
II

. . I',·

Jn· this" issue.. · · · · _. .·: ~
• • ' ~. ..I

'• 4 .. ' ' .. • >" ~.:::· ::._~/f •r

1
Setting up virtual
Netscape Web servers

4
Packaging groups of files
for distribution
8
Execute large jobs during
the quiet times on your
system

10
An introduction to Perl

14
Using associative arrays
in Perl

18
Summertime ... in the dead
of winter

18
Revisiting the xterm
title bar

http://www.cobb.com/ sun/

January 1997 • $11.50
VOL. 3 NO. 1

JtqYitJS~rs of SunSoft Solaris

Setting up virtual Netscape Web
servers
By Jerry L. M. Phillips, M.S.

Virtual-serving is a technique
that allows multiple virtual

servers to function as separate
entities on a single UNIX server.
Each virtual server can provide one
or more virtual services, such as
WWW and ftp, that are specific to
that virtual server. Thus, one ma
chine can appear to operate as
several different machines running
entirely different server applica
tions. In this article, we'll describe
the implementation of virtual World
Wide Web servers on a Solaris 2.4
platform, using Netscape Communi
cations Server, vl.1.

DNS configuration
Netscape distinguishes between a
physical server that corresponds to
the physical interface on your UNIX
server and virtual servers that cor
respond to virtual interfaces on
your UNIX server. We'll use that
naming convention throughout
this article.

In our example, we'll configure
two Web servers on one UNIX ser
ver. For the first step, make an
entry in your domain name server
(DNS) for your physical server, fol
lowed by an entry for your virtual
server. For our example, we've
entered www.physical.com as the
fully qualified domain name and
157.21.201.1 as the IP address of the
physical server. Then, we entered

www.virtual.com and 157.21.201.2 for
the virtual server. Please note that
you can add multiple virtual ser
vers, but in this example, we're only
adding one. Next, confirm that
n s l o o k up can detect both entries
before proceeding. (Note that while
we're using two different domain
names, both IP addresses are from
the same class B license.)

Virtual interlace
configuration
Normally, when you install Solaris,
you tell it the network address that
it responds to. For the purposes of
our example, we originally config
ured the machine whose name is
physical and told it that it's part of
the .com domain, with an IP ad
dress of 157.21.201.1.

Just to verify our network setup,
let's use the if con fig command to
display the network configuration
of physical.com. To do so, just enter
the i f con f i g - a command, as
shown in Figure A on page 2.

As you can see, physical cur
rently has two network interface
drivers. The first, loO, is the loopback
address that doesn't correspond to
any hardware. The second, leO, rep
resents the Ethernet card. You can
see its IP address (157.21.201.1) and
Ethernet address (8:0:20:59:a4:6c) .

Now here's the tricky part:
We' re going to tell the leO driver
to answer to another IP address,

A Publication of The Cobb Group

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief.... (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris @merlin.cobb.zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander

Jerry L. M. Phillips
Production Artists Margueriete Winburn

Liz Palmer
Editor Karen S. Shields
Publications Coordinator Linda Recktenwald
Marketing Coordinator Marcella Able
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Postmaster
Periodicals postage paid in Louisville , KY.
Postmaster: Send address changes to :

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1997, The Cobb Group. All rights reserved. Inside Salaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right , with respect to submissions, to revise ,
republish , and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Publishing Company. Inside Salaris is a trademark of Ziff
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall,
OpenBoot, OpenWindows, DeskSet, ONC, and NFS are trade
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade
marks or registered trademarks of their respective holders.

II January 1997

Figure A

lo0:f lags=849<UP,LOOPBACK,RUNNING, MULTICAST> mtu 8232
inet 127 .0.0.1 netmask ff000000

le0 : f lags=863<UP,BROADCAST, NOTRAILERS,RUNNING, MULTICAST> mtu 1500
inet 157.21.201.1 netmask ffffff00 broadcast 157.21.201.255
ether 8:0 :20:59 :a4:6c

The if cont i g -a command shows the status of all your network interfaces.

while keeping its old one. This way,
you can communicate with the com
puter at two different addresses!
This is the heart of the virtual-server
technique.

To configure the second IP
address, which will represent your
virtual server, use the following
command:

ifconfig le0:1 157.21.201.2
-.netmask 255.255.255.0 up

This tells the i f con f i g command
to add a new logical IP address to
the same card controlled by leO and
calls it leO:l. Once you've set up
your new IP address, you can verify
your entry by again entering the
i f con f i g - a command. Solaris can
accommodate up to 255 logical units
per network interface, e.g., leO:l,
le0:2, le0:3, etc. Conceivably, you
could set up 255 virtual servers on
one network interface card with
255 different IP addresses.

Before proceeding, confirm that
you can pi n g the physical and
virtual servers and that the IP
addresses match the ones you put
in the DNS. Be sure to pi n g the
physical and virtual servers from
another machine: pinging the
virtual server from the machine
that hosts it doesn't prove
anything.

Please note that you'll need to
start your logical interface each time
you start Solaris. To do so, you'll
want to put this command in a
startup script. We'll discuss this in
the Cleanup section.

Netscape installation
Here, we assume that you have some
familiarity with the installation of
Netscape server products. Unfor-

tunately, if you've already installed
Netscape Communications Server
as a physical server-only config
uration, you'll have to reinstall it.

Physical-server configuration
Begin by installing the physical
server. Don't install the virtual
server first! You must install the
administrative server during
the first server installation for
this technique to succeed. Issue
the command n s-se t up. Type
www.physical.com in response
to the Full Name: prompt and
specify the location of your
Netscape client in response to
the Network Navigator: prompt.

The Server Configuration Form
contains three critical entries. Enter
www.physical.com as the Server
Name and 157.21.201.1 as the Bind
Address, as shown in Figure B.

Set the Server Location using
/export/home/www/ns-home, as
shown in Figure C. Server Location
represents the installation point for
the Netscape Communications
Server software.

There is one critical entry in the
Document Configuration Form.
Enter /export/home/www/ns-home/
physical as the Document Root for
the physical server, as shown in
Figure D . This is your directory for
all documents relating to the physi
cal server. When we set up virtual
servers, each will have its own
Document Root directory, so the
default Web page for each server
will be different.

Complete the Administrative
Configuration Form at this time to
suit your taste. Confirm that your
physical server and administrative
server are running. Then shut
down both servers.

Figure B
~---··™NiitScape: Server Con lgul"3tion Form

Server Name
Your server wfll use the name you give your server here as the centrol Untrorm Resource
Locator (URL) when users access your home page. A11 example URL ls the URL !or the
home page of Netscape Communlcattons, http: //home. net scape. cont/. The
server name it built trom our domain ntune, nets capt> . com, and the ncme of our
server, home. Be sure ta Include your domain nome as well as the machine name.

Your system admln!Jtratormayhave altt.adysetup aDNS al!asloryour scrversuch as
www. subdoma in . dom. Lt this ls the case, then you should use that alias here. If not you
should use the machine's n811le CA>mblned with your domain as the name.

For exemple, ityourmachlnewas named ser ver, and you were part of the domoln
acm.9. com, you would use the server name server. acme. com.

1:.r..w.physical. co111

IP ad<lresi$ for server
At times it may be desirable fur your woritsta!lon ta answer to t.wc URLs. For example,
you may want ta serve both http://.,,.,...., . a. col1!/ and http; //"1WW. b. col1!/
trom one machine. Due to l!m!tattons in the HTTP protoco~ thls lJ dil!ic:ult There ls one
trlc.k to do this, however, which involves causing your machine to think it must answer to
more than one IP address. This trlc.k only woriu on certain systemt

If y<1u have alret.dy set up your system to listen to multiple IP addresses anll want to use
this feature. you must tell thls lnstallllt!cn cf the server which fP oddress it belongs to.

Bind address:

Server Port
The machine your scrver runs on hos a number of po'lt.t that the machine uses to
dilfcrcnttatc requests using dlllcrtnt protocolJ. Just as the standard Telnet port n\lmber lJ
23,thestandardHTTP portn\lmberls fKJ, and the standard HTTPS portls443. You can
choose anyportnumbertrom l tv6553S - butyoushouldbecartful wblchn\lmberyou
pick:

This part of the Server Configuration Form allows you to
set the server name and bind address for the server.

Virtual-server conliguration
Restart n s - setup to install your virtual server.
Type www.virtual.com in response to the Full
Name: prompt and specify the location of your
Netscape client in response to the Network
Navigator: prompt.

For this server, we're going to use our virtu
al server name and IP address. In the Server
Configuration Form, enter www.virtual.com as
the Server Name and 157.21 .201.2 as the Bind
Address. Go ahead and set the Server Location
again using /export/home/www/ns-home, just as
before.

Now we must provide an alternate Docu
ment Root for the new virtual server. To do so,
use /export/home/www/ns-home/virtual as the
Document Root for your virtual server. This is
your directory for all documents relating to
the virtual server.

Don't redo the Administrative Configura
tion Form following installation of a virtual
server. That step is necessary only during in
stallation of the physical server.

Finally, confirm that your virtual server
runs correctly. Restart your physical server
and confirm that both servers can access each
other. Then restart the.administrative server

Figure c

Ge To: j http : //ww physical . can 30 !9 l/http:l-insta.ll/bln/•erver

~~-~11e1D1r.-,l-·I
~~~~·~~~-:--:::-~-:-==::" ! 

Server Location 
This dircct<>ry will contain the Netscape scrver you arc about to lnstall, the Netscape 
admin!strattve scrver, and all the assorted supporting things your server will need. Its 
binaries will be instlilledin a subdirectory, and Its cocfigux-atlon will be placed in another 
subdircct<>ry. 

ltycu arc planning tv !'Im two servers (on d!Ucrcnt ports, or on different IP addresses) you 
should SPcdfy the same server location fur both of them. The installer wfll =gnlze this, 
and aeate a new CA>n!!guratton directory for the second scrver, allowing them to share 
binaries. 

Examples: 

o /usr/ns-home 
o}var,lns-home 
o /usr/netscape-scrver 

S8XV8I Location: 1}ezport/home/"1WW/ns-home 

Server User 
While running. the scrver should only have restricted access to your system resources. 
Although you may have ta start the server as root, you probably don't want it to be root all 
the time. The scrver will nut:cmattcally change its usemame to the Unix user you specify 
hereafter startup. 

Many times, thereis eln:adyausernamednobodythatls designedtorcxacllyth!s 
purpose. How ever. on some systems, nobody ls not a valid user. In that case, you should 
create.anew Unix user for the server. If you arc unfamiliar with creating Unix users, you 
should CA>nsu!t your system administrator or your system's manual. 

S8XV8I Qser: 

Numberot~ 
The server creates a number of processes on your server machine when it starts up. These 
processes take turns answcrlnR rc<1Uests. You can set the nwnbcr of processes to achieve 

.~ ~~ 

The Server Location specifies the location of all the 
server support files. 

Figure o 
Document Root 

By ere.attn& a root dlrcctory !or all of your documents, you can keep al! your documents in 
one location and let the server handle the URLs. This way, any incoming request for • 
document automllt!cally gets redirected tv the document root din:ciory you n811le here. Full 
Ille system pathnames arc not used and are not diSPlayed on any network navigator. This 
keeps your file system sate trom outsiders who won't be able to got any !nfurmat!on about 
the rest of your system. 

Using a centrol docummt root dlrectnry also letS you move your dccwncnts to a larger disk 
as your ser"1ce l!J'lWS and expands, without having to change your URLs. The !nstal!er 
creates this dlrectnry if ll does not already exist 

Examples: 

o /usr/ns-docs 
o /usr/btml-docs 
o/usr/content 
o,lns-pages 

Docu11l8nt Root: j te:<port/home/1'1'.JW/ns-home/physicaJl 

The Document Root specifies the home directory on your 
WWW server. 

and confirm that it sees both the physical and 
virtual servers. 

Adding more virtual servers 
You can create additional virtual servers by 
following these steps: 

1. Add an appropriate entry to your DNS for 
the new virtual server. 

2. Configure a new virtual interface on your 
network interface. 

Inside Solaris II __ _ 



3. Configure the virtual server using 
n s - setup. Remember to specify a different 
Server Name, Bind Address, and Docu
ment Root for the server. 

Cautions 
Be careful starting and stopping Netscape Com
munications Server daemons from within 
OpenLook. If you start one of the daemons 
within OpenLook, be sure to shut it down 
before exiting OpenLook. Otherwise, you 
won't see the command prompt and will have 
to issue a [Stop]+A to reboot your server. 

Earlier, we mentioned that you can add 
up to 255 logical units on your network 
interface. Though it's certainly possible to 
add many units, you shouldn't do so. The 
more logical units you add to an interface, the 
slower the system gets at processing packets. 
For a small number of virtual interfaces, or a 
small network load, it's an insignificant 
overhead cost. However, for a large number 
of logical units and a large network load, the 
overhead can be substantial, and you can 
incur long delays processing packets. 

Cleanup 
Our example leaves you with two directory 
structures containing shell scripts and log 
files for the physical and virtual servers, i.e., 

·' ... ~ ' ~ - ' . 
. ' 

CREATING PACKAGES 

/export/home/www/ns-home/httpd-80.157.21. 
201.1 and /export/home/www/ns-home/httpd-
80 .157.21 .201.2. 

You can use the individual shell scripts to 
automate startup and shutdown processes on 
your UNIX server. Copy the contents of the start 
scripts for both servers into a startup script called 
/etc/rc2.d/S99www. Don't forget to include in the 
startup script the command line (the if con fig 
command) that configures each virtual interface 
that you want to use. Likewise, copy the con
tents of the stop scripts for both servers into a 
shutdown script called /etc/rc2.d/K99www. 

Conclusion 
Armed with this information, you should be 
able to create virtual WWW servers on your 
machine(s) with the Netscape Communi
cations Server. For further information, you 
may want to examine the following WWW 
pages: help.netscape.com/kb/server/960513-
83.html, www.LANcomp.com/MultipleDomains/, 
and www.thesphere.com/~dip/TwoServers/. •:• 

Jerry L. M. Phillips, M.S., is Director of the 
Academic Computer Center at Eastern Virginia 
Medical School. Besides his administrative du
ties, he manages Sun/Solaris-based platforms for 
the medical school, including DNS, WWW, 
anonymous ftp, and Usenet News servers. 

Packaging groups of files for distribution 

I don't know about you, but one of the things 
I like about Christmas is all the pretty 
packages. In a different way, that's one of 

the things I like about professionally produced 
software. I know that it will arrive all dressed 
up in a nice package. I won't have to struggle 
to install it. I can simply use the pkg add com
mand to install the software. 

If you're like me, you've probably wondered 
how those packages are put together. You've 
tried to gain some insight by reading the man 
pages on the p Kg add command. Again, if you' re 
like me, you may have even wanted to give 
up in disgust, looking for a better way to 
create a package. 

While the man pages aren't very clear, it 
gets much easier if you examine a package 
and watch it being produced. It turns out that 

--~-• January 1997 

if you take apart someone else's package, then 
read the man pages a couple of times, it's poss
ible to create your own package. However, in 
this article, I'm going to save you all that trou
ble. I'll show you a step-by-step procedure 
you can use to create a package. Once you see 
it, it's easy to make your own packages. 

Create a clean directory structure 
In order to make your packages as easy to use 
as possible, you should use a standardized 
directory structure. For example, many pack
ages install themselves into the /opt directory, 
placing executable files in the /opt/bin direc
tory, man pages in /opt/man, etc. 

Using a standardized directory structure 
helps keep the end user's machine clean and 



allows the end user to predict where your files 
are going. It also helps you and your end users 
when you uninstall the package. 

When you install many of the GNU tools, 
you'll notice that they have a directory hierarchy 
like the one shown in Figure A The executables 
are in the bin branch, the man pages (which GNU is 
using less and less) in man, the information pages 
in info, the libraries in lib, the source code in src 
and include, and other documentation in doc. 

Figure A 

Many GNU tools use a directory hierarchy like this one. 

When you create your package, you don't 
want to get your data confused with the data 
in other packages you've installed or are de
veloping. So, you'll want to create your own 
directory hierarchy with the files you want to 
package. 

You can do this by explicitly creating a 
base directory for your package, then creating 
the branch directories. Next, populate your di
rectories with the files you want to package. 

For our example, let' s create a base di
rectory named pkgBase, with the branches bin 
and man. Please note that we create a manl 
branch in man so we can place our man page in 
the correct location: 

# mkdir /pkgBase 
# mkdir /pkgBase/bin 
# mkdir /pkgBase/man 
# mkdir /pkgBase/man1 

Now, let's populate the directory with the 
files we wish to package. Since we're just 

doing an example, our package won't contain 
anything very interesting. We'll just put the 
head and ta i l programs and their man pages in 
our package: 

# cp /usr/bin/head /pkgBase/bin 
# cp /usr/man/man1/head. 1 /pkgBase/man/man1 
# cp /usr/bin/tai l /pkgBase/bin 
# cp /usr/man/man1/tail .1 /pkgBase/man/man1 

Finally, look at your directory hierarchy 
to ensure that it contains all the correct di
rectory entries and files: 

# ls -R /pkgBase 
/pkgBase: 
bin man 

/pkgBase/bin: 
head tail 

/pkgBase/man: 
man1 

/pkgBase/man/man1: 
head.1 tail.1 

Create the prototype file 
Now that we've created our directory hier
archy and loaded it with the files we want to 
package, we can start creating our package. 
First, go to the root of your package's base 
directory, /pkgBase in this case: 

# cd /pkgBase 

Next, we'll use the pkg pro to command to 
generate a prototype file for our package. This 
prototype file simply lists the files and direc
tories, along with their desired owner and 
group IDs and permissions: 

# find . I pkgproto >prototype 

The find command locates all file and 
directory names in your base directory and 
all branches and sends their names to the 
pkgproto command. The pkgproto command 
then reads each entry and transforms it into 
the syntax required by the pkgmk command. 
The result of running this command is as 
follows: 

none man 0755 root other 
none man/man1 0755 root other 
none man/man1 /tail .1 0444 root other 
none man/man1/head. 1 0444 root other 
none bin 0755 root other 
none bin/tail 0555 root other 
none bin/head 0555 root other 

Inside Solaris II 



PKG 

NAME 

ARCH 
VERSION 
CATEGORY 

BASED IR 

Each line beginning with a d describes a 
directory that's in the package, and each line 
starting with an f describes a file. The third 
column lists the name of the file or directory. 
The fourth column tells which permissions the 
file or directory should have, and the last two 
columns tell us the user and group ID of the 
file or directory. 

In order to make the package as portable 
as possible, you don't want to have unknown 
user and group IDs for your files and direc
tories. You also don't really want to use root 
and other as shown above. You should 
modify the user and group IDs to bin and bin 
respectively. You can create and edit this file 
with the command 

# find. I pkgproto I awk '{ $5="bin"; 
•$6="bin"; print }' >prototype 

After you create and edit your prototype 
file, you'll also want to add the following line: 

i pkginfo=/pkgBase/info 

This line tells the pk gmk command which file 
contains other information describing the 
package. Don't worry about this file right 
now, we'll create it in the next section. 

Create the information file 
Next, you want to create the package informa
tion file. In this file, you describe not the file ob
jects that you're installing, but the environment 
and external information about the package. 

If you read the man page for the format of 
the package information file (man - s 4 pkg i n f o), 
you'll see that you can provide quite a bit of 
information to the end user of your packages. 
You can even create new information cate
gories, if you like. 

Package name: Most Sun packages are named 
SUNWx, where xis a shorthand name for the 
package. 

The long name of the package, which can be 
more descriptive. 

The architecture associated with the package. 

The version of the packaged software. 

Which categories the package belongs in 
(system, application, etc.). 

The target directory on the destination 
machine. 

We'll use these six package parameters in our demonstration package . 

.___ ___ II January 1997 

For our purposes, we're going to provide 
just a little information about our demonstra
tion package. Table A shows the parameters 
we'll use in our demonstration, along with 
their descriptions. 

For our package, we'll create the file 
/pkgBase/info, as shown below: 

PKG="ISOLtest" 
NAME:"Test package" 
ARCH:"Sol 2.5 i386" 
VERSION=" 1. 00" 
CATEGORY="application" 
BASEDIR="/opt/ISOLjan97" 

Thus, we're naming our package ISOLtest, 
with a more descriptive name of "Test 
package". The architecture field doesn't seem 
to have hard-and-fast standards in place, as 
we've seen "Solaris 2.5", "Spare", and "i386" 
in this field. Thus, we've decided to use "Sol 
2.5 i386" to tell the user that it's a Solaris 2.5 
file on an x86 platform. Since this is our first 
version, we'll just set the version to 1.00. 
Finally, we're saying that the default directory 
for the package on the destination machine is 
/opt/ISOLjan97. 

Create the package 
Now you've finished all the background work. 
You've created a directory structure that 
contains the files you want to package, your 
prototype file that describes all the files you 
want in your package, and the /pkgBase/info file 
that describes the package. You're now ready 
to create the package. 

To create your package, you first run the 
pkgmk command. The pkgmk command takes 
your packaging information and all your files 
and builds a directory in your /var/spool/pkg 
directory named ISOLtest. This directory con
tains the files pkginfo and pkgmap, as well as the 
directory reloc. 

The pk gmk command creates the pkginfo file 
from the information found in the /pkgBase/info 
file and creates the pkgmap file from your 
prototype file. The reloc directory contains the 
directory tree that you've created, but with the 
file owner and group IDs set to bin and bin, 
respectively. 

You can run the pkgmk command like this: 

# pkgmk -r '/pkgBase' -o 
##Building pkgmap from package prototype file. 
## P r o c e s s i n g p k g i n f o f i l e . 
WARNING: parameter <PSTAMP> set to 
"Ringo961030055236" 
WARNING: parameter <CLASSES> set to "none" 
##Attempting to volumize 7 entries in pkgmap. 



part 1 -- 54 blocks, 11 entries 
##Packaging one part. 
/var/spool/pkg/ISOLtest/pkgmap 
/var/spool/pkg/ISOLtest/pkginfo 
/var/spool/pkg/ISOLtest/reloc/bin/head 
/var/spool/pkg/ISOLtest/reloc/bin/tai l 
/var/spool/pkg/IS0Ltest/reloc/man/man1/head. 1 
/var/spool/pkg/ISOLtest/reloc/man/man1/tai l. 1 
##Validating control scripts. 
##Packaging complete. 

Please notice that pkgmk issues two warning 
statements. These are harmless. They tell us 
that we didn't set the PST AMP or CLASSES variables 
in our info file. Since pk gmk sets them to a rea
sonable default, we omitted them. The default 
value of PST AMP is the hostname of the machine 
on which you build the package, with the date 
and time appended to it without punctuation. 

The -r di rectory option on pkgmk tells it 
the root directory you' re using to build your 
package. This switch, in combination with the 
BASED IR value in the info file, helps you create a 
package in one place that will install in another 
place. Simply replaced i rectory with the root 
directory in which you're building your package. 

Now we can use the pkg trans command to 
take all the information in the ISOLtest direc
tory and turn it into a single file, making it 
simpler to transport between machines. You · 
can do so like this: 

# pkgtrans -s /var/spool/ pkg /tmp/ISOLtest-1.00 

The following packages are available : 
1 ISOLtest Test package 

(Sol 2. 5 i 386) 1 . 00 

Select package(s) you wish to process (or 'all' 
•to process 

all packages). (default: all) [?,??,q]: 1 
Transferring <ISOLtest> package instance 

Here, we' re telling pkg trans to transfer a 
package found in the /var/spool/pkg directory to 
the file jtmp/ISOLtest-1.00. It presents us with a 
list of packages found in the directory and allows 
us to choose one or more packages to put into 
the file. We select 1 (referring to the ISOLtest 
package) and press [Enter], and it creates the 
jtmp/ISOLtest-1.00 file for us. 

Testing and distribution 
Whew! You've finally done it. You now have 
a package of files. But don't send it out to all 
your remote sites just yet. You need to test it to 
be sure that you haven't forgotten a file. To do 
so, let's run pkgadd, shown in Figure B, and see 
if it builds the correct directory hierarchy and 
places the files correctly. 

Figure B 

# pkgadd -d /tmp/ISOLtest-1.00 

The following packages are avail ab le: 
1 ISOLtest Test package 

(Sol 2. 5 i 386) 1 . 00 

Select package(s) you wish to process (or 'all' to 
process all packages). (default: all) [?,??,q]: 1 

Processing package instance <ISOLtest> from </tmp/ISOLtest-1.00> 

Test package 
(Sol 2.5 i386) 1.00 

The selected base directory </opt/ISOLjan97> must 
exist before installation is attempted. 

Do you want this directory created now [y,n,?,ql y 
Using </opt/ISOLjan97> as the package base directory . 
##Processing package information. 
##Processing system information . 
##Verifying disk space requirements. 
##Checking for conflicts with packages already installed. 
##Checking for setuid/setgid programs. 

Installing Test package as <ISOLtest> 

##Installing part 1 of 1. 
/opt/ISOLjan97/bin/head 
/opt/ISOLjan97/bin/tai l 
/opt/ISOLjan97/man/man1/head .1 
/opt/ISOLjan97/man/man1/tai l .1 
[ verifying class <none> ] 

Installation of <ISOLtest> was successful. 
You should test your package by installing it before you distribute it to your 
remote sites. 

Now you're ready to examine the resulting 
directory hierarchy to ensure that all the files 
you need are placed correctly. If all goes well, 
test any programs or scripts to be sure they 
work correctly. Now you're.ready to distribute 
your packages. Don't forget that you may want 
to compress or gzi p your package before dis
tribution to make it smaller and fit on fewer 
floppy diskettes. 

Oops! I forgot a file 
What happens if you forget a file? Don't panic. 
First, go ahead and put the file in your direc
tory hierarchy. Then re-create your prototype 
file. (You can just hand-edit it, but it's simpler 
and less error prone to just re-create it.) Keep 
in mind that once you create your prototype file, 
it contains an entry for your info file. (There 
wasn't one last time because we created the 
info file after we created the prototype file.) 

Inside Solaris II __ ~ 



Therefore, if you don't want your info file 
included in your package, make sure you 
remove the file entry that specifies the info file. 

You can skip the creation of the info file, 
since it already exists, and go directly to the 

Figure c 
# pkgrm 

The following packages are avail ab le: 

11 ISOLtest Test package 
(Sol 2. 5 i 386} 1 . 00 

Select package(s} you wish to process (or 'all' to 
process all packages}. (default: all} [?,??,q] : 11 

The following package is currently installed: 
ISOLtest Test package 

(Sol2 .5i386} 1.00 

Do you want to remove this package? y 
##Removing installed package instance <ISOltest> 
##Verifying package dependencies . 
##Processing package information. 
##Removing pathnames in class <none> 

##Updating system information. 

Removal of <ISOLtest> was successful. 

Before you attempt to reinstall the package, be sure to 
remove it with pkgrm. 

COMPUTING AFTER HOURS 

pKgmK command. Earlier, when we showed you 
the pkgmk command, we used the -o option. 
We did so because it tells pKgmK to overwrite the 
package if it already exists. You didn't really 
need that option earlier, but you'll need it when 
you create your package the second time. 

Before you can retest your package, you 
must remove it from your system, or it will 
emit an error when you try to add it again 
with the pkg add command. To remove the 
package, simply type p Kg rm, select the 
package you' re building, and let the p Kg rm 
command remove it, as shown in Figure C. 
Now you're ready for testing again. 

Conclusion 
Now that we've presented the basics of creat
ing a package, you should build a couple for 
the experience. You'll find them useful for 
many situations. You'll be able to use them to 
put together packages of script files, Web pages, 
or anything else you want to give to someone 
else. If you want to do anything fancy, be sure 
to read the section 1 man pages for the p Kg add, 
pkgi nfo, pkgmk, pkgproto, and pkg trans com
mands and the section 4 man pages on the 
p Kg i n f o and prototype commands. •!• 

Execute large jobs during the quiet times 
on your system 
Have you ever wanted to start a job that 

would take several hours and tie up an 
enormous quantity of CPU and I/0? If 

so, you probably didn't want to do it during 
the day, where it would slow everyone down. 
Instead, you may have waited until the end of 
the day and used the nohup command to ex
ecute your job before you logged out. (For a 
description of no h up, see the article "Allow 
Your Commands to Continue Running After 
You Log Out" in the December 1996 issue.) 
However, if people are still using the com
puter when you leave for the day, you'll still 
slow them down. 

Perhaps you used c r on tab to schedule 
your program to execute during the quiet time 
on your system. (We demonstrated crontab in 
the article "Scheduling a Job for Periodic Exe-

-~--•January 1997 

cution" in the October 1996 issue.) However, 
that's a bit too much work to schedule a single 
job. You have to get your c r on tab list, edit it 
to include your new job, then submit it. Then, 
after your job is over, you must retrieve it 
again, edit the crontab list to remove the job, 
and resubmit it. 

The at command 
Luckily, there's a simpler way-the at command 
provides the simplicity and convenience of 
nohup, so you don't have to worry about leav
ing your terminal logged in overnight. It also 
gives you the ability to schedule when the job 
will run, as does c r on t a b. 

Using the a t command is easy. You sim
ply tell at the time you want the job to run 
and specify the contents of the job. You can 



do so like this: 

# at 2230 
ab sort <ILargeFi le uniq >/LargeFi le 
ab <EOT> 
warning: commands will be executed using /sbin/sh 
job 846819000.a at Thu Oct 31 22 :30:00 1996 

Using the command line, we told at to 
schedule a job at 10:30pm. Then, at prompts 
us for command lines to execute with the at> 
prompt. When we're finished entering com
mands, we enter the [Ctrl]D character, and at 
responds by displaying the message <EOT >. 
Then at tells us which shell it's going to use to 
process the command line. Finally, at tells us 
the job number and when it plans to execute it. 

The at command is very flexible in accept
ing time formats. Our example used the 24-
hour clock notation. If you prefer, you can also 
tell the a t command the time using am and 
pm. Thus, you could enter at 1030pm instead. If 
you use a four-digit time, at assumes you're 
specifying both the hour and the minute. If 
you use one or two digits, it assumes you're 
entering the hour. However, you can't enter a 
three-digit time. A few examples of legal time 
specifiers are 1000, Spm, 1221AM, and 11am. 

If you specify a time earlier than the cur
rent time, at won't schedule your job for im
mediate execution. Instead, it assumes that 
you mean to execute your command at that 
time on the next day. So if it's 5:00pm right 
now, and you tell at to start a job at 4:30pm, it 
won't start the job until tomorrow at 4:30pm. 

Specifying the shell to use 
Though it's the default, you're not limited to 
using the Bourne shell for your jobs. If you'd 
rather, you can use the Korn or C shell. You 
can specify the shell to use with the -s, -c, or 
-k options. These specify the Bourne, C, and 
Korn shells, respectively. So if you want to 
execute a command at 9:00pm and use the C 
shell, you can type 

# at -c 9pm 

Command entry 
If you're not a great typist, or if you have a 
significant number of commands to execute, 
you may not like having to type the command 
list flawlessly at the at> prompts. 

It turns out that the at command provides 
a facility to allow you to specify the name of a 
file that contains your command list. Thus, 
you can use your favorite editor to create your 
command list and tell at to use it with the -f 

command l; st t; le option. So if you have a list of 
commands to execute in the file /tmp/cmdlist, 
you can execute it at 3:30am with the command 

# at -f/tmp/cmdlist 0330 

Notification by mail 
Please note that if your job outputs any data 
on the standard output or standard error 
streams, the at facility will package all the 
output together and mail it to you. Con
versely, if your job doesn't output any data to 
these streams, the at facility won't send you 
mail. If you'd like to get mail anyway, so you 
can see that your job executed, you can add 
the -m option to the command line. 

As an example, if you enter the following 
at job, at will send you a directory listing of 
the root directory via mail: 

# at 0500 
ab ls -al 
ab <EOT> 

However, the following command won't send 
you any mail: 

# at 0505 
at> ls -al I >/dev/null 
ab <EOT> 

If you want at to inform you that your job 
has run, add the -m switch, and you'll get mail 
even if your job doesn't generate any output, 
as shown here: 

# at -m 0510 
ab ls -al >/dev/null 
ab <EOT> 

Listing and removing jobs 
If you'd like to see a list of the jobs you've 
submitted, you can use the - l option on the a t 
command. When you do so, you won't get a 
lot of information about the command other 
than who submitted it, the job number, and 
the time it will execute. You'll get no further 
details. Figure A shows a sample of the typical 
output you can expect. 

Figure A 
# at -l 
user root 
user root 
user root 
user root 

846819000 . a 
846820200.a 
846813600.a 
846837000.a 

Thu Oct 31 22:30:00 1996 
Thu Oct 31 22:50:00 1996 
Thu Oct 31 21:00:00 1996 
Fri Nov 1 03:30:00 1996 

The at - I command shows only who submitted it, the job ID, and the time it 
will run-not what the job will do. 



.....__ __ _ 

If you later decide that you'd like to re
move a job you submitted with a t, all you do 
is use the -r i ob IDs switch. Just replace job IDs 
with the list of job identifiers that at gives you 
when you start the jobs. Since the - l option 
doesn't provide much detail, it can be difficult 
to know for sure which job needs to be removed 
if you use that at command heavily. 

For this reason, we suggest that you either 
write down the job identifiers when at gives 
them to you or stagger execution by at least 
a minute and keep track of the time you sub
mit them. This is the simpler approach, since 
it's easier to keep track of the time the job 
should run. 

Suppose for a moment that we wanted to 
delete the second and fourth jobs listed in Fig
ure A. To do so, we'd simply type 

# at -r 846820200.a 846837000.a 

Restricting the at command 
Once you' re familiar with the a t command, 
you'll be able to submit massive jobs at times 
when you're not going to be around. How
ever, if the machine performs some mission
critical tasks, you might not want users indis
criminately deferring computer-bound jobs to 
the middle of the night during a month-end 
closing or similar process. 

The at.deny and at.allow files, located in the 
/usr/lib/cron directory, let you control access to , 

tt • ~- • ~'-!. • '{ <. ~ ,,..._ 1• I ~. l 

the at facility. By listing specific users in the 
at.deny file, you can prevent them from ac
cessing the at command. If only a few users 
should be using it, you can put each user's 
name in the at.allow file. 

The way this works is that the at command 
first checks for the existence of the at.allow 
file. If it exists, then the user must be listed to 
be able to use the a t command. If the at .allow 
file doesn't exist, then the at command checks 
the at.deny file. If the user isn't listed there, 
then at grants the user permission to .go ahead. 

In a default installation, Solaris provides 
an at.deny file but no at.allow file. Thus, all 
user accounts should be able to access the a t 
command by default. (The default at.deny file 
lists only a few system processes, such as 
smtp, that have no access to the at command.) 

Conclusion 
Solaris has existed for such a long time that 
hundreds of utilities are available to make 
your job simpler. In many cases, there's over
lap between the functionality of different 
commands. In this article, we showed you the 
at command, which combines some of the 
flexibility of c r on t ab with the ease of use of 
the no h up command. As you start to use the at 
command, you'll definitely want to check out 
its man page to learn about some of the fea
tures we haven't mentioned. •:• 

A VERSATILE SCRIPT/NS LANSUASE 

An introduction to Perl 
By Al Alexander 

For several years, a unique programming 
language with a legion of loyal follow
ers has grown in popularity in the UNIX 

world. At first, the growth was gradual and 
not widely known. But with the sudden ex
plosion of the World Wide Web, this language 
has gained overnight fame as an outstanding 
CGI programming tool. This language is, of 
course, Perl, the Practical Extraction and Re
port Language. 

Perl is possibly the best text-processing 
language I've ever worked with. It combines 
many of the best features of sed, awk, shell, and 

m January 1997 

the C programming languages, which makes it 
very powerful for manipulating text streams and 
data files. However, Perl has grown beyond 
being a simple text-processing language. It now 
offers many features that make it very desirable 
as a general-purpose programming language. 

Why Perl? 
Perl is a powerful interpreted scripting language 
with many advanced functions and features. 
Its syntax is a mixture of the C, awk, sed, and 
shell programming languages. If you' re com
fortable working with any of these languages, 
learning Perl will be fairly simple. 



Some of Perl's strengths are: 

• Many built-in string, array, and list 
functions 

• Many built-in UNIX system functions 

• Built-in arithmetic functions 

• The use of regular and associative arrays 

• Simple dynamic creation and resizing of 
arrays 

• Support for local and global variables 

• Support for the e d Is e d stream-editing 
command syntax 

• Pattern-matching syntax compatible with 
sed, awk, and other UNIX utilities 

• Easily controlled formatted output 

• Built-in TCP /IP socket commands 

• The availability of third-party libraries that 
have been created to link into databases 
from Oracle, Informix, Sybase, and others 

• Freely available for Solaris, other UNIX 
variants, DOS, Windows, OS/2, and other 
platforms 

Is Perl right for you? 
I encourage you to look at Perl if you're begin
ning to find that the standard shell program
ming languages don't support your advanced 
programming needs. You should also look at 
Perl if you're consistently developing small-to
midsize applications with C; Perl lets you cre
ate these same applications much more easily. 

Two other factors may sway you to try 
Perl. First, it's offered on many platforms and 
for many operating systems. So if you need to 
create programs that work in multiple locations, 
you may want to give it a try. Finally, Perl has 
become famous for being the Internet/CG! 
programming language of choice. If you're 
building a Web site, you may want to use Perl 
to take advantage of the wealth of code al
ready available. 

Programming constructs 
Figure A shows a brief Perl program that 
demonstrates many Perl basics. Looking at 
this program, people are generally either in
timidated by Perl's syntax or they quickly see 
how they can accomplish so much with so few 
programming statements. Don't be intimi
dated-I can explain it all very easily! 

The program is actually fairly simple. It 
first runs the p s -e f command via an open 
statement. The final pipe symbol (I) forces the 

output of the ps -et command into a pipe, 
accessible to the open statement. In the open 
statement, we assign the name PSEF to the file 
handle assigned to the p s -e f output stream. 
Now, whenever we want a line of results from 
the p s -e f command, we simply refer to the 
PSEF file handle. 

If you want, you can open multiple files 
and command pipe streams in a program. 
Contrast this to a shell script, where it's 
somewhat difficult to read from a file. 

The wh i le ( <PSEF>) syntax determines 
whether any information remains in the PSEF 
input stream. If so, it reads a line from it and 
places the resulting line in the $_variable. If 
100 processes are running on your system, this 
while loop executes 100 times. (Actually, be
cause the p s -e f output also includes a header 
as its first line, the loop executes 101 times, but 
we' re ignoring the first line for the purposes of 
this example.) Inside the while loop, we'll pro
cess the p s -e f output stream one line at a time. 

On the next line, the chop ( $ _) command 
removes the last character (a newline in this 
case) from the variable $_. In this way, we can 
treat the input line as a series of fields sepa
rated by white space, without worrying about 
the problems a newline character can create. 
(White space is any combination of blanks, 
tabs, or newline characters.) 

The next line shows another great feature 
of Perl: Here, we split the line read from p s 
-ef into eight output fields. We then assign 
these eight fields to to eight separate variables, 
beginning with $ u i d. The first argument to the 
s pl i t command tells s pl i t which pattern to use 
to separate the fields. The next argument tells 
s pl i t which string to break apart. The third ar
gument tells s p l i t to break the information in 
$_into no more than eight output elements. 

Figure A 

#!/usr/bin/perl 
open(PSEF, "ps -efl"); 
wh i le ( <PSEF>) { 

chop(S_); 
(Suid,Spid,Sppid,Sc,Sstime,Stty,Stmptime,Scmd) split(' ',$_,8); 
(Smin,Ssec) = split(/:/,Stmptime,2); 
Stime = 60 * Smin + Ssec; 
if (Stime > 30) { 

print "PID Spid, owner Suid, time Stime, cmd Scmd\n"; 

} 
close(PSEF); 

This small program demonstrates many of Perl's powerful features. 



In this example, we're using$_ again, tell
ings pl it to break apart the current line from 
the ps -ef command, with up to eight fields 
delimited by spaces. We limit the number of 
fields, because the last column in the output 
of p s -e f contains the command line the pro
cess is executing, which may contain embed
ded spaces. If we omitted the number of fields 
limit, it would throw off the s p l i t command 
and allow it to create nine or more output 
fields. Think about how much more you'd 
have to do in a C program or shell script to 
accomplish the same goal! 

Notice everything that happens in this 
one line: s p l i t takes the input from the vari
able$_ and breaks this input into eight sepa
rate fields. It assigns these eight output fields 
to eight different variables at one time. Then 
we assign the resulting values to the variables 
Sui d through Scmd. From this one line, you can 
see how Perl's syntax is a great time- and 
space-saver. 

In our sample program, we want to find 
the amount of CPU time each process con
sumes. Since the p s -e f command prints the 
CPU time in min:sec format, we must do a 
little more work. 

The next line of the program splits the 
variable$ tmp ti me into two new variables 
named Smi n and Ssec. In this line, we tell the 
s pl i t command that the input fields are de
limited by a colon(:) character. The result is 
that Smi n and Ssec hold the number of CPU 
minutes and seconds accumulated by the pro
cess. If a process has accumulated 10 minutes 
and 15 seconds of CPU time, $ tmp ti me will 
contain "10:15". After using split, Smi n holds 
10 and Ssec holds 15. 

The next line demonstrates that math is 
very easy in Perl, as we combine Sm i n and 
Ssec to create the new variable St ime. Now 
$ti me contains the accumulated runtime of the 
current process in seconds. 

The next line of the program introduces 
the if statement. As with C and the C shell, 
the condition is enclosed in parenthesis. After 
the if statement, you're required to have a 
block that encloses the statements you want to 
conditionally execute. 

For our example, if the variable $ti me is 
greater than 30 seconds, Perl prints the pro
cess ID (PIO), User ID (UID), amount of CPU 
time consumed, and the UNIX command line 
to the standard output. (Note that Perl also 
provides a pr i n t f function, which we could 
have used. While the pr i n t f function pro
vides greater control of the output, it's less 

~-~---~-"-----·m J-y 1997 

efficient. Rather than go into the print f func
tion, we'll illustrate report formats in the 
next section.) 

The right curly brace on the next line 
marks the end of the i f statement, and the 
next right curly brace marks the end of the 
wh i le statement. 

The last line of the program closes the 
connection to the ps -ef pipe. While this isn't 
necessary in this case, you'll generally want to 
close any file or pipeline you open. 

In summary, as this program runs, it 
reads each line of the p s -e f output and prints 
each process that has an accumulated run 
time greater than 30 seconds. When the pro
gram can read no more lines of input from the 
p s -e f pipe, it exits. A typical run on our ma
chine looks like this: 

PID 418, user root, time 1566, cmd ./POV-Ray 
PID 466, user root, time 58, cmd . /dbSort 
PIO 474, user root, time 37, cmd ./a.out 99999 

Getting even fancier 
Perl's motto is "There's more than one way to 
do it." Figure B shows another way to solve 
the same problem. In this case, we're going to _ 
use some of Perl's built-in report-formatting 
features and demonstrate a couple of other 
features in Perl. 

Figure B 

#!/usr/local/bin/perl 
format top = 

CPU hogs 
PIO Owner CPU sec Command 

format STDOUT = 
®>>>> ®<<<<<<<< ®>>>>>> ®<<<<<<<<<<<<<<<<<<< 
$ p s [ 1 ],$ p s [ 0], $ti me, $ p s [ 71 

open(PSEF, "ps -ef l"); 
wh i le ( <PSEF>) 

chop; 
®ps = split(' ',$_,8); 
( $mi n, $sec ) = s p l i t ( I : I , $ p s [ 6], 2); 
$time = 60 * $min + $sec; 
wr i t e i f ($ti me > 30); 

} 
close(PSEF); 

Here, we've changed the program to illustrate arrays and 
Perl's report-formatting features. 

In this version of our script, the first thing 
you'll probably notice are the blue lines. These 
lines define the format of our report. The 
format top statement tells Perl what to print at 



the top of each page. The format top statement 
ends when it comes to a line containing a 
single period. As you can see, we're just tell
ing Perl to print the report name and some 
column headings. 

The format STDOUT statement tells Perl 
how to print each line. Here, the first line de
fines four fields (starting with the@ symbol). 
The < and > characters following the @ symbol 
tell Perl how wide the field is and how to 
align the data. Perl computes the field width 
by simply counting the characters used in the 
field definition. In the first field, the @ charac
ter is followed by four > symbols, for a total of 
five characters. You can use three alignment 
characters: >tells Perl to right-justify the field, 
<means to left-justify the field, and I means 
to center the field. In all cases, Perl pads out 
the field with spaces. 

As part of the format statement, you also 
can assign the variables associated with each 
field. As you can see, the third field in our 
format STDOUT statement is associated with the 
$ t i me variable. Whenever Perl executes a wr i t e 
statement, it formats the specified variables in 
the fields, then prints the record. 

The next thing you might notice is that we've 
changed the chop($_) statement in Figure A to 
chop. We can do so because, as we mentioned 
earlier, the $_variable is the default variable 
for many operations in Perl. If you don't tell 
Perl what variable you want to chop, it as
sumes that you want to chop the$_ variable. 

The very next statement is different as 
well. Here, we're using an array to hold the 
results of the s p l i t operation. So instead of 
providing a list of variables to hold the s p l i t 
results, we specify an array. When Perl splits 
the input record, the firs t field goes into slot 0 
of the p s array, the next field goes into slot 1, etc. 

Please note that we must tell Perl that 
we're using an array by using an@ character at 
the beginning of the array instead of the usual 
$.In Perl, whenever you use a variable, you 
must tell Perl how you're planning to use it. 
When you use it as a scalar value, the default 
case, you use $, just as you do in shell pro
gramming. When you want to use the variable 
as an array, you use the@ character. Now here's 
the tricky part: If you want to get a scalar (i.e., a 
single value) out of your array, you use the$ 
symbol and enclose the subscript in brackets. 
The next line demonstrates this, as we s p l i t the 
CPU time variable into the Smi n and $sec vari
ables. As you can see below, we use $ p s [ 6 ] to 
access the seventh value in our @p s array: 

( Sm i n , s sec ) = s pl i t ( I : I , s p s [ 6], 2); 

Remember earlier when we said that an if 
statement must be followed by a block of state
ments surrounded by curly braces? Well, that's 
not strictly true. In Perl, just like in C, you can fol
low an i f statement with a block of statements in 
curly braces. In C, you can use a single statement 
instead, like this: 

i f ( $ t i me > 30 ) 
statement; 

However, that's illegal in Perl, although Perl does 
provide a shorthand notation for conditionally 
executing a single statement: You may follow the 
statement with your i f clause. Please note that 
the i f clause must precede the semicolon. This 
example, from Figure B, shows how we write our 
results to the report: 

wr i t e i f (st i me > 30); 

As you can see, it executes the wr i t e statement if 
$time is greater than 30. Otherwise, Perl ignores 
the statement. 

Our new version of the report prints the data 
in a much nicer format. When you run it, you'll 
see a report much like this: 

CPU hogs 
PIO Owner 

474 root 
418 root 
466 root 

Conclusion 

CPU sec Command 

519 ./a.out 99999 
1937 ./POV-Ray render1 

523 . /dbSort 

As a general-purpose scripting language, Perl is 
a great improvement over shell languages. Perl 
provides support for local variables, numeric and 
associative arrays, built-in arithmetic functions, 
low-level I/ 0 functions, and dozens, of functions 
to manipulate strings, lists, and arrays. Perl fur
ther offers support for TCP /IP sockets program
ming and other advanced features. 

Perl is also an easier language to use than C 
for creating most system-administration utilities 
and CGI programs. Perl offers many of the best 
features of the C language, but requires fewer lines 
of programming and has no need for a compiler. 

As an added bonus, the newest version of 
Perl, vS.003, now offers support for references 
(similar to C pointers), complex data structures, 
and object-oriented programming-not bad for a 
shell programming replacement. You can obtain 
Perl from many places on the Internet or through 
CD-ROMs from varied vendors. You can even get 
the source code from http://www.perl.com/perl. •:• 



,-•• ~ f ; -. • { 

THl/UKl/UG l/U PERL 

Using associative arrays in Perl 
By Al Alexander 

0 ne of the great features of the Perl lan
guage is its support of associative arrays. 
Unlike normal arrays, whose subscripts 

can only be integers, the subscripts of associa
tive arrays are text strings. This may not sound 
like much yet, but we can use associative ar
rays to create fairly complex data structures 
with Perl. 

Since associative arrays add so much power 
to Perl programming, you must become profi
cient with them to be a good Perl programmer. 
In this article, we'll describe associative ar
rays, and we'll show you how to use them in 
your own programs. Along the way, we'll also 
explain how to access all the variables in your 
environment. 

What are associative arrays? 
No doubt you're familiar with standard arrays. 
They're simply containers of vaiues in which 
each value is identified by a key value from 
zero to n, where n is the number of items in 
the array. 

An associative array is very similar, except 
that instead of using a number from zero to n to 
refer to the entries, you can give each entry a 
name. These names are strings that are associ
ated with the value in the array, hence the name. 

As we mention in the article "An Intro
duction to Perl," when you refer to a scalar 
value, you precede it with$, and when you re
fer to an array, you precede the array name 
with@, and enclose the key in brackets. As an 
example, here are two lines of code. The first 
line copies the array f red into the array george. 
The second line reads the third value from the 
array george into the scalar variable ethe l: 

@george = @fred; 
Sethel = Sgeorge[2J; 

For an associative array, you use the % 
character to specify the array name, and you 
use curly braces to select an element by name. 
The next two lines of code copy the associative 
array named luci l le to mary. Next, we select 
the value in mar y associated with the string 
j oe and place it in the variable named garage. 

%ma r y = % l u c i l l e ; 
Sgarage = Smary{ 'j oe'}; 

m Ja-r1997 

It's said that associative arrays use fancier 
brackets than normal arrays because associa
tive arrays are fancier than normal arrays. 
While I don't know if this statement is 100 
percent accurate, I do find it to be an effective 
way of remembering the proper subscripting 
syntax when using Perl arrays. 

Accessing the environment 
When you start a program, Perl initializes an 
associative array for you: The associative array 
named %ENV holds the values of all shell envi
ronment variables. Figure A shows a complete 
Perl program that uses associative arrays. It's 
an improved version of the traditional "Hello, 
world" program often used to demonstrate a 
new programming language. 

Figure A 

#!/usr/bin/perl 
SuserName = SENV{ 'LOGNAME' }; 
print "Hello, SuserName\n"; 

This program can greet a user by name by using the %ENV 
associative array to locate the user's login name. 

The login process stores your user name 
in the LOGNAME environment variable. This brief 
Perl program takes advantage of this fact to 
obtain your user name from the %ENV associa
tive array. 

Iterating over an associative array 
In a normal array, it's easy to scan through the 
array and process all the array items: Simply 
count from zero ton and process the corre
sponding array item. But just how do you do 
it with an associative array? 

To answer this problem, Perl provides the 
Keys command. This command creates a new 
array, which contains all the keys (i.e., sub
scripts) in the associative array. Then you can 
use the f oreach command to iterate over the 
keys array. 

As an example, let's display all the envi
ronment variables. The program shown in Fig
ure B displays a sorted list of all the environ
ment variables. 

In this example, the keys of the associa
tive array %ENV are the names of the environ
ment variables. Back in Figure A, the key (or 



subscript) for the %ENV array was LOGNAME, and 
the value of the array element SENV{ 'LOGNAME' } 
was fred. Suppose that Table A shows all the 
environment variables you have set when you 
run the program. SENV{ 'LOGNAME'} = "f red 11

; 

SENV{ 'HOME'}= "/home/fred"; 
SENV{ 'SHELL'} = 11 /bin/ksh 11

; 

SENV{ 'EDITOR'} = "vi 11
; 

LOGNAME 
HOME 
SHELL 
EDITOR 

fred 
/home/fred 
/bin/ksh 
vi 

Figure B Using the %£NV environment variable, it's easy to access environment 
variables by name. 

#!/usr/bin/perl 
foreach (sort keys %ENV) { 

print "$_ = $ENV{$_}\n"; 

This program displays all the environment variables. 

When Perl executes the keys command 
within the f oreach loop, it returns the sub
script names LOGNAME, HOME, SHELL, and EDI TOR. 
It does not return the values of each element. 

The so r t command (preceding the keys 
command) sorts the resulting array of keys. 
The f oreach command then iterates over the 
sorted list of keys. This is how the program 
prints all the environment variables in order. 
Given the keys shown in Table A the sorted 
output would leave the keys in the following 
order: EDITOR, HOME, LOGNAME, and SHELL. 

The foreach statement creates a loop that 
you can read as "for each element in the list 
'ED I TOR, HOME, LOGNAME, and SHELL', do every
thing enclosed in the following curly braces." 
This tells Perl to execute the pr i n t statement 
for each key in the %ENV array. 

As mentioned in "An Introduction to Perl/' 
the$_ variable can have many meanings, de
pending on the con text. In the fore a ch state
ment, since we don't explicitly provide a loop 
variable, Perl assigns the value of the current 
key to it for each iteration of the loop. The first 
time through the loop, the pr i n t command 

print "$_ = $ENV{$_}\n"; 

substitutes EDITOR for the value of$_ and runs 
the command 

print "EDITOR = $ENV{ 'EDITOR' }\n"; 

which results in the output 

EDITOR = vi 

The f oreach loop then continues its processing 
until every key from the array %ENV has been 
processed. 

Uses of associative arrays 
Associative arrays can simplify your programs 
in several ways. One way is to allow you to 
track less data. When you use standard arrays, 
you're limited to subscripts of zero through n, 
so you often have to create an extra array that 
will translate the zero ton values to the values 
you really care about. With an associative ar
ray, you can use the interesting variables di
rectly to index the data array. 

One benefit is that you can often model 
complex data using fewer arrays. Thus, it's 
easier for you to visualize what's going on, 
and you make fewer program errors. 

The cost of an associative array is that Perl 
has to perform a little more work to access a 
value through an association compared to a 
standard array's subscript. However, for many 
projects, the extra efficiency gained by a stan
dard array isn't worth the added extra work 
and complexity. 

Conclusion 
The associative arrays in Perl can make pro
gramming much simpler. We've shown you 
how easy it is to access the environment using 
Perl's associative arrays. Instead of having to 
deal with many different variable names, we 
simply work with one array that holds the 
contents of the separate variables. •:• 

St-atemcnt of Ownership, Management and Circulation lRequin:d by 39 U.S.C. 3685) 1. Publication Title: lruide Solaris. 2. Publication number: 0013674. 3. Filing dnte: October 3. 1996. 4. Issue Frequency: Monthly. S. No. of 
Issues Published Annu<'lly: 12. 6: Annual Subsaiption Price: $115 ($135 Foreign). 7. Complete Mailing Addn.-ss of Known Office of Publication: The Cobb Group. 9420 Bunsen Parkway, Louisville, KY 40220. 8. Complete Malling 
Address of the Headquarten. of General Business Offices of the Publisher (Not printer): The Cobb Group, 9420 Bunsen Parkway. Louisville. KY 40220. 9. Full Names and Complete Mailing Address of Publisher, Editor, and 
Managing Editor: Publisher, John Jenkins, The Cobb Croup, 9420 Bunsen Parkway, Louisville, KY 40220; Editor. Muco Mason, The Cobb Croup, 9420 Bunsen Parkway, Louisville. KY 40220; Managing Editor, Linda Baughman, 
The Cobb Croup, 9420 Bunsen Parkway, Louisville, KY 40220 10. Chvner: ZiH O;ivis Publishing Company, 1 P.uk Avenue, New York, NY 10016; Softbank Holdings Inc., 10 Langley Road, Suite 403, Newton Center, MA 02159. 11. 
Known Bondholders, Mortgagees, and Other Security Holders Owning or Holding l Percent or More o(Totnt Amount of Bonds, Mortgages or Other Securities: None. 13. Title of Publication: fMide Solaris. 14. Issue D;ite for 
Circulation Data Below~ November 1996. 15. Extent and ·ature of Circulation- A. Total No. Copies (Net Press Run): Average No. Copies Each Issue During Preceding 12 Months, 4,281; Actual No. Copies of Single Issue 
Published Nearest to Filing Date, 4,776. B. Paid and/or Rt'quested Circulation-1. Sales through dealers and carriers, ~trcct vendors and counter sales (Not mailed): Average No. Copies &ch Issue During the Preceding 12 
Months, 65; Actual No. Copies of Single Issue Published Nearest to Fi1ing Date, 78. 2. Paid or Requested Mnil Subscriptions: Average No. Copies Each Issue During the Prcn"Cling 12 Months, 3,538; Actual No. Copies of Single 
Issue Published Nearest to Filing Date, 3,164. C. Total Paid and/or Requcstc.>d Circulation (sum of 15b(l) and 15b(2)): Average No. Copies Each Issue During the Preceding 12 Months, 3,603; Actual No. Copies of Single Issue 
Published Nearest to Filing Date, 3,242. O. Free Distribution by Mail (Samples, complimentary, and other free): Aver;ige No. Copies Each b suc During the Preceding 12 Months, 20; Actual No. Copies of Single Issue Published 
Nearest to Filing Datc1 18. E. Free Distribution Outside the Mall (Carriers or other means): Average No. Copies Each Issue During the Preceding 12 Months, O; Actual No. Copies of Single Issue Published Nearest to Filing Date, 
0. F. Tot;il Free Distribution (sum of lSd and 15e): Average No. Copies Each Issue During the Preceding 12 Months, 20; 1\ctual No. Copies of Single Issue Published Nearest to Filing Oilte, 18. C. Totnl Distribution (Sum of ISc and 
J5f): Average No. Copies E.1ch Issue During the Preceding IL Months, 3,623; Actual No. Copies or Single Issue Published Neares t to Filing Date, 3,260. H. Copies Not Distributed. 1. Office use, lert over, unaccounted, spoiled after 
printing: Average No. Copic; Each Issue During the Prcc.:diRg 12 Months, 658; Actual No. Copios of Single Issue Published Nearost lo Filing Date, 1,516. 2. Relurn from News Agents: Average No. Copios Each Issue During the 
Preceding 12 Months, O; Actual No. Copios of Single Issue Published Nearost to Filing Date, 0. I. Total (Sum of 15g, 15h(I), ,1nd 15h(2)): Average No. Copios Each Issue During the Preceding 12 Months, 4,281; Actual No. Copies of 
Single Issue Published Nearest to Filing Date, 4,716. Percent Pnid and/or Requested Circulation (15c/15g x 100): Average No. Copies Each fssuC! During the Preceding 12 Months, 99.44'ht; Actual No. Copies of Single Issue 
Published Nearest 10 Filing O,lte, 99.45~ . This Stntement of Qy,rncrship will be printed in the! January issue of this publication. J certify that all information furnished on this form b true and complete. I understand that anyone 
who furnishes false or misleading information on this form ar who omits material or information requested on the form may be subject to criminal sanctions (including fines and imprisonment) and/or civil sanctions (including 
multiple damag{"S and civil penalties). Director~Fulfitlmcnt Operations. 

Inside Solaris m __ ~ 



-------

PERIODICALS MAIL 

· w •·· ' i ;:• . 

¥J SunSoft Technical Support 

(800) 786-7638 
CUMMIN G 

.:fi,IL. -

Please include account number from label with any correspondence. 

TIME-SAU/NG PRODUCT 

Summertime ... in 1he dead ol winter 
If you always find yourself searching the 

Internet for programs, then configuring 
and compiling them to run under Solaris, 

you can save yourself some time. Micromata 
created the Summertime '96 for the Solaris™ 
Environment CD-ROM. This is a package of 
all the popular shareware and freeware tools, 
already compiled and packaged for Solaris 2.5. 
Micromata makes a CD-ROM for both the 
Spare and x86 platforms. 

You'll find such things as the GNU tools 
(gee, emacs, etc.), Perl, TCL, TeX, alternative 
shells, games, security tools, Web servers, 
Web browsers, the JDK, IRC, database servers, 
mail tools, and many other items-over 270 
applications, all told. 

lrR£t~~!Y'JJ: ~~~x:; 

LETTERS 

While all these are available in various 
places on the Internet, this CD-ROM puts 
them in a convenient package: No need to lo
cate, download, or archive them! Just load 
whatever you want from the CD-ROM. 

If you have a slow pipeline to the 
Internet or just prefer the convenience of 
having all these popular programs on a 
single CD-ROM, then you'll want to investi
gate this package. In the United States, 
Canada, and Mexico, call EIS Computers, Inc. 
at (800) 351-4608 or visit its Summertime '96 
Web page at http://www.eis. com/summertime. 
Elsewhere, visit Micromata's Web page at 
http:/www.micromata.com, or call +49-(0)-
5624-925230. ·:· 

Revisiting the xterm title bar 
I, d like to react to the article "Changing the 

Title Bar of an xterm Window" in the No
vember issue. I've been using xterm for a 
while, and all I have to do to change the title 
or icon text on my window is use the - T or - n 
option of the xterm command. Isn't this 
method easier? 

Wim Wauterickx 
via the Internet 

Wim, for most cases you're right. If you 
know what title and icon text you want when 
you start your xterm window, the -T and -n 

m January 1997 

options are definitely the way to go. However, 
if you want to change the title and/ or icon text, 
in a shell script, for example, you must use the 
technique we've described. 

Suppose you have a script that you run in 
the background to monitor your system. Since 
you don't want to see the monitor process 
running continuously, you minimize the win
dow and give it an icon name of "monitor." 
Now suppose your script finds a problem. 
You could have it change the icon name to 
"PROBLEM FOUND," which you would no
tice on your desktop. •!• 

/ ""A' 
.. .:.V-A 

\6
, ' ~ ' Printed in the USA .o...~ , This journal is printed on recyclable paper. 


