
December 1998 • $9.00

Vol. 4 No.12

IN THIS ISSUE

1
Armoring Solaris

4
Real applications
and the WWW

G
Shell toolbox 101, partl

9
Configuring Network
Interlace Cards

12
Shells

15
Sun on a budget

15
About our contributors

Visit our Web site at
www.zdjournals.com/sun

~JOURNALS ..._ \

OLARIS™
~-~ techniques for users of SunSoft Solaris

Armoring Solaris
by Lance Spitzner

F irewalls are one of the fastest
growing technical tools in the
field of information security.

However, a firewall is only as se
cure as the operating system it re
sides upon. This article will take a
step-by-step look at how you can
best armor your Solaris
box, both Spare and x86.

get critical files and patches later,
you'll need a second box that acts as
a go-between. This second box will
download files from the Internet,
and then connect to your isolated,
configuration "network" to transfer
critical files.

We'll take a look at tech
niques like TCP wrappers,
shown in Figure A, to

Figure A

protect your telnet ses
sions. These steps can
apply to any situation;
however, we'll be using
Checkpoint Firewall 1 on
Solaris 2.6 as an example.

Installation
The best place to start in
armoring your system is
at the beginning: OS
installation. Since this is
your firewall, you can't
trust any previous instal
lations. You want to start
with a clean installation,
where you can guarantee
the system integrity.

Place your system in an
isolated network. At no
time do you want to con
nect this box to an active
network or the Internet,
exposing the system to a
possible compromise. To

Incoming Telnet
Connection

+
lnetd daemon

Tcpd Wrappers

+
Telnet Daemon

Checked against
AC Ls

Incoming telnet sessions
are validated before being
allowed to execute

ZI FF-DAVIS
•S OFTBA N K

comp.toy

Once you've placed your future firewall
box in an isolated network, you're ready to
begin. The first step is selecting which OS
package to load. We recommend End User
with Online manual pages. The idea is to load
the minimum installation, while maintaining
maximum efficiency. The less software that
resides on the box, the fewer potential secu
rity exploits or holes. Anything above the End
User package, such as Developer, is adding
useless, but potentially exploitable, software.
Remember, this is your firewall; it shouldn't
be running anything else.

The other option is to load the Core instal
lation package, which is smaller and leaner
than the End User installation. However, you
must know exactly what you're doing, because
the Core package may be missing critical exe
cutables or libraries. Usually, you'll have to
add specific packages. We prefer the End User
installation, because it tends to be more stable
and flexible. Finally, add the manual pages.
We find these to be a critical tool with little
security risk.

Once the system has rebooted after the in
stallation, be sure to install the recommended
patch cluster and security patches. Also, be
sure to use your go-between box to get the
patches; the firewall box should always re
main on an isolated network. Patches are criti
cal to armoring a system and should always
be updated. Bugtraq is an excellent source for
following bugs and system patches.

Eliminating services
Once you've loaded the installation package,
patches, and then rebooted, you're ready to
armor the operating system. Armoring con
sists mainly of turning off services, adding
logging, tweaking several files, and TCP
Wrappers.

First, we'll turn off the services. By default,
Solaris is a powerful operating system that
executes many useful services. However, most
of these services are unneeded and pose a po
tential security risk for a firewall. The first
place to start is I etc/inetd.conf. This file speci
fies the services for which the I usr /bin/ inetd
daemon will listen. By default, I etc/inetd.conf
is configured for 35 services, but you only
need two: ftp and telnet. You eliminate the
remaining unnecessary services by comment
ing them out.

The next place to start is I etc/rc2.d and
I etc/rc3.d. Here, you'll find startup scripts

II inside Solaris

launched by the init process. Many of these
processes aren't needed. To prevent a script
from starting, replace the capital S with a low
ercase s. That way, you can easily start the
script again just by replacing the lowercase s
with a capital 5. The following scripts aren't
needed and pose serious security threats to
your system:

• S73nfs.client- Used for NFS mounting a
system. A firewall should never mount
another file system.

• S47autofs- Used for automounting.
Once again, a firewall should never
mount another file system.

• S80lp-Used for printing. Your firewall
should never need to print.

• S88sendmail- The MTA daemon that
listens for incoming E-mail. Your fire
wall box shouldn't be your E-mail serv
er. However, your system will still be
able to send mail, such as alerts.

• S15nfs.server- Used to share file sys
tems, which is a bad idea for firewalls.

• S76snmpdx-snmp daemon.

Later, after you've completed both the OS
and Firewall installation and configuration,
you should turn off the following (other)
I etc/ rc2.d scripts:

• S99dtlogin- CDE daemon, starts CDE
or Open Windows by default.

• S71rpc-portmapper daemon.

Without these scripts, you can't launch a
GUI interface. You most likely will want the
GUI interface to help you with the installation
and configuration. However, once you're
done, there's no need for the GUI or either of
the scripts. Both rpc and Open Windows or
CDE have many exploitable ports and serv
ices. To see how many services are running
with both the GUI and rpc running, type the
command

ps -aef i we -l

Once you've finished with the installation
and have turned off S99dtlogin and S71rpc,
type the command again and compare how
the number of services has decreased. The
fewer services running, the better.

Logging and tweaking
Once you've eliminated as many services as
possible, you want to enable logging. Most
system logging occurs in Iv a r I a dm. You need to
add two additional log files there: sulog and
loginlog. /var I adm/ su log logs all su attempts,
both successful and failed. This allows you to
monitor attempts to gain root access to your
system. /var I adm/ login log logs consecutive
failed login attempts. When a user attempts to
log in five times, and all five attempts fail, this
fact is logged. To enable the files, just touch the
files /var/adm/loginlog and /var/adm/sulog .
Ensure that both files are chmod 640, as they
contain sensitive information.

Next comes tweaking. This involves vari
ous file administration tasks. The first thing
you need to do is create the file I etc/issue.
This file is an ASCII text banner that appears
for all telnet logins. This legal warning will
~ppear whenever someone attempts to log
mto your system.

We also want to create the file I etc/ ftpusers .
Any account listed in this file can't ftp to the
system. This restricts common system accounts,
such as root or bin, from attempting ftp ses
sions. The easiest way to create this file is the
command:

cut -f1 -d: > /etc/ftpusers

Ensure that any accounts that need to ftp to
the firewall are not in the file I etc/ ftpusers .

Finally, ensure that root can't telnet to the
system. This forces users to log into the system
as themselves and then su to the root. This is a
system default, but always confirm this in the
file I etc/ default/login, where console is left
uncommented.

TCP Wrappers
TCP Wrappers is a must for any firewall. No
armored system should be without it. Created

Listing A: Add the bottom two tiles to /etc!inetd.conf.

Ftp and telnet are standard Internet services.

by Wietse ~enema, TCP Wrappers is a binary
that wraps itself around inetd services, such as
telnet or ftp. With TCP Wrappers, the system
launches the wrapper for inetd connections,
which logs all attempts and verifies the at
tempt against an access control list. If the con
nection is permitted, TCP Wrappers hands the
connection to the proper binary, such as telnet.
If the connection is rejected by the access con
trol list, then the connection is dropped.

Many of you may be wondering why a fire
wall would need TCP Wrappers, since the fire
wall does all that for you. The answer is
simple. First, in case the firewall is compro
mised or crashes, TCP Wrappers offer a second
layer of defense. Second, and just as important,
TCP Wrappers protect against Firewall mis
configurations. We've often seen firewalls mis
configured, especially in VPN situations,
allowing unauthorized users telnet access to
the firewall. Third, TCP Wrappers add a sec
ond layer of logging, verifying other system
logs.

You can get TCP Wrappers from coast.cs.
purdue.edu/pub/tools/unix. Once again, be
sure to use your go-between system to retrieve
and compile TCP Wrappers. We want to pro
tect the armored Solaris box within its isolated
network.

Once downloaded, be sure to review the
README file first; it's an excellent introduction
to TCP Wrappers. We recommend the follow
ing two options when compiling TCP Wrap
pers. First, go with paranoid, as this does a
reverse lookup for all connections. Second, use
the advance configuration, which is actually
quite simple. This configuration keeps all the
binaries in their original locations, which may
be critical for future patches.

Implementing TCP Wrappers will involve
editing several files (these examples are based
on the advance configuration). First, once com
piled, the tcpd binary will be installed in the

#ftp stream tcp nowait root /usr/sbin/in . ftpd in.ftpd
#telnet stream tcp nowait root /usr/sbin/in. telnetd in. telnetd

ftp stream tcp nowait root /usr/local/bin/tcpd in. ftpd
telnet stream tcp nowait root /usr/local/bin/tcpd in.telnetd

www.zdjournals.com/sun December 1998

/usr/local/bin directory. Second, the file /etc/
inetd.conf must be configured for the services
that are to be wrapped, as shown in Listing A
on page 3. Notice how inetd first launches the
wrapper, /usr/local/bin/tcpd, then the actual
server daemon. Third, I etc/ syslog.conf must be

Listing B: Added to /etclsyslog.conf

#Log all TCP Wrapper connections

lo ca l3. i nlo
/var/adm/tcpdlog

Listing C: Example of !etc/hosts.allow and /etc/hosts.deny

cat /etc/hosts.allow
ALL: maggie,zeus,merlin: ALLOW

cat /etc/hosts.deny
ALL: ALL

" ,, .. ·· .. :-
.. ·-·.

CG/A/UOC

edited for logging tcpd, as we've done in
Listing B. Last, the access control lists
I etc/hosts.allow and I etc/hosts.deny, shown
in Listing C, must be added.

Once all the proper files have been edited
and are in place, restart I usr /bin/ inetd with
ki l l-HUP. This will restart the daemon with
TCP Wrappers in place. Be sure to verify both
your ACLs and logging before finishing.

Conclusion
We've covered some of the more basic steps
involved in armoring a Solaris box. The key to
a secure system is having the minimal soft
ware installed, with protection in layers such
as TCP Wrappers. There are many additional
steps that can be taken, such as file permis
sions, backups, etc. Remember that no system
is truly 100 percent secure. However, with the
steps outlined above, you greatly reduce the
security risks .•

Real applications and the WWW
by Paul A. Watters

N ew programming languages come and
go, but the responsibilities of application
developers and programmers always

remain the same. Applications have to be deliv
ered within a specific time frame, on budget,
and more often than not in today's distributed
computing environment, they have to be acces
sible. Meeting these requirements shouldn't
require rewriting our code every year or so! In
this article, we'll look at ways of making avail
able existing Solaris-based applications on the
WWW that won't break the bank.

Recycle and reuse
Many programmers would associate the word
reuse with C++ and other object-oriented lan
guages. We're going to look at it in a slightly
different context, although the lessons learned
can apply equally to procedural and object
oriented applications. Although it might seem
heretical, many applications don't need to be
rewritten every time a new programming lan
guage comes along, especially if rewriting

• Inside Solaris

isn't going to produce a tangible benefit (other
than programmer satisfaction at using the lat
est technology, of course).

Many people would argue that existing code
that's UNIX-based should be rewritten in Java,
for example, so that it's readily portable and
instantly useable on any platform that has a
Java interpreter. Sharing applications and mak
ing them as portable as possible is a good thing.
However, many existing applications simply
weren't written with a single workstation in
mind; client-server architectures are still very
useful for sharing large amounts of data for
which it isn't efficient to have many copies lying
idle on hard disks around the lab or the office.
In addition, if our applications involve any kind
of mathematical operations, it's often faster to
use a workstation to display the results of oper
ations being performed by a multi-processor
server that has no other overhead. With 64-bit
server architectures on the way, we shouldn't be
fooled into thinking that the humble PC will
ever replace dedicated number-crunchers.

CGI & WWW options
But sticking with a client-server system for
applications accessing large databases that
require asynchronous updating, or just large
amounts of data processing, doesn't mean that
we need to sacrifice the benefits of being able
to use applications through the WWW. We'll
look at how to use the common gateway inter
face (CGI), which allows users with a WWW
browser to run applications on a Solaris-based
server. This method has the advantage of
reducing code-development costs while taking
advantage of existing applications and an
existing set of protocols to exchange real-time
data and respond to end-user requests.

Most WWW users encounter CGI when
they use a search engine to retrieve URLs, tele
phone numbers, and map directions. However,
the specification allows for quite general
exchanges of data between client and server.
The interface is especially suitable for programs
written in C (when using the POST method of
sending a request from an HTML document),
since this sends data in a form which can be
read as a standard input stream. Existing data
input routines that parse streams and extract
variable values can then be used to retrieve val
ues entered by users from their Web page. The
length in bytes of the input stream can be read
from the environment by using

getenv("CONTENT_LENGTH")

After our program has parsed the input,
set appropriate variables, and completed its
assigned task, the results can be sent through
an output stream in HTML form by

printf("Content-type: text/html \n\n");

after which, normally marked-up text and URLs
will be displayed on the client's terminal.

As an alternative to writing our own code
to read and write through the CGI, we can use
one of the many freeware C libraries available
on the WWW for converting streamed data into
variables. One such library is Eugene Kim's
CGIHTML, which is easy to use and compiles
successfully in the Solaris environment. Point
your browser to

www.eekim.com/software/cgihtml/

Case study
CGI and C form the best partnership when the
number of parameters passed to the server is

www.zdjournals.com/sun

small, but the computation required of the
server is large. A good example might be the
case of artificial neural networks, which are
higher-order statistical models commonly
used for modelling complex systems, such as
the stock market. Although many neural net
work systems are available to run on PCs
either as C programs or as Java applets, the
number of matrix operations that must be per
formed at each cycle becomes enormous when
all the parameters associated with each data
point presented to the network's "input layer"
is computed.

For the case of the stock market, if we
wanted to predict more than just a few hun
dred points, many PCs would take well over
one hour to compute a result. However, if the
same PCs were used as clients who issued
requests through their Web browser to a
server with several UltraSPARC processors,
the prediction might only take in the order of
seconds or minutes, while the user can still
work on their client computer without slow
ing down computation speed.

An example neural network system for
natural language processing, using this kind
of client-server design is available at

www.comp.mq.edu.au/-pwatters/semantic.html

The purpose of this simulation is to
retrieve a pronunciation for a word the user
enters in a text box, along with two parame
ters that affect network performance. The sim
ulation is performed on a Solaris system with
two UltraSPARC processors, and takes only
several seconds to produce online output for
each network cycle, and postscript graphs
when the simulation has completed. This is a
substantial improvement over ports made
recently to PC-based systems, where each sim
ulation took several minutes to complete.

Further reading
If this case study has been convincing, by far
the best place on the WWW to learn more
about CGI programming is

www.cgi-resources.com/

In this article, only the relationship between C
and CGI has been discussed, but any Solaris
based programming language that can read
streams (such as shell scripts and Larry Wall's
PERL) could be used, depending on the appli
cation's goals. •

December 1998

Shell toolbox 1 01, part 1
by Jeff Forsythe, Sr.

T he tools we'll introduce in this article
each have relative usefulness on their
own, but when put together, they make

up a very nice editing toolbox for any Solaris
programmer or system administrator. Before
introducing them, however, let's discuss a
convention for keeping your scripts straight.

Shell scripts
Just like C program binaries, shell scripts ought
to be kept in bin directories. This lets you know
they're executable. Shell scripts get out of control
if you don't organize them well. When organiz
ing, there are three types of scripts to consider:
the script function, the script program, and the
script library.

The first type, the script function, is a func
tion written in your favorite shell script lan
guage. Functions are designed to be included
in other shell functions or script programs.
As a matter of convention, it's wise to store
your script functions in a file with a .fnc
(pronounced funk) extension instead of a
.sh. This lets you know at a glance that it's a
function rather than a script program. This
differs slightly from an in-line function that's
stored within a script program. A .fnc-type

Listing A: Pseudo-code-
function is designed to
be used by more than one
script program, whereas
in-line scripts are designed
to be called from within
programs but have no
outside reusability. In

get_response.fnc pseudo-code

Di splayPrompt()
{

Display prompt

get_response()
{

Repeat
DisplayPrompt
Get a response
Test for validity

Until Val id response

Return response

#END get_response .f nc

II inside Solaris

Listing A, let's look at
a hypothetical function
called get_response.fnc.

Notice that the main
function within this file is
also called get_response.
This is self-documenting
and highly encouraged.

If you know what the
name of the .fnc is, then you
know the name of the func
tion to call. The function
calls the Di sp layPrompt

function. Di sp layPrompt has no intrinsic value
outside of get_response . f nc. Therefore, it's an in
line function. Later, if you write another function
or script program that needs the same code, then
Di sp layPrompt would be promoted to a .fnc.

A good rule of thumb is: If a function is
used by more than one script, then put it in a
.fnc file by itself and include it in the others.
Otherwise, put it in-line and call it instead.

The second type of script is the shell script
program. It's just that-a program written in
the shell script language. This is what you nor
mally think of when talking about shell scripts.
The shell program may have commands, vari
ables, in-line functions, include other scripts or
.fnc functions, or have no functions at all, de
pending on its requirements. Scripts usually
have the .sh, .ksh, or .csh extension, depending
on which shell they were developed in. All ex
amples given here are in the Bourne shell (.sh).

Finally, the third type of script is a shell
script library. Like all libraries, the shell li
brary is a collection. It contains such things
as included functions, script programs, and
internal or environment variables. It could
even include in-line functions or other li
braries. The purpose of the library is to make
it easy to include all the necessary compo
nents of a given application. Library files
should get a .shlib, .kshlib, or .cshlib exten
sion to differentiate them from the ever
popular C program .lib libraries. Now that
we have the basic concept of functions, pro
grams and libraries, let's put them together to
make something useful.

Building an editing library
In the rest of this article, and next month's
issue, we'll build an editing library. It doesn't
sound all that exciting, but when it's done,
you'll be glad you did it. We'll need a few
functions, some script programs, and perhaps
some string and rubber bands to tie it all to
gether. We'll build and use most of these tools
individually. Then, in order to make your life
easier, we'll put them all together in a script
library. Since they all relate to editing, we'll

name it edit.shlib . After that, whenever we need
to perform editing functions, all we need to do
is include the library (.edit.shlib) and we have
all our tools available to us in one swoop.

Edit library description
Our shell library called edit.shlib includes the
entire collection of editing tools as listed below:

• shell.sh-Shell script editing front-end.
Creates a documentation header and a
framework for a script, and then calls the
version control program (vc.sh).

• file.sh-Same as shell.sh, but for non-shell
script files such as configuration files, etc.

• vc.sh-Version control shell. Performs
version control based upon each user's
individual configuration file, calls every
one's favorite editor (vi), and then calls
affects.sh to see if the changes made
affect other files. If so, you're asked if
you'd like to edit the affected file(s), as
well. This process is recursive, so an edit
ing session could potentially include any
number of files.

• affects.sh-Currently, vaporware (if you
decide to build it, E-mail it to the author)
lists the files that may be affected by the
current editing change. It uses header.fnc
to obtain information, meaning that this
is only as good as the documentation in
the header of the file . So, keep your doc
umentation current!

• headerfac-Displays the documentation
header of the given file (created by
shell.sh or file.sh).

• logmsgfac-Log message function. Logs
the date, time, calling program, message
type, and message to the given log.

This library or its individual elements (like
any other library or script) can be included
in other libraries, a .profile, a shell script, or
at the command line. This is especially use
ful so that you can use the library contents
from the command line. This particular
library was built with that usage specifically
in mind. For instance, if you're interested in
the documentation of a particular file, you
can use the header function to retrieve it. If
you included the library in your .profile, all
you need do is type header fil ename and the
header information is returned to you. Oth
erwise, type: . pa thledi t. sh Ii b, and then the
header command. This is quite useful.

www.zdjournals.com/sun

Background information
We'll look at each of the scripts individually,
but the main emphasis here is to talk about
them collectively as a library. Each tool was
built over the last six years or so, as a need
arose, but based in whole or in part on the
previous work.

For instance, shell.sh is a neat little tool that
was written about six years ago as a front end
to vi. It asked a few questions, created a header,
and then threw you into vi to create your file.
In earlier versions, it checked to see if the file
existed, asked if you wanted to edit or over
write the file, and performed some other minor
tasks. Since adding the version control pro
gram, this has become unnecessary. Version
control was added as an add-on to shell.sh. Of
course, shell.sh was affected by this addition,
thereby creating the need to modify it. This
brought up the idea for the affects.sh script.
Your shell tools have undoubtedly developed
the same way, or if you're new, they will. They
just might not be in library form yet. Take the
time and do that today; it will save you count
less hours later.

The version control script is patterned after
one found in an article in another publication
about four years ago ("Sys Admin" Vol. 3, No.
5Sept/Oct1994). The methodology used in
the original article's script and in vc.sh was
borrowed from DEC's VMS file naming con
vention. The filenames on VMS end with a
semicolon and a sequential number. It's no
replacement for commercial version control
packages, but it works well, it's very easy to
implement, and, best of all, it's free!

Start building
First, build the logmsg.fnc, as shown in Listing
B on page 8, because it has the greatest utilitar
ian function on its own, and is a basic building
block for the rest of the library. You probably
already have your own logging script that will
readily adapt (if yours is better, E-mail a copy to
the author) . Just remember to modify the
logmsg calls in the other scripts if you use your
own. After logmsg.fnc, build header.fnc, which
is found in Listing C, also on page 8. The
header of a file (as with all internal documenta
tion) is extremely important. You can never over
document a program, no matter how simple it
seems at the time. A year or two from now
you'll wonder why a counter is initialized to 4
and not 0 or 1. Good header documentation

December 1998 D

Listing B: logmsg.fnc Listing

#!/bin/sh
#######################################
FUNCTION : path/logmsg . fnc
ARGUMENTS: prog : $0
msg-type :
S il START

M il MESSAGE
E il ERROR
F il FINISH

"msg" : Message
log : log Ii le

######################################

logmsg()
{
echo "'date +%m/%d/%Y':·date
+%H:%M:%S' :s1 :s2:s3" » s4

exit 0

#END logmsg.fnc

Listing C: header. fnc Listing

#!/bin/sh
#######################################
#FUNCTION: header . Inc
USAGE : header Ii lename
#ARGUMENTS: filename

######################################

header()
{

if I $# -ne 1 l
then

f i

echo "USAGE: header Ii lename"
exit 1

if [! -s ${ 1 } l
then

Ii

echo "Can't find ${1}"
exit 2

B Inside Solaris

IFS="

will explain the 4 and header.fnc will make it
easy to find out why. Yeah, you could just pg
the file, but that gives you everything, not just
the header. The header is also a nice thing to
have in a hardcopy documentation folder.

The header in Listing C has been gutted in
the interest of the publication. Only required
information is included. The calling program
must include the logmsg.fnc. Then, it can be
called such as the example in Listing D.

The log provides you with invaluable
information for many applications, including:

• Reporting programs (to search for errors)
to determine if a program has finished

• Determining at what point a program is
running or if it's hung as part of a lock
ing mechanism (A nice topic for a future
article-don't you think?)

Headers are enclosed within two lines of
57 # signs. That has been shortened to 38 here
for publication reasons, but the script checks
for 57. You may use any character to separate

COUNT=0

for LINE in 'cat ${1}'
do

echo S{LINEJ

if I "${LINE}" =
'' ##
#" l

then
COUNT='expr S{COUNT} + 1·

f i

if I S{COUNT} -eq 2 l
then

f i
done

exit 0

the header lines but do not use any asterisks
(*) in any of your lines, unless required. Suf
fice it to say that a disaster occurred, long
ago but never forgotten, that caused 57 phar
macy stores to close down, just because a
pound sign was missing and a line of aster
isks followed. The author is proud to be the
one who found the problem and not the one
who caused it. This gives your toolbox a
start. Next month, we'll expand our toolbox
even further. •

Listing D: logmsg Include, Call and Output

. S{FNCDIR}/logmsg . fnc

logmsg $0 F "FINISH" S{HOME}/logs/examp. log

08/12/1998106:31 :191examp.shlSISTART
08/12/1998106:32:04iexamp.shiMIRegular msg
08/12/1998106 :33 :47iexamp .shlE IError msg
08/12/1998106:34:21iexamp.shlFIFINISH

Configuring Network Interface Cards
by Lance Spitzner

T his article is the first of a two-part series
In this first article, we'll cover how to
configure, troubleshoot, and modify sys

tem interfaces. The second article will cover
static routing tables for systems with two or
more interfaces. In both articles, we'll be focus
ing on TCP /IP in an Ethernet environment.

Interfaces
Network Interface Cards (NICs) are what allow
your system to talk to the network. When they
don't work, neither do you. Our goal is to get
your interface up and properly running.

The first place to start is installing and test
ing the hardware. Once you've installed the
hardware, SPARC systems can be tested at the
EPROM level to verify the NICs. Use the man
ual that accompanies the interface card on
how to test that specific card.

Solaris x86 is a little different, as there is no
true EPROM, and the drivers are different. How
ever, Solaris x86 2.6 is Plug and Play compatible,
and we've had fairly good luck adding NICs.

Once you've confirmed at the hardware
and driver level that everything works, the
fun can begin. The place to start is the ifconfig
command. This powerful command allows
you to configure and modify your interfaces
in real time. However, any modifications
made with ifconfig aren't permanent. When
the system reboots, it will default to its previ
ous configuration. First, I'll show you how to
make all modifications with the ifconfig com-

www.zdjournals.com/sun

mand. The second half of this article will cover
making these modifications permanent by
modifying the proper configuration files.

ifconfig
I'll show you which interfaces are currently
installed and active. Remember, just because
you added the physical network interface card
doesn't mean it's active. If you do an ifconfig
before you've configured the device, the inter
face won't show up. Once configured, how
ever, the typical output of the ifconfig
command would look like this:

lo0: flags=849cUP.LOOPBACK,RUNNING.MULTICAST>
mtu 8232

inet 127.0.0 . 1 netmask ff000000
hme0 : flags=863cUP.BROADCAST,NOTRAILERS,
RUNNING.MULTICAST> mtu 1500

inet 192.168.1.132 netmask ffffff00
broadcast 192.168.1.255

ether 8:0:20:9c:6b:2d

Here we see two interfaces, loO and hmeO. loO is
the standard loopback interface found on all
systems. hmeO is a 10 I lOOMbps interface. All
hme interfaces are 10/lOOMbps, all le interfaces
are lOMbps, all qe interfaces are quad lOMbps,
and qfe interfaces are quad 10/lOOMbps.

There are three lines of information about
the interface. The first line is about the TCP /IP
stack. For the interface hmeO, we see the sys
tem is up, running both broadcast and multi
cast, with an mtu (maximum transfer unit) of

December 1998 D

1500 bytes-standard for an Ethernet LAN.
Notrailers is a flag no longer used, but kept for
backwards compatibility reasons.

The second line is about the IP addressing.
Here we see the IP address, netmask, in hexa
decimal format, and the broadcast address.
The third line is the MAC address. Unlike most
interfaces, Sun Microsystems' interfaces derive
the MAC addressing from the NVRAM, not
the interface itself. Thus, all the interfaces on a
single SPARC system will have the same MAC
address. This doesn't cause a problem in rout
ing, since most NICs are always on a different
network. Note that you must be the root to see
the MAC address with the ifconfig command;
any other user will only see the first two lines
of information.

The first step in bringing up an interface is
"plumbing" the interface. By plumbing, we're
implementing the TCP /IP stack. We'll use the
above interface, hmeO, as an example. Let's
say we had just physically added this network
interface card and rebooted; so, now what?
First, we plumb the device with the plumb
command:

ifconfig hme1 plumb

This sets up the streams needed for
TCP /IP to use the device. However, the
stack hasn't been configured, as you can
see below:

hme0: flags =842<BROADCAST.RUNNING.
MULTICAST> mtu 1500

inet 0.0.0 .0 netmask 0
ether 8:0:20:9c:6b :2d

The next step is to configure the TCP /IP
stack. We configure the stack by adding the IP
address, netmask, and then telling the device
it's up. All this can be done in one command,
as seen below:

homer #ifconfig hme0192.168.1 .132
netmask 255 .255 .255 .0 up

This single command configures the entire
device. Notice the up command, which initial
izes the interface. The interface can be in one
of two states, up or down. When an interface
is down, the system doesn't attempt to trans
mit messages through that interface. A down
interface will still show with the ifconfig com
mand; however, it won't have the word up on
the first line.

IIiJ_ Inside Solaris

Virtual interfaces
A virtual interface is one or more logical inter
faces assigned to an already existing interface.
Solaris can have up to 255 virtual interfaces
assigned to a single interface.

Once again, let's take the interface hmeO as
an example. We've already covered how to con
figure this device. However, let's say the device
is on a VLAN (virtual LAN) with several net
works sharing the same wire. We can configure
the device hmeO to answer to another IP ad
dress, say 172.20.15.4. To do so, the command
would be the same as used for hmeO, except the
virtual interface is called hmeO:*, where * is the
number you assign to the virtual interface. For
example, virtual interface one would be hmeO:l.
The command to configure it looks as follows:

ifconfig hme0:1 172 .20. 15.4
netmask 255.255.0 .0 up

Once you've configured the virtual inter
face, you can compare hmeO and hmeO:l with
the ifconfig command.

hme0: flags=843<UP,BROADCAST,
RUNNING.MU LTICAST> mtu 1500

inet 192.168.1.132
netmask ffffff00 broadcast 192.168.1.255

ether 8:0:20:9c:6b :2d
hme0:1 : flags=842<BROADCAST.

RUNNING.MUL TICAST> mtu 1500
inet 172 .20 . 15 .4

netmask !!!!0000 broadcast 172.20 .255.255

Here you see the two devices, both of
which are on the same physical device. Notice
how the virtual interface hmeO:l has no MAC
address, as this is the same device as hmeO.
We can repeat this process all the way up to
hme0:255. The operating system and most
applications will treat these virtual devices
as totally independent devices.

Configuration files
You now know how to configure your NICs.
Unfortunately, any modifications, additions,
or deletions you make with ifconfig are only
temporary; you'll lose these configurations
when you reboot. Now, I'll discuss what files
you have to configure to make these changes
permanent.

The place to start is the file /etc/hostname.*
(where* is the name of the interface). In the case
of hmeO, the file name is /etc/hostname.hmeO.
The virtual interface hmeO:l would have the

filename /etc/hostname.hmeO:l. This file has a sin
gle entry-the name of the interface. This name
is used in the I etc/hosts file to resolve name to
IP address.

The file, I etc/hostname.*, is critical; this is
what causes the device to be plumbed. During
the boot process, the I etc/rcS.d/rootusr.sh file
reads all the /etc/hostname.* files and plumbs
the devices. Once plumbed, the devices are
configured by reading the I etc/hosts and the
/etc/netmasks file. By reading these two files,
the device is configured for the proper IP and
netmask, and brought to an up state.

Let's take the device, hmeO, as an example.
During the boot process, I etc/ rcS.d/ rootusr.sh
looks for any I etc/hostname. * files. It finds
I etc/hostname.hmeO, which contains the fol
lowing entry:

Homer

The shell file I etc/rcS.d/rootusr.sh looks in
I etc/hosts and resolves the name homer with
an IP address of 192.168.1.132. The device,
hmeO, is now assigned this IP address. The
script then looks at /etc/netmasks to find the
netmask for that IP address. With this infor
mation, the startup script brings up interface,
hmeO, with an IP address of 192.168.1.132 and
a netmask of 255.255.255.0. It may seem re
dundant having the script review the netmask
of a class C address. However, don't forget
that, starting with 2.6, Solaris supports both
classless routing and VLSM (Variable Length
Subnet Masks), both of which we'll discuss in
next month's issue.

As you've seen in this example, there are
three files that must be modified for every
interface. The first is /etc/hostname.*, which is
the file you create to designate the interface's
name. The second file is I etc/hosts, where you
resolve the IP to the interface name. Last is
I etc/ netmasks, which is where you define the
netmask of the IP address.

Troubleshooting
Once you've mastered the tricks to modifying
your interfaces, troubleshooting should be eas
ier. You should look for several things when
troubleshooting an interface.

First, when working with an unfamiliar
machine, often you don't know how many
physical interfaces are on the machine. A
quick way to tell is use dmesg; this will give
you information on the physical hardware.

www.zdjournals.com/sun

Look for leO, qfeO, hmeO, or qeO. These are the
names assigned to the physical devices.

If an interface isn't responding to the net
work, check to be sure it's the correct IP address
and netmask. The ifconfig command is a quick
and temporary way to change IP and netmask
information for troubleshooting purposes.

Mtu is another possibility. Some systems
may have problems communicating due to
fragmented packets. Changing the mtu size
may solve that problem. You'll notice that you
didn't have to set the mtu size in the examples
above; these are set to defaults automatically,
such as 1500 for Ethernet interfaces.

If that fails, try bringing the face down, and
then re-initializing it with the up command. If
nothing else works, unplumb the device, and
then plumb it again. Basically, this reinstalls
the TCP /IP stack.

Conclusion
Network Interface Cards are critical to your
systems networking capability. Understanding
the configuration of your interface(s) ensures
your system's productivity. Next month, we'll
look at routing tables and ensuring that once
your interfaces are configured and up, your
packets will know where to go .•

What's Coming
Over the last few months we've received feedback about
what you, our reader would like to see in Inside Solaris.
Coming next month you'll find articles that cover:

• CCI scripts and data security
• Process and Thread Scheduling
• Continuation of our Shell toolbox

As we move into 1999 we plan to also feature articles
that will focus on:

• Configuring PPP
• Alternate PPP software
• Network routing
• Jumpstart

If there are any other topics that you would like to see
covered or are interested in becoming a writer yourself,
please drop me an E-mail at gsuhm@tacticsus.com.

Garrett Suhm
Editor
Inside Solaris

December 1998

Figure A

Shells
by H-W Schlote

I n the article "Shell toolbox 101, part l"on
page 6, we discussed building libraries of
shell scripts. Let's take a step back now and

give some background on the various UNIX
shells that are available. It can be useful to know
what else is available, even though most users
only know the one they use.

Background
According to Funk & Wagnalls New
Encyclopedia:
SHELL or SEA SHELL- hard, largely calcareous
skeleton of marine animals, especially the mollusks
(see Mollusk). Because of their beauty, bright col
ors, variety in shape, and abundance on sea- and
lake-shores, shells have long been used for orna
mentation, tools, and coins. They are important
today in the production of such items as "pearl"
buttons, jewelry, and other decorative items. Shell
collecting is a popular hobby throughout the world.

Here's the principal view of the shell's functionality.

Inside Solaris

So, why is the thing with the prompt
where we type in commands called a shell?
Because, it surrounds the UNIX core, as
shown in Figure A. The shell is a program that
listens to your terminal. It accepts and inter
prets the commands you type and turns them
into requests to the underlying kernel, to per
form the work you want.

There's some jewelry to find. In the dark,
old days when I moved from DOS to UNIX, I
couldn't understand how people could be sat
isfied without command line editing or the
ability to move the cursor up and edit the last
command. Even today, shells providing com
mand line editing, even in this simple form,
are exceptions. But, on the other hand, there's
the one shell with a nearly complete set of
emacs (the famous editor- originally written
by Richard Stallman for PDP-10) commands,
including searching backward.

If you compare the UNIX operating system
with a ca1~ then the steering wheel is part of
the user interface. The shell can be thought of
as the user interface to UNIX. Just as you can
have servo steering in your car, one shell may
offer a lot of conveniences, while others leave
you with nearly no support at all.

This article covers just a few topics and
examples about shells. It concentrates on inter
active shells and makes no claim to be exhaus
tive. Maybe it will help you to decide which
shell is the right one for you. If you want to go
into detail, have a look at the references given
at the end of this article.

Shell flavors
There are many different UNIX shells avail
able, including ash, bash, csh, choice, ksh, pdksh,
smash, sh, and tcsh. In general, they can be
divided into two groups: the Bourne shell
compatible ones, and the C shell compatible
ones. I'll focus here on the five most popular
shells:

• The Bourne shell (invoked as sh) is the
oldest shell and often referred to as the
standard shell.

• The C shell (invoked as csh) uses C syn
tax. Compared to the Bourne shell, it
offers more features . But, using some of
the simple features, like redirecting out
put and dividing stdout and stderr, isn't
really straightforward. I'll show later
how this can be done.

• The Korn shell (invoked as ksh) is a super
set of the Bourne shell that lets you edit
the command line. There are restrictions
for the Korn shell, but lots of things can
be configured. A public-domain version,
pdksh, exists also.

• The GNU extended C shell (invoked as
tcsh) provides command line editing
with cursor up I down functionality.

• The GNU Bourne-Again shell (invoked as
bash) is the crown of all shells. It's a
superset for the ksh and understands
almost every csh command. bash is ulti
mately intended to be a conformant
implementation of the IEEE POSIX Shell
and Tools specification (IEEE Working
Group 1003.2).

The disadvantage of the last two shells is that
they consume a lot of resources. This is one of
the reasons why many system administrators
prefer not to install any of them, but stay with
the shells provided by their hardware vendor.
Normally, these are the first three shells men
tioned (sh, csh, and ksh) .

Output redirection
Shells know about standard file descriptors. 0
means st din, 1 corresponds to stdout, and 2 is
stderr. If you want to redirect output, you
have to specify which output and do this by
giving the number of standard file descriptor
for sh, ksh, and bash. This results in

cmd 1> cmd . out

or shorter

cmd > cmd.out

to redirect std out to file cmd . out. The second
(short) form is the correct syntax for csh, too.
Things differ if you want to redirects tdout to
file cmd. out ands tderr to cmd. err . I use this very
often. Remember that stderr is unbuffered,
whereas stdout is at least line buffered . So, if
you don't separate stdout from stderr, all you
have is a mess of a message file.

www.zdjournals.com/sun

For sh, ksh, and bash, we simply have

cmd 1> cmd.out 2> cmd .err

Unfortunately, (t)csh only offers the choice
to either redirect s t do u t alone or to redirect
stdout, as well as stderr. Therefore, we have
to use grouping to get the correct result:

(cmd > cmd.out) >& cmd.err

This means redirects tdout to cmd. out, and
afterwards that is all that's left to cmd. err . This
isn't really straightforward, but at least it works.
If you build a C program and you start a pro
gram in a cs h via a call to exec, you really run
into trouble if you want to distinguish s tdout
and st der. r.

On the other hand, redirecting both s t do u t
and s t derr to one file is very simple in csh, but
results in some thinking or a look into the man
page or other documentation for Bourne shell
compatibles. If you want to redirect both std out
and stderr to file cmd.out you typein csh:

cmd >& cmd.out

and

cmd > cmd .out 2>&1

in one of sh, ksh, or bash. The latter command
reads redirect st dou t to file cmd. out and redirect
stderr to stdout. But, as mentioned before,
cmd . out will most probably be garbled by
strings from st dou t and st derr.

Command line editing
Command line editing with cursor up I cursor
down functionality is only provided by t cs h and
bash. The standard shell, sh, doesn't provide any
command line editing at all. The ksh provides
the fc command. If you're used to it, you get
along with it quite well. The cs h offers a set of
command substitutions from quick substitution
to sed (the famous stream editor) syntax.

I must admit that I'm not able to remember
all these fancy substitutions and recall com
mand syntax. I prefer using the cursor up key,
and the last command is there to be edited,
and when I want to execute once again the last
command containing string too, I want to type
[Ctr l JR too like I do in emacs. This thing is
offered by bash only. tcsh isn't bad. Most of the
time, you'll use cursor up I down to re-execute
commands anyway.

December 1998

Adjusting the prompt
Unfortunately sh, csh, ksh, and tcsh don't offer a
lot of possibilities to adjust the prompt. In gen
eral, the environment variable PS1 holds the
primary prompt string and can be changed to
adjust the prompt to your personal choice. If
environment variable PROMPT_COMMAND is set, the
value is executed as a command prior to issu
ing each primary prompt for some shells. Thus,
changing PS1 wouldn't result in any change
because normally variable PROMPT_COMMAND resets
PS1 . In this case, you have to unset variable
PROMPT_ COMMAND first.

Normally, UNIX users work on more than
one machine. Consequently, the information
the prompt should provide is which machine
he is currently using and the current working
directory. But, I don't want to see the name of
my home directory in my prompt, if I'm some
where below it.

In bash, I define PS1 to be "\h: \w\$ "(the
string inside the double quotes). This results in
the hostname, followed by the current working
directory. But, if the current working directory
starts with my own home directory, the name
of my home directory is substituted with - . \S

results in $ for normal users and # for the
super-user.

Using the definition for PS1 given above,
my prompt looks like:

Gandalf : -isotaris.Inside/shells

If you want to have the current user included,
you simply add \u somewhere to PS1. This is
easy, isn't it?

Are you a good tipper?

Do you have any great Solaris tips that
you've discovered? If so, send them our

way! If we use your tip, it will appear on
our weekly online ZDTips service. Visit
www.zdtips.com to check out all our avail
able tips. We may also publish it here in
Inside Solaris. Your byline will appear along

~ 111_!1_id_e_s_ol_ar_i~s ~~~~~~~~~~

For all other shells, you can define scripts
to produce the same results. This leads to exe
cuting a script each time [ENTER] is pressed,
and results in consuming a lot of system re
sources by just printing the shell prompt. So,
if you want to use one of the more simple
shells, you should stay with a simple prompt,
like%.

Conclusion
In this article, I provided some remarks about
popular shells. The main differences lie within
interactive use. Programming syntax differs
between these shells, too, but almost every
thing you can perform with one shell, you can
perform with the others, also. It's just a matter
of syntax. But, for reasons of efficiency and
saving resources, I suggest using the ksh for
programming.

Availability
The following shells are part of the Solaris
operating system: sh, csh, ksh, bash, and tcsh
can be obtained for example from
sunsite.unc.edu.

Further reading

• Introducing UNIX System V by Rachel
Morgan and Henry McGilton, McGraw-Hill

• UNIX in a Nutshell by Daniel Gilly and the
staff of O'Reilly & Associates, O'Reilly &
Associates •

with your E-mail and/ or Web address. Send
your tips to sun@zdjournals.com, fax them
to (716) 214-2386, or mail them to

The Editor, Inside Solaris
500 Canal View Boulevard
Rochester, NY 14623

Sun on a budget

A mazing things have happened
to hardware in the Sun world
in the last year. Sun has come

out with all new workstations that
really push the price I performance
ratio to new heights. Both the Ultra 5
and Ultra 10 lines are both affordable
and powerful. But these aren't your
only options if you need to set up a
workstation on a budget.

Old but not forgotten
Because of Sun's aggressive pricing,
used Sun equipment has never been
a better deal than now. Last-genera
tion Sun workstations Such as Spare

About our contributors

lO's and Spare 20's that had sold
for tens of thousands of dollars
new can be found for very reason
able prices on the used market.

They may not have the latest
UltraSparc CPU's, but machines
like the Spare 20 have the ability
to handle four processors as well
as SCSI I/O (which the Ultra 5
and Ultra 10 workstations lack
without add-on cards) and are
built like tanks. These machines
make perfect firewalls, news
servers, and mail servers, as well
as an inexpensive way to test for
a Sun developer to acquire a
workstation for home use.

Lance Spitzner enjoys learning by blowing up his UNIX systems at
home. Before this, he was an Officer in the Rapid Deployment Force,
where he blew up things of a different nature. You can reach him at
lspitzner@enteract.comorwww.enteract.com/-lspitz.

Paul A. Watters is a research officer in the Department of Computing,
Macquarie University, Australia. He has developed a number of numer
ically-intensive simulations using the Solaris development environment
that are now accessible through the WWW. You can reach him at
pwatters@mpce.mq.edu.au.

Jeff Forsythe, Sr. started programming in 1978. He's worked with
Solaris and other UNIX flavors in retail, banking, manufacturing, and
now the federal government at the US Bankruptcy Court. You can con
tact him at forsythe@tusco.net .

H-W Schlote was born in 1969 in Soltau, Germany. While studying
physics at TU Braunschweig, he started programming in the UNIX
environment for research projects. By studying information technology
in addition to physics, he got a deeper understanding for operating sys
tems, neural networks, fuzzy systems, and many other areas. After leav
ing the university with a degree in physics, he worked for about one
year for a software firm in Braunschweig. He then moved to SUFFIX
where he is now working as system analyst and project leader. He can
be reached at H.Schlote@suffix.de .

www.zdjournals.com/sun

Inside Safaris (ISSN 1081-3314) is published monthly by
ZD Journals, 500 Canal View Boulevard, Rochester, NY 14623.

Customer Relations

US toll free .. (800) 223-8720
Outside of the US .. (716) 240-7301
Customer Relations fax ... (716) 214-2386

For subscriptions, fu~illment questions, and requests for group subscriptions,
address your letters to

ZD Journals Customer Relations
500 Canal View Boulevard
Rochester, NY 14623

Or contact Customer Relations via Internet E-mail at zdjcr@zd.oom.

Editorial

Editor .. Garrett Suhm
Assistant Editor Jill Suhm
Copy Editors..... Rachel Krayer

Christy Flanders
Taryn Chase

Contributing Ed~ors .. Jeff Forsythe, Sr.
H-W Schlote

Lance Spitzner
Paul A. Watters

Print Designer ... Lance Teitsworth

General Manager ... Jerry Weissberg
Editor-in-Chief .. Joan Hill
Editorial Director .. Michael Stephens
Managing Editor .. Kent Michels
Circulation Manager... Jeff Marcus
Print Design ManagerCharles V. Buechel
VP of Operations and Fulfillment ... Michael Springer

You may address tips, special requests, and other correspondence to

The Editor, Inside Safaris
500 Canal Vif!W Boulevard
Rochester, NY 14623

Editorial Department fax .. (716) 214-2387

Or contact us via Internet E-mail at sun@zdjournals.com.

Sorry, but due to the volume of mail we receive, we can't always promise a
reply, although we do read every letter.

Postmaster

Periocicals postage paid in Louisville, KY.

Postmaster: Send address changes to

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright

Copyright C 1998, ZD Inc. ZD Journals and the ZD Journals logo are trade
marks of ZD Inc. Inside Safaris is an independently produced publication of
ZD Journals. All rights reserved. Reproduction in whole or in part in any form
or medium without express written permission of ZD Inc. is prohibited. ZD
Journals reserves the right, with respect to submissions, to revise, republish,
and authorize its readers to use the tips submitted for personal and commer
cial use.

Inside Safaris is a trademark of ZD Inc. Sun, Sun Microsystems, the Sun logo,
SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall, OpenBoot, OpenWin
dows, DeskSet, ONC, and NFS are trademarks or registered trademarks of
Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of
UNIX System Laboratories, Inc. Other brand and procuct names are trade
marks or registered trademarks of their respective companies.

Price

Domestic .. $99/yr ($9.00 each)
Outside US .. $119/yr ($11.00 each)

Back Issues

To order back issues, call Customer Relations at (800) 223-8720. Back issues
cost $9.00 each, $11.00 outside the US. You can pay with MasterCard, VISA,
Discover, or American Express.

ZD Journals publishes a full range of journals designed to help you work
more efficiently with your software. To subscribe to one or more of these
journals, call Customer Relations at (BOO) 223-8720.

To see a list of our products, visit aurWeb site at www.zdjournals.com.

PERIODICALS MAIL

l SunSoft Technical Support

(800) 786-7638 l J
Please include account number from label with any correspondence.

This month we will review some of the
more popular sources for used Sun equip
ment. In the coming months we will ex
plore the used Sun market and show you
the advantages (and disadvantages) of buy
ing used equipment. For now, check out
Table A for a sample of used Sun equip-

ment vendors. This list is not exhaustive,
but it is meant to give a sample of what is
available in the used market. If you have
your own favorite used Sun equipment
vendor, send me an E-mail at gsuhm@
tacticsus.com and we will share these with
our readers. •

Table A: Some vendors of used (and new) Sun equipment

Company Description Web Site/Phone#

Rave Computer Reseller of used and www.rave.com
Association Inc. refurbished Spare, UltraSparc (800) 966-RAVE

and Spare Clones built by Rave

Apcom Systems Inc. New and used Sun equipment www.apcom.com
And Spare clones. Online quote (888) 422-0867
generator is available on their
Web site

...., --n

Integrated Solutions Used Spare and UltraSparc www.isgsun.com
Group Inc. workstations, servers and (425) 882-0400

peripherals

Sun Data Reseller of a variety of www.sundata.com
workstations and servers (888) SUN-DATA
from various vendors. Flexible
on-line quote generator

EIS Computers Inc. Used Spare and custom-built www.eis.com
clones. Also OEM for Solaris (800) 351-4608
X86 machines

-

Minicomputer Specialize in used Sun and www.mce.com
Exchange Inc. Silicon Graphics hardware. (888) 733-4400

II~ Inside Solaris 0% Printed in the USA.
Z69 This journal is printed on recyclable paper.

