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The Model 6VI 
Voice Input Option: 
Its Design and 
Implementation 

he marriage of speech 
recognition with the trans­
action-oriented terminal is 
an advance in terminal inter­
action that is both user 
friendly and cost effective. It 

_________ -----==== is particularly useful for 
those who must use their hands and eyes to 
perform other tasks while interacting with 
the terminal. Speech recognition allows users 
with "busy hands and busy eyes" to enter 
transactions easily and quickly. 

This article gives an overview of voice 
recognition technology and describes the 
Model 6VI voice input option (for the 6530 
Terminal), explaining its design rationale 
and applicability. It discusses the problems 
of recognizing speech and the means of 
solving the problems, particularly as they are 
implemented in the Model 6VI. Finally, it 
describes the performance features of the 
Model 6VI. 

Voice Recognition for the 6530 Terminal 

Voice recognition is part of a trend to add 
alternate input devices to terminals. In 1983, 
Tandem introduced the Model 6LA/ AI 
alternate input option for the 6530 terminal 
line. This option allows input from devices 
such as bar-code readers, optical-character 
readers, magnetic-card readers, and scales. 
The Model 6LA/ AI enters information from 
these devices more quickly and accurately 
than the user can manually. 

Recent advances in digital-signal micro­
processing and automatic speech recognition 
(ASR) have made it practical to offer speech 
as another means of input. In April 1984, 
Tandem made the Model 6VI voice input 
option available. This addition to the 6530 
terminal allows the user to enter data into a 
NonStop system by speaking into a micro­
phone. The Model 6VI enhances productivity 
when the user is occupied with tasks that 
prevent efficient manual entry. 

Applications 

Speech is our fastest means of discourse. 
While a skilled typist can type about 1 word 
per second, speech can occur at rates from 
about 2.5 words per second (spontaneous 
speech) to 4 words per second (reading aloud). 
It is also nearly effortless; if you use speech 
to interact with a computer system, there is no 
need for visual or physical contact, and there 
are no restrictions on the use of the hands or 
the mobility of the body. 

In a receiving-inspection station of a manu­
facturing facility, parts undergo an inspection 
before entering the manufacturing process. The 
inspectors handle the material (perhaps 
wearing gloves) and record the inspection. 
Using ASR, they can enter the data without 
removing their eyes from the material. An ASR 
terminal can also be equipped with a wire­
less transmitter to give the operators additional 
freedom of movement. 
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In pharmaceutical research, pathologists 
evaluating tissue slides under microscopes 
make constant use of their hands and eyes 
while inserting slides, adjusting the focus, and 
moving the slides under the lens to evaluate 
the tissue. ASR allows efficient use of the 
microscope while the data is recorded. 

Microelectronics inspection stations require 
the inspectors of printed circuit boards to 
hold and manipulate the board under an illumi­
nated magnifier. ASR allows them to record 
each observed defect without putting down the 
board and refocusing the eyes. 

The Technology 

ASR systems have a wide variety of capa­
bilities (and concomitant costs). Figure 1 
illustrates the broad classifications of speech 
recognition technology. 

A speaker-dependent speech recognizer is 
"trained" to recognize a word or phrase as 
spoken by a particular person. During training, 
the user speaks each word in the vocabulary 
into the ASR microphone. This creates a digi­
tized template (reference pattern) for each 
word and stores it in the recognizer's memory. 

A speaker-independent recognizer allows 
designated words or phrases to be spoken 
without requiring the users to train the system 
for their individual voices. It does this by 
using a set of representative templates created 
from a statistical sampling of a large pop­
ulation. This population takes into account 
differences in accent, tonality, and speed. 

Speech recognition systems are also classified 
as discrete (isolated-word) or continuous 
(connected-word). The discrete system recog­
nizes words or phrases under two seconds in 
length and requires a brief pause between words 
to determine their boundaries. The contin­
uous system accepts strings of words without 
pauses between words. However, even the 
few commercially available continuous-word 
recognition systems perform better on 
isolated speech than on connected speech. 

Continuous-word recognition requires 
more processing power (with accompanying 
cost) than discrete-word recognition, and 
speaker-independent recognition requires 
more processing power than speaker­
dependent recognition. 

Figure 1 

A speaker-independent, continuous-word 
ASR usually has a vocabulary of about 50 words. 
In these systems, the vendor preselects the 
words in the vocabulary. This has the added 
disadvantage of restricting the system's use 
to the language in which it was developed. 
A speaker-dependent, discrete-word system 
can have a vocabulary of about 200 words. 
In this case, the user selects the vocabulary 
and trains the system. 

The Model 6VI is a speaker-dependent, 
discrete-word recognizer. It has a vocabulary of 
up to 200 words and/ or phrases. This tech­
nology was selected because it is cost effective 
and has a vocabulary size that is favorable 
for transaction processing. 

The Problem 

A speech recognizer accepts human speech 
as input, and when it recognizes the word, 
performs an action such as closing a relay 
or routing a message to another device or host. 

When a word is spoken, the movement of the 
vocal tract creates disturbances in the air. 
A microphone converts the sound waves into 
an analog electrical signal. The resulting 
speech wave consists of a complicated assembly 
of overlapping frequencies with amplitude 
(loudness) and frequency varying throughout 
the utterance. 

SUMMER 1984 T A N D E M J O U R N A L 

_I ______ _ 
Figure 1 

Automatic speech recog­
nizers can be classified as 
being speaker-dependent 
or speaker-independent, 
continuous- or discrete­
word recognizers. 
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Figure 2 

Speech waveforms are 
a complicated assembly of 
overlapping frequencies. 
Here, a spectrogram pro-
duced by a spectrum 
ana(vzer displays the wave-
forms of the words 
"Tandem Computer''. The 
top waveform is in the 
time domain (amplitude 
versus time), and the 
bottom waveform is in the 
frequency domain ((re-
quency versus time versus 
amplitude). The bottom 
waveform shows amplitude 
(signal strength) as 
lighter or darker shades in 
the frequency ranges. 
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The problem lies in the processing of the 
speech signal. In areas such as seismic explora­
tion, sonar detection, and engine vibration 
analysis, major advances have been made in 
hardware and processing. Similar progress 
has not yet been made in speech recognition, 
however, because speech waveforms are 
more complex than these waveforms and 
require more sophisticated hardware and 
processing techniques. 

Transforming the 
Waveform into a Digital Signal 
Speech produces a waveform with three 
dimensions: frequency, amplitude, and time. 
The ASR must use a mathematical technique 
to transform all three of these dimensions 
into a digital signal. Some of the mathematical 
techniques available for this purpose are 
linear predictive coding, variations of the Fast 
Fourier Transform (FFT), dynamic pro­
gramming, and proprietary spectral-transform 
algorithms such as "spectral slicing". 
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Reprinted ivith permission of Kay Elemetrics Corp., Pine Brook, N.J. 

The Model 6VI uses the technique referred 
to as spectral slicing. This technique splits 
the input speech signal into sixteen frequency 
bands (channels) and samples each channel 
periodically ( every 5 ms) to measure the ampli­
tude within each frequency range. This 
forms a "profile" of the significant features of 
the spoken word. 

Accounting for Frequency 
Variations among Speakers 
For any utterance, the two-dimensional wave­
form of amplitude versus time (as shown in 
the top half of Figure 2) varies little from speaker 
to speaker. The three-dimensional waveform 
of amplitude versus frequency versus time (as 
shown in the bottom half of Figure 2), how­
ever, changes significantly if the words are from 
a speaker of a different gender or age. 

Voiced sounds are roughly periodic with fun­
damental frequencies of 210 Hz for men, 220 
Hz for women, and 300 Hz for children. This is 
one factor that makes speaker-independent 
recognition difficult. 
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Determining the Boundaries of a Word 
In isolated-word recognition the ASR deter­
mines the boundaries for the beginning and end 
of a word. After determining the word's 
pattern, the ASR matches it to a template that 
was made during training. 

Continuous-speech recognition may also use 
template matching as part of the recogni­
tion process. However, its templates correspond 
to phonemes (the smallest units of speech) 
instead of words. (There are approximately 
40 phonemes in the English language.) 

The continuous-speech recognizer has 
the additional task of linking phonemes to 
construct valid words. The adjacent words 
"six seven", where the phoneme Isl in the word 
"seven" combines with the end of "six", 
demonstrates the difficulty in distinguishing 
and linking phonemes. 

The Solution-The Anatomy of 
the Model 6VI Voice Input Option 
The functional components of the Model 6VI 
controller are shown in Figure 3, and the 
hardware components are shown in Figure 4. 
This section describes how the hardware 
components perform each major function. 

Spectral Feature Extraction 
The analog signal generated by the microphone 
feeds into a preamplifier. The preamplifier 
output then goes into a speech spectrum equal-

Figure 4 
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input 

Figure 3 

Spoken 
word 

izer. The equalizer compensates for the 
"roll-off" ( or decrease) in strength of speech 
frequencies above 750 Hz, adjusting the 
amplitude of the signal upward with increasing 
frequency. This removes the distortion and 
preserves the significant features of the signal. 

The equalized signal goes either to the 
Automatic Level Control (ALC) or to the linear 
path circuitry. (The user selects one of these 
paths with a switch on the controller.) 

The ALC circuit controls signal variations 
caused by variations in the microphone location 
and speaking effort. When selected, ALC 
compensates for a variation of approximately 
12 dB. This is useful, for example, when the 
user must move around while the microphone 
remains in a fixed place. 

When the microphone is mounted on a 
head-set, ALC is unnecessary. Also, in a noisy 
environment, ALC might cause system 

.. 
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6530 
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Recognized 
word 

A typical template­
matching speech 
recognizer performs four 
basic functions to 
accomplish recognition: 
spectral feature extrac­
tion, analog-to-digital 
conversion, pattern 
creation, and matching. 

Figure 4. 

Fundamental components 
of the voice recognition 
module used on the 
Model 6VI voice input 
option controller. 
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performance to degrade as the system tries 
to "hear" the background noise. Linear path 
circuitry considers the ambient noise level and 
is the best choice for a noisy environment. 
(The user can also adjust for background noise 
by setting the "gain" or the sensitivity of 
the microphone. This is described later under 
"Performance Considerations"). 

The signal from either the ALC path or 
the linear path is input to the 16 bandpass 
filters that make up a 16-channel spectrum 
analyzer. The spectrum analyzer separates the 
speech spectrum (200 Hz to 7 kHz) into 16 
adjacent frequency bands. A 16-channel multi­
plexer within the spectrum analyzer chip 
provides spectral data for each of the 16 bands. 

Analog-to-digital Conversion 
The output from the spectrum analyzer is a 
signal of O to 5 V for each channel. It feeds 
into an 8-bit analog-to-digital (AID) converter, 
which scans each of the 16-channel outputs 
and digitizes the signal to 8 bits (0 to 255). This 
sampling and conversion occurs on all 16 
channels every 5 ms. 

Pattern Creation 
Once the onset of a word is detected, the 
controller uses a feature-extraction algorithm 
to extract the recognition information from 
the digitized data. When the end of the word is 
found, the feature data is time-normalized 
to compensate for differences in speech rate. 
The result is a 67-byte digital pattern. 

Because of the time and frequency character­
istics of the human voice, several methods 
of feature extraction are possible. They include 
linear predictive coding, format filtering, 
and digitization. The Model 6VI uses the digi­
tization method. It encodes the extracted 
feature information so that approximately half 
of the information in the 67 bytes represents 
spectral slope coding (frequency information) 
and half represents binary spectrogram data 
( energy information). 

During training mode, feature extraction 
creates a template (reference pattern) for each 
word in the vocabulary. The controller stores 
the templates in 20K of RAM. The user can per­
manently store these templates by uploading 
them into a file on the host computer. 

Once the user creates a table of reference 
patterns, the Model 6VI is ready for recognition 
mode. In this mode, the system uses feature 
extraction to process an unknown utterance 
into a "token" template. The system then 
attempts to find a match between the token 
template and one of the templates made 
during training mode. 

Matching 
Each time the same word is spoken by the 
same person, the waveform of that word is at 
least slightly different. In the same way, the 
waveform of a word spoken during training 
mode is not identical to the waveform of 
the same word spoken in recognition mode. A 
matching strategy is, therefore, necessary. 

Distance-measurement algorithms com­
pute the distance between the incoming 
utterance and the vocabulary's reference pat­
terns. This algorithm is important to the 
recognition process. The more accurate the 
distance measurement, the better the recog­
nition will be. The following are some distance 
measurement methods: 

■ Chebychev method sums the differences 
between the reference patterns and the 
utterance. 

■ Euclidean method squares the differ­
ences between the reference patterns and 
the utterance. 

■ Correlation measure uses the well-known 
statistical technique, coefficient of correlation. 

■ Polynomial measure refines the correlation 
measure by rewarding small differences that 
are exaggerated by the correlation measure. 

■ Hamming-distance method determines the 
difference between the corresponding digits of 
two binary words. It is widely used in digital­
signal processing because of its computational 
simplicity and high accuracy. 
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The Model 6VI uses the Hamming-distance 
method. The algorithm from this method 
produces a "score" indicating the similarity 
between the token template and a reference 
pattern. (A score of zero indicates no similarity, 
and 128 is a perfect match.) The algorithm 
produces one score for each reference pattern 
in the vocabulary. 

The reference pattern having the highest 
score over the recognition threshold (RTHL) 
and differing from the closest runner-up by 
at least the delta is declared a match. The 
user-defined RTHL sets the minimum score 
for recognition, while the user-defined delta 
sets the minimum difference between the 
score of the recognized word and the next­
highest score. 

When a match is made, one of the following 
( depending on the host program's directive) 
is routed to the host: 

■ A user-defined ASCII string of up to 198 bytes. 

• The vocabulary-word number of the 
recognized word, its score and delta, the user­
defined ASCII string associated with the 
recognized word, the runner-up word number, 
and the ASCII string associated with the 
runner-up word. 

If no match occurs in the first case, the 
terminal sounds a beep. If no match occurs in 
the second case, the terminal displays the 
ASCII string "FFF" for the word number. 

As the above discussion indicates, the ASR 

can perform one of the following: 

1. Recognize a word correctly. 

2. Confuse the input word with another word 
in the vocabulary. (This is known as a 
substitution error.) 

3. Reject the input utterance. 
a. Identify a valid word, but threshold 

parameters are not met. 
b. Fail to identify a valid word with no 

attempt at recognition. 

4. Recognize a non-word input as a word. 
(This is known as a spurious error.) 

Performance Considerations 

The user can adjust several recognition per­
formance factors on the Model 6VI. These are 
described below. 

Word Rejections and Substitution Errors 
The user can adjust the RTHL and delta at 
any time to accommodate changes in the 
speaker's voice (such as those due to a cold, 
stress, or hoarseness). 

A change in the speaker's voice increases the 
number of word rejections and substitution 
errors. (In general, a value of 100 for RTHL and 
5 for the delta results in 
good recognition.) 
Lowering the RTHL 

decreases the number 
of rejections but 
increases the number 
of substitution errors. 
Raising the delta 
decreases the number 
of substitution errors 
but increases the num­
ber of rejections. 

The user can adjust 
I voice-recognition 
1 parameters on the Model 

6VI to accommodate 
temporary changes in the 
speaker's voice. 

Depending on the changes in the speaker's 
voice and the vocabulary, these two parameters 
can be manipulated to improve recognition. 

Background Noise Level 
As discussed earlier, the controller constantly 
samples the incoming audio signal, looking 
for the beginning of a word. The controller 
detects a beginning-of-word boundary when 
the spectral energy of the filters exceeds the 
ambient-silence background by a certain 
value. The user can adjust for background 
noise by setting the "gain" or the sensitivity 
of the microphone. 

When the gain is high, the user can speak 
softly and still be "heard". (A high gain setting, 
however, is sensitive to background noise.) 
When the gain is low, the user must speak 
louder. A low setting accommodates a noisy 
background such as a factory shop floor. 

SUMMER 1984 T A N D E M J O U R N A L 7 



Length of a Word 
Once an incoming word is detected by the 
ASR, it must last for a specified period of time 
before it is processed. This prevents acci­
dental noise (such as a tool being dropped) 
from being mistaken for a word (resulting 
in a reject). This parameter defaults to 80 ms, 
but the user can adjust it to accommodate 
a vocabulary containing shorter words. 

Minimum Word Interval 
A discrete-word recognizer requires a 
pause between words to perform recognition. 

Good speech recognition 
and small vocabularies 

go hand in hand. 

The default for 
the minimum time 
between words is 
160 ms, the norm for 
general vocabularies. 
At this setting, 
words with intra­

utterance gaps (e.g., "Los Angeles") can be 
spoken at approximately 42 wpm and still be 
successfully recognized. 

Reducing the interval between words allows 
a higher rate of speech. However, this increases 
the risk of an intra-utterance gap being mis­
taken for an end-of-word boundary. Of course, 
if the vocabulary has no words such as these, 
no such risk exists. 

Word Selection 
Word selection is important to recognition 
performance. Users should select the vocabu­
lary so that the reference pattern formed 
by each word is unlike other reference patterns. 
They should avoid homonyms (e.g., "one" 
and "won", "two" and "to", "hear" and "here"), 
as well as those words that differ by a 
single phoneme (e.g., "five" and "file", "time" 
and "tire", "logon" and "logoff"). 

Some words that seem to sound significantly 
different may form reference patterns simi­
lar enough to cause substitution errors. A 
Model 6VI program detects similar reference 
patterns. It examines a vocabulary after 
training and reports all words whose reference 
patterns are within a specified tolerance. 
The user can then add more training to create 
a more effective set of reference patterns 
or replace the words with synonyms. 

Partitioning the Vocabulary 
In speech recognition, good recognition 
performance and small vocabularies go hand 
in hand. Since it is not always desirable to 
limit an application's vocabulary to achieve 
higher performance, the Model 6VI uses a 
vocabulary organization scheme that can par­
tition a vocabulary into syntax nodes, giving 
the effect of smaller vocabularies. 

At any time in the recognition process, only 
one syntax node or subset of the vocabu-
lary is active (available for recognition search). 
Thus, if the reference patterns for the words 
"file" and "five" are in different syntax nodes, 
they cannot be mistaken for each other. 

Microphone Selection 
Microphone selection is an important con­
sideration in ASR systems. A microphone 
should be chosen with two factors in mind: 
the background noise of the environment 
and the system application. 

In general, microphones with low signal­
to-noise (SIN) ratios increase the probability 
of speech-recognition errors. For high perfor­
mance, SIN ratios should be higher than 24 dB. 

A popular microphone with good noise­
cancelling ability is the Shure SM-10. Because 
this is a headband microphone, it is suitable 
for "busy-hands, busy-eyes" environments. For 
quiet environments, the lapel microphone, 
which clips onto clothing, is a good choice. 
For the user who is close to the terminal 
and whose mouth is normally a fixed distance 
from the terminal, a directional microphone 
mounted on a flexible gooseneck is the 
best choice. 
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The Future of Voice 
Recognition Technology 

Voice recognition is not a typical engineering 
problem; it is a multi-disciplinary field that 
uses signal processing, LSI and VLSI microproc­
essor design, linguistics, artificial intelligence, 
and the mathematics of stochastic processes. 
Because of this, voice recognition tech­
nology has not had the dramatic progress that 
many had predicted. This is especially true, 
for example, in the area of speech understand­
ing, which draws heavily on the use of 
artificial intelligence. 

Research continues in three major areas: 
vocabulary size, continuous-word recogni­
tion, and speaker independence. Speaker­
independent systems that recognize continuous 
speech currently exist only on large, fast 
mainframe computers. Significant break­
throughs in hardware and/or algorithms 
are necessary for this type of voice recognition 
to become practical for large vocabularies. 

Meanwhile, as the refinement of isolated­
word, speaker-independent systems continues, 
their performance increases and their cost 
decreases. Current advances in VLSI also con­
tribute to this trend. The most immediate 
application of this progress will most likely 
be telephone-driven applications, such as 
remote transaction processing. 

In the mid-1980's, significant advances in 
voice recognition technology will continue. 
The commercial availability of automatic 
dictation equipment (voice-actuated type­
writers), however, will probably not occur 
before 1990. Eventually, the ability to use con­
textual, syntactic, and linguistic rules in a 
speech recognition device will make "natural 
language" speech a reality. 
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The NonStop TXP 
Processor: A Powerful 
Design for On-line 
Transaction Processing1 

he Tandem NonStop TXP™ 
processor was introduced 
to Tandem Journal readers 
in the Winter 1984 issue 
("The High-Performance 
NonStop TXP Processor"). 
In this article, its design 

and performance are discussed in more detail. 
First the design goals of high performance 
and compatibility with the NonStop II™ proc­
essor are defined, and the innovations in 
hardware and software through which these 
goals were met are described. The major 
portion of the article is then devoted to a 
discussion of the resulting performance of 
the NonStop TXP processor. In this discussion, 
accepted performance metrics for computer 
systems are identified and explained, the 
problem of defining an accurate performance 
metric for on-line transaction processing 
systems is discussed, and the results of var­
ious performance comparisons between the 
NonStop II and NonStop TXP processors are 
presented. The performance criteria used 
in this discussion equate processing power to 
the following: 

1. Block-move time. 
2. Interprocess-communication time. 
3. Process-dispatch time. 
4. Data-base-access time. 
5. Response time. 

1Portions of the hardware discussion, Table 1, and Figures I and 2 originally 
appeared (in a slightly different form) in an article entitled, "New System 
Manages Hundreds of Transactions per Second", bv Robert Horst and Sandra 
Metz in Flectronics, volume 57, number 8 (April 19, 1984). 

Design Goals for the 
NonStop TXP Processor 

Higher Performance 
As the transaction processing market has 
matured, users have demanded ever more 
powerful transaction processing systems 
capable of handling ever larger transaction 
workloads. Early transaction throughput 
requirements of dozens of transactions per 
second have grown to hundreds per sec­
ond and show no sign of slackening in the 
future. One primary design goal for the 
NonStop TXP processor was to support 
these higher performance systems by pro­
viding at least twice the processor perform­
ance of the NonStop II processor. 

The performance improvements were 
achieved through a combination of advances in 
architecture and technology. The NonStop TXP 
processor employs dual 16-bit data paths 
instead of the more traditional single 32-bit 
data path. Both 16-bit paths are used simul­
taneously more than 80% of the time, far more 
frequently than a 32-bit path would be 
fully utilized. 

The parallelism results from the ability 
of the main arithmetic and logic unit (ALU) 

to perform an operation in parallel with a 
different operation executed by one of several 
special ALU modules. For example, the inner 
loop of a compare-byte instruction that would 
take three clock cycles in the traditional 
architecture (i.e., the extraction of byte 1, fol­
lowed by the extraction of byte 2, followed 
by the comparison) takes only two clock cycles 
on the NonStop TXP processor (i.e., the 
parallel extractions by the main ALU and the 
special ALU of byte 1 and byte 2 in the first 
clock cycle, followed by the comparison). This 
is shown in Table 1. 
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Table 1. 
Compare-byte instructions (inner loop). 
Clock Nonstop TXP processor 
cycle Main ALU Special ALU 

1 Extract byte 1 Extract byte 2 

2 Compare bytes -

3 (Repeat) (Repeat) 

4 

Traditional 
architecture 

Extract byte 1 

Extract byte 2 

Compare bytes 

(Repeat) 

Although the frequency of 32-bit arithmetic 
operations is insignificant relative to data­
movement and byte-manipulation instructions 
in typical transaction processing applications, 
the performance of these instructions is 
also enhanced by the dual 16-bit paths. The 
two clock cycles required to perform an 
add operation is partially offset by the avail­
ability of the other 16-bit path to perform 
another 32-bit operation or two 16-bit 
operations in parallel with the main ALU. 

The NonStop TXP processor supports 
32-bit addressing much more efficiently than 
the NonStop II processor. The 32-bit virtual 
addressing built into the hardware is capable 
of addressing a gigabyte of virtual memory. 

The 32-bit virtual address is used to access 
a large, 64K-byte memory cache. In com­
parison with the IBM 4361, which can access 

Figure 1 

Load instruction 

Compyte Fetch 
Instruction lnstwclion 
~ 

Clock cycle 

r:tecooe 
lostr!lQ!iQn 

Fetch 
d8la 

2 

Add-immediate instruction (ADDI) 

Store instruction 

3 

32 bits of cached data every 100 ns out of 
its 16K-byte cache, the NonStop TXP processor 
can access 16 bits of cached data every 83 
ns out of its 64K-byte cache. In practice, the 
effective cache bandwidth of the NonStop TXP 
processor is comparable to the 4361 because 
the considerably higher cache hit-rate offsets 
the larger 32-bit words retrieved by the 
4361. However, the cost of a NonStop TXP 
processor with 4M bytes of main memory 
is approximately one-half that of an IBM 4361 
Model 5, similarly equipped (Carr and 
Campbell, 1984; IBM, 1984; Tandem, 1984.) 

The technology of the NonStop TXP 
processor includes 25-ns programmable array 
logic (PAL), 45-ns static RAM chips, and 
Fairchild Advanced Schottky Technology 
(FAST) logic. This newer technology and a 
reduction in the number of logic levels in 
each path has resulted in a reduction of the 
basic microinstruction cycle time from 100 
ns in the NonStop II processor to 83.3 ns in the 
NonStop TXP processor. 

Instruction pipelining has been increased 
from two levels on the NonStop II processor 
to three levels on the NonStop TXP proc­
essor. Figure 1 illustrates the operation of the 

4 5 

6 7 8 9 

Compute 
1nstruct1on 

address 

Compute 
data 

address ■ 
■ 

Execute 
1 nstruct1on 
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The NonStop TXP 
processor employs three 
levels of pipelining. 
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Figure 2 

With three levels of pipe­
lining, the NonStop TXP 
processor can execute a 
combination of three 
typical instructions in only 
nine clock cycles. With­
out pipelining, 24 clock 
cycles would be required. 

12 

Figure 2 

Clock cycle 1 2 3 
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processor 
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levels of 
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No [ 
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macroinstruction pipeline for a sequence of 
instructions. As shown in Figure 2, a combina­
tion of three instructions (a load, followed 
by an add immediate, followed by a store) that 
would require 24 clock cycles with no pipe­
lining requires only 9 clock cycles with pipe­
lining because the prefetch and part of the 
execution of each instruction can be overlapped 
with previous instructions. Pipelining permits 
the NonStop TXP processor to execute many 
of its most frequent instructions in just two 
or three clock cycles. 

Compatibility 
The design goal of compatibility between 
the NonStop II and NonStop TXP processors 
was established to provide an upgrade path 
for systems based on NonStop II processors. It 
was decided that users must be permitted 
to mix NonStop II and NonStop TXP proces­
sors within the same system and within the 
same physical cabinet, as well as to mix any 
combination of Tandem processors in the 
same network. These constraints translated 
into specific mechanical, hardware, and 
software goals. 

8 9 15 16 24 

Store 

Software Compatibility. The main goal was 
to mask from the user as many of the differ­
ences between the two processors as was 
possible. Ideally, the user was to see nothing 
different in the processors but their speeds. 
To meet this goal, the following were 
implemented: 

1. A single operating system, GUARDIAN™, 
supports both the NonStop II and NonStop 
TXP processors. 

2. The firmware for the NonStop TXP proc­
essor implements the existing instruction set. 

3. All nonprivileged software runs without 
change on both machines. 

4. To facilitate processor swapping without 
system reconfiguration, the type of each 
processor does not have to be specified 
at system-generation time. The operating 
system automatically loads the appropriate 
instruction-set microcode at load time. 

5. The procedures for controlling the system 
and the system console are the same for 
both machines. 

Hardware Compatibility. Because the 
NonStop TXP processor was intended to 
replace only the central processing unit ( CPU) 
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in Tandem systems, it was important that it 
not require new buses, channels, or controllers. 
Thus, it had to support all the controllers 
and devices currently in use in systems based 
on the NonStop II processor. Fortunately, 
the existing SM-byte 1/0 bus and the dual 
13M-byte DYNABUS™ have more than enough 
bandwidth to support the more powerful 
NonStop TXP processor. The main problem 
facing the hardware design team, then, was 
to develop a new microarchitecture that would 
efficiently support a 32-bit processor at 
much higher speeds, using only 33% more 
printed-circuit-board real estate and the 
same backplane. 

Mechanical Compatibility. The NonStop TXP 
processor is physically very similar to the 
NonStop II processor. The CPU and memory 
(MEM) boards are the same size and draw 
comparable amounts of power. The NonStop 
TXP processor uses 4 CPU boards; the 
NonStop II processor uses 3. All cable connec­
tions to the NonStop II processor are in 
locations similar to those on the NonStop TXP 
processor. The CPU backplanes are identical. 

The NonStop TXP processor uses the same 
power system as the NonStop II processor, 
and AC power requirements have not changed. 
The CPU power requirements have increased 
from 60A to 80A while the I/0 power require­
ments are unchanged. The battery backup 
characteristics of the NonStop TXP processor 
are similar to those of the NonStop II processor. 

In summary, both of the somewhat­
conflicting goals of higher performance yet 
strict compatibility were met by the develop­
ment groups. The resulting performance of 
the NonStop TXP processor is discussed in the 
following section. 

Comparative Performance Data 

Although determining the relative performance 
of computer systems seems like a straight­
forward task, it is almost always more difficult 
than it first appears. Comparisons can be 
made in so many different ways that the 
confusion begins with the selection of the per­
formance criteria upon which to base the 
performance comparison. 

The earliest performance indices were those 
used to compare the CPU-primary-memory 
complex of various computer systems, as 
this complex was then the most expensive part 
of the system. Rudimentary indices, such 
as the internal clock rate of the CPU, the 
execution time of 
certain arithmetic 
instructions, or 
the cycle time of the 
primary memory, 
formed the basis of 
most early perform­
ance comparisons. 

These early meas­
ures evolved into 
slightly more sophisti­
cated definitions of 

A /though determining 
the relative perform­

ance of computer systems 
seems straightforward, it 
is more dzfficult than it 
appears. 

computer processing power. Schneidewind 
(1966) introduced the definition of power 

where M is the primary-memory size in 
bytes, and tcycle is the primary-memory cycle 
time. Notice that this definition lacks any 
workload dependence and is a purely hardware­
based definition. 

Gruenberger (1966) amplified Schneide­
wind's definition to include some elementary 
calculations 

( 1 1 ) P=M -+~, 
tadd lmpy 

where M ( the primary-memory size) is 
in words and tadd and tmpy represent the time it 
takes the computer to execute addition 
and multiplication operations. The main 
problem with indices of this type is their 
workload independence. 

A further refinement in this form of per­
formance index attempts to characterize the 
power of a computer at processing its typical 
workload by using the instruction-mix fre­
quencies and instruction-execution timings 

P=IJ-t·IJ=l . }l I , . ]l , 
I I 

where/; is the relative frequency of instruction 
z: and ti is the execution time of instruction i. 
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Since these early attempts, many subse­
quent definitions of computer power have 
been proposed, and some are still in use 
today. Some contemporary yardsticks used to 
compare computer systems are: millions of 
instructions per second (MIPS), floating-point 
operations per second (FLOPS), whetstones 
per second (WHETS), batch job tum-around 
time, transactions per second, and transaction 
response time. 

Because performance analysts have so 
many metrics to choose from, and because the 
relative performance of computer systems 

vary according to 

Block-mo~e time equates 
processzng power to 

the processor's ability to 
move blocks of data in 

the performance met­
ric used, it is possible 
to draw misleading 
performance compar­
isons. Of course, 
there is nothing wrong 
in using any well­
defined performance 
metric to compare 

. 
przmary memory. 

computer systems. However, it would be 
incorrect to compare them with a performance 
metric designed to compare scientific proc­
essing power and then postulate that this rela­
tive performance ranking would also hold for 
transaction processing workloads, for example. 

Because no single universal performance 
metric has been adopted to compare the 
relative performance of computer systems, the 
best one can do is to examine relative per­
formance across a spectrum of performance 
metrics and provide this information in 
standardized formats. It is then up to the per­
formance analyst to select the appropriate 
measure(s) of performance. 

The remainder of this article summarizes 
the performance of the NonStop TXP proc­
essor using several performance metrics. It 
begins with low-level performance data on 
CPU-intensive operations that are designed to 
measure the performance of the CPU hard­
ware and the code compilers. It then concludes 
with high-level performance data on system­
wide performance. 

Block-move Time (Pl) 
Block-move time (Pl) equates processing 
power to the processor's ability to move blocks 
of data in primary memory. For example, if 
process A wants to send a message to process B, 
this operation typically moves the actual 
message from one location in memory to 
another. Block-move operations are typical in 
message-based computer systems. 

Even for this simple yardstick many envi­
ronmental sources of variation exist. The 
performance of a block move can be affected 
by the location of both the source and des­
tination in memory, by whether or not the 
memory is organized hierarchically, and by the 
mode of addressing employed to access 
the data. 

For the purposes of this article, this first 
performance index (Pl) is defined as 

Pl= 1000, 
lmove 

where tmave is the time in microseconds to 
move a 1000-word block of memory from the 
source location to the destination. Experi­
ments performed by the NonStop TXP System 
Support Team (1983) yielded the results 
in Table 2. 

In Table 2, the first row represents the 
moving of a block of 1000 words from some 
location on the data stack of the processor 
to another location on the stack using the 
16-bit addressing mode. In the second row, the 
block is moved from some location in an 
extended data segment to a different location 
in the segment, using absolute extended 
addresses to access the block. The final column 
shows the ratio of Pl for the NonStop II 
processor, Pl(II), to that of the NonStop TXP 
processor, Pl(TXP). 

While many other combinations of memory 
locations and addressing modes can be used, 
these two have been chosen as representative 
for performance index Pl. The results for 
Pl indicate that the NonStop TXP processor is 
between 2.5 and 3.1 times as powerful as 
the NonStop II processor. 
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Table 2. 

Relative performance of the Nonstop II and Nonstop TXP processors for block-move time (P1). 
Source Destination S-Address 

Stack Stack 16-bit 

E-segment E-segment A-extended 

Interprocess Communication ( P2) 
Like Pl, interprocess communication, or P2, 
also attempts to measure processing power 
by a measure related to sending messages. In 
this case, it measures the ability of the 
processor and operating system (and message 
system) to support interprocessor communi­
cation. In a system in which processes cooperate 
to accomplish a task, messages are used to 
communicate requests for processing, 
processing results, and status information. 
Although often equated with overhead, 
the ability of a computer system to facilitate 
messages between cooperating processes is 
an important measure of how effective a com­
puter system is in supporting a distributed 
processing environment. 

For the purposes of this article, two variations 
of P2 are defined. One corresponds to inter­
processor communication (P2inte,), i.e., the 
two communicating processes are in differ­
ent processors, and the other corresponds to 
intraprocessor communication (P21n1,0 ), i.e., 
the two processes are in the same processor. 

In an attempt to minimize environmental 
variations, this investigation was restricted 
to "waited" communication only. In this mode 
of communication, the sending process 
waits for the reply to come back from the proc­
ess to which it sent the message before it 
resumes execution. (An example of "nowaited" 
communication is the sending process 
asynchronously executing other work before 
receiving the reply from the process to 
which it sent the message.) 

As one might expect, the elapsed time for 
interprocess communication can be approxi­
mated as a linear function of the message 
length and takes the form of y = mx + b. In 
this equation, y, the elapsed time, is equal 
to a fixed cost, b, plus a variable cost per byte 
of data transmitted, m. Because values of 
P should increase with increasing processing 
power, P2 is defined as follows: 

1 
P21nter = t X + t. ; CPU(A) * CPU(B) 

var/ fixed I 

1 
P21ntra = i" X + t ; CPU(A) = CPU(B) 

var2 /iXed2 

D-Address Ratio P1(11):P1(TXPJ 

16-bit 1:2.5 

A-extended 1:3.1 

Both P2s are equal to the inverse of the 
elapsed round-trip time of a message and thus 
specify the number of messages that can 
be sent and subsequently received by that proc­
ess per second. The variables tvarl and tvar2 

are the cost per byte of inter- and intra­
processor communication and are multiplied 
by x, the total number of bytes transmitted 
by both the sending and the receiving process. 
Included in this portion of the processing time 
are the costs of data transmission and mes­
sage packetization, for example. The tr1xedl 

and t1,.xeci2 variables are the fixed overheads 
associated with process communication per­
formed by the operating system (and message 
system) on behalf of the processes, e.g., process 
dispatching, message initialization, and 
interrupt handling. 

Notice that it is the round-trip elapsed time 
for process A to send a message to process 
Band then receive a reply that is important here. 
Clearly, this measure includes events other 
than those that are purely message-transfering 
operations; for example, process dispatching 
must be occurring. This is obviously the case 
for intraprocessor communication; the two 
processes take turns receiving service at 
the CPU. 

Although a simpler definition that counted 
only message transmission would more 
accurately measure how fast a message can be 
transmitted from process A to process B, 
most computer workloads involve the repetition 
of the following scenario: process A formu­
lates a request for data that is sent to process 
B, process B decodes what to do, locates 
the data process A wants, and responds with 
the requested information in a reply to 
process A. Thus, the frequency of round-trip 
interprocess communication that a proc­
essor can support is an appropriate measure 
of a computer's power. 
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Table 3. 

Relative performance of the Nonstop II and Nonstop TXP processors for interprocess communication (P2). 
X = 100 250 500 1000 

Ratio P2mtraC1 I): P2;ntraCTXP) 1:3.0 

Ratio P2;nte,(11):P2;nte,(TXP) 1:2.8 

Again, the data in Table 3 is derived from 
a study by the NonStop TXP System Support 
Team (1983). As the data indicates, the 
relative power of the NonStop TXP processor 
is between 2.7 and 3.0 times that of the 
NonStop II processor for typical message 
lengths. This observation is in agreement with 
the findings for Pl. 

Several interesting relationships exist behind 
the data of Table 4. First, intraprocessor 
communication is faster than interprocessor 
communication for both the NonStop II 
and NonStop TXP processors. For the 
NonStop TXP processor, intraprocessor com­
munication is about 18% faster than inter­
processor communication. For the NonStop II 
processor, this difference is somewhat less, 
approximately 11 % . 

It is also of interest to observe that as the 
length of the message increases, the relative 
difference in power declines. This occurs 
because the data transmission component of 
interprocess communication is the same for 
both processors. Hence, the larger the message, 
the more this dominates the elapsed time. 

Process Dispatch (P3) 
The process-dispatch performance metric (PJ) 
equates processing power to the processor's 
ability to dispatch processes. A process dispatch 
occurs for a variety of reasons, but the 
result is usually the same: the currently exe­
cuting process can no longer proceed, its 
context must be saved so that it can be resumed 
at some later time, the context of a different 
process is loaded by the processor, and this 
process resumes or begins execution. 

In transaction processing systems, dispatch­
ing occurs quite often, therefore making 
the speed with which a process switch can be 
made an important indicator of processing 
power. A processor that spends 20% of its time 
dispatching processes is only providing 80% 
of its power for useful work. 

1:3.0 1:2.9 1:2.8 

1:2.8 1:2.8 1:2.7 

For this performance index only one major 
environmental influence exists: the number 
of memory pages that must be made present 
with the process. In typical systems, although 
the pages are not actually brought in from 
secondary memory, the system registers con­
taining the address of the physical-memory 
pages are usually pre-loaded before the process 
can execute. Thus, the dispatch time is 
approximated as a linear function of the number 
of process pages plus a fixed overhead, i.e., 

fdisp = (p, + P2)X + f, 

where p, is the number of pages that must 
be unmapped for process p 1, and p 2 is the 
number of pages that must be mapped for 
process p2. This sum is multiplied by the 
cost of mapping or unmapping a page, x. 
Finally,/ is the fixed overhead associated 
with performing a dispatch. 

The NonStop II processor employs this 
type of algorithm, but the NonStop TXP 
processor uses a "demand-based" loading 
scheme and a cache of map entries to reduce 
the execution time of the dispatch. For the 
NonStop TXP processor,p, andp2 both equal 
zero, and the dispatch time is not a function 
of the number of pages, it is a constant. 

For the purposes of this article, PJ is 
defined as 

PJ=-1-, 
fdisp 

where tdisp is the time to dispatch a process. 
Thus, PJ is, in fact, the maximum possible 
number of dispatches per second. 

To study the impact on PJ performance, 
two identical processes were made to execute 
in the same CPU at the same priority and 
to do nothing but cause themselves to be dis­
patched. Thus, the process activity for this 
processor consisted entirely of two processes 
that were alternately dispatched. The meas­
urements from which this data was extracted 
were conducted by Singh (1983) during the 
pre-release testing of the NonStop TXP 
processor. 
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As expected, varying the number of memory 
pages owned by these processes produced a 
variation in the value of P3 for the NonStop II 
processor, but not for the NonStop TXP 
processor. As the data in Table 4 indicates, the 
ratio of P3(TXP) over P3(II) increases with 
the number of memory pages. 

The ratio of P3 for the NonStop II, PJ(Il), 
and P3 for the NonStop TXP processor, 
P3(TXP), indicates that the NonStop TXP is 
between three and four times as powerful 
as the NonStop II. This performance difference 
is greater than that exhibited by the previous 
indicators Pl and P2. The explanation for the 
larger difference is that the improvement 
in performance is due not only to the faster 
processing speed of the CPU, but also to the 
way dispatching is performed on the new hard­
ware. While in the NonStop II processor, 
map entries for memory pages accessed by a 
process are loaded by the process before 
execution begins, in the NonStop TXP proc­
essor, map entries are brought in as needed. 
Thus, the dispatching of a process is faster on 
the NonStop TXP processor because there 
is also less work to be done. 

Data-base Access Time (P4) 
The data-base access time performance 
metric (P4) equates processing power to the 
co)llputer system's ability to manipulate 
data stored in data bases. This metric is the 
first one to include the processor's ability 
to manage an 1/0 device as a measure of the 
computer system's processing power. This 
measure of performance is of interest because 
it compares the ability of computer systems 
to perform operations involving more than 
CPU processing. 

The time to access data from a disc can be 
approximated by 

laccess = lcpu + tdisc · 

Assuming no overlap of CPU processing with 
disc-device processing, the access time, taccess, 

is equal to the sum of the CPU processing 
time, lcpu, and the disc processing time, !disc• 

Note that there is some overlap in Tandem's 
disc subsystem and in that of most computer 
systems. This approximation is to simplify 
the discussion that follows. 

An interesting performance phenomenon is 
explained by this rather simple equation. 
A CPU that is twice as fast as another does not 

Table 4. 

Relative performance of the Nonstop TXP and 
Nonstop II processors for process dispatching (P3). 
Number of process pages Ratio P3(11):P3(TXP) 

Small 1:3.17 

1:3.35 

1:3.52 

1:3.66 

1:3.78 

1:3.88 

1:4.00 

Large 1:4.11 

halve the data access time (unless tdisc is zero). 
For example, if fcpu = 20 ms and tdisc = 35 ms, 
then taccess = 55 ms. If the speed of the proc­
essor is doubled, lcpu is reduced to only 
10 ms, but taccess still equals 45 ms, an improve­
ment of only (55-45)/55 = 18%. In fact, an 
infinitely fast CPU Ucru = 0) would only serve 
to reduce taccess by 20 ms, for a performance 
increase of (55-35)/55 = 36%. This relationship 
should be kept in mind when the P4 per­
formance indices are discussed. 

In most computer systems, several pre­
defined file types are provided by the system 
to hold data. Each of these has a different 
structure that provides access to the data in a 
particularly useful manner. For example, 
Tandem supports four file types: key-sequenced, 
relative, entry-sequenced, and unstructured. 
Key-sequenced files contain records that are 
stored in ascending sequence, ordered by a 
field within each record called the primary key. 
Relative files contain records that are stored 
in a position relative to the beginning of the 
file, according to a record number supplied 
by the application program. Entry-sequenced 
files store records by appending new records 
to the end of the file in the order they are 
received. Unstructured files have no system­
defined structure; data stored in them can 
be considered a large byte array. 

Each type of file is useful to hold data 
that is accessed in certain familiar patterns. 
For example, entry-sequenced files support 
log files very nicely. An example of an applica­
tion for a key-sequenced file is an inventory 
file in which each record describes a part. The 
primary-key field for the file would probably 
be the part number, and other fields could con­
tain information such as the vendor name 
and quantity on hand. 
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Table 5. 

Relative performance of the Nonstop TXP and 
Nonstop II processors for data-base 1/0 (P4). 
Index Ratio P4(11):P4(TXP} 

P4a 1:1.27 

P4b 1:1.39 

P4c 1:2.33 

P4d 1:1.69 

P4e 1:1.39 

P41 1:1.45 

P49 1:2.46 

P4h 1:1.93 

Data-base I/0 operations are the basic 
units from which transactions are built. In fact, 
because transaction processing involves 
almost no "number crunching", transaction 
workloads are typically approximated by the 
sequence of data-base operations they entail. 
For example, a typical banking transaction 
might include an update of the customer 
account file, then an update to the teller 
file, and finally, a write to the transaction 
log file. 

Thus, before a computer system's perfor­
mance at processing transaction workloads is 
measured, it is worth examining its performance 
in terms of simpler I/0 operations. For this 
purpose, let P4 be defined as the following 
sequence of I/0 operations: 

P4a = Random read from a key-sequenced file. 
P4b = Random write to a key-sequenced file. 
P4c = Sequential read from an entry-sequenced 

file. 
P4d = Sequential write to an entry-sequenced 

file. 
P4e = Random delete of a relative file. 
P4r = Random update of a relative file. 
P4g = Sequential read of an unstructured file. 
P4h = Sequential update of an unstructured 

file. 

For this comparison, identical disc devices 
were chosen to eliminate any environmental 
variations stemming from the devices. For each 
of the P4 indices, it is the inverse of the 
operation elapsed time, or the theoretical max­
imum number of operations per second, that 
is of interest. 

The data in Table 5 compares the relative 
performance of the NonStop II processor to 
the NonStop TXP processor as measured by P4. 

P4a through P4h show that the NonStop TXP 
processor improves data-base access time 
by an amount that varies considerably with the 
type of data-base operation performed. The 
explanation for the large variance in the 
improvement is somewhat complicated. 

The most significant factor contributing 
to the spread in relative performance is whether 
the operation is sequential or random in 
nature. The four indices P4a, P4b, P4e, and P4r 
involve I/0 operations that are randomly 
distributed throughout the file. These four 
indices also exhibit the smallest improve­
ments in access time. Conversely, the four 
sequential I/0 indices (P4c, P4d, P4?,, and 
P4h) show the most significant improvements 
in access time. 

The reason for this behavior becomes 
apparent if the proportions of the access time, 
taccess, stemming from tdisc and tcpu, are com­
pared. For the random I/0 indices, td,:sc accounts 
for more than 60% of the access time on a 
NonStop II processor, a high percentage when 
compared to less than 50% of the time (one 
as low as 3%) for the sequential I/0 operations. 
As mentioned before, tdisc is essentially unaf­
fected by the introduction of a faster processor; 
therefore, sequential I/0 processing exhibits 
more significant performance improvements 
than random I/0 processing because it is 
more CPU intensive. 

When the geometric mean is used to obtain 
average values for P4, three averages can 
be defined for the ratios of P4a through P4h 
from Table 5: 

P4r=(P4a·P4b·P4e·P41f14 (random l/0) 

P4s=(P4c·P4d·P4g·P4h)¼ (sequential I/0) 

P4 = (P4a· P4b. P4c. P4d· P4e. P4r· P4?.· P4h) 1/8 

For this comparison, the eight data-base 
I/0 operations are weighted equally in 
importance. Using the arithmetic mean of 
the execution times does not provide equal 
weighting. For example, the NonStop TXP can 
perform 30 times as many P4c I/0 operations 
per second as it can P41 operations. If the num­
bers were merely added together, much 
more weight would be given to the operations 
with larger P4 values than those with smaller 
P4 values. 
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The ratios of P4 values for the NonStop TXP 
and NonStop II processors indicate that 
when compared against a NonStop II processor 
performing a mix of random and sequential 
data-base I/0 operations, a NonStop TXP 
processor ( on average) performs those opera­
tions 68% faster, i.e., P4(II):P4(TXP) = 1.68. 
If the operations are strictly random in nature, 
only 37% improvement can be expected, 
i.e., P4r(II): P4r(TXP) = 1.37. However, if the 
operations are primarily sequential in 
nature, an improvement of 107% can be realized, 
i.e., P4s(II) :P4s(TXP) = 2.07. 

The range of P4 ratios is below the ranges 
for Pl through PJ, as can be expected. The 
more powerful processor speeds up the tcru por­
tion of taccess by a factor of two to three, but 
tcru is less than half of taccess• Thus, the total 
improvement in performance of taccess from 
the introduction of the faster NonStop TXP 
processor should fall somewhere in the 
range of about 50% to 150%, as is verified by 
the measurements. 

On-line Transaction 
Processing (OLTP) Benchmark (P5) 
So far, the comparisons of performance for 
the NonStop TXP and NonStop II processors 
has been based on artificial workloads. But 
the ultimate performance question for a user 
of the NonStop II system is, of course, "How 
much better will my application perform on a 
system of NonStop TXP processors?" 

Performance indices Pl through PJ are CPU­
intensive measures of performance, and P4 
is a fairly disc-intensive measure. Typical OLTP 
applications fall somewhere between these 
two extremes. Consider that between perform­
ing data-base I/0 operations, the typical 
application performs some data processing on 
the retrieved data. Another, less apparent 
type of processing that occurs in OLTP systems 
is the background processing performed by 
the system to provide continuous operation, 
fault tolerance, and transaction integrity. 
This "system" processing is not considered 
overhead, rather, it is a part of the OLTP 

application that the customer would have to 
develop if it were not already provided by 
the system. 

For OLTP applications, a meaningful measure 
of performance is the responsiveness of the 
system as perceived by the user, or how fast 

the computer responds to requests. The per­
formance index that corresponds to the 
system's responsiveness is called response time. 

In typical OLTP systems the response time 
does not appear to be constant. As the workload 
on the machine increases, the response time 
lengthens. This occurs because, as more jobs 
demand resources from the system, queues 
begin to form at those resources that are most 
in demand. The time that a request spends 
waiting in these queues is the main source of 
longer response times. A simple equation 
that expresses this relationship is 

lresponse = lservice + lqueueinR • 

The system's transaction response time, 
tresronse, is equal to the sum of tservice, the delay 
the request would have if no other request 
were in the system, and lqueueinR, the time the 
request spends waiting for resources. 

For this simple investigation, assume that 
t.,ervice is a constant, not affected by the work­
load in the system. The other component 
of response time, tqueueinR, is definitely a 
function of the workload. In lightly-loaded 
systems, little or no queueing takes place 
and the system's response time is very nearly 
tserv,ce• In heavily-loaded systems, the response 
time is eventually dominated by lqueueinR and 
can even approach infinity. 

For the DP manager who has a problem with 
response time, the performance question 
might be expressed as, "What will the trans­
action response time of my system be at 
current transaction workloads if I replace my 
NonStop II processors with NonStop TXP 
processors?" 

Another related problem is the capacity of 
the system. If response time goes to infinity, 
no work is done. The point at which response 
time becomes unacceptable (whether it be 
three seconds, three minutes, or three years) 
can be considered the maximum transaction 
workload (capacity) of the system. In this case, 
the question being asked is, "What will the 
maximum capacity of my system be if I replace 
my NonStop II processors with NonStop 
TXP processors?" Another way to ask this 
is, "What is the new peak load my system 
can handle?" 
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Figure 3 Figure 3 To obtain these results, the same benchmark 
was measured on two configurations in 
which the only difference was that, in one 
instance, NonStop II processors were used, 
and in the other, NonStop TXP processors 
were used. 

Benchmark response times 
for the NonStop II and 
NonStop TXP processors 
at various transaction 
rates. 
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One variation on the throughput question 
is, "What new transaction throughput at the 
same transaction response time(s) can my 
system handle if I replace my NonStop II 
processors with NonStop TXP processors?" 
In this case, the system manager would like to 
increase the number of transactions per 
second that the computer can process at some 
predefined response time(s). This question 
is similar to the previous one but usually 
involves increasing the number of users on the 
system, not determining the peak loading 
point. This situation arises when new terminals 
(and work) are added to the system while 
the responsiveness of the machine must be 
maintained at present levels. 

These questions and others can be answered 
by determining the transaction response 
time as a function of the transaction rate. Thus, 
in this article, the following definition of P5 
is the performance index for OLTP workloads: 

P5rt = Response time at a transaction rate. 
P5thru = Transaction rate at a response time. 
P5cap = Maximum transaction-rate capacity. 

In early comparisons of the NonStop TXP 
and NonStop II processors, response-time 
curves like those in Figure 3 were obtained 
(NonStop TXP System Support Team, 1983). 

Building, configuring, loading, and running 
benchmarks is a time-intensive and resource­
intensive exercise. Although benchmarks 
are the best models of the real workload, and 
therefore yield the most accurate information 
about the system's performance, many difficult 
operational problems limit their use. Bench­
marks are usually difficult to modify. Often, 
privacy and security requirements limit the 
use of application files in the benchmark. 
Finally, tuning and balancing benchmarks for 
optimum performance is a non-trivial task. 
Thus, developing performance information 
through benchmarking usually involves 
many days of intensive work on the real 
system hardware. 

For all of these reasons, a method that 
consumes fewer resources is called for to pre­
dict the performance impact caused by 
changes to the system (e.g., replacing NonStop 
II processors with NonStop TXP processors). 
Based on the data from many of these bench­
marks and similar measurements, an on-line 
transaction processing model has been devel­
oped to predict the performance of OLTP 
applications on both the NonStop II and 
NonStop TXP processors. The model is com­
posed of two major submodels: a resource­
demand model for sizing a system and a 
response-time model for predicting the sys­
tem's performance. ENVISION, the OLTP 
performance modeling tool, is used by Tandem 
system analysts to accurately size, tune, 
manage the growth of, and predict the perfor­
mance of OLTP systems (Chou, Oleinick, 
and Singh, 1984). 

The model predicts transaction response 
times, given a hardware and software configu­
ration and workload description. To demon­
strate the effectiveness of this tool, an OLTP 
application was modeled. The resulting 
transaction response-time curves appear in 
Figure 4. Three curves appear in the figure: 
those representing measured data for a real 
system of NonStop II processors, predicted 
data for the system of NonStop II processors, 
and predicted data for the system of 
NonStop TXP processors. 
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Although not exact, the modeled perfor­
mance of the system of NonStop II processors 
compares well with the measured data. At 
low-to-medium transaction rates, the model 
and the measured data agree to within 5%. 
At medium to higher transaction-throughput 
rates, the model predicts response times 
that are from 7% to 13% too low. Still, this 
degree of accuracy is sufficient for the analysis 
that follows. 

There are many ways to interpret these 
curves. If reducing response times is of inter­
est, a vertical line can be drawn at the 
appropriate transaction rate, and the response­
time values of the two systems can be 
compared. The curves indicate that in this 
benchmark, at five transactions per second, 
for example, response time can be reduced 
from 1.46 seconds to 0.7 seconds, a reduc­
tion of more than 50%. To continue the ratio 
method of comparison of the NonStop II 
and NonStop TXP processors, the transaction 
response times of both machines should 
be compared. 

Table 6 summarizes this type of analysis. By 
this measure of performance, the NonStop 
TXP processor is dramatically more powerful 
than the NonStop II processor. The first 
row of the table compares the service times of 
the transactions, i.e., the no-load response 
time. The ratio for P5r1 is 1:1.61 in this case. 
As the transaction rate increases, this 
improvement increases, and eventually no 
comparison is possible; the NonStop II 
processor response time becomes unbounded, 
and P5r1 approaches infinity. 

The data in Table 6 indicates that the 
improvement in the responsiveness of the 
system varies considerably with the quan-
tity of work. If the DP manager were interested 
in improving system responsiveness within 
the typical transaction-throughput range of a 
system (e.g., 4 to 8 transactions per second), 
this data indicates that the amount of improve­
ment would be between 100% (P5r1 ratio = 
2.00) and 153% (P5rt ratio = 2.53). 

By drawing horiwntal lines across the 
curves, the DP manager can answer the question 
about increasing throughput rates while the 
same response time is maintained. For example, 
the transaction throughput capacity at a 
one-second response time is approximately 
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Relative response times for the Nonstop 11 and 
Nonstop TXP processors (P5r1). 
Transaction rate Ratio P5,,(ll):P5,tCTXP) 

0.0 (no load) 1:1.61 

2.0 1:1.90 

4.0 1:2.00 

6.0 1:2.10 

8.0 1:2.53 

9.0 1:4.60 

10.0 1:infinity 

Table 7. 

Relative throughput rates for the Nonstop 11 and 
Nonstop TXP processors (P5thru), 
Response time Ratio P5,h,u(ll):P51hru(TXP) 

2.50 1:1.70 

2.00 1:1.91 

1.50 1:2.48 

1.00 1:9.30 

0.75 1:infinity 

one for the NonStop II processor, but more 
than nine for the NonStop TXP processor. The 
DP manager can increase the system's trans­
action processing capacity by a factor of 800% 
by replacing the NonStop II processors with 
NonStop TXP processors, given this response­
time requirement for this system's workload 
and configuration. This type of analysis is 
summarized in Table 7. 
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By this measure of performance, the NonStop 
TXP processor is again dramatically more 
powerful than the NonStop II. As the response 
time requirement becomes more and more 
stringent, the difference in transaction process­
ing capacities widens. Eventually, as before, 
the NonStop II processor cannot deliver any 
transactions at the indicated response time, 
and the ratio of PS1hru(TXP) over PSthru(II) 
becomes unbounded. 

The third PS metric, PS cap, is easily obtained 
from the curves. It is approximately 9 for 
the NonStop II processor and 14 for the 

NonStop TXP proces­

balanced system, A in which the disc­
processing and CPU capac­
ities match the demands 
of the workload, will always 
be the most efficient system 
to configure. 

sor. Thus, for this 
system configuration, 
running this work­
load, switching from 
NonStop II to 
NonStop TXP proces­
sors would permit 
the system to handle a 
peak load 1.55 times 
the present maximum. 

What is the reason 
for the rather small dif-

ference in peak load capacity? The answer 
can be found by examining the rate of utilization 
of the processors at the peak load points. 
The NonStop II processors were running at an 
average of 87% busy. The NonStop TXP 
processors were much less busy, only 49%. 
Clearly the bottleneck in the NonStop TXP 
processor system is not the processors. 

It should come as no surprise that the 
disc subsystem is the bottleneck in the NonStop 
TXP processor system at peak load. The 
utilization data confirms this hypothesis. For 
the NonStop II processor system, the disc 
drives were only 27% busy on average (54% for 
each mirrored pair) at peak load. When the 
NonStop TXP processors were introduced, the 
disc devices could be used more. The 
average utilization of the disc drives for the sys­
tem of Nonstop TXP processors increased 
to 38% (76% for each mirrored pair) at the 
higher peak load. Thus, the NonStop TXP 
processor better utilizes the disc devices. 

Note that of all the performance indices 
examined so far, PS, and especially PScap, 
should be viewed with the most caution. 

Because the values of PS were derived from the 
performance of a single OLTP application 
on a single configuration of processing ele­
ments, the performance results cannot be 
used to size or configure systems for other than 
OLTP applications or workloads. The PS 
data merely demonstrates the performance 
impact of the CPU elements when NonStop II 
processors are replaced by TXP processors 
in one situation. 

The results of PS could have been adjusted 
to any value desired to represent a different 
disc and processor configuration or different 
application-processing demands. The values 
presented for PS were chosen to provide insight 
into typical system-configuration problems. 

Conclusions 

It is difficult to specify unequivocably the 
relative performance of two computer systems. 
It is clear, however, that when the perform­
ance of computer systems is compared, the 
workload to be used for the comparison 
must be specified as accurately as possible. 
This is important because the slightest vari­
ation in the workload can produce a profound 
change in observed performance. 

In this article, several essential computa­
tional elements in an OLTP environment have 
been discussed, and the corresponding 
performance values for very similar processors, 
the NonStop II and the NonStop TXP, have 
been compared. The data in Table 8 sum­
marizes the performance comparisons. 

While, as discussed earlier, the processing 
performance for OLTP workloads varies, 
depending on the nature of the transactions 
and the configuration of the systems, the 
throughput of the NonStop TXP processor has 
been observed to be two to three times 
greater than that of the NonStop II processor 
for a variety of OLTP applications and work­
loads for numerous Tandem users. 

The information in this article represents the 
performance criteria and resulting meas­
urements available at the time of publication. 
The available data was gathered and pre­
sented in order of increasing complexity, 
beginning with the measurement of certain 

22 T A N D E M J O U R N A L SUMMER 1984 



basic system functions and ending with the 
measurement of a mix of more complex OLTP 
functions. This particular set of criteria is 
not intended to become the standard for eval­
uating the performance of OLTP systems. 
A more rigorous standard workload/bench­
mark, designed by "those who develop 
standards", is needed. Until this standard OLTP 
benchmark is available, ad hoc performance 
comparisons will continue to be the only 
method available for evaluating relative com­
puter power in the OLTP arena. 

A final note: Instead of replacing all the 
NonStop II processors with NonStop TXPs, 
the DP manager might consider adding a few 
NonStop TXP processors (and disc drives) to 
augment the eight NonStop II processors. As 
the performance data indicated, replacing all 
eight processors with the faster NonStop TXP 
processors substantially increased the amount 
of CPU power in the configuration but did 
not much alleviate the system's disc-drive bot­
tleneck. Much of the added CPU power is, 
then, essentially wasted. 

The example from which performance met­
ric P5 was derived was chosen to compare 
the NonStop II processor to the NonStop TXP 
processor. It was purposely restricted to 
illustrate the performance improvement that 
would result from merely replacing the CPU 
components. Deriving the ideal system (built 
with NonStop TXP processors) for this OLTP 
workload was not the purpose of this investi­
gation. Nevertheless, an important lesson 
in system configuration was demonstrated; 
i.e., a balanced system, in which the disc­
processing capacity matches the disc-processing 
demands of the workload and the CPU 
capacity matches the CPU-processing demands 
of the workload, is the most efficient system 
to configure. 

In conclusion, the results of this study 
indicate that the NonStop TXP processor 
is a worthy successor to the NonStop II 
processor. Its designers have achieved compat­
ibility with the NonStop II processor while 
providing much-improved performance. The 
NonStop TXP processor is clearly a high­
performance processor for on-line transaction 
processing systems. 

Table 8. 
Summary of performance index comparisons 
for the Nonstop II and Nonstop TXP processors. 
Performance index Ratio Px(ll):P,(TXP) 

Pt 1: (2.5-3.1) 

P2 1: (2.7-3.0) 

P3 1: (3.2-4.1) 

P4, 1: 1.37 

P45 1: 2.07 

P4 1: 1.68 

P5cap 1: 1.55 

P5,, 1: (2.5-infinity) 

P5thru 1: (2.7-infinity) 
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Optimizing Sequential 
Processing on 
the Tandem System 

~!!!~!• or programmer-analysts used 
____ ___::: to traditional sequential 

--~~-- processing, designing on-line 
---1------ transaction processing appli-

-- cations for a multiprocessor 
-~-- architecture often requires 

_-_-_-_- an adjustment in thinking. 
Their traditional approach to application design 
must change so that they can optimize the 
processing of the on-line transactions and fully 
utilize the features of the multiprocessor 
system. Often, the methods they use to optimize 
the sequentially-oriented portions of the 
application must be reconsidered also. Require­
ments such as fault tolerance, data integrity, 
and tunability are different for sequential and 
on-line environments. Table 1 identifies some 
of these fundamental differences. 

In this article, techniques for optimizing 
sequential processing on the Tandem system are 
explored. System configuration, file blocking, 
and parallel processing techniques are dis­
cussed in the order in which they should be 
implemented (i.e., parallel processing is not 
as effective if system-configuration and file­
blocking possibilities have been overlooked). 

Table 1. 
Fundamental differences between sequential and 
on-line processing. 

Sequential On-line 
processing processing 

Typical file access Sequential Random 

Recoverability File level Transaction level 

Data integrity/ File level Record level 
Data-base 
consistency 

Tunability Larger data blocks. 
fewer physical I/Os 

Modular growth 

Ultimate goal Shortest wall-clock High availability and 
time fast response time 

Finally, a general approach to optimizing 
sequential processing is presented, illustrated 
with examples of typical applications. 

A primary consideration in the presentation 
of these techniques is their ease of instal­
lation into an existing program. The changes 
required are generally minimal and do not 
affect the application portion of the code. In 
some instances, the programs need not be 
recompiled. In others, small, simple programs 
or pieces of code must be added. 

Example programs are available either in 
current Tandem manuals or through Tandem 
support analysts. The list of references iden­
tifies specific manual sections and other 
supporting written information. 

Benchmarks 

Simple COBOL benchmark programs were 
used to test the effects of each technique. The 
results of these benchmarks are presented 
as each technique is discussed. The values 
of appropriate parameters were varied to 
explore their effects on wall-clock time and 
system resource usage. The benchmarks 
were run on the A06 version of the GUARDIAN 
operating system, on both the NonStop II 
and NonStop TXP systems. 

These benchmarks are intended as guide­
lines for comparing various techniques. The 
results should not be used as absolutes in 
measuring system performance. Many different 
factors contribute to performance measure­
ment, and while controlling all of them is very 
difficult in a lab, it is nearly impossible in 
a production system. 
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The XRAY performance analysis tool was 
used to monitor and verify the benchmark 
results and show the impact of each test on 
system resources. XRAY should be used in 
conjunction with any performance optimiza­
tion. Taking XRAY measurements before any 
modification is made is the surest way to deter­
mine where optimization is actually needed. 

Those analysts familiar with XRAY statistics 
will observe that sequential processing has 
significantly different optimal measurement 
ceilings than those of on-line transaction 
processing. The value for the XRAY metric CPU 
BUSY can be much higher, disc utilization 
can be driven to the limit for sequential access, 
cache hits can be very high ( this is not nec­
essarily optimal, as is later shown), and queue 
lengths for resources can be longer. Finally, 
CPU workload over an entire system can be 
extremely unbalanced. 

System Configuration Considerations 

Several options in the system generation 
(SYSGEN), hardware configuration, and general 
procedures for running applications can be 
useful in improving sequential processing. 

Disc Configuration 
At SYSGEN, the following disc parameters 
can be configured according to how the disc 
is to be used. 

On the Tandem NonStop system, mirrored 
disc volumes can be configured for either 
PARALLELWRITE or SERIALWRITE. PARALLEL­
WRITE is much faster for individual writes 
because of the overlap gained with parallel-disc 
seeking and writing. SERIALWRITE can 
provide another access path to disc since two 
controllers are not tied up for a single 
operation. On the NonStop II system these 
parameters are not available; the system 
automatically selects the appropriate option, 
based on the dynamic configuration. If both 
halves of a mirrored volume are on the same 
controller, seeking occurs concurrently on 
both, but all other operations are done one at 
a time. If each device in a mirrored pair is 
on a separate controller, seeking or writing 
occurs concurrently on both. 

For most applications, reads on a disc 
volume outnumber writes by a wide margin. 
The SPLITSEEK option provides a faster seek 
time when records are read randomly, by posi­
tioning the heads for the two mirrors on 
the inside and outside of the spindles. If writes 
are proportionally higher, the SLAYESEEK 
option, which keeps both sets of heads posi­
tioned at the same place, should be considered. 
For example, if a file is written and read 
sequentially, there is no advantage to SPLITSEEK; 
SLAVESEEK saves more time. 

The "phantom-disc" technique is useful for 
systems with removable disc volumes. This sim­
ply involves adding extra disc definitions on 
mirrored-disc strings in the SYSGEN so that more 
logical discs are configured than physically 
exist. This gives the system manager the capa­
bility to bring down half a mirror, remove 
the pack, install another pack, and bring it on 
line as a disc volume 
that can be addressed 
separately. This proc­
ess can be reversed at 
any time to bring the 
"downed" half of the 
mirror back on line. 
A REVIVE can then be 
used to synchronize 
it with the primary. 

i A primary consideration 
in the presentation 

of these techniques is their 
ease of installation into 
an existing program. 

If temporary work files are extensively used, 
consideration should be given to unmirror­
ing the disc volumes on which they reside. In 
most instances, data in work files is not 
critical, since it can be rebuilt. If the normal 
recovery for the job is to rerun it, regen­
erating the output data when a disc fails is not 
a serious problem. 

Unmirroring disc drives has three advantages 
in sequential processing: 

■ Physical disc capacity is doubled. 

■ About 20 ms per access is saved over 
PARALLELWRITE-configured mirrored discs, 
and more than 50 ms is saved per access 
over SERIALWRITE-configured mirrored discs. 
Of course, this is dependent on the size of 
the block being written and the mode of access. 

■ Depending on the configuration of the 
disc controllers, unmirroring may provide 
another physical access path. 
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Critical or permanent data should not be 
kept or modified on unmirrored packs since 
this would introduce a single point of fail­
ure. Files audited by the Transaction Monitoring 
Facility (TMF) and all audit trails should 
always be mirrored. 

File System 
The following considerations about the file 
system are also important. First of all, making 
sure the REFRESH flag in the file header 
block is off prevents the file header block from 
being rewritten to disc whenever a file's EOF 
changes. While useful for on-line processing, 
rewriting the file block header to disc is 
inefficient for sequential writes since the entire 
job is rerun in the event of a failure. REFRESH 

can be called at any time by the program and is 
invoked when the file is closed. 

If two files on the same volume are heavily 
accessed simultaneously (e.g., one is read 
from, then another is written to), moving one 
of the files to another pack can provide an 
immediate reduction in seek time and up to a 
50% improvement of the job's run time in 
some instances. 

When jobs access a number of files simul­
taneously, or when several processes access 
files heavily, additional disc controllers are an 
asset. The more paths there are to the data, 
the more options there are for performance 
improvement, both for sequential and on­
line environments. 

Larger block sizes for structured files ensure 
better access times, especially for sequential 
reads. A larger block size means a higher 
blocking factor, which reduces the number of 
physical 1/0 operations. 

If a system has several disc volumes and 
some fairly large files or files that are used 
heavily, partitioning should be considered, 
whether the processing is on-line or sequential. 
Even if a file is not in danger of overflow-
ing its current disc volume, partitioning offers 
a number of advantages: 

■ More access paths to the file. This can 
improve the throughput for both sequential 
processing (see "Parallel Processing") and 
on-line processing (by reducing the bottleneck 
potential and better balancing the system). 

■ Increased fault tolerance. If one partition 
of the file is down because of a disc, CPU, or 
node failure, the other partitions are still 
available as long as the root partition is avail­
able when the file is opened. Also, when a 
RESTORE or TMF ROLLFORWARD is required, 
only the partition that is down need be 
recovered, and this can be done while the other 
partitions are being used by the application. 

• Larger file sizes. Instead of being limited 
to the size of a single disc volume, up to 16 discs 
can be used for a single file. These discs 
need not be the same type or capacity, and each 
partition can be a different size. 

■ More options for data distribution. A single 
file can span discs and nodes, offering a 
very flexible environment that can be seen 
logically as a single entity. 

The RUN Statement 
While sequential jobs are often executed 
with a simple RUN statement and no Command 
Interpreter options, the following are some 
options for improving their performance: 

• Specify a CPU This avoids having $CMON 
or the Command Interpreter select one. (The 
latter might create contention in the proc­
essor if the CPU selected were busy when the 
job was run.) Each job should be reviewed, 
and the best processor for it should be deter­
mined by the system load and whether or 
not it will contend with other processes using 
a large amount of the total system resource. 

• Set the job '.s priority. This can improve 
its performance if it is the most important of 
several processes running at the same time. 

■ Specify the NOWAIT option. This frees the 
terminal for other uses. While this does not 
improve the job's performance, it may help 
the operator. It should not be specified if COBOL 
DISPLAY or ACCEPT to the home terminal 
are used within the program or if other job 
steps that are dependent on the first job's 
completion follow in the same obey file. 

• Specify a file name for a temporary unstruc­
tured file. This avoids having the COBOL 

run-time library create the file on the default 
volume, which would cause contention if 
other needed files were already on the volume. 
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Also, the default size may not be large 
enough. The job might run at first, but if the 
number of records increased, the job might 
fail because of inadequate disc space. This 
is especially important for a sort-work file; the 
default is to allocate enough room for 
approximately 10,000 records. 

■ ASSIGN all application files in an obey file. 
This makes it easier to keep track of a 
program's input and output and is a convenient 
way to allow a program access to different 
files without recompiling. 

■ Name the process. This makes it easier to 
monitor its operation and performance. If 
parallel processing is implemented and the 
processes involved send data to each other, 
a named process is much easier to work with. 

Below is a sample of the parameters that 
should be set, not defaulted, for the RUN 

statement: 

CREATE $VOL.SUBVOL.TEMP, EXTSIZE 

ASSIGN COBOL-FILE, $VOL.SUBVOL.FILE 

RUN X /CPU X, PRI n, NOWAIT, NAME $NAME/ 

The SORT Utility 
Whenever possible, the SORT utility should 
be used instead of sorts called by COBOL. This 
is because, in the SORT utility RUN state­
ment, MEM 64 can be specified to make 
more memory available for the sort process. 
This improves sort times significantly. This 
option cannot be passed to SORT from COBOL. 

Also, for optimal sort time, SORT should 
read the file directly, regardless of whether the 
SORT utility is used or the file name is 
specified in the COBOL SORT statement. If an 
input procedure is used, sorting is much 
slower, as COBOL must pass each record sepa­
rately to SORT with an interprocess message. 
Sequential block-buffering, discussed later, is 
used by SORT for all structured file reads. 

The Spooler 
If the spooler collector process is overloaded 
with jobs opening and writing to the spooler, 
adding another collector process can help to 
spread the workload. Each collector process 
has its own data file, which can help to balance 
the spooler requests 
across separate disc 
volumes. This can be 
run out of a single 
spooler supervisor and 
is transparent to the 
SPOOLCOM or PERUSE 
user. Many systems 
are already configured 
with two collector 

E ven zf a file is not in 
danger of overflowing 

its current disc volumeJ 
partitioning offers a number 
of advantages. 

processes, with one used for short jobs and the 
other for longer report output. (See the sub­
section on Level 3 spooling in "File Blocking" 
for more ways to streamline spooler processing.) 

TMF 
The following are some guidelines for using TMF 

in sequential processing: 

■ Avoid using TMF to audit intermediate or 
work files. 

■ Use the LOCKFILE procedure to eliminate 
record-level locking on audited files. Note that 
only one process may lock a file at any 
given time. 

■ Block TMF transactions for audited files 
between BEGIN-TRANSACTION and END­
TRANSACTION statements. With the A06 ver­
sion of TMF, a maximum of 1808 records 
and 922 key locks can be held simultaneously. 

■ Leave audit flags on. Turning them off to 
permit faster updating is dangerous, since it 
creates a grave risk that the flags might not 
be turned back on again. This would make 
ROLLFORWARD impossible for those files 
until another on-line dump were taken. 

Current Releases 
The best system-configuration tip of all is 
to use the current releases of Tandem software. 
Tandem continuously upgrades its products 
in response to user needs. Significant improve­
ments can often be realized with the instal­
lation of the latest system software release. 
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File Blocking 

At the application level, blocking data into 
and out of a program is probably the per­
formance factor that is easiest to control and it 
is one that has a major impact. The goal is 
to reduce the number of physical 1/0 operations 
and the number of system-level calls to the 
Discprocess or cache management function. 
The three methods discussed below are 
simple to implement, can show impressive 
improvements in run time, and can signifi­
cantly reduce the load on system resources. 

Sequential Block-buffering 
One of the easiest ways to boost serial-read 
performance for structured files is to use 
sequential block-buffering. This technique 
!described in the ENSCRIBE Programming 
Manual and further explained in an unpublished 
paper, "Sequential Block-buffering for COBOL 
Programmers',' by Chris Ohland of Tandem) can 
be used on any structured file. Essentially, 

lrable 2. 

Time required to perform standard versus sequential 
block-buffering. (Sequential reads of structured 
files, 10,000 records.) 
Nonstop II system· 

Time (secs), keyed files Time (b)asa 
Becord size (a) Standard (bl Sequential percentage 
(bytes) buffering block-buffering of lime (a) 

100 111 38 34% 

200 127 55 43% 

500 162 98 60% 

1000 200 145 72% 

1500 278 276 99% 

Nonstop TXP system 
Time (secs), keyed files Time (b)asa 

Flecord size (a) Standard (bl Sequential percentage 
(bytes) buffering block-buffering oftime(a) 

100 44 19 43% 
200 52 28 54% 
500 68 48 71% 

1000 96 94 98% 
1500 190 190 100% 

in the NonStop processor, sequential block­
buffering moves a structured file block 
directly into the user data area, and in the 
NonStop II and NonStop TXP processors, 
it moves it into the Process File Segment (PFS). 
Then it is deblocked without having to go 
through cache management or an interprocess 
communication. The savings in read time 
are remarkable; smaller records are read three 
times faster. 

Table 2 compares the results of a bench­
mark testing standard and sequential 
block-buffering. The program read 10,000 
records, first with standard 1/0 operations 
and then with sequential block-buffering 
added. Block size was 4096 bytes. The record 
sizes were varied. 

The XRAY statistics show that for smaller 
records, the number of read requests to the 
Discprocess dropped 95%. The cache hit rate 
(the number of times the appropriate record 
was found in memory) fell from 90 per second 
to 21 per second, reflecting the fact that 
the index blocks were still kept in cache. The 
rate of disc physical reads tripled, showing 
much higher throughput, but the Discprocess 
CPU BUSY percentage dropped from 43% to 
6%. The test program CPU BUSY percentage 
increased 33%, showing that deblocking was 
still being done, but outside of the Discprocess 
and cache manager. 

Not only can a much higher throughput 
be obtained with sequential block-buffering, 
but the load on the disc resource is signifi­
cantly reduced. The disc could be accessed 
for another file without serious contention 
problems. Without sequential block-buffering, 
cache hits on the sequential reads consume 
the Discprocess resource while the physical 
disc is almost idle. 

Sequential block-buffering is intended for 
sequential read-only requests on ENSCRIBE 
structured files. The file can be STARTed at 
different points and then read sequentially. 
Random reads or writes work, but do not show 
a performance improvement since the wor~­
ing storage buffer is completely replaced with 
each 1/0 operation. The file can be shared. 
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Finally, updating by other processes is possible, 
but once a block is read into the user data 
area, any subsequent updates to that block by 
other processes do not update the user data 
area copy of the block. 

Unstructured Files 
Four file types are available in the ENSCRIBE 

file system: keyed, relative, entry-sequenced, 
and unstructured. If a file has special attributes 
such as keys, alternate keys, variable-length 
records, ordinal record positioning, update 
capability, or ENABLE or ENFORM require­
ments, the appropriate type of structured file 
should be used. 

If the file holds only sequential, fixed-length 
records it should be unstructured for faster 
processing. An unstructured file has no point­
ers, control blocks, or slack space, and 
records are physically adjacent. There is no 
record size on an unstructured file; what­
ever record size is specified in the COBOL file 
description is read into the record area. 
Maximum record size is 3584 bytes. 

A prime application for unstructured files 
is for intermediate data that is generated 
sequentially to be read sequentially. 

Reading Unstructured Files 
Using a BLOCK CONTAINS clause in the file­
definition statement improves read access to 
unstructured files. It causes the entire block 
to be read into the user program data area. 
Reads of the file go outside of the user 
program environment only when a new block 
is needed. 

In Table 3, the results of a benchmark 
using unstructured and structured files with a 
BLOCK CONTAINS clause are shown. The 
benchmark compared entry-sequenced and 
unstructured files by reading 10,000 records 
from each type. Record sizes varied from 100 
to 3000 bytes. The entry-sequenced file was 
blocked at 4096 bytes. 

The XRAY analysis showed a dramatic drop 
in the Discprocess and cache overhead and 
an increased number of physical disc requests 
for the unstructured files, demonstrating 

Table 3. 
Time required to perform reads on structured versus 
unstructured files. (10,000 records.) 

Nonstop II system 
Time (secs) 

(a) Structured (bl 
Record size files (entry- Unstructured 
(bytes) sequenced)* filest 

100 117 13 (35) 

200 136 24 (17) 

500 143 58 (7) 

1000 183 128(3) 

1500 257 188(2) 

2000 280 361 (1):j: 

3000 393 378 (1) 

Nonstop TXP system 
Time (secs) 

(a) Structured (b) 
Record size files (entry- Unstructured 
(bytes) sequenced)* filest 

100 44 6 (35) 

200 53 12 (17) 

500 68 17 (7) 

1000 96 33(3) 

1500 190 100(2) 

2000 185 190(1) 

3000 214 210 (1) 

*Entry-sequenced files blocked at 4096. 

tUnstructured blocking factor shown in parentheses. 

Time (b)asa 
percentage 
of time (a) 

11% 

18% 

41% 

70% 

73% 

129% 

96% 

Time (bJasa 
percentage 
oftime(a) 

14% 

23% 

25% 

34% 

53% 

100% 

100% 

:j:With a record size of 2000 bytes, no blocking can be done 
on an unstructured file, but the entry-sequenced file can still fit 
2 records in a block. 

higher throughput. (This was especially notice­
able for smaller record sizes.) The difference 
is due to the reduced number of interprocess 
communications needed to obtain record 
data and the subsequent reduction in load on 
the Discprocess and cache management for 
unstructured files. 

Writing Unstructured Files 
A good technique for generating records 
for an unstructured file is to block the data in 
the user program before issuing a write. This 
can be done with a simple blocking paragraph 
and is a very efficient way to minimize the 
number of physical writes for every logical write. 
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Table 4. 
Time required to perform writes on structured 
versus unstructured files. (10,000 records.) 
Nonstop II system 

Time (secs) 

(a) Structured (bl Time (b)asa 
Record size files (entry- Unstructured percentage 
(bytes) sequenced)* filest of time (a) 

100 533 33 (35) 3% 
200 512 60(17) 12% 

500 527 143(7) 27% 

1000 524 303 (3) 58% 

1500 561 447 (2) 80% 

2000 557 710(1):j: 127% 

3000 594 887 (1) 149% 

Nonstop TXP system 
Time (secs) 

(a) Structured (bl Time (b)asa 
Record size files (entry- Unstructured percentage 
(bytes) sequenced)* filest of time (a) 

100 335 16 (35) 5% 

200 339 32 (17) 9% 

500 340 78 (7) 23% 

1000 348 182 (3) 52% 

1500 360 270 (2) 75% 

2000 355 510 (1):j: 144% 

3000 384 542 (1) 141% 

*Structured files blocked at 4096 bytes. 

tlnternal blocking factor is shown in parentheses for unstructured 
files. 

:j:At 2000 bytes, only one unstructured record can fit. The file 
system must move data in adjacent records on each write. 

Table 4 shows the results of a benchmark 
that added a simple blocking paragraph to a 
program that wrote sequential records to 
an unstructured file. The benchmark consisted 
of writing 10,000 records to both structured 
and unstructured files. Record sizes were varied 
to show their impact at different points. 

The results of the XRAY analysis were very 
similar to the unstructured read results: the 
Discprocess and cache overhead dropped, and 
physical disc activity increased. 

No other programmatic changes are needed 
to make a file unstructured. Incorporating 
these suggestions would help to move the data 
through the system faster and with lower 
system overhead. 

Level 3 Spooling 
The Tandem spooler function receives print 
data from processes, saves it in a spooler 
data file, and manages the printers. Standard 
COBOL WRITE requests to the spooler require 

an interprocess message for each write. The 
spooler collector blank-compresses this data 
into a block, and once the block is full, writes 
the block to the spooler data file. This is 
known as Level 1 spooling. In Level 3 spooling, 
the compression procedures are in the sys­
tem library, and can be called directly by the 
application code without an environment 
switch. An interprocess message to the spooler 
collector is needed only when a block is full. 

The performance improvement that can 
be obtained by using Level 3 spooling is 
impressive: writing to the spooler can be 3 to 
15 times faster, depending on the number 
of blanks in the print data. Level 3 spooling is 
also useful for specifying report names, 
print priorities, the number of copies, and 
special flags from the program. 

A complete description of Level 3 spool­
ing, including a sample program, is in the 
Spooler/PERUSE User's Guide. The change 
from standard COBOL I/O is fairly simple; 
the programmer need only make separate calls 
for pagination and line feeds. (The sample 
program, on which this benchmark was based, 
demonstrates this.) 

The benchmark to test both standard 
writes and Level 3 I/O wrote 10,000 lines of 132 
characters each, with a range of nonblank 
characters. The results are shown in Table 5. 

Because far fewer interprocess messages 
are needed with Level 3 spooling, a more pre­
dictable range of timings can be found, 
especially when there are other active processes 
on the system. The XRAY analysis bears this 
out. Using standard writes consumes much 
more of the total system resource in the 
form of message-system overhead. 

Parallel Processing 

While parallelism is an established concept for 
on-line processing on any multiprocessor 
system, it is not often considered for use in opti­
mizing the sequentially-oriented portions of 
an application. Perhaps it is felt that the effort 
to design and implement a parallel architec­
ture would not be worth the possible improve­
ments in run time. There may be a suspicion 
that the overhead needed to run processes in 
parallel would overshadow any gains made 
through the concurrency obtained. 
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In reality, parallel processing can greatly 
improve run times for sequential processing. 
Its design and implementation for applica­
tions is straightforward and simple, especially 
when the Tandem architecture is utilized. 
Since parallel processing enables the applica­
tion to use more system resources simul­
taneously, the overhead to run functions in 
parallel is not a significant factor. In many 
cases, total system resource usage is less in a 
parallel environment because some steps 
can be eliminated and information can be 
shared, as is discussed later in this section. 

The Tandem system is message-based; i.e., 
all information is passed between processes 
via messages. A part of the operating system 
controls the message traffic by routing and 
queuing to the appropriate process. Another 
integral part of the operating system is the 
file system, which treats all 1/0 operations as 
messages. Whether a block of information 
is to be read or written to disc, or to another 
process, is essentially transparent to the 
sending or receiving process. This simplicity in 
passing data between processes allows the 
workload to be distributed, files to be shared, 
and some intermediate steps in the sequen­
tial processing environment to be eliminated. 

Three basic parallel processing concepts 
are important in sequential processing. Each 
of these is explained below. 

Eliminating Intermediate Files 
In the traditional single-processor envi­
ronment, intermediate files are often used for 
saving information for another job to access 
later. After this job is complete, the file is 
purged. This is easy to program. Each unit 
of work can be considered as separate instead 
of all units being viewed as a single com-
plex multi-pass program. This modularity is not 
only simpler to work with in the case of the 
single processor, it provides the basis for running 
some of these units of work concurrently in 
the multiprocessor environment. 

In the Tandem message-based environment, 
it is as easy to write to another process as 
to a disc file. This allows information to be 
passed from one program to another very 
quickly, eliminating the disc time required to 

Table 5. 

Time required to perform standard versus Level 3 
spooling. (10,000 lines; 200 pages, 50 lines/page.) 

Nonstop II system 

Number of Time (secs) Time (b)asa 
blank (a) Standard (b) Level 3 percentage 
characters spooling spooling of time (a) 

0 210 62 30% 
33 203 36 18% 
66 195 30 15% 

132 189 8 4% 

Nonstop TXP system 

Number of Time (secs) Time (b) asa 
blank (a) Standard (b) Level 3 percentage 
characters spooling spooling of time (a) 

0 97 41 42% 
33 86 40 47% 

66 82 11 13% 

132 78 3 4% 

Figure 1 

(a) 

(b) 

write and read the file, and allowing the 
jobs to run concurrently, further reducing the 
run time. Disc space is also saved. A further 
benefit is the ability to increase the amount of 
data sent per message by internal blocking. 
Finally, the limitation on disc block sizes is no 
longer a constraint; up to 32K-byte messages 
can be sent with system procedure calls. 
Standard COBOL 1/0 allows 4K-byte blocks. 

Figures la and lb show the flow of data 
with and without the intermediate file. Note 
that intermediate disc access is no longer 
needed. An interprocess message for each 
record/block is also eliminated. 
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Figure 1 

Eliminating intermediate 
Jiles. (a) Before the 
intermediate file is elim­
inated, one job (Ji) writes 
the intermediate data 
to disc ( D) and another 
job (12) accesses the 
data from the disc at 
a later time. (b) After the 
intermediate file is 
eliminated, the first job 
writes the intermediate 
data directly to the second 
via an interprocess 
message. 
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Figure 2 

(a) 

(b) 

(C) 

• • 
• • 
• • 

Figure 2 

Routing and merging. 
(a) Before routing and 
merging is used, the job(]) 
reads the datafile (D), 
transforms the data, and 
then writes the trans­
formed data to a file ( F). 
(b) When routing and 
merging is used, the job 
reads the data file and 

32 

0 - J -!= 

routes segments of the data 
to the bottleneck proc­
esses (BJ-4). They trans­
form the data and send 
it back to the main job to 
be merged and written. 
( c) When routing and 
merging is used with a 
partitioned input file, 
copies of the router pro-

gram read each partition 
of the input file and route 
segments of the data to 
the bottleneck processes. 
These processes then 
transform the data and 
send it to a single merger 
program that combines 
the data and writes it out 
as a single stream. 

Routing and Merging 
Sometimes a single job takes a long time to 
run. This job may take in one or more large 
files, transform them, and generate large 
files or reports. A classic example is the large 
sort job, in which a file is read, sorted, and 
written out in a new order. The speed of the 
sort is usually the constraining factor, espe­
cially if the file-blocking techniques discussed 
earlier have already been applied. 

With routing and merging, this bottleneck 
can be eliminated. Multiple copies of the 
bottlenecked portion are started in separate 
processors, a segment of the work is passed 
to each, and then the segments are merged to 
produce the final output. Figures 2a and 2b 
show the flow of data before and after routing 
and merging is done. 

Only two programs are needed for this 
technique. The first has three components: 
the application code (without the bottle­
necked portion), a round-robin write pro­
cedure to route segments of the input file to 
the bottleneck processes, and a merge 
function to receive the transformed data from 
these processes and combine the segments. 
The second program, the bottleneck process, 
is a simple routine that reads segments of 
the data file from the router, performs the 
necessary function, and then writes the trans­
formed data to be merged. The bottleneck 
process can be replicated as many times as 
needed. For optimal performance, the route­
merge program should run in a processor of its 
own, and each bottleneck process should 
have its own processor. 

An extension of this approach is to multi­
process a partitioned file on input. Partitioning 
allows the data to be further processed in 
parallel. Multiple copies of the router portion 
can read the individual partitions and then 
either transform the data or pass the data to 
multiple subprocesses as before, for further 
gains in throughput. For this, three programs 
would be needed: a router, a bottleneck 
process, and a merger. (See Figure 2c.) 

All message I/0 operations are done with 
COBOL READ and WRITE statements. The 
route and merge functions are straightforward. 
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Distributing 
Often a single file is used as sequential input 
by several programs. Each program transforms 
the data differently, generating separate 
reports, files, or tapes, and the entire file is 
read each time. Running several of these 
jobs concurrently, even with a blocking tech­
nique, can cause severe contention problems 
on the disc and Discprocess, and no significant 
improvement in overall run time. 

A remedy for this is to place a distributor 
program in front of these programs to read 
the file once and pass the data to each of the 
programs. Then, not only do the jobs run 
in parallel, but the disc file is read only once. 
Once again, standard COBOL I/0 can be 
used. Blocking data from the distributor 
process to the application programs further 
enhances performance. 

Figures 3a and 3b show the data flow 
before and after this type of parallel processing 
is implemented. 

A General Approach to 
Optimizing Sequential Processing 

The following procedure for optimizing 
sequential processing is recommended: 

1. Create a system-configuration chart that 
shows all devices and their locations. 

2. Diagram the sequential processing por­
tions of the application, noting all files, 
major program steps, interrelationships, 
and the CPU in which they run. 

3. Monitor the system with XRAY during 
the entire sequential processing window. 

4. Check for the opportunity to use any 
system-configuration parameters that 
streamline sequential processing. 

5. For files with sequential 1/0, check for 
opportunities to implement file blocking. 

6. Implement the changes indicated in steps 4 
and 5. 

7. Monitor the system again. 

8. If time constraints are still not met, eval­
uate and implement appropriate parallel­
processing techniques. 

Figure 3 

(a) 

(b) 

9. Monitor the system again. Continue to 
evaluate opportunities for improvement 
until the necessary time constraints 
are met or no further optimization can 
reasonably be performed. 

10. Continue to monitor the system period­
ically for additional opportunities, 
especially those due to an increase in 
application volume. 

To illustrate this general approach, three 
examples based on actual application situ­
ations are presented below. Benchmarks for 
each example were run to compare the 
performance of the applications before and 
after optimization techniques were applied. 
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Figure 3 

Distributing. (a) Before 
distributing. each job (Jl-4) 
reads the log file ( L), 
transforms it in a different 
way, and writes out the 
new information to files 
(Fl-4). These jobs run 
one at a time. (b) With 
distributing, a distributor 
program reads the L file 
once and passes copies of 
the data to each of the 
concurrently running jobs. 
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Figure 4 

(a) 

L 

M 

L 

(bl 

Figure 4 

Example application 1, 
interdependent processing. 
(a) In the base application, 
each of the four jobs 
accesses a different com­
bination of files. Job I reads 
log file Land master file 
M, and writes intermediate 
file I and report RI. Job 2 
reads M, sorts using a 
sort-work file (SW2J, and 
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R1 

H 

&J'/4 

writes R2. Job 3 reads L 
and writes to history tape 
H. Job 4 reads file I 
(generated by Job 1), 
sorts using SW4, and writes 
R4. (b) When parallel 
processing is used, all four 
jobs run concurrently. 
Job I reads M, reads the 
data from L from Job 3, 
writes the former I data 

g./,/4 

directly to Job 4, and 
writes RI. Job 2 reads M, 
sorts using SW2, and 
writes R2. Job 3 reads L, 
writes a copy to Job 1, 
and writes to tape. Job 4 
reads the former I data 
directly from Job 1, sorts 
using SW4, and writes R4. 

Example 1- Interdependent Processes 
In the first application example, four jobs 
ran consecutively, performing the following 
functions (see Figure 4a): 

• Job 1 read the log file sequentially, did a 
keyed read from the master file for each log 
file record, wrote to an intermediate file, 
and generated a report. 

■ Job 2 read the master file sequentially, 
sorted it, and generated a report. 

• Job 3 read the log file sequentially, generating 
a history tape. 

• Job 4 read the intermediate file sequentially, 
sorted it, and generated a report. 

The files and reports were characterized 
as follows: 

• The log file was entry-sequenced and had 
10,000 records of 256 bytes each. 

■ The master file was keyed and had 10,000 
records of 512 bytes each. 

■ The intermediate file was entry-sequenced 
and had 10,000 records of 768 bytes each. 

■ The reports were 10,000 lines long, 132 
characters per line. 

At first glance, the jobs seem interdependent. 
The log file was needed by two programs, 
as was the master file. The first job generated 
a file needed by the fourth job. Three reports 
were written. 

To analyze each job's system-resource usage 
accurately, however, the XRAY performance 
analysis tool was used. System configuration 
problems were checked first (as they should 
be). In a benchmark running these jobs, the 
following was observed with XRAY. 

■ The log, master, sort-work, and spooler­
data files all resided on the same disc volume. 
The intermediate file was on a different 
volume attached to the same controller string. 
This created severe contention on the disc 
for Jobs 1, 2, and 4. This could be alleviated 
by moving the master and log files to discs 
on other controllers on other processors. 
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■ The sort-work files were defaulted, ending 
up on the same disc as the other files. Explicitly 
creating these files on separate discs would 
reduce contention in Jobs 2 and 4. Specifying 
larger extent sizes would allow room 
for growth. 

■ The processor in which the jobs were to 
run was not specified. This resulted in a varia­
tion in run time, depending on whether or 
not the jobs' disc files were in the same CPU 
and whether or not other processing was 
taking place. Identifying the best CPU for a job 
would help. 

Next, the jobs were examined for file­
blocking possibilities. The following items 
were noted: 

■ The log file could be read with sequential 
block-buffering in Jobs 1 and 3. 

■ The master file could be read with sequential 
block-buffering in Job 2. 

■ Since the intermediate file was only read 
sequentially and the record size was fixed, the 
file could be made unstructured and read 
with the BLOCK CONTAINS clause in Job 4, and 
written with an internal blocking routine 
in Job 1. 

All of the changes suggested above were 
made. The resulting benchmark and accom­
panying XRAY analysis showed much better 
utilization of disc and Discprocess resources. 
The run times for all jobs were significantly 
reduced. 

Next, possibilities for parallel processing 
were checked. The configuration and file­
blocking changes had already reduced the run 
times considerably and had prepared the 
jobs for making optimal use of concurrency 
by reducing their system resource needs. 
Because of this, contention for system resources 
was not a risk, as can be seen below: 

■ In Job 2, the master file could be read 
sequentially, with sequential block-buffering, 
at the same time it was being read randomly 
by Job 1. The file access with sequential block 
buffering would permit both accesses with 
no major contention. This would allow the two 
jobs to run concurrently. (Note that the 
file was not being updated. Sequential block 
buffering should not be done while the file 
is being modified.) 

■ The log file was read sequentially twice. 
Even with sequential block-buffering, this is not 
as efficient as it could be. If the distributor 
technique were applied, Job 3 could read the 
log file from disc and then pass a copy to 
Job 1 via an interprocess message. This means 
that the sequential 
block-buffering code 
in Job 1 would not be 
needed since it would 
get the data directly 
from Job 3 via inter­
process writes. This 
would save a complete 
read of the log file 

The total wall-clock 
time to run all four 

jobs became the run time 
of the longest job. 

and would allow Jobs 1 and 3 to run concurrently 
without contention. Job 3 is a better choice 
to read the file from disc because the run time 
for Job 3 is much less. This also gives Job 1 
more parallelism by overlapping log-file reads 
with the other processing. 

■ Instead of being written to disc in an inter­
mediate file in Job 1, the data could be passed 
directly to Job 4 as an interprocess message. 
Elimination of the intermediate file would save 
two logical disc accesses per record (a write, 
then a read), not to mention the disc space no 
longer needed. Jobs 1 and 4 could then 
run concurrently. 

The data flow for the final version is shown 
in Figure 4b. The benchmark run times for 
all passes are shown in Table 6 (page 36). Note 
that the total wall-clock time to run all for 
jobs became the run time of the longest 
job. XRAY analysis showed a fairly well-balanced 
system. Disc accesses were not being exces­
sively queued, and the system was no longer 
bottlenecked at any point. Doubling or 
tripling the number of records would not affect 
this balance, and the overall run time would 
only increase at the rate of the longest job. 

Example 2-The Big Job 
( Overcoming the Bottleneck) 
Optimizing bottleneck processing concentrates 
on the elements of the sequential cycle that 
take the most time or affect the most jobs. 
Improving the run time for this type of 
processing by a factor of two or three signifi­
cantly shortens the entire job schedule. 
Also, if record volume increases, the bottleneck 
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is most affected. Thus, designing expand­
ability into this type of job is necessary for 
keeping the sequential functions within 
their windows. 

With this kind of optimization, XRAY is 
invaluable for identifying the true time con­
sumers within the job. The analyst should 
not attempt to tune any program without an 
understanding of how the program uses 
system and application resources. First, the 
components of the program should be 
isolated, then the component that is using the 
most time or system resources must be 
identified, and finally, if the processing can be 
optimized, the job can be tuned and retested. 

A typical example of bottleneck processing 
(and the backbone of much sequential 
processing) is the reading, sorting, and reporting 
of a very large data file. This type of job 
has three components: 

■ Reading the file. 
• Sorting the file. 
• Writing the sorted file. 

The benchmark run to test the optimization 
of bottleneck processing used a 10,000-
record keyed file composed of 100-byte records 
and a 10-character sort key. The output 
file, a report, also used 10,000 records to print 
that number of lines. Figure Sa shows the 
data flow for this job. 

The XRAY analysis revealed that the input 
file and sort-work file were on separate discs 
and the program ran in the same CPU as the 
disc with the input file. Reading the records 
took approximately one half the run time; 

Table 6. 

writing the report took the other half. The sort 
time was difficult to detect because sorting 
was done as the records were being read from 
the input file. 

To shorten processing time, sequential 
block-buffering could be used with the read, 
and Level 3 spooling could be used with 
the write. When these enhancements were 
made, the run time was reduced by half: 

Results of benchmarks previously discussed 
in this article show that reading 100-byte 
structured records can be much faster than 
this, however. Level 3 spooling should have 
written data to the spooler at a much higher 
rate. It was the interaction with the sort 
process that caused the processes to continue 
to run more slowly than necessary. 

While there was no way to make the sort 
process run faster, using routing and merging 
could reduce the bottleneck. Several sort 
processes could be created and each could be 
passed a portion of the input file in "round­
robin" fashion so they could sort in parallel. 
Once all the records were read and passed 
to the sort processes, a simple merge of the 
output from each would return the sorted 
file for reporting. This approach would divide 
the sorting across several processors and 
split the work-file access between multiple discs. 
Passing data to and from the multiple sort 
processes, called subsorts, would be handled 
by interprocess messages, using COBOL READ 

and WRITE statements. Figure Sb illustrates the 
new data flow when subsorts are used. 

The changes required for the application 
program would be straightforward. The call 

Processing times for example application 1, interdependent processes. 
Nonstop II system 

Version of Run time (secs) Percentage 
application Job 1 Job 2 Job 3 Job4 Total of base 

Base 2012 930 231 872 4046 100% 

System-configuration modifications added 1658 851 229 865 3603 89% 

File-blocking modifications added 1110 810 123 580 2623 65% 

Parallel processing (4 cpus) added 875 1062 874 1620 1620 40% 

Nonstop TXP system 

Version of Run time (secs) Percentage 
application Job 1 Job 2 Job 3* Job4 Total of base 

Base 1222 348 81 354 2005 100% 

System-configuration modifications added 941 339 81 350 1711 85% 
File-blocking modifications added 615 263 62 248 1188 59% 

Parallel processing (4 cpus) added 477 391 476 747 747 37% 

*Trident tape drive used. 
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to COBOL SORT would be moved to a sepa­
rate program, which would be replicated as 
needed. (Even though multiple subsorts 
were to be used, only one program would be 
needed.) The application program would 
require a routing section to pass the data to 
the subsorts in round-robin fashion and a 
merge section to combine the sorted portions. 
The application-related code itself would 
require no changes. 

When these changes were made, the XRAY 
measurements showed a much better distri­
bution of the workload. The more copies of the 
bottleneck process and disc paths available, 
the faster the job ran. For this application, the 
best policy was to have each process run in 
its own processor, using disc space local to that 
processor for work files. 

At this time, the components of the job 
were analyzed again to determine if its perfor­
mance could be further optimized. Since 
gains in processing time from adding more 
subsorts become minimal after a certain 
point, simply creating more subsorts would not 
significantly increase run time. 

An opportunity for further optimization 
through file partitioning was found, however. 
While the report had to be generated as a 
unit, completely sequentially, the order of the 
input file was not crucial. It was currently 
being read in order, but if it were partitioned, 
a separate router process could read each 
partition and either do the sort locally or pass 
off segments to the subsort processes. Figure 
Sc shows the data flow for this approach. 

Figure 5 

Example application 2. 
the big job (overcoming 
the bottleneck). (a) In the 
base application, the job 
reads data file D, sorts it 
using sort-work file SWJ, 
and prints report R. (b) 
When routing and merging 
is used, the following 
occurs: The router portion 
of the main job reads 
the D file, passes segments 
of the fi'le to the sub sort 
processes (551-n), which 
individually make COBOL 
SORT calls. The returned 
data is sent to the merger 
portion of the main job 
to be combined and 

printed in the report. Each 
subsort process has its 
own sort-work file. 
( c) When routing and 
merging is used with a par­
titioned input file, the 
following occurs: Copies 
of the router program read 
each partition of the D 
file and route segments of 
the data to the subsort 
processes. Each subsort 
process makes a COBOL 
SORT call to transform 
the data and then sends it 
to a single merger that 
combines it and prints it. 
Each subsort process 
has its own sort-work file. 

Figure 5 
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When the input file was partitioned, the job 
run time was again reduced. Table 7 shows 
the benchmark results for all the techniques 
used on this job. 

A more detailed examination of this 
approach to sorting, often called Supersort, 
can be found in an article entitled, "Large 
Scale Sorting Using Multiple Processors," by 
E. L. Ashbaugh, published in Focus (an 
internal Tandem publication), volume 2, 
number 2. 

Example 3 - The Popular File 
In this example, a log file was generated by 
the on-line portion of the application. 10,000 
records, 200 bytes each, were written each 
day into an entry-sequenced file. Four sequen­
tial programs accessed the log file. Each of 
them read the entire file, sorted it on a dif­
ferent key, and generated a full report. The 
flow of this job is represented in Figure 6a. 

The XRAY analysis revealed that each of 
the jobs saturated the Discprocess when reading 
the data. Sorting 10,000 records also took 
time, although this was masked by the reading 
step. The sort-work files defaulted to a 
volume different from that used by the log file. 

The first improvements indicated by this 
analysis included: 

■ Specifying a CPU for the jobs. 

■ Fully qualifying the names of the sort-work 
files. 

Figure 6 

Example application 3, 
the popular file. (a} Before 
parallel processing is 
used, each job reads the 
log file ( L ), sorts it in a 
different wa_v, and prints a 
report. The jobs run one 
at a time. (b) When parallel 
processing is used, the 

following occurs: A distrib­
utor program reads the 
L file once and passes 
copies of the data to each 
of the concurrently run­
ning jobs. Each job reads 
the data, sorts it, and 
prints a report. Each job 
has its own sort-work file. 
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■ Implementing sequential block-buffering 
for the entry-sequenced reads of the log file. 

■ Implementing Level 3 spooling for report 
generation. 

When used, these techniques reduced the 
run times of the individual jobs considerably. 
The XRAY analysis showed that the reads 
and writes were much more efficient, the Disc­
process was no longer overworked, and the 
physical disc was moderately active. 

This job also provided a good opportunity 
for parallel processing. Since all four of the 
programs read the same file, running them 
concurrently would create a severe bottleneck 
on the log file, even with sequential block­
buffering. A better approach would be to add 
a distributor program that would read the 
file and pass copies of the data to each of the 
application programs. Blocking the records 
between the distributor and the application 
programs ( with standard COBOL I/O) would 
provide a further improvement. Sequential 
block-buffering could be used by the dis­
tributor program to read the log file. The data 
flow for this approach is shown in Figure 6b. 

When these further improvements were 
implemented, the resulting run times were 
impressive; the total run time for all jobs 
was now the length of the longest job. Table 8 
lists the run times for the job after the 
various techniques were applied. Note also 
that because of the overlap now obtained in 
reading and in releasing records to the sort 
process, the overall run time for the last run 
was less than the previous individual runs. 

Table 7. 
Processing times for example application 2, routing 
and merging. 
Nonstop II system 

Run time Percentage 
Version of application (secs) of base 

Base 616 100% 

File-blocking modifications added 318 52% 

Parallel processing added 
2 subsorts, 3 cpus 141 23% 
3 subsorts, 4 cpus 101 16% 

Paraliel processing added, with 
partitioned input file (2 partitions, 
4 subsorts, 5 cpus) 77 13% 

Nonstop TXP system 
Run time Percentage 

Version of application (secs) of base 

Base 202 100% 

File-blocking modifications added 115 57% 

Parallel processing added 
2 subsorts, 3 cpus 49 24% 
3 subsorts, 4 cpus 37 18% 

Parallel processing added, with 
partitioned input file (2 partitions, 
4 subsorts, 5 cpus) 27 13% 

Table 8. 

Processing times for example application 3, 
distributing the popular file. 
Nonstop II system 

Version of 
application 

Base 

System-configuration 
and file-blocking 
modifications added 

Parallel processing 
(5 cpus) added 

Run time (secs) 

Single All 4 
job jobs 

608 2432 

349 1396 

330 

Nonstop TXP system 

Version of 
application 

Base 

System-configuration 
and file-blocking 
modifications added 

Parallel processing 
(5 cpus) added 

Run time (secs) 

Single All 4 
job jobs 

247 988 

143 572 

130 

Percentage 
of base 

100% 

57% 

14% 

Percentage 
of base 

100% 

58% 

13% 
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Conclusion 

Tandem NonStop computers are designed for 
fault-tolerant, on-line transaction processing 
in a multiprocessor environment. For the 
optimization of sequential jobs that often 
accompany on-line transaction processing, 
techniques that take advantage of the Tandem 
architecture should be employed. The tech­
niques and general approach discussed in this 
article can provide significant improve­
ments in the run times of sequential jobs. 

1All manuals and user's guides listed are published by Tandem Computers 
Incorporated and are the A06 version. 
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