
T A N D E M

SYSTEMS REVIEW

Credit-authorization Benchmark for
High Performance and Linear Growth

Buffering for Better Performance

DP2 Conversion ■ TACL ■ COBOL85

Managing System Time

New Products ■ Manual Subscriptions

Index

ITHRUARY 1986

Volume 2, Number I, February 1986

Editor
Carolyn Turnbull White

Technical Advisor
Dick Thomas
Associate Editors
Kent Madsen
Ellen Marielle-Treholiart

Assistant Editor
Sarah Rood

Art Director
Carol Schaffer
Production and Layout
Laurie Menden
David Thompson

Cover Art
Stephen Stavast
Typesetting
Tandem Typesetting Group
The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical informa­
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribu­
tion data base, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Sales
Administration, 19191 Valko
Parkway, MS 4-05, Cupertino, CA
95014. Requests outside the U.S.
should be sent to the local Tandem
sales office.
Comments: The editor welcomes
suggestions for content and format.
Please send them to the Tandem
Systems Review, 1309 So. Mary
Avenue, Sunnyvale, CA 94087.

Copyright © 1986 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com­
puters Incorporated.

The following are trademarks or
servicemarks of Tandem Computers
Incorporated: BINDER,
CROSSREF, DYNAMITE,
ENABLE, ENCOMPASS,
ENCORE, ENSCRIBE,
EXPAND, FAXLINK, FOX,
GUARDIAN, GUARDIAN 90,
GUARDIAN 90XF, INSPECT,
NonStop II, NonStop TXP,
PCFORMAT, PS MAIL,
PS TEXT EDIT, TACL, TAL,
Tandem, TMF, TRANSFER, XRAY.

IBM and IBM PC are trademarks of
International Business Machines
Corporation. UNIX is a trademark
of AT&T Bell Laboratories.

TANDEM SYSTEMS REVIEW

2

9

18

24

30

39

48

55

61

65

Credit-authorization Benchmark
for High Performance and Linear
Growth
Tony Chmiel, Tom Houy

Buffering for Better Application
Performance
Randy Mattran

DP1-DP2 File Conversion: An Overview
Jim Tate

Determining PCP Conversion Time
Jim Tate

TACL, Tandem's New Extensible
Command Language
Julia Campbell, Robin Glascock

Tandem's New COBOL85
Don Nelson

Managing System Time
Under GUARDIAN 90
Eric Nellen

Tandem's New Products
Corinne Robinson

Subscription Policy for Software
Manuals
Tim Mcsweeney

Index

2

Credit-authorization Benchmark
for High Performance and
Linear Growth

n benchmark tests conducted for
a major U.S. retailer interested in
building a nationwide credit­
authorization system, Tandem™
NonStop TXP™ systems demon­
strated a linear increase in pro­
cessing power as additional pro­

cessor modules were added. In the tests,
an 8-processor Tandem system processed twice
as many transactions per second as a
4-processor system, and a 32-processor system
processed twice as many as a 16-processor
system.

The benchmark tests also demonstrated the
high performance of Tandem NonStop TXP
systems: on the 32-processor system, 149
transactions were processed per second, with a
CPU utilization of 80.6%. Response time was
less than two seconds for at least 90% of the
transactions.

This article discusses the importance of
linear growth in processing power and then
describes the retailer's proposed credit­
authorization application, the hardware and
software configurations used in the tests, and
the results of the performance measurements.

Importance of Linear Growth
in Processing Power
The results indicating the linear growth in
processing power are significant. They mean
that users can expand their NonStop TXP sys­
tems to meet growing transaction-processing
needs without incurring the nonlinear increase
in system costs encountered when most other
computer systems are expanded. Also,
Tandem systems are expandable in small steps
so that the amount of processing power avail­
able need never greatly exceed that required.

The expansion of the test system stopped at
32 processors, as that was the total needed to
satisfy the retailer's requirements. There is no
indication that the linear behavior of the
NonStop TXP system stops there, however.
It conceivably extends to 224 NonStop TXP
processors, the maximum number that
can be linked by FOX™, Tandem's fiber optic
extension.

Project Overview
The retailer, interested in meeting stringent
requirements for its credit-authorization sys­
tem, asked Tandem to run simulations of the
application on Tandem hardware. The key
requirements were a fast response time and a
high transaction volume.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

Specifically, the retailer proposed to create
a network consisting of three host systems and
to divide the national transaction volume
among them. This credit-authorization net­
work would receive transactions from the
retailer's existing SNA environment through
an IBM 3705/25 Communications Controller.
Initially, the peak transaction volume for each
host system would be 60 transactions per sec­
ond (tps), with a potential for growth to
120 tps. The retailer required a response time
under two seconds for at least 90% of the
transactions.

Two benchmark evaluations were conducted
to validate the system design. The first,
referred to as Bl, was conducted at the
Tandem Performance Center in Sunnyvale,
California. The second, a retailer-developed
volume test referred to as B2, was conducted
at the Tandem manufacturing facility in Santa
Clara, California.

The Benchmarks
Benchmark Bl
In Bl, a standard benchmarking application
was modified by Tandem to simulate the SNA
interface and data-base 1/0 requirements for
the proposed credit-authorization system. This
application was first run on a 4-processor
Nonstop TXP system and then on an
8-processor Nonstop TXP system.

Figure 1 illustrates the hardware configura­
tion used in the 8-processor Bl tests. Two
systems (A and B), each consisting of
4 NonStop TXP processors, were connected
with FOX. The two systems were identically
configured, with the exception that some
application files were partitioned across disc
volumes resident in both systems. The credit­
authorization files and negative files for other
national credit cards were divided into eight
partitions, based on the primary key. Four of
the eight partitions resided on system A and
four on B. The byte-synchronous lines and
modem eliminators connecting the two
machines were used to simulate the processing
of credit-authorization requests for national
credit cards.

Figure 1

System A SystemB

In the 4-processor tests, only system A was
used, and the files were partitioned over the
four disc volumes resident on that system.
Credit-authorization requests for national
credit cards were simulated by programs
within system A.

Benchmark B2
In B2, the retailer provided an application
similar to that used in Bl. This application
was stress-tested on 16- and 32-processor
NonStop TXP systems.

F E B R U A R Y I 9 8 6 TANDEM SYSTEMS REVIEW

Disc controller

Disc

Byte-synchronous controller

Figure 1.

Hardware configuration
used in the 8-processor
Bl tests. In the 4-
processor tests, only
system A was used. (For
simplicity, the asynchro­
nous controllers and
terminals, a printer
controller and printer,
and tape controllers and
tape drives are not
shown.)

3

Figure 2.

Hardware configuration
used in the 32-processor
B2 tests. (a) An over­
view. In the 16-processor
tests, the same configu­
ration was used, with
half the number of CPUs
and SNA lines. (b) The
distribution of disc
drives, byte-synchronous
controllers, and bit­
synchronous controllers
in the 16-processor
systems. (For simplicity,
asynchronous controllers
and terminals, a printer
controller and printer,
and tape controllers and
tape drives are not
shown.)

4

Figure 2

(a)

(b)

10SNAlines

5 Bisync lines

Oliver system
16 NonSlop TXP

prooe$SOl'S

5 Bisync lines

10SNAlines

NonStop TXP processors

I\

\ I

I\

\ I

I \

\ I

~rnA
16 Non$top TXP
~ors

FOX link

~m8
16 NonStop TXP

Pf'OC!l$SOl'S

I\

\ I

I\
\ I

I \
\ I

I\

\ I

Figure 2 provides a high-level overview of
the hardware configuration used in the 32-
processor B2 test. This time; FOX was used to
connect two fully configured, 16-processor
Nonstop TXP systems. The credit­
authorization and bankcard negative files were
again partitioned across both nodes; this time
ten partitions were used (five per system).

14 Mirrored volumes, 28 disc controllers

5 Byte-synchronous controllers
9 Bit-synchronous controllers

14 Mirrored volumes, 28 disc controllers

5 Byte-synchronous controllers
9 Bit-synchronous controllers

Non$top TXP processors

I\

\ I

I\
\ I

/\

\ I

/\

\ I

Disc controller

Disc

I \
\ I

I\
\ I

Byte-synchronous controller

Bit-synchronous controller

I\

\ I

In the 16-processor tests, the same configu­
ration was used except that two 8-processor
systems were linked together instead of two
16-processor systems. Again, the files were
partitioned across both nodes. There were ten
partitions (five per system).

It was the goal of B2 to provide as realistic a
test environment as possible. Thus, a driver
system consisting of 16 Nonstop TXP proces­
sors was used in both the 16- and 32-processor
tests. The driver system sent transactions to
the benchmark nodes using 20 lines driven by
SNAX, Tandem's standard SNA interface (ten
lines were used in the 16-processor tests).

TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

SNAX was used because, as explained above,
transactions would come to the proposed
Tandem credit-authorization system from the
retailer's existing SNA environment through
an IBM 3705/25 Communications Controller.

In addition to the SNA lines (which used the
3650 protocol), ten bisynchronous lines were
evenly distributed between the two nodes in
both the 16- and 32-processor tests. These
lines were used to simulate the transmission
and servicing of transactions to national
bankcard-authorization centers.

Application Overview
As explained above, two separate application
designs were used in the evaluation. The first
(Bl) was an application simulation developed
by Tandem, and the second (B2) was a more
realistic customer-written simulation.

The design used in Bl is summarized in
Figure 3. As shown, both the terminal simula­
tors and an SNA 3650 simulator ran in the
same system as the application. The major
differences in B2 were that (a) a separate
driver system and a real SNA interface
replaced the Bl terminal simulator and SNA
3650 simulator shown in Figure 3, and (b) the
servers in B2 were provided by the customer.
Except for these differences, the structure of
the B2 application was the same as that shown
in Figure 3.

Application Components

SNA 3650 Simulation. The Bl terminal simu­
lators (resident in the same node as the appli­
cation software) and the B2 terminal
simulators (resident in a separate driver sys­
tem) both generated transactions containing
random data at specified time intervals and
captured response-time statistics. The Bl sim­
ulators accounted for expected SNA
communications-software overhead by con­
suming CPU cycles, however, while the B2
terminal simulators used SNAX.

Figure 3

Termlnal
simulator

SNA3650
simulator

Terminal
Control
Program

(TCP)

l
Server
(typical)

\

Bankcard
inlertace

Files

X

Terminal
simulator

SNA3650
simulator

Termlnal
Control
p~

l
Server
(typical!

\

Benkcaid
lnterface

Terminal Control Process (TCP). The Termi­
nal Control Process (TCP) is a multithreaded
process supplied by Tandem to control multi­
ple terminals and terminal types. In both Bl
and B2, one TCP resided in each CPU at each
node. Application programs executed by the
TCP were written in Screen COBOL.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW

Figure 3.

Structure of the applica­
tion run in benchmark
Bl. The B2 application
had essentially the same
structure, except that a
driver system and a
real SNA interface were
used in place of the
terminal and SNA 3650
simulators.

5

6

Table 1.
The transaction mix used in the B1 and B2

Servers. The functions listed below are repre­
sentative of typical servers used in the tests
(although not all servers performed every func­
tion listed):

benchmarks.

Transaction

Read-only of
customer's
credit record

Processing for
charge-authorization
and update

Out-of-area
authorization
(2-second delay)

Out-of-area
authorization
(3-second delay)

Out-of-area
authorization
request
(4-second delay)

Bankcard
authorization
(1-second delay)

Bankcard
authorization
(2-second delay)

Bankcard
authorization
(3-second delay)

Customer file inquiry

Customer file
inquiry and update

Authorization from
remote system

Authorization from
catalog
process/system

TANDEM

Percentage
of mix 1/0 requirements

1% 1 terminal read
5 table lookups
1 read of Auth file
1 write to Log file
4 interprocess I/Os
1 reply to terminal

73% 1 terminal read
5 table lookups
1 read of Auth file
1 update of Auth file
1 write to Log file
4 interprocess I/Os
1 reply to terminal

1% 1 terminal read
2 table lookups
1 read of Auth file
1 read of Index file
1 write to pipeline
7 interprocess I/Os
1 reply to terminal

1% (Same as above)

1% (Same as above)

4% 1 terminal read
3 table lookups
1 write to bankcard line
1 read of bankcard line
1 write to bankcard log
5 interprocess I/Os
1 reply to terminal

3% (Same as above)

3% (Same as above)

1% 1 terminal read
4 table lookups
1 read of Auth file
1 write to Log file
3 interprocess I/Os
1 reply to terminal

2% 1 terminal read
4 table lookups
1 read of Auth file
1 update of Auth file
1 write to Log file
3 interprocess I/Os
1 reply to terminal

2% 1 pipeline read
1 table lookup
1 read of Auth file
1 update of Auth file
1 write to Log file
3 interprocess I/Os
1 reply to pipeline

8% 1 terminal read
1 table lookup
1 write to Catalog file
1 interprocess 1/0
1 reply to terminal

■ Edit and reformat incoming transactions.
■ Make yes/no decisions for local requests.
■ Determine the need for remote or bankcard
authorizations.
■ Perform fallback processing.
■ Log transactions.
■ Format responses.
■ Simulate going to a remote ADC for
authorization.
■ Format messages to the bankcard interface.
• Log remote authorizations.
• Log catalog requests for later processing.
• Log operational (as opposed to application)
exception conditions.
• Provide table-lookup services to other
servers.

Bankcard Interface. In both Bl and B2, the
bankcard interface provided the multithreaded
interface to various bankcard-authorization
networks. It isolated application servers from
communications-protocol concerns.

Bankcard Echo. In both Bl and B2, the
bankcard echo simulated a bankcard­
authorization network. It imposed response­
time delays based on transaction type and
resided in a separate node (or, in the 4-
processor tests, in a different CPU) from the
node containing the bankcard interface.

The Transaction Mix
The transaction mix used in our tests is shown
in Table 1. It reproduced the retailer's require­
ments as closely as possible, incorporating a
specified percentage of each type of transac­
tion that the production system would be
required to process.

As shown in Table 1, all of the transactions
used table lookups. These tables were loaded
into extended data segments within each pro­
cessor's memory. The application then calcu­
lated which table it should reference to read the
necessary information. (The use of in-memory
tables is a high-performance design alternative
to storing data tables on disc; when this tech­
nique is used, table access can be at memory
speed rather than at 1/0 speed.)

SYSTEMS REVIEW FEBRUARY I 9 8 6

Benchmark Results
One way of comparing the capacities of
multiple-processor computer systems of vari­
ous sizes is to measure the average CPU utili­
zation at different transaction rates. Given
transaction rates and corresponding CPU utili­
zation averages for a system with n processors,
the system's performance behavior is consid­
ered linear if, with twice as many processors
and I/0 peripherals, it can handle twice as
many transactions per second at the same level
of CPU utilization. The results of Bl and B2
show that Tandem systems behave in this way.

Figure 4 and Table 2 summarize the per­
formance of the systems in Bl. The data shows
that, at given levels of CPU utilization, the
8-processor system was consistently able to
handle twice as many transactions per second
as the 4-processor system.

Table 2.
81 transaction rate versus CPU utilization
(Nonstop TXP processors).
Transactions CPU utilization
per second (%)

4 processors

19.0 93.7

14.6 72.7

10.1 50.0

7.3 36.3

5.7 28.3

4.7 23.4

8 processors

38.0 93.6

29.2 72.5

20.2 50.0

14.7 36.2

11.5 28.3

9.4 23.3

Figure 4

(a)

.i!l
</)

ill_
=> "O a. C:

Y§
st </)

_!; en
26
CO+=-
~ ()

B~
~~
iii
F

(b)

tl
<I) ;u
a. C:

u8
'<I) co </)

.£ en
<I) C:
-o cu.::
~ ()

§lJl
n~
lJl"'-
iii
F

F E B R U A R Y I 9 8 6 TANDEM

20

15

10

5

CPU utilization

40

30

20

10

CPU utilization

SYSTEMS REVIEW

Figure 4.

Summary of perfor­
mance data obtained in
benchmark Bl for (a) the
4-processor system and
(b) the 8-processor sys­
tem. The 8-processor
system consistently han­
dled twice as many trans­
actions per second as the
4-processor system at
identical levels of CPU
utilization.

7

Figure 5.

Summary of perfor-
mance data obtained in
benchmark B2 for (a) the
16-processor system and
(b) the 32-processor
system. The 32-processor
system consistently han-
died twice as many trans-
actions per second as the
16-processor system at
identical levels of CPU
utilization.

8

Figure 5

(a)

80

ti
2 / :::, TI 60 a_ C
uo
~ ~
C Ul
·- C 40
Q) 0
"§ n
-~ ~
~:?_ 20
if)
C

"' F
0

0 20 40 60 80 100

CPU utilization

(b)

160

ti
2
:::, TI
a_ C 120
uo
'(.)

N Ql
(') _())
C ifJ
·- C
Q) 0

80
"§ n
C ill
Oc

:,=:; CC! 40 (.) ~
roe:::.
if)
C

"' F
0

0 20 40 60 80 100

CPU utilization

Figure 5 and Table 3 summarize the per­
formance of the systems in B2. The data
shows that, at given levels of CPU utilization,
the 32-processor system was able to handle
twice as many transactions per second as the
16-processor system. In the 32-processor tests,
the system easily exceeded the benchmark
goals. Since 149 tps was obtained with the
first benchmark test, it was not necessary to
fine-tune the application to meet the goal of
120 tps.

Table 3.

82 transaction rate versus CPU utilization
(Nonstop TXP processors).

Transactions CPU utilization
per second (%)

16 processors

72.0 80.2

66.0 73.7

61.0 68.2

55.0 61.1

49.0 54.4

43.0 48.9

32 processors

149.0 80.6

124.0 67.4

110.0 59.6

90.0 49.0

70.0 34.3

57.0 24.0

Acknowledgments
Many Tandem employees contributed their time and energy to
the success of the Bl and B2 performance studies. The authors
would like to recognize the staff and management of the New
York Uptown Branch and South Central District, who contrib-
uted the bulk of the software to the benchmarks; Jolly Young,
Stephen Dudley, and John Haverland for managing the bench-
marks; Richard Vnuk of the Large Systems Support Perfor-
mance Group for his assistance in tuning the PATHWAY sys-
tern; Gary Hugo for his contribution of the Benchmark Monitor
(BMON); and the entire staff and management of the Santa
Clara manufacturing facility for their assistance throughout the
benchmarks.

Tony Chmiel is a senior staff analyst in the Tandem Performance
Center and has been with Tandem since January of 1984. Tony
has 11 years experience in data processing, with more than half
of that on Tandem Nonstop systems.

Tom Houy has been with Tandem for over five years and is cur­
rently a performance advisor for the Tandem Performance Center.
Before this, Tom worked on another major mainframe developing
performance measurement systems and performance enhance­
ments for the operating system.

TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

equential block buffering
and buffered cache are
GUARDIAN 90™ File System
options that can significantly
improve the performance of on­
line and batch applications that
process structured files sequen­

tially. In addition to improving the perfor­
mance of specific applications, they reduce the
per-transaction utilization of CPU and disc
resources, thus indirectly improving the per­
formance of all other applications that share
those resources.

In this article, the following topics are
discussed:

■ The implementation of sequential block
buffering.

■ The implentation of buffered cache.
■ The BOO COBOL enhancements that make
both features easy to use.
■ The use of sequential block buffering in a
read-only environment.

■ Concurrency issues relating to sequential
block buffering.

■ Considerations for using sequential block
buffering and/ or buffered cache when records
are updated.

Sequential block buffering is available with
both GUARDIAN™ and GUARDIAN 90 oper­
ating systems, both Disc Process 1 (DPl) and
Disc Process 2 (DP2), and a variety of pro­
gramming languages. Some performance and
implementation details vary from one Tandem
hardware and software environment to
another. In BOO DPl, buffered cache is avail­
able for TMF™ audited files only; in DP2 it is
available for all files.

Buffering for
Better Application Performance

To simplify the discussion, this article
assumes a processing environment composed
of Nonstop TXP processors, the BOO
GUARDIAN 90 operating system, BOO DP2,
and BOO COBOL. 1 It presents a detailed view
of the use of sequential block buffering and
buffered cache in this environment. Tandem
systems analysts can help users to apply the
information to other processing environments.

How Sequential Block Buffering
Works
ENSCRIBE™ structured files are a set of data
records. To provide an efficient means of
moving the records between disc and memory,
the records are grouped into fixed-length data
structures called blocks. Blocks can be as large
as 4096 bytes and can hold as many records
as space permits (minus room for control
information).

1Tandem will release a new COBOL compiler and run·time library in the first
calendar quarter of I 986. COBOL85, described in the accompanying article,
"Tandem's New COBOL85," will be based on the new ANSI COBOL 1985
standard. Its use in the sequential block buffering and buffered cache methods
described in this article will be identical with those of BOO COBOL.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW 9

Figure 1

(a)

Cache
R1

R1
R2
R3

R1
R1 ~
R2 · ··

/ ____ R_2 ___ -......__ ~~

R3 ~ '-----R3 __ __,/

(b)

Figure 1.

R1
R2
R3

Cache

R1
R2
R3

Data access (a) without
sequential block buffering
and (b) with it. This File
System option allows a
process to read a struc­
tured file one block at a

~

Memory
transfer

Message

L___.J

Memory
transfer

'-----'
Message

time instead of one record
at a time, while retaining
the convenience of auto­
matic record deblocking.
Since there are often
many records in a

PFS

R1
R1 ~
:; ~ .•.• ~liii!I ...•

'------'
Memory
transfer

structured block, reading
a file with sequential
block buffering reduces
the number of requests
for service that must be
sent to the disc process.

Sequential block buffering is a File System
option that allows a process to read a struc­
tured file one block at a time instead of one
record at a time, while retaining the conve­
nience of automatic record deblocking (see
Figure 1). Since a structured block often has
many records (the ratio of records to blocks is
known as the blocking factor), reading a file
with sequential block buffering reduces the
number of requests for service that must be
sent to the disc process.

While many disc-process requests for
sequential reads are likely to be satisfied from
cache, the requests still must enter a queue for
disc-process services. The more applications
there are contending for disc service, the
greater the opportunity for queuing and the
greater the chance of a cache "miss."

Also, each time the process sends a request
to the disc process, it incurs the overhead asso­
ciated with an interprocess message and enters
an 1/0 wait state. This means that it must give
up the CPU to any other processes waiting for
it. When the 1/0 completes, the process must
enter the ready list and wait for the CPU to
become available to resume execution.

When sequential block buffering is in effect,
the File System requests service from the disc
process only when a new block is needed, not
for every record logically read by the program.
As shown in Figure 1, the File System main­
tains a buffer in the process file segment
(PFS), a private data area established for every
process. When a running program issues a
sequential read request, the File System satis­
fies the request by deblocking the next record
from the buffer and moving the information
into the data area of the process. Thus, no
messages have to be sent to the disc process,
and the requester does not have to wait for
a reply.

10 TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

If update operations are performed on a
file opened for sequential block buffering, the
update does not simply change the record in
the program's private sequential block buffer.
The update is also passed directly to the disc
process.

The buff er is discarded when an update
occurs, so the next sequential read results in a
message to the disc process, and possibly a
physical 1/0 to retrieve the next block. The
performance is no worse than when a program
reads without sequential block buffering, but
no benefit is received either.

With the exception of some concurrency
issues (discussed later), sequential block buf­
fering is transparent to programmers.

If a program uses sequential block buffering
to open a file with alternate keys, the
alternate-key file is also opened with sequen­
tial block buffering. When a file is accessed
sequentially by alternate key, the alternate-key
file can be read sequentially. The primary file
must then be read by key, however, a nonse­
quential access. Overall performance is thus
improved, but the disc process must still be
involved with every request to read a new
record. The same file can also be accessed
sequentially by primary key and receive the
normal benefits of sequential block buffering.

How Buffered Cache Works
The BOO software release offers a new File Sys­
tem and disc-process feature known as buf­
fered cache, which must not be confused with
sequential block buffering. Buffered cache
allows data-base updates to be written to
cache without immediately being written to
disc. This is a significant performance advan­
tage for an application that writes sequential
data. Instead of writing each record to disc
separately, the application can build blocks of
records in cache without having to do any
physical 1/0 until after the block is complete.
The total number of physical I/Os is thus
reduced by a factor that approaches the block­
ing factor of the file. Of course, this assumes
that enough cache is available to let the block
stay in cache without disturbance until the
block is finished and that records are written
in the sequence in which they are organized.

Updated cache blocks are written when the
disc process goes idle, when they are forced
out by a least recently used algorithm, or when
periodic (every five minutes) control points
are processed by the disc process. The longer a
data block stays in cache, the more opportu­
nity there is to update it multiple times in
memory and post all of the updates with a
single write to the disc. The performance bene­
fit of buffered cache comes from the applica­
tion's ability to write to buffered cache
without waiting for the mechanical delay of
the disc drive, and from the batching of multi­
ple updates (cache-write hits).

If a file is audited by TMF, buffered cache is
automatically used for all updates to the file.
TMF ensures file consistency by using audit
trails to back out aborted transactions or to
recover inconsistent files. The File System
permits applications to request buffered cache
for DP2 unaudited files as well, however.

Application designers must carefully con­
sider the use of buffered cache for unaudited
files because, if it is used, a CPU failure that
causes the loss of a primary disc process is
likely to result in loss of the updates made to
the file, if the sync depth is zero. Loss of buf­
f erect cache data can occur if a volume is
brought down incorrectly, or if a double fail­
ure causes loss of the disc-process pair. If this
happens, the File System returns Error 122,
FEDATALOSS, to the application. Operations
procedures should be established or the appli­
cation should be written to implement a
"restore and rerun" type of recovery when
this error is encountered.

Sequential block buffering and buffered
cache are separate and independent functions.
Sequential block buffering is designed to
improve read performance, while buffered
cache is intended to improve write
performance.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW II

12

BOO COBOL Enhancements
Sequential block buffering has been supported
by the File System for many years, but not by
COBOL. Some programmers have called File
System procedures directly from COBOL to
take advantage of sequential block buffering.
Although this works, the method is somewhat
cumbersome. The BOO version of COBOL has
been enhanced to fully support the feature.

Sequential block buffering is now selected
through the RESER VE n AREAS clause in the
FILE-CONTROL entry. When n is greater than
1 and the open mode is INPUT or I-O, sequen­
tial block buffering is selected. The number
specified as n does not vary the number or
size of buffers. A number greater than 1 sim­
ply selects the feature. The file opened must
be a structured disc file, and the access mode
must be SEQUENTIAL. Organization can be
SEQUENTIAL, INDEXED, or RELATIVE,
however. If for any reason sequential block
buffering cannot be invoked, normal I/O is
used, and no diagnostic is issued.

RESER VE n AREAS is also used to select
the buffered-cache feature, so programmers
should take care to select the correct open
mode. Sequential block buffering is selected
when the open mode is INPUT or I-O; buffered
cache is selected when the open mode is I-O or
OUTPUT. Thus, buffered cache and sequential
block buffering are both selected when the
open mode is I-O. The only way to read a file
with sequential block buffering and update it
without the risk involved with unaudited buf­
fered cache is to use two separate file defini­
tions (FDs), one open for INPUT with
RESER VE 2 AREAS and another open for I-O
with no RESERVE n AREAS clause.

The same COBOL verbs, READ and START,
used for normal sequential I/O are used for
sequential block buffering. The fact that
sequential block buffering or buffered cache is
turned on is transparent to programmers.

The following program is a simple example
of the new COBOL implementation:

IDENTIFICATION DIVISION.
PROGRAM-ID. SBB-EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TANDEM/ 16.
OBJECT-COMPUTER. TANDEM/ 16.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TEST-SBB ASSIGN TO
TESTFILE
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
RESER VE 2 AREAS.

DATA DIVISION.
FILE SECTION.
FD TEST-SBB

LABEL RECORDS ARE OMITTED.
01 TEST-SBB-RECORD PIC X(lO0).
WORKING-STORAGE SECTION.
01 EOF-FLAG PIC 9 VALUE 0.
PROCEDURE DIVISION.
MAIN-LINE.

OPEN INPUT TEST-SBB.
PERFORM PROCESS-FILE UNTIL

EOF-FLAG = 1.
CLOSE TEST-SBB.
STOP RUN.

PROCESS-FILE.
READ TEST-SBB AT END MOVE 1

TO EOF-FLAG.

Reading with Sequential Block
Buffering
The main reason Tandem offers sequential
block buffering is to improve the performance
of programs that read structured files sequen­
tially. This feature is most commonly used in
batch processing. Sequential block buffering
can improve the performance of most batch
programs substantially. The performance
improvement varies with the blocking factor of
the files read: the bigger the block and the
smaller the record, the better the performance
improvement.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

Without sequential block buffering, in tests
on a NonStop TXP system running BOO soft­
ware, DP2, and code written in COBOL, it
took 11.99 seconds to read 2500 records (each
of which was 100 bytes long) from a key­
sequenced file with a 5-byte key, a block size
of 4096, and an average blocking factor of
38.5. That same operation can be completed
in 3. 77 seconds with sequential block buf­
fering. Thus, sequential block buffering pro­
vides better than a factor-of-three
improvement.

It is important to note that sequential read­
ing can be important to on-line programs as
well as batch programs. Many on-line pro­
grams present lists of information or conduct
brief file scans. For example, an order­
processing application may contain a screen
with order-header information and room for
nine detail lines. The application can use
sequential block buffering to read the detail
lines and improve response. Thus, an order
display that used to require ten disc-process
services (one for the header and nine for the
details), can be changed to require only two
(one for the header and one for the block of
detail records). Sequential block buffering can
and should be used to improve the perfor­
mance of this type of read-only operation.

The only issue that requires consideration
when sequential block buffering is being evalu­
ated for a read-only application is whether or
not other processes are updating the file while
it is being read.

Concurrency Issues Related to
Sequential Block Buffering
Because records are read from a private buffer
with sequential block buffering, there is always
a chance that the buffer may be out of date
when another process updates a file that is
being read with sequential block buffering.
For this reason, the ENSCRIBE Programming
Manual warns against using sequential block
buffering with access modes other than "read­
exclusive" or "read-protected." The File Sys­
tem allows other types of access, however. The
following considerations are important if
shared access is allowed with sequential block
buffering.

Sequential block buffering cannot detect
record or key locks. This can be both a benefit
and a burden. The benefit is that the process
reading with sequential block buffering is not
impeded by another process' locks. It views
the record in its current state as of the time the
block is read from disc, and the process does
not have to wait to see it. The problem is that
if the record is locked, it probably is involved
in an update. The process cannot tell if the
record image it read is the before image or the
after image. It may view inconsistent data,
and there is no way to know if it has.

If one process deletes, adds, or updates
records while another reads with sequential
block buffering, an additional problem may
occur. The process
using sequential block
buffering may see
data that is recently
deleted or skip
records recently
added. Depending on
the application, these
anomalies may be
acceptable.

• T Tse sequential block
1 U buffering to improve
1. the performance of read­
i only on-line operations.

In a key-sequenced file, the above opera­
tions are potentially multiblock operations.
This means that new blocks are added to make
room for new or larger records, or that old
blocks are emptied and returned to the pool of
free blocks. If one of these multiblock opera­
tions is performed at or near the same file
position as sequential block-buffered reads,
one might be concerned about the structural
continuity of the file. Sequential block buf­
fering is not confused by block splits, however,
as it passes positioning information along with
requests to read a next block.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 13

14

Updating with Sequential Block
Buffering and Buffered Cache
There are many applications that perform
update operations as they process a file
sequentially. One example is an application
that purges a key-sequenced customer-order
history file. Assume the application is
designed to keep 12 months of history on file
and delete everything older. Since the primary
key is the customer number followed by the
order number, and there are no alternate keys,
a program must search sequentially for
records to purge. Since the job runs monthly,
it deletes about 8 % of the records in the file
each time it is run.

It is possible to take advantage of sequential
block buffering and buffered cache in this type
of application. The best method to use
depends on the type of access allowed to the
file. If the file can be opened for exclusive (or
protected) access, there is no need to consider
the effect of other processes updating the file
concurrently. If the file must be opened for
shared access, however, programmers should
select a method of processing that protects the
process from concurrent updates.

The Single-file, Single-read Method
A single-file, single-read method is best when
exclusive access is possible. The method is
quite straightforward: simply read the record,
decide if it should be processed, and then pro­
cess the record. The same file open used to
read the file is used to update it. A sample
implementation follows:

MAIN-LINE.
OPEN I-O TEST-SBB PROTECTED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST-SBB.
STOP RUN.

PROCESS-FILE.
READ TEST-SBB NEXT RECORD

AT END MOVE I TO EOF-FLAG.
IFNOTEOF

IF UPDATE-NEEDED
REWRITE TEST-SBB-RECORD.

The file is opened for protected 1/0 access,
and RESERVE 2 AREAS is specified in FILE­
CONTROL Thus, both sequential block buf­
fering and buffered cache are invoked. The
former speeds up the reads, while the latter
speeds up the updates.

On a NonStop TXP system with BOO soft­
ware, DP2, and code written in COBOL, tests
were run to measure the time required to pro­
cess a file sequentially (with updates of vary­
ing percentages of the records) by various
methods. 2 In these tests, a key-sequenced file
with 2500 records and a 5-byte key was used.
Each record was 100 bytes long, the block size
was 4096, and the average blocking factor was
38.5. Elapsed time was measured by a COBOL
program, and each test was run at least twice
on a dedicated system.

The design of the tests provides a worst case
scenario, because updates are evenly distrib­
uted throughout the file. If 5% of the records
are reported updated, every 20th record is
changed. This means there is no "clumping"
of updates in a block, i.e., some blocks receiv­
ing multiple updates while resident in buffered
cache (cache-write hits) and others remaining
untouched. In a real application clumping
would occur, allowing for better performance.

Figure 2 shows how the time required to
process the 2500 records varied (under the
single-file, single-read method) depending on
the percentage of records that were updated
during the sequential pass. The dashed curve
shows the time required when sequential block
buffering and buffered cache were used. The
solid curve shows the time required when nor­
mal reads and updates were performed (with­
out sequential block buffering or buffered
cache).

In Figure 2, the processing time increases
(in both cases) as the percentage of records
updated increases. If every record read is
updated, the entire operation takes 2.5 times
as long with normal reads and updates than if
the reads and updates were performed with
sequential block buffering and buffered cache.

2The performance numbers presented in this article should not be viewed as
absolute values, valid in any application environment. They only indicate the
relative performance that might be expected from various file-access methods.
Performance questions relating to specific applications should be resolved
through the testing of various file-access techniques in the environment in
which they are to be used.

TANDEM SYSTEMS REVIEW F E B R U A R Y 1 9 8 6

If every 20th record is updated (5% of the
total), the entire operation takes 1.8 times as
long with normal reads and updates than if the
reads and updates were performed with
sequential block buffering and buffered cache.
As mentioned earlier, if no updates are per­
formed, a threefold improvement is realized
with sequential block buffering.

The Double-file, Double-read Method
A double-file, double-read method serves two
purposes. First, it makes sequential block buf­
fering easier to use in a shared update environ­
ment because concurrency protection can be
provided with selective record locking. Sec­
ond, it allows sequential block buffering to be
used without buffered cache. The second file,
used for the update and locking operations, is
opened for normal 1/0.

The method involves first reading through
the file with sequential block buffering and
selecting records. Then, the key from the
selected record is used to reread the record
through a second open of the same file. The
FILE-CONTROL for this second file open spec­
ifies RESERVE I AREA (or no RESERVE
clause at all), so sequential block buffering
and buffered cache are not used. The second
read may or may not specify WITH LOCK,
depending on the need for concurrency protec­
tion. If shared access is specified in the open
statement, record locking should be used, and
the record image retrieved in the second read
should be verified as current; otherwise, pro­
tected access should be specified in the open
of the second file. The record can then be
rewritten, and any lock can be released.

Although this method is less efficient than
the single-file, single-read method (in terms of
the code that is executed when a record is
updated), it eliminates the possibility of over­
laying another process' update because a non­
current record image was used from a
sequential block buffer. It also eliminates any
risk involved in using buffered cache.

Figure 2

Single-file, single-read method

140

0)
-0
C:
0

al
!!!,

"' "E!
0

~
0
0
U)
N

gi
Q)

~
Q.

£
-0
~
·5
CJ"
~
Q)

E
F

120

100

80

60

40

20

20 40 60 80

Percentage of records updated
during sequential pass

100

A sample implementation of the double-file,
double-read method follows:

MAIN-LINE.
OPEN INPUT TEST-SBB SHARED.
OPEN 1-0 TEST-FILE SHARED.
PERFORM PROCESS-FILE UNTIL EOF.
CLOSE TEST-SBB.
CLOSE TEST-FILE.
STOP RUN.

PROCESS-FILE.
READ TEST-SBB NEXT RECORD

AT END MOVE I TO EOF-FLAG.
IFNOTEOF

IF UPDATE-NEEDED
MOVE TS-KEY TO TF-KEY
READ TEST-FILE RECORD

WITH LOCK
KEY IS TF-KEY

REWRITE TEST-FILE-RECORD
WITH UNLOCK.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW

Figure 2.

Processing time for 2500
records (each 100 bytes
long) with the single-file,
single-read method. The
time varies, depending
on the percentage of
records that must be
updated during the
sequential pass. A key­
sequenced file with a
5-byte key was used. The
block size was 4096, and
the average blocking
factor was 38.5. A
Nonstop TXP processor,
BOO software, DP2, and
COBOL code were used.

15

Figure 3.

Processing time for the
double-file, double-read
method. When 100% of
the records read are
updated, the benefit of
sequential block buffering
is insignificant. When
only 5 % of the records
read are updated, how­
ever, a 44 % throughput
improvement is realized.
(The test environment
and file were identical to
those for Figure 2.)

Figure 4.

A comparison of the
processing times for
various double-file and
single-file methods.
When only 5 % of the file
is updated in a sequential
pass, the double-file
method is about 11 %
slower than the single-Jile
method with buffered
cache and sequential
block buffering. (Under
those same circum­
stances, however, the
double-file method is still
about 3 7% faster than
the single-file method
using normal l/0.) As
the percentage of records
updated increases past
20%, the performance of
the double-file method
degrades. (The test envi­
ronment and file were
identical to those for
Figure 2.)

16

Figure 3

140

120

"' "O
C
0

al
!!!- 100
(/)

1"

~
0
0
l{)
N
(/)

iil
~
0.

.8
"O
[I'
·s
cr
[I'
Q)

E
i-=

Figure 4

80

60

40

20

0

140

120

"' "O
C
0

-~-- 100
(/)

1"

~
0
0
l{)
N

~

80

8 60
5.
.9

~ ·s
cr
[I'
Q)

40

0

Double-file, double-read method

1/
'/

~

1/ /
'/ /

/ /
/ .

/ _/
/ ./

/ /'-- Wrth sequential
• block buffering;

/,/ no record locking

1/
~ With sequential block

buffering; with record
locking

20 40 60 80 100

Percentage of records updated
during sequential pass

Comparison of methods

Double-file, double-read
method; with record lock:iog

/
/

/

/

/
/

/

/4 Single-file, single-read
/ method; no buffering; no

¥ record locking .--· __. ---· E
i-= 20 /, <-·

., _ _.,- • Single-file, single-read

0
0

,_. method; buffered cache;
no record locking

20 40 60 80

Percentage of records updated
during sequential pass

TANDEM SYSTEMS

100

TEST-FILE is opened for shared 1/0 access,
and RESERVE n AREAS is not specified in
FILE-CONTROL. TEST-SBB is opened for
shared input access, and RESERVE 2 AREAS
is specified in FILE-CONTROL to invoke
sequential block buffering.

Figure 3 summarizes the results of a per­
formance test of a Nonstop TXP system doing
sequential block buffering by the double-file,
double-read method. The test was conducted
in the same environment and with the same
file as that described earlier. When 100% of
the records read were updated, the benefit of
sequential block buffering was insignificant.
When only 5% of the records read were
updated, however, a 44% throughput improve­
ment was realized. (Note: The test also
showed that elimination of record locking
when protected access is available is slightly
more efficient.)

Comparing the Various Methods
As the tests described so far have shown, both
sequential block buffering and buffered cache
consistently improve performance, although
the level of improvement varies from one situ­
ation to another.

Figure 4 compares the performance of vari­
ous double-file and single-file methods. When
only 5 OJo of the file is updated in a sequential
pass, the double-file method is approximately
11 OJo slower than the single-file method with
buffered cache and sequential block buffering.
(Under those same circumstances, however,
the double-file method is about 37% faster
than the single-file method when normal I/O
is used.)

The advantage of the double-file method is
that there is no risk from using buffered cache,
and shared update access is allowed. 3 The
11 OJo additional cost (in which 5 OJo of the file
is updated in a sequential pass) is relatively
small in light of these advantages. As the per­
centage of records updated increases past
20%, however, the performance of the double­
file method degrades. This degradation is
caused by the additional read and record lock
requests sent to the disc process.

3The risk associated with buffered cache is only considered with unaudited
files. Buffered cache is always used for audited files (as of the BOO software
release), but the files are protected by TMF recovery mechanisms.

REVIEW FEBRUARY I 9 8 6

This means that the fastest way to process a
file sequentially is to rely on the single-file
method (using both sequential block buffering
and buffered cache and opening the file for
exclusive or protected access). The choice of a
next-best alternative (from the standpoint of
performance) depends on the characteristics of
the file and the percentage of records updated.
If a low percentage of records is to be
updated, the double-file method with sequen­
tial block buffering is probably best. If a large
number of records is to be updated, however,
the single-file, unbuffered method is best. The
exact "break-even" percentage varies from
application to application and can only be
determined through testing.

Conclusion
Sequential block buffering and buffered cache
are important File System features for improv­
ing application performance. The new BOO
enhancements to COBOL make the features
easy for programmers to use.

While it is generally intended for read-only
applications, sequential block buffering can
help other applications as well. Buffered cache
improves the performance of most applications
that write, delete, and update. Before selecting
the techniques for accessing a file, application
designers should (1) analyze the file's charac­
teristics, (2) determine the possibility of con­
current updates to it, and (3) calculate the
percentage of its records that are updated.

References
BOO Software Documentation (Softdoc) on COBOL. 1985. BOO
software release Site Update Tape (SUT). Part no. T9251B00.
Tandem Computers Incorporated.

COBOL Reference Manual. 1985. Section 9, Procedure
Division-Verbs. Part no. 82589 A00. Tandem Computers
Incorporated.

ENSCRIBE Programming Manual. 1985. Section 4, File
Access. Part no. 82083 BOO. Tandem Computers Incorporated.

Welsh, R. 1984. Optimizing Sequential Processing on the
Tandem System. Tandem Journal. vol. 2, no. 3.

Acknowledgments
The author would like to thank Mike Noonan for his helpful
suggestions for the technical content of the article. Thanks also
to Jim Enright, Jim Gray, Guy Haas, Rich Lynn, Chris
Ohland, Emile Roth, Harold Sammer, Dick Thomas, and Rob
Welsh for their help in reviewing the article.

Randy Mattran is a senior staff analyst in the Minneapolis
District. His activities include application-design support,
support for data-base products, performance, and capacity
planning. Before joining Tandem in 1981, he spent five years with
a consulting firm, designing and developing distributed on-line
transaction processing applications. Randy holds a B.B.A. in
business computer systems from Eastern Michigan University.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW 17

18

DP1-DP2 File Conversion:
An Overview

hen systems are
converted from
Tandem's Disc Pro­
cess 1 (DPl) to Disc
Process 2 (DP2), the
disc volumes must be
converted to DP2

format. This is because the volume label,
directory, and internal structure of structured
files on a DP2 volume are different from those
on a DPl volume. 1

Tandem's DP1-DP2 file-conversion utilities
support all conversion requirements, from the
simplest to the most complex. Note that while
this article emphasizes the more complex file­
conversion issues, most DP1-DP2 file conver­
sions will not be complex. An understanding
of the issues explained here, however, will
enable those responsible for DP1-DP2 con­
version to fully plan for the conversion of
their files.

1A conversion from DPI to DP2 does not require changes to the applications
that used DPl. All programs that access structured and unstructured files in
ordinary ways are fully compatible with DP2. As the block structure has
changed for structured files, however, those few programs that read structured
files with unstructured access will require changes to accommodate this. Also,
as DPI and DP2 audit-trail formats differ, any programs that directly access
the audit trail will require modification.

Conversion Utilities
The following Tandem utilities are available
for file conversion from DPl to DP2 (and
from DP2 to DPl):

■ BACKUP has two new options (DP I FOR­
MAT and DP2FORMAT) that write a file to
tape in the specified format. If neither option
is specified, the format of the tape file will be
the same as that of the source disc file.
■ RESTORE converts files automatically if the
format of the tape file differs from that of the
destination disc file. Since RESTORE can read
all tapes created by BACKUP, it can be used to
convert any file.
■ The File Conversion Program (FCP} is a
new utility designed to convert multiple files
and volumes in parallel. It converts files from
disc to disc, which allows it to convert vol­
umes faster than BACKUP and RESTORE. It
should be used to convert mirrored volumes,
and can be used to convert nonmirrored vol­
umes. (For a discussion of the time required to
convert files with FCP, refer to the accompa­
nying article, "Determining FCP Conversion
Time.")
■ The File Utility Program (FUP} DUP com­
mand converts files automatically if the for­
mat of the destination file differs from that of
the source file.

TANDEM SYSTEMS REVIEW FEBRUARY l 9 8 6

File Conversion Assistance
Program (FCAP)
The File Conversion Assistance Program
(FCAP) automates DPI-DP2 file conversion. It
is similar in function to INSTALL, a utility
that provides an automated means of generat­
ing and installing the GUARDIAN operating
system. FCAP invokes the DPI-DP2 conver­
sion utilities at the appropriate time during the
conversion process.

FCAP may be used for conversion planning
as well. It generates a set of reports from data
produced by an FCP ADVISE operation. The
reports categorize the FCP data, making it
much easier to identify files that require
special consideration before starting their
conversion.

As FCAP's documentation is an integral
part of the program itself, no separate hard­
copy manual accompanies it. Instead, one of
the options on FCAP's initial menu is to print
the user's guide. Refer to the B20 Software
Documentation (Softdoc) for further informa­
tion about FCAP and the user's guide.

DP2 Resource Requirements
Tests have shown that processors containing
DP2 typically require more than 2 Mbytes of
memory. DPI requires 80 Kbytes for its code
space, whereas DP2 needs 200 Kbytes. Also,
DP2 requires additional memory to support a
potentially larger cache size.

Before installing DP2, use XRAY™ to evalu­
ate DPI 's memory utilization. If the XRAY
results indicate memory pressure, add more
memory before installing DP2. Excessive page
faults can significantly degrade performance.

For DP2 TMF, a volume can contain either
audited files or audit-trail files, but not both.
This restriction was made to make DP2 soft­
ware more reliable than that of DPI. The DPI
TMF practice of "cross-auditing" is not
allowed with DP2. If all DPI volumes contain
audited files, an additional mirrored volume is
required unless all the audited files on a mir­
rored volume can be moved to other volumes.

Restrictions on Mixing
DPl and DP2 Volumes
As there is no requirement for all volumes on a
node to have the same format, a single node
can contain both DPI and DP2 volumes. This
means that, if appropriate, one or two volumes
can be converted at a time, as opposed to all
volumes being converted at once. The follow­
ing are the restrictions associated with mixing
DPI and DP2 volumes on the same node:

■ All volumes connected to the same disc con­
troller must have the same disc-process type.
A controller string must not contain a mix of
DPI and DP2 volumes.
■ If a file has alternate keys, the primary file
and the alternate-key files must have the same
disc-process type.
■ All partitions of a file must have the same
disc-process type. This includes files that are
partitioned across nodes.
■ For TMF, audited files and audit-trail files
must be on volumes with the same disc-process
type. This usually means that all volumes on a
node that uses TMF must be converted at the
same time.

Changes in File Characteristics
DP2 introduces several changes in file charac­
teristics. In some instances, described below,
these changes will require special consider­
ation and action before conversion.

Fewer Valid Block Sizes
DP2 block sizes are limited to power-of-two
multiples of the sector size (512, 1024, 2048,
or 4096 bytes). This means DP2 does not sup­
port four DPI block sizes: 1536, 2560, 3072,
and 3584 bytes. The conversion utilities adjust
the block size of any structured file having one
of the invalid DPI sizes to the next highest
DP2 block size. (Thus, block size 1536 is
adjusted to 2048, and block sizes 2560, 3072,
and 3584 are adjusted to 4096.)

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 19

20

This adjustment may not be optimum for a
particular file. To avoid this condition, run the
FCP ADVISE command on all files first to
identify those whose block sizes will change
(or use FCAP; the planning reports that it gen­
erates identify these files). Using a valid DP2
block size, restructure those files whose block
size would be adjusted inappropriately during
conversion; then convert the files.

Index and Data Block-size Requirements
for Key-sequenced Files
DP2 requires index and data blocks in a key­
sequenced file to be the same size, while DPl
does not.

DPJ Block-size Requirements. A DPl file uses
different index and data block sizes primarily
to achieve optimum performance. DPl was
designed to use write-through cache, in which
every write operation causes an immediate
disc I/0. (With the BOO software release, DPl
began using buffered cache for audited files
only.) Optimum block sizes for a DPl file are
determined by its write-through cache require­
ments, as discussed below. (For a comparison
of DPl and DP2 cache, see Schachter, 1985.)

For random access of a DPl file for which
write-through cache is used, a small data block
size is desirable because few, if any, read cache
hits are expected. Less of the finite cache
resource is used to hold the block, and the
number of bytes written to disc for a write
operation is minimized. If the index block size
is also small, however, an excessive number of
index levels have to be accessed when a data
block is retrieved. In this case, a large index
block size is appropriate.

For sequential writes to DPl files for which
write-through cache is used, a small block size
minimizes the number of bytes written to disc
for each write operation.

DP2 Block-size Requirements. In DP2,
because all of a file's blocks are cached in the
same buffer and a separate cache buffer is
used for each block size, block sizes for DP2
index and data files must be identical.

Also, DP2 cache can be either write-through
or buffered. The default is buffered for
audited and write-through for nonaudited
files. Nonaudited files may be buffered, if
appropriate, however. A buffered file that is
written to sequentially should use a large
block size to take advantage of cache write
hits. Even files that are written to randomly
benefit from using buffered cache because
the disc I/0 does not have to be performed
immediately.

Conversion Considerations. Because DP2
requires the index and data blocks of key­
sequenced files to have the same block size, the
conversion utilities automatically change the
block sizes of DP 1 files with differing index
and data block sizes. 2 During the conversion,
the block size becomes the larger of the DP 1
data and index block sizes rounded up to a
valid DP2 block size. (For example, a DPl file
with an index block size of 1536 and a data
block size of 512 would have a DP2 index and
data block size of 2048.)

Before converting files from DPI to DP2,
use FCAP to identify all files whose index and
data block sizes are different. For each of
these, determine which is optimum for the
DP2 cache scheme: the block size it will auto­
matically be given by the conversion utility or
one of the other valid DP2 block sizes.

It is best to restructure, before conversion,
those files whose post-conversion block size
would be inappropriate. For a large file, how­
ever, it may be more practical to restructure
the file while converting it. Use the FCP DUP
command's BLOCKSIZE option for this.

'All DPI-DP2 file-conversion utilities (BACKUP, RESTORE, FCP, and FUP)
follow the same rules when making block and extent size adjustments. Thus,
regardless of the conversion utility used, the adjustments made are the same.

TANDEM SYSTEMS REVIEW F E B R U A R Y I 9 8 6

Preserving a File's Address Space

Bit-map Blocks and Address Space. DP2
relative and key-sequenced files contain bit­
map blocks in addition to index (key­
sequenced) and data blocks. Bit-map blocks
are used for free-space allocation within the
file. With the addition of these bit-map
blocks, it becomes necessary to distinguish
between address space and total file space.

Address space can be defined as the total
amount of space in a file that is available for
the storage of data and index (key-sequenced)
information when all the file's extents are allo­
cated. It excludes any space required for bit­
map blocks. Total file space can be defined as
the total amount of space available in a file
when all the file's extents are allocated . . ' mcludmg address space and bit-map block
space. Within these definitions, DPl address
space equals the total file space, as it does not
use bit-map blocks. Thus, for DP2
address space = total file space - bit-map
block space,
while for DPl

address space = total file space.

Conversion Considerations. For relative and
key-sequenced files, the file conversion utili­
ties attempt to preserve address space by
adjusting the size of the total file space to
compensate for the presence (DPl to DP2) or
absence (DP2 to DPl) of bit-map blocks in the
converted file. They increment a file's primary
extent size when converting it from DPl to
DP2 or decrement its primary extent size when
converting it from DP2 to DPl.

The adjustment factor is a multiple of the
file's block size. The smallest unit of alloca­
tion in a disc file is one page (2048 bytes).
Thus, if the adjustment factor is not a
2048-byte multiple (possible for block sizes of
512 or 1024), the conversion utility rounds up
the factor to the next highest page value for
DP1-to-DP2 conversions and the next lowest
page value for DP2-to-DPI conversions. After
an extent adjustment, a converted file has the
same amount of address space as the source
file or slightly more.

It is evident that DP2 relative and key­
sequenced files require slightly more disc
space than their DPl counterparts. If few of
these files reside on a volume, the additional
space requirement is minimal (1 % or less). If
a volume contains a
large number of
these files, however,
the additional space
requirement could
be significant, espe­
cially if the volume
is almost filled to
capacity. The addi­
tional space required
could be as much as

Tn conversion, block size
1 becomes the larger of the
DPJ data and index block
sizes rounded up to a valid
DP2 block size.

5 % but typically is in the range of 1 % to 2 % .
Use the FCP ADVISE command as an aid in
estimating the additional space needed for
conversion. One or more additional disc vol­
umes may be needed if the additional space is
not available.

DP2 Blocks Must Reside in the Same Extent
There are other reasons that a file's extent
sizes may be adjusted during conversion. For
DP2, a block must reside in the same extent
while for DPl, a block may be split betweed
two extents, such that the first half of a block
can fall at the end of one extent and the last
half reside at the beginning of the next. This
occurs if, for a file whose block size is 4096 . ' either the primary or secondary extent size is
an odd number. For any structured file in this
condition, the DP2 conversion utilities incre­
ment the extent size to the next even value.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 21

22

Difference in Number of Extents Allowed
A DPI file may only have a maximum of 16
extents allocated (1 primary and 15 second­
ary). This limit is not adjustable. Thus, for
DPI,

total file space (in pages)
= primary extent size
+ (15 * secondary extent size).

The maximum number of extents for a
DP2 nonpartitioned file is dynamically
alterable and is limited by the space available
in the file label. This allows for over 900
extents in most instances. A new file charac­
teristic, MAXEXTENTS, dictates the maxi­
mum number of extents allocatable for a DP2
file. Thus, for DP2,

total file space (in pages)
= primary extent size
+ ((MAXEXTENTS - 1)

* secondary extent size)

To accommodate this difference, when con­
verting a DP2 file whose MAXEXTENTS value
is greater than 16 back to DPI, the conversion
utilities adjust the primary and secondary
extent sizes so that the total file space fits into
16 extents. For example, Table 1 shows the
characteristics of a DP2 unstructured file
whose MAXEXTENTS value is greater than 16
and the new values for these characteristics
after the file has been converted to DPI. Note
that the total file space has been maintained
but the extent sizes have changed considerably.

Table 1.

Characteristics of a DP2 unstructured file whose
MAXEXTENTS value is greater than 16, before and
after it is converted to DP1.

After
conversion

Characteristics Under DP2 to DP1

Primary extent size 10 pages 20 pages

Secondary extent size 10 pages 132 pages

MAXEXTENTS 200 16

Total file space 2000 pages or 2000 pages or
[10 + (200 - 1). 10] (20 + 15. 132)

Partitioned Files
While the parts of any key-sequenced parti­
tioned file can be converted individually, for
entry-sequenced and relative partitioned files,
all parts might have to be converted as a unit.

Key-sequenced Files
Key-sequenced files are partitioned at file cre­
ation when the primary key values for the
range of records that are to reside in each part
of the file are specified. It is not absolutely
essential that address space be preserved in
each part during file conversion. Records des­
tined to reside in one part before file conver­
sion reside in the same part after conversion,
even if that part's address space is incre­
mented slightly by the conversion process.
Thus, regardless of any changes in a key­
sequenced file's characteristics, it is always
possible to convert each part individually.

Entry-sequenced and Relative Files
For an entry-sequenced or relative partitioned
file, the position of a record in the file is
dependent on each part's address space. If
an individual part's address space were not
preserved during conversion, records in one
part might fall into another part. If this
would occur for any part of a file, all parts
of the file must be converted as a unit; the
conversion utilities will not convert each
part individually.

Also, the parts of an entry-sequenced or
relative partitioned file whose block size would
change as a result of conversion must be con­
verted together. An individual part may not be
converted separately because it is highly prob­
able that some records would fall into different
parts after conversion.

Conversion Example 1. A part of a DPI
entry-sequenced partitioned file has these
characteristics:

Characteristics
----- - ---------

Primary extent size
Secondary extent size
Block size

Value

12 pages
15 pages

4096 bytes

For this file, a 15-page secondary extent size is
not valid for DP2 because the block size is
4096 (as explained earlier). This extent size
must be an even number, but if it were
adjusted to 16 pages, the address space would
not be preserved. Thus, the part cannot be
converted individually.

TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 6

Conversion Example 2. A part of a relative
partitioned file has a block size of 512 bytes.
When it is converted, space must be added
(DPl to DP2) or subtracted (DP2 to DPl) to
compensate for bit-map blocks. The block size
is not a multiple of a disc page (2048 bytes),
however. In all probability, address space
would not be preserved if the primary extent
were adjusted; therefore, the part cannot be
converted individually. This is also true for a
relative partitioned file with a block size
of 1024.

Converting Files Whose
Parts Must Be Converted as a Unit
Use FCAP to identify those files whose parts
can be converted individually with FCP and
those that must be converted as a unit with
BACKUP and RESTORE or FUP DUP. (FCP is
not capable of converting all parts as a unit.)

Files That Cannot Be Converted
FCAP produces reports identifying all files
that cannot be converted. (It runs the FCP
ADVISE command and generates the reports
upon completion of the ADVISE operation.)
The following describes the files that cannot
be converted.

Broken Files
A file must have structural integrity before it
can be converted, as none of the conversion
utilities convert broken files. (The FCP
ADVISE command's VERIFY option identifies
such files. Note that this option checks only
for errors that would prevent a file from being
converted; it does not check for all possible
structural errors.)

TMF Audit-trail Files
The internal format for TMF audit-trail files is
different for DPl and DP2; also, after a con­
version, the required TMF initialization invali­
dates all previous audit trails. For these
reasons, audit-trail files (those with a file code
of 134) must not be converted. (FCP does not
convert these files. The other conversion utili­
ties do, but the contents of the converted files
are useless.)

DP2 Records Longer Than 2035 Bytes
DP2 key-sequenced files may have records
longer than 2035 bytes, the maximum record
length for DPl. These files cannot be con­
verted to DPl.

DP2 Primary Files Having More Than
26 Alternate-key Files
A DP2 file label is larger than a DPl file label,
allowing the specification of more alternate
keys and alternate-key files than are allowed
under DPl. As a rule, a DP2 primary file with
more than 26 alternate-key files is not convert­
ible to DPl.

Conclusion
An understanding of DP1-DP2 file-conversion
issues is essential for the successful conversion
of a data base. While not all file conversions
will be complex, it is important that those
responsible for a conversion understand the
file-conversion process and the changes in the
physical implementation of the data base that
may result.

References
B20 Software Documentation (Softdoc) on the File Conversion
Assistance Program (FCAP). 1985. B20 software release Site
Update Tape (SUT).

Carlyle, K. and McGowan, L. 1985. DP2 Highlights.
Tandem Systems Review. vol. 1, no. 2. Tandem Computers
Incorporated.

DP1-DP2 File Conversion Manual. 1985. Part no. 82407 BOO.
Tandem Computers Incorporated.

DP2 Class. 1985. Course no. 38448-AOO. Tandem Computers
Incorporated.

Schachter, T. 1985. DP2's Efficient Use of Cache.
Tandem Systems Review. vol. 1, no. 2. Tandem Computers
Incorporated.

Jim Tate developed the File Conversion Program (FCP) and the
File Conversion Assistance Program (FCAP). He joined Tandem
in 1979 as an instructor and course developer in Hardware
Training. After that, he became a course developer in Software
Education and, then, District Systems Manager in Phoenix. He is
currently an advisory staff analyst for the Large Systems Sup­
port Group. Before joining Tandem, Jim supported automated
warehousing systems. He has 17 years of computing experience.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW 23

24

Determining FCP Conversion Time

----- he File Conversion Program
(FCP) is a Tandem utility for
converting files from Disc
Process 1 (DP 1) format to
Disc Process 2 (DP2) format
(and vice versa). 1 This article
explains how to determine

the amount of time it will take to convert files
with FCP. It provides a model that can be used
to estimate the amount of time that will be
required to convert any volume. The model
was derived from conversion tests also
described in the article.

'For a description of the DP1-DP2 conversion utilities and a~ overview
of conversion considerations, see the previous article, "DP1-DP2 File
Conversion: An Overview," also by Jim Tate.

'For a complete list of DP1-DP2 file-conversion steps, see the DPJ-DP2
File Conversion Manual.

Basic File Conversion Steps
Below is an abbreviated list of DP1-to-DP2
file-conversion steps, containing those steps
that take the most time to perform. 2 This arti­
cle focuses on Step 8. (Note that this step may
take as little as a quarter of the time needed to
perform all of the conversion steps listed.)

The list below assumes that a BOO or later
release of the GUARDIAN 90 operating system
has been installed and that the SYSGEN for
DP2 has been performed. It also assumes that
all volumes to be converted are mirrored

' although FCP can be used on nonmirrored
volumes if an extra disc drive is available as
the destination disc.

1. Shut down all applications and
subsystems.

2. Back up all files (usually to tape, but a
disc can be removed to accomplish this
step).

3. Run FCP ADVISE, VERIFY on all vol­
umes being converted.

4. Use BACKUP to back up files not convert­
ible by FCP. (This will be a small subset
of the files backed up in Step 2.)

TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 6

5. Shut down the "old" system.

6. Copy the "new" system-image tape to
disc and cold load the system.

7. Convert the files that must be converted
by RESTORE.

8. Use FCP to CONVERT all other files.

9. Run INSTALL and perform the REPSUB-
SYS phase.

10. Run FILCHECK to insure the structural
integrity of all structured files.

11. Start up all subsystems and applications.

12. Revive the volumes.

Main Factors Affecting FCP
Conversion Time
The main factors that may influence the
amount of time needed for an FCP conversion
are:

• Processor type (Nonstop II™ or
NonStop TXP) and disc-controller type
(3106 or 3107).

• Number of files on the volume.

• Average file size on the volume.
• File type.

Processor and Disc-controller Types
The types of processor (Nonstop II or
Nonstop TXP) and disc controller (3106 or
3107) are the primary hardware factors. They
dictate the conversion transfer rate. The
amount of time required to create and update
the converted files is dependent on the proces­
sor type.

Number of Files on the Volume
The number of files on a volume correlates
directly with the time required to convert the
volume. The greater the number of files, the
longer it will take to convert the volume. For
every file, FCP must create the destination
file, allocate disc space, and update the file
label after conversion.

Average File Size on the Volume
Large files convert at a higher rate than do
small files (28 Kbytes or less), for two rea­
sons:

1 . For small files, the time required for file
creation, disc-space allocation, and the
update of the file label is a significant por­
tion (perhaps 50% or more) of the total
time required to convert the file. This
lowers the file's overall conversion rate.

2. Each file is converted by a pair of FCP
processes (FCP 1 and FCP2). The two pro­
cesses are designed to overlap reading from
the source file and writing to the destina­
tion file. For small files (28 Kbytes or less)
there is no overlap, however, because of the
small amount of data involved. Thus, the
file's overall conversion rate is lower.

File Type
Unstructured files are the fastest to convert
because only their file labels need to be modi­
fied. Data is simply copied from the source
file into the destination file without changes.

For a DPl entry-sequenced or relative file,
the logical and physical block positions within
the file are the same. The file can thus be read
sequentially, simplifying conversion. Multiple
blocks can be read in a single read operation.

A key-sequenced file is the slowest to con­
vert because the source file must be read via
the index so that records can be extracted in
logically ascending order. This means only one
block can be read with each read operation.
For this reason, a key-sequenced file with a
4096-byte block size converts at a higher over­
all rate than a key-sequenced file with a 512-
byte block size.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 25

26

Table 1.
Characteristics of the file sets generated for the DP1-DP2 File Conversion Program (FCP) tests.

File set 1

Records/file 250

Average file size 24 KB

Total number of files 2000

Number of unstructured files 500

Number of entry-sequenced files
512-byte block 125

1024-byte block 125
2048-byte block 125
4096-byte block 125

Number of relative files
512-byte block 125

1024-byte block 125
2048-byte block 125
4096-byte block 125

Number of key-sequenced files
512-byte block 125

1024-byte block 125
2048-byte block 125
4096-byte block 125

File extent sizes (both primary
and secondary) in pages 6

FCP Conversion Tests
The FCP conversion tests were designed to
take into account the main factors that affect
FCP conversion time. The BOO versions of DP2
and FCP were used.

File Description
Four different file sets were generated (see
Table I), with average file sizes ranging from
small (24 Kbytes) to large (10.4 Mbytes).
Each file set was individually loaded onto a
DPI mirrored volume, which was then con­
verted to DP2.

File set 2 File set 3 File set 4

2500 25,000 125,000

220 KB 2.2 MB 10.4 MB

200 20 4

50 5

12 1
12 1
13 1
13 2

12 1
12 1
13 1
13 2

12 1
12 1
13 1
13 2

60 600 6000

Each file set consisted of 500,000 80-byte
records distributed evenly among the four dif­
ferent types of file. The total size of each file
set was approximately 45 Mbytes. This was
deemed to be sufficiently large to yield mean­
ingful FCP conversion-time data.

All files in a file set contained the same
number of 80-byte records. This included the
unstructured files, whose end-of-file value
equalled the number of records per file multi­
plied by 80 bytes. Only valid DP2 block sizes
were used for the structured files (512, 1024,
2048, and 4096 bytes). All key-sequenced files
were generated with a block SLACK value of
10%.

TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

Configuration
Figure I represents the hardware configuration
for the test system. Only volumes $DATA I and
$DATA2 were used for the conversion tests.
They were both mirrored 4114/4115 volumes.

For each of the four file sets, the FCP CON­
VERT operation was run twelve times, measur­
ing the elapsed conversion times for one, two,
and three FCPI-FCP2 process pairs, on either
a Nonstop II or a NonStop TXP processor
connected to either a 3106 or a 3107 disc
controller.

Only one volume was converted at a time,
and no other activity was present on the sys­
tem during the tests. All FCP output data was
directed to a disc file on $SYSTEM. Volume
$DATA! was used for the tests of file sets 1 and
3, and $DATA2 for the tests of file sets 2 and 4.

Figure 1

Test Results
The elapsed time required to convert a file set
with FCP for each hardware configuration is
listed in Table 2. These results show that there
is almost a linear relationship between the
average file size and the average conversion
rate. As the average file size increases, the
average conversion rate also increases (elapsed
conversion time decreases).

- - - Secondary access path

Table 2.

Elapsed time (in minutes:seconds) required to convert four file sets from DP1 to DP2 format with the File
Conversion Program (FCP).

Nonstop II processor Nonstop TXP processor

Number of
FCP1-FCP2 3106 disc 3107 disc 3106 disc 3107 disc

File set process pairs controller controller controller controller

File set 1 1 50:47 45:31 35:22 31:29
(24 Kbytes, 2000 files) 2 42:28 39:27 31:34 28:58

3 42:21 39:33 31:57 29:14

File set 2 1 17:58 15:11 11:06 10:39
(220 Kbytes, 200 files) 2 15:50 14:27 11:31 11:06

3 16:16 14:50 12:27 11:29

File set 3 1 14:41 11:23 9:48 8:00
(2.2 Mbytes, 20 files) 2 14:12 11:37 11:15 9:24

3 14:25 11:33 11:36 9:07

File set 4 1 10:05 7:40 5:32 5:20
(10.4 Mbytes, 4 files) 2 9:10 7:31 7:24 5:26

3 10:10 7:29 6:45 5:30

F E B R U A R Y 1 9 8 6 TANDEM SYSTEMS REVIEW

Figure 1.

The hardware configura­
tion used in the DPJ­
DP2 File Conversion
Program (FCP) tests.

27

Table 3.
Hardware-dependent values for variables f1, f2, and f3 of FCP conversion-time model.

Figure 2

Variable

f1 (file creation disc-space
allocation, and file-label update
time, in secs/file)

f2 (FCP overhead)

f3 (transfer rate in Kbytes/sec)

:DSAP /OUT $Si $CAT, BYSUBVOL

E>h-.Gi:Q DSAP - $CAT on \SUPPORT -
Disc Space Analysis Program - T9074B00 - (28JAN85)
Volume $CAT is logical device 9
Device type is 3, subtype 3 (4104 - 240MB)

114,026 pages (2048 bytes) on volume
233,525,248 bytes on volume

Summary of space use on $CAT
10,908 free pages in 642 extents (9.5%).

17,088 extents (87.9%).
in 3,131 files (10.7%).

1,949 deallocatable extent pages in 33 files (1.7%).

Figure 2.

Space Allocation Consistency Analysis:

No space allocation anomalies.

Media Failure Analysis:

Primary disc has no unspared defective sector(s).
Mirror disc has no unspared defective sector(s).

DSAP - $CAT on \SUPPORT
Total Unused

Files Pages Pages
FREE SPACE 10908
DISC DIRECTORY 2860
'r:IM~fJit;,ii;tJ.iSI ··. M
ABUDPARM 4 350
ABURUN84 1 93 90
ACCESS 6 106 7
ACONFIG 3 16 1
ADVENT 16 305 31
ADVENT2 2 74 3
AIDDEV 59 1005 92
ALGORITH 4 34 6

Example Disc Space
Analysis Program
(DSAP) report used in
determining the values of

as (average file size) and
nf (number of Jiles) for
the conversion-time
model.

Dealloc
Pages

48
0
0
0
0
0
0
0
0

Large
File

64
93
93
80

8
62
72

228
16

Nonstop II processor Nonstop TXP processor

3106 disc 3107 disc 3106 disc 3107 disc
controller controller controller controller

0.7

17.8

50.7

Min
Age

0
446
446
607
607
328
614

14
614

0.7 0.5 0.5

16.9 24.5 16.5

61.5 86.4 91.2

Estimating File-conversion Time
Conversion-time Model
Based on the test results, the following model
to estimate the amount of time required to
convert a volume was developed:

Conversion time in seconds

(as+ J2)
= {l+ - 13 *nf

where fl

f2

f3

as

nf

file creation, disc-space
allocation, and file-label
update time in seconds/file
an FCP overhead factor
transfer rate in Kbytes/
second

average file size in Kbytes/
file
number of files

The values of fl,f2, andf3 depend on the
hardware configuration, i.e., the processor
and disc-controller types. Use Table 3 to
determine these for a specific hardware
configuration.

In determining the value off 1, a modified
version of FCP 1 was used to capture the actual
time required to create the destination file,
allocate disc space, and update the file label.
The value proved to be processor dependent.

In calculating the values of f2 and j3, the
elapsed times for file sets 1 and 2 with one
FCP1-FCP2 process pair were used.

28 TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 6

Other Factors Affecting Conversion Time
Many other factors, besides those previously
mentioned, can affect conversion time. If a
volume has a predominance of unstructured
files, it will probably convert in less time than
the model would indicate. Conversely, if key­
sequenced files predominate, more time will
probably be required.

If FCP is to be used to convert multiple
volumes in parallel (as it was designed to do),
resource contention may cause the conversion
time for a volume to increase. Thus, the
model-based estimate should be viewed as an
approximation with an accuracy of ± 25 % .

Using the Model
The values for the average file size (as) and
number of files (nf) can be determined with
the Disc Space Analysis Program (DSAP), a
GUARDIAN 90 utility. For this explanation,
the DSAP output example in Figure 2 is used
as the basis for determining the values of as
and nf.

Page 0 of the DSAP example indicates
100,258 pages are allocated to 8771 files. Of
this total, however, 12,297 pages are unused;
i.e., they do not currently hold any data. To
find out the number of disc pages that contain
data, subtract the unused pages from the allo­
cated pages (in this example, 100,258 - 12,297
= 87,961).

Then determine the average file size in
Kbytes. (Set aside the six temporary files men­
tioned on page 1 of the report for later consid­
eration.) To calculate the average file size,
multiply the total data pages by 2 Kbytes (the
size of a disc page) and divide the result by the
number of files on the volume. For this exam­
ple, the average file size is

87,971 pages * 2 Kbytes
~-~-------~-

8771 files
20.1 Kbytes/file.

Now consider the temporary files mentioned
on page 1. As FCP does not convert tempo­
rary files, subtract them and the space they use
from the totals. In this example, the total
number of files is 8771 - 6, or 8765 files, and
the total space used is 87,961 - (198 - 54), or
87,817 pages. Thus, the average file size is

87,817 pages* 2 Kbytes .
8765

files ~ = 20.0 Kbytes/file.

To calculate the time required to convert the
volume, use 20 Kbytes/file as the average file
size (as) and 8765 as the number of files (nf).
Also, for this example, assume the system has
NonStop TXP processors and 3106 disc con­
trollers. Thus, the approximate time required
to convert the volume is

Time = (o.5 + 20.0 + 24
·
5

) * 8765
86.4

or 8897 seconds (148.3 minutes or 2.5 hours).

If this volume were on a Nonstop Il system
using 3106 controllers, the approximate time
required for conversion would be

. (20.0 + 17.8) Time = 0. 7 + ~---- * 8765
50.7

or 12,670 seconds (211.2 minutes or 3.5 hours).

Conclusion
The amount of time required to convert a vol­
ume from DP! to DP2 is dependent on many
factors. This model for estimating FCP con­
version time takes into consideration the main
factors affecting FCP conversion. It should be
helpful for calculating the amount of time it
will take FCP to convert a specific volume.

References
DPJ-DP2 File Conversion Manual. 1985. Part no. 82407 BOO.
Tandem Computers Incorporated.

Jim Tate wrote this article, as well as the accompanying article,
"DP1-DP2 File Conversion: An Overview."

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 29

30

TACL, Tandem's
New Extensible
Command Language

or some time, users of
Tandem systems have asked
for an interface to the
GUARDIAN operating sys­
tem that is more flexible and
powerful than COMINT,
Tandem's command inter­

preter. To answer this need, Tandem has devel­
oped a new integrated command language that
can be used to perform simple interactive
functions as well as to automate complex pro­
cedures. TACL™, the Tandem Advanced Com­
mand Language, is available for use with
GUARDIAN 90 in the B20 software release.

TACI.:s basic command-interpreter features
include:

■ Support of COMINT commands.
■ Support of user-defined alternate command
names (aliases).
■ A command history, allowing reexecution
and/ or modification of previously entered
commands.
■ Function-key definitions.
■ Prompts containing status information.

TACI.:s advanced command-language fea­
tures include:

■ Extensibility, allowing user-written com­
mands with full functionality.
■ A "help" facility that describes the syntax
expected next.

■ Support of wild cards for file naming.
■ Support of macro files (files containing a
series of commands in the order and format
they would be typed in interactively).
■ An implicit RUN command, allowing pro­
grams or macro files to be invoked by file
name only.
■ Support of functions that return a value,
allowing the results of one command to be
used as the arguments of another (similar to
UNIX pipes).

TACI.:s extensibility is achieved through the
following features traditionally available only
in programming languages:

■ Transparent type conversion between
numeric and string data.
• Arithmetic and logical expressions.
■ Variables (which can be used as stacks).

• Procedural constructs (macro, text, and
routine functions).
■ Control structures (IF, labeled CASE, recur­
sion, WHILE-DO, and DO-UNTIL loops).
• Exception handling.
■ A debugging facility which allows step-by­
step or breakpoint debugging.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

■ Sequential 1/0.
• GUARDIAN 90 interface procedures.
• Support of variables used for process
communication.
■ Text-editing primitives.

■ Aids for parsing complex argument strings.

The basic command-interpreter features are
described in the TACL manuals listed at the
end of this article. The more advanced fea­
tures and the programming features are
described in the following sections. Examples
of how they can be used are included.

Advanced Command-language
Features
Extensibility
All commands in TACL are implemented as
functions, the TACL equivalent of procedures.
Each TACL user's environment is initialized
with a standard set of functions, the
TACLBASE functions, that implement com­
mands compatible with CO MINT. Users can
add to or replace these functions at any time
by creating new functions that use existing
commands and built-in functions. The new
functions can be as simple as COMINT com­
mands or as complex as programs.

The built-in functions are TACCs predefined
building blocks. Many of these functions pro­
vide a high-level interface to GUARDIAN 90
procedures such as FILEINFO and PROCESS­
INFO. Others allow new, more flexible ways of
using the system, such as selecting sets of files
using wild-card notation (TACI..:s file-name
templates).

Help Facility
TACL provides three facilities for aiding inter­
active users. First, users can display a list of
the available built-in functions by typing the
command BUILTINS. They can also press the
predefined "help" key, F16, to display the
syntax options of any command, including
that of user-defined commands. Finally, as
TACL evaluates an incorrectly typed com­
mand, it issues an error message indicating the
syntax it was expecting. Users can then correct
the command without having to refer to a
manual. (This feature is also available to
TACL programs.)

Figure 1

?SECTION print ROUTINE
-----------------------=-==============-=-=
= = TGALs all files matching the file-name template
= = passed to the routine.
======-------------------=-=-==========---=
#FRAME {Make it easy to clean up PUSHed variables.}
#PUSH template {Prepare a variable to hold the argument.}

#PUSH arg_type, filename { Prepare variables used by DO_EACH routine.}

SINK [#ARGUMENT /VALUE template/ TEMPLATE]

= = Define a routine that TGALs each file.

[#DEF do_each ROUTINE
!BODY!

(Get the template argument.}

[#LOOP {Loop once for each file name passed to this routine.}
1001
==Find out if the argument is a file name (1)
==or the end of the argument string (2)
= = and save the value of it

#SET arg_type [#ARGUMENT /VALUE filename/ FILENAME END]

[#IF (arg_type = 1) {If a file name, TGAL it.}
[THEN!

IUNTILI

TGAL /in [filename], out $s.#tgal, nowait/
{if}

{arg_type = 2) {When no more file names, quit.}
I {loop}
{def}

-----------=====----===================----
= = Execute the routine that TGALs each file, passing it
==the complete list of file names that match the template
= = we were given.
---------=--====------=================----
do_each [#FILENAMES [template))

#UN FRAME {Clean up all variables we created here.}

File-name Templates (Wild Cards)
Users of Tandem systems have requested a way
to perform an operation, such as purging or
printing, on a set of files without having to
type each file name in the set. With TACL,
users can do this by giving a file-name tem­
plate as an argument to a function. For
instance, the command FILENAMES accepts a
file-name template and prints the names of the
files the template specifies in a format similar
to that used by the familiar COMINT FILES
command. The example in Figure 1 illustrates
the contents of a routine named PRINT that
accepts a file-name template as an argument
and TGALs each file name that matches it.

Figure 1.

This PRINT function
demonstrates the
argument-handling
capabilities of a TACL
routine.

F E B R U A R Y I 9 8 6 TANDEM SYSTEMS REVIEW 31

32

Macro Files
A desirable trait of any command language is
the capability of executing commonly used
sequences of commands without typing them
each time. Some of the tools used in the
Tandem environment to accomplish this are
OBEY, STREAM, and EXEC. TACL allows
users access to these tools, but introduces
macro files as a simpler means of accomplish­
ing this goal.

A macro file is simply an edit file that con­
tains one or more commands. These com­
mands are executed in sequence when users
invoke the macro file by its file name. A
macro file can contain a few commands typed
in the same format as they would be typed
interactively or a few thousand commands
utilizing some of TACC s more sophisticated
features. It can also contain definitions of new
functions to be used as subroutines.

Users can define dummy arguments in
macro files and pass arguments to the macros
at start-up time. They can achieve even more
sophisticated argument handling in macro
files by using routines within the macro files.

Finally, through macro files, TACL can
determine which actions to take dynamically,
based on the results of previous actions and
the characteristics of the current environment,
rather than basing its actions solely on the
environment that existed when a process
started.

Implicit RUN or Function Invocation
TACL users can execute a macro file or pro­
gram (object) file simply by typing the file's
name. If the name is not fully qualified, TACL
searches a user's current search list of subvol­
ume names. The default search list contains
$SYSTEM.SYSTEM only (simulating the way
CO MINT handles program file names). Users
can modify their individual search lists, how­
ever, to have TACL look for programs and
macros in other subvolumes before or after
searching $SYSTEM.SYSTEM. The list can
contain a user's current subvolume and/or any
other locations.

For program files, all RUN options (includ­
ing DEBUG) are available with this implicit
RUN feature. The search feature is not avail­
able when the RUN command is explicitly
used.

Explicit Invocation and Pipe-like Usage
The TACL User's Guide and TACL Quick Start
explain how users can load libraries of com­
mands to customize their individual environ­
ments. They then execute these commands by
typing the command name and command
arguments on a single line and pressing
RETURN. (This method of invoking com­
mands or functions can be considered implicit
invocation.)

Explicit invocation provides additional
functionality. Users can invoke commands
explicitly by surrounding them in square
brackets ([]). TACL evaluates any command
surrounded by square brackets as soon as all
left and right square brackets match. This
allows users to place multiple commands on a
single line and to spread a single command
over multiple lines.

For instance, the commands

1 > [time] [status*, user]

cause the time and then the status information
to be displayed. 1 Similarly, TACL does not
evaluate the command

2> [status
2> *,
2> user]

until the square brackets match.
Explicit invocation also allows users to nest

commands so that the output of one function
can be passed as input directly to another.
Before TACL was available, it was necessary to
store the results of a command in an interme­
diate process, variable, or file so that it could
be altered into acceptable input for another
function.

'The TACL prompt is a "greater than" sign (>). The number appearing to the
left of the prompt is the count of the command in the sequence of commands
the user has typed (e.g., a number 1 shows to the left of the prompt for the first
command typed in, a 2 for the second command typed in, etc.).

TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 6

For example, to obtain a timestamp and
display it in a format of month, day, year, and
time, users had to call TIMESTAMP, save the
result, pass it to CONTIME, save CONTIME's
results, and convert them to date and time
format. In TACL the timestamp conversion
can be done in a single command, as illus­
trated below:

3 > #OUTPUT [_Contime_ To_ Text
3 > [#CONTIME
3 > [#TIMESTAMP]]]
June 23, 1985 12:35:06

In the above example, TACL executes the func­
tion #TIMESTAMP and passes the value
returned as an argument to #CONTIME. It
then executes #CONTIME and passes its value
as an argument to the TACLBASE function
Contime To_ Text. TACL then passes the
result to #OUTPUT and executes it, displaying
the formatted date on the user's terminal.

Programming Facilities
Transparent Data Type Conversions
From a TACL user's point of view, all data is
textual. In fact, TACL recognizes integers as
well and can perform arithmetic and logical
operations on integers. TACL makes any con­
versions between numeric values and ASCII
that might be required. In addition, whenever
users need to supply a number as an argument
to a TACL routine, they can use the name of a
variable containing a number.

Arithmetic and Logical Expressions
TACL also allows the use of an arithmetic
expression wherever a number or numeric vari­
able name is expected. Such an expression
must be enclosed in parentheses, and can
include other arithmetic expressions, integer
numbers, numeric variables, and operators.
Operators can be arithmetic (+, -, *, /) or
logical (NOT, AND, OR, < , > , = , < = ,
> =, <>).Parentheses can be used to con­
trol the order of evaluation. The value of a
logical expression is either -1 (true) or 0
(false).

Variables
In most programming languages, variables are
used to store values. A variable's current value
is substituted for its name each time it is
encountered. Some languages also allow a
variable to be a function or procedure that is
executed whenever its name is used. Generally,
a variable is defined to be of a specified type,
for example, integer or string. All these capa­
bilities are also true of TACL variables. In
TACL, however, a variable's value and type
and the manner in which it is used can be quite
different from those in other programming
languages.

In TACL, variables are actually stacks, and
the number of levels in a variable is limited
only by the fact that they must fit into the
Uf)er's data area.
Any existing level of
a variable can be
referenced. Variables
can be created,
assigned values, and
destroyed either
interactively or from
within a TACL pro­
gram. By default,
all variables are

T :l Tith TACL, variables
Y Y can be altered while

the process is running so
that concurrent processes
can be managed flexibly.

global within a TACL program, although it is
possible to create local variables for a particu­
lar procedure.

The method TACL uses to substitute a vari­
able's value for its name is somewhat different
from that of most languages. The value that is
substituted for the variable name depends on
its type: alias, text, macro, routine, or delta.
Text, macro, and routine variables can contain
commands or function invocations as well as
text; they then can be viewed as procedures.

An alias variable is used as another name
for a word. The word may be the name of a
built-in function, TACLBASE command, user­
defined command, or file name. When the
variable name is used, the word for which it is
an alias is substituted.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 33

34

Text, the default, is the type most similar to
types found in other languages. The value of a
text variable is simply the value of the text to
which the variable is set or defined. It can be
numeric or character.

Like a text variable, a macro variable can
contain numeric or character text. Macros
allow the substitution of dummy arguments
based on the positions of their actual argu­
ments. A macro variable's value then becomes
its textual content plus the argument substitu­
tions. (Macros are most often used to execute
other commands, however, in the same way
that routines are used.)

A routine variable is used to execute other
commands, much like a procedure is used in
other languages. It determines its own value
through calls to the built-in function
#RESULT. A routine has the option of not
returning a value.

Delta variables are discussed in the section,
"TACL Text Editor (#DELTA)."

TACL variables can be used in ways not
commonly offered in other programming lan­
guages. For example, variables can be used as
input and output files to one or more other
processes. They can be used strictly as files;
that is, the entire input contents are contained
in the input variable when the process is
started and the output variable is examined
when the process' output is complete.

These variables can also be altered dynami­
cally, however; their contents can be changed
while the process is running. This provides
great flexibility in managing one or more con­
current processes. TACL variables can also be
used easily to perform sequential 1/0 to files,
as elaborated upon in the section, "Sequential
1/0."

Procedural Constructs
Text, macro, and routine TACL variables can
be used as procedures because they themselves
can contain command or function invoca­
tions. All three can be constructed with func­
tions of any type as building blocks; each can
be used to fill particular needs.

Text functions, the simplest of the three to
build and use, can contain collections of com­
mands and/or built-in functions that are
invoked as a unit; thus the name of the func­
tion becomes a shorthand notation for the
sequence of functions within it. The invoca­
tion of a text function produces only those
results generated by its constituents.

A macro can contain different functions or
function arguments every time it is invoked,
through the argument-substitution scheme
mentioned in the previous section. The results
of a macro invocation consist of the results of
the functions contained within it, after the
actual arguments have replaced the dummy
arguments.

Routines are the most versatile of the proce­
dure types in TACL. Users can vary the con­
tents of a routine (in the same way they can
vary the content of a macro) by having TACL
pass arguments to it. In addition, TACL can
check routine arguments automatically for
syntactic (and in some cases, semantic) cor­
rectness through the built-in function #ARGU­
MENT. Note that the writer of the routine
determines syntactic correctness; the syntax
rules for routine arguments need not be identi­
cal to those for TACL commands.

The writer of the routine also has complete
control over the values (or results) produced
by the invocation of the routine. If needed,
values must be generated explicitly with the
built-in function #RESULT.

Control Structures
All of TACL's procedural function types can
make use of the control built-in functions to
perform different actions, based on the values
of control expressions (which can be the
results of function invocations).

TANDEM SYSTEMS REVIEW FEBRUARY 1986

TACL supports block IF-THEN-ELSE state­
ments, labeled CASEs, and two loop types
(WHILE-DO and DO-UNTIL). Recursion is
also possible.

Routines alone can be programmed to
#RETURN at any time to their invoking func­
tion (or simply terminate, if they were invoked
directly from the keyboard).

Exception Handling
Another facility unique to routines is the abil­
ity to detect and handle exception conditions
programmatically. Exceptions are generated
("raised") by TACL or by functions when an
unexpected event prevents normal processing.
Routines may cause (#RAISE) exceptions at
any time they are being executed.

If a routine needs to handle exceptions itself
(and this can include exceptions raised by it or
by any routine it invokes), it uses the #FILTER
built-in function to name the exceptions for
which it will accept responsibility.

When an exception is raised, TACL ceases
invoking the current routine and checks
whether the exception is filtered by it. If not,
TACL cancels execution of the routine that
invoked the current one (if there is such a rou­
tine) and checks that routine's filters. It passes
the exception "up" the chain of routine invo­
cations in this manner until it finds a filtering
routine.

When TACL finds the routine that filters the
desired exception, it reinvokes that routine.
The routine must use #EXCEPTION to find
out whether it is being invoked normally or as
the result of its filtering a raised exception.

In some instances, TACL handles exceptions
for users. One frequently encountered excep­
tion is called _ERROR, which is raised when
TACL detects an error. One cause of a raised
_ERROR is the attempt to invoke a routine
with arguments not recognized as correct by
its #ARGUMENT processing. If such an argu­
ment error occurs when no routine has
declared it will handle _ERROR problems,
TACL responds by returning the error message
"expecting ... " followed by a list of the argu­
ment types expected.

Debugging Facility
TACL supplies a debugging facility for TACL
code. Users have the option of stepping line by
line or setting breakpoints at an invocation.
The debugger itself is written in TACL code
and resides in TACLBASE. Users may create
a modified version by copying it from
TACLBASE, making the desired changes, and
LOADing it into their individual environ­
ments. Any TACL command can be evaluated
at a debugger prompt; thus, users can obtain
information about the TACL process or any of
its variables.

Sequential 1/0
TACL functions can pass information to and
use information from other processes, devices,
and files of all
types, including edit
files. The # INPUT
(and #INPUTV) and
#OUTPUT (and
#OUTPUTV) func­
tions can be used to
read from and write
to the IN and OUT
files of a TACL pro­
cess. The function

I

! r~e TACL variables can
• be altered while the . . . process zs running so
that concurrent processes
can be managed flexibly.

#REQUESTER can be used to open other
files for reading or writing, perform the oper­
ations, and close the files. The function
#REQUESTER 1/0 can occur asynchronously;
that is, other functions can be invoked while
TACL completes the 1/0. It is also possible to
wait for the operation to finish.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 35

Figure 2

?SECTION program_timer ROUTINE
#FRAME

#PUSH program_in {Set up variables for controlling}
#PUSH program_status {the process to be timed.)

#PUSH source_file
#SET source_file smallobj

#PUSH inspect_in {Set up variables for controlling INSPECT process.}
#PUSH inspect_out
#PUSH inspect_server

[#SET inspecUn &
b#bo"build"object"file + %247
b#bo"build"object"file + %434
b#bo"build"object"file + %461
b#bo"build"object"file + %471
b#bo"build"object"file + %504
resume
l

#PUSH breakpoint_name {Set up variables for data relating}
#SET breakpoint_name Start {to timing and breakpoints.}

#PUSH start_time, stop_time, elapsed_time

==Get a server file name to use for INSPECT
= = (the TERM of the timed process)
#SET inspect_server [#SERVER /IN inspect_in, OUT inspect_outl]

==Start the process to be timed under INSPECT
RUND $system.system.bind/STATUS program_status, NOWAIT, &

INV program_in DYNAMIC, OUT $s.#temp, &
TERM [inspect_server]/

==Wait for it to be started up (ready for input)
sink [#WAIT program_in]

==Send it the commands to start work
#APPEND program_in add • from [source_file]
#APPEND program_in build testobj
#EOF program_in
==Send it an end of file

GUARDIAN 90 Interface Functions

#SET start_time [#timestamp] {Record the starting time.}

= = Print headers, first "breakpoint" name (Start)
#OUTPUT

#OUTPUT /COLUMN 5, HOLD/
#OUTPUT /COLUMN 40, HOLD/
#OUTPUT /COLUMN 55, HOLD/
#OUTPUT /COLUMN 701

breakpoint
start
end
elapsed

#OUTPUT /COLUMN 5, HOLD/ name
#OUTPUT /COLUMN 40, HOLD/ time
#OUTPUT /COLUMN 55, HOLD/ time
#OUTPUT /COLUMN 70/ time

#OUTPUT

#OUTPUTV/COLUMN 5, HOLD/ breakpoint_name

= = Begin loop which waits for breakpoints to be hit and
= = records the time spent between each pair
wait_for_breakpoints

#UN FRAME

?SECTION print_breakpoint_times TEXT

= = Function to print the breakpoints encountered and the
==time elapsed between each pair of breakpoints

#SET elapsed_time [#COMPUTE stop_time - start_time]

= = Print elapsed time for code AFTER last breakpoint,
= = then name of the breakpoint we just hit
#OUTPUT /COLUMN 40, HOLD/[contime_to_text_time

[#contime [start_time]]l
#OUTPUT /COLUMN 55, HOLD/[contime_to_text_time

[#contime [stop_time]]]
#OUTPUT /COLUMN 70/ [contime_to_text_time

[#contime [elapsed_time]]]

#OUTPUTV/COLUMN 5, HOLD/ breakpoint_name

Using Variables for Process 1/0
Figure 2.

PROGRAM_TIMER
can be used to make
elapsed-time performance
measurements on pro­
cesses whose actions are
controlled through
INSPECT breakpoints.
This version of the rou­
tine was used to measure
BIND performance. The
routine's implicit
#SER VER is the IN file
of the process (supplying
commands to it). The
explicit server-file name
is used as the TERM of
the process so that
INSPECT's input and
output can be manipu­
lated. PROGRAM_
TIMER also has a sub­
function (get_break­
point_routine) that uses
#DELTA to extract infor­
mation from INSPECT's
output.

TACL implements many of the most useful
GUARDIAN 90 procedures as built-in func­
tions. These functions are easy to use, as
TACL converts the values supplied as input
(numeric or plain text) to the proper for­
mats, fills in required parameters, calls
GUARDIAN 90, and converts the returned
values to text. On GUARDIAN 90 calls that
return multiple values (FILEINFO, for exam­
ple), TACL obtains only the items users spec­
ify. Some of the GUARDIAN 90 procedures
TACL supports are shown in Table I.

When users start a process with TACL (by
explicit or implicit RUN, or by using
#NEWPROCESS), the process can use TACL
variables as its IN, OUT, and/or TERM files.
In addition, if the program uses logical file
names, users can direct the program to use
TACL variables in place of other physical files,
as well. This is the server-file feature of TACL.

When server files are used, TACL can deter­
mine the contents of the process' input vari­
able programmatically while the process is
running, and it can examine the contents of
the process' output variable at any time; that
is, TACL is in complete control of the process.

36 TANDEM SYSTEMS

An example of the use of both explicit and
implicit server files to control a program run­
ning under INSPECT is shown in Figure 2.
Figure 3 demonstrates how a program that
gets its file location by reading an ASSIGN
message might use a TACL variable instead of
a disc file.

REVIEW FEBRUARY I 9 8 6

?SECTION wait_for_breakpoints TEXT ?SECTION get_breakpoint_name ROUTINE
----------------------------==-===-=====
= = Recursive function that waits for breakpoints to be hit and
= = reports on them

= = #DELTA commands to extract the breakpoint location
==from the INSPECT output

-------------------------------=--======
==Wait for INSPECT to be ready for input (meaning a
= = breakpoint has been hit) OR for the program to
==stop
[#CASE [#VARIABLEINFO /VARIABLE/

[#WAIT inspect_in program_status]]

linspecUnl
#SET stop_time [#timestamp]

==get breakpoint location from INSPECT output
==and print statistics
get_breakpoint_name
print_breakpoint_times

==throw away INSPECT output
#set inspect_out

= = resume execution and wait for next breakpoint
#SET start_time [#timestamp]
#APPEND inspecLIN resume

wait_for_breakpoints

lprogram_statusl
#SET stop_time [#timestamp]

#SET breakpoint_name Stop
print_breakpoint_times

#OUTPUT

{ Print statistics on}
{last breakpoint.}

#OUTPUT Killing server [inspect_server]: &
[#SERVER /KILL/ [inspect_server]] {Delete the server}

{file for INSPECT.}

] {case}

Table 1.

#FRAME
#PUSH delta_commands
#SET /TYPE DELTA/delta_commands &
Ginspect_out$ & = = Get the text from inspect_out
OJ & ==Go to the beginning
:S-BREAKPOINT-$ & = = Search for -BREAKPOINT-
?N Xbreakpoint_name$' & = = If found, put the rest of the text
HK ==into breakpoint_name,

= = clear the buffer.

SINK [#DELTA /COMMANDS delta_commands/]

#UN FRAME

GUARDIAN 90 procedures and the equivalent TACL built-in functions.
GUARDIAN 90 procedure TACL built-in function GUARDIAN 90 procedure TACL built-in function

File system Process control (continued)

create (partially supported) #createfile suspendprocess #suspend process

deviceinfo #deviceinfo TMF

fileinfo #fileinfo aborttransaction #aborttransaction
nextfilename #nextfilename begintransaction #begintransaction
processfilesecurity #process Ii lesecurity endtransaction #endtransaction

rename #rename Other

open, writeread/read, and close READ #requester centime #centime

open, write, and close WRITE #requester convertprocesstime #convertprocesstime

open and close #in locatesystem (number only) #systemnumber

write read #input, #inputv mom #mom

open and close #out mypid #mypid

write #output, #outputv mysystemnumber plus getsystemname #mysystem

Process control myterm plus setmyterm #myterm

activateprocess #activateprocess setmode 28 #initterm

allerpriority #alterpriority shiftstring #shiftstring
createprocessname #createprocessname getsystemname #system name

createremotename #createremotename timestamp #timestamp

debug process #debug process tosversion #tosversion

lookupprocessname or getppdentry #lookupprocess usernametouserid #userid

newprocess or newprocessnowait #new process useridtousername #username

processinfo #processinfo verifyuser (log on only) #changeuser

stop #stop

F E B R U A R Y 9 8 6 TANDEM SYSTEMS REVIEW 37

Figure 3

?TACL MACRO

#FRAME

#PUSH prog_name, prog_stat, data_var
#SET/ IN datafile/ data_var

{Create variables to run the program.)
{Load data into the data variable.)

==Set up variables to control the servers simulating logical files
#PUSH server_in_name, server_out_name, server_in, server_out

==Get server file names for 2 logical files, the program will
==use one as an input file and the other as an output file
#SET server_in_name [#SERVER/ IN server_in /]
#SET server_out_name [#SERVER/ OUT server_out /]

==Save a copy of the current ASSIGNs, then assign the logical
= = files to the server names
#PUSH #ASSIGN
ASSIGN 1!005, [server_in_name]
ASSIGN 1!006, [server_out_name]

==Run the program using a status variable to tell when it finishes
p1foro/ STATUS prog_stat, nowait /

= = Append the contents of the data file, now contained in data_var,
==to the IN variable of the server simulating the logical file being
= = used for input. This allows the program access to the data.
#APPENDV server_in data_var

==When all the data has been read from the IN variable (server_in) or
==the program terminates (prog_stat), we can examine the OUT variable
= = (server_out), to see the results of the program.
SINK [#WAIT server_in prog_stat]

#OUTPUT
#OUTPUT The results of the program are:
OUTVAR server_out

= = Stop the servers which were running and #POP the current logical file
==assigns. These commands and the #UN FRAME will leave the environment
= = as it originally was.

SINK [#SERVER/ KILL/ [server_in_name]]
SINK [#SERVER/ KILL/ [server_out_name]]

#POP #ASSIGN

#UNFRAME

Figure 3.

This macro demonstrates
two TACL server files
simulating J/O files for a
FORTRAN program.

The server names are
passed to the program
with ASSIGNs. The IN
server-file variable is

filled with the data for
the program, and the
OUT variable receives
the program's output.

TACL Text Editor (#DELTA)
Although it is possible to use the #ARGUMENT
feature of routines to interpret textual argu­
ment strings, TACL has a much more powerful
text manipulation facility called #DELTA. This
facility is a programmable text editor that
allows the use of IFs, loops, and macros. It
can read and write TACL variables as well as
files of all types (using sequential 1/0). The
usual editing functions, such as insert, delete,
and search, are also supported, along with
upshifting and downshifting.

The #DELTA facility can be used interac­
tively or as a low-level tool in the creation of
higher-level multipurpose (or specialized) text
editing functions. (The latter is done by stor­
ing #DELTA commands in a variable of type
DELTA.)

Figure 2 contains a routine using #DELTA
(get_breakpoint_name) which extracts a
breakpoint name from INSPECT process out­
put and places it in a variable for use in other
routines.

Conclusion
TACL has many features that make it well
suited for implementing complex procedures,
especially those requiring process control or
access to the GUARDIAN 90 operating system.
While it is not a replacement for compiled
languages, as an interpreted high-level lan­
guage it is ideal for quick prototyping. For the
development of applications whose perfor­
mance is not critical but whose flexibility is
(such as a command processor), TACL pro­
vides a complete solution.

Julia Campbell has worked in Tandem's Languages and Tools
Quality Assurance Group for two years, supporting PATHWAY,
the Product Development Tools (PDT), the FORTRAN compiler,
and TACL. Before working in Software Development, Julia
worked in Tandem's Manufacturing MIS Group as a programmer/
analyst for the PATHWAY application EM PACT.

Robin Glascock joined Tandem in 1983 as a member of the
Languages and Tools Quality Assurance Group of Software
Development. Since then she has been responsible for the QA
and performance evaluation of several products, including TACL.
She has recently moved into the Work Group Software Quality
Assurance project, where she is writing tools to facilitate the
testing of screen-based interactive software. Robin spent four
years in software development at other companies before com­
ing to Tandem.

38 T A N D E M SYSTEMS REVIEW FEBRUARY 1 9 8 6

n the first calendar quarter of
1986, Tandem will release a new
COBOL compiler and run-time
library called COBOL85.
COBOL85 will not immediately
replace the current COBOL com­
piler and run-time library

(referred to in this article as COBOL74). Both
products will be available for the next few
years, after which COBOL 74 will gradually be
phased out.

COBOL85 runs only on the GUARDIAN 90
operating system. It is based on the new Amer­
ican National Standards Institute (ANSI)
COBOL 1985 standard. It supports all of the
required modules in the revised American
National Standard Programming Language
COBOL, X3.23-1985, and has extensions to
provide access to standard Tandem facilities.

COBOL85 supports the following ANSI
standard modules: nucleus, table-handling,
sequential I/0, relative I/0, indexed I/0,
sort/merge, interprogram communication,
and source text manipulation. Level 1 of the
optional debug module (which allows para­
graph traces) is also supported by COBOL85.
Two optional modules of the ANSI standard
have not been implemented: report writer and
communications. The segmentation module is
almost entirely implemented.

Tandem's New COBOL85

COBOL85 and the New Standard
The new COBOL standard has been in the
making for some time. The previous standard
was approved in 1974; work on the new one
began in 1978, and it was approved in Septem­
ber 1985. Most of the problems in completing
the new standard had to do with its incompati­
bilities with the previous standard. Several
review cycles were needed to resolve the prob­
lems, and there are still several areas in which
the two are incompatible.

Most COBOL programmers feel that the
changes are necessary, however, and that they
will cause few (if any) conversion problems.
This is especially true for Tandem COBOL,
since Tandem implemented COBOL74 in a
logical fashion in the main areas affected by
the changes. Also, Tandem tended to follow
the clarified specifications as they were placed
in the CODASYL COBOL Committee Journal
of Development (JOD). Unfortunately, some
other implementors did not, and almost all of
the complaints came from their users. If
Tandem COBOL users have any conversion
problems at all, they should be minor ones.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 39

40

One might well ask why there should be a
new standard. The answer lies in the simple
fact that COBOL has existed for 25 years. As a
result, it lacks many of the aids for "struc­
tured programming" that other languages
have. This has caused maintenance night­
mares and long development times for applica­
tions written in COBOL.

The new standard includes most of these
missing facilities, which aid in program
design, implementation, and maintenance.
Digital Equipment Corporation (DEC) and
Control Data Corporation (CDC) presently
offer compilers containing many of the new
features, and some of their users estimate up
to a 500Jo reduction in implementation time
and maintenance costs. A cost/benefit study
published by the U.S. Department of Com­
merce (NBSIR 83-2639) indicates that the fed­
eral government could save approximately
$90 million over a ten-year period by adopting
the new standard, primarily because of such
reductions.

In the 1974 standard, there were many unde­
fined areas and rarely used features. In the
new standard, the undefined areas have been
defined and the rarely used features made
obsolete (although not deleted). These obso­
lete features will be deleted when the next
standard is completed (in the 1990s).
COBOL85 flags obsolete features upon
request.

New Features in the
COBOL 1985 Standard
The most important changes are those com­
monly called "the structured programming
features." These comprise:

■ Explicit scope terminators.
■ NOT options for the "one-legged" branches,
such as AT END.
■ In-line PERFORM.
■ Nested programs.

■ The EVALUATE statement.

Explicit scope terminators are reserved
words that can be used to terminate condi­
tional statements. There is one for every such
statement. The form is END-verb, where
"verb" is IF, ADD, READ, and so on. When
an explicit terminator is specified, the state­
ment becomes an imperative statement and
can be used anywhere an imperative statement
can be used. The following example illustrates
the use of explicit scope terminators (and two
other minor new features):

IF Action - "Delete" THEN
DELETE Trans-file RECORD

INVALID KEY
CALL Inv-key-process

NOT INVALID KEY
SET Some-deleted TO TRUE
ADD 1 TO Records-deleted

END-DELETE
END-IF

The explicit scope terminators in this example
are END-DELETE and END-IF.

Note also that no periods are used to termi­
nate the conditional statements. One of the
biggest problems with COBOL has been the
period terminator. It is hard to see, it termi­
nates everything, and it is a source of many
program bugs. If a period were inserted after
"ADD 1 TO Records-deleted," COBOL 74
would terminate the IF and DELETE and cause
a syntax error. The only periods necessary in
the Procedure Division in COBOL85, however,
are after section and paragraph headers and at
the end of a paragraph.

The previous example also illustrates the use
of a new NOT branch that has been provided
for phrases such as SIZE ERROR, INVALID
KEY, and AT END. (These were formerly one­
legged branches, but now, in each case, a NOT
branch is available.) Also illustrated is the use
of the optional word THEN after the condition
in the IF statement, and the use of SET to set
the conditional variable associated with a
condition-name to a value that makes the
condition-name true. In the example, "SET
Some-deleted TO TRUE" moves the value that
makes "Some-deleted" true to the associated
conditional variable.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

The in-line PERFORM is similar to a "DO
loop" in other languages. An example is:

PERFORM WITH TEST AFTER
VARYING I 1 FROM 1 BY 1 UNTIL I 1 = 12

ADD 1 TO Counter-I
CALL Something

END-PERFORM

Obviously, this is much easier than creating a
paragraph to contain the performed code.
Note the TEST AFTER phrase. This indicates
that the loop test is to take place after the
loop. The default is before the loop (the
COBOL74 method), and the words TEST
BEFORE are available if the programmer wants
to be more explicit.

A nested program is one that is embedded
in some other program. Other languages have
offered this facility for years, and now COBOL
does too. Nested programs enable the pro­
grammer to structure the task easily. They are
superior to performed paragraphs since the
programmer can prevent unwanted side effects
such as the changing of a variable that was not
meant to be changed. A paragraph can refer­
ence everything in the Data Division of the
performing program. A nested program
cannot.

A simplified example of a nested program
follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. Containing-Program.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Note that the following has a global
* name. It can be referenced in a
* contained program.

01 Fl GLOBAL PIC XXX.
* The following does not have a global
* name. It cannot be referenced in a
* contained program.

01 F2 PIC XXXXX.
PROCEDURE DIVISION.
STARTT.

CALL Contained-I.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. Contained- I.
WORKING-STORAGE SECTION.
01 An-item PIC 99.
PROCEDURE DIVISION.
STARTT.

MOVE "xxx" TO Fl.
EXITT.

EXIT PROGRAM.
END PROGRAM Contained-I.

END PROGRAM Containing-Program.

This example illustrates the use of a GLOBAL
name. If GLOBAL is not specified for a name,
it cannot be referenced in a contained pro­
gram. Thus, that data can be protected.

Note that the structure is top-down, not
bottom-up as it is in other languages, such as
Pascal and Ada. This makes for easier reading
and construction.

Finally, note that no ENVIRONMENT
DIVISION is needed in any program, contained
or containing. The nesting limit is seven, but
using more than two or three levels is
unpractical.

The new EVALUATE statement allows the
testing of one or more items and the selection
of different paths depending on various cri­
teria. It is similar to the CASE statement in
other languages, but is much more powerful.
By using EVALUATE, the programmer can
avoid very complex nested IF statements. An
example of the EVALUATE statement is shown
in Figure 1.

The example illustrates the use of two
"selection subjects." The first is the condi­
tional expression "Balance NEGATIVE," and
the second is the data name "Customer-type."
Each WHEN phrase must contain the same
number of "selection objects" as there are
selection subjects, and these objects are paired
with the subjects positionally. In the example,
the selection objects in the first WHEN phrase
are the truth condition FALSE and the match­
anything word ANY.

Figure 1

EVALUATE Balance NEGATIVE ALSO Customer-type
WHEN FALSE ALSO ANY

CONTINUE
WHEN TRUE ALSO Preferred

PERFORM Dunn-preferred-customer
WHEN TRUE ALSO Always-late

PERFORM Dunn-late-customer
WHEN OTHER

DISPLAY "Error"
GO TO Abort-run

END-EVALUATE

FEBRUARY 1986 TANDEM SYSTEMS REVIEW

Figure 1.

An example of the
EVALUATE statement
that uses two selection
subjects.

41

42

The first WHEN phrase is selected if the
data item referenced by Balance is positive or
zero and the data item referenced by
"Customer-type" has any value. The word
FALSE indicates that the corresponding selec­
tion subject must evaluate to a false condi­
tion. The word ANY indicates that the
corresponding selection subject is ignored;
that is, any value at all is considered to match.
Note that the action taken is null. The word
CONTINUE is a no-op instruction. The execu­
tion continues after END-EVALUATE.

The second WHEN phrase is selected if the
data item referenced by "Balance" is negative
and the value of "Customer-type" is the value
"Pref erred." "Preferred" can be another data
item, or it can be a constant defined with the
REPLACE statement (for example,
"REPLACE== Preferred== BY== 1 ==.").

The third WHEN phrase selection is similar
to the second. If no WHEN phrase is selected,
the WHEN OTHER phrase is selected.

An equivalent IF statement in COBOL74
would be:

IF Balance NOT NEGATIVE
NEXT SENTENCE

ELSE
IF Balance NEGATIVE
AND Customer-type = 1

PERFORM Dunn-preferred-customer
ELSE

IF Balance NEGATIVE
AND Customer-type = 2

PERFORM Dunn-late-customer
ELSE

DISPLAY "Error"
GO TO Abort-run.

Note that this is harder to read than the EVAL­
UATE statement. When many WHEN phrases
and selection subjects and objects are used,
the equivalent nested IF becomes quite com­
plex. From 1 to 255 selection subjects and a
corresponding number of selection objects can
be used.

Some of the other major changes in
COBOL85 are summarized below:

■ INSPECT CONVERTING enables the pro­
grammer to convert one character string to
another. This feature is commonly used to
convert lowercase to uppercase.
■ Reference modification (commonly referred
to as substring or byte slicing in other lan­
guages) allows the programmer to reference a
part of a data item. Although it can be mis­
used, reference modification can be a very
powerful and useful feature.
■ External files and data enable the pro­
grammer to share data and files among pro­
grams without passing the files or data as
parameters.
■ CALL has been enhanced to allow the pass­
ing of any elementary item as a parameter and
to allow the protection of parameters by speci­
fying that they are passed by content.
■ The INITIALIZE statement allows the pro­
grammer to set items to predefined values. For
example, by referencing a group item, the pro­
grammer can set each elementary item to an
appropriate predefined value.
■ Variable-length records can be written under
explicit control, and the length can be deter­
mined when the record is read.
■ The REPLACE statement allows the pro­
grammer to replace one or more words with
another. This feature is often used to define
constants, such as the length of a table.

Incompatibilities
In the detailed discussion below, COBOL85 's
incompatibilities with COBOL 74 are grouped
according to whether they:

■ Are likely to cause problems.
■ May cause problems.

■ Are unlikely to cause problems.

In each case, first the incompatibility is
described. Then an action is recommended to
help programmers avoid future problems
caused by that incompatibility when they write
COBOL74 programs.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

Incompatibilities Likely to Cause Problems

1. COBOL85 has 49 new reserved words.

2. SEARCH ALL now does a binary search.

3. Many new 1-0 status codes have been
added.

4. Numeric exceptions may abort a run.

5. Arithmetic results may differ (because of
greater precision in COBOL85).

6. Short records on fixed-length files do not
abort a run.

7. Subscript evaluation differs in STRING
and UNSTRING.

8. Multiple source programs in a compiler
input file now require terminators.

9. OPEN I-O or EXTEND on a nonexisting
file does not create the file.

New Reserved Words. The 49 new reserved
words are listed at the right. Of them, 19 are
END-xxx statements (where xxx is a verb like
IF) and the rest are other words. TEST, ANY,
TRUE, and FALSE are probably the most likely
to cause problems. Diagnostics are given when
these words are misused, but the diagnostics
may be confusing (since incorrect syntax is
being diagnosed).
Action. This incompatibility has proven to be
a minor problem. Avoid using the new words.
When the transfer to COBOL85 is made, the
REPLACE statement can be used to help
alleviate the problem. Also, several conversion
programs should be available from various
software vendors to change reserved words
(and make other changes) automatically.

SEARCH ALL. COBOL74 does a serial
search, so an item may be found even if the
items in the table are in incorrect order. A
compatibility warning diagnostic is provided.
Also, if the standard SEARCH ALL rules are
not followed in the syntax of the statement, a
serial search is done.
Action. Make sure that the table is in order
and that all rules are followed for SEARCH
ALL.

New 1-0 Status Codes. COBOL 74 produces
status codes "00," "30," "90," and "91,"
instead of the new codes. Two situations are
most likely to cause problems:

■ Opening an optional file that is not present
produces 1-0 status code 05 when status code
00 was produced in COBOL 74. (Also, for an
optional file opened for 1-0 or EXTEND, 1-0
status code 05 is returned by COBOL85 if the
file was created.)

■ Executing an OPEN or CLOSE statement
with options such as NO REWIND,
REEL/UNIT, or FOR REMOVAL for a device
that does not support the options results in
status code 07 rather than status code 00.

In both cases, the operation is successful. A
list of the differences is provided in the
COBOL85 Reference Manual. No diagnostics
can be provided.
Action. Take care in testing for specific codes
of 00, 30, 90, and 91.

New reserved words in COBOL85.

ALPHABET
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC
ALPHANUMERIC-EDITED
ANY
BINARY
CLASS
COMMON
CONTENT
CONTINUE
CONVERTING
DAY-OF-WEEK
END-ADD
END-CALL
END-COMPUTE
END-DELETE

END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
EVALUATE
EXTERNAL

FEBRUARY 1986 TANDEM SYSTEMS REVIEW

FALSE
GLOBAL
INITIALIZE
NUMERIC-EDITED
ORDER
OTHER
PACKED-DECIMAL
PADDING
PURGE
REFERENCE
REPLACE
STANDARD-2
TEST
THEN
TRUE

43

Numeric Exceptions. Numeric exceptions
(such as an arithmetic overflow) may abort a
run if SIZE ERROR is not specified. COBOL74

COBOL85 ensures more
accuracy for arithmetic

operations than does
COBOL74, and it never
truncates digits from the left.

does not detect
these, and thus,
incorrect values may
be produced. Also,
invalid data in a
numeric data item
(such as being ini­
tialized to spaces)
may cause an abort.
COBOL74 would
process the bad

data, giving undefined results (spaces woul?
be treated as zeros, however). No diagnostics
can be provided.
Action. Use care in calculations, and use SIZE
ERROR when exceptions are possible. Make
sure numeric data items are initialized
correctly.

Arithmetic Results. Arithmetic results may
differ. COBOL 74 does not produce as many
digits to the right as COBOL85 does, and it
sometimes truncates significant digits from the
ieft without any indication, if SIZE ERROR is
not specified.

COBOL85 ensures more accuracy for
arithmetic operations, and it never truncates
digits from the left. Note that a run may be
aborted as the result of an arithmetic overflow
condition in conditions that previously
resulted in left truncation or right zero pad­
ding. No diagnostics can be provided.
Action. If the accuracy in an arithmetic
expression is questionable (especially for divi­
sion), use individual ADD, SUBTRACT, MUL­
TIPLY, and DIVIDE statements to control the
accuracy. Use the SIZE ERROR clause to detect
any possible left truncation, if necessary.
(Note that it involves more overhead. Note
also that exponentiation with fractional expo­
nents, e.g., 0.5 for a square root, exists in
COBOL85.)

The READ Statement. READ allows short
records to be read from fixed-length files,
while COBOL 74 aborts a run if it encounters
these. No compiler diagnostic can be pro­
vided, but a file status value is defined for
such an operation.
Action. None can be taken. Do not assume the
run will be aborted if a file with short records
is read. COBOL85 allows a check for file status
"04." COBOL 74 programs can be modified at
any time to check for status code "04," since
it has no effect until the program is run on
COBOL85. In any case, there should never be
such records.

UNSTRJNG and STRING. UNSTRING and
STRING evaluate all subscripts at the start of a
statement. COBOL 74 defers some subscript
evaluations until before their use. A compati­
bility warning diagnostic is provided.
Action. Do not rely on the deferment of the
evaluation. In general, using values changed
during the execution of a statement as sub­
scripts within the statement (except in
SEARCH and PERFORM) is poor program­
ming practice.

Multiple Source Programs Per Compilation.
Multiple source programs in one compiler
input file that are not separated by ?ENDUNIT
directives are perceived differently by the two
compilers. COBOL 74 views them as separately
compiled programs. COBOL85 assumes them
to be nested within the first program. Since
the END PROGRAM headers are not there, a
diagnostic is produced. Also, other diagnos­
tics may be produced for constructs banned
from contained programs.
Action. Place an ?ENDUNIT directive after
each program. This is a good practice for any
COBOL74 program or COBOL85 program that
is separately compiled. In COBOL85, do not
place an ?ENDUNIT directive in front of any
contained program, since the directive termi­
nates all nesting. There are no contained pro­
grams in COBOL 74, so using ?ENDUNIT
directives does not cause problems.

44 TANDEM SYSTEMS REVIEW FEBRUARY 1986

OPEN /-0 or EXTEND on a Nonexistent File.
OPEN 1-0 or EXTEND on a nonexistent file
results in an unsuccessful open if OPTIONAL
is not specified in the SELECT clause.
COBOL 74 creates the file and does not allow
OPTIONAL in the SELECT clause for indexed
or relative files. COBOL85 creates the file if
OPTIONAL is specified. No diagnostic can be
provided.
Action. Add OPTIONAL to the SELECT clause
for the file, if it is sequential. For indexed and
relative files this cannot be done in COBOL 74,
so it will have to be added when the program is
converted to COBOL85.

Incompatibilities That May Cause Problems

1. A store to a group with an OCCURS
DEPENDING ON differs, based on whether
or not the "depending-on" item is in that
group.

2. ALPHABET should appear in front of an
alphabet clause.

3. The initialization order of multiple
VARYING identifiers in PERFORM differs.

OCCURS DEPENDING ON. A store to a
group with an OCCURS DEPENDING ON
(ODO) uses the maximum size if the group
contains the depending-on item, and it uses
the specified size if the group does not contain
that item. COBOL74 uses the maximum size
except in UNSTRING. A compatibility warning
diagnostic is provided.
Action. Do not use a group containing an
OCCURS DEPENDING ON as a receiver in
UNSTRING. This operation would not be use­
ful and would be very misleading to a mainte­
nance programmer. If it is used, make sure the
depending-on item has the maximum value
before UNSTRING is executed. Also, do not
assume that any items with subscripts greater
than the resulting value in the depending-on
item contain useful information.

ALPHABET. The word ALPHABET should
appear before an alphabet clause. This
requires manual conversion, since COBOL 74
doesn't recognize ALPHABET. Although the
standard requires ALPHABET in all instances,
COBOL85 requires it only when "ALPHABET
alphabet-name IS system-name" is specified.
(Currently, the only system-name in COBOL85

is EBCDIC. NATIVE, STANDARD- I, and
STANDARD-2 are not system-names.) A
diagnostic is given for "alphabet-name
IS EBCDIC" if ALPHABET does not
precede it.
Action. Since COBOL85 accepts all constructs
that are legal in COBOL 74, no action is neces­
sary. It is recommended, however, that
ALPHABET be inserted in such clauses when
programs are converted, in order to make
them compatible with the standard.

Multiple mRY/NG Identifiers in PERFORM.
The initialization order of multiple VARYING
identifiers in PERFORM has changed. This
only affects a program using such an identifier
in a FROM or BY phrase (e.g., PERFORM Pl
VARYING X FROM 1 BY 1 UNTIL X = 3
AFTER Y from X BY 1 UNTIL Y = 3). A com­
patibility warning diagnostic is provided.
Action. Do not use constructs like this. It is
poor programming practice, and the results
are nonobvious.

Incompatibilities Unlikely to Cause Problems

1. "ALL literal" produces different results if
associated with a numeric item.

2. A figurative constant is not allowed in the
CURRENCY SIGN clause.

3. "P" is not allowed in PIC strings for a
relative key.

4. LINAGE cannot be specified for a file
opened with EXTEND.

5. CLOSE REEL/UNIT WITH NO REWIND
is no longer legal.

6. Changes have been made in READ or
RETURN INTO.

7. ADVANCING PAGE and AT EOP are not
allowed in the same WRITE statement.

8. Independent segments have been deleted.

9. An index data item is four bytes rather
than two.

10. ON OVERFLOW in a CALL is taken if the
program cannot be found.

11 . The size of LINAGE-COUNTER has
changed from PIC 9(5) to PIC 9(4).

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 45

46

ALL Literal. "ALL literal," as in
ALL "9"

may produce different results when associated
with a numeric or numeric-edited data item.
In COBOL85, the literal is repeated; in
COBOL74 it is not. In COBOL74,

MOVE ALL "9" TO PIC 99V9

produces 09.0. Some implementors produce
99.9 and some 99.0. COBOL85 produces 99.0.
A compatibility warning diagnostic is
provided.
Action. Don't use "ALL literal" with such
items. It is misleading and of no use. Also, it
is an obsolete item and will be deleted from
the next standard.

Figurative Constants in CURRENCY SIGN
Clauses. A figurative constant is not allowed
in a CURRENCY SIGN clause. For example,

CURRENCY SIGN IS ALL "I.;'

is invalid, and a diagnostic is given.
Action. Do not use this type of construct.
Since ALL means nothing in this context, it is
confusing and redundant.

"P" in PIC Strings. "P" is not allowed in PIC
strings for a relative key data item (e.g., PIC
99PP to access every 100th record). A diag­
nostic is given.
Action. Do not use a construct of this sort. It
is misleading, and the results are not defined.

LINAGE Clause. The LINAGE clause cannot
be specified for a file opened with EXTEND.
A diagnostic is given.
Action. Do not use LINAGE for files opened
with EXTEND. The results are undefined and
not what one would expect.

CLOSE REEL/UNIT WITH NO REWIND.
This construct is not allowed. A diagnostic is
given.
Action. Do not use this construct. In
COBOL 74, it leaves the reel at the end during a
reel swap, requiring the operator to rewind the
reel manually. This makes no sense and is an
extra burden on the operator.

INTO Phrase in READ and RETURN.
READ and RETURN now allow an INTO
phrase if only one record description is subor­
dinate to the file-description entry, or if all
subordinate record-description entries are
alphanumeric or group entries and the INTO
item is also an alphanumeric or group entry.
For example, multiple record descriptions with
an edited INTO item are no longer allowed. A
diagnostic is given.
Action. Do not use the INTO phrase in such
instances. The results are not what would be
expected, anyway, as no editing or scaling
takes place.

ADJ-:4.NCING PAGE and EOP with WRITE.
WRITE no longer allows ADVANCING PAGE
and AT EOP in the same statement. COBOL 74
always takes the EOP. A diagnostic is given.
Action. Do not use this construct. Since the
EOP is always executed, the AT EOP phrase is
redundant.

Independent Segments. Independent segments
have been deleted. This affects only the targets
of ALTER statements. A diagnostic is pro­
duced for ALTER statements that reference
paragraphs in independent segments.
Action. Do not use ALTER. It is extremely
poor programming practice to do so. It is
obsolete and will be deleted from the next
standard, as will segmentation.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

Index Data Items. An index data item is now
4 bytes rather than 2. A compatibility warning
diagnostic is provided.
Action. Do not use index data items. (They
are defined by USAGE IS INDEX.) Such items
are not useful and can easily cause nonobvious
bugs. Note that an index defined by the
INDEXED BY phrase within an OCCURS
clause is not the same as an index data item.
No compatibility problem exists for indexes.

ON OVERFLOW /EXCEPTION. The ON
OVERFLOW /EXCEPTION branch is taken if a
CALL identifier references a program that
cannot be found. COBOL 74 aborts the run. A
compatibility warning diagnostic is provided.
Action. Do not use the ON OVERFLOW
phrase, since the conditional code is never
executed. If it is used, for complete compati­
bility, specify STOP RUN along with it (or
some other means to abort the run in the con­
ditional code). When COBOL85 is used, the
code is executed in the indicated case.

PICTURE for LINAGE-COUNTER. The
implied PICTURE for LINAGE-COUNTER has
changed from 9(5) to 9(4). The maximum
allowable number is now 9999 rather than the
previous value of 32767. No diagnostic is
given.
Action. Make sure the LINAGE value specified
in the FD does not exceed 9999. Since any
numbers greater than 66 or so make little or
no sense, it is doubtful that a problem will
occur.

Conclusion
COBOL85 will help to reduce the development
and maintenance costs associated with COBOL
programming. The new features are not hard
to learn, better programs will result from their
use, and conversion from COBOL 74 to
COBOL85 is simple (probably about 80% of
the COBOL 74 programs will run on COBOL85
with no changes). For further information
about the new COBOL standard or other more
advanced COBOL developments, contact Don
Nelson at Tandem Computers Incorporated,
10555 Ridgeview Court, Cupertino, CA
95014.

Reference
COBOL85 Reference Manual, vols. I and 2. Part nos. 82520
A00 and 82521 AOO. Tandem Computers Incorporated.

Don Nelson has worked at Tandem for three years, the last two
of which were devoted to the writing of the code-generation
phase of the Tandem COBOL85 compiler. Before joining Tandem
he spent 18 years with another mainframe vendor, working on
compilers and operating systems. While there, he worked on five
different COBOL compilers. He has been on the CODASYL
COBOL Committee since 1971 and has been its chairman since
1977.

F E B R U A R Y I 9 8 6 TANDEM SYSTEMS REVIEW 47

48

Managing System Time
Under GUARDIAN 90

he timekeeping services
offered by the GUARDIAN
operating system were signif­
icantly enhanced in the BOO
software release. As
explained in the article,
"New GUARDIAN 90 Time­

keeping Facilities" (Tandem Systems Review,
June 1985), GUARDIAN 90 now supports:

• Four-word, microsecond-resolution time­
stamps based on the Julian date.
• CPU clock-rate averaging.

• Clock-rate adjustment.
• Automatic Daylight Savings Time (DST)
adjustments.

• Julian-date conversion routines.

• A callable procedure to set system clocks.

• An optional IN file for the cold-load Com­
mand Interpreter.

This article focuses on techniques for the
accurate and reliable initialization of system
time on Tandem computers using the
GUARDIAN 90 operating system. Familiarity
with the timekeeping terminology defined in
the previous article is assumed.

System Time
Software designers and users of most com­
puter systems usually assume that system time
is always sufficiently accurate for their pur­
poses. Implicit assumptions are that system
time is monotonically increasing (i.e., that the
clock never runs backwards), that system time
is kept accurately by the computer, and that
the system clock is somehow always initialized
accurately.

It is important to understand how particular
systems keep time in order to verify whether
these assumptions are valid.

The Tandem System Clock
In Tandem computer systems, there is no "sys­
tem clock" per se; instead, each processor has
its own hardware clock. Because all clocks are
kept synchronized, programs can be designed
as if there were a single system clock.

The operating system is responsible for
keeping these clocks synchronized.
GUARDIAN 90 accomplishes this task by aver­
aging the values of all processor clocks and
adjusting the individual clocks to agree with
the average. By averaging the processor clocks,
GUARDIAN 90 keeps system time more accu­
rately than pre-BOO versions of GUARDIAN
did. Measurements indicate that processor
clocks in GUARDIAN 90 systems are usually
synchronized to within 5 ms of each other;
however, even with the averaging mechanism,
clock times fluctuate, and differences of 15 ms
between processors are sometimes present.
Thus, applications should be designed so as
not to rely on perfect synchronization of
clocks in all processors.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

The GUARDIAN 90 clock-rate-adjustment
algorithm requires that clocks running faster
than the average be slowed down. This is
accomplished in a manner transparent to
all programs. Successive calls on the
JULIANTIMESTAMP procedure within the
same processor always yields monotonically
increasing values (unless, of course, the clock
is reset). The same is true of the RCLK instruc­
tion, with one exception: because the RCLK
instruction returns the Local Civil Time
(LCT), it "jumps" whenever a Daylight Sav­
ings Time (DST) transition occurs. Applica­
tion designers are therefore encouraged to use
the JULIANTIMESTAMP procedure. It returns
the Greenwich Mean Time (GMT), which is
not subject to DST fluctuations.

Microsecond-resolution Timekeeping
Some applications use timestamps as unique
identifiers of transactions. In such a situation,
it is important to note that the resolution of
the clock may be more important than the
accuracy of the clock. If more than one event
can occur within a clock "tick," the resolution
of such a timestamp prohibits its use as a
unique identifier. For example, in most com­
puter systems, a timestamp having a resolution
of one second is not sufficient for use as a
unique identifier, because several events may
occur within one second.

The timestamps provided by GUARDIAN 90
timekeeping services are four-word time­
stamps, based on the Julian date, and they
have microsecond resolution (which, as sug­
gested above, is not the same as microsecond
accuracy).

Recovery of Clocks after a Power Failure
As mentioned earlier, each processor in a
Tandem system has its own clock, supported
by the operating system and microcode and
relying upon the processor hardware. If power
to the processor is lost, the clock stops. When
power is restored, the clock starts running
again.

If power is restored before the battery
backup is exhausted, a Tandem system auto­
matically performs power -failure recovery. If
power remains off for so long that the battery
backup is unable to preserve the contents of
memory, however, it is impossible to recover
from the power failure, and a cold load of the
system is required.

When power is restored (assuming the bat­
tery backup was not exhausted), the clock in
each processor takes up exactly where it left
off when the power went down. As part of the
power-failure recovery process, the operating
system then resynchronizes the clock.

If all processors lose power and power­
failure recovery is performed, GUARDIAN 90
synchronizes all clocks to the fastest clock in
the system. In this case, the clocks are syn­
chronized, but system time is incorrect by an
amount equal to the duration of the power
outage. The front panel lights indicate that a
power-failure recovery has occurred.

If the power loss is transient, it is possible
that only some processors lose power (and
subsequently undergo power-failure recovery).
In this case, as long as at least one processor
in the system does not lose power, the operat­
ing system synchronizes the clock of each
processor that lost power with the clocks of
the processors that continued to run.

Setting the Clock-An Operations Headache
The operations staff traditionally is responsi­
ble for initializing the system clock. With some
exceptions, discussed later, system time is set
by an operator at cold-load time, after a
power failure recovery, or when someone
notices that the system time is incorrect.
Unfortunately, every time someone enters the
date and time manually, it is possible that the
system clock is being set incorrectly. At best,
the clock is being set within a few seconds of
the wall clock time or the operator's wrist­
watch. At worst, the operator may enter the
wrong date.

One new feature provided by GUARDIAN 90
is the SETSYSTEMCLOCK procedure. Another
useful feature is the ability to specify an input
file for the initial (cold-load) Command Inter­
preter. Together, these features provide several
alternatives to the familiar method of requir­
ing the operator to set the system clock. (See
the GUARDIAN 90 Software Documentation,
or Softdoc, and Nellen, 1985, for details on
the SETSYSTEMCLOCK procedure and the
cold-load Command Interpreter IN file.)

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 49

50

The COMINT SETTIME command checks
the syntax of date and time specifications,
requiring only that they be reasonable (i.e.,
not impossible) and unambiguous. For exam­
ple, it does not allow the system clock to be set
to a Local Civil Time that is within a Daylight
Savings Time (DST) transition period, because
such a time specification is ambiguous. If it is
necessary to set the system clock to a time that
is within a DST transition period, the operator
must specify the time as Local Standard Time
(LST) or Greenwich Mean Time (GMT),
which are not ambiguous.

If it is not acceptable for an operator to set
the system clock (because of the inaccuracies
inherent in this approach), there are two basic
alternatives. One method is to allow the opera­
tor to set the clock initially, during the cold
load, and then run a program to verify and
possibly adjust the time after the cold load is
complete (but before applications are allowed
to start). The other method is to set the system
clock programmatically, using an external
clock.

Checking the System Clock
Even if a system does not have an external
clock, there are ways of checking the system
time as set by the operator. Ideally, one would
like to validate the time when the SETTIME
command is entered by the operator. SETTIME
is performed during the cold load, however,
and there are complications that make this
impractical. Thus, it is necessary to write a
program (call it CLOKCHEK for purposes of
discussion) that compares the system time
against some other time reference after the
cold load has been completed.

CLOKCHEK would have to get a timestamp
from some reference source, obtain the current
system time by calling JULIANTIMESTAMP,
compare the two values, and then determine
whether or not the current system time was
reasonable. Further protection could be
afforded by having CLOKCHEK inhibit the
start-up of applications if it found the system
time to be in error.

To implement a CLOKCHEK program, one
must first find a reliable source of timestamps
that can be compared with those provided by
the JULIANTIMESTAMP call. The following
might be used:

• A file containing the oldest and newest
dates allowable. The CLOKCHEK program
would compare the current date with entries
in this file.
• The SYSGEN time obtained via the
JULIANTIMESTAMP procedure (which is
returned as a GMT timestamp). Assuming the
time was correct at the time of the SYSGEN,
the SYSGEN time could be used as a lower
bound for the current time.
• Another node in the network. Currently,
one can send a request to a server on another
node for the current GMT from the other
node. The requester must, of course, measure
the amount of time it takes to get a reply from
a remote server and adjust the GMT value by
the transit time. This method should be accu­
rate to within a few seconds, but it assumes
that another node with a server is accessible
and that the time is set correctly on the other
node.
• An X.25 network. Some public X.25 packet­
switching networks maintain a clock that can
be read via a special request packet. The accu­
racy of the time received is influenced by sev­
eral factors, such as the accuracy of the clock,
the type of communication lines used, and the
transmission delays involved. Generally, the
time should be accurate to within a few sec­
onds of the network clock's actual time, which
may be sufficient for many applications. Pro­
spective users should discuss these problems
with the vendor of such network services.

External Clocks
External clocks provide a much more reliable
way of initializing system time. By config­
uring a system to use the initial cold-load
Command Interpreter IN file, one can run a
program that obtains the time from an exter­
nal clock and calls the system procedure
SETSYSTEMCLOCK to initialize the system
clock. Refer to the GUARDIAN 90 Software
Documentation, or Softdoc, and Nellen, 1985,
for details on the SETSYSTEMCLOCK proce­
dure and the cold-load Command Interpreter
IN file.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

For purposes of this discussion, an external
clock is a hardware device that has, minimally,
the following characteristics:

• It contains a precision digital clock and
calendar.

• It can be attached via a standard interface
to a computer system.

• It can be interrogated for the date and
time by programs running on that computer
system.

Selecting an External Clock
Many external clocks are available. Selecting
an external clock that works well at a specific
site is not a trivial task. The following is a
general discussion of some of the features one
should consider.

Accuracy
The primary requirement for any clock is to
keep time accurately. As a minimum, the
clock should be accurate to within one second
per day; however, some applications require
greater accuracy.

Electronic clocks are commonly driven by
one of three mechanisms, each of which offers
a different level of accuracy:

• An internal oscillator, usually crystal­
controlled and temperature-compensated for
reasonable accuracy.
• Synchronization to the power-line
frequency.
• Synchronization to radio broadcasts of a
time standard.

Most crystal-controlled clocks are accurate
to within 100 ms per day or better, depending
on the quality of the crystal. Such clocks need
a battery backup in case external power is lost.

The second type of clock phase-locks its
oscillator to the line frequency. This is a sim­
ple and effective way of keeping time accu­
rately because the utility companies must
synchronize their power grid very closely in
order to share power. The line frequency in the
United States is maintained to within one
cycle (1 / 60 of a second, or 6. 7 ms) per day.

External clocks capable of synchronizing to
the power-line frequency generally have the
ability to switch to their internal oscillator

automatically and run on an internal backup
battery if the line power is lost. Then, when
external power is available, they synchronize
to the line frequency again.

If power for the computer system is supplied
by an Uninterruptable Power Supply (UPS),
one should determine whether the UPS output
is synchronized to the commercial power-line
frequency. If it is not, this may create prob­
lems for a clock that relies on the line fre­
quency as a standard, because frequency
regulation in the UPS system may not be as
accurate as that of the commercial power grid.
In such a case, one would want either to con­
nect the external clock to the commercial
power line or to disable the synchronization of
the clock to the line frequency and allow it to
use its internal clock.

Some clocks that
rely on the power­
line frequency can
be fooled by tran­
sient noise spikes.
They run fast
because they detect
the noise in addition
to the line voltage
peaks. If a particu­
lar clock is affected

I

External clocks are much
more reliable for initial­

izing system time than
checking the system time
set by the operator.

by such noise, a simple power-line noise filter
may solve the problem.

Distributed applications (i.e., those that
must access several geographically separated
computer systems connected in a network)
often require that system times at each node
be in agreement. That is, each system must be
able to calculate the correct Greenwich Mean
Time.

Some distributed applications may tolerate
differences of a few seconds between nodes, in
which case it is possible to send messages to
remote nodes to request the time (or to request
the time from public packet-switching net­
works). Some applications require greater
accuracy than this, however. One solution is to
use an external clock that is designed to
receive and decode radio transmissions of
standard time signals.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 51

There are radio stations throughout the
world that broadcast encoded time signals.
Most of these stations are operated by govern­
mental agencies. In the United States, the
National Bureau of Standards (NBS) transmits
the national time and frequency standard from
station WWVB located in Fort Collins, Colo­
rado. The NBS uses an atomic clock to keep
the day-to-day deviation of their time signal to
within 5 parts in 1012

• This is equivalent to
432 ns per day. The NBS also transmits a time
signal from the National Oceanic and Atmo­
spheric Administration's geostationary satel­
lites, known as GOES. Some radio-receiver
clocks are capable of detecting and decoding
the GOES transmissions.

The carrier frequencies and encoding tech­
niques used by the U.S. NBS are not an inter­
national standard. The British government
operates radio station MSF, which broadcasts
a standard time signal from Rugby, England.
The West German government station DCF77
broadcasts the time from Mainflingen. The

Some vendors of external clocks.*

Chrono-Log Corporation
2 West Park Road
Havertown, PA 19083

Phone: (215) 853-1130
Telex: 831579

Digital Pathways Incorporated
1060 East Meadow Circle
Palo Alto, CA 94303

Phone: (415) 493-5544
TWX 910 379-5034

Hayes Microcomputer Products, Inc.
705 Westech Drive
Norcross, GA 30092

Phone: (404) 449-8791
Telex: 703500 (Hayes USA)

Hopf Elektronik KG
Postfach 1847
Im Hasley 14 c
D-5880 Luedenscheid
West Germany

Phone: 2351/22201
Telex: 826693

Kinemetrics/True Time
3243 Santa Rosa Avenue
Santa Rosa, CA 95401

Phone: (707) 795-2220
Telex: 675402 (Kinemetrics PSD)

Spectracom Corporation
101 Despatch Drive
East Rochester, NY 14445

Phone: (716) 381-4827
Telex: 9103509587

*This list has been compiled from advertisements in various electronics and computer trade publications. Tandem
makes no recommendation for, or endorsement of, any of these devices, nor does Tandem intend to imply anything by
the absence of any company from this list.

frequencies and codes used in the United
States, Britain, and West Germany all differ
from each other. A few stations in other parts
of the world use the same frequencies and code
as the U.S. NBS. Prospective purchasers of
radio-receiver clocks would be well advised to
determine which stations the clock can receive
and decode, and what type of antenna is
required for their specific location.

An important feature of any radio-receiver
clock is a visible indicator, such as a light, that
indicates that the device is receiving the station
and has synchronized its clock. Some also
provide protocols that allow the computer
system to query the clock and determine
whether it is synchronized to the radio signal.

Additionally, one should be sure that the
clock automatically switches over to an inter­
nal crystal-controlled oscillator in the event of
a reception failure (and to a battery backup in
the event of a concurrent power failure).

Many radio-receiver clocks have an adjust­
ment that permits compensation for the propa­
gation delay. If the distance between the
receiver and the transmitter is known, one can
compute how long it took the signal to travel
that distance and, with the propagation-delay
adjustment, correct the clock to compensate
for this delay.

Some radio-receiver clocks also have an
adjustment that allows correction for Local
Standard Time. For our purposes, this is not
necessary.

Other Considerations
Resolution. A resolution in the range of one­
tenth to one-hundredth of a second is useful.

Calendar. The clock should be able to cor­
rectly compute the date, even in leap years.

Human Interface. Non-radio-receiver clocks
should have a simple control panel for setting
the date and time (and a display to show the
current date and time). It may also be desir­
able to have a lock and key to prevent unau­
thorized persons from setting the clock.

Computer Interface. A standard interface,
such as RS-232 or current-loop, is required. A
simple protocol for interrogating the clock is
also desirable.

52 TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

Price. Last, but not least, one should consider
how much the clock costs and what the war­
ranty provisions are.

Commercially Available External
Clocks
The list on page 52 lists companies that sell
external clocks. As the list is not comprehen­
sive, customers should consider it only a start­
ing point when researching sources for
external clocks. Also, before purchasing any
device, they should consult a Tandem customer
engineer and a Tandem systems analyst about
the feasibility of using that device with a
Tandem computer system.

Configuring an External Clock
Most external clocks are configured in the
same way as an asynchronous terminal. The
following example is typical:

$CLOCK TATM.7 ASYNCTERM
TYPE 6, SUBTYPE 0,
RSIZE 80,
BAUD9600,
NOECHO,
CL;

Note that this is not a universal example.
SYSGEN configuration options should reflect
the characteristics of the specific device as
described in the manufacturer's installation
manual.

The CLOCK Program
Tandem provides a sample program that can
be used to initialize the system clock. The
source is distributed in a file called SCLOCK
in the GUARD2 distribution subvolume of
GUARDIAN 90 Site Update Tapes (SUTs).
Please note that SCLOCK is an example only.
Although it works correctly, it may not be
ideal for a particular site. Also, the sequence
of characters that it transmits to an external
clock is device-dependent; not all external
clocks use the same codes. Note too that
SCLOCK assumes that the external clock is set
to the correct Greenwich Mean Time.

If SCLOCK is modified for a specific user
site and compiled into an object file called
CLOCK, and the basic logic of the program
has not been altered, it can be used in one of
two ways. The first is to run it as follows:

:RUN CLOCK /IN $CLOCK/

where $CLOCK is the device name of the exter­
nal clock. When run in this mode, CLOCK
reads the external clock twice and then, if
there are no I/O errors, calls SETSYSTEM­
CLOCK to set system time. It reads the exter­
nal clock twice in order to eliminate the effect
of potential page faults in the user program.
This mode of execution within the initial cold­
load Command Interpreter IN file can be used
to perform the initial setting of system time.

If the time is to be set via the external clock
at some time other than during the cold load,
CLOCK should be run at a priority high
enough to avoid competition with other
processes.

The alternate way to run CLOCK is: 1

:RUN CLOCK /IN $CLOCK, &
PRI 160, NOWAIT, CPU x / y

Specification of a backup CPU number (y)
causes CLOCK to behave differently than in
the first example. In this case, it reads the
external clock and calls SETSYSTEMCLOCK
immediately and also every five minutes. (It
does not terminate.) CLOCK also sets the sys­
tem clock whenever it receives a POWERON
system message, which indicates that power­
failure recovery has occurred.

This alternate mode of execution can also
be used within the initial cold-load Command
Interpreter IN file to perform the initial setting
of system time and to maintain the synchroni­
zation of system time with the external clock.

1The ampersands(&) used in this examPi~- and the following one denote the
continuation of a command string that is broken across two lines. They are not
needed if the command is entered on an SO-character line.

FEBRUARY I 9 8 6 TANDEM SYSTEMS REVIEW 53

54

The following commands could be placed at
the beginning of the initial cold-load Com­
mand Interpreter IN file:

RUN CLOCK /NAME $TIME, IN $CLOCK, &
PRI 160, NOWAIT, CPU O / 1

RUN CLOCK /NAME $TIME, IN $CLOCK, &
PRI 160, NOWAIT, CPU 1 / 0

DELAY 4 SECONDS
SYSTIMES

This example assumes one can cold load via
either CPU 0 or 1. The DELAY is present in
order to allow the CLOCK program to initial­
ize the system time before anything else is
allowed to run.

Note that calling SETSYSTEMCLOCK every
five minutes should not result in a reset of the
system clock every five minutes. Instead, if
the time difference between the system clock
and the requested time is small, as one would
expect, GUARDIAN 90 uses the time differ­
ence to adjust the processor clocks over a ten­
second interval. This adjustment algorithm
makes small adjustments transparent and
facilitates synchronization to an external
clock.

Conclusion
The GUARDIAN 90 operating system provides
a rich procedural interface to facilitate
retrieval of system time, transformations of
timestamps, initialization of system time, and
retrieval of process execution time. By using
an accurate and secure external clock, one can
eliminate the possibility of human error in
setting the system clock. For geographically
distributed systems, the use of external clocks,
which can receive and decode standard time
broadcasts, provides a simple and reliable
method for synchronizing system times closely
across the nodes of a network.

References
Nellen, E. 1985. New GUARDIAN 90 Timekeeping Facilities.
Tandem Systems Review. vol. I, no. 2. Tandem Computers
Incorporated.

Sharma, Sunil. 1985. New Process-timing Features. Tandem
Systems Review. vol. 1, no. 2. Tandem Computers
Incorporated.

System Description Manual. 1985. Part no. 82507 A00. Tandem
Computers Incorporated.

System Procedure Calls Reference Manual. 1985. Part no.
82359 A00. Tandem Computers Incorporated.

Eric Nellen joined Tandem in February 1979 as a member of the
Software Quality Assurance Group. He has worked in operating
systems development for several years and is currently a mem­
ber of the Operating Systems Kernel Group.

TANDEM SYSTEMS REVIEW FEBRUARY 1 9 8 6

-- his is the first of a series of
Tandem Systems Review
columns devoted to new and
enhanced Tandem products.
Each column will briefly
describe the new or enhanced
software and hardware prod-

ucts that Tandem has recently announced to
its users and the computer industry.

Product Overview
Tandem has recently released the following
new or enhanced products:

■ An 8-Mbyte memory board for
NonStop TXP processors.
■ The 6600 Intelligent Cluster Controller.
■ A C compiler.
■ COBOL and FORTRAN separate run-time
libraries.
■ A COBOL85 compiler (planned for release in
the first part of 1986).
■ DYNAMITE™ workstation color models 6548
and 6549.
■ EM3270 terminal emulator (enhanced IBM
3270 emulation software).
■ FASTSORT, a high-performance sort/merge
program.
■ Information Management Technology (IMT)
products FAXLINK™, PC LINK, PS MAIL™,
PS TEXT EDIT™, and PS TEXT FORMAT™.

Tandem's New Products

■ A Pascal compiler (planned for release in
the first part of 1986).
■ PATHWAY intelligent device support (IDS).
■ TACL, a flexible command interpreter.
■ An enhanced TAL compiler.

Literature is available for these products
from Tandem sales representatives. The
Programmer Productivity Languages and
Tools product guide describes the languages
and tools. Separate data sheets are available
for FASTSORT, the 6600 Intelligent Cluster
Controller, the EM3270 Terminal Emulator,
and the DYNAMITE 6548 and 6549 Worksta­
tions. Information sheets are also available for
the IMT products.

Throughout this article, the following terms
are used to describe the software releases in
which the new products are (or will be)
available:

■ B10, the release of the GUARDIAN 90 oper­
ating system made available in mid-1985.
■ B20, a new release of GUARDIAN 90 made
available in the last calendar quarter of 1985.
■ B30, a release of GUARDIAN 90 planned for
the first half of 1986.

Brief descriptions of the new or enhanced
products follow, alphabetized by product
name. (All the IMT products are located under
the subheading of that name.)

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 55

56

8-Mbyte Memory Board

An 8-Mbyte memory board is now available
for NonStop TXP processors. This product
can increase the capacity of main storage to
a maximum of 16 Mbytes per processor. For
large, high-performance applications, the
8-Mbyte board allows a NonStop TXP proces­
sor to store large amounts of data in memory,
thus minimizing or eliminating the need for
disc access during a transaction.

6600 Intelligent Cluster Controller
The 6600 Intelligent Cluster Controller allows
clustering of terminals and workstations to
reduce communications line costs and to
allow sharing of expensive communications
resources such as phone lines and modems.
The 6600 controls and helps manage communi­
cations between a Tandem host computer and
up to eight terminals, workstations, or printers
plus one additional dedicated printer. The 6600
can support any combination of Tandem 653X
terminals, DYNAMITE 654X workstations, and
IBM PCs or PC-compatible workstations. It is
compatible with NonStop TXP, Nonstop II,
and Nonstop EXT processors.

The 6600 controller communicates with a
Tandem system via SNAX or SNAX6600.
Those customers who do not use SNAX cur­
rently can benefit from the 6600. SNAX6600 is
available for applications that do not need to
communicate with IBM SNA controllers.

C Compiler

With the B20 release of GUARDIAN 90, the
popular, portable C language became available
on Tandem NonStop systems. 1 The Tandem C
compiler and run-time library are as compati­
ble as possible with those in other C environ­
ments. Since the ANSI X3J 11 committee is still
working on a C language standard, Tandem C
follows the de facto standard defined in The C
Programming Language by Kernighan and
Ritchie.

The Tandem C compiler is derived from the
Lattice C compiler currently available for the
DYNAMITE workstation and other computers.
This compiler makes it possible for C program
modules to be developed on the DYNAMITE
or a PC, transferred to a Tandem Nonstop
system, and recompiled for execution on the
Nonstop system. On a Nonstop system, a C
program can call TAL™ or GUARDIAN proce­
dures to gain access to more functions. Small
programs running on a NonStop system can
be recompiled to run on a DYNAMITE or PC.

COBOL and FORTRAN
Run-time Libraries
Before the B20 software release, the COBOL
and FORTRAN compilers were only available
as a set. The full set was unnecessary for pro­
duction systems, as they only require the run­
time library. With the B20 release, the run-time
library can be ordered separately, allowing
customers to order the lower priced run-time
library for their production systems and the
complete compiler package for their develop­
ment system.

The new Pascal and C compilers do not
have separate run-time libraries. The library
routines are bound to the object program, and
thus, customers do not have to order the com­
piler for their production systems.

Pricing for compilers has been revised.
Compilers and run-time libraries are now
charged on a per-system basis with a one-time
initial license fee and a monthly license fee.

- -
1The term "NonStop systems" refers to all Tandem processors and the software
that runs on them except for NonStop 1 + processors and software.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

COBOL85 Compiler
In the B30 software release, Tandem is
offering the COBOL85 compiler. (See the
accompanying article, "Tandem's New
COBOL85. ") COBOL85 supports all of the
required modules in the American National
Standards Institute (ANSI) revised COBOL
standard, X3.23-1985, and has extensions for
access to standard Tandem facilities. The
ANSI standard provides many new features to
increase programmer productivity and pro­
gram maintainability. As mentioned above,
Tandem COBOL85 contains a run-time library
which is available separate from the compiler.

COBOL85 supports the following modules:

■ Nucleus.

■ Table handling.

■ Sequential 1/0.

■ Relative 1/0.

■ Indexed 1/0.

■ Sort/merge.

■ Interprogram communication.

■ Source text manipulation.

It supports Level 1 of the optional debug mod­
ule, also. Two optional modules of the ANSI
standard have not been implemented in
Tandem COBOL85: the report writer and com­
munications. The segmentation module is
almost entirely implemented.

DYNAMITE Color Workstations
The DYNAMITE workstation product line
has been enhanced by the addition of two
color models. Both color workstations have
14-inch color monitors. The model 6548 has
two 360-Kbyte diskette drives; the model 6549
has one 360-Kbyte diskette drive and one
10-Mbyte hard disk drive.

When emulating a 653X terminal, the color
models display system information in high­
quality white characters on a black back­
ground (or, in reverse video, black on white).
Color text applications can be developed
locally with MS-DOS and BASIC. The bit­
mapped graphics option is required to develop
color graphics applications or to run third­
party software for the IBM PC.

The color DYNAMITE workstation (with
the graphics option) provides five ways of for­
matting information into color text, charts,
and graphs. There are two color-text modes
(40 x 25 and 80 x 25), two IBM-compatible
graphics modes (320 x 200 and 640 x 200),
and an extended high-resolution graphics
mode (800 x 300) exclusive to the DYNAMITE.

The two color text modes display text in up
to 16 different colors on one screen. The dual­
mode design of the color monitor allows both
alphanumeric and graphic information to be
shown on the screen at the same time. Third­
party color printers or color plotters can be
supported if they have RS-232 serial interfaces
and DTR flow control.

Also available is an upgrade option, which
converts a DYNAMITE monochrome unit to a
color unit. Finally, Information Xchange
Facility (IXF) software is now included with
all DYNAMITE models.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 57

58

EM3270 Terminal Emulator
The enhanced EM3270 terminal emulator per­
mits Tandem users, from a single terminal, to
access IBM 3270 applications on up to six IBM
host computers using either SNA or bisynchro­
nous communications. EM3270 supports two­
way (Tandem terminal to IBM system) and
simultaneous three-way (Tandem terminal to
both the Tandem and IBM systems) communi­
cations. Terminal users can switch between
sessions by pressing the SWITCH key, or the
switch can be made programmatically from
the Tandem application.

Users of Tandem 653X terminals,
DYNAMITE 654X workstations, or IBM PCs
can run IBM 3270 and Tandem PATHWAY
applications concurrently, and they can alter­
nate between IBM SNA and bisynchronous
hosts through menus activated by a HOST key.

EM3270 also allows Tandem printers to
emulate the IBM 328X family of printers in
both bisynchronous and SNA applications.
Each EM3270 process can support a combina­
tion of 15 to 20 devices configured as termi­
nals and printers.

If EM3270 is to be used in an SNA environ­
ment, the BIO release of the GUARDIAN 90
operating system is required. EM3270 can
reside on a system that is not running SNAX
and access SNAX on a separate system
through an EXPAND™ network.

FASTSORT
FASTSORT is a high-performance sort/merge
program for Tandem NonStop systems. Avail­
able with the Bl0 release of the GUARDIAN 90
operating system, it is an optional product and
must be purchased separately. It provides all
the functions of the standard SORT program,
but it performs better and offers additional
features. FASTSORT will eventually replace
SORT.

When installed on a system, FASTSORT is
used in:

■ Conversational sorts.

■ Sorts invoked from TAL or COBOL
applications.

■ FUP manipulation of alternate-key files.

■ ENFORM sorts during report generation.

FASTSORT sorts faster serially than
Tandem's standard SORT program, and it
offers the high performance of parallel sorting
as well. By sorting in parallel, FASTSORT
significantly reduces the elapsed time of a
sort run by distributing the work load among
multiple processors and discs. Parallel
sorting with FASTSORT is more than seven
times faster than serial sorting with SORT.
Optimum performance can be attained by
using NonStop TXP processors, 3107 disc
controllers, the DP2 disc process, and
extended memory.

IMT Products
FAXLINK
FAXLINK, an image storage, forwarding, and
retrieval facility made available in June 1985,
allows users to move printed documents or
pictures through a Tandem network using ~ny
CCITT group m facsimile machine. In addi­
tion, documents created on any 327X, conver­
sational, or TTY terminal, IBM PC or
PC-compatible workstation, or Tandem's own
653X terminals and DYNAMITE workstations
can be sent to a remote facsimile device with­
out the need for a terminal or workstation at
the receiving site. Thus, electronic mail can be
sent together with signed letters, diagrams, or
other documents. FAXLINK is ideal for busi­
ness operations that require the routine deliv­
ery of information such as orders, invoices,
shipping instructions, or design changes.

FAXLINK delivers facsimiles via a Tandem
network reliably and at low cost, integrates
facsimiles with PS MAIL, simplifies document
addressing, accepts input without a terminal,
stores facsimiles on-line, offers flexible deliv­
ery options, achieves high performance with­
out expensive devices, turns facsimile
machines into remote printers, and includes
all required hardware and software.

PC LINK
PC LINK is a collection of software programs,
both host-resident and diskette-based, that
allows IBM PCs and PC-compatible worksta­
tions that are connected to a Tandem system
to emulate a Tandem 653X terminal or an IBM
327X terminal. PC LINK allows PC users to
send and receive electronic mail, transfer files
and manipulate information stored in a
Tandem data base, and access both Tandem
and IBM host applications. These services
significantly increase a user's productivity.

TANDEM SYSTEMS REVIEW FEBRUARY 1986

PC LINK accesses Tandem and 3270 applica­
tions on-line, uses PS MAIL, takes advantage
of system peripherals, and integrates system
data with PC applications. PC LINK consists
of four software tools (EM6530PC, IXF /PC,
PCFORMAT™, and EM3270} made available in
August 1985.

PS MAIL
PS MAIL is a distributed electronic mail
system, designed to provide easy-to-use elec­
tronic communications among users of a wide
variety of desktop devices. PS MAIL lets users
of IBM 327X and TTY terminals, IBM PCs and
PC-compatible workstations, and Tandem
653X terminals and DYNAMITE workstations
to send and receive electronic mail and to
store, forward, and file documents electroni­
cally. PS MAIL for TTYs was released in B10,
and PS MAIL for IBM 3270s and Tandem ter­
minals was released in B20. PS MAIL is built
on the TRANSFER™ time-staged information
delivery software, first shipped by Tandem
in 1982.

PS MAIL features include built-in help, a
directory of PS MAIL users, forward and reply
features, user-defined distribution lists,
assured delivery, delivery certification, fac­
simile and PC document delivery, filing and
retrieval, efficient resource utilization, an
easy-to-use editor, an automatic filing and
response facility for users on vacation, and
customized administration.

PS TEXT EDIT
PS TEXT EDIT, available in the B20 release, is
an advanced, full-screen text-editing system
for creating reports, documents, memos, let­
ters, and computer programs. PS TEXT EDIT
provides a complete set of powerful, built-in
features for producing any kind of document
quickly and easily. It offers on-line help for all
PS TEXT EDIT functions, easy transfer of
information between documents or within a
single document (with a split-screen option),
and function keys that can be redefined
around your particular needs. PS TEXT EDIT
can extend its power through several compati­
ble programs, including the PS TEXT FORMAT
print formatter.

PS TEXT FORMAT
PS TEXT FORMAT, available in the B10
release, gives users complete control over the
layout of documents printed on any Tandem
printer. A wide range of features, such as pro­
portionally spaced characters, subscripts, and
superscripts, lets users take full advantage of
the capabilities of the Tandem 5530 daisy­
wheel printer. PS TEXT FORMAT is a sophisti­
cated text formatter, and it is very easy to use.

With PS TEXT FORMAT, users can translate
command names and error messages from
English to another language and change
parameter defaults for paper sizes and margin
widths. Users can also modify the appearance
of type, design page layouts, alter letters and
documents, format reports, store customized
formats, time-stamp and extract information,
perform arithmetic computations in text, cus­
tomize PS TEXT FORMAT itself, merge infor­
mation into text from a distribution list for
mass mailings, and print and move files.

Pascal Compiler
The Pascal language was designed to support
modern high-level programming techniques. It
is well structured, easily understood, portable,
and, yet, relatively efficient. Pascal programs
tend to be correct and robust. The compiler
actively assists in finding logic errors or inter­
face errors at compilation time, and optional
run-time checks help find any remaining
errors. Pascal has especially good support for
multilevel data structures that use pointers or
nested records.

Tandem Pascal, available with the B30 soft­
ware release, is a superset of the 1983 ANSI
definition of Pascal, formally known as
ANSI/IEEE 770 X3.97-1983. It also complies
with Level O of the International Standards
Organization (ISO} Pascal (ISO 7185). Com­
pliance with both standards is measured by
the Pascal Validation Suite of the British
Standards Institution. Tandem Pascal is
extended with features that facilitate large
programs, business applications, and systems
programming.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 59

60

PATHWAY Intelligent Device
Support (IDS)
Before the BlO software release, the PATHWAY
transaction processing system supported only
terminal-type devices (6530, 3270, conversa­
tional, 6520, and 6510 terminals and the
DYNAMITE workstation). The user environ­
ment has evolved over the last several years,
and PATHWAY applications now need to inter­
face with intelligent workstations, ATMs, POS
devices, and GUARDIAN processes.

Initially, programmers handled this require­
ment by implementing multithreaded front­
end processes, which stood between the
intelligent device and the Terminal Control
Process (TCP). These front-end processes con­
verted messages into the format required by
the message receiver. Control and device­
specific information was added or deleted
as appropriate.

PATHWAY IDS, available with the BIO
release of PATHWAY, eliminates the need for
front-end processes by providing increased
Screen COBOL support for intelligent devices.
With it, the TCP transmits a message to an
intelligent device when the Screen COBOL
program requests the action. This action is
translated into the appropriate GUARDIAN
write, read, or writeread procedures to trans­
mit the correct data. Screen COBOL programs
are responsible for message resynchronization
(error trapping, error recovery, I/0 retries,
and so on) and for adhering to the intelligent
device's protocol.

TACL
TACL, the Tandem Advanced Command
Language (pronounced tackle), is a flexible
command interpreter that can be customized
for a particular user or installation. TACL
is a standard product for GUARDIAN 90
users (as are Tandem's other program
development tools, INSPECT™, BINDER™,
and CROSSREF™). These standard products
are provided at no additional charge.
TACL is automatically included in all B20
GUARDIAN 90 shipments.

TACL provides all the capabilities of
Tandem's command interpreter, COMINT (and
will eventually replace COMINT). In addition,
it allows users to write macros to define fre­
quently used commands. These macros and
other functions can then be mapped to f unc­
tion keys. At its most advanced level, TACL
becomes a powerful high-level interpreted
language.

TAL Compiler
TAL, the Transaction Application Language,
is Tandem's systems-programming language.
As of the B20 software release, it has many
new features:

• The elapsed time for compilations has been
reduced as much as 20%.
• A labeled CASE statement makes programs
much easier to write, debug, and maintain.
• In compilations with the ?ERRORFILE
directive, syntax errors are written to a disc
file, allowing programmers to use
PS TEXT EDIT to display the source program
in one window and the error messages in
another.
• It has additional support for data declared
in extended memory.

• A new data type UNSIGNED, for declaring
bit fields, allows pointers to be declared
within a structure and templates to be used
as substructures.

- --

Corinne Robinson is the Product Manager for Tandem's lan­
guages and tools. She joined Tandem in June 1983 as a software
designer. Before joining Tandem, Corinne spent seven years
working in microprogramming, diagnostics, and languages for
another computer vendor. Corinne has a B.S. in Information and
Computer Science from the University of California at Irvine.

TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

n May 1985 Tandem introduced
a new subscription service and a
new update service for its soft­
ware manuals. Their purpose is
to help Tandem customers keep
their Tandem software documen­
tation up-to-date with the latest

software releases.
The Software Manual Subscription Service

provides the sets of manuals (including
binders) that describe Tandem software prod­
ucts. It includes one year of the Manual
Update Service.

The Manual Update Service provides
updates (replacement pages) and revisions
(entire replacement manuals) for sets of
Tandem software manuals (but no binders).

In addition, Tandem customers in the
United States can now order manuals via a
toll-free 800 phone number (if a blanket pur­
chase order has already been submitted to
Tandem Sales Administration in Cupertino,
California). This procedure can be used for
ordering individual manuals or additional
subscriptions.

Software Manual Subscriptions
One software manual subscription now enti­
tles a subscriber to one or more sets of man­
uals (describing specific software products, as
selected by the subscriber) and one year of
updates for the manual sets ordered.

Subscription Policy for
Software Manuals

A basic set of manuals is available for each
Tandem operating system (GUARDIAN and
GUARDIAN 90), as well as for the extended
function combination, GUARDIAN 90XF™
(which includes GUARDIAN 90, ENCOMPASS™,
EXPAND, and TRANSFER). For each optional
software product or package of products,
smaller manual sets are offered. If a software
product is described in three manuals (e.g., a
reference manual, a user's guide, and an oper­
ations guide), all three are included in the sub­
scription service and update service. Table I
(page 62) lists the sets available for NonStop
systems (Nonstop II and TXP processors).

Renewing the Manual Update
Service
Renewals for the Manual Update Service are
for a term of one year. Three months before
the term ends, a renewal letter is sent to the
subscriber, detailing the sets of manuals that
will require updates.

Customers must send in a purchase order
for the renewal; without it, update service
expires. They can change quantities when they
renew.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 61

62

Table 1.
Product identification numbers for the Software
Manual Subscription Service and Manual Update
Service, Nonstop software (Nonstop II and
Non Stop TXP processors). 1

Software Manual
Subscription Manual Update
Service' Service (only)

Software product product ID product ID

Operating system software

GUARDIAN 90 package 9072MS 9072MU

GUARDIAN 90XF package 9090MS 9090MU

Optional software

EXCHANGE 9054MS 9054MU

EM3270 9059MS 9059MU

XRAY 9056MS 9056MU

EXPAND 9057MS 9057MU

X.25 Access Method 9060MS 9060MU

AM3270 9061MS 9061MU

TR3271 9062MS 9062MU

AM6520 9063MS 9063MU

SNAX 9064MS 9064MU

TMF 9066MS 9066MU

ATP6100 9075MS 9075MU

6100BSC 9076MS 9076MU

6100ADCCP 9077MS 9077MU

6100MS01 9078MS 9078MU

CP6100 9079MS 9079MU

ENCOMPASS 9116MS 9116MU

T-TEXT 9120MS 9120MU

TRANSFER 9160MS 9160MU

DDL 9150MS 9150MU

Spooler 9151MS 9151 MU

ENFORM 9102MS 9102MU

PATHWAY 9103MS 9103MU

ENABLE 9155MS 9155MU

COBOL 9201MS 9201MU

FORTRAN 9202MS 9202MU

MUMPS 9203MS 9203MU

BASIC 9204MS 9204MU

COBOL 9251MS 9251MU
(Nonstop systems)

FORTRAN 9252MS 9252MU
(Nonstop systems)

'For the titles, descriptions, and Tandem part numbers of individual
Tandem software manuals, see Tandem's Catalog of Software
Publications and Related Products, part number 82552 BOO.

'The subscription service includes all manuals for that software
product or package and Manual Update Service for one year.

Ordering by Phone in the
United States
As mentioned earlier, U.S. customers can now
order individual software manuals and sub­
scriptions through a toll-free 800 telephone
number. Those who want this flexibility must
send an open (or blanket) purchase order or
equivalent document to:
Sales Administration, Manuals Group
Tandem Computers Incorporated
19191 Valko Parkway, MS 4-05
Cupertino, California 95014

The open purchase order should specify the
dollar amount and duration of the order. (This
protects the customer and Tandem.) It should
also specify other pertinent information, such
as the names of customer personnel authorized
to place phone orders. The Manuals Subscrip­
tion Group will send the customer the 800
phone number with an acknowledgment of
the purchase order and will keep the open pur­
chase order on file for reference on all manual
invoices.

Billing
Prices for Subscription and Update Services
Individual Tandem software manuals were
repriced in April 1985. The current prices are
available from Tandem sales representatives
and also from the Manuals Group in Tandem
Sales Administration mentioned above.

Prices for the software manual services are a
fixed percentage of the list price of the manual
set(s) ordered. The price of the Software Man­
ual Subscription Service is 130% of the cur­
rent list price of the manuals (that is, 20% less
than if the manuals and the Manual Update
Service were purchased separately), plus ship­
ping and handling.

The charge for the Manual Update Service
alone is 50% of the current list price of the
manuals, plus shipping and handling. Tandem
software manuals (especially the basic set of
manuals for the operating system) are updated
at least every two years. Although the fre­
quency and size of the updates vary, sub­
scribers receive substantial updates and
revisions commensurate with price, on a
timely basis.

TANDEM SYSTEMS REVIEW FEBRUARY I 9 8 6

Shipping and Handling
For both the initial subscription service and
the Manual Update Service, shipping and han­
dling charges are added to the orders and
billed in advance. (When individual manuals
are ordered, however, shipping and handling
are billed at the time of shipment.)

Shipping and handling have not been incor­
porated into the price of the manuals because
if each manual were priced to fully recover its
individual shipping and handling costs, the
total price would be unreasonably high for
large orders.

Invoicing
Subscription service orders are invoiced in
full, upon shipment of the initial set of man­
uals. Update service renewals are invoiced
upon receipt of the renewal purchase order.

No Volume Discounts
No volume discounts are available, as compar­
atively little economy is achieved in filling an
order for 50 sets of manuals as opposed to
filling one set, especially when (as is common
in large orders) the 50 are to be sent to 25 dif­
ferent addresses.

Billing for Additional Subscriptions
When subscribers place orders for additional
subscriptions after placing an initial order
(e.g., to get a set of manuals they did not pre­
viously order or to get a second set of some
manuals they had ordered), they are billed for
a full one-year subscription at the time of the
order. Then when they renew their Manual
Update Service, the rate for the renewal period
is prorated (to account for the unused sub­
scription service months included in their
additional order) and a common renewal date
is established.

For example, if an initial subscription were
ordered in April and additional subscriptions
were ordered in August, the renewal for the
update service would include a year of update
service for the April subscription and eight
months of update service for the August sub­
scription(s). This allows the update services
for all subscriptions to come up for renewal at
the same time.

Cancellation Policy
Subscription Service
If customers return all packages unopened and
undamaged to Tandem's distribution point
within 60 days of the order, credit is issued for
the price of the subscription, less a 15 OJo
restocking charge. The shipping and handling
charge is not refunded, and the customer must
pay the return freight.

If a subscription is cancelled within the first
six months, Tandem refunds 20% of the sub­
scription price, excluding the shipping and
handling charges. The customer can keep the
initial set of manuals.

Update Service
If a customer cancels update service during
the first six months, Tandem refunds half of
the update service price, excluding handling
charges. After six months, a refund cannot
be issued, and the update service runs to
completion.

Bnn Manual Sets
Before the BOO release, the last general distri­
bution of Tandem software manuals occurred
with the A06/E07 release of the GUARDIAN
operating system in February 1984. At that
time "system manual kits," consisting of one
of every manual, were sent to all customers.
Until May 1985, subscriptions were available
only for these manual kits. In the United
States, the kit subscriptions were priced well
below current printing costs.

FEBRUARY 1986 TANDEM SYSTEMS REVIEW 63

64

Table 2.

Bnn software manual sets for subscription and
update services.'
Product ID Description

9nnnMS Software Manual Subscription Service for the
software product "9nnn," including the initial set
of current manuals describing it and one year of
Manual Update Service.

9nnnMU Manual Update Service for the software product
"9nnn" for one year. Provides updates for an
(assumed) existing set of manuals.

9Bnn Latest versions of all software manuals. No
update service.

9BnnMS Software Manual Subscription Service that
includes the latest versions of all manuals and
one year of Manual Update Service.

9BnnMU Manual Update Service for all software manuals
for one year. Provides the updates but not the
initial set of manuals.

'In this table, "Bnn" represents any software release in the B series,
e.g., B10, B20, etc.

With the BOO software release, 65 of 83
NonStop manuals (describing NonStop II and
NonStop TXP software) were changed, requir­
ing either updated pages or complete revi­
sions.1 Table 2 lists the two Bnn manual sets
available. (Bnn is used in this article to repre­
sent all releases of the "B series" software,
e.g., BIO, B2O, etc.) Below, three Bnn update
situations are explained.

Updating Manuals Provided with the System
Customers who are licensed to use Tandem
software, and who pay for software mainte­
nance or pay the monthly license fee, automat­
ically receive one set of Bnn updates for the
set of manuals Tandem provides with a
Tandem system.

Those who want Bnn updates for software
for which they are not licensed can order them
through the Manual Update Service.

1NonStop I+ manuals are not included in the BOO software manual
distribution.

Replacing A-Series Software Manual Sets
In addition to the updates for the set of man­
uals Tandem provides with a Tandem system,
mentioned above, most customers have
ordered additional manuals. Those who have a
current subscription to A-Series manual sets
(under the old subscription policy) receive Bnn
updates until the end of that subscription's
term. To keep that set of Bnn manuals up-to­
date when the old subscription expires, these
customers must order the 9nnnMU Manual
Update Service for the manuals to be updated
(where 9nnn corresponds to the Tandem soft­
ware product numbers). They can keep com­
plete sets current by ordering the 9BnnMU
Manual Update Service.

Customers whose subscriptions are no
longer current have several choices. They can:

■ Order individual manuals by manual num­
ber, up to and including full sets. (Ordering
full sets in this way would be the least econom­
ical alternative in the long run.)
■ Order Software Manual Subscription Ser­
vice products by Tandem software product
number for the number of sets needed. This
method allows specific customization of the
manuals most needed. For example, ordering
one 9103MS yields the current version of
PATHWAY manuals plus update service for
these manuals for one year.

■ Order a complete replacement set of up-to­
date Bnn manuals, including manual updates
for one year, with Software Manual Subscrip­
tion Service product 9BnnMS.

Ordering Individual Manuals
Tandem customers who want to order individ­
ual manuals (as opposed to manual sets based
on a software product) can order them by
Tandem part number. (See the Catalog of Soft­
ware Publications and Related Products, part
number 82522 BOO, for the titles, descriptions,
and part numbers.) Orders for individual
manuals are not viewed as subscription service
orders and do not include update service.

Tim Mcsweeney is manager of the Pricing Analysis Group in
Tandem's Marketing organization. He has also worked as a
senior marketing analyst in the Competitive Analysis Group.
Before joining Tandem in 1983, Tim was associated with a start­
up software development company. Before that he worked for
nine years for another computer vendor in several capacities,
including international sales and computer support.

TANDEM SYSTEMS REVIEW F E B R U A R Y I 9 8 6

Tandem Systems Review Index February 1986

The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

Volume 1, number 1
Volume 2, number 1
Volume 2, number 2
Volume 2, number 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

Part No. 83930
Part No. 83931
Part No. 83932
Part No. 83933

As of February 1986, three issues of the Tandem Systems Review have been published:

Volume 1, number 1
Volume 1, number 2
Volume 2, number 1

February 1985
June 1985
February 1986

Part No. 83934
Part No. 83935
Part No. 83936

The articles published in all seven issues are arranged by subject below. (Tandem Journal is abbre­
viated as TJ and Tandem Systems Review as TSR.) For those articles whose subject matter falls
in more than one area, the title may be listed in more than one area (notably, those articles about
system and application performance).

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

Operating system

Changes in FOX N. Donde TSR 1,2 June 1985 83935

A Comparison of the DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle, TSR 1,2 June 1985 83935
L. McGowan

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1, 1 Feb. 1985 83934

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, TSR 1,2 June 1985 83935
M. McCline

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Introducing TMDS, Tandem's New On-line
Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

New GUARDIAN 90 Timekeeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Processing-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended
Addressing D. Thomas TJ 1, 1 Fall 1983 83930

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Robustness to Crash in a Distributed Data Base:
A Nonshared-memory Approach A. Borr TSR 1,2 June 1985 83935

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

The Tandem Global Update Protocol A.Carr TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

Languages

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

TACL, Tandem's New Extensible Command Language J. Campbell, TSR 2,1 Feb. 1986 83936
R. Glascock

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

Continued on next page.

65

Season
Volume, or Month Part

Article title Author(s) Publication Issue and Year Number

Data management

The ENABLE Program Generator for Multi-file
Applications B. Chapman, TSR 1, 1 Feb. 1985 83934

J. Zimmerman

The ENCORE Stress Test Generator for On-line
Transaction Processing Applications S. Kosinski TJ 2,1 Winter 1984 83931

Improvements in TMF T. Lemberger TSR 2,1 June 1985 83935

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

TMF and the Multi-threaded Requester T. Lemberger TJ 1, 1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1, 1 Feb. 1985 83934

The TRANSFER Delivery System for Distributed
Applications S. Van Pelt TJ 2,2 Spring 1984 83932

Understanding PATHWAY Statistics M. Pong TJ 2,2 Spring 1984 83932

Data communications

The 6100 Communications Subsystem: A New
Architecture R. Smith TJ 2,1 Winter 1984 83931

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/HLS: An Overview S. Saltwick TSR 2,1 June 1985 83935

Processors

The High-Performance Nonstop TXP Processor W. Bartlett, TJ 2,1 Winter 1984 83931
T. Houy,
D. Meyer

The Nonstop TXP Processor: A Powerful Design
for On-line Transaction Processing P. Oleinick TJ 2,3 Summer 1984 83933

Peripherals

Introducing the 3207 Tape Controller S. Chandran TSR 2,1 June 1985 83935

The Model 6VI Voice Input Option: Its Design
and Implementation B. Huggett TJ 2,3 Summer 1984 83933

The VB Disc Storage Facility: Setting a New Standard
for On-line Disc Storage M. Whiteman TSR 2,1 June 1985 83935

Workstations

An Introduction to DYNAMITE Workstation Host
Integration S. Kosinski TSR 2,1 June 1985 83935

The DYNAMITE Workstation: An Overview G.Smith TSR 2,1 June 1985 83935

Application development and performance

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

PATHFINDER-An Aid for Application Development S. Benett TJ 1, 1 Fall 1983 83930

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

System performance and tuning

Credit-authorization Benchmark for High Performance
and Linear Growth T. Chmiel, TSR 2,1 Feb. 1986 83936

T. Houy

DP2 Performance J. Enright TSR 1,2 June 1985 83935

The High-Performance Nonstop TXP Processor W. Bartlett, TJ 2,1 Winter 1984 83931
T. Houy,
D. Meyer

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, TSR 1,2 June 1985 83935
M. McCline

The Nonstop TXP Processor: A Powerful Design
for On-line Transaction Processing P. Oleinick TJ 2,3 Summer 1984 83933

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of
Tandem Nonstop Systems J. Day TJ 1, 1 Fall 1983 83930

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Manuals and courses

BOO Software Manuals S. Olds TSR 1,2 June 1985 83935

New Software Courses M. Janow TSR 1,2 June 1985 83935

Subscription Policy for Software Manuals T. Mcsweeney TSR 2,1 Feb. 1986 83936

Miscellaneous

Highlights of the BOO Software Release K. Coughlin, TSR 1,2 June 1985 83935
R. Montevaldo

Tandem's New Products C. Robinson TSR 2,1 Feb. 1986 83936

66

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined in
one subscription. Use this form to subscribe, change a subscription, and order back copies.

For requests within the U.S., send this
form to:

Tandem Computers Incorporated
Sales Administration
19191 Valko Parkway, MS 4-05
Cupertino, CA 95014-2599

For requests outside the U.S. , send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription(# of copies desired __ _

D Subscription change(# of copies desired __ _
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

o~~~~Tfs Tandem Journal
Part No. 83930, Vol. l, No. l, Fall 1983

___ Part No. 83931, Vol. 2, No. I, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review
Part No. 83934, Vol. l, No. l, February 1985

Part No. 83935, Vol. l, No. 2, June 1985

___ Part No. 83936, Vol. 2, No. l, February 1986

Tandem Application Monograph
Series
Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

Part No. 83902, Integrating Corporate Infor­
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

___ Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.
02/86

~TANDEMCOMPUTERS

Part No. 83936 400098 02/86 Printed in USA

