
1

October 1998 • $9.00
Vol. 4 No.10

Housekeeping with cron

3
IPC with Doors on
Solaris 2.6

8
Numerical computing in
Solar is

10
Process distribution and
load balancing-problems
and solutions

14
Solaris Q&A

16
Quick lip

Visit our Web site at
www.zdj ournals.coml sun

•t; . Tzpf & techniques for users of SunSoft Solaris

Housekeeping with cron
byDonKuenz

S olaris includes a background
job scheduler named cron,
which allows you to periodi

cally run housekeeping shell scripts
to keep your system in top shape.
Housekeeping often includes: back
ing up file systems, detecting nearly
full file systems, removing unwanted
files, and trimming logs. In this ar
ticle, we'll show you how to use
cron and show you a couple of use
ful housekeeping scripts that you
can use as a starting point for your
own scripts. Although both scripts

Figure A
.. ...

in this article use the Bourne shell,
you' re free to use most any com
mand within cron.

For most of us, the best time to
perform housekeeping is outside of
normal business hours. It's always a
good idea to invest in an Uninter
ruptable Power Supply (UPS) to
protect your computer from unex
pected gaps in electrical power.
When you use cron, the UPS be
comes mandatory. You also need
access to root if you plan to use the
scripts described in this article.

- .
~1 Text Edi t or V3.4 [hephaestusJ - crontabaOOOlh (ed ited), di r; /tmp l·IU

Fiie ,.. ': View ') Edit ,- ~ [I ___, ,_____.

Iii dent "@.(!!)root 1.1 2 94/03 / 24 SM!" / * 5Vr4. 0 1 . 1 . 3. 1 • / --'
II ... i
II The root crontab should be used to perform accounting data co 11 ecti on . l
II ,..,
II The rt e command is run to adjust the rea 1 ti me cl ock if and when
II daylight savings ti me chang es.
II II

I
II m

II II i m
11 n h 0
II u 0 d n
II t u a t
II e r y h weekday command
II-- - - - ----------- ---

0 9 . . 0,4 /etc/c ran. d/l ogchecke r
45 9 . . 6 / us r /1 i b/newsys l og
55 9 . . . / us r / 1 i b/ fs/nfs /nfsfi nd
1 9 . . . [- x /usr /sbi n/ rtc l && / us r/sbin/ rtc -c > /de v/null 2>&1

; 0 10 . . 0. 2. 3,4,5,6 [- x /usr/local / bin/daily . sh l && / usr / l ocal / bi n/ dai 1 y. sh
0 10 . . 1 [- x /usr / local/bin/weekly.sh l && / us r / 1oca1 /bin/weekly . sh ,.

--'
I

This is the content of our root account crontab.

ZI FF-DAVIS
a SO FTB AN K

cornpo.ny

Using cron
By default, Solaris starts a cron daemon in
the I etc/ rc1.d / K70cron startup script. Nor
mally, cron reads tables found under / var I
spool/ cron/ crontabs and logs output to
/ var I cron/log. /var I spool/ cron/ cronttab
contains one table named after each user
who enables and uses cron. A table is little
more than a specially formatted text file.
Figure A, on the cover, shows the content
of a typical table.

Both of our housekeeping scripts appear
at the end of the root crontab, after Solaris'
four default entries. Figure B shows a daily
script named I usr / local/bin/ daily, which is
scheduled to launch every day except Tues
day at 10:00 GMT (3:00 AM Mountain Time).
Figure C shows a weekly script named
/ usr/ local/bin/ weekly, which is sched
uled to launch on Tuesday at 10:00 GMT.

Normally, cron mails both standard out
put and errors from a command to the owner
of the crontab. We prefer to only see errors, so
we route each script's standard output to
I dev I null. That way, root only receives an
E-mail when something goes wrong.

Each row of a cron table contains six col
umns. The first five columns specify when a
command will launch, while the command
itself appears in column six. You must keep in
mind your host's time zone when you specify
hours and minutes. Our host happens to use
Greenwich Mean Time (GMT), but your host
may very well use a different time zone.

Although you might be tempted to di
rectly edit cron tables with an editor, Solaris
expects you to use a command named
crontab to change cron tables. The partial
syntax of crontab follows:

Figure B

-I Text Editor V3.s.1 - da11y:sti-Cedited), dir; /tiome/don/lni:omlng/croncobb-I , I J

. !.~ View r; ~· Find ~ j [i
lt ! / bin/sh --'
tt
tt Dai 1 y housekeeping script .
tt
PATH•$PATH: /us r/l ocal /bin
expo rt PATH
echo ' date '
tt
tt Set these var iables to the nui11ber of days you"ll al low unused f il es to hang
It around .
tt
max Las tAccess=+O
:ax LastHodi fi ca t i on··O

ft Set th i s variab l e to n1 com11and (handy for sc r i pt debugging) .
tt
ttroCo••and• ' /bi n/ l s -1 d '
nnC01111and= " / bi n/ r11 -f "
tt
It Rernove co re du11ps. unnamed bi nar i es , obj ec t s. and teraporary files with an
tt access ti me great er than 111axlastA<:eess days .
tt
f i nd /expo r t / ho JAe -xdev ' ('' - nam e co re -o - natr1e a.out -o - na11e '• . o' \

-o -n a111e ' ***' - o -na11e '·***' -o - na111e '* . CKP' -o -name ' . nfs*' ') ' \
-ati me Smaxl astAccess -exec $r111Co1111and O

tt
** Re111ove backup vi files with a 11odi f i ca t i on t i 11e greater t han
** 1taxl astModificat i on days.
tt
find /var/p rese rve/* -rnti111e $1'1axlas tModi fi cat i on -exec Sr11Cortmand {} ' ; '
tt
**Remove l eft- over . Samba pr in t fi l es (WinXX host na11es are: di onysus. cyclops ,
** charybdi s, and ares) .
tt
fi nd /tmp / * '(' - na11 e ' di onys . "'' - o - name 'cycl op. *' -o - name ' charyb . *' \

- o -n a1J1e 'ares . *' -o -na11e lpq . "' ') ' \
-ati me SrnaxlastAccess - exec $rrnCoHand {} ' · '

tt
** Re1ove di rectories unde r /tmp with access times great er t han maxl as t Access .
tt
f i nd / t t11p/* ' (' ! -na1e . ! -name l os t+found ') ' -type d \

-mthe haxlastAccess -exec $r11Collllland {} · ; '
tt
tt
** Report on any fi 1 e systems . whi ch a re at 1 eas t 90% f ul 1 .

II ~f - k I awk ' NF .. 6 && $5 >• "90%" {prin t f " Fil e sys tem %s i s %s
full. \ n" ,$1 , $5! '
tt
**Backup fil e systems. which are mos t l ikel y to change on a daily basis .
tt
echo MBacku ping up hephaestus M
cd I
11t -f /dev/ r111t/1 erase
umount /expo rt / home
ufsdu ll'l p Ocuvf / dev/r111t/1 /dev/rdsk/c0dOs4
mount /export / ho1e

11 mt - f / dev/ rmt/1 of fl i ne

This is the content of our !usrllocal/bin!dai/y.sh.

II Inside Solaris

1-;

I

I

I

,:J

Figure C

j ~1 Text Editor V3.5.l -weekly.sh (edited), dlt; Jliome/don/incomlng/croncob~ , 11.J
Fiie ,. View r E~1 Fin~_•) [i

tt !/ bi n/sh
tt
** Weekly housekeeping scri pt .
tt
PATH•$PATH: / usr /local / bin
export PATH
tt
** How many l ogs do you want to keep?
tt
maxlogs=S
tt

11 : Set thi s variable to r11 cor111nand Chandy fo r sc ri pt de bugging).

tfr1Co11rnand"' ' / bi n/1 s -1 d'
rnCOHand• ' /bin/ rm -f '
tt
** A funct i on to archive and re111ove logs
tt
archi ve l og()
{

•

l
tt

** $1 = path & fi 1 e nal'lle of 1 og
dn ame•' di rn arne $1 '
bname• ' basena1e $1'
fnarie•$1
fna11e Date•$fna1e . ' date + "%y%m%d. %H%M" '
** re1ove 1 ink, keeping o 1 dfi le wi t h date
r11 - f Sfna111e
** c reate new li nk
touch Sfnarne
1 n Sf name Sf na11eOat e
~0 ~n~~ d~~:~e t~~ ~ i:e~f t "';(~~~~ . !t 1 es . re11ove ol der fi 1 e(s)
do

do ne

if [' echo Si lwc -c ' -gt baxlogs]
then $rmCorarn and $ol dFna111e
f i
i •' echo Si ' x

** cal 1 archi ve l og once for each 1 og you wish to archi ve
tt
archive l og /var/adn/aculog

:I :~~~~~:t~~ ;~:~~:~:;:~~~~ge s
archi velog /var/adm/vol d. l og
archi velog /var /ad11/w t r11 p
archi velog /var /ad11/ l og/asppp. 1 og
arch i velog /var /1 og/sysl og
arch i ve l og /var /cron/1 og
archivelog /var/saf/_l og
archi ve l og /var /saf /zs 11 on/ l og

,, tt
**Backup fi l e syste1s, whi ch are 11ost l i ke l y to change on a weekl y basis .
tt
cd I
ufsdump Ouvf /dev/rrn t /O n / dev/rdsk/c0d0s4
ufsdu 111 p Ou vf / dev/ rrn t /O n / dev/ rdsk/cOdO s7
ufs du11 p Ou vf / dev/r1 t /O n / dev/ rdsk/c0d0s12
ufsdump Ouvf /dev/r11t/On / dev/rdsk/cOdOs11
mt - f / dev/r11t/O of fl i ne

This is the content of our /usr!local!bin/weekly.sh.

~
I

I

)

crontab [-el [-ll

The -e option tells crontab to edit your
table, while the - l option tells it to list your
table. When you use the -e option, crontab
defaults to using the rather cryptic ed pro
gram as an editor. A better solution is to tell
it to use your favorite editor by setting an
environmental variable named EDITOR to
the name of your favorite editor before you
invoke crontab:

EDITOR:/usr/openwin/bin/textedit

export EDITOR

crontab -e

If you forget to export an environment
variable named EDITOR beforehand, just
remember to type the letter q at your first
input opportunity. At that point, q causes ed
to quit without saving.

A daily script
Our daily housekeeping script removes un
wanted files, lists file systems with less than
10 percent free space, and backs up files that
are most likely to change on a daily system.
On our host, the /home file system is most
likely to change each day. Although other
file systems will also change during a week,
we're willing to expose the other file systems
to potential data loss based on the notion
that it's easy to find and re-install recently
acquired data. For newly acquired, precious

~·~~ • I ·~ •• :,·· • l •: ~".~%:. ,'
-·so 1ar;1 ··~11 Pi 're a r:u·r e , .,,

data, we manually perform an immediate
backup outside of cron.

Unwanted files accumulate in a variety
of ways. The kernel creates a core dump
whenever something unexpected happens.
Samba can create temporary print files that
hang around until a reboot. Programmers
tend to create object files, which they may
forget to remove. Our daily script looks for
and removes all of these types of files.

A weekly script
Our weekly housekeeping script trims log
files and backs up all file systems that are
likely to change. This includes every file
system except/, /var, and /usr.

Log files can grow until they com
pletely fill your file system. The first part
of weekly.sh keeps log sizes down by
trimming them. When weekly.sh trims a
log, it creates an empty file using the de
fault name of the log file with the date
and time suffix following. Then, it creates
a link with the default name pointing to
the current log.

Summary
Solaris hosts need periodic housekeeping
to stay in top shape. Cron is a great tool
for starting periodic jobs outside of normal
business hours .•

Don Kuenz is a computer consultant. You
can contact him at gtcs.comlassoclksldon.

IPC with Doors on Solaris 2.6
by Abdur Chowdhury

D oors is a fast IPC (lnterProcess Com
munication) call application program
ming interface (API) used in Solaris 2.5

and 2.6. The Doors API has been documented
for general use since Solaris 2.6. The Doors
concept originated from the "Lightweight
Remote Procedure Call"1 in the late 1980' s.
Sun's research operating system, Spring, then
used those research ideas. The Spring operat-

www.zdjournals.com/sun

ing system used Doors as a method of storing
object state and interfaces between domains.
Spring was the testing bed for many of Sun's
new additions to its commercial operating
system. Today, Doors is an important topic of
discussion because it's the fastest IPC mecha
nism available for Solaris. In this article, we'll
discuss the concept of Doors on Solaris and
the Doors API: A simple client/ server.

October 1998

II Inside Solaris

The Doors concept
The concept of Doors is very simple. When
the client process makes a request from the
server using door _call (3x), the Doors li
brary creates a shuttle. The shuttle contains
information for the server on the client
pid, group, signals, and scheduling group.
The shuttle2 puts the client process in the
sleep state and the server in the run state.
The server wakes and creates a new thread
to handle the client's request. The server
processes the information, returns the
shuttle, destroys the thread, and puts the
server in the sleep state and the client in
the run state.

Why is this IPC mechanism better than
other IPCs? The above procedure is conceptu
ally the same as a protecting shared memory,
an RCP call, or even a pipe. The advantages
of Doors are found in the kernel. The Solaris
2.6 kernel has the ability to run the client's
thread in the servers' process space without
an expensive context switch. The Solaris ker
nel can make optimizations for zero 1/0 cop
ies between the server process and the client
process space by simply mapping pages of
memory to both processes.

We can use a synchronization object
called a shuttle to transfer information from
the client space to the server space-like sig
naling information and prods operations
we can use a synchronization object called a
shuttle. The shuttle is responsible for mark
ing the current thread as sleeping and mark
ing the server thread as running. Then, it
passes control directly to the server thread.

Table A lists Sun's published timings
comparing Doors to other IPC mechanisms.
The timings are for SPARCstation 10 (dual
processor, 40 MHz SuperSPARCTM
processors).

Table A: /PC Timings from Sun{2}

IPC Mechanism usecs

Doors 66
SVR4 Semaphores 142
Pipes 175
SVR4 Messages 270
ONC-RPC 1020

The Doors API
The Doors API consists of eight Door calls
and uses two related calls, fattach(3) and
f detach(3). We'll give you a brief overview
of the API and develop a simple client and
server application to demonstrate use of the
Doors APL

First, the user-level library, libdoor.so,
implements the Door APL Any process
can become a Door server. We can create
a Door interface by using the door_create
function. Now, this call returns a Door
descriptor that's similar to a file descrip
tor. Next, the kernel provides the descrip
tor as the return value of door _create. In
addition, the kernel keeps track of the
process and Door descriptor pairs to en
sure that a process can't fabricate a false
Door descriptor. The door _create call sim
ply sets up the call back function or the
exported function entry point. Then, the
API mandates a specific argument set for
the Door function that you write.

Although this may seem restrictive, the
API really provides all the needed constructs
to pass data-including Door descriptors.
The ability to pass Door descriptors from
process A to process B gives this API a tre
mendous amount of flexibility. You can pass
file descriptors from one process to another
with Doors.

Now, the serving process must export
the interface for other processes to use. The
concept of creating yet another naming ser
vice isn't a good software practice, so the
process must export its interface as part of
the file system, much like named pipes or
fifos are used. A process uses the I at tac h
system call to attach a Streams-based Door
descriptor to a file system name space object.

Next, a server creates a Door export
via the file space with fat tac h and waits
for clients to request services. The Door
API handles the actual creation of server
threads. This paradigm provides simple
client/ server architecture with thread
support.

The client process only needs to open
the file created by the server process. The
client will receive a Door descriptor instead
of a file descriptor, and the client simply
calls door _call with the new Door descrip
tor. Then, the Door library takes over for
the inter-process communication.

All door _ca LL s have the same calling ar
guments, a Door descriptor and the address
of a door _arg_t structure. The door _arg_t
structure contains the passing data, the size
of the data, any Door descriptors that need
to be sent, and the memory buffer for the re
turning results. Because all calls to door _ca LL
are the same, no Interface Declaration Lan
guage (IDL) is needed to define the interface
between the client and server processes. It's
the responsibility of both the client and server
to agree on the information format.

The server calls the door _return function
when it has completed the client's request.
The arguments for door _return are a subset of
the door _ca LL function. The server process re
turns the data with the door _return call.

Remaining Door calls
Following is a brief description on the
remaining Door calls. Servers may use
door _revoke to revoke access to a Door de
scriptor. If any requests are being currently
handled, that request will finish, but any
additional calls will not be honored. We
can use the door_ i n f o call to get informa
tion on a door-like the process ID of the
server. The server process uses the
door _cred call to get the user ID, group ID,
and process ID of the calling process. We
can use the door _server _create call when
the default thread creation needs to be

Listing A: Client and server using Doors

Listing: Makefile

CC = gee
LIBS = -Lpthread -ldoor
PROGS= s c

a L L : S (PROGS)

client .o: client.c
S(CC) -c cLient.c

server. o: server. c
S(CC) -c server.c

c: cl ient.o
S(CC) -o c client.o S(LIBS)

s: server.o
S(CC) -o s server.o $(LIBS)

clean:
rm -rf •.o s c

www.zdjournals.com/sun

modified by the server. The man page
gives a very good example on the server
creating new threads for the client with a
modified stack size. The calling process
uses the door _bind call to bind to a particu
lar door. We can use the door _bind call
when a private pool of threads is created.
The door _unbind call is the antecedent of
door _bi n d. This API is beyond the scope of
this article, but it's worth exploring when
developing ideas for actual Door servers.

Doors example
In Listing A, we show you two programs.
The first is a simple server that opens a file
descriptor and returns it to the client mak
ing the request. The second is a client that
makes a request from the server for a par
ticular file. The given makefile compiles the
example codes.

The server example is a little longer than
necessary for the basic implementation. This
demonstrates the need for cleanup when exit
ing. First, the server creates a thread to handle
all signals. When the server process receives a
signal to terminate, the server must close the
stream from the file system before exiting.
The stream must be closed so that the entry
point can be reused when the server is re
started.

The server implementation is simple.
The server calls door _create with the DoWork

Listing: Mydoor. h

#ifndef MYDOOR
#define MYDOOR

#ifdef ~cplusplus
extern "C" {
#endif

#define DDSTREAM "DoWork"

#ifdef ~cplusplus

}
#endif

#endif I• MYDOOR •I

October 1998

Listing: Client.c

#include <stdio.h>
#include <string.h>
#include <door.h>
#include <pthread.h>
#include <thread.h>
#include <errno.h>
#include <sys/types . h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/time.h>

#include "mydoor .h"

static const char• ddstream = DDSTREAM

int
main(int argc, char ••arg v)
{

I• Vars • I
int dd = 0 ; I • Doors descriptor •/
int ret_val = 0 ; I• return values from

functions •/
door_arg_t d_args ;
char results[1024l
int f d ;
char message [128 I

strcpy (message, "Inside Solaris!\n"

dd = open (ddstream, O_RDONLY) ;
if (dd < 0)
{

fprintf (stderr, "Error in opening a door
server descriptor: %d\n",

errno)
exit (-1) ;

d_args.data_ptr = NULL
d_args.data_size = 0 ;
d_args.desc_ptr = NULL
d_args . desc_num = 0 ;
d_args . rbuf =results ;
d_args.rsize = sizeof(results)

ret_val = door_call(dd, &d_args);
if (ret_val != 0)

{
fprintf (stderr, "Error in

door_call to door descriptor: %d\n",
errno) ;
exit (-1) ;

11 •nsille Slllarls

fd = d_args.desc_ptr
>d_data.d_desc .d_descriptor
printf("desc_ptr=%x, desc_num=%d fd=%d\n",

d_args.desc_ptr, d_args.desc_num, fd)

write(fd, message, strlen(message))
close (fd)

I• close the door • I
close (dd)
return (0);

Listing: Server.c

#include <Stdio.h>
#include <door.h>
#include <pthread .h>
#include <thread.h>
#include <errno.h>
#include <sys /t ypes.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "mydoo r .h "
static const char• ddstream = DDSTREAM

I• Close Door on Fi le System • /
void
CloseTheDoor (int sig)
{

fdetach (ddstream
exit (-sig) ;

I• Signal handler •/
void *
sighandle (void •arg)
{

struct sigaction sigact
arg = NULL ;

I• With signals we can handle we will clean up • /

I• SIGINT • /
sigact.sa_f lags = 0;
sigact.sa_handler = CloseTheDoor
sigemptyse t (&s igact.sa_mask) ;
sigaddset(&sigac t . sa_mask, SIGINT)
sigaction (SIGINT, &sigact, NULL) ;

I• SIGTERM •/
sigact.sa_f lags = 0;
sigact .sa_handler = CloseTheDoor
sigemptyse t (&s igact.sa_mask) ;

Listing: Server.c (continued)

sigaddset(&sigact.sa_mask. SIGTERMJ ;
sigaction (SIGTERM, &sigact, NULL) ;

I• SI GOU IT •I
sigact . sa_f lags = 0 ;
sigact . sa_handler = CloseTheDoor
sigemptyset (&sigact.sa_mask) ;
sigaddset(&sigact . sa_mask , SIGQUIT)
sigaction (SIGOUIT. &sigact. NULL) ;

sigignore(SIGPIPE) ;
sigignore(SIGHUP) ;
sigignore(SIGABRT)

for (;;)
{

s l e e p (10000)

return ((void •) NULL)

I• Work function provided by the server •/
void •
DoWork (void •cookie, char •argp.

size_t arg_size, door_desc t •dp, size_ n_desc)

int fd
door_desc darray[1 l
int n ;

fd = open("server.dat", O_RDWR O_CREAT O_TRUNC,
0600);

int

printf ("In DoWork : getting fd fo r client.\n"

darray[0] .d_attributes = DOOR_DESCRIPTOR ;
darray[0].d_data.d_desc.d_descriptor = fd ;

door_return (NULL,0,darray.1)
return ((void •l NULL) ;

main(int argc , char ••argv)
{

I• Vars • /
int dd = 0 ; I• Doors descriptor •I
FILE •fd ;
int ret_val = 0 ; I• return values from functions

www.zdjournals.com/sun

set ; sigset_t
pthread_attr_t detached attr ;

I• make signal handler thread detached •I
pthread_attr_init (&detached_attr) ;
pthread_attr_setdetachstate(&detached_attr.

PTHREAD_CREATE_DETACHED) ;

do
{

errno = 0 ;
pthread_create(NULL, &detached_attr,

sighandle, NULL) ;
} while (errno == EAGAIN) ;

I•
Block all signals in the main thread . Any other

threads created
by the main thread will also block all signals .,
sigfillset(&set);
pthread_sigmask(SIG_SETMASK , &set, NULL)

I• Make sure we have a file to use as a
interface to the server •I

if ((fd = fopen (ddstream , "w+")) ==NULL
{

fprintf (stderr , "Fi le creation for doors
interface failed: %d\n".

errno) ;
exit (-1) ;

else
{

fclose (fd)

dd = door create ((void•)DoWork. NULL. 0)

ret_val = fattach (dd, ddstream) ;
if (ret_val != 0)
{

fprintf (stderr . "Error in fattach to door
descriptor: %d\n".

errno) ;
exit (-1) ;

I• Wait forever •I
wh i le (1) pause ()

return (0);

October 1998

II ~Side Safari•

function pointer and then attaches the Door
descriptor to the file system and waits forever.

Also, the client's implementation is just
as simple. The client opens the server's ex
ported file entry point, uses that descriptor
from the open system call as the Door de
scriptor, and calls door _call. When the call is
finished, the client continues with the result
in the pre-allocated buffer.

Conclusion
In this article, we provide a brief over
view on how Doors works, a brief de
scription of the API, and an example us
ing it for a simple server and client. In
conclusion, the Doors API is the fastest
IPC available by Sun on Solaris. Doors
makes it simple to develop multithreaded
servers. This API is very flexible and is
worth further exploration when design
ing fast servers under Solaris. The Doors
concept is full of promise and is why Sun
is one of the leaders in new and innova
tive ideas, but the API must be expanded
to work over the network to be truly use
ful for many situations.

At the time of writing this article,
the API has been ported to Linux, so other

UNIX implementation may soon follow. At
this time, the Door IPC mechanism doesn't
work across the network, but this is being
addressed by Sun for future releases. Also,
we give a special thanks to Andy Spitzer
for his help .•

1 - B. Bershad, T. Anderson, E.Lazowska and
H.Levy, "Lightweight Remote Procedure Call",
ACM Transactions on Computer Systems, Vol.
6, No. 1, February 1988, pp. 134-154.

2 - Sun Developer Benchmarks Fall 1996
solaris.j avasoft.com/ developer/news/
devnewslfall96/ doors.html

Abdur Chowdhun1 is the manager for the
Systems Engineering and Integration Lab at
the University of Man1land at College Park.
He's also working on his Ph.D. in computer
science on distributed systems. Abdur re
ceived his BS in 1994 and MS in 1996 in
Computer Science at George Mason Univer
sity. He has authored many papers on process
migration, fault tolerant routing protocols,
and information retrieval topics. You can
reach Abdur at abdur@isr.umd.edu.

Numerical computing in Solaris
by Paul A. Watters

H ave you ever written a numerical
simulation using C that produces
widely variable results when one or

two parameters have been slightly tweaked?
Does your database produce historical re
ports based on a C module that greatly over
estimates the profitability of your clients'
business interests? Many of us have made
simple errors in numerical computing with
C in the past, particularly those involved in
floating-point computations. Unfortunately,
these errors can sometimes adversely affect
the desired outcomes for applications, with
extra debugging efforts that often inflate
programming costs.

Know thy enemy
The success of numerically-intensive pro
grams written by computing profession
als in both science and industry can be
reasonably assured if strategies are devel
oped a priori to deal with anticipated and
well-documented numerical errors. These
strategies must often go beyond what is
recommended in many programming
texts (e.g., explicit typecasting of all com
putations involving mixed data types). In
this article, we'll outline several compo
nents that you can incorporate into an
overall strategy for numerical computing
when using the Solaris C compiler. This

facilitates the development of robust numeri
cal applications by implementing IEEE Stan
dard 754 for Binary Floating Point Arithmetic.

Making numerical programming easy
The implementation of this standard makes
numerical programming easier and ensures
that our software meets specific quality cri
teria. For example, special undefined nu
merical quantities, such as infinity (Inf) and
Not a Number (NaN) are available for han
dling run-time errors through the compiler.
In the past, this facility has generally only
been available in interpreted numerical lan
guages (e.g., Matlab). In addition, standard
exception handlers are provided for the
classic numerical programming errors of
underflow and overflow. This is particu
larly important for complex simulations,
such as neural network modeling, where
a single undetected overflow error passed
to a non-linear function could render the
results of the entire simulation useless.
Custom handlers can also be included to
enhance those already provided by default
under the IEEE standard.

A plan of attack
How can we ensure that floating-point er
rors don't ruin our programs? There are
three main issues that you must address in
an overall strategy. Furthermore, each issue
must be thought through carefully before
you embark on any project that involves
numerical computation. The first issue in
volves number representation as a hard
ware problem, and understanding the ef
fects that it may have on our programs. Al
though number representation is clearly
different for machines with individual op
erating systems and hardware, the flexibil
ity of Solaris being implemented on several
hardware platforms can sometimes lead to
confusion about the physical representation
of numbers in each individual hardware
platform. For example, the SPARC architec
ture has a high-endian representation of
floating point numbers, while the INTEL
platform has a low-endian representation.
Although these differences might not appear
to be very important at first glance (particu
larly for small-domain computations), if
data is shared between computers of differ
ent architectures but the same operating sys
tem in binary format (e.g., shared database

www.zdjournals.com/sun

files) , you must be careful to correctly trans
late individual number representations. Fail
ing to do so might result in an apparent (but
incorrect) increase in monthly profits com
puted from such shared database records,
for example, which could have dramatic
consequences for our clients.

Once the representation of numbers is
understood, the second issue that you must
address is how errors can arise as a result of
the binary representation of (generally) base-
10 floating-point numbers. Many program
mers explicitly declare levels of floating-point
precision (e.g., single or double precision, and.
an extended double in Solaris, which occu
pies four 32-bit words), and feel re-assured
that their compiler would automatically take
care of overflow and/or underflow errors.
This is not, however, always the case. Listing
A on page 10 shows how easily an overflow
error can occur in even an integer-based pro
gram. This program doesn't have any of the
safeguards that should be taken for specify
ing integer precision, etc. The following is the
output showing the higher exponents of two
computed using a simple formula:

x'1=2
x'2=4
x'3=16
x'4=128
x'5=2048
x'6=65536
x'7=4194304
x'8=536870912
x'9=0
x'10=0

As you can see, the higher-order expo
nents are incorrectly computed as zero,
which would have an obvious impact on
our applications' results . Fortunately,
Solaris has some built-in methods for deal
ing with these kinds of errors (including a
capacity to trap division-by-zero errors, for
example, which might normally result in a
run-time core-dump). This is usually achieved
by defining a user-specified signal handler
using sigfpe(3).

After dealing with possible errors in
numerical representation and processing,
the third issue in using Solaris for numeri
cal computing involves optimizing our
programming to either minimize time or
CPU utilization, depending on local priori
ties. Optimization can be invoked on the

October 1998

II Inside Solll'il

command line by flags such as -fast and
-xO[l,2,3,4,5). Many of these options can
take advantage of SPARC and INTEL archi
tecture by using register variables for tempo
rary variables, loop unrolling, dead-code
elimination, etc. Users can also improve
their own coding by proper loop nesting and
inlining function calls (which can reduce ex
ecution time, but increase the size of the ex
ecutable). Another method of optimization
involves using the most efficient implemen
tation of a particular algorithm. In fact,
many of these are available in the Solaris de
velopment environment, which has three
main math libraries. These are libsunmath
(math library), libmvec (vectorized math li
brary) and libcopt (optimized math library).
Our use of these libraries or of those pro
vided with Numerical Recipes, for example,

Listing A: C source code demonstrating
overflow error

#include <sldio.h>

main()
{

int i=0, j=0. X=2. pow:2;

for (i=0; i<10; i++)
{

for (j=1; j<=i; j++) pow•= x;
printf("x'%d:%d\n". i+1, pow);

will complement any of the automated opti
mizations that a particular compiler might
make on our behalf.

Conclusion
C is often thought of as the last language of
choice for numerical programming because
early compilers failed to meet the same stan
dards that scientists and engineers, for ex
ample, had come to expect from formula
based languages such as FORTRAN. How
ever, the new Solaris compilers allow us to
develop intensely numerical programs using
a compiled, functional programming lan
guage with more certainty that our results
are accurate, or at the very least, to place
limits of the interpretability of our results.

Further reading
The bible of numerical computing is
Numerical Recipes, which is now freely
available on-line at nr.harvard.edu/nr/
nronline.html. This book contains generic
code for C, FORTRAN, BASIC, and Pascal,
providing function libraries for computing
almost any possible mathematical function
in an efficient manner .•

Paul A. Watters is a research officer in the
Department of Computing at Macquarie
University, Australia. He has developed a
number of numerically-intensive simula
tions (e.g., neural networks) using the
Solaris development environment.

Process distribution and load
balancing-problems and solutions
by H-W Schlote

The computing power of many work
stations can be combined to reach the
area of super-computing. But these ben

efits can be accompanied by many problems.
In this article, we'll explore some possible
solutions.

In the past, super-computers were used to
solve complex computing tasks. But, things
have changed. Prices of middle-ranged
workstations have fallen to very affordable
amounts, while their computing power has
increased nearly reaching the area of super-

computing. Therefore, today many industries
are substituting former super-computers
with UNIX workstation clusters. Famous
films such as Toy Story (computed on a Sun
workstation farm) and Titanic (Digital UNIX
DEC Alpha and Linux-PCs) used UNIX clus
ters. Another example is the RSA-contest,
where thousands of computers worldwide
searched for crypt-keys.

We must classify distributed computing
into several fields. One field is known more
commonly by the name massive parallel com
puting. This means that one computer with
dozens or even hundreds of processors use
shared memory. Communication between
several distributed jobs can be performed
using toolkits like parallel virtual machine
(PYM), or the message passing interface
(MPI) both provided by GNU.

In this article, the term distributed comput
ing refers to a software product that accepts
requests and starts the corresponding job on
one of many hosts in a LAN. The prerequisite
for using distributed computing is the possi
bility to divide the computing task into sev
eral sub-tasks.

A case study
The following example will show both the
power of using many workstations together
and the potential pitfalls. Suppose you need
to process geographical data of a country. The
conventional (super-computer) approach
would be to solve the problem in one step
using the hierarchical memory structure of a
super-computer.

Now, consider dividing the country into
parts. The amount of data per computing
task (a subtask of the main goal) is thereby
greatly reduced, and the subtask can be
solved by a UNIX workstation. With a load
balancing and process distribution system,
the several subtasks are distributed over the
available workstations. This way, costs, time,
and effort are significantly reduced.

Problem: security hole
Most load balancing and process distribu
tion systems must be run with superuser
privileges. They communicate over the
network, sometimes not only in the LAN
but in a WAN. So, you have one more pro
gram running with superuser privileges
listening on ports open to hackers all over
the world- just another security hole. We

www.zdjournals.com/sun

know of only one system capable of running
with normal user privileges- PDS. We'll
give you a list of available process distribu
tion software at the end of this article.

Problem: uncertainty
Imagine it's Friday afternoon. There's a fi
nal deadline on Monday for delivering pro
cessed data. All your programming work is
done and this morning you solved the last
(known) error. The processing takes about
two days on the 30 workstations available.
So, you start your jobs and go home with a
really good feeling. Unfortunately, there is
some kernel panic or power failure (the
cleaning personnel accidentally unplugged
the power cord) or anything else on one of
the machines working for you. To make it
worse, this machine had almost finished a
job on which lots of others depend.

So, your whole process gets sent back
to the beginning and you have to explain
to your boss what happened and why you
used the only machine that failed . You also
have to explain why this job was running
there, why you didn't take some other ma
chine, why you didn't look for the jobs on
Saturday and Sunday etc.

There's a possibility for you to use some
high availability (HA) attempt to avoid such
a problem. But you would have to build your
network with every machine being redundant,
which leads to unnecessarily high costs. What
you want are central machines like database
servers being built redundant (for example, a
big Sun enterprise server with redundant
backplane, processors, memory, interfaces,
etc.) or mirrored with an HA attempt like
Sun's SPARC-cluster-HA and SPARC-cluster
PDB. All workstations should be managed by
a process distribution system. This needs to
be done not only to keep up with the work
(which is easy) if anything goes wrong, but to
also start a failed process anew if it's impor
tant to you and you think that the failure lies
within the hardware (network, computer
hardware, or operating system) and not
within your software. Figure A on page 12
shows a graphical representation of a process
distribution system with fault management.

Conflicts between users
and jobs
Often you use the same workstations as work
place computers and to compute distributed

October 1998

Figure A

add request

process queue

process in queue lol:el temrination criteria fulfillo:I
select host delete frcnn process queue

process- I host-
n ement

·aces s temrination (error) host selecto:I
inf arm management •tlrt process on host

host

successful temrination
delete process frcnn queue

This is a process distribution system with fault management.

Iii Inside S•is

jobs. This may lead to problems if the distrib
uted jobs hinder the user. There are multiple
ways to avoid this kind of conflict. A good pro
cess distribution system should offer all possi
bilities as options.

First, you can generally define that no
processes should be run during office hours.
This is the most effective method, but it
wastes a lot of computing time. The typical
Sun machine has more than one processor
and can perform more than one job at a time.
So why shouldn't a job run on this machine
if sufficient memory is installed and suffi
cient computing power exists?

The second way to avoid conflicts be
tween users and distributed jobs is to set
the maximum number of jobs to be run on a
machine explicitly less than the number of
CPUs online. Outside of office hours, the
system can be configured to use all CPUs.

The third approach would be to use re
sources more generally. That's to say, the
job uses n CPUs, m MB RAM, d MB disk
space etc. The process distribution system
should try to avoid starting more jobs on a
machine than resources that are available.

Only the first (very strict) approach,
wasting computing time, will guarantee
that conflicts won't occur. The success of
the other possibilities depends on how
well people work together and how good
the communication is between the differ
ent users.

In our opinion, a combined approach of
the second and third way is the best. Speci-

fying the resources that will be needed can
help you avoid trashing a machine by start
ing jobs on it that need more memory than is
actually installed. Also, reducing the num
ber of jobs to be run on workplace machines
during office hours will help you produce a
friendly working atmosphere.

Equal rights
Consider that Paul is one user of a work
station cluster and is starting a huge num
ber of parallel jobs. A few minutes later
Mary wants to start just one small job.
How should the distribution system per
form in this case? First-come-first-serve
wouldn't be well accepted by the users.
The next time, Mary would start her job
directly, which could possibly confuse the
distribution system. There must be some
tricky algorithm implemented into a good
process distribution system. This algo
rithm must assure that Mary's job would
be started immediately after Paul's first
job finished.

Priorities
The process distribution system should pro
vide some kind of priority scheduling. There
are always more and less important things
to calculate. But using several queues will
lead to new problems. You need some kind
of aging algorithm. A job started with minor
priority must be executed sometime. If there
are always jobs with higher priorities, the
minor priority job would never be executed,
which isn't what we want. There must be
some algorithm increasing the priority of a
job with time passing.

If the process distribution system uses
different queues for high, medium, and low
priorities, you'd find a job with low priority
in the high priority queue after some time.
This is confusing.

Another approach is to use one queue
with priorities and have the priorities of older
jobs eventually get higher. This method is
straightforward and produces clear results.

Which directory to choose?
Where will a distributed job be executed?
Or more precisely: in which directory? The
UNIX-command rsh executes the job given in
the home directory of the user. But, if compi
lation jobs need to be distributed, they must

be started in the current directory-which
must be mounted via NFS, of course.

In a heterogeneous UNIX cluster, how
ever, even the location of home directories
may be different. And, on each machine there
may be some local directory with sufficient
space available for distributed jobs that aren't
named the same on two machines.

There should be a way to tell the pro
cess distribution system in which directory
to change for execution. Also, you should
be able to configure the system so it knows
how the local directories are named, pro
viding there's sufficient free disk space on
each machine.

Different classes
There may be some software available only
for workstations of a specific vendor's UNIX
version. Also, there may be some job which
needs a large amount of computing power.

Many situations require dividing avail
able computers and jobs to be computed
into classes. Good software should provide
an easy way to do this .

Listing A: Shell script wrapper for hetero
geneous distribution and platform dependent
execution of programs

#1/usr/bin/ksh

ARCH='pvmgetarch'

if [! -d $HOME/bin/$ARCH]; then
echo "Architecture SARCH not supported"
echo
exit

fi

ARCH_DIR=SHOME/bin/$ARCH

#######################################
... finally start the applicat i on . . .

cmd='basename $0'

case $cmd in
too) exec $ARCH_DIR/foo $•;;
•) echo "$cmd may not be"

echo "started from here";;
esac

www.zdjournals.com/sun

Heterogeneous clusters
Process distribution in heterogeneous UNIX
clusters has one more problem: A Sun-SPARC
executable doesn't run on a DEC-Alpha or an
SGI workstation. Therefore, you must write a
wrapper shell script using the pvmgetarch
script (included in the PYM distribution men
tioned earlier) to find out on which platform
the job has started. Listing A shows a simple
example for such a shell script wrapper.

Available software
Digital Equipment developed load bal
ancing over 15 years ago for VAX/VMS.
Nowadays, almost every hardware ven
dor has his own clustering software,
which is sometimes combined with high
availability approaches. These solutions,
however, are always platform-specific.

There is some process distribution soft
ware for heterogeneous UNIX clusters. Some
examples that are in the public domain are
DQS/NQS, LSF (Platform Computing,
Canada), and PDS (SUFFIX, Germany).

DQS/NQS works well if you don't
need reliability in case of network instabili
ties or other problems. LSF, however, keeps
working if problems occur. Yet, PDS is the
only product that provides the ability to
automatically restart failed jobs (contact
pds@suffix.de). Besides, PDS doesn't need
superuser privileges, and therefore isn't just
another security hole in your network.

On the other side, you can expand and
configure LSF using shell scripts. For ex
ample, if you want to take the round-trip
time (RTT) between two hosts into account,
you can specify it. The disadvantage of this
approach lies with the different implemen
tations in the two main streams of today's
UNIX systems. A System V ping returns
"host is alive" per default. The BSD equiva
lent permanently outputs the RTT to the
given host. In order to obtain LSF, contact
Platform Computing, Canada, or the local
sales office (i.e., Science & Computing in
Germany).

All available systems offer solutions to
avoid conflicts between users and jobs and
between several users (see the "Equal Rights"
heading). All approaches dealing with priori
ties are very different. DQS/NQS doesn't
have an aging algorithm (at least none that

October 1998

Ill Inside Solaris

we know of) and doesn't handle queues with
different priorities. LSF has several queues
with several priorities. And, PDS has a tricky
priority-scheduling algorithm, including ag
ing using one queue.

Also, LSF starts the distributed job in
the current working directory. PDS starts a
job either in the current working directory
or in a directory configured within the pro
cess distribution system, depending on the
user's choice (given via command line
argument) .•

H-W Schlote was born in 1969 in Soltau,
Germany. After studying physics at
TU Braunschweig, he worked for about one
year for a software firm in Braunschweig.
In 1996, H- W (known better as Harvey)
founded his own firm, SUFFIX. Today
SUFFIX is a group of three UNIX special
ists, mainly operating in air guidance and
car navigation projects . He can be reached
at H.Schlote@suffix.de.

Ping the Solaris Dude
by Robert Owen Thomas

Does something about Solaris have you
puzzled? Ping the Solaris Dude today!
Submit questions to robt@cymru.com.

How to use ndd
One of the most powerful, yet least used and
understood commands in Solaris is /usr/sbin/
ndd(lM). The tool ndd(lM) modifies the ker
nel parameters of the drivers that use TCP I
IP. Such drivers as I dev I tcp, I dev I ip, and
I dev /hme can be tuned through the use of
the ndd(lM) command.

One of the first and most important things
to realize when using ndd(lM) is that you're
modifying kernel parameters. This can be
very dangerous business if you aren't care
ful, because kernel parameters can affect ev
erything and everyone using your system.
Remember this kernel tuner's mantra: Don't
tune that which you don't fully understand.
Now, having delivered this warning, the
good news is that anything you change with
ndd is only in effect until the next reboot. So,
if something should go awry, you can reboot
to recover.

You can use the ndd(lM) tool as both a
query tool and a set tool. For example, if
you want to know if your dual-homed host
is acting as a gateway, simply type

ore # ndd /dev/i p ip_lorwarding
1

So what does this output mean? Gener
ally speaking, a 1 means "on" and a 0

means "off". In this case, you enable IP for
warding between the two networks. Now,
let's check this on a single homed host:

pudge # ndd /dev/ip ip_lorwarding
0

Sure enough, IP forwarding is disabled.
Next, let's try an example with ARP. Perhaps
you're curious about the length of time an
entry is maintained in the ARP cache? With
the help of ndd(lM), we can find out. We try:

pudge # ndd /dev/arp arp_cleanup_interval
300000

ndd(lM) reports all time values in millisec
onds. So, 300,000 milliseconds equates to
approximately five minutes.

How do I know what to tune?
Unfortunately, the ndd(lM) main page
doesn't exhaustively document all of the
various tuneables for each driver. How
ever, ndd(lM) is in some way self
documenting-all you have to do is ask!

For example, Listing A shows all of
the TCP tunables. These are all the vari
ables under the I dev I tcp device driver.
All of the variables with the second col
umn (read and write) are tunable. This
doesn't mean, however, that they should
be tuned. Remember the kernel tuner's
mantra! Now, list out all of the variables
for /dev/arp, /dev/ip, and /dev/udp.

~

Listing A: A// off the TCP tunable variables shown with the ndd command

pudge # ndd /dev/tcp \?
tcp_conn_req_max (read and write)
tcp_conn_grace_period (read and write)
tep_ewnd_max (read and write)
tep_debug (read and write)
tep_smallest_nonpriv_port (read and wr ite)
tep_ip_abort_einterva l (read and write)
tep_ip_abort_interval (read and wri le)
tcp_ip_notify_einterval (read and wri le)
tep_ip_notify_interval (read and write)
tcp_ip_ttl (read and write)
[Output snipped due to volume. I

Don't be worried if you don't know what each of the variables represents.
You'll likely never need to tune more than a select few.

What variables should be tuned?
Setting the value of the tunables with ndd(lM) is very easy. The -set option
is all you need. For example, to disable IP forwarding, simply enter:

ore # ndd -set /d ev/ip ip_forwarding 0

Instantly, IP forwarding is disabled. Watch out! Recall that this will re
vert to the default (enabled) at the next reboot. More on that later.

There are several other variables that we recommend you tune. For ex
ample, the now infamous smurf attack relied upon hosts responding to broad
cast ICMP ECHO _REQUEST messages. This can easily be disabled by enter
ing the following:

ore # ndd -set /dev/i p ip_respond_to_echo_broadeast 0
And :
ore # ndd -set /dev/ip ip_respond_to_a ddress_mask_broadeast 0

If your host is a gateway, you may also wish to prevent directed
broadcasts from passing through your gateway host. This can be accom
plished with:

ore # ndd -set /dev/ip ip_forward_direeted_broadeasts 0

Some of the more common questions we see are related to the hme (Fast
Ethernet) settings. Yes, ndd(lM) can help here as well. For example, if you
wanted to force the hme driver to use only 100 Mbit/ s full-duplex, you could
enter

ore # ndd -set /dev/hme adv_1001dx_eap 1
or e # ndd -set /dev/hme adv_100hdx_eap 0
ore # ndd -set /dev/hme ad v_101dx_eap 0
ore # ndd -set /dev/hme adv_10hdx_eap 0
ore # ndd -set /dev/hme adv_autoneg_eap 0

This tells the hme driver to set the speed to 100 Mbit/ s, the duplex to
full, and disable all other settings. The last entry, adv _autoneg_cap, disables
the automatic negotiation process.

www.zdjournals.com/sun

INSIDI£ 9
SOLARIS.

Inside So/aris (ISSN 1081-3314) is published monthly by
ZD Journals, 500 Canal View Boulevard, Rochester, NY 14623.

Customer Relations

US toll free ... (800) 223-8720
Outside of the US (716) 240· 7301
Customer Relations fax ... (716) 214·2386

For subscriptions, fulfillment questions, and requests tor group subscriptions,
address your letters to

ZD Journals Customer Relations
500 Canal Vi<NI Boulevard
Rochester, NY 14623

Or contact Customer Relations via Internet E-mail at zdjcr@zd.com.

Editorial

Editor Garrett Suhm
Copy Editors Rachel Krayer

Christy Flanders
Taryn Chase

Contributing Editors Don Kuenz
Abdur Chowdhury

Robert Owen Thomas
Paul A. Watters

H-WSchlote
Print Designer .. Lance Teitsworth

General Manager ... Jerry Weissberg
Editor-in-Chief Joan Hill
Editorial Director .. Michael Stephens
Managing Editor Kent Michels
Circulation Manager ... Renee Costanza
Print Design Manager .. Charles V. Buechel
VP of Operations and Fulfillment ... Michael Springer

You may address tips, special requests, and other correspondence to

The Editor, Inside So/aris
500 Canal Vi<NI Boulevard
Rochester, NY 14623

Editorial Department fax .. (716) 214·2387

Or contact us via Internet E-mail at sun @zdjournals.com.

Sorry, but due to the volume of mail we receive, we can't always promise a
reply, although we do read every letter.

Postmaster

Periodicals postage paid in Louisville, KY.

Postmaster: Send address changes to

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright

Copyright Q 1998, ZD Journals, a division of Ziff·Davis. ZD Journals is a
trademark of Ziff-Davis. Inside Solaris is an independently produced
publication of ZD Journals. All rights reserved. Reproduction in whole or in
part in any form or medium without express written permission of Ziff-Davis
is prohibited. ZD Journals reserves the right, with respect to submissions, to
revise, republish, and authorize its readers to use the tips submitted tor
personal and commercial use.

Inside So/aris is a trademark of Ziff·Davis Inc. Sun, Sun Microsystems, the Sun
logo, SunSott, the SunSott logo, Solaris, SunOS, Sunlnstall, OpenBoot,
OpenWindows, DeskSet, ONG, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered
trademarks of UNIX System Laboratories, Inc. Other brand and product names
are trademarks or registered trademarks of their respective holders.

Price

Domestic .. $99/yr ($9.00 each)
Outside US ... $119/yr ($11.00 each)

Back Issues

To order back issues, call Customer Relations at (800) 223·8720. Back issues
cost $9.00 each, $11.00 outside the US. You can pay with MasterCard, VISA,
Discover, or American Express.

ZD Journals publishes a full range of journals designed to help you work
more efficiently with your software. To subscribe to one or more of these
journals, call Customer Relations at (800) 223-a720.

To see a list of our products, visit our Web site at www.zdjournals.com.

SunSoft Technical Support

(800) 786-7638

/

PERIODICALS MAIL
-....

.,
Please include account number from label with any correspondence.

Making the tuning permanent
Once you've worked out your tuning strat
egy, and once you've successfully and rig
orously tested your changes, it's time to
make the changes permanent. This can't be
accomplished, however, with ndd(lM).

To make the changes permanent, you
must add the lines to /etc/system. None
theless, the lines added to I etc/ system are
very close to the same arguments you've
given to ndd(lM).

Let's take the hme variables as an ex
ample. To make the changes permanent, edit
I etc/ system to add

set hme to only use 100 Mbit/s. full duplex
#ROT. 17 June 1998
set hme:hme_adv_100fdx_cap = 1
set hme:hme_adv_100hdx_cap = 0
set hme:hme_adv_10fdx_cap = 0
set hme:hme_adv_10hdx_cap = 0
set hme:hme_adv_autoneg_cap = 0

Quick lip
"rm -r" TIPS

At reboot, the changes you've made with
ndd(lM) will take effect automatically. Don't
forget to add comments to your changes in
I etc/ system.

Conclusion
The ndd(lM) command is a powerful tool,
and a must for any system administrator's
toolbox. However, use it wisely. As with any
kernel tuning tool, it has the capability to
cause great harm. When you use it wisely, it
can greatly enhance the performance and
security of your Solaris systems. ~

Robert Owen Thomas is an aspiring blues
guitarist earning his living as a UNIX and
networking consultant. He can be contacted
through E-mail at robt@cymru.com, or visit
his web site at www.cymru.com/-robt.

"rm -r f i le ... /1 every administrator in the crowd already knows the rest of this story!

Tip #1
rm -r should always be preceded with pwd to
make sure you're in the right directory. Don't
rely on your prompt to tell you. The sh com
mand may put you in /1

/" as it did me!

lip #2
Always use the full path when running
rm -r because if you miss the dot (11

•
11

) as I
did (rm -r. /di r-name), you'll have to restore
an entire file system.

~ ~-id_e_s_ol_ar_i_s ________ ~----------'

lip #3
It's not a good idea to rm -r sub-directories
with the same name as your root-level file
systems and directories (see Tip #2).

Any other rm -r tips should be E-mailed
to: forsythe@tusco.net so that I can
quit making these mistakes on my own!

I';:"'
""": \"\ Printed in the USA.
D\:' This journal is printed on recyclable paper.

