
April 1998 • $11.50
Vol.4No.4

IN THIS ISSUE

1
Capturing error messages

4
Taking advantage of the
directory sort order

5
Splitting large files for
distribution

8
Using the su command for
quick problem diagnosis

7
Speeding up your PPP link

10
Monitoring an active log file

11
Dial-on-demand connections
with aspppd

18
Using vi to reverse a file

Visit our Web site at
http://www.cobb.com/sun

~T~i·c~,. GROUP ,.. ~

OLARIS™
ii' ~Tips & techniques for users of SunSoft Solaris

Capturing error messages
Effective system administration

means that you have to keep
the machines in your purview

running at their best efficiency.
Practically, this means that you
must find out about error condi
tions whenever possible. You don't
want the information to be lost in
the weeds. To help you out, Solaris
provides a system-logging facility
to help you log error messages.

Solaris' system-logging facility
helps you manage log messages
first by filtering the messages ac
cording to type, then formatting the
messages into a consistent format:

Jan 12 23:02:40 Devo unix: fd0 at
•f dc0

Each line shows the date, hostname
(Devo, in this case), the process that
emitted the message, followed by
the actual message body.

In this article, we'll show you
how to configure the system logger.
Then, we'll show you how you can
send messages to it in your pro
grams and script files.

Types of system
messages
Solaris consists of several indepen
dent subsystems, each of which
may emit logging information. If all
the messages were mixed together,

it could be more difficult than
necessary to scan through your log
files to detect and correct problems.
For this reason, the system-logging
facility groups messages by facility
and severity. This helps you man
age the error messages, ignoring
those that don't concern you.

Coverage of subsystems is
inconsistent. Some subsystems have
specific facility codes, such as cron
and mail. Other subsystems are
grouped by class, such as daemon
and user. Table A shows the facility
codes currently in use by Solaris.

The severity groupings, shown
in Table B on page 2 in order of

Table A: Safaris facility codes

Facility Generated by
code
user
kern
mail
daemon
au th

lpr

news
cron

local0-local7

mark

User rocesses
Solaris' kernel
The mailing system
System daemons
The authorization
system
Line printer
sEooling system
News servers
The cron and at
services scheduling
Reserved for
site-specific uses
Internal timestamp

ZIFF-DAVIS
a SOF T BANK

company

I

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S......... $115/yr($11.50each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief Marco C. Mason
Print Designer .. Margueriete Winburn
Editors .. Karen S. Shields

Publications Coordinator ..
Product Group Manager
Circulation Manager
Publisher

Back Issues

Joan McKim
Michael E. Jones

Linda Recktenwald
. Michael Stephens

Mike Schroeder
Jon Pyles

To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11 .50 each, $16.95 outside the US.
We accept MasterCard, Visa, or American Express.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright© 1998 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group, its logo, and the Ziff-Davis logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for personal and
commercial use. Information furnished in this newsletter is
believed to be accurate and reliable; however, no responsibility
is assumed for inaccuracies or for the information's use.

Inside Safaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade
marks of their respective holders.

highest to lowest priority, allow you to narrow your focus considerably.
If you don't care about informational messages from the mail system,
you're free to ignore them.

Table B: Severity codes in descending priority

Severity code Generated because

emerg

alert

crit

err

warn

notice

info

debug

Panic conditions may cause the system to shut down.

Situations occur that need immediate correction.

A critical error occurred.

A normal error occurred.

A process is warning about a potentially serious
situation.

A process noticed something important that's not
an error.

Information about a process.

Information useful to author I programmer of the
subsystem.

Configuring the system logger
Since you can select messages by their facility and severity, you can see
exactly those messages you want. You can view some messages when
they occur, save some in one or more files for viewing later, or send some
to one or more operators.

You can configure the system logger to do what you want by editing
the /etc/syslog.conf file. Each time the system logging daemon (sys log d)
starts, it reads /etc/syslog.conf to find out how to treat any incoming
messages. The file consists of records of the form

selectoraction

where selector specifies the list of error messages you want, and action
tells sys log d what to do with them.

The basic form of the selector field is:

facility.severity

where the facility section is a comma-separated list of the facilities you
want from the list in Table A, and severity specifies the minimum
severity level on which you want to take action. So if the selector field
happens to be

mail ,news :err

thens ys l ogd will perform the specified action whenever either the mail
or news subsystem submits a log message with emerg, alert, crit, and/ or
err severity levels.

You can also connect multiple selector fields with a semicolon, so
that you can perform the same action with multiple types of log mes
sages. If you want to perform the same action with critical kernel errors

llill -April1998~~~~~~~~~_,

as you do with the mail and news errors, you
can use this select or field:

mail.news:err;kernel.crit

The /etc/syslog.conf file offers a convenient
shorthand: You can use an asterisk (*) as a
facility name to specify all facilities except the
mark facility. (This helps prevent the log file
from growing too quickly.)

The action field specifies where to send the
message. You may specify a filename to store
the message, the name of another computer, or
a list of users to notify. If you want to specify a
filename, it must start with a forward slash (/).
Give the full path to the file where you want
to store the messages. Store all mail and news
errors in /etc/mail+news.errs with the line

mail,news:err /etc/mai l+news .errs

If you want messages forwarded to another
computer for storage, specify that computer by
preceding the name with an at(@) symbol. To
send all kernel messages to the host named
sd_log, you can use the line

kernel. debug @sd_log

If you want to specify one or more users,
just list their names. To specify all users, use an
asterisk(*). Please note that only users who are
actually logged in will be notified. If you want
everyone to be notified of a critical error, and
the operator to be notified on any emergency
messages and line printer notices, you could
use these lines:

*.er it *
* . eme r g; l pr . not i c e operator

Whenever you change the configuration
file, be sure to tell sys log d to reread it by
sending it the HUP signal, like this:

ps -e l grep syslog
184 ? 0:01 syslogd

kill-HUP184

Logging errors in your scripts
Since a centralized facility exists to log error
messages, you may as well use it for your own
programs and scripts. This way, you can track
the usage and any errors in your scripts and
programs. For script files, it's very easy to use
the system-logging facility-the logger com-

http://www.cobb.com/sun

mand sends a message to the logger for you
with the following line:

S logger -p facility.severity message

Just replace tac i lit y with the facility you
want to log to and severity with the error level
appropriate to the message. The remainder of
the line contains the message to send to sys l ogd.

Quick Tip: The localO through local7 facilities
are reserved for site-specific uses, but there
may not be enough facilities for all your pur
poses. In order to extend the range, you may
want to group your programs into categories
and put a prefix on each message body that
specifies the actual script or program that gen
erated the message.

For example, we might use localO for vari
ous disk-administration scripts, locall for user
administration scripts, etc. If the script named
FindDups detects an error, it might post a
message like this one:

logger -p local0.err FindDups: Can\'t allocate
•space on /tmp

If you're writing programs rather than
scripts, you should read the man page (section
3) for the open log(), sys log(), close log(), and
set l ogma sk() functions. Briefly, you start using
the logging service in your program with
open log(), in which you tell it the name of the
process that's sending the message and the
facility. You can also specify some options
(described in /usr/include/sys/syslog.h) with the
syntax

void openlog(char •name, int options. int
•facility)

where name specifies the name of the process,
options contains the list of options, and faci I
i t y is the facility ID that you want to use in
your program.

When you actually want to write a message
to the logging service, you use the sys log ()
function, where you specify the severity and
the text string containing the log message. The
syntax of the sys log () function is as follows:

void syslog(int severity, char •message)

The set lo gma s k () allows you to tell the
logging facility which messages to process and
which to discard. This is a great feature because

Inside Solaris

it allows you to log plenty of information when
you're debugging a program. Then, when your
program is working, you can deactivate some of
your debugging messages without changing
any code. Later, when you make improvements,

Listing A: LogDemo.c

I• LogDemo.c - System logging demo •I
#include <stdio.h>
#include <syslog.h>
int main(int argc, char •argv[])

{
int iloglevel=LOG_WARNING;
char acBuf [200];

open log("LogDemo", LOG_PID, LOG_LOCAL0);
ii (argc > 1) iloglevel = atoi(argv[1]);
set l ogmask(i Logleve l);

syslog(LOG_EMERG, "emergency");
sys log(LOG_ALERT, "a le rt");
syslog(LOG_CRIT, "cri ti cal");
sys log(LOG_ERR, "error");
syslog(LOG_WARNING,"warning");
sys log(LOG_NOTICE, "notice");
syslog(LOG_INFO,"inlo";
syslog(LOG_DEBUG,"debug");

closelog();
return 0;
}

you can bring back the debugging messages
again without changing your program. The
syntax for set logmask() is

void setlogmask(int severity)

The set lo gma s k () function lets you set the
minimum level of messages you want your
program to emit. If you want to see debugging
messages, call set logmask() with the severity of
LOG_DEBUG. Later, when your program works
and you only want to emit warnings and more
severe messages, call it with LOG_WARN I NG. Please
note that the values LOG_DEBUG, etc., are defined
in the include file (!usr/include/sys/syslog.h).

When your program is finished, you can
close the logging service with a call to
close log(). Listing A shows a simple C pro
gram that shows how you can use these func
tions in your programs.

Conclusion
Since Solaris provides a standard method for
managing logging messages, you ought to
become familiar with it. Not only do many of
the programs you work with use the logging
service, but you can also press it to your advan
tage in your own scripts and programs. •!•

Taking advantage of the directory
sort order
By now, you've no doubt noticed that when

you list a directory, l s arranges the names
in a particular order. You can use ls to

simplify managing file collections by using par
ticular prefixes or suffixes for filenames.

The ls sorting method puts numerals be
fore uppercase letters, which appear before low
ercase. Various punctuation symbols are mixed
throughout the list. (Since the sort order varies
by locale, you might want to verify the sort or
der, or you can experiment with filenames and
investigate on your own.)

If you want to place a file near the begin
ning of a directory listing so that it will be no-

April 1998

ticed immediately, you may want to prefix it
with a! symbol. A file named !README!, for
example, will appear near the top of the list.
We often use this trick in the /etc and /etc/rc? .d
directories. We prefix a disabled script or con
figuration file with !DIS, so that such files will
be grouped together at the front of the direc
tory listing.

If you write programs that generate log
files, you can name your log files starting with
the date, such as 971225.logfile. This way, di
rectory listings will show your log files in
chronological order. Alternatively, you can
place the date at the end of your log file, so

(

files will be grouped by the application that
generated them.

Figure A

Don't forget that using a period(.) as a
prefix normally makes the file invisible: It will
appear in directory listings only when you
use the -a option. This is a handy way to keep
particular files out of the way, so they don't
clutter your directory listings. Just take a look
at Figure A-even though this is a small di
rectory, which one would you want to look
through to find a file?

There are many ways to take advantage
of a sorted directory listing. Since l s goes to
the trouble of sorting your directory listings
for you, you may as well find ways to use it
to make your life a little simpler! •:•

t?.': ;;:;;;;~t:t·~!i;f~ Taking actvantage of,the -(ii rectoty sort _orcte1X.·':,~!,f;;h;r:;:; !'.\; ~'
/expo rt / home / ma rco
> l s

- "
Downl oads wORK find_uniq_files

the.cit .action.list
wabi

Sol-9 804 autosave
Sol 9805 big_file_li s t
/export/home / mar co
> ls -a

.Xauthority

.Xdefaults

.ab_library
1 • bash_h i story

.bas hrc

.cetables

.dt

. dtprofil e

.dtsessi onlogfil e
/ expo rt / home / marco
>

.dtwmrc

. emacs

.login . log

.netscape

.newsrc-news. win.net

.old.bashrc

. sh_hi s tory

.sunsol verc

. tt

.wastebasket

.xemacs- opti ons

Downl oads
Sol 9804
Sol 9805
WORK
autosave
big_fil e_l i s t
find_uniq_files
the .cit.action.li s t
wabi

Name little-used files and directories with a period(.) prefix to minimize
clutter in your directory listings.

Splitting large files for distribution
If some of your offices aren't connected to

the Internet, you probably know what a
hassle it is to send files from one location to

another on floppies. But what happens when your
files become too large to fit on a floppy disk?

One option is to use a magnetic tape similar
to those you use for backing up your system.
However, tapes can be expensive (which is
especially bad if the other office delays return
ing them). Also, this option mandates that all
the sites where you distribute files must have
the same type of tape drive available.

On the other hand, maybe the other office is
on the Internet, but the mailer is set to pass only
text files of a particular size or smaller. In this
case, you must be sure that your file is in ASCII
format and that it meets the size requirements.

In either case, it would be nice to be able to
break up your file into multiple chunks. Well,
Solaris provides a command that's ideal for this
purpose-the s p l i t command. This command
can break up files into whatever size you select
and will sequentially name the resulting files so
that you can conveniently reassemble them.

Convert files to ASCII and
split them
The s p l i t command will break your files into
chunks based on the number of lines or on the

http://www.cobb.com/sun

particular size you select. If you'd like to s p l i t
a file into chunks 5,000 lines long, you'd use
this form of the command:

$ s p l i t -5000 Bi g Fi le

The -5000 parameter tells s pl i t to break
the file into 5,000 line chunks. However, you
can specify fixed-size pieces like this:

S split -b 10k BigFile

Here, we told s p l i t to break the file into
lOKB pieces with the -b 10k switch. If you use
m instead of k, you specify megabytes; if you
use neither, the result will indicate the chunk
size in bytes. If you don't specify the chunk size
with either method, then s pl i t defaults to a
chunk size of 1,000 lines.

Quick Tip: You'll want to keep in mind that a
line count really has meaning only for a text
file. In a binary file, a line may be arbitrarily
long, because the newline characters may ap
pear anywhere in the binary file- if they appear
at all! If you're going to split a binary file, you
should use the -b method.

If you need the file in ASCII form, though,
you'll want to use uuencode to change your file

Inside Solaris II

into ASCII characters; then you can s pl i t the
file. In this case, you can use the line-count
method. You can uuencode a file like this:

$ uuencode InFi le DestFi le >OutFi le

InFile specifies the name of the file that you
want to convert to ASCII, DestFile specifies the
name you want the file to be called on the remote
system, and OutFile is the name you want to call
the ASCII file on your own system. To reverse
the process, use uudecode to convert the ASCII
file back to binary, with the line

$ uudecode Fi leName

Splitting your files for
floppy drives
If you're using a 1.44MB floppy disk drive,
you'll want to split your files into 1.4MB
chunks. Suppose that you want to send the file
BigFile to one of your sites, but it's too large (at
about 4MB) to fit on a floppy. You can split the
file with the command:

S s p l i t - b 1400 k Bi g Fi l e
$ ls -1 s
total 15968
7968 Bi gF i le
2816 xaa
2816 xab
2368 xac

Since we didn't specify a base name, the
s pl i t command just uses x, then it adds the
sequence ID (aa, ab, ac, etc.) to each chunk that's

been split off until it reaches the end of the file .
If you don't like to use x as the base filename,
you can specify anything you want by adding
it to the end of the command line, using the
following code:

S split -b 1400k Bi gFi le Bi gFi le_chunk .
$ ls -1 s
total 15968
7968 Bi gFi le
2816 BigFile_chunk.aa
2816 BigFi le_chunk.ab
2368 BigFi le_chunk.ac

Now you can copy the smaller files to floppy
disks and send them to the other offices.

Reassembling the file
Once the recipient gets the files, it's a simple
matter to reassemble them for use. Simply use
the ca t command to combine them, like this:

$ cat BigFile_chunk . aa BigFile_chunk . ab
Bi gFi le_chunk . ac >Bi gFi le

This cat command sends the output of
each chunk, in the specified order, to Bi g Fi le.
However, you needn't type all the filenames:
When you use wild cards, your shell automati
cally sorts the matching names. Since you want
all the chunks to be assembled in the same
order, you can just use this command:

S cat BigFi le_chunk . • >BigFi le

This method is a lot simpler, especially when
you're contending with multiple chunks. •!•

Using the su command for quick
problem diagnosis
Has this ever happened to you? You're on

your way to troubleshoot a problem on a
machine in the network you administer.

As you approach the problem computer, half a
dozen people stop you with questions about
their own systems. Before you know it, you've
spent two hours trying to fix a problem that
should have taken 10 minutes.

Fortunately, Solaris offers a solution that
allows you to attend to the needs of your users
without exposing yourself to the dangers of
hallway questioners. In many instances, you
can fix client machines by remote control. In
this article, we'll show you a way to diagnose
and correct problems in client machines from
the security and anonymity of your office.

Rise and shine
It's much easier to schedule time and stick to
your priorities if you can solve problems from
your own desk. First, you might try to r log i n to
the user's machine to see if you can see the
problem. Since many problems are centered
around file permissions, you may have to log
into the specific account to see the problem:

/root> rlogin pinky -l user
Password:

Uh-oh! You don't know the user's pass
word, and you shouldn't ask for it, as it could
compromise security. What should you do?

Bypassing passwords
One way you can avoid the necessity for using
a password is to either change or remove the
password altogether. However, when you're
finished with your task, the user must then se
lect a new password for the account, so remov
ing the password isn't the easiest solution.

Fortunately, as a system administrator, you
don't need others' passwords to log on to the
system. First, go ahead and r log i n into the ma
chine as yourself. As you may know, if you
then su to the user's account, su will ask for a
password, as follows:

/root> rlogin pinky -l user
Password:
Las t l o g i n : Mon Jan 5 11 : 06 : 06 I r om Zapp a
bash$ su user
Password:

As a matter of fact, you can easily get into
the user's account without bothering with a pass
word by using su from the root account to any
other account. So, su to the root account, then su

to the user's account with these lines of code:

bashS su root
Password:
su user

If the user's problem deals only with per
missions, you may be able to reproduce the
problem and find the solution. However, you
might be unable to reproduce the problem be
cause you haven't run the program as the other
user did. The missing piece of the puzzle is the
state of the environment variables, such as PATH.

The su command's -I option
You can avoid this headache by adding the - l
option to the s u command. The - l option tells
the su command to act as if you were the speci
fied user just logging into the system. In this
case, s u starts a new login shell for the user's
account. The new shell then runs the shell
startup scripts, configures the environment
variables, etc., just as though you were the
specified user. As a result, when you try to re
produce a problem reported by a user, you'll
have a much simpler time doing so.

bash$ su root
Password:
su user
Hello user!
Devo:->

Conclusion
Administering a network can be difficult
enough without having to run around the
building solving various and sundry user prob
lems. By using r log i n in conjunction with the
s u - l command, you should be able to rectify
many problems without leaving your office. •!•

Speeding up your PPP link

If you're using Solaris' PPP facility, you can
probably squeeze a little extra performance
out of the link. By properly setting the

ipcp_async_map for your communications paths,
you can transmit the same amount of informa
tion over the network in fewer bytes, thereby
shaving some time off your file transfers.

http://www.cobb.com/sun

So what is ipcp_async_map?
The PPP configuration file (/etc/asppp.cf) allows
you to specify the characteristics for each
communications pathway you'll use for PPP.
One of the parameters you can specify is the
obscure ipcp_async_map. Reading the man page
for aspppd doesn't shed much light on the

Inside Solaris

purpose of this parameter, as you can see in
Figure A. After some digging, we discovered
what this option means.

Figure A
ipcp_async_map hex-number

Specifies the async control character map
for the current path. The hex-number is
the natural (i.e., big endian) form repre
sentation of the four octets that comprise
the map. The default value is ffffffff.

This excerpt from aspppd's man page doesn't really tell us
how and when to use the ipcp_async_map option.

First, let's look at some background infor
mation. As you know, a byte can hold 256
values. You probably also know that the first 32
bytes are often used to represent control charac
ters in the ASCII character set, e.g., backspace,
carriage return, escape, newline, and tab.

It turns out that the 32-bit number set by
ipcp_async_map tells the PPP link which control
characters to treat specially. If a bit is on, then
PPP must treat the corresponding control
character in a special way- where the lowest
order bit maps to A@, the next bit maps to A A,
then AB, etc. Since the default value is Oxffffffff
(i.e., all bits are on), all the control characters
receive special treatment.

Just what special treatment does the PPP
link give to a control character? When PPP is
told to treat a control character specially, it
doesn't send that character at all. Instead, PPP
sends a two-byte sequence that represents the
character. So, if you're sending a file where all
byte values are equally distributed, then you'll
send about 12 percent more data than you
want. (32 possible byte values are sent as pairs
of bytes, rather than single bytes.)

Why give a character special
treatment?
Ideally, you wouldn't treat the control characters
in a special way. In a perfect communications
path, equipment would simply pass all bytes
straight through to their destination. However,
you must take care with control characters
because some equipment in a communications
path between the client and host computer may
perform one or more special actions on receipt
of particular control characters.

Unfortunately, we live in a less-than-perfect
world. Some terminal controllers, when they

II Aprll ll!_B_B _________,1

receive a AQ, will flush the data in the buffer. If
you use a modem with a cheap cable and are
forced to use software handshaking, then you'll
use AS and AQ to stop and restart communica
tions. (You'd save yourself untold headaches by
turning off software handshaking and using a
good cable with your modem instead.)

Table A: Control characters

Hex ASCII

Code Symbol Name Description
00 A@ NUL

01 AA SOH Start of header

02 AB STX Start text

03 AC ETX End text
"

.,_

04 AD EOT End of transmission .. -
05 AE ENQ Enquire
~

06 AF ACK Acknowledge

07 AG BEL Bell

08 AH BS Backspace

09 AI HT Tab

Oa AJ LF Linefeed (\n)

Ob AK VT Vertical tab

Oc AL FF Formfeed

Od AM CR Carriage return (\r)

Oe AN so Shift out

Of AQ SI Shift in

10 AP DLE Data link escape

11 AQ DCl Device control 1
(XON, resume xmit)

12 AR DC2 Device control 2

13 AS DC3 Device control 3
(XOFF, pause xmit)

14 AT DC4 Device control 1

15 AU NAK Negative acknowledge

16 AV SYN Synchronous idle
17 AW ETB End transmission block

18 AX CAN Cancel

19 AY EM End of medium

la AZ SUB Substitute

lb A(ESC Escape

le A\ FS File separator

ld A] GS Group separator

le AA RS Record separator

1f A us Unit separator

Setting ipcp_async_map
If you're using a perfect communications
pathway, then you can set ipcp_async_map to 0
so none of the control characters receive special
treatment. This can shave more than 10 percent
off your file transfer times on your PPP link.
(You probably won't attain that result, since
other sources of communications delays will
also affect your communications.)

If you know which control characters are
treated specially in your communications path,
you can still save some time on your transfers
by telling the PPP facility to treat only those
characters specially. Let's suppose that you're
using software handshaking (i.e., "S and "Q
are special) on your modem, and your ISP is
using a terminal controller in which "0 flushes
the buffer. Now we just find out which bits
correspond to "0, "Q, and "Sand set only
those bits. Table A provides a list of all the
control characters.

At this point, all we need to do is build a
hex number with bits OxOf, Oxll, and Ox13 on,
and the rest off. Since the bits are numbered
from right to left, we come up with a binary
number, which we then convert to hex. To
make the process simpler to see, the first line
shows the control character symbol, and the
next line shows the binary number we made by
setting AO, AQ, and AS to one, and setting the
rest to zero. The third line shows the hexadeci
mal representation of the number.

']\ [ZYX WVUT SROP ONML KJIH GFED CBA@
0000 0000 0000 1010 1000 0000 0000 0000

0 0 0 A 8 0 0 0

We arranged the number in groups of four
bits since it simplifies converting from binary to
hexadecimal. To convert back and forth, use
Table B. Now we can edit the appropriate path
block in /etc/asppp.cf to set the ipcp_async_map
option to our newly computed value, as shown
in Figure B.

Don't hit the books quite yet. ..
Since Sun has no idea what communications
equipment lies between your host and your
ISP's host, it sets ipcp_async_map to a conserva
tive value that won't fail. While this saves Sun a
lot of service calls, this preset value costs us
time each time we transfer binary files over our
PPP link.

http://www.cobb.com/sun

Table B: Converting back and forth from binary to
hexadecimal

Hex Binary Hex Binary
0 0000 8 1000

0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
5 0101 D 1101

,6 0110 E 1110
7 0111 F 1111

Figure B

Speeding up your PPP iink
/et c/asppp .cf - Dialup PPP link confi gurat i on

Di al out to Wi nNET

ifconfi g ipdptpO pl umb 198.70 .147. 210 up metri c 1

path
i nterface
peer_system_name
ipcp_async_map

i pdptpO
Wi nNET
a8000

We connec t via / dev/ i pdptpO
/etc/uucp/Systems reco r d key
Escape hQJ hQJ and hS

We modified this path block to SJ?ecify an ipcp_async_map value of aBOOO.

If your setup is relatively standard, then
you shouldn't need special treatment on any
control characters. So, before digging out all the
manuals on your equipment, go ahead and try
0, and send a binary file or two over your PPP
link. Be sure that your test file has every
possible character in it. If you can successfully
transmit this file, then you're finished.

If your file fails to transmit, then hit the
books. You can read the manuals to ascertion
which control characters must be treated
specially, or you can figure it out by trial and
error.

Conclusion
Since the default value of ipcp_async_map is so
conservative, there's an opportunity for you to
improve the performance of your PPP link
when you transmit binary files. Text files tend
to use few control characters, and those (tab,
carriage return, newline, formfeed, tab) are so
commonly-used in text that communications
equipment shouldn't require any special
handling for them. Thus, you can achieve a
modest performance gain by turning off just
those control characters. •!•

Inside Solaris

Monitoring an active log file
Many programs write log files to assist

with the debugging process. So, when
you're installing a system, you run it

and examine the log files to try to find out what
went wrong. Did you know that you can examine
the contents of a logging file, even while it's in
use? What's more, you can feed those contents
to another program for processing.

What's the secret?
As long as you have read permissions on a file,
you can read a file that's still open for writing
by another process. Since many programs write
data to log files, you needn't wait for the program
to finish running before you start reading it.
However, once the program that's reading the
file encounters the end of the file, it will then
terminate- unless it's specially written.

It turns out, though, that you needn't write
your own special program. Solaris provides an
option (- f) on the ta i l command that will,
when it reaches the end of the file, wait a little
while, then look for more input. The ta i l
command will stay in this loop until you
explicitly terminate it.

As an example, when we were working on
the PPP article, we needed to watch /etc/log/
asppp.log to find out the source of dialing
problems, IP negotiation, etc. To do so, we used
the simple command

tail -f /etc/ log/asppp. log

This way, we could see the logging information
as it's written.

Processing the log
You can use this trick to allow other programs
to work on the log file, too. Since the tail program
prints its output on the standard output, you"
can use it to start a command pipeline. For
example, when we were looking over the IP
negotiation phase, we didn't want to look at all
the other messages. So we used the command

ta i l - f I etc/ log I asp pp . log : gr e p IP _NCP

Since we chose this method, gr e p could throw
away all messages that didn't involve the
IP _NCP (IP negotiation) protocol.

II-APril 1998

Monitoring multiple streams
Have you ever wanted to watch both the
standard output and standard error streams at
the same time? If so, you probably resorted to
something like the line

your_program 2>&1

which tells the Korn or Bourne shell to send the
standard error stream (2) to the same place as
the standard output stream (1).

However, since this mixes the streams, the
output can get confused. If you would like to
see both streams separately in different windows,
then in one window, you can run your program
piping the error stream to a file with this line:

your_program 2>std.err.out

In another window, you can view the error
stream using the following ta i l - f command:

tail -f std.err.out

Conclusion
The next time you're installing a program that
generates log files, try the trick we just de
scribed. Real-time feedback can be a big help in
debugging, because you can see what's happen
ing on your system at the time the log message
is generated. The ability to then pipe the results
through other programs for processing is just
the icing on the cake! •!•

Are you a good tipper?
Do you have any great Solaris tips that

you've discovered? If so, send them
our way! If we use your tip, it will appear
on our weekly online ZDTips service. (Visit
www.zdtips.com to check out all our avail
able tip services.) We may also publish it here
in Inside Solaris. Your byline will appear
with the tip, along with your E-mail and/or
Web addresses.

Send your tips to inside_solaris@zd.com,
fax them to "Solaris tips" at (502) 491-4200,
or mail them to

Inside Solaris
The Cobb Group
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

(

Dial-on-demand connections with aspppd
lnt_ernet connectivity seei:ns to become more Basic PPP configuration review

important each day, with most companies .
requiring a presence on the Internet. Small First~ you must ensure _that yo~ hav: all.the

companies may choose to have an Internet req.mred packages, which .are listed m Figure
Service Provider (ISP) host a Web site for them A, installed on your machme. Please note that
so they can transact business over the Web. the uuc~ packages (SUNWbnur, SUNWbnuu)
Large companies might use leased lines to are re~mred b.ecause the PPP connection is
supply a high-speed, full-time connection to the esta~hshed wi~h t~e stand~rd uucp dialer
Internet. And of course, there's the lar e ra services. The first lme of Figure A shows the
area between having no connection an~ !ai~- comi:nand you use to determine whether the
taining a full-time connection reqmred packages are installed. If they're

Your company may need ~o establish a n?t, ~ou?l need to install them from your
. distnbuhon CD.

connection to the Internet. Perhaps you must
upgrade your E-mail services so that you get
frequent mail delivery. Or maybe the vice Figure A
president wishes to browse the Web in order -------------------------

1~1 Dial- on- demand connections wi th asp pod . ;-I to check on stock prices during lunch. r "'"'''° I egrep "ppp I bnu··

~'
system SUNWapppr PPP/ IP Asynchronous PPP daemon configurat i on f i les
system SUNWapppu PPP/ IP Asynchronous PPP daemon and PPP login se r vice
system SUNWbnur Networ ki ng UUCP Util it ies, (Root)
system SUNWbnuu Networking UUCP Util i ties, (Usr)
system SUNWpppk PPP/IP and I Pdialup Device Driver s
I

-- ·-. ··--· ·- . ·-- ···-- ·--·.

Using a full-time connection via a leased line
is expensive. However, you can get high-speed
access at any time, day or night. You'll have to
pay for the leased line, the equipment you'll use
on your premises, and (via the setup and monthly The PPP package reqwres these ftve packages.

charges) the equipment on your ISP's site.

Part-time connectivity
For many smaller companies, there just isn't
enough benefit to justify the expense of a leased
line and the requisite extra equipment. In such
cases, you must find lower-cost alternatives.
One alternative is to use a standard modem to
connect to your ISP only during certain times
of the day. This way, you can use a standard
telephone line and basic modem, which is a
cost-effective solution. This solution is espe
cially tempting, since every copy of Solaris
ships with a dialup PPP facility built-in.

In this article, we're going to show you two
methods in which you can use the dialup PPP
facility for a part-time connection. The first
method uses a static IP address with automatic
dial-on-demand, and the second uses a dy
namic IP address with manual connect and
disconnect.

However, both methods are based on the
standard PPP installation, so before we show
you how to create a part-time connection, let's
briefly review basic PPP setup for dial-out
connections. (Since we covered this in the
article "Configuring A Remote PPP Dial-Up
Client For Solaris 2.x'' in our February 1996
issue, we'll skip over some of the details.)

http://www.cobb.com/sun

Once you have these packages installed,
you must configure your serial port and
modem to communicate properly with one
another. If you use an external modem, be sure
you use a quality cable, because some cheap
cables omit some of the modem signals,
making it difficult to maintain a good connec
tion. (This topic is complex enough to warrant
its own article, so if you have any difficulty
configuring your serial ports or modem, then
read Stokely Consulting's excellent Web page
on the subject "Celeste's Tutorial on Solaris 2.x
Modems and Terminals," which you'll find at
www.stokely.com.)

Quick Tip: We advise you to use an exter
nal modem, so you'll be able to reset it
easily by turning it off and on. While you
learn about serial ports, it's possible to get
the modem stuck in a state from which it's
difficult to recover. Internal modems,
while cheaper, are more difficult to reset
since you must turn off your computer. To
do so until you gain enough experience
with serial port and modem configuration,
you should use an external modem.

Inside Solaris Ill
---~.:.__

Figure B
....:[

Now we're ready to configure the files. For
the basic PPP configuration, we need to config
ure only three files. The file /etc/asppp.cf config
ures the PPP configuration; /etc/uucp/Systems
configures the chat script for dialing the mo
dem; and /etc/uucp/Devices configures the mo
dem you'll use to connect to the modem. You'll
also want to configure /etc/gateways to prevent
routing information from consuming band
width on your PPP link.

Configuring /etc/asppp.cf
Figure B shows a typical /etc/asppp.cf file that
we're using to connect to our ISP. The line
starting with i fconf i g specifies how to set up
the interface. Specifically, we're telling if con fig
to set up device ipdptpO (the dialup link) using
PPP address 198.70.147.210, that the link is up
(i.e., it's enabled), and that it's a connection to a
remote machine.

The next line tells the PPP facility that we're
starting a new path (communications path). First,
we specify that this path is tied to the interface
ipdptpO. (You must specify the interface name
because the PPP facility supports multiple
incoming and outgoing paths-this way you
can tie the path to the right if con fig statement.)
Then, we specify the name of the record in the I
etc/uucp/Systems file that we use to log into our
ISP. Since we use WinNET for our ISP, we'll call
the record WinNET.

When you create the i f con f i g command,
you must select an IP address to tie the inter
face. If you're using a static IP address, you'll
need to specify the address your ISP gives you.
If you're using a dynamic IP address, you can
use any value (other than 0.0.0.0) because,
during login, it will change to the value that the
ISP gives it for that login.

Configuring /etc/uucp/Systems
Now, let's add the WinNET record to our /etc
/uucp/Systems file . To do so, we simply add the

Dial-on-demand conrie<:tlons wlth<isMpd w.:Ji
/etc/asppp .cf - Dial up PPP 1 i nk conf i guration r-j

Dial out to Wi nNET

i fconfig i pdptpO pl umb 198.70.147.210 up metric 1

path
i nterf ace
peer _system_name

ipdptpO
Wi nNET

We connect via /dev/ipdptpO
/etc/uucp/Systems reco rd key

The basic configuration has no frills, but it will get the job done.

111-April 1998

following line to the end of the file. You'll have to
change this record because the sequence of opera
tions used to log into your ISP will be different
from ours. At the very least, you must change
telephone, user name, and password to reflect
those that you use with your ISP with the line

WinNET Any ACU 38400 telephone "" P_ZERO
"" \r\n gin: username ord: password

Please note that the previous code is all one line.
The first word, WinNET, is the record name.
Any refers to the day and time the record may
be used, meaning any day or time. The follow
ing field is the device type, where ACU speci
fies an Automatic Call Unit, which is what you'll
probably need. You can refer to the file /etc/
uucp/Devices for information about other device
types that are available. Next comes the baud
rate you want to use for the connection fol
lowed by the telephone number to call.

The rest of the line is the uucp chat script
that logs you into the ISP. The basic structure of
the chat script is a set of expect/ send pairs. First
you specify what you're expecting to read from
the modem. Once it's read, the script sends the
send value. The process repeats until it reaches
the end of the last pair. If the modem is still
connected at the end of this sequence, then the
hosts are connected. (Please note that the PPP
layer hasn't yet been established.)

We're expecting an empty string ('"') from
the modem, which means that it will immedi
ately send the next part, P _ZERO, to the serial
port. This is actually a special value that tells
uucp to program the serial port to use eight data
bits with no parity, which is the setup required
to get a PPP link working. (Similarly, P _ONE
sets parity to one, P _EVEN sets even parity, and
P _ODD sets odd parity.)

Now we try to log into our ISP. To do this,
we need to send a carriage return and line feed
so it will issue a login prompt for us. Again, we
expect an empty string to force an uncondi
tional send of a carriage return (\r) followed by
a linefeed (\n) .

Once our ISP receives the carriage return
and line feed, it emits the login prompt "login:".
We'll expect the phrase "gin:", and once we see
it, we'll send our username. Then the ISP will
prompt us for our password with the phrase
"password:", so we'll expect "word:"; once we
see it, we'll send our password. Now we should
be logged in.

Configuring /etc/uucp/Devices
The last file we must configure is named /etc/
uucp/Devices. You use this file to tell uucp which
serial port is connected to the modem you want
to use to establish the link. This file contains
entries in the form

Type Port Unused Speed Dialer

In this line, Type specifies the type of connection
you're using. Since you're connecting through a
modem, use ACU. The Part parameter specifies
the name of the device, without the directory
prefix. Solaris doesn't use the Unused field, so
just insert a hyphen(-). You specify the speed of
your connection to the modem with the Speed
word. Finally, with Di al er you specify the
modem type. You must look at the file /etc/
uucp/Dialers for a complete list of all the legal
Dialers.

At our site, we're using a Hayes-compatible
modem on port /dev/cua/b with a connection
speed of 38400 bps, so our entry is

ACU cua/b - 38400 hayes

Please note that the speed of the connection to
the modem is independent of the modem's
baud rate. Your computer communicates to the
modem over a serial cable at one speed, the
speed as specified by Speed. The modem talks
to the modem on the other end of the phone
line at another speed, the connection speed. For
example, a 14.4Kbps modem sends 14,400 bits
per second over the phone lines. In this case,
you might choose a connection speed of
19,200Bps.

If the modem uses compression, it may
actually send data over the line at an effectively
higher rate, perhaps 20Kbps. In order to
accommodate this higher rate, you'll want to
select a faster connection speed. In general, it's
best to choose the highest connection speed the
modem supports.

Configuring /etc/gateways
If your system has another network interface
on it (as most do), then it will act as a router
when connected to the Internet. However, you
don't want your machine to continually ex
change routing information with your ISP. If it
does, then you'll waste bandwidth over your

http://www.cobb.com/sun

PPP channel (as well as CPU time) for the
routing information.

If you plan to use the dial-on-demand
configuration, then you'll encounter yet
another problem: Routers tend to exchange
information frequently enough to keep your
link active, even when no one's using it. So
once the link activates, it will stay active even
if no one's using it. To prevent this situation,
add the line

norip ipdptp0

in the file /etc/gateways. If the file doesn't exist,
then create it and put this line in it.

Testing your connection
Now that you've set up your PPP link, you're
ready to test it to see if it works. First, start
aspppd, the PPP daemon. To do so, you can use
the command

/etc/init.d/asppp start

This command starts the asp pp d daemon,
which manages your PPP link. If it sees a valid
configuration, it configures the PPP interface
(ipdptpO) and enters it into the routing table.
You can examine the port configuration and
routing table to see if the basic configuration is
correct. Figure C shows how to do this-the
i fconf i g command displays the setup for
ipdptpO, if it exists. If the command didn't
work, you'd see a "no such interface" error.

We can use the nets tat command to see
whether the interface was properly registered
into the router table. Here, you're looking for a
default route to the ipdptpO, as shown in the
last line in Figure C.

Figure C

-1 Dial- on- demand connections with asoood

ifconfig i pdptpO
ipdpt pO : fl ags-8d 1 <UP,PO INTOPOINT,RUNNING,NOARP, MU LTI CAST> metric 1 mtu 8232

inet 198 .70.147.210 -- > o.o.o.o netmask ffffffOO
ether O:O:O:O:O:O

netstat -rn

Routing Table:
Destination

127 .0.0.1
198.70.147.0
224.0.0.0
default
I

Gateway

127. 0.0 .1
198.70.147.45
198.70.147.45
198.70.147 .2 10

Flags Ref Use Interface

UH
u
u
u

0
3
3
2

22 loo
o el xO
O elxO
0 ipdptpO

You can use the ifconfig and netstat commands to check whether your
configuration is reasonable.

Inside Solaris

, _j

If your configuration looks valid, it's time
to test your phone number and uucp chat script.
To start the connection, just p i n g an address
outside of your network. Since the default route
goes to ipdptpO, the aspppd daemon will bring
up the PPP link for you to try to route the
packet.

Please note that establishing the connection
may take a long time, as far as your software is
concerned, so the first access to the Internet
may fail. For example, in our test setup, we're
using the pi n g command to bring up the link; it
times out in about 20 seconds with a "no
answer" error. The connection takes about 40
seconds to establish. If we wait a little while
and try the command again, it succeeds, as
shown in Figure 0 . Now you can terminate the
connection using the command

/etc/init.d/asppp stop

At this point, you're ready to move on to
the next step. If you're going to use a dial-on
demand configuration with a static IP address,
proceed to the next section. For a manually
controlled connection with dynamic IP ad
dresses, skip to the Manual Connections
section.

Using a dial-on-demand with a
Static IP address
The easiest way to use the Internet is with a
static IP address. The main advantage is that
you needn't do anything special to make and
break the connection. All you really need is a
couple of minor configuration changes. Then,
whenever you attempt to access something
that's not local to your network, aspppd will
establish the PPP connection with your ISP.
After a (configurable) period of inactivity,
asp pp d automatically breaks the link.

One disadvantage to using a static IP
address is that most ISPs will charge you more
money for such an address. Remember, the

Figure D

~1 bi~-on-deman·d con~ectlons with-as pp pd ll'.J_j
#ping 192.9.9.100
no answer from 192.9.9.100
~ping 192.9.9.100
192 .9.9.100 is alive

Be patient when starting the link, since it must dial the
phone, build the PPP connection, establish routes, etc.

April 1998

provider can't allow others to use the address
when you're not connected.

In order to configure the PPP facility to use
a static IP address, make two changes to the
/etc/asppp.cf file. First, specify the IP address
your ISP gives you in the i fconf i g statement.
Then, add the following statement to your path
(just add this line after the line that specifies the
peer_system_name):

inactivity_timeout 300

This line tells a s p p pd to disconnect the PPP link
after 300 seconds (five minutes) of inactivity.
You can change the timeout length to anything
you prefer.

Now you're ready to use your PPP link.
Whenever you attempt to access an address
that's outside your network, aspppd will start
the PPP link, if required. After the link remains
idle for a long enough time, the link will stop.
You needn't think any more about it.

Manual connections
If you don't want to spend the extra monthly
cost for a static IP address, then you must use
dynamic IP addressing. In this scheme, the ISP
can save money because it provides you with
an IP address from a shared pool each time you
log in. Since everyone shares this pool of IP
addresses, the ISP needs fewer lines than would
otherwise be required. However, this shared
pool mandates that we configure our machine
slightly differently. It also forces us to manually
start and stop the link.

In order to accommodate dynamic IP
addresses, you must add the following line to
the path in your /etc/asppp.cf file. This line tells
aspppd that it should accept whatever IP ad
dress the ISP offers:

negotiate_address on

We don't try to use dial-on-demand on a
dynamically allocated IP address because the
routing table changes after the connection
starts. Thus, we can't establish the correct
default route for the PPP interface. Even if we
could, an application that opens a persistent
connection may fail since the IP address may be
different on each login. (The PPP connection
could terminate and later restart because the
connection might open with a different IP
address.)

Therefore, we must rely on manual connec
tion control instead. Since we're not specifying
the i n act i vi t y_ t i me out parameter, the asp pp d
daemon starts the link whenever it starts and
tries to keep the link active. When you install
the SUNWa pp pr package, it installs the script
asppp in the /etc/init.d directory. Thus, you can
start the link with this command:

/etc/init.d/asppp start

Similarly, you can terminate the link with the
following command:

/etc/init.d/asppp stop

The installation procedure also creates links
to the asppp script as /etc/rc0.d/K47asppp, /etc/
rcl.d/K47asppp, and /etc/rc2 .d/547asppp . Because
you always want to shut down the link when
you're stopping the system, you'll probably
want to leave the first two links alone. How
ever, the third symbolic link tells Solaris to start
the asp pp d daemon when it boots into multiuser
mode. Since you may not want to start the PPP
link every time you boot your computer, you
can disable /etc/rc2.d/547asppp.

Quick Tip: When you want to disable a script
in the /etc/rc?.d directories, just rename it to
something that doesn't start with an Sor a K.
(We typically just add the prefix _DIS to
segregate disabled files near the front of the
directory as we described in "Taking Advan
tage of the Directory Sort Order.") In these
directories, any script beginning with an Sis
automatically started, and any script starting
with a K is automatically stopped when the
system goes to the appropriate run level.

Keeping the link alive
One disadvantage of using dynamic IP ad
dresses on your PPP link is that when your
PPP link drops unexpectedly (such as when the
link is inactive too long), an application won't
know that the link has died. Then when asp pp d
restarts the link, chances are good that you'll
have a different IP address. If the application is
working under the assumption that the link
will have the same IP address and attempts to
communicate with the remote computer, it will
probably fail. An example of this situation
occurs when you're transferring a file. If the

http:/!www.cobb.com/sun

connection drops and comes back, the file
transfer will hang.

Miscellaneous notes
When you're first configuring or otherwise
experimenting with your PPP configuration,
you should turn on the debugging log so you
can see what the PPP connection is doing. The
debugging log shows you what the link is
doing, making it easier to track down any
problems you may experience.

Table A: Seven levels of debugging information

Level l\1eaning

0 Only log errors

1 l\1inimal connection information

4 Abbreviated uucp chat-script
messages

5 Complete uucp chat-script messages

7 All uucp messages

8 Log PPP message tracing

9 Log the complete IP packets

With the debugging log enabled, the aspppd
daemon writes debugging information to the
log file /etc/log/asppp.log. You can select from
among seven levels of debugging information,
as shown in Table A . You turn on the debug
ging log by adding the following statement to
the path in your /etc/asppp.cf file, where xis the
level of debugging information you want:

debug_level x

Be sure to remove this line from the path when
you're finished debugging, as this file can grow
extremely quickly-especially at level 9.

Conclusion
If you occasionally need to connect your network
to the Internet, but don't want to pay for a
dedicated line, then a dial-on-demand PPP link
with a static IP address is probably your best
solution. For cost-conscious businesses, using a
dynamically allocated IP address is definitely
the cheapest way to go. Either way, with just a
little work, you can create a part-time link to
the Internet for your company. •!•

Inside Solaris IPP.m ____ -...:..

PERIODICALS MAIL

.. ;. :::: (> :~: 5 '4· ~:~ i ::::

SunSoft Technical Support

(800) 786-7638
I 1I11II11I1Ii11111ii11iIi11i11I11 i Ii Ii Iii i 11I11i1I1 i

Please include account number from label with any correspondence.

Using vi to reverse a tile
Every once in a while you may need to

reverse the order of lines in a file. For in
stance, you may be searching for data

with a find and grep pipeline that you put
through sort and into a file, only to discover
that you should have added the -r flag to the
sort command. Or you may have created a
script to rename a set of files, changingfileOO
through file99 to file01 through filelOO, only to
realize just in time that you have the commands
in the wrong order and could have ended up
with one file that had been renamed 100 times,
clobbering 99 others on the way. Unfortunately,
there's no reverse utility that will quickly fix the
problem.

Here's a simple trick with vi that will let
you reverse the order of lines in a file . It also
illustrates one of the important details of vi's
global search syntax.

To reverse a file within vi, simply type

: gr /m0

In "spoken-vi," you might read the command
as "Globally search for the beginning of each
line, and for each line found, move it to imme
diately follow line O." The seemingly similar
command

:1,Sm0

won't do what you want because it treats the
entire block of lines as a single unit.

The first command works the way it does
because a global search is actually a two-step
process. First, vi searches the file for the pattern
and marks each matching line. Second, vi steps
through each marked line in turn, beginning at
the top of the file, and applies the command to
each marked line.

April 1998

In this case, every line is marked because
even empty lines will be matched by the/!''/
pattern. Then, for each line, the command moves
the current line(.) to line 0. When line 1 moves,
it'll be in the same place it started. When line 2
moves, it will be above line 1. Line 3 will move
up one line, and so on. You have reversed the
lines in a file with fewer than 10 keystrokes.

Because the same global command we used
above in vi will also work in e d, you can put
the command into a reverse script, as shown in
Figure A.

Figure A

#!/bin/sh

#reverse - print to stdout all lines
in reverse order

PATH=/bin:/usr/bin

case S# in
1) ed - "$1" << "EOF"

gr /m0
1, Sp
EOF

•l echo Usage: $0 file >&2
exit 1

esac

This script uses ed to reverse the order of lines in a file.

This command, like the vi example above, will
reverse only a file that meets the limitation of
vi 's and e d's maximum file size. •!•

/';:"
·"":'\"\ Printed in the USA. '2v This journal is printed on recyclable paper.

