
II

in this issue

1
Securing your system
with dialup passwords

4
Tuning your environment
for both X and dumb
terminals
6
Allow your commands to
continue running alter
you log out
7
Manipulating your dtterm
window with escape
codes
10
Using command-line
history with the C shell
14
A quick way to parse a
string in a script

15
Find and grep, revisited

16
Moving a directory
branch
16
For speed, add RAM
during installation

http://www.cobb.com/sun/

December 1996 • $11.50
VOL. 2 NO. 12

·... TiJl~;.f! techniques f9r -~7e.rs of SunSoft Solaris

Securing your system with
dialup passwords
By Al Alexander

As the world continues the trend
toward remote and mobile
computing, an ever-increasing

concern is maintaining system se
curity over dialup telephone lines.
Once you attach a modem and a
phone line to your computer, you
expose your system to a variety of
external threats.

I can recall one instance when a
friend and I discovered a modem
leading into our company's VAX
mainframe computer. We were call
ing our VAX System Manager and
accidentally dialed the last number
of his phone number incorrectly.
Suddenly we heard the familiar
sound of a remote modem.

Curiosity got the better of us,
and we reached over to a work
station, used our modem to call the
previous phone number, and found
a login message from our company's
VAX mainframe. Because it was
against company policy to have
modems attached to our mainframe,
this was a startling discovery,
which we kept to ourselves.

In this article, we'll explore the
process of adding dialup passwords
to your Solaris computer's modem
lines. This process adds another
layer of security to your incoming
modem lines by forcing intruders to
break an additional password to gain
access to your computer system.

Overview
Adding dialup passwords to your
modem lines is such a simple proc
ess that I recommend it for anyone
who uses inbound modems. In this
article, we're assuming that you al
ready have incoming modem lines
installed and tested. You need to
take only three additional steps to
add dialup passwords:

1. Create the /etc/dialups file,
specifying the devices that
require dialup passwords.

2. Create the /etc/d_passwd file,
specifying the password for
each login shell.

3. Test your configuration.

Once you've configured dialup
passwords, the new dial-in login
process works as follows: When a
user attempts to log in to the com
puter, Solaris first issues a prompt
for the username and password, just
like normal. Then, if the /etc/dialups
file lists the port, the login program
looks in the /etc/d_passwd file for
the shell that the user is attempting
to use. Solaris then prompts the
user for the dialup password for
the shell before granting access.

Creating the /etcldialups lile
The first file you must create is /etc/
dialups, which specifies for which

A Publication of The Cobb Group

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S. $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin.cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editor Al Alexander
Production Artists Margueriete Winburn, Liz Palmer
Editor Karen S. Shields
Publications Coordinator Linda Recktenwald
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to:

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1996, The Cobb Group. All rights reserved. Inside Safaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right, with respect to submissions, to revise,
republish , and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Publishing Company. Inside Safaris is a trademark of Ziff
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall,
OpenBoot, OpenWindows, DeskSet, ONC, and NFS are trade
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade
marks or registered trademarks of their respective holders.

~--11 December 1998

ports you want the extra password
enabled. You create this file by
specifying the incoming ports, one
per line, that you want secured
with a dialup password.

For instance, let's assume you
have a computer with three modems
that have dial-in access. These mo
dems are connected to ports /dev/
term/b, /dev/term/c, and /dev/term/d.
In this case, you should create your
/etc/dialups file to contain the fol
lowing three lines:

/dev/term/b
/dev/term/c
/dev/term/d

For security purposes, both the
user and group ownership should
be set to root. In addition, only root
should have read or write access to
it. Assuming that you're logged in
as the root user, you can use these
commands to finish setting up
the file:

chown root /etc/dialups
chgrp root /etc/dialups
chmod 600 /etc/dialups

Creating the /etc/d_passwd
file
The /etc/dialups file we just created
tells Solaris which ports we want to
secure. Next, we must set up the
dialup passwords. Rather than giv
ing each user another password,
you must associate the dialup pass
words with the login shell. Each
login shell may have its own dialup
password.

Each line in the /etc/d_passwd
file contains two fields terminated
by a colon(:). The first field speci
fies the login shell to protect, such
as /bin/sh or /bin/ksh. The second
field contains the 13-character en
crypted password for the login
shell. The encrypted password field
in /etc/d_passwd uses the same for
mat as the one in /etc/shadow.

If you don't specify a password
for a particular login shell, it will
use the same password you've de
fined for /usr/bin/sh. If you haven't
specified a password for /usr/bin/sh,

then the system won't prompt you
for a dialup password.

For security reasons, you should
always specify a password for the
shell /usr/bin/sh. You want to do this
because if you add a new shell to
your system, such as tcsh or bash,
you may forget to add an entry for it
in the /etc/d_passwd file. If that hap
pens when you don't have an entry
for /usr/bin/sh, anyone using the new
shell will be able to log in without
using the dialup password!

TRICK: If you want to use the
same dialup password for all
shells, you can just set up the entry
for /usr/bin/sh in /etc/d_passwd. If,
on the other hand, you want to use
different passwords for different
shells, you should add the entry

to your /etc/d_passwd file. This pre
vents anyone from logging in re
motely with any program not ex
plicitly mentioned in /etc/d_passwd.
However, it also prevents you from
specifying /usr/bin/sh as the login
shell for any remote user. You can
still allow a remote user to use the
Bourne shell by using a dm i n too l
and specifying /bin/sh as the shell,
and adding an entry for /bin/sh in
/etc/d_passwd. This way, you get se
curity as the default behavior and
can still use the Bourne shell for re
mote access.

The final /etc/d_passwd file that
provides protection for the Bourne,
Korn, and C shells looks something
like this:

/usr/bin/sh:•LK•
/bin/sh : i4lUy7ylcj4Ru:
/usr/bin/ksh :Bt1Mc0.ejy.XN:
/usr/bin/csh:d21163trYS3ab:

Now let's step through the pro
cess of generating a password for
the /usr/bin/ksh entry. First, we must
create an encrypted password. Un
fortunately, there's no simple pro
cess in Solaris to create a password
for a shell. However, since the
encrypted password for the /etc/
d_passwd file uses the same format

as those in the /etc/shadow file, we can create a
temporary user account, set its password, and
then copy its encrypted password from the
/etc/shadow file into the /etc/d_passwd file.

To do so, you need to be the root user. First,
create a temporary account named tempuser:

useradd tempuser

Next, set the password for the tempuser
account to the dialup password you want for
the shell /usr/bin/ksh. In this case, we're going
to use Mark16:

passwd tempuser
New password : Mark16
Re-enter new password: Mark16

Now find the encrypted password entry
for tempuser in the /etc/shadow file, using the
command

grep tempuser /etc/shadow
tempuser:k8AqzGjr6amOY:9762: : : : ::

The second field in the line is the en
crypted form of the password Mark16; in this
case, it's k8AqzGjr6amOY. Now, edit the /etc/
d_passwd file and create the line

/usr/bin/ksh :k8AqzGjr6amOY:

Don't forget to follow the encrypted password
with a colon!

You can create entries for other login
shells, such as the Bourne or C shells, by fol
lowing this same procedure. For those shells,
use the tempuser account to generate your en
crypted passwords. When you're finished us
ing the tempuser account, delete it:

userdel tempuser

Once you've created the /etc/d_passwd file,
give it the same ownership and permissions as
the /etc/dialups file:

chown root /etc/d_passwd
chgrp root /etc/d_passwd
chmod 600 /etc/d_passwd

Testing your dialup password
The final step in the configuration process is to
test your dial-in modem lines. You can do so
by dialing in to your Solaris computer and log
ging in. If everything is set up properly, your
login dialog will involve three prompts, shown

below. Please note that, for clarity, we've shown
the passwords, even though they don't appear
on the terminal:

login : marco
Password : zort!poit
Dialup Password: Mark16
Last login: Mon Sep 23 13:09:16 on term/b

• • •
You' re prompted for the Dial up password

only if you get the user name and account pass
word correct. This way, you don't have to won
der which password you may have typed in
correctly: If you get your user password wrong,
you won't get the Dialup password prompt.
However, this tells a potential hacker when he
or she has guessed the password for your ac
count. To help thwart these hackers, Solaris
pauses a second before telling you whether
the Dialup password is right (by logging you
in) or not. This time delay places an upper
limit on the speed a hacker may guess pass
words. In addition, after a few failed login at
tempts, Solaris terminates the connection,
forcing a hacker to d ial up the computer
again, consuming more valuable time.

Once you enter the proper dialup pass
word for your login shell, your login process
will proceed as usual. When you pass this
login test, your configuration process will be
complete. When you test your system, be sure
to try each different login shell, as well as one
that's not in /etc/d_passwd, to make sure you're
happy with the behavior.

More security on modem lines
If you want to make your computer system
even more secure, you can take other ap
proaches, such as using cron to change the /etc/
d_passwd file on a periodic basis, for instance on
shift changes. You can do this by creating a se
ries of files with the /etc/d_passwd file format,
each containing different passwords. Then you
can use cron to replace the /etc/d_passwd file
with one of these files each time period. The
important part for you and your users is to re
member when each password is valid.

You can also protect your dial-in modem
lines with third-party hardware devices. These
devices connect to your telephone line, be
tween the wall jack and the modem. When a
remote user dials your modem's phone num
ber, this device picks up the phone line imme
diately and simulates a telephone ring.

This simulated ring continues unless the
remote user has included a security code in

Inside Solaris •~-~

the modem dialup string. For instance, if a
user is calling the phone number 555-1212,
and has a security device with a code of 1234,
a proper dial-in string for the remote modem
might be

atdt5551212,,, 1234

You could interpret this dial-in string as, "Call
the phone number 555-1212, wait six seconds,
then issue the code 1234."

When the user includes this security code,
it triggers the third-party device, allowing the
user to get through this device and into your
modem. If the user hasn't included a security
code, all that person will hear is a remote ring
ing telephone. I've found this to be an out
standing security measure.

You can also purchase third-party soft
ware that will add the best security possible:

l . '

CUSTOMIZING YOUR SYSTEM

callbacks. These give each user a prearranged
number to dial in from. Once a user calls in and
identifies himself, Solaris then hangs up on the
user and calls back at the prearranged number.
So even if a hacker figures out the identification
of a valid user on the system, he can't log in re
motely unless he's at the correct phone num
ber! The big headache for a callback system is
managing phone numbers for users that move
frequently, such as sales staff. •!•

Alvin J. Alexander is an independent consultant
specializing in UNIX and the Internet. He has
worked on UNIX networks to support the space
shuttle, international clients, and various
Internet service providers. He has provided
UNIX and Internet training to over 400 clients
in the last three years.

Tuning your environment for both X and
dumb terminals
By Al Alexander

Does your site use both dumb terminals and
X terminals with CDE? Are you always
changing your PA TH, your tty parameters,

etc.? If so, you can do a little tuning on your
startup files to greatly simplify your environ
ment. In this article, we'll explore the interac
tion between the CDE startup file, .dtprofile,
and your shell's startup file, .profile, for the
Bourne and Korn shell or .login for the C shell.

The COE startup file
The first time you log in to CDE, it automati
cally creates a default .dtprofile file for you.
It places the .dtprofile file in your SHOME
directory.

Each time you log in to a CDE session, it
reads and processes the commands in your
.dtprofile file. It makes certain environment
variables available to all your desktop applica
tions. The .dtprofile file uses the Korn shell com
mand syntax, so if you' re comfortable with the
Korn shell, the .dtprofile file is easy to work with.

One simple thing you can do is to define
the values of specific environment variables
within your .dtprofile file. Since a command-line

---11 December 1998

login never reads your .dtprofile file, you don't
have to worry about CDE-specific items inter
fering with command-line-specific items. Be
cause the CDE reads the .dtprofile file only af
ter you log in, you need to log out of the CDE
and back in again to test any changes in your
.dtprofile file.

The shell startup file
When you do a command-line login, your shell
never looks at the .dtprofile file. Instead, it uses
your shell's login file, either .profile for the
Bourne or Korn shell or .login for the C shell.
Many people customize their shell's startup file
to customize their path, set terminal preferences,
create aliases for commands and directories,
and many other things.

The hurdles
Obviously, you're going to have differences be
tween your CDE and command-line login envi
ronments. However, in most situations you'll
want to keep some things the same. When you
do so, you'll find that trying to keep both the
.dtprofile file and your shell's startup file syn
chronized can be a tedious chore. If you change

your preferences for the PA TH variable in one
startup file, you may have to make the same
changes to the other startup file.

For example, if you install some GNU tools
on your system, you'll want both the CDE ses
sions and your command-line sessions to be
able to access them. So, you'll need to update the
path in both your .dtprofile file and your shell's
startup file. You'll need to keep other types
of data in sync between CDE and command
line sessions.

The tedium and potential for error are ob
vious. Every time you change .profile, you must
decide whether you want the same changes
reflected in .dtprofile. If so, you need to cut and
paste the changes to your .dtprofile file. You also
need to be sure that you put the changes in the
right place. Then you need to test both your
command-line login as well as your CDE login
to make sure you made the changes correctly.
And that's just for the Korn shell.

If you're using the Bourne shell, you may
encounter some subtle syntax differences be
tween the .profile and .dtprofile files. So when
you cut and paste, carefully examine the text
you're moving to make sure that you're not
going to create any errors.

It's even worse for the C shell. The syntax
is so different that you can't cut and paste be
tween .dtprofile and .login, except maybe for
comments.

A much simpler way
The people who created CDE realized that this
was going to be a problem, so they created a
simpler way for you to customize your envi
ronment and keep things synchronized. Rather
than put all your customizations in .dtprofile
and in your shell's startup files, you can tell
CDE to read your shell's startup files after it
reads .dtprofile. You can do this by setting the
new CDE variable DTSOURCEPROF I LE to true in
.dtprofile.

When this new variable is true, it tells CDE
to also read your .profile (or to read the .login
file if you're using the C shell). This way, you can
put all your environment customizations in the
same file. And if you're using the Bourne or C
shell, you don't have to worry about the nuances
of the Korn-shell syntax. Now you can manipu
late all your environment variables, aliases,
custom functions, paths, etc., in the same place.

Keeping the COE and command-line
login diUerences
This approach has potential drawbacks, how
ever. In using this option, you must be careful

that the commands in your shell's startup file
don't try to set terminal options (t set, t p u t,
etc.), write output to your terminal, or read in
put from your terminal when you're perform
ing a CDE login. Because the CDE startup pro
cess reads .dtprofile (and now .profile or .login)
before defining or opening a terminal window,
an erroneous command in your startup file can
cause your CDE login process to abort or hang.

You can get around this problem by mak
ing your startup file a little smarter. The solu
tion is to make sure you run any terminal
related or I/ 0-generating commands only when
you're not in a CDE login. To do so, you can
create an if statement to keep separate all the
things you want done only in a CDE window
from things you want done only in a command
line login. The CDE environment helps this
process along by defining the environment
variable DT. If you find that DT is set, you can
be sure that you're logging into a CDE session.
If, on the other hand, it isn't set, you can be
sure that you're in a command-line login. Fig
ure A shows a part of a .profile file that con
tains an if statement as described.

Figure A
#Commands that may run in both CDE and
#command line logins:
PATH=/usr/bin:/usr/local/bin:/usr/ucb:/etc
MANPATH=/usr/man:/usr/local/man

if [! "$DT"]; then
#Commands that should run only during
#a command-line login
echo "Enter your terminal type: \c"
read termType
export TERM=StermType
stty erase 'AH' intr 'AC' start 'AO' stop 'AS'
tput init
tput clear
echo "Hello again, Marco!"

else

f i

#Commands that should only run during
a CDE session
MANPATH:/usr/dt/share/man :SMANPATH
PATH:/usr/dt/bin:SPATH

#More environment configuration ...
export PATH=SPATH:SHOME/bin
export MANPATH
export PS1:'$LOGNAME:SPWD> '
export VISUAL=vi
alias l="ls -al"
alias help=man
alias cd .. ="cd .. "
alias cd ... ="cd .. / .. "
Testing the OT variable lets you keep COE and command-line login
environment customization separate.

Inside So/aris

One advantage of this method is that you
can define CDE-specific environment variables
that won't interfere with other logins, such as
text-based or OpenLook logins. However, the
VISUAL editing feature, like many commands in
your .profile file, isn't specific to any of these
environments and is, in fact, desirable in all three.
Given the fact that you don't want to duplicate
the code in your .profile file with similar code
in the .dtprofile file, this technique maximizes
your customization ability and simultaneously
minimizes the amount of effort required.

A real-world example
The code shown in Figure A is an example of a
.profile file you may actually use. If you log in
to your system both with CDE and command
line mode (such as from a remote terminal),
then you'll probably want to have different,
but similar, values for your PA TH and MANPA TH
environment variables (among others).

First, we edited the .dtprofile file to uncom
ment the DTSOURCEPROF I LE= true line. Please
note that as you're going through the .dtprofile
file, you'll see that Sun provides example code
for making your .profile or .login file act differ
ently in CDE mode.

Notice that the first thing we did was set
up the base values for the PA TH and MANPA TH
environment variables. These happen to be
the values that we use for the command-line
login. Then, our if statement contains two sec
tions. If you're in a command-line login, your
shell executes the first section, which asks you
for your terminal type, sets it up, and prints a

SAFEGUARD YOUR PROCESSES

welcome message. This would cause us prob
lems if we executed it in CDE. The second sec
tion, executed only during a CDE login, adds
the CDE commands to PA TH and the CDE man
pages to MANPA TH. Finally, we export the path
and set up a few environment variables and
some aliases.

Debugging
You need to be careful when you edit your
.dtprofile, .profile, and/ or .login files. If any of
these files contain errors, CDE may not allow
you to log in. Luckily, it's easy to recover from
this sort of error. You simply select a command
line login from the CDE login screen (or log in
as the root user if the changes in .profile prevent
you from logging in using your account), then
correct any mistakes in your startup files.

If you're making some complicated changes,
it may be easier to extract the section that you
want to change into another file. You can then
edit this test file and execute the file to test the
changes. Once the changes are working correct
ly, you can put them back into the appropriate
startup file. In the Korn shell, you use the . com
mand to execute the test file, while you use the
source command to do so in the C shell.

Conclusion
When you switch back and forth between X ter
minals and dumb terminals, you should spend
a little time customizing your startup files to
make your life simpler. Here, we showed you
how the CDE .dtprofile file and your shell's
startup file (.profile or .login) interact. •!•

Allow your commands to continue running
after you log out
Sometimes you want to run a time

consuming program but, for security
reasons, you don't want to leave your

account logged in the whole time it's running.
If you've ever tried putting the program in the
background and logging out, you've found that
Solaris terminates your program anyway. In
this article, we'll see why this happens, and we'll
show you a few ways to get around it.

----11 December 1996

Why it happens
When you log out, Solaris sends a hangup sig
nal (SI GHUP) to all processes your login shell
started, telling them the terminal is no longer
active. Normally, a program relies on the de
fault behavior when it receives a signal. How
ever, the default action for most signals, in
cluding SIGHUP, is to abort the program. If we
could give our programs a new behavior for

SIGHUP that does nothing, then our programs
will continue to run.

How to keep your processes alive
If you're writing your own programs, you
have a simple way around this. Rather than let
the process terminate when it receives SIGHUP,
you can tell it to ignore the signal. You can do
this in a C program by using the s i g ignore(}
function. Figure A shows a simple C program
that loops forever, and it uses the s i g ignore(}
function to prevent the SIGHUP signal from ter
minating the process.

Figure A
#include <stdio.h>
#include <Signal. h>

int main(int argc, char •argv[l)
{
sigignore(SIGHUP);
while (1)

{
puts("Loop ... ");
sleep(3);
}

return 0;
}

This simple C program sits in a loop forever, ignoring any
SIGHUP signals sent to it.

Figure B
#! /bin/ksh
trap 'echo "SIGHUP ignored"' 1
while true; do

echo "Loop ... "
sleep 3

done

This Korn shell script operates similarly to the C program
shown in Figure A.

I
CUSTOMIZING COE

You can do something very similar with
shell scripts. For example, in the Korn and
Bourne shells, you can use the trap command
to specify an action when a particular signal
comes in. Figure B shows a simple Korn shell
script that prints a harmless message on the
screen when the SI GHUP message arrives.

When you run either the program shown
in Figure A or Figure B and send it the SI GHUP
signal, the program ignores the signal and
continues to run. If you're running in the CDE
or Open Windows environment and close the
display window, you can see that it's still run
ning by using the p s -e f command.

The nohup command
What can you do if you're running a program
for which you don't have the source code? In
this case, you can't modify the source code. How
ever, Solaris provides a command called nohup
that does the trick. You execute it like this:

nohup command arguments

where command is the command you want to
execute and arguments holds the argument list
you want to use.

This program starts your command in a
new process, telling that process to automati
cally ignore SIGHUP. Now your program oper
ates normally, even if you log out or your ter
minal gets disconnected.

Conclusion
We've shown you to get around the SIGHUP com
mand so you can execute your commands with
out worrying about leaving your terminal unat
tended. You can sleep easily in the knowledge
that your program will execute properly. •!•

Manipulating your dtlerm window
with escape codes
By Al Alexander

I n the last issue, we showed you how to
change the title of an xterm window in Open
Windows. This month, we'll not only show

you how to do the same with a d t term window,
we'll also show how you can change the color

of your text and how you can minimize or maxi
mize your d t term window. Then we'll put to
gether a simple script to allow you to modify
your d t term window. These capabilities can
really make things simpler when you're work
ing with many windows open at the same time.

Inside Solaris ··--~

Change your window title
As we described last month, when you work
with many windows on the screen simulta
neously, it can be difficult to tell them apart at
first glance. Even more annoying, the title bar
of all the windows defaults to Terminal, which
is nearly useless, as shown in Figure A.

Figure A

fdit Qptions .!:i_elp]

By default, the title bars convey little useful information.

With descriptive titles on each d t term win
dow, it would be much easier to tell which
window was which, whether they were lay
ered on top of each other or presented as icons
on the desktop. Unfortunately, the d t term
pulldown menus don't offer an option to dy
namically change their titles.

This problem is easy to solve if you're
comfortable sending escape codes to termi
nals. As you know, whenever you send text to
a terminal, the terminal displays the text. Es
cape codes are the special case-when the ter
minal sees an escape code, it performs some
special function rather than slavishly drawing
the characters on the screen. You can think of
escape codes as a way of directly communicat
ing with your d t term window. When you send
the right sequence of characters to the d t term
window, you'll get the response you want.

For instance, one special sequence of char
acters tells the d t term window to print text in
its title bar. This sequence of characters is
[Es c]] 0 ; t ex t [Ct r l] -G. (Please note that we
put spaces between the parts of the escape se
quence so you can tell them apart. Don't put
these extra spaces in your escape sequences.)

The first character, [Es c], alerts d t term to
the start of an escape sequence. Next comes],
which tells the d t term window that it's the set
text parameters escape sequence. The 0 pa
rameter tells the d t term window to use the text
parameter as the icon and window title text.

~--·December 1998

The; separates the first parameter (O) from the
second parameter (text). The text parameter
continues until the [Ctr l]-G. Thus, to set the
window title to My Title, you'd send the
d t term window the escape sequence

[Esc]] 0; My Title [Ctrl]-G

The easiest way to send these characters to
your d t term terminal is with an echo com
mand, as follows:

$ echo ""[]0;My Tit le"G"

We surround the escape sequence with
quotes (" ") to prevent the shell from inter
preting the special characters in the escape
sequence. Also note that in order to generate
the " [, we pressed the [Esc] key, and to get the
"G, we pressed [Ctrl]-G.

The first parameter, 0, can actually be one
of four values, as described in Table A. You
may want to take advantage of the fact that
you can specify the iconic and window title
text separately. When the d t term window is
open, you may have plenty of area to describe
the window. However, in iconic form, you
have little space to describe the window. The
final value, 3, is outside the scope of this ar
ticle, but feel free to experiment with it.

1 Set icon text

2 Set window title text

3 Set current working directory
The set text parameters escape sequence has four modes.

You can put nearly any text value you want
in the window title or icon text, so long as it
doesn't contain a [Ctr l]-G or newline. Thus, if
one window contains a telnet session to Cali
fornia, you could set the window text with

$ echo ""[]0;California"G"

and for your other window, in which you're
working on a CAD/CAM project involving a
gas range, you can enter

$ echo ""[]0;CAD/CAM Gas Range Proj ect"G"

Change the text colors
Another way you can help distinguish between
windows is with color. It's easy to change the
foreground and background colors on the
d t term window. For instance, if you want to

change one d t term window to use blue as the
foreground color, you'd enter

$ echo '"'[[34m"

This special character sequence tells the
d t term window to change the foreground text
color to blue. Other very similar escape se
quences allow you to set the foreground and
background colors. Table B shows the colors
d t term supports and the corresponding escape
code to set the foreground or background color.

[Esc] [31 m [Esc][41m
Green [Esc][32m [Esc][42m
Yellow [Esc][33m [Esc][43m
Blue [Esc] [34 m [Esc] [44 m
Magenta [Esc][35m [Esc][45m
Cyan [Esc] [36 m [Esc] [46 m
White [Esc][37m [Esc][47m
Default [Esc J [39 m [Esc J [48 m

You can set the foreground and background colors of the
d t term window with these escape sequences.

Manipulate the window state
The d t term window even allows you to change
the window status, using the window manipu
lation escape sequence: [Esc] [paramf is t t.
Table C describes the different window states
you can specify with the paramlist param
eter(s). So, if you want to minimize the win
dow, you can use the following command:

$ echo ""[[2t"

Restore (de-iconify) the window.
2 Minimize (iconify) the window.
3;x;y Move window to x, y.

l

4;h;w Resize window to h X w pixels.
5
6
7
8;h;w

Put the window in front.
Put the window in back.
Refresh (redraw) the window.
Resize text area to h X w
characters.

The window manipulation escape sequence lets you
move, resize, and otherwise change the window's state.

By now you must be wondering where
these escape codes came from and what other

options are available. You can
find a complete description of
all of them in section 5 of the
man pages. Just type

$ man -s5 dtterm

to learn more about the spe
cial escape sequences that are
available to control the char
acteristics of d t term windows.

A shell script to make
it easy
I've found that it's not easy to
remember escape codes, so I
wrote a simple shell script to
access all the features we dis
cussed in this article. Figure B
shows the complete source
code for the script ISOLd t cf g,
which lets you configure your
d t term window.

Figure B

#!/bin/sh
while true
do

clear
echo 11

DTTERM Management Utility

b - B l u e c - Cyan
g - Green k - Black
m - Magenta r· - Red
w - w h i t e r - ye l l ow
t - Set window/icon title

- Iconif y window
l - bit

Choice: \c 11

read CHOICE
case 11 SCHOICE 11 in

b lB) echo 11 \0033 [34m 11
;;

c: Cl echo 11 \0033 [36m 11
;;

g: G) echo 11 \0033 [32m 11

;;

k: Kl echo 11 \0033 [30n 11

;;

m: Ml echo 11 \0033 [35TI 11

;;

r: Rl echo 11 \0033 [31m 11

;;

w: 111') echo 11 \0033 [37m 11

;;

r: YJ echo II \0033 [33m 11
;;

TIP: The window manipu
lation escape sequence is
one of the most exciting
escape sequences. To illus
trate, suppose you write a
script that monitors the
system. You don't neces
sarily want it to take up
any room on your screen,
so you can tell your win
dow to minimize itself as
the first thing in your
script. Then, if something
happens that demands at
tention, you can restore the
window and put it in front,
so it's not obscured by any
other windows. You can
use this technique to make
your shell scripts take
screen real estate only
when it's required!

t l Tl echo 11
\ nN ew w ind ow t i t l e : \ c 11

read tit le
echo 11

\ 0033] 0 ; S { t i t l e }D 11

; ;

i l I l echo 11 \0033 [2t 11

ei: it 0;;
i:lXJ ei:it 0;;

esac
done

This script, called ISOLdtcfg, allows you to interact
with dt term's escape codes.

Inside Solaris •--~

Rgure c

[g, Ca lifo rnia l'..::Jd]
yQ CAD/ CAM Gas_Ran_9_e Prolect I. ·J ..J

- yJI : , Terminal ·

~i ndow fdit Qptions

DTIERM Management Uti 1 i ty

b - Blue c - Cyan
g - Green k - Black
m - Magenta r - Reg
w - White y - Yellow
t - Set window / i con title
i - Iconify window
x - Exit

Choi ce: t

New window title: Login to ACMEI

Here we're telling ISOLdtcfg to change the window title.

C SHELL TIP

The I SOL d t cf g script continuously prompts
you for a selection. It exits only when you
choose x to exit or i to iconify (minimize) the
d t term window. Otherwise, it sends the appro
priate escape code to the d t term window and
prompts you for the next command. Figure C
shows ISOLdtcfg running. Notice that the title
on this window is about to be changed to
Login to ACME.

What else can we do?
When you read the section 5 man page for
d t term, you'll see that you have quite a lot of
control over the d t term window. You can set
screen attributes, such as bold and dim. You
can move and resize the windows. You can
also address the cursor. The escape sequences
d t term provides give you flexibility to control
and customize your working environment. •:•

Using command-line history
with the C shell
t st month, we showed you how to use

command-line history in the Korn shell.
Using the Korn shell, you use vi or emacs

commands to manipulate previously entered
commands. The C shell uses a totally different
philosophy. Instead of using editor-like com
mands to edit the command line onscreen, the
C shell provides commands that let you tell
it what to do with the command line, but it
doesn't show you what it's doing. In this ar
ticle, we'll explain some of the ins and outs of
the C command-line history mechanism.

Command numbering
Each time you enter a command in the C shell,
the shell assigns it a number. You can view the
last few commands you've entered and the
commands' numbers by issuing the hi story
command, as shown below. If you prefer to
have the latest command displayed first, you
can invoke hi story with the -r option.

Mikado% history

~--Iii December 1998

1 vi ISOL9606a .c
2 cc ISOL9606a .c -lpthread
3 . /a.out
4 gdb a.out

Since the C shell keeps the command lines
in memory, rather than in a disk file like the
Korn shell does, you typically don't have ac
cess to much history. The C shell has a shell
variable named hi story to tell it how many
command lines to remember. You can change
this value if you need to do so. For example, if
you want the C shell to remember the last 50
commands, just type

Mikado% setenv history=50

One possible snag that you must be aware
of is that the C shell buffers only the command
lines that give you the normal prompt. When the
C shell issues the auxiliary prompt, it doesn't
store them in the history list. Luckily, the C shell
issues the auxiliary prompt only when you've
given it an incomplete flow control statement.
For example, suppose you type the following:

Mikado% sync
Mikado% if ($history>= 50)
? echo "Huge history !"
? end if
Mikado% history

65 sync
66 if ($history>= 50) then
67 history

As you can see, when we started the if
statement, the C shell prompted us with the
auxiliary prompt(?) until we finished the if
statement with the end i f statement. When you
examine the history, you see only the first line
of the if statement. The remainder of the if
statement doesn't make it into the history list.

How do we use it?
Unlike in the Korn shell, the command-line
history mechanism is always active and avail
able to you in the C shell. To access previously
entered commands, you use the exclamation
mark (!) and follow it with a specifier telling
the C shell which command line you want.
Table A shows five ways to specify the com
mand line.

Use last command entered.

-# Use the #th previously entered
command line.

Use absolute command line
number#.

s tr in g Use last command starting
with string.

? string? Use last command line containing
string anywhere within it.

These are the five basic ways you can specify which
command line to use.

The simplest way to specify a command
line is to use the ! specifier, which tells the C
shell to use the last command line you en
tered. However, this doesn't allow you to ac
cess any command line other than the last one.
Here we're going to check the amount of
space left on our /tmp partition, then we'll run
the command again:

Mikado% df /tmp
/tmp (swap): 126144 blocks 5711 files
Mikado% !!
df /tmp
/tmp (swap): 126144 blocks 5711 files

As you can see, after you enter a command
line that uses history, the C shell prints the re
sulting command line before executing the com
mand. Later, when you start using some of the
advanced features, the C shell will let you see
the results of more complex command lines.

The ! specifier gives you access to only
the last command, though. If you want to ex
ecute a command other than the last one,
you might want to use the-# specifier in
stead-just replace the# with the number of
command lines you want to go back. This al
lows you to access any of the previous com
mands. It turns out that the ! specifier is re
ally shorthand for the specifier -1, which
tells the C shell to use the previous com
mand. Therefore, you can execute the last
command using either the ! ! or !-1 com
mand. Here, the last command will run the
d f I tmp command again:

Mikado% df /tmp
I tmp (swap): 126144 blocks 5711 f i l es
Mikado% df /proc
/proc (lproc): 0 blocks 451 f i le s
Mikado% df /dev/fd
/dev/fd (fd): 0 blocks 0 f i le s
Mikado% !-3
df /tmp
I tmp (swap): 126144 blocks 5711 files

If you can see the command you want to
access on the screen, you can count the num
ber of commands you've entered since then
and use that number for #. If the command
you want to use has already scrolled off the
screen, and you can't tell how far back to go,
you can simply run the hi story command to
see the last few commands you've run. Since
the hi story command shows the absolute
command number, you can use the command
number without the hyphen. This way, you
don't have to do a mental subtraction.

If the command line you want has scrolled
off the screen, you don't necessarily have to
use the hi story command and the absolute
command-line number. If you remember what
the command line started with, and you've
used no other commands that start with the
same command, you can use the s tr ; n g speci
fier. This tells the C shell to find the last com
mand starting with s tr; ng.

If you've entered an intervening command
line that uses the same command, you can use
the ? s tr in g? specifier instead. This specifier
lets you locate a command line based on any
string in it, rather than just the first one.

In this example, we use ! vi to edit the
script_program file. Next, we want to edit the
test_data file, but we can't use ! vi or we'll get
the vi scrip t_prog ram command again, so
we'll instead use ! ? test?.

Inside Solaris m __ ___.

Table B

Mikado% history
6 vi test data
7 vi scri pt_program
8 . /script_program

Mikado% !vi
vi script_program
Mikado% !?test?
vi test_data

Modify your command lines before
executing them
In the examples we've worked through so far,
we've just used the command-line history
mechanism to re-execute commands. You can
actually add to a command line by creating a
new command line and inserting the command
line history specifier at the appropriate point.
You may even use multiple command-line
specifiers in your new command line. The fol
lowing (admittedly contrived) example shows
three commands, where the first two are in
corporated into the third one:

Mikado% ls
a
Mikado% cp a
Mikado% echo '!-2' ! !
echo 'ls' cp ab
a b -- cp a b

Often, you don't really want to execute the
same command line; you want to execute one
that's similar to a previously executed com
mand line. The most frequent case occurs
when you make a typing mistake and don't
catch it until the command fails. For this spe
cial case, the C shell provides a quick way to
repair your command line. Just type "o I d"new,
and the C shell will find the first occurrence of

Argument Description
specifier

m Use argument m.

m-n Use arguments m through n.

-n Use arguments 1 through n.

m- Use arguments m through the one before the last.

m * U e t m thr h th 1 t ne s argumen s oug e as o
A

Use argument 1.

s Use the last argument.

* Use arguments 1 through$.
You can tell the C shell to use only a part of the command line with these
argument specifiers.

,____ __ • December 1998

o Id on the line, replace it with new, then re
execute the command. Here's an example:

Mikado% viscript_program
viscript_program: command not found
Mikado% "vis "vi s
vi script_program

Or maybe you don't want to execute the
same command, you just want to use one or
more of the previous command's arguments.
Table B shows you some of the various meth
ods you can use to extract one or more argu
ments from a command. You use these in con
junction with the command-line specifier.

The C shell breaks the command line into
arguments, starting with 0 for the command
name and 1 for the first argument of the com
mand, and it numbers the rest sequentially.
It uses standard quoting rules, so it usually
breaks the command at white space, but
quotes allow an argument to contain white
space. For example, the command line

Mikado% Now is "the t ime" for

contains four arguments. Argument 0 is the com
mand Now, and argument 2 holds "the time".

You use an argument specifier by ap
pending a colon and the argument specifier
to the end of the command-line specifier. So
you can specify the argument "the ti me" in
the previous example by using ! ! : 2 where
you want" the ti me" to appear in your new
command line.

If you want to use multiple arguments,
you can specify them separately or as a group.
For example, if you wanted to use the same
argument list as the previous example, but
with a command named Then, you can enter
this command:

Mikado% Then ! ! :•

Similarly, if you want just the last argu
ment, you can use ! ! : S, or ! ! : ... for argument
1. Please remember that the command name is
numbered 0.

Command-line history in practice
Now you can do some really fancy command
line manipulations. For example, suppose
you're developing a program. Normally,
you'll go through the standard Edit,
Compile, Run, Debug cycle. If you forgo
the command-line history, you will type

something like this:

Mikado% vi Test_Program.e
Mikado% gee Test_Program.e -lpthread
'--oTest_Program
Mikado% Test_Program
Mikado% gdb Test_Program

Then you'll start the cycle all over again.
Using the command--line history, you

can get away with less typing. You can do
something like this:

Mikado% vi Test_Program.e
Mikado% gee ! ! :• -lpthread -oTest_Program
gee Test_Program.e -lpthread -oTest_Program
Mikado% Test_Program
Mikado% gdb ! !
gdb Test_Program

Then, instead of typing the same com
mands for the next go-round, you can just
type ! -4 for each command. The first ! -4
starts vi, the next !-4 starts gee, etc.

Advanced features
We still had to type too much in our last ex
ample. The culprit in this case is that we need
both Test_Program and Test_Program.c. When
you're working with filenames, you'll often
want to strip off directory names, extensions,
and file modifiers. For this purpose, the C
shell allows you to modify individual argu
ments. Table C shows some of the most-often
used argument modifiers.

h

r

e

s/ xi y

Remove the filename, leaving
the directory.

Remove the directory, leaving
the filename.

Remove the file extension.

Remove all but the file extension.

Substitute y for x.

You can even edit individual arguments with these
argument modifier codes.

To use these argument modifiers, simply
add a colon to the end of your argument speci
fier and follow it with the argument modifier
code. The following example will show you
how each of these argument modifiers works:

Mikado% x /export/home/x.y
Mikado% x ! ! :1:h
x /export/home
Mikado% x !-2:t
x x.y
Mikado% x !-3:r
x /export/home/x
Mikado% x !-4:e
x y
Mikado% x !-5:s/home/away
x /export/away/x.y

Now our Edit, Compile, Run, Debug cycle
gets even simpler. The list of commands now
looks like this:

Mikado% vi Test_Program.e
Mikado% gee !! :• -lpthread -o! ! :1:r
gee Test_Program.e -lpthread -oTest_Program
Mikado% ! ! : 1: r
Mikado% gdb ! ! :1
gdb Test_Program

And as before, once you start the cycle,
you can use ! -4 to access the next command.
Now we can perform large sets of related com
mands with much less typing.

Miscellany
We have a couple more points to make. First,
the modifier : p tells the C shell not to execute
the command after it performs all substitutions
and edits. This way, you get the opportunity
to examine them before you execute the com
mand. So if you changed the last command in
the previous example to

Mikado% gdb !!:1:p
gdb Test_Program

you'd get to see the substitution, but g db
wouldn't actually run. This gets to be very im
portant if you're unsure of a complex edit.

Second, because the ! character tells the
C shell that you're about to do something with
the command-line history, you need to be sure
you escape it (precede it with a backslash)
anytime you want to use the ! character rather
than access the command-line history.

Conclusion
There are other, finer points that you'll want
to investigate after you have a firm grasp on
the C command-line history mechanism.
When you're ready, execute man esh, and
then search for the word History to get to
the relevant section (to do so, just type
I H i s t o r y) . •!•

Inside 80/aris m __ ~

SHELL SCRIPT TRICK

A quick way to parse a string in a script
When you write scripts, you often must

parse the output of a command into
tokens. For commands that emit col

umns of information, your first thought may
be to use the awK command. This utility does
the job neatly: It reads in each successive line
of input, parses it into columns, and allows
you to specify actions for some or all of the
lines. We took a preliminary look at the awK
command in the May issue in the article "An
Introduction to awk."

If you' re using the Korn or Bourne shell
and you only want to parse a little bit of text,
you're going to too much trouble. Not only do
you have to tell awK what to do, but you're
making the computer execute another com
mand. In a resource-critical situation, this
method just isn't acceptable.

The simple way
If you have a command that outputs a small
amount of data, and you'd like to break the
output into fields, there's an easier way. You
can instead use the set command. By giving
the s e t command the - - option, you' re telling
it to copy the rest of the arguments of the line
to the $1, $2, $3, etc., script variables. Then you
can access these variables directly.

All you need to do is pass the results of
the command you'd like to parse to the s e t
command. You can do so by putting the com
mand in grave accents (i.e., the single back
quote '),like this:

set -- 'command'

Suppose, for example, that you want to
find out how much disk space is free, in kilo
bytes, on the root partition. You can do so
with the d f command, like this:

$ df -b I
Fi lesystem
/dev/dsk/c0t0d0s0

avai l
356661

You'll notice that the d f command outputs
two lines of text, and the number we want is
on the second line. That's not really a problem.
The set command parses tokens on white
space boundaries, and the newline is just an
other white space to set. So, putting the two
commands together gives

set -- 'df -b /'

---m December 1996

After the set command executes, $1 holds
Filesystem, $2 holds avail, $3 holds /dev/dsk/
cOtOdOsO, and $4 holds the value we want,
356661.

What's the catch?
You may have already noticed the catch in this
technique. The $1, $2, . .. script variables nor
mally hold your argument list. So if you use
this technique, you lose access to the argu
ments the user passes to your script. How do
we get around this?

You can do this in two primary ways.
First, you might just arrange your script such
that you no longer need the arguments by the
time you use the set trick. You can often do so
by rearranging some of your script to do some
of the work before you need to do the parsing.

Second, you can store your arguments in
another location. This is surprisingly easy to
do, since the shell variable S. contains the
entire list of arguments you gave your shell
script. All you must do is store the $ * variable
in some other variable, like so:

argStorage=S•

Then, if you want to restore your argument list
to its original condition, just use the set trick
again, like this:

set -- SargStorage

There's only one problem with this method:
If you didn't pass your script any arguments,
then the set command will only see s e t - -,
and it will simply display the environment. It
won't restore your argument list properly. You
can easily fix this problem by ensuring that the
set command always sees at least one argu
ment, then just remove that argument.

The shell provides us a built-in command
named sh i ft that removes the first argument
and shifts the others down to fill the hole. So
all we need to do is give the set command a
bogus argument that we'll shift out of exist
ence. You can do it like this:

set -- bogus SargStorage
sh i ft

Now your argument variables $1, $2, ... are
back to their original values.

A simple example
Let's create a simple script to demonstrate the
technique. Figure A shows the script ISOLargs~

which first uses the set trick to parse the out
put of the d f -b I command. It also demon
strates how to store and recall the original
argument list.

Figure A
#!/bin/sh
echo "Current argument list is: h"
argStorage=S•
set -- 'df -b /'
echo "Amount of space free on I is S{4}K."
set -- bogus SargStorage
sh i ft
echo "Restored argument list: $•"

This script, named /SOLargs, demonstrates the set
technique for parsing output from another program.

When you run the ISOLargs script, the out
put looks something like this:

LETTERS

Find and urep, revisited
In the September issue, the article "Combin

ing find and grep to Find Any File Any
where" is useful, but the technique discussed
is not very efficient. When combining grep
with find, it's much better to use the xargs
program so find doesn't have to fork off an
other gr e p process for every file. You can do
it like this:

$ find I -type xargs grep -i l ficonfig

Linh Ngo
Boulder, Colorado

It's true that using the -exec option to spawn a
grep job is less efficient than your method. In
the method we used, the - exec option starts a
new process for each file . Since each process
has some overhead, this method can cause a
serious performance problem, especially when
there are a lot of matches. Another problem is
that these processes may execute in parallel.
Since they're all reading disk files, if your files
are on one disk drive, our method may cause
severe thrashing on the drive.

$./ISOLargs alpha be ta gamma
Current argument list is: alpha beta gamma
Amount of space free on I is 356661K.
Reitored argument list: alpha beta gamma

It even works properly if you don't give it any
arguments:

$./ISOLargs
Current argument list is:
Amount of space free on I is 356661K.
Restored argument list:

Conclusion
Whenever you're working on a large data
stream, using the awk command is certainly
the way to go. However, as we've shown in
this article, you can handle small jobs in an
easier, more efficient way. The set trick
shown here makes it easy to pick a part the
results of many Solaris commands. We hope
you give it a try in your Bourne or Korn
shell scripts. •:•

Your method avoids these problems. It
does so because the xargs command collects
all the filenames, builds a new argument list
for the grep job, and runs it only once. This
method starts a single process and gives gr e p
the complete list of files to search. Not only do
you sidestep the overhead of all the individual
processes, but the process checks each file se
quentially, thereby reducing thrashing on the
disk drive.

Another reader mentioned that we shouldn't
have used grep at all. Using egrep instead would
speed up the search. With our method, egrep
might not be the best choice in some situations,
because egrep consumes more RAM for a com
plex regular expression. With xargs, however,
egrep is best because it's definitely faster, and
with only one process running, the increase in
RAM isn't a big deal.

Other Cobb Group Publications
Exploring Sybase SQL Server
Inside N etware
Exploring Windows NT

Exploring Oracle DBMS
Exploring Oracle Developer/2000

Designer /2000

Inside Solaris m __ _

SunSoft Technical Suppo

(800) 786-7638

,.··.· ·..: . ,•
a . I

PERIODICALS MAIL

Please include account number from label with any correspondence.

Moving a directory b~anch
In the article "No Matter How You Slice It"

in the September issue, the method you pre
sented for moving file hierarchies is bound to
lead to trouble, because it doesn't preserve the
owner, group, or permissions. Instead, you
should use the following commands:

$ cd /abc
$ tar cf - def I (cd /xyz; tar xpf -)
$ rm -rt def
$ ln -s /xyz/def /abc

David K. Drum
via the Internet

That's a good point. We were so caught up in
the act of showing some of the finer points of
disk slices that we stubbed our toe on some
thing as simple as this. As you mention, our
method will lose all sorts of information about
the files, causing security problems and file
access errors. Your method is definitely better,
because it preserves all the information about
each file as well as what's in it.

The first command, c d I a b c, tells Solaris to
move to the parent of the directory we want to
move to a new location. The next command is the
heart of the technique. A simple copy won't do
the trick, so you've built a pipeline of commands.

The first part of the command pipeline,
tar cf - def, tells tar to archive the def direc
tory to the file named -. However, tar treats
the filename - differently than it does normal
filenames: The - means to send the archive to
the standard output stream, rather than actu
ally write a file.

When this archive flows down the pipe
line, it encounters the phrase (c d Ix y z; tar
x pf -) . As you can see, this phrase contains
two separate commands in parentheses. We
put the commands inside parentheses to start
a new subshell, because if we tried to pipe the
archive to the c d Ix y z command, the c d Ix y z
command would simply ignore our archive
and pass nothing to the next command. Put
ting it in a subshell allows the command fol
lowing c d, the t a r x p f - command, access to

'------· December 1998

the standard stream. The c d Ix y z command
moves us to the parent directory where we
wish to move our directory, and the t a r x p f -
directory expands the archive - (now our stan
dard input) in place. All this works because
tar preserves the ownership and access rights
information for all the files in the archive.

The last two commands erase the original
directory (rm -rf def) then create a symbolic link
tothenewlocation(ln -s /xyz/def /abc).Anin
teresting point: Since the second c d command
appeared in the subshell, the directory ch.an?ed
only for the subshell (i.e., the commands ms1de
the parentheses). Once Solaris encounters the
right parenthesis, the subshell terminates, and
things go back the way they were. •:•

Installing Solaris can take a long time, de
pending on the machine you' re installing on

and the features you select. But did you know
that the amount of RAM on the machine can
significantly affect installation speed?

Installing Solaris on a machine with only
a little memory can take a long time. This
occurs because Solaris needs to keep track of
everything in RAM and doesn't establish the
swap space until late in the installation proce
dure. So when Solaris needs room, rather
than swap a little-used piece of data to the
swap space, it discards part of the installation
program. Then it reloads part of the installa
tion program as it needs to.

It can take significantly longer to install
Solaris on a machine with only 16MB of RAM
than a machine with 32MB. So if you're try
ing to get a machine ready as soon as pos
sible, you might want to borrow some RAM
to put on the machine during installation.
You can remove it when you're finished.

/';""\

~~ ~'\ Printed in the USA
Q~ This journal is printed on recyclable paper.

