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Corrections: 
Please note the following corrections to the 
article entitled "DP2 Performance," which 
appeared in the June 1985 issue. 

Page 37, Figure 4. The caption should read: 

The elapsed time required for AO6 DPl and 
BOO DP2 to copy 1,000 10O-byte records 
sequentially from one file to another on the 
same disk. 

Page 38, Table 1. The title should read: 

The elapsed time required by AO6 DPl and 
BOO DP2 to copy 1,000 10O-byte records 
sequentially from one file to another on the 
same disk. 

Page 41, Table 3. All digits in this table are 
for Sends and Receives both for messages 
and bytes per message. For an accurate 
picture of message traffic divide the num­
bers by 2. 
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Distributed System Protection 
with SAFEGUARD 

___ s hardware has become 
___ less expensive and busi­

ness demands for data 
processing have grown, 
systems have been devel­
oped that allow the user 
to distribute applications 

and data. While this capability may make a 
business easier to run, it makes the job of pro­
tecting information that much harder. 

In a single-processor system, the user could 
simply protect the resources physically; with 
distributed processing, that is no longer 
adequate. 

In a distributed system, data must be pro­
tected wherever it resides in the network, as 
well as while that data is being transported 
between nodes in the network. Therefore, a 
distributed system protection mechanism pro­
tects data while it is on-system (e.g., in the 
processor, on a disk drive) as well as when it is 
off-system (e.g., traveling through communi­
cation lines, on removable disk packs) as 
shown in Figure 1. 

This article explains the on-system protec­
tion mechanisms provided in the Tandem™ 
Nonstop™ system and describes the relation­
ship between each of these mechanisms. While 
the protection features of the GUARDIAN 90™ 
operating system are equivalent to those found 
in many other commercial mainframe operat­
ing systems, a distributed system architecture 
poses some special challenges. 1 The 
SAFEGUARD™ family of products was 
designed to extend the protection features of 
the GUARDIAN 90 operating system. 

Every computer system is composed of three 
fundamental layers: the hardware, the operat­
ing system, and the application. Protection 
mechanisms at each layer of the system are 
built on, and depend upon, the correct imple­
mentation of the mechanism provided at the 
layer below it. 

Security of information is achieved only 
through a balanced application of policies that 
are enforced by protection mechanisms. This 
highlights a very important principle: the sep­
aration of policy and mechanism. Mecha­
nisms determine how to do something. 
Policies decide what will be done, but not how 
it will be done. Corporate policies can and do 
change to reflect changes in economics as well 
as the law. Without the effective separation of 
mechanism and policy, the ability of corporate 
computer systems to adapt is severely 
impaired. 

1For more information on the off-system protection mechanism, see the Data 
Encryption Standard, 1977, and Ehrsam, ct al., Vol. 17, No. 2. 
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Hardware Protection 
In a computer system the needs and privileges 
of users and applications vary, and they differ 
as a whole from the needs and privileges of the 
operating system itself. The hardware provides 
protection features that isolate the executing 
programs, protect the operating system fr_om 
user programs, and allow only the operatmg 
system to perform such sensitive operations as 
physical 1/0. The hardware provides the abil­
ity to protect both operating system instruc­
tions and operating system data from the user. 

Instruction Protection 
Certain machine instructions are intended for 
use by the operating system only. These are 
called privileged instructions. The hardware 
allows privileged instructions to be executed 
only when the processor is executing in privi­
leged state. In the Nonstop II™, TXP™, and 
EXT™ processors, if an attempt is made to 
execute a privileged instruction in user mode, 
the hardware does not execute it, but treats it 
as an illegal instruction and traps to the oper­
ating system. Privileged instructions perform 
functions such as halting the processor, issuing 
1/0 requests, and making the transition from 
user mode to privileged mode. Any code oper­
ating within the privileged state must be con­
sidered part of the protection kernel and, 
therefore, a trusted piece of code. 

To control the execution of privileged oper­
ations and to prevent a nonprivileged process 
from executing in privileged mode, every pro­
cedure in the Tandem NonStop system has one 
of three attributes: 

Nonprivileged. Procedures with this attribute 
can be called by any procedure. They execute 
in the same mode (privileged or nonprivileged) 
as the calling procedure. This attribute is typi­
cally given to all of the procedures in an appli­
cation program. 

Callable. Procedures with this attribute can 
also be called by any procedure, but they exe­
cute in privileged mode. The caller's mode is 
restored when a callable procedure exits. Such 
procedures provide a controlled interface 
between a nonprivileged application program 
and the privileged operating system. 

Privileged. Privileged procedures execute in 
privileged mode and are callable only by pro­
cedures currently executing in privileged 
mode. An attempt by a nonprivileged proce­
dure to call a privileged procedure results in 

Figure 1 
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control being transferred to the operating sys­
tem instruction-failure trap handler. Proce­
dures are i1ven this attribute when their 
functions, if performed improperly, could have 
an adverse effect on the processor's operation. 
A nonprivileged application program's only 
interface to a privileged procedure is through a 
callable procedure. 

This mechanism is implemented in the 
Nonstop II, TXP, and EXT procedure call 
instructions. If the calling procedure is not 
executing in privileged mode, the "callability" 
attribute of the procedure being called is 
checked. When a procedure is exited, the 
mode (privileged or nonprivileged) is reestab­
lished to bt the lesser of the caller's setting and 
the current settings. This prevents a nonprivi­
leged caller from being left in privileged 
mode on return from a callable or privileged 
procedure. 
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Figure 1. 

Integration of 
SAFEGUARD and 
SAFE-T-NEI'M protects 
data while it's on or off a 
Tandem system. 
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Although its primary function is to expand the 
memory available to the programs, virtual 
memory is a valuable protection feature. The 
virtual memory mechanism maps a logical 
view of memory onto the physical storage. 
The logical memory is memory as the process 
views it. In general, a process is allowed to see 
only a subset of the virtual memory, consisting 
of data and code that it owns. For a nonprivi­
leged process on the Nonstop II, TXP, and 
EXT systems, logical memory is separated into 
seven address spaces: 

■ User data. 

■ System data. 

■ User code. 

■ System code. 
■ User library. 

■ System library. 
■ User extended data. 

The system data, system code, and system 
library address space belong exclusively to the 
operating system. This mechanism controls the 
user's ability to modify (either accidentally or 
deliberately) the operating system code or data 
structures. 

Operating System Protection 
The operating system uses the hardware pro­
tection mechanisms to protect itself from 
users and their application programs. Relying 
on this, the operating system protects users 
from each other. 

To clarify, consider a basic protection 
model. One of the best known protection 
models is the access matrix model (Lampson, 
1974). 

The basic elements of the model are sub­
jects, objects, and operations: 

■ A subject is an active entity capable of 
accessing objects; e.g., users are subjects. 
■ An object is anything to which access is 
controlled, such as data files or tape drives. 
■ An operation is simply a kind of access to 
an object, such as read or write access. 

For each type of object there is a set of pos­
sible operations. Data files, for example, can 
be accessed through operations such as read or 
write. 

An access matrix relates the three types of 
elements of the model as shown in Figure 2. In 
this matrix the rows represent subjects and the 
columns represent objects. Each cell contains 
a list of operations permitted to subject i for 
object j. Access (i,j) defines the set of oper­
ations that a process executing as subject i can 
invoke on object}. When implementing access 
control, it is generally inefficient to represent 
the information as a matrix, because the 
matrix is typically sparse. That is, there are 
many objects and subjects but there are rela­
tively few operations specified. 

Two techniques are commonly used for 
storing the information: 

■ An access control list associated with the 
object that lists all of the subjects that can 
access the object, along with the operation. 
■ A capability list associated with a subject 
that lists all the subject's rights to objects. 

Figure 3 shows the information presented in 
Figure 2 in an access list, and Figure 4 shows 
the same information in a capability list. In 
general, most systems contain both access and 
capability lists (Saltzer and Shroeder, 197 5). 
The GUARDIAN 90 operating system and its 
extension, SAFEGUARD system protection 
software, implement the access matrix pre­
dominately as an access control list. 
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Subjects 
A GUARDIAN 90 subject is more com-
monly called a GUARDIAN 90 user. The 
GUARDIAN 90 operating system defines both 
local and network users. For a single system 
(i.e., a system with all processors connected 
using a DYNABUS™ architecture), the defini­
tion of a local user is not fundamentally dif­
ferent from many other commercial 
mainframe operating systems. However, since 
GUARDIAN 90 is also a network operating 
system we must also have a definition of a 
network user. 

Local User. Each GUARDIAN 90 user has a 
unique user name and a corresponding unique 
user ID. A user name is composed of two ele­
ments: <groupname>. <username>. The 
first term, <groupname>, is the name 
of the group to which the user belongs; 
<username> is a name identifying the indi­
vidual user within the group. 

Similarly, a user ID is of the form 
<group id>, <user id>, where <group id> 
identifies the user's group and <user id> 
identifies the user within the group. For exam­
ple, a user named Richard Carson, who works 
in the firmware group, has a GUARDIAN 90 
user name of FIRMWARE.RICHARD and a 
user ID of 3,104. This would also mean that 
all other users in the firmware group would 
belong to < group name> FIRMWARE and 
<group id> 3. 

Network User. The GUARDIAN 90 operating 
system is a network operating system, which 
means that it supports the concept of a net­
work user. A network user is any user who has 
the same user name and user ID on more than 
one system in the network and has matching 
remote passwords between those systems. For 
example, if a user (USERID: 3,104 
USERNAME: FIRMWARE.RICHARD) exists 
on the system named \ TIBET and the same 
name and ID exist on \RIO, and if the user has 
matching remote passwords on \ TIBET and 
\RIO, then he is a network user. If he makes a 
request from a process on \RIO for a resource 
on \TIBET (e.g., attempts to open 
\TIBET.$DATA.PAY.ROLL), then \TIBET sees 
the request as coming from a remote version 
of FIRMWARE. RICHARD. 

Figure 3 
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The difference between a local and remote 
version of a user in GUARDIAN 90 is analo­
gous to the difference between recognizing 
individuals in person and recognizing them 
across a tekphone line. Accordingly, 
GUARDIAN 90 protection mechanisms differ­
entiate between these two versions of a user. 

One fundamental principle (and policy) that 
the GUARDIAN 90 operating system imple­
ments is that of equal distrust of all remote 
systems. In other words, from \TIBET's view­
point, a FIRMWARE.RICHARD authenticated 
on \BORA and a FIRMWARE.RICHARD 
authenticated on \RIO are no different. They 
are both remote versions of the network user, 
FIRMWARE.RICHARD, and are treated as 
such. 

Objects 
At the highest level, the system entities to be 
protected are referred to as objects. Each 
GUARDIAN 90 object is identified by a unique 
file name. A file can be all or a portion of a 
disk, a device such as a terminal or line 
printer, or a process. A file is referenced by the 
unique symbolic file name that is assigned 
when the file is created. 

Figure 4 
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For a disk file the symbolic name has three 
parts: 

■ A volume name to identify a particular disk 
pack in the system. 

■ A subvolume name to identify the disk file 
as a member of a related set of files on the 
volume. 
■ A disk file name to identify the file within 
the subvolume. 

An example is $DATA.PAY.ROLL. 
A device file (e.g., terminal, line printer, 

magnetic tape unit, card reader, data commu­
nication line) is referenced by a symbolic 
device name or logical device number. 
$TERM! is an example of a terminal device. 
Device names and their corresponding logical 
device numbers are assigned at system config­
uration time. 

Finally, for a process file there are two 
mutually exclusive forms of the identifying 
process: the timestamp form and the process 
name form. The timestamp form contains 
(among other things) the time the process was 
created. The process name form uniquely 
identifies a process or process pair in the sys­
tem. An example of a process name is $UPD. 

GUARDIAN 90 Protection 
The GUARDIAN 90 operating system provides 
some basic protection mechanisms. When a 
user logs on to use GUARDIAN 90 interac­
tively, or when a program programmatically 
logs on as a user, the operating system uses 
passwords to ensure the authenticity of the 
user before allowing that process to take on 
the identity of the user. Once the user has been 
authenticated, GUARDIAN 90 sets the user ID 
of the process requesting the LOGON to that 
of the user. The process then is allowed to gain 
access to information in the system as an 
agent for the user. 

The main focus of the GUARDIAN 90 oper­
ating system is the protection of disk files. 
Four operations are controlled: read, write, 
execute, and purge. These accesses are defined 
as follows: 

■ Read, meaning examine or copy the disk 
file's contents. 
■ Write, meaning modify the contents of the 
disk file. 

■ Execute, meaning execute the file (if it is a 
program file). 

■ Purge, meaning delete the file. 

The disk file's owner can establish one of 
seven levels of protection for each of the four 
types of access. All of these levels are relative 
to the owner of the disk file on the given 
system: 

■ Local Super ID only. 

■ Local or network owner only. 

■ Any member of the local or network 
owner's group. 

■ Any network user. 
■ Local owner only. 
■ Any member of the owner's local group. 
■ Any local user. 

Some basic protection services are inherent 
in GUARDIAN 90. There are, however, certain 
services lacking in the GUARDIAN 90 protec­
tion mechanism. SAFEGUARD software was 
designed to correct and enhance many of these 
areas: 

■ Insufficient granularity (the GUARDIAN 90 
protection mechanism provides coarse access 
control to disk files). For example, in order to 
share a file between two user groups in the 
system, access to the file must be permitted to 
all users on that system. 

■ Insufficient control of access to other 
GUARDIAN 90 objects. There is no protection 
of terminals, tapes, lines, and processes. 
■ No authorization auditing. There is no capa­
bility to record the granting or denying of 
access to an object. 
■ No auditing of changes to the security data 
base. Changes of object ownership and secu­
rity are not recorded. 
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■ No authentication auditing. Tandem does 
not support any means of auditing authentica­
tion attempts. 

■ Limited password management. 

■ No file creation control. 

SAFEGUARD Protection 
SAFEGUARD system protection software 
coexists with and extends GUARDIAN 90 pro­
tection by providing more extensive and gen­
eral authentication, authorization, and 
auditing services. 

Authentication 
The first important service provided by 
SAFEGUARD is authentication, i.e., proving 
that users are who they say they are. While 
there are many new exotic technologies, such 
as retinal eye scanners and hand geometry and 
fingerprint readers, knowledge of a password, 
the method of authentication used by the 
GUARDIAN 90 operating system, remains the 
least expensive and most widely accepted 
means of identification. 

Controlling the authentication mechanism 
is important. SAFEGUARD's capabilities 
include: 

■ Forcing a password to change periodically. 
■ Requiring a minimal password length. 
■ Requiring one-way encryption of passwords. 
■ Allowing a system manager to grant a user 
temporary access to a system by defining a 
user expiration date. 

■ Temporarily suspending a user's ability to 
access the system. 

Perhaps most importantly, the SAFEGUARD 
system protection extends the concept of 
object ownership to also apply to users. With 
this mechanism, a site can define all users as 
belonging to a local user (e.g., the local secu­
rity administrator) or as belonging to a net­
work user (e.g., a single security administrator 
for the entire distributed system). It might also 
make sense to have some important users 
under the control of a local owner, while for 
ease of use the rest could belong to a network 
owner. SAFEGUARD provides a mechanism 
that allows a site to implement a variety of 
security policies. 

Authorization 
Once the user is authenticated, SAFEGUARD 
checks all requests for system objects based on 
a list of authorized users. The access list may 
contain local users, network users, local 
groups, or network groups. In addition 
SAFEGUARD can explicitly deny a user, or 
group of users, access to a particular object. 

Objects that can be protected include disk 
files; terminals; encryption devices; SNA 
ports; X.25 communication lines; named pro­
cesses; printers; and 6100 subsystem, TIL™, 
THL™, and INFOSAT™ devices. In addition, 
the SAFEGUARD 
system provides con­
trol over disk file 
creation. This is par­
ticularly useful in 
determining which 
users can place files 
on the $SYSTEM.SYS­
TEM and $SYSTEM. 

T:'he main focus of 
the GUARDIAN 90 

operating system is the 
protection of disk files. 

SYSnn subvolumes. Without this control, any 
user could introduce a program file that could 
masquerade as a system utility. Creation con­
trol is also ~:xtended to named processes. This 
can be very useful in preventing the creation of 
a masquerading process. 

The SAFEGUARD security system provides 
a smooth migration path from GUARDIAN 90 
protection to SAFEGUARD protection by 
allowing the two forms of protection to 
coexist. Therefore, a user may choose to pro­
tect some critical disk files with SAFEGUARD 
and allow the remaining disk files to be pro­
tected by current GUARDIAN 90 security. In 
addition, SAFEGUARD can exist in a mixed 
EXPAND™ network with some nodes protected 
by SAFEGUARD and some not. 
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Figure 5 
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As with users, SAFEGUARD objects are 
also owned. An object may either be owned 
by a local user or a network user. When an 
object is owned by a network user, all aspects 
of the object's security can be controlled from 
a remote node. Object owners can also tempo­
rarily suspend a user's ability to access their 
object. When the access authorities granted to 
users with the object's access list are sus­
pended, only the object's owners, the owner's 
group manager, and the local SUPER ID are 
allowed access to the object. 

Auditing 
While authentication and authorization ser­
vices are sufficient to provide on-node protec­
tion, auditing of these two activities is neces­
sary to aid in detecting and tracking any 
attempts at breaking the protection mecha­
nism. The SAFEGUARD protection system 
provides the capability to audit authentication 
requests, authorization requests, requests to 
modify the authentication data base (e.g., to 
change the user expiration date), and requests 

SMP 

SMON SMON 

to modify the authorization data base (e.g., to 
add an entry to the access list). Since auditing 
is a time-consuming operation, SAFEGUARD 
software allows the user to choose whether 
only successful requests, only failed requests, 
or both are audited. This same degree of con­
trol is also applied to whether the request is 
local or remote. 

Both of the authentication and authoriza­
tion audit data bases are entry-sequenced files 
formatted so that ENFORM™ reports can be 
written. The audit records contain such infor­
mation as the time of the attempt and who 
made it, as well as the node from which the 
attempt was made. 

Implementation 
The SAFEGUARD system is composed of a 
family of cooperating processes and follows 
the process model established for the Transac­
tion Monitoring Facility (TMF™) and 
INSPECT™. It has three types of processes: 
SAFECOM, the SAFEGUARD Management 
Process (SMP), and the SAFEGUARD Monitor 
(SMON). Their relationship is shown in Fig­
ure 5. SAFECOM provides the interactive 
interface for SAFEGUARD. The command 
language is similar to the language used in 
other Tandem products such as TMFCOM and 
PATHCOM. SAFECOM is used to control both 
the authentication and authorization data 
bases throughout the network. 
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The SMP is a Nonstop system process-pair 
responsible for maintaining the availability of 
the SMON in each CPU of a system protected 
by SAFEGUARD. The SMP also modifies the 
authentication and authorization data base 
and enforces the ownership rules. SAFECOM, 
for instance, talks to the SMP in order to pro­
vide the interactive interface for modifying 
security information. Finally, the SMP pro­
vides the authentication services. 

The server processes (SMONs) are respon­
sible for enforcing the authorization service for 
GUARDIAN 90 objects. One SMON runs in 
each CPU of a system protected by 
SAFEGUARD. Implementing one process per 
CPU provides both multi-CPU failure toler­
ance and improved performance over the use 
of NonStop process-pairs. 

The SAFEGUARD authorization and autho­
rization auditing service is supported locally 
with interfaces in the procedures OPEN, CRE­
ATE, RENAME, PURGE, NEWPROCESS, and 
STOP, and remotely with an interface in the 
EXPAND line handler. Authorization requests 
for a given object are routed to the SMON in 
the primary CPU for that device. For example, 
if the primary disk process for $DATA is 
located in CPU 4 then all requests to open a 
disk file on $DATA are handled by the SMON 
in CPU 4. This is true both remotely and 
locally. Furthermore, the authorization data 
base for $DATA is maintained on $DATA. For 
all system objects that do not have long-term 
media storage associated with them (e.g., 
processes, tape drives, communication 
devices, and terminals), the authorization data 
base is maintained on $SYSTEM. 

Conclusion 
Providing distributed system protection so 
that users can implement a variety of security 
policies requires both on-system and off­
system mechanisms. Off-system protection is 
provided by encryption, while on-system pro­
tection is made possible by a combination of 
the hardware and the operating system. 

The NonStop II, TXP, and EXT hardware 
and the GUARDIAN 90 operating system and 
its extension, SAFEGUARD, provide that pro­
tection in Tandem NonStop systems. 
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PATHWAY IDS: 
A Message-level Interface 
to Devices and Processes 

ntelligent Device Support (IDS) 
for the PATHWAY transaction 
processing system was first made 
available with the BIO release of 
the GUARDIAN™ operating sys­
tem. IDS allows applications 
using PATHWAY to communicate 

with systems, devices, and processes directly, 
without the need for special front-end pro­
cesses. IDS permits programs written in 
SCREEN COBOL to communicate with so­
called intelligent devices (such as personal 
computers, automated tellers or ATMs, and 
point-of-sale machines) and GUARDIAN pro­
cesses in which screen presentation will be, or 
already has been, performed (e.g., IBM 3270 
passthrough). 1 

1This article was written before the B30 software release. Consult the most 
current manuals for full, current information about PATHWAY IDS, its scope 
and functionality. 

This article begins with a brief history of 
the PATHWAY transaction processing system 
and then presents the following about IDS: 

■ Functional overview. 

■ New data definitions. 

■ New SEND MESSAGE statement. 

■ Functional overview of message processing. 

■ Terminal Control Process (TCP) resource 
consumption and configuration. 
■ Conversion procedures for users. 
■ Sample user-conversion program for users. 
■ Sample IDS program. 

History of the PATHWAY System 
To understand the role of IDS in the PATHWAY 
transaction processing environment, it is use­
ful to retrace the evolution of the PATHWAY 
system and compare the objectives of the orig­
inal product with its present direction. Until 
the introduction of its conversational features, 
the PATHWAY system was designed to serve 
conventional on-line applications and to pro­
vide communication and presentation services 
for a limited number of block-mode terminal 
types (6510, 6520, 6530, 6540, and IBM 3270). 
The data exchange that takes place between 
the PATHWAY system and these terminals is 
terminal-dependent and contains screen­
specific information. The conversational ver­
sion of PATHWAY was added to support TTY 
devices that do not operate in block mode. 
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To aid the PATHWAY system in supporting a 
wide variety of terminal types, Tandem pro­
grammers and Tandem users have written 
multithreaded, fault-tolerant front-end pro­
cesses (FEPs). Their purpose is to translate the 
message traffic between the PATHWAY TCP 
and an unsupported device into a format 
acceptable to either. One popular example of 
this is the Terminal Dependency Eliminator 
(TDE), written by a Tandem analyst and made 
generally available to Tandem users. 

Because of the Tandem Nonstop system's 
excellent networking capabilities, an increas­
ing number of computer users have chosen it 
for connectivity, device management, and 
device switching between application systems. 
Two examples of this are the controlling of 
large networks of ATMs and the providing of 
passthrough capabilities to applications run­
ning on hosts other than the Tandem Nonstop 
system. The requirements of such 
communications-oriented and "hybrid" 
environments are reflected in the direction 
the development of the PATHWAY system 
has taken. 

IDS carries PATHWAY's communications 
capabilities a step further by providing fea­
tures that eliminate or reduce the need for the 
FEPs and provide an integrated interface to 
previously unsupported devices. 

Functional Overview of IDS 
IDS is best described as a message equivalent 
to the familiar block-mode ACCEPT and DIS­
PLAY statements. In conventional block-mode 
SCREEN COBOL, working-storage data is 
mapped through the Screen Section with the 
ACCEPT and DISPLAY statements. In IDS, 
working-storage data is optionally mapped 
through a Message Section with a SEND 
MESSAGE statement. 

As with Screen Section data items, user­
conversion procedures can be invoked for ele­
mentary field-level items in the Message 
Section. In addition, message-level conversion 
is provided through the USER CONVERSION 
clause of the SEND MESSAGE statement. 

New Data Definitions 
For sending information to processes or 
devices that do not require screen formats, 
new IDS data-definition constructs in the Data 
Division are provided to distinguish message 
structures from screen structures. The section 
is identified by a Message Section statement. 
This section does not consume terminal con­
text area; it provides a mapping function for 
data from a terminal to working-storage data 
elements (and vice versa). 

Message Section Message-description Entry 
A number of messages can be defined in the 
Message Section with the conventional 
SCREEN COBOL level numbers. Level 01 
identifies the beginning of a message, and 
subordinate group and elementary data items 
can be defined. A message can be as large as 
12 Kbytes (12,288 bytes). (Software releases 
before the B30 release support only an 01-level 
alphanumeric data item.) 

Field-characteristic Clauses 
Four field-clharacteristic clauses are possible in 
the Message Section: 

■ MESSAGE FORMAT. 

■ PICTURE. 

■ TO, FROM, and USING. 

■ USER CONVERSION. 

The PICTURE; TO, FROM, and USING; and 
USER CONVERSION clauses are the same as 
defined in the Screen Section. The MESSAGE 
FORMAT clause provides for three types of 
message format: FIXED, VARYING 1, and 
VARYING2. The MESSAGE FORMAT clause 
can only be used on the 01-level definition. 
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Figure 1 

Count 2 

11 

Length 

Figure 1. 

The format of a variable­
length message. The 
format consists of a 1- or 
2-byte length field and 
the data portion. The 
length field indicates the 
count of bytes in the data 
portion of the message, 
not including the length 
field itself. In this 
VARYING2 message, the 
length is 11 as there are 
11 data characters follow­
ing the length descriptor. 

Figure 2 

3 4 5 6 7 8 9 10 11 12 13 

a k: 

Data 

Data Editing and Transformation 
The data is transformed between the paired 
Working-storage and Message Section PIC­
TURE clauses by normal SCREEN COBOL 
editing and move rules. The PICTURE clauses 
must match in type and may differ in length 
(and, for numeric items, in scale). Via the 
Message Section, data can be gathered from 
and scattered to discontiguous data items in 
working storage. 

Variable-length Messages 
The format of a variable-length message con­
sists of a 1- or 2-byte length field and the data 
portion. The length field provides a binary 
count of the bytes in the data portion of the 
message, not including the length field itself. 

SEND MESSAGE { send-message } 
{ [send-message] reply-spec} 

[ USER [CONVERSION] numeric-literal] 
[ TIMEOUT timeout-value] 
[ ON ERROR imperative-statement] 

reply-spec 
REPLY [ CODE FIELD [IS] code-field] 
{ YIELDS reply-message } 
{ {CODE reply-code [,reply-code] .. YIELDS reply-message} ... } 

Figure 2 

An abbreviated syntax 
description of the SEND 
MESSAGE statement. 
With this statement, a 

program can send a 
message, receive a reply, 
or send a message and 
receive a reply. 

Figure 1 is an example of a VARYING2 mes­
sage. For this message, the length is 11 as there 
are 11 data characters following the length 
descriptor. If the length field were to contain 
13, the TCP would report an error, saying the 
message was too short. The VARYING 1 length 
can describe a message up to 255 bytes long. 
The VARYING2 format can hold a maximum 
length value of 64 Kbytes, but the maximum 
message length is 12 Kbytes. 

New SEND MESSAGE Statement 
The SEND MESSAGE statement is syntacti­
cally similar to the SEND statement that is 
used to communicate with servers. This means 
that an intelligent device can reply to a mes­
sage with one of a set of replies and have that 
reply identified and processed according to its 
format. This is in contrast to the ACCEPT 
statement, in which a single reply is always 
paired to a screen image. The abbreviated 
syntax of the SEND MESSAGE statement is 
described in Figure 2. With this statement, a 
program can send a message, receive a reply, 
or send a message and receive a reply. 

The simplest type of reply is expressed as 

REPLY YIELDS reply-message 

where only one reply format is expected. This 
is functionally equivalent to the ACCEPT 
statement. If multiple reply formats are to be 
received, the CODE reply-code clause must be 
used to identify a specific reply-message. One 
or more reply-codes may identify the same 
reply-message. If the reply-code is not in the 
first 2 bytes of the reply-message, the CODE 
FIELD clause must be used. The code-field is 
expected to be at the same location and of 
the same size for all reply-message formats. 
Like the server SEND statement, the 
TERMINATION-STATUS special register is set 
as an index to the reply-message received upon 
normal termination or as an error number if 
the ON ERROR clause is executed. The 
TERMINATION-SUBSTATUS may also be set, 
depending on the error condition. 
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Functional Overview of Message 
Processing 
Two methods of sending and receiving mes­
sages exist, and user-conversion procedures 
can be invoked (optionally) on either method 
to examine or alter the message contents. A 
message can be: 

■ Stored into or sent from working storage 
directly, with an optional USER CONVERSION 
clause on the SEND MESSAGE statement. 

■ Stored into or sent from working storage via 
the Message Section, with an optional USER 
CONVERSION clause on the SEND MESSAGE 
statement and/ or on the data item in the Mes­
sage Section. 

User-conversion procedures are discussed in 
a later section. The following sections assume 
that a USER CONVERSION clause is not 
specified. 

Messages Directly into/from Working Storage 
These messages are defined by the PICTURE 
clause or group definition and are essentially 
fixed-length messages. On input, the message 
must be equal in length to the working-storage 
item. On input or output, the message can be 
"variable" when the data item is described 
with an OCCURS DEPENDING ON clause. 
Data is moved directly from the terminal 1/0 
buffer into working storage or vice versa. 
(See Figure 3.) 

Messages into/from Working Storage via 
the Message Section 
When messages are stored into or sent from 
working storage using the Message Section 
and an intermediate-field work area, the 
PICTURE clause(s) on the Message Section 
elementary items define the send-message and 
reply-message structures. (See Figure 4.) The 
OCCURS DEPENDING ON clause for a 
working-storage data item cannot be used 
because there is no equivalent clause in the 
Message Section. 

The MESSAGE FORMAT clause applies to 
the entire message and is currently only speci­
fiable at the 01 level. Messages can be fixed or 
variable in length. Variable-length messages 
are defined with the MESSAGE FORMAT 
VARYING 1 or MESSAGE FORMAT VARYING2 
clauses. The VARYING I or VARYING2 length 
field is inserted and removed by the TCP dur­
ing message processing and is not available to 
the program in working storage. 

Figure 3 

Figure 4 

TERMPOOL 

TERMPOOL 

Figure 3. 

Field transfer directly 
from TERMPOOL into 
working storage and vice 
versa with no Message 
Section, or from 
TERMPOOL into work­
ing storage with a Mes­
sage Section, with or 
without a USER 
CONVERSION clause 
specified on the elemen­
tary data items. 
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Working storage 

Working storage 

Figure 4. 

Field transfer via an 
intermediate-field work 
area to TERMPOOL 
from working storage, 
using a Message Section 
with or without a USER 
CONVERSION clause 
specified on the elemen­
tary data items. 
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Figure 5 

14 

IDENTIFICATION DIVISION. 
PROGRAM-ID. IDS-EXAMPLE. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-COMPUTER. T16. 
OBJECT-COMPUTER. T16, TERMINAL IS INTELLIGENT. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

* The data item WS-MESSAGE is referenced in the Message Section. 
* Note that the reply-code is not required to be at offset O of the 
* reply-message, nor is it required to be numeric. 

01 WS-MESSAGE PIC X(20) VALUE "Send back a message". 

01 WS-REPLY. 
05 WS-REPLY-LENGTH 
05 WS-REPLY-CODE 
05 WS-REPLY-BODY 

01 WS-SPACE-ALLOC 

PIC 9(4) COMP. 
PIC X(02). 
PIC X(1920). 
PIC X VALUE"". 

01 WS-TERMINATION-STATUS PIC 9(04) COMP. 
01 WS-TERMINATION-SUBSTATUS PIC 9(04) COMP. 

MESSAGE SECTION. 
01 MS-MESSAGE 

05 MS-MESSAGE-HEADER 

05 MS-MESSAGE-BODY 

01 MS-REPLY 
05 MS-REPLY-LENGTH 

05 MS-REPLY-CODE 

05 MS-REPLY-BODY 

01 MS-DUMMY-REPLY 

PROCEDURE DIVISION. 
MAIN SECTION. 

PERFORM 100-SEND-MESSAGE. 
010-EXIT. 

EXIT PROGRAM. 

MESSAGE FORMAT IS FIXED. 
PICX(26) . 
FROM WS~SPACE-ALLOC. 
PIC X(20) 
FROM WS-MESSAGE. 

MESSAGE FORMAT IS FIXED. 
PIC 9(4) COMP 
TO WS-REPLY·LENGTH. 
PICX(02) 
TOWS-REPLY-CODE. 
PIC X(960) 
TOWS-REPLY-BODY. 

MESSAGE fORMAT IS FIXED, 
PIC X{.2()48) • 
TOWS--$PACE·ALLOC. 

* The outbound message is sent via a Message Section structure. 
* This structure inserts a place holder field for a header data item 
• to be provided by the user-conversion procedure. 
* The inbound message "AA" is placed directly into working storage. 
• The "BB" is transformed via the user-conversion routine that 
* modifies the message by storing the message length in the message. 
• The dummy reply "XX" is provided to lengthen the intermediate work 
* area for the user-conversion procedure in processing the reply. 

100-SEND-MESSAGE. 
SEND MESSAGE MS-MESSAGE 

REPLY CODE FIELD IS WS-REPLY-CODE 
CODE "AA" YIELDS WS-REPLY 
CODE "BB" YIELDS MS-REPLY 
CODE "XX" YIELDS MS-DUMMY-REPLY 

USER CONVERSION 1 
ON ERROR 

PERFORM 900-SENDMSG-ERROR. 

* A terminal defined as intelligent is likely to be dependent on a 
* PATHWAY server class to log its errors. 

900-SENDMSG-ERROR. 
MOVE TERMINATION-STATUS 

TOWS-TERMINATION-STATUS. 
MOVE TERMINATION-SUBSTATUS 

TO WS-TERMINATION-SUBSTATUS. 
SEND WS-TERMINATION-STATUS 

WS-TERMINATION-SUBSTATUS 
TO "IDS-ERROR-SVR". 

To pass the length field between working 
storage and a user-conversion procedure, 
include an elementary data item in the Mes­
sage Section data definitions. See the data 
item 

05 MS-REPLY-LENGTH PIC 9(4) COMP 
TOWS-REPLY-LENGTH. 

in Figure 5. The annotated SCREEN COBOL 
code in this figure represents a typical imple­
mentation of a Procedure Division for IDS. 
The objective of the program is to request raw 
data from a program running in an intelligent 
device and store it in working storage. In this 
example, protocol-related overhead must be 
added to the send-message and stripped from 
the reply-message. In order to do this, the 
SEND MESSAGE statement invokes a user­
conversion procedure. 

On input, the user-conversion procedure 
must shift the data portion of the message 
2 bytes to duplicate length value (VARYING 1 
must be converted to 2 bytes for the COMP 
usage). Although the example doesn't do this, 
on output, the length may be passed to the 
user-conversion procedure in the message, 
used, and then shifted off. For variable-length 
messages, the TCP automatically truncates any 
trailing blanks and inserts the varying field 
length in front of the message. 

Figure 5 

A typical Procedure 
Division for IDS. The 
program requests raw 
data from a program 
running in an intelligent 
device and stores it in 
working storage. A user­
conversion procedure is 

invoked from the SEND 
MESSAGE statement to 
add protocol-related 
overhead to the send­
message and to modify 
one of the reply­
messages. 

T A N D E M SYSTEMS REVIEW J U N E 1 9 8 6 



TCP Resource Consumption and 
Configuration 
To perform the data transfer and formatting 
operations required for IDS, two or three data 
areas are required. The basic data areas are 
working storage and the terminal buffer area. 
Working storage is defined by the PICTURE 
clause for an elementary data item, and for a 
group item, it is the sum of these elementary 
items. The terminal buffer area in TERM­
POOL is allocated according to the larger size 
of the send-message or the largest of the reply­
messages plus one. 

An additional intermediate work area is 
required when data is to be formatted between 
the Message Section and working storage (Fig­
ure 4) and/ or when a USER CONVERSION 
clause is used on the SEND MESSAGE state­
ment (Figure 6). This area is allocated at the 
end of the current terminal context area. The 
size of the total area is specified with the SET 
TCP MAXTERMDATA parameter in 
PATHCOM. (PATHCOM is the command inter­
face to PATHMON, the central control process 
in the PATHWAY system.) The value can be 
empirically derived during unit testing via the 
PATHWAY STATS command to determine the 
largest area ever allocated during the execu­
tion of the application. (See Wong, 1984, for 
more information on the PATHWAY TCP and 
PATHWAY statistics.) 

User-conversion Procedures 
When there is a requirement for bit­
manipulation functions, communication or 
device control characters, or variable-length 
messages that do not conform to the VARY -
INGl or VARYING2 formats, user-conversion 
procedures are necessary. Four user-conversion 
procedures provide for the reformatting of 
messages or individual numeric and alphanu­
meric fields on both input and output oper­
ations. (See Appendix D of the PATHWAY 
SCREEN COBOL Reference Manual for 
details.) User-conversion procedures can be 
called at two levels during message processing. 

Send-message Processing 
When a send-message is constructed, one or 
more working-storage fields are moved to an 
area allocated in the TCP's TERMPOOL (Fig­
ure 3 or 4). Each field can be reformatted at 
this time by a user-conversion procedure 

Figure 6 

lntermediate-

TERMPOOL ,:~~S:r~~ TERM POOL 
~-------... ~-------... _, 

L 
n 

A B C A B C 

LJ 

(specified on a data item in the Message Sec­
tion). The procedure is given an intermediate 
work area in which to store the results of the 
conversion. The TCP moves the resultant field 
to the buffer in TERMPOOL (Figure 4). 

After the send-message is built, the message 
can be reformatted by a user-conversion proce­
dure (e.g., adding control characters or a 
routing header) specified on the SEND MES­
SAGE statement. Again, an intermediate work 
area is provided that is large enough to hold 
the entire message. The TCP moves the mes­
sage back to TERMPOOL for the length speci­
fied (Figure 6). To lengthen a send-message 
(i.e., to add header and/or trailer fields), the 
Message Section message-description entry 
must contain additional "place holder" fields. 
For example, in Figure 5, the statement 

05 MS-MESSAGE-HEADER PIC X(25) 
FROM WS-SPACE-ALLOC. 

would cause 25 bytes to be reserved in the 
send-message for a header, while only consum­
ing one character in working storage. 

n 
A B C 

LJ 

Figure 6 

Message transfer via an 
intermediate-message 
work area when a USER 
CONVERSION clause is 
specified on a SEND 
MESSAGE statement. 
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Figure 7 

PROC USER"ALPHA"INPUT"MSG"CONV ( USERCODE, ERROR, INPUT, 

Figure 7 

INT 
INT 
STRING 
INT 
STRING 
INT 
STRING 
INT 
INT 
INT 
INT 

Begin 

USERCODE; 
.ERROR; 
.EXT INPUT; 
.INPUT"LEN; 
.EXT INTERNAL; 
INTERNAL "LEN; 
FILL "CHAR; 
FILL "OFF; 
RIGHT"JUSTIFIED; 

.FIELD"RETURNED; 

.FIELD"PRESENT; 

INPUT"LEN, INTERNAL, INTERNAL "LEN, 
FILL "CHAR, FILL "OFF, RIGHT"JUSTIFIED, 
FIELD"RETURNED, FIELD"PRESENT ); 

Set by TCP 
Set by user procedure 
Set by TCP 
Set by TCP; modified by user 
Set by user procedure 
Set by TCP 
Set by TCP 
Set by TCP 
Set by TCP 
Set by user procedure 
Set by user procedure 

String .ext p; Temporary pointer 
Int Length:= lnternal"len - 2d; ! Stopper for internal"len 
Case usercode of 

Begin 
!O! ! Routine O - Change numbers to"•" 

Begin ! Perform conversion 
@p: = @internal;! reply-code. 
@internal : = @internal + 2d; 
While length do 

Begin 
If $numeric(internal) then 

Internal':=''""; 
@internal:= @internal + 1d; 
Length : = length - 1; 

End; 
@internal : = @p; 
Error:= O; 

End; 
! 1 ! ! Routine 1 - Change letters to"#" 

!2! 

End; 
End; 

Begin ! Perform conversion 
@p: = @internal; 
@internal : = @internal + 2d; 
While length do 

Begin 
If $alpha(internal) then 

Internal ': =' "#"; 
@internal:= @internal + 1d; 
Length : = length - 1; 

End; 
@internal:= @p; 
Error:= O; 

End; 

Begin 
End; 

Begin 
Error : = 105; 
End; 

Routine 2 -
No conversion - NOP 

Any other routine is an error 

' Return error code 

End Case 
End Proc 

An example of a case 
structure that best imple­
ments a user-conversion 
procedure. 

Reply-message Processing 
When a reply-message is received, the message 
can be reformatted by a user-conversion proce­
dure (e.g., removing control characters or a 
routing header) specified on the SEND MES­
SAGE statement. The procedure is given an 
intermediate work area large enough to store 
the largest reply (Figure 6). The TCP moves 
the message back to TERMPOOL for the 
length specified. To cause a larger allocation, 
the SEND MESSAGE statement would have to 
include a "dummy" message-description entry 
that described the desired length. See Figure 5 
for the Message Section statement 

01 MS-DUMMY-REPLY PIC X(2048) 
TO WS-SPACE-ALLOC. 

and its use in the SEND MESSAGE statement. 
Next, the reply-code tests are made to select 

a reply-message format that is then used to 
move the field(s) to working storage. Each 
field can be reformatted at this time by a user­
conversion procedure (specified on a data 
item in the Message Section). The procedure is 
given the address and length of the working­
storage data item (Figure 3). 

User-conversion Procedure Names 
During reply-message or send-message oper­
ations, the respective user-conversion proce­
dures USER"ALPHA"INPUT"MSG"CONV or 
USER "ALPHA "OUTPUT"MSG"CONV may 
be called for an alphanumeric field in the 
Message Section or, on a SEND MESSAGE 
statement, for the entire message, which is 
treated as an alphanumeric group item even if 
it contains a single numeric field. The proce­
dures USER "NUMERIC"INPUT"MSG"CONV 
or USER "NUMERIC"OUTPUT"MSG"CONV 
may be called for only a numeric field in the 
Message Section. 

Note: The user-conversion procedure must 
befulry tested to ensure that no data­
formatting errors would occur to cause the 
terminal context area to be exceeded. This 
would affect another terminal's data space 
and might make debugging very difficult. 
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Numbering User-conversion Procedures 
When numbering user-conversion routines, 
programmers should follow certain conven­
tions. If a USER CONVERSION clause is speci­
fied on the USING clause or on the SEND 
MESSAGE statement, there must be a pair of 
routines in the output and input procedures 
that handle the same number. If processing is 
to be done on only one direction (e.g., the 
message is reformatted on output), the other 
procedure must contain an equivalent routine, 
which can be nothing more than a BEGIN­
END statement pair (effectively a no-operation 
routine). 

Note: The TCP performs the data transfer 
based on the PICTURE clauses before the user­
conversion procedure is called, in case the 
procedure is a no-operation routine. 

Sample User-conversion Procedure 
Writing an IDS user-conversion procedure is 
no different from writing a procedure to con­
vert terminal-screen data or support 3270 
attention keys. The PATHWAY SCREEN 
COBOL Reference Manual provides a detailed 
catalog of input and output parameter require­
ments for the routines. The example in Fig­
ure 7 contains the case structure that imple­
ments a user-conversion procedure. 

Conclusion 
Intelligent Device Support, or IDS, enhances 
the PATHWAY transaction processing system 
by providing language elements in SCREEN 
COBOL that process messages to intelligent 
devices, in addition to formatted screen termi­
nals. The new SEND MESSAGE statement 
adds power to device handling such that a 
single message can be sent and any one of a 
number of replies can be processed in a single 
statement. These messages can now be fixed 
or variable in length. 

In addition, user-conversion routines can be 
written at both the field and message levels to 
format data at a lower level than that provided 
in SCREEN COBOL. As PATHWAY now pro­
vides a fully integrated solution to the support 
of intelligent devices within a single TCP pro­
cess, the need for user-written front-end pro­
cesses should be greatly reduced. 
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New TAL Features 

new, enhanced version of 
TAL™, the Tandem Appli­
cation Language, is avail­
able with the B20 software 
release. This article dis­
cusses the following new 
features: 

• Labeled CASE statement. 
• Structure improvements (including pointers 
in structures and substructure declarations). 
• Automatic allocation of extended memory. 
• Unsigned data types. 

• Literal declarations. 
• MOVE statement improvements. 
• Errorfile directive. 

Labeled CASE Statement 
The CASE statement provides a multiway con­
trol structure in which the value of an index 
expression is used to transfer control to one of 
several case branches. 

Before the B20 release, the TAL CASE state­
ment required users to express the correspon­
dence between the value of an index expression 
and case branch implicitly, according to the 
sequential ordering of each of the case 
branches. For example: 

PROC calc(op, a, b, c); 
INT op, a, b, .c; 

BEGIN 

CASE op OF 
BEGIN 
GOTO no"op; ! selected if 

c·-.- a + 
c:= a -

GOTO no"op; 

C: = a 

c:= a 

C: = a 

OTHERWISE 
no"op: 

* 

I 

+ 

b· " ' 
b· " ' 

" 
b· " ' 
b· " ' 

" 
b· " ' 

IF op< >0 THEN 
CALL error( op); 

END; 

END;! calc ! 

" 
" 
" 
" 
" 

" 
" 

op 0! 

op 1 ! 

op 2! 

op 3 ! 

op 4! 

op 5! 

op 6 ! 

op 7! 

Note the implicit, positional correspondence 
between index expression, the value of op, and 
case branch. Besides being error-prone, espe­
cially for large numbers of case branches, this 
positional scheme imposes some awkward 
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coding when the same case branch is to be 
selected by more than one value of the index 
expression. Either a GOTO must be coded, as 
shown by index values O and 3, or case 
branches must be duplicated, as shown by 
index values 1 and 7. 

In the B20 release, CASE statement 
branches may be labeled. The principal 
improvement is that the correspondence 
between the index value and case branch is 
expressed with explicit, nonpositional syntax. 
In this new form, the example becomes: 

PROC calc(op, a, b, c); 
INT op, a, b, .c; 

BEGIN 

CASE op OF 
BEGIN 

6-> 
! selected if 

4-> 
C. - a * b· .- ' 1, 7 -> 
C. -.- a + b· 

' 2-> 
C. -.- a b· 

' 5-> 
C. -. - a I b· 

' 
OTHERWISE - > 

IF op< >0 THEN 
CALL error(op); 

END; 

END;! calc ! 

" " 

" " 

" " 

" " 

op 6 ! 

op 4! 

op l ! 

op 2! 

op 5! 

As this example shows, case branches can 
be coded in any order since the index/branch 
correspondence is given by the "label." Note 
also that "index gaps," such as the values O or 
3, do not have to be coded as GOTOs; because 
they are unspecified, they both automatically 
branch to the OTHERWISE clause. Finally, 
note how simply a single case branch can be 
made to correspond to more than one index 
value, as shown by values 1 and 7. 

The syntax1 for the labeled CASE statement 
is given in Figure 1 . The following examples 
highlight some additional features. 

1Syntax conventions are as follows: lowercase letters within angle brackets 
( < >) represent all user-supplied variable entries; braces ( { } ) indicate that 
exactly one of the options listed must be selected; brackets ([ ]) indicate that 
the field is optional and any number, including 0, of the enclosed options may 
be chosen; an ellipsis ( ... ) immediately following a pair of brackets or braces 
indicates that the enclosed syntax can be repeated any number of times. 
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Figure 1 

CASE <selector>OF 
BEGIN 
<alternative>; 
[<alternative>;] 

where 

[ <alternative>; ] 
[OTHERWISE->< statement-s >;] 
END 

<selector> 
is an INT arithmetic expression that uniquely selects the case 
<alternative> to be executed. 

<alternative> is 
< case label> [, < case label>] ... -> < statement-s > 

An <alternative> is a sequence of <statement>s, < statement-s>, and 
an associated set of constant INT values, as specified by <case label >s. 
The <statement> s of <alternative> are executed if <selector> equals 
one of its associated values. 
No two <alternative> scan have an associated value in common. 

< case label> is 
< INT constant> or< INT constant-a> .. < INT constant-b> 

< case label> s are used to specify constant INT values. The first form 
specifies a single value and the second specifies all INT values i such that 
< INT constant-a> < = i < = < INT constant-b>. When used, the second 
form must specify at least one value. 

< statement-s > is 
<statement> [ ; <statement>] ... 

<statement> can be any TAL statement, labeled or unlabeled. 

OTHERWISE-> 
specifies an optional sequence of statements to be executed if no 
<alternative> is selected by <selector> . 
If this clause is not used and no <alternative> is selected, an instruction 
fault will occur. 

Figure 1. In a labeled CASE statement, consecutive 
selector (index) values that branch to the same 
alternative (case branch) need not be individu­
ally listed. Instead, they can be abbreviated as 
a range of values, from low value to high 
value: 

CASE syntax. TAL now 
includes a labeled CASE 
statement. 

CASE i OF 
BEGIN 

0 - > ! alternative 0 ! 

-10 .. -1-> 
! executed when -10 < = < = -1 ! , 

1.. 9-> 
! executed when 1 < = < = 9 ! 
END; 
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Case label ranges and single case labels can 
be used in combination to provide a very flexi­
ble means of selecting case alternatives: 

CASE i OF 
BEGIN 

1,3,11-> 
! Executed when i 

i = 3 ORi 
1 OR! 
11 

i:=i*3; 
i:=i*ll; 

! Note that a labeled case 
! alternative can consist of 
! a sequence of statements, 
! unlike the unlabeled case 
! branch. 

0, 2, 4 .. 10-> 
! Executed when i = 0 OR ! 

i = 2 OR! 
( 4 < = i < = 10.)! 

END; 

Within a labeled case statement, each case 
label can be specified (singly or in a range) 
only once: 

CASE i OF 
BEGIN 

0-> ; 

-1 .. 2->; 

3, 3 ->; 

4->; 
5, 4->; 

END; 

! ILLEGAL, 0 has already 
! been specified. 

! ILLEGAL, even in the ! 
! same case label list. ! 

! ILLEGAL! 

Finally, note that the labeled CASE state­
ment provides a predictable, more graceful 
handling of an out-of-bounds selector expres­
sion when no OTHERWISE clause is coded. If 
arithmetic traps are enabled, the CASE state­
ment generates an overflow trap; if traps are 
disabled, control passes to the end of the state­
ment. While unpredictable branches were pos­
sible with the unlabeled CASE statement, they 
are no longer possible when the labeled CASE 
statement is used. 

Structure Improvements 
Pointers in Structures 
Before the B20 release, dependencies between 
different data objects could not be easily 
expressed in TAL. This was primarily because 
pointer variables (variables containing the 
addresses of other variables) could not be 
declared as component fields of structures 
and substructures. 

Users could work around this restriction by 
representing pointer fields within a structure 
as INT or INT(32) fields. Accessing the target 
of such a pointer was quite awkward because 
users had to copy the integer field into a suit­
ably declared temporary pointer before they 
could access the target data. 

In the B20 release, TAL solves this problem 
by an extension that allows the declaration of 
pointer fields within structures and substruc­
tures. In addition, pointer fields within a 
structure are "de-referenced" (indirectly 
accessed) in the same way as pointers outside 
of structures. As a result, the need for tempo­
rary pointers is greatly reduced. 

Not surprisingly, the syntax for declaring 
pointers within a structure is very similar to 
the syntax for declaring pointers outside of 
structures. The only exception here is that 
pointer fields, like any other component field 
of a structure, cannot be initialized. See 
Figure 2 for the full syntax. 

With this extension, defining linked data 
structures such as lists and binary trees is very 
straightforward, as shown in Figure 3. 

BinaryNode is declared to be a structure 
template that can be used to declare structures 
with three component parts: a value field and 
two structure pointers that will contain the 
addresses of subordinate instances of the 
BinaryNode template. 

As with pointers outside of structures, 
access to the value of a pointer is denoted with 
the "at" sign(@). The only difference is that 
a pointer variable must be fully qualified (as 
must any other reference to a structure field) 
with the name of its enclosing structure and all 
of its enclosing substructure. 

With the exception of name qualification, a 
reference to the target of a pointer within a 
structure is similar to a reference to the target 
of a pointer outside a structure. The only dif­
ference is that a pointer within a structure 
cannot be subscripted. 
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While pointers in structures generally 
behave the way one might expect, there are 
some important limitations. First, the target 
of a structure pointer contained in a structure 
is not a substructure; it is itself a structure. 
This is reflected in the $OFFSET function: the 
offset of a field in the target excludes the off­
set of the structure pointer and the byte length 
of the pointer itself. For example: 

$OFFSET(Parent.RightChild) 

returns the byte offset of the RightChild of 
Parent; this value is 4. 

$OFFSET(Parent. Left Child. Right Child) 

returns the byte offset of the RightChild of 
the target of the LeftChild of Parent; this 
value is also 4. 

Second, pointers and structure pointers 
within a structure cannot be initialized at dec­
laration time as is true of other structure 
items. 

A third difference is that when a structure 
pointer within a structure is declared, the 
identifier used for the referral cannot be a for­
ward reference. That identifier must have 
already been seen by the compiler, although its 
declaration may be incomplete at the point of 
reference. For example: 

STRUCT me(*); 
BEGIN 

INT .me"link(me); 
! This is legal. 

INT .you "link(you); 
! This would cause an undeclared 
! identifier error. 

INT info [0:9]; 
END; 

STRUCT you(*); 
BEGIN 

INT .me"link(me); 
! This is ok. TAL has seen "me." 

INT .you "link(you); 
! This is also ok. 

INT different"info [0:19]; 
END; 
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Figure 2 

<type> {. } < identifier> 
{ .SG } 
{.EXT} 

[ = < previous item> ]; 
where <type> is STRING, INT, INT(32), FIXED, REAL, or REAL(64). 

The syntax for structure pointer declarations within structures is 

{ INT } {. } < identifier> ( <referral>) 
{STRING} { .SG } 

{.EXT} 
[ = < previous item>]; 

The syntax for initializing a pointer within a structure is 

@ <Struct-index> [ [. < substruct-index> ] ... ].<pointer-name>:= 
<arithmetic-expression>; 

where < struct-index > [ < substruct-index >] is the name of a structure 
[substructure] with or without an index expression. 

Figure 3 

STRUCT BinaryNode(*); 
BEGIN 

INT NodeActive; ! < > O implies an active node. 
INT .LeftChild(BinaryNode); 
INT .RightChild(BinaryNode); 

END; 
STRUCT Parent(BinaryNode); 

STRUCT NewChild(BinaryNode); 
@Parent.LeftChild: = @NewChild; 

! NewChild is made the target of the 
! LeftChild pointer in Parent. 

@NewChild.LeftChild: = Nil; ! Initialize each of 
@NewChild.RightChild: = Nil;! the pointers in NewChild 
NewChild.NodeActive: = -1; ! to Nil (-1). 

Parent.LeftChild.NodeActive: = O; 
! Mark the target of LeftChild in 
! Parent inactive. 

@Parent.LeftChild : = @Parent.LeftChild.LeftChild; 
! Delete the target of LeftChild of Parent 
! by making the LeftChild of target the 
! new target of LeftChild of Parent. ! 

Parent.RightChild: = Nil; 
! Illegal because pointers in 
! structures cannot be subscripted.! 

SYSTEMS REVIEW 

Figure 2. 

Syntax for pointer decla­
rations within structures. 

Figure 3. 

In the B20 version of 
TAL, defining linked 
data structures such as 
lists and binary trees is 
straightforward. (Note 
how the "@" prefix in 
"@Parent.LeftChild. 
LeftChild" is used to 
access the address of the 
target of the LeftChild of 
the target of the Left­
Child of Parent.) 
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Figure 4 

Figure 4. 

STRUCT < identifier> (<referral>) 

<identifier> 

[ "(" <lower-bound> : <upper-bound>"]"] 
[ = < previous item>]; 

is the name of the new substructure. 

<referral> 

is the name of a previously declared structure. 

<lower-bound> 
is a constant expression in the range -32768 through 32767 that specifies the first 
substructure occurrence for which to allocate storage. The default value is O (one 
occurrence). Each occurrence is one copy of the substructure. 

<upper-bound> 
is a constant expression in the range -32768 through 32767 that specifies the last 
substructure occurrence for which to allocate storage. The default value is O (one 
occurrence). 

< previous item> 

is a previously declared structure item or substructure on the same level as 
<identifier>. 

Substructure Declarations 

Syntax for a substructure 
declared via a referral. 

Before the B20 release, substructure declara­
tions could only be shared through the use of a 
DEFINE. 

In the B20 release, substructures can be 
declared through the use of referrals to previ­
ously declared structures or structure tem­
plates. This makes the treatment of 
substructures and structures more uniform 
and should improve the readability of code. 
For example: 

STRUCT t(*); 
BEGIN 

STRING a,b,c; 
END; 

STRUCT Sub.i-.Dir; 
! Direct declaration. 

BEGIN 
STRING s; 
STRUCT ssl; 
BEGIN 

STRING a,b,c; 
END; 

END; 

STRUCT SubARef; 
! Referral declaration. ! 

BEGIN 
STRING s; 
STRUCT ss2(t); 

END; 

Code modularity is also improved if refer­
rals are used whenever two or more structures 
have data in common or contain data that is 
organized in the same manner. This makes 
maintenance of large programs much easier 
for programmers. For example: 

STRUCT customerAinfo(*); 
BEGIN 

STRING name[0:39]; 
! Company name. ! 

STRUCT address; 
! Company address. 

BEGIN 
STRING numberAand Astreet[0:49]; 
STRING city[0:19]; 
STRING state[0:19); 
STRING zip[0:4]; 

END; 
END; 

STRUCT .orderAfor; 
! Order placed. ! 

BEGIN 
INT orderAnumber; 
STRUCT customer(customer.l\jnfo); 
INT partAnumber; 
INT quantity; 
STRING item ~rice [0:4]; 
STRING total Aprice[0:6]; 

END; 

STRUCT . customer .i-.history; 
! History file updated with each made. ! 

BEGIN 
STRUCT customer( customer .l\jnfo); 
STRING lastAyearAsales[0:8]; 

! Last year's revenue. 
STRING year~o.i-.date[0:8]; 

! This year's revenue to date. 
END; 

In this example, the template 
CUSTOMER .i-.INFO is used in both 
ORDER "FORM and CUSTOMER "HISTORY. 
Changes made to any of CUSTOMER "INFO' s 
fields would be propagated to those structures 
referring to it. 

TAL allocates storage for a substructure 
declared via a referral in the same way that it 
allocates storage for a substructure declared 
via a body definition. (See Figure 4.) There 
are, however, the following exceptions. 

First, a substructure declared via a referral 
always starts on an even-byte boundary. This 
rule is imposed so that substructures declared 
via a referral and all structures have the same 
alignment characteristics. In the first example, 
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$OFFSET( sub "'dir. ss 1) 1, 

but 

$0FFSET(sub"'ref.ss2) = 2. 

A pad byte separates sub"'ref.s and 
sub"'ref.ss2. 

A second exception is that $LEN for a sub­
structure declared via a referral is always an 
even number. This rule is imposed so that 
two substructures declared with the same 
< ref err al > structure always have the same 
length. In the first example, 

$LEN(sub"'dir.ssl) = 3, 

but 

$LEN(sub"'ref.ss2) = 4. 

Substructure referrals may not be made to 
the name of the structure whose body is cur­
rently being declared. Such a recursive decla­
ration would produce an infinite structure. 

Automatic Allocation of 
Extended Memory 
This enhancement provides easier access to 
extended memory in TAL by supporting auto­
matic memory allocation for extended global 
arrays and structs. 

Before the B20 release, users needed to man­
ually allocate extended memory and initialize 
pointers to that space. (See Figure 5a.) 

In the B20 release, for the new EXTENDED 
ARRAY and STRUCT declarations, the alloca­
tion and deallocation of an appropriately sized 
segment and the initialization of pointers to 
that space are made by the compiler, 
BINDER'M, and the GUARDIAN 90 operating 
system, and are transparent to TAL users. 
(See Figure 5b.) 

Figure 6 contains a formal syntax descrip­
tion of array and STRUCT declarations in 
extended memory. 

Figure 5. 

Allocation of extended 
memory. (a) Before the 
B20 release of TAL, 
users die this manual!. 
(b) In the B20 release, 
the TAL compiler, 
BIDER, and the 
GUARDIAN 90 operat­
ing system allocate it 
automatically. 
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Figure 6. 

Syntax for extended 
arrays and STRUCTS. 
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Figure 5 

Figure 6 

(a) 

?SOURCE $system.system.extdecs (ALLOCATESEGMENT, USESEGMENT, 
? DEALLOCATESEGMENT) 

STRING .EXT ba"ptr: = OD;! Extended pointer to byte array.! 
INT status:= 1000; 
LITERAL seg"id = 0; 
LITERAL seg"len = 2048D; ! Size of segment allocated in bytes.! 
LITERAL dealloc"flags = 1; ! For DEALLOCATESEGMENT later.! 
INT old"seg"num: = -1; 

PROC ext"addr"example MAIN; 
BEGIN 

status:= ALLOCATESEGMENT (seg"id, seg"len); 
old"seg"num: = USESEGMENT (seg"id); 
@ba"ptr: = %2000000D; ! Initialize pointer to the start of the segment. 
ba"ptr ': =' "This is a sample string."; 
CALL DEALLOCATESEGMENT (seg"id, dealloc"flags); 

END; 

(b) 

STRING .EXT ba"ptr [0:2047]; ! Extended byte array.! 

PROC ext"addr"example MAIN; 
BEGIN 

ba"ptr ': =' "This is a sample string."; 
END; 

Extended Arrays: 

<type> .EXT <name>"[" <lower-bound>: <upper-bound>"]" 
[: = <initialization>], ... ; 

where 

<type> is 
{ INT 
{ INT(32) 
{ STRING } 
{ FIXED[( <fpoint>)]} 
{ REAL } 
{ REAL(64) } 

.EXT is the extended indirection symbol. 

<name> is the identifier assigned to the extended array. 

<lower-bound> is a 16-bit integer constant defining the first array element. 
The <lower-bound> must be less than or equal to the <upper-bound>. 

<upper-bound> is a 16-bit integer constant defining the last element of the 
array. 

<initialization> is a constant or constant list (including repetition factors) to 
be assigned as an initial value. 

Extended STRUCTS: 

STRUCT .EXT <name> [ "[" <lower-bound> : <upper-bound> "]" ]; 
BEGIN 
< all legal structure data items > 
END; 

STRUCT .EXT <name> (<referral>) 
[ "[" <lower-bound> : <upper-bound> "]" ]; 

where 
.EXT is the extended indirection symbol. 

< name> is the identifier assigned to the extended structure. 

<lower-bound> is the first occurrence of the structure for which storage is 
allocated. 

<upper-bound> is the last occurrence of the structure for which storage is 
allocated. 

<referral> indicates the identifier assigned to a previously defined structure. 
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Figure 7 

Figure 7. 

BLOCK Ext"Global"Example; 

INT .EXT X"Array [0:32767]; Double-word pointer is placed in primary 
memory and array is in extended memory. 
Array bounds are presently limited 
to 16-bit integers. 

STRUCT .EXT Y"Struct [0:4095]; ! Double-word pointer is placed in primary 
BEGIN ! memory after the X"Array pointer, and it 
INT Y"Array [0:8191]; ! points at the 64-Mbyte array of 
END; ! STRUCTS in extended memory. 

INTZ; 

END BLOCK; 

Issues 

! User-memory data can be mixed with 
! extended memory data. 

Memory mapping for 
extended global 
variables. 

Extended Global Variables with Separate 
Compilation. With the B20 enhancement, 
users can declare extended arrays and 
STRUCTS in the same way that user-memory 
arrays and STRUCTS are declared. Segment 
allocation and pointer initialization are auto­
matic. Similarly, the bookkeeping for space 
allocated with separate compilation is handled 
analogously with that for user-memory data. 
Extended arrays and STRUCTS can appear in 
named blocks. 

Load on Primary Global Space. A double­
word pointer to each extended global variable 
will be located in the primary storage area. 
Since the primary global space is 256 words, 
a maximum of 128 extended global items can 
be declared. 

Figure 7 shows where everything is mapped 
in memory. 

References to extended global variables are 
not as fast as those in the 16-bit address space, 
but the available address space can be up to 
128 Mbytes (2**27 bytes), whereas regular 
arrays and STRUCTS are limited by the 
64-Kbyte user-data segment size. 

Mixing Automatically and Manually 
Allocated Segments. Users are still free to 
allocate and initialize their own data seg­
ments. However, mixing compiler-allocated 
and user-allocated segments in a single module 
is inadvisable. This practice is error-prone 
because users must remember to explicitly 
switch among the segments and restore the 
correct segment before accessing the extended 
data in that segment. 

Dynamic Expansion of the Segment. The 
extended segment size is fixed at compilation 
time, and the full segment is allocated at once. 
Explicit hooks allowing the user to enlarge the 
segment are not provided. 

Local Extended Declarations. Automatic allo­
cation of local extended arrays and STRUCTS 
will be implemented in the B30 software 
release. The syntax for that enhancement will 
be consistent with the syntax of extended 
global variables. 

Unsigned Data Types 
Before the B20 release, the scalar data types 
available in TAL consisted of byte-, word-, 
doubleword-, and quadword-sized variables. 
When a programmer needed to define and 
use bit-oriented variables such as single-bit 
flags, whose sizes did not correspond to one 
of the built-in scalar types, there were two 
possibilities: 

1. Use a data type that was large enough to 
contain the object to be defined, at the 
expense of some wasted space. 

2. Use the bit deposit/extract mechanism 
provided in TAL to pack two or more bit­
variables into the same word of storage and 
thus minimize wasted space. 

Method 1 is fine if programmers can afford 
the wasted space. Given the limited number of 
directly addressable locations (global, local, or 
sublocal) available to a TAL program, how­
ever, this is very rarely acceptable. The storage 
optimization provided by method 2 is usually 
needed. 

Method 2 can be as space-efficient (or inef­
ficient) as programmers care to make it. With 
suitable DEFINES, a reasonably convincing 
simulation of bit-variables could be 
implemented: 

INT bit "'carrier, 
bit"'carrier"'; 

DEFINE flagO = bit "'carrier. < 0 > #, 
flag 1 = bit "'carrier. < 1 > #, 
flag2 = bit "'carrier. < 2 > #, 
bit3 = bit"'carrier. < 3:5 > #, 
bit5 bit "'carrier.< 6: 10 > #, 
flag3 bit "'carrier. < 11 > #, 
bit7 bit"'carrier"'.<0:6>#; 
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In this example, programmers must first 
declare the storage needed to contain the bit­
variables to be defined and manually allocate 
each such variable within the declared storage. 
Manual allocations of this sort are error-prone 
(it is very easy to inadvertently overlap two 
bit-variables) and awkward to change. Chang­
ing the size of an interior bit-variable, for 
example, requires manual shifting (realloca­
tion) of one or more adjacent fields. 

In the B20 release, TAL implements a new 
data type, UNSIGNED, which enables pro­
grammers to declare bit-variables without hav­
ing to manually assign bit positions to each 
variable that is to share the same word of stor­
age. With UNSIGNED types, the preceding 
example is equivalent to: 

UNSIGNED(!) flag0, 
flagl, 
flag2; 

UNSIGNED(3) bit3; 
UNSIGNED(5) bit5; 
UNSIGNED(!) flag3; 
UNSIGNED(?) bit7; 

Bit Position 
<0> (word 0) 
<1> (word0) 
<2> (word 0) 

< 3:5 > (word 0) 
<6:10> (word 0) 

< 11 > (word 0) 
< 0: 6 > ( word 1) 

In this case, the first UNSIGNED variable 
causes one word of storage to be allocated. 
Each subsequent bit-variable is then allocated, 
from bit Oto bit 15 of this word, in the order it 
is declared. A bit-variable that is too large to 
fit causes allocation to begin at bit 0 of a 
newly allocated word of storage. 

Note that because allocation is done by the 
compiler, changes of size, insertions, and dele­
tions are easily made; the compiler automati­
cally ensures that no overlaps ( or unnecessary 
bit gaps between variables) are introduced. 

The syntax for UNSIGNED variable declara­
tions is shown in Figure 8. 

Because a bit-variable is not necessarily 
aligned at a byte or word boundary, it is not 
"addressable," meaning that it cannot be 
accessed via a pointer or via a call-by­
reference formal parameter in a PROC or 
SUBPROC. 

An UNSIGNED variable can be assigned the 
value of an expression whose word size is the 
same as its equivalent INT (or INT(32)) type. 
Unused bits are discarded from the high-order 
(bit 0) position of the expression. 

Consecutive UNSIGNED variable declara­
tions (excluding formal parameter declara­
tions) as simple variables or as component 
fields of unpacked structures are allocated, 
beginning with bit 0 and in the order declared, 

Figure 8 

UNSIGNED( <width>) < identifier> [, <identifier>] ... ; 
where 
<width> is 

an integer constant in the range 1 through 31. 

UNSIGNED (<width>) defines an arithmetic type whose values are 
unsigned integers having binary representations that are <width> bits wide. This 
type can be used to declare global, local, and sublocal variables, call-by-value 
formal parameters in a PROC or SUBPROC, and component fields within STRUCTs 
and STRUCT templates. 

The value of an UNSIGNED type is logically the same as type INT if 
<width> is 15 or less and INT(32) otherwise. Consequently, an UNSIGNED type 
has the same operations (e.g, -, +, *,/,and'-') as its equivalent INT (or INT(32)) 
type. 

into contiguous bit positions so that no INT 
equivalent variable is split across a word 
boundary and no INT(32) equivalent variable is 
split across more than one word boundary. 

Currently, arrays of UNSIGNED variables 
cannot be declared and UNSIGNED variables 
cannot be subscripted. These features will be 
supported in a future release. 

Within structures, the allocation of 
UNSIGNED variables is very similar to their 
allocation outside structures: 

STRUCT s; 
BEGIN 
UNSIGNED(!) flag0, 

flagl, 
flag2; 

UNSIGNED(3) bit3; 
UNSIGNED(5) bit5; 
UNSIGNED(!) flag3; 
UNSIGNED(?) bit7; 
END; 

Bit Position 
<0> (word 0) 
<1> (word0) 
<2> (word0) 

<3:5> (word0) 
<6:10> (word 0) 

<11> (word0) 
<0:6> (word 1) 

Because UNSIGNED variables can be 
declared to be wider than 16 bits, TAL can 
support accesses to bit-variables that are split 
across word boundaries. Previously, this could 
not be simulated with bit deposits/ extracts 
because those operations are restricted to 
16-bit expressions. This example shows the 
new feature: 

UNSIGNED(!) flag0, 
UNSIGNED(23) bit23; 

UNSIGNED(5) bit5; 
UNSIGNED(!) flag3; 

Bit Position 
<0> (word 0) 

<1:15> (word0) 
<0:7> (word 1) 

< 8: 12 > (word 1) 
< 13 > (word 1) 

Figure 8. 

Syntax for UNSIGNED 
variable declarations. 
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Figure 9. 

Syntax for literal 
declarations. 

26 

Finally, two new standard functions similar 
to the existing $LEN and $OFFSET functions 
have been implemented. The new functions 
are $BITLENGTH( <variable>) and 
$BITOFFSET( <variable>). For any variable, 
$BITLENGTH returns the minimum number 
of bits allocated for that variable. For any 
variable within a structure, $BITOFFSET 
returns the bit off set of that variable within 
the outermost containing structures. In the 
two preceding examples, $BITLENGTH(bit23) 
returns the value 23 and $BITOFFSET(s.bit7) 
returns the value 16. 

Literal Declarations 
The use of symbolic literals can greatly 
improve the readability of a TAL program. In 
many cases, the existing form of literal decla­
ration in TAL is more than sufficient. Often, 
however, a programmer may want to define a 
set of logically related, ordered symbolic val­
ues using integer literals. Here, the basic intent 
is that each symbolic name is to have a unique 
integer value; the value of a particular sym­
bolic literal may or may not be significant. 

Figure 9 

LITERAL< literal definition> 
[, < literal definition> ] ... ; 

where 
< literal definition> is 

{ <explicit literal> } 
{ < implicit literal> } 

< explicit literal> is 

<identifier> = <constant> 

< implicit literal> is 

<identifier> 

<identifier> 
is any legal TAL identifier. 

<constant> 
is an INT, INT(32) constant expression, FIXED, 
REAL, or REAL(64) constant. 

Before the B20 release, a natural way to 
ensure uniqueness was to define the symbolic 
literals as an increasing (incrementing by one) 
sequence of integers. There were two ways to 
proceed. 

One was to assign integer values explicitly: 

LITERAL 
dollar"'aus = 0, 
dollar "'can = 1, 
krone"'den = 2, 
franc"'fr 3, 
dollar"'hk = 4, 
yen 5, 
dollar"'usa = 6, 
pound "'uk = 7, 
mark"'frg = 8; 

The second way was to assign each succeed­
ing literal a value that is one greater than its 
predecessor: 

LITERAL 
dollar"'aus = 
dollar "'can = 
krone"'den = 
franc"'fr 
dollar"'hk = 
yen 
dollar "'usa = 
pound "'uk = 
mark"'frg = 

0, 
dollar "'aus + 1, 
dollar"'can + 1, 
krone"'den + 1, 
franc "'fr + 1 , 
dollar "'hk + 1 , 
yen+ 1, 
dollar "'usa + 1, 
pound "'uk + 1 ; 

O! 
1 ! 
2 ! 
3 ! 
4! 
5 ! 
6! 
7! 
8 ! 

Both methods are error-prone. With either 
method, the programmer must ensure that two 
literals are not duplicated. Also, insertions 
and deletions require that one or more adjoin­
ing literals be changed as well. 

In the B20 release, TAL extends the syntax 
for literal declarations to permit a simpler, 
easier alternative: 

LITERAL dollar "'aus, 0 ! 
dollar"'can, 1 ! 
krone"'den, 2 ! 
franc "'fr, 3 ! 
dollar "'hk, 4 ! 
yen, 5 ! 
dollar"'usa, 6 ! 
pound "'uk, 7 ! 
mark"'frg; 8 ! 

Here, the TAL compiler initializes the sequence 
to O and automatically increments successive 
values by one, ensuring that duplications do 
not occur. Insertions and deletions can be 
made without having to change any other lit­
eral in the list . 
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Figure 9 shows the new syntax for literal 
declarations. 

Literal declarations using only < explicit 
literal> have the same meaning as in earlier 
releases. 

< Implicit literal>, when used, must be 
either the head of a list of < literal defini­
tion> s or it must be preceded by a < literal 
definition> (implicit or explicit) that defines 
an INT(l6) constant literal. Under the former 
condition, the value of the literal is set to O; 
under the latter, the value of the literal is set to 
one greater than the value of its predecessor in 
the same literal declaration. 

The following examples show how this 
extension is used: 

LITERAL zero, 0 ! 
one, 1 ! 
two; 2 ! 

LITERAL not .1\3; 
! Equals 0, not 3. ! 

LITERAL three = 3; 

LITERAL not .1\4; 
! Equals 0, not 4. ! 

LITERAL five = 5, ! 5 ! 
six, ! 6 ! 
seven; ! 7 ! 

LITERAL pi = 3.141592e0, 
pi"plus.1\1; 
! ILLEGAL, predecessor is 
! not an INT(l6) value. 

LITERAL int.1\32 = ld, 
int A32 "plus Al; 
! ILLEGAL, predecessor is 
! not an INT(l6) value. 

LITERAL root.1\2 = 1.414e0; 

LITERAL implicitAzero; O! 

MOVE Statement 
The B20 release enhances the TAL MOVE state­
ment in two ways: 

1. Users are now allowed to mix 16-bit byte­
addressed destinations with 16-bit word­
addressed sources, and vice versa. 

2. A count unit descriptor has been intro­
duced to make explicit the size of the data 
elements being moved. 
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Figure 10 

<destination> { ': ='} { <source> FOR <count> [ <Count unit>]} 
{ '= :'} { <constant> } 

[ & <source> FOR <count> [<count unit>]]. .. 
[ & <constant> ] ... 

[-> <next address>] 
<destination> 

is the name of the variable, with or without an index, to which the move 
begins. It can be a simple variable, array, pointer, structure, substructure, 
structure data item, or structure pointer, but not a read-only array. 

indicates a left-to-right sequential move. 

'=:' 
indicates a right-to-left sequential move. 

<source> 
is the name of the variable, with or without an index, from which the move 
begins. It can be a simple variable, array, read-only array, pointer, structure, 
substructure, structure item, or structure pointer. 

<count> 
is a positive INT arithmetic expression that defines the number of bytes, 
words, or elements in <source> to move. 

<count unit> 
is a description of <count>. It is one of 

BYTES 
WORDS 
ELEMENTS 

If <count unit> is not present, the meaning of <count> is as follows: 
<source> 

Simple variable 
Array 
Structure 
Substructure 
Structure pointer 
Pointer 

<constant> 

<count> is the number of 

elements 
elements 
words 
bytes 
bytes if STRING, words if INT 
elements 

is the LITERAL, numeric or character string constant, or constant list to be 
moved. 

< next address> 
is a variable to contain the location in <destination> that follows the last 
item moved. < next address> is a 32-bit byte address if either <source> or 
<destination> has an extended address; a 16-bit byte address if both 
<source> and <destination> have standard byte addresses; or a 16-bit 
word address if both <source> and <destination> have standard word 
addresses. 

Figure 10. The addition of these two features increases 
the usefulness of the MOVE statement and 
improves its readability. Also, more efficient 
code is now generated for MOVE statements 
that mix standard addresses and extended 
addresses. 

Syntax description of the 
MOVE statement. 

The new MOVE statement syntax is upward­
compatible with the previous syntax. (See 
Figure 10 for a formal syntax description.) 
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Byte and Word Addressing 
Before the B20 release, users were not allowed 
to mix standard byte and word addressing in 
the MOVE statement. For example, the follow­
ing would generate an error: 

PROC p; 
BEGIN 

STRING s[0:9]; 
INT i[0:4]; 

s ': = ' i FOR 5; 
I\ 

**** ERROR 32 **** Type incompat­
ibility ** I 

END; 

The error message was emitted because the 
user had a byte-addressed <destination> and 
a word-addressed <source>. 

In the B20 release, the TAL compiler recog­
nizes 16-bit byte/word mismatches in the 
MOVE statement and emits an extended move 
sequence. In such cases, TAL generates the 
extended address of both the < destination > 
and <source> variable, generates a byte 
count (equivalent to <count>), and emits the 
extended hardware instruction to accomplish 
the move. Whenever TAL generates an 
extended move sequence the < next address > 
variable, if specified, must be a 32-bit vari­
able; otherwise, TAL emits an error message. 

Two programming considerations should be 
noted. First, if the <destination> is word­
addressed and the < source> is byte­
addressed, the < next address> variable will 
not point to an element boundary if an odd 
number of bytes are moved. For example: 

PROCp; 
BEGIN 

STRING s[0:9]; 
INT i[0:4]; 
STRING .EXT s "next "addr; 

i ': =' s FOR 3 ->@s"next"addr; 

END; 

When the move is complete, s"next"addr 
points to the right-hand byte of i[l] (bits 
< 8: 15 > of i [ I ]) . 

The second consideration is that this feature 
of TAL is only available if the resulting object 

file will be run on a NonStop system. (Since 
TAL is generating an extended hardware 
instruction, the object file cannot run on a 
Nonstop I+ TM system.) TAL emits an error 32 
(type incompatibility) if the target system for 
the compilation is a Nonstop I + system and 
users attempt to mix 16-bit byte- and word­
addressed variables in a MOVE statement. 

Count Unit 
Before the B20 release, the unit size of the ele­
ments moved was not specified explicitly in 
the syntax, but rather was dependent on the 
type of the source variable. Thus, in order to 
understand what a particular MOVE statement 
actually did, a programmer reading an unfa­
miliar piece of TAL source code would have 
had to refer back to the declarations of the 
source and destination variables. 

In the B20 release, the count unit has been 
added, so that programmers can specify 
whether to move in units of BYTES, WORDS, 
or ELEMENTS. The meaning of ELEMENTS 
depends on the type of the source variable as 
listed below: 

< Source> type Size of ELEMENTS 

STRING Byte 

INT Word 
INT(32) Doubleword 

FIXED Quadword 

REAL(32) Doubleword 
REAL(64) Quadword 
STRUCT One occurrence of 

the struct 
STRING STRUCT One occurrence of 
POINTER the struct 
INT STRUCT One occurrence of 
POINTER the struct 
SUBSTRUCT One occurrence of 

the substruct 

If source is a STRUCT or STRUCT pointer 
and the < count unit> ELEMENTS is used, 
then an even number of bytes is always 
moved. In other words, when $LEN is odd, the 
pad byte at the end of the structure is also 
moved. 

If an identifier other than BYTES, WORDS, 
or ELEMENTS is used as a < count unit> , 
TAL emits an error message. 

Figure 11 a shows equivalent forms of the 
same MOVE statement that use different 
< count unit > s. Figure 11 b shows how the 
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BYTES < count unit > can be used to override 
the MOVE statement units when both the 
<source> and <destination> are type INT 
variables. 

Note that the identifiers BYTES, WORDS, 
and ELEMENTS used as a < count unit> are 
not TAL reserved words, so they can be used 
as variable names. There is, however, one 
restriction. Identifiers used as a < count 
unit> in a MOVE statement cannot also be 
used as names of a DEFINE or a LITERAL. 
This is illustrated in the following example: 

PROC example"'5; 
BEGIN 

INT varl [0: 11]; 
INT var2[0:ll]; 

LITERAL bytes = 12; 
DEFINE words = var 1 + var2 #; 

varl ': = ' var2 FOR 24 BYTES; 
A 

**** Error 27 **** Illegal Syntax 
varl ': =' var2 FOR 12 WORDS; 

A 

**** Error 27 **** Illegal Syntax 
END; 

ERRORFILE Directive 
Before the B20 release, users did not have an 
easy way to log compilation errors or warnings 
and then edit their source code while viewing 
the errors. 

In the B20 release, a new TAL directive 
called ERRORFILE logs any compilation errors 
or warnings to a specified file. Then after 
compilation, users can edit their source while 
viewing the errors in Tandem's new editor, 
PS TEXT EDIT™ (TEDIT). 

Users can log compilation errors or warn­
ings to a file by entering the ERRORFILE 
directive on the run line as in 

TAL /IN MYSOURCE, OUT $SI MYOBJ; 
ERRORFILE < file name> 

or in the source code before any declarations, 
asin 

?ERRORFILE < file name> 
INT MYAFIRSTADEC; 

TAL will then create an entry-sequenced file 
called <filename> with a file code of 106. 
< File name> will be expanded with the name 
of the current default volume and subvolume if 
necessary. 

J U N E 1 9 8 6 T A N D E M 

Figure 11 

(a) 

PROC example"1; 
BEGIN 
INT count; 
STRING .s"buf"one [0:79]; 
STRING .s"buf"two [0:79]; 
INT .i"buf"one [0:39]; 
INT .i"buf"two [0:39]; 
INT(32) .d"buf"one [0:19]; 
INT(32) .d"buf"two [0:19]; 

l Each of the following statements is equivalent: 

s"buf"one ': =' s"buf"two FOR 80; 
s"buf"one ': =' s"buf"two FOR 80 BYTES; 
s"buf"one ': =' s"buf"two FOR 80 ELEMENTS; 

! Each of the following statements is equivalent: 
count:= 40; 
i"buf"one ': =' i"buf"two FOR count; 
i"buf"one ': =' i"buf"two FOR count WORDS; 
i"buf"one ': =' i"buf"two FOR count ELEMENTS; 

! Each of the following statements is equivalent: 
d"buf"one ': =' d"buf"two FOR 20; 
d"buf"one ': =' d"buf"two FOR 80 BYTES; 
d"buf"one ': =' d"buf"two FOR 40 WORDS; 
d"buf"one ': =' d"buf"two FOR 20 ELEMENTS; 

END; ! example"1 

(b) 

INT .int"global"buf [0:66]; 
PROC example"2; 

BEGIN 
INT file"number; 
INT .int"local"buf[0:66]; 
INT count"read; 
CALL READ(file"number, int"local"buf, 132, count"read); 
! If we wish to copy this record into int"global"buf using the byte (not word) 
l count returned in "count"read": 

int"global"buf ': =' int"local"buf FOR count"read BYTES; 
l This is equivalent to the following "word-oriented" form: 

int"global"buf ': =' int"local"buf FOR (count"read + 1) / 2; 
END; l example"2 

TAL writes one record to < file name> for 
each error or warning that occurs during the 
compilation. Each record has this information 
in the following order: 

1. The external form of the source file that 
contains the source line in which the error 
or warning occurred. 

2. The edit line number of the line in which 
the error or warning occurred. 

3. The column number in the line where TAL 
detected the problem. 

4. The error or warning message text. 
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Figure 11. 

MOVE statement count 
units. (a) Equivalent 
moves using different 
count units. (b) Over­
riding the source type 
with a count unit. 
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Figure 12 

TAL /IN MYSOURCE, OUT $S.#HOLD/ MYOBJ; ERRORFILE myerrs 

? ERRORFILE myerrs 
1. 000000 O O int i; 
2. 000000 0 0 string s : = 1000; 

" 
.... WARNING • • • • 13 - Value out of range 

3. 000000 O O proc p; 
4. 000000 1 O begin 
5. 000000 1 1 
6. 000000 1 1 CALL s; 

" 
••• • ERROR ... • 31 - Only PROC or SUBPROC identifier allowed •• S 

7. 000000 1 1 i : = j; 
" 

• • • • ERROR "" 49 - Undeclared identifier • • J 

" 
.... ERROR .... 32 - Type incompatibility" I 

8. 000003 1 1 
9. 000003 1 1 end; 

Errorfile file name is $TAL.TL0123.MYERRS 
Number of compiler errors = 3 
Number of compiler warnings = 1 
Maximum symbol table space used was = 16898 bytes 
Number of source lines= 10 
Compile time - 00:00:44 
Total elapsed time - 00:00:46 

The error file, myerrs, will show: 
$TAL.TL0123.MYSOURCE 2. 40 "" WARNING '• •• 13 - Value out of range 
$TAL.TL0123.MYSOURCE 6. 32 •••• ERROR"" 31 - Only PROC or SUBPROC 

identifier allowed • • S 
$TAL.TL0123.MYSOURCE 7. 31 "" ERROR .... 49 - Undeclared identifier" J 
$TAL.TL0123.MYSOURCE 7. 32 .... ERROR" .. 32 - Type incompatibility .. I 

Figure 12. 

An example of the 
?ERRORFILE directive 
used to direct error 
messages to a file. 

At the end of the compilation, TAL prints 
the name of the ERRORFILE in the trailer mes­
sage. Figure 12 shows a partial listing. 

Users wishing to view both the source file 
and the error file in the editor should proceed 
as follows. First, transfer the data in the error 
file to an edit file because TAL writes an 
entry-sequenced file. For example: 

EDIT my errs p emyerrs; exit 

The "e" prefix denotes that this is the edit 
form of the error file. 

Next, enter TEDIT and use both windows to 
edit the source file, MYSOURCE, and inspect 
the error file, EMYERRS: 

TEDIT mysource; OPENWINDOW 2,emyerrs; 
SWITCH WINDOW 

(If not enough of the message text is visible in 
EMYERRS, switch windows to see more of the 
text by using the TEDIT command, 
LEFTSCROLL.) 

Users can create the edit form of the error 
file and enter TEDIT simultaneously with the 
following macro: 

?section talerror macro 
edit %2% p e%2% ! ; exit 
tedit %1%; op2,e%2%; sw 

If this macro is put in a file called 
TALMAC, the TACL command LOAD TALMAC 
will make the macro name, TALERROR, 
known to TACL™ (the Tandem Advanced 
Command Language). To simultaneously 
transfer the data in the error file, MYERRS, to 
the edit file, EMYERRS, and enter TEDIT, 
enter the new TACL command TALERROR 
MYSOURCE MYERRS. 

Note that when TAL is processing the 
ERRORFILE directive: 

• If <filename> does not exist, TAL creates 
it as specified. 

• If < file name> exists and its file code is 
106, TAL purges < file name > and then cre­
ates < file name > . 
• If < file name> exists and its file code is not 
106, TAL terminates the compilation. 
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his article describes a 
method of predicting 
response time in balanced 
transaction processing appli­
cations that use Tandem's 
PATHWAY transaction pro­
cessing system. Its intent is 

to show how the basic elements of contention 
in a Tandem Nonstop system can be modeled 
with standard modeling techniques. The 
method described will not help readers tune 
their systems for better performance; rather, it 
will allow them to predict the performance 
obtainable from their systems if the systems 
are well tuned. 1 

Overview 
The PATHWAY transaction processing system 
facilitates the design of transaction processing 
applications through the implementation of 
requester-server structures. The requester 
function is implemented by the PATHWAY 
Terminal Control Process (TCP}, which man­
ages terminal 1/0. The TCP accepts transac­
tion requests from the terminals and passes 
them to servers. The servers provide data-base 
service by making appropriate requests to the 
disk processes and then replying to the TCP. 
Figure 1 illustrates a typical application using 
the PATHWAY system. 

The performance of an application that uses 
PATHWAY can be characterized by the amount 

1Note that response-time prediction on Tandem Nonstop systems requires a 
great deal of knowledge about Tandem hardware and software, along with 
expertise in queuing network modeling and event-driven simulators. The 
method presented here is not a "quick fix" to the problem of response-time 
prediction. 
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Predicting Response Time 
in On-line Transaction 

Processing Systems 

Figure 1 

CPU() 

- TCPA 

CPU1 

- TCPB 

CPU2 

of time the system takes to respond to transac­
tion processing requests. This time is known as 
response time. 

Response time can be expressed as a sum of 
service time and queuing time. The service 
time of a transaction is the time required by 
the system to process the transaction when 
only one transaction is active in the system. 
When multiple transactions are active, some 
of them may have to wait for the processors, 
disks, and other system resources to become 
available. 

SYSTEMS REVIEW 

Figure 1. 

Overview of an applica­
tion system that uses the 
PATHWAY transaction 
processing system. 
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The delay incurred by this wait is called the 
queuing time. Queuing time is a function of 
the transaction rate; hence, response time is 
also a function of the load on the system. 
Characterizing the performance of an applica­
tion that uses the PATHWAY system involves 
determining the response time of the system as 
a function of the transaction rate. 

The Model 
For most balanced applications using the 
PATHWAY system, service time varies only 
slightly with the processing load. Although the 
service time for those applications that use the 
Transaction Monitoring Facility (TMF) and 
operate at very high loads does vary apprecia­
bly with the load, the variation in other appli­
cations that use PATHWAY is usually less 
than 5%. 

Hence, for a response-time prediction 
model, it is reasonable to assume that service 
time is independent of processing load. Given 
this assumption, one can calculate response 
time if the queuing delays in the system can be 
determined as a function of the load. 

The following describes a simulation model 
that can be used to find these queuing delays. 
This model is an extremely simplified version 
of the response-time prediction model used in 
ENVISION. Tandem's system analysts use 
ENVISION, a performance modeling tool, to 
size, tune, and predict the performance of on­
line transaction processing systems (Chou, 
Oleinick, and Singh, 1984). 

The model simulates the basic elements of 
contention in Tandem Nonstop systems. It is 
expected to give reasonable results for systems 
using Disc Process 2 (DP2). Systems using 
Disc Process 1 (DPI) have additional elements 
of contention that require different modeling 
techniques. 

As mentioned earlier, the reader is assumed 
to be familiar with basic queuing theory 
(Kobayashi, 1978), event-driven simulators 
(MacDougall, 1980), and Tandem hardware 
and software. 

Modeling Method 
The system is modeled as a network of queues. 
In this type of model, all system entities, such 
as processors, disks, and terminals, are repre­
sented as resources, and tasks are modeled 
as jobs. 

Resources can be active or passive. An 
active resource is a facility providing some 
service, along with a "waiting room" or 
queue. A passive resource does not provide 
service, but is needed to accomplish a job; 
e.g., a thread of the DP2 disk process is 
required before the job can be served at the 
processor. Jobs requesting service at a busy 
resource wait in the queue for that resource. 
All the jobs in the queue are served in a pre­
specified manner. 

After obtaining the required service from a 
resource, jobs are routed to other resources. 
The set of resources in the system forms a net­
work of queues. An explanation of how the 
jobs are routed within this network, along 
with the specification of the entities in the 
network, describes the system completely. 

Assumptions 
A typical Tandem NonStop system running 
the PATHWAY transaction processing system 
consists of several processors and disks. There 
are several requesters and servers, and a 
multithreaded disk process for each disk vol­
ume. The system also has other processes, 
such as line handlers, a monitor, and a mem­
ory manager. In systems using TMF, every 
processor has a TMF monitor process, and one 
TMP process in the system manages TMF 
audit trails and helps with the processing of 
the TMF transactions that modify data over 
more than one node in a network. 

Although the processing done by each of 
these processes for the transaction can be rep­
resented explicitly for a given system, describ­
ing the topology and the routing logic for a 
general case is a formidable problem. More­
over, for systems being sized for future appli­
cations, some of this information is unclear or 
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not available. The model described here uses 
an assumption to reduce this complexity to 
manageable levels, and has been shown to 
yield reasonably accurate results. 

The model assumes that the processing load 
is balanced. This implies that all the CPUs are 
more or less equally utilized. With this 
assumption, it is possible to model the behav­
ior of the multiprocessor system with a single 
CPU and a disk subsystem. The assumption is 
not as restrictive as it might appear. The 
model has been found to work well when 
processor utilizations are within 10% of 
each other. 

The model also assumes sufficient replica­
tion of the servers. Since servers written for the 
PATHWAY transaction processing system are 
single threaded, this assumption means that 
no transaction waits for a server to become 
available. Although this assumption is not 
valid if the system is operated at high transac­
tion rates with few servers, note that users 
can use PATHWAY to change the number of 
servers to get better performance at high 
loads. Thus, this assumption is valid for 
a well-tuned system. 

Model Description 
The system model consists of a processor, a 
terminal cluster, and a disk subsystem, as 
shown in Figure 2. Although the model repre­
sents a greatly simplified view of a typical 
system that comprises multiple processors and 
disks, it works because it assumes a balanced 
load. 

Resources. The processor is modeled as a pri­
ority queue having different priorities for the 
disk process, servers, TCPs, line handlers, 
and interrupts. The relative priority of these 
processes are: 

Process 
- --

Interrupts 
Disk process 
Line handler 
TCP and servers 

_ _f_riority _ __ 

3 (highest) 
2 
1 
0 (lowest) 

The processor queue is also a preemptive 
queue. Thus, the arrival of a new job having a 
priority higher than the currently executing 
job causes the execution of the current job to 
be suspended, allowing the execution of the 
job that has just arrived. Within each priority 
level, all jobs are served on a first-come, first­
served basis. 

Figure 2 

l 
[ CPU 

Transactions j •• Interrupts 

The terminal cluster is modeled as an "infi­
nite server" station; i.e., it does not cause the 
jobs to queue up, but delays them by a certain 
amount of time. This reflects think time, dur­
ing which the users "think" for some time 
after a transaction completes, before starting 
the next transaction. (For a more detailed dis­
cussion of think time, see Kosinski, 1984.) 

The disks are modeled as a multiple-server 
facility, serving jobs with a first-come, first­
served discipline. The number of servers in the 
facility is a function of the ratio of processors 
to disks. For example, if the system were to 
have four processors and eight disks, the disk 
subsystem facility would have two servers. In 
reality, a different queue exists for each disk 
volume, the ratio of processors to disks need 
not be an integer, and contention for a disk 
volume also depends on the relative proportion 
of read and write requests made to that disk. 

Although the model is a crude representa­
tion of the disk subsystem, it does not intro­
duce major errors in response-time prediction 
because systems using DP2 have fewer physical 
I/Os than logical I/Os. This is because DP2 
uses buffered cache rather than write-through 
cache to reduce the number of disk I/Os. 
Hence, even at very high system loads, disk 
queuing times are minimal. 
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Disk -

Figure 2. 

The model. Open-class 
jobs are represented by 
dotted lines, closed-class 
jobs by solid lines. 
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Figure 3 

TMF write 

Figure 3. 

Routing logic for closed­
class jobs used in the 
network shown in 
Figure 2. 
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Jobs. Two types of job circulate in the queuing 
network described above: transactions and 
interrupts. Transactions are modeled as 
closed-class jobs, i.e., jobs that always remain 
in the queuing network. This modeling mecha­
nism is used to reflect the fact that the maxi­
mum number of active transactions in the 
system equals the number of terminals. 

The transactions originate at the terminals 
and are routed to the processor for line­
handler processing. These jobs then circulate 
between the processor and the disk, depending 
upon the characteristics of the transaction. 

After receiving the required service from the 
CPU and the disk, the job returns to the termi­
nals. There, another transaction originates at 
a future time, depending on the think time of 
the terminal. 

Interrupts are modeled as open-class jobs, 
i.e., jobs generated by a random source. The 
system has a variable number of open-class 
jobs at any time, while the number of closed­
class jobs remains static. The open-class jobs 
are generated in a random fashion, served by 
the processor, and then exit the system forever. 

Open-class jobs model increased processor 
contention caused by parallelism inherent in 
Tandem Nonstop systems. They model the 
fact that more than one processor can do the 
processing for a transaction at the same time. 
The amount of CPU time used by a transac­
tion is about 25 % more than the service time 
at the CPU. The difference, modeled by open­
class jobs, causes greater CPU contention, 
although it is not a part of the service time. 

Routing. Routing of closed-class jobs between 
the processor and disk is determined by the 
characteristics of the transaction. Two factors 
affect routing: the number of sends done by a 
transaction and the number of data-base 
accesses during each send. (Note that a send is 
a single message with a reply between a 
requester and a server.) For audited transac­
tions, the number of TMF audit-trail writes 
also affects routing. 

Figure 3 illustrates the generalized routing 
pattern for a transaction. From the terminal 
cluster, the transaction is routed to the proces­
sor for line-handler processing and then TCP 
processing. There are two processing loops, 
the send loop, executed once for every send, 
and the disk loop, executed once for every 
data-base access request. 

The disk loop is initiated when the server 
makes a data-base access request. The disk­
process code is executed at the processor, and 
the job is routed to the disk in the event of a 
cache miss. After returning from the disk, the 
job undergoes more disk-process processing. 
The disk process then replies to the server, 
completing the disk loop. 

In the send loop, TCP processing for every 
send is done at the processor, and then the job 
is routed to the processor again for server 
processing. The server calls the disk process 
for every data-base access required by that 
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send, initiating a disk loop. After the execu­
tion of every disk loop, control returns to the 
server, and server code is executed at the pro­
cessor. When the required number of disk 
loops have been executed, the server replies to 
the TCP, which may then initiate another send 
loop if the transaction does more than 
one send. 

After the required number of send-loop 
executions, the job receives line-handler pro­
cessing and returns to the terminal. This fin­
ishes the processing for the transaction. 
Another transaction originates at the terminal 
after think time. 

For transactions protected by TMF, addi­
tional visits to the processor are made for disk­
process processing. When the TCP processes 
ENDTRANSACTION, it sends a message to the 
TMF Monitor process, which initiates the 
processing that causes disk processes to write 
their audit buffers to disk. 

Since the processing time required by the 
TMF Monitor process is small, ENDTRANS­
ACTION processing is modeled by routing the 
job from the TCP to the disk process for every 
audit-trail write. After the disk process is 
served by the processor, the job is routed to 
disk. When disk processing is complete, the 
job is routed to the processor for post­
processing by the disk process, and then 
to the TCP. This loop is repeated for every 
audit-trail write. 

Model Parameters 
Response-time prediction based on the model 
described above requires values for the num­
ber of processors, disks, and terminals, along 
with the following pieces of information about 
each transaction. 

Transaction Rate. The transaction rate is the 
number of transactions per second. The sys­
tem is modeled by one representative proces­
sor; hence, the transaction rate used for each 
transaction should be the transaction rate 
per processor. 

Number of Sends. One can determine this 
number by examining the SCREEN COBOL 
code interpreted by the TCP. It is the number 
of SENDs per transaction. 

Number of Disk-process Requests per Send. 
This is the number of data-base access (logical 
1/0) requests made by the server for each 
send. Note that there may be a different num­
ber of disk-process requests for each send. 

CPU Processing Time for the Transaction. 
This time comprises the following: 

■ Line-handler time. 
■ TCP time. 

■ Server time. 

■ Disk-process time. 

■ Miscellaneous time, plus interrupts. 

If the application is currently running, these 
times can be measured with the XRAY™ per­
formance analysis tool; otherwise, the 
process of collecting this information is 
more involved. 

Server and disk-process times can be esti­
mated by summing up the CPU times for the 
File System operations (such as reads, writes, 
and updates) done 
by the server. One 
can determine the 
CPU time required 
by the server and the 
primary and backup 
disk processes for 
File System oper­
ations by running 

1 

T71e CPU time used by a 
I transaction is about 

I

, 25 % longer than the service 
time at the CPU. 

simple test scripts for each operation and 
examining the XRAY results. Although this 
can be tedious, note that once determined, 
these atoms can be used for all other transac­
tions involving the same operations. 

Similarly, TCP time can be estimated by 
summing up the CPU times of all its compo­
nents. These components are: (I) the time 
required by the primary TCP to do a send, 
checkpoint, BEGINTRANSACTION, 
ENDTRANSACTION, and so on; and (2) the 
time required by the backup TCP to process 
checkpoints. 

Disk-service Time for Each Transaction. This 
time can be reported by the XRAY DISC BUSY 
counter if the application is currently running. 
If the application uses unmirrored disks, the 
service time is simply the DISC BUSY time per 
transaction; otherwise, the service time can be 

JUNE 1986 TANDEM SYSTEMS REVIEW 35 



36 

approximated by adding the primary disk's 
DISC BUSY counter, the mirror's READ BUSY 
counter, and the read proportion of the mir­
ror's SEEK BUSY counter. This computation is 
required because the data can be read from 
either the primary or the mirror disks, whereas 
data must be written to both the primary and 
the mirror. 

If the application is not currently running, 
one must build disk-atom tables for each File 
System operation and estimate the DISC BUSY 
time from them. 

Audit-trail Writes. For all audited transac­
tions, it is necessary to estimate the number of 
writes to the audit trail. Although the actual 
number of audit-trail writes for a given appli­
cation is a function of several factors, one can 
obtain a reasonable approximation using the 
method outlined below. This method produces 
a conservative estimate of the number of 
audit-trail writes; the actual number is 
usually lower. 

In order to estimate the number of audit­
trail writes, one must compute the amount of 
audit data generated by the transaction. The 
number of audit bytes can be computed by 
summing the audit data generated by each File 
System operation done by that transaction. 
Assuming audit-trail compression to be off, 
naudit_bytes, the number of audit bytes generated 
by each operation modifying a record in an 
audited file, is 

naudit_bytes = 62 + fbefore_image + lafter_image • 

Here, lbefore_image and lafter_image are equal to the 
record size if the "before" and "after" images 
for the operation exist. For writes, no before 
image exists and lbefore_image is O; for deletes, no 
after image exists and lafte,_image is 0; for 
updates, both before and after images exist. 
When audit-trail compression is on, the num­
ber of audit bytes depends on the difference 
between the before and after images. For 
updates, it is impossible to compute this value; 
one can only obtain it by running an applica­
tion benchmark. 

Once the number of audit-trail bytes for 
each transaction is known, the number of 
audit-trail writes depends on whether there are 
one or two audit trails. When the system has 
only one, called the master audit trail (MAT), 
it is easy to estimate the number of audit-trail 
writes. If a transaction generates x bytes of 
audit data, nMAT_writes, the number of MAT 
writes for that transaction can be approxi­
mated by 

nMAT_writes =(1 + d't bf k . )· au 1 _ oc _size 

The number of MAT writes can be approxi­
mated in this way because, for every transac­
tion, the audit buffer is written once to the 
disk, accounting for the first term on the 
right-hand side. In addition to this write, 
occasionally the audit buffer spans block 
boundaries; i.e., the audit data is in two 
physical blocks. This causes an additional 
write to the audit trail, accounted for by the 
second term. For DP2, the default value of 
audit_block__size is 4 Kbytes. 

When a system uses multiple audit trails, 
the audit-trail writes to the MAT can be com­
puted as shown above. Computation of writes 
to the auxiliary audit trails (AATs) is slightly 
more involved. A typical audit trail receives 
audit data from several disk processes. Since 
the operations on each file and the disk where 
each file is located are known, the amount of 
audit data from each disk can be computed. 
(This computation is similar to the one 
shown above.) 

If the amount of audit data from the ;th 
disk process is X;, and n disk processes send 
their audit data to the auxiliary audit trail 
m (AATm) under consideration, then the num­
ber of audit-trail writes is the sum of audit­
trail writes by all the disk processes involved, 
i.e., 

. ;._ ( X; J num_wntesAAT = '-' 1 + . - - -~- · 
m ; - 1 audlt_block__s1ze 

The number of audit-trail writes affects the 
disk-process time (part of the CPU processing 
time, above) and the disk-service time. Given 
the disk-process and disk-service time for a 
disk write of audit_block__size, one can approx­
imate the additional time because of the audit­
trail writes. 
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Implementation 
The queuing network described above can be 
simulated quite easily with a simulation lan­
guage, such as Simula. If such a language is 
not available, one can use any high-level lan­
guage to write an event-driven simulator. Since 
the network consists of only three resources, 
writing the simulator is relatively easy. 

Think-time Estimation 
Response-time prediction for a given transac­
tion rate requires an estimate of the average 
think time at the terminals. One can obtain 
this average as follows. 

The transaction rate per terminal allows one 
to determine the intertransaction time at the 
terminals: it is simply the inverse of the trans­
action rate, or the sum of the average think 
time and the average response time. Hence, 
estimation of think time requires an estimate 
of the average response time, as described 
below. 

Given the transaction rate and the processor 
and disk times for each transaction, one can 
determine the processor and disk utilizations. 
These can be used to compute an initial esti­
mate of the response time using an approxima­
tion of MIMI 1. If the system has more than 
one type of transaction, a weighted average of 
response times should be used. 

Subtracting the response time, obtained 
above, from the intertransaction time gives an 
initial estimate of think time. A short simula­
tion run with this time yields a better estimate 
of the response time, hence, the think time at 
the given transaction rate. Another run of the 
simulation model with the new value of think 
time yields a still better estimate of response 
time. This iterative process can be continued 
to yield an acceptably close value for think 
time. Then, a simulation run of sufficiently 
long duration will yield the response times at 
the given transaction rate. 

Duration of the Simulation Run 
Average response times are obtained by find­
ing the average of the response-time values 
observed during the simulation run. The dura­
tion of the simulation run determines the sta­
tistical spread of the response-time values for 
each transaction. The longer the simulation 
duration, the smaller the spread. This statisti­
cal variation in the values is a function of sev­
eral variables, e.g., the routing patterns of the 
transactions, the transaction rates, and the 
processor and disk utilizations. 

Although it is not possible to predict the 
variation in values for a given application, 
observations show that a simulation run yield­
ing approximately 1000 data points is suffi­
cient to reduce the error in the average 
response time of the system to within 5 OJo • 
Similarly, if a response time with a statistical 
error of less than 5 OJo is required for a specific 
transaction, the simulator should be run long 
enough to collect approximately 1000 data 
points for that transaction. 

Benchmark Results 
In this section, predicted response times pro­
duced by the model for a large banking appli­
cation are compared with measured response 
times for that application. 

The application benchmark was run on a 
four-processor NonStop TXP system having 
four mirrored disk volumes. Nonstop TCPs 
were used, and all application files were 
audited by TMF. The transaction flow is 
outlined below, and the data-base files are 
described in Table I . 

TCP flow 

Accept 100 bytes. 
Begin transaction. 
Send to server. 
End transaction. 
Perform 10 IF statements. 
Perform 10 MOVE statements. 
Perform 5 ADD statements. 
Perform 5 SUBTRACT statements. 
Display 200 bytes. 

Server flow 

Read 100 bytes from TCP. 
Read Account file. 
Read Teller file. 
Read Branch file. 
Update Account file. 
Update Teller file. 
Update Branch file. 
Write History record. 
Perform 10 IF statements. 
Perform 10 MOVE statements. 
Perform 5 ADD statements. 
Perform 5 SUBTRACT statements. 

JUNE 1986 TANDEM SYSTEMS REVIEW 37 



Figure 4. 

Measured versus pre­
dicted response times for 
the application bench­
mark. Note that the 
predicted response times 
are well within 20% of 
the measured values. 

38 

For this benchmark, Figure 4 charts the 
measured and predicted values of the average 
response time as a function of the transaction 
rate. Tandem's internal performance-modeling 
tool, ENVISION, from which the simplified 
model presented in the article was derived, was 
used to predict the values of the atoms of CPU 
and disk contention. 

Figure 4 
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Table 1. 

The data-base files used in the application 
benchmark. 

Number of 
Name File type records 

Account Key-sequenced 1,200,000 

Teller Key-sequenced 1,200 

Branch Key-sequenced 120 

History Entry-sequenced 1 per 
transaction 

Record 
size (in 
bytes) 

100 

100 

100 

50 

Note that the response times predicted by 
ENVISION are nearly identical to the measured 
values. The simplified model described in this 
article is expected to predict the response 
times to within 20% of actual values, except 
at very high loads. 

Conclusion 
The response-time prediction method just 
described is based on a simple simulation 
model for applications that use the PATHWAY 
transaction processing system. The model is 
small enough to be coded easily in a high-level 
language and has been observed to produce 
reasonably accurate results. 

Although the model itself is quite simple, 
obtaining the parameters to feed the model 
requires an extensive amount of experimenta­
tion and knowledge about Tandem NonStop 
systems. Readers interested in implementing 
the method outlined here should note that 
response-time prediction is a difficult problem 
and that no easy shortcuts exist. This method 
reduces the task to manageable levels but does 
not make it trivial. 
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--- he B-series release of Disk 
f---------- Process 1 (DP 1) supports ----- buffered writes for audited 
---
___ files. Because of this 
--- enhancement, users who 
____ protect their on-line transac-

------ tion processing applications 
with the Transaction Monitoring Facility 
(TMF) should reevaluate their disk-cache con­
figurations when migrating from A-series DPl 
to B-series DPl. 1 

As most on-line transaction processing 
(OLTP) applications frequently perform ran­
dom I/Os, users of TMF who convert to 
B-series DPl should configure more disk cache 
to obtain a level of performance equal to ( or 
perhaps better than) that they obtained previ­
ously. They should increase the size of the disk 
cache until the swap rate is adversely affected 
(subject, of course, to the amount of physical 
memory available). 

Having configured a sufficient amount of 
cache, users of TMF will benefit from the 
many new features of the B-series software, 
such as autorollback, which dramatically 
improves the performance of crash recovery. 
Also, as a result of analyzing their applica­
tion's use of cache and configuring an appro­
priate cache size, many users will reduce the 
disk activity required by their application, 
thus improving its performance. 

Note that the disk-cache requirements of 
those users who do not employ TMF will 
remain the same when they convert to 

1Tandem software that is released to customers is identified by a release name. 
A-series release refers to Tandem software that is identified with an "A," such 
as the A20 software release or the A30 50ftware release. B-series release refers 
to Tandem software that is identified with a "B," such as the BOO software 
release or the B30 software release. 

Sizing Cache for 
Applications That Use 
B-series DPl and TMF 

B-series DPl. They should obtain the same 
level of performance they obtained with the 
A-series software. 

This article describes the performance 
analysis and subsequent changes in cache size 
required for one OLTP application protected 
by TMF when it was converted from A-series 
DPl to B-series DPl. The article is intended as 
an example of (1) how to analyze application 
performance as related to DPl cache size and 
(2) how to determine the appropriate cache 
size for applications using TMF that are to be 
converted to B-series DPl. 

Methods of Analysis and Testing 
First, the performance-analysis team ascer­
tained that no changes were made to the appli­
cation system other than converting it from 
A-series to B-series system software. 

Then they used Tandem's XRAY perfor­
mance analysis tool to measure the system's 
performance. The XRAY results revealed that 
the system was well balanced under both the 
A30 and BIO software. The CPU BUSY rate 
averaged between 45% to 50% under the A30 
release and between 55% to 60% under the 
BIO release. 
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Further analysis of the XRAY measurements 
showed that for the same work load, the disk 
1/0 rates had increased significantly under the 
BIO software. The disk-cache size had 
remained unchanged at 48 pages per disk vol­
ume. CPU swap rates had not changed much, 
but cache-read hit rates were reduced. These 
observations caused the performance-analysis 
team to look more closely at the DPI disk­
cache management strategy and, specifically, 
at the difference between the strategies 
employed by the A- and B-series software. 

As the application was a large one, porting 
the application to a stand-alone system for 
testing was ruled out. Instead, a small batch 
benchmark test that simulates only a part of 
the application transaction was run first. Only 
if its performance on A30 and B 10 software 
was the same would testing of a larger version 
of the transaction be warranted. The bench­
mark was also designed so that the elapsed 
time to execute it took no longer than 10 to 
15 minutes. This made it possible to run the 
benchmark under a variety of configurations 
when a longer benchmark would have made 
this more difficult. 

Understanding B-series DPl 
with TMF 
The following is a brief explanation of the 
enhancements made to the disk process (in 
relation to TMF) in the B-series software 
releases. (For a more detailed explanation, see 
the following articles in the Tandem Systems 
Review: "TMF Autorollback: A New Recovery 
Feature," February 1985; and "Improvements 
in TMF," June 1985.) 

A major enhancement to DP 1 introduced in 
the BOO software release is the ability to buff er 
writes to disk for audited files. When writes 
are buffered, requests to modify audited files 
are replied to as having succeeded before the 

data is actually written to disk. Besides the 
obvious advantage of possibly causing fewer 
I/Os to disk, buffered writes also enable TMF 
to recover from crashes more efficiently by 
rolling the data base backward from the point 
of the crash (autorollback), rather than for­
ward from the on-line dump (rollforward). 

In order to be able to roll back the data 
base, the disk process is required to follow a 
write-ahead-log protocol; i.e., it must guaran­
tee that the audit (log) records describing 
changes to the data base are written to 
disk before the updates are made to the 
application files. 

The following are some terms useful in 
understanding the B-series software 
enhancements: 

■ Dirty blocks are cache blocks that have not 
been written to disk. 
• Clean blocks are cache blocks that have been 
written to disk. 
• Replacement block is the cache block that the 
disk process has chosen as the least-recently 
used (LRU) block. 

• Cleaning means writing a dirty block to 
disk, thus making it clean. 

• Flushing means writing audit records 
to disk. 

Generally, for audited files, the disk process 
does not force changes to disk, but maintains 
images of the sections of the data base that 
have been modified in cache as dirty cache 
blocks. The one-page audit buffer in the disk­
process cache holds the "before" and "after" 
images of the records being modified. 

The sequence of events that occur when a 
record is modified for an audited file is briefly 
explained below. (Note that this is not 
intended as a complete explanation of how 
TMF works nor does it consider all possible 
exceptions.) 

The audit buff er in the disk process has an 
audit-block number assigned for its location in 
the TMF audit-log file. The buffer occupies 
2 Kbytes. The unmodified copy of the record 
is copied into this buffer. (Note that all 
audited files on the disk process would copy 
records to the same buff er.) 
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When the record is modified, the disk pro­
cess does not force a physical write to disk, 
but maintains the image of the block that has 
been modified in cache as dirty cache blocks. 
The modified record is also copied into the 
audit buffer. The dirty cache block keeps a tag 
of the audit-block number into which it has 
copied the audited records. Changes 
made to dirty blocks in cache (write hits) save 
physical I/Os to disk and result in improved 
performance. 

The dirty cache block cannot be written to 
disk as long as the "oldest" unflushed audit­
block number is less than or equal to the tag 
number on the dirty block. This assures that 
audited information from the dirty block has 
been flushed to the TMF log file. This is 
defined as the write-ahead-log protocol. 

Note that an audit-block flush can occur 
when the audit buffer is partially full and an 
ENDTRANSACTION occurs. When the parti­
ally full block is flushed, the oldest unflushed 
audit-block number is reset to null (indicating 
that all data in the audit buff er has been 
flushed), and the dirty blocks can be written 
out. However, the next audited write going 
into that partially full audit block again sets 
the oldest unflushed number to the current 
audit-block number. Hence, most of the dirty 
blocks having audited data in an audit block 
are flushed only when that audit block fills up 
and the disk process starts operating on the 
next audit block. 

The dirty block is eventually written to disk 
when the write-ahead-log restriction is satis­
fied and one of the following occurs: 

■ The last opener of the file closes it. 
■ Control points are written. 
■ The memory page used for caching one or 
more of these blocks is requested by the mem­
ory manager. 
■ It is cleaned while the disk process is idle. 

■ A refresh is performed. 

■ The block is selected as the replacement 
block by the cache-replacement algorithm. 

If a dirty block is selected by the cache­
replacement algorithm as the replacement 
block, it may not be possible to free the block 
by writing it out to disk, owing to the write­
ahead-log restriction. In this event, it is 
moved to a queue ( called the wait flush queue 
in this article), and the disk process waits for 
the audit flush before cleaning it. 

Therefore, while the queued dirty blocks are 
awaiting completion of the audit flush, the 
size of cache is effectively reduced by the 
number of blocks on the wait flush queue. 
Furthermore, since the dirty replacement 
blocks cannot be discarded to satisfy the cur­
rent request for space in cache, the replace­
ment algorithm may end up discarding some 
useful blocks (e.g., first- or second-level index 
blocks) from cache, thereby further degrading 
the performance of the application. 

Comparing A- and B-series DPl 
In the A-series software, modifications to 
audited files are always write-through; i.e., the 
requests to modify audited files are replied to 
as having succeeded only after the modified 
data is written to 
disk. Because of this 
approach, there are 
never any queued 
dirty blocks await­
ing an audit flush, 
and hence, the effec­
tive cache size never 
decreases. 

This approach has 
the drawback of 

Roi/forward may take 
hours to complete, 

while autorollback with 
B-series DPJ can be 
completed in minutes. 

inefficient crash recovery, however. A system 
may crash after the audited file has been mod­
ified on disk but before the audited data has 
been written to the TMF data audit disk. 
Thus, the only way TMF can recover from 
crashes is by rolling the data base forward 
from the last on-line dump (rollforward). Roll­
forward may take hours to complete, while 
autorollback with B-series DPl can be com­
pleted in minutes. 
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Figure 1 

$DATA04.TEST.PRIFILE 
TYPE K 
EXT ( 2 PAGES, 2 PAGES) 
REC2018 
BLOCK 4096 
IBLOCK 4096 
KEYLEN 14 
KEYOFF 0 
ALTKEY ( "K2", FILE 0, KEYOFF 14, KEYLEN 6) 
ALTKEY ( "K3", FILE 1, KEYOFF 20, KEYLEN 6) 
ALTKEY ( "K4", FILE 2, KEYOFF 26, KEYLEN 6) 
ALTKEY ( "K7'', FILE 3, KEYOFF 600, KEYLEN 12) 
ALTKEY ( "KB", FILE 4, KEYOFF 612, KEYLEN 26) 
ALTFILE ( 0, $DATA03.TEST.ALTO) 
ALTFILE ( 1, $SYSTEM.TEST.ALT1) 
ALTFILE ( 2, $DATA01.TEST.ALT2) 
ALTFILE ( 3, $DATA02.TEST.ALT3) 
ALTFILE ( 4, $DATA04.TEST.ALT4) 
PART ( 1, $DATA02, 4000 PAGES, 1000 PAGES) 
PART ( 2, $DATA01, 4000 PAGES, 1000 PAGES) 
PART ( 3, $SYSTEM, 4000 PAGES, 1000 PAGES) 
PART ( 4, $DATA03, 4000 PAGES, 1000 PAGES) 

AUDIT 
OWNER-1 
SECURITY (RWEP): NNNN 
MODIF: 11/19/85 8:56 
EOF O (0.0% USED) 
EXTENTS ALLOCATED: 0 

TOTAL 
LEVEL BLOCKS 
FREE 0 

1 1 
DATA 220 
FREE 0 

1 1 
DATA 220 
FREE 0 

1 1 
DATA 222 
FREE 0 

1 1 
DATA 223 
FREE 0 

Figure 1. 

The File Utility Program 
(PUP) information for 
the primary partition 
used in the benchmark. 

TOTAL AVG# AVG 
RECS RECS SLACK 

228 228.0 236 
500 2.3 821 

220 220.0 178 
500 2.3 793 

217 217.0 241 
500 2.3 811 

223 223.0 95 
500 2.3 803 

The Benchmark 
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In analyzing the customer application, the 
performance-analysis team noted that the 
major part of the transaction involved updates 
to records in a key-sequenced file. These 
records had between three to five alternate­
key fields, which were also modified during 
the update. 

In the benchmark, a primary key-sequenced 
file contained records having five alternate­
key fields. An application process sequentially 
read and updated all the records in this pri­
mary file. During these updates all five 
alternate-key fields were modified. This 
caused the file system to read, delete, and 

write the alternate-key records in the five 
respective alternate-key files. The block and 
record sizes used were the same as those used 
by the application. 

The benchmark was run on a four-processor 
Nonstop TXP system containing eight mir­
rored disk drives. The primary key-sequenced 
file had four partitions. Each disk on which a 
partition resided had its disk "primaried" to 
one processor. The five alternate-key files were 
placed on five different disks. Three of the 
processors each had one disk primaried to it. 
The fourth processor had two of these disks 
primaried to it. 

Four application processes were run, one on 
each processor. Each of these application pro­
cesses operated on only one primary partition, 
but the record updates caused activity on all 
five alternate-key files. 

The tests were run under versions A30 and 
BIO of the GUARDIAN operating system, 
with DPl. 

The File Utility Program (FUP) information 
for the primary partition is given in Figure 1. 
Note that the BLOCK and IBLOCK sizes on all 
the alternate-key files were 4096 bytes. 

Figure 2 illustrates the hardware configura­
tion and the distribution of the files on the 
system. The four application processes were 
named $FBI, $FB2, $FB3, and $FB4. PARTl 
through PART4 were the four partitions of the 
key-sequenced file. ALTl through ALT5 were 
the five alternate-key files. 

Note that process $FBI sequentially read 
and updated 500 records in the partition 
(PARTl) existing on $DATA02. These updates 
caused activity on all five alternate-key files. 
Similarly, process $FB2 sequentially read and 
updated 500 records in the partition (PART2) 
existing on $DATA0I. The same occurred for 
processes $FB3 and $FB4. All application 
processes were started concurrently. For 
consistency, the data base was reset after 
every test run. 

Results 
While the performance-analysis team would 
have liked to measure the average response 
time required to update a record in the pri­
mary file and all the corresponding records in 
the alternate-key files, obtaining this informa­
tion would have required substantial effort in 
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setting up the benchmark. As a more practical 
alternative, the team chose to measure the sum 
of the elapsed time for each application pro­
cess to complete 500 updates. 

The XRAY reports studied closely by the 
team were the Disc Device and Disc Open 
reports. Physical 1/0 activity was the most 
important measure, as it represents the effec­
tiveness of the disk cache. Note that the team 
was not interested in the CPU BUSY times, 
as their earlier atomic testing of the A- and 
B-series software had not shown any 
significant variation. 

For the initial testing, the minimum disk 
cache was configured for each of the disk vol­
umes. (This is 13 pages of disk cache per disk 
volume for the A30 release and 15 pages per 
disk volume for the BIO release.) The smallest 
cache sizes were chosen since the team was 
interested in studying the behavior of disk 
cache under cache pressure. 

In B-series DPl, two pages of cache are 
reserved for unaudited files. Hence, in the 
above configurations, both the A30 and BIO 
versions had 13 pages of cache available for 
audited files. 

Performance-measurement Counters 
The team used the following XRAY 
performance-measurement counters: 

■ Physical writes represents the total write 
operations to a disk, as listed on the XRAY 
Disc report. 
■ Cache- write hits represents the total cache­
write hits, as listed on the XRAY Disc Open 
report. A cache-write hit occurs when a write 
request is applied to a dirty cache buffer, 
thus avoiding an additional physical write to 
the disk. 
■ Physical reads represents the total read oper­
ations to a disk, as listed on the Disc report. 
■ Cache-read hits represents the total cache­
read hits, as listed on the Disc report. A 
cache-read hit occurs when a read request is 
satisfied by a cache read, thus avoiding a 
physical read to the disk. 
■ CBKS0 dirty represents the average number 
of dirty cache pages. (Note that the team 
chose to measure this in pages of 2048 bytes 
instead of in sectors of 512 bytes as the Disc 
report measures it. Hence, they divided the 
value of the sector counter on the Disc report 
by 4 to represent the counter in pages.) A 
cache block is marked dirty when a buffered 
write operation stores data in a block. 

Figure 2 

- __ Secondary path 

CPUO Cf>U1 CPU2 
$Fl31 $FB2 $FB3 

$DATA04 $DATA01 $SYSTEM 
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$DATA01 
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■ MAXO dirty represents the highest number of 
dirty pages occurring within the measurement 
window, as listed on the Disc report. The value 
of this counter is affected by the availability of 
physical memory and by the number and pat­
tern of buffered writes. 

The following counters were devised espe­
cially for this investigation and are not avail­
able on XRAY reports: 

■ Wait flush queue represents the average 
number of dirty cache pages that have been 
selected for replacement but cannot be written 
to disk because of the write-ahead-log 
restriction. 
■ Maximum wait flush queue represents the 
highest number of dirty cache pages in the 
wait flush queue occurring within the mea­
surement window. 

For simplicity, the benchmark results 
reported in this article are for the two busiest 
disks only. 

' 
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Figure 2. 

The hardware configura­
tion and distribution of 
files for the benchmark. 
The four application 
processes are $FBI, 
$FB2, $FB3, and $FB4. 
PARTI through PART2 
are the four partitions of 
the key-sequenced file. 
ALTI through ALTS are 
the five alternate-key 
files. 
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Table 1. 
A comparison of application performance under A30 and 810 DP1 when 
TMF is not used (Test 1). 

A30 DP1 B10 DP1 Percentage 

$DATA01 $DATA03 $DATA01 $DATA03 
change from 
A30 to B10 

Physical writes 4560 4560 4572 4570 +0.2% 

Physical reads 3809 3397 2936 3734 -7.5% 

Cache-read hits 6989 7471 8035 7244 +5.7% 

Total elapsed time (secs) 2066 1911 -7.5% 

Table 2. 

A comparison of application performance under A30 and 810 DP1 when 
TM F is used (Test 2). 

A30 DP1 B10 DP1 
and TMF andTMF Percentage 

change from 
$DATA01 $DATA03 $DATA01 $DATA03 A30 to B10 

Physical writes 4475 4473 3830 3860 -14.1% 

Cache-write hits 0 0 747 713 

Physical reads 3742 4007 6164 6086 + 58.1% 

Cache-read hits 6913 6655 4231 4240 -37.6% 

CBKS0 dirty (pages) 0 0 5.45 5.87 

MAX0 dirty (pages) 0 0 12 12 

Wait flush queue (pages) 0 0 3.2 3.2 

Maximum wait flush queue (pages) 0 0 12 12 

Total elapsed time (secs) 2551 3413 + 33.8% 

Test 1 
To help isolate the problem, the performance­
analysis team ran the first test with TMF off. 
Cache was configured as 13 pages per volume 
for the A30 software and 15 pages per volume 
for the B10 software. The results of Test 1 are 
listed in Table 1 . 

The team observed that no significant 
difference in performance could be seen for 
A- and B-series software. The 7 .5% decrease 
in elapsed time, 7. 5 % decrease in physical 
reads, and 5.7% increase in cache hits can be 
attributed to the fact that, under BIO, two 
extra pages of disk cache per volume were 
configured. 

This test verified that no major changes in 
performance occur between A- and B-series 
DPI for unaudited files. 

Test 2 
The second test used the same configuration as 
that for Test 1 except that TMF was on and 
audited files were used. The results are listed 
in Table 2. 

In this test the performance-analysis team 
observed that elapsed time increased by more 
than 30% when the B10 software was run, 
confirming that performance was adversely 
affected when B-series software was used with 
DPI and TMF audited files. 

Using the results in Table 2, the team found 
that the number of physical reads increased by 
58.1 % and the number of cache-read hits 
decreased by 26. 8 % . 

Of the 15 pages of disk cache per volume 
configured for the B10 software, two pages are 
reserved by DPI for unaudited file operations. 
This makes 13 cache pages available for 
audited operations, the same number available 
with the A30 software. 

Of the 13 pages, one page is used by the 
audit buff er to collect the audited data for its 
disk process. This leaves 12 cache pages for 
audited file operations. The team observed 
that, on both disks, the maximum wait flush 
queue was 12. This was definitely a problem. 
It meant that during the test the size of the 
cache was effectively reduced to O pages at 
least once and possibly more than once. 

Volume $DATAOI contained the files PART2 
and ALT2, which were key-sequenced files. 
The maximum wait flush queue on $DATAOI 
reached 12, meaning the index blocks of these 
files were also picked for replacement from 
cache during the test. The same was true on 
volume $DATA03. 

The above problem occurred because each 
update to an alternate-key file dirtied two 
data blocks, a delete and an insert. These dirty 
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blocks were not available for cleaning until the 
disk process operated on the audit block num­
ber that was greater than the tag number on 
the dirty blocks. 

Note that the record length of these 
alternate-key records was only 22 bytes; 
hence, the delete and insert of a record in this 
file generated only about 100 bytes of audit 
information for the 2-Kbyte audit buffer. 
Thus, three application processes modifying 
this file would dirty six blocks (the entire 
cache of 12 pages) and would have generated 
only 300 bytes of audit data. This would 
reduce the available cache to 0 pages. 

The performance-analysis team concluded 
from Test 2 that application performance was 
degraded when the BIO software was run 
because dirty blocks remained in cache until 
the audit-block number in cache was greater 
than the tag number on the dirty blocks. 

Test 3 
In the third test, the team wished to see if 
increasing the disk cache per volume would 
improve the performance of the benchmark 
under the B-series software. The configuration 
used in this test was the same as that in Test 2, 
except that the disk-cache configuration for 
the B-series software was increased to 25 pages 
per volume. 

In Table 3, the results for the the BIO soft­
ware are listed for Test 2 and Test 3. In both 
tests, TMF was on. Cache was configured as 
15 pages per volume for the B 10 software in 
Test 2 and as 25 pages per volume for the BIO 
software in Test 3 (although only 23 pages 
could be used for audited files). 

The performance-analysis team observed 
that the total elapsed time of the benchmark 
decreased by 28.9% when the size of the disk 
cache for the BIO software was increased. 

Also, the total elapsed time for the BIO soft­
ware when 25 pages of cache was configured 
was 2425 seconds, while the total elapsed time 
for the A30 software when 13 pages of cache 
was configured was 2551 seconds. Thus, the 
B 1 O software with 25 pages of cache was 5 % 
faster than the A30 software with 13 pages 
of cache. 

The team concluded that to obtain the same 
performance for this benchmark under A- and 
B-series software when TMF was used, more 
disk cache had to be configured for the 
B-series software. 

Table 3. 

A comparison of application performance under 810 DP1 when TMF is used 
and cache is configured as 15 pages (Test 2) and 25 pages (Test 3). 

B10 DP1 and TMF, B10 DP1 and TMF, 
15 pages of cache 25 pages of cache 

(Test 2) (Test 3) 

$DATA01 $DATA03 $DATA01 

Physical writes 3830 3860 1705 

Cache-write hits 747 713 2865 

Physical reads 6164 6086 2059 

Cache-read hits 4231 4240 9005 

CBKS0 dirty (pages) 5.45 5.87 13.3 

MAX0 dirty (pages) 12 12 20 

Wait flush queue (pages) 3.2 3.2 1.84 

Maximum wait 12 12 20 
flush queue (pages) 

Total elapsed time (secs) 3413 

Conclusions 
The performance-analysis team formed the 
following conclusions from this investigation. 

Applications that do not use TMF will not 
experience performance problems when they 
are converted to the B-series software, as their 
disk-cache requirements will not change. 
Applications that use TMF, however, will 
require a reevaluation of their disk-cache con­
figuration when they are converted from A- to 
B-series DPI. 

To compensate for the effective reduction of 
cache size caused by dirty blocks, systems 
running B-series DPI with TMF may require a 
larger cache (as specified with the CACHE­
PAGES modifier in SYSGEN) than that used 
under A-series DPI. 

$DATA03 
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How Much Is Enough Cache? 
Users who configure "enough" cache will not 
experience performance problems by migrating 
to B-series software. Exactly how much cache 
is enough is dependent on the nature of the 
application. Some of the factors that deter­
mine the amount of cache required are locality 
of reference, number and type of files that are 
open on the disk volume, and the sizes of 
records, blocks, and files. 

Unfortunately, no simple rule exists for 
determining cache size. The two most impor­
tant factors, however, are the amount of phys­
ical memory on the CPUs containing the 
primary and the backup disk processes, and 
the amount of file activity on the disks. 

Physical Memory 
Physical memory is shared by the memory 
manager and the disk cache for each disk pro­
cess (primary and backup) on the CPU. The 
ideal division of memory allots the memory 
manager all of the memory it needs (no extra) 
and allots the rest as disk cache. 

If the memory manager has too much mem­
ory, disk processes may perform unnecessary 
disk I/Os, while if it has too little, it performs 
unnecessary swap operations. (Swaps are also 
disk I/Os and, therefore, expensive.) In gen­
eral, a disk process's cache should be increased 
just to the point at which it begins to affect 
the swap rate in its primary or backup proces­
sor. In some instances, additional physical 
memory may also be needed in the processors. 

A caveat: The sum of the cache sizes of all 
the disk processes (primary and backup) in a 
processor must not exceed 700/o of the swap­
pable memory available in that processor. If 
caches are too large, processor halts may 
occur as a result of insufficient physical 
memory. 

Some concern has been expressed that 
increasing disk-cache sizes will result in less 
memory being available for user processes. It is 
true that increasing disk cache sizes will 
increase the swap rate in a heavily loaded sys­
tem; however, the disk-cache sizes specified by 

the CACHEPAGES modifier in SYSGEN define 
the virtual address space used by the disk 
processes for their caches. It does not mean 
that a corresponding amount of physical mem­
ory is used. 

Physical pages are allocated under virtual 
address space as needed. When the memory 
manager finds that the replacement page it has 
chosen according to its replacement algorithm 
is used by a disk process for holding cache 
blocks, it requests the disk process to release 
the page. Thus, in the primary CPU, the pro­
tocol between the memory manager and disk 
processes ensures that allocation of physical 
memory for disk caching is dynamically 
dependent on memory pressure. 

File Activity 
Several aspects of file activity can affect 
disk-cache size. The number of active files 
open on the disk is one. A second aspect com­
prises the following file characteristics: 

• Locality of references. 
• Frequency of references. 

• File size. 
• Size of index and data blocks. 
• Record size. 

The effect of both of these aspects is discussed 
below. 

Number of Active Files Open on the Disk. 
Each of the active files on a disk process has 
its own cache requirement. The sum of the 
cache requirements for all active files is the 
preferred cache size for that disk, but because 
physical memory may be limited, it is not 
always possible to configure the preferred 
cache size. For systems in which the size of 
physical memory is a limiting factor, some 
disks will have to be configured with caches 
smaller than the preferred size. The compro­
mise should be made in favor of disks that 
have files with higher reference frequency. 

File Characteristics. When a key-sequenced 
file is accessed randomly, one or more index 
blocks in addition to the data block must be 
accessed for each 1/0 operation. When 
enough cache to hold the index blocks for the 
file is configured, disk I/Os associated with 
the index levels can be avoided, resulting in 
improved performance. The cache size 
required depends on the number and size of 
the index and data blocks. 
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When an entry-sequenced or relative file is 
accessed randomly, if enough cache to hold a 
certain percentage of the file (e.g., 30%) is 
configured, the chance of a cache hit is sub­
stantially increased, thus improving perfor­
mance. In the event of a cache miss, however, 
an entry-sequenced or relative file requires one 
I/0, whereas a key-sequenced file may require 
more than one. Therefore, if the frequency of 
references is approximately the same, the cache 
requirements for a key-sequenced file should 
have precedence over the requirements for 
other types of file, when more than one vol­
ume is connected to a CPU. 

When any file is accessed sequentially, the 
information is accessed only once, so the cache 
requirement for the file is minimal. The same 
cache blocks can be used repeatedly to bring 
data from disk as the previous information is 
discarded. Even for a key-sequenced file, min­
imal cache should keep the required index 
blocks in cache until they are replaced by the 
index blocks required for the next set of 
data blocks. 

Updates to files with small record sizes, 
e.g., 100 bytes, generate only a small amount 
of audited data. It would require a large num­
ber of updates to fill up the 2-Kbyte audit 
buffer, and until then, all the dirty blocks 
would effectively reduce the cache by that 
number of blocks. To compensate for this 
effect, the cache size should be increased with 
B-series software. 

For small files, if enough cache to hold the 
entire file is provided, a significant number of 
disk I/Os can be avoided, resulting in 
improved performance. Note that providing 
cache does not guarantee that the file remains 
in cache. Unless the small file is busy, its 
blocks are likely to be swapped out in favor of 
blocks of busier files. 

General Guidelines for Sizing Cache 
Although cache is configured for the primary 
disk process, the system automatically config­
ures the same amount of cache for the backup 
disk process. The impact of disk-process cache 
size on both CPUs should be considered. It is 
possible for the backup CPU to run out of 
memory without memory pressure existing in 
the primary CPU. 
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The disk cache (primary and backup disk 
processes) for a CPU should not consume more 
than 70% of that CPU's swappable memory. 
Inadequate memory for the memory manager 
can cause the CPU to halt. 

When the file activity on a disk is analyzed, 
only those files that are heavily used should be 
considered. Infrequently used files have little 
effect on performance and should not be con­
sidered when cache is sized. 

Generally, for DP 1, cache can be increased 
just to the point at which it starts affecting the 
swap rate in its primary or backup processor. 
Use the file activity information for each disk 
to determine which disk process requires an 
increase or decrease in cache. 

In brief, there is no simple rule to determine 
"correct" cache sizes for DPl with TMF. File 
activity should be used as the basis for initially 
configuring cache size. This size should then 
be modified, based on performance measure­
ments such as those outlined in this article. 
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Plated Media Technology 
Used in the XLS 
Storage Facility 

Figure 1. 

Magnetic recording. The 
recording head is ener­
gized by the current 
flowing through the 
windings. The magnetic 
field produced orients 
the particles in the same 
direction. 

iili 
andem's new XLS™ disk stor­
age subsystem is composed 
of eight disk drives, each 
holding 525 Mbytes, and can 
store 4.2 gigabytes of data in 
only six square feet of space. 
The disk drive, combining 

low cost per Mbyte with outstanding perfor­
mance, incorporates the latest in disk technol­
ogy, such as Whitney1 recording heads, high 
bandwidth read/write channel, high-density 
VLSI, 2-7 run-length limited data encoding, 
and plated media. 

Figure 1 

Recording 
head 

~88 

1Whitney is the name commonly associated with the second-generation 
Winchester technology used in the IBM 3370 disk drives _first announced in 
1979. 

This article is concerned with the plated 
media. A second article, immediately 
following, describes 2-7 run-length limited 
data encoding. 

This article discusses: 

■ Basic concepts of magnetic recording. 
■ The benefits of increased storage density and 
product reliability. 

■ Oxide-coated media as compared to thin­
film media, including the thin-film media 
manufacturing process, and electrical and 
magnetic characteristics. 
■ Head and plated media specifications. 
■ Recording density trends. 

Basic Concepts of 
Magnetic Recording 
The magnetic recording process used in mass 
data storage disk drives is based on the same 
fundamental principles as audiocassette tapes 
and VCR machines. 

In the recording process, a film of magnetic 
material coated onto a carrier medium is 
passed under a recording head that is ener­
gized by electrical current through its winding. 
The magnetic flux created by the head orients 
the direction of magnetization on the medium, 
forming magnetic domains that represent bits 
of data. 

In the reading process, the medium is again 
passed under the head. A voltage is induced in 
the head by the change in flux direction as it 
passes over each domain previously recorded. 
This voltage is sensed by amplifiers mounted 
very close to the heads, creating a read signal. 
The signal is then filtered, amplified, modu­
lated, and encoded into synchronous digital 
data. (See Figure 1.) 

48 TANDEM SYSTEMS REVIEW JUNE 1986 



In disk drives, the recording medium is usu­
ally coated onto round rigid aluminum plat­
ters. A stack of one or more platters is driven 
by a spindle motor. When the motor stops, the 
heads rest on a special landing zone on the 
disk. As the motor starts to rotate and drag 
the ambient air with it, the aerodynamic 
design of the head allows it to take off and fly, 
cushioned on the air passing underneath it. 
This flying height is measured in microinches. 
In fact, the head/media gap is so small in 
relation to the head size that it has been com­
pared to flying a Boeing 747 several inches off 
the ground. When the disks stop, the heads 
land back on the disks. This process is known 
as contact start-stop mode. During the life of 
a disk drive, the head may land on the media 
many times. Increased media hardness and a 
carefully chosen lubricant are needed to avoid 
damaging both the head and the media. 

More Storage Capacity in Less Space 
Areal recording density has increased 
3000-fold in the past three decades. 

The earliest hard disks were 27 inches in 
diameter with 100 bits per inch (bpi) and 20 
tracks per inch (tpi). This yielded a recording 
density of 2000 bits per square inch (bpsi). 

Twenty years ago, the IBM 1301 was capable 
of recording at 26,000 bpsi. Then, in 1974, the 
Winchester heads flying at about 20 micro­
inches, advanced linear density to 10,000 bpi 
(6 million bpsi). 

The state of the art was again advanced in 
1982 when IBM introduced the 3380. The 3380 
uses thin-film head and oxide media to 
achieve a bit density of 15,000 bpi and a track 
density of 800 tpi to store 12 million bpsi. The 
head flying height is about 10 microinches. 

Tandem's XLS has a linear density of 
18,600 bpi and a radial density of 1000 tpi. 
This means 18.6 million bits can be stored in 
one square inch of space; i.e., over 1300 pages 
of double-spaced type-written document can 
be stored in an area the size of a postage 
stamp. 

Figures 2 and 3 show the development in 
recording density. Table I compares the IBM 
3350 and 3380 technology to Tandem's XLS 
disk storage subsystem. 
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Figure 3 

Table 1. 
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A comparison of IBM and Tandem disk 
technology. 

1974 1981 

IBM 3350 IBM 3380 
(oxide) (oxide) 

BPI 6425 15,000 

TPI 480 800 

Areal density 3 12 
(million bpsi) 

Mbytes/spindle 317 1260 

Head flying height 18 10 
(µ inches) 

Average access 25 16 
time (msec) 

Data transfer 1.2 3 
rate (Mbytes/sec) 
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Figure 2. 

Disk media required to 
store JO million bits of 
data. The bars represent 
the area required to store 
the same amount of 
information using differ­
ent recording technology 
developed over thelast 
ten years. 

1985 1990 (est.) 

Figure 3. 

Recording capacity per 
disk surface. This graph 
shows the exponential 

1985 growth in storage capac-
Tandem XLS ity per disk in the last 
(plated) 

decade. it also compares 
18,600 the capacity of disk 

1000 platters of two popular 
18.6 diameters: 8 inches and 

14 inches. 
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Figure 4 

Improved Areal Recording Density 
Areal recording density is improved by 
increasing radial density (tpi) and linear den­
sity (bpi). Both head and media innovation 
play a vital part in its advancement. Head 
development concentrates on reducing the 
width of the gap between the magnetic poles 
and the gap between the head and the media. 
As these gaps are narrowed, smaller magnetic 
domains can be formed, thus increasing linear 
density. 

Read/write core 

Figure 4. 

Major components of a 
head assembly. The 
suspension serves as a 
mounting base for the 
head element and pro­
vides a preloaded force to 
it. The slider acts like the 

wings of an airplane to 
provide aerodynamic lift 
to the head element. The 
read/write core consti­
tutes the rear end of the 
head element and the 
windings on it are shown. 

There are two complementary requirements 
in new media development: 

■ The thickness of the magnetic film must be 
reduced. A thinner layer works with a lower 
flying head to allow for saturation 2 of the 
recording surface as it is magnetized. 

• Better magnetic properties such as increased 
coercivity3 and remanence4 are required for 
signal quality. 

Heads 
Heads consist of a coil and magnetic poles and 
are usually made of a ferrite read/write ele­
ment mounted on a slider. The slider is either 
made from ceramic (for composite head) or 
bulk ferrite (for monolithic heads). The slider 
is shaped by precision grinding and lapping, 
with glass bonding forming the read/write 
gap. Figures 4 and 5 show the construction of 
the ferrite heads. The drawback is in frequency 
response. Improved manganese-zinc ferrite 
heads have a maximum frequency response of 
about 15 MHz. 

The XLS disk storage subsystem uses ferrite 
heads. Because of the advanced data encoding 
method, the heads are writing and reading 
flux changes at a rate of 10 MHz. (See the 
accompanying article, "Data Encoding Tech­
nology Used in the XLS Storage Facility.") 

Media 
Media can be broadly classified into two cate­
gories: oxide media and thin-film media. 

Oxide Media. Oxide, particulate, thick-film, 
and coated media are all terms for the type of 
media used for the past 20 years. The coating 
material is made by mixing iron-oxide parti­
cles with an organic binder and applying it 
over the aluminum substrate. This forms a 
coating 20 to 50 micro inches thick. The disk is 
then polished to a high luster and overlaid 
with a carefully controlled film of special 
lubricant. Typical coercivity for oxide media 

-

2The magnetic layer is saturated when the magnetic poles of all the particles are 
lined up in the same direction. An unsaturated layer produces a weaker read 
signal and has a shorter shelf life as the magnetic energy stored is being used to 
induce the remaining magnetic particles to line up in the same direction. 

'Coercivity, represented by the symbol He, is the magnetic field strength of 
opposite direction required for reduction of the remanence to 0. It is measured 
in units of Oersted (Oe). 

4Remanence, represented by the symbol Br, is the magnetic induction that 
remains in a material after the removal of the magnetizing force. It i~ measured 
in units of Gauss (Ga). 

50 T A N D E M SYSTEMS REVIEW J U N E I 9 8 6 



is 300 to 500 Oe. Recent attempts to extend its 
recording density involve doping the tradi­
tional iron-oxide particles with cobalt or using 
alternate particles. This results in a deep 
brown color and is called "chocolate" media. 

Thin-film Media. The thin-film media's mag­
netic film is usually only 3 to 10 microinches 
thick. It can be applied by either electrochemi­
cal plating or sputtering (molecular deposition 
in a partial vacuum). Since the total electric 
charge in a plating process or the deposition 
time in the sputtering process can be precisely 
controlled, it is possible to produce recording 
films of any thickness, even down to 1 micro­
inch. Coercivity characteristics are also 
higher, in excess of 600 Oe. 

Plated Media Manufacturing 
Process 
There are four basic steps involved in making 
a plated disk: 

1. A blank aluminum disk is processed into a 
substrate suitable for plating. 

2. A layer of electroless nickel is plated 
onto it. 

3. A thin film of magnetic material is depos­
ited on top of the nickel layer. 

4. A carbon overcoat is applied as lubricant. 

The disk manufacturing process must be 
carefully controlled from the very beginning. 
The blank substrate is first checked for uni­
form thickness and flatness. A slight variation 
in these dimensions will cause problems in 
head flight and even crashes. The inner and 
outer diameters are also checked for toler­
ances. Then the blanks are subjected to heat 
treatment for an extended period of time. This 
annealing process relieves metal stress. The 
blanks are then ground down through several 
passes to even smoothness. 

Figure 5 

Winchester 
technology 
(IBM 3350) 

Tandem XLS 
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Figure 5. 

Two generations of Win­
chester recording heads. 
The two types of heads 
are drawn to the same 
scale to show the relative 
sizes. 
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Figure 6. 

Comparison of particu-
late versus thin-film 
media thickness. The 
magnetic layer of the 
particulate (20 micro-
inches) is about seven 
times as thick as that of 
the two thin-film media 
(3 microinches). 
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The second manufacturing stage, applying 
the nonmagnetic nickel phosphorus layer, 
serves three functions. This layer provides the 
hardness needed for contact start-stop oper­
ation, seals the substrate to avoid corrosion, 
and provides better adhesion for the magnetic 
layer. It is typically several hundred micro­
inches thick and is plated on. 

After the nickel layer is polished, it is ready 
for the plating of the magnetic film. This film 
is usually less than 5 microinches thick and is 
made of cobalt or nickel or both, plus acer­
tain amount of phosphorus. 

Table 2. 

Specifications of the thin-film disk and heads 
used in the XL8 disk storage subsystem (per NEC 
Information Systems). 
Thin-film disk Specifications 

Mechanical data 

Outer diameter 230 mm, 9.05 inch 

Inner diameter 100 mm, 3.94 inch 

Durability (contact start/stop cycles) 20,000 times/min 

Magnetic characteristics 

Coercivity 700Oe 

Remanence 7000 Gauss 

Media thickness (Cobalt Nickel Phosphorous) 0.08 µM, 3 µ inch 

SiO2 overcoat thickness• 0.08 µM, 3 µ inch 

Electrical data 

Resolution 79.5% min 

Overwrite residue -29 dB max 

Signal to noise 32.8 dB min 

Head 

Mechanical data 

Gap length 0.8µM 

Flying height (inner track) 0.28 µM, 11 µ inch 

Electrical data 

Inductance 4.8 µH 

Readback amplitude 24 mv p-p min 

•NEC uses a polar fluorocarbon lubricant that chemically 
adheres to the SiO, layer to enhance smooth contact start-stop 
motion and mechanical durability. 
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Finally, the lubricant is applied and the 
disks are checked for surface defects. The 
choice of lubricant is extremely important as it 
determines the performance and life of the 
disk. The formula and process used are often 
proprietary to the manufacturer. Most 
manufacturers use a carbon overcoat, while 
some have developed a proprietary silicon 
dioxide lubricant. A chromium layer is 
sometimes applied before the lubricant is 
applied to increase corrosion resistance. The 
result is a hard, corrosive-resistant disk having 
few defects, a disk well suited for high-density 
recording. 

Figure 6 shows the relative thickness of the 
different layers. Figure 7 illustrates the process 
that produces the plated medium used in the 
XLS disk drives. The lubricant used is silicon 
dioxide. 

Electrical and Mechanical 
Characteristics 
The thin-film media are superior in several 
ways to their coated counterparts. First, the 
decreased thickness of the magnetic layer con­
tributes to a higher recording density. Since 
the recording head's magnetic flux does not 
have to penetrate as deeply in order to saturate 
the layer, smaller magnetic domains can be 
formed with a thinner layer. 

Table 2 shows some specifications of the 
thin-film disk and heads used in the XLS disk 
storage subsystem. 

Second, the material used during the manu­
facturing process enhances the magnetic and 
mechanical properties. The cobalt and nickel 
in the recording film increases the remanence 
value to about eight times that of the oxide 
media. This gives better signal definition. The 
phosphorus raises the coercivity to 70% 
greater than oxide media. This increases the 
signal-to-noise ratio. The nickel undercoat 
adds hardness to the disk. This increases dura­
bility and decreases handling and shipping 
damage. 

Figure 7 
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Tests performed by disk manufacturers 
show almost no signal degradation after 
100,000 contact start-stops. Assuming two 
start-stop cycles per day, this represents a 
media life of 12 years. 
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Figure 7. 

Plated disk production 
process. This flow dia­
gram shows the major 
steps of plated disk 
production. 

53 



Figure 8 

Figure 8. 

Peak shift phenomenon. 
When two magnetic flux 
transitions are recorded 
close to each other, they 
have a tendency to repel 
each other. The resultant 
waveform read-back 
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Another important media characteristic that 
directly affects data error rates is the phenom­
enon known as peak shift. Peak shift is caused 
by the superposition of signals from adjacent 
flux transitions. As bit density increases, so 
does the effect of superposition. 

Figure 85 shows how the peaks of the two 
adjacent bit cells shift away from each other 
as their amplitudes decrease in much the same 
way as like poles of a magnet repel each other. 
In order to read a flux transition in its true 
position, it must be detected within an inter­
val known as the bit-cell time. When the peak 
shift gets too large, the individual peak 
becomes hard to identify and consequently the 
data error rate increases rapidly. 

Figure 9 shows the relationship between 
peak shift value as a percentage of the bit-cell 
time and recording density expressed in terms 
of flux transitions per inch. It compares the 
oxide media to thin-film media using ferrite 
(MnZn) heads. As the curve on the left indi­
cates, peak shift for a ferrite head and oxide 
media increases sharply with recording den­
sity. Peak shift characteristics of thin-film 
disks show greater capability for high-density 
recording. This graph demonstrates the poten­
tial for going beyond 15,000 flux transitions 
per inch. 

Table 2 contains some specifications of the 
thin-film disks and heads used in the XLS disk 
storage subsystem. The electrolytic plating 
process provides superior defect performance 
and excellent signal resolution at high density. 
As more media manufacturers gain experience 
and the ability to control the process, yield, 
availability, pricing, and consistency of quality 
will improve. In the future, more disk drive 
manufacturers will make use of this technol­
ogy which is currently available in Tandem 
products. 

'Figures 8 and 9 originally appeared (in a slightly different form) in an article 
entitled "Thin.film Disks Drive Densities to New Highs," by Jack Taranto in 
Electronics. April 21, 1982. 
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Plated Media Potential 
While 18 million bpsi is the maximum for 
oxide media, it is the floor for plated media. It 
is expected that within three years, linear den­
sity will be increased to 25,000 bpi as radial 
density is advanced to 1600 tpi, yielding 
40 million bpsi. 

The other thin-film process used to increase 
density is called sputtered media. The sput­
tered magnetic film can be adapted more eas­
ily to vertical recording. Since the sputtering 
process is similar to semiconductor wafer 
processing, most announced sputtered media 
are 5 ¼ inches in diameter or smaller. No ven­
dor has yet announced a larger sputtered­
media disk. Developing a larger disk would 
require very expensive tooling changes and the 
process is much more difficult to control. 

On the other hand, a few vendors have mas­
tered the electrochemical plating process with 
consistent quality and high yield. The over­
coating has proven to be durable and long­
lived, even under severe environmental 
conditions. Defect control is also better. 
Larger diameter disks can be mass-produced 
with the plated process, thus bringing down 
substantially the cost per Mbyte of storage. 

Conclusion 
The XLS disk storage subsystem is a signifi­
cant addition to Tandem's fault-tolerant 
computing equipment. Its plated media 
characteristics have been measured and veri­
fied in our disk device development labs. 
These attributes not only make the plated 
media an outstanding choice for high­
capacity, high-density storage, they also 
contribute to the data integrity and price/ 
performance advantages of Tandem Nonstop 
systems. 

J U N E 1 9 8 6 T A N D E M 

Figure 9 

a, 
E 16 ., 
ai 
f 
iS 
0 12 
(l) 
OJ 
El 
c:: 
(l) 

[! 
(l) 8 Q. 
<J) 

~ 
;:: 
E 
<J) 

-"'- 4 ro 
(l) 

Cl. 

Bit density ( 1000 flux reversals/inch) 

Reference 
Taranto, J. 1982. Thin-film Disks Drive Densities to New 
Highs. Electronics, April 21. 

Acknowledgment 
The author wishes to thank Dick Hodgman and Steve Coleman 
for reviewing the article and providing valuable feedback. 

------ ------

David S. Ng is the Manager of the Disk Device Development 
Department. He joined Tandem in 1981 supporting the disk 
product line. He was project leader for the VB disk product, and 
project manager for the XLS disk product. 

SYSTEMS REVIEW 

Figure 9. 

Peak shift as function of 
bit density: plated disks 
versus particulate disks. 
This graph shows that as 
bit density increases, the 
amount of peak shift as a 
percentage of the bit-cell 
time increases. The 
higher the percentage, the 
higher the read error 
rate. Plated disks are 
seen to have a higher bit 
density for the same 
desired error rate. 
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Data-encoding Technology 
Used in the XLS 
Storage Facility 

------- iiii 
he data-encoding technique 
currently used in Tandem's 
XLS storage subsystem is 

--- known as 2-7 run-length 
-- limited (RLL) code. It pro-
---- vides a 50% improvement in 

------ recording density over pre-
vious Tandem disk drives. 

The preceding article, "Plated Media Tech­
nology Used in the XLS Storage Facility," 
contains a description of the storage capacity 
and physical dimensions of the XLS. 

This article explains the requirement for a 
self-clocking recording code used in high­
density disk drives and compares the modified 
frequency modulation (MFM) encoding used 
in previous disk storage products. It also dis­
cusses the 2-7 code, and the implications of the 
new recording code on testing drive electronics 
and media defects testing. 

Encoding Techniques 
Some form of encoding technique is needed to 
record binary data on the magnetic disk 
media. Code symbols have been defined as 
follows: 

■ A "1" bit represents a flux change. 

• A "0" bit represents the absence of a 
flux change. 

The most intuitive encoding technique, and 
thus the first, was NRZI. A separate signal 
carrying the clock is used to define a data win­
dow (i.e., where the data is to be detected). 
An example is the Read Data and Read Clock 
signals on the storage module device (SMD) 
interface for disk drives. 

NRZI, however, soon reaches its limits as 
data densities increase. This is because of the 
cumulative effect of the mechanical and elec­
tronic components' tolerance and skew of the 
independent signals. 

Self-clocking codes were introduced next. 
These codes combine clock and data in the 
same signal. This technique uses a phase-lock 
loop synchronized to the signal to reconstruct 
a clock; the clock is then used to recover data. 

Run-length limited code is one kind of self­
clocking code. RLL code is a coded representa­
tion of binary data in which the number of 
consecutive Obits (the run length) is limited by 
the constraints of the code. This allows the 
clock to be recovered. By contrast, NRZI code 
has no run-length limitation; i.e., there can be 
any number of Os (nontransitions) before a 
1 bit (transition) is encountered. 

Table 1. 

Representation of NRZI, MFM, and FM codes. 
Coded 

Data representation 

NRZI 1 1 
0 0 

FM 1 11 
0 01 

MFM 1 10 
0 followed by 1 00 
0 followed by 0 01 
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MFMCode 
The Modified Frequency Modulation (MFM) 
code is the simplest RLL code. Adjacent mag­
netic transitions can be as close to each other 
as 1 bit-cell time and no farther apart than 
2 bit-cell time. It is called modified frequency 
modulation because it is modified from a code 
most commonly found in floppy disk drives 
calledfrequency modulation (FM). In FM, a 
clock bit is inserted between every data bit, 
whether it is a 1 or a 0. MFM removes from 
FM recording all clock transitions that are 
adjacent to data 1 bits. The clock transitions 
fill the gap between Os. Table 1 shows a coded 
representation of the three codes discussed in 
this article. 

Note that both FM and MFM have two code 
symbols (right column) per data bit (left 
column). Therefore, the detection window for 
each code symbol is one-half the data-bit-cell 
time. Why MFM gained popularity over FM is 
obvious. In FM there can be as many as two 
flux transitions per data bit, while MFM may 
have at most one flux transition per bit. FM 
may have a run of not more than one 0, while 
MFM may have a run of not less than one 0 
and not more than three Os between 1 s. 

In magnetic recording, adjacent flux rever­
sals tend to repel each other in the same way 
like poles of a magnet repel each other. This 
creates a phenomenon known as peak shift. 

Peak shift is caused by superposition of 
signals from adjacent transitions. The peaks 
of the two signals move away from each other 
and decrease in amplitude. This introduces 
error as the read-detection circuitry tries to 
detect the peaks within the data window. It is, 
therefore, desirable to have the peaks (derived 
by differentiating flux transitions) as far apart 
as possible without losing synchronization 
with the phase-lock loop. For this reason, 
MFM is used to gain more recording density 
over FM. Tandem disk drives 4104, 4105, 4109, 
4110, 4114, 4116, and 4120 (V8) all use MFM 
data-encoding technique. 

Figure 1 shows how a binary data stream is 
recorded on the magnetic medium with the 
different encoding schemes. Refer to Table 1 to 
see how NRZ data is coded into flux transi­
tions, represented by 1, and nontransitions, 
represented by 0. An "encoded write data" 
pulse corresponds to a "flux transition" at the 
head. On the read-back, the recorded flux 

Figure 1 
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Figure 1. 

Comparison of MFM, 
FM, and NRZI encoding 
techniques. This figure 
shows how the same 
binary data stream of 

"1001011" is encoded 
differently using different 
encoding schemes. The 
WRITEREAD process 
is shown in detail for the 

transitions induce the waveform represented by 
"analog read data." The peaks of this wave­
form are digitized and decoded back into the 
NRZ waveforms. The host system can then use 
the rising edge of the clock signal to retrieve 
the data. 
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Figure 2 
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Figure 2. 

RLL 2-7 code high­
frequency and low­
frequency patterns. This 
figure has the same 
format as Figure I. Note 
that for the high­
frequency pattern, there 
are two nontransitions, 
0, between each transi­
tion, I. For the low­
frequency pattern, there 
are seven nontransitions, 
0, between each transi­
tion, I. 
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RLL 2-7 Code 
The XLS disk subsystem uses RLL 2-7 code, 
the latest data-encoding technique developed 
to boost linear recording density. Like FM and 
MFM, it is also a form of self-clocking code. 
The first number, 2, refers to the minimum 
number of consecutive clock cells (half-data 
bit cell) between flux transitions; the second 
number, 7, refers to the maximum number of 
consecutive clock cells without a flux transi­
tion. (Within these notation conventions, for 
example, MFM code can be represented as 
RLL 1-3.) The advantages of RLL 2-7 code 
over MFM code include: 

■ A 50% increase in bits per inch (bpi) is 
gained with a given flux-transition density. 
This means that three data bits of information 
can be derived from the space normally taken 
by two bits when MFM code is used. 

0 

0 

0 0 0 

n n rt__ High 

0 0 0 0 0 frequency 

0 0 1 

Low 

0 0 0 6 0 0 0 frequency 

■ A lower bandwidth is required for a given 
data density. 

■ RLL 2-7 code is optimized for use on present 
head and disk technologies. 

The trade-off is more complicated 
encoding/decoding and phase-lock loop elec­
tronics. XLS disk drives have a data density of 
18,600 bpi, yet the flux transition density is 
only 12,400 transitions per inch. 

Table 2 shows RLL 2-7 code conversion. 
Note that this is only one of many possible 
mappings. Note also that the data words (left 
column) can handle any combination of 

Table 2. 
ALL 2-7 code conversion table. 

Coded 
Date representation 

10 0100 
11 1000 
000 000100 
010 100100 
011 001000 
0010 00100100 
0011 00001000 
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Figure 3 
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binary bit sequences. Moreover, this code 
conversion does not violate the run-length 
constraints. This means that each encoded 
group (right column) must have: 

■ At least two Os between the 1 s. 

■ No more than three Os at the end. 
■ No more than four Os at the beginning. 

Again, when RLL 2-7 code is compared 
with MFM code, it is obvious that the flux 
transitions are now separated by more 
nontransition bit cells. Therefore, the packing 
density can be higher. Figure 2 shows the 
derivation of the high-frequency and 
low-frequency patterns. The high-frequency 
pattern has a minimum of two Os between the 
ls; the low-frequency pattern has a maximum 
of seven Os between the 1 s. 

Each bit-cell time is 67 ns for a bit rate of 
15 MHz. Yet with the high frequency pattern, 
flux transitions occur at a maximum rate of 
10 MHz, with each magnetic domain lasting 
100 ns. 

As shown in the conversion table, it takes 
two encoded bit times (right column) to 
represent one data bit (left column). On the 
XLS, the 9-inch diameter disk spindle rotates 
at 3070 rpm; thus, each encoded bit time is 
33.3 ns wide. Since there must be at least two 
Os (or nontransitions) between the ls, the 
maximum rate at which the ls (or transitions) 
occur is once every three bit times, or every 

~ 
' 

, 
' 

, 

100 ns. Although the maximum flux transition 
frequency is 10 MHz, this represents a binary 
data transfer rate of 15 MHz. 

Figure 3 shows how a binary data pattern is 
converted into RLL 2-7 code and recorded 
onto the magnetic media. The pattern used is 
the peak shift pattern, chosen to measure 
worst-case peak shift. 

Testing Drives with RLL 2-7 Code 
Since binary test patterns now go through a 
different conversion table than that used for 
MFM code, a different set of test patterns 
must be generated for media defect detection 
as well as other evaluation tests. 

Media Defect Testing: Format Patterns 
Winchester disk drive manufacturers use both 
analog and digital methods to test the drive 
for media defects as part of the production 
process. 
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Figure 3. 

Peak shift pattern for 
RLL 2-7 encoding. The 
peak shift pattern can be 
used to test data error 
rate induced by peak 
shift. It consists of two 
ls with minimal separa­
tion (two Os) to maxi­
mize the peak shift 
effect. These groups of 
two ls are separated by 
as many as five Os to 
minimize interaction 
between the groups. 

59 



Figure 4. 

Three-flux transition 
pattern used for format­
ting. With two transi-
t ions written as closely as 
possible, the center tran­
sition's amplitude is seen 
to have dropped. This is 
used to detect marginal 
recording cells on the 
media. 
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The analog method detects defects by exam­
ining the analog data signals before they are 
digitized and decoded. Missing bits, extra bits, 
and amplitude modulation criteria are used. 

The digital method involves writing a 
certain binary data pattern to the drive 
through the interface and reading it back for 
comparison. At Tandem, sectors containing 
defects are spared during the format process so 
that customer data will not be written on 
them. We require the drive manufacturer to 
supply a list of defect locations detected at the 
factory. Our formatting process uses the ven­
dor list as a base and adds any other defective 
spots found during the format process. 

The patterns used during the format process 
are chosen deliberately to improve defect 
detection. These patterns are designed to force 
worst-case amplitude modulation. This can be 
achieved by superposition of signals from 
adjacent flux transitions. When three flux 
changes are written with equal spacing and are 
close enough for interaction, the outside sig­
nals appear to have their peaks shifted away 
while the center one has a diminished ampli­
tude. This middle transition is used for testing 
marginal defects. (See Figure 4.) 

Ideally, this group of three transitions 
should be written repetitively with minimal 
spacing between each transition; the groups 
should be separated to minimize interaction 
between the groups. 

In order to test for every possible defect 
location, the middle bit must be made to scan. 
The task is to pick patterns that cause this 
middle bit to scan across the track. In MFM 
code, four patterns are necessary to complete 
the scan. The binary pattern of 01110111. .. is 
encoded into 001010100010101000 .... The two 
underscored bits are tested. 

RLL 2-7 requires over 12 passes (i.e., 12 
different patterns) for complete coverage. 
These patterns are derived and used during 
new product development to evaluate media 
quality and defect characteristics. It may be 
prohibitively expensive to use all possible test 
patterns during the manufacturing process. 

The vendor's analog tests usually find over 
85% of the media defects. The digital tests 
used by the vendor and Tandem find another 
10%. Possibly 5 OJo of the marginal defects are 
not detected before the drive is shipped. These 
are the locations that may fail once per ten 
reads or even once per 100 reads. Defects that 
cause errors in normal operation do not cause 
problems for users in the great majority of 
cases. 

Defects tend to be limited in length, and the 
error correcting code (ECC) built into the disk 
controller corrects most errors caused by 
defects, as it does other errors. They are 
reported as corrected data errors and their 
correction is accomplished without any notice­
able impact on performance or data access 
time. Correctable data errors that occur 
repeatedly on the same physical location can 
easily be mapped out by a PUP command. 

Test Patterns 
Three other tests are sensitive to data patterns. 
These patterns are used to test the read/write 
electronics of the disk drive. 

Overwrite Test Pattern. Overwriting is a test 
to evaluate the drive's ability to erase old data 
patterns with new ones; i.e., it is a test to 
detect the residue of the old pattern after the 
new pattern is written. It can be done digitally 
or with a spectrum analyzer. 

Typically, a low-density signal permits 
higher write current before saturation occurs, 
and vice versa. Most disk drives use only one 
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Figure 5 
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level of write current to simplify design. The 
write current is optimized at just above the 
knee of the saturation curve for the highest 
density (inner track, high-density signal). This 
means that the lowest density (outer track, 
low-density signal) is undersaturated. The test 
involves writing with the high-frequency pat­
tern twice on a track and then writing the same 
track again with the low-frequency pattern. 
The track is then read and verified. Both pat­
terns shown in Figure 2 are used for RLL 2-7 
encoding. With MFM, the high-frequency pat­
terns are 1111... or 0000 ... ; the low-frequency 
pattern is 1010 .... 

'lrack Misregistration Pattern. The same high­
and low-frequency patterns can also be used 
to run the track misregistration test. This tests 
the "cross talk" between the tracks. Typically, 
the two patterns are written alternately on the 
innermost tracks at one temperature extreme, 
and then read back at the other extreme. If an 
error is detected, it may indicate a thermal 
expansion problem on the base plate or actua­
tor, or a tracking error on the servo system. 

Read Reliability Pattern. This test is designed 
for testing the phase-lock loop's ability to 
respond to changes in the relationship between 
the data and the clock information. As with 
all self-clocking codes, the signal read from 
the disk carries both the clock and data infor­
mation. The data window recovered from the 
signal itself is used to check for the occurrence 
of a flux transition. Due to the superposition 
of signals of adjacent flux transitions, how­
ever, the peaks tend to shift away from the 
center of the data window. Depending on the 
flux transitions that are written, different pat­
terns cause varying amounts of peak shift. 

V V -v 
~ I· ·I· ·I 
Two-flux Three-flux 
change change 
peak shift peak shift 

Since the clock is also derived from the same 
signal, the effect is compounded. In order to 
handle the varying data peak and data window 
relationship, the design of the phase-lock loop 
has the effect of a flywheel so that occasional 
irregularities do not cause large corrections. 

The ideal read reliability pattern performs 
two functions: 

1. It introduces maximum peak shift in the 
read data. 

2. It causes the phase-lock loop to make suc­
cessive corrections in one direction, and 
then switch direction so that the window is 
at the maximum offset relative to the data. 
This makes the peak shift appear to be 
even worse. 

The maximum peak shift is obtained by 
writing two flux changes as close to each other 
as the encoding scheme permits. This two-flux 
change pattern as a group is then written sev­
eral times consecutively. To minimize inter­
group interaction, as many nontransition cells 
are written between the groups as the encoding 
scheme permits. A three-flux change pattern 
(used for formatting) is then inserted to throw 
the phase-lock loop to the opposite direction. 
The ratio of two-flux transition patterns to 
three-flux transition patterns should be deter­
mined by experimenting with the individual 
drive. Figure 5 uses a 4: 1 ratio as an example. 
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Read reliability pattern. 
The read reliability 
pattern is used to test the 
design of the read phase­
lock oscillator (PLO). 
It consists of four groups 
of 1 0 0 1 separated by 
five Os. This causes 
the phase-lock oscillator 
to adjust in one direc­
tion. Then a group of 
I O O I O O I is inserted to 
throw the PLO off bal­
ance as it tries to adjust 
to a different amount of 
peak shift. 
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Table 3. 
ALL 2-7 read reliability pattern. 
Encoded read reliability pattern 100100 000100 1000 00100100 000100 1000 00100100 1000 0010010 000100 

Decoded binary pattern 010 000 11 0010 000 11 0010 11 0010 000 

Binary 
Hex data 

0100 0011 0010 0001 1001 0110 0100 00 .... 
4 3 2 1 9 6 4 

With MFM code, the maximum peak shift 
pattern is " 1101 10110," etc., and the reversal 
pattern is "01110." Combining the two pat­
terns in a 4:1 ratio yields "l 101101101101110," 
etc. Converting this pattern to hexadecimal 
yields the famous "DB6E." 

Table 3 shows how the RLL 2-7 read 
reliability pattern in Figure 5 is decoded into 
hex data. Since we cannot find a pattern that 
uses the maximum seven Os between the ls, 
we have settled for five. Refer to Table 2; 
remember that there is a minimum of two Os 
between the I s . 

The first line is the encoded bit pattern as 
written on the disk. Note that there are four 
two-flux change groups followed by a 
three-flux change group. Each group is 
separated by five Os. Spaces are inserted to 
show conversion relationship with the second 
line. The third line regroups the second line 
into groups of four binary bits. The fourth line 
is the hexadecimal representation of the binary 
pattern in line three. Thus, the read reliability 
pattern for this particular conversion table is 
"432196" hex. 

Conclusion 
The RLL 2-7 encoding technique leverages off 
existing head and media technology to provide 
a 50% improvement in recording density. 
Users gain the benefit of a faster data transfer 
rate and smaller physical volume, with the 
reliability of proven recording head-media 
technology. New test patterns are derived and 
applied during the product development 
phase; they have proven that good electrical 
signal properties are not sacrificed at the 
expense of gaining recording density. The 
principles presented here can be adapted to 
evaluate and test future disk products with 
other self-clocking coding schemes. 
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andem uses several criteria to 
select the best possible disk 
drive vendors. Besides con­
sidering financial status, 
long-term viability, and 
product suitability, Tandem 
also undertakes plant inspec­

tions, diagnostic testing, and visual drive 
inspections to narrow the number of vendors 
to three candidates. Usually six to ten samples 
of the drive model are obtained from each of 
the three vendors and subjected to diagnostic 
tests, environmental tests, burn-in tests (to 
identify infant mortality problems), and life 
tests to ensure that the unit will meet 
Tandem's needs. 

One performance parameter verified is the 
manufacturer's stated error rates. "Errors" 
(especially recoverable errors) should not be 
confused with "disk failures." Errors are gen­
erally not catastrophic, but they waste valu­
able processing time. Measuring this 
parameter not only identifies a poorly 
designed drive, but helps differentiate between 
two well-designed drives. 

Predicted and measured recoverable error 
rates for a well-built and well-designed Win­
chester or Whitney drive are one in ten giga­
bits (10,000,000,000); nonrecoverable error 
rates for these drives are one in one terabit 
(l,000,000,000,000). 

Previously, Tandem accepted vendor claims 
at face value. It is costly and time consuming 
to quantify the actual soft error rate by nor­
mal methods: 

■ At current average access times (20 ms) and 
current average block lengths (256 Kbits) it 
takes 11 hours to run a single sample of lOElO 
bits. 

Data-window Phase-margin 
Analysis 

■ Running a large enough number of samples 
(e.g., 25) to reduce stochastic error to a com­
fortable level would take 265 hours for each 
drive. 
■ All samples submitted would need testing to 
ensure that the sample was representative. 
Even using many processors, such testing 
would overwhelm laboratory resources. 

Tandem needed a way of accelerating testing 
and extrapolating data without abrogating 
accuracy. Data-window phase-margin analysis 
provides the desired result without resorting 
to a full worst-case analysis or running masses 
of data. 

Data Windows and Bitshift 
The data window is that space (or period) in 
time in which the data bit must appear to be 
recognized as correct data. (See Figure 1 on 
the following page.) Errors occur when a bit 
has moved into the next data window in a 
process known as bitshift. Bitshift is defined 
as the time that the bit in question deviates 
from its preferred position, i.e., the center of 
its data window. Knowing how well a disk 
drive manages its overall bitshift provides a 
good measure of the true capabilities of the 
drive. It is analogous to comparing marksmen 
by measuring the spread of their shot. 
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Figure 1 
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The probability density 
distribution curve for 
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Bitshift is caused by a combination of many 
factors including: 

■ Delays in the writing and reading channels. 

■ Magnetic and electronic noise. 
■ Adjacent domain interference. 

Recording Techniques 
Compensation circuits are used to correct for 
read/write delays. The effect most difficult to 
manage is bitshift caused by adjacent-domain 
interference. This occurs when two closely 
juxtaposed magnetic domains on the disk 
interfere with each other. 

Magnetic recording is done by creating 
small permanent magnets called domains on 
the coating material covering the surface of the 
disk. The magnetic polarity of these domains 
can be reversed by the influence of external 
magnetic forces. Just as permanent magnets 
influence each other when placed close 
together, the domains in close proximity influ­
ence each other's magnetic vector, causing the 
peaks of the pulses that are reproduced 
through the read head to move closer together 
or farther apart. 

Modified Frequency Modulation 
Figure 1 illustrates the modified frequency 
modulation (MFM) recording technique. The 
following rules apply to this type of recording: 

■ ones: A reversal of magnetic flux direction 
occurs in the middle of the bit cell. 
■ zeros: No reversal of flux occurs in the mid­
dle of a bit cell, but a reversal is to occur at 
the leading edge of the bit cell, whenever a 
zero follows a zero. 

Note that the data window always equals 
half the bit cell in MFM recording. 

Plotting Curves 
The following method obtains the typical nor­
mal curve shown in Figure 2: 

1. Run a fixed sample of bits. 

2. Superimpose each one on its data window. 

3. Use the center point of the generated 
period as the zero point. 
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Each pulse is shifted either positively or 
negatively, with respect to that zero point. If 
the sample is large enough and the shifting is 
random, the distribution of those bits is 
Gaussian 1 about that zero point and fits a 
normal curve as generated by that sample. 

Conversely, the probability of finding a bit 
shifted a specific amount from the zero point 
in any similar sample of data from that partic­
ular disk drive obeys the same normal curve. 
(At this point the concern is not with the nor­
mal curve per se, but rather in how close its 
skirts come to the window limits.) Phase­
margin analysis determines the data window 
in which no pulses appeared, after some fixed 
predetermined quantity of data has been run. 

Typical Data-error Curve 
Measuring P'(x) for values of x from Oto +W 
where +W is the positive limit of the data 
window, results in the curve shown in Figure 3. 
By calculating the standard deviation (S), it is 
possible to use the Gaussian tables to extrapo­
late our results to any sample size (e.g., 
lOElO). The standard deviation is defined as 
the manner in which the function P'(x) varies 
about the mean deviation. In this case, the 
mean deviation is the zero point and the stan­
dard deviation is the shape of the curve. 

+w(OJo) s = g 

where g is the Gaussian value for P'(x) when 
x = lwl 

1 
p(x) = _S_/2i_271"-

(X-X)Z 
-]/2 ~-S­

e 

where x is the mean deviation and s is the 
standard deviation. A good example of this is 
the failure of a piece of electronic gear where 
the mean time between failure (MTBF) is the 
mean deviation. 

The curve is physically plotted as follows: 

1. Measure P'(x) at 1-ns intervals from Oby 
artificially narrowing the data window 
about its theoretical center and counting 
the number of bits that fall outside the nar­
rowed data window. 

2. Run 10E5 bits and plot P'(x) from its max­
imum ( 10E5 at data window = 0) to its 
minimum (P'(x) = 0). The resulting curve 
is similar to that shown in Figure 3. 

'The Gaussian distribution is known as the normal distribution by 
statisticians. It is a bell~shaped curve showing a distribution of probability 
associated with different values of a variate. 

Figure 3 

T 
100 oi104 

.Q 

10 1 ,: 
.g 103 

u C: 

I'! ·;; 
:, 

10·2 ~ 102 "' (1J 
(l) .l'l 

P'°' 
:, 
0 

ai 101 
.c 

ti! E 
:, 

e 10 4 z 100 

w 
u 10·5 
~ 
E 
~ 10 6 w 

1 10·7 

3. Calculate the standard deviation for several 
values to ensure that the distribution is 
Gaussian. 

4. Use the Gaussian tables to calculate P'(x) 
for values of x from the measured limit (w) 
to the data windows' limit (W). 

Note that this technique is only accurate for 
Gaussian distributions about the assumed 
mean deviation. If the curve is distorted (i.e., 
it has one or two shoulders or more than one 
peak), window sliding (delaying the data win­
dow with respect to the data) shows the true 
mean deviation. If the mean deviation is not 
in the center of the data window, presumably 
something is radically wrong with the design 
of the drive (e.g., timing circuits, phase­
locked oscillators [PLOs], write compensation, 
or read compensation, etc.). 

If the standard deviation is not a constant, 
there could be something wrong with the sam­
ple (e.g., pattern sensitivity) or with the drive 
(e.g., read/write head, write current, media, 
synchronous noise, etc.). 

Figure 4 on the following page contains 
some of the equations describing the bitshift 
manifestation. 
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Figure 3. 

Typical data-error curve. 
This curve is the com­
posite of P'(x) as shown 
in Figure 2(b). It is a 
count of bits falling 
outside the data window 
from W = 0 to 77% of 
Max. W. The curve is 
then extrapolated to 
W = 100% of Max. W. 
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Figure 4 

Assume Gaussian distribution: 

(a) The probability' of finding any bit displaced from its designated position by time t : 

P(t) = 112 !:N{exp[-(t-b,)212b,'] + exp[-(!+ b,)212b,']) 

where N =#of bits (sample size) 
b, = noise bitshift 
b, = domain interference bitshift 
I = time displaced from true position 

(b) The intrinsic error rate, E, is the probability of finding a bit outside the data window or: 

E =_f P(x)dx + J P(x)dx = 2(1-P(x)) = P'(x) 

(c) The mean deviation', x, is: 

~ 
n 

(d) The standard deviation, S, is: 

' 
S = E [(x,-x)'l(n-1)]"' 

I= 1 

'The probability and error rate formulas are discussed in "Effect of Bitshift Distribution," 
Katz, 1979, IEEE Transactions, Vol. 15. 

'The mean deviation and standard deviation are referenced in the Standard Handbook tor 
Mechanical Engineers, 8th Edition, Beaumeister, pp. 17-19. 

Figure 4. Figure 5 

Equations describing the 
bitshift manifestation. 
Equation (a) is the den- A B C 

sity probability for bit- r" shift due to noise and 
domain interference. 
Equation (b) describes 
the density probability "O 

for bits falling outside a 2 u 10·10 
given window. Equa-

Q) 

·e 
tion (c) is the mean Q_ 

·1 
deviation, which in this e 
particular case should 2 

uJ 
coincide with the center 
of the data window. 10·5 

Equation (d) is the 
standard deviation that "O 

e> 
describes the density 

:, 

"' "' curve. Q) 

::;;; 

1 0 X 
Figure 5. 2040 6080 L+w 
XL8 candidates A, B, 

%ofW 

andC 

Recent Study Results 
Figure 5 shows the results of the recent study 
to select the optimum drive for the XLS disk 
storage facility. The study compared the esti­
mated percentage of data window remaining 
at lOElO bits of random data and calculated 
the intrinsic error rate. 

This plot (Figure 5) was inverted from the 
typical plot shown in Figure 3 for ease of 
automation. Diagnostics indicated that two of 
the candidates were equal performers. Phase­
margin analysis verified that the intrinsic error 
rate was better than the manufacturer 
claimed. It also indicated that one of the 
drives had a greater margin of data window 
remaining at the lOElO level and, therefore, 
had a greater probability of errorless 
operation. 

The vendor candidates showed the following 
intrinsic error rates: 

■ Candidate A had approximately one in 
5 x 10El2 bits. 
■ Candidate B had one in IOEIO plus bits. 

■ Candidate C, with an error rate of one in 
5 x 10E7 bits, did not meet Tandem's 
requirements. 

Conclusion 
Future studies at Tandem will use window 
sliding to determine the extent to which the 
bitshift is symmetric about the center of the 
data window. This will help determine the 
effectiveness of the read/write compensation 
circuits, and the quality of the media and its 
relationship to the write current. 

Note that data-window phase-margin analy­
sis is not used to determine whether a drive is 
performing correctly in its system environ­
ment. Diagnostic routines do that much more 
readily. It does, however, help ascertain which 
drive has the greatest potential for reliable 
operation, and is one of several investigative 
methods responsible for the high reliability of 
Tandem's disk drives. 
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- - his column summarizes 
Tandem product announce­
ments for the fourth calendar 
quarter of 1985. For ease of 
reference, new products are 
listed in alphabetical order. 

B20 Release-Nonstop 
System Software 
The B20 release of the NonStop system soft­
ware, available November 1985, incorporates a 
significant number of product enhancements, 
new products, and bug fixes. Tandem recom­
mends that all customers install it. 

The new products column in the February 
1986 issue of the Tandem Systems Review dis­
cussed the following B20 release products: 

■ C compiler. 

■ COBOL and FORTRAN separate 
run-time libraries. 
■ TACL, a flexible command interpreter. 
■ Information Management Technology (IMT) 
products, PS MAIL™ for 6530 terminals, 
PS MAIL for 3270 terminals, and PS TEXT 
EDIT. 

■ TAL compiler enhancements. 

This column describes the following new 
B20 products: 
■ Single-ported Communication Interface 
Unit for the 6100 Communications Subsystem. 
■ SAFE-T-NET™ encryption subsystem. 

Tandem's New Products 

DP2 and TMF 
DP2 and the network Transaction Monitoring 
Facility (TMF) are generally available with this 
release. The June 1985 issue of the Tandem 
Systems Review contains articles describing 
the benefits of DP2. By upgrading to the B20 
release, customers get autorollback, downed 
volume reintegration, increased reliability, and 
DP2 support. 

DPl is functionally stabilized as of the B20 
release. DPl will be included in the B-series 
releases, but will not be shipped with C-series 
releases. 

TMDS 
The B20 release includes two new subsystems 
of the Tandem Maintenance and Diagnostic 
System (TMDS), which provides system sup­
port for on-line diagnostics. TMDS was first 
released in the BOO release with the FOX™ diag­
nostic. (See "Introducing TMDS, Tandem's 
New On-line Diagnostic System," in the June 
1985 issue of the Tandem Systems Review.) 
The B20 release contains TMDS subsystems for 
disk and tape diagnostics. 
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Labeled Tapes 
Labeled tape handling is available in the B20 
release, but distribution will be limited until 
the B30 release while the product is tested at 
customer sites. Contact a Tandem systems 
analyst for more information. The B20 release 
provides the following features for processing 
labeled tapes: 

■ Labeled tapes can be accessed from COBOL 
and TAL applications. 

■ ANSI standard (X3.27-1978) and IBM 
standard (GC26-3795-3) labels are supported. 
■ Nine-track tape is supported in three differ­
ent densities: 800 (NRZ), 1600 (PE), and 6250 
(OCR) bits per inch (bpi). 

■ Each tape file is identified to the 
GUARDIAN 90 operating system by a unique 
logical file name; a set of attributes describing 
the file is collected in a new structure. 

■ The tape process recognizes the tape mount 
and reports the mount information to a pro­
cess that performs Automatic Volume Recog­
nition (AVR). 

■ A tape management utility program 
(TAPECOM) provides the user interface for 
tape-related operations. 

INSPECT Symbolic Debugger 
INSPECT supports a new SOURCE command 
that can be used to display the source program 
statement(s) corresponding to a code location. 

6100 Communications Subsystem 
The X.21 call-control interface is supported by 
new 6100 Communications Subsystem (CSS) 
products: Line Interface Module 6129-7 (X.21 
LIM) and Line Interface Unit (X.21 LIU). The 
6100 ADCCP protocol module allows an appli­
cation to set up an X.21 circuit-switched con­
nection and communicate over the circuit 
using the ADCCP bit-synchronous communi­
cation protocols. 

TCP 
A-series and BIO releases of the GUARDIAN 
operating system included both the old and the 
new TCPs to facilitate migration to the new 
version. The new TCP, PATHTCP2 introduced 
in A06, offers significant performance 
improvement by using extended data segments 
and reducing disk 1/0 operations in the TCP. 
Many sites have converted in the last 18 
months with no significant problems. Because 
of our customers' positive experience with the 
newly designed TCPs, Tandem has split the 
B20 PATHWAY transaction processing system 
into two products: a Nonstop version (T9153 
PATHWAY) and a NonStop 1 + version (T9103 
PATHWAY). Only Nonstop systems will sup­
port PATHTCP2 and SCOBOLX (which 
replaces SCOBOL); only Nonstop 1 + systems 
will support PATHTCP and SCOBOL. 

In a future release, ENFORM and DDL will 
also split into two products-a NonStop 
systems version and a NonStop 1 + systems 
version. 

For additional information, see "A New 
Design for the PATHWAY TCP" (Tandem Jour­
nal, Spring 1984) and "The PATHWAY TCP: 
Performance and Tuning" (Tandem Systems 
Review, February 1985). 

Product Overview 
Tandem has recently released the following 
new or enhanced products: 

■ 5110/5114 tape drives for Nonstop EXT 
systems. 
■ 5130/31 tape subsystem. 
■ 6100 Communications Subsystem 
enhancements. 
■ 6535/36/37 Ergonomic Terminals. 

■ DYNAMITE™ workstation enhancements. 
■ PC LINK™ Workstation Software Site 
Licenses. 
■ SAFE-T-NET cryptographic device. 
■ SAFEGUARD system protection software 
(planned for release in the spring of 1986). 
■ T-TEXT™ support for local printers. 
■ XLS disk storage facility. 
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Literature is available for many of these 
products from Tandem sales representatives. 
The "SAFE™ Integrated Security Products" 
brochure describes SAFE-T-NET and 
SAFEGUARD. The "Disk Drives" brochure 
describes both the VS and XLS disk storage 
facilities. Information sheets are available for 
the Communications Control Subsystem 
(CCS) and National Language Support 
enhancements for the DYNAMITE worksta­
tions. A data sheet is available for the 5130/31 
Tape Subsystem. 

5110/5114 Tape Drives for Nonstop EXT 
Systems 
Two stand-alone tape drives are available for 
the Nonstop EXT system: the 5110 and 5114. 
Like the NonStop EXT, these tape drives do 
not require a computer-room environment. 
Both devices are nine-track reel-to-reel tape 
drives; the 5110 tape drive operates at 45 inches 
per second (ips) and the 5114, at 125 ips. Each 
drive comes complete with cabling, a stand­
alone cabinet, and a patch panel for the 
Nonstop EXT system. 

The 5110 is a low-cost utility drive operating 
at 45 ips. The device provides both 800 bits 
per inch (bpi) NRZI and 1600 bpi phase­
encoded formats. 

The 5114 tape drive operates at 125 ips, pro­
viding both 800 bpi NRZI and 1600 bpi phase­
encoding formats. 

Storage capacity of these tape drives varies 
depending on the recording density and block 
size that are selected. At 1600 bpi, with a 
maximum recommended block size of 
8 Kbytes, 40.6 Mbytes can be stored on a 
2400-foot tape. At 800 bpi, with a maximum 
recommended block size of 4 Kbytes, 
20.6 Mbytes of data can be stored on a 
2400-foot tape. 

There is an option for Nonstop EXT pack­
aged systems (including NonStop EXT /TXP 
package upgrades) that allows the customer to 
substitute the 125 ips drive for the standard 
45 ips drive. 

5130/31 Tape Subsystem 
The 5130/5131 is a mainframe-class tape sub­
system that provides fast and efficient tape 
operations. A tape speed of 200 ips, coupled 
with recording densities of 6250 bpi Group 
Coded Recording (GCR) and 1600 bpi Phase 
Encoding (PE), provides fast, efficient backup 

of large data bases. Along with high perfor­
mance, the 5130/31 incorporates user-friendly 
features such as power windows and tape 
autoloading. The 5130 tape subsystem includes 
a tape transport, a formatter, a control unit, 
and the cables required to install a single-drive 
subsystem. Up to three additional 5131 tape 
transports can be attached to a 5130 to config­
ure a maximum, four-drive subsystem. The 
5130/31 transfers data at a maximum rate of 
1.25 Mbytes per second. 

The 5130/31 can read and write ANSI­
compatible PE and GCR tapes. Using GCR, 
the tape subsystem provides up to 180 Mbytes 
of storage on a single 2400-foot reel of tape. 
Additional features such as tape quality 
monitoring, an innovative tape transport 
design, and diagnostic functions ensure data 
reliability. 

6100 CSS Enhancements 
New protocols for the 6100 Communications 
Subsystem (6100 CSS) are developed for use on 
the 6100 CSS under the CP6100 Communica­
tions Access Process. Any customer can 
request a protocol by having a Tandem analyst 
or sales representative fill out a Protocol 
Request Form. However, Tandem reserves 
the right to decide whether or not to approve 
the protocols. 

Single-ported Communication Interface Unit. 
Many of our customers have complained about 
the number of channel addresses used by a 
single 6100 Communications Subsystem. Pre­
viously, the 6100 CSS required 64 of the 256 
available channel addresses. The Single-ported 
Communication Interface Unit (CIU) solves 
this problem by reducing the number of 
required channel addresses to 32. 
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UTS-40 Supervisor Protocol. This protocol 
provides software for the Sperry Univac Uni­
versal Terminal System 40 (UTS-40) Multi­
point Supervisor protocol line task. The 
UTS-40 Supervisor provides the ability to con­
trol multiple terminals on a synchronous com­
munications line operating under the Univac 
UTS-40 polling protocol. Terminals supported 
are those that conform to the protocol 
described in the Sperry Univac UTS-40 Single 
Station System Reference (Univac number 
UP-9143-B). 

UTS-40 Tributary Protocol. Provides software 
for the Sperry Univac UTS-40 Tributary multi­
point protocol line task. The UTS-40 Tributary 
allows the Tandem host system to look like 
one or more secondary stations to the supervi­
sor. This means that users can write an appli­
cation simulating multiple terminals 
associated with a single Remote Identifier 
(RID), on a synchronous line operating under 
the UTS-40 polling protocol. Terminals simu­
lated are those that conform to the protocol 
described in the Sperry Univac UTS-40 Single 
Station System Reference (Univac number 
UP-9143-B). 

V.35 Line Interface Unit. The new V.35 LIU 
currently supports CSSADCCP and X.25 soft­
ware. The LIU consists of one Communica­
tions Line Interface Processor (CLIP) and one 
V.35 electrical interface, Line Interface Mod­
ule (LIM). This LIM uses a 25-pin connector 
rather than the 34-pin connector described in 
the V.35 standard. Customers must supply a 
special cable. A wiring diagram is included 
with each LIM. 

6535/36/37 Ergonomic Terminals 
Tandem's three new ergonomic terminals offer 
all the functionality of 653X models, plus new 
low-profile keyboards. These terminals take 
up less desk space and meet European ergo­
nomic requirements. New models are the 6535 
with a 15-inch diagonal screen, the 6536 with a 

12-inch diagonal screen, and the 6537 with a 
9-inch diagonal screen. These models are com­
patible with all existing 6530 terminal options, 
except T-TEXT word processing capability, and 
with all system and application software. 

The new terminals maintain the advanced 
ergonomic features of the original 653X fam­
ily, including detachable keyboards, nonglare 
screens with green phosphor characters, and 
low-contrast colors to ease eye strain. Tilt/ 
swivel and a 6-foot electronics-to-monitor 
cable set are standard on all models. With the 
addition of the low-profile keyboard, the new 
models meet the German DIN ergonomic 
standard, a set of design specifications for 
operator comfort required for selling terminals 
in many European countries, including Ger­
many and the Scandinavian countries. 

The 6535 typewriter-style keyboard is identi­
cal in size to the DYNAMITE workstation key­
board, expanding application opportunities in 
limited-space environments. Similar in layout 
to the 6530 keyboard, the new keyboard has 
simplified cursor key positioning in relation to 
the alpha and numeric keypads. The keyboard 
maintains the 16 program function keys and 
two-position tilt adjustment of the 6530 key­
board. Keyboards are available to match the 
international language character sets. 

DYNAMITE Workstation Enhancements 
There are five enhancements for the 
DYNAMITE workstation including two new 
option cards, two new communications prod­
ucts, and national language keyboards and 
software. Today's new DYNAMITE products 
and other recent product additions have 
greatly expanded the original DYNAMITE 
offering of just six months ago. There are now 
hard disk models, color models, a half dozen 
communications products, and also a half 
dozen feature options. 

AM6520 Communications Software. The 
AM6520 Communications Software provides 
byte-synchronous multipoint connection of 
DYNAMITE workstations to AM6520 and to 
6820 Terminal Cluster Concentrators (TCCs). 
This product consists of the AMT6530 termi­
nal emulator and the AM-IXF file transfer 
software on diskette. The DYNAMITE work­
stations can be mixed with 653X terminals 
currently being used. 
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Communications Control System (CCS). CCS 
is a unique product which helps customers 
write MS-DOS applications that can communi­
cate interactively with a host computer system 
or other device. It consists of an asynchronous 
communications driver and a set of Clan­
guage functions that can be linked with the 
application to transfer streams of characters 
to and from the DYNAMITE workstation. 

Graphics-combo Card. This product provides 
a comprehensive set of features on one card. 
Included are graphics that support color or 
monochrome IBM PC-compatible graphics 
(320x200, 640x200), high-resolution graphics 
(800x300), an IBM PC-compatible communi­
cations port, a parallel printer port, and a 
real-time clock with battery backup. 

Multifunction Card. The Multifunction Card 
is for applications that don't require graphics, 
but require a parallel printer port, IBM PC­
compatible asynchronous communications 
port, and/or real-time clock. All three are 
included on one card. 

National Language Support. This support 
includes keyboards and character sets for the 
most frequently required languages, and new 
international versions of MS-DOS. The 
national characters are supported both in the 
653X mode and the MS-DOS (IBM PC) mode. 
The character sets supported in the first 
release are: French, German/Austrian, 
Swedish/Finnish, Danish, Norwegian, Span­
ish, and U .K. 

PC LINK Workstation Software Site Licenses 
Tandem offers a variety of PC software site 
licenses to meet the needs of virtually all of 
our customers. Currently Tandem's PC6530 
product is covered by this program. PC6530 
workstation software, part of the PC LINK 
product group, includes 6530 terminal emula­
tion and Information Xchange Facility work­
station software for IBM PCs and other 
workstations compatible with the PC. 

The Corporate License gives the customer 
the right to make unlimited copies of specific 
software for workstations connected to any of 
the customer's Tandem systems. The customer 
receives one copy of the software, including 
documentation, from which to make addi­
tional copies. 

The System License gives the customer the 
right to make unlimited copies of specific 
software for workstations connected to a spe­
cific Tandem system. The customer receives 
one copy of the software, including documen­
tation, from which to make additional copies. 

Tandem also offers an update option that 
provides the customer with the right to make 
copies of any new releases of the software. The 
update option covers new releases issued dur­
ing a one-year period from the date of the 
License Order for the product. 

For customers who purchase Corporate or 
System licenses, but would rather not make 
their own duplicates, Tandem provides copies 
of the software and documentation at a special 
rate. 

SAFE-T-NET Encryption Subsystem 
SAFE-T-NET cryptographic device is a 
channel-attached peripheral device that per­
forms cryptographic functions with Tandem 
systems. The product provides data encryp­
tion, message authentication, and the capabil­
ity to change the master key on-line. 

SAFE-T-NET utility functions include 
encryption of SNAX terminal sessions on IBM 
3270 and PCs with cryptographic capabilities, 
and general-purpose encryption via a file­
system interface. The device complies with the 
U.S. National Bureau of Standards' Data 
Encryption Standard (DES). 

The on-line master key change facility is 
implemented by a patented mechanism. This 
feature maximizes availability and promotes 
sound security practices by allowing security 
administrators to change encryption keys 
without affecting system availability. 
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SAFEGUARD System Protection Software 
SAFEGUARD distributed system security soft­
ware, available with the B30 Nonstop systems 
software release in the spring of 1986, provides 
users of Tandem distributed networks with 
mainframe-level protection mechanisms that 
can be controlled from a single interface. 

SAFEGUARD software authenticates the 
identity of users who attempt to access the 
network. Any logon attempts, whether suc­
cessful or not, can be recorded. Once users are 
authenticated, SAFEGUARD protects all sys­
tem resources, allowing access only to autho­
rized users. 

System managers and security administra­
tors can also control access to any other 
shared network resource, including terminals, 
processes, printers, encryption devices, tape 
drives, and communication lines. The authori­
zation mechanism allows the security adminis­
trator to specifically define a list of users 
(both local and network) that have access to 
any of these resources. 

The ability to audit activities that involve 
shared resources is important in any security 
system. SAFEGUARD software allows security 
administrators to selectively record attempts 
to access any data file or shared network 
resource. 

See the accompanying article, "Distributed 
System Protection with SAFEGUARD," for 
more information. 

T-TEXT Support for Local Printers 
Effective with the B20 release of T-TEXT soft­
ware, 6530, 653 I, or 6532 terminals with 
T-TEXT word processing capability installed 
will be able to support locally attached 5530 
Letter Quality Printers with full T-TEXT for­
matting capability as a system-addressable 
printer through the new 6LAT Local Printer 
Interface Option. 

The printer interface option is used to cable 
a serial printer, including Tandem's 5520, 5530, 
and 554X models, directly to a 653X terminal. 
The printer can be configured as a local screen 
printer or as a separately addressable printer 
accessed via the AM6520 software. 

In the local screen print configuration, the 
PRINT key on the 653X and T-TEXT key­
boards can be used to print the contents of the 
host 653X screen. In the separately addressable 
configuration, the printer is treated as a sepa­
rate subdevice on an AM6520 communications 
line, so any user on the host computer system 
can access the printer through the system soft­
ware such as SPOOLER, T-TEXT/TFORM, 
and FUP. 

XLS Disk Storage Facility 
Designed specifically for high volume on-line 
transaction processing, the XL8 disk storage 
facility provides exceptional storage capacity 
for Nonstop systems. Tandem has pioneered 
the most advanced VLSI and thin-film media 
technology in the industry to offer this capac­
ity at a significantly lower cost per Mbyte. 
The XL8 disk device provides up to 4.2 giga­
bytes of storage in a single cabinet-as many 
as eight drives at 520 Mbytes each. 

All this capacity is packed into a footprint 
of only six square feet, providing storage of 
420 Mbytes per square foot (including service 
clearance). This is a real advantage when floor 
space is limited. 

Performance is not sacrificed to capacity. 
With eight actuators providing eight concur­
rent disk accesses, the XL8 yields very high 
throughput; it has an average seek time of less 
than 15 ms. The XL8 transfers data at 
1.86 Mbytes per second, making it suitable for 
retrieving and storing large, sequential files in 
batch operations. This makes the XL8 an 
excellent choice for batch as well as on-line 
transaction processing applications. 

See the accompanying articles, "Plated 
Media T~chnology Used in the XL8 Storage 
Facility" and "Data Encoding Technology 
Used in the XL8 Storage Facility," for more 
information. 

--- ----

Corinne Robinson is the product manager for Tandem's Lan­
guages and Tools. She joined Tandem in June 1983 as a software 
designer. Before joining Tandem, Corinne spent seven years 
working in microprogramming, diagnostics, and languages for 
another computer vendor. Corinne has a B.S. in Information and 
Computer Science from the University of California at Irvine. 

TANDEM SYSTEMS REVIEW• JUNE 1986 



n November 1985, Tandem 
released its C compiler. The goal 
of the software development team 
was to produce a high-quality, 
reliable compiler in the shortest 
possible time at a reasonable 
cost. The application of state-of­

the-art testing methods and tools played a 
major role in achieving this goal. 

This article describes how currently avail­
able, off-the-shelf software testing tools offer a 
practical, cost-effective approach to thor­
oughly testing a C compiler. While the article 
is restricted specifically to Tandem's experi­
ences in testing its C compiler, readers should 
find it an interesting and valuable example of 
what can be achieved by the use of these tech­
niques and tools, some of which are applicable 
to a broader class of problems. 

Increase in Available C Testing Tools 
In general, during the initial phase of the test­
ing life cycle, if a product to be tested is in 
widespread use or is standardized, it is worth­
while to examine current testing methods and 
available testing products. C meets both these 
criteria, as it is now in widespread use and is 
in the process of being standardized by the 
American National Standards Institute (ANSI). 

As the popularity of C increases, more com­
piler vendors are entering the market, and the 
number of C programs and C programmers 
continues to grow. Also, a small but growing 
number of companies are coming forward to 
offer help in the design and testing of C com­
pilers. It is no longer necessary to create a C 
test library entirely in-house or to rely on the 
outdated practice of compiling the compiler as 
a substitute for software quality assurance. 

Technical Paper: 
State-of-the-art 

C Compiler Testing 

Common Approaches to Testing 
Compiling the Compiler 
An informal survey of C implementors at 
more than a dozen companies revealed that 
the most common approach to compiler test­
ing is to compile the compiler, assuming, of 
course, that the compiler is written in C. This 
comment was often heard: "If the compiler 
can compile itself without producing error 
messages, it's time to ship." Regardless of the 
language in which the compiler is written, 
there are many reasons why this is not a suffi­
cient approach to compiler testing. 

Assume for a moment that compiling the 
compiler is in fact a thorough approach to C 
compiler testing. One would then expect the 
compiler source to use all of the C language 
features. Commonly, however, fundamental 
features of the language are avoided when a 
coi:ripiler is created. Two examples are floating 
pomt operations and bit fields. Features not 
used in the compiler remain completely 
untested when this approach to validation is 
used. Experience at Tandem suggests that a 
strong relationship exists between error-prone 
compiler features and the absence of those 
features in the compiler source itself. 
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Also missing from the compiler source are 
invalid C programs. These deviant programs, 
a necessary part of a thorough test library, 
ensure that the compiler takes the correct 
action when given invalid and unexpected 
input. Coverage statistics (presented later) 
indicate that without deviance tests, 15% to 
25% of the compiler code is not executed. 

As Myers clearly stated in 1979, one neces­
sary component of a test case is the ability to 
compare the actual result to the expected 
result. When this comparison fails, a potential 
incident has been detected and is logged. Since 
compilers, and application programs in gen­
eral, do not rigorously compare the actual 
result to the expected result, it is possible that 
a large class of errors could go undetected, 
even though the compiler uses a feature. 

Finally, and perhaps most interesting, test 
coverage analysis proved that in the Tandem 
environment, using the compiler as a test case 
forced execution of only 60% of the segments 
in the compiler. Forty percent of the compiler 
was virtually unexecuted, and, thus, untested. 

Compiling Applications 
Many vendors who implement and sell C com­
pilers also sell a variety of C utilities. The 
second tier of testing often consists of running 
available in-house C applications through the 
newly debugged compiler. Since the compiler 
itself is an application, all of the arguments 
given above for compiling the compiler hold 
for applications in general. 

Unlike a well-written test case that logs 
explicit information about any difference 
between expected and actual results, an appli­
cation may abort at compilation or execution 
time when encountering a compiler error. An 
application that leaves behind few, if any, 
clues about the error can be the cause of a 
potentially long, tedious, and costly error­
isolation session. 

When a well-written test case logs a poten­
tial incident, chances are good (over 90%) 
that the compiler is in error and that the exact 
nature of the error will not take long to iso­
late. Experience has shown that application 
miscues discover compiler errors a signifi­
cantly lower percentage of the time. 

While compiling the compiler and compiling 
applications do have a place in testing a com­
piler, companies that rely exclusively on these 
techniques as a substitute for software quality 
assurance are apt to experience a long beta 
test cycle and are likely to produce an unreli­
able compiler. 

Third-party Tests 
In general, testing an original software prod­
uct that is under development requires a sig­
nificant, original, in-house effort to create a 
regression test library from scratch. For C, 
this was the situation in the early 1970s when 
Dennis Ritchie designed the C programming 
language to aid in the development of the 
UNIX operating systems and their utilities 
(Rosier, 1984). As a result, AT&T created the 
first C test library. 

Today, however, a vendor entering the C 
marketplace can expect much help in the test 
phases of C compiler development. Several 
standards of the IEEE Computer Society are 
now available to guide the preparation and 
content of documents related to testing (see 
IEEE standards 829-1983 and 730-1984). These 
worthwhile documents are useful for checking 
the completeness of the testing process. 

C has not had the benefit of an official, 
formal compiler-validation facility as is avail­
able for other programming languages such as 
Ada, BASIC, COBOL, FORTRAN, and Pascal 
(Wichmann and Ciechanowicz, 1983). On the 
other hand, because of this lack of an official 
testing source, several independent companies 
have been formed to fill the gap, each offering 
a unique approach to validation. 

By contacting key national testing and soft­
ware quality-assurance organizations, C 
authors, educators, editors, implementors, 
ANSI representatives, utility vendors, consult­
ants, user groups, publishers, and validation 
centers, the C compiler development team at 
Tandem discovered several generic C test suites 
and specific tools to aid in the creation of 
C tests. 
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Determining Test Effectiveness 
After acquiring four commercially available 
test suites, the developers needed a practical, 
objective method of determining their com­
pleteness and their individual and collective 
contribution to the complete testing process. 
Practical testing methods include realistic pro­
cedures for determining when testing has been 
completed (Howden, 1985). Applied to com­
pilers, test completion criteria specify when 
the process of executing the compiler with the 
intent of finding errors is judged to be com­
plete. The most common, and yet inadequate, 
criteria observed in practice are (Myers, 1979): 

1. Stop when all available tests fail to produce 
new errors. 

2. Stop when the distribution-to-customers 
milestone arrives. 

3. Stop because there is another product that 
should be tested immediately (or sooner). 

All of these criteria are useless since they are 
independent of test quality; i.e., all three goals 
can be reached by doing absolutely nothing. 
A better criterion is to stop testing when over 
95% of the C compiler segments have been 
exercised. Although 95% segment coverage 
might be considerably more difficult to 
achieve for an Ada compiler, this goal is 
realistic for most C compilers, considering 
their size. 

Test Coverage Analysis 
The Test Coverage Analysis Tool (TCAT) for 
C aids in investigating the effectiveness of 
program testing. 1 TCAT expresses test cover­
age in terms of segments exercised and not 
exercised. A segment is a basic block of con­
secutive statements that may be entered only 
at the beginning and that, when entered, are 
executed in sequence without halt or possibil­
ity of branch ( except at the end of the basic 
block). 

'TCAT was developed by Edward Miller, Software Research Associates, P.O. 
Box 2432, San Francisco, CA 94126. 

Every executable statement is in a segment 
that corresponds to an edge in the program's 
directed graph. Each segment has only one 
entry and one exit node. TCAT measures the 
extent to which one test or a test suite exer­
cises all of the segments in a program (i.e., 
a C compiler). 

TCAT Results 
The Tandem C software development team 
used TCAT to determine the effectiveness of 
the four test suites. Table 1 summarizes the 
percentage of segments each suite exercised. 
Suite A consists of the programs in The C 
Puzzle Book (Feuer, 1982). Programmers in 
various computer companies created the other 
suites by going through Appendix A of 
Kernigham and Ritchie's The C Programming 
Language and hand-coding tests. 

The Cumulative Coverage column includes 
the contribution from the entry on a given line 
plus the contribution from each previous line. 
For example, suites A, B, and C combined 
yield a coverage of 70%. All four suites com­
bined yield a coverage of 76%. 

It is interesting that although all four suites 
were created independently, their overlap with 
respect to segment coverage is considerable. In 
fact, Suite D, when combined with the three 
other suites gains only 2% more segments 
compared to its coverage alone. 

Table 1. 
Segment coverage of four C compiler test suites. 

Stand-alone Cumulative 
Test suite Segments hit coverage coverage 

Suite A 1567 57% 57% 
Suite B 1754 64% 66% 
SuiteC 1863 68% 70% 
Suite D 2023 74% 76% 
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These numbers say nothing about unique 
paths through the code or unique sets of input 
data. There is evidence, however, that the 
suites are more different than simple 
segment-coverage measurements indicate. 
Early in the development cycle, when many 
fundamental errors were present, several or all 
of the test suites would often discover the same 
error. Later in the cycle, as the product began 
to mature, it became more frequent for only 
one of the test suites to discover new errors. 

One reason for this is that each suite tended 
to closely follow a particular coding style that 
was consistent throughout the suite, but which 
varied from suite to suite. While there are 
advantages to having a test library composed 
of functionally overlapping test cases written 
by different people, this is often not possible 
for economic reasons. Testers would do well to 
employ as much randomization as possible, 
however (i.e., try to test the code in as many 
ways as possible). This also supports the idea 
of product developers performing their own 
unit tests while independent testers create the 
test suites in parallel. Having either a product 
developer or testing developer do all the 
testing is insufficient. 

As is clear in Table 1, although Suite D 
leaves 26% of the compiler untested, it is 
superior to the other test suites that were also 
designed without the guidance of a coverage 
tool. Typical programmers who do not have 
the benefit of detailed coverage analysis 
normally produce test suites that cover only 
25% to 50% of the segments (see Miller, 
1984). Thus, all the programmers who created 
the above suites must be above average. One 
reason for the higher coverage obtained by 
Suite Dis its developer's understanding of the 
importance of deviance test cases, an ingre­
dient missing from the others. 2 

'Perennial Software Services Group provides the C Compiler Validation Suite, 
represented in this article as Suite D. Their address is 3130 De La Cruz Blvd., 
Santa Clara, CA 95054. 

3The self-checking C expression generator is available from Ralph A. Phraner 
and Associates, 516 Shrader Street, San Francisco, CA 941 I 7. 

Since all four suites combined still left 24% 
of the compiler untested, it was clear that the 
test completion goal of 95% was not satisfied. 
Details on what was needed to increase the 
coverage to 95 OJo are included in the next 
section. 

Missing Tests 
As Table 1 indicates, independent pro­
grammers, without the aid of a coverage tool 
and specific test completion criteria, decided 
when the testing tasks in these suites was 
complete. Using the specific feedback from 
the TCAT coverage analysis, one Tandem 
developer needed only one month to increase 
the test coverage to exceed 95 OJo. 

The following are the less obvious kinds of 
test case that are easy to detect with the use of 
a coverage tool but easy to miss without one. 

Binary Expressions with Constant Operands. 
For example, a good mix of short, unsigned, 
long, and double operands combined with a 
variety of the operators *, + , > > , < < , < , 
>, < = , > = , = = , ! = , &, ", and I is 
useful. In this context, operands are constant. 

Bit-field Tests. In particular, operations on bit 
fields in arithmetic expressions should be 
tested. For example, field tests should ensure 
that the - , - , ! , *, /, OJo, > , < , = = , &, ", I , 
&&, 11, ? , + + , and - - operators work 
correctly in expressions containing bit fields. 

Combination Tests. A suite that does an excel­
lent job of testing individual features, but 
lacks many more tests that combine the fea­
tures, is insufficient. For example, an astro­
nomical number of expressions are possible 
that contain up to 32 random operators using 
random data types for operands. Ideally, sepa­
rate, machine-generated programs should be 
created for the combination tests. Fortunately, 
a self-checking C expression generator is com­
mercially available. 3 
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Preprocessor Features. This aspect of the lan­
guage is tempting to neglect during testing. 
The preprocessor is a critical part of the lan­
guage, however, and must be tested. Imple­
menting the preprocessor is a difficult 
programming task that consumes a significant 
part of the source code comprising any good C 
compiler. Developers must be sure to include 
tests for #else that involve nested #if, #if def, 
and #if ndef, and tests for #undef, as well 
as error conditions within preprocessor 
commands. 

Deviance Tests. As mentioned earlier, these 
are programs that differ from standard C in 
some way, for example: 

■ Ado statement missing the while clause. 
■ A goto statement missing the label from 
the goto. 

■ A goto statement having a label whose name 
is the same as a local variable. 
■ A #define preprocessor command containing 
a premature end of file. 

Library Tests. Early specifications of the C 
language did not incorporate the run-time 
library routines. Since ANSI has incorporated 
the library into the language, a C test suite 
that ignores the library functions specified by 
ANSI is severely deficient. 

Conversions. Although int is typically well 
covered, tests are needed that contain expres­
sions using operands of different types within 
the same expression (e.g., an expression mix­
ing operands of type long, float, and double). 
In addition, tests that force conversions 
involving pointers are useful. 

Compiler-option Tests. This area is also 
tempting to neglect, but compiler users detest 
easy discovery of options that do not perform 
as documented. 

for Statement. A for statement having a test 
value (a second expression) that is zero is 
useful. 

Keyword default. The test library should 
include a test case that tests for proper oper­
ation of the optional keyword default. 

Bit-field Initialization. Initializing static 
structures containing bit fields is useful. 

Expression. An expression that contains a 
function call using call-by-reference parame­
ters is valuable as a test component. 

#if Preprocessor Command. Also useful is an 
#if preprocessor command that contains a 
constant expression using a hexadecimal con­
stant, an octal constant, a character constant, 
~ (a tilde, the one's complement operator), 
OJo, /, <, >, ! , = , &, ", I , : , ? , (, and). 
(These do not necessarily need to be used in 
the same command.) 

Hexadecimal Constants. A variety of escape 
sequences that contain hexadecimal constants 
(the hex code following a backslash), in which 
the hex constants contain a mixture of digits, 
uppercase A through F, and lowercase a 
throughf. 

Limits Tests. The ANSI C Draft Standard 
specifies many minimal limits that must be 
met or exceeded and, therefore, should be 
tested; e.g., #include is limited to nesting 
levels of eight or more. 

Testing Compiler Performance 
In addition to testing the features of their C 
compiler, vendors must ensure that the com­
piler produces fast object code and that it 
compiles quickly. The importance of providing 
an ability to quantitatively assess the compil­
er's performance before each release and com­
pare it with previous releases may not be as 
obvious. Programs such as the Sieve of Era­
tosthenes and Fibonacci number generation, 
as well as other benchmark test cases covering 
a variety of language constructs, are readily 
available from the literature (Leibson, et al., 
1985). These programs are easily added as 
performance test cases. 
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Shorter Alpha- and Beta-test Phases 
A common misconception among software 
producers is that complete testing means more 
cost to the vendor and a longer development 
cycle. On the contrary, the use of a thorough 
internal test library substantially reduces the 
length of the alpha- and beta-test phases with­
out lengthening any other development phase. 
A fundamental function served by the beta 
test is to confirm that the product is well 
designed and tested; if it has been, a six-week 
beta test should suffice to confirm its quality. 

A poorly tested compiler requires beta-test 
users to discover errors. This results in several 
rounds of testing, each of which introduces a 
new version of the compiler to correct errors 
found in the previous one. Each round of the 
beta test requires the time to release the latest 
version; distribute it to the users, wait for 
them to install it, find errors, and communi­
cate them; attempt to decipher the often cryp­
tic and perhaps erroneous information; and 
correct the real errors. It should be obvious 
that most of this wasted time would be 
avoided by conducting several considerably 
shorter rounds of in-house testing before 
beginning the alpha test. 

Since, for one compiler update, one round 
of testing can easily take three months during 
the beta-test phase, a compiler that is beta­
tested without the benefit of a good in-house 
test library could spend a long time in that 
phase. While one round is often sufficient for 
a solid product, three to six (and perhaps 
more) should be expected for a compiler that 
has been tested minimally in-house. Thus, if 
four rounds of testing are needed, a product 
could spend over a year in the beta-test phase, 
resulting in a loss of revenue and customers. 

The Tandem C Compiler was released after 
less than six weeks in the first and only round 
of beta testing. No serious release-stopping 
software errors were discovered in the beta test 
or in the several months that followed the first 
customer shipment. 

Conclusion 
Applying currently available testing tools 
shortens the development time of a C compiler 
and increases the quality of the product. It is 
essential that the testing process occur in par­
allel with the development process. 

C compiler vendors can avoid the losses 
resulting from inadequate testing by employ­
ing the skills of a permanent, well-trained 
software quality-assurance staff and a com­
plete and appropriate library of compiler test­
ing tools. Traditional testing approaches, such 
as compiling the compiler, are less than satis­
factory and can now be replaced with reliable 
C testing tools. 
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