IPC_RMID flags you must either be the
owner or have superuser privileges.

The IPC_RMID flag removes the message queue identifier and its associated
data structures. When you specify the IPC_RMID control flag, you need only
supply the message queue identifier and the IPC_RMID control flag on the
function call. You can leave the buf argument as NULL. When you have
finished using a message queue, you should remove it either in this manner
before the application exits or with the ipcrm command.

The IPC_RMID flag removes a message queue from the system as follows:
msgetl (msg_id, IPC_RMID, 0);

The last process in your application to use the message queue should remove it
before exiting. If your application uses messages and signals in combination,
you can set up a signal handler to remove the message queue.

Messages 7-7

The IPC_SET control flag allows you to modify the user ID (UID), group ID
(GID), or mode values associated with the specified message queue identifier.

The IPC_STAT control flag copies status information into a user-specified
buffer where it can be inspected or monitored. If you determine that the status
information is no longer valid or you wish to make changes to the status
information, use the IPC_SET control flag.

7.3 Message Queue Example

Example 7-1 reads message types and text from a terminal and places the
messages into a message queue. Then the ftok function is used to generate a
message queue key and the key is kept in a file. The message queue is created
using IPC_CREAT.

This example is a partial example, but gives the framework essential for
using message queues for interprocess communication. This program needs
to be started before the reader process as it creates the shared memory and
semaphores used by both processes.

Example 7-1 Using Message Queues

#include <errno.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define READ WRITE 0660

#define MTEXT SIZE 80

#define test error(a) if((a)== -1){perror("msg");exit (errno);}
#define loop() while(1)

/* A simple message structure */

struct msg buf {
long type;
char mtext [MTEXT SIZE];

1]

static jmp buf sjb; /* Setjmp environment buffer */
static void end child() { /* Signal handler when child dies */
longjmp(sjb, 1);
}

(continued on next page)

7-8 Messages

Example 7-1 (Cont.) Using Message Queues

main ()
{
int msg_id, /* Message queue identifier */
child; /* ID of child process */
struct msg buf m; /* Message buffer */
size t status; /* Receive status/length */
signal (SIGCHLD, end child); /* Called when child dies */
m.type=1; /* Message type must be >0 */

msg_id = msgget(IPC_PRIVATE, READ WRITE); /* Create message queue */
test error(msg id);

/* fork the child process. The child sends and the parent */
/* receives. */

if ((child=fork()) == 0) loop() {

/* The child process reads from the terminal and generates */
/* messages until EOF. On EOF, it exits which raises a */
/* signal in the parent. */

printf ("Enter message text: ");
if (gets(m.mtext) == NULL)
break;
status = msgsnd(msg_id, &m, strlen(m.mtext)+1, 0);
test error(status);
sleep(1);

/* The parent process calls setjmp. When the signal comes */
/* in after the child dies, the signal handler function, */
/* end child(), does a longjmp forcing 1 to be returned. */

else if (setjmp(sjb) == 0) loop() {

/* The parent reads the messages and writes them to the */
/* terminal. */

status = msgrcv(msg_id, &m, sizeof (m.mtext), 0, 0);
test error(status);
printf ("message received: %s\n",m.mtext);

printf ("%s exiting\n",child?"Reciever":"Sender");

Messages 7-9

38

Shared Memory

The fastest method for interprocess communication is shared memory because
processes communicate without the overhead of system calls into the kernel.
Using shared memory, processes communicate directly by sharing portions

of their virtual address space. When one process writes to a location in the
shared area, the data is immediately available to other processes sharing the
same memory area.

This chapter includes the following sections:
= Data Structures Associated with Shared Memory, Section 8.1
e The Shared Memory Interface, Section 8.2

= Shared Memory Example, Section 8.3

8.1 Data Structures Associated with Shared Memory

The kernel maintains a structure for every shared memory segment. To create
shared memory, call the shmget function. This function initializes the specified
shared memory data structure with user and group IDs (UID and GID), mode,
and so forth. An existing memory segment is accessed if one already exists.

A shared memory identifier, (shmid), is a unique positive integer returned by
a call to the shmget function. Each shared memory identifier has a segment

of memory (referred to as a shared memory segment) and a data structure
associated with it. This data structure is referred to as shmid ds and takes the
following form:

#include <sys/types.h>
#include <sys/ipc.h>

Shared Memory 8-1

struct shmid ds {

struct ipc perm shm perm; /*

int shm segsz;
ushort shm cpid;
ushort shm lpid;
short shm nattach;
time t shm atime;
time t shm dtime;
time t shm ctime;

]

On a call to the shmget function, all time stamps are set to 0, except for

Operation permission structure
Size of segment

Creator pid

Pid of last operation

Number of current attaches

Last shmat time - seconds since Epoch
Last shmdt time - seconds since Epoch
Last change time - seconds since Epoch

shm_ctime, which is set to the current time. As processes access the shared
memory segment, these members track the most recent events.

Figure 8-1 illustrates how shared memory structures relate to each other.

Figure 8-1 Representation of Shared Memory Data Structures

shmid_ds

shmid >

ipc_perm

MLO-007323

8.1.1 Establishing Shared Memory Permissions

Processes access a shared memory segment as long as the calling process
has permission. Shared memory uses the shm_perm structure to determine
permission. This structure is identical for each type of interprocess
communication but the structure name differs. This shm perm structure

contains the following members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode
u_short seq;
key t key;

8-2 Shared Memory

/*
/*
/*

Creator user ID

Creator group ID

User ID

Group ID

Read/write (or alter) permission
Slot usage sequence number

Key

*/
*/
*/
*/
*/
*/
*/

The shmop and shmctl functions check permissions needed to use a shared
memory segment. Permission is interpreted as follows:

00400 Read by user

00200 Write (or alter) by user

00060 Read, Write (or alter) by group
00006 Read, Write (or alter) by others

Read and write (or alter) permissions are granted to a process if the ID for the
calling process matches one or more of these permissions or if the effective user
ID (UID) of the process is superuser.

8.1.2 Controlling Shared Memory

The shmctl function takes flags to control shared memory. The shmctl function
allows you to retrieve status information and to lock and unlock shared
memory. Table 8-1 shows the flags used on the shmctl function.

Table 8-1 Shared Memory Command Control Flags

Flags Description

IPC_RMID Removes a shared memory ID and the associated data
structure

IPC_SET Sets the user and group IDs and operation mode values

IPC_STAT Returns the status information in the associated data

structure and copies it into a user-specified buffer

With the exception of the IPC_STAT flag, you must either be the owner or have
superuser privileges to use these flags.

The control flags allow you to control shared memory by performing the
following functions:

= Return all shared memory structure member values and status in user
memory

= Change operation permissions
< Remove shared memory and associated data structures
= Lock a shared memory segment

e Unlock a shared memory segment

Shared Memory 8-3

8.2 The Shared Memory Interface

The shared memory and semaphore functions let you control access to shared
memory so that address space use is coordinated. Using semaphores in
conjunction with shared memory, you can make one process wait while another
process reads from shared memory. In addition, shared memory can be locked
and unlocked, which prevents a shared memory segment from being paged out
of memory.

Table 8-2 summarizes the functions used to create and control shared
memory.

Table 8-2 Shared Memory Functions

Function Description

shmget Returns the shared memory identifier

shmetl Provides shared memory control operations

shmat Attaches the shared memory segment to the data segment

of the calling process

shmdt Detaches the shared memory from the data segment of the
calling process

All processes using the shared memory segment must first call the shmget
function to establish shared memory. The shmget function establishes a shared
memory segment, but does not provide access. Instead, the calling process
provides access by attaching to the shared memory segment through a call to
the shmat function. All cooperating processes attach to the shared memory
segment using the shmat function and detach from the segment using the
shmdt function.

Figure 8-2 illustrates how two processes access the same shared memory
segment. To guard against corruption of this segment, access to shared
memory is controlled by using semaphores for synchronization, as discussed in
Chapter 9.

8-4 Shared Memory

Figure 8-2 Two Processes Using Shared Memory

Shared
Memory

VRN

Process Process
A B

MLO-007324

8.2.1 Creating and Opening Shared Memory

A multiprocess application typically contains one or more processes. A
controlling process can create shared memory regions early in the life of
the application and then dynamically delete the shared memory.

A call to the shmget function creates a new region of shared memory or returns
the identifier of an existing one. This region is identified by the descriptor
shmid. On a call to the shmget function, the kernel searches the shared
memory table for the specified key. If there is no entry and the user sets the
IPC_CREAT or IPC_PRIVATE flag, the kernel allocates new shared memory
and initializes the shared memory data structure. The identifier is then
returned to the calling process. If the shared memory already exists, the
shmget function saves permission modes, sets a pointer to the table entry, and
sets a flag to indicate that no memory was allocated for the region.

If your application consists of related processes, you can set the IPC_PRIVATE
flag as follows:
#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/shm.h>

shm id = shmget (IPC PRIVATE, 3072, 0600);

This call creates a shared memory segment of 3072 bytes with read and write
permission for the owner. By calling the shmget function before calling fork to
create child processes, the child process inherits the IPC channel as well as the
IPC permissions. This enables all related processes to read and write from the
shared memory segment.

If your application consists of unrelated processes, you can use the ftok
function to establish a key based on other criteria. Other unrelated processes
that communicate through the shared memory must call the shmget function to
get the shmid, as follows:

Shared Memory 8-5

shm id = shmget (ftok ("/usr/users/example3", 'X’'), 3072, IPC_CREAT|0600);

This call creates a new shared memory segment, but the ftok call returns a
key based on the Zusr/users/example3 pathname and the character X. As other
processes call the shmget function, shm_id is returned for them to use in other
shared memory calls.

Example 8-1 creates a shared memory region, determines the virtual address,
maps the shared region into virtual memory, and writes the shared memory
address.

Example 8-1 Creating Shared Memory
#include <sys/ipc.h>

#include <sys/shm.h>

char *start addr;

FILE *keyfile;

int shm key, shm id;

fopen ("/tmp/shared-mem", "w");
ftok ("/tmp/shared-mem", 'a’);

keyfile
shm_key

/* Create shared region */
shm id = shmget (shm key, 4096, IPC CREAT | 0760);

if (shm id == -1){
perror ("Shared memory region creation");
exit (1);

/* System determines the virtual address */
start_addr = 0;
/* Map the region into virtual memory */

start_addr = (char *) shmat (shm _id, start addr, SHM RND);

if ((ITong) start addr == -1){
perror ("Shared memory attachment failure");
exit (1);

/* Write the shared memory address */

fprintf (keyfile, "%8.8x\n",start addr);
fclose (keyfile);

Example 8-1 creates a temporary file (named /tmp/shared-mem) which is used
by the ftok function to generate the key. If you use this method, you may use
any standard file as long as it exists for the life of the application. Once the
virtual address of the shared memory is known, it is written into the temporary

8-6 Shared Memory

file. Other processes attaching to the shared memory use the file as the key,
and read the address from the file.

The call to the shmget function specifies the size and key of the region and
returns the id. The example creates a 4096-byte region with protections of
read, write, and delete for the user, read and write for the group, and no world
access.

Example 8-1 determines where to place the shared memory region in the
virtual address space. By default, the kernel adds to the current end of
memory and locates the shared memory there, but you can choose the location,
as shown in this example.

The decision about where to place the shared memory region can affect all
processes that use the shared memory. For example, if you store absolute
pointers to parts of the shared memory region, each process should map the
region into the same virtual address space.

8.2.2 Attaching and Detaching Shared Memory

Use the shmat function to attach the shared memory region to your virtual
address space. Once the shmget call creates a shared memory segment or
returns an existing one, use the shmat function to attach a region to its address
space. The kernel also sets a flag to indicate that the region is not freed until
the last process attached to that shared memory calls the shmdt function and
detaches the shared memory or exits, as in the following example:

vaddr = shmat (shm_id, 0, 0);

In this example, the call to the shmat function returns the starting address
of the shared memory segment. The second argument, shmaddr, is 0, which
specifies that the kernel selects the address space for the caller. You can
specify a non-zero value for shmaddr, but it may make the application less
portable.

Shared memory should not overlap other regions in the virtual address space.
Chose a shared memory segment such that other regions cannot grow into the
shared memory space. In particular, data and stack regions for processes can
grow due to the activity of various functions, or they can grow dynamically as
the process executes. To guard against overlap, keep shared memory segments
clear of data areas and away from the top of the stack. Specifying a value of 0
for shmaddr helps to avoid these problems.

Note also, that shared memory must be page aligned.

The last argument, shmflg, is 0, which specifies that read and write
permissions are granted as long as they were specified in the shmget call.
The SHM_RDONLY flag is the only other valid value for shmflg.

Shared Memory 8-7

Example 8-2 shows the steps involved in attaching shared memory.

Example 8-2 Attaching Shared Memory

#include <sys/ipc.h>
#include <sys/shm.h>

char *start addr;
FILE *keyfile;
int shm key, shm id;

/* Fetch the key */

keyfile = fopen ("/tmp/shared-mem", "r");
if (keyfile == NULL){
fprintf ("Shared memory not available\n");
exit (1);
shm key = ftok ("/tmp/shared-mem", ‘a’);
/* Access shared region */

shm id = shmget (shm key, 4096, 0);

if (shm id == -1){
perror ("Shared memory region access");
exit (1);

/* Determine the virtual address */

fread (keyfile, "%x",&start addr);
fclose (keyfile);

/* Map the region into virtual memory */

start_addr = (char *) shmat (shm id, start addr, 0);

if ((long) start addr == -1)({
perror ("Shared memory attachment failure");
exit (1);

Example 8-2 first determines the key to be used by all processes accessing the
shared memory region. The address of the shared memory is stored in the
temporary file /tmp/shared-mem and is read from the file. Access to the shared
memory is obtained through a call to the shmget function.

The example determines where to locate the shared memory region and
attaches the shared memory region through a call to the shmat function.

8-8 Shared Memory

8.2.3 Locking Shared Memory

You can lock and unlock a shared memory segment into physical memory using
the memlk and memunlk functions. You can lock shared memory to eliminate
paging and to increase execution speed of the application.

8.2.4 Removing Shared Memory

When a process is finished using a shared memory segment, you can detach
it from memory with a call to the shmdt function, as shown in the following
example:

shmdt = (shm_id);

The shmdt function detaches the shared memory by disociating the identifier
from the shared memory table entry, but it does not remove the table entry.
You must use the shmctl function with the IPC_RMID flag to remove the
shared memory segment from the system.

Once shared memory segment is detached, remove it from memory with a call
to the shmctl function with the IPC_RMID flag, as follows:

shmetl (shm id, 0, IPC_RMID, 0);

The last process to use the shared memory should remove it with an explicit
call to the shmctl function. You can set up a signal handler to remove the
shared memory as one of the tasks performed by the last process in your
application.

If you used a temporary file such as /tmp/shared-mem to store the address

of the shared memory, you may want to remove both the file and the shared
memory from memory since there are limits to the number of IPC facilities that
can be created. The example below determines the id of the shared memory,
deletes the temporary file, then detaches both.

shm key = ftok ("/tmp/shared-mem", ‘a’);
shm id = shmget (shm key, 4096, 0);

unlink ("/tmp/shared-mem");

shmdt (shmid);
i = shmetl (shm id, IPC RMID, &tmp);
if (i == -1) perror ("Shared memory object deletion");

Shared Memory 8-9

8.3 Shared Memory and Semaphores

When using shared memory, processes map the same area of memory into
their address space. This allows for fast interprocess communication because
the data is immediately available to any other process using the same shared
memory. If your application has multiple processes contending for the same
shared memory resource, you must coordinate access.

Binary semaphores can be used to regulate access to shared memory and to
determine if a shared memory resource is available. Typically, an application
will begin execution at a nonrealtime priority level, then perform the following
tasks when an application uses shared memory and semaphores:

Create a shared memory region
Determine the virtual address and map the region into memory

Use the same key that you used to establish shared memory to create and
reserve a binary semaphore

Adjust the process priority and scheduling policy as needed
Before a read or write operation, lock (reserve) the semaphore

After a read or write operation, unlock (release) the semaphore

Refer to Chapter 9 for information on binary semaphores and an example
using semaphores and shared memory.

8-10 Shared Memory

9

Semaphores

Semaphores do not transfer data; rather, semaphores are used by cooperating

processes to synchronize access to resources (most commonly, shared memory).
Semaphores can protect the following resources available to multiple processes
from uncontrolled access:

= Global variables, such as file variables, pointers, counters, and data
structures. Protecting these variables means preventing simultaneous
access by more than one process, such as reading information as it is being
written by another process.

= Hardware resources, such as disk and tape drives. Hardware resources
require controlled access because simultaneous access can result in
corrupted data.

= The kernel. The kernel, like a global variable, is a shared resource. A
semaphore can allow processes to alternate execution by limiting access to
the kernel on an alternating basis.

Semaphore protection works only if all the communicating processes using the
shared resource cooperate by waiting for the semaphore when it is unavailable
and resetting the semaphore count when relinquishing the resource. For
cooperating tasks, semaphores are mutual exclusion flags (mutexes) that lock
and unlock a resource.

This chapter includes the following sections:

= Data Structures Associated with Semaphores, Section 9.1
= Binary and Counting Semaphores, Section 9.2

< Semaphores as Event Flags, Section 9.3

= The Semaphore Interface, Section 9.4

= Semaphore Example, Section 9.5

Semaphores 9-1

Incrementing or decrementing the semaphore value manages the locks.
System V semaphores are handled by the kernel such that the semaphore
operations of testing the current value and decrementing (or incrementing)
the value are done atomically. These two atomic operations, increment and
decrement, are done by the kernel such that no other process can adjust the
semaphore values until all operations are complete.

9.1 Data Structures Associated with Semaphores

A semaphore is a set of nonnegative integers, that can range from 1 to an
implementation-defined maximum. Each value in the set can assume any
value within the permitted range. The kernel contains data structures that
define semaphore sets, specify access permission, keep count of the number
of processes waiting for access to the resource, and time-stamp semaphore
activities.

You create or access a semaphore with a call to the semget function. The
semget function creates or returns the semaphore identifier (semid), a unique
positive integer. Each semaphore identifier has a set of semaphores and a data
structure associated with it. All processes using that semaphore set use the
same identifier to access it.

A semaphore object is a semid ds structure that points to an array of sem
structures. When you call the semget function, the semid ds structure is
initialized and establishes the identity of the semaphore object. The semid ds
structure takes the following form:

#include <sys/types.h>
#include <sys/ipc.h>

struct semid ds {

struct ipc _perm sem perm; /* Operation permission structure */
struct sem *sem base; /* Pointer to array of semaphores */
ushort sem nsems; /* Number of semaphores in set */
time t sem otime; /* Last semop time - seconds since Epoch */
time t sem ctime; /* Last semctl time - seconds since Epoch */

}i

The value of sem_nsems is equal to the number of semaphores, nsems, in the
set. Each semaphore in the set is referenced by a positive integer referred to
as a sem_num. The sem_num values run sequentially from 0 to the value of
sem_nsems—1.

9-2 Semaphores

9.1.1 Establishing Semaphore Operation Permissions

Processes can use semaphores as long as the calling process has permission.
Semaphores use a sem perm structure to determine permission. The
sem_perm structure is an ipc_perm structure, that uses information specific to

semaphores.
ushort cuid; /* Creator user ID */
ushort cgid; /* Creator group ID */
ushort uid; /* Owner’s user ID */
ushort gid; /* Owner’s group ID x/
ushort mode /* Read/write (or alter) permission */
u_short segq; /* Slot usage sequence number x/
key t key; /* Key */

In the semop and semctl functions check permission needed to use semaphores.
Permission is interpreted as follows:

00400 Read by user

00200 Write (or alter) by user

00060 Read, Write (or alter) by group
00006 Read, Write (or alter) by others

Read and write (or alter) permissions are granted to a process if the ID for
the calling process matches one or more combinations of permissions or if the
effective user ID (UID) of the process is superuser.

9.1.2 Tracking Semaphore Activity

A semaphore is a data structure as defined in the <sys/sem.h> header file.
The sem structure takes the following form:

struct sem {

ushort semval; /* Semaphore value */
short sempid; /* Pid of last operation */
ushort semncnt; /* Number waiting semval > cval */
ushort semzent; /* Number waiting semval = 0 */

!

The semval member is a nonnegative integer. The sempid member is equal to
the process ID (PID) of the last process that performed a semaphore operation
on this semaphore. The semncnt member is a count of the number of processes
that are currently suspended awaiting this semaphore’s semval to become
greater than its current value. The semzcnt member is a count of the number
of processes that are currently suspended awaiting this semaphore’s semval to
be 0.

In addition to keeping track of the set values for a semaphore, the kernel keeps
other information for each value in the set. The ID (PID) of the process that
performed the last operation on the value, a count of the number of processes
waiting for the value to become zero or to increase is also kept.

Semaphores 9-3

The semaphore operation structure is also defined in the <sys/sem.h> header
file and is of the type sembuf. This structure sets up the fields used in the
semop function for semaphore reserve and release operations. The sembuf
structure takes the following form:

struct sembuf {

ushort sem num; /* Semaphore number */
short sem op; /* Semaphore operation */
short sem flag; /* Operation flags */

]

The value of the sem_num member identifies each individual semaphore in
the semaphore set and is used to control and track individual resources. For
example, if your application uses one semaphore structure to control access to
each of 20 temperature measurement devices, then the value of the sem_num
member would range from 0 to 19.

The value of the sem_op member is the value that you want to add to the
current value of the semaphore. To track more than one resource, specify
a value greater than 1 for the value of sem_op. Then you can increment or
decrement as you would for any other counting construct.

The sem_flag member sets the operation flags IPC_NOWAIT or SEM_UNDO.

Figure 9-1 illustrates how the semaphore data structures relate to each other.

Figure 9-1 Representation of Semaphore Data Structures

semid_ds

4" sem |—| sem I—l sem |

MLO-007325

9-4 Semaphores

9.2 Binary and Counting Semaphores

You can use semaphores to keep track of a large number of resources, such

as 20 analog measurement devices or numerous tape drives. You can also use
semaphores to track the availability of each resource. For example, if your
application takes temperature readings from 20 devices, one semaphore in
your array of semaphores could count from 0 to 19, while the other semaphores
control access so that only one reading is taken at a time. To accomplish this,
you need to use both binary and counting semaphores.

Semaphores are essentially counting structures that are used to keep track of
resource usage. A semaphore with a maximum count of 1 is called a binary
semaphore because it has only two states, 0 and 1. Binary semaphores protect
shared resources from uncontrolled multiple access. For example, if a process
has access to a shared memory segment, the value of the semaphore is set to
0. If the process relinquishes access, the value of the semaphore is set to 1. In
this case, the maximum count for the semaphore is 1. Such semaphores are
often called mutual exclusion semaphores or mutexes.

Semaphore operations are accomplished with a call to the semop function.
For binary semaphores, operations are essentially reserving the resource and
releasing it after exclusive use is complete.

The reserve operation checks to see if the resource is available or is reserved by
another process. If the resource is not already reserved, a reservation is made
and the process continues. If the resource is reserved, the process making

the second reservation waits (is blocked) until the first process releases the
resource. Several processes may be blocked waiting for a resource to become
available.

The release operation sets the semaphore value to indicate that the resource is
not reserved. The waiting process, if there is one, is unblocked and it accesses
the resource.

A counting semaphore acts as a meter that allows multiple processes to access
a resource. Counting semaphores permit a predetermined number of processes
to share a resource one at a time, while also permitting a single process to
reserve the shared resource for exclusive access. All of the processes that share
a resource must agree on which semaphore array controls the resource. With
each operation, the semaphore counter is incremented or decremented. When
the semaphore counter reaches 0, the process requesting the next access waits
until some other process releases the resource and the count is incremented.
Several processes can be blocked waiting for access.

Semaphores 9-5

Access to a resource is either granted or denied; however, the value of the
semaphore operation is the result of arithmetic calculations of absolute values.
Refer to the reference pages for a full explanation of how the semop function
calculates these values.

Most applications use both binary and counting semaphores. You can to set
up an array of semaphores with one counting semaphore and multiple binary
semaphores. This array can track the availability of individual resources and
resource allocation for the complete set of resources.

9.3 Semaphores as Event Flags

All processes that have access to a particular event flag can examine or change
the value of the flag. Cooperating processes must know the key, and agreee on
how the semaphores will be utilized.

The primitive operations are summarized as follows:

= Wait — Initializes the event flag to the clear value, which is 1
e Set — Sets the event flag to the value of 0

e Clear — Sets the event flag to a value of 1

= Read — Retrieves the current value of the event flag

< Wait — Blocks execution until some other process, or a signal handler
within the process, sets the event flag

You set or clear the event flag using the semctl function and the SETVAL
control flag as follows:

semctl (sem id, sem num, SETVAL, 1); /* Initializes an event flag */
semctl (sem id, sem num, SETVAL, 1); /* Clears an event flag */
semctl (sem_id, sem num, SETVAL, 0); /* Sets an event flag * /

Use the semctl function and the GETVAL control flag to read the current value
of the flag.

Use the semop function to wait for the event flag to be set. Since a set flag has
been defined as 0, the process should call the semop with an operation code of
0. This causes the process to wait until the event flag is set.

Example 9-1 illustrates one way to use a semaphore as an event flag.

9-6 Semaphores

Example 9-1 Using Semaphores as Event Flags

#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sem id; /* Semaphore array ID, from semget */
int sem num; /* Semaphore number in array */
struct sembuf sops; /* Semaphore operation structure */

sops.sem num = sem num; /* Set the semaphore number */
sops.sem op = 0; /* Operation x/
sops.sem _flg = 0;

for (;;){ /* Loop for signal deliver */
if (semop (sem id, &sops, 1) == -1)
if (errno != EINTR) { /* Failed - signal ? */
perror ("semop failure");
exit (1); /* Failed */
continue; /* Signal, check event flag again */
else
break; /* Event flag is set */

Note that you cannot use semaphores to wait for logical combinations of event
flags or to retrieve the previous event flag setting.
9.4 The Semaphore Interface

The functions relating to semaphores follow the same general logic as for other
System V IPC facilities. The semget function allocates a semaphore set, but
the members of the semaphore set data structure are not set until the process
calls the semctl function.

Table 9-1 lists the functions that allow you to create and control semaphores.

Semaphores 9-7

Table 9-1 Semaphore Functions

Function Description

semget Returns the semaphore identifier

semctl Provides semaphore control operations

semop Performs an array of semaphore operations on the set of

semaphores associated with the semaphore

The semget function allocates semaphores. Operations on semaphores are
sometimes referred to as reserve operations. The phrase “reserve a semaphore”
refers to operations that decrement a semaphore value. Semaphore values are
decremented when a semaphore is requested, locked, set, or blocked.

The phrase “release a semaphore” refers to operations that increment a
semaphore value. Semaphore values are incremented when a semaphore is
released, unlocked, cleared, or awakened. Section 9.4.3 discusses how to use
the semop function to get and release semaphores.

9.4.1 Creating and Opening Semaphores

A call to the semget function allocates a specified number of semaphores in
one set of semaphores, which is identified by the descriptor semid. On a call
to the semget function, (if there is no entry and the user set the IPC_CREAT
or IPC_PRIVATE flag), the kernel allocates an entry that points to an array of
semaphore structures (semid_ds structures) with a user-specified number of
elements. The identifier is then returned to the calling process. The entry also
specifies the number of semaphores in the array and the time of the last call to
the semctl and semop functions.

If your application consists of related processes, you may want to set the IPC_
PRIVATE flag on the function:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

sem id = semget (IPC PRIVATE, 4, 0600);
This call creates a set of four semaphores with read and write permission

for the owner. Be sure to initialize the individual semaphores in the array
immediately after you create the array.

When you call the semget function before calling fork to create child processes,
the child process inherits the IPC channel as well as the IPC permissions. This
enables all related processes to read to and write from the semaphore.

9-8 Semaphores

If your application consists of unrelated processes, you can use the ftok
function to establish a key based on other criteria. Other unrelated processes
that communicate through the shared memory must call the semget function to
get the semid.

sem id = semget (ftok ("/usr/users/example4", 'X’'), 4, IPC CREAT|0600);

This call creates a new set of semaphores, but the call to the ftok function
returns a key based on the Zusr/users/example4 pathname and the character
X. As other processes call the semget function, sem_id is returned for them to
use in other semaphore functions.

The following example creates a semaphore set containing 25 semaphores. In
this example, the file /tmp/semaphore is used in the ftok call to generate the
key.

int sem key, sem id;

sem key = ftok ("/tmp/semaphore", 'a’);
sem id = semget (sem key, 25, IPC CREAT | 0777);

This example creates the maximum number of semaphores in an array (25),
numbered from 0-24. To access a previously allocated semaphore array, a
process needs only to determine the sem_id from the agreed-upon key.

int sem key, sem id;

sem key = ftok ("/tmp/semaphore", ‘a’);
sme_id = semget (sem key, 25, 0);

If you create shared memory and a semaphore at the same time, you can use
the temporary file that holds the virtual address of the shared memory as the
key for both. In this case, the call to the ftok function would specify the same
file name and a different id, as follows:

sem key = ftok ("/tmp/shared-mem", 'b’);

9.4.2 Controlling Semaphores

The semctl function takes a number of flags to control the values of the
members of semaphore (sem) data structures. The sem structure is used

to initialize semaphores, to create binary and counting semaphores, or to
initialize structure members to serve as event flags. The semctl function
allows you to retrieve status. The semctl function takes more flags than other
IPC ctl functions to allow you access to the status of individual members of
the sem structure.

Semaphores 9-9

The semctl function uses the GETALL flag to copy the values contained in the
sem structure into an array. You can then alter the values and pass them back
to the sem structure with the SETALL flag. When this command is successfully
executed, the semadj values corresponding to each specified semaphore in all
processes are cleared on exit.

If you use the SETVAL flag, the semadj value corresponding to the specified
semaphore in all processes is cleared.

You must have read permission to use all of these flags, except SETALL
and SETVAL. You must have alter permission to use SETALL or SETVAL.
Table 9-2 shows the flags used on the semctl function.

Table 9-2 Semaphore Command Control Flags

Flags Description

GETALL Places all semvals into array pointed to by arg.array

GETNCNT Returns the value of semncnt

GETPID Returns the value of sempid

GETVAL Returns the value of semval

GETZCNT Returns the value of semzcnt

IPC_RMID Removes a semaphore ID and the associated data structure

IPC_SET Sets the user and group IDs and operation mode values

IPC_STAT Returns the status information in the associated data
structure and copies it into a user-specified buffer

SETALL Sets all semvals according to the array pointed to by
arg.array

SETVAL Sets the value of semval to arg.val

These control flags allow you to control semaphores by performing the following
functions:

= Return the value of the semaphore
e Set the value of a semaphore

< Return the ID (PID) of the last process that performed an operation on the
semaphore set

= Return the number of processes waiting for a semaphore value to be equal
to zero

< Return the number of processes waiting for a semaphore value to increment

9-10 Semaphores

e Return all semaphore values

= Set all semaphore values

= Return all semaphore structure member values and status

= Change operation permissions

< Remove semaphores, semaphore sets, and their associated data structures

Note that you must be either the owner or have superuser privileges to use
the IPC_SET or IPC_RMID flags.

9.4.2.1 Using SETALL to Initialize Semaphores
You can use the SETALL flag to initialize all the semaphores at once. The
SETALL flag does the initialization atomically and there is no need to use the
SETALL flag more than once.

Example 9-2 illustrates how to initialize semaphores using the SETALL flag on
the semctl function and how to retrieve the semval values using the GETALL
flag.

Example 9-2 Initializing Semaphores with SETALL

/* This program first allocates semaphores with a call to semget */
/* then uses the SETALL flag with the semctl to initialize each */
/* semaphore. */

/* The semctl function is made again with the GETALL flag to */
/* verify initialization. The results are printed out. */

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define numberofsems 2
#define firstsem 0
#define secondsem 1

int sem id;
ushort semarray[numberofsems];

main()
{
if ((sem_id = semget (IPC PRIVATE, numberofsems, 0600)) == -1)
{ perror ("Call to semget failed");
exit (1);

/* Exit on error. */

else printf ("sem id is %d\n", sem id);

(continued on next page)

Semaphores 9-11

Example 9-2 (Cont.) Initializing Semaphores with SETALL

/* Print the value of sem id. */

semarray[firstsem] = 8; /* Assign values to the semaphores */

semarray[secondsem] = 9; /* using semctl SETALL. x/
if (semctl (sem id, 0, SETALL, semarray) == -1)
{perror ("Call to semctl SETALL failed");

exit (1);
/* Exit on error. */

/* Verify initialization with a call to semctl GETALL */

else if (semctl (sem id, 0, GETALL, semarray) == -1)
{perror ("Call to semctl GETALL failed");
exit (1);
1 /* Exit on error. */

else {

printf ("The semval value of firstsem = %d\n"’ semarray[firstsem]);
printf ("The semval value of secondsem = %d\n"’' semarray[secondsem]);

Example 9-2 illustrates how you can call the semctl function with the
GETALL flag to verify the results.

9.4.2.2 Using SETVAL to Initialize Semaphores
To initialize the semaphores one at a time, use the SETVAL flag. Example 9-3
illustrates how to initialize semaphores using the SETVAL flag on the semctl
function. Note that you cannot set a semaphore value to a negative number.

9-12 Semaphores

Example 9-3 Initializing Semaphores with SETVAL

/* This program first allocates semaphores with a call to */
/* semget, then uses the SETVAL flag with the semctl to */
/* separately initialize each semaphore. */

#include <sys/stypes.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define numberofsems 2
#define firstsem
#define secondsem 1

o

int sem id;
ushort semarray[numberofsems];

main()

{

if ((sem id = semget (IPC PRIVATE, numberofsems, 0600)) == -1)
{perror ("Call to semget failed");
exit (1);
1 /* Exit on error. */

else printf ("sem id is %d\n", sem id);
/* Print out the value of sem id */

semctl (sem id, firstsem, SETVAL, 8);
semctl (sem id, secondsem, SETVAL, 9);

/* Initialize semaphores using semctl and SETVAL.*/

}

9.4.2.3 Initializing Binary and Counting Semaphores
You control whether the semaphore will be a binary or a counting semaphore
by the value you assign to the arg argument in the semctl function. To use the
semaphore as a binary semaphore, set the value of each argument in the array
to the value of 1.

int sem id; /* ID of the semaphore array, from semget */
int sem num; /* semaphore number in semaphore array */

semctl (sem id, sem num, SETVAL, 1);
/* Sets the value to 1 */

To create a counting semaphore, set the value of the access count of each
semaphore that will be used as a counting semaphore in the array of
semaphores. The following example initializes the access count to ACOUNT for
simultaneous shared access.

Semaphores 9-13

int sem id; /* ID of the semaphore array, from semget */

int sem num; /* semaphore number in semaphore array */
semctl (sem id, sem num, SETVAL, ACOUNT);
/* Sets the value to ACOUNT */

9.4.3 Using Semaphore Operations

After you have created your semaphore sets with a call to the semget function
and initialized the semaphore set values with a call to the semctl function, use
the semop function to perform operations on the semaphore sets.

The semop function is used to perform an array of semaphore operations
atomically on the set of semaphores identified by the semaphore identifier.
The syntax for the semop function includes a pointer (sops) to an array of
semaphore operation structures (sembuf structures) as well as the number of
structures in the array (nsops).

The semop function manipulates members of the sembuf structure to allow
access to a resource. The semop function changes the value of the sem_op
member to reflect whether you are reserving or releasing a semaphore.

The value of the sem_num member identifies each individual semaphore

in the semaphore set and controls and tracks individual resources. For
example, if your application used one semaphore to control access to each of
20 temperature measurement devices, then the value of the sem_num member
would range from 0 to 19.

The sem_op member stores the value that you want to add to the current value
of the semaphore. For example, to reserve a semaphore, make the value of
sem_op negative. To release a semaphore, make the value of sem_op positive.
If sem_op has a value of 0, neither a reserve nor release operation is performed.
To track more than one resource, specify a value greater than 1 for the value
of sem_op and increment or decrement as you would for any other counting
construct.

The use of semaphores to share resources among processes will work only if

processes release the resource immediately after they finish using it. As you

code your application, take care not to do a release operation on a semaphore
you have not reserved. If you do, the value of the semaphore will increase.

The sem_flag member sets the operation flags.

If the kernel cannot do all the operations, the process sleeps until the kernel
can finish. To keep the process from sleeping, specify the IPC_NOWAIT flag.

9-14 Semaphores

The SEM_UNDO flag performs cleanup work when that the application exits.
If the SEM_UNDO flag is set, semaphore reservations are automatically
released when a process exits. It is good practice to use SEM_UNDO to
prevent possible deadlocks in the event that the process terminates.

9.4.3.1 Reserving a Semaphore

To reserve a semaphore, call the semop function with an operation code of -1
on the appropriate semaphore. Example 9-4 reserves a binary semaphore.

Example 9-4 Reserving Binary Semaphores

#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int sem id; /* Semaphore array ID, from semget */
int sem num; /* Semaphore number in array */
struct sembuf sops; /* Semaphore operation structure */
SOpS.sem num = Sem num; /* Set the semaphore number x/
sops.sem op = -1; /* Operation -1 */
sops.sem_flg = SEM UNDO; /* Undo on process exit */
while (1) { /* Loop for signal delivery */

if (semop (sem id, &sops, 1) == -1)
if (errno !=EINTR) { /* Failed - signal? */
perror ("semop failure'"); /* no x/

exit (1);

} /* It was a signal */
} /* Retry semop */

The following example shows the code for a reserve operation on semaphore
number 19 in an array of 20 semaphores.

sops.sem num = 19; /* Set the semaphore number */
sops.sem op = -1; /* Operation -1 */
sops.sem _flag = 0; /* No flags */

semop (sem _id, sops, 20);

Semaphores 9-15

This operation adds the sem_op value of -1 to the semval specified for
semaphore number 19. If the value of semval is greater than or equal to 1,
then the arithmetic is performed. If semval is less than 1, the calling process
sleeps until some other process releases the semaphore, which increments the
value of semval, or semaphore operations are interrupted by a signal, or the
semaphore is removed with a call to semctl with the IPC_RMID flag.

To reserve a counting semaphore with a count of ACOUNT, as in the example,
call the semop function with an operation code of —~ACOUNT on the appropriate
semaphore operation. The following example shows the operation to add the
sem_op value of —~ACOUNT to the semval specified for sem_num.

SOpS.sem num = Sem num; /* Set the semaphore number */
sops.sem op = -ACOUNT; /* Operation -ACOUNT */
sops.sem_flag = 0; /* No flags * /

semop (sem id, sops, 1);

9.4.3.2 Releasing a Semaphore

To release a semaphore, make the value of sem_op positive. The following
example shows the code for a release operation on a binary semaphore:

sops [0] .sem_num = sem num; /* Set the semaphore number */
sops[0] .sem op = 1; /* Operation +1 */
sops.sem_flag = 0; /* No flags */

semop (sem id, sops, 1);

This operation adds the sem_op value of 1 to the semval specified for sem_num.
A release operation does not cause the calling process to sleep, but the kernel
will wake any process that is sleeping while waiting for the value of the sem_op
to change.

To release a counting semaphore with a count of ACOUNT, call the semop
function with an operation code of ACOUNT on the appropriate semaphore
operation. The following example shows code for this operation:

SOpS.Sem num = Sem num; /* Set the semaphore number */
sops.sem op = ACOUNT; /* Operation +ACOUNT * /
sops.sem _flag = 0; /* No flags */

semop (sem_id, sops, 1);

To ensure that the calling process does not sleep while waiting for a semaphore
to become available, specify the IPC_NOWAIT flag on the semop function.

You can also release a semaphore with the SEM_UNDO flag, which
automatically releases any semaphore reservation when the process exits.
Such an application might have code that looks like the following:

SOpS.sem num = Sem num; /* Set the semaphore number */
sops.sem op = -1; /* Operation -1 */
sops.sem flg = SEM UNDO; /* Undo on process exit */

9-16 Semaphores

9.4.4 Removing Semaphores

To remove semaphores and their associated data structures you can use the
IPC_RMID flag on the semctl function, or the ipcrm command. You can use
the semctl function to remove a semaphore while your application is running.
Use the ipcrm command to remove the semaphore when the application is not
running.

The last process in your application to use the semaphore set should remove it
with a call to either the semctl or semop function. If a process is waiting for
a semaphore and you delete the semaphore, the waiting process will get an
EIDRM error. As with other IPC facilities, you can set up a signal handler to
remove the semaphore set as one of the tasks performed by the last process in
your application.

If you are the owner of the semaphore or have superuser privileges, you can
remove semaphores and semaphore sets from within your application by using
the IPC_RMID flag on the semctl function. When a process is finished doing
operations on semaphores, remove the semaphores from memory as follows:

int sem key, sem id;

sem key = ftok ("/tmp/semaphore", ‘a’);
semctl (sem id, 0, IPC RMID, &tmp);

You can also remove semaphores from the system with the ipcrm command
after the application is done running. Refer to the reference pages for more
information on the ipcrm command.

9.5 Semaphore Example

It is important that two processes not use the same area of shared memory at
the same time. Binary semaphores protect access to resources such as shared
memory. Before reading or writing to a shared memory region, a process

can lock the semaphore to prevent another process from accessing the region
until the read or write operation is completed. When the process is finished
accessing the shared memory region, the process unlocks the semaphore and
frees the shared memory region for use by another process.

Example 9-5 uses semaphores as event flags to ensure that the writer and
reader processes have exclusive, alternating access to the shared memory
region. For example, the writer process writes a block of text, then the reader
process reads, and then the writer process writes again.

Semaphores 9-17

Example 9-5 is a partial example, but it gives the framework essential for
using shared memory and semaphores together for interprocess communication
and resource access control. This program needs to be started before the
reader process, as it creates the shared memory and semaphores used by both
processes.

The makefile for this program follows the example.

Example 9-5 Using Semaphores and Shared Memory

/* This program reads data from standard input into a shared */
/* memory segment then it is copied by reader.*/

/* A child process is created as a reader and writes data to */
/* standard output from the shared memory segment. */

#include <errno.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <stdio.h>
#include <fentl.hs>

struct shm seg *create shm();
struct shm seg{

int nbytes;

char buf [4096] ;

]

#define WRITE _TURN 0
#define READ TURN 1
#define SET 0
#define CLEAR 1
#define FILE KEY "/tmp/file key"

#define syserr(s){ \

perror (s) ; \
exit (1) ;
}

#define set flag(sid, semp){ \
if (semctl(sid, semp, SETVAL, SET)) \
syserr ("semctl: SETVAL"); \

#define clear flag(sid, semp) { \
if (semctl (sid, semp, SETVAL, CLEAR)) \
syserr ("semctl: SETVAL"); \

(continued on next page)

9-18 Semaphores

Example 9-5 (Cont.) Using Semaphores and Shared Memory

#define SEG SIZE sizeof (struct shm seg)
#define MAX CHARS SEG SIZE - sizeof (int)

char child msg[] = "READER: write data to stdout from buffer...\n";
char parent msg[] = "WRITER: read data from stdin into buffer...\n";

/******************* Main ****************************/
main(int argc, char *argv(])

int sem id;

int shm id;

struct shm seg *shm addr;
int nb;

/* Create key file for ftok, if it doesn’t already exist */

if ((open (FILE_KEY, O RDWR|O CREAT, 00666)) == -1)
syserr ("open:") ;

sem_id = create sem(FILE KEY, 's’);
shm addr = create shm(FILE KEY, 'm’, &shm id);

[*xxxxkk%x Child process: the reader **xx¥¥%xx/
if (fork() == 0){
for(;;)
f (waitfor(sem id, READ TURN) == -1)

i
perror ("reader: semop");
break; /* Break if EOF */

J

if (shm_addr->nbytes == 0)

break;

write(1,child msg, sizeof (child msg));

if ((write(1, shm addr->buf, shm addr->nbytes))== -1){
perror ("reader: write");
break;

/* Give the writer a turn */

clear flag(sem id, READ TURN);
set_flag(sem id, WRITE TURN);

set flag(sem id, READ TURN);

exit (0);
1 /* Child process */

elsef

[*****xxxx DParent Process: the writer **xkxxx/

(continued on next page)

Semaphores 9-19

Example 9-5 (Cont.) Using Semaphores and Shared Memory
for(;;){ /* Wait for turn */

if (waitfor (sem id, WRITE TURN) == -1)({
perror ("writer: semop");
break;

write(1l, parent msg, sizeof (parent msg));

/* Read data from stdin into shared memory segment */

if ((nb = read(0,shm addr->buf, MAX CHARS)) == —1){
perror ("writer: read");
break;

shm_addr->nbytes = nb;
/* Give the reader a turn */

clear flag(sem _id, WRITE_TURN);
set flag(sem id, READ TURN);

if (nb==0)

break; /* EOF */

J

if (unlink (FILE KEY) == -1)
perror ("unlink") ;

/* Wait until reader has a turn, and seen the EOF - we now know */
/* the child must have finished, so we can delete the semaphores*/
/* and shared memory. */

waitfor(sem id, WRITE TURN);

if (semctl(sem id, 0, IPC RMID, 0) == -1)
perror ("semctl: IPC_RMID");

shmdt (shm_addr) ;
exit (0);

/* main */
[*rExkkkRkRKKRK* k%% cregte sem Function ****rkxkkkkxktrsk /
/* This function creates a cluster of two semaphores. */
/* One is used to signify that the writer process can */
/* access the shared memory, the other to signify that */
/* the reader can have a turn. */

int create sem(char *fn, char *key char)
{key t sem key;
int sem id;

(continued on next page)

9-20 Semaphores

Example 9-5 (Cont.) Using Semaphores and Shared Memory
/* Generate a key used to create the semaphore */

sem key = ftok(fn, key char);
/* Create a cluster containing 2 semaphores */

if ((sem_id = semget(sem key, 2, IPC CREAT | 00777)) == -1)
syserr ("create sem: semget");

/* Initialize event flags - WRITER gets first turn to access shared
memory */

set_flag(sem id, WRITE TURN);
clear flag(sem id, READ TURN);

return(sem id) ;
/* create_sem */

[HREFE KRRk kK kK kK create shm Function KEEKKKRR KR KKK KKK

/* This function creates a shared memory segement large*/

/* enough to hold a shm seg structure. This structure */

/* (composed of a length and a text field) is used to */

/* pass data in shared memory between the writer and */
reader process.

/* reader p */

/* The shared memory id is returned in shm id, and the */
/* attached address of the segment is returned as the */
/* function value. */

struct shm seg *create shm(char *fn, char *key char, int *shm id)
{struct shm seg *start addr;
FILE *keyfile;
key t shm key;

/* Set up the key - ftok returns a key based on the */
/* given path and single character id */

shm key = ftok(fn, key char);

/* Create the shared region object - SEG SIZE bytes, */
/* protected rw-rw-rw-. IPC CREATE means create if */
/* it doesn’t already exist */

if ((*shm_id = shmget (shm key, SEG SIZE, IPC CREAT | 0666)) == -1)
syserr ("Create_shm: shmget");

/* Map the shared region into virtual memory - SHM RND */
/* means align on a page boundary */

start _addr = (void *)shmat (*shm id, 0, SHM RND);

(continued on next page)

Semaphores 9-21

Example 9-5 (Cont.) Using Semaphores and Shared Memory

if((long *) start addr == (void *)-1)
syserr ("create shm: shmat");
return(start_addr) ;
/* create_shm */

int waitfor(int sem id, int sem num)

{struct sembuf sops; /* Semaphore operation structure */
sops.sem num = sem num; /* Set the semaphore number x/
sops.sem op = 0;
sops.sem_flg = SEM UNDO;
return (semop (sem id, &sops, 1));

/***/
/***/

/* # makefile for semaphore program. */

/* CFLAGS = -g3 -non shared -0 \ */
/* -DLANGUAGE C -D OSF_SOURCE */
/* LDFLAGS = -L/usr/ccs/lib */
/* sem test: sem test.o x/

/* $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $? -lrt */

/* sem test.o: sem test.c */

9-22 Semaphores

10

Pipes

A pipe is a structure that facilitates interprocess communication that provides
a flow of data between related processes. One process reads from an 1/O
channel while another process writes to the 1/O channel. All pipes require

a sending process (called a writer) and a receiving process (called a reader).
Pipes are unidirectional and will not work properly unless both a reader

and a writer are identified. However, only one reader and one writer can be
associated with a pipe.

This chapter includes the following sections:
< Regular Pipes, Section 10.1
= Named Pipes, Section 10.2

There are two types of pipes; regular and named pipes. Regular pipes are
invoked by the pipe system call and are known only to processes which are
descendants of the process that invoked the pipe system call. Named pipes
are identical to regular pipes except for the way that processes access the pipe.
Named pipes use file descriptors and are accessed by a pathname.

Pipes, whether they are regular or named pipes, use the stream 1/O model.
Data is transferred without any interpretation by the system. Messages in
pipes have no record boundaries.

10.1 Regular Pipes

Pipes can be used between parent and child processes or between child
processes of the same parent. Data moves in a one-way flow with a single pipe
or in a two-way flow if you create more than one pipe. Data transfer using
pipes is subject to rules for reading and writing. If you open the pipe with both
read and write access, then you have a two-way pipe. If you open the pipe with
either read or write, then you have a one-way pipe.

Pipes 10-1

Regular and named pipes use stream 1/O to direct data to and from cooperating
processes. Data is transferred without any interpretation by the system.
Because of this, information sent to a pipe is read in the order in which it is
written and there is no mechanism to determine the length of the data sent,
stored, or received. If your application needs to interpret the data, the reader
and the writer processes must take care of that task.

Pipes move data from one 1I/O channel to another, which means that a pipe is a
memory buffer. Reads from a pipe remove the data from the buffer. Each pipe
holds up to PIPE_MAX bytes of data as defined in the <1imits.h> header file.

A process can read its own data from a pipe, so use the close function to
control the flow of information. As long as you use sequential reads and writes,
you can use a pipe anywhere you would normally use a file descriptor. If

all write channels to a pipe are closed, the reader of that pipe will read an
end-of-file (EOF) when the pipe is empty.

Writing to a full pipe (PIPE_MAX) blocks the process because the process waits
until the pipe empties enough to take the data. Likewise, reading an empty
pipe blocks the process because the process waits until there is something in
the pipe to read. To avoid blocking, use the O_NONBLOCK flag on the fcntl
function. If no data is available for the operation or the operation would block
the calling process, —1 is returned and the error is EWOULDBLOCK.

10.1.1 Creating a Pipe

Pipes are created by a call to the pipe function and are accessed by the file
descriptors contained in an integer array. The system uses file descriptors

as handles for various objects: including disk files, special files, sockets, and
pipes. By convention, always read and write to the file descriptors in both
parent and child processes. Use the sysconf function to determine how many
file descriptors are allowed per process.

The first three file descriptors in any process are:
= File descriptor 0 — Standard input (stdin)
= File descriptor 1 — Standard output (stdout)
e File descriptor 2 — Standard error (stderr)

Subsequent file descriptors are allocated sequentially. A call to the pipe
function, for example, returns two additional file descriptors as follows:

= File descriptor 3 — read

« File descriptor 4 — write

10-2 Pipes

In a two-way pipe, both processes can read and write from the pipe and each
process can read the data written by itself. Therefore, it is sometimes easiest
to use pipes for for read-only or write-only communication by closing either the
write or read end of the pipe in each process.

Figure 10-1 shows a one-way pipe. The parent process writes data to the pipe
while the child process reads data from the pipe. Example 10-1 creates a pipe,
creates a child process, and then reads a line from stdin and writes it to the
pipe. The child reads a line from the pipe and writes it to stdout.

Figure 10-1 One-Way Pipe

write read
\ kernel
pipe

MLO-007326

Pipes 10-3

Example 10-1 Creating a Child Process and a Pipe

/* This program creates a pipe and a child process. The parent */
/* reads a line from stdin and writes it to the pipe. The child*/
/* reads a line from the pipe and writes it to stdout. */

#include stdio <stdio.h>

main()
{
int pid, /* Process ID returned by fork() */
n, /* Number of bytes read from pipe by child */
fd[2]; /* Array that holds pipe file descriptors */
char par line [81], /* Line buffer for parent */
chi line [81]; /* Line buffer for child */
if (pipe(fd) == -1) /* Create a pipe */
perror ("pipe.c: pipe failed"), exit(1);
if ((pid = fork()) == -1) /* Create a child */
perror ("pipe.c: pipe failed"), exit(1);
if (pid == 0) /* Child process; execute code */
{close (£d[1]); /* Close write end of pipe */
n = read(£d[0], chi line, 80); /* Read from pipe */
chi line([n] = '\0';
printf ("Child: your line was %s\n", chi line);
exit (0); /* Successful exit from child */
}
else /* Parent process; execute parent’s code */
{close (fd[0]); /* Close read side of pipe */
printf ("Enter line: ");
gets (par_line); /* Read line from stdin * /
write (£d[1], par_ line, strlen(par line)); /* Write line to pipe */
wait (0); /* Wait for child to exit * /
exit (0); /* Successful exit from parent */

J
J

The system synchronizes read and write activities by blocking when there are
not enough characters in the pipe to read or when the pipe is too full to receive
a write.

In situations where blocking will significantly delay process execution, you may
want to use the O_NONBLOCK flag on the fcntl function.

10-4 Pipes

Figure 10-2 Two-Way Pipe

kernel
Process Process
A B

MLO-007327

10.1.2 Redirecting stdin, stdout, stderr to Pipes

The information written to or read from a pipe can be redirected to different
file descriptors, such as stdin, stdout, and stderr.

Figure 10-2 illustrates two-way pipe communication between two processes.
Two-way pipes can be created and managed by using file descriptors.

The dup2 function allows you to duplicate file descriptors. The dup2 function
can be used to redirect a process’s stdin, stdout, or stderr to a pipe.

First, you create a pipe; then you close an existing file descriptor with a call
to the close function. Next, you call the dup2 function, supplying the write
channel to the pipe as the object to which the newly allocated descriptor points.
Now any writes to stdout (which the system knows as file descriptor 1) are
written to the pipe. The writer process writes to file descriptor 1 just as it had
before, but now file descriptor 1 points to a pipe rather than stdout.

The following example fragment shows how to use the dup2 function to redirect
stdout in a parent. The parent executes the following functions:

int nfd[2];
pipe(fd);

Pipes 10-5

10.1.3

if (fork !=0) { /* Parent creates two child processes */
if (fork !=0) {
dup2 (£d[1], stdin);
close (fd[0]);
else { /* Child */
dup2 (£4[0], stdout);

close (£d[1]);

Creating Pipes with popen

Use the popen function to create a child process that executes a Bourne shell
(sh) command. A popen call also creates a one-way pipe between the parent
and a child process. The popen function combines the pipe, fork, and exec
functions and performs the following tasks:

 Creates a pipe
=« Creates a child process

= Creates a Bourne shell in the child process that executes the shell
command specified in the popen call

e Causes the shell command to read or write the pipe to communicate with
the parent process

< Returns a standard 1/O file pointer as the channel to the pipe for the
parent to read or write

The value returned by the popen function is a standard 1/O file pointer, used
for either input or output, depending on the type specified in the command.

The pclose function closes the 1/0 stream created by a call to the popen
function.

10-6 Pipes

10.2 Named Pipes

Named pipes (FIFOs) are the same as regular pipes except that named pipes
are special files in the files system. You open named pipes with the open
system call and the pathname associated with the file. Data in named pipe
special files has no record boundaries.

One shortcoming of regular pipes is that they can only be used between
processes that share a common parent. Pipes are passed from one process to
another by the fork function, and all open files are shared between the parent
and child process after the fork call. Unrelated processes cannot use regular
pipes for communication because they do not share open files. Some other form
of interprocess communication must be used for communication between two
unrelated processes. One form of communication can be the named pipe. 1

A named pipe provides a one-way flow of data between unrelated processes.
Named pipes are very similar to regular pipes and follow many of the same
rules. For example, they both use buffers to store data and read and write to
other processes. However, unlike regular pipes, named pipes can communicate
with unrelated processes. That means that processes can use the same
buffering and synchronization techniques offered by the system for use with
regular pipes, even if the processes are not related.

Unlike regular pipes, named pipes have an identifier and exist in a file or
directory. The file for the named pipe continues to exist until it is explicitly
removed.

Named pipes are created by a call to the mknod function. The mknod command

is most commonly used by system managers or users with superuser privileges
to create new device entries, but it can also be used by a nonprivileged user to
create a named pipe.

The mknod function takes three parameters: pathname, mode, and dev. The
pathname parameter takes a character string specifying the pathname of the
file to be created. The mode parameter specifies the file type and the access
permissions for the file. Refer to the reference pages for an explanation of the
mknod function and an explanation of the values used in the parameters.

Use the open, fdopen, or fopen functions to associate an open file descriptor
with a standard stream 1/O. Once this is done, you must decide how the
application will handle the data. To reduce the possibility that your process
will be blocked while waiting for a reader, writer, or appropriate data, you can
use the O_NONBLOCK flag on the fcntl function.

! Named pipes are sometimes referred to as first-in, first-out pipes or FIFOs.

Pipes 10-7

Named pipes must be opened by at least one reader and one writer. If only the
reader or only the writer opens the pipe, a signal is generated, and the calling
process is suspended until another process opens the pipe. If the process has
not called the signal function to handle the signal, the default action is to
terminate the process.

A regular pipe no longer exists when it is not in use or its application
terminates. Because named pipes are files, you must take several steps to
remove them. First, call the close function to close the open file descriptors,
then remove a named file with the rm or unlink command.

10-8 Pipes

11

Signals

The signal interface is a traditional form of interprocess communication and is
generally used to notify processes that something has happened in one process
that affects another process. Signals are often sent asynchronously; that is,
the receiving process cannot predict when a signal will arrive. The application
must contain code to take action once a signal is received. The action can be
to ignore the signal, terminate the process, or catch the signal by executing a
handler function.

Often, signals are referred to as "software interrupts” and are the software
equivalent of a hardware interrupt. Signals are the kernel’'s mechanism for
communicating events to processes. Signals are also sent by a user process to
notify another process of an event such as the expiration of a timer.

This chapter includes the following sections:
= P1003.4/D10 Realtime Signals, Section 11.1
e The Signal Interface, Section 11.2

Signals do not pass data, do not identify the sending process, and are not
prioritized or queued. Nevertheless, signals are used by timers and other
events to trigger the start of a signal handler once the signal is received.

11.1 P1003.4/D10 Realtime Signals

The P1003.4/D10 standard extends signal generation and delivery for realtime
functions requiring asynchronous notification. Currently, asynchronous 1/0 and
timer functions generate signals as an explicit parameter to the asynchronous
1/0 and timer function calls. When using these functions, you do not have to
call a separate function to deliver signals.

Signal delivery for the P1003.4/D10 realtime functions uses a sigevent
structure. The sigevent structure is supplied as an argument (either directly
or indirectly) to the function call. The sigevent structure is defined in the
<signal.h> header file and contains the following members:

Signals 11-1

void *sevt_value; /* Not currently supported - specify as NULL */
int sevt signo; /* Signal sent on I/0 completion * /
/* or timer expiration */

The sevt_value member is an application-defined value to be passed to the
signal catching function at the time of signal delivery. This member is used in
P1003.4/D10 Realtime Signals, which are not fully implemented at this time.
Specify a value of NULL for this member.

The sevt_signo member specifies the signal number to be sent on completion
of the asynchronous 1/O operation or on timer expiration. In both instances,
you must set up a signal handler to execute once the signal is received. You
can use sigaction or signal function to specify the action required. Refer to
Chapter 3 and Chapter 5 for examples of using signals with these functions.

11.2 The Signal Interface

Signal use consists of two actions: sending and receiving. Either the sending
process posts a signal to the receiving process, or the kernel can send a signal.
Examples of events that send a signal include hardware faults, the kill
function, or terminal input. The receiving process can respond by allowing
the signal to terminate the process, or it can take action such as blocking the
signal or invoking a routine to carry out an appropriate action.

Once a signal is sent, it is delivered, unless delivery is blocked. When blocked,
the signal is marked pending. Pending signals are delivered immediately once
they are unblocked. To determine whether a blocked signal is pending, use the
sigpending function.

Applications use signals to inform processes of the occurrence of asynchronous
events. Processes can send signals to each other using the kill functions or
the kernel can send signals to processes. Available signals include:

= Signals that prescribe actions to be performed by the receiving process,
such as SIGALRM

= Signals that indicate the occurrence of an event, such as SIGCLD
= Signals related to exceptions, such as SIGFPE

Many functions are associated with signals. For example, the pause, wait,
and waitpid functions suspend the execution of a process until an appropriate
signal arrives. Several functions deal with the signal set itself, such as
sigemptyset, which creates an empty set of signals, and sigpending, which
checks whether any blocked signals are currently pending.

11-2 Signals

For each type of signal, a process can use the sigaction function to
declare an associated signal-catching function. Such a function is executed
asynchronously when the signal is delivered to the process. The process may
also choose to ignore the signal or take a default action when it receives the
signal.

When two or more unblocked signals are pending, the kernel delivers the
pending unblocked signal with the lowest numeric signal number.

Table 11-1 lists the signal control functions in two categories: those used to
establish and manipulate sets of signals and those used to send signals or
respond to them.

Table 11-1 Signal Control Functions

Function Description

Controlling a Signal Set

sigaction Examines or specifies the action of a specific signal

sigaddset Adds a signal to a set of signals

sigdelset Deletes a signal from an existing set of signals

sigemptyset Initializes a set of signals by excluding all signal definitions

sigfillset Initializes a set of signals by including all signal definitions

sigismember Tests whether a signal is a member of an existing set of
signals

sigpending Stores a set of pending signals in a specified signal set

sigprocmask Examines or changes the signal mask of the calling process

sigsuspend Replaces the signal mask of the calling process and then

suspends the process
(continued on next page)

Signals 11-3

Table 11-1 (Cont.) Signal Control Functions

Function Description

Sending and Responding to Signals

alarm Sends the calling process a SIGALRM signal after a
specified number of seconds

kill Sends a signal to a process or a group of processes

nanosleep Suspends the current process either for a specified period or
until a signal of a certain type is delivered

pause Suspends the calling process until a signal of a certain type
is delivered

sleep Suspends the current process either for a specified period or

until a signal of a certain type is delivered

wait Lets a parent process get status information from a child

that has stopped and delays the parent process until a
signal arrives or one of its child processes terminates

waitpid Lets a parent process get status information from a specific

child that has stopped and delays the parent process until a
signal arrives from that child or that child terminates

11.2.1 Sending Signals

Signals are sent by a user process, the kernel, or a driver program. There are
basically four conditions that can generate signals:

11-4 Signals

A user-level process sends a signal to another user-level process.

For example, the call to kill can terminate the process or activate a signal
handler to perform some other action.

A kernel-level process sends a signal to a user-level process.

For example, the kernel may send a signal to notify a process that
hardware conditions prevent further execution.

A driver program sends a signal to a user-level process.

For example, the user initiates application control by pressing a Ctrl/C
from a terminal.

A user-level process sends a signal to itself.

For example, a process needs to track software conditions, such as timer
expiration or asynchronous 1/0 completion.

A process sends a signal to another process (or an entire process group) by
using the kill system call. The first argument to the kill system call is the
process ID of the receiving process. The second argument identifies the signal
to be sent or indicates that a group of processes is to be signaled.

Signals can be sent from a keyboard. To see which signals are mapped to keys
on your keyboard, issue the command stty everything. Signals sent from a
keyboard are received by all processes in the process group associated with the
terminal.

In Example 11-1, a parent process sends a signal to its child, which handles
the signal and exits.

Example 11-1 Sending Signals Between Processes

/* The parent process sends SIGINT to a child process. */
/* The child process handles the signal and exits. */

#include <signal.h>
#include <stdio.h>

main()

int pid; /* The child’s PID is returned by fork() */

void SIGINT handler /* The signal handler routine */

if ((pid = fork()) == 0) /* Child process; execute child’s code */
{signal (SIGINT, SIGINT handler); /* Make signal handler */
pause() ; /* Wait for a signal */

else /* Parent process: executes parent’s code */
{sleep (1); /* Wait 1 second for child to be born */
kill(pid, SIGINT); /* Send signal to child */
wait (0); /* Wait until child terminates */
exit (0); /* Successful exit */

J

void SIGINT handler(signal number) /* Identify the signal received */
int signal number; /* (SIGINT = 2) and exit */

printf("Signal %d received from parent.\n", signal number);
exit (0); /* Successful exit */

Signals 11-5

11.2.2 Blocking Signals

A signal can be blocked to protect certain sections of code from receiving
signals when the work should not be interrupted. Unlike ignoring a signal,
blocking a signal postpones the signal until the process is ready to handle it.

Each process has a signal mask, a set of bits, each one corresponding to a
specific type of signal as defined in the <signal.h> header file. Signals are
blocked or unblocked through this bit mask. Each bit represents one of the
signal conditions — if the nth bit in the mask is set, then signal n is blocked.

The signal mask is initialized by the parent process and can be manipulated
to control signal delivery. Signals are explicitly blocked and unblocked by
manipulation of the signal mask. Initially, a process copies the signal mask
of its parent. The process can use the first 9 functions listed in Table 11-1 to
manipulate and examine its signal mask, thus regulating the signals to which
it is sensitive.

Figure 11-1 represents a mask blocking two signals. In this illustration, two
signal bits are set, blocking signal delivery for the specified signals.

Figure 11-1 Signal Mask that Blocks Two Signals

Mask

- Unblocked Signal

<«— Blocked Signal
Process

- Unblocked Signal

<«— Blocked Signal

MLO-006770

A blocked signal is marked as pending when it arrives and is handled as soon
as the block is released. Multiple occurrences of the same signal are not saved;
that is, if a signal is generated more than once while the signal is already
pending, only one instance of the signal is delivered.

11-6 Signals

A user process can change the signal mask by calling the sigprocmask or
sigsuspend functions. The sigprocmask function lets you replace or alter

the signal mask of the calling process; the first argument to this function
determines the action taken. If you specify the SIG_SETMASK flag as the first
argument, you can replace the current signal mask with a new signal mask.
The SIG_BLOCK and SIG_UNBLOCK flags allow you to increase or decrease
the set of blocked signals.

Use the sigsuspend function to suspend the process until one of the signals is
received. The argument to the sigsuspend function specifies the signals used
by the signal mask specified in sigmask and then suspends the process. The
process remains suspended until a signal is delivered that either executes a
signal-handling function or terminates the process.

The sigprocmask function is useful when you want to set a mask but are
uncertain as to which signals are still blocked. You can retrieve the current
signal mask by calling sigprocmask (SIG BLOCK, NULL, &oldmask). The
sigpending function determines which signals are pending but are blocked
from delivery. After the critical code is executed, use the sigprocmask or
sigsuspend functions to release any blocked signals and restore the old mask,
as in the following example:

sigset t newmask, oldmask;

sigemptyset (&newmask) ;

sigemptyset (&oldmask) ;

sigaddset (&newset, SIGSYS);

sigaddset (&newset, SIGTRAP);
sigprocmask (SIG BLOCK, &newmask, &oldmask);

/* Code protected from SYSSYS and SIGTRAP goes here */
/* Release blocked signals and restore old mask */

sigprocmask (SET SETMASK, &oldmask, NULL);

The sigprocmask function restores the original signal mask and allows the
blocked signal to be delivered if one or both signals became pending while the
protected code was executing.

Signals 11-7

11.2.3

11.2.3.1

The sigaction, sigprocmask, and sigsuspend signal-handling functions take
arguments that point to a sigset_t type. This type contains information about
the signal data objects as they pertain to the application. For example, the
signal set could contain either the set of signals blocked from delivery to a
process or the set pending for a process. The sigsetops primitive functions
let you manipulate the sets of signals defined in the sigset structure. The
sigsetops primitive functions also let you initialize the signal set to include
or exclude all signals, add or delete individual signals, and contents of the set.
See Section 11.2.3.4 for more information on using the sigsetops primitive
functions.

Managing Signals

Signals are managed by the sigaction or signal functions. Both functions can
take one of three actions for each signal it receives:

= Ignore the signal — Discarded the signal as if it were never sent
= Take the default action — Allow the system to determine the signal action
e Catch the signal — Pass control to a user routine

When the signal is ignored, the process does not receive notification of the
signal. Most applications catch the signal and set up user-written signal
handlers to take care of the event that triggered the signal. The handler is
executed and then passes control back to the process at the point where the
signal was received, and execution continues. Handlers can also send error
messages, save information about the status of the process when the signal
was received, or transfer control to some other point in the application.

Refer to the reference pages for a complete description of the default actions
associated with individual signals.

Using the sigaction Function

The sigaction function allows the calling process to examine and specify the
action to be taken for a signal. If you set a signal-handling action with a call
to the sigaction function, the user-specified action remains set until explicitly
reset with another call to the sigaction function.

When a signal is caught by a routine established by the sigaction function, a
new signal mask is created and used temporarily.

The sigaction function uses a sigaction structure to describe the action
taken. This structure is in the <signal.h> header file and contains the
following fields;

11-8 Signals

struct sigaction
{void *sa handler /* SIG DFL, SIG_IGN, or a pointer to a function */
sigset_t sa mask /* Additional set of signals to be blocked */
int sa flags /* Flags to affect behavior of the signal */

!

If the action is not specified as NULL, it points to a sigaction structure
specifying the action associated with the signal. If the action is specified as
NULL, signal handling is unchanged by the call to the sigaction function, but
you can use the call to inquire about the current handling of a specified signal.
The sa_handler field of the sigaction structure identifies the action associated
with a specific signal.

If the sa_handler field specifies a signal-catching function, the sa_mask field
identifies the additional set of signals to be added to the process’s signal mask
before the signal-catching function is called. This signal mask is used for the
duration of the process’s signal handler or until modified by another call to
sigaction, sigprocmask, or sigsuspend function. This new mask is formed by
taking the union of the current signal mask and the value of the signal that
triggered the call to the signal handler. If the user-specified signal handler is
successful, the original mask is restored.

Example 11-2 shows a program that sets an alarm to go off after the number
of seconds specified in the command line that invokes the program. The call to
the sigaction function establishes the signal handler announce, making the
signal handler responsive to the SIGALRM signal. After arming the alarm,
the process pauses. When the SIGALRM signal arrives, the signal handler
responds, waking the process and printing a message.

Signals 11-9

11.2.3.2

Example 11-2 Using the alarm Function

#include <signal.h>
#include <stdio.h>
main(argc,argv)

int argc;

char **argv;

void announce() ;
struct sigaction action;
if (argc != 2)
fprintf (stderr, "Usage: %s seconds\n",argv[0]), exit(1);

sigemptyset (&action.sa mask) ;
action.sa flags = 0;

action.sa handler = announce;
sigaction(SIGALRM, &action, NULL);

alarm((unsigned) atoi(argv[1l]));
pause() ;

puts("main continues after signal handler");
_exit(0);

void announce (signo)
int signo;

printf ("Received signal %d - Awake after alarm\n", signo);

Using the signal Function

The signal function is a simple way to manage signals. The signal function
takes two arguments. The sig argument identifies the signal, such as
SIGALRM. The func argument specifies what to do with the signal. The
func argument can be the address of a signal handler function, or the vaues
SIG_DFL, SIG_IGN, which are defined in the <signal.h> header file. Calls to
the signal function could look like any of these examples:

signal (SIGIO, SIG IGN); /* Ignore the signal */
signal (SIGCHLD, SIG DFL); /* BAccept signal default action */
signal (SIGALRM, myhandler); /* Call a handler */

If you specify the SIG_DFL flag, the signal’s default action is taken. This can
be to ignore the signal, stop the process, or to terminate the process.

11-10 Signals

11.2.3.3 Using Signal Handlers

A routine that is declared to be a signal handler is passed three arguments
when the signal it handles is received by the process, but it need not declare or
use any of them. The signal_number argument is the value of the signal. The
code argument specifies additional information supplied with some signals. For
example, if the signal is SIGFPE (floating point exception), code might be one
of the following values:

= FLTOVF_FAULT — Specifies floating-point overflow
e FPE_FLTDIV_FAULT — Specifies floating-point divide by 0

e |ILL RESAD_FAULT — Indicates an attempt to access a reserved address
space

The scp argument points to a sigcontext structure, defined in <signal.hs>.
This structure stores the process context as it was before the signal was sent
in case the context needs to be restored after handling a signal.

Example 11-3 handles the SIGINT signal. First it cleans up the condition that
generated the SIGINT signal; then it stops the program.

Example 11-3 Handling Signals
/* This program prompts for input in file ’tmp’. */
/* If interrupted by Ctrl/C, remove 'tmp’ and exit. */

#include <stdio.h>
#include <signal.h>

main ()
FILE *fp; /* File pointer to 'tmp’ */
char c; /* Character read from terminal */
void sigint handler(); /* The SIGINT signal handler */
if (signal (SIGINT, SIG IGN) != SIG_IGN)

/* If SIGINT is already being ignored, */

/* Don’'t declare a handler for it */

signal (SIGINT, sigint handler);

/* Make sigint handler handle all SIGINT */
/* Signals. signal() blocks other SIGINTs */
/* While a SIGINT is being handled. */

(continued on next page)

Signals 11-11

Example 11-3 (Cont.) Handling Signals

fp=fopen ("tmp", "w") ; /* Open file 'tmp’ for writing */

printf ("Enter text. \n"); /* Prompt for text */

while ((c=getchar()) != EOF) /* Get a char and write it to ’tmp’*/
putc(c, fp);

puts ("EOF typed before CTRL/C");

exit (0); /* Successful exit */

/* Remove 'tmp’ file, and kill this */
/* Program. Do not return to main() */

void sigint handler()

{if (unlink("tmp") != -1)
puts("The tmp file has been removed.");
exit(1);

A signal sent from the keyboard, such as an interrupt (SIGINT), is sent to all
processes associated with the terminal. However, the shell turns off interrupts
sent to background processes. That is why Example 11-3 calls the signal
function for SIGINT and tests its value before declaring a handler for SIGINT.
If the program, write text.c, declares all SIGINTs are to be handled by

its handler, then the shell does not turn off interrupts when the process is
running in the background. The write text.c program tests the current state
of interrupt handling and continues to ignore interrupts if they are currently
being ignored.

Example 11-4 shows the code for a process that creates a child that in turn
creates and uses a signal handler, catchit. The child process also calls
sigaction to make catchit responsive to the signal SIGUSR1. Then the
child process pauses until the signal handler catches the signal and exits.

The parent process sleeps for one second, allowing the child to run. Then the
parent:

e Calls kill to send the SIGUSR1 signal to the child
« Waits for the child process to terminate

The catchit signal handler calls _exit to terminate the child process, sending
a signal to the parent.

When the parent receives the process termination signal from the child, it
prints a message and stops.

11-12 Signals

11.2.3.4

Example 11-4 Sending a Signal to Another Process

#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

main()
pid t pid;
if ((pid = fork()) == 0) { /* Child */

struct sigaction action;
void catchit();

sigemptyset (&action.sa mask) ;
action.sa flags = 0;

action.sa_handler = catchit;

if (sigaction(SIGUSR1, &action, NULL) == -1)
perror ("sigusr: sigaction"), _exit(1);
pause () ; /* Never get here */

else { /* Parent */
int stat;
sleep(1); /* Allow child to run */

kill(pid, SIGUSR1);

pid = wait (&stat);

printf ("Child exit status = %d\n", WEXITSTATUS (stat));
exit (0);

}

void catchit (signo)

int signo;
{printf ("Signal %d received from parent\n", signo);
_exit (17);

}

Using the sigsetops Primitives

The sigsetops primitives are used to manipulate signal sets that are blocked
from delivery or the set of signals pending for a process. Primitives operate
on data objects addressable by the application rather than the set of signals
known to the system. Table 11-2 lists the sigsetops primitive functions.

Signals 11-13

Table 11-2 The sigsetops Primitive Functions

Primitive Description

sigaddset Adds the specified signal to the signal set

sigdelset Deletes the specified signal from the signal set

sigemptyset Initializes the signal set to exclude all signals given in POSIX
1003.1

sigfillset Initializes the signal set to include all signals given in POSIX
1003.1

sigismember Tests whether the specified signal is a member of the signal set

Before calling the sigaddset, sigdelset, or sigismember primitives, you
should initialize the signal set with a call to either the sigemptyset or
sigfillset primitive. See the reference pages for additional information
about using the sigsetops primitives.

11-14 Signals

A

DEC OSF/1 Realtime Functional Summary

Table A-1 summarizes the functions that are of particular interest to realtime
application developers. The source of these functions ranges from System V to
POSIX 1003.1 and P1003.4/D10. This table are not exhaustive, but may serve
as a guide in application development. Use the man command to get complete

reference information concerning these functions.

The functions are arranged by category.

Table A-1 Summary of Functions

Function Purpose

Process Control

alarm Sends the calling process a SIGALRM signal after a
specified number of seconds

exit Terminates the calling process

exec Runs a new image, replacing the current running
image

fork Creates a new process

getenv Reads an environment list

isatty Verifies whether a file descriptor is associated with
a terminal

kill Sends a signal to a process or a group of processes

malloc Allocates memory

pause Suspends the calling process until a signal of a

certain type is delivered

sleep Suspends the current process either for a specified
period or until a signal of a certain class is delivered

(continued on next page)

DEC OSF/1 Realtime Functional Summary A-1

Table A-1 (Cont.) Summary of Functions

Function

Purpose

Process Control

sysconf
uname

wait

waitpid

Gets the current value of a configurable system
limit or option

Returns information about the current state of the
operating system

Lets a parent process get status information for
a child that has stopped, and delays the parent
process until a signal arrives

Lets a parent process get status information for

a specific child that has stopped and delays the
parent process until a signal arrives from that child
or that child terminates

P1003.4/D10 Priority Scheduling

sched getscheduler
sched get priority max

sched get priority min
sched get rr interval
sched get sched param
sched setscheduler

sched set sched param
sched yield

Returns the scheduling policy of a specified process

Returns the maximum priority allowed for a
scheduling policy

Returns the minimum priority allowed for a
scheduling policy

Returns the interval time limit allowed for the
round-robin scheduling policy

Returns the scheduling priority of a specified
process

Sets the scheduling policy and priority of a specified
process

Sets the scheduling priority of a specified process
Yields execution to another process

(continued on next page)

A—2 DEC OSF/1 Realtime Functional Summary

Table A-1 (Cont.) Summary of Functions

Function

Purpose

P1003.4/D10 Clocks

clock gettime
clock gettimedrift

clock settime
clock settimedrift

Returns the current value for the specified clock

Returns the value of the clock drift rate as set by
the most recent call to clock settimedrift

Sets the specified clock to the specified value

Sets the drift rate for the specified clock, in parts
per billion (nanoseconds), to the specified value

P1003.4/D10 Timing Facility Resolution

clock getres
nanosleep getres

timer getres

Returns the resolution and maximum value of the
specified clock

Returns the resolution and maximum value
supported by nanosleep

Returns the resolution and maximum value of an
absolute or relative timer

(continued on next page)

DEC OSF/1 Realtime Functional Summary A-3

Table A-1 (Cont.) Summary of Functions

Function

Purpose

Date and Time Conversion

asctime
ctime

difftime

gmtime
localtime

mktime

tzset

Converts a broken-down time into a 26-character
string

Converts a time in seconds since the Epoch to an
ASCII string in the form generated by asctime

Computes the difference between two calendar
times (timel-time0) and returns the difference
expressed in seconds

Converts a calendar time into a broken-down time,
expressed as GMT

Converts a time in seconds since the Epoch into a
broken-down time

Converts the broken-down local time in the tm
structure pointed to by timeptr into a calendar time
value with the same encoding as that of the values
returned by time

Sets the external variable tzname, which contains
current timezone names

P1003.4/D10 Timers

nanosleep
timer create

timer delete
timer gettime

timer settime

Causes the calling process to suspend execution for
a specified period of time

Returns a unique timer ID used in subsequent calls
to identify a timer based on the systemwide clock

Removes a previously allocated, specified timer

Returns the amount of time before the specified
timer is due to expire and the repetition value

Sets the value of the specified timer either to
an offset from the current clock setting or to an
absolute value

(continued on next page)

A—-4 DEC OSF/1 Realtime Functional Summary

Table A-1 (Cont.) Summary of Functions

Function

Purpose

BSD Clocks and Timers

getitimer

gettimeofday
setitimer
settimeofday

Returns the amount of time before the timer expires
and the repetition value

Get the time of day
Sets the value of the specified timer
Set the time of day

P1003.4/D10 Memory Locking

mlock
mlockall
munlock

munlockall

Locks a specified region of a process’s address space
Locks a process’s address space

Unlocks a specified region of a process’s address
space

Unlocks a process’s address space

System V Memory Locking

plock

Locks and unlocks a process, text, or data in
memory

P1003.4/D10 Asynchronous I/O

aio cancel

alo error
alo read

alo return
aio suspend

alo write

lio listio

Cancels one or more requests pending against the
file descriptor

Returns the error status of a specified operation

Queues a read request on the specified file
descriptor

Returns the status of an operation

Suspends the calling process until at least one of
the specified requests has completed

Queues a write request to the specified file
descriptor

Initiates a list of requests

(continued on next page)

DEC OSF/1 Realtime Functional Summary A-5

Table A-1 (Cont.) Summary of Functions

Function

Purpose

BSD Synchronous I/O

fentl
fsync

sync

Performs controlling operations on the specified
open file

Writes changes to a file to permanent storage—
saves all modified data

Update all file systems—all information in memory
that should be on disk is written out

System V Messages

msgctl

msgget

msgrev

msgsnd

Provides control for message operations and has
options to return and set message descriptor
parameters and remove the descriptor

Creates or returns a message queue identifier for
use in other message functions

Reads a message from the queue associated with
the message queue ID and places it in a user-
defined structure

Sends a message to the queue associated with the
message queue 1D

System V Shared Memory

shmat

shmetl
shmdt

shmget

Attaches the shared memory segment to the data
segment of the calling process

Provides shared memory control operations

Detaches the shared memory from the data segment
of the calling process

Returns the shared memory identifier

(continued on next page)

A—6 DEC OSF/1 Realtime Functional Summary

Table A-1 (Cont.) Summary of Functions

Function

Purpose

System V Semaphores

semctl
semget
semop

Provides semaphore control operations
Returns the semaphore identifier

Performs an array of semaphore operations on the
set of semaphores associated with the semaphore

POSIX Signal Control

sigaction
signal
sigpending
sigprocmask

sigsetops
sigsuspend

Examines or specifies the action of a specific signal
Changes the action of a signal
Stores a set of pending signals in a specified space

Examines or changes the signal mask of the calling
process

Manipulates signal sets

Replaces the signal mask of the calling process and
then suspends the process

sigsetops Primitives

sigaddset
sigdelset
sigemptyset

sigfillset

sigismember

Adds the specified signal to the signal set
Deletes the specified signal from the signal set

Initializes the signal set to exclude all signals given
in POSIX 1003.1

Initializes the signal set to include all signals given
in POSIX 1003.1

Tests if the specified signal is a member of the
signal set

(continued on next page)

DEC OSF/1 Realtime Functional Summary A-7

Table A-1 (Cont.) Summary of Functions

Function

Purpose

Process Ownership

geteuid
getegid
getgid
getpgrp
getpid
getppid

getuid
setgid
setsid

setuid

Returns the effective user ID of the calling process
Returns the effective group ID of the calling process
Returns the real group ID of the calling process
Returns the process group ID of the calling process
Returns the process ID of the calling process

Returns the process ID of the parent of the calling
process

Returns the real user ID of the calling process
Sets the group ID of the calling process

Creates a new session, for which the calling process
is the session leader

Sets the user ID of the calling process

Input and Output

close
dup
dup2
fileno
lseek
mkfifo
open
pipe
read
write

Closes a file

Duplicates a file descriptor

Duplicates a file descriptor

Retrieves a file descriptor

Moves a pointer to a record within a file

Creates fifo special files

Opens a file

Creates an interprocess channel

Reads the specified number of bytes from a file

Writes the specified number of bytes to a file
(continued on next page)

A-8 DEC OSF/1 Realtime Functional Summary

Table A-1 (Cont.) Summary of Functions

Function

Purpose

Device Control

cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
isatty

tcdrain
tcflow

tcflush
tcgetattr
tcsendbreak

tcsetattr

Retrieves the input baud rate for a terminal
Retrieves the output baud rate for a terminal
Sets the input baud rate for a terminal

Sets the output baud rate for a terminal

Verifies whether a file descriptor is associated with
a terminal

Causes a process to wait until all output has been
transmitted

Suspends or restarts the transmission or reception
of data

Discards data that is waiting to be transmitted
Retrieves information on the state of a terminal

Sends a break character for a specified amount of
time

Applies a set of attributes to a terminal

System Database

getgrgid
getgrnam

getpwnam
getpwuid

Returns group information when passed a group 1D

Returns group information when passed a group
name

Returns user information when passed a user name
Returns user information when passed a user ID

DEC OSF/1 Realtime Functional Summary A-9

A

abstime argument
to timer settime function, 3-14
access system call, 2-22
aio.h header file, 5-7
aiocb structure, 1-10, 5-2, 5-4, 5-6, 5-7,
5-9
AIO_CANCELED status, 5-10
aio cancel function, 5-5, 5-9, 5-10, A-5
alo_error function, 5-4, 5-5, 5-6, 5-8,
5-9, A-5
AlIO_NOTCANCELED status, 5-10
AlIO_PRIO_DFL constant, 5-3
AlIO_PRIO_MAX constant, 5-3
AlIO_PRIO_MIN constant, 5-3
aio_read function, 5-2, 5-3, 5-5, 5-6, 57,
5-10, A-5
aio_return function, 5-4, 5-6, 5-8, 5-9
aio_suspend function, 5-5, 5-6, 5-9, 5-10,
A-5
alo write function, 5-2, 5-3, 5-5, 5-6,
5-7, 5-10, A-5
alarm function, 3-11, 11-4, 11-6, A-1
Alarm timeout, 11-2
alloca function, 4-3
ALL_DONE status, 5-10
asctime function, 3-6, A-3
Asynchronous 1/0, 1-4, 1-10, 5-1 to 5-12
canceling, 5-9
data structures, 5-2
establishing a handle, 54, 5-9
example, 5-10
functions, 5-4

Digital Internal Use Only

Asynchronous 1/0 (Cont.)

identifying the location, 5-2
implied 1seek function, 5-2
list-directed, 5-6

priorities, 5-7

prioritizing, 5-7

return values, 5-4, 5-9
setting priority, 5-3
signals, 1-10, 5-3, 11-2
specifying a signal, 5-3
status, 5-4, 5-9

summary, 5-4

suspending, 5-9

using signals, 11-1

using with pipes, 10-4

Asynchronous 1/O library

C

compiling, 1-19

Index

calloc function, 4-3
cc command, 1-20

cfgetispeed function,
cfgetospeed function,
cfsetispeed function,
cfsetospeed function,
Clocks,

1-9, 3-1 to 3-20
and DTS, 3-5

drift, 3-5

resolution, 3-8, 3-10
returning, 3-8

setting, 3-4, 3-8
systemwide, 3-2

using with timers, 3-16

Index—1

clock getres function, 3-2, 3-3, 3-10,

A-3 E
clock gettimedrift function, 3-2, 3-5,
A-2 EIDRM error
clock gettime function, 3-2, 3-3, 3-4, with semaphores, 9-17
3-6, A-2 EINPROG status, 5-9
CLOCK_REALTIME clock, 1-9, 3-2, 3-3, Environment, setting, 1-20
3-5 Epoch, 3-2
clock settimedrift function, 3-2, 3-4, errno function, 5-4, 5-9
35, A-2 Event flags, using semaphores, 9-6
clock settime function, 3-2, 3-3, 3-4, exec function, 1-17, 3-11, 3-12, 4-9, 4-12,
A-2 10-6, 11-2, A-1
close function, 5-6, 5-8, 10-2, 10-3, 10-7, exec system call, 2-19
10-8, A-8 exit function, 5-6, 5-9, A-1
Compiling Extending memory, 4-3
asynchronous 1/O libraries, 1-19
in a POSIX environment, 1-20 F
with the realtime library, 1-18 -
ctime function, 3-6, 3-8, A-3 fentl function, A-6
fdopen function, 10-7
FIFOs
D See Pipes
Data segment, increasing, 4-3 File descriptors, with pipes, 10-2
Data structures fileno function, A-8
for asynchronous 1/0, 5-2 First-in first-out scheduling, 2-9, 2-10, 2-11
for messages, 7-1 Fixed-priority scheduling, 1-7, 2-9, 2-10
for semaphores, 9-2 Floating point exception, 11-11
for shared memory, 8-1 fopen function, 10-7
for system clock, 3-8 fork function, 1-17, 3-12, 4-9, 5-6, 5-9,
for timers, 3-8 7-5, 8-5, 9-8, 10-6, 10-7, A-1
ipc perm, 6-5 fork system call, 6-7
itimerspec, 3-8 with priorities, 2-19
timers, 3-8 fsync function, A-6
timespec, 3-8 ftok function, 6-4, 6-6, 6-9, 7-5, 7-8, 8-5,
DEC OSF/1 realtime facilities, 1-4, A-1 9-9
difftime function, 3-6, A-3
Distributed Time Service (DTS), 4-9 G
Drift rate, 3-3, 3-5
and timers, 3-4 GETALL flag, with semaphores, 9-10
Driver programs getegld func_tion, A-8
viewing passes, 1-19 getenv function, A-1
dup2 function, 10-5, A-8 geteuid function, A-8
dup function, A-8 getgid function, A-8

getgrgid function, A-9
getgrnam function, A-9
getitimer function, A—4

Digital Internal Use Only
Index—2

GETNCNT flag, with semaphores, 9-10
getpgrp function, A-8 |
GETPID flag, with semaphores, 9-10

getpid function, 2-18, A-8 110

getppid function, 2-18, A-8 _ See Asynchronous 1/0
getpriority function, 2-14 include directive, 1-18
getpwnam function, A-9 Interprocess communication
getpwuid function, A-9 See IPC

getrlimit function, 4-3, 4-7 IPC, 1-11, 6-1 to 6-10
gettimeofday function, A-4 See Messages

getuid function, A-8
getuid system call, 2-22
GETVAL flag, with semaphores, 9-6, 9-10

See Pipes
See Semaphores

GETZCNT flag, with semaphores, 9-10 See Shared memory
GID, changing priority, 2-22 See Signals
Global memory locking, 4-6 access mode, 6-6
GMT, 3-2 and priorities, 6-5
gmtime function, 3-6, A-3 and synchronization, 6-1
Greenwich Mean Time (GMT), 3-2 asynchronous 1/0, 6-3
common properties, 6-6
H controlling channels, 6-8
creating channels, 6-6
Hardware interrupts, 2-15 data structures, 6-5
and priorities, 2-17 flags, 6-6, 6-8
Header files flags used in creating, 6-7
aio.h, 5-7 general approach, 6-4
conforming POSIX applications, 1-20 getting a key, 6-9
default directory, 1-18 messages, 6-1, 6-3
limits.h, 3-13, 10-2 operation permissions, 7-3
local, 1-20 permission structure, 6-5
mlock.h, 4-7 pipes, 6-1
sched.h, 2-12, 2-17 removing channels, 6-5, 6-9
signal.h, 3-13,5-3, 11-1, 11-6, 11-10, semaphores, 6-1, 6-3
11-11 shared memory, 6-1, 6-3
sys/ipc.h, 6-5, 7-5, 8-5, 9-8 signals, 6-1, 6-3
sys/msg.h, 6-4,7-1, 7-5 summary of calls, 6-4
sys/sem.h, 6-4, 9-3, 9-4, 9-8 System V overview, 6-3
sys/shm.h, 6-4,8-5 System V permissions, 6-5
sys/types.h, 7-5, 8-5, 9-8 unlinking channels, 6-5, 6-8
time.h, 3-6 with ftok, 6-9
timers.h, 3-2, 3-8, 3-13 IPC keys, 6-6, 6-9
using, 1-18 sharing, 9-9
.h files ipcrm command, 6-5, 6-9, 7-7, 9-17
See Header files ipcs command, 6-5

IPC_CREAT flag, 6-7, 6-10

Digital Internal Use Only
Index—3

IPC_CREAT flag (Cont.)
with messages, 7-5, 7-8
with semaphores, 9-8
with shared memory, 8-5
IPC_EXCL flag, 6-7, 6-10
IPC_NOWAIT flag, 6-7
with messages, 7-5
with semaphores, 9-4, 9-14, 9-16
ipc perm structure, 6-5, 6-7, 7-1, 7-3
IPC_PRIVATE flag, 6-6, 67
with messages, 7-4
with semaphores, 9-8
with shared memory, 8-5
IPC_RMID flag, 6-8, 6-9
with messages, 7-7
with semaphores, 9-10, 9-11, 9-16, 9-17
with shared memory, 8-3, 8-9
IPC_SET flag, 6-8
with messages, 7-7, 7-8
with semaphores, 9-10, 9-11
with shared memory, 8-3
IPC_STAT flag, 6-8
with messages, 7-7, 7-8
with semaphores, 9-10
with shared memory, 8-3
isatty function, A-1, A-9
itimerspec structure, 3-8, 3-13, 3-14
it_interval member, itimerspec, 3-8, 3-14
it value member, itimerspec, 3-8, 3-14

K

Kernel
nonpreemptive, 1-4, 1-5
preemptive, 1-4, 1-5

Kernel mode preemption, 1-4

kill function, 11-2, 11-4, 11-5, A-1

L

Latency
comparing, 1-6
memory locking, 1-10, 4-1
nonpreemptive kernel, 1-5
preemption, 1-5
preemptive kernel, 1-5

Digital Internal Use Only
Index—4

Latency (Cont.)

reducing, 1-10
1d linker, 1-20
librt.a library, 1-19
limits.h header file, 3-13, 10-2
Linking

realtime libraries, 1-18, 1-19

specifying a search path, 1-19
liocb structure, 5-7, 5-8
LIO_ASYNC mode, 5-6
lio listio function, 5-3, 5-5, 5-6, 57,

5-8, 5-9, 5-10, A-5

and signals, 5-6
LIO_NOP operation, 5-7
LIO_NOWAIT mode, 5-6
LIO_READ opreation, 5-7
LIO_WAIT mode, 5-7
LIO_WRITE operation, 5-7
List-directed 1/0, 5-6
localtime function, 3-6
Locking memory, 4-6

current, 4-6

entire process, 4-10

future, 4-6

region, 4-10

shared, 4-9, 8-3, 8-9
lseek function, 5-2, 54, A-8

M

makefile example, 9-18
malloc function, 4-2, 4-3, 4-7, 4-11, A-1
man command, Xiii
MCL_CURRENT flags, 4-10
MCL_FUTURE flags, 4-10
Memory

changing the size, 4-2

extending, 4-2

increasing available, 4-3

increasing available example, 4-4
Memory alignment, example, 4-7
Memory locking, 1-4, 1-10, 4-1 to 4-14

across a fork, 4-9

across an exec, 4-9

and DTS, 4-9

and paging, 4-1

Memory locking (Cont.)
example, 4-13
global, 4-6
realtime requirements, 4-1
removing locks, 4-12
specifying all, 4-7
specifying a range, 4-7
Memory unlocking
example, 4-13
Message queue, 7-1, 7-4
controlling, 7-7
creating, 7-4
opening, 7-4
removing, 7-7
Messages, 1-11, 6-3, 7-1 to 7-9
changing permissions, 7-7
command control flags, 7-7
controlling, 7-4, 7-6
creating, 7-4
data structures, 7-1
functions, 7-4
getting status, 7-7
permissions, 7-3, 7-5
prioritizing, 7-4, 7-6
queue identifier, 7-1
receiving, 7-5
removing, 7-7
sending, 7-5
setting, 7-7
structures, 7-3
using queues example, 7-8
using the interface, 7-4
mkfifo function, A-8
mknod function, 10-7
mktime function, 3-6, A-3
mlock.h header file, 4-7
mlockall function, 4-6, 4-9, 4-10, 8-9,
A-5
example, 4-13
MCL_CURRENT flag, 4-10
MCL_FUTURE flag, 4-10
mlock function, 4-6, 4-7, 4-9, 4-10, 8-9,
A-5
example, 4-13
msg.h header file, 7-6

Digital Internal Use Only

msgctl function, 6-4, 7-3, 7-4, 7-7, A6
msgget function, 6-4, 7-1, 7-4, 7-5, A—6
msgop function, 6-5, 7-3, 7-4
msgrcv function, 6-4, 6-5, 7-3, 7-4, 7-5,
7-6, A—6
msgsnd function, 6-4, 6-5, 7-3, 7-4, 7-5,
A-6
msg_perm structure, 7-2, 7-3
msqgid ds structure, 7-2
munlockall function, 4-6, 4-9, 4-12, A-5
example, 4-13
munlock function, 4-6, 4-7, 4-9, 4-12, A-5
example, 4-13
Mutex
See Semaphores

N

Named pipes, 10-7 to 10-8
and asynchronous 1/0, 5-2
nanosleep function, 1-9, 1-14, 3-8, 3-16,
11-4, A-4
effect on signals, 3-16
nanosleep getres function, 3-10, 3-16,
A-3
nice function, 2-7, 2-9, 2-14, 2-18
and realtime, 2-10
nice interface, 1-7, 2-8, 2-14, 2-15
default priority, 2-14
priorities, 2-14
Non-blocking 1/0
See Asynchronous 1/0
Nonpreemptive kernel
latency, 1-5

O

open function, 5-1, 5-6, 5-7, 10-7, A-8

P

Page size
determining, 4-7
Paging, 4-1, 4-2
pause function, 11-2, 11-4, A-1

Index-5

pclose function, 10-6
Pending signals, 11-2
Permission
read messages, 7-3
read shared memory, 8-3
with semaphores, 9-2
write messages, 7-3
write shared memory, 8-3
Per-process timers

See Timers
PID in process scheduling, 2-18
pipe function, 10-2, 10-6, A-8
Pipes, 1-11, 10-1 to 10-8

and child processes, 10-3

and file descriptors, 10-2

creating, 10-2

creating a named pipe, 10-7

creating example, 10-3

creating with popen, 10-6

maximum number of bytes, 10-2

named, 1-11, 10-7

one-way, 10-3

reader, 10-1, 10-8

reading, 10-2

redirecting 1/0, 10-5

regular, 10-1

removing, 10-8

two-way, 10-5

using, 10-2

using async 1/0, 10-4

writer, 10-1, 10-8

writing, 10-2
PIPE_MAX constant, 10-2
plock function, A-5
Policy, setting scheduling, 2-23
popen function, 10-6
Portability of timers, 3-2
POSIX compatibility

spaces in options, 1-18
POSIX environment, 1-17

compiling, 1-20
POSIX portability, 2-20, 3-2
_POSIX_4SOURCE symbol, 1-20
_POSIX_SOURCE symbol, 1-20
Preemption latency, 1-5

Digital Internal Use Only
Index—6

Preemptive kernel, 1-4, 1-5
latency, 1-5

Preemptive priority scheduling, 2-5, 2-9,

2-11
Priorities
and hardware interrupts, 2-17

and scheduling policies, 2-14, 2-15, 2-17

configuring, 2-16, 2-17

determinging limits, 2-19

nonprivileged user, 2-14

order of execution, 2-4

realtime, 2-1, 2-15

relationships, 2-15
Priority, 2-1 to 2-24

and IPC, 6-4

and preemption, 1-4

and shared memory, 8-10

base level, 2-14

change notification, 2-20

changing, 2-11, 2-20

determining, 2-19

in asynchronous 1/0, 5-3

initial, 2-12, 2-20

initializing, 2-20

ranges, 1-8, 2-14, 2-15

setting, 2-20, 2-22, 2-23
Priority ranges, 2-7, 2-8, 2-9, 2-14
Privileges

superuser, 3-4, 4-9, 6-8, 7-7, 8-3, 9-3,

9-11, 9-17, 10-7

Process
priority, 1-7
states, 2-2

Process list, 2-2, 2-3, 2-11, 2-13
changing scheduling, 2-5
Process scheduling, 2-1 to 2-24
preemptive, 2-5
setting policy, 2-23
yielding, 2-22
PROG_ENV variable, 1-20

Q

Quantum, 1-8
in process scheduling, 2-9
round-robin scheduling, 2-12, 2-23

R

read function, 5-1, 5-2, 5-5, A-8
Realtime
definition, 1-1
environment, 1-4
features, 1-12
hard, 1-2
introduction, 1-1
kernel, 1-4
processing, 2-9
process synchronization, 1-13, 6-2
soft, 1-2
Realtime clocks
See Clocks
Realtime functions, A-1
Realtime interface, 1-7, 1-8, 2-15
Realtime library
librt.a, 1-19
linking, 1-18, 1-19
Realtime priorities, 2-15, 2-18
adjusting, 2-18
default, 2-15
using nice, 2-18
using renice, 2-18
Realtime scheduling policies
See Scheduling policies
Realtime signals, 3-10, 5-3
Realtime timers
See Timers
Reference pages
finding information, xiii
renice function, 2-7, 2-14, 2-18
and realtime, 2-10
Resolution
clocks, 3-8, 3-10
nanosleep, 3-8, 3-10
timers, 3-8, 3-10

Digital Internal Use Only

rm command, 10-8
Round-robin scheduling, 2-9, 2-10, 2-12

S

sbrk function, 4-2, 4-3
sched.h header file, 2-12, 2-17
Scheduler, 1-7, 2-3
Scheduling, 2-1 to 2-24
fixed-priority, 1-7
functions, 2-18
interfaces, 1-7
policies, 1-7
priority-based, 1-7
process list, 2-5
quantum, 1-8
Scheduling policies, 1-4, 2-1, 2-8
and shared memory, 8-10
associated priorities, 2-5
changing, 2-20
default priorities, 2-7
determining limits, 2-19
determining type, 2-19
first-in first-out, 2-9, 2-11
fixed-priority, 2-9
interfaces, 2-7
preemptive, 2-5
priority ranges, 2-9
realtime, 2-8
round-robin, 2-7, 2-9, 2-12
SCHED_FIFO, 2-7,2-9
SCHED_OTHER, 2-9
SCHED_RR, 2-9
setting, 2-9, 2-18, 2-20
timesharing, 2-7, 2-9
SCHED_FIFO keyword, 2-9
SCHED_FIFO policy, 2-11, 2-19, 2-20
sched getscheduler function, 2-18, 2-19,
A-2
sched get priority max function, 2-18,
2-19, A-2
sched get priority min function, 2-18,
2-19, A-2
sched get rr interval function, 2-18,
2-19, A-2

Index—7

sched get sched param function, 2-18,
2-19, 2-20, A-2
SCHED_OTHER keyword, 2-9
SCHED_OTHER policy, 2-19
sched param structure, 2-20
SCHED_PRIO_RT_MAX constant, 2-17
SCHED_PRIO_RT_MIN constant, 2-17
SCHED_PRIO_SYSTEM_MAX constant,
2-17
SCHED_PRIO_SYSTEM_MIN constant,
2-17
SCHED_PRIO_USER_MAX constant, 2-17
SCHED_PRIO_USER_MIN constant, 2-17
SCHED_RR keyword, 2-9
SCHED_RR policy, 2-12, 2-19
sched setscheduler function, 2-7, 2-10,
2-18, 2-19, 2-20, A-2
sched set sched param function, 2-7,
2-10, 2-18, 2-20, A-2
sched_yield function, 2-18, 2-22, A-2
and the process list, 2-22
with SCHED_FIFO, 2-23
with SCHED_RR, 2-23
Search path linking, 1-19
select function, with asynchronous 1/0,
5-6
Semaphores, 1-11, 6-3, 9-1 to 9-22
across a fork, 9-8
and shared memory, 8-10, 9-9
as event flags, 9-6, 9-17
as event flags example, 9-17
binary, 9-5, 9-6, 9-13
blocking, 9-5
changing permissions, 9-11
command control flags, 9-10
controlling, 9-9
controlling access, 9-1
counting, 9-5, 9-6, 9-13
creating, 9-8, 9-9
data structures, 9-2
decrementing, 9-2, 9-8
example with shared memory, 9-17
functions, 9-7
getting, 9-14
identifiers, 9-2

Digital Internal Use Only
Index—8

Semaphores (Cont.)
incrementing, 9-2, 9-8
initializing, 9-9, 9-13
opening, 9-8
permissions, 9-2, 9-3
releasing, 9-4, 9-5, 9-14, 9-16
releasing shared memory, 8-10
removing, 9-4, 9-11, 9-17
reserving, 9-4, 9-5, 9-15, 9-16
reserving shared memory, 8-10
semaphore identifier, 9-8
sharing a key, 9-9
tracking activity, 9-3
using GETALL, 9-12
using SETALL, 9-11
using SETVAL, 9-12
using the interface, 9-7, 9-8
using the operations, 9-14
sembuf structure, 9-4, 9-14
semctl function, 6-4, 9-3, 9-7, 9-8, 9-9,
9-13, 9-14, 9-17, A-6
semget function, 6-4, 6-10, 9-2, 9-7, 9-8,
A-6
semid ds structure, 9-2, 9-8
semop function, 6-4, 9-3, 9-5, 9-6, 9-7,
9-8, 9-14, A-6
sem structure, 9-3, 9-9
sem_perm structure, 9-3
SEM_UNDO flag
with semaphores, 9-4, 9-15, 9-16
SETALL flag, with semaphores, 9-10
setgid function, A-8
setitimer function, A-4
setpriority function, 2-7,2-14
setsid function, A-8
settimeofday function, A-4
setuid function, A-8
SETVAL flag
with semaphores, 9-6, 9-10
SETVAL flag, with semaphores, 9-10
Shared memory, 1-11, 6-3, 8-1 to 8-10
and semaphores, 8-10, 9-9
attaching, 8-4, 8-7
attaching example, 8-8
changing permissions, 8-3

Shared memory (Cont.)

command control flags, 8-3
controlling, 8-3, 8-7
creating, 8-5
creating example, 8-6
data structures, 8-1, 8-2
detaching, 8-4, 8-7, 8-9
example with semaphores, 9-17
identifier, 8-1
locating, 8-8
locking, 8-3, 8-9
opening, 8-5
overlap in virtual space, 8-7
page alignment, 8-7
permissions, 8-2, 8-3
read permission, 8-7
releasing with a semaphore, 8-10
removing data structures, 8-3
reserving with a semaphore, 8-10
sharing a key, 9-9
unlocking, 8-3, 8-9
using the interface, 8-4, 8-5
write permission, 8-7
sh command, 10-6
shmat function, 6-4, 6-5, 8-4, 8-7, 8-8,
A—-6
shmctl function, 6-4, 6-9, 8-3, 8-4, 8-9,
A-6
shmdt function, 6-4, 6-5, 8-4, 8-7, 8-9,
A-6
shmget function, 6-4, 6-7, 8-1, 8-2, 8-4,
8-5, 8-8, A-6
shmid ds structure, 8-1
shmop function, 6-5, 8-3, 8-4
shm_perm structure, 8-2
SHM_RDONLY flag, 8-7
sigaction function, 11-2, 11-3, 11-8, A-7
sigaddset function, 11-3, 11-13, A-7
SIGALRM signal, 3-11, 11-10
sigcontext structure, 11-11
sigdelset function, 11-3, 11-13, A-7
sigemptyset function, 11-2, 11-3, 11-13,
AT
sigevent structure, 3-10, 3-13, 5-3, 5-4,
6-3, 11-1

Digital Internal Use Only

sigfillset function, 11-3, 11-13, A-7
SIGFPE signal, 11-11
SIGINT signal, 11-11, 11-12
sigismember function, 11-3, 11-13, A-7
Signal
pending, 11-2
used with asynchronous events, 11-2
signal.h header file, 3-13, 5-3, 11-1,
11-6, 11-10, 11-11
Signal-catching function, 11-3
signal function, 1-10, 3-11, 5-4, 10-8,
11-2, 11-8, 11-10, 11-12
Signal handlers, 11-8, 11-11
SIGINT example, 11-11
Signal mask, 11-6
Signals, 1-11, 11-1 to 11-14
and timers, 3-10, 3-11
blocking, 11-2, 11-6
compressed, 11-6, 11-10
ignoring, 11-8, 11-10
managing, 11-8
parent-child example, 11-5
parent to child, 11-5
realtime, 5-3, 11-1
receiving, 11-2
sending, 11-2, 11-4, 11-5
specifing action, 11-8
unblocking, 11-7
using sigaction, 11-8
using signal, 11-10
using sigsetops, 11-13
using the interface, 11-2
using with asynchronous 1/0, 5-3, 11-1
using with timers, 11-1
signal handler function, 11-11
sigpending function, 11-2, 11-3, 11-7, A-7
sigprocmask function, 11-3, 11-7, 11-8,
AT
sigsetops function, 11-8, 11-13, A-7
sigset structure, 11-8
sigsuspend function, 11-3, 11-7, 11-8, A-7
sigvec function, 11-8
SIG_IGN flag, 11-10
SIG_SETMASK flag, 11-7
Sleep, high-resolution, 3-16

Index—9

sleep function, 3-16, 11-4, A-1
Sockets, and asynchronous 1/0, 5-2
Software interrupt

See Signals
Standards, 1-17
ANSI, 1-17
1ISO, 1-17
POSIX, 1-17
Status, asynchronous 1/0, 5-4, 5-9
stderr, 10-2, 10-5
stdin, 10-2, 10-3, 10-5
stdout, 10-2, 10-3, 10-5
stty everything command, 11-5
superuser privileges, 2-15, 2-19, 3-4, 3-5,
4-9, 6-8, 7-3, 7-7, 8-3, 9-3, 9-11, 9-17,
10-7
Suspending a process, 11-2
sync function, A-6
Synchronization, 1-13, 6-2
and IPC, 6-1
by communication, 1-16
by other processes, 1-16
by semaphores, 1-15
by time, 1-14
timing facilities, 3-2
Synchronization point, 1-13, 6-2
sysconf function, 4-2, 4-3, 4-7, 10-2, A-2
sys/ipc.h header file, 6-5, 7-5, 8-5, 9-8

sys/msg.h header file, 6-4, 7-1, 7-5
sys/sem.h header file, 6-4, 9-3, 9-4, 9-8
sys/shm.h header file, 6-4, 8-5

System processing, 2-9
System V IPC

See IPC
sys/types.h header file, 7-5, 8-5, 9-8

T

tcdrain function, A-9
tcflow function, A-9
tcflush function, A-9
tcgetattr function, A-9
tcsendbreak function, A-9
tcsetattr function, A-9
Time

Digital Internal Use Only
Index—-10

Time (Cont.)
getting local, 3-6
retrieving, 3-3
returning, 3-3
time.h header file, 3-6
time function, 3-3, 3-4, 3-6
Time-of-day clock, 3-2
Timer functions, 3-12, A-4
Timers, 1-9, 3-1 to 3-20
absolute, 1-9, 3-7, 3-14
and signals, 1-9
arming, 3-9
creating, 3-14
disabling, 3-14, 3-15
disarming, 3-9, 3-15
expiration, 3-15
expiration value, 3-7, 3-14
interval time, 3-14
one-shot, 1-9, 3-7, 3-14
periodic, 1-9, 3-7, 3-14
relative, 1-9, 3-7, 3-14
repetition value, 3-14
resetting, 3-15
resolution, 3-8, 3-10, 3-15
returning values, 3-15
setting, 3-8
sleep, 3-16
types, 3-7
using signals, 3-10, 3-11, 11-1
using the sigevent structure, 3-10
using with clocks, 3-16
timers.h header file, 3-2, 3-8, 3-13
timer create function, 3-11, 3-12, 3-13,
A4
timer delete function, 3-12, 3-13, 3-15,
A4
timer getres function, 3-10, 3-12, 3-15,
A-3
timer gettime function, 3-12, 3-15, A-4
TIMER_MAX constant, 3-13
timer settime function, 3-7, 3-12, 3-13,
3-14, 3-15, A-4
Timesharing processing, 2-9
Timesharing scheduling, 1-7, 2-9
using nice, 2-9

timespec structure, 3-3, 3-4, 3-8 Unlocking memory, 4-6, 4-12, 8-9

tm structure, 3-6 User mode and preemption, 1-4
tv_nsec member, timespec, 3-8
tv_sec member, timespec, 3-8 W

tzset function, 3-6, A-3
wailt function, 11-4, A-2

waitpid function, 11-4, A-2

U write function, 5-1, 5-2, 5-5, 10-4, A-8
UID, changing priority, 2-22
uname function, A-2 Y

unlink command, 10-8
Yielding, to another process, 2-22

Digital Internal Use Only
Index-11

