
T A N D E M

SYSTEMS REVIEW
\ I ii l \ 11 I i i '\ l I n I I< '

Himalaya Hardware Architecture

Object-Oriented Technology

GDSX

Technical Information and Education

Product Update

J \Nl \RY ll)().1-

T A N D E M

VOLUME 10, NUMBER

JANUARY I 9 9 4

The Tandem Systems Review publishes technical information about Tandem software
releases and products. Its purpose is to help programmers, analysts, and other

IS professionals 10 plan for, install, use, and tune Tandem systems.

1lTANDEM

Editor's Note

Tandem recently announced the new NonStop
Himalaya range of servers, designed to provide
massively parallel processing for business appli­
cations. The first article in this issue of Tandem
Systems Review, "A Hardware Overview of the
NonStop Himalaya KIOOOO Server," describes
architecture and design features of the KlOOOO,
the most powerful and expandable Himalaya
server. The article also describes the TorusNet
interconnection network, which allows upward
scalability from 2 to 4,080 processors.

The second article, entitled "Extending the
Client/Server Model With Object-Oriented
Technology," examines issues faced by applica­
tion programmers as the technology supporting
client/server computing continues to change
rapidly. The article discusses basic concepts of
object-oriented technology; describes how it con­
tributes to a more flexible computing environ­
ment; and examines how object technology can
benefit each stage of application development.

The third article in this issue, "Basic Uses and
New Features of Extended GDS," examines the
Extended General Device Support (GDSX) prod­
uct. GDSX simplifies the development of front­
end and back-end processes that communicate
with I/0 devices. This article begins by defining
GDSX front- and back-end processes. It then de­
scribes GDSX uses in a Tandem Pathway envi­
ronment and discusses enhancements made
available with the D-series releases of GDSX.

This issue continues to provide the quarterly
"Product Update" and "Technical Information
and Education" departments. The TIE depart­
ment highlights a new training method, called
Audiodigital Technology, being implemented
by Tandem Education.

-AL

EDITOR
Anne Lewis

ASSOCIATE EDITORS
David Gordon, Steven Kahn,

Mark Peters

PRODUCTION MANAGER
Anne Lewis

ILLUSTRATION AND LAYOUT
Donna Caldwell

COVER ART: Brian Jeung, Steve Sanchez

SUBSCRIPTIONS: Elaine Vaza-Kaczynski

ADVISORY BOARD

Mark Anderton, Jim Collins,
Terrye Kocher. Randy Mattran.

Mike Noonan

Tandem Srstems Review is published quarterly
by Tandem Computers Incorporated. All
correspondence and subscriptions should
be addressed to Tandem Systems Review,
10400 Ridgeview Court. Loe 208-65,
Cupertino, CA 95014.

Subscriptions: $75.00 per year; single copies
are $20.00. Detailed subscription information
is provided on the subscription order form at
the end of this book.

Tandem Computers Incorporated assumes
no responsibility for errors or omissions that
may occur in this publication.

Copyright © 1994 Tandem Computers
Incorporated. All rights reserved. No part
of this document may be reproduced in any
form. including photocopy or translation to
another language, without the prior written
consent of Tandem Computers Incorporated.

CO-CLXS00, CO-Cyclone/R, Cyclone,
Dynabus. Dynabus+, Expand, FOX, Guardian.
Himalaya, InfoWay, Integrity, NonStop,
Syshealth, Tandem, the Tandem logo, TMF,
TorusNet, and VLX are trademarks and service
marks of Tandem Computers Incorporated, pro­
tected through use and/or registration in the
United States and many foreign countries.

MIPS, R3000, and R4000 are registered
trademarks and R4400 is a trademark of
MIPS Technologies, Inc.

Indigo is a registered trademark and Indy and
!RIX are trademarks of Silicon Graphics, Inc.

UNIX is a registered trademark of UNIX
System Laboratories, Inc., in the U.S. and other
countries.

All other brand and product names are trade­
marks or registered trademarks of their respec­
tive companies.

HIMALAYA SERVER

4 A Hardware Overview of the NonStop
Himalaya KlOOOO Server

Cheng Kong

FEATURES

12 Extending the Client/Server Model With
Object-Oriented Technology

Tom Rohner

30 Basic Uses and New Features of
Extended GDS

Andy Hotea

DEPARTMENTS

2 Product Update

40 Technical Information and Education

43 Index of Articles

2

Integrity Systems

New Integrity FT Systems
September 1993

I

Tandem's Integrity FT systems family
comprises a range of fault-tolerant,
high-performance computing platforms
designed for UNIX SVR4 applications
that require the highest levels of system
availability and data integrity. Tandem
now offers three new Integrity FT
system models: the CM-1450, the
CO-1450, and the S300E.

The CM-1450 and CO-1450 models,
based on the MIPS® R4000® RISC
microprocessor, can provide more
than I 00 percent better performance
than current Integrity FT systems that
are based on the R3000® RISC micro­
processors. The number of applica­
tions areas that can be addressed by
the Integrity FT product family is
now expanded.

The base configuration of the
CM-1450 includes 64 megabytes of
local memory and 16 megabytes of
global memory, four I-gigabyte disk
drives, two SCSI controllers, and one
service processor. Maximum local
memory on the CM-1450 has been
increased to 128 megabytes; maxi­
mum total memory is still limited to
192 megabytes.

The model CO-1450 incorporates
the same specialized features for instal­
lation in telecommunications central
office environments as the model
CO-1300. These features include com­
pliance with stringent safety, fire
resistance, earthquake resistance,
temperature, power, and grounding
standards.

The CM-1450 and CO-1450 models
feature the same system cabinets and
mass storage cabinets as the CM- I 300

and CO-1300 models respectively. Up
to 9 disk or tape devices can be stored
in the CM-1450 or CO-1450 system
cabinet, while up to 21 disk or tape
devices (per cabinet) can be stored
in up to two optional mass storage
cabinets.

The model S300E is a new entry­
level Integrity FT system that replaces
the model S lO0E. The S300E is a
higher performance entry-level system
that provides all the benefits of the
Integrity FT architecture at a price
under $100K.

Integrity NR/4001 Server
August 1993

The Integrity NR/4001 is a compact,
high-performance, single-processor
server designed for small or medium­
sized workgroups. Although the
NR/4001 is as small as a personal
computer, it provides the power,
memory, and storage capacity of a
much larger system.

The base model of the Integrity
NR/4001 includes a 100-MHz R4000SC
processor (upgradable to the 150-MHz
R4400SC processor), 32 megabytes of
memory (expandable to 192 mega­
bytes), and a I-gigabyte internal system
disk that contains the IRIX™ operating
system and the NFS software. The disk
capacity can be expanded to 15 giga­
bytes by adding user disks.

Other features of the NR/400 I
include 4 industry-standard 32-bit
EISA slots or 2 EISA and 2 64-bit
GIO64 slots, 2 SCSI-2 channels, inter­
nal and external tape and CD-ROM
options, an integrated Ethernet sub­
system with both IOBaseT and AUI
ports, and support for I or 2 addition­
al Ethernet or FDDI communications
adapters. An NR/4401 disk expansion
cabinet holds up to 6 3.5-inch
peripherals.

The Product Update department provides brief descriptions of new products announced by Ta~dem.
For more information on any of these products, please consult your local Tandem representative.

TANDEM SYSTEMS REVIEW JANUARY 1994

Integrity NR/4412 Server
August 1993

The Integrity NR/4412 is a midrange,
cost-effective SMP deskside server
that offers scalable performance and
has a highly expandable storage
capacity. The NR/4412 has two base
models including either two or four
150-MHz R4400MC processors; 64
megabytes of ECC, coherent shared
memory (expandable to 2 gigabytes);
a QIC tape drive; a CD-ROM drive;
and a 2-gigabyte internal system disk
that contains the IRIX operating sys­
tem and the NSF software.

Other features of the NR/4412
include: from 2 to 12 SMP R4400MC
processors (150 MHz); parity­
protected POWERpath-2 system bus
(1.2 gigabytes/second); from 1 to 3
POWERchannel-2 bus slots (320
megabytes/second); 5 VME64
industry-standard bus slots; as many
as 24 SCSI-2 channels; and up to 720
gigabytes of internal disk storage and
2.5 terabytes of external RAID disk
storage. An NR/4412 disk expansion
cabinet can house up to 6 3.5-inch
peripherals.

Integrity NR/4436 Server
August 1993

The Integrity NR/4436 is a high-end,
symmetrical multiprocessing server
designed to support enterprise-wide
distributed computing environments.
Along with its exceptional scalability
and very large storage capacity, the
NR/4436 is the most powerful server
in the Integrity NR series.

The Integrity NR/4436 has two
base models with either two or four
150-MHz R4400MC processors; 64
megabytes of ECC, coherent shared
memory (expandable to 2 gigabytes);
a QIC tape drive; a CD-ROM drive;
and a 2-gigabyte internal system disk
that contains the IRIX operating
system and the NFS software. The
NR/4436 can have up to 960 gigabytes
of internal disk storage and 2 giga­
bytes to 3.5 terabytes of external
RAID disk storage.

Other features of the NR/4436
include: from 2 to 36 SMP R4400MC
processors; parity-protected
POWERpath-2 system bus (1.2
gigabytes/second); from 1 to 4
POWERchannel-2 bus slots (320
megabytes/second); from 5 to 25
VME64 industry-standard bus slots
(and support for additional Ethernet
and FDDI); as many as 32 SCSI-2
channels; as many as 4 HIO buses
(and support for FDDI and HiPPI);
and a built-in Ethernet controller. The
NR/4436 disk expansion rack supports
7 SCSI bays, each holding up to 8
3.5-inch or 5.25-inch SCSI devices.

- tion and
I Products

Indigo R3000 and R4000
Workstations
August 1993

The Indigo® R3000 and R4000 work­
stations are high-performance client
platforms for demanding networked
applications. Each model features a
compact mini--tower enclosure; 3
SCSI-2 connectors for internal devices
and one connector for external devices·
2 RS-422 serial ports and one parallel '
port; an integrated Ethernet subsys­
tem; and a 16--inch or 19-inch nonin­
terlaced color monitor with 1024 x 768
or 1280 x 1024 resolution.

The R3000 workstation uses a
33-MHz MIPS RISC R3000A processor
(upgradable to the 100-MHz R4000SC
or the 150-MHz R4400SC) and sup­
ports up to 96 megabytes of memory.
The R4000 uses a 100-MHz MIPS
RISC R4000SC processor (upgradable
to the 150-MHz R4400SC) and sup­
ports up to 384 megabytes of memory.
Both models have an internal disk
capacity of up to 2 gigabytes.

Indigo workstations comply with
the MIPS System V Application Binary
Interface (MIPS ABI). Applications

that comply with the MIPS ABI can
run without recompilation on Indy™
and Indigo workstations, Tandem
Integrity NR and Integrity FT servers,
and other UNIX systems that conform
to the MIPS ABI. Indigo workstations
and Integrity NR servers also share a
single version of the IRIX 5 .x operat­
ing system, the most advanced, user­
friendly implementation of the UNIX
operating system available today.

Indy Workstation
August 1993

The Indy workstation is a low-cost,
high-performance desktop computer
featuring large memory and storage
capacity, integrated networking,
graphics, and digital media. It per­
forms at much higher levels than
Pentium-powered PCs, with better
system throughput and more advanced
integrated digital media capabilities.
In addition, the Indy offers the indus­
try's first media user interface, Indigo
Magic, as a standard package.

The Indy workstation uses a
100-MHz MIPS R4000PC or R4000SC
processor, supports up to 256 mega­
bytes of memory, and has an internal
disk capacity of 2 gigabytes. Other
features include: a 400-megabyte/sec­
ond (burst rate) memory bus; 2 internal
SCSI-2 connectors for internal devices
and I connector for external devices;
2 RS-422 serial ports and I parallel
port; an integrated ISDN, AUI, or
1 OBaseT Ethernet subsystem; color
monitors in 15-inch, 16-inch, and 19-
inch sizes, with 1024 x 768 or 1280 x
1024 resolution; line-level analog
stereo and serial digital stereo; ISDN
integrated into the system; a floptical
drive; support for PC and Macintosh
network software and third-party PC
and Macintosh emulation packages;
and integrated video ports.

JANUARY 1994 TANDEM SYSTEMS REVIEW 3

4

H M A L A Y A S E R V E R

A Hardware Overview of the Nonstop Himalaya
K10000 Server

ith recent advances in
technology and with
falling hardware costs,
commercial data pro­
cessing applications
are moving increas­
ingly toward online

processing. These applications, which perform
tasks such as online transaction processing
(OL TP), database manipulation, messaging, and
decision support, require continuous system
availability, data integrity, secure operations,
and a distributed processing environment.

The Tandem™ NonStop™ Himalaya™ servers,
based on the loosely coupled, multiprocessor
architecture of previous Tandem systems, pro­
vide massively parallel processing that can
meet the technical and economic requirements
of these applications. The KIO000 server is the
most powerful and expandable member of

the Himalaya product family. It can scale
upwards from 2 to 4,080 processors to handle
large business applications. This scalability is
achieved through the TorusNet™ interconnec­
tion hierarchy.

The KI 0000 server constitutes a new gen­
eration of the Tandem NonStop Series/RISC
(TNS/R) systems. (The articles by Faby and
Mateosian, Blanchet, and Cressler in the Spring
1992 issue of the Tandem System Review give
detailed descriptions of TNS/R systems.) By
combining RISC technology with the Tandem
NonStop Kernel operating system (Bartlett,
1981), the KI 0000 server provides the founda­
tion for a smooth migration to future advances
in technology. The server also maintains com­
plete compatibility with all applications running
on existing Tandem systems.

This article gives an overview of the
Himalaya KI0000 server's hardware architec­
ture. It describes design features and practices
that significantly improve the server's data .
integrity, performance, and reliability. In addi­
tion, it discusses the TorusNet connectivity
architecture, which further improves the ser­
ver's ability to provide efficient linear growth.

TANDEM SYSTEMS REVIEW• JANUARY I 9 9 4

Figure 1

Himalaya K10000 processor

1/0 channel 2

-ODMBx 1 t -0DMBy

ME:!C SEB~M

R440() RAM
cheel(er

R44oo
master

150 MHz

!
SCache T:ag 4-MB

cache

Overview of the K10000 Hardware
Architecture
The KI0000 processor contains five subsystems:
the central processing unit (CPU) subsystem,
memory subsystem, interprocessor communica­
tion (!PC) subsystem, I/O subsystem (IOS), and
maintenance and diagnostic processor (MDP)
subsystem. Figure 1 is a diagram of the KI0000
processor.

CPU Subsystem
The CPU subsystem is the main processing unit
of the KI 0000 processor. It contains a pair of
industry-standard MIPS® R4400'M RISC proces­
sors, four megabytes of cache, and a high­
density, I -micron CMOS application-specific
integrated circuits (ASIC) processor interface
chip (PIC).

The R4400 is a 64-bit RISC processor em­
ploying superpipeline architecture. It has on­
chip, first-level 16-kilobyte caches for both
instructions and data. A 4-megabyte off-chip,

I
~

~ l,

l 64,128,
or 256 MB

1/0 channel 0

second-level cache is implemented to take full
performance advantage of the RISC processor.
In addition, Tandem guarantees data integrity
for the R4400 RISC CPU's operations by using
a pair of R4400s to implement lock-stepped,
master-checker checking. On every R4400 CPU
clock, which runs at a speed of 150 MHz, the
master and checker R4400 RISC processors per­
form exactly the same operation (that is, they
are lock-stepped together). Their outputs are
compared with each other to ensure correct
operation. Any inconsistent comparison due to
CPU hardware failures will lead to a processor
halt. If a processor halt occurs, the MDP subsys­
tem can collect the processor status and send it
w a remote processor to determine the cause of
the error condition.

JANUARY 1994 • TANDEM SYSTEMS REVIEW

1/0 channel 3

1
IOU:il

I
IOUl

l
1/0 channel 1

Figure 1.

Logical block diagram
ofa Himalaya K/0000
processor.

5

6

Memory Subsystem
The memory subsystem provides the KI0000
processor with main memory configurations of
64, 128, or 256 megabytes. It consists of a mem­
ory interface chip (MIC) ASIC and two banks of
industry-standard dynamic random-access mem­
ory (DRAM) arrays. The MIC provides all the
necessary capability to manage the DRAM
arrays. The memory subsystem is protected
through single-bit error correction and multiple­
bit error detection code.

IPC Subsystem
The IPC subsystem links multiple processors
together to form different system configura­
tions. It provides two high-speed buses, the
Dynabus™ X and Dynabus Y, to form dual path­
ways among processors. Each IPC ASIC is
responsible for one Dynabus and implements
an independent direct memory access (DMA)
engine to handle data transfer between the pro­
cessor itself and other processors. The DMA
engine moves data directly in and out of the
memory subsystem for interprocessor commu­
nication, without the assistance of the CPU.
This relieves the CPU for other processing tasks,
so more useful work can be achieved on the
CPU during Dynabus data transfers between
processors.

1/0 Subsystem
The 1/0 subsystem (10S) is the conduit for the
KIO000 processor to communicate with 1/0
devices such as disks and local area networks
(LANs). The KIO000 processor can have either
two or four Tandem 1/0 channels, one channel
per IOS ASIC, each with its own microcoded
DMA engine connecting it to the memory
subsystem.

The NonStop Cyclone™ processor also pro­
vides up to four 1/0 channels, but each pair of
1/0 channels shares a DMA engine to the proces­
sor. The new 1/0 structure on the KI0000 results
in a 100-percent improvement over the NonStop
Cyclone in aggregate 1/0 bandwidth. With this
new KI 0000 1/0 capability, users can configure
their 1/0 structures to maximize performance or
minimize cost, giving them flexibility in meet­
ing their needs.

MDP Subsystem
The MDP subsystem provides maintenance and
diagnostic functions for the KI 0000 processor.
It is based on the maintenance and diagnostic
subsystem architecture developed for the
NonStop VLX™ and Cyclone systems (Allen
and Boyle, 1987). It provides a pair of main­
ter.ance buses, DMBx and DMBy, to link to a
system-level, fault-tolerant maintenance and
diagnostic subsystem. The MDP subsystem is
also responsible for initializing the processor
and performs failure-data collection when an
error is detected on the main processor.

TANDEM SYSTEMS REVIEW• JANUARY 1994

Performance
The KI 0000 processor achieves more than twice
the performance of the NonStop Cyclone pro­
cessor (Horst, Jardine, and Harris, 1990) in
about one-fourth to one-sixth the printed wiring
board (PWB) space (when memory expansion is
accounted for). That is, the KI 0000 processor,
which resides on one PWB, provides twice the
performance of the Cyclone processor, which
resides on four to six PWBs. This improvement
is achieved by using RISC technology coupled
with high-density CMOS ASICs, as described
previously. By improving performance and
lowering processor costs, the KI 0000 forms the
foundation for providing a wide range of cost­
effective product solutions for Tandem users.

Reliability and Maintainability
The proven architecture of Tandem systems
has provided reliable computing for a wide
range of commercial applications. The KI0000
is built on this foundation and further advances
it. To improve the quality of the end product,
the KI0000 product development team deployed
many design practices such as highly acceler­
ated life testing (HALT), qualifying suppliers
and new components, and root cause analysis.

HALT uses an environmental test chamber
that can apply extreme environmental condi­
tions such as high temperature, high humidity,
and high electrical power supply voltage to sim­
ulate the life cycle of a product in a relatively

short time period. It provides an accelerated,
continuous-improvement environment to keep
users from experiencing quality and reliability
failures.

The development team adopted standard
methods (such as vendor visits, statistical
process monitoring, and component construc­
tion analysis) for qualifying suppliers and new
components for the KIO000. This vigorous qual-
ification and monitoring ~-------------------­
process improves the
quality of Tandem hard­
ware by continuously
monitoring vendor capa­
bility and eliminating
substandard suppliers
and components.

Tahe K10000 processor
chieves more than twice

the performance of the
Nonstop Cyclone processor.

When design defects were uncovered during
the development of the K!0000 (from the design
phase through the manufacturing phase), the
development team performed root cause analy­
sis. Using the results of their analysis, the team
took corrective actions to ensure that defects
were eliminated as well as to prevent the same
or like defects from recurring.

These efforts resulted in a significant reduc­
tion in the predicted corrective maintenance
irate for the KlO000 (compared with previous
Tandem systems).

JANUARY 1994 • TANDEM SYSTEMS REVIEW 7

Figure 2

Power supply

K 1 0000 proc 1 logic board

T orusNet HIV logic board 1

TorusNet HIV logic board 2

K10000 proc 2 logic board

Power supply

Figure 2. Figure 3

Top l'iew of'thc Himalaya
processor cahinet.
(B!C = hackp/ane
interconnect card.)

Figure 3.

Dlta! power distri/Jlltion
ll11its (PD Us).

0
U)
(/)
Q) e
CL

0
0
0
0

~

Power
supply 1

PDU

Battery

Dynabus X,Y

Proc 1 BIC

Proc 1 BIC

Proc 1 BIC

TorusNet HIV BIC 1

TorusNet HIV BIC 2

Proc 2 BIC

Proc 2 BIC

Proc 2 BIC

Dynabus X,Y

Battery

Backplane

0
(/)
(/)
Q)
(.)

e
CL

0
0
0
0

~

Power
supply 2

l
PDU

•
I ..
• • • • • • • •

I ..
•

8 TANDEM SYSTEMS REVIEW

K10000 Power Architecture
The approach to power distribution on the
KI 0000 differs from that of previous Tandem
systems. Figure 2 gives a top view of the
KIO000 processor cabinet. As Figure 2 shows,
the power supplies are plugged into the back­
plane directly from the two outside slots. This
structure not only makes the power distribution
to the processor logic simpler, it also simplifies
construction and hence lowers the cost of the
system .

As shown in Figure 3, the dual AC power
distribution units inside the processor cabinet
are powered by two separate power cords. With
separate external power wiring, loss of a single
power source or power cord will not bring down
the whole processor cabinet. Thus, separate
power cords provide better system availability
than is possible with a single power-cord
system.

Service Strategy
In keeping with traditional Tandem system
architecture, almost all units inside the KI 0000
processor cabinet are field-replaceable units
(FRUs). In a K 10000 processor cabinet, all units
are FRUs except the backplane and the card
cage. The granularity of the serviceable units
on the Dynabus is further divided to allow each
X or Y bus to be serviced independently, with­
out affecting the other bus. Thus, one can ser­
vice the Dynabuses without affecting the
system operation.

System Expandability
The KIO000 server can scale upwards from 2 to
4,080 processors to meet the needs of any large
commercial application. This massively parallel
processing (MPP) architecture is achieved by
using the hierarchical, scalable TorusNet inter­
connection network. With TorusNet, users can
select a cost-effective, optimal configuration of
KIO000 processors to suit their application
requirements.

JANUARY 1994

Figure 4

Section

TorusNet V

The TorusNet network for the KI0000 server
consists of cells, sections, nodes, and domains.
A KI 0000 cell, the basic element in the net­
work, is a KI 0000 processor with its associated
memory, 1/0 channels, storage elements, and
communication devices, as shown in Figure 4.

A section contains from two to four KI 0000
cells. The K 10000 cells within a section are
interconnected through the Dynabus X and

JANUARY 1994

TorusNet H

Dynabus Y (shown in Figure 4). Multiple sec­
tions can be interconnected through two-dimen­
sional TorusNet H and TorusNet V fiber-optic
connections to form a TorusNet node or domain,
as shown in Figure 5.

TANDEM SYSTEMS REVIEW

Figure 4.

A logical view of the
TorusNet architecture: a
section containing fcJUr
cells. TorusNet extends the
interprocessor hus beyond
one section.

9

Figure 5

TorusNet domain

- TorusNetH

- - - TorusNet V

DIIJ Section

Figure 5.

A logical view olthe
TorusNet architecture.
A node can contain up to
four sections. A domain
can contain up to 14 nodes
(56 sections).

10

The TorusNet H links and TorusNet V links
together form a two-dimensional interconnec­
tion network. In one dimension, the TorusNet H
links form a circular ring connection, which can
connect up to four sections together to form a
KIO000 server node. The TorusNet V links form
the other interconnection dimension and can

TANDEM SYSTEMS REVIEW

connect up to 14 nodes in a circular ring struc­
ture to form a domain. Thus, each section within
a domain has four links for data communication,
two in the TorusNet H link dimension and two
in the TorusNet V link dimension. Using both
the TorusNet Hand TorusNet V connections,
one can connect up to 224 KIO000 cells within
a TorusNet domain.

The TorusNet H provides functions similar
to the Dynabus+™ connection available on pre­
vious Tandem systems such as the NonStop
Cyclone system. A KIO000 server node is
equivalent to a 16-processor system connected
through the Dynabus+. However, the FOX'M
fiber-optic ring mimics a single TorusNet V
connection, whereas up to four TorusNet V
connections exist in a TorusNet domain. The
scalable TorusNet H and TorusNet V intercon­
nections offer several advantages over tradi­
tional Tandem interconnection networks.

First, a TorusNet domain allows for growth
in interconnection data bandwidth on both the
TorusNet Hand TorusNet V links. Each new
section added to the domain will add up to four
more connections, two TorusNet V and two
TorusNet H.

Second, with the two-dimensional torus
connection formed by the TorusNet H and
TorusNet V interconnections, processors can
exchange data more efficiently. If the data
transfer is outside a node, the data is first routed
through the appropriate TorusNet V intercon­
nection. (If the data transfer is within a node,
the data is routed through the TorusNet H links
associated with the node.) When the data
reaches the destination node, it travels through
the TorusNet H interconnection to reach its
intended destination.

The third dimension of the TorusNet, called
the TorusNet D interconnection, forms the com­
munication link among domains. It can link
TorusNet domains to form systems containing
up to 4,080 KI 0000 processors. This intercon­
nection uses the Expand™ data communications
network available on previous Tandem products.

JANUARY 1994

Conclusion
The KI 0000 server enhances the traditional
Tandem NonStop system architecture to accom­
modate the emerging massively parallel process­
ing paradigm for commercial applications. The
KI0000 is completely compatible with most
existing I/0 and communications peripheral
devices and with all Tandem application soft­
ware. With this compatibility, users can easily
migrate their existing Tandem hardware and
software to the KI 0000 server. In addition, the
TorusNet interconnection network allows users
to expand the system cost-effectively as their
applications grow.

References
Allen. J. and Boyle. R. 1987. The VLX: A Design for
Serviceability. Tandem Svstems Review. Vol. 3, No. I. Tandem
Computers Incorporated. Part no. 83939.

Bartlett, J. 1981. A NonStop Kernel. Proceedings of the Eighth
Svmposium on Operating System Principles.

Blanchet, M. 1992. Improving Performance on TNS/R Systems
with the Accelerator. Tandem Systems Review. Vol. 8. No. I.
Tandem Computers Incorporated. Part no. 65250.

Cressler, D. 1992. Debugging Accelerated Programs on TNS/R
Systems. Tandem Svstems Review. Vol. 8, No. I. Tandem
Computers Incorporated. Part no. 65250.

Faby, L. and Mateosian, R. I 992. Overview of Tandem NonStop
Series/RISC Systems. Tandem Systems Review. Vol. 8, No. I.
Tandem Computers Incorporated. Part no. 65250.

Horst. R., Jardine, R., and Harris, R. 1990. Multiple Instruction
Issue in the NonStop Cyclone Processor. Seventeenth Interna­
tional Symposium on Computer Architecture. Also Tandem
Technical Report 90.6. 1990. Tandem Computers Incorporated.
Part no. 48007.

Cheng Kong is the hardware project leader for the Nonstop
Himalaya K10000 processor development. Before joining Tandem
in 1987, he worked for six years designing RISC processors in the
computer industry. Cheng holds a Ph.D. in computer engineering
from SUNY Buffalo.

JANUARY 1994 TANDEM SYSTEMS REVIEW 11

12

F E A T U R E

Extending the Client/Server Model With
Object-Oriented Technology

he demand for client/server
computing continues to grow
as its benefits become known:
reduced costs, increased per­
formance, enhanced user pro­
ductivity, and, most important,
widespread access to corpo­

rate information formerly contained within the
domain of proprietary mainframe systems. With
client/server applications, users can manipulate
corporate information with easy-to-use software
running on their PCs or workstations.

Quickly changing technology, which has
made client/server computing possible, also
presents the greatest challenge to information
systems (IS) managers and developers. Current
client/server solutions may be superseded by
new technology and standards. Moreover, users
will continue to think of new uses and services
to be built on enterprise data. In response, IS
professionals have to create a computing envi­
ronment flexible enough to satisfy current and
future market demands and adaptable enough to
endure the next paradigm shift in technology.

To avoid having to rewrite or rework applica­
tions each time a new technology is introduced,
IS professionals must create a well-defined,
modular client/server environment. In particular,
they must:

■ Build a framework that hides technology and
encapsulates business logic so that the applica­
tion is not locked into using a unique or propri­
etary product or tool.

■ Create common application services and
functions to be treated as reusable software
components.

■ Maintain a consistent client/server develop­
ment methodology.

Object-oriented technology (henceforth
referred to as object technology) can help IS
professionals achieve these goals. Object tech­
nology is an integrated approach to application
analysis, design, and programming that simu­
lates real business processes rather than dividing
the business problem between data and function.
With an object-oriented programming language
such as the Tandem™ C++ language, program­
mers can create reusable and extensible build­
ing blocks that can be used for application
development by other programmers who use
C++ or other languages.

This article begins by defining two
client/server models. It then discusses the
issues: achieving technology independence,
creating reusable services, and promoting a
consistent development methodology. Next, it
introduces some basic concepts of object tech­
nology. (To explore these concepts further,
readers should refer to the bibliography at the
end of the article.)

TANDEM SYSTEMS REVIEW• JANUARY 1994

The article then examines how object tech­
nology can benefit each stage of application
development, from analysis to implementation.
lt addresses the issues listed above as they
appear in the application life cycle. It shows
how object technology extends the client/server
model, providing a clear role for a powerful
client and server.

The article assumes readers are familiar with
client/server architecture. It is intended for all
IS professionals, including managers who
choose technology and developers who code
and implement it.

The Client/Database Server and
Client/Transaction Server Models
In most current client/server solutions, a client
application running on a workstation retrieves
data from a host where the database manage­
ment system (DBMS) resides. Typically, a gate­
way translates the data so that host and client
can communicate. With this model, called the
client/database server model, applications are
easy to develop. The model also offers perceived
ease of enhancement. Users achieve these bene­
fits by acquiring tools that create client applica­
tions and require little or no coding of servers.

This computing model is used predominantly
by a relatively small set of users for decision
support or departmental applications. This
model only partly satisfies users' objectives.
Users also want to:

■ Expand the use of the tools they already have
on their PCs.

■ Use their PCs to gain better access to global
enterprise data (usually found on mainframes or
superservers).

■ Have IS professionals act as consultants to
help them achieve their goals, but be able to
design and even build application functions
themselves.

To meet the increasing demand for high­
performance, robust client/server applications,
IS professionals are turning to a different model,
one that comes closer to supporting genuine

JANUARY 1994

Definitions
Abstract data type (ADT): a combina­
tion of a data structure and operations
on that data. ADTs are similar to the
data types built into a programming
language, but they are not part of the
language definition. Programmers
create ADTs as object classes.

Application middleware: a host­
language interface or application pro­
gramming interface (API) that trans­
mits requests between local and
remote applications. In particular, a
consistent set of verbs used by devel­
opers to initiate requests to remote
applications.
Class: a description of a set of simi­
lar objects. A class provides the tem­
plate for creating individual objects,
each of which is an instance of the
class.
Encapsulation: the technique of com­
bining data and code into an object
class. Encapsulation hides informa­
tion and shields the complexities of
the object's behavior. It allows other

system components to be insulated
from the implementation details of
the object's operations.
Framework: a specification or imple­
mentation (that is, a set of classes)
that solves some application problem
or requirement. In a client/server en­
vironment, a framework provides a
set of common technical functions
that can be combined with business
logic to create a complete solution.
Object: a concept, method, or soft­
ware module that encapsulates
related state and behavior. The state
is represented by data and behavior
is represented by procedures that
modify the data (change the state).

Object-based: pertaining to any
method, language, or system that
supports object identity, classifica­
tion, and encapsulation.
Object-oriented: pertaining to a
method or language that is object­
based and supports specialization
(inheritance).

distributed computing. The model has several
names: client/transaction server, client/server
OL TP, and distributed function.

The client/transaction server model divides
business-application functions between two or
more computer systems. It places the graphical
user interface (GUI) on the workstation and the
DBMS on one or more systems. By splitting the
business logic between client and server, it dis­
tributes functions to the best resource, thus pro­
vi.ding high performance.

As users demand increasingly complex func­
tions, these applications must also offer high
availability, fault-tolerance, scalability, and
integrity. Client/transaction server applications
can provide these benefits.

TANDEM SYSTEMS REVIEW 13

Figure 1.
layers offunctional
responsibility in
client/server applications.

14

Figure 1

Client/database server Client/transaction server

However, building complex client/server
applications is challenging. IS professionals
must be able to change and enhance the appli­
cations quickly. They must also choose which
application middleware technology to use.
Application middleware (henceforth referred to
as middle ware) is the software used by clients
to make requests of servers. Examples are
Tandem's Remote Server Call (RSC) software,
the Remote Procedure Call (RPC) component of
the Distributed Computing Environment (DCE)
standard, IBM's Common Programmer
Interface-Communication (CPI-C) software, the
Common Object Request Broker standard, and
the Application-Transaction Manager Interface
(ATMI) component of the TUXEDO transaction
processing (TP) monitor.

TANDEM SYSTEMS REVIEW

These issues can create uncertainty among
IS professionals. Each investment in a particu­
lar technology involves a risk. The remainder
of this article discusses these risks in more detail
and describes how object technology can help to
reduce them.

Technology Lock-in
An application is locked into using unique or
proprietary products (software or tools) when
those products become an intrinsic part of the
solution. In particular, lock-in occurs when one
allows the application middleware's API to
become tightly intertwined with the code that
performs business logic or manages the user
interface. An application designed in this way
contains code that is difficult to migrate or
redesign when solution providers want to inte­
grate new or different technologies.

The term proprietary refers to products con­
trolled by a single vendor or limited group of
vendors; users can acquire them only from
those vendors. For example, most application
middleware APis, even those implemented by
more than one vendor, can be proprietary.

Monolithic Architecture
Technology lock-in can occur when users build
applications in a monolithic fashion. Monolithic
refers to applications in which developers de­
signed and implemented code, either as a single
module or as multiple interacting modules, that
did not separate functions into distinct layers.
In those applications, developers tightly inter­
twined some combination of the user interfaces,
data access, and business functions. Other func­
tions such as data communications and remote
data access were mixed into this bowl of
spaghetti code.

It took major rewrites to integrate new tech­
nology into these applications. Companies
expended costly resources to migrate to new
environments or take advantage of paradigm
shifts such as client/server computing. After
evaluating the cost of rewriting applications
to adapt to these advances, companies often
delayed making any changes.

JANUARY 1994

These constraints force companies to go on
supporting and maintaining many legacy appli­
cations. They also prevent companies from tak­
ing advantage of the client/server model.

Client/Server Architecture
Client/server architecture should differ greatly
from the traditional architecture of proprietary
mainframe applications. To implement a
client/server application, one should separate
application functions into four distinct layers:

■ User interface (or graphical user interface).

■ Business logic.

■ Application middleware.

■ Resource management (in particular, data­
base access).

Figure 1 shows a physical model of these
layers. The client/database server model requires
four functional layers. The client/transaction
server model requires five layers, because it
splits business logic between the client and
server(s).

The middleware component logically as well
as physically connects the client to the server.
In the client/database server model, the middle­
ware may also have a database gateway as one
of its components. In the client/transaction server
model, the middleware usually contains mecha­
nisms for finding and communicating with indi­
vidual server processes, which perform the
requested services.

As indicated earlier, the client/database
server model offers perceived benefits such as
integrated tool sets and other technologies that
alleviate the need for most programming. These
technologies are appealing because they are easy
to use, and one can build applications quickly
with them.

However, as shown in Figure 2, integrated
tools allow and even promote the migration of
their APis across functional boundaries. Usually
this is accomplished by using scripts that allow
the intermixing of the proprietary API with
the user interface provided by the tool. This
approach blurs the functional layers, creating
a model that resembles a monolithic design.

Figure 2

Client

Server

Companies migrating their applications to
the client/server model should consider the
costs as well as the benefits of using integrated
technologies. In many cases, companies that
allow the boundaries between functions to
become fuzzy will face the same problems they
faced with their monolithic applications. Some
problems associated with integrating new tech­
nology may even be compounded by the com­
plexities of distributed computing.

To help solve these problems, users need a
methodology that allows the functional layers
to be encapsulated, so that each layer is unaf­
fected by a change in the implementation of any
other layer. Object technology, discussed later
in the article, offers such a methodology.

JANUARY 1994 • TANDEM SYSTEMS REVIEW

Figure 2.

Integrated tool sets blur
the layers c1ffunctional
responsibility.

15

16

Reusable Services
Using reusable software components to perform
common services increases programmer pro­
ductivity and improves the reliability of the ser­
vices. Object technology can help developers
achieve this goal in spite of the pressures of
constrained budgets and tight development
schedules. However, using existing methods
(described later), developers often create the
same services over and over.

Common services are software modules and
subsystems that perform similar functions both
within and across applications. Practical con­
straints force most development groups to
prioritize these functions, which should be
implemented as common services. These ser­
vices fall into three categories: critical, required,
and desirable.

Critical services, such as security, are created
because of their high priority. Development
groups plan for them and assign resources to
code them. Often, however, developers create
these services to be unique to a particular appli­
cation. Thus, many different implementations
of the same service may exist within a company.

Required services perform functions such as
error handling, logging, instrumentation, and
print handling. Developers usually write these
services, but on an ad hoc basis. They imple­
ment the services differently and more than
once, not only within the same company but
often within the same application.

Desirable services include functions such as
naming, user event delivery, version control,
file transfer, and help. Developers treat these
services like documentation. Everyone wants to
have them, but usually there isn't time to imple­
ment them.

Developers usually use morphallaxis meth­
ods to implement those common service~ t~at
do get written. Morphallaxis refers to ex1~t~ng
code that is copied to a new file and mod1f1ed
to fit its new purpose. No links are established
between the various copies of code. If someone
discovers and repairs a bug in the original code,
knowledge of this change may or may not reach
the person responsible for the new copy of the
code. This results in user-found bugs and an
increase in maintenance costs.

There are two requirements for creating
reusable software. First, developers should
package behavior into basic modules that can
be tested and documented individually. Second,
they must have an acceptable way to exten?
those modules without modifying or affectmg
the integrity of the basic modules. Object tech­
nology addresses both requirements.

Inconsistent Development
Methodology
Traditionally, development groups have used
one of two software development methodolo­
gies, function-centered or data-cen_tered. I~
function-centered analysis and design, design­
ers examine the requirements specification for
high-level functions. When found, the functions
are extracted and defined. Designers then de­
compose the high-level functions into smaller
ones. (This process is sometimes called top- .
down structured design.) Designers group maJor
functions into applications. As they decompose
these functions, they discover required data. In
the end, they create data tables.

Function-centered development tends to cre­
ate processes highly specific to the business
problem. These processes perform ':"ell _but may
become difficult to enhance and mamtam.

TANDEM SYSTEMS REVIEW• JA>IUARY I 9 9 4

In the data-centered model of analysis and
design, developers first find the data attributes
that fulfill the requirements of the business prob­
lem. They then take this data through some kind
of logical and physical design. During this pro­
cess, they discover the functions that will oper­
ate on the data to fulfill the business-problem
requirements.

Clearly, both methodologies (data-centered
and function-centered) use a process that iso­
lates data from function. A tenet of both meth­
odologies is to achieve data independence by
isolating and separating data from procedures.
The goal of data independence is to ensure that
the structure of information is unaffected by the
way it is used.

However, since information access and ma­
nipulation is not usually restricted to a set of
common operations, the information structure
(schema) must be made available to program­
mers to create operations as needed. Thus, in­
formation integrity is dependent on each pro­
grammer and has proven to be risky.

The need for referential integrity, either pro­
grammed or programmatically supplied in the
API, is a consequence of this approach. Without
referential integrity, there is no guarantee that
table and data associations will be maintained.
With this approach, not only does data not be­
come independent, but data integrity becomes
difficult to maintain.

The client/server environment can further
complicate these development methodologies.
First, designers often incorrectly make the
physical split between client and server in the
analysis or early design phase. Usually this is
caused by viewing the business problem exclu­
sively in terms of data or function; designers
determine where either the data or the function
currently resides and where it should be placed.
Among other problems, this split forces the
emphasis on technology and away from the
business problem.

Second, different groups usually develop
the client and server; they use different meth­
odologies and emphasize areas other than the
business problem. When the client group does
analysis and design, it places primary focus

on the user interface. The business problem
is treated as a secondary issue. The server
group tends to analyze and design using a data­
centered view. Its members are concerned with
creating a highly optimized database. This group
also treats the business problem as a secondary
issue.

When developers test the client and server,
problems are likely to occur. These problems
relate not only to maintenance and extendibility
of code, but also to an incompatibility of devel­
opment work, starting with analysis and design
and continuing through implementation and the
rest of the application life cycle.

The development methodologies described
above emphasize either data or function. Neither
emphasis greatly assists in creating reusable and
extendible software. Nor do these methodolo­
gies contribute to the layering and protection of
business functions and data. Clearly, a better
methodology is needed to address these three
related issues.

An Overview of Object-Oriented
Technology
Object technology can help extend the
client/server model to address the issues of
technology independence, reusability, and con­
sistent development methodology. To under­
stand the object-oriented paradigm, one must
examine the concepts of object technology.
(Though the principles of object technology are
consistent, the terminology is not. The terms
and definitions in this article are derived from
several sources. For more information, refer to
the bibliography at the end of the article.)

JANUARY 1994 • TANDEM SYSTEMS REVIEW 17

Figure 3.

Isolating the internal
workings (methods and
data) of an ohjl'l't.
Operations provide
external access to the
object's behavior.

18

Figure 3

The key concepts of object technology are
objects, classes, inheritance, polymorphism,
and dynamic binding. The first three concepts
apply to analysis and high-level design; the last
two apply to low-level design and implementa­
tion. All of these concepts are discussed in the
following sections.

Objects
In object technology, systems and applications
are designed as sets of objects that interact and
perform operations. Each object is a software
module that models a physical or virtual entity
and its related activity. Thus, an object exhibits
state and behavior. Objects consist of data
(sometimes called data members or properties),
operations, and implementations (called meth­
ods). Operations are the interfaces to the object
that initiate specific behaviors (actions or trans­
formations). A method is the actual code that
executes a requested operation.

As shown in Figure 3, most of the object's
details, including its properties and methods,
are hidden from application developers who
use these objects. The process that isolates
the internal workings of the object is called
encapsulation. .

One can think of an object as a self-contamed
specialist performing its tasks. It has its own
data and the ability to perform certain actions
on that data. To use an object, one sends it a
message to perform a particular operation (func­
tion). This causes an operation to be invoked.
The operation performs the appropriate method
and optionally returns a response. The object
can, in turn, send messages to other objects,
requesting that they perform specialized ser-_
vices using their own data. A message contams
the name of the object, the name of the opera­
tion, and the signature for the operation. A sig­
nature consists of the number, data type, and
order of any input and output parameters
required for the operation.

Figure 4 shows two objects communicat­
ing through the use of messages. The Flight
Inquiry object sends a message requesting the
flight schedule for United Flight 123. The
message contains the name of the object ~ro­
viding the service (Unitedl23), the operation
(GetFlightTime), and the signature ("Chicago"
plus the return data type of the flight time).

In a distributed system, objects interact in the
same way, at least from the object's perspec­
tive. In fact, the mechanisms for sending and
receiving messages in a distributed system dif­
fer from those used within a single code space
or system. In a distributed system, a message
must be routed across a communication net­
work into the correct system, and that system
must route the message to the appropriate object.
This routing of the message must remain trans­
parent to the sending and the receiving object.
Thus, client and server objects can reside on
local or remote systems. (Maintaining this
transparency is one function of an object
request broker, a common service in a distrib­
uted client/server environment. When an ob­
ject requests a service, the object request .
broker directs the message to the appropnate
object to perform that service.)

TANDEM SYSTEMS REVIEW• JANUARY I 9 9 4

Figure 4

United123 object

United 123.GetFli!JhlTime
("Chicago",Fligh!Time)

Establishing a standard architecture for dis­
tributed processing is crucial to realizing the
benefits of the object approach. A practical
architecture uses an abstract API as its interface
and application middleware to implement the
APL One can use implementations such as the
RSC product, the Tandem Pathway Open Envi­
ronment Toolkit (POET) software, the DCE
RPC standard, or the TUXEDO TP monitor.
Standard APis are still emerging. For example,
the industry-funded Object Management Group
(OMG), of which Tandem is a member, has
developed the Common Object Request Broker
Architecture (CORBA).

Thus, one can envision an object-based sys­
tem as a community of specialists cooperating
to perform many complex functions, in which
each specialist is responsible for maintaining
its own information. (This concept resembles
modern thinking about human organizations.)
If this division of labor is accurate and commu­
nication among the specialists is good, the com­
munity can accomplish complex tasks quickly
and efficiently.

Classes
Object technology simulates the way things
work in the real world. To better understand
object technology, one can examine its charac­
teristics from a real-world perspective. Assume,
for example, that one owns a factory that builds
chairs and tables. To automate processes and
procedures for the factory, one might define a
Chair object and a Table object.

JANUARY 1994

However, the designers expect to build more
than one Chair or Table object. To describe
more than one object having similar attributes
and behavior, one uses a class. A class is a
generic definition of a set of similar objects.
It consists of the definitions of an object's data
structure and the operations permitted on that
data. Each instance of a given class is an object.
Though two objects may appear to be the same
(have the same properties and behavior), each
will be identified separately.

Chairs and Tables have many attributes and
behaviors in common. They both use wood,
screws, and nails. They share other attributes
such as size, cost, and time to build. One can
extract these common attributes and behaviors
to create a new, more general class. This pro­
cess, called abstraction, is an important aspect
of object technology.

Abstraction removes certain distinctions, so
one can see commonalities between objects.
Without abstraction, one would only know that
each object is different. With abstraction, one
selectively omits the distinguishing features of
the objects, allowing one to concentrate on the
features they share.

TANDEM SYSTEMS REVIEW

Figure 4.

Objects communicate by
sending messages.

19

Figure 5.

Furniture is the super­
class of the subclasses
Chairs and Tables.

Figure 6.

Chairs is a subclass r!f
Furniture and a super­
class of Stools.

20

Figure 5

Figure 6

By using abstraction, one can formulate new
classes of objects. This creates a hierarchy of
classes that are generalized or specialized to
each other. Classes higher up in a hierarchy are
called superclasses to those at a lower level.
Classes lower in the hierarchy are called sub­
classes to those at a higher level.

In this example, one might call the super­
class Furniture. Since Furniture is a general
name that includes Chairs, Tables, and perhaps
other future items, one might want to make it
an abstract class. An abstract class cannot be

TANDEM SYSTEMS REVIEW

created. (No instances can exist.) It seems logi­
cal to make Furniture an abstract class, since it
makes no sense to have a Furniture object.

Since one cannot create an abstract class, the
only way to use it is to create derived classes,
which inherit its attributes and behaviors. This
type of derived class is called a concrete class
because it can be instantiated. It is also a sub­
class of the abstract class. Figure 5 shows the
relationship between the abstract or superclass
(Furniture) and the subclasses (Chairs and
Tables).

Inheritance
Both subclasses, Chairs and Tables, inherit all
the attributes and behavior defined in Furniture.
One implements inheritance by using an object­
oriented programming language, which auto­
matically maintains the relationships between
superclass and subclass.

All Chairs and Tables could exhibit attributes
such as size, cost, time to build, and material.
However, attributes such as seat padding and
chair backing are only important to Chairs.
Thus, one would include these attributes in the
Chair class but not the Table class.

Now assume the factory produces different
types of chairs such as stools. Clearly, one
should derive Stools from Chairs. Thus, as
Figure 6 shows, Chairs would be the super­
class and Stools would be the subclass of
Chairs.

The Stools class inherits all the attributes
and behavior contained in Chairs, which also
includes what Chairs inherits from Furniture.
Thus, inheritance greatly reduces the work of
defining and coding Stools.

Stools, however, do not have backs. Though
a subclass inherits attributes (such as chair back­
ing) from its superclass, it can choose not to use
them and override those attributes. (A subclass
also inherits any operations and methods asso­
ciated with the superclass. The C++ language
supplies the mechanism for inheriting or over­
riding attributes, operations, and methods. The
programmer controls this mechanism and can
determine whether or not to use any given
attribute or behavior inherited by a subclass.)

JANUARY 1994

One can make a more precise model of the
furniture hierarchy by extracting the unique
attributes of Backed Chairs from the Chairs
class. Using abstraction, one then revises the
Chairs class. Figure 7 shows the new model,
which contains two specializations of Chairs,
NonBacked Chairs and Backed Chairs, and one
specialization of NonBacked Chairs, Stools.

The example of a simple payroll system
illustrates the principle that subclasses inherit
behavior as well as properties. Assume the
company in the example uses salaried and
hourly employees. One might start with two
classes, Salaried (employees) and Hourly
(employees). By examining these classes, one
can extract their common features. One can
then create an abstract class, called Employee,
which contains the commonality. (See Figure 8.)
One makes Employee an abstract class, not a
concrete one, because one expects all employ­
ees to have some type of pay specialization.

An important behavior common to both
Salaried and Hourly classes is pay. Thus, one
would elevate pay to the Employee class. By
abstracting pay, one ensures that each type of
employee does indeed get paid. This benefit
occurs because all subclasses inherit the pay
operation.

Polymorphism
Obviously, though, the method (implementa­
tion) of the pay operation must differ for differ­
ent types of employees. Therefore, one places
the operation and method in each subclass of
Employee. One can thus use the same operation
and signature with several different implemen­
tations. The application program can cycle
through each employee, requesting that he or
she be paid. In an object-oriented programming
language, each employee is an object (an in­
stance of a subclass of Employee). The request­
ing object sends a message to each Employee
object, and the message will be executed by
the correct object's operation.

This object-oriented principle is called poly­
morphism. Polymorphism is the ability of dif­
ferent objects to respond to the same message
differently. Polymorphism enables one to define
operations at a high level and let the details of

JANUARY 1994

Figure 7

Figure 8

the operation be handled by the object responsi­
ble for them. In this way, inheritance and poly­
morphism can greatly reduce the complexity of
programming and testing code.

In a traditional program, one would write
the pay function using some type of decision
code to select the correct method of pay. For
example:

If Employee-Type = "Salaried"
then perform Salaried-Pay

Else
If Employee-Type= "Hourly"

then perform Hourly-Pay

TANDEM SYSTEMS REVIEW

Figure 7.

Chairs becomes the super­
class of Backed Chairs
and NonBacked Chairs,
which is a superclass of
Stools.

Figure 8.

The abstract class
Emplovee is created from
the Salaried and Hourly
classes.

21

22

Compare this to the simple object-oriented
statement, Employee!D.pay(), in which the
object-oriented language determines the selec­
tion. Here Employee!D refers to an Employee
object, and pay is the Employee object's opera­
tion. Through the use of polymorphism, the
program automatically determines whether to
use the Salaried object's pay or the Hourly
object's pay.

Now assume that one must add a new type of
employee, PartTime. In a traditional program,
one would create the PartTime pay procedure
and then modify the main program's decision
code. Thus, one would modify code in at least
two locations and perform a complete compile
and link. In the object model, one simply creates
PartTime as a subclass of Employee and binds it
into the existing program. One does not have to
make any changes in the existing code to cor­
rectly invoke the pay operation.

As these examples indicate, the inheritance
relation between classes allows the definition
and implementation of one class to be based on
that of other existing classes. Inheritance is a
most promising concept that can help develop­
ers realize the goal of constructing software
systems from reusable components rather than
hand-coding every system from scratch.

The inheritance relation is often called the
is-a relation because subclasses have, by inheri­
tance, all the features of their superclass. Thus,
Salaried is-a(n) Employee. Undoubtedly Salaried
has more features than Employee does, but what­
ever else it may be, it is also an Employee.

The is-a nature of inheritance is tightly cou­
pled with the concept of polymorphism in a
strongly typed object-oriented language. Because
a subclass is-a superclass, the two classes can
appear interchangeably in an object-oriented
program. For example, whenever a program
expects an instance of Salaried, Hourly, or
PartTime, it allows one to reference them as
an Employee.

Dynamic Binding
An object-oriented program implements poly­
morphism by means of dynamic binding. Dur­
ing compile time, the compiler cannot identify
the operation that is called by the statement
Employee/D.pay(), since Employee/D could
refer to any one of its subclasses. Thus, the
statement must be evaluated at run time, when
it can tell what type of object Employee/D
refers to. This is known as dynamic or late
binding. Thus, as the program executes the
Employee/D.pay() statement, it can determine
the actual type of object and dynamically bind
it to its appropriate pay operation.

It is this dynamic binding mechanism that
allowed the subclass PartTime to be added
(linked) to the employee program with mini­
mum overall change and its pay operation to be
called automatically even though it didn't exist
in the original compiled application. This is
very different from function calls in other lan­
guages such as C or COBOL. In these cases, the
function is translated at compile time into a fixed
address. This is called static or early binding and
requires recompiling of the existing program.

TANDEM SYSTEMS REVIEW• JANUARY 1994

The Benefits of Abstraction
The inheritance relation allows one to represent
the structure of an application by identifying
and encapsulating common functions in higher­
level classes. One can then propagate these
common functions to the subclasses that need
them. Thus, inheritance allows developers to
reuse a class that is almost, but not exactly,
what they want, and to tailor the new class (or
subclass) without introducing unwanted side
effects into the original one.

Object technology supports this concept
throughout the application life cycle. One
can develop a software system using object­
oriented analysis and design and implement it
in an object-oriented programming language.
Objects and classifications identified during
analysis are preserved and enriched during
design and directly implemented in code.

Furthermore, developers can accumulate the
higher-level classes in a software repository. As
the repository grows, developers will be able to
find in it a generalization for almost any desired
class. Many developers believe this ability to
capture and encapsulate abstraction directly in
code represents a major breakthrough in soft­
ware technology.

An Improved Development
Methodology
Most computer professionals know several
programming languages and several diagram­
ming techniques for representing design de­
tails. Yet most programmers know only one
approach to system design. It is perhaps harder
to learn a new system-development technique
than it is to learn a new language. To learn a
language, one memorizes a few keywords
and their valid arrangements. To learn a new
system-development technique, one must fun­
damentally change one's way of thinking.

The object-oriented design paradigm gives
developers a way to model real-world problems
by combining related procedures and data in a
flexible, consistent structure (an object). The
analysis and design stages of the application
life cycle remain separate activities, but they
are closely related. Developers use both stages
to build a model of the business problem.
Although there is no single standard notation
for object modeling, there are many tools that
support most popular notations (such as
Rumbaugh, Booch, and Coad-Yourden).

Developers construct the model by viewing
the business problem as a set of interacting
objects and the relationships among them. They
then assemble software-based models of these
objects and their relationships to form the basic
architecture of the application. The information
developed in the analysis stage becomes an in­
tegral part of the design rather than simply pro­
viding input into the design stage. This smooth
transition is facilitated by the homogeneity of the
pieces being used by each process. This homo­
geneity contrasts starkly with the difference in
point of view between structured analysis and
structured design, which traditionally use dif­
ferent notation and semantics.

One does not necessarily discover these
pieces in a top-down approach, as in procedural
decomposition. Neither does one have to use a
bottom-up approach, starting with low-level
classes and abstracting to higher-level classes.
The discovery can take place at any level and
then be subclassed or superclassed as needed.

JANUARY 1994 • TANDEM SYSTEMS REVIEW 23

Figure 9.

Evolution ofan
application from a
problem description
to the finished code.

24

Figure 9

One can relate many objects, classes, and
relationships directly to the original problem.
Though many classes do not represent physical
objects, they are conceptual entities that can
be stated in the terminology of the business
problem. The common notational model used
throughout the life cycle is called the object
model.

Figure 9 is a simple illustration showing the
evolution of an application from a problem
description to the finished code. It shows how
the object model fosters a natural progression
from analysis to design to implementation.

TANDEM SYSTEMS REVIEW

One uses the same conceptual model in ob­
ject analysis and design; the design builds on
the core object model created by analysis. The
object paradigm encourages iteration, discov­
ery, and interaction at all levels of the organiza­
tion. It allows designers to focus on the business
solution rather than the final implementation
details. At the system design stage, one can
determine the physical splitting and assignment
of object locations, thus avoiding many of the
incompatibilities caused by separating client
and server development early in the life cycle.
Another benefit of using the object paradigm
is that one can allow an object, once defined,
to flow through the life cycle as a stand-alone
entity. This helps to break down a large project
into small, manageable pieces.

J A :\I l' A R Y I 9 9 -l

Hiding and Encapsulating
Implementations
As developers begin the system design and
implementation stage of the life cycle, they
need to address the issue of maintaining tech­
nology independence. One way to accomplish
this is to encapsulate the underlying technol­
ogy and hide its implementation from the rest
of the application. The logical layers shown in
Figure IO can form precise lines, establishing
barriers between the technologies used in each
layer.

Figure 10 shows veneer layers, called API
guards (or API isolation layers), that surround
the business logic. Often called the user-inter­
face guard, middleware guard, and DBMS guard,
these API guard layers protect the business logic
from each implementation layer. An API guard
layer consists of an abstract API that is used by
the business logic and invokes the actual imple­
mentation technology. Mechanisms in the API
guard layer map the abstract API to a meaning­
ful implementation of the APL

Assume, for example, that the business logic
uses an application-middleware guard layer to
issue messages to remote objects. The guard
layer needs to use methods that can write
requests (issue messages) and read replies or
messages issued to it from other objects. An
abstract API could consist of only two verbs,
READ and WRITE. The guard layer would logi­
cally map these verbs into the correct imple­
mentation of the API, which would establish a
session with a remote host, write a message,
read a reply or message, and close the session.
The guard layer would hide the transformation
mechanisms and implementation from the appli­
cation developer. All business applications
would use this API as their interface.

To change technology, one would rewrite the
middleware guard layer once instead of rewrit­
ing every client. This alone would be a benefit,
but if one only wanted to protect the business
logic from a single technology, one could do it
without using object technology. Guard layers,
however, should be able to protect the business
application from multiple technologies that may
be added or changed in the future.

Figure 10

Clienl/transaction server

Client

Graphical user interface

Business logic

Middleware

Middleware

Business logic

DBMS

Assume, for example, that an application
uses POET as the middleware. Now one wants,
in addition, to communicate with a process de­
veloped for access by a DCE RPC request (on a
Tandem server or another host). One may also
want to access data on the local LAN server
using a Windows NT RPC call. (This example
mixes and matches application middleware com­
ponents, illustrating a possible requirement of
enterprise client/server computing.)

JANUARY 1994 • TANDEM SYSTEMS REVIEW

Figure 10.

Encapsulating functional
layers by using AP! guard
layers.

25

Figure 11.

Without an AP/ guard
layer, each RPC and RSC
request must he hard­
coded.

Figure 12.

Adding an AP! guard layer
increases the interoper­
ability of the requested
services.

26

Figure 11

Figure 12

In a client/server model that uses fuzzy
boundaries, adding these middleware compo­
nents would require a complete rewrite of the
application. Also, all the developers would

TANDEM SYSTEMS REVIEW

have to learn the new application middleware
technology. Even a well-defined implementa­
tion without an API guard layer would require
that developers intertwine the implementation­
specific code with the business logic. As shown
in Figure 11, developers would have to hard­
code each different request into the application.
Thus, boundaries would become fuzzy, even if
they were well defined before the addition of
the new middleware.

If developers had created API guard layers, it
would be much easier to perform this task. Only
a small group of developers would need to learn
the new technology. They would incorporate
the new functions in the middleware guard lay­
ers. The new calls would remain transparent
to the developers responsible for the business
logic, who would see the same interfaces to the
API guard layers they'd seen before. As shown
in Figure 12, API guard layers add transparency
and increase the interoperability of the requested
services. Thus, they help to prevent future
rewrites of the business logic.

Object technology simplifies the task of pro­
tecting business logic. It allows the implemen­
tations to be encapsulated into subclasses of the
existing guard layer. Inheritance, polymorph­
ism, dynamic binding, and other object-oriented
techniques all help to reduce the amount of code
one must write, test, and place into production.

Guard layers are usually written once by the
systems programmers and then used throughout
the enterprise. The guard layers stabilize the
business logic by encapsulating the unique­
ness of each layer. When one migrates to new
implementation-specific technologies, the
guard layers prevent the business layers from
being corrupted. They also allow one to inter­
change technologies with little impact on the
application.

JANUARY 1994

Creating Reusable Building Blocks
After developers implement the general appli­
cation layers, they can begin implementing
(coding) the specific objects that make up the
business application. At this stage, the object
model provides design techniques and language
features to support the creation of reusable
common services and components.

The reuse comes in a variety of forms. Some
reuse in the object-oriented paradigm is the
same as that in the procedural paradigm. How­
ever, in the object model, each time one creates
an instance of a class, reuse occurs. This is sim­
ilar to declaring a variable of a specific type.
The difference is that an instance of a class is a
more complex structure than a simple variable.
An instance of a class combines data structures
and operators on those data structures.

Inheritance supports reuse at two levels:
during high-level design and low-level design.
During high-level design, inheritance allows
one to model generalization-specialization rela­
tionships, which appear in the form of classifi­
cations. One can view a Binary File as a special
type (subclass) of File as well as a general
description (superclass) of a more specific class
such as an Image Binary File, Fax Binary File,
or Object Binary File. The high-level use of in­
heritance encourages the development of useful
abstractions, which encourages reuse.

In practice, designers often recognize similar
midlevel abstractions separately. For example,
they may create a Binary File and an Edit File.
Inheritance allows them to identify common
elements among abstractions and produce
higher-level abstraction, such as File, from
those common elements. This commonality
then becomes available to be reused later in
the current design or in future designs.

For example, designers may later identify
Repository Files and Sound Binary Files. The
existing File abstraction may provide a large
part of the description of these classes, includ­
ing attributes such as creation date, size, modi­
fied, and bit-storage formation. The benefits of
reuse prompt designers to search for higher and
higher levels of abstraction.

Inheritance in Low-Level Design
During low-level design, inheritance allows
developers to use an existing class (in the form
of bindable object code) as the basis for defin­
ing a new class. Inheritance alleviates the prob­
lems associated with morphallaxis by making
the new class dependent on the existing one.

This form of reuse is nonintrusive because
the existing code is not modified. Thus, the new
code in the new class cannot cause the existing
code to break. When the new class definition is
compiled, the inherited code is automatically
included. Any modifications in the original
class, such as bug fixes or additional features,
are incorporated into the new class at the next
compilation. This technique ensures that all
instances of inherited code remain consistent.
It allows a class to serve as the basis of many
new definitions without propagating the errors
of the original definitions throughout the
system.

Often the functionality of a class makes
sense conceptually for other kinds of data types.
At the programming level, a source-code con­
struct in C++ that promotes this reusability is
called the parameterized type or class template.
A class template acts as a skeleton used by the
compiler to create a new class, using a specific
data type, at compilation time. For example,
consider building a class that handles lists. The
required operations do not depend on the type
of objects in the list. Instead of rewriting a list
class for every new kind of object, one can
write a single class template and reuse it as
needed. One can thus reduce future program­
ming efforts. The ability to create libraries of
generic class templates could prove to be a
central concept in the future of software
development.

JANUARY 1994 • TANDEM SYSTEMS REVIEW 27

28

Creating Reusable Frameworks
By using object-oriented principles, application
developers can create client/server frameworks
consisting of reusable components to bridge the
gap in technology between workstations and
hosts. Only a few highly skilled developers
need to produce the frameworks. Most develop­
ers do not have to know the technologies that
the frameworks encapsulate; they can concen­
trate on developing the business application.
Thus, frameworks offer a fast start for devel­
opment groups.

A client/server framework of compatible
software components allows programmers to
build reliable, open applications. Drawing on
reusable components, programmers can con­
struct most of these applications instead of
coding them. Programmers do not need to be
concerned with the details of how services get
implemented, but rather with their connections
and high-level functions. These services may
reside in a single client or server, or they may
be implemented across multiple client and
server platforms (not only workstations and
host machines).

A client/server framework provides a variety
of required service components that are pack­
aged into software like integrated circuits (ICs).
As with hardware !Cs, one does not have to
understand the complicated logic inside them
to use their functions. Instead, one only needs
to understand their user interfaces.

An open framework allows one to plug in
software I Cs wherever they are required by
applications. One can interchange software ICs
with similar ones that support different technol­
ogy. The internal implementation of a function

may be different, but the user interfaces remain
the same. Assume, for example, that a user
wants to employ the Windows-based CPI-C
software as the transport mechanism instead
of RSC. To do this, the programmer replaces
the RSC chip with the WinCPIC chip, without
having to change the application.

One creates reusable frameworks and com­
ponents by using an object-oriented program­
ming language such as Tandem's C++ Translator
product (an implementation of CFront) and a
C++ language on the workstation. The resulting
object code, residing in class libraries, can then
be bound into the applications as needed. On
the Tandem system, one can use the Common
Run-Time Environment (CRE) to bind the com­
ponents into COBOL, TAL, C, and C++ applica­
tion object code. On the workstation, one can
bind the components into application object
code, use them in dynamic link libraries, or use
them as stand-alone daemon processes.

One could achieve some of the benefits
described in this article in traditional develop­
ment environments. Those environments, how­
ever, require a strict and rigorous structure as
well as external control. Object technology pro­
vides an environment that more naturally pro­
duces these benefits.

Conclusion
The client/server model offers great benefits
but has an imprecise architecture. In particular,
three issues can affect the development of flexi­
ble, durable client/server applications: depen­
dence on a particular technology, inconsistent
development methodology, and lack of reusable
software.

Object technology can extend the client/server
model in a way that alleviates many of these
problems. Concepts such as inheritance, abstrac­
tion, and polymorphism allow one to model
real-world processes and implement that model
directly in code. These concepts and techniques
support a consistent development methodology
that promotes reusability.

TANDEM SYSTEMS REVIEW• JANUARY 1994

By using object frameworks and components
that support encapsulation, object technology
also reduces the problems of technology depen­
dence and morphallaxis. In addition, one can
use frameworks, together with libraries of high­
level classes, as building blocks that make
future applications easier to create.

Bibliography
Booch. G. 1991. Ohi<'l't-Oricnted Desi1;11 11·ith App/icutions.
Addi son-Wesley.

Christerson, M. et al. I 992. Object Oriented Sofiware
Engineering: A Use Case Dri1•e,1 Approach. Addison-Wesley.

Coad, P. 1993. The Object Game. Object International.

Coad, P. and Nicola, J. 1993. Object-Oriented Programming.
Prentice-Hall.

Coplien. J. I 992. Adl'C111ced C ++: Programming Strles and
Idioms. Addison-Wesley.

Eckel, B. 1993. C++ Inside and Out. McGraw-Hill.

Lippman. S. 1991. C++ Primer. Addison-Wesley.

Martin, J. and Odell. J. 1992. O/Jject Oriented Ana!vsis and
Design. Prentice-Hall.

Meyer, B. I 992. Object-Oriemed Software Construction.
Prentice-Hall.

Meyers. S. 1992. Etfecti,•e C++: 50 Specific Wavs to Improve
Your Program Design. Addison-Wesley.

Object Management Group. 1993. Common Object Request
Broker (CORBA). QED.

Rumbaugh. J. et al. 199 I. Object-Oriented Mode/i111; and Design.
Prentice-Hall.

Acknowledgments
I would like to thank the reviewers who commented on and
helped to improve this article.

Tom Rohner is a consulting analyst working in Technical Marketing
Services (TMS). Torn has specialized in clienVserver computing
since 1988 and object technology since 1990. During that time Torn
helped bring the RSC product to market, developed and delivered
the initial ClienVServer Training course for Tandem analysts, wrote
the ClienVServer Construction professional service, and has helped
many Tandem users architect and implement clienVserver solutions.

J A N lJ A R Y I 9 9 4 TANDEM SYSTEMS REVIEW 29

30

F E A T U R E

Basic Uses and New Features of Extended GOS

he Tandem™ Extended
General Device Support
(GDSX) product 1 is designed
to simplify the development
of front-end and back-end
processes for communication
with I/0 devices. The I/0

devices can be of any type, including worksta­
tions, terminals, ATMs, point of sale (P0S)
devices, and industrial robots. In a GDSX front­
end process, input from multiple 1/0 devices is
processed in separate tasks and forwarded to
processes on a Tandem host. This is illustrated
in Figure I. Common uses of GDSX front-end
processes include data-stream conversion be­
tween formats used by 1/0 devices and formats
supported on a Tandem system, implementation
of communication protocols, and error handling
for errors in network communication.

IGDSX refers to versions of the General Device Support (GOS) product
starting with release C30 of the NonStop" Kernel operating system. At that
time, GOS was modified to allow 1/0 from extended memory. This greatly
expanded GOS limits on 1/0 handling and multitasking.

TANDEM SYSTEMS REVIEW

A GDSX back-end process receives input
from multiple processes on a Tandem host and
provides access to a limited number of 1/0
devices. Common uses of GDSX back-end
processes include implementation of communi­
cation protocols; message switching; and coor­
dination of access to shared resources or 1/0
devices, such as ports on a remote system, log
files, or terminals. Figure 2 illustrates a GDSX
back-end process that provides message switch­
ing for host processes and implements a com­
munication protocol for sending messages to a
remote system.

Typically, developing a front-end or back­
end process that interacts with major Tandem
software components and can handle large num­
bers of 1/0 devices or host processes requires a
significant development effort and complex,
multithreaded coding. GDSX software provides
a multitasking environment that allows devel­
opers to write simpler, single-threaded code and
achieve multithreaded results. In addition, GDSX
software supports fault-tolerant processing and
provides interfaces to the Tandem Subsystem
Control Facility (SCF), Event Management
Service (EMS), and Subsystem Programmatic
Interface (SPI) software products.

JANUARY 1994

GDSX-supplied code for D-series releases of
the Tandem NonStop™ Kernel operating system
adds features not available under C-series
releases: access to server classes through the
Pathsend facility in Pathway, TMF™ (Transac­
tion Monitoring Facility) support for GDSX
processes, and enhanced messaging between
tasks within a GDSX process. Accessing ser­
vers through the Pathsend facility rather than
through Pathway requesters can significantly
improve application response times. TMF sup­
port for GDSX processes means that TMF pro­
tection for audited tables or files can begin as
soon as a GDSX process receives input from
an I/O device and can continue up to the point
at which the GDSX process is ready to send a
reply back to the device. GDSX intertask mes­
saging makes it possible to develop special­
purpose tasks that increase the efficiency of
a GDSX process.

This article describes uses of the GDSX
product and enhancements made available with
D-series releases. Readers should be generally
familiar with the Pathway transaction process­
ing system, the Pathsend facility, and the
Subsystem Control Facility product.

User-Coded Device Handlers and Line
Handlers in GDSX Processes
A GDSX process, front-end or back-end,
combines user-written code (user code) with
GDSX-supplied code. The user-coded portions
of a GDSX process can be written in either the
T AL or C programming language.2 Two types
of user-written components are of particular
importance, device handlers and line handlers.
Every GDSX process requires a user-written
device handler; some, but not all, back-end
processes also use a line handler. Figure 3
shows device-handler threads in the general­
ized GDSX front-end process of Figure 1.
Figure 4 shows device-handler threads and
a line-handler thread in the GDSX back-end
process of Figure 2.

~GDSX provides data structures and other types of declarations for user
code written in the TAL programming language. Users must write their
own declarations to serve as an interface between GDSX-supplied code
and user code written in C.

JANUARY 1994

Figure 1

Figure 2

Tandem system

Figure 1.

GDSXfront-end process.

TANDEM SYSTEMS REVIEW

Pathway,
other Tandem

subsystem, or user
application

Remote system

Figure 2.

GDSX back-end process.

31

Figure 3

Tandem system

Figure 3.

Device-handler threads in
a GDSXfront-end process.

Pathway
transaction
processing

system

As shown in Figure 3, in a GDSX front-end
process, individual I/0 devices are associated
with specific device-handler threads. GDSX
multitasking generates the threads from the
user-written device handler. The device handler
can be coded to provide a wide range of func­
tions, including data-stream conversion, imple­
mentation of communication protocols, and
error handling for errors in network communi­
cation. As described later, a device handler can
also execute special-purpose tasks such as vali­
dating user authorizations, accessing security
boxes, and maintaining log files.

In a GDSX back-end process, processes on
a Tandem host send data to device-handler
threads and, in contrast to a GDSX front-end
process, there is no direct association between
I/0 devices and device-handler threads. As

stated earlier, common uses of a GDSX back­
end process include implementation of non­
standard communication protocols, message
switching, and coordination of access to shared
resources or 1/0 devices, such as log files, ter­
minals, and remote ports.

In Figure 4, processes on the Tandem host
need to send data to a communication process
on a remote system. Each process sends its
data to a specific device-handler thread. The
device-handler thread, possibly after some
manipulation of the data, forwards the data to
a line-handler thread. GDSX generates the line­
handler thread from a user-coded line handler
that implements the communication protocol
required on the remote system. GDSX-supplied
code provides queuing for device-handler
threads so that data from one thread does not
interfere with the data from another.

GDSX Multitasking Environment for
Front-End Processes
In a GDSX front-end process, there is an explicit
association between I/0 devices and individual
device-handler threads. In Figure 3, among
many other possibilities, the device-handler
threads can be thought of as implementing a
nonstandard protocol for communication with
remote workstations, ATMs, or POS devices,
or as performing data-stream conversion for
industrial robots, nonstandard terminals, A TMs,
or POS devices.

In a GDSX front-end process, device-handler
threads are created by defining subdevices
through the GDSX-SCF interface. First, a
device-handler task is defined by adding it
as a subdevice (ADD SU). It can then be associ­
ated with a physical 1/0 device and started with
the SCF ST ART SU command. GDSX acts like
its own operating system in respect to device­
handler tasks. It maintains one copy of the
device-handler object code in memory. When
the subdevice for a device-handler task is
started, GDSX-supplied code creates entries

32 TANDEM SYSTEMS REVIEW, JANUARY 1994

Figure 4

for the task in its own internal tables and starts
executing the device-handler object code on
behalf of the task. This is now the active
device-handler task. Only one task can be
active in a GDSX process at a time. The cur­
rently active task executes until it needs to
wait for a resource or for the completion of
an I/0. At this point, it can be suspended and
swapped to extended memory and another task
made active. The newly active task can be
brought in from extended memory, if it had
been active earlier and was swapped to ex­
tended memory, or it can come from a freshly
started GDSX subdevice.

When a task is swapped to extended mem­
ory, the device-handler code is not touched.
GDSX maps data for the task to extended mem­
ory and uses its own tables to keep track of the
data location, the point at which the task stopped
executing instructions in the device-handler
code, and additional housekeeping information
about the task. When GDSX software activates
a task saved in extended memory, it moves data
for the task back into active memory and begins
executing device-handler code from the point at
which it had stopped when the task was previ­
ously active.

GDSX Multitasking for Back-End
Processes
In a GDSX back-end process, Tandem host pro­
cesses need to communicate with a limited num­
ber of I/0 devices. Data from the Tandem pro­
cesses is directed to individual device-handler
threads. In many cases, the device-handler
threads process the data and forward it to the
1/0 devices without using a line handler. A
user-written line handler is useful when the
data needs to be sent across a communication
line. In this case, device-handler threads send
their data to a line-handler thread, which typi­
cally implements a communication protocol
and forwards the data to a remote system.
GDSX-supplied code queues the data sent
to a line-handler thread in order to prevent
data from one device-handler thread from
interfering with data from another.

JANUARY 1994 • TANDEM SYSTEMS REVIEW

Figure 4.

Device-handler threads
and a line-handler thread
in a GDSX back-end
process.

33

Figure 5.

GDSX back-end process
with two line-handler
threads.

34

Figure 5

Tandem system

Figure 4 illustrates a simple back-end
process in which servers communicate with a
remote system through device-handler threads
and a single line-handler thread. There can also
be multiple line-handler threads in a GDSX
back-end process. When a line handler is used,
device-handler threads are configured under
line-handler threads, so that a device-handler
thread always sends its data to the same line­
handler thread. Figure 5 shows a GDSX back­
end process with two line-handler threads.
There are two server classes, each with four
servers. The servers send data to GDSX device­
handler threads. The device-handler threads are
configured so that each line-handler thread
receives data from two servers in server class
A and two servers from server class B. This
configuration provides protection in the event
that either one of the communication lines fails.

In a GDSX back-end process with a line han­
dler, individual line-handler threads are created
by defining and starting lines through the

Remote system

GDSX-SCF interface. When a GDSX line is
started (START LINE), GDSX-supplied code
creates entries for a line-handler thread in its
own internal tables and starts executing line­
handler object code on behalf of the thread.
Device-handler threads that send data to a giv­
en line-handler thread are defined as subdevices
on the line corresponding to the thread. Creat­
ing line-handler threads and assigning device­
handler threads to them is described in detail in
the Extended General Device Support (GDSX)
Manual (1993).

A user-coded line handler can simplify the
development of a GDSX back-end process for
sending data to a remote system over a commu­
nication line. More generally, a line handler is
advised for any GDSX process that needs to
manage synchronous 1/0 to a device. In most
other cases, a GDSX process without a line han­
dler is preferable.

In combination with GDSX-supplied code, a
user-coded device handler can always achieve
the same results as a line handler. GDSX D-series
releases make this feasible primarily through
the implementation of GDSX intertask commu­
nication and the use of special-purpose device­
handler tasks, which are described in the next
section.

TANDEM SYSTEMS REVIEW• JANUARY 1994

Figure 6

GDSX Intertask Communication and
Special-Purpose Device-Handler Tasks
GDSX-supplied code provides intertask com­
munication for threads in a GDSX process with­
out going through the NonStop Kernel message
system. GDSX also provides its own queuing
for intertask messages sent to the same thread.
These features make communication between
GDSX threads highly efficient and favor the
development of special-purpose device-handler
tasks for providing services to front-end device­
handler tasks associated with I/O devices. The
specialized tasks carry out operations that would

otherwise have to be executed separately within
each front-end task. Special-purpose device­
handler tasks can also be implemented in GDSX
back-end processes.

Figure 6 illustrates three special-purpose
device-handler tasks that rely on GDSX inter­
task communication. Each special-purpose task
represents a separate procedure coded in the
device handler that provides data-stream conver­
sion or other functions for threads I through n.

JANUARY 1994 • TANDEM SYSTEMS REVIEW

Figure 6.

GDSX intertask
communication and
special-purpose tasks.

35

36

Thread A in Figure 6 is an authorization
task that verifies authorizations for each device­
handler thread associated with a physical 1/0 de­
vice. By having a single task handle all autho­
rizations, only one OPEN on the authorization
file is necessary and no overhead is incurred
for checking file locks and file accesses by
other tasks. Without a specialized authoriza­
tion task, device-handler threads 1 through n
would have to individually check for file locks
and file accesses and carry out any application
logic required for evaluating authorizations.

The second special-purpose task in Figure 6,
thread L, is a logging task. The logging task
writes to a log file. Under designated circum­
stances, it opens a new log file and closes the
old log file. For example, the logging task may
monitor the time and check for user commands
and error messages. Using the time, it can
switch to a new log file every day at midnight.
In response to a user command or file-system
error message, it can open a new log file. Typi­
cally, a logging task of this type also makes
sure that all database information belonging to
the same transaction is written to the same log
file, even if the transaction starts with one log
file and ends when a new log file is in use.

Having a special-purpose logging task moni­
tor the time and check for event messages and
error messages is more efficient than requiring
every task associated with an 1/0 device to do
this on its own. Further, in the absence of a spe­
cial purpose task, individual device-handler

threads have to compete with each other for
access to the log file. With a large number of
device handler threads, this contention can slow
performance. The contention is eliminated
when a special-purpose logging task is used.

The third special-purpose task in Figure 6
is a security task. This task monitors the avail­
ability of each security box, receives messages
from device-handler threads, queues them if
necessary, and forwards them to security boxes
as they become available. Without the security
task, each device-handler thread associated with
an 1/0 device would have to look for a free secu­
rity box on its own and then contend with other
threads for access to it.

Pathsend and TMF Support for GDSX
Processes
Prior to D-series releases, GDSX processes
could only access servers through Pathway
requesters and TMF protection could only be
applied to transactions and database activities
executed outside a GDSX process. This situa­
tion is illustrated in Figure 7.

GDSX D-series releases make it possible to
build requester functions into a GDSX process
and access servers directly through the Pathsend
facility in Pathway. This can significantly im­
prove application response times. In addition,
GDSX D-series releases extend TMF protection
to cover GDSX processes. As a result, protec­
tion of audited database files can now begin in
a GDSX process as soon as the process receives
input from an 1/0 device and can continue up
to the point at which the process sends a reply
back to the device. Figure 8 illustrates a GDSX
process that contains the functionality of a
requester and accesses servers through the
Pathsend facility.

TANDEM SYSTEMS REVIEW• JANUARY 1994

Figure 7

1/Q
dellicBs

Tandem system

(Receive and
manipulate data)

Improved Performance Through Pathsend
Servers
Directly accessing Pathsend servers from
a GDSX process, rather than going through
Pathway requesters, improves performance
by avoiding use of a terminal control process
(TCP) and by using compiled code instead of
interpreted code. Multithreaded TCPs regulate
access to Pathway requesters. Bypassing the
use of a TCP reduces messaging costs and
possible queuing delays in reaching a server.
Compiled code is executed much faster than
interpreted code. Pathway requesters are written
in the SCREEN COBOL language and are inter­
preted. GDSX device handlers can be written in
the T AL or C programming language, and are
compiled. In combination, these factors can
have a considerable effect on performance. At
one GDSX site, moving from Pathway SCREEN
COBOL requesters (as in Figure 7) to compiled
requester functions within a GDSX process (as
in Figure 8) improved overall application per­
formance by 50 percent.

If a GDSX process bypasses Pathway SCREEN
COBOL requesters and uses the Pathsend facil­
ity, the user-written device handler in the process
must provide functions that would have been in
the Pathway requester. The additional coding is
usually very simple. GDSX front-end processes
typically serve intelligent 1/0 devices that pro­
vide their own screen displays. SCREEN COBOL
requesters for such devices primarily define and
control Pathway intelligent device support (IDS)
messages and forward data to servers. To replace
a SCREEN COBOL requester, a device handler
that provides data-stream conversion or other
functions may only need added procedure calls
for using the Pathsend facility and code for
accessing the appropriate server class.

JANUARY 1994

Figure 8

Tandem system

BEGIN TRANSACTION
(TMF protection begins)

Keeping Server Logic Outside of GDSX
Just as the functions of a requester can be
placed in a device handler, it is also possible to
put server logic in a device handler. Combining
both requester and server functions in a single
GDSX process would make it unnecessary to
use either Pathway TCPs or the Pathsend facil­
ity to access servers. However, in most cases,
this approach is not recommended. If both
requester and server logic is carried out with-
in the same GDSX process, one CPU must do
requester-server processing for all the threads in
the GDSX process. As a result, while the CPU is
executing server logic for one thread, all other
threads and requester functions are kept waiting.

TANDEM SYSTEMS REVIEW

Figure 7.

A GDSX process using a
Pathway requester to access
a server.

Figure 8.

A GDSX process access­
ing a server through the
Pathsendfacility.

37

Figure 9

Figure 10

Figure 9.

Configuration with
Pathway requester and
check server.

Figure 10.

Configuration with
requester and check­
server logic in GDSX.

38

(requester plus
check-server logic)

2

If server logic is kept in servers that execute
under the Pathway system and are placed in dif­
ferent CPUs from the GDSX process, the GDSX
process can carry out requester functions for
multiple device-handler threads without delays
for the execution of server logic on behalf of an
individual thread. In addition, under the Pathway
system, the PATHMON and LINKMON processes
provide dynamic link-management for servers
accessed through TCPs and through the Pathsend
facility. At times of high activity, server proces­
ses can be added as needed in different CPUs;
requester or device-handler messages can be
sent to servers in different CPUs for load bal­
ancing, and there is an autorestart mechanism
for servers.

In some special cases, there can be advan­
tages to placing server functions in a GDSX
process. For example, the Pathway requester­
server configuration in Figure 9 is less effici­
ent than the GDSX-Pathsend configuration in
Figure 10. In Figure 9, a Pathway requester first
sends data to the check server. The check server
evaluates (checks) the data, determines which
transaction server the requester should send
the data to, and returns this information to the
requester. Finally, the requester sends the data
to the specified server. This sequence costs two
interprocess messages and the additional pro­
cessing time needed for the SCREEN COBOL
requester and the two Pathway servers.

Figure 10 shows a GDSX process that con­
tains both requester and check-server functions.
Within the GDSX process, a set of device­
handler threads can function as requesters
for 1/0 devices. A separate special-purpose
device-handler task can function as a check
server for the device-handler requester threads.
In this case, the GDSX process provides its own
intertask communication between the requester
threads and the special-purpose task, and only
one message is sent between the GDSX process
and the transaction server.

Managing 1/0 Devices Through the
GDSX-SCF Interface
GDSX processes maintain their own tables for
monitoring the status of GDSX subdevices
(device-handler threads) and GDSX lines (line­
handler threads). The GDSX interface to SCF
commands allows an operator or application
to use SCF informational commands such as
INFO and STATUS to monitor the states of I/0
devices associated with GDSX threads and to
issue SCF commands such as STOP, START,
ABORT, and ALTER, that can change the state
of an 1/0 device. Figure 11 shows the use of the
GDSX-SCF interface to manage workstations.

TANDEM SYSTEMS REVIEW• JANUARY 1994

In Figure 11, an operator or a network man­
agement application issues SCF commands.
The SCF process directs the commands to the
Subsystem Control Point (SCP) process, which
forwards commands to data communications
subsystems. The SCP process sends the SCF
commands to the GDSX process, which applies
the commands to the appropriate threads. Since
workstations are represented as threads within
the GDSX process, checking the status of all
workstations and issuing commands against
them only requires sending messages to one
GDSX process. Without a GDSX process, if
each workstation counted as a separate process,
checking the status of all workstations and issu­
ing commands against them would require the
time-consuming operation of sending separ-
ate messages to every process representing a
workstation.

Conclusion
GDSX-supplied code provides multitasking and
other features useful for developing front-end
and back-end processes. In a GDSX front-end
process, a user-coded device handler is the
basis for device-handler threads that manage
the input from 1/0 devices and provide func­
tions such as data-stream conversion, imple­
mentation of a communication protocol, and
network-communication error handling. In a
back-end process, multiple Tandem host proces­
ses communicate with a limited number of I/O
devices. Common uses of a GDSX back-end
process include implementation of nonstandard
communication protocols, message switching,
and coordination of access to shared resources
or 1/0 devices, such as log files, terminals, and
remote ports.

D-series releases of GDSX contain impor­
tant features not available with C-series GDSX
software: access to Pathsend servers, TMF
protection within GDSX processes, and en­
hanced intertask messaging for threads in a
GDSX process.

.JANUARY 1994

Figure 11

Terminal

Tandem system

1
SCF

Application SCP

Pathsend facility

Workstation 1

Workstation n

References

~
haMdler:
Thread 1

Device
han~t:
Tii~~

Qi,11ice
handler:
Thread n

-
--

-

Extended General Device Support (GDSX) Manual. 199.l
Tandem Computers Incorporated. Part no. 95805.

Andreas Hotea joined Tandem Austria as a systems analyst in
1988. In 1991 he became a project manager with Tandem Germany
and then, later in the year, transferred to the United States as a
developer for the GDSX product. In 1993, Andreas became the
software development manager for several Pathway products,
including GDSX.

TANDEM SYSTEMS REVIEW

Serll!!rS

SeM3rS

Figure 11.

Managing workstations
through the GDSX-SCF

interlace.

39

40

. ,_,,
,,,,,,,,,

"l;J,~

~~.
~~

~

Tandem Education

The following paragraphs provide
highlights of the latest education
courses offered by Tandem. To sign
up for a class or to order an indepen­
dent study program (ISP), users should
call l-800-621-9198. Full descriptions
of all available courses and ISPs appear
in the Tandem Education Course
Catalog and on Info Way.

UNIX Basics
In this four-day course, students use
hands-on practice to acquire basic
UNIX skills. These include getting
started with UNIX, defining and using
the UNIX hierarchy, customizing stu­
dent startup scripts, and creating sim­
ple shell scripts using the vi editor.
Students also learn the use of over 60
UNIX and shell utilities, with a choice
of the Korm Shell or C-shell, on an
Integrity SVR4 platform.

Integrity CM-1300 Hardware
Installation
This videotape demonstrates the
installation and checkout of the
Integrity CM-1300 system. The tape
runs for approximately 30 minutes.

3217/5289 Data Path Adapter
Subsystem
This independent study program
includes a 30-minute videotape and
a student quiz. The Data Path Adapter
interconnects the Tandem Guardian
system with the STK automatic car­
tridge tape handling system. This
program introduces the Tandem
32 I 7 /5289 Data Path Adapter subsys­
tem and demonstrates the hardware
installation and cabling procedures.
The Tandem Maintenance and Diag­
nostic System (TMDS) and trouble­
shooting techniques are also discussed.

Nonstop CO-CLX800 and
CO-Cyclone/A Installation
This training aid kit consists of a
high-level product guide and a video­
tape that shows a typical installation
of a NEBS cabinet. The training aid
gives a general description of the
NEES-compliance CO-CLX800 and
CO-Cyclone/R systems, and provides
the information needed to service the
NEBS hardware by introducing the
student to the new or changed com­
ponents of this system.

The Technical Information and Education department is an annotated list of new Tandem
education courses and consulting and information services, as well as other technical
information of interest to Tandem users.

TANDEM SYSTEMS REVIEW JANUARY 1994

Remote Server Call (RSC)
Operations
This one-day course gives students an
overview of Tandem's Remote Server
Call (RSC) product. RSC allows work­
stations to access Pathway servers and
other operating system processes on
the Tandem host system. Students
learn the installation and configuration
procedures required to set up an RSC
environment. Students also participate
in a discussion of the best practices for
managing an RSC environment.

Remote Server Call (RSC)
Programming
Tandem's Remote Server Call (RSC)
product allows workstations to access
Pathway servers and other operating
system processes on the Tandem
host system. Much of RSC program­
ming is client-related. This three-day
classroom-and-lab course provides the
knowledge and skills needed to devel­
op RSC-based applications. The course
labs give students an immediate under­
standing of programming in the RSC
environment. Students code an RSC
client application, using most of the
Application Programming Interface
(API) calls. Students also experiment
with Unsolicited Message Service
(UMS) calls and with an Access
Control Server (ACS).

Tandem Operations for the
Automated Cartridge System
This video program teaches how to
configure and operate the Tandem
interface to an attached STK 4400
Automated Cartridge System. This
program lasts less than an hour and is
ideal as a survey or refresher course.

Install Program Simulator
This course uses computer-based
training (CBT) running in the
Microsoft Windows environment.
It allows students to become familiar
with the Install program dialog and
provides helpful tips for each phase.
It features hands-on experience through
the use of a workstation-based Install
simulator. The course provides a tutori­
al on the user dialog and gives tips on
how to save time and disk space dur­
ing the installation process. This course
also provides the opportunity to run
each phase with automatic error correc­
tion and with a challenging exercise.

Install Program Overview
In this course, using computer-based
training (CBT) running in the Microsoft
Windows environment, students

become familiar with the functionality
and operation of the Install program
on Tandem Guardian systems. The
course provides an overview of the
software installation illustrated with
computer animation. The course also
describes important components of the
Install program and includes a review
designed to help students apply what
they have learned.

Migrating to the Nonstop Kernel
This four-day course is designed espe­
cially for those who are thinking of
migrating to the D20 release of the
Guardian system. Students learn how
current and new Tandem products can
benefit from D-series enhancements.
The course enables students to deter­
mine whether they need to modify
their systems prior to upgrading, how
to convert their applications, and how
to use D-series extensions.

JANUARY 1994 TANDEM SYSTEMS REVIEW 41

42

OSI/FT AM Concepts and
Facilities
This classroom-and-lab course pre­
sents detailed technical information
about OSI/FT AM, including configu­
ration, system management, program­
ming, and troubleshooting OSI/FT AM
subsystems. The course lasts four
days.

Syshealth Toolkit
This course uses a new training
method, Audiodigital Technology
(ADT), to teach students how to use
the Syshealth Toolkit, which moni­
tors system resources in the Tandem
environment. The course walks stu­
dents through the processes of instal­
lation, configuration, remote notifi­
cation, and operations. By the end of
the course, students are familiar with
the capabilities of the Syshealth
Toolkit and how it can help them
administer their Tandem installations.

Dynamic System Configuration
(DSC)
Intended for system managers and
operators, this Audiodigital Tech­
nology (ADT) course provides an
informative introduction to Dynamic
System Configuration and its user
interface Configuration Utility
Program (COUP). Upon completion
of the course, students understand
how to add, start, stop, or alter devices,
controllers, and paths online without
doing a SYSGEN.

;'""tandem Education
Training

Audiodigital Technology
Tandem Education has introduced
a powerful new training method,
Audiodigital Technology (ADT).
With ADT, the student sits at a work­
station and watches as a Tandem
application is demonstrated by an
expert on screen. The accompanying
audio guides the student through the
course. At any point, the student can

fast-forward or rewind the course,
and the video and audio portions
remain perfectly synchronized. In
addition, the student can exit the
training mode and instantly access
the actual application to practice the
skills already learned.

Among the benefits of ADT are
the following:

■ It is very easy to use. Anyone who
can operate a cassette player can use
ADT.

■ It has a low cost of ownership. The
ADT player includes all software and
a run-time license for unlimited
course ware.

■ It is cost effective. One ADT
course and player can be used by an
unlimited number of students. In
addition, Tandem Education is con­
stantly releasing new ADT courses.

To run an ADT course, the work­
station used must be a 286 or higher
IBM PC, or compatible, with an avail­
able com! or com2 port. It must also
have a color display (CGA, EGA, or
VGA) and an internal hard disk. All
Tandem ADT courses also require a
QTrain player. For price and ordering
information on the QTrain player,
users should contact User Training
Services Group at 1-800-395-9991
(phone) or 415-322-0528 (fax).

TANDEM SYSTEMS REVIEW JANUARY 1994

TandemSystemsReview/ndex
The Tandem Journal became the Tandem Systems Review in February 1985. Four issues of the
Tandem Journal were published:

Volume 1, No. 1
Volume 2, No. I
Volume 2, No. 2
Volume 2, No. 3

Fall 1983
Winter 1984
Spring 1984
Summer 1984

As of this issue, 24 issues of the Tandem Systems Review have been published:

Volume I, No. 1 Feb. 1985 Volume 6, No. 1 March 1990
Volume I, No. 2 June 1985 Volume 6, No. 2 Oct. 1990
Volume 2, No. 1 Feb. 1986 Volume 7, No. 1 April 1991
Volume 2, No. 2 June 1986 Volume 7, No. 2 Oct. 1991
Volume 2, No. 3 Dec. 1986 Volume 8, No. 1 Spring 1992
Volume 3, No. 1 March 1987 Volume 8, No. 2 Summer 1992
Volume 3, No. 2 Aug. 1987 Volume 8, No. 3 Fall 1992
Volume 4, No. 1 Feb. 1988 Volume 9, No. 1 Winter 1993
Volume 4, No. 2 July 1988 Volume 9, No. 2 Spring 1993
Volume 4, No. 3 Oct. 1988 Volume 9, No. 3 Summer 1993
Volume 5, No. 1 April 1989 Volume 9, No. 4 Fall 1993
Volume 5, No. 2 Sept. 1989 Volume 10, No. 1 Jan. 1994

The articles published in all 28 issues are arranged by subject below. (Tandem Journal is abbreviated as TJ and
Tandem Systems Review as TSR.) A second index, arranged by product, is also provided.

Index by Subject
Volume, Publication Part

Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

An Overview of Client/Server Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

Application Code Conversion for D-Series Systems K.Liu TSR 9,2 Spring 1993 89805

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Basic Uses and New Features of Extended GDS A. Hotea TSR 10,1 Jan. 1994 104396

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

Designing and Implementing a Graphical User Interface S. Wolfe TSR 9,3 Summer 1993 89806

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

PATHFINDER-An Aid for Application Development S. Benett TJ 1,1 Fall 1983 83930

JANUARY 1994 TANDEM SYSTEMS REVIEW 43

Volume, Publication Part
Article title Author(s) Publication Issue date number

APPLICATION DEVELOPMENT AND LANGUAGES (cont.)

PATHWAY IDS: A Message-level Interface to Devices and Processes M.Anderton, M. Noonan TSR 2,2 June 1986 83937

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

State-of-the-Art C Compiler E Kit TSR 2,2 June 1986 83937

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

The DAL Server: Client/Server Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CLIENT/SERVER

An Overview of Client/Server Computing on Tandem Systems H. Cooperstein TSR 8,3 Fall 1992 89803

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Designing and Implementing a Graphical User Interface S. Wolfe TSR 9,3 Summer 1993 89806

Designing Client/Server Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

Implementing Client/Server Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

The DAL Server: Client/Server Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

DATA COMMUNICATIONS

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A.Rowe TSR 4,1 Feb. 1988 11078

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview s Saltwick TSR 1,2 June 1985 83935

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

Using the MUL TILAN Application Interfaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

44 TANDEM SYSTEMS REVIEW JANUARY I 9 9 4

Volume, Publication Part
Article title Author(s) Publication Issue date number

DATA MANAGEMENT

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

An Overview of Nonstop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Batch Processing in Online Enterprise Computing T. Keefauver TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32968

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

DP1-DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Perlormance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability C. Fenner TSR 4,2 July 1988 13693

Online Information Processing J. Viescas TSR 9,1 Winter 1993 89804

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

Optimizing Batch Perlormance T. Keefauver TSR 5,2 Sept. 1989 28152

Overview of Nonstop SOL H.Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

Tandem's Nonstop SOL Benchmark Tandem Perlormance Group TSR 4,1 Feb. 1988 11078

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

OBJECT-ORIENTED TECHNOLOGY

Extending the Client/Server Model With Object-Oriented Technology T. Rohner TSR 10,1 Jan. 1994 104396

JANUARY 1994 TANDEM SYSTEMS REVIEW 45

Volume, Publication Part
Article title Author(s) Publication Issue date number

OPERATING SYSTEMS

Application Code Conversion for D-Series Systems K. Liu TSR 9,2 Spring 1993 89805

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features s. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Approach

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1,1 Feb. 1985 83935

The Tandem Global Update Protocol R. Carr TSR 1,2 June 1985 83935

PERFORMANCE AND CAPACITY PLANNING

A Performance Retrospective p Oleinick, P. Shah TSR 2,3 Dec. 1986 83938

Buffering for Better Application Performance R. Mattran TSR 2,1 Feb. 1986 83936

Capacity Planning Concepts R. Evans TSR 2,3 Dec. 1986 83938

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Credit-authorization Benchmark for High Performance and T. Chmiel, T. Houy TSR 2,1 Feb. 1986 83936
Linear Growth

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

DP2 Performance J. Enright TSR 1,2 June 1985 83935

Estimating Host Response Time in a Tandem System H. Horwitz TSR 4,3 Oct. 1988 15748

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

Getting Optimum Performance from Tandem Tape Systems A. Khatri TSR 2,3 Dec. 1986 83938

How to Set Up a Performance Data Base with M. King TSR 2,3 Dec. 1986 83938
MEASURE and ENFORM

Implementing a Systems Management Improvement Program J. Dagenais TSR 9,4 Fall 1993 89807

Improved Performance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

MEASURE: Tandem's New Performance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250
---··---

Message System Performance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests s. Uren TSR 2,3 Dec. 1986 83938

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

Optimizing Sequential Processing on the Tandem System R. Welsh TJ 2,3 Summer 1984 83933

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

46 TANDEM SYSTEMS REVIEW JANUARY I 9 9 4

Volume, Publication Part
Article title Author(s) Publication Issue date number

PERFORMANCE AND CAPACITY PLANNING (cont.)

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Performance Considerations for Application Processes R. Glasstone TSR 2,3 Dec. 1986 83938

Performance Measurements of an ATM Network Application N. Cabell, D. Mackie TSR 2,3 Dec. 1986 83938

Predicting Response Time in On-line Transaction Processing Systems A. Khatri TSR 2,2 June 1986 83937

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

The Performance Characteristics of Tandem Nonstop Systems J. Day TJ 1,1 Fall 1983 83930

Sizing Cache for Applications that Use B-series DP1 and TMF P.Shah TSR 2,2 June 1986 83937

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11978

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

PERIPHERALS

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Data-Encoding Technology Used in the XL8 Storage Facility D.S.Ng TSR 2,2 June 1986 83937

Data-Window Phase-Margin Analysis A. Painter, H. Pham, TSR 2,2 June 1986 83937
H. Thomas

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

Peripheral Device Interfaces J. Blakkan TSR 3,2 Aug. 1987 83940

Plated Media Technology Used in the XL8 Storage Facility D.S. Ng TSR 2,2 June 1986 83937

Streaming Tape Drives J. Blakkan TSR 3,2 Aug. 1987 83940

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

The Role of Optical Storage in Information Processing L. Sabaroff TSR 3,2 Aug. 1987 83940

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

PROCESSORS

Fault Tolerance in the Nonstop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

A Hardware Overview of the Nonstop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
Transaction Processing D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

JANUARY 1994 TANDEM SYSTEMS REVIEW 47

Volume, Publication Part
Article title Author(s) Publication Issue date number

SECURITY

Dial-In Security Considerations P. Grainger TSR 7,2 Oct. 1991 65248

Distributed Protection with SAFEGUARD T.Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SYSTEM CONNECTIVITY

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

Building Open Systems Interconnection with OSI/AS and osIrrs R. Smith TSR 6,1 March 1990 32986

Connecting Terminals and Workstations to Guardian 90 Systems E. Siegel TSR 8,2 Summer 1992 69848

Implementing ClienVServer Using RSC M.lem,T. Kocher TSR 8,3 Fall 1992 89803

Network Design Considerations J. Evjen TSR 5,2 Sept. 1989 28152

Terminal Connection Alternatives for Tandem Systems J. Simonds TSR 5,1 April 1989 18662

Terminal Selection E. Siegel TSR 8,2 Summer 1992 69848

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

SYSTEM MANAGEMENT

Configuring Tandem Disk Subsystems S. Sitler TSR 2,3 Dec. 1986 83938

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Implementing a Systems Management Improvement Program J. Dagenais TSR 9,4 Fall 1993 89807

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct.1991 65248

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Nonstop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct. 1991 65248

UTILITIES

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

48 TANDEM SYSTEMS REVIEW JANUARY 1994

Index by Product
Volume, Publication Part

Article title Author(s) Publication Issue date number

3207 TAPE CONTROLLER

Introducing the 3207 Tape Controller S. Chandran TSR 1,2 June 1985 83935

5120 TAPE SUBSYSTEM

5120 Tape Subsystem Recording Technology W. Phillips TSR 3,2 Aug. 1987 83940

5200 OPTICAL STORAGE

Application Profile: Storing Macintosh Graphics on the D. Broyles TSR 9,3 Summer 1993 89806
Tandem 5200 Optical Storage Facility

Tandem's 5200 Optical Storage Facility: Performance and S. Coleman TSR 5,1 April 1989 18662
Optimization Considerations

The 5200 Optical Storage Facility: A Hardware Perspective A. Patel TSR 5,1 April 1989 18662

The Role of Optical Storage in Information Processing L. Sabaroff TSR 4,1 Feb. 1988 11078

6100 COMMUNICATIONS SUBSYSTEM

The 6100 Communications Subsystem: A New Architecture R. Smith TJ 2,1 Winter 1984 83931

6530 TERMINAL

The Model 6VI Voice Input Option: Its Design and Implementation B. Huggett TJ 2,3 Summer 1984 83933

6600 AND TCC6820 COMMUNICATIONS CONTROLLERS

The 6600 and TCC6820 Communications Controllers: P. Beadles TSR 2,3 Dec. 1986 83938
A Performance Comparison

BASIC

An Introduction to Tandem EXTENDED BASIC J. Meyerson TJ 2,2 Spring 1984 83932

C

State-of-the-art C Compiler E. Kit TSR 2,2 June 1986 83937

CIS

Customer Information Service J. Massucco TSR 3,1 March 1987 83939

CLX

Nonstop CLX: Optimized for Distributed On-Line D. Lenoski TSR 5,1 April 1989 18662
Transaction Processing

COBOL85

Tandem's New COBOL85 D. Nelson TSR 2,1 Feb. 1986 83936

COMINT{CI)

Writing a Command Interpreter D. Wong TSR 1,2 June 1985 83935

CYCLONE

Fault Tolerance in the NonStop Cyclone System S. Chan, R. Jardine TSR 7,1 April 1991 46988

DAL SERVER

The DAL Server: ClienVServer Access to Tandem Databases W. Schlansky, TSR 9,1 Winter 1993 89804
J. Schrengohst

JANUARY 1994 TANDEM SYSTEMS REVIEW 49

Volume, Publication Part
Article title Author(s) Publication Issue date number

DP1 AND DP2

A Comparison of the BOO DP1 and DP2 Disc Processes T. Schachter TSR 1,2 June 1985 83935

Determining FCP Conversion Time J. Tate TSR 2,1 Feb. 1986 83936

DP1 -DP2 File Conversion: An Overview J. Tate TSR 2,1 Feb. 1986 83936

DP2 Highlights K. Carlyle, L. McGowan TSR 1,2 June 1985 83935

DP2 Key-sequenced Files T. Schachter TSR 1,2 June 1985 83935

DP2 Performance J. Enright TSR 1,2 June 1985 83935

DP2's Efficient Use of Cache T. Schachter TSR 1,2 June 1985 83935

Sizing Cache for Applications that Use B-series DP1 and TMF P.Shah TSR 2,2 June 1986 83937

DSM

Data Replication in Tandem's Distributed Name Service T. Eastep TSR 4,3 Oct. 1988 15748

Event Management Service Design and Implementation H. Jordan, R. McKee, TSR 4,3 Oct. 1988 15748
R. Schue!

Instrumenting Applications for Effective Event Management J. Dagenais TSR 7,2 Oct. 1991 65248

Measuring DSM Event Management Performance M. Stockton TSR 8,1 Spring 1992 65250

Network Statistics System M. Miller TSR 4,3 Oct. 1988 15748

Overview of DSM P. Homan, B. Malizia, TSR 4,3 Oct. 1988 15748
E. Reisner

SCP and SCF: A General Purpose Implementation of the T. Lawson TSR 4,3 Oct. 1988 15748
Subsystem Programmatic Interface

Tandem's Subsystem Programmatic Interface G.Tom TSR 4,3 Oct. 1988 15748

Using the Subsystem Programmatic Interface and Event K. Stobie TSR 4,3 Oct. 1988 15748
Management Services

VIEWPOINT Operations Console Facility R. Hansen, G. Stewart TSR 4,3 Oct. 1988 15748

Writing Rules for Automated Operations J. Collins TSR 7,2 Oct.1991 65248

DYNAMITE

An Introduction to DYNAMITE Workstation Host Integration S. Kosinski TSR 1,2 June 1985 83935

The DYNAMITE Workstation: An Overview G. Smith TSR 1,2 June 1985 83935

ENABLE

The ENABLE Program Generator for Multifile Applications B. Chapman, J. Zimmerman TSR 1,1 Feb. 1985 83934

ENCOMPASS

The Relational Data Base Management Solution G.Ow TJ 2,1 Winter 1984 83931

ENCORE

The ENCORE Stress Test Generator for On-line Transaction S. Kosinski TJ 2,1 Winter 1984 83931
Processing Applications

ENSCRIBE

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

EXPAND

Expand High-Performance Solutions D. Smith TSR 9,3 Summer 1993 89806

FASTSORT

FASTSORT: An External Sort Using Parallel Processing J. Gray, M. Stewart, TSR 2,3 Dec. 1986 83938
A. Tsukerman, S. Uren,
B. Vaughan

50 TANDEM SYSTEMS REVIEW JANUARY 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

FOX

Changes in FOX N. Donde TSR 1,2 June 1985 83935

Using FOX to Move a Fault-tolerant Application C. Breighner TSR 1,1 Feb. 1985 83934

FUP

Online Reorganization of Key-Sequenced Tables and Files G. Smith TSR 6,2 Oct. 1990 46987

GDS

Basic Uses and New Features of Extended GOS A. Hotea TSR 10,1 Jan. 1994 104396

GUARDIAN90

Application Code Conversion for D-Series Systems K.Liu TSR 9,2 Spring 1993 89805

BOO Software Manuals S. Olds TSR 1,2 June 1985 83935

COO Software Manuals E. Levi TSR 4.1 Feb. 1988 11078

Highlights of the BOO Software Release K. Coughlin, R. Montevaldo TSR 1,2 June 1985 83935

Improved Pertormance for BACKUP2 and RESTORE2 A. Khatri, M. McCline TSR 1,2 June 1985 83935

Increased Code Space A. Jordan TSR 1,2 June 1985 83935

Managing System Time Under GUARDIAN 90 E. Nellen TSR 2,1 Feb. 1986 83936

Message System Pertormance Enhancements D. Kinkade TSR 2,3 Dec. 1986 83938

Message System Performance Tests S. Uren TSR 2,3 Dec. 1986 83938

Migration Planning for D-Series Systems S. Kuukka TSR 9,2 Spring 1993 89805

New GUARDIAN 90 Time-keeping Facilities E. Nellen TSR 1,2 June 1985 83935

New Process-timing Features S. Sharma TSR 1,2 June 1985 83935

Nonstop II Memory Organization and Extended Addressing D. Thomas TJ 1,1 Fall 1983 83930

Overview of the COO Release L. Marks TSR 4,1 Feb. 1988 11078

Overview of the D-Series Guardian 90 Operating System W. Bartlett TSR 9,2 Spring 1993 89805

Robustness to Crash in a Distributed Data Base: A. Borr TSR 1,2 June 1985 83935
A Nonshared-memory Multiprocessor Approach

Tandem's Approach to Fault Tolerance B. Ball, W. Bartlett, TSR 4,1 Feb. 1988 11078
S. Thompson

The GUARDIAN Message System and How to Design for It M. Chandra TSR 1, 1 Feb. 1985 83934

The Tandem Global Update Protocol R.Carr TSR 1,2 June 1985 83935

HIMALAYA

A Hardware Overview of the Nonstop Himalaya K10000 Server C. Kong TSR 10,1 Jan. 1994 104396

INTEGRITY S2

Overview of the NonStop-UX Operating System for the Integrity S2 P. Norwood TSR 7,1 April 1991 46988

MEASURE

How to Set Up a Pertormance Data Base with MEASURE M. King TSR 2,3 Dec. 1986 83938
and ENFORM

MEASURE: Tandem's New Pertormance Measurement Tool D. Dennison TSR 2,3 Dec. 1986 83938

MULTILAN

Introduction to MUL TILAN A. Coyle TSR 4,1 Feb. 1988 11078

Overview of the MUL TILAN Server A. Rowe TSR 4,1 Feb. 1988 11078

Using the MUL TILAN Application lntertaces M. Berg, A. Rowe TSR 4,1 Feb. 1988 11078

JANUARY 1994 TANDEM SYSTEMS REVIEW 51

Volume, Publication Part
Article title Author(s) Publication Issue date number

NETBATCH-PLUS

NetBatch: Managing Batch Processing on Tandem Systems D. Wakashige TSR 5,1 April 1989 18662

NetBatch-Plus: Structuring the Batch Environment G. Earle, D. Wakashige TSR 6,1 March 1990 32986

NONSTOP NET/MASTER

NonStop NET/MASTER: Configuration and Performance Guidelines M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Management Architecture M. Stockton TSR 9,4 Fall 1993 89807

Nonstop NET/MASTER: Event Processing Costs and M. Stockton TSR 9,4 Fall 1993 89807
Sizing Calculations

NONSTOPSQL

An Overview of NonStop SOL Release 2 M. Pong TSR 6,2 Oct. 1990 46987

Concurrency Control Aspects of Transaction Design W. Senf TSR 6,1 March 1990 32986

Converting Database Files from ENSCRIBE to Nonstop SOL W. Weikel TSR 6,1 March 1990 32986

Gateways to Nonstop SOL D. Slutz TSR 6,2 Oct. 1990 46987

High-Performance SOL Through Low-Level System Integration A. Borr TSR 4,2 July 1988 13693

Nonstop SOL Data Dictionary R. Holbrook, D. Tsou TSR 4,2 July 1988 13693

Nonstop SOL: The Single Database Solution J. Cassidy, T. Kocher TSR 5,2 Sept. 1989 28152

Nonstop SOL Optimizer: Basic Concepts M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Optimizer: Query Optimization and User Influence M. Pong TSR 4,2 July 1988 13693

Nonstop SOL Reliability c. Fenner TSR 4,2 July 1988 13693

Overview of Nonstop SOL H. Cohen TSR 4,2 July 1988 13693

Parallelism in Nonstop SOL Release 2 M. Moore, A. Sodhi TSR 6,2 Oct. 1990 46987

Performance Benefits of Parallel Query Execution and Mixed S. Englert, J. Gray TSR 6,2 Oct. 1990 46987
Workload Support in Nonstop SOL Release 2

Tandem's Nonstop SOL Benchmark Tandem Performance Group TSR 4,1 Feb. 1988 11078

The Nonstop SOL Release 2 Benchmark S. Englert, J. Gray, TSR 6,2 Oct. 1990 46987
T. Kocher, P. Shah

The Outer Join in Nonstop SOL J. Vaishnav TSR 6,2 Oct. 1990 46987

OSI

Building Open Systems Interconnection with OSI/AS and OSI/TS R. Smith TSR 6,1 March 1990 32986

The OSI Model: Overview, Status, and Current Issues A. Dunn TSR 5,1 April 1989 18662

PATHFINDER

PATHFINDER-An Aid for Application Development S.Benett TJ 1,1 Fall 1983 83930

PATHWAY

A New Design for the PATHWAY TCP R. Wong TJ 2,2 Spring 1984 83932

PATHWAY IDS: A Message-level Interface to Devices and Processes M.Anderton,M. Noonan TSR 2,2 June 1986 83937

Pathway TCP Enhancements for Application Run-Time Support R. Vannucci TSR 7,1 April 1991 46988

The PATHWAY TCP: Performance and Tuning J. Vatz TSR 1,1 Feb. 1985 83934

Understanding PATHWAY Statistics R. Wong TJ 2,2 Spring 1984 83932

POET

Designing ClienVServer Applications for OL TP on W. Culman TSR 8,3 Fall 1992 89803
Guardian 90 Systems

PS MAIL

Enhancements to PS MAIL R. Funk TSR 3,1 March 1987 83939

52 TANDEM SYSTEMS REVIEW JANUARY 1994

Volume, Publication Part
Article title Author(s) Publication Issue date number

RDF

RDF: An Overview J. Guerrero TSR 7,2 Oct. 1991 65248

RDF Synchronization F. Jongma, W. Senf TSR 8,2 Summer 1992 69848

RESPOND

The RESPOND OL TP Business Management System H. Bolling, W. Bronson TSR 9,1 Winter 1993 89804
for Manufacturing

RSC

Implementing ClienVServer Using RSC M. lem, T. Kocher TSR 8,3 Fall 1992 89803

SAFEGUARD

Dial-In Security Considerations P. Grainger TSR 7,2 Oct.1991 65248

Distributed Protection with SAFEGUARD T.Chou TSR 2,2 June 1986 83937

Enhancing System Security With Safeguard C. Gaydos TSR 7,1 April 1991 46988

SNAX

An Overview of SNAX/CDF M. Turner TSR 5,2 Sept. 1989 28152

A SNAX Passthrough Tutorial D. Kirk TJ 2,2 Spring 1984 83932

SNAX/APC: Tandem's New SNA Software for Distributed Processing B. Grantham TSR 3,1 March 1987 83939

SNAX/HLS: An Overview s Saltwick TSR 1,2 June 1985 83935

SPOOLER

Sizing the Spooler Collector Data File H. Norman TSR 4,1 Feb. 1988 11078

TACL

Debugging TACL Code L. Palmer TSR 4,2 July 1988 13693

TACL, Tandem's New Extensible Command Language J. Campbell, R. Glascock TSR 2,1 Feb. 1986 83936

TAL

New TAL Features C. Lu, J. Murayama TSR 2,2 June 1986 83837

TCM

Capacity Planning With TCM W. Highleyman TSR 7,2 Oct. 1991 65248

TLAM

TLAM: A Connectivity Option for Expand K. MacKenzie TSR 7,1 April 1991 46988

TMDS

COO TMDS Performance J. Mead TSR 4,1 Feb. 1988 11078

Enhancements to TMDS L. White TSR 3,2 Aug. 1987 83940

Introducing TMDS, Tandem's New On-line Diagnostic System J. Troisi TSR 1,2 June 1985 83935

TMF

Improvements in TMF T. Lemberger TSR 1,2 June 1985 83935

TMF and the Multi-Threaded Requester T. Lemberger TJ 1,1 Fall 1983 83930

TMF Autorollback: A New Recovery Feature M. Pong TSR 1,1 Feb. 1985 83934

TNS/R

Debugging Accelerated Programs on TNS/R Systems D. Gressler TSR 8,1 Spring 1992 65250

Improving Performance on TNS/R Systems With the Accelerator M. Blanchet TSR 8,1 Spring 1992 65250

Overview of Tandem Nonstop Series/RISC Systems L. Faby, R. Mateosian TSR 8,1 Spring 1992 65250

JANUARY 1994 TANDEM SYSTEMS REVIEW 53

Volume, Publication Part
Article title Author(s) Publication Issue date number

TRANSFER

The TRANSFER Delivery System for Distributed Applications S. Van Pelt TJ 2,2 Spring 1984 83932

TXP

The High-Performance Nonstop TXP Processor W. Bartlett, T. Houy, TJ 2,1 Winter 1984 83931
D. Meyer

The Nonstop TXP Processor: A Powerful Design for On-line P. Oleinick TJ 2,3 Summer 1984 83933
Transaction Processing

VB

The VB Disc Storage Facility: Setting a New Standard for M. Whiteman TSR 1,2 June 1985 83935
On-line Disc Storage

VIEWSYS

VIEWSYS: An On-line System-resource Monitor D. Montgomery TSR 1,2 June 1985 83935

VLX

Nonstop VLX Hardware Design M. Brown TSR 2,3 Dec. 1986 83938

Nonstop VLX Performance J. Enright TSR 2,3 Dec. 1986 83938

The VLX: A Design for Serviceability J. Allen, R. Boyle TSR 3,1 March 1987 83939

XLB

Data-encoding Technology Used in the XLB Storage Facility D.S.Ng TSR 2,2 June 1986 83937

Plated Media Technology Used in the XLB Storage Facility D.S.Ng TSR 2,2 June 1986 83937

54 TANDEM SYSTEMS REVIEW JANUARY 1994

TandemSystemsReviewOrderFarm
Use this form to order new subscriptions, change subscription information, and order back issues.

U I am a Tandem customer. My Tandem sales representative is _____________ _

D I am not a Tandem customer and am enclosing a check or money order for the requests indicated
on this form. (Subscriptions are $75 per year and each back issue is $20. Make checks payable to
Tandem Computers Incorporated.)

Subscription Information

□ New subscription

□ Update to subscription information
Subscription number: ________ _
Your subscription number is in the upper right corner qfthe
mailing label.

COMPANY

NAME

JOB TITLE

DIVISION

ADDRESS

COUNTRY

TELEPHONE NUMBER (include all codes for U.S. dialing)

Title or position:

C President/CEO

n Director/VP information services

□ MIS/DP manager

[J Software development manager

□ Programmer/analyst

□ System operator

□ End user

LJ Other:-----------~

Your association with Tandem:

U Tandem customer

□ Third-party vendor

CJ Consultant
LJ Other: _____________ _

Back Issue Requests
Number •

"r'°"'" Tandem Systems Review
__ Vol.I, No. I, Feb. 1985 __ Vol. 7, No. I, April 1991

__ Vol. I, No. 2, June 1985 __ Vol. 7, No. 2, Oct. 1991

--· Vol. 2, No. I, Feb. 1986 __ Vol. 8, No. I, Spring 1992

__ Vol. 2, No. 2, June 1986 __ Vol. 8, No. 2, Summer 1992

__ Vol. 2, No. 3, Dec. 1986 __ Vol. 8, No. 3, Fall 1992

__ Vol. 3, No. I, March 1987 __ Vol. 9, No.!, Winter 1993

__ Vol. 3, No. 2, Aug. 1987 __ Vol. 9, No. 2, Spring 1993

__ Vol. 4, No. I, Feb. 1988

__ Vol. 4, No. 2, July 1988

__ Vol. 4, No. 3, Oct. 1988

__ Vol. 5, No. I, April 1989

__ Vol. 5, No. 2, Sept. 1989

__ Vol. 6, No. l, March 1990

__ Vol. 6, No. 2, Oct. 1990

__ Vol. 9, No. 3, Summer 1993

__ Vol. 9, No. 4, Fall 1993

__ Vol. 10, No. I, Jan. 1994

Tandem Journal
__ Vol. l,No. l,Fall l983 __ Vol. 2, No. 2, Spring 1984

__ Vol. 2, No. !, Winter 1984 __ Vol. 2, No. 3, Summer 1984

For questions or ordering information, call
800-473-5868 in the U.S. and Canada or
+ 1-408-285-0665 in other countries.

Send this form to:
Tandem Computers Incorporated
Tandem Systems Review, Loe 208-65
10400 Ridgeview Court
Cupertino, CA 95014-0723
FAX: + 1-408-285-0840

Tandem employees must order their subscrip­
tions and back issues through Courier.

Menu sequence: Marketing Information _.
Literature Orders --> Technical Marketing
Pubs (TSR)

1/94

• FOLD

,. FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 208-65

CUPERTINO, CA U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l111l1l1ll111111ll1l11ll1l11l11l11ll1111l1l1ll11I

• FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

,. FOLD

TandemSystemsReviewReaderSurvey
The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for
publication. Postage is prepaid when mailed in the United States. Readers outside the U.S. should
send their replies to their nearest Tandem sales office.

1. How useful is each article in this issue?
Product Update
01 D Indispensable 02 D Very 03 D Somewhat 04 D Not at all

A Hardware Overview of the NonStop Himalaya KJOOOO Server
05 D Indispensable 06 D Very 07 D Somewhat 08 D Not at all

Extending the Client/Server Model With Object-Oriented Technology
09 D Indispensable 10 D Very 11 D Somewhat 12 D Not at all

Basic Uses and New Features of Extended GDS
13 D Indispensable 14 D Very 15 D Somewhat 16 D Not at all

Technical Information and Education
17 D Indispensable 18 D Very 19 D Somewhat 20 D Not at all

2. I specifically would like to see more articles on (select one):

21 D Overview discussions of new products and enhancements 22 D Performance and tuning information

23 D High-level overviews on Tandem's approach to solutions 24 D Application design and customer profiles

25 D Technical discussions of product internals 26 D Strategic information and statements of direction

27 D Other _____________________________________ _

3. Your title or position:

28 D President, VP, Director

31 D MIS manager

29 D Systems analyst

32 D Software developer

30 D System operator

33 D End user

34 D Other _____________________________________ _

4. Your association with Tandem:
35 D Tandem customer 36 D Tandem employee 37 D Third-party vendor 38 D Consultant

39 D Other _____________________________________ _

5. Comments

NAME

COMPANY NAME

ADDRESS

1/94

• FOLD

T FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 208-65

CUPERTINO, CA U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

11 ii II ii ii ii I 1111 II 11 ii II 11 ii II I I ii I ii I I II ii ii ii I I ii

• FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

T FOLD

~TANDEM
Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

Part No. 104396

MARC BRANDIFINO
LOC NtJH 56-00
NEU YORK NY DOWNTOWN DISTRICT

1/94 Printed in USA

