
MICROPOLIS USERS GROUP

MUG Newsletter #29 - December 1982

USING OVERLAY FILES

==----------=--=----
by Burks A. Smith of DATASMITH

Box 8036, Shawnee Mission KS 66208

There appears to be a misconception among MUG read­
ers that MDOS will not allow loading a file that
would overwrite the system. On the contrary, many
files overwrite the system, most notably BASIC and
DISKCOPY. The system does not protect itself, but
has built-in facilities that prevent a user from
accidentally overwriting the system. If you want
to overwrite the system on purpose there are also
facilities for that.

Two types of files are capable of overwriting the
system without creating an error. They are system
files themselves (Type 14 Hex) and "Executable
Overlay Files" (Type QC Hex) . Overlay files are a
special type of user file that can be loaded and
executed anywhere in memory you please, even if
they overlay the operating system. The only "qatch"
is that you can't just load an overlay file, you
must execute it too. This is due to the fact that
if a program overlays the system, it must be pre­
pared to take over control of the computer itself.
In practice, however, it is a simple matter to
overlay the system with a "patch" without actually
executing the file.

To create an overlay file, assemble your overlay
code with an ORG assembler directive putting it
exactly where it needs to go. We are assuming here
that your overlay does not actually damage the
system, but simply modifies it in a constructive
way. The last statement in your assembly language
source program should be an END pseudo-op, as
usual, but remember that END may also have an oper­
and that specifies an address to begin execution of
the program. Usually it is the address of the
beginning of the program, but in the case of an
overlay patch this is not appropriate. The execu­
tion address specified with END should be the
warmstart address of the system, which if 04E7 Hex.
Therefore, the last statement in your source code
should be END 04E7H. This will cause control to
be transferred to warmstart when the program is
loaded, simply re-displaying the sign on message
and putting you back where you were.

The assembler only creates type 08 files, which can
not overlay the system. After assembly you must
change the file type to an overlay file using the
MDOS command: TYPE "FILENAME" OC. After this is
done the overlay file may be loaded simply by
typing its filename from the MOOS > prompt or by
typing LINK "FILENAME" from BASIC. Since warmstart
is the execution address of the overlay program,
control is i1'ID'llediately returned to MOOS or BASIC,
as the case may be. This technique is particularly
useful for configuring MOOS or BASIC for different
printers.

SORTING BASIC ARRAYS (PART 1)

-------------------==------==
by Burks A. Smith of DATASMITH

Box 8036, Shawnee Mission KS 66208

This will be the first of a few articles on stand­
ard sorting techniques that can be used to sort
string arrays in a BASIC program. With this in­
stallment, the environment and logic of the sorting
algorithm will be presented along with a program
written in BASIC that illustrates the logic used.
In future articles a program written in 8080 assem­
bly language will be developed that can be called

as a function from any BASIC program. Using the
identical logic as the BASIC program presented
here, the assembly language function can sort an
array that fills most of a 64K machine's memory in
only ~ few seconds.

The sort program is designed to sort a one-dimen­
sional string array in ascending order on any
number of keys. For simplicity of programming,
especially in assembly language, data in the array
is assumed to be in IBM punched card format. That
is, each element in the array is of fixed length
and represents a "record" of data composed of
several "fields". Since each field is at a fixed
position within the record, there are no delimiters
used. Fields are extracted by knowing their start­
ing position and length, using the MID$ function
in BASIC.

The creation of a record in fixed field length for­
mat, while not the normal Micropolis way of doing
things, it is really rather easy to do using BASIC.
For numeric data, write the data to disk or the
array using the FMT function. This always gener­
ates a fixed-length string with a fixed decimal
point and the number right justified, which is per­
fect for sorting. For strings, use the TAB func­
tion to make sure each string starts at a known
field. A PUT statement to a disk drive has exactly
the same result as a PUT statement to a printer, so
the technique for producing a tabular report is the
same. If you want to use the sort on data recorded
in a different format, it is a relatively simple
matter do a conversion in the sort program or as a
separate utility program.

There are dozens of ways to sort data and some are
so complicated that only the author can understand
them. I prefer a technique known as "Shell's.
Method", named for the author. It isn't very dif­
ficult to understand and it does a good job of
sorting, taking advantage of lists that are "al­
most" sorted and speeding up the sorting of lists
in ramdom order .

Two pointers are used to indicate which elements of
the array are to be selected for comparison. As
the program gets underway, the Bottom pointer
points to the beginning of the list and the Top
pointer points to the middle of the list. These
two elements are compared, and if the element
pointed to by the Bottom pointer is "greater than"
the element pointed to by the Top pointer, the two
elements are swapped.

Each pointer is then incremented by one to maintain
a constant increment between pointers and the
process is repeated until the Top pointer reaches
the end of the list. A swap counter counts the
number of swaps made. If there have been no swaps
made by the time the Top pointer reaches the top of
the list, the top Pointer becomes half of its
former starting value and the process is repeated.
Otherwise the Top pointer is reset and another pass
is made. In the BASIC program illustrated, the Top
pointer is not a separate variable, but the sum of
the Bottom pointer and the increment value.

The sort program keeps comparing and swapping ele­
ments until the increment between the two pointers
is one and the entire list can be scanned without
the need to move any of the elements. Therefore,
the list is sorted.

In many cases, sorting on one key such as a last
name is not sufficient. Since many people have the
same last names, a second key, first names, is used
in the case where the primary keys compare equal.
The sort program .uses the starting position and
length of all the specified keys in an array, with
the first key being the most important. If an
equal comparison should be made on one key, the
program tries the next key, repeating the process
until an unequal comparison is made or all the keys
are used up. The program illustrated uses an array
to store the starting position and length of any
number of keys.

The program illustrated is designed to act
subroutine in a larger program. All sort

as a
par am-

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

?AGE 2

eters are variables, so the program will s?rt any
size array on any number of keys. This is, of
~ourse, limited by the amount of memory your compu­
ter has at its disposal. It is the responsibility
~f the main program to dimension and fill all
arrays, and to set the values of I% (number of
keys) and N% (number of records to sort. The pro­
gram illustrates a simple routine that reads,
sorts, and rewrites a file. We assume that the
file is small enough to fit in memory and contains
only three fields per record: last name (L$), first
name (F$), and account number (N).

To be continued.

10
20
30
40

50

60
70
80

**** SORT **** Written by Burks A. Smith

BASIC PROGRAM TO SORT ARRAY A$
DATA IS EXPECTED TO BE IN FIXED FIELD LENGTH
FORMAT.
ARRAY K% HOLDS START POSITION AND LENGTH OF
ALL KEYS.

A$() - ARRAY HOLDING STRINGS TO SORT
K%(X,0) - KEY X START
K%(X,l) - KEY X LENGTH

1 I% - NUMBER OF KEYS
90
100
110
120
130
140
150
160
170 I
180 I

J% - BOTTOM POINTER (TOP POINTER IS J%+K%)
K% - INCREMENT BETWEEN POINTERS
N% - NUMBER OF ELEMENTS IN ARRAY
0% - NUMBER OF SWAPS
X% - TEMP KEY START
Y% - TEMP KEY LENGTH
X$ - TEMP STRING FOR SWAPPING

200 l SAMPLE PROGRAM TO SORT A DATA FILE
210 OPEN l "DATAFILE" END 300
220 DIM A$(SIZE(l),250), K%(2,l)
230 N%•0
240 GET l L$,F$,N
250 A$ (N%)•LEFT$ (L$+REPEAT$ (" ", 20), 20): 1 FIX

LENGTH
260 A$(N%)=A$(N%)+LEFT$(F$+REPEAT$(" ",20),20)
270 A$(N%)•A$(N%)+FMT(N,"ZZZZZ")
280 N%•N%+1
290 GOTO 240
300 N%•N%-l: I%•2
310 K%(1,0)•l: K%(1,1)•20: I KEY l
320 K%(2,0)=21: K%(2,1)•20:1 KEY 2
330 GOSUB 1000: 1 SORT
340 ! < PGM USES SORTED DATA
350 CLOSE l
360 STOP
370 l
1000
1010
1020
1030
1040
1050
1060

1070
1080

1090

1100
1110
1120

1130
1140
1150
1160
1170
1180
1190
1200

I < SORT ARRAY A$ SUBROUTINE
I
K%•N%: I SET INCREMENT AT SIZE OF LIST
K%•K%/2: 1 HALVE INCREMENT

PRINT
PRINT ">":K%:"INCR":TAB(l5):"SWAPS:":
J%•0: 0%•0: 1 ZERO BOTTOM POINTER &
SWAPCOUNT

FOR L%•1 TO !%: I DO FOR ALL KEYS
X%•K%(L%,O): Y%•K%(L%,l): I CURRENT KEY
START AND LENGTH
IF MID$(A$(J%),X%,Y%) > MID$(A$(J%+K%),X
% , Y%) THEN 1110

NEXT L%: GOTO 1140 : l ALL KEYS EQUAL
I <SWAP ARRAY ELEMENTS
X$•A$(J%+K%): A$(J%+K%)•A$(J%):
A$(J%)=X$
0%•0%+1: I !NCR SWAPCOUNT

J%=J%+1
IF J%+K%<=N% THEN 1070: l LOOP TILL END
PRINT 0%:
IF 0%>0 THEN 1060: l RESCAN UNTIL NO SWAPS

IF K%>1 THEN 1030: 1 REPEAT UNTIL INCR IS l
PRINT
RETURN

MUG NEWSLETTER #29 DECEMBER 1982

SUBMIT

by Carl J. Singer
6049 N. Morgan St., Alexandria, VA 22312

Phone (703) 354-2904

SUBMIT is a utility program for Micropolis PDS vs.
4.0. It permits commands and executable files to
be batched together and processed automatically,
much like an expanded CP/M SUBMIT.COM. It is
called as follows:

[unit:]SUBMIT "[unit:]filename"

where filename is the name of a file created in the
MOOS editor and saved to a disk currently mounted
in the selected drive. Each line of filename (ex­
cept lines starting with '*'or':', which are dis­
regarded) should be a single MOOS command or an
executable program line. Example:

100 SCRATCH "HENRY"
110 ASSM "$SAM" "HENRY" "EC"
120 TYPE "HENRY" 18
130 SCRATCH "1:$SAM" 140 SCRATCH "l:HENRY"
150 FILECOPY "$SAM" 1
160 APP "HENRY" l

When preparing the file in the editor, be sure to
disable assembly language tabs with a TAB l l 1
command.

Any executable program used by SUBMIT must be one
which returns to MOOS after its completion. This
includes Micropolis utilities with types 14 to lB,
and any other program of such type designed to
return to MOOS, except SUBMIT itself. 'SUBMIT can­
not call itself, nor can it call an overlay file
(e.g., BASIC, DISKCOPY) because overlay files des­
troy MOOS, and there would be nothing to return to.

SUBMIT will not execute a program which loads into
any part of the area occupied by SUBMIT itself or
the file of commands which it calls. (This file is
loaded into memory immediately after SUBMIT). How­
ever, it cannot protect itself against overlaid
data from programs which may use all of contiguous
memory. Therefore, if at all possible, SUBMIT
should be located above contiguous memory, say in
the space above a ROM or any other break in RAM.
The object code furnished places SUBMIT at F800
hex, and reserves F800-FFFF for SUBMIT and the
called command file. If you wish to use another
area, just change ORIGIN and HIBLOCK in the table
of equates near the start of $SUBMIT, and reas­
semble.

Generally, the command file will be relatively
short, so that HIBLOCK probably does not have to be
more than 400H above ORIGIN. If the file turns out
to be too large for the space reserved, a FILE TOO
BIG message will be returned. SUBMIT uses RST 3
and RST 4 as traps, keeping it from conflicting
with DEBUG, which uses RST 6.

Errors encountered during the loading of SUBMIT
itself or the called command file will cause an
error return to MOOS. Later errors (encountered
during execution of the commands) will abort the
particular command being executed, returning an
error message, and SUBMIT will go on to the next
command. After completing its task, SUBMIT will
ring the console bell and return to MOOS.

If you wish to use the same SUBMIT "file" command
on a series of disks, that command need be issued
only once. Subsequently, the command EXEC ORIGIN
(where ORIGIN is the load address of SUBMIT, as
previously described) may be used. This procedure
obviates the need for the system to load SUBMIT and
"file" more than once.

A little ingenuity will develop shortcuts for many
applications. Suppose you have a new RES on drive
O, and you want to transfer it to all your other
system disks. First, create and save the following
Editor file, which we shall call TRANSRES.

MUG NEWSLETTER #29 DECEMBER 1982

100 TYPE "l:RES" 0
110 SCRATCH "l: RES II

120 APP "RES II l
130 INIT 4
140 EXEC F800 (or wherever SUBMIT has been loaded)

After returning to MOOS, issue the command

LOAD "FILECOPY"

Now insert the first destination disk on drive l
and enter SUBMIT "TRANSRES". The first copy will
be made and the program will pause after the !NIT
command with the prompt ARE YOU SURE? Replace the
disk on drive l with the next one, hit RETURN, and
continue doing this until you're finished. Now
you'll have to reset and reboot to get back to the
system -- a small price to pay for having done the
job the easy wayl

You say you have only one disk drive? Don't des­
pair~ do it this way:

Bring up the system with a disk that has SUBMIX and
the new RES on it. Call the Editor and create a
different TRANSRES as follows:

100 !NIT 4
110 TYPE "RES II 0
120 SCRATCH "RES"
130 SAVE "RES" 2Bl 1598 3
140 EXEC F800 (or wherever SUBMIT has been loaded)

After you have SAVEd this version of TRANSRES and
returned to MOOS via the DOS command, enter

SUBMIT "TRANSRES"

When the ARE YOU SURE? prompt comes up, r~move the
original disk and start feeding the disks on which
you want the new RES. Hit RETURN immediately after
loading each new disk.

Don't try this second method with MOOS because the
copy of MOOS currently in memory will still have
the trap branches in it.

FORM 51
* PROGRAM $SUBMIT
*

*
ORIGIN
HI BLOCK
SYSADDRl
SYSADDR2
@RFILESECTOR
*

*
COLDS TART

LINK 'SYSOl'
LINK 'SYS02'

EQU
EQU
EQU
EOU
EOU

ORG

MVI
STA
LXI
SHLD
LOA
OCR
JNZ
MVI
CALL
MVI
LOA
MOV
LXI
CALL
JC
CALL
JC
MOV
ANI
CPI
MVI
JNZ
LXI
LXI
MVI
CALL
JNC
CPI

OFBOOH
0
2025H
20BBH
lABEH

ORIGIN

A,OC3H
COLDS TART
H,WARMSTART
COLDSTART+l
@NASCPAR
A
@OISKERROR-2
C,O
@TRANSFILENAME
B,O
@ORI VENO
C,A
H,@FILEBUFFERO
@OPENFILE
@DISKERROR
@RF ILE INF
@DISKERROR
A,B
OFCH
4
A, 17
@OISKERROR
H,SUBFILE
O,HIBLOCK-SUBFILE
B,O
@LOADDATA
TOOBIG
2

WARMSTART
READFILE

RETURNADDR

READFILl

*
RESTORE

RESTl

*
TOOBIG

*
TRAPSTACK

*
CHECKFILE

CKAODR

*
OKTOLOAO

*
LOA DERR
OS KERR

*
ERRMSG

*
MSGl

JNZ
CALL
JC
MVI
STA
STA
MVI
STA
LXI
OCR
JZ
INX
PUSH
MVI
CALL
CALL
SHLD
POP
CPI
JZ
CPI
JZ
CALL
CALL
LHLD
INX
CALL
cc
LHLO
MVI
CALL
INX
JMP

MVI
STA
STA
MVI
STA
MVI
CALL
JMP

@DISKERROR
@CLOSEFILE
@DISKERROR
A, ODFH
@MOOS EXECUTIVE
@MOOS RETURN
A,OE7H
SYSAODR2
H,SUBFILE
M
RESTORE
H
H
C,20H
@SCAN
@SKIPS PACE
FLPTR
H
I*'
REAOFILl
I: I

READFILl
@CCRLF
@NLINEOUT
FLPTR
H
SYSADDRl
ERRMSG
FLPTR
C,ODH
@SCAN
H
READFILE

A, 31H
@MOOS EXECUTIVE
@MOOS RETURN
A,OAFH
SYSADDR2
B,7
@COUT
@MOOS EXECUTIVE

CALL @CLOSEFILE
JC @DISKERROR
LXI H,MSGl
CALL @NLINEOUT
JMP RESTl

LXI SP,@STACK
XRA A
LXI H,RETURNADDR
PUSH H
PCHL

LXI
CALL
JC
LXI
PUSH
CALL
JC
XCHG
LHLD
MOV
ORA
JZ
DAD
LXI
CALL
JC
POP
INX
JMP

H,@FILEBUFFERO
@OPENFILE
OS KERR
D,l
D
@RF ILES ECTOR
OS KERR

@FILEBUFFER0+30
A,H
L
OKTOLOAD
D
O,ORIGIN
@COMPARE
LOA DERR
D
D
CKADDR

POP D
CALL @CLOSEFILE
JC OS KERR
XRA A
JMP SYSADDR2+1

MVI A, 19
CALL ERRMSG
JMP TRAPSTACK

CALL @ERRORMES
CALL @CLOSEFILES
RET

DTH 'FILE TOO BIG'

PAGE 3

PAGE 4

FLPTR OW SUBFILE
SUBFILE EQU $
*

ORG 24
*

JMP TRAPSTACK
*

ORG 32
*

JMP CHECKFILE
*

END

SUBMIT is available on MUG Library Disk 9.

ZAP

by Carl J. Singer
6049 N. Morgan Street Alexandria, Va 22312

Phone (703) 354-2904

~his program retrieves any series of consecutive
tracks (e.g., a file) from the disk without refer­
ence to the directory. A series of consecutive
sectors may also be written to the disk, also with­
out directory recourse.

The program is called as follows:

[unit:]ZAP <unit number>

where <unit number> is the drive to be examined or
modified (default•O).

A reply of G during the terminal dialog will send
the user to the "GET" routine, and P will send him
to the "PUT" routine.

If data is to be obtained from the disk, the start­
ing track number and the number of tracks are en­
tered and the data is dumped to memory starting at
3000H. If "full sector" is specified, each sector
starts at a 512-byte boundary (3000H, 3200H, 3400H,
etc.) and is 266 bytes long, including the ten-byte
sector leader. The remainder of the 512-byte seg­
ment is filled with bytes set to 78 hex (lower-case
x).

NOTE: Each MOOS sector consists of 268 bytes, of
which the last 256 are data bytes. The ten bytes
following the track and sector numbers are here
referred to as the "ten-byte leader." A descrip­
tion of the functions of these bytes can be found
in lines 2090- 2320 of Manderson's MDOSDOC, on
Library Disk 17. In Manderson's notation, these are
bytes 2-11. Note that Manderson's description of
the first and third bytes of the ten-byte leader
(his bytes 2 & 4) is inaccurate. The first byte of
the leader is a backward pointer identifying the
track immediately preceding this one in the seq­
uence of tracks assigned to the file. The third
byte is as described only if the file did not arise
(even indirectly) by means of a FILECOPY, in which
case it is zero.

If "data only" is specified, each sector is 256
bytes long and the file is dumped to memory without
gaps.

ZAP also retrieves sector leaders separately with­
out the accompanying data file.

If "track leaders only" are specified, each 16-byte
line (starting at 3000H) will have the track number
followed by the ten-byte leader of the first sector
of each track. The line's last five bytes are not
significant.

If "all sector leaders" are specified, each 16-byte
line will have the track and sector numbers follow­
ed by the ten-byte sector leader. The last four
bytes of the line are not significant~

ZAP also
without

enables one to "PUT" sectors on the disk
recourse to the directory. This feature

MUG NEWSLETTER #29 DECEMBER 1982

must be used carefully so that each file remains
consistent with its directory description. The
replacement sectors must be 266 characters long,
consisting of a ten-byte leader and 256 data bytes.

The first sector must start at 3000H, the second at
3200H, etc., each sector starting at a 512-byte
boundary.

This is the same format as that produced by the GET
command when F(ull) sectors are specified. A disk
sector can readily be changed by GETting the track
containing the sector, making the changes to the
memory image by means of the ENTR command, getting
ZAP back with the APP command, and PUTting the 16
sectors of the track back on the disk.

CAUTION: Be sure to have a back-up of any disk on
which "PUT" is used, in case something goes wrong!

Since writing on the disk destroys what is being
over-written, an ARE YOU SURE? query is made, and
if any reply other than Y or y is made, the write
is aborted.

ZAP is available on MUG Library Disk 9.

CRYPTOl

by Julius c. Martin
Greenwood, WV 26360

CRYPTOl is a program for encoding and decoding
files, and is an adaptation of Ralph Roberts' BYTE
magazine program (April '82). I have changed it
to provide for a choice of input and output and to
work in Micropolis BASIC without (known) bugs. Plus
I've added some error trapping. The program prompts
for your actions. See the BYTE article for Roberts'
comments: see also the REMarks in the program.

Run the CRYPTOl program using the password WIZARD,
and the encoded file, TESTCODE. Select the Screen
output option. You'll see both the encoded and the
decoded text.

Next, try the same (or your own) password on the
file THREEDEEP. If you succeed, then Roberts and I
have failed. But take heart. ~fter trying this,
and perhaps some coding of your own, run the bonus
program, BREAKER.

You should also be aware that the method used makes
CRYPTOl encoded text open to attack by normal let­
ter frequency checking on an individual record
basis. As an example of the individuality of the
records, run CRYPTOl on THREEDEEP in the file
decode mode after using Breaker to find the key to
record one. Even though the first record is decod­
ed, other records will not be.

CRYPTOl is available on MUG Library Disk 24.

DISK CATALOG

by Julius Martin
Greenwood WV 26360

INTRODUCTION

This program was writ.ten to provide myself with a
means of keeping track of the few disks I have and
the programs/files on them. Not having CP/M (a
trade mark of Digital Research) and not wanting to
purchase one, if I could find one for the Micropo­
lis system, I decided to do-it-myself. Not too
long after that, the MUG published a way to access
the DIR and Buzz Rudow presented MUGgers with a
Disk Catalog program.

Why add another Disk Catalog program to the libra­
ry? I believe in making the computer work while I

MUG NEWSLETTER #29 DECEMBER 1982

do the thinking. My approach is a little different
from Buzz' (no pun intended) and frees me from
worrying about disk sequencing and the like. No
program since the first one is completely original
and every program is subject to improvement. With
that in mind, here are some details about DISKCAT.

PROGRAM OPERATION

With the program disk in drive #0, load and run
<DISKCAT>. The program will introduce itself,
present a 'menu', and prompt your actions. The
sub-programs <DISKCATA/D> and <DISKCATS/P> allow
you to add new filenames to the 'Catalog' or delete
files which have been scratched from a disk. You
may access the catalog and put its contents on your
monitor or printer.

The disks to be cataloged may be logged into the
computer in random order. The program will organ­
ize the information for you and will keep track of
what file was on which disk.

This is accomplished by means of a memory,mapped
screen and the use of an assigned disk number in
the disk directory. The disk number is assigned by
using CREATE in MOOS, or OPEN in BASIC, to place a
filename on the disk, consisting of the term

-DISK.

plus the disk 'number' (see below for numb~ring).
The program will find this filename and add its
associated disk 'number' to each filename from the
disk directory. E.g., this is a good disk number:

-DISK.312

One or two disk drives may be used. If two are
used, one could be used to load the Program disk
while the other could hold the Catalog disk. The
program can work with only one drive.as written.

Automatic backup of the Catalog is provided. When
first a catalog is 'created', a backup (initially
empty) file 'OLDCATALOG' is also created. Whenever
there is a DISKSAVE of the catalog, 'OLDCATALOG'
becomes 'CATALOG' while 'CATALOG' switches with
'OLDCATALOG'. (In a multi-catalog system, 'CATALOG'
would be the assigned catalog 'name' and the back­
up would have the prefix 'OLD'.)

~NUMBERING SCHEME(S)

Using ideas from many 'catalogs' and adding my own,
I am currenting using a numbering system which
flags conunercial programs with an S and a dash
number or S with two numbers: for example, S-2,
S23. Other disks receive numbers in the range 100-
999, according to their content. Another possible
numbering system, if you have a large number of
files, is AOO thru Z99.

This allows 2600 disk 'names'. Since Mod ll's can
handle a total of 75 files per disk, the number of
possible filenames is 195,000r more than we'll
probably ever need. (One track was used for the
disk number.)

At the moment, the program is DIMmed to hold 250
filenames (actually 251) with the memory I have
available. Thus, my catalogs are also limited to
250 filenames. All sorting, printing, etc., is
done based upon filenames in a memory array. Your
capacity may be different. Try for 250 names to
start.

To overcome the 250 filename limitation, multiple
catalogs can be used. You might want to group
your disks in some way: perhaps by storage box or
major category. A 'name' of some sort would be used
to identify a given catalog.

See MODIFICATION Section in the disk files for
further information.

ADDITIONAL INFORMATION

The following control bytes are used in this
program:

PAGE 5
HEX
11
17
oc

Decimal
17

Purpose
Home Cursor
Up Cursor 23

12 Clear screen, home cursor

NOTE: The Sorcerer has a 1920-byte video
starting at F080 Hex (-3968 Decimal).

screen

The printer routines are set up
80. The codes used are shown
print size and layout are based
for the EPSON.

for the EPSON MX­
in remarks. The

on the print sizes

See the programs DISKCAT, DISKCATA/D, and DISK­
CATS/P for more documentation. Changes may be made
to the program listings to allow more than one
catalog. The assumption remains that the catalog
'name' used is limited to seven (7) characters.

I hope you will find DISKCAT useful. Feel free to
modify it to work for you!

CATALOG is available on MUG Library Disk 24.

LIBRARY ADDITIONS
=================

The following are additions to various library
disks which were made during November. The listings
show only the additions. See the full library
catalog which accompanied last month's newsletter
for the previous contents.

I realize that all entries are not adequately ex­
plained. I'm working on that. Again, if members
who have received MUG disks wish to send short
explainations of the purpose of undocumented pro­
grams on the library disks, I will surely use the
input.

MUG MOOS Library Disk 06, Revision 08, NOV 82
SYSTEM UTILITIES - 30 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
====================

LINE57 SYS 00 010 EDT 1182 Singer, C.
An enhansed version of the Micropolis
LINEEDIT.

LINE57.DOC DOC 00 02E EDT 1182 Singer, C.

MUG MOOS Library Disk 09, Revision 04, NOV 82
SYSTEM UTILITIES - 33 tracks .

NAME

$SUBMIT
SUBMIT
SUBMIT-DOC

ZAP-DOC

TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
=-===================

SRC 00 DOB UTL 1182 Singer, C.
SYS 00 005 UTL 1182 Singer, C.
DOC 00 017 UTL 1182 Singer, C.
Allows multiple calls to MOOS functions
by way of a precomposed LINEEDIT file.
Similar to CP/M's SUBMIT.
SYS 00 006 UTL 1182 Singer, C.
Reads and writes any series of consecu­
tive tracks from a disk without refer­
ence to the directory.
DOC 00 010 UTL 1182 Singer, C.

MUG MOOS Library Disk 14, Revision 02, NOV 82
DATA BASE MANAGERS - 24 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
==••====== ========s••=========
INVENTORY BAS 00 OOD DBM 1182 Riding, G.

Packs three logical records to each phy­
sical sector, i.e., 3648 inventory item~
per MOD II disk.

MAIL-LIST BAS 00 OlD DBM 1182

?AGE 6

MUG MOOS Library Disk 19, Revision 04, NOV 82
GAMES - 33 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
~============a======

STARTREKl BAS 00 051 GAM 1182 Cole, H.

MUG MOOS Library Disk 22, Revision 01, NOV 82
H/W, HAM & COMMUNICATIONS - 20 tracks

NAME

CLOCK. DOC

SWRITECLCK
lRITECLOCK

SREADCLOCK
READCLOCK
STIMECHECK
TI"'1ECHECK

TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
as•====•=====•======

DOC 00 OOC H/W 1182 Helm, E.
Documentation for the following set of
six programs which implement a MSM 5832
Real Time Clock.
SRC 00 005 H/W 1182 Helm, E.
OBJ 00 002 H/W 1182 Helm, E.
SRC 00 007 H/W 1182 Helm, E.
OBJ 00 002 H/W 1182 Helm, E.
SRC 00 002 H/W 1182 Helm, E.
OBY 00 002 H/W 1182 Helm, E.

MUG MOOS Library Disk 23, Revision 03, NOV 82
BUSINESS - 29 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION

RE II AP BAS 00 02A RET 1182 Chaft, A.
Real Estate Income Investment Analysis.

MUG MOOS Library Disk 29, Revision 01, NOV 82
SCIENCE AND ENGINEERING - 16 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
========== =====•=•••s•====••••

DIFFEQ BAS 00 007 MTH 1182 Cole, H.
DIFFEQ.DOC BAS 00 018 MTH 1182 Cole, H.
SIMEQ BAS 00 005 MTH 1182 Cole, H.
SIMEQ. DOC BAS 00 006 MTH 1182 Cole, H.
INTEGRAL BAS 00 004 MTH 1182 Cole, H.
INTGRL.OOC BAS 00 008 MTH 1182 Cole, H.

.

MUG MOOS Library Disk 32, Revision 01, NOV 82
BASIC SUBROUTINES - 21 tracks

NAME

RP2

RP3
RP4
RPS
DAT.l\ENTRY

D-ENTRYDOC
SORT.BAS

TYP RV SZE CAT DATE AUTHOR/DESCRIPTION

BAS 00 002 1182 Riding, G.
This, and the following three files,
show the arithmetic of packing and de­
packing multiple logical records to the
Micropolis 250-byte physical disk
sector·.
BAS 00 002 1182 Riding, G.
BAS 00 002 1182 Riding, G.
BAS 00 002 1182 Riding, G.
BAS 00 002 1182 Raney, M.
A set of routines which force user to
enter proper responses.
SRC 00 013 1182 Raney, M.
BAS 00 008 1182 Smith, B.
A Shell sort routine. See newsletter
#29.

MUG MOOS Library Disk 34, Revision 01, NOV 82
GAMES - 25 tracks

NAME TYP RV SZE CAT DATE AUTHOR/DESCRIPTION
=========== =====·---=-===-===·=
CODEBRKR BAS 00 OOD GAM 1182 Cole, H.
COD EMA KER BAS 00 009 GAM 1182 Cole, H.

.

MUG NEWSLETTER #29 DECEMBER 1982

LINE57 (LINEEDIT version 5.7)
=====================•=======

by Carl J. Singer
6049 North Morgan Street, Alexandria, VA

Phone (703) 354-2904
22312

INTRODUCTION

LINE57 is an extension of LINEEDIT, using all of
the enhancements afforded by Robert Manderson's
LINEEDIT5. Five new commands have been added:

PAGE [l) [s] [m)
COPY Ll L2 L3 [n)
MOVE Ll L2 L3 [n)
DMOVE Ll L2 L3 [n)
CCHANGE [Ll] [L2)

In addition, all of the MOOS commands which have
not been preempted by LINE57 commands (the latter
group consists of LOAD, SAVE, MOVE, and PROMPT) are
now available directly from LINE57.

When using LISTP or PRINTP to print several pages
from the current text file on the system printer, a
PAGE command preceding LISTP or PRINTP enables the
user to produce proper margins at the top and

• bottom ·of each page. The form of the command is

PAGE, PAGE <lines>, PAGE <lines> <skip>, or PAGE
<lines> <skip> <margins>.

<lines> is the number of Editor lines to appear on
each page of a listing before moving to the next
page.

<skip> is the line number count
lines) to be skipped when moving
the next. <skip> is normally
multicolumn listings.

(not
from
zero

number of
one page to

except in

<margins> is operative only on systems where the
FORMFLAG byte at 4C8 is zero (printer does not
accept formfeeds): otherwise it is ignored. See
page 2-28 of the manual for a description of
FORMFLAG. <margins> is set equal to the number of
linefeeds to be issued between the bottom line of
one page and the top line of the succeeding page
i.e., the sum of the top and bottom margins. The
default value is six .

If the FORMFLAG byte has been set to a non-zero
value (printer accepts forrnfeeds), PAGE m causes
the output of a formfeed after each m lines. Thus
top and bottom margins of any size can be obtained
on any printer with any size of paper.

The use of the second parameter (skip) is best
explained by r11eans of an example:

Suppose the current text file is numbered by tens,
and it is desired to print out lines 1000 to 4500,
two columns per page, 60 lines per column, on
standard 11-inch paper. The first column on page l
will have lines 1000 to 1590: the second column,
lines 1600 to 2190. The first column on page 2
will have lines 2200 to 2790, etc. We begin by
issuing a PAGE 60 600 command (600 = line numbering
increment times lines per page times [number of
columns minus 1)). Now all the first columns will
be correct when we issue a LISTP 1000 4500 command.

After the first columns of all three pages have
been printed by the above command, we set the
printer margin for the second column, back up the
paper to the beginning, (if your printer supports
reverse vertical tabs, see the note at the end of
this documentation) and issue the command LISTP
1600 4500. This will print all the second columns
correctly.

The parameters set by a PAGE command remain in
effect until changed by another PAGE command. PAGE
without a parameter resets LINE57 to its original
condition with no printer page controls •

MUG NEWSLETTER #29 DECEMBER 1982

The PAGE command has no effect on commands other
than LISTP and PRINTP.

A block of lines in the current text file can be
copied to another part of the file by using the
COPY command. The form of this command is:

COPY line#l line#2 line#3 [renumbering increment]

Line#l is the number of the first line of the block
to be copied, and line#2 is the last line. If
these two numbers are equal, the block consists of
only one line. Line#3 is the number of the destin­
ation line AFTER which the block is to be deposit­
ed. All 3 line number parameters must be specified.

After the copy has been made, the file will be re­
numbered automatically. If a renumbering increment
has been specified, say 'n', the renumbering ob­
tained will be the same as if RENUM n n had been
called. If no increment is specified, n~lO is
assumed.

The destination line number may be any line number
in the text file which is not inside the block to
be copied. For this purpose, the first and last
line numbers of the block are not considered to be
inside the block. Thus COPY 100 200 200 is a valid
comrnand, but the command COPY 100 200 150 will
produce the error message OVERLAP, and no copy will
be made.

If there is insufficient memory to hold the larger
text file resulting from the copy, the message NOT
ENOUGH RAM will be displayed, and no copy will be
made.

A block of lines in the current text file can be
moved to another part of the file by using the MOVE
command. The form of this comrnand is

MOVE line#l line#2 line#3 [renumbering increment]

The MOVE command operates just like the COPY
command, except that the moved block disappears
from its original position, leaving the file
exactly as long as it was before the MOVE.

Nevertheless, a MOVE requires as much memory as a
COPY, because at some time during the execution of
the MOVE, the block will exist at both the source
and the destination. Thus, the combination of a
large textfile and a large block to be moved may
result in the NOT ENOUGH RAM message. In this
case, use the DMOVE command.

From the user's point of view, the DMOVE command
works just the same as the MOVE command, except
that disk unit 0 must be engaged. When DMOVE is
used, the block to be moved is written to disk, and
later loaded back into the correct place in the
current text file. With the DMOVE command, no
additional memory is required for the move. Of
course, there will have to be enough free space on
the disk to accept the temporary file later
scratched by the system.

MOVE should always be tried before DMOVE, since
MOVE is executed much faster than DMOVE. Only if a
NOT ENOUGH RAM message is displayed, should DMOVE
then be used.

CCHANGE

CCHANGE stands for Controlled Change. This command
is exactly the same as the CHANGEALL command,
except that the user can interactively specify
whether each line containing the match string
should be changed or left as. is. This allows the
user to step through the file and selectively
change certain strings. When a line containing the
match string is found, it is displayed on the
console and the user receives a prompt CHANGE ?.
If it is desired that the line be changed, a Y is

PAGE 7

typed for yes; otherwise, an N is typed. The user
can exit at any time by typing a Control-C.

Universal Match Characters

The universal match character used in SEARCHes and
CHANGEs is set to a question mark (?) when LINES7
signs on, just as in LINEEDIT. However, the user
can change it to any other printable character by
entering MATCH "X", where X is the new universal
match character. In this way, question marks may
be searched for or changed. Entering MATCH with no
parameter disables the universal match character by
setting it to a null.

A minor change has been made in the APPEND command.
Its form is now

APPEND "filename" [renumbering increment].

If a renumbering increment is specified, the
will be renumbered using it; otherwise
increment 10 will be used.

Short Form Commands

file
the

The following shortened forms of the commands may
also be used:

LONG FORM SHORT FORM

CCHANGE cc
CHANGE c
CHANGEALL CA
COPY co
DELETE D
DMOVE DM
EDIT E
LIST L
LISTP LP
LOAD LO
MOVE M
PRINT p
PRINTP pp

RENUM R
SEARCH s
SEARCHALL SA

LINE57 still fits in one
(barely), and is a lot more
than the original LINEEDIT.

track on the
powerful and

Enjoy it!

Replacement Pages for Manual

disk
useful

A set of manual replacement pages (2 index plus 12
text) embodying all of the described changes to
LINEEDIT, is available from me at the above address
for $4 ($6 outside of North America).

Multi-column Printing

NOTE: For multicolumn printing of long source code
files, it would be nice, after you've printed one
column, to have the printer - rather than your poor
tired wrists - roll the paper back to the first
page. I have provided a means of doing this if
your printer supports reverse vertical tabs.

Locations 38F3 to 38F8 contain space for a string
up to five bytes long plus a terminating zero.
Replace the existing string (lB 59 SF 00 00 00 for
an NEC Spinwriter) with the string required by your
printer for its longest reverse vertical tab. For
my printer, this is 63 lines - almost a page. Now
the command RV n will cause the printer to perform
this tab n consecutive times. Proper choice of n
will get you back to page 1, ready to set up for
printing the next column.

This string change can be performed permanently by
means of ZAP. Call ZAP d, where d is the drive on
which the disk with LINE57 on it resides. Now get
the disk directory (track O) and find LINE57.
Immediately following the ten bytes assigned to the
filename is a byte which tells you which track that
file starts on. This byte has the high order bit
set high, so the actual track number (in hex) is

UTILITY PACK U

Utility Pack #1 is a collection of versatile gen­
eral purpose routines that can speed program devel­
opment and make life easier for every programmer
and computer user.

The package includes:

* GREP: Searches a list of files for the specified
string. Each occurance is displayed as
well as the file it was in.

* CMP: Compares two files and displays the
differences.

* WORD: Searches a specified file for a string
surrounded by alphanumerics.

* TOKEN:Searches a specified file for a string
surrounded by white space.

* UNIQ: Removes duplicate adjacent lines in a disk
file.

* RM:

* AR:

Erases a list of files.

Archiver. Puts many files into one large
file which has its own directory.

* SUM: Performs a checksum of a list of files.

* WC: Counts the number of words and lines in a
specified file.

* SORT: In RAM variable length record shell sort.
These invaluable routines can save hours
for every programmer and computer user.
Keep Utility Pack #1 with your system at
all times.

Requires: 24K CP/M, most disks formats available.
Also available for CP/M 86 and MS DOS. From Super­
Soft.

UTILITY PACK #2
=======·--==·==

Utility Pack #2 is a collection of general purpose
programs that can speed program and system develop­
ment. Many were originally developed for in house
use. Most of these programs feature I/O redirec­
tion to console or file. The packet includes:

* TR: Translates one user defined set of
characters in a list of files to another
set. Character set specification is
versatile and may occur either on the
command line or be redirected from a file.

* RPL: , Replaces every occurance of one user
defined string in a list of files with
anothe~ string.

* DC: Powerful postfix desk calculator program
featuring 13 digit precision, .
transcendental functions and 10 registers.

* DIFF: compares two source files and displays the
minimum number of differences using a
backtracking algorithm. Output may be
redirected to a file or console.

*PR: A multi-column print formatter. Prints a
list of files on multi-column format with
headings, page numbering and date. Output
may be directed to console, printer, punch
or file.

* SLEEP:Causes processing to pause for a specified
period of time. Useful in batch
processing.

* INUSE:Displays "IN USE" message in block letters
on the console.

*CAT: Concentrates a list of files.

* DATE: Maintains a current date file used in
conjunction with PR.

* SPLIT:Splits a file into smaller chunks of
specified length.

Requires: 32K CP/M, most disk formats available.
Also available for CP/M-86 and MS DOS. From Super­
Soft.

LADDER

v
$

o H
H o H

===H============================a=r.=====
H
H H . H H

===== ==•===H===Q==== ===•====H============
& H

0
H
H

H
===H••a:===H==== =========-==~===·=====

H
H

H
======I!== =========H===g=====

H
H

============·======·=-~=-==~=======u============

The latest CP/M action game is LADDER. The idea is
to move your person across and up the series of
floors and ladders, without getting crushed by a
rock.

This game also uses the A/Z
(left/right) configurations. In
space bar makes your man jump.

(up/down) and O/P
addition, the

When you finally reach the treasure (the$), you
get a new screen layout. Neither Lynn nor I can get
past the fifth layout. How many points you get
depends on how long it takes you to get to the
treasure. You also get points for jumping the
rocks, and for grabbing the "&" s. LADDER is a
distinctly different game from CATCHUM.

As it was with CATCHUM, there are adjustments you
can set for the speed of the game, the use of the
bell or buzzer, and for having the program make
wise-cracks to you.

NOTE

Both LADDER and CATCHUM require CP/M, an 80 x 24
display, and a directly addressable cursor. Vector
Graphic Mindless Terminals must be driven by a 3.0
or later monitor. If, when you first turn on your
VG, you just get an "*" displayed, you have a ver­
sion below 3.0.

LADDER lists for $40, is available from
$20, or for $19 if you wish the cash
(check or money order). Add $1 postage
America, $3 elsewhere.

D~N for
discount
to North

J

CATALOG

CATALOG is a master disk cataloging system for CP/M
based 8080/Z80 systems. It includes a COMPARE
program for checking "like" files found through
cataloging.

C~TALOG builds and maintains a compressed master
data base containg information relevant to each
file on each disk. Generating and updating this
data base requires only information regarding what
disk drive to read and what ID number to assign to
the disk. CATALOG permits users to enter short
notes for each file and disk in the data base.
Data base query accepts filenames, filetypes, "wild
cards", partial filenames or disk numbers as search
directives.

The information displayed or printed by CATALOG is
the most complete available. Disks are displayed
complete with the date they were last entered in
the data-base, and the space used. File displays
include filename, filetype, file size, disk numbers
containing that file, user entered notes, and for
CP/M 2.x, the user number, system status, and read­
only status. A quick summary of all disks is also
available which includes disk number, date last
entered in the data base, space used, and user
entered disk notes.

One seemingly inescapable problem accompanying .the
addition of disks to an existing system, or the
purchase of a disk based microcomputer system, is a
gradual increase in the number of disks needed to
contain the various purchased and generated files,
and a corresponding decrease in a users ability to
remember which disk contains a seldom-used file. A
supplementary problem also develops; the what-on­
earth-is-this-file problem. Most users have dealt
with these problems head-on, resulting in stacks of
hand-written or printer generated CP/M DIR listings
with hastily scribbled notes about the intended
purpose of each file. Needless to say, these stacks
of paper quickly become unwieldy and disorganized,
and updating them becomes a monumental task.

C~TALOG has been developed to free the microcompu­
ter user from this drudgery by allowing a means of
automatically keeping track of those wandering
files. Under user control, CATALOG reads the appro­
priate disk directories and builds a permanent
data-base of pertinent file and disk information,
including user entered notes or identifying data
for each file and disk. Once created, this data­
base need only be infrequently updated by causing
CATALOG to re-read the directories of any desired
disks.

Having generated a data-base, CATALOG may be used
in an interactive mode or may generate one of two
formats of CP/M List device output. One output
format is an alphabetical listing of file names,
grouped by file-type, complete with sizes, and
identifying those disks which contain each file.
The other format is a disk-by-disk listing which
displays the user-entered notes. Used interactive­
ly, CATALOG may be used to quickly locate any file
or disk and display the data pertinent to that file
or disk. CATALOG supports the full range of CP/M
"wild" card file specifications.

Additional CATALOG features include the entry of
short notes for each file and disk, an option to
erase the old data-base and start afresh (switching
sort parameters to produce a strictly alphabetical
listing if desired), and to erase all references to
a particular disk and display the highest disk ID
currently contained in the data-base.

The COMPARE program doesn't just check the name and
size, as do some "compares". It checks every byte,
and prints the differences, if found. This is very
useful when you have several versions of a develop­
ment program on separate disks, and you need to
scratch one for the file space.

CATALOG is a product of SRX.

SPECIFICATIONS

Minimum hardware configuration: 24K CP/M 8080/Z80
system with two disk drives

Disk ID labels: Decimal numbers in the range of 1
to 255

Maximum number of Unique Disks: 255

Maximum number of files of any one input disk:
Depends upon CP/M memory size; 900 for 24K systems
- 1400 for 32K system, etc.

Sort method: Operator selectable at data-base
(re)creation time for either FILENAME.TYP sort or
TYP.FILENAME (default) sort

Access/Update Time: Totally dependent on
data-base and type of disk drives. Less
seconds for a 14K data-base consisting
files, each having a user note averaging 15

· ters in length, run on an B" Shugart type
density drive

size of
than 30
of 400
charac­
single

Merge criteria: Files are
data-base entries if any of
are met:

entered as separate
the following criteria

Different FILENAME.TYP
Different file size
Different file attribute bits set in
FILENAME.TYP (CP/M 2.0 and later)
Different USER numbers (CP/M 2.0 and later)

User Notes: 62 Characters maximum per file
62 Characters maximum per disk

SUMMARY OF COMMANDS

[DISKS] - List a summary of all disks contained in
the data-base.

[DISKS rrr] List a summary of all disks in the
range specified by rrr.

[ERA nnn] - Erase all references to disk nnn (nnn
1-255).

[EDIT nnn] - Enter disk and file notes for disk nnn
(nnn = 1-255).

[EXIT] - Warm boot back to CP/M.

[FIND xxxxxxxx] - Locates a filename containing the
subset xxxxxxxx.

[LAST] - Displays the highest disk number presently
contained in the data-base.

[NEW] - Erase old data-base and restart.

[NEW S] Erase old data-base and restart with
swapped sort parameters.

[PRINT]
PRINT rrr.
device.

Preceeds legal list-type command, e.g.,
Diverts list-type output to CP/M List

[PRINT=m] - Change nominal printer width to m (60-
132).

[d:] Update data-base by reading directory from
disk in drive d: (d = A-P) and identify it as disk
nnn using the directory entry -xxxxxxx.nnn.

[d:nnn] Update data-base by reading directory
from disk in drive d: (d = A-P) and identify it as
disk nnn (nnn = 1-255).

[filename.typ] Locate all occurrences of file­
name.typ and list them along with the disk numbers
on which they reside. CP/M wild cards are support­
ed.

[rrr] - List the contents of disk(s) rrr with user
supplied notes.

FILEFIX

FILEFIX(TM) is a program for recovering erased
files, protecting deleting, and renaming files, as
well as forging multiple user links to a single
CP/M file.

FILEFIX can perform several different operations on
your CP/M directory. The directory can be viewed
in detail, accidentally erased files will be iden­
tified and may easily be recovered. All operations
are performed on the directory itself; data in the
actual files will not be altered.

With FILEFIX you may:

1) View your CP/M directory block
allocation map

2) Display your files in short form -
including ERASED files

3) Display your files in long form with
block and sector status

4) Display your disk status completely.

With FILEFIX it's easy to PROTECT a file and CLEAN
erased files or FORGE multiple user links to the
same file. You may also give several files with
the same name, UNIQUE NAMES.

FILEFIX is menu driven and easy to use for the
novice as well as the experienced CP/M user. Your
FILEFIX disk will not only allow you to recover
erased files in the directory several utilities
are provided which allow you to SCROLL or SHOW
textfiles one screenful at a time, ENCRYPT files
with a one or two letter password, COPY files,
RENAME files, VERIFY files and determine the CPU
processsor type in your computer. Experienced
hackers will enjoy the DUMP facility which includes
both HEX and ASCII values. GO may be used to branch
to any memory location and IOBYTE allows the user
to reassign the four logical devices to various
physical devices by changing the IOBYTE HEX value.

Everyone will eventually erase a file accidentally.
With FILEFIX you do not spend valuable time start­
ing all over because you have "mistake insurance".

FILEFIX works with CP/M 2.2 and is written by Allen
Miller.

ENCODE/DECODE II

Encode/Decode II is a sophisticated coding system
for CP/M. The coding techniques used include:

* Transposition
* Inversion
*Traveling XOR's (element relative)
* XOR's with hash generated by user combination

The file is coded block by block. Hence, should
equipment error cause a bad data write, decoding
error will be local only to that block.

Essentially, one codes files when they are not
needed and decodes the files when access is
requir~d. Access is inhibited in two ways. First,
there is a user defined password that is needed
just to execute Encode/Decode II. Second, the user
defined combination is needed to decode a file.
There are 10,000,000,000 possible combinations.

Accidental decoding is virtually impossible. In
fact, we can not even decode a file without its
combination! This means solid security.

Also, because each file can have its own combina­
tion, multiple security levels are possible. That
is, simply assign sets of files the same combina­
tion. In this way, each person can be given
clearance to only those files that are permitted.

Requires 32K CP/M. Also available for CP/M-86 and
MS DOS. From SuperSoft.

ANALIZA II

ANALIZA II is an expanded and "smarter" version of
the famous "Eliza" program. ANALIZA II, following
in the tradition of its predecessor, imitates a
psychiatrist. The user (patient) interacts with the
program in a question and answer fashion. ANALIZA
II asks questions based on previous responses by
the user.

As a simulation, ANALIZA II is very complete. For
example, if the user becomes belligerent, ANALIZA
II responds with remarks intended to stop this. If
the current dialogue is repetitious or dead ended,
ANALIZA II prompts the user with new subjects until
a new dialogue is achieved. The simulation is so
complete that the user even receives a "bill" at
the end of the session.

ANALIZA II performs its magic through the use of
sophisticated "cracking" algorithms used to break
down the patient responses. It looks for key words
and ,phrases in order to construct a reply based on
the user's input. A list of subjects is kept in
memory, so the longer the session, the more sur­
prises ANALIZA II has in store for the user.

ANALIZA II also stores the user subjects on disks.
This means that sessions can be continued day to
day, and that the program will become more know­
ledg~able about each patient.

11.NALIZA II provides an excellent example of Artifi­
cial Intelligence that will certainly shock those
unfamiliar with current computer software technol­
ogy. It makes an excellent addition to both office
and home computer systems.

From SuperSoft. Requires 48K CP/M. Also available
for CP/M-86 and MS DOS.

DISK-EDIT

DISK-EDIT is a screen-oriented disk editor designed
as a DDT for disk files. DISK-EDIT gives you
complete access to all the raw information on your
disks; it will let you examine or alter files that
cannot be examined with a normal text editor.

DISK-EDIT loads one 1024 byte segment of a disk or
file into its internal memory buffer. It displays
a window into that buffer on your screen. This
window has, in effect, two panes side-by-side.
Through the left-hand pane you see the hexadecimal
representation of each byte in the buffer that lies
within the current window. Through the right-hand
pane you see the ASCII representation of those same
bytes. A column on the far left-hand side of the
screen provides the byte location of the bytes
appearing on the screen.

The DISK-EDIT program has two editing modes: hex
and ASCII, and you can toggle back and forth be­
tween the two (each is contained in its own "window
pane"). Changing a byte in one, let's say hex, at a
given location will produce a corresponding change
in the ASCII character at the same location. Any
changes on the screen will also be reflected in the
buffer.

Once you are in the DISK-EDIT window, you have a
full range of text editing commands at your con­
trol, including forward space, back space, next
line, previous line, view next screen, view pre­
vious screen, beginning of file, end of file,
string searching, write to disk, and several
others.

DISK-EDIT comes complete with a terminal definition
program, and it is configurable for any disk, in­
cluding hard and double-sided. A uniquely power-
ful debugging tool, we feel that DISK-EDIT is an _ ..
invaluable utility for every programmer. ~

DISK-EDIT is produced by SUPER-SOFT, requires 32K
CP/M, and is also available for CP/M-86 and MS DOS.

PAGE 8

obtained by subtracting 80H. Thus B4 (for example)
becomes 34, which is 52 decimal.

After finding the track on '<Ulich LINE57 resides,
call APP d, which brings back ZAP. Now GET the
proper track, being sure to specify (F)ull sectors,
and DUMP 4AFD 4BOC. If you got the right track,
the string lB 59 SF 00 00 00 should be there,
starting at 4AFD.

If everything is O.K., call ENTR 4AFD, and insert
your own string, making sure that it is terminated
by a zero. Once more, call APP d, and do a PUT to
the right track, for 16 sectors. This will change
LINE57 on the disk.

You can, of course, make this permanent change of
LINE57 in a simpler way, but it will then occupy
two tracks (rather than one) on the disk. Perform
the following sequence:

LOAD "LINE57"
ENTR 38F3
Enter the correct reverse vertical
sequence
SCRATCH "LINE57"
SAVE "LINE57" 2BOO 3827 14

tab

LINE57 is available on MUG Library Disk 6.

FORTH UPDATE

code

For all you MUGies who purchased Acropolis' FORTH,
I have been told by George Shaw (Owner of Shaw
Labs, the producer of A-FORTH) that you should
receive your update within two weeks. This was on
November 15, so you should have received your new
FORTH disk before you receive this. If not, give
me a call and I'll see what I can find out.

MUG NEWSLETTER #29 DECEMBER 1982

CLASSIFIED
==========

FOR SALE: Micropolis 1015 MOD II disk drive. Has
all electronics, but no power supply. Same as 1021
MOD II. I am using 4 of these myself & have had no
problems. First $200 takes it.

Call (913) 686-2491 after 4:PM c.s.T. Carl Colvin,
108 W. Nichols, RT. 3, Spring Hill, KS 66083

FOR SALE: One Processor Tech SOL with 48K user
memory, SOLOS monitor, lK video memory, lK system
RAM. One Micropolis MOD II disk drive with S-100
controller. One Heath H9 Terminial. The equipment
is like new. Make me an offer.

Pete Eversole - (608) 784-9750 days, (608) 788-6677
nights. P.O. Box 1777, Lacrosse WI 54601.

FOR SALE: Pearl III {Program Generator). Lists
for $750, sell for $350. 56K CP/M required.

John Jeddeloh, 2207 N.E. 12 Ave., Portland OR 97212
Phone.(503) 287-3997.

WANTED: Communication with, and help from, a mem­
ber who has reasonable access to a SAAB dealer. I
need a few parts for mine and there are no dealers
in Panama.

Paul Boon, PSC Box 356, APO Miami FL 34002.

** * DAMAN' S SALE LASTS UNTIL 12/15 *
* 12 1/2 % OFF DAMAN'S NORMAL LOW PRICE *
* SEE LAST MONTH'S NEWSLETTER FOR DETAILS

*
**

Published Monthly by the MUG
Subscription rates:

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 881-1697

U.S., Canada, Mexico~ $18/year: Other, $25/year

FIRST CLASS MAIL

FIRST CLASS MAIL

