
January 1999 • $9.00
Vol. 5 No.1

IN THIS ISSUE

1
CGI and data security

4
Shell toolbox 101, part 2

10
Improving server apps
with scheduling under
Solaris

15
About our contributors

15
PatchDiag Tool

Visit our Web site at
www.zdjournals.com/sun

~JOURNALS " ~

OLARIS'"
i !it:..& techniques for users of SunSoft Solaris

CGI and data security
by Paul A. Watters

T he CGI (Common Gateway
Interface) is a popular meth
od of operating on user data

collected from an HTML <FORM>
on a Web site. We can use CGI to
process data by either an interpret
ed Perl or shell script, or a com
piled program, which resides on
the server. We can then return
either a dynamically generated
HTML page, or some other kind of
data (for example, a graphics file)
from the server-side application.
However, the increased use of CGI
programs has given rise to a num
ber of recent security concerns,

which potential users of custom
made applications and off-the-shelf
scripts should be aware of.

CGI: Compiled or
interpreted?
Applications that make use of the
CGI interface have become increas
ingly popular on Solaris-based
server systems, with which person
al computers of many descriptions
can interface using the WWW. A
common example is a Web inter
face to a centralized database sys
tem. As shown in Figure A, a client

HTML Generation

Application
Execution

Figure A: CG/ process flow as initiated from a client PC

ZIFF·DAVIS
a SOFT BAN K

company

using a low-end PC can execute complex
searches on a remote Solaris machine,
accessed by HTML forms utilizing the CGI
interface, without increasing overheads on
their local machine. The results of the search,
which might include graphics, text, and
sounds, can then be returned in a dynamically
generated Web page. This approach strongly
supports the client-server model in a Web
environment, providing access to up-to-date
information at call.

CGI appeals to two main audiences: novice
users and experienced users. Novice users
often use freeware scripts downloaded from a
resource site to include many advanced ele
ments on their Web pages (like page counters,
time/date displays, and guestbooks), without
having to learn how to program.

Alternatively, experienced users, based in
medium-to-large businesses, often use CGI to
provide a modern interface to legacy systems,
which might be expensive to rewrite in a
modern compiled language (like C++). This
approach not only saves money on expensive
reprogramming, which must often be per
formed from the ground up, but enables a
very fast turnaround time on providing a
modern Web-based interface for clients.

There are certainly more general uses of
CGI than we'll be looking at in this article.
However, as we'll see, casual users are vulner
able to CGI exploits because they're not aware
of some features of UNIX shell scripts, while
experienced programmers might not be aware
of the many exploits that are currently avail
able over the Internet.

Query strings: Size matters
Currently, the major concern in Web security
is the power of CGI scripts to unwittingly
facilitate the execution of rogue programs on
a server through a query string passed from a
client. Mistakes in writing CGI scripts can
allow malicious users to gain access to key
system accounts. It's very important to learn
the first law of CGI programming: parse
everything! Every query string must be treat
ed as if it were being executed on the com
mand line, as that's the level of access which
some exploits can provide for intruders.
Planning for the worst-case scenario also
ensures that less-serious exploits can be suc
cessfully dealt with.

The major concern with the content of
query strings is that they can contain non-

Inside Solaris

alphabetical characters like the tilde(~),
which often have a special meaning in UNIX,
and can be used in some cases to execute
malicious commands. An example is using the
eva l statement from the Bourne shell and Perl
scripting language, which will quite happily
evaluate a query string with a semi-colon
appearing somewhere within it. The semi
colon will, no doubt, be followed by a mali
cious command to mail the entire system's
password file to a waiting hacker (although
password shadowing can reduce the risk of
non-root access to the password file). Using
an additional code segment in shell scripts or
Perl can usually fix this kind of problem-for
example, all input can be parsed by a function
to remove all non-alphabetical characters.

It isn't only the content of query string that
we have to be conscious of; as with many
things in life, size also counts. One problem
with passing a query string is that the authors
of some off-the-shelf scripts and compiled
programs don't check the length of the query
string, and usually declare the variable that
stores the query string to be of constant size.
For example

char query_string[10241

allocates 1024 bytes to the variable query_string
of type char, assuming that 1024 bytes will be
the maximum argument size passed. We can
see the folly of declaring variables in this way
when there are a number of well-known
exploits available on the Web that pass extra
neous bytes after the declared 1024 to over
write the address space declared for the
query_str i ng variable. This allows malicious
users to execute arbitrary commands on the
server in some cases.

The count.cgi program, for example, which
is used to record and display the number of
times a WWW page has been accessed, is a
script widely used by non-programmers.
However, failing to declare array sizes
dynamically potentially allows the stack space
of the program to be overwritten when a spe
cific set of arguments is passed in the query
string (CERT Advisory AA-97.27). Intruders
can force the count.cgi program to execute
arbitrary commands with the privileges of the
server daemon. If the daemon is run as root
(that is, where all child processes have root
privileges), the results could be disastrous for
the entire system, not just the Web interface or
files in the document root directory. If you're

still running an old version of this program,
CERT advises you to update immediately:

www.fccc.edu/users/muquit/Count.html

Code solutions
The first technique that can be used to stop
malicious use of a query of a large size is to
dynamically allocate memory, depending on
the size of the query string, which can fortu
nately be determined from an environment
variable. Thus, if the size of the query string is
passed by the variable CONTENT_LENGTH, we can
simply declare a pointer to an array of type
char (in C), and then set its size dynamically
in the program, after CONTENT_LENGTH has been
read from the environment:

query_string=(char •) calloc((size_t)
CONTENT_LENGTH, sizeol(char));

This means that the bounds of the array
query_s tr i ng can't be overwritten.

However, although this technique will stop a
user from executing arbitrary commands on the
server, it isn't enough to stop denial of service
attacks that might be aimed at crashing the serv
er and preventing access from paying clients, f?r
example, rather than stealing passwords. In this
case, several megabytes of data might be passed
as a query string, eventually consuming all
available physical memory and swap space.
Even if enough memory is available to process a
single query, the performance of the server will
be dramatically reduced during processing. If
two or three clients repeated this query consecu
tively, there's real scope for almost permanently
denying service. One way of avoiding this kind
of problem is to place a sensible limit on query
strings, by rejecting input streams that ar~ larger
than the maximum required for any particular
page on the server. A 1024-byte limit is g~ne~ally
sufficient for most Web pages, although it rmght
need to be larger for complex query strings. For
example, a simple check such as

ii (CONTENT_LENGTH > 1024) then
reject_query();

might be a useful remedy, if we have a stan
dard error message defined in reject_query().

System solutions
Other CGI security solutions are aimed at the
system level. For example, CGI.pm is a Perl
library that parses and interprets strings com-

www.zdjournals.com/sun

posed of HTML queries in a standard, secure
way. Using a standard programming library
can save mistakes and simple errors that
might not result in any observed changes in
an application's behavior, but might open
potential security holes. More information
about CGI.pm can be found at:

stein.cshl.org/WWW /software/CG I/
cgi_docs.html

Of course, the best solution in the long run
might be to install a safer Web server-one
that incorporates many existing CGI-related
security strategies in its code. The apache
Web server, for example, now has the suEXEC
feature, which is designed to screen all CGI
requests using a wrapper before any user
level scripts or programs are executed.
SuEXEC also allows users to run CGI scripts
and programs under usernames that are dif
ferent from the standard nobody or www under
which the daemon usually runs (or worse
still, allowing child processes of the server
daemon to run as root).

This feature considerably reduces the
many security risks involved with allowing
non-system users to run CGI programs for
public use (using a wrapper is really manda
tory on multi-user systems like Solaris).
SuEXEC also refuses to run programs that
don't meet a certain number of security-based
criteria; for example, if extra arguments are
passed, or if the directory with the CGI pro
gram is writeable by other users, then the
query request is rejected. For servers where a
high level of security is required, it's better
not to run the server as root at all (for exam
ple, starting the daemon by a user like .nobody
on a high-numbered port). Even compiled
code can potentially be exploited if the source
code is freely available over the Internet
potential loopholes or coding errors might be
exploited by an enthusiastic corr_ipetitor o~ a
bored hacker. This might seem hke overkill,
but when our businesses rely on providing
reliable, Web-based information services,
such precautions are mandatory.

Further reading
The definitive guide to CGI security can be
found at:

www.w3.org/Security/Faq/
www-security-faq.html

January 1999 II '-------1

The best guide for general security issues for
Solaris systems can be found at:

www.sunworld.com/common/
security-faq.html

This FAQ contains a section "How do I make
my Solaris Web server more secure?," which

should be read by anyone considering run
ning a Web server under Solaris. CERT advi
sories can be found at:

www.cert.org

CERT also maintains mailing lists so that you
can be notified of any current advisories as
soon as they're released.~

Shell toolbox 1 01, part 2
by Jeff Forsythe, Sr.

L ast month, in part 1 of this article, you'll
recall that we were building an editing
library and we gave you the logmsg func

tion and the header function to chew on. Hope
fully you've put them to use already. This
month, in part 2 of the article, we'll finish the
library. So, let's dive right in.

Shell scripts
Our plan will add shell.sh, shown in Listing A,
and file.sh to your toolbox next. They're similar
in nature, but have a few differences. We'll
demonstrate shell.sh and leave file.sh to you.
Then, you'll build your edit.shlib because you
can finally get some functionality out of the
previous tools as a unit. You'll want to build
vc.sh, shown in Listing B on page 6, quickly
because it's the Easter Egg of the entire library.
And finally, if you're so inclined, you'll want to
build the affects.sh program (remember that
this is vaporware for the author who would
appreciate if you could email a copy of your
affects.sh if you build one). Now that we have
the plan down, let's get to work.

shell.sh
The next tool is the shell.sh program. It still
could use some work, but has been so handy
for six years and is such an integral part of the
edit.shlib that it must be presented as-is.

The shell starts by obtaining all the perti
nent information required to create the docu
ment header: Name, Author, Purpose, etc.
Don't forget to change the AUTHOR= lines to
default to your initials. The shell then creates
a header and sends you to vc.sh. This pro-

lll nside Solaria

gram, like most of the others, is a simple,
easy-to-follow utility. With minor modifica
tions, it will work by itself. In fact, if you look
closely at the weird way vc.sh is called, you'll
probably guess that it was an after-thought (of
about six years).

For your sake, spend the time to type in
vc.sh rather than editing shell.sh to work by
itself; it's worth it. Finally, you'll notice that
the header contains starting and ending lines
of 57 pound signs (#).This, you'll recall from
last month, is used by header.fnc and must be
exactly 57 in order to work. Now you can put
shell.sh to work for the first time.

Creating internal
documentation
For those of you who enjoy documenting after
a program is written, or who wish to docu
ment your previously developed scripts, you
can move the original shell to a temporary
name, run shell.sh with the correct name, and
then read in the temporary name you just cre
ated. This will create the internal documenta
tion and get you where you need to be. Huh?
To demonstrate, you should use this method
to update logmsg.fnc and header.fnc (both
were presented in part 1 of the December 1998
issue) to add the proper header documenta
tion to them.

First, move logmsg.fnc to logmsg.nd (nd
for no docs). Then, run shell.sh, logmsg.fnc,
and answer the prompts. When you're ready
to edit, just read in the logmsg.nd file (in vi,
you type colon(:), the letter r for read, and
the file name :r logmsg.nd). When you save
and exit, you'll be saving logmsg.fnc with

Listing A: shell.sh listing

#!/bin/sh

echo "Purpose: \c"
read PURPOSE

#SHELL: shell.sh
DATE WRITTEN: 08/24/92 JAF, Sr.
#DATE UPDATED: 09/18/98 JAF, Sr. v4 .01
Fixed typo
#PURPOSE: Used to create shell scripts
USAGE: shel I.sh shel I-name[.sh]
FLAGS:
ARGUMENTS:
RETURNS:

CALLS:

CALLED-BY:
ERRATA:
LIMITATIONS:

None
shell- name
0 - Nominal
1 - Invalid number of arguments
2 - Attempting to create a

Ii le that exists
S{FNCDIR]/logmsg.!nc
S{SHELLDIR]/vc.sh
S{SHELLDIR} /header .sh

NIA
None

None

AUTHOR="lnside Solaris Reader"
echo "Author' s Initials [${AUTHOR}]: \c"
read AUTHOR

if ["S{AUTHOR}" = "" l
then

AUTHOR=" Inside Solaris Reader"
Ii

echo "#!/bin/sh" » S{SHELLNAME}
echo

» S{ SHELLNAME}
echo "#" >> S{SHE LLNAME}
echo "# SHELL: S{VERNAME}" >>

S{SHELLNAME}
echo "# DATE WRITTEN: 'date +%m/%d/%Y'

S{AU THOR} " >> S{SHE LLNAME}
echo "# DATE UPDATED:" » S{SHELLNAME}

echo "# PURPOSE: ${PURPOSE}" »
S{SHELLNAME}

echo "# USAGE:
. S{FNCDIR} /logmsg .!nc

logmsg shell.sh S Started S{LOGDIR }/shell.log

i ! [$# -ne 1 I
then

Ii

echo "USAGE: shell.sh shell-name[.sh)"
logmsg shell . sh E "Invalid number of

arguments$#" S{LOGDIR}/shell. log
logmsg shell.sh F Finished S{LOGDIR}

/shell.log
exi I 1

VERNAME:"S{ 1 }"

if [-s S{VERNAME}
then

Ii

echo "S{VERNAME} exists , use: vc.sh
S{VERNAME} - exiling "

exi I 2

if ' echo S{VERNAME} I grep -c .sh ' -eq 0 I
then

VERNAME="S{VERNAME}.sh"
Ii

SHELLNAME=S{VERNAME}SS

documentation. Now do the same thing with
header.fnc. When you're done, you can
remove the *.nd files (but make sure you
don't have anything with this ending prior to
this exercise).

The file.sh program is nothing short of a
modified shell.sh. In order to create it, you
run the shell.sh command with file.sh as the

www.zdjournals.com/sun

S{ VERNAME }" »
S{SHELLNAME}

echo "# FLAGS:
echo "# ARGUMENTS:
echo "# RETURNS:

None" » S{ SHELLNAME}
None" >> S{SHELLNAME}
0 - Nominal" »

S{SHE LLNAME}
echo "# 1 Jl

Invalid number of arguments" >> S{SHELLNAMEJ
echo "# CALLS: NIA" >> S{SHELLNAME}
echo "# CALLED-BY: N/ A" » S{ SHELLNAME}
echo "# ERRATA: None" » S{SHE LLNAME}
echo "# LIMITATIONS : None" » S{SHEL LNAME}
echo "#" >> S{SHELLNAME}
echo "#######################################"

» S{ SHELLNAME I
echo >> S{SHELLNAME}
echo " " >> S{SHELLNAME}

logmsg shell.sh M "vc.sh -tmp S{SHELLNAME}
S{VERNAME}" S{LOGDIR}/shell. log

vc sh -tmp S{SHEL LNAME} S{VERNAME}

chmod +x S{VERNAME}

rm -! S{SHEL LNAME}

logmsg shell.sh F Finished S{LOGDIR}/shell.log

exi I 0

argument. Then, after answering the header
prompts, you read in shell.sh and modify the
header and the header that it creates. The
purpose of file.sh is to do the same thing for
non-shell script text files as shell.sh does for
scripts-namely, to create a documentation
header. In the interest of column space, this
is left as an exercise for you.

January 1999

Listing B: vc.sh Listing

#!/b in/sh
! Ii

VERDIR=S{VERDIR : .}

SHELL : vc.sh
DATE WRITTEN : 03/02/1998 JAF. Sr./rlh
DATE UPDATED : 04/10/1998 JAF, Sr . v2 .01
Added -tmp ! lag
PURPOSE: Implement tile version numbering .
Taken lrom "Sys Admin" Vol. 3,
No. 5,

USAGE:

Sept/Oct 1994 and HIGHLY MODIFIED!
vc.sh [-!mp tile] tile [tile ...]
-tmp ti le: temporary ti le # FLAGS:

ARGUMENTS:
RETURNS:

l i le [l i le ... l
0 - Nominal

1 - Invalid number ol arguments
2 - Fi le sums do not match

3 - Error creat ing backup ol
original ti le

CALLS:

/usr/bi n/vi
S{FNCDIR}/logmsg.lnc
S{UTI LDIRJ/mode .sh

CALLED-BY:
ERRATA :
LIMITATIONS:

None
NIA

None

S{FNCDIR}/logmsg.lnc

#Check to ensure that at least one input
option was entered .
i l [$# -l t 1 l
then

echo "Usage : vc.sh [-Imp ti le] ti le
[l i le .. . l"

exit 1
else

ti

it ["$1" = "-tmp" l
then

i l [$# -l t 3 l
then

echo "Usage: vc.sh [-!mp ti le] ti le
[l i le .. . l"

exit 1
Ii
USETMP="TRUE"
TMPFILE:S2
sh i l t
sh i l t

else
USETMP="FALSE"

ti

#Check tor S{HOMEJ/.vc .clg
it [-s S{HOME}/.vc.clg l
then

else

MAXVER='grep MAXVER S{HOME}/.vc.clg
awk 'I print $2 I"

VERDIR= ' grep VERDIR S{HOME}/.vc.clg
awk ' { pr in I $2 I"

MAXVER=S{MAXVER :5}

LOG= S{VERDIR}/vc .log

loop tor each ti le in the argument list
tor FILE in S•
do

Set DIR
DIR='dirname ${FI LE} '

Set FILE
FILE= ' basename S{FILE}'

Set ! lag tor ownership, group and mode
MODEFLAG:FALSE

#Get the last version present
LASTVER="'ls S{VERDIR}/S{FILEJ\ ;•

2>/dev/null : sed 's/ •;Ilg' :
sort -rn : head -1 ' "

if ["S{LASTVER}" != "" l
then

Check sum on original and highest
version
it ["'sum -r S{DIR} /S{FILE} : awk
'I print S 1 I' "' 1 = \

"'sum -r S{VERDIR}/S{FILE}\;
S{LASTVER} I awk '{ print $1 }' "'

then
banner "ERROR"
echo "\n\n Highest version

and original file"
echo "do not match. This

could be a ti le out"
echo "ol sync or they

could be two different"
echo "lileslromdilferent

directories."
exit 2

ti
Increment the version number.
VER= 'ex pr S{LASTVER} + 1'

if [S{VER} -gt S{MAXVER}
Do not exceed MAXVER copies.

then
cp S{VERDIR}/S{FI LE}\ ; 1

S{ VERDIR}/S{FILE}\;tmp

#Start with 2 so that 2 replaces 1,
3 replaces 2, etc .
COUNT=2
while [S{COUNT} -le S{LASTVER}
do

LESSONE= 'ex pr ${COUNT} - 1'

mv ${VERDIR}/S{FILE}\;S{COUNT}
S{VERDIR}/S{FILE}\;${LESSONE}

COUNT='expr S{COUNTJ + 1'
done

Inside Solaris

Listing B: continued _________________________ ! _________________________ _

VER:S{MAXVER}
LASTVER:'expr S{LASTVERJ - 1'

Ii

ORIG="S{VERDIR}/S{FILE};S{LASTVER}"
NEWFILE= "S{VERDIR}/S{FILE};S{VER}"

MODE='ls -l S{DIR}/S{FILE} :
awk '{print S1}"

OWN:'ls -l S{DIR}/S{FILE}
awk '{print S3}"

GRP='ls -l S{DIRJ/S{FILEI
awk 'Ip r int S4 I "

MODEFLAG=TRUE
else

ti

#This is a new Ii le - start the
#version at 1.
VER=1
ORIG:"S{DIR}/S{FILE}"
NEWFILE:"S{VERDIR}/S{FILE};S{VER}"

Check to see i I the Ii le REALLY
#EXISTS.
if I ! -! S{OR IG} l
then

touch S{ORIG}
else

cp S{ORIG} S{VERDIR}/S{ORIG}\ ;O
ti

#Copy the last edit ti le to the new
#version for editing.
if I "S{USETMP}" ="TRUE"
then

ERR= 'cp S{TMPF ILE} S{NEWF ILE} 2>&1;
echo S?'

else

ti

ERR='cp S{ORIG} S{NEWFI LE} 2>&1;
echo S?'

#Check tor copy error.
if I S{ERR} -ne 0 l
then

ti

ERR:'echo SERR sed 's/.•: Ilg' 2>&1'
echo "Your edit of S{NEWFILEJ is aborted."
echo "Attempting to access S{ORIG}

has reported the following \c"
echo "system error:\n\n\tS{ERRJ\n"
echo "Aborting edit."
exit 3

echo "Loading S{NEWFILE} for edit
Load vi and edit ti le
/usr/bin/vi + S{NEWFILE}
if I SI VER} -gt 1 l
then

#Check to see if user actually
#made changes.
dill S{ORIG} S{NEWFILE} 2>&1 >/dev/null
EDIT :S?

www.zdjournals.com/sun

else

ti

#This is the first edit - so don't run
#dill command
if I - r S{NEWFILE}
then

EDIT =1
ti

if I ${EDIT} -eq 1 I #The user DID make
changes

then
Remove the pre-edit ti le and the
tmp copy.
rm -! S{DIR}/S{FILE} S{VERDIR}/

S{FILE}\; tmp

#Copy the newest ti le to the basename.
cp S{NEWFILE} S{DIR}/S{FILE}

if ["S{MODEFLAG)" = "TRUE" l
then

ti

NEWMODE='S{UTILDIR}/mode.sh ${MODE)'
chmod S{NEWMODE} S{DIR}/S{FILE}
chown S{OWN) S{ DIRJ/ S{FILE)
chgrp S{GR P} S{DIR}/S{FILE}

logmsg $0 M "S{LOGNAME} changed
S{D IR)/ S{F ILE)" S{LOG}

else

ti
done

exit O

logmsg SOM "S{NEWFILE} was not edited.
Restoring to S{ORIG} " S{ LOG)

Remove the higher version because
NO changes were made.
rm S{NEWFILE)

#Move tiles back to original names.
if I -s S{VERDIR}/ S{FI LE}\ ;tmp l
then

ti

MAXVER -1, so that we can
move the tiles back up until
1 becomes 2
and then we move the temp ti le
#inas1.
COUNT:'expr S{MAXVERI ll 1'
while I ${COUNT} -ge 1 l
do

PLUSONE='expr S{COUNT) + 1'

mv S{VERD IR)/S{FILE)\; S{COUNTJ
S{VERDIR)/S{FILE)\; S{PLUSONE}

COUNT='expr ${COUNT} - 1'
done
mv S{VERDIR}/ S{ FILE}\ ; tmp

S{VERD IR)/ S{ FILE)\;1

January 1999 _.____ _ ___.;;....._____

Version control
That brings us to version control. How many
times have you made changes to a script only
to find out a day or two later that your
changes don't work and you want to roll back
to the previous version? With vc.sh in place
and used properly, you'll have this option at
your fingertips.

The version control script, vc.sh, first
checks to see if there's a previous version con
trol file. If there isn't, the file is copied to a
backup and given a semicolon zero extension
(filename;O). If the version control file does
exist, a copy is made to the next higher num
ber. The only exception to this rule is when
the numbers exceed the maximum number of
version control files . The maximum is set to
five by default and can be controlled through
an environment variable (MAXVER) or through
the configuration file vc.cfg (which was creat
ed with file.sh).

If it exists, vc.cfg is kept in the user 's home
directory and is specific to that user. If the
maximum number is reached, the lowest
number (filename;l) is moved to a temporary
name and each subsequent higher number is
moved down to the next lower number (for
example, filename;2 becomes filename;l).
After the version control routine is completed,
the editor is called.

Should the user exit without making any
changes, the files are all reset to their original
positions prior to vc.sh being called. That's
why we keep filename;l in a temporary loca
tion. If changes were made, then the temporary
copy of filename;l gets removed (if it exists).

Storing backup files
There are several schools of thought about
how to store the backup files. We'll describe
each thought, but for this article, we'll imple
ment the third school of thought- storing the
backup files in the same directory.

Backup directory
One school of thought says to keep the back
up files in a special directory set up just for
backup files, thus making them easier to back
up separately from the nightly backup (the
author's personal favorite- but slightly more
difficult to implement).

The biggest drawback to this idea is that if
you have files in multiple locations with the
same name, they'd get mixed up with one
another in the backup directory. However,

Inside Solaris

vc.sh is aware of this possibility and performs
a checksum on the latest file (highest number)
and the file being edited. If they don't match,
the user is warned that there's a problem. This
method is also implemented as a means of
checking for someone editing the file without
the use of vc.sh.

Another problem with this method is that
the backup directory's write permissions need
to be opened up for everyone. This, obviously,
isn't a good idea.

Separate tile system
Another school says to create a separate file
system that mimics the original under the
mount point /vc. This option is an offshoot of
the first in that it creates a mimic file system.
For instance, if you were going to edit
I etc/hosts, the backup file would be stored in
/vc / etc / hosts;l. It doesn't take long to see the
drawbacks in this idea.

First, the file system must get copied to the
backup area. This takes up overhead unneces
sarily and takes up a disk slice for the file sys
tem. The script is written using the VERDIR
variable, which can be set in the .vc.cfg con
figuration file . This variable determines the
location of the backup files .

Same directory
The final school says to keep the backup files
in the same directory as the original. That's
the easiest to implement and the one we'll
show in this article.

If you want to perform a separate backup
of the version control files, you search for files
that end in a semicolon and a number. It's
also nice to look only in I etc for hosts* rather
than looking in I etc and one or more other
locations for backups. This particular shell is
an Easter Egg in disguise. Once you have it
implemented, you'll know within a day or so
why it's so useful.

Moving back to an older version after an
editing session is as easy as remove and copy.
Remove the highest numbered version and
copy the next higher version to the edit name.
If you don't like edit number 5 of the
I etc/hosts file, remove number 5 and copy
number 4 to I etc/hosts.

A very important point about vc.sh is that it
uses the semicolon in the filename. The semi
colon is a special character because it's also a
statement separator in Solaris. So it's important
to escape the semicolon when using it. That is
to say, when you want to copy or remove a file

with the semicolon, you need to use a backslash
(\)prior to the semicolon. For example, rm
/etc/hosts\;5 and cp /etc/hosts\;4 /etc/hosts.
If you leave the backslash out of the rm state
ment (rm I etc/hosts;5), Solaris will try to
remove I etc/hosts and then execute a program
called 5. The cp statement would give an error
because you're trying to copy I etc/hosts to
nothing and then execute a program called 4
with a command line argument of I etc/hosts.
Be careful when using the semicolon in file
names! We could use some other character, but
the semicolon looks nice in an ls output.

Holding it all together
Last month, we promised you some string
and rubber bands to hold this all together. The
vc.sh uses a configuration file (the string) and
calls another script called mode.sh (the rubber
band) shown in Listing C. Listing D, on page
10, shows an example vc.cfg configuration
file-which was created using file.sh. You can
change the settings for each user and place
this in their home directory. The VERDIR is
the setting you can use to save the files in a
location other than the current directory, as
previously stated. Just give the full path to the
verdir of your choice such as ${HOME} /verdir.

The vc. sh script also calls a program called
mode. sh, which isn't included in the library but
is necessary for vc.sh to work. It accepts the

Listing C: mode.sh Listing

string mode of a file and returns the numeric
mode. You can see the example in the header.
This utility doesn't accept all string modes,
but it works on almost every file.

Send your updates to the author. This
script might well become a function after you
see it's utility. Many programs can use mode. sh
to set the mode of a file.

affects.sh
We discussed the vaporware affects.sh earlier.
The idea is simple, but implementation is a
challenge. If you're a weak-in-the-knees shell
script programmer, read no further, skip to
the next article. The affects .sh program uses
the header function from header.foe to find
the CALLS and CALLED BY sections, and
then attempts to determine if the changes you
made to the current script have any affect on
the scripts (if any) in these sections. If so,
affects . sh notifies and asks if you want to edit
the affected files. You could conceivably use
this to test program source code as well if the
location of the code is given.

You're a hard-core programmer if you
implement this concept. Of course, this is a
recursive procedure because editing changes
made to the affected script may affect others.
Therefore, affects.sh must trace the CALLED BY
linage first and then the CALLS section next. As
you can see, this can get really deep, fast.

#!/bin/sh

#because we couldn't use 1-7
and we needed to have a unique number
tor them. This #

#SHELL: mode.sh
DATE WRITTEN: 03/23/1998 JAF, Sr.
DATE UPDATED:
PURPOSE:

USAGE:
FLAGS:
ARGUMENTS :

RETURNS:
CALLS:
CALLED-BY:
ERRATA:
LIMITATIONS:

Translate string mode into
numeric
mode. sh
None
String mode (ex. drwxrwxrwx,
-rwsr-xr-x)
Numeric mode (ex. 777, 4755)
N/A
N/A
None
Doesn't handle all modes

#works out well when used below.
case $1 in

"---") NUM:!J;;
"--x") NUM=1;;
"-w-") NUM:2;;
"-wx") NUM=3;;
"r--") NUM=4;;
"r-x") NUM=5;;
"rw-") NUM=G;;
"rwx") NUM= 7; ;
"--s " l NUM=11;;
"-ws") NUM=13;;
"r-s") NUM=15;;
"rws") NUM=17;;

esac

get_num() MODE=S1
(

Other modes can be added to the case USER='echo S(MODE} I cut -c2-4'
statement as needed get_num S{USER}
setuid bi ts are set to 11-17 it [S{NUM} - gt 7 l ---
www.zdjournals.com/sun January 1999 ..

Listing C: continued ---then
OUT='expr 3000 + S{NUM} \• 100 '

else
OUT='expr S{NUM} \ • 100 '

ti

GROUP='e cho S{MODE} : cut -c5-7'
get_num S{GROUP}

OUT:'expr S{OUT} + 1900 + S{NUM} \ • 10 '
else

OUT= 'ex pr S{OUT} + S{NUM} \ • 10'
ti

OTHER: 'ec ho S{MODE} : cut -cB-10 '
get_num S{ OTHER I
OUT:'expr S{OUTJ + S{NUM} '

it [S{NUM} -gt 7 l
then echo S{ OUT I

Listing 0: Example . vc.cfg configuration file

.vc .cfg
#configurat io n file for vc.sh for Inside Solaris Reader
MAXVER 5
VERDIR .

The hardest part will be determining if a
change made to the current script has any
affect on others. This can be accomplished by
checking for an environment variable or file
changes that are in both scripts, and by
checking for differences in the flags or com
mand line arguments of the scripts. Do you
think that's all it will take? But isn't that
enough to make you feel tingly all over?
Version 1.0 should just list the files in the

ff;t~f~r~)~·.7:.:~··:~~~:=' .. -\~/~~~:,~~~~.:Ir~;~~~;?~~.f'?~;~!·::::~~·~~ · ;·:.·· -..
SOLARIS TU/Ul/UG

CALLS and CALLED BY sections and ask if
the user wishes to edit them. Perhaps it will
store them in a temporary file for later use.
Then Version 2.0 will go full-blown. Feel free
to code this script and email it to the author.
Or, send it to Inside Solaris, as an article for an
upcoming issue.

Summary
The edit.shlib is now complete, well almost.
In Solaris, as in all UNIX development, every
thing is a work in-progress. As for the library,
you now have many tools at your fingertips
that put you miles ahead of your peers who
don't read Inside Solaris (shameless plug). If
you begin to use the library religiously, you'll
see just how useful it can be .•

Improving server apps
with scheduling under Solaris
by Abdur Chowdhury and Andy Spitzer

W ith system complexity growing each
day, many machines are performing
many different tasks simultaneously.

This sharing of resources can affect the per
formance of your system. Understanding how
the operating system schedules your process
can help you architect better systems.

Solaris is a multi-tasking pre-emptive
operating system. The operating system is

I ftp.zdjoumals. com/sun __

ll_!nsi_de_S_o_la_ri_s __________________ _

responsible for scheduling when each process
runs. When a process has reached the end of
its allotted time slice, or blocks for some rea
son, Solaris saves its state and runs the next
runnable process in the process queue. This
gives the appearance of many different pro
grams running simultaneously on a single
processor. Solaris 2.6 and greater supports
two usable process scheduling classes: real
time and time-sharing.

In this article, we'll describe the concept of
process scheduling, the major differences be
tween real-time and time-sharing scheduling,
and the Solaris API to process scheduling ma-

nipulations. We'll also provide a simple exam
ple of its use to improve server performance.

Process scheduling
Process scheduling has one basic goal: to
make the system more productive. To
achieve this goal, a general-purpose operat
ing system must balance the following dif
ferent needs:

• Allot a fair share of CPU time to each
process.

• Try to keep the CPU busy 100 percent of
the time.

• Minimize response time for time sensi
tive processes.

• Minimize total job completion time.
• Maximize total number of jobs per time

unit.

To achieve this balance, Solaris makes some
assumptions about the type of processes that
it's running. Therefore, the default scheduler
may not always suit your application. In the
next section, we'll present a brief background
of several scheduling algorithms and their
implementations.

Solaris uses a two-level thread implemen
tation, where threads within a process are
scheduled on a virtual processor known as an
LWP (Light Weight Process). LWPs, in turn,
are scheduled on the physical processors.
When we talk about process scheduling below,
we really mean LWP scheduling. Threads
within a given process can be bound to an
LWP, and it's the scheduling characteristics of
the LWP that we describe below.

Scheduling algorithms
The research community has developed many
optimal scheduling algorithms, but all algo
rithms are only optimal for certain workloads.
There's no single solution that fits every system
need. General-purpose operating systems face
the problem of developing schedulers that are
general enough to solve most needs, yet exten
sible enough to handle specific workloads.

There are many different algorithms for
choosing the next process to run. Two of the
most common algorithms, both used by the
Solaris scheduler, are Round Robin (RR) and
First-In-First-Out (FIFO).

www.zdjournals.com/sun

FIFO runs each process until its comple
tion then loads the next process in the queue.
FIFO can have negative effects on systems
where processes run for an extended time.

Round Robin allows each process at a
given priority to run for a predetermined
amount of time. When the process has run for
the allotted time quantum, or if a higher pri
ority process becomes runnable, the scheduler
halts it and saves its state. It's then placed at
the end of the process queue and the next
process is started. Note that this may be the
most optimal solution, if the time quantum is
longer than the average runtime of a process.
However, context switching between different
processes has a price: We must also consider
the overhead (context switching time) of
changing processes.

With the need for different algorithms at
different times, operating system developers
created multilevel queue scheduling. Multi
level queue systems are simply several algo
rithms used simultaneously. Each queue is
assigned a priority over the next queue. The
scheduler simply starts at the highest priority
queue, implements that queue's algorithm
until no runnable processes remain, and then
proceeds to the next priority queue. One queue
could use FIFO while the other uses RR.

Solaris implements two scheduling
classes-time-sharing and real-time. The time
sharing class includes interactive processes as
well as time-sharing processes. These two
types of processes share the same scheduling
table as described by the man page for
ts_dptbl(4). Processes in the time-sharing class
have a changing priority based on factors
such as if they previously exceeded their
assigned time quantum, or if they're prevent
ed from running for a long period of time by
higher priority processes, or if they just sleep
a lot. This change in priority, based on previ
ous behavior, is what gives Solaris wonderful
interactive response even under heavy loads.
Batch-type jobs with high CPU demands tend
to have lower priority because they keep
exceeding their quantum. Interactive type
jobs, like Web browsers, tend to have higher
priority because most of the time they're
blocked (sleeping), awaiting user input.

However, important processes, such as
database servers or Web servers, may have
the same characteristics as a batch job, and
end up with a lower priority than the user
playing Doom. To solve this dilemma, The

January 1999

Solaris scheduler also provides a real-time
scheduling class as of version 2.6. To provide
soft real-time scheduling requirements, the
scheduler must provide several services:

• Priority Scheduling-Scheduling based
on process class.

• Real-Time processes won't change priori
ty over their lifetime-A real-time
process will always run before a time
sharing process.

• Processes must be interruptible during
system calls and 1/0 operations-The
kernel must be pre-emptable.

Solaris provides all these services. The Solaris
kernel is entirely pre-emptable, so process
scheduling doesn't need to wait for a safe
time to switch between processes. Also, when
implementing a real-time scheduler, the situa
tion where a higher priority process is blocked
waiting for a resource locked by lower priori
ty process, called priority inversion, can occur.
Solaris avoids priority inversions by imple
menting priority inheritance protocol. A
process that owns a resource runs at the prior
ity of the highest priority process that's await
ing that resource. This means that lower prior
ity processes run at a higher priority until
they release the lock or shared resource
requested by a higher priority process. When
the lock is released, the higher priority
process becomes runnable and pre-empts the
current process.

What does all this mean? It means the
algorithm selected can affect the performance
of your application, and choosing the right
algorithm can improve your systems' per
formance. There are many different evaluation
techniques such as:

• Deterministic modeling

• Queuing Models

• Simulation

• Implementation

The evaluation of your situation with the
above methods is beyond the scope of this
article. Those methods of evaluation may be
needed for some systems and Jain as a good
source to start your evaluation [Jain 91].

Solaris provides two scheduling algo
rithms for its real-time class-RR and FIFO.
The FIFO processes will proceed until comple-

m-~nsid_e_s_ol_ar_is _________ ___.

tion, unless they're pre-empted by a higher
priority process or interrupted by a signal.
Round-Robin processes will execute for a
given time quantum if not preempted by a
higher priority process or interrupted by a
signal. By changing the scheduling class of
your server applications, you can be guaran
teed that they will run before other applica
tions, thus improving responsiveness. Next,
we'll briefly describe the API that Solaris pro
vides for process scheduling manipulation
and modification.

Process scheduling API
under Solaris
Solaris, as a general purpose OS, must be con
figurable and even modifiable. To attain this
goal, Sun provides several utilities to view the
default scheduling classes and change the
process priorities and quantum. We've listed
several of these utilities here. Our main goal is
to provide a method of viewing or changing a
process' scheduling parameters. All of these
utilities use a kernel call named priocntlsys.
Below are two such utilities:

• di spadmin(1M)-Displays or changes
process scheduler parameters while the
system is running.

• pr i ocnt l (1)-Displays or sets scheduling
parameters for specified process.

System administrators that want to run a
process at a different priority or scheduling
class can use the -e option to pri ocn t l (1) to
execute a command. Children that are created
by that command will inherit the priority and
scheduling class from the parent process. For
example, to set your Web server process to the
real-time class with priority 20:

priocntl -e -c RT -p 20 httpd

Solaris also provides mechanisms to
replace the current real-time and time-sharing
scheduling parameters with your own. The
use of these functions is beyond the scope of
this article, but we included them for com
pleteness and for further reading. Please see
the man pages for further information.

• rt_dptbl(4)-Real-time dispatcher param
eter table

• t s_d pt bl (4)-Time-sharing dispatcher
parameter table

Developers who need to change the priority
of their process dynamically will either use
the pri ocn t l function or use the POSIX real
time library calls like sched_setscheduler.
Following are several such process-scheduling
calls to control how the OS will schedule your
process:

• pri ocn t l (2)-Controls the scheduling of
an active light-weight process LWP.

• pri ocn t l set (2)- Changes the scheduling
properties of an existing process.

• sched_setscheduler(3R)-Sets the schedul
ing policy and scheduling parameters of
a process.

• sched_setparam(3R)-Sets the scheduling
parameters of a process.

Improving responsiveness:
Example server
To show the usage of the API and the effects
of scheduling on your process, we've written
a small example. The application reschedules
itself as a real-time process if it has root privi
leges; without root privileges, it will run as a
normal time-sharing process. After reschedul-

ing itself, the application executes a tight
counter loop, to use cpu cycles, then the
process sleeps for approximately 10 microsec
onds. When the sleep is complete, we incre
ment a counter. The value of the counter
shows how many times the operation was
accomplished. We check our counter every
10,000 microseconds, saving the results to a
file. We've executed four experiments: time
sharing with no load, time-sharing with load,
real-time round robin with no load, and final
ly real-time round robin with load. To simu
late load on our system, we've written a pro
gram that loops in a tight !or loop to load the
system. See the Listings A and B, on page 14,
for load.c and load-generator.c, respectively.

Figure A, also on page 14, shows a chart
with four experiments. The y-axis is the num
ber of operations accomplished in the allotted
time. The x-axis is the number of the experi
ment; we ran 10 for each set. The time
sharing experiments show a degradation
of operations from the no-load to the load
experiments, as we'd expect. The real-time
experiments don't show a degradation in
performance for load or no-load. What these
experiments do show is that real-time

Listing A: We use load.c to schedule our processes for load testing.

#define _REENTRENT
#define _POSIX_PTHREAD_SEMANTICS

#include <sys/times.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/uio.h>

#include <Unistd.h>
#include <Stdio .h>
#include <lent l.h>
#include <stropts.h>
#include <sched .h>
#include <err no . h>

#include <thread.h> ,.
compile as:
cc -g -o load load.c -!socket -lnsl -lthread -lposix4

•I

I• gloabal 's •I
pthread_mutex_t g_mutex
int g_counter

struct work

int ms

I :

void • worker(void •arg)

struct work •dog = (struct work •)arg
int x ·

for (; ;)
{

I• the poll is to simulate work
count to a 100000 then sleep for X ms •I

for (x=0;x<100000 ; x++) { ; I
poll(0. NULL. dog->ms) ;
thr_yield();
I• lock the global counter •I
pthread_mutex_lock(&g_mutex) ;
g_counter++ ;
pthread_mutex_unlock(&g_mutex)

return NULL ;

void prio(}
{

I• Increase our priority to Real Time Status •I

struct sched_param param = {0} ;
int res ;

param.sched_priority

www.zdjournals.com/sun January 1999

Listing A: continued ---sched_get_priority_min(SCHED_RR) + 10 ;
res = sched_setscheduler(O. SCHED_RR. ¶m)
it (res < 0)
{

prio() ; I • Set up the priority for this process •I

thr _create(NULL . NULL . worker . (void •)&dog1. THR_BOUND .
tpri ntt(stderr . "Cannot

sched_setscheduler(SCHED_RR). %d %sin" .
NULL) ;

main()
{

errno. strerror(errno))
ttlush(stdout) ;

output = !open ("data. txt". "w+")
tor (X=O ; x < 10; X++}

pol l(O. NULL. 10000)
pthread_mutex_lock(&g_mutex)
!print! (output . "%din" . g_counter) ;
!flush (output) ;
g_counter=O ;
pthread_mutex_unlock(&g_mutex)

struct work dog1 = {10}
FILE • out put !cl ose (output)
int x ;

Listing B: We use load-generator.c to
create a CPU-intensive process.

Figure A

#in clud e <s t di o. h> Scheduling Evaluation

int main (int ar gc . char .. argv)
{ "' c:

.2

500 I ~ 1 1 G G G G G G 1

400

i nt x ; i! 300
t or (x=O ; X++) ..

Q,

0 200
{

100 i f (! x% 100000 I s l ee p (1)
2

-+-TS-NL 493 490

---- RT-RR-NL 1 501 l 500

3 4

490 492

5 6
'1

492 491

7 8 t 9 10
·r-

491 492 493 490
500 500 ! 500 500 500 500 500 500

I
-- rs-L 158 149 159 160 158 I 154 159 154 160 160 - ·t

RT-RR-L 501 500 500 500 500 500 500 500 500 500
Experiment

The results of our scheduling experiments evaluation.

scheduling can improve your applications
performance when your system has other
processes competing for the cpu.

As a side note, please be careful when
rescheduling your process to the real-time
class. Mistakes will likely result when you
turn off the machine and reboot it, since all
other process will run at a lesser priority and
will never run if your program isn't respond
ing. In this section, we've shown that Solaris
has utilities and methods for controlling the
scheduling of your processes.

Conclusion
Understanding your operating system's
scheduling can help you improve your
applications' performance. There are different

types of scheduling algorithms, and picking
the right one for your situation is important.

In this article, we presented several dif
ferent algorithms and how they work, and
we also presented a general overview of
what Solaris provides to modify your
applications scheduling. We presented an
example program showing the benefits of
rescheduling your process to the real-time
class. (For additional reading see [Jain 91]
Raj Jain, "The Art of Computer Systems
Performance Analysis," John Wiley & Sons,
Inc. 1991, ISBN 0-471-50336-3.) Solaris is a
great general-purpose operating system,
and understandin g what it can do for you
will improve the performance of your
applications. ~

_ _ Inside Solaris

PatchDiag Tool
by Werner Klauser

T he PatchDiag Tool, found at
sunsolve.sun.com/patchdiag/
or on Sun's patch CD-ROM, is

a diagnostic tool that enables system
administrators to examine a profile
of the patches installed on their
Solaris system against the most cur
rent profiles available from Sun
Microsystems with respect to:

• Latest revisions
• Recommended patches
• Security patches
• Other patches relevant to the

software environment

The results of PatchDiag Tool can
help a system administrator quickly
determine and analyze the need for

About our contributors
Abdur Chowdhury is the staff scientist for Group Logic in Arlington,
Virginia. He's also working on his Ph.D. in computer science on distrib
uted systems. Also, he has authored many papers on process migration,
fault tolerant routing protocols, and information retrieval topics. You
can reach Abdur at abdur@grouplogics.com.

Jeff Forsythe, Sr. started programming in 1978. He's worked with
Solaris and other UNIX flavors in retail, banking, manufacturing, and
currently with the federal government. He welcomes your comments,
code fixes, administrative scripts, etc. You can reach Jeff via email at
forsythe@ tuscan.net.

Werner Klauser is an independent UNIX consultant working near
Zurich, Switzerland. While not paragliding, enjoying his daughters, or
roaring around on his Harley chopper, he can be reached by email at
klauser@klauser.ch or on the Web at www.klauser.ch.

Andy Spitzer is a developer of Centigram's new Solaris-based
enhanced telephony services. Andy has several patents in the telecom
munications industry and has designed real-time and distributed sys
tems. You can reach Andy at woof@centigram.com .

Rob Thomas is an aspiring blues guitarist earning his living as a
Principal Engineer for Dimension Enterprises. He can be contacted
through email at rthomas@dimension.net.

Paul A. Watters is a research officer in the Department of Computing
at Marcquarie University, Australia. He has developed a number of
numerically intensive simulations (for example, neural networks) using
the Solaris development environment. You can reach Paul via email at
pwatters@mpce.mq.edu.au.

www.zdjournals.com/sun

INSIDE:~
SOLAR IS.
Inside Solaris (ISSN 1081-3314) is published monthly by
ZD Journals, 500 Canal View Boulevard, Rochester, NY 14623.

Customer Relations

US toll free (800) 223-8720
Outside of the US ..
Customer Relations fax ...

. (716) 240-7301
.......................... (716) 214-2386

For subscriptions, fulfillment questions, and requests for group subscriptions,
address your letters to

ZD Journals Customer Relations
500 Canal View Boulevard
Rochester, NY 14623

Or contact Customer Relations via Internet email at zdjcr@zd.com.

Editorial

Editor.... Garrett Suhm
Assistant Editor ... Jill Suhm
Copy Editors ... Rachel Krayer

Contributing Editors ...

Christy Flanders
Taryn Chase

.................. Abdur Chowdhury
Jeff Forsythe, Sr.

Werner Klauser
Andy Spitzer
Rob Thomas

Paul A. Watters
Print Designers ... Ian Caspersson

Lance Teitsworth

General Manager ... Jerry Weissberg
Editor-in-Chief .. Joan Hill
Editorial Director ... Michael Stephens
Managing Editor .. Kent Michels
Circulation Manager .. Renee Costanza
Print Design Manager .. Charles V. Buechel
VP of Operations and Fulfillment .. Michael Springer

You may address tips, special requests, and other correspondence to

The Editor, Inside Solaris
500 Canal View Boulevard
Rochester, NY 14623

Editorial Department fax .. (716) 214-2387

Or contact us via Internet email at sun@zdjournals.com.

Sorry, but due to the volume of mail we receive, we can't always promise a
reply, although we do read every letter.

Postmaster

Periodicals postage paid in Louisville, KY.

Postmaster: Send address changes to

Inside Solaris
P.O. Box 92880
Rochester, NY 14692

Copyright

Copyright e 1999, ZD Inc. ZD Journals and the ZD Journals logo are trade
marks of ZD Inc. Inside Solaris is an independently produced publication of
ZD Journals. All rights reserved. Reproduction in whole or in part in any
form or medium without express written permission of ZD Inc. is prohibited.
ZD Journals reserves the right, with respect to submissions, to revise,
republish, and authorize its readers to use the tips submitted for personal
and commercial use.

Inside Solaris is a trademark of ZD Inc. Sun, Sun Microsystems, the Sun logo,
SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall , OpenBoot,
OpenWindows, DeskSet, ONG, and NFS are trademarks or registered trade
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trade
marks of UNIX System Laboratories, Inc. Other brand and product names are
trademarks or registered trademarks of their respective companies.

Price

Domestic $99/yr ($9.00 each)
Outside US .. $119/yr ($11.00 each)

Back Issues

To order back issues, call Customer Relations at (800) 223-8720. Back issues
cost $9.00 each, $11.00 outside the US. You can pay with MasterCard, VISA,
Discover, or American Express.

ZO Journals publishes a full range of journals designed to help you
work more efficiently with your software. To subscribe to one or more of
these journals, call Customer Relations at (800) 223-8720.

To see a list of our products, visit our Web site at www.zdjoumals.com.

SunSoft Technical Support

(800) 786-7 638

PERIODICALS MAIL

· MI 480:.:5-·42U::

l1l11ll11!1ll11111ll11l1!11 l11l11l1!111lll11l11i1l1I

Please include account number from label with any correspondence.

applying additional patches or newer revi
sions of existing patches. PatchDiag pro
vides only patch profile information. It
doesn't deliver or apply any patches. If a
system administrator wants to acquire or
apply additional patches to a system, he or
she should use their normal Sun authorized
service channel, or could access patches via
the Web at sunsolve.sun.com/private-cgi/
patch page. pl.

Description
This tool is a Perl-compiled script compati
ble with all systems running a Solaris 2.3 or
later environment and with all patches
installed in Solaris patch packet format . As
later versions of Solaris are released, this
tool may not be supported any longer by
earlier versions of Solaris.

Patches indicated as "Recommended"
patches are the most important patches.
They prevent the most critical system, user,
or security-related bugs that have been
reported and fixed to date. Patches not list
ed as recommended by PatchDiag should
be used if needed. Some patches listed in
this report can have certain platform
specific or application-specific dependen
cies and thus might not be applicable to
your system. It's important to carefully
review the README file of each patch to
fully determine the compatibility of any
patch with your system.

Usage
Invoke the PatchDiag Tool from a com
mand line. PatchDiag with no options uses

Coming up
• Network routing with Solaris

the default variables you specified during
system installation. It produces a summary
status report that lists:

• Installed patches

• Uninstalled recommended patches

• Uninstalled security patches pa I chd i ag -1
produces a more extensive audit report
that includes all patches available perti
nent to software installed on the sys
tem. It lists:

• Installed patches

• Uninstalled recommended patches

• Uninstalled security patches

• Other related uninstalled patches

Summary
Using this freely available tool informs
you of patches that Sun recommends.
Whether the patch belongs to the recom
mended or security patch category, it's
very possible that you can find the patch
that would alleviate your problem. This
possibility is very interesting as the year
2000 and its potential problems approach.
Just remember that applying pages to
Solaris (or any operating system) can
cause unexpected problems. Always make
sure that your system is backed up and
that you have a recovery plan in case you
need to return to your pre-patch configu
ration. Even better, experiment on a devel
opment machine or a personal workstation
before applying patches to your produc
tion server. ~

• Setting up PPP for dial-up connectivity
• Using Solaris Jumpstart to automate your Solaris installations

II Inside Slllarll

