
I

1
An introduction to Java
applets and applications
8
Changing the title bar of an
xterm window
7
Using command-line
history in the Korn shell

10
Orderly shutdown during
extended power failures
15
Who has an account on
your system?
18
More directory switching
with the Korn shell

http://www.cobb.com/sun/

November 1996 • $11.50
VOL. 2 NO. 11

An in1roduction to Java applets
and applications
By Probal Shome

One reason for all the hoopla
regarding Java is that it holds
great promise-the promise of

machine independence. You're sup
posed to be able to write an applet
on one of many platforms (from a
PC running Windows 95 to an IBM
mainframe running MYS) and
instantly achieve cross-platform
portability of the applet to all plat
forms on which the Java Virtual
Machine (JVM) is implemented.

In this article, we'll show you
some of the basics of creating Java
applets and applications. We assume
that you have a working knowledge
of C and object-oriented concepts,
such as class, objects, methods,
attributes, and inheritance.

We'll first build the tradi
tional "Hello, World!" applet and
present some variations. Next,
we'll build a standalone Java ap
plication version of the "Hello,
World!" program. Finally, we' ll
add the ability to display text that
the user enters.

Installing Java
If you don't have Java installed,
you'll have to download the Java
Development Kit (the latest ver
sion at the time of this writing is
vl.0.2) from http://java.sun.com/
java .sun .com/products/JD K/index.
html. Note to x86 users: Starting

with JDK vl.0.2, Sun provides a
version that runs on the Intel
platform.

Quick introduction
Writing a Java applet is similar to
using a third-party application
toolbox with C++. Many of these
provide a base class that manages
the nuts-and-bolts details of an
application, and you provide the
code that makes the application do
something interesting. Similarly,
Java provides the base class Applet,
which provides the basic details in
telling the application how to open
a window, redraw itself, and other
general features. When you create a
Java applet, you typically just ex
tend the Applet class.

When you create a new class
in Java, the new class must be in a
file named ClassName.java, where
ClassName is the name of the class
you're creating. You can compile
the ClassName.java file using j avac
to get the ClassName.class file,
which holds the compiled JVM
code. You can then run the code in
ClassName.class with the Java in
terpreter, or if you have an HTML
document that specifies it, you can
view it with an HTML browser that
supports Java, such as HotJava or
Navigator. The JDK also comes
with an applet viewer, which will
execute Java applets specified in an
HTML document.

A Publication of The Cobb Group

INSIDE
OLAR IS

t'r:s.,if.SunSnfr So/mis

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11 .50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris @merlin.cobb.zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr @merlin.cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander

Probal Shome
Jerry Phillips

Production Artist Liz Palmer
Editors Linda Recktenwald

Karen S. Shields
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Advertising
For information about advertising in Cobb Group journals,
contact Tracee Bell Troutt at (800) 223-8720, ext. 430.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1996, The Cobb Group. All rights reserved. Inside Solaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right, with respect to submissions, to revise,
republish, and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff
Davis Publishing Company. Inside Safaris is a trademark of Ziff
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall ,
OpenBoot, OpenWindows, DeskSet, ONC, and NFS are trade
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade
marks or registered trademarks of their respective holders .

.___ __ fl November 1998

The main difference between a
Java applet and a Java application is
that an applet needs to be run from
a supporting program, such as a
browser or the Java applet viewer
program. A Java application may be
run from the Java interpreter. An
applet relies on the browser for sup
porting code, where an application
is self-sufficient.

A short note about comments
J ava recognizes three styles of
comments: text enclosed by/* and
*I, text after I I till the end of the
line, and finally, text enclosed by
/** and *I, which has a special
significance for the j av a doc tool
that generates documentation for
Java applets. Since Java contains
no preprocessor, we'll use/* and
*I to block out chunks of code,
which we would do in C using
i f 0 ... #end i f. Since /* and *I
pairs do not nest, we'll leave them
for block quotes and use I I for
line-at-a-time comments.

QUICK TIP: Note that Java, like
CIC++, is case-sensitive. The words
Class and class are different words.
The Java tools (like the Java compiler
j avac) are also case-sensitive.

The HelloWorld applet
Let's start by writing a simple
applet that displays the string
"Hello, World!" Figure A shows
the code for our first Java applet,
Hello World.java.

The first two statements import
the Applet and Windowing classes
that we're building upon for our
example. You must include them,
or the applet won't work. The

Figure A

Abstract Windowing Toolkit
(A WT) provides the windowing
user interface to our Java applet.

Next, we tell Java we're creat
ing a new applet class named Hello
World by inheriting all useful
methods (ways of doing things) from
the generic Applet class. We redefine
the way this applet displays itself
on the screen by providing a new
version of the pa i n t () method. We
use the drawStri ng() method to
display the text inside the applet' s
pa i n t () method.

Using a text editor, we type the
Java code above into a text file
called Hello World .java. We then
compile the code by typing

$ javac Hel loWorld.java

If the /java/bin directory isn't
included in your PA TH variable,
you'll have to specify the complete
path to j avac, like this:

$ ljavalbin l javac HelloWorld . java

If j av a c compiles the code
and finds no errors, it creates a
file named Hello World.class in the
current directory. In order to run
the applet, we need to create an
HTML document telling the brow
ser to run the applet. To do so,
create the file Hello World.html in
the current directory. Figure B
shows the contents of the new
Hello World.html file.

If you open this HTML file in
your Java-enabled Web browser,
you should see your first Java
applet! You can execute this applet

import java.applet.• ; II Remember the import statements
import java .awt.• ; II .. Abstract Windowing Toolkit

public class HelloWorld extends Applet {
II Display the applet using this method
public void paint(Graphics g) {
g.drawString ("Hello, World!", 50, 75);

}

Our first Java applet simply displays a text string in the paint ()method.

with the applet viewer program like this:

$ appletviewer HelloWorld.html

Once you do so, you'll see the window shown
in Figure C appear on your screen.

For each new applet in this article, you'll
have to create a new HTML file that looks like
Hello World.html, changing only the name of the
class in the APPLET tag. You can, of course,
name the HTML files anything you choose.

HelloWorld: Where did the
applet go?
Next, we'll change the foreground and
background colors of the Hello World applet
and examine an interesting technique for
visually integrating Java applets into a Web
page. While we could simply add some code
to our Hello World.java program, we'll use this
opportunity to show how easy it is to extend
an existing class. So rather than modifying
Hello World.java, we'll create a new file, called
Color _Hello World.java, that extends Hello
World.java. Figure D contains the code for our
Color _Hello World applet.

As you can see, we merely redefine the
in it () method that the Applet class executes
when it starts. You may be wondering (if
you've not seen it in C++) what the keyword
t h i s denotes in the listing in Figure D. It's a
self-reference that is implicitly passed to each
method (operation) of the current object, i.e.,
this object-the object for which we're de
fining the method or operation. In this case,
the keyword this translates into a reference to
the Color _Hello World applet. And so, the fore
ground and background colors of this Color_
Hello World applet are set.

We use the se tBackg round () and the
set Foreground () methods to change the
background and foreground colors of the
Applet window. (For some color definitions,
see the sidebar "Standard Java Colors" on
page 4.) The java.awt.Component package
defines the s e t Back g round () and set Fore -
ground() methods. All GUI widgets, except
menu components like menubar and menu
items, descend from the Component class.
Thus, these two operations work on all these
widgets, including applets.

The subclass-superclass relationship uses
the ISA hierarchy model. In the ISA hierarchy
model, a subclass is a (ISA) specialization of
its superclass. For example, if you have the
class hierarchy shown in Figure E, you can see

Figure B

<HTML>
<APPLET code="HelloWorld.class" width=150 height=100>
</APPLET>
<!HTML>

This HTML document tells the browser to run the applet code found in
HelloWorld.class in a 150x100 window.

Figure C

Applet Vie\.VE

Applet

Hello, World!

App let started.

Here's the result of our HelloWorld
applet.

Figure D

import java.applet.•
import java.awt.• ;

public class Color_HelloWorld extends HelloWorld
II Set the background and foreground colors
public void init() {

}

II match your browser background
this.setBackground(Color.white);
II whatever foreground color suits your fancy
this.setForeground(Color.blue);

The Color_HelloWorld applet modifies HelloWorld by changing
the foreground and background colors.

Figure E

This hierarchy of edibles illustrates the !SA hierarchy model.

Inside Solaris II __ _

that a Mango is a Fruit. So the Fruit class
(collection of all fruits) is a superclass of the
Mango class (collection of all mangoes). The
Mango class is a subclass of the Fruit class.

Similarly, an Applet ISA Panel (defined
as a Container that's nested inside another
Container) ISA Container ISA Component.
This is the subclass-superclass chain that
leads from an Applet up to a Component.
This example gives you an idea of the
hierarchical structure of the elements of the
GUI interface. It extends to all aspects of
Java, since it is an object-oriented language.

After this diversion into class hierarchies,
let's get back to the Color _Hello World applet.
Notice how we set the background color to
white, so that it matches the browser's de
fault background. Suddenly the text dis
played inside the applet seems to be floating,
since we can no longer see the boundaries of
the applet within the Web page. This trans
parency effect is really striking for animated
applets. (If your browser uses a default back
ground other than white, you may want to
change it to white for the duration of this
demonstration.)

Building our first Java application
Now that we've built our Hello World applet
and extended it, it's time to see how to create
a standalone application. Let's build a stand
alone version that can be directly executed by

Standard Java colors
The package java.awt.Color provides access to
all the color capabilities of the Applet environ
ment. While you can create any colors you
want, java.awt.Color provides a few predefined
colors for you:

Color.black Color.green
Color .blue Color .lightGray
Color.cyan Color.magenta
Color.darkGray Color.orange
Color.gray

Color.pink
Color.red
Color.white
Color.yellow

You can look up these constants, as well as
all the methods for the Color class, in the API
documentation available from http://java.sun.
com/java.sun.com/newdocs.html. Please note that
these colors may appear slightly different on
various video card/ monitor combinations, as
few are calibrated.

~--11 November 1998

the Java interpreter, outside the browser. To
start, create the text file named Hello World
App.java, as shown in Figure F.

Figure F
II Note the absence of import packages
class HelloWorldApp {

II We must define main() which gets
II executed by de f ault.

pub l i c stat i c v o i d ma i n (St r i n g a r gs []) {

System.out.println ("Hello, World!") ;

HelloWorldApp.java is our first Java application.

For our application, we forgo the niceties
of a windowing system . This Java application
is much closer to the traditional "Hello,
World!" application.

System.out is analogous to the standard
output stream (STDOUT) used in C/C++.
pr i n t l n () starts a new line after the text, just
as if you used print f ()in C and appended a
newline (\n) to the format string. We compile
the application using j av a c as before. How
ever, we run it differently, by executing the
Java interpreter:

$ java HelloWorldApp
Hello, World!

As you can see, the result is that the text
"Hello, World!" gets printed. Here we've built
a text-mode application, but this shouldn't
lead you to conclude that Java applications are
restricted to text mode. They can have graph
ical user interfaces as well. In fact, we'll build
one in the next section.

Adding an input text field
We'll now build a Java application that al
lows you to type text in a field, which it then
displays in a different pane. To do so, we
implement a special kind of frame for our ap
plication. A frame is defined as an optionally
resizable top-level application window. We'll
define a subclass of the Frame class called
TextFieldApp.

Each such frame will contain a text field for
the user to type in text and a text area for the
text to be displayed. We create the frame, then

add the text area and text field to it, after hav
ing customized them both for our purposes.
We add them so that the text area is at the top
of the frame, and the text field is at the bottom.
Java will automatically do the layout for us.
There are more complicated layout managers
in Java, which allow the specification of elabo
rate layout constraints. These are useful for lay
ing out windows containing several components.

Since this is a standalone Java application,
we must define a ma i n () method, in which we
create, resize, and paint the frame. Finally, we
need to write an event handler. In this case, the
event handler is simpler than usual, since
we're not concerned about mouse-clicks, key
board events, or windowing events (like the
window being moved). If we'd been interested
in those events, we'd most probably have rede
fined the handle-Event () method. Since we're
interested only in copying the text entered in
the text field to the text area, we can take a
shortcut and redefine the act i on () method to
copy the text when necessary.

The code for our TextFieldApp.java pro
gram is shown in Figure G. Notice that we've
left out, for the purposes of this exercise,
elementary components of the window, such

Figure G

import java.awt.•

public class TextFieldApp extends Frame {
TextField textfield II For typing in text
TextArea textarea ; II and displaying it ...
Font textareafont

public TextFieldApp (String title)

II Create a Frame with the title
super(title);

II Add text field and textarea

as a menu bar that would allow us to choose
to quit the application.

Now you can compile and run the
TextFieldApp.java program using the commands

$ javac TextFieldApp . java
$ java TextFieldApp

When you do so, you'll see the window shown
in Figure H. To play with the application, type
in some text in the lower text field, and press the
[Enter] key. You should see the text in bigger
letters echoed in the text area above. You'll have
to kill this window manually, since we haven't
implemented an OK button or a Quit menu item.

Figure H
------- - - - -------- ----- ---- ---ff!stGIJJAppllcat1on '

Displays happen here!

IEntertext

Here's what our Java application looks like when it first starts running.

} II end TextFieldApp() method

11 Al l a pp l i cat i on s must have the ma i n () method .
public static void main(String args[]) {

Frame f =new TextFieldApp ("First GUI
•Application");

f .pacK(); II Resize to appropriately small size.
f.show();

II end ma i n () method

textfield =new TextField ("Enter text:", 40);
textarea =new TextArea ("Displays happen here!",

II Handle text being typed in, and transfer it to
II the text area.
II The more generic method called handleEvent()
II can handle Keyboard & mouse events and would
II be needed for more complex windows.

5, 40) ;
textarea.setEditable(false); II Don't allow user to

II modify it!
textarea.setBacKground(Color.white) ;
textarea.setForeground(Color . blacK) ;
textfield.setForeground(Color.blacK) ;

II Set BIG font for display of textarea.
textareafont =new Font("Courier", Font.BOLD+

Font.ITALIC, 36) ;
textarea.setFont(textareafont) ;

II Add these elements to the current frame.
this.add("North", textarea);
this.add("South", textfield); II very simple layout

public boolean action (Event event, Object argument) {

II Text typed into text field ?
if (event.target== textfield) {

II Display text
text area. se tTex t ((String)argument + "\n")
return true;

else { return false ;

I I end a c t i on () me t hod

II end TextFieldApp class

This Java application copies any text entered into the text field to the text area.

Inside Solaris •--~

Information resources
You can find many auxiliary sources of infor
mation about Java on the Internet. If you're
interested in the cross-platform aspects of Java
development, you can keep abreast of the JVM
porting efforts for different platforms in the
document http://java.sun.com/java.sun.com/Mail/
external _lists.html.

For a registry of many existing Java applets
(along with the source code for many of them),
you'll want to visit http://www.gamelan.com/.
Also, check out http://java.sun.com/java.sun.com/
applets/index.html for an index of many Java
applets you can tinker with.

Don't forget to check your local bookstore
for books on Java. Unless your bookstore is
horribly out-of-date, there'll be about a trillion
different books on Java. Be careful before you

buy a Java book: Since Java is the current fad
language, many books on it are junk.

Conclusion
We've shown you how to build simple Java
applets and standalone applications. We also
demonstrated how to extend an existing
applet for which we had the Java source code.
Finally, we explained how to create a Java
application. Since the JDK is freely available
on the Internet, and there are versions for both
Spare and Intel, you have no excuse not to
download it and start playing with it! •!•

Probal Shame is a Senior Technical Analyst with
Oracle Worldwide Support. You can reach him at
pshome@us .oracle .com.

- - - . """- _ -

CUSTOMIZE YOUR ENVIRONMENT

Changing the tme bar DI an xterm window
If you use Open Windows, you've probably

had lots of Command Tool and Shell Tool
windows open at the same time. If you

have enough of them on the screen, it can
get pretty confus
ing. The more win-

Figure A <lows you have
open, the less of

shelltool - each window you
can see before they
overlap. Which one
are you using for
which project? Fig
ure A shows the
windows overlap
ping with only the
title bars showing.

As you can see,
all the title bars

While it's handy to have the ability to use
multiple windows to do your job, it can be
confusing.

show the same
information: shelltool - /bin/ksh. The title
bar is supposed to be informative, but it's
telling us only that it's a Shell Tool window
running jbin/ksh. The Command Tool and
Shell Tool programs, among others, both use
an xterm window for I/0. In this article, we'll
show you how to change the title bar for an
xterm window to anything else you want.

~--11 November 1996 .

Changing the text or an xterm
window
It turns out that an xterm window treats the
title bar and the normal window area as two
different windows. The xterm provides a
special character sequence you can use to put
text in the alternate window (i.e., the title bar)
and another character sequence to tell the
xterm when to go back to the original window.

The sequence of characters you use to tell
the xterm to start putting text in the title bar is
[EscL L then 1. You then may send it the text you
want on the title bar. When you're finished, send
the xterm an [Esc] character followed by\.

For example, if you're using Open
Windows, start a Shell Tool and type the
following command:

$ echo""[][New Titlebar Text"[\\"

When you press the [Esc] key, the xterm
window displays /\[. Also, the shell interprets the
\character as an escape, which tells it to treat
the next character as if it had no special mean
ing. In order to send the\ character to the echo
command, you need to use two \ characters:
The first tells it the next character has no special
meaning; the second is the character itself.

A quick shell script
Actually remembering and typing the appro
priate escape sequences is no great hardship.
However, it makes things simpler to make a
shell script to do the job for you. Figure B
shows the shell script WinName, which will
name a window for you .

Keep in mind that A[is the [Esc] key, not
the keys [Ctrl] and[. If you're using vi to enter
the shell script, just press [Ctrl]-V before
pressing the [Esc] key to enter it. One last
note: We're comparing the TERM environment
variable to sun-cmd because the termcaps entry
for an xterm is sun-cmd.

If you use this script, you won't have to
remember the escape sequences, and you won't
have any problems if you mistype something.
If you mistype the [Esc] \ part, for example,
you'll lose some of your output from successive
commands, as the output will go to the title
bar. However, the xterm doesn't actually
change the title bar until it receives the [Esc]\
character sequence, so you won't see a change.

Once you enter the shell script, don't forget
to make it executable with the command

$ chmod +x WinName

When you use this script, you need to keep
something in mind: If you want spaces in

. I·.
CUSTOMIZING YOUR SYSTEM

your text, en
close the new
window title in
quotes. Other
wise this script
will set the win
dow title to the
first word only.

Conclusion
Remember the
ugly screen
shown in Fig
ure A? Figure
C shows the
same screen, but
with informa
tive title bars.

You can use
this technique to
put any informa
tion in the title
bar of your

Figure B
if [$TERM = "sun-cmd"]; then

echo ""[)l" $1 ""[\\"
else

f i

echo "Sorry, you can only use this in a
•sun-cmd window"

This short shell script will change the title bar in a
sun-cmd (i.e., xterm) window.

Figure C

shelltool - /bln/ksh

Xterm windows. It's much easier to find the window you want when
Once you do so, the title bars have useful information in them.

you'll find it
much easier to
locate the window you want, since the title bar
now describes the window. •!•

Using command-line history in lhe
Korn shell
By Al Alexander

Recently, someone cornered me and asked
why UNIX doesn't provide command
line history like DOS does. In DOS, after

you execute the DOSKEYS command, you can
recall and edit command lines. Actually, UNIX
does provide a similar capability. As I spend
most of my day working at the command line
in the Korn shell, life with Solaris would be far
more difficult without the command-line
history feature.

However, command-line history works
differently depending on which shell you're
using. In this article, we'll show you how to
enable and use command-line history in the

Korn shell. Next month, we'll show you how
to use command-line history in the C shell.

Enabling command-line history
The Korn shell provides a very sophisticated
command-line history mechanism. Using it,
you can retrieve previously entered commands,
as well as edit and execute them. You can use
two primary modes, vi and emacs mode. (There's
also a gmacs mode, but it's nearly identical to
emacs mode.)

These modes allow you to edit the com
mand line as if you were using the editor
named. For example, in vi mode, the Korn

Inside Solaris II __ _

shell uses insert and command modes for the
editor, just like vi .. To enter command mode,
you press the [Esc] key. Then you can use the
normal cursor-movement keys for moving
around and editing text. You can go back to
insert mode by pressing i, a, or A, just as
you'd expect. Table A shows a subset of the
editing commands you can use in vi and
emacs modes.

If you use either vi or emacs as your
editor-of-choice, it's easy to select which mode
to use. If you use another editor, like the COE
text editor, you'll just have to choose the one
you like better. It may be worthwhile checking
them both out.

It's very easy to enable the command-line
history feature in the Korn shell. All you need
to do is set the environment variable VISUAL to
the mode you'd like to use: emacs, gmacs, or vi.
Let's try it out. If you're not already in the
Korn shell, enter it by typing

$ Ksh

Now let's enable the command-line
editing mode. For this demonstration, we'll
use vi mode.

$ VISUAL=vi

To demonstrate the re-use of previously
entered commands, let's first create a brief

Retrieve next command n/a i
Retrieve :rrevious command n/a k

Move left one character n/a h

Move right one character n/a

Move left one word n/a b

Move right one word n/a w

Enter insert mode n/a i, a, A

Exit insert mode [Esc] n/a

Go to start of line n/a /\

Go to end of line n/a $

Execute command [Enter] [Enter]

Delete current character n/a x

Delete current word n/a dw

three-command history. Type in the following
three UNIX commands, and then we'll show
how to easily re-use these commands within
the Korn shell:

$ ls -al
$ ps -ef
$ who

Now that we've put some commands in
your history, let's call up the last command we
entered, who. To do so, press the [Esc] key,
then press k. You should then see the who
command, with the cursor on thew. At this
point, you're in a one-line version of the vi
editor. The history list is treated like a file, and
your command line is like a one-line view port
into this file. You begin in vi's insert mode, so
pressing the [Esc] key puts the editor into
command mode. Pressing the k key moves
you up a line to the previous command. If you
press k again, you' ll go up to another com
mand, in this case p s - e f. Press k again, and
you'll see the l s - a l command again. Press j
to go to the next command, and you'll be back
at the ps -et command.

As in the regular vi editor, typing a
capital A allows you to append to the end of
the current line. Go ahead and type a capital
letter A, then type

l more

[Ctrl]-N

[Ctrl]-P

[Ctrl]-B

[Ctrl]-F

[Esc]b

[Esc]f

n/a

n/a

[Ctrl]-A

[Ctrl]-E

[Enter]

[Ctrl]-0

[Esc]d

Now your com
mand line should look
like this:

$ ls -al l more

You can execute the
command by pressing
the [Enter] key.

These are some of the most-commonly used command-line editing commands in vi and emacs .

The capabilities
you just saw are some
of the things that
make this feature so
desirable. The vi edi
tor offers many other
capabilities, such as
searching for pre
vious commands with
the I character, that
make the command
history editing fea
ture very powerful.
Just as the vi editing
mode is powerful,
emacs mode provides
similar features.

~--11 November 1996

Once you enable the command-line
history editing mode, you not only gain
the ability to retrieve previous commands
and edit them, you also get the ability to
edit the line you're currently working on.
If you've entered 30 or so characters and
notice that the first character is wrong, you
can simply go to the start of the line, edit
the character, then go back to the end and
continue typing.

Terminal requirements
For the in-place command-line editing to
work, your terminal must support two basic
features. First, your terminal must not auto
matically advance to the next line when it re
ceives a carriage return without a new line.
Second, when your terminal prints a space, it
must overwrite the character that was origi
nally at the location. These two features allow
you to use in-place command-line editing by
allowing the terminal to update the command
line as it's being edited.

Editing a very long line
As a result of the modest requirements the
in-place command-line editing feature places
on your terminal, the Korn shell uses only
one physical line when you edit a command
line. As you notice, the terminal isn't re
quired to have a character used to move the
cursor up a line. Since the cursor motion is
limited to left (via the carriage return), right
(by printing characters), and down (via the
new line), the Korn shell uses a single line on
your terminal. Otherwise, in-place editing for
long command lines would be impossible.
When you're editing a command line larger
than the width of your terminal, the Korn
shell displays a special character at the right
margin to tell you so.

If you're at the start of the long command
line, the Korn shell displays a > at the right
margin to show you that there's more com
mand line to the right. If you're at the end of
the long command line, you'll see a <, show
ing you that there's more command line to the
left of the left margin. If your command line is
so large that it extends past both the left and
right margins, the Korn shell will display an*
at the right margin.

Unless you tell it otherwise, the Korn shell
assumes that your terminal is 80 characters
wide. You can specify the size by setting the
COLUMNS variable. Let's try an example just to
see how the Korn shell handles a very long

line. We're going to use the vi editing mode in
this example. First, let's start the Korn shell,
set vi mode for command-line editing, and set
the column width to 40 so we don't have to
use an exorbitantly long command line:

$ Ksh
$ VI SUAL=v i
$ COLUMNS:40

Now, let's enter a relatively long
command line:

$ now is the time for all good men to come to
-.the aid of their party.

When you enter this command line, you'll see
it in its entirety, even if it wraps to the next
line. Now press the [Esc] key, then the k key to
invoke the command-line editor. When you
do so, you'll see

$now is the time for all good men to>

The> symbol indicates that the command
line extends past the right margin. If you use
the L key to advance the cursor to the space
after the word to, you'll see

$ r all good men to come to the aid O•

Now, press A to start editing at the end of
the line. When you do, you'll see

$ id of their party. <

The command-line history
If you'd like to examine the last few com
mands you've entered, you can type

$ history

This will print the last few commands that
you've entered.

Each time you start the Korn shell, it loads
the command-line history from the previous
session. This makes life much simpler if you
tend to do the same operations over and over.
Rather than having to type them in again, you
can access the commands you used in a pre
vious session.

Unless you override it, UNIX stores your
command-line history in the file .sh_history.
You may override it by setting the HISTFILE
environment variable to the name of the file
you'd rather use. You can use this feature to
set up different command-line histories for

Inside Sola11is ----~

different terminal windows. Thus, if you tend
to work on multiple projects at once, like most
of us, you can have a different command-line
history for each project. You can even create a
text file of commands you like to use, then
load them.

You can also tell UNIX just how much
history you want to store by setting the
HISTS I ZE variable. This tells how many
commands will be available to you between

SYSTEM CONFIGURATION

sessions. Normally, this defaults to 128
commands.

Conclusion
UNIX provides three different, but related,
mechanisms for giving you the ability to work
with a command-line history. In this article,
we've explored command-line history for the
Korn shell. Next month, we'll take a look at
command-line history in the C shell. •!•

Orderly shutdown during extended
power failures
By Jerry L. M. Phillips, M.S.

Do you depend upon your organization's
auxiliary service departments or indivi
dual users to call you when your Sun

equipment loses AC power during the night or
on weekends? Do the calls ever come too late to
permit an orderly shutdown of your Solaris
operating systems? Worse yet, do you discover
power losses after you return to work? If so, a
time-saving alternative is available.

Following the last prolonged weekend
power outage at my campus, which I heard
about 10 hours after the fact, I spent two ag
gravating days stabilizing the file systems
on a crashed Usenet News-World Wide
Web server. This prompted my search for a
solution that offered timely, dependable no
tification of long power failures and an or
derly shutdown and remote reboot of the
affected systems.

In this article, I recommend a hardware
and software combination that solved my
problems. The combination includes an
American Power Conversion (APC) Smart
UPS 700, an APC Call-UPS II remote control
accessory, a Measure-UPS II supplementary
surveillance accessory, and APC PowerChute
Plus v4.2. l for Solaris software.

Here's how it works
The process is fairly straightforward. The
Smart-UPS 700, attached to your Solaris/

m November 199G

SP ARC system, registers a power disturbance
and switches to battery operation. If AC
power doesn't resume within a few minutes,
the Call-UPS II initiates a paging sequence. It
uses a modem that you attach to the Call-UPS
to dial a pager number. Your pager receives
the call and displays the site ID with a Smart
UPS event status code indicating that the
Smart-UPS is on battery.

You may then dial into the Call-UPS II
from a remote workstation to examine the
event log and also check the load parameters
on the Smart-UPS. In the meantime, the UPS
status changes to low battery. Realizing that
you can't respond onsite in time, you may tell
the Call-UPS II to shut down the system
gracefully and turn off the UPS. When power
resumes, your system reboots automatically.
Now, let's go through the steps necessary to
configure the Call-UPS II and PowerChute
Plus software.

Call-UPS II configuration
Following installation and testing of the Smart
UPS, connect the Call-UPS cable (marked UPS
on the connector) to the computer interface
port on the UPS. Next, connect the /dev/ttya se
rial port on your Solaris/SPARC computer to
the Call-UPS management port using the null
modem cable provided. This temporary con
nection will allow you to configure various
parameters on the Call-UPS.

In our example, you'll configure the
management port to send pages via modem
and accept dial-in calls. Enter the command

$ /usr/sbin/eeprom I grep ttya

and confirm that the default values of the
serial port selected are

ttya-rts-dtr-of f=false
ttya-ignore-cd=true
ttya-mode=9600,8,n, 1,h

If your results do not agree with the
parameters on the third line above, enter the
command

$ eeprom ttya-mode=9600,8 , n,1,h

This will configure your port so it can communi
cate with the Call-UPS. Check your /etc/remote
file-you need to be sure that you have the se
rial port configured properly. You may need to
edit the file and insert the following line before
executing the t i p command:

cuaa:dv=/dev/cua/a:br#9600

If everything is ready, you can access the Call
UPS through the port by entering the command

$ tip cuaa

Now, press [Ctrl]-P, and the Call-UPS
should respond with the Enter Password>
prompt. Type in the uppercase letters APC
and press the [Enter] key. The Smart-UPS 700
banner page should appear. Press any key to
continue, and the Smart-UPS 700 should
display the MAIN MENU, shown in Figure A.

Select Call-UPS Settings (item 4), and you
should see the CALL-UPS SETUP screen
shown in Figure B. Follow the Call-UPS user's
manual instructions to enter the Date, Time,
and Location settings. Change the Answer
Ring setting to 1 or 2. This setting represents
the number of rings your modem waits before
answering an incoming call.

For the purposes of this article, we'll ig
nore the Dial Back, Dial Back Str, and Answer
Lockout settings. These manage dial-back se
curity and control communication sessions
over multiple devices using the same tele
phone line. After you get your system work
ing, you may want to explore these settings
for added security for your UPS. (You prob
ably wouldn't like a spiteful worker or stu-

dent hacking into your UPS and turning off
your system.)

Now select item 11, the Pager Setup
Menu. When you do so, the Call-UPS will
display the PAGING SETUP screen, shown in
Figure C. Here, you configure the Call-UPS to
page you if there is a change in the Smart-UPS
status. You enable paging by changing the
Paging setting to ON.

The Dial String 1 setting stores the pager
number and modem commands to dial your
pager. This will depend on the type of modem
you use. Our example uses a standard Hayes
compatible modem, so the DT means dial with
touch tone; then we send a 9 to get an outside
line. The comma tells the modem to pause for
two seconds. Then comes our pager number.

Figure A

~ ·~ cmdtool (CONSOLE) -/shin/sh
------------------------ MAIN MENU -------------------------

Date: Sep-11 '96

1- UPS Status
2- UPS Co ntrol
3- Data/Event Logging
4- Call-UPS Settings
5- UPS Characteristics
6- Measure-UPS Status
?- Help

<CR> Display Menu
<ESC> End Session

Ti me: 18: 36: 05

Once you're communicating properly with the Call-UPS, you should see the
MAIN MENU.

Figure B

cmdtool (CoNSOLEJ - /shin/sh
---------------------- CALL-UPS SETUP ----------------------

Model Number: AP9208 H/W Rev: C3
Serial Number: A95056435648 F/W Rev: E

Manuf. Date: 6/8/95

1- Set Date: Sep-11 ' 96 7- Ansi Color: ON
2- Set Time: 18:38:06 8- Baud Rate: 19200
3- Set Password: ******** 9- Answer Ring: 1

----~~-~~:~:~~~~;!~~[_!f ~~~;~;~=~~~:;~;;~;;:_~:;;~~t:_:_:~:- ~
I 11- Pager Setup Menu

12- Reset Call-UPS to Default Settings
?- Help

<CR > Display Menu
<ESC> Return to Previous Menu

> ...

You use the CALL-UPS SETUP screen to set up the date, time, and
communications settings.

'

Inside Solaris m ___ ~

- I . -
MONITOR YOUR SYSTEM

Who has an account on your system?
I f you' re like me, you sometimes need to

see who has an account on a particular
machine. Obviously, you can just take a

look at the /etc/passwd file and see. Figure A
shows an /etc/passwd file. However, you have to
ignore the entries that don' t correspond to a
user account, and let's face it, the /etc/passwd file
is ugly. In this article, we're going to present a
small script that will print a list of the user
accounts on your machine in a nicer format,
sorted alphabetically by the login name.

Figure A

root : x : 0: 1 : Super-User : I : Is bi n Is h
daemon: x: 1 : 1 : : I:
bin :x:2:2: :/usr/bin:
sys:x:3:3 : :/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
smtp:x:0:0:Mai l Daemon User:/:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/

•usr/lib/uucp/uucico
listen:x:37:4:Network Adm in:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002: No Access User:/:
marco:x:100:10:Main user:/export/home/marco:/

•bin/ksh
fred:x:101:10:Test user:/ export/home/fred:/bin/

•csh

The /etc/passwd file contains all the information you
need, but it's not easy to read.

As you can see in Figure A, the entries in
the /etc/passwd file are in no particular order.
We also see that the first entry in each record
is the login name of the user. Since we want to
alphabetize our list, the first step is to sort the
/etc/passwd file, like this:

$ sort </etc/passwd

Now we want to take the resulting file
and print it out in a prettier format. The awk
tool is the best choice for the job. It's designed
to read a text file one record at a time, where a
record is a single line, and break it into fields.
Then you can process the record according to
the rules you hand awk. (If you're unfamiliar

with awk, see the article "An Introduction to
awk" in our May issue.)

However, awk normally breaks a record
into fields at white space. Thus, it interprets
the line

now i s the ti me

as a record containing four fields. Unfortu
nately, the /etc/passwd file doesn't lend itself to
processing like this. A record doesn't neces
sarily contain spaces, and when it does,
they're not at field boundaries. For example,
this line has two spaces, but they both appear
in the comment field:

lp :x:71:8:Line Printer Admin:/usr/spool/lp:

The /etc/passwd file is arranged such that
each line contains seven fields, separated by
colons. The field definitions are shown in
Table A.

Table A

1 The user's login name
2 The encrypted password (archaic, now used for

pwconv maintenance)
3 User ID
4 Group ID
5 Comment field, it often holds the user's full name
6 Home directory location
7 Login shell to use

These are the field definitions for the /etc/passwd file.

If we could tell awk to split records apart
using a colon rather than white space, printing
our report would be a simple task. Luckily,
you can tell awk the character to use to split a
record apart with the -F switch. Simply use
-F?, where? is the character to use as a field
separator, like this:

$ sort </etc/passwd : awk -F: ' { print
•$1,$5,$7 } I

Inside Solaris m __ ~

SunSoft Technical Support

(800) 786-7638

SECOND CLASS MAIL

Please include account number from label with any correspondence.

Figure B

ISOLusers - Display the username, comment
#and shell each user on the system.

sort <letc/passwd : awk -F: '

#Print column headers
BEGIN {

printf "%-8.8s ", "UserName"
printf "%-25.25s ", "Comment"
printf "%-24.24s\n", "Shell"
printf "%8.8s ", "--------"
printf "%25.25s ", "----------------------"
printf "%24.24s\n", "---------------------"

#Process each record that has a shell entry
#(This is how we differentiate a user from a
daemon or other entry in /etc/passwd.)
length(S7)>0 {

printf "%-8.8s %-25.25s %-24.24s\n",S1,S5,S7

The ISOLusers script prints an alphabetized list of all
user accounts on your system.

W~·~</.:y;'f.~;11fl:~~'%.~

LETTERS

This command prints out the user's login
name, comment field, and login shell. Now
all we need to do is fine-tune it to make it
prettier, and we're done. To do so, we use
a wk' s pr i n t f command, so we can force the
columns to be fixed width. We also added
column headings to make the report nicer.
The last thing we did was tell awk to only
print records for the users who had a shell
defined. This way, you don't have to look
through the daemon processes and other en
tries that don't correspond to user accounts.
Figure B shows the finished script, named
ISOLusers.

Conclusion
We've presented a simple script you can use
to find out who has an account on your sys
tem. For our purposes, we needed only the
user name, comment, and shell, but you can
modify it to suit your own needs. Now you
don't have to weed through the /etc/passwd
file in search of a user's account. The script
ISOLusers will print a neat list for you. •:•

More directory switching with the Korn shell
Your quick tip entitled "Quickly Switch

Between Directories" in the July issue was
good, but it might have been worth mention
ing another feature of the Korn shell. In par
ticular, you might have discussed the ability
to define CDPATH and the use of cd - to jump to
the previous directory.

Glen
via the Internet

Glen, thanks for pointing that out. Each time
you change directories in the Korn shell, it stores
your new working directory in the PWD envi-

....___ __ • November 1998

ronment variable. It also stores your previous
working directory in the OLDPWD variable.

So one way to change to your previous
directory is to use the command

S cd SOLDPWD

As you noticed, however, the Korn shell gives
you an even simpler method of switching back
to your previous directory. The implementers of
the Korn shell gave the shorthand notation of cd -,
which tells the Korn shell to change to the direc
tory stored in the OLDPWD environment variable. •:•

Printed in the USA
This journal is printed on recyclable paper.

