

- - his column summarizes
Tandem product announce­
ments for the fourth calendar
quarter of 1985. For ease of
reference, new products are
listed in alphabetical order.

B20 Release-Nonstop
System Software
The B20 release of the NonStop system soft­
ware, available November 1985, incorporates a
significant number of product enhancements,
new products, and bug fixes. Tandem recom­
mends that all customers install it.

The new products column in the February
1986 issue of the Tandem Systems Review dis­
cussed the following B20 release products:

■ C compiler.

■ COBOL and FORTRAN separate
run-time libraries.
■ TACL, a flexible command interpreter.
■ Information Management Technology (IMT)
products, PS MAIL™ for 6530 terminals,
PS MAIL for 3270 terminals, and PS TEXT
EDIT.

■ TAL compiler enhancements.

This column describes the following new
B20 products:
■ Single-ported Communication Interface
Unit for the 6100 Communications Subsystem.
■ SAFE-T-NET™ encryption subsystem.

Tandem's New Products

DP2 and TMF
DP2 and the network Transaction Monitoring
Facility (TMF) are generally available with this
release. The June 1985 issue of the Tandem
Systems Review contains articles describing
the benefits of DP2. By upgrading to the B20
release, customers get autorollback, downed
volume reintegration, increased reliability, and
DP2 support.

DPl is functionally stabilized as of the B20
release. DPl will be included in the B-series
releases, but will not be shipped with C-series
releases.

TMDS
The B20 release includes two new subsystems
of the Tandem Maintenance and Diagnostic
System (TMDS), which provides system sup­
port for on-line diagnostics. TMDS was first
released in the BOO release with the FOX™ diag­
nostic. (See "Introducing TMDS, Tandem's
New On-line Diagnostic System," in the June
1985 issue of the Tandem Systems Review.)
The B20 release contains TMDS subsystems for
disk and tape diagnostics.

JUNE 1986 TANDEM SYSTEMS REVIEW 67

68

Labeled Tapes
Labeled tape handling is available in the B20
release, but distribution will be limited until
the B30 release while the product is tested at
customer sites. Contact a Tandem systems
analyst for more information. The B20 release
provides the following features for processing
labeled tapes:

■ Labeled tapes can be accessed from COBOL
and TAL applications.

■ ANSI standard (X3.27-1978) and IBM
standard (GC26-3795-3) labels are supported.
■ Nine-track tape is supported in three differ­
ent densities: 800 (NRZ), 1600 (PE), and 6250
(OCR) bits per inch (bpi).

■ Each tape file is identified to the
GUARDIAN 90 operating system by a unique
logical file name; a set of attributes describing
the file is collected in a new structure.

■ The tape process recognizes the tape mount
and reports the mount information to a pro­
cess that performs Automatic Volume Recog­
nition (AVR).

■ A tape management utility program
(TAPECOM) provides the user interface for
tape-related operations.

INSPECT Symbolic Debugger
INSPECT supports a new SOURCE command
that can be used to display the source program
statement(s) corresponding to a code location.

6100 Communications Subsystem
The X.21 call-control interface is supported by
new 6100 Communications Subsystem (CSS)
products: Line Interface Module 6129-7 (X.21
LIM) and Line Interface Unit (X.21 LIU). The
6100 ADCCP protocol module allows an appli­
cation to set up an X.21 circuit-switched con­
nection and communicate over the circuit
using the ADCCP bit-synchronous communi­
cation protocols.

TCP
A-series and BIO releases of the GUARDIAN
operating system included both the old and the
new TCPs to facilitate migration to the new
version. The new TCP, PATHTCP2 introduced
in A06, offers significant performance
improvement by using extended data segments
and reducing disk 1/0 operations in the TCP.
Many sites have converted in the last 18
months with no significant problems. Because
of our customers' positive experience with the
newly designed TCPs, Tandem has split the
B20 PATHWAY transaction processing system
into two products: a Nonstop version (T9153
PATHWAY) and a NonStop 1 + version (T9103
PATHWAY). Only Nonstop systems will sup­
port PATHTCP2 and SCOBOLX (which
replaces SCOBOL); only Nonstop 1 + systems
will support PATHTCP and SCOBOL.

In a future release, ENFORM and DDL will
also split into two products-a NonStop
systems version and a NonStop 1 + systems
version.

For additional information, see "A New
Design for the PATHWAY TCP" (Tandem Jour­
nal, Spring 1984) and "The PATHWAY TCP:
Performance and Tuning" (Tandem Systems
Review, February 1985).

Product Overview
Tandem has recently released the following
new or enhanced products:

■ 5110/5114 tape drives for Nonstop EXT
systems.
■ 5130/31 tape subsystem.
■ 6100 Communications Subsystem
enhancements.
■ 6535/36/37 Ergonomic Terminals.

■ DYNAMITE™ workstation enhancements.
■ PC LINK™ Workstation Software Site
Licenses.
■ SAFE-T-NET cryptographic device.
■ SAFEGUARD system protection software
(planned for release in the spring of 1986).
■ T-TEXT™ support for local printers.
■ XLS disk storage facility.

TANDEM SYSTEMS REVIEW• JUNE 1986

Literature is available for many of these
products from Tandem sales representatives.
The "SAFE™ Integrated Security Products"
brochure describes SAFE-T-NET and
SAFEGUARD. The "Disk Drives" brochure
describes both the VS and XLS disk storage
facilities. Information sheets are available for
the Communications Control Subsystem
(CCS) and National Language Support
enhancements for the DYNAMITE worksta­
tions. A data sheet is available for the 5130/31
Tape Subsystem.

5110/5114 Tape Drives for Nonstop EXT
Systems
Two stand-alone tape drives are available for
the Nonstop EXT system: the 5110 and 5114.
Like the NonStop EXT, these tape drives do
not require a computer-room environment.
Both devices are nine-track reel-to-reel tape
drives; the 5110 tape drive operates at 45 inches
per second (ips) and the 5114, at 125 ips. Each
drive comes complete with cabling, a stand­
alone cabinet, and a patch panel for the
Nonstop EXT system.

The 5110 is a low-cost utility drive operating
at 45 ips. The device provides both 800 bits
per inch (bpi) NRZI and 1600 bpi phase­
encoded formats.

The 5114 tape drive operates at 125 ips, pro­
viding both 800 bpi NRZI and 1600 bpi phase­
encoding formats.

Storage capacity of these tape drives varies
depending on the recording density and block
size that are selected. At 1600 bpi, with a
maximum recommended block size of
8 Kbytes, 40.6 Mbytes can be stored on a
2400-foot tape. At 800 bpi, with a maximum
recommended block size of 4 Kbytes,
20.6 Mbytes of data can be stored on a
2400-foot tape.

There is an option for Nonstop EXT pack­
aged systems (including NonStop EXT /TXP
package upgrades) that allows the customer to
substitute the 125 ips drive for the standard
45 ips drive.

5130/31 Tape Subsystem
The 5130/5131 is a mainframe-class tape sub­
system that provides fast and efficient tape
operations. A tape speed of 200 ips, coupled
with recording densities of 6250 bpi Group
Coded Recording (GCR) and 1600 bpi Phase
Encoding (PE), provides fast, efficient backup

of large data bases. Along with high perfor­
mance, the 5130/31 incorporates user-friendly
features such as power windows and tape
autoloading. The 5130 tape subsystem includes
a tape transport, a formatter, a control unit,
and the cables required to install a single-drive
subsystem. Up to three additional 5131 tape
transports can be attached to a 5130 to config­
ure a maximum, four-drive subsystem. The
5130/31 transfers data at a maximum rate of
1.25 Mbytes per second.

The 5130/31 can read and write ANSI­
compatible PE and GCR tapes. Using GCR,
the tape subsystem provides up to 180 Mbytes
of storage on a single 2400-foot reel of tape.
Additional features such as tape quality
monitoring, an innovative tape transport
design, and diagnostic functions ensure data
reliability.

6100 CSS Enhancements
New protocols for the 6100 Communications
Subsystem (6100 CSS) are developed for use on
the 6100 CSS under the CP6100 Communica­
tions Access Process. Any customer can
request a protocol by having a Tandem analyst
or sales representative fill out a Protocol
Request Form. However, Tandem reserves
the right to decide whether or not to approve
the protocols.

Single-ported Communication Interface Unit.
Many of our customers have complained about
the number of channel addresses used by a
single 6100 Communications Subsystem. Pre­
viously, the 6100 CSS required 64 of the 256
available channel addresses. The Single-ported
Communication Interface Unit (CIU) solves
this problem by reducing the number of
required channel addresses to 32.

JUNE 1986 • TANDEM SYSTEMS REVIEW 69

70

UTS-40 Supervisor Protocol. This protocol
provides software for the Sperry Univac Uni­
versal Terminal System 40 (UTS-40) Multi­
point Supervisor protocol line task. The
UTS-40 Supervisor provides the ability to con­
trol multiple terminals on a synchronous com­
munications line operating under the Univac
UTS-40 polling protocol. Terminals supported
are those that conform to the protocol
described in the Sperry Univac UTS-40 Single
Station System Reference (Univac number
UP-9143-B).

UTS-40 Tributary Protocol. Provides software
for the Sperry Univac UTS-40 Tributary multi­
point protocol line task. The UTS-40 Tributary
allows the Tandem host system to look like
one or more secondary stations to the supervi­
sor. This means that users can write an appli­
cation simulating multiple terminals
associated with a single Remote Identifier
(RID), on a synchronous line operating under
the UTS-40 polling protocol. Terminals simu­
lated are those that conform to the protocol
described in the Sperry Univac UTS-40 Single
Station System Reference (Univac number
UP-9143-B).

V.35 Line Interface Unit. The new V.35 LIU
currently supports CSSADCCP and X.25 soft­
ware. The LIU consists of one Communica­
tions Line Interface Processor (CLIP) and one
V.35 electrical interface, Line Interface Mod­
ule (LIM). This LIM uses a 25-pin connector
rather than the 34-pin connector described in
the V.35 standard. Customers must supply a
special cable. A wiring diagram is included
with each LIM.

6535/36/37 Ergonomic Terminals
Tandem's three new ergonomic terminals offer
all the functionality of 653X models, plus new
low-profile keyboards. These terminals take
up less desk space and meet European ergo­
nomic requirements. New models are the 6535
with a 15-inch diagonal screen, the 6536 with a

12-inch diagonal screen, and the 6537 with a
9-inch diagonal screen. These models are com­
patible with all existing 6530 terminal options,
except T-TEXT word processing capability, and
with all system and application software.

The new terminals maintain the advanced
ergonomic features of the original 653X fam­
ily, including detachable keyboards, nonglare
screens with green phosphor characters, and
low-contrast colors to ease eye strain. Tilt/
swivel and a 6-foot electronics-to-monitor
cable set are standard on all models. With the
addition of the low-profile keyboard, the new
models meet the German DIN ergonomic
standard, a set of design specifications for
operator comfort required for selling terminals
in many European countries, including Ger­
many and the Scandinavian countries.

The 6535 typewriter-style keyboard is identi­
cal in size to the DYNAMITE workstation key­
board, expanding application opportunities in
limited-space environments. Similar in layout
to the 6530 keyboard, the new keyboard has
simplified cursor key positioning in relation to
the alpha and numeric keypads. The keyboard
maintains the 16 program function keys and
two-position tilt adjustment of the 6530 key­
board. Keyboards are available to match the
international language character sets.

DYNAMITE Workstation Enhancements
There are five enhancements for the
DYNAMITE workstation including two new
option cards, two new communications prod­
ucts, and national language keyboards and
software. Today's new DYNAMITE products
and other recent product additions have
greatly expanded the original DYNAMITE
offering of just six months ago. There are now
hard disk models, color models, a half dozen
communications products, and also a half
dozen feature options.

AM6520 Communications Software. The
AM6520 Communications Software provides
byte-synchronous multipoint connection of
DYNAMITE workstations to AM6520 and to
6820 Terminal Cluster Concentrators (TCCs).
This product consists of the AMT6530 termi­
nal emulator and the AM-IXF file transfer
software on diskette. The DYNAMITE work­
stations can be mixed with 653X terminals
currently being used.

TANDEM SYSTEMS REVIEW• JUNE 1986

Communications Control System (CCS). CCS
is a unique product which helps customers
write MS-DOS applications that can communi­
cate interactively with a host computer system
or other device. It consists of an asynchronous
communications driver and a set of Clan­
guage functions that can be linked with the
application to transfer streams of characters
to and from the DYNAMITE workstation.

Graphics-combo Card. This product provides
a comprehensive set of features on one card.
Included are graphics that support color or
monochrome IBM PC-compatible graphics
(320x200, 640x200), high-resolution graphics
(800x300), an IBM PC-compatible communi­
cations port, a parallel printer port, and a
real-time clock with battery backup.

Multifunction Card. The Multifunction Card
is for applications that don't require graphics,
but require a parallel printer port, IBM PC­
compatible asynchronous communications
port, and/or real-time clock. All three are
included on one card.

National Language Support. This support
includes keyboards and character sets for the
most frequently required languages, and new
international versions of MS-DOS. The
national characters are supported both in the
653X mode and the MS-DOS (IBM PC) mode.
The character sets supported in the first
release are: French, German/Austrian,
Swedish/Finnish, Danish, Norwegian, Span­
ish, and U .K.

PC LINK Workstation Software Site Licenses
Tandem offers a variety of PC software site
licenses to meet the needs of virtually all of
our customers. Currently Tandem's PC6530
product is covered by this program. PC6530
workstation software, part of the PC LINK
product group, includes 6530 terminal emula­
tion and Information Xchange Facility work­
station software for IBM PCs and other
workstations compatible with the PC.

The Corporate License gives the customer
the right to make unlimited copies of specific
software for workstations connected to any of
the customer's Tandem systems. The customer
receives one copy of the software, including
documentation, from which to make addi­
tional copies.

The System License gives the customer the
right to make unlimited copies of specific
software for workstations connected to a spe­
cific Tandem system. The customer receives
one copy of the software, including documen­
tation, from which to make additional copies.

Tandem also offers an update option that
provides the customer with the right to make
copies of any new releases of the software. The
update option covers new releases issued dur­
ing a one-year period from the date of the
License Order for the product.

For customers who purchase Corporate or
System licenses, but would rather not make
their own duplicates, Tandem provides copies
of the software and documentation at a special
rate.

SAFE-T-NET Encryption Subsystem
SAFE-T-NET cryptographic device is a
channel-attached peripheral device that per­
forms cryptographic functions with Tandem
systems. The product provides data encryp­
tion, message authentication, and the capabil­
ity to change the master key on-line.

SAFE-T-NET utility functions include
encryption of SNAX terminal sessions on IBM
3270 and PCs with cryptographic capabilities,
and general-purpose encryption via a file­
system interface. The device complies with the
U.S. National Bureau of Standards' Data
Encryption Standard (DES).

The on-line master key change facility is
implemented by a patented mechanism. This
feature maximizes availability and promotes
sound security practices by allowing security
administrators to change encryption keys
without affecting system availability.

JUNE 1986 TANDEM SYSTEMS REVIEW 71

72

SAFEGUARD System Protection Software
SAFEGUARD distributed system security soft­
ware, available with the B30 Nonstop systems
software release in the spring of 1986, provides
users of Tandem distributed networks with
mainframe-level protection mechanisms that
can be controlled from a single interface.

SAFEGUARD software authenticates the
identity of users who attempt to access the
network. Any logon attempts, whether suc­
cessful or not, can be recorded. Once users are
authenticated, SAFEGUARD protects all sys­
tem resources, allowing access only to autho­
rized users.

System managers and security administra­
tors can also control access to any other
shared network resource, including terminals,
processes, printers, encryption devices, tape
drives, and communication lines. The authori­
zation mechanism allows the security adminis­
trator to specifically define a list of users
(both local and network) that have access to
any of these resources.

The ability to audit activities that involve
shared resources is important in any security
system. SAFEGUARD software allows security
administrators to selectively record attempts
to access any data file or shared network
resource.

See the accompanying article, "Distributed
System Protection with SAFEGUARD," for
more information.

T-TEXT Support for Local Printers
Effective with the B20 release of T-TEXT soft­
ware, 6530, 653 I, or 6532 terminals with
T-TEXT word processing capability installed
will be able to support locally attached 5530
Letter Quality Printers with full T-TEXT for­
matting capability as a system-addressable
printer through the new 6LAT Local Printer
Interface Option.

The printer interface option is used to cable
a serial printer, including Tandem's 5520, 5530,
and 554X models, directly to a 653X terminal.
The printer can be configured as a local screen
printer or as a separately addressable printer
accessed via the AM6520 software.

In the local screen print configuration, the
PRINT key on the 653X and T-TEXT key­
boards can be used to print the contents of the
host 653X screen. In the separately addressable
configuration, the printer is treated as a sepa­
rate subdevice on an AM6520 communications
line, so any user on the host computer system
can access the printer through the system soft­
ware such as SPOOLER, T-TEXT/TFORM,
and FUP.

XLS Disk Storage Facility
Designed specifically for high volume on-line
transaction processing, the XL8 disk storage
facility provides exceptional storage capacity
for Nonstop systems. Tandem has pioneered
the most advanced VLSI and thin-film media
technology in the industry to offer this capac­
ity at a significantly lower cost per Mbyte.
The XL8 disk device provides up to 4.2 giga­
bytes of storage in a single cabinet-as many
as eight drives at 520 Mbytes each.

All this capacity is packed into a footprint
of only six square feet, providing storage of
420 Mbytes per square foot (including service
clearance). This is a real advantage when floor
space is limited.

Performance is not sacrificed to capacity.
With eight actuators providing eight concur­
rent disk accesses, the XL8 yields very high
throughput; it has an average seek time of less
than 15 ms. The XL8 transfers data at
1.86 Mbytes per second, making it suitable for
retrieving and storing large, sequential files in
batch operations. This makes the XL8 an
excellent choice for batch as well as on-line
transaction processing applications.

See the accompanying articles, "Plated
Media T~chnology Used in the XL8 Storage
Facility" and "Data Encoding Technology
Used in the XL8 Storage Facility," for more
information.

--- ----

Corinne Robinson is the product manager for Tandem's Lan­
guages and Tools. She joined Tandem in June 1983 as a software
designer. Before joining Tandem, Corinne spent seven years
working in microprogramming, diagnostics, and languages for
another computer vendor. Corinne has a B.S. in Information and
Computer Science from the University of California at Irvine.

TANDEM SYSTEMS REVIEW• JUNE 1986

n November 1985, Tandem
released its C compiler. The goal
of the software development team
was to produce a high-quality,
reliable compiler in the shortest
possible time at a reasonable
cost. The application of state-of­

the-art testing methods and tools played a
major role in achieving this goal.

This article describes how currently avail­
able, off-the-shelf software testing tools offer a
practical, cost-effective approach to thor­
oughly testing a C compiler. While the article
is restricted specifically to Tandem's experi­
ences in testing its C compiler, readers should
find it an interesting and valuable example of
what can be achieved by the use of these tech­
niques and tools, some of which are applicable
to a broader class of problems.

Increase in Available C Testing Tools
In general, during the initial phase of the test­
ing life cycle, if a product to be tested is in
widespread use or is standardized, it is worth­
while to examine current testing methods and
available testing products. C meets both these
criteria, as it is now in widespread use and is
in the process of being standardized by the
American National Standards Institute (ANSI).

As the popularity of C increases, more com­
piler vendors are entering the market, and the
number of C programs and C programmers
continues to grow. Also, a small but growing
number of companies are coming forward to
offer help in the design and testing of C com­
pilers. It is no longer necessary to create a C
test library entirely in-house or to rely on the
outdated practice of compiling the compiler as
a substitute for software quality assurance.

Technical Paper:
State-of-the-art

C Compiler Testing

Common Approaches to Testing
Compiling the Compiler
An informal survey of C implementors at
more than a dozen companies revealed that
the most common approach to compiler test­
ing is to compile the compiler, assuming, of
course, that the compiler is written in C. This
comment was often heard: "If the compiler
can compile itself without producing error
messages, it's time to ship." Regardless of the
language in which the compiler is written,
there are many reasons why this is not a suffi­
cient approach to compiler testing.

Assume for a moment that compiling the
compiler is in fact a thorough approach to C
compiler testing. One would then expect the
compiler source to use all of the C language
features. Commonly, however, fundamental
features of the language are avoided when a
coi:ripiler is created. Two examples are floating
pomt operations and bit fields. Features not
used in the compiler remain completely
untested when this approach to validation is
used. Experience at Tandem suggests that a
strong relationship exists between error-prone
compiler features and the absence of those
features in the compiler source itself.

JUNE 1986 TANDEM SYSTEMS REVIEW 73

Technical Paper

74

Also missing from the compiler source are
invalid C programs. These deviant programs,
a necessary part of a thorough test library,
ensure that the compiler takes the correct
action when given invalid and unexpected
input. Coverage statistics (presented later)
indicate that without deviance tests, 15% to
25% of the compiler code is not executed.

As Myers clearly stated in 1979, one neces­
sary component of a test case is the ability to
compare the actual result to the expected
result. When this comparison fails, a potential
incident has been detected and is logged. Since
compilers, and application programs in gen­
eral, do not rigorously compare the actual
result to the expected result, it is possible that
a large class of errors could go undetected,
even though the compiler uses a feature.

Finally, and perhaps most interesting, test
coverage analysis proved that in the Tandem
environment, using the compiler as a test case
forced execution of only 60% of the segments
in the compiler. Forty percent of the compiler
was virtually unexecuted, and, thus, untested.

Compiling Applications
Many vendors who implement and sell C com­
pilers also sell a variety of C utilities. The
second tier of testing often consists of running
available in-house C applications through the
newly debugged compiler. Since the compiler
itself is an application, all of the arguments
given above for compiling the compiler hold
for applications in general.

Unlike a well-written test case that logs
explicit information about any difference
between expected and actual results, an appli­
cation may abort at compilation or execution
time when encountering a compiler error. An
application that leaves behind few, if any,
clues about the error can be the cause of a
potentially long, tedious, and costly error­
isolation session.

When a well-written test case logs a poten­
tial incident, chances are good (over 90%)
that the compiler is in error and that the exact
nature of the error will not take long to iso­
late. Experience has shown that application
miscues discover compiler errors a signifi­
cantly lower percentage of the time.

While compiling the compiler and compiling
applications do have a place in testing a com­
piler, companies that rely exclusively on these
techniques as a substitute for software quality
assurance are apt to experience a long beta
test cycle and are likely to produce an unreli­
able compiler.

Third-party Tests
In general, testing an original software prod­
uct that is under development requires a sig­
nificant, original, in-house effort to create a
regression test library from scratch. For C,
this was the situation in the early 1970s when
Dennis Ritchie designed the C programming
language to aid in the development of the
UNIX operating systems and their utilities
(Rosier, 1984). As a result, AT&T created the
first C test library.

Today, however, a vendor entering the C
marketplace can expect much help in the test
phases of C compiler development. Several
standards of the IEEE Computer Society are
now available to guide the preparation and
content of documents related to testing (see
IEEE standards 829-1983 and 730-1984). These
worthwhile documents are useful for checking
the completeness of the testing process.

C has not had the benefit of an official,
formal compiler-validation facility as is avail­
able for other programming languages such as
Ada, BASIC, COBOL, FORTRAN, and Pascal
(Wichmann and Ciechanowicz, 1983). On the
other hand, because of this lack of an official
testing source, several independent companies
have been formed to fill the gap, each offering
a unique approach to validation.

By contacting key national testing and soft­
ware quality-assurance organizations, C
authors, educators, editors, implementors,
ANSI representatives, utility vendors, consult­
ants, user groups, publishers, and validation
centers, the C compiler development team at
Tandem discovered several generic C test suites
and specific tools to aid in the creation of
C tests.

TANDEM SYSTEMS REVIEW• JUNE 1986

Determining Test Effectiveness
After acquiring four commercially available
test suites, the developers needed a practical,
objective method of determining their com­
pleteness and their individual and collective
contribution to the complete testing process.
Practical testing methods include realistic pro­
cedures for determining when testing has been
completed (Howden, 1985). Applied to com­
pilers, test completion criteria specify when
the process of executing the compiler with the
intent of finding errors is judged to be com­
plete. The most common, and yet inadequate,
criteria observed in practice are (Myers, 1979):

1. Stop when all available tests fail to produce
new errors.

2. Stop when the distribution-to-customers
milestone arrives.

3. Stop because there is another product that
should be tested immediately (or sooner).

All of these criteria are useless since they are
independent of test quality; i.e., all three goals
can be reached by doing absolutely nothing.
A better criterion is to stop testing when over
95% of the C compiler segments have been
exercised. Although 95% segment coverage
might be considerably more difficult to
achieve for an Ada compiler, this goal is
realistic for most C compilers, considering
their size.

Test Coverage Analysis
The Test Coverage Analysis Tool (TCAT) for
C aids in investigating the effectiveness of
program testing. 1 TCAT expresses test cover­
age in terms of segments exercised and not
exercised. A segment is a basic block of con­
secutive statements that may be entered only
at the beginning and that, when entered, are
executed in sequence without halt or possibil­
ity of branch (except at the end of the basic
block).

'TCAT was developed by Edward Miller, Software Research Associates, P.O.
Box 2432, San Francisco, CA 94126.

Every executable statement is in a segment
that corresponds to an edge in the program's
directed graph. Each segment has only one
entry and one exit node. TCAT measures the
extent to which one test or a test suite exer­
cises all of the segments in a program (i.e.,
a C compiler).

TCAT Results
The Tandem C software development team
used TCAT to determine the effectiveness of
the four test suites. Table 1 summarizes the
percentage of segments each suite exercised.
Suite A consists of the programs in The C
Puzzle Book (Feuer, 1982). Programmers in
various computer companies created the other
suites by going through Appendix A of
Kernigham and Ritchie's The C Programming
Language and hand-coding tests.

The Cumulative Coverage column includes
the contribution from the entry on a given line
plus the contribution from each previous line.
For example, suites A, B, and C combined
yield a coverage of 70%. All four suites com­
bined yield a coverage of 76%.

It is interesting that although all four suites
were created independently, their overlap with
respect to segment coverage is considerable. In
fact, Suite D, when combined with the three
other suites gains only 2% more segments
compared to its coverage alone.

Table 1.
Segment coverage of four C compiler test suites.

Stand-alone Cumulative
Test suite Segments hit coverage coverage

Suite A 1567 57% 57%
Suite B 1754 64% 66%
SuiteC 1863 68% 70%
Suite D 2023 74% 76%

JUNE 1986 • TANDEM SYSTEMS REVIEW

Technical Paper

75

Technical Paper

76

These numbers say nothing about unique
paths through the code or unique sets of input
data. There is evidence, however, that the
suites are more different than simple
segment-coverage measurements indicate.
Early in the development cycle, when many
fundamental errors were present, several or all
of the test suites would often discover the same
error. Later in the cycle, as the product began
to mature, it became more frequent for only
one of the test suites to discover new errors.

One reason for this is that each suite tended
to closely follow a particular coding style that
was consistent throughout the suite, but which
varied from suite to suite. While there are
advantages to having a test library composed
of functionally overlapping test cases written
by different people, this is often not possible
for economic reasons. Testers would do well to
employ as much randomization as possible,
however (i.e., try to test the code in as many
ways as possible). This also supports the idea
of product developers performing their own
unit tests while independent testers create the
test suites in parallel. Having either a product
developer or testing developer do all the
testing is insufficient.

As is clear in Table 1, although Suite D
leaves 26% of the compiler untested, it is
superior to the other test suites that were also
designed without the guidance of a coverage
tool. Typical programmers who do not have
the benefit of detailed coverage analysis
normally produce test suites that cover only
25% to 50% of the segments (see Miller,
1984). Thus, all the programmers who created
the above suites must be above average. One
reason for the higher coverage obtained by
Suite Dis its developer's understanding of the
importance of deviance test cases, an ingre­
dient missing from the others. 2

'Perennial Software Services Group provides the C Compiler Validation Suite,
represented in this article as Suite D. Their address is 3130 De La Cruz Blvd.,
Santa Clara, CA 95054.

3The self-checking C expression generator is available from Ralph A. Phraner
and Associates, 516 Shrader Street, San Francisco, CA 941 I 7.

Since all four suites combined still left 24%
of the compiler untested, it was clear that the
test completion goal of 95% was not satisfied.
Details on what was needed to increase the
coverage to 95 OJo are included in the next
section.

Missing Tests
As Table 1 indicates, independent pro­
grammers, without the aid of a coverage tool
and specific test completion criteria, decided
when the testing tasks in these suites was
complete. Using the specific feedback from
the TCAT coverage analysis, one Tandem
developer needed only one month to increase
the test coverage to exceed 95 OJo.

The following are the less obvious kinds of
test case that are easy to detect with the use of
a coverage tool but easy to miss without one.

Binary Expressions with Constant Operands.
For example, a good mix of short, unsigned,
long, and double operands combined with a
variety of the operators *, + , > > , < < , < ,
>, < = , > = , = = , ! = , &, ", and I is
useful. In this context, operands are constant.

Bit-field Tests. In particular, operations on bit
fields in arithmetic expressions should be
tested. For example, field tests should ensure
that the - , - , ! , *, /, OJo, > , < , = = , &, ", I ,
&&, 11, ? , + + , and - - operators work
correctly in expressions containing bit fields.

Combination Tests. A suite that does an excel­
lent job of testing individual features, but
lacks many more tests that combine the fea­
tures, is insufficient. For example, an astro­
nomical number of expressions are possible
that contain up to 32 random operators using
random data types for operands. Ideally, sepa­
rate, machine-generated programs should be
created for the combination tests. Fortunately,
a self-checking C expression generator is com­
mercially available. 3

TANDEM SYSTEMS REVIEW• JUNE 1986

Preprocessor Features. This aspect of the lan­
guage is tempting to neglect during testing.
The preprocessor is a critical part of the lan­
guage, however, and must be tested. Imple­
menting the preprocessor is a difficult
programming task that consumes a significant
part of the source code comprising any good C
compiler. Developers must be sure to include
tests for #else that involve nested #if, #if def,
and #if ndef, and tests for #undef, as well
as error conditions within preprocessor
commands.

Deviance Tests. As mentioned earlier, these
are programs that differ from standard C in
some way, for example:

■ Ado statement missing the while clause.
■ A goto statement missing the label from
the goto.

■ A goto statement having a label whose name
is the same as a local variable.
■ A #define preprocessor command containing
a premature end of file.

Library Tests. Early specifications of the C
language did not incorporate the run-time
library routines. Since ANSI has incorporated
the library into the language, a C test suite
that ignores the library functions specified by
ANSI is severely deficient.

Conversions. Although int is typically well
covered, tests are needed that contain expres­
sions using operands of different types within
the same expression (e.g., an expression mix­
ing operands of type long, float, and double).
In addition, tests that force conversions
involving pointers are useful.

Compiler-option Tests. This area is also
tempting to neglect, but compiler users detest
easy discovery of options that do not perform
as documented.

for Statement. A for statement having a test
value (a second expression) that is zero is
useful.

Keyword default. The test library should
include a test case that tests for proper oper­
ation of the optional keyword default.

Bit-field Initialization. Initializing static
structures containing bit fields is useful.

Expression. An expression that contains a
function call using call-by-reference parame­
ters is valuable as a test component.

#if Preprocessor Command. Also useful is an
#if preprocessor command that contains a
constant expression using a hexadecimal con­
stant, an octal constant, a character constant,
~ (a tilde, the one's complement operator),
OJo, /, <, >, ! , = , &, ", I , : , ? , (, and).
(These do not necessarily need to be used in
the same command.)

Hexadecimal Constants. A variety of escape
sequences that contain hexadecimal constants
(the hex code following a backslash), in which
the hex constants contain a mixture of digits,
uppercase A through F, and lowercase a
throughf.

Limits Tests. The ANSI C Draft Standard
specifies many minimal limits that must be
met or exceeded and, therefore, should be
tested; e.g., #include is limited to nesting
levels of eight or more.

Testing Compiler Performance
In addition to testing the features of their C
compiler, vendors must ensure that the com­
piler produces fast object code and that it
compiles quickly. The importance of providing
an ability to quantitatively assess the compil­
er's performance before each release and com­
pare it with previous releases may not be as
obvious. Programs such as the Sieve of Era­
tosthenes and Fibonacci number generation,
as well as other benchmark test cases covering
a variety of language constructs, are readily
available from the literature (Leibson, et al.,
1985). These programs are easily added as
performance test cases.

JUNE 1986 TANDEM SYSTEMS REVIEW

Technical Paper

77

Technical Paper

78

Shorter Alpha- and Beta-test Phases
A common misconception among software
producers is that complete testing means more
cost to the vendor and a longer development
cycle. On the contrary, the use of a thorough
internal test library substantially reduces the
length of the alpha- and beta-test phases with­
out lengthening any other development phase.
A fundamental function served by the beta
test is to confirm that the product is well
designed and tested; if it has been, a six-week
beta test should suffice to confirm its quality.

A poorly tested compiler requires beta-test
users to discover errors. This results in several
rounds of testing, each of which introduces a
new version of the compiler to correct errors
found in the previous one. Each round of the
beta test requires the time to release the latest
version; distribute it to the users, wait for
them to install it, find errors, and communi­
cate them; attempt to decipher the often cryp­
tic and perhaps erroneous information; and
correct the real errors. It should be obvious
that most of this wasted time would be
avoided by conducting several considerably
shorter rounds of in-house testing before
beginning the alpha test.

Since, for one compiler update, one round
of testing can easily take three months during
the beta-test phase, a compiler that is beta­
tested without the benefit of a good in-house
test library could spend a long time in that
phase. While one round is often sufficient for
a solid product, three to six (and perhaps
more) should be expected for a compiler that
has been tested minimally in-house. Thus, if
four rounds of testing are needed, a product
could spend over a year in the beta-test phase,
resulting in a loss of revenue and customers.

The Tandem C Compiler was released after
less than six weeks in the first and only round
of beta testing. No serious release-stopping
software errors were discovered in the beta test
or in the several months that followed the first
customer shipment.

Conclusion
Applying currently available testing tools
shortens the development time of a C compiler
and increases the quality of the product. It is
essential that the testing process occur in par­
allel with the development process.

C compiler vendors can avoid the losses
resulting from inadequate testing by employ­
ing the skills of a permanent, well-trained
software quality-assurance staff and a com­
plete and appropriate library of compiler test­
ing tools. Traditional testing approaches, such
as compiling the compiler, are less than satis­
factory and can now be replaced with reliable
C testing tools.

References
ANSI/IEEE Standard for Software Quality Assurance Plans.
1984. IEEE std. 730-1984. IEEE Press. (Revision of ANSI/
IEEE std. 730-1981.)

ANSI/IEEE Standard for Software Test Documentation. 1983.
IEEE std. 829-1983. IEEE Press.

Feuer, A.R. 1982. The C Puzzle Book. Prentice-Hall, Inc.

Howden, W.E. 1985. The Theory and Practice of Functional
Testing. IEEE Software. Vol. 2, No. 5.

Kernigham, B., and Ritchie, D. 1978. The C Programming
Language. Prentice-Hall, Inc.

Leibson, S., Pfahler, F., Reed, J., and Kyle, J. 1985. Software
Reviews: Expert team analyzes 21 C compilers. Computer
Language. Vol. 2, No. 2.

Miller, E., et al. 1984. User's Manual for TCAT/C (PC
J.1?rsion). Software Research Associates.

Myers, G.J. 1979. The Art of Software Testing. John Wiley and
Sons.

Rosier, L. 1984. The Evolution of C-Past and Future. AT&T
Bell Laboratories Technical Journal. Vol. 63, No. 8.

Wichmann, B.A., and Ciechanowicz, Z.J. 1983. Pascal
Compiler Validation. John Wiley and Sons.

Ed Kit is a member of Software Quality Assurance within the
Languages Group of Software Development. Since joining
Tandem in 1980, his responsibilities have included creating test
suites for communication protocols, languages, and terminals,
and managing performance, data-base, operating systems, data
communication, and microcode software quality-assurance
groups. Previously he was on the faculty of Embry-Riddle Aero­
nautical University, where he taught computer science, mathe­
matics, and electrical engineering. Ed holds a B.S. and M.S. in
Electrical Engineering from Purdue University.

T A N D E M SYSTEMS REVIEW• JUNE I 9 8 6

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined
in one free subscription. Use this form to subscribe, change a subscription, and order back
copies.

For requests within the U.S., send this
form to:

Tandem Computers Incorporated
Sales Administration
19191 Valko Parkway, MS 4-05
Cupertino, CA 95014-2599

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription (# of copies desired __ _
D Subscription change (# of copies desired __ _
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

___ Part No. 83930, Vol. 1, No. 1, Fall 1983

___ Part No. 83931, Vol. 2, No. 1, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review
_ __ Part No. 83934, Vol. 1, No. 1, February 1985

___ Part No. 83935, Vol. 1, No. 2, June 1985

___ Part No. 83936, Vol. 2, No. 1, February 1986

___ Part No. 83937, Vol. 2, No. 2, June 1986

Tandem Application Monograph
Series

___ Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

___ Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

___ Part No. 83902, Integrating Corporate Infor­
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

___ Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

___ Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

___ Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

___ Part No. 83906, Transaction Processing on the
Tandem Nonstop Computer: Requestor/Server
Structures, January 1982, SEDS-001

___ Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.
06/86

~TANDEMCOMPUTERS

400099 06/86 Printed in USA
Part No. 83937

