
MICROPOLIS USERS GROUP

MUG Newsletter #24 - July 1982

NOTES FROM THE EDITOR

RENEWAL TIME

Take a look at your mailing label. If it says 8207,
then this is the last issue of your present member­
ship period. Dues are $18 in North America, $25
elsewhere. Use your VISA or MasterCard, if you
wish.

As a results of last month's renewal articles, I've
received many comments, positive and negative, on
MUG and DAMAN. I'd still like comments from those
of you who have yet to renew. Next month, I'll
write a summary article on the gist of the res­
ponses, and how it will effect our future.

~ COMPARISON OF CP/M AND MOOS

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission KS 66208

When I bought my first computer in 1978, it was a
Micropolis based system running MDOS and Micropolis
Basic version 3.0. I really didn't know much about
operating systems, but I wasn't a total stranger to
computers. Computers were my minor subject in
college ten years earlier so I knew something about
programming big mainframes in FORTRAN and assembly
language. I hadn't used the knowledge, since the
business I was in was too small to afford any
computing equipment, until micros came on the
market. I bought the MOOS-based system because I
was impressed with its capability - and, it was the
only computer sold by the only computer store in
town.

I was especially impressed with the fact that the
operating system and BASIC were interactive. This
may seem strange to some, but I remembered that all
you did with some of the old computers was give
them a stack of cards, press the "LOAD" button, and
received either another stack of punched cards, or
a lot of printout. That was not interactive at
all. I had never heard of CP/M at the time but
have since come to know it quite well.

The purpose of an operating system is primarily to
perform routine housekeeping functions in the
computer and to provide means of running programs.
Both CP/M and MDOS perform that mission quite well,
but they differ significantly in features and what
might be termed "personality." I hope to point out
the similarities and differences in a way that are
completely fair, but I do have opinions, of course.

Both MOOS and CP/M have a system of named files on
disk and a way to indicate file type. With MDOS,
the type of file is indicated by one of 256
different bit combinations of the type byte
associated with each file. Files can be indicated
as being one of several different types of object
code, source code, BASIC programs, BASIC data, or
user-defined, and any file can be either normal,
write-protected, permanent, or write protected and
permanent.

CP/M codes the file type in the file name. A CP/M
file name consists of up to 11 characters,
consisting of an 8 character file name, followed by
a period, and up to 3 characters as a file type.
Some types are recognized by the system as either
indicating two types of object code, source code or
text, and BASIC programs. All of the rest of the

(Continued in column 8)

MUG NEWSLETTER #24 - JULY 1982 Column 2

BUILDING THE CHEAP COMPUTER, PART III

by Zot Trebor

Geel I can't believe the response to the first two
parts of this thing. Thank youl Both of youl And
if the person who wrote in crayon will write again,
I'll be happy to answer -- your address was
smudged.

When last we met, our hero, the Cheap Computer, was
about to put on his Captain Video suit and print
something on the screen. For those who didn't see
the first two articles, I have used SSM cpu and
video cards to make a small computer. The SSM
monitor, a whopping 2K of PROM, has proved to be
less than useful for even a Cheap Computer. Since
the PROM is needed primarily for its video driver
routine, my solution to the poor monitor program is
to write a video driver just for my cheap computer.

Couple of little problems, here. First off, I've
ne~er written a video driver. Secondly, where do I
put it once it's written? I can't burn a PROM,
which would be the best solution. Can I put it
into the RESident module? There's lots of space in
RES, but how does one go about it? I don't want to
re-write the whole RES module. Lots of little
problems.

Let's look at the video driver program first. Just
what does a video driver do?

Right off the bat you can see that the SSM video
board is nothing more than a crazy kind of memory
board. Data stuffed into its lK of memory will, by
dint of electronic genies in their chips (genii?),
appear on the video screen. The screen shows 1,024
bytes of data, starting at O in the upper left
corner, and ending with 1,023 in the lower right
corner. Our job is to write a program which will
keep track of the current on-screen location, stuff
or erase data from it, and scroll everything up one
line when the screen gets filled. That takes care
of the data, but what about control codes? We need
a way to erase the screen when we want to start
fresh, which means we need to recognize various
control codes and then write little routines to do
the special tasks, such as screen clearing.

I'm not a wizard programmer but I've been doing it
since 1956. Programming is like chopping wood:
experience helps. And like all good programmers,
when faced with a new problem, you steal ideas
wherever you can find them.

Everyone who makes a video board has also written a
driver for it. I managed to locate five or a dozen
such programs and studied them. Some, like SSM's,
were huge. Others were elegant. All got the job
done after a fashion. Scrolling and recognition of
control codes seems to be the big time waster. My
Cheap Computer uses an 8080 chip at 2 MHz: we don't
have time to fool around with the screen all day
just to display something. Once the screen is
filled you are in effect scrolling for each line so
it must _be a fairly fast routine.

Why is scroll so important? Let's look at it. We
have just filled up the screen with data. Now we
want the screen, between one keystroke and the
next, to scroll up one line and give us more room.
How does it do that? I looked through my Intel
8080 instruction set and couldn't find a single
'scroll' instruction. I read the various programs
and discovered that we must actually re-write the
entire screen! Seems like a lot of work. We start
with line two and write it into line one addresses,
then write line three into line two and so on. The
last line; the one on the bottom of the screen, we
simply erase or fill with blanks. Line one flys
off the screen into the bit bucket and by the time
our finger hits the next key, line sixteen is clear
and ready to receive our input. Hey, this isn't so
tough after all.

(Continued in column 11)

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

MUG NEWSLETTER #24 - JULY 1982 Column 3

DATASMITH MOOS UTILITY PACKAGE

This review is the second of a series of articles
on the available MOOS utilities. (See June news­
letter for Acropolis and GMS utilities.)

The DATASMITH utility package for MOOS includes a
number of programs useful to programmers writing
applications in Micropolis Basic. In addition,
several general-purpose utilities have been pro­
vided that are of general interest to users of the
MOOS operationg system. For maximum utility to the
user, 8080 source code has been provided to permit
user modification of the programs for special uses,
if desired. Again, as with the Acropolis utili­
ties,study of this code will give you valuable
insight on the MOOS system and the use of the
built-in subroutines.

The programs are also provided in executable object
files, so you can run them without worrying about
editing and assembling source files.

Specifically, the package consists of 9 programs,
each being discussed below. The total package is
available from DAMAN for $116, or separately as:

BASIC VARIABLE LISTER $27
BASIC TO LINEEDIT & LINEEDIT TO BASIC $60
MULTIPLE MERGE $27
BASIC SYSTEM LISTER $27
BASIC PROGRAM SMASH $27

DUMP MEMORY, DUMP FILE, and the PHYSICAL DISK DUMP
are not available outside the package. The prices
are postpaid to North America. Add $5 airmailed
elsewhere. VISA & Master Card accepted.

INSTRUCTIONS FOR USE

The following paragraphs describe the operation and
syntax of each program on the development package
disk. Following the established Micropolis con­
ventions, information in <> symbols indicates
parameters that are to be provided by the operator.
Information in [] symbols indicates optional par­
ameterswhich, if entered, override "default" values
assumed by the program. In both cases, the <> or
[] symbols are not part of the command and should
not be entered. Information not inside these
symbols must be entered. A default drive number of
0 is assumed if no unit number is entered.

BASIC VARIABLE ~

The BASIC VARIABLE LISTER lists, on the console,
all the variables and dimensioned arrays used in
the Micropolis Basic program referenced by
<filename>. If the optional parame~er [l] is
included, the program leaves a blank line in the
listing for letters that have not been assigned as
variables. Command syntax is:

VARLIST "[unit:]<filename>" [l]

Limitations: The program includes user-defined
function names from DEF FNx or DEF FAx commands as
variable names. It will report dimensioned arrays
with calculated dimensions, but the dimension
itself may appear as garbage. If printer output is
desired, console data must be sent to the list
device with the ASSIGN command.

BASIC TO LINEEDIT CONVERSION

The BASIC TO LINEEDIT CONVERSION converts the
Micropolis Basic progr'am file referenced by <Basic
file> to a LINEEDIT compatible text file of the
name <text file>. The program expands one-byte
Basic command and function tokens to ASCII text and
generates LINEEDIT line numbers with proper
compatibility. This program is useful when a text
copy of a Basic program is needed for transimission
via telecommunications or when global search and
change features of LINEEDIT are desired.

(Continued in column 6)

MUG NEWSLETTER #24 - JULY 1982

by George w. Shaw II
Shaw Laboratories, Limited

Column 4

What is Forth? It has been said that Forth is the
first in a new generation of programming languages,
but what does this mean? How are they different?
What makes them a new generation of languages?
This is what I will try to explain.

Conventionally, computers are programmed in an
artificial language, that is, a language which is
neither natural to the computer nor natural to the
programmer. The language is not natural to the
computer in that it does not directly relate to the
computer's own machine instruction set, and it is
not natural to the programmer in that it is not
English or whatever his native language may be.
Because of this, a programmer can never perform his
task directly: he usually has to work within the
confines of the given artificial language to solve
his problem. This can cause great inefficiancy in
both the programming of the problem and the
execution of the problem by the computer.

Forth attempts to transcend this extra level.
~ather than creating an artificial language, Forth
first attempts to perfect the computer's language.
The very basic Forth system is then actually a set
of uniform computer instructions. This basic set
of instructions is referred to as the kernel, or
nucleus, of the system. Many of the instructions
in the nucleus duplicate actual processor
instructions. Other instructions which are not
available are defined as short code routines for
implementation. This uniform set of instructions,
in effect, creates a pseudo computer: an
instruction set which actually does not execute
directly on any existing machine. This group of
instructions, the nucleus, is called the Forth
Virtual Machine.

The Forth Virtual Machine gives the programmer the
ability to program the computer as efficiently as
possible by programming almost directly in the
machine's native language. The efficiency of the
Virtual Machine will vary from computer to
computer, depending upon its actual native
instruction set. On a typical 16 bit
implementation, the overhead is usually only about
20% above direct native code: on an 8 bit it is
about 100%. The advantage of the Forth Virtual
Machine over programming any processor directly is
that the entire programming process is under the
control fo the Forth System. Programming, Testing,
and Debugging may be done interactively from the
keyboard. This allows much greater efficiency than
programming in the usual type of assernbl~r system.
Also, because the Forth Virtual Machine is very
uniform, there are fewer idiosyncrasies for the
programmer to be concerned with.

Upon this Virtual Machine are then built the tools
which are necessary for the application. Many
tools are already available in the system because
they are necessary for the compilation and
interpretation of Forth text. The system may be
built upon and extended as additional commands are
needed to complete an application. This allows the
prograrnming language to be tailored directly for
the language of the application, rather than the
application's language being translated into an
artificial programming language. It is simply
impossible to describe all the problems of the
world in a word set and structure as limiting as
those of BASIC, Pascal, FORTRAN of any other
conventional programming language.

Once the basic language for the application has
been implemented, the upper levels of the
application are programmed directly in this
language. Forth also allows the programmer to
program directly in the machine's native code just
as he would program in high level Forth itself.
This allows the mixing of machine code and high
level Forth in any manner desired. Because of

(Continued in column 13)

MUG NEWSLETTER #24 - JULY 1982 Column 5

WRITING PACKED RECORDS = Part III

by Buzz Rudow

In the March and April issues of the MUG
newsletter, I discussed the topics of packing the
Micropolis 250-byte physical sector with two 125-
byte logical records. Inherent in this application
is the absolute positioning of data, so that
delimiters are not used. If interested, you had
best review the previous article before going any •
further here, as I'll try not to repeat myself. I
promised to bring it all together in May, but I
didn't. Now I will.

Following the text of this article is the code for
the "Input and Modify" routine, one of 21 modules
used in the mail system sold by DAMAN. It uses the
auto-configuration and INKEY routines shown in
previous newsletters. These routines are set up in
the Main Menu.

Using structured programming, the entire module is
referenced in lines 30-50. Since the purpose of
this article is to discuss the disk accessing, I'll
not explain anything but that topic. The rest is
there for you to see, and I'd be glad to
individually discuss any details with those of you
interested.

To get to he point of interest of the program, we
trace from line 50 to subroutine 40060. If the
operator answers "l" to that menu, line 40210 takes
you to subroutine 10015.

PROBLEM OF PARTIAL PHYSICAL RECORDS

One problem with packing two logical records to a
physical record is that the operator may stop
inputting data in mid-physical record. If that
happens you must:

(1) pad bytes 126-250 with blanks
(2) make sure you write it out to the disk

Since you can now have this "half-empty" record,
you also must test for the condition whenever
operator input is resumed on an existing file.

A SOLUTION

First, let's look at the case of a new file. If
the operator answers "new file", or "l", then lines
10035 - 10055 are executed to open the file, and
then jump to line 10080. Lines 10110-10125 take
the input generated and write it to disk. It's
simple enough. The variable that keeps track of
what side of the physical record you are entering
is "I%". It is set to "l" in line 10030. If I%=1,
which is the case of a new file, then the program
saves the input in the left side of Z$, increments
I%=2, and returns. If I%=2, which may be the case
for an old file, and which will be the case if you
just saved a first entry, as above, then the
program appends the input to the right side of Z$,
writes it ("it" being both entries) to disk, and
sets I% back to 1.

Line 10090 is the test for end-of-input by the
operator. If the operator quit, then the length of
A$=0. If so, the program skips to line 10130.
Here we check the value of I%. As we just
discussed, if I%=1, then there is no input being
held in Z$. If I%=2, then Z$ holds a 125-byte
logical record that hasn't been written to disk.
Line 10130 tests I%, and if equal to 2, puts 125
bytes of blanks on the end of Z$ and writes all 250
bytes to disk.

Now back to the problem of re-starting input with a
partial physical record. If the operator answers
"old file", the program asks for, and opens, an
existing file, then jumps to line 10060. Here I
read the last record and test for a blank in char­
acter position 126. There will never be a blank in
126 if the right-hand logical record exists, as the
system always requires a minimum of a NAME to be
entered.

(Continued in column 14)

MUG NEWSLETTER #24 - JULY 1982 Column 6

DATASMITH UTILITIES - (Continued from column 3)

Command syntax is:

BAS>LIN "[unit:]<Basic file>" "[unit:]<text file>"

Limitations: Basic Programs allow a line length of
up to 250 characters, while LINEEDIT only allow a
maximum of 132 characters. Therefore, it is
impossible to convert a basic line exceeding 132
characters to LINEEDIT format. If any line in the
Basic program exceeds 132 characters, the program
will abort with a PARM ERR message. It is
recommended that long lines in the Basic program be
broken in smaller lines or deleted before
performing the conversion. Note that LINEEDIT
treats everything as text and line references in a
Basic program have no meaning to it.

LINEEDIT TO BASIC CONVERSION

The LINEEDIT TO BASIC CONVERSION converts a
LINEEDIT text file referenced by <text file> to a
Micropolis Basic program file referenced by <Basic
file>. The program compresses Basic command and
functions in ASCII to one-byte tokens and strips
LINEEDIT line numbers. The program is useful to
recover files that had been previously converted to
text by the BAS>LIN program and has many useful
applications in converting programs from other
languages to Micropolis Basic. Command syntax is:

LIN>BAS "[unit:]<text file>" "[unit:]<Basic file>"

Limitations: This is a "dumb" conversion program
and it assumes that the original text file is of
proper Basic syntax and all line numbers are
correct and in ascending order. It will try to
convert any file produced by LINEEDIT, if asked,
but the results may contain garbage that Basic can
not recognize. Make sure that your source file is
correct before using this program.

MULTIPLE MERGE PROGRAM

The MULTIPLE MERGE PROGRAM merges a common basic
program segment in up to ten different Micropolis
Basic files without operator intervention. When
the program signs on it prompts:

ENTER MERGE FILE NAME?

whereby the operator is expected to enter the name
of the Merge file in the form: "[unit:]<filename>".
Note that the file name must be enclosed in quotes.
After the Merge file name has been entered the
program will prompt:

ENTER A PROGRAM NAME?

whereby a program name in quotes is expected.
Pressing RETURN without entering a file name will
begin program exectuion. This program serves the
same function as several LOAD, MERGE, and SAVE
commands from Basic and is useful for configuring
systems consisting of several programs with
hardware-dependent code, serial numbers, etc.
Command syntax is:

MERGE (no parameters)

Limitations: This utility saves the entire program
in memory during the merge, so there must be ample
memory for both the program and the MERGEd code.
The program does not check for a memory overflow
and will crash the system ff it is asked to MERGE a
program that is too long. The utility is quite
short, however, and generally.h9s the ability to
MERGE programs that are.longer than Basic could
load on the same system, s9. this is seldom a
problem. -

BASIC SYSTEM LISTER
~~- -~~- -~~-

The BASIC SYSTEM LISTER prompts for up to ten names
of Micropolis Basic program files. The files must
be entered in the form "[unit:]<filename>",
including quotes. Pressing RETURN without entering
a file name starts execution of the program. Each
program is listed on the system printer with the

MUG NEWSLETTER #24 - JULY 1982 Column 7

name of the program and a page number as a heading.
New programs start at the top of a new page.
Equivalent to several LOAD and LISTP commands from
Basic, this utility allow listing several programs
without operator intervention or printer
"babysitting". Command syntax is:

SYSLIST (no parameters)

Limitations: The program assumes a standard 66 line
computer form of 132 characters width. The program
would have to be modified to handle other sized
forms.

BASIC PROGRAM SMASH

The BASIC PROGRAM SMASH ROUTINE removes remarks and
non-significant spaces from the program referenced
by <source file> and creates a "smashed" version as
the file <destination file>. This utility is
useful for reducing the memory requirements of a
Micropolis Basic program that contains REM or I
statements and spaces that make the program easier
to read. The resulting program is difficult to.
read, but is of the smallest size that will still
execute. No line numbers are removed, so remarks
:may still be used as entry points in the program.
Command syntax is:

SMASH "[unit:]<source file>" "[unit:]<destination
file>"

Limitations: Since the resulting code is difficult
to read, use this only for debugged programs, and
save the fully commented form for reference. In
some rare cases, removing spaces may produce
ambiguous statements that may cause syntax errors
in the resulting program. For example, the
statment: PUT 2 R, S, T when "smashed" becomes
PUT2R,S,T. Basic would interpret the 2R in the
"smashed" version as a lead-in to a file number
expressed in Radix 2 (binary) format, but when the
first comma is encountered it assumes it has found
a syntax error. The meaning can be made clear
simply by inserting a single space after the file
number. This is the only type of error that has
been encountered as a result of using the program.

The DUMP MEMORY program is an enhanced version of
the MOOS DUMP command which dumps memory to the
console in ASCII representation as well as
hexadecimal. All bytes that could be interpreted
as valid ASCII characters are printed, and bytes
which do not fall in the range of ASCII characters
are printed as periods. Command syntax is:

DMEM <start addr.> <end addr.>

Limitations: Since this is not a resident MOOS
command, calling it will overlay a small part of
the applications area.

The DUMP FILE program is an enhanced version of the
MOOS DISP command which dumps the contents of a
disk file to the console in ASCII representation as
well as hexadecimal. The output format is the same
as the DMEM program. Command syntax is:

DFILE "[unit:] <filename>"

Limitations: None discovered.

PHYSICAL DISK DUMP

The PHYSICAL DISK DUMP UTILITY is similar to the
DFILE program, except it dumps the content of a
Micropolis disk by physical track and logical
sector instead of by file name. This allows
viewing "system" areas of the diskette such as the
trackmap and directory, and will also allow viewing
the contents of different formats such as CP/M for
Micropolis diskettes. Command syntax is:

DISKDUMP (no parameters)

MUG NEWSLETTER #24 - JULY 1982 Column 8

This is a command-oriented program with four
commands as follows:

DRIVE <unit>
Specifies the drive number to access. The default
is o. Once the drive command has been used, the
drive number remains the same until another DRIVE
command is given.

TRACK <track #>
Specifies the physical tack number in hexadecimal
notation that will be accessed on the next read.
Once a TRACK command has been given, the track
number remains the same until another track command
is given.

SECT <start sector #> [end sector #]
Causes a physical disk read with the desired range
of sectors (entered in hexadecimal) to be displayed
on the console in the same format as the DFILE
program. The second sector number is optional. If
it is not entered, only one sector will by
displayed. These are "logical blocks" rather than

.Physical sectors. See the Micropolis MOOS manual
for details on sector mapping.

HELP
Displays the command syntax on the screen. The
help display is called on sign-on or syntax errors.

DOS
Terminates the program and returns control to MOOS.

Limitations: You have to know what you are doing
for this program to be much use.

CP/M ! ~ - (Continued from column 1)

CP/M file types are user-defined and can be any
combination of 3 characters or less.

User file types are routinely used with CP/M
because they are part of the file name, and handy
features for treating files as groups are provided.
Through the use of the CP/M "STAT" program, a
separate file on disk, any file can be tagged as
read/write or read only, but no equivalent to the
MOOS "protected" type exists. CP/M also has a file
type (SYS) that doesn't appear in directory
searches and only the "STAT" program can find them.
This is an interesting but seldom used feature.

CP/M has a way of logging on "users", so that each
user has his own directory and can share a disk
with another "user", never seeing each other's
files. The "user" idea is great for winchester
disk systems but isn't used much with floppys
because their limited storage makes more than one
user impractical. MOOS actually pays more attention
to file types as far as the system is concerned,
while with CP/M they are primarily for the user to
define.

SYSTEM TRACKS

Under CP/M, the operating system itself resides on
the disk on two reserved tracks separate from the
rest of the data on the disk. A utility program
called SYSGEN is required to put it there, and CP/M
does not appear on the disk directory. In fact, it
is impossible to tell if CP/M is on a disk without
actually trying to "boot" it. Under MOOS,
everything except the bootstrap loader is just
another file in the directory and the filecopy
utility can be used to transfer MOOS from disk to
disk.

CHANGING DISKS

One of the more annoying features of CP/M is the
fact that you can't change the disk in any drive
without the new disk being tagged "read only" by
the operating system. Any time you do perform a
disk swap, you must enter control-C to do a
"warmboot" of the system, which amounts to CP/M's
console command processor being re-read from disk
and all disks being tagged read/write again. This
means, of course, that CP/M must be on the disk in

MUG NEWSLETTER #24 - JULY 1982 Column 9

the default drive or the system will crash with a
"system error". I would assume this "feature" is
there to protect the user from errors caused by
indiscriminate disk swapping, but it turns out to
be destructive in most cases because it prevents
you from changing disks even when it is beneficial
to do so.

MEMORY ALLOCATION

Both systems provide very similar ways of running
programs by means of simply typing an executable
file name followed by a number of optional
parameters. For example, to run Basic in either
system, you just type BASIC. The program is loaded
into an applications area and executed in either
case, but memory is managed differently in each
system.

With MOOS, the operating system resides in low
memory and programs are loaded in at a higher
memory address. MOOS can use all contiguous memory
available in the computer and automatically
determines the location of the end of memory.

CP/M resides in high memory and loads programs in
low memory, usually at 100 Hex. A utility program
called "MOVCPM" can relocate the operating system
anywhere in memory and must be used to install CP/M
on computers with different memory sizes. This
slight inconvenience is off set by the fact that
programs running under CP/M are somewhat more
transportable, all using the first 256 bytes of
memory as an interface to CP/M no matter where it
may be in memory or what version it is. It allows
CP/M itself to be of different physical sizes
without any disruption of application programs.
Since MOOS version 4 is larger than version 3, the
address where application programs are to be
executed had to be changed to make room for it.

SAVING MEMORY

Both CP/M and MOOS have a SAVE command whereby a
memory image can be saved on disk, but the CP/M
SAVE is severely limited, only having the ability
to save memory starting at the beginning of the
applications area at lOOH and proceeding for as
many 256 byte "pages" as specified. MOOS, on the
other hand, can save memory between any two
addresses, making it considerably more versatile.
CP/M has no ability to load a program or any memory
image without executing it, while MOOS can load a
file to any memory location and even do "scatter
loads" where a single file can be loaded into non­
contiguous locations.

~DUMP

All of the commands present in MOOS for memory
operations are absent from CP/M. Memory dump,
block moves, searches, fills, compares, and several
other programmer-oriented utilities can not be done
under CP/M unless the separate debugging program is
loaded, or your computer has a monitor program in
ROM that performs these functions. I appreciate
the MOOS utilities for development purposes, but
have never known a commercial computer user to need
them or even care if they were there.

APPLICATION INTERFACES

Like MOOS, CP/M has a number of entry points that
allow application programs to use the operating
system's input-output interfaces. However, the CP/M
interface functions are very basic in nature and do
not allow anywere near the variety that MOOS does.
For example, MOOS supports automatic byte-for-byte
reading and updating of a file, block loads and
saves, command line parsing, error handling
routines, processor utility routines, and several
extremely useful conversion routnes, like ASCII to
Binary conversion, 16-bit multiply and divide, etc.
The fact that these functions are preprogrammed
into the operating system makes assembly language
programming considerably easier with MOOS.

Also, CP/M does not return any specific error
information to an applicaiton program. When doing
a disk operation, CP/M only indicates whether or

MUG NEWSLETTER #24 - JULY 1982 Column 10

not the operation was successful to application
programs, and only a "bad sector" message to the
operator. MOOS has nineteen different error codes.

Consider the following typical scenario: You have
just spent an hour with your text editor writing a
letter or an assembly language program. You don't
know it, but there isn't enough room on your disk
when you enter the command to save it. Under MOOS,
the operating system will report "DISK FULL" and
return you to the editor. You may now put a disk
with more room on it in the drive and try again,
with no data lost.

Under CP/M, there is no "DISK FULL" message, so the
system will report a "DISK ERROR" with no clue as
to what might be wrong. Also, you end up with the
operating system in control, with no way to get
back to the text editor or your hour's worth of
work. Even if you aren't thrown out of your text
editor, you can't swap disks because CP/M will mark
the new disk "read only".

Wh?.t do you do? If you are Joe Average user you
might utter a few choice words or shed a few tears,
but there is no "documented" way to recover from
this common problem under CP/M. Actually, there is
a way you can get your data b~ck by tricking CP/M
or using your monitor (if you have one) to move the
data down in memory so CP/M can save it. This
requires an intimate knowledge of both your
computer and CP/M, and an unsophisticated user
wouldn't have any idea as to what to do.

While MOOS has the edge in power, CP/M has a formal
interface scheme that makes programs much more
portable. MOOS function entry points are memory
addresses containted in EQU statements in the files
"SYSQl" and "SYSQ2". This means that the
programmer has to have access to the user's
function entry points in order to deliver a running
assembly language program under Moos. CP/M uses a
"function code" and a call to a single low memory
address for all functions. This assures that
programs designed to run under CP/M will be
transportable from one system to another, and that
modifications to the operating system will not
affect the programs that run under it if addresses
have to be changed.

UTILITY PROGRAMS

Both operating systems have a number of utility
programs associated with them as "standard
equipment". CP/M relies on utility programs more
than MOOS, since many functions that MOOS does
standing alone are done by CP/M utility programs.
For example, CP/M uses a program called "STAT" to
perform some of the functions that TYPE, FILES, and
ASSIGN do under MOOS. STAT has indespensible
features that enhance CP/M greatly, but since it is
a separage program, it can not be used while any
other application is running. CP/M does not have a
FREE command that returns the amount of free space
on a disk, and there is no simple way a program
can tell it is running out of disk space. CP/M
only tells you after you've already run out.

The Assembler provided with CP/M is a good,
reliable 8080 assembler that is comparable to the
MOOS assembler. Both have about the same features,
except that the CP/M assembler produces object code
in Intel Hex format rather than in loadable and
executable code. For those not familiar with it,
Intel Hex format is a system of representing object
code as an ASCII representation of hexadecimal
numbers for addresses, op-codes" and data. Since
it contains only ASCII characters, a Hex file can
be printed on a printer or sent from computer to
computer via a modem. Another CP/M program called
"LOAD" creates an executable file from a Hex file.
Output from the MOOS assembler can be either in
memory or in a file that can be directly loaded and
run.

Both systems have editors to produce text files
either for the assembler or for general purpose
text processing. The editors are line oriented
rather than screen oriented and therefore are
rather crude when compared to word processing

MUG NEWSLETTER #24 - JULY 1982 Column 11

software. While the features of both are comparable
to a certain extent, the CP/M editor, ED, is much
harder to use than the Micropolis LINEEDIT editor,
in my opinion.

The debugging programs provide needed support for
developing assembly language programs. The CP/M
version, DDT, self-relocates to the highest
available memory area, while Micropolis DEBUG has a
DEBUG-GEN program that produces a debugger that
will run anywere the user selects. Both have
similar features, but CP/M relies on DDT to perform
certain functions that are built into MOOS.

By far the most useful program with CP/M is the
Peripheral Interchange Program, or PIP. Using PIP,
you can connect any device to any other device in
the system and perform a data transfer. PIP is
used most often for copying files, like the
Micropolis FILECOPY, but PIP is much more
versatile. Not only can you connect any device to
any device, but PIP will also perform some editing
like line and page numbering, lower case to upper
case translation, expanding tabs, etc. on the w~y.
CP/M can support more devices than MOOS and PIP can
perform a wide variety of transfers. Besides disk­
to-disk, PIP can transfer disk to screen, Printer,
or one of several user defined devices, and device
to disk, even keyboard to disk.

CP/M also has a very powerful batch-processing
feature called SUBMIT that allows commands
contained in a text file to control the computer in
lieu of the keyboard. With SUBMIT, the user can
program the operating system to perform a whole
series of operations like copying files, running
programs, making listings, etc. and then walk away
while they are all executed in sequence. As soon
as one job is over, the next in the queue is
performed automatically. This is a great time­
saving feature that has no counterpart in MOOS.

SUMMING IT UP

In summary, both systems have arguable strengths
and weaknesses. Because MOOS specializes in one
type of disk drive and is a much larger system than
CP/M, it is much more friendly to the user and
allows programs to be written that can handle
almost any error under software control without
"crashing." CP/M is written so that it can be
customized for almost any type of disk storage
system and therefore doesn't really know much about
the hardware it is controlling. As a result, its
simplistic approach can easily result in a program
being aborted by a simple thing like a disk not
being in the drive. It is CP/M's simplicity,
however, that has made it successful because it is
easily adapted to any 8080 or Z-80 based computer.

If you are looking for the widest possible variety
of software to run on your computer, you have
little choice but to run CP/M since more software
has been written for CP/M based systems than for
any other operating system. However, if you have
Micropolis equipment and can find the MOOS software
you need or are developing high quality programs
for a user that doesn't need access to all those
CP/M programs, MOOS will make the programming chore
much easier and is many times more friendly to the
user. You can always run CP/M on a Micropolis
system if you need to, but you can't run MOOS on
anything but Micropolis equipment. This gives
Micropolis owners the option if having two
operating systems if they need them.

I personally would like to see MOOS modified to
include some of the desirable features of CP/M, and
perhaps even with new disk drivers so that it could
be transported to non-Micropolis equipment. I
would be interested in hearing from readers that
have thoughts on this subject.

~COMPUTER - (Continued from column 2)

Gosh, I like computers! Getting to re-write
everything on the screen just to enter the next
line. You'd think it would know or something •..

MUG NEWSLETTER #24 - JULY 1982 Column 12

Alright, I think I can do the scroll. What about
the control codes? We have to know if it's a
printing character or a control character. And
what about backspace? ASCII backspace is code 08
while Micropolis insists on SF. Ummm.

The most common way of deteriming what a character
is, uses the Compare Immediate instruction, CPI x.
Whatever we make x, it will be compared to the
contents of the A-register. If they match, the
zero flag is turned on. Kind of clunky, but it
works. Actually, all we want to do is turn on the
zero flag. We don't care if it gets raised because
of a CPI, an SUI (Subtract Immediate), an ADD or an
attack on the Falklands. We can start with SUI OD.
If the A-reg contained OD then the flag turns on.
We can then increment the A-register. The flag
will turn on when the A-register equals zero, and
that will tell us what it originally contained.
This is faster than a string of CPl's.

Perhaps this isn't very clear. In the coding I've
added a lot of comments so you can follow it. If
you are only doing one or two compares, then use
CPI, but if you are working with a large number of
control codes, the method above is faster.

When we get right down to it, characters coming to
the video driver can only do two things; they can
add space to the screen, like a backspace or screen
clear, or they can subtract space from the screen,
like a normal printing character or a line feed.
Anything else, we simply ignore. But the control
code recognition routines give us a very handy
place to recognize codes and branch to non-video
related routines, like Bell or Printer control.
I've added some comments about this in the coding
and for those of you who want to personalize your
system; to modify it to meet your specific needs,
the video driver is a nice place to handle your
special codes. Read the code, it's very flexible.

~ SHORT LECTURE

Is it even practical to waste our precious MUGger
Newsletter talking about 16 x 64 video displays and
cheap computers when most business applications use
24 x 80 displays? I think the jury is still out.
The smaller display has marked disadvantages but it
is also lower in cost and for second and subsequent
systems, devoted entirely to data entry or other
mundane chores, it is perfectly adequate. The
'Cheap' philosopy; using seperate cpu, video and
I/O boards actually has a lot to say for it. In my
area (San Diego) the sophisticated systems have
quickly outstripped the ability of the local
technicians to maintain them; if it doesn't work it
doesn't matter how sexy the system is. In my Cheap
Computer the costs are low enough that I can keep
seperate back-up cards and simply swap cards if a
problem developes. (But the har~ware is well
burned in and I've had no equipment failures in
more than a year.)

END OF LECTURE

Next time I come around on the disk drive, I'll
offer you a nice, neat little video driver,
suitable for any 16 x 64 memory mapped video board,
plus the instructions on how to install it without
causing a nervous breakdown. For you hardware
buffs, light a fire under your soldering iron •.•
what? An Electric Soldering Iron! What'll they
think of next! Well, get it out anyway, because I'm
going to show you how you can give your Cheap
Computer a bell ••• or at least a horn. You'll need
a parallel outport and for fun, I'll show you how
to play music on your bell. God willing.

MUG NEWSLETTER #24 - JULY 1982 Column 13

VIEW ON FORTH - (Continued from column 4)

Forth's efficiency and speed of execution, machine
code is usually only resorted to when execution
time is an extremely critical factor.

Forth attempts to create the concept of a more
perfect programming environment. First, by creating
the Virtual Computer in its nucleus instruction set
and then, by allowing the programmer to create the
commands which are most useful for an application.
The programming language is customized for the
application rather than the application being
tailored for the language. This allows a more
direct implementation of the problem into a
program. If the problem can be conceived of as a
six headed dragon, then the language can be
structured to appear to manipulate a six headed
dragon. But this is only the beginning. For the
programmer there are many more features.

BASIC is a good programming language because, among
other things, it is interpretive in nature. That
is, segments of a program can be individually
tested at the keyboard by the programmer. Forth can
do this too, and even more. By their very nature,
good Forth programs are very modular. In fact,
each module can be accessed individually and
tested. Additionally, because Forth passes data on
the stack and not through variables, the programme~
does not have to worry about accidentally reusing
the wrong variable, or what the variable Z7 or X9
was used for. Forth has variables (though they are
used much less) which may have names of any length
desired (31 characters in most popular
implementations). So cryptic names such as Z7 and
X9 are no longer a problem.

Forth also does not have the memory problems of
other languages. First, the language itself is
very small, smaller in fact than most extended
BASICs and operating systems. In fact, Forth code
is so small that much of Forth is written in Forth.
Except for the Virtual Machine and a few other time
critical Forth instructions, all of the Forth
system including the interpreter, compiler, editor,
and assembler are written in Forth. Also, all of
mass storage (disk for example) can look to Forth
like virtual memory. This allows a program to use
strings or arrays as large as all the mass storage
available, just as if they were in memory. For
additional savings, Forth can even be programmed to
chain or overlay programs when necessary. In fact,
Forth is the only language efficient enough for
Hand-Held Computers. Except for Microsoft BASIC
available on the Quasar or Panasonic HHCs, almost
all of the programs and languages on the HHCs are
written in a version of Forth.

Forth is faster than most languages, even languages
which compile. Forth both interprets and compiles.
This gives it the programming flexibility of BASIC
but the speed of compiled languages. When
compiled, Forth takes much less space than other
compiled languages. This is because Forth compiles
threaded code. That is, rather than compiling the
actual native processor instructions to be executed
(often several bytes for a single command), Forth
compiles a pointer to the code to be executed.
These pointers are executed in sequence by a small
code routine called NEXT. This routine is very
short (about ten bytes) and very fast (about 3/8
the speed of a subroutine call) and is one of the
keys to the flexibility of Forth.

Just as a good BASIC programmer can write very good
BASIC code and a bad BASIC programmer can write
incomprehensible BASIC code, the same is true of
Forth programmers, but to a greater degree. Forth
is much more of an amplifier of a programmer's
talents because the language does not protect the
programmer from himself. This allows a good Forth
programmer to write very short, concise, correct,
program code and a bad Forth programmer to write
long, strung-out, code which may never actually
work and looks more like FORTRAN than Forth. Many
people do not, and will not, like the language for
this reason. Forth requires a programming
philosophy and style different from most languages.
When programmed properly, however, it is the most

MUG NEWSLETTER #24 - JULY 1982 Column 14

efficient language for small systems. Do you then
dare to attempt to program in Forth and possibly
learn the level of your talents and understanding?

PACKED RECORDS - (Continued from column 5)

If character 126 is a blank, then Z$ is set to the
left-hand 125 characters of the current Z$, I% is
set to 2 (to say I have a partial physical record),
and PUTSEEK is decremented by one. (When you open
a file, PUTSEEK=RECPUT, i.e., one bigger than SIZE,
being the next location to write a sequential
record.) This means I'll write over my current
last record - after I fill the vacent right-hand
side.

Lines 12060-12085 show a method for determining
where a logical record is on the physical file.

You'll note that I've tried to get all operator
response to be a string input, though, as I review
the listing, I see I haven't succeeded. I believe
in checking all responses for validity before
trying to execute on them, such as in lines 3025-
3030. Line 11020, however, takes an integer
response. It shouldn't. The code should look like
that at lines 12025-12045.

The listing is by System/z' BEM, by the way. Very
helpful. The domain of each subroutine is shown by
the "*'s", with the entry point shown at ">*" and
the exit at "<*". Locations of "GOTO's" are shown
by the "*>" or " >". The print of variable and
space allocation is also done by BEM.

Title:

10
20
30
35
40
50
60

500
505
510
515 > *
520 *

525 *
530 *

535 *
540 *
545 *
550 *
551 *
555 *
560 *
565 *
570 *
571 *
575 *
580 *
585 *
590 *
591 *
595 *
600 *
605 *
610 *
611 *
615 *
620 *
625 *
630 *
631 *
635 *
640 *
645 *
650 *
651 *
655 *
660 *
665 *
670 *

MAIN

GOTO 30: ! 02/28/82
SAVE "MAIN" :PRINT "SAVED 'MAIN' II :END

> GOSUB 57215: Test for V3/4
GOSUB 57115: Read Clear Screen
GOSUB 31120: Configure
GOSUB 40060: Main Menu
PLOADG "MENU.M"
!
! 05/09/81 Keyboard Input

PRINT 0$(0)
PRINT "Press RETURN for any field not use
d."
PRINT
PRINT "ENTER NAME or Press RETURN to Exit

PRINT L$
INPUT A$
IF LEN(A$)=0 THEN 735
A$=A$+M$
PRINT
PRINT "ENTER ADDRESS l"
PRINT L$
INPUT 8$
B$=B$+M$
PRINT
PRINT "ENTER ADDRESS 2"
PRINT L$
INPUT C$
C$=C$+M$
PRINT
PRINT "ENTER CITY"
PRINT LEFT$(L$,15)
INPUT D$
D$=D$+M$
PRINT
PRINT "ENTER STATE"
PRINT LEFT$(L$,4)
INPUT E$
E$=E$+M$
PRINT
PRINT "ENTER ZIP"
PRINT LEFT$(L$,ll)
INPUT F$
F$=F$+M$
PRINT
PRINT "ENTER COUNTRY"
PRINT LEFT$(L$,4)
INPUT G$
G$=G$+M$

MUG NEWSLETTER #24 - JULY 1982

671 *
675 *
680 *
685 *
690 *
691 *
695 *
700 *
705 *
710 *
711 *
715 *
720 *
725 *
730 *
735 <*>

PRINT
PRINT "ENTER AREACODE"
PRINT LEFT$(L$,5)
INPUT H$
H$=H$+M$
PRINT
PRINT "ENTER PHONE"
PRINT LEFT$(L$,9)
INPUT I$
I$=I$+M$
PRINT
PRINT "ENTER FLAG"
PRINT LEFT$(L$,7)
INPUT J$
J$=J$+M$
RETURN

1 05/09/81 Display to Screen

PRINT 0$(0)
PRINT "A - NAME: II ;A$
PRINT "B ADD!: ";8$
PRINT "C ADD2: ";C$
PRINT "D CITY: ":D$
PRINT "E - STAT: II ;E$
PRINT "F - ZIP: ";F$
PRINT "G CNTY: II :G$
PRINT "H AREA: II :H$
PRINT "I PHON: II: I$
PRINT "J FLAG: ";J$
PRINT
RETURN
!
1 05/09/81
1
R$=""

Modify

Column 15

llOO
ll05
lllO
1115 >*
ll20 *
ll25 *
ll30 *
1135 *
ll40 *
1145 *
ll50 *
ll55 *
ll60 *
ll65 *
ll 70 *
1172 <*
3000
3005
3010
3015 >*>
3016 * PRINT "ENTER I LETTER I I SPACE I I CORRECT TEXT

3017
3019
3021
3025

3030

3035
3040
3042
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3600
3605

* PRINT "OR, Press RETURN to Continue."
* INPUT R$
* IF LEN(R$)=0 THEN GOTO 3095
* IF LEFT$(R$,l)<"A" OR LEFT$(R$,l)>"J" PRI

NT "ERROR*****:FIRST CHARACTER MUST BE 'A
I THRU 'J'":GOTO 3015

* IF MID$(R$,2,l)<>" II PRINT "ERROR*****:SE
COND CHARACTER MUST BE A. BLANK":GOTO 3015

* S$=LEFT$(R$,l)
* T$=RIGHT$(R$,LEN(R$)-2)+REPEAT$(" ",28)
* N%=N%+1: I Count Mods
* IF S$="A" A$=T$
* IF S$="B" B$=T$
* IF S$="C" C$=T$
* IF S$="D" D$=T$
* IF S$="E" E$=T$
* IF S$="F" F$=T$
* IF S$="G" G$=T$
* IF S$="H" H$=T$
* IF S$="I" I$=T$
* IF S$="J" J$=T$

<*> RETURN
I
1 05/09/81 Separate Fields of incoming Re

3610
3615
3620
3625 > *
3630
3635
3640
3645
3650
3655
3660
3665
3670 *
3675 <*

*
*
*
*
*
*
*
*

cord
1
IF I%=1 Y$=LEFT$(Z$,125)
IF I%=2 Y$=RIGHT$(Z$,125)
A$=LEFT$(Y$,28)
B$=MID$(Y$,29,28)
C$=MID$(Y$,57,28)
D$=MID$(Y$,85,13)
E$=MID$(Y$,98,2)
F$•MID$(Y$,100,9)
G$=MID$(Y$,109,2)
H$=MID$(Y$,lll,3)
I$=MID$(Y$,114,7)
J$=MID$(Y$,121,5)
RETURN

10000
10005
10010
10015 >*
10020 *

1
1 05/10/81 Input
!
PRINT 0$(0)
PRINT "ENTER 'O' IF OLD FILE, 'l' FOR NEW
FILE: ";

10021
10022
10023
10030
10035
10040

*> R$=FAA(l)
*
*
*
*
*

IF R$<>"0" AND R$<>"1" THEN 10021
PRINT R$
I%=l:IF R$="0" GOSUB 30015:GOTO 10060
INPUT "ENTER NAME OF NEW FILE.";R$
R$="N:l:"+R$

MUG NEWSLETTER #24 - JULY 1982 Column 16

*
*

OPEN 1 R$
GOTO 10080

10045
10055
10060
10065

*> GET 1 RECORD SIZE(l) Z$
* IF MID$(Z$,126,l)=" II Z$=LEFT$(Z$,125):I%

=2:PUTSEEK(l)=SIZE(l)
10080 *> A$=" II :8$=" II :C$=" II: D$=" II :E$=" II :F$=" II: G$=""

:H$="":I$="":J$=""
* GOSUB 515
* IF LEN(A$)=0 THEN GOTO 10130

10085
10090
10095
10100
10105
lOllO
10ll5

*> GOSUB 1115: ! Display
* GOSUB 3015: I Modify
* IF LEN(R$)>0 THEN GOTO 10095
*
*

IF I%=1 Z$=A$+8$+C$+D$+E$+F$+G$+H$+I$+J$
IF I%=2 Z$=Z$+A$+B$+C$+D$+E$+F$+G$+H$+I$+
J$:PUT 1 Z$:Z$="":I%=0

10120 * I%=I%+1
10125 * GOTO 10080
10130 *> IF I%=2 Z$=Z$+REPEAT$(" ",125):PUT 1 Z$
10135 <* RETURN

*
*
*
*

1 05/10/81 Display to CRT
1
PRINT 0$(0)
INPUT "ENTER STARTING FILE";C%
GETSEEK(l)=INT((C%+1)/2)
Q%=C%-(INT(C%/2)*2)
!F Q%=0 Q%=2

11000
11005
llOlO
11015 >*
.}.1020
ll025
ll030
11035
11040
ll045
ll050
ilo55
ll057
ll060
ll065
ll070

*> GET 1 Z$
*
*>
*
*
*
*>
*

FOR P%=0% TO 2
IF P%=1 Y$=LEFT$(Z$,125)
IF P%=2 Y$=RIGHT$(Z$,125)
GOSUB 3625: I Separate fields
GOSUB 1115: I Display
S%=IN(F%)
IF S%=32 THEN 11065

11075 * NEXT P%
11080 * IF RECGET(l)<RECPUT(l) THEN Q%=l:GOTO 110

ll085 <*
ll090
lllOO <*
12000

40
RETURN
IF N<RECPUT(l) GOTO 11050
RETURN

12005 I 05/10/81 Modify
12010 I
12015 >* N%=0
12020 * PRINT 0$(0)
12025 *> PRINT " Enter Record to be Modified, or (

0) to Exit."
12027
12030
12035

*> R$=" II
* INPUT R$
* IF LEN(R$)=0 PRINT "ERROR*****: YOU MUST

ENTER RECORD NUMBER, OR A ZERO!": GOTO 12
027

12040
12045

*
*

*
*
*
*
*
*
*
*
*
*

FOR J%=1 TO LEN(R$)
IF MID$(R$,J%,l)<"O" OR MID$(R$,J%,l)
>"9" PRINT "ERROR*****: ENTRY MUST BE
NUMERIC1":GOTO 12027

NEXT J%
C%=VAL(R$)
IF C%=0 GOTO 12135
G%=INT((C%+1)/2)
P%=C%-(INT(C%/2)*2)
IF P%=0 P%=2
GET 1 RECORD G% Z$
IF P%=1 Y$=LEFT$(Z$,125)
IF P%=2 Y$=RIGHT$(Z$,125)
GOSUB 3625: ! Separate Fields

12047
12050
12055
12060
12065
12070
12075
12080
12085
12087
12090
12095
12100
12105

*> GOSUB 1115: I Display
*
*
*

12ll0 *
12ll5
12120
12135
12150
13000
13005
13010
13015 > *
13020
13025
13030
13035
13040

*
*
*>

<*

*
*
*
*
*

13045
13050

*
*

GOSUB 3015: ! Modify
IF LEN(R$)>0 THEN GOTO 12090
IF P%=1 Z$=A$+B$+C$+D$+E$+F$+G$+H$+I$+J$+
RIGHT$(Z$,125)
IF P%=2 Z$=LEFT$(Z$,125)+A$+B$+C$+D$+E$+F
$+G$+H$+I$+J$
PUT 1 RECORD G% Z$
GOTO 12025
PRINT "TOTAL LINES MODIFIED =";N%
RETURN
1
1 05/10/81 Display Last Record
1
PRINT 0$(0)
GET 1 RECORD SIZE(!) Z$
PRINT
PRINT

Z$

PRINT "PHYSICAL RECORD =";SIZE(!)
PRINT "LOGICAL RECORDS =";SIZE(l)*2-l;SIZ
E(l) *2
PRINT "Press RETURN to continue."
INPUT R$

MUG NEWSLETTER #24 - JULY 1892 Column 17

13055 <* RETURN
30000
30005 ! 12/28/81 Subroutine for displaying cont

30006
ents of disk:

for opeation.
1

- selecting file

30010
30015
30019
30023
30027

>*> PRINT 0$(0)
* OPEN 8 0$(3)+"DIR" ERROR 30075
* CLOSE 8
* PRINT TAB(lO):"THE FOLLOWING FILES ARE AV

30031
30035
30039
30043

AILABLE: II

* PRINT
* DISPLAY 0$(3)+"DIR"
* PRINT
* PRINT "If desired file is not listed, ins

30047 *

30051 *
30055 *

ert"
PRINT "another disk, type 'X', press RETU
RN'. If

PRINT
INPUT "Otherwise, Enter name of file desi
red:" :F$
IF F$="X" OR F$="x" THEN 30015
OPEN 1 0$(3)+ F$ ERROR 30075
RETURN

30059 *
30067 *
30071 <*
30075
30079
30083

> PRINT

30087
30091
30095
31100
31110
31115
31120 >*

31125 *

31130 <*
40000
40010
40020
40060 >*>
40070 *

PRINT "*****":ERR$:"*****"
PRINT "Correct Problem, Press RETURN to C
ontinue."
PRINT
INPUT R$
GOTO 30015
1
! Configure
!
DIM A$(28),B$(28),C$(28),D$(13),E$(2),F$(
9),G$(2),H$(3),I$(7),J$(5),Y$(125),Z$(250
)
L$=" "+REPEAT$("-",28):M$=REPEAT$(" ",28
)
RETURN
!
1 Main Menu
1
PRINT 0$(0)
PRINT "**********INPUT & MODIFY ROUTINES*
*********"

40080
40100
40110
40120
40130
40140
40170
40180

* PRINT

40181
40182
40183
40190
40210

* PRINT "O - EXIT INPUT & MODIFY ROUTINES"
* PRINT "l - INPUT RECORDS"
* PRINT "2 - DUMP RECORDS TO CRT"
* PRINT "3 - MODIFY RECORDS"
* PRINT "4 - DISPLAY FINAL RECORD"
* PRINT
* PRINT "Enter number of function desired:

II;

*> K$=FAA(l)
*
*
*
*

IF K$<"0" OR K$>"4" THEN 40181
PRINT K$
IF K$="0" THEN GOTO 40335
IF K$="1" GOSUB 10015:GOTO 40310

MUG SUPPLIES & COMMENTS

If you wish to comment on the MUG newsletter, 07
have a question, a classified ad to place, or wish
to purchase any of the supplies in the adjacent
column - jot a note below, check any purchase, cut
off the bottom of this page and send to MUG, 604
Springwood Circle, Huntsville AL 35803, USA.

MUG NEWSLETTER #24 - JULY 1982 Column 18

*
*
*
*

GOSUB 30015
IF K$="2" GOSUB
IF K$="3" GOSUB
IF K$="4" GOSUB

11015: GOTO 40310
12015:GOTO 40310
13015: GOTO 40310

*> CLOSE 1

40215
40220
40230
40240
40310
40320
40330
40335
57100
57105
57110
57115 >*
57120
57125
57130
57135
57140
57145 <*
57200
57205
57210
57215 > *
57220
sn25
57230
57235
57240 <*

*
*

INPUT "Press RETURN to continue.":E$
GOTO 40060

<*> RETURN

*
*
*
*
*

*
*
*
*

1
! 12/20/81 Read Clear Screen
1
0$ (O)=""
FOR N%=0 TO 2

0$(0)=0$(0)+CHAR$(PEEK(J%+N%))
NEXT N%
0$ (2)=CHAR$ (PEEK(J%+N%+1))+":II
0$(3)=CHAR$(PEEK(J%+N%+2))+":"
RETURN
1
1 12/20/81 Test for Rev. 3/4, DIM 0$
1
J%=16R2F06
IF PEEK(l6R04C9)=64 THEN J%=16R2F7A
IF PEEK(l6R04C9)=64 THEN DEF FAA=l6R2F80
IF PEEK(l6R04C9)=0 THEN DEF FAA=l6R2FOC
DIM 0$(3,8)
RETURN

Variable sizes: Real - 5
Integer - 3 String - 40
LOQical memory end: DFFF H
0000 H bytes are reserved in high memory
FA* A

FN*

N
C% F% G% I% J% N% P% 0% S%
A$(28) 8$(28) C$(28) D$(13) E$(2) F$(9) G$(2)
H${3) I$(7) J$(5) K$(40) L$(40) M$(40) R$(40)
S$(40) T$(40) Y$(125) Z$(250)

0$(3,8)

Memory Allocation
====== ==========
Interpreter: 22272

6022
5700 H
1786 H Program:

Real Var:
Integers:
Strings:
Arrays:
Total Var:

130
78

776
44

1028

0082 H
004E H
0308 H
002C H
0404 H

Total Alloc: 29322
57344

728A H
EOOO H Available:

Dynamic allocation & buffers not included

1. (
2. (
3. (
4. (
5. (
6. (
7. (
8. (
9. (

10. (
11. (
12. {

13.
14.

$ Free Commercial MOOS S/W Price List
$ Free Commercial CP/M S/W Price List
$ 1.00 Commercial MOOS S/W Catalog
$ 2.00 Commercial CP/M S/W Catalog
$ 1.00 MUG MOOS Library Catalog
$.SO MUG CP/M Library Catalog
$42.00 Scotch DD, Reinforced Hub Disks{lO)
$18.00 Year 1 MUG Back Issues{l2)
$18.00 Year 2 MUG Back Issues(l2)
$ 2.00 Micropolis Drive Head Pads{2)
$ 5.00 Lube, for Micropolis Drives(tube)
$71.00 Micropolis (MDOS) Ver. 4.0

Incls. Manual, BASIC, and all Utils
$50.00 MOOS Ver. 4.0 Manual only
$50.00 Micropolis Drive Maintenance Manual

Above items are postpaid to North America. Else­
where, (airmailed) add $7.00 (each) for MDOS,
Manuals, and back issues: add $1.00 (each) for
Catalogs, lubricant, and pads. VISA & Master Card
accepted. U.S. funds only.

MUG NEWSLETTER #24 - JULY 1982 Column 19

~ UPDATES

LAST CHANCE FOR BARGAIN PRICE

George'Shaw tells me that the new FORTH will be out
on the first of August. The tentative price is
$325-$375. For those of you interested, any order
for the current AFORTH (at $150) before August 1st
will get you the update free. See page 2 of the
March newsletter for a description of the software,
and the offer. Outside North America, add $7 for
air-mail delivery.

AFORTH PATCHES

A few problems have arisen, particularly for the
EXIDY, with AFORTH operation. They may be
bothering other users, too. The new version will
have a configuration routine built in, so these
problems will not occur.

To change the Clear Page, or Formfeed, control,
type in:

xxx I PAGE 2+ 1

where xxx is the decimal character that clears
screen on your terminal.

To change the input for backspace, that is, the
keyboard character pressed, type in:

xxx 14 +oRIGIN 1

To change the output for backspace, that is, the
monitor response character, type in:

xxx 54 I EXPECT +

Again, xxx is the decimal representation of the
character which performs the funtion on your equip­
ment.

These patches could also be added to one of the
Editor screens so you wouldn't have to type them in
each time.

To permanently save them in the executive AFORTH,
perform the following~

MUG NEWSLETTER #24 - JULY 1982 Column 20

HEX
HERE.

(FORTH will give you a number back.)
(Go back to MOOS. Scratch AFORTH - from a copied
disk, in case this doesn't work.)

SAVE 2BOO here 18 3EFE

where 'here' is the number that was returned.

One other problem that isn't as simple to patch, is
the graphics coming out on the last character of
the AFORTH text strings, on the EXIDY. The problem
is because neither the EXIDY or the MOOS executives
is zeroing the high-order bit before sending it to
the screen. To fix this item, you must patch MOOS
to do an AN! 7F somewhere in the output routines.
This will be cured in the updated version, also.

CLASSIFIED

FOR SALE: IDS 225 printer w/graphics. Good condi­
tion. Works fine. $300 shipped prepaid in us.

Al Seyle, 2218 Via Tomas, Camarillo CA 93010
(213) 889-5400 7AM-6PM PDT M-Th, (805) 987-1947 any
~other time.

....................

* * * FOR THE FIRST TIME EVER *
* *
* A letter quality printer for under $1000! *
* The Smith-Corona TP-1 daisy-wheel printer, *
* regularly priced at only $895, is *
* Now On Sale for only $795! * * *
* Available with serial or parallel interface. *
* * * ELECTRONIC SYSTEMS INTERNATIONAL *
* P. o. Box 5758, San Diego, CA 92105 *
* *
* * * (714) 284-9646 *
* * ***

Published Monthly by the MUG
Subscription rates:

u.s., Canada, Mexico; $18/year: Other, $25/year

FIRST CLASS MAIL FIRST CLASS MAIL

•••••=c=•••••===•••••••••=••=••••••••••••••••••••••••••••••••••==•=••••••••~••••••==--•••••••=••3===•=•===

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 883-2621

FIRST CLASS MAIL

..)·

"'

