
DEM ~c~uRNAL

For Reference

1111 I 11 j 111

--------------------- --- ----------~ --- --

The Model 6VI voice Input Option:
Its Design and Implementation

The NonStop TXP Processor:
A Powerful Design for On-line

Transaction Processing

Optimizing Sequential Processing
on the Tandem System

Volume 2, Number 3, Summer 1984

Editor
Carolyn Turnbull White
Associate Editor
Susan Thompson
Production Editor
Anita Van Auken

Technical Advisor
Bjoern Lindberg
Design

Craig Frazier Design
Cover Art

Craig Frazier
The Tandem Journal is published
by Tandem Computers Incorporated.

Purpose: The purpose of the Tandem
Journal is to bring to Tandem
users the perspectives of Tandem
software developers, engineers,
and support analysts on Tandem
software and hardware.

Subscriptions: The Tandem Journal
is offered with the Tandem Appli­
cation Monograph Series in one sub­
scription. Tandem bills the sub­
scriber. US. Orders-Send directly
to Tandem Computers Incorporated,
Sales Administration, 19333 Vallco
Parkway, Cupertino. CA 95014.
Orders outside the US. - Give to
your local Tandem sales office or
distributor. All subscribers should
address subscription problems or
questions to their local Tandem sales
office or distributor.

Change of address: Send all changes
of address to Sales Administration
(address listed above).

Comments: We welcome comments
and suggestions about content
and format. Please send them to
Carolyn Turnbull White, Editor.
Tandem Journal. Tandem Computers
Incorporated, 1309 So. Mary Ave ..
Sunnyvale, CA 94087.

Copyright ©1982, 1983. 1984 by
Tandem Computers Incorporated.
All rights reserved.

No part of this document may be
reproduced in any form. includ­
ing photocopying or translation to
another language, without the
prior written consent of Tandem
Computers Incorporated.

The following: are trademarks of
Tandem Computers Incorporated:
DYNABUS, ENABLE. ENCOM­
PASS, ENCORE. ENFORM.
ENSCRIBE, ENVOY, EXCHANGE,
GUARDIAN. NonStop, NonStop IL
NonStop TXP. PATHWAY. SNAX.
TRANSFER.

IBM is a registered trademark of
International Business Machines
Corporation.

T

2

10

24

A N D E M J 0 u R N A L

The Model 6VI Voice Input Option:
Its Design and Implementation
Bill Huggett

The NonStop TXP Processor:
A Powerful Design for
On-line Transaction Processing
Peter Oleinick

Optimizing Sequential Processing
on the Tandem System
Rob Welsh

2

The Model 6VI
Voice Input Option:
Its Design and
Implementation

he marriage of speech
recognition with the trans­
action-oriented terminal is
an advance in terminal inter­
action that is both user
friendly and cost effective. It

_________ -----==== is particularly useful for
those who must use their hands and eyes to
perform other tasks while interacting with
the terminal. Speech recognition allows users
with "busy hands and busy eyes" to enter
transactions easily and quickly.

This article gives an overview of voice
recognition technology and describes the
Model 6VI voice input option (for the 6530
Terminal), explaining its design rationale
and applicability. It discusses the problems
of recognizing speech and the means of
solving the problems, particularly as they are
implemented in the Model 6VI. Finally, it
describes the performance features of the
Model 6VI.

Voice Recognition for the 6530 Terminal

Voice recognition is part of a trend to add
alternate input devices to terminals. In 1983,
Tandem introduced the Model 6LA/ AI
alternate input option for the 6530 terminal
line. This option allows input from devices
such as bar-code readers, optical-character
readers, magnetic-card readers, and scales.
The Model 6LA/ AI enters information from
these devices more quickly and accurately
than the user can manually.

Recent advances in digital-signal micro­
processing and automatic speech recognition
(ASR) have made it practical to offer speech
as another means of input. In April 1984,
Tandem made the Model 6VI voice input
option available. This addition to the 6530
terminal allows the user to enter data into a
NonStop system by speaking into a micro­
phone. The Model 6VI enhances productivity
when the user is occupied with tasks that
prevent efficient manual entry.

Applications

Speech is our fastest means of discourse.
While a skilled typist can type about 1 word
per second, speech can occur at rates from
about 2.5 words per second (spontaneous
speech) to 4 words per second (reading aloud).
It is also nearly effortless; if you use speech
to interact with a computer system, there is no
need for visual or physical contact, and there
are no restrictions on the use of the hands or
the mobility of the body.

In a receiving-inspection station of a manu­
facturing facility, parts undergo an inspection
before entering the manufacturing process. The
inspectors handle the material (perhaps
wearing gloves) and record the inspection.
Using ASR, they can enter the data without
removing their eyes from the material. An ASR
terminal can also be equipped with a wire­
less transmitter to give the operators additional
freedom of movement.

T A N D E M J O U R N A L SUMMER 1984

In pharmaceutical research, pathologists
evaluating tissue slides under microscopes
make constant use of their hands and eyes
while inserting slides, adjusting the focus, and
moving the slides under the lens to evaluate
the tissue. ASR allows efficient use of the
microscope while the data is recorded.

Microelectronics inspection stations require
the inspectors of printed circuit boards to
hold and manipulate the board under an illumi­
nated magnifier. ASR allows them to record
each observed defect without putting down the
board and refocusing the eyes.

The Technology

ASR systems have a wide variety of capa­
bilities (and concomitant costs). Figure 1
illustrates the broad classifications of speech
recognition technology.

A speaker-dependent speech recognizer is
"trained" to recognize a word or phrase as
spoken by a particular person. During training,
the user speaks each word in the vocabulary
into the ASR microphone. This creates a digi­
tized template (reference pattern) for each
word and stores it in the recognizer's memory.

A speaker-independent recognizer allows
designated words or phrases to be spoken
without requiring the users to train the system
for their individual voices. It does this by
using a set of representative templates created
from a statistical sampling of a large pop­
ulation. This population takes into account
differences in accent, tonality, and speed.

Speech recognition systems are also classified
as discrete (isolated-word) or continuous
(connected-word). The discrete system recog­
nizes words or phrases under two seconds in
length and requires a brief pause between words
to determine their boundaries. The contin­
uous system accepts strings of words without
pauses between words. However, even the
few commercially available continuous-word
recognition systems perform better on
isolated speech than on connected speech.

Continuous-word recognition requires
more processing power (with accompanying
cost) than discrete-word recognition, and
speaker-independent recognition requires
more processing power than speaker­
dependent recognition.

Figure 1

A speaker-independent, continuous-word
ASR usually has a vocabulary of about 50 words.
In these systems, the vendor preselects the
words in the vocabulary. This has the added
disadvantage of restricting the system's use
to the language in which it was developed.
A speaker-dependent, discrete-word system
can have a vocabulary of about 200 words.
In this case, the user selects the vocabulary
and trains the system.

The Model 6VI is a speaker-dependent,
discrete-word recognizer. It has a vocabulary of
up to 200 words and/ or phrases. This tech­
nology was selected because it is cost effective
and has a vocabulary size that is favorable
for transaction processing.

The Problem

A speech recognizer accepts human speech
as input, and when it recognizes the word,
performs an action such as closing a relay
or routing a message to another device or host.

When a word is spoken, the movement of the
vocal tract creates disturbances in the air.
A microphone converts the sound waves into
an analog electrical signal. The resulting
speech wave consists of a complicated assembly
of overlapping frequencies with amplitude
(loudness) and frequency varying throughout
the utterance.

SUMMER 1984 T A N D E M J O U R N A L

_I ______ _
Figure 1

Automatic speech recog­
nizers can be classified as
being speaker-dependent
or speaker-independent,
continuous- or discrete­
word recognizers.

3

Figure 2

Speech waveforms are
a complicated assembly of
overlapping frequencies.
Here, a spectrogram pro-
duced by a spectrum
ana(vzer displays the wave-
forms of the words
"Tandem Computer''. The
top waveform is in the
time domain (amplitude
versus time), and the
bottom waveform is in the
frequency domain ((re-
quency versus time versus
amplitude). The bottom
waveform shows amplitude
(signal strength) as
lighter or darker shades in
the frequency ranges.

4

Figure 2

ms: 0 10 20 30 40 50 60 70

T A N D E M

The problem lies in the processing of the
speech signal. In areas such as seismic explora­
tion, sonar detection, and engine vibration
analysis, major advances have been made in
hardware and processing. Similar progress
has not yet been made in speech recognition,
however, because speech waveforms are
more complex than these waveforms and
require more sophisticated hardware and
processing techniques.

Transforming the
Waveform into a Digital Signal
Speech produces a waveform with three
dimensions: frequency, amplitude, and time.
The ASR must use a mathematical technique
to transform all three of these dimensions
into a digital signal. Some of the mathematical
techniques available for this purpose are
linear predictive coding, variations of the Fast
Fourier Transform (FFT), dynamic pro­
gramming, and proprietary spectral-transform
algorithms such as "spectral slicing".

80 90 100 110 120 130 140

5 kHz

4 kHz

3 kHz

2 kHz

1 kHz

C 0 M p u T E R

Reprinted ivith permission of Kay Elemetrics Corp., Pine Brook, N.J.

The Model 6VI uses the technique referred
to as spectral slicing. This technique splits
the input speech signal into sixteen frequency
bands (channels) and samples each channel
periodically (every 5 ms) to measure the ampli­
tude within each frequency range. This
forms a "profile" of the significant features of
the spoken word.

Accounting for Frequency
Variations among Speakers
For any utterance, the two-dimensional wave­
form of amplitude versus time (as shown in
the top half of Figure 2) varies little from speaker
to speaker. The three-dimensional waveform
of amplitude versus frequency versus time (as
shown in the bottom half of Figure 2), how­
ever, changes significantly if the words are from
a speaker of a different gender or age.

Voiced sounds are roughly periodic with fun­
damental frequencies of 210 Hz for men, 220
Hz for women, and 300 Hz for children. This is
one factor that makes speaker-independent
recognition difficult.

T A N D E M J O U R N A L SUMMER 1984

Determining the Boundaries of a Word
In isolated-word recognition the ASR deter­
mines the boundaries for the beginning and end
of a word. After determining the word's
pattern, the ASR matches it to a template that
was made during training.

Continuous-speech recognition may also use
template matching as part of the recogni­
tion process. However, its templates correspond
to phonemes (the smallest units of speech)
instead of words. (There are approximately
40 phonemes in the English language.)

The continuous-speech recognizer has
the additional task of linking phonemes to
construct valid words. The adjacent words
"six seven", where the phoneme Isl in the word
"seven" combines with the end of "six",
demonstrates the difficulty in distinguishing
and linking phonemes.

The Solution-The Anatomy of
the Model 6VI Voice Input Option
The functional components of the Model 6VI
controller are shown in Figure 3, and the
hardware components are shown in Figure 4.
This section describes how the hardware
components perform each major function.

Spectral Feature Extraction
The analog signal generated by the microphone
feeds into a preamplifier. The preamplifier
output then goes into a speech spectrum equal-

Figure 4

tr---
Microphone
input

Figure 3

Spoken
word

izer. The equalizer compensates for the
"roll-off" (or decrease) in strength of speech
frequencies above 750 Hz, adjusting the
amplitude of the signal upward with increasing
frequency. This removes the distortion and
preserves the significant features of the signal.

The equalized signal goes either to the
Automatic Level Control (ALC) or to the linear
path circuitry. (The user selects one of these
paths with a switch on the controller.)

The ALC circuit controls signal variations
caused by variations in the microphone location
and speaking effort. When selected, ALC
compensates for a variation of approximately
12 dB. This is useful, for example, when the
user must move around while the microphone
remains in a fixed place.

When the microphone is mounted on a
head-set, ALC is unnecessary. Also, in a noisy
environment, ALC might cause system

..

'.•-L >i

\,,

6530
terminal

SUMMER 1984 TANDEM JOURNAL

Vocabulary
templates

Figure 3.

Recognized
word

A typical template­
matching speech
recognizer performs four
basic functions to
accomplish recognition:
spectral feature extrac­
tion, analog-to-digital
conversion, pattern
creation, and matching.

Figure 4.

Fundamental components
of the voice recognition
module used on the
Model 6VI voice input
option controller.

5

6

performance to degrade as the system tries
to "hear" the background noise. Linear path
circuitry considers the ambient noise level and
is the best choice for a noisy environment.
(The user can also adjust for background noise
by setting the "gain" or the sensitivity of
the microphone. This is described later under
"Performance Considerations").

The signal from either the ALC path or
the linear path is input to the 16 bandpass
filters that make up a 16-channel spectrum
analyzer. The spectrum analyzer separates the
speech spectrum (200 Hz to 7 kHz) into 16
adjacent frequency bands. A 16-channel multi­
plexer within the spectrum analyzer chip
provides spectral data for each of the 16 bands.

Analog-to-digital Conversion
The output from the spectrum analyzer is a
signal of O to 5 V for each channel. It feeds
into an 8-bit analog-to-digital (AID) converter,
which scans each of the 16-channel outputs
and digitizes the signal to 8 bits (0 to 255). This
sampling and conversion occurs on all 16
channels every 5 ms.

Pattern Creation
Once the onset of a word is detected, the
controller uses a feature-extraction algorithm
to extract the recognition information from
the digitized data. When the end of the word is
found, the feature data is time-normalized
to compensate for differences in speech rate.
The result is a 67-byte digital pattern.

Because of the time and frequency character­
istics of the human voice, several methods
of feature extraction are possible. They include
linear predictive coding, format filtering,
and digitization. The Model 6VI uses the digi­
tization method. It encodes the extracted
feature information so that approximately half
of the information in the 67 bytes represents
spectral slope coding (frequency information)
and half represents binary spectrogram data
(energy information).

During training mode, feature extraction
creates a template (reference pattern) for each
word in the vocabulary. The controller stores
the templates in 20K of RAM. The user can per­
manently store these templates by uploading
them into a file on the host computer.

Once the user creates a table of reference
patterns, the Model 6VI is ready for recognition
mode. In this mode, the system uses feature
extraction to process an unknown utterance
into a "token" template. The system then
attempts to find a match between the token
template and one of the templates made
during training mode.

Matching
Each time the same word is spoken by the
same person, the waveform of that word is at
least slightly different. In the same way, the
waveform of a word spoken during training
mode is not identical to the waveform of
the same word spoken in recognition mode. A
matching strategy is, therefore, necessary.

Distance-measurement algorithms com­
pute the distance between the incoming
utterance and the vocabulary's reference pat­
terns. This algorithm is important to the
recognition process. The more accurate the
distance measurement, the better the recog­
nition will be. The following are some distance
measurement methods:

■ Chebychev method sums the differences
between the reference patterns and the
utterance.

■ Euclidean method squares the differ­
ences between the reference patterns and
the utterance.

■ Correlation measure uses the well-known
statistical technique, coefficient of correlation.

■ Polynomial measure refines the correlation
measure by rewarding small differences that
are exaggerated by the correlation measure.

■ Hamming-distance method determines the
difference between the corresponding digits of
two binary words. It is widely used in digital­
signal processing because of its computational
simplicity and high accuracy.

T A N D E M J O U R N A L SUMMER 1984

The Model 6VI uses the Hamming-distance
method. The algorithm from this method
produces a "score" indicating the similarity
between the token template and a reference
pattern. (A score of zero indicates no similarity,
and 128 is a perfect match.) The algorithm
produces one score for each reference pattern
in the vocabulary.

The reference pattern having the highest
score over the recognition threshold (RTHL)
and differing from the closest runner-up by
at least the delta is declared a match. The
user-defined RTHL sets the minimum score
for recognition, while the user-defined delta
sets the minimum difference between the
score of the recognized word and the next­
highest score.

When a match is made, one of the following
(depending on the host program's directive)
is routed to the host:

■ A user-defined ASCII string of up to 198 bytes.

• The vocabulary-word number of the
recognized word, its score and delta, the user­
defined ASCII string associated with the
recognized word, the runner-up word number,
and the ASCII string associated with the
runner-up word.

If no match occurs in the first case, the
terminal sounds a beep. If no match occurs in
the second case, the terminal displays the
ASCII string "FFF" for the word number.

As the above discussion indicates, the ASR

can perform one of the following:

1. Recognize a word correctly.

2. Confuse the input word with another word
in the vocabulary. (This is known as a
substitution error.)

3. Reject the input utterance.
a. Identify a valid word, but threshold

parameters are not met.
b. Fail to identify a valid word with no

attempt at recognition.

4. Recognize a non-word input as a word.
(This is known as a spurious error.)

Performance Considerations

The user can adjust several recognition per­
formance factors on the Model 6VI. These are
described below.

Word Rejections and Substitution Errors
The user can adjust the RTHL and delta at
any time to accommodate changes in the
speaker's voice (such as those due to a cold,
stress, or hoarseness).

A change in the speaker's voice increases the
number of word rejections and substitution
errors. (In general, a value of 100 for RTHL and
5 for the delta results in
good recognition.)
Lowering the RTHL

decreases the number
of rejections but
increases the number
of substitution errors.
Raising the delta
decreases the number
of substitution errors
but increases the num­
ber of rejections.

The user can adjust
I voice-recognition
1 parameters on the Model

6VI to accommodate
temporary changes in the
speaker's voice.

Depending on the changes in the speaker's
voice and the vocabulary, these two parameters
can be manipulated to improve recognition.

Background Noise Level
As discussed earlier, the controller constantly
samples the incoming audio signal, looking
for the beginning of a word. The controller
detects a beginning-of-word boundary when
the spectral energy of the filters exceeds the
ambient-silence background by a certain
value. The user can adjust for background
noise by setting the "gain" or the sensitivity
of the microphone.

When the gain is high, the user can speak
softly and still be "heard". (A high gain setting,
however, is sensitive to background noise.)
When the gain is low, the user must speak
louder. A low setting accommodates a noisy
background such as a factory shop floor.

SUMMER 1984 T A N D E M J O U R N A L 7

Length of a Word
Once an incoming word is detected by the
ASR, it must last for a specified period of time
before it is processed. This prevents acci­
dental noise (such as a tool being dropped)
from being mistaken for a word (resulting
in a reject). This parameter defaults to 80 ms,
but the user can adjust it to accommodate
a vocabulary containing shorter words.

Minimum Word Interval
A discrete-word recognizer requires a
pause between words to perform recognition.

Good speech recognition
and small vocabularies

go hand in hand.

The default for
the minimum time
between words is
160 ms, the norm for
general vocabularies.
At this setting,
words with intra­

utterance gaps (e.g., "Los Angeles") can be
spoken at approximately 42 wpm and still be
successfully recognized.

Reducing the interval between words allows
a higher rate of speech. However, this increases
the risk of an intra-utterance gap being mis­
taken for an end-of-word boundary. Of course,
if the vocabulary has no words such as these,
no such risk exists.

Word Selection
Word selection is important to recognition
performance. Users should select the vocabu­
lary so that the reference pattern formed
by each word is unlike other reference patterns.
They should avoid homonyms (e.g., "one"
and "won", "two" and "to", "hear" and "here"),
as well as those words that differ by a
single phoneme (e.g., "five" and "file", "time"
and "tire", "logon" and "logoff").

Some words that seem to sound significantly
different may form reference patterns simi­
lar enough to cause substitution errors. A
Model 6VI program detects similar reference
patterns. It examines a vocabulary after
training and reports all words whose reference
patterns are within a specified tolerance.
The user can then add more training to create
a more effective set of reference patterns
or replace the words with synonyms.

Partitioning the Vocabulary
In speech recognition, good recognition
performance and small vocabularies go hand
in hand. Since it is not always desirable to
limit an application's vocabulary to achieve
higher performance, the Model 6VI uses a
vocabulary organization scheme that can par­
tition a vocabulary into syntax nodes, giving
the effect of smaller vocabularies.

At any time in the recognition process, only
one syntax node or subset of the vocabu-
lary is active (available for recognition search).
Thus, if the reference patterns for the words
"file" and "five" are in different syntax nodes,
they cannot be mistaken for each other.

Microphone Selection
Microphone selection is an important con­
sideration in ASR systems. A microphone
should be chosen with two factors in mind:
the background noise of the environment
and the system application.

In general, microphones with low signal­
to-noise (SIN) ratios increase the probability
of speech-recognition errors. For high perfor­
mance, SIN ratios should be higher than 24 dB.

A popular microphone with good noise­
cancelling ability is the Shure SM-10. Because
this is a headband microphone, it is suitable
for "busy-hands, busy-eyes" environments. For
quiet environments, the lapel microphone,
which clips onto clothing, is a good choice.
For the user who is close to the terminal
and whose mouth is normally a fixed distance
from the terminal, a directional microphone
mounted on a flexible gooseneck is the
best choice.

8 T A N D E M J O U R N A L SUMMER 1984

The Future of Voice
Recognition Technology

Voice recognition is not a typical engineering
problem; it is a multi-disciplinary field that
uses signal processing, LSI and VLSI microproc­
essor design, linguistics, artificial intelligence,
and the mathematics of stochastic processes.
Because of this, voice recognition tech­
nology has not had the dramatic progress that
many had predicted. This is especially true,
for example, in the area of speech understand­
ing, which draws heavily on the use of
artificial intelligence.

Research continues in three major areas:
vocabulary size, continuous-word recogni­
tion, and speaker independence. Speaker­
independent systems that recognize continuous
speech currently exist only on large, fast
mainframe computers. Significant break­
throughs in hardware and/or algorithms
are necessary for this type of voice recognition
to become practical for large vocabularies.

Meanwhile, as the refinement of isolated­
word, speaker-independent systems continues,
their performance increases and their cost
decreases. Current advances in VLSI also con­
tribute to this trend. The most immediate
application of this progress will most likely
be telephone-driven applications, such as
remote transaction processing.

In the mid-1980's, significant advances in
voice recognition technology will continue.
The commercial availability of automatic
dictation equipment (voice-actuated type­
writers), however, will probably not occur
before 1990. Eventually, the ability to use con­
textual, syntactic, and linguistic rules in a
speech recognition device will make "natural
language" speech a reality.

References
Crochiere, R. E .. and Flanagan, J. L. 1983. Current perspectives
in digital speech. IEEE Communications Magazine, vol. 21, no.1.

Geyarter, W B. 1983. An overview of artificial intelligence
and robotics. National Aeronautics and Space Administration.
Report no. NASA TM-85838.

Interstate Electronics Corporation. 1961. Voice recognition
chip set, Model VRCJ00 Series. Document no. TMP00701949.

Nance. J. 1983. Implementation strategies for voice-processing
terminals. Votan Corp.

Pierce, J. R. 1961. Symbols, signals, and noise. New York:
Harper & Row.

~---• 1969. Whither speech recognition? Journal of
the Acoustical Society of America, vol. 46.

Bill Huggett joined Tandem in January of 1982 as a software
designer at the Austin, Texas facility. Since then. he has been
involved with the 6530 terminal family primarily as the developer
of the Model 6LA/AI alternate input option and the Model 6VI
voice input option. Since graduating from Tulane University in 1963
with a B.S. in Mathematics, he has held a variety of positions
involving the design, programming, and management of systems
and application software.

SUMMER 1 9 8 4 T A N D E M J O U R N A L 9

10

The NonStop TXP
Processor: A Powerful
Design for On-line
Transaction Processing1

he Tandem NonStop TXP™
processor was introduced
to Tandem Journal readers
in the Winter 1984 issue
("The High-Performance
NonStop TXP Processor").
In this article, its design

and performance are discussed in more detail.
First the design goals of high performance
and compatibility with the NonStop II™ proc­
essor are defined, and the innovations in
hardware and software through which these
goals were met are described. The major
portion of the article is then devoted to a
discussion of the resulting performance of
the NonStop TXP processor. In this discussion,
accepted performance metrics for computer
systems are identified and explained, the
problem of defining an accurate performance
metric for on-line transaction processing
systems is discussed, and the results of var­
ious performance comparisons between the
NonStop II and NonStop TXP processors are
presented. The performance criteria used
in this discussion equate processing power to
the following:

1. Block-move time.
2. Interprocess-communication time.
3. Process-dispatch time.
4. Data-base-access time.
5. Response time.

1Portions of the hardware discussion, Table 1, and Figures I and 2 originally
appeared (in a slightly different form) in an article entitled, "New System
Manages Hundreds of Transactions per Second", bv Robert Horst and Sandra
Metz in Flectronics, volume 57, number 8 (April 19, 1984).

Design Goals for the
NonStop TXP Processor

Higher Performance
As the transaction processing market has
matured, users have demanded ever more
powerful transaction processing systems
capable of handling ever larger transaction
workloads. Early transaction throughput
requirements of dozens of transactions per
second have grown to hundreds per sec­
ond and show no sign of slackening in the
future. One primary design goal for the
NonStop TXP processor was to support
these higher performance systems by pro­
viding at least twice the processor perform­
ance of the NonStop II processor.

The performance improvements were
achieved through a combination of advances in
architecture and technology. The NonStop TXP
processor employs dual 16-bit data paths
instead of the more traditional single 32-bit
data path. Both 16-bit paths are used simul­
taneously more than 80% of the time, far more
frequently than a 32-bit path would be
fully utilized.

The parallelism results from the ability
of the main arithmetic and logic unit (ALU)

to perform an operation in parallel with a
different operation executed by one of several
special ALU modules. For example, the inner
loop of a compare-byte instruction that would
take three clock cycles in the traditional
architecture (i.e., the extraction of byte 1, fol­
lowed by the extraction of byte 2, followed
by the comparison) takes only two clock cycles
on the NonStop TXP processor (i.e., the
parallel extractions by the main ALU and the
special ALU of byte 1 and byte 2 in the first
clock cycle, followed by the comparison). This
is shown in Table 1.

T A N D E M J O U R N A L SUMMER 1984

Table 1.
Compare-byte instructions (inner loop).
Clock Nonstop TXP processor
cycle Main ALU Special ALU

1 Extract byte 1 Extract byte 2

2 Compare bytes -

3 (Repeat) (Repeat)

4

Traditional
architecture

Extract byte 1

Extract byte 2

Compare bytes

(Repeat)

Although the frequency of 32-bit arithmetic
operations is insignificant relative to data­
movement and byte-manipulation instructions
in typical transaction processing applications,
the performance of these instructions is
also enhanced by the dual 16-bit paths. The
two clock cycles required to perform an
add operation is partially offset by the avail­
ability of the other 16-bit path to perform
another 32-bit operation or two 16-bit
operations in parallel with the main ALU.

The NonStop TXP processor supports
32-bit addressing much more efficiently than
the NonStop II processor. The 32-bit virtual
addressing built into the hardware is capable
of addressing a gigabyte of virtual memory.

The 32-bit virtual address is used to access
a large, 64K-byte memory cache. In com­
parison with the IBM 4361, which can access

Figure 1

Load instruction

Compyte Fetch
Instruction lnstwclion
~

Clock cycle

r:tecooe
lostr!lQ!iQn

Fetch
d8la

2

Add-immediate instruction (ADDI)

Store instruction

3

32 bits of cached data every 100 ns out of
its 16K-byte cache, the NonStop TXP processor
can access 16 bits of cached data every 83
ns out of its 64K-byte cache. In practice, the
effective cache bandwidth of the NonStop TXP
processor is comparable to the 4361 because
the considerably higher cache hit-rate offsets
the larger 32-bit words retrieved by the
4361. However, the cost of a NonStop TXP
processor with 4M bytes of main memory
is approximately one-half that of an IBM 4361
Model 5, similarly equipped (Carr and
Campbell, 1984; IBM, 1984; Tandem, 1984.)

The technology of the NonStop TXP
processor includes 25-ns programmable array
logic (PAL), 45-ns static RAM chips, and
Fairchild Advanced Schottky Technology
(FAST) logic. This newer technology and a
reduction in the number of logic levels in
each path has resulted in a reduction of the
basic microinstruction cycle time from 100
ns in the NonStop II processor to 83.3 ns in the
NonStop TXP processor.

Instruction pipelining has been increased
from two levels on the NonStop II processor
to three levels on the NonStop TXP proc­
essor. Figure 1 illustrates the operation of the

4 5

6 7 8 9

Compute
1nstruct1on

address

Compute
data

address ■
■

Execute
1 nstruct1on

SUMMER 1984 • TANDEM JOURNAL

Figure 1

The NonStop TXP
processor employs three
levels of pipelining.

11

Figure 2

With three levels of pipe­
lining, the NonStop TXP
processor can execute a
combination of three
typical instructions in only
nine clock cycles. With­
out pipelining, 24 clock
cycles would be required.

12

Figure 2

Clock cycle 1 2 3

4 5 NonStopTXP
processor

(three
levels of

pipelining)
6 7 8 9 -.-

No [
pipelining

macroinstruction pipeline for a sequence of
instructions. As shown in Figure 2, a combina­
tion of three instructions (a load, followed
by an add immediate, followed by a store) that
would require 24 clock cycles with no pipe­
lining requires only 9 clock cycles with pipe­
lining because the prefetch and part of the
execution of each instruction can be overlapped
with previous instructions. Pipelining permits
the NonStop TXP processor to execute many
of its most frequent instructions in just two
or three clock cycles.

Compatibility
The design goal of compatibility between
the NonStop II and NonStop TXP processors
was established to provide an upgrade path
for systems based on NonStop II processors. It
was decided that users must be permitted
to mix NonStop II and NonStop TXP proces­
sors within the same system and within the
same physical cabinet, as well as to mix any
combination of Tandem processors in the
same network. These constraints translated
into specific mechanical, hardware, and
software goals.

8 9 15 16 24

Store

Software Compatibility. The main goal was
to mask from the user as many of the differ­
ences between the two processors as was
possible. Ideally, the user was to see nothing
different in the processors but their speeds.
To meet this goal, the following were
implemented:

1. A single operating system, GUARDIAN™,
supports both the NonStop II and NonStop
TXP processors.

2. The firmware for the NonStop TXP proc­
essor implements the existing instruction set.

3. All nonprivileged software runs without
change on both machines.

4. To facilitate processor swapping without
system reconfiguration, the type of each
processor does not have to be specified
at system-generation time. The operating
system automatically loads the appropriate
instruction-set microcode at load time.

5. The procedures for controlling the system
and the system console are the same for
both machines.

Hardware Compatibility. Because the
NonStop TXP processor was intended to
replace only the central processing unit (CPU)

T A N D E M J O U R N A L SUMMER 1984

in Tandem systems, it was important that it
not require new buses, channels, or controllers.
Thus, it had to support all the controllers
and devices currently in use in systems based
on the NonStop II processor. Fortunately,
the existing SM-byte 1/0 bus and the dual
13M-byte DYNABUS™ have more than enough
bandwidth to support the more powerful
NonStop TXP processor. The main problem
facing the hardware design team, then, was
to develop a new microarchitecture that would
efficiently support a 32-bit processor at
much higher speeds, using only 33% more
printed-circuit-board real estate and the
same backplane.

Mechanical Compatibility. The NonStop TXP
processor is physically very similar to the
NonStop II processor. The CPU and memory
(MEM) boards are the same size and draw
comparable amounts of power. The NonStop
TXP processor uses 4 CPU boards; the
NonStop II processor uses 3. All cable connec­
tions to the NonStop II processor are in
locations similar to those on the NonStop TXP
processor. The CPU backplanes are identical.

The NonStop TXP processor uses the same
power system as the NonStop II processor,
and AC power requirements have not changed.
The CPU power requirements have increased
from 60A to 80A while the I/0 power require­
ments are unchanged. The battery backup
characteristics of the NonStop TXP processor
are similar to those of the NonStop II processor.

In summary, both of the somewhat­
conflicting goals of higher performance yet
strict compatibility were met by the develop­
ment groups. The resulting performance of
the NonStop TXP processor is discussed in the
following section.

Comparative Performance Data

Although determining the relative performance
of computer systems seems like a straight­
forward task, it is almost always more difficult
than it first appears. Comparisons can be
made in so many different ways that the
confusion begins with the selection of the per­
formance criteria upon which to base the
performance comparison.

The earliest performance indices were those
used to compare the CPU-primary-memory
complex of various computer systems, as
this complex was then the most expensive part
of the system. Rudimentary indices, such
as the internal clock rate of the CPU, the
execution time of
certain arithmetic
instructions, or
the cycle time of the
primary memory,
formed the basis of
most early perform­
ance comparisons.

These early meas­
ures evolved into
slightly more sophisti­
cated definitions of

A /though determining
the relative perform­

ance of computer systems
seems straightforward, it
is more dzfficult than it
appears.

computer processing power. Schneidewind
(1966) introduced the definition of power

where M is the primary-memory size in
bytes, and tcycle is the primary-memory cycle
time. Notice that this definition lacks any
workload dependence and is a purely hardware­
based definition.

Gruenberger (1966) amplified Schneide­
wind's definition to include some elementary
calculations

(1 1) P=M -+~,
tadd lmpy

where M (the primary-memory size) is
in words and tadd and tmpy represent the time it
takes the computer to execute addition
and multiplication operations. The main
problem with indices of this type is their
workload independence.

A further refinement in this form of per­
formance index attempts to characterize the
power of a computer at processing its typical
workload by using the instruction-mix fre­
quencies and instruction-execution timings

P=IJ-t·IJ=l . }l I , .]l ,
I I

where/; is the relative frequency of instruction
z: and ti is the execution time of instruction i.

SUMMER 1984 T A N D E M J O U R N A L 13

Since these early attempts, many subse­
quent definitions of computer power have
been proposed, and some are still in use
today. Some contemporary yardsticks used to
compare computer systems are: millions of
instructions per second (MIPS), floating-point
operations per second (FLOPS), whetstones
per second (WHETS), batch job tum-around
time, transactions per second, and transaction
response time.

Because performance analysts have so
many metrics to choose from, and because the
relative performance of computer systems

vary according to

Block-mo~e time equates
processzng power to

the processor's ability to
move blocks of data in

the performance met­
ric used, it is possible
to draw misleading
performance compar­
isons. Of course,
there is nothing wrong
in using any well­
defined performance
metric to compare

.
przmary memory.

computer systems. However, it would be
incorrect to compare them with a performance
metric designed to compare scientific proc­
essing power and then postulate that this rela­
tive performance ranking would also hold for
transaction processing workloads, for example.

Because no single universal performance
metric has been adopted to compare the
relative performance of computer systems, the
best one can do is to examine relative per­
formance across a spectrum of performance
metrics and provide this information in
standardized formats. It is then up to the per­
formance analyst to select the appropriate
measure(s) of performance.

The remainder of this article summarizes
the performance of the NonStop TXP proc­
essor using several performance metrics. It
begins with low-level performance data on
CPU-intensive operations that are designed to
measure the performance of the CPU hard­
ware and the code compilers. It then concludes
with high-level performance data on system­
wide performance.

Block-move Time (Pl)
Block-move time (Pl) equates processing
power to the processor's ability to move blocks
of data in primary memory. For example, if
process A wants to send a message to process B,
this operation typically moves the actual
message from one location in memory to
another. Block-move operations are typical in
message-based computer systems.

Even for this simple yardstick many envi­
ronmental sources of variation exist. The
performance of a block move can be affected
by the location of both the source and des­
tination in memory, by whether or not the
memory is organized hierarchically, and by the
mode of addressing employed to access
the data.

For the purposes of this article, this first
performance index (Pl) is defined as

Pl= 1000,
lmove

where tmave is the time in microseconds to
move a 1000-word block of memory from the
source location to the destination. Experi­
ments performed by the NonStop TXP System
Support Team (1983) yielded the results
in Table 2.

In Table 2, the first row represents the
moving of a block of 1000 words from some
location on the data stack of the processor
to another location on the stack using the
16-bit addressing mode. In the second row, the
block is moved from some location in an
extended data segment to a different location
in the segment, using absolute extended
addresses to access the block. The final column
shows the ratio of Pl for the NonStop II
processor, Pl(II), to that of the NonStop TXP
processor, Pl(TXP).

While many other combinations of memory
locations and addressing modes can be used,
these two have been chosen as representative
for performance index Pl. The results for
Pl indicate that the NonStop TXP processor is
between 2.5 and 3.1 times as powerful as
the NonStop II processor.

14 T A N D E M J O U R N A L SUMMER 1984

Table 2.

Relative performance of the Nonstop II and Nonstop TXP processors for block-move time (P1).
Source Destination S-Address

Stack Stack 16-bit

E-segment E-segment A-extended

Interprocess Communication (P2)
Like Pl, interprocess communication, or P2,
also attempts to measure processing power
by a measure related to sending messages. In
this case, it measures the ability of the
processor and operating system (and message
system) to support interprocessor communi­
cation. In a system in which processes cooperate
to accomplish a task, messages are used to
communicate requests for processing,
processing results, and status information.
Although often equated with overhead,
the ability of a computer system to facilitate
messages between cooperating processes is
an important measure of how effective a com­
puter system is in supporting a distributed
processing environment.

For the purposes of this article, two variations
of P2 are defined. One corresponds to inter­
processor communication (P2inte,), i.e., the
two communicating processes are in differ­
ent processors, and the other corresponds to
intraprocessor communication (P21n1,0), i.e.,
the two processes are in the same processor.

In an attempt to minimize environmental
variations, this investigation was restricted
to "waited" communication only. In this mode
of communication, the sending process
waits for the reply to come back from the proc­
ess to which it sent the message before it
resumes execution. (An example of "nowaited"
communication is the sending process
asynchronously executing other work before
receiving the reply from the process to
which it sent the message.)

As one might expect, the elapsed time for
interprocess communication can be approxi­
mated as a linear function of the message
length and takes the form of y = mx + b. In
this equation, y, the elapsed time, is equal
to a fixed cost, b, plus a variable cost per byte
of data transmitted, m. Because values of
P should increase with increasing processing
power, P2 is defined as follows:

1
P21nter = t X + t. ; CPU(A) * CPU(B)

var/ fixed I

1
P21ntra = i" X + t ; CPU(A) = CPU(B)

var2 /iXed2

D-Address Ratio P1(11):P1(TXPJ

16-bit 1:2.5

A-extended 1:3.1

Both P2s are equal to the inverse of the
elapsed round-trip time of a message and thus
specify the number of messages that can
be sent and subsequently received by that proc­
ess per second. The variables tvarl and tvar2

are the cost per byte of inter- and intra­
processor communication and are multiplied
by x, the total number of bytes transmitted
by both the sending and the receiving process.
Included in this portion of the processing time
are the costs of data transmission and mes­
sage packetization, for example. The tr1xedl

and t1,.xeci2 variables are the fixed overheads
associated with process communication per­
formed by the operating system (and message
system) on behalf of the processes, e.g., process
dispatching, message initialization, and
interrupt handling.

Notice that it is the round-trip elapsed time
for process A to send a message to process
Band then receive a reply that is important here.
Clearly, this measure includes events other
than those that are purely message-transfering
operations; for example, process dispatching
must be occurring. This is obviously the case
for intraprocessor communication; the two
processes take turns receiving service at
the CPU.

Although a simpler definition that counted
only message transmission would more
accurately measure how fast a message can be
transmitted from process A to process B,
most computer workloads involve the repetition
of the following scenario: process A formu­
lates a request for data that is sent to process
B, process B decodes what to do, locates
the data process A wants, and responds with
the requested information in a reply to
process A. Thus, the frequency of round-trip
interprocess communication that a proc­
essor can support is an appropriate measure
of a computer's power.

SUMMER 1984 TANDEM JOURNAL 15

16

Table 3.

Relative performance of the Nonstop II and Nonstop TXP processors for interprocess communication (P2).
X = 100 250 500 1000

Ratio P2mtraC1 I): P2;ntraCTXP) 1:3.0

Ratio P2;nte,(11):P2;nte,(TXP) 1:2.8

Again, the data in Table 3 is derived from
a study by the NonStop TXP System Support
Team (1983). As the data indicates, the
relative power of the NonStop TXP processor
is between 2.7 and 3.0 times that of the
NonStop II processor for typical message
lengths. This observation is in agreement with
the findings for Pl.

Several interesting relationships exist behind
the data of Table 4. First, intraprocessor
communication is faster than interprocessor
communication for both the NonStop II
and NonStop TXP processors. For the
NonStop TXP processor, intraprocessor com­
munication is about 18% faster than inter­
processor communication. For the NonStop II
processor, this difference is somewhat less,
approximately 11 % .

It is also of interest to observe that as the
length of the message increases, the relative
difference in power declines. This occurs
because the data transmission component of
interprocess communication is the same for
both processors. Hence, the larger the message,
the more this dominates the elapsed time.

Process Dispatch (P3)
The process-dispatch performance metric (PJ)
equates processing power to the processor's
ability to dispatch processes. A process dispatch
occurs for a variety of reasons, but the
result is usually the same: the currently exe­
cuting process can no longer proceed, its
context must be saved so that it can be resumed
at some later time, the context of a different
process is loaded by the processor, and this
process resumes or begins execution.

In transaction processing systems, dispatch­
ing occurs quite often, therefore making
the speed with which a process switch can be
made an important indicator of processing
power. A processor that spends 20% of its time
dispatching processes is only providing 80%
of its power for useful work.

1:3.0 1:2.9 1:2.8

1:2.8 1:2.8 1:2.7

For this performance index only one major
environmental influence exists: the number
of memory pages that must be made present
with the process. In typical systems, although
the pages are not actually brought in from
secondary memory, the system registers con­
taining the address of the physical-memory
pages are usually pre-loaded before the process
can execute. Thus, the dispatch time is
approximated as a linear function of the number
of process pages plus a fixed overhead, i.e.,

fdisp = (p, + P2)X + f,

where p, is the number of pages that must
be unmapped for process p 1, and p 2 is the
number of pages that must be mapped for
process p2. This sum is multiplied by the
cost of mapping or unmapping a page, x.
Finally,/ is the fixed overhead associated
with performing a dispatch.

The NonStop II processor employs this
type of algorithm, but the NonStop TXP
processor uses a "demand-based" loading
scheme and a cache of map entries to reduce
the execution time of the dispatch. For the
NonStop TXP processor,p, andp2 both equal
zero, and the dispatch time is not a function
of the number of pages, it is a constant.

For the purposes of this article, PJ is
defined as

PJ=-1-,
fdisp

where tdisp is the time to dispatch a process.
Thus, PJ is, in fact, the maximum possible
number of dispatches per second.

To study the impact on PJ performance,
two identical processes were made to execute
in the same CPU at the same priority and
to do nothing but cause themselves to be dis­
patched. Thus, the process activity for this
processor consisted entirely of two processes
that were alternately dispatched. The meas­
urements from which this data was extracted
were conducted by Singh (1983) during the
pre-release testing of the NonStop TXP
processor.

T A N D E M J O U R N A L SUMMER 1984

As expected, varying the number of memory
pages owned by these processes produced a
variation in the value of P3 for the NonStop II
processor, but not for the NonStop TXP
processor. As the data in Table 4 indicates, the
ratio of P3(TXP) over P3(II) increases with
the number of memory pages.

The ratio of P3 for the NonStop II, PJ(Il),
and P3 for the NonStop TXP processor,
P3(TXP), indicates that the NonStop TXP is
between three and four times as powerful
as the NonStop II. This performance difference
is greater than that exhibited by the previous
indicators Pl and P2. The explanation for the
larger difference is that the improvement
in performance is due not only to the faster
processing speed of the CPU, but also to the
way dispatching is performed on the new hard­
ware. While in the NonStop II processor,
map entries for memory pages accessed by a
process are loaded by the process before
execution begins, in the NonStop TXP proc­
essor, map entries are brought in as needed.
Thus, the dispatching of a process is faster on
the NonStop TXP processor because there
is also less work to be done.

Data-base Access Time (P4)
The data-base access time performance
metric (P4) equates processing power to the
co)llputer system's ability to manipulate
data stored in data bases. This metric is the
first one to include the processor's ability
to manage an 1/0 device as a measure of the
computer system's processing power. This
measure of performance is of interest because
it compares the ability of computer systems
to perform operations involving more than
CPU processing.

The time to access data from a disc can be
approximated by

laccess = lcpu + tdisc ·

Assuming no overlap of CPU processing with
disc-device processing, the access time, taccess,

is equal to the sum of the CPU processing
time, lcpu, and the disc processing time, !disc•

Note that there is some overlap in Tandem's
disc subsystem and in that of most computer
systems. This approximation is to simplify
the discussion that follows.

An interesting performance phenomenon is
explained by this rather simple equation.
A CPU that is twice as fast as another does not

Table 4.

Relative performance of the Nonstop TXP and
Nonstop II processors for process dispatching (P3).
Number of process pages Ratio P3(11):P3(TXP)

Small 1:3.17

1:3.35

1:3.52

1:3.66

1:3.78

1:3.88

1:4.00

Large 1:4.11

halve the data access time (unless tdisc is zero).
For example, if fcpu = 20 ms and tdisc = 35 ms,
then taccess = 55 ms. If the speed of the proc­
essor is doubled, lcpu is reduced to only
10 ms, but taccess still equals 45 ms, an improve­
ment of only (55-45)/55 = 18%. In fact, an
infinitely fast CPU Ucru = 0) would only serve
to reduce taccess by 20 ms, for a performance
increase of (55-35)/55 = 36%. This relationship
should be kept in mind when the P4 per­
formance indices are discussed.

In most computer systems, several pre­
defined file types are provided by the system
to hold data. Each of these has a different
structure that provides access to the data in a
particularly useful manner. For example,
Tandem supports four file types: key-sequenced,
relative, entry-sequenced, and unstructured.
Key-sequenced files contain records that are
stored in ascending sequence, ordered by a
field within each record called the primary key.
Relative files contain records that are stored
in a position relative to the beginning of the
file, according to a record number supplied
by the application program. Entry-sequenced
files store records by appending new records
to the end of the file in the order they are
received. Unstructured files have no system­
defined structure; data stored in them can
be considered a large byte array.

Each type of file is useful to hold data
that is accessed in certain familiar patterns.
For example, entry-sequenced files support
log files very nicely. An example of an applica­
tion for a key-sequenced file is an inventory
file in which each record describes a part. The
primary-key field for the file would probably
be the part number, and other fields could con­
tain information such as the vendor name
and quantity on hand.

SUMMER 1984 T A N D E M J O U R N A L 17

18

Table 5.

Relative performance of the Nonstop TXP and
Nonstop II processors for data-base 1/0 (P4).
Index Ratio P4(11):P4(TXP}

P4a 1:1.27

P4b 1:1.39

P4c 1:2.33

P4d 1:1.69

P4e 1:1.39

P41 1:1.45

P49 1:2.46

P4h 1:1.93

Data-base I/0 operations are the basic
units from which transactions are built. In fact,
because transaction processing involves
almost no "number crunching", transaction
workloads are typically approximated by the
sequence of data-base operations they entail.
For example, a typical banking transaction
might include an update of the customer
account file, then an update to the teller
file, and finally, a write to the transaction
log file.

Thus, before a computer system's perfor­
mance at processing transaction workloads is
measured, it is worth examining its performance
in terms of simpler I/0 operations. For this
purpose, let P4 be defined as the following
sequence of I/0 operations:

P4a = Random read from a key-sequenced file.
P4b = Random write to a key-sequenced file.
P4c = Sequential read from an entry-sequenced

file.
P4d = Sequential write to an entry-sequenced

file.
P4e = Random delete of a relative file.
P4r = Random update of a relative file.
P4g = Sequential read of an unstructured file.
P4h = Sequential update of an unstructured

file.

For this comparison, identical disc devices
were chosen to eliminate any environmental
variations stemming from the devices. For each
of the P4 indices, it is the inverse of the
operation elapsed time, or the theoretical max­
imum number of operations per second, that
is of interest.

The data in Table 5 compares the relative
performance of the NonStop II processor to
the NonStop TXP processor as measured by P4.

P4a through P4h show that the NonStop TXP
processor improves data-base access time
by an amount that varies considerably with the
type of data-base operation performed. The
explanation for the large variance in the
improvement is somewhat complicated.

The most significant factor contributing
to the spread in relative performance is whether
the operation is sequential or random in
nature. The four indices P4a, P4b, P4e, and P4r
involve I/0 operations that are randomly
distributed throughout the file. These four
indices also exhibit the smallest improve­
ments in access time. Conversely, the four
sequential I/0 indices (P4c, P4d, P4?,, and
P4h) show the most significant improvements
in access time.

The reason for this behavior becomes
apparent if the proportions of the access time,
taccess, stemming from tdisc and tcpu, are com­
pared. For the random I/0 indices, td,:sc accounts
for more than 60% of the access time on a
NonStop II processor, a high percentage when
compared to less than 50% of the time (one
as low as 3%) for the sequential I/0 operations.
As mentioned before, tdisc is essentially unaf­
fected by the introduction of a faster processor;
therefore, sequential I/0 processing exhibits
more significant performance improvements
than random I/0 processing because it is
more CPU intensive.

When the geometric mean is used to obtain
average values for P4, three averages can
be defined for the ratios of P4a through P4h
from Table 5:

P4r=(P4a·P4b·P4e·P41f14 (random l/0)

P4s=(P4c·P4d·P4g·P4h)¼ (sequential I/0)

P4 = (P4a· P4b. P4c. P4d· P4e. P4r· P4?.· P4h) 1/8

For this comparison, the eight data-base
I/0 operations are weighted equally in
importance. Using the arithmetic mean of
the execution times does not provide equal
weighting. For example, the NonStop TXP can
perform 30 times as many P4c I/0 operations
per second as it can P41 operations. If the num­
bers were merely added together, much
more weight would be given to the operations
with larger P4 values than those with smaller
P4 values.

T A N D E M J O U R N A L SUMMER 1984

The ratios of P4 values for the NonStop TXP
and NonStop II processors indicate that
when compared against a NonStop II processor
performing a mix of random and sequential
data-base I/0 operations, a NonStop TXP
processor (on average) performs those opera­
tions 68% faster, i.e., P4(II):P4(TXP) = 1.68.
If the operations are strictly random in nature,
only 37% improvement can be expected,
i.e., P4r(II): P4r(TXP) = 1.37. However, if the
operations are primarily sequential in
nature, an improvement of 107% can be realized,
i.e., P4s(II) :P4s(TXP) = 2.07.

The range of P4 ratios is below the ranges
for Pl through PJ, as can be expected. The
more powerful processor speeds up the tcru por­
tion of taccess by a factor of two to three, but
tcru is less than half of taccess• Thus, the total
improvement in performance of taccess from
the introduction of the faster NonStop TXP
processor should fall somewhere in the
range of about 50% to 150%, as is verified by
the measurements.

On-line Transaction
Processing (OLTP) Benchmark (P5)
So far, the comparisons of performance for
the NonStop TXP and NonStop II processors
has been based on artificial workloads. But
the ultimate performance question for a user
of the NonStop II system is, of course, "How
much better will my application perform on a
system of NonStop TXP processors?"

Performance indices Pl through PJ are CPU­
intensive measures of performance, and P4
is a fairly disc-intensive measure. Typical OLTP
applications fall somewhere between these
two extremes. Consider that between perform­
ing data-base I/0 operations, the typical
application performs some data processing on
the retrieved data. Another, less apparent
type of processing that occurs in OLTP systems
is the background processing performed by
the system to provide continuous operation,
fault tolerance, and transaction integrity.
This "system" processing is not considered
overhead, rather, it is a part of the OLTP

application that the customer would have to
develop if it were not already provided by
the system.

For OLTP applications, a meaningful measure
of performance is the responsiveness of the
system as perceived by the user, or how fast

the computer responds to requests. The per­
formance index that corresponds to the
system's responsiveness is called response time.

In typical OLTP systems the response time
does not appear to be constant. As the workload
on the machine increases, the response time
lengthens. This occurs because, as more jobs
demand resources from the system, queues
begin to form at those resources that are most
in demand. The time that a request spends
waiting in these queues is the main source of
longer response times. A simple equation
that expresses this relationship is

lresponse = lservice + lqueueinR •

The system's transaction response time,
tresronse, is equal to the sum of tservice, the delay
the request would have if no other request
were in the system, and lqueueinR, the time the
request spends waiting for resources.

For this simple investigation, assume that
t.,ervice is a constant, not affected by the work­
load in the system. The other component
of response time, tqueueinR, is definitely a
function of the workload. In lightly-loaded
systems, little or no queueing takes place
and the system's response time is very nearly
tserv,ce• In heavily-loaded systems, the response
time is eventually dominated by lqueueinR and
can even approach infinity.

For the DP manager who has a problem with
response time, the performance question
might be expressed as, "What will the trans­
action response time of my system be at
current transaction workloads if I replace my
NonStop II processors with NonStop TXP
processors?"

Another related problem is the capacity of
the system. If response time goes to infinity,
no work is done. The point at which response
time becomes unacceptable (whether it be
three seconds, three minutes, or three years)
can be considered the maximum transaction
workload (capacity) of the system. In this case,
the question being asked is, "What will the
maximum capacity of my system be if I replace
my NonStop II processors with NonStop
TXP processors?" Another way to ask this
is, "What is the new peak load my system
can handle?"

SUMMER 1984 TANDEM JOURNAL 19

Figure 3 Figure 3 To obtain these results, the same benchmark
was measured on two configurations in
which the only difference was that, in one
instance, NonStop II processors were used,
and in the other, NonStop TXP processors
were used.

Benchmark response times
for the NonStop II and
NonStop TXP processors
at various transaction
rates.

20

Q)

E
:;:

ffi
C

8.
£

Transaction rate (transactions/sec)

One variation on the throughput question
is, "What new transaction throughput at the
same transaction response time(s) can my
system handle if I replace my NonStop II
processors with NonStop TXP processors?"
In this case, the system manager would like to
increase the number of transactions per
second that the computer can process at some
predefined response time(s). This question
is similar to the previous one but usually
involves increasing the number of users on the
system, not determining the peak loading
point. This situation arises when new terminals
(and work) are added to the system while
the responsiveness of the machine must be
maintained at present levels.

These questions and others can be answered
by determining the transaction response
time as a function of the transaction rate. Thus,
in this article, the following definition of P5
is the performance index for OLTP workloads:

P5rt = Response time at a transaction rate.
P5thru = Transaction rate at a response time.
P5cap = Maximum transaction-rate capacity.

In early comparisons of the NonStop TXP
and NonStop II processors, response-time
curves like those in Figure 3 were obtained
(NonStop TXP System Support Team, 1983).

Building, configuring, loading, and running
benchmarks is a time-intensive and resource­
intensive exercise. Although benchmarks
are the best models of the real workload, and
therefore yield the most accurate information
about the system's performance, many difficult
operational problems limit their use. Bench­
marks are usually difficult to modify. Often,
privacy and security requirements limit the
use of application files in the benchmark.
Finally, tuning and balancing benchmarks for
optimum performance is a non-trivial task.
Thus, developing performance information
through benchmarking usually involves
many days of intensive work on the real
system hardware.

For all of these reasons, a method that
consumes fewer resources is called for to pre­
dict the performance impact caused by
changes to the system (e.g., replacing NonStop
II processors with NonStop TXP processors).
Based on the data from many of these bench­
marks and similar measurements, an on-line
transaction processing model has been devel­
oped to predict the performance of OLTP
applications on both the NonStop II and
NonStop TXP processors. The model is com­
posed of two major submodels: a resource­
demand model for sizing a system and a
response-time model for predicting the sys­
tem's performance. ENVISION, the OLTP
performance modeling tool, is used by Tandem
system analysts to accurately size, tune,
manage the growth of, and predict the perfor­
mance of OLTP systems (Chou, Oleinick,
and Singh, 1984).

The model predicts transaction response
times, given a hardware and software configu­
ration and workload description. To demon­
strate the effectiveness of this tool, an OLTP
application was modeled. The resulting
transaction response-time curves appear in
Figure 4. Three curves appear in the figure:
those representing measured data for a real
system of NonStop II processors, predicted
data for the system of NonStop II processors,
and predicted data for the system of
NonStop TXP processors.

T A N D E M J O U R N A L SUMMER 1984

Although not exact, the modeled perfor­
mance of the system of NonStop II processors
compares well with the measured data. At
low-to-medium transaction rates, the model
and the measured data agree to within 5%.
At medium to higher transaction-throughput
rates, the model predicts response times
that are from 7% to 13% too low. Still, this
degree of accuracy is sufficient for the analysis
that follows.

There are many ways to interpret these
curves. If reducing response times is of inter­
est, a vertical line can be drawn at the
appropriate transaction rate, and the response­
time values of the two systems can be
compared. The curves indicate that in this
benchmark, at five transactions per second,
for example, response time can be reduced
from 1.46 seconds to 0.7 seconds, a reduc­
tion of more than 50%. To continue the ratio
method of comparison of the NonStop II
and NonStop TXP processors, the transaction
response times of both machines should
be compared.

Table 6 summarizes this type of analysis. By
this measure of performance, the NonStop
TXP processor is dramatically more powerful
than the NonStop II processor. The first
row of the table compares the service times of
the transactions, i.e., the no-load response
time. The ratio for P5r1 is 1:1.61 in this case.
As the transaction rate increases, this
improvement increases, and eventually no
comparison is possible; the NonStop II
processor response time becomes unbounded,
and P5r1 approaches infinity.

The data in Table 6 indicates that the
improvement in the responsiveness of the
system varies considerably with the quan-
tity of work. If the DP manager were interested
in improving system responsiveness within
the typical transaction-throughput range of a
system (e.g., 4 to 8 transactions per second),
this data indicates that the amount of improve­
ment would be between 100% (P5r1 ratio =
2.00) and 153% (P5rt ratio = 2.53).

By drawing horiwntal lines across the
curves, the DP manager can answer the question
about increasing throughput rates while the
same response time is maintained. For example,
the transaction throughput capacity at a
one-second response time is approximately

Figure 4

Table 6.

ui'
CJ
Q)

5

4

!':, 3
Q)

E
:;::;

3l
C

g_ 2
<J)
Q)

a:

0
0 5 10 15

Throughput (transactions/sec)

Relative response times for the Nonstop 11 and
Nonstop TXP processors (P5r1).
Transaction rate Ratio P5,,(ll):P5,tCTXP)

0.0 (no load) 1:1.61

2.0 1:1.90

4.0 1:2.00

6.0 1:2.10

8.0 1:2.53

9.0 1:4.60

10.0 1:infinity

Table 7.

Relative throughput rates for the Nonstop 11 and
Nonstop TXP processors (P5thru),
Response time Ratio P5,h,u(ll):P51hru(TXP)

2.50 1:1.70

2.00 1:1.91

1.50 1:2.48

1.00 1:9.30

0.75 1:infinity

one for the NonStop II processor, but more
than nine for the NonStop TXP processor. The
DP manager can increase the system's trans­
action processing capacity by a factor of 800%
by replacing the NonStop II processors with
NonStop TXP processors, given this response­
time requirement for this system's workload
and configuration. This type of analysis is
summarized in Table 7.

SUMMER 1984 • TANDEM JOURNAL

Figure 4

Modeled and measured
response-time curves (PS).

21

By this measure of performance, the NonStop
TXP processor is again dramatically more
powerful than the NonStop II. As the response
time requirement becomes more and more
stringent, the difference in transaction process­
ing capacities widens. Eventually, as before,
the NonStop II processor cannot deliver any
transactions at the indicated response time,
and the ratio of PS1hru(TXP) over PSthru(II)
becomes unbounded.

The third PS metric, PS cap, is easily obtained
from the curves. It is approximately 9 for
the NonStop II processor and 14 for the

NonStop TXP proces­

balanced system, A in which the disc­
processing and CPU capac­
ities match the demands
of the workload, will always
be the most efficient system
to configure.

sor. Thus, for this
system configuration,
running this work­
load, switching from
NonStop II to
NonStop TXP proces­
sors would permit
the system to handle a
peak load 1.55 times
the present maximum.

What is the reason
for the rather small dif-

ference in peak load capacity? The answer
can be found by examining the rate of utilization
of the processors at the peak load points.
The NonStop II processors were running at an
average of 87% busy. The NonStop TXP
processors were much less busy, only 49%.
Clearly the bottleneck in the NonStop TXP
processor system is not the processors.

It should come as no surprise that the
disc subsystem is the bottleneck in the NonStop
TXP processor system at peak load. The
utilization data confirms this hypothesis. For
the NonStop II processor system, the disc
drives were only 27% busy on average (54% for
each mirrored pair) at peak load. When the
NonStop TXP processors were introduced, the
disc devices could be used more. The
average utilization of the disc drives for the sys­
tem of Nonstop TXP processors increased
to 38% (76% for each mirrored pair) at the
higher peak load. Thus, the NonStop TXP
processor better utilizes the disc devices.

Note that of all the performance indices
examined so far, PS, and especially PScap,
should be viewed with the most caution.

Because the values of PS were derived from the
performance of a single OLTP application
on a single configuration of processing ele­
ments, the performance results cannot be
used to size or configure systems for other than
OLTP applications or workloads. The PS
data merely demonstrates the performance
impact of the CPU elements when NonStop II
processors are replaced by TXP processors
in one situation.

The results of PS could have been adjusted
to any value desired to represent a different
disc and processor configuration or different
application-processing demands. The values
presented for PS were chosen to provide insight
into typical system-configuration problems.

Conclusions

It is difficult to specify unequivocably the
relative performance of two computer systems.
It is clear, however, that when the perform­
ance of computer systems is compared, the
workload to be used for the comparison
must be specified as accurately as possible.
This is important because the slightest vari­
ation in the workload can produce a profound
change in observed performance.

In this article, several essential computa­
tional elements in an OLTP environment have
been discussed, and the corresponding
performance values for very similar processors,
the NonStop II and the NonStop TXP, have
been compared. The data in Table 8 sum­
marizes the performance comparisons.

While, as discussed earlier, the processing
performance for OLTP workloads varies,
depending on the nature of the transactions
and the configuration of the systems, the
throughput of the NonStop TXP processor has
been observed to be two to three times
greater than that of the NonStop II processor
for a variety of OLTP applications and work­
loads for numerous Tandem users.

The information in this article represents the
performance criteria and resulting meas­
urements available at the time of publication.
The available data was gathered and pre­
sented in order of increasing complexity,
beginning with the measurement of certain

22 T A N D E M J O U R N A L SUMMER 1984

basic system functions and ending with the
measurement of a mix of more complex OLTP
functions. This particular set of criteria is
not intended to become the standard for eval­
uating the performance of OLTP systems.
A more rigorous standard workload/bench­
mark, designed by "those who develop
standards", is needed. Until this standard OLTP
benchmark is available, ad hoc performance
comparisons will continue to be the only
method available for evaluating relative com­
puter power in the OLTP arena.

A final note: Instead of replacing all the
NonStop II processors with NonStop TXPs,
the DP manager might consider adding a few
NonStop TXP processors (and disc drives) to
augment the eight NonStop II processors. As
the performance data indicated, replacing all
eight processors with the faster NonStop TXP
processors substantially increased the amount
of CPU power in the configuration but did
not much alleviate the system's disc-drive bot­
tleneck. Much of the added CPU power is,
then, essentially wasted.

The example from which performance met­
ric P5 was derived was chosen to compare
the NonStop II processor to the NonStop TXP
processor. It was purposely restricted to
illustrate the performance improvement that
would result from merely replacing the CPU
components. Deriving the ideal system (built
with NonStop TXP processors) for this OLTP
workload was not the purpose of this investi­
gation. Nevertheless, an important lesson
in system configuration was demonstrated;
i.e., a balanced system, in which the disc­
processing capacity matches the disc-processing
demands of the workload and the CPU
capacity matches the CPU-processing demands
of the workload, is the most efficient system
to configure.

In conclusion, the results of this study
indicate that the NonStop TXP processor
is a worthy successor to the NonStop II
processor. Its designers have achieved compat­
ibility with the NonStop II processor while
providing much-improved performance. The
NonStop TXP processor is clearly a high­
performance processor for on-line transaction
processing systems.

Table 8.
Summary of performance index comparisons
for the Nonstop II and Nonstop TXP processors.
Performance index Ratio Px(ll):P,(TXP)

Pt 1: (2.5-3.1)

P2 1: (2.7-3.0)

P3 1: (3.2-4.1)

P4, 1: 1.37

P45 1: 2.07

P4 1: 1.68

P5cap 1: 1.55

P5,, 1: (2.5-infinity)

P5thru 1: (2.7-infinity)

References
Carr, R., and Campbell, G. 1984. The NonStop TXP Processor
word length. Tandem Computers Incorporated internal report.

Chou, T.C.K., Oleinick, P., and Singh, A. 1984. Language­
directed modeling. 17th Hawaii International Conference on
System Sciences, Honolulu, Hawaii, January 4-6.

Curnow, H.J., and Wichmann, B.A. 1974. A synthetic bench­
mark. The Computer Journal, vol. 19, no. 1, 43-48.

ENVISION Reference Manual. 1984. Tandem Computers
Incorporated internal manual. Part no. 82351 BOO.

Gruenberger, F. 1966. Are small, free-standing computers here
to stay? Datamation, vol. 12, no. 4 (April), 67-68.

Horst, R., and Metz, S. 1984. New system manages hundreds of
transactions per second. Electronics, April 19, 147-151.

IBM Corporation. 1984. Service for Consultants. Hardware
prices, vol. 1, 48.

NonStop TXP System Support Team. 1983. Atoms of NonStop
TXP processor performance. Focus (Tandem Computers
Incorporated internal publication), vol. 3, no. 3, 10-18.

Schneidewind, N. F. 1966. Analytic model for the design and
selection of electronic digital computers. Ph.D. thesis, University
of Southern California, Los Angeles.

Singh, A. 1983. NonStop TXP Processor atoms. Tandem
Computers Incorporated internal report.

Tandem Computers Incorporated. Tandem product and price
guide (internal). 1984.

Peter Oleinick is the manager of the Performance Group in
Software Development. He joined Tandem in August 1978 to work
on performance evaluation. As Software Development grew, a
group evolved to concentrate on performance modeling, measure­
ment, and analysis under Peter's direction. Before coming to
Tandem, Peter obtained a B. S. in Electrical Engineering from the
University of Michigan, and a Masters and Ph.D. in EE/CS from
Carnegie-Mellon University.

SUMMER 1984 T A N D E M J O U R N A L 23

24

Optimizing Sequential
Processing on
the Tandem System

~!!!~!• or programmer-analysts used
____ ___::: to traditional sequential

--~~-- processing, designing on-line
---1------ transaction processing appli-

-- cations for a multiprocessor
-~-- architecture often requires

--_-_- an adjustment in thinking.
Their traditional approach to application design
must change so that they can optimize the
processing of the on-line transactions and fully
utilize the features of the multiprocessor
system. Often, the methods they use to optimize
the sequentially-oriented portions of the
application must be reconsidered also. Require­
ments such as fault tolerance, data integrity,
and tunability are different for sequential and
on-line environments. Table 1 identifies some
of these fundamental differences.

In this article, techniques for optimizing
sequential processing on the Tandem system are
explored. System configuration, file blocking,
and parallel processing techniques are dis­
cussed in the order in which they should be
implemented (i.e., parallel processing is not
as effective if system-configuration and file­
blocking possibilities have been overlooked).

Table 1.
Fundamental differences between sequential and
on-line processing.

Sequential On-line
processing processing

Typical file access Sequential Random

Recoverability File level Transaction level

Data integrity/ File level Record level
Data-base
consistency

Tunability Larger data blocks.
fewer physical I/Os

Modular growth

Ultimate goal Shortest wall-clock High availability and
time fast response time

Finally, a general approach to optimizing
sequential processing is presented, illustrated
with examples of typical applications.

A primary consideration in the presentation
of these techniques is their ease of instal­
lation into an existing program. The changes
required are generally minimal and do not
affect the application portion of the code. In
some instances, the programs need not be
recompiled. In others, small, simple programs
or pieces of code must be added.

Example programs are available either in
current Tandem manuals or through Tandem
support analysts. The list of references iden­
tifies specific manual sections and other
supporting written information.

Benchmarks

Simple COBOL benchmark programs were
used to test the effects of each technique. The
results of these benchmarks are presented
as each technique is discussed. The values
of appropriate parameters were varied to
explore their effects on wall-clock time and
system resource usage. The benchmarks
were run on the A06 version of the GUARDIAN
operating system, on both the NonStop II
and NonStop TXP systems.

These benchmarks are intended as guide­
lines for comparing various techniques. The
results should not be used as absolutes in
measuring system performance. Many different
factors contribute to performance measure­
ment, and while controlling all of them is very
difficult in a lab, it is nearly impossible in
a production system.

T A N D E M J O U R N A L SUMMER 1984

The XRAY performance analysis tool was
used to monitor and verify the benchmark
results and show the impact of each test on
system resources. XRAY should be used in
conjunction with any performance optimiza­
tion. Taking XRAY measurements before any
modification is made is the surest way to deter­
mine where optimization is actually needed.

Those analysts familiar with XRAY statistics
will observe that sequential processing has
significantly different optimal measurement
ceilings than those of on-line transaction
processing. The value for the XRAY metric CPU
BUSY can be much higher, disc utilization
can be driven to the limit for sequential access,
cache hits can be very high (this is not nec­
essarily optimal, as is later shown), and queue
lengths for resources can be longer. Finally,
CPU workload over an entire system can be
extremely unbalanced.

System Configuration Considerations

Several options in the system generation
(SYSGEN), hardware configuration, and general
procedures for running applications can be
useful in improving sequential processing.

Disc Configuration
At SYSGEN, the following disc parameters
can be configured according to how the disc
is to be used.

On the Tandem NonStop system, mirrored
disc volumes can be configured for either
PARALLELWRITE or SERIALWRITE. PARALLEL­
WRITE is much faster for individual writes
because of the overlap gained with parallel-disc
seeking and writing. SERIALWRITE can
provide another access path to disc since two
controllers are not tied up for a single
operation. On the NonStop II system these
parameters are not available; the system
automatically selects the appropriate option,
based on the dynamic configuration. If both
halves of a mirrored volume are on the same
controller, seeking occurs concurrently on
both, but all other operations are done one at
a time. If each device in a mirrored pair is
on a separate controller, seeking or writing
occurs concurrently on both.

For most applications, reads on a disc
volume outnumber writes by a wide margin.
The SPLITSEEK option provides a faster seek
time when records are read randomly, by posi­
tioning the heads for the two mirrors on
the inside and outside of the spindles. If writes
are proportionally higher, the SLAYESEEK
option, which keeps both sets of heads posi­
tioned at the same place, should be considered.
For example, if a file is written and read
sequentially, there is no advantage to SPLITSEEK;
SLAVESEEK saves more time.

The "phantom-disc" technique is useful for
systems with removable disc volumes. This sim­
ply involves adding extra disc definitions on
mirrored-disc strings in the SYSGEN so that more
logical discs are configured than physically
exist. This gives the system manager the capa­
bility to bring down half a mirror, remove
the pack, install another pack, and bring it on
line as a disc volume
that can be addressed
separately. This proc­
ess can be reversed at
any time to bring the
"downed" half of the
mirror back on line.
A REVIVE can then be
used to synchronize
it with the primary.

i A primary consideration
in the presentation

of these techniques is their
ease of installation into
an existing program.

If temporary work files are extensively used,
consideration should be given to unmirror­
ing the disc volumes on which they reside. In
most instances, data in work files is not
critical, since it can be rebuilt. If the normal
recovery for the job is to rerun it, regen­
erating the output data when a disc fails is not
a serious problem.

Unmirroring disc drives has three advantages
in sequential processing:

■ Physical disc capacity is doubled.

■ About 20 ms per access is saved over
PARALLELWRITE-configured mirrored discs,
and more than 50 ms is saved per access
over SERIALWRITE-configured mirrored discs.
Of course, this is dependent on the size of
the block being written and the mode of access.

■ Depending on the configuration of the
disc controllers, unmirroring may provide
another physical access path.

SUMMER 1984 • TANDEM JOURNAL 25

26

Critical or permanent data should not be
kept or modified on unmirrored packs since
this would introduce a single point of fail­
ure. Files audited by the Transaction Monitoring
Facility (TMF) and all audit trails should
always be mirrored.

File System
The following considerations about the file
system are also important. First of all, making
sure the REFRESH flag in the file header
block is off prevents the file header block from
being rewritten to disc whenever a file's EOF
changes. While useful for on-line processing,
rewriting the file block header to disc is
inefficient for sequential writes since the entire
job is rerun in the event of a failure. REFRESH

can be called at any time by the program and is
invoked when the file is closed.

If two files on the same volume are heavily
accessed simultaneously (e.g., one is read
from, then another is written to), moving one
of the files to another pack can provide an
immediate reduction in seek time and up to a
50% improvement of the job's run time in
some instances.

When jobs access a number of files simul­
taneously, or when several processes access
files heavily, additional disc controllers are an
asset. The more paths there are to the data,
the more options there are for performance
improvement, both for sequential and on­
line environments.

Larger block sizes for structured files ensure
better access times, especially for sequential
reads. A larger block size means a higher
blocking factor, which reduces the number of
physical 1/0 operations.

If a system has several disc volumes and
some fairly large files or files that are used
heavily, partitioning should be considered,
whether the processing is on-line or sequential.
Even if a file is not in danger of overflow-
ing its current disc volume, partitioning offers
a number of advantages:

■ More access paths to the file. This can
improve the throughput for both sequential
processing (see "Parallel Processing") and
on-line processing (by reducing the bottleneck
potential and better balancing the system).

■ Increased fault tolerance. If one partition
of the file is down because of a disc, CPU, or
node failure, the other partitions are still
available as long as the root partition is avail­
able when the file is opened. Also, when a
RESTORE or TMF ROLLFORWARD is required,
only the partition that is down need be
recovered, and this can be done while the other
partitions are being used by the application.

• Larger file sizes. Instead of being limited
to the size of a single disc volume, up to 16 discs
can be used for a single file. These discs
need not be the same type or capacity, and each
partition can be a different size.

■ More options for data distribution. A single
file can span discs and nodes, offering a
very flexible environment that can be seen
logically as a single entity.

The RUN Statement
While sequential jobs are often executed
with a simple RUN statement and no Command
Interpreter options, the following are some
options for improving their performance:

• Specify a CPU This avoids having $CMON
or the Command Interpreter select one. (The
latter might create contention in the proc­
essor if the CPU selected were busy when the
job was run.) Each job should be reviewed,
and the best processor for it should be deter­
mined by the system load and whether or
not it will contend with other processes using
a large amount of the total system resource.

• Set the job '.s priority. This can improve
its performance if it is the most important of
several processes running at the same time.

■ Specify the NOWAIT option. This frees the
terminal for other uses. While this does not
improve the job's performance, it may help
the operator. It should not be specified if COBOL
DISPLAY or ACCEPT to the home terminal
are used within the program or if other job
steps that are dependent on the first job's
completion follow in the same obey file.

• Specify a file name for a temporary unstruc­
tured file. This avoids having the COBOL

run-time library create the file on the default
volume, which would cause contention if
other needed files were already on the volume.

T A N D E M J O U R N A L SUMMER 1984

Also, the default size may not be large
enough. The job might run at first, but if the
number of records increased, the job might
fail because of inadequate disc space. This
is especially important for a sort-work file; the
default is to allocate enough room for
approximately 10,000 records.

■ ASSIGN all application files in an obey file.
This makes it easier to keep track of a
program's input and output and is a convenient
way to allow a program access to different
files without recompiling.

■ Name the process. This makes it easier to
monitor its operation and performance. If
parallel processing is implemented and the
processes involved send data to each other,
a named process is much easier to work with.

Below is a sample of the parameters that
should be set, not defaulted, for the RUN

statement:

CREATE $VOL.SUBVOL.TEMP, EXTSIZE

ASSIGN COBOL-FILE, $VOL.SUBVOL.FILE

RUN X /CPU X, PRI n, NOWAIT, NAME $NAME/

The SORT Utility
Whenever possible, the SORT utility should
be used instead of sorts called by COBOL. This
is because, in the SORT utility RUN state­
ment, MEM 64 can be specified to make
more memory available for the sort process.
This improves sort times significantly. This
option cannot be passed to SORT from COBOL.

Also, for optimal sort time, SORT should
read the file directly, regardless of whether the
SORT utility is used or the file name is
specified in the COBOL SORT statement. If an
input procedure is used, sorting is much
slower, as COBOL must pass each record sepa­
rately to SORT with an interprocess message.
Sequential block-buffering, discussed later, is
used by SORT for all structured file reads.

The Spooler
If the spooler collector process is overloaded
with jobs opening and writing to the spooler,
adding another collector process can help to
spread the workload. Each collector process
has its own data file, which can help to balance
the spooler requests
across separate disc
volumes. This can be
run out of a single
spooler supervisor and
is transparent to the
SPOOLCOM or PERUSE
user. Many systems
are already configured
with two collector

E ven zf a file is not in
danger of overflowing

its current disc volumeJ
partitioning offers a number
of advantages.

processes, with one used for short jobs and the
other for longer report output. (See the sub­
section on Level 3 spooling in "File Blocking"
for more ways to streamline spooler processing.)

TMF
The following are some guidelines for using TMF

in sequential processing:

■ Avoid using TMF to audit intermediate or
work files.

■ Use the LOCKFILE procedure to eliminate
record-level locking on audited files. Note that
only one process may lock a file at any
given time.

■ Block TMF transactions for audited files
between BEGIN-TRANSACTION and END­
TRANSACTION statements. With the A06 ver­
sion of TMF, a maximum of 1808 records
and 922 key locks can be held simultaneously.

■ Leave audit flags on. Turning them off to
permit faster updating is dangerous, since it
creates a grave risk that the flags might not
be turned back on again. This would make
ROLLFORWARD impossible for those files
until another on-line dump were taken.

Current Releases
The best system-configuration tip of all is
to use the current releases of Tandem software.
Tandem continuously upgrades its products
in response to user needs. Significant improve­
ments can often be realized with the instal­
lation of the latest system software release.

SUMMER 1984 T A N D E M J O U R N A L 27

28

File Blocking

At the application level, blocking data into
and out of a program is probably the per­
formance factor that is easiest to control and it
is one that has a major impact. The goal is
to reduce the number of physical 1/0 operations
and the number of system-level calls to the
Discprocess or cache management function.
The three methods discussed below are
simple to implement, can show impressive
improvements in run time, and can signifi­
cantly reduce the load on system resources.

Sequential Block-buffering
One of the easiest ways to boost serial-read
performance for structured files is to use
sequential block-buffering. This technique
!described in the ENSCRIBE Programming
Manual and further explained in an unpublished
paper, "Sequential Block-buffering for COBOL
Programmers',' by Chris Ohland of Tandem) can
be used on any structured file. Essentially,

lrable 2.

Time required to perform standard versus sequential
block-buffering. (Sequential reads of structured
files, 10,000 records.)
Nonstop II system·

Time (secs), keyed files Time (b)asa
Becord size (a) Standard (bl Sequential percentage
(bytes) buffering block-buffering of lime (a)

100 111 38 34%

200 127 55 43%

500 162 98 60%

1000 200 145 72%

1500 278 276 99%

Nonstop TXP system
Time (secs), keyed files Time (b)asa

Flecord size (a) Standard (bl Sequential percentage
(bytes) buffering block-buffering oftime(a)

100 44 19 43%
200 52 28 54%
500 68 48 71%

1000 96 94 98%
1500 190 190 100%

in the NonStop processor, sequential block­
buffering moves a structured file block
directly into the user data area, and in the
NonStop II and NonStop TXP processors,
it moves it into the Process File Segment (PFS).
Then it is deblocked without having to go
through cache management or an interprocess
communication. The savings in read time
are remarkable; smaller records are read three
times faster.

Table 2 compares the results of a bench­
mark testing standard and sequential
block-buffering. The program read 10,000
records, first with standard 1/0 operations
and then with sequential block-buffering
added. Block size was 4096 bytes. The record
sizes were varied.

The XRAY statistics show that for smaller
records, the number of read requests to the
Discprocess dropped 95%. The cache hit rate
(the number of times the appropriate record
was found in memory) fell from 90 per second
to 21 per second, reflecting the fact that
the index blocks were still kept in cache. The
rate of disc physical reads tripled, showing
much higher throughput, but the Discprocess
CPU BUSY percentage dropped from 43% to
6%. The test program CPU BUSY percentage
increased 33%, showing that deblocking was
still being done, but outside of the Discprocess
and cache manager.

Not only can a much higher throughput
be obtained with sequential block-buffering,
but the load on the disc resource is signifi­
cantly reduced. The disc could be accessed
for another file without serious contention
problems. Without sequential block-buffering,
cache hits on the sequential reads consume
the Discprocess resource while the physical
disc is almost idle.

Sequential block-buffering is intended for
sequential read-only requests on ENSCRIBE
structured files. The file can be STARTed at
different points and then read sequentially.
Random reads or writes work, but do not show
a performance improvement since the wor~­
ing storage buffer is completely replaced with
each 1/0 operation. The file can be shared.

T A N D E M J O U R N A L SUMMER 1984

Finally, updating by other processes is possible,
but once a block is read into the user data
area, any subsequent updates to that block by
other processes do not update the user data
area copy of the block.

Unstructured Files
Four file types are available in the ENSCRIBE

file system: keyed, relative, entry-sequenced,
and unstructured. If a file has special attributes
such as keys, alternate keys, variable-length
records, ordinal record positioning, update
capability, or ENABLE or ENFORM require­
ments, the appropriate type of structured file
should be used.

If the file holds only sequential, fixed-length
records it should be unstructured for faster
processing. An unstructured file has no point­
ers, control blocks, or slack space, and
records are physically adjacent. There is no
record size on an unstructured file; what­
ever record size is specified in the COBOL file
description is read into the record area.
Maximum record size is 3584 bytes.

A prime application for unstructured files
is for intermediate data that is generated
sequentially to be read sequentially.

Reading Unstructured Files
Using a BLOCK CONTAINS clause in the file­
definition statement improves read access to
unstructured files. It causes the entire block
to be read into the user program data area.
Reads of the file go outside of the user
program environment only when a new block
is needed.

In Table 3, the results of a benchmark
using unstructured and structured files with a
BLOCK CONTAINS clause are shown. The
benchmark compared entry-sequenced and
unstructured files by reading 10,000 records
from each type. Record sizes varied from 100
to 3000 bytes. The entry-sequenced file was
blocked at 4096 bytes.

The XRAY analysis showed a dramatic drop
in the Discprocess and cache overhead and
an increased number of physical disc requests
for the unstructured files, demonstrating

Table 3.
Time required to perform reads on structured versus
unstructured files. (10,000 records.)

Nonstop II system
Time (secs)

(a) Structured (bl
Record size files (entry- Unstructured
(bytes) sequenced)* filest

100 117 13 (35)

200 136 24 (17)

500 143 58 (7)

1000 183 128(3)

1500 257 188(2)

2000 280 361 (1):j:

3000 393 378 (1)

Nonstop TXP system
Time (secs)

(a) Structured (b)
Record size files (entry- Unstructured
(bytes) sequenced)* filest

100 44 6 (35)

200 53 12 (17)

500 68 17 (7)

1000 96 33(3)

1500 190 100(2)

2000 185 190(1)

3000 214 210 (1)

*Entry-sequenced files blocked at 4096.

tUnstructured blocking factor shown in parentheses.

Time (b)asa
percentage
of time (a)

11%

18%

41%

70%

73%

129%

96%

Time (bJasa
percentage
oftime(a)

14%

23%

25%

34%

53%

100%

100%

:j:With a record size of 2000 bytes, no blocking can be done
on an unstructured file, but the entry-sequenced file can still fit
2 records in a block.

higher throughput. (This was especially notice­
able for smaller record sizes.) The difference
is due to the reduced number of interprocess
communications needed to obtain record
data and the subsequent reduction in load on
the Discprocess and cache management for
unstructured files.

Writing Unstructured Files
A good technique for generating records
for an unstructured file is to block the data in
the user program before issuing a write. This
can be done with a simple blocking paragraph
and is a very efficient way to minimize the
number of physical writes for every logical write.

SUMMER 1984 TANDEM JOURNAL 29

30

Table 4.
Time required to perform writes on structured
versus unstructured files. (10,000 records.)
Nonstop II system

Time (secs)

(a) Structured (bl Time (b)asa
Record size files (entry- Unstructured percentage
(bytes) sequenced)* filest of time (a)

100 533 33 (35) 3%
200 512 60(17) 12%

500 527 143(7) 27%

1000 524 303 (3) 58%

1500 561 447 (2) 80%

2000 557 710(1):j: 127%

3000 594 887 (1) 149%

Nonstop TXP system
Time (secs)

(a) Structured (bl Time (b)asa
Record size files (entry- Unstructured percentage
(bytes) sequenced)* filest of time (a)

100 335 16 (35) 5%

200 339 32 (17) 9%

500 340 78 (7) 23%

1000 348 182 (3) 52%

1500 360 270 (2) 75%

2000 355 510 (1):j: 144%

3000 384 542 (1) 141%

*Structured files blocked at 4096 bytes.

tlnternal blocking factor is shown in parentheses for unstructured
files.

:j:At 2000 bytes, only one unstructured record can fit. The file
system must move data in adjacent records on each write.

Table 4 shows the results of a benchmark
that added a simple blocking paragraph to a
program that wrote sequential records to
an unstructured file. The benchmark consisted
of writing 10,000 records to both structured
and unstructured files. Record sizes were varied
to show their impact at different points.

The results of the XRAY analysis were very
similar to the unstructured read results: the
Discprocess and cache overhead dropped, and
physical disc activity increased.

No other programmatic changes are needed
to make a file unstructured. Incorporating
these suggestions would help to move the data
through the system faster and with lower
system overhead.

Level 3 Spooling
The Tandem spooler function receives print
data from processes, saves it in a spooler
data file, and manages the printers. Standard
COBOL WRITE requests to the spooler require

an interprocess message for each write. The
spooler collector blank-compresses this data
into a block, and once the block is full, writes
the block to the spooler data file. This is
known as Level 1 spooling. In Level 3 spooling,
the compression procedures are in the sys­
tem library, and can be called directly by the
application code without an environment
switch. An interprocess message to the spooler
collector is needed only when a block is full.

The performance improvement that can
be obtained by using Level 3 spooling is
impressive: writing to the spooler can be 3 to
15 times faster, depending on the number
of blanks in the print data. Level 3 spooling is
also useful for specifying report names,
print priorities, the number of copies, and
special flags from the program.

A complete description of Level 3 spool­
ing, including a sample program, is in the
Spooler/PERUSE User's Guide. The change
from standard COBOL I/O is fairly simple;
the programmer need only make separate calls
for pagination and line feeds. (The sample
program, on which this benchmark was based,
demonstrates this.)

The benchmark to test both standard
writes and Level 3 I/O wrote 10,000 lines of 132
characters each, with a range of nonblank
characters. The results are shown in Table 5.

Because far fewer interprocess messages
are needed with Level 3 spooling, a more pre­
dictable range of timings can be found,
especially when there are other active processes
on the system. The XRAY analysis bears this
out. Using standard writes consumes much
more of the total system resource in the
form of message-system overhead.

Parallel Processing

While parallelism is an established concept for
on-line processing on any multiprocessor
system, it is not often considered for use in opti­
mizing the sequentially-oriented portions of
an application. Perhaps it is felt that the effort
to design and implement a parallel architec­
ture would not be worth the possible improve­
ments in run time. There may be a suspicion
that the overhead needed to run processes in
parallel would overshadow any gains made
through the concurrency obtained.

T A N D E M J O U R N A L SUMMER 1984

In reality, parallel processing can greatly
improve run times for sequential processing.
Its design and implementation for applica­
tions is straightforward and simple, especially
when the Tandem architecture is utilized.
Since parallel processing enables the applica­
tion to use more system resources simul­
taneously, the overhead to run functions in
parallel is not a significant factor. In many
cases, total system resource usage is less in a
parallel environment because some steps
can be eliminated and information can be
shared, as is discussed later in this section.

The Tandem system is message-based; i.e.,
all information is passed between processes
via messages. A part of the operating system
controls the message traffic by routing and
queuing to the appropriate process. Another
integral part of the operating system is the
file system, which treats all 1/0 operations as
messages. Whether a block of information
is to be read or written to disc, or to another
process, is essentially transparent to the
sending or receiving process. This simplicity in
passing data between processes allows the
workload to be distributed, files to be shared,
and some intermediate steps in the sequen­
tial processing environment to be eliminated.

Three basic parallel processing concepts
are important in sequential processing. Each
of these is explained below.

Eliminating Intermediate Files
In the traditional single-processor envi­
ronment, intermediate files are often used for
saving information for another job to access
later. After this job is complete, the file is
purged. This is easy to program. Each unit
of work can be considered as separate instead
of all units being viewed as a single com-
plex multi-pass program. This modularity is not
only simpler to work with in the case of the
single processor, it provides the basis for running
some of these units of work concurrently in
the multiprocessor environment.

In the Tandem message-based environment,
it is as easy to write to another process as
to a disc file. This allows information to be
passed from one program to another very
quickly, eliminating the disc time required to

Table 5.

Time required to perform standard versus Level 3
spooling. (10,000 lines; 200 pages, 50 lines/page.)

Nonstop II system

Number of Time (secs) Time (b)asa
blank (a) Standard (b) Level 3 percentage
characters spooling spooling of time (a)

0 210 62 30%
33 203 36 18%
66 195 30 15%

132 189 8 4%

Nonstop TXP system

Number of Time (secs) Time (b) asa
blank (a) Standard (b) Level 3 percentage
characters spooling spooling of time (a)

0 97 41 42%
33 86 40 47%

66 82 11 13%

132 78 3 4%

Figure 1

(a)

(b)

write and read the file, and allowing the
jobs to run concurrently, further reducing the
run time. Disc space is also saved. A further
benefit is the ability to increase the amount of
data sent per message by internal blocking.
Finally, the limitation on disc block sizes is no
longer a constraint; up to 32K-byte messages
can be sent with system procedure calls.
Standard COBOL 1/0 allows 4K-byte blocks.

Figures la and lb show the flow of data
with and without the intermediate file. Note
that intermediate disc access is no longer
needed. An interprocess message for each
record/block is also eliminated.

SUMMER 1984 T A N D E M J O U R N A L

Figure 1

Eliminating intermediate
Jiles. (a) Before the
intermediate file is elim­
inated, one job (Ji) writes
the intermediate data
to disc (D) and another
job (12) accesses the
data from the disc at
a later time. (b) After the
intermediate file is
eliminated, the first job
writes the intermediate
data directly to the second
via an interprocess
message.

31

Figure 2

(a)

(b)

(C)

• •
• •
• •

Figure 2

Routing and merging.
(a) Before routing and
merging is used, the job(])
reads the datafile (D),
transforms the data, and
then writes the trans­
formed data to a file (F).
(b) When routing and
merging is used, the job
reads the data file and

32

0 - J -!=

routes segments of the data
to the bottleneck proc­
esses (BJ-4). They trans­
form the data and send
it back to the main job to
be merged and written.
(c) When routing and
merging is used with a
partitioned input file,
copies of the router pro-

gram read each partition
of the input file and route
segments of the data to
the bottleneck processes.
These processes then
transform the data and
send it to a single merger
program that combines
the data and writes it out
as a single stream.

Routing and Merging
Sometimes a single job takes a long time to
run. This job may take in one or more large
files, transform them, and generate large
files or reports. A classic example is the large
sort job, in which a file is read, sorted, and
written out in a new order. The speed of the
sort is usually the constraining factor, espe­
cially if the file-blocking techniques discussed
earlier have already been applied.

With routing and merging, this bottleneck
can be eliminated. Multiple copies of the
bottlenecked portion are started in separate
processors, a segment of the work is passed
to each, and then the segments are merged to
produce the final output. Figures 2a and 2b
show the flow of data before and after routing
and merging is done.

Only two programs are needed for this
technique. The first has three components:
the application code (without the bottle­
necked portion), a round-robin write pro­
cedure to route segments of the input file to
the bottleneck processes, and a merge
function to receive the transformed data from
these processes and combine the segments.
The second program, the bottleneck process,
is a simple routine that reads segments of
the data file from the router, performs the
necessary function, and then writes the trans­
formed data to be merged. The bottleneck
process can be replicated as many times as
needed. For optimal performance, the route­
merge program should run in a processor of its
own, and each bottleneck process should
have its own processor.

An extension of this approach is to multi­
process a partitioned file on input. Partitioning
allows the data to be further processed in
parallel. Multiple copies of the router portion
can read the individual partitions and then
either transform the data or pass the data to
multiple subprocesses as before, for further
gains in throughput. For this, three programs
would be needed: a router, a bottleneck
process, and a merger. (See Figure 2c.)

All message I/0 operations are done with
COBOL READ and WRITE statements. The
route and merge functions are straightforward.

T A N D E M J O U R N A L SUMMER 1984

Distributing
Often a single file is used as sequential input
by several programs. Each program transforms
the data differently, generating separate
reports, files, or tapes, and the entire file is
read each time. Running several of these
jobs concurrently, even with a blocking tech­
nique, can cause severe contention problems
on the disc and Discprocess, and no significant
improvement in overall run time.

A remedy for this is to place a distributor
program in front of these programs to read
the file once and pass the data to each of the
programs. Then, not only do the jobs run
in parallel, but the disc file is read only once.
Once again, standard COBOL I/0 can be
used. Blocking data from the distributor
process to the application programs further
enhances performance.

Figures 3a and 3b show the data flow
before and after this type of parallel processing
is implemented.

A General Approach to
Optimizing Sequential Processing

The following procedure for optimizing
sequential processing is recommended:

1. Create a system-configuration chart that
shows all devices and their locations.

2. Diagram the sequential processing por­
tions of the application, noting all files,
major program steps, interrelationships,
and the CPU in which they run.

3. Monitor the system with XRAY during
the entire sequential processing window.

4. Check for the opportunity to use any
system-configuration parameters that
streamline sequential processing.

5. For files with sequential 1/0, check for
opportunities to implement file blocking.

6. Implement the changes indicated in steps 4
and 5.

7. Monitor the system again.

8. If time constraints are still not met, eval­
uate and implement appropriate parallel­
processing techniques.

Figure 3

(a)

(b)

9. Monitor the system again. Continue to
evaluate opportunities for improvement
until the necessary time constraints
are met or no further optimization can
reasonably be performed.

10. Continue to monitor the system period­
ically for additional opportunities,
especially those due to an increase in
application volume.

To illustrate this general approach, three
examples based on actual application situ­
ations are presented below. Benchmarks for
each example were run to compare the
performance of the applications before and
after optimization techniques were applied.

SUMMER 1984 T A N D E M J O U R N A L

Figure 3

Distributing. (a) Before
distributing. each job (Jl-4)
reads the log file (L),
transforms it in a different
way, and writes out the
new information to files
(Fl-4). These jobs run
one at a time. (b) With
distributing, a distributor
program reads the L file
once and passes copies of
the data to each of the
concurrently running jobs.

33

Figure 4

(a)

L

M

L

(bl

Figure 4

Example application 1,
interdependent processing.
(a) In the base application,
each of the four jobs
accesses a different com­
bination of files. Job I reads
log file Land master file
M, and writes intermediate
file I and report RI. Job 2
reads M, sorts using a
sort-work file (SW2J, and

34

M

R1

H

&J'/4

writes R2. Job 3 reads L
and writes to history tape
H. Job 4 reads file I
(generated by Job 1),
sorts using SW4, and writes
R4. (b) When parallel
processing is used, all four
jobs run concurrently.
Job I reads M, reads the
data from L from Job 3,
writes the former I data

g./,/4

directly to Job 4, and
writes RI. Job 2 reads M,
sorts using SW2, and
writes R2. Job 3 reads L,
writes a copy to Job 1,
and writes to tape. Job 4
reads the former I data
directly from Job 1, sorts
using SW4, and writes R4.

Example 1- Interdependent Processes
In the first application example, four jobs
ran consecutively, performing the following
functions (see Figure 4a):

• Job 1 read the log file sequentially, did a
keyed read from the master file for each log
file record, wrote to an intermediate file,
and generated a report.

■ Job 2 read the master file sequentially,
sorted it, and generated a report.

• Job 3 read the log file sequentially, generating
a history tape.

• Job 4 read the intermediate file sequentially,
sorted it, and generated a report.

The files and reports were characterized
as follows:

• The log file was entry-sequenced and had
10,000 records of 256 bytes each.

■ The master file was keyed and had 10,000
records of 512 bytes each.

■ The intermediate file was entry-sequenced
and had 10,000 records of 768 bytes each.

■ The reports were 10,000 lines long, 132
characters per line.

At first glance, the jobs seem interdependent.
The log file was needed by two programs,
as was the master file. The first job generated
a file needed by the fourth job. Three reports
were written.

To analyze each job's system-resource usage
accurately, however, the XRAY performance
analysis tool was used. System configuration
problems were checked first (as they should
be). In a benchmark running these jobs, the
following was observed with XRAY.

■ The log, master, sort-work, and spooler­
data files all resided on the same disc volume.
The intermediate file was on a different
volume attached to the same controller string.
This created severe contention on the disc
for Jobs 1, 2, and 4. This could be alleviated
by moving the master and log files to discs
on other controllers on other processors.

T A N D E M J O U R N A L SUMMER 1984

■ The sort-work files were defaulted, ending
up on the same disc as the other files. Explicitly
creating these files on separate discs would
reduce contention in Jobs 2 and 4. Specifying
larger extent sizes would allow room
for growth.

■ The processor in which the jobs were to
run was not specified. This resulted in a varia­
tion in run time, depending on whether or
not the jobs' disc files were in the same CPU
and whether or not other processing was
taking place. Identifying the best CPU for a job
would help.

Next, the jobs were examined for file­
blocking possibilities. The following items
were noted:

■ The log file could be read with sequential
block-buffering in Jobs 1 and 3.

■ The master file could be read with sequential
block-buffering in Job 2.

■ Since the intermediate file was only read
sequentially and the record size was fixed, the
file could be made unstructured and read
with the BLOCK CONTAINS clause in Job 4, and
written with an internal blocking routine
in Job 1.

All of the changes suggested above were
made. The resulting benchmark and accom­
panying XRAY analysis showed much better
utilization of disc and Discprocess resources.
The run times for all jobs were significantly
reduced.

Next, possibilities for parallel processing
were checked. The configuration and file­
blocking changes had already reduced the run
times considerably and had prepared the
jobs for making optimal use of concurrency
by reducing their system resource needs.
Because of this, contention for system resources
was not a risk, as can be seen below:

■ In Job 2, the master file could be read
sequentially, with sequential block-buffering,
at the same time it was being read randomly
by Job 1. The file access with sequential block
buffering would permit both accesses with
no major contention. This would allow the two
jobs to run concurrently. (Note that the
file was not being updated. Sequential block
buffering should not be done while the file
is being modified.)

■ The log file was read sequentially twice.
Even with sequential block-buffering, this is not
as efficient as it could be. If the distributor
technique were applied, Job 3 could read the
log file from disc and then pass a copy to
Job 1 via an interprocess message. This means
that the sequential
block-buffering code
in Job 1 would not be
needed since it would
get the data directly
from Job 3 via inter­
process writes. This
would save a complete
read of the log file

The total wall-clock
time to run all four

jobs became the run time
of the longest job.

and would allow Jobs 1 and 3 to run concurrently
without contention. Job 3 is a better choice
to read the file from disc because the run time
for Job 3 is much less. This also gives Job 1
more parallelism by overlapping log-file reads
with the other processing.

■ Instead of being written to disc in an inter­
mediate file in Job 1, the data could be passed
directly to Job 4 as an interprocess message.
Elimination of the intermediate file would save
two logical disc accesses per record (a write,
then a read), not to mention the disc space no
longer needed. Jobs 1 and 4 could then
run concurrently.

The data flow for the final version is shown
in Figure 4b. The benchmark run times for
all passes are shown in Table 6 (page 36). Note
that the total wall-clock time to run all for
jobs became the run time of the longest
job. XRAY analysis showed a fairly well-balanced
system. Disc accesses were not being exces­
sively queued, and the system was no longer
bottlenecked at any point. Doubling or
tripling the number of records would not affect
this balance, and the overall run time would
only increase at the rate of the longest job.

Example 2-The Big Job
(Overcoming the Bottleneck)
Optimizing bottleneck processing concentrates
on the elements of the sequential cycle that
take the most time or affect the most jobs.
Improving the run time for this type of
processing by a factor of two or three signifi­
cantly shortens the entire job schedule.
Also, if record volume increases, the bottleneck

SUMMER 1984 TANDEM JOURNAL 35

36

is most affected. Thus, designing expand­
ability into this type of job is necessary for
keeping the sequential functions within
their windows.

With this kind of optimization, XRAY is
invaluable for identifying the true time con­
sumers within the job. The analyst should
not attempt to tune any program without an
understanding of how the program uses
system and application resources. First, the
components of the program should be
isolated, then the component that is using the
most time or system resources must be
identified, and finally, if the processing can be
optimized, the job can be tuned and retested.

A typical example of bottleneck processing
(and the backbone of much sequential
processing) is the reading, sorting, and reporting
of a very large data file. This type of job
has three components:

■ Reading the file.
• Sorting the file.
• Writing the sorted file.

The benchmark run to test the optimization
of bottleneck processing used a 10,000-
record keyed file composed of 100-byte records
and a 10-character sort key. The output
file, a report, also used 10,000 records to print
that number of lines. Figure Sa shows the
data flow for this job.

The XRAY analysis revealed that the input
file and sort-work file were on separate discs
and the program ran in the same CPU as the
disc with the input file. Reading the records
took approximately one half the run time;

Table 6.

writing the report took the other half. The sort
time was difficult to detect because sorting
was done as the records were being read from
the input file.

To shorten processing time, sequential
block-buffering could be used with the read,
and Level 3 spooling could be used with
the write. When these enhancements were
made, the run time was reduced by half:

Results of benchmarks previously discussed
in this article show that reading 100-byte
structured records can be much faster than
this, however. Level 3 spooling should have
written data to the spooler at a much higher
rate. It was the interaction with the sort
process that caused the processes to continue
to run more slowly than necessary.

While there was no way to make the sort
process run faster, using routing and merging
could reduce the bottleneck. Several sort
processes could be created and each could be
passed a portion of the input file in "round­
robin" fashion so they could sort in parallel.
Once all the records were read and passed
to the sort processes, a simple merge of the
output from each would return the sorted
file for reporting. This approach would divide
the sorting across several processors and
split the work-file access between multiple discs.
Passing data to and from the multiple sort
processes, called subsorts, would be handled
by interprocess messages, using COBOL READ

and WRITE statements. Figure Sb illustrates the
new data flow when subsorts are used.

The changes required for the application
program would be straightforward. The call

Processing times for example application 1, interdependent processes.
Nonstop II system

Version of Run time (secs) Percentage
application Job 1 Job 2 Job 3 Job4 Total of base

Base 2012 930 231 872 4046 100%

System-configuration modifications added 1658 851 229 865 3603 89%

File-blocking modifications added 1110 810 123 580 2623 65%

Parallel processing (4 cpus) added 875 1062 874 1620 1620 40%

Nonstop TXP system

Version of Run time (secs) Percentage
application Job 1 Job 2 Job 3* Job4 Total of base

Base 1222 348 81 354 2005 100%

System-configuration modifications added 941 339 81 350 1711 85%
File-blocking modifications added 615 263 62 248 1188 59%

Parallel processing (4 cpus) added 477 391 476 747 747 37%

*Trident tape drive used.

T A N D E M J O U R N A L SUMMER 1984

to COBOL SORT would be moved to a sepa­
rate program, which would be replicated as
needed. (Even though multiple subsorts
were to be used, only one program would be
needed.) The application program would
require a routing section to pass the data to
the subsorts in round-robin fashion and a
merge section to combine the sorted portions.
The application-related code itself would
require no changes.

When these changes were made, the XRAY
measurements showed a much better distri­
bution of the workload. The more copies of the
bottleneck process and disc paths available,
the faster the job ran. For this application, the
best policy was to have each process run in
its own processor, using disc space local to that
processor for work files.

At this time, the components of the job
were analyzed again to determine if its perfor­
mance could be further optimized. Since
gains in processing time from adding more
subsorts become minimal after a certain
point, simply creating more subsorts would not
significantly increase run time.

An opportunity for further optimization
through file partitioning was found, however.
While the report had to be generated as a
unit, completely sequentially, the order of the
input file was not crucial. It was currently
being read in order, but if it were partitioned,
a separate router process could read each
partition and either do the sort locally or pass
off segments to the subsort processes. Figure
Sc shows the data flow for this approach.

Figure 5

Example application 2.
the big job (overcoming
the bottleneck). (a) In the
base application, the job
reads data file D, sorts it
using sort-work file SWJ,
and prints report R. (b)
When routing and merging
is used, the following
occurs: The router portion
of the main job reads
the D file, passes segments
of the fi'le to the sub sort
processes (551-n), which
individually make COBOL
SORT calls. The returned
data is sent to the merger
portion of the main job
to be combined and

printed in the report. Each
subsort process has its
own sort-work file.
(c) When routing and
merging is used with a par­
titioned input file, the
following occurs: Copies
of the router program read
each partition of the D
file and route segments of
the data to the subsort
processes. Each subsort
process makes a COBOL
SORT call to transform
the data and then sends it
to a single merger that
combines it and prints it.
Each subsort process
has its own sort-work file.

Figure 5

(a)

(bl

D

(cl

• •
• •
• •

SUMMER 1984 T A N D E M J O U R N A L

D - J

• •

•

37

Figure 6

(a)

SW1

L R1 L

l A3 L

(b)

L

38

SW2

R2

SW4

R4

A1

SW2

SW4

R4

When the input file was partitioned, the job
run time was again reduced. Table 7 shows
the benchmark results for all the techniques
used on this job.

A more detailed examination of this
approach to sorting, often called Supersort,
can be found in an article entitled, "Large
Scale Sorting Using Multiple Processors," by
E. L. Ashbaugh, published in Focus (an
internal Tandem publication), volume 2,
number 2.

Example 3 - The Popular File
In this example, a log file was generated by
the on-line portion of the application. 10,000
records, 200 bytes each, were written each
day into an entry-sequenced file. Four sequen­
tial programs accessed the log file. Each of
them read the entire file, sorted it on a dif­
ferent key, and generated a full report. The
flow of this job is represented in Figure 6a.

The XRAY analysis revealed that each of
the jobs saturated the Discprocess when reading
the data. Sorting 10,000 records also took
time, although this was masked by the reading
step. The sort-work files defaulted to a
volume different from that used by the log file.

The first improvements indicated by this
analysis included:

■ Specifying a CPU for the jobs.

■ Fully qualifying the names of the sort-work
files.

Figure 6

Example application 3,
the popular file. (a} Before
parallel processing is
used, each job reads the
log file (L), sorts it in a
different wa_v, and prints a
report. The jobs run one
at a time. (b) When parallel
processing is used, the

following occurs: A distrib­
utor program reads the
L file once and passes
copies of the data to each
of the concurrently run­
ning jobs. Each job reads
the data, sorts it, and
prints a report. Each job
has its own sort-work file.

T A N D E M J O U R N A L SUMMER 1984

■ Implementing sequential block-buffering
for the entry-sequenced reads of the log file.

■ Implementing Level 3 spooling for report
generation.

When used, these techniques reduced the
run times of the individual jobs considerably.
The XRAY analysis showed that the reads
and writes were much more efficient, the Disc­
process was no longer overworked, and the
physical disc was moderately active.

This job also provided a good opportunity
for parallel processing. Since all four of the
programs read the same file, running them
concurrently would create a severe bottleneck
on the log file, even with sequential block­
buffering. A better approach would be to add
a distributor program that would read the
file and pass copies of the data to each of the
application programs. Blocking the records
between the distributor and the application
programs (with standard COBOL I/O) would
provide a further improvement. Sequential
block-buffering could be used by the dis­
tributor program to read the log file. The data
flow for this approach is shown in Figure 6b.

When these further improvements were
implemented, the resulting run times were
impressive; the total run time for all jobs
was now the length of the longest job. Table 8
lists the run times for the job after the
various techniques were applied. Note also
that because of the overlap now obtained in
reading and in releasing records to the sort
process, the overall run time for the last run
was less than the previous individual runs.

Table 7.
Processing times for example application 2, routing
and merging.
Nonstop II system

Run time Percentage
Version of application (secs) of base

Base 616 100%

File-blocking modifications added 318 52%

Parallel processing added
2 subsorts, 3 cpus 141 23%
3 subsorts, 4 cpus 101 16%

Paraliel processing added, with
partitioned input file (2 partitions,
4 subsorts, 5 cpus) 77 13%

Nonstop TXP system
Run time Percentage

Version of application (secs) of base

Base 202 100%

File-blocking modifications added 115 57%

Parallel processing added
2 subsorts, 3 cpus 49 24%
3 subsorts, 4 cpus 37 18%

Parallel processing added, with
partitioned input file (2 partitions,
4 subsorts, 5 cpus) 27 13%

Table 8.

Processing times for example application 3,
distributing the popular file.
Nonstop II system

Version of
application

Base

System-configuration
and file-blocking
modifications added

Parallel processing
(5 cpus) added

Run time (secs)

Single All 4
job jobs

608 2432

349 1396

330

Nonstop TXP system

Version of
application

Base

System-configuration
and file-blocking
modifications added

Parallel processing
(5 cpus) added

Run time (secs)

Single All 4
job jobs

247 988

143 572

130

Percentage
of base

100%

57%

14%

Percentage
of base

100%

58%

13%

SUMMER 1984 T A N D E M J O U R N A L 39

40

Conclusion

Tandem NonStop computers are designed for
fault-tolerant, on-line transaction processing
in a multiprocessor environment. For the
optimization of sequential jobs that often
accompany on-line transaction processing,
techniques that take advantage of the Tandem
architecture should be employed. The tech­
niques and general approach discussed in this
article can provide significant improve­
ments in the run times of sequential jobs.

1All manuals and user's guides listed are published by Tandem Computers
Incorporated and are the A06 version.

Acknowledgments
The author would like to thank the following people who
contributed their time and ideas to this article. Without them
it could not have been completed.

Wendy Bartlett
Jim Gray
Sue Kleiman
John Nauman
Gil Siegel
Skip Straus
Anne Wu

References 1

Ashbaugh, E.L. 1984. Large-scale sorting using multiple
processors. Focus (Tandem Computers Incorporated internal
publication). vol. 4, no. 2.

ENSCRJBE Programming Manual. Section 2, File structures,
and Section 4, File access. Part No. 82083 BOO.

GUARDIAN Operating System Command Language and
Utilities Manual. File utility program (FUP). Part No. 82073 FOO.

Ohland, Chris. 1981. Sequential block-buffering for COBOL
programmers. Tandem Computers Incorporated internal paper.

Spooler/ PERUSE Users Guide. Section 4, Spooler interface
procedures. Part No. 82093 COO.

Spooler System Management Guide. Collectors and data files.
Part No. 82094 COO.

System Management Manual. Section 6, Configuration file.
Part No. 82069 GOO.

System Operations Manual. Section 5, Peripheral utility
program (PUP). Part No. 82075 FOO.

System Description Manual: NonStop System. Part No. 82000.

System Description Manual: NonStop II System. The Tandem
architecture. Part No. 82077 D00.

Ti-ansaction Monitoring Facility (TMF) Reference Manual.
Part No. 82341 BOO.

Transaction Monitoring Facility (TMFJ System Management
and Operations Guide. TMF guidelines. Part No. 82343 BOO.

Rob Welsh is a lead analyst in Tandem·s San Francisco sales office.
Before joining Tandem in April 1983, Rob led a project which
converted a large sequentially-oriented warehouse distribution and
accounting system to the Tandem system. He also has several
years of experience in operating systems and applications design.
Rob holds a degree in computer science from the University of
Calgary, Canada.

T A N D E M JOURNAL SUMMER 9 8 4

?8[N!]@)§[i.YX]
~ ~ iam

,1nnnnA na/QA Drintori in I l~A

