
I July 1997 • $11.50
VOL. 3 NO. 7

in this issue.

1
Creating a new COE switch
3
Creating interactive
network programs with
shell scripts
6
Using coprocesses in the
Korn shell
8
Using the typeset
command to make Korn
shell functions safer
9
Managing resource·
intensive background
processes
11
Find your files without
interference
12
How does 110 redirection
work?
14
Never agalnl
15
Put your current direc
tory in your window title
16
And again, with zshl

Visit our Web site at
http://www.cobb.com/sun/

Creating a new COE switch
By W. Dean Stanton

t st month, in the article "Cus
tomizing the Workspace Switch

Area," we showed you a sim
ple customization to the Workspace
switch area: We showed you how
you can add, remove, and rename
the buttons in the Workspace
switch area, shown in Figure A.

Figure A

You can customize more than just the
buttons in your Workspace switch area.

There's another customization
you can make: You can define a
tiny switch-like the lock or EXIT
button-to appear alongside the
workspace names in the Workspace
switch area of the Front Panel. In
fact, there's a Blank switch under
the lock that has no function (other
than to take up space, affecting the
location of other switches).

In this article, we'll show you
how to customize these switches.
For our example, we'll replace the
Blank switch with one that's much
more useful: It will take us to the
Compose Mail window of the
mail tool!

Making our changes
In last month's article, we used the
built-in features of the Common
Desktop Environment (CDE) to

A Publication of The Cobb Group

make our changes. Customizing the
switches, however, isn't quite as
straightforward. To do this, we must
create some new CDE setup files.

The /usr/dt/appconfig/types/C/
dtwm.fp file controls the configura
tion of the Front Panel. Definitions
of the various elements of the Front
Panel user interface widgets are lo
cated within this file. When we make
our changes, we're going to create
small files that override the default
definitions in the dtwm.fp file.

YOU can make changes to the
Front Panel for a single user by
placing these override files in that
user's $HOME/.dt/types directory. If
you want to make the changes for
all the users on a system, place
your override files in the /etc/dt/
appconfig/types/C directory instead.

In order to prevent disruption
to other users on your system, you
should create the files and place
them in a test account's .dt/types di
rectory. Only after you've verified
your changes should you place
them in the /etc/dt/appconfig/types/C
directory or other users' $HOME/
.dt/types directories.

Creating our new control
You can't add new switch controls
to the Workspace switch area: It only
supports four. If you want a new
control, you must give up one of
the others. Since the Blank control
does nothing, it's easy to find a place
for your first customized switch.

If you want to add another
switch or so, you must decide

~0.Z'if f-DAVIS

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491 -8050
Editorial Department fax (502) 491 -4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests , and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cobb _customer _relations @ zd. com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander

W. Dean Stanton
Production Artists Margueriete Winburn

Natalie Strange
Editor Karen S. Shields
Publications Coordinator Linda Recktenwald
Editor-in-Chief of Online Publishing Darren McGee
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
Managing Author Eddie Tolle
Publisher Mark Crane
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Postmaster
Periodicals postage paid in Louisville, KY and
additional mai ling offices.
Postmaster: Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1997, The Cobb Group. All rights reserved . Inside Solaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right, with respect to submissions, to revise,
republish, and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Inc. Inside Solaris is a trademark of Ziff-Davis Inc. Sun, Sun
Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris,
SunOS, Sunlnstall, OpenBoot, OpenWindows, DeskSet, ONG,
and NFS are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX and OPEN LOOK are registered trade
marks of UNIX System Laboratories, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

____ n July 1997

which switches you can live with
out. (The Busy indicator looks like
a great candidate for our next
switch customization, since it's
marginally more useful than the
Blank control.)

Delete the Blank control
Before we can create our tiny
switch to start a Compose Mail
window, we'll delete the Blank
switch. To do this, copy the CONTROL
Blank switch definition from the
dtwm.fp file to $HOME/.dt/types/

Listing A: Blank.te

Blank.fp. Then add the DELETE True
line (shown in blue in Listing A).
You can either do so with a text
editor like v i or by typing in the
code shown in Listing A.

Please note that the switch's
POSITION_HINTS value is 3. This
tells the Front Panel the location of
the switch.

Creating a new action
Next, we'll create the action we
want our new switch to use. To do
so, use the dtcreate program to

create an action named
Compose Mail, which ex

#This is SHOME/.dt/types/Blank.fp ecutes the command
dtmai l -c to open an
empty compose win
dow. When d tcrea te

#Copied from /usr/dt/appconfig/types/C/dtwm.fp
#and changed to delete the blank switch.

CONTROL Blank
{

TYPE
CONTAINER_NAME
CONTAINER_ TYPE
POSITION_HINTS
ICON
HELP_TOPIC
HELP_VOLUME
DELETE

blank
Switch
SWITCH
3
FpblnkS
FPOnltemSwitch
FPanel
True

This file overrides the default definition of the Blank switch
for the Front Panel.

Figure B

We're creating the new Compose_Mail action.

makes the new action,
it names it with an un
derscore in place of the
space: Compose_Ma i l.
You can't merely create
the file, as it will lack
the CDE checksum. You
can start d t c re a t e by
typing

dtcreate

Now, just fill in the
fields as shown in Fig
ure B. To select an icon
for your new action,
click the Find Set... but
ton, and browse around
to find the icon you
want. When you find
the desired icon, write
down its name: We'll
be using it shortly. (If
you're the artistic type,
feel free to create your
own icon.)

Creating the
new switch
Now we'll make our
new switch control. To
begin, copy the defini
tion of CONTROL Blank
that you just created in
Blank.fp to CompMail.fp.
Now modify CompMail.fp

to add the icon you want, PUSH_ACT I ON, and
remove the DELETE True line, as shown in
Listing B. (You may also want to update the
HELP _STRING and LABEL fields while you're
editing the file.)

Listing B: CompMail.tp

#This is SHOME/.dt/types/CompMai l.fp

CONTROL Compose_Mai l
{

TYPE icon
CONTAINER_NAME Switch
CONTAINER_ TYPE SWITCH
POSITION_HINTS 3
ICON Fppenpd
LABEL Compose
PUSH_ACTION Compose_Mai l
HELP_STRING Compose a new E-mail

"-message using CDE's DT mail.
}

We've created a new control to take the place of the
Blank control we just deleted.

The file $HOME/.dt/types/CompMail.fp
redefines the switch in position number 3 to
use a pen and pad icon and to execute the
Compose _Mai l action when you click the
switch. The icon can be improved, but it's so
small it barely matters.

Now that you've changed the Front Panel
configuration, it's time to test it. Choose Re
start Workspace Manager from the Workspace
menu. When the CDE restarts, the Front Panel
should show your new control. Try out the
new control. If there are any problems, look
for messages at the end of your $HOME/.dt/
errorlog file to help you find the problem.

Conclusion
As you can see, the CDE is quite flexible.
We've already shown you how to customize
the Front Panel to suit your tastes. Since you
can change the fonts, colors, and other at
tributes of the CDE, you can make your com
puter operate almost any way you want. •!•

Creating interactive network programs
with shell scripts
By Al Alexander

t st month, in the article "Creating a Cus
tom Network-Messaging Daemon," we

began the process of creating network
aware daemons. From there, it's a short step
to a client/ server software application that
communicates over a TCP /IP network. The
unique part about our client/ server communi
cation software is that they're written in the
Bourne and Korn shells, instead of a more dif
ficult language, such as C, C++, Perl, or Tel.

As we saw, the server program is fairly
simple, and the Bourne shell is a sufficient
programming language. We used t e l net as
our client and built a simple server that, once
the client connected, would tell you how
many people were logged into the machine
and display some information from i o stat.

This month, we're going to build on that
foundation. First, we'll build an interactive
server. Rather than emitting some data in a
fixed pattern, our new server will service re-

quests by the client. Then, we'll build a client
that will interrogate the server.

The new server
Our new server, shown in Listing A on page 4,
requires that the client identify itself, so it
should work only with the appropriate client
programs. Please keep in mind that this is a
demonstration program and not production
quality. If we wanted to make it more secure,
we'd have to add encrypted passwords and
use a tool like ssh to ensure that the pass
words were encrypted before sending them
over the network.

If you connect successfully to the Sys Info
server, it responds to the four requests
CPU_USAGE, DISK_FREE, YOUR_NAME,
and QUIT. Syslnfo reports CPU usage by ex
ecuting s a r and displaying the results. It gets
the amount of free disk space by executing d f
-k, running the results through grep to keep
only the local file systems (i.e., those starting

Inside Solaris

with /dev/dsk), and using awk to total the fourth
column (the amount of free space). The
YOUR_NAME request tells the server to re
port its host name. The QUIT command termi
nates the dialog, freeing the server to respond
to another client.

Installing the server
Before working on the client side, let's install
the server on a computer and test it with
telnet as we did last month. To install the
server, perform the following steps. (For a dis
cussion of these steps, see last month's issue.)

Listing A: Syslnfo

#!/bin/sh

InfoServer - Demonstrate an interactive
net daemon server.

echo "\n"
echo "Identify yourself"
read temp1
remoteHost:'echo Stemp11tr -d '\r''

#Validate the remote computer name
case "SremoteHost"
in

fredlFREDljoelJOE)

echo "Good-bye SremoteHost"
echo SremoteHost "attempted access on"\

'date' »/tmp/Sysinfo. log
exit 1;;

esac

Process command requests
while true

~--II July 1997

do
echo "What do you want?"
read temp2
theRequest='echo Stemp21tr -d '\r''

case "StheRequest"
in

CPU_USAGE)
sar 5 I tail -1;;

DISK_FREE)
df -K I grep "/dev/dsk" I awK '

BEGIN { Stota l=0 }
{ Stotal=Stotal+S4 }
END { pr i n t St o ta l } ' ; ;

YOUR_NAME)
uname -n
echo "" · ·

QUIT)
exit 0;;

esac
done
This interactive network server responds to four different
requests and has a rudimentary authorization scheme.

1. After you create the Sys Info script, give it
execute permissions, and copy it to your
/usr /local/inet directory:

chmod +x Sysinfo
cp Sysinfo /usr/local/inet

2. Add the following line to your /etc/inet/
services file:

system_info 5001/tcp

3. Add the following line to your /etc/inet/
inetd.conf file:

system_info stream tcp nowait nobody
•lusr/local/inet/Sysinfo

4. Tell the i netd daemon to reload its configu
ration files:

ps -ef I grep inetd
root 99 1 0 07:13:29 0:00 /usr/
•sbin/inetd -s
root 255 226 0 11 :49:24 pts/0 0:00 grep
•inetd
Kill -1 99

(Use the second field in the line that specifies
/usr/sbin/inetd as the parameter for the k i l l
command.)

Testing the server
Once you've installed the server as a network
daemon, you can test it with t e l n e t. When
you connect to the Sys Info server, it will first
ask you to identify yourself. When it does so,
just type fred or joe, as we did in Figure A. (As
you can see from Listing A, only fred and joe
can use the server.) Then, it will ask you what
you want. Reply with either DISK_FREE,
CPU_USAGE, or YOUR_NAME, and send it
QUIT when you're finished testing. Your re
sults should look something like Figure A.

The interactive client
The server isn't very complex. What may
surprise you is that the client isn't complex
either, though it is longer. The client program,
ne tC lien t, is shown in Listing B. At the be
ginning of this program, we initiate a telnet
session to the remote host as a coprocess
(described in the accompanying article "Using
Coprocesses in the Korn Shell," on page 6).
Please note that we telnet to port 5001, which
is the port where we installed our Sys Info
server script. (Since we just tested it, we know
that our server program is waiting and listen
ing on this port on the remote workstation.)

The main body of the client first identi
fies itself by waiting for the server (via the
coprocess) to requ pc;;t t}ip client's name, upon
which the client responds FRED. We describe
the Wai tFor, Say, and Ge tRep l y functions in the
coprocess article. The client uses the same pro
cedure to get the amount of free disk space
and CPU usage for the server, then terminates
the session by issuing the OU IT command.

Notes
It's important to pay careful attention to syn
chronization in your client and server scripts.
If both the client and the server are reading,
your program will hang because the programs
are waiting on each other. However, fear not,
because this is always a logic problem that
you must deal with when creating this type
of application-just make sure your logic is
right.

Listing B: netC!ient

#!/bin/ksh
netClient - read system information from the
#specified remote computer

########################
FUNCTION DEFINITIONS #
########################

usage()
{
echo "usage: netCl ient <host>"
echo "Display CPU usage and free disk space"
echo "available on <host>"
exit 1
}

#Send a string to the coproces s
Say()

{ print -p "$1"; } /
,,,

read a string from the c;process
Get~ep l y ()

-Jer
ver

l i n es fr om cop r o c es s u n t i l we f i n d
~ one we're waiting for ...

wa itfor()
{
typeset stringToWaitFor temp input
stringToWaitFor="S1"
while true; do

then

read -p temp
input='echo Stempltr -d -c '? [A-z]''
if ["$input"= "SstringToWaitFor"];

Figure A
telnet widget2 5001
Trying 140.244.96.203 ...
Connected to widget2.
Escape character is '"]'.
Identify yourself
f red
What do you want?
CPU_USAGE
14: 54: 14 0
What do you want?
DISK_FREE
224243
What do you want?
YOUR_NAME
widget2

What do you want?
QUIT

0

Connection closed by foreign host

99

Here we use telnet to test by hand all the commands
offered by the Sys Into server.

f i
done
}

return

################
MAIN PROGRAM #
################

#Ensure that we have the right # of arguments
i f [$# ! = 1]; then usage; f i

#Establish a connection to the remote computer
telne t $1 5001 I&

W~it until we get the prompt from the remote
#computer, and reply
WaitFor "Identify yourself"
Say "FRED"

#Wait until remote computer asks what we want,
#then tell it we want the DISK_FREE information,
then read the information
Wai tFor "What do you want?"
Say "DISK_FREE"
diskFree="'GetReply'"

Now use same procedure to get CPU USAGE
WaitFor "What do you want?"
Say "CPU_ USAGE"
cpuUsage="'GetReply'"

#Terminate the session to free the remote
WaitFor "What do you want?"
Say "QUIT"

#Display the results
echo "DISK_FREE: SdiskFree"
echo "CPU_USAGE: ScpuUsage",.

Our network client program can ask for specific information from our server using a simple dialog.

Inside Solaris ···--~

Conclusion
In this article, we've demonstrated the steps
necessary to create a client/ server communi
cation program that you can customize to
meet the demands of your own environment.
We wrote our programs using only Bourne
and Korn shell scripts, so any administrator
familiar with shell scripts can create custom
ized network-ready applications.

Our program is based on a conversational
approach between the client and server, which
you can easily extend to meet your needs.
This conversational approach is very flexible:
Not only is it easy to debug with telnet, but
with care and planning, you can write a server
that can communicate with different types
of clients. •:•

Using coprocesses in the Korn shell

....._ __ Ill July 1997

By Al Alexander and Marco C. Mason

Do you like to write shell scripts? Would
you really like to change the way certain
applications run? If you answered yes

to both of these questions, then you owe it to
yourself to investigate a great feature of the
Korn shell: coprocesses. Using coprocesses,
you can write a new front end for an applica
tion and make it look and operate any way
you want, without rewriting it. In this article,
we'll show you how.

Whars a coprocess, anyway?
OK, I'm guessing that the question running
through your mind about now is "What the
heck is a coprocess?" Before I answer that,
let's take a brief look at how we execute pro
grams inside shell scripts. Listing A shows a
trivial shell script that counts the number of
files in your directory.

Listing A: numFiles

#!/bin/ksh

numFi les - display the number of files in
#the specified directory

echo "There are \c"
NF=' ls -al S. I grep - I wc -l'
echo SNF "files. "

Execution of this shell script is suspended until the
commands in blue finish.

The Korn shell, when executing this shell
script, processes it line by line until it finds the
line in blue. The shell then must execute a

pipeline of commands, and it does so, suspend
ing operation of the current script. When the
line in blue finally completes, the shell resumes
execution of the n umF i le s script.

The current script stops executing while
the other processes run. Your shell script can't
do anything useful while processing the ls,
grep, and we commands. In this case, that's no
tragedy, since we don't expect numFi les to
take an appreciable amount of time to execute.

But what happens when the command
pipeline process takes a long time to run? The
script appears to be hung-most people worry,
at least a little bit, when the computer doesn't
appear to be doing anything.

To get around this annoyance, you could
run the procedure as a background task. This
way, your script can execute while the back
ground ta-sl<2 work away. But how do your
processes comrn~nicate?

This is where -:oprocesses come in. A co
process runs in the ~ackgr~un~ but opens a
special pipe that youf apphcahon can use to
read and write to. Thu', if ~our scr~ · · - "r-
forming some time-consufr11ng ,
ground, your script can perform o
such as informing the user of the pr _
the operation, while the coprocess is WL

If you want to get fancy, you can even g1
your users an estimate on how long the jo
should take and how much progress it's made.

Having said all that, we offer a simple
definition for a coprocess: A coprocess is a
process that can run concurrently with your
main process. Neither process waits for the
other to complete; instead they can communi
cate with each other and cooperate to perform
a task.

Creating a coprocess
Now that we know what a process is for, we
need to know how to create and interact with
one. We can do this by ending a command
with the operator I&. When you look at how it
works and what it does, the operator even
makes sense. This operator does two things:
First, it creates a pipe that your main process
can use to communicate with it, just as if you
used the piping operator I. Second, it executes
the specified command in the background, just
as if you used the background execution op
erator&. The I & operator to start a coprocess is
a logical extension of these. An example of
starting a coprocess might look like this:

p s -e f I &

This command runs the ps -ef command
as an asynchronous background process, just
as if you'd used the & symbol alone. However,
instead of having the output come directly to
your screen, you can now read it from a two
way pipe at your convenience. To read a line
of data from the coprocess, you simply use the
read -p command, like this:

read -p l ine1

This command reads the first line of input
from the coprocess and stores the contents of
the input in the shell variable named l i n e 1.
What does this variable contain? You can dis
play it with the echo command:

echo Sline1
UID PIO PPID C STIME TTY TIME CMD

As you can see, the variable l i n e 1 contains
the first line of output from the p s -e f com
mand. If we perform these read and echo state
ments again, we can obtain the next line of
output from the p s -e f command:

read -p l i ne2
echo Sline2

root 0 0 0 08:43:35 ? 0:01 sched

You can send a line of data to a coprocess
with the pr i n t -p command. In this particular
example, there's no need to write any informa
tion to the asynchronous process, because
the ps -ef command won't listen to what
we write.

However, some Solaris commands are in
teractive and will accept input. For example,
you might want to do some extensive calcula
tions in your shell script, so you could fire off
the de (desktop calculator) program as a

coprocess. Then your script can get the calcu
lator to perform all the calculations.

Making it more readable
In order to make coprocesses even easier to
use and the shell scripts easier to read, we've
created three shell functions to communicate
with a coprocess: Say, Get Reply, and Wait For,
as shown in Listing B. Because it's the simplest
of the three, let's look at Say first.

Listing B
Say()

{ print -p "$1"; }

Get Reply ()
{

typeset answer
read -p answer
echo Sanswer
}

WaitFor()
{

typeset stringToWaitFor temp input
stri ngToWai tFor="S1"
while true; do

read -p temp
input='echo Stempltr -d -c '? [A-zl''
if ["$input"= "SstringToWaitFor"]; then

return
f i

done
}

These three functions make it easy to communicate with a
coprocess.

The Say function does only one thing: It
takes whatever argument you give it and sends
that argument to the standard input stream of
the coprocess. So if we execute the command

Say "DISK_FREE"

the Say function takes the string DISK_FREE
and writes it to the standard input of the
coprocess.

The GetRep ly function is almost as simple
as the Say function. It does the opposite of the
Say function, reading a line of output from the
coprocess with the read -p command. It stores
the server's reply in the variable answer, then
echoes this answer to the main process' stan
dard output stream. (To make the function
more portable, Get Rep l y makes the variable
answer a local variable by using the typeset
command. See the accompanying article "Us
ing the Typeset Command to Make Korn Shell
Functions Safer" on page 8).

The Wai tFor command, like GetRep ly, uses
the read - p command to read from the
coprocess. In the Wai tFor function, the line

following the read - p command uses the t r
command to delete all characters but letters,
spaces, and the question mark. Then we copy
the result to the variable i n put. If the value in
input matches the string we're looking for,
then Wai tFor returns-otherwise, it continues
to read lines until it finds a match.

We removed some characters from the in
put string to simplify pattern matches. For ex
ample, if a command issues a number as part
of its response and you don't know what
number it will use, you can still use Wai tFor
because it removes the digits. It also removes
extraneous carriage returns from the input.

Using a coprocess
With these handy shell functions, you can eas
ily work with coprocesses. For example, the
client program in the article "Creating Interac
tive Network Programs with Shell Scripts" on
page 3 uses t e l net as a co process to manage
communications over the network. The part of
the client that controls the dialog between the
t e l net coprocess and the main process looks
like this:

Wait until we get the prompt from the remote
#computer, and reply
WaitFor "Identify yourself"
Say "FRED"

#Wait until remote computer asks what we want,
then tell it we want the DISK_FREE
#information, then read the information
WaitFor "What do you want?"
Say "DISK_FREE"
d i s k Free=" 'Get Rep l y ' "

The shell functions make it very clear
what's expected. Using our customized chat
language, we wait for the server to ask us who
we are with the Identify yourself prompt. When
the client receives this prompt, it responds by
"saying" that we are FRED. The server then
asks what we want, and we request the
DISK_USAGE for the host. We then store the
server's reply in the di skFree variable for fu
ture use.

Synchronization
You should be aware of synchronization is
sues when using coprocesses. If you execute a
read -p command to read information from a
coprocess, your main process must wait until
the information becomes available. Similarly,
if the coprocess needs input before it can act, it
will wait for the input. If you're not careful,
you can achieve a deadlock in which each pro
cess is waiting for the other. As always, you
must carefully design your shell scripts to be
tolerant of errors.

Conclusion
Now you' re ready to use coprocesses in your
own shell scripts. You can, if you like, build a
front end for an editor, other shell scripts, etc.
Anytime you have an interactive application
or an application that simply takes a long time
to execute, you can implement it as a coprocess
to let the user retain control of the terminal
and still allow your application to control the
background task. •!•

Using the typeset command to make Korn
shell functions safer

____ .II July 1997

By Al Alexander

If you're in the business of writing Korn shell
functions that you want to make portable,
then you need the typeset command. The

t y p es e t command, used inside a Korn shell
function, makes your function variables local
in scope, so you don't accidentally overwrite
global variables created in other portions of a
Korn shell script.

Discussion
In the Bourne shell and the Korn shell, the
normal process of creating a variable makes
that variable globally available throughout
your entire shell program. As an example, if
you're in a function and you write

USER_NAME="f red"

the variable USER_NAME is created as a global

variable. This means that the contents of the
variable USER_NAME can be changed not only in
your function, but anywhere else in the pro
gram. Even worse, if the variable USER_NAME
existed before your USER_NAME=" f red" state
ment, you just overwrote the value previously
stored in USER_NAME! This has long been a
problem with global variables (in any lan
guage, not just the Bourne and Korn shells).

The solution to this problem, available in
the Korn shell, is to use the types e t command
to make USER_NAME a local variable in your
function. In this way, your function can use a
variable named USER_NAME and manipulate its
value without clobbering a variable used else
where in the program that happens to use the
same variable name. If you're trying to create
reusable functions, the typeset command will
save you many headaches.

Listing A shows a sample Korn shell ap
plication, named typeset. sh, that demon
strates the difference between local and global
variables. If you run this program on your
workstation, the result will be

A:
B:

A was created in MAIN
B was changed in Fune

Both variable names A and B are used in
the main program and in the function Fune.
Because the typeset command makes variable
A local to the function, the value of the A vari
able used in the main program isn't clobbered
when the main program calls Fune, while the
value of Bis destroyed by the function.

Listing A: typeset. sh

#!/bi n/l<sh

function Fune

typeset A
A="A was changed in Fune
B="B was changed in Fune

#---------((MAIN))-------#

#Set up our initial values
A="A was created in MAIN
B="B was created in MAIN ... "

call the sample typeset function
Fune

#print the results
echo "A: SA"
echo "B: SB"

This program demonstrates the difference between local
and global variables.

The typeset command actually has many
features for specifying how a variable acts. But
perhaps its most important behavior is that it
allows you to create a local variable inside a
function. Be sure to read the man page for
typeset to see what other uses it may have in
your shell scripts. •:•

Managing resource-intensive background
processes
Multitasking allows you to squeeze every

bit of utility from your computer. If
you're simply editing a file at your

workstation, you're not asking much of your
computer (unless you're using emacs). Solaris
provides a multitasking environment so you
can run multiple programs at once and accom
plish your work as quickly as possible. While
you're typing away at your E-mail message,

your computer could be analyzing map data,
sorting files, running SPICE, etc.

Sometimes, however, running a large job
in the background makes the system sluggish
enough to be counterproductive. When the
system response is too slow, it prevents you
from working effectively. If the background
job must be done now, you have to live with
it. On the other hand, if you can postpone the

Inside 80/aris •--~

.___ __ II July 1997

job, you can try a couple of things to improve
system performance.

Don't waste the work!
Obviously, one way to speed up the system is
to kill the offending process. For example, if
process 1206 is slowing down your system,
you can kill it like this:

kill -KILL 1206

However, if that process has been plug
ging away for hours, killing it wastes all the
work already done. Once you restart the
process, it'll have to do all that work again.

Make the process play nicely
A better solution is to tell Solaris to give less
time to the process that's slowing down the
system. The ren ice command, shown here, al
lows you to tell Solaris the relative priorities of
processes on your computer:

renice 19 1206

Here we just told Solaris to run process
1206 at a priority of 19. The priority levels
range from -20 (the highest) to 19 (the lowest).
Thus, the ren ice command we just used told
Solaris to give process 1206 as little CPU time
as possible.

If you're a privileged user, you may
specify any priority from -20 to 19, while nor
mal users may only specify values from 0 to
19. Although any user may slow down his or
her own processes, few do. You might want to
educate any users on the system that system
performance will be snappier if they reduce
the priority of any processes running in the
background. However, often it's up to you to
lower the priority of any processes that cause
the system to be sluggish.

Just get it over with
Sometimes, if the job is important or time
critical, it's better to just get it over with. You
can either continue to work while the system is
sluggish, or you can bite the bullet and finish
the job as quickly as possible. To do so, you
could ren ice the process to a higher priority.
Sure, the system will become even more slug
gish, but the sooner it quits, the sooner every
thing gets back to normal.

Alternatively, you could stop any unneces
sary tasks, raise the offending process' priority,

and advise everyone to take a long lunch.
Once the process finishes, you can restart the
other tasks, and everything should return to
normal.

Be careful when you increase the priority
of the task. If you increase the priority too
much, you can make the system unusable for
everyone.

Stopping and restarting
Here's a handy trick for your toolbox: You can
stop and start processes with the SIGSTOP
and SIGCONT signals. So if the process that's
making your system sluggish can wait until
the evening to run, you can just stop it and
start it again before you leave for the day. To
stop the process, you use the k i l l command,
like this:

kill -STOP 1206

Later, when you want the process to continue,
just restart it like this:

kill -CONT 1206

This technique allows you to keep the
work that the process has already done. Since
the process is stopped, as other processes need
RAM, the process will be swapped to disk.
This is the major drawback to this technique:
You're tying up swap space that other pro
cesses could use. As long as you don't run out
of swap space, it's not a problem. However,
when you run out, Solaris will start killing
processes. Unfortunately, it may kill the one
you' re trying to defer.

Please note that you must remember to re
start the process, or the process' owner will
have to wait even longer for the results. Rather
than trust your memory to restart the process,
use the a t command to tell Solaris to restart
the job. You can do so like this:

at 1800
at> kill -CONT 1206
at> [CtrllD <EOF>
warning: commands will be executed with /bin/sh
job 861400800a.a at Fri Apr 18 18:00:00 1997

Now you can rest assured that the job will
restart, unless Solaris kills it because the sys
tem ran out of swap space. Fortunately, the at
command sends you E-mail with the results of
your command. Be sure to check your mail be
fore you leave, so you can see if the process re
started successfully. If not, you must resubmit
the job or tell the process' owner to do so.

Which jobs are slowing you down?
Of course, in order to manage processes
that are slowing down your system, you
must identify them. Quite often, you'll al
ready know which ones they are. If you
have a good suspicion as to which process
is currently bogging you down, you can
help confirm it by using the p s - e f com
mand to check the time that the process
started.

The easiest way to identify the jobs that
are slowing down your system is to use the
top command. This command doesn't come
with Solaris, but you can find the source code,
as well as precompiled versions, from many
sources on the Internet.

Normally, you'll find that the jobs that
slow you down are memory-intensive rather
than CPU-intensive. Most slowdowns that
we've experienced are related to the amount
of disk I/0 the process causes.

Summary
While it's true that multitasking allows you to
get the most work out of your computer per unit
time, sometimes the performance degradation of
some processes actually lowers your produc
tivity. In cases like this, you can use the ren ice
command to tell Solaris to not work so hard on
a particular process. If that doesn't work, you
can stop the job during the peak load, then re
start it later at a more convenient time. •!•

Rnd your tiles without interference
Have you ever tried to use f i n d to locate a

specific file? Of course you have! Since
f i n d can take a long time-especially on

a large network with lots of disk space-you
probably opened a terminal window while
find was running and got to work on another
part of your project.

You may not have found the file on your
first attempt. Unless you have permission to
enter every directory on all the file systems,
your terminal buffer may have been filled
with error messages telling you where the
f i n d command couldn't look, like this:

find I -name hello.c -print
find: cannot read dir /lost+found: Permission
•denied
/tmp/hello.c
find: cannot read dir /usr/lost+found:
•Permission denied

• • •

The file you were looking for may have
scrolled off the top of the screen, perhaps far
enough to be unrecoverable through the ter
minal's scroll-back buffer, if it has one. (In our
test, after finding /tmp/hello.c, f i n d printed 58
error messages.)

Getting rid of the error messages
Why does the f i n d command tell you it can't
examine specific directories? It does so to in-

form you that even if it doesn't find the file
you're searching for, the file may exist some
where on the system. For many purposes, how
ever, if you can't locate the file in directories
where you have permission, then it may as
well not exist. In cases like these, you may not
want all those error messages on your screen.

How can we prevent all these error mes
sages, so we can see the information we want?
Since the f i n d command sends these error
messages to the error stream, one way to do so
is to redirect the standard error stream to /dev/
null so that the error messages are discarded.
This leaves you with just the information you
want: the location of your file, if it exists.

When you read the article "How Does I/ 0
Redirection Work?" on page 12, you'll see
that you can discard the error output for the
Bourne and Korn shells, leaving only the in
formation you want, like this:

find I -name hello.c -print 2>/dev/null
/tmp/hello.c

You can also separate the standard output and
standard error streams in the C shell, albeit
not as nicely.

Separating the wheat from the chan
However, we can take another approach-one
that works in all shells. What do we want? We
want the output to the program. We don't

really care about discarding the error mes
sages, we just don't want them in our way,
and we don't want them causing the desired
information to scroll out of the terminal
buffer.

For this trick, we simply let the error mes
sages print to the terminal, and we'll print the
program output at the end, after all the error
messages. This way, all the information we
want is easy to access, and we don't have to
worry about an excessive quantity of error
messages scrolling the data off the screen.

We can do this by piping the standard
output stream of the f i n d command (or other
command) through one of the filter com
mands, like cat or more. (We typically use the
more filter, and we suggest that you do so as
well, because if the command generates more
than one screenful of data, you'll probably
want to page through it anyway.) Thus, our
f i n d command now looks like this:

find I -name hello.c -print I more
find: cannot read dir /lost+found: Permission denied
find: cannot read dir /usr/lost+found: Permission denied

• • •
/tmp/hello.c

This works because both the find com
mand and the more command want access to
your terminal. Since f i n d is first in the pipe
line, it gets the terminal first. The more com
mand, meanwhile, is collecting the output of
the f i n d command. Only after the f i n d com
mand ends and releases the terminal does
more get to use the terminal to display its
data, the data you wanted, after all the error
messages.

wrapping it up
If you're always running from terminal to
terminal helping your users, you'll probably
want to use the latter trick. This way, you
won't have to see what shell the user is run
ning to know the syntax for redirecting the
standard error stream. However, if you're al
ways at your own terminal, redirecting the
standard error stream is sometimes the fastest
way to get the job done, because displaying
to the terminal can be a slow process. If the
command you're executing generates a huge
amount of error text compared with a small
amount of data, all the time spent writing to
the terminal is wasted. •:•

How does 110 redirection work?

~--m July 1997

If you've been using Solaris, or any other
version of UNIX, for any length of time,
you've encountered I/O redirection in one

form or another. But have you wondered how
it works? In this article, we'll show you the
underpinnings of I/ 0 redirection and piping,
so you can take advantage of these features to
build pipelines to perform complex tasks.

Standard streams
The concept that UNIX commands follow to
maximize their flexibility is that of standard
streams. Whenever you run a command, UNIX
provides three standard I/ 0 streams to the
command: The command reads any input it
needs from the standard input stream, writes
its results to the standard output stream, and
writes any error messages to the standard error
stream.

One of the greatest features of UNIX is
that the command you execute doesn't set up
these streams, rather, the program that starts

the command does. (Usually, this is the shell
you're using.) Since the calling program,
rather than the command, sets up the standard
I/ 0 streams, every command must agree on
the order and meaning of each stream.

Normally, when you execute a command
from your shell, the shell opens an input
stream from your terminal and two output
streams to your terminal. These streams are
passed to the command as its standard input,
output, and error streams.

If the program reads input, by convention
it's supposed to read it from the standard in
put stream. Similarly, if it provides output
(and what command doesn't?), it writes it to
the standard output stream, and if it encoun
ters any errors, it's supposed to write them to
the standard error stream.

So in typical use, when you type a com
mand at the console, like this

ls
hello. c a.out mal<ef i le

the l s command doesn't know which terminal
to write its results to. It simply writes them to
the stream provided by your shell.

If your shell wanted to, it could send the
output of the ls command to a different loca
tion. It can do so without the ls command
knowing about it. In fact, your shell has two
special characters, <and >,that tell it to over
ride the normal settings for the standard input
and standard output streams.

The < symbol tells the shell to use the next
word as the name of a file to open and use as
the input stream. Similarly, the > symbol tells
the shell to use the next word as the name of a
file to open and use as the output stream. For
example, the command line

ls <hello.c >goodbye

tells the shell to open the file named hello.c and
use it as the standard input stream, open the
file named goodbye and use it as the standard
output stream, and run the ls command with
these streams. (Please note: Since we didn't
override the definition of the error stream,
any errors will still appear on your terminal
screen.) The order doesn't matter. This com
mand line has the exact same result:

ls >goodbye <hello.c

If the input file doesn't exist, your shell
will issue an error telling you so. If the output
file doesn't exist, the shell will automatically
create it.

The cat command
The cat command is probably the simplest
command in Solaris. It simply reads a line
from the standard input stream and writes
that same line to the standard output stream.
It continues to do this until it reaches the end
of the standard input stream. Here, we run the
cat command and type two lines:

cat
now is the time for all good men to come
now is the time for all good men to come
to the aid of their party.
to the aid of the i r party.

Then we tell ca t to stop by sending the
end-of-file command (normally [Ctrl]D). By
redirecting the standard input of the cat com
mand, we can type the contents of a file, like
this:

cat <hello.c
#include <stdio.h>
i n t ma i n (i n t , ch a r **)

{ printf("Hello, world!\n");

Similarly, we can create a file by redirecting
the output of cat, like this:

cat >junk
now is the time for all good men to come
to the aid of their party.

We can even copy files using cat, just by redi
recting both the input and output streams:

cat <hello .c >goodbye.c

Command pipelines
Now let's move on to command pipelines.
Often, you can send the output of one com
mand through another command to perform a
more complex task. Suppose, for example, that
you wanted to know the number of processes
running on your computer. Using I/0 redirec
tion, you can use the following two statements
to do so:

ps -ef >tempFi le
wc -l <tempFi le
41

Here, we use the p s command to create a list
of all the processes, one per line, and put them
in tempFile. Next, we count the number of lines
in tempFile with the wc command to get our
result, 41.

This method is a bit clunky. We get the
results we want, but we now have a useless
file that we need to remove, tempFile, clutter
ing up our directory. If we're going to string
more commands together, we must create
more temporary files. Even worse, if we hap
pen to be in a directory where we don't have
write privileges, the shell will complain to us
that it can't create tempFile.

The shell provides a much better way to
string commands together to form a pipeline.
We can use a vertical bar to separate the com
mands and omit the other I/ 0 redirection
clauses, like this:

p s -e f I wc - l

The shell breaks the command line into
two pieces at the vertical bar. Then it opens a
special temporary file as the standard output
of the p s command and opens that same file
as input for the wc command. It gives you

Inside Solar/B m __ ~

.___ ___ Ill July 1ee1

basically the same thing, but it automatically
manages the temporary files for you! The spe
cial temporary files aren't stored in your cur
rent directory, so even if you have no write
privileges in the current directory, you can
pipe commands together with the vertical bar.

One nifty thing about a pipeline is that
Solaris runs the commands at the same time. It
doesn't wait for the p s command to complete
before starting wc; it starts them both at once. As
the p s command outputs each line, the wc com
mand can read it. This helps Solaris keep the
temporary file size small because after wc reads
a line, that line no longer needs to be stored.
That's another advantage of pipelining
Solaris can keep the temporary file in memory,
rather than writing it to disk, so the pipeline
may execute faster. (We say may rather than
will because if you do it the hard way, and
your temporary file is short, the temporary file
may be buffered in RAM anyway.)

Redirecting the standard
error stream
Earlier, we discussed the three streams but
only described how to redirect standard input
and output. We put off the discussion of redi
recting the standard error stream because it
doesn't operate the same way for all the shells.
If you' re using the Bourne or Korn shell, you
can redirect the standard error stream by us
ing the 2> operator.

find I -name hello.c -print 2>/dev/null

The 2> tells the Korn shell that you want to
redirect stream 2 (the standard error stream),
and /dev/null is where you want it to go-the
bit bucket, in this case.

Never againl
Our response to Jonathan Gripshover's

question in the April issue was clearly
incorrect. After searching the Web, reading
Sun's documentation, and even asking an en
gineer at Sun, we came to the conclusion that
you can't change the icon and title text for an
xterm window. Several readers not only came
forward with the escape codes that Jonathan
wanted, but they provided references, sample
code, and other useful tips as well!

However, if your favorite shell happens to
be the C shell, you're in for a disappointment:
The C shell uses the>& operator to redirect the
standard error and output streams to the speci
fied location. It doesn't allow you to redirect
the standard error stream independently of thE
standard output stream. You can, however,
trick the C shell into doing some of what you
want, like this:

Ringo% (find I -name hello.c >/tmp/x) >&/dev/null

Here, we execute the f i n d command with
in a parenthesis. This tells the shell to run
everything inside the parenthesis as a single
command. So the shell redirects the output of
the f i n d command to a temporary file. Then
outside the parenthesis, the C shell redirects
whatever output is left to the bit bucket. The
shortcomings of this are that you don't get the
desired output on the console and you're cre
ating a temporary file. So, to see the results,
you must display the temporary file, then de
lete it:

Ringo% cat x
/export/home/marco/hello.c
Ringo% rm /tmp/x

Summary
I/ 0 redirection and piping are powerful con
cepts. I/O redirection allows you to change tht:
behavior of your programs and shell scripts
without having to modify them. Piping builds
on the base of I/ 0 redirection to give you the
ability to string chains of commands together
to perform useful tasks.

For even more information about piping
and I/ 0 redirection, be sure to read the man
page for sh, ksh, and csh. •:•

Scott Gorton pointed out that you can find
a table of xterm escape sequences in Appendix
E of O'Reilly and Associates' X Windows
System User's Guide (Motif edition).

Gary Andresen also responded. We said
that there are no escape codes for xterm win
dows, but he knows there are from his days as
an Xl 1 programmer back in the Xl 1R3 and
Xl 1R4 days. (See the article on page 15 based
on his letter.)

Table A shows the escape codes you can
use to set the window's icon name and title to
the specified text. Please note that "[(in blue)
represent the [Esc] character, and "G (also in
blue) represents the [Ctrl]G character.

So we can change a window's title to the
string Hello by typing the following command:
echo ""]0;Hello"G"

(This will work in the Korn, Bourne, and C
shells. In the bash shell, however, you must
type [Ctrl]V before the [Esc] and "G charac
ters. Other shells may behave differently.)

Table A
"[] 0; text "G Set window's icon name and title to text.
" [] 1 ; text "G Set window's icon name to text.
"[] 2; text "G Set window's title to text.
These are the Set Text Parameters escape codes for the xterm window.

Some readers may recognize these escape
sequences: They're the same ones that dtterm
uses. It turns out that not only do the escape
sequences exist, but they're ones we're already
familiar with! •!•

Put your current directory in your window title
This is the rest of Gary's letter that we referred to
in the previous section.

One of the ways I use the title bar of the
xterm window is to print a simple prompt

at the command line and print the full work
ing directory on the title bar. This way, if
you're 10 levels deep in a directory structure,
your prompt is just 10 characters or so (your
mileage may vary), but you can read the en
tire working directory string on the title bar!

Here [in Listing A] is part of my .profile
file for ksh to set up the window title so it
changes whenever I change directories.

Gary Andresen
Andresen Consulting Services

gary .andresen@qiclab .sen. rain .com

Gary's use of the window's title bar dem
onstrates several great tricks above and be
yond keeping the current path available and
out of the way. First, Gary's code had to take
over the e d command, so you can change the
window title when you change directories. He
solved this problem by creating a function
called eds that executes theed command with
the parameters passed to it, then evaluates the
stripe and edprompt aliases, which update the
window title and prompt, accordingly:

#Function to change directory & update title
eds () { "cd" S.; eval stripe; eval cdprompt;

However, most of us are accustomed to typ
ing ed rather than eds to change to a different

Listing A: section of .profile

#Additions to .profile to change the xterm
#title to the current working directory

#Shell function to set the window title
label () { print -n S{wTTLpre}S•S{wTTLpost};

#Alias to set my prompt
alias cdprompt='PROMPT:"SUSER> "; export PROMPT; PS1=SPROMPT'

#Set the window title to user, host and directory
alias stripe=' label SUSER SHOSTNAME - SPWD'

#Function to change directory & update title
eds () { "cd" S.; eval stripe; eval cdprompt;

#Alias: use 'eds' function when you type 'cd'
alias cd=cds

#Set up initial terminal environment
case STERM
in

xterm:dtterm)
#For xterm or dtterm, put path in title
wTTLpre="\033]2;"
wTTLpost="\007"

sun-cmd)
#Do the same for a sun-cmd window
wTTLpre=" \033] l"
wTTLpost="\033\\"

#For other terminals, just print the path
wTTLpre="\012"
wTTLpost="\012"

esac

eval stripe
PS1:SPROMPT
export TERM
stty sane

Inside 80/ar/1 m, __ ~

SunSoft Technical Support

(800) 786-7638

PERIODICALS MAIL

Please include account number from label with any correspondence.

directory. If Gary left it at that, the trick would
be interesting but unreliable: Whenever some
one accidentally used c d instead of c d s, the
window title would be wrong.

Gary overcame that problem with another
trick: He created an alias for the cd command
that invokes the eds alias:

#Alias to use 'eds' function when you type 'cd'
alias cd=cds

And again, with zsh!
Another reader also responded with a similar trick.
However, rather than use the Korn shell, James
Clough uses zsh. Thus, he gets the same result by
going in a different direction.

On the back page of the April 1997 issue of
Inside Solaris, you conclude that xterm

"supports no escape sequences outside of the
VT102 and Tektronix set." Unfortunately,
your search didn't extend to the "Xterm Con
trol Sequences" document in the xc/doc/specs/
xterm directory of the Xl 1 distribution, avail
able from ftp.x.org and its many mirrors.

n July1997

Personally, I make use of xterm's title bar
with the following z sh functions:

function title
{
#Put path or parameter string on the title bar
if ["$#" -gt 0]; then

newTitle='echo S•'
else

newTi tle="'hostname': 'echo SPWD"'
f i

case STERM in
xterm•ldtterm•)

esac

#Change title of terminal window
echo""[]2;SnewTitle"["

#Some terminals don't have a title bar

unset newTitle strlen
}

chpwd()
{

Isn't that a problem? If your alias calls the
eds function, which executes cd, which calls
the eds function, etc., how does it ever stop? In
order to prevent an infinite loop, he told the
c d s function not to use the alias, by quoting
the cd command! Thus, when you type cd, the
alias for c d tells the shell to execute the c d s
function, which then executes the real cd com
mand. Then the eds function updates the com
mand prompt and window title and exits.

[[SPWD = SHOME 11 I I ls -AFClhead -6;title
}

The z sh shell automatically calls function
chpwd every time you cd, pushd, or otherwise
change directories. The chpwd function, above,
lists the first few files in that directory, then
calls tit le to update the window. You may
also call the t i t le function with arguments to
display those on the title bar.

While I'm writing to you, anyone who
read "A Simple Way to Find Files Faster,"
also in the April issue, may be interested
in the GNU locate utility (in the GNU
f i n du t i ls package, which you can find on
prep.ai.mit.edu and mirrors). It provides an
upda tedb program to run as a cron job and
locate to search the resulting database.

James Clough
clough@mpdserver.ntc.nokia.COM

Here, James uses the title bar in much the
same way Gary does. However, he's using a
different shell: zsh. One feature of this shell is
that it automatically executes the ch pwd func
tion whenever you change the path. So all
James had to do was decide what he wanted.
In his case, he wants to display the first six
lines of the directory he changes to, unless it's
his home directory. He also changes the win
dow title to display the current path. There's
more than one way to skin a cat! •:•

Printed in the USA
This journal is printed on recyclable paper.

