
T A N D E M 

SYSTEMS REVIEW 

Overview of DSM 

VIEWPOINT ■ NSS 

SPI•EMS 

D.NS Data Replication ■ SCP and SCF 

SPI and EMS Interfaces 

Estimating Host Response Time 

OCIOBl:k \%}; 

bRANbtF,rJO 





Volume 4, Number 3, October 1988 

Articles Editor 
Susan Wayne Thompson 
Managing Editor 
Ellen Marielle-Trehoiiart 
Associate Editor 
Suzanne Ambiel 
Assistant Editors 
Sarah Rood 
Jodi Steiner 
Editorial Assistant 
Natalie Lingo 
Technical Advisors 
Mark Anderton 
Bart Grantham 
Cover Art 
Judith Hill 
Stephen Stavast 
Production and Layout 
Judith Hill 
Typesetting 
Tandem Typography 
The Tandem Systems Review is 
published by Tandem Computers 
Incorporated. 

Purpose: The Tandem Systems 
Review publishes technical informa­
tion about Tandem software releases 
and products. Its purpose is to help 
programmer-analysts who use our 
computer systems to plan for, install, 
use, and tune Tandem products. 
Subscription additions and changes: 
Subscriptions are free. To add names 
or make corrections to the distribu­
tion database, requests within the 
U.S. should be sent to Tandem 
Computers Incorporated, Tandem 
Systems Review, 18922 Forge Drive, 
LOC 216-05, Cupertino, CA 95014. 
Requests outside the U.S. should be 
sent to the local Tandem sales office. 

Comments: The editors welcome 
suggestions for content and format. 
Please send them to the Tandem 
Systems Review, 18922 Forge Drive, 
LOC 216-05, Cupertino, CA 95014. 

Tandem Computers Incorporated 
makes no representation or warranty 
that the information contained in 
this publication is applicable to 
systems configured differently than 
those systems on which the informa­
tion has been developed and tested. 
It also assumes no responsibility for 
errors or omissions that may occur in 
this publication. 
Copyright © 1988 by Tandem 
Computers Incorporated. All rights 
reserved. 
No part of this document may be 
reproduced in any form, including 
photocopying or translation to 
another language, without the prior 
written consent of Tandem Com­
puters Incorporated. 

The following are trademarks or 
service marks of Tandem Computers 
Incorporated: DNS, ENFORM, 
ENSCRIBE, EXPAND, FOX, 
GUARDIAN, GUARDIAN 90, 
MEASURE, MULTILAN, 
NonStop, NSS, PATHWAY, 
PS MAIL, TACL, Tandem, the 
Tandem logo, TXP, VIEWPOINT, 
VIEWSYS. 

0 C T O B E R I 9 8 8 T A N D E M 

TANDEM SYSTEMS REVIEW 

2 

12 

26 

36 

54 

68 

76 

82 

90 

Overview of DSM 
Pete Homan, Bernice Malizia, Edith Reisner 

VIEWPOINT Operations 
Console Facility 
Roger Hansen, Greg Stewart 

Network Statistics System 
Mike Miller 

Tandem's Subsystem 
Programmatic Interface 
Gary Tom 

Event Management Service 
Design and Implementation 
Hank Jordan, Randy McRee, Rudy Schuet 

Data Replication in Tandem's 
Distributed Name Service 
Tom Eastep 

SCP and SCF: A General Purpose 
Implementation of the Subsystem 
Programmatic Interface 
Tom Lawson 

Using the Subsystem 
Programmatic Interface and 
Event Management Services 
Keith Stobie 

Estimating Host Response 
Time in a Tandem System 
Helaine Horwitz 

SYSTEMS REVIEW 



2 

Overview of DSM 

istributed Systems Man­
agement (DSM) is 
Tandem's approach to 
network and systems man­
agement. It contains an 
architecture and a set of 
products. The products are 

based on an architecture that provides opera­
tors with an integrated view of all the 
resources that a business application requires. 
The architecture and products allow customers 
to automate operations functions; they allow 
centralized management of EXPAND™ net­
works of distributed systems as well as hetero­
geneous networks containing Tandem systems. 

COO is the first release of DSM products in 
the GUARDIAN 90™ operating system. It 
establishes the architecture, increases the level 
of operations functions provided by the sys­
tem, and provides tools customers can use to 
automate operations. This article describes the 
DSM architecture and provides an overview of 
the DSM products in COO. 

The Need for DSM 
Tandem has offered management tools in the 
past, but those tools were designed for smaller 
systems and networks than customers have 
today. In 1978, a typical Tandem system sup­
ported a network of around 100 terminals. In 
1988, a Tandem system can support thousands 
of terminals, a network can have a hundred 
nodes, and complexes of systems connected by 
the 6700 Fiber Optic Extension (FOX™) can 
supply over 100 MIPS of processing power. 

As systems and networks grow, managing 
them efficiently becomes both more important 
and more difficult. Larger systems typically 
support larger volumes of messages; they also 
tend to be more complex, with more variation 
in the kinds of messages and the kinds of 
relationships among the components. The 
increased complexity of monitoring and solv­
ing problems in a large system or network typ­
ically creates a need for more operators and 
operations consoles. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Not only are more operators required to 
run complex systems and networks, but each 
operator requires more knowledge to run the 
system. The necessary training is expensive and 
the turnover rate is high, increasing the cus­
tomer's overhead costs. The cost of mistakes 
made by inexperienced or overworked opera­
tors can also be high. DSM is designed to 
address these problems. 

DSM's Importance to Tandem 
The cost and complexity of managing distrib­
uted systems has become a limiting factor in 
network growth. Tandem's technology allows 
customers to install large networks of systems 
capable of processing hundreds of transactions 
per second. As systems become larger, the 
number of MIPS and the price/performance of 
those MIPS are no longer the key issues. In 
Requests for Proposals (RFPs), system and 
network management has become a major 
requirement. 

Some users in traditional large mainframe 
environments have limited or reduced data 
center size in order to ease the operational 
burden (Gartner, 1987). The quality of a ven­
dor's system and network management offer­
ings can be influential in determining how 
attractive that vendor's product will be to 
customers whose business depends on large 
computing environments. 

DSM Architecture 
The DSM architecture provides the basis for 
managing large systems and networks by 
improving the quality and flow of information 
between the system software and the oper­
ations staff. The architecture has four major 
goals: 

■ Providing an integrated view of a system 
and network. 
■ Allowing automation of operations 
functions. 
■ Allowing flexible distribution of network 
control. 
■ Providing a migration path for customers 
who have developed management solutions in 
the past. 

An Integrated View of the System 
and Network 
Managing systems and networks involves con­
trolling all the resources that the applications 
require. These resources can be local or 
remote; they can be hardware or software; 
they can be provided by Tandem, by the cus­
tomer, or by a third party. This level of inte­
gration is a fundamental objective of the 
architecture. 

Because systems are ultimately part of data 
networks and subject to the same management 
and control needs, the support structures are, 
and should be, congruent. (Gartner, 1987). For 
this reason, DSM encompasses both system 
management and network management. In its 
first release, DSM addresses the management 
of individual systems, of distributed systems, 
and of the Tandem software used to connect 
those systems to terminals and other devices; 
the DSM architecture allows for future man­
agement of other vendors' data communica­
tions equipment. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 3 



Figure 1. 

Information flow in 
systems management. 

4 

Figure 1 

( 1) Problem occurs 

( 4) Operator 
reacts 

Actual 

Desired 

( 1 ) Problem occurs (2) Problem 

'. ~~:< .. __ re_po_rt_ed __ 

(3) Operations 
reacts 

(2) Users see 
the problem 

(3)User 
complains 

DSM supports the management of both 
hardware and software functions. The compo­
nents instrumented to support DSM include 
CPUs and peripherals, the operating system, 
transaction monitor, network software, and 
access methods. Software and hardware sub­
systems developed by customers can also be 
instrumented to support DSM. 

Finally, DSM supports management of both 
system software and application software. 
Customers can use the same tools to monitor 
their applications and the system software on 
which their applications depend. 

Allowing Automated Operations Functions 
System managers want problems recognized, 
diagnosed, and fixed before the end user sees 
them, but this becomes more difficult as sys­
tems and networks become more complex. 
(See Figure 1.) Command interpreters and 
other operator interfaces provide a great deal 
of raw information; an operator must be a 
technical expert to understand the information 
and even then must follow complicated fault­
isolation procedures, selecting and combining 
potentially relevant information from differ­
ent sources. 

Customers want to reduce their dependence 
on expert operators. They also want to man­
age large configurations without additional 
staff. Automating operations procedures in 
programs accomplishes both these objectives. 
(See Figure 2.) It also allows different compa­
nies, and even different sites, to produce oper­
ations software to meet their particular 
requirements. 

DSM provides a set of services that cus­
tomers can use to develop management appli­
cations, and defines the functions subsystems 
must provide to those applications. DSM 
defines a message format and protocol stan­
dards to ensure that subsystems off er consis­
tent management interfaces to applications. 
It also includes a distributed name service 
(DNS™), which applications can use to insulate 
operators from network and subsystem bound­
aries and to reduce the amount of subsystem­
specific information the operator must know. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Automating operations functions requires a 
programming investment by the customer. For 
cases in which automation is not feasible or 
not economically justified, DSM includes the 
VIEWPOINT™ console application, which pro­
vides a default operations environment. 
VIEWPOINT can coexist with other manage­
ment applications or be integrated with them. 

Flexible Distribution of Network Control 
One of the implications of distributed process­
ing is that although business applications and 
databases are split over many nodes in a net­
work, operations expertise is available at only 
a few locations. It is, therefore, necessary to 
centralize control of multiple distributed sys­
tems, or even a whole network, at one or more 
locations. At that location, one or more opera­
tors share the tasks of system and network 
management. 

DSM supports centralized and distributed 
network control. It allows an operator to con­
trol several nodes or a whole network from a 
single terminal and supports the distribution 
of management tasks among operators. 

VIEWPOINT supports centralized manage­
ment by allowing an operator to run multiple 
local and remote utilities simultaneously from 
a single terminal. On the same terminal, the 
operator can monitor status and events from 
multiple nodes. VIEWPOINT supports parti­
tioning of operator functions by allowing dif­
ferent operators to receive different messages 
on separate terminals; each operator sees the 
messages relevant to the operator's 
responsibility. 

Event Management Service (EMS) supports 
centralized management by allowing any node 
to serve as a collection point for messages that 
report significant events on any number of 
network nodes. EMS also supports message 
filtering so that different operators on the 
same node can obtain different sets of mes­
sages. Each operator-or each application 
that performs operator functions-can select 
messages that have bearing on specific prob­
lems or aspects of the network. 

Figure 2 

( 1) Problem occurs 

(4) Operator 
reacts 

( 1 ) Problem occurs 

Actual 

Desired 

(2) Users see 
the problem 

(3) User 
complains 

(2) Problem 
reported 

(3) Operations 
reacts 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 2. 

Automating the oper­
ations environment. 

5 



Figure 3. 

DSM environments. 

6 

Figure 3 

Operations 
environment 

Management 
layer 

DNS supports centralized management by 
allowing names defined on any node to be 
replicated on other nodes. Typically, the node 
where an object resides has the object name, 
aliases, and other information defined in its 
DNS database; a control node ( or possibly a 
primary and a backup control node) has copies 
of the information. 

DSM facilities allow autonomous control of 
any node; if a communications line fails 
between a node and the node that normally 
controls it, operators or applications on the 
severed node can control it locally. 

Subsystem 
environment 

Allowing a Migration Path 
Many customers have invested considerable 
effort in developing custom management soft­
ware using interfaces and tools that existed 
prior to DSM. Although DSM introduces new 
interfaces and even a new style of interface, 
older interfaces are being maintained to allow 
a migration path for those customers. 

A Layered Architecture 
One of DSM's objectives is to improve the 
flow of information between the subsystem 
environment (both system and application 
software) and the operations staff or the soft­
ware that performs operations functions. In 
the DSM architecture, these concepts are for­
malized; the architecture consists of a subsys­
tem environment, an operations environment, 
and a management layer, as shown in 
Figure 3. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The Subsystem Environment 
The subsystem environment includes the soft­
ware that directly controls devices, files, pro­
cesses, and other resources used by business 
applications. It also includes the business 
applications developed by customers and cus­
tom subsystems developed by third parties. 
(See Figure 4.) 

Subsystems-whether provided by Tandem, 
by the customer, or by third parties-have two 
ways of participating in DSM in the COO 
release: 

■ A subsystem can provide a programmatic 
command interface, allowing applications to 
control and inquire about objects defined by 
the subsystem. 

■ A subsystem can report significant occur­
ren~es (events) in its environment to EMS, 
which makes the information available to 
interested operators and applications. 

Operations Environment 
The operations environment provides a man­
agement interface for operators. In some 
cases, it also includes applications that 
perform operations functions. Elements of 
this environment are the TACL extensible 
command language, the VIEWPOINT console 
application, subsystem command interpreters­
including a new one for communications sub­
systems called the Subsystem Control Facility 
(SCF)-command files, and potentially, other 
management applications. 

Management applications automate man­
agement functions. An application can replace 
one or more command interpreters, providing 
a simpler or more integrated operator inter­
face. Applications can also codify procedures 
for accomplishing specific tasks (such as 
restarting terminals) or solving specific 
problems. 

Management applications use standard 
application tools and reside in the same run­
time environment as a standard GUARDIAN™ 
application. They can be written in TAL, 
COBOL85, or TACL, and can use the 
PATHWAY™ and TMF transaction management 
facilities and the ENSCRIBE and Nonstop 
SQL database management products, as well 
as DSM services. 

Figure 4 

Operations 
environment 

VIEWPOINT. This product is an example of a 
management application; it is implemented 
with the same set of tools available to cus­
tomer applications. VIEWPOINT is generic; 
customers can easily tailor or augment it to 
suit individual needs. Key features include: 

■ A TACL screen from which to run command 
interpreters and other utilities. 

■ A set of TACL commands collectively called 
Define Process, which lets an operator main­
tain sessions with multiple utilities 
simultaneously. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Subsystem 
environment 

Figure 4. 

Tandem subsystem 
environment. 

7 



Figure 5 

Figure 5. 

VIEWPOINT. 

8 

• A block-mode screen that presents a sum­
mary of network status. The operator can 
specify thresholds for various status items and 
have the VIEWPOINT application highlight 
reported values that exceed the thresholds. 

• Block-mode screens that display information 
about events on one or more nodes. The oper­
ator can monitor events as they occur or 
review events that have occurred since a speci­
fied time. The operator can also inquire about 
events involving particular objects, events 
demanding operator action, or events of 
critical importance. 
• A screen that displays advisory text about a 
specified event. The text includes the probable 
cause and a recommended action. 
• A clipboard facility for copying text from a 
block-mode screen to a text file that can be 
used in the TACL environment. 
■ A software switch that switches control of a 
terminal between block and conversational 
modes. 

Because VIEWPOINT is extensible, the cus­
tomer can build on it, adding extra functional­
ity to suit particular network and systems 
management requirements, without having 
to implement a complete application. (See 
Figure 5.) A customer can: 

• Replace the advisory text the VIEWPOINT 
application displays for an event, to reflect 
site-specific requirements. 
• Write filters to determine which event mes­
sages the VIEWPOINT application will display. 
For example, a filter can specify which events 
must be considered critical. 
• Add objects to the status screen and write 
custom server processes to obtain status infor­
mation about the objects. 
■ Add custom commands for use on the TACL 
screen. 
• Add custom screens, using the PATHWAY 
SCREEN COBOL programming language. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The Management Layer 
The management layer provides the services 
required for management applications to con­
trol and monitor subsystem activity. It sup­
ports two kinds of interaction between a 
management application and a subsystem: 
issuing commands to control and inquire 
about resources in a system or a network, and 
monitoring events that occur in the system or 
network. The layer comprises the Subsystem 
Programmatic Interface (SPI), the Event Man­
agement Service (EMS), and the Distributed 
Name Service (DNS). 

Subsystem Programmatic Interface. SPI is a 
set of procedures for building and retrieving 
information from command, response, and 
event-message buffers. An SPI message con­
sists of a series of tokens. Applications and 
subsystems refer to message elements by sym­
bolic names; they need not know the addresses 
or order of tokens in the message. 

To send and receive SPI messages, applica­
tions and subsystems use standard file-system 
interprocess communication. Programmers do 
not need to learn about an unfamiliar trans­
port mechanism, and they can take advantage 
of communication features, such as NOWAIT 
or timed 1/0, available in the programming 
language (i.e., TAL, COBOL85, or TACL). 

For example, the programmatic interface 
between an application and a subsystem is 
based on the requester/ server model for 
interprocess communication. With respect to 
the subsystem environment, an application is a 
requester. The subsystem management process 
is the server. It accepts commands from the 
application and returns responses from the 
subsystem, providing a single management 
interface to subsystems composed of multiple 
processes. 

Just as SPI does not transport messages 
between applications and subsystems, it does 
not dictate any subsystem-specific semantics. 
Still, by convention, subsystem interfaces that 
use SPI also have other characteristics in 
common. 

Subsystem interfaces are also uniform with 
respect to naming of tokens and other message 
elements, use of subsystem-independent tokens 
and message constructs, process startup 
sequences and process-name qualifiers, and 
continuation of responses over multiple 
messages. 

The message syntax defined by SPI includes 
a message versioning scheme to allow applica­
tion and subsystem processes to communicate 
using different release levels of the same mes­
sage definitions. 

Many subsystems support interfaces based 
on SPI in the COO release. New command 
interpreters are written as DSM management 
applications which use the SPI procedures and 
related conventions. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 9 



I 0 

Event Management Service. EMS provides 
event-message collection, logging, and distri­
bution facilities. Subsystems report events to 
EMS for logging. Applications (or operators 
using applications) can obtain event messages 
as they are logged or can review past events. 
The same message is available to multiple users 
on a node and can be forwarded automatically 
to remote locations. 

By accepting and logging messages, EMS 
allows subsystems to communicate asynchro­
nously with applications in the operations 
environment. A subsystem can report infor­
mation to the operations environment even if 
no operator or application is ready to receive 
the information. The operator or application 
can find out about events as they occur or at 
any time thereafter. 

An important component of EMS is the 
filter language and compiler. By using filters, 
applications or operators can specify the kinds 
of messages they wish to receive, instead of 
having to read or process all available 
messages. 

Applications communicate with EMS using 
SPI messages. (An event message is a kind of 
SPI message.) Just as there are conventions 
that apply to all SPI messages, there are spe­
cial conventions for event messages; for exam­
ple, certain tokens are present in every event 
message, and subsystems follow published 
rules about when and how to report events. 

Distributed Name Service. One important 
function a management application can pro­
vide is translating subsystem information into 
a form logical to the operator and vice versa. 
For example, an operator might regard start­
ing an ATM (automated teller machine) as a 
logical action. The application must under­
stand that because several subsystems control 
different aspects of the ATM, the action 
requires commands to multiple subsystems. 
The application must also be able to translate 
the name of the ATM (known to the operator) 
into the various names by which the ATM is 
known to the different subsystems. 

To make such applications easier to write, 
DSM includes a name-management service 
called DNS. DNS manages a distributed data­
base of names. It gives applications a standard 
way to store and ref er to names known to sub­
systems, aliases known to operators, and col­
lections of related names (e.g., the names by 
which the same ATM is known to different 
subsystems or the names of all ATMs that have 
the same hours of service). 

An Open Architecture 
One of the key features of DSM is that cus­
tomers' software can be integrated into the 
DSM architecture. The procedures and 
conventions for communication between 
applications and subsystems are described in 
the DSM manuals, as are the procedures and 
conventions for reporting events to EMS. 
Thus, a user application or third-party subsys­
tem can function as a management application 
or a subsystem in the DSM architecture, using 
the same interfaces that Tandem products use 
and communicating with Tandem software. 
(For example, an event message produced by a 
third-party subsystem can be displayed on a 
VIEWPOINT screen along with event messages 
from Tandem subsystems.) In a few cases, a 
special procedure is available to privileged 
software, but equivalent function is available 
to nonprivileged software. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Migration 
DSM provides a migration path for customers 
who wish to convert existing applications and 
subsystems to use DSM tools. Compatibility 
features reduce the cost of conversion and the 
entry cost of DSM for existing customers. Four 
DSM features make stepwise migration 
feasible. 

An operator using VIEWPOINT can still 
invoke TACL commands and macros, use 
existing subsystem command interpreters, and 
run any program that worked in previous 
releases. Command files and applications that 
send text to command interpreters will con­
tinue to work. 

User and system console messages are still 
written to the OPRLOG, the CONSOLE, and 
$AOPR applications. $AOPR applications and 
applications that read the OPRLOG will con­
tinue to work. 

User and system console messages are auto­
matically accepted and logged by EMS, which 
converts them to a form suitable for filtering 
and distribution. The text of those messages 
can be displayed by VIEWPOINT and 
retrieved by applications. 

Applications that request text versions of 
event messages may specify whether they want 
the text in the format characteristic of releases 
before COO or in a new, more readable display 
format. 

Conclusion 
DSM is a significant step in the evolution of 
management facilities for Tandem systems and 
networks. It gives Tandem customers a foun­
dation on which to integrate new functions 
into a single consistent approach to managing 
systems and networks. It includes an architec­
ture and a set of tools on which Tandem and 
its customers can build. 

Apart from the architecture, the focus in 
the COO release has been on the functions that 
have the greatest impact on system availability. 
These are the ability to recognize problems by 
monitoring events in a system or a network 
and to resolve problems by issuing commands 
to subsystems. 

References 
Levine, P. 1987. Network and Systems Management Are Con­
gruent. Software Management Strategies. The Gartner Group, 
Inc. T-301.373.1. 

Timmins, L. 1987. SMS Conference: Automated Operations. 
Software Management Strategies. The Gartner Group, Inc. 
E-034-311.1 

Event Management Service (EMS) Manual. Part no. 84092. 
Tandem Computers Incorporated. 

Distributed Name Service (DNS) Manual. Part no. 84093. 
Tandem Computers Incorporated. 

Distributed Systems Management (DSM) Programming Man­
ual. Part no. 82587. Tandem Computers Incorporated. 

Introduction to Distributed Systems Management (DSM), Part 
no. 84091. Tandem Computers Incorporated. 

Operator Messages: Distributed Systems Management Display 
Format. Part no. 84103. Tandem Computers Incorporated. 

Subsystem Control Facility (SCF) Reference Manual. Part no. 
84159. Tandem Computers Incorporated. 

VIEWPOINT Manual. Part no. 82592. Tandem Computers 
Incorporated. 

Pete Homan has been with Tandem since 1981 and worked on 
the design of DSM in COO. He has over 15 years of experience in 
the design of transaction processing systems. 

Bernice Malizia joined Tandem in 1985. She is manager of DSM 
Software Development and has over 15 years of experience in 
systems software development. 

Edith Reisner has worked for Tandem since 1981. She works in 
the Software Publications department as a technical writer. 

0 C T O B E R I 9 8 8 TANDEM SYSTEMS REVIEW 11 



12 

VIEWPOINT Operations 
Console Facility 

~~- he VIEWPOINT™ multifunc­- - tion operations console facil­
ity is a Distributed Systems 
Management (DSM) applica­
tion that allows operators to 
manage a network of 
Tandem systems from a sin-

gle terminal. VIEWPOINT gives the operator 
an integrated view of the status of a group of 
distributed systems as well as events occurring 
on the systems. In addition, VIEWPOINT is 
easily distributed, has fault-tolerant oper­
ation, supports multiple terminals, and pro­
vides user-customization features. 

VIEWPOINT is an example of an operations 
management application implemented using 
the services available with DSM. The Event 
Management Service (EMS) is used in the col­
lection and presentation of events, and the 
Subsystem Programmatic Interface (SPI) is 
used in the collection of status from various 
subsystems. VIEWPOINT's facilities can be 
easily extended and may be used as a founda­
tion for building other operations management 
applications. 

This article provides background on the 
operations requirements that led to the design 
of VIEWPOINT and provides a brief descrip­
tion of the significant features. For users inter­
ested in extending VIEWPOINT or developing 
a similar management application, this article 
also provides a high-level discussion of the 
implementation of the status and event display 
environment, the command and control envi­
ronment, the integration of these environ­
ments, and the provisions for extensions to 
VIEWPOINT. 

Operations Requirements 
The VIEWPOINT product answers two general 
sets of requirements within the DSM product 
family: First, users of Tandem networks 
required a multifunction application that 
would provide an integrated view for manag­
ing distributed systems. Second, given new 
system management facilities in DSM, an 
application was required that would present 
these capabilities and provide a foundation for 
further application development. 

A study of customer needs and the accep­
tance of prototype facilities led to more spe­
cific operation requirements. These are listed 
below. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Centralized View 
DSM and VIEWPOINT apply to a broad range 
of system management environments. Large­
network operations control centers often 
require several terminals dedicated to the net­
work management function, and in smaller 
environments, a single terminal is used for all 
system and network management tasks. In 
response to this, VIEWPOINT allows a single­
terminal configuration as well as multiple­
terminal configurations. 

Each terminal running VIEWPOINT may 
also be used to run other network manage­
ment facilities such as Network Statistics Sys­
tem (NSS™), VIEWSYS™, or user-developed 
applications. VIEWPOINT event monitoring, 
status monitoring, and command control 
screens are all available from a single termi­
nal. Function keys may be used to move 
between the available screens. 

Event Monitoring 
Operators require that significant events 
occurring on a system or network be displayed 
in a timely and useful manner. Event displays 
are needed for different purposes, such as 
monitoring events as they occur, evaluating 
historical events for analysis of the sequence of 
events at a particular time, and looking at all 
events associated with a resource for problem 
analysis. VIEWPOINT's event screens address 
each of these event management needs. In 
addition, highlighting and outstanding event 
counts ease the job of ensuring that all signifi­
cant events are properly handled. 

Status Monitoring 
Operators need to be able to monitor the avail­
ability and usage of critical resources on local 
and remote systems. Monitoring tools such as 
VIEWSYS provide detailed statistics for a 
selected system or CPU. In managing distrib­
uted systems, the operator needs to see high­
level status indicators from several systems on 
one display. These indicators allow the opera­
tor to focus on a particular system or resource 
only when a problem is apparent. The status 
monitoring displays must be configurable 
because systems, networks, and operator 
responsibilities vary. The most critical 
resources are often user- or application­
defined. 

VIEWPOINT status monitoring screens pro­
vide configurable displays of high-level 
resource statistics. For example, the user can 
add statistics to the display and set thresholds 
for conditions that require attention. 

Command and Control 
Resource control capabilities currently reside 
in numerous subsystem and application con­
trol processes. Operators must be able to effi­
ciently issue commands to several subsystems 
on local and remote systems. This must be 
done without requiring the operator to remem­
ber the various subsystems and resources 
involved in a complex operation. Operations 
such as START _.ALL__ATMS or START _BACK­
UPS should perform the necessary subsystem 
control without requiring the operator to 
remember names and syntax. 

These requirements imply that a powerful 
command facility be available to operators. 
TACL (Tandem Advanced Command Lan­
guage) provides the base for such a facility. 
VIEWPOINT provides additional routines to 
simplify subsystem control and provides access 
to this and other control aids through the 
TACL screen. 

Availability 
An effective management application must 
be continuously available, especially when 
there are problems with critical resources. 
VIEWPOINT uses the fault-tolerant features 
of Tandem Nonstop™ systems and the 
GUARDIAN 90™ operating system to ensure 
continuous availability. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 13 



14 

Extensibility 
The complete list of requirements for oper­
ation management application varies with 
each system and network installation. It is 
important that provisions are made for easy 
addition to the capabilities of the application. 
VIEWPOINT contains several such provisions. 
Fundamental in this regard is the choice of 
PATHWAY™ (a transaction control system) and 
TACL for the implementation of VIEWPOINT. 
Both of these products provide well-defined, 
high-level programming tools that may be 
used when extending VIEWPOINT. 

VIEWPOINT Features 
The preceding requirements led to the func­
tional design of VIEWPOINT, which is briefly 
summarized below. 

Event Displays 
VIEWPOINT displays event monitoring and 
analysis functions on four screens: 

■ The Primary Event screen provides a contin­
uous display of events occurring on the system 
or network. 
■ The Alternate Event screen shows events 
that are selected by the operator. 
■ The Last Events screen displays recent 
events for a particular resource. 
■ The Event Detail screen displays further 
information about any selected event, includ­
ing its probable cause and the recommended 
course of action. 

Certain events are classified as critical 
events. These events represent significant 
changes that may require attention. Events 
that are classified as critical are highlighted 
on the Primary Event and Alternate Event 
screens. These events may be displayed sepa­
rately or they may be included in a compre­
hensive event display. A count is maintained 
of all outstanding (i.e., unacknowledged) 
critical events. 

Status Displays 
VIEWPOINT's block-mode status displays 
show a summary of the availability and usage 
of local and remote system resources. The 
displays are configurable in that the items 
sampled, the sample interval, and the titles 
displayed with the samples can be specified 
from configuration screens. Threshold values 
may be configured, which will cause status 
items to be highlighted when specified values 
are exceeded. A status collection server pro­
vided with VIEWPOINT gives status for CPUs, 
disks, lines, TMF (Transaction Monitoring 
Facility) transaction rates, and resource 
counts for PATHWAY and SNAX (SNA Com­
munications Services). The user can also add 
to the set of items sampled. 

Control Facilities 
Using the conversational TACL screen, the 
VIEWPOINT user can perform control oper­
ations and run other command interpreters or 
management applications. VIEWPOINT pro­
vides the Define Process library, which 
enhances the TACL environment by allowing 
the operator to maintain concurrent sessions 
with multiple operations utilities on the local 
system or on remote systems. TACL and 
Define Process may also be used to replace 
multistep commands with a single command. 
These facilities make it possible to build cus­
tom operations procedures and policies. 

Integration Features 
The block-mode display screens and the con­
versational TACL screen are integrated to ease 
navigation among the screens and to facilitate 
information flow. A single function key moves 
the user from screen to screen, and commands 
and options can be passed when moving from 
screen to screen. A "clipboard" facility 
allows operators to copy information from the 
block-mode displays to the conversational 
environment. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Configurability 
Using configuration screens, the operator can 
configure event and status displays. Event and 
status configuration files save the configura­
tion values. Operators may establish configu­
ration files to be associated with their user ID. 
Configuration values recorded in these files 
will automatically be established whenever the 
operator invokes VIEWPOINT. 

Extensibility 
VIEWPOINT can be extended to meet unique 
operations requirements. Provisions are made 
for the following extensions: 

■ Custom commands may be built using TACL 
and Define Process. 
■ Custom screens and their associated servers 
may be added through the EXTRAS program 
unit interface. 
■ Advisory text displayed for an event may be 
changed to reflect site-specific procedures. 

■ Default event filters may be replaced to 
change the set of events displayed by VIEW­
POINT or to change which events are consid­
ered critical. 
• Custom status collection server programs 
may be added to obtain status information 
about site-specific resources. 

Display Environment 
Block-mode displays are used for event and 
status screens and their associated configura­
tion screens. PATHWAY provides the terminal 
and server management for this display envi­
ronment. The following is a discussion of 
design decisions made in implementing this 
environment. 

Based on PATHWAY 
The requirement for a fault-tolerant, multiple­
terminal application environment made 
PATHWAY a natural candidate for the imple­
mentation of VIEWPOINT. PATHWAY is a 
widely used application environment, and as a 
result, most users installing VIEWPOINT are 
able to apply existing knowledge in config­
uring, managing, and extending the VIEW­
POINT PATHWAY application. 

Two VIEWPOINT requirements distinguish 
it from traditional PATHWAY applications: 
First, users must be able to run existing appli­
cations sharing a terminal with VIEWPOINT, 
and second, the VIEWPOINT block-mode 
screens must be updated as events occur on 
the system or network. In the first case, a "hot 
key" facility was developed that allows users 
to navigate from VIEWPOINT's base screens 
to a TACL environment from which any other 
application can execute. The second require­
ment, the need to respond to asynchronous 
events, was answered by a new PATHWAY 
feature: unsolicited message processing. This 
feature allows PATHWAY screens to be 
updated as events occur. 

The VIEWPOINT display environment is a 
standard PATHWAY application. This applica­
tion may be added to a larger application 
environment or extended with the addition of 
new custom requesters or servers. A prefix, 
ZVPT-, is used on all VIEWPOINT server and 
requester names to avoid name conflicts with 
elements that do not belong to VIEWPOINT. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 15 



Figure 1. 

Disk cache files are used 
to improve display 
response for event and 
status displays. Data 
flows from collection 
servers to disk cache, 
and then to display 
servers. Display servers 
prepare data portions of 
screen images for display 
by TCP (Terminal Control 
Program). 

16 

Figure 1 

VIEWPOINT 
terminal 

Control 

Collection and Display Servers 

Data 

The principal tasks performed by this VIEW -
POINT application are collecting management 
information (events and statistics) and dis­
playing it in meaningful ways. The principal 
servers used are the collection servers and dis­
play servers. The collection servers collect 
events and status information, which is used 
to update display cache files. The display ser­
vers use these cache files to provide displays 
upon request. (See Figure 1.) Note that the 
VIEWPOINT event collection servers are dis­
tinct from EMS collector processes, such as 
$0. EMS collector processes record events that 
are then distributed to many clients, such as 
the VIEWPOINT event collection servers. 

Two event collection servers are used: The 
Primary Event collection server and the Last 
Events collection server. These two servers 
execute the same program; server parameters 
direct the servers to perform their respective 
functions. The Primary Event collection ser­
ver starts event distributors for the Primary 
Event and Alternate Event displays and 
updates a disk cache with event buffers 
received from these distributors. The Last 
Events collection server starts an event distrib­
utor for the Last Events display and updates 
the Last Events disk cache. 

The status collection server class retrieves 
statistics required for the status display and 
stores the data in a status disk cache. Custom 
status collection servers may be added to 
extend the set of statistics available. 

The event and status display servers read 
their respective cache files and produce the 
text for the event and status displays. 

Cache Design 
ENSCRIBE key-sequenced files are used for 
the event display cache. The organization of 
the event cache allows fast access to an arbi­
trary display page of recent events and also 
allows the disposition of events to be recorded 
with the event. The disposition states (critical, 
action, outstanding) are used to determine 
display attributes of the event. 

Events for the Primary Event and Alternate 
Event displays are stored chronologically. The 
key is composed of the display type (primary, 
alternate, and terminal name) and an ordinal 
(a rotating count) indicating the order of the 
events. 

The events in the Last Events cache are 
stored by subject, allowing rapid retrieval of 
those events that relate to a given object. The 
EMS subject token identifies the subjects to 
which an event is related. In addition to the 
subject, the key includes a rotating count that 
indicates the chronological order of the events 
and permits a limit to be placed on the num­
ber of events retained for a given subject. 

The status display cache improves the per­
formance of the status display. It also permits 
interval-based statistics to be computed, such 
as unit-busy percentages. 

TANDEM SYSTEMS REVIEW OCTOBER 19X8 



Figure 2 

F11 

F4 

88-05.1817:16 

Coll:$0 
17;13 \COMM 
17:13 \COMM 
17:13 \COMM 

x17:13 \COMM 
17:14 \COMM 
17:14 \COMM 
17:14 \COMM 
17:14\COMM 
17:14 \COMM 
17:14\OOMM 
17:14 \COMM 
17:14 \COMM 
17:15\COMM 
17:15\OOMM 
17:15\COMM 
17:15\COMM 

F1:TACL 
FS=Freeze 
F14=Proftle 

F2=Status 
$F8=Thaw 
SF14=Recover 

F3:.i:P.Event 
Ft=Prlnt 
F1 !h;; tlelj) 

SF3"' A•Evlml 
F~O=Oltp 
SF15o;:El<tra 

88-05-18 17:17 EVENT DETAtL 

88-05-1817:13:54 \COMM.o&,021 TANDEM,$(PAMO.C10 117 LDEV Cl*l'fE'I: 
NETWORK REOUESTSA!K)RTED, CAUSE:03 

Probable Call$&: .. . . 
NETWORK REQU!;STS ABORTED, CAUSE <rm> 
An event occurred that aborted netwQrk trafflc. The poasible ffl!lts are: 
Code Event 
01 A level-4 protocol ~ror QQeurred. 
02 The NetworkContrOl·Pl'ocess at>orted theoortne<itlon. 
03 The NetwQrk $Mttol Process established anew connection over anli!W ... 

Recommended Action: 

. 14%0001 
1 

1.014 %Qtl01 

This message is Informative only; hl:!Wever, If caus;<i~. 01, ~. ~, Oi' Oll. <><i!)Ur'keq~tly, ~ may want to 
trace the problem. Run traces on ttte Network Control Prooess (N and l!-l!JO on tt:-llne f!lan~ ff you oan 
ldenUfy which line handler Is lnvQlv~. tn tne ca$$ of o!>de 4 {o !!l~l•oh),.ttace tru, baaklilp proceSjes 
asweu: · 

F9 = Print F10 = Cltp F11= Next SF14 = Aeco\'lar F15"' Hefp F'li. Return 

88-05-1817:17 

Subject: \EASY 
17:11 \COMM 
17:11 \COMM 
17:13 \COMM 
17:13 \COMM 
17:13 \COMM 
17:14 \COMM 
17:14 \COMM 
17:15 \COMM 
17:16 \COMM 
17:17 \COMM 

F1=TACL 
F10=Cllp 
SF16=Exit 

LDEV0308 
LDEV0308 
LOEV®s 
LDEV0308 
LDEV0308 
LDEV0308 
LDEV0308 
L,;iEV~ 
LDEV0308 
LDEV0308 

F2=Status 
F11=:Detail 

F3=P.Event 
F14 = Proflte 

LAST EVENTS 

SF3=A•E~nt 
SF14=Reoover 

F.t=µstEvent 
F15=Help 

F9,;:Ptlnt 
SF15=Extra 

OCTOIJER !988 TANDEM SYSTEMS REVIEW 

Figure 2. 

Events may be selected to 
navigate to displays 
showing detail event 
information or to list all 
related events. 

17 



Figure 3. 

Status items may be 
selected to navigate to a 
display showing currently 
configured values for the 
item. 

18 

Figure 3 

F12 

Detail Navigation 
The screen navigation scheme used by VIEW­
POINT intentionally has a similar "look 
and feel" to the scheme used in Tandem's 
PS MAIL™ 6530 product. Event and status 
displays are organized as lines of data with a 
selection column on the left of the screen. The 

.~tl:ND 
FROZEN 

100 
100 
100 
100 
100 

10.00 
50 

100 
100 

F6•hlete 
.·· . .r:12= eonng 

selection of an item on these display screens 
may be used to obtain a new level of detail on 
the item or it may be used to take action on 
the item. (See Figure 2.) Some of the available 
display function keys are listed below: 

• Detail function key. Displays detailed infor­
mation for an event including the full text 
returned by the EMSTEXT procedure and any 
"cause" or "recovery" text that has been pro­
vided for that event. 

• Last Events function key. Displays a list of 
events related to a given event. The subject of 
the selected event is used to retrieve recent 
events that have the same subject. Events dis­
played on this screen can be selected again for 
detail information. 
• Configure function key. Displays the status 
item configuration screen, which allows 
changes to the item description, threshold val­
ues, and other display characteristics. (See 
Figure 3.) 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



On-Line Messages 
Text displayed on the Event Detail screen 
includes probable-cause and recommended­
action text from an event messages database. 
This database is composed of two ENSCRIBE 
key-sequenced files. Each record in the files 
contains text indicating the probable cause and 
recommended action for an event. The record 
keys are a combination of a subsystem ID 
number and an event number. 

One of the key-sequenced files, EVENTTD, 
which is delivered with VIEWPOINT, contains 
text that is also available from the Tandem 
manual, Operator Messages: DSM Format. 
The second file, EVENTCX, which is not 
required but may be supplied by VIEWPOINT 
users, may be used to override text supplied 
with VIEWPOINT or to provide descriptions 
for events generated by applications or subsys­
tems added to the Tandem system. 

Control Environment 
TACL provides a control environment that is 
easily reached by pressing a function key from 
the block mode display. In addition, TACL 
provides several screen integration features 
and serves as the link to other applications and 
subsystems. 

Programmability 
TACL is integrated with VIEWPOINT so 
that it is accessible from any of the main 
VIEWPOINT screens and yet retains all of its 
functionality. 

TACL was chosen as the VIEWPOINT com­
mand processor for two reasons: First, it 
offers complete text and process manipulation 
functions, and secondly, it provides interfaces 
to GUARDIAN 90 and all Tandem and user 
subsystems through subsystem control pro­
cesses and the Subsystem Programmatic Inter­
face (SPI). The user may create TACL macros 
to simplify and enhance operations while 
reducing operator error. 

Define Process 
The VIEWPOINT Define Process library 
enhances the TACL environment by allowing 
several subsystem control processes (e.g., FUP, 
Subsystem Control Facility, PATHCOM) to run 
concurrently in the background. In addition, it 
manages these background processes while 
allowing numerous user customization exits. 

Figure4 

$T123.#S1 
IN variable 

OUT variable 

Most Tandem subsystems provide their own 
dedicated subsystem control process. Exam­
ples are FUP for the file system, PERUSE and 
SPOOLCOM for the spooler, TAPECOM for the 
tape subsystem, and PATHCOM for PATHWAY. 
This approach offers the advantage of modu­
larity with trade-offs in command set com­
plexity and response time. 

Command set standards help to limit com­
plexity, but the time required to start a subsys­
tem control process (NEWPROCESS) can 
become a significant factor when managing 
distributed systems. A NEWPROCESS may 
take a few seconds, or longer if a process is 
being started across the network, and com­
mands often must be issued to several subsys­
tems in order to solve a given system problem. 
Define Process eliminates unnecessary 
NEWPROCESS wait time by keeping processes 
running and ready to receive commands. 

Define Process is based on the implicit 
#SER VER feature of TACL. This feature 
allows TACL to simulate a terminal by starting 
a process and setting the IN and OUT files to 
the TACL process name appended with a sub­
device qualifier. TACL logically links the pro­
cess's IN and OUT files with IN and OUT vari­
ables, places the process's last prompt in a 
PROMPT variable, and inserts a keyword for 
the process's status in a STATUS variable when 
the process stops. (See Figure 4.) 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 4. 

Communication with a 
defined process. The 
process opens TACL 
using its process name 
and a qualifier. Com­
mands to the process are 
queued in the IN variable 
and sent to the process as 
requested. Process output 
is queued in the OUT 
variable. Define Process 
works best with processes 
that treat terminals and 
processes identically for 
J/0, which encompasses 
most Tandem processes. 

19 



Figure 5 

23 > dp peruse /pname p/ 
pstart: starting $system.system.peruse process 
24>pj 

JOB BATCH STATE 
931 READY 
953 READY 
25> undp p 

Figure 5. 

Defining, using, and 
undefining a process. 
PERUSE is defined and 
started, a list of jobs is 
printed, and the process 
is then undefined. 

PAGES COPIES PRI HOLD LOCATION REPORT 
192 1 4 #HOLD CONTENT 
192 1 4 #HOLD ALL 

Define Process monitors these I/0 variables 
and prompts the user on behalf of the process. 
This makes it appear to the user as though the 
process is directly prompting the terminal. 

The IN and OUT variables act as queues. 
Commands to a defined process are queued in 
the IN variable as separate lines. When the 
process prompts TACL for the next command, 
TACL will extract the first line of the IN vari­
able and pass it to the process. By queuing 
commands for a process, a user may issue 
NOWAIT-style commands to a process. Define 
Process uses the PROMPT and STATUS vari­
ables to prompt the user and to discover when 
the process stops so that it may be restarted. 

Each command is usually passed through to 
the process but may be manipulated using 
several user exits. Define Process can trap 
custom-abbreviated commands and expand 
them to full subsystem-specific commands. 
It can automatically react to process output, 
recall previous commands using TACI..? s HIS­
TORY buffer, make use of function keys, and 
redirect input or output to a file or variable. 

Providing "persistent" availability, Define 
Process will restart a process if it stops for any 
reason; the user need not be concerned if a 
defined process is running. Commands may 
be sent to several subsystem control processes 
simultaneously to take advantage of parallel­
ism. Output from a process may be parsed by 
the user using TACI..? s string manipulation 
commands. 

Command Building Primitives. Define Pro­
cess provides TACL routines to manipulate 
defined processes. The routines, which can be 
manually invoked at a TACL prompt or auto­
matically invoked through a custom routine, 
allow the user to: 

■ Define and "undefine" processes. 

■ Start and stop processes. 

■ Redirect 1/0. 

■ Synchronize processes after a series of 
NOWAIT commands have been issued. 
■ Check process status. 

■ Get help. 

When a process is defined, the user gives it 
a name. The name can be up to 32 characters 
long and contain any characters that are legal 
in an unqualified TACL variable name. The 
user uses this pseudonym to ref er to the pro­
cess when executing a Define Process routine 
and to invoke the process when sending it 
commands. To do this, the user invokes the 
process name at a TACL prompt in the same 
manner as programs such as PUP. (See 
Figure 5.) 

20 TANDEM SYSTEMS REVIEW OCTOBER 1988 



Commands to a defined process can be 
monitored and altered by invoking one of 
three types of TACL routines: 

• FKEY option. If a function key is pressed, 
the variable associated with the function key 
may be invoked. 

• MACRO option. When a process is invoked, 
a macro may be called to issue commands to 
the process in order to bring the process up to 
date, such as setting the user's current 
subvolume. 
• PREPARSE option. Each time a command is 
passed to the process, a routine may be called 
to monitor or manipulate the command. (See 
Figure 6.) 

Network Control Examples 
Define Process offers background process fea­
tures useful for all classes of Tandem users, 
but it is especially advantageous for managing 
distributed systems. TACL and subsystem con­
trol processes such as PUP, CMI, SCF, and 
PATHCOM can be kept running and logged on 
to remote systems allowing the user to issue 
commands across the network without startup 
delay. (See Figure 7.) 

Many programs offer commands to set up 
an environment to simplify command entry. 
A user-written Define Process INIT macro can 
automatically initialize this environment for a 
defined process each time it is started. Short­
cuts for commonly issued command sequences 
can be created using the PREPARSE option 
and a user-written TACL routine. 

The VIEWPOINT Macro Library 
TACL macros are especially beneficial when 
they are written to meet the specific needs of 
a user. It is also useful, however, to build 
macros that meet the general needs of dis­
tributed systems managers. Generally, appli­
cable DSM-oriented macros are included in the 
VIEWPOINT macro library. This library is 
shipped with every release of VIEWPOINT 
and is automatically loaded and available to 
all users. The library's directory 
(:UTILS:VPTLIB) may be placed on the TACL 
use list, thus making the variables available 
without name qualification. 

Figure 6 

29>pdl 

TITAN2 DEV STATE: WAITING 
LAND2 DEV STATE: WAITING 
ITAL2 DEV STATE: WAITING 
BOOK2 DEV STATE: WAITING 
SLIDE2 DEV STATE: WAITING 
30>pinfo pc 
Name Program 
pc pathcom 
31 > 
pc PATHCOM - T9153C00 - (15JUL87) 
-32-= ss 

FORM: 
FORM: 
FORM: 
FORM: 
FORM: 

Input 
empty 

Output 
empty 

SERVER 
ENABLE-SERVER 
ZVPT-EVLE-COLL 
ZVPT-EVNT-CN FG 
ZVPT-EVNT-COLL 
ZVPT-EVNT-DETL 
ZVPT-EVNT-DISP 
ZVPT-EVNT-NTFY 
ZVPT-GARB-COLL 
ZVPT-HELP-SRVR 
ZVPT-STAT-CN FG 
ZVPT-STAT-COLL 
ZVPT-STAT-DISP 
ZVPT-TACL-SWCH 

#RUNNING 
1 

ERROR 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

-33- = fsts enable-server 
SERVER ENABLE-SERVER, FROZEN 
SERVER ENABLE-SERVER, STOPPED 
SERVER ENABLE-SERVER, THAWED 
SERVER ENABLE-SERVER, STARTED 
-34-= !f 
-34- = fsts enable-server 
SERVER ENABLE-SERVER, FROZEN 
SERVER ENABLE-SERVER, STOPPED 
SERVER ENABLE-SERVER, THAWED 
SERVER ENABLE-SERVER, STARTED 
-35-= 
35>p 
-36-_time [F2] 
January 15, 1988 10:45:22 
-37-_ 

Figure 6. 

Shortcut commands to a 
defined process using 
PREPARSE and FKEY. 
The first example is 
PERUSE (P) with a DEV 
LASER (DL) command. 
This issues a DEV com­
mand for each laser 

printer location and 
formats the output. Next, 
PATHCOM (PC) is 
started on demand, a 
STATUS SER VER com­
mand is issued with SS, 
and a FREEZE/STOP/ 
THAW/START 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

INFO 

Ready 
no 

SER VER ENABLE­
SER VER sequence is 
initiated with FSTS 
ENABLE-SER VER; 
TACL history is used to 
recall the command. 
Finally, a function key is 
used within PERUSE. 

21 



Figure 7 

44 > outvar dpstatus 
pcom status pathmon 
cm status cmp 
dnsc status 
46 > dpstatus 
PATH MON - STATE= RUNNING 

PATHCTL (OPEN) 
LOG1 SE (OPEN) 

CPUS 0:1 
$VIEWPT.VPTMAIN.PATHCTL 
$0 

LOG2 (CLOSED) 

REQNUM FILE 
1 PATHCOM 
2 TCP 
3 PATHCOM 

Object: CMP \COMM.$Y119 
CMPSTATUS 

STARTED 
SWITCHES %160000 

INITIALIZED 
OPENS ALLOWED 
AUTOSTOP ENABLED 
NONSTOP DISABLED 
BACKUP NOT NEEDED 
CHECKPOINTING INACTIVE 
NETWORK MONITORING DISABLED 

DNS Status at 10:47:00, 15 Jan 1988 

State: Stopped 

Figure 7. Figure 8 

PID 
\COMM.07,069 
$VTCP 
\COMM.07,118 

Commands to multiple 
defined processes can be 
combined into one com­
mand. DPSTATUS 
queries defined processes 
PATHCOM (PCOM), 
CMI (CM), and DNS­
COM (DNSC) for general 
subsystem status. These 
processes can be running 
locally or remotely. 

Terminal 

Figure 8. 

Sharing VIEWPOINT 
block mode and TACL 
conversational mode on 
one screen. 

PAID 
165,28 

165,28 

WAIT 

SYSTEM \COMM 

VicWPOIN'I' screens .. 

VPTLIB contains the macro DNSINFO, 
which is an example of one way a user may 
integrate the VIEWPOINT clipboard, Define 
Process, and DNSCOM. DNSINFO provides a 
simple scheme that maps Tandem file names to 
DNS names. To use DNSINFO, the user simply 
clips events from an event screen, types 
DNSINFO on the option line, and presses the 
TACL key (Fl). Then, using Define Process, 
DNSINFO defines a DNSCOM process and 
reads the events in the clipboard looking for 
device or file names. For each name DNSINFO 
finds, it will issue an INFO device command 
to DNS and show the DNSCOM output. 

PATHWAY and TACL Integration 
The DSM operator requires access to VIEW­
POINT screens to monitor distributed systems 
as well as TACL to issue commands to subsys­
tems; VIEWPOINT provides concurrent ses­
sions based on PATHWAY and TACL on one 
terminal. The PATHWAY and TACL environ­
ments use block and conversational terminal 
modes, respectively, and are therefore nor­
mally mutually exclusive. This section 
presents design and implementation details 
about the integration of the VIEWPOINT envi­
ronment based on PATHWAY and TACL. (See 
Figure 8.) 

Navigation 
When the user calls up VIEWPOINT on the 
terminal, the user's TACL process becomes 
linked with a VIEWPOINT session based on 
PATHWAY, and VIEWPOINT function key 
variables are set up to enable the user to navi­
gate between VIEWPOINT screens. The user's 
original TACL process becomes the TACL 
screen until the user exits VIEWPOINT. 

To move between TACL and VIEWPOINT 
screens, the user simply presses Fl for TACL 
and the appropriate function key for the 
desired block-mode screen. The user may pass 
arguments to the invoked screen in both envi­
ronments in a consistent fashion. 

22 TANDEM SYSTEMS REVIEW OCTOBER 1988 



From TACL, the user types the arguments 
on the TACL command line and presses the 
function key for the desired screen. For exam­
ple, an event subject (e.g., $SPLS) may be 
passed to the Last Events screen by typing the 
subject and pressing F4. From a block-mode 
screen, the user may type a TACL command 
(e.g., PUP UP $LH) on the option line and 
press the TACL key to initiate the command. 

TACL Switcher Server 
The key element of the switching mechanism 
between TACL and PATHWAY is the TACL 
switcher server. Supporting this server are two 
requesters and a TACL macro library located 
in :UTILS:VIEWPT. This server allows VIEW­
POINT to quickly switch the terminal between 
the two environments and to benefit from the 
services of the user's logged-on TACL process. 

Server Design. A VIEWPOINT (block-mode) 
requester may either use TACL as a server or 
allow TACL to take over the terminal. The 
requester calls one of two program units desig­
nated for each purpose and passes to the TACL 
switcher server all context necessary to wake 
up the user's TACL process. The TACL 
switcher server is a context-free server class; 
dynamic copies of the server are automatically 
created and managed by PATHWAY as users 
need to access TACL. The server is only 
needed while the user is on the TACL screen or 
TACL is performing a background service such 
as accessing a file. (See Figure 9.) 

Inheriting User ID and Environment. The 
link between PATHWAY and TACL provides 
unique advantages to VIEWPOINT. Inherent 
to the link protocol is an exchange of informa­
tion not usually available to traditional 
PATHWAY applications. Included in this infor­
mation is the user's current user ID and sub­
volume, which allows VIEWPOINT to identify 
the user without requiring a logon procedure. 
By employing the user's TACL as a server, 
VIEWPOINT performs file and spooler access 
required for printing and clipboard 
operations. 

Figure 9 

PATHWAY requesters 

VIEWPOINT 
PATHWAY 
requester 

TACL 
- program 

unit 

TACLwork 
program 

unit 

u 
Data Interchange Using the Clipboard. 
Because the screen clears when a terminal 
switches between block and conversation 
mode, VIEWPOINT features the clipboard to 
assist in preserving context between the envi­
ronments. An EDIT file called ZZVPCLIP on 
the user's saved default subvolume accumu­
lates text taken from VIEWPOINT screens. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

PW server 

Figure 9. 

Switch from a PATHWAY 
requester to the TACL 
screen. The TACL pro­
gram unit causes TACL 
to take over the terminal, 
and the TACL work 
program unit uses TACL 
as a background server. 
TACL switcher communi­
cates with TACL though 
a #SER VER file. TACL 
returns a user profile as 
the reply for each request. 

23 



Figure 10. 

Data interchange using 
the Clipboard. Event 
Detail text may contain 
instructions for fixing 
the problem associated 
with an event and may 
contain TACL commands, 
which can be invoked 
directly. 

24 

Figure 10 

Screen 
text c~ 

------ fi~ 
(UVIIICLJP) 

CMDS/test/ 
events 

The clipboard may be used to copy data 
from most block-mode screens for use in the 
TACL screen. Lines are selected by positioning 
the cursor on the desired line or marking sev­
eral lines and pressing the "clip" key. 
Probable-cause and recommended-action 
instructions available on the Event Detail 
screen may contain TACL commands or text 
to assist in problem resolution. The user may 
preserve selected events or status items. (See 
Figure 10.) 

The contents of the clipboard file may be 
displayed on the screen or processed by a util­
ity, and the file may be purged when the infor­
mation is no longer needed. DNSINFO makes 
use of the clipboard to supply system-to-user 
name mapping services. Preserving context 
eliminates the need to retype information, 
reducing errors and increasing operator 
productivity. 

Print Operations. VIEWPOINT supplies a 
print command to print the screen to a file, 
process, or device. When the user presses the 
print key, the PATHWAY requester sends the 
contents of the screen to TACL, and the 
requester tells TACL where to send the screen. 
TACL then directs the screen to the desired 
location. Because TACL is performing the 1/0 
under the user's ID, the 1/0 is subject to stan­
dard security checks on the user's ID. 

Status Line Notification 
A VIEWPOINT user may leave the PATHWAY 
environment for extended periods of time to 
run other programs such as VIEWSYS. To keep 
the user informed of important events, VIEW­
POINT uses the 25th line of the terminal to 
notify the user of a critical or new action 
event. The text of the event is shown, along 
with the new total number of outstanding 
critical and action events. The user may heed 
or ignore the event without disturbing the cur­
rent environment. 

Extensibility 
The extensibility features of VIEWPOINT 
facilitate the addition of new subsystems and 
the addition of new management interfaces. 
Conversational interfaces may be added using 
TACL and Define Process. Block-mode inter­
faces may be added using the EXTRAS screen. 

As new subsystems are added, requiring 
new operator advisories, additions may be 
made to the event detail database. As new 
resources to be monitored are identified, sta­
tus servers may be added. 

Each release of VIEWPOINT includes a set 
of files containing software interfaces required 
to develop extensions to VIEWPOINT. Files 
are provided in DDL, COBOL, and TAL 
(Transaction Application Language) formats. 

TACL and Define Process 
Any TACL variable can be invoked from the 
TACL screen or by using the option line when 
invoking the TACL screen. Define Process 
allows complete customization of the method 
of starting, initializing, and interacting with a 
process. The combination of TACL and Define 
Process supplies powerful command automa­
tion facilities. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



EXTRAS Screen 
The EXTRAS screen may be added to VIEW­
POINT by writing and compiling a SCREEN 
COBOL program unit named ZVPT-EXTRAS. 
A feature similar to one in PS MAIL 6530, the 
EXTRAS program unit can be a simple screen 
or a menu leading to a variety of added 
services. 

Using the option line, the EXTRAS program 
unit interface allows commands and options 
to be passed to other VIEWPOINT screens. 
For example, the EXTRAS screen could pass a 
command to the TACL screen or pass a subject 
for event display to the Last Events screen. 

Event Detail 
Records may be added to the Event Detail 
database to override descriptions provided by 
VIEWPOINT or to describe events that are 
created by added subsystems. Each release of 
VIEWPOINT will contain updates to portions 
of the database provided by VIEWPOINT. 

The DSM Programming Manual contains 
ENABLE commands that may be used to gen­
erate an application to update the database. 
Such an application can be a convenient addi­
tion to the set of applications available from 
the EXTRAS screen. 

Status Server 
The status collection server is a standard 
PATHWAY server that performs resource sam­
pling tasks. By adding new status collection 
servers to VIEWPOINT, the types of resources 
monitored by VIEWPOINT can be extended. 

In VIEWPOINT's status server, SPI encoded 
requests retrieve resource count values from 
TMF, PATHWAY, and SNAX subsystems. Using 
the MEASREADACTIVE interface of 
MEASURE™ (a performance statistic gathering 
facility), VIEWPOINT receives the busy values 
for CPUs, disks, and lines. Several other 
counter values such as file busy and process 
busy are available from MEASURE. These 
counters could be retrieved by collection ser­
vers added to VIEWPOINT. 

Conclusion 
VIEWPOINT employs the features of the DSM 
architecture and TACL to provide a cohesive, 
fault-tolerant user interface for managing dis­
tributed systems. It consolidates status and 
event information into a single view of all 
network systems and component applications. 
Facilities provided with VIEWPOINT allow 
concurrent access to multiple management 
utilities throughout the network. VIEWPOINT 
can be easily tailored to fit specific opera­
tional and organizational needs, and it pro­
vides a base for future DSM applications. 

References 
Distributed Systems Management (DSM) Programming Man­
ual. Part no. 82587. Tandem Computers Incorporated. 

Roger Hansen joined Tandem in 1981 to develop INSPECT. In 
1985 he joined the Distributed Systems Management Group to 
develop VIEWPOINT. Prior to joining Tandem, he developed 
software for several major corporations. He holds an M.S. in 
Computer Science from the University of Southern California 
and a B.S. from Iowa State University. 

Greg Stewart joined Tandem in 1984 as a software designer for 
PATHWAY. In 1985 he joined the Distributed Systems Manage­
ment Group to develop VIEWPOINT. He holds a S.S. in Computer 
Science and Mathematics from the University of Oregon. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 25 



26 

Network Statistics System 

-----
---

andem performance monitor­
ing tools were originally 
restricted to statistics collec­
tion at a single node or 
system. Until recently, there 
was no mechanism to gather 
statistics and present a 

network-wide perspective of system perfor­
mance. Information could be gathered on a 
node-by-node basis only. 

Network Statistics System (NSS™), a Dis­
tributed Systems Management (DSM) subsys­
tem, provides a "global perspective" of an 
entire multi-node network. NSS gives systems 
analysts, managers, and operators curr~nt and 
historic high-level system performance infor­
mation, simplifying the management of two 
key distributed system resources: processors 
and EXPAND™ line handlers. 

This article discusses why NSS was built, 
who the intended user is, and what type of 
information it provides. NSS configuration, 
threshold values, performance event genera­
tion, and database maintenance options are 
also explained. 

Overview 
NSS is a DSM subsystem that gathers informa­
tion useful for managing distributed networks. 
Statistics on CPUs and EXPAND line handlers 
are collected and stored in a database. The 
NSS database is maintained automatically, 
purging and archiving data as specified by the 
user. Through the use of graphic displays, 
interactive reports, and event console mes­
sages, NSS communicates the statistics to 
the user. 

NSS collects this information with mini­
mum impact on system and network 
resources. The statistics are available regard­
less of network propagation delays. 

NSS can be configured for a variety of net­
work sizes. Although networks with three or 
more nodes benefit the most from using NSS, 
even a single-node "network" benefits from 
performance threshold events and graphic 
CPU performance history. 

Other NSS features include: 

■ Current and historic reports. 
■ User-defined performance thresholds. 
■ VIEWPOINT™ threshold reporting. 
■ Real-time statistics database. 
■ Automated database maintenance. 
■ Distributed or central configuration. 
■ Text and block-mode interfaces. 
■ Scoreboard and graphic displays. 
■ Multi-node time-of-day synchronization. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Advantages 
A subtle, but significant, distinction between 
NSS and other on-line system performance 
display tools is that NSS does not require a 
user to constantly watch a terminal to monitor 
system resource utilization. Instead, NSS: 

■ Generates performance threshold events for 
display on the VIEWPOINT primary events 
screen. The "last events" capability of VIEW­
POINT permits a history of NSS events to be 
readily displayed. Thus, performance events 
are reported along with other system events on 
a common system console. 

■ Automatically maintains and displays an 
ongoing history of system and line-handler 
performance in an on-line statistics database. 

■ Collects statistics at a sample interval in 
minutes, rather than seconds. Sampling on an 
interval of minutes reduces the need for visual 
integration of statistics over time as well as 
reduces data collection overhead. 

History 
NSS was developed primarily to assist in 
understanding network-wide system resource 
utilization in a large (50-node) distributed 
environment. To successfully manage a net­
work of this size from a central location, 
global information on processor performance 
and EXPAND traffic was needed. 

Monitoring a Large Network 
Before NSS was developed, a network of this 
size was monitored by periodically running 
XRAY™ or VIEWSYS™ measurement tools on 
several nodes at a time. This required interac­
tion with as many programs as there were 
nodes. This approach worked well for small 
networks, but in larger networks it is cumber­
some. Analyzing output from three programs 
may be manageable, but 50 is not. Automated 
system level reporting still required that the 
operator analyze as many reports as there were 
nodes. 

Another reporting alternative, consolidated 
batch performance reporting, does not meet 
the need for current and historical on-line sys­
tem resource utilization data. Batch reporting 
is acceptable for long-term capacity planning, 
but for short-term system management 
planning-a few minutes to a few days-an 
on-line summary level database is required. 

In addition, in a network of this size, pro­
cessor loading in each system can be variable 
and unpredictable. It is not adequate to check 
the performance of a node on a periodic basis; 
constant monitoring is required. 

With these limitations, monitoring a large 
distributed network using VIEWSYS or XRAY 
proved inefficient and inadequate, prompting 
the development of NSS. 

GUARDIAN Improvements 
A second reason for developing NSS benefited 
both customers and Tandem. The internal 
GUARDIAN™ resource requirements of a large 
EXPAND network needed validation. NSS 
helped identify excessive utilization of 
GUARDIAN link control blocks and EXPAND 
local pool pages under certain conditions. 
This information led to significant improve­
ments in the GUARDIAN operating system. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 27 
\._ 



Figure 1 

NSS command interpreter 

• Interactive reporting 
• Component control 
• Component status 
• Display startup 

Display 

• Alarm scoreboards 
• Graphic history 
• Viewport on NSS 

ENFORM 

• Ad hoc queries 
• Batch reports 

VIEWPOINT 

• Event display 

Figure 1. 

NSS process diagram. 

28 

Collect server(s) 

• Stats collection 
• Stats normalization 
• Database maintenance 
• Scheduled cleanup 
• lnternode lime source 
• ENFORM server 
• Backup process 
• Event generation 

Monitor process(es) 

• Node level capture 
• Data reduction 
• Stats tokenizalion 
• Delivery to collect 
• lnternode time sync 
• SGP management 
• Backup process 

SGP processes 

• Stats gathering 
• Stats capture 
• Stats computation 
• Delivery to monitor 

Network Management 
The information provided by NSS can be used 
to determine where potential performance 
problems exist. NSS automatically provides 
performance and error rate information about 
processors and EXPAND line handlers. With 
this type of information, systems personnel 
can make more informed decisions about net­
work management. Analyzing the information 
collected by NSS provides an indication of the 
overall "health" of a system. This information 
can direct system personnel to other diagnos­
tic or monitoring subsystems such as 
MEASURE TM in order to gather more detailed 
information. 

For example, NSS detects situations such as 
excessive CPU queueing or processor utiliza­
tion in a network and reports this information 
to VIEWPOINT. Given this information, sys­
tem operations can assign someone to investi­
gate the situation. Or if an EXPAND line 
between two nodes had an increasing number 
of intermittent BCC errors over the last few 
hours or days, a message could be sent to 
VIEWPOINT to instruct a technician to check 
the Ike. 

Using the NSS database, system manage­
ment personnel can extract historical data on 
a variety of system performance information. 
Trend identification and analysis, historical 
usage statistics, and growth rates can be deter­
mined from the database. This information 
can provide valuable assistance to a capacity 
planning effort. 

Statistics Collection 
Statistics collection uses three different types 
of processes: the monitor process, the statistics 
gathering process (SGP), and the collect pro­
cess. (See Figure 1.) Statistics are collected for 
two entities in a Tandem network: processors 
and EXPAND line handlers. Attributes 
reported for these entities are shown in 
Figures 2 and 3. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Monitor processes run on user-selected 
nodes of a network and manage node-level 
NSS functions. The Monitor starts an SOP in 
each CPU of its node. The SOP gathers statis­
tics for its CPU and the EXPAND line handlers 
executing in its CPU and reports this data 
back to the Monitor. 

The Monitor process bundles statistics for 
its node and sends them to its designated col­
lect process, which may reside in the same or 
any other node of the network. The statistics 
for an entire node are normally contained in a 
single message sent to the collect process each 
sample interval. This results in extremely low 
additional network message overhead, even for 
very large networks. 

The collect process receives statistics for 
specified nodes and stores them in a database. 
Database maintenance functions such as file 
creation, deletion, and release are provided by 
the collect process. The collect process also 
provides network-wide services such as time­
of-day synchronization to its monitor 
processes. 

The process structure described above has 
several important advantages: 

■ With data collection decoupled from presen­
tation, data collection and archiving can con­
tinue without displaying the information. 

■ A statistics database permits data sharing 
and allows a variety of display techniques. 
Programs such as ENFORM™ or any other 
user-written program can access NSS statistics 
using simple database operations. 

■ Statistics reporting through a database sepa­
rates data presentation from network propaga­
tion delays. This provides fast uniform 
response time to interactive user requests, typ­
ically less than 1 second, regardless of the time 
required to propagate statistics through the 
network. 

■ And finally, since data is directed toward the 
collection point, polling delays are minimized. 
If instead the collect process polled each mon­
itor for data in an outward-directed fashion, 
as the number of nodes increased, polling 
delays would become significant. Unsolicited 
collection delays, on the other hand, are very 
small. 

Figure 2 

CPU attributes 

SYSNAME 
P-KEY 
TS 
ET 
CPUTYPE 

CPU statistics 

BUSY 
OLEN 
DISPS 
SEND-BUSY 
CHITS 
DISCS 

The Tandem network node name of the CPU statistics 
Primary key: sysno, cpuno, and inverted timestamp of sample 
Timestamp of the sample in database local civil time 
Elapsed time of the sample interval in microseconds 
Processor type 1 = TNSII, 2 = TXP, 3 = VLX, 4 = CLX 

Percentage of the time that a processor is not idle 
Average number of processes on the ready list 
Average number of times per second that processes were executed 
Percent time that a processor spent executing SEND instruction 
Average number of disk cache hits per second in this CPU 
Average number of disk 1/0 operations per second 

Memory statistics 

SWAPS Average page faults per second that occurred during last sample 
MOLEN Average number of processes waiting memory manager services 
MEM-USE Total number of physical memory pages locked 
MEM-CNF Total number of physical memory pages configured (locked+ unlocked) 
MAP-USE Total number of mappool pages in use 
MAP-CNF Total number of mappool pages configured (used+ free) 

Control block stats 

PCB-USE 
PCB-CNF 
SYS-USE 
SYS-CNF 
LCB-USE 
LCB-CNF 
TLE-USE 
TLE-CNF 

Process Control Blocks (PCBs) in use in this CPU 
Number of PCBs sysgenned for this CPU at the time of the sample 
Total number of syspool words (syspool) in use 
Total number of syspool words available (used+ free) 
Total number of system dataspace Link Control Blocks (LCBs) in use 
Total number of system dataspace LCBs configured 
Total number of Time List Elements (TLEs) in use 
Total number of Time List Elements configured (used+ free) 

Figure 2. 

CPU attributes reported 
by NSS and correspond­
ing DDL names. 

0 C T O B E R I 9 8 8 TANDEM SYSTEMS REVIEW 29 



Figure 3. 

EXPAND LH attributes 
reported by NSS and 
corresponding DDL 
names. 

30 

Figure 3 

Device attributes 

SYSNAME 
P-KEY 
SUBTYPE 
PID1 
PID2 
LDEV 

Level 1 statistics 

BCC-ERR 
NO-FRAME-CNT 
LINE-QUALITY 
FRAME-CNT 
ERROR-CNT 

Level 2 statistics 

I-FRAMES-SENT and RCVD 
S-FRAMES-SENT and RCVD 
LI-FRAMES-SENT and RCVD 

Level 4 statistics 

PACKETS-SENT and RCVD 
RUNK-SENT and RCVD 
FWD-PACKETS 
PACKETS-FWD 

Level 4 operations 

CONN-SEND and RCVD 
TRACE-SEND and RCVD 
NCPM-SEND and RCVD 
LRQ-SEND and RCVD 
LCMP-SEND and RCVD 
CAN-SEND and RCVD 
ACK-SEND and RCVD 
NAK-SEND and RCVD 
ENO-SEND and RCVD 

Level 4 msg buffer stats 

NET-CUR-IO-BUF 
NET-MAX-IO-BUF 
NET-CUR-OOS-BUF 
NET-MAX-OOS-BUF 
NET-MAX-COMBINED-BUF 
N ET-OOS-TI M EOUTS 
PCHG-SEND 
PCHG-RCVD 
NET-POOL-SIZE 
NET-POOL-FAILS 
NET-LT64 
NET-LT128 
NET-LT256 
NET-LT512 
NET-LT1024 
NET-LT2048 
NET-LT4096 
NET-GT4096 

Statistics Presentation 

Tandem network node name of line handler statistics 
Primary key: sysno, line name, and inverted sample time 
Device subtype, eg O singleline, 1 multi line, ... 
Primary line handler (CPU,pin) 
Backup line handler (CPU,pin) 
Logical device number of the line handler 

Block Check Character error count 
No Frame Buffer error count 
Line quality (0-100%) 
Framing error count 
Level 1 error count 

Information frames sent/rcvd) 
Sequenced frames sent/rcvd) 
Un-sequenced frames sent/rcvd) 

Total packets (passthru + local) senl/rcvd 
Total local logical messages sent/rcvd 
Total packets (passthru only) sent 
Total packets (passthru only) rcvd 

Network connect operations sent/rcvd 
Network Trace operations 
NCP (network control process) messages 
Link request operations 
Link complete operations 
Cancel Link operations 
Acknowledgement operations 
Negative Acknowledgement operations 
Enquiry of last message ack-ed 

Current message buffer use in kilobytes 
Maximum message buffer use in kilobytes 
Current Out-Of-Sequence buffer use in words 
Maximum Out-Of-Sequence buffer use in words 
Maximum OOS + message buffer use in kilobytes 
Number of Out-Of-Sequence timeouts 
Path change msgs sent 
Path change msgs rcvd 
Total pool size in kilobytes (msg + oos) 
Total number of pool allocation failures 
Number of messages less than 64 bytes 
Number of messages less than 128 bytes 
Number of messages less than 256 bytes 
Number of messages less than 512 bytes 
Number of messages less than 1024 bytes 
Number of messages less than 2048 bytes 
Number of messages less than 4096 bytes 
Number of messages greater than 4096 bytes 

VIEWPOINT Messages 

The statistics gathered and archived by NSS 
can be accessed by four different methods. 
The method used depends largely upon the 
level of detail needed by the user and the type 
of presentation required. 

The VIEWPOINT primary events screen dis­
plays events generated by NSS whenever user­
specified performance thresholds are 
exceeded. When a threshold is exceeded, the 
NSS collect process generates a message and 
sends it to the Event Management Service 
(EMS). The message is then sent to the 
VIEWPOINT console. The VIEWPOINT "last 
events" function provides a summary of 
recent NSS performance events. 

TANDEM SYSTEMS REVIEW 0 C T O B E R I 9 8 8 



Interactive Text Reports 
More detailed statistics can be displayed using 
NSS commands. These interactive text reports 
can be modified to report all or only selected 
nodes, CPUs, or line handlers in a network. 
Statistics reported can be real-time or for a 
specified time, date, and sample interval. 
Reports can be displayed at the terminal, 
directed to a printer, or sent to an edit file. 
Figure 4 (CPU AVERAGE report) and Figure 5 
(BOSTON CPU reports) are examples of this 
type of reporting. 

In Figure 4, the NSS command: 

CPU \*, AVG, S3 

results in a text report that shows CPU statis­
tics averaged across all available processors in 
each system. "S3" specifies that three NSS 
sample intervals of information are displayed. 
In this example, the intervals are 15 minutes; 
data shown covers the last 45 minutes. This 
report reveals BOSTON as the busiest system. 

More detailed information on the BOSTON 
system is produced with the command: 

+ CPU \BOSTON, S4 

By specifying the BOSTON system, only CPU 
data for BOSTON is displayed (Figure 5). This 
report shows unbalanced processor utilization. 
CPU O (84% busy) is twice as busy as the next 
busy CPU, CPU 1 (43% busy). 

Under the PgLk heading, the data shows 
that physical pages locked for the system are 
also unbalanced. CPU 1 has 50% more pages 
locked (1429 pages) than CPUs O and 2 (971 
and 851, respectively). This is probably con­
tributing to the swap rate of 1 per second 
reported in CPU 1 for the last 15 minutes. 

A third NSS command generates another 
report on system control blocks (Figure 6). 

+ CPU \BOSTON, PERCENT 

This report reveals unbalanced PCB usage 
for the system (84% for CPU 1, 57% for 
CPU 0, and 44% for CPU 2). PCB usage 
affects memory pages locked; moving pro­
cesses from CPU 1 may reduce swapping in 
CPU 1. 

Further analysis of the BOSTON system can 
be conducted using MEASURE to determine 
what actions should be taken to balance the 
system. NSS has served its purpose by identify­
ing potential and existing performance prob­
lems and directing further investigation. 

Figure 4 

Figure 5 

Figure 6 

Figure 4. Figure 5. 

CPU AVERAGE report. BOSTON CPU reports. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 6. 

BOSTON system control 
block report. 

31 



Figure 7. 

Processor Scoreboard. 
Highlighted screen areas 
indicate scores that have 
exceeded user-specified 
thresholds. For this 
example, thresholds were 
CPU BUSY 70, Q 2, 
J/O 20, SWAP 3. 

32 

Figure 7 

. NSSVl~W :flilJU!i7 

Sys~ ~-~ DALLAS (l,t4fo. 
MEMPHIS 0,S;illV .. 
BOSTON 0,87% 

\OAf.LAS \004. ~--"'""'.-.... _~ ~~ 
. IIIQK1CII01 1:2:QO 
01x1•1 12:00· 
~101(11 12,00 
03,c10'f(l1 12:0(i 
04.it10/01 t2;00 
\QrliCMO. \005 ------""'I"- _,... 
00)()0(81 12:00 

·01x10IQ1 12:!;ll) 
~1®1·· ,~ 
03x.\OID1 ,2100 

:lo l=r-.,zehit BREAK 

Block-Mode Display 

Et 
·-:--
'f5 
16 
15 
15 
15 
Et 

15 
1,5 .. , 
1.5 

Q~Q 
Q,O 
1,2 
0;1 

El$Y 
-% 
14 
9 

10 
10 
1\ 

~ 
"'% 
~ 
,40 
6 
4. 

~ur:Soore on 24 Cpt;1s 6 systems 1010112:oa 

Clpt;J to CiipuS'MiP System Cpt;1Busy Cpt;1 a Cpu 10 Cpt;JSwap 
0,3 OiO CHICAGO 0,~% 0,3 1,13 O,O 
M3 0,0 CiiENTDI.V 1,$1% 1,1 5;9 1,2 
0,22 Cl;O SANFRAN 2,34% 2,1 0,15 2,2 

QI., ·.Diep· Disc Ct:lt Swt;> MQ PGS PCb Lcb Tie Sys Map .. _ .. .,,.;, -% ···% -% --% --% -·% 
86 3 4 25 35 20 4 13 11 
61 1 4 38 5Q 30 3 19 20 - 1 1 21 37 26 2 13 11 
24 16 41 22 4 12 5 
21 16 20 16 2 8 2 

QL Elt$p D!sc Cht swp MQ PGS Pob Lcb Tie Sys Map 
..:.._!!< ..,,;--. ,•-~ .... ,1o ·-% .. ,.,. :-·% ·--% -% 
3 304 37 41 40 5 17 21 
I!! ~ 13 23 49 67 45 5 21 37 • 2 4 21 45 26 4 10 20 

1a. 33 19 10 1 2 3 

"JWe HELPllll' <cQfflma~> RETURN Resu1¥1eSF15 Exlt8F16 

The NSS command interpreter also provides a 
block-mode display interface. Block-mode 
displays utilize T6530 or EM6530PC video 
attributes and graphics to present information 

in the form of video or color highlighted 
scoreboards and graphs. NSS text-mode com­
mands and reports are permitted while in 
block mode. The Processor Scoreboard 
(Figure 7) and System Utilization Summary 
(Figure 8) are examples of block-mode 
displays. 

In Figure 7, scores that exceed user­
specified thresholds trigger screen highlight­
ing. Users can see at a glance which areas are 
potential performance problems. In this exam­
ple, the thresholds are CPU BUSY 70, Q 2, 1/0 
20, and SWAP 3. 

TANDE\11 SYSTEMS REVIEW OCTOBER 1988 



Numbers (or scores) on the scoreboard indi­
cate which CPU on each node had the highest 
value for CPU BUSY, queue length, disk 1/0, 
and swaps. Low scores are meaningful in 
terms of understanding the overall utilization 
of a node. For example, DALLAS 0, 14% 
(under the CPUBUSY heading) means that 
CPU 0 was the busiest CPU on the DALLAS 
node at only 14%. Under the CPU Q heading, 
CHICAGO 0,3 indicates that CPU 0 had an 
average queue length of three over the last 
sample interval. Additional data is reported in 
the window below the scoreboard. 

Figure 8 provides an overall network-wide 
graphic summary of average processor utiliza­
tion for all available processors on each node 
in the network. In this example, the BOSTON 
node has been under constant load for the past 
5 hours (through 10/1, 12:00). Note that once 
an hour (every four samples), CPU load 
increases on BOSTON and CENTDIV nodes. 

Using ENFORM 
ENFORM can be used to provide customized 
reports based on statistics in the NSS data­
base. This is useful for long-term historical 
analysis and summary reporting. NSS includes 
a set of ENFORM queries that users can alter 
to meet specific reporting requirements. 

Configuring NSS 
NSS can be configured in a variety of ways. 
Data collection can be directed to a single 
central node or to regional groups of nodes, or 
distributed so each individual node in a net­
work has an NSS statistics database. Threshold 
settings and collection intervals can be modi­
fied to meet special needs. Database mainte­
nance options are also specified by the user. 

Figure 8 

, ... ,Utlt1 

19 
1~ .. 
$1. ' • 
$;1' 
41 ··~ ,, ' 
1$ 
14 
·<i)$ 

When executed, the NSS command inter­
preter automatically obeys an edit file named 
NSSCONF. This file contains instructions that 
will automatically configure NSS. The 
NSSCONF file can be modified using NSS 
commands to meet the user's needs. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

19 
'10 
61 
51 
42 
33 
13 

..... &.1 ... 9,11tllffl~! 
1w011100 

Figure 8. 

System Utilization Sum­
mary. This figure pro­
vides an overall network­
wide system summary of 
average processor utiliza­
tion for all available 
processors on each node 
in a network. Each 
vertical bar in the histo­
gram represents one NSS 
sample interval (in this 
example, 15 minutes). 

33 



Figure9 

[A] 

[BJ 

Example A 

SET COLLECT \CHICAGO define collection location 
define database location 
sample interval 15 minutes 
report performance events 
report Busy>= 70%, Q > = 2 
ID for 1st process set 

SET DB $CHGO.NSS.DB 
SET RATE 15 
SET EVENTS ON 
SET CPU BUSY 70, Q 2 
SET ID$ZNS 

START \CHICAGO COLLECT 
START\• 

!start collect process 
!start monitors on all nodes 

Example B 

SET COLLECT \LA 
SET DB $WEST.NSS.OPS 

!define collection point 
!define database fileset 
!sample interval 5 minutes SET RATE 5 

SET EVENTS ON 
SET CPU SWAP 3, Q 3 

! report performance events 
!report Swap>= 3, Q > = 3 
! ID for 2nd process set 

Figure 9. 

SET ID$OPS 

START \LA COLLECT 
START \LA 
START \SANFRAN 
START \SEATTLE 
START \DALLAS 

Sample NSS configurations. 
Examples A and B illus­
trate two possible NSS 
process configurations. 
Example A defines a set 
of NSS processes that 
report statistics for all 
nodes in the network to 
the CHICAGO node. 
Example B defines a 
second set of processes 
that report statistics for a 
selected regional group of 
nodes to the LA node. 

! start collect process 
!start monitors 
!on selected nodes 

Network Configuration 
Multiple sets of NSS monitor and collect pro­
cesses can be configured to operate autono­
mously with different designated collection 
locations and options. This allows geographi­
cally separate operations groups to selectively 
monitor different sets of network nodes. 
Figure 9 shows an example of such a 
configuration. 

The ID option is used to identify a set of 
NSS monitor and collect processes that operate 
together. When only one set of processes is 
used, as in a single centralized configuration, 
only one ID is needed, and users are typically 
not aware of its existence. When multiple sets 
of processes are required, a different ID is 
specified for each set of processes configured. 
In the example shown in Figure 9, the process 
IDs are $ZNS and $OPS. 

Collection Intervals 
Statistics are sampled and collected at the 
interval specified by the RATE option. The 
sample interval typically configured ranges 
from 1 to 15 minutes depending on the desired 
frequency of reporting or statistics aggregation 
over time. 

Statistics sampling is synchronized across 
all nodes by the Collect process. Sample times 
are organized to occur at whole minutes after 
the hour intervals and are kept internally in 
Greenwich Mean Time (GMT). For an interval 
of 5 minutes, sampling on each node occurs 
on the hour, and at 5, 10, 15, ... minutes past 
the hour. As long as the nodes are synchro­
nized with respect to one another, the statistics 
for one node can be correlated in time to sta­
tistics from another node. NSS includes com­
mands that provide synchronization of GMT 
between all or selected nodes of a network. 

Performance Events and Thresholds 
Performance events are messages generated by 
NSS when user-specified thresholds are 
exceeded. These threshold levels also control 
video or color highlighting on NSS score­
boards and graphic displays. (See Figure 7.) 

Performance event threshold levels can be 
set for selected processor and EXPAND line 
handler attributes. For example, adding the 
following commands to the NSS configuration 
file causes NSS to report the busiest processor 
with an average CPU BUSY utilization of 70% 
or more over a sample interval. 

SET CPU BUSY 70 
SET EVENTS ON 

If a processor exceeds this limit, say 
BOSTON.0, and it is the busiest processor on 
that node, then the following message would 
appear on the system console or the 
VIEWPOINT primary events screen: 

12:00 ... INFO \BOSTON.00 87% BUSY 
for 15 min 

34 TANDEM SYSTEMS REVIEW OCTOBER 1988 



Recommended CPU threshold levels for 
typical on-line applications are CPU BUSY 
70%, QUEUE 2, SWAP 2. However, CPU 
threshold values are best determined by empir­
ical observation. Different applications and 
end users can tolerate varying amounts of pro­
cessor queuing and have different definitions 
of "acceptable" response time. NSS users 
should correlate NSS statistics with periods of 
observed unacceptable response time and set 
the NSS thresholds accordingly. 

Database Maintenance Options 
The NSS collect process creates a set of data­
base files when it is first started. Because the 
database contains condensed statistics, one 
day of data for a typical node of six CPUs and 
four EXPAND line handlers requires only 
about 50,000 bytes of disk space. Thus, one 
day of NSS data for 20 network nodes requires 
just 1 Mbyte of disk storage. 

The collect process performs automatic 
database maintenance based the RETAIN 
option setting. 

The default retain option, RETAIN 
ROLLOVER, renames the current database 
files at the designated database CLEANTIME 
(typically midnight). The new name includes 
the month and day that the rename occurred. 
When RETAIN ROLLOVER is set, each set of 
database files represents one day of NSS 
information. 

The RETAIN NONE option causes data for 
the current day to be purged at the designated 
CLEANTIME. This is used if only a short-term 
daily history is desired. 

A third option, RETAIN ALL, causes all 
records to be retained indefinitely. Eventually 
the files will become full unless manual action 
is taken. The NSS CLEANUP command can be 
used to invoke manual cleanup at some 
selected long-term interval, such as monthly. 

The fourth option, RETAIN number, 
defines the number of most recent records to 
retain about each CPU and line handler. With 
this option, a moving window of history is 
automatically maintained by the collect 
process. 

Because the collect process runs continu­
ously and assumes the ongoing responsibility 
of database maintenance, operation of the 
subsystem is automatic and does not require 
operator attention or scheduled maintenance. 

Error Handling 
The NSS INFO command is used to display a 
summary of recent monitor and collect pro­
cess errors. This assists in trouble-shooting 
NSS in the event of some unusual event, such 
as the lack of disk space for a database file 
extent. 

An internal NSS error log file is automati­
cally maintained for all NSS processes that 
operate on a given system. These errors are 
also logged to EMS. Errors such as a CPU 
going up or down are automatically recovered. 
NSS will recover from all errors except for a 
total node failure or shutdown. 

A complete list of errors by error number 
and parameter can be displayed with the com­
mand interpreter by entering HELP ERROR. 

Conclusion 
NSS provides systems analysts, managers, and 
operations personnel with current and historic 
high-level, network-wide performance views 
of a Tandem network. 

Performance threshold event generation 
provides Tandem customers with information 
about resource demands placed upon pro­
cessors and EXPAND line handlers throughout 
a network. 

NSS is useful for identifying and locating 
problems, obtaining a global perspective of 
network performance, and directing detailed 
performance analysis. NSS extends these capa­
bilities to both small and large networks, help­
ing all Tandem customers simplify the 
operation and management of their networks. 

Acknowledgments 
The author would like to thank the members of the Tandem 
Memphis District for their support during the development of 
the initial NSS prototype. 

Mike Miller is a consulting analyst for Tandem. He has per­
formed various systems analysis functions since joining Tandem 
in 1978. He holds a B.S. degree in Electrical Engineering and 
Computer Science from the University of Illinois. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 35 



36 

Tandem's Subsystem 
Programmatic Interface 

andem's Subsystem Pro­
grammatic Interface (SPI) 
provides a common, 
message-based interface for 
communicating commands, 
responses, and event mes­
sages within Tandem's Dis­

tributed Systems Management {DSM) 
environment. SPI provides support for both 
control and monitoring functions within DSM. 
(See Figure 1 . ) 

DSM application programs and DSM sub­
system programs use SPI to build and interpret 
the command and response messages sent 
between them, and DSM event-message gener­
ators use SPI to build event messages describ­
ing asynchronous events. These event 
messages are logged and distributed by 
Tandem's Event Management Service {EMS), 
which is itself a subsystem that can be con­
trolled through SPI. DSM event-message con­
sumers use SPI to interpret the event messages 
obtained through EMS. SPI thus offers a uni­
form programmatic interface, not only for use 
by applications, but also for use within and 
between services and subsystems provided by 
Tandem and others. 

Specific SPI features include: 

■ A common message format that supports 
both tokenized and structured data. 
■ Automated version accommodation for 
structured data. 
■ Use of Tandem's Data Definition Language 
{DDL) to automatically translate SPI defini­
tions into definitions for languages such as 
TAL (Transaction Application Language), 
COBOL85, and TACL (Tandem Advanced 
Command Language). 
■ SPI procedures that can be called from TAL, 
COBOL85, or TACL. 

■ Full access to language-dependent message 
transport facilities such as those provided by 
TAL, COBOL85, and TACL. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Figure 1 

Operations 

Management 

Subsystems 

Command 
messages 

Response 
messages 

Command 
messages 

Response 
messages 

This article describes the interfaces used 
prior to DSM, discusses the design consider­
ations behind SPI, presents an overview of SPI 
features, and shows how SPI meets DSM 
requirements. Further information about SPI 
may be found in the Distributed Systems Man­
agement (DSM) Programming Manual. 

Definitions 
As used in this article, subsystem refers to a 
set of programs or processes managing a cohe­
sive set of objects. For example, in the 
Tandem GUARDIAN 90™ environment, FUP 
(File Utility Program) manages files, TMF 
(Transaction Monitoring Facility) manages 
transactions, and PATHWAY™ manages 
PATHWAY applications. Each of these is con­
sidered a separate subsystem. 

Event 
messages 

The term management program is used to 
describe any program that helps to automate 
the work of a system manager or system oper­
ator. Programmed operators are fully auto­
matic management programs that do not 
require human intervention. SPI is intended to 
make it easier to write management programs 
in general, with particular emphasis on pro­
grammed operators. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 1. 

The Subsystem Program­
matic Interface provides 
a standard way to build 
and interpret command, 
response, and event 
messages sent between 
DSM components. 

37 



Figure 2 

Figure 2. 

Existing conversational 
interface (PATHWAY). 
Management programs 
using existing conversa­
tional interfaces must 
deal with text and 
attempt to simulate 
terminals. 

38 

Existing Interfaces 
Most Tandem subsystems offer conversational 
text interfaces designed for use by human 
operators. Some subsystems, such as the 
SPOOLER and SORT, offer specialized pro­
grammatic interfaces as well. Each of these 
interfaces has some advantages, but they all 
present problems for management programs in 
a distributed environment. 

Conversational text interfaces have advan­
tages in that they are supported by almost all 
subsystems, they usually offer complete func­
tionality, and they are relatively standard. 
They are, however, designed for use by people, 
not programs. Management programs must 
contend with the following difficulties: 

■ Text conversions. Internal data must be con­
verted into command text, and response text 
must be converted back into internal form to 
be manipulated. 

■ Reversal of requester-server relationships. 
Subsystems typically expect to open a termi­
nal or other source of conversational com­
mands. Because a management program using 
this interface must simulate a terminal, it is 
forced into the awkward role of a server pro­
cess even though it is generating the requests. 
This situation is shown in Figure 2. 

• Need for operator intervention. Conversa­
tional interfaces assume that a human opera­
tor is available to respond to confirmation 
prompts and requests for operator action. This 
can result in prompts that are misdirected to 
the home terminal, prompts that are unantici­
pated by the management program, and com­
mands that are rejected because they are only 
for interactive use. 
■ Version dependencies. Text displays typically 
change whenever the need arises. New fields 
are added, old fields are deleted, and existing 
fields are rearranged. A management program 
that looks for response information on a par­
ticular line or column may mysteriously fail 
because of a minor change in the format of a 
text response. This is perhaps the most serious 
problem because it makes programs that must 
handle different subsystem versions in distrib­
uted locations extremely difficult to maintain. 

Existing programmatic interfaces, though 
designed for programmatic use, pose other 
problems for management programs: 

■ Limited or missing interfaces. Many sub­
systems either lack their own programmatic 
interface or supply an interface that cannot 
perform all the functions available 
conversationally. 
■ Lack of 1/0 control. Most existing interfaces 
consist of procedure calls that perform their 
own waited 1/0. This can be a problem for 
management programs that must use timed or 
no-wait 1/0 to prevent deadlocks or for multi­
threading and performance. 
■ Accessible from only one language. Many of 
the existing interfaces are difficult or impos­
sible to use from programming languages 
other than the one in which they are written. 

■ Nonstandard between subsystems. The big­
gest problem with the existing programmatic 
interfaces is that the interface for each subsys­
tem is completely different from that of every 
other subsystem. These differences present a 
barrier to any program that needs to manage 
multiple subsystems; any time a new nonstan­
dard interface is added, all these programs 
must be explicitly changed. This problem is 
especially acute for interpreters that want to 
provide the interfaces without having to 
understand their semantics. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Even if these difficulties could be overcome 
' the use of subsystem-specific interfaces would 

still not satisfy the DSM requirement of allow­
ing third-party and user-written subsystems to 
be easily integrated with Tandem subsystems. 
Interpreters supplied by Tandem could not 
offer built-in access to customer-supplied 
interface procedures, and the different pro­
gramming techniques required would make it 
extremely difficult to write generalized man­
agement programs. 

SPI Requirements 
DSM required an interface that would address 
these requirements. The most important 
requirement was commonality as a means of 
coping with the diversity of distributed sys­
tems. The interface had to be: 

■ Common across Tandem subsystems. 
■ Common across different programming 
languages. 
■ Available to user subsystems. 

■ Able to accommodate version differences. 

To support distributed subsystems, allow 
for asynchronous events, and permit user con­
trol of 1/0, the interface also had to be: 

■ Message-based. 
■ Independent of message transport. 

Finally, for ease of use by management pro­
grams and to accommodate layered subsys­
tems, the interface had to: 

■ Support management programs as requesters 
and subsystems as servers. This is illustrated 
in Figure 3. 
■ Use programmatic data formats (binary). 
■ Provide multiple contexts within a message. 

Answering the above requirements, SPI 
includes the following features: 
■ The access procedures and data declarations 
define a common message format that can be 
used in TAL, C0B0L85, and TACL programs. 
■ Users have complete control over the 1/0 
mechanism permitting SPI use with both 
requester I server interactions and event logging 
to disk. 

Figure 3 

■ Standards provide commonality across dif­
ferent subsystems. 
■ Version accommodation provides common­
ality across distributed components at differ­
ent release levels, as well as for old programs 
compiled with new declarations. 

The remaining discussion will focus on how 
SPI components, standards, and related tools 
were designed to provide these and other 
benefits. 

SPI Design Considerations 
Many design alternatives were considered in 
the development of SPI. In addition to purely 
technical considerations, the practical consid­
erations of converting existing subsystems and 
cooperating with existing interfaces were also 
very important. By testing different SPI design 
ideas against the needs and requirements of 
real subsystems as well as the architectural 
needs of DSM, the developers ensured that SPI 
would be workable in practice as well as in 
theory. This section of the article provides an 
overview of the key design decisions. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 3. 

Subsystem Program­
matic Interface connec­
tion with PATHWAY. 
Management programs 
use a standard binary 
interface to interact 
directly with the 
subsystem. 

39 



Customized vs. Common Message Format 
Given that SPI was to be message-based, the 
first design consideration was whether the 
format of the buffer should be customized by 
each subsystem or common across all subsys­
tems. The customized approach involved 
allowing each subsystem to supply its own 
version of the standard access procedures. The 
SPI procedures would then act as a big switch 
calling the appropriate set of procedures 
depending on the subsystem being used. 

This approach had the advantage that exist­
ing subsystem servers would not have to be 
converted to use the new interface. The SPI 
procedures would build and decode message 
buffers using subsystem-defined formats and 
would hide the format differences from the 
requesters. The disadvantage of this approach 

Tokens simplify version 
1 accommodation and 
cope with highly variable 
data. 

is that subsystem­
specific code would 
have to be written 
and bound into the 
SPI interface by each 
subsystem. Further­
more, a common 
buffer format would 
still need to be 

designed and implemented for use by user­
written subsystems. 

In the end, it was decided that if the com­
mon buffer format could meet the needs of 
user subsystems, it should meet the needs of 
Tandem subsystems as well. The cost of con­
verting old subsystem servers to use the new 
buffer format was offset by eliminating the 
cost of writing subsystem-specific buffer inter­
faces. Even requesters benefited from the 
common format; in addition to the reliability 
advantages of using a small amount of shared 
interface code, the common format made 
debugging the interface much simpler. 

Tokenized vs. Structured Data 
Next came the question of whether the com­
mon buffer format should be tokenized or 
structured. Tokenized data has the advantage 
that it is self-describing, making it easy for 
interpreters to work with many different sub­
systems in a general way. Specific subsystem 
knowledge is not required because tokens of 
data can be manipulated and displayed in 
ways appropriate to the token type. 

Tokenization also simplifies the problem of 
version accommodation because subsystems 
can easily detect the presence of an unrecog­
nized token in an up-level request or the 
absence of an expected token in a down-level 
request. Finally, tokens are an excellent way to 
cope with highly variable data such as variable 
lengths, variable numbers of occurrences, and 
variable data interpretations and formats. 
Fully tokenized interfaces have the disadvan­
tage, however, that the sheer quantity of 
tokens can make the interface both difficult 
and expensive to use. 

Most compiled programs are capable of and 
comfortable with dealing with data structures 
containing multiple related fields. For many 
of these programs, fixed data structures are 
the most natural and efficient format for stor­
ing and manipulating data. Structures have the 
disadvantage that fields cannot be omitted 
and can be added only at the end. These prob­
lems are commonly surmounted, however, by 
using null values and Boolean flags to indicate 
the presence or absence of fields. 

Version accommodation for structures is 
typically handled by allowing new fields to be 
added only at the end of the structure. Up­
level requests are those with a structure length 
greater than the length expected, and down­
level requests are those with a shorter length. 
Great care must be taken when compiling an 
old program with new declarations since the 
old declarations may contain new fields that 
the old program neither recognizes nor initial­
izes. The main disadvantage of fixed struc­
tures is that they cannot accommodate highly 
variable data. 

Instead of using either a fully tokenized or 
fully structured buffer format, SPI combines 
their advantages by providing both tokens and 
structures. A token value may be a single data 
element, or it may be a data structure contain­
ing several fields. Either way, the SPI access 
procedures manipulate each token as a unit. 
Simple tokens containing a single data element 
are used for variable-length data, variable 
occurrences, parameters to be standardized 

40 TANDEM SYSTEMS REVIEW OCTOBER 1988 



across a wide variety of messages, and param­
eters to be independently interpreted. Struc­
tured tokens are used to group related data 
items and simplify programmatic access to 
the data. 

SPI Buffer Format 
Each SPI buffer begins with an SPI-defined 
header containing standard information such 
as the overall length of the buff er, the amount 
of the buffer being used, the subsystem own­
ing the buffer, version information, and posi­
tion information. The header also contains 
information specific to the type of message 
being used. Examples of this include the com­
mand number in command messages, the 
server version in response messages, and the 
event number in event messages. Although the 
header is stored as a structure, its fields are 
made available to SPI users via the tokenized 
access procedures. 

The main part of the SPI buffer contains a 
sequence of SPI tokens, each consisting of an 
identifier and an associated value. The SPI 
procedures allow tokens to be stored and 
retrieved by identifier; programs using the 
buffer typically do not need to know either the 
byte position or the order of tokens within the 
buffer. Figure 4 provides an overview of the 
SPI buffer format. 

This loose assortment of tokens in the 
buffer is sufficient for most uses. In some 
cases, however, a message buffer must contain 
tokens that are partitioned into sequential or 
hierarchical sets. A command that refers to 
multiple objects, for example, might receive a 
reply containing multiple sets of response 
information. Different sets of response infor­
mation in the same buffer may contain vari­
able occurrences of the same tokens; this 
requires a way to partition sequential sets of 
tokens. Another example is that of nested 
error information where a subsystem operation 
fails because a second subsystem got an error 
from a third one. Returning all the error infor­
mation requires a way to partition the associ­
ated error tokens hierarchically. 

Both of these partitioning requirements are 
satisfied by an SPI construct called a list. A 
list token is used to start a list, and an end-list 
token ends it. All the tokens in between are 
logically grouped together. This is one of the 
few instances where the order of tokens is 
important. 

Figure 4 

Figure 5 

Token 
code 

Token 
map 

~ 

2 words 

SPI Token Identifiers 
The simplest view of a token identifier is that 
of a number or code that tells what the token 
value means. SPI elaborated on this simple 
concept in order to describe different things to 
different potential interpreters of tokens. An 
SPI token identifier may be either a token code 
or a token map. A token code is a 32-bit value 
containing a token data type, a token length, 
and a token number. At the lowest level, 
within the SPI buffer, every token is identified 
by a token code .. 

Token maps describe structured data values 
that may be extended in later releases. A token 
map contains a 32-bit token code value aug­
mented with version and null value informa­
tion about the structure. Since the token map 
used by a program always corresponds to the 
structure version used by the program, these 
structures can be extended without affecting 
programs written to use the old declarations. 
Figure 5 compares token codes and token 
maps. Token maps will be discussed later in 
connection with version accommodation; the 
present discussion focuses on simple token 
codes. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 4. 

SP/ buffer format. An 
SPI buffer consists of 
an SPI-defined header 
followed by subsystem­
defined tokens. 

Variable-length 

Figure 5. 

Token identifiers. A 
token identifier may be 
either a token code or a 
token map. 

41 



Figure 6. 

Subsystem ID. A subsys­
tem ID (SSID) is a 6-
word data structure 
consisting of an 8-
character owner name, a 
16-bit subsystem number, 
and a 16-bit version. The 
version field is primarily 
for information. The 
owner name and number 
are sufficient to uniquely 
identify a subsystem. 

42 

Figure 6 

4 words 1 word 1 word 

Since data type and length are part of the 
token code, interpreters and the SPI proce­
dures themselves do not need to have any spe­
cial knowledge about the subsystem defining 
the token. SPI uses the data type and length to 
determine how much data to move and what 
alignment to use when storing or retrieving 
token values. Interpreters use this information 
to determine how to manipulate token values 
or format them for display. So that they can be 
used for this purpose, the data type values are 
defined by SPI and are global to all subsys­
tems. In addition to standard programming 
language data types such as integer, character, 
Boolean, and enumerated type, SPI also 
defines conceptual data types such as time 
stamp, file name, and transaction ID. Differ­
ent data types are defined for widely used 
logical types that require different conversions 
from internal to external form. 

Subsystems must use these SPI-defined data 
types when defining their tokens. Subsystems 
distinguish between different tokens by giving 
them different token numbers. Take, for 
example, a command that duplicates a 
GUARDIAN file: 

DUPLICATE FILE source, destination 

In converting this to an SPI command 
buffer, the command code for DUPLICATE 
and the object type code for FILE would both 
go in the SPI header, and the source and desti­
nation parameters would both go into the 
buffer as tokens. Both of these tokens would 
have the data type for a GUARDIAN file 
name, allowing an interpreter such as TACL to 
accept or display the values in file name 
format. The subsystem receiving the command 
buff er can distinguish between the source and 
destination file names by assigning them dif­
ferent token numbers. 

Subsystem Identifiers 
Aside from a range of numbers set aside for 
SPI and EMS, subsystems are free to use what­
ever token numbers they choose. Since the 
same token numbers are available to all sub­
systems, the same token code can easily mean 
different things depending on the subsystem 
using it. To distinguish between them, each 
token identifier is qualified by a subsystem 
identifier, either explicitly or by context. 

The SPI subsystem ID was designed to allow 
customers and third parties to assign their 
own subsystem ID values with a minimal risk 
of conflicting with others. Each subsystem ID 
consists of an owner name, a subsystem num­
ber, and a version number, as shown by 
Figure 6. Each organization assigning its own 
subsystem IDs may pick an eight-character 
owner name; this name should be unlikely to 
conflict with the owner name of any other 
organization. Tandem, for example, has 
picked TANDEM as its owner name. This 
owner name will be used to define subsystem 
IDs for all subsystems supplied by Tandem. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The owner name and subsystem number 
alone are sufficient to identify the subsystem. 
Two subsystem IDs are considered identical if 
the owner names and subsystem numbers 
match. The version number is an informa­
tional field only. Whenever a new SPI buffer is 
initialized, the ID of the subsystem defining 
the buffer is included in the header. The ver­
sion field in the subsystem ID thus indicates 
the version of subsystem declarations used by 
the program that formatted the buffer. 

Subsystem Declarations 
Making SPI available to multiple program­
ming languages requires generating definitions 
for data structures, token identifiers, subsys­
tem IDs, and other associated constants in all 
of those languages. This would be an error­
prone and almost impossible task to do by 
hand. Luckily, however, the entire process has 
been automated through enhancements to 
Tandem's Data Definition Language (DDL). 

Each subsystem provides its SPI definitions 
using DDL, and the DDL compiler is then used 
to build the corresponding definitions in TAL, 
COBOL85, and TACL. (See Figure 7.) A pro­
gram can use the SPI interface for that subsys­
tem by including the appropriate subsystem­
supplied declarations in its compilation. The 
SPI access procedures are a resident part of 
the standard GUARDIAN library and can be 
invoked by any TAL, COBOL85, or TACL 
program. 

Access Procedures 
All SPI messages are built and decoded using 
the following five access procedures: 

■ SSINIT initializes an empty message buffer. 
■ SSNULL sets an extensible structured token 
to null values. 
■ SSPUT adds a token to a message buffer. 
■ SSGET retrieves a token value from a mes­
sage buffer. 
■ SSMOVE moves tokens from one buffer to 
another. 

Figure 7 

DDL input 

TAL declarations 

COBOL85 declarations 

TACL declarations 

Figure 7. 

Use of DDL to generate 
SP/ declarations. 
Tandem's Data Defini­
tion Language (DDL) 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

can automatically trans­
late SP/ declarations into 
TAL, COBOL85, and 
TACL equivalents. 

43 



Figure 8 

REQUESTER 

SSINIT (buffer, length, 
ssid, cmdhdr, 
command, objecttype) 

SSNULL (tokenmap, structure) 

structure. field 1 : - value 1 
structure.field2 : - value2 

SSPUT (buffer, tokenmap, 
structure) 

SERVER 

WRITEREAD (server, buffer,------------READ (receive, buffer, 
length) length) 

SSPUT (buffer, 
zspi "tkn "reset"buffer, 
length) 

SSGET (buffer, 
zspi "tkn "command, 
command) 

CASE command OF 
BEGIN 

process command 

END 

SSINIT (buffer, length, 
ssid, cmdhdr, command, 
objecttype, 
version) 

SSPUT (buffer, 
zspi"tkn"retcode, 
retcode) 

-----------~----REPLY (buffer, length) 
SSPUT (buffer, 

zspi "tkn "reset"buffer, 
length) 

SSGET (buffer, 

Figure 8. 

zspi "tkn "retcode, 
retcode) 

Access procedures exam­
ple. This pseudocode 
shows how the SP/ access 
procedures are used in a 
simple command­
response interaction. The 
requester uses SSJNIT to 
initialize the buffer, 

SSNULL to initialize 
extensible structures, 
and SSPUT to add tokens 
to the buffer. Upon 
receipt of the SP/ mes­
sage, the server adjusts 
the buffer length using 
an SSPUT call and then 

uses SSGET to retrieve 
i,iformation from the 
buffer. The server uses 
SSJNIT and SSPUT to 
build the response mes­
sage, and the requester 
uses SSGET to retrieve 
response tokens. 

SSINIT initializes a new SPI buffer. It builds 
the SPI header using information such as the 
buffer length, subsystem ID, and buffer type. 
Some SSINIT parameters depend on the type 
of buffer being built. For example, command 
and object type numbers are accepted for 
command buffers, and event numbers are 
accepted for event-message buffers. 

SSNULL initializes structured token values 
that are identified by token maps. The token 
map contains information about the appropri­
ate null value to be used for each field. Once 
the structure has been initialized with null 
values, the fields of interest can be filled in by 
the program. The null values in the unused 
fields will tell the recipient of the SPI buffer 
that the fields are not supplied. 

SSPUT accepts a token identifier and token 
value, adding the token to the end of the SPI 
buffer. It also accepts special SPI tokens that 
allow the caller to perform control operations 
such as deleting tokens or re-initializing the 
current SSGET position. 

SSGET accepts a token identifier and 
returns the associated value. By default, 
SSGET starts searching for the token starting 
from its current position. As each token is 
found, the current position is advanced so 
successive SSGET calls may be used to extract 
successive occurrences of a token. If an 
explicit index is specified, SSGET will start 
over at the beginning and return the specified 
occurrence. SSGET also accepts special SPI 
tokens that allow the caller to perform oper­
ations such as scanning the buffer token by 
token or obtaining the length or number of 
occurrences of a specified token. 

SSMOVE gets tokens from one buffer and 
puts them into another buffer. This access 
procedure is not really necessary because any 
SSMOVE operation can be performed as a 
succession of SSGET and SSPUT calls. The 
SSMOVE procedure is provided as a 
convenience. 

The same procedures are used by both mes­
sage producers and message consumers, 
greatly simplifying the task of programs that 
must act as both. This is illustrated in the sim­
ple command-response example shown in 
Figure 8. 

44 TANDEM SYSTEMS REVIEW OCTOBER 1988 



SPI Standards 
The SPI declarations and access procedures 
provide the raw materials for building subsys­
tem programmatic interfaces. The SPI stan­
dards provide the blueprints needed to make 
sure that all these interfaces are built the same 
way. The standards are layered and extensible 
so that customer and third-party subsystems 
can add their own standards and usage rules 
to those already defined by Tandem. Figure 9 
shows the Tandem standards that have been 
layered on SPI and illustrates how customer­
defined standards may be added. 

SPI Command Language Standard 
Within Tandem's DSM architecture, command 
and response interfaces are governed by 
Tandem's SPI Command Language Standard 
(CLS). The SPI CLS is a Tandem internal docu­
ment that specifies naming conventions for 
SPI declarations and rules for command/ 
response interactions, command continuation, 
response information for multiple objects, and 
error descriptions. The portions of the stan­
dard that apply to user-written subsystems are 
documented in the Distributed Systems Man­
agement (DSM) Programming Manual. 

Naming Rules 
SPI naming rules were formulated so that indi­
vidual organizations and subsystem developers 
could independently invent their own names 
and still be protected from name conflicts. All 
SPI declarations are given names of the form: 

subsys-type-name 

where 

subsys is a four-character subsystem abbrevia­
tion. Tandem subsystems reserve all abbrevia­
tions beginning with the letter z. 

type is a three-character mnemonic that iden­
tifies the type of declaration. Among the mne­
monics defined by the CLS are: 

CMD 
OBJ 
EVT 
DDL 
TKN 
MAP 
ERR 
VAL 

Command number 
Object type number 
Event number 
Structure definition 
Token code 
Token map 
Error number 
Token value 

Figure 9 

SPI procedures 

name is a meaningful name selected by the 
subsystem developer. 

Example names in this form include: 

• ZPWY-VAL-SSID. The subsystem ID value 
for PATHWAY 

• ZSPI-TKN-RETCODE. The token code for 
the SPI standard return code token. 
• ZCOM-OBJ-PROCESS. The SCP common 
object type for process. 

The first abbreviation in the name allows 
each subsystem to define its own name without 
conflicting with other subsystems. Tandem 
subsystem abbreviations will always start with 
the letter Z, so that users can avoid conflicts 
by starting their abbreviations with other let­
ters. Also, the three-letter mnemonic for dec­
laration type makes it easy to tell what kind of 
declaration is being used, helping to reduce 
programming errors when using SPI. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 9. 

Layered SP/ standards. 
This diagram illustrates 
how standards and proce­
dural interj aces may be 
layered on top of SP/. 
Standards may be inde­
pendent of other stan­
dards at the same level or 
may be built upon stan­
dards at a lower level. 
Naming rules and prede­
fined value ranges allow 
customers to define their 
own SP/ standards with­
out conflicting with the 
standards defined by 
Tandem. 

45 



46 

The SPI CLS also specifies rules for field 
names because some languages, like COBOL85, 
allow unqualified field names to default. The 
field name rules prevent a name conflict from 
inadvertently making a customer-supplied 
field inaccessible. For example, suppose SPI 
defined a data type that included a field 
named CPU. If a customer used the SPI data 
type within a structure of his own that was 
also named CPU, there would be no way to 
reference CPU unambiguously. 

Users should avoid conflict with Tandem 
structure declarations by not using field 
names that begin with Z. Tandem subsystems 
still need protection, however, from other 
Tandem subsystems in the cases where declara­
tions are shared. So within Tandem, shared 
declarations use field names that begin with 
z- (i.e., Z-name), and private declarations use 
field names that begin with only Z (i.e., 
Zname). 

Command-Response Interactions 
The SPI CLS sets guidelines for how SPI 
servers should be opened; how commands, 
objects, and responses should be defined; and 
how errors should be returned. The CLS 
stresses the use of simple methods that will do 
the job for the majority of subsystems; this 
discourages subsystems from inventing com­
plicated and contradictory special cases. 

One important simplifying rule is that the 
subsystem must specify a buffer size large 
enough to hold all the tokens necessary for a 
single command or the response information 
about a single object. This removes the need 
for special mechanisms that allow commands 
to be continued over multiple buffers and sent 
in separate messages. Since a subsystem either 
receives the entire command or it doesn't 
receive the command at all, partial commands 
do not exist. Similarly, each response message 
must contain one or more complete response 
records, each of which provides all the 
response information about a single object. 

Another simplification is that the use of 
multiple commands per buffer is prohibited. 
Each buffer contains only one command; this 
is much simpler for the servers since they only 
need to respond to one command at a time. 
Multiple commands must be issued as multiple 
messages, using one command per message. 

In the simplest case, a single-command 
message results in a single-response message 
containing a single-response record. This sim­
ple sequence will suffice for the vast majority 
of situations. For the few cases not covered by 
this simple model, the CLS defines optional 
extensions that may be used by the subsystems 
requiring extra features. Those subsystems 
that do not need or want the extra functional­
ity do not need to deal with the extra complex­
ity. For those subsystems that do need extra 
functionality, the CLS provides a standard way 
to obtain it. 

Multiple response records are a case in 
point. A single response record contains all 
the response information about a single 
object. If a subsystem defines a command that 
operates on multiple objects, perhaps via wild 
cards in the object name, there needs to be a 
way to handle multiple response records for a 
single command. This requires at least a 
mechanism for continuing requests over multi­
ple response buffers, using one response 
record per buffer. In the general case, it is 
desirable to permit multiple response buffers 
with multiple response records per buffer. The 
CLS specifies mechanisms for all these cases. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The simplest applications need not worry 
about continuation or multiple response 
records at all. The CLS permits subsystems to 
support only commands that operate on single 
objects. Such a command will only generate a 
single response record, so continuation and 
multiple response record mechanisms are 
unneeded. 

Subsystems that need or want to support 
multiple-object commands, such as INFO*, 
must return a context token in each response 
buff er until all response records have been 
returned. To continue to receive response 
records, the requester must resubmit the com­
mand with the context token. The context 
token will tell the server how to continue the 
response at the point where the previous 
response buffer left off. For commands that 
operate on a large number of objects and gen­
erate a small amount of response information, 
it may be desirable to pack multiple response 
records per buffer. This requires using the SPI 
data list construct to separate the different 
response records within the buffer. 

This last issue (the use of data lists to delimit 
response records within a single buffer) illus­
trates the CLS philosophy of keeping simple 
things simple and placing the burden of added 
complexity upon the users of more complex 
features. Requesters need never be concerned 
with data lists; they are unneeded in the 
single-response-record case, and single­
response records are the default. A requester 
that asks for multiple response records will 
need to deal with moving from one list to the 
next as it processes the response records. 

Another CLS principle is that, whenever 
possible, it is better to deal with special cases 
once in the server than to force each requester 
to deal with special cases independently. For 
example, when a requester asks for multiple 
response records per buffer but the response 
buffer contains only a single-response record, 
the CLS specifies that the response record 
must always be enclosed in a list. Although 
this complicates the job of servers that only 
return single-response records, it relieves the 
requester from having to supply special-case 
code to handle them. Requesters asking for 
multiple response records can expect each of 
them to be enclosed within a list, regardless of 
how many are returned in each buffer. 

Errors and Error Lists 
The SPI CLS recognizes the need for two kinds 
of error information. A simple program 
attempting to execute a command needs a 
simple single error code that can be used to 
decide whether to continue, retry the oper­
ation, or report an error. A more sophisticated 
program ( or a human operator evaluating an 
error message) needs more detailed informa­
tion about how and why an error has 
occurred, including perhaps the description of 
other errors that caused or contributed to the 
failure. 

The CLS handles the first requirement by 
requiring each response to include a standard 
ZSPI-TKN-RETCODE token containing a 
subsystem-defined error code. All subsystems 
use a return code value of O to indicate suc­
cessful completion. 

The second 
requirement is han­
dled by encapsulating 
the related error 
information in error 
lists. Error lists may 
be repeated or nested 
and may contain any 

The SP/ CLS empha-
1 sizes simplicity in 
command-response 
interactions. 

number of tokens. This fits the error model 
very well because a single command may 
encounter multiple warnings or errors, and 
errors encountered by lower levels of software 
may be passed along to higher ones. This 
detailed information in an error list can be 
interpreted by a program, passed along to a 
higher level, included in an event message, or 
formatted in a display message for a human 
operator. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 47 



48 

Another advantage of error lists is that they 
provide a convenient subsystem context for the 
tokens that they contain. Unless a subsystem 
qualifier is explicitly specified, tokens within 
a buff er are assumed to be qualified by the 
subsystem ID used to initialize the buffer. 
A PATHWAY buffer is expected to contain 
PATHWAY tokens, a TMF buffer is expected to 
contain TMF tokens, etc. If PATHWAY, while 
processing a PATHWAY command, sends an 
SPI request to TMF and receives an error, the 
PATHWAY response will contain a PATHWAY 
error list, with PATHWAY tokens describing 
the error. Nested within that list will be a TMF 
error list containing TMF tokens that describe 
the TMF error. All tokens within a list are 
qualified by the subsystem ID of that list, and 
list tokens moved from a TMF buffer to a 
PATHWAY buffer remain qualified by TMF. 
The use of error lists to report nested errors in 
response messages can be easily applied to 
reporting nested errors in event messages. 

Error lists and event messages, containing 
variable numbers and types of tokens, can be 
interpreted by text formatters to produce 
parameterized error messages. EMS provides a 
text formatter that, given an SPI event buffer 
and an ASCII text template, will produce a 
formatted ASCII text message. This has obvi­
ous extensions for national language support: 
different text templates can be defined for 
each supported language. 

EMS Guidelines 
Just as the SPI CLS provides standards for 
command and response messages, the EMS 
guidelines provide standards for event report­
ing. The EMS guidelines describe what events 
to report, how to report them, what informa­
tion to include about them, and how to docu­
ment the associated event messages. Standard 
tokens are defined for event information such 
as the event number, the message generator, 
event emphasis in displays, compatibility with 
the old operator messages, and associated 
event text. 

EMS designers faced an interesting chal­
lenge in finding a standard way to designate 
the subject of an event message. Each event 
message describes or is associated with some 
subsystem component, either a hardware com­
ponent, such as a controller or a device, or a 
software component, such as a process or a 
protocol layer. This component is the subject 
of the event message. Subjects and the infor­
mation needed to describe them vary so much 
from subsystem to subsystem that it is difficult 
to define a single standard subject token that 
can describe them all. 

EMS solved this problem by defining a 
subject-mark token, ZEMS-TKN-SUBJECT­
MARK, indicating that the next token in the 
buffer describes the event subject. This is one 
of the few position-dependent tokens used 
with SPI. It accomplishes the dual goal of 
allowing subsystems to define their own sub­
ject tokens and giving event-message con­
sumers a standard way to find the subject of 
any event message. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



SCP Common Interface 
The SPI CLS and EMS guidelines define the 
basic framework upon which additional stan­
dards can be built. Many Tandem subsystems 
use the Subsystem Control Point (SCP) process 
as the gateway to their programmatic inter­
face. In the case where multiple management 
programs must control and monitor multiple 
subsystems, having the operator open each 
subsystem becomes an n x n connection 
problem. Instead, all management programs 
can open the SCP process and gain access to 
all cooperating subsystem servers. This pro­
vides full connectivity with an n + n solution. 

To present an efficient and uniform inter­
face through SCP, SCP common interface 
standards were developed to provide a com­
mon core of commands, object types, errors, 
and events. The SCP common interface is a 
layer on top of the SPI CLS and EMS guide­
lines providing further standards in areas that 
they leave open. For example, the SPI CLS 
specifies that names will be of the form 
subsys-type-name, but leaves the selection of 
name to the subsystem designer. The SCP 
common interface provides a concordance of 
names so that all SCP-related subsystems will 
use the same token names for the same object 
types. Without the SCP common interface, 
different subsystems might define a program 
token using the names -PROGRAM, -PGM, 
and -PROG. Instead, all SCP-related subsys­
tems have standardized on -PROG. 

Commands, object types, tokens, and 
events defined by the common interface use 
ZCOM as the subsystem prefix and are 
assigned within a reserved range of the num­
bers available for general use. This prevents 
conflicts with names and numbers assigned by 
subsystems using SCP. 

Further standards can easily be layered on 
top of these. Tandem's SNAX and MULTILAN™ 
products use a shared kernel of common code 
to provide DSM functions including SPI and 
EMS support. This common kernel uses the 
prefix ZCMK to identify its shared tokens, 
errors, and events, which are layered on top of 
the SCP common interface standards to pro­
vide even greater uniformity. By using a 
unique name prefix and selecting token values 
within a predefined range, the common kernel 
avoids conflicting with the names and values 
chosen by other subsystems. 

Version Accommodation 
Version accommodation is necessary because 
interfaces change in response to user require­
ments. New subsystems are added, new fea­
tures and functions are defined, and obsolete 
functions and features are dropped. To adapt 
to future requirements, SPI must permit inter­
face changes. Programs that take advantage 
of new features can and should be expected to 
change. But for a distributed environment to 
remain manageable, old programs that do not 
use new features should neither need nor be 
expected to change. SPI version accommoda­
tion allows subsystem interfaces to continually 
change, but protects the programs using those 
interfaces from having to continually change 
with them. 

The subsystem ID used to initialize an SPI 
buffer provides the version of the declarations 
used to format the buffer. This can be used as 
a rough guide but should not be used as the 
basis for rejecting incompatible messages. 
A message formatted by a later version may 
still be compatible with earlier versions. Since 
all the information in 
an SPI buffer is con­
tained in tokens, SPI 
version accommoda­
tion goes down to the 
token level. The fol­
lowing discussion 
describes how version 
accommodation takes 

SCP guidelines add 
another layer of stan­

dards on SP/, CLS, and 
EMS. 

place for simple tokens, structured tokens, 
and extensible structured tokens. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 49 



50 

Simple Tokens 
Simple tokens are either present or not, and a 
simple accommodation scheme can be based 
upon this fact. A message consumer interested 
in particular tokens, such as a management 
program examining a response buffer or an 
event message, can simply check for the pres­
ence and the validity of the desired tokens. If 
an expected token is absent, the message gen­
erator may be at a version level that does not 
support the token. Similarly, if a token value 
exceeds the expected range, the message gener­
ator may be at a version level that supports an 
extended range. In addition, every response 
message contains a server-version token that 
gives the server's version and can be used as 
an additional indication of the version of the 
response. 

A message consumer that must understand 
all the information in a buffer, such as a sub­
system server receiving a command buffer, 
must detect version incompatibilities by exam­
ining all the tokens in the buffer. A server that 
finds an unexpected token or an invalid token 
value in a command should reject the com­
mand with an error. This takes care of both 
the case in which the requester has made a 
genuine error and the case in which there is a 
version incompatibility. On the other hand, if 
all tokens and values are understood by the 
server, the command can safely be processed 
regardless of version differences between the 
requester and server. 

Structured Tokens 
Version accommodation for structured tokens 
can be handled in the same way as for simple 
tokens, as long as the structure itself is never 
changed. This method is applied to tokens 
using structured data types such as those 
defined by SPI for file names, transaction IDs, 
and subsystem IDs. These data types may be 
incorporated into subsystem-defined data 
structures and can never be lengthened or 
shortened since doing so would change the 
offsets within fixed structures incorporating 
these types. The simple token methods work 
well with tokens based on these simple struc­
tured types. 

Extensible Structured Tokens 
In general, however, the version implications 
of structured tokens are more complicated. If 
a structure contains fields that are not always 
used, the presence or absence of the structured 
token cannot be used to indicate which fields 
have been supplied. Fields are defined by their 
byte offsets within the structure so the length 
and placement of existing fields cannot be 
changed. Additional fields may be added to 
the end of structure without interfering with 
previously defined fields, but this increases the 
structure's overall length. 

The newly extended structure will not fit 
within the shorter structures allocated by pro­
grams compiled with old structure definitions. 
If an old program gets compiled with a newly 
extended structure definition, it will acquire 
new fields that it does not use and does not 
properly initialize with null values. SPI solves 
these problems by providing structured tokens 
that are extensible; that is, they may contain 
fields that are not always supplied, and they 
may be extended by adding fields to the end of 
the structure. 

SPI supports extensible structured tokens by 
restricting the ways in which these structures 
may be used, by offering an automated 
method for setting structures to null values, 
and by automatically adjusting structured 
token values to fit the declarations being used. 
The restriction is that extensible structures 
may be extended only by adding new fields to 
the end of the structure. Each extensible struc­
ture is a token by itself. It cannot be used as a 
subcomponent of another structure since 
doing so would prevent it from being extended 
in a later version. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Each field of an extensible structure must 
have a defined version and a null byte value. 
The version specifies the minimum software 
level required in order to understand that 
field. The null byte value, if repeated through­
out the entire field, indicates that no value has 
been supplied and the field should be ignored. 
Note that the null value is not the same thing 
as a default value (though, in fact, the actual 
values may be the same). The null value indi­
cates that a field has not been supplied; the 
default value is the value to be used or 
assumed when a null value is found. SPI null 
byte information is associated with each field 
of a data structure when the structure is 
defined using DDL. Version information is 
associated with the token map when the token 
map is defined using DDL. The DDL compiler 
converts these DDL definitions into corre­
sponding source-language definitions for both 
the data structure and the token map. 

Version information must be associated 
with the token map definition, not the data 
structure definition, because tokens intro­
duced in different releases may have values 
based on the same data structure. For exam­
ple, the DUPLICATE command might be 
defined with a SOURCE token map and a 
DESTINATION token map, both associated 
with the same data structure. A later release 
may define an additional ERRORFILE token 
map for the command. The token map might 
be based on the same data structure but would 
have a later version associated with its fields. 

Some fields cannot be assigned a null value 
because all possible values are meaningful. 
These fields are defined with "no version" 
since the content of the field cannot be used to 
determine whether or not the field has been 
supplied. The actual version of the field is 
assigned to a separate IS-PRESENT field that 
indicates whether or not the field of interest is 
present. Assigning a null value of false to the 
IS-PRESENT field provides exactly the right 
meaning needed for version accommodation. 
If the field is supplied, the IS-PRESENT field 
will be non-null, and the field version will 
apply. If the field is not supplied, the IS­
PRESENT field will be null, and the field ver­
sion will not be used in version calculations. 

Use of Token Maps 
The token map allows the SSNULL procedure 
to automatically set all the fields of a struc­
ture to null values. This solves the problem of 
an old program getting compiled with new 
extended definitions. The new definitions may 
contain structures with new fields, but the 
new token maps will contain the correspond­
ing null value information. When SSNULL is 
called, it will correctly initialize those fields 
with null values. The entire extended structure 
may then be placed in an SPI buffer with no 
danger that the new fields will be interpreted 
as containing meaningful values. 

The token map allows the SSPUT procedure 
to automatically cal-
culate the maximum 
field version among 
all the extensible 
structures in the 
buffer. For example, 
a structure may con­
tain fields defined 
with versions of the 
COO and C 10 releases. 
If only the COO fields 

Srp/ version accommo­
dation covers simple 

tokens, structured tokens, 
and extensible structured 
tokens. 

contain non-null values, the maximum field 
version is COO, not ClO. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 51 



Figure 10 

(a) 

Old structure 

A B 
coo coo 

(b) 

(Old requester) 

New structure 

A e e 
COO COO ClO 

(New server) 

A- 8 - SSPUT(oldmap) SSGET(newmap)- A . B nil!! 

LA I _J 
coo 

(c) 

(Old requester) (New server) 

A B -SSGET(oldmap) SSPUT(newmap)- A 8 C 

LA 
(d) 

(Old requester) 

B 
C10 

0 __J 

A B riull - SSPUT(newmap) 

(Old server) 

SSGET(oldmap)- A 

Figure 10. 

SP/ will automatically 
adjust for programs 
using different declaration 
versions. (a) Version 
accommodation. (b) Old 
version to new version. 
(c) New version to old 
version. (d) Old version 
compiled with new 
declarations. 

L.A .a: 
coo 

~_J 

SPI updates the maximum field value as 
each extensible structure is added to the 
buffer. Subsystem servers examine the maxi­
mum field version and use it to reject requests 
containing later-version fields. The requester 
is not burdened with the complexity of sending 
old structures to old servers and new struc­
tures to new ones. The same declarations can 
be used with all servers, but the new fields can 
only be used with the servers that support 
them. This makes the use and detection of new 
fields in structures as simple as the use and 
detection of new tokens. 

Finally, token maps allow the SSGET proce­
dure to automatically adjust extensible struc­
tures to the size expected by the caller. If the 
structure in the buffer is longer than the 
expected length indicated by the token map, 
the value returned by SSGET is truncated to 
fit. If the structure in the buffer is shorter than 
expected, the token map is used to return a 
value in which the extra fields expected by the 
caller have been set to null values. As shown 
by Figure 10, programs using different decla­
ration versions can send structures back and 
forth, and SPI will automatically adjust them 
according to what is expected at either end. 
This eliminates the need for any special-case 
structure conversion code. 

The example shown in Figure 10a illustrates 
how SPI accommodates the addition of a new 
structure field in a later release. 

If the buffer contains an old version of the 
structure, SSGET uses the null value informa­
tion in the new token map to fill the missing 
fields with appropriate null values. (See 
Figure IOb.) 

When a new version of the structure is 
added to the buffer, SSPUT uses the version 
information in the new token map to set the 
buffer's maximum field version, which can be 
used by down-level programs to detect that the 
buffer contains an unrecognized field. When a 
new version of the structure is retrieved with 
an old token map, SSGET truncates the struc­
ture value to the old length. (See Figure lOc.) 

If an old program is recompiled with new 
declarations, it will start using the new version 
of the structure, but none of the code within 
the program will be aware of the new field. 
SSNULL (which is called by the program to 
initialize the structure) will use the token map 
information to set the new field to null values. 
When the structure is added to the buff er, 
SSPUT will set the maximum field version 
based on the old version because only the old 
fields contain non-null values. The resulting 
buffer will be accepted by old servers because 
even though it contains the new version of the 
structure only the old fields are used. (See 
Figure 10d.) 

52 TANDEM SYSTEMS REVIEW OCTOBER 1988 



SPI CLS Version Rules 
The SPI version accommodation features can 
be used to satisfy the CLS guidelines for ver­
sion compatibility. The CLS specifies that 
servers must work with all previous requesters 
and must be able to support the current level 
of functionality for all future requesters. For 
management programs/requesters, this means 
that they will continue to work with future 
versions of servers and declarations, and that 
they will be able to use all the functions sup­
ported by earlier server versions. 

One constraint on the use of SPI version 
accommodation is that of the overall SPI 
buffer size. New extended structures must fit 
within the message buffers used by older serv­
ers to receive messages. The CLS requires sub­
systems to define minimum buffer sizes that 
allow for future growth and also specifies 
ways in which the defined buffer sizes may be 
compatibility extended. 

Conclusion 
SPI unifies the highly diverse DSM environ­
ment-different applications and subsystems, 
written in different programming languages, 
using different 1/0 mechanisms between dif­
ferent versions of software at different 
locations-by providing a standard way to 
build and decode the messages used for com­
mands, responses, and events. 

To accommodate this diversity with a single 
mechanism, the SPI design uses: 

• A small number of simple primitives for 
building and decoding messages. 
• A tokenized binary message format that also 
supports structures and hierarchies. 
• A layered set of interface standards to pre­
vent conflicts and provide uniformity. 
• An automatic version accommodation 
scheme that provides operability across multi­
ple versions with a minimum of conversion 
code. 

These SPI design elements solve the many 
programming problems caused by using other 
interfaces that were text-oriented, nonstan­
dard, version-dependent, language-specific, 
and otherwise ill suited for DSM. 

With SPI, the techniques used in one DSM 
program can be easily applied to other lan­
guages and other subsystems, easily used with 
older and newer program and subsystem ver­
sions, and easily extended as new languages 
and subsystems are introduced in the future. 

References 
Distributed Systems Management (DSM) Programming Man­
ual. Part no. 82587. Tandem Computers Incorporated. 

Acknowledgments 
The author wishes to thank all the people who contributed to 
the design and definition of SPI, including Richard Carr, Ross 
Yakulis, Bernice Malizia, Pete Homan, Phil Garrett, Paul 
Robinson, Jonathan Sechrist, Marc Desgrousilliers, Keith 
Stobie, Bob Strand, Michael Stewart, Randy McRee, and many 
others. Special thanks go to Christy Scharf and Tom Eastep for 
their careful review of this article and many constructive 
comments. 

Gary Tom joined Tandem in 1978 and worked in Software Educa­
tion and Software Support before transferring to Software Devel­
opment in 1981. He is currently a member of the Operating 
Systems Group in Tandem's Transaction Networks Division. He 
has a bachelor's degree in Electrical Engineering and Computer 
Science from the Massachusetts Institute of Technology. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 53 



54 

Event Management Service 
Design and Implementation 

vent Management Service 
(EMS) is the event processing 

-----.1...._- product in Tandem's Dis­
tributed Systems Manage­
ment (DSM) environment. 
EMS allows Tandem and 
customer subsystems within 

a GUARDIAN 90™ system to define, report, 
retrieve, select, and display management data. 

This article discusses the evolution and 
architecture of EMS, the generation and use of 
tokenized management data, and the collec­
tion and distribution of management data. 

Evolution of EMS 
Certain information generated by subsystems 
is of interest to various groups of network 
users. This type of information is called man­
agement data. 

Management data describes diverse situa­
tions, both positive and negative. It is distinct 
from user data, which individual users or 
groups control and create. Any system com­
ponent can create or report it, and it is fre­
quently generated unexpectedly. Because the 
user of the component generating this infor­
mation is not always the user that needs it, a 
system operator process acting as a central 
collection point is required. 

In Tandem networks before DSM, this func­
tion is provided by a system operator process 
called $0. System and application processes 
report management data by sending messages 
to $0, which then adds header information (a 
timestamp and originator identification) to the 
message. The combination of header informa­
tion and management data is called an opera­
tor message. This operator message is sent to 
$AOPR, saved in the OPRLOG, and displayed 
on a console device. 

When using $0 in large pre-DSM systems, a 
variety of problems are encountered including 
performance limitations and restricted opera­
tor message distribution (messages can be sent 
to only one terminal, disk file, and single user 
process). In addition, distributing and pro­
cessing text messages is problematic. These 
limitations, in combination with customer­
requested improvements, prompted the devel­
opment of EMS. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Figure 1 

Event message 

Event message 

Design Requirements 
Establishing the design of EMS was a multi­
step process. First and foremost came the list 
of customer requirements. Taken as a group, 
these requirements pointed to a more flexible 
and functional system operator process, one 
that would meet a wide range of customer 
needs. A more adaptable message format and 
message construction was requested. The new 
EMS should provide a single collection point 
for both Tandem and customer event messages 
and allow distribution of unique subsets of 
events to many destinations. Selective message 
processing by multiple consumers was also a 
key requirement. From these requirements, 
certain functions were identified that would 
support this type of functionality. EMS 
should: 

■ Support a two-part message format; the first 
part containing standard information, the 
second part containing information tailored to 
the event. 
• Allow detailed messages with generous 
length limits. 
■ Use disk-resident log files to store manage­
ment data; allow these files to be relocated to 
volumes other than the system disk. 
■ Allow real-time and historical access to 
messages. 
■ Use filters in message distribution to allow 
event consumers to select a specific set of 
events. 
■ Provide a variety of event distributors to 
match the needs of event consumers. 

EMS Design 
With the design of EMS narrowed down to the 
list of general functions, a conceptual view of 
EMS emerged. (See Figure 1.) 

The design of EMS is built on five primary 
concepts: 

• Report, save, and distribute management 
data as tokenized events rather than as text 
strings. 
■ Provide a point of collection for manage­
ment data. 
■ Provide disk log file queuing to allow inde­
pendent rates of event collection and 
distribution. 
• Allow multiple event distributors to be 
configured. 

■ Ensure compatibility with the pre-DSM 
system operator process. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

.. single-threaded 
application 
processes 

Figure 1. 

EMS conceptual sketch. 
Note that the event mes­
sage is the subsystem ID 
event number plus 
subsystem-specific 
information. 

55 



56 

The design of EMS involves a number of 
new reporting and distribution techniques. 
EMS introduces the use of tokenized event 
message formats, log files, multiple distribu­
tors, and filters. The combination of these 
concepts and components, among others, 
results in an event message system that meets 
customer needs. 

EMS Architecture 
The primary components of EMS are $0, the 
distributors, and the log files. (See Figure 2.) 
The primary collector, $0, accepts and writes 
management data to disk log files. Using $0 as 
the primary collector retains the same destina­
tion as in the pre-DSM system operator pro­
cess. When migrating to a GUARDIAN™ 
release that supports EMS, existing applica­
tions do not have to change the destination for 
operator messages. The Compatibility Distrib­
utor, $Z0, maintains the external distribution 
interfaces of the pre-DSM $0. The other three 
distributors have the same basic function of 
reading event messages from the collector's 
logs, selecting events based on an installed 
filter, and distributing the selected events to 
their clients. 

Primary Collector 
The primary collector accepts management 
data in the pre-DSM message format as well as 
in the tokenized event message format. In the 
case of a pre-DSM "WRITE to $0" or a 
system-level operator message, $0 converts the 
information into a tokenized EMS event. 

Tokenized event messages are accepted by 
EMS in two ways: via WRITEREAD from 
application-level procedures, and via an inter­
nally defined message from system-level proce­
dures. This event message interface is used by 
system-level procedures that cannot use the 
file system. 

In both cases, header information is added 
by $0 to the event. The tokenized event is then 
written to the EMS log file. 

The EMS collector is configured as a 
Nonstop™ process pair. In some failure situa­
tions, event information could be the alterna­
tive or adjunct to CPU dumps for determining 
what happened on a system just prior to a 
failure. As long as a system continues to func­
tion, the primary collector must function. For 
these reasons, the primary collector's primary 
and backup CPUs are the same CPUs used to 
access the system disk. 

Disk Log Files 
After the header information is added, the 
event message is sent to an entry-sequenced 
log file. EMS may be configured to have as 
many log files as disk capacity allows. As each 
log file is filled, the collector chains the suc­
cessive files together using backward pointers. 
The first event message in each log file, called 
the FILESWITCH message, contains the name 
of the previous log file, creating a backward 
pointer. A backward pointer is also used in 
situations where a log file becomes unavail­
able. Logging reverts to a default subvolume 
on $SYSTEM and continues. The first event 
that is written to the new log file is a 
FILE SWITCH event. This creates a chain of 
log files, which allows the distributors to posi­
tion to the proper log file. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Figure 2 

Collection 

These log files allow collection and distribu­
tion to function independently. When events 
are generated at a high rate, event distribution 
can fall well behind event collection. The dif­
ference is limited only by the amount of log­
ging disk space available. Event generators can 
operate at their own rate, without waiting for 
event consumers. 

Event Event 

To increase capacity and improve perform­
ance, logging can be relocated to another sub­
volume on another active disk after a cold 
load. (Locating the EMS log files on the 
$SYSTEM disk at cold load is necessary to 
ensure logging begins as soon as the first CPU 
is loaded.) 

Multiple Distributors 
Distributors read event messages and deliver 
them to a destination. A user may configure 
only one Compatibility Distributor, but as 
many Consumer, Forwarding, or Printing 
Distributors as needed. 

All of the distributors can retrieve events 
from active collector/log file combinations. 
The Compatibility Distributor supports only 
one collector, whik the others may support 
multiple collectors. The Printing, Forwarding, 
and Consumer Distributors are architecturally 
different from $Z0. These three distributors 
can retrieve events from log files and are capa­
ble of processing commands submitted via 
programmatic interface. They differ only in 
the type of destination and in the manner the 
events are delivered (formatted, unformatted; 
solicited, unsolicitt~d). All the distributors but 
$Z0 filter messages prior to distribution. 

The Compatibility Distributor. The Compati­
bility Distributor, also known as $Z0, distrib­
utes pre-DSM operator messages. It ensures 
that the same operator message that was used 
in the pre-DSM system can be recreated in the 
EMS environment. Since all messages in the 
event logs are tokenized, $Z0 must be able to 
build operator messages from tokenized 
events. For events that have the CONSOLE­
PRINT token set, $Z0 calls the text formatter, 
EMSTEXT. The tokens are decoded by 
EMSTEXT to produce an operator message 
text string. The text is the same text that would 
have existed for the pre-DSM operator mes­
sage. Then, operating much like the pre-DSM 
$0, $Z0 writes the operator messages to 
CONSOLE, $AOPR,. and OPRLOG. 

Send opmsg Text 

Distribution and compatibility 

Application 
process 

Distribution 

Remote$0 

$0 

~ 
~ 

Printer/file/ 
terminal 

via 
EMSSEND 

$0 

The Printing Distributor. The Printing Dis­
tributor provides text copies of events to a 
printer, file, or terminal. This gives users an 
opportunity to inspect event logs, install fil­
ters, and position by event generation time 
without writing an application. The Printing 
Distributor allows quick access to log file 
information and flexibility in defining selec­
tion criteria through startup parameters. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

via 
WRITEREAD 

Compatibility 

$!0 --Of'Fll.00 

$AOPR 

Figure 2. 

EMS architecture. 

57 



58 

The Forwarding Distributor. The Forwarding 
Distributor funnels messages from a source 
system to a target system. The Forwarding 
Distributor selects events from a local collec­
tor or log file and sends them to a collector on 
a remote node. Filtering in the distributor 
prior to sending events to the remote node 
reduces event message traffic in the network. 
The distributor includes a programmatic inter­
face which allows the operating environment 
to be altered (for instance, changing filters). 
This type of distributor is useful if events are 
collected from several nodes and processed at 
a central site. 

The Consumer Distributor. The Consumer 
Distributor meets the need for event retrieval 
required by services such as problem tracking 
and VIEWPOINT™ operations console facility. 
The Consumer Distributor supports a pro­
grammatic interface for event retrieval and 
distributor control. Events are delivered at the 
rate of the application program's requests, one 
event per request. Since the application can 
directly examine the contents of events, it can 
react by changing the filter criteria, for 
instance. A program can start a Consumer 
Distributor with or without submitting any 
configuration parameters; the programmatic 
interface can be used to send configuration 
commands once the distributor has been 
started. 

Using Tokenized Message Formats 
EMS reports, saves, and distributes event mes­
sages, allowing consumers to retrieve them as 
desired. An event message informs operators 
or programs of an event within a subsystem 
that may affect system operation. EMS does 
not dictate the format of the event messages, 
but the format is important to both the event 
generators and the event consumers since they 
create and decipher event messages. To sim­
plify communication between event consum­
ers, distributors, and generators, EMS uses 
tokens to represent units of information. 

A uniform message format is important 
when developing messages. Uniformity 
reduces the burden on event consumers who 
process event messages. Certain information, 
such as the identity of the process generating 
the event, is useful in all cases and can be 
uniformly represented (in this case as a 
GUARDIAN CRTPID). But soon the diversity 
of the subsystem environment makes the crea­
tion of tokens that have common meaning 
across subsystems extremely difficult. EMS 
allows subsystems to define and add their own 
tokens to events. Using the subsystem ID and 
event number, the consumer can anticipate the 
tokens in the remainder of the message. These 
tokens are generally defined by the subsystem. 

Guidelines listed in the Event Management 
Service Manual recommend when to generate 
event messages and, in broad terms, the type 
of management data to include. In general, 
generating and sending an event message to 
EMS is appropriate when the event generator 
does not know which operator or program 
needs the management data being provided. 
By handing the event message off to EMS, the 
generator has created a description of the 
problem and provided notification of that 
problem. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Independence of Event Messages. All event 
messages must be easily understood by event 
consumers. Including all pertinent informa­
tion about the problem into a single event mes­
sage is the most reliable way of ensuring that 
the message is understood and acted upon by 
its consumers. An event that can't be under­
stood or translated by the consumer is of little 
use. An example of improper use is a message 
that refers to an earlier event. This requires the 
consumer to search for some specific previous 
event. Such a search can be not only difficult 
(the consumer would need to know many 
parameters about the previous event such as 
when and where it was logged, and have some 
way of distinguishing it from similar events), 
but impossible if, for example, the log file that 
contained the earlier event had been purged. 

Event Message Formats. Event messages 
contain two parts: header tokens and body 
tokens. The header tokens represent the 
generation timestamp, information about the 
event's creator, the type of event (critical, 
noncritical), and an event number. The body 
tokens contain information specific to the 
event. 

Required tokens include all header tokens 
and those tokens that are critical to the 
description of the event. The definitions of 
these tokens must not be altered or deleted. If 
a required token definition is altered, the con­
sumers, filters, and distributors that access the 
event might stop working. If such a change 
cannot be avoided, then a new event message 
should be created and the old event message 
retired. 

EMS Event Message Procedures 
EMS provides a specific set of procedures to 
simplify event message construction and 
access. The three primary procedures are 
EMSINIT, EMSADDTOKENS, and EMSGET. 
EMSINIT builds the header format and 
requires the generator to mark one token as 
the subject of the event. EMSADDTOKENS 
completes the messages by placing the speci­
fied tokens into the event message. Event 
processing applications call EMSGET to 
extract information from the event message. 

Special Event Messages 
There are two special aspects of event mes­
sages defined by EMS: event subjects and 
action events. 

Event Message Subjects. Every event message 
has one or more tokens designated as the sub­
ject of the event. These tokens identify the 
subsystem object, or objects, most directly 
involved in the event. 

The value of the subject token(s) in the 
event message is used by the Tandem program 
VIEWPOINT, the console facility for DSM. 
Using the subject token values, VIEWPOINT 
creates a "key." This key is used as an index 
for that event in the VIEWPOINT event mes­
sage database. VIEWPOINT operators can see 
events that occurred on some object (say, a 
file) independent of which subsystem gener­
ated the events since the database is organized 
by subject, not by subsystem. 

Action Events. Action events identify subsys­
tem problems that require human interven­
tion. They are simply event messages that 
contain a particular EMS-defined token. The 
action-needed event contains this token with a 
value of TRUE, while the action-completion 
contains a FALSE value for that token. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 59 



Figure 3. 

EMS performance model. 

60 

Figure 3 

110:1 

200 user interfaces at 
1 event each 
+ 1 0 events on startup 

20 user interfaces at 
1 event each 
+ 1 event for process 

20 user interfaces at 
1 event each 
+ 1 event for line 

For example, a tape may need to be 
mounted. Rather than designating a specific 
terminal or console that must receive this noti­
fication, the subsystem generates an action­
needed event. This informs an operator (at a 
terminal of the operator's choice) of the need 
for the tape mount. Once the tape is mounted, 
the subsystem generates an action-completion 
event to EMS. This message notifies all opera­
tors that the tape was mounted. 

VIEWPOINT supports action events by high­
lighting action-needed events on a display. 
This message is dimmed when the correspond­
ing action-completion event is generated. 

EMS Collector Performance 
Collector performance is critical during system 
startup and other situtations where events are 
generated at a high rate. If the collector can­
not keep pace with event generation, either 
event issuers must wait for the collector to 
accept the events, or events could be lost. This 
problem is compounded in large system con­
figurations. One of the requirements of EMS 
was improved performance in a large system 
environment. Two goals were identified and 
achieved, meeting the performance require­
ment. The first was to minimize delays 
between event generation and event consump­
tion. The second goal was to provide a collec­
tor that could tolerate the high event 
generation rates encountered in large systems. 

EMS minimizes the delay between event 
generation and event consumption by provid­
ing event distributors that support only a sin­
gle event consumer (as compared to pre-DSM 
architecture). Consumption delays that are 
created by the rate of processing in the con­
sumer no longer affect the event generators. 
Event generation rates are limited only by the 
rate that the collector can accept generated 
events. 

A Performance Model 
To meet the second goal, a target collection 
rate had to be established. A performance 
model was developed to help determine an 
appropriate and sustainable collection rate 
for $0. 

The model system supports 5000 user inter­
faces. Each user interface in the model is a 
subdevice on a datacomm link that issues one 
event when the user interface is started or 
stopped. Each user interface is supported by a 
protocol conversion layer and an applica~ion 
layer that issues one event when the user mter­
face is started or stopped. User interfaces are 
collected into groups of 20 for each datacomm 
line, 20 for each protocol conversion layer 
process, and 200 for each application layer 
process. Each line and each protocol conver­
sion layer object issues one event on start or 
stop. Each application layer process issues 10 
events on start or stop. (See Figure 3.) 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



A system startup sequence was the stress 
condition used to establish the target event 
logging rate. The goal was to complete system 
startup in a 5-minute period. Figure 4 shows 
the logging rate calculations. Figure 5 shows 
the calculations used to determine the needed 
disk capacity. Analysis of the performance 
results indicated that a collection rate of 52 
events per second would be sufficient for this 
large system configuration. 

Since the logging rate to disk is augmented 
somewhat by the buffer space reserved in the 
collector, the actual rate that events were writ­
ten to disk could be slightly less than the 52.5 
rate. The difference is calculated by dividing 
the number of events that the collector can fall 
behind disk logging by the duration of the 
high logging rate period. 

For startup of a large configuration, the 
calculation is shown in Figure 6. 

This calculation shows that though the 
actual memory buff er size aids very little in 
coping with high event generation rates of 
longer duration, it is extremely helpful in 
allowing short bursts of high activity. The 
52.5 event per second event generation rate for 
the model configuration during startup can be 
supported if disk logging can be maintained at 
51.93 (52.50 - 0.57) events per second. 

Disk Logging Rate Performance 
To meet the target event logging rate, certain 
characteristics of the GUARDIAN 90 system 
had to be considered. In the GUARDIAN oper­
ation system, log files can be organized one of 
two ways: key sequenced or entry sequenced. 
EMS uses the ENSCRIBE entry-sequenced file 
organization combined with a positioning 
function. 

Two GUARDIAN disk process options can 
further affect the achievable rate for writing 
records to a file. These options, BUFFERED 
and REFRESH, can significantly affect both 
performance as well as data recovery. 

If BUFFERED= OFF is selected, a physical 
disk write operation will result from each 
event sent to the disk process. The alternative 
setting, BUFFERED= ON, instructs the disk 
process to accumulate a block of records 
before writing any messages to disk. The 
REFRESH = ON setting means that when the 

Flgure4 

5000 subdevices objects @ 1 event each 
5000 conversion layer objects @ 1 event each 
5000 application layer objects @ 1 event each 
250 lines @ 1 event each 
250 conversion layer processes @ 1 event each 

25 application layer processes @ 10 events each 

5000 events 
5000 events 
5000 events 

250 events 
250 events 
250 events 

Total 15,750 events 
Total time 5 min 

Events per minute = 15750/5 = 3150 events/min 
Events per second = 3150/60 = 52.5 events/sec 

Figure 5 

15,750 events at an average size of 190 bytes 
The default primary extent pages 
The default pages per secondary extent 
The number of secondary extents in a file 
The default total pages for secondary extents 

Total extent pages 
Page size in bytes 

Total disk space reserved in a default log file 

Figure 6 

Default buffer space available in collector 
Average event size (estimated) 

Events that can be held in available buffers 
Duration of high event generation rate 

Average difference between disk logging rate 
and event generation rate allowed 

Figure 4. 

Logging rate calculations. 
Figure 5. 

Default disk capacity 
calculations. 

first record is written to each new block in the 
file, the file label is rewritten to disk to update 
the EOF pointer. With REFRESH set to OFF, 
the file directory will be updated only when 
needed or requested. 

2,992,500 bytes 
20 pages 

100 
15 

+ 1500 pages 

1520 
X 2048 

3,112,960 bytes 

32768 bytes 
+ 190 bytes 

172 events 
+300 sec 

0.57 event/sec 
(or 1 event every 1. 75 sec) 

Figure 6. 

Startup of a large 
configuration. 

OCTOBER !988 TANDEM SYSTEMS REVIEW 
61 



Figure 7 

Default size of each on-line event log file 3112960 bytes 
x3 files Default number of files retained ( = MAXFILE - 1) 

---
Default total space available on disk for events 
Average event size (an estimate) 

9338880 bytes 
+ 190 bytes 

---
Default number of events archived on line 49152 events 

Figure 7. 

For a system where only 
100 events are generated 
per day, 49,152 events 
represent more than a 
year's worth of archived 
messages. 

With BUFFERED = OFF and REFRESH = 
ON, the maximum achievable rate for writing 
events to a collector log file is about 22 events 
per second with most common disk drives. (In 
this model, 4104 disk drives were used.) Disk 
drive performance is the limiting factor in 
writing events to the file. This combination, 
while providing greater data recovery capabili­
ties, degrades logging rate performance. 

Tests have shown that with a Tandem TXP™ 
system using the same disk drives as above, if 
BUFFERED = ON and REFRESH = OFF, event 
logging rates of almost 60 events per second 
can be achieved. With this set of options, disk 
extent allocation, CPU overhead for generat­
ing events, and GUARDIAN 90 message system 
traffic become the limiting factors in writing 
events to the file. However, in the event of a 
double component failure, this combination 
could affect data recovery. 

The EMS default mode sets BUFFERED = ON 
and REFRESH= ON for log files. The block 
size for log files is set to 4096 bytes to 
accommodate the largest possible event ( 4024 
bytes). This combination ensures that the EOF 
pointer is always current and allows event 
rates between 40 and 50 per second. If needed, 
the Subsystem Programmatic Interface (SPI) 
to the collector allows changes to these option 
selections when reliability and availability 
needs so dictate. 

Log File Options 
Because EMS chains log files, the number of 
log files used by EMS is theoretically limited 
only by the amount of available disk space. 
If no limits on the number of files used are 
set, EMS could conceivably use up all available 
space on a disk. To control this, an EMS col­
lector option called MAXFILES allows users 
to specify how many files to allocate to the 
EMS log files. The EMS default value is 4. 

Most systems will find the default MAX­
FILE and extent (primary= 20 pages, second­
ary = 100 pages) values sufficient for retaining 
a minimal log file archive. For larger systems, 
the default settings may be changed as 
appropriate. 

The size of the default on-line archive is 
calculated in Figure 7. 

ROTATEFILES. The most common operation 
problem that can interfere with collector event 
logging is the failure to delete log files from 
the log subvolume. The EMS option ROTATE­
FILES manages the use of the allocated files 
when the log files reach capacity. The setting 
(ON or OFF} of ROTATEFILES directs $0 either 
to recycle disk space or to halt logging. 

If the default ROTATEFILES = ON setting 
is retained, then the oldest log file will be 
purged, and logging will continue on this 
newly freed disk space. This recycling of disk 
space will continue indefinitely. If ROTATE­
FILES is set to OFF, then logging of events to 
disk will stop. 

If the customer retains the ROTATEFILES 
= ON default, purged log files cannot be 
recovered. Event logging does continue, how­
ever. Retaining the ROTATEFILES = ON set­
ting assumes that an EMS log file archive is 
not necessary because events are being for­
warded as they occur or log files are being 
archived regularly. 

When Disk Logging Stops. Some customers 
may choose to set ROTATEFILES = OFF. Fail­
ure to remove old log files from the system 
before the MAXFILE number of log files is 
filled causes event logging to stop. 

When logging stops, a LOGGING STOPPED 
event generated by EMS informs the customer 
that old EMS log files from the current log 
subvolume must be removed before logging 
can continue. Events are temporarily saved in 
internal $0 buffers and sent directly to the 
distributors. 

62 TANDEM SYSTEMS REVIEW OCTOBER 1988 



An algorithm in $0 specifies that when a 
long logging outage occurs, the events just 
before and after logging stopped and the 
most current events are saved. Events are sent 
to the distributors one at a time at the rate 
they can accept. The distributor filters and 
processes these events as if they had been read 
from a log. With this algorithm, if events 
occur at a rate that the distributors can sus­
tain, as a group, all events that are received 
will be distributed. 

The buffers can store up to 32,768 bytes of 
information. When less than 4024 bytes (the 
maximum event size) remains in the buffer 
after the last event has been sent to all distrib­
utors, the newest events in the internal buffers 
are discarded until 4024 bytes are again avail­
able. At this time the LOGGING STOPPED 
event is once more sent to the distributors. 

During the time buff er space is insufficient 
in $0 for storing a received event, the WRITE, 
WRITEREAD, or internally defined message 
used by an event generator to transfer the 
event to $0 is terminated with an insufficient 
buff er space error. When buffer space becomes 
available, events are again accepted and sent 
to the distributors. 

Event Log Processing Performance 
Optimization 
All of the distributors ultimately read event 
messages from disk log files. Some design 
steps have been taken to optimize event 
retrieval performance for the EMS 
distributors. 

Read-Ahead 
In order to make events available to a destina­
tion as quickly as possible, the distributor, 
after delivering an event, reads the next event 
from the log and applies it to the filter. While 
the destination processes the current event, the 
distributor continues to read from the log until 
an event passes the filter. At this point, the 
distributor must wait until the destination 
indicates completion or the next GETEVENT 
command is received. 

The Forwarding Distributor collects quali­
fying events in a block buffer until the target 
collector completes processing of the last event 
transmission. The size of the block buffer is 
4096 bytes; events are sent unaltered. Per­
formance is improved for all distributors by 
decoupling reading and filtering of events 
from the destination's request for the next 
event or set of events. 

Collector-Distributor Protocol 
Typically, a distributor processes events in 
"monitoring" mode; that is, it reports the 
latest events written to the log. When it 
encounters an EOF condition, instead of bur­
dening the file system with repeated log read 
requests, it sends an SPI status command 
(wait-for-event) to the collector, requesting 
that a response only be sent if new events have 
become available. A context is submitted for 
reference, representing the distributor's current 
position (log file name and record address) in 
the log. After a reply has been received from 
the collector, the distributor continues to read 
the log. The status return contains a new con­
text that the distributor must examine in order 
to detect a log switch. If the collector has 
started a new log, the distributor must still 
continue to read the current log until an EOF 
is encountered again. This is because events 
may have be;en written to the log since the sta­
tus request was sent. After the EOF is detected 
again, the distributor switches to the new log 
file indicated in the status return. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 63 



64 

All status requests are sent no-waited. The 
distributor can thus service multiple 1/0 
requests. When events are received from more 
than one source collector, they are ordered by 
log time and merged onto a queue. The queue 
holds no more than one event per collector. 
After the oldest event on the queue has been 
processed, the distributor issues another read 
request to the log from which the last event 
had been received. It is possible that no event 
is available from any of the source collectors; 
in that case, "wait-for-event" status requests 
are pending for each source. 

The distributor-collector protocol uses an 
internal SPI programmatic interface. This 
protocol reduces CPU time by eliminating 
unnecessary calls to the file system. When few 
events are being generated, the overhead for 
each event involves two disk reads (to get the 
event and to get the EOF), and a collector sta­
tus command. When many events are being 
generated, the overhead for each event 
involves only one disk read (to get the event). 

Event Selection 
EMS provides tools that allow an application 
or an operator to selectively retrieve events for 
processing. These tools are positioning and 
filtering. 

Positioning allows a user to select events 
that start at a specified date and time. A posi­
tion command can be given to a distributor 
via programmatic interface or as a startup 
parameter. The position may be selected any­
where within the chain of logs currently asso­
ciated with the source collector(s). 

Filtering allows a user to select events 
according to a logical evaluation of tokens 
and token values. Filters may be installed at 
startup or programmatically. 

Positioning 
Since event logs are entry-sequenced files, 
search keys for quick access are not readily 
available and are too expensive (in terms of 
system resources) to build. A sequential search 
of one or more potentially large log files is too 
time consuming and therefore not feasible. The 
solution is a binary search algorithm that 
yields a block of events which are then 
scanned sequentially. 

Binary Search. A binary search is conducted 
over (at most) one log file. The search begins 
with the log currently associated with the 
source collector. Assuming a chain of files, 
the target log is determined by following the 
linkages provided in the first event of each 
log. If the timestamp of the first event in this 
log is greater than the positioning time, the 
next log is selected, and so on. If the end of 
the chain is encountered and the timestamp 
in the first event is still greater than the posi­
tioning time, a warning message is generated, 
and the current position set to the first record 
in the last log inspected. 

Assuming a minimum event size of 
108 bytes, a 4096-byte block contains up to a 
maximum of 37 events. With 10 log files of 
3 .2 Mbytes each, a worst case binary search 
would take approximately (log2 (900) + 10) 
= 20 disk accesses. At 50 ms per disk access, 
the search time would be approximately 
1 second. 

When more than one source collector is 
configured, the logs for each collector are 
processed in parallel. This is done by using a 
distributor's reentrant 1/0 processing loop. 
If the logs are configured on different disk 
packs, performance will be optimized further. 

TANDE'-1 SYSTEMS REVIEW OCTOBER 1988 



Event Log Chains. After a positioning com­
mand has been issued, the distributor is said 
to be in "historical" mode. It begins to read 
events starting at the new position and con­
tinues until it catches up with the collector's 
current position. The names of the log files 
skipped during the positioning search are 
recorded in a name table created by the dis­
tributor. This name table is referenced during 
event retrieval. If the table cannot hold all the 
log file names in the chain (maximum of 10), 
a new table will be built once the most recent 
log from the list has been processed. The new 
names are obtained by reading the first event 
in each log, starting with the collector's cur­
rent log, and continuing in reverse order until 
the most recent log is processed. 

If a broken link is encountered during event 
processing in historical mode ( a log file 
obtained from the name table cannot be 
accessed or has an invalid link in its first 
event), the distributor generates an informa­
tional event and attempts to recover by skip­
ping to the next available log file, as 
determined from the name table. If a next 
log is not available, the distributor stops the 
search and an appropriate event message is 
generated. Event processing continues if other 
source collectors are still functioning. 

Log Time vs. Generation Time. Events are 
always stored in log time sequence; that is, the 
timestamp is provided by the collector at the 
time the event is written to the log. Events are 
not necessarily in generation time order, espe­
cially if skewing has occurred after event for­
warding from several sources. An event 
consumer is normally more interested in the 
event's generation time. These two times can 
differ considerably. 

After determining the target log file, the 
distributor conducts the binary search for a 
target block that contains a record whose log 
time is greater than or equal to the positioning 
time specified. After completing the binary 
search, and assuming that positioning by gen­
eration time is selected, the distributor must 
now search forward within or beyond the tar­
get block until the generation time is also 
greater than or equal to the positioning time. 
From that point on, all events with a genera­
tion time greater than the positioning time 
qualify for distribution. 

The presence of irregular events in the log 
must also be considered. Irregular events are 
those events that have a log timestamp smaller 
than IJAN1974, indicating that a cold load 
occurred. Irregular events must be skipped 
during the binary search and during the block 
search. After the positioning completes, any 
irregular events encountered will be processed. 

Filtering 
Filtering is a programmatic way of selecting 
specific events for processing. A filter is 
installed in the appropriate distributor and 
only those events that meet the filter's specifi­
cations are passed to the consumer. 

Filtering is used for different purposes: it is 
used by event processing applications to select 
specific event messages, to select the set of 
events a Forwarding Distributor sends to a 
remote node, and to select the set of events 
that the Printing Distributor displays on its 
output device. 

To meet these diverse needs, EMS provides a 
filter language to express selection criteria. 
A filter compiler, EMF, accepts the filter lan­
guage as input and produces a filter object 
file. The filter object is loaded into an EMS 
distributor, which selects events for distribu­
tion based on the filter's specifications. 

The filter language allows the user to test 
for the presence or absence of an arbitrary 
token in the event messages as well as testing 
the value of any token. Like other languages, 
these tests can be combined using AND, OR, 
and NOT. Filter execution is controlled by an 
IF statement. 

OCTOBER JQXX TANDEM SYSTEMS REVIEW 65 



66 

For example, a simple filter that will pass 
only COO PATHWAY™ transaction processing 
system event messages might be written: 

Filter pass "pathway; 
Begin 

if ZSPI"TKN"'SSID = 
TANDEM.PATHWAY.COO 
then pass; 

End; 

Changing Filters 
Filters can be changed by simply using the 
application to load a new filter into a distribu­
tor. Though simple, the disadvantage to this 
approach is that all filters the application 
might want would have to be known and all 
such filters compiled before the program was 
run. A better approach uses parameterized 
filters. 

Parameterized Filters. Filter parameters may 
be changed by the application program after 
the filter has been loaded into the distributor. 
The parameters simply take the form of token 
values. Parameters are named, or distin­
guished from one another, by their token 
codes, which are defined when the filter is 
written. The filter source language provides 
the same operations on parameter tokens as 
for the event message tokens. In essence, this 
allows filter execution to be controlled via the 
parameter tokens loaded by the event process­
ing application rather than preset at filter 
compile time. 

Installing Filters 
With the programmatic interface, filters can 
be installed and changed while the distributor 
is running. Combined with the positioning 
command, this is a powerful tool for problem 
tracking, particularly when filter parameters 
are introduced. Automated applications can 
be written that select filter parameters accord­
ing to the outcome of a previous log scan, for 
instance. 

The distributor ensures that events are not 
skipped after a filter has been changed. 
Because of the read-ahead feature, the distrib­
utor must reposition in the log so that all 
events that were received before the filter had 
been changed, but not seen by the consumer, 
are applied to the new filter. This makes filter 
changes transparent to the consumer. 

Distributing Tokenized Messages 
as Text 
In EMS, event generation and text formatting 
are distinct operations. In certain cases, a 
tokenized event message must be formatted 
into text. This is true for $ZO, the Compatibil­
ity Distributor, and in situations where mes­
sages are displayed or printed. Formatting 
functions are provided by EMSTEXT, a call­
able procedure in the GUARDIAN 90 system 
library. Any process can access the formatter 
by simply "calling" EMSTEXT. 

EMSTEXT allows all reasonable data types 
used in tokens to be converted to text. 
EMSTEXT converts the tokens into text with 
the use of a formatter template. This template, 
provided by the event designer, supplies the 
initial definition of the text. 

EMSTEXT expands the template to text 
using the data from an event passed by the 
EMSTEXT caller. Templates for all events are 
provided by the event designers and may be 
modified by the user to meet specific needs. 
Because the text definitions exist in the tem­
plates, customers can tailor the text display of 
an event to suit their own environment. This is 
desirable in non-English speaking situations. 
Considering that another language may be 
more common than English at a site, event 
messages displayed in the native language 
would be easier to understand. 

Text Tokens. In situations where text tem­
plates cannot be used, EMS defines a text 
token. A text token represents a line of text. 
EMSTEXT decodes this, adds the appropriate 
header, and returns it as a text message. Using 
text tokens, users can report and display man­
agement information without providing text 
templates for events. However, text tokens 
should be used sparingly. The increased space 
needed to save the text in each reported event 
and the inflexibility inherent in text being part 
of the event contents make excessive use of 
text tokens unwise. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Compatibility Considerations 
It is important to ensure that the correct text is 
always displayed even if the event is generated 
on one system and the text is formatted and 
displayed on a system with a different 
GUARDIAN 90 version installed. A text dis­
play must also be generated for subsystems 
that report pre-DSM management data. 

Version compatibility for event services 
applies only to GUARDIAN releases after COO 
(which support EMS). To ensure version com­
patibility, guidelines for event and template 
modification allow changes to the text tem­
plate that clarify its meaning or correct mis­
takes. The text generated by EMSTEXT for an 
event should never be used by management 
applications to programmatically analyze 
event contents. The text version of events is 
meant for human consumption. If events need 
to be analyzed by a program, the tokenized 
version of the message should be used. 

Conclusion 
EMS provides a centralized event collection 
facility that supports reporting management 
data with old operator messages as well as 
with new tokenized events. Supporting the old 
and new messages allows for orderly migration 
to EMS by existing subsystems. 

Subsystems within the GUARDIAN 90 envi­
ronment can define and generate tokenized 
event messages to meet all management data 
needs. Each event message describes a note­
worthy occurrence in the network in a timely 
manner. The techniques used to tokenize man­
agement data provide both required and 
optional information in each event. EMS pro­
vides system procedures to aid customers in 
creating events from management data. Inter­
release changes to management data are antic­
ipated by providing guidelines for the creation 
and extension of event contents. 

EMS uses disk log files to queue and save 
reported events. Separating event collection 
from event distribution improves the rate of 
event collection. Mechanisms built into the 
collector and distributors ensure that manage­
ment data can be reported when needed, even 
if a system component fails. 

By allowing the user to configure many 
distributors where each supports a specific 
user with a specific type of service, EMS facil­
itates the use of a variety of management 
applications. The three EMS distributor types 
retrieve and use filters to select event messages 
from collectors or disk log files. EMSTEXT, a 
procedure which can be accessed by any pro­
cess in the GUARDIAN 90 system, produces a 
text display from an event. 

Hank Jordan is a software designer in DSM software develop­
ment. His experience prior to this assignment primarily involved 
designing data communications device interfaces. 

Randy McRee received his B.S. degree in E.E.C.S. from the 
University of California at Berkeley in 1981. Randy joined 
Tandem in 1984 as a network analyst for Tandem's Network 
Support Group. In February of 1985, he joined the DSM group in 
Software Development to work on the EMS project. 

Rudy Schue! is a software developer with an M.S. in Electrical 
Engineering from the University of Karlsruhe, West Germany. 
Since joining Tandem in 1982, Rudy has contributed in the areas 
of transaction monitoring (TMF) and, most recently, in network 
management, where he designed and implemented the event 
distributor component. Prior to joining Tandem, Rudy was the 
key developer and project leader for a relational database man­
agement system. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 67 



68 

Data Replication in 
Tandem's Distributed 
Name Service 

istributed Name Service 
(DNS™) is part of the set of 
Tandem's system manage­
ment products known col­
lectively as Distributed 
Systems Management 
(DSM). DNS simplifies the 

management of objects in a Nonstop™ system 
or an EXPAND™ network by managing a dis­
tributed, and partially replicated, database of 
names of those objects. 

This article provides practical solutions to 
many of the problems associated with data 
replication. It covers four general areas: 

■ The services provided by DNS. 

■ Network considerations, including the char­
acteristics of name management that require 
the use of data replication. 
■. The replication mechanism implemented in 
DNS. 
■ DNS architecture. 

Services Provided by DNS 
There are many named objects within an 
EXPAND network. GUARDIAN™ file names 
are really addresses since they are chosen by 
system administrators and are not independent 
of network location. 1 Subsystem-defined 
names, such as PATHWAY™ names, while 
"readable by humans and of mnemonic value" 
(Terry, 1985) are only usable within the con­
text of a given PATHWAY application. 

The purpose of DNS is to allows users to 
assign names, or aliases, to subsystem­
controlled objects (SUBSYSTEM OBJECTS). 
DNS allows definition of an arbitrary number 
of aliases for each object. 

1Douglas Terry makes the distinction that names are chosen by users, whereas 
addresses are assigned by the system or system administrators. Names are 
characterized as being readable by human beings, of mnemonic value, and 
independent of network locations. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



DNS also allows definition of a single name 
( COMPOSITE) that refers to several related 
subsystem objects. Frequently, a single object 
is known to multiple Tandem and/ or user sub­
systems; e.g., an automated teller may be 
known to PATHWAY, SNAX/HLS, and SNAX. 
Through use of DNS composites, such objects 
can be assigned a single name. 

Users can define arbitrary groups of aliases 
and composites. Groups may themselves be 
members of other groups. 

The principal client of DNS is expected to 
be network management applications (NMA). 
Among the functions provided to NMAs by 
DNS are: 

• Translating an alias to a subsystem object 
name (e.g., when turning a command specify­
ing an alias or composite into the appropriate 
subsystem command with the correct subsys­
tem object name). This allows construction of 
command interpreters that accept meaningful 
names. 
• Translating subsystem-object names (e.g., in 
events) to aliases. This allows event processing 
applications to report meaningful names to 
operators. Facilities are included for distin­
guishing among the various aliases for an 
object, thus allowing the application to select 
for display the alias most appropriate for the 
audience. 

• Translating a group name to the names of 
the members of the group, allowing NMAs to 
implement group-oriented commands; for 
example, SF-ATMS includes ATM0I, ATM37, 
ATM44, etc. 

Network Considerations 
While DNS can be used in any operational 
environment, it is primarily designed to facili­
tate centralized management of a distributed 
network of systems. 

Figure 1 

STATUS 
LINE46 

\A 

(Network Control Node) 

DNS 

SCP SNAX 

The DNS database on a network control 
node (NCN2) needs to know about objects on 
nodes controlled from that location. This 
allows NMAs running at NCNs to use a single 
set of user names for objects at multiple nodes 
when communicating with the human opera­
tor, and simultaneously to communicate with 
subsystems using the appropriate subsystem­
object names for the objects. (See Figure 1.) 

2For the purposes of this article, the term "network control node" refers to a 
system (the control node) where human operators control the operation of all or 
part of a network of Tandem systems. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 1. 

Alias-to-object-name 
translation. 

69 



Figure 2. 

Object-name-to-alias 
translation. 

70 

Figure 2 

\NCN 
(network control node) 

Similarly, NMAs that process events are 
able to report problems to human operators 
at network control nodes using aliases. (See 
Figure 2.) 

Where network control functions are cen­
tralized, disaster recovery plans must provide 
for transfer of control from one NCN to 
another. 

From the point of view of DNS, this means 
that for each name known to an NCN, there 
must be another NCN in the network that also 
knows about that name. 

Additionally, it is possible for any system to 
become isolated from the rest of the network; 
therefore, it should be possible to control each 
system either locally or via a dial-up terminal. 
This means that DNS name translation should 
be available on every system for at least those 
objects residing on that system. 

Replication of Name Definitions 
Although it is desirable that the definition of 
names be stored at multiple systems in an 
EXPAND network, it is unreasonable to expect 
DNS users to define each name to each system 
where that name might be used. Rather, each 
name is defined on one node, and DNS repli­
cates that definition on other nodes. The set of 
nodes that contains a name's definition is 
referred to as the name's domain and is chosen 
by the user. 

Time-Staged Replication 
The simplest way of performing this replica­
tion is to use a "write all, read any" scheme. 
Under such a strategy, a single transaction is 
used to add a new name definition or change 
an existing name definition; all copies of the 
definition are changed or none of them are 
changed. This ensures that all copies of a 
name's definition are consistent, but it 
severely limits update availability; if one of the 
copies of the definition were unavailable, the 
name could not be changed. More specifically, 
if one of the systems in a new name's domain 
were unavailable, the name could not be added. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The limitations of write all, read any repli­
cation led to investigation of other means of 
data replication. A time-staged strategy was 
finally adopted. 

When a new name is added, its definition is 
initially stored on only a single system; DNS 
refers to this system as the name's definition 
node. The name's definition is subsequently 
"exported" to each of the systems in the 
name's domain; i.e., the name's definition is 
added to the DNS database on each system in 
the user-specified domain. In this way, if one 
of these systems is temporarily unavailable, 
the name may still be exported to the other 
systems in the name's domain. When the pre­
viously unavailable system is once again acces­
sible, the name's definition is exported to that 
system as well. 

Changes to the definition of existing names 
are processed in the same way. 

Because changes in a name's definition are 
exported asynchronously to the systems in the 
name's domain, it is possible for the various 
copies of that definition to be temporarily 
inconsistent. 

Once a change to a name's definition is 
exported to all the systems in the name's 
domain, all copies of that definition are 
consistent. 

Avoiding Duplication and Incompatibility 
When a new name is defined at a node, the 
other systems in the name's domain are not 
consulted. Consequently, there is a possibility 
that the new name is a duplicate of an existing 
name defined on another node in the new 
name's domain. To avoid such name collisions, 
each DNS name is qualified by the name of its 
definition node. For example, if the name 
LINE46 is defined on system \NEWYORK, 
the fully qualified form of that name is LINE46 
ON \NEWYORK. This fully qualified form 
need only be used, however, on nodes where 
more than one LINE46 is known (e.g., LINE46 
ON \NEWYORK, LINE46 ON \CHICAGO). 

If users at any node in a name's domain 
were free to update the definition of a name, 
it would be possible for users at two different 
systems to make simultaneous incompatible 
changes to a name's definition. DNS avoids 
this problem by only allowing a name's defini­
tion to be changed at the system where the 
name was originally defined (i.e, the name's 
definition node). 

Situations might arise where a name's defi­
nition node is unavailable and a change to that 
name's definition is required. DNS permits 
users to make a modifiable copy of remotely 
defined name definition; any changes made to 
such a copy are strictly local and are not 
exported to the other systems in the name's 
domain. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 71 



Figure 3. 

Name replication. 

72 

Figure 3 

$LINE4 z 

DNS databases are protected by the Trans­
action Monitoring Facility (TMF). When a 
name definition is exported, a TMF transac­
tion is started by DNS at the exporting system. 

This transaction is used to update the DNS 
database at the importing (remote) system; 
if the export succeeds, DNS at the exporting 
system updates its own database to indicate 
that the name definition has been successfully 
exported and the transaction is committed. 
If any errors occur in this process, the transac­
tion is aborted, thus restoring both the local 
and remote databases to their prior state. 

The partial replication scheme employed 
within DNS results in DNS databases being 
node-specific; in other words, a DNS database 
created on one system cannot be moved to 
another system using standard utilities like 
FUP or BACKUP /RESTORE. Equivalently, the 
node name and node number of a system 
should not be changed once DNS is installed. 

As shown in Figure 3, the recommended 
way to use DNS replication is to define each 
name on the system where the underlying sub­
system object(s) reside. For example, if 
LINE46 is to be an alias for \A.$LINE4: 

1. $LINE4 is defined to DNS at \A. 

2. LINE46 is defined at \A as an alias for 
$LINE4. 

3. The domain of LINE46 should consist of 
one or more network control nodes (\NCNl 
and \NCN2 in Figure 3). 

By defining LINE46 in this manner, it is 
possible to change the master copy of the defi­
nition (i.e, the copy at the definition node) of 
LINE46 any time that the underlying subsys­
tem object (\A.$LINE4) is accessible. If 
LINE46 were to be defined at \NCNl and that 
control node became unavailable, it would not 
be possible to change the master copy from 
\NCN2 even though \A.$LINE4 was available 
from \NCN2. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



DNS Architecture 
DNS consists of three program components: 
DNSCOM, the name manager, and the name 
exporter. The relationship between them and 
the database is shown in Figure 4. 

The name manager and name exporter com­
municate via the GUARDIAN file system with 
the name exporter being the requester and the 
manager being the server. In addition to this 
IPC (Interprocess Communication) interface, 
the two processes communicate through use of 
a queue file. 

The process of exporting name definitions 
involves the local name manager and name 
exporter, as well as the name managers on one 
or more remote systems. 

DNSCOM 
DNSCOM provides an interactive interface to 
D NS. It is used to: 

■ Initially create the DNS database and the 
$SYSTEM.SYSTEM.DNSCONF file. 
■ Control the various DNS processes. 
■ Perform inquiry and update operations 
against the DNS database. 

Name Manager 
Each node on which DNS is installed has a 
DNS name manager called $ZDNS. The name 
manager is a multi-threaded Nonstop process 
which accepts SPI (Subsystem Programmatic 
Interface) requests from NMAs and performs 
I/O operations against the local DNS database. 

The name manager is a TMF server; that is, 
it expects to acquire TMF transactions via 
$RECEIVE. Consequently, the NMA (or DNS­
COM) has control over TMF transactions. 

Figure 4 

~ -------
SPI 

interface 

ON~-------

L 

Name Exporter 

or 

Each network node where DNS is installed has 
a name exporter that is responsible for all 
export operations. The name exporter is a 
multi-threaded process that runs with the 
reserved name $ZD NX. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

Figure 4. 

DNS architecture. DNS 
maintains its configura­
tion in $SYSTEM.SYS­
TEMDNSCONF. This 
file is created during 
processing of the INI­
TIALIZE DNS command 
and serves as a safe-store 
for the values of the 
various DNS configura­
tion parameters. 

73 



Figure 5 

~. 
~·· 

i 
Export ta!k 

\A 

~ 
\A.1100$ 

Figure 5. 

Exporter architecture. 
Points at which a TMF 
transaction occurs are 
flagged with an asterisk 
(*). The number of TMF 
transactions required to 
add a name and replicate 
the name's definition on 
N nodes is 2 + N 

74 

7 

··~ 
~ 

\0.1. 

! .. 
Export task 

\B 

~ ~ 
"'~· \Q.$!0N$ 

Placing the export function in a process 
separate from the name manager considerably 
simplifies the overall design. As previously 
described, name export involves the use of 
TMF, which means that the process that initi­
ates name export must be a TMF requester 
(must call BEGINTRANSACTION). Coding 
and testing multi-threaded TMF requesters is 
greatly simplified if the process involved does 
not need to run as a Nonstop process pair. 
Consequently, the exporter does not run as a 
Nonstop process pair; if it fails, it is automat­
ically recreated by the name manager. 

The Queue File 
The queue file can actually be thought of as 
three separate logical files. 

Primary Queue. The primary queue serves as 
a place for the name manager to store export 
requests until they can be acted upon by the 
name exporter. In addition to providing a safe 
store for these unprocessed export requests, 
the primary queue acts as a buffering mecha­
nism between the name manager and name 
exporter. This buffering allows export requests 
to be generated by the name manager at a rate 
that is independent of the rate at which the 
name exporter is able to process them. 

Secondary Queues. The queue file can contain 
one secondary queue for each remote system in 
the EXPAND network. Each secondary queue 
holds export requests destined for a single 
remote system. 

Export Control File. The export control file 
portion of the queue file is used to store con­
trol information. 

The Export Process 
As the name manager processes an ADD, 
ALTER, or DELETE command involving a 
replicated name definition, it inserts export 
requests into the primary queue. Since the 
queue file is a TMF-audited file, the write to 
the primary queue is done under the same TMF 
transaction as the database update; if that 
transaction is subsequently aborted, the export 
request in the primary will be deleted during 
TMF transaction backout. The export process 
is illustrated in Figure 5. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The name manager makes no attempt to 
determine which systems are to be involved in 
the update. That task is delegated to the part 
of the name exporter known as the queue 
manager. The queue manager's main process­
ing loop is as follows: 

1. Begin a TMF transaction. 

2. Read the primary queue with lock. 

3. If a request is found, analyze the request to 
determine the systems to which it needs to 
be sent. For each of these systems, insert a 
copy of the request into the corresponding 
secondary queue and delete the primary 
queue entry. 

4. End the TMF transaction. 

5. If the primary queue is empty, issue a com­
mand to the name manager whose comple­
tion will signal when a new request has 
been inserted into the primary queue. 

Note that the name exporter issues a request 
to the name manager only when the primary 
queue is empty; as long as there are requests in 
the primary queue, the exporter processes 
them without involving the name manager. 
The buffering provided by the primary queue 
allows the name manager to process update 
requests without having to wait for the name 
exporter. 

In addition to the queue manager, the name 
exporter contains an export controller and up 
to 31 export tasks. The purpose of the export 
controller is to monitor the status of secondary 
queues and to initiate export tasks when 
required and to monitor export task execu­
tion. When initiated, each export task pro­
cesses the secondary queue for a single remote 
system. The export task's main processing 
loop is as follows: 

1. Begin a TMF transaction. 

2. Read the secondary queue with lock. 

3. If end-of-file, then stop. 

4. Otherwise, format the SPI request and send 
it to the remote manager. 

5. If there is no error, delete secondary queue 
entry and end the TMF transaction 

6. Otherwise, abort the TMF transaction and 
stop. 

Conclusion 
DNS allows users to assign meaningful names 
to both individual objects and sets of objects. 
To be useful in a network operations environ­
ment, DNS must be able to translate between 
these names at multiple systems within the 
network. This requirement dictates that por­
tions of the DNS database must be replicated 
within the network. 

In a large network, the chances of some 
node being off-line are higher. This means 
that, at any given time, an attempt to update a 
large number of copies of a name's definition 
is more likely to be unsuccessful. 

By employing a time-staged strategy for 
database replication, DNS is able to maximize 
update availability while at the same time 
guaranteeing that the multiple copies of a 
name's definition will ultimately converge. 

Reference 
Terry, D.B. 1985. Distributed Name Servers: Naming and 
Caching in Large Distributed Computing Environments. PRO­
GRESS Report No 85.4. Computer Science Division (EECS). 
University of California, Berkeley. 

Tom Eastep is a software developer for DSM products and is the 
designer of DNS. Since joining Tandem in 1980, he has also been 
a systems analyst and analyst manager. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 75 



76 

SCP and SCF: 
A General-Purpose Implementation 
of the Subsystem Programmatic Interface 

andem has developed two 
--~ new data communications 
--- network management prod-

ucts, the Subsystem Control 
Point (SCP) and the Subsys­
tem Control Facility (SCF), 

______ that use the Subsystem Pro­
grammatic Interface (SPI) as their base. By 
using SPI procedure calls and their own layer 
of implementation standards, SCP and SCF 
are interfaces that are easy to use, consistent, 
and low maintenance. The development of 
SCP and SCF as network management inter­
faces for such diverse subsystems as 
EXPAND™, SNAX, and X25 demonstrates the 
versatility of SPI and its value in the develop­
ment of new interfaces and network manage­
ment applications (NMAs). 

This article discusses some of the design 
issues encountered during the development of 
SCP and SCF. The programmatic interface to 
SCP is discussed first, followed by the human 
interface to SCF. A general understanding of 
SPI is required to understand this article. 

The Programmatic Interface 
The data communications programmatic 
interface is the method by which NMA 
requesters talk with the data communications 
subsystem servers. SPI provides a set of proce­
dure calls and programming standards for 
building and dismantling network manage­
ment requests and responses. The data com­
munications programmatic interface is 
actually a diverse set of separate program­
matic interfaces. Uniting these interfaces was 
the main goal of the SCP design team. This 
section describes issues, such as consistency, 
simplicity, and reliability, that facilitate NMA 
requester design. (See Figure 1.) 

Consistency Across Subsystems 
The first concern was to present a consistent 
set of programmatic interfaces across. all d~ta 
communications subsystems. To provide this 
level of consistency, data communications 
programmatic interface standards were devel­
oped in addition to the SPI standards. These 
standards include definitions of common error 
messages, command syntax, command seman-
tics, and constant values. . 

Developers of NMAs receive many benefits 
from these extra standards, including reduced 
memory requirements, simplified coding, and 
quicker familiarity with new subsystems. 
(Refer to the Communications Manag~ment 
Programming Manual for documentation on 
these standards.) 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Application Development Simplicity 
Because an NMA must be able to control more 
than a single subsystem per system, a mecha­
nism was needed to reduce the number of 
opens an NMA must maintain. Without 
reducing the number of opens, the NMA 
would have to be extremely complex. For 
example, Figure 2 shows the number of 
process-to-process opens that an NMA must 
maintain in a network with four systems and 
four subsystems per system. 

The solution was to introduce one SCP pro­
cess per system through which all data com­
munications management traffic would be 
channeled. Figure 3 shows the same configu­
ration as Figure 2 with the addition of the 
control point process. NMA complexity is 
greatly reduced by using a control point pro­
cess where there is a one-to-one relationship 
between the number of systems and the num­
ber of opens an NMA must maintain. 

Interface Reliability 
With all of the data communications subsys­
tems controlled through a single process, the 
next concern was reliability. If SCP were to 
terminate or become overwhelmed with 
requests, all data communications subsystems 
would be inaccessible. 

The issue of SCP terminating was addressed 
by requiring SCP to run as a Nonstop™ pro­
cess pair. The issue of being overwhelmed with 
requests was addressed by allowing multiple 
copies of SCP. Because SCP utilization is 
implementation-specific, it was decided to 
provide several SCP configuration options. 
The default configuration is a single SCP pro­
cess pair named $ZNET. This should fulfill the 
needs of the majority of Tandem customers. 
SCP can also run as a set of context-free 
server processes (as in a PATHWAY™ server 
class). This approach is more sophisticated 
and is applicable to customers who wish to 
write NMAs based on PATHWAY or expect a 
high volume of SCP traffic. The last SCP con­
figuration consists of a single SCP process per 
NMA. Usually this is used in cold start situa­
tions where throughput is critical. 

Figure 1 

Figure 2 

SUBSYS11 

SUBSYS12 
"'\, .; 

SUBSYS13 

SUBSYS14 

SUBSYS21 

SUBSYS22 

SUBSYS23 

SUBSYS24 

SPI 

Opens 

Figure 1. 

The relationship between 
SCF, NMAs, and SCP to 
control Tandem data 
communication subsys­
tems, using SPl 

.$'f&TEM3 

SUBSYS31 4·~"F-byNMA 
SUBSYS32 

SUBSYS33 

SUBSYS34 

m.tA 

____J L 
$YS!l:M4 

SUBSYS41 

SUBSYS42 

SUBSYS43 

SUBSYS44 

Figure 2. 

Process-to-process opens 
without SCP. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 77 



Figure 3 

SYSTEM1. 

SUBSYS11 

SUBSYS12 -
SUBSYS13 

SUBSYS14 

SYSTEM2 

SUBSYS21 

SUBSYS22 

SUBSYS23 T 
SUBSYS24 

Figure 3. 

Process-to-process opens 
with SCP. 

78 

Opens $Y~-, 
maintained 

SUBSYS31 

7~""1 SOP SCP - SUBSYS32 

SUBSYS33 

SUBSYS34 

NMA 

J L 
SYS1'EM4 

SUBSYS41 

SCP S(:P 
SUBSYS42 

Opens T SUBSYS43 maintained 
by SCP 

SUBSYS44 

Provided Common Functionality 
An additional benefit of a control point pro­
cess, such as SCP, is that it can provide some 
common functions to data communications 
subsystems. This allows for greater code lever­
age and reliability. Currently, the common 
functions provided by SCP are trace initiation, 
version checking, and a basic level of security. 

Trace initiation for an 1/0 process involves 
the allocation of an extended segment and the 
linking of that segment to a disk file name. 
This may also include starting a trace collec­
tor, which collects large amounts of trace 
data. 

Version checking guarantees compatibility 
between NMAs and subsystems. SCP com­
pares the version level of NMAs with the ver­
sion level of subsystems ( on a per command 
basis) and returns an appropriate error 
response when an incompatibility is detected. 
This scheme protects the user without being 
overly restrictive. 

SCP also provides security against unau­
thorized users changing the configuration of 
the system. Those commands that can change 
the state or configuration of a subsystem must 
be issued by a "super group" user or a user in 
the same group as the initiator of the subsys­
tem. All other commands are considered non­
sensitive and can be issued by any user. If SCP 
encounters a sensitive command issued by an 
unauthorized user, the request is rejected with 
an appropriate error response. 

The Human Interface 
The human interface allows the user to control 
the subsystem by entering text from a terminal 
or an OBEY file. While designing SCF, the 
developers considered many issues that would 
make the human interface maintainable, reli­
able, and user friendly. 

Maintainability of the Human Interface 
The number of subsystems supported by SCF 
was expected to be large (greater than 30), and 
subsystem functional needs were expected to 
increase with time. Experience with existing 
data communications command interpreters 
shows that a state of continual change in the 
human interface is the norm. This high vol­
ume of change, at times, has jeopardized the 
timely delivery of new features or products. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



To make SCF easily maintainable, the 
developers borrowed the concept of product 
modules from a similar Tandem product, 
PTRACE. As with PTRACE, SCF is made up 
of a set of kernel procedures and a set of pro­
duct modules. Product modules are blocks of 
subsystem-specific code compiled indepen­
dently of the kernel portion of the program 
and then linked to it at a later time. This type 
of product module architecture allows for 
parallel development of new features without 
the possibility of one subsystem's changes 
affecting another's. 

Product modules use a common set of 
library procedures to perform functions such 
as command line parsing, SPI buffer mainte­
nance, communication with the subsystem, 
error message display, data conversion, and 
information display. Only subsystem-specific 
aspects of commands need to be implemented. 

The kernel consists of a core set of proce­
dures that act as a buffer to the product mod­
ules, invoking them only when necessary. The 
kernel provides environmental commands, 
such as ASSUME, ENV, EXIT, FC, HISTORY, 
LOG, OBEY, OUT, RUN, SETPROMPT, SYS­
TEM, TIMEOUT, and VOLUME. It also pro­
vides common functionality, such as 
abbreviations, aliasing, break key handling, 
command history, error recovery, and 1/0 file 
management. This architecture satisfies the 
needs of evolving subsystems at a minimum 
cost without sacrificing functionality. 

Consistency Across Subsystems 
With so many product module developers 
contributing to SCF, there was concern that 
implementation inconsistencies might occur. 
The programmatic interface standards leave 
considerable room for unique human interface 
interpretation. 

The consistency concern was addressed, in 
part, by having the kernel parse the first two 
tokens (command and object) that are com­
mon to all product modules. Other consis­
tency issues were resolved by establishing 
standards for the command syntax and display 
formats. 

Compatibility with Existing Products 
One of the SCF design criteria was compati­
bility with existing data communications com­
mand interpreter syntaxes so that users would 
not have to learn a new human interface and, 
at the same time, incorporate the time-saving 
features of new command interpreters, such 
as TACL (Tandem Advanced Command 
Language). 

The syntax of the predominant data com­
munications command interpreter (CMI) was 
used as the basis for SCF's syntax, with very 
few exceptions. As a result, existing CMI users 
can learn SCF and convert CMI OBEY files to 
be used by SCF with very little effort. 

The requests for added functionality were 
answered by incorporating a number of TACL 
features and commands into SCF. These fea­
tures include aliases, function keys, a tailor­
able prompt, a command history buffer, a help 
key, and a custom file. They provide an easy 
transition between TACL and SCF and, again, 
reduce the amount of learning required to use 
SCF. By combining the syntaxes of old and 
new products, customers' learning investments 
were protected, while providing a higher level 
of capability. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 79 



Figure 4. 

An example of a detailed 
SCF error message. 
SCF's prompt is an 
arrow(-+). 

Figure 5. 

An example of SCF's 
confirmation messages. 

Figure 6. 

An example of the 
ALIAS command. 

80 

Figure 4 

-+ TRACE PROCESS $ZNET, TO TRCDATA 1 

SCP #-00822 Trace is currently active for $ZNET 

Probable Cause 

A TRACE command has been received. The 
TRACE facility is currently active in the target 
subsystem, and an attempt was made to start 
another trace. 

Recommended Action 

Stop the current trace. Then, reissue the request. 

Figure 5 

-+ASSUME LINE $X25BIT 
Assume ........ LINE $X25BIT 
-+START 
START accepted by X25AM: LINE $X25BIT 

Figure 6 

-+ALIAS F FUP FILES 
-+F 
$DATA.STEVE 
ARTICLE ARTICLE1 BLOCK BRUCE CLOCK 
DOC1 

User-Friendly Features 
The expertise of the SCF users was expected to 
range from expert to novice. In order to facili­
tate the needs of both types of users, SCF sup­
ports two levels of operational expertise for 
the HELP command, error messages, and 
entering commands. 

In HELP command line mode, the user 
enters the full help command on a single line. 
This mode of operation is fast but requires 
some prior knowledge of SCF syntax to prop­
erly enter the command. 

The HELP command menu mode of oper­
ation is entered by typing the command, 
HELP. The user is then prompted with the 
appropriate options, and stays in the menu 
mode as long as desired. This option is a 
slower way of getting information but requires 
little knowledge of SCF syntax. The menu 
mode feature cannot be invoked from OBEY 
or custom files. An SCF custom file is a per­
sonal OBEY file containing commands to be 
executed at the beginning of each SCF session. 

Error messages from SCF are generally only 
one line long, which may not be detailed 
enough for novice users. For additional infor­
mation, the user can consult the SCF manual, 
which includes a detailed explanation and 
recommended action for each error message; 
or by issuing the command, DETAIL ERROR 
ON, additional information will be displayed 
on the screen following all error messages. 
Figure 4 gives an example of a detailed error 
message. 

Errors and warnings are always displayed, 
but by default, SCF does not report the results 
of successful non-informational commands 
(e.g., START, ASSUME). For experienced users 
this may be adequate, but for inexperienced 
users the results of some commands may not 
be so obvious. SCF can be configured to dis­
play command results for both error and nor­
mal cases. This option is enabled with the 
command, CONFIRM ON. Figure 5 gives an 
example of a confirmation message. 

To save the user from repetitive typing, SCF 
has a feature called aliasing. Aliases are com­
mands or parts of commands that can be rep­
resented by a single keyword. Aliases are 
defined by the ALIAS command and can 
appear either at the beginning of a command 
line or anywhere in the command line. If they 
do not appear at the beginning of a command, 
they must be preceded by a hyphen(-). The 
alias name is expanded to the value of the alias 
prior to command execution. Recursive defini­
tions of aliases are not allowed. Function keys 
are implemented as aliases Fl through F15 and 
SFl through SF15 {F16 and SF16 are reserved 
for the help key and exiting SCF, respectively). 
Figure 6 gives an example of the ALIAS 
command. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Finally, SCF allows key words to be abbre­
viated to the least number of characters 
needed for recognition. Any unique abbrevia­
tion of a word is acceptable (e.g., SETP and 
SETPRO are both valid abbreviations for the 
command SETPROMPT). This implementation 
is the same as the command abbreviations 
allowed in the text editor program PS TEXT 
EDIT™ {TEDIT). The only difference is that 
SCF_ allows abbreviations for all key words, 
not Just commands. Key words contained in 
OBEY files and alias names cannot be abbrevi­
ated. The alias name restriction is to avoid the 
confusion of a dynamically changing set of 
valid abbreviations, while the OBEY file 
restriction is to ensure OBEY file compatibility 
in the event that new key words are added in 
future releases. 

Human Interface Performance 
Most command interpreters are concerned 
with two types of performance: response time 
and throughput. Response time is the amount 
of time between the entered command and 
completed response, and throughput is the 
number of commands per unit of time that 
can be completed. Response time is important 
when a user is interacting directly with the 
command interpreter, while throughput is 
most important when commands are processed 
from an OBEY file. 

Startup time (the time from entering the 
program name to the time a prompt is issued), 
and thus response time, were optimized by 
accessing SCP only when it is needed. 
Throughput was optimized for OBEY file exe­
cution by using buffered edit file input and 
output, by providing a "no echo" option that 
suppresses the echo of the input file to the 
terminal, and by suppressing updates to the 
history buffer. 

Conclusion 
The implementations of SCP and SCF show 
that SPI is a good basis for network manage­
ment products supporting large numbers of 
subsystems. Important programmatic inter­
face goals, such as consistency, simplicity, and 
reliability, as well as human interface goals, 
such as maintainability, compatibility, and 
user friendliness, were all satisfactorily 
accomplished. 

The case study of SCP and SCF not only 
highlights issues but also describes solutions, 
such as imposing additional programmatic 
and human interface standards, introducing a 
single subsystem control point {SCP), and a 
product module approach to the human inter­
face (SCF). These issues and solutions apply to 
all implementations of programmatic and 
human interfaces where a large number of 
subsystems must be supported. 

Tom Lawson received his education at California State Univer­
sity, Chico. He joined Tandem in 1984 as a network management 
software designer, has continued to work in the area of network 
management applications, and is currently the lead designer of 
SCF. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 81 



82 

Using Subsystem Programmatic 
Interface and Event 
Management Services 

=~~iii= ubsystem Programmatic Inter­
face (SPI) is more conducive to 
automatically handling a diver­
sity of systems and languages 
because the interface is pro­
grammatic rather than textual. 
Programmatic interfaces, how­

ever, are unfamiliar to many users and may 
appear more difficult to use than textual inter­
faces. This article tells the reader how to learn 
more about SPI and Event Management Ser­
vice (EMS) and discusses some common issues, 
such as intrepeting numbers as named values 
and following semantic conventions, that arise 
when users debug an SPI program. 

Before reading this article, the reader should 
be familiar with the information in Introduc­
tion to Distributed Systems Management 
(DSM). 

Methods of Learning SPI and EMS 
The best way to become familiar with SPI and 
EMS is to attend a Tandem Education class 
and read the examples in the associated man­
uals. The manuals include the following types 
of examples: 

■ Distributed Name Service (DNS™) Manual 
gives essentially parallel examples for using 
SPI programmatically in COBOL, TAL, and 
TACL languages. Studying the DNS example 
gives insight into the ways in which the various 
languages deal with SPI. 

■ DNS Manual and PATHWAY'M Management 
Programming Manual, Volume 2 give sample 
COBOL implementations. 
■ Event Management Service (EMS) Manual 
gives TAL and TACL examples for using SPI to 
communicate with a consumer distributor. 
■ X25AM Management Programming Manual, 
FOX™ Management Programming Manual, 
and EXPAND™ Management Programming 
Manual have complete TAL programs. 

Because all of Tandem's implementations of 
SPI obey a standard, studying any of them 
will give general knowledge that can be used 
in dealing with any specific subsystem. The 
EMS Manual and the EXPAND Management 
Programming Manual interrelate, giving the 
reader an example of a management applica­
tion for an EXPAND line. 

Beyond reading the manuals and studying 
examples, users can write programs and exper­
iment. Regardless of the language chosen, it is 
useful to set up a common framework (which 
allows easy modifications and additions) to 
study a prototype implementation of a DSM 
program. TACL can be used to interactively 
experiment with SPI, while the other languages 
require iterative edit, compile, and execute 
cycles. 

Debugging SPI Programs 
SPI introduces three major new features. SPI 
at its most basic level is a set of procedures for 
manipulating buffers, where the user estab­
lishes a set of token codes to describe the data 
in buffers. A second feature is the use of 
named values for variables that can take on 
only a small, fixed set of values; there are 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



named values for token numbers, commands, 
object types, event numbers, and other well­
defined SPI entities. Finally, SPI requires a set 
of semantic conventions on the look and struc­
ture of requests, replies, and events by which 
all subsystems must abide. Tandem has pro­
vided the SPI procedures, named values for its 
subsystems, and a description of the conven­
tions in its manuals. 

The ability to interpret numbers as named 
values in a debugging environment presents 
new challenges. Mistakes made in following 
the semantic conventions also need to be 
found and then understood in the debugging 
environment. The remainder of this article 
gives examples of these two new aspects of 
debugging SPI programs. 

Numbering Conventions 
While creating an SPI program, the program­
mer uses many named values. In the debug­
ging environment, these values, in their raw 
form, are numbers. During the debugging pro­
cess, a programmer will frequently need to 
translate the numbers back into names to 
establish their meaning. 

Several conventions must be understood to 
easily and correctly map a number back to its 
name. First, the owner of the value must be 
established. Usually, the owner of the value is 
the Subsystem Identifier (SSID) owning the 
token. Several shared values, however, may 
also appear as being owned by a particular 
subsystem when they are defined in common. 

Commonly defined tokens may take their 
value either from the defining subsystem or 
from the subsystem that owns the buffer or 
token. For example, ZSPI defines the values 
for ZSPI-TKN-HDRTYPE, while the values of 
ZSPI-TKN-COMMAND are defined individu­
ally by the subsystems. 

The general rule for token codes is that 
those with negative token numbers are com­
monly defined and those with positive token 
numbers are subsystem-specific. Currently, 
only ZSPI and ZEMS provide common nega­
tive token numbers. The Subsystem Control 
Process (SCP) common interface further 
reserves token numbers 4096 through 9999 for 
the ZCOM prefix. 

The SCP common interface also defines 
several more conventions than provided by the 
more basic SPI conventions. 

Figure 1 

Summary for SCP common interfaces 

Name in 
Value type 
Token number 
Command number 
Object type number 
Event number 
Error number 

XXXXddl 

1 -4999 

0-9999 
0-9999 

zCOMddl 

4096-9999 
0 - 8191 
0-4095 

-1--9999 
-1 - -9999 

Summary for non-SCP common interfaces 

zSPlddl 

0 - -512 

zEMSddl 

-513 - -530 

Name in 
Value type 
Token number 
Command number 
Object type number 
Event number 

XXXXddl 

1 -9999 
-9999-9999 

zSPlddl 

0 - -512 

zEMSddl 

-513 - -530 

-9999-9999 
-9999-9999 

Error number -9999-9999 

SCP /Non-SCP Comparisons 
ZCOM enumerates values for commands, 
object types, some tokens, some events, some 
common errors, and other token values with 
identifiable common characteristics across 
subsystems. For subsystems not requiring the 
SCP, the enumerated values are unique to the 
subsystem. Thus, ZGDS and ZLAN share the 
ZCOM command numbers, while ZEMS and 
ZPWY have individually defined their own 
ZEMS and ZPWY command numbers. 

Subsystems using SCP must abide by con­
straints on commands, object types, token 
numbers, error numbers, and event numbers. 
All commands (ZSPI-TKN-COMMAND, 
ZCOM-CMD-xxx) and object types (ZSPI­
TKN-OBJECT-TYPE, ZCOM-OBJ-xxx) are 
defined by ZCOM rather than the qualifying 
subsystem. The same holds true for negative 
error numbers (ZSPI-TKN-RETCODE, ZCOM­
ERR-xxx) and negative event numbers (ZEMS­
TKN-EVENTNUMBER, ZCOM-EVT-xxx). 

The summary for SCP common interfaces 
and for non-SCP common interfaces is shown 
in Figure 1. 

Figure 1. 

Summary for SCP and 
non-SCP common 
interfaces. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 83 



Figure 2 

?SYMBOLS, INSPECT, NOLIST, NOMAP, NOCODE 

?NOLIST, SOURCE zspital 
?LIST 
?NOLIST, SOURCE zcomtal 
?LIST 
?NOLIST, SOURCE zscptal 
?LIST 

STRUCT .spibuf( ZSCP"DDL "MSG"BUFFER"DEF ); 
STRUCT .zscp"val"ssid( ZSCP"VAL "SSID"DEF ); 

?NOLIST, SOURCE extdecs( INITIALIZER, DEBUG, STOP 
? , SSINIT, SSPUTTKN, SSNULL, SSPUT, SSGETTKN 
? , OPEN, WRITEREAD, CLOSE) 
?LIST 
?PAGE 

PROC spi"demo MAIN; -- Perform STATUS on SCP. 
BEGIN 

INT scp; 
INT /en; 
INT status; 
INT retcode; 

-- File number of scp. 
-- Number of bytes written and read. 
-- Status of SS call. 
-- Return code from server. 

zscp"val"ssid ': =' [ ZSPl"VAL "TANDEM, ZSPl"SSN"ZSCP, ZSCP"VAL "VERSION]; 
CALL INITIALIZER; 

spibuf ': =' "$ZNET #ZSPI "; 
CALL OPEN( spibuf, scp ); 
IF<> THEN CALL DEBUG; 

-- Default name. 

IF status:= SSINIT( spibuf, ZCOM"VAL "BUFLEN, ZSCP"VAL "SSID, ZSPl"VAL "CMDHDR, 
ZCOM"CMD"STATUS, ZCOM"OBJ"PROCESS) 

THEN CALL DEBUG; 

IF status:= SSGETTKN( spibuf, ZSPl"TKN"USEDLEN, /en) 
THEN CALL DEBUG; 

CALL WRITEREAD( scp, spibuf, /en, ZCOM"VAL "BUFLEN, /en); 
IF <>THEN CALL DEBUG; 

/en:= ZCOM"VAL "BUFLEN; -- TAL requires variable for parameter 
IF status:= SSPUTTKN( spibuf, ZSPl"TKN"RESET"BUFFER, Jen) 

THEN CALL DEBUG; 

IF status:= SSGETTKN( spibuf, ZSPl"TKN"RETCODE, retcode) 
THEN CALL DEBUG; 

IF retcode < >ZSPl"ERR"OK THEN CALL DEBUG; 

CALL CLOSE( scp ); 
CALL STOP; 

END; -- spi"demo 

Figure 2. 

The TAL program getting 
STATUS of Subsystem 
Control Process (SCP). 

Throughout the Distributed Systems Man­
agement (DSM) Programming Manual and the 
Communications Manager Programming Man­
ual there are many semantic conventions. An 
example is the usage of ZSPI-TKN-RETCODE. 
The manual states that this token must be 
present in each response, and also that the 
value O means no errors have occurred. Mis­
takes that are commonly made when the 
semantic conventions are not followed are 
discussed later in this article. 

Using the ClO Release Version of INSPECT 
INSPECT, version ClO, is the principal method 
for debugging SPI interfaces. An SPI buffer 
has an internal format that the user normally 
does not have to understand. If, however, the 
programmer uses DEBUG or earlier versions of 
INSPECT (before ClO), there is no support for 
decoding an SPI buffer, and the user will have 
to manually decode the buffer (which assumes 
some knowledge of SPI internals). 

The INSPECT Manual (with ClO update) 
presents the syntax of the new commands 
related to SPI. This article describes how to 
use these commands while debugging typical 
problems. Figure 2 shows a simple SPI pro­
gram to get status information from the Sub­
system Control Process (SCP). 

INSPECT, version ClO, supports a general 
method for displaying SPI buffers or individ­
ual tokens. Figure 3 shows a debugging ses­
sion with the program resulting from the 
source in Figure 2. 

In the debugging session, a display of the 
source code surrounding the CALL to DEBUG 
that caused INSPECT to appear is shown. 
There is an asterisk on line 60, which is the 
code immediately following the CALL 
DEBUG. A basic display of the RETCODE, 
which is tested in the IF statement, is made 
followed by a dump of the SPI buffer. 
INSPECT first displays the command/response 
buffer header tokens (all of the ZSPI"TKN" 
items) followed by the tokens in the buffer. 
The buffer tokens are displayed with their 
SSID (e.g., TANDEM.SCP.CW), followed by 
their token code as a triplet of numbers (token 
data type, length, and number), followed by 
the token value. 

84 TANDEM SYSTEMS REVIEW OCTOBER 1988 



Notice in the list of tokens codes in Figure 3 
that the current SPI position (indicated by *) 
points to token code 11,2,0. Token number 0, 
according to the chart shown in Figure 1, 
should be looked up in zSPiddl where the 
name ZSPI-TNM-RETCODE is found. SSGET 
left the buffer positioned to the RETCODE 
token (type= 11, length= 2, number= 0). 

ZSPI-TKN-RETCODE contains an error 
number, which in this case is negative. SCP 
negative error numbers are defined in 
zCOMddl. If looking up -29 as ZCOM-ERR­
TKN-REQ in the zCOMddl file is not sufficient 
to indicate or describe the error, refer to the 
Communications Management Programming 
Manual for further details. This manual con­
tains the definition of the error ZCOM-ERR­
TKN-REQ ("a command request was issued in 
which a required token is missing") and a 
description of other tokens present in the error 
list. 

To determine which token is missing, the 
token ZSPI-TKN-PARM-ERR must be located 
in the error list. This can be done by finding 
the token number (TNM) value of ZSPI-TNM­
PARM-ERR as -250 in the zSPiddl file. The 
value of ZSPI-TKN-PARM-ERR is a struct 
called ZSPI-DDL-PARM-ERR that has a token 
code as its first element. The INSPECT output 
line of relevance is: 

TANDEM.SCP.0 (7,8,-250) 
= ?25" "?255 ?13 ?0 ?1 ?0 ?0 

INSPECT shows the values for 7,8,-250 as a 
list of bytes since its token type (7) is a struct 
of unknown attributes to INSPECT. The first 
byte of the token code field is the token data 
type and the second byte is the token data 
length. The third and fourth bytes (?255 ? 13) 
give the token number of the missing token. 
The token number to look for is -243 (255 x 
256 + 13 - 65536). 

Alternatively, as shown at the end of 
Figure 3, INSPECT can be used to present the 
value of PARM-ERR in a more meaningful 
manner using the DISPLAY command to show 
an individual token as reproduced below: 

-SPIDEMO-DISPLAY spibuf :zspi "tkn "parm "'err 
POSITION zspi "tkn "'errlist 
AS zspi "'ddl "parm "'err"'def 

Figure 3 

13>RUN spidemo 
INSPECT - SYMBOLIC DEBUGGER - T9673C00 - (15JUL87) SYSTEM \COMM 
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1984, 1985, 1986, 1987 
INSPECT P = 000166, E = 000227 
*116,01,088* SPIDEMO #SPl"DEMO + %1631 SPIDEMOS 
-SPIDEMO-SOURCE 

56 IF status:= SSGETTKN( spibuf, ZSPl"TKN"RETCODE, retcode) 
57 THEN CALL DEBUG; 
58 IF retcode < >ZSPl"ERR"OK THEN CALL DEBUG; 
59 
60 CALL CLOSE( scp ); 
61 CALL STOP; 
62 END; -- spi"demo 

-SPIDEMO-DISPLAY retcode 
RETCODE = -29 

-SPIDEMO-D spibuf TYPE SPI-NUM 
ZSPl"TKN"HDRTYPE = 0 (ZSPl"VAL "CMDHDR) 
ZSPl"TKN"CHECKSUM = 0 
ZSPl"TKN"COMMAND = 8 
ZSPl"TKN"LASTERR = -8 (ZSPl"ERR"MISTKN) - Token not found 
ZSPl"TKN"LASTERRCODE = 620822276 (37,0,-252) 
ZSPl"TKN"MAX"FIELD"VERSION = 0 
ZSPl"TKN"MAXRESP = 0 
ZSPl"TKN"OBJECT"TYPE = 17 
ZSPl"TKN"SERVER"VERSION = 17162 C10 
ZSPl"TKN"SSID = TANDEM.25.C10 
ZSPl"TKN"USEDLEN = 138 
BUFFER LENGTH = 900 

TANDEM.SCP.C10 (11,2,9988) = 17 
TANDEM.SCP.C10 (1,255,9990)- LENGTH 5 = "$ZNET" 
TANDEM.SCP.C10 *(11,2,0) = -29 
TANDEM.SCP.C10 (37,0,-252)- ERROR LIST 
TANDEM.SCP.0 (11,2,9988) = 17 
TANDEM.SCP.0 (1,255,9990) - LENGTH 5 = "$ZNET" 
TANDEM.SCP.0 (28,14,-251) = TANDEM.SCP.C10-29 
TANDEM.SCP.0 (7,8,-250) = ?25"" ?255 ?13 ?0 ?1 ?0 ?0 
TANDEM.SCP.a (39,0,-254) - END LIST 
-SPIDEMO-D spibut:zspi"tkn"parm"err POSITION zspi"tkn"errlist 

AS zspi"ddl "parm "err"def 
ZSPl"DDL "PARM"ERR"DEF = 

Z"TOKENCODE = 
Z"TKN = 

Z"DATATYPE = ?25 
Z"BYTELEN = " " 
Z"NUMBER = -243 

Z"INDEX= 1 
Z"OFFSET = 0 

-SPIDEMO-

Figure 3. 

INSPECT, version CJO, 
displaying an SP/ buffer 
from SP/DEMO 
program. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 85 



86 

The use of the POSITION option allows 
access to tokens inside the error list to find the 
PARM"ERR token. The AS option tells 
INSPECT how to display the structure instead 
of its default of a list of bytes as shown previ­
ously. The relevant item displayed is the token 
number: 

Z"NUMBER = -243 

Since the token number is in the range -1 to 
-512, -243 can be found in the file ZSPIDDL 
with the name ZSPI-TNM-MANAGER. The 
error list thus reveals that the source of the 
error is that the ZSPI-TKN-MANAGER token 
was not provided. A semantic convention is 
that all subsystems using ZCOM values require 
either ZSPI-TKN-MANAGER or ZCOM-TKN­
OBJNAME to be present in all requests. The 
program in Figure 2 violated this and, as a 
result, got an error. 

If the code 

STRING .objname 
[0:ZCOM .... VAL .... OBJNAME .... LEN + 1 ]; 
-- object name 

is added in the variable declarations (OBJ­
NAME"LEN plus 2 bytes to hold the length), 
and if the code 

objname ': =' [ 0, 5, "$ZNET" ]; 
-- 2 byte length and name 

IF status 
: = SSPUTTKN( spibuf 

, ZCOM~KNAoBJNAME , objname) 
THEN CALL DEBUG; 

were added after the call to SSINIT, the pro­
gram will then run to completion without 
error. 

Typical SPI and EMS Mistakes 
To use SPI and EMS, the many guidelines doc­
umented in the manuals must be properly 
implemented. Failure to follow a guideline 
may result in difficulties determining the cause 
of problems. 

Initializing Subsystem SSIDs. An SSID must 
be explicitly initialized in both TAL and 
TACL. DDL (Data Definition Language) does 
not generate files for those languages that pro­
vide the initialization as specified by the 
VALUE clause in DDL. If the SSID definitions 
that are provided in the xxxxCOB files are not 
used, COBOL programs will only see uninitial­
ized SSIDs. If the SSID is not initialized, error 
-5, missing parameter, is returned from 
SSINIT. One may wonder what is missing from 
the SSINIT call since all the correct parameters 
were supplied. The SSID parameter is consid­
ered missing if its value is 0. Typically, if the 
SSID is not initialized, its value will be O and 
will be considered missing by SSINIT. 

SSGET Index 1. Another common mistake is 
to forget to specify the INDEX parameter to 
SSGET. It is common practice to supply an 
INDEX of 1 with each call to SSGET. This is 
because the order in which tokens will occur in 
the reply buffer is never guaranteed, yet 
SSGET with INDEX O (the default) implies that 
the token expected is after the current one. So, 
if error -8, missing token, is returned from 
SSGET, make sure INDEX I is being used. 

Qualify Tokens with the Correct Subsystem. 
Associated with all token codes is an implicit 
(the default) or explicit subsystem identifier. 
The semantic convention for command buffers 
is that all the tokens in the request should be 
qualified by the subsystem specified in the 
header. Similarly, all tokens in a response 
buffer, with the exception of error lists, should 
be qualified by the subsystem specified in the 
header. However, event buffers may freely use 
tokens from other subsystems. 

With event buffers, it is easy to forget that 
the name of a token, such as ZEMS-TKN­
TEXT, means nothing to EMSADDTOKENS 
(or EMSGET) without specifying the subsys­
tem that the token is qualified by. The proce­
dures see only a number like 33685518. From 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



the number, the procedures have no way of 
knowing if the number represents ZPWY-TKN­
DEVICESUBTYPE or ZEXP-TKN-LH-ERR­
NUM since they both have that value. The 
procedures must be explicitly told what sub­
system qualifies a token. 

The current guidelines on token qualifica­
tion for COO are: 

■ ZSPI. All ZSPI tokens should be PUT/GET 
without qualification, with the occasional 
exception of ZSPI-TKN-ERRLIST. When ZSPI­
TKN-ERRLIST is qualified by an SSID other 
than the default, it is called a foreign error list. 

■ ZCOM. All ZCOM tokens are implicitly 
qualified by the subsystem using them. 

■ ZEMS. ZEMS tokens, with negative token 
numbers (common tokens) should not be qual­
ified, but ZEMS must be the qualifier of all 
ZEMS tokens with non-negative token num­
bers (subsystem-specific). 

Most negative token numbers are header 
tokens for which qualification is ignored. The 
following are buffer tokens qualified by the 
default SSID: 

ZEMS-TKN-LDEVNAME 
ZEMS-TKN-SUBJECT 

All positive tokens must be qualified by ZEMS 
regardless of the default SSID to be regarded 
as EMS tokens. The following tokens are typi­
cally used in event buffers and require ZEMS 
qualification: 

ZEMS-TKN-TEXT 
ZEMS-TKN-ACTION-ID 
ZEMS-TKN-ACTION-NEEDED 
ZEMS-TKN-CU 
ZEMS-TKN-LDEV 

Qualify ZEMS-TKN-TEXT by ZEMS. If an 
EMS buffer is initialized with a non-ZEMS 
SSID (such as XOUR-VAL-SSID) and ZEMS­
TKN-TEXT is added via EMSADDTOKENS, 
the event will never be printed with the text. 
Only ZEMS-TKN-TEXT tokens qualified by 
ZEMS are printed. If the text of the event is to 
be printed, ZEMS-VAL-SSID (previously ini­
tialized) must be specified along with ZEMS­
TKN-TEXT on a EMSADDTOKENS call. 

Testing Software Using SPI and EMS 
Since SPI and EMS rely on semantic conven­
tions, it is imperative that programs using 
them be tested for conformance to the conven­
tions. Without specific attention, the common 
errors discussed above can easily slip through 
the debugging phase. 

The EMSADDTOKENS procedure treats a 
zero-value SSID as an unspecified parameter. 
Since an uninitialized SSID is typically O, 
EMSADDTOKENS will ignore the SSID and 
use the default SSID. Thus, when testing that a 
subsystem builds its events correctly, the 
owner of each token should be verified. 

The semantic convention of order indepen­
dence of tokens should be verified. When test­
ing a server, the same request with tokens in 
different orders should be sent to the server. 
When testing a requester, a dummy server that 
mixes the order of returned tokens should be 
used. If each token is the first token during 
some request or reply, it is unlikely the server 
has dependencies on token ordering. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 87 



Figure 4 

FILTER check-emphasis; 
-- Returns PASS O if XOUR event has expected emphasis. 

BEGIN 

PASS 1 if XOUR event was emphasized when 
it should not have been emphasized. 

PASS 2 if XOUR event was not emphasized when 
it should have been. 

IF ZSPl"TKN"SSID < >SSID( xour"val"ssid) THEN FAIL; 
IF ZEMS"TKN"EMPHASIS = 0 THEN 

ELSE 

END; 

IF ZEMS"TKN"EVENTNUMBER = [xour"evt"notemph"1] 
OR ZEMS"TKN"EVENTNUMBER = [xour"evt"notemph"2] 

--OR ... 
OR ZEMS"TKN"EVENTNUMBER = [xour"evt"notemph"N] 
THEN PASS O ELSE PASS 1; 

IF ZEMS"TKN"EVENTNUMBER = [xour"evt"emph"1] 
OR ZEMS"TKN"EVENTNUMBER = [xour"evt"emph"2] 

--OR ... 
OR ZEMS"TKN"EVENTNUMBER = [xour"evt"emph"N] 
THEN PASS O ELSE PASS 2; 

Figure 5 

FILTER checkemsevents; 
-- Returns PASS O if event has expected tokens. 

Figure 4. 

PASS 1 if event is missing tokens. 
BEGIN 

IF ZSPl"TKN"SSID < >SSID( zems"val"ssid) THEN FAIL; 
IF ZEMS"TKN"EVENTNUMBER = [ZEMS"EVT"FILESWITCH]THEN 

BEGIN 
IF ZEMS"TKN"SUBJECT = [ZEMS"TKN"COLLECTOR] 
AND TOKEN PRESENT( ZEMS"TKN"COLLECTOR) 
AND TOKENPRESENT( ZEMS"TKN"LOGSWITCHREASON) 
AND TOKEN PRESENT( ZEMS"TKN"LASTLOGFILE) 
AND TOKENPRESENT( ZEMS"TKN"NEWLOGFILE) 
AND TOKEN PRESENT( ZEMS"MAP"COL "STATUS) 
THEN PASS O ELSE PASS 1; 
END; 

IF ZEMS"TKN"EVENTNUMBER = [ZEMS"EVT"FILE"ROTATE"PURGE]THEN 
BEGIN 
IF ZEMS"TKN"SUBJECT = [ZEMS"TKN"COLLECTOR) 
AND TOKEN PRESENT( ZEMS"TKN"COLLECTOR) 
AND TOKEN PRESENT( ZEMS"TKN "PURGEDLOGFILE) 
THEN PASS O ELSE PASS 1; 
END; 

--IF ... 
END; 

EMS filter checking for 
EMPHASIS of user 
subsystem events. 

When a new subsystem server is being 
tested, the first tests can be made without 
knowing anything about the specifics of its 
SPI implementation. The semantic conven­
tions require that all subsystems support com­
mand number O as the GETVERSION 
command. Furthermore, servers are required 

Figure 5. 

EMF filter verifying 
presence of tokens in 
EMS subsystem events. 

to properly respond to various values of MAX­
RESPONSE. Thus, three different GETVER­
SION requests with MAXRESPONSE 0, 1, and 
-1 can be sent to the server. The first should 
return a RETCODE not in a data list, while the 
other two should enclose the response in a data 
list. Similarly, it can be tested if a subsystem 
detects illegal tokens, subsystem ID, or object 
type using a GETVERSION command. 

Using EMS Distributors and Filters to Test 
EMS Events 
With an EMS filter, a fast check for the pres­
ence of all tokens expected in an event can be 
made. If the contents of those tokens are con­
stant, the token values are easy to verify. It is 
possible to specify the expected values for 
tokens with varying values. 

Starting with a simple case, suppose one 
wanted to make sure that the EMPHASIS 
token was correctly set for each event gener­
ated. The filter in Figure 4 could be created. 

An application similar to the one given in 
Appendix C of the EMS manual can now use a 
consumer distributor to filter events. If the 
PASS value was not 0, it would print the event 
number of the offending event and what 
emphasis was expected. 

The VIEWPOINT™ Alternate Events screen 
can also be configured to use the filter. Events 
with missing emphasis will show up as 
ACTION events (pass value 1) and events with­
out emphasis will show up as CRITICAL 
events (pass value 2). VIEWPOINT will add up 
the number of unacceptable events. 

More powerful filters can be written to ver­
ify that events contain all expected tokens. 
For example, if it was desired to check all the 
documented tokens were present for EMS 
events, the filter shown in Figure 5 could be 
used. The filter can be compiled with the 
statements shown below: 

#PUSH list 
#LOAD/LOADED list/ ZSPIDEF.ZSPI 
#LOAD/LOADED list/ ZSPIDEF.ZEMS 
EMF /IN emsf s/ emsfo 

Note that ZEMS "TKN "SUBJECT is a 
derived token whose value is the token follow­
ing the ZEMS"TKN"SUBJECTMARK. Thus, 
using ZEMS"TKN"SUBJECT not only ensures 
that there is a SUBJECTMARK but also that it 
is in the correct place (i.e., preceding the sub­
ject of the event). 

88 TANDEM SYSTEMS REVIEW OCTOBER 1988 



SUBJECTMARK is the only positional token 
defined in Tandem SPI and EMS interfaces. 
Note that the order of locating tokens is 
immaterial. For instance, LOGSWITCH­
REASON is retrieved near the beginning of the 
filter source even though in COO it actually 
occurs at the end of the buffer. 

VIEWPOINT can be used again as the appli­
cation that deals with this filter. ACTION 
events would be those with missing tokens. 

A more complex filter to test an event 
would verify not only that the tokens are 
present, but also that they have the correct 
values. To check for the actual token values, a 
parameterized filter is needed so that the 
expected values for tokens that don't have 
fixed values can be dynamically specified. 
Figure 6 shows the start of such a parameter­
ized filter for the EMS events given in 
Figure 5. 

It will probably be easier to write custom 
application code to test for token values than 
to create a customized filter as shown in 
Figure 6. With the parameterized filter, the 
application must create DDL for the parameter 
tokens and then add the parameter tokens and 
their values to a CONTROL command to the 
distributor. The verification of token values 
could be broken up between filter and applica­
tion. A filter more powerful than that shown 
in Figure 5, but without the parameters of the 
filter in Figure 6, could test that all expected 
tokens are present and those with fixed values, 
such as CONSOLE-PRINT and EMPHASIS, 
have the correct values. 

Conclusion 
This article has shown that with the advent of 
the new SPI and EMS technology, new debug­
ging and testing techniques have become nec­
essary. INSPECT has been enhanced in release 
ClO to provide some of the new techniques. 
Knowing how to translate numbers back into 
names in the debugging environment is neces­
sary to understand problems that arise. Prob­
lems most frequently are caused by failure to 
follow semantic conventions. Because of the 
semantic conventions, testing takes on 
increased importance. EMS filters are a tool 
that can help test EMS events. 

Figure 6 

FILTER check_ems_events( 
SSID( test"val"ssid, P514"TKN"LOGSWITCHREASON ), 
SSID( test"val"ssid, P514"TKN"LASTLOGFILE ), 
SSID( test"val"ssid, P514"TKN"NEWLOGFILE ), 
SSID( test"val"ssid, P514"MAP"COL "STATUS), 
SSID( test"val"ssid, P520"TKN"PURGEDLOGFILE )); 

-- Returns PASS O if event has expected tokens. 
PASS 1 if event is missing tokens. 

BEGIN 
IF ZSPl"TKN"SSID < >SSID( zems"val"ssid) THEN FAIL; 
IF ZEMS"TKN"EVENTNUMBER = [ZEMS"EVT"FILESWITCH]THEN 

BEGIN 
IF ZEMS"TKN"SUBJECT 
AND ZEMS"TKN"CONSOLE"PRINT 
AND ZEMS"TKN"EMPHASIS 
AND ZEMS"TKN"COLLECTOR 
AND 
ZEMS"TKN"LOGSWITCHREASON 
AND ZEMS"TKN"LASTLOGFILE 
AND ZEMS"TKN"NEWLOGFILE 
AND ZEMS"MAP"COL "STATUS 
THEN PASS O ELSE PASS 1; 
END; 

= [ZEMS"TKN"COLLECTOR] 
< >0 --TRUE 
< >0--TRUE 
= [ZEMS"SUBJ"PCOLL] 

= P514"TKN"LOGSWITCHREASON 
= P514"TKN"LASTLOGFILE 
= P514"TKN"NEWLOGFILE 
= P514"MAP"COL "STATUS 

IF zems"tkn"eventnumber = [ZEMS"EVT"FILE"ROTATE"PURGE]THEN 
BEGIN 
IF ZEMS"TKN"SUBJECT 
AND ZEMS"TKN"CONSOLE"PRINT 
AND ZEMS"TKN"EMPHASIS 

= [ZEMS"TKN"COLLECTOR] 
< >0--TRUE 
< >0 --TRUE 

AND ZEMS"TKN"COLLECTOR = [ZEMS"SUBJ"PCOLL] 
AND ZEMS"TKN"PURGEDLOGFILE 
THEN PASS O ELSE PASS 1; 

= P520"TKN"PURGEDLOGFILE 

END; 
--IF ... 

END; 

References 
Communications Management Programming Manual. Part no. 
84110. Tandem Computers Incorporated. 

INSPECT Manual. Part no. 84149. With Update 1. Part no. 
11160. Tandem Computers Incorporated. 

Distributed Name Service (DNS) Manual. Part no. 84093. 
Tandem Computers Incorporated. 

Distributed Systems Management (DSM) Programming Man­
ual. Part no. 82587. Tandem Computers Incorporated. 

PATHWAY Management Programming Manual, Volume 2. Part 
no. 84113. Tandem Computers Incorporated. 

Event Management System (EMS) Manual. Part no. 84092. 
Tandem Computers Incorporated. 

EXPAND Management Programming Manual. Part no. 84109. 
Tandem Computers Incorporated. 

FOX Management Programming Manual. Part no. 84136. 
Tandem Computers Incorporated. 

Introduction to Distributed Systems Management (DSM). Part 
no. 84091. Tandem Computers Incorporated. 

X25AM Management Programming Manual. Part no. 84135. 
Tandem Computers Incorporated. 

Keith Stobie joined Tandem in 1979 and was the lead QA person 
for the DSM project with specific responsibility for the EMS 
Collector. Previously he worked on testing TMF and TRANSFER 
and was an original member of the Gremlin group. 

Figure 6. 

EMS Jilter verifying 
values of tokens 
in EMS subsystem events. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 89 



90 

~stimating Host Response Time 
1n a Tandem System 

----- he definition of response 
time depends upon who is 
using the term. Most often 

' user response time is meant. 
In essence, user response 
time is the time between key­
board lock and keyboard 

unlock (i.e., the time spent sending the request 
to the computer, the time the computer spent 
processing the request, and the time spent 
sending the response back to the user's termi­
nal). User response time is also referred to as 
network response time. The time the computer 
system spends processing the request is 
referred to as the host response time. This 
article addresses estimating the host response 
time within a Tandem system. 

The article begins with a discussion of the 
mathematical theory required to understand 
the analytical modeling of host response time. 
It then describes the impact different disk con­
figurations have on response time and how 
this is incorporated into an analytical model. 
The article concludes with an example of how 
an analytical model of response time is built 
with a comparison between the estimated ' 
response time from the model and the actual 
measured response time. 

Analytical Modeling of 
Response Time 
Ideally, if a transaction is the only work in the 
system, the host response time would be equal 
to the time required to service that transac­
tion. The transaction would not be competing 
with other work for resources and, therefore, 
~ould not incur any delays waiting for a par­
ticular resource to free up. In an on-line sys­
tem, multiple transactions are being entered at 
any given time. These transactions are compet­
ing for resources such as the CPU, the device 
controllers, and the actual devices. Sometimes 
a transaction is forced to wait for a resource 
to become free and a queue forms for that 
resource. 

Queueing theory is the field of mathematics 
that studies the behavior of waiting lines. 
Much work has been done modeling computer 
systems as sets of waiting lines. Buzen and 
Denning (1978) used the foundations of queue­
ing theory to derive the techniques of model­
ing computer systems known as Operational 
Analysis. Operational Analysis is based on the 
fact that, in a given measured interval certain 
operational laws hold true on the relationships 
between measured quantities irrespective of 
the statistical characteristics of the data (ACM 
Computing Surveys, 1978). 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Five quantities define a queueing system: 

1. Distribution of time between customer 
arrivals. (In a computer system, a transac­
tion is viewed as the customer.) 

2. Statistical distribution of service time. 

3. Number of servers available. 

4. Maximum capacity within the queue. 

5. Selection criteria for the next customer to 
be serviced. 

David Kendall's method of notation has 
become the standard for describing a queueing 
system. A queueing system is represented as 
1/2/3/4/5 where the numbers are associated 
with the above list. For the two statistical dis­
tributions (numbers 1 and 2), standard con­
ventions are used (Allen, 1978): 

M - exponential distribution 
E - Erlang-K distribution 
D - deterministic (constant) 

.(etc.) 

If the last two positions are not present, 
they take on the defaults of an infinite size 
queue and a first come/first served (FCFS) 
queue discipline, respectively. 

For example, a queue described as MIMl3 
means that the interarrival time of transac­
tions is exponentially distributed; the service 
time is exponentially distributed; there are 
three servers; the queue is infinite in potential 
size; and the arrivals are serviced on a FCFS 
basis. 

Transactions in an on-line transaction pro­
cessing (OLTP) system arrive randomly. 
Because of its pleasant mathematical proper­
ties, the exponential pattern is most com­
monly assumed for queueing theory models. 
The service time pattern of these arrivals are 
often described by the exponential distribution 
as well. This is because of "the Markov or 
memoryless property of the exponential distri­
bution which allows the model to imply that 
the amount of time remaining to complete a 
customer's (i.e., a transaction's) service is 
independent of the service time already pro­
vided" (Allen, 1978). 

A Tandem host system can be viewed as two 
"service centers," each having its own service 
time pattern. (A service center is a place where 
a transaction requires some amount of service 
or demand.) The balanced CPUs1 within a 
Tandem node can be viewed as a single service 
center with a single server of capacity N x 
100%, where Nis the number of CPUs in the 
system and 1000/o represents the maximum 
amount of one CPU that is available. If bal­
anced, the disks can also be viewed as a single 
service center with a single server of capacity 
M x 1000/o, where Mis the number of disk 
drives. By considering the two service centers 
as single server service centers, the formulas 
based on an MIMI 1 queueing model can be 
used. The system must be balanced and well 
tuned in order to view each group as a single 
server. 

A properly tuned system does not contain 
any internal queues (such as queues at server 
processes) that affect the transaction's time in 
the system. The only delay incurred is the time 
waiting to enter the service center. Once a 
transaction enters the service center, there are 
no other queues in its path. 

The following formula is used to calculate 
the response time for an MIMll service center: 

D 
R=---

1 - U 

where 

D = time demand at the service center 

U = utilization (percent busy) of the service 
center 

The busier the service center (i.e., as U 
approaches 1), the longer the response time. 

For the purpose of defining a response-time 
model, a Tandem™ system can be viewed as 
two distinct service centers: CPUs and disk 
drives. Each needs to be analyzed separately 
before the response times are added together. 
Separate analysis is necessary because typi­
cally a transaction is either in the CPU or at 
the disk, but not both at the same time. (This 
is not true for a system where no-waited I/0 is 
taking place.) 

1Balanced CPUs means that the utilization of each CPU is close to the utiliza­
tion of the other CPUs. The same holds true for disks; i.e., balanced disks 
means that the utilization of each disk is close to the utilization of the other 
disks. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 91 



92 

The response-time estimate for the two 
service centers is : 

R (total) = R(cpu) + R(disk) 

D(cpu) D(disk) 
----=------ + 
1 - U(avg cpu) 1 - U(avg disk) 

The technique used to determine the 
demand of a given transaction at the CPU or 
disk subsystem is called consumption model­
ing (Horwitz, Shugh, and Sitler, 1988). 

After the system is balanced and well tuned, 
it is measured for the purposes of constructing 
a baseline model. A baseline measurement 
consists of both a measurement of the system 
and a measurement of the response time. By 
having the actual response time, a model can 
be created that provides a response-time esti­
mate; that estimate can then can be compared 
to the actual response time measured. This is 
the first step in validating the model. 

When the two response times are compared, 
the estimated response time may not be 
exactly equal to the actual response time mea­
sured. In this case, the model needs to be cali­
brated to match reality. One method is to 
incorporate the error in the baseline model 
into the forecasts. This technique is known as 
a relative change model. The response-time 
formula for the relative change model is: 

A=BXC 

where 

A = modified response-time estimate 

B = response time estimated by model 

actual 
C = ---- baseline response time 

estimated 

In essence, the formula assumes that the 
percentage the estimated response time is off 
for the baseline transaction rate will be the 
percentage the estimates will be off using the 
model for other transaction loads. 

The "correction factor" is the ratio of the 
actual response time to the estimated response 
time in the baseline model. It is the number by 
which the baseline estimate must be multiplied 
to produce the measured response time as the 
result. 2 (Refer to C in the preceding formula.) 

Serial vs. Parallel Writes 
There is a difference in estimating response 
time in a system consisting of mirrored vol­
umes configured for serial writes as opposed 
to volumes configured for parallel writes. The 
physical configuration of a mirrored disk sys­
tem is the primary factor affecting the 
response-time estimates of the disk subsystem 
using consumption modeling. 

To simplify the modeling process on the 
first cut, an assumption is made that each 
logical 1/0 in the system results in the same 
number of physical I/Os. 3 This may not be a 
valid assumption for a system. A system where 
one application uses only key-sequenced files 
and another application uses only unstruc­
tured files is one example where further disk 
analysis would be necessary. If a simple model 
can achieve the level of accuracy desired, a 
more sophisticated version may not be 
necessary. 

With serial writes, when a transaction per­
forms a write operation, it must wait for both 
halves of the mirror to be written to before it 
can continue processing. As the name implies, 
these writes are done one at a time. The 
response time for the transaction is dependent 
on the completion of both the primary write 
and the mirror write. 

2There are bounds on the transaction rate for which this model will hold. The 
farther away (either larger or smaller) from the baseli?e transaction rates th~ 
estimate is being made, the less accurate the model will be. Any model that 1s 
used for future predictions needs to be revisited frequently. 

'A logical 1/0 is a request (Read, Write, Update, Delete) sent from an applica­
tion to the disk processes. A system 1/0 is the total number of different records 
that had to be fetched in order to satisfy a logical request. This equals cache 
hits plus physical I/Os. A physical 1/0 is the total number of actual reads and 
writes on the device. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



In the parallel write configuration the . ' wntes to the two halves of the mirror are done 
in parallel; the transaction is only waiting for 
one of the two writes to complete. A distinc­
!ion t?en becomes necessary between the phys­
ical disk demand needed for determining disk 
utilization requirements, and the physical disk 
demand needed for response-time estimation. 
For determining disk utilization, it is neces­
sary to consider both halves of the mirrored 
volume as demand. For estimating response 
time, it is necessary to subtract the part of the 
disk utilization that can be attributed to the 
second write from the total disk utilization. 
This must also include any seek time associ­
ated with the write as well. 

MEASURE™ (a performance statistics gath­
ering facility) provides good metrics for calcu­
lating the disk demand for response time. The 
first step is to separate the read activity from 
the write activity (in each case including its 
share of the seek activity) for each spindle 
configured for parallel writes. It is assumed 
that seeking is done for all requests, and thus, 
an average seek time is associated with each 
physical 1/0. 

The ratio of the rate of the particular activ­
ity to the total read and write rate is used to 
determine the seek activity associated with 
either the reads or writes. Multiply the SEEK 
BUSY on the spindle by this percentage. The 
result is the amount of the seek activity that is 
to be grouped along with either the READ 
BUSY or WRITE BUSY. Figure 1 shows how 
this is expressed mathematically. 

The write activity (TOTAL WRITE BUSY) 
for the mirrored half with less activity is not 
used to calculate the disk demand for estimat­
ing response time. This approach is somewhat 
pessimistic and assumes that the transaction 
would always have to wait for the longer of the 
two writes (primary and mirror) to complete. 
The difference between the disk utilizations of 
the primary and the mirror are usually not 
substantial enough to skew the results. 

The physical disk demand per transaction 
for the response-time calculations can now be 
found by using a modified total disk utiliza­
tion in the consumption model. The modified 
total disk utilization for response-time estima­
tion is represented mathematically as: 

Modified total disk utilization 
(for parallel write configuration) 

= Total disk utilization 
- (sum of the lowest write activity 

for each mirrored parallel pair) 

Figure 1 

Read rate 
Read % of seeking = ------- x Seek busy 

Read rate + Write rate 

Total read busy = (Read % of seeking) + Read busy 

Write% of seeking = ___ w_r_ite_r_at_e __ 
Read rate + Write rate x Seek busy 

Total write busy = (Write% of seeking) + Write busy 

Forecasting Response Times 
Forecasting the new demand in a system given 
a change in the transaction rate is discussed in 
detail in the technical paper, "Performance 
Management and SURVEYOR" (Horwitz, 
Shugh, and Sitler, 1988). These results can be 
used with response-time estimating techniques 
to derive an estimate of the expected response 
time given the new demands on the system. 
This estimate can be used to determine 
whether service level objectives will be met 
and, if not, provide insight into what will be 
needed to achieve them. 

The accuracy of the new estimate relies on 
the accuracy of the model and the linearity of 
the system being modeled. The model cannot 
predict any bottlenecks within the application 
(or system) that would add additional time to 
the transaction's response. The new estimate 
should be viewed as just that, an estimate. At 
best, it can be considered in terms of magni­
tude; i.e., will the new demand cause the 
response time to change from subsecond to 
multisecond if the system hardware remains 
the same. 

The following example demonstrates fore­
casting techniques by taking a baseline model 
and predicting the response time at both 
higher and lower transaction rates. This 
includes modifying the estimate using the rela­
tive change prediction technique and compar­
ing the results of the two estimates. 

Figure 1. 

Apportioning seek activ­
ity to read and write 
activity. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 93 



Figure 2 

Slmulators --

Figure 2. 

Logical view of example 
PATHWAY system. 

94 

TAAN2 
$el'VMI 

TMN3 
~ 

-

Creating a Response-Time 
Model-An Example 

.Disk 
~ 

Physical 
disk drives 

The following example shows how to estimate 
response time using an MIMI 1 approach as 
well as how the relative change prediction 
affects the results. The system being analyzed 
consists of one PATHWAY™ (transaction pro­
cessing system) application, which is run 
through the use of terminal simulators. Termi­
nal simulators are processes that run within 
the same system as the PATHWAY application 
and are defined as terminals in the PATHWAY 
startup files. They are opened by the Terminal 
Control Process (TCP). These processes send 
messages to the PATHWAY application as if 
they were a user at a terminal. The message 
format is fixed for this application, but the 
contents of the message are random. 

The simulator processes record statistics in 
a buffer that are periodically written out to a 
file. The response time is one of the statistics 
maintained. This permits a comparison of the 
estimate the response-time model makes to the 
actual response time achieved, to come up 
with the correction factor. The transaction 
rates within the system are configurable within 
the simulators (through the use of a parameter 
to the simulator process). There is one of these 
simulator processes running for each terminal 
in the PATHWAY system. 

The PATHWAY application consists of three 
transaction types that differ in processing time 
and 1/0 intensity. For the sake of differentia­
tion, they will be referred to as TRANI, 
TRAN2, and TRAN3. Each transaction type is 
serviced by a separate server class. A logical 
view of this application is shown in Figure 2. 

The hardware comprises four TXP™ pro­
cessors with four mirrored disk drives. The 
database is spread across all four disks. 
MEASURE is used to gather measurement data 
from the CPUs, disks, and processes. The 
measurements were taken after the initial 
PATHWAY startup so that the system was in 
operating mode (i.e., steady state). 

One series of tests was run with the disk 
drives configured for parallel writes. A base­
line test was run at a transaction rate that 
ensured the system was not stressed (between 
40-55% average CPU utilization). A consump­
tion model was built from this baseline test 
and the response-time estimate for each trans­
action type was calculated from the M/Mll 
formula. Five other transaction rates were then 
estimated using both the M/Mll formula and 
the relative change technique. These transac­
tion rates were then run in the system and the 
actual results were compared to those pre­
dicted with the models. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



The analysis of the baseline model includes 
the following steps: 

Table 1. 

Baseline model parameters. 

• Calculating the physical disk demand to be 
used in the response-time formula (demon­
strated on one drive). 

Transaction Transaction CPU Dper Logical 1/0 per Actual 

• Creating the relative change correction 
factor. 
• Using the baseline model and the correction 
factor to forecast response times at a different 
transaction rate. 

Baseline Model 

CPU Service Center. Table 1 shows the trans­
action rates, the CPU demand per transaction 
(determined by consumption modeling), the 
logical I/Os per transaction, and the actual 
response time as reported by the simulators. 
The CPU demand per transaction includes 
TCP demand, server demand, and disk pro­
cess demand. The simulator's demand per 
transaction was 8.0 ms. The simulator's 
demand per transaction is not included in the 
CPU demand for the transactions in Table 1 
because the response time reported by the sim­
ulator process does not include the transac­
tion's time within the simulator. 

In consumption modeling, the interrupt 
handling in the baseline model is represented 
as a percentage of the total process busy calcu­
lated from all the identified workloads. This is 
necessary in order to be able to come up with 
an estimate of the interrupt handling that will 
be present with the new workload demands. 
The point of view taken is that the workload 
processing is responsible for the interrupt 
work. As the workload increases, so will the 
interrupt processing. For the example, the 
PROCESS BUSY due to workloads is 191.53%. 
The total CPU busy is 229%. Therefore, inter­
rupt processing accounts for 37.47% (229 -
191.53). In terms of the PROCESS BUSY, 37.47 
is 19.6% of 191.53. 

type rate transaction (ms) transaction 

TRAN1 2.11 147.53 6.19 

TRAN2 3.46 63.07 1.00 

TRAN3 12.20 101.89 3.04 

Simulators 17.77 8.00 N/A 

Figure 3 

TRANI R(CPU) 
D(CPU) 147.53 

= 
1 - U(average CPU) 1 - 0.5725 

TRAN2 R(CPU) 
D(CPU) 63.07 

1 - U(average CPU) 1 - 0.5725 

TRAN3 R(CPU) 
D(CPU) 101.89 

= 
1 - U(average CPU) 1 - 0.5725 

The total CPU utilization for this system 
was 229% for four CPUs, giving an average 
CPU utilization of 57.25% (229/400). All the 
information is now available to obtain the 
CPU subsystem's contribution to response 
time as shown in Figure 3. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 

response time (ms) 

500 

110 

300 

NIA 

345.10 ms 

147.53 ms 

238.34 ms 

Figure 3. 

Calculation of CPU 
subsystem response time. 

95 



Table 2. 
Disk metrics. 
Disk Read 
name utilization 

$SYSTEM-P 4.27 

$SYSTEM-M 8.90 

$DATA-P 3.92 

$DATA-M 8.87 

$D1-P 3.65 

$D1-M 8.06 

$D2-P 4.84 

$D2-M 8.60 

Table 3. 
Disk drive results. 

Total disk busy 
Disk drive (R + W + 5) 

$SYSTEM 38.10 

$DATA 45.23 

$D1 34.83 

$D2 41.10 

96 

Write Seek Read 
utilization utilization rate 

6.75 5.10 2.89 

6.52 6.59 6.00 

7.99 7.49 2.68 

7.76 9.20 5.97 

6.51 4.27 2.49 

6.24 6.10 5.46 

7.08 6.22 3.29 

6.96 7.40 5.84 

Total write/seek Total write/seek 
busy PRIMARY busy MIRROR 

9.91 9.41 

13.24 12.19 

9.26 9.00 

10.80 10.34 

Write Seek 
rate rate 

4.69 6.33 

4.69 7.90 

5.55 7.00 

5.55 8.85 

4.50 5.81 

4.50 7.23 

4.90 7.14 

4.90 8.53 

Lower WRITE 
busy 

9.41 

12.19 

9.00 

10.34 

Disk Drive Service Center. Because the disk 
drives are configured for parallel writes, the 
portion of disk demand that is due to the mir­
rored write needs to be determined and then 
removed from the disk demand for the transac­
tion. This portion of demand is included in the 
calculation of average utilization because the 
transaction still has to compete with the mir­
rored write for access to a disk drive. Table 2 
lists those metrics from MEASURE (system 
performance measurement tool) for the system 
under test that are used for analyzing the disk 
subsystem. 

The calculations shown in Figure 4 are for 
the disk $D2. These same calculations were 
performed on all four drives. The results of 
these calculations for all the drives are given in 
Table 3. 

To determine the portion of disk utilization 
to include in the demand per transaction for 
response-time estimation, proceed as follows: 

1. Sum the lowest total write busy for each set 
of disks (Table 3, last column). 

2. Subtract the result from the sum of the 
total disk busy (Table 3, second column) 
for all the disks. 

The remainder is then the amount of disk utili­
zation that is apportioned over all the logical 
I/Os for all the transactions. 

From the measurement information, the 
number of logical I/Os per second is 55.36, of 
which 53 .61 is a result of the application pro­
cessing. MEASURE and the simulators 
account for the additional 1. 75 logical I/Os 
per second. 

TANDEM SYSTEMS REVIEW OCTOBER 1988 



Figure4 

For the primary drive: For the mirror drive: 

Read rate 
Read % of seeking = -------- x Seek busy 

Read rate + Write rate 

Read rate 
Read % of seeking = -------- x Seek busy 

Read rate + Write rate 

--
3
-·-

29
-- X 6.22% 

3.29 + 4.90 

= 2.50% 

Total read busy = (Read % of seeking) + Read busy 

= 2.50% + 4.84% 

= 7.34% 

5.84 
= ----- X 7.40% 

5.84 + 4.90 

= 4.02% 

Total read busy = (Read % of seeking) + Read busy 

= 4.02% + 8.60% 

= 12.62% 

Write % of seeking 
Write rate 

-------- x Seek busy 
Read rate + Write rate 

Write rate 
Write % of seeking = -------- x Seek busy 

Read rate + Write rate 

___ 4·_90 __ X 6.22% 
3.29 + 4.90 

= 3.72% 

Total write busy = (Write % of seeking) + Write busy 

= 3.72% + 7.08% 

= 10.80% 

Disk demand for estimating response time is 
derived by subtracting the sum of the lowest 
total write busy from the total disk busy 
as follows: 

(38.10 + 45.23 + 34.83 + 41.10) 
- (9.41 + 12.19 + 9.00 + 10.34) 
= 159.26 - 40.94 
= 118.32 % 

For response-time calculations, this results in a 
physical disk demand per logical I/0 of: 

(118.32 % / 55.36) = 21.4 ms 

The physical disk demand for utilization calcu­
lations per logical 1/0 is: 

(159.26 % I 55.36) = 28.8 ms 

___ 4·_90 __ X 7.40% 
5.84 + 4.90 

= 3.38% 

Total write busy = (Write % of seeking) + Write busy 

= 3.38% + 6.96% 

= 10.34% 

When estimating response time at the disk, 
both disk demands are needed; the first one 
for determining the demand in the numerator 
and the second for determining the utilization 
in the denominator. 

Figure 4. 

Seek apportioning for 
$D2. 

OCTOBER 1988 TANDEM SYSTEMS REVIEW 97 



Table 4. 
Disk demands per transaction. (Misc. refers to MEASURE and simulator 
activity.) 

Transaction 
type 

TRAN1 

TRAN2 

TRAN3 

Misc. 

Figure 5 

Figure 6 

Figure 5. 

Logical 1/0 Disk demand per Disk demand per 
per transaction for transaction for 
transaction response time (ms) utilization (ms) 

6.19 132.47 178.27 

1.00 21.40 28.80 

3.04 65.06 87.55 

1.75(total) N/A 50.40 (total) 

TRAN1 R(disk) 
D(disk) 132.47 = 165.40 ms = 

1 - U(average disk) 1 - 0.1991 

TRAN2 R(disk) 
D(disk) 21.40 = 26.72 ms 

1 - U(average disk) 1 - 0.1991 

TRAN3 R(disk) 
D(disk) 65.06 = 81.23 ms 

1 - U(average disk) 1 - 0.1991 

R(TRAN1) = R(cpu) + R(disk) = 345.10 + 165.40 = 510.50ms 

R (TRAN2) = R(cpu) + R(disk) = 147.53 + 26.72 = 174.25 ms 

R(TRAN3) = R(cpu) + R(disk) = 238.34 + 81.23 = 319.57ms 

Calculation of disk sub­
system response time. 

For each transaction type, a physical disk 
demand for response time and a physical disk 
demand for utilization are calculated by multi­
plying the logical 1/0 rate per transaction by 
the specific demand per 1/0 from above. The 
results are shown in Table 4. 

Figure 6. 

Total response-time 
calculation using 
MIMIJ. 

The total disk utilization for this system is 
159.26 for eight spindles, an average of 
19.91 OJo (1.5926/8.00). All the information 
needed to obtain the disk subsystem's contri­
bution to response time is now available. (See 
Figure 5 for the final calculation.) 

The final step in determining the total 
response time is to add the contribution by the 
CPU subsystem to the contribution by the disk 
subsystem, as shown in Figure 6. 

The actual response times are found in 
Table 1 (500 ms, 110 ms, and 300 ms for 
TRANI, TRAN2, and TRAN3 respectively). 
The M/M/I model comes fairly close in esti­
mating the actual response times for TRANI 
and TRAN3. The error is 2.1 OJo and 6.5%, 
respectively. The error for TRAN2 is 54. 70Jo. 
Because the error in the model for TRAN2 is 
so high, obviously a straight M/M/I model is 
not the correct model to use. If the error is 
incorporated into the model by using the rela­
tive change method, the results are improved. 

The Relative Change Calculations 
Use the following formula to determine the 
correction factor for each transaction type 
which will be applied to future estimates. 

correction factor 

actual 

estimated 
baseline response time 

For the transactions, TRANI, TRAN2, and 
TRAN3, the correction factors are: 

TRANI = 
500 

= 0.97943 
510.50 

TRAN2 
110 

0.63128 
174.25 

TRAN3 
300 

0.93876 
319.57 

98 TANDEM SYSTEMS REVIEW OCTOBER 1988 



Figure 7 

Step 1-CPU utilization for each transaction type 

The utilization law, U = XD where Xis transaction rate and Dis demand per 
transaction is used.Dis found in Table 1. 

U(tran1) = 2.79 x 147.53 = 411.61 ms/secor41.161% 
U(tran2) = 4.42 x 63.07 = 278.77 ms/sec or 27.877% 
U(tran3) = 15.34 x 101.89 = 1562.99 ms/sec or 156.299% 

U(simulator) = 22.55 x 8.00 = 180.40 ms/sec or 18.040% 

To determine the interrupt work in the system, add up all 
the other activity and add an additional 19.6% to it. 

U(interrupt} = 0.196 x (41.161 + 27.877 + 156.299 + 18.040) 

= 47.70% 

Adding up all the pieces results in the estimated total CPU 
utilization: 

U(CPU) = 41.161 + 27.877 + 156.299 + 18.040 + 47.70 = 291.077% 

Avg U (CPU) = 2.91077/4.00 = 0.7277 or 72.77% 

Step 2-Calculating total disk demand (or utilization) 

Again the U = XD formula is used. Since the intent is to find the average 
disk utilization, the parallel writes will be included. The Dis found in the 
third column of Table 4. 

U(tran1) = 2.79 x 178.27 = 497.37ms/secor49.73% 
U(tran2) = 4.42 x 28.80 = 127.30 ms/sec or 12.73% 
U(tran3) = 15.34 x 87.55 = 1343.02 ms/sec or 134.30% 
U(misc) = 50.40 ms/sec or 5.04% 

Adding up the pieces results in the estimated total disk 
utilization of: 

U(DISK) = 49.73 + 12.73 + 134.30 + 5.04 = 201.80% 

Avg U (DISK) = 2.0180 / 8.00 = 0.2523 or 25.23% 

Forecasting with the Model 

Step 3-Calculating the M/M/1 response time 

The formula for the M/M/1 estimated response time is: 

D(cpu) D(disk) 
------ + ------

1 - U(avg cpu) 1 - U(avg disk) 

Using the demands per transaction from the baseline and the new estimated 
average utilizations for both the CPU and the Disk, the response times are 
calculated. The calculations are as follows: 

R(TRAN1) 
147.53 132.47 

= 718.96 ms + 
1 - 0.7277 1 - 0.2523 

R(TRAN2) 
63.07 21.40 

= 260.24 ms + 
1 - 0.7277 1 - 0.2523 

R(TRAN3) 
101.89 65.06 

= 461.19 ms = + 
1-0.7277 1 - 0.2523 

Step 4-Calculating relative change response-time estimate 

Taking the M/M/1 response-time estimates and multiplying them by their 
respective "correction factors," the relative change estimate of response 
time is obtained. The calculations are as follows: 

TRAN1 = 718.96 x 0.97943 = 704.17 ms 
TRAN2 = 260.24 x 0.63128 = 164.28 ms 
TRAN3 = 461.19 x 0.93876 = 432.95 ms 

Results 

The actual average CPU utilization was 73.30 vs. 72.77 estimated. 

The actual average disk utilization was 27.48 vs. 25.23 estimated. 

The actual response times as reported by the simulators at these 
transaction rates were: 

R(TRAN1) = 700 ms 
R(TRAN2) = 140 ms 
R(TRAN3) = 440 ms 

Figure 7. 
Figure 7 shows how to estimate response time 
at a different transaction rate using both the 
M/M/1 model and the relative change model. 
The new transaction rates are: 

2. Determine total disk utilization for each 
transaction type and other processes in the 
system. Determine total system disk utili­
zation and average utilization. 

Using a response-time 
model for future transac­
tion rates. 

TRANI - 2.79 
TRAN2 -4.42 
TRAN3 - 15.34 

The steps involved in estimating the 
response time are as follows: 

1. Determine total CPU utilization for each 
transaction type and other processes in the 
system. Determine total system CPU utili­
zation and average utilization. 

3. Calculate M/M/1 response-time estimate. 

4. Calculate relative change response-time 
estimate. 

0 C T O B E R I 9 8 8 TANDEM SYSTEMS REVIEW 99 



Table 5. 
Comparison of estimates and their errors. 

Actual Relatlve 
Transaction response M/M/1 change %error 
type time estimate estimate M/M/1 

TRAN1 700 718.96 704.17 2.71 

TRAN2 140 260.24 164.28 85.89 

TRAN3 440 461.19 432.95 4.82 

Table 6. 
Comparison of estimates and their errors at differing transaction rates. 

Average Relative 
Transaction CPU Actual M/M/1 change %error 
type utilization response estimate estimate M/M/1 

TRAN1 80.69 0.870 0.960 0.891 10.34 

TRAN2 0.160 0.340 0.215 112.50 

TRAN3 0.580 0.592 0.556 2.07 

TRAN1 45.78 0.420 0.432 0.423 2.86 

TRAN2 0.100 0.143 0.090 43.00 

TRAN3 0.250 0.267 0.251 6.80 

TRAN1 37.21 0.380 0.390 0.382 2.63 

TRAN2 0.090 0.126 0.080 40.00 

TRAN3 0.220 0.239 0.224 8.64 

TRAN1 31.72 0.360 0.367 0.359 1.94 

TRAN2 0.090 0.117 0.074 30.00 

TRAN3 0.210 0.224 0.210 6.67 

Note: The response times in the chart are expressed in seconds. 

%error 
relative 
change 

.60 

17.35 

- 1.60 

%error 
relative 
change 

2.41 

34.37 

- 4.14 

0.71 

-10.00 

0.40 

0.53 

-11.11 

1.82 

- 0.28 

-17.78 

0.00 

Table 5 contains the actual response time, 
the two different estimates and the percent 
errors, for all three transaction types. Note the 
improved accuracy of the relative change pre­
diction over a straight M/M/1 model. 

Response times were estimated and com­
pared to the actual response time calculated 
for four additional transaction rates. A sum­
mary of the results, including the estimates of 
response time, the actual response time, the 
percent errors, and the actual average CPU 
utilization is presented in Table 6. Figure 8 
shows a graphical representation of the results 
for each transaction type. 

Conclusion 
By using the relative change correction factor, 
the error was reduced from a high of over 
100% to a high of 35%. This error (35%) was 
achieved at a high CPU utilization (80%). At 
high utilizations, the response-time estimates 
are asymptotic and heading toward infinity. 
At this point, the system cannot keep up with 
the amount of work being requested and the 
request queue keeps getting larger and larger. 
The system is no longer in a steady state. 
Without taking the predictions at this high 
utilization point, the estimates using the cor­
rection factor were within 18 % of the actual 
response time. 

The M/M/1 model presented in this article 
is simple. The improvement in accuracy by 
using the relative change correction factor is 
very encouraging. However, this technique 
does not apply to every Tandem system and it 
is critical to understand when and if this tech-­
nique can be used. It should only be attempted 
by someone knowledgeable in computer 
modeling. 

100 TANDEM SYSTEMS REVIEW OCTOBER 1988 



The validation of the model required that 
the response time be known. In some cases, 
this can be accomplished using MEASURE 
user-defined counters. In other cases, this 
metric cannot be measured. 

One of the most important points of com­
puter modeling is that validation of the model 
is a necessity. When equipment purchases are 
based on the output from an analytical model, 
it is extremely desirable that the model be 
accurate. If the model cannot be validated, it 
should not be used. Another approach, such as 
simulation, must be used. 

References 
Buzen, J., and Denning, P. 1978. The Operational Analysis of 
Queueing Network Models of Computer Systems. ACM Com­
puting Surveys. Vol. 10, No. 3. 

Allen, A.O. 1978. Probability, Statistics and Queueing Theory 
with Computer Applications. Academic Press. 

Lazowska, E., et al. 1984. Quantitative System Performance. 
Prentice Hall. 

Horwitz, H., Shugh, S., and Sitler, S. 1988. Performance 
Management and SURVEYOR (available through your local 
Tandem analyst). Part no. 15308. Tandem Computers 
Incorporated. 

Kendall, D.G. 1985. Stochastic Processes Occurring in the 
Theory of Queues and Their Analysis by the Method of Imbed­
ded Markov Chains. Annals of Mathematical Statistics. Vol. 24. 

MEASURE Reference Manual. Part no. 82441. Tandem 
Computers Incorporated. 

MEASURE User's Guide. Part. no. 82440. Tandem Computers 
Incorporated. 

Acknowledgments 
The author would like to thank Dr. Kenneth Sevcik, Karna 
Thuiin, Allen Barr, and Scott Sitler for their guidance and 
assistance, and also the reviewers who provided comments and 
suggestions. 

Helaine Horwitz joined Tandem in 1986 as a senior staff analyst. 
She is presently part of the Product Specialists Group in LSMS. 
Before coming to Tandem, Helaine worked as an application 
designer and performance specialist for an Alliance member. 
She received a B.S. in Management Science from Stevens 
Institute of Technology and an M.S. in Operations Research in 
1984 from Polytechnic Institute in New York. 

0 C T O B E R I 9 8 8 T A N D E M 

Figure 8 

TRAN1 

31.72 37.21 45.78 72.77 80.69 
Average CPU utilization 

■ Actual 
eM/M/1 
.& M/M/ 1 relative change 

S Y S T E M S REVIEW 

TRAN2 
M/M/1 models 

TRAN3 
M/M/1 models 

Figure 8. 

Response time (estimated 
vs. actual). 





TANDEM PUBLICATIONS ORDER FORM 

Subscriptions to the Tandem Systems Review are free. Use this form to subscribe, change a 
subscription, and order back copies. 

For requests within the U.S. , send this 
form to: 

Tandem Computers Incorporated 
Tandem Systems Review 
18922 Forge Drive, LOC 216-05 
Cupertino, CA 95014 

For requests outside the U.S. , send this form 
to your local Tandem sales office. 

Check the appropriate box(es): 

D New subscription (# of copies desired __ _ 
D Subscription change (# of copies desired __ _ 
D Request for back copies. (Shipment subject to 

availability.) 

Print your current address here: 

COMPANY NAME 

ADDRESS 

ATTENTION 

PHONE NUMBER (U.S.) 

If your address has changed, print the old 
one here: 

COMPANY NAME 

ADDRESS 

ATTENTION 

PHONE NUMBER (U.S.) 

To order back copies, write the number of 
copies next to the title(s) below. Please allow 
six to eight weeks for delivery. 

___ Part No. 83930, Vol. 1, No. 1, Fall 1983 

___ Part No. 83931, Vol. 2, No. 1, Winter 1984 

___ Part No. 83932, Vol. 2, No. 2, Spring 1984 

___ Part No. 83933, Vol. 2, No. 3, Summer 1984 

Tandem Systems Review 
___ Part No. 83937, Vol. 2, No. 2, June 1986 

___ Part No. 83938, Vol. 2, No. 3, December 1986 

___ Part No. 83939, Vol. 3, No. 1, March 1987 

___ Part No. 83940, Vol. 3, No. 2, August 1987 

___ Part No. 11078, Vol. 4, No. 1, February 1988 

___ Part No. 13693, Vol. 4, No. 2, July 1988 

___ Part No. 15748, Vol. 4, No. 3, October 1988 

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR. 
10/88 







~TANDEM 

Part No. 15748 400105 10/88 Printed in USA 


