
DEMC)Ul~AL

•t,:~,,
,, -, ~;;~11/f!f!, -. ·

A New Design for the PATHWAY TCP

Understanding PATHWAY Statistics

A SNAX Passthrough Tutorial

The TRANSFER Delivery System For
Distributed Applications

Volume 2, Number 2, Spring 1984

Editor
Carolyn Turnbull White

Associate Editor
Kent Madsen
Production Editor
Anita Yan Auken
Technical Advisor
Geary Arceneaux

Design
Craig Frazier Design

Cover Art
Craig Frazier

The Tandem Journal is published
quarterly by Tandem Computers
Incorporated.

Purpose: The purpose of the Tandem
Journal is to bring to Tandem
users the perspectives of Tandem
software developers. engineers,
and support analysts on Tandem
software and hardware.

Subscriptions: The Tandem Journal
is offered with the Tandem Appli
cation Monograph Series in one sub
scription. The annual subscription
rate is $100.00. Tandem bills the sub
scriber. US. Orders - Send directly
to Tandem Computers Incorporated,
Sales Administration, 19333 Vallco
Parkway. Cupertino. CA 95014.
Orders outside the US. - Give to
your local Tandem sales office or
distributor. All subscribers should
address subscription problems or
questions to their local Tandem sales
office or distributor.

Chanl,!e of address: Send all changes
of address to Sales Administration
(address listed above).

Comments: We welcome comments
and suggestions about content
and format. Please send them to
Carolyn Turnbull White, Editor.
Tandem Journal, Tandem Computers
Incorporated. 1309 So. Mary Ave.,
Sunnyvale, CA 94087.

Copyright © 1982, 1983, 1984 by
Tandem Computers Incorporated.
All rights reserved.

No part of this document may he
reproduced in any form. includ
ing photocopying or translation to
another language, without the
prior written consent of Tandem
Computers Incorporated.

The following are trademarks of
Tandem Computers Incorporated:
ENABLE. ENCOMPASS, ENCORE,
ENFORM. ENSCRIBE, ENVOY.
EXCHANGE, GUARDIAN,
NonStop, NonStop IL NonStop TXP,
PATHWAY. SNAX. TRANSFER.

T

2

8

16

24

32

A N D E M J 0 u R

CORPORATE
iNFORMA TION Cf NTER

A New Design for the
PATHWAY TCP
Raymond Wong

N A L

Understanding PATHWAY Statistics
Raymond Wong

A SNAX Passthrough Tutorial
David Kirk

The TRANSFER Delivery System
For Distributed Applications
Steve Van Pelt

An Introduction to Tandem
EXTENDED BASIC
Jim Meyerson

Figure 1.

A New Design for
the PATHWAY TCP

n terms of system resource use,
disc 1/0 operations are the most
expensive Terminal Control
Process (TCP) operations that the
PATHWAY™ transaction process-
ing system performs. Therefore,
to improve performance, the

PATHWAY system development team has
chosen to concentrate its initial effort on reduc
ing the number of TCP disc 1/0 operations.

Memory organization
for TCP/.

Until the E07 release of the PATHWAY
system, TCP disc 1/0 operations had been
reduced in two ways: by increasing the
maximum size of a disc 1/0 operation and by
allowing the TCP to bypass searching the
directory file while executing a Screen COBOL
CALL command, if the called program unit
was already in memory.

Figure 1

OK bytes

6K bytes

64K bytes

128K bytes

TCP global data

Terminal data area
(TOA)

TERMPOOL

TCP wcrk area

TCP control space

SERVER POOL

Code area

Size:

--Used by TCP. 6K bytes.

-{

Area used for terminal context data.
Size is the remainder of the lower 64K
bytes. Area can be increased by
decreasing the size of TERMPOOL.

--Size = TERM POOL bytes.

--Used by TCP. Approximately 6K bytes

Used by TCP Approximately:
1500 bytes for TCP TCBs
300 bytes* MAXTERMS

92 bytes* MAXSERVERCLASSES
22bytes*MAXSERVERPROCESSES

J_l 44 bytes * MAXPATHWAYS + 1
234 bytes+ 12 * MAXPATHWAYS msg
200 bytes * STATISTICS counters

Size = SERVERPOOL bytes.

Area used for pseudocode. Size is the
remainder of the upper 64K bytes Area
can be increased by decreasing the
size of SERVERPOOL.

In the E07 release, Tandem has provided a
further and more significant TCP improvement:
the use of an extended segment to replace
the disc swap file. As a result, two versions of
the TCP are now available (referred to in
this article as TCPl and TCP2):

■ TCPl is essentially the same TCP released
in previous versions of the PATHWAY system.
It runs on the NonStop~ NonStop II™, and
NonStop TXP™ systems.

■ TCP2 uses an extended segment and runs
on the NonStop II and NonStop TXP systems.

This article describes the main differences
in implementation between the two TCPs. It
explains why TCPl executes disc 1/0 opera
tions and how TCP2 eliminates most of them,
primarily by replacing the disc swap file
with the extended segment. It also describes
the performance characteristics of TCP2,
and the performance improvement of TCP2 over
TCPl. Finally, it explains why TCP2 addresses
the most important factor in the performance
of the PATHWAY system.

The implementation described in this arti
cle is logical in nature. For conciseness,
many details are omitted, and some precision
is compromised.

Memory Organization

The TCP is a multi-tasking process running
under the GUARDIAN™ operating system.
TCPl has only 128K bytes of data address space
to work with. Figure 1 illustrates how this
address space is organized.

2 T A N D E M J O U R N A L SPRING 1984

TCP2 uses an extended segment in addition
to the 128K of address space in its stack.
The organization of address space for TCP2 is
illustrated in Figure 2.

As is clear from a comparison of Figures
1 and 2, TCP2 has a much larger address space
than TCPl and more space for TERMPOOL

and SERVERPOOL. This decreases the likelihood
that a terminal task will be blocked from
execution due to a shortage of pool space.

TCPl Disc 1/0 Operations

TCPl executes disc I/O operations to perform:

■ Context swapping.

■ Checkpointing.

■ Code fetching.

Figure 3 illustrates these three activities.
The swap file assigns two slots of address

space for each terminal task. Each slot is
the size of MAXTERMDATA + MAXREPLY.
Although the actual implementation is not this
simple, logically, SLOT0 can be thought of
as holding the current context data for the task
when the context is not in memory. SLOT1

can be thought of as holding the most recent
checkpoint image of the task.

Context Swapping
Context swapping is the movement of context
data for a terminal task between the swap
file and the Terminal Data Area (TDA) for TCPl.

Swapping serves no useful application function.
It is necessary if the TDA is smaller than the
sum of the context data of all the active tasks.

For example, in Figure 3, if Task Bis about
to execute, its context data must be present
in the TDA. If the context data is not present,
it is fetched from slot BO of the swap file.
The context for Task B stays in the TDA until
the space it occupies is needed for the
context of another task that is about to execute.
When the space holding the context for
Task B is needed by another task, TCPl moves
all of Task B's context from the TDA back
to slot BO.

Figure 2

OK bytes

6K bytes

64K bytes

128K bytes

OK bytes

Figure 3

TCP global data

TCP checkpoint
buffer

TERMPOOL

TCPwor\'lar~

Size:

--Used by TCP 6K bytes.

-{

Used by TCP
Size= MAXTERMDATA

+ MAXREPLY bytes.

-- Size= remainder of lower 64K.

-- Used by TCP Approximately 6K bytes.

Used by TCP Approximately
1500 bytes for TCP TCBs

TCP control space 300 bytes* MAXTERMS

TCPdlsc
1/0buffer

SERVERPOOL

92 bytes* MAXSERVERCLASSES
22bytes•MAXSERVERPROCESSES

Jb
44 bytes* MAXPATHWAYS + 1

234 bytes+ 12 * MAXPATHWAYS msg
200 bytes* STATISTICS counters

7 L-- Used by TCP Size = 4096 bytes.

L_ Size= remainder of upper 64K
EXTENDED SEGMENT

Size = MAXTERMS *
[2•MAXTERMDATA +

MAXREPLY) bytes.

Size = CODEAREALEN bytes.

Disc swap file

Figure 2.

Memory organization
for TCP2.

Figure 3.

The three types of disc
activity for TCPJ: (1) swap
ping the task context
data between the disc swap
file and the Task Data
Area. (2) writing the task
context data or server
reply from the Task Data
Area to the disc swap

(3) Code
fetch

file during a checkpoint
operation, and (3) reading
Screen COBOL code
from the program file on
disc to the code area TCL PROG

(Disc) in memory. (In this exam
ple, MAXTERMS = 3.)

SPRING 1984 TANDEM JOURNAL 3

Figure 4.

With TCP2 no swapping
takes place, and check
pointing requires one
interprocess message
instead of' one or more
disc I/O operations. While
code fetching still takes
place, the code area for
TCP2 can be much
larger than that for TCPJ.
(In this example,
MAXTERMS = 3.)

4

Checkpointing
Checkpointing is the saving of context data
or the server reply for the currently executing
task. It is done for these reasons:

• If the primary TCP fails, the backup TCP
takes over for each task by using the context
image found in SLOTl of the task.

■ If a transaction protected by the Trans
action Monitoring Facility (TMF) fails, or if a
RESTART-TRANSACTION is executed, the
primary TCP restores the state of the task using
the BEGINTRANSACTION checkpoint image
saved in SLOT!.

TCPl does not use the standard checkpoint
mechanism provided by GUARDIAN. Instead,
it saves a task's checkpoint data in SLOTl of the
task in the swap file. Several events cause
TCPl to perform a checkpoint to SLOT!. One is

Figure 4

Primary TCP

Extended
Segment

TCL PROG
(Disc)

Backup TCP

Extended
segment

the execution of the BEGINTRANSACTION
statement. The following also cause a check
point, if the TCP is designated as a NonStop
TCP (SET TCP NONSTOP 1):

• Execution of the CHECKPOINT statement.

■ Execution of the ENDTRANSACTION
statement.

• Execution of the SEND statement while
the TCP is communicating outside transaction
mode with a server unprotected by TMF.
(In this case, TCPl saves the context before the
send to the server and saves the reply after
the reply arrives from the server.)

■ Execution of the RECONNECT MODEM
statement.

Code Fetching
Code fetching is the reading of Screen COBOL
pseudocode or screen descriptions by TCPl
from the object file into the code area.

Whenever possible, TCPl uses the free space
in its code area for Screen COBOL pseudo
code and screen descriptions. If no free space
is available, some segments in the code
area must be overlaid with the incoming code
segment. If TCPl needs the overlaid segments
later and has to read them in again, overlaying
the code segment is a wasteful operation.

TCP2 Disc 1/0 Operations

TCPl requires a disc swap file because its
address space is limited to 128K bytes. The
context data for all user tasks cannot necessarily
reside in the TCPl address space concur
rently. Therefore, the private address space of
all the terminal tasks is kept in the swap
file (in SLOTOs).

TCP2 does not need a swap file because
it has an arbitrarily large address space in the
form of an extended segment. Users can
instruct TCP2 to allocate an extended segment
large enough to hold the context data for
all terminal tasks concurrently. Figure 4 illus
trates TCP2 memory organization for the
same configuration shown in Figure 3.

T A N D E M J O U R N A L SPRING 1984

Each TCP2 process assigns two slots of
address space for each terminal task. SLOT0 is
the size of MAXTERMDATA. SLOT! is the
size of MAXTERMDATA + MAXREPLY. The func
tions of SLOT0 and SLOTl in the primary
TCP2 are analogous to their SLOT0 and SLOT!

counterparts in the swap file used by TCPl.
In TCP2, SLOT0 contains the current context
data for the task. SLOTl contains the last
checkpoint image. The TDA does not exist in
TCP2 (see Figure 2).

Context Swapping
TCP2 eliminates the disc I/O operations
performed by TCPl for context swapping and
checkpointing. TCP2 does no context swap
ping because it acts directly on the task's context
in SLOT0. TCP2 checkpointing requires one
interprocess message instead of one or more
disc 1/0 operations.

Checkpointing
In a checkpoint operation, TCP2 saves the
checkpoint image in SLOTl of the primary TCP.

If the TCP is designated as a NonStop TCP,

it sends the checkpoint image to one of the
task's SLOTS in the backup TCP. The END
TRANSACTION checkpoint causes TCP2 to send
the checkpoint image to the task's SLOT0 in
the backup TCP; all other checkpoints cause it
to send the images to the task's SLOTl of
the backup TCP.

The reasons for having SLOT! in the primary
TCP2 are:

■ A BEGINTRANSACTION image must always
be saved, in case the transaction must
be restarted.

■ If the backup TCP2 dies and is recreated later,
the primary TCP2 must be able to send the
checkpoint images of all the active tasks to the
backup TCP2 immediately. (Otherwise, the
primary TCP2 would have to wait for each task
to reach its next checkpoint state.)

The ENDTRANSACTION checkpoint image
is stored in backup SLOT0 while the BEGIN
TRANSACTION checkpoint image is stored
in backup SLOT!. If the primary TCP2 fails
at a point after the completion of the

ENDTRANSACTION checkpoint, but before the
call to ENDTRANSACTION, the backup must
take over at the BEGINTRANSACTION image.
(Tony Lemberger's article, "TMF and the
Multi-Threaded Requester,"published in the
Fall 1983 issue of the Tandem Journal
explains this in more detail.)

Code Fetching
TCP2 still performs disc 1/0 operations for
code fetching. However, users can specify an
arbitrarily large code area in the TCP2

extended segment, and if the code area is large
enough, TCP2 need read each code segment
from disc only once.

Performance Implications

The development group conducted extensive
performance measurements on the TCP in order
to understand its behavior and to determine
the best ways to improve the performance of the
PATHWAY transaction processing system.
After TCP2 was implemented, both this group
and Tandem's Product Management Tech
nical Services group independently measured
the performance differences between TCPl
and TCP2. While it is beyond the scope of this
article to present their measurement meth
ods and the resulting statistics, it is possible to
present some conclusions.

TCP2 versus TCPl
TCP2 is faster than TCPl. It performs better
because the number of disc 1/0 operations it
executes has been reduced.

The most important yardsticks for measuring
performance are throughput and response
time. These parameters were measured in terms
of transactions protected by TMF. For any
given throughput, TCP2 has a lower transaction
response time because it executes fewer
disc I/0 operations per transaction.

SPRING 1984 T A N D E M J O U R N A L 5

It is important to understand that a disc
1/0 initiated by the TCP consumes not only
TCP resources but resources throughout
the system. This makes it impossible to compare
the performance of the two TCPs as stand
alone entities, and incorrect to compare only

the TCP statistics
generated by the
XRAY performance
measurement tool. T CP2 performs better

than TCP 1 at less cost. The development
groups compared TCP2 against TCPl by
running the same application under environ
ments that were identical except for the
TCPs. While keeping transaction arrival rates
constant, they compared the transaction
response times under the two TCPs. In all tests,
response time for TCP2 was lower than
for TCPl.

Of course, the amount of performance
improvement for TCP2 depends on many
factors. System configuration and application
characteristics are two important examples.

Context Size
The amount of improvement for TCP2 depends
greatly on the context size of the Screen
COBOL application. The greater the context
size, the more efficient is TCP2 than TCPl.
Context size affects the performance of TCPl in
two ways:

1. A large context increases the likelihood
of swapping.

2. A large context increases the number
of disc I/O operations required for swapping
and checkpointing operations.

A disc I/O operation can move 4K bytes
at most. For each transaction protected by TMF,
a TCPl task with lOK bytes of context
requires three disc I/O operations for check
pointing at BEGINTRANSACTION and three
disc 1/0 operations for checkpointing at
ENDTRANSACTION. A similar TCP2 task
requires two interprocess messages to achieve
the same result. Regardless of context size,
TCP2 sends a single interprocess message for
each checkpoint operation. Thus, TCP2
performance is, for the most part, unaffected
by context size.

Interpreter Performance
The amount of improvement for TCP2 depends
on the number of Screen COBOL instructions
executed in a transaction. The TCP2 interpreter
is slightly slower than its counterpart in
TCP! because it acts on SLOT0 in the extended
segment. For various system reasons, some
TAL instructions affecting extended segments
are slightly slower than those affecting the
stack. (Some of these system reasons do not
apply to the NonStop TXP system.)

This means that a transaction that executes
many Screen COBOL instructions realizes
less improvement under TCP2 than a trans
action that executes fewer Screen COBOL
instructions, if these transactions are otherwise
the same.

The Cost of a NonStop TCP
To improve the performance of the TCP,
some TCPl users choose not to have a NonStop
TCP. This is a false economy with TCP2
because the cost of having a NonStop TCP2 is
basically a single interprocess message for
each checkpoint operation.

Memory Cost Versus Disc Cost
The major cost associated with TCP2 is the
extended segment. Using a large extended seg
ment increases the likelihood of page faulting
by the GUARDIAN operating system. When TCP2
requests an extended segment, GUARDIAN
must allocate a disc file the same size as the
segment. This file is used by GUARDIAN in
case paging occurs for pages in the extended
segment. Disc space must be available for
this purpose even if no disc activity to this file
is necessary.

Users must avoid page faults to realize the
full benefit of TCP2. Careful system tuning is
required to monitor paging. In many instances,
more physical memory is required. The
savings in disc activity resulting from not having
a swap file normally offsets this memory
cost, as was verified by two independent
measurements of different applications.

6 TANDEM JOURNAL SPRING 1984

Disc 1/0 Cost
Versus Interpretation Cost
B~ minimizing the number of disc I/0 oper
ations, TCP2 eliminates the most costly factor
in the performance of the PATHWAY system.
A disc I/0 operation contributes significantly to
~esponse time because it involves: processing
m the TCP to initiate the 1/0, an interprocess
message to the Discprocess, processing in
the Discprocess to perform the I/0, service time
on the part of the disc device while it
performs mechanical operations, processing
to handle I/0 terminations, and various
queuing delays.

There is a common misconception that
interpretation of Screen COBOL by the TCP is
the most costly performance factor. This is
generally not true because the overhead of
interpretation is extra processing in the
T~P process only. For any given throughput,
this extra processing generally does not
contribute as much to response time as do disc
I/0 operations. There are no extra inter
process messages, no queuing delays, and no
additional demands on the operating system.
Furthermore, the most expensive Screen COBOL
operations (screen verbs such as ACCEPT and
DISPLAY, transaction control verbs that cause
checkpoints, and SEND) are functions that
have no counterparts in TAL or COBOL. These
operations would not be much faster even
if they were not executed from an interpreter.

For the reasons discussed in this section
the PATHWAY development team decided' to
concentrate on minimizing the number of
disc I/0 operations. Their design decisions and
measurement methods were based on the
assumption that a typical application using the
PATHWAY transaction processing system
incurs disc I/0 operations in the TCP. They also
assumed that a reasonable application runs
transactions that are protected by TMF and a
NonStop TCP. It is, of course, possible to
construct an application that would not benefit
from using TCP2, but this application would have
to forgo checkpointing, cause no context
swapping and code overlaying, execute many
Screen COBOL instructions for each trans
action, and require low throughput.

Conclusion

TCP2 differs from TCPl in two significant
ways. It replaces the disc swap file with an
extended segment and allows an arbitrarily
large code area in an extended segment. It per
forms better than TCPl because it executes
fewer disc I/0 operations per transaction. TCP2

eliminates disc I/0 operations caused by
checkpointing and context swapping and keeps
c?de fetching to a minimum. Minimizing
disc I/0 operations eliminates the most costly
performance factor for the PATHWAY system.

The performance of TCP2 is not sensitive
to context size or to code size. This makes
it easier to configure TCP2 and to write modu
lar Screen COBOL programs. A NonStop
TCP is inexpensive under TCP2. Transaction
response time, rather than XRAY statistics
for the TCP, should be used in measuring
TCP performance.

TCP2 requires more memory, but less
disc. Since TCP2 delivers better performance
at less cost, it is clear that users of the
NonStop II and NonStop TXP systems should
migrate to TCP2 if they would like better
performance from their applications. Future
performance enhancements to the PATHWAY

transaction processing system will continue the
trend of using more memory to obtain
better performance.

Raymond Wong joined Tandem in March, 1981. Since then he
has been a software developer for the PATHWAY system, primarily
for the TCP. He has worked in system software for ten years. in
the areas of communications, operating systems, and languages.

SPRING 1984 T A N D E M J O U R N A L 7

8

Understanding
PATHWAY Statistics

--,-- he statistics produced by the
f---- PATHWAY transaction pro-
--- cessing system represent vari
___ ous aspects of resource == usage by the Terminal Control
--- Process (TCP). This infor-

-- mation can be used to detect ------

some performance bottlenecks and con
figuration errors. This article describes the
general implementation of the TC: and
explains the statistics. It does not discuss how
to use the statistics to improve the performance
of a particular application.

The statistics explained are for TCP2, the
new version of the PATHWAY TCP available in
the E07 release. 1 The description of TCP2

provided in the previous article, ''A New Design
for the PATHWAY TCP," should also be helpful
in understanding TCP statistics.

PATHWAY statistics are divided into three
categories: TCP statistics, terminal statistics,
and server statistics. The first section discusses
TCP statistics.

TCP Statistics

System Tasks .
The TCP is a multi-tasking process runnmg
under the GUARDIAN operating system.
The number of terminal tasks supported by a
TCP is specified by the MAXTERMS parameter
of the SET TCP command. In addition to
the terminal tasks, every TCP has four system
tasks: the Checkpointer, the Code Manager,

1The TCP statistics and terminal statistics for TCP2 are different from those
for previous versions of the TCP. Server statistics are the same for all recent
versions of the TCP.

the Listener, and the Speaker. Refer to Figure 1
as these tasks, the queues associated with
them, and the pool areas are discussed below.

The Checkpointer. A task must send infor
mation to its counterpart in the backup TCP

so that the backup can take over if the primary
TCP fails. It requests the Checkpointer to
provide this service. The information sent may
be the task context, server replies, the Screen
COBOL object file name, or other items.
For example, after a terminal task opens a
terminal during START TERM, it sends the
symbolic name of the terminal to the backup
TCP so that the backup can open the same
terminal immediately.

The Checkpointer serves the tasks in the
TCP one at a time. A TCP task requests
service by placing itself on the request queue
associated with the Checkpointer. It is
then blocked from execution while waiting for
service and is removed from the request
queue and awakened by the Checkpointer
when the service completes.

Figure 2 illustrates a sample set of TCP

statistics. The CHECKPOINT entries under
QUEUE INFO of the TCP statistics describe the
request queue. REQ CNT (request count)
indicates the number of requests made to the
Checkpointer. The% WAIT entry indicat~s
the percentage of requesting tasks that fmd
other tasks already on the request queue
at the time of the request. MAX WAITS indi
cates the longest queue encountered by
any requesting task before it joined the queue.
AVG WAITS indicates the average number
of tasks on the queue.

T A N D E M J O U R N A L SPRING 1984

Figure 1

$RECEIVE
queue

The Code Manager. The Code Manager's
primary function is to fetch Screen COBOL

object code from disc to the TCP code
area in memory. Like the Checkpointer, the
Code Manager provides service to other
TCP tasks and has a request queue. The
MEMMAN (memory manager) entries under
QUEUE INFO describe the queue and have
the same meaning as those described for
CHECKPOINT.

Figure 2

TCP TCP-A
POOL INFO: SIZE REQCNT

TERMPOOL 34818 7
SERVER POOL 55706 1

MAXREQ AVGREQ
TERMPOOL 1016 456
SERVER POOL 44 44

AREA INFO: SIZE REQCNT
DATA 153600
CODE 65536 19

MAXREQ AVGREQ
DATA
CODE 648 334

QUEUE INFO: REQCNT %WAIT
TERMPOOL 7 0.0
SERVER POOL 1 0.0
MEMMAN 3 0.0
LINK 0.0
DELINK 0.0
CHECKPOINT 5 0.0

-- = TCP2 does not generate figures for these fields.

TCP

The Listener and Speaker. The Listener
and Speaker communicate with the PATHWAY

Monitor (PATHMON) on behalf of the TCP.

PATHMON and the TCP communicate over two
channels. On one channel, the Listener for
the TCP accepts requests from PATHMON and
later replies to PATHMON. On the other
channel, the Speaker for the TCP sends requests
or error indications to PATHMON, which
replies to the TCP.

16 DEC 1983, 10:18:29

MAXALLOC AVGALLOC CURALLOC
1016 456 12

44 44 0

MAXALLOC AVGALLOC CURALLOC
2182 1254
848 360 844

%ABSENT

15.7

MAX WAITS AVG WAITS
0 0.00
0 0.00
0 0.00
0 0.00
0 0.00
0 0.00

SPRING 1984 TANDEM JOURNAL

Figure 1.

A graphic representation
of the queues described
by the QUEUE INFO por
tion of the Terminal
Control Process statistics
(part of the stati:~tics pro
duced by the PATHWAY
transaction processing
system). The queues are
associated with three
system tasks (the Speaker;
Listener; and Check
pointer) and two pool
areas (TERMPOOL and
SERVERPOOL). See
Figure 2 also.

Figure 2.

A sample set of Terminal
Control Process statistics
produced by the PATHWAY
transaction processing
system.

9

The Listener receives requests from
PATHMON, initiates TCP action to serve the
requests, and replies to PATHMON. The
Listener is invoked by requests from PATHMON,
and its request queue is the TCP's $RECEIVE.
There are no statistics for the Listener's request
queue because $RECEIVE is not an internal
TCP queue.

The Speaker sends unsolicited information
to PATHMON. It also performs most of the
work of managing links to servers. Two of the
most frequent requests to PATHMON from
the TCP are requests to create a new link to a

Two of the TCP's most
frequent requests to

PATHMON are to create
a new link to a server
class and to dissolve an
existing link.

server class and
requests to dissolve an
existing link. A LINK
queue and a DELINK
queue are associated
with the Speaker for
these requests. (See
the section on server
statistics for a more
complete description
of link management
by the TCP.)

Tasks on the LINK queue are terminal tasks.
If a terminal task decides to ask PATHMON
to create a new link, it specifies a (possibly 0)
time-out value and places itself on the
LINK queue. The Speaker relays the request
to PATHMON only after the time-out expires.
A task on the LINK queue is blocked from
execution. It is removed from the LINK
queue if PATHMON denies the request for a new
link or if a link to the requested server
class becomes available. A link can become
available in two ways: an existing busy link
becomes free, or a new link is created after the
Speaker relays the link request to PATHMON.

Members of the DELINK queue are link
entities. If the TCP decides to ask PATHMON to
dissolve an existing link, it specifies a (pos
sibly 0) time-out value for the link and places
the link on the DELINK queue. The Speaker
removes the link from the DELINK queue and
relays the request to PATHMON only after
the time-out expires. If, before the time-out

expires, a terminal task requests a link that
is of the same type as a link on the DELINK
queue, the link is removed from the queue
and the DELINK request cancelled.

Because members of the LINK and DELINK
queues have time-out values associated
with them, the Speaker does not honor LINK
and DELINK requests on a first-in-first-out
basis. The Speaker looks for an entity on the
DELINK queue with an expired time-out
value before it looks for a task on the LINK
queue with an expired time-out value. Also,
the Speaker completes a LINK or DELINK
request before it starts another LINK or
DELINK request.

The LINK entries under QUEUE INFO of
the TCP statistics describe the LINK queue
associated with the Speaker. LINK REQ CNT
indicates the number of times tasks place
themselves on the LINK queue. It does not
indicate the number of SEND commands
executed by the TCP. It also does not indicate
how often link requests are sent to PATHMON
because the task on the LINK queue may
be taken off that queue before the Speaker
relays its request to PATHMON.

LINK % WAIT indicates the percentage of
requesting tasks finding others on the LINK
queue at the time of the request. Because the
Speaker does not honor a LINK request
until the time-out expires, the % WAIT entry
does not reflect the promptness with which
the Speaker can handle LINK requests.

LINK MAX WAIT indicates the longest queue
encountered by any task before it joins
the LINK queue. LINK AVG WAIT indicates the
average number of tasks on the queue.

The DELINK entries under QUEUE INFO
of the TCP statistics describe the DELINK
queue associated with the Speaker. REQ CNT
indicates the number of times a link entity
is placed on the DELINK queue. As with the
REQ CNT for LINK requests, it does not
indicate how often the DELINK requests are sent
to PATHMON because the requesting entity
may be taken off the DELINK queue before
the Speaker relays its request to PATHMON.

10 T A N D E M J O U R N A L SPRING 1984

DELINK % WAIT indicates the percentage of
link entities finding others on the DELINK
queue at the time of the request. Again, as with
the LINK % WAIT figures, since the Speaker
does not honor a DELINK request until the
time-out expires, the % WAIT entry does
not reflect the promptness with which the
Speaker can handle DELINK requests.

DELINK MAX WAIT indicates the longest
queue encountered by any link entity before
it joins the queue for DELINK. DELINK AVG
WAIT indicates the average number of request
ing entities on the queue.

Pools
Each TCP maintains two pools of storage in
memory: TERMPOOL and SERVER POOL.
Terminal tasks allocate and deallocate pool
space dynamically. They request buffers
from TERMPOOL for 1/0 operations to ter
minals and buffers from SERVERPOOL for
1/0 operations to servers.

A wait queue is associated with each pool.
The TERMPOOL and SERVERPOOL entries
under QUEUE INFO of the TCP statistics describe
these queues. REQ CNT indicates the total
number of times all terminal tasks requested a
buffer allocation from the pool.

If no other task is on the wait queue and
enough pool space is available to satisfy
the request, the request is granted and the
requesting task proceeds. Otherwise, the
task joins the wait queue until other tasks return
enough pool space to satisfy its request.
While a task is on the wait queue it is blocked.
The % WAIT entry indicates the percentage
of tasks that were placed on the wait queue.
MAX WAITS indicates the largest number
of tasks on the wait queue after a task joins the
queue. AVG WAITS indicates the average
number of tasks on the wait queue.

The POOL INFO entries of the TCP statistics
describe each of the two pools. SIZE is the
maximum number of bytes available in the
pool. REQ CNT is the number of requests
for buffer allocation. MAX ALLOC is the largest
number of bytes ever allocated at a given
time. AVG ALLOC is the average size allocated.

CUR ALLOC is the current allocated size.
MAX REQ is the size of the largest single request
for buffer allocation. AVG REQ is the average
request size.

Data Area
The TCP allocates its data area in an extended
segment. The DATA entries under AREA INFO

of the TCP statistics describe the data area
of the primary TCP process.

For each terminal task specified by the
MAXTERMS parameter of the SET TCP com
mand, the TCP allocates two slots of addresses
in the data area. SLOT0 is approximately
the size of MAXTERMDATA. The size of SLOTl
is approximately MAXTERMDATA + MAX
REPLY. The sizes are approximate because
the TCP rounds up to a page boundary
(2048 bytes). The TCP uses SLOT0 of each
task to simulate an execution stack for the
executing Screen COBOL program units. This
stack grows and shrinks during program
execution. The TCP uses SLOTl to hold the
last checkpoint image.

The SIZE entry for AREA INFO indicates the
total size of all slots for all terminal tasks.
CUR ALLOC indicates the number of bytes used
by all currently active tasks. MAX ALLOC

indicates the largest number of bytes ever
used within the data area.

Code Area
The TCP allocates its code area in the
same extended segment as its data area. The
CODE entries under AREA INFO of the TCP
statistics describe the code area of the primary
TCP process.

A compiled Screen COBOL program unit
is composed of executable code and a sequence
of screen descriptions. At run time, the
executable code and the screen descriptions
are fetched into the code area indepen
dently of each other. The screen descriptions
are fetched when they are referenced, not
when the program unit containing them is
invoked.

SPRING 1984 T A N D E M J O U R N A L 11

Figure 3

TERM SERVTERM

1/0TNFO:
DISPLAY
ACCEPT
SEND
REPLY
CHECKPOINT

AREAJNFO:
DATA
CODE

Figure 3.

A sample set of terminal
statistics.

12

16 DEC 1983, 10:18:46

REOCNT MAXTSIZE AVGTSIZE 1/0CNT
4 127 126 2
2 58 23 3

22 22 1
22 22

616 359

MAX SIZE AVG SIZE CUR SIZE
636 600
648 334 584

When a terminal task is active, it can have
up to three defined code segments: the
executable code (Segment 0), the current base
screen (Segment 1) and the current over-
lay screen (Segment 2). The current base
screen is the screen used in the most recent
DISPLAY BASE command. The current over
lay screen is the screen used in the most recent
operation affecting an overlay area of the
current base screen. Segment O is always
defined for an active task, and Segment 1 must
be defined if Segment 2 is defined.

When a terminal task is about to execute,
all its defined code segments must be
present in the code area. When the task is
not executing, its code segments can be
overlaid by other code segments. A task's
code segments are fetched and overlaid
independently of each other; they need not
be contiguous in the code area.

When a terminal task is about to execute,
it requests the Code Manager to fetch all
its defined segments. This counts as a single
request in the REQ CNT entry of QUEUE INFO
for MEMMAN. However, each defined seg
ment that is fetched is counted separately in
the REQ CNT entry of AREA INFO for CODE.

The number of defined segments that are not
present in the code area is used in the
calculation of the AREA INFO % ABSENT entry
for CODE.

For example, suppose a task with three
defined segments is about to execute. This
task requests the Code Manager to fetch
three segments. For this request, REQ CNT for
MEMMAN QUEUE INFO is 1. REQ CNT for
AREA INFO is 3. Suppose two of the required
segments are not in code area. The % ABSENT
value for this request is then 67.

AREA INFO SIZE is the total number of bytes
allocated to the code area. SIZE is speci-
fied by the CODEAREA parameter of the SET TCP

command. MAX ALLOC indicates the largest
number of bytes allocated from the code area
at any time. AVG ALLOC indicates the average
allocation. CUR ALLOC indicates the cur
rent allocation. MAX REQ indicates the largest
sum of all code segments in a single request
to the Code Manager. AVG REQ indicates the
size of the average request.

Terminal Statistics

Terminal statistics show the amount of total
TCP resource used by a terminal task. A
sample set of terminal statistics is shown in
Figure 3. The 1/0 INFO entry indicates the
number of 1/0 operations requested by the task.
AREA INFO indicates the amount of code
area and data area used by the task.

1/0 INFO
DISPLAY REQ CNT indicates the number of
times the terminal task executes the following
commands: DISPLAY BASE, DISPLAY OVERLAY,
DISPLAY, RESET, TURN, CLEAR INPUT and
SCROLL. When interpreting these commands,
the TCP generates data for the terminal
and places the data in a buffer in TERMPOOL.
The TCP does not always output this buffer
to the terminal immediately. When it requests
an 1/0 operation to output the buffer,
DISPLAY 1/0 CNT is incremented by 1. MAX
TSIZE (maximum transfer size) indicates
the size of the largest output buffer sent to the
terminal in a single 1/0 operation. AVG TSIZE
indicates the average size of the buffer
for transmissions.

T A N D E M J O U R N A L SPRING 1984

For block-mode terminals, the TCP out
puts data to a terminal under the following
conditions:

■ When the buffer is full.

■ When an ACCEPT is being interpreted.

■ When certain other Screen COBOL com
mands (for example, the DELAY command)
follow the commands that contribute to
the request count (listed above).

For block-mode terminals, users specify
the size of the output buffer allocated from
TERMPOOL with the TERMBUF parameter
of the SET TCP command. If the buffer is large
enough, the TCP need never initiate a ter
minal output simply because a buffer is full.
The minimum DISPLAY I/O CNT for these
block-mode terminals is equal to ACCEPT
REQCNT.

Conversational-mode terminals initiate an
output to the terminal whenever the DISPLAY

command generates data for a screen line.
The size of the terminal buffer is not deter
mined by any user parameter.

ACCEPT REQ CNT indicates the number of
ACCEPT commands executed by the task.
For some block-mode terminals, the ACCEPT
command generates two I/O operations:
the first I/O reads the key, and the second I/O
reads the data. Sometimes ACCEPT also
displays ADVISORY messages or changes screen
field attributes. I/O CNT indicates the total
number of such 1/0 operations caused by
ACCEPT commands. MAX TSIZE indicates
the size of the largest transfer. AVG TSIZE
indicates the size of the average transfer.

The SEND REQ CNT entry indicates the
number of SEND commands that result in I/O
operations to servers. I/O CNT indicates
the number of I/O operations to servers. I/O CNT
is always the same as REQ CNT for SEND

commands. MAX TSIZE is the size of the largest
transfer. AVG TSIZE is the size of the average
transfer.

I/O INFO for REPLY and CHECKPOINT do not
display REQ CNT and 1/0 CNT because there
are no explicit requests for REPLY. Another
reason for this is that the TCP performs
more checkpoint operations than there are
Screen COBOL checkpoint requests. For
REPLY and CHECKPOINT, only MAX TSIZE and
AVG TSIZE are displayed.

AREAINFO
The DATA entries are designed to help the user
determine the best value for MAXTERMDATA.

As described earlier, the TCP allocates two
slots of data area in its
extended segment
for each terminal task.
The size of SLOT0
is approximately
MAXTERMDATA, and
the size of SLOTl
is approximately
MAXTERMDATA +

Terminal statistics show
the amount of total

TCP resource used by a
terminal task.

MAXREPLY. The best MAXREPLY value can
be determined from the MAX TSIZE entry
for REPLY under 1/0 INFO. MAX SIZE for DATA
under AREA INFO indicates the largest
number of bytes used in the task's SLOT0. The
largest MAX SIZE for all terminal tasks
should be used to determine MAXTERMDATA.
CUR SIZE indicates the current size used
in SLOT0.

MAX SIZE for CODE indicates the largest
sum of all the code segments in a single request
by the task. AVG SIZE indicates the size of
the average request by the task. CUR SIZE indi
cates the size of the latest request by the task.

Server Statistics

Server statistics describe the amount of total
TCP resource used to communicate with
a server class. In Figure 4, a set of sample TCP

server statistics is shown.

SPRING 1984 T A N D E M J O U R N A L 13

Figure 4.

A sample set of server
statistics.

14

Figure 4

QUEUE INFO

SERVER RUNSERV
IN TCP TCP-A

euc:1.1~ I.S\IFO: . RE!:CiCNI

l/01~0;
SEND
REPLY

0.0

.•
1.M~·'nl~. ·

22
22

A link between the TCP and a server class can
be either busy or available. It is busy when
it is being used by a terminal task to com
municate with a server; otherwise, it is
available. Links become available in two ways:
a busy link is freed by its user, or a new
link to the server class is requested from and
granted by PATHMON.

Before a terminal task can communicate
with a server class, a link between the TCP and
a server of that server class must be avail
able. The terminal task acquires an available
link at the beginning of a Screen COBOL SEND

command. The link becomes available at
the end of the SEND command.

When a terminal task executes a SEND
command, the TCP checks to see if an existing
link between the TCP and a server process
of the requested server class is available. If an
existing link is available, it is used; if not,
the terminal task joins the wait queue associated
with that server class. The terminal task is
blocked while on this queue and is awakened
when an available link is assigned to the task.

Before joining the wait queue for the
server class, the terminal task may ask the
Speaker to request a new link from PATHMON.
The task asks for a new link if the TCP has
enough resources to support one, i.e., if the
number of links from the TCP to all server
processes at the time of the request is less than
that specified by the MAXSERVERPROCESSES
parameter of the SET TCP command and if
the number of server classes represented by

16 DEC 1983, 10:18:11

MMWAIJ$ AVG WAIT$ % t::J'mAMIC
0

22
22

0.00

1/0.CNT
0.0

processes that have links to the TCP is less
than that specified by the MAXSERVERCLASSES

parameter of the SET TCP command.
When a terminal task requests a new link,

the TCP specifies a time-out value for the
request and adds the task to the Speaker's LINK
queue. The Speaker does not handle the
request until after the time-out expires. The
time-out value is set to either O or the value
of the CREATEDELAY parameter of the
SET SERVER command. It is set to the value
of the CREATEDELAY parameter only if the
number of existing links to the server class is
greater than O and greater than the maximum
number of static links available to the TCP

for that server class. (Static links are defined
below.) The maximum number of static
links for that server class is initially set at the
value of the NUMSTATIC parameter of the
SET SERVER command. It can later be adjusted
to lower values according to information
passed back from PATHMON.

When a terminal task requests a new link, it
joins both the Speaker's LINK queue and
the server-class queue (see Figure 5). The
task is awakened and taken off these queues
when a link to the correct server class is
available for it.

If PATHMON grants a new link, it designates
the link as either static or dynamic. A static
link is normally not dissolved unless an error
occurs over that link. When a dynamic link
becomes available and there are no terminal
tasks waiting to use it, the TCP sets a time
out value for it (DELETEDELAY) and places it
on the Speaker's DELINK queue. If the
time-out expires, the Speaker sends the delink
request to PATHMON, which dissolves the link.

T A N D E M J O U R N A L SPRING 1984

The QUEUE INFO entries for server statistics
describe the server-class wait queue.
REQ CNT indicates the number of times a
task joins the server-class wait queue. This
represents the number of times a task does not
find an available link immediately when it
needs a link during a SEND command. The
% WAIT entry indicates the percentage of
requesting tasks that find other tasks on the wait
queue at the time of their requests. MAX WAITS

indicates the longest queue encountered
by any task just before it joins the wait queue.
AVG WAITS indicates the average queue
length. The % DYNAMIC entry indicates the
number of times a task asks for a link from
the Speaker via the LINK queue with a time-out
value of CREATEDELAY It does not indicate
the number of dynamic links granted by
PATHMON because any request on the Speaker's
LINK queue can be cancelled by the avail
ability of another existing link.

1/0 INFO
REQ CNT for SEND indicates the number of
SEND commands that result in 1/0 operations
to servers of this server class. 1/0 CNT indi
cates the number of 1/0 operations to servers
of this server class. 1/0 CNT is always the
same as the REQ CNT for SEND commands.
MAX TSIZE is the size of the maximum
transfer. AVG TSIZE is the size of the average
transfer.

REQ CNT and 1/0 CNT for REPLY are not
displayed because there are no explicit requests
to REPLY

Conclusion

If understood properly, the statistics generated
by the PATHWAY transaction processing
system can be used to detect bottlenecks within
the TCP process. The % WAIT and % ABSENT

entries are especially useful for this. Changing
the configuration of the PATHWAY system
based on careful analysis of these statistics can
help to eliminate some performance
degradations.

Figure 5

S~ller - I.INK queue

- Server class queue
- - LINK queue

/
/

/
/

/

/
/

/

Other performance factors affecting the
PATHWAY system are not represented in these
statistics. These factors generally involve
the way the TCP contends for system resources
with other processes that are part of the
GUARDIAN operating system or with other
parts of the PATHWAY system. Some examples
are: paging by GUARDIAN incurred by the
TCP, the ability of the TCP to handle 1/0 ter
minations promptly, and the ability of PATHMON
to grant links promptly. Consequently, in
tuning a system that uses the PATHWAY trans
action processing system, it is essential
to analyze the statistics produced by the
GUARDIAN operating system together with
those produced by the PATHWAY system.

Raymond Wong, of Tandem's Software Development Group,
wrote this article and the preceeding one, "A New Design for
the PATHWAY TCP."

SPRING 1984 T A N D E M J O U R N A L

ti

Task A

l l

TaskC

Figure 5.

Tasks waiting for a link to
a server class may be
on the server class queue
only or on both the
server class queue and the
LINK queue. In this
example, tasks A. B, and C
are waiting for an avail
able link. Tasks A and B
are also trying to obtain
a new link from the
PATHWAY Monitor via
the Speaker.

15

16

ASNAX
Passthrough Tutorial

NA Communications Services
(SNAX™) is the latest in the series
of gateway products from
Tandem. It allows Tandem
customers to gain access
to, and share resources with,
an IBM Systems Network

Architecture (SNA) environment. Essentially
SNAX acts as a subhost to an IBM SNA main
frame, supporting SNA physical and logical
units (PUs and LUs) and providing SNA PU and
LU emulation. In conjunction with these
subhost features, SNAX allows data to pass
between SNA applications and SNA LUs through
a Tandem system (or systems connected via
an EXPAND™ network) transparently. With this
capability, known as SNA Session Pass
through, a Tandem system or EXPAND network
can be integrated into an existing SNA
network to provide an interface that is opera
tionally and functionally compatible with
existing SNA terminal use. Not only does this
provide a clean, easy migration path to the
Tandem environment, it affords a degree of
flexibility that was not previously possible
with "traditional" SNA networks.

The following discussion is intended for
analysts, systems programmers, and system
managers who design and implement SNA
and SNA/EXPAND networks, and who wish to

take advantage of SNAX Passthrough capa
bilities. The major passthrough considerations
addressed here include:

■ Capabilities.
■ Implementation.
■ IBM generation.
■ Tandem generation.
■ Activation.
■ Logon/Logoff.

Passthrough Capabilities

SNAX Passthrough allows SNA devices to be
attached to a Tandem NonStop II or NonStop
TXP system (or several Tandem systems
connected via an EXPAND network) and to
access SNA application programs that are
resident in any IBM host, without change or
reprogramming. SNAX imposes no restric
tions on the SNA applications that can partici
pate in passthrough sessions; however, some
SNA applications support only some types of
SNA device. Passthrough does not change
this. Examples of SNA applications that can
participate in passthrough sessions include:

■ Information Management System (IMS).
■ Customer Information Control System
(CICS).
■ Time Sharing Option (TSO).
■ Job Entry Subsystem 2 (JES2).
■ Job Entry Subsystem 3 (JES3).
■ Network Communications Control Facility
(NCCF).
■ Host Command Facility (HCF).

T A N D E M J O U R N A L SPRING 1984

Passthrough is applicable to the PU Type 2
(PU.T2) only. This category includes:

• IBM 3274 Information Display System.
• IBM 3276 Information Display System.
• IBM 3600 Financial System.
• IBM 3624 Financial System.
• IBM 3630 Plant Communications System.
• IBM 3640 Manufacturing System.
• IBM 3650 Retail Store System.
• IBM 3660 Supermarket System.
• IBM 3680 Programmable Store System.
• IBM 3770 Data Entry System.
• IBM 4700 Financial System.
• IBM 8100 Information System.
• IBM Series/1 General Purpose DP System.
• IBM System/32 General Purpose DP System.
• IBM System/34 General Purpose DP System.
• IBM System/38 General Purpose DP System.

Specifically not supported in passthrough
sessions is the PU Type 1 (PU.Tl). This
category includes:

• IBM 3271 Display System.
• IBM 3767 Communications Terminal.
• IBM 5250 Information Display System.
• IBM 6670 Information Distributor.

Although many different types of PU Type 2
can be supported by Passthrough, for the
sake of simplicity, all examples and configura
tions in this article refer to the IBM 3274
Information Display System as the PU, and the
IBM 3278 Display Unit as the LU.

To illustrate what SNAX Passthrough
is and where it fits into an existing network,
Figures 1 and 2 show how a Tandem Non
Stop II or NonStop TXP can be integrated into
a traditional SNA environment. Figure 1
shows a Passthrough configuration in which a
single Tandem node supports both the con
nections to the SNA devices and the connections
to the SNA host. In this configuration the
EXPAND networking software is not required.

Figure 2 shows a Passthrough configuration in
which SNA devices are dispersed geograph
ically throughout a Tandem EXPAND network;
i.e., the SNA devices are not attached to
the same Tandem node as the SNA host.

Figure 1

- Modem
- - Coaxial cable
• • . Channel cable

Figure 2

- Modem
- - Coaxial cable
· • • Channel cable

$NA host

3705
ACF/NCP

3274

3278

SNAhost

3705
ACF/NCP

SPRING 1984 T A N D E M J O U R N A L

NonStopTXP
or Nonstop II

EXPAND lines

NonStopTXP
or Nonstop II

Figure 1.

Passthrough can be
configured into a single
Tandem system with
SNAX. In this configura
tion the same Tandem
Jystem connects the IBM
host and the SNA devices.

Figure 2.

Passthrough can be
configured into multiple
Tandem systems with
SNAX. In this configura
tion one Tandem system
connects the IBM host, and
another Tandem system
connected via an EXPAND
network connects the
SNA devices.

3274

3278 3278

Nonstop TXP
or Nonstop II

17

Figure 3

IBM host

3705

TSO APPLACBNAME=TSO,AUTH=(..)
IMS APPL ACBNMAE=IMS,AUTH=(..)

HXA1
NPA11

HLA111
HLA112
HLA113

EXPAND line

$HXA1
JIHPA11
#HLA111
JIHLA112
#HLA113

$SXA1
#SPA11
#SLA111
#SLA112

$SXB1
#SPB11
#SLB111

SDLC Line

3274

3278

- Modem
- - Coaxial cable
• • • Channel cable

Figure 3.

A SNAX Passthrough
configuration in which the
SNA devices are attached
to l'arious nodes throuf{h
out the EXPAND network.
Although this is a simple
example, it illustrates
all the elements of"
passthrouf?h.

3274

3278 3278

With either of these configurations SNAX
provides two modes of passthrough operation,
dynamic mode and associated mode. Each
has particular attributes that lend themselves to
specific applications and solutions.

Dynamic passthrough allows the mapping
between a specific SNA device attached to
a Tandem EXPAND network and a corre
sponding passthrough LU defined on the IBM
host to be established by SNAX in a dynamic
manner. SNAX uses a next-available algorithm to
determine this. This mode of operation is
particularly suitable in environments that:

1. Map a large number of SNA devices to a
small(er) number of LUs defined to the
IBM host.

2. Require no particular association between
the SNA device and the LU defined to
the IBM host.

Associated passthrough establishes a
one-to-one mapping between a specific SNA
device attached to a Tandem EXPAND network

and a particular passthrough LU defined
to the IBM host. This mapping is specified
by the ASSOCIATE <LU name> parameter, to be
defined as part of the configuration process.1

This mode of operation is particularly
suitable in environments that:

1. Map the SNA devices on a one-to-one
basis to the LUs defined to the IBM host.

2. Require a fixed association between the
SNA device and the LU defined to the IBM
host. This association is necessary if the
host application initiates the session (i.e., the
SNA application acquires the terminal),
or if security and authorization parameters
are defined by the IBM application for
each device.

Passthrough Implementation

Passthrough is a function of the SNAX line
handler software. Its implementation can
be considered as a logical software connection
between the SDLC communications lines.
Once a Passthrough session has been estab
lished by SNAX, all data flows through the
Tandem EXPAND network transparently. SNAX
does not act upon or process the data that
is passed through; it merely monitors it for
session termination requests. A session
termination request is indicated by receipt
of an UNBIND command from the SNA
application program.

This implementation has distinct advantages
over other possible passthrough methods:

■ The processing required to perform the pass
through is reduced to the absolute minimum
within SNAX. This ensures that passthrough is
completely transparent, while minimizing
any impact to the performance characteristics
on the system.

■ Because Passthrough passes not only all
LU-to-LU session data, but all SNA commands
between the SNA device and the SNA appli
cation, SNAX is not sensitive to changes. IBM
host SNA software, applications, and SNA
devices can be implemented, modified, and
upgraded without affecting SNAX.

1Uppercase characters represent keywords and reserved words. Lowercase
characters enclosed in angle hrackcts lo) represent variahle entries supplied
hy the user.

18 T A N D E M J O U R N A L SPRING 1984

The logical configuration, i.e., the con
figuration that is presented to and viewed by the
IBM host, is the same in both associated
and dynamic modes of operation. The IBM
host views the Tandem nodes as a PU Type
2 (PU.T2) with a number of attached LUs. These
are passthrough LUs that are configured
into the SNAX environment. They have no rela
tionship with the device LUs that may
be dispersed throughout the Tandem EXPAND
network; however, before Passthrough can
become operational, an association has to be
established between these passthrough LUs
and the SNA device in the network.

That association is established as part of
the LOGON request for the terminal operator.
In associated passthrough mode this asso
ciation is established to the specific passthrough
LU that was configured with the ASSOCIATE
<LU name> parameter. In dynamic passthrough
mode, SNAX establishes this association to
the next available passthrough LU that does not
have an ASSOCIATE <LU name> parameter.

IBM Configuration

Figure 3 contains the example configuration
used in the remainder of this discussion. It shows
an IBM SNA host running SNA applications
(TSO and IMS), accessed through an SNA com
munications controller. This could be an
IBM 3705, 3725, or equivalent, with ACF/NCP.
This SNA host environment is connected to
a Tandem EXPAND network via an SDLC com
munications line. The SNA controllers and
devices are distributed throughout the Tandem
EXPAND network. In this example config
uration, the element names (Line, PUs, and LUs)
have been chosen to reflect logical asso
ciations between corresponding elements;
e.g., #HLAlll is the Tandem host LU that
is equivalent to the IBM definition HLAlll. SNAX
does not require this correspondence; it is
used as a convention in this article only. Figure
4 shows the naming convention used for
the elements in this configuration. It is used
throughout the rest of the article.

The basis for an ACF/NCP Stage I generation
for this configuration is shown in Figure 5.

Figure 4

Example
element
names

Figure 5

HXA1

HPA11

HLA111
HLA112
HLA113

Figure 4.

H X A Host Line 1 from Node A

H P A 1 1 Host PU 1 on Line 1 from Node A

H L A 1 1 1 Host LU 1 on PU 1 on Line 1 from Node A

H L A 1 2 Host LU 2 on PU 1 on Line 1 from Node A

H L A 1 1 3 Host LU 3 on PU 1 on Line 1 from Node A

s X A 1 SNAX Line 1 from Node A

s X B 1 SNAX Line 1 from Node B

s p A 1 1 SNAX PU 1 on Line 1 from Node A

s p 8 1 SNAX PU 1 on Line 1 from Node B

s L A 1 SNAX LU 1 on PU 1 on Line 1 from Node A

s L A 2 SNAX LU 2 on PU 1 on Line 1 from Node A

s L B 1 1 1 SNAX LU 1 on PU 1 on Line 1 from Node B

Element classes: Element types:
H host
S SNAX

N node
X line
P PU
L LU

GROUP LNCTL=SDLC,DIAL=NO,TYPE=NCR
REPLYTO=1.0,
TEXTTO=3.0

LINE ADDRESS=020, Single 3705 port address
Required for 3705 only
Clocking by modem

SPEED=9600,
CLOCKING=EXT,
DUPLEX=FULL,
NEWSYNC=NO,
NRZl=NO,
POLLED=YES

Modem Option for RTS/CTS
Modem Option for multipoint line
Modem Option for transmission mode

SERVICE ORDER=HPA11

PU

LU
LU
LU

ADDR=C1 SDLC address in hexidecimal
PUTYPE=2, PU.T2
DATMODE=HALF, Alternate SEND/RECEIVE
ISTATUS=INACTIVE, Initially inactive
MODETAB=MTPU2, Mode table
USSTAB=USSPU2, USS table
SSCPFM-USSSCS, SSCP-LU data
MAXOUT=7, Outstanding SDLC frames
MAXDATA=265 Maximum PIU data

LOCADDR=1,BATCH=NO
LOCADDR=2,BATCH=NO
LOCADDR=3,BATCH = NO

Figure 5.

The naming convention
used in the example
configuration illustrated in
Figure 3. The convention
is used throughout the
remainder of this article.

It provides as much
information as possible
about the (vpe of element
identified (e.g., from its
name, the characteristics
and location of the element
can be easily determined).

The bas1:, for an ACF! NCP
Stage I generation for
the example configuration
in Figure 3.

SPRING 1984 TANDEM JOURNAL 19

Figure 6

\NODEA SDLC communications line to the IBM host:

$HXA1 BITA.0,BITA.1 SNATS TYPE 58, SUBTYPE 0,
DRIVER SNA-6203-DVR,
INTERRUPT SNA-6203-INTERRUPT,
L2PROTOCOL SNATS-LV2-PROTOCOL,
L3PROTOCOL SNATS-LV3-PROTOCOL,
L4PROTOCOL SNATS-LV4-PROTOCOL,
SMLDEV $SSCP, RSIZE 1000,
LOCALPOOLPAGES 60,
L6PROTOCOL SNATS-SNALU,
FULL,
SECONDARY,
ALLADDRRD,
FLAG FILL,
CONTCF,
FRAMESIZE 267,
L2WINDOW7,
LINEBUFFERSIZE 4096,
MAXPUS 1,
MAXLUS3;

\NODEA SDLC communications line to the IBM 3274 Controller:

$SXA1 BITA.0,BITA.1 SNATS TYPE 58, SUBTYPE 0,
DRIVER SNA-6203-DVR,
INTERRUPT SNA-6203-INTERRUPT,
L2PROTOCOL SNATS-LV2-PROTOCOL,
L3PROTOCOL SNATS-LV3-PROTOCOL,
L4PROTOCOL SNATS-LV4-PROTOCOL,
SMLDEV $SSCP, RSIZE 1000,
LOCALPOOLPAGES 60,
L6PROTOCOL SNATS-SNALU,
FULL,
PRIMARY,
FRAMESIZE 267,
L2WINDOW7,
LINEBUFFERSIZE 4096,
MAXPUS 1
MAXLUS 2;

\NODEB SDLC communications line to the IBM 3274 Controller:

$SXB1 BITA.0,BITA.1 SNATS TYPE 58, SUBTYPE 0,

Figure 6.

Def'inition ol the com
munications lines in the
SYSGEN configuration for
the example conf'iguration
(assuming both \NODEA
and \NO DEB are con
f'igured with a 6203 Bit
synchronous Controller

DRIVER SNA-6203-DVR,
INTERRUPT SNA-6203-INTERRUPT,
L2PROTOCOL SNATS-LV2-PROTOCOL,
L3PROTOCOL SNATS-LV3-PROTOCOL,
L4PROTOCOL SNATS-LV4-PROTOCOL,
SMLDEV $SSCP, RSIZE 1000,
LOCALPOOLPAGES 60,
L6PROTOCOL SNATS-SNALU,
FULL,
PRIMARY,
FRAMESIZE 267,
L2WINDOW 7,
LINEBUFFERSIZE 4096,
MAXPUS 1,
MAXLUS 1;

that has been generated
with the user-spec1ji'ed
name of BJTA). The
shaded items are standard
parameters for all SNAX
lines and should be
included as shown.

Tandem Configuration

In the Tandem nodes, the only elements that
must be generated are the physical com
munications lines. Assuming that both \NOD EA
and \NODEB are each configured with a
6203 Bit-synchronous Controller that has been
generated with the user-specified name of
BITA, the communications lines are defined in
the system generation (SYSGEN) configura
tion files as shown in Figure 6. The items in bold
face type are standard parameters for all
SNAX lines and should be included as shown.

Those parameters that are not standard
for all SNAX lines are explained below. For
those corresponding to ACF/NCP generation
parameters, the ACF/NCP parameter is given.
Care must be taken to ensure that the
parameter values correspond.

L6PROTOCOL3 SNATS'SNALU indicates that
the SNALU interface is to be used to access
this line. All host communications lines
require SN ALU.

FULL indicates that the communications facility
can provide a full duplex channel for data
communications, and SNAX is to assume that
Clear To Send (CTS) is always present at
the modem interface. This is only possible when
SNAX is the only PU on the line. If SNAX
is multidropped with other PUs, specify HALF.
The corresponding parameter in the ACF /NCP
generation is DUPLEX=FULL on the LINE macro.

SECONDARY indicates that this Tandem
node is to assume the role of secondary SDLC
station for this communications line. (When
communicating with a PU.T2, ACF/NCP always
assumes the role of primary station).

ALLADDRRD indicates that this Tandem node
is to accept SDLC frames for all SDLC addresses.

FLAGFILL indicates that the 6203 Bit
synchronous Controller is to transmit a constant
stream of SDLC flag characters (X'7E') when
no other data is present.

CONTCF indicates that the Receive Line
Signal Detector (EIA circuit CF. CCITT circuit
109) is strapped ON, for support of constant
carrier modems.

20 T A N D E M J O U R N A L SPRING 1984

FRAMESIZE 267 indicates the maximum size
of the SDLC frame that can be transmitted on
the line. This value is comprised of maxi
mum PIU size (usually 265 bytes) and the SDLC
framing characters (A and C fields, always
2 bytes).

L2WJNDOW 7 indicates the maximum number
of SDLC frames that can be transmitted
on the line by the primary station without a
response. This number is generally in the
range of one to seven. The corresponding
parameter in the ACF/NCP generation is
MAXOUT=7 on the PU macro.

LINEBUFFERSIZE 4096 indicates the buffer
size required for line operations. It is comprised
of the L2WINDOW x FRAMESIZE x 2.

MAXPUS I indicates the maximum number of
PUs that can be defined on the line. (This
number must be greater than or equal to the
number of PU macros defined in the ACF/
NCP generation for this line or the number
of PUs that can be added by ACF/NCP
dynamic reconfiguration.)

MAXLUS 3 indicates the maximum number
of LUs that can be defined on the line. (This
number must be greater than or equal to
the number of LU macros defined in the ACF/
NCP generation for all PUs on this line or
the number of LUs that can be added by ACF/
NCP dynamic reconfiguration).

PRIMARY indicates that this Tandem node
is to assume the role of primary SDLC station
for this communications line. (When com
municating with ACF/NCP, a PU.T2 always
assumes the role of secondary station).

Having defined the communications lines
($HXA1, $SXA1 and $SXB1) to nodes \NODEA and
\NODEB, it is only necessary to dynamically
configure the environment on those lines.
Dynamic configuration is available through
the operation of the Tandem Configuration
Management Interface utility (CMI). The con
figuration can be dynamically added, modi
fied, or deleted as required. The CMI commands
to configure the environment in Figure 3
follow below. The items in boldface type are
standard parameters for all SNAX lines and
should be included as shown.

To define the SNA devices to SNAX on
\NODEA, enter the CMI commands:

ADD LINE $SXA1

ADD PU $SXA1.#SPA11, TYPE(13,2),
RECSIZE 265,
ADDRESS 199

ADD LU $SXA1.#SLA111, TYPE(14,0),
PUNAME #SPAll.
RECSIZE 1024,
PROTOCOL SNALU,
ADDRESS 1

ADD LU $SXA1.#SLA112, LIKE $SXA1.#SLA111,
ADDRESS 2

To define the SNA devices to SNAX on
\NODEB, enter the CMI commands:

ADD LINE $SXB1

ADD PU $SXB1.#SPB11, TYPE(13,2),
RECSIZE 265,
ADDRESS 199

ADD LU $SXB1.#SLB111, TYPE(14,0),
PUNAME #SPBll,
RECSIZE 1024,
PROTOCOL SNALU,
ADDRESS 1

To define the environment with which
the IBM host communicates, enter the following
CMI commands on \NODEA. Note that in
this configuration, all the passthrough LUs
(#HLA111,#HLA112,#HLA113) are available for
dynamic allocation.

ADD LINE $HXA1, APPLID(TSO,IMS)

ADD PU $HXA1.#HPA11, TYPE(13,2),
RECSIZE 265,
ADDRESS 193

ADD LU $HXA1.#HLA111, TYPE(14,0),
PUNAME #GPAll,
RECSIZE 1024,
PROTOCOL SNALU,
PASSTHROUGH ON,
ADDRESS 1

ADD LU $HXA1.#HLA112, LIKE $HXA1.#HLA111,
ADDRESS 2

ADD LU $HXA1.#HLA113, LIKE $HXA1.#HLA111,
ADDRESS 3

SPRING 1984 TANDEM JOURNAL 21

22

The parameters that are not standard for
all SNAX lines are explained below. For those
that correspond to ACF/NCP generation
parameters, the ACF/NCP parameter is given.
Again, care must be taken to ensure that
the parameter values for these correspond.

RECSIZE 265 (on ADD PU) indicates the max
imum PIU size that can be transmitted to
this PU. This value is comprised of the PU buffer
size (usually 256 bytes), the RH (always 3
bytes), and the FID2 TH (always 6 bytes). The
corresponding parameter in the ACF/NCP
generation is MAXDATA=265 on the PU macro.

ADDRESS 193 (on ADD PU) indicates the
line address of the PU that is used as the
ADDRESS field in the SDLC frame. This is
a decimal equivalent of X'Cl'. The correspond
ing parameter in the ACF/NCP generation
is ADDR=Cl on the PU macro.

RECSIZE 1024 (on ADD LU) indicates the max
imum RU size that can be transmitted to this LU.
This value depends upon the session param
eters and is specified in the BIND command.

ADDRESS 1 (on ADD LU) indicates the local
address on the PU that provides the support for
this LU. The corresponding parameter in
the ACF/NCP generation is LOCADDR=l on the
LU macro.

PASSTHROUGH ON indicates that this is a
passthrough LU.

Passthrough Activation

In order to enable Passthrough operation, the
configuration should be activated in a pre
defined sequence. This is necessary in order to
satisfy the hierarchical manner in which SNA

expects activation to occur. If this sequence is
not maintained, it is possible to recover the
environment, provided that strict error recovery
procedures are enforced at the IBM host.

Basically, all Tandem elements should be
activated before the equivalent IBM elements.
This ensures that the environment is opera
tional before the SNA host attempts activation.
The suggested order is:

1. From the Tandem host(s), activate the
SNA devices.

2. From the Tandem host(s), activate
the environment with which the IBM

host communicates.

3. From the IBM host(s), activate the environ
ment with which the IBM host communicates.

For the configuration example in Figure 3,
the sequence of commands is the following. To
activate the SNA devices on \NODEA, enter
these CMI commands.

START LINE $SXA1
START PU
START LU
START LU

$SXA1,#SPA11
$SXA1 ,#SLAlll
$SXA1,#SLA112

To activate the SNA devices on \NODEB,
enter these CMI commands:

START LINE $SXB1
START PU $SXB1,#SPB11
START LU $SXB1,#SLB111

To activate the environment with which the
IBM host communicates, enter these CMI
commands on \NODEA:

START LINE $HXA1

START PU $HXA1,#HPA11

START LU

START LU
START LU

$HXA1,#HLA111

$HXA1 ,#HLA112
$HXA1,#HLA113

To activate the environment with which
the IBM host communicates, enter these VTAM
commands on the IBM host:

VARY NET, ACT, ID=HXAl

VARY NET, ACT, ID=HPAll
VARY NET, ACT, ID=HLA111

VARY NET, ACT, ID=HLA112
VARY NET, ACT, ID=HLA113

Passthrough Logon

Once the environment has been activated,
the terminal operator can establish a pass
through session by requesting a LOGON
to a particular IBM host application. This is
done by depressing the SYSREQ key to
enter SSCP-LU session and then typing in the
LOGON command.

T A N D E M J O U R N A L SPRING 1984

The LOGON command takes one of two
forms, depending upon the location of the
requesting terminal. For terminals attached
to the same node as the requested IBM host
(e.g., if #SLA111 wanted to pass through
#HXAl to IMS), the command would be LOGON

#HXAl.IMS. For terminals attached to a
node other than the requested IBM host (e.g.,
if #SLB111 wanted to pass through #HXAl

to TSO), the command would be LOGON
\NODEA.$HXA1.TSO.

In both instances, since dynamic passthrough
is being used, the LOGON request maps the
SNA device to the next available passthrough
LU (i.e., $SLA111 is mapped to #HLA111 and
#SLB111 is mapped to #HLA112.) The associations
are established by SNAX with INITSELF

commands to the IBM host application. The
associations stay in effect until the pass
through session is terminated, and at this time,
the passthrough LU is free for another
dynamic passthrough session.

The general format of the LOGON

command is:

LOGON (mode name.>) <line name>.<appl name>

In associated passthrough mode, the pass
through LU can be mapped to only one
SNA device. This mapping is determined when
the passthrough LU is configured. The
appropriate CMI commands to define this type
of configuration would be:

ALTER LU $HLA112.

ASSOCIATE \NODEA.$SXAL#SLA111

ALTER LU $HLA113,

ASSOCIATE \NODEB.$SXBL#SLB111

This command defines the mapping that
is allowed; it does not establish the association.
The association can only be established by
the LOGON command from the terminal. With
this configuration, the terminal operator
would LOGON in exactly the same manner, but
the association would be somewhat differ
ent; i.e., #SLA111 would be mapped to #HLA112,

and #SLBlll would be mapped to #HLA113.

The association stays in effect until the session is
terminated, and the mapping stays in effect
until another ALTER LU command is entered.

Passthrough Logoff

In both modes of operation, both the IBM
host application and the terminal user have the
ability to terminate the passthrough session.
Ultimately, the application (or the SNA soft
ware, on behalf of the application) has
the responsibility of terminating the session by
issuing the SNA command UNBIND; however,
the terminal operator can request this action by
requesting LOGOFF. The LOGOFF request
can take one of three forms:

1. A character-coded request that the appli
cation recognizes and acts upon to issue
the UNBIND. This method of LOGOFF

is product-specific, and details for its imple
mentation should be obtained from the
relevant product documentation.

2. A character-coded request that SNAX
recognizes and acts upon. When SNAX

detects the LOGOFF command, it formats
and issues the SNA command TERMSELF

to the IBM host, which in turn notifies the
application. The application then issues
the UNBIND.

3. A TERMSELF command that SNAX for
wards to the IBM host. The latter then
notifies the application, which in turn
issues the UNBIND.

Conclusion

With SNAX, a Tandem system or EXPAND

network can be integrated into an existing SNA

network. With SNAX Passthrough, SNA data
can pass through a Tandem system transpar
ently. By following the steps described in
this article, SNA users can implement SNAX
Passthrough to connect SNA products to
Tandem NonStop II or NonStop TXP systems,
thus benefiting from the flexibility and
reliability of Tandem systems.

David Kirk is Tandem's product manager for SNAX. He has
been deeply involved with SNA implementation since its introduction
in 1974, in both support and consultation roles.

SPRING 1984 TANDEM JOURNAL 23

24

The TRANSFER
Delivery System
For Distributed
Applications

ecent enhancements to the
ENCOMPASS™ distributed data
base system and the intro
duction of the TRANSFER™
delivery system have made it
easier to (a) distribute on
line transaction processing

(OLTP) applications on Tandem systems,
(b) couple diverse applications loosely, and (c)
create gateways into the system for devices
produced by other manufacturers:

■ The PATHWAY transaction processing system
now allows PATHWAY Monitors (PATHMONs)
on several nodes to coordinate the assignment
of links to servers. Thus, a requester on one
node can access a server class on another and in
that way distribute the processing load.

■ The Transaction Monitoring Facility (TMF)
has been modified so that it can protect network
transactions. Thus, a program can now
update files on several nodes as part of a single
TMF transaction.

■ The new TRANSFER delivery system provides
timed information delivery and "as-soon
as-possible" network transport of data for
distributed applications, Tandem devices,
and other devices.

Both ENCOMPASS and TRANSFER help
the application designer to implement distri
buted applications efficiently. However,
each was designed to meet different needs.
The ENCOMPASS system is best suited for
performing tightly-coupled operations (e.g.,

multiple record updates required to process
a complicated transaction in a single distrib
uted OLTP application), while the TRANSFER
system was designed to facilitate the exchange
of information among loosely-coupled
applications and devices.

Tight Coupling of Operations
in a Distributed OLTP Application

An on-line transaction processing (OLTP)
application is one in which data relevant to
a specific set of business transactions is
processed and recorded as each transaction
occurs. Because customers are often waiting
(e.g., for confirmation that a reservation has
been made or that a specific seat has been
assigned), each unit of work (each transaction)
must be processed within 3 to 10 seconds,
even though a complex exchange of messages
updating several different data files on sev
eral different network nodes may be required.
If all operations associated with that unit
of work cannot be accomplished within that
time, consistency dictates that all updates
that have been completed must be backed out
(by TMF in the Tandem environment) and
the unit of work handled at some later time.

For example, consider an airline reservation
system in which seat assignments are made
at the same time as the reservation. If the
application is distributed over a Tandem
network, all collaborating systems must have
some way of learning about the most recent
seat assignment (so as to avoid assigning that
seat to someone else):

T A N D E M J O U R N A L SPRING 1984

■ If files are duplicated throughout the net
work, a requester process on the terminal's
node has to communicate with a server
process on each node where such a file resides
so that each file can be updated.

■ If the data base is on one node, but many
nodes support terminals that use the applica
tion, a requester process on the terminal's
node must be able to communicate with one or
more servers on the data base node to
update the appropriate records.

These are all tightly-coupled operations.
That is, they must all be performed in the 3- to
10-second period of time referred to above,
or the data base must be returned to its original
state. The new enhancements to PATHWAY
and TMF allow requesters on the terminal's
node to link to servers on all remote nodes
and to perform any required data base updates
as part of a single TMF transaction. TMF

guarantees that if all the required operations
are not completed, those that were are
backed out.

Loose Coupling Among
Distributed OLTP Applications

Figure 1 shows a collection of OLTP appli
cations serving several different organizations
within a company. These applications are
loosely coupled. That is, they communicate

Figure 1

Order

Master
manufacturing

site

Order
validation 1 Product

with one another regarding the transactions
that they process, but that communication does
not need to take place in the 3 to 10 seconds
allotted for processing the transaction. If,
for some reason, the information cannot
be forwarded immediately, the transaction can
be completed and the relevant information
passed on at some later time. For example, the
order-entry application in Figure 1 provides
input for the credit and order validation appli
cations, but if that input is provided a few
minutes or hours after the order has been
entered, nothing of significance has been
lost. The reliability of the delivery mechanism
is far more important than its speed.

In a Tandem environment, the TRANSFER

delivery system provides precisely the kind
of mechanism needed for information exchange
among the applications shown in Figure 1.
Thanks to TRANSFER, loosely-coupled applica
tions are not forced to use the ENCOMPASS

system, which requires tight coupling of all
operations associated with a transaction.
Moreover, TRANSFER does not force these
applications to revert to a batch mode of
information exchange either (i.e., users do not
have to wait until the end of the day or
week to send information to or receive informa
tion from another application). TRANSFER

works independently of the original input and
delivers packages of data reliably, one at a
time, exactly once, and as soon as possible.

I
Material
control

entry I scheduling

1 I Sh'"''"'
~ Accounting

Credit Manu-

Branch office

SPRING 1984

Corporate
headquarters

facturing

Divisional manufacturing site

TANDEM JOURNAL

Figure 1.

Applications in a typical
manufacturing company.
In this type of data
processing environment,
the delivery of paper
has traditionally triggered
the next processing step
in a series of "'loosely
coupled" applications.
Now the TRANSFER
delivery system assumes
responsibility for deliver
ing the information reliably
and as soon as possible.

25

When all the applications that make up
an information system are running on one local
computer, it makes little difference whether
the system is implemented as one application
(with tight coupling of all operations asso
ciated with a given transaction) or as several

F or each correspondent,
TRANSFER defines a

"depot" or private storage
areas for a user's data and
information.

loosely-coupled appli
cations. However,
when the applications
are distributed over
a network, as in Figure
1, it makes a very
big difference. Con
sider, for example,
what happens if all
operations are tightly

coupled and a communications line to one
of the nodes goes down. The system will not be
able to communicate with that node, and
therefore, it will not be able to complete any
transaction that requires READ or WRITE
access to that node. Since a TMF transaction
must be complete to be successful, the
application has only three alternatives. It can:

• Retry until it is successful. (There is no
way to know how long this could take.)

• Back out the transaction and have the
operator re-enter it later.

• Subdivide the transaction into separate
transactions, one for each node. (The program
is then responsible for maintaining data
base consistency and for retrying each node
until it is successful.)

The last alternative is more difficult than
it sounds. Exception handling is complex to
control programmatically and becomes
more difficult the more nodes there are.

In a distributed system made up of loosely
coupled applications, each application
stands alone, processing information whenever
it arrives from the previous application
in the sequence. If a communications line
is down for several minutes or several
hours, this does not stop other parts of the
system from performing their tasks. Thus,
more work gets done and there are fewer
frustrations. TRANSFER handles communica
tions between applications, thus freeing

application programs from concern about
most exception conditions. TRANSFER

assumes responsibility for trying again and
again to get data packages to remote nodes
that are temporarily inaccessible.

Designers of information systems should
implement the concept of loose coupling, where
it applies, even if there are no immediate
plans to distribute the system. The flexibility
inherent in such an approach is worth a
great deal. A complex, monolithic application
in which all operations associated with
particular transactions are tightly coupled is
extremely difficult to modify if and when
it must be distributed. Thus, TRANSFER should
be of interest to designers even when all
processing initially takes place on a single node
because using TRANSFER makes it easy to
distribute the operations later. The location
and number of destinations for a package
delivered by TRANSFER can be changed just by
changing the contents of a distribution list;
no re-programming is required.

Gateways to Other
Devices and Computers

In addition to supporting loosely-coupled
distributed applications, the TRANSFER deliv
ery system has been designed to support
another type of application, sometimes referred
to as a gateway. Gateways include electronic
mail and those applications that manage data
flow over communications lines to and from
Tandem devices and other devices connected
to the Tandem system. (These devices may
include facsimile machines, terminals other
than the Tandem 6520 and 6530, and other
computers.) Making such connections poses
some unique problems:

• Most users connecting in this way do not
have their own IDs for the GUARDIAN operating
system. They connect to the Tandem system
via a process running under a GUARDIAN ID, and
assume the ID of that process. Clearly some
other identity system is required: one that allows
users to identify themselves individually with
forms of their own names and one in which the
number of IDs on a system is unlimited.

26 T A N D E M J O U R N A L SPRING 1984

■ Individual members of this gateway com
munity are normally connected to the Tandem
system only for short periods of time. They
need an entity that is responsible for processing
data on their behalf while they are not in
contact with the system.

The TRANSFER delivery system solves the
above problems. It defines a 32-character
correspondent name that can be abbreviated.
The maximum number of these names is
limited only by the maximum file size on the
Tandem system. For each correspondent,
TRANSFER defines a depot, or private storage
areas for a user's data and information.
Specific attributes of the depot are as follows:

■ Along with a correspondent name, the
user must enter the password that is associated
with that name to gain access to a depot.

■ A profile of configuration parameters
for each user's environment is maintained in
the user's depot.

■ Folders, or private locations in which to
keep information, are a part of the depot. Users
are free to add and delete folders within
their own depots.

■ Users can maintain distribution lists in
their depots. These list the correspondent
names of other users to whom information
is to be delivered. Users are responsible for
maintaining their own distribution lists,
but any user of the TRANSFER system can
reference another's distribution lists with
read-only access.

More Features for Loosely-
Coupled Applications and Gateways

The TRANSFER delivery system also has
the following features for both gateways and
loosely-coupled distributed applications:

1. A package of data given to TRANSFER is
delivered exactly once. TRANSFER assures
this by protecting its data base with TMF
and relying on TMF recovery to reconstruct
the data base in the event of a catas
trophe. TRANSFER keeps status information
in the package that indicates to whom
the package has been delivered. It retains
this information until the expiration time
has been reached.

2. Any time a package must be shipped
to other nodes, TRANSFER transports it in
an organized fashion, to one node at a
time. It does not need to employ network
TMF transactions. Instead, it relies on
redundancy in its data base structure to
restart transport where it left off if the
link to the appropriate node goes down
during transmission.

3. Once a package has been delivered, the
receiving application often needs to act on
it. Accordingly, TRANSFER provides for
agents, user-supplied programs that are
selectively invoked upon delivery of a
package. The selectivity is uniquely defined
for each depot.

4. The standard interface into the TRANSFER

system is by message request and reply
to a TRANSFER server. Thus, TRANSFER
services are accessible to any language
that can perform a WRITEREAD, including
COBOL, FORTRAN, TAL, and Screen COBOL.

How the TRANSFER System Works

The TRANSFER delivery system was designed
to deliver packages of data reliably any
where in a network without regard to the
format of the data or the availability of
resources at any particular moment. 1 In
addition, it allows the location of corres
pondents (either individuals or applications) to
change while keeping the linkage to them
intact (through distribution lists that reference
them). Once TRANSFER has linked two or
more applications together, changes in the
number or names of recipients does not
require program modification.

'In the following description of the TRANSFER system, a number of
specialized terms are used. These terms are defined in the glossary accompanying
this article.

SPRING 1984 T A N D E M J O U R N A L 27

Figure 2.

The components of the
TRANSFER delivery
system. TRANSFER can
operate on a single
Tandem system or on many
nodes in a network ol
Tandem systems. It also
provides gateways into
the system for other
devices and computers.

28

Figure 2

Transfer is responsible
for delivery

Client
(e.g.,

T/MAIL)
Sending

correspondent
(e g, BENETT ANNE

@CORP)

Client
(e.g.,

T/MAfL)
Depot Recipient list Depot

Receiving
correspondent

(e g, SIMPSON MARK
@DIV1

Agent

Creation -------+Submittal ----Transport -Delivery ~Retrieval

Sending node

Components of the TRANSFER System
Figure 2 depicts the components of the
TRANSFER delivery system. On both the sending
and receiving end, there are correspondents.
These can be people, programs, or devices. A
correspondent is assigned a name that
specifies the node at which the correspondent
receives packages and identifies the corres
pondent as a unique entity on that node. For
example, a correspondent named Anne
Benett using the \CORP system would be defined
as BENETT ANNE @CORI~

When correspondents are defined, unique
depots are established for them in the
TRANSFER data base. (There is no depot file
per se; depot is an abstraction referring
to any records that define or pertain to a par
ticular correspondent.) The depot contains
a correspondent's distribution lists, profile, and
folders. A distribution list is a list of cor
respondent names and/ or the names of other
distribution lists to which packages are to
be sent. Correspondents can define their own
distribution lists. A correspondent's profile
contains default delivery parameters, a pass
word, and other necessary information
about the correspondent. Folders are filing
areas for data that is stored in a depot.

Correspondents communicate their requests
to the system via user-interface programs
called clients, which, in turn, translate the
requests for TRANSFER. A client physically
links correspondents with their depots. Notice
that a client exists at both the sending and

Receiving node

receiving end of a delivery. At the sending end,
a client creates and submits the package;
at the receiving end, another client retrieves it
at the correspondent's convenience.

An example of a client is TRANSFER/MAIL

(T/MAIL), an electronic mail system sup
plied with the TRANSFER delivery system. With
T /MAIL, correspondents can create mail
messages, send them to one or more recipients,
and read, reply to, file, print, and forward
the messages they receive. These correspon
dent requests are translated by T /MAIL for
TRANSFER, which then delivers the mail.

Agent programs resemble clients in that
they are user-written, but they act automatically
on behalf of a correspondent without the
correspondent's having to invoke them, while
clients are invoked by the correspondent
to interact with TRANSFER.

Clients and agents can be written for
any application that uses the TRANSFER delivery
system. In the business example in Figure 1,
a user-written client would accept the order
from a correspondent and send the required
information, via requests to TRANSFER, to the
corporate office for the credit check. A
user-written agent at the receiving end would be
notified when the information arrived and
would perform as much of an automatic credit
check as it could. A user-written client at
the receiving end would allow credit personnel
to access credit information at their con
venience and complete any of the credit check
the agent was unable to perform.

TANDEM JOURNAL SPRING 1984

TRANSFER Delivery System
Glossary

Basics

Correspondent

Depot

Client

Agent

A user defined in the TRANSFER
name data base.

A correspondent's private storage
areas.

A program acting as an interface
to the TRANSFER system that allows
a user to access his depot, e.g.
TRANSFER/MAIL.

A program invoked automatically
during delivery that acts on behalf of
a user.

Components of packages and depots

Item

Package

Recipient

Distribution
list

Folder

lnbox

Names and IDs

Session

Session ID

Item ID

A unit of data created by TRANSFER
at the user's request and given a
unique ID to allow TRANSFER to
keep track of it.

An item that has delivery information
and a list of recipients attached.
All packages are items; not all items
are packages.

The name of a correspondent or
distribution list to which a package is
to be sent.

A list of correspondent names and/or
names of other distribution lists.

A place within a depot in which to
store items.

A special folder in which all
packages for a depot are placed upon
delivery. Every depot has an inbox.

A period of interaction with
TRANSFER (including access to a
depot) which is established by a
client when a correspondent name
and associated password are
presented to TRANSFER.

An internal number that identifies a
session to TRANSFER.

An identification assigned to an item
that is unique network-wide. It con
tains node identification and a number
unique on the originating node.

(Continued, next column)

S P R N G 9 8 4 T A N D E M

Correspondent
name

Node name

A 32-character name unique on
its node. When combined with the
node name, it is unique throughout
the network.

The 8-character name of a system.

Phases in the life of a package

Creation

Submittal

Delivery

7i·ansport

Retrieval

The generation of items or packages
by passing data to TRANSFER.
(Performed by a client.)

The giving of a package to
TRANSFER for asynchronous deliv
ery. The client signals SUBMIT,
and TRANSFER performs the
operation. During this phase, each
distribution list is expanded and
the correspondent names it references
are added to the list of recipients.
Data within a submitted package is no
longer modifiable.

The placing of a pointer (the item
ID) in the inbox folder of every
recipient on the local node that is to
receive a specific package. (Per
formed by TRANSFER.)

The transfer of a package to each
remote node in a list of recipients, one
at a time. When the TRANSFER
system on the remote node receives
the package, it assumes responsibility
for processing the package on
that node.

The perusal of a correspondent's
inbox at the correspondent's conve
nience. (Performed by a client.)

Time stamps on a package

Delivery begin

Delivery end

Expiration of
a package

A time specified in a package
before which the package must not
be delivered.

A time specified in a package
after which the package must not be
delivered. If it is still undelivered
when this time is up, the package is
returned to the sender.

A time specified in a package after
which, if the package is still unex
amined, it is returned to the sender.

JOURNAL 29

Phases in the Life of a Package
There are five phases in the life of a package:

■ Creation. The package is introduced into
the system.

■ Submittal. The package is committed to
be sent to one or more destinations.

■ Delivery. The package arrives at local
destinations on time and complete.

■ Transport. The package is transferred to
one or more remote nodes.

■ Retrieval. The package is read and processed.

The following describes what takes place
during each phase.

Creation. When a client creates a package
of information, that package consists of
items and recipient names. The items are

TW.ANSFER checks the
availability of the

remote node regularly.

composed of records
in the TRANSFER data
base containing the
data to be sent. A
package can consist of
one or more items
and have a list of one

or more recipients. A recipient can be an
individual correspondent or a distribution list.

Package creation occurs when the
TRANSFER system creates an item of type
PACKAGE. Individual recipient name and
data records, containing the item ID returned
by TRANSFER, are then added. Other whole
items may also be attached to the package, and
it may continue to be added to or modified
until it is submitted.

Submittal. When the client submits the
package, TRANSFER assumes the responsibility
for delivering it to all the recipients. The
TRANSFER system does this asynchronously,
freeing the client to process other requests
from the user.

TRANSFER first expands the recipient
list for the package. If the list contains any
local distribution lists, TRANSFER adds all
correspondents on these distribution lists to
the recipient list. (If any duplicate corres
pondent names are found, they are discarded
so that the package is delivered only once
to each correspondent.) Thus, associated with
each package is an original recipient list
and, possibly, an expanded list.

Delivery. Once the recipient list has been
resolved, the TRANSFER system delivers the
package to local recipients. If the package
is submitted as a timed delivery (i.e., it is not
to be delivered until a specified time),
TRANSFER delays the local delivery until the
time specified in the package.

TRANSFER delivers a package by depos
iting it in the inbox folder in the recipient's
depot. (The TRANSFER system supplies all
depots with an in box folder. A client can create
other folders, if desired, and use them to
store related packages).

Once the package has been inserted in
the inbox folder, the TRANSFER system checks
to see if an agent should be invoked upon
receipt of the package. Each depot can be
defined (through the T /MAIL administra
tion client or a user-written client) as having
one or more agents invoked upon delivery.
If agents are defined for the type of package
that is delivered, TRANSFER invokes them
one at a time in the sequence defined in the
depot. After all agents have been invoked,
TRANSFER continues to deliver the package
to other recipients.

After the local delivery has been completed,
TRANSFER checks the package to see if the
client specified that the package is to have an
expiration date. If so, TRANSFER inserts the
package in a time queue.

The TRANSFER delivery system assures
delivery of the information within a specific
period of time (measured in minutes or
hours, not seconds). If the package cannot be
delivered within the specified period,
TRANSFER returns the package to the sender,
enclosed within an error package. (For
example, a package might be returned to the
sender because the path to the appropriate
node was unavailable within the specified deliv
ery period or the package was delivered but
not retrieved by the recipient before it expired.)

Transport. If any of the recipients resides on
a remote node and a path to that remote
node is available, the TRANSFER system trans
ports the package. If a path is not available,
TRANSFER saves the request and transports the
package when it is available.

30 TANDEM JOURNAL SPRING 1984

TRANSFER checks the availability of the
remote node regularly. As soon as it has deter
mined that a path to the node is available,
it transports the package.

The TRANSFER system transports a package
in three steps. First, it copies and inserts
the items in the package into the TRANSFER data
base on the destination node. (All items
have network-wide unique identifiers. If an item
already exists on the remote node, it is not
copied; instead, TRANSFER simply points to the
existing copy.) Next, it transmits the original
recipient list and the recipients for the remote
node to the remote data base. Finally, it
formats a submit request to the TRANSFER soft
ware running on the remote node, which
then assumes responsibility for recipient list
expansion, delivery, and transport to other
nodes referenced in the expansion of the reci
pient list. The local TRANSFER system is
left free to continue local processing.

Retrieval. At their convenience, recipients
run a client program to retrieve packages
in their depots. For example, they can run the
client T /MAIL, supplied by Tandem, to
retrieve mail messages when they are ready
to read them. Application programmers
can write other clients to perform the retrieval
and processing functions necessary for
their applications.

Asynchronous Processes
The interface to TRANSFER is generally
performed by an interactive client running at
a priority consistent with interactive appli
cations. The following portions of TRANSFER

are designed to operate in the background
asynchronously:

■ Transport between nodes.

• Timed delivery at a node.

• Execution of agents triggered by delivery.

This asynchronous part of TRANSFER is
configured to run at a lower priority than that
of the interactive interface, so that it oper
ates only when the interactive environment is
not consuming all the CPU power. That is,
it is designed to make use of the excess capacity
available between the peaks in utilization
created by interactive applications.

Conclusion
Distributed applications and gateways
have unique information-delivery require
ments. While the delivery needs of individual
OLTP applications are easily met with the
ENCOMPASS distributed data base system,
loosely-coupled applications and gate
ways also need the delivery service of the
TRANSFER system.

The TRANSFER system provides the
following features:

• Assured delivery of information. If
the information cannot be delivered within
the specified period of time, TRANSFER

automatically notifies the sender.

■ Elimination of duplication on a node.
If an item is already on a receiving node, it
is not transported again. Also, a pack-
age is delivered to each recipient only once,
even if the recipient is in more than one
distribution list referenced by the package.

• Transport across the EXPAND network.

• Timed delivery of packages on a node.

■ Automatic invoking of user programs when
a package is delivered.

■ A programmatic interface between user
written programs and the TRANSFER software.

The TRANSFER delivery system is flexible,
reliable, and data-format-independent.
TRANSFER handles the transport and delivery
of data on behalf of users, without requiring
them to be logged on to the system at that time.
It is a general-purpose delivery system that
greatly increases the speed and efficiency with
which loosely-coupled distributed applica
tions and gateways can be implemented. It also
allows for the easy expansion and modifi
cation of the applications as they grow. Finally,
the TRANSFER delivery system allows the
application designer to create a distributed
application based on the natural interaction
of the company's operating areas without
having to implement a complex delivery and
transport mechanism.

Steve Van Pelt is a senior systems analyst in Tandem's Customer
Application Support Group. For the past year and a half he
has been primarily involved in training Tandem analysts in the
TRANSFER delivery system. Since joining Tandem in January
1981, Steve has also trained Tandem analysts in relational data base
design and the PATHWAY transaction processing system. He
has a Bachelors of Science degree in Electrical Engineering from
Leland Stanford Junior University.

SPRING 1984 T A N D E M J O U R N A L 31

32

An Introduction
to Tandem
EXTENDED BASIC

andem EXTENDED BASIC is a
simple, interactive program
ming language that is particu
larly useful for quick problem
solving applications. It meets
the 1978 ANSI X3.6 standard
for BASIC, as well as offering

many useful extensions. It comes with both
an interpreter and a compiler. When the inter
preter is used, each source line is checked
for errors as it is typed in by the user, and all
correct input is immediately processed.
The compiler can be used to change user
supplied source lines into object code,
providing for faster execution. This article intro
duces the features of Tandem EXTENDED BASIC.

Table 1.

A summary of commonly used interpreter commands.
Command

APPEND

BINSAVE

COMPILE

CONT

DELETE

EXIT
(CTRL/Y)

F

FC

FILES

HELP

LENGTH

Function

Merges another source program with the current
program.

Saves pseudo-code to a permanent file.

Produces object code for the current program.

Continues interpretive program execution after a
STOP statement.

Removes line(s) of the current program.

Exits the BASIC environment.

Enables editing of the current source line (similar to
the EDIT FIX function).

Enables editing of last interpreter command entered
(similar to the Command Interpreter FC command).

Lists all files in a particular subvolume.

Prints syntax for BASIC interpreter commands and
BASIC statements. The default is to print all
available classes of information in the HELP file.

Prints the amount of memory used by the current
program.

Accessing EXTENDED BASIC

On most systems having EXTENDED BASIC,

the programmer can run the interpreter by
simply typing the Command Interpreter
command BASIC. The compiler is invoked from
within the interpreter environment.

Interpreter commands enable the BASIC
programmer to create, edit, compile, run, and
debug programs. They perform functions
outside the context of the program and are
not a part of the BASIC program itself. Unlike
BASIC statements, which must have line
numbers, interpreter commands are entered
without line numbers and execute imme
diately. EXTENDED BASIC provides an arrow
(------1) prompt when ready for its next command.

Command

LIST

NEW

OLD

RENAME

RUN

SAVE

TRACE

VOLUME

Function

Prints the specified line(s) of the current program.

Clears the interpreter memory area in order to
create a new program.

Loads a specified program (either source or
pseudo-code) into the interpreter's memory area.
This program becomes the current program.

Changes the name of the current program.

Executes the specified program (current program
by default).

Saves the source text of the current program to
a permanent file. SAVE ! saves the text in the same
file· otherwise, a filename must be specified
with this command. UN SAVE purges a specified file.

Causes the printing of line numbers during
program execution. NOTRACE disables this facility.

Resets or displays the default volume and
subvolume.

T A N D E M J O U R N A L SPRING 1 9 8 4

A summary of the more commonly used
interpreter commands is in Table 1. 1

When EXTENDED BASIC loads a source pro
gram, it translates it into an executable form,
called pseudo-object code. (Pseudo-object
code is not humanly readable, but is under
standable to the interpreter.) The process can
be quite time consuming, so EXTENDED
BASIC provides a way to save the pseudo code
in a file, and then run the pseudo code with
out having to reinterpret a program's source.

It may be desirable to generate object
code from the EXTENDED BASIC source since
object code executes much faster than
pseudo code. This can be done by issuing the
interpreter command COMPILE. Often dur
ing a program's development, the source
code is written, run, and debugged through
the interpreter, and then a "final" bug-free copy
of the program is compiled into an object
program that is released to the user community.

When the interpreter is used, any changes
made to the current program are not reflected
on the permanent file copy of the program
unless a SAVE command is issued. The pro
grammer must be careful to SAVE altered
programs, as it is entirely possible to make a
large number of changes to a program through
the BASIC interpreter, exit the interpreter
without issuing a SAVE command, and lose
those changes.

EXTENDED BASIC variable names can be up
to 29 characters in length. The first character
must be alphabetic, but the remaining char
acters may be alphabetic, numeric, or a
period (.). The last character of the name
determines the variable type:

Last character Resulting
in name variable type

%
$

any other

integer
character
default numeric
(either FIXED or REAL)

The default numeric type is either FIXED deci
mal point representation with nine fractional
digits, or, if the Floating Point Option is used,
64-bit exponential (REAL) representation.

1In the tables in this artick. current ,-,rogram refers to the program currently
stored in the interpreter memory area I i.e .. the one last referenced in an
OLD or :'JEW interpreter command).

Line numbers must be given for every BASIC

line entered. Source lines are sorted in
ascending order based on the line number. To
define more than one statement in a single
program line, statements can be separated by
back slashes (\), in which case the line
number labels the first statement of the line.
EXTENDED BASIC also provides a facility
to continue a program line onto the next input
record by entering an ampersand(&) as
the last character on the line to be continued.

EXTENDED BASIC Statements

EXTENDED BASIC statements fall into two
categories: executable and non-executable.
Executable statements specify "actions;"
they control the input and output of data, eval
uate mathematical calculation, and control
program flow. The
more commonly used
executable state
ments and their opera
tion are summarized
in Table 2.

Non-executable

EXTENDED BASIC
has both an interpreter

and a compiler.
statements are declarative statements used to
specify data items and functions used in a
program. Also included is the REM statement
which allows comments to be placed in the
middle of program code. The more commonly
used non-executable EXTENDED BASIC

statements are summarized in Table 3.

Program Flow

The flow of an EXTENDED BASIC program is
statement-by-statement, starting at the top
of the program, and proceeding sequentially
downward. This flow can be interrupted by
transfer statements, looping, subroutine
invocation, and error recovery.

SPRING 1984 TANDEM JOURNAL 33

Figure 1.

Syntax for the IF state
ment, one of the fun
damental executable
statements in BASIC.

34

Figure 1

IF ,condition, {THEN ,statement> l [ELSE <statement,
{THEN dine-numben} [ELSE dine-number>]
{GOTO dine-numben}

Transfer statements cause the control of
execution to be set to a different statement,
whereupon the sequential program flow is
resumed. It may skip over many statements, or
jump backward to re-execute statements
already encountered. A GOTO statement, like
the one in the example below, is a transfer
statement.

10 GOTO 40
20 i% = 5
30 j% = 6
40 k% = 7

Table 2.

! Execute 10, transfer to 40
! Will not be executed
! Will not be executed
! Will be executed, natural
! sequence resumed

Note that program execution transfers
immediately and unconditionally to the spe
cified line number. (In this and all succes
sive examples, EXTENDED BASIC reserved
words are capitalized and user-supplied names
are shown in lower case.)

IF-THEN and IF-GOTO statements condition
ally transfer program execution to a speci
fied line number, depending on the outcome
of a test. The syntax of the IF statement is
shown in Figure 1. 2

The deciding <condition> is a relational
expression which must evaluate to a TRUE or
FALSE value. If the condition is true, the
first (or TRUE) clause is executed. If the con
dition is false, then one of two actions may

2ln all syntax diagrams, the notation of the EXTENDED BASIC Reference
Manual is used: hraces ({}) indicate that exactly one of the options listed
must be selected: brackets ([I) indicate that the field is optional and any number,
inclm.ling zero, of the enclosed options may be chosen; angle brackets (<>l
indicate a field in which the user must supply the variable name or expression.

A summary of commonly used executable statements.
Statement

CHAIN

CLOSE

DELETE

FIND

FOR,
UNTIL,
WHILE

GET

GOSUB

GOTO

IF

INPU~
LINPUT

KILL

MAP

Function

Transfers control from the current program to
another program and commences execution of the
new program.

Removes (from the program) access to a file until
it is reopened.

Removes an existing record from a file.

For use with record-oriented file access, sets
the current and next record pointers to a
specified record.

Allows repeated execution of a set of statements. A
FOR loop executes for as many times as the
programmer specifies; an UNTIL loop executes
while the control expression is FALSE; a WHILE
loop executes while the control expression is TRUE.

Reads a record (pointed to by the current record
pointer, or specified by a key value] from a file into
a program variable or variables. GET is the
recommended way to receive non-terminal input.

Transfers control of execution to a designated line
where execution continues until a RETURN state
ment is encountered.

Transfers control of execution to a designated line.

Transfers the program execution point to different
places, depending upon whether a specified
expression evaluates to a TRUE (nonzero) or FALSE
(zero) value.

Allows user entry of data (usually from a terminal)
during program execution, with the optional display
of a prompt to the user. INPUT is oriented toward
reading a series of data items, while LINPUT is
oriented toward reading an entire line as a single
data item.

Purges a file.

Allocates a section of memory as a buffer and
associates a set of variables with it

T A N D E M

Statement Function

MAT Performs matrix operations on arrays. The
operations include array addition, subtraction, or
multiplication; initialization to zero, one, or the
identity matrix; transposition; and inversion.

NEXT Used with FOR, WHILE, and UNTIL statements to
mark the end of a loop of statements.

ON ERROR Provides a method for a program to trap execution
GOTO errors and perform user-defined error recovery.

OPEN Readies a file for data transfer between a physical
file (identified by a logical channel) and program
variables.

PRINT Writes data (as ASCII characters) to a specified file
(usually the user terminal).

PRINT Writes formatted data to a specified file (usually a
USING terminal). Character masks are used to determine

the way in which the output of strings or numerics
is to appear.

PUT Writes a record to a file. This is the most effective
way to send information to a non-terminal physical
device.

READ Inputs a list of values built into a data pool by one
or more DATA statements.

RESUME Allowed only in error trap routines, resets error flag
and begins program execution at the specified line.

RETURN Transfers execution point from within a subroutine
back to the place where the subroutine was invoked
(the next line after the GOSUB statement].

SORT Reorders a set of records according to a specified
key field.

STOP Suspends program execution.

UPDATE Replaces or deletes an existing record (pointed to
by the current record pointer).

WAIT Designates the maximum amount of time the system
will wait for 1/0 operations (e.g., user terminal
input) to complete.

0 U R N A L S P R N G 9 8 4

occur. If a second (or FALSE) clause is given, it
is executed. If no ELSE clause has been
specified, program execution resumes at the
next sequentially numbered line after the
IF statement.

Below are two example IF statements. In the
first one, if c% is equal to 0, answer$ is set
to "zero"; otherwise, it is set to "non-zero:' In
the second, the absolute value of xis calculated.

430 IF c% = 0 THEN answer$ = "zero" &
ELSE answer$ = "non-zero"

610 IF x < 0 THEN x = - x

The ON GOTO construct can be used to
transfer execution control to one of several
statements. A numeric expression is evaluated
(usually to a very small positive integer)
and then used as an index to a list of statements
to which to transfer. If the value of the
expression is equal to one, then program con
trol passes to the first line specified; if the
value is two, control passes to the second line;
and so on. An example better illustrates this:

40 ON b+3 GOTO 10, 20,300

If b has a value of - 2, transfer is made to line
10; if b has a value of -1, transfer is made
to line 20; and if b has a value of 0, transfer is
made to line 300. An error is generated if
the numeric expression (in this case, b+3)
evaluates to an index without a corresponding
line number.

A program loop is a series of statements
written so that control transfers to the first
statement of the series after the final statement
of the loop is executed. The process con
tinues until some terminating condition is
reached. There are four types of loop con
structs within EXTENDED BASIC:

■ FOR/NEXT loop

■ UNTIL/NEXT loop

■ WHILE/NEXT loop

■ Creation of a loop through the use of a
GOTO statement

A loop causes the same set of statements to
be repetitively executed, either a fixed
number of times, or until a condition is (or is
no longer) met. Each of these constructs is
described in the next section.

Subroutines are invoked via the GOSUB verb.
Unlike other high-level languages, BASIC
does not require that a subroutine correspond
to physical blocks of code segregated from
the rest of the program. A subroutine is defined
as those statements executed between the
time a GOSUB statement and a RETURN state
ment are encountered. The use of subroutines
is explained in more detail in the section,
"Invoking a Subroutine."

Error recovery can be handled by the system
if the programmer chooses not to inter
cede. The default EXTENDED BASIC action is
to terminate execution and display an error
message corresponding to the error. EXTENDED
BASIC provides the means to trap execution
errors and allow user-defined error recovery
through the ON ERROR GOTO construct.
Control is then passed to a specified line
number once an error occurs, where the
error can be determined and appropriate
action taken. Error recovery is discussed
in greater detail in the section, "Error Handling:'

Table 3.
A summary of commonly
used non-executable statements.
Statement Function

DATA Introduces a constant value, or series of constants,
into a program. Data appearing in a DATA state
ment is read into the program by the use of one or
more READ statements.

DECLARE Defines the type of a numeric variable, array, or
function. EXTENDED BASIC types are 16-, 32-, and
64-bit integer; fixed-point; and 32- or 64- bit
floating-point real representations.

DEF, Defines a sequence of operations that return a
FNEND single numeric or string value as a user-defined

function. DEF statement is used to specify the
function name and returned value. FNEND indi
cates the end of the text if it is a multi-line function.

DIM Used to specify the maximum number of elements
in an array.

IMAGE
or:

MAP

REM
orr

IMAGE, or a colon(:), is used to give the format
description for values being output by a PRINT
USING statement.

Allocates a section of memory as a buffer and
associates a set of variables with the space.

Used for placing programmer comments in the
program code, in order to better document the
program. Text appearing in a REM statement, or to
the right of an exclamation point (I) is ignored by
the interpreter.

SPRING 1984 T A N D E M J O U R N A L 35

Figure 2.

In this example of a
FOR/ NEXT loop, the value
of the loop index (i%)
and its square will be
printed for the integer
values 1 through 10. A
FOR/NEXT loop is exe
cuted a fixed number
of times (in this instance,
J() times).

Figure 3

Figure 3.

Correct loop nesting

- FORa=1T05

~ NEXTa

Correct and incorrect
loop nesting. In the correct
example on the left, b
will be incremented from
3 to 7 before a is incre
mented, since a is in an
inner loop.

36

Loop Constructs

A loop is a self-repeating sequence of program
statements. Loop constructs can be built
in four different ways. The most explicit
method, and probably the best for most appli
cations, is the use of a FOR/NEXT loop.
Here the programmer states the exact number
of times a loop is to be executed. The
WHILE and UNTIL loop constructs are very
similar to each other; each is dependent
on a stated condition being TRUE or FALSE to
determine how many times a loop is to be

Figure 2

FOR/NEXT loop

10 FOR i% = 1 TO 10
20 square% = i% * i%
30 PRINT i%, square%
40 NEXT i%
50 END

Incorrect loop nesting

F.
FOR a=1T05

FOR b=3T07

NEXT a

NEXTb

executed. The final (and least structured) way
to build a loop is by the use of a GOTO
statement that directs execution to a point in
the program preceding the GOTO statement.

The FOR loop has the following syntax:

FOR <loop index> = <lower bound> TO &
<upper bound> [STEP <increment>]

NEXT <loop index>

If <lower bound> is greater than <upper bound>
before the loop is entered, the loop is not
executed. Otherwise, the loop is executed with
<loop index> having a value of <lower bound>
the first time through the loop. <Lower bound>
is then incremented by <increment> each
time through the loop, and the loop is repeated
until the value for <loop index> exceeds that
of <upper bound>. The value for <loop index>
can be used within the loop for processing.
The default <increment> is one.

Figure 2 illustrates how a FOR/NEXT loop
is constructed. The example prints the square
of the integer values between 1 and 10.

Any number of loops can be nested as long
as all inner loops are fully imbedded within
the next most inner loop. The following is a
program segment that initializes a 3 x 4
array to values of zero using an imbedded loop
(lines 60 through 80):

50 FOR x = 1 TO 3
60 FOR y = 1 TO 4
70 array (x,y) = 0
80 NEXT y
90 NEXT x

Figure 3 illustrates correct and incorrect loop
nesting.

The UNTIL and WHILE clauses allow the
creation of conditional program loops. The
UNTIL statement has the following syntax:

UNTIL <numeric expression>

NEXT

The syntax for the WHILE statement is identical:

WHILE <numeric expression>

NEXT

T A N D E M J O U R N A L SPRING 1984

<Numeric expression> is evaluated at the
beginning of each iteration of the loop. The
statements of the UNTIL loop are executed
until <numeric expression> becomes TRUE,
at which point control is transferred to the
statement immediately following the NEXT
statement. WHILE loops are the corollary to
UNTIL loops: a WHILE loop is executed
until <numeric expression> becomes FALSE.

The FOR/NEXT loop example of Figure 2
can be coded using UNTIL or WHILE loops
as shown in Figure 4. When an UNTIL loop or
a WHILE loop is used, care should be taken
to insure that the loop can be exited. The loop
condition clause should change in value for
subsequent times through the loop such that a
FALSE situation for a WHILE loop (TRUE
for an UNTIL loop) can be reached. Alterna
tively, the logic within the loop should con
tain a transfer statement (i.e., GOTO) such that
the loop can be exited. There are only rare
occasions (such as reading to the end of a file)
when it is desirable to code an infinite loop.

The final way to create a loop is through the
use of a "backward-referencing" GOTO

statement. In backward-referencing, the target
statement of the GOTO appears before the
GOTO statement. This method is cruder than
the other loop constructs and generally
should not be used. Squaring ten integers would
be coded as shown in Figure 5.

Terminal 1/0

Two special EXTENDED BASIC statements
handle communication to and from the ter
minal. The INPUT statement can be used
to provide data to a program while it is running.
It has this syntax:

INPUT l" <prompt>" ,] <variable list>
l" <prompt> " ;]

<Prompt> is a character string that is displayed
on the user's terminal, before that user
can respond to the program with an answer.
<Variable list> can contain any number of
numeric or string variables in any order, for
which the user must supply a correspond-
ing value. When an INPUT statement is encoun
tered, the program waits until enough data

Figure 4

UNTIL/NEXT loop WHILE/NEXT loop

10 i% = 1 10 i%= 1
20 UNTIL i% >10 20 WHILE i%<= 10
30 square% = i% * i% 30 square% = i% * i%
40 PRINT i%, square% 40 PRINT i%, square%
50 i% = i% + 1 50 i% = i% + 1

Figure 5

60 NEXT
70 END

Backward-referencing
GOTO statement

10 i%=1
20 square% = i% * i%
30 PRINT i%, square%
40 i% = i% + 1
50 IF i% <= 10 GOTO 20

60 NEXT
70 END

has been typed in by the user. EXTENDED BASIC
prompts for terminal input with a question
mark(?).

The other special statement for terminal
1/0 is the PRINT statement, which handles
output to the terminal. In the simplest case
(the word PRINT with no variables supplied),
the PRINT statement outputs a blank line.
For more sophisticated use, the syntax is:

PRINT [<variable>] [, <variable>] .. .
[; <variable>] .. .

<Variable> may contain any expression, char
acter string, numeric constant, or variable.
If a comma(,) is used as the separator between
variables, spaces are inserted on the output
stream to give column alignment. If a semicolon
(;) is used as the separator, no spaces are
inserted between consecutive output fields.

Figure 4.

Examples of WHILE/
NEXT and UNTIL/ NEXT
loops. These examples
print the value of the
squares of numbers
between 1 and 10.

Figure 5.

Example of a backward
referencing GOTO state
ment to create a loop.
Until the value of i%
exceeds 10, the GOTO at
line 50 will force execu
tion to continue at line 20.
This program also prints
the value of i% and its
square for values between
1 and JO.

SPRING 1984 T A N D E M J O U R N A L 37

Figure 6.

Use of the INPUT and
PRINT statements. The
values in boldface type
are user input. The INPUT
statement prompts for
input and then waits to
receive the values from
the user.

Figure 7.

Formatting with the PRINT
Statement. Note how
the output differs with
commas and semicolons.
(This example contains
a complete interpreter
session.)

38

Figure 6

Source code

10 REM
20 INPUT
30 INPUT
40 PRINT
50 END

Sample run

Calculate hypotenuse of right triangle.
"Enter the first side", a
"Enter the second side", b
"Hypotenuse:"; sqr((a*a) + (b*b))

Enter the first side ? 3
Enter the second side ? 4
Hypotenuse: 5

Figure 7

Source code
10 dim x$(5)
20 x$(1) = "a"
30 x$(2) =" b
40 x$(3) =" C

50 x$(4) =" d
60 x$(5) =" e
70 print x$(1 }, x$(2}, x$(3}, x$(4), x$(5)
80 print "Now with semicolons ... "
90 print x$(1); x$(2); x$(3}; x$(4); x$(5)
100 end

Sample run
:basic
EXTENDED BASIC FX - T9204A00 - (01AUG83)
-,old example
-,run
$TRAIN.JMBASIC.EXAMPLE 01-Feb-84 17:45:29
a b C d e
Now with semicolons ..
a b C d e
CPU time : .07 seconds
----,EQFI
Total CPU time : .48 seconds
Elapsed time: 1 minute 2.44 seconds
Thank You.

The program in Figure 6 illustrates the
use of the INPUT and PRINT statements. Note
the semicolon in the PRINT statement; it
insures that the two print fields are not sepa
rated by extra white space. Figure 7 repre
sents another program to show how output
formatted with commas and semicolons
can differ.

Program Data

Like the INPUT statement, the READ and DATA
statements supply data to the program.
However, in this case, the data is contained
in the program itself, rather than coming

from an external source (terminal or file). The
READ and DATA statements differ from INPUT

in another way. When INPUT is used suc
cessive times, the data that is received by the
program can differ from one occurence to
another. READ and DATA supply a fixed list
of data values to the program, and the pro
gram must be edited to change the values.

A READ statement inputs the list of variables
whose value it obtains from a DATA state
ment. Neither statement works without the
other. A READ statement has the syntax:

READ <variable> [,<variable>] ...

<Variable> may be a numeric variable, string
variable, or an array.

The DATA statement consists of a series of
constants, as follows:

DATA <constant> [,<constant> j ...

<Constant> may be either a string or numeric
constant. With a READ statement, the vari
ables listed are assigned values sequentially
from the set of DATA statements in the
program. Before the EXTENDED BASIC program
is actually run, all DATA statements are
appended to each other in a data block. Each
time a READ is encountered, the next value
from the data block is extracted and placed in
the variable mentioned in the READ state
ment. An error occurs when a READ statement
is encountered and the data in the data
block has been exhausted.

The following example shows the use of
these statements:

150 READ X, yo/o, z$
350 DATA 6, 20, 30, 50, 70, 85

After this fragment is executed, x will have
the numeric value 6.0, y% will have the
numeric value 20, and z$ will have the character
value "30." The next variable in a subse
quent READ statement (not shown in this frag
ment) would be assigned the constant 50.

Often, it is necessary to use the same DATA
data more than once in a program. The
RESTORE statement causes the next READ

statement to begin reading data from the
first DATA statement in the program, regard
less of where it read the last data value.

TANDEM JOURNAL SPRING 1984

File 1/0

Among the most useful features of EXTENDED
BASIC are those having to do with file access.
A file can be a mass storage file, a tape file,
a line printer device, or another process. The
user can store information read in or cal
culated during one program session and then
retrieve and possibly update the informa-
tion at a later time. Tandem EXTENDED BASIC

offers seven file types, summarized below:

Unstructured files. Unstructured files have
data stored as a string of bytes. Data is written
to the file as records of any length (up to
the record length specified when the file was
opened). Records are always padded to an
even number of characters. Data may be read
sequentially or by explicit record number.
Any file (even if created as another file type)
can be accessed as an unstructured file.

Fixed files. Fixed files are unstructured files,
containing records of fixed length. Data
is written to the file in records of the record
length. (Shorter records are padded with
blanks.) Data may be accessed sequentially or
by record number.

Edit ji'les. Edit files are a special type of
unstructured file. Each record is subjected to
a compression algorithm, may be up to 256
characters in length, and has an associated
EDIT line number. At any one time, an EDIT
file cannot be opened for both READ and
WRITE operations. Data may only be accessed
sequentially. This file type is used by the
Tandem text editor, EDIT.

Virtual files. In EXTENDED BASIC, virtual
files exist to store the information contained
in virtual arrays. (Virtual arrays exist to
handle extremely large blocks of information -
up to 2M bytes-that can be referenced
by a single variable name.) The only permis
sible way to access information from a
virtual file is by reference to array elements.

Indexed files. Indexed files consist of variable
length records, each record containing a
unique primary-key field. Records are arranged
in ascending order of primary-key field
values. Record lengths can vary from one byte
to the maximum specified when the file is
created. The records can be accessed either
sequentially or randomly through primary
or alternate keys.

Figure 8

Record types: Two bytes

TYPE1 I I

name address city state zipcode
(10 chars.} (20chars.) {1Ochars.) (2 chars.) (5 digits)

TYPE 2

name employee num ssn score
(10 chars.) [4 digits) (11 chars.) (4digits)

Format for reading them into a file:

MAP(type1) name$= 10, address$= 20, city$= 10, state$=2, zipcode%
MAP(type2) name$= 10, empno%, ssn$ = 11, score

Relative files. Relative files consist of variable
length records stored in a position relative
to the beginning of the file. Each record is
assigned a record number (based on the
record position) that uniquely identifies it.
Record lengths may vary in size from one
byte to the maximum size specified when the
file was created. They can be accessed
sequentially or randomly by record number
or alternate keys.

Sequential files. Sequential files consist of
variable-length records stored in the sequence
in which they are entered. Alternate keys
are supported. Record lengths may vary from
zero bytes to the maximum size specified
when the file was created. New records are
appended at the end of the file.

The default file type when none is specified
is an EDIT file. Further information on these
file types can be found in the ENSCRIBE

Programming Manual.
The MAP statement is used to define record

layouts to the BASIC program. The syntax
for its use is:

MAP (<mapname>) { <varh [= <bytesize>]}
{ FILL }
{ FILL% } ...

{ FILL$ [= <bytesize>] }

The example in Figure 8 better illustrates how
the MAP statement is used. For memory
storage on a Tandem system (in most languages,
not just EXTENDED BASIC), a character
takes one byte of storage. In Figure 8, both
name$ and city$ are given 10 bytes of mapped
storage area; address$ is given 20 bytes.

Figure 8.

Use of the MAP statement.
In this example, a format
for reading the two
record types (typel and
type2) above is defined.

SPRING 1984 TANDEM JOURNAL 39

Figure 9.

Syntax for the OPEN
Statement. ,Filename,
represents a file name on
the Tandem system. It
must be enclosed in double
quotation marks (" "") or
given in a string variable.
The FOR INPUT clause
indicates that the file must
exist; an error is gener
ated if it does not. The
FOR OUTPUT clause
purges a file if it exists and
creates a new file (of
the same name) with the
attributes specified.
,Fileno, must be a number
between I and 63. and
represents the logical
channel number asso
ciated with the file.

Figure 10

Figure 9

OPEN <filename> [FOR (INPUT\ l AS [FILE][#] ,tilenm
(OUTPUT\

(EDIT }
[,[ORGANIZATION] {FIXED ll

{INDEXED }
(RELATIVE l
{SEQUENTIAL }
{UNSTRUCTURED}
(VIRTUAL l

(READ l {NONE }
[,ACCESS {MODIFY l l [,ALLOW {READ }]

{WRITE } {WRITE }
{APPEND} {MODIFY}

[, (MAP ,mapname> }] [, PRIMKEY ,keyname>J
{RECORDSIZE ,recsize>}

L {RECORD ,recno, } l
GET jl<fileno, [, {KEY [#,prim/alt key,] {GT /GE/EQ} ,string>} l

PUT Jl<fileno>

Figure 10.

Syntax for the GET and
PUT statements. GET
and PUT are the recom
mended statements for
communicating with per
manent files and non
terminal devices.

[, (KEY [<keyid>l (GT /GE/EQ} ,string>} l

[, RECORD ,recnm] [, COUNT ,bytecount>J

The variables empno% and zipcode% get the
default storage allotment for integer vari
ables (2 bytes) and score the default size for
a fixed-point variable (8 bytes).

For a logical record called type3, based on
the type2 record in which the social security
number (ssn) in Figure 8 is not used, the
following record would be designed:

MAP(type3) name$= 10, empno%, &
FILL$= 11, score

Use of the MAP statement is one of the more
difficult aspects of EXTENDED BASIC pro
gramming; however, the ability to define logical
record formats from within the program is
powerful and effective. It allows the program
mer to access parts of a record directly,
instead of having to fill temporary buffers and
extract the portion needed. The capability
of creating logical overlays in order to repre
sent the record data in more than one way
is available in only a few versions of BASIC in
addition to Tandem EXTENDED BASIC. MAP
statements are often used in conjunction with
the OPEN statement to specify the record
formats of the file to be OPENed.

The OPEN statement is used for data transfer
to and from a file. It sets up the logical
channel used to reference the file within the
EXTENDED BASIC program and optionally
creates the file if it does not already exist. The
ACCESS and ALLOW clauses of the OPEN
statement are used to control the manner in
which a file is used. The syntax for the
OPEN statement is shown in Figure 9.

The ORGANIZATION clause states the struc
ture of the file to be opened. An error is
generated if the existing file organization does
not match the stated organization, unless
UNSTRUCTURED is selected, in which case
the file is opened as unstructured. If the
ORGANIZATION clause is omitted, the file is
opened with its existing organization mode.
If the file does not exist and no ORGANIZATION
clause is given, it is created and opened
as an EDIT file type.

The ACCESS clause of the OPEN statement
specifies which file operations can be per
formed by the process that opened the file.
The types of access are defined below:

READ-Allow read-only access by the user.

WRITE-Allow write-only access by the user.

APPEND- Position to the end of the file and
allow write access by the user.

MODIFY-Allow read, write, delete, and
update access by the user.

The ALLOW clause of the OPEN statement
is used to specify the operations that other
processes are permitted to perform on the file
after it has been opened in the EXTENDED
BASIC process:

ALLOW NONE-Allow no other process to use
the file while it remains open.

ALLOW READ- Allow other processes to read
the file while it is open.

ALLOW WRITE and ALLOW MODIFY-Allow

other processes to read, write, and update the
file while it is open.

The MAP clause of the OPEN statement
matches a MAP buffer (created in a MAP state
ment occuring before the OPEN statement)
with the information to be retrieved from the
open file. The MAP clause also defines the
record size and keys, when applicable.

40 T A N D E M J O U R N A L SPRING 1984

RECORDSIZE defines the maximum record
size (in bytes) to be read from the opened
file. RECORDSIZE and MAP clauses cannot
appear in the same OPEN statement.

The primary statements used to communi
cate with an opened file are GET, which
reads a record from the file into a program
variable or buffer space, and PUT, which
writes a record to the file. The syntax for the
two statements is shown in Figure 10.

There are other 1/0 operations, besides
the primary ones covered so far, that can be
performed on permanent files. These include
resetting the current record pointer (FIND
statement), deleting the current record
(DELETE statement), updating the current
record (UPDATE statement), and closing
files (CLOSE statement). An example program
using 1/0 operations is shown in Figure 11.

Error Handling

EXTENDED BASIC has built-in error handling to
improve the structure and readability of
program code. It is necessary to "turn on" the
error trapping by including the ON ERROR
GOTO statement at the beginning of the pro
gram slice to be monitored. Once error
trapping has been enabled, if an error occurs,
an automatic branch is taken to the state
ment number specified when the trap was set.

The EXTENDED BASIC error-processing
routine uses system variables ERR and ERL to
report the error and aid in proper recovery.
ERR returns the error code of the most recent
error. ERL contains the line number of the
statement that was executing when the error
occurred. Both variables can be used by
the programmer in building error handling
routines.

Invoking a Subroutine

Unlike other high-level languages, BASIC
subroutines do not begin with a special state
ment; any executable statement can be
used as the first statement of a subroutine.
They are called by line number and must
terminate in a RETURN statement. A useful
practice is to assign distinctive line numbers
to subroutines. For example, the main pro
gram might use line numbers up to 300, and

Figure 11

10 ON ERROR GOTO 19000
20 MAP(type2) name$=10, empno%, ssn$=11, score
30 OPEN "file1" AS #1, edit, ALLOW none, MAP type2
40 GET #1
50 score = score + 1
60 UPDATE #1
70 GOTO 32767
19000 IF err= 12 THEN PRINT "File Busy."

\GOTO 32767
19999 ON ERROR GOTO O ! Unexpected error
32767 END

intended subroutine statements might start
at line numbers 1000 and 2000, respectively.
Below is the source for a program that
invokes a subroutine, consisting of line 1000.
The program prints "Execution continuing"
several different times.

10
20
30
40
50
60
1000

PRINT "Hi there:'
GOSUB 1000
PRINT "At line 30:'
GOSUB 1000
GOSUB 1000
GOTO 32767
PRINT "Execution continuing."

\RETURN
32767 END

&

When executed, this program produces the
following output:

Hi there.
Execution continuing.
At line 30.
Execution continuing.
Execution continuing.

Chaining Programs

The CHAIN statement should be used only
when a program is too large to load into
memory and run in one operation. The over
sized program can be broken into two or
more separate programs, with a CHAIN state
ment to call other programs into memory
after the first has run. The syntax for the
CHAIN statement is:

CHAIN mewprogfile> [LINE dinen0> j

<Newprogfile> is a string expression (enclosed
in double quotation marks or given in a
string variable) that contains the Tandem

SPRING 1984 TANDEM JOURNAL

&

Figure 11.

An example of updating a
record. This program
opens a file in exclusive
read-and-write-mode,
updates a record in the file,
and releases the file.

41

Figure 12

Figure 13

5 DEF FNCAPITALIZE$ (a$) = EDIT$(a$, 32) !capitalize letters

10 DEF FNINCREMENT% (i%) = i% + 1 I increment an integer by 1

! ** Determine the number of roots to a quadratic equation
5 ON ERROR GOTO 19000
8 1 ** Here's the function definition
9
10 DEF FNROOT$ (a,b,c)
20 discr = SQR((b*b) - (4*a*c))
30 IF discr > 0 THEN FNROOT$ = "2 roots'.'

ELSE IF discr = 0
THEN FNROOT$ = "1 double root'
ELSE FNROOT$ = "imaginary roots."

40 FNEND
41 !
49 ! ** Here's the regular program.
50 INPUT 'What are the coefficients for a, b, c", A, B, C
60 answer$ = FNROOT$(a,b,c)
70 PRINT 'Answer is", answer$
80 GOTO 32767
19000 REM Error routine begins here.
19001 REM Err= -28 means negative value supplied to sqr function
19010 IF err= -28 THEN answer$= "imaginary roots:· \RESUME 70
19999 ON ERROR GOTO O ! Unexpected Error.
32767 END

Figure 12. Figure 13.

Single-line functions.
These functions can be
referenced in exact(v
the same way as built-in
functions.

Using a multi-line/unction
(FNROOT$) in a program.

Figure 14

10 ** Bubble-sort Program**
11 ON ERROR GOTO 19000
20 DIM x(10)
30 FOR i% = 1 TO 10

\INPUT "Next number", x(i%)
40 NEXT i%
50 FOR i% = 1 TO 10
60 FORk%=i%+1TO10
70 IF x(k%) < x(i%) THEN

temp= x(i%) \x(j%) = x(k%) \x(k%) = temp
80 NEXT k%
90 NEXT i%
100 FOR i% = 1 TO 10

\PRINT, x(i%)
\NEXT i%

19000 ON ERROR GOTO O ! Unexpected error.
32767 END

&

&

&
&

&
&
&

filename in which the second program can
be found. <Linen0>, when given, specifies the
line number of the second program at which
execution is to begin. The example below
shows how to chain the current program with
a second program in "$basic.subvoll.file2"
and begin execution at line 30 of file2:

20 CHAIN "$basic.subvoll.file2" LINE 30

Functions

EXTENDED BASIC has many built-in functions
which are used to perform numeric and
string operations on user-supplied arguments.
Standard functions have a type (integer,
string, or default numeric), which is indicated
by the last character of the function name.
Some of the more commonly used built-in
functions are summarized in Table 4.

EXTENDED BASIC allows users to determine
their own functions, and reference them
in the same way they do standard functions.
A user-defined function name consists of
the letters FN, followed by up to 27 characters,
followed by a single character determining
the type of the function. A function is defined
by a DEF statement, and if the function
contains more than one line, it is terminated
with an FNEND statement. Some example
functions are shown in Figures 12 and 13.

Examples

Figure 14 contains an EXTENDED BASIC
program that sorts 10 user-input numbers
according to a bubble-sort algorithm. A
bubble sort consists of consecutive compari
sons of two values at a time. Each time the

Figure 14.

Bubble-sort program. A
bubble sort consists of
consecutive comparisons
of two values at a time.
Each time the second value
is smaller than the first,
the values are swapped.

Thus, the smaller values
are said to "bubble up"
to their correct position in
the sequence. After JO
times through the major
loop (lines 50 through
90) to sort JO values, the
numbers are in correct
ascending order.

42 TANDEM JOURNAL SPRING 1984

second value is smaller than the first, the values
are swapped. Thus, the smaller values are
said to "bubble up" to their correct position in
the sequence.

The program in Figure 15 is a simple phone
book application using EXTENDED BASIC.

The record stored in the file nfile consists of a
10-character field for a last name, a 10-
character field for a first name, and a 20-
character field for a phone number. The
program provides the user with four functions:

• Deletion of a record.

• Insertion of a new record.

• A full list of the phonebook contents.

• A HELP facility.

Each is specified by the user as a single-letter
option.

Table 4.

Commonly used built-in functions.
Function

ABS

CLK$

Action

Returns the absolute value of the specified
expression.

Returns the current system time.

DAT$ Returns the current system date.

DEVICEINFO Returns the device type and subtype for a specified
filename.

EDIT$

ERR$

LEFT$

LEN

MID$

POS

RIGHT$

RND

SOR

S P R

Used to trim the parity bit, discard imbedded spaces,
capitalize all alphabetic characters, change TABs
to spaces, or convert other character strings.

Returns the error text corresponding to a specified
error number.

Extracts a substring from the beginning of a string.

Returns the number of characters in a string.

Extracts a substring from the middle of a string.

Returns the starting position number of a specified
substring within a string.

Extracts a substring from the end of a string.

Returns a pseudo-random number.

Returns the square root of a specified expression.

N G

Figure 15.

Simple phonebook appli
cation. The program
allows for the deletion or
insertion of records, as
well as the abili(v to list
all records in the file
"nfile." Each record cor
responds to one individual,
containing the person's
first name. last name, and
phone number:

1 9 8 4 T A N D E M

Figure 15

10
100
101

120

190
191

500

1000
1010

1020

1030
1035
1040

2000

2010

2090

ON ERROR GO TO 19000
MAP(n.phone) n.phone$ = 40
MAP(n.phone)

n.phone.lastname$ = 10,
n.phone.firstname$ = 10,
n.phone.phone$ = 20

OPEN "nfile" AS 111, INDEXED, ACCESS MODIFY, ALLOW NONE,
MAP n.phone, PRIMKEY n.phone.lastname$

: Name Phone Number
:'LLLLLLLL 'LLLLLLLLL 'LLLLLLLLLLLLLLLLLL

DEF fnparse% (allowed$, input.char$)
\val$ = EDIT$ (input.char$, 32) !capitalize
\fnparse% = POS (allowed$, val$, 1)

\FNEND

REM ** Determine operation user desires to perform
INPUT "Option", op$

IF LEN(op$) <> 1 THEN
PRINT "Enter a single character only-CTRL/Y to exit:'
\GOTO 1010

x% = fnparse% ("HOil'', op$)
! H D I L
ON x% GOSUB 2000, 2100, 2200, 2300

\PRINT \GOTO 1010

REM ** Help Routine**

PRINT "Valid options are"
\PRINT" D-Delete a record"
\PRINT" H-HELP display"
\PRINT" I -Insert new record"
\PRINT" L -List phonebook"

GOTO 1010

2100 REM ** Delete Record Routine **

2110 INPUT "Lastname of record to delete", a$

2120
2130
2140

2150
2160
2170
2190

\IF LEN(a$) <= 0 THEN GOTO 32767

a$ = EDIT$ (a$, 32)
GET 111, KEY EQ a$ 1 Find record
PRINT "Record is"

\PRINT USING 190
\PRINT USING 191, n.phone.lastname$, n.phone.firstname$,

n.phone.phone$
\INPUT "Should this be deleted (Y/N)", yn$

IF EDIT$(yn$, 32%)<>"Y"THEN GOTO 1010
DELETE 111
PRINT "Deletion complete:·

GOTO 1010

2200 REM ** Insert Record Routine**

2210

2220
2230
2290

INPUT "Last Name", n.phone.lastname$
\INPUT "First Name", n.phone.firstname$
\INPUT "Phone Number", n.phone.phone$

n.phone$ = EDIT$(n.phone$, 32%)
PUT #1
GOTO 1010

1 capitalize entire record

2300 REM ** List File Routine **

2310 FIND111,KEYGE"" ! Find first record

&
&
&

&
&

&

&
&
&
&

&

&
&

&
&

&

&
&
&
&

&

&

&
&

&
&
&
&

&

&

&
&
&

&

&

&

2320 GET 111 &
\PRINT USING 191, &

n.phone.lastname$, n.phone.firstname$, n.phone.phone$ &
\GOTO 2320 &

19000 REM ** Error Routines**

19010 IF ERR=1 AND ERL=1010 THEN RESUME 32767 I CTRL/Y

&

&

19020 IF ERR=1 AND ERL=2130 THEN ! EOF on DELETE &
PRINT"Record not found:' \ RESUME 32767 &

19030 IF ERR=10 AND ERL=2230 THEN
PRINT ERR$(ERR) \RESUME 2190

! Record already exists&
&

19040 IF ERR=1 AND ERL=2320 THEN RESUME 1010 1eof on LIST &

19998 ON ERROR GOTO 0
19999
32767 END

J O U R N A L

! If error detected while in trap routine,
! then return to system error handler.

43

44

Conclusion

Tandem EXTENDED BASIC has a variety of
features. The interpreter offers a rich repertoire
of commands, allowing the user to create
source files; list and update files; interpret and
run files; and store files in source, pseudo
object, or object format. While EXTENDED

BASIC statements can be used to construct
a simple program to implement a particular
algorithm, they can also be used to con
struct large programs consisting of many sub
routines, user-defined functions, and chained
programs. Error handling can also be done
within the language. The EXTENDED BASIC 1/0

facilities offer simple ways to communicate
between a program written in EXTENDED BASIC

and terminals, processes, predefined data,
or permanent files. In spite of all these capa
bilities, Tandem EXTENDED BASIC remains
a relatively simple programming language
to learn.

Jim Meyerson has been a systems analyst in Tandem's Customer
Application Support Group since joining Tandem in June 1982.
He has been the EXTENDED BASIC Support Team Coordinator
since September 1983. having previously served as a consul
tant for another language to a Tandem software development group.
Jim taught languages and operating systems courses for another
computer vendor before joining Tandem.

References
ANSI Standard for Minimal BASIC. X3.60-1978. ANSI, Inc.

ENSCRIBE Programming Manual. April 1983. Tandem
Computers. version BOO.

Tandem EXTENDED BASIC Reference Manual. December, 1983.
Tandem Computers. version AOO (part #82380).

Acknowledgments
Much of the information in the tables and syntax descriptions
in this article was taken from the Tandem EXTENDED BASIC
Reference Manual, written by Angel Grindon, Software
Development. Angel also offered many helpful suggestions
for the article, as did Chris Sheedy of Tandem Software Develop
ment, and Geoff McDonald of Management Information
Systems Pty. Ltd. Geoff wrote the phone book application shown
in Figure 15.

T A N D E M J O U R N A L SPRING I 9 8 4

DATE DUE

GAYLO"D PRINTED IN U.S.A.

?8~@)§~
1111:m\filii!!ltli!l!m

