
~JOURNALS

nsiDff
February 1999 • $9.00

Vol. 5 No. 2
www.zdjournals.com/sun

lips & Techniques for users of SunSoft Solaris

PPF• setup tips
by Alan 0 rndorff

I n the Early 1970s the Internet was born,
and over the years it's evolved. Archie
has given way to search engines and

gopher is l: eing replaced by Web browsers, but
some things haven't seen much change. Usenet
and email are still essentially the same. Yet all
of this is meaningless if you can't access the
Internet. Microsoft Windows 95 and NT have
made acce~ ;sing the Web a breeze. Whether you
used the vmdor-supplied Dial-Up Network
ing, RAS, e r any of the third-party utilities,
anyone car, be on the Web in minutes. But hey,
what about UNIX, the platform that invented
and keeps 1 ~volving these things?

Unfortu 1ately, it's much more difficult to get
online with Solaris than it is with any of the
Windows c perating systems. But it can be done!
The following is a recipe for getting online.

Check ~our package
Figure A shows the basic parts needed before
we can beg in. Once we have a modem and a
connection to a remote network, we then
need to make sure we have the right packages
installed. 1 he packages
necessary for PPP are:

SUNWapppr
SUNWapppu
SUNWpppk
SUNWbnur
SUNWbnuu

To see if th ~ packages are
installed, type:

D
~ · · ·

Sun Workstation

This will provide you with a list of your cur
rently installed packages.

Configuration files
After verifying that we have the correct pack
ages installed, we'll need to edit certain config
uration files. These files will tell your machine
how to dial out and connect to the Internet.
The files that you will need to change, and
their permissions, are listed below:

/etc/hosts lrwxrwxrwx 1 root root

/etc/asppp .cf -rwxr--r-- 1 root sys
/etc/resolv .conf -r-xr-xr-x 1 root other
/etc/nsswitch.conf -rw-r--r-- 1 root root
/etc/uucp/Dialers -r-xr-xr-x 1 root other
/etc/uucp/Devices -r-xr-xr-x 1 root other
/etc/uucp/Systems -r-xr-xr-x 1 root other

A complete listing of all of the files that we
modified are shown in Listing A on page 3.
Remember to be careful when modifying con
figuration files, since changes can have unin
tended consequences.

Modem

0000

TCP/IP traffic over PPP

Internet
or Private
Network

pkginfo I m11re Figure A: This is the basic hardware setup for using PPP.

In this issue:

1
PPP setup tips

3
About our contributors

4
Routing with Solaris

7
Jumpstart
in a nutshell

10
Ping the Solaris Dude:
What are the
Solaris ACLs?

13
The go command
the cd command
gains aliases and
a memory

15
Quick tip:
One reason to use
a function instead
of a script

ZIFF-DAVIS
a SOFTBAN K

romi»nY

2 Inside Solaris

The first file you need to modify is
I etc/hosts. Add the following entries:

10. 1. 1. 1 dwarf1 <-- my_machine_name

10. 1. 1.2 netcom <- - remote_machine_name

Replace dwarf1 and net com with the name
you wish to use for both sides of the PPP link.
These are arbitrary and up to you. Also, the IP
addresses are arbitrary, as well. The IP address
information will be replaced with Dynamic IP
addresses once you're connected to the Internet.

Second, you'll need to edit I etc I asp pp . cf.
This is pretty straightforward and is docu
mented in the file itself. Our asppp.cf file looks
like this:

ifconfig ipdptp0 plumb dwarf1 netcom up netmask
255 .255 .0.0

path
inactivity_t i meout 1800
interface ipdptp0
peer_system_name netcom
default_route
negotiate_address on
debug_l eve l 8

On the i fconfig line, notice that dwarf1 and
net com are referenced in /etc/hosts. The word
up tells asp pp . cf to dial when the machine is
first booted up. If you don't want this to hap
pen, replace it with down. Inactivity timeout
sets the amount of time, in seconds, before an
idle connection will hang up the phone line.
Peer _system_name is referenced in /etc/uucp/
Sys terns . Def au l t_rou te tells Solaris to use this as
the default router to the Internet. Neg o ti ate_
address tells Solaris to request an IP address
from your ISP. Debug_ I eve l 8 tells PPP to create
a verbose log file.

Next, you'll need to modify the files located
in /etc/uucp. You may or may not need to edit
/etc /uucp/Di a lers. This file contains the AT
commands that are sent to your modem. If
you have an Internal Modem, you may need
to modify your /etc/uucp/Di a le rs file in the fol
lowing manner: add P _ZERO to your modem
definition string; for example,

hayes ,-, P_ZERO ""
\\dA\\pTE1V1X400S2:255S12=255\\r\\c

Next, you'll need to modify the
/etc/uucp/Devices file . At the end of the file,
add a line similar to the following:

ACUNETCOM cua/b - Any hayes

Note that ACUNETCOM is referenced in
/etc/uucp/Systems . Also, cua/a is the coml serial
port and cua/b is com2. Hayes is the dialer to
use in etc/uucp/Di a lers. This must match an
entry in /etc/uucp/Dialers; otherwise the asppp
deamon won't know the correct commands to
send to your modem.

The next file you'll need to edit is
/etc/uucp/Sys terns. Ours has the following entries:

netcom Any ACUNETCOM 38400
•705551212 "" \\ login :

username word: password

Recall that net com is referenced in /etc/asppp . cf
as peer system name. The Any flag means that the
number can be dialed at any time. The ACUNETCOM
is referenced in /etc/uucp/Devices. 38400 gives us
the port speed and •705551212 is the phone num
ber to dial. Login: user name tells asppp.cf to wait
for the login prompt and send the usemame,
then wait for the password prompt and send the
password. This is where having verbose logging
really helps. You can look at
/var /adm/ log/asppp. log to see the entire connect
sequences and use this data help to debug all
sections.

The next step is to set up the /etc/reso l v. conf
file. Your ISP provider will provide this infor
mation for you. Our resolve.con£ file has the
following entries for our ISP:

domain i x.netcom .com
nameserver 199.182 . 120 .203
nameserver 199 . 182 .120.202

And lastly, you'll need to edit the
/etc/nsswi tch . conf file. Simply find the line that
has hosts and add dns to the end of the line. Now
you can reboot the machine to test the connection.

Starting and ending
your PPP connection
After you reboot your machine, try to start your
PPP connection with the following command:

/etc/in i t .d/asppp start

Listing A: Listings of the files we modified to configure PPP

/etc/hosts

Internet host table

127.0.0.1 localhost
10.1 .1.1 dwarf loghost
10. 1 . 1 . 2 dwarf 1
10.1 .1.3 netcom

/etc/asppp .cf

set with the configuration
switches as follows:

S1 - UP S2 - UP S3 - DOWN S4 - UP
S5 - UP S6 - DOWN S7 - ? SB - DOWN

hayes =,-, "" P_ZERO "" \\dA\\pTE1V1X400
..S2=255S12=255\\r\\c OK\\r \\EATDT\\T\\r\\c

CONNECT

ifconfig ipdptp0 plumb dwarf1 netcom up netmask 255.255 .0.0
path

/etc/uucp/Devices
ACU cua/b - Any hayes
Direct cua/b - Any direct
ACUNETCOM cua/b - Any hayes

inactivity_timeout 1800
interface ipdptp0
peer_system_name netcom
default_route
negotiate_address on
debug_level 8

/etc/uucp/Dialers - Pertinent section for my setup
Hayes Smartmodem -- modem should be

/etc/uucp/Systems
netcom Any ACUNETCOM 38400 •705551212
i..\\ login : username word: password

/etc/resolv .conf
domain ix.netcom.com

If all your configuration files were set cor
rectly, you should now have made a PPP dial
up connection. When you want to end your
PPP connections, simply type:

More information

/etc/init.d/asppp stop

If you hang up the line and you wish to
reconnect to your ISP without rebooting,
you'll need to flush your routing table. You'll
also need to type the following command
before restarting PPP:

This article gives you a basic overview of con
necting with PPP. If you need to use pap or
chap authentication, then please go to http://
docs.sun.com:80/ab2/coll.47.4/NETCOM/@
Ab2Page View/idmatch(TAILORINGPPPll-
26606)?# TAILORINGPPPll-26606.

If you find Sun's PPP too confusing and
incomplete, please stay tuned. Next month,
we'll explore a freeware PPP alternative to
Sun's own bundled PPP package. ~

route -f defaultroute

About our contributors
Alvin J. Alexander is the president and chief scientist of Mis
sion Data Corporation (www.missiondata.com), an employee
owned software engineering and systems integration firm.
You can reach him online at alvina@missiondata.com

Alan Orndorff has been working with computers since 1990.
He's using Solaris as a platform for Lotus Notes and at home
in his spare time. He currently lives in San Francisco and can
be reached at dwarf333@hotmail.com.

Lance Spitzner enjoys learning by blowing up his UNIX sys
tems at home. Before this, he was an Officer in the Rapid
Deployment Force, where he blew up things of a different
nature. You can reach him at lspitzner@enteract.com or
www.enteract.com/-lspitz.

www.zdjournals.com/sun

Robert Owen Thomas is an aspiring blues guitarist
earning his living as a UNIX and networking consultant.
He can be contacted through email at robt@cymru.com
or visit his Web site at www.cymru.com/-robt

Asim Zuberi received his masters degree in mechanical
engineering in May 1993, at the New Jersey Institute of
Technology, NJ and works now at Collective Technolo
gies (a Pencom Company). Currently, he's onsite at
Lucent Technologies, one of CT's clients. He started
with UNIX in 1992, worked with Sun, SGI, and Linux,
and has been heavily involved in Solaris administra
tion since 1996. You may reach him at asim@
coll tech.com

February 1999 3

4 Inside Solaris

J

Routing with Solaris
by Lance Spitzner

L
ast month, we discussed how to config
ure, modify, and troubleshoot network
interface cards. Here, we'll discuss rout

ing issues for systems with two or more net
work interface cards. We won't be discussing
gated, nor any routing protocols, such as RIP
or OSPF. This article will focus only on imple
menting static routing tables. Throughout the
article, we'll be using the octet method for
denoting subnet masks, as opposed to the
more modern method of using a I. For exam
ple, we'll be designating a class C network as
255.255.255.0, as opposed to I 24. We decided
to use the older notation, as this is what
Solaris uses. If you have any questions about
IP addressing or subnetting, I highly recom
mend you first review www.3com.com/nsc/
501302.html.

Routing
Routing is the process of forwarding a packet
from point A to point B. Solaris does this by
building a routing table. When it forwards a
packet, it first refers to the routing table to
decide where to send the packet. The key to
successful routing with Solaris is building a
proper routing table.

You start building your routing table with
your first network interface device. When you
configure a network interface device, the ker
nel automatically builds a static routing table.
For example, let's say you're on a system that
has a single interface, elxO. You configure the
device to have an IP address of 207.229.165.133,
with a netmask of 255.255.255.0. To see the
routing table the kernel has built, use the com
mand nets tat n r to show results similar to ours
in Table A.

Here we see the system's routing table. The
first column is Destination, which is the net
work that the packet wants to go to. The sec
ond column is Gateway, the IP address to

Table A: We used netstat nr to check our routing tables.

Destination Gateway, Flags

207.229.165.0 207.229.165.133 u
127.0.0.l 127.0.0.1 UH

which the packet must go to get to the destina
tion-the next hop. The third column is Flags,
which denotes interface information, such as
U for up, and G for Gateway. The fourth col
umn is Ref, which denotes how many times
that specific MAC address is referenced in the
routing table. The fifth column is Use, or how
many packets have gone through the interface.
The last column is Interface, which shows the
device the packet must go through if the desti
nation is the local network.

In the example, we have two routes. The
bottom one, 127.0.0.1, is the standard loopback
route. All systems have this route; the kernel
uses it to talk to itself. The second entry is a
result of the elxO interface. This entry says if
you need to get to a node on the 207.229.165.0
network, go to 207.229.165.133, which is the
system interface. This entry is called the local
network entry and is added by default. The ker
nel assumed that because elxO has an IP ad
dress of 207.229.165.133 and a netmask of
255.255.255.0, it must be connected to the local
network 207.229.165.0. Thus, if you want to
talk to any node on the 207.229.165.0 network,
the kernel knows exactly where to send the
packet.

Any time you add a new interface, the ker
nel adds a routing entry similar to the one
above. It assumes that the new interface can
talk to the local network.

Your system can now talk to the local net
work, 207.229.165.0. But what about other net
works, such as the Internet? If you were to
attempt to talk to any node on any other net
work, such as 206.54.252.8, you'd get the fol
lowing error:

lisa #ping 206.54.252.8
ICMP Net Unreachable from gateway lisa

(207.229 .165 .133)
for icmp from lisa (207 .229.165.133)

Ref Use Interface

1 20 elxO

0 94 .J<?,0 _. ..• - .

The system has no idea how to reach this
node. To fix this, we need to give the system a
default route. When the kernel is given a des
tination it doesn't know, it sends the packet to
the default route. The default route is usually
the IP address of another router. This router
takes the packet and does one of two things
with it. If the destination is local to the router,
it sends the packet to the local destination. If
not, the router sends the packet upstream to
another router. This process repeats itself until
the packet has reached its destination.

By default, Solaris uses a routing protocol to
dynamically determine the default route, RIP
or Route Discovery. During the init process, the
/etc/rc2 . d/S69i net will attempt to find a router
running route discovery (/usr I sb in/in. rd i sc). If
this fails after three attempts, the script then
launches /usr/bin/in.routed, otherwise known
as RIP. However, we'll use neither method.
Instead, we're going to manually set the default
route. When the default route is manually set,
neither routing protocol is initiated. The advan
tages to this are a simpler and more secure sys
tem to administer.

You manually define the default route with
the file /etc/defaul trouler . This file consists of
a single entry, the IP address of the default
router. This file is read during the init process
(specifically /etc/rc2.d/S69inet) and added to
the routing table.

For this system, we've identified the default
router as 207.229.165.1. This is the IP address
of the router that connects us to the Internet. If
our system doesn't know a packet's destina
tion, it sends the packet to the default router.
With our default route, the new routing table
would look as shown in Table B.

Based on this table, the system now has two
choices for forwarding a packet. If the destina
tion is on the 207.229.165.0 network, the packet
is sent to the local network. However, if the des
tination is any other network, then the packet is
sent to the default router. Notice that the default
router, 207.229.165.1, is on the local network. If
the default route isn't on the local network, the
system can't reach the default router.

IP forwarding
Up to this point, we've been discussing single
homed systems. Single-homed systems have
one of two choices: talk to the local network or
to the default router. Things get more compli
cated when you add a second interface. Your
system now becomes multi-homed, and

www.zdjournals.com/sun

potentially a gateway. A multi-homed host is
any system with two or more interfaces, usu
ally on different networks. A gateway is any
multi-homed system that routes packets
between different networks.

Let's take a look at what happens when we
add a second interface. We'll add the interface
elxl to our system, with an IP address of
10.1.6.1, netmask 255.255.255.0. The result is
shown in Table C.

Looking at the routing table, you notice
only one change, the addition of interface elxl.
If a packet is destined for any node on the
10.1.6.0 network, the packet is forwarded out
the elxl interface.

However, there's another, far more impor
tant, change not seen here. IP forwarding has
just been enabled on this machine. Basically, IP
forwarding means the system will route pack
ets between networks. Based on the table
above, the gateway will forward a packet one
of two ways. If it doesn't know the destina
tion, it will forward the packet to the default
router. If the destination is on one of the two
local networks, then the packet will be for
warded to its destination.

IP forwarding is enabled during the init
process, in /etc/rc2 . d /S69i net. If the system
detects more than two interfaces (including
the loopback), IP forwarding will be enabled
by default. Your system is now a gateway.

You can have a system with two or more
interfaces and not forward packets if you want.

Table B: Our routing table with our new default route

Destination Gateway Flags Ref

207.229.165.0 207.229.165.133 u
default 207.229.165.1 UG

127.0.0.1

Table C: Adding a second interface to our system

Destination Gateway Flags Ref
207.229.165.0 207.229.165.133 u 2
10.1.6.0 10.1.6.1 u 1
default 207.229.165.1 UG 0
127.0.0.1 127.0.0.l .;.~~-·~· 0 ,_-.·• ·.i·.: .• .:. ···'~-·-

Use

20

20

Use

20

123

20

30
~·e;'..·~·· ·'·

February 1999

Interface

elxO

loO

Interface

elxO

elxl

loO

5

6 Inside So/aris

This is done in one of two ways. The first is by
touching the file /etc/notrouter. During the init
process, /etc/rc2. d/S69i net will look for this
file. If it finds it, it turns off IP forwarding by
executing the following command:

ndd -set /dev/ip ip_forwarding 0

You can manually turn off IP forwarding any
time by executing the same command.

Route command
The route command allows you to manually
change the route table. You can add, delete, or
change routes in real time. For example, let's
say the IP address of the default router has
changed, but you can't afford to reboot the
system. You have to change the IP address of
the default route without rebooting. You do
this with the route command. The syntax is
simple:

lisa #route change default 207.229 .165 .5 1

This command changes the default router
from 207.229.165.l to a .5. The syntax is simple:
type the network information as you want it to
appear in the routing table. The last number at
the end of the command is the metric, or how
many hops to the next gateway. Any node,
including a router, on the local network is a
hop of 1. The route add command allows you to
add additional routes to the routing table, just
as route delete removes them. If you want to
make a route command permanent, add the
command to the bottom of I etc I rc.2 I S69inet.
The init script will execute the route command
and update the routing table.

VLSM
Starting with version 2.6, Solaris supports
VLSM (Variable Length Subnet Mask). VLSM

Table D: Our routing table using VLSM

means a network can be variably subnetted into
smaller networks, with each smaller network
having a different subnet mask. What that
means to you, is that life just got a lot easier.

Under Solaris 2.5.l or earlier, you could
only define a single subnet for a network. For
example, if you defined the network 10.1.6.0
with a 255.255.255.0 subnet mask as we've
done, older versions of Solaris would assume
that any network starting with 10 was a
255.255.255.0 subnet mask. You have now
locked yourself in. You had to manually add
an individual route for any 10.0.0.0 network
that didn't have this subnet. This could easily
reach into the hundreds!

VLSM doesn't make this assumption-it
gives you flexibility in setting up your routing
tables. You can have as many different subnets
as you want for a network. Let's take a look at
an example. Our current routing table (see the
previous example) is configured for two local
networks and a single default route for every
thing else (the Internet). However, this system
is to be the gateway for a large corporation, the
company's firewall. That means all inbound
and outbound traffic must go through it.

The corporation is made up of an internal
10.0.0.0 network, which is subnetted into over
100 smaller networks. Each smaller, subnetted
network has a different subnetmask. For
example:

10.1.8.1.1
10.128.112.0
10.220.160.0

255.255.254.0
255.255.248.0
255.255.240.0

(510 hosts)
(2046 hosts)
(4094 hosts)

Here you see the company's various net
works. We have to create a routing table that
routes all default traffic to the Internet, but at
the same time routes anything on the 10.0.0.0
internally. Remember, our internal network is
really over a hundred smaller 10.0.0.0 net
works, all variably subnetted.

Destination Gateway Flags Ref Use Interface

207.229.165.0 207.229.165.133 u 2 20 elxO

10.1.6.0 10.1.6.l u 123 elxl

10.0.0.0 u 0

default UG 20

127.0.0.1 UH 30

First, we have to identify the internal
router. In our case, we'll use 10.1.6.5. This is
the IP address of the router on the internal net
work. Notice how this router is on the local
network of interface elxl. Now, since we're
using Solaris 2.6, which supports VLSM, we
need only one command to route all the vari
ably subnetted 10.0.0.0 networks:

lisa #route add net 10 .0.0.0 10. 1.6 .5

With this single command, we've taken care
of all routing issues, something possible only
with VLSM. Let's take a look at the routing
table in Table D and explain what we mean.

The first line states that if your destination
is on the 207.229.165.0 network, the network
is local to the interface elxO. If your destina
tion is on the 10.1.6.0 network, the network
is local to the interface elxl. If your destina
tion is on any 10.0.0.0 network except to
10.1.6.0, the packet is forwarded to the gate
way 10.1.6.5. Finally, if the destination meets
none of the above criteria (the Internet), the
packet is forwarded to the default router,
207.229.165.l.

You may be confused as to how the system
knows where to forward anything on 10.1.6.0.
By looking at the routing table, you see two
entries that would work, one for 10.1.6.0 and
one for 10.0.0.0. Both work for 10.1.6.0. The sys
tem always selects the most specific path first.

Now, if this were on a system that didn't
support VLSM, such as 2.5.1, things would be
much uglier. As stated earlier, the 10.0.0.0 is
variably subnetted into smaller networks.
Without VLSM, you'd have to manually add a
static route for each separate network with the
route add command. If you don't, the kernel

will assume that all the 10.0.0.0 networks are
subnetted the same, causing all sorts of interest
ing routes. As you can see, VLSM is extremely
powerful.

CIDR
I decided to discuss CIDR, as well, as it's easy
to confuse with VLSM and they're both closely
related. Defined in 1993 by rfc 1519, Classless
Inter-Domain Routing is used for routing aggre
gation, also known as supernetting. Simply
stated, this means lumping several networks
into one. The purpose is to reduce routing
tables, which are beginning to overload back
bone routers. An example would be taking 256
class C networks and defining them as a single
network, aggregating them together. You can
define the networks 207.229.0.0 - 207.229.255.0
with the single routing entry of 207.229.0.0 sub
net mask of 255.255.0.0.

CIDR aggregates several networks together
for simpler routing, compared to VLSM, which
variably subnets a network into smaller net
works. Confused? Don't feel bad, so is half of
the Internet. To learn more, I highly recom
mend you read 3Com' s Whitepaper on IP
addressing, VLSM, and CIDR at www.3com.
com/nsc/501302.html.

Conclusion
The key to successful routing is your routing
tables. By defining a proper routing table,
your packets will get from point A to point B.
VLSM is a standard that allows greater flexi
bility in developing a proper routing table. By
following the guidelines discussed in this arti
cle, your systems will effectively route packets
the way you intended .•

Jumpstart in a nutsliell
by Asim Zuberi

I 've been receiving the Inside Solaris journal
for the past two and a half years and have
never seen an article on Jumpstart. Recently,

I jumpstarted quite a few workstations at my
client site with Solaris 2.6 and noticed that Sun
has slightly changed the setup, configuration,
and jumpstart procedures from previous re
leases of Solaris. I had a hard time figuring out

www.zdjournals.com/sun

how to truly configure Jumpstart on Solaris 2.6,
as there was limited documentation available for
reference.

After learning the hard way, I decided to
compose an article on Jumpstart. A lot has
been said and written about the concepts in
the book Automating Solaris Installations by
Paul Kasper and Alan McClellan. If you really

February 1999 7

want to understand the concepts of Jumpstart
and its limitations, I strongly recommend that
you read this book.

Following are just the how-to steps to con
figure and use Jumpstart on Solaris 2.6. (Even
though I've written this article in the scope of
Solaris 2.6, these techniques will still be useful
if applied to any other previous releases of
Solaris.)

What's Jumpstart?
You must have heard of or experienced jump
starting, as it pertains to the automobile.
When the battery of your car dies for some
reason, you basically jumpstart the car with
one that's already running, thus bringing your
car back to life. The same principle applies to
installing the OS on a system. You either load
or upgrade the operating system on the client
systems from a local CD-ROM drive or over
the network.

Installing from the local CD-ROM drive is
relatively slow and it's limited, and thus takes
quite a bit of your time, whereas network
installation is much faster and not limited.
Since network installation is more flexible, it
gained popularity and was named Jumpstart
by Sun Microsystems. (A system that is being
upgraded or loaded with the new operating
system is called the Client, whereas the system
that basically makes this all happen is called
the Jumpstart server.) So, in other words, you
can automate the Solaris installation-make it
a hands-off process-and install the operating
system for as many clients as you want, all at
the same time, saving yourself valuable time.

Jumpstart configuration
A Jumpstart configuration is best approached
as a series of steps, which we'll outline here:

Table A: Our server and client information for our Jumpstart setup

Server Information Notes

1. Gather all system and
network information
Before we begin, we need to gather a few facts
about our server and target client. Table A
shows the information we need, as well as the
values for our example.

2. Create the boot/install server
In this example, the boot/install server is the
same (as is generally the case), to keep it simple.
You'll first need to load the OS image from the
Solaris 2.6 CD-ROM onto the server's local disk.
You'll need around 350 MB of free space in this
directory. So mount the Solaris 2.6 CD-ROM on
the server system and do the following:

server# cd /cdrom/cdrom0/s0/Solaris_2.6/Tools

server# ls
Boot

setup_install_server
add_install_client

rm_install_client

server# mkdir -p /local/CDimage

dial

server# ./setup_install_server /local/CDimage
Verifying target directory ...
Calculating the required disk

space for the Solaris_2.6 product
Copying the CD image to disk ...
Install Server setup complete

server# cd /local/CDimage/Solaris_2 .6

server# ls
Docs Misc Patches Product

Tools

Name Server (We're assuming boot server and Jumpstart server is the same system.)

OS image dir /local/ CDimage (You ~an change the location of Cdimage.)

Config dir I jumf>Start

Client Information Notes

Name client

Ethernet address 8:0:20:ab:cd:ef (Always available-at the "ok" prompt, !Y.:Pe "banner".)

IP address 129.151.29.10 (Clients Proposed IP-bv the Admin.)

Kernel Architecture sun4m

8 Inside So/aris

3. Create the configuration directory
on the server
Now you can create the directory and copy
the necessary files in order to perform a cus
tom Jumpstart installation. You set this up by
copying the sample directory from the OS
image directory (/local I CDimage I ...) to the
I jumpstart directory:

server# mkdir /jumpstart
server# cp -r
/local/CDimage/Solaris_2.6/Misc/jumpstar t_sample/•
/jumpstart

4. Create a profile for
the client machine
The profile file is used as a template for the
custom Jumpstart installation. For this exam
ple, the profile file is called client_:profile. The
file is created in the I jumps tart directory. This
can be created, in many different ways, to suit
your individual needs. The following is just
the very basic profile, to keep the ball rolling.

server# cat /jumpstart/client_profi le
install_type initial_install
system_type standalone
partitioning explicit
cluster SUNWCuser
f i lesys c0t3d0s0 free I
ti lesys c0t3d0s1 200 swap
ti lesys c0t3d0s3 40 /var

5. Create the sysidcfg file
The sysidcfg file is used to automate the sys
tem identification portion of the Solaris install.
We then need to edit the I jumps tart I sys i def g file:

system_locale=en_US
timezone=US/Eastern
timeserver=135 . 111. 130.27 (server's IP address)
network_interface=le0
terminal=dlterm
name_service=NONE (not running NIS or NISplus

6. Update the rules file

attributes. In this example, we used the any
keyword for the first rule (machine attributes)
and the file cl i en t_prof i le for the fourth rule
(profile name), and all others are left blank.
(" - " = match always succeeds)

server# cat /jumpstart/rules
any cl ient_profi le -

7. Check the rules file
This command is run to validate the rules file.
It creates the rules.ok file, which is required by
the installation software to match install
clients to the predetermined rules. For this
example, you should have one line of informa
tion in the rules that is uncommented (any -
cl ient_profi le -). Delete any other uncom
mented lines in this file that don't pertain to
this particular install client before running the
check script.

server# cd /jumpstart

server# ./check
Validating rules ...
Validating profile any_machine .. .
The custom JumpStart configuration is ok .

server# cat rules.Ok (make sure that
there aren't any unwanted lines!!)

any - cl ient_profi le -

8. Check to make sure
the directories are shared
We need to share the jumpstart and CD image
directories for our installation. We then need
to edit the I etc Id f s Id f stab file:

share -F nfs -o ro,anon=0 /jumpstart
share -F nfs -o ro,anon=0 /local/CDimage

We then need to start the NFS server (if neces
sary) and share the directories.

server# /etc/init .d/nfs.server (stop start)
server# shareall

The rules file is a text file used to create the server# di shares
rules.ok, and it's probably the most important
file for custom Jumpstart installations. You can RESOURCE
view this file as a look-up table, consisting of SERVER ACCESS TRANSPORT
one or more rules that define how install server:/ local /CDimage
clients are installed, based on their system server -

www.zdjournals.com/sun February 1999 9

server:/jumpstart
server -

9. Set up the client to install
over the network
After setting up the I jumps tart directory and
appropriate files, you use the add_i ns ta L L_c Li en t
command on the server to set up the client to
install Solaris from the server. You'll also have
to add the entry for the client into the local
/etc/hosts file manually.

Internet host table

127.0.0. 1 localhost
135.111.130.27 server timehost loghost
135.111 .130 .40 client

We then run the add_i ns ta l l_c l i ent command.

server# cd /local/CDimage/Solaris2.6/Tools
server# ./add_install_client -e

<CLIENT_ETHERNET_ADDRESS>
-s <INSTALL_SERVER>:<OS_IMAGE_DIRECTORY

-c <CONFIG_SERVER>:<CONFIGURATION_DIRECTORY>
-p <CONFIG_SERVER> :<PATH_TO_SYSIDCFG_FILE>
-n !SERVERJ :name_service[netmaskl

CLIENT_NAME ARCHITECTURE

Just as an example of the real system:

server# cd /local/CDimage/Solaris_2.6/Tools
server# ls
Boot dial setup_install_server

add install client rm_install_client•
server# ./add_install_client -e 8:0:20:ab:cd:ef

-s server:/local/CDimage -c server:/jumpstart
\
-p server:/jumpstart -n [server) :none client
sun4m

10. Boot the client and install
the Solaris software
Now, on the client machine, just type the fol
lowing at the okay prompt:

ok boot net - install •

(PING 1llE 80LAlllS OIHIE: SDI.ARIS fl & A

..,.1 What are Solaris ACLs?
-- b,y: Robert Owen Thomas

~,~ ~ he UNIX permission bits in the inode
, are generally enough to provide both

security and filtered access for most
installations. However, ever more frequently,
there arises an access requirement that the
default UNIX permissions can't accommodate.
Fortunately, Solaris provides just the enhance
ment for such situations: Access Control

10 Inside Solaris

Lists (ACLs).
Those of you who provide care for and

feeding of screening routers are already famil
iar with the concept of ACLs. ACLs provide a
means of highly granular access filtering. With
Solaris ACLs, additional access permissions
and restrictions can be applied to regular files,
special files, and named pipes.

Why would you use Solaris ACLs? Consider
a situation where a user, UserY, requires read
access to a data file owned by another user,

UserX. UserX and UserY aren't in the same
group, however, and you don't wish to add
UserY to UserX's group because it would allow
UserY access to other files that she shouldn't
be allowed to peruse. You could create another
group, of course, but that could lead to an
administrative nightmare if this situation arises
frequently. Solaris ACLs to the rescue!

With Solaris ACLs, you can allow multiple
users to access a file, each with his or her own
set of permissions. Using our example above,
you would allow UserX to read and write to
the data file. UserY, however, would only be
allowed to read the file. Members of UserX's
group would continue to access the file based
on group permissions. With Solaris ACLs, you
can selectively grant access on a per-file basis,
without confusing additions to groups or,
worse, granting worldwide access.

I need this! How do I do it?
The Solaris implementation of ACLs is simple
to use. From the command line, all you need
are two commands: get fact(1) and selfac l (1).

Ge I fa cl (1) allows you to query the file for
the ACL settings. Let's check the ACLs on our
Really Important Data File, datafile.txt:

: yoda ; ls -l datafile. !xi
-rw-rw---- 1 userx finance
Sep 26 13 : 37 d a I a f i le . Ix I

: yoda; getfacl dalafi le . !xi

file: dalafi le . !xi
owner: userx
group : finance
user: : rw-

2381

group: :rw- #effective:rw-
mask :rw-
other:---

The entries indicate:

• user::rw-The owner of the file has read
and write permissions to the file .

• group: :rw-The group of the file has read
and write permissions to the file.

• # effective:rw-This is the result of the
interaction of the ACLs with the inode
permission bits. This is the real access
level, and indicates that the group of the
file does have read and write access. More
on this later.

• mask:rw-The maximum permissions
granted to any user, regardless of ACL,
except for the file owner.

• other:-The permissions for the world.

We see that UserX, a member of the finance
department, owns datafile.txt. Other members
of the finance group have read and write
access to the data file . All other users are
denied access to the file. However, UserY, a
member of the sales department, requires read
access to the file. We don't want UserY to be
able to read all the finance files, thus we can't
simply add UserY to the finance group. So we
need to add an ACL to datafile.txt that allows
UserY to read the file . Using se If ac l (1), we can
grant such access to UserY:

yoda; selfacl -m user:usery:r -- datafile . !xi

The command portions translate to:

www.zdjournals.com/sun

•
•

-m-Modify the ACLs for the file .

user:usery- Add an ACL for the user
"usery."

•
•

:r-Give usery only read perms .

datafile.txt-The file to be modified .

With this simple command line, UserY is
now able to read the file datafile.txt. There
have been some subtle changes to the file, of
course, so let's take a closer look:

: yoda ; ls -l
total 6
-rw-rw----+ 1 userx finance 2381

Sep 26 13 : 37 d a I a f i le . Ix I

Note the plus sign (+) after the other per
mission bits. This is the way Solaris tells you
that one or more ACLs exist on this file. What
are those ACLs? Get f ac l (1) will tell us:

: yoda; getfacl datafile . !xi

file : datafile. !xi
#owner : userx
group : finance
user :: rw
user :usery :r-
group: :rw
mask:rw
other:---

#effeclive:r-
#effective:rw-

Here we see that UserY has been added to the
ACL list for datafile.txt, with read permission
being granted.

How can we use ACLs to restrict access?
Simple! Using setfacl (1), we'll keep UserZ, a
member of the finance group, from accessing
the file datafile.txt. The command line:

yoda; setfacl -m user:userz:--- dalafi le.Ix!
yoda; getfacl datafile . !xi

#file : datafile . Ix!
owner: userx
group: finance
user: :rw
user:usery:r -
user:userz: --
group: :rw
mask : rw-
other :---

#effecli ve:r-
#effective :--
#effecti ve: rw-

February 1999 11

12 Inside Solaris

adds an ACL to datafile.txt that restricts UserZ
from accessing the file at all. No command is
complete without a means of reversing it.
Using the -d option to setfacl(1), we can
remove the ACLs we've put in place:

yoda; setfacl -d user :userz , user :usery
datafile . txt

Note the comma on the command line. We
can combine multiple ACLs on a single com
mand line, thus removing the ACLs for UserY
and UserX in one command. Now, let's ensure
that our changes were successful:

: yoda; getfacl datafile . txt

file: datafile. txt
#owner: userx
group: finance
user: :rw-
group: :rw- #effective:rw-
mask:rw-
other :---
: yoda; ls -l datafile. txt
-rw-rw---- 1 userx finance 2381
Sep 26 13: 37 data f i le . tx t

Note that the plus sign (+)is gone from the
long listing of datafile.txt. Our file is back to
the default of using standard UNIX permis
sion bits for access control.

Hits and misses
There are many other features of setfacl(1),
getfacl(1), and the ACL subsystem, including
several programmatic APis. Two of the best
features of set fa c l (1) are the ability to add,
modify, or delete multiple ACLs from a single
command line entry, and the ability to read in
ACLs from an ASCII file.

Everything in Solaris is finite, and ACLs are
no exceptions. There can be no more than 1024
ACLs of each type (user, group, other) per file .
If you suspect that you might exceed 1024
ACLs for a given type on a given file, you'll
need to find an alternate solution. Managing
1024 ACLs on a file would likely be an admin
istrative nightmare.

Only the owner of the file (as reported by
get f ac l (1 l) may add or delete file ACLs. Even
root cannot add ACLs to a file not owned by
root! Keep this in mind when using ACLs.

Note that the interaction of ACLs and per
mission bits can be confusing. Using our exam-

ple, we might assume that ACLs take prece
dence over permission bits. This isn't always
the case. For example, if we add an ACL that
allows UserY to read datafile.txt, then chmod
600 datafile.txt, we might think that UserY
should still be able to read the file. A quick
check with get f ac l (1) tells us otherwise:

: yoda; ls -l datafile . txt
-rw-------+ 1 userx finance
Sep 26 13 :37 datafile. txt
: yoda; getfacl datafile. txt

file : datafile . txt
#owner: userx
group: finance
user: : rw-

2381

user : usery : r-
group: :rw
mask:--
other :---

#effective :--
#effective:---

Note the #ef feet i ve entry for UserY. The
effective permissions allow no access at all.
When in doubt, consult get f ac l (1)!

Unfortunately, the error reporting of
set fa c l (1) isn't the most robust. In fact, unsuc
cessful attempts to apply an ACL to a file may
not result in an error message at all. As with
anything in UNIX, check your work! Use
getfacl(1) to ensure the proper application,
modification, or deletion of the ACL in question.

Beware of the filesystem type. ACLs over
NFS may or may not be honored. This can be
particularly tricky in mixed UNIX environ
ments, as file ACLs aren't a standard. ACLs
also don't work on swap filesystems.

If an attempt to access a file results in seem
ingly impossible access denied errors, or a
seemingly closed file is accessible, it may be
the result of ACLs. Check for the plus sign (+)
next to the permission bits in the output of ls
- 1. You can also use get f ac l (1) when in doubt.

Take some time to experiment with Solaris
ACLs. I recommend using a dummy file until
you are fully proficient with the use of both
set fa c l (1) and get fa cl (1) .

Conclusion
Solaris ACLs give you a wide range of file
access options to solve the trickiest of access
requirements. With UNIX in general, and
Solaris in particular, there's always a way!
Ping the Solaris Dude today! Contact the
Solaris Dude at rthomas@dimension.net ~

The go command~the eel command
gains aliases and a memory
by Alvin J. Alexander

D espite all the hoopla and great things
about GUI environments, I spend
most of my day pounding away at

Solaris command lines on Internet and intranet
servers. I don't do this because it's more attrac
tive-I do it because I work faster and more
effectively this way. From what I've seen, I
believe many other administrators work the
same way.

One day, after almost eight years of work
ing at UNIX command lines, I came to realize
that there had to be something better than the
cd command to move between directories. As
an administrator, I'm constantly moving from
one directory to the next and then back again.
To me, there's a lot of wasteful typing in this
process.

Sure, I use things like shell aliases as cd short
cuts, but they fall apart as soon as I rename a
directory. They also require double input-once
at the command line and again in a startup file,
and I'm too lazy for that.

In a moment of inspiration motivated by
laziness, I realized that the cd command could
easily be improved by giving it built-in aliases
and a memory for where it had been before. In
that moment the go command was conceived,
and forever replaced cd in my mind.

A simple example
To understand my problems with the cd com
mand, let's look at a simple comparison. First,
let's examine six cd commands that I might
normally use to move between four directo
ries. For our purposes, let's ignore everything
else I might normally do at the command line,
and just focus on the c d commands:

cd /home/fred/docs/new/Laser
cd /usr/LocaL/Lib/apache/htdocs
cd products/printers/newLaser
cd .. / .. / .. / .. /Logs
cd /home/fred/docs/new/Laser
cd/usr/LocaL/Lib/apache/htdocs/products/

printers/newLaser

For me, that's a lot of typing. Yes, I can
shorten the process with a few wildcards here

www.zdjournals.com/sun

and there. But without throwing wildcards
into the equation, let's look at how this same
process can be improved:

go /home/fred/docs/new/Laser
go ht
go products/printers/newLaser
go Logs
go Laser
go newLaser

I think you'll agree this is a significant
improvement. At the very least, my typing has
been reduced from 187 characters down to 82
characters, which my friends carpal and tunnel
really appreciate.

In addition, I think it's also a more natural
way of working, because it works the way we
think. Because, like you, the go command has a
memory of the places you've already been to,
it's more intuitive and your typing is greatly
reduced.

Using the go command
The go command I've created works exactly
like the c d command, including the use of
wildcards (which is why I ignored them in my
example above). This is because the go com
mand is actually just several shell functions
wrapped around the cd command.

The power of the go command comes pri
marily from two important capabilities that
are not in the c d command.

1. Creating aliases
First, you can define aliases with the go com
mand. Like shell aliases, go aliases are shortcut
names you can assign that let you move
quickly to directories. I use this feature for
directories that I travel to frequently, such as
my Web server subdirectories.

As an example, let's assume that I want to
assign the alias ht to the directory I us r I Lo ca L I
Li b/apache/htdocs . Any time I type go ht, I
should be moved to Apache's ht docs directory.
To create this new alias, I just type:

go -a /usr/LocaL/Lib/apache/htdocs

February 1999 13

The go command then prompts me for the
name of the alias I want to assign to this
directory. After assigning a name like ht, I
can just type

go ht

to move to this directory any time in the
future.

For a different way to assign the alias, if I'm
already in the directory that I want to assign
an alias to, I can just type

go -a.

The"." stands for the current directory. Go
uses the pwd command to determine the name
of the current directory, and then prompts me
as usual to assign an alias to the directory.

To give you an idea of how the alias data is
stored, Listing A shows a few sample records
from the . go . alias es file .

2. Using the history function
The go command also maintains a history of
directories you've visited in the past, so you
can easily move back to those directories in
the future.

As you saw in one of the first examples in
this article, you can go to a directory named
laser like this:

Listing A: The .go.aliases file contains a list of aliases and
directory names, with the alias and directory name separated
by the "/" character.

.. I .. I . .

... I .. I . . I . .
htl/usr/local/lib/apache/htdocs
cgi l/usr/local/lib/apache/htdocs/cgi-bin
binl/usr/local/bin

go /home/fred/docs/new/laser

In the course of your work, you'll visit
many other subdirectories on the system.
When you need to go back to the directory
named laser, just type

go laser

The go command searches the current direc
tory for a subdirectory named laser. If it
doesn't find a subdirectory with this name, it
then searches your aliases. If it doesn't find
laser in your aliases, it searches the history list
(its memory). It searches the list in reverse
order, and finds the most recent occurrence of
a directory named laser. If a match is found,
you're moved to that directory; otherwise you
get an error message.

Other things you can do with go
Table A provides a list of other things that you
can do with the go command, including some of
the command-line arguments that go supports.

Installing the go command
If you're interested in using the go command, I
think you'll find it pretty easy to install. It's
simply made up of a series of Korn shell func
tions that are all contained in one file .

Note: The go command uses several features of
the Korn shell, and loads itself into memory as
a series of Korn shell functions. Therefore, you
must use the Korn shell at the command line
to be able to take advantage of these capabili
ties. If this proves to be too much of a prob
lem, I may also write the code using another
shell, such as the C shell.

Table A: Possible uses of the go command, including command-line arguments that are supported.

Command Uses

Go Takes you to your home directo
go - Takes y:ou to):'.Our last working directory
go .. Moves u_e one level
go Moves u two levels (assumin llie alias ... is defined)

go Moves u H:iree levels (assuming llie alias is defiried)
ht An alias I use that takes me to A ache's ht docs directo

14 Inside Solaris

The first step in the process
is downloading the . go file from
our Web site. Simply ftp anony
mously to
ftp.zdjournals.com/sun and
download . go as an ascii file.

Once you've downloaded
the file, put it in your home
directory and name it some
thing like . go. Then, put the fol
lowing statement in your
. pro fi l e, so the functions are
loaded into memory each time
you log in:

When you begin using the go
command, it creates two other
files in your home directory.
The first file, .go_history,con

St.tement of Ownership, Management •nd Cln:uldon
,........,tf:JIU .. C.~

~D~...,...,.. ,.....,......,...,.,,.......,
mc-:a~·ftt!.4923

----...........
ZD"°"'"'*. 500c.\llV-Boulwlld Roc:tiotMer.NY 14821

"':-::.- ": ·;::::: _ - _ ... _ ---·'-- ·-:::.'"::!:· -.:

.. ..,

2 •
• .287 3Mfl

.... _
-~·---·;;u-,.,,,__ - 1•.l/Pr-
1....,~--.. -----..... !------.. -.-.... -.. - --.....-..... --M~IO--(.......... --...,__...-__ ,.._._ _ _.,..~

tains the memory for the go command. This is a list of directories you've
gone to in the past.

The second file is named . go. alias es, and it contains the aliases you've
defined. A sample of this file was shown earlier in Listing A.

Depending on the security requirements at your site, you may want to
change the permissions of these files. If you work in an open, trusting envi
ronment, mode 644 (rw-r--r--) is fine, but if you need more security, mode
600 (rw-------) should be used. The important part is that you have the per
mission to read and write to this file.

The .go file also defines a variable named GO_HISTSIZE that defines the
number of records that go keeps in your history file. Once that record-length
limit is reached, go creates a temporary file named . go_h is tory. tmp in your
home directory. This file is used when go trims the . go_hi story file to the

One reason to use a function • _
instead of a script

tip

by Alvin J. Alexander

T he go command, described in
the accompanying article, is a

good example of a time when you
need to create a program as a
shell function instead of as a shell
script. The go command just won't
work as a shell program.

The problem with a shell pro
gram in this case is that it runs in
a sub-shell. When the sub-shell
exits, you're returned to your reg
ular shell, and the sub-shell can't
affect the working directory of
your normal shell. Even if the
shell program performs the c d to
the correct directory, you're

www.zdjournals.com/sun

returned to your revious direc
tory as soon as the sub-shell exits.

To test this, use cd to move to
the I tmp directory. Then put the fol
lowing lines in a file named up:

#!/bin/sh
cd I
echo "PWD = 'pwd'"

Make the file executable, and
run the program. Where do you
end up? Back in the /tmp directory.
Your sub-shell moved to the root
directory, but as soon as that sub
process ended, you came right
back to where you were before.

Tips and tedlni- for utet1 of SunSolt Sollris

Inside So~ QSSN 1081-3314) is publish monthly by
ZD Journals 500 Canal Vi'IN BotJI~. Roellester, NY 1462.4 .

For subscriptions, fulfillment questions, and requests for group subscriptions,
address your letters to

ZD Journals Customer Relations
500 Canal View Boulevard
Rochester, NY 1462.3

Or contact Customer Relations via Internet email at zdjcr@zd.com.

Editorial

Editor ... Garrett Suhm
Assistant Editor Jill Suhm
Copy Editors .. Rachel Krayer

Christy Flanders
Taryn Chase

Contributing Editors AMn J. Alexander
Alan Orndorff

Lance Spltzner
Robert Owen Thomas

Asim Zuberi
Print Designer, Cover and Content Design Lance Teitsworth

General Manager Jerry Weissberg
Editor-in-Chief............... Joan Hiii
Editorial Director Michael Stephens
Managing Ednor......................... Kent Michels
Circulation Manager..................... Jeff Marcus
Print Design Manager..... Cha~es V. Buechel
VP of Operations and Fumllment ... Michael Springer

You may address tips, special requests, and other correspondence to

The Editor, Inside Solaris
500 Canal Vi'IN Boulevard
Rochester, NY 14623

Editorial Department fax """"""""""'""'(?1j!) 214-2387
Or contact us via Internet email at sun@zdjournals.com.

Sorry, but due to the volume of mail we recaive, we can't always promise a
reply, although we do raad rmry letter.

Postmaster

Periodicals postage paid in Louisville, KY.

Postmaster: Send addrass changes to

Inside Safaris
P.O. Box 92880
Rochester, NY 14692

Copyright

Copyright C 1999, ZD Inc. ZD Journals and the ZD Journals logo ara trade
marks of ZD Inc. Inside So/aris Is an independently produced publication of ZD
Journals. All rights reserved. Reproduction in whole or in part in any form or
medium without express writtl!fl permission of ZD Inc. is prollibited. ZD Journals
reserves the right, with raspecl to submissions, to revise, republish, and author·
ize Its readers to use the tips submitted for personal and commercial use.

Inside Safaris is a trademark of ZD Inc. Sun, Sun Microsystems, the Sun logo,
SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall, OpenBoot, OpenWin·
dows, DeskSe~ ONC, and NFS are trademarks or registered trademarks of
Sun Microsystems, Inc. Other brand and product names are trademarks or
registered trademarks of their respective companies.

Price

Domestic
Outside US

....................... $99/yr ($9.00 each)
..................................... $119/yr ($11.00 each)

Our Canadian GST# is: R140496720.

Back Issues

To order back issues, call Customer Relations at (800) 223-8720. Back issues
cost $9.00 each, $11.00 outside tile US. You can pay with Mastert;ard, VISA,
Discover, or American Express.

ZD Journals publishes a lull range of joornals designed to help you work
more efficiently with your software. To subscribe to one or more of these
journals, call Customer Relations at (800) 223-8720.

Tn ·- .. n .. + ... f """"' __ _.,,....._ • .1-1.1. ____ ,.,_L _,_._ -~ ---· -· _ _.,_

SunSoft Technical Support

(800) 786-7 638

proper length limit. By default, this limit is set to 128
records.

As a final note, you can change the names of all
of these files by editing the . go file and changing the
variable names that are located near the top of the
file. That's all you need to do to install the go
command.

How go searches for directories
When you're using the go command, it's important to
understand the search process that go uses to find
directories. By default, it searches for directories in
the following order:

1. If the directory path begins with a slash(/), it
assumes that it's an absolute path and goes right
to that location.

2. If the directory you enter doesn't begin with a
slash, it looks in the current directory for a sub
directory with this name.

3. If it's not found in the current directory, go
searches your list of aliases for this name.

4. If it's not found in your list of aliases, go searches
the history of places you've been recently.

5. If it still can't find the directory, it gives up the
search.

Conclusion and improvements
The go command has made my command-line life a
little easier and more enjoyable, and I hope it helps

PERIODICALS MAIL

Please include account number from label with any correspondence.

you as well. It's amazing what a few aliases and a little
memory do to improve the cd command.

At this point, I think the go command is in pretty good
shape, but I still hope to make it better. A few other things
that may be added to the go command are listed here.

1. A function needs to be added to remove aliases. I'll
implement this with the -r or -d command-line args.
Until recently, I've been removing them manually
from the . go. alias es file, but this obviously isn't a
good solution for the masses.

2. The speed of the history search will be improved.
The current method isn't too bad, but it can be made
faster, which will help those with slower or really
busy machines.

3. Check for misspellings. If a directory isn't found, go
should look a little harder for the name, in case I
misspelled it.

4. Support for other shells. The go command is currently
written for ksh users, and won't work with other
shells, unless they support the ksh functionality.

Please let me know if you think of other ways to improve
this command .•

Coming up ...
• Using freeware PPP to simplify connecting to

remote networks

• Setting up network printers "'

• Creating automatic filters for your log files

209

~:~.~:!,~?:n and great content bring you a winning combination

At ZD_Journals, we're always striving to provide
you ~1th the liveliest, most informative journals
poss1~le. This is why we decided it was time for a
face-lift! ~he changes start with our exciting new
cover design. Inside, you'll find great content plus
som~ ?ther char:ges that we hope will improve the
usability of the information. New visuals will accen
~ate our regular features, making them easier to
;m~ . Also; we'll g~ve you a preview of the exciting
op1cs we re working on in our new "Coming Up"

16 Inside So/aris

section. If you like what you see- or if you don't- (
please let us know. Our goal is to serve you the best
we can and we' re eager to hear your comments!

Sincerely,

~~
0oanHill

Editor-in-Chief
ZD Journals
joan hill@zd.com

