
T A N D E M

SYSTEMS REVIEW
VOLUME 2, NUMBER 2

Distributed System Protection

PATHWAY IDS • New TAL Features

Predicting Response Time

DPJ-TMF Cache Sizing

New Disk Technology

Margin Analysis

New Products ■ Technical Paper

JUNE 1986

Corrections:
Please note the following corrections to the
article entitled "DP2 Performance," which
appeared in the June 1985 issue.

Page 37, Figure 4. The caption should read:

The elapsed time required for AO6 DPl and
BOO DP2 to copy 1,000 10O-byte records
sequentially from one file to another on the
same disk.

Page 38, Table 1. The title should read:

The elapsed time required by AO6 DPl and
BOO DP2 to copy 1,000 10O-byte records
sequentially from one file to another on the
same disk.

Page 41, Table 3. All digits in this table are
for Sends and Receives both for messages
and bytes per message. For an accurate
picture of message traffic divide the num­
bers by 2.

Volume 2, Number 2, June 1986

Editor
Ellen Marielle-Treholiart

Technical Advisor
Dick Thomas

Associate Editors
Wendy Osborn
Carolyn Turnbull White

Assistant Editor
Sarah Rood

Ari Director/Cover Art
Stephen Stavast

Production and Layout
Phil Just
Steve Kirtley
Stephen Stavast
David Thompson
John Tomasini

Typesetting
Barbara Cowlishaw

The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical informa­
tion about Tandem software releases
and products. Its purpose i5 to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribu­
tion data base, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Sales
Administration, 19191 Vallco
Parkway, MS 4-05, Cupertino, CA
950 I 4. Requests outside the U.S.
should be sent to the local Tandem
sales office.

Comments: The editor welcomes
suggestions for content and format.
Plea,c send them to the Tandem
Systems Review, 1309 So. Mary
Avenue, Sunnyvale, CA 94087.

Copyright 1986 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com­
puters Incorporated.

The following are trademarks or
service marks of Tandem Computers
Incorporated: BINDER, DYNABUS,
DYNAMITE, ENCORE, ENFORM,
EXPAND, FOX, GUARDIAN,
GUARDIAN 90, INSPECT,
NonStop, NonStop EXT,
Nonstop I+ , NonStop II,
NonStop TXP, PC LINK,
PS MAIL, PS TEXT EDIT, SAFE,
SAFEGUARD, SAFE-T-NET,
TACL, TAL, Tandem, THL, TIL,
TMF, T-TEXT, XL8, XRAY.

INFOSAT is a trademark in which
both Tandem and American Satellite
have rights. IBM, IBM PC, and
SNA are trademarks of International
Bminess Machines Corporation.
UNIX is a trademark of AT&T Bell
Laboratories.

TANDEM SYSTEMS REVIEW

2

10

18

31

39

48

56

63

67

73

Distributed System Protection
with SAFEGUARD
Timothy Chou

PATHWAY IDS: A Message-level
Interface to Devices and Processes
Mark Anderton, Mike Noonan

New T AL Features
Catherine Lu, John Murayama

Predicting Response Time in
On-line Transaction Processing Systems
A nil Khatri

Sizing Cache for Applications
That Use B-series DPl and TMF
Praful Shah

Plated Media Technology Used
in the XLS Storage Facility
David S. Ng

Data-encoding Technology Used
in the XLS Storage Facility
David S. Ng

Data-window Phase-margin Analysis
Alan Painter, Hoa Pham, Herb Thomas

Tandem's New Products
Corinne Robinson

Technical Paper:
State-of-the-art C Compiler
Ed Kit

2

Distributed System Protection
with SAFEGUARD

___ s hardware has become
___ less expensive and busi­

ness demands for data
processing have grown,
systems have been devel­
oped that allow the user
to distribute applications

and data. While this capability may make a
business easier to run, it makes the job of pro­
tecting information that much harder.

In a single-processor system, the user could
simply protect the resources physically; with
distributed processing, that is no longer
adequate.

In a distributed system, data must be pro­
tected wherever it resides in the network, as
well as while that data is being transported
between nodes in the network. Therefore, a
distributed system protection mechanism pro­
tects data while it is on-system (e.g., in the
processor, on a disk drive) as well as when it is
off-system (e.g., traveling through communi­
cation lines, on removable disk packs) as
shown in Figure 1.

This article explains the on-system protec­
tion mechanisms provided in the Tandem™
Nonstop™ system and describes the relation­
ship between each of these mechanisms. While
the protection features of the GUARDIAN 90™
operating system are equivalent to those found
in many other commercial mainframe operat­
ing systems, a distributed system architecture
poses some special challenges. 1 The
SAFEGUARD™ family of products was
designed to extend the protection features of
the GUARDIAN 90 operating system.

Every computer system is composed of three
fundamental layers: the hardware, the operat­
ing system, and the application. Protection
mechanisms at each layer of the system are
built on, and depend upon, the correct imple­
mentation of the mechanism provided at the
layer below it.

Security of information is achieved only
through a balanced application of policies that
are enforced by protection mechanisms. This
highlights a very important principle: the sep­
aration of policy and mechanism. Mecha­
nisms determine how to do something.
Policies decide what will be done, but not how
it will be done. Corporate policies can and do
change to reflect changes in economics as well
as the law. Without the effective separation of
mechanism and policy, the ability of corporate
computer systems to adapt is severely
impaired.

1For more information on the off-system protection mechanism, see the Data
Encryption Standard, 1977, and Ehrsam, ct al., Vol. 17, No. 2.

TANDEM SYSTEMS REVIEW J U N E I 9 8 6

Hardware Protection
In a computer system the needs and privileges
of users and applications vary, and they differ
as a whole from the needs and privileges of the
operating system itself. The hardware provides
protection features that isolate the executing
programs, protect the operating system fr_om
user programs, and allow only the operatmg
system to perform such sensitive operations as
physical 1/0. The hardware provides the abil­
ity to protect both operating system instruc­
tions and operating system data from the user.

Instruction Protection
Certain machine instructions are intended for
use by the operating system only. These are
called privileged instructions. The hardware
allows privileged instructions to be executed
only when the processor is executing in privi­
leged state. In the Nonstop II™, TXP™, and
EXT™ processors, if an attempt is made to
execute a privileged instruction in user mode,
the hardware does not execute it, but treats it
as an illegal instruction and traps to the oper­
ating system. Privileged instructions perform
functions such as halting the processor, issuing
1/0 requests, and making the transition from
user mode to privileged mode. Any code oper­
ating within the privileged state must be con­
sidered part of the protection kernel and,
therefore, a trusted piece of code.

To control the execution of privileged oper­
ations and to prevent a nonprivileged process
from executing in privileged mode, every pro­
cedure in the Tandem NonStop system has one
of three attributes:

Nonprivileged. Procedures with this attribute
can be called by any procedure. They execute
in the same mode (privileged or nonprivileged)
as the calling procedure. This attribute is typi­
cally given to all of the procedures in an appli­
cation program.

Callable. Procedures with this attribute can
also be called by any procedure, but they exe­
cute in privileged mode. The caller's mode is
restored when a callable procedure exits. Such
procedures provide a controlled interface
between a nonprivileged application program
and the privileged operating system.

Privileged. Privileged procedures execute in
privileged mode and are callable only by pro­
cedures currently executing in privileged
mode. An attempt by a nonprivileged proce­
dure to call a privileged procedure results in

Figure 1

\B

\D

control being transferred to the operating sys­
tem instruction-failure trap handler. Proce­
dures are i1ven this attribute when their
functions, if performed improperly, could have
an adverse effect on the processor's operation.
A nonprivileged application program's only
interface to a privileged procedure is through a
callable procedure.

This mechanism is implemented in the
Nonstop II, TXP, and EXT procedure call
instructions. If the calling procedure is not
executing in privileged mode, the "callability"
attribute of the procedure being called is
checked. When a procedure is exited, the
mode (privileged or nonprivileged) is reestab­
lished to bt the lesser of the caller's setting and
the current settings. This prevents a nonprivi­
leged caller from being left in privileged
mode on return from a callable or privileged
procedure.

J U N E 1 9 8 6 TANDEM SYSTE'VIS REVIEW

0

\C

Figure 1.

Integration of
SAFEGUARD and
SAFE-T-NEI'M protects
data while it's on or off a
Tandem system.

3

Figure 2

~t•

Subjeet 1 (FTRMWARIS,Atet1ARO) Read

Figure 2.

Access matrix.

Data Protection

Read
Wrlt'E!

Reacl
Write

Although its primary function is to expand the
memory available to the programs, virtual
memory is a valuable protection feature. The
virtual memory mechanism maps a logical
view of memory onto the physical storage.
The logical memory is memory as the process
views it. In general, a process is allowed to see
only a subset of the virtual memory, consisting
of data and code that it owns. For a nonprivi­
leged process on the Nonstop II, TXP, and
EXT systems, logical memory is separated into
seven address spaces:

■ User data.

■ System data.

■ User code.

■ System code.
■ User library.

■ System library.
■ User extended data.

The system data, system code, and system
library address space belong exclusively to the
operating system. This mechanism controls the
user's ability to modify (either accidentally or
deliberately) the operating system code or data
structures.

Operating System Protection
The operating system uses the hardware pro­
tection mechanisms to protect itself from
users and their application programs. Relying
on this, the operating system protects users
from each other.

To clarify, consider a basic protection
model. One of the best known protection
models is the access matrix model (Lampson,
1974).

The basic elements of the model are sub­
jects, objects, and operations:

■ A subject is an active entity capable of
accessing objects; e.g., users are subjects.
■ An object is anything to which access is
controlled, such as data files or tape drives.
■ An operation is simply a kind of access to
an object, such as read or write access.

For each type of object there is a set of pos­
sible operations. Data files, for example, can
be accessed through operations such as read or
write.

An access matrix relates the three types of
elements of the model as shown in Figure 2. In
this matrix the rows represent subjects and the
columns represent objects. Each cell contains
a list of operations permitted to subject i for
object j. Access (i,j) defines the set of oper­
ations that a process executing as subject i can
invoke on object}. When implementing access
control, it is generally inefficient to represent
the information as a matrix, because the
matrix is typically sparse. That is, there are
many objects and subjects but there are rela­
tively few operations specified.

Two techniques are commonly used for
storing the information:

■ An access control list associated with the
object that lists all of the subjects that can
access the object, along with the operation.
■ A capability list associated with a subject
that lists all the subject's rights to objects.

Figure 3 shows the information presented in
Figure 2 in an access list, and Figure 4 shows
the same information in a capability list. In
general, most systems contain both access and
capability lists (Saltzer and Shroeder, 197 5).
The GUARDIAN 90 operating system and its
extension, SAFEGUARD system protection
software, implement the access matrix pre­
dominately as an access control list.

4 TANDEM SYSTEMS REVIEW JUNE 1986

Subjects
A GUARDIAN 90 subject is more com-
monly called a GUARDIAN 90 user. The
GUARDIAN 90 operating system defines both
local and network users. For a single system
(i.e., a system with all processors connected
using a DYNABUS™ architecture), the defini­
tion of a local user is not fundamentally dif­
ferent from many other commercial
mainframe operating systems. However, since
GUARDIAN 90 is also a network operating
system we must also have a definition of a
network user.

Local User. Each GUARDIAN 90 user has a
unique user name and a corresponding unique
user ID. A user name is composed of two ele­
ments: <groupname>. <username>. The
first term, <groupname>, is the name
of the group to which the user belongs;
<username> is a name identifying the indi­
vidual user within the group.

Similarly, a user ID is of the form
<group id>, <user id>, where <group id>
identifies the user's group and <user id>
identifies the user within the group. For exam­
ple, a user named Richard Carson, who works
in the firmware group, has a GUARDIAN 90
user name of FIRMWARE.RICHARD and a
user ID of 3,104. This would also mean that
all other users in the firmware group would
belong to < group name> FIRMWARE and
<group id> 3.

Network User. The GUARDIAN 90 operating
system is a network operating system, which
means that it supports the concept of a net­
work user. A network user is any user who has
the same user name and user ID on more than
one system in the network and has matching
remote passwords between those systems. For
example, if a user (USERID: 3,104
USERNAME: FIRMWARE.RICHARD) exists
on the system named \ TIBET and the same
name and ID exist on \RIO, and if the user has
matching remote passwords on \ TIBET and
\RIO, then he is a network user. If he makes a
request from a process on \RIO for a resource
on \TIBET (e.g., attempts to open
\TIBET.$DATA.PAY.ROLL), then \TIBET sees
the request as coming from a remote version
of FIRMWARE. RICHARD.

Figure 3

Objeef1 ~1.~,.~l,.~2:(Readl

Object 2 ~ 1 lflead} ·

Objects SUb~ 2 t~: Wtltel, Sul:llect 3 !l'iead,Wrik¼)

The difference between a local and remote
version of a user in GUARDIAN 90 is analo­
gous to the difference between recognizing
individuals in person and recognizing them
across a tekphone line. Accordingly,
GUARDIAN 90 protection mechanisms differ­
entiate between these two versions of a user.

One fundamental principle (and policy) that
the GUARDIAN 90 operating system imple­
ments is that of equal distrust of all remote
systems. In other words, from \TIBET's view­
point, a FIRMWARE.RICHARD authenticated
on \BORA and a FIRMWARE.RICHARD
authenticated on \RIO are no different. They
are both remote versions of the network user,
FIRMWARE.RICHARD, and are treated as
such.

Objects
At the highest level, the system entities to be
protected are referred to as objects. Each
GUARDIAN 90 object is identified by a unique
file name. A file can be all or a portion of a
disk, a device such as a terminal or line
printer, or a process. A file is referenced by the
unique symbolic file name that is assigned
when the file is created.

Figure 4

~1

Subject2

Sub/&¢t3

Object 1 (React. Pl.!rge), Ol:ijeet 2 {Read)

Object3(Read, Write)

Object 1,~Read) .. ~~~,\Nrite)

JUNE 1986 • TANDEM SYSTEMS REVIEW

Figure 3.

Access control list.

Figure 4.

Capability list.

5

6

For a disk file the symbolic name has three
parts:

■ A volume name to identify a particular disk
pack in the system.

■ A subvolume name to identify the disk file
as a member of a related set of files on the
volume.
■ A disk file name to identify the file within
the subvolume.

An example is $DATA.PAY.ROLL.
A device file (e.g., terminal, line printer,

magnetic tape unit, card reader, data commu­
nication line) is referenced by a symbolic
device name or logical device number.
$TERM! is an example of a terminal device.
Device names and their corresponding logical
device numbers are assigned at system config­
uration time.

Finally, for a process file there are two
mutually exclusive forms of the identifying
process: the timestamp form and the process
name form. The timestamp form contains
(among other things) the time the process was
created. The process name form uniquely
identifies a process or process pair in the sys­
tem. An example of a process name is $UPD.

GUARDIAN 90 Protection
The GUARDIAN 90 operating system provides
some basic protection mechanisms. When a
user logs on to use GUARDIAN 90 interac­
tively, or when a program programmatically
logs on as a user, the operating system uses
passwords to ensure the authenticity of the
user before allowing that process to take on
the identity of the user. Once the user has been
authenticated, GUARDIAN 90 sets the user ID
of the process requesting the LOGON to that
of the user. The process then is allowed to gain
access to information in the system as an
agent for the user.

The main focus of the GUARDIAN 90 oper­
ating system is the protection of disk files.
Four operations are controlled: read, write,
execute, and purge. These accesses are defined
as follows:

■ Read, meaning examine or copy the disk
file's contents.
■ Write, meaning modify the contents of the
disk file.

■ Execute, meaning execute the file (if it is a
program file).

■ Purge, meaning delete the file.

The disk file's owner can establish one of
seven levels of protection for each of the four
types of access. All of these levels are relative
to the owner of the disk file on the given
system:

■ Local Super ID only.

■ Local or network owner only.

■ Any member of the local or network
owner's group.

■ Any network user.
■ Local owner only.
■ Any member of the owner's local group.
■ Any local user.

Some basic protection services are inherent
in GUARDIAN 90. There are, however, certain
services lacking in the GUARDIAN 90 protec­
tion mechanism. SAFEGUARD software was
designed to correct and enhance many of these
areas:

■ Insufficient granularity (the GUARDIAN 90
protection mechanism provides coarse access
control to disk files). For example, in order to
share a file between two user groups in the
system, access to the file must be permitted to
all users on that system.

■ Insufficient control of access to other
GUARDIAN 90 objects. There is no protection
of terminals, tapes, lines, and processes.
■ No authorization auditing. There is no capa­
bility to record the granting or denying of
access to an object.
■ No auditing of changes to the security data
base. Changes of object ownership and secu­
rity are not recorded.

TANDEM SYSTEMS REVIEW• JUNE I 9 8 6

■ No authentication auditing. Tandem does
not support any means of auditing authentica­
tion attempts.

■ Limited password management.

■ No file creation control.

SAFEGUARD Protection
SAFEGUARD system protection software
coexists with and extends GUARDIAN 90 pro­
tection by providing more extensive and gen­
eral authentication, authorization, and
auditing services.

Authentication
The first important service provided by
SAFEGUARD is authentication, i.e., proving
that users are who they say they are. While
there are many new exotic technologies, such
as retinal eye scanners and hand geometry and
fingerprint readers, knowledge of a password,
the method of authentication used by the
GUARDIAN 90 operating system, remains the
least expensive and most widely accepted
means of identification.

Controlling the authentication mechanism
is important. SAFEGUARD's capabilities
include:

■ Forcing a password to change periodically.
■ Requiring a minimal password length.
■ Requiring one-way encryption of passwords.
■ Allowing a system manager to grant a user
temporary access to a system by defining a
user expiration date.

■ Temporarily suspending a user's ability to
access the system.

Perhaps most importantly, the SAFEGUARD
system protection extends the concept of
object ownership to also apply to users. With
this mechanism, a site can define all users as
belonging to a local user (e.g., the local secu­
rity administrator) or as belonging to a net­
work user (e.g., a single security administrator
for the entire distributed system). It might also
make sense to have some important users
under the control of a local owner, while for
ease of use the rest could belong to a network
owner. SAFEGUARD provides a mechanism
that allows a site to implement a variety of
security policies.

Authorization
Once the user is authenticated, SAFEGUARD
checks all requests for system objects based on
a list of authorized users. The access list may
contain local users, network users, local
groups, or network groups. In addition
SAFEGUARD can explicitly deny a user, or
group of users, access to a particular object.

Objects that can be protected include disk
files; terminals; encryption devices; SNA
ports; X.25 communication lines; named pro­
cesses; printers; and 6100 subsystem, TIL™,
THL™, and INFOSAT™ devices. In addition,
the SAFEGUARD
system provides con­
trol over disk file
creation. This is par­
ticularly useful in
determining which
users can place files
on the $SYSTEM.SYS­
TEM and $SYSTEM.

T:'he main focus of
the GUARDIAN 90

operating system is the
protection of disk files.

SYSnn subvolumes. Without this control, any
user could introduce a program file that could
masquerade as a system utility. Creation con­
trol is also ~:xtended to named processes. This
can be very useful in preventing the creation of
a masquerading process.

The SAFEGUARD security system provides
a smooth migration path from GUARDIAN 90
protection to SAFEGUARD protection by
allowing the two forms of protection to
coexist. Therefore, a user may choose to pro­
tect some critical disk files with SAFEGUARD
and allow the remaining disk files to be pro­
tected by current GUARDIAN 90 security. In
addition, SAFEGUARD can exist in a mixed
EXPAND™ network with some nodes protected
by SAFEGUARD and some not.

JUNE 1986 TANDEM SYSTEMS REVIEW 7

Figure 5.

SAFEGUARD
processes.

8

Figure 5

I :

SAFECOM

SMON SMON

As with users, SAFEGUARD objects are
also owned. An object may either be owned
by a local user or a network user. When an
object is owned by a network user, all aspects
of the object's security can be controlled from
a remote node. Object owners can also tempo­
rarily suspend a user's ability to access their
object. When the access authorities granted to
users with the object's access list are sus­
pended, only the object's owners, the owner's
group manager, and the local SUPER ID are
allowed access to the object.

Auditing
While authentication and authorization ser­
vices are sufficient to provide on-node protec­
tion, auditing of these two activities is neces­
sary to aid in detecting and tracking any
attempts at breaking the protection mecha­
nism. The SAFEGUARD protection system
provides the capability to audit authentication
requests, authorization requests, requests to
modify the authentication data base (e.g., to
change the user expiration date), and requests

SMP

SMON SMON

to modify the authorization data base (e.g., to
add an entry to the access list). Since auditing
is a time-consuming operation, SAFEGUARD
software allows the user to choose whether
only successful requests, only failed requests,
or both are audited. This same degree of con­
trol is also applied to whether the request is
local or remote.

Both of the authentication and authoriza­
tion audit data bases are entry-sequenced files
formatted so that ENFORM™ reports can be
written. The audit records contain such infor­
mation as the time of the attempt and who
made it, as well as the node from which the
attempt was made.

Implementation
The SAFEGUARD system is composed of a
family of cooperating processes and follows
the process model established for the Transac­
tion Monitoring Facility (TMF™) and
INSPECT™. It has three types of processes:
SAFECOM, the SAFEGUARD Management
Process (SMP), and the SAFEGUARD Monitor
(SMON). Their relationship is shown in Fig­
ure 5. SAFECOM provides the interactive
interface for SAFEGUARD. The command
language is similar to the language used in
other Tandem products such as TMFCOM and
PATHCOM. SAFECOM is used to control both
the authentication and authorization data
bases throughout the network.

TANDEM SYSTEMS REVIEW JUNE 1986

The SMP is a Nonstop system process-pair
responsible for maintaining the availability of
the SMON in each CPU of a system protected
by SAFEGUARD. The SMP also modifies the
authentication and authorization data base
and enforces the ownership rules. SAFECOM,
for instance, talks to the SMP in order to pro­
vide the interactive interface for modifying
security information. Finally, the SMP pro­
vides the authentication services.

The server processes (SMONs) are respon­
sible for enforcing the authorization service for
GUARDIAN 90 objects. One SMON runs in
each CPU of a system protected by
SAFEGUARD. Implementing one process per
CPU provides both multi-CPU failure toler­
ance and improved performance over the use
of NonStop process-pairs.

The SAFEGUARD authorization and autho­
rization auditing service is supported locally
with interfaces in the procedures OPEN, CRE­
ATE, RENAME, PURGE, NEWPROCESS, and
STOP, and remotely with an interface in the
EXPAND line handler. Authorization requests
for a given object are routed to the SMON in
the primary CPU for that device. For example,
if the primary disk process for $DATA is
located in CPU 4 then all requests to open a
disk file on $DATA are handled by the SMON
in CPU 4. This is true both remotely and
locally. Furthermore, the authorization data
base for $DATA is maintained on $DATA. For
all system objects that do not have long-term
media storage associated with them (e.g.,
processes, tape drives, communication
devices, and terminals), the authorization data
base is maintained on $SYSTEM.

Conclusion
Providing distributed system protection so
that users can implement a variety of security
policies requires both on-system and off­
system mechanisms. Off-system protection is
provided by encryption, while on-system pro­
tection is made possible by a combination of
the hardware and the operating system.

The NonStop II, TXP, and EXT hardware
and the GUARDIAN 90 operating system and
its extension, SAFEGUARD, provide that pro­
tection in Tandem NonStop systems.

J U N E I 9 8 6 T A N D E M

References
Data Encryption Standard. 1977. FIPS Publication 46. Depart­
ment of Commerce.

Ehrsam, W.F., \1atyas, S.M, Meyer, C.H., and Tuchman, W.L.
1978. A Cryptographic Key Management Scheme for Imple­
menting the Dai:a Encryption Standard. IBM Systems Journal,
Vol. 17, No. 2, pp. l06-124.

Feistel, H. 1973. Cryptography and Computer Privacy. Scien­
tific American 228, No. 5, pp. 15-23.

Lampson, B.W. 1971. Protection. In Proceedings of the Fifth
Princeton Symposium on Information Sciences and Systems,
Princeton University. Reprinted in Operating System Review,
Vol. 8, No. I.

Saltzer, J.H., and Shroeder, M.D. 1975. The Protection of
Information in Computer Systems. In Proceedings of IEEE,
Vol. 63, No. 9.

Popek, G.J. 1974. Protection Structures. Computer. Vol. 7,
No. 6.

Wilkes, M. 1972. Time Sharing Computer Systems. American­
Elsevier, Second Edition.

Acknowledgments
The writer acknowledges Wendy Bartlett, Leland Fong, Dave
Lilja, Kevin Weigler, Roy Capaldo, Matt Matthews, Garry
Easop, and Kevin Coughlin for their many contributions to this
article.

Timothy Chou joined Tandem Software Development in May
1981. Prior to this, he completed a Ph.D. in Electrical Engineering
at the University of Illinois, Urbana-Champaign.

SYSTEMS REVIEW 9

PATHWAY IDS:
A Message-level Interface
to Devices and Processes

ntelligent Device Support (IDS)
for the PATHWAY transaction
processing system was first made
available with the BIO release of
the GUARDIAN™ operating sys­
tem. IDS allows applications
using PATHWAY to communicate

with systems, devices, and processes directly,
without the need for special front-end pro­
cesses. IDS permits programs written in
SCREEN COBOL to communicate with so­
called intelligent devices (such as personal
computers, automated tellers or ATMs, and
point-of-sale machines) and GUARDIAN pro­
cesses in which screen presentation will be, or
already has been, performed (e.g., IBM 3270
passthrough). 1

1This article was written before the B30 software release. Consult the most
current manuals for full, current information about PATHWAY IDS, its scope
and functionality.

This article begins with a brief history of
the PATHWAY transaction processing system
and then presents the following about IDS:

■ Functional overview.

■ New data definitions.

■ New SEND MESSAGE statement.

■ Functional overview of message processing.

■ Terminal Control Process (TCP) resource
consumption and configuration.
■ Conversion procedures for users.
■ Sample user-conversion program for users.
■ Sample IDS program.

History of the PATHWAY System
To understand the role of IDS in the PATHWAY
transaction processing environment, it is use­
ful to retrace the evolution of the PATHWAY
system and compare the objectives of the orig­
inal product with its present direction. Until
the introduction of its conversational features,
the PATHWAY system was designed to serve
conventional on-line applications and to pro­
vide communication and presentation services
for a limited number of block-mode terminal
types (6510, 6520, 6530, 6540, and IBM 3270).
The data exchange that takes place between
the PATHWAY system and these terminals is
terminal-dependent and contains screen­
specific information. The conversational ver­
sion of PATHWAY was added to support TTY
devices that do not operate in block mode.

TANDEM SYSTEMS REVIEW• JUNE 1986

To aid the PATHWAY system in supporting a
wide variety of terminal types, Tandem pro­
grammers and Tandem users have written
multithreaded, fault-tolerant front-end pro­
cesses (FEPs). Their purpose is to translate the
message traffic between the PATHWAY TCP
and an unsupported device into a format
acceptable to either. One popular example of
this is the Terminal Dependency Eliminator
(TDE), written by a Tandem analyst and made
generally available to Tandem users.

Because of the Tandem Nonstop system's
excellent networking capabilities, an increas­
ing number of computer users have chosen it
for connectivity, device management, and
device switching between application systems.
Two examples of this are the controlling of
large networks of ATMs and the providing of
passthrough capabilities to applications run­
ning on hosts other than the Tandem Nonstop
system. The requirements of such
communications-oriented and "hybrid"
environments are reflected in the direction
the development of the PATHWAY system
has taken.

IDS carries PATHWAY's communications
capabilities a step further by providing fea­
tures that eliminate or reduce the need for the
FEPs and provide an integrated interface to
previously unsupported devices.

Functional Overview of IDS
IDS is best described as a message equivalent
to the familiar block-mode ACCEPT and DIS­
PLAY statements. In conventional block-mode
SCREEN COBOL, working-storage data is
mapped through the Screen Section with the
ACCEPT and DISPLAY statements. In IDS,
working-storage data is optionally mapped
through a Message Section with a SEND
MESSAGE statement.

As with Screen Section data items, user­
conversion procedures can be invoked for ele­
mentary field-level items in the Message
Section. In addition, message-level conversion
is provided through the USER CONVERSION
clause of the SEND MESSAGE statement.

New Data Definitions
For sending information to processes or
devices that do not require screen formats,
new IDS data-definition constructs in the Data
Division are provided to distinguish message
structures from screen structures. The section
is identified by a Message Section statement.
This section does not consume terminal con­
text area; it provides a mapping function for
data from a terminal to working-storage data
elements (and vice versa).

Message Section Message-description Entry
A number of messages can be defined in the
Message Section with the conventional
SCREEN COBOL level numbers. Level 01
identifies the beginning of a message, and
subordinate group and elementary data items
can be defined. A message can be as large as
12 Kbytes (12,288 bytes). (Software releases
before the B30 release support only an 01-level
alphanumeric data item.)

Field-characteristic Clauses
Four field-clharacteristic clauses are possible in
the Message Section:

■ MESSAGE FORMAT.

■ PICTURE.

■ TO, FROM, and USING.

■ USER CONVERSION.

The PICTURE; TO, FROM, and USING; and
USER CONVERSION clauses are the same as
defined in the Screen Section. The MESSAGE
FORMAT clause provides for three types of
message format: FIXED, VARYING 1, and
VARYING2. The MESSAGE FORMAT clause
can only be used on the 01-level definition.

JUNE 1986 TANDEM SYSTEMS REVIEW 11

Figure 1

Count 2

11

Length

Figure 1.

The format of a variable­
length message. The
format consists of a 1- or
2-byte length field and
the data portion. The
length field indicates the
count of bytes in the data
portion of the message,
not including the length
field itself. In this
VARYING2 message, the
length is 11 as there are
11 data characters follow­
ing the length descriptor.

Figure 2

3 4 5 6 7 8 9 10 11 12 13

a k:

Data

Data Editing and Transformation
The data is transformed between the paired
Working-storage and Message Section PIC­
TURE clauses by normal SCREEN COBOL
editing and move rules. The PICTURE clauses
must match in type and may differ in length
(and, for numeric items, in scale). Via the
Message Section, data can be gathered from
and scattered to discontiguous data items in
working storage.

Variable-length Messages
The format of a variable-length message con­
sists of a 1- or 2-byte length field and the data
portion. The length field provides a binary
count of the bytes in the data portion of the
message, not including the length field itself.

SEND MESSAGE { send-message }
{ [send-message] reply-spec}

[USER [CONVERSION] numeric-literal]
[TIMEOUT timeout-value]
[ON ERROR imperative-statement]

reply-spec
REPLY [CODE FIELD [IS] code-field]
{ YIELDS reply-message }
{ {CODE reply-code [,reply-code] .. YIELDS reply-message} ... }

Figure 2

An abbreviated syntax
description of the SEND
MESSAGE statement.
With this statement, a

program can send a
message, receive a reply,
or send a message and
receive a reply.

Figure 1 is an example of a VARYING2 mes­
sage. For this message, the length is 11 as there
are 11 data characters following the length
descriptor. If the length field were to contain
13, the TCP would report an error, saying the
message was too short. The VARYING 1 length
can describe a message up to 255 bytes long.
The VARYING2 format can hold a maximum
length value of 64 Kbytes, but the maximum
message length is 12 Kbytes.

New SEND MESSAGE Statement
The SEND MESSAGE statement is syntacti­
cally similar to the SEND statement that is
used to communicate with servers. This means
that an intelligent device can reply to a mes­
sage with one of a set of replies and have that
reply identified and processed according to its
format. This is in contrast to the ACCEPT
statement, in which a single reply is always
paired to a screen image. The abbreviated
syntax of the SEND MESSAGE statement is
described in Figure 2. With this statement, a
program can send a message, receive a reply,
or send a message and receive a reply.

The simplest type of reply is expressed as

REPLY YIELDS reply-message

where only one reply format is expected. This
is functionally equivalent to the ACCEPT
statement. If multiple reply formats are to be
received, the CODE reply-code clause must be
used to identify a specific reply-message. One
or more reply-codes may identify the same
reply-message. If the reply-code is not in the
first 2 bytes of the reply-message, the CODE
FIELD clause must be used. The code-field is
expected to be at the same location and of
the same size for all reply-message formats.
Like the server SEND statement, the
TERMINATION-STATUS special register is set
as an index to the reply-message received upon
normal termination or as an error number if
the ON ERROR clause is executed. The
TERMINATION-SUBSTATUS may also be set,
depending on the error condition.

12 TANDEM SYSTEMS REVIEW J U N E I 9 8 6

Functional Overview of Message
Processing
Two methods of sending and receiving mes­
sages exist, and user-conversion procedures
can be invoked (optionally) on either method
to examine or alter the message contents. A
message can be:

■ Stored into or sent from working storage
directly, with an optional USER CONVERSION
clause on the SEND MESSAGE statement.

■ Stored into or sent from working storage via
the Message Section, with an optional USER
CONVERSION clause on the SEND MESSAGE
statement and/ or on the data item in the Mes­
sage Section.

User-conversion procedures are discussed in
a later section. The following sections assume
that a USER CONVERSION clause is not
specified.

Messages Directly into/from Working Storage
These messages are defined by the PICTURE
clause or group definition and are essentially
fixed-length messages. On input, the message
must be equal in length to the working-storage
item. On input or output, the message can be
"variable" when the data item is described
with an OCCURS DEPENDING ON clause.
Data is moved directly from the terminal 1/0
buffer into working storage or vice versa.
(See Figure 3.)

Messages into/from Working Storage via
the Message Section
When messages are stored into or sent from
working storage using the Message Section
and an intermediate-field work area, the
PICTURE clause(s) on the Message Section
elementary items define the send-message and
reply-message structures. (See Figure 4.) The
OCCURS DEPENDING ON clause for a
working-storage data item cannot be used
because there is no equivalent clause in the
Message Section.

The MESSAGE FORMAT clause applies to
the entire message and is currently only speci­
fiable at the 01 level. Messages can be fixed or
variable in length. Variable-length messages
are defined with the MESSAGE FORMAT
VARYING 1 or MESSAGE FORMAT VARYING2
clauses. The VARYING I or VARYING2 length
field is inserted and removed by the TCP dur­
ing message processing and is not available to
the program in working storage.

Figure 3

Figure 4

TERMPOOL

TERMPOOL

Figure 3.

Field transfer directly
from TERMPOOL into
working storage and vice
versa with no Message
Section, or from
TERMPOOL into work­
ing storage with a Mes­
sage Section, with or
without a USER
CONVERSION clause
specified on the elemen­
tary data items.

J U N E I 9 8 6 TANDEM SYSTEMS REVIEW

Working storage

Working storage

Figure 4.

Field transfer via an
intermediate-field work
area to TERMPOOL
from working storage,
using a Message Section
with or without a USER
CONVERSION clause
specified on the elemen­
tary data items.

13

Figure 5

14

IDENTIFICATION DIVISION.
PROGRAM-ID. IDS-EXAMPLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. T16.
OBJECT-COMPUTER. T16, TERMINAL IS INTELLIGENT.

DATA DIVISION.
WORKING-STORAGE SECTION.

* The data item WS-MESSAGE is referenced in the Message Section.
* Note that the reply-code is not required to be at offset O of the
* reply-message, nor is it required to be numeric.

01 WS-MESSAGE PIC X(20) VALUE "Send back a message".

01 WS-REPLY.
05 WS-REPLY-LENGTH
05 WS-REPLY-CODE
05 WS-REPLY-BODY

01 WS-SPACE-ALLOC

PIC 9(4) COMP.
PIC X(02).
PIC X(1920).
PIC X VALUE"".

01 WS-TERMINATION-STATUS PIC 9(04) COMP.
01 WS-TERMINATION-SUBSTATUS PIC 9(04) COMP.

MESSAGE SECTION.
01 MS-MESSAGE

05 MS-MESSAGE-HEADER

05 MS-MESSAGE-BODY

01 MS-REPLY
05 MS-REPLY-LENGTH

05 MS-REPLY-CODE

05 MS-REPLY-BODY

01 MS-DUMMY-REPLY

PROCEDURE DIVISION.
MAIN SECTION.

PERFORM 100-SEND-MESSAGE.
010-EXIT.

EXIT PROGRAM.

MESSAGE FORMAT IS FIXED.
PICX(26) .
FROM WS~SPACE-ALLOC.
PIC X(20)
FROM WS-MESSAGE.

MESSAGE FORMAT IS FIXED.
PIC 9(4) COMP
TO WS-REPLY·LENGTH.
PICX(02)
TOWS-REPLY-CODE.
PIC X(960)
TOWS-REPLY-BODY.

MESSAGE fORMAT IS FIXED,
PIC X{.2()48) •
TOWS--$PACE·ALLOC.

* The outbound message is sent via a Message Section structure.
* This structure inserts a place holder field for a header data item
• to be provided by the user-conversion procedure.
* The inbound message "AA" is placed directly into working storage.
• The "BB" is transformed via the user-conversion routine that
* modifies the message by storing the message length in the message.
• The dummy reply "XX" is provided to lengthen the intermediate work
* area for the user-conversion procedure in processing the reply.

100-SEND-MESSAGE.
SEND MESSAGE MS-MESSAGE

REPLY CODE FIELD IS WS-REPLY-CODE
CODE "AA" YIELDS WS-REPLY
CODE "BB" YIELDS MS-REPLY
CODE "XX" YIELDS MS-DUMMY-REPLY

USER CONVERSION 1
ON ERROR

PERFORM 900-SENDMSG-ERROR.

* A terminal defined as intelligent is likely to be dependent on a
* PATHWAY server class to log its errors.

900-SENDMSG-ERROR.
MOVE TERMINATION-STATUS

TOWS-TERMINATION-STATUS.
MOVE TERMINATION-SUBSTATUS

TO WS-TERMINATION-SUBSTATUS.
SEND WS-TERMINATION-STATUS

WS-TERMINATION-SUBSTATUS
TO "IDS-ERROR-SVR".

To pass the length field between working
storage and a user-conversion procedure,
include an elementary data item in the Mes­
sage Section data definitions. See the data
item

05 MS-REPLY-LENGTH PIC 9(4) COMP
TOWS-REPLY-LENGTH.

in Figure 5. The annotated SCREEN COBOL
code in this figure represents a typical imple­
mentation of a Procedure Division for IDS.
The objective of the program is to request raw
data from a program running in an intelligent
device and store it in working storage. In this
example, protocol-related overhead must be
added to the send-message and stripped from
the reply-message. In order to do this, the
SEND MESSAGE statement invokes a user­
conversion procedure.

On input, the user-conversion procedure
must shift the data portion of the message
2 bytes to duplicate length value (VARYING 1
must be converted to 2 bytes for the COMP
usage). Although the example doesn't do this,
on output, the length may be passed to the
user-conversion procedure in the message,
used, and then shifted off. For variable-length
messages, the TCP automatically truncates any
trailing blanks and inserts the varying field
length in front of the message.

Figure 5

A typical Procedure
Division for IDS. The
program requests raw
data from a program
running in an intelligent
device and stores it in
working storage. A user­
conversion procedure is

invoked from the SEND
MESSAGE statement to
add protocol-related
overhead to the send­
message and to modify
one of the reply­
messages.

T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6

TCP Resource Consumption and
Configuration
To perform the data transfer and formatting
operations required for IDS, two or three data
areas are required. The basic data areas are
working storage and the terminal buffer area.
Working storage is defined by the PICTURE
clause for an elementary data item, and for a
group item, it is the sum of these elementary
items. The terminal buffer area in TERM­
POOL is allocated according to the larger size
of the send-message or the largest of the reply­
messages plus one.

An additional intermediate work area is
required when data is to be formatted between
the Message Section and working storage (Fig­
ure 4) and/ or when a USER CONVERSION
clause is used on the SEND MESSAGE state­
ment (Figure 6). This area is allocated at the
end of the current terminal context area. The
size of the total area is specified with the SET
TCP MAXTERMDATA parameter in
PATHCOM. (PATHCOM is the command inter­
face to PATHMON, the central control process
in the PATHWAY system.) The value can be
empirically derived during unit testing via the
PATHWAY STATS command to determine the
largest area ever allocated during the execu­
tion of the application. (See Wong, 1984, for
more information on the PATHWAY TCP and
PATHWAY statistics.)

User-conversion Procedures
When there is a requirement for bit­
manipulation functions, communication or
device control characters, or variable-length
messages that do not conform to the VARY -
INGl or VARYING2 formats, user-conversion
procedures are necessary. Four user-conversion
procedures provide for the reformatting of
messages or individual numeric and alphanu­
meric fields on both input and output oper­
ations. (See Appendix D of the PATHWAY
SCREEN COBOL Reference Manual for
details.) User-conversion procedures can be
called at two levels during message processing.

Send-message Processing
When a send-message is constructed, one or
more working-storage fields are moved to an
area allocated in the TCP's TERMPOOL (Fig­
ure 3 or 4). Each field can be reformatted at
this time by a user-conversion procedure

Figure 6

lntermediate-

TERMPOOL ,:~~S:r~~ TERM POOL
~-------... ~-------... _,

L
n

A B C A B C

LJ

(specified on a data item in the Message Sec­
tion). The procedure is given an intermediate
work area in which to store the results of the
conversion. The TCP moves the resultant field
to the buffer in TERMPOOL (Figure 4).

After the send-message is built, the message
can be reformatted by a user-conversion proce­
dure (e.g., adding control characters or a
routing header) specified on the SEND MES­
SAGE statement. Again, an intermediate work
area is provided that is large enough to hold
the entire message. The TCP moves the mes­
sage back to TERMPOOL for the length speci­
fied (Figure 6). To lengthen a send-message
(i.e., to add header and/or trailer fields), the
Message Section message-description entry
must contain additional "place holder" fields.
For example, in Figure 5, the statement

05 MS-MESSAGE-HEADER PIC X(25)
FROM WS-SPACE-ALLOC.

would cause 25 bytes to be reserved in the
send-message for a header, while only consum­
ing one character in working storage.

n
A B C

LJ

Figure 6

Message transfer via an
intermediate-message
work area when a USER
CONVERSION clause is
specified on a SEND
MESSAGE statement.

JUNE 1986 TANDEM SYSTEMS REVIEW 15

Figure 7

PROC USER"ALPHA"INPUT"MSG"CONV (USERCODE, ERROR, INPUT,

Figure 7

INT
INT
STRING
INT
STRING
INT
STRING
INT
INT
INT
INT

Begin

USERCODE;
.ERROR;
.EXT INPUT;
.INPUT"LEN;
.EXT INTERNAL;
INTERNAL "LEN;
FILL "CHAR;
FILL "OFF;
RIGHT"JUSTIFIED;

.FIELD"RETURNED;

.FIELD"PRESENT;

INPUT"LEN, INTERNAL, INTERNAL "LEN,
FILL "CHAR, FILL "OFF, RIGHT"JUSTIFIED,
FIELD"RETURNED, FIELD"PRESENT);

Set by TCP
Set by user procedure
Set by TCP
Set by TCP; modified by user
Set by user procedure
Set by TCP
Set by TCP
Set by TCP
Set by TCP
Set by user procedure
Set by user procedure

String .ext p; Temporary pointer
Int Length:= lnternal"len - 2d; ! Stopper for internal"len
Case usercode of

Begin
!O! ! Routine O - Change numbers to"•"

Begin ! Perform conversion
@p: = @internal;! reply-code.
@internal : = @internal + 2d;
While length do

Begin
If $numeric(internal) then

Internal':=''"";
@internal:= @internal + 1d;
Length : = length - 1;

End;
@internal : = @p;
Error:= O;

End;
! 1 ! ! Routine 1 - Change letters to"#"

!2!

End;
End;

Begin ! Perform conversion
@p: = @internal;
@internal : = @internal + 2d;
While length do

Begin
If $alpha(internal) then

Internal ': =' "#";
@internal:= @internal + 1d;
Length : = length - 1;

End;
@internal:= @p;
Error:= O;

End;

Begin
End;

Begin
Error : = 105;
End;

Routine 2 -
No conversion - NOP

Any other routine is an error

' Return error code

End Case
End Proc

An example of a case
structure that best imple­
ments a user-conversion
procedure.

Reply-message Processing
When a reply-message is received, the message
can be reformatted by a user-conversion proce­
dure (e.g., removing control characters or a
routing header) specified on the SEND MES­
SAGE statement. The procedure is given an
intermediate work area large enough to store
the largest reply (Figure 6). The TCP moves
the message back to TERMPOOL for the
length specified. To cause a larger allocation,
the SEND MESSAGE statement would have to
include a "dummy" message-description entry
that described the desired length. See Figure 5
for the Message Section statement

01 MS-DUMMY-REPLY PIC X(2048)
TO WS-SPACE-ALLOC.

and its use in the SEND MESSAGE statement.
Next, the reply-code tests are made to select

a reply-message format that is then used to
move the field(s) to working storage. Each
field can be reformatted at this time by a user­
conversion procedure (specified on a data
item in the Message Section). The procedure is
given the address and length of the working­
storage data item (Figure 3).

User-conversion Procedure Names
During reply-message or send-message oper­
ations, the respective user-conversion proce­
dures USER"ALPHA"INPUT"MSG"CONV or
USER "ALPHA "OUTPUT"MSG"CONV may
be called for an alphanumeric field in the
Message Section or, on a SEND MESSAGE
statement, for the entire message, which is
treated as an alphanumeric group item even if
it contains a single numeric field. The proce­
dures USER "NUMERIC"INPUT"MSG"CONV
or USER "NUMERIC"OUTPUT"MSG"CONV
may be called for only a numeric field in the
Message Section.

Note: The user-conversion procedure must
befulry tested to ensure that no data­
formatting errors would occur to cause the
terminal context area to be exceeded. This
would affect another terminal's data space
and might make debugging very difficult.

16 T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6

Numbering User-conversion Procedures
When numbering user-conversion routines,
programmers should follow certain conven­
tions. If a USER CONVERSION clause is speci­
fied on the USING clause or on the SEND
MESSAGE statement, there must be a pair of
routines in the output and input procedures
that handle the same number. If processing is
to be done on only one direction (e.g., the
message is reformatted on output), the other
procedure must contain an equivalent routine,
which can be nothing more than a BEGIN­
END statement pair (effectively a no-operation
routine).

Note: The TCP performs the data transfer
based on the PICTURE clauses before the user­
conversion procedure is called, in case the
procedure is a no-operation routine.

Sample User-conversion Procedure
Writing an IDS user-conversion procedure is
no different from writing a procedure to con­
vert terminal-screen data or support 3270
attention keys. The PATHWAY SCREEN
COBOL Reference Manual provides a detailed
catalog of input and output parameter require­
ments for the routines. The example in Fig­
ure 7 contains the case structure that imple­
ments a user-conversion procedure.

Conclusion
Intelligent Device Support, or IDS, enhances
the PATHWAY transaction processing system
by providing language elements in SCREEN
COBOL that process messages to intelligent
devices, in addition to formatted screen termi­
nals. The new SEND MESSAGE statement
adds power to device handling such that a
single message can be sent and any one of a
number of replies can be processed in a single
statement. These messages can now be fixed
or variable in length.

In addition, user-conversion routines can be
written at both the field and message levels to
format data at a lower level than that provided
in SCREEN COBOL. As PATHWAY now pro­
vides a fully integrated solution to the support
of intelligent devices within a single TCP pro­
cess, the need for user-written front-end pro­
cesses should be greatly reduced.

J U N E I 9 8 6 T A N D E M

References
PATHWAY SCREEN COBOL Reference Manual. Part no.
82424 A00. Tandem Computers Incorporated.

Wong, R. 1984. A New Design for the PATHWAY TCP.
Tandem Journal. Vol. 2, No. 2. Tandem Computers Incorpo­
rated.

___ . 1984. Understanding PATHWAY Statistics. Tandem
Journal. Vol. 2, No. 2. Tandem Computers Incorporated.

Acknowledgments
The authors would like to thank Bill Firestone, Jim Gateley, and
Bob Yannucci of Software Development for their technical
review.

Mark Anderton is a staff analyst in the Application Design
Support Group of Large Systems Support. His area of expertise
is the ENCOMPASS distributed data management system,
including the PATHWAY transaction processing system, TMF,
and other data-base products. Mark joined Tandem Manufactur­
ing MIS in 1980 where he worked as a programmer and, later, as
a programming manager.

Mike Noonan is an advisory analyst in the Application Design
Support Group of Large Systems Support. He supports
ENCOMPASS products. Mike joined Tandem in 1981, following
13 years as a systems and applications programmer of on-line
transaction processing and batch systems. Mike has a business
degree from the University of Minnesota.

SYSTEMS REVIEW 17

18

New TAL Features

new, enhanced version of
TAL™, the Tandem Appli­
cation Language, is avail­
able with the B20 software
release. This article dis­
cusses the following new
features:

• Labeled CASE statement.
• Structure improvements (including pointers
in structures and substructure declarations).
• Automatic allocation of extended memory.
• Unsigned data types.

• Literal declarations.
• MOVE statement improvements.
• Errorfile directive.

Labeled CASE Statement
The CASE statement provides a multiway con­
trol structure in which the value of an index
expression is used to transfer control to one of
several case branches.

Before the B20 release, the TAL CASE state­
ment required users to express the correspon­
dence between the value of an index expression
and case branch implicitly, according to the
sequential ordering of each of the case
branches. For example:

PROC calc(op, a, b, c);
INT op, a, b, .c;

BEGIN

CASE op OF
BEGIN
GOTO no"op; ! selected if

c·-.- a +
c:= a -

GOTO no"op;

C: = a

c:= a

C: = a

OTHERWISE
no"op:

*

I

+

b· " '
b· " '

"
b· " '
b· " '

"
b· " '

IF op< >0 THEN
CALL error(op);

END;

END;! calc !

"
"
"
"
"

"
"

op 0!

op 1 !

op 2!

op 3 !

op 4!

op 5!

op 6 !

op 7!

Note the implicit, positional correspondence
between index expression, the value of op, and
case branch. Besides being error-prone, espe­
cially for large numbers of case branches, this
positional scheme imposes some awkward

TANDEM SYSTEMS REVIEW JUNE 1986

coding when the same case branch is to be
selected by more than one value of the index
expression. Either a GOTO must be coded, as
shown by index values O and 3, or case
branches must be duplicated, as shown by
index values 1 and 7.

In the B20 release, CASE statement
branches may be labeled. The principal
improvement is that the correspondence
between the index value and case branch is
expressed with explicit, nonpositional syntax.
In this new form, the example becomes:

PROC calc(op, a, b, c);
INT op, a, b, .c;

BEGIN

CASE op OF
BEGIN

6->
! selected if

4->
C. - a * b· .- ' 1, 7 ->
C. -.- a + b·

' 2->
C. -.- a b·

' 5->
C. -. - a I b·

'
OTHERWISE - >

IF op< >0 THEN
CALL error(op);

END;

END;! calc !

" "

" "

" "

" "

op 6 !

op 4!

op l !

op 2!

op 5!

As this example shows, case branches can
be coded in any order since the index/branch
correspondence is given by the "label." Note
also that "index gaps," such as the values O or
3, do not have to be coded as GOTOs; because
they are unspecified, they both automatically
branch to the OTHERWISE clause. Finally,
note how simply a single case branch can be
made to correspond to more than one index
value, as shown by values 1 and 7.

The syntax1 for the labeled CASE statement
is given in Figure 1 . The following examples
highlight some additional features.

1Syntax conventions are as follows: lowercase letters within angle brackets
(< >) represent all user-supplied variable entries; braces ({ }) indicate that
exactly one of the options listed must be selected; brackets ([]) indicate that
the field is optional and any number, including 0, of the enclosed options may
be chosen; an ellipsis (...) immediately following a pair of brackets or braces
indicates that the enclosed syntax can be repeated any number of times.

J U N E 1 9 8 6 T A N D E M

Figure 1

CASE <selector>OF
BEGIN
<alternative>;
[<alternative>;]

where

[<alternative>;]
[OTHERWISE->< statement-s >;]
END

<selector>
is an INT arithmetic expression that uniquely selects the case
<alternative> to be executed.

<alternative> is
< case label> [, < case label>] ... -> < statement-s >

An <alternative> is a sequence of <statement>s, < statement-s>, and
an associated set of constant INT values, as specified by <case label >s.
The <statement> s of <alternative> are executed if <selector> equals
one of its associated values.
No two <alternative> scan have an associated value in common.

< case label> is
< INT constant> or< INT constant-a> .. < INT constant-b>

< case label> s are used to specify constant INT values. The first form
specifies a single value and the second specifies all INT values i such that
< INT constant-a> < = i < = < INT constant-b>. When used, the second
form must specify at least one value.

< statement-s > is
<statement> [; <statement>] ...

<statement> can be any TAL statement, labeled or unlabeled.

OTHERWISE->
specifies an optional sequence of statements to be executed if no
<alternative> is selected by <selector> .
If this clause is not used and no <alternative> is selected, an instruction
fault will occur.

Figure 1. In a labeled CASE statement, consecutive
selector (index) values that branch to the same
alternative (case branch) need not be individu­
ally listed. Instead, they can be abbreviated as
a range of values, from low value to high
value:

CASE syntax. TAL now
includes a labeled CASE
statement.

CASE i OF
BEGIN

0 - > ! alternative 0 !

-10 .. -1->
! executed when -10 < = < = -1 ! ,

1.. 9->
! executed when 1 < = < = 9 !
END;

SYSTEMS REVIEW 19

20

Case label ranges and single case labels can
be used in combination to provide a very flexi­
ble means of selecting case alternatives:

CASE i OF
BEGIN

1,3,11->
! Executed when i

i = 3 ORi
1 OR!
11

i:=i*3;
i:=i*ll;

! Note that a labeled case
! alternative can consist of
! a sequence of statements,
! unlike the unlabeled case
! branch.

0, 2, 4 .. 10->
! Executed when i = 0 OR !

i = 2 OR!
(4 < = i < = 10.)!

END;

Within a labeled case statement, each case
label can be specified (singly or in a range)
only once:

CASE i OF
BEGIN

0-> ;

-1 .. 2->;

3, 3 ->;

4->;
5, 4->;

END;

! ILLEGAL, 0 has already
! been specified.

! ILLEGAL, even in the !
! same case label list. !

! ILLEGAL!

Finally, note that the labeled CASE state­
ment provides a predictable, more graceful
handling of an out-of-bounds selector expres­
sion when no OTHERWISE clause is coded. If
arithmetic traps are enabled, the CASE state­
ment generates an overflow trap; if traps are
disabled, control passes to the end of the state­
ment. While unpredictable branches were pos­
sible with the unlabeled CASE statement, they
are no longer possible when the labeled CASE
statement is used.

Structure Improvements
Pointers in Structures
Before the B20 release, dependencies between
different data objects could not be easily
expressed in TAL. This was primarily because
pointer variables (variables containing the
addresses of other variables) could not be
declared as component fields of structures
and substructures.

Users could work around this restriction by
representing pointer fields within a structure
as INT or INT(32) fields. Accessing the target
of such a pointer was quite awkward because
users had to copy the integer field into a suit­
ably declared temporary pointer before they
could access the target data.

In the B20 release, TAL solves this problem
by an extension that allows the declaration of
pointer fields within structures and substruc­
tures. In addition, pointer fields within a
structure are "de-referenced" (indirectly
accessed) in the same way as pointers outside
of structures. As a result, the need for tempo­
rary pointers is greatly reduced.

Not surprisingly, the syntax for declaring
pointers within a structure is very similar to
the syntax for declaring pointers outside of
structures. The only exception here is that
pointer fields, like any other component field
of a structure, cannot be initialized. See
Figure 2 for the full syntax.

With this extension, defining linked data
structures such as lists and binary trees is very
straightforward, as shown in Figure 3.

BinaryNode is declared to be a structure
template that can be used to declare structures
with three component parts: a value field and
two structure pointers that will contain the
addresses of subordinate instances of the
BinaryNode template.

As with pointers outside of structures,
access to the value of a pointer is denoted with
the "at" sign(@). The only difference is that
a pointer variable must be fully qualified (as
must any other reference to a structure field)
with the name of its enclosing structure and all
of its enclosing substructure.

With the exception of name qualification, a
reference to the target of a pointer within a
structure is similar to a reference to the target
of a pointer outside a structure. The only dif­
ference is that a pointer within a structure
cannot be subscripted.

TANDEM SYSTEMS REVIEW• JUNE 1986

While pointers in structures generally
behave the way one might expect, there are
some important limitations. First, the target
of a structure pointer contained in a structure
is not a substructure; it is itself a structure.
This is reflected in the $OFFSET function: the
offset of a field in the target excludes the off­
set of the structure pointer and the byte length
of the pointer itself. For example:

$OFFSET(Parent.RightChild)

returns the byte offset of the RightChild of
Parent; this value is 4.

$OFFSET(Parent. Left Child. Right Child)

returns the byte offset of the RightChild of
the target of the LeftChild of Parent; this
value is also 4.

Second, pointers and structure pointers
within a structure cannot be initialized at dec­
laration time as is true of other structure
items.

A third difference is that when a structure
pointer within a structure is declared, the
identifier used for the referral cannot be a for­
ward reference. That identifier must have
already been seen by the compiler, although its
declaration may be incomplete at the point of
reference. For example:

STRUCT me(*);
BEGIN

INT .me"link(me);
! This is legal.

INT .you "link(you);
! This would cause an undeclared
! identifier error.

INT info [0:9];
END;

STRUCT you(*);
BEGIN

INT .me"link(me);
! This is ok. TAL has seen "me."

INT .you "link(you);
! This is also ok.

INT different"info [0:19];
END;

J U N E I 9 8 6 T A N D E M

Figure 2

<type> {. } < identifier>
{ .SG }
{.EXT}

[= < previous item>];
where <type> is STRING, INT, INT(32), FIXED, REAL, or REAL(64).

The syntax for structure pointer declarations within structures is

{ INT } {. } < identifier> (<referral>)
{STRING} { .SG }

{.EXT}
[= < previous item>];

The syntax for initializing a pointer within a structure is

@ <Struct-index> [[. < substruct-index>] ...].<pointer-name>:=
<arithmetic-expression>;

where < struct-index > [< substruct-index >] is the name of a structure
[substructure] with or without an index expression.

Figure 3

STRUCT BinaryNode(*);
BEGIN

INT NodeActive; ! < > O implies an active node.
INT .LeftChild(BinaryNode);
INT .RightChild(BinaryNode);

END;
STRUCT Parent(BinaryNode);

STRUCT NewChild(BinaryNode);
@Parent.LeftChild: = @NewChild;

! NewChild is made the target of the
! LeftChild pointer in Parent.

@NewChild.LeftChild: = Nil; ! Initialize each of
@NewChild.RightChild: = Nil;! the pointers in NewChild
NewChild.NodeActive: = -1; ! to Nil (-1).

Parent.LeftChild.NodeActive: = O;
! Mark the target of LeftChild in
! Parent inactive.

@Parent.LeftChild : = @Parent.LeftChild.LeftChild;
! Delete the target of LeftChild of Parent
! by making the LeftChild of target the
! new target of LeftChild of Parent. !

Parent.RightChild: = Nil;
! Illegal because pointers in
! structures cannot be subscripted.!

SYSTEMS REVIEW

Figure 2.

Syntax for pointer decla­
rations within structures.

Figure 3.

In the B20 version of
TAL, defining linked
data structures such as
lists and binary trees is
straightforward. (Note
how the "@" prefix in
"@Parent.LeftChild.
LeftChild" is used to
access the address of the
target of the LeftChild of
the target of the Left­
Child of Parent.)

21

Figure 4

Figure 4.

STRUCT < identifier> (<referral>)

<identifier>

["(" <lower-bound> : <upper-bound>"]"]
[= < previous item>];

is the name of the new substructure.

<referral>

is the name of a previously declared structure.

<lower-bound>
is a constant expression in the range -32768 through 32767 that specifies the first
substructure occurrence for which to allocate storage. The default value is O (one
occurrence). Each occurrence is one copy of the substructure.

<upper-bound>
is a constant expression in the range -32768 through 32767 that specifies the last
substructure occurrence for which to allocate storage. The default value is O (one
occurrence).

< previous item>

is a previously declared structure item or substructure on the same level as
<identifier>.

Substructure Declarations

Syntax for a substructure
declared via a referral.

Before the B20 release, substructure declara­
tions could only be shared through the use of a
DEFINE.

In the B20 release, substructures can be
declared through the use of referrals to previ­
ously declared structures or structure tem­
plates. This makes the treatment of
substructures and structures more uniform
and should improve the readability of code.
For example:

STRUCT t(*);
BEGIN

STRING a,b,c;
END;

STRUCT Sub.i-.Dir;
! Direct declaration.

BEGIN
STRING s;
STRUCT ssl;
BEGIN

STRING a,b,c;
END;

END;

STRUCT SubARef;
! Referral declaration. !

BEGIN
STRING s;
STRUCT ss2(t);

END;

Code modularity is also improved if refer­
rals are used whenever two or more structures
have data in common or contain data that is
organized in the same manner. This makes
maintenance of large programs much easier
for programmers. For example:

STRUCT customerAinfo(*);
BEGIN

STRING name[0:39];
! Company name. !

STRUCT address;
! Company address.

BEGIN
STRING numberAand Astreet[0:49];
STRING city[0:19];
STRING state[0:19);
STRING zip[0:4];

END;
END;

STRUCT .orderAfor;
! Order placed. !

BEGIN
INT orderAnumber;
STRUCT customer(customer.l\jnfo);
INT partAnumber;
INT quantity;
STRING item ~rice [0:4];
STRING total Aprice[0:6];

END;

STRUCT . customer .i-.history;
! History file updated with each made. !

BEGIN
STRUCT customer(customer .l\jnfo);
STRING lastAyearAsales[0:8];

! Last year's revenue.
STRING year~o.i-.date[0:8];

! This year's revenue to date.
END;

In this example, the template
CUSTOMER .i-.INFO is used in both
ORDER "FORM and CUSTOMER "HISTORY.
Changes made to any of CUSTOMER "INFO' s
fields would be propagated to those structures
referring to it.

TAL allocates storage for a substructure
declared via a referral in the same way that it
allocates storage for a substructure declared
via a body definition. (See Figure 4.) There
are, however, the following exceptions.

First, a substructure declared via a referral
always starts on an even-byte boundary. This
rule is imposed so that substructures declared
via a referral and all structures have the same
alignment characteristics. In the first example,

22 T A N D E M SYSTEMS REVIEW J U N E I 9 8 6

$OFFSET(sub "'dir. ss 1) 1,

but

$0FFSET(sub"'ref.ss2) = 2.

A pad byte separates sub"'ref.s and
sub"'ref.ss2.

A second exception is that $LEN for a sub­
structure declared via a referral is always an
even number. This rule is imposed so that
two substructures declared with the same
< ref err al > structure always have the same
length. In the first example,

$LEN(sub"'dir.ssl) = 3,

but

$LEN(sub"'ref.ss2) = 4.

Substructure referrals may not be made to
the name of the structure whose body is cur­
rently being declared. Such a recursive decla­
ration would produce an infinite structure.

Automatic Allocation of
Extended Memory
This enhancement provides easier access to
extended memory in TAL by supporting auto­
matic memory allocation for extended global
arrays and structs.

Before the B20 release, users needed to man­
ually allocate extended memory and initialize
pointers to that space. (See Figure 5a.)

In the B20 release, for the new EXTENDED
ARRAY and STRUCT declarations, the alloca­
tion and deallocation of an appropriately sized
segment and the initialization of pointers to
that space are made by the compiler,
BINDER'M, and the GUARDIAN 90 operating
system, and are transparent to TAL users.
(See Figure 5b.)

Figure 6 contains a formal syntax descrip­
tion of array and STRUCT declarations in
extended memory.

Figure 5.

Allocation of extended
memory. (a) Before the
B20 release of TAL,
users die this manual!.
(b) In the B20 release,
the TAL compiler,
BIDER, and the
GUARDIAN 90 operat­
ing system allocate it
automatically.

J U N E I 9 8 6

Figure 6.

Syntax for extended
arrays and STRUCTS.

T A N D E M

Figure 5

Figure 6

(a)

?SOURCE $system.system.extdecs (ALLOCATESEGMENT, USESEGMENT,
? DEALLOCATESEGMENT)

STRING .EXT ba"ptr: = OD;! Extended pointer to byte array.!
INT status:= 1000;
LITERAL seg"id = 0;
LITERAL seg"len = 2048D; ! Size of segment allocated in bytes.!
LITERAL dealloc"flags = 1; ! For DEALLOCATESEGMENT later.!
INT old"seg"num: = -1;

PROC ext"addr"example MAIN;
BEGIN

status:= ALLOCATESEGMENT (seg"id, seg"len);
old"seg"num: = USESEGMENT (seg"id);
@ba"ptr: = %2000000D; ! Initialize pointer to the start of the segment.
ba"ptr ': =' "This is a sample string.";
CALL DEALLOCATESEGMENT (seg"id, dealloc"flags);

END;

(b)

STRING .EXT ba"ptr [0:2047]; ! Extended byte array.!

PROC ext"addr"example MAIN;
BEGIN

ba"ptr ': =' "This is a sample string.";
END;

Extended Arrays:

<type> .EXT <name>"[" <lower-bound>: <upper-bound>"]"
[: = <initialization>], ... ;

where

<type> is
{ INT
{ INT(32)
{ STRING }
{ FIXED[(<fpoint>)]}
{ REAL }
{ REAL(64) }

.EXT is the extended indirection symbol.

<name> is the identifier assigned to the extended array.

<lower-bound> is a 16-bit integer constant defining the first array element.
The <lower-bound> must be less than or equal to the <upper-bound>.

<upper-bound> is a 16-bit integer constant defining the last element of the
array.

<initialization> is a constant or constant list (including repetition factors) to
be assigned as an initial value.

Extended STRUCTS:

STRUCT .EXT <name> ["[" <lower-bound> : <upper-bound> "]"];
BEGIN
< all legal structure data items >
END;

STRUCT .EXT <name> (<referral>)
["[" <lower-bound> : <upper-bound> "]"];

where
.EXT is the extended indirection symbol.

< name> is the identifier assigned to the extended structure.

<lower-bound> is the first occurrence of the structure for which storage is
allocated.

<upper-bound> is the last occurrence of the structure for which storage is
allocated.

<referral> indicates the identifier assigned to a previously defined structure.

SYSTEMS REVIEW 23

Figure 7

Figure 7.

BLOCK Ext"Global"Example;

INT .EXT X"Array [0:32767]; Double-word pointer is placed in primary
memory and array is in extended memory.
Array bounds are presently limited
to 16-bit integers.

STRUCT .EXT Y"Struct [0:4095]; ! Double-word pointer is placed in primary
BEGIN ! memory after the X"Array pointer, and it
INT Y"Array [0:8191]; ! points at the 64-Mbyte array of
END; ! STRUCTS in extended memory.

INTZ;

END BLOCK;

Issues

! User-memory data can be mixed with
! extended memory data.

Memory mapping for
extended global
variables.

Extended Global Variables with Separate
Compilation. With the B20 enhancement,
users can declare extended arrays and
STRUCTS in the same way that user-memory
arrays and STRUCTS are declared. Segment
allocation and pointer initialization are auto­
matic. Similarly, the bookkeeping for space
allocated with separate compilation is handled
analogously with that for user-memory data.
Extended arrays and STRUCTS can appear in
named blocks.

Load on Primary Global Space. A double­
word pointer to each extended global variable
will be located in the primary storage area.
Since the primary global space is 256 words,
a maximum of 128 extended global items can
be declared.

Figure 7 shows where everything is mapped
in memory.

References to extended global variables are
not as fast as those in the 16-bit address space,
but the available address space can be up to
128 Mbytes (2**27 bytes), whereas regular
arrays and STRUCTS are limited by the
64-Kbyte user-data segment size.

Mixing Automatically and Manually
Allocated Segments. Users are still free to
allocate and initialize their own data seg­
ments. However, mixing compiler-allocated
and user-allocated segments in a single module
is inadvisable. This practice is error-prone
because users must remember to explicitly
switch among the segments and restore the
correct segment before accessing the extended
data in that segment.

Dynamic Expansion of the Segment. The
extended segment size is fixed at compilation
time, and the full segment is allocated at once.
Explicit hooks allowing the user to enlarge the
segment are not provided.

Local Extended Declarations. Automatic allo­
cation of local extended arrays and STRUCTS
will be implemented in the B30 software
release. The syntax for that enhancement will
be consistent with the syntax of extended
global variables.

Unsigned Data Types
Before the B20 release, the scalar data types
available in TAL consisted of byte-, word-,
doubleword-, and quadword-sized variables.
When a programmer needed to define and
use bit-oriented variables such as single-bit
flags, whose sizes did not correspond to one
of the built-in scalar types, there were two
possibilities:

1. Use a data type that was large enough to
contain the object to be defined, at the
expense of some wasted space.

2. Use the bit deposit/extract mechanism
provided in TAL to pack two or more bit­
variables into the same word of storage and
thus minimize wasted space.

Method 1 is fine if programmers can afford
the wasted space. Given the limited number of
directly addressable locations (global, local, or
sublocal) available to a TAL program, how­
ever, this is very rarely acceptable. The storage
optimization provided by method 2 is usually
needed.

Method 2 can be as space-efficient (or inef­
ficient) as programmers care to make it. With
suitable DEFINES, a reasonably convincing
simulation of bit-variables could be
implemented:

INT bit "'carrier,
bit"'carrier"';

DEFINE flagO = bit "'carrier. < 0 > #,
flag 1 = bit "'carrier. < 1 > #,
flag2 = bit "'carrier. < 2 > #,
bit3 = bit"'carrier. < 3:5 > #,
bit5 bit "'carrier.< 6: 10 > #,
flag3 bit "'carrier. < 11 > #,
bit7 bit"'carrier"'.<0:6>#;

24 TANDEM SYSTEMS REVIEW• JUNE 1986

In this example, programmers must first
declare the storage needed to contain the bit­
variables to be defined and manually allocate
each such variable within the declared storage.
Manual allocations of this sort are error-prone
(it is very easy to inadvertently overlap two
bit-variables) and awkward to change. Chang­
ing the size of an interior bit-variable, for
example, requires manual shifting (realloca­
tion) of one or more adjacent fields.

In the B20 release, TAL implements a new
data type, UNSIGNED, which enables pro­
grammers to declare bit-variables without hav­
ing to manually assign bit positions to each
variable that is to share the same word of stor­
age. With UNSIGNED types, the preceding
example is equivalent to:

UNSIGNED(!) flag0,
flagl,
flag2;

UNSIGNED(3) bit3;
UNSIGNED(5) bit5;
UNSIGNED(!) flag3;
UNSIGNED(?) bit7;

Bit Position
<0> (word 0)
<1> (word0)
<2> (word 0)

< 3:5 > (word 0)
<6:10> (word 0)

< 11 > (word 0)
< 0: 6 > (word 1)

In this case, the first UNSIGNED variable
causes one word of storage to be allocated.
Each subsequent bit-variable is then allocated,
from bit Oto bit 15 of this word, in the order it
is declared. A bit-variable that is too large to
fit causes allocation to begin at bit 0 of a
newly allocated word of storage.

Note that because allocation is done by the
compiler, changes of size, insertions, and dele­
tions are easily made; the compiler automati­
cally ensures that no overlaps (or unnecessary
bit gaps between variables) are introduced.

The syntax for UNSIGNED variable declara­
tions is shown in Figure 8.

Because a bit-variable is not necessarily
aligned at a byte or word boundary, it is not
"addressable," meaning that it cannot be
accessed via a pointer or via a call-by­
reference formal parameter in a PROC or
SUBPROC.

An UNSIGNED variable can be assigned the
value of an expression whose word size is the
same as its equivalent INT (or INT(32)) type.
Unused bits are discarded from the high-order
(bit 0) position of the expression.

Consecutive UNSIGNED variable declara­
tions (excluding formal parameter declara­
tions) as simple variables or as component
fields of unpacked structures are allocated,
beginning with bit 0 and in the order declared,

Figure 8

UNSIGNED(<width>) < identifier> [, <identifier>] ... ;
where
<width> is

an integer constant in the range 1 through 31.

UNSIGNED (<width>) defines an arithmetic type whose values are
unsigned integers having binary representations that are <width> bits wide. This
type can be used to declare global, local, and sublocal variables, call-by-value
formal parameters in a PROC or SUBPROC, and component fields within STRUCTs
and STRUCT templates.

The value of an UNSIGNED type is logically the same as type INT if
<width> is 15 or less and INT(32) otherwise. Consequently, an UNSIGNED type
has the same operations (e.g, -, +, *,/,and'-') as its equivalent INT (or INT(32))
type.

into contiguous bit positions so that no INT
equivalent variable is split across a word
boundary and no INT(32) equivalent variable is
split across more than one word boundary.

Currently, arrays of UNSIGNED variables
cannot be declared and UNSIGNED variables
cannot be subscripted. These features will be
supported in a future release.

Within structures, the allocation of
UNSIGNED variables is very similar to their
allocation outside structures:

STRUCT s;
BEGIN
UNSIGNED(!) flag0,

flagl,
flag2;

UNSIGNED(3) bit3;
UNSIGNED(5) bit5;
UNSIGNED(!) flag3;
UNSIGNED(?) bit7;
END;

Bit Position
<0> (word 0)
<1> (word0)
<2> (word0)

<3:5> (word0)
<6:10> (word 0)

<11> (word0)
<0:6> (word 1)

Because UNSIGNED variables can be
declared to be wider than 16 bits, TAL can
support accesses to bit-variables that are split
across word boundaries. Previously, this could
not be simulated with bit deposits/ extracts
because those operations are restricted to
16-bit expressions. This example shows the
new feature:

UNSIGNED(!) flag0,
UNSIGNED(23) bit23;

UNSIGNED(5) bit5;
UNSIGNED(!) flag3;

Bit Position
<0> (word 0)

<1:15> (word0)
<0:7> (word 1)

< 8: 12 > (word 1)
< 13 > (word 1)

Figure 8.

Syntax for UNSIGNED
variable declarations.

JUNE 1986 • TANDEM SYSTEMS REVIEW 25

Figure 9.

Syntax for literal
declarations.

26

Finally, two new standard functions similar
to the existing $LEN and $OFFSET functions
have been implemented. The new functions
are $BITLENGTH(<variable>) and
$BITOFFSET(<variable>). For any variable,
$BITLENGTH returns the minimum number
of bits allocated for that variable. For any
variable within a structure, $BITOFFSET
returns the bit off set of that variable within
the outermost containing structures. In the
two preceding examples, $BITLENGTH(bit23)
returns the value 23 and $BITOFFSET(s.bit7)
returns the value 16.

Literal Declarations
The use of symbolic literals can greatly
improve the readability of a TAL program. In
many cases, the existing form of literal decla­
ration in TAL is more than sufficient. Often,
however, a programmer may want to define a
set of logically related, ordered symbolic val­
ues using integer literals. Here, the basic intent
is that each symbolic name is to have a unique
integer value; the value of a particular sym­
bolic literal may or may not be significant.

Figure 9

LITERAL< literal definition>
[, < literal definition>] ... ;

where
< literal definition> is

{ <explicit literal> }
{ < implicit literal> }

< explicit literal> is

<identifier> = <constant>

< implicit literal> is

<identifier>

<identifier>
is any legal TAL identifier.

<constant>
is an INT, INT(32) constant expression, FIXED,
REAL, or REAL(64) constant.

Before the B20 release, a natural way to
ensure uniqueness was to define the symbolic
literals as an increasing (incrementing by one)
sequence of integers. There were two ways to
proceed.

One was to assign integer values explicitly:

LITERAL
dollar"'aus = 0,
dollar "'can = 1,
krone"'den = 2,
franc"'fr 3,
dollar"'hk = 4,
yen 5,
dollar"'usa = 6,
pound "'uk = 7,
mark"'frg = 8;

The second way was to assign each succeed­
ing literal a value that is one greater than its
predecessor:

LITERAL
dollar"'aus =
dollar "'can =
krone"'den =
franc"'fr
dollar"'hk =
yen
dollar "'usa =
pound "'uk =
mark"'frg =

0,
dollar "'aus + 1,
dollar"'can + 1,
krone"'den + 1,
franc "'fr + 1 ,
dollar "'hk + 1 ,
yen+ 1,
dollar "'usa + 1,
pound "'uk + 1 ;

O!
1 !
2 !
3 !
4!
5 !
6!
7!
8 !

Both methods are error-prone. With either
method, the programmer must ensure that two
literals are not duplicated. Also, insertions
and deletions require that one or more adjoin­
ing literals be changed as well.

In the B20 release, TAL extends the syntax
for literal declarations to permit a simpler,
easier alternative:

LITERAL dollar "'aus, 0 !
dollar"'can, 1 !
krone"'den, 2 !
franc "'fr, 3 !
dollar "'hk, 4 !
yen, 5 !
dollar"'usa, 6 !
pound "'uk, 7 !
mark"'frg; 8 !

Here, the TAL compiler initializes the sequence
to O and automatically increments successive
values by one, ensuring that duplications do
not occur. Insertions and deletions can be
made without having to change any other lit­
eral in the list .

TANDEM SYSTEMS REVIEW• JUNE 1986

Figure 9 shows the new syntax for literal
declarations.

Literal declarations using only < explicit
literal> have the same meaning as in earlier
releases.

< Implicit literal>, when used, must be
either the head of a list of < literal defini­
tion> s or it must be preceded by a < literal
definition> (implicit or explicit) that defines
an INT(l6) constant literal. Under the former
condition, the value of the literal is set to O;
under the latter, the value of the literal is set to
one greater than the value of its predecessor in
the same literal declaration.

The following examples show how this
extension is used:

LITERAL zero, 0 !
one, 1 !
two; 2 !

LITERAL not .1\3;
! Equals 0, not 3. !

LITERAL three = 3;

LITERAL not .1\4;
! Equals 0, not 4. !

LITERAL five = 5, ! 5 !
six, ! 6 !
seven; ! 7 !

LITERAL pi = 3.141592e0,
pi"plus.1\1;
! ILLEGAL, predecessor is
! not an INT(l6) value.

LITERAL int.1\32 = ld,
int A32 "plus Al;
! ILLEGAL, predecessor is
! not an INT(l6) value.

LITERAL root.1\2 = 1.414e0;

LITERAL implicitAzero; O!

MOVE Statement
The B20 release enhances the TAL MOVE state­
ment in two ways:

1. Users are now allowed to mix 16-bit byte­
addressed destinations with 16-bit word­
addressed sources, and vice versa.

2. A count unit descriptor has been intro­
duced to make explicit the size of the data
elements being moved.

J U N E 1 9 8 6 T A N D E M

Figure 10

<destination> { ': ='} { <source> FOR <count> [<Count unit>]}
{ '= :'} { <constant> }

[& <source> FOR <count> [<count unit>]]. ..
[& <constant>] ...

[-> <next address>]
<destination>

is the name of the variable, with or without an index, to which the move
begins. It can be a simple variable, array, pointer, structure, substructure,
structure data item, or structure pointer, but not a read-only array.

indicates a left-to-right sequential move.

'=:'
indicates a right-to-left sequential move.

<source>
is the name of the variable, with or without an index, from which the move
begins. It can be a simple variable, array, read-only array, pointer, structure,
substructure, structure item, or structure pointer.

<count>
is a positive INT arithmetic expression that defines the number of bytes,
words, or elements in <source> to move.

<count unit>
is a description of <count>. It is one of

BYTES
WORDS
ELEMENTS

If <count unit> is not present, the meaning of <count> is as follows:
<source>

Simple variable
Array
Structure
Substructure
Structure pointer
Pointer

<constant>

<count> is the number of

elements
elements
words
bytes
bytes if STRING, words if INT
elements

is the LITERAL, numeric or character string constant, or constant list to be
moved.

< next address>
is a variable to contain the location in <destination> that follows the last
item moved. < next address> is a 32-bit byte address if either <source> or
<destination> has an extended address; a 16-bit byte address if both
<source> and <destination> have standard byte addresses; or a 16-bit
word address if both <source> and <destination> have standard word
addresses.

Figure 10. The addition of these two features increases
the usefulness of the MOVE statement and
improves its readability. Also, more efficient
code is now generated for MOVE statements
that mix standard addresses and extended
addresses.

Syntax description of the
MOVE statement.

The new MOVE statement syntax is upward­
compatible with the previous syntax. (See
Figure 10 for a formal syntax description.)

SYSTEMS REVIEW L 27

28

Byte and Word Addressing
Before the B20 release, users were not allowed
to mix standard byte and word addressing in
the MOVE statement. For example, the follow­
ing would generate an error:

PROC p;
BEGIN

STRING s[0:9];
INT i[0:4];

s ': = ' i FOR 5;
I\

**** ERROR 32 **** Type incompat­
ibility ** I

END;

The error message was emitted because the
user had a byte-addressed <destination> and
a word-addressed <source>.

In the B20 release, the TAL compiler recog­
nizes 16-bit byte/word mismatches in the
MOVE statement and emits an extended move
sequence. In such cases, TAL generates the
extended address of both the < destination >
and <source> variable, generates a byte
count (equivalent to <count>), and emits the
extended hardware instruction to accomplish
the move. Whenever TAL generates an
extended move sequence the < next address >
variable, if specified, must be a 32-bit vari­
able; otherwise, TAL emits an error message.

Two programming considerations should be
noted. First, if the <destination> is word­
addressed and the < source> is byte­
addressed, the < next address> variable will
not point to an element boundary if an odd
number of bytes are moved. For example:

PROCp;
BEGIN

STRING s[0:9];
INT i[0:4];
STRING .EXT s "next "addr;

i ': =' s FOR 3 ->@s"next"addr;

END;

When the move is complete, s"next"addr
points to the right-hand byte of i[l] (bits
< 8: 15 > of i [I]) .

The second consideration is that this feature
of TAL is only available if the resulting object

file will be run on a NonStop system. (Since
TAL is generating an extended hardware
instruction, the object file cannot run on a
Nonstop I+ TM system.) TAL emits an error 32
(type incompatibility) if the target system for
the compilation is a Nonstop I + system and
users attempt to mix 16-bit byte- and word­
addressed variables in a MOVE statement.

Count Unit
Before the B20 release, the unit size of the ele­
ments moved was not specified explicitly in
the syntax, but rather was dependent on the
type of the source variable. Thus, in order to
understand what a particular MOVE statement
actually did, a programmer reading an unfa­
miliar piece of TAL source code would have
had to refer back to the declarations of the
source and destination variables.

In the B20 release, the count unit has been
added, so that programmers can specify
whether to move in units of BYTES, WORDS,
or ELEMENTS. The meaning of ELEMENTS
depends on the type of the source variable as
listed below:

< Source> type Size of ELEMENTS

STRING Byte

INT Word
INT(32) Doubleword

FIXED Quadword

REAL(32) Doubleword
REAL(64) Quadword
STRUCT One occurrence of

the struct
STRING STRUCT One occurrence of
POINTER the struct
INT STRUCT One occurrence of
POINTER the struct
SUBSTRUCT One occurrence of

the substruct

If source is a STRUCT or STRUCT pointer
and the < count unit> ELEMENTS is used,
then an even number of bytes is always
moved. In other words, when $LEN is odd, the
pad byte at the end of the structure is also
moved.

If an identifier other than BYTES, WORDS,
or ELEMENTS is used as a < count unit> ,
TAL emits an error message.

Figure 11 a shows equivalent forms of the
same MOVE statement that use different
< count unit > s. Figure 11 b shows how the

TANDEM SYSTEMS REVIEW• JUNE 1986

BYTES < count unit > can be used to override
the MOVE statement units when both the
<source> and <destination> are type INT
variables.

Note that the identifiers BYTES, WORDS,
and ELEMENTS used as a < count unit> are
not TAL reserved words, so they can be used
as variable names. There is, however, one
restriction. Identifiers used as a < count
unit> in a MOVE statement cannot also be
used as names of a DEFINE or a LITERAL.
This is illustrated in the following example:

PROC example"'5;
BEGIN

INT varl [0: 11];
INT var2[0:ll];

LITERAL bytes = 12;
DEFINE words = var 1 + var2 #;

varl ': = ' var2 FOR 24 BYTES;
A

**** Error 27 **** Illegal Syntax
varl ': =' var2 FOR 12 WORDS;

A

**** Error 27 **** Illegal Syntax
END;

ERRORFILE Directive
Before the B20 release, users did not have an
easy way to log compilation errors or warnings
and then edit their source code while viewing
the errors.

In the B20 release, a new TAL directive
called ERRORFILE logs any compilation errors
or warnings to a specified file. Then after
compilation, users can edit their source while
viewing the errors in Tandem's new editor,
PS TEXT EDIT™ (TEDIT).

Users can log compilation errors or warn­
ings to a file by entering the ERRORFILE
directive on the run line as in

TAL /IN MYSOURCE, OUT $SI MYOBJ;
ERRORFILE < file name>

or in the source code before any declarations,
asin

?ERRORFILE < file name>
INT MYAFIRSTADEC;

TAL will then create an entry-sequenced file
called <filename> with a file code of 106.
< File name> will be expanded with the name
of the current default volume and subvolume if
necessary.

J U N E 1 9 8 6 T A N D E M

Figure 11

(a)

PROC example"1;
BEGIN
INT count;
STRING .s"buf"one [0:79];
STRING .s"buf"two [0:79];
INT .i"buf"one [0:39];
INT .i"buf"two [0:39];
INT(32) .d"buf"one [0:19];
INT(32) .d"buf"two [0:19];

l Each of the following statements is equivalent:

s"buf"one ': =' s"buf"two FOR 80;
s"buf"one ': =' s"buf"two FOR 80 BYTES;
s"buf"one ': =' s"buf"two FOR 80 ELEMENTS;

! Each of the following statements is equivalent:
count:= 40;
i"buf"one ': =' i"buf"two FOR count;
i"buf"one ': =' i"buf"two FOR count WORDS;
i"buf"one ': =' i"buf"two FOR count ELEMENTS;

! Each of the following statements is equivalent:
d"buf"one ': =' d"buf"two FOR 20;
d"buf"one ': =' d"buf"two FOR 80 BYTES;
d"buf"one ': =' d"buf"two FOR 40 WORDS;
d"buf"one ': =' d"buf"two FOR 20 ELEMENTS;

END; ! example"1

(b)

INT .int"global"buf [0:66];
PROC example"2;

BEGIN
INT file"number;
INT .int"local"buf[0:66];
INT count"read;
CALL READ(file"number, int"local"buf, 132, count"read);
! If we wish to copy this record into int"global"buf using the byte (not word)
l count returned in "count"read":

int"global"buf ': =' int"local"buf FOR count"read BYTES;
l This is equivalent to the following "word-oriented" form:

int"global"buf ': =' int"local"buf FOR (count"read + 1) / 2;
END; l example"2

TAL writes one record to < file name> for
each error or warning that occurs during the
compilation. Each record has this information
in the following order:

1. The external form of the source file that
contains the source line in which the error
or warning occurred.

2. The edit line number of the line in which
the error or warning occurred.

3. The column number in the line where TAL
detected the problem.

4. The error or warning message text.

SYSTEMS REVIEW

Figure 11.

MOVE statement count
units. (a) Equivalent
moves using different
count units. (b) Over­
riding the source type
with a count unit.

29

Figure 12

TAL /IN MYSOURCE, OUT $S.#HOLD/ MYOBJ; ERRORFILE myerrs

? ERRORFILE myerrs
1. 000000 O O int i;
2. 000000 0 0 string s : = 1000;

"
.... WARNING • • • • 13 - Value out of range

3. 000000 O O proc p;
4. 000000 1 O begin
5. 000000 1 1
6. 000000 1 1 CALL s;

"
••• • ERROR ... • 31 - Only PROC or SUBPROC identifier allowed •• S

7. 000000 1 1 i : = j;
"

• • • • ERROR "" 49 - Undeclared identifier • • J

"
.... ERROR 32 - Type incompatibility" I

8. 000003 1 1
9. 000003 1 1 end;

Errorfile file name is $TAL.TL0123.MYERRS
Number of compiler errors = 3
Number of compiler warnings = 1
Maximum symbol table space used was = 16898 bytes
Number of source lines= 10
Compile time - 00:00:44
Total elapsed time - 00:00:46

The error file, myerrs, will show:
$TAL.TL0123.MYSOURCE 2. 40 "" WARNING '• •• 13 - Value out of range
$TAL.TL0123.MYSOURCE 6. 32 •••• ERROR"" 31 - Only PROC or SUBPROC

identifier allowed • • S
$TAL.TL0123.MYSOURCE 7. 31 "" ERROR 49 - Undeclared identifier" J
$TAL.TL0123.MYSOURCE 7. 32 ERROR" .. 32 - Type incompatibility .. I

Figure 12.

An example of the
?ERRORFILE directive
used to direct error
messages to a file.

At the end of the compilation, TAL prints
the name of the ERRORFILE in the trailer mes­
sage. Figure 12 shows a partial listing.

Users wishing to view both the source file
and the error file in the editor should proceed
as follows. First, transfer the data in the error
file to an edit file because TAL writes an
entry-sequenced file. For example:

EDIT my errs p emyerrs; exit

The "e" prefix denotes that this is the edit
form of the error file.

Next, enter TEDIT and use both windows to
edit the source file, MYSOURCE, and inspect
the error file, EMYERRS:

TEDIT mysource; OPENWINDOW 2,emyerrs;
SWITCH WINDOW

(If not enough of the message text is visible in
EMYERRS, switch windows to see more of the
text by using the TEDIT command,
LEFTSCROLL.)

Users can create the edit form of the error
file and enter TEDIT simultaneously with the
following macro:

?section talerror macro
edit %2% p e%2% ! ; exit
tedit %1%; op2,e%2%; sw

If this macro is put in a file called
TALMAC, the TACL command LOAD TALMAC
will make the macro name, TALERROR,
known to TACL™ (the Tandem Advanced
Command Language). To simultaneously
transfer the data in the error file, MYERRS, to
the edit file, EMYERRS, and enter TEDIT,
enter the new TACL command TALERROR
MYSOURCE MYERRS.

Note that when TAL is processing the
ERRORFILE directive:

• If <filename> does not exist, TAL creates
it as specified.

• If < file name> exists and its file code is
106, TAL purges < file name > and then cre­
ates < file name > .
• If < file name> exists and its file code is not
106, TAL terminates the compilation.

Acknowledgment
The authors would like to acknowledge the substantial contribu­
tions made by Jeff Lichtman, both in the implementation of
many of the additions to TAL described in this article and in
the preparation of this article. Jeff served as technical leader for
820 TAL development and was responsible for designing and
implementing the MOVE statement enhancements, the structure
enhancements, and the ?ERRORFILE compiler directive.

Catherine Lu is a software developer working on the TAL com­
piler. She joined Tandem in September 1984 after completing a
B.S. in Computer Science and Engineering at Massachusetts
Institute of Technology.

John Murayama has worked on the TAL compiler since joining
Tandem in July 1984. For the 820 release, he designed and
implemented the labeled CASE statement and the UNSIGNED
data type. Currently, he is technical leader of the TAL compiler
project. Before joining Tandem, he developed language
processors and software development tools for other computer
vendors.

30 T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6

his article describes a
method of predicting
response time in balanced
transaction processing appli­
cations that use Tandem's
PATHWAY transaction pro­
cessing system. Its intent is

to show how the basic elements of contention
in a Tandem Nonstop system can be modeled
with standard modeling techniques. The
method described will not help readers tune
their systems for better performance; rather, it
will allow them to predict the performance
obtainable from their systems if the systems
are well tuned. 1

Overview
The PATHWAY transaction processing system
facilitates the design of transaction processing
applications through the implementation of
requester-server structures. The requester
function is implemented by the PATHWAY
Terminal Control Process (TCP}, which man­
ages terminal 1/0. The TCP accepts transac­
tion requests from the terminals and passes
them to servers. The servers provide data-base
service by making appropriate requests to the
disk processes and then replying to the TCP.
Figure 1 illustrates a typical application using
the PATHWAY system.

The performance of an application that uses
PATHWAY can be characterized by the amount

1Note that response-time prediction on Tandem Nonstop systems requires a
great deal of knowledge about Tandem hardware and software, along with
expertise in queuing network modeling and event-driven simulators. The
method presented here is not a "quick fix" to the problem of response-time
prediction.

J U N E I 9 8 6 T A N D E M

Predicting Response Time
in On-line Transaction

Processing Systems

Figure 1

CPU()

- TCPA

CPU1

- TCPB

CPU2

of time the system takes to respond to transac­
tion processing requests. This time is known as
response time.

Response time can be expressed as a sum of
service time and queuing time. The service
time of a transaction is the time required by
the system to process the transaction when
only one transaction is active in the system.
When multiple transactions are active, some
of them may have to wait for the processors,
disks, and other system resources to become
available.

SYSTEMS REVIEW

Figure 1.

Overview of an applica­
tion system that uses the
PATHWAY transaction
processing system.

31

32

The delay incurred by this wait is called the
queuing time. Queuing time is a function of
the transaction rate; hence, response time is
also a function of the load on the system.
Characterizing the performance of an applica­
tion that uses the PATHWAY system involves
determining the response time of the system as
a function of the transaction rate.

The Model
For most balanced applications using the
PATHWAY system, service time varies only
slightly with the processing load. Although the
service time for those applications that use the
Transaction Monitoring Facility (TMF) and
operate at very high loads does vary apprecia­
bly with the load, the variation in other appli­
cations that use PATHWAY is usually less
than 5%.

Hence, for a response-time prediction
model, it is reasonable to assume that service
time is independent of processing load. Given
this assumption, one can calculate response
time if the queuing delays in the system can be
determined as a function of the load.

The following describes a simulation model
that can be used to find these queuing delays.
This model is an extremely simplified version
of the response-time prediction model used in
ENVISION. Tandem's system analysts use
ENVISION, a performance modeling tool, to
size, tune, and predict the performance of on­
line transaction processing systems (Chou,
Oleinick, and Singh, 1984).

The model simulates the basic elements of
contention in Tandem Nonstop systems. It is
expected to give reasonable results for systems
using Disc Process 2 (DP2). Systems using
Disc Process 1 (DPI) have additional elements
of contention that require different modeling
techniques.

As mentioned earlier, the reader is assumed
to be familiar with basic queuing theory
(Kobayashi, 1978), event-driven simulators
(MacDougall, 1980), and Tandem hardware
and software.

Modeling Method
The system is modeled as a network of queues.
In this type of model, all system entities, such
as processors, disks, and terminals, are repre­
sented as resources, and tasks are modeled
as jobs.

Resources can be active or passive. An
active resource is a facility providing some
service, along with a "waiting room" or
queue. A passive resource does not provide
service, but is needed to accomplish a job;
e.g., a thread of the DP2 disk process is
required before the job can be served at the
processor. Jobs requesting service at a busy
resource wait in the queue for that resource.
All the jobs in the queue are served in a pre­
specified manner.

After obtaining the required service from a
resource, jobs are routed to other resources.
The set of resources in the system forms a net­
work of queues. An explanation of how the
jobs are routed within this network, along
with the specification of the entities in the
network, describes the system completely.

Assumptions
A typical Tandem NonStop system running
the PATHWAY transaction processing system
consists of several processors and disks. There
are several requesters and servers, and a
multithreaded disk process for each disk vol­
ume. The system also has other processes,
such as line handlers, a monitor, and a mem­
ory manager. In systems using TMF, every
processor has a TMF monitor process, and one
TMP process in the system manages TMF
audit trails and helps with the processing of
the TMF transactions that modify data over
more than one node in a network.

Although the processing done by each of
these processes for the transaction can be rep­
resented explicitly for a given system, describ­
ing the topology and the routing logic for a
general case is a formidable problem. More­
over, for systems being sized for future appli­
cations, some of this information is unclear or

TANDEM SYSTEMS REVIEW• JUNE 1986

not available. The model described here uses
an assumption to reduce this complexity to
manageable levels, and has been shown to
yield reasonably accurate results.

The model assumes that the processing load
is balanced. This implies that all the CPUs are
more or less equally utilized. With this
assumption, it is possible to model the behav­
ior of the multiprocessor system with a single
CPU and a disk subsystem. The assumption is
not as restrictive as it might appear. The
model has been found to work well when
processor utilizations are within 10% of
each other.

The model also assumes sufficient replica­
tion of the servers. Since servers written for the
PATHWAY transaction processing system are
single threaded, this assumption means that
no transaction waits for a server to become
available. Although this assumption is not
valid if the system is operated at high transac­
tion rates with few servers, note that users
can use PATHWAY to change the number of
servers to get better performance at high
loads. Thus, this assumption is valid for
a well-tuned system.

Model Description
The system model consists of a processor, a
terminal cluster, and a disk subsystem, as
shown in Figure 2. Although the model repre­
sents a greatly simplified view of a typical
system that comprises multiple processors and
disks, it works because it assumes a balanced
load.

Resources. The processor is modeled as a pri­
ority queue having different priorities for the
disk process, servers, TCPs, line handlers,
and interrupts. The relative priority of these
processes are:

Process
- --

Interrupts
Disk process
Line handler
TCP and servers

_ _f_riority _ __

3 (highest)
2
1
0 (lowest)

The processor queue is also a preemptive
queue. Thus, the arrival of a new job having a
priority higher than the currently executing
job causes the execution of the current job to
be suspended, allowing the execution of the
job that has just arrived. Within each priority
level, all jobs are served on a first-come, first­
served basis.

Figure 2

l
[CPU

Transactions j •• Interrupts

The terminal cluster is modeled as an "infi­
nite server" station; i.e., it does not cause the
jobs to queue up, but delays them by a certain
amount of time. This reflects think time, dur­
ing which the users "think" for some time
after a transaction completes, before starting
the next transaction. (For a more detailed dis­
cussion of think time, see Kosinski, 1984.)

The disks are modeled as a multiple-server
facility, serving jobs with a first-come, first­
served discipline. The number of servers in the
facility is a function of the ratio of processors
to disks. For example, if the system were to
have four processors and eight disks, the disk
subsystem facility would have two servers. In
reality, a different queue exists for each disk
volume, the ratio of processors to disks need
not be an integer, and contention for a disk
volume also depends on the relative proportion
of read and write requests made to that disk.

Although the model is a crude representa­
tion of the disk subsystem, it does not intro­
duce major errors in response-time prediction
because systems using DP2 have fewer physical
I/Os than logical I/Os. This is because DP2
uses buffered cache rather than write-through
cache to reduce the number of disk I/Os.
Hence, even at very high system loads, disk
queuing times are minimal.

JUNE 1986 TANDEM SYSTEMS REVIEW

Disk -

Figure 2.

The model. Open-class
jobs are represented by
dotted lines, closed-class
jobs by solid lines.

33

Figure 3

TMF write

Figure 3.

Routing logic for closed­
class jobs used in the
network shown in
Figure 2.

34

l.:.lt'.1$ ltattdler

TOP,

Server

Disk

Oiskpr-OC&ss

Server

TCP

Zero send bypass

Send loop

Disk loop

Cache
hit

Jobs. Two types of job circulate in the queuing
network described above: transactions and
interrupts. Transactions are modeled as
closed-class jobs, i.e., jobs that always remain
in the queuing network. This modeling mecha­
nism is used to reflect the fact that the maxi­
mum number of active transactions in the
system equals the number of terminals.

The transactions originate at the terminals
and are routed to the processor for line­
handler processing. These jobs then circulate
between the processor and the disk, depending
upon the characteristics of the transaction.

After receiving the required service from the
CPU and the disk, the job returns to the termi­
nals. There, another transaction originates at
a future time, depending on the think time of
the terminal.

Interrupts are modeled as open-class jobs,
i.e., jobs generated by a random source. The
system has a variable number of open-class
jobs at any time, while the number of closed­
class jobs remains static. The open-class jobs
are generated in a random fashion, served by
the processor, and then exit the system forever.

Open-class jobs model increased processor
contention caused by parallelism inherent in
Tandem Nonstop systems. They model the
fact that more than one processor can do the
processing for a transaction at the same time.
The amount of CPU time used by a transac­
tion is about 25 % more than the service time
at the CPU. The difference, modeled by open­
class jobs, causes greater CPU contention,
although it is not a part of the service time.

Routing. Routing of closed-class jobs between
the processor and disk is determined by the
characteristics of the transaction. Two factors
affect routing: the number of sends done by a
transaction and the number of data-base
accesses during each send. (Note that a send is
a single message with a reply between a
requester and a server.) For audited transac­
tions, the number of TMF audit-trail writes
also affects routing.

Figure 3 illustrates the generalized routing
pattern for a transaction. From the terminal
cluster, the transaction is routed to the proces­
sor for line-handler processing and then TCP
processing. There are two processing loops,
the send loop, executed once for every send,
and the disk loop, executed once for every
data-base access request.

The disk loop is initiated when the server
makes a data-base access request. The disk­
process code is executed at the processor, and
the job is routed to the disk in the event of a
cache miss. After returning from the disk, the
job undergoes more disk-process processing.
The disk process then replies to the server,
completing the disk loop.

In the send loop, TCP processing for every
send is done at the processor, and then the job
is routed to the processor again for server
processing. The server calls the disk process
for every data-base access required by that

TANDEM SYSTEMS REVIEW JUNE 1986

send, initiating a disk loop. After the execu­
tion of every disk loop, control returns to the
server, and server code is executed at the pro­
cessor. When the required number of disk
loops have been executed, the server replies to
the TCP, which may then initiate another send
loop if the transaction does more than
one send.

After the required number of send-loop
executions, the job receives line-handler pro­
cessing and returns to the terminal. This fin­
ishes the processing for the transaction.
Another transaction originates at the terminal
after think time.

For transactions protected by TMF, addi­
tional visits to the processor are made for disk­
process processing. When the TCP processes
ENDTRANSACTION, it sends a message to the
TMF Monitor process, which initiates the
processing that causes disk processes to write
their audit buffers to disk.

Since the processing time required by the
TMF Monitor process is small, ENDTRANS­
ACTION processing is modeled by routing the
job from the TCP to the disk process for every
audit-trail write. After the disk process is
served by the processor, the job is routed to
disk. When disk processing is complete, the
job is routed to the processor for post­
processing by the disk process, and then
to the TCP. This loop is repeated for every
audit-trail write.

Model Parameters
Response-time prediction based on the model
described above requires values for the num­
ber of processors, disks, and terminals, along
with the following pieces of information about
each transaction.

Transaction Rate. The transaction rate is the
number of transactions per second. The sys­
tem is modeled by one representative proces­
sor; hence, the transaction rate used for each
transaction should be the transaction rate
per processor.

Number of Sends. One can determine this
number by examining the SCREEN COBOL
code interpreted by the TCP. It is the number
of SENDs per transaction.

Number of Disk-process Requests per Send.
This is the number of data-base access (logical
1/0) requests made by the server for each
send. Note that there may be a different num­
ber of disk-process requests for each send.

CPU Processing Time for the Transaction.
This time comprises the following:

■ Line-handler time.
■ TCP time.

■ Server time.

■ Disk-process time.

■ Miscellaneous time, plus interrupts.

If the application is currently running, these
times can be measured with the XRAY™ per­
formance analysis tool; otherwise, the
process of collecting this information is
more involved.

Server and disk-process times can be esti­
mated by summing up the CPU times for the
File System operations (such as reads, writes,
and updates) done
by the server. One
can determine the
CPU time required
by the server and the
primary and backup
disk processes for
File System oper­
ations by running

1

T71e CPU time used by a
I transaction is about

I

, 25 % longer than the service
time at the CPU.

simple test scripts for each operation and
examining the XRAY results. Although this
can be tedious, note that once determined,
these atoms can be used for all other transac­
tions involving the same operations.

Similarly, TCP time can be estimated by
summing up the CPU times of all its compo­
nents. These components are: (I) the time
required by the primary TCP to do a send,
checkpoint, BEGINTRANSACTION,
ENDTRANSACTION, and so on; and (2) the
time required by the backup TCP to process
checkpoints.

Disk-service Time for Each Transaction. This
time can be reported by the XRAY DISC BUSY
counter if the application is currently running.
If the application uses unmirrored disks, the
service time is simply the DISC BUSY time per
transaction; otherwise, the service time can be

JUNE 1986 TANDEM SYSTEMS REVIEW 35

36

approximated by adding the primary disk's
DISC BUSY counter, the mirror's READ BUSY
counter, and the read proportion of the mir­
ror's SEEK BUSY counter. This computation is
required because the data can be read from
either the primary or the mirror disks, whereas
data must be written to both the primary and
the mirror.

If the application is not currently running,
one must build disk-atom tables for each File
System operation and estimate the DISC BUSY
time from them.

Audit-trail Writes. For all audited transac­
tions, it is necessary to estimate the number of
writes to the audit trail. Although the actual
number of audit-trail writes for a given appli­
cation is a function of several factors, one can
obtain a reasonable approximation using the
method outlined below. This method produces
a conservative estimate of the number of
audit-trail writes; the actual number is
usually lower.

In order to estimate the number of audit­
trail writes, one must compute the amount of
audit data generated by the transaction. The
number of audit bytes can be computed by
summing the audit data generated by each File
System operation done by that transaction.
Assuming audit-trail compression to be off,
naudit_bytes, the number of audit bytes generated
by each operation modifying a record in an
audited file, is

naudit_bytes = 62 + fbefore_image + lafter_image •

Here, lbefore_image and lafter_image are equal to the
record size if the "before" and "after" images
for the operation exist. For writes, no before
image exists and lbefore_image is O; for deletes, no
after image exists and lafte,_image is 0; for
updates, both before and after images exist.
When audit-trail compression is on, the num­
ber of audit bytes depends on the difference
between the before and after images. For
updates, it is impossible to compute this value;
one can only obtain it by running an applica­
tion benchmark.

Once the number of audit-trail bytes for
each transaction is known, the number of
audit-trail writes depends on whether there are
one or two audit trails. When the system has
only one, called the master audit trail (MAT),
it is easy to estimate the number of audit-trail
writes. If a transaction generates x bytes of
audit data, nMAT_writes, the number of MAT
writes for that transaction can be approxi­
mated by

nMAT_writes =(1 + d't bf k .)· au 1 _ oc _size

The number of MAT writes can be approxi­
mated in this way because, for every transac­
tion, the audit buffer is written once to the
disk, accounting for the first term on the
right-hand side. In addition to this write,
occasionally the audit buffer spans block
boundaries; i.e., the audit data is in two
physical blocks. This causes an additional
write to the audit trail, accounted for by the
second term. For DP2, the default value of
audit_block__size is 4 Kbytes.

When a system uses multiple audit trails,
the audit-trail writes to the MAT can be com­
puted as shown above. Computation of writes
to the auxiliary audit trails (AATs) is slightly
more involved. A typical audit trail receives
audit data from several disk processes. Since
the operations on each file and the disk where
each file is located are known, the amount of
audit data from each disk can be computed.
(This computation is similar to the one
shown above.)

If the amount of audit data from the ;th
disk process is X;, and n disk processes send
their audit data to the auxiliary audit trail
m (AATm) under consideration, then the num­
ber of audit-trail writes is the sum of audit­
trail writes by all the disk processes involved,
i.e.,

. ;._ (X; J num_wntesAAT = '-' 1 + . - - -~- ·
m ; - 1 audlt_block__s1ze

The number of audit-trail writes affects the
disk-process time (part of the CPU processing
time, above) and the disk-service time. Given
the disk-process and disk-service time for a
disk write of audit_block__size, one can approx­
imate the additional time because of the audit­
trail writes.

TANDEM SYSTEMS REVIEW• JUNE I 9 8 6

Implementation
The queuing network described above can be
simulated quite easily with a simulation lan­
guage, such as Simula. If such a language is
not available, one can use any high-level lan­
guage to write an event-driven simulator. Since
the network consists of only three resources,
writing the simulator is relatively easy.

Think-time Estimation
Response-time prediction for a given transac­
tion rate requires an estimate of the average
think time at the terminals. One can obtain
this average as follows.

The transaction rate per terminal allows one
to determine the intertransaction time at the
terminals: it is simply the inverse of the trans­
action rate, or the sum of the average think
time and the average response time. Hence,
estimation of think time requires an estimate
of the average response time, as described
below.

Given the transaction rate and the processor
and disk times for each transaction, one can
determine the processor and disk utilizations.
These can be used to compute an initial esti­
mate of the response time using an approxima­
tion of MIMI 1. If the system has more than
one type of transaction, a weighted average of
response times should be used.

Subtracting the response time, obtained
above, from the intertransaction time gives an
initial estimate of think time. A short simula­
tion run with this time yields a better estimate
of the response time, hence, the think time at
the given transaction rate. Another run of the
simulation model with the new value of think
time yields a still better estimate of response
time. This iterative process can be continued
to yield an acceptably close value for think
time. Then, a simulation run of sufficiently
long duration will yield the response times at
the given transaction rate.

Duration of the Simulation Run
Average response times are obtained by find­
ing the average of the response-time values
observed during the simulation run. The dura­
tion of the simulation run determines the sta­
tistical spread of the response-time values for
each transaction. The longer the simulation
duration, the smaller the spread. This statisti­
cal variation in the values is a function of sev­
eral variables, e.g., the routing patterns of the
transactions, the transaction rates, and the
processor and disk utilizations.

Although it is not possible to predict the
variation in values for a given application,
observations show that a simulation run yield­
ing approximately 1000 data points is suffi­
cient to reduce the error in the average
response time of the system to within 5 OJo •
Similarly, if a response time with a statistical
error of less than 5 OJo is required for a specific
transaction, the simulator should be run long
enough to collect approximately 1000 data
points for that transaction.

Benchmark Results
In this section, predicted response times pro­
duced by the model for a large banking appli­
cation are compared with measured response
times for that application.

The application benchmark was run on a
four-processor NonStop TXP system having
four mirrored disk volumes. Nonstop TCPs
were used, and all application files were
audited by TMF. The transaction flow is
outlined below, and the data-base files are
described in Table I .

TCP flow

Accept 100 bytes.
Begin transaction.
Send to server.
End transaction.
Perform 10 IF statements.
Perform 10 MOVE statements.
Perform 5 ADD statements.
Perform 5 SUBTRACT statements.
Display 200 bytes.

Server flow

Read 100 bytes from TCP.
Read Account file.
Read Teller file.
Read Branch file.
Update Account file.
Update Teller file.
Update Branch file.
Write History record.
Perform 10 IF statements.
Perform 10 MOVE statements.
Perform 5 ADD statements.
Perform 5 SUBTRACT statements.

JUNE 1986 TANDEM SYSTEMS REVIEW 37

Figure 4.

Measured versus pre­
dicted response times for
the application bench­
mark. Note that the
predicted response times
are well within 20% of
the measured values.

38

For this benchmark, Figure 4 charts the
measured and predicted values of the average
response time as a function of the transaction
rate. Tandem's internal performance-modeling
tool, ENVISION, from which the simplified
model presented in the article was derived, was
used to predict the values of the atoms of CPU
and disk contention.

Figure 4

1.2

0 Predicted
Measured

1.0

U)
"O
C

0.8 0

" "' !!!,

"' E 0.6 ""
"' <f)
C
0
Cl. 0.4 <f)
Q)
a:

0.2

0
4 6 8 10 12 14

Transaction rate (transactions/second)

Table 1.

The data-base files used in the application
benchmark.

Number of
Name File type records

Account Key-sequenced 1,200,000

Teller Key-sequenced 1,200

Branch Key-sequenced 120

History Entry-sequenced 1 per
transaction

Record
size (in
bytes)

100

100

100

50

Note that the response times predicted by
ENVISION are nearly identical to the measured
values. The simplified model described in this
article is expected to predict the response
times to within 20% of actual values, except
at very high loads.

Conclusion
The response-time prediction method just
described is based on a simple simulation
model for applications that use the PATHWAY
transaction processing system. The model is
small enough to be coded easily in a high-level
language and has been observed to produce
reasonably accurate results.

Although the model itself is quite simple,
obtaining the parameters to feed the model
requires an extensive amount of experimenta­
tion and knowledge about Tandem NonStop
systems. Readers interested in implementing
the method outlined here should note that
response-time prediction is a difficult problem
and that no easy shortcuts exist. This method
reduces the task to manageable levels but does
not make it trivial.

References
Chou, T.C.K., Oleinick, P., and Singh, A. 1984. Language
Directed Modeling. 17th Hawaii International Conference on
System Sciences, Honolulu, Hawaii.

Kobayashi, H. 1978. Modeling and Analysis: An Introduction
to System Performance Evaluation Methodology. Addison­
Wesley.

Kosinski, S. 1984. The ENCORE Stress Test Generator for
On-line Transaction Processing Applications. Tandem Journal.
Vol. 2, No. I. Tandem Computers Incorporated.

MacDougall, M.H. 1975. System Level Simulation. Digital
System Design Automation, ed. M.H. Bruer. Computer Science
Press.

Acknowledgments
The author would like to thank Peter Oleinick and Susan
Whitford for their technical review and Rajiv Dhingra for his
support.

- ---------------------

Anil Khatri is a member of the Performance Group in Software
Development. Before joining Tandem in 1983, he obtained a B.S.
in Electrical Engineering from the Indian Institute of Technology
at Kanpur and an M.S. in Computer Science from the University
of Maryland.

T A N D E M SYSTEMS REVIEW J U N E I 9 8 6

--- he B-series release of Disk
f---------- Process 1 (DP 1) supports ----- buffered writes for audited

___ files. Because of this
--- enhancement, users who
____ protect their on-line transac-

------ tion processing applications
with the Transaction Monitoring Facility
(TMF) should reevaluate their disk-cache con­
figurations when migrating from A-series DPl
to B-series DPl. 1

As most on-line transaction processing
(OLTP) applications frequently perform ran­
dom I/Os, users of TMF who convert to
B-series DPl should configure more disk cache
to obtain a level of performance equal to (or
perhaps better than) that they obtained previ­
ously. They should increase the size of the disk
cache until the swap rate is adversely affected
(subject, of course, to the amount of physical
memory available).

Having configured a sufficient amount of
cache, users of TMF will benefit from the
many new features of the B-series software,
such as autorollback, which dramatically
improves the performance of crash recovery.
Also, as a result of analyzing their applica­
tion's use of cache and configuring an appro­
priate cache size, many users will reduce the
disk activity required by their application,
thus improving its performance.

Note that the disk-cache requirements of
those users who do not employ TMF will
remain the same when they convert to

1Tandem software that is released to customers is identified by a release name.
A-series release refers to Tandem software that is identified with an "A," such
as the A20 software release or the A30 50ftware release. B-series release refers
to Tandem software that is identified with a "B," such as the BOO software
release or the B30 software release.

Sizing Cache for
Applications That Use
B-series DPl and TMF

B-series DPl. They should obtain the same
level of performance they obtained with the
A-series software.

This article describes the performance
analysis and subsequent changes in cache size
required for one OLTP application protected
by TMF when it was converted from A-series
DPl to B-series DPl. The article is intended as
an example of (1) how to analyze application
performance as related to DPl cache size and
(2) how to determine the appropriate cache
size for applications using TMF that are to be
converted to B-series DPl.

Methods of Analysis and Testing
First, the performance-analysis team ascer­
tained that no changes were made to the appli­
cation system other than converting it from
A-series to B-series system software.

Then they used Tandem's XRAY perfor­
mance analysis tool to measure the system's
performance. The XRAY results revealed that
the system was well balanced under both the
A30 and BIO software. The CPU BUSY rate
averaged between 45% to 50% under the A30
release and between 55% to 60% under the
BIO release.

JUNE 1986 TANDEM SYSTEMS REVIEW 39

40

Further analysis of the XRAY measurements
showed that for the same work load, the disk
1/0 rates had increased significantly under the
BIO software. The disk-cache size had
remained unchanged at 48 pages per disk vol­
ume. CPU swap rates had not changed much,
but cache-read hit rates were reduced. These
observations caused the performance-analysis
team to look more closely at the DPI disk­
cache management strategy and, specifically,
at the difference between the strategies
employed by the A- and B-series software.

As the application was a large one, porting
the application to a stand-alone system for
testing was ruled out. Instead, a small batch
benchmark test that simulates only a part of
the application transaction was run first. Only
if its performance on A30 and B 10 software
was the same would testing of a larger version
of the transaction be warranted. The bench­
mark was also designed so that the elapsed
time to execute it took no longer than 10 to
15 minutes. This made it possible to run the
benchmark under a variety of configurations
when a longer benchmark would have made
this more difficult.

Understanding B-series DPl
with TMF
The following is a brief explanation of the
enhancements made to the disk process (in
relation to TMF) in the B-series software
releases. (For a more detailed explanation, see
the following articles in the Tandem Systems
Review: "TMF Autorollback: A New Recovery
Feature," February 1985; and "Improvements
in TMF," June 1985.)

A major enhancement to DP 1 introduced in
the BOO software release is the ability to buff er
writes to disk for audited files. When writes
are buffered, requests to modify audited files
are replied to as having succeeded before the

data is actually written to disk. Besides the
obvious advantage of possibly causing fewer
I/Os to disk, buffered writes also enable TMF
to recover from crashes more efficiently by
rolling the data base backward from the point
of the crash (autorollback), rather than for­
ward from the on-line dump (rollforward).

In order to be able to roll back the data
base, the disk process is required to follow a
write-ahead-log protocol; i.e., it must guaran­
tee that the audit (log) records describing
changes to the data base are written to
disk before the updates are made to the
application files.

The following are some terms useful in
understanding the B-series software
enhancements:

■ Dirty blocks are cache blocks that have not
been written to disk.
• Clean blocks are cache blocks that have been
written to disk.
• Replacement block is the cache block that the
disk process has chosen as the least-recently
used (LRU) block.

• Cleaning means writing a dirty block to
disk, thus making it clean.

• Flushing means writing audit records
to disk.

Generally, for audited files, the disk process
does not force changes to disk, but maintains
images of the sections of the data base that
have been modified in cache as dirty cache
blocks. The one-page audit buffer in the disk­
process cache holds the "before" and "after"
images of the records being modified.

The sequence of events that occur when a
record is modified for an audited file is briefly
explained below. (Note that this is not
intended as a complete explanation of how
TMF works nor does it consider all possible
exceptions.)

The audit buff er in the disk process has an
audit-block number assigned for its location in
the TMF audit-log file. The buffer occupies
2 Kbytes. The unmodified copy of the record
is copied into this buffer. (Note that all
audited files on the disk process would copy
records to the same buff er.)

TANDEM SYSTEMS REVIEW• JUNE 1986

When the record is modified, the disk pro­
cess does not force a physical write to disk,
but maintains the image of the block that has
been modified in cache as dirty cache blocks.
The modified record is also copied into the
audit buffer. The dirty cache block keeps a tag
of the audit-block number into which it has
copied the audited records. Changes
made to dirty blocks in cache (write hits) save
physical I/Os to disk and result in improved
performance.

The dirty cache block cannot be written to
disk as long as the "oldest" unflushed audit­
block number is less than or equal to the tag
number on the dirty block. This assures that
audited information from the dirty block has
been flushed to the TMF log file. This is
defined as the write-ahead-log protocol.

Note that an audit-block flush can occur
when the audit buffer is partially full and an
ENDTRANSACTION occurs. When the parti­
ally full block is flushed, the oldest unflushed
audit-block number is reset to null (indicating
that all data in the audit buff er has been
flushed), and the dirty blocks can be written
out. However, the next audited write going
into that partially full audit block again sets
the oldest unflushed number to the current
audit-block number. Hence, most of the dirty
blocks having audited data in an audit block
are flushed only when that audit block fills up
and the disk process starts operating on the
next audit block.

The dirty block is eventually written to disk
when the write-ahead-log restriction is satis­
fied and one of the following occurs:

■ The last opener of the file closes it.
■ Control points are written.
■ The memory page used for caching one or
more of these blocks is requested by the mem­
ory manager.
■ It is cleaned while the disk process is idle.

■ A refresh is performed.

■ The block is selected as the replacement
block by the cache-replacement algorithm.

If a dirty block is selected by the cache­
replacement algorithm as the replacement
block, it may not be possible to free the block
by writing it out to disk, owing to the write­
ahead-log restriction. In this event, it is
moved to a queue (called the wait flush queue
in this article), and the disk process waits for
the audit flush before cleaning it.

Therefore, while the queued dirty blocks are
awaiting completion of the audit flush, the
size of cache is effectively reduced by the
number of blocks on the wait flush queue.
Furthermore, since the dirty replacement
blocks cannot be discarded to satisfy the cur­
rent request for space in cache, the replace­
ment algorithm may end up discarding some
useful blocks (e.g., first- or second-level index
blocks) from cache, thereby further degrading
the performance of the application.

Comparing A- and B-series DPl
In the A-series software, modifications to
audited files are always write-through; i.e., the
requests to modify audited files are replied to
as having succeeded only after the modified
data is written to
disk. Because of this
approach, there are
never any queued
dirty blocks await­
ing an audit flush,
and hence, the effec­
tive cache size never
decreases.

This approach has
the drawback of

Roi/forward may take
hours to complete,

while autorollback with
B-series DPJ can be
completed in minutes.

inefficient crash recovery, however. A system
may crash after the audited file has been mod­
ified on disk but before the audited data has
been written to the TMF data audit disk.
Thus, the only way TMF can recover from
crashes is by rolling the data base forward
from the last on-line dump (rollforward). Roll­
forward may take hours to complete, while
autorollback with B-series DPl can be com­
pleted in minutes.

JUNE 1986 • TANDEM SYSTEMS REVIEW 41

Figure 1

$DATA04.TEST.PRIFILE
TYPE K
EXT (2 PAGES, 2 PAGES)
REC2018
BLOCK 4096
IBLOCK 4096
KEYLEN 14
KEYOFF 0
ALTKEY ("K2", FILE 0, KEYOFF 14, KEYLEN 6)
ALTKEY ("K3", FILE 1, KEYOFF 20, KEYLEN 6)
ALTKEY ("K4", FILE 2, KEYOFF 26, KEYLEN 6)
ALTKEY ("K7'', FILE 3, KEYOFF 600, KEYLEN 12)
ALTKEY ("KB", FILE 4, KEYOFF 612, KEYLEN 26)
ALTFILE (0, $DATA03.TEST.ALTO)
ALTFILE (1, $SYSTEM.TEST.ALT1)
ALTFILE (2, $DATA01.TEST.ALT2)
ALTFILE (3, $DATA02.TEST.ALT3)
ALTFILE (4, $DATA04.TEST.ALT4)
PART (1, $DATA02, 4000 PAGES, 1000 PAGES)
PART (2, $DATA01, 4000 PAGES, 1000 PAGES)
PART (3, $SYSTEM, 4000 PAGES, 1000 PAGES)
PART (4, $DATA03, 4000 PAGES, 1000 PAGES)

AUDIT
OWNER-1
SECURITY (RWEP): NNNN
MODIF: 11/19/85 8:56
EOF O (0.0% USED)
EXTENTS ALLOCATED: 0

TOTAL
LEVEL BLOCKS
FREE 0

1 1
DATA 220
FREE 0

1 1
DATA 220
FREE 0

1 1
DATA 222
FREE 0

1 1
DATA 223
FREE 0

Figure 1.

The File Utility Program
(PUP) information for
the primary partition
used in the benchmark.

TOTAL AVG# AVG
RECS RECS SLACK

228 228.0 236
500 2.3 821

220 220.0 178
500 2.3 793

217 217.0 241
500 2.3 811

223 223.0 95
500 2.3 803

The Benchmark

AVG%
SLACK

6
20

4
19

6
20

2
20

PART
$DATA04
$DATA02

$DATA01

$SYSTEM

$DATA03

In analyzing the customer application, the
performance-analysis team noted that the
major part of the transaction involved updates
to records in a key-sequenced file. These
records had between three to five alternate­
key fields, which were also modified during
the update.

In the benchmark, a primary key-sequenced
file contained records having five alternate­
key fields. An application process sequentially
read and updated all the records in this pri­
mary file. During these updates all five
alternate-key fields were modified. This
caused the file system to read, delete, and

write the alternate-key records in the five
respective alternate-key files. The block and
record sizes used were the same as those used
by the application.

The benchmark was run on a four-processor
Nonstop TXP system containing eight mir­
rored disk drives. The primary key-sequenced
file had four partitions. Each disk on which a
partition resided had its disk "primaried" to
one processor. The five alternate-key files were
placed on five different disks. Three of the
processors each had one disk primaried to it.
The fourth processor had two of these disks
primaried to it.

Four application processes were run, one on
each processor. Each of these application pro­
cesses operated on only one primary partition,
but the record updates caused activity on all
five alternate-key files.

The tests were run under versions A30 and
BIO of the GUARDIAN operating system,
with DPl.

The File Utility Program (FUP) information
for the primary partition is given in Figure 1.
Note that the BLOCK and IBLOCK sizes on all
the alternate-key files were 4096 bytes.

Figure 2 illustrates the hardware configura­
tion and the distribution of the files on the
system. The four application processes were
named $FBI, $FB2, $FB3, and $FB4. PARTl
through PART4 were the four partitions of the
key-sequenced file. ALTl through ALT5 were
the five alternate-key files.

Note that process $FBI sequentially read
and updated 500 records in the partition
(PARTl) existing on $DATA02. These updates
caused activity on all five alternate-key files.
Similarly, process $FB2 sequentially read and
updated 500 records in the partition (PART2)
existing on $DATA0I. The same occurred for
processes $FB3 and $FB4. All application
processes were started concurrently. For
consistency, the data base was reset after
every test run.

Results
While the performance-analysis team would
have liked to measure the average response
time required to update a record in the pri­
mary file and all the corresponding records in
the alternate-key files, obtaining this informa­
tion would have required substantial effort in

42 TANDEM SYSTEMS REVIEW• JUNE I 9 8 6

setting up the benchmark. As a more practical
alternative, the team chose to measure the sum
of the elapsed time for each application pro­
cess to complete 500 updates.

The XRAY reports studied closely by the
team were the Disc Device and Disc Open
reports. Physical 1/0 activity was the most
important measure, as it represents the effec­
tiveness of the disk cache. Note that the team
was not interested in the CPU BUSY times,
as their earlier atomic testing of the A- and
B-series software had not shown any
significant variation.

For the initial testing, the minimum disk
cache was configured for each of the disk vol­
umes. (This is 13 pages of disk cache per disk
volume for the A30 release and 15 pages per
disk volume for the BIO release.) The smallest
cache sizes were chosen since the team was
interested in studying the behavior of disk
cache under cache pressure.

In B-series DPl, two pages of cache are
reserved for unaudited files. Hence, in the
above configurations, both the A30 and BIO
versions had 13 pages of cache available for
audited files.

Performance-measurement Counters
The team used the following XRAY
performance-measurement counters:

■ Physical writes represents the total write
operations to a disk, as listed on the XRAY
Disc report.
■ Cache- write hits represents the total cache­
write hits, as listed on the XRAY Disc Open
report. A cache-write hit occurs when a write
request is applied to a dirty cache buffer,
thus avoiding an additional physical write to
the disk.
■ Physical reads represents the total read oper­
ations to a disk, as listed on the Disc report.
■ Cache-read hits represents the total cache­
read hits, as listed on the Disc report. A
cache-read hit occurs when a read request is
satisfied by a cache read, thus avoiding a
physical read to the disk.
■ CBKS0 dirty represents the average number
of dirty cache pages. (Note that the team
chose to measure this in pages of 2048 bytes
instead of in sectors of 512 bytes as the Disc
report measures it. Hence, they divided the
value of the sector counter on the Disc report
by 4 to represent the counter in pages.) A
cache block is marked dirty when a buffered
write operation stores data in a block.

Figure 2

- __ Secondary path

CPUO Cf>U1 CPU2
$Fl31 $FB2 $FB3

$DATA04 $DATA01 $SYSTEM
$DATA02 $NEW02 $NEW01

$DATA01
/ ', /

(PART2, ALT2)
' / " '

/ ' ' /
$NEW02

(TMF data audit)
' / ' ' '

$DATA04
/ ', /

(ALT4)
' / ' ' '

/ ' ' /
$DATA02

(PART1, ALT3)
' / ' '

■ MAXO dirty represents the highest number of
dirty pages occurring within the measurement
window, as listed on the Disc report. The value
of this counter is affected by the availability of
physical memory and by the number and pat­
tern of buffered writes.

The following counters were devised espe­
cially for this investigation and are not avail­
able on XRAY reports:

■ Wait flush queue represents the average
number of dirty cache pages that have been
selected for replacement but cannot be written
to disk because of the write-ahead-log
restriction.
■ Maximum wait flush queue represents the
highest number of dirty cache pages in the
wait flush queue occurring within the mea­
surement window.

For simplicity, the benchmark results
reported in this article are for the two busiest
disks only.

'

JUNE 1986 TANDEM SYSTEMS REVIEW

CPU3
$FB4

$0ATA03
$NEW03

"' $SYSTEM

/
(PART3, ALT1)

', $NEW01

/
(XRAY data)

', $DATA03

/
(PART4, ALT4)

', $NEW03
(TMF monitor

/ audit)

Figure 2.

The hardware configura­
tion and distribution of
files for the benchmark.
The four application
processes are $FBI,
$FB2, $FB3, and $FB4.
PARTI through PART2
are the four partitions of
the key-sequenced file.
ALTI through ALTS are
the five alternate-key
files.

43

Table 1.
A comparison of application performance under A30 and 810 DP1 when
TMF is not used (Test 1).

A30 DP1 B10 DP1 Percentage

$DATA01 $DATA03 $DATA01 $DATA03
change from
A30 to B10

Physical writes 4560 4560 4572 4570 +0.2%

Physical reads 3809 3397 2936 3734 -7.5%

Cache-read hits 6989 7471 8035 7244 +5.7%

Total elapsed time (secs) 2066 1911 -7.5%

Table 2.

A comparison of application performance under A30 and 810 DP1 when
TM F is used (Test 2).

A30 DP1 B10 DP1
and TMF andTMF Percentage

change from
$DATA01 $DATA03 $DATA01 $DATA03 A30 to B10

Physical writes 4475 4473 3830 3860 -14.1%

Cache-write hits 0 0 747 713

Physical reads 3742 4007 6164 6086 + 58.1%

Cache-read hits 6913 6655 4231 4240 -37.6%

CBKS0 dirty (pages) 0 0 5.45 5.87

MAX0 dirty (pages) 0 0 12 12

Wait flush queue (pages) 0 0 3.2 3.2

Maximum wait flush queue (pages) 0 0 12 12

Total elapsed time (secs) 2551 3413 + 33.8%

Test 1
To help isolate the problem, the performance­
analysis team ran the first test with TMF off.
Cache was configured as 13 pages per volume
for the A30 software and 15 pages per volume
for the B10 software. The results of Test 1 are
listed in Table 1 .

The team observed that no significant
difference in performance could be seen for
A- and B-series software. The 7 .5% decrease
in elapsed time, 7. 5 % decrease in physical
reads, and 5.7% increase in cache hits can be
attributed to the fact that, under BIO, two
extra pages of disk cache per volume were
configured.

This test verified that no major changes in
performance occur between A- and B-series
DPI for unaudited files.

Test 2
The second test used the same configuration as
that for Test 1 except that TMF was on and
audited files were used. The results are listed
in Table 2.

In this test the performance-analysis team
observed that elapsed time increased by more
than 30% when the B10 software was run,
confirming that performance was adversely
affected when B-series software was used with
DPI and TMF audited files.

Using the results in Table 2, the team found
that the number of physical reads increased by
58.1 % and the number of cache-read hits
decreased by 26. 8 % .

Of the 15 pages of disk cache per volume
configured for the B10 software, two pages are
reserved by DPI for unaudited file operations.
This makes 13 cache pages available for
audited operations, the same number available
with the A30 software.

Of the 13 pages, one page is used by the
audit buff er to collect the audited data for its
disk process. This leaves 12 cache pages for
audited file operations. The team observed
that, on both disks, the maximum wait flush
queue was 12. This was definitely a problem.
It meant that during the test the size of the
cache was effectively reduced to O pages at
least once and possibly more than once.

Volume $DATAOI contained the files PART2
and ALT2, which were key-sequenced files.
The maximum wait flush queue on $DATAOI
reached 12, meaning the index blocks of these
files were also picked for replacement from
cache during the test. The same was true on
volume $DATA03.

The above problem occurred because each
update to an alternate-key file dirtied two
data blocks, a delete and an insert. These dirty

44 TANDEM SYSTEMS REVIEW• JUNE 1986

blocks were not available for cleaning until the
disk process operated on the audit block num­
ber that was greater than the tag number on
the dirty blocks.

Note that the record length of these
alternate-key records was only 22 bytes;
hence, the delete and insert of a record in this
file generated only about 100 bytes of audit
information for the 2-Kbyte audit buffer.
Thus, three application processes modifying
this file would dirty six blocks (the entire
cache of 12 pages) and would have generated
only 300 bytes of audit data. This would
reduce the available cache to 0 pages.

The performance-analysis team concluded
from Test 2 that application performance was
degraded when the BIO software was run
because dirty blocks remained in cache until
the audit-block number in cache was greater
than the tag number on the dirty blocks.

Test 3
In the third test, the team wished to see if
increasing the disk cache per volume would
improve the performance of the benchmark
under the B-series software. The configuration
used in this test was the same as that in Test 2,
except that the disk-cache configuration for
the B-series software was increased to 25 pages
per volume.

In Table 3, the results for the the BIO soft­
ware are listed for Test 2 and Test 3. In both
tests, TMF was on. Cache was configured as
15 pages per volume for the B 10 software in
Test 2 and as 25 pages per volume for the BIO
software in Test 3 (although only 23 pages
could be used for audited files).

The performance-analysis team observed
that the total elapsed time of the benchmark
decreased by 28.9% when the size of the disk
cache for the BIO software was increased.

Also, the total elapsed time for the BIO soft­
ware when 25 pages of cache was configured
was 2425 seconds, while the total elapsed time
for the A30 software when 13 pages of cache
was configured was 2551 seconds. Thus, the
B 1 O software with 25 pages of cache was 5 %
faster than the A30 software with 13 pages
of cache.

The team concluded that to obtain the same
performance for this benchmark under A- and
B-series software when TMF was used, more
disk cache had to be configured for the
B-series software.

Table 3.

A comparison of application performance under 810 DP1 when TMF is used
and cache is configured as 15 pages (Test 2) and 25 pages (Test 3).

B10 DP1 and TMF, B10 DP1 and TMF,
15 pages of cache 25 pages of cache

(Test 2) (Test 3)

$DATA01 $DATA03 $DATA01

Physical writes 3830 3860 1705

Cache-write hits 747 713 2865

Physical reads 6164 6086 2059

Cache-read hits 4231 4240 9005

CBKS0 dirty (pages) 5.45 5.87 13.3

MAX0 dirty (pages) 12 12 20

Wait flush queue (pages) 3.2 3.2 1.84

Maximum wait 12 12 20
flush queue (pages)

Total elapsed time (secs) 3413

Conclusions
The performance-analysis team formed the
following conclusions from this investigation.

Applications that do not use TMF will not
experience performance problems when they
are converted to the B-series software, as their
disk-cache requirements will not change.
Applications that use TMF, however, will
require a reevaluation of their disk-cache con­
figuration when they are converted from A- to
B-series DPI.

To compensate for the effective reduction of
cache size caused by dirty blocks, systems
running B-series DPI with TMF may require a
larger cache (as specified with the CACHE­
PAGES modifier in SYSGEN) than that used
under A-series DPI.

$DATA03

1704

2819

2051

9006

13.4

20

1.57

20

2425

Percentage
change from
15 to 25 pages

-55.6%

+289.0%

-66.5%

+ 112.0%

+ 135.0%

+ 66.7%

-46.7%

+66.7%

-28.9%

J U N E 1986 • TANDEM SYSTEMS REVIEW 45

46

How Much Is Enough Cache?
Users who configure "enough" cache will not
experience performance problems by migrating
to B-series software. Exactly how much cache
is enough is dependent on the nature of the
application. Some of the factors that deter­
mine the amount of cache required are locality
of reference, number and type of files that are
open on the disk volume, and the sizes of
records, blocks, and files.

Unfortunately, no simple rule exists for
determining cache size. The two most impor­
tant factors, however, are the amount of phys­
ical memory on the CPUs containing the
primary and the backup disk processes, and
the amount of file activity on the disks.

Physical Memory
Physical memory is shared by the memory
manager and the disk cache for each disk pro­
cess (primary and backup) on the CPU. The
ideal division of memory allots the memory
manager all of the memory it needs (no extra)
and allots the rest as disk cache.

If the memory manager has too much mem­
ory, disk processes may perform unnecessary
disk I/Os, while if it has too little, it performs
unnecessary swap operations. (Swaps are also
disk I/Os and, therefore, expensive.) In gen­
eral, a disk process's cache should be increased
just to the point at which it begins to affect
the swap rate in its primary or backup proces­
sor. In some instances, additional physical
memory may also be needed in the processors.

A caveat: The sum of the cache sizes of all
the disk processes (primary and backup) in a
processor must not exceed 700/o of the swap­
pable memory available in that processor. If
caches are too large, processor halts may
occur as a result of insufficient physical
memory.

Some concern has been expressed that
increasing disk-cache sizes will result in less
memory being available for user processes. It is
true that increasing disk cache sizes will
increase the swap rate in a heavily loaded sys­
tem; however, the disk-cache sizes specified by

the CACHEPAGES modifier in SYSGEN define
the virtual address space used by the disk
processes for their caches. It does not mean
that a corresponding amount of physical mem­
ory is used.

Physical pages are allocated under virtual
address space as needed. When the memory
manager finds that the replacement page it has
chosen according to its replacement algorithm
is used by a disk process for holding cache
blocks, it requests the disk process to release
the page. Thus, in the primary CPU, the pro­
tocol between the memory manager and disk
processes ensures that allocation of physical
memory for disk caching is dynamically
dependent on memory pressure.

File Activity
Several aspects of file activity can affect
disk-cache size. The number of active files
open on the disk is one. A second aspect com­
prises the following file characteristics:

• Locality of references.
• Frequency of references.

• File size.
• Size of index and data blocks.
• Record size.

The effect of both of these aspects is discussed
below.

Number of Active Files Open on the Disk.
Each of the active files on a disk process has
its own cache requirement. The sum of the
cache requirements for all active files is the
preferred cache size for that disk, but because
physical memory may be limited, it is not
always possible to configure the preferred
cache size. For systems in which the size of
physical memory is a limiting factor, some
disks will have to be configured with caches
smaller than the preferred size. The compro­
mise should be made in favor of disks that
have files with higher reference frequency.

File Characteristics. When a key-sequenced
file is accessed randomly, one or more index
blocks in addition to the data block must be
accessed for each 1/0 operation. When
enough cache to hold the index blocks for the
file is configured, disk I/Os associated with
the index levels can be avoided, resulting in
improved performance. The cache size
required depends on the number and size of
the index and data blocks.

TANDEM SYSTEMS REVIEW• JUNE 1986

When an entry-sequenced or relative file is
accessed randomly, if enough cache to hold a
certain percentage of the file (e.g., 30%) is
configured, the chance of a cache hit is sub­
stantially increased, thus improving perfor­
mance. In the event of a cache miss, however,
an entry-sequenced or relative file requires one
I/0, whereas a key-sequenced file may require
more than one. Therefore, if the frequency of
references is approximately the same, the cache
requirements for a key-sequenced file should
have precedence over the requirements for
other types of file, when more than one vol­
ume is connected to a CPU.

When any file is accessed sequentially, the
information is accessed only once, so the cache
requirement for the file is minimal. The same
cache blocks can be used repeatedly to bring
data from disk as the previous information is
discarded. Even for a key-sequenced file, min­
imal cache should keep the required index
blocks in cache until they are replaced by the
index blocks required for the next set of
data blocks.

Updates to files with small record sizes,
e.g., 100 bytes, generate only a small amount
of audited data. It would require a large num­
ber of updates to fill up the 2-Kbyte audit
buffer, and until then, all the dirty blocks
would effectively reduce the cache by that
number of blocks. To compensate for this
effect, the cache size should be increased with
B-series software.

For small files, if enough cache to hold the
entire file is provided, a significant number of
disk I/Os can be avoided, resulting in
improved performance. Note that providing
cache does not guarantee that the file remains
in cache. Unless the small file is busy, its
blocks are likely to be swapped out in favor of
blocks of busier files.

General Guidelines for Sizing Cache
Although cache is configured for the primary
disk process, the system automatically config­
ures the same amount of cache for the backup
disk process. The impact of disk-process cache
size on both CPUs should be considered. It is
possible for the backup CPU to run out of
memory without memory pressure existing in
the primary CPU.

J U N E I 9 8 6 T A N D E M

The disk cache (primary and backup disk
processes) for a CPU should not consume more
than 70% of that CPU's swappable memory.
Inadequate memory for the memory manager
can cause the CPU to halt.

When the file activity on a disk is analyzed,
only those files that are heavily used should be
considered. Infrequently used files have little
effect on performance and should not be con­
sidered when cache is sized.

Generally, for DP 1, cache can be increased
just to the point at which it starts affecting the
swap rate in its primary or backup processor.
Use the file activity information for each disk
to determine which disk process requires an
increase or decrease in cache.

In brief, there is no simple rule to determine
"correct" cache sizes for DPl with TMF. File
activity should be used as the basis for initially
configuring cache size. This size should then
be modified, based on performance measure­
ments such as those outlined in this article.

References
Lemberger, T. 1985. Improvements in TMF. Tandem Systems
Review. Vol. I, No. 2. Tandem Computers Incorporated.

Pong, M. 1985. TMF Autorollback: A New Recovery Feature.
Tandem Systems Review. Vol. I, No. I. Tandem Computers
Incorporated.

Acknowledgments
A number of people contributed substantially to understanding
the application, setting up the benchmark, and analyzing the
results. Among them were Sanjay Laud and Gary Tom of
Software Development, Walt Gomsi and Anita Tucker of the
Silicon Valley office, and Mike King of Northwest Software
Support.

Pralul Shah joined Tandem in June 1984. Since then he has
worked with the Performance Group in Software Development on
performance studies related to DP2, DP1, TMF, processors, and
peripherals. Before joining Tandem, he worked in a performance
group for another mainframe vendor. Praful has an M.S. in
Computer Science from Pennsylvania State University and a B.S.
in Electrical Engineering.

SYSTEMS REVIEW 47

Plated Media Technology
Used in the XLS
Storage Facility

Figure 1.

Magnetic recording. The
recording head is ener­
gized by the current
flowing through the
windings. The magnetic
field produced orients
the particles in the same
direction.

iili
andem's new XLS™ disk stor­
age subsystem is composed
of eight disk drives, each
holding 525 Mbytes, and can
store 4.2 gigabytes of data in
only six square feet of space.
The disk drive, combining

low cost per Mbyte with outstanding perfor­
mance, incorporates the latest in disk technol­
ogy, such as Whitney1 recording heads, high
bandwidth read/write channel, high-density
VLSI, 2-7 run-length limited data encoding,
and plated media.

Figure 1

Recording
head

~88

1Whitney is the name commonly associated with the second-generation
Winchester technology used in the IBM 3370 disk drives _first announced in
1979.

This article is concerned with the plated
media. A second article, immediately
following, describes 2-7 run-length limited
data encoding.

This article discusses:

■ Basic concepts of magnetic recording.
■ The benefits of increased storage density and
product reliability.

■ Oxide-coated media as compared to thin­
film media, including the thin-film media
manufacturing process, and electrical and
magnetic characteristics.
■ Head and plated media specifications.
■ Recording density trends.

Basic Concepts of
Magnetic Recording
The magnetic recording process used in mass
data storage disk drives is based on the same
fundamental principles as audiocassette tapes
and VCR machines.

In the recording process, a film of magnetic
material coated onto a carrier medium is
passed under a recording head that is ener­
gized by electrical current through its winding.
The magnetic flux created by the head orients
the direction of magnetization on the medium,
forming magnetic domains that represent bits
of data.

In the reading process, the medium is again
passed under the head. A voltage is induced in
the head by the change in flux direction as it
passes over each domain previously recorded.
This voltage is sensed by amplifiers mounted
very close to the heads, creating a read signal.
The signal is then filtered, amplified, modu­
lated, and encoded into synchronous digital
data. (See Figure 1.)

48 TANDEM SYSTEMS REVIEW JUNE 1986

In disk drives, the recording medium is usu­
ally coated onto round rigid aluminum plat­
ters. A stack of one or more platters is driven
by a spindle motor. When the motor stops, the
heads rest on a special landing zone on the
disk. As the motor starts to rotate and drag
the ambient air with it, the aerodynamic
design of the head allows it to take off and fly,
cushioned on the air passing underneath it.
This flying height is measured in microinches.
In fact, the head/media gap is so small in
relation to the head size that it has been com­
pared to flying a Boeing 747 several inches off
the ground. When the disks stop, the heads
land back on the disks. This process is known
as contact start-stop mode. During the life of
a disk drive, the head may land on the media
many times. Increased media hardness and a
carefully chosen lubricant are needed to avoid
damaging both the head and the media.

More Storage Capacity in Less Space
Areal recording density has increased
3000-fold in the past three decades.

The earliest hard disks were 27 inches in
diameter with 100 bits per inch (bpi) and 20
tracks per inch (tpi). This yielded a recording
density of 2000 bits per square inch (bpsi).

Twenty years ago, the IBM 1301 was capable
of recording at 26,000 bpsi. Then, in 1974, the
Winchester heads flying at about 20 micro­
inches, advanced linear density to 10,000 bpi
(6 million bpsi).

The state of the art was again advanced in
1982 when IBM introduced the 3380. The 3380
uses thin-film head and oxide media to
achieve a bit density of 15,000 bpi and a track
density of 800 tpi to store 12 million bpsi. The
head flying height is about 10 microinches.

Tandem's XLS has a linear density of
18,600 bpi and a radial density of 1000 tpi.
This means 18.6 million bits can be stored in
one square inch of space; i.e., over 1300 pages
of double-spaced type-written document can
be stored in an area the size of a postage
stamp.

Figures 2 and 3 show the development in
recording density. Table I compares the IBM
3350 and 3380 technology to Tandem's XLS
disk storage subsystem.

J U N E I 9 8 6 T A N D E M

Figure 2

Figure 3

Table 1.

'iii

~
.0

"' Ol
§
Q)
()

.g
::,

"' ii;
0.

.?,
·13
"' 0.

"' u

Year

BPI
TPI

BPSI

2.0

1.0

...,_....)4,iooh

.,..._,.'...!;l-!n¢h

1975 1980

8000 15,000
600 800
5M 12M

A comparison of IBM and Tandem disk
technology.

1974 1981

IBM 3350 IBM 3380
(oxide) (oxide)

BPI 6425 15,000

TPI 480 800

Areal density 3 12
(million bpsi)

Mbytes/spindle 317 1260

Head flying height 18 10
(µ inches)

Average access 25 16
time (msec)

Data transfer 1.2 3
rate (Mbytes/sec)

SYSTEMS REVIEW

Figure 2.

Disk media required to
store JO million bits of
data. The bars represent
the area required to store
the same amount of
information using differ­
ent recording technology
developed over thelast
ten years.

1985 1990 (est.)

Figure 3.

Recording capacity per
disk surface. This graph
shows the exponential

1985 growth in storage capac-
Tandem XLS ity per disk in the last
(plated)

decade. it also compares
18,600 the capacity of disk

1000 platters of two popular
18.6 diameters: 8 inches and

14 inches.
520

10

15

1.8

49

Figure 4

Improved Areal Recording Density
Areal recording density is improved by
increasing radial density (tpi) and linear den­
sity (bpi). Both head and media innovation
play a vital part in its advancement. Head
development concentrates on reducing the
width of the gap between the magnetic poles
and the gap between the head and the media.
As these gaps are narrowed, smaller magnetic
domains can be formed, thus increasing linear
density.

Read/write core

Figure 4.

Major components of a
head assembly. The
suspension serves as a
mounting base for the
head element and pro­
vides a preloaded force to
it. The slider acts like the

wings of an airplane to
provide aerodynamic lift
to the head element. The
read/write core consti­
tutes the rear end of the
head element and the
windings on it are shown.

There are two complementary requirements
in new media development:

■ The thickness of the magnetic film must be
reduced. A thinner layer works with a lower
flying head to allow for saturation 2 of the
recording surface as it is magnetized.

• Better magnetic properties such as increased
coercivity3 and remanence4 are required for
signal quality.

Heads
Heads consist of a coil and magnetic poles and
are usually made of a ferrite read/write ele­
ment mounted on a slider. The slider is either
made from ceramic (for composite head) or
bulk ferrite (for monolithic heads). The slider
is shaped by precision grinding and lapping,
with glass bonding forming the read/write
gap. Figures 4 and 5 show the construction of
the ferrite heads. The drawback is in frequency
response. Improved manganese-zinc ferrite
heads have a maximum frequency response of
about 15 MHz.

The XLS disk storage subsystem uses ferrite
heads. Because of the advanced data encoding
method, the heads are writing and reading
flux changes at a rate of 10 MHz. (See the
accompanying article, "Data Encoding Tech­
nology Used in the XLS Storage Facility.")

Media
Media can be broadly classified into two cate­
gories: oxide media and thin-film media.

Oxide Media. Oxide, particulate, thick-film,
and coated media are all terms for the type of
media used for the past 20 years. The coating
material is made by mixing iron-oxide parti­
cles with an organic binder and applying it
over the aluminum substrate. This forms a
coating 20 to 50 micro inches thick. The disk is
then polished to a high luster and overlaid
with a carefully controlled film of special
lubricant. Typical coercivity for oxide media

-

2The magnetic layer is saturated when the magnetic poles of all the particles are
lined up in the same direction. An unsaturated layer produces a weaker read
signal and has a shorter shelf life as the magnetic energy stored is being used to
induce the remaining magnetic particles to line up in the same direction.

'Coercivity, represented by the symbol He, is the magnetic field strength of
opposite direction required for reduction of the remanence to 0. It is measured
in units of Oersted (Oe).

4Remanence, represented by the symbol Br, is the magnetic induction that
remains in a material after the removal of the magnetizing force. It i~ measured
in units of Gauss (Ga).

50 T A N D E M SYSTEMS REVIEW J U N E I 9 8 6

is 300 to 500 Oe. Recent attempts to extend its
recording density involve doping the tradi­
tional iron-oxide particles with cobalt or using
alternate particles. This results in a deep
brown color and is called "chocolate" media.

Thin-film Media. The thin-film media's mag­
netic film is usually only 3 to 10 microinches
thick. It can be applied by either electrochemi­
cal plating or sputtering (molecular deposition
in a partial vacuum). Since the total electric
charge in a plating process or the deposition
time in the sputtering process can be precisely
controlled, it is possible to produce recording
films of any thickness, even down to 1 micro­
inch. Coercivity characteristics are also
higher, in excess of 600 Oe.

Plated Media Manufacturing
Process
There are four basic steps involved in making
a plated disk:

1. A blank aluminum disk is processed into a
substrate suitable for plating.

2. A layer of electroless nickel is plated
onto it.

3. A thin film of magnetic material is depos­
ited on top of the nickel layer.

4. A carbon overcoat is applied as lubricant.

The disk manufacturing process must be
carefully controlled from the very beginning.
The blank substrate is first checked for uni­
form thickness and flatness. A slight variation
in these dimensions will cause problems in
head flight and even crashes. The inner and
outer diameters are also checked for toler­
ances. Then the blanks are subjected to heat
treatment for an extended period of time. This
annealing process relieves metal stress. The
blanks are then ground down through several
passes to even smoothness.

Figure 5

Winchester
technology
(IBM 3350)

Tandem XLS

JUNE 1986 TANDEM SYSTEMS REVIEW

Figure 5.

Two generations of Win­
chester recording heads.
The two types of heads
are drawn to the same
scale to show the relative
sizes.

51

Figure 6.

Comparison of particu-
late versus thin-film
media thickness. The
magnetic layer of the
particulate (20 micro-
inches) is about seven
times as thick as that of
the two thin-film media
(3 microinches).

52

Figure 6

Magnetic layer

Lubricant

~
~le

@!Id
. tilnder

Aluminum
substrate

i 1 µ in

20 µ in

SiO,

NiP

Aluminum
substrate

j 2.8µin

l,,, ,,

-600 µ in

C

Cr

CciMP

NiP

Aluminum
substrate

! 1.6 µin

0.6 µin ! 2 8 µ in

-600 µ in

Particulate media
oxide particle
and lubricant

Thin-film media
plated with
silicon dioxide
overcoat (in XLS)

Thin-film media
sputtered with
carbon and
chromium overcoat

The second manufacturing stage, applying
the nonmagnetic nickel phosphorus layer,
serves three functions. This layer provides the
hardness needed for contact start-stop oper­
ation, seals the substrate to avoid corrosion,
and provides better adhesion for the magnetic
layer. It is typically several hundred micro­
inches thick and is plated on.

After the nickel layer is polished, it is ready
for the plating of the magnetic film. This film
is usually less than 5 microinches thick and is
made of cobalt or nickel or both, plus acer­
tain amount of phosphorus.

Table 2.

Specifications of the thin-film disk and heads
used in the XL8 disk storage subsystem (per NEC
Information Systems).
Thin-film disk Specifications

Mechanical data

Outer diameter 230 mm, 9.05 inch

Inner diameter 100 mm, 3.94 inch

Durability (contact start/stop cycles) 20,000 times/min

Magnetic characteristics

Coercivity 700Oe

Remanence 7000 Gauss

Media thickness (Cobalt Nickel Phosphorous) 0.08 µM, 3 µ inch

SiO2 overcoat thickness• 0.08 µM, 3 µ inch

Electrical data

Resolution 79.5% min

Overwrite residue -29 dB max

Signal to noise 32.8 dB min

Head

Mechanical data

Gap length 0.8µM

Flying height (inner track) 0.28 µM, 11 µ inch

Electrical data

Inductance 4.8 µH

Readback amplitude 24 mv p-p min

•NEC uses a polar fluorocarbon lubricant that chemically
adheres to the SiO, layer to enhance smooth contact start-stop
motion and mechanical durability.

T A N D E M SYSTEMS REVIEW J U N E I 9 8 6

Finally, the lubricant is applied and the
disks are checked for surface defects. The
choice of lubricant is extremely important as it
determines the performance and life of the
disk. The formula and process used are often
proprietary to the manufacturer. Most
manufacturers use a carbon overcoat, while
some have developed a proprietary silicon
dioxide lubricant. A chromium layer is
sometimes applied before the lubricant is
applied to increase corrosion resistance. The
result is a hard, corrosive-resistant disk having
few defects, a disk well suited for high-density
recording.

Figure 6 shows the relative thickness of the
different layers. Figure 7 illustrates the process
that produces the plated medium used in the
XLS disk drives. The lubricant used is silicon
dioxide.

Electrical and Mechanical
Characteristics
The thin-film media are superior in several
ways to their coated counterparts. First, the
decreased thickness of the magnetic layer con­
tributes to a higher recording density. Since
the recording head's magnetic flux does not
have to penetrate as deeply in order to saturate
the layer, smaller magnetic domains can be
formed with a thinner layer.

Table 2 shows some specifications of the
thin-film disk and heads used in the XLS disk
storage subsystem.

Second, the material used during the manu­
facturing process enhances the magnetic and
mechanical properties. The cobalt and nickel
in the recording film increases the remanence
value to about eight times that of the oxide
media. This gives better signal definition. The
phosphorus raises the coercivity to 70%
greater than oxide media. This increases the
signal-to-noise ratio. The nickel undercoat
adds hardness to the disk. This increases dura­
bility and decreases handling and shipping
damage.

Figure 7

Jlftl'p!atlng Substrate

Polishing

] Media

Overcoat

Lubricant

] Test

Tests performed by disk manufacturers
show almost no signal degradation after
100,000 contact start-stops. Assuming two
start-stop cycles per day, this represents a
media life of 12 years.

J U N E 1986 • TANDEM SYSTEMS REVIEW

Figure 7.

Plated disk production
process. This flow dia­
gram shows the major
steps of plated disk
production.

53

Figure 8

Figure 8.

Peak shift phenomenon.
When two magnetic flux
transitions are recorded
close to each other, they
have a tendency to repel
each other. The resultant
waveform read-back

54

I

Peak shift

I
I

I
I

exhibits a phenomenon
known as peak shift.
Here the two peaks shift
away from their respec­
tive nominal positions
and their amplitudes
decrease as well.

/

,,,----­
/

T A N D E M

Time

Another important media characteristic that
directly affects data error rates is the phenom­
enon known as peak shift. Peak shift is caused
by the superposition of signals from adjacent
flux transitions. As bit density increases, so
does the effect of superposition.

Figure 85 shows how the peaks of the two
adjacent bit cells shift away from each other
as their amplitudes decrease in much the same
way as like poles of a magnet repel each other.
In order to read a flux transition in its true
position, it must be detected within an inter­
val known as the bit-cell time. When the peak
shift gets too large, the individual peak
becomes hard to identify and consequently the
data error rate increases rapidly.

Figure 9 shows the relationship between
peak shift value as a percentage of the bit-cell
time and recording density expressed in terms
of flux transitions per inch. It compares the
oxide media to thin-film media using ferrite
(MnZn) heads. As the curve on the left indi­
cates, peak shift for a ferrite head and oxide
media increases sharply with recording den­
sity. Peak shift characteristics of thin-film
disks show greater capability for high-density
recording. This graph demonstrates the poten­
tial for going beyond 15,000 flux transitions
per inch.

Table 2 contains some specifications of the
thin-film disks and heads used in the XLS disk
storage subsystem. The electrolytic plating
process provides superior defect performance
and excellent signal resolution at high density.
As more media manufacturers gain experience
and the ability to control the process, yield,
availability, pricing, and consistency of quality
will improve. In the future, more disk drive
manufacturers will make use of this technol­
ogy which is currently available in Tandem
products.

'Figures 8 and 9 originally appeared (in a slightly different form) in an article
entitled "Thin.film Disks Drive Densities to New Highs," by Jack Taranto in
Electronics. April 21, 1982.

SYSTEMS REVIEW• JUNE I 9 8 6

Plated Media Potential
While 18 million bpsi is the maximum for
oxide media, it is the floor for plated media. It
is expected that within three years, linear den­
sity will be increased to 25,000 bpi as radial
density is advanced to 1600 tpi, yielding
40 million bpsi.

The other thin-film process used to increase
density is called sputtered media. The sput­
tered magnetic film can be adapted more eas­
ily to vertical recording. Since the sputtering
process is similar to semiconductor wafer
processing, most announced sputtered media
are 5 ¼ inches in diameter or smaller. No ven­
dor has yet announced a larger sputtered­
media disk. Developing a larger disk would
require very expensive tooling changes and the
process is much more difficult to control.

On the other hand, a few vendors have mas­
tered the electrochemical plating process with
consistent quality and high yield. The over­
coating has proven to be durable and long­
lived, even under severe environmental
conditions. Defect control is also better.
Larger diameter disks can be mass-produced
with the plated process, thus bringing down
substantially the cost per Mbyte of storage.

Conclusion
The XLS disk storage subsystem is a signifi­
cant addition to Tandem's fault-tolerant
computing equipment. Its plated media
characteristics have been measured and veri­
fied in our disk device development labs.
These attributes not only make the plated
media an outstanding choice for high­
capacity, high-density storage, they also
contribute to the data integrity and price/
performance advantages of Tandem Nonstop
systems.

J U N E 1 9 8 6 T A N D E M

Figure 9

a,
E 16 .,
ai
f
iS
0 12
(l)
OJ
El
c::
(l)

[!
(l) 8 Q.
<J)

~
;::
E
<J)

-"'- 4 ro
(l)

Cl.

Bit density (1000 flux reversals/inch)

Reference
Taranto, J. 1982. Thin-film Disks Drive Densities to New
Highs. Electronics, April 21.

Acknowledgment
The author wishes to thank Dick Hodgman and Steve Coleman
for reviewing the article and providing valuable feedback.

------ ------

David S. Ng is the Manager of the Disk Device Development
Department. He joined Tandem in 1981 supporting the disk
product line. He was project leader for the VB disk product, and
project manager for the XLS disk product.

SYSTEMS REVIEW

Figure 9.

Peak shift as function of
bit density: plated disks
versus particulate disks.
This graph shows that as
bit density increases, the
amount of peak shift as a
percentage of the bit-cell
time increases. The
higher the percentage, the
higher the read error
rate. Plated disks are
seen to have a higher bit
density for the same
desired error rate.

55

56

Data-encoding Technology
Used in the XLS
Storage Facility

------- iiii
he data-encoding technique
currently used in Tandem's
XLS storage subsystem is

--- known as 2-7 run-length
-- limited (RLL) code. It pro-
---- vides a 50% improvement in

------ recording density over pre-
vious Tandem disk drives.

The preceding article, "Plated Media Tech­
nology Used in the XLS Storage Facility,"
contains a description of the storage capacity
and physical dimensions of the XLS.

This article explains the requirement for a
self-clocking recording code used in high­
density disk drives and compares the modified
frequency modulation (MFM) encoding used
in previous disk storage products. It also dis­
cusses the 2-7 code, and the implications of the
new recording code on testing drive electronics
and media defects testing.

Encoding Techniques
Some form of encoding technique is needed to
record binary data on the magnetic disk
media. Code symbols have been defined as
follows:

■ A "1" bit represents a flux change.

• A "0" bit represents the absence of a
flux change.

The most intuitive encoding technique, and
thus the first, was NRZI. A separate signal
carrying the clock is used to define a data win­
dow (i.e., where the data is to be detected).
An example is the Read Data and Read Clock
signals on the storage module device (SMD)
interface for disk drives.

NRZI, however, soon reaches its limits as
data densities increase. This is because of the
cumulative effect of the mechanical and elec­
tronic components' tolerance and skew of the
independent signals.

Self-clocking codes were introduced next.
These codes combine clock and data in the
same signal. This technique uses a phase-lock
loop synchronized to the signal to reconstruct
a clock; the clock is then used to recover data.

Run-length limited code is one kind of self­
clocking code. RLL code is a coded representa­
tion of binary data in which the number of
consecutive Obits (the run length) is limited by
the constraints of the code. This allows the
clock to be recovered. By contrast, NRZI code
has no run-length limitation; i.e., there can be
any number of Os (nontransitions) before a
1 bit (transition) is encountered.

Table 1.

Representation of NRZI, MFM, and FM codes.
Coded

Data representation

NRZI 1 1
0 0

FM 1 11
0 01

MFM 1 10
0 followed by 1 00
0 followed by 0 01

TANDEM SYSTEMS REVIEW JUNE 1986

MFMCode
The Modified Frequency Modulation (MFM)
code is the simplest RLL code. Adjacent mag­
netic transitions can be as close to each other
as 1 bit-cell time and no farther apart than
2 bit-cell time. It is called modified frequency
modulation because it is modified from a code
most commonly found in floppy disk drives
calledfrequency modulation (FM). In FM, a
clock bit is inserted between every data bit,
whether it is a 1 or a 0. MFM removes from
FM recording all clock transitions that are
adjacent to data 1 bits. The clock transitions
fill the gap between Os. Table 1 shows a coded
representation of the three codes discussed in
this article.

Note that both FM and MFM have two code
symbols (right column) per data bit (left
column). Therefore, the detection window for
each code symbol is one-half the data-bit-cell
time. Why MFM gained popularity over FM is
obvious. In FM there can be as many as two
flux transitions per data bit, while MFM may
have at most one flux transition per bit. FM
may have a run of not more than one 0, while
MFM may have a run of not less than one 0
and not more than three Os between 1 s.

In magnetic recording, adjacent flux rever­
sals tend to repel each other in the same way
like poles of a magnet repel each other. This
creates a phenomenon known as peak shift.

Peak shift is caused by superposition of
signals from adjacent transitions. The peaks
of the two signals move away from each other
and decrease in amplitude. This introduces
error as the read-detection circuitry tries to
detect the peaks within the data window. It is,
therefore, desirable to have the peaks (derived
by differentiating flux transitions) as far apart
as possible without losing synchronization
with the phase-lock loop. For this reason,
MFM is used to gain more recording density
over FM. Tandem disk drives 4104, 4105, 4109,
4110, 4114, 4116, and 4120 (V8) all use MFM
data-encoding technique.

Figure 1 shows how a binary data stream is
recorded on the magnetic medium with the
different encoding schemes. Refer to Table 1 to
see how NRZ data is coded into flux transi­
tions, represented by 1, and nontransitions,
represented by 0. An "encoded write data"
pulse corresponds to a "flux transition" at the
head. On the read-back, the recorded flux

Figure 1

Bil
cell

Clock

NRZ data 1 ..

Encoded
write data

Write flux
change
at head

Recorded
flux

WRITE

READ
Analog

read data

Read data
digitized

2F clock

Encoded
write data

Write flux
change
at head

Write flux
change
at head

Figure 1.

Comparison of MFM,
FM, and NRZI encoding
techniques. This figure
shows how the same
binary data stream of

"1001011" is encoded
differently using different
encoding schemes. The
WRITEREAD process
is shown in detail for the

transitions induce the waveform represented by
"analog read data." The peaks of this wave­
form are digitized and decoded back into the
NRZ waveforms. The host system can then use
the rising edge of the clock signal to retrieve
the data.

J U N E I 9 8 6 TANDEM SYSTEMS REVIEW

1 1

MFM

J NRZI

MFM code. The FM and
NRZI codes are included
for comparison.

57

Figure 2

NRZ data
bit cell
67 ns,

J• 15 MHz• I
Clock (2F)

NRZ data 0 0 0 0 0

M 34ns Encoded bit cell

Encoded _J7 write date
0

Write flux
change
at head

--!1oons

NRZdata 0

Encoded
write data

0

Write flux
change
at head

Figure 2.

RLL 2-7 code high­
frequency and low­
frequency patterns. This
figure has the same
format as Figure I. Note
that for the high­
frequency pattern, there
are two nontransitions,
0, between each transi­
tion, I. For the low­
frequency pattern, there
are seven nontransitions,
0, between each transi­
tion, I.

0

n n n n
0 0 0 0 0 0 0 0

10 MHz j- Maximum flux transition rate

0 t 0 0

0 0 0 0 0 0 0 0 0 0

f.--Minimum flux transition rate
267 ns, 3.75 MHz

RLL 2-7 Code
The XLS disk subsystem uses RLL 2-7 code,
the latest data-encoding technique developed
to boost linear recording density. Like FM and
MFM, it is also a form of self-clocking code.
The first number, 2, refers to the minimum
number of consecutive clock cells (half-data
bit cell) between flux transitions; the second
number, 7, refers to the maximum number of
consecutive clock cells without a flux transi­
tion. (Within these notation conventions, for
example, MFM code can be represented as
RLL 1-3.) The advantages of RLL 2-7 code
over MFM code include:

■ A 50% increase in bits per inch (bpi) is
gained with a given flux-transition density.
This means that three data bits of information
can be derived from the space normally taken
by two bits when MFM code is used.

0

0

0 0 0

n n rt__ High

0 0 0 0 0 frequency

0 0 1

Low

0 0 0 6 0 0 0 frequency

■ A lower bandwidth is required for a given
data density.

■ RLL 2-7 code is optimized for use on present
head and disk technologies.

The trade-off is more complicated
encoding/decoding and phase-lock loop elec­
tronics. XLS disk drives have a data density of
18,600 bpi, yet the flux transition density is
only 12,400 transitions per inch.

Table 2 shows RLL 2-7 code conversion.
Note that this is only one of many possible
mappings. Note also that the data words (left
column) can handle any combination of

Table 2.
ALL 2-7 code conversion table.

Coded
Date representation

10 0100
11 1000
000 000100
010 100100
011 001000
0010 00100100
0011 00001000

58 T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6

Figure 3

Repeat

2F clock

NRZdata 0 0 0 0 0 0 0

Encoded n n n n write data
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Write flux
change
at head

, ,
' ' i 1- Peak shift

/ '
, '

' / ' ' , / '
/

, ',,,,J I Analog
read data

binary bit sequences. Moreover, this code
conversion does not violate the run-length
constraints. This means that each encoded
group (right column) must have:

■ At least two Os between the 1 s.

■ No more than three Os at the end.
■ No more than four Os at the beginning.

Again, when RLL 2-7 code is compared
with MFM code, it is obvious that the flux
transitions are now separated by more
nontransition bit cells. Therefore, the packing
density can be higher. Figure 2 shows the
derivation of the high-frequency and
low-frequency patterns. The high-frequency
pattern has a minimum of two Os between the
ls; the low-frequency pattern has a maximum
of seven Os between the 1 s.

Each bit-cell time is 67 ns for a bit rate of
15 MHz. Yet with the high frequency pattern,
flux transitions occur at a maximum rate of
10 MHz, with each magnetic domain lasting
100 ns.

As shown in the conversion table, it takes
two encoded bit times (right column) to
represent one data bit (left column). On the
XLS, the 9-inch diameter disk spindle rotates
at 3070 rpm; thus, each encoded bit time is
33.3 ns wide. Since there must be at least two
Os (or nontransitions) between the ls, the
maximum rate at which the ls (or transitions)
occur is once every three bit times, or every

~
'

,
'

,

100 ns. Although the maximum flux transition
frequency is 10 MHz, this represents a binary
data transfer rate of 15 MHz.

Figure 3 shows how a binary data pattern is
converted into RLL 2-7 code and recorded
onto the magnetic media. The pattern used is
the peak shift pattern, chosen to measure
worst-case peak shift.

Testing Drives with RLL 2-7 Code
Since binary test patterns now go through a
different conversion table than that used for
MFM code, a different set of test patterns
must be generated for media defect detection
as well as other evaluation tests.

Media Defect Testing: Format Patterns
Winchester disk drive manufacturers use both
analog and digital methods to test the drive
for media defects as part of the production
process.

JUNE 1986 TANDEM SYSTEMS REVIEW

0

0

n
0

Figure 3.

Peak shift pattern for
RLL 2-7 encoding. The
peak shift pattern can be
used to test data error
rate induced by peak
shift. It consists of two
ls with minimal separa­
tion (two Os) to maxi­
mize the peak shift
effect. These groups of
two ls are separated by
as many as five Os to
minimize interaction
between the groups.

59

Figure 4.

Three-flux transition
pattern used for format­
ting. With two transi-
t ions written as closely as
possible, the center tran­
sition's amplitude is seen
to have dropped. This is
used to detect marginal
recording cells on the
media.

60

Figure 4

Volt

Peak shift ---1 I- - Peak shift

The analog method detects defects by exam­
ining the analog data signals before they are
digitized and decoded. Missing bits, extra bits,
and amplitude modulation criteria are used.

The digital method involves writing a
certain binary data pattern to the drive
through the interface and reading it back for
comparison. At Tandem, sectors containing
defects are spared during the format process so
that customer data will not be written on
them. We require the drive manufacturer to
supply a list of defect locations detected at the
factory. Our formatting process uses the ven­
dor list as a base and adds any other defective
spots found during the format process.

The patterns used during the format process
are chosen deliberately to improve defect
detection. These patterns are designed to force
worst-case amplitude modulation. This can be
achieved by superposition of signals from
adjacent flux transitions. When three flux
changes are written with equal spacing and are
close enough for interaction, the outside sig­
nals appear to have their peaks shifted away
while the center one has a diminished ampli­
tude. This middle transition is used for testing
marginal defects. (See Figure 4.)

Ideally, this group of three transitions
should be written repetitively with minimal
spacing between each transition; the groups
should be separated to minimize interaction
between the groups.

In order to test for every possible defect
location, the middle bit must be made to scan.
The task is to pick patterns that cause this
middle bit to scan across the track. In MFM
code, four patterns are necessary to complete
the scan. The binary pattern of 01110111. .. is
encoded into 001010100010101000 The two
underscored bits are tested.

RLL 2-7 requires over 12 passes (i.e., 12
different patterns) for complete coverage.
These patterns are derived and used during
new product development to evaluate media
quality and defect characteristics. It may be
prohibitively expensive to use all possible test
patterns during the manufacturing process.

The vendor's analog tests usually find over
85% of the media defects. The digital tests
used by the vendor and Tandem find another
10%. Possibly 5 OJo of the marginal defects are
not detected before the drive is shipped. These
are the locations that may fail once per ten
reads or even once per 100 reads. Defects that
cause errors in normal operation do not cause
problems for users in the great majority of
cases.

Defects tend to be limited in length, and the
error correcting code (ECC) built into the disk
controller corrects most errors caused by
defects, as it does other errors. They are
reported as corrected data errors and their
correction is accomplished without any notice­
able impact on performance or data access
time. Correctable data errors that occur
repeatedly on the same physical location can
easily be mapped out by a PUP command.

Test Patterns
Three other tests are sensitive to data patterns.
These patterns are used to test the read/write
electronics of the disk drive.

Overwrite Test Pattern. Overwriting is a test
to evaluate the drive's ability to erase old data
patterns with new ones; i.e., it is a test to
detect the residue of the old pattern after the
new pattern is written. It can be done digitally
or with a spectrum analyzer.

Typically, a low-density signal permits
higher write current before saturation occurs,
and vice versa. Most disk drives use only one

TANDEM SYSTEMS REVIEW• JUNE 1986

Figure 5

Encoded
write data 1 o o 1 o o o o o 1 o o 1 o o o o o 1 o cf 1 o o o o o 1 o o 1 o o o o o 1: ~

Analog
read signal

level of write current to simplify design. The
write current is optimized at just above the
knee of the saturation curve for the highest
density (inner track, high-density signal). This
means that the lowest density (outer track,
low-density signal) is undersaturated. The test
involves writing with the high-frequency pat­
tern twice on a track and then writing the same
track again with the low-frequency pattern.
The track is then read and verified. Both pat­
terns shown in Figure 2 are used for RLL 2-7
encoding. With MFM, the high-frequency pat­
terns are 1111... or 0000 ... ; the low-frequency
pattern is 1010

'lrack Misregistration Pattern. The same high­
and low-frequency patterns can also be used
to run the track misregistration test. This tests
the "cross talk" between the tracks. Typically,
the two patterns are written alternately on the
innermost tracks at one temperature extreme,
and then read back at the other extreme. If an
error is detected, it may indicate a thermal
expansion problem on the base plate or actua­
tor, or a tracking error on the servo system.

Read Reliability Pattern. This test is designed
for testing the phase-lock loop's ability to
respond to changes in the relationship between
the data and the clock information. As with
all self-clocking codes, the signal read from
the disk carries both the clock and data infor­
mation. The data window recovered from the
signal itself is used to check for the occurrence
of a flux transition. Due to the superposition
of signals of adjacent flux transitions, how­
ever, the peaks tend to shift away from the
center of the data window. Depending on the
flux transitions that are written, different pat­
terns cause varying amounts of peak shift.

V V -v
~ I· ·I· ·I
Two-flux Three-flux
change change
peak shift peak shift

Since the clock is also derived from the same
signal, the effect is compounded. In order to
handle the varying data peak and data window
relationship, the design of the phase-lock loop
has the effect of a flywheel so that occasional
irregularities do not cause large corrections.

The ideal read reliability pattern performs
two functions:

1. It introduces maximum peak shift in the
read data.

2. It causes the phase-lock loop to make suc­
cessive corrections in one direction, and
then switch direction so that the window is
at the maximum offset relative to the data.
This makes the peak shift appear to be
even worse.

The maximum peak shift is obtained by
writing two flux changes as close to each other
as the encoding scheme permits. This two-flux
change pattern as a group is then written sev­
eral times consecutively. To minimize inter­
group interaction, as many nontransition cells
are written between the groups as the encoding
scheme permits. A three-flux change pattern
(used for formatting) is then inserted to throw
the phase-lock loop to the opposite direction.
The ratio of two-flux transition patterns to
three-flux transition patterns should be deter­
mined by experimenting with the individual
drive. Figure 5 uses a 4: 1 ratio as an example.

J U N E 1986 • TANDEM SYSTEMS REVIEW

Figure 5.

Read reliability pattern.
The read reliability
pattern is used to test the
design of the read phase­
lock oscillator (PLO).
It consists of four groups
of 1 0 0 1 separated by
five Os. This causes
the phase-lock oscillator
to adjust in one direc­
tion. Then a group of
I O O I O O I is inserted to
throw the PLO off bal­
ance as it tries to adjust
to a different amount of
peak shift.

61

62

Table 3.
ALL 2-7 read reliability pattern.
Encoded read reliability pattern 100100 000100 1000 00100100 000100 1000 00100100 1000 0010010 000100

Decoded binary pattern 010 000 11 0010 000 11 0010 11 0010 000

Binary
Hex data

0100 0011 0010 0001 1001 0110 0100 00
4 3 2 1 9 6 4

With MFM code, the maximum peak shift
pattern is " 1101 10110," etc., and the reversal
pattern is "01110." Combining the two pat­
terns in a 4:1 ratio yields "l 101101101101110,"
etc. Converting this pattern to hexadecimal
yields the famous "DB6E."

Table 3 shows how the RLL 2-7 read
reliability pattern in Figure 5 is decoded into
hex data. Since we cannot find a pattern that
uses the maximum seven Os between the ls,
we have settled for five. Refer to Table 2;
remember that there is a minimum of two Os
between the I s .

The first line is the encoded bit pattern as
written on the disk. Note that there are four
two-flux change groups followed by a
three-flux change group. Each group is
separated by five Os. Spaces are inserted to
show conversion relationship with the second
line. The third line regroups the second line
into groups of four binary bits. The fourth line
is the hexadecimal representation of the binary
pattern in line three. Thus, the read reliability
pattern for this particular conversion table is
"432196" hex.

Conclusion
The RLL 2-7 encoding technique leverages off
existing head and media technology to provide
a 50% improvement in recording density.
Users gain the benefit of a faster data transfer
rate and smaller physical volume, with the
reliability of proven recording head-media
technology. New test patterns are derived and
applied during the product development
phase; they have proven that good electrical
signal properties are not sacrificed at the
expense of gaining recording density. The
principles presented here can be adapted to
evaluate and test future disk products with
other self-clocking coding schemes.

Acknowledgment
The author wishes to thank Dick Hodgman and Steve Coleman
for reviewing the article and providing valuable feedback.

David-S~g~anager of the Disk Device Developme_nt D;:part­
ment wrote this article, as well as the preceding article, Plated
Medi~ Technology Used in the XL8 Storage Facility."

T A N D E M SYSTEMS REVIEW• JUNE 1 9 8 6

andem uses several criteria to
select the best possible disk
drive vendors. Besides con­
sidering financial status,
long-term viability, and
product suitability, Tandem
also undertakes plant inspec­

tions, diagnostic testing, and visual drive
inspections to narrow the number of vendors
to three candidates. Usually six to ten samples
of the drive model are obtained from each of
the three vendors and subjected to diagnostic
tests, environmental tests, burn-in tests (to
identify infant mortality problems), and life
tests to ensure that the unit will meet
Tandem's needs.

One performance parameter verified is the
manufacturer's stated error rates. "Errors"
(especially recoverable errors) should not be
confused with "disk failures." Errors are gen­
erally not catastrophic, but they waste valu­
able processing time. Measuring this
parameter not only identifies a poorly
designed drive, but helps differentiate between
two well-designed drives.

Predicted and measured recoverable error
rates for a well-built and well-designed Win­
chester or Whitney drive are one in ten giga­
bits (10,000,000,000); nonrecoverable error
rates for these drives are one in one terabit
(l,000,000,000,000).

Previously, Tandem accepted vendor claims
at face value. It is costly and time consuming
to quantify the actual soft error rate by nor­
mal methods:

■ At current average access times (20 ms) and
current average block lengths (256 Kbits) it
takes 11 hours to run a single sample of lOElO
bits.

Data-window Phase-margin
Analysis

■ Running a large enough number of samples
(e.g., 25) to reduce stochastic error to a com­
fortable level would take 265 hours for each
drive.
■ All samples submitted would need testing to
ensure that the sample was representative.
Even using many processors, such testing
would overwhelm laboratory resources.

Tandem needed a way of accelerating testing
and extrapolating data without abrogating
accuracy. Data-window phase-margin analysis
provides the desired result without resorting
to a full worst-case analysis or running masses
of data.

Data Windows and Bitshift
The data window is that space (or period) in
time in which the data bit must appear to be
recognized as correct data. (See Figure 1 on
the following page.) Errors occur when a bit
has moved into the next data window in a
process known as bitshift. Bitshift is defined
as the time that the bit in question deviates
from its preferred position, i.e., the center of
its data window. Knowing how well a disk
drive manages its overall bitshift provides a
good measure of the true capabilities of the
drive. It is analogous to comparing marksmen
by measuring the spread of their shot.

JUNE 1986 TANDEM SYSTEMS REVIEW 63

Figure 1

Bit cell

Logic O 0 0 0
Dipole ___ _..> ___ ---<>---

Write current

Differentiated
signal

Zero crossing
detector and amplifier

Data window

Figure 1. Figure 2

MFM recording
technique.

Figure 2

The probability density
distribution curve for
bitshift of random data
patterns. (a) The stan­
dard probability func­
tion. (b) The portion that
falls outside some given
period from the center of
the curve.

(a)

Average
deviation --4+------

w
P(x) -j p(x)dx

(b)

P'(w) ~ 2{1-P(w)}

-:--~----c---+----,---'~-,-•x-

J 0

Bitshift is caused by a combination of many
factors including:

■ Delays in the writing and reading channels.

■ Magnetic and electronic noise.
■ Adjacent domain interference.

Recording Techniques
Compensation circuits are used to correct for
read/write delays. The effect most difficult to
manage is bitshift caused by adjacent-domain
interference. This occurs when two closely
juxtaposed magnetic domains on the disk
interfere with each other.

Magnetic recording is done by creating
small permanent magnets called domains on
the coating material covering the surface of the
disk. The magnetic polarity of these domains
can be reversed by the influence of external
magnetic forces. Just as permanent magnets
influence each other when placed close
together, the domains in close proximity influ­
ence each other's magnetic vector, causing the
peaks of the pulses that are reproduced
through the read head to move closer together
or farther apart.

Modified Frequency Modulation
Figure 1 illustrates the modified frequency
modulation (MFM) recording technique. The
following rules apply to this type of recording:

■ ones: A reversal of magnetic flux direction
occurs in the middle of the bit cell.
■ zeros: No reversal of flux occurs in the mid­
dle of a bit cell, but a reversal is to occur at
the leading edge of the bit cell, whenever a
zero follows a zero.

Note that the data window always equals
half the bit cell in MFM recording.

Plotting Curves
The following method obtains the typical nor­
mal curve shown in Figure 2:

1. Run a fixed sample of bits.

2. Superimpose each one on its data window.

3. Use the center point of the generated
period as the zero point.

64 TANDEM SYSTEMS REVIEW• JUNE 1986

Each pulse is shifted either positively or
negatively, with respect to that zero point. If
the sample is large enough and the shifting is
random, the distribution of those bits is
Gaussian 1 about that zero point and fits a
normal curve as generated by that sample.

Conversely, the probability of finding a bit
shifted a specific amount from the zero point
in any similar sample of data from that partic­
ular disk drive obeys the same normal curve.
(At this point the concern is not with the nor­
mal curve per se, but rather in how close its
skirts come to the window limits.) Phase­
margin analysis determines the data window
in which no pulses appeared, after some fixed
predetermined quantity of data has been run.

Typical Data-error Curve
Measuring P'(x) for values of x from Oto +W
where +W is the positive limit of the data
window, results in the curve shown in Figure 3.
By calculating the standard deviation (S), it is
possible to use the Gaussian tables to extrapo­
late our results to any sample size (e.g.,
lOElO). The standard deviation is defined as
the manner in which the function P'(x) varies
about the mean deviation. In this case, the
mean deviation is the zero point and the stan­
dard deviation is the shape of the curve.

+w(OJo) s = g

where g is the Gaussian value for P'(x) when
x = lwl

1
p(x) = _S_/2i_271"-

(X-X)Z
-]/2 ~-S­

e

where x is the mean deviation and s is the
standard deviation. A good example of this is
the failure of a piece of electronic gear where
the mean time between failure (MTBF) is the
mean deviation.

The curve is physically plotted as follows:

1. Measure P'(x) at 1-ns intervals from Oby
artificially narrowing the data window
about its theoretical center and counting
the number of bits that fall outside the nar­
rowed data window.

2. Run 10E5 bits and plot P'(x) from its max­
imum (10E5 at data window = 0) to its
minimum (P'(x) = 0). The resulting curve
is similar to that shown in Figure 3.

'The Gaussian distribution is known as the normal distribution by
statisticians. It is a bell~shaped curve showing a distribution of probability
associated with different values of a variate.

Figure 3

T
100 oi104

.Q

10 1 ,:
.g 103

u C:

I'! ·;;
:,

10·2 ~ 102 "' (1J
(l) .l'l

P'°'
:,
0

ai 101
.c

ti! E
:,

e 10 4 z 100

w
u 10·5
~
E
~ 10 6 w

1 10·7

3. Calculate the standard deviation for several
values to ensure that the distribution is
Gaussian.

4. Use the Gaussian tables to calculate P'(x)
for values of x from the measured limit (w)
to the data windows' limit (W).

Note that this technique is only accurate for
Gaussian distributions about the assumed
mean deviation. If the curve is distorted (i.e.,
it has one or two shoulders or more than one
peak), window sliding (delaying the data win­
dow with respect to the data) shows the true
mean deviation. If the mean deviation is not
in the center of the data window, presumably
something is radically wrong with the design
of the drive (e.g., timing circuits, phase­
locked oscillators [PLOs], write compensation,
or read compensation, etc.).

If the standard deviation is not a constant,
there could be something wrong with the sam­
ple (e.g., pattern sensitivity) or with the drive
(e.g., read/write head, write current, media,
synchronous noise, etc.).

Figure 4 on the following page contains
some of the equations describing the bitshift
manifestation.

J U N E I 9 8 6 TANDEM SYSTEMS REVIEW

Error rate (10·6
)

@ 76% window
(24% margin)

Full window
- error rate

(1.9 X 10.7)

Figure 3.

Typical data-error curve.
This curve is the com­
posite of P'(x) as shown
in Figure 2(b). It is a
count of bits falling
outside the data window
from W = 0 to 77% of
Max. W. The curve is
then extrapolated to
W = 100% of Max. W.

65

Figure 4

Assume Gaussian distribution:

(a) The probability' of finding any bit displaced from its designated position by time t :

P(t) = 112 !:N{exp[-(t-b,)212b,'] + exp[-(!+ b,)212b,'])

where N =#of bits (sample size)
b, = noise bitshift
b, = domain interference bitshift
I = time displaced from true position

(b) The intrinsic error rate, E, is the probability of finding a bit outside the data window or:

E =_f P(x)dx + J P(x)dx = 2(1-P(x)) = P'(x)

(c) The mean deviation', x, is:

~
n

(d) The standard deviation, S, is:

'
S = E [(x,-x)'l(n-1)]"'

I= 1

'The probability and error rate formulas are discussed in "Effect of Bitshift Distribution,"
Katz, 1979, IEEE Transactions, Vol. 15.

'The mean deviation and standard deviation are referenced in the Standard Handbook tor
Mechanical Engineers, 8th Edition, Beaumeister, pp. 17-19.

Figure 4. Figure 5

Equations describing the
bitshift manifestation.
Equation (a) is the den- A B C

sity probability for bit- r" shift due to noise and
domain interference.
Equation (b) describes
the density probability "O

for bits falling outside a 2 u 10·10
given window. Equa-

Q)

·e
tion (c) is the mean Q_

·1
deviation, which in this e
particular case should 2

uJ
coincide with the center
of the data window. 10·5

Equation (d) is the
standard deviation that "O

e>
describes the density

:,

"' "' curve. Q)

::;;;

1 0 X
Figure 5. 2040 6080 L+w
XL8 candidates A, B,

%ofW

andC

Recent Study Results
Figure 5 shows the results of the recent study
to select the optimum drive for the XLS disk
storage facility. The study compared the esti­
mated percentage of data window remaining
at lOElO bits of random data and calculated
the intrinsic error rate.

This plot (Figure 5) was inverted from the
typical plot shown in Figure 3 for ease of
automation. Diagnostics indicated that two of
the candidates were equal performers. Phase­
margin analysis verified that the intrinsic error
rate was better than the manufacturer
claimed. It also indicated that one of the
drives had a greater margin of data window
remaining at the lOElO level and, therefore,
had a greater probability of errorless
operation.

The vendor candidates showed the following
intrinsic error rates:

■ Candidate A had approximately one in
5 x 10El2 bits.
■ Candidate B had one in IOEIO plus bits.

■ Candidate C, with an error rate of one in
5 x 10E7 bits, did not meet Tandem's
requirements.

Conclusion
Future studies at Tandem will use window
sliding to determine the extent to which the
bitshift is symmetric about the center of the
data window. This will help determine the
effectiveness of the read/write compensation
circuits, and the quality of the media and its
relationship to the write current.

Note that data-window phase-margin analy­
sis is not used to determine whether a drive is
performing correctly in its system environ­
ment. Diagnostic routines do that much more
readily. It does, however, help ascertain which
drive has the greatest potential for reliable
operation, and is one of several investigative
methods responsible for the high reliability of
Tandem's disk drives.

Alan Painter is a Manager in Hardware Engineering Peripherals.
He has been with Tandem since October 1982 and has 30 years
experience in the design of disk and tape drives.

Hoa Pham is a mechanical engineer in the peripherals depart­
ment and has been with Tandem since 1983. Hoa is a member of
the Mechanical Engineering Team led by Joerg Ferch au under Al
Painter. The team recently won the Hanover Fair's "Gute lndus­
trieform" award for its work on the XLS.

Herb Thomas is a technician in the peripherals department. He
provided valuable technical assistance in this study.

66 T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6

- - his column summarizes
Tandem product announce­
ments for the fourth calendar
quarter of 1985. For ease of
reference, new products are
listed in alphabetical order.

B20 Release-Nonstop
System Software
The B20 release of the NonStop system soft­
ware, available November 1985, incorporates a
significant number of product enhancements,
new products, and bug fixes. Tandem recom­
mends that all customers install it.

The new products column in the February
1986 issue of the Tandem Systems Review dis­
cussed the following B20 release products:

■ C compiler.

■ COBOL and FORTRAN separate
run-time libraries.
■ TACL, a flexible command interpreter.
■ Information Management Technology (IMT)
products, PS MAIL™ for 6530 terminals,
PS MAIL for 3270 terminals, and PS TEXT
EDIT.

■ TAL compiler enhancements.

This column describes the following new
B20 products:
■ Single-ported Communication Interface
Unit for the 6100 Communications Subsystem.
■ SAFE-T-NET™ encryption subsystem.

Tandem's New Products

DP2 and TMF
DP2 and the network Transaction Monitoring
Facility (TMF) are generally available with this
release. The June 1985 issue of the Tandem
Systems Review contains articles describing
the benefits of DP2. By upgrading to the B20
release, customers get autorollback, downed
volume reintegration, increased reliability, and
DP2 support.

DPl is functionally stabilized as of the B20
release. DPl will be included in the B-series
releases, but will not be shipped with C-series
releases.

TMDS
The B20 release includes two new subsystems
of the Tandem Maintenance and Diagnostic
System (TMDS), which provides system sup­
port for on-line diagnostics. TMDS was first
released in the BOO release with the FOX™ diag­
nostic. (See "Introducing TMDS, Tandem's
New On-line Diagnostic System," in the June
1985 issue of the Tandem Systems Review.)
The B20 release contains TMDS subsystems for
disk and tape diagnostics.

JUNE 1986 TANDEM SYSTEMS REVIEW 67

68

Labeled Tapes
Labeled tape handling is available in the B20
release, but distribution will be limited until
the B30 release while the product is tested at
customer sites. Contact a Tandem systems
analyst for more information. The B20 release
provides the following features for processing
labeled tapes:

■ Labeled tapes can be accessed from COBOL
and TAL applications.

■ ANSI standard (X3.27-1978) and IBM
standard (GC26-3795-3) labels are supported.
■ Nine-track tape is supported in three differ­
ent densities: 800 (NRZ), 1600 (PE), and 6250
(OCR) bits per inch (bpi).

■ Each tape file is identified to the
GUARDIAN 90 operating system by a unique
logical file name; a set of attributes describing
the file is collected in a new structure.

■ The tape process recognizes the tape mount
and reports the mount information to a pro­
cess that performs Automatic Volume Recog­
nition (AVR).

■ A tape management utility program
(TAPECOM) provides the user interface for
tape-related operations.

INSPECT Symbolic Debugger
INSPECT supports a new SOURCE command
that can be used to display the source program
statement(s) corresponding to a code location.

6100 Communications Subsystem
The X.21 call-control interface is supported by
new 6100 Communications Subsystem (CSS)
products: Line Interface Module 6129-7 (X.21
LIM) and Line Interface Unit (X.21 LIU). The
6100 ADCCP protocol module allows an appli­
cation to set up an X.21 circuit-switched con­
nection and communicate over the circuit
using the ADCCP bit-synchronous communi­
cation protocols.

TCP
A-series and BIO releases of the GUARDIAN
operating system included both the old and the
new TCPs to facilitate migration to the new
version. The new TCP, PATHTCP2 introduced
in A06, offers significant performance
improvement by using extended data segments
and reducing disk 1/0 operations in the TCP.
Many sites have converted in the last 18
months with no significant problems. Because
of our customers' positive experience with the
newly designed TCPs, Tandem has split the
B20 PATHWAY transaction processing system
into two products: a Nonstop version (T9153
PATHWAY) and a NonStop 1 + version (T9103
PATHWAY). Only Nonstop systems will sup­
port PATHTCP2 and SCOBOLX (which
replaces SCOBOL); only Nonstop 1 + systems
will support PATHTCP and SCOBOL.

In a future release, ENFORM and DDL will
also split into two products-a NonStop
systems version and a NonStop 1 + systems
version.

For additional information, see "A New
Design for the PATHWAY TCP" (Tandem Jour­
nal, Spring 1984) and "The PATHWAY TCP:
Performance and Tuning" (Tandem Systems
Review, February 1985).

Product Overview
Tandem has recently released the following
new or enhanced products:

■ 5110/5114 tape drives for Nonstop EXT
systems.
■ 5130/31 tape subsystem.
■ 6100 Communications Subsystem
enhancements.
■ 6535/36/37 Ergonomic Terminals.

■ DYNAMITE™ workstation enhancements.
■ PC LINK™ Workstation Software Site
Licenses.
■ SAFE-T-NET cryptographic device.
■ SAFEGUARD system protection software
(planned for release in the spring of 1986).
■ T-TEXT™ support for local printers.
■ XLS disk storage facility.

TANDEM SYSTEMS REVIEW• JUNE 1986

Literature is available for many of these
products from Tandem sales representatives.
The "SAFE™ Integrated Security Products"
brochure describes SAFE-T-NET and
SAFEGUARD. The "Disk Drives" brochure
describes both the VS and XLS disk storage
facilities. Information sheets are available for
the Communications Control Subsystem
(CCS) and National Language Support
enhancements for the DYNAMITE worksta­
tions. A data sheet is available for the 5130/31
Tape Subsystem.

5110/5114 Tape Drives for Nonstop EXT
Systems
Two stand-alone tape drives are available for
the Nonstop EXT system: the 5110 and 5114.
Like the NonStop EXT, these tape drives do
not require a computer-room environment.
Both devices are nine-track reel-to-reel tape
drives; the 5110 tape drive operates at 45 inches
per second (ips) and the 5114, at 125 ips. Each
drive comes complete with cabling, a stand­
alone cabinet, and a patch panel for the
Nonstop EXT system.

The 5110 is a low-cost utility drive operating
at 45 ips. The device provides both 800 bits
per inch (bpi) NRZI and 1600 bpi phase­
encoded formats.

The 5114 tape drive operates at 125 ips, pro­
viding both 800 bpi NRZI and 1600 bpi phase­
encoding formats.

Storage capacity of these tape drives varies
depending on the recording density and block
size that are selected. At 1600 bpi, with a
maximum recommended block size of
8 Kbytes, 40.6 Mbytes can be stored on a
2400-foot tape. At 800 bpi, with a maximum
recommended block size of 4 Kbytes,
20.6 Mbytes of data can be stored on a
2400-foot tape.

There is an option for Nonstop EXT pack­
aged systems (including NonStop EXT /TXP
package upgrades) that allows the customer to
substitute the 125 ips drive for the standard
45 ips drive.

5130/31 Tape Subsystem
The 5130/5131 is a mainframe-class tape sub­
system that provides fast and efficient tape
operations. A tape speed of 200 ips, coupled
with recording densities of 6250 bpi Group
Coded Recording (GCR) and 1600 bpi Phase
Encoding (PE), provides fast, efficient backup

of large data bases. Along with high perfor­
mance, the 5130/31 incorporates user-friendly
features such as power windows and tape
autoloading. The 5130 tape subsystem includes
a tape transport, a formatter, a control unit,
and the cables required to install a single-drive
subsystem. Up to three additional 5131 tape
transports can be attached to a 5130 to config­
ure a maximum, four-drive subsystem. The
5130/31 transfers data at a maximum rate of
1.25 Mbytes per second.

The 5130/31 can read and write ANSI­
compatible PE and GCR tapes. Using GCR,
the tape subsystem provides up to 180 Mbytes
of storage on a single 2400-foot reel of tape.
Additional features such as tape quality
monitoring, an innovative tape transport
design, and diagnostic functions ensure data
reliability.

6100 CSS Enhancements
New protocols for the 6100 Communications
Subsystem (6100 CSS) are developed for use on
the 6100 CSS under the CP6100 Communica­
tions Access Process. Any customer can
request a protocol by having a Tandem analyst
or sales representative fill out a Protocol
Request Form. However, Tandem reserves
the right to decide whether or not to approve
the protocols.

Single-ported Communication Interface Unit.
Many of our customers have complained about
the number of channel addresses used by a
single 6100 Communications Subsystem. Pre­
viously, the 6100 CSS required 64 of the 256
available channel addresses. The Single-ported
Communication Interface Unit (CIU) solves
this problem by reducing the number of
required channel addresses to 32.

JUNE 1986 • TANDEM SYSTEMS REVIEW 69

70

UTS-40 Supervisor Protocol. This protocol
provides software for the Sperry Univac Uni­
versal Terminal System 40 (UTS-40) Multi­
point Supervisor protocol line task. The
UTS-40 Supervisor provides the ability to con­
trol multiple terminals on a synchronous com­
munications line operating under the Univac
UTS-40 polling protocol. Terminals supported
are those that conform to the protocol
described in the Sperry Univac UTS-40 Single
Station System Reference (Univac number
UP-9143-B).

UTS-40 Tributary Protocol. Provides software
for the Sperry Univac UTS-40 Tributary multi­
point protocol line task. The UTS-40 Tributary
allows the Tandem host system to look like
one or more secondary stations to the supervi­
sor. This means that users can write an appli­
cation simulating multiple terminals
associated with a single Remote Identifier
(RID), on a synchronous line operating under
the UTS-40 polling protocol. Terminals simu­
lated are those that conform to the protocol
described in the Sperry Univac UTS-40 Single
Station System Reference (Univac number
UP-9143-B).

V.35 Line Interface Unit. The new V.35 LIU
currently supports CSSADCCP and X.25 soft­
ware. The LIU consists of one Communica­
tions Line Interface Processor (CLIP) and one
V.35 electrical interface, Line Interface Mod­
ule (LIM). This LIM uses a 25-pin connector
rather than the 34-pin connector described in
the V.35 standard. Customers must supply a
special cable. A wiring diagram is included
with each LIM.

6535/36/37 Ergonomic Terminals
Tandem's three new ergonomic terminals offer
all the functionality of 653X models, plus new
low-profile keyboards. These terminals take
up less desk space and meet European ergo­
nomic requirements. New models are the 6535
with a 15-inch diagonal screen, the 6536 with a

12-inch diagonal screen, and the 6537 with a
9-inch diagonal screen. These models are com­
patible with all existing 6530 terminal options,
except T-TEXT word processing capability, and
with all system and application software.

The new terminals maintain the advanced
ergonomic features of the original 653X fam­
ily, including detachable keyboards, nonglare
screens with green phosphor characters, and
low-contrast colors to ease eye strain. Tilt/
swivel and a 6-foot electronics-to-monitor
cable set are standard on all models. With the
addition of the low-profile keyboard, the new
models meet the German DIN ergonomic
standard, a set of design specifications for
operator comfort required for selling terminals
in many European countries, including Ger­
many and the Scandinavian countries.

The 6535 typewriter-style keyboard is identi­
cal in size to the DYNAMITE workstation key­
board, expanding application opportunities in
limited-space environments. Similar in layout
to the 6530 keyboard, the new keyboard has
simplified cursor key positioning in relation to
the alpha and numeric keypads. The keyboard
maintains the 16 program function keys and
two-position tilt adjustment of the 6530 key­
board. Keyboards are available to match the
international language character sets.

DYNAMITE Workstation Enhancements
There are five enhancements for the
DYNAMITE workstation including two new
option cards, two new communications prod­
ucts, and national language keyboards and
software. Today's new DYNAMITE products
and other recent product additions have
greatly expanded the original DYNAMITE
offering of just six months ago. There are now
hard disk models, color models, a half dozen
communications products, and also a half
dozen feature options.

AM6520 Communications Software. The
AM6520 Communications Software provides
byte-synchronous multipoint connection of
DYNAMITE workstations to AM6520 and to
6820 Terminal Cluster Concentrators (TCCs).
This product consists of the AMT6530 termi­
nal emulator and the AM-IXF file transfer
software on diskette. The DYNAMITE work­
stations can be mixed with 653X terminals
currently being used.

TANDEM SYSTEMS REVIEW• JUNE 1986

Communications Control System (CCS). CCS
is a unique product which helps customers
write MS-DOS applications that can communi­
cate interactively with a host computer system
or other device. It consists of an asynchronous
communications driver and a set of Clan­
guage functions that can be linked with the
application to transfer streams of characters
to and from the DYNAMITE workstation.

Graphics-combo Card. This product provides
a comprehensive set of features on one card.
Included are graphics that support color or
monochrome IBM PC-compatible graphics
(320x200, 640x200), high-resolution graphics
(800x300), an IBM PC-compatible communi­
cations port, a parallel printer port, and a
real-time clock with battery backup.

Multifunction Card. The Multifunction Card
is for applications that don't require graphics,
but require a parallel printer port, IBM PC­
compatible asynchronous communications
port, and/or real-time clock. All three are
included on one card.

National Language Support. This support
includes keyboards and character sets for the
most frequently required languages, and new
international versions of MS-DOS. The
national characters are supported both in the
653X mode and the MS-DOS (IBM PC) mode.
The character sets supported in the first
release are: French, German/Austrian,
Swedish/Finnish, Danish, Norwegian, Span­
ish, and U .K.

PC LINK Workstation Software Site Licenses
Tandem offers a variety of PC software site
licenses to meet the needs of virtually all of
our customers. Currently Tandem's PC6530
product is covered by this program. PC6530
workstation software, part of the PC LINK
product group, includes 6530 terminal emula­
tion and Information Xchange Facility work­
station software for IBM PCs and other
workstations compatible with the PC.

The Corporate License gives the customer
the right to make unlimited copies of specific
software for workstations connected to any of
the customer's Tandem systems. The customer
receives one copy of the software, including
documentation, from which to make addi­
tional copies.

The System License gives the customer the
right to make unlimited copies of specific
software for workstations connected to a spe­
cific Tandem system. The customer receives
one copy of the software, including documen­
tation, from which to make additional copies.

Tandem also offers an update option that
provides the customer with the right to make
copies of any new releases of the software. The
update option covers new releases issued dur­
ing a one-year period from the date of the
License Order for the product.

For customers who purchase Corporate or
System licenses, but would rather not make
their own duplicates, Tandem provides copies
of the software and documentation at a special
rate.

SAFE-T-NET Encryption Subsystem
SAFE-T-NET cryptographic device is a
channel-attached peripheral device that per­
forms cryptographic functions with Tandem
systems. The product provides data encryp­
tion, message authentication, and the capabil­
ity to change the master key on-line.

SAFE-T-NET utility functions include
encryption of SNAX terminal sessions on IBM
3270 and PCs with cryptographic capabilities,
and general-purpose encryption via a file­
system interface. The device complies with the
U.S. National Bureau of Standards' Data
Encryption Standard (DES).

The on-line master key change facility is
implemented by a patented mechanism. This
feature maximizes availability and promotes
sound security practices by allowing security
administrators to change encryption keys
without affecting system availability.

JUNE 1986 TANDEM SYSTEMS REVIEW 71

72

SAFEGUARD System Protection Software
SAFEGUARD distributed system security soft­
ware, available with the B30 Nonstop systems
software release in the spring of 1986, provides
users of Tandem distributed networks with
mainframe-level protection mechanisms that
can be controlled from a single interface.

SAFEGUARD software authenticates the
identity of users who attempt to access the
network. Any logon attempts, whether suc­
cessful or not, can be recorded. Once users are
authenticated, SAFEGUARD protects all sys­
tem resources, allowing access only to autho­
rized users.

System managers and security administra­
tors can also control access to any other
shared network resource, including terminals,
processes, printers, encryption devices, tape
drives, and communication lines. The authori­
zation mechanism allows the security adminis­
trator to specifically define a list of users
(both local and network) that have access to
any of these resources.

The ability to audit activities that involve
shared resources is important in any security
system. SAFEGUARD software allows security
administrators to selectively record attempts
to access any data file or shared network
resource.

See the accompanying article, "Distributed
System Protection with SAFEGUARD," for
more information.

T-TEXT Support for Local Printers
Effective with the B20 release of T-TEXT soft­
ware, 6530, 653 I, or 6532 terminals with
T-TEXT word processing capability installed
will be able to support locally attached 5530
Letter Quality Printers with full T-TEXT for­
matting capability as a system-addressable
printer through the new 6LAT Local Printer
Interface Option.

The printer interface option is used to cable
a serial printer, including Tandem's 5520, 5530,
and 554X models, directly to a 653X terminal.
The printer can be configured as a local screen
printer or as a separately addressable printer
accessed via the AM6520 software.

In the local screen print configuration, the
PRINT key on the 653X and T-TEXT key­
boards can be used to print the contents of the
host 653X screen. In the separately addressable
configuration, the printer is treated as a sepa­
rate subdevice on an AM6520 communications
line, so any user on the host computer system
can access the printer through the system soft­
ware such as SPOOLER, T-TEXT/TFORM,
and FUP.

XLS Disk Storage Facility
Designed specifically for high volume on-line
transaction processing, the XL8 disk storage
facility provides exceptional storage capacity
for Nonstop systems. Tandem has pioneered
the most advanced VLSI and thin-film media
technology in the industry to offer this capac­
ity at a significantly lower cost per Mbyte.
The XL8 disk device provides up to 4.2 giga­
bytes of storage in a single cabinet-as many
as eight drives at 520 Mbytes each.

All this capacity is packed into a footprint
of only six square feet, providing storage of
420 Mbytes per square foot (including service
clearance). This is a real advantage when floor
space is limited.

Performance is not sacrificed to capacity.
With eight actuators providing eight concur­
rent disk accesses, the XL8 yields very high
throughput; it has an average seek time of less
than 15 ms. The XL8 transfers data at
1.86 Mbytes per second, making it suitable for
retrieving and storing large, sequential files in
batch operations. This makes the XL8 an
excellent choice for batch as well as on-line
transaction processing applications.

See the accompanying articles, "Plated
Media T~chnology Used in the XL8 Storage
Facility" and "Data Encoding Technology
Used in the XL8 Storage Facility," for more
information.

--- ----

Corinne Robinson is the product manager for Tandem's Lan­
guages and Tools. She joined Tandem in June 1983 as a software
designer. Before joining Tandem, Corinne spent seven years
working in microprogramming, diagnostics, and languages for
another computer vendor. Corinne has a B.S. in Information and
Computer Science from the University of California at Irvine.

TANDEM SYSTEMS REVIEW• JUNE 1986

n November 1985, Tandem
released its C compiler. The goal
of the software development team
was to produce a high-quality,
reliable compiler in the shortest
possible time at a reasonable
cost. The application of state-of­

the-art testing methods and tools played a
major role in achieving this goal.

This article describes how currently avail­
able, off-the-shelf software testing tools offer a
practical, cost-effective approach to thor­
oughly testing a C compiler. While the article
is restricted specifically to Tandem's experi­
ences in testing its C compiler, readers should
find it an interesting and valuable example of
what can be achieved by the use of these tech­
niques and tools, some of which are applicable
to a broader class of problems.

Increase in Available C Testing Tools
In general, during the initial phase of the test­
ing life cycle, if a product to be tested is in
widespread use or is standardized, it is worth­
while to examine current testing methods and
available testing products. C meets both these
criteria, as it is now in widespread use and is
in the process of being standardized by the
American National Standards Institute (ANSI).

As the popularity of C increases, more com­
piler vendors are entering the market, and the
number of C programs and C programmers
continues to grow. Also, a small but growing
number of companies are coming forward to
offer help in the design and testing of C com­
pilers. It is no longer necessary to create a C
test library entirely in-house or to rely on the
outdated practice of compiling the compiler as
a substitute for software quality assurance.

Technical Paper:
State-of-the-art

C Compiler Testing

Common Approaches to Testing
Compiling the Compiler
An informal survey of C implementors at
more than a dozen companies revealed that
the most common approach to compiler test­
ing is to compile the compiler, assuming, of
course, that the compiler is written in C. This
comment was often heard: "If the compiler
can compile itself without producing error
messages, it's time to ship." Regardless of the
language in which the compiler is written,
there are many reasons why this is not a suffi­
cient approach to compiler testing.

Assume for a moment that compiling the
compiler is in fact a thorough approach to C
compiler testing. One would then expect the
compiler source to use all of the C language
features. Commonly, however, fundamental
features of the language are avoided when a
coi:ripiler is created. Two examples are floating
pomt operations and bit fields. Features not
used in the compiler remain completely
untested when this approach to validation is
used. Experience at Tandem suggests that a
strong relationship exists between error-prone
compiler features and the absence of those
features in the compiler source itself.

JUNE 1986 TANDEM SYSTEMS REVIEW 73

Technical Paper

74

Also missing from the compiler source are
invalid C programs. These deviant programs,
a necessary part of a thorough test library,
ensure that the compiler takes the correct
action when given invalid and unexpected
input. Coverage statistics (presented later)
indicate that without deviance tests, 15% to
25% of the compiler code is not executed.

As Myers clearly stated in 1979, one neces­
sary component of a test case is the ability to
compare the actual result to the expected
result. When this comparison fails, a potential
incident has been detected and is logged. Since
compilers, and application programs in gen­
eral, do not rigorously compare the actual
result to the expected result, it is possible that
a large class of errors could go undetected,
even though the compiler uses a feature.

Finally, and perhaps most interesting, test
coverage analysis proved that in the Tandem
environment, using the compiler as a test case
forced execution of only 60% of the segments
in the compiler. Forty percent of the compiler
was virtually unexecuted, and, thus, untested.

Compiling Applications
Many vendors who implement and sell C com­
pilers also sell a variety of C utilities. The
second tier of testing often consists of running
available in-house C applications through the
newly debugged compiler. Since the compiler
itself is an application, all of the arguments
given above for compiling the compiler hold
for applications in general.

Unlike a well-written test case that logs
explicit information about any difference
between expected and actual results, an appli­
cation may abort at compilation or execution
time when encountering a compiler error. An
application that leaves behind few, if any,
clues about the error can be the cause of a
potentially long, tedious, and costly error­
isolation session.

When a well-written test case logs a poten­
tial incident, chances are good (over 90%)
that the compiler is in error and that the exact
nature of the error will not take long to iso­
late. Experience has shown that application
miscues discover compiler errors a signifi­
cantly lower percentage of the time.

While compiling the compiler and compiling
applications do have a place in testing a com­
piler, companies that rely exclusively on these
techniques as a substitute for software quality
assurance are apt to experience a long beta
test cycle and are likely to produce an unreli­
able compiler.

Third-party Tests
In general, testing an original software prod­
uct that is under development requires a sig­
nificant, original, in-house effort to create a
regression test library from scratch. For C,
this was the situation in the early 1970s when
Dennis Ritchie designed the C programming
language to aid in the development of the
UNIX operating systems and their utilities
(Rosier, 1984). As a result, AT&T created the
first C test library.

Today, however, a vendor entering the C
marketplace can expect much help in the test
phases of C compiler development. Several
standards of the IEEE Computer Society are
now available to guide the preparation and
content of documents related to testing (see
IEEE standards 829-1983 and 730-1984). These
worthwhile documents are useful for checking
the completeness of the testing process.

C has not had the benefit of an official,
formal compiler-validation facility as is avail­
able for other programming languages such as
Ada, BASIC, COBOL, FORTRAN, and Pascal
(Wichmann and Ciechanowicz, 1983). On the
other hand, because of this lack of an official
testing source, several independent companies
have been formed to fill the gap, each offering
a unique approach to validation.

By contacting key national testing and soft­
ware quality-assurance organizations, C
authors, educators, editors, implementors,
ANSI representatives, utility vendors, consult­
ants, user groups, publishers, and validation
centers, the C compiler development team at
Tandem discovered several generic C test suites
and specific tools to aid in the creation of
C tests.

TANDEM SYSTEMS REVIEW• JUNE 1986

Determining Test Effectiveness
After acquiring four commercially available
test suites, the developers needed a practical,
objective method of determining their com­
pleteness and their individual and collective
contribution to the complete testing process.
Practical testing methods include realistic pro­
cedures for determining when testing has been
completed (Howden, 1985). Applied to com­
pilers, test completion criteria specify when
the process of executing the compiler with the
intent of finding errors is judged to be com­
plete. The most common, and yet inadequate,
criteria observed in practice are (Myers, 1979):

1. Stop when all available tests fail to produce
new errors.

2. Stop when the distribution-to-customers
milestone arrives.

3. Stop because there is another product that
should be tested immediately (or sooner).

All of these criteria are useless since they are
independent of test quality; i.e., all three goals
can be reached by doing absolutely nothing.
A better criterion is to stop testing when over
95% of the C compiler segments have been
exercised. Although 95% segment coverage
might be considerably more difficult to
achieve for an Ada compiler, this goal is
realistic for most C compilers, considering
their size.

Test Coverage Analysis
The Test Coverage Analysis Tool (TCAT) for
C aids in investigating the effectiveness of
program testing. 1 TCAT expresses test cover­
age in terms of segments exercised and not
exercised. A segment is a basic block of con­
secutive statements that may be entered only
at the beginning and that, when entered, are
executed in sequence without halt or possibil­
ity of branch (except at the end of the basic
block).

'TCAT was developed by Edward Miller, Software Research Associates, P.O.
Box 2432, San Francisco, CA 94126.

Every executable statement is in a segment
that corresponds to an edge in the program's
directed graph. Each segment has only one
entry and one exit node. TCAT measures the
extent to which one test or a test suite exer­
cises all of the segments in a program (i.e.,
a C compiler).

TCAT Results
The Tandem C software development team
used TCAT to determine the effectiveness of
the four test suites. Table 1 summarizes the
percentage of segments each suite exercised.
Suite A consists of the programs in The C
Puzzle Book (Feuer, 1982). Programmers in
various computer companies created the other
suites by going through Appendix A of
Kernigham and Ritchie's The C Programming
Language and hand-coding tests.

The Cumulative Coverage column includes
the contribution from the entry on a given line
plus the contribution from each previous line.
For example, suites A, B, and C combined
yield a coverage of 70%. All four suites com­
bined yield a coverage of 76%.

It is interesting that although all four suites
were created independently, their overlap with
respect to segment coverage is considerable. In
fact, Suite D, when combined with the three
other suites gains only 2% more segments
compared to its coverage alone.

Table 1.
Segment coverage of four C compiler test suites.

Stand-alone Cumulative
Test suite Segments hit coverage coverage

Suite A 1567 57% 57%
Suite B 1754 64% 66%
SuiteC 1863 68% 70%
Suite D 2023 74% 76%

JUNE 1986 • TANDEM SYSTEMS REVIEW

Technical Paper

75

Technical Paper

76

These numbers say nothing about unique
paths through the code or unique sets of input
data. There is evidence, however, that the
suites are more different than simple
segment-coverage measurements indicate.
Early in the development cycle, when many
fundamental errors were present, several or all
of the test suites would often discover the same
error. Later in the cycle, as the product began
to mature, it became more frequent for only
one of the test suites to discover new errors.

One reason for this is that each suite tended
to closely follow a particular coding style that
was consistent throughout the suite, but which
varied from suite to suite. While there are
advantages to having a test library composed
of functionally overlapping test cases written
by different people, this is often not possible
for economic reasons. Testers would do well to
employ as much randomization as possible,
however (i.e., try to test the code in as many
ways as possible). This also supports the idea
of product developers performing their own
unit tests while independent testers create the
test suites in parallel. Having either a product
developer or testing developer do all the
testing is insufficient.

As is clear in Table 1, although Suite D
leaves 26% of the compiler untested, it is
superior to the other test suites that were also
designed without the guidance of a coverage
tool. Typical programmers who do not have
the benefit of detailed coverage analysis
normally produce test suites that cover only
25% to 50% of the segments (see Miller,
1984). Thus, all the programmers who created
the above suites must be above average. One
reason for the higher coverage obtained by
Suite Dis its developer's understanding of the
importance of deviance test cases, an ingre­
dient missing from the others. 2

'Perennial Software Services Group provides the C Compiler Validation Suite,
represented in this article as Suite D. Their address is 3130 De La Cruz Blvd.,
Santa Clara, CA 95054.

3The self-checking C expression generator is available from Ralph A. Phraner
and Associates, 516 Shrader Street, San Francisco, CA 941 I 7.

Since all four suites combined still left 24%
of the compiler untested, it was clear that the
test completion goal of 95% was not satisfied.
Details on what was needed to increase the
coverage to 95 OJo are included in the next
section.

Missing Tests
As Table 1 indicates, independent pro­
grammers, without the aid of a coverage tool
and specific test completion criteria, decided
when the testing tasks in these suites was
complete. Using the specific feedback from
the TCAT coverage analysis, one Tandem
developer needed only one month to increase
the test coverage to exceed 95 OJo.

The following are the less obvious kinds of
test case that are easy to detect with the use of
a coverage tool but easy to miss without one.

Binary Expressions with Constant Operands.
For example, a good mix of short, unsigned,
long, and double operands combined with a
variety of the operators *, + , > > , < < , < ,
>, < = , > = , = = , ! = , &, ", and I is
useful. In this context, operands are constant.

Bit-field Tests. In particular, operations on bit
fields in arithmetic expressions should be
tested. For example, field tests should ensure
that the - , - , ! , *, /, OJo, > , < , = = , &, ", I ,
&&, 11, ? , + + , and - - operators work
correctly in expressions containing bit fields.

Combination Tests. A suite that does an excel­
lent job of testing individual features, but
lacks many more tests that combine the fea­
tures, is insufficient. For example, an astro­
nomical number of expressions are possible
that contain up to 32 random operators using
random data types for operands. Ideally, sepa­
rate, machine-generated programs should be
created for the combination tests. Fortunately,
a self-checking C expression generator is com­
mercially available. 3

TANDEM SYSTEMS REVIEW• JUNE 1986

Preprocessor Features. This aspect of the lan­
guage is tempting to neglect during testing.
The preprocessor is a critical part of the lan­
guage, however, and must be tested. Imple­
menting the preprocessor is a difficult
programming task that consumes a significant
part of the source code comprising any good C
compiler. Developers must be sure to include
tests for #else that involve nested #if, #if def,
and #if ndef, and tests for #undef, as well
as error conditions within preprocessor
commands.

Deviance Tests. As mentioned earlier, these
are programs that differ from standard C in
some way, for example:

■ Ado statement missing the while clause.
■ A goto statement missing the label from
the goto.

■ A goto statement having a label whose name
is the same as a local variable.
■ A #define preprocessor command containing
a premature end of file.

Library Tests. Early specifications of the C
language did not incorporate the run-time
library routines. Since ANSI has incorporated
the library into the language, a C test suite
that ignores the library functions specified by
ANSI is severely deficient.

Conversions. Although int is typically well
covered, tests are needed that contain expres­
sions using operands of different types within
the same expression (e.g., an expression mix­
ing operands of type long, float, and double).
In addition, tests that force conversions
involving pointers are useful.

Compiler-option Tests. This area is also
tempting to neglect, but compiler users detest
easy discovery of options that do not perform
as documented.

for Statement. A for statement having a test
value (a second expression) that is zero is
useful.

Keyword default. The test library should
include a test case that tests for proper oper­
ation of the optional keyword default.

Bit-field Initialization. Initializing static
structures containing bit fields is useful.

Expression. An expression that contains a
function call using call-by-reference parame­
ters is valuable as a test component.

#if Preprocessor Command. Also useful is an
#if preprocessor command that contains a
constant expression using a hexadecimal con­
stant, an octal constant, a character constant,
~ (a tilde, the one's complement operator),
OJo, /, <, >, ! , = , &, ", I , : , ? , (, and).
(These do not necessarily need to be used in
the same command.)

Hexadecimal Constants. A variety of escape
sequences that contain hexadecimal constants
(the hex code following a backslash), in which
the hex constants contain a mixture of digits,
uppercase A through F, and lowercase a
throughf.

Limits Tests. The ANSI C Draft Standard
specifies many minimal limits that must be
met or exceeded and, therefore, should be
tested; e.g., #include is limited to nesting
levels of eight or more.

Testing Compiler Performance
In addition to testing the features of their C
compiler, vendors must ensure that the com­
piler produces fast object code and that it
compiles quickly. The importance of providing
an ability to quantitatively assess the compil­
er's performance before each release and com­
pare it with previous releases may not be as
obvious. Programs such as the Sieve of Era­
tosthenes and Fibonacci number generation,
as well as other benchmark test cases covering
a variety of language constructs, are readily
available from the literature (Leibson, et al.,
1985). These programs are easily added as
performance test cases.

JUNE 1986 TANDEM SYSTEMS REVIEW

Technical Paper

77

Technical Paper

78

Shorter Alpha- and Beta-test Phases
A common misconception among software
producers is that complete testing means more
cost to the vendor and a longer development
cycle. On the contrary, the use of a thorough
internal test library substantially reduces the
length of the alpha- and beta-test phases with­
out lengthening any other development phase.
A fundamental function served by the beta
test is to confirm that the product is well
designed and tested; if it has been, a six-week
beta test should suffice to confirm its quality.

A poorly tested compiler requires beta-test
users to discover errors. This results in several
rounds of testing, each of which introduces a
new version of the compiler to correct errors
found in the previous one. Each round of the
beta test requires the time to release the latest
version; distribute it to the users, wait for
them to install it, find errors, and communi­
cate them; attempt to decipher the often cryp­
tic and perhaps erroneous information; and
correct the real errors. It should be obvious
that most of this wasted time would be
avoided by conducting several considerably
shorter rounds of in-house testing before
beginning the alpha test.

Since, for one compiler update, one round
of testing can easily take three months during
the beta-test phase, a compiler that is beta­
tested without the benefit of a good in-house
test library could spend a long time in that
phase. While one round is often sufficient for
a solid product, three to six (and perhaps
more) should be expected for a compiler that
has been tested minimally in-house. Thus, if
four rounds of testing are needed, a product
could spend over a year in the beta-test phase,
resulting in a loss of revenue and customers.

The Tandem C Compiler was released after
less than six weeks in the first and only round
of beta testing. No serious release-stopping
software errors were discovered in the beta test
or in the several months that followed the first
customer shipment.

Conclusion
Applying currently available testing tools
shortens the development time of a C compiler
and increases the quality of the product. It is
essential that the testing process occur in par­
allel with the development process.

C compiler vendors can avoid the losses
resulting from inadequate testing by employ­
ing the skills of a permanent, well-trained
software quality-assurance staff and a com­
plete and appropriate library of compiler test­
ing tools. Traditional testing approaches, such
as compiling the compiler, are less than satis­
factory and can now be replaced with reliable
C testing tools.

References
ANSI/IEEE Standard for Software Quality Assurance Plans.
1984. IEEE std. 730-1984. IEEE Press. (Revision of ANSI/
IEEE std. 730-1981.)

ANSI/IEEE Standard for Software Test Documentation. 1983.
IEEE std. 829-1983. IEEE Press.

Feuer, A.R. 1982. The C Puzzle Book. Prentice-Hall, Inc.

Howden, W.E. 1985. The Theory and Practice of Functional
Testing. IEEE Software. Vol. 2, No. 5.

Kernigham, B., and Ritchie, D. 1978. The C Programming
Language. Prentice-Hall, Inc.

Leibson, S., Pfahler, F., Reed, J., and Kyle, J. 1985. Software
Reviews: Expert team analyzes 21 C compilers. Computer
Language. Vol. 2, No. 2.

Miller, E., et al. 1984. User's Manual for TCAT/C (PC
J.1?rsion). Software Research Associates.

Myers, G.J. 1979. The Art of Software Testing. John Wiley and
Sons.

Rosier, L. 1984. The Evolution of C-Past and Future. AT&T
Bell Laboratories Technical Journal. Vol. 63, No. 8.

Wichmann, B.A., and Ciechanowicz, Z.J. 1983. Pascal
Compiler Validation. John Wiley and Sons.

Ed Kit is a member of Software Quality Assurance within the
Languages Group of Software Development. Since joining
Tandem in 1980, his responsibilities have included creating test
suites for communication protocols, languages, and terminals,
and managing performance, data-base, operating systems, data
communication, and microcode software quality-assurance
groups. Previously he was on the faculty of Embry-Riddle Aero­
nautical University, where he taught computer science, mathe­
matics, and electrical engineering. Ed holds a B.S. and M.S. in
Electrical Engineering from Purdue University.

T A N D E M SYSTEMS REVIEW• JUNE I 9 8 6

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined
in one free subscription. Use this form to subscribe, change a subscription, and order back
copies.

For requests within the U.S., send this
form to:

Tandem Computers Incorporated
Sales Administration
19191 Valko Parkway, MS 4-05
Cupertino, CA 95014-2599

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription (# of copies desired __ _
D Subscription change (# of copies desired __ _
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

___ Part No. 83930, Vol. 1, No. 1, Fall 1983

___ Part No. 83931, Vol. 2, No. 1, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review
_ __ Part No. 83934, Vol. 1, No. 1, February 1985

___ Part No. 83935, Vol. 1, No. 2, June 1985

___ Part No. 83936, Vol. 2, No. 1, February 1986

___ Part No. 83937, Vol. 2, No. 2, June 1986

Tandem Application Monograph
Series

___ Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

___ Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

___ Part No. 83902, Integrating Corporate Infor­
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

___ Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

___ Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

___ Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

___ Part No. 83906, Transaction Processing on the
Tandem Nonstop Computer: Requestor/Server
Structures, January 1982, SEDS-001

___ Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.
06/86

~TANDEMCOMPUTERS

400099 06/86 Printed in USA
Part No. 83937

